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L'objectif de cette recherche est d'étudier le.  hsion et solidication transitoires des 

interfaces solide-iiquide et mode-liquide présents lors de I'ijection d'un polymère fondu sut 

un insert thermoplastique solide. La solution diui modèle mathématique préalablement défini 

a été obtenue à Baide de la méthode des éIéments finis. 

Le but de la présente recherche est d'étudier l'effet des changements de certains 

paramètres sur cette profondeur fondue; pour atteindre ce but, la géométrie, les propriétés 

physiques des matières et les conditions initiales et frontières du problème doivent être 

spécifiées. 

Les équations de transfert thermique correspondantes sont résolues dans le domaine 

du temps et de l'espace, par la méthode des éléments finis, à l'aide du logiciel ABAQUS. Le 

logiciel fournit l'historique thermique d e  diffërents points dans la pièce, et la position du fiont 

de changement de phase est calculée par la suite à partir de l'historique thermique, par une 

méthode d'approximation. 

Malgré le fàit que plusieurs types d'éléments peuvent être considérés pour modéliser la 

géométrie des problèmes de transfert thermique, Ies éléments linéaires sont souvent préférés 



parce que les éléments d'ordres supérieurs n'apportent pas d'améliorations significatives des 

résultats. Un maillage monodimensionnel siipIe contenant une certaine quantité de "link 

eiernents" a été retenu pour la présente étude. 

Le polystyrène PS) et le poIyéthylene teraphtalate (PET) ont été retenus pour 

représenter les cas amorphe et Semi-cristallin. Les résultais ont été obtenus avec trois 

ensembles de température, pour chacune des deux matières. L'effet du rapport des épaisseurs 

solide et liquide initiales a également été considéré. II est clairement apparu que la solution 

des équations de transfert de chaleur dépend principalement des conditions frontières. 

Diérents paramètres provoqent diérents scénarios de fiision ou de solidication 

rapide. La procédure de transfert thermique peut évoluer de différentes manières dictées par 

les paramètres du système. La vitesse initiaie du fiont de fùsion peut être positive ou négative. 

Puisque les masses solide et fondue sont f ies ,  il est possible d'obtenir une stabilité thermique 

à long terme; l'atteinte de cette situation dépend des paramètres thermiques du système. Plus 

la différence de température entre le moule et la masse fondue est élevée, plus profonde est la 

pénétration du front dans I'insert solide. La position limite du fiont est aussi contrôlée par le 

rapport initial des épaisseurs du liquide et du solide. Si la zone liquide est relativement 

importante, le corps froid fond complètement avant que l'ensemble ne soit refroidi. Le résultat 

exact dépend du polymère choisi. 



Ii nl a pas de solution exacte au problème traité dans ce travaiI. La cinétique de la 

solidifkation du polym6re fondu au voisinage des parois du moule est analogue, lors des 

étapes initiales, à celle obtenue analytiquement par Stéfm pour le milieu semi-infini; les 

résultats de la solution numérique développée ici se comparent bien à ceux-ci. 



ABSTRACT 

The transient melting and solidification layer generated by the injedion of a 

thennoplastic melt over a thennoplastic insert, at mold-melt interface and melt-soiid 

insert interface, is investigated by using finite element techniques. The problem prcsents 

considerable computational difficulties due to the moving interface and the nature of the 

solutions in the solid and liquid regions. A mathematical model which is the basis of the 

finite element anaiysis is introduced. This mathematical model includes the geometry of 

the problem , differentiai equations , initial and boundary conditions. A one dimensional 

mesh is used to investigate the position of moving boundaries at diferent times. The 

position of the interfaces are calculated fiom the ternperature history obtained fiom finite 

element analysis by the method available in literature. 

To do the numerical computation , a finite element software, ABAQUS is used, 

the program is written to investigate the process for two kinds of thennoplastics., 

Arnorphous and crystalline. Polystyrene (PS) and Polyethylene tertraphtalate (PET) are 

chosen to represent these two groups of polymers. Non-dimensional heat transfer 

equations are solved for the morphous Polystyrene, while taking the change of 

thermophysical properties with temperature into account. For PET the problem is more 

simplified by elirninating the change of these properties with temperature. 



There is no exact solution for the problem, and numerical solution has not been 

studied for this speciaf problem. In the case of PET, however, numerical solutions are 

tested for accuracy by comparing them with anaiytical solutions to classicai problems at 

short times. The agreement is good at short times while for longer times the diifference 

between the analytical result and numerical approximation is more sensible, which is due 

to the diierent natures of the problems. 

DiEerent parameter regimes induced possible scenarios of rapid initial thawing or 

freezing and the freeze fiont may then grow or decay to a lirniting value as a steady state 

develops. The physical and mathematical consequences of altering certain parameters is 

investigated and the results are discussed in detail. The emphasize has been on the 

process parameters like temperature system including mold, melt and insert temperature 

and different thickness ratio of solid and melt polymer. 

For different temperature systems, the initial motion of the melt-solid interface 

remains the same, while large tirne steady state solution varies according to the thermal 

parameters of the system. In the case of melting of the solid insert a lirniting position of 

melt-solid interface can be detected which depends on the mold temperature. The higher 

the temperature difference between the mold and the melt, the lower is the penetration 

depth of the front in the solid insert. The lirniting position of the fiont also can be 

controlled by initiai thickness ratio of melt-solid polymer. If the liquid region is relatively 



large the process may be terminated when the cold body melts completely leaving purely 

liquid. The exact condition depends on the specific polymer under consideration. 



L'objectif de cette recherche est d'étudier les fusion et solidication transitoires des 

interf'aces solide-liquide et moule-liquide présents lors de l'injection d'un polymère fondu sur 

un insert thermoplastique solide. La solution d'un modèle mathématique préalablement défini 

a été obtenue à l'aide de la méthode des éléments finis. La connaissance de la distniution des 

températures dans le solide et le liquide, des taux de refroidissement locaux et des gradients de 

température à chaque instant revêt une grande importance puisque ces informations 

permettent de conclure quant à l'interpénétration de la frontière solide-üquide, et aussi 

d'évaluer la qualité du joint après solidification. 

Le modèle mathématique proposé permet de quantifier les effets des changements des 

paramètres du procédé. La modélisation numérique prend tout son sens au vu des coûts et 

délais impliqués par une étude expérimentale de ces changements. 

Le procédé d'injection d'un thermoplastique fondu sur un insert thermoplastique est 

semblable à la soudure ou au "dip-coating" des polymères. Pour obtenir un lien fort et 

uniforme entre la partie fondue et Irinsert, ce dernier doit fondre jusqu'à une certaine 

profondeur. Le but de la présente recherche est d'étudier l'efft des changements de certains 

paramètres sur cette profondeur fondue; pour atteindre ce but, la géométrie, les propriétés 



physiques des matières et les conditions initiales et Eontières du problème doivent être 

spécifiées. 

Les équations de transfert thermique correspondantes sont résolues dans le domaine 

du temps et de Pespace, par la méthode des éléments finis, à l'aide du logiciel ABAQUS. Le 

logiciel fournit l'historique thermique de diffërents points dans la pièce, et la position du fiont 

de changement de phase est calculée par la suite à partir de l'historique thermique, par une 

méthode d'approximation. 

Les problèmes de transfert de chaleur avec changements de phase présentent la 

caractéristique particulière d'un interface entre les phases solide et liquide, dans laquelle la 

chaleur "latente" associée au changement de phase est absorbée et libérée. La position de cet 

interface change continuellement dans le temps. En conséquence, les solutions de ces 

problèmes transitoires dits "à kontière mobile" ou "problèmes de Stéfan" sont diciles à 

obtenir. La localisation et le déplacement de l'interface solide-liquide sont à priori des 

inconnues du problème. 

Les équations différentielles déhissant le problème à Eontière mobile sont 

paraboliques, soit d'ordre 2 par rapport au temps. Les équations de la conduction en régime 

transitoire pour le solide et le liquide sont liées par les conditions à l'interfice. Les solutions 

analytiques exactes des problèmes de ce type ont été obtenues par Stefan dans le cadre de son 



étude sur la formation de la glace. Ces solutions ne sont toutefois utilisables que dans 

certaines situations idéales, pour des régions innnies ou semi-infinies, avec des conditions 

fiontières et initiales très simples. La solution de problèmes plus généraux de changement de 

phase a été discutée par Neurnan; hormis certains cas idéaux, presque toutes les situaîions 

requièrent l'utilisation de techniques numériques. 

Différentes méthodes numériques peuvent être appliquées au calcul des problèmes de 

solidiifkation. Les méthodes de d8érences finies ont été traditionellement utilisées, mais les 

méthodes d'éléments finis ont gagné beaucoup de terrain au cours de la dernière décénie pour 

la solution de ces problèmes. Ces dernières présentent les avantages d'une meilleure 

adapatabüité aux géométries complexes, d'une facilité d'implantation des conditions fiontières, 

et d'une plus grande précision des résultats. 

La quantité de chaieur latente libérée peut être présentée de différentes façons, 

essentiellement regroupables sous 2 catégories, soit les méthodes du "fiont-tracking" et les 

méthodes d'enthalpie. Ces dernières, utilisées pour la présente étude, donnent la localisation 

du fiont de changement de phase a pmir des températures calculées. EUes sont facilement 

utilisables avec les logiciels existants, et permettent une présentation simple de la chaleur 

libérée à Piinterface, dont la position n'a pas à être spécifiée à priori. 



Maigré Ie fiit que plusieurs types d'éléments peuvent être considérés pour modéliser La 

géométrie des problèmes de transfert thermique, les éléments linéaires sont sowent préférés 

parce que les déments d'ordres supérieurs n'apportent pas d'améliorations significatives des 

résultats. Un maillage monodiinensionnel simple contenant une certaine quantité de "link 

elements" a été retenu pour la présente étude. 

Dans le cas où le changement de phase a lieu à une température sp&que, une portée 

de température, sur laqueiie a lieu ce changement, doit être choisie. Notons qu'une h i l e  

portée est préférable puisquielle permet une meilleure représentation du problème concret. La 

portée doit ensuite être combinée à un intervalle de temps approprié à i'obtention d'une bonne 

approximation Cet intervalle est choisi de façon à ce que le changement de température 

maximal y correspondant soit uifërieur à la portée. 

Tel que mentionné précédemment, la position de I'interface est calculée à partir des 

résultats de historique thermique. La méthode suggérée par Voiler et Cross a été utilisée 

pour la présente recherche. 

Les températures de transition des polymères sont relativement élevées; les quantités 

de chaleur requises pour leur fiision sont grandes, et les taux de transfert thermique sont 

limités par la conductivité et la stabilité thermique de la matière. L'ensemble de ces propriétés 

rend possible la situation dans laqueiie la décomposition ou la combustion du polymère près 



des sources de chaleur a lieu avant qu'une quantité de ckieur suffisante n'ait pû permettre la 

fision souhaitée de la masse. Les excellentes propriétés isolantes des polymères solides et 

fondus permettent de retenir la conduction et la dfision comme modes de tiansfert de 

chaleur en écoulement lamliaire; la viscosité élevée des polymères fondus h i t e  fortement la 

convection dans ces systèmes. 

Règle générale, les polymères amorphes et cristallins ont des comportements différents 

en tmmfiert thermique; ces derniers évacuent une quantité de chaleur latente lors de leur 

solidication, contrairement aux premiers. Plusieurs polymères présentent une morphologie 

solide cristalline; leur température de hsion peut être définie comme celle a laqueue les entités 

cristallines perdent leur cohésion II en va autrement des polymères amorphes, pour lesquels 

la température la plus importante Tg est déhie lorsque le comportement passe de 

caoutchouteux à vitreux La plupart des polymères thermoplastiques sont serni-cristallins; les 

quantités thermodynamiques prennent dors des valeurs intermédiaires à celles correspondant 

aux régions purement cristallines et amorphes. Ces propriétés sont fortement dépendantes de 

la densité, du poids, de l'orientation moléculaire, et d'autres facteurs. 

Le polystyrène (PS) et le polyéthylène teraphtalate (PET) ont été retenus pour 

représenter les cas amorphe et serni-cristallin; les propriétés requises ont été tirées de la 

littéraime. L'hfiuence de la température sur ces propriétés a été considérée pour le PS, mais 

pour le PET le problème devient plus général si ces effets sont négligés. Les résultats ont été 



obtenus avec trois ensembles de température, pour chacune des deux matières. L'effet du 

rapport de.  épaisseurs solide et liquide initiales a également été considéré. Ii est clairement 

apparu que Ia solution des équations de transfert de chaleur dépend principalement des 

conditions frontières. 

Différents paramètres provoqent diérents scénarios de fiision ou de solidication 

rapide. La procédure de transfert thermiq~e peut évoluer de différentes manières dictées par 

les paramètres du système. La vitesse initiale du fiont de fùsion peut être positive ou négative. 

Puisque les masses solide et fondue sont finies, il est possible d'obtenir une stabilité thermique 

à tong terme; l'atteinte de cette situation dépend des paramètres thermiques du système. 

Dans le cas du PS, l'insert solide fond et la position limite de I'iterface solide-liquide 

est fonction de la température du moule. Plus la différence de température entre le moule et la 

masse fondue est élevée, plus profonde est la pénétration du fiont dans P i r t  solide. La 

position Iimite du fiont est aussi contrôlée par le rapport initial des épaisseurs du liquide et du 

solide. Si la zone liquide est relativement importante, le corps fioid fond complètement avant 

que Yensemble ne soit refroidi. Le résultat exact dépend du polymère choisi. 

Avec le PET, la solidiication s'amorce des deux côtés à la fois. Les interfaces moule- 

matière fondue et insert-matière fondue se déplacent l'un vers l'autre, l'état stationnaire 

correspondant a Ia solidification complète de la matière. 



Il nl a pas de solution exacte au problème traité dans ce travail. La cinétique de la 

solidification du polymère fondu au voisinage des parois du moule est analogue, Ion des 

étapes initiales, à celle obtenue analytiquement par Stéfan pour le milieu semi-*; les 

résultats de la solution numérique développée ici se comparent bien à ceux-ci. Les deux 

solutions divergent significativement avec le temps, témoignant de la nature différente des 

dew problèmes. 
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INTRODUCTION 

Over the past years many authors have been preoccupied with the numencal 

solution of phase change problems. Interests lie in the field of ground freezing problems, 

solar energy application or, as in our case, the phase change of materials in the mold. 

The knowledge of the locations of liquids and solids temperatures, the 

temperature at any point within the material in the mold, the local cooling rate, the 

temperature gradient at al1 appropriate time intervals is of great importance, since with 

this information we can draw concIusions conceming the likelihood of formation of voids 

and cracks and certain microstmctures and if necessary adjust the design parameters to 

improve the quality of the molded part. Mathematical mode1 of melting (solidification) 

processes are used to isoIate and identiS, the effects of changes in individual variables. 

such changes can be difficult to make in an experiment and modeling is a good way to 

study these variations. 

In this work the process of injection of a molten thermoplastic over a solid 

thermoplastic insert is studied. The process is similar in concept to welding or dip 

coating of polymers. In order to obtain a strong and unifonil bound between the molded 

part and its insert, the solid insert surface must melt to a certain depth. In this work, we 

modei the process of phase change at the interface between melt and solid. The resulting 



heat transfer process may progress in many different ways dictated by the parameters 

involved in the system. In the way to reach steady state heat transfer condition, the melt- 

solid interface moves to a certain depth before the two portions begin to solidie together 

and join as a single piece. 

The objective of this study is to correlate with other process parameters, the 

depth of melt in the solid insert, to study the heat transfer at the rnelt-solid interface in 

order to dernonstrate how the physical properties of polyrners and difFerent system 

characteristics affect the final resuits. To reach this goal a rnodel is introduced. The 

simulation proceed by specifjing the geometry, material properties, boundary and initial 

conditions for the process. The corresponding heat transfer equations are solved, in tirne 

and space, by finite element method, using ABAQUS, to determine the thermal history at 

various location in the part. Then the phase change position is calculated by an 

approximation method ffom temperature history results. 

A characteristic of heat transfer problems dealing with phase change is the 

existence of an interface separating the phases. On this interface, the latent heat 

associated with the phase change is absorbed or liberated and as a consequence of heat 

transfer processes in the two phases, the location of the interface is continuously 

changing in time. Transient heat transfer problems involving melting or solidification are 

generally called 'phase change' or 'moving -boundary' problems. The solution of such 



problems is inherently difficult because the interface between the solid and liquid phases 

is moving. As a result the location of the solid-liquid interface is not known a priori and 

must follow as a part of the solution. Also the way in which this surface moves has to be 

determined- 

For a phase-change problem, the mathematical formulation consists of parabolic 

non-linear differential equation governing the conduction of heat through a medium, 

coupled with appropriate boundary conditions. Early analytic works on the solution of 

phase change problems include those by Stefan in relation to the ice formation. The exact 

solution of a more general phase change problem, however, was discussed by Neuman. 

The exact solutions of phase-change problems are limited to a number of idealized 

situations involving semi-infinite or infinite regions and subjected to simple boundary and 

initial conditions and in a case of complex geometry or complicated boundary conditions, 

they are not applicable. Therefore for practical purposes, apart from the few exact 

solutions, al1 problems have to be attacked by numerical methods. 

Vanous numencal techniques can be applied for the computation of solidification 

problems, traditionally the finite difference method has been used, but the last ten years 

have shown an increasing tendency to apply the finite element method to heat conduction 

analysis. The reason for this is the ability of this method to handle complex geometry, the 

ease in implementing boundary conditions and the capacity it has as a flexible purpose 



technique, since the method is completely general, the temperature and heat flux 

boundary condition may be specified at any point and desired accuracy may be obtained. 

The latent heat release can be presented by two methods , front-tracking and 

enthalpy method . The enthalpy method is used in this study in which the phase change 

fmnt is not simuitaneously tracked but derived aflerwards fiom calculated temperature. 

This method has the advantage of ease of implementation in existing program packages, 

of simple representation of latent heat release at the interface, the position of which need 

not to be specified a priori, of capability of dealing with 'mushy' phase change problems 

or complicated shapes and proven convergence to the weak solution of the differential 

equation. A geometry can be represented by a combination of different finite elements. 

Most of the proposed elements that have been used in the stress analysis of solids are 

applicable. Uowever for transient phase change problem, usuaiiy iinear eIements are 

used. 

Polystyrene(PS) and Polyethylene Tetraphtalate(PET) are chosen to represent 

arnorphous and semi-crystalline polymers. The change of thermal properties like thermal 

conductivity and heat capacity with temperature is calculated according to the 

formulation in the literature. For this case the change of thermophysical properties with 

iemperature is accounted for in the calculation, although the change of these properties 

with temperature is small and usually can be neglected. 



No doubt, there are different processing parameters and operating conditions, 

that controt the advance of melt interface in the solid ( or the advance of solid in the 

melt) until a specific point, but a crucial component in simulating solidification (or 

melting) in the mold is the handling of heat transfer at the interface between the mold and 

the materiai, The soiution of the equations depends on the selection of boundary 

conditions. 

As we cm see h m  the results the sohtion to the heat transfer equations is 

largely controlled by the boundary conditions used to specify the problem. The initiai 

velocity of melt tiont may have negative or positive influence on the melting or freezing. 

In the case of melting of the solid insert, a limiting position of meit-solid interface cari be 

detected. This limiting position depends on the mold temperature. For long times the 

temperature difference between melt and mold wall controls the heat transfer rate of the 

system. 

Although there is no exact analyticai solution for this problem, for short times, 

numencal solutions were tested for accuracy by comparing them to anaiytical solution to 

classical problems. This wouid have reveaied any programming errors. 



Chapter 1 

Heat Transfer During Phase Change 

1.1 Introduction 

A characteristic of heat transfer problems dedig  with phase change is the 

existence of an interface separating the phases. On this interface, the Iatent heat 

associated with the phase change is absorbed or liberated and as a consequence of heat 

transfer processes in the two phases, the location of the interface is conîinuousIy 

changing in t h e .  Transient heat transfer problems involving melting or solidification are 

generally cded 'phase change' or 'moving -boundary' problems. The bt published 

discussion of such problerns seerns to be the one by Stefan in 1889, and for this reason 

the problem is fiequently referred to as the problem of Stefan. The solution of such 

problems is inherently d i c u l t  because the interface between the solid and liquid phases 

is moving. As a result the location of the solid-liquid interface is not lcnown a priori and 

must foiiow as a part of the solution, Also the way in whicti this surface rnoves has to be 

determineci. 

In the solidification of pure substances, like water, the solidification takes place at 

a discrete temperature and the solid-liquid phases are separated by a sharp moving 

interface. On the other hand in the solidification (or melting) of mixtures (alloys) and 



impure materials the solidification takes place over an extended temperature range and as 

a result the solid and iiquid phases are separated by a two-phase moving region (Ois* 

1993). 

This literahire review for heat transfer aspect of the problem, concems the 

general mathematical formulation which defines the problem and dierent available 

solutions. 

1.2 Mathematical Formulation 

When a temperature gradient exist in a body, there is an energy transfer fiom the 

high-temperature region to the low-temperature region, so the heat is transferred by 

conduction and the heat transfer equation is govemed by Fourier law of heat conduction. 

If the system is in a steady state which means that the temperature does not change with 

tirne, then the problem is a simple one and we need oniy to substitute the appropriate 

values in Fourier's equation and solve for desired value. However, if the temperature of 

the solid is changing with time, or if there are heat sources or sinks within the solid, the 

situation is more complex. The unsteady state dserential equation for heat transfer in 

this case is obtained by balancing the energy for an element inside the body @olrnan 

1981). 



For a phase-change problem, the mathematicai formulation consists of the 

differentiai equation governing the conduction of heat through a medium, coupIed with 

appropriate boundary conditions. For a moving boundary problem the equation is of 

parabolic type which rneans that differential equations contain first order tirne derivatives 

(Crank, 1984). The form of boundary condition is usuaily of two types, Dirichlet (known 

temperature) or Neuman (known heat flux), or can be a mixture of two. Since we are 

deaiing with transient problern we rnust also speciQ the initial state, or temperature 

distribution at  the initial condition. The situations involving a change of phase, the 

classical Stefan problem, is used to describe the conduction in a domain including two 

separate phases, Figure 1.1. Thus on the subdornain QI, R2 we have (RIuR3=R) 

(Lewis & Roberts, 1987) : 



Figure 1.1: Domain of phase change 

K = thermal conductivity 

T = temperature 

p = density 

C = heat capacity 

T = tirne 

T = known boundary temperature 

To = initial temperature 

= unit outward normal 

H = heat convection coefficient 

1 = 1 or 2 referring to soiid or iiquid regions respeaively 



Equation Cl] refers to transient themal fields in a substance with temperature 

dependent thennophysical properties. For the solution of Stefan problems two equation 

of the fom of equation [l] must be solved, one for the solid and one for the iïquid phase. 

Besides the initial conditions and conditions imposed at the boundary of the domain, the 

followïng conditions must be satisfied at the solidification fiont; 

p = density 

K1 = themai conductivity of solid 

Kt = thermal conductivity of melt 

Tl = solid temperature 

T2 = melt temperature 

fi, = unit outward normal at interface 

L = latent heat 

S = phase change interface 

This equation is obtained by considering the energy balance at the interface 

(Carslaw and Jaeger, 1984). The transient heat conduction equations for solid and liquid 

domain are coupled by this boundary condition at the interface. The interface boundary 

conditions given by [SI is nonlinear because if we relate ds(t)/dt to the derivative of 



temperatures this equation ieads to a non-linear dierential equation for temperature 

(OPsik, 1993). 

Usudy, the generalized fom of this problem incorporate any or aii of the 

following non-linear features (Crank, 1984); 

- The heat parameters Ki,~,pi rnay aii be funcîions of T,x,t. 

- On the moving interface the temperature T may be space and tirne dependent. 

- There may be a heat source or s h k  on the moving boundary. 

1.3 Changes in Thermophysicd Properties During the Phase Change 

From thermodynamic point of view phase transition are typical ht-order 

transitions in which a primary thennodynamic fûnction, such as enthalpy shows sudden 

jump. This sudden change in enthalpy is due to the energy absorption required to change 

the phase at a given temperature. For a glassy material however, phase change is a 

thermodynamic second order transition in which a plot of a prirnary quantity shows an 

abrupt change in dope, while a plot of a secondary quantity, like specific heat, shows a 

sudden jump. 



1.4 Different Methods for Solution of Phase-Change Problems 

The fùndamentai feature of this type of problem is that the location of the 

boundary is both unknown and moving, and that the parabolic heat conduction equation 

is to be solved in a region whose boundary is aIso to be determined. 

Early andytic works on the solution of phase change problems include those by 

Stefan in relation to the ice formation. The exact solution of a more general phase change 

problem, however, was discussed by Neuman in his lectures in 1912. The exact solutions 

of phase-change problems are lirnited to a number of idealized situations involving semi- 

infinite or &te regions and subjected to simple boundary and initiai conditions.. 

Carslaw and Jaeger(1984) give a very good review of available andytical and semi- 

analytical solutions avdable for phase-change probIems with dserent geometry and 

sirnpIe boundary conditions. 

In the S t e h  problem, since two heat equation coupled by the boundary 

conditions, which arnounts to the solution of non-linear problem(OPsik,l993; CarsIaw 

and Jaeger, 1984), few analytical solution method exist. In a case of complex geometry 

or compiicated boundary conditions, the superposition principal is not applicable and 

each case must be treated separately. Therefore for practical purposes, apart fiom the 

few exact solutions, al1 problems have to be attacked by numericd methods. But even 

then care must be taken in choice of proper solution method. 



1.5 Numerical Methods 

Although the solution process is now weli established for hear problems 

involving multidimensiod geometry and time dependent boundary conditions, the 

complexities of problems involving change of phase have not yet been fiiiiy analyzed. 

When the phase change takes place over a wide range of temperatures the computational 

problems with the representation of latent heat effects are easily overcome, however a 

zero width phase change intervai is more dficult to deal with computationally (Comini 

et ai, 1974; Griiit & Nassershanf: 1990; Morgan, Lewis & Zienkiewicz, 1978; Tamma & 

Namburu, 1990; Voller & Cross, 1983), therefore the zero width interval is in practice 

often approxhated by a narrow temperature range which facilitates incorporation of 

latent heat atfects. 

The systematic use of numerical methods has the advantages that the variation in 

the thermal properties with temperature which can be considerable over the ranges of 

temperature involved in problems on melting and solidification cm be taken into account. 

Various numerical techniques can be applied for the computation of solidication 

problems (CarsIaw & Iaeger, 1959; Crank, 1984), traditionally the finite difference 

method has k e n  used, but the last ten years have shown an increasing tendency to apply 

the finite elernent method to heat conduction anaiysis. The reason for this is the ability of 

this method to handle complex geometry, the ease in implementing boundary conditions 

and the capacity it has as a flexible purpose technique, since the method is completely 



general, the temperature and heat flux boundary condition may be specsed at any point 

and desired accuracy may be obtained. 

1.5.1 Finite Element Techniques for Phasechange Problerns. 

The latent heat released can be presented in many different ways but numerical 

techniques involving finite elements cm be separated in two distinct groups based on the 

formulation of the problem; 

- The fiont-tracking methods in which the phase change fiont is tracked 

continuously and the latent heat is treated as a moving boundary condition. Here the 

energy equation is written in terms of temperature as the dependent variable and involves 

the technique of moving or deforming elements (Criveilii & Idelsohn, 1986; Rubinsky & 

Cravahlo; 198 1; Yoo & Rubinslry, 1983). This requires either deforming or dternating 

grids, transformation of variables or coordinates (Bell Wedgewood, 1993), introduction 

of special algonthms near the phase change interface or choosing the time step so that the 

intefice coincides with grid nodes (Vouer & Cross, 1980). 

- Amore general method is the enthalpy method, in which the enthalpy is the 

dependent variable (Cornini & Guidice, 1974; Goodrich., 1977; Tamrna & Narnbum, 

1990). Ln this method, the phase change fiont is not simultaneously tracked but denved 



afterwards fiom the caiculated temperatures. This is possible because the phase fiont 

conditions are implicity accounted for in the enthaipy dehition. This rnethod has the 

advantage of ease of implementation in existing program packages, of simple 

representation of latent heat release at the interface, the position of which need not to be 

specified a priori, of capabiiity of dealing with 'rnushy' phase change problems or 

complicated shapes and proven convergence to the weak solution of the differential 

equation (Bel, 1982). 

The temperature bas& fomulation s a e r s  from effectively handling abrupt 

variations in heat capacity and approaches to approximate this in the phase change zone. 

The implementations in this method are troriblesome and often compIicated equations 

must be solved. Enthalpy methods seem more natural in eliminating some of these 

problerns but do experience some of the same difficulties. Numencd dficulties are 

either in accurately representing the temperature history, Iocating the phase fiont or both 

(Bell, 1982; Voller & Cross, 1982). 

1.6 Enthaipy Method for Solution of Phasechange Problems 

A more general method is the enthalpy method in which the phase change 

boundary is not simultaneously tracked but derived h m  dculated temperatures. 

Enthalpy method is a hed-grid method, in which the interface position is generaliy at an 



unknown location between nodes and the latent heat evolution is treated in terms of a 

temperature-dependent specific heat. This general formulation does not take separate 

account of the latent heat effect accompanying a change of phase but approximated to it 

by alIowing rapid variation in the heat capacity. This is possibIe because the phase &ont 

conditions are simply accounted for in the enthalpy equation. 

The advantages of the enthalpy method is that a single energy equation becomes 

applicable in both phases, hence there is no need to consider liquid and solid phases 

separateiy. Therefore any numerical scheme such as the finite-dzerence or h i t e  element 

method can readily be adopted for the solution. In addition, the enthalpy rnethod is 

applicable for the solution of phase-change problems involving both, a distinct phase 

change at a discrete temperature as well as phase change taking place over an extended 

range of temperatures. But it should be mentioned that although the enthalpy method can 

be applied to isothermal fieezing problems and the predicted temperature distribution in 

such cases are reasonable, the predicted tirne history of a typical point usuaiiy displays a 

pronounced step iike behavior as a consequence of the enforced temperature plateau, 

about the phase change temperature. This behavior can be smoothed by; 

1- reducing the spatial step size 

2- introducing a special algorithm in the neighborhood of the phase change 

to effectively track the moving interface. 

3- by spreading the phase change over a temperature range 



4- by combination of these methods. 

1.6.1 Enthalpy Formulation of Phasechange Problems 

Figures 1-2a and 1-2b shows enthalpy-temperature relations for a pure crystalline 

substances and eutectics and a glassy substance or aiioy. For pure substances the phase 

chmge takes place at a discrete temperature, and hence is associated with the latent heat 

L. Therefore in figure 1.2a a jump discontinuity occurs at the melting temperature Tm. 

Hence i f H 1 3 ï  becomes infinite and the energy equation apparently is not meaningfid at 

this point, however it has been shown that the enthalpy form of the energy equation 

given by; 

is equivalent to the usuai temperature form in which the heat conduction equation is 

written separately for the liquid and solid regions and coupled with the energy balance 

equation at the solid-liquid interface. Figure 1.2b shows that for aüoys and glassy 

substances there is no singIe meking point temperature Tm because the phase change 

takes place over an extended temperature range fiom T. to Ti, and a mushy zone exists 

between the aü soiid and aii liquid regions. In the case of pure substances having a single 

m e b g  point Tm, figure 1.2% when the substance is in soiid form at temperature T, the 



Figure 13: Enthalpy-Temperature relationship for (a) pure crystaüine substances 

and @) glassy substances or doys 

contains a sensible heat per unit mass G(T-Tm), where the melting point temperature Tm 

is taken as the reference temperature. In Iiquid fonn, it contains latent heat L per unit 

mass in addition to the sensible heat, that is, C,(T-T,)+L. For the specific case 

considered here, the enthalpy is related to temperature by; 

In the case of glassy substances or ailoys such relationship between HP) and T is 

obtained fiom either experirnental data or standard physical data tables. In general, 

enthalpy is a nonlinear function of temperature. Therefore an enthalpy versus 



temperature variation must be available. Assuming hear release of latent heat over the 

mushy region, the variation of H(T) with temperature can be taken as; 

(C,T+L for T s T ,  Iiquid region 

The general form of enthalpy formulation for Stefan problem can be defined as 

Tm = phase change temperature 

Td = reference temperature 

ci = specifïc heat of solid 

cz =specific heat of liquid 

L = iatent heat 

p = density 



In case of a finite fieezing interval [T,Tr], the enthalpy can be found fiorn; 

T, = Tm - Mm= soiidus temperature 

I; = Tm +ATm= tiquidus temperature 

c, = specifïc heat at melting range 

Since H is a unique fiindon of temperature equation [6] can be written as 

follows; 

Now effective heat capacity which accounts for the latent heat evolution can be 

defined as; figure 1.3 



Figure 1.3: Typical plot of H and c0=dh/dt against temperature 

Materials with a discrete solidification 

1171 

temperature exhibit aep changes in k and 

H at the solidification point which often cannot be handled easily in the numerical 

solution of the dEerential equations (Voiler et al, 198 1, 1983, Morgan et al, 1978). 

Directly evaluating the effective heat capacity gives ; 

for 

for. 

for 



where the latent heat release is assumed to take place homogeneously over the fieezing 

range ( Bonacina et al, 1973). 

In the case of a Stefan problem, where the phase change occurs in a single 

melting point, this direct evaluation requires spreading of the phase change temperature 

across a temperature interval and thus introducing a fieezing range. In this case, the 

fieezing range must be kept srnaII, to avoid too large deviations f?om the original 

solidification problem. 

1.7 Finite Element Simulation of Solidification Probîem 

1.7.1 Theoretical Development 

In strict mathematical sense, the case studied here is a transient one dirnensional 

heat transfer problem. In f k t  dUs is a two dimensional problem, since there are two 

independent variables, x and t. However within the context of a finite element analysis, it 

is appropriate to refer to it as a one dimensional problem since only the spatial variable, x 

wiil be treated by finite element. Thus the Galerkui integral and integration by parts are 

done in the usual manner with respect to x. The variable t, for the most part is merely 

carried dong duMg the folIowing six step of the finite element process (Bumet 1987); 

1- Writing the Galerkin residud equation for a typical element. 



2- Integration by parts. 

3- Substituting the general form of the element trial solution into interior integral 

in residual equations. 

4- Developing specific expressions for the shape functions. 

5- Substituting the shape fhctions into element equations and transform the 

integral into a form appropriate for numerical evaiuations. 

6- Preparhg the expressions for the flux, using the trial functions. 

1.7.2 Spatial Discritization 

The finite element method has been chosen to descretize the domain 0 in space. 

The application of this method to the heat conduction equation is weli documented, 

therefore only a brief description is wmanted here. 

The domain R is divided up into distinct regions or elements R, such that, 

Nodal points are then distributed at element vertices, dong the element edges, and 

possibly in the elernent interior. We approximate temperature distribution by a weighted 



series of locally supported polynomial functions. The weightdamplitudes corresponds to 

the temperatures at the nodal points or nodes. Thus we have the approximation; 

Ni = the basis or shape hnctions 

Ti =nodal temperatures 

N = number of elements 

This is the classic 'separation of variable' technique sometimes also referred to as 

the method of Kantorovich, it means that numerical values of Ti may Vary fiom one 

instant to another. The finite element procedure will transform the initial boundary value 

problems into a pure initial value problems. The latter wül be solved by t h e  stepping 

technique. 

Substituthg this approximation into the Galerkin weighted residual fom of the 

differential equation, We obtain the semi-discrete system; 



where T is the vector {Ti} of unknown nodal temperatures. The capacitance matrix C, 

the conductance matrix K and the thermal loading term F are defined as foilows; 

Ni = basis or shape fiindons 

c, = parameters of capacitance matrix 

kG = panuneters of conductance matrix 

Accurate evaluation of these integrals in equation is dinicult in the phase change 

region because for problems involving a change of phase within a narrow band of 

temperatures, the cuves of thermal properties versus temperature is not smooth. 

DEerent numencal approximation is used to appropriately approximate the thermal 

properties at the phase change boundary. It has been pointed out that the graph of 

enthaipy versus temperature is ~Ecient iy  smooth even over the phase change interval 

interpolated for the enthalpy, instead of heat capacity and we c m  approximate the 

enthalpy by the same shape fundons used to approximate the temperature (Comini et al, 

1974; Lewis & Roberts, 1987; Tamrna & Namburu, 1990); 



H =Ni (xi  )Hi ( t )  

Hi = the enthalpy vdues at nodes 

Ni = usual interpolation bc t i on  within an element 

Various approximations appear in the literature for evaluating the heat capacity as 

a change of enthalpy at the nodes with respect to temperature;(Lewis & Roberts, 1987) 

In a Galerkin finite-element approximation the conductivity need to be evaluated 

at the integration point. An approach would be to use a linear interpolation of the nodal 

conductivity. In case where there is a discontinuity in the thermal conductivity, the 

integration point values can be evaluated using an averaging scheme (Voiler & 

Swaminathq1993). AU the elements integrals are strongly dependent on the 

themophysical properties and consequently temperature, thus repeated evaluation of 

element integrais for changes in thennophysical properties is accomplished using 

numerical integration (Bumet, 1987). 



1.7.3 Time Discretization 

The matrix equation [21] contains the undiscretized time derivative of 

temperature. The next step following the serni-discretization process is the solution (or 

tirne discretization) of the ordinary differential equations [2 11 which define the discretized 

thermal model. 

The discretization of the time derivative is most often achieved with a finite 

diEerence technique. Aimost al1 the time stepping methods have actually been used in 

commercial finite element codes and almost a of them can be classified as linear 

multistep method. For finite element application, one and two step methods are used 

almost universally for diffusion problems. The one step methods include three classical 

finite difference formulas (Bonacina et al, 1973; Comini et al, 1974; Morgan et al, 1978; 

Voller et al, 198 1); 

1- the backward difference method, known as the backward Euler rule. 

2- the mid-difference method also known as the Crank-Nicolson method or 

the trapezoidal rule 

3- the forward difference method also known as Euler's nile 

4- the two-step or three-time-level scheme referred to as the Dupont II scheme 

5- the two-step or three-time-level scheme proposed by Lees. 



The first three methods are speciai cases of a more general formula referred to as 

8-method. This family of methods can be characterizcd as follows; 

n= number of the time increment 

At = length of time increment 

C = capacitance matrix 

K = conductance matrix 

F = thermal loading matnx 

T = temperature 

- inear The 0-method is unconditionally stable with 0>1/2 for both linear and non 1' 

conduction. The most favored schemes are; 

8 = 112 Crank-Nicolson 

8 = 213 Galerkin scheme 

8 = 1  Euler-backward 

Of the various tirne-integration schernes available, it has been observed in the 

literature (Dalhuijsen, Segal, 1986) that the Euler backward is one of the most favorable 



of the 0-methods for solidification problerns in terms of acceptable accuracy, efficiency 

and easiness of implementation. In this method thermophysical properties are evaluated at 

t h e  level n+l and an iterative solution method is necessary. 

A geometry can be represented by a combination of different finite elements. Most 

of the proposed elements that have been used in the stress analysis of solids are applicable 

to heat transfer problems. However for transient phase change problems, usually linear 

elements are used. For these elements the temperature field in each element is 

approximated by a linear function. For one dimensional linear elements, the general fom 

of this function is, figure 1.4; 

T(x, t )  = a, ( r )+xa ,  ( t )  

ai, a2 = coefficients of linear approximation for temperature distribution in an element 

where T(&t) is the temperature distribution in each elements and ai(t) and az(t) are 

obtained from nodal temperature at each thne step. Although various types of elements 

could be employed for general finite elernent analysis of the thermal problems, for 

solidification problems, the use of linear elements is ofien recommended, since significant 



TI (0 1 
Figure 1.4: Finite element temperature approximation within an one 

dunensional linear el ement. 

improvements c m o t  be expected with higher-order elernents. This is because there are 

sharp discontinuities in the associated derivatives of the temperature in the vicinity of the 

phase front (Dalhuijsen & Segal, 1986 and Tamma &. Narnburu, 1990). 

1.7.5 Time Step Size 

A suitable combination of t h e  aep and phase change interval will result in a good 

approximation for the analytical solution. The t h e  step used should be such that the 

change in temperature during one t h e  step in a region undergoing a change of phase, be 

less than the temperature merence over which the phase change is assumed to occur. If 



this is not so, a correct heat balance may not be maintained and incorrect solution will 

result. When using Euler-backward time stepping scheme, although very few iterations 

are necessary to satise the convergence c~~iterion for the latest time steps, in the initial 

ones more iterations are needed, leading to an average of about 1.8 iterations per time 

step over 50 tirne steps. Ralph IIi & bathe (1982) have already rnentioned that a fine 

space discretization and small time steps are necessary for accurate temperature 

predictions, whereas the freeting front could be accurately monitored with coarse grids 

and larger time steps. 

The start time to is chosen for each parameter regime to ensure that any heat 

transfer in the time t<to, is confine to a region closed to the interface between the two 

regions and the outer extremities are not affected. 

Dalhuijsen and Segal (1986) have shown that the size of the induced fieezing 

(melting) range has little effect on the temperature and since the freezing front position is 

obtained fiorn temperature by extrapolating fiorn the solid side, the imposed freezing 

ternperature range hardly affects the accuracy of the predicted front position. 

In the cases when phase-change occurs at a specific temperature, using enthaipy 

method, we should consider a small temperature range for the phase change. Although 



the size of the fieezing range has little effect on the error in the temperatures or fieezing 

fiont position, a srnall fkeezing range is to be preferred since it gives a better 

representation of the actual Stefan problem. In the case of existence of a melt range for 

the material, at any time an area of the body will be undergoing melting rather than a 

point. This area of melting is referred to as the 'mushy' region and is bounded by a 

solidus and liquidus boundary. 

Also there is the possibility of the temperature at a node 'skipping' the phase 

change temperature interval in a single time step of the numerical fixed-domain 

computations if the interval is too small, the grid not dense enough or the time step too 

large. Thus severe restrictions are imposed on the execution of calculations. Bonacia & 

Cornini (1973) suggest that the phase change intervai must embrace at least 2-3 nodes 

dong the direction normal to the interface. 

1.10 Front Position 

Goodnch (1977) introduces an accurate method for determining the solid-liquid 

interface movement when the phase change occurs on a narrow temperature range. He 

tested his method in one dimendional problems and obtained good results. Voiler and 

Cross (1981) suggest a method for calculating the position front between the nodes at 

each time step, for a welding problem with steel. They use interpolation on the 



temperature distribution and calculated the position of solidus boundary at time *6t 

nom; 

S * = fiaction of the eiement which is solid 

T, = solid temperature 

Tm*= upper iimit temperature for the temperature range 

j = Number of time increment 

6x = element length 

Vouer and Cross (1983) have mentioned that the solidification fiont position, 

when using enthalpy method, follows the predicted temperatures. They recommend a 

scheme in which linear interpolation is used to find the time at which the solid-liquid 

interface is at a mesh point and show when enthalpy is defined in a small temperature 

range, temperature histones will oniy be predicted when at least two nodal temperatures 

lie in the phase change range at all tirne steps. 

Dalhuijsen and Segal(1986) show that the method for calculating the freeze fiont 

position was examined and the extrapolation of the temperatures fiom the solid side to 

give the position correspondhg to the melting temperature seemed to be mom 



appropriate. But they also mentioned that, m e  must be taken, since errors in the nodal 

temperatures used in the extrapolation may be ampliiïed. They note that interpolation of 

temperatures across the phase change to found the position where temperature is equal 

with melting temperature is objectionable. However, they used the method suggested by 

Voller and Cross (1981) in their caiculation and find good approximation to the exact 

solution available for their problem. 

Interpolating or extrapolating to give the position comesponding to 

T = Tm - AT, 

Tm = melting temperature 

AT, = half of the melting range 

results in poor results when temperature range is relatively large and is confixsing since 

the actual fieezing temperature is Tm 



Chapter 2 

Phase Transition in Polymers 

2.1 Introduction 

We can distinguish between two main h d s  of meIt solidification processes for 

polymers, static solidification, which is defined as a process where there is no relative 

motion between adjacent polymer layers, l i e  in compression molding, and flow 

soliditkation where the melt solidifies during flow in the Ming stage as in injection 

molding. 

Heat transfer in polymers in the solidication (or melting) process is accompanied 

by change of phase, melt to solid in the case of crystalline polymers and melt to rubber to 

giass in the case of amorphous polymers. Not only phase transition is dierent for semi- 

crystalline and amorphous polymers, but also thennophysical properties of these materials 

ciiffer for the same polymer and are highly dependent on molecular structure and thermal 

history of the material. 



In the processing of polymers, the temperature gradients are large, since their 

thermal conductivities are low, the process times are small, then the local thermodynarnic 

equilibrium theories seldom hold. The heat required to melt plastics is large and the rate 

at which it c m  be put into the plastics is limited by the thermal conductivity and the 

thermal stability of the material. In several cases, the high temperature on the outside 

would cause decomposition and burning before enough heat could penetrate to the melt, 

the mass of material. 

In this chapter we investigate briefly, the phase transition in polymers, their 

thermophysical properties and their affects on determining the processing parameters. 

2.2 Heat Transfer in Polymers 

We should be concemed by the excellent thermal insulating properties of plastics 

in both the solid and fluid States. Thus, not only are the fiuids of high viscosity, but the 

mode of heat transfer during laminar flow is conduction or diffision. Since plastics have 

such a poor thermal conductivity, transfer of heat to or from molten plastics in flow and 

solid plastics in static cases is very difficult. Little heat is transferred by convection 

because the melt is too viscous. Radiation, although having some effect, accounts for 

only a very small proportion of the total heat transferred. According to Rosato(1986) 

heat transfer in the mold is almost entirely by diffision. 



2.3 Phase Transition in Amorphous and Crystalline Polymers 

Since phase-change for crystalline polymers is a firt order transition in which a 

prirnary thermodynamic functions, such as enthalpy shows a sudden jump, the change of 

energy with temperature, at a phase change such as melting, a discontinuity in the specific 

heat cuwe should occur at the melting point temperature. But for amorphous polymers, 

glass-rubber transition is a phase change of a themodynamic second-order transition. In 

the case of second-order transition a plot of a primary quantity shows an abrupt change in 

dope, whiie a plot of a secondary quantity, like specific heat, shows a sudden jump. 

Generally speaking, crystalline and amorphous polymers are dserent fiom the heat 

transfer point of view by the fact that crystalline polymers generate latent heat upon 

solidification while amorphous polymers do not. The melting temperature can not be 

defined for a noncrystaüine or amorphous polymer, it shply does not solid*. One 

characteristic temperature that is important in amorphous polymers and to a lesser extent 

in crystallùie polymers is the glass-transition temperature, T,. The glas transition 

temperature is best defined as the temperature below which a polymer changes frorn a 

rubbery substance to a glassy substance. The exact position of Tg is afFected by the rate of 

cooling, the slower the coolmg process the lower will be the value of Tg. Yet for practical 

purposes one can say that every polymer is characterized by its own Tg (Van Krevelen, 

1990). 



Many plastics have crystalline structures in their solid form. As a resuit, if these 

solid materials are heated slowly to tiquid state, a distinct melting temperature associated 

with a given material can be identified within 1°C or so. Therefore for semi-crystalline 

polyrners it is possible to identify a mefting temperature Tm. Above this melting 

temperature the polymer rnay be liquid viscoelastic or rubbery accordhg to its molecular 

weight. Below it, at least in high molecular mass range, it will tend to be leathery and 

tough down to glass transition temperature. The crystaliine melting point Tm is the 

highest temperature at which polymer-crystallites can exist (Van Krevelen, 1990). For 

crystalhe materials, the glass-transition temperature is important too, because 

crystallization can occur only between Tg and Tm. 

The problem of unsteady-state heat transfer associated with the melting of 

crystalline plastics and with the cooling of such melts after they have been filled into the 

motds, is cornplex. As mentioned before, when these plastics change £kom the liquid to 

the soiid state or vice versa, a latent heat of fusion must be added d u ~ g  melthg or taken 

away during cooling. This process occurs at a specific temperature, and it causes a delay 

in temperature change. Partialiy crystalline polyrners exhibit a f i e d g  range. Instead of a 

complete delay of temperature when the upper limit of the melting range is reached, only 

a partial delay proportional to the crystalliration fiaction is applied. Thus one part of the 

heat contributes to  lowering the temperature of the amorphous p o r t i o ~  while the other 

part is utilized in fieezing the crystalline portion. The partial delay in the temperature 

reduction is tenninated when the lower limit of the fieezing range is obtained. In the 



phase change analysis of arnorphous polyrners, however, melting temperature c m  be 

replaced by glass transition temperature (Karnal et al, 1970 & 1971). Generaiiy the heat 

required to melt semi-crystalline plastics at a given temperature exceeds that of 

arnorphous plastics at the sarne temperature (Throne, 1979). 

2.4 Thermal Properties of Polymers 

Most polyrner sarnples are partly crystalline. The thermodynarnic quantities have 

values somewhere between the purely crystalline and purely arnorphous regions. Polymer 

thermal properties are highly dependent on density, molecular weight, orientation and 

other factors. 

The discussions in this section are confined to three polymer properties: thermal 

conductivity, thermal diffisivity and specific heat capacity. 

2.4.1 Thermal Conductivity 

The thermal conductivity of polyrners are low, on the order of 0.1-0.5 W/ m.K. 

Among polyrneric substances, crystalline polyrners tend to have higher thermal 

conductivity than amorphous polyrners 



Figure 2.1: Behavior of some polymer properties at transition ternperatures. (a) 

Specific heat, (b) Thermal conductivity 

For polymeric systems the change of thermal conductivity with temperature is 

generally srna11 or negligible. By increasing the temperature the amorphous polyrners 

thermal conductivity increases slowly in the glassy region. It is constant or slowly 

decreasing in the rubbery region, and passes through a rather flat maximum at glass 

transition temperature. Finally, it shows a graduate decline in the liquid state. In 

crystalline polyrners thermal conductivity decreases steadily as the melting point is 

approached. Othenvise, it behaves in a manner analogous to amorphous polymers, figure 

2. Ib. 



Ahalysis of the avdable literature data for identical or nearly identical materials 

indicates large dittérences in reported thermal conductivity and the temperature 

dependencies exhibit digerent ninctional relationships, pdcularly at higher temperatures 

(Hd et ai, 1987). 

2.4.2 Specific Heat Capacity 

Aithough polymers have much lower densities than metals, they have relatively 

large specinc values, typicaily in the order of 750-2500 J1Kg.K. The temperature 

dependence of specific heat capacity is of importance. In general a s m d  discontinuities is 

observeci at the glass transition temperature T, followed by a relatively large peak at 

melting point, Tm, due to the latent heat of fuion of  the crystalline domain. Ail polymers 

display similar temperature dependencies, although the curve shifts horizontally dong the 

temperature axis, depending on where T, and Tm occur, and verticdy dong the heat 

capacity axis depending in the absolute values of heat capacity itself, figure 2.la. A 

crystalline polymer follows the curve for the solid state to the rnelting point. At Tm the 

value of C, increases to that of the liquid polymer. The heat capacity of an amorphous 

polymer follows the sarne curve for the solid up to the glass transition temperature, where 

the value increases to that of the liquid (rubbery material). In general a polyrner sample is 

neither completely crystaIline nor completely amorphous. Therefore in temperature region 

between T, and Tm the heat capacity is between the curves for soiid and liquid. 



Moledar weight has a srnail but appreciable effect on specific heat capacity. The 

thermal history of a polyrner may infiuence the specific heat capacity. SiMlarly, cooling 

rates rnay effect the degree of nystallinity as weil as the amount of recrystallization that 

takes place on reheating above the glas transition temperature. 

Specific heat capacity rnay be defined at constant volume or at constant pressure. 

2.4.3 Thermai Diffusivity 

Like thermal conductivity, thermal difliisivity of polymers is low. Therefore, most 

processing and fabricating techniques involve unsteady state heat transfer where 

temperatures are a fbnction of both position and the .  Thermal diffusivity of polymen are 

-6 2 is the orders of0.1-0.3~10 m /s 

In amorphous polymers, themal difisivity decrease slowly in the giassy region, 

break slightly at the glass-transition temperature and rernain essentially constant in the 

nibbery region, and decrease slowly in the melt flow region. In crystalline polyrners 

thermal diffusivity has similas characteristics but displays a relatively deep minimum at the 

melting point, figure 2.2. 



Figure 2.2: Thermal diaisivity vs. temperature.Curve A, a typicai 

amorphous polymer, Curve B, a typical partially crystalline polymer 

2.4.4 Latent H a t  of Crystallization and Fusion 

The heat added to the polymer causes a change in the internai energy U, and the 

enthalpy of the substance. 

The latent heat of fusion (crystailition) or enthdpy difference is defined by; 

a~r, ) -~,cr~)=a~rm) 1271 



&(T) = EnthaIpy of melt as a fùnction of temperature 

H&ï) = Enthalpy of solid as a fiinction of temperature 

A&, = Enthalpy of fùsion 

Tm = Melting temperature 

Reliable experirnental values for htZ, are available for a ümited nurnber of 

polymers ody. In a direct determination the degree of crystallinity of the sarnple should 

be taken into account. In this connection, a large scatter in published values for enthalpy 

of fusion is observed, as a general rule the highest value of a mentioned for a given 

polymer is the most probable one (Van Krevelen, 1990). 

The enthalpy curves for crystalline and amorphous polymer run paraliel up to the 

glas transition temperature, The distance between these curves is the enthdpy of the 

amorphous polymer. From the glas transition temperature the curve for the amorphous 

polymer gradually approaches the curve for the melt, while the curve for crystalline 

polymer shows a discontinuity at the melting point. The distance between the curves for 

crystal and liquid at the melting point is the latent heat of fusion.Figure 2.3. 



Figure 2.3: Enthalpy variation with temperature. 



Chapter 3 

Mode1 

3.1 Problem Definition 

Here the process of injection of a molten thennoplastic over a solid thennoplastic 

insert is studied, tigure 3.1. The process is similar in concept to welding or dip coating of 

polymers. In order to obtain a strong and unifom joint between the molded part and its 

insert we follow the process of phase change at the interface between melt and solid. The 

resuIting heat transfer process may progress in many different ways dictated by the 

parameters involved in the system. In the way to reach steady state heat transfer 

condition, melt-solid interface moves, fkom its initial position, to a certain depth before 

the two parts begin to solidify together and join as a single piece. 

In order to widen the range of physical and mechanical properties of the piece, 

we have to consider the effects of dEerent parameters and molding conditions, on the 

evolution of the solid-meIt interface. 



Mold 
- 

Figure 3.1: Schematic of the part in the mold 

3.2 Mechanism of Heat Transfer 

Figure 3.2 shows the mechanism of heat transfer. Heat is conducted fiom the 

molten region to the solid and aiso there is a heat fiow between the mold w d  and 

polymer melt by conduction. At the solid-melt interface, the process of heat transfer is by 

conduction where al1 the heat is provided by contact on the exposed surfaces and the rate 

of melting is only determined by conduction. 



q- 

Figure 3.2: Heat transfer mechanisrn in the mold 

3.3 Introducing a Mathematical Mode1 

This mode1 is developed for the situation where the mold has been totally fiiled. 

In that case, the changes in the polymer temperature, may be detennined by solving the 

unsteady state ka t  conduction equations with change of phase since the polymer is 

stationary. Since the polymer meIt is extremely viscous, In the following treatment, it is 

assurned that the natural convection is negiigible. 



To formulate this problem it is assumed that; 

1- The effed of second and third coordinate system is so smd  that it can be 

neglected 

2- Thermophysical properties are taken to be invariant to temperature (for PET) 

3- Mass densities of the rnelt and its solid are assumed to be the sarne. 

4- The phase change of pure substance with a precise fusion and keezing 

temperature is modeled. 

5- The temperature at mold w d  will remain constant during the process 

6- No chernical reactions or massive absorption of heat take place duMg 

temperature change. 

3.3.2 Geometry and Coordinate System 

We assume that the coordinate system for this problem is arranged as in figure 

3.3. A solid confined to a semi-infinite region, A<-. Initially the solid is at uniform 

temperature, Tb, which is lower than the phase change temperature Tm. The melt 

occupies the space O<x<A The solid and the melt will remain in contact for t>O. 
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Figure 3.3. Geometry and coordinate system 

The boundary surface of the melt at the mold wd, is at constant temperatrire Tw. 

The boundary surface at FB, is in the condition of symmetry. 

3.3.3 Mathematical Formulation 

(a) Governing Differential Equations 

Now we can sirnplm the general energy equation by considering these 

assumptions. The temperatures T,(x,t) and Tl(x,t) for the soiid phase and iiquid phase 

respectively are governed by the standard tusion equation given by; 



ki = rnelt thermal conductivity 

k, = solid thermal conductivity 

TI = melt temperature 

T, = solid temperature 

$1 = rnelt specific heat at constant pressure 

ç,, = solid specific heat at constant pressure 

S(t) = interface positions as a fiinction of time 

p = density 

(b) Initial and Boundary Conditions 

The equation is a second order differential equation. For each phase we need two 

boundary conditions and one initia1 condition: 

- Boundary conditions: 



- Initial conditions: 

Til = melt initial temperature 

Tb = solid initial temperature 

Tw = wall temperature 

S(t) is the location of the solid-liquid interface which is not known a priori, hence must 

be detemiined as a part of the solution. 

This problem involves the unknowns, TS(>st), Tl(x,t) and S(t). The third equation 

is determined by considering an interface energy balance at x=S(t); 

L = latent heat of fùsion 



3.4 ABAQUS 

3.4.1 Finite Element Method 

As explained before because of the complexity of the equations there is no exact 

solution for the problem. Approximate solutions that are available covers only very 

simple cases with simple boundary conditions, we should choose a numerical approach to 

solve the equations. We have used ABAQUS to solve this problem with f i t e  element 

method. The capability of ABAQUS for uncoupled heat transfer andysis is intended to 

mode1 solid body heat conduction with general, temperature dependent conductivity, 

internai energy including latent heat effects and quite general convection and radiation 

boundary conditions. In programming with this software, it is assumed that the themal 

problems are presented in the fom; 

U = Interna1 energy of material 

T = Temperature 

The change of intemal energy of the material with respect to temperature is 

written in tems of specific heat (enthaipy method); 



For latent heat effects at phase change, this relation is given separately in tems of 

solidus and liquidus temperatures (the lower and upper temperature bounds of the phase 

change) and the total interna1 energy associated with the phase change, called the latent 

heat. When latent heat is given, it is assumed to be in addition to the specific heat effect, 

as explained in detaii in section 1.6. 

To define the latent heat effects for the materials with specific melting 

temperature, a srnall temperature range should be considered. However, to avoid large 

deviation of the solution fiom the real physical situation we should consider this 

temperature range as small as possible around the real melting point of the material. The 

Fourier law of heat conduction can be solved, considenng the change of therrnophysical 

properties of the material. To apply finite element formulation, the standard Galerkin 

approach is used. 

AB AQUS uses the backward difference algo nt hm for time discretization in finite 

element method. This operator is chosen for a number of reasons. First of all, it is from 

the family of one step operators which has the simplicity in implementation and well 

understood behavior among the members of this family, backward difference method, is 

unconditionally stable. Being unconditionally stable is important because it prevents early 



t h e  oscillations. ABAQUS uses an automatic(seif adaptive), tirne stepping aigorithm to 

choose At(time increment). This is based on a user supplied toierance on the maximum 

temperature change allowed in a t h e  increment, and increment is adjusted accordiig to 

this parameter, as weU as  the convergence rate in non-linear cases. 

3.4.2 Type of element 

Ail of the heat tramder elements allow for heat storage (specific heat and latent 

heat effects) and heat conduction. These elements are either first-order (linear), or 

second order (quadratic) interpolation in 1,2 or 3 dimensions. They are fuUy isoparametic 

(coordiiate interpolation is the same as temperature interpolation). The first order heat 

transfer elements(2-nodes link, 4-nodes quadrilaterals and 8-nodes brick) use 2x2 rule for 

numerical integraiion with the integration stations located at the corners of the element 

or nodes. Second order elements are to be preferred for problems when the solution wiil 

be smooth (without latent heat effects) whereas the first order elements should be used in 

non-smooth cases (with latent heat). 

Latent heat effects involve movhg boundary conditions(the melting or fieezing 

fiont), across which the spatid gradient of temperature, ùT/ùx, is discontinuous. Simple 

f i t e  elements, such as the linear and quadratic elernents used in ABAQUS, do not allow 

gradient discontinuities within elements, although they do allow such discontinuities 

between elements, in the diiection normal to their sides. Since the actual problem 



involves discontinuity surfaces moving generally through the mesh. The best we can do 

with a fixed grid of simple elements is to use a fine mesh of lowest order elements thus 

providing a high number of gradient discontlliuity surfaces. 

The lowest order one dimensional element for heat conduction in ABAQUS is 

element type DClD4 which is a two node linear element and therefore we choose this 

elernent . 

3.5 Finite Element Model 

3-5-1- Mesh 

This is a one dimensional heat transfer problern, and since the geometry of the 

problem is simple, we choose a simple mesh of one dimensional linear element to mode1 

the one dimensional space. 

The space occupied by the polymers in the mold is divided into two distinct 

regions, melt and solid. This space is descriticized by a 100, one dimensional hear 

elements. Since three different thickness ratio of solid/melt has been tried, for each case 



mold waU melt-so lid interface 

Figure 3.4: One dimensionai finite element mesh and geometry 

elements are distrîbuted proportional to the thickness ratio. The nodes were generated to 

coincide with the initial position of the phase change interface. The nodes were set at a 

predetermined equal spacing. The one diensional geometry is presented in figure 3.4. 

Although higher mesh densities and smaller time steps improve the accuracy of the 

solution, fiirther refinernent beyond the values assumed here fded to improve the result 

signincantly. Also coarsing either the spatial to temporal discretization may cause 

deteriorating and unpredictabie results. 

3.5.2 Time Step 

Due to the sensitivity of these equations, it is necessary to choose the size of the 

tirne increment At with some care. The start time is chosen to ensure that any heat 



transfer in the time t<to is confined to a region close to the interFace between the two 

regions and the outer extremities are not affected. Automatic (self adapting) time step, 

with initial choice of At=0.001 is chosen for time discretization. The program 

automatically increases this increment as we march forward. A maximum temperature 

change of 4' is aliowed per time step, to allow the time step to increase to large values at 

later times, as the sotution srnoothes out. This will considerably reduce the computer 

tirne. 

3.5.3 Melting Temperature Range 

In the case of existing latent heat of hsion for the materiai. The meiting 

temperature range is given as 1.5" around the melting point (Delaunay, 1995). 

Polystyrene (PS) and polyethylene terephtalate (PET) are chosen to represent 

amorphous and semi-crysta1line polymers. The properties of polystyrene have been 

extracted fiom the data given by Van Krevelen in 1990. The change of thermal 

properties like thermal conductivity and heat capacity with temperature is calculated 

according to the formulation in this reference, as it is explained in appendix 1. These 

properties are shown in figures 3.5 and 3.6. For this case the change of thermophysical 



properties with temperature is accounted for in the calculation, although the change of 

these properties with temperature is small and usually can be rieglected. 

Table 3.1: Thermophysical properties of polystyrene at room temperature. 

The properties of polyethylene terephtalate are extracted fiom Erhun and 

Advani's work published in 199 1. They studied the simple form of this problem and 

considered the more general form of solution without the change of themophysical 

properties with temperature. Kenig and Kamal in 1970, try to take into account these 

changes in their mode1 of cooling phase of polyethylene in injection molding, They 

review their work in 1971, in this later publication they generalize their mode1 by 

eliminating these changes and still they obtain acceptable results. 

In the phase change of semicrystalline polymers, because of latent heat of fusion 

and complexity of the calculation procedure, we cannot expect large improvements in 

the results by considering the thermophysical properties change. Also because of lirnited 

data available, we decided not to consider these changes and take directly the data fiom 

Erhun and Advani's work. These data are show in table 3.2 for PET. 
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Table 3.2. Matenal properties of PET. 

3.7 Processing Parameten 

No doubt, there are different processing parameters and operating conditions, 

that control the advance of melt interface in the solid ( or the advance of solid in the 

melt) until a specific point. According to Gutfinger & Chen (1969), Bell & Wedgwood 

(1993), and also Zhang et al (1993) this limiting point is determined by system 

temperature parameters like solid body temperature, melt temperature and of course the 

boundary condition, the wail temperature. 

a 

cm2/s 

0.00063 

A crucial component in sirnulating solidification (or melting) in the mold is the 

handling of heat transfer at the interface between the mold and the matenal, The solution 

of the equations depends on the selection of boundary conditions. For polystyrene, the 

problern is studied for three different temperature sets; 
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These temperatures are shown in table 3.3. The mold temperature differs for each 

case while keeping the other temperature parameters constant For Polyethylenete 

tetraphtalate, not only the effect of mold temperature but also the affect of changing the 

insert temperature is studied. The temperature system for PET is s h o w  in table 3.4. 

Table 3.3. Temperature system for polystyrene. 

Table 3.4. Temperature systems for PET 

Case 1 

Case II 

Case III 

T w  ( O c )  

110 

80 

30 

T m  (Oc) 

250 

1 

250 

1 

250 

Ti, ( O c )  

4 0  

4 0  

4 0  

Ti; ( O c )  

300 

300 

300 

Tis  (Oc) 

30 

30 

90 

Case 1 

Case 11 

Case III 

'Li ( O c )  

200 

200 

200 

Tw (Oc) 

100 

120 

120 

Tq (OC) 

100 

100 

100 



To generalize the problem, in the case of polystyrene, the differential equations 

are norrnalized. Dimensionless parameters are described as folIows; 

= Mold temperature 

= Time 

= Thermal diffùsivity 

= Total Iength of solid and melt regions 

= thermal conductivity of melt 

= specific heat of melt 

= Density 

and the heat transfer differential equation becornes; 



Dimensionless time is the Fourier number. 00). It contains the thermal difisivity 

and half thickness of the slab. Since the Fourier number is proportional to the reciprocal 

of the square of the slab thickness, if a section of a plastic part is twice as thick as 

another one, the time required to cool it to the same temperature will be four times 

longer than that for the thimer section. Therefore we can say that the limiting point for 

the advance of melt interface in the solid up to a specific point, is not only determined by 

melt, insert and mold temperature parameters but can Vary by altering the value of X (the 

ratio of initial melt thickness to initial solid thickness). 

For systern temperature in case III of table 3.3 and system temperature in case II 

of table 3.4 we study this affect for three different thickness ratio; 



3.7 Results and Discussion 

Figure 3.7-3.18 provide examples of computational results for PET. The fieezing 

mechanisrn in its earIy stages is sllnilar to the one obtained for semi-innnite region by 

Stefan . The reason for this similarity is the low thermal conductivity of the polyrner melt 

resulting in a shallow penetration depth of heat transfer. A cornparison between 

numerical analysis and Stefan's ( or Neumann's) theoretical solution for solidication of 

semi--te plate (Appendk XI) is shown in figure 3.7. The agreement is good specidy 

for short times, d e r  10 seconds the deviation is approximately 2% which is expected to 

increase at longer tirnes because of the dEerence between the nature of two problems. 

Figure 3.8 and figure 3 -9 show the temperature distribution for PET and for case 

I and case II of table 3.4. By increasing the wd temperature or on the other hand, 

decreasing the temperature difEerence between the mold and the melt, we can see that the 

temperature drop becomes slower. Figure 3.10 represents the position of melt-solid 

interface for PET. For equal initial thickness of melt and solid and temperature system of 

case 1 in table 3.4, the melt solidifies and the solid penetrates in melt. The rate of 

progress of this interface in melt is larger at short times and decays as we approach 

steady state conditions. As it can be seen in figure 3.1 1 and 3.12 for the second and third 

temperature systems of table 3.4, the initiai motion of the boundary remains the same as 

one of fieezing of melt, so there is no melting of solid insert. Figures 3.13 and 3.14 



shows the temperature distribution for two diffierent thickness melt-solid thickness ratio. 

By decreasing the quantity of melt simply the quantity of heat that should be rernoved is 

lower so the temperature drop is faster in the case of lower thickness ratio. Figures 3.15 

and 3.16 show the interface position for two dEerent initial thickness ratio of melt and 

solid. Still we observe the same initial movement of melt-solid interface, which agrees 

with Bell and Wedgewood's (1993) predictions, that by altering the value of thickness 

ratio whilst holding the other parameters constant, the initial motion of the boundary 

remains the same, but the steady state solution can be varied to literdy any position 

across the spatial region It is interesthg to compare the position of melt-solid interface 

for the three difFerent temperature systems of table 3.4. Figure 3.17 shows the position 

of this interface for two difEerent wall temperatures. Because of poor heat transfer 

properties in the polymer, increasing the mold temperature by 20 degrees does not affect 

the interface location, while decreasing the insert temperature by 60° C, in figure 3.18, 

increases the rate of interface movement, which is due to increase in heat transfer rate at 

rnelt-soiid interface. 

I t  shouid be mentioned here that it has been shown ( Kamal and Kenig, 1970) that 

the approxhate solution depends on establishg a good match between the estimated 

average properties and the space and time increments employed in the numerical 

solution. Under optimum stability conditions using approximate themophysical 

properties yields temperature profile within 3' C fiom exact solution but for shorter 

coolhg tirnes, the match is poor and depends on the degree of agreement between the 



average properties employed in the approximate solution and actual polymer properties 

at the time under consideration. Aiso according to this publication, for the time longer 

than 5 seconds a gap is created at the mold wall, because of polymer contraction, which 

practically will change this boundary condition. So it should be considered that the value 

of the initial thickness ratio of melt and solid for short times (less than 5 seconds) is 

dependent on the properties of material and their changes with temperature. 

To investigate the process for polystyrene, the change of thermophysical 

properties with temperature is accounted for. To make the comparison of the result 

easier the equations are normalized. Figure 3.19, 3.20 and 3.21 show temperature 

distribution for three different temperature system of table 3.3 for Polystyrene. For the 

first temperature system, case 1, the temperature in the system moves towards the steady 

state condition which is the constant temperature equal to Tw (zero dimensionless 

temperature), figure 3.19. We can see the same revolution of temperature for the case II 

in figure 3 -20, however, in case iII, figure 3.2 1, where TwcT,cT, both the melt and solid 

temperatures decrease toward the steady state condition which is again the condition of 

constant temperature al1 over the system. Figure 3.22 represents the position of melt- 

solid interface for polystyrene, while considering the temperature system of case 1 in 

table 3.3. The wall temperature in this case is higher than the glass transition temperature 

of the polymer. Therefore we have only one phase change interface. Steady state solution 

is a condition of constant temperature , dl over the system, higher than T,. Figure 3.23 

shows the position of melt-rnold and soIid-melt interfaces for case II of table 3.3, in 



which Twag<Ta . As it can be seen in the figure after a short period of time another 

interface is created near the mold w d ,  when the two interfaces meet, the temperature is 

decreased for the whole system, towards the total soiid condition. The process begins as 

the solid melts at low Fourier numbers and melt-solid interface progress in the solid 

insert until a specific point, AX'4.05, where this interface begins to move in opposite 

direction, as the temperature of the system decreases towards the steady state condition, 

this interface passes through its initial position and towards the mold-melt interface, 

which indicates the final complete solidification of melt. Figure 3.24 shows the position 

of interfice for further reduction of T, to 30" C. The mold-melt interface progress more 

rapidly in melt which is due to Iarger cooling rate because of larger temperature 

merence between the melt and the mold. Figure 3.25 compares the position of melt- 

solid interface at diierent T,. As we see for shorter times, reduction of T, does not 

affect the position of this interface considerably, but as we proceed in time, big dserence 

can be seen between these curves, the higher the temperature difference between wdI 

and meit, the faster the rate of heat transfer and the faster return of the interface. 

In the last two cases we distinguish the advance of melt interface in the solid 

insert und  a specific point. The limiting point is not only detennined by system 

temperature parameters but can vary by altering the value of X. Figure 3.26 shows the 

progression of phase change fiont as a hnction of Fourier number for initial thickness of 

soiid twice the initial thickness of melt. A quick comparison of the melt-solid interface 

position in this figure with figure 3.24 reveals that the limiting fiont position is much 



closer to the initial position of interface, A X f 4 . 0 2 5 ,  and the interface passes through its 

initial position at Iower Fourier numbers. The steady state condition, is a condition of 

final solidification of the system at temperatures weil below Tg. In figure 3.27 we can see 

that by choosing the initial thickness of melt twice the initial thickness of solid and 

keeping other parameters constant, the melt-solid interface progresses in soiid and cause 

complete thawing of insert before the solidification iayer generated at w d  passes 

through initial position of melt-solid interface. There is no liMting fiont position for this 

intefiace in this case. It can be seen here again that for different thickness ratio the initial 

motion of boundary remains the sarne but the steady state solution cari be vaied and also 

by decreasing the thickness of the melt, the melt-solid interface returns much faster. 

Figures 3.28 & 3.29 show the temperature history for X*=0.25 in melt and point 

Xf=0.75 in solid for three dEerent temperature system of table 3.3. In figure 3.28 it can 

be seen that the melt temperature decreases steadily as the solid temperature increases, 

the temperature of these two points converges to the steady state solution which is the 

state of constant temperature above the glas transition temperature. In figures 3.29 and 

3.30 the temperature history of these points is shown for the second and third case of 

table 3.3. The steady state condition for these cases is the constant temperature all over 

the system below Tg. Figure 3.3 1 compares the temperature history for node X*1).25, 

in the melt at dEerent wall temperature. Considering that the rnelt temperature for ail 

three cases, is the same, by decreasing the wall temperature we increase the cooling rate. 

The affect of this increase in cooling rate, on temperature drop at this point is not large 



at short times which is due to poor thermal conductivity of polymer melt that slows 

d o m  the process of heat transfer, for larger Fourier numbers, however, the dserence is 

more pronounced, the lower the w d  temperature we recognize the faster cooling of melt 

and as we approach w d  temperature (zero dimensionless temperature), or steady state 

condition, the distance between the curves decreases. The increase in cooling rate by 

decreasing the wall temperature is more sensible for higher Fourier numben which is 

again due to insulating properties of polymers. For higher Fourier numbers, as we 

approach steady state condition, the clifference between these curves is less pronounced. 

As we can see fiom the results the solution to the heat transfer equations is 

largely controlled by the boundary conditions used to spec@ the problem, specially at 

higher Fourier numbers. However the results of temperature profiles for long times is 

questionable, the boundary condition between the freczing material and the mold is less 

weU documented. These boundary condition depends on the nature of contact between 

the freezing material and its container, as well as the heat transfer by the container to 

externai cooling media. It is frequently the case that the rate of heat transfer between the 

polymer and the mold changes during solidication process. Thermai contact is good 

early in the process when the material is still liquid, but once solid~cation begins, 

thermal contraction of the material reduces the heat transfer rate after an air gap is 

formed, at the same tirne the mold heats and expands, contributing fûrther to the gap 

formation. The relative importance of the gap depends on its size, and on the thermal 

conductivity of the material and the mold. Although this effect can be investigated in 

more detail, considering high pressure in the mold in normal injection molding process 



and short cooling times, the period of interest, the assumption of perfect contact between 

mold and polymer for Our investigation is not far fiom reality and the results can be 

considered as a good first approximation for temperature distribution. 

The assumption of constant Tw is equivalent to that of a large heat resentoir kept 

isothermaily. In many applications the condition of a constant-temperature reservoir can 

be approximated because in most cases a plastic melt which is a good insulator is used to 

coat a metd object, a good conductor. Thus the assumption of constant temperature 

within the solid is reasonable. It should be emphasized that due to latter assurnption 

Iarger deviations are expected with objects having a relatively high surface to volume 

ratio, such as thin inserts. For this cases one would have to replace the constant object 

temperature with a total heat balance performed on the object. In those cases where 

these assumptions do not hold the present solution can be viewed as an upper bound on 

the final freezing (melting) interface position. 

Classical theory of Stefan predids that position of the solid@.ng eont is 

proportional to the square root of t h e .  He also assumed that the temperature at the 

crystailization fiont is constant and equal to the thermodynamic equilibrium melting point 

temperature this assurnption restricts the application of Stefan theory to sufficiently slow 

processes. Erhun and Advani (1992) claim that energy at the melt-solid interface d u ~ g  

crystallization controls the kinetics and subsequently influences the morphology of the 

transformation. They show that when the crystallization kinetics are taken into account, 



the heat diases at a siower rate, which results in slower front movements. Their results 

show that the interface temperature is not constant and drops due to the changing 

crystallkition rate which depends on the cooling rate. Their approach coupled the 

crystalliration kinetics through a mathematical model based on the c o o h g  rate of the 

crystaUization domain with the energy equation. The evolving cytallinity and 

microstructure of the material are rnodeled by aliowing the interface temperature to 

change with coolmg rate. They refer in their work to Kriegl and Eder (1984), who reject 

the Stefan solution for the modeling of polymer solidiiïcation and suggest a numericd 

model, for the coupling of the cooling rate of the crystallization dornain and the energy 

equation. In another paper, in 1990, however, they try to confirm their numencal model 

with experirnent, but, they were not successfùl. They explain that the most important 

feature of this theory is that as soon as the crystdlization front is supercooled, there is a 

chance of nucleation in the buik of melt in fiont of the crystallization fkont. In the above 

mentioned theory it is clearly assumed that the nucleation cm only occur at the 

crystallization &ont and not in the b u 4  which is mathematically sound but not dways 

realistic, since there are many nuclei in fiont of the crystallized layer, the growth of this 

layer is eventually impeded by difise qstallization in the bulk. Finally they drawn the 

conclusion that a crystallkation fiont in the sense of Stefan is surpnsingly enough. No 

doubt that for further studies required to establish a Iink between material kinetics and 

heat diffusion, the results obtained using Stefan approach for heat transfer problem of 

phase transformation can be used as a reliable first approximation in polymer processing. 
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Figure 3.5: Variation of thermai conductkity with temperature for Polystyrene 
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Figure 3.6: Variation of heat capacity with temperature for Polystyrene 



+ Numerical Approach 

t Stefan's Approach 1 

mold wall 
02 

O 1 I I 1 I 1 1 

O 2 4 6 8 10 12 14 16 18 20 
Time (sec.) 
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Figure 3.9: Temperature profile at different times in polyrner PET, 
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Figure 3.11: Position of melt-sotid and mold-melt interfaces for PET, 
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Figure 3.12: Position of rnelt-solid and mold-melt phase change interface 

for PET, Ti=300° c, TS=9O0 c, T,=12O0 c, &=XI 
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Figure 3.13: Temperature profle at different times for polymer PET, 
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Figure 3.14: Temperature profile at dïerent times for polymer PET, 
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Figure 3.15: Position of melt-solid and mold-melt phase change interface 

for PET. T,c300°c, T,=12O0c, T,=30°c, &=2xi 
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Figure 3.16: Position of melt-solid and mold-melt phase change interface 

for PET. Ti=300°c, T,=120°c, Tg=300c, x1=2x. 
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Figure 3.17: Position of melt-solid interfaces of PET for two difTerent 
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Figure 3.18: Position of melt-solid interface of PET for two different 

insert temperature, T,-300°c, T,=12O0c, 
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Figure 3.19: Temperature profile at different times for PS, TW=llO0c, 

T,=40°c, XI-% 
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Figure 3.20: Temperature profile at difTerent tirnes for polymer PS, 

T,=8O0c, T.=4O0c, %=xi 
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Figure 3.21: Temperature profile at dxerent times for polymer PS, 
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Polystyrene, Tw=1 10°c, T,=40°c, Ti=2000c 
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Figure 3.24: Position of mold-melt and melt-solid interface for 

Polystyrene, Tw= 3 OOc, T.=40°c, T1=2000c, &=xi 
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Figure 3.26: Position of mold-melt and melt-solid interface for - 
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Figure 3.27: Position of mold-melt and melt-solid interface for 

Polystyrene, Tw=3 OOc, T,=40°c, T1=2OO0c, xl=2x, 
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Figure 3.28: Temperature history for xe=0.25 and x4=0.75, in melt and 

solid respectively Poly styrene, Tw=l 10°c, &=XI 
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Figure 3.29: Temperature history for x*=0.25 and xWI.75, in melt and 

solid respectively. Polystyrene, T,=8O0c, %=xi 



Figure 3.30: Temperature history for x*=0.25 and x*=0.75, in melt and 

solid respectively. T,=30°c, XI=& 
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Figure 3.31: Temperature history for x*=0.25 in melt, for three different 

wd temperatures 



CONCLUSION 

As we can see fiom the results the solution to the heat transfer equations is 

largely controlled by the boundary conditions used to spece the problem. DEerent 

parameter regimes induce possible scenarios of rapid initial melting or fieezing and the 

melt fiont may then grow or decay to a limiting value as steady state develops. The 

resulting heat transfer process may progress in many different ways dictated by the 

parameters involved in the system. The initial velocity of melt front may have negative or 

positive influence on the meltuig or fieezing. For different temperature systems, the 

initial motion of melt-solid interface remains the sarne. Shce the solid and melt are finite, 

large t h e  steady state solution are possible. They are dependent in the thermal 

parameters of the process. 

In the case of melting of the solid insert, a limiting position of meIt-soiid intertace 

can be detected. This limiting position depends on the mold temperature. The higher the 

temperature dmerence between the mold and the melt, the lower is the penetration depth 

of fiont in the solid insert. The fiont positions is not disturbed by mold temperature at 

short times, however long t h e  solution can be highly affected by this boundary 

condition. For long thes the temperature difference between rnelt and mold wall 

controls the heat transfer rate of the system. Also it should be mentioned here that this 

heat transfer rate depends on the nature of contact between mold and melt polymer, this 



eff- should be considered for bnger times. The limiting position of the fiont is also 

controlled by initial thickness ratio, X. If the liquid region is relatively large the process 

may be terminated when the cold body melts completely leaving purely liquid or 

wnversely, if the liquid region is smdi it may âeeze completely l e h g  purely solid. The 

exact conditions depend on the specific polymer under consideration. By altering the 

value of X, while holding the other parameters fixed, the initiai motion of the boundary 

remains the same, but the steady state solution can be varied to literally any position 

across the spatial region. 

The fieezing mechanism of melt at the mold wall, in its early stages is similar to 

the one obtained for serni-innnite medium by Stefan. The reason for this sirnilarity is the 

low thermal conductivity of the polymer melt, resulting in a shallow penetration depth of 

heat transfer. The agreement is good for short times. For longer times, the difference 

between numerical results and Stefan solution is more sensible which is because of the 

difrence between the nature of the two problems. 

The rate of melt-solid interface penetration for semi-crystailine polymers (PET) is 

lower than amorphous polymers (PS). When a serni-crystalluie polymer changes fkom 

melt to solid state or vice versa, a latent heat of fusion must be added during melting or 

taken away during cooling which causes a delay in temperature range. When we defhe a 

fieezing range, Uistead of a complete delay of temperature when the upper range is 

reached, only a partial delay proportional to the crystallkation fiaction is applied. The 



partial delay in the temperature reduction is terminated when the lower b t  of the 

eeerllig range is obtained. Generaily the heat required to melt semi-crystalline plastics at 

a given temperature exceed those of amorphous at the same temperature. 

We anaiyzed the problem by assurning that in a pure material, the solid and liquid 

phases are separated by smooth and continuos interface. In generd, however, the 

interface is irregular in shape and is an unknown ftnction in space and tirne. 

For crydalline polymers, the effect of crystalliniq has not been accounted for. 

There has been much recent activity in trying to predia the microstructure from the 

solidification andysiq one of the diculties has been that the process dynamic controls 

the temperature at which phase change takes place. Although we cm not find a precise 

method to analyze this problem, latent heat control of phase change problem seems to 

give very good first approximation to the front position. However, this aspect should be 

studied in more detail. 
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APPENDM 1 



Appendix 1 

Changes of Heat Capacity of Polymers with Temperature 

Van Krevelen, by examining available literature data, shows that, for all polymers 

investigated, the curves for the molar heat capacity of solid and liquid may be 

approximated by straight lines, except for the solid below 150K. So if the slopes of these 

lines are known, the heat capacity at an arbitrary temperature may be calculated 

approlamately fkom its value at 298K. For a number of polymers the slopes of the heat 

capacity curves, related to the heat capacity at 298K are given. The slopes of the heat 

capacity h e s  for solid polymers show a mean value; 

For liquid polymers, an analogous experiment may be used. But much larger 

deviations occur. In this case; 



With a mean deviation of 30%. However ifexperimental data is lacking, the temperature 

fùnction of the heat capacity may be approxïmated with these mean values, so that; 

C,, = molar heat capacity 

The molar heat capacity is the specitic heat multiplied by the molar mass ( the 

molar mass of a structural unit in the case of poIymers). 

With the aide of these equations specific heat capacity in the solid and the liquid 

state at temperatures of practical interest may be predicted approximately fkom their 

values at room temperature. The ratio of q1(298)/q'(298) shows a mean deviation of 

7% fiom the mean value calculated £tom available experimental data for dierent 

polymers. 

The iinear approximations of the curves for G' and q' as a finction of 

temperature may be used for estimating G' and at the melting point. The ratio ~ ' / c , '  

at the melting point shows a mean deviation of 6% fiom the mean value calculated fiom 

experimental data for diierent polymers. 



APPENDM II 



Appendix II 

Neumann's Solution for Melting and Solidification in one Dimension 

A liquid at a uniform temperature Ti that is higher than the melting temperature 

Tm of the solid phase is confined to a haif -space x>O. At time t=û the boundary surface 

at dl is lowered to a temperature Tw below Tm and maintained at that temperature for 

times t>O. As a result, the solidication aarts at the surface and the solid-liquid 

interface moves in the positive x direction. This problem is a two-phase problem because 

the temperatures are unknown in both the solid and liquid phases. In the following 

andysis we determine the temperature distributions in both phases and the location of the 

solid-liquid interface. This problem is more general than the ones considered in the 

previous examples; its solution is hown as Neumann's solution. 

Solution 

The mathematical formulation of this problem for the solid phase is given as; 



For the liquid phase as; 

And the coupiing condition at the interîace x's(t) as; 

If swe choose a solution for T,(qt) in the form 

T, (x ,  1 )  = T, + A erf[x / 2(a,t)1r2] 

T,(x,  t )  = T, + B erf[x / 2(a,t)"2] 



The dEerential equation and the boundary condition are satisfied. The constants A and B 

are yet to be determined. Equations (A2-8) and (A2-9) are introduced h o  the interface 

condition (A2-6). We fhd; 

QI 1/2 T, + A erf (A )  = + B erfc [A(-) ] = Tm 
a1 

Where; 

The coefncient A and B are determined from equations (A24 1) as; 

Introducing the coefficients A and B into equations (A2-8) and (A2-9). we obtain 

the temperatures for the soiid and liquid phases as; 



The interface energy-balance equation (A2-7) is now used to determine the 

relation for the evaluation of the parameter A. That is, when s(t), Ti(-t) and Ti(x,t) fkom 

equations (A24 1), (AS-13) and (A2-14), respectively, are substitute into equation (A2- 

7), we obtain the following transcendental equation for the determination of X; 

( A )  ' k a '  Tm-T ,  erfc[A(a, /a,)"*] CJT, -Tw) 

Once l. is known from the solution of this equation, s(t) is detennined fiom 

equation (A2-11), T&t) f?om equation (A2-13) and Ti(x,t) firom equation (A2-14). 
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