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ABSTRACT 

The rapid growth in demand for location based service has encouraged research into 

improving the performance of mobile location systems. A promising approach to 

achieve this goal is the use of antenna array at both the transmitter and receiver 

sides. Such multiple-input multiple-output (MIMO) communication systems operate 

by exploiting the spatial properties of the multipath channel, thereby offering new 

information which can be used to enhance communication performance. In a wireless 

MIMO system, the parameters such as angle of arrival, angle of departure and delay 

of arrival of the multipath signals can be estimated using advanced array signal 

processing techniques. 

In this work, we first developed a bidirectional beamforming MIMO channel model 

which includes physical multipath propagation parameters. After rearranging the 

estimated channel response by a vectorization scheme, we propose a subspace based 

approach to jointly estimate the parameters of the multipath signal in MIMO com­

munication systems. The novel approach uses a collection of estimates of a space 

time manifold vector of the channel which utilizes a Khatri-Rao product to trans­

form the estimated channel response matrix into the classical model. Two Maximum 

Likelihood methods are derived, and a MUSIC like method is proposed to achieve 

high resolution of channel parameters. The Cramer-Rao lower bound and simulation 

results are also provided. 

Based on the estimated multipath signal parameters in the context of a MIMO chan­

nel, we propose a novel approach to determine the position of mobile stations using 

only one Base Station. This approach intends to minimize the error occurring from 

the estimation of multiple paths and gives an optimal estimation of the position of 

mobile station by simultaneously calculating a set of nonlinear algebraic position 
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equations. The mean square error is measured to demonstrate the performance of 

the proposed algorithm. The Cramer-Rao lower bound is also derived and compared 

with the measured MSE. This solution breaks the bottleneck of conventional mobile 

positioning systems which have to require multi-lateration of at least three base sta­

tions. In addition, since this solution takes advantage of the multipath propagation 

environment, it works well under NLOS environment, the major problem posed by 

classical trilateration location schemes. 
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RESUME 

La croissance rapide de la demande sur les services mobiles a encourage la recherche 

et T amelioration de la performance des systemes mobiles. Une approche prometteuse 

pour atteindre cet objectif est l'utilisation de reseaux d'antennes a Temetteur et au 

recepteur. Ce systeme de communication a entrees et sorties multiples (MIMO) 

fonctionne en exploitant les proprietes spatiales du canal a trajets multiples, offrant 

de nouvelles informations qui peuvent etre utilisees pour ameliorer les performances 

de communication. Dans un systeme MIMO sans fil, les parametres tels que Tangle 

d'arrivee, Tangle de depart et le retard de propagation des signaux a trajets multiples 

peuvent etre estimes a Taide des techniques de traitement du signal avance. 

Dans ce travail, nous avons developpe un modele de canal MIMO bidirectionnel qui 

inclut les parametres physiques de propagation des trajets multiples. Apres la reor­

ganisation des reponses anticipees des canaux par un systeme de vectorisation, nous 

proposons une approche basee sur les sous-espaces pour conjointement estimer les 

parametres du signal a trajet multiples dans les systemes de communication MIMO. 

La nouvelle approche fournit un ensemble d'estimateurs du vecteur espace-temps 

qui utilise le produit Khatri-Rao pour exprimer le probleme d'estimation sous la 

forme classique. Deux methodes d'estimation des parametres du canal a maximum 

de vraisemblance sont proposees ainsi que l'algorithme MUSIC qui permet d'atteindre 

une haute resolution. La borne inferieure de Cramer-Rao et les resultats de la simu­

lation sont egalement fournis. 

En se basant sur Testimation des parametres des signaux a trajets multiples dans 

le cadre d'un canal MIMO, nous proposons une nouvelle approche pour determiner 

la position des stations mobiles utilisant une seule station de base. Cette approche 

fournit une estimation optimale de la position de la station mobile en resolvant si-
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multanement un ensemble d'equations algebriques non lineaires de position. L'erreur 

quadratique moyenne est mesuree pour demontrer les performances de l'algorithme 

propose. La limite inferieure de Cramer Rao est egalement derivee et comparee avec 

les valeurs d'erreur quadratique mesurees. Cette solution qui n'utilise qu'une base 

supprime l'obstacle majeur des systemes de localisation mobile classiques, qui re-

quierent un minimum d'au moins trois stations de base. En plus, puisque cette 

solution profite de l'environnement de propagation a trajets multiples, la methode 

fonctionne bien sous l'environnement NLOS, ce qui n'est pas le cas pour les systemes 

classiques. 
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CONDENSE 

1. Introduction et objectif de recherche 

Les technologies de localisation de position (PL) ont ete traditionnellement des tech­

nologies presentant un interet pour les militaires et les services de renseignement. 

En plus des applications classiques de localisation, trouver la position du telephone 

mobile devient Tun des problemes les plus importants des systemes de communi­

cations mobiles. La Commission Federale de Communications americaine (FCC) 

requiert Faeces au numero d'urgence 911 (E911) pour les services de communications 

sans fil. L'Union Europeenne a manifeste de l'interet pour un reglement similaire. 

D'autres applications sont l'identification automatique de la position (ALI), la fac-

turation automatique et la detection de fraudes aux fournisseurs cellulaires, l'alerte 

en cas d'accident, le suivi des marchandises, et les systemes de transport intelligents. 

Les travaux de recherche sur les systemes de positionnement sans fil sont principale-

ment fondes sur des methodes de triangulation qui necessitent au moins trois stations 

de base pour estimer la position du terminal mobile. Le principal probleme de ces 

systemes est la synchronisation temporelle de toutes les stations de bases concernees. 

Un autre probleme est lie a la presence ou non d'un signal en ligne de vue (LOS, 

NLOS). En general, il n'existe pas de trajet direct entre la base et le mobile. 

Les systemes de communication sans fil conventionnels ne peuvent estimer que le delai 

d'arrivee (DOA) du signal recu dans le but d'accomplir une methode de localisation 

(TDOA) par triangulation. Dans les systemes utilisant les antennes agiles (SMART 

antennas), l'estimation des angles d'arrivee ainsi que des delais d'arrivee des signaux 

regus est possible grace a des techniques de traitement du signal avancee utilisant 

le reseau d'antennes. Toutefois, plusieurs stations de base sont toujours necessaires 

dans ce cas. 
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Les travaux recents de recherche sur les systemes de communication MIMO four-

nissent de nouvelles idees et des solutions pour satisfaire les besoins actuels en matiere 

de positionnement. L'objectif principal de notre recherche est d'elaborer un nouveau 

systeme de positionnement base sur les systemes de communication sans fil MIMO. Ce 

travail peut etre essentiellement divise en deux parties: l'estimation des parametres 

communs pour les canaux a trajets multiples MIMO, et l'estimation de position pour 

un terminal mobile MIMO. 

1.1 Estimation conjointe des parametres de trajets multiples d'un systeme MIMO 

L'estimation des parametres du canal tels que le retard de propagation a Tarrivee 

(DOA) et Tangle d'arrivee (AOA) d'un signal connu est une des fonctions centrales 

d'un systemes de localisation [11,20,21]. Les methodes classiques pour estimer Tangle 

ou le retard du signal regu sont basees sur la transmission d'un signal connu, tel 

qu'une impulsion de forme determinee, son identification suivie de correlations ou 

d'estimations parametriques separees [49,51]. Malheureusement, le signal regu est 

compose de multiples reflexions causant des interferences dans le temps et dans 

Tespace. Les algorithmes classiques d'estimation de TAOA et le DOA ne sont plus 

optimaux dans de telles situations [45,47,61]. 

Avec Tapplication de la technologie des reseaux d'antennes pour la prochaine genera­

tion de reseau mobile, plus d'information est disponible. Dans les systemes de com­

munication MIMO, puisque plusieurs antennes sont utilisees a la transmission et a la 

reception, on peut resoudre les differents chemins de propagation entre Temetteur et 

le recepteur en utilisant des techniques avancees de traitement de signal pour exploiter 

cette information supplemental sur Tangle de depart (AOD). Les methodes basees 

sur les sous-espaces telles que MUSIC [51] et ESPRIT [49] permettent d'atteindre de 

haute resolution dans l'estimation les d'angles et seront utilisees. 

1.2 Prevision de position d'un systeme MIMO 
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Les techniques traditionnelles pour la localisation telle que la recherche de direction, 

et la mesure de distance sont basees sur la triangulation. Ces systemes utilisent des 

mesures prises depuis trois ou plus stations de base pour estimer le positionnement 

bidimensionnel de l'emetteur portable. Avec 1'information supplement aire sur le AOD 

qui peut etre estimee a partir d'un systeme MIMO, il est possible de determiner la 

position du terminal mobile a partir des signaux a trajets multiples. 

2. Modele du canal bidirectionnel 

Dans ce travail, nous essayons de mettre au point un modele de canal bidirectionnel 

MIMO qui inclut les parametres physiques multiples (AOA, AOD, DOA, ...). Afin 

d'estimer conjointement les parametres du canal a trajets multiples, nous examinerons 

les conditions suivantes sur le scenario de la propagation radio mobile : 

• L'environnement multi-trajet MIMO est modelise par un certain nombre discret 

d'ondes parametrisees par un dephasage, une amplitude complexe (trajet gains), 

un angle d'arrivee et un angle de depart. 

• Les signaux source sont des suites numeriques qui sont lineairement modulees 

par des impulsions de forme connue. 

• Les parametres tels que les AOD, AOA, et DOA ne changent pas significative-

ment d'un creneau temporaire a l'autre. 

• Les donnees transmises par les antennes sont echantillonnees a taux egal ou 

superieure au taux de Nyquist. 

• Le reseau d'antennes possede une structure connue. 

Dans le modele a trajets multiples illustre a la Fig. 1, nous considerons un canal 

MIMO muni de deux reseaux lineaires uniformes a remission et a la reception. Le 
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trajet multiple comprend R chemins de propagation. Chacun est parametre par 

9r,(f)r,Tr,Pr. Les parametres 9r et <pr sont les angles de depart et d'arrivee de la 

composante r de l'onde, et (3r et rr en sont respectivement le gain complexe et le 

retard de propagation. 

M S a m y \ MS array broadside 

MS direction of travel 

FIGURE 1 A BIDIRECTIONAL BEAMFORMING MIMO PROPAGATION CHANNEL 

MODEL 

Nous utilisons un signal de sonde connu pour estimer la reponse impulsionnelle du 

canal MIMO qui est requise pour realiser l'estimation conjointe des parametres du 

canal. Des techniques aveugles peuvent aussi etre envisagees pour effectuer cette 

identification. Elles n'ont pas etees considerees de fagon explicite dans ce travail. 

3. Estimation conjointe des parametres de trajets multiples dans les systemes MIMO 

A partir de la reponse impulsionnelle estimee du canal, on peut former un vecteur 

"espace-temps" auquel on peut appliquer les methodes classiques d'estimation des 

sous-espaces telles que le maximum de vraisemblance deterministe, le maximum de 

vraisemblance dit stochastique ainsi que 1'algorithme MUSIC. De plus, le calcul clas-

sique de la borne de Cramer-Rao (CRB) peut etre etendu a l'espace-temps de notre 
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modele. 

La methode de classification "signal multiple" (MUSIC) est un algorithme base sur la 

methode spectrale et repose sur les proprietes de la decomposition en valeurs propres 

de la matrice de covariance. Les sous-espaces correspondant au signal et au bruit sont 

orthogonaux. II n'est pas possible dans un resume de cette nature de rentrer dans les 

details de la procedure MUSIC. Nous renvoyons le lecteur au Chapitre 4 de la these 

pour une analyse fine de la procedure. 

Nous nous contenterons a ce point des commentaires suivants: 

• Lorsque les signaux regus arrivent dans le meme temps mais de directions dif-

ferentes ou de memes directions mais a des temps differents, les algorithmes 

d'estimation classiques ne permettent pas de les distinguer. Ce n'est pas le cas 

avec l'estimation conjointe qui permet la distinction dans ce cas. 

• Contrairement aux algorithmes traditionnels fondes sur la methode des sous-

espaces mais n'utilisant qu'un seul reseau d'antennes, l'algorithme d'estimation 

conjointe MIMO peut fonctionner dans le cas ou le nombre de trajets radio est 

superieur au nombre d'antennes du reseau. 

• Puisquil s'agit d'un algorithme spectral a haute resolution pour l'estimation 

des parametres du canal, ceux ci peuvent etre obtenus avec une bonne precision 

meme a faible rapport signal sur bruit. 

4. Positionnement des terminaux mobiles dans les systemes MIMO 

1) Introduction 

En utilisant le complement d'information fourni par le systeme MIMO sous la forme 

d'un estime des angles de depart des ondes, il est possible de reperer la position des 
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terminaux mobiles en utilisant une seule base. A partir des parametres complets des 

trajets multiples (AOD, AOA et DOA) on peut definir un ensemble d'equations non 

lineaires dont la solution donne les coordonnees 2-D de la source. Une solution est 

possible par linearisation suivie de l'application de la methode des moindres carres. 

L'algorithme propose conduit a minimiser l'erreur quadratique entre la position et les 

estimes obtenus a partir des equations. 

La methode de positionnement hybride AOA/AOD/TDOA propose pour les systemes 

de communication MIMO est differente des methodes conventionnelles de position­

nement par de nombreux aspects: 

• Deux reseaux d'antennes sont necessaires a remission et a la reception. 

• Puisque tous les parametres (AOA, AOD, DOA) peuvent etre exploites en canal 

MIMO, il est possible de reperer la position des terminaux mobiles en utilisant 

une seule base. 

• L'estimation de l'emplacement du terminal mobile peut pleinement utiliser 

l'approche TDOA/AOA/AOD hybride pour atteindre une plus grande preci­

sion. 

• Le systeme etant symetrique, le positionnement peut se faire soit a Temetteur 

soit au recepteur, ce qui n'est pas possible dans les systemes conventionnels. 

2) Les avantages de la methode de positionnement MIMO proposee 

Du fait que plus de parametres du signal a trajets multiples peuvent etre resolus dans 

les systemes de communication MIMO, la methode hybride TDOA/AOA/AOD de 

localisation peut tenir compte des angles de depart qui une fois combines avec les 

angles d'arrivee et les retards permet le positionnement precis du mobile. On note 

les avantages suivants en plus du fait qu'une seule station de base est en cause: 
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• La synchronisation en temps est simple a acquerir. En outre, la collecte de 

l'information de positionnement par le reseau est grandement facilitee. 

• Tous les systemes classiques de positionnement supposent qu'un chemin LOS 

est toujours disponible. Notre methode n'a pas besoin de cette hypothese. En 

fait, elle peut raeme identifier le chemin LOS s'il existe. 

5. Conclusion 

Dans ce travail, nous avons elabore une nouvelle methode de mesure de position­

nement des terminaux mobiles dans les systemes MIMO sans fil. La methode utilise 

l'estimation conjointe des parametres du signal a trajets multiples de propagation 

combinee avec une methode de calcul de la position des terminaux mobiles basee 

sur l'utilisation des angles de depart et d'arrivee ainsi que des delais. La methode 

proposee ne requiert qu'une seule base pour determiner la position du mobile. 

Les principales contributions de ce travail de recherche sont resumees comme suit: 

• En se basant sur le modele 3GPP du canal MIMO, nous avons elabore un modele 

speculaire de propagation MIMO a trajets multiples. Chacune des ondes du 

signal est parametree par un retard, une amplitude complexe, un angle d'arrivee 

et un angle de depart. D'autre part, les parametres du canal sont supposes etre 

invariants pendant toute la periode d'estimation. 

• Une approche basee sur la methode du "sous-espace" est proposee pour estimer 

conjointement les parametres du canal (comme les AOD's, DOA's et AOA's) 

dans un environnement multi-trajet MIMO. Cette nouvelle approche repose sur 

l'analyse de valeurs propres de la matrice de covariance du canal MIMO. 

• Nous proposons aussi une nouvelle approche hybride TDOA/AOA/AOD de lo­

calisation des terminaux mobiles utilisant une seule base. La methode exige 
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cependant la presence d'au moins trois trajets distincts dans le signal regu. La 

methode de calcul utilise 1'estimation au moindres carres apres linearisaton des 

equations reliant les parametres a la position. Nous avons teste la viabilite 

de cette technique par simulations numeriques. A notre connaissance, aucune 

des techniques de positionnement disponibles dans les ouvrages specialises ne 

possede des caracteristiques similaires puisque cette solution elimine le goulot 

d'etranglement des systemes conventionnels qui exigent toujours une triangula-

tion requierant plusieurs bases. 
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CHAPTER 1 

INTRODUCTION 

1.1 Background 

Position location (PL) technologies have traditionally been of interest to the military 

and intelligence communities. In addition to that, finding the location of the mobile 

phone becomes one of the most important features of the mobile communication sys­

tems. The U.S. Federal Communication Commission (FCC) has made Emergency 

911 (E911) a mandatory requirement for wireless communications services. The Eu­

ropean Union has shown interest in similar regulation. Other than that, Automatic 

location identification (ALI) will be a system requirement for wireless operators in 

the near future. PL system can also be used by advanced user hand-off schemes, and 

potentially many user services for which a GPS is impractical. Other applications are 

automatic billing and fraud detection for cellular providers, accident reporting, cargo 

tracking, and intelligent transportation systems [7,70]. 

The position of mobile devices can be determined by observing and comparing the 

signals received from multiple base stations. The traditional techniques for position lo­

cation such as AOA and TDOA estimation are based on trilateration/multilateration 

system. These parameters can be measured by using hardware or advanced signal 

processing techniques. 



Transmitter, 

FIGURE 1.1 MULTIPATH PROPAGATION CHANNEL 

Due to the radio propagation characteristics that corrupt the wireless communica­

tions, previous PL methods have exhibited problems such as time synchronization, 

NLOS, multipath effect . . . etc. Recently, some research showed that multipaths are 

not as harmful as previously thought for communication systems and that multiple 

diversity can be exploited to increase capacity even when the channel is unknown. 

Spatial diversity exploits multiple antennas either separated in space or differently 

polarized. Different antennas see different multipath characteristics or different fad­

ing characteristics and this can be utilized to generate a stronger signal. A typical 

multipath propagation channel is shown in Figure 1.1 

Wireless Multiple-input multiple-output (MIMO) systems have recently emerged 

as one of the most significant technical breakthroughs in modern communications. 

MIMO systems use multiple transmit and receive antennas to exploit the spatial 

properties of the multipath channel, thus offer a new dimension to enable enhanced 

communication performance. Since wireless MIMO systems can greatly improve sys­

tem performance in terms of capacity and data rate, MIMO technology will be applied 
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widely for incoming wireless systems such as 802.16, 802.l ln .. .etc. one of the key 

features of MIMO systems is the ability to turn multipath propagation, traditionally 

a pitfall of wireless transmission, into a benefit for the user. 

Modeling MIMO radio channel is essential to understand and analyze the perfor­

mance of wireless transmission systems. Most of performance investigations have 

been based on non-physical models, which correspond to a simple stochastic matrix. 

However, considering wireless multipath wave propagation, physical models of the 

MIMO channel are alternative models. In such models, the most important and use­

ful parameters of a signal propagating over a MIMO channel are path gain, angles of 

departure, angles of arrival and delay of arrival. 

Traditionally, the problem of estimating angle of received plane wave is referred 

to as the direction finding estimation problem. It is important in radar, sonar, 

seismic systems . . . etc. Because of its widespread application and the difficulty of 

obtaining the optimum estimator, the topic has received a significant amount of 

attention over the last several decades. Recently, it has been extended to estimate 

delay and frequency of received signal. These parameters can be estimated using 

adaptive array signal processing techniques. 

In a smart antenna system, the radio frequency channel from the transmit to the 

receive unit can be modeled as a parameter-dependent function for the following 

reason: most radio propagation environments exhibit the multipath effect, that is, a 

transmitted signal arrives via multiple paths, each having its own AOA, DOA, and 

attenuation (fading). Using blind adaptive array processing, these parameters of the 

received signals could be determined by using prior knowledge of the array response, 

i.e., the array manifold or special array structure. The high-resolution techniques for 

AOA estimation include MUSIC and ESPRIT. The knowledge of the AOA of received 

signal then could be used to track and locate the user. However, in an obstructed line-
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of-sight scenario presenting reflected waves, the angle of arrival becomes insufficient 

and we need to know more parameters like delay of arrival and angle of departure 

of the propagating signal. Smart antennas systems using adaptive array processing 

are in fact SIMO or MISO systems. In this work, we try to extend the parameter 

estimation methods for smart antenna systems to MIMO systems. 

As mentioned before, based on estimated parameters of the wireless propagating 

signals, conventional position location systems use multi-lateration to determine the 

position of the mobile terminal. However, the performance of these PL systems are 

highly degraded due to some major obstacles such as multipath, NLOS error and time 

synchronization problem. In MIMO systems, since more multipath signal parameters 

(AOD, AOA, DOA...) can be estimated using advanced adaptive array processing 

techniques, it motivates us to develop new solutions to provide high accuracy for 

position location of mobile terminal. 

1.2 Motivation and Objectives 

The classical work on wireless PL systems are mainly based on trilateration or multi-

lateration techniques which require at least three BSs to estimate the position of the 

mobile terminal. The main problem of multi-lateration systems is the time synchro­

nization of all involved BSs. Another problem is to distinguish between LOS and 

NLOS signals. Generally, the first received signal will be treated as the LOS signal, 

however, it's hard to know whether this signal is a LOS signal. From the structure 

of the wireless cellular networks, we can easily notice that it does not always exist a 

LOS path between the mobile device and neighbor BSs. Moreover, for future peer to 

peer network architecture, the point to point location method will be desired. 

With the application of antenna array technology in the next generation mobile net-
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works, more channel information can be exploited through space-time processing. 

For instance, MIMO systems can fully take advantage of multipath effects. In MIMO 

communication systems, since multiple antennas or antenna arrays are utilized at 

both sides, they can resolve different propagation paths between a transmitter and 

receiver by using more advanced array signal processing to exploit more channel 

information (such as AOD) than smart antenna and point-to-point wireless commu­

nication systems. Therefore, new position location methods for MIMO systems need 

to be developed. 

1.2.1 Space-time Channel Parameters Estimation 

Channel parameter estimation is a classical problem encountered in radar, sonar, 

wireless positioning systems and future wireless intelligent networks [16]. Further­

more, to understand the characteristics of the spatial radio channel is important for 

the design of space-time processors. In wideband wireless communications, channel 

parameter estimation is often an important process to analyze multipath propagation. 

Conventional wireless PL systems usually only estimate the delay of arrival of the 

received signal in order to perform a TDOA location method through trilateration of 

more than two base stations. In smart antenna systems, the joint estimation of the 

angle and delay of arrival of the received signals is possible through some advanced 

array signal processing techniques. However, multiple base stations are still required 

in this case. 

The estimation of channel parameters such as delay and angle for a known received 

signal is the central functions for location systems [11,20,21]. Conventional schemes 

for estimating the angle and delay of the received signal in a wireless communication 

system are based on transmitting a known signal, such as a pulse, and performing 

correlation or parametric estimations separately [49, 51]. Unfortunately, in many 
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cases, the received signal is composed of multiple reflections having different AOAs 

and DOAs, which usually causes the signal to overlap in either the time or space 

domain. The classical algorithms for estimating the AOA and DOA are no longer 

optimal in such situations [37,45,61]. 

So far, there are many nonlinear parameter estimation problems of interest in the 

array processing area which includes estimating the spatial (and or/temporal) char­

acteristics of radio propagation channel and estimating the range of a target in the 

wireless systems [29,44]. The subspace-based methods such as MUSIC [51] and ES­

PRIT [49] can achieve high resolution of angles of arrival of received signals. There­

fore, they are widely used because of their performance capability. Moreover, the 

subspace-based methods have various versions and modifications. This motivates us 

to develop a subspace-based approach for MIMO communication systems to estimate 

channel parameters. The estimated information can then be used for many applica­

tions, for example, to locate the position of mobile terminal in cellular communication 

systems. 

1.2.2 Location Estimator for MIMO Systems 

In multilateration hyperbolic ranging PL systems, two range-difference measurements 

produced from three base stations can provide the position of the mobile target, ad­

ditional measurements from more BSs can be used to reduce the ambiguities due to 

multipath, signal degradation, and noise. Two well known methods for hyperbolic PL 

estimation are proposed for TDOA estimation. The first method use Taylor Series 

enpension to linearize a set of range-difference equations [19]. While the Taylor Series 

solution is estimated in an iterative manner, a non-iterative solution to the hyper­

bolic position estimation problem, which capable of achieving optimum performance 

for arbitrarily placed receivers, was proposed by Chan [9].The above mentioned PL 
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estimation system are only for TDOA estimation. Recently, hybrid TDOA/AOA 

methods have been proposed in [12,38]. However, all these method are based on 

point-to-point or smart antenna system. 

In wireless MIMO systems, with multiple antennas or antenna arrays in both transmit 

and receive sides, it is possible to estimate parameters such as AOA, AOD and DOA in 

multipath environment. These parameters for MIMO channel need to be exploited by 

using adaptive array signal processing techniques. With additional AOD information 

in MIMO systems, it motivates us to estimate the position of mobile terminal from 

signals of multiple path. If we estimate the TDOA between the first path and other 

paths, along with the estimation the AOA and DOA for each path, a set of nonlinear 

location equations can be defined. Solving the established set of nonlinear equations 

can be performed by linearization. Therefore, new location methods similar to Taylor-

series and TSLS solutions can be developed to locate the position of mobile terminal 

using single base station [33]. 

1.3 Contributions 

The research works on MIMO communication system provide new insights and 

promising solutions to satisfy the current needs. However, parameter estimation 

for MIMO multipath channel is still an open research area. Furthermore, position 

location in MIMO systems opens a new research direction for next generation mobile 

communications. The main objective of this research is to develop a novel PL scheme 

in wireless MIMO communication systems. This scheme can be mainly decomposed 

into two parts: joint parameter estimation for MIMO multipath channel, and the lo­

cation estimation of mobile terminal in MIMO cellular systems. The following works 

are proposed for this research: 
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• Based on 3GPP MIMO channel model, we developed a specular MIMO multi-

path propagation channel model. For an outdoor MIMO channel, we consider a 

bidirectional beamforming model where the elements of both transmitting and 

receiving antenna arrays are co-located and the scatterers can be considered as 

point sources (specular channel model) [54]. This model choose some physical 

parameters to express the MIMO propagation channel. In this model, we em­

ploy uniform linear array (ULA) at both transmitter and receiver sides, each 

multipaths parameterized by a delay, complex amplitude, angle of arrival and 

angle of departure. As in many literatures, a quasi-static block-fading channel 

model is used in this work. The propagation channel is assumed to be constant 

within one or more time-slots [62]. 

• A subspace-based approach is proposed to jointly estimate channel parameters 

(such as AOD, AOA and DOA) in MIMO multipath environment by using a 

collection of estimates of space-time manifold vector. This new approach rely 

on analysis of eigenstructure of covariance of MIMO channel transfer matrix 

to achieve high-resolution estimation of channel parameter. This method, to 

our knowledge, has so far not been proposed in MIMO multipath parameter 

estimation. Two Maximum Likelihood methods are derived, and a MUSIC-like 

method is proposed to achieve high resolution of multipath signal parameters. 

• The scattering multipath propagation model for location of the mobile terminal 

is developed. We assume it's a single bounce model which has only one scatterer 

for each path. This geometry model utilize jointly estimated channel parameters 

such as AOA, AOD and DOA to reconstruct the signal propagating path. The 

TDOAs are computed via the relative DOA between the first arrived signal and 

other signals. 

• We proposed a novel hybrid TDOA/AOA/AOD approach to locate mobile ter­

minals by using only one BS in MIMO communication systems. With more 
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than three multipath signal available, we developed an over-determined system 

which could be solved by modified nonlinear LS method. We demonstrate its 

viability in position location of mobile terminal with numerical experiments. To 

our knowledge, no similar results for the mobile location technique in MIMO 

communication systems are available in previously published works. This so­

lution breaks the bottleneck of conventional PL systems which have to require 

trilateration of at least two BSs. Furthermore, with MIMO systems, the loca­

tion estimation seems possible at MS side which is not realistic in traditional 

communication systems. 

1.4 Organization of the Thesis 

The remainder of this thesis is organized as follows. Related work is given in Chapter 

2, in which the relevant preliminaries in wireless position location systems and MIMO 

space-time communication systems are reviewed. Chapter 3 derives the system model 

of the bidirectional beamforming MIMO channel with considering oversampling. We 

also define the concept of space-time manifold vector which utilizes a Khatri-Rao 

product to transfer the estimated channel response matrix to the classical model for 

parameter estimation. In Chapter 4, the proposed subspace-based joint parameter 

estimation method for MIMO multipath channel is proposed, whereas CRLB is also 

derived. The simulation results and performance analysis are also presented. In 

Chapter 5, a novel algorithm to calculate the position of mobile terminals by using 

only one BS in cellular MIMO communication systems is proposed, which involves 

nonlinear LS estimation and Taylor series linearization. The simulation results with 

analysis are also reported. Finally, conclusions and future work for this research are 

given in Chapter 6. 
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CHAPTER 2 

RELATED WORK 

2.1 Wireless Communication Channels 

Wireless communication systems are limited in performance and capacity by major 

phenomena such as propagation loss, shadowing, fast fading and co-channel interfer­

ence. Path loss corresponds to the mean signal power attenuation as a function of 

the propagation distance. The shadowing effect predicts the slow variation of mean 

signal power at different locations of a fixed transmitter to receiver separation. The 

phenomenon of fast fading is represented by the rapid fluctuations of the signal over 

small areas.Multipath propagation results in the spreading of the signal in different 

dimensions. These are the delay spread, Doppler (or frequency) spread and angle 

spread. These spreads have significant effects on the signal transmission. 

Multipath fading effect occurs in most wireless communication environments. Trans­

mitted signals on their way could meet walls, trees, and other physical entities. This 

natural phenomenon may induce reflection, refraction, deviation, boomerang, and 

ultimately these affected signals will take an altogether different path to reach their 

destination. Some signals even collapse. Thus signals traversing less direct paths 

arrive at the receiver later and are often attenuated. The excess time delay of the 

multipath causes time dispersion of the transmitted signal. The time dispersion af­

fects the channel characteristics, and is categorized as either flat fading channels or 

frequency selective fading channels. 

A channel is said to exhibit flat fading when the duration of the transmitted symbol is 

much larger than the time dispersion of the channel, such that the multipath cannot 
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be resolved. Viewed in frequency domain, a flat fading channel is one that has a 

constant amplitude and linear phase response over the transmitted signal bandwidth. 

This channel has an impulse response that appears to be "flat" in the bandwidth of the 

transmitted signal, and thus preserve the spectral characteristics of the transmitted 

signal. 

When the bandwidth of constant amplitude and linear phase response of the channel 

is less than the transmitted signal bandwidth, the spectral characteristic of the signal 

cannot be maintained. In this case, the channel applied different gain or attenuation to 

different frequency components of the transmitted signal, causing spectral distortion 

in the signal. This channel is called the frequency selective fading channel. In the 

time domain perspective, the time dispersion of the multipath channel is large enough 

such that some multipaths can be resolved at the receiver into symbol-spaced delay. 

In other words, a frequency selective fading channel creates intersymbol interference 

to the transmitted symbols. 

With proper pulse shaping and match filtering at the receiver, the frequency selective 

fading channel can be modeled as a symbol-spaced tap delay line filter. A frequency 

selective fading channel is a more practical model than flat fading channel for high 

speed wireless communication where the transmitted signal bandwidth is usually 

larger than the channel's coherence bandwidth. 

2.2 Overview of Wireless Pos i t ion Location Sys tems 

Wireless position location systems focus on providing Geographic information system 

(GIS) and spatial information via mobile and field units. The estimated information 

is used to filter out irrelevant information and provides the context for different 

services. These services could be offered and executed both with and outside the 
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mobile operator's network [2,72]. 

In 2000 Gravitate Inc. has published a white paper which identifies three evolution 

steps for PL system. The first generation refers to services where the subscriber 

has to manually give his position information to the system. The second generation 

(existing services) refers to location services where the position of the subscriber 

is automatically discovered but with little accuracy. Finally, the third generation 

refers to services where the position of the subscriber is automatically discovered 

with accuracy and which have the intelligence to inform or warn the subscriber about 

events depending on his position (the subscriber does not have to initiate the service, 

the initiation depends on triggers according to his preferences). 

Location technologies for 3G wireless systems are currently being standardized. These 

include cell-ID based, assisted GPS(A-GPS), and TDOA-based methods, such as ob­

served TDOA(OTDOA), Enhanced observed time difference (E-OTD) and advanced 

forward-link trilateration (A-FLT). E-OTD is a TDOA positioning method based on 

the OTD feature already existing in GSM [66]. In principle, it is similar to OTDOA 

but operates in TDMA-based networks. A-FLT is in principle a TDOA method and 

operates in CDMA-based networks. The basic idea of A-FLT method is to measure 

the phase delay between CDMA pilot signal pairs. Each pair consists of the home BS 

pilot and neighboring pilot. 

In Table 2.1, we list some of the companies currently engaged in wireless PL, and 

their technologies of location technologies. Most of these companies are focus on 

GPS-based and TDOA-based methods. The US Wireless Corp and Digital Earth 

Systems, on the other hand, focus on the statistical signature matching on empirical 

database. 
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TABLE 2.1 CURRENT WIRELESS PL INDUSTRY LEADERS 
Company 
TruePosition 
Cell-Loc 
Telecommunication Systems Inc. 
Grayson Wireless 
Cambridge Positioning Systems 
Aerial 
SnapTrack (Qualcomm) 
US Wireless Corp 
Digital Earth Systems 

Technology 
TDOA 
TDOA 
TDOA 
Uplink TDOA (U-TDOA)/AOA 
E-OTD, observed TDOA (OTDOA) 
E-OTD 
Assisted GPS(A-GPS) 
Multipath signature matching (MSM) 
Observed propagation data matching (A-OPD) 

2.2.1 Classification of Wireless PL System 

Location enabled technologies that have been proposed to date fall into three broad 

categories: network-based, handset based, and hybrid in nature. Network-based 

technologies use the cellular network to determine the location of the mobile devices. 

Handset-based technologies rely on a modified handset to calculate its own position. 

2.2.1.1 Handset-Based Technologies 

Handset-based technologies use the radio navigation system provided by the satellites 

of the U.S. government-operated global positioning system. GPS-based technology 

uses an embedded GPS receiver in the handset to detect how far it is from at least 

three satellites of GPS. 

GPS-based technology is well suited for many outdoor local positioning tasks. How­

ever, GPS has its shortcomings in dense urban areas and inside buildings. Unfor­

tunately, this is exactly the area where heavy, strongly-growing local wireless data 

transfer takes place. Moreover, it has other drawbacks such as increased cost, size and 

power consumption of mobile devices. A conventional GPS receiver could take sev­

eral minutes to acquire the satellite signal and therefore tends to operate continuously 
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rather than be turned on and off for each acquisition. The drain on the receiver's 

battery is significant. It also requires line-of-sight to calculate location. The unob­

structed line of sight to the orbiting transmitters is important. The satellite signal 

are weak (below 10e-15 W) when they arrive at a receiver's antenna, and are further 

weakened upon entering a building. Because of the drawbacks of non-network-based 

technologies, cellular carriers generally favor the use of a network-based approach, 

provided the necessary infrastructure is not prohibitively expensive. 

2.2.1.2 Network-Based Technologies 

The network-based location technologies are based on the parameters of the trans­

mission such as signal propagation time and angle of arrival. These technologies 

typically require considerable expenditure on the network infrastructure but do not 

require any modifications on the handset. A network-based location overlay system 

can be implemented by deploying location receiver/processors at either existing base 

stations or new receiver sites. These location receiver/processors are used to capture 

signals from the desired mobile unit and to transmit either the captured digitized sig­

nal or certain attributes. Preferably, the location receivers will be located at existing 

cellular antennas and RF front-end circuits. 

2.2.1.3 Hybrid Technologies 

Network-assisted GPS hybrid technologies are expected to deliver the accuracy of GPS 

and overcome the drawbacks of GPS associated with its line-of-sight requirement, 

and power consumption by shifting significant processing load from the device to the 

network. 

Another viewpoint for examining MS location systems is to consider where the po-



15 

sition measurements are made and where the position information is used. Three 

broad classification are made: 

• Mobile-based Positioning 

In such a system, the MS receiver makes the appropriate signal measurements 

from several transmitters and uses these measurements to determine its own 

position. One good example for mobile-based positioning is GPS system. 

• Mobile-assisted Positioning 

In a mobile-assisted positioning system, receivers at one or more BSs measure 

a signal originating from the MS to be positioned. These measurements are 

communicated to a central site (such as a Base Station Controller or Mobile 

Switching Center) where they are combined to give an estimate of the MS 

position. 

• Indirect Positioning 

Using a data link, it is possible to combine position measurements from the MS 

and BS to make a location estimate. Such hybrid systems are called indirect 

positioning systems. 
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FIGURE 2.1 A TYPICAL PL SYSTEM IN CELLULAR NETWORK 

In this research work, we focus on the network-based or mobile-assisted wireless PL 

system. Figure 2.1 illustrates a typical PL system in cellular networks.In cellular 

systems, PL technology typically uses BSs or other devices to measure radio signals 

from MS. A general structure of wireless PL system is illustrated in Figure 2.2. Each 

part of this structure will be investigated in details in the following sections. 
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FIGURE 2.2 T H E BLOCK DIAGRAM OF A WIRELESS PL SYSTEM 
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2.2.2 Error Sources in Wireless PL System 

Noise 

A mobile radio system is beset with noise from various sources and each source may 

have different characteristics. Firstly, there is receiver thermal noise which is Gaussian 

in nature and arise from the receiving system itself. Atmospheric noise may also be 

present, but it decreases rapidly with frequency and is generally, negligible in the VHF 

range. There is also "man-made" noise which is impulsive in nature and is radiated 

by electrical equipment of various kind. In wireless communication systems, the noise 

is often modelled as zero mean Gaussian noise with a certain variance, determined 

by the signal to noise ratio, measurement resolution, and some other factors. 

Multipath 

Multipath is the primary error sources for PL measurement systems. Therefore, 

techniques for mitigating multipath propagation are extremely valuable for PL sys­

tems, and continue to be an open research area. Traditionally, in wireless multipath 

environment, only the first arrived signal will be processed by PL systems, other mul­

tipath signals will be treated as interference and discarded. However, in this work, 

since more information can be acquired in a MIMO multipath propagation channel, 

we hope to develop a novel PL method by taking advantage of multipath signals in 

MIMO communication systems. It's the starting point of this research. 

NLOS 

Most PL systems require LOS communication links. However, such direct links do 

not always exist in reality because of the intrinsic complexity of mobile channels. 

The average error introduced by NLOS propagation has been measured to be 400-500 

meters in the GSM systems [66]. A field test shows that the average NLOS range 
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error can be as large as 589 m in an IS-95 CDMA system[70]. Therefore, NLOS errors 

are normally much larger than receiver noise and can degrade the location estimate 

significantly. NLOS propagation will bias the AOA, TOA and TDOA measurements 

even when high-resolution techniques are employed and multipath interference is 

absent. 

Hearability 

Hearability is the ability of receiving signals from a sufficient number of BSs simulta­

neously at a sufficient power level, and it is evaluated by the number of BSs that an 

MS can detect or hear. The higher the value, the better is the hearability [3]. Sig­

nificantly, there exists an operational conflict between wireless communication and 

wireless location. Whereas wireless location requires that the MS hear as many BSs 

as possible to improve location accuracy, wireless communications tries to minimize 

the power of all signals to mitigate interference and to increase system capacity. As 

a consequence, it is difficult for an MS to detect enough BSs for location purposes in 

current cellular phone networks. The lack of available BSs limits the location service 

coverage area and impedes the implementation of location systems. In order to im­

prove the hearability, the correlation time at the location measurement unit should 

be increased. Another option is the use of idle period downlink (IP-DL) method [42]. 

Geometric Dilution 

The geometric relationship of receiving BSs will greatly affect the location accuracy. 

When they are placed in a certain way, a small deviation in measurements can cause 

a large error in the final estimate. This is called the high Geometric Dilution of 

Precision(GDOP) error case [59]. GDOP occurs when an MS has a severely degraded 

location estimate, even if the measurements are fairly accurate. 
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2.2.3 Location Measurement and Principles 

The location measurement unit measures the parameters need for location estima­

tion from the received signal corrupted with additive noise, multipath, and /or NLOS 

errors. Classical parameters include signal strength, direction of arrival, and propa­

gation time of delay of received signal [7,60]. These parameters can be measured by 

using hardware or advanced signal processing techniques. 

The measurement principle of radio position systems can be classified into two broad 

categories: Direction Finding (DF) and Range based systems. Direction finding sys­

tems estimate the position location of a mobile source by measuring the AOA of the re­

ceived signals, using parameter estimation methods of array signal processing. Range 

based PL systems may be categorized as RSS (received signal strength) systems which 

are mainly based on propagation-loss equations, and propagation-time based systems 

that can be further divided into three different subclass: Time-of-arrival (TOA), 

Round-trip-time-of-flight (RTOF) and Time difference-of-arrival (TDOA) [67]. The 

detailed measurement principle will be present in the following sections. 

2.2.3.1 Direction Finding Systems 

Direction Finding systems use antenna array at the base station to determine the 

direction from which the mobile's signal arrives. The AOA measurement restricts 

the location of the source along a line in the estimated AOA. When multiple AOA 

measurements are made simultaneously by multiple base stations, a triangulation 

method may be used to form a location estimate of the source at the intersection of 

these Lines-Of-Bearing (LOB). 

Numerous techniques have been developed to determine the angle of arrival of incident 

signals on an antenna array. These methods typically are based on the phase difference 
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of the signal at adjacent elements in the antenna array since this phase difference is 

proportional to the angle of arrival of the incoming signal. Superresolution techniques 

have also been developed that take advantage of the structure of the input data model. 

These methods, including MUSIC and ESPRIT [49,51], fall into a class of algorithms 

known as subspace-based techniques. 

2.2.3.2 Range-Based Systems 

• RSS-Based Wireless Location Systems 

Received signal strength is based on propagation-loss equations. The free space 

transmission loss for instance is proportional to 1/r2 (r is the propagation dis­

tance). The major advantage of RSS systems is the fact that most modern radio 

modules already provide a received signal strength indicator (RSSI). Also the 

bit error rate (BER) can be used to estimate the signal attenuation. However, 

for RSS based location systems, high accuracy is difficult to obtain. In a mul-

tipath propagation environment, variations in the RSS can be 30 — AOdB over 

distances on the order of an half wavelength. The power control mechanism 

employed in cellular systems will impose another difficulty in estimating the 

location via RSS measurements [67]. 

• Propagation Time-Based Wireless Location Systems 

The propagation time-based PL methods (such as TOA, RTOF, and TDOA) 

make use of the fact that electromagnetic waves propagate at the constant 

speed of light. By measuring the propagation times of the signals traveling 

between the MS and at least three BSs, the distance between the MS and BSs 

can be obtained, which can then be used to derive the MS location. Due to 

their physical restraints, AOA and RSS systems only deliver moderate position 

accuracy, whereas the propagation time-based measurements can achieve higher 
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accuracy and does not require complex antenna arrays. 

The perhaps most intuitive and accurate approach for local position measure­

ment is to measure the RTOF of the signal traveling from the transmitter to 

the measuring unit and back. Obviously, the time-of-flight can then be used 

to calculate the distance. In TOA systems, the one-way propagation time is 

measured and the distance between measuring unit and signal transmitter is 

calculated. However, there're two main drawbacks of these two approaches: the 

transmitted signal must be labeled with a time stamp in order for the receiver 

to discern that the signal has traveled, and precise time synchronization of all 

involved fixed measuring units and mobile units is required. Therefore, TDOA 

method is a more practical means of location for commercial systems. In TDOA 

systems, the time-difference of arrival of the signals received in several pairs of 

measuring units is evaluated. The benefit of TDOA systems is that it is only 

necessary to synchronize the measuring units. This synchronization is done 

using a backbone network or a reference transponder in a known position. 

2.2.4 Location System Controller 

Depending on the location scheme used, the location measurement unit passes mea­

sured information such as AOA, TOA, or TDOA to the location system controller. 

The location system controller gathers all the information and select the measure­

ments to be used in the location estimator. The error statistics of each measurement 

is a major concern for choosing the measurements. The decision to select or reject a 

measurement can be based on a number of factors. 
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2.2.4.1 Geometric Dilution of Precision 

This GDOP phenomenon may be used as a means of characterizing the performance of 

a PL system for various conditions and geometry. The numerical value of the GDOP 

is defined as the ratio of the RMS position error to the RMS measurement error. The 

GDOP value can be used to decide whether the BS/MS geometry is appropriate for 

location estimate. For example, poor BS/MS geometry can lead to high GDOP. 

2.2.4.2 NLOS Error Mitigation 

Extensive research on NLOS mitigation techniques have been carried out in the past, 

as evidenced by the literature [10,13,73]. Most of these techniques assume that NLOS 

corrupted measurements only consist of a small portion of the total measurements. 

Since NLOS corrupted measurements are inconsistent with LOS expectations, they 

can be treated as outliers. These algorithms only work well with a large size of 

samples and small number of outliers. However, the number of available BSs is 

always limited, and multiple NLOS are likely to occur in a practical situation. Several 

other approaches [8,65] are proposed to reduce estimation errors for TOA when the 

majority are NLOS. By assuming the distributions of NLOS errors are mainly location 

dependent, some non-parametric approaches based on empirical data from various 

locations are proposed in [39,69]. 

2.2.5 Location Estimator and Algorithms 

The location estimator takes the measurement from the location system controller, 

and estimate the MS location. A straightforward approach uses a geometric interpre­

tation to calculate the intersection of lines for AOA, circles for TOA and hyperbolas 

for TDOA. This approach, however, becomes difficult if the lines or curves do not 
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intersect at a point due to measurement errors. 

The traditional techniques for position location such as direction finding and ranging 

are based on trilateration/multilateration system. Trilateration/multilateration PL 

systems utilize measurements from three or more BSs to estimate the two-dimensional 

(2-D) location of the mobile transmitter. In a trilateration hyperbolic ranging PL 

system, two range-difference measurements produced from three base stations can 

provide the position of the mobile target, additional measurements from more BSs 

can be used to reduce the ambiguities due to multipath, signal degradation, and noise. 

2.2.5.1 AOA-based PL estimator 

Signal AOA information, measured at BSs with an antenna array, can be used for 

positioning purpose as in Figure 2.3. MS is at the intersection of several direction lines 

corresponding to AOA measurements. An AOA system normally tries to determine 

the MS location by solving the following problem [38]: 

x — argrain Y_] dist(x, fit)2 (2.1) 
ies 

dist(x, fa) = \- sinf3i(x - x{) + cosf3i(y - y{)\ (2.2) 

where $ is the measured direction angle or direction line between MS and BSi, S 

denotes the total number of BSs involved for location estimation, and dist is the 

distance between the calculated MS and the measured direction line $ . (XJ,?/J) 

denotes the position of ith BS. 
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FIGURE 2.3 AOA-BASED WIRELESS LOCATION 

2.2.5.2 TDOA-based PL estimator 

Hyperbolic position location systems estimate the location of a source by the inter­

section of hyperboloids, which are the set of range-difference measurements between 

three or more base stations. The range-difference between two receivers is determined 

by measuring the difference in Time-of-Arrival of a signal between range-difference 

and the TDOA between receivers is given by: 

i,3 
= CTLj = C{ji - Tj) = Ti (2.3) 

where T^J and r^ are respectively the TDOA and the range difference measurement 

of the MS to the ith and jth BSS. The TDOA estimate, in the absence of noise and 

interference, restricts the possible source locations to a hyperboloid of resolution with 

the receivers as the foci. 
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FIGURE 2.4 T D O A - B A S E D WIRELESS LOCATION 

The TDOA system determines the MS position based on trilateration technique, as 

shown in Figure 2.4. The TDOA scheme is a nonlinear problem. It tries to solve the 

following optimization problem [38]: 

x — argmin ^ (r^ - |||x - Xi\\ - \\x - Xj\\\)2 (2.4) 
i,j£S,i^j 

where x is MS location, S is the set of all BSs, and Xt and Xj are coordinates of BSi 

and BSj. 

A major advantage of the TDOA, or Hyperbolic PL, method is that it does not re­

quire knowledge of the transmit time from the source. Consequently, strict clock 

synchronization between the source and receiver is not required. As a results, hyper­

bolic position location techniques may not require additional hardware or software 

implementation with the mobile unit. Two well known methods for hyperbolic PL 

estimation are discussed in details in the following chapter. The first method use 

Taylor Series enpension to linearize a set of range-difference equations [19]. While 

the Taylor Series solution is estimated in an iterative manner, a non-iterative solution 
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to the hyperbolic position estimation problem, which is capable of achieving optimum 

performance for arbitrarily placed receivers, was proposed by Chan [9]. The Two-step 

least square (TSLS) solution is in closed-form and is valid for both distant and close 

sources. When TDOA estimation errors are small, this method is an approximation 

to the maximum likelihood (ML) estimator. 

2.2.5.3 Hybrid Solution 

To improve positioning accuracy, it is better to use as much information as possible. 

A hybrid solution is proposed by simply combining TDOA and AOA measurement 

as follows [12,38]: 

%2 -Xi J/2 - Vl r2l 

%M -XI yM - Vi rMil 

sinPi —cos Pi 0 

SIUPN —COSPN 0 

where fit is the AOA of MS signal with respect to BSi , rf = (x — xt)
2 + (y — j/,)2, 

Ki = x^ + yf, and r,.! = r̂  —n. The hybrid location estimator can be found in [12,38] 

2.2.6 Measures of PL Accuracy 

There are some benchmarks to evaluate the accuracy of the position location tech­

niques. A commonly used measure of PL accuracy is the comparison of the MSE of 

the position location solution to the theoretical MSE based on the Cramer-Rao Lower 

Bound (CRLB). Another useful measure of PL accuracy is the GDOP. The GDOP 

x 

y 

(K2-Kx-r\^)l2 

( K M - ^ i - r | n ) / 2 

sinpiXi — cosftiyi 

sinPNXN — cospiyi 

(2.5) 
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measures the effect of the geometric configuration of the base station on the accuracy 

of the position location estimate [37]. 

MSE and CRLB 

A commonly used measure of accuracy of a PL estimator is the comparison of the 

MSE of the PL solution (x, y) to the theoretical MSE on the CRLB on the variance 

of unbiased estimators for PL system. The classical method for computing the MSE 

of a 2-D position location estimate is: 

MSE = e = E[(x - xvf + (y - yv)
2} (2.6) 

where (x,y) is the position of the source, (xv,yv) is the estimated position of the 

source, and E[ ] denotes the ensemble average over all channel conditions and hard­

ware anomalies for a user at a particular position location. The RMS location error, 

which can also be used as a measure of PL accuracy, is calculated as the square root 

of MSE. 

To gauge the best achievable accuracy of the PL estimator, the calculated MSE or 

RMS PL is compared to the theoretical minimum MSE based on the CRLB. The 

conventional CRLB sets a lower bound for the variance of any unbiased parameter 

estimator and is typically used for a stationary Gaussian signal in the presence of 

stationary Gaussian noise. For non-Gaussian and nonstationary signals and noise, 

alternate methods have been used to evaluate the performance of the estimators [37]. 

The derivation of the CRLB for Gaussian noise is provided in [9]. 

Geometric Dilution of Precision 

The accuracy of PL system depends not only on the measurement accuracy, but 

also on the geometric relationship between the locations of the base stations and the 

locations of the source. The GDOP quantifies the position accuracy based on this 
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geometric configuration and is defined as the ratio of the RMS position error to the 

RMS measurement error. The GDOP for an unbiased estimator and a 2-D hybolic 

system is given by: 

GDOP = ap/am = (y/a* + a*) / am (2.7) 

where ap is the standard deviation of position estimation; am is the standard deviation 

of measurement. Finding the smallest GDOP is often used as criterion for selecting a 

set of base station receivers from a larger set of base station measurements, in order 

to produce minimum PL estimation error for a particular zone from which mobile 

users are to operate. 

2.3 Fundamentals of Array Signal Process ing 

2.3.1 Concepts of Antenna Array 

In any wireless system, antennas are used at each end of the link. The antenna is 

a means of coupling radio frequency power from a transmission line into free space, 

allowing a transmitter to radiate, and a receiver to capture incident electromagnetic 

power [20,21,37]. An antenna array is a set of antenna elements arranged in space 

whose outputs are combined to give an overall antenna pattern that can differ from 

the pattern of the individual elements. An array can achieve the same directional 

performance of a larger antenna by trading the electrical problems of combining 

several antenna outputs for the mechanical problems of supporting and turning a large 

antenna. By varying the phase and amplitude of the individual element outputs before 

combining, the overall array pattern can be steered in the desired user's direction 

without physically moving any of the individual elements. 
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FIGURE 2.5 ARRAY WITH PLANE-WAVE INPUT 

To illustrate a simple beamforming operation, consider the case shown in Figure 

2.5. The input is a plane wave propagating with temporal (radian) frequency u. The 

array consists of a set of isotropic sensors located at positions p„, n = 0.1, • • • , N — 1. 

A conventional Delay-and-sum beamformer for a simple iV-element Uniform Linear 

Array (ULA) which has equally spaced array element along the axis is shown in Figure 

2.6. For a planewave incident on the array from direction 90, the difference in phase 

between adjacent signal component is: 

2?r 
$ = — dsin80 

A 
(2.8) 

where the term A denotes the wavelength, given by c/f, where c is the speed of light, 

/ is the carrier frequency in Hz, and d is the space between elements. Then we can 

define the array manifold vector as: 

v = 1 e-''* e - j ( A r - l ) * (2.9) 
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FIGURE 2.6 ILLUSTRATION OF A DELAY-AND-SUM BEAMFORMING STRUCTURE FOR 

LINEAR ARRAY 

Figure 2.7 shows a polar plot of beam pattern for 11-element uniform linear array. 
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2.3.2 Adaptive Array Processing and Smart Antenna Systems 

According to their work pattern, the antenna arrays for wireless communications can 

be divided into two classes: switched beam system and adaptive arrays system. The 

switched beam system utilizes antenna arrays to perform some narrow beam which 

point to each direction. It's equivalent to cover N radiant areas with N antennas. 

While the users move from one area to another, the system switches from one beam 

to another by monitoring the signal strength, and tracking the user by selecting the 

right area. The switched beam pattern can be regarded as partial adaptation to 

the mobile communication environment. In array antenna systems which use only 

the fixed performing method, a switch is used to select the best beam to receive a 

particular signal. The switched beam is relatively simple to implement, requiring only 

a performing network, an RF switch, and control logic to select a particular beam. 

An adaptive antenna array consists of an array of antenna elements and an adap­

tive receiver-processor. Given a beam-steering command, the adaptive processor 

takes samples from the antenna elements and automatically adjusts element control 

weights according to some optimization criterion. Typically, the weights are chosen to 

maximize the output signal-to-noise-ratio or the signal-to-interference-plus-noise-ratio 

(SINR). 

The adaptive antenna arrays use adaptive algorithms to form the beam to point 

the desired user real time in order to track and locate the user, thus effectively 

suppressing the interference signal and enhancing the desired signal. The adaptive 

array antennas adjust the beam direction from time to time according to the variant 

of signal propagation environment without pre-form the fixed beam. It has better 

performance than beam switched systems, but with complicated implementation. 

Figure 2.8 shows an example of adaptive array, the weight vector iu_k t is adjusted, or 

adapted to maximize the quality of the signal that is available to the demodulator 
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for signal k a t t ime index i [37]. 
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FIGURE 2.8 AN ADAPTIVE ARRAY STRUCTURE 

Antenna array processing in wireless communications are called smart antenna sys­

tems. In the conventional smart antenna terminology, only the transmitter or the 

receiver is actually equipped with more than one element, being typically the base 

station, where the extra cost and space have so far been perceived as more easily 

affordable than on a small phone handset. Smart antenna can provide significant 

performance in existing wireless cellular systems which utilize various types of multi­

ple access technique such as TDMA, FDMA and CDMA. Adaptive arrays give wireless 

providers the ability of forming a main beam in the direction of each user. Antenna 

arrays can combat multipath fading of the desired signal and suppress interfering 

signals, thereby increasing both the performance and capacity of wireless systems. A 

theoretical study showed that a base station with an adaptive array antenna could 

handle three times as many users in a cell as a base station with an omni-directional 

antenna [11]. An additional benefit of antenna arrays is that high resolution direc­

tion of arrival algorithms such as maximum likelihood, MUSIC, and ESPRIT can 

be used to estimate the angles of arrival of incoming signals to sub-degree accuracy. 

Therefore, antenna arrays are widely used to solve DF problems. 
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Simple linear antenna array combining can offer a more reliable communications 

link in the presence of adverse propagation conditions such as multipath fading and 

interference. A key concept in smart antennas is that of beamforming by which one 

increases the average SNR through focusing the energy into desired directions, in 

either the transmit or the receiver. Indeed, if one estimates the response of each 

antenna element to a given desired signal, and possibly to interference signal, one can 

optimally combine the elements with weights selected as a function of each element 

response. One can then maximize the average desired signal level or minimize the 

level of other components whether noise or co-channel interference. 

2.3.3 Parameter Estimation 

Position Location evolves from the classical direction finding problem in array signal 

processing. These techniques try to estimate the angle-of-arrival (AOA) of the source. 

They include maximum likelihood estimation, Capon's minimum variance method 

(MVDR) [37,61], and subspace based estimation (MUSIC and ESPRIT ) [37,49,51, 

61]. 

2.3.3.1 Parameter Estimation Model 

A number of methods are available in the literature for estimating the signal param­

eters in the classical model 

x(fc) = Vs(fc) + n(fc) (2.10) 

where the ith column of matrix V, denoted by Vj, represents array manifold vector of 

signal Si(k) which is transmitted by source i (i = 1,2..., D). VjS reflect different time 
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delays of the signals at different antennas. The vector 

s(k) = [Sl(k),s2(k),...,sD(k)]T (2.11) 

is the unknown signal vector. n(k) is the additive measurement noise. 

For an isotropic M-element linear array along Z-axis with uniform spacing d = A/2, 

where A is signal wavelength: 

v . _ h eJnsincf>i eJ2vsm<t>i eJ(M-l)7rsin</>ijT ^ 12) 

2.3.3.2 Maximum Likelihood Estimator 

Maximum Likelihood (ML) techniques [37,61] are some of the first techniques to be in­

vestigated for AOA estimation. Since ML techniques were computationally intensive, 

they were less popular than suboptimal subspace techniques, especially in low signal-

to-noise ratio conditions or when the number of signal samples is small. However, 

ML based techniques can perform well in correlated signal environments. Moreover, 

under some practical conditions, the ML estimators is unbiased and, asymptotically 

its variance approaches the Cramer-Rao bound. 

Assume the noise is an ergodic complex-valued Gaussian process of zero mean and 

covariance cr2I, where a2 is an unknown scalar an I is the identity matrix, the joint 

probability density function of the sampled data as given by equation (2.10) can be 

expressed as: 

*(* )=n ^eTFTjexp( ^ — } (2-i3) 

fc=o L J 

where det[] denotes the determinant. Ignoring the constant terms, the log likelihood 
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A r - 1 

function is given by: 

J = -NDloga2 - AT V |x(fc) - V(0)s(/c)|2 (2.14) 
a1 ^—' — 

k=0 

Maximizing equation(2.14) is equivalent to the following minimization: 

A r - 1 

min{£ |x( /c ) -V(0) 5 ( fc ) | 2 } (2.15) 
(^'S) fc=o 

where S = E[s(k)sH(k)]. 

Fixing 0 and minimizing with respect to S, yields the well known least squares 

solution: 

s(k) = (V^(0)V(0))-1VH(0)x(fc) (2.16) 

The ML estimation of the DOA 4> = (f>i,..., 4>D-\ is obtained by maximizing the log-

likelihood function: 
J V - l 

J(0) = £ | P v ( , ) X ( / c ) | 2 (2.17) 
fc=0 

where P y ^ i s the projection operator which projects vectors onto the space spanned 

by the columns of V(0), and is given by: 

Pvw = V^XV^V^))"1^) (2.18) 

2.3.3.3 The MUSIC Algorithm 

The MUSIC proposed by Schmidt in 1979 [51] is a subspace based high resolution 

multiple signal classification technique that can be used to accurately estimate the 

number of incident signals and the direction of arrivals of the signals by exploiting 

the eigen-structure of the input covariance matrix. The term "high-resolution" refers 
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to the fact that the frequency estimation or angle of arrival estimation has, under 

carefully controlled conditions, the ability to surpass the limiting behavior of classical 

Fourier-based methods [27]. This algorithm divides the space spanned by the eigen 

vectors of the input covariance matrix of the received signal into two subspaces -

signal plus noise subspace and the noise subspace. 

Considering a uniformly spaced linear array of M identical isotropic antenna elements 

and if D signals arriving at the linear array, then the received signal can be represented 

by the equation [37]: 
D-l 

x(f) = ^ v ( ^ ( t ) + n(t) (2.19) 
;=o 

Writing the above equation in matrix form, 

x(t) V(0O) V(0i)---V(0£>_i) 
s0(t) 

SD-l(t) 
+ n(t) = Vs(i) + n(£) (2.20) 

Taking the autocorrelation of equation(2.20), 

R „ = E[x{t)x(t + T)H] = E[(Vs(t) + n(t))(Vs(*) + n(t))H] (2.21) 

where H denotes Hermitian transpose. Dropping the time argument of the vector for 

simplicity and using the assumption that the noise is uncorrelated with the signals, 

we can arrive at the following expressions using basic linear algebra: 

Rxx = VE[ssH]VH + E[imH] = VRSSV
H + a2l (2.22) 

where we assume that the noise at each of the array element is additive white Gaus­

sian, and the mean of each signal arriving at the antenna elements is zero. Rss denotes 

the correlation or the covariance matrix of the incoming signals. 
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The eigen values of Kxx can be found by solving the equation: 

\Rxx-\il\=0,i = 0,l,...,M-l (2.23) 

where |.| represents the determinant. From these eigen values, the eigen values of 

\"RSSV
H can be found as: 

Vi = \-a2
n (2.24) 

It can be shown that when the number of incident signals D is less than the number of 

antenna elements M, (M — D) eigen values of VR^sV^ are zero. If the eigen values 

of Kxx are sorted in descending order, then the (M — D) largest eigen values of Hxx 

can be seen to be: 

\ = al, i = D,D + l,...,M-l (2.25) 

It can be shown that the eigen vectors of Hxx corresponding to the (M — D) equal 

eigen values found above satisfy the following equation [37]: 

VHqi = 0,i = D,D + l,...,M-l (2.26) 

where qj, i = D, D + 1,..., M — 1 are the eigen vectors of Rxx whose corresponding 

eigen values are nearly equal to a\. 

In other words, the array propagation vectors corresponding to each of the incident 

signals are orthogonal to the eigen vectors of Rxx whose corresponding eigen values are 

nearly a\. Thus spatial searching for the incoming signals can be done by calculating 

the array propagation vector v<̂ , —7r/2 < (ft < n/2 and checking if it is orthogonal to 

each of the eigen vectors q;, i = D, D + 1,..., M — 1. 

The DOA's of each of the incident signals can be estimated by plotting the spatial 
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spectrum given by the expression [37]. 

v"(0)v(0) 
PmuricM V H ( 0 ) U T I U ^ V ( 0 ) 

where 

U„ = [qo qo+i qjw-i] 

(2.27) 

(2.28) 

and locating the peaks in the plot. 
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FIGURE 2.9 COMPARISON OF RESOLUTION PERFORMANCE OF MVDR, Music AND 

ESPRIT 

Figure 2.9 illustrates the performance improvement obtained by Music and ESPRIT 

method over the MVDR method. Here three equal power (each has a SNR of 20dB) 

sinusoidal signals of different frequencies, arriving at angles of 80, 85 and 115 degree 

respectively were incident on a uniform linear array of 6 elements. Mat lab simulation 

shows that Music exhibits better resolution than MVDR method, while ESPRIT gives 
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a closed-form solution. 

2.4 MIMO and Space-time Processing 

2.4.1 Introduction to MIMO Communication Systems 

MIMO systems can be defined simply. Given an arbitrary wireless communication 

system, we consider a link for which the transmitting end as well as the receiving end 

is equipped with multiple antenna elements. Such a system is illustrated in Fig. 2.10. 

The idea behind MIMO is that the signals on the transmit (Tx) antennas at one end 

and the receive (Rx) antennas at the other end are "combined" in such a way that 

the quality (bit-error rate or BER) or the data rate (bits/sec) of the communication 

for each MIMO user will be improved. Such an advantage can be used to increase 

both the network's quality of service and the operator's revenues significantly. 

Wireless 
+• Modulation • I Channel \ _ • j Demodulation " - ^ T 

Weighting/Maping " V " * ^ \ JA/\' i Decoding 

0100100 C o d i " 9 • / «u„M^i \ • Weighting/Demaping 0100100 

FIGURE 2.10 DIAGRAM OF A MIMO WIRELESS TRANSMISSION SYSTEM 

A key feature of MIMO systems is the ability to turn multipath propagation, tradi­

tionally a pitfall of wireless transmission, into a benefit for the user. MIMO effectively 

takes advantage of random fading [28] and when available, multipath delay spread 

[48], for multiplying transfer rates. The prospect of many orders of magnitude im-
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provement in wireless communication performance at no cost of extra spectrum (only 

hardware and complexity are added) is largely responsible for the success of MIMO 

as a topic for new research. This has prompted progress in areas as diverse as chan­

nel modeling, information theory and coding, signal processing, antenna design and 

multiantenna-aware cellular design, fixed or mobile. 

Because MIMO transmits multiple signals across the communications channel, MIMO 

has the ability to multiply capacity, which is another word for speed. A common mea­

sure of wireless capacity is spectral efficiency-the number of units of information per 

unit of time per unit of bandwidth. MIMO approach is turning out to be a compelling 

method that addresses the wireless communication challenges of signal fading, increas­

ing interference and limited spectrum. MIMO multiplies the data throughput and 

provides for a simultaneous increase in range and reliability all without consuming 

extra radio frequency. It is a multidimensional approach that transmits and receives 

two or more unique data streams through one radio channel whereby the system 

delivers two or more times the data rate per channel. 

For both transmitter and receiver, MIMO exploits the use of multiple signals transmit­

ted into the wireless medium and multiple signals received from the wireless medium 

to improve the wireless performance significantly. Using multiple antennas, MIMO 

uses spectrum more efficiently without sacrificing the reliability. Before MIMO flour­

ishes, speed could be increased only by sacrificing range and reliability. Range could 

be extended at the expense of speed and reliability. And reliability could be improved 

by reducing speed and range. MIMO technology may provide Spatial Division Multi­

plexing (SDM). spatial multiplexing essentially sends multiple data streams through 

the same RF channel simultaneously. This technology turns the normally villainous 

multipath into an asset, presumably delivering greater range and greater bandwidth 

at a given range. 
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2.4.2 The MIMO Channel Modeling and Multipath Propagation 

Assessing the potential performance of MIMO systems in realistic environments re­

quires a detailed description of the multipath channel under investigation. This de­

scription must go beyond traditional models, as we must accurately represent a matrix 

of transfer functions. In some cases, channel measurements are used to fully charac­

terize these channels. However, since relatively few such campaigns have been per­

formed and the resulting data is not widely available, many researchers have turned 

to channel models that capture the key behaviors observed in the experimental data 

[14,46,50]. When accurate, these models facilitate performance assessment of po­

tential space-time coding approaches in realistic propagation environments. Several 

works have been reported in this area and the proposed models can be classified in 

different ways. 

Wideband Models vs. Narrowband Models 

The MIMO channel models can be divided into the wideband models and the nar­

rowband models directly by considering the bandwidth of the system. The wide­

band models treat the propagation channel as frequency selective, which means that 

different frequency sub-bands have different channel response. On the other hand, 

the narrowband models assume that the channel has frequency non-selective fading 

and therefore the channel has the same response over the entire system bandwidth. 

Wideband MIMO channel models can be found in [30,46, 74, 75] while [15,53] treat 

narrowband models. 

Field Measurements vs. Scatterer Models 

To model the MIMO channel, one approach is to measure the MIMO channel re­

sponses through field measurements. Some important characteristics of the MIMO 

channel can be obtained by investigating the recorded data and the MIMO chan-
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nel can be modeled to have similar characteristics. Models based on MIMO channel 

measurements were reported in [31,40,41]. An alternative approach is to postulate a 

model (usually involving distributed scatterers) that attempts to capture the chan­

nel characteristics. Such a model can often illustrate the essential characteristics of 

the MIMO channel as long as the constructed scattering environment is reasonable. 

Examples of scatterer models can be found in [14,53]. 

Non-physical Models vs. Physical Models 

The MIMO channel models can be divided into the non-physical and physical models 

[30,46,74,75]. The non-physical models are based on the channel statistical character­

istics using non-physical parameters. In general, the non-physical models are easy to 

simulate and provide accurate channel characterization for the situations under which 

they were identified. On the other hand they give limited insight to the propagation 

characteristics of the MIMO channels and depend on the measurement equipment, 

e.g. the bandwidth, the configuration and aperture of the arrays, the heights and 

response of transmit and receive antennas in the measurements. The influence of the 

channel and measurement equipment on the model can not be separated. Another 

category are the physical models. In general, these models choose some crucial physi­

cal parameters to describe the MIMO propagation channels. Some typical parameters 

include AOA, AOD, DOA. 

A common strategy for dealing with weaker multipath signals is to simply ig­

nore them-in which case the energy they contain is wasted. MIMO, in contrast, 

takes advantage of multipath propagation to increase the much-wanted throughput, 

range/coverage, and reliability. Rather than combating the multipath signals, MIMO 

intelligently use those signals to carry more bits of information thereby saving a lot 

of energy and guaranteeing the longevity of the expensive wireless infrastructures. 

That is, the high performance is accomplished by sending and receiving more than 
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one data signal in the same radio channel at the same time. 

2.5 Conclusions 

In this chapter, we first give an overview of the current position location systems. 

In principle, wireless PL system can be implemented on direction finding approach 

and range-based approach, or their combination. By introducing the concept of 

array processing, we present the classical parameter estimation techniques which 

include Maximum Likelihood and subspace-based methods. In order to extend the 

classical parameter estimation methods in wireless MIMO systems, we give an brief 

introduction to MIMO communication systems, and we also provide the classification 

of MIMO channel model. 
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CHAPTER 3 

BIDIRECTIONAL MIMO CHANNEL MODEL 

3.1 Introduction 

MIMO systems offer a new dimension by exploiting the spatial property of the mul­

tipath channel [14,17]. Therefore in a wireless MIMO system, it is possible to esti­

mate more channel parameters due to the multipath environment. Recently, double-

directional estimation methods have been proposed to estimate both angles of depar­

ture on the transmit site and angles of arrival on the receive site simultaneously [55]. 

However, the estimation of channel features has to include some other parameters 

such as the delay of arrival. 

Traditionally, to estimate the channel, some known training signals are sent dur­

ing some portion of the transmission interval. The training-based schemes can be 

divided into training phase and data transmission phase [26]. During the training 

phase, knowing the received signals at receiver and training signals at transmitter, 

we can estimate channel matrix using several training-based channel estimation algo­

rithms i.e. Least Squares, Maximum Likelihood, Maximum a posteriori (MAP) and 

Maximum Mean Square Error (MMSE) algorithms [4,62]. The estimated channel 

matrix is then used in the succeeding data transmission phase to obtain the desired 

data. 

In this work, we first develop a bidirectional beamforming MIMO channel model 

which includes the physical multipath parameters (AOA, AOD, DOA, ...). We then 

use a training based scheme to estimate the MIMO channel impulse response. Af­

ter rearranging the estimated channel response by vectorization, the conventional 
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parameter estimation model discussed in chapter 2 can be modified to achieve high 

resolution of multipath parameters such as AOAs, AODs and DOAs. 

In many of the literature, a quasi-static block-fading channel model is used. The 

propagation channel is assumed to be constant during the estimation process [62]. 

As mentioned before, when multipath is considered, the channel usually experience 

frequency-selective fading. Therefore, the propagation channel considered in this 

work is block frequency-selective channel. There are two different multipath MIMO 

frequency selective channel models (or combination model of them) corresponding to 

different assumptions about the geometry of antenna arrays and scatterers [54]. 

• Beamforming model: In this model, the elements of both transmit and receive 

antenna arrays are co-located and the scatterers can be considered as point 

sources. Each multipath channel is characterized by a AOD and AOA, a delay 

and a complex fading amplitude. In general, this model is fit for outdoor 

channels. The MIMO model in the 3rd Generation Partnership Project (3GPP 

TR 25.996) adopts this approach. 

• Diversity model: The elements of the transmit and/or receive antenna arrays 

are not necessary co-located and/or the different scatterers are modeled as dis­

tributed sources. This model is generally suitable for an indoor channel. In 

this model, the channel gains between different transmit and receive antennas 

is modeled as spatially and temporally correlated jointly Gaussian random vari­

able with zero/nonzero mean (Rayleigh /Ricean fading). The MIMO model for 

wireless LAN in IEEE P802.ll (IEEE 802.11-03) uses this type of model. 

In this work, we consider a simplified 3GPP MIMO channel model [1] which is bidirec­

tional beamforming propagation channel model illustrated as Fig.3.1. In this outdoor 

beamforming model, we assume there is only one path that goes through each scat-

http://P802.ll
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terer. Each path has its own AOD, AOA, and the delay between each pair of paths 

can also be measured. 

For a (N, M) MIMO transmission system, there exists Nx M wireless channels from 

the transmit antennas to the receive antennas, and each of these wireless channels 

experience frequency selective fading. These channels can be modeled as an equivalent 

symbol-spaced tap delay line with L channel taps. Each channel tap gains are assumed 

to be independent to each other in a rich scattering scenario. Moreover, the number 

of channel taps for all N x M are assumed to be the same. This assumption is made 

because in wave propagation, the delay profile of the channels are mainly due to 

reflection off large objects. As the antennas are not separated very far apart and are 

in similar environment, all the Nx Mchannels should have similar delay spread, but 

with different fading coefficients. 

M S a r T a y \ MS amy broadside 

MS direction of travel 

FIGURE 3.1 A BIDIRECTIONAL BEAMFORMING MIMO PROPAGATION CHANNEL 

MODEL 

In order to jointly estimate multipath channel parameters, we shall consider the 

following conditions on the mobile radio propagation scenario: 
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• The MIMO multipath environment is modelled by a discrete number of rays, 

each parameterized by a delay, complex amplitude (path fading), AOA and 

AOD. 

• The training sequence signals are digital sequences that are linearly modulated 

by known pulse shape functions. 

• The parameters such as AODs, AOAs, and DOAs are not changing significantly 

from each time slot to the next. 

• The data transmitted by the antennas is sampled at or above the Nyquist rate. 

• The antenna array response has a known structure. 

The subspace-based methods such as MUSIC [51] and ESPRIT [49] can achieve 

high resolution of AOA of received signals. Therefore, they are widely used for 

parameter estimation with various versions. This motivates us to develop a subspace-

based approach for MIMO communication systems to estimate channel parameters 

in multipath environment. 

3.2 The Sys t em Mode l 

3.2.1 The Pulse Shaping Scheme 

Just as the array manifold contains the spatial wavefield information, the time mani­

fold contains the temporal pulse-shaping function information. Some commonly used 

pulse shape functions are the family of raised cosine pulses, given by: 

sin(7rf)/r cos(ant/T) 
9{t) = ( ^7r~ ) ( i - (2<W ( } 
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where a is the excess bandwith beyond the minimum bandwidth ir/T required to 

transmit without inter-symbol-interference (ISI). Fig. 3.2 shows raised cosine pulses 

for various excess bandwidths. These pulses satisfy the Nyquist criterion for no ISI, 

that is, are zero at sampling instants kT, where k is any nonzero integer. They are 

bandlimited to \ui\ < (1 + a)n/T, but in time domain they are often truncated. 

Raised cosine pulses for various excess bandwidths 

0.8 

0.6 
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E 
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0.4 

6 4 2 0 2 4 6 
Time 

FIGURE 3.2 RAISED COSINE PULSES FOR VARIOUS EXCESS BANDWIDTHS 

3.2.2 The SIMO Beam-forming Model 

In this work, we focus on the case of a single user transmitting modulated digital signal 

in a specular multipath environment. Digital modulation is the process by which a 

digital baseband signal is converted into an RF signal for transmission. The digital 

sequence {xk} is modulated by the pulse shaping function g(t), such that, assuming 

linear modulation for simplicity, the baseband transmitted signal is the convolution 

of the digital signal with the modulation waveform: 

x(t) = ^2xig(t-lT) (3.2) 
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where T is the symbol period, and the digital signal is described by a sequence of 

Dirac pulse J ^ xiS(t — IT). 

Let's start with the SIMO case with 1 transmit antenna and N receiving antenna. 

The continuous-time received signal at nth antenna can be modeled as 

R 

Vn{t) = 'Y^PraR,n{(t)r)aT,l{Or)x{t - Tr) + Un(t) U = 1, 2, . . . , N (3 .3) 

r = l 

where nn(t) is the additive noise. j3T is the amplitude of the multipath signal passing 

through the rth propagation path. The transmit antenna gain at direction 6r is 

ar,i(0r)) a n d the nth receive antenna gain at direction (f>r is a^n((pr) . 

Thus, the received signal at the antenna array can be written as an N x 1 vector y(t) 

R 

y(t) = Y^ £a*(0 r)a r , i(0r)z(* - rr) + n(t) (3.4) 
r = l 

where Gaussian noise n(t) has same structure as y(t). The vector a^(0 r) = 

[aRi(4>r), • • • , aRn{4>r)Y ™ the receive array manifold vector for an ULA array at di­

rection (j)r. 

In order to derive a formulation for overall channel matrix involving both multipath 

channel and the pulse shaping filter, we first define a time-invariant channel c(t) as 

(for short intervals), 

R 

c(t) = ^20raLR(<f>r)aT,i(er)S(t - r r) (3.5) 
r = l 

then the output of the antenna array in a convolution form is 

y(*) = x(*)*c(*) + n(t) (3.6) 
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Thus, by combining the pulse shaping filter g(t), the overall channel response can be 

given by 
R 

h(t) = ] £ / W 0 r K , i ( 0 r M * - rr) (3.7) 
r = l 

It is reasonable to assume that the pulse shape function g(t) has finite support t € 

[—-y, -y). If the delay spread Td = MjT, where Ma is an integer, then Eq. (3.7) 

implies that the (integer) channel length is L, where LT = LgT + Td, which means 

h(t) is nonzero only for t € [— |f, ^) , thus we can write 

y(t) = Y,xMt-lT) + n(t) (3.8) 
i 

Based on Eq. (3.8), we will derive a discrete time formula of MIMO channel model. 

Without loss of generality, we suppose that the sampling is perfectly synchronized 

with the transmission. Collect data over K symbol periods, and sample at instant 

t = kT, Eq. (3.8) becomes 

y(kT)= J2 xih(kT-lT)+n(kT), fc = 0,l ,--- ,K-l (3.9) 
l=k-L+l 

The channel vectors can be collected into & N x L matrix 

H = [ h ( 0 ) h ( T ) . - - h ( ( L - l ) r ) ] ; (3.10) 
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Then based on the channel model (3.7), it follows that 

H = [SLR(</>I • • • SLR{<I>R))] 

PIOTM) 

p2aT,i(02) 

pRaT,i(0R) 

gT(n) 

gT(r2) 

g T ( ^ ) 
(3.11) 

where gT(Tr) = [g(kT — Tr)]k=o.i,--,L-i is the L-dimensional column vector containing 

the samples of g(t — rT) defined in last section. 

Based on Eq. (3.11), parameter estimation has been proposed to joint DOA and 

AOA in [63,64]. In order to estimate these parameters, the channel H needs to be 

determined first. For instance, it can be estimated using least squares methods by 

collecting training data. For this reason, we write the discrete-time signal model in 

matrix form as 

Y = H X + N (3.12) 

In Eq. (3.12), the received signal can be written as 

Y = [yi yN? (3.13) 

where 

yn = [yn,l Vn,2 • • • Vn,K\' 

and N is defined similar to Y . 
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The transmitted signals can be expressed as 

X0 Xi ••• XK-\ 

X _ i Xn X\ 

X = 

X _ L + i X_ L +2 • • • XK-L T V L J LxK 

3.2.3 The MIMO Signal Model 

Different form SIMO channelmodel, addtional parameters such as angle of departure 

will be included. In the MIMO multipath model shown in Fig. 3.1, we assume a 

MIMO channel employing ULAs (uniform linear array) in both end with M transmit 

elements and N receive elements. There are R propagating paths, each parameterized 

by 6r.(j)r,Tr,pr. The parameters 6r and (f)r are the departure and arrival angles of the 

rth path respectively, while each associated path has a complex path gain j3r and 

delay r r. 

In order to estimate multipath parameters, we first analyze the MIMO system model. 

The original data stream s is demultiplexed into M parallel substreams dTO (m = 

1---M), and each substream is then mapped into symbol substream xm . These 

symbols in parallel substreams are then transmitted through their respective antennas 

simultaneously. The signals we sending out are actually electromagnetic waves which 

convey the same information as the discrete sequence of xm[A;]. 

The digital sequence xm[/c] is modulated by a pulse shaping function g(t). The 

problem of pulse shaping involves taking a sequence of samples xm[k] and converting 

them into a continuous time waveform xm(t) such that the waveform has all its 

spectral content within the channel bandwidth W and there is no loss of information 

(i.e., we have a perfect reconstruction). The baseband transmitted signal xm{t) at mth 
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antenna can be represented as a convolution of the digital signal with the modulation 

wave: 

xm{t) = YJXm[l]g(t-lT) (3.14) 
i 

where T is the symbol period, and the digital signal is described by a sequence of 

dirac pulse ^2xmkS(t — kT). 

For the case that different signals sent over the transmit antennas 

x(t) = [x1(t)x2(t) •••xM( t)]T (3-15) 

The continuous-time received signal at nth antenna can be modeled as 

R M 

Vnit) = ^2praR.n((()r)^2aT,m(0r)xm(t-Tr) + nn(t) n= 1,2, ...,7V (3.16) 
r = l rre=l 

where nn(t) is the additive Gaussian noise. ar(# r) is the corresponding array 

manifold vector for a signal emitting from the direction 9r. Here a r(# r) = 

[f lTl(^r) , • • • ,0,Tm(6r)] • 

From Eq. (3.16), by considering N receiving antennas together, we can define the 

receive vector as 

R M 

y(t) = 5^&a*(0r) Yl aT,m(0r)Xm(t ~ Tr) + n(t) (3.17) 

r=l ra=l 

where n(t) is the additive Gaussian noise. 

Similar to SIMO case, the channel response to a pulse g(t) for mth transmit antenna 

can be written as 

R 

hm(t) = J2praR(<f>r)aT,m{6r)g(t-Tr), m = l , - - - , M (3.18) 
r=l 
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By combining Eq. (3.17) and (3.18), the output of antenna array at receive side can 

be rewritten as 
M 

y(t) = Y,J2 Vfhm(t - IT) + n(t) (3.19) 
m = l / 

In the following, we will derive a discrete time beamforming model for MIMO systems 

based on Eq. (3.19). We first collect data over K symbol periods, then Eq. (3.19) 

becomes 

M k 

y(kT) = J2 Yl Xm,ihm(kT-lT) + n(kT) fc = 0, ! , • • - , K-\ (3.20) 
m=\ l=k-L+l 

By considering hm(kT — IT) ina matrix form, the beamforming channel model (3.18) 

can be rewritten as 

H m = [aR((/)i • • • aR((j)R)] 

PiaT,m{Ql) 

fo^T^fa) 

= A*(0)B 

= A*(<£)BQ 

g(0T - r^ar^e,) 

g(0T - TR)aT,m(9R) 

PRO>T,m(0Il) 

g((L - 1)T - r^aT^Br) 

g((L-l)T-TR)aT,m(0R) 

sT(n) 

g r(r2) 

ST(rR) 

(3.21) 

where g(r r) = [g(kT — Tr)]fc=o,i,....L-i is a n L-dimensional column vector containing 
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the samples of g(t — r r ) . And the matrix B is defined as 

B = 

Pi 

P2 

The matrix QTO is defined as 

Wlli 

^ ( O r - r i ) o T , m ( 0 i ) 

g(0T - TR)aT,m(6R) 

PR 

(3.22) 

< K ( L - i ) r - T i K , m ( 0 i ) 

g((L-l)T-TR)(Prtm(dR) 

Finally, the complete pulse response of the MIMO channel for M transmit antennas 

can be conveniently represent as 

H = [H l5 • • • ,HJV/] 

= [h!(0) h^T) •••h1((L- 1)T), • • • ,hA f(0) h M ( T ) 

= A f l ( 0 ) B [ Q 1 , Q 2 , - - - , Q M ] 

= A ^ ( ^ ) B [ a r ( ^ ) & g ( n ) , • • • , a r ( ^ ) (8) g( r f l ) ] T 

= A f l W B [ A r ( ^ ) o G ( r ) f 

where G ( r ) = [g(ri), • • • , g(Tfl)]. 

> h M ( ( L - l ) T ] 

(3.23) 

In order for parameter estimation, similar to SIMO case, the discrete-time signal 

model in matrix form can be expressed as 

Y = H X + N (3.24) 
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Note H contains multiple transmit antennas which is different from SIMO counter­

part. 

in Eq. (3.24), the received signal can be written as 

Y = [YI ••• y;v]T (3-25) 

where 

yn = [yn,i Vna • • • yn,K]T 

and N is defined similar to Y. 

Signals sent over the transmitted antenna can be expressed as 

X = [Xx X2 • • • X M ] r (3.26) 

where at each transmit antenna 

•£m,0 *£m,l ' ' ' xm,K—l 

~rT xm, — l xm,0 xm,l 

xm,-L+l xm,-L+2 * ' ' xm,K-L T „ 
L J LxK 

3.2A Considering Oversampling 

If we consider the oversampling factor (i.e., at each symbol period we take P samples 

of data), then we got the temporal vector as the truncated, delayed, and upsampled 

impulse response of the pulse shaping filter: 

S(rr) = [g(-Tr) g(-rr + T/P) • • • g(-Tr + (L - l)T)/P}T (3.27) 
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Here L denotes the length of the pulse shaping filter, whereas g{.) denotes the time-

continuous Nyquist pulse shape. The path delay is usually expressed in relative units 

(i.e., normalized by the symbol period T). 

The Eq. (3.20) becomes 

M k 

y(kT) = JT J2 xmjhm(kT-lT) + n(kT) fc = 0,-^ • • - , # - ^ (3.28) 
m-\ l=k-L+l 

If we collect the channel vectors into a N x MPL matrix 

H = [ h 1 ( 0 ) h 1 ( ^ ) - - - h 1 ( ( J L - i ) r ) , - - - , h M ( 0 ) h M ( ^ ) - - - h M ( ( L - i ) r ] (3.29) 

Then in channel model (3.23), gT(r r) = [g(kT — Tr)]k=o.i/p,-,L-i/p is an PL-

dimensional column vector containing the samples of g(t — rr). 

In this case, the MIMO channel (3.23) becomes a N x MPL, we then rewTite it into 

an NP x ML matrix, which comes 

H = [Hx H2 H M\ (3.30) 

where 

H m = 

hm(0) hm(T) ••• h m ( ( L - l ) T ) 

hm(J) hm((l + l)T) 

h m ( ( l - 1 ) T ) h m ( ( 2 - l ) T ) ••• hm((L-±)T) 

From Eq. (3.28), we can write 

NPxL 

Y = [ y 1 ( 0 ) y 1 ( ^ ) . - - y 1 ( ( l - i ) T ) , - . . , y J V ( 0 ) y A , ( ^ ) - - - y A r ( ( l - i ) r ] T (3.31) 
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where 

yn = [Vn.\ Un,2 • • • VU.KY 

Here X is defined same as (3.26). 

3.3 The Bidirectional Beamforming MIMO Channel 

3.3.1 Channel Estimation 

The goal we are pursuing is: given the estimates of the MIMO channel impulse 

response, estimate the channel parameters such as AOD, AOA, and DOA. In the first 

step, we will estimate the channel impulse response for the MIMO channel. This can 

be done by using training sequence (TS) or blindly [4]. 

Now we consider TS based channel estimation, from Eq. (3.31), we can estimate 

the channel matrix H using a Least Squares (LS) estimator.If X is already known, 

because of training for instance, then the LS estimation of the channel with noise is 

H L S = YX f + NX f = YX f + N' (3.32) 

where N is the Gaussian white noise satisfying E[vec(N)vec(N)H] = CT2IMNPLXMNPL-

N' by definition is NX f and Xf = XH(XXH)~l denotes the Moore-Penrose pseudo-

inverse of X. 

If we choose the sequence to satisfy the condition in which 

X X " = N J (3.33) 

where Nt is the length of the training sequence, then N' = ^-NX H . 



59 

It is easy to show that 

E[vec(N')vec(N') ] = —IMNPLXMNPL = °e
lMNPLxMNPL (3.34) 

where a2 = -?r, which will be useful in the Cramer-Rao Lower Bound calculation. 

Assume that the transmitted training signal's power is constrained as || X \\2
F= E, 

where E is a given power constant. We can find the optimal signal minimizing the 

channel mean square error(MSE) based on this constraint, it becomes; 

min JLS = nun E{\\ H - HLS \\2
F} subject to || X \\%= E (3.35) 

It has been proved that X is an optimal training matrix if X X ^ = | | l . Therefore, 

the optimal training signal is any signal with training matrix with orthogonal rows 

of the same norm J jj-

3.3.2 Arrangement of Channel Response for Parameter Estimation 

In order to estimate the angle of departure, angle of arrival, and the delay of arrival 

with knowledge only of the transfer matrix H, we can first vectorize the matrix by 

stacking its columns. Using the vec operator, we get from (3.23): 

h = vec(H) = AT(0) o G(r) o A f l(0)b (3.36) 

where b = [A . . . f3R]T. 

Let us define the space-time response matrix for R paths as 

W(0,0, r) = A r(0) o G(r) o AR(<f>) (3.37) 
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where AT(0) and An(4>) represent array response matrix for transmit and receive side 

respectively, where AT(0) = [ar(#i) • • -&T{QR)]-, and the similar definition holds for 

A*(0). 

Since Ar(#), AR(4>), and G(r) has same number of column, the MIMO space-time 

manifold vector is the rih column of W(#, <fi, r ) , which can be expressed as 

w(0, 0, T) = aT(6) ® g(r) <8> aR(f) (3.38) 

This MNPL-dimensional vector is the spatial-temporal response to the antenna array 

to a signal path with AOD (6). AOA (0), and delay (r). 

With v as the estimated white noise vector, we can rewrite (3.36) into 

u = h + v = W(£ ,^ , r )b + v (3.39) 

After all, we collect data from Q consecutive time slots and use it to obtain (noise) 

estimates of H. If we let q be the time slot index, our estimates U(q) of the true 

channel H(g) take the form 

\J{q) = H(q) + V(q), q = l,...,Q (3.40) 

where V(g) is the estimation noise matrix. Applying the vec(.) operation yields with 

the obvious notation, 

u(q) = h(q) + v(q) = W(6, 0, r)b(q) + v(q) q=l,...,Q (3.41) 
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Next, letting U = [u( l ) . . . u(Q)]. D = [b( l ) . . . b(Q)] and similarly for V, we obtain 

U = W(0 ,0 , r )D + V (3.42) 

The joint parameter estimation problem is, for given channel estimates U, to find 

the A0D(8), AOA(<j>), and DOA(T) using the model in (3.42). As an aside, note the 

resemblance of the estimation model to the conventional angle of arrival estimation 

model 

Y = A(0)X + N (3.43) 

where Y is the array output measurements, X is the matrix of signals, and N is the 

additive noise. The difference with (3.42) is the following. 

1. The "data" are the channel estimates and not the array outputs. 

2. The manifold matrix is parameterized by AOD, AOA and DOA. 

3. The path fading play the role of the signals. 
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CHAPTER 4 

JOINT ESTIMATION OF MULTIPATH PARAMETERS FOR MIMO 

SYSTEMS 

In [34,55], the multipath signal parameters can be estimated using adaptive array 

signal processing techniques. Subspace-based methods can achieve high resolution 

for angle estimation, and can be extended to include other parameters. Joint Angle 

and Delay Estimation (Jade) algorithms [63,64] for smart antenna have been proposed 

for more robust estimation. In a multipath environments, the direction of received 

signals and associated delays of the path do not change quickly, so that it is possible to 

estimate these parameters by extending the conventional methods to the joint space 

and time domain. 

With the introduction of the MIMO space time manifold vector, the classical sub-

space methods, including the deterministic maximum likelihood, stochastic maximum 

likelihood, and MUSIC can be directly applied. Furthermore, the classical CRB cal­

culation can also be easily extended to the joint space-time model. Therefore, in this 

research, we propose a subspace-based approach to jointly estimate the AOA, AOD 

and DOA of digitally modulated multipath signals in MIMO communication system. 

4.1 The Proposed Maximum Likelihood Multipath Parameter Estima­

tion Algorithms 

The method of ML requires a statistical framework for the data. It can be applied 

when the data are random variables with a known type of distribution. Their joint 

likelihood function is computed and maximized over the set of all possible parameters. 



63 

The ML estimates of these unknowns are the maximizing arguments of this likelihood 

function. The rationale is that these values make the probability of having observed 

the given data as high as possible. Two different assumptions about the path fading 

lead to corresponding ML approaches (stochastic and deterministic). 

4.1.1 The Deterministic Maximum Likelihood (DML) Method 

The deterministic approach of the ML technique does not require any assumption 

about the ray paths. The complex path gains are modelled as arbitrary deterministic 

sequences although they are unknown (the carrier frequency of the propagating waves 

over the MIMO channel is known). However the noise term is assumed to be white 

Gaussian with zero mean as we have seen before. 

Since the estimates are assumed independent, their joint likelihood function for Q 

time slots is the product of the individual pdf 's: 

Q 

P[u\ • • • ,uQ] = Yl(Tra2)-MNPLexp{-\\u{q) - Wb^\\2/a2} (4.1) 
9=1 

The unknown parameters are the noise variance a2, the path parameter r\ — 

[0r•> 4>Ti Zr]T a n d the fading b ( ? ) . The log likelihood function, normalized by Q, has 

the form 

[a2,77, b] = argmax{-MNPL ln(7ra2) - - — || u - W b ||^} (4.2) 
- a2Q 

Maximizing w.r.t. a2 yields 

1 _ r D ± 
a = MNPL 

trace{PiRu} (4.3) 
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where 

p^ = i_ w((j),e,T)[wH(e,^T)w(e^,T)}-1wH(e,^r) (4.4) 

and 
1 Q 

i = -^u(ty(i,) (4.5) 

Thus the DML estimates of channel parameter are obtained by minimizing the cost 

function 

[rj. b] = arg min || u — W(?/)b |||. (4.6) 
~~ r].h 

or 

F{9,cj),T) = trace{PiRu} (4.7) 

4.1.2 The Stochastic Maximum Likelihood (SML) Method 

The stochastic approach of the ML technique assumes the complex path gains to be a 

stationary, temporally white Gaussian random processes with the following property: 

E{b(t)} = 0, E{b(t)bH(t)} = Rb, E{b{t)vH(t)} = 0 (4.8) 

The ML estimates of channel parameter are obtained by minimizing the cost function: 

F(0,^T) = /n|Ru | + t race{R; 1 R u } (4.9) 

where 

Ku = W(9,&T)RbW
H(6,&T) + a2I (4.10) 

and if a2 and Rb are not known, they can be estimated from Ru, as defined in Eq. 

(4.5) 

a 
2 1 

MNLP - R 
trace{[I-WW^}RU} (4.11) 
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Rfc = W f [Ru - a2I]W f (4.12) 

where W* indicates the Moore-Penrose Inverse of W. 

4.2 The Proposed Subspace-based Multipath Paremeter Estimation Al­

gorithm 

The multiple signal classification(MUSIC) method proposed in [51] is a spectral-

based algorithm but relies on the properties of the eigenvalue decomposition of the 

covariance matrix. The divided signal and noise subspace are orthogonal. For MIMO 

channel, the noise eigenvectors An are perpendicular to the space-time manifold 

vector w(#, 0, r) or the signal subspace spanned by As. Then we have the following 

orthogonality condition 

A „ H w ( ^ ^ l ) = 0 (4.13) 

The idea of the algorithm is to find the R vectors w(#, (p, r) which are the most 

orthogonal to the estimate of An. 

Let Ai, A2, • • • I^MNLP be the eigenvectors of the estimated covariance matrix Ru 

arranged in the descending order of the corresponding eigenvalues. The eigenvectors 

spanning the signal subspace corresponding to the R largest eigen values will be 

As = [A1,A2,---,A i J] (4.14) 

The MUSIC estimation of the channel parameter is to find the R minima of the 

following cost function: 

F ( « ^ , l ) = w J f ( f 1 ^ i ) f - A , A , > ( | ^ ) I ) (4.15) 
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The proposed subspace-based algorithm can be summarized as follows: 

1. At each time slot, using training sequence or blindly estimate the channel trans­

fer matrix H, then use vec operation to yield u. 

2. Collect data from Q time slots, then the covariance matrix of u can be expressed 

asEq. (4.5). 

3. Find eigenvalues of R„, and arrange them in the descending order, the eigenvec­

tors As spanning the signal subspace are corresponding to the R largest eigen 

values. 

4. The estimation of the channel parameters is to find the R minima of the cost 

function (4.15). 

4.3 The Cramer-Rao Lower Bound 

The CRLB is a lower bound on the variance of any unbiased estimator. We now 

derive the deterministic CRLB for the proposed MIMO parameter estimates. 

Starting with (3.42) 

u = W(£ ,^ , r )b + v (4.16) 

where E[\\H] = a^IMNPLxMNPL. 

If we define 77 = [#T, ̂ >T, r r ] T , the probability density function of U is an i.i.d. Gaus­

sian: 

LW = W ^PL ( t 2 / 2 )M^L e a y{-^ [ " - W (g> . l )b ] H [ i i -W(g^ , r )b ]} (4.17) 
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The log-likelihood function is 

l n L = const-MNPL\n(a2
e)-^[u-W{8,(j),T)b}H[u-W(0:(t),T)b} (4.18) 

°V 

Thus the parameter vector can be defined as [aj, b,#, <f>, r]. Let b = real(b) and 

b = imagib). Taking derivations of the above these parameters, we have: 

dlnL MNPL 1 „ ,4 n. 
-JTT = ~ + " v v 4 - 1 9 

dlnL = lreal(WHv) (4.20) 
db a, e 

^J^ = ^-imag(WHv) (4.21) 
Ob o\ } v ' 

e 

^T = h"**<* <4 2 3> 
^ = | m * j ; d £ v ) (4.24) 

where r = 1,2,..., R, d&r is the derivative of the rth column of W and d#r = 

g(rr) <g> a(0 r) ® da(8r)/d8r. The similar definition holds for d^r and dTr. Written 

more compactly, 

-^— = —real(diag(b)HD»v) (4.25) 

dlnL 2 
— rea/(rfza^(b)//Dfv) (4.26) d<t> cr, 

- J ^ - = ^ real(diag(b)HB? v) (4.27) 

where D0 = [d01, • • • d*H], D 0 = [d^, • • -d0 iJ, and D r = [dTl, • • -dTR}. Finally, we 

define T>w = [De, D^, D r] and B = I3x3<g>diag(b). Then we arrive at a more compact 
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form in terms of r\: 

^ = -2real(BHD%v) (4.28) 
or) aj 

The Fisher Information Matrix (FIM) involves calculation of the following ensemble 

averages: 

£ [ ( ^ ) ( ^ ) T ] = | r e a ( ( W W ) (4.30) 

£ [ ( ^ ) ( ^ ) r ] = - ^ H W ' W ) (4.31) 

^r/51nLw(91nI/.T1-, 2 „ , , T H - , , ^ 
^ K - ^ - ( -x?-H = -2real^ w ) (4-32) 

„r/(91nLw91nLxTln 2 , _ —, 

„ r /91nLw91nL s X n 2 ,_ — x , 
E (_5r^-^T ^ = - j tmoiKD^B (4.34) 

a b C?7 cr| 

^,.91nL. ,31nLNTn 2 „=r-//_w_ —x 
^ " ^ " ^ " d - } ] = ^ ( D w D w B ) (4.35) 

Finally, the FIM for the parameter is given by E["f~fT], where 7 = din L/d[a^.bTbTr]T}T. 

Directly using results proven in [56], we have 

CRLB(V)~l = ^-real(BHB^P^DwB) (4.36) 

where P ^ = I - W ( W H W ) " 1 W / / is the projector onto the noise space. 
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4.4 Simulation Results and Discussions 

In this simulation, we assume a single user, and a two-element ULA at transmitter 

and a three-element ULA at receiver. The received signal at the MS consists of three 

time-delayed multipath replicas of the transmitted signal. 

The value of multipath parameters in this simulation are given in Table 4.1. The 

angle unit is degree, and the unit of DOA is second, where T is normalized to one. 

The collected data are corrupted by noise with inverse variance 1/cr2 = 20dB. The 

TABLE 4.1 VALUE OF MULTIPATH PARAMETERS 
Multipaths 

DOA 
AOD 
AOA 

First 
0.34T 

-17 
7 

Second 
0.93T 

23 
35 

Third 
1.77T 

65 
-51 

modulation waveform is a raised cosine pulse with excess bandwidth 0.35, assumed to 

be zero outside the interval [—3,3). We sampled at rate T/2. Data is collected over 

30 time slots, and at each time slot the channel is estimated via Least Square method 

using 30 training bits. The experiment variance of the angle and delay estimation is 

computed from 100 runs. 

The following figures show simulation results for the proposed spectral based ap­

proach. 
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Departure 

DOA in terms of symbol period 

FIGURE 4.1 P L O T OF THE MUSIC SPATIAL SPECTRUM FOR MULTIPATH (AOD VS. 

DOA) 

s 

Angle of Arrival 

Angle of Departure 

FIGURE 4.2 P L O T OF THE SPATIAL SPECTRUM FOR BIDIRECTIONAL ANGLE ESTI­

MATION (AOD vs. AOA) 
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Fig. 4.1 and Fig. 4.2 illustrate the computer simulations of the proposed joint 

estimation algorithm for MIMO channel that using a two uniformly spaced linear 

array with half wavelength inter-element spacing at both site. This method is able 

to distinguish the three multipath signals of equal power. All multipaths parameters 

can be found in Table 4.1. 

Angle of Departure Angle of Arrival 

FIGURE 4.3 P L O T OF THE RESOLUTION OF AOA AND AOD ESTIMATION FOR SIX 

MULTIPATHS 

Fig. 4.3 shows that the proposed method can achieve high resolution of multipath 

parameters and resolve more multipath components than the number of array ele­

ments. In this figure, there're six multipath signals can be distinguished using the 

same ULA configuration as Fig. 4.1. 

The RMS value of the spatio-temporal estimates are plotted in Fig. 4.4 and Fig. 4.5 

for various SNR's. Only the first two paths are shown-others exhibit similar behavior. 

They are compared against the deterministic CRLB (??). Fig. 4.4 shows the RMS 

value of AOA, as well as the RMS value of DOA in Fig. 4.5. The AOD estimates are 
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found much closer to the AOA estimates. 

i.—»--^^ 

—1>— RMS of AOA for 1st path 

- p - RMS of AOA for 2nd path 

— e — CRB of AOA tor 1st path 

- O - CRB of AOA for 2nd path 

:fr •-•• '- fc -. » •__fr » 6 f, » 1 

, 0 = 1 .1 L_ 
0 2 4 

SNR [dB] 
10 12 14 16 

FIGURE 4.4 PERFORMANCE OF THE SUBSPACE-BASED ALGORITHM FOR VARIOUS 

SNR/s (AOA ESTIMATION) 

— 0 — RMS of DOA tor 1 st path 

- p - RMS of DOA tor 2nd path 

— 9 — CRB of DOA for 1 st path 

- O - CRB of DOA for 2nd path 

FIGURE 4.5 PERFORMANCE OF THE SUBSPACE-BASED ALGORITHM FOR VARIOUS 

S N R ' S (DOA ESTIMATION) 
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If we consider multiple users in this communication system, we can use each user's 

unique training sequence which could be orthogonal to each other to independently 

estimate the channel matrices H. 

The proposed algorithm for joint estimation of MIMO channel parameters exploits 

the space time properties of the multipath channel. It has the following advantages: 

• If received signals arrive in same direction, the conventional estimation algo­

rithm can not distinguish their difference. But with joint estimation, the two 

signals with same direction can be separated by their delays. 

• Since it's a spectral based algorithm, high-resolution of channel parameters can 

be achieved even under low SNR. 

However, the proposed spectral based approach requires a three-dimension extrema 

search of the cost function. This search can be performed using dynamic programming 

or alternate projection methods. But this technique does give us a practical insight 

into the resolving power of the subspace based approach for MIMO communication 

systems. 

4.5 Conclusions 

In Chapter 3 and Chapter 4, we first developed a parametric MIMO channel model in 

multipath environment. By using the fact that the AOA, AOD and DOA are almost 

constant over several time slots, we then proposed a novel approach to jointly esti­

mate channel parameters for MIMO communication systems. This approach collects 

estimates of space-time manifold vector through several time slots, then analyze the 

eigen structure of covariance of MIMO channel transfer function. A high-resolution 

estimation of multipath parameters can be achieved through subspace based meth-
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ods. This method uses a collection of estimates of a space-time manifold vector of the 

channel, then exploits the eigenstructure of the input covariance matrix. Finally, by 

searching the peaks of the MUSIC spatial spectrum to estimate the parameters of the 

multiple incident signals. Cramer-Rao Lower Bound for this approach is also derived 

to demonstrate the performance of the proposed method. Furthermore, with addi­

tional multipath parameters estimated, new source localization methods for mobile 

terminals or sensors can be developed to reach higher accuracy. 
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C H A P T E R 5 

P O S I T I O N L O C A T I O N OF M O B I L E T E R M I N A L I N M I M O 

S Y S T E M S 

5.1 The Proposed Hybrid T D O A / A O A / A O D Location M e t h o d for 

M I M O Sys tems 

The research work on wireless PL systems are mainly based on multilateration solu­

tions which require at least three BSs to estimate the position of Mobile terminal. In 

MIMO communication systems, since multiple antennas or antenna arrays are utilized 

in both sides, it can resolve the different propagation paths between a transmitter 

and receiver by using more advanced array signal processing to exploit more channel 

information (such as AOD) than smart antenna and point-to-point wireless commu­

nication systems. Therefore, new position location method for MIMO systems need 

to be developed. 

With additional AOD information in MIMO system, it is possible to locate the po­

sition of mobile terminals by using only one BS in MIMO communication systems. 

If we estimate the TDOA between the first path and other paths, along with the 

estimation of the AOA and AOD for each path, a set of nonlinear equations whose 

solution gives the 2-D coordinates of the source can be defined. As mentioned ear­

lier, solving the set of nonlinear equation can be performed by linearization. Some 

methods similar to Taylor-series and TSLS solutions can be developed to locate the 

position of mobile terminal by using only one BS. 

The proposed hybrid AOA/AOD/TDOA PL method for MIMO communication sys­

tems is different from conventional PL methods in many aspects: 
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• Both transmitter and receiver sides use antenna array, then the channel model 

between BS and MS can be treated as MIMO channel. 

• Using adaptive array signal processing, the spatial and time properties of the 

multipath channel will be exploited. The multipath propagation turns into 

benefit for position location systems. 

• Since more parameters(AOA, AOD, DOA) can be exploited in MIMO channel, 

it is possible to locate the position of mobile terminals by using only one BS in 

MIMO communication systems. 

• The estimation for the location of the mobile terminal can fully utilize hybrid 

TDOA/AOA/AOD approach to reach higher accuracy. 

• The position location seems also possible on Mobile terminal side which is not 

realistic in conventional PL systems. 

5.1.1 System Model for Position-Location 

The location estimation model for MIMO multipath propagation channel is illustrated 

in Fig. 5.1. The proposed algorithm intends to minimize the error occurring from 

the estimation of multiple paths and give an optimal estimation of the MS position 

by simultaneously calculating a set of nonlinear location equations. 
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Scattererfxi.yi 

Common Bearing Direction 

FIGURE 5.1 ILLUSTRATION OF THE ZTH SCATTERED PATH WITH RESPECT TO 

TRANSMIT AND RECEIVE ANTENNA ARRAY 

5.1.1.1 Line-of-sight Scenario 

If we have a line-of-sight path available, the position of mobile station can be calcu­

lated easily, then we will have: 

Vi = 0i h , <t>i = <t>i- 4>i 
, = r i s i n g „ = r i s i n g 

'i sin(e|+0;)' ' i sin(^+<^) 

ri = r'i + r'l 

(5.1; 

where 6^ and (pi are the angle of departure and arrival for the zth path from the mobile 

station to the base station respectively. The angle 6\ and (pi are respectively the AOD 

and AOA for LOS propagation path. As depicted in Fig. 5.1, r; is the total length 

of the zth path, while r[ and r" are respectively the lengths of the segments forming 

the ith path, and r\ is the LOS distance between MS and BS. 
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Thus, we have the line-of-sight distance between MS and BS: 

n = rul<r9£Z« - 1) (5.2) 
sm(0- + <f>i) 

where ri}i = r't + r" — ri is the relative distance between iih path and LOS path. And 

the position of MS will be: 

Xm — Xh — 7*1 COS 6\ 

(5.3) 
Vm =Vb-n sin di 

In this case, we found there is only one BS station required to give an estimation of 

the position of MS, because the multiple antennas or antenna array at MS site provide 

more information for location position. The conventional trilateration method using 

multiple BSs is not necessary for MIMO systems. 

5.1.1.2 Non-Line-of-Sight Scenario 

However, in practice, the LOS is not always available or can not be distinguished 

easily. Moreover, the measurements of DOA, AOA and AOD always contain errors 

due to the hostile wireless propagation environment. As illustrated in Fig. 5.1, let 

(xb.yb), (xm,ym) and (xi,yi) denote the true position of respectively the BS, the MS 

and the iih scatterers. The values of (xm,ym) and (xi,yj) are not known in practice 

and must be estimated. 

From Fig. 5.1, it is straightforward to obtain #; and fa as a function of the mobile 

station and the scatterers: 

Oi(xm,ym,xi,yi) = aictan(^=^s-) 
^xl—xm (54^ 

fa(xm,ym,Xi,yi) = a r c t a n ( ^ M 
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for i = 1 , . . . , N, where N is the total number of paths. Similarly, with c defined as 

the signal propagation speed, the TDOA can be computed: 

Ti(xm,ym,Xi,yi) = (ri-ri)/c, i = 2 , . . . , N (5.5) 

where T{ = ri + r{ with 

r'i = \/(xi - xm)2 + (yi - ym)2 

r'i = y/{xi - xb)
2 + (yt - yb)

2 
(5.6) 

The objective is to determine the unknown position (xm,ym) from the exact position 

(xj,, yb) and uncertain measurements of #,, 0, and f{ (the time delay between paths 

are known). These assumptions are realistic as several methods have been recently 

proposed to measure 6i, 4>i and r, in MIMO communications [34,55]. 

Statistically, the measurement contain errors: 

'% 'i\Xmi i/rru X^yij -\- TiTi 

Oi = Oi(xm,ym,xi:yi) + n0i (5.7) 

4>i = Mxm,ym,Xi,yi) + n^, 

where i = 1, ...N for fy and 0,, i = 2, ...A^ for fj. nTi, n^, n^t is the measurement error 

of TDOA, AOA and AOD respectively. 

When the number of path N > 4, then we have (3A— 1) measurements and (2A+ 2) 

unknown parameters, and the system is over-determined. It is then possible to apply 

the Least-Squares method to this nonlinear estimation problem. 
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5.1.2 A Generic Nonl inear Location Est imat ion M e t h o d 

The process of location estimation is computing a value for an unknown state vector 

from a related measurement vector. The value or estimate will in general be in error 

because of measurement noise and "model" errors. In most estimation problems, 

knowledge of the probability density function of the state parameter to be estimated 

was always required prior to the measurement parameter. However, this information 

is not available in many practical cases. The state parameter to be estimated may not 

even be a random variable. One approach to such problems is to interpret the lack of 

knowledge concerning the a priori probability density function of the parameter in the 

sense that the density function is implicitly assumed to be uniform (or approximately 

so over a very wide range). 

However, it is often desirable to use an estimation concept free of such assumptions. 

The well known maximum likelihood estimate of a parameter is that value which 

will make a given measurement most likely, i.e., the parameter value which causes 

the conditional probability density induced on the measurements to have its greatest 

maximum at the given measurements. 

More precisely, let x be the state vector to be estimated (in general an n-vector). Let 

z(i). 1 < i < k, be a sequence of measurements (here we assume each z(i) is scalar) 

which are generated by the functional relationship: 

z(i) = hi[x.,v(i% i = l,...,k (5.8) 

where each v(i) is representing measurement noise or other random interference which 

tends to make it possible to infer the true value of x from the observation z(i). 

Assuming now that the conditional probability density p [ 2 ( l ) , . . . , 2(fc)|x] is known, 

or has been derived from Eq. (5.8) and the statistics of v(i), we may define the 



81 

"likelihood function": 

*(x)=p[z(l),... ,z(A0|x] (5.9) 

where the conditional probability density p[z(l),..., -z(fc)lx] is n o w assumed to have 

been evaluated at a given received measurement sequence, z(l),..., z(k). 

The ML estimate of x, denoted by x, is now the value of x which maximizes Z(x) 

which was the conditional probability density p[z(l),..., z(/c)|x] evaluated for the 

given received measurements. 

Let the observation noise v(i) in Eq. (5.8) be additive and represent a zero-mean 

independent gaussian random sequence. Then we have: 

z(i) = fi(x.)+v(i)i = l,...,k (5.10) 

E[v{i)] = 0 

E[v(i)v(jf] = Q(j,i)A(j-i) (5.11) 

where Q(j, i) is a sequence of known covariance matrices, each covariance matrix 

representing the covariance among the components ofv(i). 

It is desired to determine the maximum likelihood estimate of the parameter x. the 

likelihood function, i.e. the conditional probability of z(l),..., z(k) given x is given 

by: 
k 

Z(x) = C e x p - i J > ( i ) -fiWfQ-ifriMi) - / , ( x ) ] (5.12) 

where C (which involves factors of y/2n and | Q ( M ) | ) is a constant independent of 

x. From the form of Eq. (5.12), we see that maximizing l(x) leads to minimizing the 
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quadratic function: 

min5>(t) - M^fQ-^iMt) - Mx)] 
i = i 

(5.13) 

Let 

z = 

/ . \ 

V ** / 

, f(x) = 

^ AW ^ 

^ /fc(x) y 

V = 

/ V 1 \ 

\vk J 

(5.14) 

In matrix form: 

z = f (x) + v (5.15) 

If f (x) is a linear function, f (x) = Gx , where G is a constant matrix. The operation 

specified by Eq. (5.13) define the method of weighted least squares for estimating 

the parameter x when the observation consists of a discrete sequence. If Q(i, i) was 

identity matrices, then we would have the ordinary least squares problem. In the 

ordinary LS problem, we simply choose Z(x) such that the expected observation (i.e., 

z(i) = / i (x) which ignores the noise v(i)) comes as close as possible to the actual 

measurement in LS sense of Eq. (5.13). Thus, when the measurement errors are 

small, the ML estimator gives a LS solution: 

x = ( G r Q 1 G ) - 1 G r Q 1 z (5.16) 

It was shown above that the method of ML and LS yield the same results in the special 

case of additive white gaussian noise. Notice that a stochastic optimization problem 

characterized by ML estimation is in fact replaced by a deterministic optimization 

problem defined by Eq. (5.13). 

For a nonlinear f (x), we have to linearize it in order to determine a reasonably simple 



83 

estimator. The most straightforward linearization approach is to use the Taylor Series 

expansion. Consider a nonlinear state/measurement model in Eq. (5.15), we have 

measurement z and want to estimate x. In addition, the k-dimension vector function 

f(.) is assumed to be defined and "well-behaved" in particular, the first derivatives of 

f (.) components with respect to x exists. Let x* be an arbitrary estimate of the true 

state vector x, then a weighted sum of squares of measurement residual J is defined 

by: 

J+lz-fWfQ-^z-fW] (5.17) 

The objective of this nonlinear Least Squares estimation problem can be described 

as follows: For the measurement/state model of Eq. (5.15) and for the residual 

performance index given by Eq. (5.17) with Q _ 1 , find that estimator x* for which J 

in Eq. (5.17) is minimized. 

The solution to this nonlinear problem will be an iterative one using perturbations. 

More specifically, the global properties of f (.) will not be involved - it will be assumed 

that an initial guess (usually x0) for the required minimizing value in the problem is 

in a convergent neighborhood of this minimizing value. Thus, we define: 

xfc+1 = xfc + 4 , k = 0 , 1 , . . . (5.18) 

as an iterative sequence for optimal estimate x: 

x = lim xfc (5.19) 
k—>oo 

Criteria for stopping the iteration in a finite number of steps will be introduced. For 

a general (k + l)th step in the iteration, the value of the performance index J in Eq. 
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(5.17) is: 

J(xfc+1) = [z - f(xfe+1)]TQ"1[z - f (xfc+i)] (5.20) 

Combining Eq. (5.18) and (5.20) gives a perturbation equation in the performance 

index; i.e., the performance index value changes from </(x/.) to J(x.k+i) if the estimator 

value is changed from x^ to xjt+i. A perturbation of J(x/t+i) — J(xfc) results from a 

perturbation of x^+i — x^ = 5k- These are related by combining the equations: 

J(xfc+1) = [z - f (xfe + 4) ] r Q _ 1 [z - f (x* + &)] (5.21) 

Now, we use linear perturbations by retaining only the first-order terms in an expan­

sion for f(.): 

fa f (xfc + 4 ) ^ f(xfc) + ^ |x=Xfc 5k (5.22) 

we then take that: 

f(xfc + 5fc)~f(xfc) + A fc4 (5.23) 

where the m x n matrix A*, is defined by: 

df 
fa 

Afc = — | x = x , (5.24) 

Solving Eq. (5.21) gives the sought-after iterative solution algorithm for the nonlinear 

least squares problem: 

xfc+1 = xk + (AiQ^Ak^AiQ-^x - f(xfc)] (5.25) 

In a practical application of the iterative algorithm, the iteration would be stopped 

after a finite number of steps and 5k would not in general be zero. An error is thus 

introduced into the estimate and is held to acceptable levels with iteration-stopping 
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criteria discussed in conjunction with applications of iterative least squares in the 

text. 

5.1.3 Solution to Hybrid TDOA/AOA/AOD Location Equations 

In this section, we derive a location estimator to solve the nonlinear hybrid 

TDOA/AOA/AOD equations for the MS location. Let x = [xm, ym, xi, y\,..., xN. yN]T 

denote true positions of mobile station and scatterers, and we define f the (3 A — 1) 

column vector valued function according to Eq. (5.4) and (5.5): 

7~i\%mi Vm-i %ii yi) 

f ( x ) = Biixm^xuVi) (5-26) 

the estimation model of the unknown (2A + 2) column vector x in the presence of 

additive Gaussian noise is: 

z = f (x) + n (5.27) 

where z = [fj. . . 9i... <f)i]T are (3A — 1) measurement values [12]. The measurement 

noise n = [nTi... n^ . . . n ^ ] T is assumed to be a multivariate random vector with an 

(3A' — 1) x (3A — 1) positive covariance matrix: 

Q = E[(n-E[n})(n-E[n}? (5.28) 
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If the covariance matrix Q has zero mean, it can be further expressed as: 

Q = 

V 

Qt 0 0 ^ 

0 Qd 0 

0 0 Q a ) 

(5.29) 

where Q t is the covariance matrix for TDOA measurement errors, Qa and Q a are 

the covariance matrix for AOD and AOA measurement errors respectively. 

As shown in Eq. (5.24), we could have the gradient matrix [61]: 

A t = 

/ 3 / i (x) 
dx i 

d/3Af-l(x) 
dx i 

d / i (x ) \ 
dx2N+2 

d/3JV-i(x) 

(5.30) 

dx 2N+2 

The gradient matrix A^ is a (3N — 1) x (2A^ + 2) matrix. 

Assume A^Q_1Afc is nonsingular, similar to Eq. (5.25), the iterative nonlinear LS 

solution of the location estimator gives the estimated x for (/e + l)th iteration: 

xfc+1 = xfc + (AtQ-'A^AlQ-'iz - f(xfc)] (5.31) 

Therefore, given a set of measured multipath signal parameters, such as AOD and 

AOA for each path, TDOA between each pair of paths, along with a previous estimate 

of the mobile's location and angles of departure and arrival of multipath signals, it 

is possible to determine values of 8k = x^+i — x^, to update the estimated position 

of MS and scatterers to more closely approximate the actual value. This process is 

repeated until the value of 8k becomes smaller than a desired threshold, indicating 

convergence. 

Now, let's summarize the procedure to obtain x from Eq. (5.31) for the proposed 
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method as follows: 

1. Choose x0, initial guesstimate. 

2. Linearize f about x0 and obtain A*, matrix. 

3. Compute residuals [z — f (xfc)] and then compute the x. 

4. Check for the orthogonality condition: Aj[[z — f(x)] |x =x= orthogonality con­

dition value = 0 

5. If the above condition is not satisfied, then replace the initial guessed value and 

repeat the procedure. 

6. Terminate the iterations when the orthogonality condition is at least approxi­

mately satisfied. 

5.2 Analysis of the Proposed Location Method for MIMO Systems 

Suppose there are N(> 4) multiple paths available between BS and MS with 2D array 

layout for determining the MS position, we have a set of over-determined nonlinear 

location equations. Because of measurement errors, the solution is not unique. 

5.2.1 Cramer-Rao Lower Bound 

The CRLB is a lower bound on the variance of any unbiased estimator. We now derive 

the CRLB for the proposed MIMO Hybrid TDOA/AOA/AOD method. The vector 

of TDOA/AOA/AOD measurements z in Eq. (5.15) is asymptotically zero mean 

Gaussian with covariance matrix given by Q, the conditional probability density 



88 

function is: 

( z - f ( x ) ) } (5.32) 

P ( Z | X ) = ( 2 7 r ) V 2 l Q | i / 2 e ^ - 2 ( Z ~ f ( x ) ) r Q " 1 

If the MIMO hybrid measurement errors are small so that the bias square is insignif­

icant compared with the variance, the CRLB of x is given by [34]: 

* = { ^ [ ( ^ l n P ( z | x ) ) ( ^ l n P ( z | x ) f ] } - 1 (5.33) 

From vector calculus, if z is a K x 1 vector and A is a K x K symmetric matrix, then 

i z T A z ) = 2Az (5.34) 

dz 

Thus the partial derivative of lnP(z|x) with respect to x is: 

| - lnP(z|x) = - ^ Q - ^ z - f(x)) (5.35) 
ox ox 

Hence, 

- < ^ - ^ > -

where - ^ is found to be the true value of Ak in Eq. (5.30). 

5.2.2 Advantages of Proposed MIMO PL Method 

The proposed hybrid TDOA/AOA/AOD location method for MIMO communication 

system exploits the spatial properties of the multipath channel, and then it can resolve 

more signal parameters than traditional PL methods. It has the following advantages: 

1. No time synchronization required: All the propagation time-based PL systems 
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require precise time synchronization of all involved measuring units. For the 

proposed method, since only one base station is involved in the position location, 

the time synchronization is not required. 

2. No multilateration: Most position location approaches require measurements at 

multiple receiving stations. This requirement is counter to the cellular network 

design that assigns one base station to serve a given user. Our new method uses 

single base station to perform position location in wireless MIMO communica­

tion systems. 

3. No LOS signal required: Most PL systems require LOS communication links. 

However, such direct links do not always exit in reality because of the intrinsic 

complexity of mobile channels. In this work, the proposed method can not only 

work perfectly without LOS signal, but also find the LOS signal. 

4. Less network traffic for PL system: Since only one base station is required 

for location estimation, it will generate less location update information in the 

whole PL system. Thus the overall network traffic related to PL can be reduced. 

Moreover, PL information collection by the network is facilitated. 

5.3 Simulations and Resul ts 

The performance of the proposed mobile location method for MIMO communication 

system is investigated by computer simulations. The geometric scatterers arrange­

ment in Fig. 5.2 is used as an example which is a simplified MIMO channel propa­

gation model based on 3GPP standard [1]. In this model, we assume that the signal 

follow N paths and that along the ith. path, the signal is only scattered by one obsta­

cle at the planar location ( X J , ^ ) . For the two dimensional array MS and BS layout, 

we have the BS much higher than the MS and most scatterers. For simplicity, we 
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assume that the signals and noises are Gaussian random process. The TDOA covari-

ance matrix Q t is similar to [9] which has TDOA variance of for diagonal elements 

and 0.5of for all other elements. The TDOA estimates are simulated by adding to 

the actual TDOA's correlated Gaussian random noises with covariance matrix given 

by Q t . The AOD covariance matrix Q j and the AOA covariance matrix Q a have 

AOD variance a\ and AOA variance a\ as their diagonal elements respectively. 

x axis (km) 

FIGURE 5.2 GEOMETRY ARRANGEMENT OF SCATTERS BETWEEN MS AND BS 

The Taylor series estimator is used to derive the MS location. The measured AOD 

and AOA information are used as initial guess of AOD and AOA, and a location error 

(about 5 percent of distance between MS and BS) is added to the true MS location 

as the initial guess of MS position. Simulations show that at most five iterations are 

required for the Taylor-series solution to converge. A validity test at each step is 

implemented. We compute dei[A^Q_1Afc] and reject the input data or the position 

guess if this number is too small. To detect the failure of convergence, we compute 

the trace of (Aj[Q_1Afc)_1 at the end of each iteration, and after five steps or so, 



91 

start to compare it with that of the previous step. If the ratio is not much less than 

unity, the process is not converging. The squared error of MS location estimation is 

derived at the end of iteration, as a useful check on the validity of the solution. The 

MSE or RMS location error is obtained from the average of 10,000 independent runs. 

For each simulation run, the noise corrupted measurements are used where the noises 

are generated according to the standard deviation of TDOA, AOA and AOD. The 

iterative computation time of each simulation run is less than 0.01 second. 

The position of all scatterers are given in Table 5.1 with MS at position (—1.2, —0.3), 

and BS at position (2.4, 2.2). The distance unit is 1km in this work. 

N 
X 

y 

TABLE 5.1 POSITIONS OF ALL SCATTERERS 
1 

0.7 
1.5 

2 
0.3 
1.6 

3 
1.5 
0.8 

4 
0.4 
0.6 

5 
1.2 
1.4 

6 
0.8 
0.3 

7 
1.2 
0.5 

8 
0.4 
1.2 

9 
0.3 
0.3 

10 
0.6 
0.8 

1 

0.9 

0.8 
o 
S3 0.7 

'•§ 0.6 
CD 

o 
a 0.5 
o 
^ 0 . 4 
as 

"§ 0.3 

0.2 

0.1 

If / 
I * 

/ * * 

t* / 
/ * * 

i — i — i 4 scatters 
m m mj scatters 
• • • • • • 10 scatters 

-

-

0.05 0.1 0.15 0.2 0.25 0.3 
Root of squared location error (km) 

0.35 

FIGURE 5.3 ROOT OF SQUARED LOCATION ERROR WITH DIFFERENT SCATTERERS' 

GEOMETRY ARRANGEMENT 
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In Fig. 5.3, the root value of squared location error estimations are compared as the 

number of scatterers increases from 4 to 10. The TDOA noise standard deviation is set 

to be 0.02/c, whereas the AOD and AOA noise standard deviation is 0.3 degrees and 

0.1 degrees respectively. It is clear that the proposed method performs better with 

more scatterers since there are more location equations than unknown parameters. 

For example, if N — 4, we have 11 location equations and 10 parameters to estimate; 

however, as Â  = 10, we have 29 location equations and 22 parameters to estimate. 

Thus, the performance improvement introduced by additional scatterers is significant. 

Table 5.2 compares the RMS location errors with the CRLB. The first two diagonal 

elements from Eq. (5.36) are used to compute the CRLB for MS location estimation. 

The standard deviation of TDOA, AOA and AOD are the same as Fig. 5.3. From the 

results, we can see that the position of MS can be estimated with high accuracy, and 

RMS error estimation of the proposed method approaches the CRLB very closely. 

TABLE 5.2 COMPARISON OF RMS ERROR WITH CRLB 
Multipaths 
N = 4 
N = 5 
N = 6 
N = 7 
N = 8 
N = 9 
N = 10 

RMS (km) 
0.14479 
0.09775 
0.07254 
0.06214 
0.06082 
0.04667 
0.04319 

CRLB (km) 
0.11869 
0.08781 
0.06147 
0.05319 
0.05247 
0.04398 
0.04100 

Fig. 5.4 illustrates the distribution of squared error estimation for 20,000 runs. The 

TDOA noise standard deviation is set to be 0.02/c, whereas the AOD and AOA noise 

standard deviation is 0.3 degree and 0.1 degree respectively. 
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FIGURE 5.4 T H E DISTRIBUTION OF SQUARED ERROR 

AOD noise 
60 40 TDOA noise 10*log(cap dB 

FIGURE 5.5 MEAN SQUARE ERROR WITH DIFFERENT TDOA AND AOD NOISE 

MEASUREMENT 
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In Fig. 5.5, we show a 3D illustration of the RMS estimation with different TDOA 

and AOD noise measurement, whereas the AOA noise standard deviation is set to 

be 0.1 degree. The simulation results show that the maximum value of RMS is lower 

than 200m. 

The CRLB is also derived in Eq. (5.36) for the proposed location method. In Fig. 

5.6, we show a 3D illustration of the Cramer-Rao lower bound with different TDOA 

and AOD noise measurement, whereas the AOA noise standard deviation is set to be 

0.1 degree. 

FIGURE 5.6 CRAMER-RAO LOWER BOUND WITH DIFFERENT TDOA AND AOD 

NOISE MEASUREMENT 

5.4 Statistic Results for Geometric Dilution Model 

In this section, in order to investigate the effect of various positions of scatterers on 

the performance of the proposed MIMO location method, we simulate a geometric 
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dilution model to give some statistical results on the performance of the proposed 

MIMO location method. 

In this simulation, the positions of scatterers are uniformly generated in a square area 

according to the geometric dilution model shown in Fig. 5.7. The mobile and base 

station are at a distance D = 1 which is taken as our unit. The scatterers are drawn 

uniformly in a square domain of center C of coordinates (.7, 0) and sides dx = dy = 1. 

Scatterer 

BS D Y 

Dx 

FIGURE 5.7 GEOMETRIC DILUTION MODEL FOR SCATTERING 

The Monte Carlo simulation will determine the mean square error distribution of the 

position measurement for a variable number of scatterers of different positions. For 

each Monte Carlo simulation run, we randomly choose M scatterers in the scattering 

domain. We then calculate the squared location error based on Gaussian random 

noise. The root mean squared location error is calculated for at least 1000 Monte 

Carlo simulation runs. We repeat the simulation for a variable number of scatterers 

M (M = 4 ~ 10). For the noise measurement, the TDOA noise standard deviation is 

set to be 0.02/c, whereas the AOD and AOA noise standard deviation is 0.3 degree 
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and 0.1 degree respectively. 

) C I I I I 1 I ! I I 

0 0.05 0.1 015 0.2 0.25 0.3 0.35 0.4 0.45 

Root of squred location error (km) 

FIGURE 5.8 CUMULATIVE DISTRIBUTION OF RSE LOCATION ERROR 

In Fig. 5.8, we show the cumulative distribution of root of sequred location error 

(RSE). Ordinate x is the RSE location error, while ordinate y shows the probability 

of value less than ordinate x (ordinate y < ordinate x). 

For Fig. 5.9, the squared location errors are used as the x-coordinate. Seven scatters 

are used in this simulation. For the noise measurement, the TDOA noise standard 

deviation is set to be 0.02/c, whereas the AOD and AOA noise standard deviation 

is 0.3 degree and 0.1 degree respectively. The x ordinate shows the value of SE (not 

RSE) location error, whereas the y ordinate shows the number of runs with results 

falls into certain range. If D = lkm, we found that the simulated results meet the 

FCC regulation for E911 service, which require 100 meters for 67 percent of calls, and 

300 meters for 95 percent of calls. 
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FIGURE 5.9 DISTRIBUTION OF SQUARED LOCATION ERRORS 

5.5 Conclusions 

For the network-based mobile location systems, basic location estimates such as time 

difference of arrival (TDOA), angle of arrival (AOA) are usually used in accuracy im­

provement for location methods. However, for conventional location methods, multi-

lateration of several BSs are required to give location estimation. In this work, we 

proposed a novel position location estimation method for MIMO communication sys­

tems. The advantage of MIMO systems is to use multiple antennas in both side, thus 

multipath will be utilized to enhance overall performance of wireless communication. 

Moreover, it is also possible to estimate more parameters of multipath signals such 

as AOA, AOD and TDOA. 

Using measured multipath signal parameters in MIMO systems, such as TDOA be­

tween each pair of path, and AOD and AOA for each path, an over-determined system 

j i i i i i 
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can be established with a set of nonlinear location equations. The proposed hybrid 

TDOA/AOA/AOD location method utilizes Taylor-series linearization to give a iter­

ative nonlinear LS solution. With an initial guess of the mobile's position, the least-

squared difference between true MS position and previous estimation of MS position 

will be minimized. This process is repeated iteratively until the difference falls under 

a desired threshold. The performance of the proposed method has been evaluated 

through computer simulation. The Cramer-Rao Lower Bound is also derived. 

This method is able to determine the position of the mobile terminal so as to mini­

mize the measurement noise by using single base station. It might be a revolution for 

location-position problems by taking full advantage of the power of MIMO commu­

nication system for multipath dispersion. Since MIMO communication would be a 

must for next generation mobile communication systems, this method can be applied 

in many areas such as mobile devices and sensor position-location problems. 



99 

CHAPTER 6 

CONCLUSIONS AND FUTURE WORK 

6.1 Review of Main Contributions 

In this work, we have developed a complete new method for position location of mobile 

terminal in wireless MIMO systems. The focus has been on the joint parameters 

estimation of multipath propagation channel and position location method of the 

mobile terminal. The proposed methods have the advantages that the multipath 

effect has been utilized, thus only one BS is needed to determine the position of MS. 

The first part of this dissertation aims at working out some algorithms for the joint 

estimation of the physical parameters of MIMO channels. Based on a simplified 3GPP 

MIMO channel models, a bidirectional MIMO multipath propagation channel model 

is developed. The parameters of interest are the AOA, AOD, DOA and the path gain 

of each path component. We assume these parameters do not change quickly from 

each time slot to the next. 

By extending the classical parameter estimation methods to the joint space and 

time domain, the parameters such AOA, AOD and DOA of digitally modulated 

multipath signals have been jointly estimated in MIMO communication systems. In 

this work, modified subspace based parameter estimation method is used to achieve 

high resolution of multipath signal parameters. The novel approach uses a collection 

of estimates of a space-time manifold vector of the channel which utilizes a Khatri-

Rao product to transfer the estimated channel response matrix to the classical model. 

The proposed algorithms have been evaluated through computer simulation. The 

Cramer-Rao lower bound on the variance of the parameters's error is also derived, 
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and compared with the simulation results. The identifiability analysis of the proposed 

parameter estimation method is also provided. 

The estimated multipath signal parameters can be utilized to determine the position 

of mobile terminal. We then developed a system model for position location, both 

LOS and NLOS scenario are considered. With this single bounce model, there are 

N resolvable propagation paths between the transmitter and the receiver sites, and 

whereas each scatterer has single reflected signal. Each path is delayed according to 

its excess delay, and each angle of departure is connected to the corresponding angle 

of arrival. 

In this work, we developed a novel method to use theses parameters to build a 

geometric reconstruction and to localize mobile phone using only one base station 

in wireless cellular network. By using a set of measured multipath signal parameters, 

such as TDOA between pairs of paths, and AOD, AOA for each path, it is possible 

to estimate the position of the mobile terminal so as to minimize the effect of the 

measurement noise. 

For the proposed method, it is not necessary to have a LOS path available. When 

the number of multipaths N is greater than 3, we have 3N -1 measurements and 

2N+2 unknown parameters, hence the system is over-determined yielding a nonlin­

ear estimation problem. To solve the nonlinear hybrid TDOA/AOA/AOD location 

equations, the proposed solution uses an iterative Least Squares method combined 

with Taylor series linearization. 

In this way, this approach minimizes the errors occurring from the estimation of 

multipath parameters and gives the position of the mobile terminal by simultaneously 

resolving a set of algebraic location equations. The RMS errors are measured and 

compared with the Cramer-Rao lower bound to demonstrate the performance of 

the proposed method. This solution breaks the bottleneck of conventional mobile 
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positioning systems which have to require multi-later at ion of at least three BSs. The 

proposed location method took advantage of multipath effect of signal propagation 

and worked perfectly under NLOS scenario. 

Since more multipath signal parameters can be resolved in MIMO communication 

systems, the proposed hybrid TDOA/AOA/AOD location method can fully take 

advantage of the information richness of MIMO systems due to multipath dispersion. 

We outline the following advantages due mostly to the fact that single base station is 

involved: 

1. The time synchronization is straightforward, and furthermore, PL information 

collection by the network is facilitated. 

2. Most PL systems require LOS path which do not always exit in practice. Our 

method does not need this requirement. In fact, it will even find the LOS path 

in that case. 

3. Ideal for peer to peer network architecture. 

To summarize, in this dissertation, we have proposed a novel approach to determine 

the position of mobile terminals based on estimated multipath signal parameters using 

only one base station in the context of MIMO communication systems. The problem 

of conventional PL methods in terms of time synchronization, multipath effect and 

NLOS can be solved using the proposed location method. This PL method can be 

potentially used in many applications as shown below: 

• Sensor networks: using single sensor to locate other sensors. Furthermore, 

routing protocol for sensor network can be greatly improved. 

• Medical: remote sensing; ultrasonic positioning; biomedical device for the seeing 

and hearing impaired. 
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• Military: radar tracking, signal detection and estimation. 

• Safety: This solution allows to localize accurately a device even in densely 

populated urban environment. 

6.2 Future Directions 

Some aspects might be important and can be extended for the future research work: 

Joint Parameter Estimation Using Unitary ESPRIT Algorithm 

Due to its simplicity and high performance, ESPRIT has become one of the most 

powerful subspace-based techniques for AOA or frequency estimation schemes. For 

certain array geometries, namely centro-symmetric arrays, an ESPRIT-type algo­

rithm has been formulated to reduce the computational complexity significantly. The 

resulting algorithm is called Unitary ESPRIT [23]. This algorithm has been extended 

to two, three, and multidimensional cases [22]. Some theoretical elements are pre­

sented in [24] and a thorough description of the Multidimensional extension of Unitary 

ESPRIT is presented in [25]. Since the algorithm deals with the shift invariance in the 

space frequency domain, which is provided by the antenna configuration, we expect 

that the antenna to have certain doublets or shift invariance properties found in the 

classical ESPRIT method. At the same time, the DFT of the channel estimation pro­

vides the shift invariant property other DOA in the frequency domain, which allows 

the algorithm to jointly estimate the AOA and DOA. The elegant spatial smoothing 

and forward-backward averaging methods are also included in the algorithm. This 

eliminates the rank deficiency of the channel estimation for cases where the AOAs 

or DOAs are the same for different multipath components. Therefore, a close-formed 

subspace-based approach using Unitary ESPRIT technique can be proposed to jointly 

estimate the AOA, AOD and DOA of digitally modulated multipath signals in MIMO 
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communication systems. 

Diffuse pa ths 

We have assumed a specular multipath environment in this work. That is, the mul­

tipath signal path is modelled by a discrete number of rays, each parameterized by 

a delay, complex amplitude (path gain), angle of arrival and angle of departure. An 

interesting extension is the case of diffuse paths. 

Depending on the nature of the reflection and scattering in many propagation envi­

ronments, signal components of one source arriving from different directions exhibit 

varying degrees of correlation, ranging from totally uncorrelated to fully correlated 

cases. Because spatially-spread sources widely appear in many engineering applica­

tions, it is important to develop estimation and detection algorithms to extract signals 

and parameters of these spatially-spread sources. This leads to so called paramet­

ric distributional model, several algorithms (such as COMET,DSPE,DSF/WPSF) for 

smart antenna systems have been developed to estimate the value of parameters of 

spatially-spread sources [11,32]. How to extend these solutions to MIMO systems is 

an interesting subject of future research. 

To modify the propagation channel model to meet practical environment 

In this dissertation, a single bounced scattering model for wireless PL system has 

been proposed, as depicted in MIMO multipath propagation channel model of Fig. 

3.1. In the next stage, we can develop a two bounce model where there are scatterers 

distributed in a circle near the MS. This assumption is close to the Jake's propaga­

tion model, but we also consider the far-field scattering point for the second bounce 

between BS and MS. 

A new algorithm for 3D mobile position systems 
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One assumption in most existing researches is that the MS and BS are located in 

the same plane. The location to be determined is two-dimensional. Therefore, the 

effect of BS antenna height is not considered. However, in a real radio propagation 

environment, the elevation angle of received signal should be considered especially 

when the MS is inside a high-rise building, or traveling in a hilly terrain area. Hence, 

a three-dimensional location estimation scheme has to be developed. 

Mobile location in M I M O communicat ion sys tems using learning machine 

Due to unavoidable background noise and measurement error, it is very hard to ac­

curately obtain the MS location based on the measurements. To tackle this difficulty, 

we can use machine learning approach to handle the problems related to uncertainty 

and imprecision. Learning approach is especially suitable when the relationship be­

tween measurements and the object is too complicated to be solved analytically. For 

example, the nearest neighbor regressor can be adopted as the learning machine to 

estimation the highly nonlinear relationship between the multipath signal parameters 

and the mobile terminal position. 

Extending the proposed m e t h o d t o M I M O - O F D M sys tems . 

MIMO systems combined with OFDM has received a great deal of attention due to its 

great potential in achieving high data rates in wireless communications [6]. The main 

motivation for using OFDM in a MIMO channel is the fact that OFDM modulation 

turns a frequency-selective MIMO channel into a set of parallel frequency at MIMO 

channels. This renders multi-channel equalization particularly simple, since for each 

OFDM-tone only a constant matrix has to be inverted [5,47]. 

In MIMO-OFDM systems, the received sinal has the same structure as in Eq. (3.24). 

For pilot-based channel estimation, K subcarriers are used to carry pilot symbols. 

Therefore, for channel estimation purposes, the received signal can be collected into a 
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N x K matrix Y that contains the frequency domain samples received over the pilot 

sub-carriers. Matrix H is the N x ML MIMO-FIR (time-domain) channel matrix 

defined as in (3.24). The ML x K matrix X in this case is no longer a convolution 

matrix but is the product of a matrix that perform NM Discrete Fourier Transforms 

on the time domain channels in H and a block-diagonal matrix that gathers the pilot 

symbols transmitted by the M transmitting antennas. In this way, a parametric 

estimator can benefit from a joint estimate of the channels for all the transmitting 

antennas. Therefore, estimation of multipath signal parameters in MIMO-OFDM 

systems remains an open research direction. 
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