POLYPUBLIE

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o

Entrep6ts autonomes a I'ere du e-commerce : apprentissage
automatique pour la prise de décision en temps réel

Adrien Rimélé

2021
Mémoire ou these / Dissertation or Thesis

Rimélé, A. (2021). Entrep6ts autonomes a I'ere du e-commerce : apprentissage
automatique pour la prise de décision en temps réel [Thése de doctorat,

Polytechnique Montréal]. PolyPublie. https://publications.polymtl.ca/9101/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/9101/

Directeurs de
recherche: Louis-Martin Rousseau, Michel Gamache, & Michel Gendreau

Programme:

Advisors:

P ' |Doctorat en mathématiques
rogram:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/9101/
https://publications.polymtl.ca/9101/

POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

Entrep6ts autonomes a ’ére du e-commerce : apprentissage automatique pour

la prise de décision en temps réel

ADRIEN RIMELE

Département de mathématiques et de génie industriel

These présentée en vue de 'obtention du diplome de Philosophie Doctor

Mathématiques

Aofit 2021

(© Adrien Rimélé, 2021.

POLYTECHNIQUE MONTREAL

affiliée a "Université de Montréal

Cette theése intitulée :

Entrep6ts autonomes a ’ére du e-commerce : apprentissage automatique pour

la prise de décision en temps réel

présentée par Adrien RIMELE
en vue de 'obtention du dipléme de Philosophie Doctor

a été diiment acceptée par le jury d’examen constitué de :

Issmail EL HALLAOUI, président

Louis-Martin ROUSSEAU, membre et directeur de recherche
Michel GAMACHE, membre et codirecteur de recherche
Michel GENDREAU, membre et codirecteur de recherche
Antoine LEGRAIN, membre

Barrett THOMAS, membre externe

1ii

REMERCIEMENTS

Je souhaite remercier un certain nombre de personnes sans lesquelles ce projet de doctorat
n’aurait pu étre mené a bien, ou qui, par leur présence, ont rendu cette expérience particu-

lierement plaisante et enrichissante.

Je souhaite tout d’abord exprimer ma profonde gratitude a mon directeur de recherche,
Prof. Louis-Martin Rousseau, dont la vision et expertise dans de nombreux domaines est
sans limites. Je remercie également mes deux co-directeurs, Prof. Michel Gamache et Prof.
Michel Gendreau, pour leur supervision et leurs suggestions toujours éclairées. En plus d’avoir
dirigé ma maitrise lorsque je suis arrivé au Canada, Prof. Gamache m’a offert 'opportunité
de donner ses séances de laboratoires de recherche opérationnelle, je lui suis extrémement

reconnaissant tant cette expérience fut enrichissante.

Je tiens également a remercier 'organisme de financement Mitacs qui a financé mon premier
stage de recherche chez JDA software. Un grand merci a I’équipe RO de JDA avec laquelle j’ai
eu la chance de travailler, en particulier Marc Brisson, manager de I’équipe, mais aussi Eric,
Philippe, Thierry et Vincent avec qui j’ai beaucoup appris et passé d’excellents moments.
J’ai également eu le plaisir de réaliser un second stage de recherche, cette fois a Element
Al Je remercie tout d’abord Sara Morin, manager de ’équipe pour son suivi toujours tres
attentionné. Merci & tous les membre de I'équipe : Adham, Ben, Dominique, Eric, Etienne,
Masoud, Mathieu, Patrick, Philippe et Thierry, pour ces bons moments passés ensemble et

pour m’avoir inclus aussi chaleureusement dans vos activités professionnelles et sociales.

Je me permets de consacrer un paragraphe pour remercier spécifiquement Philippe Grangier.
Philippe a supervisé mes deux stages au sein de JDA et Element Al et a continué a suivre
mes avancées par la suite. Successivement superviseur puis mentor et ami, je n’aurais pu

imaginer un meilleur encadrement. Merci !

Je remercie également I’ensemble des membres de mes laboratoires de recherche, le CIRRELT
et HANALOG, pour tous ces bons moments et échanges constructifs. Merci tout particuliere-
ment a Mahdis et Peyman avec qui j’ai eu le plaisir de partager mon bureau toutes ces années.

Notre amitié se place au plus haut dans ce qu’a pu m’offrir ce doctorat : motshakeram, merci.

Un grand merci a mes amis Alexandre et Lancelot pour étre restés si présents, méme en étant

si loin. Ils se sont méme dévoués pour relire une partie de ce manuscrit !

Evidemment, je remercie du fond du coeur mes parents, & qui je dois tout, et qui m’ont

toujours encouragé et soutenu dans la poursuite de mes études, aussi longtemps que je le

v

souhaitais.

Enfin, un énorme merci a Fernanda, ma compagne, pour m’avoir accompagné toutes ces
années. Tu m’as tant apporté a bien des égards, toujours soutenu avec un sourire infaillible.
Nous avons fini cette aventure avec le bonheur d’avoir Lucas et Mateo, maintenant agés
de treize mois, et tous les défis qui les accompagnent. Partenaire idéale dans une situation

exceptionnelle, cette these n’aurait pas été possible sans toi.

RESUME

La récente et rapide croissance du commerce et ligne a fondamentalement changé le secteur
de la vente au détail et, plus généralement, la facon dont les individus consomment. Cette
industrie fait face a une grande compétitivité avec une grande volatilité de sa clientele. En
cherchant constamment a réduire ses délais de livraison tout en minimisant les cofits, les
chaines logistiques font face a un défi de taille pour satisfaire une demande grandissante et
s’adapter a des tendances qui évoluent constamment. Cette these considére un nouveau type
d’entrepot de stockage automatique, appelé centre de distribution robotisé, qui est particu-

lierement bien adapté aux spécificités du commerce en ligne.

Dans un centre de distribution robotisé, une flotte de robots récupere et entrepose des étageres
remplies d’articles dans 'espace de stockage. Ces étageres sont apportées a des stations de
cueillette ou des opérateurs humains sélectionnent les articles pour satisfaire les commandes.
En pratique, un robot réalise une succession continue de cycles de commandes doubles. Ces
cycles correspondent a une premiere tache de stockage, suivi immédiatement d’une tache de
récupération, puis d’une durée d’attente a une station. Ce processus engendre une multitude
de problemes de décision tels que I’allocation d’emplacements de stockage, I’ordonnancement
des commandes, 'affectation d’une station de cueillette et autres. De plus, la promesse d’une
livraison toujours plus rapide force les vendeurs a considérer une nouvelle commande des que
celle-ci est placée. Pour cette raison, ainsi que la nature dynamique du systéme d’entreposage,

la prise de décision doit étre réalisée en temps réel dans un environnement incertain.

Cette these s’organise autour de trois articles publiés ou soumis dans des journaux scien-
tifiques. Compte tenu du manque habituel de formalisation des problemes de décision en
temps réel, le premier article propose un modele de programme dynamique stochastique qui
modélise les décisions opérationnelles dans un centre de distribution robotisé. L’objectif de ce
modele est de formaliser les opportunités d’optimisation dans ce systeme afin de permettre
aux chercheurs de développer de nouvelles approches dans un environnement bien défini.
Reproduit par un simulateur a événements discrets, ce modele est illustré par une étude de
simulation qui vise a comparer les regles de décision standards d’allocation d’emplacements
de stockage : un stockage aléatoire, sélection de I’emplacement disponible le plus proche, un

stockage par classes et la politique gloutonne de temps d’acces et de transition le plus court.

Le second article présente une méthode d’apprentissage d’une politique de stockage par zones.
Un élément essentiel des centres de distribution robotisés est leur grande modularité de sto-

ckage. Lorsqu’un robot replace une étagere, il peut sélectionner n’importe quel emplacement

vi

disponible. Etant donné le nombre important de robots opérant simultanément, cela crée de
nombreuses opportunités. Cette modularité permet d’adapter la configuration de l'entrepot
a de nouvelles tendances de la demande et de créer des cycles les plus efficaces possibles. Cet
article utilise une méthode d’apprentissage par renforcement qui vise a minimiser le temps
de déplacement des robots. Les décisions sont prises dans un processus de décision markovien
partiellement observable ou I’état du systeme est représenté par de I'information sur la confi-
guration actuelle de ’espace de stockage, la prochaine commande a traiter et des statistiques
sur les distributions d’arrivée des commandes. Basé sur cette représentation, un agent de
Deep Q-learning est utilisé pour apprendre a quelle zone de 'entrepdt chaque étagere devrait
étre dynamiquement affectée. De plus, une stratégie d’exploration de trajectoires est propo-
sée afin de tirer profit des informations sur les commandes déja révélées a un instant donné.
Avec une étude de simulation, la méthode proposée, incluant I’exploration de trajectoires,
génere des résultats qui améliorent de 7.6% la meilleure régle standard de décision en termes

de temps de déplacement.

Le troisieme article propose une autre approche d’apprentissage pour sélectionner dynami-
quement les emplacements de stockage exacts (au lieu de zones) en utilisant des méthodes
de recherche d’arbres. Une recherche arborescente Monte-Carlo est employée hors ligne pour
accumuler de I'expérience de haute qualité. Cette recherche d’arbre étant particulierement
coliteuse en temps de calcul, elle ne peut étre déployée en temps réel. Cependant, un réseau
de neurones peut étre utilisé pour apprendre de cette expérience avec une certaine représen-
tation d’état du systeme (les emplacements libres et les étageres requises sont représentées
par leurs coordonnées). Ce réseau est ensuite employé comme prédicteur d’actions dans plu-
sieurs nouvelles politiques de stockage, soit tel quel, soit dans des stratégies d’exploration
de trajectoires ou de recherches d’arbres supervisées. Le niveau de performance obtenu est
constamment supérieur aux regles de décision de la littérature et dépend du temps de cal-
cul alloué a la prise de décision. Par exemple, la meilleure politique de recherche d’arbre

supervisée améliore la meilleure regle de décision de 13.7%.

vii

ABSTRACT

The growth of e-commerce has changed the way people consume and the business-to-consumer
retail market segment. The goal of increasing delivery speed while remaining cost-effective
poses significant new challenges for supply chains as they race to satisfy the growing and
fast-changing demand. This thesis considers a recent automated warehouse called Robotic

Mobile Fulfillment System (RMFS), particularly well-suited for e-commerce operations.

In an RMFS, a fleet of small robots retrieves and stores shelves of items in the storage area.
These robots bring the shelves to picking stations, where a human operator picks the required
items to fulfil orders. The life of a robot is a succession of dual command cycles where a
storage task is immediately followed by a retrieval task to finally wait in line at a picking
station. Such cycles involve numerous decisions, from storage allocation to order sequencing,
picking station assignments, and others. Also, online retailers promise speedy deliveries,
which requires that new orders be included in the set of requests to fulfil as soon as they
are known. For this reason, and because of the very dynamic nature of the robots’ cycles,

decision-making needs to be done in real-time, in an uncertain environment.

This thesis is articulated around three articles, published, or submitted to scientific journals.
First, and because such a real-time problem often lacks a formal description, we propose
a mathematical framework that models decision-making in an RMFS as a stochastic dy-
namic program. This model’s objective is to formalize optimization opportunities to allow
researchers to develop more advanced methods in a well-defined environment. Embedded
in a discrete event simulator, this model is illustrated by simulations to compare against
standard storage decision rules, including a random storage policy, a closest open location

policy, a class-based storage policy, and the shortest leg (greedy) policy.

In a second phase, we present a method that learns a zone-based storage policy. A distin-
guishing feature of an RMFS is its great storage modularity. Indeed, when a robot returns a
shelf to the storage area, it can select any available location. Because of the large number of
simultaneously operating robots, there are plenty of available options. This flexibility allows
the warehouse’s layout to adapt to new demand patterns and create efficient cycles. We pro-
pose to tackle this storage allocation sub-problem by using Deep Reinforcement Learning to
minimize the robots’ average travel time. The decision-making process is first formulated as
a Partially Observable Markov Decision Process where information about the current layout
of the warehouse, the next order in line, and the demand distribution is available. Based on

this state representation and a discrete event simulator, a Deep Q-learning agent is used to

viii

learn to which zone a shelf should be dynamically assigned. Additionally, we propose a roll-
out strategy to enhance our method by leveraging more information about already revealed
orders at a given time step. Using simulations to compare our method to the best standard

decision rule (shortest leg) showed average performance gains of 7.6% in travel time.

Finally, and motivated by the good results of the rollout strategy, a different learning ap-
proach is proposed to dynamically select exact storage locations (instead of zones) using
tree search methods. This approach first consists of running offline an efficient yet compu-
tation costly Monte Carlo Tree Search method to generate a high-quality experience. This
experience is later learned by a neural network with a proper coordinates-based features rep-
resentation. The obtained neural network is used as an action predictor in several new storage
policies, either as it is or in rollout and supervised tree search methods. The supervised tree
search method explores the tree’s nodes most likely to be visited by the policy network. The
obtained performance levels depend on the computation time available at a decision step and
are highly competitive compared to real-time decision rules from the literature. For instance,

the best-supervised tree search instance improves by 13.7% the shortest leg policy.

TABLE DES MATIERES

REMERCIEMENTS e iii
RESUME v
ABSTRACT e vii
TABLE DES MATIERES ix
LISTE DES TABLEAUX xii
LISTE DES FIGURES xiii
LISTE DES SIGLES ET ABREVIATIONS xiv
CHAPITRE 1 INTRODUCTION 1
1.1 Définitions et concepts de base 1
1.2 Eléments de la problématique 3
1.3 Objectifs de recherche 5
1.4 Plandelathese 5
CHAPITRE 2 REVUE DE LITTERATURE 7
2.1 Systemes automatisés de stockage et de récupération 7
2.1.1 Description 7

2.1.2 Politiques de stockageo oL 9

2.1.3 Stockage dédié 11

2.1.4 Stockage statique oo 13

2.1.5 Stockage partagé 14

2.2 Centres de distribution robotisés 16
2.2.1 Modeles analytiques 16

2.2.2 Ordonnancement des commandes 17

2.2.3 Allocation d’emplacements de stockage 18

2.2.4 Autres thématiques 19

CHAPITRE 3 DEMARCHE ET ORCGANISATION DE LA THESE 20

X

CHAPITRE4 ARTICLE 1: ROBOTIC MOBILE FULFILLMENT SYSTEMS :
A MATHEMATICAL MODELLING FRAMEWORK FOR E-COMMERCE

APPLICATIONS 23
4.1 Introduction 24
4.2 Robotic Mobile Fulfillment Systems 25
4.3 Literature review 26
4.4 Formulation 28
4.4.1 Modelling framework 0L 28
4.4.2 Sets 30
4.4.3 Parameters 31
4.4.4 State variables L 32
4.4.5 Exogenous information L 35
4.4.6 Decisions 36
4.4.7 Transition function L. 37
4.4.8 Cost function L 41
4.5 Simulation studyo 44
4.5.1 Assumptions. 44
4.5.2 Storage allocation baselines 45
4.5.3 Simulationstudy 000 46
4.6 Conclusions and future work 49

CHAPITRE 5 ARTICLE 2 : EECOMMERCE WAREHOUSING : LEARNING

A STORAGE POLICY 51
5.1 Introduction 52
5.1.1 Warehousing in e-commerce 52
5.1.2 Robotic Mobile Fulfillment System 52
5.1.3 Contributions and paper structure 53
5.2 Problem definition and literature 54
5.2.1 Decision-making framework 54
5.2.2 Storage policies 55
5.2.3 RMFS-related work 56
5.3 Methodology 58
5.3.1 Storage zones definition 58
5.3.2 System representation 59
5.3.3 Reinforcement learning method 60

5.3.4 Implementation details 62

5.3.5 Look-ahead rollout strategy 63

5.4 Simulation study oo 65
5.4.1 Parameters L 65
5.4.2 Results. 67

5.5 Conclusions 70

CHAPITRE 6 ARTICLE 3 : SUPERVISED LEARNING AND TREE SEARCH
FOR REAL-TIME STORAGE ALLOCATION IN ROBOTIC MOBILE FUL-

FILLMENT SYSTEMS 72

6.1 Introductiono 72
6.2 Literature review Lo 74
6.2.1 Analytical models L 74

6.2.2 Scheduling and task allocation 75

6.2.3 Storage allocation 76

6.3 Problem definitiono 7
6.4 Methodology 78
6.4.1 Monte Carlo Tree Search algorithm 78

6.4.2 Learning a policy 0oL 79

6.4.3 Enhancement of the Learned Policy 82

6.4.4 Supervised Tree Search algorithm 83

6.5 Simulationstudy oo 86
6.5.1 Preliminary results 86

6.5.2 Results. 88

6.6 Conclusion 90
CHAPITRE 7 DISCUSSION GENERALE 97
CHAPITRE 8 CONCLUSION ET RECOMMANDATIONS 99
8.1 Synthese des travaux oL 99
8.2 Limitations et améliorations futures 100

REFERENCES o 102

Table 4.1
Table 4.2
Table 5.1

Table 5.2

Table 6.1
Table 6.2
Table 6.3
Table 6.4
Table 6.5

xii

LISTE DES TABLEAUX

Travelling times 48
Full cycle times oo 49
Average travelling times t(s) and performance gains g(%) depending

on distribution skewness parameter value s - without rollouts 68
Performance gains g(%) depending on distribution skewness parameter

value s and horizon h - with look-ahead rollouts 70
Results of the methods without learning 92
Results of the methods learned from MCTS(

Results of the methods learned from MCTS(10) 94
Results of the methods learned from MCTS(

Results of the methods learned from MCTS(

Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 5.1
Figure 5.2

Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6
Figure 6.1
Figure 6.2
Figure 6.3
Figure 6.4
Figure 6.5
Figure 6.6
Figure 6.7

xiii

LISTE DES FIGURES

Decision tree 31
Possible decisions when a robot is located at a picking station 37
[ustration of the cost components in the complete cycle time 43
Simulation study - storage area 48
Dual-command cycle (left) and opportunistic task (right) 55
Concentric class-based storage layout (left) vs. proposed zones layout

(right) o 59
Revealed orders at decision time L. 64
Look-ahead rollout strategy 65
Simulation study - Plan view of the storage area 66
Typical instance of a training curve (here for s=0.6) 68
MCTS . . 80
Simple features representation illustration 81
Supervised Tree Search 84
Plan view of the storage area 87

Correlation between the network’s accuracy and the policies’ performance 88
Policies’ performance 89

Learned policies’” performance 89

AS/RS

COI
COL
DC
FCFS
I/O point
KPI
LP

SR
MCTS
MDP
MIP

NN
PO-MDP

RL
RMFS
SDT
SL
STS
STT

xXiv

LISTE DES SIGLES ET ABREVIATIONS

Automated Storage and Retrieval System (systeme automatique de sto-
ckage et de récupération)

Cube per Order Index (indice cubique par commande)

Closest Open Location (emplacement libre le plus proche)
Dual-Command (commande double)

First-Come First-Served (premier arrivé, premier servi)

Input/Output location (point d’entrée-sortie)

Key Performance Indicator (indicateur clé de performance)

Learned Policy (politique apprise)

Storage and Retrieval (stockage et récupération)

Monte Carlo Tree Search (recherche arborescente Monte-Carlo)
Markov Decision Process (processus de décision markovien)

Mixed Integer Programming (programmation mixte en nombres en-
tiers)

Nearest Neighbour (voisin le plus proche)

Partially Observable Markov Decision Process (processus de décision
markovien partiellement observable)

Reinforcement Learning (apprentissage par renforcement)

Robotic Mobile Fulfillment System (centre de distribution robotisé)
Shortest Due Time (temps d’échéance le plus court)

Shortest Leg (temps d’acces et de transition le plus court)

Supervised Tree Search (recherche d’arbre supervisée)

Shortest Total Time (temps total le plus court)

CHAPITRE 1 INTRODUCTION

Ce travail de recherche porte sur la prise de décision en temps réel dans un nouveau type
d’entrep6t automatisé adapté au e-commerce. Dans cet entrepot, appelé centre de distribu-
tion robotisé, une flotte de robots récupere des étageres dans l'espace de stockage afin de les
apporter a des stations de cueillette ou des opérateurs traitent les commandes. Les carac-
téristiques des commandes en ligne, ainsi que celles intrinseques a ces entrepots, résultent
en un systeme dynamique et complexe qui doit continuellement s’adapter a la demande.
Entre autres probléemes de décision, 'allocation d’emplacements de stockage présente une
grande opportunité d’optimisation. En effet, apres chaque opération de cueillette, un robot
peut réallouer une étagere a n’importe quel emplacement libre. Cette modularité permet non
seulement au systeme de s’adapter aux tendances de la demande, mais également de saisir
des opportunités a court terme afin de minimiser, par exemple, la durée de déplacement des

robots et ainsi maximiser la productivité.

1.1 Définitions et concepts de base

La croissance rapide et récente du commerce en ligne a révolutionné le secteur de la vente
au détail des entreprises aux particuliers (Business-to-Consumer en anglais) et, plus globa-
lement, la facon dont les individus consomment. Sur le marché américain, cette croissance
s’est maintenue a un niveau élevé et relativement constant de +15% par an depuis une dé-
cennie. I’année 2020, exceptionnelle dans tous les domaines, a généré une croissance record
de +44%. Aujourd’hui, le commerce en ligne représente 21.3% de ’ensemble de la vente au
détail, pour un total de 861 milliards de dollars aux Etats-Unis [1].

Le commerce en ligne présente des caractéristiques uniques. Tout d’abord, il implique un
volume significatif de petites commandes, ce qui force les vendeurs a maintenir un inven-
taire tres important. Boysen et al. [2] mentionne par exemple que le nombre d’articles par
commande chez Amazon est de 1.6. Le commerce en ligne fait également face a une grande
incertitude de la demande, avec des tendances qui changent tres régulierement. De plus, les
commandes doivent généralement étre satisfaites tres rapidement [2-4]. Amazon offre par
exemple a ses clients un service Prime qui, dans certains cas, garantit une livraison le jour
méme. Avec une clientele qui choisit ses articles exclusivement par le biais d’une description,
la vente en ligne génere un grand nombre de retours qui doivent étre réintroduits dans la
chaine logistique. Aussi, avec des alternatives facilement disponibles aux clients, les vendeurs

en ligne font face a une grande compétitivité. Il est d’ailleurs démontré que la relation entre

la performance logistique et la fidélité de la clientele est bien plus forte que celle d’autres

secteurs [5].

Pour répondre a la demande croissante et aux caractéristiques du commerce en ligne, un
nouveau type d’entrepét automatisé, appelé centre de distribution robotisé, a récemment
vu le jour (ou Robotic Mobile Fulfillment System, RMFS, en anglais). Le premier RMFS a
été créé par Kiva Systems en 2006, entreprise rachetée par Amazon en 2012 et renommée
Amazon Robotics [4,6,7]. Depuis, d’autres systémes similaires concurrents ont vu le jour tels
que les robots Zhu Que d’Alibaba, les Quicktrons de Huawei, les Open Shuttles de Knapp ou
le systeme CarryPick de Swisslog [4,8]. Il est estimé que les ventes de ces systeémes robotisés
génereront un chiffre d’affaires de $30.8Md en 2022, soit environ 900K unités de robots [9].

Un RMFS est un systeme articles-vers-cueilleur (parts-to-picker) dans lequel une flotte de
robots déplace des étageres remplies d’articles au sein de l'espace de stockage. Plus préci-
sément, un robot réalise une série de cycles de commandes doubles qui consistent en une
succession de taches de stockage et de récupération afin d’apporter des étageres a des opéra-
teurs humains localisés a des stations de cueillette. Ainsi, lorsqu’un opérateur a terminé sa
tache de cueillette, le robot doit replacer I'étagere dans I'espace de stockage. Par la suite, il se
rend directement a 1’étagere associée a la prochaine commande pour 'apporter jusqu’a une
station de cueillette. A cette dernitre, il est possible que le robot doive se placer dans une file
d’attente, en attendant que d’autres robots soient libérés. Un élément d’intérét dans cette
these est la possibilité pour un robot de sélectionner n’importe quel emplacement de stockage
disponible a un instant donné. Le systeme peut ainsi s’adapter aux nouvelles tendances de la
demande ou saisir des opportunités pour une plus grande productivité. En pratique un robot
se déplace en suivant des marqueurs au sol disposés en forme de grille. Il est intéressant de
noter que lorsqu’un robot est chargé, il doit se déplacer dans les allées. En revanche, lors des
transitions, le robot se déplace a vide, il peut ainsi passer sous les étageres entreposées pour
se rendre plus directement a sa destination et éviter le trafic. De plus amples détails sur le
fonctionnement des RMFSs peuvent étre trouvés dans les références suivantes : Wurman et
al. [6], D’Andrea et Wurman [10], Enright et Wurman [11], ou encore Azadeh et al. [7].

Les RMFSs présentent plusieurs avantages par rapport aux systemes manuels ou aux sys-
témes automatisés de stockage et de récupération plus conventionnels (Automated Storage
and Retrieval Systems, AS/RSs) [6]. Tout d’abord, un robot peut accéder a ’ensemble de
I'entrep6t et n’importe quelle station de cueillette (ou de réapprovisionnement) peut étre
desservie. Moins de main-d’ceuvre est nécessaire aux opérations de cueillette, il y a moins de
dépendances entre les opérateurs, et donc de possibles délais. Cela a également pour effet de

faciliter le suivi des responsabilités et de réduire les erreurs. Etant donné le nombre important

de robots opérant simultanément, il n’y a pas de point de rupture. Le systéeme présente une
excellente modularité qui lui permet d’adapter sa configuration en continue pour satisfaire
au mieux la demande. Enfin, ce systéme est facilement extensible, ce qui permet d’adapter

la taille de I'installation a la croissance d’une entreprise.

1.2 Eléments de la problématique

Compte tenu de la pression exercée sur les RMFSs pour satisfaire les commandes aussi vite
que possible, les nouvelles commandes doivent étre considérées immédiatement. Banker [12]
mentionne une logique de traitement des commandes en continue (ou order streaming logic)
qui consiste a “traiter les commandes dés qu’elles sont regues” (“drops these orders [...] to
the floor as soon as they are received”). Cette logique limite fortement le regroupement des
commandes qui consisterait a fixer un bloc de commandes, afin de planifier son traitement,
avant de passer au bloc suivant. Cette considération suggere une prise de décision qui devrait
étre faite en temps réel. La réalisation simultanée de cycles de commandes doubles par les
robots présente une grande complexité. Par exemple, les emplacements disponibles ainsi que
les emplacements des étageres (et donc les temps d’acces) dépendent des décisions prises
continuellement. Ceci, couplé au déplacement des robots et au temps qu’ils passent dans les
files d’attente aux stations, crée un systéme extrémement dynamique. Quelque soit le type
d’approche utilisé pour la prise de décision, un tel systeme doit étre évalué au travers d’un

simulateur qui permette de reproduire fidelement les diverses opérations d’entreposage.

Un RMFS présente une multitude de problemes de décision. Merschformann et al. [13] identi-
fient par exemple les problemes suivants : 'ordonnancement du traitement des commandes ;
I'affectation d'une étagere a une commande ; ’allocation d’un emplacement de stockage a
une étagere; la sélection d’une station pour une tache de réapprovisionnement ou encore
d’une étagere a réapprovisionner. A ces problémes peuvent s’ajouter le choix d’une station
de cueillette pour le traitement d’une commande, I’ordonnancement des taches de réapprovi-
sionnement, ou la possibilité pour un robot de court-circuiter I’espace de stockage en réalisant

une tache alternative a une tache de stockage, appelée tache opportuniste dans cette these.

La possibilité de réaliser une tache opportuniste se présente lorsqu’un robot est libéré par un
opérateur a une station. Au lieu de réaliser une tache de stockage, le robot peut décider de
réutiliser immédiatement son étagere pour traiter une nouvelle commande afin d’économiser
du temps de déplacement. Pour cela, il faut évidemment qu'une commande requiére un article
présent dans 'étagere. Plusieurs options sont alors possibles : le robot peut rester en place
a la méme station, afin de traiter la nouvelle commande immédiatement ; il peut aussi se

replacer dans une file d’attente de la méme ou de n’importe quelle autre station.

Dans cette these, il est considéré que toutes les prises de décision associées aux différents
sous-problémes se présentent lorsqu’un robot devient disponible, typiquement juste apres
une opération de cueillette (ou de réapprovisionnement) ou apres le dépot d'une étagere
a son emplacement de stockage. Ceci correspond d’ailleurs a la notion d’événements définie
dans un simulateur a événements discrets, utilisé pour évaluer la performance du systeéme. De
plus, quelque soit les décisions qui doivent étre prises, elles sont considérées non-préemptives,
dans le sens ou une nouvelle décision ne doit pas venir altérer une décision antérieure. Par
exemple, si un robot est présentement en déplacement vers un emplacement de stockage, ce
dernier ne peut pas étre réalloué & un autre robot (ce qui forcerait le premier robot a changer
de tache), méme si cela générerait une économie. Enfin, d’autres probléemes de décision plus
spécifiques a la robotique tels que le routage des robots, les opérations de maintenance, de

chargement des batteries et autres, ne sont pas considérés dans ce travail.

Le probleme d’allocation d’emplacements de stockage recoit une attention particuliere dans
cette these. Comme mentionné plus haut, lorsqu’un robot portant une étagere est libéré a une
station de cueillette, un nouvel emplacement ot entreposer 1’étagere doit étre sélectionné. Un
objectif habituel est alors de minimiser le temps de déplacement moyen des cycles de com-
mandes doubles réalisés par les robots. Ce temps est une borne inférieure sur le temps de
cycle total moyen (incluant l'attente a une station), qui & son tour est inversement propor-
tionnel au flux de production maximum. Autrement dit, minimiser le temps de déplacement

des robots permet d’augmenter le flux de production maximum de ’entrepot.

Il est commun dans les systemes d’entreposage que la demande ne soit pas uniforme mais
fortement biaisée vers un nombre limité de conteneurs ou d’articles, représentant la majorité
des commandes. Intuitivement, il existe donc un compromis entre positionner des étageres
souvent demandées pres des stations et réaliser des cycles les plus courts possibles. En pra-
tique, cette prise de décision en temps réel est gérée par des regles de décision qui utilisent
précisément ces deux notions. Ainsi, inspirés par les systemes automatiques a cycles de com-
mandes simples (allers-retours entre 'espace de stockage et la station), les politiques basées
sur le taux de demande (nombre de requétes par unité de temps) ordonnent les étageres par
taux de demande croissants et les allouent a des emplacements ou des classes (groupes d’em-
placements) de plus en plus loin des stations. A Dinverse, la politique gloutonne de temps
d’accés et de transition le plus court, appelée Shortest Leg (SL) en anglais, est exclusive-
ment concentrée sur la durée du cycle immédiat. Compte tenu du nombre de robots opérant
simultanément dans un RMFS, une multitude d’emplacements de stockage est disponible
a un instant donné. Cela semble donner un fort avantage aux politiques de type SL dans
le cas général. Ces sujets, ainsi que d’autres approches qui supposent un regroupement de

commandes, seront étudiés plus en détail dans la revue de littérature au chapitre 2. Cette

these explore 'apprentissage de politiques de stockage visant a tirer profit de ce compromis.
Quel que soit le type d’approche développé (type de modélisation, méthode de résolution,
technique d’apprentissage, etc.), il est essentiel pour une politique d’étre parfaitement dé-
ployable en temps réel. Elle doit étre capable de réagir en continue a un flux de nouvelles

informations et d’avoir un temps de calcul en déploiement tres limité.

1.3 Objectifs de recherche

L’objectif général de la these est de proposer une approche de résolution adaptée a la prise de
décision en temps réel dans un centre de distribution robotisé, systéme hautement dynamique

et incertain. Plus précisément, deux objectifs spécifiques sont formulés de la maniere suivante :

1. Formaliser le probleme de prise de décision en temps réel dans un centre de distribution

robotisé.

2. Proposer de nouvelles politiques de stockage plus performantes que les regles de dé-
cision couramment employées. Ces politiques doivent étre a la fois performantes et

parfaitement déployables en temps réel.

Le premier objectif cherche a combler un manque habituel rencontré dans des problématiques
de prise de décision en temps réel. Dans ce contexte, un modéle mathématique permet d’isoler
les décisions opérationnelles et de formaliser leur influence sur le systeme par le biais de
contraintes, de fonctions de transition et d’objectifs. Le deuxieme objectif vise a proposer des
politiques alternatives aux regles de décision traditionnelles. Compte tenu de la dynamique
du systeme, de la séquentialité de la prise de décision, mais également de la constance de
I’environnement dans lequel il évolue, I'apprentissage automatique se présente comme une
approche intéressante pour une prise de décision rapide et éclairée. De plus, la prise de
décision en temps réel présente généralement un budget computationnel correspondant a un
intervalle de temps raisonnable pour chaque décision. Si ce budget le permet, il peut étre
envisagé de déployer une méthode de recherche d’arbre de décision qui utilise une politique

apprise (prédicteur) pour simuler la réponse du systéme a une séquence de décisions.

1.4 Plan de la these

La these s’organise autour de trois articles de recherche publiés ou soumis dans des journaux
scientifiques. Tout d’abord, une revue de littérature est présentée au chapitre 2. Cette revue
é¢tudie les travaux de recherche menés dans le domaine des entrepots automatiques de stockage
et de récupération, ainsi que des études, plus récentes, spécifiques aux centres de distribution

robotisés. Le chapitre 3 décrit 'organisation générale du projet de recherche, ce qui a motivé

les différents articles et le lien qui les relie. Le chapitre 4 présente le premier article portant sur
la modélisation de la prise de décision en temps réel dans les centres de distribution robotisés.
Le chapitre 5 présente le deuxieme article qui utilise un apprentissage par renforcement pour
apprendre une politique de stockage en temps réel. Cet apprentissage vise a minimiser le
temps de cycle moyen des robots dans un processus de décision markovien partiellement
observable avec de I'information sur I’état actuel de 'entrepot, la prochaine commande et des
statistiques associées a la demande. Le troisieme article, présenté au chapitre 6, a également
pour objectif d’apprendre une politique de stockage, mais en utilisant de l'apprentissage
supervisé et des techniques d’exploration d’arbre de recherche afin de tirer profit d'une liste
de commandes révélées. Le chapitre 7 discute de 'ensemble des travaux de recherche et des
principaux résultats obtenus. Enfin, le chapitre 8 synthétise les travaux réalisés, souligne des

limitations et propose des pistes de future recherche.

CHAPITRE 2 REVUE DE LITTERATURE

Bien que les centres de distribution robotisés (Robotic Mobile Fulfillment Systems, RMFSs)
soient des systeémes d’entreposage relativement récents, la littérature sur le sujet remonte
aux années 1960 et au domaine des systemes automatisés de stockage et récupération plus
conventionnels (Automated Storage and Retrieval Systems, AS/RSs). Ce type d’entrepot
automatique continue a étre utilisé de nos jours et partage de nombreuses caractéristiques
avec les RMFSs, particulierement dans sa configuration la plus répandue, a savoir un AS/RS
a charge-unique et allée-dépendante. Cette revue de littérature va donc s’articuler autour de
deux axes principaux : les travaux de recherche concernant les AS/RSs et les travaux, plus

récents, développés spécifiquement pour les RMF'Ss.

2.1 Systemes automatisés de stockage et de récupération

2.1.1 Description

En comparaison avec un systéme d’entreposage manuel, un AS/RS est un systeme “parts-
to-picker” qui n’implique pas de déplacement d’'un opérateur humain au sein de l’espace
de stockage. Roodbergen et Vis [14] présentent une revue de littérature compléte sur les
AS/RSs. De nombreuses configurations existent mais la version la plus habituelle est un
systeme a charge unique et allée-dépendante. Dans celui-ci, une machine de Stockage et
Récupération (SR) déplace les conteneurs stockés dans des racks verticaux le long d'une
allée. Il y a une seule machine SR par allée et elle ne peut en desservir d’autres. Lorsque la
machine a récupéré un conteneur, elle apporte au point d’Input/Output (1/O) du systéme.
A ce point de transition, différentes configurations sont possibles : un opérateur humain peut
y étre placé pour réaliser une tache de cueillette avant que le conteneur ne retourne dans les
racks (systeme miniload) ou un convoyeur peut simplement emporter le conteneur au complet

dans une autre zone de I’entrepot.

La machine SR réalise une succession d’allers-retours entre le point 1/O et I'espace de sto-
ckage. Ils définissent des cycles qui peuvent étre de deux types : cycles de commandes simples
(single command cycles) ou cycles de commandes doubles (dual command cycles). Dans un
cycle de commande simple, la machine se contente de réaliser une tache (de stockage ou de
récupération), et revient immédiatement au point /0. C’est notamment le cas lorsque le
conteneur complet est emporté, sans retour direct dans ’espace de stockage. Dans un cycle

de commande double, la machine réalise une tache de stockage, puis va directement récupé-

rer un nouveau conteneur avant de retourner au point I/O. Le cycle de commande double
est ainsi décomposable en trois segments : le déplacement de stockage, le déplacement de

transition et le déplacement de récupération.

Tel que mentionné par Zollinger [15], cette automatisation présente plusieurs avantages par
rapport a un systéme manuel. Un AS/RS nécessite moins d’espace, puisqu’il peut utiliser
des racks de grande hauteur et des allées de petites dimensions. Il réduit le besoin en main-
d’ceuvre et les possibles erreurs de manutention. Si 'investissement initial est plus élevé, les
colits opérationnels sont plus faibles, permettant d’afficher un retour sur investissement su-
périeur. Une machine SR n’a pas besoin de pause, ce qui permet une production continue.
L’inventaire est mieux contrdlé et les produits sont moins endommagés en réduisant la manu-
tention. En revanche, un AS/RS présente également quelques inconvénients, tels qu’une chute
de productivité lorsqu’une machine SR est a I’arrét, un colit d’investissement important qui

peut étre un obstacle pour une petite entreprise, et une extension physique problématique.

Etant donné le nombre de configurations possibles pour un AS /RS, Boysen et Stephan [16]
présentent une revue de littérature ayant comme objectif de classifier les AS/RSs par un 3-
uplet (a|5]y). a désigne la disposition générale (le type de point I/O, le nombre de machines,
etc.), [représente les caractéristiques des commandes (le type de demande, I'information
disponible, le rythme d’arrivée de nouvelles commandes, les échéances, les emplacements
de stockage, etc.) et 7 spécifie 'objectif (maximiser la cadence de production, minimiser
les délais de traitement, etc.). Un des objectifs classiques est de maximiser la cadence de
production qui est inversement proportionnelle au temps de déplacement des machines SR.
Dans certains cas ou de nouvelles commandes sont révélées régulierement et ou les échéances

sont critiques, minimiser les délais de traitement peut se révéler plus pertinent.

Comme de nouvelles commandes peuvent étre révélées a tout moment, une stratégie doit étre
déterminée pour gérer ce flux de commandes. Han et al. [17] proposent deux approches : la
planification par blocs et la planification dynamique. La planification par blocs consiste a
figer un sous-ensemble de commandes en fonction de leurs échéances et de planifier et traiter
ces commandes avant de passer au bloc suivant. La planification dynamique implique de
reconsidérer I’ensemble des commandes révélées des qu’une nouvelle commande entre dans le

systeme.

De Koster et al. [18] estiment que les opérations de récupération représentent environ 55% des
colits opérationnels dans un entrepot. De ce montant, 60% est attribuable au déplacement qui
est fortement dépendant de la stratégie de stockage. Ces stratégies font I’'objet de nombreux
travaux de recherche qui sont présentés ci-apres. Méme lorsque les décisions de stockage ne

sont pas directement le sujet d'une étude, une hypothese doit étre faite sur 'approche qui

est mise en place. Pour cette raison, cette revue de littérature s’articule autour du type de
stockage considéré dans les articles de recherche. Un type de stockage peut étre une politique

générale, un stockage dédié, statique ou partagé.

2.1.2 Politiques de stockage

Une politique de stockage est une regle de haut niveau qui dicte I'allocation de ’emplace-
ment de stockage pour chaque conteneur. Ces politiques sont couramment déployées pour
leur simplicité d’application et peuvent également servir de point de comparaison pour éva-
luer la performance d’autres approches. Roodbergen et Vis [14] décrivent quatre politiques
typiquement rencontrées en pratique et dans la littérature. Ces politiques sont présentées
ci-apres.

— Stockage dédié (dedicated storage en anglais) : cette méthode assigne un emplacement
de stockage spécifique a chaque type d’article possiblement présent dans ’entrepot.
Bien que cette méthode soit intéressante pour l'entrainement des opérateurs dans
les systemes manuels, il cause de grandes pertes d’espace et n’est pas approprié aux
systémes automatiques.

— Stockage aléatoire (random storage en anglais) : tous les conteneurs ont la méme pro-
babilité d’occuper n’importe quel emplacement de stockage. Cette méthode maximise
I'utilisation de ’espace et est facile a implémenter. Cependant, il est évident qu’elle
peut entrainer une mauvaise accessibilité et productivité.

— Stockage basé sur le tauz de demande (full-turnover-based storage en anglais) : les
conteneurs les plus souvent demandés sont assignés au plus pres du point 1/O. Dans
certains cas, plutot que d’utiliser directement le taux de demande, un indice cubique
par commande (Cube per Order Index, COI) peut étre calculé [19]. Le COI est le
ratio de I’espace nécessaire a un conteneur sur le nombre de voyages nécessaires pour
satisfaire la demande pendant une période donnée. Plus le COI d’un conteneur est
petit, plus le conteneur est placé proche du point 1/0O. En pratique, des préoccupations
existent autour d’un changement des taux de demande et I'arrivée de nouveaux types
d’articles.

— Stockage par classes (class-based storage en anglais) : les emplacements de stockage
sont regroupés en un nombre restreint de classes en fonction de leur proximité au
point 1/O. Ensuite, un conteneur est assigné a une classe dépendamment de son taux
de demande. Cette méthode bénéficie d'une utilisation complete de I'espace et d’une
bonne accessibilité mais requiert un certain nombre de décisions, comme le nombre de
classes, leurs tailles et leurs positions.

Hausman et al. [20] font partie des premiers auteurs a s'étre intéressés aux AS/RSs. Ils consi-

10

derent les trois dernieres politiques précédemment présentées dans un systeme ou seuls des
cycles de commandes simples sont réalisés. En ordonnant les articles dans un ordre décrois-
sant de leurs taux de demande et en discrétisant la représentation d’un rack de stockage, les
auteurs calculent le temps de déplacement espéré pour la politique aléatoire et la politique
basée sur le taux de demande. Comme attendu, la deuxieéme politique réduit d’environ 35%
le temps de déplacement. Afin d’évaluer plus facilement différents types de demandes et dif-
férentes configurations des classes de stockage, ils proposent également un modele continu du
temps de déplacement au sein d’un rack. La politique basée sur le taux de demande donne les
meilleurs résultats, mais la politique par classes est compétitive. Considérant les économies

d’espace, la politique par classes devient un premier choix.

Dans la continuité, Graves et al. [21] incluent des cycles de commandes doubles et obtiennent
des résultats comparables, tout en validant le gain de performance associé aux cycles de
commandes doubles. Pour ces deux études, la représentation discrete du rack et le modele
continu présentent des résultats similaires, exception faite des distributions de la demande

fortement biaisées vers quelques articles tres souvent demandés.

Bozer et White [22] présentent un modele statistique basé sur la position espérée des em-
placements de stockage et de récupération lorsque la politique de stockage est aléatoire. Ils
considerent des cycles de commandes simples et doubles, ainsi que des racks de formes rec-
tangulaires (par rapport aux racks carrés en termes de temps d’acces des études précédentes).
Ils obtiennent des résultats treés semblables & un modele discret (différences inférieures a 1%)
pour toutes sortes de distributions de la demande. Bien que les modeles analytiques per-
mettent d’évaluer rapidement certains choix de configuration et le comportement général de
politiques standards, ils deviennent rapidement limités pour I’étude d’autres politiques et
pour le traitement de situations spéciales. Pour ces raisons, la simulation est devenue I'outil
de prédilection pour évaluer la performance d’un entrepot, méme si son implémentation se

révele plus laborieuse.

Les résultats de Hausman et al. [20] et Graves et al. [21] sont validés par simulations par
Schwartz et al. [23]. Leurs auteurs implémentent également une politique d’emplacement libre
le plus proche, ou Closest Open Location (COL). Ils concluent que cette politique a le méme
niveau de performance qu'un stockage aléatoire, principalement lorsque le taux d’occupation

est élevé.

Linn et Wysk [24] présentent un simulateur qui leur permet d’étudier plusieurs problémes de
décision tels des politiques de stockage, des regles d’ordonnancement ou le positionnement
d’'un emplacement d’attente (dwell-point positioning). Ils confirment la performance supé-

rieure d'une politique de stockage par classes et concluent qu’il est préférable de faire attendre

11

la machine SR & sa derniere position visitée plutot que de la déplacer par anticipation. Les
mémes auteurs [25] incluent des demandes saisonnieres, considérent les temps d’accélération
et de décélération de la machine SR et appliquent une regle d’ordonnancement qui minimise
les temps de traitement. Ils suggerent la réévaluation périodique de I'affectation des articles
aux classes, ainsi que la dimension de ces classes pour une adaptation a un changement
de demande. Ces sujets sont traités par Van den Berg [26] qui propose un algorithme de
programmation dynamique pour affecter les articles aux classes de maniere optimale. Cet al-
gorithme minimise les temps de déplacement pour des cycles de commandes simples. L’auteur
optimise également 1'espace associé a chaque classe pour controler les risques de débordement
du stock.

Van den Berg et Gademann [27] présentent une étude de simulation qui couvre une grande
variété de regles de décision et évaluent leurs performances indépendamment ou en corréla-
tion avec les autres (en combinant une regle de stockage avec une regle d’ordonnancement).
Parmi leurs conclusions, ils déterminent qu’avec des cycles de commandes doubles, sélec-
tionner I'emplacement de stockage le plus proche du prochain emplacement de récupération
donne le meilleur temps de traitement moyen. Ils trouvent également qu’ordonner les com-
mandes permet de réduire le temps de traitement moyen mais est sujet a d’importants retards
pour certaines commandes. Pour cette raison, ils suggerent de traiter les commandes dyna-

miquement, par ordre d’échéance.

Gagliardi et al. [28,29] présentent en détail un modele de simulation a événements discrets
particulierement réaliste ayant pour vocation d’étre applicable a de nombreuses configura-
tions. Ce simulateur est utilisé pour comparer la politique de stockage aléatoire avec celle
basée sur le taux de demande et la politique par classes. Il apparait que lorsque certaines
conditions réalistes sont reproduites, la politique basée sur le taux de demande peut se révéler
nettement moins efficace que les autres politiques. Les auteurs soulignent I'importance d’une
étude poussée par simulations pour chaque type d’application, car les résultats théoriques

peuvent fortement différer de la réalité.

2.1.3 Stockage dédié

Dans cette section, 'emplacement des conteneurs est connu et figé a 'avance. Plusieurs
travaux de recherche font cette hypothése et considerent le probleme d’ordonnancement des

commandes.

Lee et Schaefer [30] proposent une méthode exacte simple pour créer des cycles de commandes
doubles. Ils résolvent un probleme d’affectation afin de coupler une tache de stockage avec

une tache de récupération. Ils proposent également deux environnements pour gérer le flux

12

entrant de commandes : la planification par bloc [17] et la planification sur fenétre filante. De
plus, ils présentent une méthode heuristique qui sélectionne la paire de taches de stockage et
de récupération la plus proche. De maniere similaire, Mahajan et al. [31] présentent également
une heuristique de plus proche voisin et évaluent sa performance avec un modele analytique
et une étude de simulation. Ils trouvent que leur méthode améliore de 5 & 15% la productivité

par rapport a une régle de premier arrivé, premier servi (First-Come First-Served, FCFS).

Selon Van den Berg et Gademann [32], le probléeme d’ordonnancement des commandes est NP-
difficile en général. Cependant, dans le cas spécial du stockage dédié, les auteurs présentent un
modele de transport qui se résout en temps polynomial. Les taches de stockage sont traitées
en ordre FCFS et les points d’entrées et de sorties peuvent étre a des emplacements distincts.
De plus, la machine SR peut réaliser des cycles de commandes simples ou doubles. Puisque
les déplacements chargés sont fixes (du fait du stockage dédié), 'objectif est de déterminer les
déplacements faits a vide. Un graphe biparti sépare les taches de stockage et de récupération
et une solution optimale au probléme d’affectation correspond a une solution optimale du
probléeme d’ordonnancement. Les auteurs présentent également deux méthodes heuristiques

qui peuvent s’avérer utiles dans un environnement dynamique.

Dans un environnement différent, Alonso-Ayuso et al. [33] considérent un entrep6t avec des
chariots élévateurs et plusieurs allées. Des camions de livraison se présentent pour charger
un certain nombre d’articles de références données. Ces références peuvent étre trouvées a
différents emplacements qui correspondent a différents temps d’acces. Une méthode a deux
phases est proposée pour optimiser la récupération des palettes. La premiere phase consiste
a sélectionner les palettes qui serviront a satisfaire la demande. Ceci est réalisé avec un
MIP qui minimise le temps d’acces. La seconde phase définit 'ordonnancement des palettes
sélectionnées pour la cueillette. Les auteurs présentent une heuristique en deux phases qui
consiste en une étape de construction puis une étape d’amélioration. Cependant, il semble que
les chariots réalisent des cycles de commandes simples, ce qui est surprenant d’un point de
vue pratique. Aussi, les temps de disponibilité des chariots et les temps de livraison associés

a I'arrivée des camions ne sont pas considérés.

Comme mentionné en Section 2.1.2, le stockage dédié cause des pertes d’espace et ne tire pas
profit de la flexibilité de stockage d'un systéme automatisé. Puisqu'un conteneur peut étre
dynamiquement affecté a n’importe quel emplacement de stockage libre, des opportunités en
termes de longueurs de cycles et d’utilisation de I’espace peuvent étre utilisées. Certaines des
politiques générales de stockage présentées précédemment utilisent déja cette affectation dy-
namique. D’autres approches ont été proposées dans la littérature et peuvent étre séparées en

deux catégories : un stockage statique ou un stockage partagé. Un stockage statique suppose

13

que les conteneurs nouvellement affectés a un emplacement ne seront pas de nouveau récu-
pérés avant le prochain horizon. Typiquement, seuls les emplacements déja disponibles au
début de I'horizon sont considérés comme emplacements de stockage potentiels. Un stockage
partagé relaxe ces hypotheses. Un conteneur affecté a un emplacement peut étre récupéré
dans le méme horizon de temps et n’importe quel emplacement disponible a un instant donné

peut étre utilisé.

2.1.4 Stockage statique

Yin et Rau [34] traitent les taches de stockage dans un ordre FCFS et consideérent trois regles
pour créer des cycles de commandes doubles :

— FCFS/STT : FCFS pour l'ordre des requétes de récupération et temps total le plus
court (ou Shortest Total Time, STT) pour sélectionner I'emplacement de stockage et
le conteneur.

— STT : temps total le plus court entre tous les emplacements de stockage et des conte-
neurs candidats a une récupération.

— SDT/STT : échéance la plus courte (Shortest Due Time, SDT) pour l'ordre des re-
quétes de récupération et STT pour sélectionner 'emplacement de stockage et le
conteneur.

Les auteurs proposent également un algorithme génétique pour déterminer quelle regle utiliser
a quel moment. Avec une étude de simulation, ils obtiennent de meilleurs résultats lorsque la

méme reégle est utilisée en permanence.

Dans un contexte similaire, Hachemi et al. [35] traitent les requétes de stockage en ordre
FCEFS et ordonnent les requétes de récupération pour minimiser le temps de déplacement. Il
y a également plusieurs emplacements de stockage disponibles et plusieurs conteneurs pour
chaque type d’article. Ils résolvent le probleme itérativement (apres chaque cycle) avec un
MIP dont l'objectif est de minimiser les STTs.

Gagliardi et al. [36] proposent un nouvel environnement de gestion du flux de commandes
qui se positionne entre la planification par blocs et la planification dynamique. Cet environ-
nement requiert la définition de deux parametres : 'horizon de planification h et ’horizon
fixe f qui détermine le nombre de cycles entre chaque replanification. Les auteurs affirment
que le choix des valeurs de ces parametres est essentiel a un bon rapport entre la qualité
de la solution et la complexité du probleme. De nouveau, les taches de stockage sont trai-
tées en ordre FCFS, puis les auteurs adaptent des regles de décision a leur environnement :
plus proche voisin (ou Nearest Neighbour, NN), temps d’acces et de transition le plus court

(ou Shortest Leg, SL) et STT. La contribution principale de cet article est la présentation

14

d’un modele d’ordonnancement MIP. Les résultats sont prometteurs mais les auteurs recon-
naissent également les limitations de leur modele statique qui n’utilise que les emplacements
initialement disponibles. Ils se restreignent au cas statique a cause de la complexité qui est
déja associée a leur modele. En effet, ce modele utilise une indexation quadruple pour ses
variables binaires, pour lesquelles une variable correspond a une combinaison d’une tache de
stockage avec une tache de récupération, un emplacement de stockage et un emplacement de

récupération.

Dans un type d’application différent, Wauters et al. [37] étudient un systéme a charge mi-
nimale (miniload) avec une machine SR a double capacité. Les auteurs présentent dans un
premier temps une décomposition en deux sous-problémes : 1’allocation de stockage et 1’or-
donnancement des requétes. L’allocation de stockage est faite a partir de deux stratégies
(séquentielle et simultanée) qui utilisent deux criteres C1 (niveau de priorité d’une requéte)
et C2 (variante du temps d’acces d'un emplacement). Par la suite, les auteurs proposent un
modele d’ordonnancement MIP ainsi qu’une stratégie de branchement. Le modeéle est capable
de considérer 'allocation de stockage mais a un colit computationnel largement supérieur.
Les instances de plus grandes dimensions sont résolues avec une méthode métaheuristique
(Step Counting-Hill Climbing).

Roozbeh Nia et al. [38] considerent un systéme & plusieurs racks ol un article peut étre
récupéré dans plusieurs conteneurs. Leur objectif est spécifiquement de minimiser les émis-
sions de gaz a effet de serre. Ils développent un algorithme de colonie de fourmis ainsi qu’'un
algorithme génétique pour optimiser leur modele dans un environnement dynamique ot, a
chaque fois qu’une nouvelle commande est révélée, les k commandes les plus urgentes sont

réoptimisées.

2.1.5 Stockage partagé

Lee et Schaefer [39] présentent une méthode quasi-optimale pour I'ordonnancement des taches
de récupération et ’allocation de stockage lorsqu'une commande est associée a exactement
un conteneur. Ils comparent leur méthode avec les regles NN, SL et STT. L’idée générale
est de formuler le probleme comme un probleme d’affectation. Une telle affectation peut
s’avérer irréalisable si un tour est créé (affectation d’une tache de stockage a un emplacement
occupé), mais elle permet d’obtenir une borne inférieure. Cette solution est ensuite corrigée
avec des heuristiques telles que SL et STT afin d’obtenir une borne supérieure réalisable. Par
la suite, en utilisant ’algorithme de Murty pour les problemes d’affectation, ils considerent
la seconde meilleure affectation et répetent le processus. Ils obtiennent de trés bons résultats

et observent que leur méthode converge plus rapidement lorsqu’il y a plus d’emplacements

15

libres initialement (ce qui crée moins de tours). En revanche, bien qu'un emplacement libéré
dans I’horizon considéré puisse étre utilisé pour un stockage, il est supposé qu'un conteneur

récemment entreposé ne sera pas de nouveau récupéreé.

Le terme de stockage partagé est mentionné explicitement pour la premiere fois par Goetschal-
ckx et Ratliff [40]. Dans cet article, seuls des cycles de commandes simples sont considérés.
Dans le cas d’un systeéme parfaitement équilibré (méme nombre d’arrivées et de départs de
conteneurs a durées de séjour égales), I'espace et de temps de déplacement peuvent étre op-
timisés de maniere optimale avec des regles simples. Il suffit d’allouer tous les conteneurs
d’une durée de séjour p a une zone z, dont la distance au point I/O dépend de p. Lorsque
le systeme n’est pas équilibré, une approche similaire peut étre dérivée sous forme d’'une

méthode heuristique qui donne de meilleurs résultats que le stockage dédié.

Montulet et al. [41] cherchent a minimiser le temps d’acces avec des cycles de commandes
simples et en supposant connus les temps d’arrivée et de départ des conteneurs. Les auteurs
proposent une méthode exacte basée sur la génération de colonnes dans laquelle une variable
correspond a des conteneurs compatibles pour occuper le méme emplacement. L’allocation
de stockage est faite par classes plutot que par emplacements exacts. Ils obtiennent de bons
résultats pour des petites instances. Pour des instances de plus grandes dimensions, ils pro-
posent une heuristique qui consiste a chercher un plus long chemin dans un graphe ou les
neeuds correspondent a des temps d’arrivées et de départs et les arcs a un séjour d'un conte-
neur. Les arcs ont un cotit K + DS, ou K est une constante plus élevée que la durée totale de
I’horizon et DS est la durée de séjour. Cette heuristique donne des résultats comparables a la
méthode exacte. Il est important de noter qu’en minimisant le temps d’acces et en supposant
connus les temps d’arrivée et de départ, ces méthodes ne garantissent pas que la machine SR

puisse satisfaire la demande en pratique.

Chen et al. [42] considerent un probleme similaire mais avec des cycles de commandes doubles.
Les auteurs formulent le probléeme avec un MIP qu’ils sont en mesure de résoudre avec
Cplex pour de tres petites instances. Pour de plus grandes instances, une méthode a deux
phases est proposée. La premiere phase alloue les emplacements de stockage avec la méthode
de Montulet et al. [41]. La seconde phase minimise les déplacements de transition avec un
probleme d’affectation. De plus, le résultat final est encore amélioré avec ’application d’une

méthode Tabou. De nouveau, une telle solution ne garantit pas d’étre réalisable en pratique.

Dans une application différente, Yang et al. [43] s’'intéressent au stockage partagé pour un sys-
teme avec une machine SR a charges multiples. Dans ce probleme, les emplacements de récu-
pération sont connus. L’objectif est de déterminer le premier emplacement de stockage parmi

les emplacements disponibles, puis de déterminer la séquence de récupérations/stockages.

16

Notons que si le premier emplacement était connu, le probléeme reviendrait a une tournée
de véhicules avec des contraintes de cueillettes et de livraisons. Un programme en nombres
entiers est résolu par Cplex pour de petites instances et une recherche a voisinage variable est
utilisée pour les instances plus grandes. Un point essentiel est qu'un tel systeme est capable
de stocker et récupérer un conteneur au méme emplacement, ce qui n’est pas le cas d’un

systeme a charge simple.

2.2 Centres de distribution robotisés

Depuis quelques années et suivant le rapide engouement pour les RMFSs, une littérature spé-
cifique s’est développée. La différence principale entre un RMFS et un AS/RS traditionnel
est le grand nombre de robots (pouvant étre vus comme des machines SR) qui opérent simul-
tanément dans l’ensemble de 'espace de stockage. Cela génere de nouveaux défis logistiques

en termes de complexité du systeme et de nouvelles opportunités de prises de décisions.

2.2.1 Modeles analytiques

Plusieurs articles proposent des modeles analytiques afin d’étre en mesure d’évaluer rapi-
dement des indicateurs de performance. Lamballais et al. [44] proposent un modele de files
d’attente semi-ouvert pour estimer le flux de production maximal, le temps de cycle moyen
par commande et le niveau d’utilisation des robots, en fonction de la configuration physique
de I'entrepot et de stratégies de zonage des robots. Ils démontrent la précision de leur modele
comparativement a des études de simulations et ils observent que le flux de production est
plus influencé par I'emplacement des stations de cueillette que par la dimension de ’espace

de stockage.

Zou et al. [45] présentent également un modele de files d’attente semi-ouvert mais pour évaluer
des reégles d’affectation des robots aux stations de cueillette. Ils démontrent la supériorité de

leur regle par rapport a une affectation aléatoire.

Yuan et al. [46] proposent un modele fluide pour estimer la performance de politiques de
stockage basées sur la vélocité (ou wvelocity-based) en termes de temps de stockage et de
récupération. Ces politiques basées sur la vélocité sont une adaptation des politiques de
stockage par classes a un systéme a plusieurs stations de cueillette. Ils trouvent que lorsque
les articles sont affectés aléatoirement dans les étageres, une politique a deux ou trois classes
réduit le temps de déplacement chargé entre 6 et 12%. De plus, si les articles sont affectés
aux étageres relativement a leurs taux de demande, ce temps de déplacement peut étre réduit

jusqu’a 40%.

17

En utilisant un modele de files d’attente fermé, Roy et al. [47] évaluent l'impact d’allouer les
robots exclusivement a des taches de récupération, a des taches de réapprovisionnement ou a
une combinaison des deux. Ils trouvent qu’une combinaison des deux types de taches réduit le
temps de cueillette par 30% mais augmente le temps de réapprovisionnement par un facteur
trois. Ils étudient également 1’allocation de stockage en classes et ils concluent qu’affecter
un robot a la classe la moins congestionnée résulte en une performance équivalente a une

politique par classes basée sur le taux de demande.

Lamballais et al. [48] proposent un modele de files d’attente semi-ouvert pour déterminer
le nombre d’étageres par types d’articles, le ratio du nombre de stations de cueillette par
rapport au nombre de stations de réapprovisionnement et le niveau d’inventaire par étagere.
Ils concluent qu'un gain significatif de performance est obtenu lorsqu’un type d’article est
affecté a de multiples étageres, si le ratio de stations de cueillette et de réapprovisionnement
est déterminé avec soin en fonction de l'application et si une étagere est réapprovisionnée

avant d’étre vide.

2.2.2 Ordonnancement des commandes

D’autres articles de recherche se concentrent sur le traitement des commandes aux stations de
cueillette ou par un robot spécifique. Boysen et al. [49] introduisent un MIP afin de minimiser
le nombre de visites d’étageres a une station de cueillette en synchronisant I’ordonnancement
des commandes et 'arrivée des étageres a la station. Pour résoudre le modele, ils proposent
différentes méthodes heuristiques basées sur la programmation dynamique et la métaheuris-
tique de recuit simulé. Par simulations, ils montrent que leur méthode peut réduire de moitié

la taille de la flotte de robots dans le meilleur cas.

Gharehgozli et Zaerpour [50] s’intéressent au probleme d’ordonner un bloc de commandes
a un robot unique afin de minimiser le temps de déplacement de ce robot. Ils considérent
deux cas ol une étagere doit étre entreposée au méme emplacement que sa position initiale,
ou si elle peut étre entreposée dans un ensemble d’emplacements déterminés. Ils démontrent
lefficacité de leur résolution avec une méthode de recherche adaptative de voisinage large
(ou adaptive large neighbourhood search) et réduisent de 24% le temps de déplacement par

rapport a un ordonnancement aléatoire.

Valle et Beasley [9] présentent un modele en nombres entiers et deux méthodes matheuris-
tiques pour simultanément allouer un bloc de commandes et des étageres aux stations de
cueillettes afin de minimiser le nombre de visites des étageres. De plus, ils formulent un
deuxieme modele afin de déterminer une séquence réalisable des visites des étageres a une

station.

18

Bolu et Korcak [51] proposent une approche de planification de tdches pour minimiser le
nombre d’étageres nécessaires pour satisfaire un bloc de commandes. Apres que les étageres
aient été sélectionnées, ils adaptent le systeme dynamiquement afin d’allouer les taches de
récupération aux robots et aux stations. Par simulations, ils démontrent la capacité de leur
méthode a réduire de maniere significative le temps de traitement ainsi qu’a maximiser le

nombre d’articles récupérés par visite d'une étagere.

2.2.3 Allocation d’emplacements de stockage

Tout comme pour les AS/RS, le probleme d’allocation d’emplacements de stockage est sujet
de plusieurs travaux de recherche. Krenzler et al. [52] présentent un modele MIP ayant
comme objectif de minimiser le temps de déplacement chargé (trajet de stockage et trajet
de récupération) pour un bloc de commandes. Ils considérent connus les temps de visites des
étageres aux stations de cueillette et que les files d’attente aux stations sont toujours pleines,
ce qui a pour effet de libérer plus d’emplacement dans l’espace de stockage. Les auteurs
présentent plusieurs méthodes de résolution et démontre la supériorité de leur approche par

rapport a un stockage aléatoire.

Weidinger et al. [53] présentent également un modele MIP pour minimiser le temps de dé-
placement chargé sous la forme d’un probléme de planification d’intervalles. Comme précé-
demment, ils supposent connus les temps de séjour a la station de cueillette. En tant que
probléeme d’intervalles, deux étageres peuvent occuper le méme emplacement de stockage
tant que leurs intervalles de stockage ne se chevauchent pas. Ils proposent une méthode de
résolution par une méthode matheuristique de recherche adaptative large et obtiennent de
meilleurs résultats en termes de temps de déplacement chargé par rapport aux politiques de
stockage de référence. D’un point de vue pratique, ils notent 1’excellente performance de la
politique Shortest Leg (SL) qui n’augmente le temps de déplacement que de 3.49% en opérant

parfaitement en temps réel et sans nécessiter de regroupements de commandes.

Mirzaei et al. [54] traitent le probléeme d’une autre perspective. Ils considerent 1'affinité des
articles (probabilité que deux articles soient commandés ensemble), ainsi que le taux de de-
mande pour affecter conjointement les articles aux étageres et les étageres aux emplacements
de stockage pour minimiser le temps de récupération avec un modele MIP. Leur modele
permet de réduire le temps de récupération par 40% comparativement a une politique de

stockage basée exclusivement sur le taux de demande ou par classes.

Li et al. [55] considerent le probleme d’affectation d’articles aux étageres et de l'allocation
des étageres aux emplacements de stockage. Leur objectif est de réduire la consommation

d’énergie des robots qui dépend principalement de la distance parcourue par les robots et

19

le nombre d’arréts/départs qu’ils réalisent. Dans un premier temps, I'affectation des articles
aux étageres est réalisée avec un programme en nombres entiers qui minimise la somme des
coefficients de similarité entre articles au sein d’'une méme étagere. Ensuite, un autre modele
est proposé pour allouer les emplacements de stockage en équilibrant les temps d’acces et
les distances entre étageres qui risquent d’étre requises en méme temps et ainsi de causer
des arréts des robots. Leurs résultats montrent que leur approche peut réduire de 22% la

consommation d’énergie.

2.2.4 Autres thématiques

D’autres articles traitent des problemes de décisions connexes aux sujets précédents. Zhang
et al. [56] définissent le probleme d’allocation de robots aux téches de stockage suivant leur
ordonnancement aux stations de cueillette. Ils formulent le probléeme comme un probleme
d’ordonnancement sous contraintes de ressources et proposent de le résoudre avec une géné-
ration séquentielle de I'ordonnancement et un algorithme génétique. Leur méthode génere de

meilleurs résultats que des regles générales d’ordonnancement.

Xie et al. [57] proposent un modele MIP pour affecter simultanément les étageres requises aux
stations et les commandes aux stations afin de minimiser le nombre de visites des étageres. Ils
considerent également la division des commandes contenant plusieurs articles pour permettre
leur récupération a différentes stations de cueillette. Ils utilisent le simulateur a événements
discrets RAWSim-O [58] qui reproduit les opérations d’'un RMFS de maniére particulierement
réaliste. Avec la division des commandes, leur méthode parvient a augmenter la productivité
du systeme de 46%.

Avec ce méme simulateur, Merschformann et al. [13] évaluent 'impact sur la productivité d'un
grand nombre de regles de décision. Ces regles traitent des problemes de décision allant de
I’affectation de stations de cueillette et de réapprovisionnement, a la sélection d’étageres, ou
encore a ’allocation d’emplacements de stockage. Les diverses regles pour différents problemes
sont combinées afin d’étre évaluées conjointement. Ces combinaisons génerent des résultats
d’une grande variabilité, ce qui fait conclure aux auteurs qu’une sélection minutieuse devrait
étre faite pour chaque application. Leurs résultats mettent également en évidence I'impact
important de la regle d’affectation d’une station de cueillette. Les auteurs notent aussi la forte

interdépendance entre les regles, ce qui suggere le bénéfice probable d’approches intégrées.

20

CHAPITRE 3 DEMARCHE ET ORGANISATION DE LA THESE

Cette these est construite autour de trois articles de recherche. Ces articles font partie d’une
démarche de réflexion commune et sont ainsi fortement reliés. Initialement, ce projet de
recherche a débuté avec un stage Mitacs a JDA Software a Montréal (aujourd’hui Blue
Yonder), entreprise spécialiste en gestion de la chaine d’approvisionnement. Le partenaire
industriel était intéressé par un nouveau type d’entrepot spécialisé dans le commerce en ligne,
ainsi que par la prise de décision en temps réel (des approches d’optimisation stochastique
en ligne). Par la suite, un second stage de recherche a été réalisé a Element Al, spécialiste en
machine learning, qui a depuis été incorporé ServiceNow. Ce stage a orienté la recherche vers
des approches d’apprentissage automatique, qui ont notamment favorisé le développement

de politiques rapidement déployables en temps réel.

Le chapitre 4 présente le premier article, intitulé en anglais Robotic Mobile Fulfillment Sys-
tems : a mathematical modelling framework for e-commerce applications. Cet article a été
soumis en octobre 2020 a International Journal of Production Research et publié le 19 mai
2021. Ce premier article a été motivé par les premieres avancées liées au deuxieme article. En
effet, il était initialement envisagé de développer des méthodes d’optimisation stochastique en
ligne pour le probleme intégré d’allocation d’emplacements de stockage et d’ordonnancement
des commandes dans un RMFS. Cependant, il est rapidement devenu clair que la complexité
du systeme et la notion de prise de décision en temps réel rendaient la définition méme d’un
probleme difficile. Outre la stochasticité liée a l'arrivée continue de nouvelle information,
la nature dynamique des opérations rendait impossible la formulation du probleme sous la
forme d'un programme mathématique classique. De plus, une multitude d’hypotheses de-
vaient étre faites pour traiter les différents cas particuliers et autres problemes opérationnels
non considérés. Nous avons alors pensé a proposer un modele de programmation dynamique
stochastique (qui peut paraitre un peu procédural) afin de formaliser le cadre de prise de
décision en temps réel. De plus, compte tenu du vif et récent intérét pour ce type d’entrepot
dans la littérature, le modele proposé consideére une large gamme de problémes opérationnels,
dont la plupart ne sont pas traités dans cette these, afin de sensibiliser la recherche vers la
prise de décision en temps réel. Enfin, le modele a été illustré sur le sous-probleme d’allocation
d’emplacements de stockage en comparant des politiques communément rencontrées dans la
littérature. Ces résultats servent de points de référence pour les méthodes développées dans

le reste de la these.

Le chapitre 5 correspond au deuxiéme article, intitulé E-commerce warehousing : learning a

21

storage policy, qui a été soumis a European Journal of Operational Research en janvier 2021.
A Theure actuelle, cet article n’a pas encore recu de retour de la part du journal. Le sujet de
cet article est 'apprentissage d’une politique de stockage par renforcement pour minimiser
le temps de déplacement moyen des robots. Inspirée par la politique de stockage par classes,
I’approche proposée cherche a allouer une étagere a une zone (au sein de laquelle le stockage
sera réalisé arbitrairement) plutét qu’a un emplacement exact. A la suite de étude des poli-
tiques de référence, il apparait qu'un compromis existe entre les effets a long terme liés a une
demande biaisée (motivation premiére d’une politique par classes) et les opportunités a court
terme visant a réaliser des cycles les plus courts possibles (politique gloutonne). L’apprentis-
sage par renforcement se voit alors proposée une représentation partielle de I’état du systeme
qui permette de tirer profit de ce compromis. Cette représentation contient de I'information
sur le taux de demande de I’étagere a entreposer (effet a long terme) et ’emplacement de
la prochaine étagere a récupérer (effet a court terme), ainsi que d’autres informations re-
latives au niveau d’occupation des zones de stockage. Les résultats obtenus sont supérieurs
aux meilleurs résultats des politiques de référence, présentant un gain de performance allant
de 3.21 & 4.83%. Par la suite, une stratégie d’exploration de trajectoires est proposée afin
d’améliorer la performance de la politique apprise mais également celle des autres politiques.
Cette exploration vise a utiliser plus d’information sur les commandes déja révélées a un
instant donné. Les résultats sont alors sensiblement améliorés avec, par exemple, un gain

additionnel de 2.78 & 4.54% pour la politique apprise.

Enfin, le chapitre 6 présente le troisieme article, intitulé Supervised learning and tree search
for real-time storage allocation in Robotic Mobile Fulfillment Systems. Cet article a récem-
ment été soumis a INFORMS Journal on Optimization en mai 2021. La motivation de cet
article est venue du gain de performance convaincant obtenu par une stratégie d’explora-
tion de trajectoires. L’objectif de cet article est alors d’apprendre une politique de stockage
qui sélectionne cette fois des emplacements exacts et qui utilise des techniques d’exploration
d’arbres de recherche en phase d’apprentissage et/ou de déploiement. Un élément essentiel
aux méthodes d’explorations proposées dans ces travaux de recherche est la capacité du
simulateur a copier son état courant afin de simuler un futur alternatif du systeme avant
que la prise de décision finale ne soit faite. Un apprentissage par renforcement n’est alors
pas la seule approche candidate puisqu’il s’agit en pratique de réaliser un grand nombre
d’essais-erreurs entierement dépendants de 1’évolution de I’environnement du systeme. Une
alternative consiste a utiliser des méthodes d’exploration d’arbres de décision telle que la re-
cherche arborescente Monte-Carlo a chaque prise de décision. La contrepartie est que chacune
de ces recherches prend un temps de calcul important, ce qui rend 'approche difficilement

déployable. Cependant, cette recherche peut facilement étre faite hors-ligne en parallele afin

22

de rapidement accumuler une vaste expérience d’excellente qualité. Cette expérience peut,
par la suite, étre apprise de manieére supervisée avec un choix de représentation adéquat (ici
en utilisant les coordonnées spatiales des emplacements de stockage). Finalement, la poli-
tique ainsi apprise peut étre directement déployée en temps réel ou peut étre utilisée pour
guider efficacement une nouvelle exploration d’arbre. Les résultats obtenus améliorent ainsi

la meilleure politique de référence jusqu’a 13.7%.

23

CHAPITRE 4 ARTICLE 1 : ROBOTIC MOBILE FULFILLMENT
SYSTEMS : A MATHEMATICAL MODELLING FRAMEWORK FOR
E-COMMERCE APPLICATIONS

Adrien Rimélé*®, Michel Gamache®®, Michel Gendreau®”, Philippe Grangier?, Louis-Martin

Rousseau®?

2Department of Mathematics and Industrial Engineering, Polytechnique Montréal,
PCIRRELT, Interuniversity Research Centre on Enterprise Networks, Logistics and Trans-
portation, ‘GERAD, Group for Research in Decision Analysis, 9TVADO Labs

Cet article a été soumis a International Journal of Production Research le 20 octobre 2020
et a été publié le 19 mai 2021.

ABSTRACT

Robotic Mobile Fulfillment Systems (RMFSs) are a recent type of automated warehouse de-
ployed in e-commerce. In this parts-to-picker system, a fleet of small robots is tasked with
retrieving and storing shelves of items in the warehouse. Due to the nature of the e-commerce
market, and the high flexibility of RMFSs, there are many opportunities to improve the
productivity of the warehouse by optimising operational decisions. Online retailers promise
extremely fast deliveries, which requires that new orders be included in the set of requests to
fulfil as soon as they are revealed. For this reason, and because of the very dynamic nature
of the robots’ cycles, decision-making needs to be done in real time, in an uncertain environ-
ment. Because such a problem often lacks a formal description, we propose a mathematical
framework that models the operational decisions taking place in an RMF'S as a stochastic dy-
namic program. Our objective is to formalise optimisation opportunities, to allow researchers
to develop more advanced methods in a well-defined environment. Embedded in a discrete
event simulator, this model is illustrated by simulations to compare against standard storage

decision rules.

KEYWORDS
warehouse ; e-commerce ; Robotic Mobile Fulfillment System ; stochastic dynamic program-

ming ; mathematical modelling ; simulations

24

4.1 Introduction

Warehouses play a central role in any supply chain. Regarding the impact of warehousing
activities on the economy, Tompkins and Smith [59] suggest that the real value of warehousing
relies on having the right product in the right place at the right time. According to Gu et
al. [60], a warehouse’s primary purposes are to act as a buffer to adapt to the variability
of production flow ; to consolidate products which come from different sources and must be
grouped for shipping to customers; and to add marginal value to the product such as pricing,
labelling or customisation. Gu et al. [60] divide the operations that take place in a warehouse
into four types : receiving, storing, picking, and shipping. Picking operations are of critical
importance, as emphasised by de Koster et al. [18] and Shah and Khanzode [61], who estimate
that these operations constitute roughly 55% of all warehouse operating expenses, 60% of

which is attributable to travelling within the warehouse.

In the Business-to-Consumer (B2C) segment, the growth of e-commerce in recent years is
revolutionising the full sector. In 2016 alone, e-commerce sales increased by 23%, representing
8.7% of the total retail market [2]. More than the growth of the e-commerce market, its spe-
cificities are the biggest challenge to warehousing operations. E-commerce involves enormous
volumes of very small orders (1.6 lines per order on average) ; requires an enormous assort-
ment of items; and faces uncertain demand with fast-changing trends, promotional events,
etc. Facing ample competition, online retailers cannot rely on customer loyalty; instead,
they operate under continuous pressure and need to fulfil orders as quickly as possible [5],

compelling them to offer differentiated services such as same-day delivery from Amazon.

To deliver to customers ever faster, and because ‘adaptation is urgent’, new types of automa-
ted warehouses have appeared [62]. One of them is the Robotic Mobile Fulfillment System,
a parts-to-picker system where a fleet of small robots move between the storage area, where
they retrieve and store full shelves of items, and picking stations, where human operators pick
the required items from the shelves. Such a system is particularly well-suited for e-commerce.
First, it presents great real-time decision-making opportunities, mainly because of its storage
flexibility and its fleet of robots operating simultaneously. Indeed, when returning a shelf of
items to the storage area, a robot can dynamically choose a new storage location to improve
the system’s general performance : this makes the full layout adaptable. Also, several other
decisions can be made online to improve the overall performance, such as the scheduling of
the incoming orders, the selection of a shelf, or which picking station to use. This allows
adapting quickly to a fast-changing trend. Then, the system is easily expandable when the
demand is higher, and because of the enormous number of small orders, numerous robots

can simultaneously retrieve items from the whole storage area (which is, for instance, hardly

25

done with a traditional crane system).

The contribution and foremost objective of this paper is to present a mathematical framework
to model the dynamic decision-making occurring during the storage and retrieval operations
in an RMFS. The nature of e-commerce orders, as well as uncertain processing times and
demands, justify online decision-making, without batching. Because of the dynamic aspect
and complexity of the operational decision-making, most of the current practice and research
relies on a combination of high-level decision rules evaluated through simulations or analy-
tical models. Often, such real-time problems lack a rigorous mathematical framework. We
believe that formalising the decision process with a stochastic dynamic model facilitates the

development of more advanced solution approaches.

This work is presented as follows. Section 4.2 describes the Robotic Mobile Fulfillment Sys-
tem, as well as its optimisation opportunities, while Section 4.3 presents a literature review
of existing work on this storage system. Section 4.4 presents the mathematical model, which
formalises the problem under Powell’s unified framework of stochastic optimisation [63]. Sec-
tion 4.5 demonstrates a basic usage of the framework by adapting typical decision rules in
a simulation study. Finally, Section 4.6 offers some conclusions and explores future research

opportunities.

4.2 Robotic Mobile Fulfillment Systems

The Robotic Mobile Fulfillment System, also called rack-moving mobile robot warehouse or
Kiva warehouse, was first introduced by Kiva Systems in 2006 (renamed Amazon Robotics
after acquired by Amazon in 2012) [4,6,7]. Similar systems using small robots to lift shelves
of items have since been developed by other companies, including Alibaba, Knapp, Swisslog,
Locus Robotics, and others [4,8, 64].

As mentioned in the introduction, an RMFS is a parts-to-picker system in which a fleet of
small robots (sometimes called AGVs for automated guided vehicles) is in charge of retrieving
and storing shelves (also called pods or bins) of items in the storage area. These robots move
around following a system of waypoints organised as a regular grid. Human operators stand
at picking stations, ready to pick items from a shelf to send them to the downstream system.
The life cycle of a robot corresponds to a dual command cycle, which defines an immediate
succession of a storage task and a retrieval task. When a robot leaves a picking station, any
open storage location can be selected. Once the shelf has been stored, the robot goes directly
to the next retrieval location to load another shelf and bring it to a picking station where it

may wait in line behind other robots while a human operator is picking items. Interestingly,

26

when a robot is loaded, it moves along the aisles, but when it is unloaded, it can pass under

the stored shelves to avoid conflicts.

A typical and more common Automated Storage and Retrieval Systems (AS/RS) corresponds
to a single unit-load (or mini-load if the load is a tote bin, possibly containing multiple item
types) aisle-captive system in which there is one crane per aisle that moves both horizontally
and vertically [14,61]. RMFSs have several advantages over such AS/RSs [6]. In particular, the
operators located at picking stations can receive shelves from all of (or most of) the storage
area, so fewer operators are needed. There is better accountability and accuracy because
orders are generally fully processed by one operator, which also reduces delays as it eliminates
downstream dependencies. Since any location is accessible by every robot, and there is a large
fleet of robots, there is no single point of failure. The system is easily implementable in any
environment, and it is easy to extend if needed. Finally, and this is of great interest in terms
of optimisation : RMFSs offer enormous storage flexibility. The allocation of a shelf to a
storage location can be modified after every picking operation, which allows for the layout
to be adapted in real time, whether in response to changing demand or simply to leverage
immediate opportunities. For a more detailed and technical review on RMFSs, we refer the

reader to the following papers : [6,7,10,11].

The logic employed by traditional warehouse management systems fails to accommodate the
extremely fast delivery times necessary in the e-commerce sector. E-commerce orders must
be fulfilled as quickly as possible, necessitating what Banker [12] calls order streaming logic,
which ‘drops these orders [...] to the floor as soon as they are received’. This is of importance
in optimisation because it limits the possibility of processing orders in batches, but instead

favours dynamic decision-making in which new orders can be revealed at any time.

4.3 Literature review

The literature on RMFSs includes research on AS/RSs, automated warehouses that were
introduced in the 1970s (see [14] for a survey of literature on the topic). While there are key
differences between RMFSs and common AS/RSs, some features are similar. Dual command
cycles and the question of block (batching) sequencing versus dynamic sequencing are already
central topics in AS/RS research. In the case of dynamic sequencing, most if not all works
rely on decision rules for storage allocation and sequencing of orders [27,28]. Common storage
allocation rules include : random storage ; turnover-based storage (the higher the turnover of
a bin, the closer to the operator); closest open location; and shortest leg (select the open
storage location closest to the next retrieval location). Through simulations, van den Berg

and Gademann [27] conclude that for dual command cycles, the shortest leg rule performs

27

the best. Gagliardi et al. [36] present a discrete event simulator and compare a random, a
full turnover-based and a class-based storage policy (a bin is assigned to a class based on
its turnover rate; its location within the class is random). Their results show that when
realistic conditions are met, full turnover-based storage performs much worse than the other
two policies. Their takeaway is that for real-world applications, theoretical results (such as
analytical models) may be far from reality. Careful simulation studies should be performed
for every special case since it is unlikely that a single simple rule could perform well in all

conditions.

These earlier studies have greatly influenced more recent works on RMFSs. An RMFS could
even be seen as a special (and more complex) type of AS/RS, designated as a mini-load
with dual command cycles system with a fleet of non-aisle-captive robots. Several works such
as [44] and [48], focus on developing queueing networks to analytically estimate KPIs, such
as maximum order throughput or average cycle time. Those models facilitate quick estimates
of the impact of strategic decisions such as layout design, the number of shelves used to store
an item, the ratio of the number of replenishment stations to picking stations, etc. Zou et
al. [45] use a semi-open queueing network to study assignment rules of robots to picking

stations and demonstrate that their proposed rule outperforms a random assignment.

Boysen et al. [49] study the problem of sequencing the processing of a set of orders at a
picking station, to minimise the number of shelves that need to be brought to fulfil these
orders. With diverse methods, such as a mixed integer programming (MIP) model, a decom-
position method, and heuristics, they manage to reduce the fleet of robots needed by half.
Bozer and Aldarondo [65] compare a traditional mini-load AS/RS with an RMFS, to identify
configurations that yield a similar throughput. For a fixed set of parameters and defined
decision rules, they conclude that a mini-load system with four aisles and a conveyor belt has
similar productivity to an RMFS with 50 robots. They also find that carefully determining
the number of picking stations is essential to maintain a high picker utilisation while avoi-
ding congestion. Guan and Li [66] derive association rules from historical demand data to
decide which items to store together on a shelf, to maximise item similarity (the probability
that items from the same shelf are ordered together) within the context of scattered storage.
They propose a non-linear MIP and a genetic algorithm to solve it, and they obtain a higher
item similarity of about 35%, but their results are not converted to actual productivity gains
through simulations. Weidinger et al. [53] define a rack assignment problem for a batch of or-
ders (static scheduling). Their objective is to assign each returning shelf to a storage location,
with the surrogate objective of minimising the total loaded distance travelled by the robots.
Because they consider the arrival time of each rack at the picking station as a known variable,

they do not need to account for robots individually. They devise a variant of an adaptive

28

large neighbourhood search to solve their model and evaluate their approach in terms of total
travelling time, for which they obtain better results compared to their baseline. Like [27],
they note the good performance of the shortest leg decision rule, which operates completely
online and presents an average cycle time that is only 3.5% higher than their method. In [58],
the authors introduce RAWSim-O, a very detailed discrete event simulator that realistically
reproduces operations taking place in an RMFS. Merschformann et al. [13] use this simu-
lation framework to evaluate many combinations of decision rules. They test decision rules
for decision problems such as picking and replenishment station assignment, pod selection,
or storage assignment. Their study yields significant performance differences between com-
binations, which emphasises the importance of careful selection for each application. They
also note the importance of a proper picking station assignment rule. The cross-dependencies

existing between some rules suggests potential benefit in investigating integrated approaches.

Considering the variety of operational subproblems, the uncertainty about demand and ope-
rations completion times, as well as the dynamic nature of the operations that should respond
in real time to new orders, we propose a mathematical framework that formalises the opera-
tional decision-making in such a dynamic stochastic setting. We follow the stochastic opti-
misation framework of Powell [63] with the objective of guiding future research on integrated

approaches.

4.4 Formulation

Before presenting the complete dynamic model in Section 4.4.2, we first describe the key

elements considered in the framework and the types of operational decisions we consider.

4.4.1 Modelling framework

As explained in the presentation of RMFSs in Section 4.2, the operations of a robot consist of
a succession of dual command cycles. These cycles require several decisions that we describe
here. Since the system is very dynamic and complex, any decision policy needs to be tested
through simulation. For this reason, our modelling has strong similarities with a discrete
event simulator. First, a decision needs to be made, not at regular time steps, but when a

robot becomes available for a new task. We refer to this as an event.

Because we do not consider batching of orders, new orders are revealed online and need to be
included in the pool of orders to fulfil right away. Note that we consider one-line orders only
(one type of item, possibly several units of it) because most e-commerce orders present very

few lines. Dealing with multi-line orders would entail additional considerations that are not

29

accounted for in our model. If one wanted to adapt our model to treat multi-line orders, we
would suggest starting by splitting the orders into single-line orders. Additional constraints
and variables would be required, particularly to treat two key elements : if consolidation
is done at the picking station, the split orders need to be processed at the same station;
regardless of where the consolidation occurs, the different parts of a split order need to be
retrieved in a short time span, to avoid saturating buffers and to validate the fulfilment of
the order.

Importantly, some papers like [13] consider a constant order backlog. Here, we do not assume
a constant backlog size, but we assume that an order is always waiting to be fulfilled. This
situation makes the throughput of the system entirely depend on the planning decisions.
This assumption can be justified by a usual high volume of orders in e-commerce, or for
instance, the possibility to send a robot for maintenance or recharge while idle. However,
if this assumption was to be relaxed, an event may be triggered by a new order entering
the system, instead of an available robot. In this case, it may become interesting to batch
multiple robots to allocate one or several orders. This consideration will remain out of the

scope of the modelling in this work.

Furthermore, we do not consider the path planning problem, which consists of defining the
exact movement of robots within the warehouse. However, because the travelling time taken
by a robot may vary due to congestion, we consider stochastic travelling times in the general
case. As such, we cannot know in advance exactly when a task will be completed. Like all
the papers on real-time planning for RMF'S reviewed in Section 3, we assume all tasks to be
non-preemptive, which means that when a robot is assigned to a task it cannot be interrupted

before completion, even if a better opportunity occurs.

At a picking station, a human operator can only pick items from one shelf at a time. When
a robot arrives at a picking station, it may have to wait in a queue, following a first-in, first-
out procedure. Note that in the model, we do not explicitly represent the replenishment of
shelves, but we do consider a notion of stock levels. Instead, we suggest that a replenishment
task could be accounted for in our modelling by considering orders of negative quantities.
Since stations are typically fully dedicated to either replenishment or retrieval tasks, simple
constraints about which station can process a specific order can be added, but those are not

explicitly mentioned in the model.

While dual command cycles (consecutive storage and retrieval tasks) are the standard se-
quences of tasks for a robot, we also define less frequent opportunistic tasks. The purpose of
an opportunistic task is to avoid a trip to the storage area if the shelf carried by a robot

could be used again to fulfil another order. We distinguish two types of opportunistic tasks.

30

First, when a robot is leaving a picking station, it can go straight to the end of the waiting
line of the same or another picking station. In this case, the robot saves the travelling time
to the storage area and back. The second type of opportunistic task has the robot in place to
deal immediately with another order. In this case, the robot saves both the travelling time

and waiting time at a picking station.

Figure 4.1 presents the decision tree that guides decision-making when an event occurs. If
the robot is located at a picking station, two types of decisions can be made : a storage task
or an opportunistic task. On the other hand, if the robot is in the storage area, the robot
must perform a retrieval task, which consists of choosing which order to fulfil, from which
shelf, and to which picking station. To elaborate those decisions and their consequences, we
first define useful sets and parameters. We will then describe the state variables along with
exogenous information (random variables), the decisions that need to be made, the transition

function, and the cost function.

4.4.2 Sets

The following sets, as well as the parameters described in Section 4.4.3, are fixed and deter-

mined by the warehouse design. They are not variables that will evolve over time.

= set of items that can be found in the warehouse.
= set of storage locations.

= set of storage shelves.

subset of shelves C S carrying item @ € Z.

set, of automated robots.

VAL N
I

= set of picking stations.

All item types stored in the warehouse are denoted by Z. Storage locations £ define locations
where a shelf can be stored in the warehouse. Those shelves are defined by set S, and S;
identifies the subset of shelves containing a specific item ¢ € Z. Robots R represent the small
automated robots that can store and retrieve shelves. Human operators are located at picking

stations represented by set P.

31

Event: available
robot

Robot's location?

Picking Storage
station area

Storage or Retrieval task
opportunistic task?

Decision: (order,
. shelf, picking
Storagf/ \Opportunlstlc Station)

Storage task Opportunistic task
Decision: storage Decision: (order,
location picking station)

Figure 4.1 Decision tree

4.4.3 Parameters

d, = deadline of order o € OF (state variable, see Section 4.4.4).

cost, = penalty cost for tardiness of order o € OF (expressed per late time unit).

time; ; = expected time for a robot to travel from point ¢ to point j; (¢,7) € (LU P)2.

time, = expected time required to pick all the items from order o € O* by an operator.
io = item type € Z of order o € O*.
o = quantity of units of item type i, € Z of order o € OF.

Because of different levels of priority, such as with Prime vs Standard service for Amazon,
each order can be associated with distinct penalty costs for tardiness cost, with respect to
deadline d,. time; ; represents the estimated, or expected time needed by a robot to travel
from location 7 to location j; these locations can either be storage locations or picking
stations. Depending on the application, if travelling times are deterministic, this value is
simply an estimated time. Otherwise, with stochastic travelling times, the actual time taken
by the robot is uncertain, but the expected value tzme; ; may still be useful for decision-
making. A human operator needs, on average, time, to pick the items of order o from a
shelf; it may depend on the number of items to pick, the weight of the item, etc. 7, denotes
the item type of order o. While we assume that orders are single-line orders, we still define
¢, as the quantity of units of item type i, to be picked. This allows for an order to contain
more than one unit of the same item but also, should an order be a replenishment task, we

could have ¢, < 0.

32

4.4.4 State variables

The state of the warehouse at a given time step describes all of the relevant information
needed to make operational decisions : the location of shelves and robots, availability of
resources, orders to fulfil, etc. Following the framework of Powell [63], the state of the system
at a given time step k is denoted by Sy and is decomposed into three entities : the physical
state variables Ry, the other information variables I, and the belief state variables Bj. We

detail the role and the components of these entities below.

Sk' = (Rk'7 Ik’7 Bk)

Physical state

The physical state defines all physical characteristics of the warehouse, such as the location
and availability of the shelves, the robots, and others. We decompose the physical state
as Ry = (tF, LK, TE, stock"évz, TE, 2% Lk Sk TE Ok REY), of which the components are

described below.

Running time

t* = current time corresponding to time step k.

In our model, a time step k corresponds to an event when a decision must be made, as in a
discrete event simulation. The time interval between two such events can be highly variable.

We define the state variable t* as the time of event k.

Shelves
I* = location € L of shelf s € S; LE = {I* | s € S}.
Tk = time at which shelf s € S becomes available; T = {r¥ | s € S}.

stocksi = stock level of item type ¢ € Z on shelf s € §';
stockl = {stockl, | s € S,i € T}.

A shelf s € S is currently assigned to location I¥ € LUP and became or will become available
by time 7%, as known by time t;. In this context, ‘available’ means the shelf (or location,
robot, etc.) can be used right away. At time t*, even if [¥ € £, shelf s may not be available

yet, but will be at time 7% > t¥ because it may not have reached its storage location. By

33

convention, we set 7F = 400 when the arrival time has not been revealed yet or if the shelf
is currently not assigned to a location. Note that in the case of stochastic travelling times,

7% is only known when the shelf has been replaced, so its value will remain set to +oo until

s
then. However, in a deterministic setting, the arrival time can be anticipated as soon as the
storage decision is made. The stochastic case is presented here, but the details around the
belief state variables will be similar to a deterministic setting. The variable stackii denotes
the level of stock of item type i currently available on shelf s at time t; (the current stock
level may differ if the shelf was allocated to an order but not yet processed at the picking
station). Depending on the number of items of type i required by an order, a shelf which
contains this item may not be usable. Indeed, we consider that all items from an order must
be retrieved from a single shelf. To relax this assumption and similar to multi-line orders,

one may look into splitting the order into single-item orders (see Section 4.4.1).

Locations

7F = time at which location [€ L is available for storage; TF = {7/ |l € L}.

A location [is available for storage by time 7. This means that if 7 < ¢, the location is
currently free. If 7 = 400, the location is not available for any planned horizon or a robot

is on its way but has not yet retrieved the shelf.
Robots

2% = robot € R available for a task.

I¥ = location € LU P of robot r € R; L% = {I¥ | r € R}.

s¥ = shelf € S carried by robot r € R; Sk = {s* | r € R}.

7F = time at which robot r € R is available; 75 = {7% | r € R}.

of = order € O that is currently processed by robot r € R; O% = {of | r € R}.

Robot z* € R denotes the robot currently available for a task (defining an event). A robot
r € R is currently located at location I¥, is carrying shelf s*¥ and will be available next at

time 7%. Finally, of denotes which order robot r is currently processing.

Picking stations

R = set of robots C R assigned to picking station p € P; Ry = {R} | p € P}

34

Because a human operator needs time, to pick the items of an order o, the robots wait in a
queue. Robots that are assigned to picking station p, and will thus wait in the same queue,
are identified by R’;.

Other information variables

An essential aspect of dynamic operations in e-commerce comes from new orders continuously
entering the system. At a given time step, a set of orders to fulfil is known, but new orders
can arrive at any moment. We represent this set of revealed orders as a state variable OF
of type other information as it evolves exogenously even if still influenced by the previous

selection of orders to fulfil. Since it is the only variable of this type, we have : I}, = (OF).

Orders

OF = orders yet to be fulfilled by time step k.

Belief state variables

Depending on the application, some extra information about distributions of random va-
riables may be known and useful to make decisions. As such, they can be stored in the belief
state By. As mentioned above, since we consider stochastic travelling times, we do not know
in advance when a robot will reach its destination. However, we can use expected values
while making decisions. We define such estimations, as well as information about demand

distributions with By, = ('wasuﬁ, 77‘%779, M5, described below.

7% = believed (e.g., expected) time of availability of component j € RUSU L;

j
Trusoe = {78 | j e RUSU L)

believed time of arrival of robot r at picking station p;
'T%p = {7}, |reR, peP}

N = average demand rate of item ¢, can be a Poisson average or any other distribution

information; \s = {\F | i € T}.

—k _
Trop =

ff represents the believed, or estimated, time of availability of component j, which can be a
robot, a shelf, or a location. This estimation can be useful when the true time of availability Tf

has not been revealed yet. It can be computed based on past data or on an expected travelling

times model. For example, if component j represents a shelf, and if t* < ff < Tf = 400,

it means that shelf j is currently being brought back to a storage location, will be available

35

at an estimated time %f , but its exact arrival time is yet unknown. Similarly, 7* designates

T,
the estimated time of arrival of robot r at picking station p. This information cgn be useful
to estimate the order of the robots in the waiting queue at the picking station, to determine
the processing order. Finally, orders are arriving online, but it is reasonable to consider
that some statistics about future orders are available based on current trends, forecasts,
planned promotions, etc. As such, we consider here that the arrival of new orders can be
reasonably well-modelled with Poisson distributions and that we have an estimate of their

current averages \F that may evolve over time.

4.4.5 Exogenous information

Between stochastic travelling times and new orders entering the system, new information
is continuously revealed, comprising most of the challenge of dynamic decision-making. We
represent the exogenous information as a list of random variables W, that are revealed

during the operations : Wy q = ((PF*1, #6H1) TEHL Totl ©F),

(FEFL, #8+1) = robot becoming available at the next time step and its time of availability.

ML — argmin(7FT1), but only the time

reR

Those information are linked as

of availability of robot ##*! is revealed by time step k + 1.

i = arrival time of a robot at retrieval location [. Between two decision time
steps, a robot may have arrived at a retrieval location to retrieve a shelf,
the storage location then becomes available; T} = {7} | l € L}.

%,ff;gl = arrival time of a robot r to picking station p. Between two decision time
steps, a robot may have arrived at a picking station, in this case, its
arrival time is revealed. Note that such a robot can very well be the next
available robot 7+*!; 77{’7; ={if,|reR, peP}

Ok +1 = new orders that entered the system between time step k£ and k£ + 1.

ealisation of a random variable x_.~k+1 of newly revealed orders
Realisat f d ble Ox_,» f | led ord
k+1

between time t* and 7
In our framework, an event k is defined by the need for a decision, corresponding to a robot
requesting a new task. Because of stochastic travelling and processing times, this event is
uncertain and is represented by the pair of random variables (751, #%+1) which designates
the robot asking for a decision and the time at which it happens. The availability of other
robots is governed by distinct random variables #%71, r € R, but only the realisation of the
earliest available robot is revealed. Between two events, other relevant episodes (events that do

not require a decision) may happen. One such episode is a robot reaching a retrieval location

36

[at time %f“. This information is important because it frees the location for another storage
task. Another similar episode is the arrival of a robot at a picking station ﬂf;l because it
determines the order in the waiting queue. By convention, if such time has not been revealed
during the two decision steps, its value ?f“ is set to +o00. Finally, between the times of two
events, new orders may be revealed in the system. This set of new orders, which arrive between
times ¢* and t**1, is represented by a random variable @ k1 for which a realisation is

denoted by ©F 1.

4.4.6 Decisions

For a given state of the system S, a decision, or action, x; must be made. Two options are

possible, depending on the location of the available robot z*.

If robot z* is currently located at a picking station (state : l’;k € P, see Eq. 4.1), it is carrying
a shelf, so its first option is to store the shelf back into the warehouse (storage task, z; € X}).
A decision about which location [to store the shelf at must be made (Figure 4.2, (1)). Of
course, this location needs to be available at the decision time : 7/* < t*. If travelling times
were deterministic, one could anticipate the availability of a storage location and verify that

[will be available by the time the robot reaches it : 7 <t + timey(zryk .-

The other option is called an opportunistic task. Instead of storing its shelf, a robot can reuse
it right away to fulfil another order o at picking station p (z; € X?). We distinguish two
cases of such an opportunistic task. First, the robot can bring its shelf to the end of the
waiting queue of either the same (Figure 4.2, (3)) or a different (Figure 4.2, (2)) picking
station (case p € P). Second, the robot can remain at its current position (Figure 4.2, (4))
to deal immediately with another order o (case p = lf,f which designates the current picking

station of the robot with an * as an exponent).

if llzk S P :
T € X]i U Xl?
Xt ={le |7 <t"} (storage task) (4.1)
Xt ={(o,p) | o€ OF, pec PU{I%}, 5.r €S, stockfzk’io > ot

(opportunistic task)

If robot 2* is available but located at a storage location (state : l’;”k € L, see Eq. 4.2), it is

waiting for a retrieval task. The decision is threefold : which order o € O to fulfil, from

37

Storage or opportunisitc tasks

o~

Figure 4.2 Possible decisions when a robot is located at a picking station

which shelf s € §, and by which picking station p € P. Of course, candidate shelves must
contain the item of the order (s € S;,), have a sufficient stock level (stock%; > q,), and must

be available at decision time (7% < t*).

if I¥, € L (retrieval task) :
o € X, (4.2)
Xi={(o,s,p)|0€ O, s€8, peP, ¥ <t seS,, stockl, > q,}

4.4.7 Transition function

The transition function S™ describes how the state variables are modified from Sy, to Sj.1

when a decision zj is made and exogenous information Wy, is revealed.
_ oM
Skr1 = SM(Sk, Ty, Wiy1)

Note that to slightly lighten the notation, state variables that do not change between two
consecutive time steps are not detailed. In this case, one must understand that these variables

keep the same value at the next step.

First, for all states and decisions, the transition function starts with Algorithm 4.1. This part
is straightforward : the robot available for a task is set to the newly revealed available robot
(line 1, Alg. 1), the running time to the time at which this robot becomes available (line 2,

t*+1 are added to the pool of

Alg. 1), and the newly revealed orders between times t* and
orders to fulfil (line 3, Alg. 1). Then, if a location has been freed up during the time interval,
its true and believed times of availability are updated (lines 4-6, Alg. 1). Similarly, if a robot

has reached a picking station, its believed reaching time is updated (line 7-10, Alg. 1).

38

Algorithm 4.1 Transition function - general update

1. R+l — phtl
9. phtl — pkt1

3. Okt — Ok | @k +!

4: for l € £ do

5. if #71! < 400 then

6: T = gl 2 gk
7. for r € R do

8: for p € P do

9: if 77! < +00 then
10: %rk,p - ﬁf;l

The rest of the transition function depends, again, on the location of the available robot.

Transition - robot located at picking station (I*, € P, Algorithm 4.2)

When a robot is located at a picking station, it can either perform a storage task or an

opportunistic task.

If a storage task is chosen (line 1, Alg. 2), then the decision concerns a storage location
xp = l. First, the locations of both the robot z, and its shelf s'z“k are set to location [(line 2,
Alg. 2). Location [is now reserved with no information about when it will become available
again, so its true and believed times of availability are both set to oo (line 3, Alg. 2). Because
of uncertain travelling times, the time of availability of robot Tzk,f 1'is unknown and set to oo
(line 3, Alg. 2). However, its believed time of availability (and the one of its shelf) can be
estimated as the current time plus the expected travelling time from the picking station to
the storage location (line 4, Alg. 2). The robot is leaving picking station lfk so its estimated
time of arrival at this picking station is set to oo (line 5, Alg. 2), and the robot is removed

from the robots assigned to the station (line 6, Alg. 2).

If the robot performs an opportunistic task instead, a new order o and a picking station p
are selected (line 7, Alg. 2). The locations of the robot and its shelf are set to the picking
station p (line 8, Alg. 2). The new order will pick items from the shelf, so the stock level of
the shelf in items i, is updated (line 9, Alg. 2). Order o is removed from the list of remaining
orders to fulfil (line 10, Alg. 2) and the robot is assigned to this order (line 11, Alg. 2). By
the next time step, if the same robot z* has not yet arrived at station p and the decision was
to send the robot at the end of a waiting queue (p # Z’Z“,’f), its estimated time of arrival to

station p is set to the running time plus the average travelling time between the two stations

39

(line 14, Alg. 2). Then, if the new picking station is different from the current one, robot z*
is removed from the robots assigned to station %, (line 16, Alg. 2) and added to the ones
of station p (line 18, Alg. 2); its estimated time of arrival to station %, is also set to +oo
(line 17, Alg. 2).

Finally, in both cases, if more robots are still assigned to station l’;k (line 19, Alg. 2), one can
identify the next robot to be processed as the robot r that arrived the earliest (line 19, Alg. 2).
If this robot r is not the one available at next time step (which would already be revealed),
its believed time of availability is set to the running time plus the average time needed by

the human operator to pick the items of its assigned order time,s () (line 22, Alg. 2).

Algorithm 4.2 Robot located at a picking station (1%, € P)

1. if z;, =1 € X} C L then > Storage task
2 T =10 =1

3. le+1 _ lk+1 = = oo

4 T = Tk,:zlk) = t% + timey iy

o: Tk,flk(z Ry = +00

6 Ry = Rhim \ 2

7: else if x), = (0,p) € X} C (OF, PU{I%}) then > Opportunistic task
8. [l Zklj_(ik) »

9: stockf,fék) i = stock:fk(zk)’io —q,

10 OMl=0%\o

k+1

12: if 7 Ak“ — 400 then
13: 1f p € P then
14: 7_'5,::11) =tF 4+ timegk (1), p

15: if p € P\ I% then

16: Ry = Rijeary \ 2F
18: Rt = R"’ U 2"
19: if Rk“k) # & then > Common to both tasks
20: let r = CLTngTL(Tk,—%(K)
r'eR
21: if r # #**1 then

22: T =15 4 time

40

Transition - robot located in storage area (I*, € £, Algorithm 4.3)

When a robot is available at a storage location, it needs to perform a retrieval task which
consists in making a decision x; = (o, s,p) of an order o to fulfil, from shelf s, at picking

station p.

First, both the true and believed times of availability of the shelf just dropped by the robot
are now set to the running time (line 1, Alg. 3). The robot is now carrying the selected shelf
s (line 2, Alg. 3). The true and believed times of availability of this shelf, as well as the true
time of availability of the robot, are all set to +o00 (line 3, Alg. 3) because the estimated time
of when the items will be picked is hard to obtain at this stage (even if a rough estimate could
be considered). The locations of the robot and shelf s become station p (line 4, Alg. 3) and
the robot is added to the set of robots assigned to the picking station (line 5, Alg. 3). The
stock level of the shelf in item type i, is updated (line 6, Alg. 3). The order o is removed from
the set of orders to fulfil (line 7, Alg. 3) and the order is assigned to robot 2* (line 8, Alg. 3).
If the robot has not reached the retrieval location by time step k + 1, the believed time of
availability of storage location [¥ is estimated to be the running time plus the travelling time
between the drop-off and retrieval locations (lines 9-10, Alg. 3). Finally, if the robot has not
arrived at the picking station by time step k + 1, the believed time of arrival of robot z* at
station p is calculated as the running time plus the travelling time from drop-off to retrieval

locations and retrieval location to picking station (line 11-12; Alg. 3).

Algorithm 4.3 Retrieval task (1% € £,z = (0,s,p) € X} C (O*,S,P))
L Tl = ooy = t°
2: sfjl =35
3 TR = 7hH = 7R = oo
g I =1l =y
b: REFL = REU 2
6
7
8
9

, k1 _ k
: stocky, = = stockg, —qo
. O =0F\ o

ol =0

zZ

. if %l’ffl = 400 then
S

10: 7_‘l12+1 =tk + tim@lk(zk%llg
11 if 757 = +oo then

. k41 _ 4k | 7o e
12: Tk, = 1+ tamep k) + Limegk

41

4.4.8 Cost function

The cost function defines the cost contribution of a decision to the global objective that needs
to be optimised. While the previous parts of the model are quite universal, the objective
function depends on the Key Performance Indicator (KPI) the decision-maker favours most.
Merschformann et al. [13] present several relevant KPIs, such as the order throughput rate, the
order turnover time, the travelling time, the fraction of late orders and others. To illustrate,
we present here two objective contributions related to travelling times and deadlines. The
first one considers the full cycle time in a fully stochastic setting (as the rest of the model).
The second one only considers the travelling time of the robots in a setting where travelling
times are deterministic. The reason for this double illustration is that to truly assess the
complete cycle time of a robot in the fully stochastic case, we need to wait for the robot
to have finished its cycle, which makes the contribution of each decision less perceptible. In

both cases, Figure 4.3 illustrates the time components that compose a complete cycle.

Complete cycle time — stochastic travelling times

In this case, the time taken by a robot to perform a complete cycle is considered in the
objective, which includes the travelling time as well as any waiting time spent in a queue at a
picking station. Because the real time taken by a robot to complete a task is only revealed once
the task has been completed, its contribution to the objective function is likewise delayed.
For this reason, we add a physical state variable for each robot, representing the time at
which it started its task :

©F = time at which robot r € R started its new task; ¢% = {¢¥ | r € R}

And we update this state variable every time a robot is assigned to a new task. We add at
the end of Algorithm 4.1, line 11 :

Algorithm 4.4 Extra line in Algorithm 1

11: it = ¢k

Now, in every state, the time taken to perform the previous task can be computed by taking
the difference between the current time t* and the time the robot started this task go’;’k (Eq.
4.3). Also, if the robot is located at a picking station, an order was just completed, and a

penalty cost is applied to penalize, if necessary, a violated deadline : cost sy x maz|0, th —

dok(zk)].

42

For a given state, decision and exogenous information, we denote the objective contribution
by : C(Sk, vg, Wi1)

if I*. € P (Robot located at a picking station) :

C (S, T, Wiy1) = t5 — b + COSt g (k) X maz[0, t* — ok (5)) (43)
if I*, € £ (Robot located at a storage location) : .

C(Sk, Tp, Wip1) = tF — ol

Travelling time only — deterministic travelling times

We present the objective of the deterministic travelling time to have a more intuitive re-
presentation of the objective contribution. In Eq. 4.4, we distinguish the different types of
decisions. In the case of a storage task or an opportunistic task, the costs are similar : the
travelling time from the current picking station to either the storage location or another
picking station (if the robot stays in place to deal immediately with another order, this cost
is 0), and a penalty cost for violated deadlines. If the robot performs a retrieval task, the cost
corresponds to the interleaving time between the drop-off and the retrieval locations plus the

time between the retrieval location and the picking station.

if [¥, € P and 1, = € X} C L (Storage task) :
C(Sk, g, Wis1) = timeyrye,; + cost ge(oey X maz[0, 1" — dor ()]

if 1% € P and 7 = (0,p) € X7 C (OF, P U {I*;}) (Opportunistic task) : (4.4)
C(Sk, T, Wia1) = timeyrye p, 4 costorny X max|0, th — ok (:4)]

if 1% € £ and z;, = (0, 5,p) € X} C (0%, S, P) (Retrieval task) :

C(Sks Tr, Wig1) = timegox), 5 + timeg),

43

Storage task Opportunistic task (1) & (2)
* cPanday =lcL I*, € Pand z; = (o,p) € (0", P)

(3) imep),) =0

) or arrived at

timelk(zkm 27—_k”€ _ tk
? ? ARy

arrived —;

Retrieval task
lfk € L and
Opportunistic task (3) 2 = (0,5,p) € (O, 8,P)

k € Pand ay = (0,p) € (O%, {I%}) timep gt

t’i’n’i@lk(zk)7 lk(zk) = 0

time,

Figure 4.3 Illustration of the cost components in the complete cycle time

Global objective

Finally, the global objective is, for every state, to make the decision that minimises the global

cost of operations. This is defined recursively by Eq. 4.5, equivalent to Bellman equations.

“+o0o
min Eg, By, .w, |5, {Z o Ci(Sk, X7 (Sk), Wi | 50} : (4.5)

k=0

where « is a discount rate €]0;1[and :

Ska1 = SM(Sk, X7 (Sk), Wi1) (4.6)

More precisely, the objective is to define a policy 7 that minimises the expected infinite sum
of discounted cost contributions Cy(Sk, X[(Sk), Wki1), considering the recursive relationship

between two consecutive states defined by Eq. 4.6.

We may also prefer to not consider any discount rate in the objective function, for instance

to properly minimise the expected average cycle time. In this case, we can define the global

44

objective as in Eq. 4.7, which averages the infinite sum of cost contributions.

- 1
m#n lim ESOEW1---Wh|SO {h Z Ok(Sk, X;;(Sk), Wk+1> ’ S()} (47)

h—+o00 =0

4.5 Simulation study

Because the subproblem of storage allocation is recurrent both in traditional AS/RSs and
also in RMFSs, we propose illustrating a simple usage of our framework by comparing the
performance of the four most common storage decision rules. The objective of this section is
neither to propose a new method, nor a fully integrated simulation study, but to compare
storage policies that should be considered as baselines when developing new methods. We
study the performance of those baselines in terms of the two KPIs presented in Section
4.4.8 : the travelling time and the full cycle time. The baselines are tested in isolation under

simplification assumptions that are presented below.

4.5.1 Assumptions

To study storage allocation baselines in isolation, we make several simplifications. First,
we consider a single picking station. A type of item is stored on exactly one shelf, which
only contains this item, and replenishment is ignored. Both travelling and picking times are
deterministic. Revealed orders are processed following their deadlines, with the condition
that the required item is on a shelf that is not currently being carried by another robot.
Because this online scheduling is not optimised, delay penalties in the objective functions
presented in the model are removed. Only opportunistic tasks of type 1 (where the robot
goes straight to the end of the waiting queue at a picking station) are considered, and they
are enforced as often as possible (if the next order needs the same shelf that the robot is
currently carrying). Also, because the next order assigned to a robot is an external decision,
we can use this information at the time when a storage decision is made. To do so, we add

an other information variable to the ones defined in Section 4.4.4, representing this order.
k

next*

Let us denote this state variable by o Note that the only event that requires a decision
is when a robot is available at the picking station : l’;k € P, we can then omit the case of a

retrieval task when l’;k € L in Eq. 4.2.

45

4.5.2 Storage allocation baselines

In this section, we express the storage decision rules within our modelling framework. Because
we enforce opportunistic tasks of type 1 whenever possible, an actual storage task only occurs
when ¥, # S;or_) (here S; only designates one shelf instead of a set), which means that the
robot is not carrying the shelf containing the required item. Otherwise, the opportunistic task
is performed by default, which consists of processing the next order of_ . at picking station
p = 1 (because there is only one picking station) : z; = (of_,,p = 1). We only represent this

second case in the random storage policy.

Random storage

In random storage, the storage decision xj, is randomly drawn from the uniform distribution

over the set of available locations at time ¢*.

if s’;k #* SZ'(Oﬁext) :
wy, ~ U(X})
where X} = {l; 1 € £, 77 < t*} (4.8)
else :

Tk = (Oﬁext7p = 1) € (Ok,P) C Xﬁ

Closest open location

The closest open location policy consists of selecting the available storage that is closest to

the picking station as defined by Eq. 4.9.

if 5% # Sy

next) ’

T = argmin (tz’mepzlvl lleLl, < tk)
!

Class-based storage

In class-based storage, a shelf is randomly stored within a class based on its turnover rate.
Classes are distributed by increasing distances from the picking station and shelves with the
highest turnovers are assigned to the closest classes. Because here a shelf contains exactly one

item type, which can only be found on this shelf, the turnover rate of a shelf s corresponds

46

to that of its item type (\¥; s = ;). Eq. 4.10 randomly draws the storage location from a
uniform distribution over the set of available locations within the class of shelf s'jk. The item

contained on the shelf is i(0*(z*)), which gives the turnover rate of the shelf Class(s",).

if S];k % Si(oll‘elext) :

j, ~ U(Class(s%))

(4.10)
where Class(s",) defines the open locations of the class associated with

shelf s¥. based on its turnover rate S\f(ok(zk))

Shortest leg

For the shortest leg decision rule, Eq. 4.11 selects the open location that minimises the
travelling time to the storage location plus the time from the storage location to the next
retrieval location. The next shelf to retrieve for the robot at hand is S;x_ y, and its location

is I" = I(Sj(r_y)- So, the selected location xy is the one that minimises timep—1,; + time, .

if % # Sicor,)
_ e : koo kg (4.11)
T = argmin (tzmepzl,z +time y | le L, <t" I'= l(SZ»(Ok t)))

l nex

4.5.3 Simulation study

In this section, we run simulations to evaluate the four decision rules presented above with
the two cost functions of Section 4.4.8 : full-cycle time and travelling time with the average
cost global objective (Eq. 4.7). We define a reasonably small warehouse storage area since
we consider only one picking station, and we keep the setting parameters constant except
the skewness parameter of the demand distribution that we describe below. Multiple picking
stations could be considered without major changes, except for the class-based storage, which

would require a careful zones definition, see, for instance, [46].

The storage area contains 108 storage locations for 103 shelves, and 8 robots are deployed.
The speed of the robots is set to 0.6 m/s, accounting for acceleration, deceleration, loading,
and unloading times. The picking time taken by the human operators is set to 5 seconds.
The number of classes for the class-based storage policy is set to 6. Figure 4.4 gives a plan

view of such a warehouse.

As in regular warehousing, some items are much more popular than others, which translates

47

into skewed demand distributions. We generate orders following the principle of an ABC curve
proposed by Hausman et al. [20] : G(z) = 2®, for 0 < s < 1, represents the ranked cumulative
% demand versus % (z) of item types. The smaller the s, the more skewed the demand
()%

is assigned, where m is the number of item types, n the expected total number of orders over

distribution. To every item type i a Poisson distribution of average \; = ((%)s —
the time horizon and N the number of discretized periods. Orders are then generated online
at each discretized period, for each item. Then, for every generated order k, a completion
time J; (time before deadline) is randomly drawn from a uniform distribution of interval
[1; X T, where « defines the tightness of the completion times. In this simulation study, we
run the simulation for 24 hours with time steps of 60 seconds to generate new orders. Several

values of skewness parameter s are tested and the tightness parameter « is set to 0.4. We
also set m = 103, n = 30,000 and N = 1440 (24 h / 60 sec).

Table 4.1 presents the performance of the four decision rules in terms of travelling time for 8
values of the skewness parameter s. Note that, because of the stochasticity in the simulation
process, each value presented in the table corresponds to the average over 100 runs. For each
decision rule, one column presents the average travelling time, another one the corresponding
standard deviation o (over the 100 runs), and finally the relative gain compared to the random
storage policy. First, we notice that the travelling time, for all storage policies, increases with
the increase of parameter s. This is explained by the greater number of opportunistic tasks
that can be performed with skewed distributions. Indeed, when an item is ordered much more
often relative to others, the chances that two consecutive orders will require the same item are
greater. Overall, the best-performing policy is the shortest leg (SL), with performance gains
ranging from 10.97% to 11.40%. The only exception is for extremely skewed distributions
(s = 0.4 and 0.5), for which class-based storage performs best with an improvement of
12.12% and 14.89%. However, the performance of class-based storage declines sharply when
the value of s increases; it even becomes worse than random when s = 1. Interestingly, SL’s
performance remains reasonably constant, with some extra performance gains for smaller s.
This can be explained by the fact that often-required shelves are frequently moved and may
end up occupying, by chance, locations closer to the picking station, which results in shorter
cycle times. We note the poor global performance of the closest open location (COL) method

that remains independent of the value of parameter s, with performance gains around 5%.

48

Warehouse locations

15 4

10

>
5 |
| @ sher

[] storage location
picking station

T T T T T
0 2 4 6 8

Figure 4.4 Simulation study - storage area

Table 4.1 Travelling times

Storage Random COL Class-based SL

policy 11 t(s) | a(s) | t(s) | os) | (%) | t(s) | o(s) | &%) | t(s) | o(s) | e(%)
s=0.4 46.85 | 0.75 | 44.74 | 0.78 | 4.51 | 39.87 | 0.70 | 14.89 | 41.51 | 0.68 | 11.40
s=0.5 50.52 | 0.85 | 48.08 | 0.81 | 4.83 | 44.40 | 0.73 | 12.12 | 44.81 | 0.68 | 11.29
$=0.6 52.67 | 0.67 | 50.00 | 0.73 | 5.06 | 47.92 | 0.70 | 9.01 | 46.79 | 0.64 | 11.15
s=0.7 53.79 | 0.64 | 51.15 | 0.60 | 4.91 | 50.63 | 0.63 | 5.88 | 47.85 | 0.59 | 11.04
s=0.8 54.26 | 0.57 | 51.70 | 0.57 | 4.70 | 52.62 | 0.59 | 3.01 | 48.30 | 0.52 | 10.97
s=0.9 54.59 | 0.57 | 51.92 | 0.53 | 4.90 | 54.39 | 0.57 | 0.37 | 48.60 | 0.45 | 10.97
s=1.0 54.69 | 0.56 | 51.98 | 0.59 | 4.95 | 55.60 | 0.58 | -1.67 | 48.68 | 0.47 | 11.00

Table 4.2 presents the same type of information but in terms of full cycle time, considering the
waiting time spent by robots at the picking station as well. We note some relevant differences.
First, as expected, all policies result in longer full-cycle times compared to travelling times
only (which is a lower bound) ; robots take on average 10 seconds more to complete a full cycle.
This simply means that robots are losing time waiting in the waiting queue. Then, while the
cycle time for all policies still benefits from lower s values, the differences are less significant.
This can come from opportunistic tasks that do not result in significant performance gains
due to the waiting time at the picking station. The best-performing policies dependent upon s
remain essentially the same as before. Interestingly, SL, the best overall policy, does not seem
to benefit from smaller s values, compared to random. It may be that conveniently-located,
high-turnover shelves do not result in faster cycles, once again because of robots waiting to

be processed at the picking stations.

49

Table 4.2 Full cycle times

Storage Random COL Class-based SL

policy || t(s) | os) | t(s) | o) [&%) | t9) | o) | &%) | 1) | ols) | 5(%)
s=0.4 55.60 | 0.64 | 53.51 | 0.66 | 3.76 | 50.06 | 0.56 | 9.96 | 50.77 | 0.51 | 8.70
s=0.5 58.65 | 0.78 | 56.11 | 0.71 | 4.32 | 53.43 | 0.61 | 8.90 | 53.20 | 0.57 | 9.29
s=0.6 60.50 | 0.61 | 57.63 | 0.66 | 4.75 | 56.23 | 0.60 | 7.06 | 54.69 | 0.54 | 9.60
s=0.7 61.46 | 0.58 | 58.64 | 0.55 | 4.58 | 58.54 | 0.56 | 4.76 | 55.55 | 0.52 | 9.61
s=0.8 61.86 | 0.54 | 59.12 | 0.52 | 4.44 | 60.29 | 0.53 | 2.54 | 55.94 | 0.47 | 9.57
s=0.9 62.18 | 0.52 | 59.29 | 0.49 | 4.65 | 61.90 | 0.52 | 0.44 | 56.20 | 0.40 | 9.62
s=1.0 62.26 | 0.52 | 59.33 | 0.54 | 4.71 | 62.97 | 0.54 | -1.15 | 56.25 | 0.42 | 9.65

While this study remains simple, with an illustrative objective only, we can draw some re-
levant insights from the results. First, considering the performance of class-based and SL
policies on the travelling time only, we understand the existence of a trade-off between stra-
tegically locating shelves based on the turnover rate of the items, to favour future accessibility,
and minimising immediate cycle times. Then, with regards to the waiting time spent in the

picking station’s queue, we understand that time saved in travelling can be wasted.

4.6 Conclusions and future work

In this work, we presented a dynamic stochastic optimisation framework that models real-
time operational decisions within a Robotic Mobile Fulfillment System. This new system of
automated warehouses was developed specifically for the challenges of the e-commerce mar-
ket. Among those challenges, online retailers need to fulfil orders extremely fast in a highly
competitive environment. Thus, the necessity of considering orders as soon as they are revea-
led to the system. Coupled with the great flexibility of storage allocation of RMFSs, as well
as the diverse operational decisions that need to be made, the global process results in a sto-
chastic dynamic problem that is typically tackled by high-level decision rules. By formalising
such a problem with a model, even though there is no obvious solving mechanism to be pro-
posed, it will assist researchers in the development of more advanced methods to improve the
performance of either specific subproblems in isolation or the integrated problem. Essential
elements of the model are : stochastic demand (orders are revealed online) ; stochastic tra-
velling and picking times for the robots and operators; irregular decision-making time steps
that follow times at which events occur, similar to a discrete event simulation ; definition of
opportunistic tasks that model the possibility of combining two compatible orders to save
travelling time; a waiting queue for robots at picking stations. To illustrate the model, we

propose a simple simulation study using storage allocation decision rules from the literature.

20

We transcribe these rules following the model’s proposed notation and run experiments to
evaluate their performance and gain insights about improvement opportunities. In particu-
lar, the Shortest Leg storage policy demonstrates its good performance in terms of travelling
time. When the cycle time includes the waiting time at the picking station, distributing the
arrival of the robots to avoid idle times appears to be essential to benefit from a good storage

policy entirely.

In the future, based on the assessment of the storage decision rules illustration, we wish
to build on the modelling framework to develop new storage policies other than traditional
decision rules. We think that methods coming from approximate dynamic programming or
reinforcement learning could be applicable here, to learn from repeated experiences and de-
mand trends in order to improve performance. While considering storage allocation only, we
understand that there exists a trade-off between minimising travelling times and avoiding
saturation at picking stations. Finally, future research could also aim at proposing a syste-
matic approach on how to model and consider multi-line orders, as well as path planning to
avoid traffic congestion and collision, along with the real-time task allocation presented in
this work.

51

CHAPITRE 5 ARTICLE 2 : EECOMMERCE WAREHOUSING :
LEARNING A STORAGE POLICY

Adrien Rimélé*P, Philippe Grangier?, Michel Gamache®, Michel Gendreau”, Louis-Martin

Rousseau®?

2Department of Mathematics and Industrial Engineering, Polytechnique Montréal,
PCIRRELT, Interuniversity Research Centre on Enterprise Networks, Logistics and Trans-
portation, “GERAD, Group for Research in Decision Analysis, 9TVADO Labs

Cet article a été soumis a European Journal of Operational Research le 11 janvier 2021.

ABSTRACT

E-commerce with major online retailers is changing the way people consume. The goal of
increasing delivery speed while remaining cost-effective poses significant new challenges for
supply chains as they race to satisfy the growing and fast-changing demand. In this paper,
we consider a warehouse with a Robotic Mobile Fulfillment System (RMFS), in which a
fleet of robots stores and retrieves shelves of items and brings them to human pickers. To
adapt to changing demand, uncertainty, and differentiated service (e.g., prime vs. regular),
one can dynamically modify the storage allocation of a shelf. The objective is to define
a dynamic storage policy to minimise the average cycle time used by the robots to fulfil
requests. We propose formulating this system as a Partially Observable Markov Decision
Process, and using a Deep Q-learning agent from Reinforcement Learning, to learn an efficient
real-time storage policy that leverages repeated experiences and insightful forecasts using
simulations. Additionally, we develop a rollout strategy to enhance our method by leveraging
more information available at a given time step. Using simulations to compare our method
to traditional storage rules used in the industry showed preliminary results up to 14% better

in terms of travelling times.

KEYWORDS
Decision processes ; Supply chain management ; E-commerce ; Storage Policy ; Reinforcement

Learning

52

5.1 Introduction

5.1.1 Warehousing in e-commerce

Warehousing occupies a central role in a supply chain. According to Gu et al. [60], the
primary purposes of a warehouse are to act as a buffer to adapt to the variability of the
production flow ; to consolidate products; and to add marginal value such as pricing, labelling

or customisation.

The recent and massive development of e-commerce introduces great challenges in the Business-
to-Consumer segment. E-commerce involves enormous volumes of orders, and online sales
keep growing in number : in 2016, e-commerce sales grew by 23.7%, accounting for 8.7% of
the total market [2]. These orders consist, on average, of very few items : the same authors
mention that the average number of items per order at Amazon is only 1.6. E-commerce also
faces great demand uncertainty, with fast-changing demand trends, and the need to satisfy
orders quickly [2-4]. Amazon, for instance, offers customers Prime, a differentiated service
that used to offer delivery within two days and is now, under certain conditions, promising
same-day delivery. Moreover, with easily accessible alternatives available to customers, on-
line retailers face high competitive pressure, and the link between logistics performance and

customer loyalty is much stronger compared to other industries [5].

Parts-to-picker Automated Storage and Retrieval Systems (AS/RS), with the typical single,
aisle-captive crane retrieving bins from a static rack, have been used for several decades
and have proven their superior operational efficiency compared to manual systems, at the
cost of an essential initial investment [14]. However, some limitations of AS/RS become
apparent when facing new challenges posed by the rise of e-commerce : cranes are sensitive
points of failure; expandability is complicated and expensive; batching and zoning require
consolidation and a delay-sensitive dependency between operators; and a single crane per
aisle can only perform so many cycles. According to Davarzani and Norrman [62], “adaptation

is urgent” to keep up with the growing demand.

5.1.2 Robotic Mobile Fulfillment System

Kiva Systems created the first RMFS in 2006, this company was later bought by Amazon
and re-branded Amazon Robotics in 2012 [4,6,7]. However, RMFSs; also referred to as rack-
moving mobile robot based warehouses, or Kiva warehouses, are not limited to Amazon
warehouses. Other companies have developed their own systems : for instance, Alibaba’s Zhu
Que robots, the Quicktron robots (Huawei), the Open Shuttles by Knapp, CarryPick by
Swisslog, Butler by GreyOrange, the Locus Robotics system and others [4,64].

93

This new type of automated warehouse involves a large fleet of small robots that move freely
around the storage area to retrieve shelves full of items and bring them to operators for picking
(possibly after waiting in a queue) before returning to a storage location. Interestingly, when
a robot is loaded, it must travel along the aisles, but when unloaded, it can pass under
stored shelves to take shortcuts. This type of operations is equivalent to a mini-load with
dual-command cycles system with a fleet of non-aisle-captive robots [14]. For a more detailed
description of an RMFS and its advantages compared to traditional systems, the interested

reader is referred to the following references : [6,7,10] and [11].

Rimélé et al. [67] present a mathematical modelling framework that formalises optimisation
opportunities in an RMFS. Because e-commerce promises fast delivery of small orders, the
fulfilment of requests follows what can be called an order streaming logic [12], which “drops
orders [...] to the floor as soon as they are received”. Because of this specificity, the option
of batching requests is minimal, and the system needs to account for uncertainty and adapt
online to newly revealed orders. Among the operational decisions, the real-time storage allo-
cation problem can leverage the great storage flexibility of the system. When a robot leaves
a picking station, it does not need to store the shelf in its initial location but can choose
any free location. This allows for the real-time adaptation of the storage layout in response
to the demand, thereby minimising the travelling time of the robots, which translates into

increasing an upper bound of the throughput.

5.1.3 Contributions and paper structure

This work focuses on a specific operational control aspect of a Robotic Mobile Fulfillment
System for e-commerce, namely the problem of learning an effective dynamic storage policy.
When a robot is available at an operator’s station, a decision must be made in real-time about
which storage location to use to minimise the average cycle time of the robots. To make such
a decision, one can use information about the next request to process, statistical insights
about the demand, and other input regarding the current state of the warehouse’s layout.
This information at a given time step defines a state’s representation in an environment that
we approximate as a partially observable Markov decision process (POMDP). We propose
the application of a variant of a Q-learning agent [68-70], a Reinforcement Learning (RL)
algorithm, to learn an efficient dynamic storage policy that aims at minimising the average
cycle time. More precisely, we implement a Differential Double Q-learning agent with expe-
rience relays to minimise the average travelling time of the robots. Inspired by Class-based
storage policies, the decision on where to return a shelf is made based on a discretisation of

the storage area into zones. A discrete event simulator is used to evaluate the performance

o4

of our method compared to baselines on different levels of skewed demand distributions. To
further improve the performance of our method, we propose an extension using a rollout
strategy over a fixed horizon of already-revealed requests. This strategy is also applicable to

the baseline methods from the literature.

The presentation of our proposed approach is organised as follows. Section 5.2 first formalises
the optimisation problem of dynamically allocating storage locations to shelves, then presents
a literature review related to storage policies in automated warehouses and operational control
applications specific to RMFS. Section 5.3 presents our methodology, with a discretisation of
the storage area into zones, the system representation as a POMDP, and the reinforcement
learning variant of a Q-learning agent used to learn an efficient storage policy, as well as
the rollout strategy to further improve performance. Section 5.4 explains how we generated
data in our simulations and shows results obtained by our method compared with baselines
from the literature. Finally, Section 5.5 summarises the obtained results and discusses future

research avenues.

5.2 Problem definition and literature

5.2.1 Decision-making framework

In this section, we present the storage allocation decision-making framework, as well as the

relevant literature on the topic.

For the case of an e-commerce Amazon-type warehouse, a modelling of operational decisions
is proposed by Rimélé et al. [67], with a stochastic dynamic optimisation formulation. In
this formulation, an incoming request corresponds to a single item type and consolidation of
orders, if any, is assumed to take place in the downstream sections of the warehouse. Orders
are revealed online and are considered available for fulfilment as soon as they arrive, with
no batching. An event corresponds to a robot being available for a task. The tasks of a
robot correspond to a sequence of dual-command (DC) cycles for which the total time can
be decomposed into : (i) storage access time; (ii) interleaving (or transition) time to retrieval
location ; (iii) retrieval time; and (iv) waiting time at the picking station’s queue (see arcs
on the left side of Figure 5.1). To create those cycles, storage and retrieval decisions must
be made. After the picking operation, the robot is available at the picking station, and it
has to perform a storage task, which consists in selecting an available location for storage.
When the shelf has been stored, the robot needs to perform a retrieval task, which consists
in choosing which order to fulfil next, from which shelf, and which picking station. Besides

those two typical tasks, we also consider an opportunistic task, a task that can only occur

95

in a particular situation where a requested item is stored on a shelf currently being carried
by the robot. In this case, the robot can go directly to the back of the waiting line at the
operator, without passing by the storage area (right side of Figure 5.1).

(i)

(iii)

(iv) ¥
<—

Available Shelf to store \ Dual Command Available Carried shelf v Opportunistic
storage location J cycle storage location cycle

Occupied Occupied
D storage location O Robot ,:I storage location O Robot
Shelf to i) Shelf to icki
-()-ri
E retrieve icking station & retrieve —O— Picking station

U]

Figure 5.1 Dual-command cycle (left) and opportunistic task (right)

In this work, we focus on optimising storage decisions only. It is assumed that an external
system provides the sequence of orders and the decisions on which shelf and picking station
to use. To be more precise, this system simply considers orders already revealed and yet
to be fulfilled and dynamically sequences them by increasing deadlines, as an emergency
rule. If an order requires a shelf carried by another robot, this order is temporarily skipped
to be processed by that other robot as an opportunistic task. Also, opportunistic tasks are
performed as often as possible. The objective is to minimise the average travelling time,
which is directly related to the maximal throughput capacity of the warehouse [71]. We make
other simplification assumptions similar to the ones enumerated in the simulation study
in [67]. We consider one picking station only, an item is associated with exactly one shelf
in the considered storage area, replenishment is explicitly ignored even if some orders could
correspond to replenishment tasks, travelling and processing times are deterministic and,

finally, congestion of robots in the aisles is ignored.

5.2.2 Storage policies

Commonly used and studied storage policies for AS/RS are Random storage policy or policies
based on the container’s turnover rate. The former gives a container an equal probability to
occupy any available location. While this method is space-efficient and easy to implement in
practice, it can obviously result in poor accessibility and low productivity during operations.

The latter method is typically expressed as a full-turnover-based storage assignment or a

o6

class-based storage assignment. A full-turnover-based assignment locates the most-requested
containers closest to the Input/Output (I/O) point ; however, a practical concern appears
when new containers enter and leave the system, or when the turnover rates change. In Class-
based storage, storage locations are clustered into a given number of classes based on their
proximity to the I/O point (see left side of Figure 5.2). Then, a container is assigned to a zone
based on its turnover rate ; its storage within this zone is random. While this method benefits
from both Random storage and full-turnover-based assignments, it requires the definition of
the number of classes and their dimensions. Numerous analytical and simulation studies
such as [20], [21], [23], [22], and [29] show that Class-based storage assignment demonstrates
the best performance and practicality. However, while those applications generally apply to
both single and dual-command cycles system, it seems they have been more driven by the
former. In another simulation study, van den Berg and Gademann [27] find out that for
dual-command cycles, selecting the storage location that minimises the cumulative distance
from the I/O point to the storage location, plus the distance from the storage location to
the following retrieval location, gives the best average completion time. This decision rule is

often referred to as the Shortest Leg storage policy.

5.2.3 RMPFS-related work

Some recent work focuses more specifically on RMFS, either on storage decisions or closely
related topics like performance measures and others. Lamballais et al. [44] use queueing
network models to analytically estimate maximum order throughput, average cycle times,
and robot utilisation. Using these models allows one to quickly evaluate different layouts or
robot zoning strategies. Among their results, they show the good accuracy of their models
compared to simulations. They also show that the throughput is quite insensitive to the
length-to-width ratio of the storage area, but is more strongly affected by the location of
the picking stations. Also using queueing network models, Roy et al. [47] study the effect of
dedicating robots exclusively to either retrieval tasks or replenishment tasks, or a combination
of both. They find that the latter reduces the picking time by up to one third, but increases
the replenishment time up to three times. They also study the allocation to multiple classes
and conclude that allocating robots to least congested classes results in a similar performance

as a dedicated zone policy.

Boysen et al. [49] study the problem of synchronising the processing of orders at a picking
station with the visits of the shelves carried by robots. By considering a given set of orders,
and a capacity to process orders simultaneously, their objective is to minimise the number of

visits of shelves to the picking station. They propose a MIP model, a decomposition approach,

o7

and different heuristics and show that they can halve the robot fleet size.

Regarding storage allocation, Weidinger et al. [53] define a Rack Assignment Problem, which
assigns each stopover (return of a rack) of a given set (batching) to an open storage location.
They consider the time at which each rack visits the picking station to be known. They
propose a MIP model as a special case of an interval scheduling problem, with the surro-
gate objective of minimising the total loaded distance. The model formalises the fact that
two stopovers can occupy the same storage location only if their storage intervals cannot
overlap. They do not consider robots individually, but instead they expect that a robot will
always be available for the task. They propose solving their model using an Adaptive Large
Matheuristic Search (ALMS), and compare their results with other storage policies, such
as those presented in Section 5.2.2. On their surrogate objective, ALMS demonstrates good
performance, outperforming the other policies on the total travel time (unloaded robots are
considered to travel twice as fast as loaded ones). Similar to the finding of [27], the authors
note the very good performance of the Shortest Leg policy; compared to their method, it
only increases the travel distance by 3.49% and the size of the robot fleet by 2.17%, without
batching.

Yuan et al. [46] propose a fluid model to assess the performance of velocity-based storage po-
licies in terms of travelling time to store and retrieve shelves. They find that when the items
are stowed randomly within a shelf, a 2-class or 3-class storage policy reduces the travel-
ling time between 6 to 12%. This theoretical result is validated by simulation. Additionally,
they find that if items are stowed together based on their velocity, the travelling distances

considered can be reduced by up to 40%.

In situations when batching or zoning requires consolidation, different options can be consi-
dered. Boysen et al. [2] consider a manual consolidation with put walls (sorting shelves).
They propose a MIP to optimise the release sequence of bins from intermediate storage so
that orders are quickly sorted on the put wall and idle times of operators are minimised.
In a case where the intermediate storage uses an AS/RS that serves the consolidation area
with a conveyor belt, Boysen et al. [72] propose a MIP model for the minimum order spread
sequencing problem, which consists in minimising the number of conveyor segments between

the first and last occurrence of an order.

Merschformann et al. [13] use a discrete event simulator presented in [58], which considers
most, if not all, of the operational decisions occurring in an RMFS. They test a multitude
of combinations of decision rules concerning, for instance, the assignment to a picking or
replenishment station, the robot selection, storage allocation, etc. They observe significant

performance differences between distinct combinations, as well as strong cross-dependencies

o8

between some decision rules, suggesting there may be some benefit to exploring integrated

approaches.

5.3 Methodology

This section presents our method for solving the dynamic storage allocation problem in an
RMFS. We first define the notion of zones that we use in our storage policy. Then, we explain
the representation of the system as a POMDP and the features extraction. In Section 5.3.3,
we describe the variant of Q-learning, a Reinforcement Learning agent, that we use. Section
5.3.4 presents implementation details essential to the success of the method. Finally, Section
5.3.5 describes a look-ahead rollout strategy to enhance our storage policy, by making better-

informed decisions using already-revealed orders.

5.3.1 Storage zones definition

In this work, inspired by Class-based storage policies from the literature, we propose optimi-
sing a policy that will allocate shelves to classes instead of exact locations. Contrary to the
standard Class-based storage assignment presented in Section 5.2.2, the online assignment
to a class is not only made based on the turnover rate of the shelf to store, but also on a
set of diverse features. Since we are interested in minimising dual-command cycle completion
times, as opposed to the access to storage or retrieval time alone (like in single command
cycles), the interleaving time between a storage location and the next retrieval location is
essential. With the usual definition of classes distributed with an increasing distance from
the picking station, such as in Figure 5.2 (left), the access and retrieval times depend directly
on the assigned class, but the interleaving time is quite random. For instance, in the ideal
case where we store and retrieve shelves from the same storage class 2, we see that the cycle
can either be very good (if the two locations are adjacent), or very bad if the locations are at
the two extremities. To better account for the importance of interleaving time, we propose
another definition of classes, which we now call zones as represented in Figure 5.2 (right).
These zones are now clustered into regular shapes such that locations within the same zone
are close to each other and such that the zones are distributed in an increasing distance from
the picking station. With this new zone definition, a storage and a retrieval from the same
zone would entail a short interleaving time and, thus, a good cycle. Note that the selection
of the exact storage location within a zone is arbitrarily made by choosing the open location

closest to the picking station.

29

152!

Figure 5.2 Concentric class-based storage layout (left) vs. proposed zones layout (right)

—QO— Operator
O —(O~ Operator

5.3.2 System representation

Rimélé et al. [67] model the storage and retrieval operations in an AS/RS as a Markov
Decision Process (MDP), which gives a full representation of the warehouse, including all of
the revealed orders, as a state of the system when an event occurs (corresponding to the need
for a storage decision here). Instead of giving such a complete representation of the current
state of the warehouse, we propose a Partially Observable MDP (POMDP), where only some
characteristics of the real state are used as state representation. In the traditional Class-based
storage policy, for instance, the representation of the state is simply the turnover rate of the

shelf to store, and based on this information the robot knows which class to assign it to.

We decided to represent a state with some more characteristics (features), given below :

— Average turnover rate of the shelf to store

— Relative rank of the shelf’s turnover rate

— Zone of the next retrieval task (one-hot encoding, one feature per zone)
— Occupation levels of each zone (one feature per zone)

— For each zone, the number of robots that are currently moving toward the zone to
retrieve a shelf

An extra feature is used to encode whether the next task is an opportunistic one (the shelf

is not stored but is already being carried by the robot). In total, if n denotes the number of

zones, there are 3n + 3 scalars in the features vector.

The intuitive idea is that there must be a balance between greedily minimising the immediate
cycle time, similar to the Shortest Leg storage policy, and minimising the future access time,
similar to a turnover-based storage policy as presented in Section 5.2.2. The objective is to
learn a policy that, based on the above set of features, will aim at minimising the average

cycle time.

60

5.3.3 Reinforcement learning method

We propose using a Reinforcement Learning (RL) method to learn an efficient storage policy.
The field of RL offers a diversity of methods to solve decision problems whose objectives
are defined recursively by a Bellman equation, introduced in dynamic programming (DP).
Compared to traditional DP methods that require complete information about the model
and probability distributions, RL methods can learn from repeated experiences, even in large
state and action space, when using function approximations. As presented by Sutton and
Barto [73], in RL the decision-maker, or agent, interacts with its environment. At every time
step t, and based on the current representation of the state S;, the agent selects an action
Ay, which impacts the environment and receives from it a reward R;;; and a new state
representation Sy, 1. Based on repeated experiences, the goal of the agent is to learn a policy
that maximises the onward cumulative sum of rewards. Note that the agent is not necessarily
given the complete state characteristics; it can only be given a partial representation through
a POMDP. The state representation defined in Section 5.3.2 is the partially observable state
given to the agent in our approach. In value-based RL, given a policy 7, the agent learns the
State-Action value function Qr(s,a) = E[Ry + Ry + ...| So = s, Ay = a, 7] that represents
the expected (possibly discounted) cumulative reward at state s if action a is taken, if policy
7 is followed afterwards. The optimal value function Q* is such that Q*(s, a) = max,Q.(s, a)
for all state and action pairs, and obtaining a decision policy from a value function simply

consists in acting greedily with regard to action values : A.(s) = argmax,Q.(s,a).

In Q-learning [68], the value function is iteratively updated by sampling based on the Bellman
equation : Q(S;, Ap) < Q(St, Ar) + a[R + v max,Q(Si11,a) — Q(Si, Ap)], so the update uses
the received reward and the current estimate of the next state value (bootstrap) as its target.
Importantly, for convergence to optimality, the Q-learning agent needs to correctly learn
the values of its actions (exploitation) while trying new actions, possibly more promising
(exploration). This trade-off is central to any RL method, and here we will consider an e-
greedy selection rule for this purpose (€ % of the time, the greedy action is selected, otherwise

a random action is taken).

Even if our state space has a small number of dimensions and the number of actions is also
small, calculating the value function individually for every state-action pair with a tabular
method would be out of reach considering the exponential number of combinations. Instead,
Deep Q-learning uses a neural network (NN) as a function approximator that takes the
state features as inputs and outputs the estimated values for each possible action [70]. Using
function approximators allows to escape the curse of dimensionality by leveraging information

about similar states and by generalising to unseen state-action pairs using only a limited

61

number of parameters. Let us denote by wy the current parameters, weights, of the neural
network function approximator and by Q(s, a, wy) the value of state s - action a estimated by
this neural network. Because a neural network is differentiable, we can minimise the square
loss error between the current estimate value and the target by taking a step in the opposite
direction of the value function’s gradient : wey1 < W¢ + a[Rip1 + v max,Q(Siy1, a, Wg) —

Q(St, Ay, Wt)]VQ(St, Ay, Wt)-

In the case of an infinite time horizon system, such as ours where retrieval tasks never end,
rewards cannot simply be accumulated because the state values would never converge but
rather would diverge to infinity. The most common solution is to apply a discount factor
~ in the Bellman equations, such that for a given policy m we have : Q.(s) = E [Ri11 +
¥ Qr(Si+1) | S = s], with 0 < 7 < 1. The justification for using a discount factor is first
for the mathematical convenience of convergence of the cumulative finite rewards. Also, in
some systems, a discount factor can represent an economical discount rate, or at least the
idea that rewards received now are worth more than they would be later. Yet in our case,
no incentive should be given for early performance since operations throughout the day have
equal importance and no termination occurs. An alternative to discounted rewards is what is
called differential returns or average rewards [73]. Introduced in Dynamic Programming [74]
and later in Reinforcement Learning (R-Learning in [68]), the idea is to optimise the average

Zle I
n

average reward of policy w. This setting has the interesting property of having the sum

sum of reward lim,,_, by considering return values equal to R, — R, with R the
of returns converging (to 0) while maximising the average reward in the process. When
action A; of policy 7 is taken, the state-action value update rule becomes Q(S, A;)
Q(St; Ap) + o[R — R+ max,Q(Sir1, a) — Q(S, Ay)]-

Q-learning is known to suffer from an overestimation of actions’ values. Two main reasons
explain this phenomenon. First, in its update mechanism, the maximum value of the next
state-action pair is used as an approximation for the maximum expected value. Second,
both the action selection and value estimation come from the same maximum operator that
suffers from estimation errors, and thus favours overestimated values. To answer this problem,
van Hasselt [75] proposes a Double Q-learning method in the tabular case, which was later
extended to Deep Q-learning in [76]. For Deep Q-learning, the general idea is to separate the
action selection from the value estimation using two neural networks, the online NN and the
target NN. The authors demonstrate that this approach eliminates the positive bias on the
action values and results, in general, in better performance. The online NN is updated as
before, but the target NN is not. Instead, it receives a copy of the weights of the online NN

every K iterations.

62

Algorithm 5.1 combines the different elements presented above into one agent, denoted as
Double Differential Deep)-Learning. Step 1 initialises a starting state, the average reward
(arbitrarily set, for instance, to 0) and the weights of both the online and target neural
networks, equal to each other. For every iteration, Step 3 selects an action, greedily or not,
takes it, and observes the reward and the next state. Step 4 calculates the target value for
state S; - action A; pair. Step 5 does the gradient descent to update the online network. If
the action selected A; was greedy with respect to the online network, Steps 6 to 8 update
the average reward R. Finally, every K iterations, the target network receives a copy of the

online network weights (Steps 9 to 11).

Algorithm 5.1 Double Differential Deep Q-Learning
1: initialise state Sp, R, wy = Wy
2: for t =0 to +o00 do
3: take action Ay (e-greedy wrt Q(St, ., wt)), observe Ryi1, Sii1
Yi < Riv1 — R+ Q(Se41, argmax Q(St41,a, W), Wy)
Wil < Wi + o[V — Q(St, At, we) [VQ(St, A, wt)
if A; == argmax Q(St, a, wy) then
R < R+ B[Y: — Q(St, Ar, wy))]
if t mod K == 0 then
Wi < Wy

5.3.4 Implementation details

In our experiments, we use a fully connected feed-forward neural network as a function
approximator. While the neural network has one output per storage zone, which represents
the expected cumulative cycle times onwards (relative to the average cycle time), if the
storage zone is selected, some zones may not be selected if they are currently full. For this
reason, when we select an action based on its value out of the neural network, we first need

to filter out full zones.

Another point worth mentioning deals with backpropagation when an opportunistic task is
performed. Such a task is enforced when possible, which occurs when the next retrieval zone
is not a zone but the picking station (encoded in the features extraction). Even though the
agent does not require any action to be taken, it is essential to backpropagate the observed
reward in the neural network for all of the actions. The reason for that is bootstrapping. If
a non-opportunistic task transitions to a state that will enforce an opportunistic task, the
state-action value update in Q-learning uses the observed cycle time as well as the estimated

value of the future state, which, in this case, requires an opportunistic task. The neural

63

network must then be accurate for such a state and learn that the values of all the storage

zones are to be equal to the value of an opportunistic task.

As in [70], we use experience replay. It consists in storing simulation experiences (vector
Si, Ay, Ryv1,Si11) into a fixed size replay memory. Instead of training after each observed
experience, we wait for some iterations before sampling a batch of experiences from the
replay memory and then train the neural networks with mini-batches. This batch training
affords more training stability, allows the reuse of past experiences, and speeds up the training

step.

Finally, to make better use of available information, particularly requests that are already
revealed at a given time step, we propose an extension to using only Q-values. A look-ahead
rollout strategy is proposed. We present this method in Section 5.3.5 and the results of our

Q-learning application with and without rollouts is presented in Section 5.4.

5.3.5 Look-ahead rollout strategy

Monte Carlo Tree Search (MCTS) methods are exploration techniques to improve policies,
based on previous work on Monte Carlo methods. Coulom [77] first describes a tree search
method applied to games. Several variants have been adapted for numerous applications,
such as the famous AlphaGo Zero from [78]. The general idea behind MCTS is to explore the
action space by simulations following a tree structure, further exploring the promising areas
of the tree.

For the RMF'S real-time storage assignment, the objective of a look-ahead search is twofold.
First, as in other applications, it helps the agent take better actions by exploring numerous
possible scenarios. Second, and more specific to our application, the look-ahead can leverage
information that is already revealed but not necessarily given in the state representation.
This is the case of future orders. So far, in Section 5.3.2, only information about the next
order the robot needs to retrieve is included in the state features. However, at a given time
step, while not all future orders have been revealed, some have. The look-ahead can then
use only those already-revealed orders (even if the real future sequence will differ) to take a

better informed first action.

Figure 5.3 illustrates this point. The orders o; are sorted according to the sequence in which
they will actually be processed, but at time ¢y, only the green orders {01, 02, 04, 05} are
known. The orange orders {03, 0, 0s} will be revealed later at time t; > t¢, for instance by
the time order oy will have been processed. In this case, order o3 is be inserted before o4, for

priority reasons. In this case, even if new orders will later be inserted into the list, at time

64

to only requests {01, 02, 04, 05} are used in the rollout, the only exceptions being potential

other green requests not depicted on Figure 5.3.

Sequence in which orders will be treated

>

01 A 02 | 03 | 04 O5 | O | O7 | O

r
1
1
1

Orders revealed by time g
Orders revealed by time t; > %

|:| Orders revealed by time &9 > t; > g

Figure 5.3 Revealed orders at decision time

Bertsekas [79] presents different approaches for MCTS implementation. One of these ap-
proaches is a single-step look-ahead with truncated rollout and cost approximation. Figure
5.4 presents the implementation of this type of rollout adapted to our problem. At first, all
feasible actions at a given state Sy (time ¢y) are considered and their values V' (Sy, A;) and
visit counts n 4, are set to 0. At each iteration, an action is randomly selected (action A;
in Figure 5.4) and a simulation of i (horizon) consecutive storage tasks is run. This finite
simulation uses orders revealed by time ty5. The action selection in the simulation uses the
agent’s current policy. The sum of reward along the simulation is computed, and the value of
the last state Sy, is, by bootstrapping, set as the Q-value of the agent. Then, the value of the
selected action is updated to its experienced average, and the visit counter is incremented.
The process is repeated for a given number of iterations, and finally, the action presenting
the best (min) value is selected. Note that in our specific usage of this look-ahead rollout
strategy, each feasible action needs to be selected only once. Indeed, both the policy and the
transitions within the rollout are deterministic because of the Q-learning agent’s policy and

because we do not simulate unknown future orders.

65

Repeat <

Selection > Simulation > Update

V(So, A1) V(So,Az) V(So, As) V(So, A1) ¢ V(So, A1) x g,

ng, +1
h retrievals of G(So — Sh) +Q(5n)
revealed orders | G(So — Sn) na, +1

Sum of simulated returns

Q(Sn)

Figure 5.4 Look-ahead rollout strategy

5.4 Simulation study

In this section, we present a simulation study comparing our proposed methods to typical
storage policies found in the literature. We start by defining the framework of the study,

before presenting our results.

5.4.1 Parameters

Kiva and Amazon have claimed travel speeds up to 3 to 4 miles per hour ; however, to account
for turns and congestion, we assume that the robots travel at a constant speed of 1.4 miles
per hour (about 0.6 m/s). In our experiments, we assume an average picking time by the
human operators of 8 sec and a loading and unloading time by the robots of 3 sec. Our study
considers a relatively small storage area, with 36 storage locations (6 zones of size 2 by 3

shelves) for 34 shelves, 5 automated robots and one picking station.

Incoming orders in warehousing systems are typically skewed, with a small percentage of the
items representing the vast majority of the orders and the others qualified as slow movers.
Hausman et al. [20] propose modelling such a demand distribution with the definition of
an ABC curve : G(x) = z2® for 0 < s < 1, which represents the proportion of cumulative
demand (%) of the first % of the shelves. The smaller the skewness parameter s, the more

skewed the demand distribution. We follow this suggestion by associating with every item type

66

i (equivalent to the corresponding shelf), at every discretised period, a Poisson distribution
of average \; = ((i)s —

- (ﬂ)s) X +, Where m is the number of item types, n the total

m
number of orders in the time horizon, and N the number of discretised periods. Then, for
every generated order k, a completion time J;, is randomly drawn from a uniform distribution
of interval [1; x T'] where « defines the tightness of the completion times. Note that in the
case where a drawn demand for a given item type is greater than one, the resulting orders are
automatically grouped, corresponding to an opportunistic task of type 2 in [67]. The values
used here are : m = 34, n = 30000, N = 1440 (corresponding to discretised periods every 1
min) for a time horizon of 24h, and o = 0.4. The values of the skewness parameters will be

varied to study their impact on the different storage policies.

Warehouse locations

61 M B @ B @ (]
O B @ B @ (]
41 @ B O B @ (]
=~ 21 @ HE BH E H =
(] HE B HE B (]
o1 M E B HE B (]
B shelf
[] sterage location
-2 [picking station |
0 2 2 6 8

Figure 5.5 Simulation study - Plan view of the storage area

After some trial and error, we set the parameter values for the RL agent as follows. Each
training phase is conducted over 10000 episodes, corresponding to 24h of simulated incoming
orders. Each of these training episodes uses its own generated instance of demand, while the
comparisons between the baselines and the test of the RL policy are made on another shared
instance. The exploration rate € is kept constant at 0.1. The neural networks are created using
the Keras library. We use the mean square error loss function and the Adam optimiser for
gradient descent. Both neural networks are feed-forward, fully connected with 3 inner layers
of 32 neurons each and Relu activation functions. The output layer presents one neuron per
zone of storage (6), and these neurons are linearly activated. The learning rate is set to
0.00025, the replay memory has a capacity of 1000, and batch training is performed every
100 iterations. This batch consists of 256 experiences sampled from the replay memory, and

they are fitted to the model in mini-batches of 64. The target network’s weights are updated

67

every 500 iterations.

5.4.2 Results

This section presents results obtained by the proposed approach and the standard baselines.
First, experiments were run using the method presented in Section 5.3.3 on different instances
corresponding to different values of demand skewness parameter s. Then, the rollout strategy
presented in Section 5.3.5 was applied on both the Q-learning agent and the best-performing
baseline, and gains that can be obtained by using additional available information were
observed. The three baselines tested were the following : Random storage policy, Class-based
and Shortest Leg.

The Class-based storage policy uses the concentric classes definition, depicted in Figure 5.2
(left) and conventionally described in the literature. Since our method allocates shelves to
zones instead of exact locations, the Shortest Leg storage policy is implemented similarly.
When a storage task needs to be performed and the location of the next retrieval is known,
the exact potential location within each zone can be identified because of the arbitrary
choice of selecting the location closest to the picking station. Knowing the candidate location
from each zone (if any), the leg distance can be computed as being the distance from the
picking station to the storage location plus the distance from the storage location to the
next retrieval. The selected zone corresponds to the smallest leg value. This policy results in

greedily minimising the immediate cycle times.

Table 5.1 presents the average travelling times, £(s), obtained from the three baselines and the
RL agent, without rollouts, for several skewness parameter values ranging from s = 0.4 (very
skewed) to s = 1 (flat distribution). For each storage policy, the corresponding performance
gain, g(%), compared to the Random storage policy is also computed ; this represents the
percentage decrease in travelling time. As expected, the performance of the Class-based policy
increases when the skewness parameter value s decreases. In concordance with the literature,
we observe the good performance of the Shortest Leg policy, which remains rather constant,
between 10 and 11% of improvement, depending on the skewness parameter values. In fact,
it is only surpassed once by the Class-based policy for the most skewed distribution s = 0.4,
but it offers the net advantage of being independent of the distribution pattern. The Q-
learning agent consistently performs better than the baselines, between 3.21% and 4.83%
of additional gain compared to the baselines relative to Random storage. Similar to the
SL policy, its performance remains rather independent of the skewness of the distribution.
Figure 5.6 presents a typical training curve, here for parameter s = 0.6. The z axis shows

the number of training episodes ranging from 0 to 10000 and y corresponds to the relative

68

gain in travelling time compared to the Random storage policy. The horizontal dashed lines
in the graph represent the performance of the three baseline policies. The test policy curve
represents the performance of the RL policy in training, which is tested every 100 training
episodes. With our training settings, we notice the non-linear evolution of the test policy

curve until it reaches some plateau value around 5000 episodes.

Table 5.1 Average travelling times t(s) and performance gains g(%) depending on distribution

skewness parameter value s - without rollouts

Storage Random Class-based SL Agent

policy |l t(s) | &%) | t(s) | &%) |t(s) | &%) |t(s) | e(%)
s=0.4 37.97 - 33.41 | 12.01 | 33.61 | 11.48 | 32.19 | 15.22
s=0.5 38.62 - 34.65 | 10.27 | 34.18 | 11.48 | 32.90 | 14.79
s=0.6 38.69 - 35.34 | 8.65 34.79 | 10.09 | 32.92 | 14.92
s=0.7 38.73 - 36.01 | 7.02 34.70 | 10.39 | 32.91 | 15.02
s=0.8 38.94 - 36.48 | 6.30 34.76 | 10.73 | 33.04 | 15.15
s=0.9 38.98 - 37.41 | 4.03 34.53 | 11.42 | 33.03 | 15.27
s=1.0 39.06 - 38.26 | 2.05 34.76 | 11.01 | 334 14.48

14 4

12 A

10 A

Gain (%)

—— Test policy
24 - Shortest leg policy
——- Class-based policy
o T Random policy
T T T T T T
0 2000 4000 6000 8000 10000

Number of episodes

Figure 5.6 Typical instance of a training curve (here for s=0.6)

Over a second phase, we retained the overall best performing-baseline (SL) and our Q-

learning agent to enhance them using the look-ahead rollout strategy presented in Section

69

5.3.5. Again, we tested the resulting policies on different skewness parameter s values, but
we also considered different horizon values h, which define how far ahead the rollout is run.
The only difference in the application of the rollout strategy to the SL baseline compared to
the Q-learning agent is the absence of a QQ-value at the last step of the rollout. In this case,
the SL policy is run over the next h already-revealed orders, and the average of the resulting
cycle times is computed, for each first feasible action. Table 5.2 presents the obtained results
in terms of performance gains (%) compared to Random storage. First, we notice that for
all parameter values, the performance is significantly improved. We can see that for both
policies, the performance varies depending on the horizon of the rollout that is considered.
As a general statement, it appears that horizon values 20 and 30 give the best results,
with some exceptions. The fact that the performance increases with the horizon value before
decreasing again is not too surprising. While using revealed orders in the rollouts is beneficial
to making better-informed decisions, the longer the rollout, the more likely it is that new,
unknown orders will be later inserted between the orders considered in the rollout. When this
phenomenon starts to occur too often, it deteriorates the insight of the rollout and results in
worse policies. The values in bold in the table designate the best results for each parameter s
for both policies. For the SL storage policy, the application of the rollout strategy increases its
performance gains between 5.26% (s = 1.0) and 7.11% (s = 0.7). For the Q-learning agent, the
performance gains range between 2.78% (s = 0.8) and 4.54% (s = 0.4). It appears that using
rollouts benefits strongly skewed distributions slightly more than less skewed ones, which is
most likely explained by more opportunities associated with fast and slow-moving shelves.
Also, the rollout strategy benefits the SL policy more so than the agent. The differences in
performance gains between the two policies with rollouts are now 2.29, 0.83, 1.47, 1.07, 1.55,
2.2 and 1.29% for increasing s values. Using rollouts gives a policy insights about future
behaviours by simulating possible trajectories. While the Q-learning agent still benefits from
this insight, with the Bellman equation it is, by design, already taking into account future
impacts of a decision. On the other hand, the SL policy acts perfectly greedily ; it has more to
gain by looking into possible future outcomes. While the combination of the Q-learning agent
with rollouts still performs best with an average of 1.53% of performance gain compared to SL
with rollouts, this assessment has interesting practical value because of the relative simplicity
of implementation of SL. with rollouts and its highly competitive performance. Finally, when
comparing the results of the complete method with the best baseline commonly used from

the literature (SL without rollouts), an average performance gain of 7.58% is found.

70

Table 5.2 Performance gains g(%) depending on distribution skewness parameter value s and

horizon h - with look-ahead rollouts

SL + rollouts Agent + rollouts

h value 5 10 20 30 40 5 10 20 30 40
s=0.4 14.01 | 16.83 | 17.47| 17.07 | 17.22 | 16.26 | 17.01 | 19.76| 18.84 | 18.80
s=0.5 14.91 | 16.03 | 17.57 | 17.65| 16.00 | 15.17 | 17.14 | 18.48]| 18.41 | 17.89
s=0.6 14.97 | 15.47 | 16.06 | 16.92| 16.05 | 15.71 | 17.45 | 18.39| 17.99 | 18.16
s=0.7 14.41 | 1545 | 17.50| 16.22 | 15.85 | 14.96 | 16.82 | 18.13 | 18.57| 18.11
s=0.8 14.23 | 15.51 | 16.38| 15.42 | 15.46 | 15.13 | 16.32 | 17.23 | 17.93| 16.96
s=0.9 14.22 | 15.49 | 16.34 | 16.79| 16.52 | 15.11 | 17.04 | 17.83 | 18.95 | 18.99
s=1.0 15.15 | 15.60 | 16.27| 15.64 | 15.61 | 15.27 | 16.81 | 17.34 | 17.56| 17.17

5.5 Conclusions

This work tackles the problem of dynamically allocating shelves to storage locations within
a Robotic Mobile Fulfillment System. Because of the very nature of the e-commerce market,
new orders need to be considered, if not fulfilled, as soon as they are revealed, which limits
opportunities for batching. Typical methods from the literature correspond to decision rules
which rely either on the distinct turnover rates of the containers or on minimising immediate
cycles greedily. After making several assumptions about other operational decision rules in
such warehouses, as well as the physical characteristics of the warehouse, we propose defining
a storage policy using a POMDP and a Q-learning agent from Reinforcement Learning,
to minimise the average travelling cycle time. This agent learns from repeated experiences
which storage decision should be made based on a set of features representing the current
state of the warehouse. Using zone-based storage allocation, we compared our method to
decision rule baselines, including the Class-based storage policy and Shortest Leg storage
policy. A performance gain between 3.5% and 5% higher than the best baseline relative to
Random storage was observed. In a second phase, the objective was to leverage additional
information regarding orders that are already revealed at a given time step. While new orders
will later appear and be inserted between those revealed orders, the latter can still be used
in a look-ahead rollout strategy applied at the decision-making step. This rollout simulates
finite horizon trajectories using the storage policy at hand for action selection within the
trajectory, as well as a Q-value estimation at the last step, acting as an estimation of future
expected objective value. Such a rollout strategy has the benefit of being applicable to any
storage policy, which allowed us to make fair comparisons between the Q-learning agent
and the Shortest Leg policy, both using rollouts. After selecting the proper horizon length,

using look-ahead rollouts increased the performance gains of the SL and Q-learning policies

71

by about 6 and 4%, respectively. Even though the Q-learning with rollouts policy gave the
best results, the higher positive impact of rollouts on the SL policy makes it an interesting
contender, due to its relative simplicity of application. Comparing the policy obtained from
Q-learning with rollouts to the best baseline, we observed an average performance gain of

7.5%, which, we think, demonstrates the potential for more research in this direction.

Future research may build on this work to extend it further. First, storage allocation could
select exact open locations instead of using the notion of zones as described here. Instead
of using single-step look-ahead rollouts, one could implement a complete Monte Carlo Tree
Search algorithm to better explore action selection. The expensive computational cost of such
an approach may limit online deployment but, coupled with a policy gradient agent instead
of a Q-learning one, the tree search could be used extensively in the training phase only
for fast future deployment. Another aspect worth looking into would be the waiting time of
robots at the picking stations. In this work, we only consider the travelling time, which is
a lower bound to the full cycle time. Aiming at minimising the travelling time along with
implementing a distributed arrival of robots at the picking stations could result in higher

throughput, but how to do that exactly appears to be quite challenging.

72

CHAPITRE 6 ARTICLE 3 : SUPERVISED LEARNING AND TREE
SEARCH FOR REAL-TIME STORAGE ALLOCATION IN ROBOTIC
MOBILE FULFILLMENT SYSTEMS

Adrien Rimélé*®, Philippe Grangier?, Michel Gamache®®, Michel Gendreau®”, Louis-Martin

Rousseau®?

2Department of Mathematics and Industrial Engineering, Polytechnique Montréal,
PCIRRELT, Interuniversity Research Centre on Enterprise Networks, Logistics and Trans-
portation, ‘GERAD, Group for Research in Decision Analysis, 9TVADO Labs

Cet article a été soumis a INFORMS' Journal on Optimization le 31 mai 2021.

ABSTRACT

A Robotic Mobile Fulfillment System is a robotised parts-to-picker system that is particularly
well-suited for e-commerce warehousing. One distinguishing feature of this type of warehouse
is its high storage modularity. Numerous robots are moving shelves simultaneously, and the
shelves can be returned to any open location after the picking operation is completed. This
work focuses on the real-time storage allocation problem to minimise the travel time of the
robots. An efficient — but computationally costly — Monte Carlo Tree Search method is used
offline to generate high-quality experience. This experience can be learned by a neural network
with a proper coordinates-based features representation. The obtained neural network is used
as an action predictor in several new storage policies, either as-is or in rollout and supervised
tree search strategies. Resulting performance levels depend on the computing time available
at a decision step and are consistently better compared to real-time decision rules from the

literature.

KEYWORDS

Real-time decision-making ; E-commerce ; Storage Policy ; MCTS ; Supervised learning

6.1 Introduction

E-commerce has not only revolutionised access to goods, it has fundamentally changed the
entire Business-to-Consumer market segment. Its growth in the last decade has been steady,
with an annual increase of approximately 15% in the US market. The year 2020, exceptional

in all regards, reached new summits with a stunning 44% increase in US e-commerce sales [1].

73

E-commerce market share now represents 21.3% of all retail shares, totalling $861B in the
US alone. Specific features of online sales, as well as fierce competition between retailers, put

intense pressure on the supply chain, including the warehousing systems.

In response to increasing demand, new warehousing systems have appeared in recent years.
One of them is the Robotic Mobile Fulfillment System (RMFS), also referred to as a rack-
moving mobile robot based warehouse, semi-automated storage system, or Kiva warehouse
[4,6]. In this parts-to-picker warehouse, a fleet of small robots is tasked with retrieving
storage shelves and bringing them to picking stations where human operators pick items
to fulfil orders. Kiva Systems first introduced the RMFS in 2006 before being bought by
Amazon in 2012 and re-branded as Amazon Robotics. Similar systems have been introduced
by other companies, including the Zhu Que robots (Alibaba), the Quicktron robots (Huawei),
the CarryPick system (Swisslog), and others [4,12]. Sales of warehouse robots are expected
to reach $30.8B by 2022 for around 900,000 robot units sold per year [9]. In an RMFS, the
items inventory is stored in mobile shelves that robots can lift and bring to a picking station.
The robots typically perform dual command cycles, which consist of immediate successions of
storage and retrieval tasks. Interestingly, the robots have to move along the aisles when loaded
but can pass under the stored shelves when unloaded to avoid traffic. For more technical
information about RMFSs, the interested reader is referred to [6,7] and [4]. A distinguishing
feature of an RMFS is its high storage modularity, since the robots operate across the entire
storage area simultaneously and can select any free storage location when returning a shelf.
This presents great opportunities to continuously adapt the layout of the warehouse in order

to accommodate new incoming orders.

This work focuses on the real-time storage allocation problem to minimise the average travel
time of the robots, which is inversely proportional to the maximum order throughput value.
In this problem, stochastic incoming orders are continuously revealed in the list of orders to
fulfil, and a storage location must be chosen as soon as a robot is released by an operator
at a picking station. The contribution of this work is to propose a new approach based
on supervised learning to this real-time problem. First, an efficient — yet computationally
expensive — Monte Carlo Tree Search (MCTS) method is proposed to generate high-quality
experience offline. This experience is later used to learn a policy that performs better than
baselines from the literature while being just as fast to deploy. The features representation,
using the shelves’ spatial coordinates in the storage area, is crucial to successful supervised
learning by a neural network. With additional computing time at the decision step, the
learned policy is further improved by a rollout strategy and a newly introduced supervised

tree search method, which provide significant performance gains.

74

The remainder of this paper is organised as follows. Section 6.2 presents a literature review
on RMFSs. Section 6.3 describes the problem and the different assumptions that are made.
Section 6.4 explains the methodology, starting from the offline MCTS method, followed by
the supervised learning of a storage policy, and enhancements with rollout strategy and a
new supervised tree search method. Section 6.5 presents a simulation study of the proposed
methods compared to baselines from the literature. Finally, Section 6.6 draws conclusions

and discusses future research perspectives.

6.2 Literature review

While the deployment of RMFSs is relatively recent, research on the topic has its origins
in the field of Automated Storage and Retrieval Systems (AS/RSs) starting in the 1970s
[14,80]. In its most typical implementation, an AS/RS corresponds to a juxtaposition of
static racks, each with a single, aisle-captive crane retrieving bins. Just as in RMFSs, an
AS/RS’s crane performs dual command cycles. The fact that RMFSs use a fleet of robots
that can simultaneously access the entire storage area significantly changes the operational
decision-making problems. Due to the unique challenges of RMFSs, specific literature has

developed on the topic in the last few years.

6.2.1 Analytical models

Several papers develop analytical models to quickly estimate key performance indicators.
Lamballais et al. [44] propose semi-open queueing network models to estimate the maximum
order throughput, average order cycle time, and robot utilisation, depending on layout deci-
sions and robot zoning strategies. They demonstrate the accuracy of their model compared
to results from simulations, and note that the throughput is more strongly influenced by the
location of the picking stations than by the dimensions of the storage area. Zou et al. [45]
present a semi-open queueing network to evaluate decision rules to assign robots to picking
stations, and show that their rule performs better than a random assignment. In [46], the
authors propose a fluid model to assess the performance of velocity-based storage policies
in terms of travelling time to store and retrieve shelves. They find that when the items are
stowed randomly within a shelf, a 2-class or 3-class storage policy reduces the travelling time
anywhere from 6 to 12% (a class regroups containers by demand rate, and classes of higher
demand are typically localised closer to the picking stations). Additionally, they find that if
items are stowed together based on their demand velocity, the loaded travelling times can be
reduced by up to 40%. Roy et al. [47] use a closed queueing network model to evaluate the

impact of allocating robots exclusively to either retrieval or replenishment tasks, or a combi-

75

nation of both. They conclude that the third option reduces picking time by 30% but increases
replenishment time by a factor of three. They also study storage allocation to multiple classes
and find that sending robots to the least-congested class gives similar performance compared
to a dedicated class policy. Lamballais et al. [48] propose a semi-open queueing model to
optimise the number of shelves per item type, the ratio of the number of picking stations to
replenishment stations, and the replenishment level per shelf. They conclude that there is a
significant throughput gain when : the same item is stored in multiple shelves, the ratio of
picking stations to replenishment stations is optimised, and a shelf is replenished before it is

empty.

6.2.2 Scheduling and task allocation

Other papers focus on scheduling the processing of orders at the picking stations. Boysen et
al. [49] present a Mixed Integer Program (MIP) to minimise the number of shelf visits by
synchronising the orders processing and shelves’ arrival at a picking station. They propose
several heuristic methods based on dynamic programming and simulated annealing to solve
the model. Through simulations, they show that their approach can halve the robot fleet size
in the best case. Gharehgozli and Zaerpour [50] address the problem of scheduling a batch
of orders for a single robot to minimise the travelling time. They consider two cases where
a shelf either must be stored back at its exact same storage location or can be returned to
a set of locations. They demonstrate the efficiency of their adaptive large neighbourhood
search method and show that the scheduling improves travelling time by 24% compared
to a random order. Valle and Beasley [9] present a mathematical model and matheuristic
solving methods to simultaneously allocate a batch of orders and shelves to multiple pickers.
They also propose a model to sequence the shelves’ visits to the picking stations. Bolu and
Korcak [51] propose a task planning approach that aims at minimising the number of shelves
needed to fulfil a batch of orders. Then, they dynamically adapt the system by selecting
tasks for the picking stations and the robots. Through an extensive simulation study, they
demonstrate their method’s capacity to significantly reduce the completion time and maintain

a high pile-on (i.e., the number of items retrieved from a single shelf visit).

From a different perspective, Zhang et al. [56] define the problem of allocating robots to
picking tasks as scheduled at the picking stations. They formulate a resource-constrained
scheduling problem and propose a solving approach using a serial schedule generator and
a genetic algorithm. They show that their method obtains better results than commonly
used rule-based scheduling methods. Xie et al. [57] propose an MIP to assign shelves to sta-

tions and orders to stations simultaneously. They also consider splitting multi-line orders for

76

picking at different stations. They use the discrete event simulator RAWSim-O from [58],
which realistically reproduces operations in an RMFS, to compare their results with a se-
quential allocation. With split orders, they obtain a 46% increase in throughput. Using this
simulation framework, Merschformann et al. [13] assess combinations of decision rules for
operational problems such as picking and replenishment station assignment, pod selection,
and storage assignment. In particular, they note the importance of careful selection for each
application, the significant influence of the picking station assignment rule, and the high
cross-dependencies between some rules. Rimélé et al. [67] present a stochastic mathematical
modelling framework that formalises real-time decision-making. Presented as a stochastic
dynamic program, it considers most operational decisions from order sequencing to storage
allocation, with stochastic incoming orders. Its main objective is to set a framework to sti-

mulate the development of advanced methods for real-time decisions in RMF'Ss.

6.2.3 Storage allocation

Regarding storage allocation specifically, Krenzler et al. [52] present a deterministic MIP
model aiming to minimise the shelves’ storage and retrieval times. They consider that the
shelves’ visit times at the picking station are known and assume that the waiting queues are
always full, which frees up more storage locations. They present a variety of solving methods
and demonstrate their effectiveness compared to a random storage policy. Weidinger et al. [53]
present an MIP model in the form of an interval scheduling problem to minimise the loaded
travel time. They also consider that the visit time of each shelf at the picking station is
known. With this assumption, the model enforces that two storage allocations of shelves can
occupy the same location only if the corresponding storage intervals do not overlap. They
present an Adaptive Large Matheuristic Search solving method and obtain conclusive results
in terms of loaded and complete travel times, compared to standard decision rules. They note
the good performance and practical aspect of the Shortest Leg policy (referred to as Shortest
Path), which only increases the travel time by 3.49% and does not require any batching of
orders. Mirzaei et al. [54] use product affinity (i.e., the probability of products being ordered
together) and turnover rate to jointly assign products to shelves, and shelves to locations,
to minimise the retrieval time with an integer model. They show that their model reduces
retrieval time by up to 40% compared to traditional full-turnover and class-based storage
policies. Rimélé et al. [81] use Reinforcement Learning techniques to learn a zone-based
storage policy that minimises the travel time of robots with one picking station. Depending
on the distribution of orders, they improve the Shortest Leg (SL) policy’s performance by
3.5 to 5%. They also propose a lookahead rollout strategy that uses already-revealed orders

to simulate the near horizon. Compared to SL, this approach generates results that are 7.5%

77

better on average.

This paper is presented as a continuation of [81], as its objective is to learn an efficient
real-time storage policy. However, the methods proposed here select exact storage locations
instead of zones and rely on a significantly different learning approach. The following section

defines the problem we consider and the underlying assumptions.

6.3 Problem definition

This work focuses specifically on storage allocation when a robot has to return a shelf to the
storage area, with the objective of minimising the average travel time. Travel time corresponds
to the complete cycle of a robot within the storage area; it includes the storage time from the
picking station to the storage location, the interleaving time from the storage location to the
next retrieval location, and the retrieval time from the retrieval location to the picking station.
Rimélé et al. [67] present a model as a Markov Decision Process where a step corresponds
to a state of the system when a robot is available at a picking station, and a decision has to
be made between two types of tasks : a regular storage task or an opportunistic task. The
latter corresponds to a situation where the shelf that is currently being carried by the robot
can be used to fulfil another order instead of returning to the storage area. A regular storage
task consists of selecting a storage location that is currently available. When a robot has
stored a shelf, it retrieves the next assigned shelf and brings it to a picking station’s waiting
queue. Orders are stochastic and can enter the list of orders to fulfil at any moment, with
any priority level (an Amazon Prime order would, for instance, be pushed to the top of the
list). As such, the system needs to adapt to new orders continuously (no batching). While
the future list of orders is uncertain at the decision step, the list of already-revealed orders

is available. Several assumptions are made and listed below.

- A1. Only one picking station is considered.

- A2. The arrival of new orders is stochastic, but travelling and processing times are deter-
ministic.

- A3. Opportunistic tasks, as described above, are automatically enforced when possible.

- A4. Since the focus is on the storage allocation problem, incoming orders are directly
associated with a shelf. The sequencing is updated according to the order’s deadline, with

the condition that the corresponding shelf is not currently being carried by another robot.
- A5. Congestion and path optimisation for the robots are ignored.

- A6. Notions of stock levels and replenishment tasks are not considered.

78

- A7. Decisions have to be made swiftly, but we have access to a simulator that can be
used offline to accumulate valuable experience. The simulator has the ability to copy its
current state to run alternative future outcomes (with the essential condition of not revealing

unknown information).

Following these assumptions about the real-time storage allocation problem, Section 6.4

presents the different methods developed in this work to tackle the problem.

6.4 Methodology

This section presents different methods, each with its advantages and drawbacks in terms of
performance and computing time. All of these methods use the same base policy, which is
learned offline from an expert system, namely an MCTS algorithm. Section 6.4.1 describes
how we adapted an MCTS algorithm to the storage allocation problem. Using the experience
accumulated from this MCTS algorithm, Section 6.4.2 explains how to learn a fast and
efficient policy. Section 6.4.3 improves the learned policy’s performance by using rollout
strategies and a supervised MCTS. Finally, Section 6.4.4 presents a new algorithm that we
call Supervised Tree Search (STS), which leverages the learned policy by exploring the search
tree differently.

6.4.1 Monte Carlo Tree Search algorithm

Monte Carlo Tree Search is a method to optimise sequential decisions, relying on sampling
to build an exploration tree, in which a node represents an action. It was initially designed
for finite and binary decision games, but it is applicable — with adjustments — to any sequen-
tial decision problem [82]. Using random sampling to approximate decisions’ values from
Monte Carlo methods, Coulom [77] first proposed a Monte Carlo Tree Search algorithm.
The idea is to run simulations until the end of the game and to use experience gained to
incrementally build a tree, one node at a time. Within the tree, the nodes, or decisions, are
selected based on the probability that they will perform best. The rest of each simulation
makes decisions randomly, until a terminal state is reached. As depicted in Figure 6.1, a
general MCTS iteration contains the following four steps : Selection, Expansion, Simulation
and Backpropagation. Kocsis and Szepesvari [83] adapt a selection rule from the multi-armed
bandit domain, namely the Upper Confidence Bound (UCB1) of Auer et al. [84], to MCTS
and call it Upper Confidence Bounds for trees (UCT). Inside the tree, UCT selects the child
node i that maximizes V; + 20\/@ , where Vj is the running average return value of node

i, N is the number of visits of the parent node, n; is the number of visits of node 7, and ¢ is

79

the exploration parameter (the higher the value of ¢, the greater the likelihood of selecting a

less-visited node).

Figure 6.1 presents an iteration of the MCTS algorithm as used in this work. Unlike win-or-
lose games, our system evolves in an infinite horizon and receives continuous rewards (the
travel time of the robot) at every step. To adapt MCTS in our case, we first truncate the
horizon after h steps. Second, to maintain the current average return value between 0 and 1,
and to keep the two terms within the same order of magnitude, we propose to adapt the UCT
equation with Eq. 6.1, where V represents the running average return value of the parent

node.

1 ¢ [In(N)
UCT = argmax = + =/ ——= 6.1
gi Vi V n; (6.1
Note that V; would only be equal to 0 if the decision of node i corresponds to an opportunistic
task. Because we systematically enforce such tasks, UCT does not apply. For all other tasks,

a cycle takes at least 1 second, so that % is always between 0 and 1 in Eq. 6.1.

In our system, when MCTS is executed, a sequence of decisions results in a deterministic
output. This is explained by the fact that only revealed orders are considered in the trajec-
tories, and travelling and processing times are assumed to be deterministic. This observation
justifies two notable changes from a common MCTS. First, as depicted at the Expansion step
in Figure 6.1, and as described in [82], a full node set expansion is performed. If k sibling
nodes would normally be visited, this saves simulation time corresponding to the number of
steps inside the tree. Indeed, this sub-trajectory would result in the same, redundant outcome
before each child’s first visit. Second, like in [85], at each node, we track not only the current
average return value but also the best encountered simulation return value. The average value
is still used for the selection step to explore more promising areas of the tree, but the actual
final choice of action will select the node with the best encountered value. Empirically, these

design choices gave the best results in our simulation study.

Finally, we use the Shortest Leg (SL) policy as the base policy at the Simulation step, instead
of a Random policy. Indeed, as in [81], the SL storage policy is a relatively efficient and quickly
deployable policy.

6.4.2 Learning a policy

While the MCTS algorithm presented above is capable of excellent performance to minimise

the average cycle time, its performance is strongly dependent on the number of trajectories

80

Repeat

k rollouts using
the SL policy

Figure 6.1 MCTS - The Selection step uses a selection rule (e.g., UCT) to select nodes
(actions) within the tree until a leaf node is reached. The Expansion step creates one child
or several children nodes from the current leaf node. The Simulation step runs simulations
(trajectories) from a newly-created node using a fast base policy, either until the end of the
game or for a given number of steps. Finally, the Backpropagation step updates the return
value of the visited nodes based on the rewards revealed along the trajectories.

it runs at every decision step. The number of trajectories is directly correlated to the running
time, limiting the opportunity for a satisfactory real-time deployment. Instead, we propose
to use MCTS offline, when computing time is not an issue, to accumulate high-quality ex-
perience. Different versions of MCTS, corresponding to different truncated horizons h, are
used to generate datasets of experiences that we refer to as MCTS(h). The content of these

datasets is described below.

Features representation

The complete state of the system at a decision point contains a tremendous number of va-
riables [67], which would make any type of learning particularly difficult. Instead, we propose
to define a Partially Observable Markov Decision Process (POMDP), where the observable
state of the system corresponds to a vector of a limited number of key features. These features
are chosen based on the expectation that they would provide sufficient information to make

good decisions.

Figure 6.2 presents a simplified example of a warehouse containing six storage locations,

four stored shelves and three waiting orders. Two locations are currently available, and the

81

sequence in which the revealed orders must be retrieved is known and written on the corres-

ponding shelves.

The extracted features are two-fold. First, we represent which locations are available. If
the warehouse is full (i.e., the same number of shelves and locations) and uses r robots
(four in the example), the maximum number of available locations at any time step is 7.
These locations are ordered by increasing id and represented in the features vector by their
(z,y) coordinates in the warehouse. If less than r locations are available, a mock location
of coordinates (—1, —1) is used to fill the remaining reserved features. Similarly, the next h
orders are each represented by the corresponding shelves’ coordinates. In the example, the

resulting features vector would be :

[(171) ’ (373)) (_17_1>) (_17_1)) (172)) (372)) (371)}

available locations next h orders’ locations

Using coordinates instead of location ids is preferable for generalisation during the lear-
ning. In general, if r denotes the maximum number of available locations (here equivalent to
the number of robots) and h the number of revealed orders considered, the features vector
contains 2(r + h) features. Finally, a features vector is saved in the dataset at every decision
step, along with the id of the storage location decided by the MCTS method. Note that other
features representations are worth considering, but this one gave the best results in terms of

classification accuracy and computing time (see next paragraph and Section 6.5).

Learned Policy

A dataset MCTS(h) can now be used to learn a policy. This learning consists in having

a classifier that takes as input a features vector, as previously described, and predicts the

3 4
id 2 id 5 I:l available
I o I o' I P

@ i_th order
| o

Figure 6.2 Simple features representation illustration

82

probabilities of each storage location to be selected. This classifier is denoted as f : R" —

[0, 1]|£|, where n is the number of features and £ the set of storage locations. From this

classifier, a Learned Policy (LP) can be defined as : LP(X) = argmax (f(X)l |l e Eavaﬂ),
!
where X € R" is a features vector, f(X), refers to the I'" element (location) of f(X), and £

is the subset of the locations that are currently available. In other words, at every decision
step, LP extracts a features vector from the current state of the system, and selects the

available storage location with the highest predicted probability according to the classifier.

6.4.3 Enhancement of the Learned Policy

One advantage of a policy like LP is that it is extremely fast to deploy since it immedia-
tely selects an action based on the current state representation. However, by construction
(supervised learning on a heuristic output) and due to the nature of the system (stochastic
and partially observable), such a policy is necessarily sub-optimal. As described in [79], a
lookahead strategy can be employed to take better advantage of a base policy. As used by
Rimélé et al. [81] in a similar setting, a simple yet efficient approach is to perform a one-step
lookahead with truncated rollouts. This approach runs simulations using already-revealed
orders on every feasible action from the current state and deploys the base policy over h — 1
more steps. When the simulation is completed, the initial action that resulted in the best
outcome is selected. We refer to the resulting policy as Base Policy+rollouts; for instance,
LP+rollouts.

A natural extension of this approach is to consider multi-step lookaheads, for which MCTS
can be seen as a special construction method. The Learned Policy can be used to guide the
Selection step in MCTS. Silver at al. [86] in their famous AlphaGo program use a selection
rule that combines a state value estimate and a policy network prediction. Here, we propose
to only use the policy network prediction, but to sample the action based on the predicted
values instead of taking the argmax. As such, if the parent node presents a features vector

X, the selection rule is :

Supervised Selection(X) = Sample ({a € A(X)}, Prob(a) = pred(a)), where Sample is a sam-

Ng+1
pling operator, A(X) denotes the feasible actions from state X, and pred(a) represents the
filtered prediction from the Learned Policy : pred(a) = f(X)a)
a,EA(X) f(X)a,/

Although it performs well (see Section 6.5), the construction of a supervised MCTS may be
limited by the lack of computing time for real-time deployment. First and fundamentally,
MCTS iteratively builds a search tree running numerous trajectories, which takes time. As

a result, it may not branch very deep without a significant number of trajectories. Second,

83

while a regular MCTS uses a fast heuristic rule to select nodes, our supervised MCTS uses
a machine learning predictor. Each prediction is costly, mainly because the predictions need
to be made sequentially, not in batches. Considering the valuable insights provided by the
action classifier, we feel that another approach could be more beneficial. We propose such an

approach below.

6.4.4 Supervised Tree Search algorithm

This algorithm’s objective is to deeply explore the search tree with only a limited number
of trajectories. To do so, we consider having an action classifier, here the Learned Policy, in

which we can put significant trust.

The intuitive idea is the following. First, the Learned Policy is run until a maximum depth
of h is reached. At each decision point, LP selects the feasible action of maximal prediction
value. Along this trajectory, children nodes that were not selected are labelled as open nodes.
For the following iterations, let us suppose that LP draws actions based on their prediction
values instead of acting greedily. In that case, every open node has some probability of being
reached by LP. This probability can be calculated as the node’s prediction value times the
probability of the parent node. Every iteration consists of exploring the search tree starting
from the open node with the highest probability. From this node, the new trajectory will apply
LP and open new nodes. The process is repeated until the maximum number of trajectories

is reached. Figure 6.3 shows a small example of three iterations of the algorithm.

To allow some exploration, and not simply the exploitation of the action classifier, we pro-

pose to transform the prediction values by performing the following operation : pred, =
pred;+(0.5—pred;) xn
jery pred;

n is a parameter. This transformation tends to push all values toward equal probabilities,

;i € T n €]0,1], where T} designates the children nodes of node k and

and because it is strictly increasing (when n < 1), the transformation does not change the
predicted values’ relative order. In this way, all actions keep a certain probability of being
visited, even in the eventuality of the classifier predicting a zero probability. Results from
the simulation study were rather invariant to small values of 7. A value of n = 0.1 is used for

the results presented below.

Algorithm 6.1 formalises the procedure. N designates the set of open nodes, and Ny is the
root node corresponding to the current state. ry represents the immediate reward received
when taking the action leading to node N, and Vy is the value of the current best trajectory
starting at node N. I'}, denotes the set of children nodes (feasible actions) of node N, and

the parent of node N is represented by I'y. A parameter depth, is associated to each node

84

01,
K
{0.035}

01/ 0.3 0.1,
X K
{0.048’ {0.036} {0.0315;

Figure 6.3 Supervised Tree Search - Step (a) corresponds to applying the Learned Policy
starting from the initial state. Dashed lines represent the four nodes that were not selected
along the trajectory. The value at the center of a node represents its visit probability, while
the value beside an arrow represents the corresponding action’s predicted value. Step (b)
identifies the furthest right node as the open node with the highest visit probability. A new
trajectory starts from this node and opens new nodes. In step (c), the node with the highest
visit probability has a value of 0.12, and the resulting trajectory leaves one node open.

N to designate the depth of the node within the tree. Finally, v denotes the discount factor

applied to future return values.

The algorithm is decomposed in three functions : STS, LEARNED PoOLICY and BACKPROP.
STS corresponds to the main function and takes as argument the root node N, associated
with the current state of the system. First, the set of open nodes N is initialized with the
singleton Ny (line 2), and the probability of this node to be reached by LP is trivially set to 1
(line 3). In line 4, a while loop is launched and run until the available computational budget
is reached. At each iteration, the open node Ny with the highest probability of being reached
by LP is selected (line 5). Ny is given as an argument to the LEARNED__PoLICY function
(line 6) before being removed from the set of open nodes (line 7). Finally, after the while
loop has finished, STS returns the child node of the root node that resulted in the minimal

estimated value (line 8).

The LEARNED__PoLICY function is in charge of running LP until the maximum depth is
reached in the tree. If the depth of node N; received as an argument is lower than the
maximum depth (line 10), the child node from N, with the highest prediction value as
determined by the action classifier is selected (line 11). The reward associated with this child

node N, is set to the reward received by the system at the step between Ny and N, (line 12).

85

For all children nodes of N; (line 13), their probabilities of being reached by LP are calculated
(line 14), and their estimated values are set to +oo. Children nodes different from N, are
added to the set of open nodes (lines 16-17). At line 18, the LEARNED__PoLICY function
is recursively run on the selected node N,. If node Ny had reached the maximum depth

(line 19), the rewards are backpropagated inside the tree with the BACKPROP function.

This BACKPROP function takes as arguments a node N and a return value R (line 21). If the
parent node of N, I'y, currently has a greater (being worse in this context) estimated value
VF]_\I than its associated reward o plus the discounted return value R, then the estimated
value is updated (lines 22-23). Finally, if the parent node I'y is not the root node Ny, the

newly estimated value V; - is backpropagated again from node I'y.

Algorithm 6.1 Supervised Tree Search (STS)
1: function STS(N)
2 N ={Ny}

3: proby, =1

4

5

while within the computational budget do
N, = argmax (proby, N € N)
N

6: LEARNED__PoLICY(Nj)

7 N =N\ N,

8: return argmin (VN, N € Ffvo)
N

9: function LEARNED__PoLICY (V)
10: if depthy < hpmq. then

11: N, = arg]r\?ax (pred’N, N € F}S)
12: rn, = step(Ny — Ny)

13: for all N e I'}, do

14: proby = pred’y X proby,

15: VN = 400

16: if N # N, then

17: N=NU {N}

18: LEARNED PoOLICY(NV,)

19: else

20: BACKPROP(N, 1y,)

21: function BACKPROP(N, R)
22: if V- > et ~v R then
24: if ', # 2 then
N
25: BACKPROP(I'y, V)

86

6.5 Simulation study

This section presents the results of the various methods presented above. The required com-
puting time differs widely from one method to another, and some parameters, such as the
number of trajectories or the time horizon, greatly impact the results. This influence is ex-
tensively studied. Before presenting the policies’ results, Section 6.5.1 presents preliminary

results from the learning stage that are relevant in order to construct the final policies.

6.5.1 Preliminary results

Figure 6.4 represents the warehouse used in the simulation study. It contains 36 storage
locations for as many shelves, and five robots are operating. The other parameters are similar
to the ones described in [81]. A skewed demand distribution is considered, controlled by the
cumulative distribution G(z) = 2* for 0 < s < 1, where x represents 2% of the shelves and

s controls the skewness level. In this study, we set s = 0.7 for all the tests.

First, four MCTS(h) datasets were generated for h=>5, 10, 20, and 30. By trial and error,
the exploration parameter ¢ in Section 6.4.1 was set to 1/16. Each dataset contains 3 million
instances, and because there are five robots in the warehouse, the number of features per
instance is equal to 2 x (5 + h), so 20, 30, 50 and 70, respectively. Independent from the
dataset, the same neural network architecture was used for the supervised learning task.
The network is feed-forward and fully connected ; it contains five ReLLU hidden layers of 100
neurons and a softmax output layer with 36 neurons, one for each storage location. The
categorical cross-entropy was used as the loss function, and the Adam optimiser was used.
The network was implemented using the Keras library [87]. Each training performed 500

episodes with mini-batches of 1024 instances.

For each dataset, 10% of the instances were reserved for a test set; the resulting accuracies
were 87.16%, 82.59%, 77.25% and 76.46%. Because of the stochasticity of the transition func-
tion and the heuristic nature of the MCTS method, a longer horizon leads to less predictable
actions, making the learning task more difficult. However, the longer the horizon, the higher
the potential to learn a good-performing policy. Indeed, when testing MCTS with 500 trajec-
tories over different horizons on the test instances in Section 6.5.2, the corresponding average
cycle times are 33.99s, 32.97s, 32.03s and 31.46s. The relationship between learning accuracy
and performance creates a trade-off between learning a poor policy better and learning a

better policy poorly. The following section will investigate this topic.

While learning from different policies results in different potential performances, one may

wonder about the impact of the accuracy when learning from the same policy. Indeed, ac-

87

Warehouse locations

61 M B B B B [
O mE B B B [
41 @ B O B B [
> 2
= HE = m B =
o1 M HE = m N =
| shelf
[storage location
-21 [] picking station O
0 2 4 5 8

Figure 6.4 Plan view of the storage area

curacy is not necessarily proportional to the learned policy’s performance, especially if the
worst actions are well-learned and avoided. Figure 6.5 presents a study of the correlation bet-
ween prediction accuracy and the performance of the learned policies. The y-axis on the left
corresponds to the Learned Policy and the y-axis on the right corresponds to LP(5)+rollouts
h=30 and STS(5) h=30 #traj=100. The learning was done on MCTS(5), and the results
were generated from 10 instances of 4000 actions each. Smaller neural networks were used
to degrade the classification accuracy. The relationship appears to be increasing monoto-
nically, up to until an accuracy of 84%, which shows that accuracy is a good indicator to
guide the network search. Above 84%, LP’s performance seems to be inconsistent, as if a
higher accuracy was over-compensated by misclassifications having a stronger impact in the
objective function. However, the other learned policies’ exploration gives a more consistent
performance by reaching some plateau value. This result is of interest in this study when
deciding on a network’s architecture. Since the network needs to make sequential predictions
used in a real-time policy, computing time is critical, and this time is typically dependent
on the complexity of its architecture. If two networks present marginal accuracy differences,
the simpler, smaller one will be favoured. In particular, we tested a convolutional neural
network using a similar input but shaped so that each location corresponds to an element
in a matrix. The obtained accuracy was 0.35% higher than the standard network, but the

policies’ computing time almost doubled.

88

- 20

- 19

F 3 S
£ 115 < § 3
B [2.0
5 110 I es
o ﬁ ®E
g 10.5 17585
e eme
s =g
& 10.0 Homas
' L 1655-5
= ER-O
[Ta]
& 95 — =50
= e T T LP(5) o
el o llouts h= I
9.0 4 |- LP(5)+rollouts h=30

--- STS(5) h=30; #traj=100

8.5 14

72 74 76 78 80 82 84 86
Network's accuracy

Figure 6.5 Correlation between the network’s accuracy and the policies” performance

6.5.2 Results

The graph in Figure 6.6 presents the performance of the different storage policies by plotting
the performance gain from the Random policy versus the average computing time per de-
cision. All policies were tested over 100 instances of 4000 actions each. The different curves
regroup families of policies, which only differ by a parameter value. Each mark along a curve
corresponds to a different parameter mentioned in the legend. SL-+rollouts and LP+rollouts
have their maximum horizon vary up to 60. The curves representing offline MCTS, Supervi-
sed MCTS, and STS vary the number of trajectories used in these methods. The horizon of
Supervised MCTS is set to 30. Because STS performs better, and for comparison purposes
with offline MCTS, STS and offline MCTS have two curves each, corresponding to horizons
of 30 and 60.

Only the methods learned on MCTS(10) are presented in this graph. This decision is justi-
fied by the results presented in Figure 6.7, where the policies learned from different datasets
MCTS(h) are compared. The general assessment is that the policies improve when learning
on longer-horizon datasets (for which the corresponding policies are also better). However,
there is a noticeable exception with the Learned Policy that sees its performance decrease
after h = 10. It seems that for A > 10, the classifiers make more mistakes (as expected
with their accuracies), which degrades the policy. However, these classifiers still carry in-
sightful information as they generate better than MCTS(10) results when more exploration

is performed, particularly with STS. Overall, because of the good performance and simplicity

89

of MCTS(10), and the marginal gains of MCTS(20) and MCTS(30), we use MCTS(10) for

comparisons with the other methods.

20
2 18
£
[=]
=
=
1]
o
16 SL+rollouts h=5, 10, 20,
g "~ 30, 40, 50, 60
= MCTS h=30; #traj=5, 10, 20,
= 50, 75, 100, 200, 500, 1k, 2k
[1v] MCTS h=60; #traj=5, 10, 20,
o ~— 50, 75, 100, 200, 500
14 1 LP(10)+rollouts h=0, 5, 10,
== 20, 30, 40, 50, 60
MCTS supervised(10) #traj=
5. 10, 20, 50, 75, 100, 200
STS(10) h=30; #traj=5, 10,
12 A 20, 50, 75, 100, 200
- STS(10) h=60; #traj= 5, 10,
20, 50, 75, 100, 200
T LS S S S B S B | ¥ LI S S e L | L LS B B S S BN | T LZN SR E R B S |
1073 1072 101 10° 101
Computing time (s)
Figure 6.6 Policies’ performance
Lo | 3 MCTS(5)
=1 MCTS(10) Jr+ JrJr JrJr
== MCTS(20) JrJr i
3 181 Em MCTS(30) {_,} _} +
3 Hh i
B
= 16 1
o
5 i
2]
Y= -
= 14
‘T
o
12
10 - T B e T S
o (5] (5] (5] (5] wn [=] [=] (=) [Ta] (=] o
~ 34 2o 2o 2o vl 7 LT Ll el A &
34 31 30 3% 0L BE BEF BE GE gL gL
S S 2o 20 £ + + + S wnfP nl
+ + + + * *# ® S 5
o o o o £ £
e | s | - = |

Figure 6.7 Learned policies’ performance

90

For reference, and since it does not appear in Figure 6.6, SL improves the Random policy by
7.43% and takes 1.67e—4 sec. per action. Like SL, which does not perform any exploration,
LP performs significantly better with a gain of about 12% in 1.10e—3 sec. Using rollouts
improves both policies; in particular, rollouts of horizon 30 generate gains of 15.2% and
17.9%, and rollouts of horizon 60 generate gains of 15.8% and 18.8%. These policies are

particularly fast to deploy, with a computing time of less than 0.2 sec./action.

The family of tree search methods is computationally more expensive, and their computing
time is heavily dependent on the number of trajectories run in the exploration. Supervised
MCTS appears at first to perform slightly better at similar computing times, and then worse
than offline MCTS when more trajectories are run. It seems that the classifier helps find
reasonably good trajectories faster, but quickly reaches its limits when more trajectories are

allowed.

STS is the best-performing method overall when more computing time is available. For a
horizon of 30, and compared to MCTS with similar computing time, STS runs significantly
fewer trajectories (about half) but consistently performs better. With a similar performance,
STS runs much fewer trajectories than MCTS. For instance, 10 trajectories with STS results
in a similar performance to MCTS with 75 to 100 trajectories, for a quarter of the computing
time. The additional time comes from the predictions of the neural network. With only 5
trajectories, STS generates gains of 17.93% and MCTS 16.10%. With 200 trajectories, those
gains become 19.72% and 19.05%, respectively. With a computing time of one second, STS
gives gains of about 19.35% and MCTS 18.80%.

With a horizon of 60, 5 and 200 trajectories for STS give results of 18.89% and 21.15%, while
for MCTS the results are 16.79% and 20.09%, respectively. With one second of computing
time, STS and MCTS generate gains of about 20.10% and 19.10%, respectively.

The final choice of policy depends on the available time at the decision-making step. If the
time is extremely limited (e.g., 0.001 sec.), LP would be the first choice. With more time (up
to 0.1), LP+rollouts appears to be the best choice. If even more time is available, STS gives
the best results. Detailed results of all the mentioned policies and their variants are given in

the Appendix.

6.6 Conclusion

This work studied the real-time problem of allocating storage locations in a Robotic Mobile
Fulfillment System. The proposed methods rely on learning a policy from the experience

accumulated by a Monte Carlo Tree Search algorithm run offline. The neural network used

91

to learn the policy takes as input a features representation of the warehouse’s current layout
and a list of revealed orders. It predicts the probabilities of allocating a shelf to the storage
locations. These probabilities can be used right away to deploy a speedy and well-performing
Learned Policy (LP), or used in an exploration strategy. Three such strategies are presented,
two of them generating convincing results in terms of performance and computing time.
The first one performs lookahead rollouts on each feasible action, using LP as the rollout
policy. This approach significantly improves the performance of LP while being very fast
to deploy. The second strategy, referred to as Supervised Tree Search, builds a search tree
by exploring in priority nodes with the highest probability of being reached by the Learned
Policy. This method takes a longer computing time but further improves LP’s performance
and consistently beats MCTS. The policy choice ultimately depends on the time available

for decision-making, and may differ from one warehousing operation to another.

There are several avenues for future research. First, some assumptions made in this work
could be relaxed, such as considering several picking stations, notions of robots congestion,
and others. A larger warehouse and robot fleet could also be considered to validate the
proposed methods’ scalability. Another research direction would be to expand on the super-
vised learning and tree search by integrating it with a Reinforcement Learning algorithm.
This could further improve the policy network by leveraging the possibility of learning from

higher-quality experiences obtained from the current version of STS.

Appendix : Detailed results

Table 6.1 Results of the methods without learning

4000 actions, avg. cycle | st. dev. | gain from | # op. time
avg. over 100 instances | 1 | # traj. | 300 (s) (s) Rand. (%) | tasks | (s)/action
Random - - 39.03 0.17 - 144.61 | 1.16e—4
COL - - 38.25 0.19 1.99 143.11 | 1.14e—4
Class-based | - - 37.07 0.19 5.02 140.64 | 1.16e—4
SL - - 36.14 0.20 7.42 143.90 | 1.16e—4
) - 34.34 0.16 12.02 151.76 2.44e—3
10 - 33.86 0.17 13.26 182.32 | 3.93e—3
SI, + 20 - 33.39 0.15 14.46 181.87 | 6.82e—3
rollouts 30 - 33.09 0.16 15.21 181.19 | 9.80e—3
40 - 32.95 0.16 15.59 180.34 | 1.27e—2
50 - 32.89 0.16 15.75 181.39 | 1.57e—2
60 - 32.85 0.17 15.83 180.85 | 1.86e—2
5 500 33.99 0.16 12.92 146.72 | 4.04e—1
10 500 32.97 0.18 15.54 190.10 1.00
20 500 32.02 0.14 17.95 201.33 2.06
30 500 31.46 0.16 19.41 202.84 3.43
No 30 5 32.75 0.16 16.10 185.26 4.61le—2
learning 30 10 32.48 0.16 16.78 189.25 | 9.00e—2
30 20 32.26 0.14 17.34 192.14 | 1.75e—1
30 50 31.96 0.16 18.13 195.66 | 4.17e—1
30 75 31.85 0.15 18.39 198.45 | 6.12e—1
30 100 31.74 0.16 18.69 198.65 | 8.04e—1
MCTS 30 200 31.60 0.15 19.05 201.58 1.54
30 1000 31.39 0.13 19.58 203.66 6.04
30 | 2000 31.40 0.15 19.56 203.59 10.38
60 5 32.48 0.18 16.79 185.83 | 8.77e—2
60 10 32.22 0.16 17.46 189.02 | 1.71le—1
60 20 31.95 0.17 18.13 191.71 | 3.3%e—1
60 50 31.63 0.17 18.96 194.33 | 8.22e—1
60 75 31.49 0.15 19.33 196.53 1.22
60 100 31.40 0.16 19.56 197.98 1.61
60 200 31.19 0.16 20.09 200.01 3.17
60 500 30.93 0.17 20.75 203.46 7.79

92

Table 6.2 Results of the methods learned from MCTS(5)

4000 actions, | avg. cycle | st. dev. | gain from | # op. time
avg. over 100 instances b} # traj. |0 () (s) Rand. (%) | tasks | (s)/action
LP - - 34.44 0.17 11.76 143.81 | 1.10e—3
5 - 33.95 0.18 13.01 153.13 | 1.47e—2
10 - 33.27 0.19 14.76 184.31 2.82e—2
P+ 20 - 32.53 0.16 16.66 184.49 | 5.56e—2
30 - 32.13 0.18 17.69 185.19 | 8.27e—2
rollouts
40 - 31.92 0.17 18.22 184.72 | 1.10e—1
50 - 31.85 0.15 18.41 184.78 | 1.37e—1
60 - 31.78 0.14 18.58 184.83 1.62e—1
30 5 32.64 0.17 16.38 181.26 | 5.10e—2
30 10 32.48 0.16 16.79 180.95 | 9.93e—2
MCTS(5) . 30 20 32.34 0.13 17.15 181.26 | 1.92e—1
Supervised
30 50 32.14 0.16 17.66 183.14 | 4.63e—1
MCTS
30 75 32.03 0.17 17.93 184.03 | 6.73e—1
30 100 31.96 0.17 18.12 184.75 | 8.83e—1
30 200 31.81 0.16 18.50 186.28 1.71
30 5 32.24 0.15 17.41 174.27 | 1.06e—1
30 10 31.90 0.15 18.26 183.81 | 2.07e—1
30 20 31.82 0.16 18.49 186.22 | 4.0le—1
STS 30 50 31.66 0.16 18.90 189.97 | 9.24e—1
30 75 31.56 0.16 19.16 192.88 1.34
30 100 31.51 0.17 19.27 193.83 1.74
30 200 31.43 0.16 19.49 196.76 3.32

93

Table 6.3 Results of the methods learned from MCTS(10)

4000 actions, | avg. cycle | st. dev. | gain from | # op. time
avg. over 100 instances ho | # traj. | e (s) (s) Rand. (%) | tasks | (s)/action
LP - - 34.28 0.16 12.18 143.73 | 1.10e—3
) - 33.96 0.16 12.99 152.48 1.51le—2
10 - 33.19 0.15 14.97 184.2 2.90e—2
LP 4+ 20 - 32.47 0.17 16.81 184.56 | 5.7le—2
rollouts 30 - 32.04 0.17 17.91 185.84 | 8.51le—2
40 - 31.88 0.16 18.32 185.41 1.13e—-1
50 - 31.75 0.16 18.66 185.75 1.40e—1
60 - 31.73 0.15 18.71 185.33 | 1.67e—1
30 5 32.61 0.18 16.46 183.13 | 5.17e—2
30 10 32.40 0.16 16.99 183.2 1.0le—1
Supervised 30 20 32.20 0.17 17.52 184.99 | 1.99e—1
MOTS 30 50 31.99 0.16 18.05 186.91 | 4.83e—1
30 75 31.92 0.16 18.22 187.3 7.14e—1
MCTS(10) 30 100 31.85 0.19 18.39 189.48 | 9.49e—1
30 200 31.74 0.16 18.68 190.75 1.87
30) 32.03 0.14 17.93 178.14 | 1.11le—1
30 10 31.79 0.15 18.57 184.86 | 2.17e—1
30 20 31.66 0.16 18.89 189.24 | 4.19e—1
30 50 31.49 0.16 19.31 192.66 | 9.87e—1
30 75 31.44 0.15 19.44 193.61 1.44
30 100 31.42 0.15 19.51 195.35 1.88
STS 30 200 31.33 0.15 19.72 197.44 3.61
60 5 31.66 0.16 18.89 179.28 | 2.28e—1
60 10 31.36 0.16 19.66 186.19 | 4.52e—1
60 20 31.24 0.17 19.97 188.28 | 8.90e—1
60 50 31.03 0.14 20.51 192.50 2.17
60 75 30.93 0.15 20.76 193.55 3.26
60 100 30.88 0.16 20.88 194.23 4.29
60 200 30.78 0.14 21.15 197.11 8.64

94

Table 6.4 Results of the methods learned from MCTS(20)

4000 actions, | avg. cycle | st. dev. | gain from | # op. time
avg. over 100 instances holgf traj | e (s) (s) Rand. (%) | tasks | (s)/action
LP - - 34.32 0.18 12.06 144.24 | 1.10e—3
5 - 33.96 0.19 12.98 152.63 | 1.55e—2
10 - 33.21 0.19 14.92 184.11 2.99e—2
P 4 20 - 32.47 0.16 16.80 185.60 | 5.88e—2
30 - 32.06 0.16 17.86 185.49 | 8.77e—2
rollouts
40 - 31.90 0.16 18.28 185.26 | 1.16e—1
50 - 31.79 0.16 18.56 185.20 | 1.44e—1
60 - 31.74 0.17 18.67 185.25 1.72e—1
30 5 32.59 0.17 16.51 183.99 | 5.28e—2
30 10 32.40 0.15 16.98 185.70 | 1.03e—1
MCTS(20) . 30 20 32.20 0.16 17.49 185.96 | 2.0le—1
Supervised
30 50 31.99 0.18 18.05 188.58 | 4.87e—1
MCTS
30 75 31.89 0.15 18.31 189.36 | 7.22e—1
30 100 31.84 0.15 18.43 190.65 | 9.55e—1
30 200 31.73 0.17 18.72 191.76 1.88
30 5 32.01 0.16 18.00 179.06 | 1.16e—1
30 10 31.80 0.16 18.54 185.96 | 2.26e—1
30 20 31.64 0.15 18.94 188.62 | 4.3%9e—1
STS 30 50 31.46 0.15 19.41 193.67 1.04
30 75 31.40 0.16 19.55 195.49 1.53
30 100 31.37 0.17 19.62 195.58 2.26
30 200 31.28 0.15 19.85 198.96 3.84

95

Table 6.5 Results of the methods learned from MCTS(30)

4000 actions, | avg cycle | st dev | gain from | # op. time
average on 100 instances | 1 | # T | e (s) (s) | Rand. (%) | tasks | (s)/action
LP - - 34.35 0.18 12.01 144.59 | 1.15e—3
5 - 33.96 0.17 12.99 152.44 1.61e—2
10 - 33.23 0.16 14.88 184.24 3.08e—2
P 4 20 - 32.49 0.18 16.77 184.15 | 6.07e—2
30 - 32.06 0.15 17.86 185.41 | 9.03e—2
rollouts
40 - 31.88 0.18 18.31 184.94 | 1.20e—1
50 - 31.77 0.17 18.61 184.65 | 1.50e—1
60 - 31.74 0.16 18.69 183.84 | 1.79e—1
30 5 32.63 0.16 16.41 184.76 | 5.25e—2
30 10 32.40 0.15 16.98 184.48 | 1.03e—1
MCTS(30) . 30 20 32.22 0.16 17.44 185.36 | 2.0le—1
Supervised
30 50 31.96 0.16 18.13 187.95 | 4.87e—1
MCTS
30 75 31.91 0.18 18.25 189.93 | 7.23e—1
30 100 31.85 0.17 18.41 189.27 | 9.57e—1
30 200 31.73 0.16 18.71 191.26 1.89
30 5 32.01 0.16 18.00 178.69 | 1.20e—1
30 10 31.78 0.16 18.59 184.68 18.59
30 20 31.62 0.18 19.00 188.97 | 4.56e—1
STS 30 50 31.48 0.15 19.36 192.71 1.08
30 75 31.39 0.16 19.58 194.28 1.59
30 100 31.39 0.15 19.58 195.17 2.07
30 200 31.29 0.16 19.84 198.68 4.01

96

97

CHAPITRE 7 DISCUSSION GENERALE

Suivant la présentation des trois articles, un certain nombre d’enseignements peuvent étre

tirés des différents résultats obtenus.

Le premier article a permis de formaliser le probleme de décision en temps réel et d’éva-
luer des regles de décision qui serviront de politiques de référence dans le reste de la these.
Le deuxieéme et le troisieme article en revanche emploient des méthodes d’apprentissage et
d’exploration différentes, tout en gardant le méme objectif de minimiser le temps moyen de
déplacement des robots. Bien que les circonstances soient différentes (stockage par classes ver-
sus un stockage par emplacement exact, représentation de I’état courant, type d’exploration,
etc.), certaines observations peuvent étre faite, de maniére comparative ou spécifiquement

pour chaque approche.

L’approche d’apprentissage par renforcement, bien qu’ayant donné des résultats satisfaisants,
n’a pas été simple a faire fonctionner. Tout d’abord, la fagon dont I’apprentissage a été mené
dans le deuxieme article était tres séquentielle, dans le sens ou un simulateur unique était
utilisé pour générer de 'expérience guidée par l'agent de renforcement. Cette expérience
augmente graduellement en qualité mais cette amélioration est longue et nécessite un grand

nombre d’épisodes d’apprentissage.

L’algorithme Q-learning est un agent de renforcement basé sur I'estimation de la valeur d’un
état (value-based), a la différence d’autres agents qui optimisent directement les parameétres
d’une politique (policy gradient methods). L’observation partielle donnée comme représen-
tation de I'état du systeme a souffert d’un manque d’informations qui résulte en pratique
en des transitions qui apparaissent stochastiques, alors qu’elles ne devraient pas I'étre (ex-
ception faite de 'arrivée de nouvelles commandes). Par exemple, lorsqu’un robot “réserve”
un emplacement pour une tache de stockage, cet emplacement est immédiatement retiré
des emplacements disponibles. En revanche, 1’étagere qui sera par la suite récupérée par ce
méme robot occupe un emplacement qui apparaitra comme disponible seulement plusieurs
étapes de temps plus tard (lorsque le robot aura véritablement libéré I’emplacement). Cette
observation a semblé affecter plus fortement 'agent de Q-learning que ’approche supervisée
du troisieme article. Cela peut venir de la nécessité de 'agent de Q-learning d’apprendre
la valeur d’un état, certainement plus variable que l’action idéale, ainsi que de I’évolution
graduelle de la politique utilisée en ligne pour faire évoluer le systeme. Un autre exemple de
transition faussement stochastique concerne exclusivement la méthode du troisiéme article.

Dans cette méthode, une liste des k prochaines commandes déja révélées est donnée dans

98

la représentation de I'état. Ces commandes sont ordonnées par ordre d’échéance croissant.
Cependant, la liste exclue une commande (étagere) qui serait présentement transportée par
un robot, puisque son emplacement est alors indéterminé. Cette commande apparaitra dans
la liste dés que I’étagere correspondante aura été déposée ou qu’une tache opportuniste se

présentera.

Il est de 'opinion de I'auteur qu’une approche par apprentissage supervisé peut s’avérer étre
un bon choix de départ pour obtenir une politique de haute qualité dans un probleme de
décision tel que celui présenté dans cette these (si un besoin d’apprentissage se fait sentir en
premier lieu). Une premiere condition est de disposer d’un simulateur qui permette une copie
de son état courant afin d’étre en mesure d’évaluer des trajectoires alternatives. La deuxieme
condition est de disposer d’un expert qui soit capable de déterminer une action de haute
qualité si suffisamment de temps de calcul lui est alloué. Cet expert peut étre une heuristique
de recherche, telle que la recherche arborescente Monte-Carlo utilisée dans cette these, ou
bien méme une méthode exacte si la configuration du systeme le permet. L’expert peut alors
étre déployé en parallele pour rapidement générer une quantité importante d’expériences de
haute qualité. Ces expériences peuvent ensuite étre apprises par un prédicteur. Cette opinion
mériterait certainement une étude spécifique afin de définir une liste de criteres associés aux

problémes de prise de décision qui ferait d’une approche par renforcement un premier choix.

99

CHAPITRE 8 CONCLUSION ET RECOMMANDATIONS

8.1 Syntheése des travaux

Cette these s’intéresse a un nouveau type d’entrepdot automatique spécialisé dans le commerce
en ligne, appelé centre de distribution robotisé. Plus précisément, le sujet de recherche porte
sur l'optimisation en temps réel des problemes opérationnels dans un tel entrepot, avec un
intérét particulier pour le probleme d’allocation d’emplacements de stockage. La présentation

de la these s’organise autour de trois articles dont les conclusions sont présentées ci-apres.

Le premier article présente un modele de programmation dynamique stochastique qui for-
malise la prise de décision opérationnelle en temps réel dans un centre de distribution ro-
botisé. Plusieurs problemes de décision sont considérés, incluant I’ordonnancement des com-
mandes, l'allocation d’emplacements de stockage, la sélection d’étageres et I'affectation des
commandes aux stations de cueillette. Evoluant dans un environnement concurrentiel extré-
mement compétitif, les vendeurs en ligne tendent a promettre des livraisons toujours plus
rapides tout en réduisant les coflits au maximum. Cela force la chaine logistique a considé-
rer les nouvelles commandes des qu’elles sont révélées. Cet impératif de réactivité couplé a
la dynamique du systeme de stockage rend la prise de décision particulierement complexe.
Ces problemes sont conventionnellement traités par des regles de décision de haut niveau.
La formalisation mathématique proposée dans cet article est destinée a assister le chercheur
dans le développement d’approches de résolution plus avancées, ou du moins, a sensibiliser
la recherche a la prise de décision en temps réel. Le modele est illustré sur le sous-probléeme
d’allocation d’emplacements de stockage en modélisant les régles de décision. Les résultats
obtenus servent de points de référence pour les nouvelles politiques de stockage développées

dans les autres articles.

Le deuxieme article s’intéresse spécifiquement au probleme d’allocation d’emplacements de
stockage. Lorsqu’un robot est libéré a une station de cueillette, ’'objectif est de sélectionner
une zone de 'entrepdt ol entreposer 'étagere afin de minimiser le temps de cycle moyen des
robots. L’approche de résolution utilise un algorithme d’apprentissage par renforcement Deep
Q-learning. Dans cet apprentissage, le systéme est présenté comme un processus de décision
markovien partiellement observable ou un état est représenté par de I'information sur le taux
de demande de I’étagere a entreposer, I’emplacement de la prochaine commande et 'état
d’occupation des zones. La politique obtenue améliore les meilleures politiques de référence
de 3.21 a 4.83% en fonction de la distribution de la demande. Dans une seconde phase, afin

d’utiliser plus d’information sur les commandes déja révélées a un instant donné, une stratégie

100

d’exploration de trajectoires est proposée. Cette exploration est applicable a n’importe quelle
politique, incluant les politiques de référence, et géneére des gains de performance significatifs.

La politique apprise voit ainsi sa performance augmentée de 2.78 a 4.54%.

Enfin, le troisieme article étend 'exploration de trajectoires en s’intéressant a l’exploration
d’arbres. L’objectif de cet article est toujours d’apprendre une politique de stockage qui mi-
nimise le temps de déplacement moyen des robots, a la différence que les emplacements sont
ici sélectionnés exactement plutot que de sélectionner une zone. Une recherche arborescente
Monte-Carlo est utilisée hors ligne pour accumuler une importante quantité d’expériences de
haute qualité. Etant donné le temps de calcul important d’une telle recherche arborescente,
elle ne peut étre déployée en temps réel. L’expérience accumulée est représentée avec les co-
ordonnées des emplacements disponibles ainsi que celles des prochaines commandes révélées.
Cette représentation est apprise par un réseau de neurones qui est en mesure de prédire I’em-
placement recommandé pour chaque étagere. Le réseau de neurones peut étre utilisé tel quel
pour définir une politique apprise extrémement rapide a déployer et performante (+4.7% par
rapport & la meilleure politique de référence). Le réseau peut également étre utilisé pour gui-
der une exploration de trajectoires ou une recherche d’arbre. Une nouvelle recherche d’arbre
supervisée est proposée. Cette recherche explore en priorité les régions de ’arbre de décision
ayant la plus grande probabilité d’étre atteintes par la politique apprise. Dépendamment du
temps alloué a la prise de décision en temps réel, la recherche d’arbre supervisée surperforme

la politique de référence de 12.4 a 14.8%.

8.2 Limitations et améliorations futures

En plus de certaines limitations des approches proposées dans ces travaux de recherche,

plusieurs hypotheses ont été faites, dont certaines mériteraient d’étre levées.

Dans le premier article, la modélisation suppose des commandes uniques qui ne contiennent
qu'un seul type d’objet. Dans certains centres de distribution robotisés, la consolidation des
commandes se fait dans un espace de ’entrepot distinct des stations de cueillette. Cette
hypothese est alors tout a fait valide. En revanche, dans d’autres centres de distribution, la
consolidation se fait directement a la station de cueillette. Il serait alors utile de proposer une
modélisation qui considere explicitement les commandes multiples afin d’éviter des délais et

des saturations au niveau des stations.

Les deuxieme et troisieme articles font des hypotheses semblables quant a la configuration de
I'entrepdt et a la gestion des autres problemes de décision. Pour ce qui est de la configuration

de 'entrepot, il serait intéressant de considérer plus qu’'une station de cueillette puisque cela

101

changerait la notion d’accessibilité d’une étagere. Il serait également intéressant d’évaluer
I'extensibilité des méthodes proposées a des espaces de stockage de plus grandes dimensions.
La méthode du deuxiéme article discrétise I’espace en zones, ce qui devrait raisonnablement
permettre une bonne extensibilité. Le troisieme article en revanche sélectionne des emplace-
ments exacts. Une discrétisation ou une restriction des emplacements considérés pourraient

s’avérer nécessaires.

Pour ce qui a trait aux problemes de décision autres que l’allocation d’emplacements de
stockage, 'optimisation simultanée de I'ordonnancement des commandes et la sélection des
étageres pourrait présenter une grande valeur ajoutée. Dans les méthodes présentées, I’ordon-
nancement des commandes se fait par ordre d’échéance croissant. Permettre un réordonnan-
cement permettrait de créer des combinaisons de commandes pour des cycles plus efficaces,
voire un plus grand nombre de cycles opportunistes. De méme, dans ces travaux, une com-
mande est automatiquement associée a une étagere. En réalité, un type d’article peut étre
trouvé dans plusieurs étageres. Etre en mesure de sélectionner quelle étagere utiliser pour

chaque commande pourrait également permettre la création de meilleurs cycles.

Un sujet qui n’a pas été abordé dans cette these, mais qui fait I'objets de plusieurs articles
de recherche, concerne le probleme de routage des robots afin d’éviter des congestions. Incor-
porer cette thématique avec les problemes opérationnels serait intéressant d’un point de vue

pratique.

Enfin, plusieurs extensions pourraient étre faites par rapport aux méthodes de résolution.
La représentation d'un état du systeme est essentielle a la réussite des techniques d’appren-
tissage. Bien que la représentation par coordonnées du troisieme article ait donné de bons
résultats, d’autres représentations pourraient étre imaginées. Le type de modele d’apprentis-
sage est directement relié au choix de la représentation. Lorsqu’il est envisagé de réaliser une
recherche de trajectoires en déploiement de la politique, il est important de considérer le cotit
computationnel du modele d’apprentissage. Finalement, le réseau de politique obtenu dans le
troisieme article, qui utilisé dans une exploration d’arbre, pourrait étre amélioré en utilisant
la nouvelle politique comme génératrice de nouvelles expériences sur lesquelles entrainer le

réseau (ce qui reviendrait a une approche de renforcement avec une exploration d’arbre).

1]

2]

[10]

[11]

[12]

102

REFERENCES

F. Ali, “US ecommerce grows 44.0% in 2020 | Digital Commerce 360,” 2021. [En ligne].

Disponible : https://www.digitalcommerce360.com/article/us-ecommerce-sales/

N. Boysen, K. Stephan et F. Weidinger, “Manual order consolidation with put walls : the
batched order bin sequencing problem,” FURO Journal on Transportation and Logistics,

vol. 8, n°. 2, p. 169-193, 2019.

H. Yaman, O. E. Karasan et B. Y. Kara, “Release time scheduling and hub location for
next-day delivery,” Operations Research, vol. 60, n°. 4, p. 906-917, 2012.

N. Boysen, R. De Koster et F. Weidinger, “Warehousing in the e-commerce era : A

survey,” Furopean Journal of Operational Research, vol. 277, n°. 2, p. 396411, 2019.

R. Ramanathan, “The moderating roles of risk and efficiency on the relationship between

7

logistics performance and customer loyalty in e-commerce,” Transportation Research

Part E : Logistics and Transportation Review, vol. 46, n°. 6, p. 950-962, 2010.

P. R. Wurman, R. D’Andrea et M. Mountz, “Coordinating Hundreds of Cooperative,
Autonomous Vehicles in Warehouses,” AI Magazine, vol. 29, n°. 1, p. 9-9, 3 2008.

K. Azadeh, R. de Koster et D. Roy, “Robotized Warehouse Systems : Developments and
Research Opportunities,” SSRN FElectronic Journal, p. 1-55, 2017.

S. Banker, “Robots In The Warehouse : It’s Not Just Amazon,” Forbes Business,
2016. [En ligne]. Disponible : https://www.forbes.com/sites/stevebanker/2016/01/11/

robots-in-the-warehouse-its-not-just-amazon

C. A. Valle et J. E. Beasley, “Order allocation, rack allocation and rack sequencing for
pickers in a mobile rack environment,” Computers and Operations Research, vol. 125,

n°. 2021, p. 105090, 2021.

R. D’Andrea et P. Wurman, “Future challenges of coordinating hundreds of autonomous
vehicles in distribution facilities,” 2008 IEEFE International Conference on Technologies
for Practical Robot Applications, TePRA, p. 80-83, 2008.

J. J. Enright et P. R. Wurman, “Optimization and coordinated autonomy in mobile
fulfillment systems,” AAAI Workshop - Technical Report, vol. WS-11-09, p. 33-38, 2011.

S. Banker, “New Solution Changes the Rules of Warehouse Automation,” Forbes
Business, 2018. [En ligne]. Disponible : https://www.forbes.com/sites/stevebanker/

2018/06/12/new-solution-changes-the-rules-of-warehouse-automation

https://www.digitalcommerce360.com/article/us-ecommerce-sales/
https://www.forbes.com/sites/stevebanker/2016/01/11/robots-in-the-warehouse-its-not-just-amazon
https://www.forbes.com/sites/stevebanker/2016/01/11/robots-in-the-warehouse-its-not-just-amazon
https://www.forbes.com/sites/stevebanker/2018/06/12/new-solution-changes-the-rules-of-warehouse-automation
https://www.forbes.com/sites/stevebanker/2018/06/12/new-solution-changes-the-rules-of-warehouse-automation

[13]

[14]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

103

M. Merschformann, T. Lamballais, R. De Koster et L. Suhl, “Decision rules for robotic
mobile ful fi llment systems,” Operations Research Perspectives, vol. 6, n°. March, p.

100128, 2019.

K. J. Roodbergen et I. F. A. Vis, “A survey of literature on automated storage and
retrieval systems,” Furopean Journal of Operational Research, vol. 194, n°. 2, p. 343—
362, 20009.

H. Zollinger, “AS/RS application, benefits and justification in comparison to other sto-
rage methods : A white paper,” Automated Storage Retrieval Systems Production Section
of the Material Handling Industry of America, p. 1-24, 2014.

N. Boysen et K. Stephan, “A survey on single crane scheduling in automated sto-
rage/retrieval systems,” Furopean Journal of Operational Research, vol. 254, n°. 3, p.
691-704, 2016.

M.-H. Han, L. F. McGinnis, J. S. Shieh et J. A. White, “On Sequencing Retrievals
In An Automated Storage/Retrieval System,” IIE Transactions, vol. 19, n°. 1, p.
56-66, 3 1987. [En ligne]. Disponible : http://www.tandfonline.com/doi/abs/10.1080/
07408178708975370

R. de Koster, T. Le-Duc et K. J. Roodbergen, “Design and control of warehouse order
picking : A literature review,” Furopean Journal of Operational Research, vol. 182, n°. 2,

p. 481-501, 2007.

J. L. Heskett, “Cube-per-order index-a key to warehouse stock location,” Transportation
and distribution Management, vol. 3, n°. 1, p. 27-31, 1963.

W. Hausman, L. Schwarz et S. Graves, “Optimal Storage Assignment in Automatic
Warehousing Systems,” Management Science, vol. 22, n°. 6, p. 629-638, 1976.

S. C. Graves, W. H. Hausman et L. B. Schwarz, “Storage-Retrieval Interleaving in Au-
tomatic Warehousing Systems,” Management Science, vol. 23, n°. 9, p. 935-945, 5 1977.

Y. A. Bozer et J. A. White, “Travel-Time Models for Automated Storage/Retrieval
Systems,” IIE Transactions, vol. 16, n°. 4, p. 329-338, 12 1984.

L. B. Schwarz, S. C. Graves et W. H. Hausman, “Scheduling Policies for Automatic
Warehousing Systems : Simulation Results,” A I I E Transactions, vol. 10, n°. 3, p.
260-270, 9 1978.

R. J. Linn et R. Wysk, “A simulation model for evaluating control algorithms of
an automated storage/retrieval system,” p. 330-339, 1984. [En ligne|. Disponible :
https://dl.acm.org/citation.cfm?id=809482

http://www.tandfonline.com/doi/abs/10.1080/07408178708975370
http://www.tandfonline.com/doi/abs/10.1080/07408178708975370
https://dl.acm.org/citation.cfm?id=809482

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

104

R. Linn et R. Wysk, “An Analysis Of Control Strategies For An Automated
Storage/Retrieval System,” INFOR : Information Systems and Operational Research,
vol. 25, n°. 1, p. 66-83, 1 1987. [En ligne]. Disponible : http://www.tandfonline.com/
doi/full/10.1080/03155986.1987.11732029

J. P. Van den Berg, “Class-based storage allocation in a single- command warehouse
with space requirement constraints,” International Journal of Industrial Engineering,
vol. 3, p. 21-28, 1996.

J. P. van den Berg et A. Gademann, “Simulation study of an automated storage/retrieval
system,” International Journal of Production Research, vol. 38, n°. 6, p. 1339-1356, 4
2000.

J.-P. Gagliardi, J. Renaud et A. Ruiz, “A simulation modeling framework for multiple-
aisle automated storage and retrieval systems,” Journal of Intelligent Manufacturing,

vol. 25, n°. 1, p. 193-207, 2 2014.

J.-P. Gagliardi, J. Renaud et A. Ruiz, “On storage assignment policies for unit-load
automated storage and retrieval systems,” International Journal of Production Research,

vol. 50, n°. 3, p. 879-892, 2 2012.

F. H. Lee et S. K. Schaefer, “Sequencing Methods For Automated Storage And Retrieval
Systems With Dedicated Storage,” Computers & Industrial Engineering, vol. 32, n°. 2,
p. 351-362, 1997.

S. Mahajan, B. V. Rao et B. A. Peters, “A retrieval sequencing heuristic for miniload
end-of-aisle automated storage/retrieval systems,” International Journal of Production
Research, vol. 36, n°. 6, p. 1715-1731, 1998.

J. P. Van den Berg et A. J. Gademann, “Optimal routing in an automated sto-
rage/retrieval system with dedicated storage,” IIE Transactions (Institute of Industrial
Engineers), vol. 31, n°. 5, p. 407-415, 1999.

A. Alonso-Ayuso, G. Tirado et A. Udias, “On a selection and scheduling problem in auto-
matic storage and retrieval warehouses,” International Journal of Production Research,
vol. 51, n°. 17, p. 5337-5353, 2013.

Y. L. Yin et H. Rau, “Dynamic selection of sequencing rules for a class-based unit-load
automated storage and retrieval system,” International Journal of Advanced Manufac-
turing Technology, vol. 29, n°. 11-12, p. 12591266, 2006.

K. Hachemi, Z. Sari et N. Ghouali, “A step-by-step dual cycle sequencing
method for unit-load automated storage and retrieval systems,” Computers and
Industrial Engineering, vol. 63, n°. 4, p. 980-984, 2012. [En ligne|. Disponible :
http://dx.doi.org/10.1016/j.cie.2012.06.009

http://www.tandfonline.com/doi/full/10.1080/03155986.1987.11732029
http://www.tandfonline.com/doi/full/10.1080/03155986.1987.11732029
http://dx.doi.org/10.1016/j.cie.2012.06.009

[36]

[37]

[38]

[40]

[41]

[44]

105

J.-P. Gagliardi, J. Renaud et A. Ruiz, “On sequencing policies for unit-load automated
storage and retrieval systems,” International Journal of Production Research, vol. 52,

n°. 4, p. 1090-1099, 2 2014.
T. Wauters, F. Villa, J. Christiaens, R. Alvarez-Valdes et G. Vanden Berghe, “A

decomposition approach to dual shuttle automated storage and retrieval systems,”
Computers and Industrial Engineering, vol. 101, p. 325-337, 2016. [En ligne].
Disponible : http://dx.doi.org/10.1016/j.cie.2016.09.013

A. Roozbeh Nia, H. Haleh et A. Saghaei, “Dual command cycle dynamic sequencing
method to consider GHG efficiency in unit-load multiple-rack automated storage

7

and retrieval systems,” Computers & Industrial Engineering, vol. 111, p. 89-108,
9 2017. [En ligne|]. Disponible : https://www.sciencedirect.com/science/article/pii/

50360835217302978

H. F. Lee et S. K. Schaefer, “Retrieval sequencing for unit-load automated storage and
retrieval systems with multiple openings,” International Journal of Production Research,
vol. 34, n°. 10, p. 29432962, 1996.

M. Goetschalckx et H. D. Ratliff, “Shared Storage Policies Based on the Duration Stay
of Unit Loads,” Management Science, vol. 36, n°. 9, p. 1120-1132, 9 1990. [En ligne].
Disponible : http://pubsonline.informs.org/doi/abs/10.1287/mnsc.36.9.1120

P. Montulet, A. Langevin et D. Riopel, “Le Probleme De L’Optimisation De
L’Entreposage Partage : Méthodes Exacte Et Heuristique,” INFOR : Information
Systems and Operational Research, vol. 35, n°. 2, p. 138-153, 1997. [En ligne].
Disponible : http://www.tandfonline.com/doi/full/10.1080,/03155986.1997.11732323

L. Chen, A. Langevin et D. Riopel, “The storage location assignment and interleaving
problem in an automated storage/retrieval system with shared storage,” International
Journal of Production Research, vol. 48, n°. 4, p. 991-1011, 2010.

P. Yang, L. Miao, Z. Xue et B. Ye, “Variable neighborhood search heuristic
for storage location assignment and storage/retrieval scheduling under shared
storage in multi-shuttle automated storage/retrieval systems,” Transportation Re-
search Part FE : Logistics and Transportation Review, vol. 79, p. 164-177,
2015. [En ligne]. Disponible : http://www.scopus.com/inward/record.url?eid=2-s2.
0-84929321553& partnerID=40&md5=368be9e67dedabb357636d9%aacd59204

T. Lamballais, D. Roy et R. De Koster, “Estimating performance in a Robotic Mobile
Fulfillment System,” Furopean Journal of Operational Research, vol. 256, n°. 3, p. 976—
990, 2017.

http://dx.doi.org/10.1016/j.cie.2016.09.013
https://www.sciencedirect.com/science/article/pii/S0360835217302978
https://www.sciencedirect.com/science/article/pii/S0360835217302978
http://pubsonline.informs.org/doi/abs/10.1287/mnsc.36.9.1120
http://www.tandfonline.com/doi/full/10.1080/03155986.1997.11732323
http://www.scopus.com/inward/record.url?eid=2-s2.0-84929321553&partnerID=40&md5=368be9e67deda5b357636d9aacd59204
http://www.scopus.com/inward/record.url?eid=2-s2.0-84929321553&partnerID=40&md5=368be9e67deda5b357636d9aacd59204

[45]

[46]

106

B. Zou, Y. Y. Gong, X. Xu et Z. Yuan, “Assignment rules in robotic mobile fulfilment sys-
tems for online retailers,” International Journal of Production Research, vol. 55, n°. 20,

p. 6175-6192, 2017.

R. Yuan, S. Graves et T. Cezik, “Velocity-Based Storage Assignment in Semi-Automated
Storage Systems,” Production and Operations Management, vol. 28, n°. 2, p. 354-373,
2018.

D. Roy, S. Nigam, R. de Koster, I. Adan et J. Resing, “Robot-storage zone assignment
strategies in mobile fulfillment systems,” Transportation Research Part E : Logistics and
Transportation Review, vol. 122, n°. April 2018, p. 119-142, 2019.

T. Lamballais, D. Roy et R. De Koster, “Inventory allocation in robotic mobile fulfillment
systems,” IISE Transactions, vol. 52, n°. 1, p. 1-17, 2020.

N. Boysen, D. Briskorn et S. Emde, “Parts-to-picker based order processing in a rack-
moving mobile robots environment,” Furopean Journal of Operational Research, vol.
262, n°. 2, p. 550-562, 2017.

A. Gharehgozli et N. Zaerpour, “Robot scheduling for pod retrieval in a robotic mo-
bile fulfillment system,” Transportation Research Part E : Logistics and Transportation
Review, vol. 142, n°. February, 2020.

A. Bolu et O. Korcak, “Adaptive Task Planning for Multi-Robot Smart Warehouse,”
IEEFE Access, vol. X, p. 1-1, 2021.

R. Krenzler, L. Xie et H. Li, “Deterministic Pod Repositioning Problem in Robotic
Mobile Fulfillment Systems,” arXiv preprint, vol. 1810.05514, n°. April 2020, 2018.

F. Weidinger, N. Boysen et D. Briskorn, “Storage assignment with rack-moving mobile
robots in KIVA warehouses,” Transportation Science, vol. 52, n°. 6, p. 1479-1495, 2018.

M. Mirzaei, N. Zaerpour et R. de Koster, “The impact of integrated cluster-based storage
allocation on parts-to-picker warehouse performance,” Transportation Research Part E :
Logistics and Transportation Review, vol. 146, n°. October 2020, 2021.

X. Li, G. Hua, A. Huang, J. B. Sheu, T. C. Cheng et F. Huang, “Storage
assignment policy with awareness of energy consumption in the Kiva mobile

7

fulfilment system,” Transportation Research Part E : Logistics and Transportation
Review, vol. 144, n°. November 2019, p. 102158, 2020. [En ligne]. Disponible :

https://doi.org/10.1016/j.tre.2020.102158
J. Zhang, F. Yang et X. Weng, “A building-block-based genetic algorithm for solving the

robots allocation problem in a robotic mobile fulfilment system,” Mathematical Problems

in Engineering, vol. 2019, 2019.

https://doi.org/10.1016/j.tre.2020.102158

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

107

L. Xie, N. Thieme, R. Krenzler et H. Li, “Introducing split orders and optimizing ope-
rational policies in robotic mobile fulfillment systems,” Furopean Journal of Operational

Research, vol. 288, n°. 1, p. 80-97, 2021.

M. Merschformann, L. Xie et H. Li, “RAWSim-O : A simulation framework for robotic
mobile fulfillment systems,” Logistics Research, vol. 11, n°. 1, p. 1-11, 2018.

J. A. Tompkins et J. D. Smith, The Warehouse Management Handbook, Second Edition.
Tompkins Press, 1998.

J. Gu, M. Goetschalckx et L. F. McGinnis, “Research on warehouse operation : A com-
prehensive review,” Furopean Journal of Operational Research, vol. 177, n°. 1, p. 1-21,
2007.

B. Shah et V. Khanzode, “A comprehensive review of warehouse operational issues,”
International Journal of Logistics Systems and Management, vol. 26, n°. 3, p. 346-378,
2017.

H. Davarzani et A. Norrman, “Toward a relevant agenda for warehousing research :

literature review and practitioners’ input,” Logistics Research, vol. 8, n°. 1, 2015.

W. B. Powell, “A unified framework for stochastic optimization,” Furopean Journal of
Operational Research, vol. 275, n°. 3, p. 795-821, 2019.

T. Kirks, J. Stenzel, A. Kamagaew et M. ten Hompel, “Cellular Transport Vehicles for
Flexible and Changeable Facility Logistics Systems,” Logistics Journal, vol. 2192(9084),
n°. 1, 2012.

Y. A. Bozer et F. J. Aldarondo, “A simulation-based comparison of two goods-to-person
order picking systems in an online retail setting,” International Journal of Production
Research, vol. 56, n°. 11, p. 3838-3858, 2018.

M. Guan et Z. Li, “Genetic Algorithm for Scattered Storage Assignment in Kiva Mobile
Fulfillment System,” American Journal of Operations Research, vol. 08, n°. 06, p. 474—
485, 2018.

A. Rimélé, M. Gamache, M. Gendreau, P. Grangier et L.-M. Rousseau, “Robotic mobile

fulfillment systems : a mathematical modelling framework for e-commerce applications,”

International Journal of Production Research, p. 1-17, may 2021.
C. Watkins, “Learning from delayed rewards,” These de doctorat, King’s College, 1989.
M. Hessel, J. Modayil, H. Van Hasselt, T. Schaul, G. Ostrovski, W. Dabney, D. Horgan,

B. Piot, M. Azar et D. Silver, “Rainbow : Combining improvements in deep reinforcement
learning,” dans 32nd AAAI Conference on Artificial Intelligence, AAAI 2018, 2018, p.
3215-3222.

[70]

[73]

[74]

[75]

[76]

108

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare, A. Graves,
M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S. Petersen, C. Beattie, A. Sadik, I. An-
tonoglou, H. King, D. Kumaran, D. Wierstra, S. Legg et D. Hassabis, “Human-level
control through deep reinforcement learning,” Nature, vol. 518, n°. 7540, p. 529-533,
2015.

B. C. Park, “Order Picking : Issues, Systems and Models,” dans Warehousing in the
Global Supply Chain. London : Springer London, 2012, p. 1-30.

N. Boysen, S. Fedtke et F. Weidinger, “Optimizing automated sorting in warehouses :
The minimum order spread sequencing problem,” European Journal of Operational Re-
search, vol. 270, n°. 1, p. 386—400, 2018.

R. S. Sutton et A. G. Barto, Reinforcement Learning : An Introduction. MIT press,
2018.

D. Bertsekas, “Dynamic Programming and Stochastic Control,” Mathematics in Science
and Engineering, vol. 125, p. 222-293, 1976.

H. van Hasselt, “Double Q-learning,” Advances in Neural Information Processing Sys-
tems 23 : 24th Annual Conference on Neural Information Processing Systems 2010,
NIPS 2010, p. 1-9, 2010.

H. van Hasselt, A. Guez et D. Silver, “Deep Reinforcement Learning with Double Q-
Learning,” Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI-
16), p. 2094-2100, 2016.

R. Coulom, “Efficient Selectivity and Backup Operators in Monte-Carlo Tree Search,”
dans Computers and Games, H. J. van den Herik, P. Ciancarini et H. H. L. M. J. Donkers,
édit. Berlin, Heidelberg : Springer Berlin Heidelberg, 2007, p. 72-83.

D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert,
L. Baker, M. Lai, A. Bolton, Y. Chen, T. Lillicrap, F. Hui, L. Sifre, G. Van Den Driessche,
T. Graepel et D. Hassabis, “Mastering the game of Go without human knowledge,”
Nature, vol. 550, n°. 7676, p. 354-359, oct 2017.

D. Bertsekas, Reinforcement learning and optimal control. Athena scientific, 2019.

J.-P. Gagliardi, J. Renaud et A. Ruiz, “Models for automated storage and retrieval
systems : a literature review,” International Journal of Production Research, vol. 50,

n°. 24, p. 7110-7125, 12 2012.

A. Rimélé, P. Grangier, M. Gamache, M. Gendreau et L.-M. Rousseau, “E-commerce

warehousing : learning a storage policy,” arXiv preprint, vol. 2101.08828, 2021.

[82]

[83]

[84]

[35]

[80]

[87]

109

C. B. Browne, E. Powley, D. Whitehouse, S. M. Lucas, P. I. Cowling, P. Rohlfshagen,
S. Tavener, D. Perez, S. Samothrakis et S. Colton, “A survey of Monte Carlo tree search
methods,” IFEE Transactions on Computational Intelligence and Al in Games, vol. 4,
n°. 1, p. 1-43, 2012.

L. Kocsis et C. Szepesvari, “Bandit based Monte-Carlo planning,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lec-

ture Notes in Bioinformatics), vol. 4212 LNAI, p. 282-293, 2006.

P. Auer, N. Cesa-Bianchi et P. Fischer, “Finite-time analysis of the multiarmed bandit
problem,” Machine Learning, vol. 47, n°. 2-3, p. 235256, 5 2002.

Y. Bjornsson et H. Finnsson, “CadiaPlayer : A simulation-based general game player,”
IEEE Transactions on Computational Intelligence and Al in Games, vol. 1, n°. 1, p.
4-15, 3 2009.

D. Silver, A. Huang, C. J. Maddison, A. Guez, L. Sifre, G. van den Driessche, J. Schritt-
wieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, S. Dieleman, D. Grewe, J. Nham,
N. Kalchbrenner, I. Sutskever, T. Lillicrap, M. Leach, K. Kavukcuoglu, T. Graepel et
D. Hassabis, “Mastering the game of go with deep neural networks and tree search,”
Nature, vol. 529, n°. 7587, p. 4849, 2016.

F. Chollet et al., “Keras,” https://keras.io, 2015.

https://keras.io

	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÉVIATIONS
	1 INTRODUCTION
	1.1 Définitions et concepts de base
	1.2 Éléments de la problématique
	1.3 Objectifs de recherche
	1.4 Plan de la thèse

	2 REVUE DE LITTÉRATURE
	2.1 Systèmes automatisés de stockage et de récupération
	2.1.1 Description
	2.1.2 Politiques de stockage
	2.1.3 Stockage dédié
	2.1.4 Stockage statique
	2.1.5 Stockage partagé

	2.2 Centres de distribution robotisés
	2.2.1 Modèles analytiques
	2.2.2 Ordonnancement des commandes
	2.2.3 Allocation d’emplacements de stockage
	2.2.4 Autres thématiques

	3 DÉMARCHE ET ORGANISATION DE LA THÈSE
	4 ARTICLE 1: ROBOTIC MOBILE FULFILLMENT SYSTEMS: A MATHEMATICAL MODELLING FRAMEWORK FOR E-COMMERCE APPLICATIONS
	4.1 Introduction
	4.2 Robotic Mobile Fulfillment Systems
	4.3 Literature review
	4.4 Formulation
	4.4.1 Modelling framework
	4.4.2 Sets
	4.4.3 Parameters
	4.4.4 State variables
	4.4.5 Exogenous information
	4.4.6 Decisions
	4.4.7 Transition function
	4.4.8 Cost function

	4.5 Simulation study
	4.5.1 Assumptions
	4.5.2 Storage allocation baselines
	4.5.3 Simulation study

	4.6 Conclusions and future work

	5 ARTICLE 2: E-COMMERCE WAREHOUSING: LEARNING A STORAGE POLICY
	5.1 Introduction
	5.1.1 Warehousing in e-commerce
	5.1.2 Robotic Mobile Fulfillment System
	5.1.3 Contributions and paper structure

	5.2 Problem definition and literature
	5.2.1 Decision-making framework
	5.2.2 Storage policies
	5.2.3 RMFS-related work

	5.3 Methodology
	5.3.1 Storage zones definition
	5.3.2 System representation
	5.3.3 Reinforcement learning method
	5.3.4 Implementation details
	5.3.5 Look-ahead rollout strategy

	5.4 Simulation study
	5.4.1 Parameters
	5.4.2 Results

	5.5 Conclusions

	6 ARTICLE 3: SUPERVISED LEARNING AND TREE SEARCH FOR REAL-TIME STORAGE ALLOCATION IN ROBOTIC MOBILE FULFILLMENT SYSTEMS
	6.1 Introduction
	6.2 Literature review
	6.2.1 Analytical models
	6.2.2 Scheduling and task allocation
	6.2.3 Storage allocation

	6.3 Problem definition
	6.4 Methodology
	6.4.1 Monte Carlo Tree Search algorithm
	6.4.2 Learning a policy
	6.4.3 Enhancement of the Learned Policy
	6.4.4 Supervised Tree Search algorithm

	6.5 Simulation study
	6.5.1 Preliminary results
	6.5.2 Results

	6.6 Conclusion

	7 DISCUSSION GÉNÉRALE
	8 CONCLUSION ET RECOMMANDATIONS
	8.1 Synthèse des travaux
	8.2 Limitations et améliorations futures

	RÉFÉRENCES

