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RÉSUMÉ

Pour une meilleure gestion de leurs opérations, les compagnies de transport ont mis en place
des outils d’aide à la décision. Les décisions suggérées par ces outils reposent fortement sur
les prévisions de demande, et peuvent affecter considérablement leur rentabilité. Les com-
pagnies aériennes par exemple, utilisent des systèmes de gestion du revenu pour le transport
de passagers. Les compagnies de transport de marchandises quant à elles, résolvent des prob-
lèmes de conception de réseaux de service, dont l’objectif est de définir les services à offrir
sur leur réseau pour transporter la demande à coût minimal. Les prévisions de demande, la
planification et la rentabilité des compagnies de transport sont donc très fortement reliées.

Dans cette thèse organisée en trois articles, nous réalisons des études interdisciplinaires por-
tant sur l’intégration de la prévision de la demande et de la planification pour des réseaux de
transport de grande taille, et sur l’analyse de l’impact sur des indicateurs de performance.

Tout d’abord, nous présentons pour la première fois le problème d’estimation de la demande
périodique relatif aux décisions tactiques des compagnies de transport de marchandises. Ce
problème incorpore à la fois le problème de prévision de la demande, et le problème de
planification. Pour des raisons de complexité et de faisabilité, les modélisations cycliques
et déterministes de ce dernier sont majoritairement utilisées en pratique pour les problèmes
de grande taille. Celles-ci reposent sur l’hypothèse d’une demande fixe, connue et identique
à chaque période de l’horizon de planification, appelée la demande périodique. Nous pro-
posons une méthodologie en deux étapes pour son estimation, de façon à minimiser les coûts
tactiques. L’objectif de la première étape est d’estimer la demande à venir pour toutes les
commodités transportées, à chaque période. Nous développons et comparons des modèles
de prévisions issus des statistiques et de l’apprentissage automatique utilisant d’importantes
caractéristiques extraites des données. Puis, la deuxième étape définit la demande périodique
comme la solution d’un problème multi-niveaux qui intègre le problème de planification et
dont l’objectif est de transporter la demande prévue à coût minimal. C’est un problème
difficile car les niveaux inférieurs sont de grande taille, non convexes, non différentiables et
combinatoires. Nous le résolvons sur un petit ensemble discret de solutions réalisables. Des
résultats numériques produits avec les données de la division intermodale de la Compagnie
des Chemins de fer nationaux du Canada montrent que notre méthodologie permet de ré-
duire considérablement les coûts par rapport au cas où la demande périodique est égale à la
moyenne des prévisions, une pratique répandue chez les transporteurs.

Dans un deuxième temps, nous élargissons le problème d’estimation de la demande périodique
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introduit précédemment, et définissons cette dernière comme étant une fonction linéaire de
la moyenne des prévisions. Nous proposons donc une nouvelle formulation multi-niveaux du
problème, dans laquelle les variables de décisions sont désormais les coefficients de la fonction
linéaire pour toutes les commodités transportées. De par la complexité du problème, nous ex-
plorons deux pistes pour sa résolution: les méta-heuristiques et les algorithmes d’optimisation
de boîte noire. Toutes deux exploitent la propriété de résolution séquentielle, affirmant que les
niveaux inférieurs de la formulation peuvent être résolus séquentiellement lorsque les variables
de premier niveau sont fixées. Nous proposons deux nouvelles méta-heuristiques de recherche
locale, et comparons leurs résultats avec un logiciel de boîte noire dont les meilleures per-
formances sont obtenues sur des problèmes avec peu de variables. Toutefois, les réseaux de
transport de grande taille rencontrés en pratique transportent des centaines de commodités,
ce qui correspond à des centaines de variables. Pour réduire le nombre de variables tout en
conservant des bonnes solutions, nous présentons des approches heuristiques ayant pour but
de créer des groupes de commodités ayant la même valeur de coefficient. Les groupes sont
créés à partir de la structure du réseau ou de l’analyse de la distribution de la demande sur
l’horizon de planification. Cette méthodologie surpasse les performances indiquées dans un
premier temps sur le problème du réseau intermodal, et génère une amélioration des coûts.
De plus, les heuristiques de groupement permettent non seulement d’obtenir les meilleurs
résultats, mais elle rendent également l’utilisation des logiciels de boîte noire possible pour
les applications de grande taille.

Dans un dernier temps, nous nous concentrons sur l’évaluation de l’impact d’une amélio-
ration apportée à un outil d’aide à la décision. L’objectif est d’estimer, pour un trans-
porteur, l’impact sur des indicateurs de performance tels que le revenu et le chiffre d’affaires.
Nous considérons le cas particulier du système de gestion du revenu d’une compagnie aéri-
enne, et proposons une approche qui évalue l’impact sur le revenu, indépendamment du type
d’amélioration apportée au système. Le problème d’estimation de l’impact est intrinsèque-
ment difficile car le revenu qui aurait été obtenu sans l’amélioration, en maintenant le système
inchangé, n’est pas observable. L’approche que nous proposons repose sur des modèles dont
l’objectif est d’estimer ce revenu, et qui nécessitent uniquement les données d’observation
du revenu. L’impact est alors calculé comme étant la différence entre le revenu observé,
résultant de l’amélioration, et le revenu estimé. Des résultats numériques issus des données
d’Air Canada montrent que les modèles d’estimation du revenu non observable sont précis,
et permettent d’estimer même un impact de petite ampleur.
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ABSTRACT

Decision-making systems deployed in transportation companies are used for efficiency and
better planning of their operations. Such systems rely on demand forecasts, and the decisions
they suggest can substantially affect the profitability of a carrier. Airlines, for instance, use
Revenue Management Systems for their passenger-based activities. Freight carriers solve
service network design problems for their tactical planning, optimizing the services to offer
to transport the demand at minimal cost. Hence the strong link between demand forecasting,
planning and profitability.

In this research organized in three papers, we carry out interdisciplinary studies that focus
on integrating demand forecasting and planning for large-scale transportation networks, and
analyzing the impact on key performance indicators.

First, we introduce the periodic demand estimation problem that integrates demand fore-
casting with planning for tactical decisions of a freight carrier. Cyclic and deterministic
formulations of tactical planning problems prevail in practice, due to the complexity and
feasibility of large-scale applications. This is our focus. Those formulations assume that
the demand is fixed, known and repeated at each period of the planning horizon. We refer
to the latter as periodic demand. We propose a two-step methodology to estimate it. The
first step consists in forecasting demand for each commodity transported in the network at
each period of the planning horizon. We develop and compare models based on statistics
and machine learning literature exploiting important features extracted from the data. The
second step defines the periodic demand as a solution to a multilevel mathematical program
which integrates the planning problem and aims at transporting the forecasted demand at
minimal cost. The lower levels are non-convex, non-differentiable and combinatorial, hence
the difficulty of solving the multilevel program. We apply the methodology on the intermodal
network of the Canadian National Railway Company. Computational experiments on a lim-
ited feasible set of periodic demand show that this methodology allows substantial reduction
of the tactical planning costs compared to the common practice which consists in taking the
periodic demand as the average of the demand forecasts.

Second, we extend the periodic demand estimation problem and define the periodic demand
as a deviation from the average of the demand forecasts. We propose a new multilevel
formulation for the periodic demand estimation problem, where the decision variables are
now the deviation coefficients for all commodities transported in the network. Due to the
complexity of the problem, we explore two avenues for its resolution, namely metaheuristics
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and blackbox optimization algorithms. Both use the sequential property specific to our
multilevel formulation, asserting that when the first-level variables are fixed, the lower levels
can be solved sequentially. We propose two local search metaheuristics and compare their
performances with an off-the-shelf blackbox solver known to perform best for problems with
few variables. However, large-scale transportation networks met in practice carry hundreds of
commodities, resulting in hundreds of deviation coefficient variables. To reduce the number
of variables while keeping high-quality solutions, we propose heuristic approaches creating
clusters of commodities having equal deviation coefficients. The clusters are formed by
either exploiting the structure of the network or analyzing the distribution of demand over
the planning horizon. The proposed methodology outperforms previous findings and yields
decreases in costs on the Canadian National Railway Company application. Moreover, the
clustering heuristics allow to reach the best tactical costs and leverage the use of off-the-shelf
blackbox solvers even for large-scale applications.

Finally, we propose a counterfactual prediction approach for the impact assessment problem
of an improvement to a decision-making system. The objective is to assess the impact on a
key performance indicator of the carrier, such as the revenue or the income. We focus on the
Revenue Management System of an airline, and the impact on the revenue. The approach is
independent of the improvement itself and only needs the revenue data. Since the revenue
that would have been without improving the system is not observable, we propose to estimate
it with counterfactual prediction models. We can then estimate the impact as the difference
between the observed impacted revenue and estimated non-impacted revenue. Computational
experiments with data from Air Canada show that both linear and deep-learning models are
highly accurate for aggregated counterfactual revenue predictions, which allows to estimate
small impacts.
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CHAPTER 1 INTRODUCTION

In the increasingly globalized world, the transportation sector has become essential for both
international trade and tourism, two major components of countries’ economy. In 2018,
the value of world merchandise exports was 19.5 trillion US dollars in 20181. At the same
time, the total international tourism exports generated 1.7 trillion US dollars2. Efficient
transportation services between continent and countries, and within countries are not only a
major source of economic growth but also a necessity. In Canada, the transportation sector
represented 4.5% of GDP in 20183. Its trading partners are spread out across the world:
besides to the U.S., Canada’s top five trading partners includes China, Mexico, Japan and
the United Kingdom.

The transportation sector allows people and goods to move worldwide. In the case of air
transportation, both might share the same resources: airplanes with passengers sometimes
also carry freight. For rail transportation, this is not the case in North America, and com-
panies, also called carriers, share the same infrastructure but are dedicated to either freight
or passenger transportation. This is because the equipment and the operations required to
handle the movements of goods or people are deeply different.

Despite its importance, the transportation sector suffers from negative impacts. It is indeed
the second CO2 emitter, after the energy sector (Ritchie and Roser, 2020). Since 2005, the
global greenhouse gas emissions from the transportation sector have increased in Canada
despite the improvement of the energetic efficiency of air, rail and road carriers. Moreover,
the transportation sector is affected by inefficiencies from either the under-utilization of
capacity and congestion, that are due in part to the demand uncertainties. They are costly
and carriers aim at planning their operations to avoid them as much as possible.

Transportation networks hence need to be wide, environmentally friendly, cost-efficient and
flexible to support the global and domestic trade. With the development of mathematical
modeling of operations and optimization algorithms, in parallel with the collection of large
amount of data, both freight and passenger carriers have introduced highly sophisticated
systems in their decision-making process.

The operations of a carrier and its whole planning process are remarkably complex. The
multiple planning decisions, taken for a large-size network, often countrywide, are highly

1Annual report from the World Trade Organization
2Annual report from the World Tourism Organization
3Annual report from Transport Canada
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dependent. Due to the size and the combinatorial aspect of the problems, having one model
encompassing all operations would be impossible to solve. Therefore, carriers are typically
decomposing their decision-making process into three levels, for three different planning hori-
zons. Each level imposes constraints on the subsequent decision levels. At the strategic level,
long-term decisions are taken, for instance the modification of the physical network or the
acquisition of major resources such as locomotives for rail companies. The tactical level con-
cerns medium-term decisions, namely the schedule and the allocation of resources to reach
the strategic objectives. Finally, the operational level focuses on short-term decisions: the
optimization of resources set out at higher levels to satisfy the actual demand.

Figure 1.1 illustrates the decision-making process of a carrier, where decisions flow from
strategic to tactical and finally to operational while observed data, namely the transported
demand and used resources, are used in the opposite order. We first observe the day-to-
day transported demand, then aggregate the observations over longer periods. The three
decision levels commonly rely at their respective time horizon on demand forecasts containing
uncertainty. Strategic decisions usually require quarterly or yearly demand forecasts, while
tactical decisions look at weekly or monthly forecasts and operational decisions at daily, or
hourly forecasts. At the operational level, the transported demand results from the real
demand, the available capacity and uncertain factors and constitutes the historical data used
in the different forecasting modules.

Long-term
Demand
Forecasts

Medium-term
Demand
Forecasts

Short-term
Demand
Forecasts

Strategical
Decisions

Tactical
Decisions

Operational
Decisions Transported

Demand

Flow of decisions
Flow of data

Figure 1.1 Decision making process of a carrier

Decisions at each level are the solutions to optimization problems with specific objectives,
often included in analytics and decision-making systems. Tactical planning of freight carriers
for instance aims at minimizing the costs of using the resources while satisfying demand and
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is often modeled as a mathematical program solved with commercial softwares. Airlines make
use of Revenue Management Systems for tactical and operational decisions. Because of the
complex nature of both the forecasting and optimization problems, the prevailing practice
is to first predict, then optimize separately: the forecasting models would then not consider
the downstream optimization problem.

In this thesis, we focus on the link between demand and supply for transportation networks.
We carry out interdisciplinary studies by combining methodologies from machine learning,
statistics and optimization. We introduce new perspectives and concentrate on the integra-
tion of demand forecasting and planning, and the analysis of the impact on carriers’ key
performance indicators. We summarize the contributions in Figure 1.2. First, we link de-
mand forecasts to the objective of the decision-making problems they should contribute to
solve, and represent it with the red arrow. We also assess the impact of the demand forecasts
on the planning costs. Then, we identify the problem of assessing the impact of improvements
to decision-making systems and designate it by the blue arrows. This is a crucial problem for
carriers for investment decisions: the value of the impact might lead to fundamental changes
of their system. Even though each one of the forecasting, planning and impact assessment
problems has been well studied in the literature in specific cases, we identify problems related
to their respective integration to one another that have been overlooked in the literature while
having high value in practice. Our work aims at addressing this gap.

The problems considered are strongly linked and affect one another: the value of the key
performance indicator, e.g. the revenue, results from the planning decisions that result
from the demand forecasts. Yet they draw from distinct literature which have their proper
concepts and challenges. This dissertation, composed of self-contained chapters, proposes
new formulations and experimental frameworks to tackle them. The following two sections
are dedicated for each problem: integrating forecasting and planning, and assessing the
impact. We introduce and explain the concepts essential to our research, and discuss our
contributions and objectives.

1.1 Integrating Demand Forecasting and Tactical Planning

In this section, we focus on the tactical decision level for freight carriers. Their network
is divided into terminals that, in turn, are linked by services, i.e. transportation modes
such as trains or trucks. Goods transported on the network are referred to as commodities,
defined by an origin terminal, a destination terminal and a type of good. The demand is then
the quantity of each commodity that moves on the services available on the network. The
tactical planning problems aim at answering questions regarding the schedule of the services
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Demand Forecasts

• Application to rail freight
transportation with data
from Canadian National

Decision-making System

• Application to air passen-
ger transportation with
data from Air Canada

• Application to rail freight
transportation with data
from Canadian National

Impact Assessment

Contributions in Chapters 4 and 5
Contributions in Chapter 6
Existing literature

Figure 1.2 Overview of the research
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to offer and their frequency, the type of vehicles to use and the routes of the commodities
on the services. They are generally described as Service Network Design (SND) problems,
a class of problems whose objective is to minimize the costs of routing the freight while
satisfying the forecasted demand (Wieberneit, 2008). Those problems are typically modeled
by Mixed Integer Programs that include time and space considerations. They integrate the
costs and the constraints for all commodities transported in the network: which equipment
they can be carried on, the capacity constraints, the possible routes, etc. The solution of
the program gives a detailed plan of services at each period of the tactical horizon, their
schedule, intermediate stops and the routes on the services for each commodity. In practice,
once the design is set, the routes are adjusted operationally to support the actual demand
realizations.

To increase the utilization of the different equipment and offer reliable customer services,
large-scale transportation networks often use cyclic services: the tactical horizon is decom-
posed into periods of equal length and the same services are offered at each period. Moreover,
due to the large number of commodities in real-life problems, SND problems are often mod-
eled as deterministic, in which case the demand is assumed fixed and known.

The cyclic and deterministic SND formulations require one single estimate of the demand
to come for each commodity that we call in this thesis the periodic demand. The latter
has an important impact on the resulting tactical plan and the associated costs. However,
time series forecasting models produce the demand forecasts for each period of the tactical
horizon, hence the inconsistency between the available (multiple point estimates of demand)
and the required (periodic demand) information.

Despite its importance, the question of estimating a good periodic demand has been over-
looked in the literature, and the common practice consists in taking the average of the
forecasts over the periods of the planning horizon. There is no study focusing on the Peri-
odic Demand Estimation (PDE) problem linking time series forecasts to the tactical planning
problem of interest. We aim to address this gap in this research, in Chapter 4 and Chapter 5.
We now highlight their specific objectives as well as their achieved contributions.

Periodic Freight Demand Forecasting for Large-scale Tactical Planning Our first
contribution consists of the formal introduction of the periodic demand estimation problem.
We propose a two-step methodology, where the first step focuses on the time series demand
forecasting problem, and the second step aims at estimating the best periodic demand from
the forecasts. To do so, we propose a multilevel mathematical programming formulation
whose solution is a periodic demand, defined as a mapping of the forecasts that minimized
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the fixed design costs and the variable costs incurred from adapting the plan at each period.
The proposed formulation links the demand forecasting to the tactical planning. We show
the importance of the choice of the periodic demand estimate and the impact on the tactical
costs for a large-scale application at the Canadian National Railway Company (CN). We
start by forecasting the demand for the intermodal traffic. We develop and compare different
forecasting models based on the statistics and deep learning literature on the first large-scale
freight transportation network. Results show that statistical models perform best compared
to neural networks on limited data. The latter reveal the importance of considering external
features such as weather data to improve the forecast accuracy. Then, we solve the multilevel
problem by enumerating the solutions on a restricted feasible set for the periodic demand.
We show that this methodology lead to a substantial reduction of the tactical costs compared
to the common practice using the average of the forecasts as periodic demand.

A Two-step Heuristic for the Periodic Demand Estimation Problem Our second
contribution consists in extending the work from our first contribution by allowing a broad
and continuous feasible set for the periodic demand and devising a solution approach. We
propose a new formulation of the PDE problem, where we formalize the mappings from the
demand forecasts to the periodic demand as a deviation from the vector of average forecasts.
The first-level variables are then the deviation coefficient for each commodity. Due to the
complexity of the problem and its lower levels, we explore two avenues for its resolution,
namely metaheuristics and blackbox optimization algorithms. Both use the sequential prop-
erty specific to our multilevel formulation, asserting that when the first-level variables are
fixed, the lower levels can be solved sequentially. We propose two local search metaheuristics
and compare their performances with an off-the-shelf blackbox solver known to perform best
for problems with few variables. However, the number of variables corresponds to the num-
ber of commodities transported in the network, which can be up to hundreds for large-scale
applications. To address this challenge, we propose heuristic approaches creating clusters of
commodities that have an equal deviation coefficient, hence reducing the size of the feasible
set of solutions and the number of variables. The clusters are formed by either exploit-
ing the structure of the network or analyzing the distribution of demand over the planning
horizon. We report results for the same large-scale application described in the first contri-
bution. They show that the proposed methodology outperforms previous solutions allowing
to further reduce the costs. Implementing the clustering heuristic before solving the problem
allows to obtain the best solution. Moreover, it enables the use of the blackbox solver even
for large-scale applications.
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1.2 Impact Assessment

In this section, we switch focus to passenger transportation and consider Revenue Manage-
ment Systems (RMSs) used by airlines to maximize revenue. Such decision-making systems
handle demand bookings, cancellations and no-shows, as well as the optimization of seat al-
locations and overbooking levels. Improvements to existing systems are made by the airlines
and solution providers in an iterative fashion, aligned with the advancement of the state-of-
the-art where studies typically focus on one or a few components at a time. An improvement
might be for instance a change of forecasting model, or a change in pricing policies. As RMSs
are extremely intricate, the improvement affects the subsequent decisions. Thus, when it is
implemented in practice, there are numerous intermediate steps between the improvement
and the consequence on observed demand, and therefore on the revenue. It is then challeng-
ing to evaluate if the improvement to the RMS lead a significant improvement in revenue.
This is even more challenging, as the value of interest, i.e. the difference between the revenue
generated after the improvement and the revenue that would have been without it, is not
observable.

While there is a wealth of studies aiming to improve RMSs, the literature focusing on assessing
quantitatively the impact of such improvements is scarce. We aim to address this gap in
Chapter 6, and highlight next its specific objective and achieved contributions.

Assessing the Impact: Does an Improvement to a Revenue Management System
Lead to an Improved Revenue? In our third contribution, we propose a methodology
for impact assessment that is independent of the improvement itself and only needs the data
of the outcome of interest, that is the revenue in our case. We rely on counterfactual predic-
tion models which estimate the reference revenue, that is the revenue that would have been
if the RMS had not been changed. The impact is then estimated as the difference between
the estimated reference revenue and the observed impacted revenue. We provide a compre-
hensive overview of counterfactual prediction models and the first extensive computational
study that use those model in a large-scale airline application. It stands out from the usual
macroeconomic synthetic control applications. We compare models from the literature with
a tailored deep learning model for this task. We use data from Air Canada and present
accurate counterfactual prediction models that allow to estimate fairly small impacts.
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1.3 Thesis Outline

The remainder of this document is organized as follows. Chapter 2 contains a brief literature
review of the main topics discussed in this thesis. Chapter 3 presents a synthesis of the work
as a whole and the general organization of the manuscript. Chapters 4, 5 and 6 form the
main body of this thesis, and contain the three aforementioned contributions. In Chapter 7,
we further discuss our contributions regarding the three objectives of this thesis. Finally,
in Chapter 8 we summarize the dissertation work, comment on its limitations, and identify
future research directions.
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CHAPTER 2 CRITICAL LITERATURE REVIEW

In this chapter, we present some important definitions and concepts related to our work.
The forecasting, planning and impact assessment problems draw from distinct literature that
include statistical models, machine learning, mathematical programming, metaheuristics and
econometric models. We present in this chapter the key notions for each field and how they
relate to our specific problems and applications. We describe in Figure 2.1 the specific topics
for each problem considered in our research.

Demand Forecasts

• Tactical forecasts: multi-
ple commodities and time
steps
• Statistics, time series
• Machine learning

Decision-making System

• Tactical planning
• Service Network Design

(SND)
• Deterministic cyclic formu-

lations

Impact Assessment

• Simulations
• Estimation of unobserved

revenue without change to
the system

Multilevel
optimization

Contributions in Chapters 4 and 5
Contribution in Chapter 6
Existing literature

Figure 2.1 Topics related to our research

We first focus on the forecasting and planning problems for tactical decisions with emphasis
on a freight transportation application. We review in Section 2.1 the literature related to
forecasting, namely statistics and machine learning. In Section 2.2, we focus on the tactical
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planning problems for freight transportation. They are modeled as SND problems, which
consist in selecting and scheduling services, specifying terminal operations and routing of
freight. For large-scale applications, the formulations are mainly deterministic and assume
that the demand is fixed and known. In Section 2.3, we present the solution approaches,
namely metaheuristics and blackbox optimization, that could be used to solve our multilevel
formulation of integrated forecasting and planning problems. Its difficulty is explained by the
large-scale, non-convex, not differentiable and combinatorial lower-levels problems. Finally,
in Section 2.4, we focus on the question of how to assess the impact when improving the
decision-making system, and consider an airline application. The more complex the system,
the more difficult it is to estimate properly the impact of the change due to the multiple
intermediate steps between the change and the consequences on the transported demand.
The potential methods can be divided in two categories: simulations or field experiments.
The latter consist in applying the change in practice and estimating the revenue that has not
been subject to the change. It is not observed and thus called the counterfactual revenue.

2.1 Demand Forecasting

Demand forecasting for tactical planning consists in estimating the demand to come for each
commodity traveling on the network at each period of the tactical horizon. This is known as
a multivariate multistep demand forecasting problem: multivariate designates the multiple
commodities and multistep designates the multiple periods.

Two types of forecasting methods emerge from the literature: statistics with mostly time
series analysis, and machine learning (ML) with the recent development of neural networks
(NN). As Breiman (2001) discusses, the former considers that data are generated from an
underlying stochastic process and examines historical data to extract it and to predict fu-
ture trends. Machine learning methods, on the other hand, assume that data have been
generated by an unknown process. Karlaftis and Vlahogianni (2011) review the differences
between statistical models and NN for forecasting problems in transportation research, and
highlight that the former are often defined in terms of the mathematical model they use and
its statistical properties, whereas the latter are defined by their architecture and learning al-
gorithms. In a survey paper, Azadeh et al. (2014) review and propose a taxonomy of existing
statistical and machine learning demand forecasting methods for revenue management.

One limitation of statistical models is multicollinearity, i.e., the correlation between two or
more independent variables. In NN models, the assumption of independent variables being
uncorrelated is not made. This is important in transportation networks, as demand for
multiple commodities are often correlated. Moreover, NN models are flexible enough to



11

model complex non-linear relationships in an automated fashion. A multilayer feed-forward
neural network for instance is able to approximate, as accurately as desired, a function from
training examples (Hornik et al., 1989). The NN also allow to take custom lagged demand
into account, to favor recent demand over earlier demand for instance, and external factors,
by using them as inputs. This is useful in transportation applications, as the weather for
instance might be responsible for sudden changes in the demand, that are difficult to predict
with statistical models.

The comprehensive books, Makridakis et al. (2018) and Box et al. (2015), provide a complete
description about statistical forecasting models. They include for instance autoregressive
models, moving averages and exponential smoothing. An overview of ML models can be
found in James et al. (2013), and of NN models in Goodfellow et al. (2016).

Both types of models have been used for demand forecasting in various applications. They
each have their advantages and limitations on particular aspects. In terms of implementation,
interpretation and data requirements, statistical models tend to outperform NN which have
difficulties when data is limited, due to the problem of overfitting (Goodfellow et al., 2016).
However, flexibility and external factors inclusion are their strength. Yet in terms of demand
forecast accuracy, there is not a clear winner: some studies suggest that NN are more accurate,
while others provide evidence for the opposite (Karlaftis and Vlahogianni, 2011).

2.2 Tactical Planning and Service Network Design

Freight transportation networks are composed of terminals, which are linked by infrastructure
and services to provide high-quality and reliable customer services. A terminal designates
e.g. a train station, an airport or a depot, and a service corresponds to a transportation mode
between two terminals. Depending on the application, the service can either be flights (Yang,
2009), trains (Morganti et al., 2020), ships (Agarwal and Ergun, 2008), etc. Commodities
moving on the network are defined by their origin and destination terminals, and the type of
freight.

Crainic (2000) describes the tactical planning of a freight carrier as the design of the service
network, with the objective of finding the optimal allocation and utilization of resources,
to achieve the economic and customer service goals. For an efficient allocation of their
resources, carriers consolidate the freight, and commodities that do not have the same origin
and destination might be moved on the same services. Thus, detours and transshipments of
commodities are possible, and are defined when solving the tactical planning problems. Their
objective is to define the schedule of the services and their frequency, the type of vehicles
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to use, the routes on the service for the different commodities to satisfy the demand with
minimal costs. The latter are both the fixed costs of the selected services, and the variable
costs of using the selected services.

Tactical planning problems are modeled by the class of SND problems, that are typically
Mixed Integer Programs that include constraints specific to the problem addressed. The
possible services are described using a time-space graph, where the vertices are the terminals,
i.e., the origin and destination of the commodities transported in the network. Arcs joining
the terminals represent the services and their cost, duration and capacity. The objectives
of those models is to select the services to transport the demand at minimal cost. They
integrate the constraints of the physical network, for instance the capacity in each terminal,
the equipment required for each commodity, etc. The paper from Crainic (2000) and the one
from Wieberneit (2008) propose a review of tactical planning and SND problems in freight
transportation.

SND problems are either modeled as deterministic or stochastic problems. In the determin-
istic case, the demand is assumed fixed and known, and provided as an input to the model.
Yet freight transportation networks are subject to various uncertainties: demand, travel time,
equipment maintenance, etc. Lium et al. (2009) show that ignoring stochastic factors could
result in poor quality of service and high operational costs. To tackle uncertain demand,
researchers have been focusing on developing stochastic formulations. However, they have
high computational costs for real large-scale instances (Bai et al., 2014), due to the large
number of commodities, and the constraints at each terminal to take into account. Hence,
deterministic formulations prevail in practice and most studies considering large-scale real-life
instances have been focusing on deterministic approaches.

There are many variants of the SND problems, depending on the type of application one
wishes to model. We detail below one variant relevant for our research: the Multicommodity
Capacitated Fixed-charge Network Design (MCND) problem (Magnanti and Wong, 1984).
It is a cyclic and deterministic formulation, where the network has a limited capacity and
the objective is to design a tactical plan that allows to transport the demand for a set of
commodities K at a minimum cost. The demand for a commodity k ∈ K is designated by
ypk and is in fact the periodic demand, assumed to be repeated at each period of the tactical
horizon. We present the path-based formulation MCND, where the set of potential paths
P for the commodities is defined in advance. A path corresponds the route formed by one
or multiple services that a commodity can take to go from its origin to its destination. The
set Pk is the set of paths that can transport commodity k and Kp is the set of commodities
that can be transported on path p. MCND has two categories of decision variables: Binary
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design variables zp, ∀p ∈ P , equal to one if path p is used and zero otherwise, and flow
variables xpk ≥ 0, representing the flow of each commodity k ∈ K on its possible paths
p ∈ Pk.

MCND min
z,x

∑
p∈P

Cdesign
p zp +

∑
k∈K

∑
p∈Pk

Cflow
p xpk (2.1)

s.t.
∑
p∈Pk

xpk = ypk , k ∈ K, (2.2)

∑
k∈Kp

xpk ≤ upzp, p ∈ P , (2.3)

xpk ≥ 0, k ∈ K, p ∈ Pk, (2.4)

zp ∈ {0, 1}, p ∈ P . (2.5)

The objective function (2.1) includes a fixed design cost Cdesign
p ≥ 0 for each path p built to

transport the demand. The second cost is the variable flow cost Cflow
p ≥ 0 which accounts

for the cost of demand transported on each path. Constraints (2.2) ensure that the periodic
demand is satisfied for each commodity. Constraints (2.3) enforce flows on selected paths
only, and that the flow on a path p does not exceed the path capacity, up. MCND is solved
to obtain a tactical plan, i.e, the solutions z∗, x∗ based on a given periodic demand. In
practice, demand varies from one period to another, and the plan is therefore adjusted at the
operational planning level.

MCND is a generic program, and additional constraints might be considered for specific
applications, such as the one in our research, i.e., intermodal transportation. Indeed, the
latter corresponds to the movement of containers (Crainic and Kim, 2007) for which special
services have been developed in the intermodal subdivisions of North American carriers.
Long and double-stacked trains that move across country are one example. In MCND, this
transposes by integer flow variables (the demand is formalized in numbers of containers), and
specific capacity constraints to account for the double-staking of containers. Morganti et al.
(2020) detail the tactical problem specific to rail intermodal transportation, called the block
planning problem. Blocking aims to take advantage of economies of scale and reduce the cost
of handling cars individually at intermediate yards. Cars are grouped within blocks to be
moved together as a unique entity from the origin of the block to its destination. A block
is moved by a sequence of trains, while a car can be moved by one or a sequence of blocks
between its origin and destination. Finally, containers are stacked on moving cars.
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2.3 Metaheuristics and Blackbox Optimization

Let us consider a generic multilevel optimization problem with no derivative information:

min
s∈S

f(s, g∗(s)), (2.6)

where s is the first-level decision variables, i.e, the periodic demand and S its feasible set, f
the objective function and g∗ the optimal solution of the lower level programs. We note that
this generic formulation bears resemblance to a bilevel optimization program, except for the
extreme max-min bilevel case (Colson et al., 2005). However, here g∗(s) is a value and not
a set of solutions, and (2.6) does not belong to the class of bilevel programs. We focus on
cases where the program g(s) for a fixed s is combinatorial, large-scale and with no derivative
information.

The optimal solution to (2.6) could be found by enumerating the feasible solutions s ∈ S
and storing the best one. This is computationally very expensive and cannot be used in
practice, where it is necessary to find a good solution in reasonable times. Heuristics and
metaheuristics have been developed to address this issue, as well as algorithms for black-box
optimization problems.

Metaheuristics

Heuristics and metaheuristics have the same objective: to explore the set of feasible solutions
and find good solutions. Often, there are no guarantees on the optimality of the solution.
The foundational concepts of metaheuristics can be described in an abstract way, without
referring to a specific problem. They sometimes include heuristics developed specifically for
the problem being addressed, but nonetheless driven by a higher-level strategy (Hertz, 2016).

There are essentially two types of metaheuristics: the local search methods which iterate
over one solution and the population methods working with a population of solutions (Talbi,
2009). The former are adapted to our context due to the difficulty of solving large-scale
planning problems.

Local search methods improve an initial solution iteratively by building a trajectory in the
set of feasible solutions. At each iteration, they improve the current solution by exploring
its neighborhood. The latter corresponds to the set of solutions that are easy to reach from
s and is defined by:

N : s ∈ S 7→ N(s). (2.7)



15

Metaheuristics and local search methods are important and mature research topics. Many dif-
ferent algorithms have been proposed in the literature: the Simulated Annealing (Kirkpatrick
et al., 1983; Černỳ, 1985), the Variable Neighborhood Search (Mladenović and Hansen, 1997),
the Greedy Randomized Adaptive Search Procedure (Feo and Resende, 1989, 1995), to name
a few. They differ by the structure of the neighborhood N visited at each iteration, the use
of memory during the search and the diversification and intensification procedures computed
at each iteration to explore the set of solutions.

Black-box optimization

For black-box optimization (BBO) problems, either the analytic form of f or the one of the
functions defining the feasible set S is not known and has no derivative information. It can
be for instance the result of a computer code, referred to as the black box. BBO is used in
various applications, such as aircraft takeoff trajectories (Torres et al., 2011) or snow water
equivalent estimation (Alarie et al., 2013).

The book Audet and Hare (2017) provides a grasp of the foundational concepts in derivative-
free and black-box optimization. We take a particular interest in NOMAD, an open source
implementation of the Mesh Adaptive Direct Search (MADS), a recent method to solve BBO
problems (Audet and Dennis Jr, 2006).

Le Digabel (2011) describes the solver’s functionalities, its implementation and the underlying
algorithm. MADS is an iterative method that belongs to the more general class of direct
search methods, using only evaluations of the black-box functions to drive the exploration
of the set of feasible solutions. The mesh refers to the spatial discretization of the latter
and is defined by a set of directions and a mesh size parameter. Each iteration of MADS is
decomposed into three steps: the poll, the search and the update. The poll and search steps
generate trial points on the mesh. At the search step, the points lie anywhere on the mesh
while the poll step generates points constructed from directions near the current solution.
The poll directions grow dense, and the distance to the current solution is bounded by a poll
size parameter. At the update step, the algorithm determines if the iteration is a success
or not, according to the evaluations of the black-box functions on the trial points. The new
solution is either the most promising evaluation or the current solution. Both the mesh size
and the poll size parameters are updated such that the former is always smaller than the
latter. When the current solution is not updated, the mesh size parameter is reduced.

The current implementation of NOMAD performs best for black-box problems with fewer
than 50 variables.
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2.4 Assessing the Impact

Potential methods to estimate the impact of improving a decision-making system can be
divided in two categories: simulations or statistical field experiments. As a natural follow-up
from the previous work, we assume here that the change is a modification in the demand
forecasts, and illustrate the notions with this example. We consider applications to airlines
whose decision-making systems are RMS that define seat allocation and pricing rules from
the demand forecasts.

In the first category, the carrier uses the new forecasted demand and simulates every inter-
mediate step of its planning systems. Assumptions to simplify the problem are usually made,
and the results importantly rely on them. Simulations for airlines hence require to be able
to reproduce the behavior of each customer facing new prices. This requires a large amount
of data and is computationally expensive. The few works focusing on this topic consider
simplified simulation settings (Fiig et al., 2019; Weatherford and Belobaba, 2002).

The second category, statistical field experiments, consists in implementing the changes in
practice, often on a short period of time and on part of the network, and estimating the
impact on a key performance indicator afterwards. The challenge lies in finding the reference
to compare to since the observed indicator includes the impact. There is a body of the
econometric literature focusing on this problem for macroeconomic applications. A typical
example is the estimation of the economic impact of the German reunification on West
Germany (Abadie et al., 2015). There are, however, few applications in revenue management
and even less focus on the airline industry. Cohen et al. (2019) estimates the impact of
differentiating lead-in fares, the fare of the lowest inventory class, on the revenue, yield (ratio
of revenue to the number of tickets sold) and market share of the partner airline.

In the remainder, we describe key concepts for statistical field experiments (Abadie, 2021),
and illustrate with the impact on the revenue. Data are decomposed in space, the units, and
time. The improvement on the decision-making system is called a treatment. Some units are
exposed to the treatment during a subset of the periods. The revenue that would have been
without the treatment is not observed, and called the counterfactual revenue. The objective
is to estimate the counterfactual revenue of the treated units. Then the impact is estimated
as the difference between the observed revenue and the estimated counterfactual revenue.
The set of units is partitioned into the set of treated units and the set of control units which
neither receive, nor are affected by, the treatment.

Techniques to estimate the counterfactual revenue have known an increasing popularity after
the development of synthetic control models (Abadie and Gardeazabal, 2003). The latter im-
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putes the missing revenue for treated units using a weighted average of the revenue of control
units. Synthetic controls have been described as “arguably the most important innovation in
the policy evaluation literature in the last 15 years” (Athey and Imbens, 2017). Many works
have been working on extending this method, defining the untreated revenue of the treated
units as a mapping from the revenue of the control units. The paper of Doudchenko and
Imbens (2016) and the one of Athey et al. (2021) present a review of the recent developments
of the counterfactual prediction models.

While those methods have been developed mainly for social sciences, they apply very well to
transportation networks. In this context, units correspond to Origin-Destination pairs (ODs)
or commodities, and carriers, in particular airlines, can apply a treatment on a few ODs.
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CHAPTER 3 SYNTHESIS OF THE WORK

This thesis encompasses both the integration of demand forecasting and planning, and the
impact assessment. While those subjects are large, we focus on two main applications of large-
scale transportation networks: the rail intermodal division of the Canadian National Railway
Company (CN), one of the largest freight carriers in North America, and the passenger
activities of Air Canada, the largest Canadian airline with a worldwide network.

We introduced our research and framework in Chapter 1. We examine the tactical planning
problem of freight carriers, modeled as a Service Network Design problem. The formulations
for large-scale networks are often cyclic and deterministic due to their complexity, with a
fixed and known demand input. Demand forecasting models, on the other hand, yield point
estimates of the demand, that vary during the planning horizon. This contradiction of
available and required demand inputs for planning optimization models is the base of our
focus. We aim at integrating the tactical forecasting and planning problems. Then, we focus
on assessing the impact of improving the decision-making system, not only for freight carriers
but for network-based transportation applications.

In Chapter 2, we reviewed the literature related to our work and objectives, which include
several subjects: statistical and machine learning forecasting models, service network design
problems, metaheuristics and counterfactual prediction models.

Periodic Freight Demand Forecasting for Large-scale Tactical Planning In Chap-
ter 4, we introduce the Periodic Demand Estimation (PDE) problem which aims at integrat-
ing demand forecasting and planning. We propose a two-step methodology for large-scale
cyclic and deterministic formulations of service network design problems. The first step con-
sists in obtaining time series forecasts of the demand for each commodity transported at each
time period of the tactical horizon. The second step defines the periodic demand as a solu-
tion to a multilevel mathematical program that explicitly connects the estimation problem
to the tactical planning problem, and minimizes the costs incurred by adapting the tactical
plan at an operational level. We consider in this chapter a limited feasible set of periodic
demand and solve the problem by enumerating the solutions. We report results on CN’s
intermodal network and compare the periodic demand estimate resulting from the proposed
methodology to the approach commonly used in practice which simply consists in using the
mean of the time series forecasts. Even with the restrictions, results show the importance
of the periodic demand estimate. Moreover, despite the uncertainty contained in demand
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forecasts, a good periodic demand estimate can lead to substantial cost reductions.

A Two-step Heuristic for the Periodic Demand Estimation Problem In Chapter 5,
we extend the work from Chapter 4 and no longer restrict the periodic demand to be taken
from a small discrete set. It is rather defined as a deviation from the average of the demand
forecasts. We present a new multilevel formulation for the PDE problem, where the variables
are the deviation coefficients. We first propose two local search metaheuristics to solve the
new formulation and compare them with NOMAD, an off-the-shelf black-box optimization
solver. Both might be challenged by the number of variables, which can be up to hundreds for
the large-scale applications met in practice. We then propose clustering heuristic approaches
which aim at reducing the size of the feasible set of the PDE problem while keeping high-
quality solutions. It consists in creating clusters of commodities that have an equal deviation
coefficient, hence reducing the number of variables. The results on CN’s intermodal network
show that considering only the second step of the heuristic, i.e. defining the periodic demand
as a deviation from the average of the forecasts lead to substantial cost reductions. The
clustering heuristics allow to leverage the solution algorithms even for large-scale applications,
as best tactical costs are obtained when they are computed before solving the problem.

Assessing the Impact: Does an Improvement to a Revenue Management System
Lead to an Improved Revenue? In Chapter 6, we focus on assessing the impact of a
change in a sophisticated decision-making system. This is a challenging problem as the impact
corresponds to the difference between the generated value and the value that would have been
generated keeping the system as usual, and the latter is not observable. We consider the
specific case of Revenue Management Systems used for the traffic of passengers by airlines,
and the impact on the revenue. We propose to model the problem as a counterfactual
prediction problem which objective is to estimate the unobserved revenue. The revenue
impact is therefore the difference between the observed revenue subject to the improvement
and the estimated revenue. We compare counterfactual prediction models developed for
macroeconomic contexts with deep learning models. The counterfactual prediction models
achieve between 1% and 1.1% of error allowing to estimate a small impact quite accurately.

In Chapter 7, we provide a general discussion on the three works developed in this thesis.
Finally, in Chapter 8, we summarize our work and discuss some of the limitations associated
with the proposed methods, and indicate future research avenues.
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CHAPTER 4 ARTICLE 1: PERIODIC FREIGHT DEMAND
FORECASTING FOR LARGE-SCALE TACTICAL PLANNING

The text of this chapter is the one of the research paper Periodic Freight Demand Forecasting
for Large-scale Tactical Planning submitted to the journal Transportation Research Part B:
Methodological.

Authors Greta Laage, Emma Frejinger, Gilles Savard

Abstract Crucial to freight carriers is the tactical planning of the service network. The
aim is to obtain a cyclic plan over a given tactical planning horizon that satisfies predicted
demand at a minimum cost. A central input to the planning process is the periodic demand,
that is, the demand expected to repeat in every period in the planning horizon. We focus on
large-scale tactical planning problems that require deterministic models for computational
tractability. The problem of estimating periodic demand in this setting broadly present in
practice has hitherto been overlooked in the literature. We address this gap by formally
introducing the periodic demand estimation problem and propose a two-step methodology:
Based on time series forecasts obtained in the first step, we propose, in the second step,
to solve a multilevel mathematical programming formulation whose solution is a periodic
demand estimate that minimizes fixed costs, and variable costs incurred by adapting the
tactical plan at an operational level.

We report results in an extensive empirical study of a real large-scale application from the
Canadian National Railway Company. We compare our periodic demand estimates to the
approach commonly used in practice which simply consists in using the mean of the time
series forecasts. The results clearly show the importance of the periodic demand estimation
problem. Indeed, the planning costs exhibit an important variation over different periodic
demand estimates and using an estimate different from the mean forecast can lead to sub-
stantial cost reductions. For example, the costs associated with the period demand estimates
based on forecasts were comparable to, or even better than those obtained using the mean
of actual demand.

Key words Freight transportation, tactical planning, large-scale, periodic demand, fore-
casting demand.
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4.1 Introduction

Freight transportation is essential to society and its economic development. In order to
satisfy demand in a cost effective way, freight carriers are faced with a multitude of plan-
ning problems. In this context, Service Network Design (SND) is an important class of
problems. Consider, for example, the Multicommodity Capacitated Fixed-charge Network
Design (MCND) problem (Magnanti and Wong, 1984). The objective is to design a capaci-
tated network – a tactical plan – that allows to transport demand for a set of commodities
between different origin-destination pairs at a minimum cost. The latter is given by the sum
of fixed and variable costs. The tactical plan is defined over a given period (e.g., a week)
and is repeated over a planning horizon (e.g., a few months). Given this cyclic nature of the
tactical plan, it relies on an accurate representation of periodic demand.

In any realistic setting, demand for commodities is subject to uncertainty. This has naturally
led to stochastic SND formulations (e.g., Crainic et al., 2020). As even deterministic SND
problems are NP-hard, stochastic formulations are limited to fairly small size problems and
cannot yet be used in most real large-scale applications. Hence, a wealth of practical appli-
cations rely on deterministic formulations and point estimates of periodic demand. In turn,
periodic demand has an important impact on the resulting tactical plan and the associated
costs. Despite its importance, there is no study in the literature focused on the periodic
demand estimation problem linking time series forecasts to the tactical planning problem
of interest. Our work addresses this gap and we use a MCND formulation for illustration
purposes.

The impact of demand forecast errors on revenue has been studied in the context of airline
revenue management. Through simulation analysis in a simplified setting, Weatherford and
Belobaba (2002) show that reducing demand forecast errors by 25% increase revenue by a
minimum of 1-2% which is a significant number. Fiig et al. (2019) confirm those findings in
a more complex airline revenue management setting and show that reduced forecast errors
lead to increased revenue. As opposed to passenger transportation, freight carriers typically
have flexibility regarding the routing of demand as long as it respects certain constraints,
such as delivery time. Moreover, the freight demand origin-destination matrices are often
unbalanced, meaning that there can be excess supply in certain directions. It implies that
the cost associated with demand forecast errors can vary over commodities. This further
motivates the importance of linking the periodic demand estimation and the corresponding
SND problem.

Our proposed methodology proceeds in two steps: First we forecast demand for a given set
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of commodities for each period of the planning horizon. This corresponds to a multivariate
multistep time series forecasting problem. Then, we define mappings from the time series
forecasts to periodic demand. The different mappings lead to different periodic demand
estimates. We solve a mathematical program explicitly linking these mappings and the
MCND formulation. It selects the periodic demand that minimizes the fixed and variable
costs over the planning horizon.

Brief Background on Time Series Forecasting. The periodic demand estimates are
based on time series forecasts. There is an extensive related body of literature in statistics
and machine learning. Our problem is particularly challenging for a number of reasons. First,
the historical data on which the forecasting models rely, are results of operational decisions
that are constrained by available capacity. Second, there are a large number of commodities
and relatively long forecasting horizon which can lead to spatiotemporal correlations. Third,
the demand varies over time and long-term dependencies and seasonality can be specific to
each commodity. This highlights the potential need for modeling both commodity specific be-
havior and correlation between commodities while classic time series models and exponential
smoothing methods assume independence across time series.

Freight demand forecasting works mainly focus on small networks of port terminals (Milenković
et al., 2019) with either statistical models (Schulze and Prinz, 2009) or neural networks (Tsai
and Huang, 2017). With the recent development in intelligent transport systems and avail-
ability of large sources of data, forecasting methods have been shifting from model-based
statistical models to data-driven machine learning approaches and more specifically deep
learning models (Karlaftis and Vlahogianni, 2011). Neural networks challenge the statistical
models such as AR processes and Holt Winters method (Holt, 2004; Winters, 1960) with their
augmented capacity to model non-linearities (Hornik et al., 1989). The capacity of neural
networks to model complex data to forecast traffic flows is increasingly exploited (Nguyen
et al., 2018). The Long Short-Term Memory (LSTM) recurrent neural network (Hochreiter
and Schmidhuber, 1997; Sutskever et al., 2014) is a successful architecture to model both
short-term and long-term dependencies (Längkvist et al., 2014). Nevertheless, empirical ev-
idence shows that it is still hard to achieve a level of accuracy comparable to that of classic
time series models (e.g., Makridakis et al., 2018).

Contributions. The paper offers both methodological and empirical contributions. First,
we formally introduce the periodic demand estimation problem and propose a two-step
methodology. Based on time series forecasts obtained in the first step, we propose a multilevel
mathematical programming formulation whose solution is a periodic demand estimate that
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minimizes fixed and variable costs. The formulation hence explicitly links the periodic de-
mand estimates to the tactical planning problem of interest. It is computationally tractable
as it can be solved sequentially to optimality. Second, we describe a real large-scale applica-
tion at the Canadian National Railway Company (CN). We present an extensive empirical
study that clearly shows the importance of the periodic demand estimation problem. In
this context, we compare different forecasting models from the statistics and deep learning
literature. In turn we analyze the impact of the definition of periodic demand distinguishing
between time series forecast errors and the errors introduced by different periodic demand
estimates. Moreover, we benchmark against an approach used in practice that consists in
averaging time series forecasts.

Paper Organization. The remainder paper is structured as follows. Next we formally
introduce the periodic demand estimation problem. In Section 4.3 we describe the proposed
two-step methodology. We then focus on empirical results, first introducing our application
in Section 4.4, followed by the results in Section 4.5. Finally, Section 4.6 concludes and
outlines some directions for future research.

4.2 Problem Description

We start by briefly summarizing the planning process we consider: We take the point of
view of a freight carrier that wishes to define a tactical plan. First, the carrier estimates the
periodic demand for each commodity over the tactical planning horizon. Second, the periodic
demand estimates are used as an input to solve the tactical planning problem of interest.
The latter involves design decisions that are fixed over the tactical planning horizon, and
flow decisions. At the operational level, the tactical plan is adjusted – i.e., the flow decisions
– according to actual demand realizations. In addition to these adjustments, other decisions
could be taken to cope with demand fluctuations, such as outsourcing. There are hence two
sources of costs to consider in the tactical planning process: the fixed cost of the tactical
plan (design decisions) and the variable cost (flow and outsourcing decisions) resulting from
the adjustments in each period.

We attend to large-scale problems that require a deterministic formulation to be tractable.
Therefore, at the tactical planning level, the demand is treated as fixed and known while,
in reality, it varies in each period. In this section we describe in detail the problem of
estimating the periodic demand so as to minimize fixed and variable costs. We first introduce
notation related to tactical and operational planning time horizons. We then define the
various concepts of demand we encounter, followed by a description of an MCND formulation.
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Finally, we describe the link between observed demand, periodic demand and the MCND
formulation, which formally introduces our problem.

For the demand forecasting problem, it is important to distinguish the tactical and oper-
ational planning horizons. We therefore introduce two different notations related to time.
First, the tactical planning horizon T can be divided into periods of equal length t = 1, . . . , T .
Second, each period t can be further divided into D time periods, d = 1, . . . , D that we here
refer to as the operational horizon. Figure 4.1 provides an illustration where the tactical
horizon is composed of T = 4 weeks, and a week t is composed of D = 7 days.

t = 1 t = 2 t = 3 t = T = 4
d = 1 d = 6

Period

Tactical horizon T

Operational

Figure 4.1 Time scales for planning of a freight carrier

Let yt be the demand vector of period t, yt = (yt1, . . . , ytK)> where ytk is the quantity of
commodity k to be transported during period t. In this context, a commodity k is charac-
terized by its origin ok, destination dk and type γk. We denote the set of commodities K
and its cardinality K. Let ytd be the demand vector for each operational time d = 1, . . . , D
within period t, ytd = (ytd1, . . . , y

t
dK)> where ytdk is the demand for commodity k to be carried

at time d in period t. The demand for a period t is hence

ytk =
D∑
d=1

ytdk, k ∈ K. (4.1)

We introduce the demand matrix for horizon T , YT ∈ RT×K
+ with [YT ]tk = ytk. For a

given tactical planning horizon T , the plan is repeated at each t = 1, . . . , T . Let ypT be
the periodic demand vector for tactical horizon T , ypT = (ypT1 , . . . , ypTK )> where ypTk is the
periodic demand for commodity k. To simplify the notation, we henceforth remove the
superscript T but recall that the periodic demand and the demand matrix always refer to a
given horizon.

We focus on estimating the periodic demand yp. In this context it is important to note that
time series forecasting models produce demand forecasts for each commodity in each period
t. That is, at period t0, the forecasting models output an estimate of Y denoted Ŷ which
consists in T point estimates ŷt0+1, . . . , ŷt0+T . The periodic demands ypk are then estimated
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from these forecasts Ŷ, or, for validation or analysis, from Y. Let h denote the mapping of
Y to a periodic demand vector yp:

h : RT×K
+ → RK

+

Y 7→ yp = h(Y).
(4.2)

When the periodic demand is a mapping of the forecasts, we use the notation ŷp = h(Ŷ).
Our objective is to define the mapping h minimizing fixed and variable planning costs.

We provide an illustrative example in Figure 4.2. The two graphs show two demand distri-
butions (shown with one dot per period) with identical mean (depicted with a solid line).
The mean represents one particular mapping yp = h(Y). In the example, we illustrate three
other possible mappings: the maximum, median and third quartile. As opposed to the mean,
these other mappings do not result in the same periodic demand estimates in the right and
left-hand graphs.

Figure 4.2 Illustration of a periodic demand from point estimates for T periods

We now introduce a path-based MCND formulation (Crainic, 2000) that we use for illustrat-
ing our methodology. An arc-based formulation can be found, e.g., in Chouman et al. (2017).
Let G = (N ,A) denote a space-time graph where N is the set of nodes and A is the set of
arcs. Commodity k uses a path p, i.e., a sequence of arcs in G. The source node of the first
arc is ok, and the sink node of the last arc is dk. Let P denote the set of paths. In the case
of insufficient capacity, demand is outsourced and we denote Pout the paths corresponding
to outsourcing options, such that Pout ⊂ P . Furthermore, let Pk denote the set of paths for
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commodity k, Pout
k the outsourcing paths for commodity k such that Pout

k ⊂ Pk and Kp the
set of commodities that can use p. Note that here we refer to outsourcing in a broad sense. It
could mean outsourcing to a third party, or making use of additional capacity from the same
carrier that was not originally part of the plan. For example, in our intermodal rail trans-
poration application (Section 4.4), outsourcing means using capacity from non-intermodal
trains.

The MCND problem consists in satisfying demand at minimum cost. It has two categories
of decision variables: Binary design variables zp, ∀p ∈ P , equal to one if path p is used and
zero otherwise, and flow variables xpk ≥ 0, ∀k ∈ K, p ∈ Pk. Depending on the type of freight
(bulk versus containers, for instance), xpk is either continuous or integer. The path-based
mixed integer linear programming formulation is:

MCND min
z,x

∑
p∈P

Cdesign
p zp +

∑
k∈K

∑
p∈Pk\Pout

k

Cflow
p xpk +

∑
k∈K

∑
p∈Pout

k

Cout
p xpk (4.3)

s.t.
∑
p∈Pk

xpk = ypk , k ∈ K, (4.4)

∑
k∈Kp

xpk ≤ upzp, p ∈ P , (4.5)

xpk ≥ 0, k ∈ K, p ∈ Pk, (4.6)

zp ∈ {0, 1}, p ∈ P . (4.7)

The objective function (4.3) includes a fixed design cost Cdesign
p ≥ 0 for the paths built to

transport demand. The second cost is the variable flow cost Cflow
p ≥ 0 which accounts for sat-

isfied demand and the third cost Cout
p ≥ 0 is the flow cost of outsourced demand. Constraints

(4.4) ensure that the periodic demand is satisfied for each commodity. Constraints (4.5)
enforce flows on selected paths only, and that the flow does not exceed the path capacity, up.

MCND is solved to obtain a tactical plan based on a given periodic demand. However, in
practice, demand varies from one period to another. The tactical plan is therefore adjusted at
the operational planning level. That is, in each period the commodity flows can be adjusted
to satisfy the actual demand value of this period also taking into account other uncertain
aspects, such as schedule delays. The observed data ytd, typically used for training forecasting
models, result from this operational planning process. Consequently, data at this level of
detail can be constrained by the available services and the observed demand may therefore
not correspond to the true demand. This is known as censored data in the literature (e.g.,
Park et al., 2007).

In summary, we focus on estimating periodic demand yp at a given time t0 for a tactical
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planning horizon T . The demand forecasts ŷt0+1, . . . , ŷt0+T are obtained using historical
data of demand {ysd, s = t0 − 1, t0 − 2, . . . , t0 − H, d = 1, . . . , Ds} where H is the number
of periods in the historical data and Ds is the number of operational time intervals in each
period s. The periodic demand should be defined such that it minimizes fixed costs, as well
as variable costs associated with adapting the plan over the tactical planning horizon. It is
hence necessary to link the mapping h to the tactical planning problem of interest. In the
following section, we propose a formulation for this purpose using MCND as an example of
tactical planning problem formulation.

4.3 Periodic Demand Estimation

Each time a tactical plan is to be defined, our approach proceeds in two steps. First, we use a
time series forecasting model to predict demand for each period in the planning horizon. Sec-
ond, we solve a multilevel formulation for the joint periodic demand estimation and tactical
planning problem. In the following subsection we describe assumptions and their implica-
tions on the time series forecasting problem. In Section 4.3.2, we delineate the mathematical
programming formulation.

4.3.1 Time Series Forecasting

We use time series forecasting methods to predict, at period t, the T point estimates
ŷt+1, . . . , ŷt+T . As we highlight in the previous section, historical data captures operational
flows which can be constrained by the supply and, therefore, may not correspond to actual
demand. Time series forecasting with censored data is challenging and difficult to validate.
In this section we introduce two weak assumptions that allow us to work with historical
uncensored data with which we use time series forecasting methods.

Recall from the problem description that demand which cannot be satisfied by the planned
capacity is outsourced. This is typically the case for carriers as unsatisfied demand would
otherwise accumulate over time periods. Taking into account the outsourcing, demand is
hence assumed satisfied in each time period t. This leads us to the following assumption on
the historical data.

Assumption 1 Historical data is uncensored when aggregated over time periods. That is,
ys = ∑Ds

d=1 ysd, s = t− 1, t− 2, . . . , t−H are uncensored.

While this assumption simplifies the forecasting problem we note that the aggregation results
in fewer data points to learn from.
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The tactical planning problem formulation is based on a space-time graph. The departure
and arrival times of a commodity k are hence implicitly given by ok and dk. We assume
that the arrival and departure times are endogenous decisions, stated in other words in the
following assumption.

Assumption 2 Predicted demand per time period for each commodity, ŷt, t = 1, . . . , T , are
sufficiently precise for tactical planning.

This is a weak assumption considering that, if exogenous predictions of ŷtd, d = 1, . . . , Dt are
required for each t = 1, . . . , T , it is possible to define a model (different from the time series
one) that projects ŷt down to that level.

4.3.2 A Multilevel Formulation

We define the feasible set of periodic demand vectors

Y = {ŷp = hi(ŷ1, . . . ŷT ), i = 1, . . . , I} (4.8)

by a finite set of mappings hi, i = 1, . . . , I (4.2). We propose the following multilevel
formulation PDE for the periodic demand estimation problem.
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PDE min
ŷp

CPDE =
T∑
t=1

∑
p∈P

Cdesign
p zp +

∑
k∈K

∑
p∈Pk\Pout

k

Cflow
p xtpk +

∑
k∈K

∑
p∈Pout

k

Cout
p xtpk

 (4.9)

s.t. ŷp ∈ Y (4.10)

MCND min
z,x

∑
p∈P

Cdesign
p zp +

∑
k∈K

∑
p∈Pk\Pout

k

Cflow
p xpk +

∑
k∈K

∑
p∈Pout

k

Cout
p xpk (4.11)

s.t.
∑
p∈Pk

xpk = ŷpk , k ∈ K, (4.12)

∑
k∈Kp

xpk ≤ upzp, p ∈ P, (4.13)

xpk ≥ 0, k ∈ K, p ∈ Pk, (4.14)

zp ∈ {0, 1}, p ∈ P, (4.15)

wMCND min
x1,...,xT

T∑
t=1

∑
k∈K

∑
p∈Pk\Pout

k

Cflow
p xtpk +

∑
k∈K

∑
p∈Pout

k

Cout
p xtpk

 (4.16)

s.t.
∑
p∈Pk

xtpk = ŷtk, t = 1, . . . , T, k ∈ K, (4.17)

∑
k∈Kp

xtpk ≤ upzp, t = 1, . . . , T, p ∈ P, (4.18)

xtpk ≥ 0, t = 1, . . . , T, k ∈ K, p ∈ Pk. (4.19)

The upper level selects ŷp that minimizes the total fixed and variable costs over the whole
tactical planning horizon. The objective function (4.9) hence depends on the design and flow
variables from the lower levels MCND and wMCND, respectively.

In wMCND we introduce the flow variables xtpk for commodity k on path p in period t and
determine flows for each period minimizing variable cost (4.16) for a fixed design solution z
given by MCND. Constraints (4.17) ensure that the demand is satisfied for each commodity
in each period. The set of paths Pk includes outsourcing paths Pout

k for a commodity k, so
constraints (4.12) and (4.17) can always be satisfied. Constraints (4.18) enforce flows in each
period to be only on selected paths and smaller than the capacity of the path. We draw
the attention to the time series forecasts that occur in wMCND while the periodic demand
estimates occur in MCND.

The decision variables of wMCND do not occur in the objective function (4.11) of MCND.
Thus, for (z∗, x∗) an optimal solution of MCND, if z∗ is feasible for wMCND, then z∗ is
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an optimal solution to MCND-wMCND. We can therefore make the following claim.

Claim 1 If z∗ is feasible for wMCND, then MCND-wMCND can be solved sequentially
to optimality for a fixed ŷp.

In this work, we consider the four following mappings:

yp
max = h1(y1, . . . ,yT ) = max

t=1,...,T
yt, (4.20)

yp
mean = h2(y1, . . . ,yT ) = 1

T

T∑
t=1

yt, (4.21)

yp
q2 = h3(y1, . . . ,yT ) = Q2(yt, t = 1 . . . , T ), (4.22)

yp
q3 = h4(y1, . . . ,yT ) = Q3(yt, t = 1 . . . , T ) (4.23)

which represent the maximum, mean, second quartile Q2 and third quartile Q3, respectively.
The corresponding estimates from the forecasts are denoted ŷp

max, ŷp
mean, ŷp

q2 and ŷp
q3. Given

that we consider a discrete Y of small cardinality, we find the solution to PDE by solving
MCND-wMCND for each yp ∈ Y . In the following section, we describe a specific instance
of (4.9)-(4.19) in the context of tactical planning for intermodal rail transportation.

4.4 Application

We illustrate our approach on the intermodal network of CN, composed of 24 main intermodal
terminals and 133 origin-destination (OD) pairs. Figure 4.3 depicts a map of the network.
The railtracks extend from East to West of Canada and from Canada to South of the United
States and gather 25 intermodal terminals. The railroad carries a variety of container types
(20, 40, 45, 48 and 53-feet long), yet for tactical planning purposes they can be aggregated
into either 40-feet or 53-feet containers. Indeed, 20-feet containers can be considered as half-
40-feet containers. Other sizes (45, 48 and 53-feet) occupy the same locations on railcars
(so-called slots Mantovani et al., 2018) as 53-feet containers. A commodity is defined by an
origin, a destination and a type of container, and we consider a total ofK = 170 commodities.
Two commodities can hence have the same OD pair but differ by the type of container. The
tactical period is a week and a tactical horizon lasts T = 10 weeks. The train schedule is
repeated each week and CN operates so that demand over a week is satisfied. Assumption 1
therefore holds. More precisely, in case of insufficient capacity on intermodal trains, they use
general cargo trains or additional ad-hoc intermodal trains to satisfy demand.
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Figure 4.3 Intermodal Network of the Canadian National Railway Company. Source:
www.cn.ca

The specific MCND problem to the intermodal network of CN is the tactical block planning
problem (Morganti et al., 2020). A block refers to a consolidation of railcars. In this context,
a set of railcars flowing as a single unit between a given OD pair and where containers
loaded on the railcars have the same OD. Morganti et al. (2020) introduce a path-based
Block Planning formulation (BP). It is defined using a space-time graph generated based on
a schedule of intermodal trains. The graph contains 28,854 arcs and 15,269 nodes. A block
is a path in this graph and the set is denoted B with |B| = 2, 208. We keep this notation
to be consistent with Morganti et al. (2020) but note that the set B corresponds to the set
of paths P in MCND. The set B contains a subset of artificial blocks Bartif whose role is
to transport demand exceeding capacity. They hence correspond to the outsourcing paths.
They are built without design cost, i.e., Cdesign

b = 0,∀b ∈ Bartif. Similarly to MCND, Bk and
Bartifk denote respectively the set of blocks and the set of artificial blocks for commodity k,
and Kb the set of commodities that can use b.

Below we briefly describe BP and refer to Morganti et al. (2020) for more details. There are
three categories of decision variables. First, the design variables zb, b ∈ B where zb equals one
if block b is built, and zero otherwise. Second, integer flow variables xbk, k ∈ K, b ∈ Bk that
equal the number of containers for commodity k transported on block b. Third, auxiliary
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variables for the number of 40-feet v40
b and 53-feet v53

b double-stack platforms to carry the
containers assigned to block b ∈ B.

BP min
x,z

∑
b∈B\Bartif

Cdesign
b zb +

∑
k∈K

∑
b∈Bk\Bartif

k

Cflow
bk xbk +

∑
k∈K

∑
b∈Bartif

k

Cout
bk xbk (4.24)

s.t.
∑
b∈Bk

xbk = ypk , k ∈ K, (4.25)

xbk ≤ ypkzb, k ∈ K, b ∈ Bk, (4.26)

v53
b = max

0,
1

2

 ∑
k∈Kb,τk=53

xbk −
∑

k∈Kb,τk=40
xbk


 , b ∈ B, (4.27)

v40
b =

1
2

∑
k∈Kb

xbk

− v53
b , b ∈ B, (4.28)

∑
b∈Ba

(
L40v40

b + L53v53
b

)
≤ ua, a ∈ ATM , (4.29)

zb ∈ {0, 1}, b ∈ B, (4.30)

v40
b , v

53
b ∈ N, b ∈ B, (4.31)

xbk ∈ N, k ∈ K, b ∈ Bk. (4.32)

The objective function (4.24) minimizes fixed and variable costs as well as a variable cost
associated with outsourced demand (flow on artificial blocks). Constraints (4.25) ensure that
the demand is satisfied by either the network capacity or outsourcing. Constraints (4.26)
enforce flows to be on selected blocks only. Constraints (4.27) and (4.28) fix the number
of platforms required to transport the demand. These constraints take into account how
containers of different sizes can be double stacked. Since 40-feet platforms use less train
capacity than 53-feet platforms, they are used whenever there are less 53-feet containers
than 40-feet ones (40-feet container stacked in the bottom position and 53-feet container
on top), and 53-feet platforms are used otherwise. Constraints (4.29) ensure that the train
capacity, expressed in number of feet, is not exceeded. The platform lengths are denoted L40

and L53, respectively. The train capacity, ua, a ∈ ATM , is defined for the set of arcs in the
space-time graph that represent moving trains, ATM . We denote by Ba the set of blocks that
use train moving arc a ∈ ATM .

Finally, we give an order of magnitude of the size of the formulation. In the case of the
instances we solve in this paper, there are over 386,000 variables and some 18,000 constraints.
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4.4.1 Block Generation For Weekly Demand Inputs

While the tactical plan is computed for a weekly schedule, Morganti et al. (2020) assume
that the time at which the demand arrives to the system within the week is given exoge-
nously. We provide an illustrative example in Figure 4.4a. Demand enters the network via
a node noted DIN which is associated to one admissible train departure node. Containers
are either assigned to a block, or wait at the terminal, represented by flow on arcs called
ContainersWaiting.

Under Assumption 2, we propose a slightly different block generation so that the model
optimally distributes the weekly demand over the train departures. For this purpose, we
introduce a new set of nodes NWIN such that there is one node WIN nWIN

θ ∈ NWIN per
terminal θ ∈ Θ, where Θ is the set of terminals in the network. We also introduce a new
set of arcs AWIN = {(nWIN

θ , j) | θ ∈ Θ, j ∈ NDIN
θ }, where NDIN

θ is the set of DIN nodes for
terminal θ.

We illustrate this change compared to Morganti et al. (2020) in Figure 4.4b. For each
terminal, the node WIN receives the weekly demand input and splits the commodity flow to
the different DIN nodes on the arcs AWIN at no cost. Instead of arriving at different points in
time, demand now arrives in one source node and the model selects the optimal distribution
over the week.

DIN DIN’
ContainersWaiting
Daily

Demand In
Daily

Demand In

(a) Morganti et al. (2020)

DIN DIN’

nWIN
θ

a ∈ AWIN a′ ∈ AWIN

Weekly
Demand In

(b) Our model

Figure 4.4 Illustration of the difference between Morganti et al. (2020) and our model

4.4.2 Periodic Demand Estimation Problem

We present below the formulation PDE specific to our application. TheMCND formulation
is replaced by BP and we introduce a weekly BP formulation, wBP. For the latter, we
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introduce flow variables and auxiliary platform variables for each week t, xtbk, v40
tb , v

53
tb , t ∈

T , k ∈ K, b ∈ B.

PDE min
ŷp

CPDE =
T∑
t=1

 ∑
b∈B\Bartif

Cdesign
b zb +

∑
k∈K

∑
b∈Bk\Bartif

k

Cflow
tbk xtbk +

∑
k∈K

∑
b∈Bartif

k

Cout
tbk xtbk

 (4.33)

s.t. ŷp ∈ Y, (4.34)

BP min
x,z

∑
b∈B\Bartif

Cdesign
b zb +

∑
k∈K

∑
b∈Bk\Bartif

k

Cflow
bk xbk +

∑
k∈K

∑
b∈Bartif

k

Cout
bk xbk (4.35)

s.t.
∑
b∈Bk

xbk = ŷpk , k ∈ K, (4.36)

xbk ≤ ŷpkzb, k ∈ K, b ∈ Bk, (4.37)

v53
b = max

0,

1
2

 ∑
k∈Kb,τk=53

xbk −
∑

k∈Kb,τk=40
xbk


 , b ∈ B, (4.38)

v40
b =

⌈
1
2

(∑
k∈Kb

xbk

)⌉
− v53

b , b ∈ B, (4.39)

∑
b∈Ba

(
L40v40

b + L53v53
b

)
≤ ua, a ∈ ATM , (4.40)

zb ∈ {0, 1}, b ∈ B, (4.41)

v40
b , v

53
b ∈ N, b ∈ B, (4.42)

xbk ∈ N, k ∈ K, b ∈ Bk, (4.43)

wBP min
x1,...,xT

T∑
t=1

∑
k∈K

 ∑
b∈Bk\Bartif

k

Cflow
tbk xtbk +

∑
b∈Bartif

k

Cout
tbk xtbk

 (4.44)

s.t.
∑
b∈Bk

xtbk = ŷtk, t ∈ T , k ∈ K, (4.45)

xtbk ≤ ŷtkzb, t ∈ T , k ∈ K, b ∈ Bk, (4.46)

v53
tb = max

0,

1
2

 ∑
k∈Kb,τk=53

xtbk −
∑

k∈Kb,τk=40
xtbk


 , t ∈ T , b ∈ B, (4.47)

v40
tb =

⌈
1
2

(∑
k∈Kb

xtbk

)⌉
− v53

tb , t ∈ T , b ∈ B, (4.48)

∑
b∈Ba

(
L40v40

tb + L53v53
tb

)
≤ ua, t ∈ T , a ∈ ATM , (4.49)

v40
tb , v

53
tb ∈ N, t ∈ T , b ∈ B, (4.50)

xtbk ∈ N, t ∈ T , k ∈ K, b ∈ Bk. (4.51)

The objective function (4.33) has the same structure as (4.9), with design costs, flow costs
and outsourcing costs. We note that we define BP (4.35)-(4.43) using periodic demand
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ŷp, while we define wBP (4.44)-(4.51) for fixed design variables and weekly demand ŷt.
Furthermore, there is no fixed cost associated with b ∈ Bartif. Therefore, a solution for BP
is always feasible for wBP. Using Claim 1, we can solve BP-wBP sequentially.

4.5 Computational Results

Our dataset contains the observed daily container shipments of all types of containers on
each origin-destination pair of the rail network, collected over 6 years, from December 2013
to November 2019. The tactical plan is weekly. To ensure the observed demand is not
constrained by the supply, we do a weekly aggregation of 2,226 observations of daily demand
for each commodity. This results in 318 observations per commodity. Hence, ytk refers to the
number of containers of type τk to be carried from origin ok to destination dk during week t.

In this section, we first provide a descriptive analysis of the data. We report the results of
the time series forecasting models in Section 4.5.2. Finally, in Section 4.5.3 we report results
for the periodic demand estimation problem. Note that, for confidentiality reasons, we only
report relative numbers in all results.

4.5.1 Descriptive Analysis

The large size of the transportation network and the large number of commodities suggest
that they can be spatiotemporal correlated. We provide here an analysis of the different types
of correlations we identified: between commodities and between commodities and weather.

Correlation Between Commodities

We start by analyzing interweek correlation by computing, for each commodity, estimates
of the Pearson correlation coefficient between weekly shipments over successive weeks. Fig-
ure 4.5a presents the distribution of the coefficient over the commodities for lags from 1 to
10 weeks. It shows that there are substantial positive correlations between weeks for all
commodities. Correlations are strong between successive weeks and are slightly weaker for
longer lags.

We now turn our attention to intercommodity correlations. For each pair of commodities,
we compute estimates of the Pearson correlation coefficient between weekly shipments over
successive weeks. We present in Figure 4.5b the distribution of those correlations for lags
from 1 to 10 weeks. There are 170 commodities, hence 28,730 intercommodity correlation
coefficients to examine at each lag. Correlations vary across pairs of commodities. Some are
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large (positive or negative) for short and longer lags, while 50% of the pairs have a weak
correlation between -0.2 and 0.2. Outliers at each time lag represent 9% of the significant
coefficients.

(a) Interweek correlation (b) Intercommodity correlation

Figure 4.5 Distribution of the Pearson correlation coefficient over commodities for the two
different types of correlations. We consider only the coefficients which met the 95% confidence
level threshold and we indicate their proportion in parenthesis.

In summary, the data shows evidence of two types of correlation: strong positive interweek
correlation between the weekly shipments over successive weeks, and strong intercommodity
correlation between the weekly shipments of different commodities. Interweek correlation
highlights the potential need for an autoregressive model while intercommodity correlation
highlights a potential need for a model able to learn various dependence structures from the
data.

Correlation Between Demand and Weather

Weather can be an important aspect for rail freight transportation, especially in North Amer-
ica where railways extend over the subcontinent which is subject to major weather disruptions
such as snowstorms. To assess the importance of weather on shipments, we use meteorological
data and estimate the Pearson correlation coefficient between weekly shipments and several
weather indicators. The data comes from National Oceanic and Atmospheric Administration
(NOAA, https://www.ncdc.noaa.gov/) for terminals in the United States and from Statistics
Canada (https://www.statcan.gc.ca) for terminals in Canada. More precisely, we use the av-
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erage daily temperature and total daily snowfall in centimeters for the main 17 terminals for
the complete time range covered by the data. We compute the weekly temperature as the
average temperature over the week and the accumulated snow (cm) as the sum of the daily
values. For each terminal, at each week t, we sum the total departing and arriving demand
over all commodities.

Figure 4.6 shows the distribution over the terminals of the Pearson correlation coefficient
between accumulated snow over week t and departing and arriving demand at week t+ lag.
We note a negative correlation for both arriving and departing demand for successive weeks.
It is weaker for longer lags.

(a) Departing Demand (b) Arriving Demand

Figure 4.6 Distribution of the Pearson correlation coefficient between accumulated snow over
week t and demand (arriving and departing) at week t + lag over all the terminals. We
consider only the coefficients which met the 95% confidence level threshold and we indicate
their proportion in parenthesis.

We present in Figure 4.7 the distribution over the terminals of the Pearson correlation coeffi-
cient between the average temperature and the demand arriving or departing over terminals.
It shows an average positive correlation between demand and temperature which is weaker
for longer lags. Some terminals have, however, negative correlations. This can be explained
by a seasonality effect. On the one hand, summer and spring are busier periods for most
ODs and temperature are higher than the rest of the year. On the other hand, for import
terminals, fall and the Chinese New Year are busier periods when temperatures are lower.
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(a) Departing Demand (b) Arriving Demand

Figure 4.7 Distribution of the Pearson correlation coefficient between average temperature
at week t and demand (arriving and departing) at week t + lag over all the terminals. We
consider only the coefficients which met the 95% confidence level threshold and we indicate
their proportion in parenthesis.
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Correlation between demand and weather highlights the potential need for a forecasting
model which can include weather features. In the following section we present forecast-
ing results for different forecasting models, ranging from very simple ones based on strong
independence assumptions to neural networks that relax some of those assumptions.

4.5.2 Time Series Forecasting Results

We divide the dataset into a training, validation and test sets. Time series forecasting models
require the last seen observed data before predicting the demand to come. Thus, we use the
first 5 years of data for training (December 2013 - December 2018), the next 4 months of
data for validation (January 2019 - April 2019) and the last 7 months (May 2019 - November
2019) for testing. At each week t0 in the dataset, we forecast demand for all commodities
for t = t0 + 1, . . . , t0 + T . We consider T = 10 weeks. To simplify the notation, we assume
t0 = 0 and refer to the estimates by t = 1, . . . , T .

We compare four types of models detailed below: a simple model that uses last observed val-
ues as prediction (CONSTANT) as well as autoregressive (AR), feedforward neural network
(FFNN) and recurrent neural network (RNN) models.

CONSTANT This is the simplest possible model. It is based on the assumptions that
commodities k ∈ K are independent and that the demand from observed week t0 is the
forecasts for the next T weeks:

ŷ1 = · · · = ŷT = y0. (4.52)

AR For each commodity, we fit an autoregressive AR(p) process on the training data. This
implies that the commodities are treated as independent. We use the estimated coefficients
φ̂ = (φ̂1, . . . , φ̂p)T to compute the forecasts on the test set. The multistep forecasts for t > 1
are obtained using

ŷtk = φ̂1kŷt−1,k + · · ·+ φ̂tky0k + · · ·+ φ̂pkyt−p,k. (4.53)

FFNN and RNN We leverage the capacity of these models to forecast demand for mul-
tiple commodities simultaneously. As opposed to CONSTANT and AR, they relax the inde-
pendence assumption on the commodities. We build one main neural network architecture
described in Figure 4.8. It is composed of 2 inputs layers, a stack of hidden dense or recur-
rent layers and one output layer. We consider several variants of this architecture. When
the layers in the grey square are dense (or feed-forward), it forms the feed-forward archi-
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tecture (FFNN). When the layers are LSTM, it forms the recurrent architecture (RNN).
The dimension of the output layer is equal to the number of commodities that we predict
simultaneously.

HIDDEN
LAYERS

OUTPUT
LAYER

LINEAR
LAYER

INPUT
LAYER 1
INPUT

LAYER 2

Figure 4.8 Neural network architecture

At each period t0, the output layer computes the forecast for the next time step t0 + 1.
Input Layer 1 is dedicated to external data such as weather features to model the correlation
between demand and weather. Input Layer 2 is dedicated to the autoregressive modeling.
It takes as input the demand of the previous weeks of all commodities, either observed or
forecasted. When we generate the multistep demand forecasts, for Input Layer 2, we use ŷt0+1

to forecast demand at t0 + 2, ŷt0+1 and ŷt0+2 for t0 + 3, until t0 + T with ŷt0+1, . . . , ŷt0+T−1.

We evaluate several variants of the architecture to model the spatiotemporal correlations and
the correlation with weather. They differ depending on the considered input data: lagged
observed/forecasted demand and/or weather features. To train, validate and test the model,
we use real observed weather data described in Section 4.5.1. At prediction time, such
information is not available and we would then rely on weather forecasts. These results are
hence designed to assess the potential for weather related features in an optimistic setting in
regards to their accuracy.

Forecasting 170 commodities simultaneously requires a rich and large dataset. Our dataset
is fairly limited as it contains only 318 weekly demand data points for each commodity. To
facilitate the forecasting task, we create a partition of K and train a neural network for each
set of the partition. For this purpose, we split the set of commodities into 2 subsets: K53

which contains commodities of 53-feet container type and K40 which contains commodities
of 40-feet container (|K53| = 58 and |K40| = 112). Table 4.1 summarizes the model variants.
Their name include a letter “W” if weather features are used to train the model, and “SPLIT”
to indicate a partition of K.

The neural networks are trained with the backpropagation algorithm and the stochastic
gradient descent using a Mean Squared Error (MSE) loss. For each model, we do a hy-
perparameter search with the Tree of Parzen Estimators implemented in the python library
Hyperopt (Bergstra et al., 2013). We select the set of hyperparameters which minimizes the
MSE on the validation dataset. We report the detailed input features and the chosen set of
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Table 4.1 Features and set of commodities for each variant of the neural network architecture
evaluated

Commodities Weather features Autoregressive Features
RNN K X
FFNN K X
RNN-W K X X
FFNN-W K X X
RNN-W-SPLIT1 K53 X X
RNN-W-SPLIT2 K40 X X
FFNN-W-SPLIT1 K53 X X
FFNN-W-SPLIT2 K40 X X

hyperparameters for each trained model in the Appendix (Table A.1).

Forecast Accuracy Measures

We measure the accuracy on the test set with two metrics: the Weighted Absolute Percentage
Error (WAPE)

WAPEk =
∑
t0∈Dtest

∑T
t=1 |yt0+t,k − ŷt0+t,k|∑

t0∈Dtest

∑T
t=1 yt0+t,k

× 100, k = 1, . . . , K, (4.54)

where Dtest is the test set of size N , and the Root Mean Squared Error (RMSE)

RMSEk =

√√√√ 1
N × T

∑
t0∈Dtest

T∑
t=1

(yt0+t,k − ŷt0+t,k)2, k = 1, . . . , K. (4.55)

The WAPE is a weighted version of the Mean Absolute Percentage Error (MAPE) which
handles small or zero demand values. Low demands are frequent in our data for some
commodities with sparse demand over the year. Hence the importance of having a metric
independent to the scale of the time series such as WAPE. The RMSE puts a high weight on
large errors, which is also an important metric to consider.

Results

Table 4.2 reports the performance metrics averaged over all commodities. We note that the
metrics for models based on a partition of the commodities (SPLIT) are averaged over the
partitions. The results show that the AR has the best performance and it is considerably
better than the NN models. The CONSTANT baseline has a WAPE close to AR but a



42

considerably worse RMSE. The descriptive statistics in Section 4.5.1 show strong intercom-
modity correlations. Nevertheless, the AR model, based on the assumption that demands for
commodities are independent, performs better than the NN models where this assumption
is relaxed. Neural networks have more parameters to fit on the same limited data. While
they have the capacity to model non-linear relationships, they also require more data to be
trained. We believe that our data containing only 318 observations for each commodity is too
limited for training the NN models. Moreover, we note that these findings are consistent with
other studies (e.g., Makridakis et al., 2018). That is, basic time series models outperform
deep learning models on difficult time series forecasting tasks, such as this one.

Table 4.2 Performance metrics of the forecasting models averaged over all commodities. The
best and second best metric values are highlighted in bold.

Model RMSE WAPE
CONSTANT 86.0 34.7%
AR 78.0 34.0%
FFNN 105.2 38.7%
FFNN-W 84.8 37.1%
FFNN-W-SPLIT 90.4 37.2%
RNN 105.1 37.8%
RNN-W 86.3 37.8%
RNN-W-SPLIT 85.2 38.6%

The results for the deep learning models confirm that adding weather features and considering
all commodities simultaneously help to improve the performance. This is consistent with
the descriptive statistics reported in Section 4.5.1. Previous demands for all commodities
constitute relevant information to consider.

Henceforth, we keep two forecasting models when analyzing periodic demand results: the
overall best performing model (AR) as well as the best deep learning model (FFNN-W).

4.5.3 Periodic Demand Estimation

We divide the results related to periodic demand estimation into two parts. The purpose is to
disentangle the errors associated with the periodic demand estimation from those associated
with the demand forecasts. The two parts are briefly described in the following:

• Analysis 1: the impact of periodic demand estimation. We assume we have
no forecast errors, i.e., the carrier knows perfectly the demand to come for the plan-
ning horizon. The periodic demand is estimated with the mappings (4.20)-(4.23) from
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historical data (ground truth values) and we compute the tactical costs generated by
those periodic demands.

• Analysis 2: the impact of imperfect demand forecasts. We estimate the periodic
demands from the forecasts obtained with the AR and FFNN-W models. We compute
the associated tactical costs and compare them to Analysis 1.

We consider two demand instances – I1 and I2 – from the test set of the forecasting models.
They are from two distinct periods: I1 corresponds to end of spring and beginning of summer,
from May 6th to July 14th, 2019 and I2 corresponds to end of summer and beginning of fall,
from July 29th to October 6th, 2019. Both instances have K = 170 commodities and a
tactical planning horizon of T = 10 weeks. Instance I2 corresponds to a busier period for the
carrier: Figure 4.9 shows the difference of the total demand summed over all commodities of
I2 at each week relative to the total demand of I1. We note that the total demand for I2
can be up to 20% higher than its I1 counterpart.

All the results are generated by fixing the variable ŷp in PDE and sequentially solving BP-
wBP. We recall that the periodic demand yp is a mapping from the real demand values, ŷp is
a mapping from the demand forecasts, Y is the matrix of real demand values and Ŷ is the ma-
trix of demand forecasts. We denote by BP(yp) and BP(ŷp) when BP is solved with yp and
ŷp, respectively, in constraints (4.36). Furthermore, we denote by wBP(Y) and wBP(Ŷ)
when wBP is solved with demand values Y and Ŷ, respectively, in constraints (4.45).

Analysis 1: The Impact of Periodic Demand Estimation

The analysis in this section is based on two sets of results for demand instances I1 and I2:

• Reference: We solve BP(yt) for t = 1, . . . , T . In other words, we do not restrict the
demand to be periodic and we obtain a tactical cost CPDE

ref (4.33).

• Periodic: We solve BP(yp
. )−wBP(Y) with the four periodic demand vectors yp

mean,
yp
max, yp

q2 and yp
q3. For each solution, we compute the percentage gap to the reference

cost CPDE
ref .

Table 4.3 reports the results where each number is the percentage gap to the reference cost.
The cost CPDE is a non-trivial trade-off between the three components Cdesign, Cflow and
Cout, that are linked with demand. Hence we cannot analyze each component independently
of the others. The parameter values in the objective function (4.33) have been chosen with
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Figure 4.9 Percentage difference of the total demand at each week of I2 relative to I1

Table 4.3 Tactical costs relative to the reference. We use historical data for the demand at
each week, that is wBP(Y). The minimum value for CPDE indicates the optimal periodic
demand estimate in the subset Y we consider.

Periodic
Definition yp

in BP

Percentage difference of costs
CPDE Cdesign Cflow Cout

yp
max 77.3% -2.8% -3.4% 84.0%

I1 yp
mean 93.3% -16.9% -4.4% 101.3%
yp
q2 93.8% -16.8% -3.3% 101.8%

yp
q3 28.4% -7.5% -1.2% 30.8%

yp
max 73.0% -14.1% -5.7% 76.6%

I2 yp
mean 40.6% -20.0% -2.8% 42.6%
yp
q2 41.6% -23.2% -2.8% 43.6%

yp
q3 23.1% -14.8% -2.6% 24.3%
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CN to best represent their costs. We note that CPDE
ref (4.33) constitutes a lower bound: at

each week, the blocks built are specific for the demand to best exploit the network capacity.

Two important findings emerge. First, the tactical cost has an important variation over the
different periodic demand estimates. This underlines the importance of the periodic demand
estimation problem. Second, using another estimate than the commonly used mean periodic
demand yp

mean can lead to an important cost reduction. In our case using the third quartile
yp
q3 reduces the total costs by 33.6% in I1, and by 12.4% in I2. When a smaller periodic

demand estimate is used, yp
mean and yp

q2 for instance, less blocks are built, at the expense of
outsourced demand.

We analyze the total periodic demand relative to the total actual demand to explain the
results. We report the values in Table 4.4. The total periodic demand of yp

max is almost
three times larger than the one of yp

q3 in both instances which explains the large gap in their
costs. The design made from solving BP(yp

q3) is based on a lower estimation of the periodic
demand than BP(yp

max) which generates fewer blocks in the network. The advantage is that
they are better used: the design from solving BP(yp

max) is made of a large number of small
blocks which cannot accommodate all demands. Hence the increase in outsourced demand.
We highlight that while the increase in outsourced demand seems large, it represents only
few percent of the total demand.

Table 4.4 Total periodic demand. The point of reference is indicated by a dash.

I1 I2∑T
t=1

∑
k∈K ytk - -

yp
max 34.8% 31.8%

yp
mean 0.0% 0.0%

yp
q2 -1.0% -0.5%

yp
q3 11.8% 11.7%

Analysis 2: The Impact of Imperfect Demand Forecasts

In practice, carriers rely on demand forecasts to estimate a periodic demand and build the
design for the tactical planning horizon. Then, at each week of the horizon, they adapt
operationally the tactical plan based on observed demand. In this section, we follow our
methodology and analyze the quality of the solution a posteriori.

We proceed in two steps: First, we estimate the periodic demand by solving BP(ŷp) −
wBP(Ŷ) for each mapping h and select the one minimizing CPDE (4.33). Second, we assess
the tactical cost associated with the periodic demand estimate. For this purpose we solve
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BP(ŷp)−wBP(Y). Note that we use real demand values Y to accurately assess this cost.
Hence, it is affected by two combined sources of error: the one of the periodic demand
estimation and the forecast error, both discussed separately in previous sections.

Step 1: Periodic demand estimation We report results in Table 4.5 and indicate by
a dash the point of reference (ŷp

mean). We note that the value of Ŷ depends on both the
forecasting model and the instance. In other words, we can only compare results from the
same forecasting model and the same instance. The results show that, for both forecasting
models and both instances, the tactical costs are minimized with ŷp

max. In Analysis 1 with
historical data, tactical costs were minimized with yp

q3. This is because forecasting models
smooth demand and struggle to forecast accurately the peaks. With historical data, we have
access to the maximum of demand which can be an outlier, thus expensive. Following the
methodology, we choose the periodic demand ŷp

max for Step 2 for both forecasting models.

Table 4.5 Percentage difference of tactical cost CPDE resulting from solving BP(ŷp) −
wBP(Ŷ) with forecasts of demand from two models: AR and FFNN-W. For each model
and each instance, we compare the value with the one from ŷp

mean.

Forecasting Model
Periodic

Demand yp

in BP
AR FFNN-W

ŷp
max -38.4% -32.2%

I1 ŷp
mean - -
ŷp
q2 17.5% 28.0%

ŷp
q3 -30.8% -18.8%

ŷp
max -7.4% -28.4%

I2 ŷp
mean - -
ŷp
q2 12.7% 29.2%

ŷp
q3 8.8% -11.7%

Step 2: Assessment of the tactical costs Table 4.6 reports the relative costs resulting
from solvingBP(ŷp)−wBP(Y). We use the same reference as in Analysis 1, that is, the lower
bound on CPDE. In addition to the best periodic demand identified by our methodology, we
report the result for ŷp

mean. Consistent with the findings in Analysis 1, we note that using the
latter leads to a large increase in costs. Despite the relatively large forecast errors reported
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in Table 4.2, the results show that estimating periodic demand using our methodology can
even reduce the costs compared to yp

mean computed on perfect information (historical data).

Table 4.6 Percentage difference of tactical costs resulting from solving BP(ŷp) −wBP(Y).
The point of reference is the reference used in Analysis 1 (BP(yt) for t = 1, . . . , T ).

Periodic
Demand yp

in BP

Percentage difference of costs
CPDE Cdesign Cflow Cout

Historical data yp
mean 93.3% -16.9% -4.4% 101.3%

Historical data yp
q3 28.4% -7.5 % -1.2% 30.8%

I1 AR ŷp
max 55.9% -17.8% -1.9% 60.6%

AR ŷp
mean 125.1% -14.1% -3.9% 135.8%

FFNN-W ŷp
max 48.2% -12.3% -2.5% 52.4%

FFNN-W ŷp
mean 117.4% -16.2% -6.0% 127.5%

Historical data yp
mean 40.6% -20.0% -2.8 % 42.6%

Historical data yp
q3 23.1% -14.8% -2.6 % 24.3%

I2 AR ŷp
max 50.1% -23.6% -10.0% 52.8%

AR ŷp
mean 137.6% -31.8% -12.1% 144.4%

FFNN-W ŷp
max 80.0% -25.3% -7.1 % 83.9%

FFNN-W ŷp
mean 164.4% -31.1% -17.8% 172.6%

We report the total demand values in Table 4.7. For demand instance I1, both periodic
demand ŷp

max overestimate the reference demand. The design built is capable of handling
more demand, which results in less outsourced demand. However, they underestimate the
periodic demand yp

q3, which lead to a less important decrease in outsourced demand. In
instance I2, the periodic ŷp,AR

max overestimates the total demand yet it leads to an increase
in outsourced demand. This is because ŷp,AR

max either overestimates demand for commodities
that already lack capacity with yp

mean, or it underestimates demand for some commodities for
which blocks are then not built in the design and are consequently outsourced at each week.

Table 4.7 Total periodic demand summed over commodities. The point of reference is indi-
cated by a dash.

I1 I2
Historical data yp

mean - -
Historical data yp

q3 11.9% 11.7%
AR ŷp

max 10.2% 0.7%
FFNN-W ŷp

max 10.0% -1.4%
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4.6 Conclusion and Future Research

Tactical planning is essential to freight carriers as it allows to, e.g., design the service network
to meet expected demand while minimizing cost. In this work we focused on large-scale
tactical planning that is restricted to deterministic models for the sake of computational
tractability. Even though estimates of periodic demand is a central input to such models,
the associated estimation problem has not been studied in the literature. In this paper we
addressed this gap: We formally introduced the periodic demand estimation problem and we
proposed a methodology that proceeds in two steps. The first step consists in using a time
series forecasting model to predict demand for each period in the tactical planning horizon.
The second step defines periodic demand as a solution to a multilevel mathematical program
that explicitly connects the estimation problem to the tactical planning problem of interest.
This allows to estimate periodic demand such that the costs are minimized. Since the origin-
destination demand matrices typically are unbalanced, this can be of importance as the cost
of forecast errors is not evenly distributed across commodities.

We reported results for a real large-scale application at the Canadian National Railway
Company. The results clearly showed the importance of the periodic demand estimation
problem when compared to the approach commonly used in practice. The latter consists
in averaging the time series forecasts over the tactical planning horizon. Compared to this
practice, the results showed that using another estimate can lead to a substantial reduction in
cost. As expected, the results also showed that the time series forecasting problem is difficult
and the forecast errors hence are relatively large. Nevertheless, the periodic demand estimates
that resulted from the proposed methodology still led to costs that were comparable, or
even better, than those obtained by using the average demand baseline computed on perfect
information (i.e., no forecast error). Moreover, the costs were substantially reduced compared
to averaging the forecasts.

In terms of exposition, we chose to limit the methodology to the MCND formulation. How-
ever, the methodology applies to other cyclic network design formulations. Similarly, adap-
tation of the tactical plan in each period (wMCND and wBP formulations) can also be
represented differently from this paper. The methodology hinges on the separation between
the design variables that are fixed for all periods in the tactical planning horizon while the
flow decisions are not. The adaptation of the flow decisions serves as a proxy for operational
costs.

Given that we introduced a new problem in this paper, it opens up a number of directions
for future research. First, improving the time series forecasts (step one in the methodology).
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Second, extending the feasible set of periodic demand values to more general mappings
and devise an effective solution approach for this case. The work reported in this paper
constituted a first step in addressing the periodic demand estimation problem that hitherto
has been overlooked in the literature. We showed that adequately addressing it can lead to
important cost reductions.
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CHAPTER 5 ARTICLE 2: A TWO-STEP HEURISTIC FOR THE
PERIODIC DEMAND ESTIMATION PROBLEM

The text of this chapter is the one of the research paper Solution Algorithms for the Peri-
odic Demand Estimation Problem to be submitted to the journal Computers & Operations
Research.

Authors Greta Laage, Emma Frejinger, Gilles Savard

Abstract The Periodic Demand Estimation (PDE) problem aims at finding the periodic
demand minimizing the tactical costs, and is important for freight carriers. The periodic
demand is the demand expected to repeat in cyclic and deterministic formulations of service
network design problems. It is defined as a mapping of the demand forecasts over the tactical
horizon. The PDE problem has been introduced as a multilevel mathematical programming
formulation yet an efficient solution method has not been introduced in the literature and
we aim at addressing this gap. We present a new formulation of the problem, where the
periodic demand is defined as a deviation from the average of the demand forecasts, and
the variables are the deviation coefficients for all commodities transported in the network.
We develop two local search metaheuristics to solve the PDE problem and compare with
NOMAD, an off-the-shelf blackbox optimization software that performs best for problems
with few variables. They all exploit the sequential property, that is, when the first-level
variables are fixed, the lower levels of PDE can be solved sequentially. Large-scale applications
widespread in practice carry hundreds of commodities, and the three algorithms might be
challenged by the large number of variables. To address this issue, we propose heuristic
approaches which reduce the size of the feasible set while keeping high-quality solutions. It
consists in creating clusters of commodities that have an equal deviation coefficient, hence
reducing the number of variables. We report results in an extensive empirical study of a real
large-scale application from the Canadian National Railway Company. Two main findings
emerge. First, the solutions obtained outperform the approach commonly used in practice
which simply consists in using the mean of the demand forecasts. Second, the clustering
heuristic allows to obtain the best solution and enables the use of off-the-shelf softwares even
for large-scale applications.

Key words Freight transportation, tactical planning, large-scale, periodic demand, heuris-
tic, clustering.
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5.1 Introduction

Service Network Design (SND) problems are an important class of planning problems for
freight carriers and they aim at designing a plan satisfying demand in a cost-effective way.
Deterministic SND formulations are mostly used for real large-scale applications for the
sake of computational tractability. Such formulations rely on an accurate representation of
periodic demand, that is the demand expected to repeat at each period (e.g. a week) of
the tactical planning horizon (e.g. a few months). A tactical plan minimizing costs while
satisfying the periodic demand is then defined over the period and repeated over the planning
horizon. However, time series forecasting models produce one point estimate of demand at
each period.

Our previous work (Laage et al., 2021b) introduces a methodology for the Periodic Demand
Estimation problem (PDE). It presents a multilevel formulation whose solution is the periodic
demand minimizing the tactical costs over the horizon. The periodic demand is defined as
a mapping from the demand forecasts estimated for each transported commodity at each
period. The formulation is composed of three levels, however, when the periodic demand
is fixed and when the second level variables are feasible for the third level, the lower levels
can be solved sequentially. The PDE problem can be formulated as an optimization problem
mins∈S f(s, g∗(s)), where s is the first level variables, i.e. the periodic demand, and S its
feasible set, f the tactical costs and g∗ the optimal solution of the lower-level program. Laage
et al. (2021b) evaluate the methodology by exploring a restricted feasible set of four periodic
demands and find the solution by enumeration. An effective solution approach for the PDE
problem with any periodic demand has not yet been studied in the literature, and our work
addresses this gap.

The PDE optimization problem is challenging for several reasons. Lower levels are combina-
torial problems that are non-convex and not differentiable. Moreover, it aims at addressing
large-scale applications. Hence metaheuristics and blackbox algorithms are promising solu-
tion methods that we consider in this work.

Metaheuristics are essentially divided in two types: local search methods iterating over one
solution and population methods working with a population of solutions (Talbi, 2009). Solv-
ing the lower levels might be computationally expensive, hence local search methods are
more adapted for our problem. For the same reason, blackbox optimization methods are also
related to our work (Audet and Hare, 2017). The black box is the lower-level program whose
solution is used to compute the objective function. Those approaches are, however, limited
when the number of variables is large, which is the case for large-scale freight networks.
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By using a mapping of the forecasts in the first-level, PDE aims at integrating forecasting
and planning problems. The general idea of integrating prediction and optimization has been
explored in the literature, yet to the best of our knowledge, we are the first to consider the
notion of defining a good periodic demand for real-life applications of SND problems.

Contributions. In this research, we extend the work from Laage et al. (2021b) by allowing
a broad and continuous feasible set of periodic demands. The paper offers both methodolog-
ical and empirical contributions. First, we formalize the mapping from the demand forecasts
to the periodic demand as a deviation from the average of the forecasts. The first-level vari-
ables are then the deviation coefficient for each commodity. We develop two local search
metaheuristics to solve the new formulation of the PDE problem. To address the challenge
of limited performances due to a large number of first-level variables, we propose heuristic
approaches that reduce the set of feasible solutions by creating clusters of commodities hav-
ing equal deviation coefficients. This in turn allows to reduce the number of variables. The
clustering heuristics exploit the characteristics of the problem considered, defined with new
metrics. We report results in an extensive empirical study of a real large-scale application
from the Canadian National Railway Company. Finding a good periodic demand by solv-
ing the PDE problem lead to substantial cost reductions compared to the common practice,
which consists in taking the average of the demand forecasts. We show that the clustering
step is crucial for capacitated networks, as it allows to reach the best costs. Moreover, it
leverages off-the-shelf solvers even for large-scale networks.

Paper Organization. The remainder paper is structured as follows. Next we present
the related work to this research: we briefly describe the PDE problem and the solution
approaches. In Section 5.3, we introduce our formulation, the metaheuristics and the heuristic
developed to solve PDE. Then, we outline our large-scale application in Section 5.4. Finally,
we report empirical results in Section 5.5 and conclude with directions for future research in
Section 5.6.

5.2 Related Works

We start by briefly summarizing the context and describe the PDE formulation introduced
in Laage et al. (2021b). Then, we provide a review of the solution approaches developed in
the literature.
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5.2.1 The Periodic Demand Estimation Problem

The PDE formulation translates the following planning process into a multilevel optimization
problem. First, a time series forecasting model produces the demand forecasts for each
commodity at each week of the tactical planning horizon. Second, a periodic demand is
estimated for each commodity over the tactical planning horizon, as a mapping from the
forecasts. Finally, design and flow decisions follow. While the former are fixed over the
tactical horizon, the latter are adjusted according to the observed demand. Hence two sources
of costs occur at the tactical level: the tactical plan yield fixed costs and the flow and
outsourcing adjustments are responsible for the variable costs. The objective of the PDE
problem is to minimize the tactical costs over the tactical planning horizon by finding a good
estimate of the periodic demand.

The tactical planning horizon is decomposed into T periods indexed by t = 1, . . . , T . The
network carries a set of commodities K, and each commodity k is characterized by its origin
ok, destination dk and type γk. We denote K the cardinality of K. The demand vector of
period t is designated by yt, such that yt = (yt1, . . . , ytK)>, where ytk is the quantity of
commodity k to be transported during period t. Let Y ∈ RT×K

+ be the demand matrix, with
[Y]tk = ytk. The periodic demand vector is designated by yp, such that yp = (yp1 , . . . , ypK)>

where ypk is the periodic demand for commodity k. Let us note Y the set of feasible values for
yp. In practice, the demand is not known in advance and the demand values are forecasts.

We consider a class of SND problems, the Multicommodity Capacitated Fixed-charge Net-
work Design (MCND) problems (Magnanti and Wong, 1984) for illustration purposes. The
generic formulation of a path-based MCND relies on a space-time graph G = (N ,A) where
N is the set of nodes and A is the set of arcs. A path p is a sequence of arcs in G, and
P denote the set of paths. Let Pk denote the set of paths for commodity k such that the
source node of the first arc of p ∈ Pk is ok and the sink node of the last arc is dk. We denote
Kp the set of commodities that can use path p ∈ P . Let Pout designate the paths corre-
sponding to outsourcing options that transport demand in the case of insufficient capacity,
such that Pout ⊂ P . The set Pout

k designates the outsourcing paths for commodity k, such
that Pout

k ⊂ Pk. We present below the formulation PDE, where MCND and wMCND
constitute the lower levels. The upper level aims at minimizing the total fixed and variable
costs over the tactical planning horizon, and yp is the decision variable. The objective of
MCND is to satisfy the periodic demand at minimum cost. It has two categories of decision
variables: Binary design variables zp, ∀p ∈ P , equal to 1 if path p is used and 0 otherwise,
and flow variables xpk ≥ 0, p ∈ Pk, ∀k ∈ K. Depending on the type of freight, the flow
variables can be integers. Finally the third level wMCND aims at satisfying demand at
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each period of the horizon at minimum cost for a fixed design solution z given by MCND.
The variables xtpk designate the flow for commodity k on path p in period t.

PDE min
yp

CPDE =
T∑
t=1

∑
p∈P

Cdesign
p zp +

∑
k∈K

∑
p∈Pk\Pout

k

Cflow
p xtpk +

∑
k∈K

∑
p∈Pout

k

Cout
p xtpk

 (5.1)

s.t. yp ∈ Y, (5.2)

MCND min
z,x

∑
p∈P

Cdesign
p zp +

∑
k∈K

∑
p∈Pk\Pout

k

Cflow
p xpk +

∑
k∈K

∑
p∈Pout

k

Cout
p xpk (5.3)

s.t.
∑
p∈Pk

xpk = ypk , k ∈ K, (5.4)

∑
k∈Kp

xpk ≤ upzp, p ∈ P, (5.5)

xpk ≥ 0, k ∈ K, p ∈ Pk, (5.6)

zp ∈ {0, 1}, p ∈ P, (5.7)

wMCND min
x1,...,xT

T∑
t=1

∑
k∈K

∑
p∈Pk\Pout

k

Cflow
p xtpk +

∑
k∈K

∑
p∈Pout

k

Cout
p xtpk

 (5.8)

s.t.
∑
p∈Pk

xtpk = ytk, t = 1, . . . , T, k ∈ K, (5.9)

∑
k∈Kp

xtpk ≤ upzp, t = 1, . . . , T, p ∈ P, (5.10)

xtpk ≥ 0, t = 1, . . . , T, k ∈ K, p ∈ Pk. (5.11)

The design and flow variables from the lower levels MCND and wMCND are used in the
definition of the tactical cost in the objective function (5.1) of PDE.

The objective function (5.3) of MCND includes three terms. The first term designates the
fixed design cost Cdesign

p ≥ 0 and account for the paths built to transport demand. The second
term is the variable flow cost Cflow

p ≥ 0 for satisfied demand and the third term with Cout
p ≥ 0

designates the flow cost of outsourced demand. The objective function (5.8) contains the last
two terms, that are the variable flow cost and the outsourcing cost at each period.

Constraints (5.4) and (5.9) ensure that respectively the periodic demand and the demand at
each period are satisfied for each commodity. Constraints (5.5) and (5.10) enforce flows on
selected paths only, and that respectively the flow from the periodic demand and the flow at
each period do not exceed the path capacity up.

An important property of PDE that we call the sequential property is that for (z∗, x∗) an
optimal solution of MCND, if z∗ is feasible for wMCND, then MCND-wMCND can be
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solved sequentially for a fixed yp. By always allowing outsourcing, i.e., either fixing zp = 1
for p ∈ Pout or Cdesign

p = 0, the property holds.

The periodic demand is defined as a mapping of the demand values at each week of the
tactical horizon. Then the set of feasible periodic demand Y is a set of feasible mappings h,
where h is defined as following:

h : RT×K
+ → RK

+

Y 7→ yp = h(Y).
(5.12)

5.2.2 Solution Approaches

The formulation PDE (5.1)-(5.11) appears as a multilevel optimization problem, yet it does
not belong to this class of problems due to the sequential property when outsourcing is
allowed. It is nonetheless challenging, because lower levels are non-convex, not differentiable
and combinatorial, and it aims at addressing large-scale problems.

The PDE problem is then defined as a generic optimization problem with no derivative
information. Local search methods are attractive for this type of problems. They build a
trajectory in the space of solutions trying to move towards optimal solutions (Talbi, 2009).
The first-level constraints of PDE can be integrated in the set of solutions to visit and the
lower levels are solved sequentially. Their solution is used to compute CPDE (5.1), and the
latter will give information to continue the search. Local search methods is an important
and mature research topic and many metaheuristics have been proposed in the literature: the
Tabu Search (Glover, 1986), the Simulated Annealing (Kirkpatrick et al., 1983; Černỳ, 1985),
the Variable Neighborhood Search (Mladenović and Hansen, 1997), the Greedy Randomized
Adaptive Search Procedure (Feo and Resende, 1989, 1995), to name a few. They differ by
the definition of the solutions visited at each iteration, the use of memory during the search
and the diversification and intensification procedures to explore the set of solutions.

Blackbox optimization methods are also related to our work (Audet and Hare, 2017). The
black box is the lower level program whose solution is used to compute the objective function.
We take a particular interest in NOMAD (Le Digabel, 2011), a software implementing the
Nonsmooth Optimization by Mesh Adaptive Direct Search (Abramson et al., 2004, 2009).
Here, the black box problem isMCND-wMCND, when the first-level decision variables are
fixed. However, NOMAD performs best for problems with fewer than 50 variables (Le Diga-
bel, 2011) and large-scale applications might contain hundreds of variables.
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5.3 Methodology

In this section, we present our methodological contributions. In Section 5.3.1 we introduce
the new formulation of PDE, where the periodic demand is defined as a deviation from the
average of the demand forecasts. In Section 5.3.2, we describe the local search metaheuristics
developed to solve the new formulation. Finally, in Section 5.3.3, we present our clustering
heuristic that reduces the size of the set of feasible solutions of PDE Y .

5.3.1 Model

We write PDE as following to simplify the notation:

PDE min
yp

CPDE(yp, z,x,x1, . . . ,xT) (5.13)

s.t. yp ∈ Y, (5.14)

(z,x,x1, . . . ,xT) ∈ argmin
z′,x′,x1′,...,xT′

MCND-wMCND(yp, z′,x′,x1
′, . . . ,xT

′) (5.15)

Constraint (5.14) defines the feasible space where Y is a set of mappings h defined in (5.12),
and solving PDE consists in finding the mapping h such that CPDE (5.13) is minimized.
Common practices take h as the average of the demand values at each week t for each
commodity:

yp
mean = 1

T

T∑
t=1

yt. (5.16)

We propose an extension of the common practice where the periodic demand is defined as a
deviation from yp

mean:
yp = α� yp

mean, (5.17)

where � designates the element-wise multiplication. The vector α is defined such that, for
each commodity k, ypk = [α]kypmean,k.
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We present our new formulation:

PDE min
α

CPDE(yp, z,x,x1, . . . ,xT) (5.18)

s.t. yp = α� yp
mean, (5.19)

α ≤ αmax (5.20)

α ≥ αmin (5.21)

(z,x,x1, . . . ,xT) ∈ argmin
z′,x′,x1′,...,xT′

MCND-wMCND(yp, z′,x′,x1
′, . . . ,xT

′) (5.22)

Constraint (5.20) and Constraint (5.21) respectively impose an upper bound and a lower
bound on the variable α, where αmax is defined such that yp

max = αmax � yp
mean, with

yp
max = maxt=1,...,T{yt} and αmin is defined such that yp

min = αmin � yp
mean, with yp

min =
mint=1,...,T{yt}.

We aim at solving the formulation PDE (5.18)-(5.22). Let us illustrate its importance and
the reduction of tactical costs it can lead to with the following small problem. The network
transports one commodity, from its origin O1 to its destination D1 over a tactical horizon of 3
periods. Figure 5.1 presents the three different possible paths for the commodity, along with
their capacity u and cost c. The path 3 corresponds to the outsourcing path: it is always
built in the design, not constrained by capacity, but expensive.

O1 D1
u1 = 5, c1 = 10

u2 = 5, c2 = 13

u3 =∞, c3 = 50

Figure 5.1 Illustration of the PDE problem on a small network

The time-series demand forecasts Ŷ and the observed demand Y of the commodity at the
three periods are

Ŷ =


3
7
5

 and Y =


4
6
7

 . (5.23)

Common practice is to take the average of the time-series forecasts as periodic demand, that
is, ŷpmean = 5. In this case, path 1 is built to minimize costs while satisfying the periodic
demand. The cost of the fixed plan is c1 ·5 = 50. At each week, the maximum offered capacity
is 5 on path 1, and the exceeding demand is allocated to path 3. The tactical cost estimated
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with the forecasts Ŷ are c1 · (3 + 5 + 5) + c3 · (0 + 2 + 0) = 230 and the actual tactical costs,
estimated after the demand realizations Y are c1·(4+5+5)+c3·(0+1+2) = 290. If the periodic
demand were estimated as a deviation from the average of the forecasts, with for instance
α = 1.2 and ŷp = αŷpmean = 6, then paths 1 and 2 are built. The cost of the fixed plan is then
c1 ·5+c2 ·1 = 63. The tactical costs from the forecasts are c1 ·(3+5+5)+c2 ·(0+2+0) = 156
and c1 · (3 + 5 + 5) + c2 · (0 + 1 + 2) = 179 after the demand realizations.

5.3.2 Metaheuristics

The vectorα of sizeK describes the first-level decision variables in the formulationPDE (5.18)-
(5.22). Local search methods are perfectly fitted to solve PDE: the first-level constraints
can be integrated in the set of solutions to visit and we can exploit the sequential property of
PDE at each iteration, when a new vector α is selected. We fix the upper-level variable to
α, then solve MCND-wMCND sequentially and finally use the solution to compute CPDE,
which value indicates where to continue the search. We present next the two local search
metaheuristics we develop to solve PDE.

Both require a feasible set of vectors that can be visited, a neighborhood N indicating the
movements allowed in the feasible set and a stopping criterion. We designate by CPDE(α)
the value of the objective function (5.18) for a fixed α. We present below their pseudo-code
and parameters.

Neighborhood Search

We name Neighborhood Search (NS) the first metaheuristic, which is a simple local search
method. It iterates over a current solution, explores the neighborhood around it at each
iteration and stops when the value of CPDE is not improved. We present in Algorithm 1 the
pseudo-code for NS and in Algorithm 2 the pseudo-code for the neighborhood definition.
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Algorithm 1 Neighborhood Search (NS)

1: Input: Initial solution α
2: Stop = False
3: while not Stop do
4: Define N(α) the neighborhood around the solution α
5: Find the solution α′ minimizing CPDE in N(α)
6: If CPDE(α′) < CPDE(α)
7: Update α := α′

8: Else Stop := True

The elements of the neighborhood N(α) for a solution α are randomly generated following
a normal distribution. We note V the number of neighbors, i.e., V = |N(α)|, β a distance
parameter and IK the identity matrix of size K. Step 5 in Algorithm 2 ensures that the
potential solution vectors satisfy Constraints (5.20) and (5.21).

Algorithm 2 Neighborhood Definition

1: Input: α
2: Parameters: β, V
3: Initialization N(α) = ∅
4: while |N(α)| < V do
5: Generate random α′ from the normal distribution N (α, βIK)
6: α′ := max(α′,αmin), α′ := min(α′,αmax)
7: Update N(α) := N(α) ∪ {α′}

Neighborhood Search with Diversification and Intensification

The well-known limitation of simple algorithms such as NS is their potential to get stuck at
the first local minimum. To address this challenge, we use a metaheuristic allowing at each
iteration to move to a neighbor that might not improve the best found objective function.
We call it the Neighborhood Search with Diversification and Intensification (NSDI). The
neighborhood N is defined as in NS, described in Algorithm 2. We add a diversification
and intensification procedure, which consists in updating the parameters β and V at each
iteration whether a better solution was found or not. This metaheuristic, presented next
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in Algorithm 3, stops when a maximum number of iterations without improvements M is
reached.

Algorithm 3 Neighborhood Search with Diversification and Intensification (NSDI)

1: Input: Initial solution α and initial best known solution α∗

2: Parameters β, V , M , v+, b−, b+

3: Stop = 0
4: while Stop < M do
5: Define N(α) the neighborhood around the solution α
6: Find the solution α′ which minimizes CPDE in N(α)
7: If CPDE(α′) < CPDE(α∗)
8: Update α∗ := α′

9: Update Stop:= 0
10: Intensification β := b−β

11: Else
12: Update Stop := Stop + 1
13: Diversification β := b+β, V := v+V

14: Update α := α′

In Algorithm 3, at each iteration, the current solution is updated by the best solution in its
neighborhood, even if it does not improve the current value of objective function. Step 10
and 13 consists in the diversification and intensification procedure. When the best found
solution is improved, we intensify the search in this direction: b− < 1 and the neighbors
generated are closer. On the contrary, when the best found solution is not improved, we look
for new solutions that are further, with v+ > 1 and b+ > 1. More neighbors that are further
are generated.

By definition, NSDI might be stuck between 2 solutions, going back and forth from one to
the other. The Tabu Search (Glover, 1986) avoid this problem by defining a tabu list, which
contains solutions that cannot be visited for a few iterations. Here, the randomness in the
definition of N ensures that this is unlikely to happen, and we do not need to define a tabu
list. For the same current solution, at different iterations, the set N will likely be different
and the algorithm will move to a different neighbor.

Both metaheuristics NS and NSDI require an initial solution. Sinceα represents the deviation
from the mean, we take as initial solution α = 1K , the K-vector of ones.
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5.3.3 Clustering to Reduce the Set of Feasible Mappings

For large-scale applications with multiple commodities, the number of first-level decision
variables, i.e., the dimension of the vector α, K, might be large. In our application, K = 170.
To address this challenge, we restrict the set of feasible mappings h, which can also be seen
as imposing constraints on α. One simple example is to constrain all variables to be equal.
This is equivalent to having a single decision variable α and the following formulation:

PDE min
α

CPDE(yp, z,x,x1, . . . ,xT) (5.24)

s.t. yp = αyp
mean, (5.25)

α ≤ max
k
αmax,k (5.26)

α ≥ min
k
αmin,k (5.27)

(z,x,x1, . . . ,xT) ∈ argmin
z′,x′,x1′,...,xT′

MCND-wMCND(yp, z′,x′,x1
′, . . . ,xT

′). (5.28)

Before solving PDE with the metaheuristics proposed in Section 5.3.2, we propose a first step
which consists in creating clusters of commodities that have the same deviation coefficients.
In other words, clusters of components of α which have the same value. The objective
of clustering is to reduce the number of variables while keeping high-quality solutions, to
improve the performance of the metaheuristics introduced in Section 5.3.2 and to make the
use of the state-of-the-art possible for large-scale applications with hundreds of commodities.

We denote C = {C1, . . . , CnC} the set of nC clusters. It is a partition of K such that for
Ci ∈ C with Ci = {k1, .., kc}, the coefficients αk′ for the commodities k′ ∈ Ci are equal. We
present below the formulation PDE with clusters:

PDE min
α

CPDE(yp, z,x,x1, . . . ,xT) (5.29)

s.t. yp = α� yp
mean, (5.30)

α ≤ αmax (5.31)

α ≥ αmin (5.32)

[α]ki = [α]kj , C ∈ C,∀ki, kj ∈ C (5.33)

(z,x,x1, . . . ,xT) ∈ argmin
z′,x′,x1′,...,xT′

MCND-wMCND(yp, z′,x′,x1
′, . . . ,xT

′). (5.34)

The set of clusters should take into account the application considered. For instance, an
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increase of the tactical costs can be due to the outsourcing of commodities that could not
be loaded. This happens when the periodic demand used to define the plan is low and the
network has not enough capacity allocated for them. One of the cluster could gather the
commodities that have high risks of being outsourced, so that PDE assigns them a large
deviation coefficient. In the following, we describe two approaches to define the set of clusters
C that use characteristics from the network and the commodities.

Variance-based Clustering

If the demand forecasts for a commodity have a large variance over the planning horizon,
then the periodic demand from the average forecasts is low at certain weeks compared to the
demand forecasts, resulting in turn in outsourcing.

We propose a first clustering based on the coefficient of variation, i.e., the standard devi-
ation scaled to the average demand values. We denote σsk the coefficient of variation for a
commodity k, such that

σsk =

√
1
T

∑T
t=1(ytk − ypmean, k)2

ypmean, k
, k = 1, . . . , K. (5.35)

When K is small, we can create the clusters from analyzing the distribution of σs over the
commodities. More generally, the nC clusters are created by decomposing the set {σsk, k =
1, . . . , K} into nC intervals. Let Qe designates the e-th percentile of {σsk, k = 1, . . . , K}. We
could create for instance nC = 2 clusters, where the first cluster contains all σsk ≤ Q0.25 and
the second cluster contains all σsk > Q0.25. In our application, we consider nC = 5 clusters
and describe them in Section 5.5.

Resource-based Clustering

We propose a second approach built from the analysis of the shared resources in the network.
Increasing the periodic demand for commodities that share resources lead to an increased
dedicated capacity in the design. This in turn might help to handle the sudden changes in
forecasted and observed demand, when they are higher than their respective average over
the periods of the planning horizon. We propose the following steps to identify the set of
clusters.

1. We start from the common practice where the periodic demand is the average of the
demand forecasts, i.e., we compute CPDE(αmean), where αmean = 1.
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2. For each commodity k, we identify the commodities that share at least one train on
their route with k. We call a group the set formed by k and the related commodities.

3. The first cluster is the largest group over all commodities.

4. The second cluster is the second largest group of cardinality higher than 1 that has no
commodities in common with the first cluster. We iterate until there is no more group
satisfying the criteria.

5. The remaining commodities not yet assigned to a cluster are gathered to form the last
cluster.

Unlimited Resource-based Clustering We propose another set of clusters built simi-
larly, except for the first step. Instead of computing CPDE(αmean) from the formulation (5.36)-
(5.56), we relax the capacity constraints (5.45) and (5.54) and solve this new formulation with
αmean. This aims to identify the best paths to transport each commodity, and analyze the
bottlenecks in the network. We then follow the steps 2 to 5 to obtain the clusters.

5.4 Application

We proceed with the application from Laage et al. (2021b) of the intermodal network of
Canadian National (CN). It is composed of 24 main intermodal terminals and 133 origin-
destination pairs. A commodity is defined by an origin, a destination and a type of container.
There are two main types of containers, the 40-feet and the 53-feet long, resulting in K = 170
commodities. When two commodities have the same OD pair, they differ by the type of
container. The tactical period is a week and a tactical horizon lasts T = 10 weeks.

CN faces a specific MCND problem for its intermodal network, referred to as the block
planning problem. A block designates a consolidation of railcars that move together between
a given OD pair, where containers loaded on the railcars share the same OD. Morganti et al.
(2020) introduce a path-based formulation, BP, for this problem where the periodic demand
and the schedule of intermodal trains are given as inputs. BP is based on a space-time graph
which contains 28,854 arcs and 15,269 nodes. A block is a path in the graph and B designates
the set of blocks such that |B| = 2208. The set B hence corresponds to the set of paths P in
MCND. It contains a subset of outsourcing paths denoted Bartif, also referred to as artificial
blocks whose role is to transport demand exceeding capacity.

Below we briefly describe PDE and refer to Morganti et al. (2020) and Laage et al. (2021b)
for more details. The lower level formulations are replaced by BP and its weekly formulation,
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wBP. There are three categories of decision variables at the second level. First, the design
variables zb, b ∈ B where zb = 1 if block b is built. Second, xbk designates the integer flow
variable, that is, the number of containers for commodity k transported on block b. Third,
to write the capacity constraints we need the auxiliary variables for the number of 40-feet
v40
b and 53-feet v53

b double-stack platforms on block b. At the third level, we introduce flow
variables and auxiliary platform variables for each week t, xtbk, v40

tb , v
53
tb , t ∈ T , k ∈ K, b ∈ B.
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PDE min
α
CPDE =

T∑
t=1

 ∑
b∈B\Bartif

Cdesign
b zb +

∑
k∈K

∑
b∈Bk\Bartif

k

Cflow
tbk xtbk +

∑
k∈K

∑
b∈Bartif

k

Cout
tbk xtbk

 (5.36)

s.t. yp = α� yp
mean, (5.37)

α ≤ αmax (5.38)

α ≥ αmin (5.39)

BP min
x,z

∑
b∈B\Bartif

Cdesign
b zb +

∑
k∈K

∑
b∈Bk\Bartif

k

Cflow
bk xbk +

∑
k∈K

∑
b∈Bartif

k

Cout
bk xbk (5.40)

s.t.
∑
b∈Bk

xbk = ypk , k ∈ K, (5.41)

xbk ≤ ypkzb, k ∈ K, b ∈ Bk, (5.42)

v53
b = max

0,

1
2

 ∑
k∈Kb,τk=53

xbk −
∑

k∈Kb,τk=40
xbk


 , b ∈ B, (5.43)

v40
b =

⌈
1
2

(∑
k∈Kb

xbk

)⌉
− v53

b , b ∈ B, (5.44)

∑
b∈Ba

(
L40v40

b + L53v53
b

)
≤ ua, a ∈ ATM , (5.45)

zb ∈ {0, 1}, b ∈ B, (5.46)

v40
b , v

53
b ∈ N, b ∈ B, (5.47)

xbk ∈ N, k ∈ K, b ∈ Bk, (5.48)

wBP min
x1,...,xT

T∑
t=1

∑
k∈K

 ∑
b∈Bk\Bartif

k

Cflow
tbk xtbk +

∑
b∈Bartif

k

Cout
tbk xtbk

 (5.49)

s.t.
∑
b∈Bk

xtbk = ytk, t ∈ T , k ∈ K, (5.50)

xtbk ≤ ytkzb, t ∈ T , k ∈ K, b ∈ Bk, (5.51)

v53
tb = max

0,

1
2

 ∑
k∈Kb,τk=53

xtbk −
∑

k∈Kb,τk=40
xtbk


 , t ∈ T , b ∈ B, (5.52)

v40
tb =

⌈
1
2

(∑
k∈Kb

xtbk

)⌉
− v53

tb , t ∈ T , b ∈ B, (5.53)

∑
b∈Ba

(
L40v40

tb + L53v53
tb

)
≤ ua, t ∈ T , a ∈ ATM , (5.54)

v40
tb , v

53
tb ∈ N, t ∈ T , b ∈ B, (5.55)

xtbk ∈ N, t ∈ T , k ∈ K, b ∈ Bk. (5.56)

Constraints (5.41) and (5.50) enforce that the demand is satisfied by either the network
capacity or outsourcing. Constraints (5.42) and (5.51) ensure flows to be on selected blocks
only. Constraints (5.43), (5.44), (5.52) and (5.53) fix the number of platforms required to
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transport the demand. These constraints model the double-stacking possibilities for the
containers of different sizes. The 40-foot platforms are preferred to 53-foot platforms, and
the remaining 53-foot containers are stacked on top of 40-feet containers. The platform
lengths are denoted L40 and L53, respectively. Constraints (5.45) and (5.54) enforce that the
train capacity is not exceeded. The latter, denoted ua, a ∈ ATM is expressed in number of
feet, and defined for the set of arcs that represent moving trains, ATM . The set Ba designates
the set of blocks that use train moving arc a ∈ ATM .

The main costs from CPDE come from the flow of commodity on blocks and the outsourcing
flows. The cost of building the blocks is relatively low compared to the containers being moved
on said blocks. The value of the parameters in the objective function, namely Cdesign, Cflow

and Cout was defined after a thorough analysis with CN of the paths produced by BP for
each commodity.

5.5 Results

In order to validate the approach, we test the performance of the algorithms on instances
that differ by the number of commodities, the resource sharing and the capacity constraints.
We present below three metrics that allow to quantify the resource sharing and the capacity
constraints. We report in Section 5.5.1 the results of the metaheuristics on the different
instances without the clustering heuristic, and with the clustering heuristic in Section 5.5.2.

Let us consider an illustration to explain the aforementioned metrics, with four commodities
k1, k2, k3, k4 and two trains A1, A2. Commodities k1 and k2 take A1 and A2 on their route,
k3 takes A1 and k4 takes A2. To quantify the resource sharing, we consider two metrics. We
designate by τ the average number of commodities that a train can carry. In the example,
τ = 3 since both trains carry a total of 3 commodities. We also introduce κ, a metric which
quantifies, for each commodity, the number of other commodities sharing a train with the
former. In other words, κ is the average number of commodities with at least a common
train, per commodity. In the example, κ = 2.5 since k1 and k2 share the capacity with 3
other commodities and k3 and k4 with 2.

To quantify the capacity limits, we analyze the potentially outsourced commodities. We first
solve BP with the real life instance with K = 170 commodities and α = 1K , i.e, the periodic
demand in BP is the average of the demand forecasts. We partition the set of commodities
K in two subsets: the commodities with completely satisfied demand and the commodities
with partial or total outsourced demand. We designate the latter by KL.

Table 5.1 reports the characteristics of each instance. They have different sizes, and present
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various levels of resource sharing and capacity constraints. We also indicate the number of
blocks B = |B| in Table 5.1, that is the number of paths on the space-time graph for each
instance. The instance IC corresponds to the real life instance. Even though the other
instances seem small relative to IC, there are still fairly difficult. Instances I1 and I3 are
not constrained by capacity, as KL = 0, and instances I4 and IC have large capacity sharing
metrics.

Table 5.1 Description of the instances and their characteristics

Instance |K| |KL| B τ κ
I1 28 0 328 2 4
I2 26 17 487 2 3
I3 48 0 501 3 4
I4 55 12 991 4 11
IC 170 84 2208 9 22

Solving BP and wBP In the remainder of the paper, we present results where PDE is
solved either with the metaheuristics NS and NSDI presented in Section 5.3.2, or with the
off-the-shelf solver NOMAD. All use the sequential property and BP and wBP are solved
sequentially with the commercial solver CPLEX 12.10.0 for a fixed periodic demand. For our
application, we need to solve them almost to optimality (the best feasible integer solution has
to be within 0.4% of optimal) to properly orient the search algorithms. This is because the
value of CPDE is large and a larger gap for BP would yield a non-optimal design. This might
in turn lead to large outsourcing costs in wBP, and a high value of the objective function,
finally yielding a wrong search direction in the algorithms.

Parameters for NS and NSDI The metaheuristics rely on several parameters, namely
the number of neighbors V , the distance parameter β, and for NSDI, the diversification
and intensification parameters b−, b+, v+ and the maximum number of iterations without
improvements M . We tested various sets of parameters for the metaheuristics, however we
only report in the following the best results. For all instances, b− = 0.7, b+ = 1.3, v+ = 1.1.
For instances I1 to I4, V = 15, β = 0.05 and M = 15. Finally, for instance IC, V = 10,
β = 0.02 and M = 7.

5.5.1 Results Without Clustering

We define αq3 such that yp
q3 = αq3�yp

mean, where y
p
q3,k = Q0.75(y1k, . . . , yTk). The vector αq3

is the vector of deviation from the third quartile of the demand forecasts to the mean of the
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forecasts.

For each instance, we run four experiments, with either K variables, i.e. one αk per com-
modity k, or one variable when the components of α are constrained to be equal:

• PDE solved with α fixed to either αmax or αq3.

• Formulation (5.36)-(5.56) solved with NS, NSDI and NOMAD. We note that for the
instance IC, NOMAD cannot be used as the number of variables is too large.

• PDE solved with the periodic demand fixed to either αmean = 1,
αmax = max{αmax,k, k = 1, . . . , K} or αq3 = max{αq3,k, k = 1, . . . , K}.

• Formulation (5.24)-(5.28) solved with NS, NSDI and NOMAD.

Solving PDE with α fixed to either αmax, αq3 or αmean constitutes the enumeration approach
proposed in Laage et al. (2021b). Table 5.2 reports the gap to best known solution for the
different experiments and for each instance.

Table 5.2 Gap to best known value

I1 I2 I3 I4 IC

scalar α
Formulation (5.24)-(5.28)

αmean 0% 125% 361% 137% 51%
αmax 0% 80% 0% 1010% 885%
αq3 0% 22% 8% 338% 228%
NS 0% 0% 8% 14% 16%
NSDI 0% 0% 0% 3% 0%
NOMAD 0% 2% 0% 3% 10%

K-vector α
Formulation (5.36)-(5.56)

αmax 0% 0% 0% 210% 78%
αq3 0% 42% 16% 27% 21%
NS 0% 125% 119% 64% 51%
NSDI 0% 0% 0% 0% 51%
NOMAD 0% 31% 16% 3% -

Several findings emerge. Defining the periodic demand as a deviation from the average of
the demand values allows to obtain good solutions and can reduce substantially the costs
compared to simply taking the mean of the demand values, i.e., αk = 1, k ∈ K. Moreover,
having a single variable α and hence a restricted feasible set of first-level variables allows to
obtain good solutions, even the best found solution except for instance I4.

When the capacity sharing metrics are low, for instances I1, I2 and I3, the best objective
function value is found with the periodic demand yp = αmax. In other words, when the
network is not constrained, or slightly constrained by capacity, we should use the maximum
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of the demand values as periodic demand. For the instance I1, CPDE does not vary with the
periodic demand. Having one block per commodity is sufficient, so as long as the periodic
demand is higher than 0, BP will create one block per commodity. If the periodic demand is
large, more blocks are built in BP but not used in wBP. The main part of the tactical costs
comes from the flow costs, hence the increase of CPDE due to the higher number of blocks
is not significant. The variations of CPDE are not visible in Table 5.2 because of their small
magnitude.

The differences in costs resulting from a single common αmax or a vector αmax are due to the
limited capacity. When PDE is solved with a single α fixed to αmax, the periodic demand
is overestimated for the commodities where αmax,k < αmax. As a result, BP builds too
many blocks for one commodity, resulting in a lack of capacity for the others, and in turn,
outsourcing.

For the real life size instance IC, best performances are reached with the formulation (5.24)-
(5.28), i.e., with a single common deviation coefficient α. The metaheuristic NSDI finds this
solution. With a vector of K = 170 variables, both heuristics do not improve the starting
solution because the set of feasible solutions is large and finding a good deviation coefficient
for each commodity simultaneously is challenging.

5.5.2 Results With Clustering

In this section, we restrict the analysis to instances I4 and IC as they both have high resource
sharing and limited capacity metrics. In the other instances, the network has enough capacity
and the best solution is obtained with αmax. We perform the following clustering described
in Section 5.3.3 and report in Table 5.3 the number of clusters for each instance:

• CV: Variance-based clustering

• CR: Resource-based clustering

• CRU: Unlimited resource-based clustering

Table 5.3 Number of clusters created in each clustering step

I4 IC
CV 5 5
CR 4 12
CRU 5 16
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For the variance-based clustering, we ran several experiments varying the number of clusters,
but report only the best results found with nC = 5. The five clusters are following:

• C1 = {k ∈ K, σsmin ≤ σsk ≤ Q0.25}

• C2 = {k ∈ K, Q0.25 < σsk ≤ Q0.5}

• C3 = {k ∈ K, Q0.5 < σsk ≤ Q0.75}

• C4 = {k ∈ K, Q0.75 < σsk ≤ Q0.9}

• C5 = {k ∈ K, Q0.9 < σsk ≤ σsmax},

where σsmin = min{σsk, k = 1, . . . , K}, σsmax = max{σsk, k = 1, . . . , K} and Qe designates the
e-th percentile of {σsk, k = 1, . . . , K}.

Table 5.4 reports the gap to the best found solution and includes the results from Table 5.2
for comparison.
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Table 5.4 Gap to best known value with clustering

I4 IC

scalar α
Formulation (5.24)-(5.28)

αmean 143% 59%
αmax 1037% 938%
αq3 349% 246%
NS 17% 22%
NSDI 5% 5%
NOMAD 5% 16%

K-vector α
Formulation (5.36)-(5.56)

αmax 218% 87%
αq3 30% 27%
NS 68% 59%
NSDI 2% 59%
NOMAD 6% -

CR and (5.29)-(5.34)
NS 1% 59%
NSDI 1% 2%
NOMAD 1% 0%

CRU and (5.29)-(5.34)
NS 6% 13%
NSDI 1% 4%
NOMAD 2% 2%

CV and (5.29)-(5.34)
NS 21% 25%
NSDI 0% 12%
NOMAD 0% 1%

Several findings emerge. Combining clustering and metaheuristics allows to further improve
the costs. It reduces the costs by 2% for the instance I4, and by 5% for the instance IC.

Clusters created from CV lead to a flexible plan able to handle sudden changes in demand at
each week. They define a higher periodic demand for commodities whose demand forecasts
have a large variance over the tactical planning periods. Then, when the forecasts at one
period are higher than the average over the periods, the design is better adapted. Clusters
from CR allow to increase the capacity for commodities that compete for the same trains,
which lead to a reduction of the outsourcing.

Best performance are obtained when solving the formulation (5.29)-(5.34) with the clustering
step for both the metaheuristics and NOMAD. Therefore, while clustering reduces the feasible
set, it allows to leverage the state-of-the-art blackbox optimization solvers for large-scale



72

applications and produces high-quality solutions.

Computing Times Since tactical planning concerns medium-term decisions, the comput-
ing times of the solution method for PDE is not critical. It is nonetheless important but
highly depends on the application considered, the time required to solve both BP and wBP
and the optimal gap criteria. We report in Table 5.5 the number of evaluations, that is
the number of time the algorithms solve the lower levels BP-wBP before reaching the best
found solution. We note that on average, BP and wBP reached the optimality gap criteria
in 1.97s and 5.06s for instance I4 and in 109.1s and 85.8s for instance IC. Therefore we can
impose a time limit for both BP and wBP such that the CPLEX MIP procedure stops when
a maximum of 900-s computational time is exhausted.

Table 5.5 Number of evaluations. We indicate by 1 when the initial solution is not improved,
and by a dash when the algorithm could not solved the problem.

I4 IC

scalar α
Formulation (5.24)-(5.28)

NS 31 46
NSDI 46 222
NOMAD 26 52

K-vector α
Formulation (5.36)-(5.56)

NS 31 1
NSDI 79 1
NOMAD 168 -

CR and (5.29)-(5.34)
NS 31 1
NSDI 61 69
NOMAD 107 225

CRU and (5.29)-(5.34)
NS 76 31
NSDI 107 247
NOMAD 126 450

CV and (5.29)-(5.34)
NS 16 46
NSDI 367 11
NOMAD 214 184

The results show that while NOMAD finds the best solution, the method NSDI gives a good
solution in less evaluations, hence less time. For the instance IC with CR clustering, NSDI
gives a solution 2% more expensive than NOMAD, but in less than a third of the evaluations.

5.6 Conclusion

In this work we focused on the periodic demand estimation problem for large-scale tactical
planning. The latter are often modelled by SND problems, and most studies considering
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large-scale real-life instances have been focusing on deterministic approaches for the sake of
computational tractability. Therefore, this is the approach we took in this paper. We have
considered a setting where the demand forecasts are known and we aimed at estimating the
periodic demand. We proposed a new formulation of the PDE problem where the periodic
demand is defined as a deviation from the average of the forecasts, and the first-level variables
are the deviation coefficients. Hence, there are K variables, the number of commodities
transported in the network. Our approach allowed interpretability, as the periodic demand
is a comparison to the mean, which is crucial for carriers.

We developed two local search metaheuristics to solve PDE taking advantage of its sequential
property: when the first level variables are fixed, the lower levels can be solved sequentially.
The first metaheuristic is a simple neighborhood search which stops when the solution is not
improved while the second one contains diversification and intensification steps to explore the
set of solutions. We have compared the metaheuristics with NOMAD, a turnkey blackbox
optimization software that performs best for problems with few variables.

We presented a heuristic to reduce the size of the set of feasible solutions while keeping high-
quality solutions. It consists in defining clusters of commodities having the same deviation
coefficient, hence reducing the number of variables. To form the clusters, we proposed to
either exploit the properties of the network or the distribution of the demand forecasts.

We reported results for a real large-scale application at the Canadian National Railway
Company. The results showed that defining the periodic demand as a deviation from the
commonly used periodic demand, i.e., the average of the time series forecasts, lead to substan-
tial cost reductions. Moreover, the combined steps of clustering and local search algorithm
to solve PDE allowed to reach the best costs. By reducing the number of variables, the
clustering step makes the use of NOMAD possible for large-scale applications with hundreds
of variables. While they might not find the best solution, the metaheuristics proposed in this
paper allow to reach good solutions that are 1%-2% more expensive than the best one, in
substantially smaller computing times.

We solved the lower levels of the PDE problem sequentially to optimality. This is critical for
our application to orient the local search in good directions, however it resulted in significant
computing times. There might be other applications, where the optimality gap can be relaxed,
resulting in a speed up of the metaheuristics.

Future work should investigate two main avenues. The first one would focus on improving
the computing times. Even though it is not a high-priority criteria for tactical planning,
it is still important and there are two main directions: fasten the time to solve the lower
levels to optimality and reduce the number of iterations required by each algorithm to reach
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the best solution. The second avenue would focus on the clustering step and we want to
develop a learning algorithm which learns the set of clusters from the network structure and
the instance considered.
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CHAPTER 6 ARTICLE 3: ASSESSING THE IMPACT: DOES AN
IMPROVEMENT TO A REVENUE MANAGEMENT SYSTEM LEAD TO

AN IMPROVED REVENUE ?

The text of this chapter is the one of the research paper Assessing the Impact: Does an
Improvement to a Revenue Management System Lead to an Improved Revenue? (Laage
et al., 2021a), submitted to the journal Omega, The International Journal of Management
Science.

Authors Greta Laage, Emma Frejinger, Andrea Lodi, Guillaume Rabusseau.

Abstract Airlines and other industries have been making use of sophisticated Revenue
Management Systems to maximize revenue for decades. While improving the different com-
ponents of these systems has been the focus of numerous studies, estimating the impact of
such improvements on the revenue has been overlooked in the literature despite its practical
importance. Indeed, quantifying the benefit of a change in a system serves as support for in-
vestment decisions. This is a challenging problem as it corresponds to the difference between
the generated value and the value that would have been generated keeping the system as
before. The latter is not observable. Moreover, the expected impact can be small in relative
value.

In this paper, we cast the problem as counterfactual prediction of unobserved revenue. The
impact on revenue is then the difference between the observed and the estimated revenue. The
originality of this work lies in the innovative application of econometric methods proposed
for macroeconomic applications to a new problem setting. Broadly applicable, the approach
benefits from only requiring revenue data observed for origin-destination pairs in the network
of the airline at each day, before and after a change in the system is applied. We report
results using real large-scale data from Air Canada. We compare a deep neural network
counterfactual predictions model with econometric models. They achieve respectively 1%
and 1.1% of error on the counterfactual revenue predictions, and allow to accurately estimate
small impacts (in the order of 2%).

Key words Data analytics, Decision support systems, Performance evaluation, Air trans-
port, Revenue Management
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6.1 Introduction

Airlines have been making use of sophisticated Revenue Management Systems (RMSs) to
maximize revenue for decades. Through interacting prediction and optimization components,
such systems handle demand bookings, cancellations and no-shows, as well as the optimiza-
tion of seat allocations and overbooking levels. Improvements to existing systems are made
by the airlines and solution providers in an iterative fashion, aligned with the advancement
of the state-of-the-art where studies typically focus on one or a few components at a time
(Talluri and Van Ryzin, 2005). The development and maintenance of RMSs require large
investments. In practice, incremental improvements are therefore often assessed in a proof of
concept (PoC) prior to full deployment. The purpose is then to assess the performance over
a given period of time and limited to certain markets, for example, a subset of the origin-
destination pairs offered for the movement of passengers on the airline’s network. We focus
on a crucial question in this context: Does the improvement to the RMS lead to a significant
improvement in revenue? This question is difficult to answer because the value of interest is
not directly observable. Indeed, it is the difference between the value generated during the
PoC and the value that would have been generated keeping business as usual. Moreover, the
magnitude of the improvement can be small in a relative measure (for example, 1-3%) while
still representing important business value. Small relative values can be challenging to detect
with statistical confidence.

Considering the wealth of studies aiming to improve RMSs, it is surprising that the liter-
ature focused on assessing quantitatively the impact of such improvements is scarce. We
identify two categories of studies in the literature: First, those assessing the impact in a sim-
plified setting leveraging simulation (Weatherford and Pölt, 2002; Fiig et al., 2019). These
studies provide valuable information but are subject to the usual drawback of simulated en-
vironments. Namely, the results are valid assuming that the simulation behaves as the real
system. This is typically not true for a number of reasons, for instance, assumptions on de-
mand can be inaccurate and in reality there can be a human in the loop adjusting the system.
Statistical field experiments do not have this drawback as they can be used to assess impacts
in a real setting. Studies focusing on field experiments constitute our second category. There
are, however, few applications in revenue management (Lopez Mateos et al., 2021; Koushik
et al., 2012; Pekgün et al., 2013) and even less focus on the airline industry (Cohen et al.,
2019). Each application presents its specific set of challenges. Our work can be seen as a
field experiment whose aim is to assess if a PoC is a success or not with respect to a given
success criteria. In practice, airlines often take a pragmatic approach and compare the value
generated during a PoC to a simple baseline: either the revenue generated at the same time
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of the previous year, or the revenue generated by another market with similar behavior as
the impacted market. This approach has the advantage of being simple. However, finding an
adequate market is difficult, and the historical variation between the generated revenue and
the baseline can exceed the magnitude of the impact that we aim to measure. In this case,
the answer to the question of interest would be inconclusive.

We propose casting the problem as counterfactual prediction of the revenue without chang-
ing the RMS, and we compare it to the observed revenue generated during the PoC. Before
providing background on counterfactual prediction models, we introduce some related vo-
cabulary in the context of our application. Consider a sample of units and observations
of outcomes for all units over a given time period. In our case, an example of a unit is an
origin-destination (OD) pair and the observed outcome is the associated daily revenue. Units
of interest are called treated units and the other (untreated) units are referred to as control
units. In our case, the treatment is a change to the RMS and it only impacts the treated units
(in our example a subset of the ODs in the network). The goal is to estimate the untreated
outcomes of treated units defined as a function of the outcome of the control units. In other
words, the goal is to estimate what would have been the revenue for the treated OD pairs
without the change to the RMS. We use the observed revenue of the untreated ODs for this
purpose.

Brief background on counterfactual prediction models Doudchenko and Imbens
(2016) and Athey et al. (2021) review different approaches for imputing missing outcomes
which include the three we consider for our application: (i) synthetic controls (Abadie and
Gardeazabal, 2003; Abadie et al., 2010) (ii) difference-in-differences (Ashenfelter and Card,
1985; Card, 1990; Card and Krueger, 1994; Athey and Imbens, 2006) and (iii) matrix com-
pletion methods (Mazumder et al., 2010; Candès and Recht, 2009; Candès and Plan, 2010).
Doudchenko and Imbens (2016) propose a general framework for difference-in-differences and
synthetic controls where the counterfactual outcome for the treated unit is defined as a lin-
ear combination of the outcomes of the control units. Methods (i) and (ii) differ by the
constraints applied to the parameters of the linear combination. Those models assume that
the estimated patterns across units are stable before and after the treatment while mod-
els from the unconfoundedness literature (Imbens and Rubin, 2015; Rosenbaum and Rubin,
1983) estimate patterns from before treatment to after treatment that are assumed stable
across units. Athey et al. (2021) qualify the former as vertical regression and the latter as
horizontal regression.

Amjad et al. (2018) propose a robust version of synthetic controls based on de-noising the
matrix of observed outcomes. Poulos (2017) proposes an alternative to linear regression
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methods, namely a non-linear recurrent neural network. Athey et al. (2021) propose a general
framework for counterfactual prediction models under matrix completion methods, where the
incomplete matrix is the one of observed outcomes without treatment for all units at all time
periods and the missing data patterns are not random. They draw on the literature on
factor models and interactive fixed effects (Bai, 2003; Bai and Ng, 2002) where the untreated
outcome is defined as the sum of a linear combination of covariates, that is, a low rank matrix
and an unobserved noise component.

The studies in the literature are mainly focused on macroeconomic applications. For exam-
ple, estimating the economic impact on West Germany of the German reunification in 1990
(Abadie et al., 2015), the effect of a state tobacco control program on per capita cigarette sales
(Abadie et al., 2010) and the effect of a conflict on per capita GDP (Abadie and Gardeaza-
bal, 2003). In comparison, our application exhibits some distinguishing features. First, the
number of treated units can be large since airlines may want to estimate the impact on a
representative subset of the network. Often there are hundreds, if not thousands of ODs
in the network. Second, the number of control units is potentially large but the network
structure leads to potential spillover effects that need to be taken into account. Third, even
if the number of treated units can be large, the expected treatment effect is typically small.
In addition, airline networks are affected by other factors, such as weather and seasonality.
Their impact on the outcome needs to be disentangled from that of the treatment.

Contributions This paper offers three main contributions. First, we formally introduce the
problem and provide a comprehensive overview of existing counterfactual prediction models
that can be used to address it. Second, based on real data from Air Canada, we provide an
extensive computational study showing that the counterfactual predictions accuracy is high
when predicting revenue. We focus on a setting with multiple treated units and a large set
of controls. We present a non-linear deep learning model to estimate the missing outcomes
that takes as input the outcome of control units as well as time-specific features. The deep
learning model achieves less than 1% error for the aggregated counterfactual predictions over
the treatment period. Third, we present a simulation study of treatment effects showing that
we can accurately estimate the effect even when it is relatively small.

Paper Organization. The remainder of the paper is structured as follows. Next we present
a thorough description of the problem. We describe in Section 6.3 the different counterfactual
prediction models. In Section 6.4, we describe our experimental setting and the results of an
extensive computational study. Finally, we provide some concluding remarks in Section 6.5.
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6.2 Problem Description

In this section, we provide a formal description of the problem and follow closely the notation
from Doudchenko and Imbens (2016) and Athey et al. (2021).

We are in a panel data setting with N units covering time periods indexed by t = 1, . . . , T . A
subset of units is exposed to a binary treatment during a subset of periods. We observe the
realized outcome for each unit at each period. In our application, a unit is an OD pair and the
realized outcome is the booking issue date revenue at time t, that is, the total revenue yielded
at time t from bookings made at t. The methodology described in this paper is able to handle
various types of treatments, assuming it is applied to a subset of units. The set of treated
units receive the treatment and the set of control units are not subject to any treatment.
The treatment effect is the difference between the observed outcome under treatment and
the outcome without treatment. The latter is unobserved and we focus on estimating the
missing outcomes of the treated units during the treatment period.

We denote T0 the time when the treatment starts and split the complete observation period
into a pre-treatment period t = 1, . . . , T0 and a treatment period t = T0 + 1, . . . , T . We
denote T1 = T − T0 the length of the treatment period. Furthermore, we partition the set of
units into treated i = 1, . . . , N t and control units i = N t + 1, . . . , N , where the number of
control units is N c = N −N t.

In the pre-treatment period, both control units and treated units are untreated. In the
treatment period, only the control units are untreated and, importantly, we assume that
they are unaffected by the treatment. The set of treated pairs (i, t) is

M = {(i, t) i = 1, . . . , N t, t = T0 + 1, . . . , T}, (6.1)

and the set of untreated pairs (i, t) is

O = {(i, t) i = 1, . . . , N t, t = 1, . . . , T0} ∪ {(i, t) i = N t + 1, . . . , N, t = 1, . . . , T}. (6.2)

Moreover, the treatment status is denoted by Wit and is defined as

Wit =

1 if (i, t) ∈M
0 if (i, t) ∈ O.

(6.3)

For each unit i in period t, we observe the treatment status Wit and the realized outcome
Y obs
it = Yit(Wit). Our objective is to estimate Ŷit(0) ∀(i, t) ∈ M. Counterfactual prediction

models define the latter as a mapping of the outcome of the control units.
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The observation matrix, denoted by Yobs is a N × T matrix whose components are the
observed outcomes for all units at all periods. The first N t rows correspond to the outcomes
for the treated units and the first T0 columns to the pre-treatment period. The matrix Yobs

hence has a block structure,

Yobs =
Yobs,t

pre Yobs,t
post

Yobs,c
pre Yobs,c

post

 ,
where Yobs,c

pre (respectively Yobs,t
pre ) represents the N c × T0 (resp. N t × T0) matrix of observed

outcomes for the control units (resp. treated units) before treatment. Similarly, Yobs,c
post

(respectively Yobs,t
post ) represents the N c× T1 (resp. N t× T1) matrix of observed outcomes for

the control units (resp. treated units) during the treatment.

Synthetic control methods have been developed to estimate the average causal effect of a
treatment (Abadie and Gardeazabal, 2003). Our focus is slightly different as we aim at
estimating the total treatment effect during the treatment period T0 + 1, . . . , T ,

τ =
Nt∑
i=1

T∑
t=T0+1

Yit(1)− Yit(0). (6.4)

We denote by τ̂ the estimated treatment effect,

τ̂ =
Nt∑
i=1

T∑
t=T0+1

Y obs
it − Ŷit(0). (6.5)

6.3 Counterfactual Prediction Models

In this section, we describe counterfactual prediction models from the literature that can be
used to estimate the missing outcomes Yit(0) ∀(i, t) ∈ M. Namely, grouped under synthetic
control methods (Section 6.3.1), we describe the constrained regressions in Doudchenko and
Imbens (2016) which include difference-in-differences and synthetic controls from Abadie
et al. (2010). In Section 6.3.2, we delineate the robust synthetic control estimator from
Amjad et al. (2018) followed by the matrix completion with nuclear norm minimization from
Athey et al. (2021) in Section 6.3.3. Note that we present all of the above with one single
treated unit, i.e., N t = 1. This is consistent with our application as we either consider the
units independently, or we sum the outcome of all treated units to form a single one. Finally,
in Section 6.3.4, we propose a feed-forward neural network architecture that either considers
a single treated unit or several to relax the independence assumption.
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6.3.1 Synthetic Control Methods

Doudchenko and Imbens (2016) propose the following linear structure for estimating the
unobserved Yit(0), (i, t) ∈ M, arguing that several methods from the literature share this
structure. More precisely, it is a linear combination of the control units,

Yit(0) = µ+
N∑

j=Nt+1
ωjY

obs
jt + eit ∀(i, t) ∈M, (6.6)

where µ is the intercept, ω = (ω1, . . . , ωNc)> a vector of N c parameters and eit an error term.

Synthetic control methods differ in the way the parameters of the linear combination are
chosen depending on specific constraints and the observed outcomes Yobs,t

pre , Yobs,c
pre and Yobs,c

post .
We write it as an optimization problem with an objective function minimizing the sum of
least squares

min
µ,ω

∥∥∥Yobs,t
pre − µ1>T0 − ω

>Yobs,c
pre

∥∥∥2
, (6.7)

potentially subject to one or several of the following constraints

µ = 0 (6.8)
N∑

j=Nt+1
ωj = 1 (6.9)

ωj ≥ 0, j = N t + 1, . . . , N (6.10)

ωj = ω̄, j = N t + 1, . . . , N. (6.11)

In the objective (6.7), 1T0 denotes a T0 vector of ones. Constraint (6.8) enforces no intercept
and (6.9) constrains the sum of the weights to equal one. Constraints (6.10) impose non-
negative weights. Finally, constraints (6.11) force all the weights to be equal to a constant.
If T0 � N , Doudchenko and Imbens (2016) argue that the parameters µ and ω can be
estimated by least squares, without any of the constraints (6.8)-(6.11) and we may find a
unique solution (µ,ω). As we further detail in Section 6.4, this is the case in our application.
We hence ignore all the constraints and estimate the parameters by least squares.

Difference-in-Differences

The Difference-In-Differences (DID) methods (Ashenfelter and Card, 1985; Card, 1990; Card
and Krueger, 1994; Meyer et al., 1995; Angrist and Krueger, 1999; Bertrand et al., 2004;
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Angrist and Pischke, 2008; Athey and Imbens, 2006) consist in solving

(DID) min
µ,ω

∥∥∥Yobs,t
pre − µ1>T0 − ω

>Yobs,c
pre

∥∥∥2
(6.7)

s.t. (6.9), (6.10), (6.11).

With one treated unit and N c = N − 1 control units, solving (DID) leads to the following
parameters and counterfactual predictions:

ω̂DID
j = 1

N − 1 , j = 2, . . . , N (6.12)

µ̂DID = 1
T0

T0∑
t=1

Y1t −
1

(N − 1)T0

T0∑
t=1

N∑
j=2

Yjt (6.13)

Ŷ DID
1t (0) = µ̂DID +

N∑
j=2

ω̂DID
j Yjt. (6.14)

Abadie-Diamond-Hainmueller Synthetic Control Method

Introduced in Abadie and Gardeazabal (2003) and Abadie et al. (2010), the synthetic control
approach consists in solving

(SC) min
µ,ω

∥∥∥Yobs,t
pre − µ1>T0 − ω

>Yobs,c
pre

∥∥∥2
(6.7)

s.t. (6.8), (6.9), (6.10).

Constraints (6.8), (6.9) and (6.10) enforce that the treated unit is defined as a convex
combination of the control units with no intercept.

The (SC) model is challenged in the presence of non-negligible levels of noise and missing
data in the observation matrix Yobs. Moreover, it is originally defined for a small number of
control units and relies on having deep domain knowledge to identify the controls.

Constrained Regressions

The estimator proposed by Doudchenko and Imbens (2016) consists in solving

(CR-EN) min
µ,ω

∥∥∥Yobs,t
pre − µ1>T0 − ω

>Yobs,c
pre

∥∥∥2

2
+ λCR

(
1− αCR

2 ||ω||22 + αCR||ω||1
)
, (6.15)

while possibly imposing a subset of the constraints (6.8)-(6.11).

The second term of the objective function (6.15) serves as regularization. This is an elastic-net
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regularization that combines the Ridge term which forces small values of weights and Lasso
term which reduces the number of weights different from zero. It requires two parameters
αCR and λCR. To estimate their values, the authors propose a cross-validation procedure,
where each control unit is alternatively considered as a treated unit and the remaining control
units keep their role of control. They are used to estimate the counterfactual outcome of the
treated unit. The parameters chosen minimize the mean-squared-error (MSE) between the
estimations and the ground truth (real data) over the N c validations sets.

The chosen subset of constraints depends on the application and the ratio of the number of
time periods over the number of control units. In our experimental setting, we have a large
number of pre-treatment periods, i.e., T0 � N c and we focus on solving (CR-EN) without
constraints.

6.3.2 Robust Synthetic Control

To overcome the challenges of (SC) described in Section 6.3.1, Amjad et al. (2018) propose
the Robust Synthetic Control algorithm. It consists in two steps: The first one de-noises
the data and the second step learns a linear relationship between the treated units and the
control units under the de-noising setting. The intuition behind the first step is that the
observation matrix contains both the valuable information and the noise. The noise can be
discarded when the observation matrix is approximated by a low rank matrix, estimated with
singular value thresholding (Chatterjee et al., 2015). Only the singular values associated with
valuable information are kept. The authors posit that for all units without treatment,

Yit(0) = Mit + εit, i = 1, . . . , N, t = 1, . . . , T, (6.16)

where Mit is the mean and εit is a zero-mean noise independent across all (i, t) (recall that
for (i, t) ∈ O, Yit(0) = Y obs

it ). A key assumption is that a set of weights {βNt+1, . . . , βN} exist
such that

Mit =
N∑

j=Nt+1
βjMjt, i = 1, . . . , N t, t = 1, . . . , T. (6.17)

Before treatment, for t ≤ T0, we observe Yit(0) for all treated and control units. In fact,
we observe Mit(0) with noise. The latent matrix of size N × T is denoted M. We follow
the notation in Section 6.2: Mc is the latent matrix of control units and Mc

pre the latent
matrix of the control units in the pre-treatment period. We denote M̂c the estimate of Mc

and M̂c
pre the estimate of Mc

pre. With one treated unit, i = 1 designates the treated unit and
the objective is to estimate M̂t, the latent vector of size T of treated units. The two-steps
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algorithm is described in Algorithm 4. It takes two hyperparameters: the singular value
threshold γ and the regularization coefficient η.

Algorithm 4 Robust Synthetic Control (Amjad et al., 2018)

1: Input: γ, η
2: Step 1: De-noising the data with singular value threshold
3: Singular value decomposition of Yobs,c: Yobs,c = ∑N

i=2 siuiv
>
i

4: Select the set of singular values above γ : S = {i : si ≥ γ}
5: Estimator M̂c = 1

p̂

∑
i∈S siuiv

>
i , where p̂ is the fraction of observed data

6: Step 2: Learning the linear relationship between controls and treated units
7: β̂(η) = arg minb∈RN−1

∥∥∥Yobs,t
pre − M̂c>

preb
∥∥∥2
+ η||b||22.

8: Counterfactual means for the treatment unit: M̂t = M̂c>β̂(η)
9: Return β̂ :

β̂(η) =
(
M̂c

pre(M̂c>
pre + ηI)

)−1
M̂c

preYt
pre (6.18)

Amjad et al. (2018) prove that the first step of the algorithm (which de-noises the data) allows
to obtain a consistent estimator of the latent matrix. Hence, the estimate M̂c obtained with
Algorithm 4 is a good estimate of Mc when the latter is low rank.

The threshold parameter γ acts as a way to trade-off the bias and the variance of the esti-
mator. Its value can be estimated with cross-validation. The regularization parameter η ≥ 0
controls the model complexity. To select its value, the authors recommend to take the for-
ward chaining strategy, which maintains the temporal aspect of the pre-treatment data. It
proceeds as follows. For each η, for each t in the pre-treatment period, split the data into 2
sets: 1, . . . , t− 1 and t, where the last point serves as validation and select as value for η the
one that minimizes the MSE averaged over all validation sets.

6.3.3 Matrix Completion with Nuclear Norm Minimization

Athey et al. (2021) propose an approach inspired by matrix completion methods. They posit
a model similar to (6.16),

Yit(0) = Lit + εit, i = 1, . . . , N, t = 1, . . . , T, (6.19)

where εit is a measure of error. This means that during the pre-treatment period, we observe
Lit with some noise. The objective is to estimate the N × T matrix L. Athey et al. (2021)
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assume that the matrix L is low rank and hence can be estimated with a matrix comple-
tion technique. The estimated counterfactual outcomes of treated units without treatment
Ŷit(0), (i, t) ∈M is given by the estimate L̂it, (i, t) ∈M.

We use the following notation from Athey et al. (2021) to introduce their estimator. For any
matrix A of size N × T with missing entriesM and observed entries O, PO(A) designates
the matrix with values of A, where the missing values are replaced by 0 and P⊥O (A) the one
where the observed values are replaced by 0.

They propose the following estimator of L from Mazumder et al. (2010), for a fixed value of
λmc, the regularization parameter:

L̂ = arg min
L

{
1
|O|
||PO(Yobs − L)||2F + λmc||L||∗

}
, (6.20)

where ||L||F is the Fröbenius norm defined by

||L||F =
(∑

i

σi(L)2
)2

=
(

N∑
i=1

T∑
t=1

L2
it

)2

(6.21)

with σi the singular values and ||L||∗ is the nuclear norm such that ||L||∗ = ∑
i σi(L). The

first term of the objective function (6.20) is the distance between the latent matrix and the
observed matrix. The second term is a regularization term encouraging L to be low rank.

Athey et al. (2021) show that their proposed method and synthetic control approaches are
matrix completion methods based on matrix factorization. They rely on the same objective
function which contains the Fröbenius norm of the difference between the unobserved and
the observed matrices. Unlike synthetic controls that impose different sets of restrictions on
the factors, they only use regularization.

Athey et al. (2021) use the convex optimization program SOFT-IMPUTE from Mazumder
et al. (2010) described in Algorithm 5 to estimate the matrix L. With the singular value
decomposition L = SΣR>, the matrix shrinkage operator is defined by shrinkλmc(L) =
SΣ̃R>, where Σ̃ is equal to Σ with the i-th singular value replaced by max(σi(L)− λmc, 0).

The value of λmc can be selected via cross-validation as follows: For K subsets of data among
the observed data with the same proportion of observed data as in the original observation
matrix, for each potential value of λmc

j , compute the associated estimator L̂(λmc
j ,Ok) and the

MSE on the data without Ok. Select the value of λ that minimizes the MSE. To fasten the
convergence of the algorithm, the authors recommend to use L̂(λmc

j ,Ok) as initialization for
L̂(λmc

j+1,Ok) for each j and k.
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Algorithm 5 SOFT-IMPUTE (Mazumder et al., 2010) for Matrix Completion with Nuclear
Norm Maximization (Athey et al., 2021)

1: Initialization: L1(λmc,O) = PO(Yobs)
2: for k = 1 until {Lk(λmc,O)}k≥1 converges do
3: Lk+1(λmc,O) = shrinkλmc|O|

2
(PO(Yobs) + P⊥O (Lk(λ)))

4: end for
5: L̂(λmc,O) = limk→∞ Lk(λmc,O)

6.3.4 Feed-forward Neural Network

In this section, we propose a deep learning model to estimate the missing outcomes and
detail the training of the model. We consider two possible configurations: (i) when there is
one treated unit and (ii) when there are multiple dependent treated units. In (i), the output
layer of the model has one neuron. In (ii), the output layer contains N t neurons. The model
learns the dependencies between treated units and predicts simultaneously the revenue for
all of them.

We define the counterfactual outcomes of the treated units as a non-linear function g of the
outcomes of the control units with parameters θffnn and matrix of covariates X

Yt(0) = g
(
Yobs,c,X, θffnn

)
. (6.22)

In the following subsections, we use terminology from the deep learning literature (Goodfellow
et al., 2016) but keep the notations described in Section 6.2. We define g to be a feed-forward
neural network (FFNN) architecture. We describe next the architecture in detail along with
the training procedure.

Architecture

Barron (1994) shows that multilayer perceptrons (MLPs), also called FFNNs, are consider-
ably more efficient than linear basis functions to approximate smooth functions. When the
number of inputs I grows, the required complexity for an MLP only grows as O(I), while the
complexity for a linear basis function approximator grows exponentially for a given degree of
accuracy. When N t > 1, the architecture is multivariate, i.e., the output layer has multiple
neurons. It allows parameter sharing between outputs and thus considers the treated units
as dependent.

Since historical observations collected prior to the beginning of the treatment period are
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untreated, the counterfactual prediction problem can be cast as a supervised learning problem
on the data prior to treatment. The features are the observed outcomes of the control units
and the targets are the outcomes of the treated units. The pre-treatment period is used to
train and validate the neural network and the treatment period forms the test set. This is a
somewhat unusual configuration for supervised learning. Researchers usually know the truth
on the test set also and use it to evaluate the ability to generalize. To overcome this difficulty,
we describe in Section 6.3.4 a sequential validation procedure that aims at mimicking the
standard decomposition of the dataset into training, validation and test sets.

We present in Figure 6.1 the model architecture. We use two input layers to differentiate
features. Input Layer 1 takes external features, and Input Layer 2 takes the lagged outcomes
of control units. Let us consider the prediction at day t as illustration. When t is a day, it is
associated for instance to a day of the week dowt, a week of the year woyt and a month mt.
The inputs at Input Layer 1 could then be dowt,woyt,mt. Lagged features of control units
are Yit′ , i = N t + 1, . . . , N and t′ = t, t−1, . . . , t− l, where l is the number of lags considered.
They are fed into Input Layer 2. The output layer outputs N t values, one for each treated
unit.

Sequential Validation Procedure and Selection of Hyper-parameters

In standard supervised learning problems, the data is split into training, validation and test
datasets, where the validation dataset is used for hyper-parameters search. Table 6.1 lists the
hyper-parameters of our architecture and learning algorithm. For each potential set of hyper-
parameters Θ, the model is trained on the training data and we estimate the parameters θffnn.
We compute the MSE between the predictions and the truth on the validation dataset. We
select the set Θ which minimizes the MSE.

HIDDEN
FC

LAYERS

OUTPUT
LAYER

FC
LAYER

FC
LAYER

INPUT
LAYER 1

INPUT
LAYER 2

Figure 6.1 FFNN Architecture with Fully Connected (FC) layers
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Table 6.1 Description of the hyper-parameters for the FFNN architecture

Name Description
Hidden size Size of the hidden layers
Hidden layers Number of hidden layers after the concatenation of the dense layers from

Input Layer 1 and Input Layer 2.
Context size Size of the hidden FC layer after Input Layer 1
Batch size Batch size for the stochastic gradient descent
Dropout Unique dropout rate determining the proportion of neurons randomly set

to zero for each output of the FC layers
Learning rate Learning rate for the stochastic gradient descent.
Historical lags Number of days prior to the date predicted considered for the control units

outcomes.
Epochs Number Number of epochs (iterations over the training dataset) required to train

the model

One of the challenges of our problem is that the data have an important temporal aspect.
While this is not a time series problem, for a test set period, we train the model with the
last observed data, making the validation step for selecting hyper-parameters difficult. To
overcome this challenge, we split chronologically the pre-treatment periods in two parts:
Ttrain and Tvalid. We train the model on Ttrain with the backpropagation algorithm using
Early Stopping, a form of regularization to avoid overfitting that consists in stopping the
training when the error on the validation set increases. We select Θ on Tvalid and store ê,
the number of epochs it took to train the model. As a final step, we train the model with
hyper-parameters Θ for ê epochs on Ttrain and Tvalid, which gives an estimate θ̂ffnn. Then, we
compute the counterfactual predictions as Ŷt

t(0) = ĝ(Yobs,c,X, θ̂ffnn) for t = T0 + 1, . . . , T .

Training Details

We present here some modeling and training tricks we used to achieve the best performance
with the FFNN.

Data Augmentation Data augmentation is a well-known process to improve performances
of neural networks and prevent overfitting. It is often used for computer vision tasks such as
image classification (Shorten and Khoshgoftaar, 2019). It consists in augmenting the dataset
by performing simple operations such as rotation, translation, symmetry, etc. We perform
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one type of data augmentation, the homothety, which consists in increasing or reducing
the (inputs, outputs) pair. We decompose it into the following steps. Let a denote the
homothety maximum coefficient, typically an integer between 1 and 4. For each batch in
the stochastic gradient descent algorithm, we multiply each sample, inputs and outputs, by
a random number uniformly distributed between 1/a and a.

Ensemble Learning The ensemble learning algorithm relies on the intuition that the
average performance of good models can be better than the performance of a single best model
(Sagi and Rokach, 2018). We take a specific case of ensemble learning, where we consider
as ensemble the 15 best models that provide the lowest MSE on the validation set from the
hyper-parameter search. For each model k = 1, . . . , 15, we store the set of hyper-parameters
Θk and the number of training epochs êk. We train each model on the pre-treatment period to
estimate θ̂ffnnk . We compute the counterfactuals Ŷtk

t (0) = ĝk(Yobs,c,X, θ̂ffnnk ) and the predicted
outcome is Ŷt

t(0) = 1
15
∑15
k=1 Ŷtk

t (0) for t = T0 + 1, . . . , T .

6.4 Application

This work was part of a large project with a major North American airline, Air Canada,
operating a worldwide network. The objective of the overall project was to improve the
accuracy of the demand forecasts of multiple ODs in the network. In this work, the new
demand forecasting algorithm acts as the treatment. The details about the treatment is not
part of this paper but it drove some of the decisions, especially regarding the selection of
the treated and control units. The units correspond to the different ODs in the network and
the outcome of interest is the revenue. In this paper, we present a computational study of a
simulated treatment effect (ground truth impact is known). This was part of the validation
work done prior to the PoC. Due to the uncertainty regarding the required duration of the
treatment period, we planned for a period of 6 months in our validation study. For the sake
of completeness, we also analyze the results for shorter treatment periods. Unfortunately, the
Covid-19 situation hit the airline industry during the time of the PoC. It drastically changed
the revenue and the operated flights making it impossible to assess the impact of the demand
forecasts.

In the next section, we first provide details of our experimental setting. Next, in Section 6.4.2,
we present the prediction performances of the models. In Section 6.4.3, we report results from
a simulation study designed to estimate the revenue impact.
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6.4.1 Experimental Setup and Data

Treatment Effect Definition There are two ways of considering the daily revenue yielded
from bookings: by flight date or by booking issue date. The former is the total revenue at day
t from bookings for flights departing at t, while the latter is the total revenue at day t from
bookings made at t, for all possible departure dates for the flight booked. For our study, we
consider the issue date revenue as it allows for a better estimation of the treatment effect.
Indeed, as soon as the treatment starts at day T0 + 1, all bookings are affected and thus
the issue date revenue is affected. Hence, Yit(0) designates the untreated issue date revenue
of OD i at day t. The treatment period is 6 months, i.e., T1 = 181 days. The drawback
of the flight date revenue is that only a subset of the flights is completely affected by the
treatment, hence leading to an underestimation of the treatment effect. Only flights whose
booking period starts at T0 + 1 (or after) and for which the treatment period lasts for the
full duration of the booking period, approximately a year, are completely affected.

Selection of Treated Units The selection of the treated ODs was the result of discussions
with the airline. The objective was to have a sample of ODs representative of the North-
American market, while satisfying constraints related to the demand managers in charge
of those ODs. We select 15 non-directional treated ODs, i.e., 30 directional treated ODs
(N t = 30). For instance, if Montreal-Boston was treated, then Boston-Montreal would be
treated as well. The selected 30 ODs represent approximately 7% of the airline’s yearly
revenue.

Selection of Control Units The selection of control units depends on the treated units.
Indeed, a change of the demand forecasts for an OD affects the RMS which defines the
booking limits. Due to the network effect and the potential leg-sharing among ODs, this
would in turn affect the demand for other ODs. With the objective to select control units
that are unaffected by the treatment, we use the following restrictions:

• Geographic rule: for each treated OD, we consider two perimeters centered around the
origin and the destination airports, respectively. We exclude all other OD pairs where
either the origin or the destination is in one of the perimeters.

• Revenue ratio rule: for all ODs operated by the airline in the network, different from
the treated ODs, we discard the ones where at least 5% of the itineraries have a leg
identical to one of the treated ODs. This is because new pricing of OD pairs can affect
the pricing of related itineraries, which in turn affects the demand.
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• Sparse OD rule: we exclude seasonal ODs, i.e., those that operate only at certain times
of the year. Moreover, we exclude all OD pairs that have no revenue on more than 85%
of points in our dataset.

From the remaining set of ODs, we select the 40 most correlated ODs for each treated
OD. The correlation is estimated with the Pearson correlation coefficient. These rules led to
N c = 317 control units. We note that this selection is somewhat different from the literature,
due to the network aspect of the airline operations and the abundance of potential control
units. In Abadie et al. (2010), for instance, only a few controls are selected based on two
conditions: (i) they have similar characteristics as the treated units and (ii) they are not
affected by the treatment. The geographic restriction and the revenue ratio rule correspond
to condition (ii). The sparse OD rule allows to partially ensure condition (i) as the treated
ODs are frequent ODs from the airline’s network. Considering a large number of controls
has the advantage to potentially leverage the ability of deep learning models to capture the
relevant information from a large set of features.

We ran several experiments with a larger set of control units, given that the geographic rule,
the revenue ratio rule and the sparse OD rule were respected. In the following, we report
results for the set of controls described above, as they provided the best performance.

Models and Estimators We compare the performance of the models and estimators
detailed in Section 6.3:

• DID: Difference-in-Differences

• SC: Abadie-Diamond-Hainmueller Synthetic Controls

• CR-EN: Constrained Regressions with elastic-net regularization

• CR: CR-EN model with λCR = 0 and αCR = 0

• RSC: Robust Synthetic Controls

• MCNNM: Matrix Completion with Nuclear Norm Minimization

• FFNN: Feed-Forward Neural Network with Ensemble Learning. The external features
of the FFNN are the day of the week and the week of the year. We compute a circular
encoding of these two features using their polar coordinates to ensure that days 0 and
1 (respectively, week 52 and week 1 of the next year) are as distant as days 6 and days
0 (respectively, week 1 and week 2).
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We started the analysis by investigating the approach often used in practice, which consists in
comparing the year-over-year revenue. The counterfactual revenue is the revenue obtained in
the same period of the previous year. We ruled out this approach due to its poor performance,
both in terms of accuracy and variance. We provide details in Section 6.4.2, where we discuss
the results.

Data The observed untreated daily issue date revenue covers the period from January 2013
to February 2020 for all control and treated units. This represents 907,405 data points. To
test the performances of the different models, we select random periods of 6 months and
predict the revenue values of the 30 treated ODs. In the literature, most studies use a
random assignment of the pseudo-treated unit instead of a random assignment of treated
periods. In our application, switching control units to treated units is challenging as the
control set is specific to the treated units. Hence our choice of random assignment of periods.
We refer to those periods as pseudo-treated as we are interested in retrieving the observed
values. To overcome the challenges described in Section 6.3.4, we select random periods late
in the dataset, between November 2018 and February 2020.

Two scenarios for the target variables. We consider two scenarios for the target vari-
ables: In the first – referred to as S1 – we aggregate the 30 treated units to a single one. In
the second – referred to as S2 – we predict the counterfactual revenue for each treated unit
separately. For both scenarios, our interest concerns the total revenue Yt = ∑

i∈Nt Yit. In the
following, we provide more details.

In S1, we aggregate the outcomes of the treated units to form one treated unit, even though
the treatment is applied to each unit individually. The missing outcomes, i.e., the new target
variables, are the values of Y agg

t , where

(S1) Y agg
t =

Nt∑
i=1

Yit. (6.23)

The models DID, SC, CR, CR-EN are in fact regressions on Y agg
t with control unit outcomes

as variates. For the models RSC and MCNNM, we replace in the observation matrix Yobs

the N t rows of the treated units revenue with the values of Y agg
t , for t = 1, . . . , T . All models

estimate Ŷ agg
t , for t = 1, . . . , T , and Ŷt = Ŷ agg

t .

In S2, we predict the counterfactual revenue for each treated OD. For models SC, DID, CR,
CR-EN, MCNNM and RSC, this amounts to considering each treated unit as independent
from the others and we estimate a model on each treated unit. For FFNN, we relax the
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independence assumption so that the model can learn the dependencies and predict the
revenue for each treated unit simultaneously. We have an estimate of the revenue for each
pair (unit, day) in the pseudo-treatment period. Then, we estimate the total revenue at each
period as the sum over each estimated pair, namely

(S2) Ŷt =
∑
i∈Nt

Ŷit. (6.24)

Performance metrics We assess performance by analyzing standard Absolute Percentage
Error (APE) and Root Mean Squared Error (RMSE). In addition, the bias of the counter-
factual prediction model is an important metric as it, in turn, leads to a biased estimate of
the impact. In our application, the observable outcome is the issue date net revenue from
the bookings whose magnitude over a 6-month treatment period is measured in millions. A
pseudo-period p has a length T1p and we report for each p the percentage estimate of the
total error

tPEp =
∑T1p
t=1 Ŷt −

∑T1p
t=1 Yt∑T1p

t=1 Yt
× 100. (6.25)

This metric allows us to have insights on whether the model tends to overestimate or under-
estimate the total revenue, which will be at use when estimating the revenue impact. We
also report tAPEp, the absolute values of tPEp for a period p

tAPEp = |
∑T1p
t=1 Ŷt −

∑T1p
t=1 Yt|∑T1p

t=1 Yt
× 100. (6.26)

We present the results of S1 and S2 in the following. For confidentiality reasons, we only
report relative numbers in the remainder of the paper with the focus of comparing the different
models.

6.4.2 Prediction Performance

In this section, we start by analyzing the performance related to predicting daily revenue,
followed by an analysis of total predicted revenue in Section 6.4.2.

Daily Predicted Revenue

We assess the performances of the models at each day t of a pseudo-treatment period, i.e.,
the prediction error on Ŷt at each day t. We compute the errors for each t and report the
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values average over all the pseudo-treatment period p, namely

MAPEp = 1
T1

T1∑
t=1

|Ŷt − Yt|
Yt

, RMSEp =

√√√√ 1
T1

T1∑
t=1

(Ŷt − Yt)2. (6.27)

For confidentiality reasons, we report a scaled version of RMSEp for each p, which we refer
to as RMSEs

p. We use the average daily revenue of the first year of data as a scaling factor.

Figures 6.2 and 6.3 present MAPEp and RMSEs
p for p = 1, . . . , 15, where the upper graph

of each figure shows results for S1 and the lower the results for S2, respectively. We note
that the performance is stable across pseudo-treated periods for all models. The values of
MAPEp at each period p of SC, RSC and CR models are below 5% while for FFNN it is only
the case in S2. This is important, as the impact we wish to measure is less than this order
of magnitude.

Table 6.2 reports the values of the metrics averaged over all pseudo-treatment periods for
settings S1 and S2, i.e., MAPE = 1

15
∑15
p=1 MAPEp and RMSEs = 1

15
∑15
p=1 RMSEs

p. The
results show that the best performance for both metrics and in both scenarios is achieved by
CR model. On average, it reaches a MAPE of 3.4% and RMSEs of 6.0. It achieves better
results than CR-EN model. This is because we have T � N and there are hence enough
data to estimate the coefficients without regularization.

Table 6.2 Average of the daily MAPE and RMSEs over all pseudo-treatment periods.

S1 S2
MAPE RMSEs MAPE RMSEs

CR 3.4% 6.0 3.4% 6.0
CR-EN 8.6% 15.0 8.6% 15.0
DID 38.3% 61.4 25.9% 39.2
FFNN 5.8% 9.4 4.6% 7.5
MCNNM 44.2% 70.0 7.8% 14.3
RSC 3.6% 6.5 3.6% 6.5
SC 3.6% 6.5 4.6% 8.3

Models DID and MCNNM have poor performance in S1. This is due to the difference in
magnitude between the treated unit and the control units. In S2, the performance is improved
because we build one model per treated unit. Each treated unit is then closer to the controls
in terms of magnitude. Due to the constraint (6.11) of equal weights, DID model is not
flexible enough and its performance does not reach that of the other models.

The FFNN model improves the MAPE by 1.2 points from S1 to S2. The neural network
models the dependencies between the treated ODs and gain accuracy by estimating the
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(a)

(b)

Figure 6.2 Values of daily error, MAPEp, in each pseudo-treatment period (a) in Setting S1
with one model for a single aggregated unit and (b) in Setting S2 with one model per treated
unit (note that the y-axis has a different scale in the two graphs).
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(a)

(b)

Figure 6.3 Values of daily RMSEs in each pseudo-treatment period (a) in Setting S1 with
one model for a single aggregated unit and (b) in Setting S2 with one model per treated unit
(note that the y-axis has a different scale in the two graphs).
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revenue of each treated OD.

The advantage of S2 is that we predict separately the outcome for each unit at each day. In
addition to computing the error between Ŷt and Yt for each pseudo-treatment period, we can
also compute the error between Ŷit and Yit, for i = 1, . . . , N t, and t = 1, . . . , T1, namely

MAPEod
i = 1

T1

T1∑
t=1

|Ŷit − Yit|
Yit

, MAPEod = 1
N t

Nt∑
i=1

MAPEod
i . (6.28)

Figure 6.4 presents the values of MAPEod for each pseudo-treatment period, and Table 6.3
reports the average value of MAPEod over all pseudo-treatment periods. It shows that results
are consistent across periods. Method SC reaches the best accuracy, with on average 13.1%
of error for the daily revenue of one treated OD. The FFNN model has a similar performance
with 13.3% of error on average. We conclude that estimating the counterfactual revenue of
one OD is difficult and we gain significant accuracy by aggregating over the treated ODs. In
the remainder of the paper, we only consider models CR, CR-EN, FFNN, RSC and SC as
they perform best.

Figure 6.4 MAPEod for each pseudo-treatment period in S2.

Total Predicted Revenue

In this section, we analyze the models’ performance over a complete pseudo-treatment period.
We first consider a pseudo-treatment period of 6 months, and we then analyze the effect of
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Table 6.3 MAPEod averaged over all pseudo-treatment periods in S2.

MAPEod

CR 13.8%
CR-EN 16.0%
DID 35.6%
FFNN 13.3%
MCNNM 16.2%
RSC 13.6%
SC 13.1%

a reduced length.

Figure 6.5 presents the value of tAPEp defined in (6.26) for pseudo-treatment periods p =
1, . . . , 15. The upper graph shows the results for S1 and the lower the results for S2, re-
spectively. To illustrate treatment impacts’ order of magnitude, we depict the 1% and 2%
thresholds in dashed lines. We note that FFNN and CR-EN models have higher variance
than SC, CR and RSC methods which stay below 3% of error at each period. Moreover, the
model FFNN is stable across all periods for S2.

Table 6.4 reports the values of tAPE = 1
15
∑15
p=1 tAPEp for each model. All models are able

to predict the total 6-months counterfactual revenue with less than 3.5% of error on average,
in both settings. For S1, the CR method reaches the best performance, with 1.1% error on
average and, for S2, the best is the FFNN model with 1.0% average error.

Table 6.4 tAPE over all pseudo-treatment periods

S1 S2
tAPE tAPE

CR 1.1% 1.1%
CR-EN 2.5% 2.5%
FFNN 3.3% 1.0%
RSC 1.2% 1.2%
SC 1.6% 3.3%

We present in Figure 6.6 the values of tPEp defined in (6.25) at each period p = 1, . . . , 15.
It shows that for S1, the FFNN model systematically overestimates the total counterfactual
revenue while SC, CR-EN and RSC methods systematically underestimate it. For S2, we
observe the same behavior for models SC, CR-EN and RSC while both FFNN and CR
methods either underestimate or overestimate the counterfactual revenue.
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(a)

(b)

Figure 6.5 Values of tAPEp for each pseudo-treatment period (a) in Setting S1 with one
model for a single aggregated unit and (b) in Setting S2 with one model per treated unit.
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(a)

(b)

Figure 6.6 Values of tPEp for each pseudo-treatment period p = 1, . . . , 15 (a) in Setting S1
with one model for a single aggregated unit and (b) in Setting S2 with one model per treated
unit.
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Length of the treatment period We now turn our attention to analyzing the effect of
the treatment duration period on performance. For this purpose, we study the variations of
tAPEp for different values of T1 for the pseudo-treatment periods p = 1, . . . , 15. We analyze
the results for each period but for illustration purposes we focus only on the second one.
We report the values for all the other periods in Appendix B (the general observations we
describe here remain valid).

Figure 6.7 presents the variations of tAPE2 against the length T1 for the different models.
The upper graph shows the results for S1 and the lower one the results for S2, respectively.
The black lines (solid and dashed) represent the 1%, 2% and 3% thresholds. In S1, values
of tAPE2 for FFNN are below 3% from 30 days. After 30 and 39 days, respectively, tAPE2

values for CR and SC are between 1% and 2%. Values of tAPE2 are below 1% from 68 days
for CR-EN and from 43 days for RSC. In S2, tAPE2 for FFNN is below 2% from 52 days
and below 1% from 84 days. For CR and CR-EN, it is below 2% from 10 days and 18 days,
respectively. It is below 1% from 44 days for RSC. Hence, the results show that the length
of the treatment period can be less than six months as models are accurate after only a few
weeks.

The CR, RSC and FFNN models present high accuracy with errors less than 1.2% for the
problem of counterfactual predictions on the total revenue. This is compelling since we
are interested in detecting a small treatment impact. As anticipated in Section 6.4.1, we
considered simpler approaches that are common practice. For example, comparing to year-
over-year revenue. In this case, the counterfactual revenue is defined as the revenue generated
during the same period but the year before. It had a poor performance, with a tAPE between
7% and 10% at each pseudo-treatment period. This approach is therefore not accurate enough
to detect small impacts.

In the following section, we present a validation study where we simulate small impacts and
assess our ability to estimate them with counterfactual prediction models.

6.4.3 Validation: Revenue Impact Estimate for Known Ground Truth

We consider a pseudo-treatment period of 6 months and the setting S2. In this case, models
FFNN, CR and RSC provide accurate estimations of the counterfactual total revenue with
respectively 1%, 1.1% and 1.2% of error on average over the pseudo-treatment periods. We
restrict the analysis that follows to those models. We proceed in two steps: First, we simulate
a treatment by adding a noise with positive mean to the revenue of the treated units at
each day of each pseudo-treatment period. We denote Ỹ obs

t the new treated value, Ỹ obs
t =

Yt(0)× ε, ε ∼ Lognormal(µε, σ2
ε ) and σ2

ε = 0.0005. We simulate several treatment impacts
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(a)

(b)

Figure 6.7 Values of tAPE2 varying with the length of the treatment period T1 (a) in Setting
S1 with one model for a single aggregated unit and (b) in Setting S2 with one model per
treated unit.
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that differ by the value of µε. Second, we compute the impact estimate with (6.5) from the
counterfactual predictions and compare it to the actual treatment applied in the first step.
We present the results for one pseudo-treatment period, p = 2.

Table 6.5 reports the values of the estimated impact for different values of µε. The first row
shows the values for the true counterfactuals. This is used as reference, as it is the exact
simulated impact. Results show that RSC and CR models overestimate the impact while
FFNN model underestimates it. This is because the former underestimates the counterfactual
predictions while the latter overestimates them. Due to the high accuracy of counterfactual
predictions, both the underestimation and overestimation are however small. We can detect
impacts higher than the accuracy of the counterfactual prediction models. The simulation
shows that we are close to the actual impact.

Table 6.5 Estimation of the revenue impact τ̂ of simulated treatment

Counterfactuals µε = 0.01 µε = 0.02 µε = 0.03 µε = 0.05
Ground truth 1.0% 2.0% 3.0% 5.1%
RSC 1.7% 2.6% 3.7% 5.7%
CR 1.5% 2.5% 3.5% 5.6%
FFNN 0.6% 1.6% 2.6% 4.7%

Figure 6.8 presents the daily revenue on a subset of the treatment periods. The estimation of
the daily revenue impact is the difference between the simulated revenue (solid and dashed
black lines) and the counterfactual predictions (colored lines). This figure reveals that even
though the accuracy of the daily predictions is not as good as on the complete treatment
period, we can still detect even a small daily impact.

Prediction intervals. It is clear that prediction intervals for the estimated revenue impact
are of high importance. However, it is far from trivial to compute them for most of the
counterfactual prediction models in our setting. Under some assumptions, the CR model in
setting S1 constitutes the exception. More precisely, if the residuals satisfy conditions (i)
independent and identically distributed and (ii) normally distributed, then we can derive a
prediction interval for the sum of the daily predicted revenue. For the simulated impacts
reported in Table 6.5, we obtain 99% prediction intervals with widths of 2.2%. It means that
we can detect an impact of 2% or more with high probability.

Cattaneo et al. (2020) develop prediction intervals for the SC model that account for two
distinct sources of randomness: the construction of the weights ω and the unobservable
stochastic error in the treatment period. Moreover, Zhu and Laptev (2017) build prediction
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Figure 6.8 Daily revenue and predictions for a subset of the pseudo-treatment period 2. The
labels in the y-axis are hidden for confidentiality reasons.

intervals for neural networks predictions that consider three sources of randomness: model
uncertainty, model misspecification and data generation process uncertainty. Both studies
focus on computing prediction intervals for each prediction. We face an additional issue as we
need a prediction interval for the sum of the predictions. As evidenced by these two studies,
computing accurate prediction intervals is a challenging topic on its own and we therefore
leave it for future research.

6.5 Conclusion

Revenue management systems are crucial to the profitability of airlines and other industries.
Due to their importance, solution providers and airlines invest in the improvement of the
different system components. In this context, it is important to estimate the impact on
an outcome such as revenue after a proof of concept. We addressed this problem using
counterfactual prediction models.

In this paper, we assumed that an airline applies a treatment (a change to the system) on a
set of ODs during a limited time period. We aimed to estimate the total impact over all of the
treated units and over the treatment period. We proceeded in two steps. First we estimated
the counterfactual predictions of the ODs’ outcome, that is the outcome if no treatment
were applied. Then, we estimated the impact as the difference between the observed revenue
under treatment and the counterfactual predictions.
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We compared the performance of several counterfactual prediction models and a deep-
learning model in two different settings. In the first one, we predicted the aggregated outcome
of the treated units while in the second one, we predicted the outcome of each treated unit
and aggregated the predictions. We showed that synthetic control methods and the deep-
learning model reached a competitive accuracy on the counterfactual predictions, which in
turn allows to accurately estimate the revenue impact. The deep-learning model reaches the
lowest error of 1% in the second setting, leveraging the dependency between treated units.
The best counterfactual prediction model, which in the second setting assumes treated units
are independent, reached 1.1% of error in both settings. We showed that we can reduce the
length of a treatment period and preserve this level of accuracy. This can be useful as it
potentially allows to reduce the cost of proofs of concepts.

We believe that the methodology is broadly applicable to decision support systems, and not
limited to revenue management (e.g., upgrade of a software, new marketing policy). It can
assess the impact of a proof of concept under the following fairly mild assumptions: (i) the
units under consideration (e.g., origin-destination pairs, markets, sites or products) can be
divided into two subsets, one affected by the treatment and one that is unaffected (ii) time
can be divided into two (not necessarily consecutive) periods, a pre-treatment period and
a treatment period (iii) the outcome of interest (any objective function value, for example,
revenue, cost or market share) can be measured for each unit.

Finally, we will dedicate future research to devise prediction intervals for the sum of the
counterfactual predictions, which in turn will lead to a prediction interval for the estimated
impact.
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CHAPTER 7 GENERAL DISCUSSION

The three works presented through Chapters 4 to 6 naturally influence and echo each other,
both methodologically and in terms of content. They focus on decision-making systems, the
information they require and the impact they have on the profitability of a transportation
company.

The in-depth analysis of the importance of the periodic demand on the tactical planning
costs (Chapters 4 and 5) belongs to the same thought of the impact of demand forecasts
accuracy on the revenue. This is an important question for airlines, which make an extensive
use of Revenue Management Systems (RMSs) that highly rely on demand forecasts. RMS,
and more generally decision-making systems, are intricate and sophisticated, and estimating
the impact of the performance of one of their components is challenging. This led to the
second question we considered in this thesis: assessing the impact of improvements made to
decision-making systems.

Most of the literature targets the improvements, on the modeling and solution methodology
side, advancing the state-of-the-art. However, the models are in general only an approxima-
tion of reality and many other constraints should be taken into account in practice. There
are numerous intermediate steps between the improvements made to the system, the impact
on the transported demand, and therefore the profitability of the company. Being able to
accurately assess the impact in a real system is crucial for investment decisions.

Overall, the three problems, forecasting, planning and impact assessment are well-studied
problems separately, even though they are strongly related. Yet their integration for real-life
large-scale applications has been overlooked in the literature in the context of our problems,
while having high value in practice. Our work aimed at addressing this gap, while taking into
account the constraints of real-life applications, namely the most used formulations (deter-
ministic models for tactical planning for instance) and the need for interpretable solutions.

Finally, from the methodological standpoint, each work draws on several methodologies re-
sulting in diverse methods studied in this research: statistics, econometrics, machine learning,
mathematical programming and metaheuristics. Each one was originally developed to answer
a specific problem, yet real-life applications gather multiple problems. In the past few years,
many works have been focusing on combining methodologies, especially from an algorithmic
perspective, for instance the use of machine learning for linear programming. We believe that
it is also important to combine methodologies from an application perspective, as it gives
access to broader research questions and allows to improve decision-making systems.
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CHAPTER 8 CONCLUSION AND RECOMMENDATIONS

This thesis discussed and proposed methods to integrate demand forecasting and planning
problems, and to estimate the impact on key performance indicators. After a brief summary
of the presented contributions, we conclude this dissertation by highlighting their limitations
and proposing some directions for related future research.

8.1 Summary of works

In Chapter 4, we focused on large-scale tactical planning problems, which often require de-
terministic formulations of the service network design problem. We formally introduced the
periodic demand estimation problem which allows to estimate the periodic demand such that
the planning costs are minimized. The latter include the fixed costs of the plan and the vari-
able costs incurred by adapting the plan when demand changes. We proposed a methodology
that proceeds in two steps. The first step consists in using a time series forecasting model to
predict demand for each period in the tactical planning horizon. We developed and compared
models from the statistics and machine learning literature containing observed demand as
features. Statistical models provide good performances, and neural networks highlight the
importance of considering external features such as the weather. The second step defines the
periodic demand as a solution to a multilevel mathematical program that explicitly connects
the estimation problem to the tactical planning problem. We introduced a new problem in
this chapter and focused on the in-depth analysis of the importance of the periodic demand.
Given the complexity of the problem, we limited the feasible set of variables to be small and
discrete which allowed us to solve the problem by enumerating the solutions. We reported
results for a real large-scale application at the Canadian National Railway Company. Even
with the restrictions, we showed that using another estimate of periodic demand from the
common practice that simply consists in averaging the time series forecasts over the tactical
planning horizon lead to substantial reductions of costs.

Motivated by the results from Chapter 4, we developed further the periodic demand esti-
mation problem in Chapter 5 by allowing a broad and continuous feasible set of periodic
demands and propose a new solution approach to solve the problem. In fact, we defined
the periodic demand variable as a deviation from the average of the demand forecasts. We
hence proposed a new formulation where the decision variables are the deviation coefficients.
We proposed two new local search metaheuristics to solve the problem and compare their
performances to an off-the-shelf blackbox optimization solver. For large-scale applications,
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the number of commodities, and in turn the number of variables is large, and the solution
algorithms have limited performances. To address this challenge, we developed heuristic
approaches creating clusters of commodities that have the same value of deviation, hence re-
ducing the number of variables. They exploit the information contained in the network and
the demand distribution of the commodities over the planning horizon. We reported results
on the same application from Chapter 4, that showed that defining the periodic demand as
a deviation from the average of the time series forecasts lead to substantial cost reductions.
Moreover, the combined steps of clustering and search algorithms allowed to reach the best
performance. By reducing the number of variables, the clustering step leverages the blackbox
software even for large-scale applications with hundreds of variables.

In Chapter 6, we consider the problem of assessing the impact on the revenue of a carrier
after an improvement made to its decision system. We cast the problem as a counterfactual
prediction problem, and we aimed at estimating the counterfactual revenue. It is the revenue
that would have been observed without improving the system. We focus on a setting where
the improvements to the system concerned multiple Origin-Destination pairs (ODs), and the
set of ODs in the carrier’s network is divided into treated ODs, subject to the improvement,
and control ODs, which are not affected. We formally introduced the problem and provided
a comprehensive overview of existing counterfactual prediction models. We also presented
a non-linear deep learning model taking as input the outcome of control units as well as
time-specific features. We reported results for a real large-scale application at Air Canada.
Results showed that the accuracy of the counterfactual predicted revenue of the treated ODs
is high, allowing us to estimate a relatively small impact.

8.2 Limitations and Future research

The works presented in this thesis belong to the body of improving decision-making systems
for large-scale transportation networks. We focused on well-studied problems for which we
identified important issues that have not been recognized as such, and have high value for car-
riers in practice. Our contributions propose new methodologies, perspectives and managerial
insights for those issues, and expose avenues for future research.

The methodology of the periodic demand estimation problem relies on the demand forecasts.
Our a posteriori analysis in Chapter 4 showed that the best tactical costs are obtained by
solving the PDE problem when the periodic demand is defined as a mapping from the actual
demand instead of the demand forecasts. However, only the latter are available at the time
of planning. Therefore, the first avenue for future research would be the improvement of
forecasting models. Additional data are collected every day, which could be useful to develop
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combined statistics and machine learning models.

The proposed approach defined the periodic demand as a mapping from the point estimates
of demand forecasts at each period of the tactical planning horizon. While we focused on
deterministic formulations of SND problems, our approach and stochastic programming are
not mutually exclusive. Indeed, recognizing the uncertainty around the point estimates of
demand forecasts at each period of the tactical planning horizon is an interesting avenue
for future research. Introducing robustness in the PDE problem is a potential approach to
handle demand uncertainty, and developing revenue management strategies to better control
the demand spikes is another.

In the same spirit of combining methodologies within a model, another direction for future
research is the development of machine learning models learning the clusters to create in the
heuristic developed in Chapter 5 with the objective of minimizing the tactical costs. Such
direction could combine machine learning models with optimization models to embed the
network structure and the periodic demand estimation problem. The challenges would reside
in first the computational tractability, but also the interpretability, a crucial question for
practitioners.

Finally, regarding the work on impact assessment, an important future research avenue is
the development of prediction intervals for the impact estimation, another crucial point for
practitioners.

In addition to the research avenues, it is undeniable that the implementation of the proposed
methods in transport companies fully integrating the business challenges (computing times,
robustness) constitutes an avenue to be privileged. The integration of demand forecasting
and planning for rail freight carriers could generate revenue management opportunities that
are still in their early stage of development. Then, being able to accurately estimate the
impact would encourage companies to frequently test new implementations or strategies.
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APPENDIX A ARTICLE 1: APPENDIX

Input features of neural networks

Input Layer 1 It is dedicated to external data features such as weather data and temporal
context, for all models. We use real observed weather data described in Section 4.5.1, to assess
their potential in an optimistic setting in regards to their accuracy. At prediction time, we
would then rely on weather forecasts.

All models contain two features as temporal context, that is the week number of the forecasted
week and the month number of the Monday of the forecasted week. Weather features,
for models that include them, consist in the average daily temperature, the accumulated
snow (cm) and the accumulated precipitations (mm) of the forecasted week for the main 17
terminals in the network.

Input Layer 2 Features in Input Layer 2 are lagged observed or forecasted (when doing
inferences) demand of commodities predicted by the model. The number of lags was found
through hyperparameters optimization, and is given in Table 6.1 below.

Hyper-parameters of neural networks

Table A.1 Table of hyperparameters of the neural networks

Model Lags
Weather
Features

Hidden
layers

Size
Hidden
Layers

Dropout
Learning
Rate

RNN 3 NO 1 700 0.25 0.1
RNN-W 4 YES 1 260 0.12 0.1
RNN-W-SPLIT1 3 YES 3 460 0.10 0.1
RNN-W-SPLIT2 8 YES 2 220 0.23 0.1
FFNN 3 NO 3 540 0.14 0.01
FFNN-W 4 YES 3 600 0.11 0.1
FFNN-W-SPLIT1 3 YES 2 700 0.06 0.01
FFNN-W-SPLIT2 5 YES 3 580 0.15 0.1
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APPENDIX B ARTICLE 3: APPENDIX

Length of Treatment Period

We present here the results on the analysis of the length of the treatment-period for all
pseudo-treatment periods.

(a) (b)

Figure B.1 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 1 (a) in Setting S1 and (b) in Setting S2

(a) (b)

Figure B.2 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 3 (a) in Setting S1 and (b) in Setting S2
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(a) (b)

Figure B.3 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 4 (a) in Setting S1 and (b) in Setting S2

(a) (b)

Figure B.4 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 5 (a) in Setting S1 and (b) in Setting S2
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(a) (b)

Figure B.5 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 6 (a) in Setting S1 and (b) in Setting S2

(a) (b)

Figure B.6 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 7 (a) in Setting S1 and (b) in Setting S2
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(a) (b)

Figure B.7 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 8 (a) in Setting S1 and (b) in Setting S2

(a) (b)

Figure B.8 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 9 (a) in Setting S1 and (b) in Setting S2
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(a) (b)

Figure B.9 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 10 (a) in Setting S1 and (b) in Setting S2

(a) (b)

Figure B.10 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 11 (a) in Setting S1 and (b) in Setting S2
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(a) (b)

Figure B.11 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 12 (a) in Setting S1 and (b) in Setting S2

(a) (b)

Figure B.12 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 13 (a) in Setting S1 and (b) in Setting S2
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(a) (b)

Figure B.13 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 14 (a) in Setting S1 and (b) in Setting S2

(a) (b)

Figure B.14 Values of tAPE varying with the length of the treatment period for pseudo-
treatment period 15 (a) in Setting S1 and (b) in Setting S2
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