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RESUME

L'objectif de cette recherche est d'étudier les fusion et solidification transitoires des
interfaces solide-liquide et moule-liquide présents lors de Iinjection d'un polymére fondu sur
un insert thermoplastique solide. La solution d'un modéle mathématique préalablement défini

a été obtenue a l'aide de [a méthode des éléments finis.

Le but de la présente recherche est d'étudier l'effet des changements de certains
paramétres sur cette profondeur fondue; pour atteindre ce but, la géométrie, les propriétés
physiques des matiéres et les conditions initiales et frontiéres du probléme doivent étre

spécifiées.

Les équations de transfert thermique correspondantes sont résolues dans le domaine
du temps et de l'espace, par la méthode des €léments finis, a I'aide du logiciel ABAQUS. Le
logiciel fournit Fhistorique thermique de différents points dans la piéce, et la position du front
de changement de phase est calculée par la suite a partir de l'historique thermique, par une

méthode d'approximation.

Malgré le fait que plusieurs types d'éléments peuvent étre considérés pour modéliser la

géométrie des problémes de transfert thermique, les éléments linéaires sont souvent préférés



parce que les éléments d'ordres supérieurs n'apportent pas d'améliorations significatives des
résultats. Un maillage monodimensionnel simple contenant une certaine quantité de "link

elements"” a été retenu pour ia présente étude.
p P

Le polystyréne (PS) et le polyéthyléne teraphtalate (PET) ont été retenus pour
représenter les cas amorphe et semi-cristallin. Les résultats ont été obtenus avec trois
ensembles de température, pour chacune des deux matiéres. L'effet du rapport des €paisseurs
solide et liquide initiales a également été considéré. 1l est clairement apparu que la solution

des équations de transfert de chaleur dépend principalement des conditions frontiéres.

Différents paramétres provoqent différents scénarios de fusion ou de solidification
rapide. La procédure de transfert thermique peut évoluer de différentes maniéres dictées par
les paramétres du systéme. La vitesse initiale du front de fusion peut étre positive ou négative.
Puisque les masses solide et fondue sont finies, il est possible d'obtenir une stabilité thermique
a long terme; l'atteinte de cette situation dépend des paramétres thermiques du systéme. Plus
la différence de température entre le moule et la masse fondue est élevée, plus profonde est la
pénétration du front dans linsert solide. La position limite du front est aussi contrblée par le
rapport initial des épaisseurs du liquide et du solide. Si la zone liquide est relativement
importante, le corps froid fond complétement avant que I'ensemble ne soit refroidi. Le résultat

exact dépend du polymére choisi.



<

viii

1l n'y a pas de solution exacte au probléme traité dans ce travail. La cinétique de la
solidification du polymére fondu au voisinage des parois du moule est analogue, lors des
étapes initiales, a4 celle obtenue analytiquement par Stéfan pour le milieu semi-infini; les

résultats de la solution numérique développée ici se comparent bien a ceux-ci.



ABSTRACT

The transient melting and solidification layer generated by the injection of a
thermoplastic melt over a thermoplastic insert, at mold-melt interface and melt-solid
insert interface, is investigated by using finite element techniques. The problem presents
considerable computational difficulties due to the moving interface and the nature of the
solutions in the solid and liquid regions. A mathematical model which is the basis of the
finite element analysis is introduced. This mathematical model includes the geometry of
the problem , differential equations , initial and boundary conditions. A one dimensional
mesh is used to investigate the position of moving boundaries at different times. The
position of the interfaces are calculated from the temperature history obtained from finite

element analysis by the method available in literature.

To do the numerical computation , a finite element software, ABAQUS is used,
the program is written to investigate the process for two kinds of thermoplastics.,
Amorphous and crystalline. Polystyrene (PS) and Polyethylene tertraphtalate (PET) are
chosen to represent these two groups of polymers. Non-dimensional heat transfer
equations are solved for the amorphous Polystyrene, while taking the change of
thermophysical properties with temperature into account. For PET the problem is more

simplified by eliminating the change of these properties with temperature.



There is no exact solution for the problem, and numerical solution has not been
studied for this special problem. In the case of PET, however, numerical solutions are
tested for accuracy by comparing them with analytical solutions to classical problems at
short times. The agreement is good at short times while for longer times the difference
between the analytical result and numerical approximation is more sensible, which is due

to the different natures of the problems.

Different parameter regimes induced possible scenarios of rapid initial thawing or
freezing and the freeze front may then grow or decay to a limiting value as a steady state
develops. The physical and mathematical consequences of altering certain parameters is
investigated and the results are discussed in detail. The emphasize has been on the
process parameters like temperature system including mold, melt and insert temperature

and different thickness ratio of solid and melt polymer.

For different temperature systems, the initial motion of the melt-solid interface
remains the same, while large time steady state solution varies according to the thermal
parameters of the system. In the case of melting of the solid insert a limiting position of
melt-solid interface can be detected which depends on the mold temperature. The higher
the temperature difference between the mold and the melt, the lower is the penetration
depth of the front in the solid insert. The limiting position of the front also can be

controlled by initial thickness ratio of melt-solid polymer. If the liquid region is relatively



large the process may be terminated when the cold body melts completely leaving purely

liquid. The exact condition depends on the specific polymer under consideration.
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CONDENSE EN FRANCAIS

L'objectif de cette recherche est d'étudier les fusion et solidification transitoires des
interfaces solide-liquide et moule-liquide présents lors de linjection d'un polymére fondu sur
un insert thermoplastique solide. La solution d'un modéle mathématique préalablement défini
a été obtenue a l'aide de la méthode des éléments finis. La connaissance de la distribution des
températures dans le solide et le liquide, des taux de refroidissement locaux et des gradients de
température 4 chaque instant revét une grande importance puisque ces informations
permettent de conclure quant a linterpénétration de la frontiére solide-liquide, et aussi

d'évaluer la qualité du joint aprés solidification.

Le modéle mathématique proposé permet de quantifier les effets des changements des
paramétres du procédé. La modélisation numérique prend tout son sens au vu des coiits et

délais impliqués par une étude expérimentale de ces changements.

Le procédé d'injection d'un thermoplastique fondu sur un insert thermoplastique est
semblable & la soudure ou au "dip-coating” des polymeéres. Pour obtenir un lien fort et
uniforme entre la partie fondue et linsert, ce dernier doit fondre jusqua une certaine
profondeur. Le but de la présente recherche est d'étudier l'effet des changements de certains

paramétres sur cette profondeur fondue; pour atteindre ce but, la géométrie, les propriétés



physiques des matiéres et les conditions initiales et frontiéres du probléme doivent étre

spécifiées.

Les équations de transfert thermique correspondantes sont résolues dans le domaine
du temps et de l'espace, par la méthode des éléments finis, & l'aide du logiciel ABAQUS. Le
logiciel fournit I'historique thermique de différents points dans la piéce, et la position du front
de changement de phase est calculée par la suite a partir de I'historique thermique, par une

méthode d'approximation.

Les problémes de transfert de chaleur avec changements de phase présentent la
caractéristique particuliére d'un interface entre les phases solide et liquide, dans laquelle la
chaleur "latente" associée au changement de phase est absorbée et libérée. La position de cet
interface change continuellement dans le temps. En conséquence, les solutions de ces
problémes transitoires dits " frontiére mobile” ou "problémes de Stéfan" sont difficiles &
obtenir. La localisation et le déplacement de linterface solide-liquide sont a priorn des

inconnues du probléme.

Les équations différentielles définissant le probléme a frontitre mobile sont
paraboliques, soit d'ordre 2 par rapport au temps. Les équations de la conduction en régime
transitoire pour le solide et le liquide sont liées par les conditions a linterface. Les solutions

analytiques exactes des problémes de ce type ont ét€ obtenues par Stefan dans le cadre de son



xiv

étude sur la formation de la glace. Ces solutions ne sont toutefois utilisables que dans
certaines situations idéales, pour des régions infinies ou semi-infinies, avec des conditions
frontiéres et initiales trés simples. La solution de problémes plus généraux de changement de
phase a été discutée par Neuman; hormis certains cas idéaux, presque toutes les situations

requiérent l'utilisation de techniques numériques.

Différentes méthodes numériques peuvent étre appliquées au calcul des problémes de
solidification. Les méthodes de différences finies ont été traditionellement utilisées, mais les
méthodes d'éléments finis ont gagné beaucoup de terrain au cours de la derniére décénie pour
la solution de ces problémes. Ces derniéres présentent les avantages d'une meilleure
adapatabilité aux géométries complexes, d'une facilité d'implantation des conditions frontiéres,

et d'une plus grande précision des résultats.

La quantité de chaleur latente libérée peut étre présentée de différentes fagons,
essentiellement regroupables sous 2 catégories, soit les méthodes du "front-tracking” et les
méthodes d'enthalpie. Ces derniéres, utilisées pour la présente étude, donnent la localisation
du front de changement de phase a partir des températures calculées. Elles sont facilement
utilisables avec les logiciels existants, et permettent une présentation simple de la chaleur

libérée a l'interface, dont la position n'a pas a étre spécifiée a priori.



Malgré le fait que plusieurs types d'éléments peuvent étre considérés pour modéliser la
géométrie des problémes de transfert thermique, les éléments linéaires sont souvent préférés
parce que les éléments d'ordres supérieurs n'apportent pas d'améliorations significatives des
résultats. Un maillage monodimensionnel simple contenant une certaine quantité de "link

elements” a été retenu pour la présente étude.

Dans le cas ou le changement de phase a lieu 4 une température spécifique, une portée
de température, sur laquelle a lieu ce changement, doit éire choisie. Notons qu'une faible
portée est préférable puisqu'elle permet une meilleure représentation du probléme concret. La
portée doit ensuite étre combinée a un intervalle de temps approprié a l'obtention d'une bonne
approximation. Cet intervalle est choisi de fagon a ce que le changement de température

maximal y correspondant soit inférieur 4 la portée.

Tel que mentionné précédemment, la position de linterface est calculée a partir des
résultats de l'historique thermique. La méthode suggérée par Voller et Cross a été utilisée

pour la présente recherche.

Les températures de transition des polyméres sont relativement élevées; les quantités
de chaleur requises pour leur fusion sont grandes, et les taux de transfert thermique sont
limités par la conductivité et la stabilité thermique de la matiére. L'ensemble de ces propriétés

rend possible la situation dans laquelle la décomposition ou la combustion du polymére prés



des sources de chaleur a lieu avant qu'une quantité de chaleur suffisante n'ait pi permettre la
fusion souhaitée de la masse. Les excellentes propriétés isolantes des polyméres solides et
fondus permettent de retenir la conduction et la diffusion comme modes de transfert de
chaleur en écoulement laminaire; la viscosité élevée des polymeéres fondus limite fortement la

convection dans ces systémes.

Régle générale, les polyméres amorphes et cristallins ont des comportements différents
en transfert thermique; ces derniers évacuent une quantité de chaleur latente lors de leur
solidification, contrairement aux premiers. Plusieurs polyméres présentent une morphologie
solide cristalline; leur température de fusion peut étre définie comme celle i laquelle les entités
cristallines perdent leur cohésion. Il en va autrement des polyméres amorphes, pour lesquels
la température la plus importante Tg est définie lorsque le comportement passe de
caoutchouteux a vitreux. La plupart des polyméres thermoplastiques sont semi-cristallins; les
quantités thermodynamiques prennent alors des valeurs intermédiaires a celles correspondant
aux régions purement cristallines et amorphes. Ces propriétés sont fortement dépendantes de

la densité, du poids, de l'orientation moléculaire, et d'autres facteurs.

Le polystyréne (PS) et le polyéthyléne teraphtalate (PET) ont été retenus pour
représenter les cas amorphe et semi-cristallin; les propriétés requises ont été tirées de la
littérature. L'influence de la température sur ces propriétés a été considérée pour le PS, mais

pour le PET le probléme devient plus général si ces effets sont négligés. Les résultats ont été



obtenus avec trois ensembles de température, pour chacune des deux matiéres. L'effet du
rapport des épaisseurs solide et liquide initiales a également été considéré. 1l est clairement
apparu que la solution des équations de transfert de chaleur dépend principalement des

conditions frontiéres.

Différents paramétres provoqgent différents scénarios de fusion ou de solidification
rapide. La procédure de transfert thermique peut évoluer de différentes maniéres dictées par
les paramétres du systéme. La vitesse initiale du front de fusion peut étre positive ou négative.
Puisque les masses solide et fondue sont finies, il est possible d'obtenir une stabilité thermique

i long terme; l'atteinte de cette situation dépend des paramétres thermiques du systéme.

Dans le cas du PS, linsert solide fond et la position limite de linterface solide-liquide
est fonction de la température du moule. Plus la différence de température entre le moule et la
masse fondue est élevée, plus profonde est la pénétration du front dans linsert solide. La
position limite du front est aussi contrdlée par le rapport initial des €paisseurs du liquide et du
solide. Sila zone liquide est relativement importante, le corps froid fond complétement avant

que l'ensemble ne soit refroidi. Le résultat exact dépend du polymere choisi.

Avec le PET, la solidification s'amorce des deux cdtés a la fois. Les interfaces moule-
matiére fondue et insert-matiére fondue se déplacent lun vers l'autre, I'état stationnaire

correspondant 2 la solidification compléte de la matiére.



Il n'y a pas de solution exacte au probléme traité dans ce travail. La cinétique de la
solidification du polymére fondu au voisinage des parois du moule est analogue, lors des
étapes initiales, a celle obtenue analytiquement par Stéfan pour le milieu semi-infini; les
résultats de la solution numérique développée ici se comparent bien a ceux-ci. Les deux
solutions divergent significativement avec le temps, témoignant de la nature différente des

deux problémes.
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INTRODUCTION

Over the past years many authors have been preoccupied with the numerical
solution of phase change problems. Interests lie in the field of ground freezing problems,

solar energy application or, as in our case, the phase change of materials in the mold.

The knowledge of the locations of liquids and solids temperatures, the
temperature at any point within the material in the mold, the local cooling rate, the
temperature gradient at all appropriate time intervals is of great importance, since with
this information we can draw conclusions concerning the likelihood of formation of voids
and cracks and certain microstructures and if necessary adjust the design parameters to
improve the quality of the molded part. Mathematical model of melting (solidification)
processes are used to isolate and identify the effects of changes in individual variables,
such changes can be difficult to make in an experiment and modeling is a good way to

study these variations.

In this work the process of injection of a molten thermoplastic over a solid
thermoplastic insert is studied. The process is similar in concept to welding or dip
coating of polymers. In order to obtain a strong and uniform bound between the molded
part and its insert, the solid insert surface must melt to a certain depth. In this work, we

modei the process of phase change at the interface between melt and solid. The resulting



heat transfer process may progress in many different ways dictated by the parameters
involved in the system. In the way to reach steady state heat transfer condition, the melt-
solid interface moves to a certain depth before the two portions begin to solidify together

and join as a single piece.

The objective of this study is to correlate with other process parameters, the
depth of melt in the solid insert, to study the heat transfer at the melt-solid interface in
order to demonstrate how the physical properties of polymers and different system
characteristics affect the final results. To reach this goal a model is introduced. The
simulation proceed by specifying the geometry, material properties, boundary and initial
conditions for the process. The corresponding heat transfer equations are solved, in time
and space, by finite element method, using ABAQUS, to determine the thermal history at
various location in the part. Then the phase change position is calculated by an

approximation method from temperature history results.

A characteristic of heat transfer problems dealing with phase change is the
existence of an interface separating the phases. On this interface, the latent heat
associated with the phase change is absorbed or liberated and as a consequence of heat
transfer processes in the two phases, the location of the interface is continuously
changing in time. Transient heat transfer problems involving melting or solidification are

generally called ‘phase change’ or ‘moving -boundary’ problems. The solution of such
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problems is inherently difficult because the interface between the solid and liquid phases
is moving. As a result the location of the solid-liquid interface is not known a priori and
must follow as a part of the solution. Also the way in which this surface moves has to be

determined.

For a phase-change problem, the mathematical formulation consists of parabolic
non-linear differential equation governing the conduction of heat through a medium,
coupled with appropriate boundary conditions. Early analytic works on the solution of
phase change problems include those by Stefan in relation to the ice formation. The exact
solution of a more general phase change problem, however, was discussed by Neuman.
The exact solutions of phase-change problems are limited to a number of idealized
situations involving semi-infinite or infinite regions and subjected to simple boundary and
initial conditions and in a case of complex geometry or complicated boundary conditions,
they are not applicable. Therefore for practical purposes, apart from the few exact

solutions, all problems have to be attacked by numerical methods.

Various numerical techniques can be applied for the computation of solidification
problems, traditionally the finite difference method has been used, but the last ten years
have shown an increasing tendency to apply the finite element method to heat conduction
analysis. The reason for this is the ability of this method to handle complex geometry, the

ease in implementing boundary conditions and the capacity it has as a flexible purpose



technique, since the method is completely general, the temperature and heat flux

boundary condition may be specified at any point and desired accuracy may be obtained.

The latent heat release can be presented by two methods , front-tracking and
enthalpy method . The enthalpy method is used in this study in which the phase change
front is not simuitaneously tracked but derived afterwards from calculated temperature.
This method has the advantage of ease of implementation in existing program packages,
of simple representation of latent heat release at the interface, the position of which need
not to be specified a priori, of capability of dealing with ‘mushy’ phase change problems
or complicated shapes and proven convergence to the weak solution of the differential
equation. A geometry can be represented by a combination of different finite elements.
Most of the proposed elements that have been used in the stress analysis of solids are
applicable. However for transient phase change problem, usually linear elements are

used.

Polystyrene(PS) and Polyethylene Tetraphtalate(PET) are chosen to represent
amorphous and semi-crystalline polymers. The change of thermal properties like thermal
conductivity and heat capacity with temperature is calculated according to the
formulation in the literature. For this case the change of thermophysical properties with
iemperature is accounted for in the calculation, although the change of these properties

with temperature is small and usually can be neglected.
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No doubt, there are different processing parameters and operating conditions,
that control the advance of melt interface in the solid ( or the advance of solid in the
melt) until a specific point, but a crucial component in simulating solidification {(or
melting) in the mold is the handling of heat transfer at the interface between the mold and
the material, The solution of the equations depends on the selection of boundary

conditions.

As we can see from the resuits the solution to the heat transfer equations is
largely controlled by the boundary conditions used to specify the problem. The initial
velocity of melt front may have negative or positive influence on the melting or freezing.
In the case of melting of the solid insert, a limiting position of meit-solid interface can be
detected. This limiting position depends on the mold temperature. For long times the
temperature difference between melt and mold wall controls the heat transfer rate of the

system.

Although there is no exact analytical solution for this problem, for short times,
numerical solutions were tested for accuracy by comparing them to analytical solution to

classical problems. This would have revealed any programming errors.



Chapter 1

Heat Transfer During Phase Change

1.1 Introduction

A characteristic of heat transfer problems dealing with phase change is the
existence of an interface separating the phases. On this interface, the latent heat
associated with the phase change is absorbed or liberated and as a consequence of heat
transfer processes in the two phases, the location of the interface is continuously
changing in time. Transient heat transfer problems involving melting or solidification are
generally called ‘phase change’ or ‘moving -boundary’ problems. The first published
discussion of such problems seems to be the one by Stefan in 1889, and for this reason
the problem is frequently referred to as the problem of Stefan. The solution of such
problems is inherently difficult because the interface between the solid and liquid phases
is moving. As a result the location of the solid-liquid interface is not known a prion and
must follow as a part of the solution. Also the way in which this surface moves has to be

determined.

In the solidification of pure substances, like water, the solidification takes place at
a discrete temperature and the solid-liquid phases are separated by a sharp moving

interface. On the other hand in the solidification (or melting) of mixtures (alloys) and



impure materials the solidification takes place over an extended temperature range and as
a result the solid and liquid phases are separated by a two-phase moving region (Ozisik,

1993).

This literature review for heat transfer aspect of the problem, concerns the
general mathematical formulation which defines the problem and different available

solutions.

1.2 Mathematical Formulation

When a temperature gradient exist in a body, there is an energy transfer from the
high-temperature region to the low-temperature region, so the heat is transferred by
conduction and the heat transfer equation is governed by Fourier law of heat conduction.
If the system is in a steady state which means that the temperature does not change with
time, then the problem is a simple one and we need only to substitute the appropriate
values in Fourier’s equation and solve for desired value. However, if the temperature of
the solid is changing with time, or if there are heat sources or sinks within the solid, the
situation is more complex. The unsteady state differential equation for heat transfer in
this case is obtained by balancing the energy for an element inside the body (Holman

1981).



For a phase-change problem, the mathematical formulation consists of the
differential equation governing the conduction of heat through a medium, coupled with
appropriate boundary conditions. For a moving boundary problem the equation is of
parabolic type which means that differential equations contain first order time derivatives
(Crank,1984). The form of boundary condition is usually of two types, Dirichlet (known
temperature) or Neuman (known heat flux), or can be a mixture of two. Since we are
dealing with transient problem we must also specify the initial state, or temperature
distribution at the initial condition. The situations involving a change of phase, the
classical Stefan problem, is used to describe the conduction in a domain including two

separate phases, Figure 1.1. Thus on the subdomain Q1, Q2 we have (Q1UQ2=Q)

(Lewis & Roberts, 1987) :

V.(kVT)=pc, T (x,0)eQ, x[0,7] []
T(x,0) = T(x). f(1); (x.0)€ G, x[0,7] 2]
EVT neq +h(T-T.)=0;,  (e.1)eG,, x[0,7] 3]

T(x,0)= T, (x); xeQ, (4]
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Figure 1.1: Domain of phase change

K = thermal conductivity

T = temperature

p = density

C = heat capacity

T =time

T = time limit

T = known boundary temperature
T, = initial temperature

A = unit outward normal

H = heat convection coefficient

I=1 or 2 referring to solid or liquid regions respectively
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Equation [1] refers to transient thermal fields in a substance with temperature
dependent thermophysical properties. For the solution of Stefan problems two equation
of the form of equation [1] must be solved, one for the solid and one for the liquid phase.
Besides the initial conditions and conditions imposed at the boundary of the domain, the

following conditions must be satisfied at the solidification front;

k VT, .7, -kVT, i, =pLS [5]
p = density
K, = thermal conductivity of solid
K2 = thermal conductivity of melt
T, = solid temperature
T2 = melt temperature
7_ = unit outward normal at interface
L = latent heat

S = phase change interface

This equation is obtained by considering the energy balance at the interface
(Carslaw and Jaeger, 1984). The transient heat conduction equations for solid and liquid
domain are coupled by this boundary condition at the interface. The interface boundary

conditions given by [5] is nonlinear because if we relate ds(t)/dt to the derivative of
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temperatures this equation leads to a non-linear differential equation for temperature

(Ozisik, 1993).

Usually, the generalized form of this problem incorporate any or all of the

following non-linear features (Crank, 1984);

- The heat parameters K;,c;,p; may all be functions of T x.t.
- On the moving interface the temperature T may be space and time dependent.

- There may be a heat source or sink on the moving boundary.

1.3 Changes in Thermophysical Properties During the Phase Change

From thermodynamic point of view phase transition are typical first-order
transitions in which a primary thermodynamic function, such as enthalpy shows sudden
jump. This sudden change in enthalpy is due to the energy absorption required to change
the phase at a given temperature. For a glassy material however, phase change is a
thermodynamic second order transition in which a plot of a primary quantity shows an
abrupt change in slope, while a plot of a secondary quantity, like specific heat, shows a

sudden jump.
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1.4 Different Methods for Solution of Phase-Change Problems

The fundamental feature of this type of problem is that the location of the
boundary is both unknown and moving, and that the parabolic heat conduction equation

is to be solved in a region whose boundary is also to be determined.

Early analytic works on the solution of phase change problems include those by
Stefan in relation to the ice formation. The exact solution of a more general phase change
problem, however, was discussed by Neuman in his lectures in 1912. The exact solutions
of phase-change problems are limited to a number of idealized situations involving semi-
infinite or infinite regions and subjected to simple boundary and initial conditions..
Carslaw and Jaeger(1984) give a very good review of available analytical and semi-
analytical solutions available for phase-change problems with different geometry and

simple boundary conditions.

In the Stefan problem, since two heat equation coupled by the boundary
conditions, which amounts to the solution of non-linear problem(Ozisik,1993; Carslaw
and Jaeger, 1984), few analytical solution method exist. In a case of complex geometry
or complicated boundary conditions, the superposition principal is not applicable and
each case must be treated separately. Therefore for practical purposes, apart from the
few exact solutions, all problems have to be attacked by numerical methods. But even

then care must be taken in choice of proper solution method.
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1.5 Numerical Methods

Although the solution process is now well established for linear problems
involving multidimensional geometry and time dependent boundary conditions, the
complexities of problems involving change of phase have not yet been fully analyzed.
When the phase change takes place over a wide range of temperatures the computational
problems with the representation of latent heat effects are easily overcome, however a
zero width phase change interval is more difficult to deal with computationally (Comini
et al, 1974; Grifit & Nassersharif, 1990; Morgan, Lewis & Zienkiewicz, 1978; Tamma &
Namburu, 1990; Voller & Cross, 1983), therefore the zero width interval is in practice
often approximated by a narrow temperature range which facilitates incorporation of

latent heat affects.

The systematic use of numerical methods has the advantages that the variation in
the thermal properties with temperature which can be considerable over the ranges of
temperature involved in problems on melting and solidification can be taken into account.
Various numerical techniques can be applied for the computation of solidification
problems (Carslaw & Jaeger, 1959; Crank, 1984), traditionally the finite difference
method has been used, but the last ten years have shown an increasing tendency to apply
the finite element method to heat conduction analysis. The reason for this is the ability of
this method to handle complex geometry, the ease in implementing boundary conditions

and the capacity it has as a flexible purpose technique, since the method is completely
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general, the temperature and heat flux boundary condition may be specified at any point

and desired accuracy may be obtained.

1.5.1 Finite Element Techniques for Phase-Change Problems.

The latent heat released can be presented in many different ways but numerical
techniques involving finite elements can be separated in two distinct groups based on the

formulation of the problem;

- The front-tracking methods in which the phase change front is tracked
continuously and the latent heat is treated as a moving boundary condition. Here the
energy equation is written in terms of temperature as the dependent variable and involves
the technique of moving or deforming elements (Criveilli & Idelsohn, 1986; Rubinsky &
Cravahlo; 1981; Yoo & Rubinsky, 1983). This requires either deforming or alternating
grids, transformation of variables or coordinates (Bell Wedgewood, 1993), introduction
of special algorithms near the phase change interface or choosing the time step so that the

interface coincides with grid nodes (Voller & Cross, 1980).

- Amore general method is the enthalpy method, in which the enthalpy is the
dependent variable (Comini & Guidice, 1974; Goodrich, 1977; Tamma & Namburu,

1990). In this method, the phase change front is not simultaneously tracked but derived
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afterwards from the calculated temperatures. This is possible because the phase front
conditions are implicity accounted for in the enthalpy definition. This method has the
advantage of ease of implementation in existing program packages, of simple
representation of latent heat release at the interface, the position of which need not to be
specified a priori, of capability of dealing with ‘mushy’ phase change problems or
complicated shapes and proven convergence to the weak solution of the differential

equation (Bell, 1982).

The temperature based formulation suffers from effectively handling abrupt
variations in heat capacity and approaches to approximate this in the phase change zone.
The implementations in this method are troublesome and often complicated equations
must be solved. Enthalpy methods seem more natural in eliminating some of these
problems but do experience some of the same difficulties. Numerical difficulties are
either in accurately representing the temperature history, locating the phase front or both

(Bell, 1982; Voller & Cross, 1982).

1.6 Enthalpy Method for Solution of Phase-Change Problems

A more general method is the enthalpy method in which the phase change

boundary is not simultaneously tracked but derived from calculated temperatures.

Enthalpy method is a fixed-grid method, in which the interface position is generally at an
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unknown location between nodes and the latent heat evolution is treated in terms of a
temperature-dependent specific heat. This general formulation does not take separate
account of the latent heat effect accompanying a change of phase but approximated to it
by allowing rapid variation in the heat capacity. This is possible because the phase front

conditions are simply accounted for in the enthalpy equation.

The advantages of the enthalpy method is that a single energy equation becomes
applicable in both phases, hence there is no need to consider liquid and solid phases
separately. Therefore any numerical scheme such as the finite-difference or finite element
method can readily be adopted for the solution. In addition, the enthalpy method is
applicable for the solution of phase-change problems involving both, a distinct phase
change at a discrete temperature as well as phase change taking place over an extended
range of temperatures. But it should be mentioned that although the enthalpy method can
be applied to isothermal freezing problems and the predicted temperature distribution in
such cases are reasonable, the predicted time history of a typical point usually displays a
pronounced step like behavior as a consequence of the enforced temperature plateau,

about the phase change temperature. This behavior can be smoothed by;

I- reducing the spatial step size
2- introducing a special algorithm in the neighborhood of the phase change
to effectively track the moving interface.

3- by spreading the phase change over a temperature range
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4- by combination of these methods.

1.6.1 Enthalpy Formulation of Phase-Change Problems

Figures 1-2a and 1-2b shows enthalpy-temperature relations for a pure crystalline
substances and eutectics and a glassy substance or alloy. For pure substances the phase
change takes place at a discrete temperature, and hence is associated with the latent heat
L. Therefore in figure 1.2a a jump discontinuity occurs at the melting temperature T,
Hence 0H/OT becomes infinite and the energy equation apparently is not meaningful at
this point, however it has been shown that the enthalpy form of the energy equation

given by;

v.4v7)=p ZD (6]

is equivalent to the usual temperature form in which the heat conduction equation is
written separately for the liquid and solid regions and coupled with the energy balance
equation at the solid-liquid interface. Figure 1.2b shows that for alloys and glassy
substances there is no single melting point temperature T, because the phase change
takes place over an extended temperature range from T, to T,, and a mushy zone exists
between the all solid and all liquid regions. In the case of pure substances having a single

melting point Tm, figure 1.2a, when the substance is in solid form at temperature T, the
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Figure 1.2: Enthalpy-Temperature relationship for (a) pure crystalline substances

and (b) glassy substances or alloys

contains a sensible heat per unit mass C,(T-T.), where the melting point temperature Ty
is taken as the reference temperature. In liquid form, it contains latent heat L per unit
mass in addition to the sensible heat, that is, Cy(T-Tn)*+L. For the specific case

considered here, the enthalpy is related to temperature by;

(7]

_|Ce(T-T,) Jor T<T,
C.(T-T )+L Jor T>T,
In the case of glassy substances or alloys such relationship between H(T) and T is
obtained from either experimental data or standard physical data tables. In general,

enthalpy is a nonlinear function of temperature. Therefore an enthalpy versus
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temperature variation must be available. Assuming linear release of latent heat over the

mushy region, the variation of H(T) with temperature can be taken as;

C,T Jor T <T, solid region
H=<:C, T+ I-1, L Jor T <T<T, mushy region (8]
1 4s
C,T+L Jor T>T, liquid region

The general form of enthalpy formulation for Stefan problem can be defined as

follow;
T
H= [pc,(T)dl for T<T, i3y
Ty
T, T
H= [pe(T)dT+pL+ [pe(D)dl Jor T21, [12]
T Tn

Twm = phase change temperature
T.s= reference temperature
¢, = specific heat of solid

c2 =specific heat of liquid

L latent heat

density

©
I
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In case of a finite freezing interval [T,, Ti], the enthalpy can be found from,

H-= ]:pcl(T) dT Jfor T<T, [13]
Trr
T, T
H= {pe(T)dT + [(p(dL ! dT)+ pe,(T)) dT for 1,1, [14]
= poTydT+ oL+ [ e (DaT+ [ e (DT for  T>T, [15]

T =Tn— AT = solidus temperature

T, = T, + AT, = liquidus temperature

Cm = specific heat at melting range

Since H is a unique function of temperature equation [6] can be written as

follows;
dH _&r
[51[3] ~V.(kVT)=0 {16]

Now effective heat capacity which accounts for the latent heat evolution can be

defined as; figure 1.3
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Figure 1.3: Typical plot of H and C'=dh/dt against temperature
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Materials with a discrete solidification temperature exhibit step changes in k and
H at the solidification point which often cannot be handled easily in the numerical
solution of the differential equations (Voller et al, 1981, 1983, Morgan et al, 1978).

Directly evaluating the effective heat capacity gives ;

¢ = pe, Jor T<T,

for T <T<T, [18]
s i

¢ =pc, Jor T>T,
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where the latent heat release is assumed to take place homogeneously over the freezing

range ( Bonacina et al, 1973).

In the case of a Stefan problem, where the phase change occurs in a single
melting point, this direct evaluation requires spreading of the phase change temperature
across a temperature interval and thus introducing a freezing range. In this case, the
freezing range must be kept small, to avoid too large deviations from the original

solidification problem.

1.7 Finite Element Simulation of Solidification Problem

1.7.1 Theoretical Development

In strict mathematical sense, the case studied here is a transient one dimensional
heat transfer problem. In fact this is a two dimensional problem, since there are two
independent variables, x and t. However within the context of a finite element analysis, it
is appropriate to refer to it as a one dimensional problem since only the spatial variable, x
will be treated by finite element. Thus the Galerkin integral and integration by parts are
done in the usual manner with respect to x. The variable t, for the most part is merely

carried along during the following six step of the finite element process (Burnet 1987);

1- Writing the Galerkin residual equation for a typical element.
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2- Integration by parts.

3- Substituting the general form of the element trial solution into interior integral
in residual equations.

4- Developing specific expressions for the shape functions.

5- Substituting the shape functions into element equations and transform the
integral into a form appropriate for numerical evaluations.

6- Preparing the expressions for the flux, using the trial functions.

1.7.2 Spatial Discritization

The finite element method has been chosen to descretize the domain Q in space.
The application of this method to the heat conduction equation is well documented,

therefore only a brief description is warranted here.

The domain Q is divided up into distinct regions or elements Q. such that,
N
ya.=q [14]
=1

Nodal points are then distributed at element vertices, along the element edges, and

possibly in the element interior. We approximate temperature distribution by a weighted
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series of locally supported polynomial functions. The weights/amplitudes corresponds to

the temperatures at the nodal points or nodes. Thus we have the approximation;
N

T(x,t)=2 N, (x)T,(1) (20]
=l

N; = the basis or shape functions
T; =nodal temperatures

N = number of elements

This is the classic ‘separation of variable’ technique sometimes also referred to as
the method of Kantorovich, it means that numerical values of T; may vary from one
instant to another. The finite element procedure will transform the initial boundary value
problems into a pure initial value problems. The latter will be solved by time stepping

technique.

Substituting this approximation into the Galerkin weighted residual form of the

differential equation, We obtain the semi-discrete system;

CT+KT=F [21]
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where T is the vector {T;} of unknown nodal temperatures. The capacitance matrix C,

the conductance matrix K and the thermal loading term F are defined as follows;

¢, = L-‘;—;IN,N,dQ [22]

k; = [VN,.(RVN,)dQ2 [23]
Q

f =[fNdQ [24]

N; = basis or shape functions
c;j = parameters of capacitance matrix

k;; = parameters of conductance matrix

Accurate evaluation of these integrals in equation is difficult in the phase change
region because for problems involving a change of phase within a narrow band of
temperatures, the curves of thermal properties versus temperature is not smooth.
Different numerical approximation is used to appropriately approximate the thermal
properties at the phase change boundary. It has been pointed out that the graph of
enthalpy versus temperature is sufficiently smooth even over the phase change interval
interpolated for the enthalpy, instead of heat capacity and we can approximate the
enthalpy by the same shape functions used to approximate the temperature (Comini et al,

1974; Lewis & Roberts, 1987; Tamma & Namburu, 1990);
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H=N,x,)H,() [25]

H;= the enthalpy values at nodes

N; = usual interpolation function within an element

Various approximations appear in the literature for evaluating the heat capacity as

a change of enthalpy at the nodes with respect to temperature;(Lewis & Roberts, 1987)

In a Galerkin finite-element approximation the conductivity need to be evaluated
at the integration point. An approach would be to use a linear interpolation of the nodal
conductivity. In case where there is a discontinuity in the thermal conductivity, the
integration point values can be evaluated using an averaging scheme (Voller &
Swaminathan 1993). All the elements integrals are strongly dependent on the
thermophysical properties and consequently temperature, thus repeated evaluation of
element integrals for changes in thermophysical properties is accomplished using

numerical integration (Burnet,1987).
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1.7.3 Time Discretization

The matrix equation [21] contains the undiscretized time derivative of
temperature. The next step following the semi-discretization process is the solution (or
time discretization) of the ordinary differential equations [21] which define the discretized

thermal model.

The discretization of the time derivative is most often achieved with a finite
difference technique. Almost all the time stepping methods have actually been used in
commercial finite element codes and almost all of them can be classified as linear
multistep method. For finite element application, one and two step methods are used
almost universally for diffusion problems. The one step methods include three classical
finite difference formulas (Bonacina et al, 1973; Comini et al, 1974; Morgan et al, 1978;

Voller et al, 1981);

1- the backward difference method, known as the backward Euler rule.

2- the mid-difference method also known as the Crank-Nicolson method or
the trapezoidal rule

3- the forward difference method also known as Euler’s rule

4- the two-step or three-time-level scheme referred to as the Dupont II scheme

5- the two-step or three-time-level scheme proposed by Lees.
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The first three methods are special cases of a more general formula referred to as

6-method. This family of methods can be characterized as follows;

C™o(T™ —T")/ At+K™@T" +(1-6)T")=F™°, 0<f<l [27]

n= number of the time increment
At = length of time increment

C = capacitance matrix

K = conductance matrix

F = thermal loading matrix

T = temperature

The 0-method is unconditionally stable with 8>1/2 for both linear and non-linear

conduction. The most favored schemes are;

6=1/12 Crank-Nicolson
8=2/3 Galerkin scheme
8=1 Euler-backward

Of the various time-integration schemes available, it has been observed in the

literature (Dalhuijsen, Segal,1986) that the Euler backward is one of the most favorable
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of the 8-methods for solidification problems in terms of acceptable accuracy, efficiency
and easiness of implementation. In this method thermophysical properties are evaluated at

time level n+1 and an iterative solution method is necessary.

1.7.4 Elements

A geometry can be represented by a combination of different finite elements. Most
of the proposed elements that have been used in the stress analysis of solids are applicable
to heat transfer problems. However for transient phase change problems, usually linear
elements are used. For these elements the temperature field in each element is
approximated by a linear function. For one dimensional linear elements, the general form

of this function is, figure 1.4;

T(x,t)=a, (t)+xa,(t) [28]

o, o2 = coefficients of linear approximation for temperature distribution in an element

where T(x,t) is the temperature distribution in each elements and ou(t) and o(t) are
obtained from nodal temperature at each time step. Although various types of elements
could be employed for general finite element analysis of the thermal problems, for

solidification problems, the use of linear elements is often recommended, since significant
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T(x,t)

Ta(t)

Ti(®

— X
node 1 node 2

Figure 1.4: Finite element temperature approximation within an one

dimensional linear element.

improvements cannot be expected with higher-order elements. This is because there are
sharp discontinuities in the associated derivatives of the temperature in the vicinity of the

phase front (Dalhuijsen & Segal, 1986 and Tamma &. Namburu, 1990).

1.7.5 Time Step Size

A suitable combination of time step and phase change interval will result in a good
approximation for the analytical solution. The time step used should be such that the
change in temperature during one time step in a region undergoing a change of phase, be

less than the temperature difference over which the phase change is assumed to occur. If
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this is not so, a correct heat balance may not be maintained and incorrect solution will
result. When using Euler-backward time stepping scheme, although very few iterations
are necessary to satisfy the convergence criterion for the latest time steps, in the initial
ones more iterations are needed, leading to an average of about 1.8 iterations per time
step over 50 time steps. Ralph III & bathe (1982) have already mentioned that a fine
space discretization and small time steps are necessary for accurate temperature
predictions, whereas the freezing front could be accurately monitored with coarse grids

and larger time steps.

The start time to is chosen for each parameter regime to ensure that any heat
transfer in the time t<to, is confine to a region closed to the interface between the two

regions and the outer extremities are not affected.

1.9 Melting Range

Dalhuijsen and Segal (1986) have shown that the size of the induced freezing
(melting) range has little effect on the temperature and since the freezing front position is
obtained from temperature by extrapolating from the solid side, the imposed freezing

temperature range hardly affects the accuracy of the predicted front position.

In the cases when phase-change occurs at a specific temperature, using enthalpy

method, we should consider a small temperature range for the phase change. Although
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the size of the freezing range has little effect on the error in the temperatures or freezing
front position, a small freezing range is to be preferred since it gives a better
representation of the actual Stefan problem. In the case of existence of a melt range for
the material, at any time an area of the body will be undergoing melting rather than a
point. This area of melting is referred to as the ‘mushy’ region and is bounded by a

solidus and liquidus boundary.

Also there is the possibility of the temperature at a node ‘skipping’ the phase
change temperature interval in a single time step of the numerical fixed-domain
computations if the interval is too small, the grid not dense enough or the time step too
large. Thus severe restrictions are imposed on the execution of calculations. Bonacia &
Comini (1973) suggest that the phase change interval must embrace at least 2-3 nodes

along the direction normal to the interface.

1.10 Front Position

Goodrich (1977) introduces an accurate method for determining the solid-liquid
interface movement when the phase change occurs on a narrow temperature range. He
tested his method in one dimendional problems and obtained good results. Voller and
Cross (1981) suggest a method for calculating the position front between the nodes at

each time step, for a welding problem with steel. They use interpolation on the
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temperature distribution and calculated the position of solidus boundary at time t=jdt

from;

Solidus = [S" + (tJ - Tawe)/(tJ - Trai})10x [29]

S* = fraction of the element which is solid

T, =solid temperature

Tme= upper limit temperature for the temperature range
j =Number of time increment

O0x = element length

Voller and Cross (1983) have mentioned that the solidification front position,
when using enthalpy method, follows the predicted temperatures. They recommend a
scheme in which linear interpolation is used to find the time at which the solid-liquid
interface is at a mesh point and show when enthalpy is defined in a small temperature
range, temperature histories will only be predicted when at least two nodal temperatures

lie in the phase change range at all time steps.

Dalhuijsen and Segal (1986) show that the method for calculating the freeze front
position was examined and the extrapolation of the temperatures from the solid side to

give the position corresponding to the melting temperature seemed to be most
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appropriate. But they also mentioned that, care must be taken, since errors in the nodal
temperatures used in the extrapolation may be amplified. They note that interpolation of
temperatures across the phase change to found the position where temperature is equal
with melting temperature is objectionable. However, they used the method suggested by
Voller and Cross (1981) in their calculation and find good approximation to the exact

solution available for their problem.

Interpolating or extrapolating to give the position corresponding to

T=T,-AT, [30]

Ta = melting temperature

I

AT, = half of the melting range

results in poor results when temperature range is relatively large and is confusing since

the actual freezing temperature is Tp,



Chapter 2

Phase Transition in Polymers

2.1 Introduction

We can distinguish between two main kinds of melt solidification processes for
polymers, static solidification, which is defined as a process where there is no relative
motion between adjacent polymer layers, like in compression molding, and flow
solidification where the melt solidifies during flow in the filling stage as in injection

molding.

Heat transfer in polymers in the solidification (or melting) process is accompanied
by change of phase, melt to solid in the case of crystalline polymers and melt to rubber to
glass in the case of amorphous polymers. Not only phase transition is different for semi-
crystalline and amorphous polymers, but also thermophysical properties of these materials
differ for the same polymer and are highly dependent on molecular structure and thermal

history of the material.
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In the processing of polymers, the temperature gradients are large, since their
thermal conductivities are low, the process times are small, then the local thermodynamic
equilibrium theories seldom hold. The heat required to melt plastics is large and the rate
at which it can be put into the plastics is limited by the thermal conductivity and the
thermal stability of the material. In several cases, the high temperature on the outside
would cause decomposition and burning before enough heat could penetrate to the melt,

the mass of material.

In this chapter we investigate briefly, the phase transition in polymers, their

thermophysical properties and their affects on determining the processing parameters.

2.2 Heat Transfer in Polymers

We should be concerned by the excellent thermal insulating properties of plastics
in both the solid and fluid states. Thus, not only are the fluids of high viscosity, but the
mode of heat transfer during laminar flow is conduction or diffusion. Since plastics have
such a poor thermal conductivity, transfer of heat to or from molten plastics in flow and
solid plastics in static cases is very difficult. Little heat is transferred by convection
because the melt is too viscous. Radiation, although having some effect, accounts for
only a very small proportion of the total heat transferred. According to Rosato(1986)

heat transfer in the mold is almost entirely by diffusion.
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2.3 Phase Transition in Amorphous and Crystalline Polymers

Since phase-change for crystalline polymers is a first order transition in which a
primary thermodynamic functions, such as enthalpy shows a sudden jump, the change of
energy with temperature, at a phase change such as melting, a discontinuity in the specific
heat curve should occur at the melting point temperature. But for amorphous polymers,
glass-rubber transition is a phase change of a thermodynamic second-order transition. In
the case of second-order transition a plot of a primary quantity shows an abrupt change in
slope, while a plot of a secondary quantity, like specific heat, shows a sudden jump.
Generally speaking, crystalline and amorphous polymers are different from the heat
transfer point of view by the fact that crystalline polymers generate latent heat upon
solidification while amorphous polymers do not. The melting temperature can not be
defined for a noncrystalline or amorphous polymer, it simply does not solidify. One
characteristic temperature that is important in amorphous polymers and to a lesser extent
in crystalline polymers is the glass-transition temperature, T, The glass transition
temperature is best defined as the temperature below which a polymer changes from a
rubbery substance to a glassy substance. The exact position of T, is affected by the rate of
cooling, the slower the cooling process the lower will be the value of T,. Yet for practical
purposes one can say that every polymer is characterized by its own T; (Van Krevelen,

1990).
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Many plastics have crystalline structures in their solid form. As a result, if these
solid materials are heated slowly to liquid state, a distinct melting temperature associated
with a given material can be identified within 1°C or so. Therefore for semi-crystalline
polymers it is possible to identify a melting temperature T, Above this melting
temperature the polymer may be liquid viscoelastic or rubbery according to its molecular
weight. Below it, at least in high molecular mass range, it will tend to be leathery and
tough down to glass transition temperature. The crystalline melting point Ty is the
highest temperature at which polymer-crystallites can exist (Van Krevelen, 1990). For
crystalline materials, the glass-transition temperature is important too, because

crystallization can occur only between T; and Tp,.

The problem of unsteady-state heat transfer associated with the melting of
crystalline plastics and with the cooling of such melts after they have been filled into the
molds, is complex. As mentioned before, when these plastics change from the liquid to
the solid state or vice versa, a latent heat of fusion must be added during melting or taken
away during cooling. This process occurs at a specific temperature, and it causes a delay
in temperature change. Partially crystalline polymers exhibit a freezing range. Instead of a
complete delay of temperature when the upper limit of the melting range is reached, only
a partial delay proportional to the crystallization fraction is applied. Thus one part of the
heat contributes to lowering the temperature of the amorphous portion, while the other
part is utilized in freezing the crystalline portion. The partial delay in the temperature

reduction is terminated when the lower limit of the freezing range is obtained. In the
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phase change analysis of amorphous polymers, however, melting temperature can be
replaced by glass transition temperature (Kamal et al, 1970 & 1971). Generally the heat
required to melt semi-crystalline plastics at a given temperature exceeds that of

amorphous plastics at the same temperature (Throne, 1979).

2.4 Thermal Properties of Polymers

Most polymer samples are partly crystalline. The thermodynamic quantities have
values somewhere between the purely crystalline and purely amorphous regions. Polymer
thermal properties are highly dependent on density, molecular weight, orientation and

other factors.

The discussions in this section are confined to three polymer properties: thermal

conductivity, thermal diffusivity and specific heat capacity.

2.4.1 Thermal Conductivity

The thermal conductivity of polymers are low, on the order of 0.1-0.5 W/ m.K.
Among polymeric substances, crystalline polymers tend to have higher thermal

conductivity than amorphous polymers
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Figure 2.1: Behavior of some polymer properties at transition temperatures. (a)

Specific heat, (b) Thermal conductivity

For polymeric systems the change of thermal conductivity with temperature is

generally small or negligible. By increasing the temperature the amorphous polymers

thermal conductivity increases slowly in the glassy region. It is constant or slowly

decreasing in the rubbery region, and passes through a rather flat maximum at glass

transition temperature. Finally, it shows a graduate decline in the liquid state. In

crystalline polymers thermal conductivity decreases steadily as the melting point is

approached. Otherwise, it behaves in a manner analogous to amorphous polymers, figure

2.1b.
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Analysis of the available literature data for identical or nearly identical materials
indicates large differences in reported thermal conductivity and the temperature

dependencies exhibit different functional relationships, particularly at higher temperatures

(Hall et al, 1987).

2.4.2 Specific Heat Capacity

Although polymers have much lower densities than metals, they have relatively
large specific values, typically in the order of 750-2500 J/KgK. The temperature
dependence of specific heat capacity is of importance. In general a small discontinuities is
observed at the glass transition temperature T, followed by a relatively large peak at
melting point, T, due to the latent heat of fusion of the crystalline domain. All polymers
display similar temperature dependencies, although the curve shifts horizontally along the
temperature axis, depending on where T, and Tn occur, and vertically along the heat
capacity axis, depending in the absolute values of heat capacity itself, figure 2.1a. A
crystalline polymer follows the curve for the solid state to the melting point. At Ty the
value of C; increases to that of the liquid polymer. The heat capacity of an amorphous
polymer follows the same curve for the solid up to the glass transition temperature, where
the value increases to that of the liquid (rubbery material). In general a polymer sample is
neither completely crystalline nor completely amorphous. Therefore in temperature region

between T and T, the heat capacity is between the curves for solid and liquid.
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Molecular weight has a small but appreciable effect on specific heat capacity. The
thermal history of a polymer may influence the specific heat capacity. Similarly, cooling
rates may effect the degree of crystallinity as well as the amount of recrystallization that

takes place on reheating above the glass transition temperature.

Specific heat capacity may be defined at constant volume or at constant pressure.

2.4.3 Thermal Diffusivity

Like thermal conductivity, thermal diffusivity of polymers is low. Therefore, most
processing and fabricating techniques involve unsteady state heat transfer where

temperatures are a function of both position and time. Thermal diffusivity of polymers are

is the orders of 0.1-0.3x10° m*4

In amorphous polymers, thermal diffusivity decrease slowly in the glassy region,
break slightly at the glass-transition temperature and remain essentially constant in the
rubbery region, and decrease slowly in the melt flow region. In crystalline polymers
thermal diffusivity has similar characteristics but displays a relatively deep minimum at the

melting point, figure 2.2.
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Figure 2.2: Thermal diffusivity vs. temperature.Curve A, a typical

amorphous polymer, Curve B, a typical partially crystalline polymer

2.4.4 Latent Heat of Crystallization and Fusion

The heat added to the polymer causes a change in the internal energy U, and the

enthalpy of the substance.

The latent heat of fusion (crystallization) or enthalpy difference is defined by;

Hl(Tm)‘Hc(Tm)__-AHm(Tm) [2 7]



Hy(T) = Enthalpy of melt as a function of temperature
H.(T) = Enthalpy of solid as a function of temperature
AH,, = Enthalpy of fusion

Tm = Melting temperature

Reliable experimental values for AH, are available for a limited number of
polymers only. In a direct determination the degree of crystallinity of the sample should
be taken into account. In this connection, a large scatter in published values for enthalpy
of fusion is observed, as a general rule the highest value of AH,, mentioned for a given

polymer is the most probable one (Van Krevelen, 1990).

The enthalpy curves for crystalline and amorphous polymer run parallel up to the
glass transition temperature. The distance between these curves is the enthalpy of the
amorphous polymer. From the glass transition temperature the curve for the amorphous
polymer gradually approaches the curve for the melt, while the curve for crystalline
polymer shows a discontinuity at the melting point. The distance between the curves for

crystal and liquid at the melting point is the latent heat of fusion.Figure 2.3.
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Figure 2.3: Enthalpy variation with temperature.
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Chapter 3

Model

3.1 Problem Definition

Here the process of injection of a molten thermoplastic over a solid thermoplastic
insert is studied, figure 3.1. The process is similar in concept to welding or dip coating of
polymers. In order to obtain a strong and uniform joint between the molded part and its
insert we follow the process of phase change at the interface between melt and solid. The
resulting heat transfer process may progress in many different ways dictated by the
parameters involved in the system. In the way to reach steady state heat transfer
condition, melt-solid interface moves, from its initial position, to a certain depth before

the two parts begin to solidify together and join as a single piece.

In order to widen the range of physical and mechanical properties of the piece,
we have to consider the effects of different parameters and molding conditions, on the

evolution of the solid-melt interface.



47

polymer melt \l /-—— Solid polymer insert
7

Mold

Figure 3.1: Schematic of the part in the mold

3.2 Mechanism of Heat Transfer

Figure 3.2 shows the mechanism of heat transfer. Heat is conducted from the
molten region to the solid and also there is a heat flow between the mold wall and
polymer melt by conduction. At the solid-melt interface, the process of heat transfer is by
conduction where all the heat is provided by contact on the exposed surfaces and the rate

of melting is only determined by conduction.
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Figure 3.2: Heat transfer mechanism in the mold

3.3 Introducing a Mathematical Model

This model is developed for the situation where the mold has been totally filled.
In that case, the changes in the polymer temperature, may be determined by solving the
unsteady state heat conduction equations with change of phase since the polymer is
stationary. Since the polymer melt is extremely viscous, In the following treatment, it is

assumed that the natural convection is negligible.
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3.3.1 Hypothesis

To formulate this problem it is assumed that;

1- The effect of second and third coordinate system is so small that it can be
neglected

2- Thermophysical properties are taken to be invariant to temperature (for PET)
3- Mass densities of the melt and its solid are assumed to be the same.

4- The phase change of pure substance with a precise fusion and freezing
temperature is modeled.

5- The temperature at mold wall will remain constant during the process

6- No chemical reactions or massive absorption of heat take place during

temperature change.

3.3.2 Geometry and Coordinate System

We assume that the coordinate system for this problem is arranged as in figure
3.3. A solid confined to a semi-infinite region, A<x<B. Initially the solid is at uniform
temperature, T;, which is lower than the phase change temperature T,. The melt

occupies the space 0<x<A. The solid and the melt will remain in contact for t>0.
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Figure 3.3. Geometry and coordinate system
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The boundary surface of the melt at x=0, the mold wall, is at constant temperature T.

The boundary surface at x=B, is in the condition of symmetry.

3.3.3 Mathematical Formulation

(a) Governing Differential Equations

Now we can simplify the general energy equation by considering these

assumptions. The temperatures T,(x,t) and Ti(x,t) for the solid phase and liquid phase

respectively are governed by the standard fusion equation given by,



AT (x,1) _ T (x.1)
kx(T) & pl(T) a

BT, (%, 1) T (x.1)
k(D) ——— = PC,;(T)T

ki = melt thermal conductivity
k, = solid thermal conductivity
T, = melt temperature

T, = solid temperature

cu = melt specific heat at constant pressure

0<x<S8()

S(t)<x<B

¢w = solid specific heat at constant pressure

S(t) = interface positions as a function of time

p =density

(b) Initial and Boundary Conditions

51

[31]

The equation is 2 second order differential equation. For each phase we need two

boundary conditions and one initial condition:

- Boundary conditions:
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L(x,t)=T(x,t)=T, x=5@), t>0 [32]

Li(x,t)=T, x=0, t>0 [33]

__al;(x,t) = x=B, t>0 [34]
&

- Initial conditions:

I, (x,t)=T, O<x<A, =0 [35]
T.(x,t)=T, A<x<B, =0 {36]

Ty = melt initial temperature
Tis = solid initial temperature

T.w = wall temperature

S(t) is the location of the solid-liquid interface which is not known a priori, hence must

be determined as a part of the solution.

This problem involves the unknowns, T,(x,t), Ti(x,t) and S(t). The third equation

is determined by considering an interface energy balance at x=S(t);

x=5@), t>0 [37]

k(T)ﬁTé:t) k(T)ﬂgt) _ L B

dt

L = latent heat of fusion



F

53

3.4 ABAQUS

3.4.1 Finite Element Method

As explained before because of the complexity of the equations there is no exact
solution for the problem. Approximate solutions that are available covers only very
simple cases with simple boundary conditions, we should choose a numerical approach to
solve the equations. We have used ABAQUS to solve this problem with finite element
method. The capability of ABAQUS for uncoupled heat transfer analysis is intended to
model solid body heat conduction with general, temperature dependent conductivity,
internal energy including latent heat effects and quite general convection and radiation
boundary conditions. In programming with this software, it is assumed that the thermal

problems are presented in the form;

U=U(T) [38]

U = Internal energy of material

T = Temperature

The change of internal energy of the material with respect to temperature is

written in terms of specific heat (enthalpy method);
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dUu
C(TY=— 39]
1) dar L
For latent heat effects at phase change, this relation is given separately in terms of
solidus and liquidus temperatures (the lower and upper temperature bounds of the phase
change) and the total internal energy associated with the phase change, called the latent
heat. When latent heat is given, it is assumed to be in addition to the specific heat effect,

as explained in detail in section 1.6.

To define the latent heat effects for the materials with specific melting
temperature, a small temperature range should be considered. However, to avoid large
deviation of the solution from the real physical situation we should consider this
temperature range as small as possible around the real melting point of the material. The
Fourier law of heat conduction can be solved, considering the change of thermophysical
properties of the material. To apply finite element formuiation, the standard Galerkin

approach is used.

ABAQUS uses the backward difference algorithm for time discretization in finite
element method. This operator is chosen for a number of reasons. First of all, it is from
the family of one step operators which has the simplicity in implementation and well
understood behavior among the members of this family, backward difference method, is

unconditionally stable. Being unconditionally stable is important because it prevents early
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time oscillations. ABAQUS uses an automatic(self adaptive), time stepping algorithm to
choose At(time increment). This is based on a user supplied tolerance on the maximum
temperature change allowed in a time increment, and increment is adjusted according to

this parameter, as well as the convergence rate in non-linear cases.

3.4.2 Type of element

All of the heat transfer elements allow for heat storage (specific heat and latent
heat effects) and heat conduction. These elements are either first-order (linear), or
second order (quadratic) interpolation in 1,2 or 3 dimensions. They are fully isoparametic
(coordinate interpolation is the same as temperature interpolation). The first order heat
transfer elements(2-nodes link, 4-nodes quadrilaterals and 8-nodes brick) use 2x2 rule for
numerical integration with the integration stations located at the corners of the element
or nodes. Second order elements are to be preferred for problems when the solution will
be smooth (without latent heat effects) whereas the first order elements should be used in

non-smooth cases (with latent heat).

Latent heat effects involve moving boundary conditions(the melting or freezing
front), across which the spatial gradient of temperature, 0T/x, is discontinuous. Simple
finite elements, such as the linear and quadratic elements used in ABAQUS, do not allow
gradient discontinuities within elements, although they do allow such discontinuities

between elements, in the direction normal to their sides. Since the actual problem
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involves discontinuity surfaces moving generally through the mesh. The best we can do
with a fixed grid of simple elements is to use a fine mesh of lowest order elements, thus

providing a high number of gradient discontinuity surfaces.

The lowest order one dimensional element for heat conduction in ABAQUS is
element type DC1D4 which is a two node linear element and therefore we choose this

element.

3.5 Finite Element Model

3-5-1- Mesh

This is a one dimensional heat transfer problem, and since the geometry of the
problem is simple, we choose a simple mesh of one dimensional linear element to model

the one dimensional space.

The space occupied by the polymers in the mold is divided into two distinct
regions, melt and solid. This space is descriticized by a 100, one dimensional linear

elements. Since three different thickness ratio of solid/melt has been tried, for each case
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mold wall melt-solid interface

Figure 3.4: One dimensional finite element mesh and geometry

elements are distributed proportional to the thickness ratio. The nodes were generated to
coincide with the initial position of the phase change interface. The nodes were set at a
predetermined equal spacing. The one dimensional geometry is presented in figure 3.4.
Although higher mesh densities and smaller time steps improve the accuracy of the
solution, further refinement beyond the values assumed here failed to improve the result
significantly. Also coarsing either the spatial to temporal discretization may cause

deteriorating and unpredictable results.

3.5.2 Time Step

Due to the sensitivity of these equations, it is necessary to choose the size of the

time increment At with some care. The start time to is chosen to ensure that any heat
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transfer in the time t<t, is confined to a region close to the interface between the two
regions and the outer extremities are not affected. Automatic (self adapting) time step,
with initial choice of At=0.001 is chosen for time discretization. The program
automatically increases this increment as we march forward. A maximum temperature
change of 4° is allowed per time step, to allow the time step to increase to large values at
later times, as the solution smoothes out. This will considerably reduce the computer

time.

3.5.3 Melting Temperature Range

In the case of existing latent heat of fusion for the material. The melting

temperature range is given as 1.5° around the melting point (Delaunay, 1995).

3.6 Material

Polystyrene (PS) and polyethylene terephtalate (PET) are chosen to represent
amorphous and semi-crystalline polymers. The properties of polystyrene have been
extracted from the data given by Van Krevelen in 1990. The change of thermal
properties like thermal conductivity and heat capacity with temperature is calculated
according to the formulation in this reference, as it is explained in appendix I. These

properties are shown in figures 3.5 and 3.6. For this case the change of thermophysical
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properties with temperature is accounted for in the calculation, although the change of

these properties with temperature is small and usually can be neglected.

Table 3.1: Thermophysical properties of polystyrene at room temperature.

Polystyrene Tq K Co" (298 k) | Cp (298 k)
oc J/s.m.K J/Kg.K J/Kg.K
100 0.1 1220 1720

The properties of polyethylene terephtalate are extracted from Erhun and
Advani’s work published in 1991. They studied the simple form of this problem and
considered the more general form of solution without the change of thermophysical
properties with temperature. Kenig and Kamal in 1970, try to take into account these
changes in their model of cooling phase of polyethylene in injection molding, They
review their work in 1971, in this later publication they generalize their model by

eliminating these changes and still they obtain acceptable results.

In the phase change of semicrystalline polymers, because of latent heat of fusion
and complexity of the calculation procedure, we cannot expect large improvements in
the results by considering the thermophysical properties change. Also because of limited
data available, we decided not to consider these changes and take directly the data from

Erhun and Advani’s work. These data are shown in table 3.2 for PET.
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Table 3.2. Material properties of PET.

Tm K Cp p L a
°C W/ecm.K J/g. K g/cm’ Jig cm’/s
PET 250 0.0014 1.4 1.385 60 0.00063

3.7 Processing Parameters

No doubt, there are different processing parameters and operating conditions,
that control the advance of melt interface in the solid ( or the advance of solid in the
melt) until a specific point. According to Gutfinger & Chen (1969), Bell & Wedgwood
(1993), and also Zhang et al (1993) this limiting point is determined by system
temperature parameters like solid body temperature, melt temperature and of course the

boundary condition, the wall temperature.

A crucial component in simulating solidification (or melting) in the mold is the
handling of heat transfer at the interface between the mold and the material, The solution
of the equations depends on the selection of boundary conditions. For polystyrene, the

problem is studied for three different temperature sets;

II T.<Tu<T,
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I Tu<T.<T,

These temperatures are shown in table 3.3. The mold temperature differs for each
case while keeping the other temperature parameters constant For Polyethylenete
tetraphtalate, not only the effect of mold temperature but also the affect of changing the

insert temperature is studied. The temperature system for PET is shown in table 3 4.

Table 3.3. Temperature system for polystyrene.

T. (°c) Tis(°C) T:1 (°c) Tq (°C)
Case I 110 40 200 100
Case II 80 40 200 100
Case III 30 40 200 100
Table 3.4. Temperature systems for PET

T. (°c) Tis(°C) Ti: (°c) Tn (°C)
Case I 100 30 300 250
Case II 120 30 300 250
Case III 120 90 300 250
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To generalize the problem, in the case of polystyrene, the differential equations

are normalized. Dimensionless parameters are described as follows;

. TI-T
et
rl—Tw
. o
e
. b4
x ==
{
. (4
¢ =—
¢
k=X
kl
p.zﬁ-:l
P

Tw =Mold temperature
t = Time

oo = Thermal diffusivity

1 = Total length of solid and melt regions
k, = thermal conductivity of melt

¢ = specific heat of melt

p  =Density

and the heat transfer differential equation becomes;

(40]
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ar’ ar°
py [41]

Dimensionless time is the Fourier number. (Fo). It contains the thermal diffusivity
and half thickness of the slab. Since the Fourier number is proportional to the reciprocal
of the square of the slab thickness, if a section of a plastic part is twice as thick as
another one, the time required to cool it to the same temperature will be four times
longer than that for the thinner section. Therefore we can say that the limiting point for
the advance of melt interface in the solid up to a specific point, is not only determined by
melt, insert and mold temperature parameters but can vary by altering the value of X (the

ratio of initial melt thickness to initial solid thickness).

For system temperature in case III of table 3.3 and system temperature in case I

of table 3.4 we study this affect for three different thickness ratio;

X=10
X=1/2

=2



3.7 Results and Discussion

Figure 3.7-3.18 provide examples of computational results for PET. The freezing
mechanism in its early stages is similar to the one obtained for semi-infinite region by
Stefan . The reason for this similarity is the low thermal conductivity of the polymer melt
resulting in a shallow penetration depth of heat transfer. A comparison between
numerical analysis and Stefan’s ( or Neumann’s) theoretical solution for solidification of
semi-infinite plate (Appendix II) is shown in figure 3.7. The agreement is good specially
for short times, after 10 seconds the deviation is approximately 2% which is expected to

increase at longer times because of the difference between the nature of two problems.

Figure 3.8 and figure 3.9 show the temperature distribution for PET and for case
I and case II of table 3.4. By increasing the wall temperature or on the other hand,
decreasing the temperature difference between the mold and the melt, we can see that the
temperature drop becomes slower. Figure 3.10 represents the position of melt-solid
interface for PET. For equal initial thickness of melt and solid and temperature system of
case I in table 3.4, the melt solidifies and the solid penetrates in melt. The rate of
progress of this interface in melt is larger at short times and decays as we approach
steady state conditions. As it can be seen in figure 3.11 and 3.12 for the second and third
temperature systems of table 3.4, the initial motion of the boundary remains the same as

one of freezing of melt, so there is no melting of solid insert. Figures 3.13 and 3.14
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shows the temperature distribution for two different thickness meit-solid thickness ratio.
By decreasing the quantity of melt simply the quantity of heat that should be removed is
lower so the temperature drop is faster in the case of lower thickness ratio. Figures 3.15
and 3.16 show the interface position for two different initial thickness ratio of melt and
solid. Still we observe the same initial movement of melt-solid interface, which agrees
with Bell and Wedgewood’s (1993) predictions, that by altering the value of thickness
ratio whilst holding the other parameters constant, the initial motion of the boundary
remains the same, but the steady state solution can be varied to literally any position
across the spatial region. It is interesting to compare the position of melt-solid interface
for the three different temperature systems of table 3.4. Figure 3.17 shows the position
of this interface for two different wall temperatures. Because of poor heat transfer
properties in the polymer, increasing the mold temperature by 20 degrees does not affect
the interface location, while decreasing the insert temperature by 60° C, in figure 3.18,
increases the rate of interface movement, which is due to increase in heat transfer rate at

melt-solid interface.

It should be mentioned here that it has been shown ( Kamal and Kenig, 1970) that
the approximate solution depends on establishing a good match between the estimated
average properties and the space and time increments employed in the numerical
solution. Under optimum stability conditions using approximate thermophysical
properties yields temperature profile within 3° C from exact solution but for shorter

cooling times, the match is poor and depends on the degree of agreement between the
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average properties employed in the approximate solution and actual polymer properties
at the time under consideration. Also according to this publication, for the time longer
than 5 seconds a gap is created at the mold wall, because of polymer contraction, which
practically will change this boundary condition. So it should be considered that the value
of the initial thickness ratio of melt and solid for short times (less than 5 seconds) is

dependent on the properties of material and their changes with temperature.

To investigate the process for polystyrene, the change of thermophysical
properties with temperature is accounted for. To make the comparison of the result
easier the equations are normalized. Figure 3.19, 3.20 and 3.21 show temperature
distribution for three different temperature system of table 3.3 for Polystyrene. For the
first temperature system, case I, the temperature in the system moves towards the steady
state condition which is the constant temperature equal to T. (zero dimensionless
temperature), figure 3.19. We can see the same revolution of temperature for the case II
in figure 3.20, however, in case III, figure 3.21, where T.<T,<T,, both the melt and solid
temperatures decrease toward the steady state condition which is again the condition of
constant temperature all over the system. Figure 3.22 represents the position of melt-
solid interface for polystyrene, while considering the temperature system of case I in
table 3.3. The wall temperature in this case is higher than the glass transition temperature
of the polymer. Therefore we have only one phase change interface. Steady state solution
is a condition of constant temperature , all over the system, higher than T,. Figure 3.23

shows the position of melt-mold and solid-melt interfaces for case II of table 3.3, in
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which T«<T,<Tj . As it can be seen in the figure after a short period of time another
interface is created near the mold wall, when the two interfaces meet, the temperature is
decreased for the whole system, towards the total solid condition. The process begins as
the solid melts at low Fourier numbers and melt-solid interface progress in the solid
insert until a specific point, AX =0.05, where this interface begins to move in opposite
direction, as the temperature of the system decreases towards the steady state condition,
this interface passes through its initial position and towards the mold-melt interface,
which indicates the final complete solidification of melt. Figure 3.24 shows the position
of interface for further reduction of T to 30° C. The mold-melt interface progress more
rapidly in melt which is due to larger cooling rate because of larger temperature
difference between the melt and the mold. Figure 3.25 compares the position of melt-
solid interface at different T.. As we see for shorter times, reduction of T. does not
affect the position of this interface considerably, but as we proceed in time, big difference
can be seen between these curves, the higher the temperature difference between wall

and meit, the faster the rate of heat transfer and the faster return of the interface.

In the last two cases we distinguish the advance of melt interface in the solid
insert until a specific point. The limiting point is not only determined by system
temperature parameters but can vary by altering the value of X. Figure 3.26 shows the
progression of phase change front as a function of Fourier number for initial thickness of
solid twice the initial thickness of melt. A quick comparison of the melt-solid interface

position in this figure with figure 3.24 reveals that the limiting front position is much
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closer to the initial position of interface, AX*=0.025, and the interface passes through its
initial position at lower Fourier numbers. The steady state condition, is a condition of
final solidification of the system at temperatures well below T,. In figure 3.27 we can see
that by choosing the initial thickness of melt twice the initial thickness of solid and
keeping other parameters constant, the melt-solid interface progresses in solid and cause
complete thawing of insert before the solidification layer generated at wall passes
through initial position of melt-solid interface. There is no limiting front position for this
interface in this case. It can be seen here again that for different thickness ratio the initial
motion of boundary remains the same but the steady state solution can be varied and also

by decreasing the thickness of the melt, the melt-solid interface returns much faster.

Figures 3.28 & 3.29 show the temperature history for X*=0.25 in melt and point
X*=0.75 in solid for three different temperature system of table 3.3. In figure 3.28 it can
be seen that the melt temperature decreases steadily as the solid temperature increases,
the temperature of these two points converges to the steady state solution which is the
state of constant temperature above the glass transition temperature. In figures 3.29 and
3.30 the temperature history of these points is shown for the second and third case of
table 3.3. The steady state condition for these cases is the constant temperature all over
the system below Tg. Figure 3.31 compares the temperature history for node X*=0.25,
in the melt at different wall temperature. Considering that the melt temperature for all
three cases, is the same, by decreasing the wall temperature we increase the cooling rate.

The affect of this increase in cooling rate, on temperature drop at this point is not large
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at short times which is due to poor thermal conductivity of polymer melt that slows
down the process of heat transfer, for larger Fourier numbers, however, the difference is
more pronounced, the lower the wall temperature we recognize the faster cooling of melt
and as we approach wall temperature (zero dimensionless temperature), or steady state
condition, the distance between the curves decreases. The increase in cooling rate by
decreasing the wall temperature is more sensible for higher Fourier numbers which is
again due to insulating properties of polymers. For higher Fourier numbers, as we
approach steady state condition, the difference between these curves is less pronounced.
As we can see from the results the solution to the heat transfer equations is
largely controlled by the boundary conditions used to specify the problem, specially at
higher Fourier numbers. However the results of temperature profiles for long times is
questionable, the boundary condition between the freczing material and the mold is less
well documented. These boundary condition depends on the nature of contact between
the freezing material and its container, as well as the heat transfer by the container to
external cooling media. It is frequently the case that the rate of heat transfer between the
polymer and the mold changes during solidification process. Thermal contact is good
early in the process when the material is still liquid, but once solidification begins,
thermal contraction of the material reduces the heat transfer rate after an air gap is
formed, at the same time the mold heats and expands, contributing further to the gap
formation. The relative importance of the gap depends on its size, and on the thermal
conductivity of the material and the mold. Although this effect can be investigated in

more detail, considering high pressure in the mold in normal injection molding process
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and short cooling times, the period of interest, the assumption of perfect contact between
mold and polymer for our investigation is not far from reality and the results can be

considered as a good first approximation for temperature distribution.

The assumption of constant Tw is equivalent to that of a large heat reservoir kept
isothermally. In many applications the condition of a constant-temperature reservoir can
be approximated because in most cases a plastic melt which is a good insulator is used to
coat a metal object, a good conductor. Thus the assumption of constant temperature
within the solid is reasonable. It should be emphasized that due to latter assumption
larger deviations are expected with objects having a relatively high surface to volume
ratio, such as thin inserts. For this cases one would have to replace the constant object
temperature with a total heat balance performed on the object. In those cases where
these assumptions do not hold the present solution can be viewed as an upper bound on

the final freezing (melting) interface position.

Classical theory of Stefan predicts that position of the solidifying front is
proportional to the square root of time. He also assumed that the temperature at the
crystallization front is constant and equal to the thermodynamic equilibrium melting point
temperature this assumption restricts the application of Stefan theory to sufficiently slow
processes. Erhun and Advani (1992) claim that energy at the melt-solid interface during
crystallization controls the kinetics and subsequently influences the morphology of the

transformation. They show that when the crystallization kinetics are taken into account,
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the heat diffuses at a slower rate, which results in slower front movements. Their results
show that the interface temperature is not constant and drops due to the changing
crystallization rate which depends on the cooling rate. Their approach coupled the
crystallization kinetics through a mathematical model based on the cooling rate of the
crystallization domain with the energy equation. The evolving crystallinity and
microstructure of the material are modeled by allowing the interface temperature to
change with cooling rate. They refer in their work to Kriegl and Eder (1984), who reject
the Stefan solution for the modeling of polymer solidification and suggest a numerical
model, for the coupling of the cooling rate of the crystallization domain and the energy
equation. In another paper, in 1990, however, they try to confirm their numerical model
with experiment, but, they were not successful. They explain that the most important
feature of this theory is that as soon as the crystallization front is supercooled, there is a
chance of nucleation in the bulk of melt in front of the crystallization front. In the above
mentioned theory it is clearly assumed that the nucleation can only occur at the
crystallization front and not in the bulk, which is mathematically sound but not always
realistic, since there are many nuclei in front of the crystallized layer, the growth of this
layer is eventually impeded by diffuse crystallization in the bulk. Finally they drawn the
conclusion that a crystallization front in the sense of Stefan is surprisingly enough. No
doubt that for further studies required to establish a link between material kinetics and
heat diffusion, the results obtained using Stefan approach for heat transfer problem of

phase transformation can be used as a reliable first approximation in polymer processing.
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CONCLUSION

As we can see from the results the solution to the heat transfer equations is
largely controlled by the boundary conditions used to specify the problem. Different
parameter regimes induce possible scenarios of rapid initial melting or freezing and the
melt front may then grow or decay to a limiting value as steady state develops. The
resulting heat transfer process may progress in many different ways dictated by the
parameters involved in the system. The initial velocity of melt front may have negative or
positive influence on the melting or freezing. For different temperature systems, the
initial motion of melt-solid interface remains the same. Since the solid and melt are finite,
large time steady state solution are possible. They are dependent in the thermal

parameters of the process.

In the case of melting of the solid insert, a limiting position of melt-solid interface
can be detected. This limiting position depends on the mold temperature. The higher the
temperature difference between the mold and the melt, the lower is the penetration depth
of front in the solid insert. The front positions is not disturbed by mold temperature at
short times, however long time solution can be highly affected by this boundary
condition. For long times the temperature difference between melt and mold wall
controls the heat transfer rate of the system. Also it should be mentioned here that this

heat transfer rate depends on the nature of contact between mold and melt polymer, this
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effect should be considered for longer times. The limiting position of the front is also
controlled by initial thickness ratio, X. If the liquid region is relatively large the process
may be terminated when the cold body melts completely leaving purely liquid or
conversely, if the liquid region is small it may freeze completely leaving purely solid. The
exact conditions depend on the specific polymer under consideration. By altering the
value of X, while holding the other parameters fixed, the initial motion of the boundary
remains the same, but the steady state solution can be varied to literally any position

across the spatial region.

The freezing mechanism of melt at the mold wall, in its early stages is similar to
the one obtained for semi-infinite medium by Stefan. The reason for this similarity is the
low thermal conductivity of the polymer melt, resulting in a shallow penetration depth of
heat transfer. The agreement is good for short times. For longer times, the difference
between numerical results and Stefan solution is more sensible which is because of the

difference between the nature of the two problems.

The rate of melt-solid interface penetration for semi-crystalline polymers (PET) is
lower than amorphous polymers (PS). When a semi-crystalline polymer changes from
melt to solid state or vice versa, a latent heat of fusion must be added during melting or
taken away during cooling which causes a delay in temperature range. When we define a
freezing range, instead of a complete delay of temperature when the upper range is

reached, only a partial delay proportional to the crystallization fraction is applied. The
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partial delay in the temperature reduction is terminated when the lower limit of the
freezing range is obtained. Generally the heat required to melt semi-crystalline plastics at

a given temperature exceed those of amorphous at the same temperature.

We analyzed the problem by assuming that in a pure material, the solid and liquid
phases are separated by smooth and continuos interface. In general, however, the

interface is irregular in shape and is an unknown function in space and time.

For crystalline polymers, the effect of crystallinity has not been accounted for.
There has been much recent activity in trying to predict the microstructure from the
solidification analysis, one of the difficulties has been that the process dynamic controls
the temperature at which phase change takes place. Although we can not find a precise
method to analyze this problem, latent heat control of phase change problem seems to
give very good first approximation to the front position. However, this aspect should be

studied in more detail.
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Appendix I

Changes of Heat Capacity of Polymers with Temperature

Van Krevelen, by examining available literature data, shows that, for all polymers
investigated, the curves for the molar heat capacity of solid and liquid may be
approximated by straight lines, except for the solid below 150K. So if the slopes of these
lines are known, the heat capacity at an arbitrary temperature may be calculated
approximately from its value at 298K. For a number of polymers the slopes of the heat
capacity curves, related to the heat capacity at 298K, are given. The slopes of the heat

capacity lines for solid polymers show a mean value;

£

1 dc,
C,’(298) dT

=3x107? (Al-1)

For liquid polymers, an analogous experiment may be used. But much larger

deviations occur. In this case;

!

1 dC,
C,' (298) 4T

=12x107? (Al1-2)
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With a mean deviation of 30%. However if experimental data is lacking, the temperature

function of the heat capacity may be approximated with these mean values, so that,

C,*(T)=C," (298)[1+3x107* (T -298)]= C,*(298)[0106 +3x107° T]

Al-3
C, (1)=C,' (298)[1+12x107* (T-298)] = C,' (298)[{0.64 +12x107 T] (A13)

C, = molar heat capacity

The molar heat capacity is the specific heat multiplied by the molar mass ( the

molar mass of a structural unit in the case of polymers).

With the aide of these equations specific heat capacity in the solid and the liquid
state at temperatures of practical interest may be predicted approximately from their
values at room temperature. The ratio of C,(298)/C,'(298) shows a mean deviation of

7% from the mean value calculated from available experimental data for different

polymers.

The linear approximations of the curves for G, and C, as a function of
temperature may be used for estimating C,' and C,’ at the melting point. The ratio C,/c;’
at the melting point shows a mean deviation of 6% from the mean value calculated from

experimental data for different polymers.
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Appendix II

Neumann'’s Solution for Melting and Solidification in one Dimension

Solidification in a half-space (two-phase problem).

A liquid at a uniform temperature T; that is higher than the melting temperature
Ta of the solid phase is confined to a half -space x>0. At time t=0 the boundary surface
at x=0 is lowered to a temperature T« below T, and maintained at that temperature for
times t>0. As a result, the solidification starts at the surface x=0 and the solid-liquid
interface moves in the positive x direction. This problem is a two-phase problem because
the temperatures are unknown in both the solid and liquid phases. In the following
analysis we determine the temperature distributions in both phases and the location of the
solid-liquid interface. This problem is more general than the ones considered in the

previous examples; its solution is known as Neumann’s solution.

Solution

The mathematical formulation of this problem for the solid phase is given as;



N

&'T, 1 dT(x,1)

= in O<x<s(t), t>0
& a, a S0
T (x,0)=T, at x =0, t>0
For the liquid phase as;
2
5_22’;-_1_.@ in s(r)<x<q3’
& a A
T(x,t)> 1T, as X — o,
I(x,1)=T, Jor t=0,

And the coupling condition at the interface x=s(t) as;

T(x,t)=T)(x,0)=T, at x=5(¢), >0
T, T, t
k’dr_k'dx::pot() at x=5(2), t>0

If swe choose a solution for T,(x,t) in the form

Lx,0)=T, + Aerf[x/ 2(a,1)"]
T,(x,0)=T, + Berf[x/ 2(a,)"]

t>0
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(42-1)

(42-2)

(42-3)

(42— 4)
(42-5)

(42 - 6)

(42-7)

(42 -
(42 -
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The differential equation and the boundary condition are satisfied. The constants A and B
are yet to be determined. Equations (A2-8) and (A2-9) are introduced into the interface

condition (A2-6). We find;

T, +Aerf(A)=T, +Berfc [ﬂ.(%)"’]= T, (42-10)
Where;

— S(f) - 1/2 -

= 2w or s(t)=2A(a,t) (42-11)

The coefficient A and B are determined from equations (A2-11) as;

Pt B=— ta=li _ (42-132
erf(A) erfc(A(a, /a;)"?]

Introducing the coefficients A and B into equations (A2-8) and (A2-9), we obtain

the temperatures for the solid and liquid phases as;
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T,(x,0)-T, _erflx/ 2(a,t)"? (42-13)
T -T, erf(4)

T,(x,0)- T, _ erfex/ 2(a,1)"”]
T,-T,  erfefi(a,/a)"]

(42 -14)

The interface energy-balance equation (A2-7) is now used to determine the
relation for the evaluation of the parameter A. That is, when s(t), T,(x,t) and Ti(x,t) from
equations (A2-11), (A2-13) and (A2-14), respectively, are substitute into equation (A2-

7), we obtain the following transcendental equation for the determination of A;

-2
e +ﬂ(ﬂ)uz m

T
efA) &, a, T,

_ ]: e—z’(a,la,) _ ZL\/}?
~T, erfeli(a, /)] C,(T,-T,) (A2-15)

Once A is known from the solution of this equation, s(t) is determined from

equation (A2-11), T,(x,t) from equation (A2-13) and Ti(x,t) from equation (A2-14).
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