
Titre:
Title:

Support à la conception intégrée de manipulateurs aériens

Auteur:
Author:

Charles Coulombe

Date: 2021

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Coulombe, C. (2021). Support à la conception intégrée de manipulateurs aériens
[Thèse de doctorat, Polytechnique Montréal]. PolyPublie.
https://publications.polymtl.ca/9093/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/9093/

Directeurs de
recherche:

Advisors:
Sofiane Achiche, & David Saussié

Programme:
Program:

Génie mécanique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/9093/
https://publications.polymtl.ca/9093/

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Support à la conception intégrée de manipulateurs aériens

CHARLES COULOMBE
Département de génie mécanique

Thèse présentée en vue de l’obtention du diplôme de Philosophiæ Doctor
Génie mécanique

Juin 2021

c© Charles Coulombe, 2021.

POLYTECHNIQUE MONTRÉAL
affiliée à l’Université de Montréal

Cette thèse intitulée :

Support à la conception intégrée de manipulateurs aériens

présentée par Charles COULOMBE
en vue de l’obtention du diplôme de Philosophiæ Doctor
a été dûment acceptée par le jury d’examen constitué de :

Aurelian VADEAN, président
Sofiane ACHICHE, membre et directeur de recherche
David SAUSSIÉ, membre et codirecteur de recherche
Giovanni BELTRAME, membre
David ST-ONGE, membre externe

iii

DÉDICACE

À Marie-Anne, Mathieu et Ophélie

iv

REMERCIEMENTS

J’aimerais remercier mon directeur de recherche Pr. Sofiane Achiche pour son support, pour
l’indépendance qu’il m’a laissée durant ce projet, ainsi que pour le temps pris à me transmettre
ses connaissances et expériences du domaine académique. Je lui suis aussi particulièrement
reconnaissant de m’avoir offert toutes ces opportunités d’enseignement depuis le début. J’ai-
merais aussi remercier le Pr. David Saussié pour sa codirection. Les discussions techniques
sur la commande des systèmes et les drones en général, m’ont été d’un support inestimable.
Je conserve un très bon souvenir des moments passés dans son bureau à dessiner des schémas
pour répondre à mes innombrables questions.

Je veux remercier tous les étudiants du laboratoire CoSIM, passés et présents. D’une manière
ou d’une autre, ils ont tous contribué à ce doctorat, soit par de l’aide technique, des discussions
philosophiques, des parties de cartes, des activités en dehors du labo ou juste leur bonne
humeur. La pandémie m’a fait réaliser à quel point vous étiez important. Dans un ordre
complètement aléatoire : Olivier (×2), Luis, Pr. Abolfazl, Martin, Alexandre, Gabriel (×3),
Jean-François, Ugo, Bahare, Yann, Cédric, Samuel, Guillaume, Laurent, Mathieu, Dominique,
Mireille, ainsi que tous les stagiaires et nouveaux étudiants que je n’ai malheureusement pas
pu connaître à cause de la pandémie.

Pour terminer, je veux remercier ma conjointe Marie-Anne, pour son support, ses encourage-
ments, son aide avec les figures, et surtout son endurance à mon tempérament. Les dernières
années (et la dernière spécifiquement) n’ont pas été de tout repos, et je n’aurais certainement
pas pu passer à travers sans elle.

v

RÉSUMÉ

Les manipulateurs aériens (UAM - Unmanned aerial manipulator) sont des systèmes robo-
tiques aériens combinant l’agilité de leur base, sous forme de multicoptère, à la capacité de
manipulation du ou des bras robotiques montés. Ils peuvent être utilisés dans des contextes
où leur manœuvrabilité, leur petite taille et leur autonomie en font des alliés intéressants,
comme dans des missions de récupération à la suite de catastrophes ou encore dans des en-
trepôts automatisés. Les tâches pouvant être accomplies par les UAM sont variées, pouvant
aller de la simple préhension d’objets pour leur transport, au perchage ou à la fermeture de
valves. Afin d’accomplir ces tâches, les UAM doivent être équipés de nombreux sous-systèmes
interagissant entre eux. La polyvalence de l’UAM complexifie le processus de conception, car
il doit tenir compte de la ou des tâches pour lesquelles il sera utilisé.

Cette thèse propose le développement de méthodes de support à la conception pour la com-
mande et la planification de missions. Dans le cadre de la conception d’un UAM, ou de tout
produit mécatronique, le système doit être considéré dans son ensemble afin d’obtenir un de-
sign optimal. Cependant, la complexité de conception associée aux nombreux sous-systèmes
nécessaires peut forcer les concepteurs à se concentrer sur la conception détaillée de ceux plus
critiques. Il est alors possible de supporter la conception en utilisant des méthodes facilitant
l’intégration. Puisque les requis de conceptions pour les sous-systèmes varient en fonction de
la tâche pour laquelle ils sont conçus, ces méthodes sont développées spécifiquement pour
une tâche. Dans le cas présent, les tâches de saisies d’objets statiques sont étudiées.

Tout d’abord, les tâches pouvant être accomplies ont été colligées en une taxonomie per-
mettant de les catégoriser selon le type de contact nécessaire, la description de la tâche, les
conditions environnantes ainsi que la présence de contraintes temporelles. La catégorisation
a été obtenue suite à une revue de littérature du domaine ainsi qu’une méthodologie d’acqui-
sition d’information par vidéo. Au même titre que les taxonomies de type de saisie avec une
main, cette taxonomie permet de supporter la conception d’un UAM en simplifiant la des-
cription des tâches et en facilitant ainsi la définition du problème de conception. Elle permet
aussi de baser la description d’une mission complexe en plusieurs tâches simples.

Par la suite, une méthode de support à la conception de lois de commande pour UAM est
développée sur la base de la synthèse H∞ structurée. Le correcteur est conçu à partir de
la modélisation dynamique linéarisée de l’UAM. Cette dernière est complexe au fait des
interactions hautement couplées entre le multicoptère et le bras robotique. Les équations
dynamiques générales d’un UAM sont dérivées à partir de la dynamique d’un multicoptère

vi

combinée à celle du bras robotique, obtenue par la méthode de Newton-Euler récursive.
La structure de correction choisie possède des gains séquencés en fonction des angles des
articulations du bras robotique. Le correcteur obtenu par la synthèse H∞ structurée permet
de stabiliser le quadricoptère en plus de répondre au cahier des charges défini pour toutes les
positions du bras robotique, soit un amortissement supérieur à 0.4 pour les pôles du système
et une erreur en régime permanent inférieure à 0.1% pour les signaux contrôlés. Le correcteur
développé est aussi robuste à une variation des valeurs de paramètres physiques de 10% par
rapport à ceux utilisés lors de l’obtention des gains.

Pour terminer, le second sous-système étudié est une méthode pour la sélection optimale d’un
UAM dans une flotte en fonction de la tâche de saisie à accomplir. La sélection est effectuée
à partir d’un classificateur obtenu par apprentissage profond. Le classificateur permet de
choisir l’unité la plus apte à accomplir la tâche parmi ceux disponibles dans la flotte, en
prenant en entrée une description de l’environnement local, ainsi qu’une description de la
tâche. L’environnement est représenté sous la forme d’un nuage de points, tandis que la
tâche est définie par l’orientation de la saisie, sous la forme d’un quaternion. La position de
la tâche est considérée comme l’origine du nuage de points. Afin d’entraîner le classificateur,
une base de données de 20000 éléments est obtenue en combinant aléatoirement des bases de
données existantes pour générer des scènes et des tâches. Les étiquettes associées à chacun
des éléments sont obtenues par une méthode à base de planification de trajectoire pour
sélectionner l’UAM le plus efficace à accomplir la tâche. Le classificateur est entraîné avec la
base de données créée et obtient une précision de classification de 70%. Une expérience avec
des scènes réelles permet de confirmer une précision similaire et donc que l’entraînement avec
des données simulées peut être utilisé avec des scènes et des tâches réelles. La méthode de
sélection par classificateur est alors 100 fois plus rapide que celle à base de planification de
trajectoire.

vii

ABSTRACT

Unmanned aerial manipulators (UAMs) are aerial robotic systems combining the agility of
their multicopter base with the manipulation capabilities of the mounted robotic arm(s).
They can be used in situations where their maneuverability, small size and autonomy make
them interesting allies, such as in disaster recovery missions or in automated warehouses. The
tasks that can be performed by UAMs are varied; simple gripping, valves closing, perching
and force application are some of them. In order to accomplish these tasks, UAMs must
be equipped with numerous subsystems that interact with each other. Their versatility
complicates the design process, as it must take into account the tasks for which the UAM
will be used.

This thesis proposes the development of design support method for control and mission
planning of a UAM. When designing a UAM or any mechatronic product, integrated design
is necessary in order to obtain an optimal system. However, the complexity of designing
individual subsystems can force designers to focus on the detailed design of those most
critical. Design support methods allow designers to simplify this process and thus promote
integration and the integrated design aspect. Since the design requirements for subsystems
may vary depending on the task for which they are designed, these methods are developed
specifically for a static object grasping.

First, the tasks that can be performed are summarized in a taxonomy where they are cat-
egorized according to the type of contact required, the task description, the surrounding
conditions and the presence of temporal constraints. The categorization was obtained fol-
lowing a literature review of the field as well as a video information acquisition methodology,
in which the most recent advances in the field were collected. Like the grasping type tax-
onomies, this taxonomy supports the design of UAMs by simplifying the task description
and thus facilitating the definition of the design problem. It also allows the separation of
complex missions into multiple simple tasks.

Subsequently, the development of a design support method for a UAM controller is based
on the H∞ structured controller synthesis framework. The controller is designed on the
linearized dynamic modeling of the UAM. The latter is complex due to the highly coupled
interactions between the multicopter and the robotic arm. The general dynamic equations
of a UAM are derived from the dynamics of a multicopter combined with that of the robotic
arm, obtained by the recursive Newton-Euler method. The chosen controller structure is
gain-scheduled with respect to the robotic arm joint angles. The controller obtained by

viii

the structured H∞ synthesis method allows to stabilize the quadcopter base in addition to
answering the specifications defined at all positions of the robotic arm; a pole damping higher
than 0.4 and a steady state error inferior to 0.1% for the controlled signals. It is also robust
to variations in the physical parameter values up to 10% compared to those used during the
controller tuning.

Finally, the second subsystem studied is a method for the optimal selection of a UAM in a
fleet according to the grasping task at hand. The selection is performed based on a deep
learning classifier. The classifier is used to select the most suitable unit to perform the task
among those available in the fleet, using a description of the local environment and the task
as input. The environment is represented as a point cloud, while the task is defined by a
quaternion representing the grasping orientation. The position of the task is considered as
the origin of the point cloud. In order to train the classifier, a database of 20000 elements
is generated by randomly combining existing databases into novel scenes and tasks. The
labels associated with each of the features are obtained using a path planning based method
to select the most efficient UAM to accomplish the task. The classifier is trained with the
created database and reaches a classification accuracy of 70%. An experiment with real
scenes confirms similar accuracy levels and thus that the model trained with simulated data
can also be used with real scenes and tasks. The classifier-based selection method is 100
times faster than the one using path planning.

ix

TABLE DES MATIÈRES

DÉDICACE . iii

REMERCIEMENTS . iv

RÉSUMÉ . v

ABSTRACT . vii

TABLE DES MATIÈRES . ix

LISTE DES TABLEAUX . xii

LISTE DES FIGURES . xiii

LISTE DES SIGLES ET ABRÉVIATIONS . xv

CHAPITRE 1 INTRODUCTION . 1
1.1 Mise en contexte et définition du problème 1
1.2 Portée et objectifs de recherche . 3
1.3 Contributions . 4
1.4 Structure de la thèse . 5

CHAPITRE 2 REVUE DE LITTÉRATURE . 7
2.1 Définition et conception d’UAM . 7

2.1.1 Configuration des UAM . 7
2.1.2 Vue d’ensemble de la littérature concernant les UAM 10
2.1.3 Processus de conception appliqué aux UAM et méthode de support à

la conception . 10
2.2 Classification des capacités d’interaction comme outil de support à la conception 13
2.3 Support à la conception de sous-systèmes de guidage d’UAM associés aux

tâches de saisies . 16
2.3.1 Apprentissage profond et guidage . 19
2.3.2 Apprentissage profond avec nuages de points 22

2.4 Support à la conception de lois de commande d’UAM 25
2.4.1 Synthèse H∞ structurée . 27

2.5 Résumé des problématiques . 29

x

CHAPITRE 3 ARTICLE 1 : TASK TAXONOMY FOR AUTONOMOUS UNMANNED
AERIAL MANIPULATOR : A REVIEW . 31
3.1 Abstract . 31
3.2 Introduction . 32
3.3 Taxonomy Review and UAM Architecture 35

3.3.1 UAM Architecture and Subsystem Interactions 35
3.3.2 Taxonomy Literature Review . 37
3.3.3 Video Information Acquisition Methodology 37

3.4 Taxonomy and Examples . 39
3.5 Conclusion . 43

CHAPITRE 4 ARTICLE 2 : MODELING AND GAIN-SCHEDULED CONTROL OF
AN AERIAL MANIPULATOR . 46
4.1 Abstract . 46
4.2 Article Highlights . 47
4.3 Introduction . 47
4.4 Kinematic and Dynamic Modeling of an Aerial Manipulator 50

4.4.1 Kinematics and Dynamics of the Quadcopter 50
4.4.2 Dynamic Modeling of a Robotic Arm on a Floating Base 53
4.4.3 Motor Dynamics . 56
4.4.4 State equation . 56

4.5 Equilibrium and Linearization of the Dynamic Model 57
4.5.1 Equilibrium Definition . 57
4.5.2 Linearization . 58

4.6 Control Strategy . 59
4.6.1 Manipulator controller structure . 59
4.6.2 Controller structure . 60
4.6.3 Structured H∞ synthesis . 61
4.6.4 Gain-scheduling surfaces . 62

4.7 Simulations of the Closed-Loop Aerial Manipulator 62
4.7.1 Model and controller parameters . 62
4.7.2 Applying the controller on the nominal non-linear system 64
4.7.3 Comparison between non-scheduled and scheduled controllers 66
4.7.4 Monte Carlo simulations with physical parameters uncertainties . . . 68

4.8 Conclusion . 68

CHAPITRE 5 ARTICLE 3 : SELECTION OF UNMANNED AERIAL MANIPULA-

xi

TOR CONFIGURATIONS FOR PICKING TASKS IN CLUTTERED ENVIRON-
MENTS USING POINT CLOUD BASED DEEP LEARNING 70
5.1 Abstract . 70
5.2 Introduction . 71
5.3 Path planning based selection method . 74

5.3.1 Definition of the UAM fleet . 74
5.3.2 Definition of scenes and tasks . 77
5.3.3 Path planning and selection . 78

5.4 Dataset for picking tasks in cluttered environments 79
5.4.1 Dataset generation . 80
5.4.2 Dataset preparation for machine learning use 82

5.5 Deep learning based selection method . 83
5.5.1 AMPointNet and AMPointNet++ architectures 85
5.5.2 Test Results, Accuracies and Confusion Matrices 87
5.5.3 Experiment using real-life scenes . 92

5.6 Discussion . 93
5.6.1 Potential use . 93
5.6.2 Assumption and limitations . 95

5.7 Conclusion . 95
5.8 Appendix . 96

CHAPITRE 6 DISCUSSION GÉNÉRALE . 97
6.1 Utilisation des méthodes introduites dans un processus de conception 97
6.2 Livrables et contributions . 100
6.3 Disponibilité des outils . 102

CHAPITRE 7 CONCLUSION ET RECOMMANDATIONS 103

RÉFÉRENCES . 106

xii

LISTE DES TABLEAUX

Tableau 2.1 Comparaison qualitative entre les différentes catégories communes de
manipulateurs. Adapté de [15]. 8

Tableau 2.2 Avancée et domaine d’application des travaux sur les UAM composés
de multicoptères équipés de bras robotiques 11

Tableau 4.1 Notations for the Iterative Newton-Euler method 56
Tableau 4.2 Design requirements . 61
Tableau 4.3 Aerial manipulator parameter values 63
Tableau 4.4 Gain-scheduled controller coefficient values 64
Tableau 4.5 Outer loop gain values . 64
Tableau 5.1 Training parameters . 87
Tableau 5.2 Accuracies, prediction times, and parameter sizes for AMPointNet and

AMPointNet++ CNN and MoveIt based path planning method . . . 91
Tableau 5.3 Denavit-Hartenberg parameters of the UAM arms 96
Tableau 6.1 Liste des articles de journaux et de conférences. 100
Tableau 6.2 Contributions de recherche des travaux associés aux sous-objectifs. . . 101

xiii

LISTE DES FIGURES

Figure 2.1 Différents types de manipulateurs. a) Pince simple. Tiré de [20]. b)
Bras robotique à plusieurs DDL. Tiré de [18]. c) Charge suspendu par
câble. Tiré de [24]. d) Tige pour application. Tiré de [12]. 8

Figure 2.2 Multicoptères équipés de bras possédant des configurations différentes.
a) Tiré de [27]. b) Tiré de [30]. c) Tiré de [28]. d) Tiré de [31]. 9

Figure 2.3 Processus de conception en V. Adapté de [56]. 13
Figure 2.4 Relations entre guidage, navigation et commande. Adapté de [62] . . 15
Figure 2.5 Structure de base d’un réseau de type MLP 22
Figure 2.6 MLP partagé sur un nuage de points 24
Figure 2.7 Structure du réseau de neurones PointNet. Tiré de [90] 25
Figure 2.8 Modèle standard d’un système avec correcteur pour synthèse H∞ . . 28
Figure 3.1 An unmanned aerial manipulator developed in our laboratory. 32
Figure 3.2 Relation between mission, tasks and subtasks. 33
Figure 3.3 Schematic showing all interactions between the different subsystems in

a usual UAM architecture. 36
Figure 3.4 Distribution of tasks in video information acquisition methodology by

domain. 38
Figure 3.5 Distribution of manipulator configuration in video information acqui-

sition methodology by domain. 39
Figure 3.6 Taxonomy of tasks accomplishable by a single UAM. 45
Figure 4.1 Inertial frame, body frame and drone configuration 51
Figure 4.2 Robotic arm frames . 53
Figure 4.3 Inner loop controller structure . 61
Figure 4.4 Quadcopter CoM position in frame Fi and pitch angle θ (Nominal

parameters) . 65
Figure 4.5 Motor rotational speeds (Nominal parameters) 66
Figure 4.6 Time responses of xi and zi position for the proposed controller and a

nominal non-scheduled controller . 67
Figure 4.7 Monte Carlo simulations for 10% uncertainties on nominal parameters 69
Figure 5.1 UAM configurations where the arm joints are shown as coordinate sys-

tems as used in the URDF modeling 75
Figure 5.2 Reference frames of the system, the drone attached body frame is shown

on the UAM, while the tool must match the desired orientation . . . 76

xiv

Figure 5.3 Solved path planning for a random scene as created by the dataset
generation process . 79

Figure 5.4 Structure of the dataset . 83
Figure 5.5 Graphic summary of the presented methodologies and their interac-

tions, from the dataset generation to its use in the deep learning clas-
sifiers . 84

Figure 5.6 Architecture of the PointNet based AMPointNet CNN 85
Figure 5.7 Architecture of the PointNet++ based AMPointNet++ CNN 86
Figure 5.8 Effects of point cloud sizes on classification accuracy for AMPointNet

and AMPointNet++ architectures . 88
Figure 5.9 Confusion matrix of the best training obtained for AMPointNet . . . 89
Figure 5.10 Confusion matrix of the best training obtained for AMPointNet++ . 90
Figure 5.11 Classification and task accuracies of AMPointNet and AMPointNet++ 91
Figure 5.12 Point clouds extracted from real scenes, with the associated path plan-

ning based optimal configuration, and the predicted optimal configu-
rations from AMPointNet (AMPN) and AMPointNet++ (AMPN++) 94

Figure 6.1 Schéma représentant les entrées et sorties des différentes méthodes de
support à la conception développées dans cette thèse 97

Figure 6.2 Schéma représentent les étapes nécessaires à l’accomplissement d’une
tâche de saisie dans l’environnement local de l’UAM. Les sous-systèmes
traités dans cette thèse sont en couleur. 98

xv

LISTE DES SIGLES ET ABRÉVIATIONS

CoM Centre de masse / Centre of Mass
DDL (DOF) Degré de liberté / Degree of Freedom
DL Apprentissage profond / Deep Learning
GNC Guidage, navigation et commande / Guidance, Navigation and Control
IBVS Commande par vision avec images / Image-Based Visual Servoing
LQR Régulateur linéaire-quadratique / Linear-Quadratic Regulator
LTI Système linéaire à temps invariant / Linear Time Invariant System
MIMO Plusieurs entrées, plusieurs sorties / Multiple Inputs Multiple Outputs
ML Apprentissage machine / Machine Learning
MLP Perceptron à plusieurs couches / MultiLayer Perceptron
NED Système de référence Nord-Est-Sol / North-East-Down Reference

Frame
PID Contrôleur proportionnel-dérivé-intégral / Proportional-Integral-

Derivative Controller
ROS Robot Operating System
RRT Arbre aléatoire à exploration rapide / Rapidly-exploring Random Tree
SISO Une entrée, une sortie / Single Input Single Output
SO Sous-objectif / Sub-objective
UAM (AM) Manipulateur aérien / Unmanned Aerial Manipulator
UAV Véhicule aérien autonome / Unmanned Aerial Vehicle

1

CHAPITRE 1 INTRODUCTION

1.1 Mise en contexte et définition du problème

Les multicoptères sont des robots pouvant se déplacer dans les airs à l’aide de paires d’hélices
complémentaires. On les rencontre plus souvent sous les formes de quadricoptères, hexaco-
ptères ou octocoptères, possédant quatre, six ou huit hélices, respectivement. Leur facilité
d’utilisation, leur petite taille et leur manœuvrabilité favorisent leur usage dans différents
domaines tels que la surveillance des milieux côtiers [1] ou l’inspection de structures [2]. Leur
appropriation rapide, autant par la recherche académique que dans des utilisations com-
merciales, a favorisé le développement technologique de ces robots. Ils demeurent cependant
toujours limités par leur principale faiblesse, soit leur faible capacité à interagir avec leur en-
vironnement. En effet, les multicoptères ne peuvent que mesurer leur environnement à l’aide
de capteurs embarqués. C’est donc pour pallier ces manques que le concept de manipulateurs
aériens (UAM - Unmanned Aerial Manipulator) a été développé [3], combinant à la fois, une
plateforme aérienne et un système de manipulation dans un même robot aérien.

Alors que les UAM peuvent prendre plusieurs formes, les plus communs sont composés d’une
base aérienne sous forme de multicoptère ainsi que d’un bras robotique sériel à plusieurs
degrés de liberté (DDL). L’ajout d’un bras robotique permet à ces systèmes d’intervenir dans
des tâches et des missions plus complexes que les simples véhicules aériens autonomes (UAV
- Unmanned Aerial Vehicle), grâce aux avantages de la plateforme de type multicoptère et en
faisant varier les configurations du manipulateur ainsi que de son outil. La communauté de
robotique a identifié plusieurs avenues à explorer pour les années à venir, incluant notamment
la saisie d’objet automatisée, ainsi que la mitigation et le recouvrement lors de catastrophes
[4]. Ce type de contexte est tout à fait adapté à l’utilisation d’UAM qui peuvent alors exploiter
leur petite taille, leur manœuvrabilité et leur autonomie.

L’accomplissement de ces tâches demeure cependant difficile, en partie à cause de l’apparition
de nouveaux défis de conception s’ajoutant à ceux déjà présents pour les multicoptères. On
note notamment les défis liés à la conception des lois de commande qui doivent tenir compte
d’une dynamique complexifiée, [5], ainsi que ceux liés à la nécessité de concevoir des méthodes
de planification de tâches et de missions haut-niveau, c’est-à-dire la génération automatique
des différentes parties composant une tâche [4, 6].

Les UAM, comme tout système mécatronique, sont composés de sous-systèmes mécaniques,
électriques, logiciels et de commande [7]. Alors que cette multidisciplinarité favorise le dé-

2

veloppement de systèmes plus innovants [8], elle est aussi une source de potentiels échecs
de conception dus à l’augmentation de la complexité de l’architecture du système [9]. L’éla-
boration de méthodes de support à la conception pour certains sous-systèmes critiques lors
du design détaillé permettrait de faciliter le processus global de conception. Ces méthodes
permettraient aux concepteurs de se concentrer sur les étapes de conception intégrée, soit
celles qui permettent l’obtention d’un produit optimal en simplifiant la conception détaillée
par domaine [10]. La possibilité d’accomplissement de plusieurs tâches s’ajoute aux défis
de conception, favorisant le besoin de méthodes spécifiquement adaptées aux sous-systèmes
nécessaires et considérant les tâches pour lesquelles le système est conçu [11].

Les nombreuses possibilités de développements se rapportant aux UAM et à leurs capacités
d’interactions ne peuvent bien évidemment pas être toutes abordées dans une seule thèse. Le
cadre de ce travail a donc été limité à des cas où il était possible d’apporter un support à la
conception de sous-systèmes, appliqué à une tâche particulière.

Tout d’abord, l’ajout d’un bras robotique sous un multicoptère complexifie la dynamique
à cause des interactions entre les deux systèmes. Une loi de commande de vol permettant
de compenser les effets dynamiques du manipulateur et de stabiliser le système est alors
nécessaire [12]. Comme montré dans la revue de littérature au chapitre 2, plusieurs lois de
commandes non-linéaires ont déjà été proposées. Bien que performantes et robustes aux
variations, notamment au niveau des incertitudes de modélisation, elles sont profondément
ancrées dans la théorie de la commande non-linéaire, les rendant difficiles à analyser [13]
et à adapter à différentes configurations. Une méthode d’aide à la conception adaptée se
basant sur une optimisation pourrait simplifier l’obtention d’une telle loi de commande. Ceci
aurait pour effet de réduire les efforts nécessaires à son obtention, comme dans le cas des
lois de commande non-linéaires devant être ajustées par des experts et où l’obtention de
performances dynamiques désirées est plus difficile à atteindre.

Les capacités d’interactions des UAM ouvrent la porte à de nouveaux types de tâches en
opposition aux multicoptères [14]. Cependant, les travaux effectués sont encore très prélimi-
naires et appliqués au cas par cas, sans cadre général permettant de classifier les tâches et
de guider le processus de design du manipulateur aérien pour ces tâches spécifiques. L’in-
troduction de ces tâches amène aussi de nouvelles possibilités de planification haut-niveau
des tâches [3], sujet qui est très peu abordé dans la littérature [15]. La planification haut-
niveau inclut les prises de décisions et la planification de missions et est résumée par le terme
guidage. Un exemple de ce type de sous-système est utilisé dans une mission de sauvetage
après une catastrophe, où un UAM doit reconnaître des victimes humaines et leur déployer
un bracelet émetteur pour leur sauvetage et suivi [16]. Comme le guidage doit généralement

3

être adapté à son utilisation spécifique, une méthode de support à leur conception faciliterait
leurs développements et implémentations.

Le domaine de la manipulation robotique aérienne est encore suffisamment récent rendant
l’introduction de nouveaux sous-systèmes soit encore possible et même nécessaire. L’arrivée
de l’apprentissage machine et de l’apprentissage profond vient contribuer au développement
d’UAM plus autonomes, notamment au niveau de la prise de décision et de l’identification [4].
Ceci s’ajoute aux questions de recherches ouvertes communes au domaine de la robotique
mobile, telles que les applications de visions par ordinateur, la localisation et la cartographie
simultanée, ou encore l’interaction physique avec l’environnement, qui ne sont pas couvertes
par cette thèse. Le développement de méthodes de support à la conception faciliterait l’im-
plémentation et le design d’UAM et favoriserait leur déploiement à grande échelle, pour un
usage courant.

1.2 Portée et objectifs de recherche

En plus des défis habituels liés à la conception de systèmes mécatroniques, comme leur
multidisciplinarité et leur complexité, chaque sous-système d’un UAM est techniquement
complexe à concevoir. Puisque leur processus de conception varie selon les tâches à accomplir,
il a été choisi pour cette thèse de travailler avec des tâches de saisies d’objets. L’objectif
principal de ce travail est donc de développer des outils et des méthodes de support à la
conception de sous-systèmes d’un UAM accomplissant spécifiquement des tâches de saisies
d’objets. Afin d’accomplir cet objectif, trois sous-objectifs (SO) sont définis permettant de
cadrer et d’orienter le travail.

SO1 : Identifier et classifier les tâches pouvant être accomplies par un UAM.

Avant même de développer des méthodes de support à la conception pour les UAM, il est
important de bien définir et de catégoriser tous les types de tâches pouvant être effectuées par
ceux-ci, incluant la saisie d’objet. Cette catégorisation peut servir de guide tout au long du
processus de conception afin d’orienter les choix et de réduire la complexité des systèmes, et ce
faisant, vient faciliter la conception intégrée [9]. Les sous-systèmes intervenant dans un UAM
ainsi que leurs interactions doivent être identifiés pour guider le processus de conception.

Parmi les sous-systèmes intervenant lors d’une tâche de saisie d’objet, deux ont été choisis
pour répondre à l’objectif principal et ainsi développer des méthodes de support à la concep-
tion. Le premier, essentiel au fonctionnement d’un UAM, est le correcteur interne assurant
sa stabilité et son positionnement (SO2). Le second est une méthode permettant la prise de
décision et la sélection d’un UAM optimal parmi une flotte afin d’accomplir une tâche de

4

saisie dans un environnement encombré (SO3).

SO2 : Développer une méthode de support à la conception d’une loi de commande interne
pour un UAM effectuant une tâche de saisie d’objet statique.

Un manipulateur effectuant une tâche de saisie statique où l’objet n’est pas en mouvement né-
cessite une commande en position précis. La méthode permet alors de supporter la conception
détaillée d’une telle loi de commande afin d’atteindre les performances dynamiques désirées.
Cette méthode de support à la conception pourrait alors simplifier l’obtention d’une loi de
commande lors d’éventuelles modifications aux paramètres physiques de l’UAM durant le
processus de conception.

SO3 : Développer un cadre supportant la conception d’un sous-système de prise de décision
pour la planification de multiples tâches de saisies accomplies par une flotte d’UAM.

Puisque les UAM ont des capacités d’interactions supérieures aux UAV, des algorithmes de
guidage sont nécessaires et doivent permettant d’accomplir ces tâches. Afin de profiter des
différentes capacités d’interactions liées à différentes configurations d’UAM, un sous-système
permettant la sélection d’une configuration optimale au sein d’une flotte disponible afin
d’accomplir une tâche de saisie dans un environnement précis serait intéressant afin de mieux
répartir le travail complet de la flotte. Comme cette planification dépend de l’application
désirée, une méthode vient supporter le travail de conception pour différentes applications.
Si une modification de la flotte ou de l’application survenait lors de la conception du système
les méthodes proposées seraient en mesure de facilement faire face à ces changements.

La combinaison de ces trois sous-objectifs permet donc d’accomplir l’objectif principal et
d’introduire des méthodes de support à la conception d’UAM adaptées à des tâches de saisie
d’objets. Bien évidemment, d’autres sous-systèmes sont aussi impliqués dans l’accomplisse-
ment de ces tâches, tels que la vision par ordinateur ou la localisation, mais n’ont pas été
traités dans cette thèse. Il est important de mentionner que ce travail ne présente pas une
méthodologie permettant la conception complète d’un UAM, ni n’automatise les étapes de
conceptions d’un tel système. Les outils et les méthodes de support à la conception qui sont
présentés peuvent être utilisés dans différents cadres et leur fonctionnement est démontré à
l’aide d’exemples en simulation.

1.3 Contributions

Par l’intermédiaire de trois articles, cette thèse contribue au développement d’outils et de mé-
thodes supportant la conception des sous-systèmes d’UAM identifiés par les sous-objectifs de
recherche. Le chapitre 4 présente dans un article de revue, une méthode supportant la concep-

5

tion d’une loi de commande à gains séquencés pour UAM munis d’un bras robotique à 2DDL.
L’utilisation de la synthèse H∞ supporte le problème de conception de loi de commande en
ne demandant qu’une définition des objectifs dynamiques et des paramètres modélisant le
système à commander au concepteur. L’obtention de la loi de commande est obtenue par
optimisation, facilitant ainsi son calcul lors d’itérations durant le processus de conception de
l’UAM, notamment lors de modification des paramètres physiques du système.

Le chapitre 5 développe, aussi dans un article de revue, un support à la conception d’un
sous-système de sélection optimal d’UAM parmi une flotte pour une tâche de saisie dans
un environnement encombré. Ce travail contribue au développement d’un sous-système de
guidage pour UAM, qui sont peu communs dans la littérature. La conception de ce sous-
système est supportée par la possibilité d’utiliser les méthodes présentées dans tout contexte
impliquant des tâches de saisies d’objets statiques. Le concepteur peut définir la flotte utilisée
et entraîner le prédicteur introduit par apprentissage machine. La méthode présentée peut
aussi être utilisée durant la conception de la configuration d’un manipulateur en fonction
d’une ou plusieurs tâches à accomplir.

Alors que les méthodes développées aux chapitres 4 et 5 supportent la conception détaillée
de sous-systèmes, le chapitre 3 présente une taxonomie des tâches pouvant être accomplie
par les UAM, contenue dans un article de conférence. Cette catégorisation utilise des blocs
élémentaires pour décrire des missions complexes. Elle permet de définir les tâches de manières
simples en fonction des capacités requises par l’UAM. Elle permet aussi de cadrer la tâche
sélectionnée pour les deux autres travaux de cette thèse, soit la saisie d’objets statiques.

Le chapitre 6 discute, dans un contexte de conception, des relations existantes entre les
différentes méthodes et outils développés dans cette thèse. Les méthodes introduites sont
indépendantes du processus de conception utilisé et n’interviennent pas directement dans
celui-ci. Elles vont plutôt supporter certaines étapes du processus de conception en orientant
les concepteurs lors de la phase conceptuelle, en facilitant leur conception détaillée et leurs
modifications lors d’itérations de design. Ce faisant, plus de temps pourra être consacré par
les concepteurs aux étapes d’intégrations favorisant l’obtention d’un produit optimisé.

1.4 Structure de la thèse

Le chapitre 2 présente une revue de littérature portant sur les méthodes de support à la
conception de sous-systèmes d’UAM dans un contexte de processus de conception intégrée. Il
inclut aussi des pistes de solutions pour les problématiques identifiées qui servent de base aux
travaux présentés dans les chapitres suivants. Le chapitre 3 propose une taxonomie des tâches

6

pouvant être accomplies par un UAM en plus d’identifier les sous-systèmes présents dans un
UAM. Par la suite, le chapitre 4 présente une méthode de support à la conception d’une loi
de commande interne pour UAM s’appuyant sur la synthèse H∞ structurée. Le chapitre 5
détaille une méthode de sélection d’UAM au sein d’une flotte pour l’accomplissement optimal
de tâches de saisies d’objets dans des environnements encombrés. Le chapitre 6 contient
une discussion sur l’utilisation de ces méthodes, les contributions de recherche ainsi que les
implémentations effectuées. Finalement, le chapitre 7 conclut sur l’ensemble du travail et
présente les directions futures.

7

CHAPITRE 2 REVUE DE LITTÉRATURE

Ce chapitre présente une revue de littérature en lien avec les objectifs de recherche. Puisque
chaque chapitre comporte sa propre revue de littérature en introduction des articles, le but
n’est pas de répéter ici la même information. Les travaux présentés dans cette revue le sont
d’un point de vue de support à la conception d’UAM en fonction des tâches à accomplir.
La section 2.1 présente les UAM à travers une revue de la littérature d’un point de vue de
conception et présente le processus de conception associé à ce type de systèmes. Les avancées
techniques connexes sont alors laissées à l’introduction de chacun des chapitres. La section
2.2 présente les avancées en classification des capacités d’interactions des UAM dans le but
d’un éventuel outil de support à la conception. Les sections 2.3 et 2.4 présentent une revue
des outils de support à la conception de systèmes de guidage et de commande respectivement.
Elles possèdent chacune la même structure, où les problématiques associées sont présentées
au début et sont suivies d’une introduction à une piste de solution.

2.1 Définition et conception d’UAM

2.1.1 Configuration des UAM

Un UAM est un système robotique sans équipage composé d’une base aérienne à laquelle est
ajoutée des capacités de manipulation ou d’interaction avec l’environnement [6]. La plate-
forme aérienne prend généralement la forme d’un multicoptère, d’un hélicoptère, d’un avion
ou d’un ballon gonflable en modèles réduits [6], regroupés sous le terme UAV. Dans le cadre
d’un UAM, la base aérienne peut être de formats assez variables, allant de drones pos-
sédant une masse inférieure à un demi-kilogramme [17] à un octocoptère ayant près d’un
mètre d’envergure [18]. Les systèmes servant à l’interaction avec l’environnement sont aussi
de configurations variées. Certains UAM sont équipés de pinces simples situées sous la base
aérienne, [19–21] ou encore de câbles servant à tirer sur les objets (slung-load) [22–24]. Ce-
pendant, l’utilisation de bras robotiques à plusieurs DDL tend à être favorisée grâce à leur
capacité de manipulation élevée [15]. Quelques exemples de configurations utilisant ces divers
outils de manipulations ou d’interactions sont illustrés à la figure 2.1. Ceux-ci posent cepen-
dant de plus grands défis de conception et d’implémentation [15], notamment au niveau de la
stabilisation, en comparaison aux autres types de manipulateurs. Le tableau 2.1 effectue une
comparaison qualitative entre les différentes catégories d’UAM. L’utilisation de bras robo-
tiques est fortement associée aux tâches de saisie autonome d’objet grâce à la portée des bras

8

robotiques, et à leur capacité de compenser pour l’erreur en position du drone directement.
Cette revue de littérature, ainsi que le reste de la thèse, concerne exclusivement les UAM
conçus à partir d’une base de type multicoptère équipée d’un bras robotique sériel à plusieurs
DDL.

Figure 2.1 Différents types de manipulateurs. a) Pince simple. Tiré de [20]. b) Bras robotique
à plusieurs DDL. Tiré de [18]. c) Charge suspendu par câble. Tiré de [24]. d) Tige pour
application. Tiré de [12].

Les capacités d’interaction des UAM amènent le besoin de développer de nouvelles méthodes
et outils pour des utilisations dans des contextes plus variés et répondant aux nouvelles
problématiques spécifiques aux UAM en plus de celles affectant les UAV seuls. Un point
fondamental à leur conception est la nécessité de stabiliser un système instable possédant,
maintenant, un centre de gravité devenu dynamique à cause du bras robotique [5] par une loi

Tableau 2.1 Comparaison qualitative entre les différentes catégories communes de manipula-
teurs. Adapté de [15].

Type de
manipulateur Difficulté Capacité de

manipulation Stabilité Tendance en
recherche

Pince Faible Faible Élevé Diminue

Cable Moyenne Moyenne Moyenne Diminue
lentement

Bras
robotique Élevée Élevée Moyenne Augmente

rapidement

9

de commande adéquate. Au niveau de la conception mécanique, le choix du nombre de DDL
du bras devient un choix de conception important. Ainsi, une configuration possédant un bras
à 2DDL [25] peut permettre la saisie d’objet dans des conditions où ceux-ci sont facilement
accessibles et sont dans des environnements peu encombrés tout en augmentant la charge utile
(payload) possible grâce à un bras léger [26]. D’un point de vue mécanique, l’augmentation
du nombre de DDL augmente le nombre d’actionneurs et de pièces de structure nécessaires
ce qui diminue la charge utile disponible [12]. L’augmentation du nombre de DDL permet
l’accomplissement de tâches nécessitant une capacité de mouvement du bras plus élevée que
celle d’un bras planaire, comme l’ouverture de tiroir [27] ou l’inspection par contact [28]. À
l’autre bout du spectre, des bras robotiques redondants à 7DDL permettent l’accomplisse-
ment de tâches dans des environnements encombrés [18]. La redondance des actionneurs par
rapport à la pose de l’outil peut être utilisée pour minimiser l’effet du déplacement du bras
sur la base [29]. Diverses configurations d’UAM possédant des bras robotiques sont illustrées
à la figure 2.2. Il est évident que le choix de la configuration de l’UAM devient fortement lié
à son utilisation désirée.

Figure 2.2 Multicoptères équipés de bras possédant des configurations différentes. a) Tiré
de [27]. b) Tiré de [30]. c) Tiré de [28]. d) Tiré de [31].

10

2.1.2 Vue d’ensemble de la littérature concernant les UAM

Alors que les UAM sont de plus en plus employés dans l’accomplissement de tâches diverses
[15], les méthodes de support à la conception pour UAM sont rares dans la littérature.
Chaque laboratoire de recherche travaillant sur les UAM utilise une plateforme différente,
et recommence les étapes de conception du début, notamment au niveau du développement
de la structure, de l’implémentation d’un correcteur de vol et des différentes capacités de
perception. Le tableau 2.2 présente les avancées et résultats des plus grands groupes de
recherche dans le domaine travaillant spécifiquement sur les manipulateurs aériens équipés
de bras robotiques à plusieurs DDL, selon le regroupement des groupes de recherche effectué
par Ding et al. (2019) [15]. Les travaux publiés concernent majoritairement des stratégies de
commande, avec ou sans vision, pour différentes configurations d’UAM. Très peu de travaux
abordent d’autres aspects, tels que la planification de trajectoire, les capacités de décision
ou le support à la conception. La plupart des laboratoires, et même parfois pour chaque
projet à l’intérieur d’un même laboratoire, repartent d’une nouvelle plateforme pour étudier
la dynamique et la commande. L’exploration des autres sous-systèmes nécessaires à un UAM
autonome dans des contextes de tâches, tels que la navigation ou le guidage est alors peu
présente dans la littérature, comme montré au tableau 2.2.

2.1.3 Processus de conception appliqué aux UAM et méthode de support à la
conception

Les UAM sont des systèmes mécatroniques au sens où ils combinent la mécanique, l’élec-
tronique, la commande et le logiciel, afin d’obtenir un produit multidisciplinaire [7]. La
conception d’UAM doit donc tenir compte des particularités de conceptions des systèmes
mécatroniques, tels que les problèmes de communications dus à la multidisciplinarité, la
complexité technique des systèmes, ainsi que la difficulté à obtenir une vue d’ensemble du
système [53]. Le processus de conception des systèmes mécatroniques comporte typiquement
les étapes de design conceptuel, détaillé et de production [54]. Il peut aussi inclure le design
préliminaire avant le design détaillé. L’étape de design conceptuel permet la génération de
plusieurs solutions potentielles, en incluant l’architecture du système [55], ainsi que la sélec-
tion d’un concept désigné répondant le mieux au cahier des charges. Le design préliminaire
permet de sélectionner de grandes lignes directrices pour chacun des paramètres essentiels du
système. L’étape de design détaillé sert alors à définir et concevoir chacun des composants du
produit afin de satisfaire les requis et fonctions identifiés. Finalement, l’étape de production
consiste en la sélection des procédés et méthodes utilisées pour la fabrication, s’il y a lieu.

Alors qu’habituellement ce processus est fait de manière séquentielle, c’est-à-dire en accom-

11

Tableau 2.2 Avancée et domaine d’application des travaux sur les UAM composés de multi-
coptères équipés de bras robotiques

Configuration
de DDL Avancée

C
on

tr
ôl
e

D
es
ig
n

V
isi
on

A
ut
re

9 Design mécanique / commande en force [29]
2×2 Cadre de travail pour ouverture de valve [32]
- Cadre de simulation [5]
4 Commande en position par PID [33]
2 Commande par prédiction de modèle [31]

2×2 Commande en position pour ouverture de
valve [34]

4 Commande adaptative hybride [35]

2×2 Classification des interactions/ IBVS/
modélisation du couplage [36]

n Commande à couches multiples [37]
3 Commande par impédance cartésienne [38,39]
5 IBVS relatif à la cible de saisie [40]
5 IBVS coopératif [41]
6 IBVS hybride avec la position [42]

6 IBVS hybride avec la composition hiérarchique de
la tâche [43]

5 IBVS hybride avec priorisation de la tâche [44]
5 Design mécanique et éléctrique [45]
5 Commande par contact de force [28]

2×5 Conception de bras inspiré par les bras humains /
backstepping intégral / estimation de couple [46]

7 Commande par backstepping [18]
3 Commande par backstepping [47]
6 Commande comportementale coordonnée [48]

6
Commande par impédance avec module de
cinématique inverse et de correction en

position [30]
3 Ouverture de tiroir pré-planifié [27]
2 Commande adaptative pour tâche de saisie [26]

2 Planification de trajectoire par RRT* et
commande pour coopération [49]

2 Commande adaptative avec estimation de
paramètre [25]

2 IBVS avec commande adaptative [50]

2 Planification de trajectoire par RRT* et primitive
de mouvement [51]

2 Commande adaptatif glissant (sliding mode) avec
estimateur de charge [52]

12

plissant chaque étape pour chacun des domaines nécessaires au fonctionnement du système
(la structure, la commande, l’électronique, etc.), la conception intégrée (concurrent design),
où tous les domaines sont considérés simultanément lors des étapes de conception, permet
d’obtenir un design optimisé [10]. Le modèle en V (V-Model) est un exemple de modèle choisi
ici pour représenter la conception intégrée [56], et est illustré à la figure 2.3. À chacune des
étapes de conceptions, on commence par considérer l’intégralité du système afin d’identifier les
possibles problèmes d’intégrations et de conception, notamment dues à la multidisciplinarité.
Par la suite, surviennent les étapes de conception spécifiques aux domaines, où chaque sous-
système est conçu individuellement. Lors de cette étape, chacun des composants de l’UAM
doit être analysé, modélisé et conçu par des experts dû à leur complexité technique. Par
exemple, beaucoup d’efforts sont mis sur la commande de vol qui est essentielle à l’utilisation
de l’UAM. Finalement, l’intégration permet d’intégrer les sous-systèmes conçus indépendam-
ment. Le processus de conception possède habituellement plusieurs boucles de retour entre
les différentes étapes (redesign) afin d’apporter les modifications requises à l’obtention d’un
système optimisal.

Alors que le modèle en V est utilisé pour illustrer le processus de conception, les méthodes
et outils développés dans cette thèse peuvent s’appliquer à toute méthodologie de conception
choisie. Les outils des chapitres 4 et 5 viennent supporter la conception des sous-systèmes spé-
cifiques d’un point de vue technique, en retirant le besoin d’avoir des experts des domaines.
Ceci implique donc que la conception d’UAM utilise les sous-systèmes tels que présentés dans
les chapitres mentionnés. Le chapitre 3 quant à lui présente une taxonomie qui supporte qua-
litativement la description des missions et tâches de l’UAM, mais n’agit pas sur le processus
de conception lui-même.

Une solution potentielle est de simplifier la tâche de conception dans les étapes spécifiques au
domaine, notamment au niveau du design détaillé, afin que l’équipe de conception puisse se
concentrer sur l’intégration, ce qui devrait permettre l’élaboration d’un système optimisé dans
son ensemble [10]. Le développement de certains sous-systèmes peut devenir contraignant si
des modifications sont apportées durant le processus de conception, dû au temps requis à
leur développement. Ceci a été identifié comme un défi potentiel lors de la conception de ce
type de système [53]. Avoir des méthodes facilitant la conception de ces sous-systèmes plus
complexes permettrait alors l’implémentation de cette solution.

Les besoins spécifiques de conception pour les robots autonomes comme les UAM font en
sorte que d’éventuelles méthodes de support à la conception doivent considérer leur utilisa-
tion dans des environnements encombrés ou dynamiques [57], en plus des requis usuels asso-
ciés aux robots comme la charge utile, l’autonomie et la manœuvrabilité. Ces outils doivent

13

Figure 2.3 Processus de conception en V. Adapté de [56].

alors permettre la modélisation du monde physique. Dans le cas d’un UAM, ces environne-
ments peuvent varier à cause de la variété de tâches pouvant être accomplies, à l’opposé,
par exemple, d’un bras robotique dédié à une seule tâche en chaîne de montage [58]. Un
autre besoin de conception est la nécessité de calculs précis pour les sous-systèmes essentiels,
comme le correcteur, qui pourraient être supportés par des méthodes adaptées [56].

De toutes les manières possibles pour supporter la conception d’UAM, un outil de classifi-
cation de tâches utile à l’étape de design conceptuel ainsi que les méthodes spécifiques au
sous-système de commande et de guidage pour le design détaillé ont été choisis pour cette
thèse. Ces méthodes seront appliquées spécifiquement dans le contexte de tâches de saisies
d’objets.

2.2 Classification des capacités d’interaction comme outil de support à la concep-
tion

Les UAM permettent l’accomplissement de tâches et de missions très variées, dans di-
vers contextes et environnements. Ils ont été utilisés dans des situations aussi diverses que
la construction [59], le transport d’objets [26], l’ouverture de valves [34], l’inspection par

14

contact [28] et même l’écriture [60]. La plupart des missions complexes ont cependant une
tâche commune, qui est aussi la tâche la plus étudiée dans la littérature, soit la saisie d’ob-
jets [18]. Elle est souvent employée comme étude de cas pour la vision par ordinateur, de
la commande en position et de la conception mécanique des manipulateurs. De manière
générale, les tâches sont habituellement choisies comme étude de cas, pour démontrer les
diverses capacités introduites. Rarement, les aspects plus haut niveau des tâches comme la
planification de la mission sont abordés, comme démontré dans le tableau 2.2.

L’accomplissement de tâches différentes nécessitera évidemment des capacités différentes.
D’un point de vue de commande, la saisie et le transport de petits objets nécessiteront une
correction en position précise de l’outil, robuste aux variations induites autant par la saisie
que par les perturbations du multicoptère [26]. D’un autre côté, une tâche peut nécessiter
une commande plus précise en force, par exemple pour appuyer sur un bouton pendant une
période de temps [61]. Le même besoin s’applique pour les sous-systèmes haut-niveau tel
que ceux de navigation et de guidage [3]. Les sous-systèmes d’un UAV sont généralement
classifiés en trois catégories, le guidage, la navigation, et la commande (GNC- Guidance,
Navigation and Control), comme illustré à la figure 2.4. Alors que la commande traite de la
gestion des entrées du système pour obtenir un comportement dynamique désiré, la navigation
quant à elle, s’occupe de mesurer, de suivre les états du système et de gérer le déplacement
du système d’un point à l’autre [62]. Le guidage sert alors de pilote et d’intelligence et
regroupe les algorithmes servant à la génération d’objectifs, de trajectoires et à la coordination
pour un seul ou une équipe de UAM [63]. L’ensemble des systèmes GNC nécessaires pour
l’accomplissement d’une tâche pourrait alors devenir un critère permettant une classification
haut-niveau, c’est-à-dire que chaque tâche de cette classification nécessiterait un ensemble
différent.

Des classifications ont déjà été développées dans d’autres contextes que les UAM. Les plus
nombreuses, en demeurant dans le domaine de la robotique, sont les taxonomies pour les
types de saisies adaptés à des mains humaines [64–67] et servent d’outils de support à la
conception de systèmes [65]. Par exemple, en aidant à mieux comprendre les configurations de
préhensions humaines, les roboticiens peuvent s’en servir comme guide et outil à la sélection
et conception de systèmes de saisies, permettant de réduire la complexité des systèmes [65],
et, de ce fait, facilitant le processus de conception [9]. Plus spécifiquement pour les UAM,
leurs capacités à interagir de différentes manières avec leurs environnements augmentent la
complexité de conception d’un système tentant d’effectuer ces tâches. C’est dans ce contexte
qu’une taxonomie possédant un plus haut degré d’abstraction permettant de classifier les
actions possibles devient utile [11]. Il devient alors un outil permettant de catégoriser les
taches en fonctions des sous-systèmes nécessaires se généralisant aussi pour des missions

15

Figure 2.4 Relations entre guidage, navigation et commande. Adapté de [62]

regroupant de multiples tâches.

Certaines classifications ont déjà été accomplies pour les UAM, au niveau des différentes
méthodes de commande en fonction de l’effort que l’UAM doit effectuer. Une première ca-
tégorisation définit trois types d’interactions, soit le couplage momentané, le couplage faible
ou le couplage fort [36, 68]. Le premier type de couplage représente la saisie d’un objet, qui
nécessite l’application d’une force momentanée et où la cible devient un poids supplémen-
taire statique par la suite. Le second représente l’application d’une force faible en vol par
l’UAM, tandis que le dernier représente un couplage qui soutient le poids de l’UAM, comme
une manœuvre de perchage. Une seconde classification des capacités des UAM regroupe les
interactions en quatre classes, soit saisir, interagir, s’accorder et manipuler [15], sans cri-
tères d’application précis. Des critères plus spécifiques seraient nécessaires pour transformer
une telle classification en véritable outil de support à la conception. Ces concepts servent à
choisir les lois de commande à utiliser ainsi qu’à identifier les requis du manipulateur dans
leur ensemble. De manière générale, une telle classification des tâches serait avantageuse au-
tant durant le design conceptuel, permettant de simplifier la conception, que pour le design

16

détaillé, où elle pourrait être utilisée en planification de mission.

2.3 Support à la conception de sous-systèmes de guidage d’UAM associés aux
tâches de saisies

Comme défini précédemment, le guidage peut être vu comme étant les capacités de pilotage
autonome ou de raisonnement de l’UAM [63], et est nécessaire à l’accomplissement de tâches
de manipulation avancée. La conception de ce type de sous-systèmes varie en fonction de la
tâche et de l’utilisation à laquelle ils sont prévus [3]. Afin de faciliter leur conception lors de
la conception détaillée, il faudrait proposer des méthodes de support à la conception flexibles
et associés aux tâches pouvant être accomplies par des UAM.

Certains défis liés à la conception de sous-systèmes de guidage en général ont été identifiés [62].
Ces défis ont été cadrés pour la conception d’UAV, mais s’appliquent aussi aux UAM.

— Les systèmes de guidage nécessitent de l’information provenant de systèmes de percep-
tion, qui comportent eux-mêmes leurs problèmes et font encore l’objet de recherches
actives

— L’implémentation embarquée de systèmes de guidage nécessite une puissance de cal-
cul qui est souvent déjà utilisée par d’autres sous-systèmes plus essentiels, comme la
perception, la navigation et la commande.

— Le manque de tests standardisés (benchmark) supportant le développement de nou-
velles méthodes rend la comparaison et l’évaluation de tels sous-systèmes difficiles.

En réponse à ce dernier point, des mesures de références ont été proposées [69]. Celles-
ci sont divisées en deux catégories : des tests pour les manipulateurs seuls, ainsi que des
tests pour l’UAM dans son ensemble. Les tests pour le manipulateur seul proposent des
mesures sur la précision de la trajectoire, du positionnement et de la répétabilité, de la
capacité de charge utile, de la commande de force ainsi que de la détection de collision et le
temps de réaction, chacun possédant différents critères proposés. Les mesures de performances
concernant l’UAM reposent sur la mesure de différents critères lors d’une tâche simple de
saisie d’objet, d’application de force de contact et de positionnement du multicoptère. Ce
travail d’évaluation comparative standardisée [69] peut servir de support à la conception aux
étapes conceptuelles et préliminaires, surtout d’un point de vue mécanique afin d’obtenir des
lignes directrices sur les performances devant être atteintes dans différents contextes pour
l’UAM.

Le nombre de publications concernant les systèmes de guidage haut-niveau pour UAM est
faible, comme montré dans le tableau 2.2, et ce, dû notamment aux défis de conception

17

mentionnés. Malgré cela, le guidage est essentiel pour le développement d’UAM autonomes
effectuant des missions et des tâches complexes. Les quelques sous-systèmes de guidage exis-
tants sont proposés pour des contextes très précis. La planification d’une mission dans le cas
où une catastrophe amène le besoin d’une fermeture d’urgence de valves à l’aide d’un UAM a
été présentée [14,32], où l’UAM doit détecter et identifier des valves selon leurs géométries et
caractéristiques relativement faciles à reconnaître. Par la suite, des méthodes de commande
se basant sur la configuration d’un UAM particulier sont utilisées pour accomplir la tâche.
Un autre article propose aussi d’employer des UAM dans le cadre de missions de recherches
et de sauvetages. De manière autonome, un UAM reconnaît des victimes humaines incons-
cientes et leur déploie un bracelet émetteur afin qu’elles puissent être suivies et retrouvées
par les équipes d’urgences [16]. Ces travaux utilisent un seul UAM pour accomplir une tâche
répétitive. Dans un contexte où les environnements et la description de la tâche changent de
manière drastique, il peut devenir pertinent d’avoir une flotte d’UAM composée de plusieurs
configurations différentes afin d’exploiter leurs forces respectives dans les différentes tâches
et conditions d’utilisations.

Au niveau des sous-systèmes de guidage développés pour les UAV, ceux-ci servent surtout
dans le cas où un UAV doit couvrir une grande surface dans le cadre d’une mission de re-
cherche [70], ainsi que pour la planification et le suivi de trajectoire, en ayant des objectifs
prédéfinis. Par exemple, la détection de marqueurs pré-calibrés combinée avec les équations de
transformations de caméra servent à générer les cibles pour la planification de trajectoire [14].
Ce travail suppose l’accomplissement de tâches planifiées sur des objets déjà connus. Les
autres systèmes de guidage proposés concernent la planification de trajectoires longues dis-
tances [3], dans divers environnements. Notamment, des capacités de guidage sont proposées
dans le cas de missions de recherches autonomes par UAV lors de vol sans visuel, afin de
générer leurs objectifs et par la suite obtenir des trajectoires [71]. Des UAV sont utilisés de
manière collaborative afin d’accomplir des tâches de chargement et déchargement de caisses
en contexte d’urgence. Un algorithme basé sur la gestion d’agents permet de gérer l’utilisation
de cette flotte de manière optimale toute laissant une place à des décisions humaines [72].
Ce type d’algorithme suppose cependant que chaque UAV peut accomplir la même tâche
simple de la même manière, ce qui n’est pas le cas dans une flotte d’UAM hétérogène. Ces
sous-systèmes de guidage, bien qu’utiles dans la plupart des cas pour des missions autonomes
avec un UAM, ne considèrent pas la planification de tâches en fonction de l’environnement,
ni l’utilisation des différentes configurations d’UAM d’une flotte.

Plusieurs travaux ont été accomplis au niveau de la coordination de plusieurs UAV. Il est
important ici de distinguer coordination et coopération où dans le premier, les UAV/UAM
travaillent dans un même espace sans interaction entre eux (autre que d’éviter de se nuire),

18

tandis que dans le second, plusieurs unités peuvent travailler à accomplir la même tâche en
s’entraidant [62]. Cette thèse n’aborde pas la coopération. La coordination de plusieurs UAV
est surtout traitée comme un problème de commande optimale ou de commande distribuée.
Par exemple, une équipe d’UAV accomplit un vol où un seul des UAV possède un plan de
vol préétabli, et où le reste de l’équipe le suit à l’aide d’informations reçues de ce maître [73].
Une condition minimale pour l’observabilité de la position relative entre les agents robotiques
a été démontrée et satisfaite à l’aide d’un ensemble de capteurs incluant un capteur de
distance, un accéléromètre, un gyroscope et un magnétomètre [74]. Un algorithme permettant
d’estimer la position relative à l’aide du même ensemble de capteurs a aussi été créé [75].
Des travaux ont aussi été effectués sur la planification de manœuvres d’évitement de collision
dans la circonstance où deux UAV se retrouvent face à face et réussissent à se détecter
visuellement. [76]. Finalement, un cadre décisionnel pour la coopération d’UAV avec des
niveaux d’autonomie différents a été proposé [77]. Ces travaux, bien qu’adaptés à tout type
de tâches, ne s’appliquent qu’aux déplacements et à la planification de trajectoires lors du vol.
Cette étape est bien évidemment cruciale pour un UAM qui aurait une mission à accomplir
dans un environnement large. Cependant, les capacités de manipulations accrues posent de
nouveaux problèmes qui doivent être résolus à l’aide de méthodes de guidage adaptées aux
tâches et contextes particuliers aux UAM. Les travaux de cette thèse s’intéressent plutôt à
la commande de vol d’un UAM et la sélection et ne traitent pas de ces problématiques.

Une équipe d’UAM où chaque unité possède sa propre configuration nécessite une gestion
haut-niveau pour l’optimisation de l’allocation des tâches et des missions. Dans le cas d’une
flotte effectuant des tâches de saisie, un algorithme effectue une sélection optimale et auto-
nome d’une configuration parmi la flotte disponible en fonction des conditions. Un contexte
possible d’utilisation de ce sous-système pourrait être l’accomplissement de tâches de saisies
notamment en entrepôt, soit en environnement connu, ou encore suite à des catastrophes,
soit dans un environnement inconnu [4]. Plusieurs défis ont été identifiés afin d’obtenir des
robots autonomes travaillant dans ces contextes, dont, notamment, l’obtention de méthodes
de planifications de tâches haut-niveau [4]. Cependant, aucun travail portant sur les UAM
n’emploie ce type de méthodes spécifiquement pour la sélection d’UAM optimal dans une
flotte pour une tâche dans un environnement spécifique.

Quelques méthodes d’aide à la sélection ou de support à la décision pour la sélection de robots
ont été développées dans le cas de manipulateurs fixes, notamment, la sélection d’un manipu-
lateur parmi les différents modèles disponibles sur le marché. Une méthode permet d’évaluer
un ensemble de produits en fonction des performances sur dix-huit critères comme la charge
utile, la portée verticale, la masse, etc. Un processus analytique hiérarchique utilise ensuite
des valeurs floues (fuzzy) pour produire l’évaluation à l’aide de descripteurs qualitatifs et

19

ensuite classer les choix [78]. Une autre méthode applique un processus similaire où l’évalua-
tion repose sur un classement de l’importance des critères subjectifs et objectifs effectué par
des experts [79]. Ces systèmes de décisions nécessitent une évaluation de plusieurs critères,
souvent subjectifs, et permettent de comparer les performances pour une seule tâche [80].
Si la mission du manipulateur venait à changer, alors le processus doit être repris au début.
Ces méthodes permettent un choix subjectif se basant sur les préférences et compromis des
concepteurs, mais sont mal adaptées à une évaluation rapide pendant des missions avec des
contextes et des tâches variés.

Un support à la conception de sous-systèmes de guidage permettant la sélection d’un UAM
optimal au sein une flotte, en fonction de la scène et de la tâche, faciliterait la conception in-
dépendamment de l’utilisation de la flotte. Actuellement, les méthodes de guidage pour UAM
ne traitent pas de la planification de missions, sauf dans des cas très spécifiques comme l’ou-
verture de valves où la mission est assez constante à chaque répétition. Ce manque de travaux
publiés provient de la spécificité de ces méthodes à leurs usages et des nombreux préalables
nécessaire à leur développement (vision par ordinateur, navigation, cartographie et localisa-
tion, etc.). En plus de ces défis, les algorithmes de guidage doivent être légers d’un point
de vue logiciel, afin d’être embarqué sur un micro-ordinateur déjà utilisé pour la navigation
et la commande qui sont essentielles au fonctionnement de l’UAM [62]. L’apprentissage ma-
chine est alors une avenue potentielle pour le développement de méthodes de guidage [4], qui
favorise notamment le développement d’algorithmes plutôt léger en taille nécessaire sur le
système embarqué. Un cadre présentant une architecture de réseau et supportant sa concep-
tion par une méthode bien définie pourrait alors rendre supporter sa conception pour des
contextes variés.

2.3.1 Apprentissage profond et guidage

L’apprentissage machine et plus spécifiquement l’apprentissage profond sont actuellement au
cœur du développement d’une variété de sous-systèmes utilisés par les UAM et par les robots
en général [4]. L’idée d’un algorithme servant d’intelligence est particulièrement appréciée
de la communauté robotique et est actuellement étudiée dans plusieurs aspects comme la
commande, la vision par ordinateur, la fusion de capteurs, la manipulation avancée, ainsi
que la planification haut-niveau [4]. Cependant, très peu de travaux abordent la planification
haut-niveau et, au mieux de nos connaissances, aucun ne l’aborde pour les UAM.

L’apprentissage machine (ML - Machine Learning) est un domaine issu de l’optimisation,
des sciences informatiques et des sciences des données qui s’englobe dans le concept général
d’intelligence artificielle. La base du ML consiste en l’entraînement d’un réseau afin qu’il

20

puisse prendre des décisions de manière autonome à partir des entrées fournies [81]. L’entraî-
nement est alors conduit sous forme d’optimisation numérique. Le fonctionnement du ML
repose sur un principe fondamental soit la qualité et la quantité des données utilisées lors
de l’entraînement de l’algorithme [81]. Ces données doivent bien représenter les conditions
d’utilisations réelles du réseau et être en nombre suffisamment élevé pour couvrir différents
exemples et réussir l’entraînement. Il représente un des principaux problèmes à l’obtention
d’algorithmes bien entraînés [81].

Les algorithmes de ML sont habituellement séparés entre les algorithmes supervisés et les al-
gorithmes non-supervisés. Les algorithmes supervisés permettent d’associer chaque élément
en entrée à une étiquette, soit la classe que l’algorithme doit apprendre à prédire dans le
cas d’une classification, ou à une valeur numérique, dans le cas d’une régression. Les algo-
rithmes non-supervisés, quant à eux, travaillent sans étiquette et vont plutôt chercher des
groupements dans les données ou encore essayer d’extraire des caractéristiques (features) im-
portantes [82]. Il est aussi possible d’effectuer de l’apprentissage semi-supervisé où la base de
données contient une portion d’éléments avec étiquette et une autre sans étiquette. Ces types
d’algorithmes deviennent pertinents considérant que les bases de données non-étiquetées sont
nombreuses et que l’étiquetage est long et coûteux à produire [83].

Dans le cas d’algorithmes supervisés, l’entraînement de l’algorithme consiste à optimiser les
paramètres intrinsèques du modèle mathématique choisi afin qu’il puisse prédire la bonne
étiquette associée à une entrée donnée. Pour ce faire, une fonction de coût représentant la
capacité du modèle à choisir la bonne étiquette est optimisée en utilisant une bonne part de la
base de données, appelée l’ensemble d’entraînement. Une autre section de la base de données
est conservée et non employée dans l’entraînement pour valider que le modèle est bien capable
de généraliser son apprentissage sur des exemples n’ayant pas servi à l’entraînement, appelés
l’ensemble de tests [81].

Une sous-catégorie du ML permettant de traiter des problèmes plus complexes est l’apprentis-
sage profond (DL - Deep Learning). Le DL utilise des architectures d’algorithmes plus larges
afin d’éviter un des défis majeurs avec le ML classique soit la sélection des caractéristiques
adéquates à partir des données brutes. Une structure de réseau de neuronnes de DL contient
plusieurs niveaux hiérarchiques pour apprendre des features simples un après les autres, afin
de se construire une représentation d’une entrée brute. Ceci vient cependant avec quelques
désavantages ; ils sont notamment plus difficiles à entraîner et nécessitent habituellement une
plus grande base de données que pour des réseaux de ML classiques [81]. Les algorithmes de
DL ont permis des avancées extrêmement rapides, notamment dans la détection sur images
par des réseaux de neurones convolutionnels [84]. Ces réseaux et le DL en général se sont de-

21

puis propagés à de nombreuses applications utiles à la robotique, incluant l’apprentissage de
dynamiques complexes, de lois de commande, de manipulations avancées, de reconnaissance
d’objets avancée, d’interaction avec les humains et de fusion de capteurs. Une des avenues
peu exploitées et favorables à l’utilisation de DL est la planification haut-niveau de tâches [4].
À l’aide d’une base de données d’exemples de tâches de saisies, incluant la description de la
tâche et de l’environnement, et où chaque élément est identifié par la configuration opti-
male de l’UAM, il serait possible d’apprendre à choisir cette configuration optimale pour une
tâche. La conception de cet algorithme de sélection serait alors supportée en proposant un
algorithme de DL où un concepteur pourrait simplement modifier les étiquettes associées à
la base de données et entraîner la structure de DL proposée. Il reste cependant à trouver une
manière de représenter la tâche et l’environnement afin de l’utiliser dans un réseau de DL.

Afin de comprendre la suite, il est important d’illustrer le fonctionnement de base d’un réseau
de neurones de DL. Nous présentons ici est un réseau dit pleinement connecté, aussi appelé
perceptron à plusieurs niveaux (MLP - MultiLayer Perceptron), qui peut servir par exemple
comme classificateur. La figure 2.5 présente la structure d’un tel type de réseau, où les tailles
de l’entrée et des différentes couches peuvent varier selon les entrées utilisées et le nombre
de neurones voulus dans le réseau. La première couche cachée, identifiée par le vecteur h1

est obtenue à l’aide d’une combinaison linéaire de l’entrée, représentée par le vecteur x suivi
d’une fonction d’activation non-linéaire, nommée F (). La même transformation est alors
répétée pour toutes les couches cachées du réseau où la taille des différentes matrices W et
vecteurs b sont adaptés selon le nombre de neuronnes par couche. On obtient alors la sortie
par combinaison linéaire de la dernière couche cachée, qui peut être soit une valeur continue
dans le cas d’une régression, ou la prédiction d’une classe dans le cas d’un classificateur.
L’équation 2.1 illustre ce réseau de neuronnes où W et b sont respectivement les poids et
les biais, soit les variables à optimiser durant l’étape d’entraînement de l’algorithme. Ces
variables sont optimisées afin d’extraire l’information nécessaire de l’entrée et des différentes
couches subséquentes afin d’effectuer la prédiction ou la régression demandée.

h1 = F (W>
1 x + b1)

h2 = F (W>
2 h1 + b2)

y = F (W>
3 h2 + b3) (2.1)

Le DL permet de manière générale d’entraîner un algorithme à identifier des motifs pouvant
se répéter dans des données afin d’en obtenir, soit une classification, une identification ou

22

Figure 2.5 Structure de base d’un réseau de type MLP

autre sortie désirée. Il est possible de le faire pour des tâches dans lesquelles l’humain est
excellent, comme reconnaître un chat dans une photo, ou encore dans des cas où l’humain
aurait de la difficulté à identifier des motifs. Il peut supporter tous types d’entrée et de sortie,
à condition d’identifier une structure les supportant.

2.3.2 Apprentissage profond avec nuages de points

Une des applications possibles du DL est la planification de tâches en fonction de la scène dans
laquelle celles-ci se déroulent. Il faut donc obtenir une représentation de la scène environnante.
Plusieurs représentations de ces environnements tridimensionnels sont possibles, avec des
architectures de DL associés comme des photos [85–87], des représentations volumétriques (à
base de voxel) [88, 89] et des nuages de points [90, 91]. Plusieurs robots commencent à être
équipés de capteurs tels que des LIDAR ou des caméras de profondeurs, permettant d’obtenir
des nuages de points de leur environnement [90], ce qui en fait des bons candidats, même si
les utiliser avec le ML n’est pas trivial. De plus, la structure des données (une simple liste
de coordonnées 3D) est un choix intéressant comparativement aux autres représentations
qui nécessitent plus de mémoire, souvent limitée, dans des systèmes embarqués. L’utilisation
de nuages de points pour le DL pose cependant quelques difficultés [90], nécessitant une
architecture spécifique pour y répondre :

1. Ordre des points : Contrairement à une photo où chaque pixel possède une position
importante par rapport aux autres, l’ordre des points dans un nuage de points est
complètement arbitraire. Une simple convolution donnerait différents résultats selon

23

l’ordre des points. L’architecture doit donc pouvoir être invariante à ces permutations.

2. Interaction entre les points : Les points représentent une position dans un espace
mesurable. C’est donc dire que des sous-ensembles de points peuvent correspondre à
des structures locales qui doivent être détectées.

3. Invariance à la transformation : Les nuages de points doivent être invariants à la
rotation et la translation dans l’espace.

PointNet [90] est un pionnier dans l’utilisation directe de nuages de points avec des algo-
rithmes de DL. Il a été employé dans le cadre de reconnaissance d’objets à partir de leur
modèle 3D sous forme de nuages de points, ainsi que dans le cadre de segmentation, où les
différentes parties formant une scène doivent être identifiées. Sa capacité à tirer de l’informa-
tion locale directement à partir de nuages de points en fait une excellente option pour des
algorithmes devant analyser une représentation de scène. Afin de résoudre les problématiques
identifiées aux nuages de points, PointNet propose les solutions suivantes pour chacun d’entre
eux :

1. Ordre des points : Le réseau utilise une fonction symétrique sur les points. De manière
pratique, ceci revient à appliquer le même réseau pleinement connecté sur chaque point
et de combiner les sorties de ce réseau par une fonction de maximum pooling.

2. Interaction entre les points : Le réseau PointNet est sous-divisé en deux sections.
La première permet l’apprentissage de caractéristiques sur le nuage de points par
réseaux de neuronnes partagés pleinement connectés sur chaque point. La seconde
section permet d’apprendre les interactions entre ces caractéristiques et la sortie en
classification désirée, à l’aide d’un réseau pleinement connecté standard à plusieurs
couches.

3. Invariance à la transformation : Dans la section s’occupant du nuage de points, une
transformation linéaire sous forme de matrice de rotation est incluse dans les para-
mètres à apprendre du réseau. Ainsi le réseau peut devenir invariant aux transforma-
tions.

Afin de générer les caractéristiques trouvées dans le nuage de points et d’être invariant à
l’ordre des points, PointNet utilise des MLP partagés. Ces réseaux fonctionnent comme les
MLP présentés à la figure 2.5, sauf qu’au lieu d’avoir le nuage de points au complet en entrée,
le réseau de neuronnes utilise les coordonnées x, y, z d’un point du nuage, et réutilise le même
réseau avec les mêmes paramètres sur chacun des points. Cette structure est illustrée à la
figure 2.6. Dans ce cas, il est possible d’obtenir une nouvelle représentation du nuage de
points qui représente uniquement ses caractéristiques géométriques, et non plus une liste de

24

Figure 2.6 MLP partagé sur un nuage de points

points [90]. Une fois ces représentations obtenues pour chaque point, elles sont agrégées avec
une fonction de mise en commun selon les scores maximums. Ceci fait que PointNet apprend
à représenter un nuage de points à partir d’un sous-ensemble de points clés [90]. Par la suite,
avec cette représentation, une seconde partie peut définir un classificateur, ou encore tout
algorithme supervisé qui peut faire usage de cette représentation du nuage de points, comme
montré à la figure 2.7.

25

Figure 2.7 Structure du réseau de neurones PointNet. Tiré de [90]

2.4 Support à la conception de lois de commande d’UAM

Afin d’accomplir la tâche de saisie planifiée par les différents algorithmes de guidage, l’UAM
doit pouvoir se déplacer dans l’espace de manière à se positionner correctement par rapport à
la cible, selon les critères définis pour la tâche tout en minimisant l’erreur de positionnement
du manipulateur. Les algorithmes de planification de trajectoires génèrent alors des com-
mandes désirées pour les différentes variables contrôlables. Le correcteur permet d’accomplir
ces commandes désirées en agissant sur les entrées du système. Il doit donc permettre de
stabiliser le système, minimiser l’effet des perturbations en obtenant des performances dy-
namiques désirées, tout en respectant les difficultés particulières reliées à la commande d’un
UAM par rapport à un multicoptère seul. Les différences identifiées [18] sont les suivantes :

— Le déplacement du centre de masse dû aux mouvements du bras robotique.
— La variation de la distribution de la masse qui amène des moments d’inertie variables.
— Les forces et les moments de réactions dynamiques appliqués sur l’UAV et provenant

du mouvement du bras robotique

La littérature propose plusieurs lois de commande spécifiquement développées pour les UAM,
mais très peu de méthodes supportant leur conception existent, et aucune n’a été appliquée
aux UAM. De plus, des méthodes intégrées de support à la conception de lois de commande
et de la structure de systèmes mécatroniques existent aussi, mais n’ont pas été appliquées aux
UAM non plus. Par exemple, le design pour la commande (DFC - Design for Control) [92]
permet de concevoir autant le correcteur que le design mécanique dans un même processus
incrémental. Cette méthode se base sur une modélisation complète, mais simplifiée du système

26

dynamique contrôlé [93]. Elle a été appliquée à un quadricoptère asservi par la vision et
équipé de PID (loi de commande proportionnelle, dérivée, intégrale) simples où l’objectif
d’optimisation était un agrégat de performances dynamique et de vision, incluant l’erreur
sur le positionnement et la vitesse [92]. Une méthode avec des objectifs et des applications
similaires utilise des critères flous (fuzzy criteria) et une optimisation par essaims particulaires
(PSO - Particle Swarm Optimisation) [94]. Dans ce dernier travail, des critères d’évaluation
flous sont agrégés en un index de performance et par la suite optimisés selon les paramètres à
l’aide d’un PSO. Dû au grand nombre de paramètres et de gains à traiter dans le cas de lois de
commande plus complexes, comme celles nécessitées par des UAM, la méthode serait moins
adaptée [92]. Aussi, les choix de métriques de performances peuvent varier d’un concepteur à
l’autre. Le nombre d’itérations lors du processus de design peut aussi contraindre l’utilisation
de ces méthodes.

Dans un cas où la conception de la structure et de la loi de commande est possible, il serait
en effet plus optimal de l’effectuer simultanément. [95]. Ceci est cependant moins adapté à
la conception d’UAM. Son utilisation pour des tâches variées pourrait nécessiter différentes
stratégies de commande. De plus, pour la conception d’UAM dans les travaux identifiés
au tableau 2.2, la plateforme est souvent un multicoptère commercial, c’est-à-dire que le
multicoptère existe déjà et un bras robotique est ajusté selon les besoins. Le correcteur
doit donc être conçu suivant ces contraintes de conception ainsi que celles associées aux
tâches à accomplir. Par exemple, dans le cas spécifique d’une tâche de saisie d’objets, une
commande en position précis est nécessaire [26]. De plus, à cause des difficultés inhérentes
à la stabilisation d’UAM, une méthode permettant de supporter la conception de la loi de
commande permettrait de simplifier cette étape du design détaillé.

Les stratégies de commandes modernes appliquées aux UAM ont été regroupées en deux caté-
gories, en fonction de la méthode utilisée pour la modélisation et la conception du correcteur,
soit les méthodes indépendantes et les méthodes unifiées [15]. Tout d’abord, les méthodes
unifiées considèrent l’UAM comme étant un système unique où l’on commande toute entrée
du système pour obtenir un contrôle de l’outil. Ces méthodes sont utilisées notamment dans
le cas de commande en force comme la commande par impédance où l’on veut réguler les
interactions avec les forces externes [38]. La commande adaptative est aussi appliquée afin
de gérer l’ajout d’une masse inconnue à l’outil à l’aide d’une estimation des paramètres [25].
La complexité de modélisation du système entier amène des lois de commande adaptatives à
mode glissant (adaptive sliding mode) [26] ou par impédance variable [96] afin de prévenir ces
erreurs de modélisation, dans des tâches de saisie et de contact respectivement. Finalement,
la méthodologie par approche récursive (backstepping) est possible grâce à la strucure des
équations dynamique de l’UAM [97] et en garantit sa stabilité [18]. Ceci en fait donc une

27

méthode particulièrement bien adaptée, offrant une structure de loi de commande applicable
à tout UAM.

D’un autre côté, les méthodes de modélisations dites indépendantes considèrent le multico-
ptère et le bras robotique comme deux systèmes distincts. Des stratégies par backstepping
autant pour le multicoptère uniquement [47] que pour l’outil attaché sur le bras robotique [98]
ont été employés. Finalement, la modélisation indépendante étant plus simple, elle permet
l’utilisation de correcteurs comme les PID à plusieurs couches [37].

Tous ces correcteurs sont conçus à l’aide d’outil de simulation comme MATLAB/Simulink
[99], par des experts de systèmes de commande, basés sur des concepts nécessitant un niveau
de connaissance mathématique très spécialisé et rendant leur analyse complexe [13]. Leur
application aux UAM est souvent considérée comme une étude de cas pour le développement
de ces nouvelles lois de commande, sans égard à l’implémentation et au support à d’éventuels
concepteurs. Dans ce cas, il serait intéressant d’avoir des outils permettant d’assister leur
conception, en proposant une structure permettant de stabiliser le système et en offrant la
possibilité d’automatiser une grande partie de la tâche de design en fonction des requis de
conception.

2.4.1 Synthèse H∞ structurée

La synthèse H∞ structurée [100,101] a été développée comme méthodologie pour la synthèse
de loi de commande à structures fixes. Cette méthode permet au concepteur d’implémenter
une structure prédéfinie ainsi que des requis de conception simplement formulés, tels que les
temps de réponse, les marges de gain et de phase ou l’erreur en régime permanent, pour
ensuite obtenir les gains de la loi de commande par optimisation non lisse. Cette méthode
est limitée aux correcteurs linéaires [100] avec la possibilité de l’utiliser dans un cadre multi-
modèle et donc avec des gains séquencés (gain-scheduled) [100]. Ceci peut être le cas pour un
UAM, où les efforts appliqués sur le multicoptère sont influencés par les mouvements du bras
robotique, rendant la stabilisation difficile du fait de ces interactions. Cette synthèse a déjà
été employée pour des lois de commande d’avions militaires [102] où le système physique et
les gains séquencés sont conçus simultanément. Si une structure permettant la stabilisation
du système est connue, le processus de conception en est extrêmement simplifié. Il ne s’agit
alors que d’identifier les requis dynamiques et les paramètres physiques du système à intégrer
dans l’optimisation.

La méthode de synthèse de correcteur repose sur la définition d’un problème d’optimisa-
tion H∞. On définit un système dynamique linéaire commandé comme à l’équation 2.2 et
illustré à la figure 2.8. L’objectif de l’optimisation est d’obtenir un correcteur K(s) per-

28

mettant de minimiser la norme H∞ du transfert en boucle fermée entre w et z, identifié
comme ‖Tw−>z(K)‖∞, soit respectivement les entrées exogènes et les signaux régulés. La
norme H∞ est représentée par l’équation 2.3 et représente la valeur singulière maximale de
ce transfert [103]. Dans le cas d’un système à entrée et sortie unique (SISO Single Input
Single Output), ceci représente, à toute fin pratique, l’amplification maximale sur la plage
de fréquences [101]. Dès lors, la synthèse est définie comme une tentative de minimiser cette
norme tout en garantissant la stabilité interne du système [104].

Figure 2.8 Modèle standard d’un système avec correcteur pour synthèse H∞

P(s) :


ẋ
z
y

 =


A Bw Bu

C Dw Du

E Fw Fu




x
w
u

 (2.2)

‖G(s)‖∞ = sup
ω∈R+

σ̄ [G(jω)] (2.3)

min ‖Tw−>z(K)‖∞
tel que K(s) stabilise P(s) (2.4)

K(s) ∈ κ

L’optimisation définie précédemment génère des correcteurs satisfaisant les contraintes, mais
difficilement implémentables sur un système réel. Leur ordre élevé (égal à l’ordre du système

29

P(s)) peut être notamment la principale limitation. La synthèse H∞ structurée permet donc
d’utiliser une structure préétablie en ajoutant cette contrainte au processus d’optimisation
(κ) comme à l’équation 2.4 [104]. Au niveau du support à la conception, ceci implique que
si une structure est capable de stabiliser et atteindre les performances voulues pour une
configuration particulière d’UAM, alors le processus de conception de loi de commande pour
la même configuration avec différentes valeurs de paramètres physiques, revient simplement
à une optimisation numérique avec la structure préétablie.

La synthèse H∞ structurée permet aussi d’optimiser les gains de manière automatique en
transformant les requis dynamiques en fonctions compatibles avec l’optimisation [101]. Ceci
est fait de manière transparente pour le concepteur qui n’a besoin que de saisir les requis.
La transformation en critère H∞ est automatique. Plusieurs requis peuvent être utilisés
simultanément en les catégorisant selon des contraintes fortes ou faibles. Ceci amène un niveau
d’abstraction accessible au concepteur qui n’a pas besoin d’être un expert en commande
robuste pour obtenir un correcteur répondant à ses besoins.

Il est possible d’utiliser la synthèse H∞ structurée de manière multi-modale, c’est-à-dire en
réalisant la synthèse d’une loi de commande sur plusieurs modèles dynamiques simultané-
ment. Le correcteur est donc conçu en effectuant un ajustement de courbes entre les modèles
afin d’obtenir des gains séquencés selon des variables choisies [100].

La synthèse H∞ structurée offre donc la possibilité de concevoir un correcteur par optimisa-
tion, en choisissant au préalable la structure de celui-ci et en ne nécessitant qu’une modélisa-
tion du système et des requis de conception. Cette méthode n’a pas encore été appliquée aux
UAM où l’on peut séquencer les gains en fonction des mouvements du bras afin de compenser
pour leurs effets sur la dynamique de vol.

2.5 Résumé des problématiques

Les UAM sont des systèmes mécatroniques qui posent des défis importants dès les premières
étapes de conceptions, dû aux expertises variées requises, à leurs complexités techniques, et au
processus de conception intégrée nécessaire à l’obtention d’un produit proche de l’optimum.
Supporter la conception de certains sous-systèmes spécifiques d’un UAM durant les différentes
étapes, permettrait alors aux concepteurs de réduire le temps consacré à ceux-ci, au profit
d’une meilleure conception intégrée. Ces outils viendraient supporter le travail de concepteurs
d’UAM dans des conditions d’utilisations précises. Une classification des tâches pouvant être
accomplies par un UAM supporterait aussi la conception, en simplifiant la définition des
missions accomplies par UAM dès l’étape du design conceptuel.

30

Au niveau du guidage, l’ajout de capacité de manipulation rend la conception de nouveaux
algorithmes nécessaires. La grande variété de tâches pouvant être accomplies par les UAM
amène un besoin de méthodes de support à la conception de ces sous-systèmes qui puissent
être facilement adaptables et applicables aux contextes d’utilisation définis par les concep-
teurs. Bien que les questions de planifications de trajectoire et évitement d’obstacles ont été
traitées pour les UAV, des sous-systèmes liés à l’accomplissement de tâches, à la génération
d’objectifs de missions ainsi qu’au support à la décision, demeurent essentiels pour les UAM
et sont toujours inexistants. Le manque de classification des tâches possibles et de mesures
de référence applicables à ces cas rend aussi le développement d’outil d’aide à la conception
difficile, sans base commune. Le DL peut amener une avenue de solution possible pour ap-
prendre à prédire le choix de l’UAM optimal parmi une flotte à l’aide d’une représentation
de la tâche et de sa scène locale, sous forme de nuage de points. La méthode à base de
DL pourrait aussi être suffisamment flexible pour permettre le support à la conception de
l’algorithme en fonction des besoins du concepteur et du cas d’utilisation.

Les outils de support à la conception intégrée de systèmes mécatroniques incluent la structure
conjointement à la loi de commande, ce qui parfois n’est pas possible ; les UAM sont souvent
conçus à partir de multicoptères commerciaux. Les lois de commande, qui bénéficient de la
plus grande part de travaux accomplis, possèdent des structures complexes issues du domaine
de la commande non-linéaire les rendant difficiles à analyser et à adapter. La synthèse H∞
structurée permet une piste de solution pour le développement d’une méthode de support
à la conception de loi de commande pour les UAM qui serait simple dans leur structure,
sans nécessiter des experts en commande robuste ou non-linéaire pour le développement et
l’implémentation. Cependant, il n’a jamais été utilisé avec des UAM et donc nécessite une
structure spécifique qui tient compte des efforts induits par le déplacement du bras robotique
sous le multicoptère.

31

CHAPITRE 3 ARTICLE 1 : TASK TAXONOMY FOR AUTONOMOUS
UNMANNED AERIAL MANIPULATOR : A REVIEW

Charles Coulombe, Jean-François Gamache, Olivier Barron, Gabriel Descôteaux, David Saus-
sié, Sofiane Achiche

Proceedings of the ASME 2020 International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference. Volume 9 : 40th Computers and
Information in Engineering Conference (CIE). Virtual, Online. August 17–19, 2020.

Les coauteurs Jean-François Gamache, Olivier Barron et Gabriel Descôteaux ont contribué
à l’analyse des vidéos, à la génération d’idées pour la taxonomie et à la révision de l’article.
Les méthodologies, la revue de littérature, la formalisation de la taxonomie, l’écriture de
l’article et la création des figures ont été accomplies par Charles Coulombe avec le support
des directeurs de recherche Sofiane Achiche et David Saussié.

La contribution principale de ce chapitre est le développement d’une taxonomie des tâches
pouvant être accomplies par les UAM et répond ainsi au sous-objectif SO1. Cette catégori-
sation s’inscrit dans le support à la conception d’UAM comme un outil pouvant classifier les
tâches possibles, et fournissant des blocs élémentaires sous forme de tâches simples permet-
tant de diviser des missions complexes. La classification a été effectuée à la suite d’une revue
de littérature et d’une revue vidéo en différenciant les tâches selon les capacités cognitives
nécessaires. Elle permet aussi de définir la tâche utilisée pour les deux prochains chapitres,
soit la saisie d’objets statiques.

3.1 Abstract

The development of unmanned aerial manipulators (UAMs) allows a novel class of flying
robots to carry out a wide variety of tasks in difficult environments due to their versatility
and autonomy. However, the different tasks that can be carried out might call for different
control strategies. To this end, one needs to categorize the possible tasks accomplishable by
UAMs. This paper proposes a novel taxonomy, which is the result of a video information
acquisition methodology combined with a review of research works in the literature. The
different elements of the taxonomy are separated using a higher level of abstraction in a
way that the general description of the tasks are considered and not its operational details.
To illustrate the fact that algorithms must adapt to different tasks, a description of the
usual UAM architecture is carried out. Four categories of criteria are used in the taxonomy

32

to differentiate all possible tasks. These categories are the interaction type, the actual task
definition, the environment condition and the time sensitivity of the task. This taxonomy
forms the basis for possible machine-learning-based task classifiers that could be used in
autonomous UAMs control and mission planning. Multiple tasks defined in the taxonomy
can be combined to accomplish complex missions.

3.2 Introduction

In recent years, the use of unmanned multirotor systems, especially quadcopter drones, has
skyrocketed in multiple domains such as aerial photography, mapping, sensing and even ra-
cing. While certainly useful, one of their drawbacks is their low capabilities of interaction
with their environments. To address this challenge, the use of unmanned multirotor systems
equipped with manipulating devices has started to attract the attention of both academic
research and commercial products. Those systems are named either Small-scale Rotorcraft
Unmanned Robotic Systems [15], Unmanned Aerial Manipulator (UAM) [6], or simply Ae-
rial Manipulators [27]. In this paper, the term UAM is used to refer to a flying unmanned
multirotor base equipped with a device enabling it to interact with the environment, namely
a manipulating device. One such UAM is presented in Fig. 3.1.

Figure 3.1 An unmanned aerial manipulator developed in our laboratory.

33

A task is defined as a precise objective that must be carried out by a UAM, such as picking or
placing an object, perching, etc. It is composed of subtasks that define all the steps necessary
to fulfill the task. Some subtasks are common to multiple tasks, such as flying or sensing
the environment. Missions are defined as an objective that consists of multiple tasks joined
together towards a greater goal. Figure 3.2 illustrates the relationship between the three
terms, as used in this paper.

Figure 3.2 Relation between mission, tasks and subtasks.

UAMs are used in various difficult or hazardous environments and perform in a wide variety of
conditions and domains, such as visual inspection [2], construction [105] or canopy sampling
[106]. Recent trends in research move towards the autonomous completions of tasks by UAMs.
This variety of domains and accomplishable tasks suggests that a taxonomy is needed to
categorize them all. In its work on UAMs, [68] defines three possible types of interactions
with the environments : momentary coupling, loose coupling and strong coupling (perching).
While not defined or built as a taxonomy, the idea of classifying a task based on the interaction
with the environment is in line with the work presented in this paper.

As mentioned in [11], taxonomies based on the effects of the actions on the environment are
needed to guide the development of autonomous robots and to design them to accomplish a
multitude of tasks. Such taxonomies are useful for classifying existing work and identifying
future developments in the domain. While most of the existing classifications of tasks deal
with the grasping aspect of a picking task, none classifies the type of tasks carried out using

34

a manipulating device. UAMs are able to deal with more varieties of tasks than a fixed-base
robotic manipulator would, enlarging its capabilities beyond the usual picking and placing
of slow-moving objects. A complete review of existing taxonomies is presented in Section 3.3
of this paper. The proposed taxonomy serves as a classification and identification tool of all
possible tasks accomplishable by a UAM. The reasoning behind the need for a taxonomy is
to allow one the ability to differentiate between tasks based on the needed UAM’s cognitive
capabilities. Cognitive capabilities are defined as the ensemble of algorithms for guidance,
control or navigation, needed to accomplish a task. Each final element identified in the taxo-
nomy therefore needs a different set of cognitive capabilities to accomplish the identified task.
The proximity of different elements in the taxonomy implies that those elements necessitate
similar cognitive capabilities.

The proposed task taxonomy could also be used in a completely autonomous UAM for task
selection. This system would be able to take “mission-driven decisions”, to obtain a “high
adaptation to mission changes”, and would be represented by a level 6 autonomous system
on the autonomy level for unmanned rotorcraft system developed in [62]. A decision-making
classifying algorithm would allow the aerial manipulator to choose between the tasks with
respect to the context and environment using artificial intelligence to determine the most
likely task from predefined categories. The proposed taxonomy proposes a systematic clas-
sification of tasks accomplishable by UAMs so that it can be used as a basis for the classes
in such a system. Control strategies and navigation algorithms associated with each cate-
gory of tasks could then be used to accomplish multiple tasks, without human intervention.
For example, criteria could be set to recognize each element of the taxonomy and therefore
enabling the correct navigation, guidance, control and interaction algorithms for the tasks
at hand. Such system would rely on all recent advances in computer vision for unmanned
multirotor systems [3] and artificial intelligence, especially deep learning for robotics [4] and
unmanned aerial vehicles [107]. A similar project is in the work at an Alphabet company
named “X, the Moonshot Factory” with their Everyday Robot Project [108], where a mobile
robot equipped with a manipulator is trying to learn how to accomplish useful tasks in a
typical desk-job environment, depending on the environment itself and human interactions.

The main objective of this paper is therefore to introduce a taxonomy of tasks relevant to
UAMs. To develop it, a video information acquisition methodology was used, where multiple
videos related to UAM were viewed and analyzed. While videos (YouTube, etc.) are not
generally used in formal reporting, we chose to include them as many developments in the
field are into their infancy stage and therefore researchers, laboratories as well as developers
tend to post their experiments and early developments before even using formal publication
channels. This methodology was used in conjunction with the literature on UAM and on

35

taxonomies to develop all possible tasks carried out by UAMs. To explain the effects of task
classification on the inner workings of a UAM, its architecture and the interdependencies
between subsystems are presented. This work considers some constraints. Only UAMs defined
as an unmanned flying multirotor robot equipped with manipulating devices are covered in
this taxonomy. It will also focus solely on tasks carried out by a single unit UAM, with a
single robotic arm and will not deal with multiple robots or swarms.

3.3 Taxonomy Review and UAM Architecture

3.3.1 UAM Architecture and Subsystem Interactions

Design choices for subsystems used in an autonomous UAM are greatly influenced by the
tasks to be accomplished. Figure 3.3 shows the subsystems usually present in an autonomous
UAM, but variations may exist depending on design choices, such as in the choice of different
sensors, or navigation capabilities. This diagram was adapted to UAMs from [3] in order
to show the interactions between all subsystems. Through different sensors, the UAM is
able to obtain measurements of its dynamic states and information from its environment.
This information is processed using several algorithms to obtain a representation of the
immediate environment of the UAM and to estimate its pose and corresponding derivatives.
This is usually done in conjunction with information from the guidance subsystem that deal
with generating trajectories and planning missions. Using the state estimations, environment
mapping and mission planning information, the control algorithm is able to calculate the
motor commands necessary to obtain the desired trajectory, arm movement and environment
interaction. All of these relationships are represented in Fig. 3.3 in which, P/V/A means
position/velocity/acceleration.

Since the control strategies, including navigation and guidance algorithms might change
depending on the task, it is important to have a classification that distinguishes and identifies
when different algorithms are required. If a UAM’s task is to push on a surface, the control
must be able to evaluate the generated force by the system and compensate for variations.
While the position must also be tracked with precision to apply the force at the right point,
it is not crucial to do it rapidly. A controller such as [109] would be appropriate for this
application. Meanwhile for picking up a moving object, feedback on applied force is mostly
useless, while rapid and precise tracking and following of the objective is essential to the
success of a task. It would then require a completely different controller such as the one in
[110]. While the use of specialized tools might necessitate a different control strategy per tool,
this work does not distinguish between them. The proposed taxonomy considers a generic

36

Figure 3.3 Schematic showing all interactions between the different subsystems in a usual
UAM architecture.

robotic arm with standard grippers as the physical capability of the system. Specialized
tool implementation details would have to be developed in a case-by-case manner. Tasks
accomplished with specialized tools are still being covered by the proposed taxonomy. In
other words, this taxonomy differentiates between cognitive capabilities, but not physical
ones.

Considering how all subsystems interact in a UAM, the guidance algorithms play a cru-
cial role. Guidance regroups all algorithms used for path planning, grasp planning, obstacle
avoidance, and mission planning. They interact with the rest of the UAM to generate the
desired trajectories and behaviors. The command and information obtained from these sub-
systems allow the UAM to interact autonomously with its environment. These algorithms
are extremely dependent on the task or missions that is currently carried out.

37

3.3.2 Taxonomy Literature Review

Existing taxonomies in the literature cover different aspects of robotic manipulation. Multiple
taxonomies on grasping tasks were already proposed. For example, the GRASP taxonomy
introduced a hierarchical vision of grasping were each grasping action can be classified in one
of the 33 defined types of grasps, ranging from power grasping to precision grasping [65]. A
grasp taxonomy based on the relation between hand and object, looking at temporal anchor
points was presented in [66]. Finally, another grasp taxonomy where tasks were described in
simple words describing everyday actions by humans was introduced in [67].

A framework for classifying fine robotic grasping and assembly was presented in [111] and
did not consider the geometry and physical characteristics of the grasped object. Other types
of taxonomy for robotics include a taxonomy for task allocation in multi-robot systems [112],
a taxonomy for dance in social robots [113], and a taxonomy for communicating with small
multirotor systems using hand gestures [114], where each of these taxonomies deal with
specific tasks. It was argued in [11] that a taxonomy based on the effects of the actions of the
environment was needed with the end results being a taxonomy for compliant manipulation
task [11], in which tasks are described independently of robot kinematics. Other criteria
used in robotic taxonomies are the following : number of robots (single robot vs multiple),
complexity of missions (single task vs multiple task) [112] and haptic feedback [115]. All those
taxonomies from the literature cover specific aspects of a robotic task such as grasping and do
not allow to categorize a multitude of tasks at a higher abstraction level without considering
the configuration of the robot. This is mostly because currently used robot manipulators are
extremely specific in their task description, meaning that a single robot is usually used and
programed to perform a single task, or a small subset of similar tasks.

Considering the literature on taxonomies of tasks, one is proposed to classify all tasks achie-
vable by a UAM, while staying at a higher level of abstraction that does not consider the
geometry of the object, the type of the grasp needed, nor the manipulator used. Consequently,
physical capabilities are not considered, while cognitive capabilities are used to differentiate
between all tasks. While the UAM configurations and manipulating devices choice may in-
fluence its ability to accomplish a task in particular, it does not intervene in our proposed
classification.

3.3.3 Video Information Acquisition Methodology

To develop the taxonomy and consider all plausible tasks possible for an aerial manipulator,
a video information acquisition methodology is used. Since the topic of aerial manipulation

38

yields results that are easily viewable in video form, it was determined to be a promising
avenue and was confirmed by major research laboratories working on the topic publishing
their results in such form. The systematic video information acquisition methodology was
then carried out by watching the first hundred videos on YouTube using the keywords “aerial
manipulation”, “aerial manipulator”, “drones with robotic arms” and “aerial robotics”, as of
November 2019. Each video was classified by their domain of origin, either academic research,
commercial product or hobbyist solution. The fulfilled task and the manipulating device used
were recorded. After removing duplicates and non-relevant videos (swarms or non-UAM
related), 62 were left. Following this step, all results were regrouped in similar categories
for the fulfilled task and the UAMs configuration. While doing this first categorization, a
higher-level of abstraction regarding the tasks was kept in mind, in essence with the idea of
the proposed taxonomy. Results of the video information acquisition are summarized in Figs.
3.4 and 3.5, where the tasks and configurations used are categorized within similar class,
counted and separated by their domain of origin.

Figure 3.4 Distribution of tasks in video information acquisition methodology by domain.

Figure 3.4 clearly shows that academic research focus on picking static objects using a UAM.
While some works were carried out on other tasks such as picking a moving object, perching,
force-applying interactions, simple arm motions or placing, most still focused on this simple
but essential task. Commercial products mostly focus on the use of UAM for spraying of liquid
(paint, insecticide, water, etc.). The task categories chosen here are a preliminary version of
the ones developed in our taxonomy. Figure 3.5 shows that the most common manipulating

39

Figure 3.5 Distribution of manipulator configuration in video information acquisition metho-
dology by domain.

device used is a single serial robotic arm equipped with a gripper, followed by the use of a
specific tool designed for the task at hand, such as perching tool or sampling tool. The results
of the video information acquisition were then used in preparation for the elaboration of the
taxonomy presented in Section 3.4.

3.4 Taxonomy and Examples

Using the results of the video information acquisition methodology presented in Section
3.3 and recent literature on UAMs [6, 15], we developed the taxonomy presented in Fig 3.6.
Notably, the work of all involved research groups was considered [15] to produce the taxonomy
and consider all possible tasks.

All the right-end side cases are considered as different tasks in this taxonomy. Figure 3.6 shows
all 20 possible tasks identified. Each vertical column is a separation by a certain criterion.
The first column lists the type of interaction, the second lists the tasks end results on a high
abstraction level, while the last column gathers environmental constraints applicable to the
tasks. Another criterion, namely time sensitivity, is also present for each of the 20 tasks, but
was not shown in Fig. 3.6 for ease of visualization consideration. This effectively implies that
all 20 tasks have time sensitive and non-time sensitive versions of themselves.

40

The first column in Fig. 3.6 separates for types of interactions. They are defined as punctual
object interaction, continuous object interaction and no physical interaction. As mentioned
in [68], these three categories are the only possible types of interactions between a UAM and
its environment. In the first, a UAM interacts punctually with an object. This is similar to
the concept of a momentary coupling, identified by [68]. It is usually done in the form of
picking (which includes grasping), placing, or sampling. A special task is the delivery of a
direct impact using the manipulation device.

For continuous object interaction, the UAM applies a force or a moment for a certain amount
of time on a surface or an object. This category is divided between direct application, where
forces are applied by physical contact with the manipulator, and indirect application, where
forces are applied to the object using a cable or a rod. It is also divided between static
application and moving application of forces. A special case of continuous object interaction
is the perching task, where the aerial manipulator uses its manipulation device to attach
itself to a surface and stop its motors. This category could correspond to the loose and
strong coupling identified by [68].

The last category considers the movement of the manipulation device without any interaction
with the exterior environment. Some tasks require a movement of the manipulator or even
the entire UAM but without applying any forces or moments of any kind on the environment.
Such tasks could involve spraying in agricultural context or moving a light attached to the
arm in a dark environment.

Those three categories are then subdivided between task definitions, represented by the
second column in Fig. 3.6, by considering the results of the tasks. Finally, the last column
differentiates between environmental conditions that could necessitate a change in cognitive
abilities of the UAM to accomplish the task, effectively bringing the total of different tasks
identified by the taxonomy at 20. These conditions change the set of algorithms needed in
the different subsystems identified in Fig. 3.3 and therefore were identified as different tasks.
Evidently, all tasks presented in Fig. 3.6 are carried out while the UAM is airborne. This
implies that all tasks include subtasks such as liftoff, movement, environment scanning and
mapping, target identification and landing. Since they are accomplished in any mission, they
are not considered in the taxonomy. These are the common subtasks identified in Fig. 3.2.
The next paragraphs explain the different tasks present in the second column of Fig. 3.6.

Picking : This task consists of picking up an object using the attached manipulation device.
The UAM identifies the target, and plans the manipulator trajectory and grasping point to
grasp the object successfully. No difference is made between the different types of grasps, as
the GRASP taxonomy would [65]. If desired, these classifications could be used conjointly

41

with Fig. 3.6. The environmental conditions distinguish between the statuses of the object
to pick. In the first case, the target is static. As Fig. 3.4 shows and as found in the literature,
most research is usually targeted towards the picking of a non-moving object, as exemplified
by [116], where a vision-based algorithm for the center of mass extraction and grasp planning
is presented or [50], where a fish-eyed lens is used for depth and grasp planning. In the
second case, the object is moving in 2D, i.e., the target is moving in a plane usually parallel
to the ground, or in 3D. This challenging task was explored by [110] where a UAM catches
a cylinder on a mobile robot. While no work concerning picking of 3D moving object using a
single UAM was found in the literature, this task seems the logical next step and is already
explored for example with three quadcopters catching and throwing a ball in the air using a
net [117].

Placing : The placing task consists of depositing an already grasped object at a certain
position and orientation. Using the task description, the UAM must navigate and orient
the payload to fit the desired drop conditions. We distinguish between the different drop
conditions. First, no desired conditions simply result in dropping the object at random.
A desired position is a point in the environment of the UAM that will serve as a drop
point, while a desired orientation indicates that the object must be oriented correctly, with
respect to both itself and its environment. When a desired position or orientation is needed,
a distinction is made on the placing condition. A fixed placing condition means that the
position or orientation is directly specified in the task or mission description, while a relative
placing condition is defined by previous fulfilled tasks. This last kind of placing task is
used in construction or assembly projects, where the next piece to be placed depends on
what has already been assembled or constructed. A fixed desired position and orientation
task example would be the peg-in-hole assembly, defined in [118]. A swarm of quadcopter
drones with grippers was used in an assembly project, to assemble a tower of blocks [6] or
simple assemblage [59, 105], and illustrate the relative drop point with desired position and
orientation task. While these projects dealt with swarms of quadcopters, a unique UAM could
accomplish the same tasks (simply taking more time), so therefore it was included in this
taxonomy. The last task in this class is a throwing task, where the object is ejected with
a certain velocity from the manipulator. While no work was found using a UAM, a project
such as [119] where a fixed robotic arm learns to throw objects could also be carried out with
an aerial manipulator.

Sampling : Sampling consists of collecting part of an object, usually with the help of a
specialized tool. An example of sampling is found in the tree canopy sampling using a UAM
[106]. Canopy sampling is an example of a destructive sampling where the UAM must cut
out part of the object to take a sample, while water sampling in a river would be an example

42

of non-destructive sampling. In both cases, the UAM must identify the relevant object for
the task using its sensor and plan the execution of its sampling task with the tool, while
considering the environment and exterior conditions.

Direct impact : This is a special type of punctual interaction where a direct shock being
received or delivered by a UAM, similar to the impact of a hammer. While no work was found
on this task, it can conceivably be imagined as a UAM using an impact device to carry out
reparations in hard-to-reach environments, such as wind power plants or overhead electric
transmission lines.

Direct contact / Indirect contact : As mentioned earlier in this section, these tasks are
about applying forces or moments to a target in the environment for a certain period of time.
The UAM identifies the point of interest in its environment and must control its movements
to deliver the adequate amount of force to the target, using different methods and measures.
The type of task, second column in Fig. 3.6, differentiates between a direct and an indirect
contact. The UAM applies the force directly to the object using its robotic arm in the former,
and could apply a force indirectly in the latter, for example by pulling a cable linked to the
object as in the case of suspended payload [120]. The environmental conditions separate if
the force needs to be applied at a static point or in motion. Examples of direct contact, static
force applications could include the pose of a sensor [119], while a moving trajectory could
consist of drawing on a board or contact-based inspection [121].

Perching : A special case of continuous object interaction is the perching task, where a UAM
uses its robotic arm to attach itself firmly to an object while shutting down its rotor-motor
subsystems. Perching was studied a lot on UAMs equipped with special perching apparatuses
[21,122], but a general manipulator with a robotic arm can conceivably accomplish this task
as well, such as [123]. Cognitive capabilities for a UAM changes depending on the environment
conditions of perching, whereas the perching surface is static or moving.

Arm trajectory / Arm endpoint : Some tasks only require a movement of the robotic
arm (or the drone) without having any physical interaction with the environment. Two task
definitions were identified. In the first one, the complete arm must follow a trajectory while,
in the other, the arm must only reach a certain endpoint. The environmental constraints in
the case of motion-only tasks would be the need for environmental feedback. As an example,
if the task is to pour a liquid in a cup, the need for precise visual feedback for relative position
of the UAM to the cup is clear. However, when using a spraying implement in an agricultural
field, there is no need for precise visual feedback and a simple GPS position is sufficient.
Evidently as mentioned earlier, time sensitivity is another criterion for task classification,
not shown in Fig. 3.6. A time-sensitive complete trajectory example is found in photography,

43

where a camera moved by a manipulator needs to control its entire trajectory as to keep
shooting steady videos, as with the commercial system DJI Inspire 2 [124]. On the other
hand, to measure damage on a system with a laser, only the endpoint position is required
and it is not time sensitive. As seen in Fig. 3.4, little academic research is conducted on
this type of task because of its relative simplicity. Moving and controlling a UAM without
physically interacting with the environment is a problem that is essentially solved from a
control point of view [15].

All the previously explained tasks are the building blocks of mission planning and can describe
any complex missions. The control, sensing, navigation and guidance subsystems as defined
by Fig. 3.3 must adapt to the tasks. We exemplify the use of the classification with a drink-
serving mission. It would require two tasks defined in the taxonomy, both picking a static
object and an arm trajectory with environmental feedback. The guidance algorithms would
have to be chosen in order to be able to grasp the bottle while keeping its orientation. Another
subsystem would have to plan how to move the robotic arm, and the bottle gripped by it,
in order to pour over the glass. Non-task dependent subsystems include global navigation,
sensing, flying control, etc. Using this taxonomy, multiple missions could be defined as needed
in different domains, such as construction, manipulation, reconnaissance, etc.

As mentioned, this taxonomy considers solely tasks accomplishable by a single UAM with a
single robotic arm. While the taxonomy presents all possible tasks for this specific configu-
ration, new tasks and possibilities open when dealing with new configurations. For example,
the use of two UAMs or swarms allows for collaboration between the robots. New tasks could
become feasible such as collaboration in the moving of objects or complex assembly tasks.
For these tasks, new algorithms of mission planning must be used. Therefore, new tasks and
categories in the taxonomy should be added with respect to the reasoning of this taxonomy
that each endpoint is a different set of cognitive capabilities of a UAM.

3.5 Conclusion

A taxonomy is presented that classifies the different tasks that can be accomplished by a single
UAM equipped with a manipulating device. The classification is completely independent of
details such as geometry of the target or physical capabilities of the system, keeping only a
higher level of abstraction and separating for cognitive capabilities. Since this taxonomy does
not consider physical capabilities, it can be used in conjunction with more specific ones such
as grasping classifications. The different tasks are grouped into three categories of interaction,
punctual object interaction, continuous object interaction and no environment interaction.
They are then separated by their task description and environmental conditions. Most tasks

44

are already explored in the literature and given as examples. Such a taxonomy is useful for
future work to identify and classify new advances in autonomous UAM development. Future
work should first focus on the association of all developed tasks with existing algorithms and
cognitive capabilities of a UAM. For the multiple selected tasks, a UAM could then use the
taxonomy as the base to a logic system that could detect which task the UAM must carry
out, based on the signal and information in its environments, or human interaction. This
logic system could certainly be supported by artificial intelligence, where the categories of
the classifier are those defined by this taxonomy. Secondly, the taxonomy could be broadened
to take into account all UAMs that have not been considered in this work, including swarms
and multi-arm systems.

45

Figure 3.6 Taxonomy of tasks accomplishable by a single UAM.

46

CHAPITRE 4 ARTICLE 2 : MODELING AND GAIN-SCHEDULED
CONTROL OF AN AERIAL MANIPULATOR

Coulombe, C., Saussié, D. & Achiche, S. Modeling and gain-scheduled control of an aerial ma-
nipulator. International Journal of Dynamics and Control (2021). https ://doi.org/10.1007/s40435-
021-00807-2

Ce chapitre présente une méthode supportant la conception d’une loi de commande de vol à
gains séquencés pour UAM équipé d’un bras robotique à 2DDL, et répondant au sous-objectif
SO2. Une structure de loi de commande est introduite pour la configuration de l’UAM et
les gains sont obtenus par optimisation H∞. Cette méthode repose sur une modélisation
dynamique de l’UAM développée dans cet article dans un format facilitant son analyse et
son utilisation avec toutes configurations d’UAM. La structure de séquence de gains a été
démontrée comme minimale pour pouvoir stabiliser le système. L’obtention de la loi de com-
mande par optimisation vient réduire son problème de conception à la définition des requis
dynamiques et des paramètres physiques modélisant le système à commander. Cette méthode
vient simplifier l’ajustement de la loi de commande lors d’itérations de l’UAM durant le pro-
cessus de conception, par exemple si les paramètres physiques sont modifiés. L’obtention
d’une nouvelle loi de commande ne nécessite alors qu’une nouvelle optimisation.

4.1 Abstract

Aerial manipulators (AMs) are flying robotic systems composed of a multicopter equipped
with one or more robotic arms. The dynamic modeling of AMs is complex due to the highly
coupled interactions between the multicopter and the robotic arms. In this paper, the dyna-
mics and kinematics of a quadcopter are combined with the Newton-Euler recursive method
to obtain the forces applied by the robotic arm on the multicopter. The complete dynamic
model is then linearized and expressed in terms of the articulation angles of the robotic arm
for controller synthesis purposes. A novel gain-scheduled controller based on structured H∞
synthesis is proposed using the joint angles of the robotic arm as scheduling variables. The
controller is tuned according to multiple performance objectives on a family of parameteri-
zed linearized models. Simulations on the non-linear model with the gain-scheduled controller
demonstrate its ability to compensate for robotic arm movements, while keeping the desi-
red dynamic characteristics regardless of arm position. The advantage of gain scheduling is
demonstrated by a comparison with a non-scheduled version of the controller. Finally, the
controller is shown to be able to compensate for a 10% uncertainty on the nominal tuning

47

values of the physical parameters.

Keywords : Aerial manipulator ; Kinematic and dynamic modeling ; Structured H∞ synthe-
sis ; Gain-scheduling

4.2 Article Highlights

— Dynamics of aerial manipulators is obtained by combining the dynamics of a quadcop-
ter with the forces and moments generated by a moving robotic arm fixed underneath
it. Equations are presented in a simulation-ready format. Using the complete non-
linear dynamics of the aerial manipulator, linearized models are obtained for multiple
positions of the manipulator. This family of linearized models is necessary for the
multi-model synthesis.

— A linear gain-scheduled controller is shown to be able to stabilize an aerial manipulator
equipped with a two-degree-of-freedom arm when using quadratic scheduling functions
with the arm joint angles as gain-scheduled variables. In a single structured H∞ syn-
thesis, the gain-scheduled controller is tuned to obtain the desired performances over
a grid of linear models.

— The controller is shown in simulations to stabilize the system with the required perfor-
mances. Further simulations show the clear advantages of the gain-scheduling aspect of
the controller by comparing it to a non-scheduled version of itself. Finally, the closed-
loop system is shown to be able to compensate for and variations on the nominal
physical parameters values.

4.3 Introduction

Multicopter drones are small flying robots that can accomplish different missions due to their
maneuverability, and ability to access remote environments. Examples of these capabilities
include coastal photography [1], structural inspection [125] or even competitive racing [126].
Since multicopters do not possess interaction capabilities, their uses are limited to movement,
measurement and observation tasks. Multicopters, often quadcopters, equipped with serial
robotic arm(s), named aerial manipulators (AM), are raising both academic and industrial
interests for their ability to accomplish complex tasks in hard-to-reach or dangerous environ-
ments [127]. As for multicopters, AMs are unstable systems and they must be equipped with
a flight control system able to stabilize the system and counteract the added arm effects [12].

Several dynamic models of quadcopters have been proposed, each, with various degrees of
fidelity [128–130]. Usually, most of the models assume a symmetrical structure of the quad-

48

copter where both axes of symmetry cross at a fixed center of mass (CoM) [97, 131]. A
model dealing with dynamic changes to its center of mass was presented in [132]. Quadcopter
dynamics are well known and were published in books such as [133].

Modeling the dynamic interactions between the arm and the drone is a tedious task to carry
out and is needed to obtain the complete dynamics of an AM. This task can be treated
by different methods, such as developing the complete kinematics of the system to com-
pute the dynamics, or by considering the arm as an external perturbation acting on the
quadcopter. Commonly used methods for dynamic modeling are Euler-Lagrange [26] and
Newton-Euler [17,134] approaches. The latter one was shown to be more adapted to control-
ler design, analysis and simulations while the former one was used for studying the inertia
variations [68]. For example, the work presented in [135] modeled the AM as a drone with
added forces and moments generated by the robotic arm. In [30], the system was modeled as
a 6+(n+1)-DoF system, where n is the number of links of the robotic arm. A drone equipped
with two 2-DoF arms, each with RP joints, was modeled in [17]. A complete mathematical
model of an AM equipped with a 2-DoF arm using the kinematics of the system to develop
its dynamics was presented in [134]. However, a recurrent problem in many publications is an
over-simplification of the modeling of the drone. The coordinate system transformation equa-
tions are often overly simplified or the used hypotheses are too constraining. Often, models
obtained using small Euler angles hypotheses are used out of these hypothesis boundaries
as in acrobatic maneuvers. In summary, dynamic models are often presented for a single,
specific case, or are too simplified, overly constrained or simply in an unsuitable form for
controller synthesis.

Different controllers were proposed for the stabilization and control of quadcopters and mul-
ticopters. Simple controllers such as PIDs and LQRs (linear quadratic regulators) were first
proposed for quadcopters in [136]. These linear controllers are usually simple to design and
to tune, but may be more sensitive to modeling uncertainties or to unplanned disturbances.
More complex controllers such as backstepping controllers [97, 131] or an adaptive sliding
mode controller [137] were also applied to a quadcopter for their added stability with regards
to perturbations and robustness to system uncertainties.

Controllers that can deal with the interactions between the quadcopter and the robotic arm
are needed in order to stabilize AMs. Simple controllers used for quadcopter alone are not
able to stabilize an AM and therefore new controllers are needed. Those found in literature
often possess complex structures in order to reduce the effects of interactions and dynamics
that could have been missed during the modeling of the system. For example, adaptive
sliding mode control is used in [138–141], for its ability to self-adapt to the situation at hand.

49

This control strategy accounts for the uncertainties in the system modeling. Backstepping
control is used in [18, 47, 98], allowed by the cascade structure of the quadcopter dynamics.
Backstepping control is often used for its robustness to uncertainties in the system [47].
Impedance control is used in [30, 142], as to counter external forces both from disturbances
and contacts with the environment. In [134] the authors use a disturbance observer based
controller that was shown to perform fewer calculations than more complex controllers, while
keeping performance almost on par. In summary, most controllers in the literature are tuned
directly on a non-linear model and are themselves complex in their structures, making them
difficult to analyze and design.

A structured H∞ synthesis framework [100, 104, 143] has been presented and used for the
tuning of complex controllers with multiple design requirements. The framework allows to
define a fixed controller structure, and tune it using H∞-type requirements. This framework
is also applicable for gain-scheduled controllers, which have the advantage of being able to
adapt to different conditions of use by varying the gains whenever a change occurs in specified
scheduling variables [144]. A linear gain-scheduled controller is simpler in its implementation
when compared to backstepping and adaptive control strategies usually used for the control
of AMs. Gain-scheduling was used in an adaptive controller [35], but this work mentioned the
lack of an “explicit method for gain scheduling controller synthesis". Other gain-scheduling
methods previously developed include an eigenstructure assignment method presented in [145,
146] on a controller with a structure similar to the one used in this paper, where the method
was applied on a ballistic missile pitch-axis controller. This approach was later extended
to fault-tolerant control for multicopters where the controller is scheduled with the level of
detected faults [147,148].

The main contributions of this paper are (1) the development of a generalised dynamic model
for any AM configuration that is necessary for the controller synthesis and (2) the develop-
ment of a novel gain-scheduled controller tuned within the H∞ synthesis framework. Since
the controller synthesis is based on accurate modeling of the AM with all the interactions
betweem the quadcopter and the arm, a complete dynamic model is presented here as a
preliminary step for the controller design. The dynamic model is then linearized around mul-
tiple equilibrium points. The proposed controller structure is a state feedback with integral
action, where the tuning of the scheduled gain is obtained using an H∞ synthesis frame-
work on a grid of linearized models. The gains are scheduled with respect to the robotic arm
joint angles. The structured H∞ synthesis framework allows for multiple design goals and
constraints when tuning the controller. This allows the introduced method to be used with
any AM configuration. An AM composed of a quadcopter equipped with a 2-DoF robotic
arm is used for the controller synthesis. A 2-DoF arm was chosen since it allows the end

50

effector to have 6-DoF when coupled with the quadcopter base.

Section 4.4 presents the detailed kinematic and dynamic modeling of the AM. Section 4.5 pre-
sents the equilibrium conditions and linearization of the system, while Section 4.6 introduces
the gain-scheduled controller and its tuning using the structured H∞ synthesis framework.
Section 4.7 presents simulation results and performances of the controller in nominal and
non-nominal cases.

4.4 Kinematic and Dynamic Modeling of an Aerial Manipulator

Accurate kinematic and dynamic modeling of the system is necessary for the development
of the proposed gain-scheduled controller. The model is therefore presented in a suitable
form for both controller synthesis and numerical simulations. The model is developed for a
quadcopter equipped with a 2-DoF arm but could be applied to any AM configuration of a
multicopter with a n-DoF robotic arm.

In this paper, a physical vector x expressed in a frame F0 is denoted x0, while 0ẋ1 is the
time derivative of vector x with respect to the frame F0 and expressed in frame F1. The
rotation matrix R1/0 between F0 and F1 belongs to the special orthogonal group SO(3), and
thus one has R0/1 = R−1

1/0 = R>1/0. To simplify the notation, the short-hands sx := sin x and
cx := cosx are used. Finally, the × operator denotes the vector cross product.

4.4.1 Kinematics and Dynamics of the Quadcopter

The kinematic and dynamic equations of the quadcopter are first introduced. Let Fi denote
an inertial reference frame centered at a fixed local reference point and oriented according
to the North-East-Down (NED) convention, and let Fb denote a body-fixed frame attached
to the quadcopter, centered at its center of mass (CoM) and oriented with the xb and yb
axis along the quadcopter arms as shown in Fig. 4.1. The 6-DoF rigid body and flat-Earth
equations of a quadcopter form a set of twelve, coupled, scalar equations representing the
kinematics and dynamics of a non-deformable rigid body with constant mass m and inertia
matrix Ib [133]. For a quadcopter, the inertia matrix expressed in Fb is diagonal for symmetry
reasons and denoted Ib = diag(Ixx, Iyy, Izz). The robotic manipulator is treated as external
forces and moments acting on the quadcopter, while also possessing its own dynamics that is
affected by the quadcopter. The arm equations are presented separately in subsection 4.4.2.

The position vector of the CoM in Fi is denoted pi = [pN pE pD]>, and the orientation of Fb
relative to Fi is described by three Euler angles Φ = [φ θ ψ]>, respectively roll, pitch and

51

xi

zi
yi

xb
zb

yb
ω1

ω3 ω2
ω4

Figure 4.1 Inertial frame, body frame and drone configuration

yaw. The resulting rotation matrix Rb/i is thus parameterized as :

Rb/i(Φ) =


cθcψ cθsψ −sθ

sφsθcψ − cφsψ sφsθsψ + cφcψ sφcθ
cφsθcψ + sφsψ cφsθsψ − sφcψ cφcθ

 (4.1)

The vector vb = [u v w]> denotes the inertial linear velocity of the CoM expressed in Fb and
finally, ωbb/i = [p q r]> is the angular velocity of Fb with respect to Fi.

Using the previously mentioned assumptions and notations, the kinematic and dynamic equa-
tions of a rigid body affected by any forces and moments are then :

iṗi = Ri/bvb (4.2)

ωbb/i =


1 0 −sθ
0 cφ sφcθ
0 −sφ cφcθ

 Φ̇ = H−1 (Φ) Φ̇ (4.3)

bv̇b = 1
m

f b − ωbb/i × vb (4.4)
bω̇bb/i = I−1

b

(
mb − ωbb/i × Ibωbb/i

)
(4.5)

where the forces f b and the moments mb in Eqs. (4.4) and (4.5) are expressed in Fb for the
sake of simplicity.

The forces can be broken down into three main sources :

f b = f bg + f bt + f barm (4.6)

52

with f bg the weight of the quadcopter, f bt the thrust force generated by the rotors, and f barm
the forces due to the robotic arm weight and dynamics (developed in subsection 4.4.2). The
vector f bg is given by :

f bg = Rb/i


0
0
mg0


i

(4.7)

with g0 the gravitational acceleration. Each propeller generates a thrust force Tj = ktω
2
j along

the zb-axis where kt denotes the propeller thrust coefficient and ωj the rotational speed of
motor j for j ∈ 1, 2, 3, 4. The expression of the thrust force f bt is then :

f bt =


0
0

−∑4
j=1 Tj


b

(4.8)

The drone is subjected to moments from four main sources :

mb = mb
t + mb

r + mb
g + mb

arm (4.9)

with mb
t the moments generated by the lift forces, mb

r the moments induced by the rotating
motors, mb

g the gyroscopic moments, and mb
arm the moments generated by the robotic arm

weight and movements (developed in subsection 4.4.2). The vector mb
t is given by :

mb
t =


dkt (ω2

2 − ω2
4)

dkt (ω2
1 − ω2

3)
0


b

(4.10)

with d the distance between the CoM and each motor. Each propeller generates a reaction
moment Mj = sign(ωi)kdω2

j along the zb-axis where kd is the propeller drag factor. The
expression of the total reaction moment mb

r is then :

mb
r =


0
0

kd (ω2
1 − ω2

2 + ω2
3 − ω2

4)


b

(4.11)

53

Finally, the gyroscopic moments mb
g are :

mb
g =


0
0

Jm (−ω1 + ω2 − ω3 + ω4)


b

× ωbb/i (4.12)

where Jm is the combined motor and rotor inertia for a single motor.

4.4.2 Dynamic Modeling of a Robotic Arm on a Floating Base

The robotic manipulator is modeled as a 2-DoF serial robotic arm mounted under a floating
base, i.e., the quadcopter previously modeled. It is worth noting that the same method could
be used to model a n-DoF manipulator. The chosen manipulator remains in the xb-zb plane,
i.e., the links are rotating around the yb-axis of the body-fixed frame, as shown in Fig. 4.2.

xb,y0

zb,x0
x1

y1

x2

y2θ1

θ2

l1

l2

Figure 4.2 Robotic arm frames

Referring to Fig. 4.2, frame F0 is a body-fixed frame centered at the CoM of the quadcopter,
and whose x0, y0, and z0-axis coincide with the zb, xb, and yb-axis of frame Fb, respectively.
Frame F1 is centered at the CoM and attached to link 1 (x1-axis along the link) ; F1 is
obtained by rotating F0 through an angle θ1 around the z0-axis. Frame 2 is centered at the
junction of the first and second links and attached to link 2 (x2-axis along the link) ; F2

is obtained by rotating F1 through an angle θ2 around the z1-axis. The rotation matrices

54

between the different frames linked to the manipulator are listed below :

Rb/0 =


0 1 0
0 0 1
1 0 0

 (4.13)

R0/1 =


cθ1 −sθ1 0
sθ1 cθ1 0
0 0 1

 (4.14)

R1/2 =


cθ2 −sθ2 0
sθ2 cθ2 0
0 0 1

 (4.15)

The classic Newton-Euler recursive method is used to derive the dynamic equations of the
manipulator [149, Ch. 6]. Although the method treats both rotational and prismatic joints,
only the equations for our particular case are presented for the sake of simplicity (Alg. 1) The
associated notations are gathered in Tab. 4.1 while the numerical values of the parameters
are available in Tab. 4.3. For the two-link planar manipulator considered in this paper and
assuming that the CoM of each link is at mid-length, one has :

p1 = 0,p2 = l1x1,pC1 = l1
2 x1,pC2 = l2

2 x2. (4.16)

Moreover we recall that for any vector xi, xki means the coordinate vector of xi in Fk. For
instance, in Alg. 1, one has zkk = [0 0 1]> and ωkk−1 = Rk/k−1ω

k−1
k−1.

For a fixed base, one has ω0 = ω̇0 = v0 = v̇0 = 0. But since the arm is mounted under the
quadcopter, the velocities and accelerations of the base of the arm (Frame F0) are non-null.
They are therefore set as those of the quadcopter, i.e. :

ω0
0 = R0/bω

b
b/i =

[
r p q

]>
(4.17)

v0
0 = R0/bvb =

[
w u v

]>
(4.18)

ω̇0
0 = R0/b

bω̇bb/i (4.19)

v̇0
0 = R0/b

(
bv̇b + ωbb/i × vb −Rb/i

[
0 0 g0

]>)
(4.20)

These velocities and accelerations are transmitted from one link to another through the
outward iterations and result in an additional torque that couples the dynamics of the quad-
copter and the manipulator. Moreover, to include the effect of the gravity on the arm links,

55

Algorithm 1: Iterative Newton-Euler method

• Initialization : ω0, ω̇0,v0, v̇0
• Outward iterations : k = 1→ 2

ωkk = ωkk−1 + θ̇kzkk
ω̇kk = ω̇kk−1 + θ̈kzkk + ωkk−1 × θ̇kzkk
v̇kk = v̇kk−1 + ω̇kk−1 × pkk + ωkk−1 × (ωkk−1 × pkk)

v̇kCk
= v̇kk + ω̇kk × pkCk

+ ωkk × (ωkk × pkC,k)
Fk
k = mkv̇kCk

Nk
k = IkCk

ω̇kk + ωkk × IkCk
ωkk

• Inward iterations : k = 2→ 1

fkk = Fk
k + fkk+1

nkk = Nk
k + nkk+1 + pkCk

× Fk
k + pkk+1 × fkk+1

τk = nkk
>zkk

the gravity vector in the opposite direction is also added to the linear acceleration v̇0
0. Finally,

the dynamic equations obtained with Alg. 1 combined with initial conditions in Eqs. (4.17)
to (4.20) can be expressed as a single vector dynamic equation :

M(Θ)Θ̈ + C(Θ, Θ̇)Θ̇ + g(Θ) = τ + d0 (4.21)

with Θ = [θ1 θ2]>, M(Θ) the inertia matrix of the manipulator, C(Θ, Θ̇) the matrix of
Coriolis and centrifugal terms, g(Θ) the vector of gravity terms, τ = [τ1 τ2]> the actuator
torque vector, and d0 the coupling torque resulting from Eqs. (4.17) to (4.20) without the
gravity effect. The vector d0, depending on Θ and its derivatives, as well as the states of the
quadcopter, can be interpreted as a disturbance to be rejected.

Finally, the forces and moments exerted by the manipulator on the quadcopter, resp. farm

and marm, can be calculated. From Alg. 1, the forces and moments applied by link 0 (the
quadcopter) on link 1 are f1 and n1, respectively. By using Newton’s third law, one obtains
the forces and moments exerted by the manipulator :

f barm = −Rb/0R0/1f1
1 (4.22)

nbarm = −Rb/0R0/1n1
1 (4.23)

56

Tableau 4.1 Notations for the Iterative Newton-Euler method

Notation Meaning
Rk/k−1 Rotation matrix from Fk−1 to Fk
ωk Angular velocity of link k
ω̇k Angular acceleration of link k
pk position of Fk relative to Fk−1
pCk

position of CoM of link k in Fk
vk linear velocity of origin of Fk w.r.t. Fk−1
v̇k linear acceleration of origin of Fk w.r.t. Fk−1
vCk

linear velocity of CoM of link k
v̇Ck

linear acceleration of CoM of link k
mk mass of link k
lk length of link k
ICk

inertia matrix of link k at CoM
Fk total force exerted on link k at CoM
Nk total torque exerted on link k at CoM
fk force exerted on link k by link k − 1
nk torque exerted on link k by link k − 1
τk torque exerted at joint of link k by actuator

4.4.3 Motor Dynamics

The motor and propeller dynamics can also be considered in the simulation model of the
system :

Vaj
= keωj +Raiaj

Jmω̇j = kmiaj
− kdω2

j

(4.24)

with ωj the rotational speed of the j-th motor, j ∈ [1, 2, 3, 4], Vaj
the input voltage, ke the

back-EMF constant of the motor, Ra the armature resistance, Jm the rotor and propeller
inertia, km the torque constant, and iaj

the armature current. The viscous damping and the
armature impedance of the motors are considered negligible.

4.4.4 State equation

The modeling of the AM is now complete for both numerical simulations and controller design
without being overly simplified. Equations (4.2) to (4.5) and Eq. (4.21) are rewritten as a
state equation :

ẋ = f(x,u) (4.25)

57

where state and input vectors, resp. x ∈ R16 and u ∈ R6, are defined as :

x =
[
pi> Φ> vb> ωbb/i

> Θ> Θ̇>
]>

(4.26)

u =
[
ω1 ω2 ω3 ω4 τ1 τ2

]>
(4.27)

The motor dynamics is not included in the state space model because it is assumed to be
sufficiently fast, and therefore negligible in the control law synthesis process that will be led
in the next two sections.

4.5 Equilibrium and Linearization of the Dynamic Model

Since the controller is to be scheduled with respect to the robotic arm joint angles θ1 and
θ2, a family of linear models of the drone at different equilibrium points must be obtained.
These linear models will be used in the multi-model synthesis of the scheduled controller.

4.5.1 Equilibrium Definition

The quadcopter equilibrium condition is chosen as hovering flight, while the manipulator is
in any fixed position Θe = [θ1,e θ2,e]>. At equilibrium, one has ẋ ≡ 0, and the system to be
solved is then :

0 = f(xe,ue) (4.28)

Since any position p or heading ψ can be chosen for the hovering flight equilibrium condition,
all the state variables but the joint angles in Eq. (4.26) are set to zero without loss of
generality, i.e. :

xe =
[
01×12 Θ>e 01×2

]>
(4.29)

From Eq. (4.28), the system to be solved boils down to :

kt
(
ω2

1,e + ω2
2,e + ω2

3,e + ω2
4,e

)
= (m+m1 +m2)g0

dkt
(
ω2

2,e − ω2
4,e

)
= 0

dkt
(
ω2

1,e − ω2
3,e

)
= τ1,e

kd
(
ω2

1,e − ω2
2,e + ω2

3,e − ω2
4,e

)
= 0

(4.30)

58

where the actuator torques at equilibrium are given by :

τ1,e =
(
m1

2 +m2

)
g0l1 sin θ1,e + m2g0l2

2 sin(θ1,e + θ2,e)

τ2,e = m2g0l2
2 sin(θ1,e + θ2,e)

By solving (4.30), the rotational speeds of each motor can be expressed as functions of θ1,e

and θ2,e :

ω2
1,e = mTg0

4kt
+ τ1,e

2dkt
(4.31)

ω2
2,e = ω2

4,e = mTg0

4kt
(4.32)

ω2
3,e = mTg0

4kt
− τ1,e

2dkt
(4.33)

with mT = m + m1 + m2 the AM total mass. From Eqs. (4.31) to (4.33), the effect of the
manipulator at equilibrium can be seen as a mass added to the quadcopter and a supple-
mentary moment around the yb-axis. Motors 2 and 4 always have equal equilibrium speed,
and motors 1 and 3 speed up or slow down by an equal value to compensate for the robotic
arm. For instance, this imposes the following design condition mTg0d ≥ 2τ1,e. Finally, using
the motor dynamics as in Eq. (4.24), it is now possible to calculate the equilibrium voltage
needed for each motor j :

Vaj ,e = keωj,e + Rakd
km

ω2
j,e (4.34)

4.5.2 Linearization

The model of the AM is linearized around the equilibrium condition (xe,ue) presented in
the previous subsection using standard linearization techniques. This yields the family of
linearized systems parameterized with the manipulator configuration Θe :

δẋ = A (Θe) δx + B (Θe) δu (4.35)

where δx = x − xe and δu = u − ue denote the deviations of the state and input vectors
from the equilibrium (xe,ue). Depending on the joint angle values Θe, the matrix elements of
A and B will change, and thus their dynamic characteristics, such as eigenvalues. Instead of
designing a controller robust to any possible value of Θe, it is preferably sought to schedule
the controller with Θe to better adapt and maintain a consistent level of performance.

As classically done with multicopter dynamics, the four motor control inputs δωj are re-

59

mapped into a vertical force δFz and three moments δM{x,y,z} with the ulterior motive of
decoupling the dynamics into four modes. The linearized transformation is given by :

δFz

δMx

δMy

δMz

 =


−kt −kt −kt −kt

0 dkt 0 −dkt
dkt 0 dkt 0
kd −kd kd −kd




2ω1,eδω1

2ω2,eδω2

2ω3,eδω3

2ω4,eδω4

 (4.36)

Four subsystems can then be extracted from (4.35) and (4.36) for controller design purpose.
These subsystems correspond to the vertical (pD), lateral (φ), longitudinal (θ), and directional
(ψ) modes with their respective state and input vectors being :

δxpD
=
[
δw δpD

]>
δupD

= δFz

δxφ =
[
δp δφ

]>
δuφ = δMx

δxθ =
[
δq δθ

]>
δuθ = δMy

δxψ =
[
δr δψ

]>
δuψ = δMz

Each subsystem is a second order LTI system with its own Am and Bm matrices, m =
{pD, φ, θ, ψ} , still depending on Θe. This changes the overall control problem from designing
one controller for a single MIMO system to designing four controllers for each subsystem.
Two additional inputs, namely the torques applied to each arm joint, are considered as
disturbances in the context of controller design. As opposed to a lone quadcopter, where
each of these modes are entirely uncoupled, the modes here are coupled due to the presence
of the manipulator. For the purpose of controller design, the four flying modes are still treated
as uncoupled.

4.6 Control Strategy

In this section, the AM controller structure, synthesis framework and algorithm initialization
starting points are presented.

4.6.1 Manipulator controller structure

The controller used for the manipulator is a joint space inverse dynamics controller [150],
where the mass, Coriolis and centrifugal, and gravity matrices are supposed to be measurable

60

at any time, i.e. :

τ = M(Θ)
[
Θ̈c + Kd(Θ̇c − Θ̇) + Kp(Θc −Θ)

]
+ C(Θ̇,Θ)Θ̇ + g(Θ) (4.37)

where Kp ∈ R2×2 and Kd ∈ R2×2 are the PD controller diagonal matrices tuned to obtain a
satisfying dynamic behavior of the arm, and Θc, Θ̇c, Θ̈c are the commanded angular positions,
velocities and accelerations. This controller has been implemented as given by Eq. (4.37) and
will not be detailed here since it is not the focus of this paper.

4.6.2 Controller structure

A state feedback controller with integral action on the regulated variables is chosen to stabilize
the quadcopter. The advantages of this controller include a simple structure and implemen-
tation, while still reaching the desired performances. The controller is focused on stabilizing
the quadcopter around hovering flight and is scheduled with θ1 and θ2 to deal with the arm
motions. The quadcopter controller consists of two nested loops. The inner loop controls the
Euler angles Φ and the altitude h = −pD ; the integral actions ensure a zero steady-state
error and allows to reject the perturbations due to the manipulator, or other factors, i.e,
uncertainties and external disturbances. The inner loop equations are :

δupD
= −KpD

(Θ)δxpD
+Ki,pD

(Θ)
∫

(δpD,c−δpD)

δuφ = −Kφ(Θ)δxφ +Ki,φ(Θ)
∫

(δφc − δφ)

δuθ = −Kθ(Θ)δxθ +Ki,θ(Θ)
∫

(δθc − δθ)

δuψ = −Kψ(Θ)δxψ +Ki,ψ(Θ)
∫

(δψc − δψ)

(4.38)

where Km ∈ R1×2 and Ki,m ∈ R, m ∈ {pD, φ, θ, ψ}, are respectively matrices and scalars
whose elements are scheduled with respect to the joint angles Θ. Figure 4.3 presents the
structure of the inner loop of the controller, in which δxm is the state vector of each subsystem,
δum the input, δrm the regulated variable that goes in the integral action, and δrc the
corresponding commanded value.

The outer loop is an output feedback loop, controlling the position (pN , pE) in the horizontal
plane as :

δxu = Kx,2(δpN,c − δpN)−Kx,1δu

δyu = Ky,2(δpE,c − δpE)−Ky,1δv
(4.39)

This outer loop is built around the inner loops controlling φ and θ. The commands (δxu, δyu)

61

∫
Ki,m Bm

∫
Am

Km

Cm

δrc+ + δum + δxm δrm

+−−

Figure 4.3 Inner loop controller structure

are translated into demands in(δφc, δθc) through a rotation of angle ψ. The gains are not
scheduled since the manipulator do not affect the quadcopter translation dynamics in the
linear models.

4.6.3 Structured H∞ synthesis

The gain-scheduled controller (4.38) is tuned within the structured H∞ synthesis framework
[104] with the Matlab Robust Control Toolbox function systune [100]. The capabilities of
the systune function allow to perform multi-model synthesis with a predefined controller
architecture and self-scheduling of the controller gains, i.e., the scheduling of the gains is
chosen a priori.

In order to tune the gain-scheduled controller, a grid of 5×5 operating points of the scheduling
variables θ1 and θ2 is created in the range of

[
−π

4 ,
π
4

]
×
[
−π

4 ,
π
4

]
rad. This leads to a family of

25 linearized models obtained with Eq. (4.35). Finally, the systune function accepts a wide
variety of design requirements of different natures ; they are gathered in Tab. 4.2.

Tableau 4.2 Design requirements

Requirement Objective
1 Tracking (φ, θ) 2% settling time ≈ 2 s

steady-state error < 0.01%
Tracking (ψ, pD) 2% settling time ≈ 4 s

steady-state error < 0.01%
2 Robustness margins gain margin > 5 dB

phase margin > 25◦
3 Closed-loop poles damping ratio ζ > 0.4

In addition to the grid of linear models and the performance requirements, the synthesis
algorithm also requires initial conditions for the controller gains to start the optimization,
i.e., a set of gains that stabilizes the closed-loop system for a nominal case and approaches the
desired performances. These values are calculated using an eigenstructure assignment method

62

[151], so the closed-loop poles are chosen as to approximately reach the desired temporal
characteristics. These initialization gains are calculated for the case (θ1,e, θ2,e) = (0, 0), which
corresponds to a vertical arm underneath the drone and is the central operating point in the
grid.

4.6.4 Gain-scheduling surfaces

Each gain that must be scheduled is modeled as a tuning surface function of the robotic arm
joint angles θ1 and θ2. Different surface shapes were tested, including linear, coupled linear,
and quadratic. Only quadratic surfaces were able to stabilize the AM over the grid and to
obtain the desired tuning objectives, therefore making it the minimal degree usable for this
specific configuration of AM. A general formulation for each gain is given by

K = K0 +K1θ1 +K2θ2 +K3θ1θ2 +K4θ
2
1 +K5θ

2
2 (4.40)

where the coefficients Kj, j ∈ [0..5] of the surfaces are different for each gain, meaning that
for the controller developed in this paper, 12 different surfaces are obtained.

Using the gains obtained by eigenstructure assignment as initial values of the gains K0, the
structured H∞ synthesis tunes the values of the 72 coefficients (12 surfaces each having 6
coefficients) by simultaneously trying to reach the desired tuning goals presented 4.2 for the
25 linearized models. With the gains obtained, the time responses of the controlled linear
models are identical for each operating point, confirming that the structured H∞ synthesis
is able to tune surfaces in a way to obtain the same closed-loop poles at each scheduling
points on the grid of robotic arm joint variables. The outer loop (Eq. 4.39) is simply tuned
using the previously mentioned eigenstructure assignment method. Now that the scheduled
controller is satisfactorily tuned, it can be implemented on the non-linear system for further
simulations.

4.7 Simulations of the Closed-Loop Aerial Manipulator

The previously introduced controller (Eqs. (4.38) and (4.39)) is now applied to the non-linear
simulation model of the AM using the equations presented in Section 4.4.

4.7.1 Model and controller parameters

The quadcopter used in this paper is a modified AscTec Pelican where the physical parameter
values were taken from [133]. The robotic arm used is a 3D printed arm, developed in our

63

laboratory, with the parameters taken from a CAD model. Finally, the motor parameters
were chosen as to be realistic for the system at hand. The values of each parameters are
given in Tab. 4.3. The use of accurate values for all parameters is necessary in order to tune
the controller as to attain the desired performances, but as shown later, a certain variance
between the tuning values and the actual values can be tolerated.

Tableau 4.3 Aerial manipulator parameter values

Symbol Quantity Value
m Drone mass 1.27 kg
Ixx Drone inertia (x) 0.043 kg ·m2

Iyy Drone inertia (y) 0.043 kg ·m2

Izz Drone inertia (z) 0.070 kg ·m2

d Rotor distance 0.211 m
kd Drag parameter 7.5× 10−7

kt Lift parameter 3.0× 10−5
m1 Mass, link 1 0.08 kg
m2 Mass, link 2 0.01 kg
l1 Length, link 1 0.125 m
l2 Length, link 2 0.522 m
Izz,1 Inertia, link 1 (around z1) 1.04× 10−4 kg ·m2

Izz,2 Inertia, link 2 (around z2) 2.27× 10−4 kg ·m2

ke Back EMF 7.8× 10−3

Ra Resistance 0.50 Ω
Jm Motor and propeller inertia 7.8× 10−3 kg ·m2

km Torque constant 3.7× 10−3

Table 4.4 contains the values of the gain coefficients obtained with the structured H∞ syn-
thesis. While the magnitude of the values of K0 may be surprising, they relate the error on an
angle or position to motor rotational speed acoording to the inverse of the mapping presented
in Eq. (4.36). This results in high value of the gains, but the commands still remain within
the motor limitations. As for the gains of the outer loop (Eq. (4.39)), they are given in Tab.
4.5.

64

Tableau 4.4 Gain-scheduled controller coefficient values

Gain Value
Variable K0 K1 K2 K3 K4 K5

KpD
(δw) 29087 −74 −13 294 −713 −108

KpD
(δpd) 141750 −89 9 471 −3310 −524

Ki,pD
180210 129 718 −39 −3313 −2102

Kφ(δp) 3709 −6 0 −43 −6 93
Kφ(δφ) 20315 −31 0 −233 −48 455
Ki,φ 31657 2 5 −310 −44 976
Kθ(δq) 3714 2 1 0 −59 −1
Kθ(δθ) 20273 10 4 −1 −294 −7
Ki,θ 31990 65 28 −2 −814 −12
Kψ(δr) 49440 −19 100 13 2779 8
Kψ(δψ) 266710 7 4 0 −308 −3
Ki,ψ 270160 −55 −47 −322 131 −1

Tableau 4.5 Outer loop gain values

Gain Value Gain Value
Kx,1 −0.0793 Kx,2 −0.018
Ky,1 0.08 Ky,2 0.019

4.7.2 Applying the controller on the nominal non-linear system

The behavior of the proposed controller on the non-linear dynamics of the AM is studied
to confirm the ability of the controller to reach the desired performances. The following
scenario has been chosen to show the response of each mode and the effect of the manipulator
motion on the entire system : at t = 0 s, a commanded horizontal position pN,c = 0.5 m and
pE,c = 0 m, followed at t = 10 s by a demand in altitude h = −pD,c = 0.5 m. As for the
manipulator motion, we consider two cases :

— Case 1 : θ1 = θ2 = π
4 sin(0.25t)

— Case 2 : θ1 = θ2 = π
4 sin(t)

The joint angle maximum amplitudes are tested with a slow motion (Case 1) and a faster one
(Case 2). In this scenario, the physical parameters of the quadcopter and the manipulator
are the nominal values presented in Table 4.3.

Figure 4.4 shows the temporal responses of the quadcopter CoM position in the inertial frame

65

0 5 10 15 20

Time (s)

0

0.1

0.2

0.3

0.4

0.5

0.6
p

N
 (

m
)

Case 1

Case 1

0 5 10 15 20

Time (s)

-0.5

0

0.5

p
E
 (

m
)

0 5 10 15 20

Time (s)

-0.1

0

0.1

0.2

0.3

0.4

0.5

h
 (

m
)

0 5 10 15 20

Time (s)

-0.5

0

0.5

 (
d
e
g
)

Figure 4.4 Quadcopter CoM position in frame Fi and pitch angle θ (Nominal parameters)

Fi. In both cases, the quadcopter reaches its steady state position in approximately 7 s in
pN , and is able to keep it within an error of 0.01 m of the steady state value, while having the
arm always in movement. The pE time response is not affected by the movement of the arm
as the arm motion remains in the vertical plane. Before t = 10 s, the altitude h is practically
not affected and remains constant, while after t = 10 s, the steady state is reached in 2 s and
kept notwithstanding the disturbances of the moving arm. While the movement of the arm
creates a force in zi, it is negligible when compared to the quadcopter mass, which is the
biggest influence in these modes. The vertical mode is notably faster than the longitudinal
and lateral modes as designed during the controller synthesis. If the Euler angles φ and ψ are
unaffected, the pitch angle θ remains close to 0, meaning that during the whole motion the
quadcopter is almost horizontal. The oscillations of the manipulator can be perceived in the

66

0 5 10 15 20

Time (s)

310

320

330

340

350

360

370

380
1
 (

ra
d

/s
)

Case 1

Case 2

0 5 10 15 20

Time (s)

310

320

330

340

350

360

370

380

2
 (

ra
d

/s
)

0 5 10 15 20

Time (s)

310

320

330

340

350

360

370

380

3
 (

ra
d

/s
)

0 5 10 15 20

Time (s)

310

320

330

340

350

360

370

380

4
 (

ra
d

/s
)

Figure 4.5 Motor rotational speeds (Nominal parameters)

responses in pN , pD and θ but they are clearly visible on the rotational speeds of the motors
(Fig. 4.5). In both cases, the arm oscillations of 0.25 and 1 rad/s are present on motors 1 and
3 with the same frequency, while the motors 2 and 4 are unaffected. All motors experience
the same spike at 10 s due to the change of altitude.

4.7.3 Comparison between non-scheduled and scheduled controllers

To show the effectiveness of the gain-scheduled controller, its performances are compared to
a robust version of the controller whose gains are no longer scheduled with Θ. This non-
scheduled controller is still tuned within the structured H∞ framework around the nominal
case (θ1,e, θ2,e) = (0, 0). Moreover the motor rotational speeds are no longer adjusted with the
arm position. As the non-scheduled controller could not stabilize the system under the pre-

67

vious scenario, the following one is considered. The position in the horizontal plane (pN , pE)
must remain at the origin while the first joint angle θ1 moves from 0 to π/4 at t = 0 s. At
t = 8 s, the second joint angle θ2 moves from 0 to π/4 while at t = 10 s, the AM must reach an
altitude of 0.5 s. Figure 4.6 exhibits the differences in the behaviours between the scheduled
and the non-scheduled controllers. In the first seconds, the AM with the scheduled control-
ler remains stationary, while the other moves away from the origin in pN as the first joint
reaches π/4. Both AMs manage to reach the altitude of 0.5 m simultaneoulsy, but because of
the movement of the second joint, the AM with the non-scheduled controller still takes time
to return to the origin. This clearly shows the advantages of the gain-scheduled controller
over its non-scheduled version.

0 5 10 15 20

Time (s)

-0.2

-0.1

0

0.1

0.2

p
N

 (
m

)

Scheduled

Non-scheduled

0 5 10 15 20

Time (s)

-0.5

0

0.5

p
E
 (

m
)

0 5 10 15 20

Time (s)

-0.1

0

0.1

0.2

0.3

0.4

0.5

h
 (

m
)

0 5 10 15 20

Time (s)

-0.5

0

0.5

 (
d
e
g
)

Figure 4.6 Time responses of xi and zi position for the proposed controller and a nominal
non-scheduled controller

68

4.7.4 Monte Carlo simulations with physical parameters uncertainties

While the controller is tuned using a nominal set of physical parameter values, these values
are rarely equal to those of a real-life system. In order to assess the controller’s ability to
deal with these uncertainties, the AM nominal parameters are disturbed within a range of
±10% around their nominal values (Tab. 4.3). A Monte Carlo simulation is used (N =
1000) with uniform random sampling in the intervals. Figure 4.7 illustrates the results of
the Monte Carlo simulation for the same commands as those presented in Section 4.7.2.
The time responses in pN and θ show a certain variance around the nominal case, but the
stability and the performance are still adequate. As for the altitude h , it remains largely
unaffected by the variance of the parameters. Thus, the scheduled controller exhibits a natural
robustness to uncertainties of 10% on the nominal parameters, which is enough to compensate
for the difference between nominal values used in tuning and the actual values in the future
experimental testbed.

4.8 Conclusion

This paper introduced a novel gain-scheduled state feedback controller for a quadcopter
equipped with a 2-DoF arm, tuned using the structured H∞ synthesis framework. The dy-
namic model of the system was obtained by combining the dynamics of a quadcopter with
the arm effects on the quadcopter using Newton-Euler recursive method. The equations were
linearized at different operating points of the robotic arm for controller synthesis purposes.
The proposed controller is a two loops state feedback with integral action on the Euler angles
and the altitude. Each gain of the inner loop is gain-scheduled using quadratic surfaces with
respect to the robotic arm joint angles. It is shown in simulation that the closed-loop non-
linear system reaches the desired temporal performances for the nominal system, while being
robust to uncertainties in the values of the physical parameters. The main advantage of the
proposed controller is its simplicity while maintaining adequate dynamic performances.

Future works will explore other possible scheduling surfaces, and scheduling with respect
to the mass of a grasped object if known in advance. Experimental testing will allow for
validation of the simulation results. The controller will be implemented in a static object
picking tasks context.

69

Figure 4.7 Monte Carlo simulations for 10% uncertainties on nominal parameters

70

CHAPITRE 5 ARTICLE 3 : SELECTION OF UNMANNED AERIAL
MANIPULATOR CONFIGURATIONS FOR PICKING TASKS IN

CLUTTERED ENVIRONMENTS USING POINT CLOUD BASED DEEP
LEARNING

Charles Coulombe, David Saussié, Sofiane Achiche

Soumis à Journal of Intelligent & Robotic Systems, Mai 2021

Ce chapitre répond au sous-objectif SO3 en introduisant une méthode supportant la concep-
tion d’un sous-système effectuant la sélection optimale d’un UAM parmi une flotte associé à
une tâche dans un environnement encombré. Cette méthode se base sur l’entraînement d’un
réseau de neurones par apprentissage profond à l’aide d’une base de données créée pour cette
application précise. Pour obtenir cette base de données, une méthode à base de planification
de trajectoire est développée. Le prédicteur utilise une représentation de l’environnement de
type nuage de point qui est traitée directement par le réseau de neurones. Finalement, un
concepteur utilisant cette méthode ne doit choisir que la flotte utilisée et le critère d’optimi-
sation désiré. Il ne reste alors que d’entraîner le prédicteur à nouveau avec la base de données
étiquetées selon la nouvelle flotte.

5.1 Abstract

Unmanned aerial manipulators (UAMs) are flying robots that are able to interact with their
environments using an attached manipulator. They are most commonly developed to accom-
plish object picking tasks, and the planning of these tasks are beginning to figure prominently
in the literature. Different UAM configurations have different task solving capabilities, mea-
ning that in a fleet of various UAMs, a selection must be made in order to choose one that
is better suited for a specific picking task. Moreover, in a situation where multiple picking
tasks should be accomplished simultaneously, such a selection method could be used to effi-
ciently dispatch UAMs to their tasks. A deep learning based method for selecting an optimal
UAM from a fleet to perform a static picking task in a cluttered environment is introduced.
This method is based on a description of the task and the scene in which it is accomplished,
respectively in the form of an orientation quaternion and a point cloud. This information is
used as input for a deep convolution neural network classifier that predicts the optimal UAM
capable of carrying out the task. To train this classifier, a dataset of 20,000 items is created
using randomly generated scenes and objectives, which are processed by a path planning

71

based method to obtain the reference classes. The introduced deep learning based method is
shown to be able to select an adequate UAM configuration for the task at hand with a 71.2%
classification accuracy. An experimental testbed confirms the suitability of the method by
using 3D scans of real scenes in the trained network and obtains a classification accuracy
similar to that of the test part of the simulated dataset. The introduced method could be
used in a fleet dispatch system for multiple simultaneous picking tasks, or even in a UAM
design context.

Keywords : Deep Learning ; Aerial Manipulator ; Point Cloud ; Selection ; Picking Tasks

5.2 Introduction

In the last few years, quadcopters and other multicopters have become more common whe-
ther in academic research, commercial applications, or simply as a hobby. Since this rise in
popularity, researchers have been working to increase their interaction capabilities, identified
as one of their major weaknesses [6]. Unmanned aerial manipulators (UAMs) were developed
as a direct solution to this weakness. They are a class of robots consisting of a manipulation
device attached to an unmanned aerial vehicle (UAV). Most commonly, they are made of an
unmanned multicopter equipped with one or more robotic arms that can have different confi-
gurations, notably by changing the number of degrees of freedom (DoFs) [18,26,152]. UAMs
offer the possibility to accomplish a variety of tasks such as structural visual inspection [125],
object picking [50] or even complex assembly [105]. They are also useful for their potential
use in different hazardous environments [127]. Tasks that can be performed by UAMs were
categorized in a task taxonomy [153], where object picking tasks were identified as the most
commonly found in literature, and therefore are the focus of this work.

Recent domain reviews [6,15] have highlighted the fact that a large portion of the published
studies on UAMs focuses either on stability control [35,37] or on trajectory planning for dif-
ferent tasks, such as drawer opening [27] or cooperation between multi-UAMs [154]. Limited
works detail path or trajectory planning strategies specific to picking tasks with UAMs. One
such research avenue uses multiple points to guide a UAM in a scene devoid of obstacles [116].
This approach is based on the configuration of the planar manipulator and tends to keep the
arm leveled as to keep the camera looking at the objective. Similarly, an object is picked up
using Image-Based Visual Servoing (IBVS), in which the camera is equipped with a fish-eye
lens [50]. Path planning is solved conjointly with dynamic controls in an obstacle-free envi-
ronment. A weight matrix is used in the inverse kinematics in order not to over stretch the
arm, and the movement of the arm is limited to the vicinity of the horizontal plane [50]. The
task of picking straight-standing objects, as defined in these previous works, limits the use

72

of the complete range of motion of the UAM. A trajectory planning strategy for grasping a
moving target on the ground from the air is to use the multicopter to fit the trajectory of
the target, while relative inverse kinematics is used to adjust the relative pose of the target
to the manipulator [110]. In this case, this effectively decouples the kinematics of the drone
and the arm, while allowing the arm to remain mostly horizontal. Another work uses a larger
range of motion, in which a trajectory is planned for two UAMs cooperating together to move
a single large target, by considering the combined dynamics and kinematics of both UAMs
and target [154]. These aforementioned studies accomplish their picking tasks in obstacle-free
environments and do not require the use of the complete arm’s range of motion and the com-
bined kinematics of the system, as it would be necessary in cluttered scenes, and often done
with fixed-base robotic arm [155]. In these environments, a UAM must deal with obstacles
at close range and avoid collisions. Depending on the obstacle positions relative to the task
target, specific UAM configurations might be better suited than others.

As of today’s literature and as reported in [15], few works also consider high-level problema-
tic related to UAM guidance subsystems, including mission planning and decision making,
as defined in [62]. The focus is on integrating vision for picking task in obstacle-free envi-
ronments [50], or stabilizing the drone during picking, [68], which are essentially lower-level
subsystems. However, to the best of the authors’ knowledge, no significant research has been
conducted on UAMs performing picking tasks in cluttered environments, and therefore nei-
ther on UAM selection for these tasks. High-level task planning has been identified as one of
the challenges for robotics in general, especially for its use in robotic bin and shelf picking,
as well as in robotic disaster mitigation and recovery [4], both cases in which UAMs could be
valuable assets. UAVs are already being used following disasters to assess and obtain critical
information about the situation at hand [70]. It would therefore be interesting to see UAMs
being used in such contexts where they would not be limited to monitoring, but could also
take action. Recent developments regarding the use of UAMs in this context include mission
planning for emergency valve closure [32] and in search-and-rescue operations where a UAM
automatically deploys a signal-emitting wristband on unconscious victims [16]. These papers
used a single UAM unit to accomplish the task, but in a context where the task and the en-
vironment vary, multiple UAMs with different configurations could be used in coordination
to optimally exploit the advantages associated with each configuration. Although UAMs are
beginning to be used in more complex missions, there is a notable lack of development in the
literature on mission planning methodology specifically to UAMs. Optimal UAM selection
based on the task at hand and its local environment could be used in the mentioned context
above. Machine learning, and in particular deep learning, has shown a strong potential impact
in solving this kind of high-level task planning problems [4].

73

While machine learning has been used for parameter tuning, adaptive control or real-time
trajectory planning in UAVs [156], deep learning is mostly used for vision applications in
autonomous UAM and robotic manipulations. Examples include recognition and pose es-
timation of common objects in images [86], grasp pose selection [85], or even landing pad
detection [88]. These methods tend to find a specific information in images or other data
representations. An interesting problem is to obtain the context of the scene from its repre-
sentation. To process scenes and cluttered environments, different data formats are used :
images [85–87], voxels or volumetric representations [88,89], or point clouds [90]. Some deep
learning methods are specifically tailored to use these forms of representations. For example,
LIDAR measurements are transformed to a volumetric density mapping in order to detect a
landing pad [88]. A scene segmentation method based on proactive analysis and robot expe-
rimentation, in which robots were allowed to physically push objects, results in a point cloud
representation [157].

A recent breakthrough in deep learning concerns network architectures specifically developed
to directly use point clouds as inputs, with PointNet and PointNet++ being pioneers in
this domain [90, 91]. The advantages of this type of inputs are their ease of use for 3D
representation as opposed to images, and possible embedded implementations due to the low
memory requirement to store point clouds [90] as opposed to more voluminous representations
such as voxels [158]. Following PointNet, other variants for classifying and segmenting directly
on point clouds were proposed in [159–162], with the goals of capturing more accurately
information from local geometric features [160, 162]. Finally, a point cloud was also used to
represent a scene and to detect whether it is traversable for an autonomous car [163]. The use
of point clouds in deep learning is a recent development that easily lends itself in robotics.
As a matter of fact, robots and UAMs are now often equipped with a LIDAR, a depth sensor
or a stereo camera capable of producing point clouds. Current existing networks are used for
object recognition based on point cloud representations [90,91], and while they are certainly
useful as is, they could be used for other purposes, such as full scene analysis for use in
mission planning and dispatching of UAMs.

The objective of this paper is to develop a systematic method to select the most appropriate
UAM to perform a picking task in a cluttered environment. This would address the need
for a high-level guidance method as previously identified, and could be used in any situation
where multiple picking tasks must be accomplished in various environments. The scenario
considered in this paper is the following. A fleet containing a fixed number of units is defined,
and for any object picking task, there is a unit within the fleet capable of performing it. Even
though the fleet as a whole is general enough to perform any picking task, each UAM unit
has its own specific configuration that does not make it suitable for all tasks due to the

74

presence of obstacles or the definition of the task itself. Furthermore, the tasks considered
in this paper are limited to static picking tasks, since they have been identified as the most
common ones [153]. To summarize, the UAM must reach a non-moving object and use its
manipulator to pick it up according to a chosen pose. The question is : how to optimally and
autonomously assign a drone of the fleet to a task ?

To answer that question, a deep learning classifier to select the optimal UAM is proposed.
This classifier outputs a decision using information representing the task and the scene in
which it is executed. Two classifier architectures are tested, one based on a modified PointNet
architecture [90], and the other, based on a modified PointNet++ architecture [91]. First,
PointNet is chosen as it is the pioneer in the field [161] and one must start with the simplest
architecture in order to obtain a proof of concept. Second, PointNet++ is a natural conti-
nuation that can provide better capture of local features [91]. To train the classifiers, a large
dataset is required and created using a path planning based method. This method can solve
the UAM selection problem, but it is slow, computationally heavy, and therefore difficult to
implement on embedded microcomputers ; this is the reason why deep learning classifiers are
used.

The remainder of the paper is organized as follows. Section 5.3 presents a path planning
based method capable of selecting the best suited configuration associated with a scene and
a task. Section 5.4 presents the dataset generation, using the method in Section 5.3 to obtain
the label associated with each generated data point. Section 5.5 presents the deep learning
classifier architectures used, their generalization results and a use with real-life scenes. A
discussion compares the results while offering insight into the limitations and how these
methods could be applied or used in other contexts in Section 5.6.

5.3 Path planning based selection method

This section is dedicated to the presentation of the drone fleet, as well as the descriptions of
the scenes and tasks to be performed. The path planning based selection method is is then
detailed and used in the generation process of the database.

5.3.1 Definition of the UAM fleet

The available UAM configurations must be defined beforehand in order to be used in the
path planning based selection method. In this work, four different manipulator configurations
are available in the fleet, but any number of UAMs could be used as long as the fleet contains
at least two different UAM configurations.

75

The selected configurations are derived from existing UAMs found in the literature, with
minor modifications to their physical parameters so that they have the same reach, for com-
parison purposes. All four configurations are built from the same quadcopter flying base with
a robotic arm attached below (Fig. 5.1). As for the attached robotic arms, they have a va-
riable number of rotational joints : a 2-DoF arm [31] (Fig. 5.1a), a 3-DoF arm [38] (Fig. 5.1b),
a 4-DoF arm [35] (Fig. 5.1c) and a 6-DoF arm [37] (Fig. 5.1d). The arm configurations are
presented in Tab. 5.3 by their Denavit-Hartenberg parameters as defined in [150]. The same
simple two-finger end-effector is attached to each arm as shown in Fig. 5.1. From a configu-
ration point of view, each arm is a more complex iteration of the previous one, i.e., the 3-DoF
arm can fully mimic the kinematics of the 2-DoF arm, etc. This fleet was chosen because the
2-DoF and 3-DoF arms allow for lighter UAMs and therefore longer flight time, while the
4-DoF and 6-DoF arms allow to reach more complex targets in cluttered environments.

Figure 5.1 UAM configurations where the arm joints are shown as coordinate systems as used
in the URDF modeling

First, two reference frames are defined, namely the North-East-Down (NED) inertial frame
Fi, and the body-attached frame Fb as shown in Fig. 5.2. The kinematics of the UAM base,

76

i.e., the quadcopter kinematics, is modeled as a floating solid body with three translations
in Fi and only one rotation around the axis zi (yaw angle ψ), which assumes that the
base remains horizontal. To this end, the roll and pitch motions that induce the horizontal
translation of the quadcopter are supposed to be negligible. This implies that the roll φ
and pitch θ angles, as well as the translation speeds, will remain very low, and thus, that
the horizontality assumption will be almost satisfied. This is perfectly reasonable, as in the
case of position control, the input commands of the controller are often the desired positions
expressed in the inertial frame Fi and the desired yaw Euler angle ψ. Also, for picking tasks
in cluttered environments, trading speed for precision both during the movement and picking
phases is judicious in order to minimize failures.

Figure 5.2 Reference frames of the system, the drone attached body frame is shown on the
UAM, while the tool must match the desired orientation

The position and orientation of F b relative to F i is then given by the homogeneous trans-

77

formation matrix :

Ti/b =


cψ −sψ 0 tx

sψ cψ 0 ty

0 0 1 tz

0 0 0 1

 (5.1)

where ti/b = [tx ty tz]> is the position of the origin of Fb relative to Fi, and the short-hands
sx = sin x and cx = cosx are used for brevity. The position of a point in Fi denoted by
pi = [xi yi zi 1]> and its position in Fb denoted by pb = [xb yb zb 1]> are linked by the
relation :

pi = Ti/bpb (5.2)

In the path planning framework, the quadcopter is effectively modeled as a 4-DoF serial
robot ; three translations (prismatic joints) and one rotation around zi (revolute joint) are
applied sequentially at the CoM of the quadcopter.

The kinematics of the manipulator is expressed by the transformation matrices obtained
from the Denavit-Hartenberg parameters associated with each UAM as presented in Tab. 5.3
and as defined in [150]. A static transformation is necessary between the frame Fb and the
initial frame F0 of the arm used for the Denavit-Hartenberg modeling : it considers the offset
between the quadcopter CoM and the attach point of the arm, i.e, the origin of F0, as well
as the rotation between Fb and F0. This transformation is different for each configurations,
depending on the orientation of the initial revolute joint of the arm.

Once the UAM configurations and kinematics are defined, they are modeled as a Unified
Robot Description Format (URDF) file for use with the motion planning framework, namely
MoveIt 1.0 [164]. The MoveIt framework, built upon Robot Operating System (ROS), is used
for its ability to solve path planning problem while including complex scene representation,
obstacles and self-collision avoidance. For collision avoidance purpose, simple geometric solids
such as spheres, boxes and cylinders are used to approximate the UAM geometry and to
simplify the calculations [165].

5.3.2 Definition of scenes and tasks

With models of the UAM fleet available, scenes and task objectives must be added to the
framework to define the path planning problem. To represent the scene, a point cloud of
the local environment is transformed into a voxel representation using the MoveIt Point
Cloud Octomap Updater plugin with an Octomap resolution of 0.05 m. This step is necessary
because MoveIt does not support point cloud directly. The capture and pre-processing of the

78

point cloud is outside the scope of this method and the point cloud is considered an accurate
representation of the 3D scene in which the task is carried out, and obtained beforehand.

Static picking tasks are modeled by a target position and orientation, respectively represen-
ting the picking point on the target object and the orientation that the end-effector must
reach in order to successfully grasp the object. Without loss of generality, the target position
is always chosen as the origin of the point cloud. A simple translation can be applied to the
point cloud to align the target with the origin. It is assumed that the UAM is already in
the near vicinity of the target and is able to move freely around the scene, since only local
planning is considered. If needed, a combination of multiple scenes could be used to represent
more complex tasks or even waypoint navigation as discussed in Section 5.6.

The target orientation is represented by a normalized quaternion, as it allows a representation
of the orientation in the R3 space without any singularity, such as the gimbal lock inherent
in Euler angle representations. Moreover, they are easily normalized for use in the deep
learning method. Picking orientation and target acquirement could be automatically obtained
from a grasp detection algorithm such as [86], but is beyond the scope of this work. Note
that no actual picking steps are considered, and the task is considered accomplished by
simply reaching the gripping conditions. The target is not represented by a physical object,
since payloads for UAMs are usually small, especially in cluttered environment ; it could
nevertheless be added if needed.

5.3.3 Path planning and selection

With the scene and task represented, a path planning algorithm, RRTConnect [166], is used
in conjunction with a numerical inverse kinematic solver in order to reach the desired pose,
while avoiding obstacles and self-collision as demonstrated in Fig. 5.3. The planning algorithm
takes a maximum of 5 s calculation time to obtain a path to the desired goal within nume-
rical tolerances of 0.0001 m and 0.0001 rad on position and orientation, respectively. These
tolerances are only used for the path planning algorithm and not for the actual movement.

For each UAM configuration, path planning is attempted for the same scene and task des-
cription, and a simple binary variable is recorded representing success or failure. Among all
configurations capable of reaching the target (if any), the one with the lowest number of arm
DoFs is chosen to carry out the task. This is the optimal criterion used in the UAM selection
method. Indeed, a UAM with fewer arm DoFs is generally lighter, due to the lower number of
motors and parts, which allows for lower power consumption and, consequently, longer flight
time. Lower UAM weight, due to a smaller manipulator, also allows for a higher maximum
payload using the same motors [18].

79

Figure 5.3 Solved path planning for a random scene as created by the dataset generation
process

With this method, it is possible to select the possible optimal UAM within the fleet to
accomplish a picking task in a specific scene and with a defined task, as per the scenario
defined in Section 5.2. However a major drawback is its complexity of use and difficulty to
be implemented on-board. The path planning framework, combined with the presence of all
the different UAM models and the scene representation, would be difficult to transpose to
an on-board system, where memory and storage are usually limited and dedicated to more
essential tasks such as vision or control. To solve this problem and obtain a faster method,
a deep learning classifier is developed to accomplish the same goal, by predicting the best
suited UAM to perform a task.

5.4 Dataset for picking tasks in cluttered environments

The deep learning classifier must select the optimal UAM within the fleet, or decide if none
is suitable. Therefore, a dataset with a high number of examples must be created in order

80

to train the classifier. As presented later in Section 5.5, the selected architectures have a
large number of layers, and the more examples there are, the better the training. Therefore,
a dataset containing 20,000 elements is constructed and used with the path planning based
method in order to obtain the classes, i.e., the optimal UAM for a task, associated with
each element. This high number of examples was retained based on similar dataset sizes. For
instance, the ModelNet40 datasets is composed of 12,311 elements and used for classifications
of objets in 40 categories [158], while ShapeNet contains 16,881 elements of 16 categories used
for segmentation [167].

5.4.1 Dataset generation

For the purposes of this work, the scenes are generated by modifying other existing point
cloud datasets, while tasks are randomly generated. In a limited amount of time, it would
be impossible and impractical to create such a large number of physical scenes and create
point clouds with a camera or laser sensor. in addition, existing datasets do not meet the
requirements needed to represent cluttered environments, as they are composed of single
objects, used in classification, or represent large tabletop scenes or large scale rooms with
few objects, which are not appropriate for local object picking tasks in a three dimensional
environment. The scene generation algorithm is similar to the one presented in SceneNet [168],
where objects are sampled from existing datasets, then placed randomly in a 3D environment
and iterated using an hierarchical annealing optimization process in order to obtain realistic
scenes. A similar process is used in this work ; however obtaining realistic scenes were not
a criteria in the generated scenes. The goal was primarily to obtain a variety of different
geometries representing possible cluttered environments, realistic or not, so that the classifiers
would be able to select UAMs for a wide range of scenes, and to include examples that are
solvable by each UAM configuration. By combining uniform random distributions on the
random variables used in the scene generation process and a large number of examples,
we developed a dataset containing multiple examples of scene/task combinations for each
configuration.

As presented in Section 5.3.2, the task targets are always positioned at the origin of the
scene with a random orientation defined by a unit quaternion expressed in the inertial frame
Fi. The quaternions are randomly generated by picking three random numbers a, b, c from a

81

continuous uniform distribution in the range [0, 1] and by using the formula :

w

x

y

z

 =


sin(2πb)

√
1− a

cos(2πb)
√

1− a
sin(2πc)

√
a

cos(2πc)
√
a

 (5.3)

From Eq. 5.3, 16,000 random orientations were generated [169]. As for the remaining 4,000
orientations, they were created as quaternions representing orientations that can be reached
by the 2-DoF arm configuration ; they were obtained by multiplying two random rotations
in the UAM workspace plane.

Multiple existing object point cloud datasets were modified and merged randomly together to
create the scenes [170–175]. These datasets were originally used for either object recognition
or for semantic labeling of cluttered scenes, and contained point clouds of common objects,
with their associated labels ; only the point clouds were used in the dataset creation. To create
the scenes, a random number of items (between 1 and 10) are selected from the available
item categories and in random views. Each item in the datasets was represented in multiple
views. Since the objective was simply to obtain random scenes with different shapes and
obstacles, it was not necessary to have accurate representations of the existing objects, but
only to obtain cluttered scenes.

For each object, a random starting position, a scale and an orientation are chosen. The
position and the scale are constrained to ensure that the object is fully contained within a
unit sphere when properly placed. The starting position pc is chosen by selecting a random
point inside the unit sphere and the objects are re-scaled using the following formula :

pc,norm = (pc − p̄c)/(max(‖pc‖) ∗ s) (5.4)

where the bar operator represents the average position of all points for each axis of the point
cloud, and the norm is the Euler norm for a single point. The scale factor s is also constrained,
so the object size does not become insignificant.

The orientation is obtained by applying three successive rotations with random angles α, β
and γ to every point of the point cloud :


x

y

z


r

=


cα −sα 0
sα cα 0
0 0 1



cβ 0 sβ

0 1 0
−sβ 0 cβ




1 0 0
0 cγ −sγ
0 sγ cγ



x

y

z


i

(5.5)

82

where the i superscript indicates the initial point cloud position and the r superscript indi-
cates the rotated point cloud position. No constraints were applied to whether or not obstacles
were crossing the origin of the sphere. A scene with obstacles near or crossing the origin would
simply be categorized as unsolvable. The 20,000 elements in the dataset were generated by
randomly associating a scene with an orientation.

Once generated, the dataset was used with the path planning based method described in
Section 5.3 to obtain the label associated with each scene, i.e., the most suitable UAM able
to accomplish the task, or no UAM, if not possible.

5.4.2 Dataset preparation for machine learning use

In this section, the created dataset is formally defined for use in machine learning training.
As shown in Fig. 5.4, each example in the dataset has both features and a label. The features
consist of a point cloud of dimension M × 3, where M is the number of points in the point
cloud, a quaternion representing the picking orientation in R3 and a label corresponding to
each of the five available classes : the four UAM configuration classes and the unsolvable
class. The unsolvable class is a special class in which no UAM from the fleet can reach the
target, either because of the constraints in the geometry of the scene, or simply because the
target is obscured by obstacles. Multiple elements of the dataset are combined in a batch of
size B.

The created dataset does not possess balanced classes (20% of the dataset each), therefore
class balancing is performed in preparation for training. A Synthetic Minority Oversampling
Technique (SMOTE)-like method [176] is used, in which new elements of the minority classes
are synthetically created while undersampling the majority class. This method has been
shown to offer better performances than only oversampling members of the minority class
[176]. Synthetic augmentation of dataset has also been used successfully in other related
work [177]. New examples are created by rotating existing scenes by a random angle around
the axis zi, rotating the quaternion by the same amount around the same axis and adding a
Gaussian noise of mean µ = 0 m and standard deviation σ = 0.01 m to each point of the point
cloud. This noise does not affect the picking tasks results, as it only moves the points by a
few millimeters in a random direction and therefore does not change the scene configuration
and the label associated. These specific data augmentations were already used with success
in a similar context in VoxelNet [178].

The dataset is randomly divided into a training set, a validation set and a test set, in propor-
tions of 70%/15%/15%. The training set is used to train the convolutional neural network
(CNN) classifiers, while the validation set is used during training to avoid overfitting. Finally,

83

Figure 5.4 Structure of the dataset

the test set is not used in training so that the generalization capability of the classifiers can
be evaluated. The complete process including the dataset generation, label calculations using
the path planning based methodology and deep learning based methodology is illustrated in
Fig. 5.5.

5.5 Deep learning based selection method

Deep classifiers are trained to obtain the desired UAM based from the scene and task des-
cription. Two architectures are used and compared : the first one is based on PointNet [90],
and the second one is based on its successor, PointNet++ [91]. Both were trained on the
created dataset to compare their results. While at first glance PointNet++ might be more
suitable for the problem at hand, due to its ability to process local geometric information [91],
it has a more complex architecture and can be more difficult to train. Notwithstanding the
different architectures, the problem at hand is a classification problem where the classes are
the different UAM configurations in the fleet and the unsolvable class. The modifications

84

Figure 5.5 Graphic summary of the presented methodologies and their interactions, from the
dataset generation to its use in the deep learning classifiers

85

made to the original architectures are presented here, as well as the choices made for the
different hyperparameters.

5.5.1 AMPointNet and AMPointNet++ architectures

The first architecture is based on the PointNet architecture [90] with modifications, and
named AMPointNet for this specific use (Fig. 5.6). The architecture consists of two parts. The
first part extracts features directly from the point cloud, using multiple shared Multilayer
Perceptrons (MLPs) and T-Nets, as shown in Fig. 5.6. The shared MLPs in the original
architecture are implemented as multi-channel 1D convolution layers with a kernel size of 1.
A batch normalization [179] and Rectified Linear Unit (ReLU) function are used after each
layer of the shared MLPs. The second part is the actual classifier using the features from the
first part and the desired orientation quaternion as input to the classifier. The classifier is a
deep 3-layer MLP with batch normalization and ReLU activation functions after each layer.
A dropout layer with a dropout rate of 50% is used after the penultimate classifier layer. The
loss function for this architecture is a negative log likelihood (NLL) function applied on the
output class with a regulator term to limit the deviations of both T-Nets from the identity
matrix, as presented in [90].

Figure 5.6 Architecture of the PointNet based AMPointNet CNN

The second architecture is based on PointNet++ [91] and is also modified to take into ac-
count the problem at hand ; this version is named AMPointNet++ (Fig. 5.7). The single scale

86

grouping (SSG) version of the original architecture is used, with the K-Nearest Neighboor
(KNN) algorithm used for cluster generation. This architecture uses a sampling and grouping
phase before applying mini-PointNets to nested partitions of the point cloud. This effectively
allows AMPointNet++ to capture and characterize local structures, in a way that AMPoint-
Net cannot. The first sampling and grouping group creates clusters of K = 512 points and
samples the points in a radius of r = 0.2 m around the center of the cluster. A Mini-PointNet
is trained for use on the clusters, leveraging the AMPointNet features part of the architec-
ture presented in this Section. The operation is repeated for a second sampling and grouping
phase with K = 128 and r = 0.4 m and finally applied to all points as shown in Fig. 5.7. The
input of the classifier section also includes the orientation quaternion, as for AMPointNet.
The loss function for this architecture is a simple NLL without regulations.

Figure 5.7 Architecture of the PointNet++ based AMPointNet++ CNN

The training parameters are summarized in Table 5.1. The LR scheduler used for AMPointNet
was implemented following the training procedures for the original architectures [90,91], and
also confirmed by experiments on the modified architectures. After training, the validation set
is used to select the optimal model obtained during training that achieves the most accurate
results without overfitting, based on accuracy of the predicted classes in comparison to the
actual classes. The hyperparameters used in this work were not optimized ; they were obtained
based on commonly used values and an ad hoc manual search. Training was conducted using

87

PyTorch 1.7 and CUDA 10.2 for GPU calculations on a Windows 10 computer equipped
with a NVIDIA Titan X GPU. Training of PointNet took between 6 and 12 hours, while
PointNet++ took between 36 and 60 hours to complete.

5.5.2 Test Results, Accuracies and Confusion Matrices

An interesting aspect of the classifiers is that the same architecture can work with different
point cloud sizes M as input. To choose the point cloud size, both architectures are trained
with varying size. Figure 5.8 shows the classification accuracy of both architectures with
different point cloud sizes. Using 2048 points does not seem to improve the accuracy of both
architectures significantly, therefore, 1024 points is deemed to be an adequate point cloud
size for further training.

With training conducted using the architectures and parameters defined above, results are
obtained from the test set. This set was not used at any stage of the training in order to obtain
an evaluation of the generalization of the classifiers. The CNNs are trained to predict the
same exact class as the one identified with the path planning method, but it is not the only
metric tracked. As mentioned in Section 5.3.1, UAMs can achieve the same exact trajectory
as those with a lower number of DoFs. Therefore, if the predicted class is a UAM with a
higher number of DoFs, it will still be able to accomplish the task, even if not optimally. This
is defined as the task accuracy and obtained by averaging the accuracy per label, of the upper
triangular matrix in the confusion matrix, except for the unsolvable class column, as shown
in red in Figs 5.9 and 5.10. The other metric is the classification accuracy, i.e, the commonly
used accuracy, and in this case represents the ability of the CNN to predict the same class as
the one obtained by the path planning method. As shown in the confusion matrices in Figs
5.9 and 5.10, this is represented by the average of the diagonal of this matrix. It should be
noted that this classification task is difficult to accomplish by humans alone. It is tedious for
a person to try to select the best suited UAM configuration even if the scenes and tasks are
represented visually. Therefore, comparison to human accuracy, as it is often carried out in

Parameter Value
Optimizer ADAM [180,181]
Learning Rate (LR) 0.001
Batch Size (B) 16
LR scheduler 0.5 every 20 epoch (AMPointNet only)
Maximum epoch 200

Tableau 5.1 Training parameters

88

Figure 5.8 Effects of point cloud sizes on classification accuracy for AMPointNet and AM-
PointNet++ architectures

image classifications, is not possible in this case.

Figure 5.11 shows the average accuracies over five training runs, where the error bars show
the minimum and maximum variations in accuracy induced by the training process for both
AMPointNet and AMPointNet++.

The AMPointNet architecture obtains a 71.2% mean classification accuracy and a 80.4%
mean task accuracy on the test dataset over five full training runs. A single prediction takes
3 ms without parameter loading. As shown in the confusion matrix in Fig. 5.9, the hardest
classes to categorize are the 3-DoF and 4-DoF classes. This can be explained by the fact
that those UAM configurations are similar to each other and therefore, small variations in
the processed scene features, such as missing or misrepresenting some features, could easily
change the classification. On the other hand, the 2-DoF configuration is restricted to planar
motions, and the 6-DoF class has more unique capabilities, making them easier to classify.

The AMPointNet++ architecture is able to obtain a mean classification accuracy of 71.9%
and mean task accuracy of 80.9%, also on the test dataset over five full training runs. Pre-
dictions take 391 ms without parameter loading. Fig. 5.10 shows the same magnitude of ca-

89

Figure 5.9 Confusion matrix of the best training obtained for AMPointNet

tegorization errors as for AMPointNet.

Table 5.2 summarizes the average accuracies, predictions times and also includes parameter
sizes for both architectures and the path planning based method (MoveIt). The parameter
included for both CNN architectures is simply the size of the learned parameters in the
networks. Although a bit counter-intuitive, the more complex architecture AMPointNet++
is lighter in the number of parameters. This is because the smaller networks are trained on
a subset of the entire point cloud instead of larger layers that consider all points at once as
with AMPointNet. The downside is that the architecture has a higher prediction time due
to the number of operations that need to be performed, as shown in the prediction times.
The path planning based method achieves a 100% accuracy due to its exact nature, but the
cost is an extremely high prediction time, ranging from 5 to 20 seconds, depending on which
UAM can carry out the task. While this method does not learn parameters, the parameter

90

Figure 5.10 Confusion matrix of the best training obtained for AMPointNet++

size includes a special version of the point cloud needed to integrate MoveIt and the various
UAM models needed to solve the path planning problem. The parameter size for the CNN
and MoveIT based methods does not include the various libraries needed, such as PyTorch
for CNN and ROS/MoveIt.

The differences in classification and task accuracies between AMPointNet and AMPoint-
Net++ are less than one percent. The variations between different training runs remain
below 3% as shown in Fig. 5.11. Therefore, it can be stated that both architectures have the
same performance with AMPointNet++ having a slower prediction time. Since the predic-
tions of AMPointNet++ are one hundred times slower than AMPointNet, using the latter
is recommended for the UAM selection objective. Moreover, compared to the MoveIt-based
method, the predictions are a thousand times faster, which confirms the choice of a deep

91

Figure 5.11 Classification and task accuracies of AMPointNet and AMPointNet++

Tableau 5.2 Accuracies, prediction times, and parameter sizes for AMPointNet and AMPoint-
Net++ CNN and MoveIt based path planning method

AMPointNet AMPointNet++ MoveIt
Mean classification
accuracy (%)

71.2 71.9 100

Mean task accuracy (%) 80.4 80.9 100
Prediction Time (s) 0.003 0.391 5− 20
Parameter size (MB) 13.6 7.8 > 500

learning-based method. Four UAM configurations were used in this work, but if more were
to be available in a fleet, the prediction times would become even more important with the
MoveIt based method. The difference in parameter size for both architectures is negligible
and does not impact the choice of architecture, but also confirms the choice of the classifiers
over the path-planning based method.

92

5.5.3 Experiment using real-life scenes

An experiment was conducted in which tasks were defined in real-life scenes. The path plan-
ning method was used to obtain the optimal UAM configurations for each scene and then
compared to the predictions using the classifiers. This experiment was conducted to whe-
ther the trained model could also be applied to real-life scenes. Five scenes were constructed
in such a way as to obtain one scene solvable by each UAM configuration, including one
unsolvable scene. They were then scanned using an Intel RealSense D415 camera to obtain
RGB-D videos of the scenes. These videos were then used in a scene reconstruction pipeline,
as described in [182,183], and implemented with the Open3D [184] library, in order to recons-
truct point clouds of the different scenes. The reconstructed point clouds were sub-sampled
to 1024 points using clustered vertex subsampling, i.e., a simple one-per-cell sampling. They
were then translated to align the origin of the reference frame with the task target position,
arbitrarily chosen with educated guess based on existing scenes in the dataset. Orientation
quaternions were randomly generated for each scene to represent the tasks. The reference
frames in the point clouds of Fig. 5.12 show the position and orientation of the associated
tasks. Points within a unit sphere around the origin were retained, while all others were
discarded.

After preprocessing the point clouds, each of them is used in the path planning method to
obtain the UAM configuration with the smallest number of DoFs capable of solving the task,
as identified in the path planning configuration column of Fig. 5.12. As mentioned in Section
5.3.1, each UAM in the fleet is able to accomplish the same tasks as those with fewer arm
DoFs. This was confirmed in this experiment, since the 2-DoF scene can also be solved with
all other UAM configurations and the same behaviour is seen on all scenes. After obtaining
the class associated with each scene, the point clouds and quaternions are used as input
in the trained AMPointNet and AMPointNet++ classifiers. The predicted class for each of
these architectures are shown in the prediction column of Fig. 5.12. AMPointNet obtains a
80% classification accuracy, while AMPointNet++ do not classify the 2-DOF scene correctly,
obtaining 60% classification accuracy. Both architectures seem to have difficulties with the
4-DOF scenes, as observed with the simulation test results in Figs 5.9 and 5.10. Although five
scenes can be considered low, the results are similar to those obtained on the test dataset,
and tend to confirm the choice of AMPointNet, due to the low increase in accuracy of using
AMPointNet++ compared to its drawback. This experiment also assess the stability of the
classifiers’ results with respect to the point clouds. Even though the classifiers were trained
using an accurate 3D representation of objects, reconstructed in the dataset generated with
simulated scenes and tasks, they were able to achieve similar performance on 3D scans of

93

real-life scenes, with all their associated imperfections that were not included in the synthetic
scenes.

5.6 Discussion

5.6.1 Potential use

The two methods presented in this paper are developed with the same goal of selecting the
optimal UAM of a fleet to accomplish static picking tasks in cluttered environments. The path
planning based method can be considered as an exact method, while the CNNs are estimators
trained with a dataset constructed with the former. They could be used, for example, in a
cluttered warehouse with multiple picking targets, where a quadcopter equipped with a point
cloud generating sensor could travel the warehouse in order to identify the different targets,
their grasping orientations and generate point clouds of the local scenes. Next, the introduced
CNN based method could be used in conjunction with the point clouds and orientations to
select the optimal UAM able to carry out this task. From there, the dispatcher quadcopter
could notify the selected UAM to accomplish the task. This is where the usefulness of the
UAM selection method is interesting. In our fleet example, it is true that sending the 6-DoF
UAM would always result in a task accomplished (except for unsolvable tasks). However,
using the best suited UAM configuration has multiple advantages. A lower number of arm
DoFs is associated with a lower mass and therefore a longer flight time. UAMs with fewer DoFs
can also lead to fewer errors in correct task completion due to their lower system complexity.
In terms of fleet dispatch, if multiple UAMs are working simultaneously, the 6-DoF UAM
can be occupied with another task or load. Optimal UAM selection could extend the total
flight time of the fleet, while performing multiple tasks simultaneously. Failed predictions
are also not as problematic as they seem, since if a task fails, another UAM with a superior
DoF arm could be sent to perform the task. This information can also be stored and used
for subsequent training of CNNs.

Another use of the path planning method could be made with minor modifications. Instead
of selecting the most suitable UAM to perform a task, the method could be used in a system
design context. If the tasks are already known and the problem is to design a UAM from
existing parts, the problem could be reversed. In this case, the method still checks if the path
planning problem is solvable, but iterates over the possible UAM configurations to find some
configurations that can solve the tasks, based on the problem definition. With the new UAM
configurations found, the CNN can be trained and used as presented.

94

Figure 5.12 Point clouds extracted from real scenes, with the associated path planning based
optimal configuration, and the predicted optimal configurations from AMPointNet (AMPN)
and AMPointNet++ (AMPN++)

95

5.6.2 Assumption and limitations

Hyperparameters, either for the path planning based method or for the deep learning clas-
sifiers, were selected based on common knowledge and ad hoc manual search. Tuning and
optimization could be conducted for each use case, dependently of fleets and conditions.

Both methods were presented with a point cloud located entirely inside a unit sphere around
the target. If necessary, this could be used with multiple scenes inside unit spheres where
the objective of one scene is the beginning of the next one. Using the predicted labels for
all scenes, the maximum DoF is taken as it is the most constraining. This would be akin to
waypoint path planning, but in this case, with the configuration selection process.

In this method, only the arm complexity was used to obtain the optimal class during the
path planning method, meaning that the algorithm only looked for the UAM configuration
with the lowest number of DoFs that could solve the path planning problem for the task. It
is possible to add other criteria to this optimization and train the CNNs with those results.
For example, an energy minimization criteria could be used, where the total energy cost of
accomplishing the task is also evaluated and used in the minimization process. This could be
done by including an energy estimation module in the path planing method. This could be a
potentially good criterion, since flight time is often one of the most constraining parameter
when working with UAMs and quadcopters in general. Another criterion could also involve
the fleet configuration, such as flight time from the current UAM position. For example, the
lowest arm DoF configuration could be selected by the CNN but modulated by the flight
time of the nearest UAM. Therefore, the nearest appropriate UAM could be used. These
criteria are extremely dependent on the conditions under which this method is applied, and
therefore in this paper, optimization for the simplest configuration was chosen.

5.7 Conclusion

A method to select the optimal UAM within a fleet in order to accomplish a specific picking
task was presented in this paper. First, a path planning based method was introduced and
used to generate a dataset of random orientations, scene point clouds and labels. Secondly,
this dataset was utilized to train deep classifiers, named AMPointNet and AMPointNet++,
to predict the optimal UAM for the task. AMPointNet was able to achieve a classification
accuracy of 71.2%, while AMPointNet achieved an accuracy of 71.9% . These minor differences
in results between the two architectures tend to suggest that using AMPointNet++ is not
worth the slower computation. Both architectures were tested on real-life scenes and led to
similar results, which supports our approach.

96

In terms of future research directions, the path planning based method could be used in a
design science context to build UAMs specifically for the task(s) being performed. In addition,
the methods are dependent on the fleet of available UAMs. This means that for a different
fleet, a new dataset must be created and the models must be trained. Future works could
include the UAM configurations directly into the network architectures, so that no new
learning is required between fleets. Finally, although this work is limited to static picking
tasks, it could be extended to mobile picking and other similar tasks.

5.8 Appendix

Tableau 5.3 Denavit-Hartenberg parameters of the UAM arms

θ d (m) a (m) α (rad)
2-DoF arm

θ1 0 0.2 0
θ2 0 0.2 0

3-DoF arm
θ1 0 0.2 0
θ2 0 0 π/2
θ3 0.2 0 0

4-DoF arm
θ1 0 0.1 −π/2
θ2 0 0.1 π/2
θ3 0 0.1 −π/2
θ4 0 0.1 0

6-DoF arm
θ1 0 0 −π/2
θ2 0 0.2 0
θ3 0 0 π/2
θ4 0.1 0 π/2
θ5 0 0 −π/2
θ6 0.1 0 0

97

CHAPITRE 6 DISCUSSION GÉNÉRALE

6.1 Utilisation des méthodes introduites dans un processus de conception

Les méthodes de support à la conception présentées dans les chapitres 4 et 5 s’inscrivent
dans le cadre de l’accomplissement de tâches de saisie par un UAM tel que défini à l’aide
de la taxonomie du chapitre 3. La taxonomie permet alors de réduire des missions effectués
dans différents contextes en tâches simples. Durant la conception d’un système mécatronique
complexe, comme un UAM, une attention particulière doit être accordée à la conception
intégrée, soit la considération de tous les sous-systèmes et domaines de manière simultanée
[10]. Cependant, les difficultés associées aux aspects techniques peuvent prendre une place
trop importante dans le processus de conception [53]. Les méthodes introduites s’inscrivent
donc en support au développement de la commande et du guidage, pouvant permettre de
simplifier la tâche des concepteurs à ces étapes du design détaillé, et laisser plus de place aux
tâches de conception intégrée. La taxonomie du chapitre 3 quant à elle permet de supporter
la conception intégrée tout au long du processus, de manière plus qualitative, notamment en
permettant de simplifier la description des tâches et des missions et en fournissant un langage
commun pour décrire les actions possibles de l’UAM.

Figure 6.1 Schéma représentant les entrées et sorties des différentes méthodes de support à
la conception développées dans cette thèse

Les méthodes développées répondent alors à l’objectif principal de cette thèse, soit de sup-

98

porter la conception d’UAM, au niveau des sous-systèmes choisis. La figure 6.1 présente
l’utilisation des méthodes développées du point de vue de support à la conception. Elle
montre les entrées nécessaires à choisir par le concepteur, ainsi que les résultats obtenus par
ces méthodes. Ces deux outils sont supportés par la taxonomie de tâches, qui permet la
classification des différents aspects de missions.

Bien évidemment, un UAM accomplissant des tâches de saisies ne sera pas seulement composé
d’une loi de commande ainsi que d’un algorithme de sélection parmi une flotte. La figure 6.2
illustre un exemple d’architecture d’UAM pouvant servir à l’accomplissement d’une telle tâche
de manière autonome, en considérant que la tâche doit être accomplie dans l’environnement
local de l’UAM. Les sous-systèmes traités par cette thèse sont illustrés en couleur. Ceux
servant à la navigation dans l’environnement large non cartographié ne sont cependant pas
inclus ; cette capacité serait particulièrement utile pour un UAM effectuant, par exemple, des
tâches de saisie suite à une catastrophe.

Figure 6.2 Schéma représentent les étapes nécessaires à l’accomplissement d’une tâche de
saisie dans l’environnement local de l’UAM. Les sous-systèmes traités dans cette thèse sont
en couleur.

99

Des capteurs et des caméras doivent obtenir une estimation des états dynamiques du système,
mais aussi un visuel de la scène où se déroule la tâche, rajoutant des capacités de perception
et de mesure des états. Ceci inclut donc les domaines de recherches se rapportant à la fusion
de senseur, l’odométrie, l’estimation d’état, ainsi que la vision par ordinateur. De plus, il
serait nécessaire de pouvoir générer des objectifs à partir du visuel de la cible. Par exemple,
si la tâche choisie est de ramasser une tasse, non seulement l’UAM devrait être capable
de reconnaître la tasse, mais aussi de générer de manière autonome les conditions de saisies
(position et orientation) nécessaires. Le DL représente une piste particulièrement prometteuse
pour tous ces sous-systèmes et de nombreux travaux s’y attellent actuellement [4]. Finalement,
les aspects physiques de la saisie durant la tâche, incluant sa planification et sa validation,
n’ont pas été abordés, mais demeurent un aspect essentiel. Le fait d’être capable de planifier la
saisie et de s’assurer qu’elle a été accomplie de manière satisfaisante reste un défi considérable.

Les méthodes développées dans cette thèse sont conçues afin qu’elles soient facilement adap-
tables aux différents contextes d’utilisations. La taxonomie peut servir de base à un système
de classification de tâche et donc de génération d’objectifs pour des missions comportant
plusieurs tâches, en plus d’être utile comme outil de simplification et d’identification, lors
de la conception initiale des systèmes. La méthode de support à la conception d’une loi de
commande permet de supporter sa synthèse en obtenant les gains par optimisation et ce pour
tout UAM possédant un bras robotique à 2DDL. Seuls les requis et les paramètres physiques
du modèle dynamique sont nécessaires pour obtenir les gains séquencés correspondants à la
structure proposée. La loi de commande dans la forme présentée au chapitre 4 ne permet pas
de l’appliquer directement à une autre configuration qu’un bras planaire à 2DDL. Cependant,
les modèles dynamiques sont développés indépendamment de la configuration du bras. Il ne
resterait donc qu’à trouver une structure de séquence qui est fonction des angles du bras
robotique et qui permet de stabiliser le système avec la configuration désirée.

Finalement, pour le support à la conception d’un algorithme de sélection d’UAM en fonction
de la tâche, la flotte peut être définie comme désiré par le concepteur afin de correspondre à
celle utilisée dans un cas réel. Il ne suffit que de calculer à nouveau les étiquettes associées
aux scènes et aux tâches de la base de données à l’aide de la méthode par planification de
trajectoire. Lors de cette étape, il est possible aussi d’adapter le critère de sélection si désiré.
Par exemple, une combinaison de temps de vol ou de minimisation d’énergie pourrait être
choisie au lieu de celle présentée, toujours en lien avec l’objectif défini par le concepteur. Une
fois les étiquettes obtenues, AMPointNN peut être entraîné tel que présenté afin d’obtenir
une méthode de sélection optimale d’UAM selon la tâche et pouvant accomplir cette sélection
en une fraction de seconde. Ce travail présente une preuve de concept où les classificateurs
n’ont pas été optimisés par rapport à leurs hyperparamètres. Il serait certainement possible

100

d’augmenter la précision des classificateurs avec une telle optimisation, et aussi en augmentant
la taille de la base de données de scènes et tâches réelles provenant du contexte d’utilisation
désiré.

L’utilisation de cet algorithme a été développée pour un contexte hypothétique où une flotte
comporte à la fois des unités de type UAV qui sont dédiées à l’acquisition des scènes et la
prise de décision, ainsi que des UAM effectuant uniquement les tâches de saisie. Le but était
de restreindre l’utilisation des UAM, plus lourds et plus énergivores, aux tâches de saisies et
de laisser de simples UAV s’occuper de la planification et de l’analyse. Bien que l’algorithme
de sélection repose sur des systèmes de perception toujours en recherche active et non couvert
par le travail de cette thèse, il est important de commencer à développer des sous-systèmes
de guidage comme celui proposé afin de favoriser le développement d’UAM intelligents et
autonomes.

Tableau 6.1 Liste des articles de journaux et de conférences.

Article # Référence
1 C. Coulombe, J.-F. Gamache, O. Barron, G. Descôteaux, D. Saussié et

S. Achiche, "Task Taxonomy for Autonomous Unmanned Aerial Ma-
nipulator : A Review." Proceedings of the ASME 2020 International
Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference. Volume 9 : 40th Computers and
Information in Engineering Conference (CIE). Virtual, Online. August
17–19, 2020. V009T09A049. ASME.

2 C. Coulombe, D. Saussié et S. Achiche, "Modeling and gain-scheduled
control of an aerial manipulator". International Journal of Dynamics
and Control (2021). https ://doi.org/10.1007/s40435-021-00807-2

3 C. Coulombe, D. Saussié et S. Achiche, "Selection of Unmanned Aerial
Manipulator Configurations for Picking Tasks in Cluttered Environ-
ments Using Point Cloud Based Deep Learning", Journal of Intelligent
& Robotic Systems. Soumis en mai 2021.

6.2 Livrables et contributions

Les travaux accomplis dans cette thèse ont été concentrés sur le développement de méthodes
de support à la conception pour sous-systèmes d’UAM dans le contexte de tâches de saisie,
identifié comme étant l’objectif de recherche principal. Afin d’accomplir cet objectif, trois
sous-objectifs en découlent. Ces sous-objectifs ont été choisis pour leurs importances lors de
tâches de saisies d’objets et leurs interactions sont illustrées en figure 6.2.

101

— SO1 : Identifier et classifier les tâches pouvant être accomplies par un UAM.
— SO2 : Développer une méthode de support à la conception d’une loi de commande

interne pour un UAM effectuant une tâche de saisie d’objet statique.
— SO3 : Développer un cadre supportant la conception d’un sous-système de prise de

décision pour la planification de multiples tâches de saisies accomplies par une flotte
d’UAM.

Les livrables de ce doctorat sont contenus dans des articles de journaux et de conférences.
Les articles sont listés à la table 6.1.

Les contributions amenées par ces travaux pour chacun des sous-objectifs de la thèse sont
résumées dans la table 6.2.

Tableau 6.2 Contributions de recherche des travaux associés aux sous-objectifs.

SO Contributions Articles #
1 -Catégorisation des types de tâches pouvant être accomplies par

des UAM selon les capacités nécessaires à l’aide d’une revue de
littérature et d’une méthodologie d’acquisition vidéo.
-Développement d’une taxonomie permettant la catégorisation
des tâches en fonctions de critères hauts-niveaux.

1

2 -Présentation du modèle dynamique d’un UAM, dans une forme
permettant sa généralisation à différentes configurations et faci-
litant l’analyse dynamique.
-Démonstration de la structure quadratique comme structure
minimale pour la stabilisation d’un UAM avec manipulateur
planaire à 2DDL commandé par retour d’état à gains séquencés.

-Élaboration d’une structure de loi de commande en position à
gains séquencés dont les gains peuvent être obtenus à partir de
la synthèse H∞ structurée.

2

3 -Développement d’une méthode pour la sélection d’UAM opti-
mal associé à une tâche dans un environnement encombré, basé
sur la génération de trajectoire.
- Création d’un ensemble de données simulant des tâches de sai-
sies dans des environnements encombrés et étiquetages à partir
de la méthode à base de planification de trajectoire.
- Utilisation de nuages de points dans un réseau de neuronnes
DL pour la prédiction de l’UAM optimal, sans passer par les
générations de trajectoires.

3

102

6.3 Disponibilité des outils

Les outils numériques développés durant ce doctorat sont disponibles en ligne au https :
//github.com/COSIM-Lab avec leur documentation respective. Ces outils ont été développés
afin d’obtenir une preuve de concept des méthodes présentées dans les chapitres 4 et 5 et ne
sont pas prêt à une distribution générale. On y retrouve aussi la base de données créée lors
du chapitre 5. La liste suivante résume les différentes boîtes de dépôts et les codes inclus.

— aerial-manip (MATLAB/Simulink) :
— Outils de synthèse pour le correcteur à gains séquencés.
— Permet la modification des paramètres du système ainsi que des requis dynamiques.
— Modèles de simulations dynamiques dans différents contextes (comme défini au

chapitre 4).
— Aerialmanip_moveit (Python/ROS/MoveIT) :

— Modélisation des UAM sous forme de fichier URDF.
— Simulations de planifications de trajectoires locales en fonction de la tâche défini

et de l’environnement.
— Génération de tâches et d’environnements pour la banque de données.

— AMPointNN (Python/PyTorch) :
— Architectures des réseaux de neuronnes utilisés.
— Préparation de la banque de données pour l’entrainement
— Scripts d’entrainements et d’évaluations

— dataset_AMpointNN Data : Banque de données utilisées

103

CHAPITRE 7 CONCLUSION ET RECOMMANDATIONS

Cette thèse a introduit des méthodes de support à la conception appliquées aux UAM devant
accomplir des tâches de saisies d’objets. Ces outils s’inscrivent dans le processus général de
conception d’un UAM, qui est un système mécatronique. Ce processus de conception doit
comporter des éléments de conception intégrée, qui consiste à considérer le système dans son
ensemble lors de chaque étape de design, afin d’obtenir un système optimal. Cependant, une
des difficultés identifiées lors du processus complet de design est la grande place prise par
la conception des aspects techniques des sous-systèmes, si bien que la conception intégrée
est laissée de côté. Afin de permettre de consacrer plus de temps à cette étape critique du
processus de design, des méthodes de support à la conception sont introduites spécifiquement
pour la commande et le guidage. De plus, la taxonomie de tâches permet de classifier les tâches
possibles d’un UAM pour des missions complexes, simplifiant ainsi la conception générale et
donnant un langage commun à tous. Alors que les méthodes pour la commande et le guidage
s’utiliseront lors du design détaillé, la taxonomie peut supporter tout le processus, et en
particulier le design conceptuel.

La taxonomie permet de classifier les tâches pouvant être accomplies par un UAM, en de-
meurant indépendantes de considérations comme la géométrie de la cible ou des capacités
physiques du système. Elle ne considère qu’une séparation haut-niveau où l’UAM nécessite
des capacités cognitives différentes, représentées par les algorithmes du système. Les diffé-
rentes tâches sont regroupées tout d’abord en une catégorie de type d’interaction, soit une
interaction ponctuelle avec un objet, une interaction continue avec un objet ou encore aucune
interaction directe avec l’environnement. Puis de ces premières divisions, elles sont séparées
selon la description de la tâche et des conditions environnementales. La plupart des tâches
définies par chacune des branches de la taxonomie ont déjà été explorées dans la littérature
et sont données en exemples. Une telle taxonomie peut être utilisée avec les autres classifica-
tions, comme celle de saisie, afin d’obtenir une classification plus précise. Elle offre un cadre
permettant la simplification du problème de conception d’UAM, notamment au niveau de la
définition des missions en tâches simples et permet ainsi de résoudre le SO1.

La méthode de support à la conception de loi de commande permet de simplifier sa conception
pour un UAM possédant un bras robotique à 2DDL planaire. À l’aide d’une structure de
correcteur soigneusement choisie et la synthèseH∞ structurée, la tâche du concepteur devient
simplement une tâche de sélection de cahier des charges dynamiques et d’évaluation des
paramètres physique de l’UAM. Elle fournit donc un correcteur à gains séquencés par rapport

104

aux angles du bras robotique possédant une structure quadratique de manière automatique
et répondant au cahier des charges. La loi de commande obtenue est aussi robuste aux
variations entre les paramètres physiques réels du système et ceux utilisés pour l’obtention
des gains. L’obtention d’une loi de commande est une des étapes critiques et complexes de
la conception d’UAM compte tenu des difficultés amenées par l’ajout d’un bras robotique
sous un multicoptère déjà instable. Cette méthode de support à la conception permet donc
l’obtention d’un correcteur pour le positionnement lors des tâches de saisies, ce qui répond
au SO2.

La méthode de support à la conception du système de sélection d’UAM en fonction des tâches
utilise l’intelligence artificielle pour la gestion de mission complexe. Dans le cas où une flotte
d’UAM doit accomplir plusieurs tâches de saisies, sélectionner l’unité la plus apte à accomplir
la tâche permettrait d’optimiser le comportement de la flotte dans son ensemble. La méthode
proposée emploie le DL afin de résoudre ce problème dans un algorithme rapide pouvant être
déployé en temps réel. Elle est aussi formulée de manière à être facilement adaptable par
les concepteurs afin de répondre aux besoins de la flotte et du contexte d’application. Par
exemple, l’entraînement pourrait être accompli en modifiant les étiquettes provenant selon
différents critères d’optimisation tels que le temps de vol ou la consommation d’énergie au lieu
de la simplicité de la configuration. Cette méthode pourrait aussi être utilisée à rebours dans
un contexte de design préliminaire. Supposant que l’on veut accomplir un ensemble de tâches
avec un UAM, on pourrait estimer et optimiser la configuration de l’UAM à résoudre ces
tâches avec la méthode se basant sur la planification de trajectoire. La méthode amène une
contribution en introduisant un sous-système de guidage pour UAM, permettant d’obtenir des
systèmes de plus en plus autonomes, en plus d’offrir un support à leur conception, répondant
au SO3.

Bien que le fonctionnement des méthodes de support à la conception présentées ait été dé-
montré par des simulations rigoureuses, l’implémentation dans un système réel est essentielle
à une éventuelle validation. Leur utilisation par des concepteurs dans un contexte réel per-
mettrait d’obtenir un retour sur leur capacité à supporter la conception d’UAM et pourrait
être prise en compte lors de leurs améliorations.

Au niveau du correcteur, celui développé dans cette thèse s’applique aux configurations pos-
sédant un bras robotique à 2DDL planaire. Une structure se généralisant à toutes les confi-
gurations pourrait être obtenue de manière similaire, en trouvant une loi de commande à
gains séquencés adéquate obtenue par la même méthode de synthèse. L’implémentation du
contrôleur dans un système réel permettrait de valider son fonctionnement.

La méthode de sélection d’UAM pourrait être utilisée lors de tâches réelles en s’assurant de

105

conserver les données. Ces dernières pourraient par la suite être utilisées avec de l’appren-
tissage par transfert (transfer learning) afin d’améliorer les performances du classificateur et
le spécialiser aux tâches rencontrées fréquemment par la flotte d’UAM. De cette manière, la
méthode proposée avec la base de données devient une base servant à déployer la flotte qui
par la suite peut se renforcer et devenir de plus en plus efficace. Il serait intéressant par la
suite d’appliquer cette méthode à l’utilisation de multiples UAM accomplissant une même
tâche en coopération, comme la manipulation d’objets trop lourds ou trop encombrants pour
un simple UAM.

L’obtention de robots capables de fonctionner de manière autonome dans des environnements
variés est un des objectifs en robotique pour les années futures. Les UAM sont des candidats
intéressants dus à leur manœuvrabilité leur permettant d’œuvrer dans des conditions variées.
Le développement de méthode de planification de missions devient alors essentiel et le ML
pourrait facilement contribuer à leurs développements. L’idée de voir des UAM effectuant
des missions complexes de réparations, de sauvetage, ou de récupération avec comme seule
information une description générale de la mission semble à portée de main.

106

RÉFÉRENCES

[1] V. V. Klemas, “Coastal and Environmental Remote Sensing from Unmanned
Aerial Vehicles : An Overview,” Journal of Coastal Research, vol. 315, p.
1260–1267, sept. 2015. [En ligne]. Disponible : http://www.bioone.org/doi/10.2112/
JCOASTRES-D-15-00005.1

[2] I. Sa et P. Corke, “Vertical Infrastructure Inspection Using a Quadcopter and Shared
Autonomy Control,” dans Field and Service Robotics, K. Yoshida et S. Tadokoro, édit.
Berlin, Heidelberg : Springer Berlin Heidelberg, 2014, vol. 92, p. 219–232. [En ligne].
Disponible : http://link.springer.com/10.1007/978-3-642-40686-7_15

[3] C. Kanellakis et G. Nikolakopoulos, “Survey on Computer Vision for UAVs : Current
Developments and Trends,” Journal of Intelligent & Robotic Systems, vol. 87, no. 1,
p. 141–168, juill. 2017. [En ligne]. Disponible : http://link.springer.com/10.1007/
s10846-017-0483-z

[4] H. A. Pierson et M. S. Gashler, “Deep learning in robotics : a review of recent
research,” Advanced Robotics, vol. 31, no. 16, p. 821–835, août 2017. [En ligne].
Disponible : https://www.tandfonline.com/doi/full/10.1080/01691864.2017.1365009

[5] C. M. Korpela, T. W. Danko et P. Y. Oh, “MM-UAV : Mobile Manipulating
Unmanned Aerial Vehicle,” Journal of Intelligent & Robotic Systems, vol. 65, no.
1-4, p. 93–101, janv. 2012. [En ligne]. Disponible : http://link.springer.com/10.1007/
s10846-011-9591-3

[6] F. Ruggiero, V. Lippiello et A. Ollero, “Aerial Manipulation : A Literature Review,”
IEEE Robotics and Automation Letters, vol. 3, no. 3, p. 1957–1964, juill. 2018. [En
ligne]. Disponible : https://ieeexplore.ieee.org/document/8299552/

[7] W. Bolton, Mechatronics : a multidisciplinary approach, sixth edition éd. Harlow,
England ; New York : Pearson, 2015.

[8] B. C. Williams, “Interaction-based invention : Designing novel devices from
first principles,” dans Expert Systems in Engineering Principles and Applications,
J. Siekmann, G. Goos, J. Hartmanis, G. Gottlob et W. Nejdl, édit. Berlin,
Heidelberg : Springer Berlin Heidelberg, 1990, vol. 462, p. 119–134, series
Title : Lecture Notes in Computer Science. [En ligne]. Disponible : http:
//link.springer.com/10.1007/3-540-53104-1_37

http://www.bioone.org/doi/10.2112/JCOASTRES-D-15-00005.1
http://www.bioone.org/doi/10.2112/JCOASTRES-D-15-00005.1
http://link.springer.com/10.1007/978-3-642-40686-7_15
http://link.springer.com/10.1007/s10846-017-0483-z
http://link.springer.com/10.1007/s10846-017-0483-z
https://www.tandfonline.com/doi/full/10.1080/01691864.2017.1365009
http://link.springer.com/10.1007/s10846-011-9591-3
http://link.springer.com/10.1007/s10846-011-9591-3
https://ieeexplore.ieee.org/document/8299552/
http://link.springer.com/10.1007/3-540-53104-1_37
http://link.springer.com/10.1007/3-540-53104-1_37

107

[9] T. Tomiyama, V. D’Amelio, J. Urbanic et W. ElMaraghy, “Complexity of Multi-
Disciplinary Design,” CIRP Annals, vol. 56, no. 1, p. 185–188, 2007. [En ligne].
Disponible : https://linkinghub.elsevier.com/retrieve/pii/S0007850607000467

[10] G. Rzevski, “On conceptual design of intelligent mechatronic systems,” Mechatronics,
vol. 13, no. 10, p. 1029–1044, déc. 2003. [En ligne]. Disponible : http:
//www.sciencedirect.com/science/article/pii/S0957415803000412

[11] D. Leidner, C. Borst, A. Dietrich, M. Beetz et A. Albu-Schaffer, “Classifying
compliant manipulation tasks for automated planning in robotics,” dans 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Hamburg, Germany : IEEE, sept. 2015, p. 1769–1776. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7353607/

[12] S. Hamaza, I. Georgilas, G. Heredia, A. Ollero et T. Richardson, “Design, modeling,
and control of an aerial manipulator for placement and retrieval of sensors in
the environment,” Journal of Field Robotics, p. rob.21963, juin 2020. [En ligne].
Disponible : https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21963

[13] J.-J. E. Slotine et W. Li, Applied nonlinear control. Englewood Cliffs, N.J : Prentice
Hall, 1991.

[14] M. Orsag, C. Korpela, P. Oh et S. Bogdan, “Mission Planning and Control,”
dans Aerial Manipulation. Cham : Springer International Publishing, 2018, p.
209–231, series Title : Advances in Industrial Control. [En ligne]. Disponible :
http://link.springer.com/10.1007/978-3-319-61022-1_7

[15] X. Ding, P. Guo, K. Xu et Y. Yu, “A review of aerial manipulation of small-scale
rotorcraft unmanned robotic systems,” Chinese Journal of Aeronautics, vol. 32,
no. 1, p. 200–214, janv. 2019. [En ligne]. Disponible : https://linkinghub.elsevier.com/
retrieve/pii/S1000936118301894

[16] J. M. Gomez-de Gabriel, J. M. Gandarias, F. J. Perez-Maldonado, F. J.
Garcia-Nuncz, E. J. Fernandez-Garcia et A. J. Garcia-Cerezo, “Methods for
Autonomous Wristband Placement with a Search-and-Rescue Aerial Manipulator,”
dans 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Madrid : IEEE, oct. 2018, p. 7838–7844. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/8594202/

[17] M. Orsag, C. Korpela et P. Oh, “Modeling and Control of MM-UAV :
Mobile Manipulating Unmanned Aerial Vehicle,” Journal of Intelligent & Robotic
Systems, vol. 69, no. 1-4, p. 227–240, janv. 2013. [En ligne]. Disponible :
http://link.springer.com/10.1007/s10846-012-9723-4

https://linkinghub.elsevier.com/retrieve/pii/S0007850607000467
http://www.sciencedirect.com/science/article/pii/S0957415803000412
http://www.sciencedirect.com/science/article/pii/S0957415803000412
http://ieeexplore.ieee.org/document/7353607/
https://onlinelibrary.wiley.com/doi/abs/10.1002/rob.21963
http://link.springer.com/10.1007/978-3-319-61022-1_7
https://linkinghub.elsevier.com/retrieve/pii/S1000936118301894
https://linkinghub.elsevier.com/retrieve/pii/S1000936118301894
https://ieeexplore.ieee.org/document/8594202/
http://link.springer.com/10.1007/s10846-012-9723-4

108

[18] G. Heredia, A. Jimenez-Cano, I. Sanchez, D. Llorente, V. Vega, J. Braga, J. Acosta
et A. Ollero, “Control of a multirotor outdoor aerial manipulator,” dans 2014
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Chicago, IL, USA : IEEE, sept. 2014, p. 3417–3422. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6943038/

[19] P. E. Pounds et A. M. Dollar, “Aerial Grasping from a Helicopter UAV
Platform,” dans Experimental Robotics, O. Khatib, V. Kumar et G. Sukhatme,
édit. Berlin, Heidelberg : Springer Berlin Heidelberg, 2014, vol. 79, p. 269–283,
series Title : Springer Tracts in Advanced Robotics. [En ligne]. Disponible :
http://link.springer.com/10.1007/978-3-642-28572-1_19

[20] V. Ghadiok, J. Goldin et W. Ren, “On the design and development of attitude
stabilization, vision-based navigation, and aerial gripping for a low-cost quadrotor,”
Autonomous Robots, vol. 33, no. 1-2, p. 41–68, août 2012. [En ligne]. Disponible :
http://link.springer.com/10.1007/s10514-012-9286-z

[21] C. E. Doyle, J. J. Bird, T. A. Isom, J. C. Kallman, D. F. Bareiss,
D. J. Dunlop, R. J. King, J. J. Abbott et M. A. Minor, “An Avian-
Inspired Passive Mechanism for Quadrotor Perching,” IEEE/ASME Transactions
on Mechatronics, vol. 18, no. 2, p. 506–517, avr. 2013. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6291791/

[22] I. Palunko, R. Fierro et P. Cruz, “Trajectory generation for swing-free maneuvers
of a quadrotor with suspended payload : A dynamic programming approach,”
dans 2012 IEEE International Conference on Robotics and Automation. St
Paul, MN, USA : IEEE, mai 2012, p. 2691–2697. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6225213/

[23] K. Sreenath, Taeyoung Lee et V. Kumar, “Geometric control and differential flatness
of a quadrotor UAV with a cable-suspended load,” dans 52nd IEEE Conference
on Decision and Control. Firenze : IEEE, déc. 2013, p. 2269–2274. [En ligne].
Disponible : http://ieeexplore.ieee.org/document/6760219/

[24] S. J. Lee et H. J. Kim, “Autonomous swing-angle estimation for stable slung-load
flight of multi-rotor UAVs,” dans 2017 IEEE International Conference on Robotics
and Automation (ICRA). Singapore, Singapore : IEEE, mai 2017, p. 4576–4581. [En
ligne]. Disponible : http://ieeexplore.ieee.org/document/7989532/

[25] H. Lee et H. J. Kim, “Estimation, Control, and Planning for Autonomous Aerial
Transportation,” IEEE Transactions on Industrial Electronics, vol. 64, no. 4, p. 3369–
3379, avr. 2017. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7534766/

http://ieeexplore.ieee.org/document/6943038/
http://link.springer.com/10.1007/978-3-642-28572-1_19
http://link.springer.com/10.1007/s10514-012-9286-z
http://ieeexplore.ieee.org/document/6291791/
http://ieeexplore.ieee.org/document/6225213/
http://ieeexplore.ieee.org/document/6760219/
http://ieeexplore.ieee.org/document/7989532/
http://ieeexplore.ieee.org/document/7534766/

109

[26] Suseong Kim, Seungwon Choi et H. J. Kim, “Aerial manipulation using a quadrotor
with a two DOF robotic arm,” dans 2013 IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS). Tokyo, Japan : IEEE, nov. 2013, p.
4990–4995. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/6697077/

[27] S. Kim, Hoseong Seo et H. J. Kim, “Operating an unknown drawer using an aerial
manipulator,” dans 2015 IEEE International Conference on Robotics and Automation
(ICRA). Seattle, WA, USA : IEEE, mai 2015, p. 5503–5508. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7139968/

[28] A. Jimenez-Cano, J. Braga, G. Heredia et A. Ollero, “Aerial manipulator for
structure inspection by contact from the underside,” dans 2015 IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS). Hamburg,
Germany : IEEE, sept. 2015, p. 1879–1884. [En ligne]. Disponible : http:
//ieeexplore.ieee.org/document/7353623/

[29] T. W. Danko et P. Y. Oh, “A hyper-redundant manipulator for Mobile Manipulating
Unmanned Aerial Vehicles,” dans 2013 International Conference on Unmanned
Aircraft Systems (ICUAS). Atlanta, GA, USA : IEEE, mai 2013, p. 974–981. [En
ligne]. Disponible : http://ieeexplore.ieee.org/document/6564784/

[30] E. Cataldi, G. Muscio, M. A. Trujillo, Y. Rodriguez, F. Pierri, G. Antonelli,
F. Caccavale, A. Viguria, S. Chiaverini et A. Ollero, “Impedance Control of an aerial-
manipulator : Preliminary results,” dans 2016 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). Daejeon, South Korea : IEEE, oct. 2016, p.
3848–3853. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7759566/

[31] G. Garimella et M. Kobilarov, “Towards model-predictive control for aerial pick-
and-place,” dans 2015 IEEE International Conference on Robotics and Automation
(ICRA). Seattle, WA, USA : IEEE, mai 2015, p. 4692–4697. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7139850/

[32] C. Korpela, M. Orsag et P. Oh, “Towards valve turning using a dual-arm aerial
manipulator,” dans 2014 IEEE/RSJ International Conference on Intelligent Robots
and Systems. Chicago, IL, USA : IEEE, sept. 2014, p. 3411–3416. [En ligne].
Disponible : http://ieeexplore.ieee.org/document/6943037/

[33] C. Korpela, M. Orsag, M. Pekala et P. Oh, “Dynamic stability of a mobile
manipulating unmanned aerial vehicle,” dans 2013 IEEE International Conference
on Robotics and Automation (ICRA). Karlsruhe, Germany : IEEE, mai 2013, p.
4922–4927. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/6631280/

http://ieeexplore.ieee.org/document/6697077/
http://ieeexplore.ieee.org/document/7139968/
http://ieeexplore.ieee.org/document/7353623/
http://ieeexplore.ieee.org/document/7353623/
http://ieeexplore.ieee.org/document/6564784/
http://ieeexplore.ieee.org/document/7759566/
http://ieeexplore.ieee.org/document/7139850/
http://ieeexplore.ieee.org/document/6943037/
http://ieeexplore.ieee.org/document/6631280/

110

[34] M. Orsag, C. Korpela, S. Bogdan et P. Oh, “Valve turning using a dual-arm
aerial manipulator.” IEEE, mai 2014, p. 836–841. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6842330/

[35] M. Orsag, C. M. Korpela, S. Bogdan et P. Y. Oh, “Hybrid Adaptive
Control for Aerial Manipulation,” Journal of Intelligent & Robotic Systems,
vol. 73, no. 1-4, p. 693–707, janv. 2014. [En ligne]. Disponible : http:
//link.springer.com/10.1007/s10846-013-9936-1

[36] M. Orsag, C. Korpela, S. Bogdan et P. Oh, “Dexterous Aerial Robots—Mobile
Manipulation Using Unmanned Aerial Systems,” IEEE Transactions on Robotics,
vol. 33, no. 6, p. 1453–1466, déc. 2017. [En ligne]. Disponible : http:
//ieeexplore.ieee.org/document/8059875/

[37] F. Ruggiero, M. Trujillo, R. Cano, H. Ascorbe, A. Viguria, C. Perez, V. Lippiello,
A. Ollero et B. Siciliano, “A multilayer control for multirotor UAVs equipped with
a servo robot arm,” dans 2015 IEEE International Conference on Robotics and
Automation (ICRA). Seattle, WA, USA : IEEE, mai 2015, p. 4014–4020. [En ligne].
Disponible : http://ieeexplore.ieee.org/document/7139760/

[38] V. Lippiello et F. Ruggiero, “Exploiting redundancy in Cartesian impedance control of
UAVs equipped with a robotic arm,” dans 2012 IEEE/RSJ International Conference
on Intelligent Robots and Systems. Vilamoura-Algarve, Portugal : IEEE, oct. 2012,
p. 3768–3773. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/6386021/

[39] V. Lippiello et F. Ruggiero, “Cartesian Impedance Control of a UAV with a Robotic
Arm,” IFAC Proceedings Volumes, vol. 45, no. 22, p. 704–709, 2012. [En ligne].
Disponible : https://linkinghub.elsevier.com/retrieve/pii/S1474667016336928

[40] R. Mebarki, V. Lippiello et B. Siciliano, “Image-based control for dynamically
cross-coupled aerial manipulation,” dans 2014 IEEE/RSJ International Conference on
Intelligent Robots and Systems. Chicago, IL, USA : IEEE, sept. 2014, p. 4827–4833.
[En ligne]. Disponible : http://ieeexplore.ieee.org/document/6943248/

[41] R. Mebarki, V. Lippiello et B. Siciliano, “Toward image-based visual servoing
for cooperative aerial manipulation,” dans 2015 IEEE International Conference on
Robotics and Automation (ICRA). Seattle, WA, USA : IEEE, mai 2015, p. 6074–6080.
[En ligne]. Disponible : http://ieeexplore.ieee.org/document/7140051/

[42] L. R. Buonocore, J. Cacace et V. Lippiello, “Hybrid visual servoing for aerial grasping
with hierarchical task-priority control,” dans 2015 23rd Mediterranean Conference on
Control and Automation (MED). Torremolinos, Malaga, Spain : IEEE, juin 2015, p.
617–623. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7158815/

http://ieeexplore.ieee.org/document/6842330/
http://link.springer.com/10.1007/s10846-013-9936-1
http://link.springer.com/10.1007/s10846-013-9936-1
http://ieeexplore.ieee.org/document/8059875/
http://ieeexplore.ieee.org/document/8059875/
http://ieeexplore.ieee.org/document/7139760/
http://ieeexplore.ieee.org/document/6386021/
https://linkinghub.elsevier.com/retrieve/pii/S1474667016336928
http://ieeexplore.ieee.org/document/6943248/
http://ieeexplore.ieee.org/document/7140051/
http://ieeexplore.ieee.org/document/7158815/

111

[43] V. Lippiello, J. Cacace, A. Santamaria-Navarro, J. Andrade-Cetto, M. A. Trujillo, Y. R.
Esteves et A. Viguria, “Hybrid Visual Servoing With Hierarchical Task Composition for
Aerial Manipulation,” IEEE Robotics and Automation Letters, vol. 1, no. 1, p. 259–266,
janv. 2016. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7361979/

[44] A. Santamaria-Navarro, V. Lippiello et J. Andrade-Cetto, “Task priority control for
aerial manipulation,” dans 2014 IEEE International Symposium on Safety, Security,
and Rescue Robotics (2014). Hokkaido, Japan : IEEE, oct. 2014, p. 1–6. [En ligne].
Disponible : http://ieeexplore.ieee.org/document/7017672/

[45] C. D. Bellicoso, L. R. Buonocore, V. Lippiello et B. Siciliano, “Design,
modeling and control of a 5-DoF light-weight robot arm for aerial manipulation,”
dans 2015 23rd Mediterranean Conference on Control and Automation (MED).
Torremolinos, Spain : IEEE, juin 2015, p. 853–858. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7158852/

[46] A. Suarez, A. E. Jimenez-Cano, V. M. Vega, G. Heredia, A. Rodriguez-Castano et
A. Ollero, “Lightweight and human-size dual arm aerial manipulator.” IEEE, juin 2017,
p. 1778–1784. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7991357/

[47] A. Jimenez-Cano, J. Martin, G. Heredia, A. Ollero et R. Cano, “Control
of an aerial robot with multi-link arm for assembly tasks,” dans 2013
IEEE International Conference on Robotics and Automation (ICRA). Karlsruhe,
Germany : IEEE, mai 2013, p. 4916–4921. [En ligne]. Disponible : http:
//ieeexplore.ieee.org/document/6631279/

[48] K. Baizid, G. Giglio, F. Pierri, M. A. Trujillo, G. Antonelli, F. Caccavale, A. Viguria,
S. Chiaverini et A. Ollero, “Experiments on behavioral coordinated control of
an Unmanned Aerial Vehicle manipulator system,” dans 2015 IEEE International
Conference on Robotics and Automation (ICRA). Seattle, WA, USA : IEEE, mai 2015,
p. 4680–4685. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7139848/

[49] Hyeonbeom Lee, Hyoin Kim et H. J. Kim, “Path planning and control
of multiple aerial manipulators for a cooperative transportation,” dans 2015
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).
Hamburg, Germany : IEEE, sept. 2015, p. 2386–2391. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7353700/

[50] S. Kim, H. Seo, S. Choi et H. J. Kim, “Vision-Guided Aerial Manipulation
Using a Multirotor With a Robotic Arm,” IEEE/ASME Transactions on
Mechatronics, vol. 21, no. 4, p. 1912–1923, août 2016. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7395364/

http://ieeexplore.ieee.org/document/7361979/
http://ieeexplore.ieee.org/document/7017672/
http://ieeexplore.ieee.org/document/7158852/
http://ieeexplore.ieee.org/document/7991357/
http://ieeexplore.ieee.org/document/6631279/
http://ieeexplore.ieee.org/document/6631279/
http://ieeexplore.ieee.org/document/7139848/
http://ieeexplore.ieee.org/document/7353700/
http://ieeexplore.ieee.org/document/7395364/

112

[51] H. Kim, H. Lee, S. Choi, Y.-k. Noh et H. J. Kim, “Motion planning with
movement primitives for cooperative aerial transportation in obstacle environment,”
dans 2017 IEEE International Conference on Robotics and Automation (ICRA).
Singapore, Singapore : IEEE, mai 2017, p. 2328–2334. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7989269/

[52] H. Lee, S. Kim et H. J. Kim, “Control of an aerial manipulator using on-line parameter
estimator for an unknown payload,” dans 2015 IEEE International Conference on
Automation Science and Engineering (CASE). Gothenburg, Sweden : IEEE, août 2015,
p. 316–321. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7294098/

[53] J. Mørkeberg Torry-Smith, A. Qamar, S. Achiche, J. Wikander, N. Henrik Mor-
tensen et C. During, “Challenges in Designing Mechatronic Systems,” Journal of
Mechanical Design, vol. 135, no. 1, p. 011005, janv. 2013. [En ligne]. Dispo-
nible : https://asmedigitalcollection.asme.org/mechanicaldesign/article/doi/10.1115/
1.4007929/375680/Challenges-in-Designing-Mechatronic-Systems

[54] L. Wang, W. Shen, H. Xie, J. Neelamkavil et A. Pardasani, “Collaborative conceptual
design—state of the art and future trends,” Computer-Aided Design, vol. 34, no. 13,
p. 981–996, nov. 2002. [En ligne]. Disponible : http://www.sciencedirect.com/science/
article/pii/S0010448501001579

[55] H. Komoto et T. Tomiyama, “Multi-disciplinary system decomposition of complex
mechatronics systems,” CIRP Annals, vol. 60, no. 1, p. 191–194, 2011. [En ligne].
Disponible : https://linkinghub.elsevier.com/retrieve/pii/S000785061100103X

[56] J. Gausemeier et S. Moehringer, “VDI 2206- A New Guideline for the Design
of Mechatronic Systems,” IFAC Proceedings Volumes, vol. 35, no. 2, p. 785–790,
déc. 2002. [En ligne]. Disponible : https://linkinghub.elsevier.com/retrieve/pii/
S1474667017340351

[57] M. Mamrot, S. Marchlewitz, J.-P. Nicklas et P. Winzer, “Using systems engineering
for a requirement-based design support for autonomous robots,” dans 2014
IEEE International Conference on Systems, Man, and Cybernetics (SMC). San
Diego, CA, USA : IEEE, oct. 2014, p. 3115–3120. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/6974406

[58] J. van Amerongen, “Mechatronic design,” Mechatronics, vol. 13, no. 10, p. 1045–
1066, déc. 2003. [En ligne]. Disponible : https://linkinghub.elsevier.com/retrieve/pii/
S0957415803000424

http://ieeexplore.ieee.org/document/7989269/
http://ieeexplore.ieee.org/document/7294098/
https://asmedigitalcollection.asme.org/mechanicaldesign/article/doi/10.1115/1.4007929/375680/Challenges-in-Designing-Mechatronic-Systems
https://asmedigitalcollection.asme.org/mechanicaldesign/article/doi/10.1115/1.4007929/375680/Challenges-in-Designing-Mechatronic-Systems
http://www.sciencedirect.com/science/article/pii/S0010448501001579
http://www.sciencedirect.com/science/article/pii/S0010448501001579
https://linkinghub.elsevier.com/retrieve/pii/S000785061100103X
https://linkinghub.elsevier.com/retrieve/pii/S1474667017340351
https://linkinghub.elsevier.com/retrieve/pii/S1474667017340351
https://ieeexplore.ieee.org/document/6974406
https://linkinghub.elsevier.com/retrieve/pii/S0957415803000424
https://linkinghub.elsevier.com/retrieve/pii/S0957415803000424

113

[59] Q. Lindsey, D. Mellinger et V. Kumar, “Construction with quadrotor teams,”
Autonomous Robots, vol. 33, no. 3, p. 323–336, oct. 2012. [En ligne]. Disponible :
http://link.springer.com/10.1007/s10514-012-9305-0

[60] K. Alexis, C. Papachristos, R. Siegwart et A. Tzes, “Robust Model Predictive
Flight Control of Unmanned Rotorcrafts,” Journal of Intelligent & Robotic
Systems, vol. 81, no. 3-4, p. 443–469, mars 2016. [En ligne]. Disponible :
http://link.springer.com/10.1007/s10846-015-0238-7

[61] X. Meng, Y. He, Q. Li, F. Gu, L. Yang, T. Yan et J. Han, “Contact Force
Control of an Aerial Manipulator in Pressing an Emergency Switch Process,”
dans 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS). Madrid : IEEE, oct. 2018, p. 2107–2113. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/8593535/

[62] F. Kendoul, “Survey of advances in guidance, navigation, and control of unmanned
rotorcraft systems,” Journal of Field Robotics, vol. 29, no. 2, p. 315–378, mars 2012.
[En ligne]. Disponible : http://doi.wiley.com/10.1002/rob.20414

[63] H.-M. Huang, “Autonomy Levels For Unmanned Systems (ALFUS) framework,
volume I : : terminology version 2.1,” National Institute of Standards and
Technology, Gaithersburg, MD, Rapport technique NIST SP 1011-I-2.0, 2008,
edition : 0. [En ligne]. Disponible : https://nvlpubs.nist.gov/nistpubs/Legacy/SP/
nistspecialpublication1011-I-2.0.pdf

[64] M. Cutkosky, “On grasp choice, grasp models, and the design of hands for
manufacturing tasks,” IEEE Transactions on Robotics and Automation, vol. 5, no. 3, p.
269–279, juin 1989. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/34763/

[65] T. Feix, J. Romero, H.-B. Schmiedmayer, A. M. Dollar et D. Kragic, “The
GRASP Taxonomy of Human Grasp Types,” IEEE Transactions on Human-
Machine Systems, vol. 46, no. 1, p. 66–77, févr. 2016. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7243327/

[66] F. Worgotter, E. E. Aksoy, N. Kruger, J. Piater, A. Ude et M. Tamosiunaite, “A
Simple Ontology of Manipulation Actions Based on Hand-Object Relations,” IEEE
Transactions on Autonomous Mental Development, vol. 5, no. 2, p. 117–134, juin 2013.
[En ligne]. Disponible : http://ieeexplore.ieee.org/document/6493410/

[67] J. Liu, F. Feng, Y. C. Nakamura et N. S. Pollard, “A taxonomy of everyday
grasps in action,” dans 2014 IEEE-RAS International Conference on Humanoid
Robots. Madrid, Spain : IEEE, nov. 2014, p. 573–580. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7041420/

http://link.springer.com/10.1007/s10514-012-9305-0
http://link.springer.com/10.1007/s10846-015-0238-7
https://ieeexplore.ieee.org/document/8593535/
http://doi.wiley.com/10.1002/rob.20414
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1011-I-2.0.pdf
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication1011-I-2.0.pdf
http://ieeexplore.ieee.org/document/34763/
http://ieeexplore.ieee.org/document/7243327/
http://ieeexplore.ieee.org/document/6493410/
http://ieeexplore.ieee.org/document/7041420/

114

[68] M. Orsag, C. Korpela, P. Oh et S. Bogdan, “Aerial Manipulator Dynamics,” dans
Aerial Manipulation. Cham : Springer International Publishing, 2018, p. 123–163.
[En ligne]. Disponible : http://link.springer.com/10.1007/978-3-319-61022-1_5

[69] A. Suarez, V. M. Vega, M. Fernandez, G. Heredia et A. Ollero, “Benchmarks for Aerial
Manipulation,” IEEE Robotics and Automation Letters, vol. 5, no. 2, p. 2650–2657,
avr. 2020. [En ligne]. Disponible : https://ieeexplore.ieee.org/document/8990026/

[70] C. T. Recchiuto et A. Sgorbissa, “Post-disaster assessment with unmanned aerial
vehicles : A survey on practical implementations and research approaches,” Journal
of Field Robotics, vol. 35, no. 4, p. 459–490, juin 2018. [En ligne]. Disponible :
http://doi.wiley.com/10.1002/rob.21756

[71] P. Fabiani, V. Fuertes, A. Piquereau, R. Mampey et F. Teichteil-Königsbuch,
“Autonomous flight and navigation of VTOL UAVs : from autonomy demonstrations
to out-of-sight flights,” Aerospace Science and Technology, vol. 11, no. 2-3, p.
183–193, mars 2007. [En ligne]. Disponible : https://linkinghub.elsevier.com/retrieve/
pii/S1270963806001040

[72] J. Kvarnstrom et P. Doherty, “Automated planning for collaborative UAV systems,”
dans 2010 11th International Conference on Control Automation Robotics & Vision.
Singapore, Singapore : IEEE, déc. 2010, p. 1078–1085. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/5707969/

[73] B. Yun, B. M. Chen, K. Y. Lum et T. H. Lee, “Design and implementation of
a leader-follower cooperative control system for unmanned helicopters,” Journal of
Control Theory and Applications, vol. 8, no. 1, p. 61–68, févr. 2010. [En ligne].
Disponible : http://link.springer.com/10.1007/s11768-010-9188-6

[74] M. Shalaby, C. C. Cossette, J. R. Forbes et J. Le Ny, “Relative Position Estimation in
Multi-Agent Systems Using Attitude-Coupled Range Measurements,” IEEE Robotics
and Automation Letters, vol. 6, no. 3, p. 4955–4961, juill. 2021. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/9381606/

[75] C. C. Cossette, M. Shalaby, D. Saussie, J. R. Forbes et J. Le Ny, “Relative
Position Estimation Between Two UWB Devices With IMUs,” IEEE Robotics and
Automation Letters, vol. 6, no. 3, p. 4313–4320, juill. 2021. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/9382085/

[76] D. H. Shim et S. Sastry, “An Evasive Maneuvering Algorithm for UAVs in
See-and-Avoid Situations,” dans 2007 American Control Conference. New York, NY,
USA : IEEE, juill. 2007, p. 3886–3891, iSSN : 0743-1619. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/4283147/

http://link.springer.com/10.1007/978-3-319-61022-1_5
https://ieeexplore.ieee.org/document/8990026/
http://doi.wiley.com/10.1002/rob.21756
https://linkinghub.elsevier.com/retrieve/pii/S1270963806001040
https://linkinghub.elsevier.com/retrieve/pii/S1270963806001040
http://ieeexplore.ieee.org/document/5707969/
http://link.springer.com/10.1007/s11768-010-9188-6
https://ieeexplore.ieee.org/document/9381606/
https://ieeexplore.ieee.org/document/9382085/
http://ieeexplore.ieee.org/document/4283147/

115

[77] S. Lacroix, R. Alami, T. Lemaire, G. Hattenberger et J. Gancet, “Decision Making
in Multi-UAVs Systems : Architecture and Algorithms,” dans Multiple Heterogeneous
Unmanned Aerial Vehicles, A. Ollero et I. Maza, édit. Berlin, Heidelberg :
Springer Berlin Heidelberg, 2007, vol. 37, p. 15–48, series Title : Springer Tracts
in Advanced Robotics. [En ligne]. Disponible : http://link.springer.com/10.1007/
978-3-540-73958-6_2

[78] Y. Tansel İç, M. Yurdakul et B. Dengiz, “Development of a decision support system for
robot selection,” Robotics and Computer-Integrated Manufacturing, vol. 29, no. 4, p.
142–157, août 2013. [En ligne]. Disponible : https://linkinghub.elsevier.com/retrieve/
pii/S073658451200141X

[79] R. Parameshwaran, S. Praveen Kumar et K. Saravanakumar, “An integrated fuzzy
MCDM based approach for robot selection considering objective and subjective
criteria,” Applied Soft Computing, vol. 26, p. 31–41, janv. 2015. [En ligne]. Disponible :
https://linkinghub.elsevier.com/retrieve/pii/S1568494614004785

[80] D. K. Sen, S. Datta, S. K. Patel et S. S. Mahapatra, “Multi-criteria decision
making towards selection of industrial robot : Exploration of PROMETHEE II
method,” Benchmarking : An International Journal, vol. 22, no. 3, p. 465–487, avr.
2015. [En ligne]. Disponible : https://www.emerald.com/insight/content/doi/10.1108/
BIJ-05-2014-0046/full/html

[81] I. Goodfellow, Y. Bengio et A. Courville, Deep learning, ser. Adaptive computation and
machine learning. Cambridge, Massachusetts : The MIT Press, 2016.

[82] Z. Ghahramani, “Unsupervised Learning,” dans Advanced Lectures on Machine
Learning, O. Bousquet, U. von Luxburg et G. Rätsch, édit. Berlin, Heidelberg :
Springer Berlin Heidelberg, 2004, vol. 3176, p. 72–112, series Title : Lecture Notes
in Computer Science. [En ligne]. Disponible : http://link.springer.com/10.1007/
978-3-540-28650-9_5

[83] X. Zhu et A. B. Goldberg, “Introduction to Semi-Supervised Learning,” Synthesis
Lectures on Artificial Intelligence and Machine Learning, vol. 3, no. 1, p. 1–130,
janv. 2009. [En ligne]. Disponible : http://www.morganclaypool.com/doi/abs/10.
2200/S00196ED1V01Y200906AIM006

[84] A. Krizhevsky, I. Sutskever et G. E. Hinton, “ImageNet Classification with Deep
Convolutional Neural Networks,” dans Advances in Neural Information Processing
Systems 25, F. Pereira, C. J. C. Burges, L. Bottou et K. Q. Weinberger, édit. Curran
Associates, Inc., 2012, p. 1097–1105. [En ligne]. Disponible : http://papers.nips.cc/
paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

http://link.springer.com/10.1007/978-3-540-73958-6_2
http://link.springer.com/10.1007/978-3-540-73958-6_2
https://linkinghub.elsevier.com/retrieve/pii/S073658451200141X
https://linkinghub.elsevier.com/retrieve/pii/S073658451200141X
https://linkinghub.elsevier.com/retrieve/pii/S1568494614004785
https://www.emerald.com/insight/content/doi/10.1108/BIJ-05-2014-0046/full/html
https://www.emerald.com/insight/content/doi/10.1108/BIJ-05-2014-0046/full/html
http://link.springer.com/10.1007/978-3-540-28650-9_5
http://link.springer.com/10.1007/978-3-540-28650-9_5
http://www.morganclaypool.com/doi/abs/10.2200/S00196ED1V01Y200906AIM006
http://www.morganclaypool.com/doi/abs/10.2200/S00196ED1V01Y200906AIM006
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
http://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf

116

[85] I. Lenz, H. Lee et A. Saxena, “Deep learning for detecting robotic grasps,” The
International Journal of Robotics Research, vol. 34, no. 4-5, p. 705–724, avr. 2015. [En
ligne]. Disponible : https://doi.org/10.1177/0278364914549607

[86] J. Yu, K. Weng, G. Liang et G. Xie, “A vision-based robotic grasping system using deep
learning for 3D object recognition and pose estimation,” dans 2013 IEEE International
Conference on Robotics and Biomimetics (ROBIO), déc. 2013, p. 1175–1180.

[87] I. Mariolis, G. Peleka, A. Kargakos et S. Malassiotis, “Pose and category recognition
of highly deformable objects using deep learning,” dans 2015 International Conference
on Advanced Robotics (ICAR), juill. 2015, p. 655–662.

[88] D. Maturana et S. Scherer, “3D Convolutional Neural Networks for landing zone
detection from LiDAR,” dans 2015 IEEE International Conference on Robotics and
Automation (ICRA). Seattle, WA, USA : IEEE, mai 2015, p. 3471–3478. [En ligne].
Disponible : http://ieeexplore.ieee.org/document/7139679/

[89] Hanzhang Hu, D. Munoz, J. A. Bagnell et M. Hebert, “Efficient 3-D scene analysis
from streaming data,” dans 2013 IEEE International Conference on Robotics and
Automation. Karlsruhe, Germany : IEEE, mai 2013, p. 2297–2304. [En ligne].
Disponible : http://ieeexplore.ieee.org/document/6630888/

[90] R. Q. Charles, H. Su, M. Kaichun et L. J. Guibas, “PointNet : Deep Learning on
Point Sets for 3D Classification and Segmentation,” dans 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Honolulu, HI : IEEE, juill. 2017,
p. 77–85. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/8099499/

[91] C. R. Qi, L. Yi, H. Su et L. J. Guibas, “PointNet++ : Deep Hierarchical Feature
Learning on Point Sets in a Metric Space,” arXiv :1706.02413 [cs], juin 2017, arXiv :
1706.02413. [En ligne]. Disponible : http://arxiv.org/abs/1706.02413

[92] A. Mohebbi, S. Achiche et L. Baron, “Design of a Vision Guided Mechatronic
Quadrotor System Using Design for Control Methodology,” Transactions of the
Canadian Society for Mechanical Engineering, vol. 40, no. 2, p. 201–219, juin 2016. [En
ligne]. Disponible : http://www.nrcresearchpress.com/doi/10.1139/tcsme-2016-0016

[93] Q. Li, W. Zhang et L. Chen, “Design for control-a concurrent engineering approach
for mechatronic systems design,” IEEE/ASME Transactions on Mechatronics, vol. 6,
no. 2, p. 161–169, juin 2001. [En ligne]. Disponible : http://ieeexplore.ieee.org/
document/928731/

[94] A. Mohebbi, S. Achiche et L. Baron, “Integrated and concurrent detailed design of
a mechatronic quadrotor system using a fuzzy-based particle swarm optimization,”

https://doi.org/10.1177/0278364914549607
http://ieeexplore.ieee.org/document/7139679/
http://ieeexplore.ieee.org/document/6630888/
http://ieeexplore.ieee.org/document/8099499/
http://arxiv.org/abs/1706.02413
http://www.nrcresearchpress.com/doi/10.1139/tcsme-2016-0016
http://ieeexplore.ieee.org/document/928731/
http://ieeexplore.ieee.org/document/928731/

117

Engineering Applications of Artificial Intelligence, vol. 82, p. 192–206, juin 2019. [En
ligne]. Disponible : https://linkinghub.elsevier.com/retrieve/pii/S0952197619300752

[95] A. Mohebbi, L. Baron, S. Achiche et L. Birglen, “Trends in concurrent, multi-criteria
and optimal design of mechatronic systems : A review,” dans Proceedings of the
2014 International Conference on Innovative Design and Manufacturing (ICIDM).
Montreal, QC, Canada : IEEE, août 2014, p. 88–93. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6912676/

[96] A. Y. Mersha, S. Stramigioli et R. Carloni, “Variable impedance control for aerial
interaction,” dans 2014 IEEE/RSJ International Conference on Intelligent Robots and
Systems. Chicago, IL, USA : IEEE, sept. 2014, p. 3435–3440. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6943041/

[97] S. Bouabdallah et R. Siegwart, “Backstepping and Sliding-mode Techniques Applied
to an Indoor Micro Quadrotor,” dans 2005 IEEE International Conference on
Robotics and Automation. Barcelona, Spain : IEEE, 2005, p. 2247–2252. [En ligne].
Disponible : http://ieeexplore.ieee.org/document/1570447/

[98] H. Yang et D. Lee, “Dynamics and control of quadrotor with robotic manipulator,”
dans 2014 IEEE International Conference on Robotics and Automation (ICRA).
Hong Kong, China : IEEE, mai 2014, p. 5544–5549. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6907674/

[99] T. Mathworks, “Matlab and Simulink,” Natick, Massachusetts, 2020.

[100] P. Apkarian, “Tuning controllers against multiple design requirements,” dans 2013
American Control Conference (ACC). Washington, DC, USA : IEEE, juin 2013, p.
3888–3893. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/6580433/

[101] P. Gahinet et P. Apkarian, “Decentralized and fixed-structure H∞ control in
MATLAB,” dans 2011 50th IEEE Conference on Decision and Control and European
Control Conference (CDC-ECC). Orlando, FL, USA : IEEE, déc. 2011, p. 8205–8210.
[En ligne]. Disponible : http://ieeexplore.ieee.org/document/6160298/

[102] H. Lhachemi, D. Saussié et G. Zhu, “A structured H∞-based optimization approach
for integrated plant and self-scheduled flight control system design,” Aerospace
Science and Technology, vol. 45, p. 30–38, sept. 2015. [En ligne]. Disponible :
https://linkinghub.elsevier.com/retrieve/pii/S1270963815001182

[103] S. Skogestad et I. Postlethwaite, Multivariable feedback control : analysis and design,
2e éd. Hoboken, NJ : John Wiley, 2005.

https://linkinghub.elsevier.com/retrieve/pii/S0952197619300752
http://ieeexplore.ieee.org/document/6912676/
http://ieeexplore.ieee.org/document/6943041/
http://ieeexplore.ieee.org/document/1570447/
http://ieeexplore.ieee.org/document/6907674/
http://ieeexplore.ieee.org/document/6580433/
http://ieeexplore.ieee.org/document/6160298/
https://linkinghub.elsevier.com/retrieve/pii/S1270963815001182

118

[104] P. Apkarian et D. Noll, “Nonsmooth H∞ Synthesis,” IEEE Transactions on
Automatic Control, vol. 51, no. 1, p. 71–86, janv. 2006. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/1576856/

[105] F. Augugliaro, S. Lupashin, M. Hamer, C. Male, M. Hehn, M. W. Mueller,
J. S. Willmann, F. Gramazio, M. Kohler et R. D’Andrea, “The Flight Assembled
Architecture installation : Cooperative construction with flying machines,” IEEE
Control Systems, vol. 34, no. 4, p. 46–64, août 2014. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6853477/

[106] J. R. Kutia, K. A. Stol et W. Xu, “Canopy sampling using an aerial manipulator : A
preliminary study,” dans 2015 International Conference on Unmanned Aircraft Systems
(ICUAS), juin 2015, p. 477–484.

[107] A. Carrio, C. Sampedro, A. Rodriguez-Ramos et P. Campoy, “A Review
of Deep Learning Methods and Applications for Unmanned Aerial Vehicles,”
Journal of Sensors, vol. 2017, p. 1–13, 2017. [En ligne]. Disponible : https:
//www.hindawi.com/journals/js/2017/3296874/

[108] “X - The Everyday Robot Project.” [En ligne]. Disponible : https://x.company/
projects/everyday-robots

[109] R. Rashad, J. B. C. Engelen et S. Stramigioli, “Energy Tank-Based Wrench/Impedance
Control of a Fully-Actuated Hexarotor : A Geometric Port-Hamiltonian Approach,”
dans 2019 International Conference on Robotics and Automation (ICRA). Montreal,
QC, Canada : IEEE, mai 2019, p. 6418–6424. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/8793939/

[110] G. Zhang, Y. He, B. Dai, F. Gu, L. Yang, J. Han, G. Liu et J. Qi, “Grasp
a Moving Target from the Air : System & Control of an Aerial Manipulator,”
dans 2018 IEEE International Conference on Robotics and Automation (ICRA).
Brisbane, QLD : IEEE, mai 2018, p. 1681–1687. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/8461103/

[111] F. Suarez-Ruiz et Q.-C. Pham, “A framework for fine robotic assembly,”
dans 2016 IEEE International Conference on Robotics and Automation (ICRA).
Stockholm, Sweden : IEEE, mai 2016, p. 421–426. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7487162/

[112] G. A. Korsah, A. Stentz et M. B. Dias, “A comprehensive taxonomy for
multi-robot task allocation,” The International Journal of Robotics Research,
vol. 32, no. 12, p. 1495–1512, oct. 2013. [En ligne]. Disponible : http:
//journals.sagepub.com/doi/10.1177/0278364913496484

http://ieeexplore.ieee.org/document/1576856/
http://ieeexplore.ieee.org/document/6853477/
https://www.hindawi.com/journals/js/2017/3296874/
https://www.hindawi.com/journals/js/2017/3296874/
https://x.company/projects/everyday-robots
https://x.company/projects/everyday-robots
https://ieeexplore.ieee.org/document/8793939/
https://ieeexplore.ieee.org/document/8461103/
http://ieeexplore.ieee.org/document/7487162/
http://journals.sagepub.com/doi/10.1177/0278364913496484
http://journals.sagepub.com/doi/10.1177/0278364913496484

119

[113] H. Peng, C. Zhou, H. Hu, F. Chao et J. Li, “Robotic Dance in Social Robotics—A
Taxonomy,” IEEE Transactions on Human-Machine Systems, vol. 45, no. 3, p. 281–293,
juin 2015. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7042758/

[114] J. W. Firestone, R. Quinones et B. A. Duncan, “Learning from Users : an
Elicitation Study and Taxonomy for Communicating Small Unmanned Aerial System
States Through Gestures,” dans 2019 14th ACM/IEEE International Conference on
Human-Robot Interaction (HRI). Daegu, Korea (South) : IEEE, mars 2019, p.
163–171. [En ligne]. Disponible : https://ieeexplore.ieee.org/document/8673010/

[115] A. Bloomfield, Yu Deng, J. Wampler, P. Rondot, D. Harth, M. McManus et N. Badler,
“A taxonomy and comparison of haptic actions for disassembly tasks,” dans IEEE
Virtual Reality, 2003. Proceedings. Los Angeles, CA, USA : IEEE Comput. Soc, 2003,
p. 225–231. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/1191143/

[116] C. Kanellakis, M. Terreran, D. Kominiak et G. Nikolakopoulos, “On vision enabled
aerial manipulation for multirotors,” dans 2017 22nd IEEE International Conference
on Emerging Technologies and Factory Automation (ETFA), sept. 2017, p. 1–7.

[117] R. Ritz, M. W. Müller, M. Hehn et R. D’Andrea, “Cooperative quadrocopter ball
throwing and catching,” dans 2012 IEEE/RSJ International Conference on Intelligent
Robots and Systems. Vilamoura-Algarve, Portugal : IEEE, oct. 2012, p. 4972–4978.
[En ligne]. Disponible : http://ieeexplore.ieee.org/document/6385963/

[118] S. Park, J. Lee, J. Ahn, M. Kim, J. Her, G.-H. Yang et D. Lee, “ODAR : Aerial
Manipulation Platform Enabling Omnidirectional Wrench Generation,” IEEE/ASME
Transactions on Mechatronics, vol. 23, no. 4, p. 1907–1918, août 2018. [En ligne].
Disponible : https://ieeexplore.ieee.org/document/8401328/

[119] A. Zeng, S. Song, J. Lee, A. Rodriguez et T. Funkhouser, “TossingBot : Learning to
Throw Arbitrary Objects with Residual Physics,” arXiv :1903.11239 [cs, stat], juill.
2019, arXiv : 1903.11239. [En ligne]. Disponible : http://arxiv.org/abs/1903.11239

[120] S. Tang, V. Wuest et V. Kumar, “Aggressive Flight With Suspended Payloads Using
Vision-Based Control,” IEEE Robotics and Automation Letters, vol. 3, no. 2, p. 1152–
1159, avr. 2018. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/8258883/

[121] K. Bodie, M. Brunner, M. Pantic, S. Walser, P. Pfändler, U. Angst, R. Siegwart
et J. Nieto, “An Omnidirectional Aerial Manipulation Platform for Contact-Based
Inspection,” arXiv :1905.03502 [cs], juill. 2019, arXiv : 1905.03502. [En ligne].
Disponible : http://arxiv.org/abs/1905.03502

[122] H. Jiang, M. T. Pope, E. W. Hawkes, D. L. Christensen, M. A. Estrada, A. Parlier,
R. Tran et M. R. Cutkosky, “Modeling the dynamics of perching with opposed-grip

http://ieeexplore.ieee.org/document/7042758/
https://ieeexplore.ieee.org/document/8673010/
http://ieeexplore.ieee.org/document/1191143/
http://ieeexplore.ieee.org/document/6385963/
https://ieeexplore.ieee.org/document/8401328/
http://arxiv.org/abs/1903.11239
http://ieeexplore.ieee.org/document/8258883/
http://arxiv.org/abs/1905.03502

120

mechanisms,” dans 2014 IEEE International Conference on Robotics and Automation
(ICRA). Hong Kong, China : IEEE, mai 2014, p. 3102–3108. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6907305/

[123] H. Wopereis, D. Ellery, T. Post, S. Stramigioli et M. Fumagalli, “Autonomous and
sustained perching of multirotor platforms on smooth surfaces,” dans 2017 25th
Mediterranean Conference on Control and Automation (MED). Valletta, Malta :
IEEE, juill. 2017, p. 1385–1391. [En ligne]. Disponible : http://ieeexplore.ieee.org/
document/7984312/

[124] DJI, “DJI - Introducing the Spreading Wings S1000.” [En ligne]. Disponible :
https://www.youtube.com/watch?v=XU4rEbCxSW0

[125] I. Sa, M. Kamel, M. Burri, M. Bloesch, R. Khanna, M. Popovic, J. Nieto et R. Siegwart,
“Build Your Own Visual-Inertial Drone : A Cost-Effective and Open-Source
Autonomous Drone,” IEEE Robotics & Automation Magazine, vol. 25, no. 1, p. 89–103,
mars 2018. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/8233182/

[126] S. Jung, S. Hwang, H. Shin et D. H. Shim, “Perception, Guidance, and Navigation
for Indoor Autonomous Drone Racing Using Deep Learning,” IEEE Robotics and
Automation Letters, vol. 3, no. 3, p. 2539–2544, juill. 2018. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/8299437/

[127] T. Baltovski, S. Nokleby et R. Pop-Iliev, “Towards Performing Remote Manipulation
Using an Autonomous Aerial Vehicle,” dans CCToMM Mechanisms, Machines, and
Mechatronics (M3) Symposium, 2015, Ottawa, Ontario, Canada, mai 2015.

[128] S. Bouabdallah, P. Murrieri et R. Siegwart, “Design and control of an indoor micro
quadrotor,” dans IEEE International Conference on Robotics and Automation, 2004.
Proceedings. ICRA ’04. New Orleans, LA, USA : IEEE, 2004, p. 4393–4398 Vol.5.
[En ligne]. Disponible : http://ieeexplore.ieee.org/document/1302409/

[129] A. Tayebi et S. McGilvray, “Attitude stabilization of a VTOL quadrotor aircraft,”
IEEE Transactions on Control Systems Technology, vol. 14, no. 3, p. 562–571, mai
2006. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/1624481/

[130] P. Pounds, R. Mahony et P. Corke, “Modelling and control of a large quadrotor
robot,” Control Engineering Practice, vol. 18, no. 7, p. 691–699, juill. 2010. [En ligne].
Disponible : http://linkinghub.elsevier.com/retrieve/pii/S0967066110000456

[131] T. Madani et A. Benallegue, “Backstepping Control for a Quadrotor Helicopter,”
dans 2006 IEEE/RSJ International Conference on Intelligent Robots and Systems.
Beijing, China : IEEE, oct. 2006, p. 3255–3260. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/4058900/

http://ieeexplore.ieee.org/document/6907305/
http://ieeexplore.ieee.org/document/7984312/
http://ieeexplore.ieee.org/document/7984312/
https://www.youtube.com/watch?v=XU4rEbCxSW0
http://ieeexplore.ieee.org/document/8233182/
http://ieeexplore.ieee.org/document/8299437/
http://ieeexplore.ieee.org/document/1302409/
http://ieeexplore.ieee.org/document/1624481/
http://linkinghub.elsevier.com/retrieve/pii/S0967066110000456
http://ieeexplore.ieee.org/document/4058900/

121

[132] I. Palunko et R. Fierro, “Adaptive Control of a Quadrotor with Dynamic Changes
in the Center of Gravity,” IFAC Proceedings Volumes, vol. 44, no. 1, p. 2626–2631,
janv. 2011. [En ligne]. Disponible : http://linkinghub.elsevier.com/retrieve/pii/
S1474667016440097

[133] B. L. Stevens, F. L. Lewis et E. N. Johnson, Aircraft control and simulation : dynamics,
controls design, and autonomous systems, third edition éd. Hoboken, N.J : John Wiley
& Sons, 2016.

[134] M. Fanni et A. Khalifa, “A New 6-DOF Quadrotor Manipulation System :
Design, Kinematics, Dynamics, and Control,” IEEE/ASME Transactions on
Mechatronics, vol. 22, no. 3, p. 1315–1326, juin 2017. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7875412/

[135] D. Bazylev, K. Zimenko, A. Margun, A. Bobtsov et A. Kremlev, “Adaptive control
system for quadrotor equiped with robotic arm,” dans 2014 19th International
Conference on Methods and Models in Automation and Robotics (MMAR).
Miedzyzdroje, Poland : IEEE, sept. 2014, p. 705–710. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6957440/

[136] S. Bouabdallah, A. Noth et R. Siegwart, “PID vs LQ control techniques applied
to an indoor micro quadrotor,” dans 2004 IEEE/RSJ International Conference on
Intelligent Robots and Systems, vol. 3. Sendai, Japan : IEEE, 2004, p. 2451–2456.
[En ligne]. Disponible : http://ieeexplore.ieee.org/document/1389776/

[137] H. Bouadi, S. Simoes Cunha, A. Drouin et F. Mora-Camino, “Adaptive sliding
mode control for quadrotor attitude stabilization and altitude tracking,” dans 2011
IEEE 12th International Symposium on Computational Intelligence and Informatics
(CINTI). Budapest, Hungary : IEEE, nov. 2011, p. 449–455. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6108547/

[138] F. Caccavale, G. Giglio, G. Muscio et F. Pierri, “Adaptive control for UAVs
equipped with a robotic arm,” IFAC Proceedings Volumes, vol. 47, no. 3, p.
11 049–11 054, 2014. [En ligne]. Disponible : http://linkinghub.elsevier.com/retrieve/
pii/S1474667016433719

[139] S. Kannan, M. Alma, M. A. Olivares-Mendez et H. Voos, “Adaptive control of Aerial
Manipulation Vehicle,” dans 2014 IEEE International Conference on Control System,
Computing and Engineering (ICCSCE). Batu Ferringhi, Malaysia : IEEE, nov. 2014,
p. 273–278. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7072729/

[140] G. Antonelli et E. Cataldi, “Adaptive control of arm-equipped quadrotors. Theory and
simulations,” dans 2014 22nd Mediterranean Conference of Control and Automation

http://linkinghub.elsevier.com/retrieve/pii/S1474667016440097
http://linkinghub.elsevier.com/retrieve/pii/S1474667016440097
http://ieeexplore.ieee.org/document/7875412/
http://ieeexplore.ieee.org/document/6957440/
http://ieeexplore.ieee.org/document/1389776/
http://ieeexplore.ieee.org/document/6108547/
http://linkinghub.elsevier.com/retrieve/pii/S1474667016433719
http://linkinghub.elsevier.com/retrieve/pii/S1474667016433719
http://ieeexplore.ieee.org/document/7072729/

122

(MED). Palermo, Italy : IEEE, juin 2014, p. 1446–1451. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6961579/

[141] S. Rajappa, C. Masone, H. H. Bulthoff et P. Stegagno, “Adaptive Super Twisting
Controller for a quadrotor UAV,” dans 2016 IEEE International Conference on
Robotics and Automation (ICRA). Stockholm, Sweden : IEEE, mai 2016, p.
2971–2977. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7487462/

[142] M. Sharifi et H. Sayyaadi, “Nonlinear robust adaptive Cartesian impedance control
of UAVs equipped with a robot manipulator,” Advanced Robotics, vol. 29, no. 3, p.
171–186, févr. 2015. [En ligne]. Disponible : http://www.tandfonline.com/doi/abs/10.
1080/01691864.2014.1002529

[143] P. Gahinet et P. Apkarian, “Structured H∞ Synthesis in MATLAB,” IFAC
Proceedings Volumes, vol. 44, no. 1, p. 1435–1440, janv. 2011. [En ligne]. Disponible :
http://linkinghub.elsevier.com/retrieve/pii/S1474667016438115

[144] W. J. Rugh et J. S. Shamma, “Research on gain scheduling,” Automatica,
vol. 36, no. 10, p. 1401–1425, oct. 2000. [En ligne]. Disponible : http:
//linkinghub.elsevier.com/retrieve/pii/S0005109800000583

[145] H. Lhachemi, D. Saussié et G. Zhu, “Hidden Coupling Terms Inclusion in
Gain-Scheduling Control Design : Extension of an Eigenstructure Assignment-Based
Technique,” IFAC-PapersOnLine, vol. 49, no. 17, p. 403–408, 2016. [En ligne].
Disponible : http://linkinghub.elsevier.com/retrieve/pii/S2405896316315427

[146] H. Lhachemi, D. Saussié et G. Zhu, “Explicit hidden coupling terms handling in
gain-scheduling control design via eigenstructure assignment,” Control Engineering
Practice, vol. 58, p. 1–11, janv. 2017. [En ligne]. Disponible : http://linkinghub.
elsevier.com/retrieve/pii/S0967066116301964

[147] D.-T. Nguyen, D. Saussie et L. Saydy, “Fault-Tolerant Control of a Hexacopter UAV
based on Self-Scheduled Control Allocation,” dans 2018 International Conference on
Unmanned Aircraft Systems (ICUAS). Dallas, TX : IEEE, juin 2018, p. 385–393. [En
ligne]. Disponible : https://ieeexplore.ieee.org/document/8453440/

[148] T. Nguyen, D. Saussie et L. Saydy, “Design and Experimental Validation of
Robust Self-Scheduled Fault-Tolerant Control Laws for a Multicopter UAV,”
IEEE/ASME Transactions on Mechatronics, p. 1–1, 2020. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/9279322/

[149] J. J. Craig, Introduction to robotics : mechanics and control, 3e éd., ser. Pearson edu-
cation international. Upper Saddle River, NJ : Pearson, Prentice Hall, 2005, oCLC :
249488662.

http://ieeexplore.ieee.org/document/6961579/
http://ieeexplore.ieee.org/document/7487462/
http://www.tandfonline.com/doi/abs/10.1080/01691864.2014.1002529
http://www.tandfonline.com/doi/abs/10.1080/01691864.2014.1002529
http://linkinghub.elsevier.com/retrieve/pii/S1474667016438115
http://linkinghub.elsevier.com/retrieve/pii/S0005109800000583
http://linkinghub.elsevier.com/retrieve/pii/S0005109800000583
http://linkinghub.elsevier.com/retrieve/pii/S2405896316315427
http://linkinghub.elsevier.com/retrieve/pii/S0967066116301964
http://linkinghub.elsevier.com/retrieve/pii/S0967066116301964
https://ieeexplore.ieee.org/document/8453440/
https://ieeexplore.ieee.org/document/9279322/

123

[150] M. W. Spong, S. Hutchinson et M. Vidyasagar, Robot modeling and control. Hoboken,
NJ : John Wiley & Sons, 2006, oCLC : ocm61458391.

[151] A. Andry, E. Shapiro et J. Chung, “Eigenstructure Assignment for Linear Systems,”
IEEE Transactions on Aerospace and Electronic Systems, vol. AES-19, no. 5, p. 711–729,
sept. 1983. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/4102853/

[152] B. Yang, Y. He, J. Han et G. Liu, “Rotor-Flying Manipulator : Modeling, Analysis,
and Control,” Mathematical Problems in Engineering, vol. 2014, p. 1–13, 2014. [En
ligne]. Disponible : http://www.hindawi.com/journals/mpe/2014/492965/

[153] C. Coulombe, J.-F. Gamache, O. Barron, G. Descôteaux, D. Saussié et S. Achiche,
“Task Taxonomy for Autonomous Unmanned Aerial Manipulator : A Review,”
dans Volume 9 : 40th Computers and Information in Engineering Conference
(CIE). Virtual, Online : American Society of Mechanical Engineers, août 2020,
p. V009T09A049. [En ligne]. Disponible : https://asmedigitalcollection.asme.org/
IDETC-CIE/proceedings/IDETC-CIE2020/83983/Virtual,%20Online/1090096

[154] S. Kim, H. Seo, J. Shin et H. J. Kim, “Cooperative Aerial Manipulation
Using Multirotors With Multi-DOF Robotic Arms,” IEEE/ASME Transactions
on Mechatronics, vol. 23, no. 2, p. 702–713, avr. 2018. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/8253830/

[155] Y.-S. L.-K. Cio, M. Raison, C. Leblond Menard et S. Achiche, “Proof of
Concept of an Assistive Robotic Arm Control Using Artificial Stereovision
and Eye-Tracking,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 27, no. 12, p. 2344–2352, déc. 2019. [En ligne]. Disponible :
https://ieeexplore.ieee.org/document/8887462/

[156] S. Y. Choi et D. Cha, “Unmanned aerial vehicles using machine learning for
autonomous flight ; state-of-the-art,” Advanced Robotics, vol. 33, no. 6, p. 265–277,
mars 2019. [En ligne]. Disponible : https://www.tandfonline.com/doi/full/10.1080/
01691864.2019.1586760

[157] K. Xu, H. Huang, Y. Shi, H. Li, P. Long, J. Caichen, W. Sun et B. Chen,
“Autoscanning for coupled scene reconstruction and proactive object analysis,” ACM
Transactions on Graphics, vol. 34, no. 6, p. 1–14, nov. 2015. [En ligne]. Disponible :
https://dl.acm.org/doi/10.1145/2816795.2818075

[158] Zhirong Wu, S. Song, A. Khosla, Fisher Yu, Linguang Zhang, Xiaoou Tang et
J. Xiao, “3D ShapeNets : A deep representation for volumetric shapes,” dans
2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

http://ieeexplore.ieee.org/document/4102853/
http://www.hindawi.com/journals/mpe/2014/492965/
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings/IDETC-CIE2020/83983/Virtual,%20Online/1090096
https://asmedigitalcollection.asme.org/IDETC-CIE/proceedings/IDETC-CIE2020/83983/Virtual,%20Online/1090096
https://ieeexplore.ieee.org/document/8253830/
https://ieeexplore.ieee.org/document/8887462/
https://www.tandfonline.com/doi/full/10.1080/01691864.2019.1586760
https://www.tandfonline.com/doi/full/10.1080/01691864.2019.1586760
https://dl.acm.org/doi/10.1145/2816795.2818075

124

Boston, MA, USA : IEEE, juin 2015, p. 1912–1920. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7298801/

[159] R. Klokov et V. Lempitsky, “Escape from Cells : Deep Kd-Networks for the
Recognition of 3D Point Cloud Models,” arXiv :1704.01222 [cs], oct. 2017, arXiv :
1704.01222. [En ligne]. Disponible : http://arxiv.org/abs/1704.01222

[160] Y. Wang, Y. Sun, Z. Liu, S. E. Sarma, M. M. Bronstein et J. M. Solomon, “Dynamic
Graph CNN for Learning on Point Clouds,” arXiv :1801.07829 [cs], juin 2019, arXiv :
1801.07829. [En ligne]. Disponible : http://arxiv.org/abs/1801.07829

[161] Z. Zhang, B.-S. Hua, D. W. Rosen et S.-K. Yeung, “Rotation Invariant Convolutions
for 3D Point Clouds Deep Learning,” arXiv :1908.06297 [cs], août 2019, arXiv :
1908.06297. [En ligne]. Disponible : http://arxiv.org/abs/1908.06297

[162] Y. Shen, C. Feng, Y. Yang et D. Tian, “Mining Point Cloud Local Structures by
Kernel Correlation and Graph Pooling,” arXiv :1712.06760 [cs], avr. 2018, arXiv :
1712.06760. [En ligne]. Disponible : http://arxiv.org/abs/1712.06760

[163] M. Bellone, G. Reina, L. Caltagirone et M. Wahde, “Learning Traversability
From Point Clouds in Challenging Scenarios,” IEEE Transactions on Intelligent
Transportation Systems, vol. 19, no. 1, p. 296–305, janv. 2018. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/8168386/

[164] D. Coleman, I. A. Sucan, S. Chitta et N. Correll, “Reducing the Barrier to Entry of
Complex Robotic Software : a MoveIt ! Case Study,” Journal of Software Engineering
for Robotics, vol. 5, no. 1, p. 3–16, mai 2014, publisher : Università degli studi di
Bergamo. [En ligne]. Disponible : https://aisberg.unibg.it//handle/10446/87657

[165] L. Blanchet, S. Achiche, Q. Docquier, P. Fisette et M. Raison, “A procedure to
optimize the geometric and dynamic designs of assistive upper limb exoskeletons,”
Multibody System Dynamics, vol. 51, no. 2, p. 221–245, févr. 2021. [En ligne].
Disponible : http://link.springer.com/10.1007/s11044-020-09766-6

[166] J. Kuffner et S. LaValle, “RRT-connect : An efficient approach to single-query path
planning,” dans Proceedings 2000 ICRA. Millennium Conference. IEEE International
Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065),
vol. 2. San Francisco, CA, USA : IEEE, 2000, p. 995–1001. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/844730/

[167] L. Yi, V. G. Kim, D. Ceylan, I.-C. Shen, M. Yan, H. Su, C. Lu, Q. Huang, A. Sheffer
et L. Guibas, “A scalable active framework for region annotation in 3D shape
collections,” ACM Transactions on Graphics, vol. 35, no. 6, p. 1–12, nov. 2016. [En
ligne]. Disponible : https://dl.acm.org/doi/10.1145/2980179.2980238

http://ieeexplore.ieee.org/document/7298801/
http://arxiv.org/abs/1704.01222
http://arxiv.org/abs/1801.07829
http://arxiv.org/abs/1908.06297
http://arxiv.org/abs/1712.06760
http://ieeexplore.ieee.org/document/8168386/
https://aisberg.unibg.it//handle/10446/87657
http://link.springer.com/10.1007/s11044-020-09766-6
http://ieeexplore.ieee.org/document/844730/
https://dl.acm.org/doi/10.1145/2980179.2980238

125

[168] A. Handa, V. Patraucean, S. Stent et R. Cipolla, “SceneNet : An annotated model
generator for indoor scene understanding,” dans 2016 IEEE International Conference
on Robotics and Automation (ICRA). Stockholm, Sweden : IEEE, mai 2016, p.
5737–5743. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/7487797/

[169] K. Shoemake, “Uniform Random Rotations,” dans Graphics Gems III (IBM Version).
Elsevier, 1992, p. 124–132. [En ligne]. Disponible : https://linkinghub.elsevier.com/
retrieve/pii/B9780080507552500361

[170] A. Anand, H. S. Koppula, T. Joachims et A. Saxena, “Contextually guided semantic
labeling and search for three-dimensional point clouds,” The International Journal
of Robotics Research, vol. 32, no. 1, p. 19–34, janv. 2013. [En ligne]. Disponible :
http://journals.sagepub.com/doi/10.1177/0278364912461538

[171] H. Koppula, A. Anand, T. Joachims et A. Saxena, “Semantic labeling of 3d point clouds
for indoor scenes,” dans Advances in neural information processing systems, 2011, p.
244–252.

[172] K. Lai, L. Bo, X. Ren et D. Fox, “A large-scale hierarchical multi-view RGB-D object
dataset,” dans 2011 IEEE International Conference on Robotics and Automation.
Shanghai, China : IEEE, mai 2011, p. 1817–1824. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/5980382/

[173] K. Lai, L. Bo et D. Fox, “Unsupervised feature learning for 3D scene labeling,”
dans 2014 IEEE International Conference on Robotics and Automation (ICRA).
Hong Kong, China : IEEE, mai 2014, p. 3050–3057. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/6907298/

[174] A. Ecins, C. Fermuller et Y. Aloimonos, “Seeing Behind the Scene : Using Symmetry to
Reason About Objects in Cluttered Environments,” dans 2018 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS). Madrid : IEEE, oct. 2018, p.
7193–7200. [En ligne]. Disponible : https://ieeexplore.ieee.org/document/8593822/

[175] T. Solund, A. G. Buch, N. Kruger et H. Aanas, “A Large-Scale 3D Object
Recognition Dataset,” dans 2016 Fourth International Conference on 3D Vision
(3DV). Stanford, CA, USA : IEEE, oct. 2016, p. 73–82. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7785079/

[176] N. V. Chawla, K. W. Bowyer, L. O. Hall et W. P. Kegelmeyer, “SMOTE :
Synthetic Minority Over-sampling Technique,” Journal of Artificial Intelligence
Research, vol. 16, p. 321–357, juin 2002. [En ligne]. Disponible : https:
//www.jair.org/index.php/jair/article/view/10302

http://ieeexplore.ieee.org/document/7487797/
https://linkinghub.elsevier.com/retrieve/pii/B9780080507552500361
https://linkinghub.elsevier.com/retrieve/pii/B9780080507552500361
http://journals.sagepub.com/doi/10.1177/0278364912461538
http://ieeexplore.ieee.org/document/5980382/
http://ieeexplore.ieee.org/document/6907298/
https://ieeexplore.ieee.org/document/8593822/
http://ieeexplore.ieee.org/document/7785079/
https://www.jair.org/index.php/jair/article/view/10302
https://www.jair.org/index.php/jair/article/view/10302

126

[177] X. Yue, B. Wu, S. A. Seshia, K. Keutzer et A. L. Sangiovanni-Vincentelli, “A
LiDAR Point Cloud Generator : from a Virtual World to Autonomous Driving,”
dans Proceedings of the 2018 ACM on International Conference on Multimedia
Retrieval. Yokohama Japan : ACM, juin 2018, p. 458–464. [En ligne]. Disponible :
https://dl.acm.org/doi/10.1145/3206025.3206080

[178] Y. Zhou et O. Tuzel, “VoxelNet : End-to-End Learning for Point Cloud Based
3D Object Detection,” dans 2018 IEEE/CVF Conference on Computer Vision and
Pattern Recognition. Salt Lake City, UT, USA : IEEE, juin 2018, p. 4490–4499. [En
ligne]. Disponible : https://ieeexplore.ieee.org/document/8578570/

[179] S. Ioffe et C. Szegedy, “Batch Normalization : Accelerating Deep Network Training
by Reducing Internal Covariate Shift,” arXiv :1502.03167 [cs], mars 2015, arXiv :
1502.03167. [En ligne]. Disponible : http://arxiv.org/abs/1502.03167

[180] D. P. Kingma et J. Ba, “Adam : A Method for Stochastic Optimization,”
arXiv :1412.6980 [cs], janv. 2017, arXiv : 1412.6980. [En ligne]. Disponible :
http://arxiv.org/abs/1412.6980

[181] I. Loshchilov et F. Hutter, “Decoupled Weight Decay Regularization,”
arXiv :1711.05101 [cs, math], janv. 2019, arXiv : 1711.05101. [En ligne].
Disponible : http://arxiv.org/abs/1711.05101

[182] Sungjoon Choi, Q.-Y. Zhou et V. Koltun, “Robust reconstruction of indoor scenes,”
dans 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Boston, MA, USA : IEEE, juin 2015, p. 5556–5565. [En ligne]. Disponible :
http://ieeexplore.ieee.org/document/7299195/

[183] J. Park, Q.-Y. Zhou et V. Koltun, “Colored Point Cloud Registration Revisited,” dans
2017 IEEE International Conference on Computer Vision (ICCV). Venice : IEEE,
oct. 2017, p. 143–152. [En ligne]. Disponible : http://ieeexplore.ieee.org/document/
8237287/

[184] Q.-Y. Zhou, J. Park et V. Koltun, “Open3D : A Modern Library for 3D Data
Processing,” arXiv :1801.09847 [cs], janv. 2018, arXiv : 1801.09847. [En ligne].
Disponible : http://arxiv.org/abs/1801.09847

https://dl.acm.org/doi/10.1145/3206025.3206080
https://ieeexplore.ieee.org/document/8578570/
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1711.05101
http://ieeexplore.ieee.org/document/7299195/
http://ieeexplore.ieee.org/document/8237287/
http://ieeexplore.ieee.org/document/8237287/
http://arxiv.org/abs/1801.09847

	DÉDICACE
	REMERCIEMENTS
	RÉSUMÉ
	ABSTRACT
	TABLE DES MATIÈRES
	LISTE DES TABLEAUX
	LISTE DES FIGURES
	LISTE DES SIGLES ET ABRÉVIATIONS
	1 INTRODUCTION
	1.1 Mise en contexte et définition du problème
	1.2 Portée et objectifs de recherche
	1.3 Contributions
	1.4 Structure de la thèse

	2 REVUE DE LITTÉRATURE
	2.1 Définition et conception d'UAM
	2.1.1 Configuration des UAM
	2.1.2 Vue d'ensemble de la littérature concernant les UAM
	2.1.3 Processus de conception appliqué aux UAM et méthode de support à la conception

	2.2 Classification des capacités d'interaction comme outil de support à la conception
	2.3 Support à la conception de sous-systèmes de guidage d'UAM associés aux tâches de saisies
	2.3.1 Apprentissage profond et guidage
	2.3.2 Apprentissage profond avec nuages de points

	2.4 Support à la conception de lois de commande d'UAM
	2.4.1 Synthèse H structurée

	2.5 Résumé des problématiques

	3 ARTICLE 1 : TASK TAXONOMY FOR AUTONOMOUS UNMANNED AERIAL MANIPULATOR: A REVIEW
	3.1 Abstract
	3.2 Introduction
	3.3 Taxonomy Review and UAM Architecture
	3.3.1 UAM Architecture and Subsystem Interactions
	3.3.2 Taxonomy Literature Review
	3.3.3 Video Information Acquisition Methodology

	3.4 Taxonomy and Examples
	3.5 Conclusion

	4 ARTICLE 2 : MODELING AND GAIN-SCHEDULED CONTROL OF AN AERIAL MANIPULATOR
	4.1 Abstract
	4.2 Article Highlights
	4.3 Introduction
	4.4 Kinematic and Dynamic Modeling of an Aerial Manipulator
	4.4.1 Kinematics and Dynamics of the Quadcopter
	4.4.2 Dynamic Modeling of a Robotic Arm on a Floating Base
	4.4.3 Motor Dynamics
	4.4.4 State equation

	4.5 Equilibrium and Linearization of the Dynamic Model
	4.5.1 Equilibrium Definition
	4.5.2 Linearization

	4.6 Control Strategy
	4.6.1 Manipulator controller structure
	4.6.2 Controller structure
	4.6.3 Structured H synthesis
	4.6.4 Gain-scheduling surfaces

	4.7 Simulations of the Closed-Loop Aerial Manipulator
	4.7.1 Model and controller parameters
	4.7.2 Applying the controller on the nominal non-linear system
	4.7.3 Comparison between non-scheduled and scheduled controllers
	4.7.4 Monte Carlo simulations with physical parameters uncertainties

	4.8 Conclusion

	5 ARTICLE 3 : SELECTION OF UNMANNED AERIAL MANIPULATOR CONFIGURATIONS FOR PICKING TASKS IN CLUTTERED ENVIRONMENTS USING POINT CLOUD BASED DEEP LEARNING
	5.1 Abstract
	5.2 Introduction
	5.3 Path planning based selection method
	5.3.1 Definition of the UAM fleet
	5.3.2 Definition of scenes and tasks
	5.3.3 Path planning and selection

	5.4 Dataset for picking tasks in cluttered environments
	5.4.1 Dataset generation
	5.4.2 Dataset preparation for machine learning use

	5.5 Deep learning based selection method
	5.5.1 AMPointNet and AMPointNet++ architectures
	5.5.2 Test Results, Accuracies and Confusion Matrices
	5.5.3 Experiment using real-life scenes

	5.6 Discussion
	5.6.1 Potential use
	5.6.2 Assumption and limitations

	5.7 Conclusion
	5.8 Appendix

	6 DISCUSSION GÉNÉRALE
	6.1 Utilisation des méthodes introduites dans un processus de conception
	6.2 Livrables et contributions
	6.3 Disponibilité des outils

	7 CONCLUSION ET RECOMMANDATIONS
	RÉFÉRENCES

