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Résumeée

Le sujet de ce mémoire est la simulation numérique des écoulements régis par les
équations d'Euler. Les équations d’Euler sont utilisées pour obtenir des solutions
des écoulements nonvisqueux, compressibles et rotationnels. La stratégie numérique
de résolution utilisée consiste a discrétiser les équations par la technique de volumes

finis, a 'aide d’éléments triangulaires.

Pendant tout ce travail on a poursuivi deux objectifs principaux. Premiérement.
on propose des méthodes robustes de prédiction pour des écoulements compressibles
subsoniques et supersoniques ainsi que pour des écoulements avec des discontinuités
comme les ondes de choc. Deuxiemement, mais le plus important, on présente un

estimateur d’erreur basé sur l’analyse a posteriori de la solution.

Les méthodes de calcul proposées sont basées sur une technique de volumes finis
du premier ou du deuxiéme ordre dans l'espace et sur une discrétisation explicite
dans le temps, qui utilise des ressources informatiques moins importantes qu'une
discrétisation implicite méme si I’avancement de la solution dans le temps est moins

rapide.

Pour évaluer le flux a !'interface des éléments on utilise un schéma basé sur
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le solveur de Roe qui consiste & trouver la solution exacte au probléme approché

de Riemann. Ce schéma amont satisfait implicitement les conditions de Rankine-

Hugoniot a travers un choc et ne demande pas de viscosité artificielle explicite.

L’amélioration de la précision a nécessité l'extension du schéma a un ordre
supérieur, en utilisant plusieurs techniques de reconstruction de ia solution. On
a fait des comparaisons entre les différentes techniques utilisées en calculant les er-
reurs par rapport aux solutions analytiques et le taux de convergence pour chaque
méthode. Pour accélérer la convergence on utilise une technique multi-grille par

agglomération.

On desire développer une méthode adaptative qui utilise I’estimation d’erreurs
dans la solution numeérique. L’estimateur d’erreur proposé est basé sur la technique
d’extrapolation de Richardson et il peut étre utilisé pour un facteur de raffinement
quelconque. Premierement, on détermine le taux de convergence a I’aide de trois
solutions obtenues sur des maillages différents et deuxiémement on évalue les erreurs
sur les trois maillages. Par la suite, on préscnte une procédure d'adaptation du

maillage basée sur le critére de 'uniformisation de ’erreur dans le domaine de calcul.

On présente des simulations d’écoulements compressibles subsoniques (probleme
de Ringleb), d’écoulements supersoniques sans ondes de choc (Vortex superson-
ique) et avec ondes de choc, dont on a trouvé les solutions analytiques. A la
fin, on applique la méthodologie développée pour un écoulement autour du profil

NACA -0012.
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Abstract

The subject of this master’s thesis is the numerical simulation of flows governed
by the Euler equations. The Euler equations, directly obtained by means of the
Navier - Stokes equations ignoring the terms of the viscous dissipation, are used to
obtain solutions of non-viscous, compressible and rotational flows. The numerical
solution strategy consists in the discretisation of the equations by means of finite-

volume technique using triangular elements.

During this work, two main objectives were considered. We tried first to propose
some robust prediction methods for compressible subsonic and supersonic flows and
for flows with discontinuities such as shock waves. But, mainly, we tried to develop

an error estimator based on a posteriori analysis of the solution.

The computational methods showed are based on a finite volumes technique
of first or second order in space solved using an explicit time discretisation. This
technique use low computational ressources compared to the implicit discretisation,

but the convergence of the solution in time is not as fast.

The flux across the cell faces is evaluated using a scheme based on Roe’s solver

which applies an exact solution to the linearized Riemann problem. This upwind



X
scheme satisfies implicitly the Rankine - Hugoniot conditions across a shock wave

and doesn’t require an explicit artificial viscosity.

The improvement of the accuracy requires the extension of the scheme at a
higher order. This is accomplished using several reconstruction techniques of the
solution. We compare the different techniques employed by computing the numerical
solution errors and comparing to the analytical solution and also by computing the
convergency rate for each method. In order to accelerate the convergence, we have

used a multi-grid agglomeration technique.

Most of the adaptive methods needs an estimation of the error in the numerical
solution. The error estimator proposed in this work is based on Richardson extrap-
olation technique and it can be used for any refinement factor. First, we have to
establish the convergence rate by using three solutions obtained on different grids
and subsequently we can estimate the errors on the three grids. We propose after
that an adaptive method based on the uniformization of the error in the computa-

tional domain.

Several simulations including Ringleb subsonic flow, supersonic flows without
shock waves (Supersonic Vortex), supersonic flows with shock waves (wedge), are
presented in this study. Finally, the coupled grid adaptation - error estimation pro-
cedure was applied to the computation of the flow field around the NACA — 0012

profile.



Table des matiéres

| = o ¥ - iv
Remerciements .......... ..ot v
RSUmM ... e e vi
Abstract. . .. e viil
Table des matiéres............................. e e X
Liste des tableaux . .......... ...ttt i xiii
Liste des figures .............. e e xv
Liste des sigles et abréviations ............ .. ... . ... o i Xix
1 Introduction......... ..., e, 1

1.1 Leséquationsd’Euler . . . . . . . ... ... ... o 2

1.2 Schémas numeériques de discrétisation . . . . . . . . ... ... .. .. 3

1.3 Calcul des erreurs exactes et évaluation du taux de convergence . .. 5
1.4 L'estimateurd’erreur . . . . . . .. .. ... .. ... 6

1.5 Méthodes d’adaptation du maillage . . . . . .. ... ... ... ... 8



1.6 Applications- Test . . . ... ... ... ... ...........

Formulation mathématique et numérique du probléme........

2.1 Imtroduction . . . . . . . . . . . . o i i e
22 Leséquationsd’Euler . . . . .. ... ... ..o
2.3 Discrétisation des équations d'Buler . . . . . . .. .. ... L.
2.3.1 Introduction sur les schémas ‘upwind’” . . . . . .. ... ...
2.3.2 Schéma de Roe pour le cas unidimensionnel . .. ... ...
2.3.3 Extension du schéma de Roe pour le cas bidimensionnel
2.3.4 Discrétisation explicitedansletemps . . . . . . ... .. ..
2.3.5 Conditions aux limites . . . .. . . e e
2.4 Extension du schéma de Roe au deuxiémeordre . . . . . ... ...
2.4.1 Reconstruction basée sur le théoréeme de Gauss . ... ...

Estimation de ’erreur et adaptation du maillage

3.1 Taux de convergence . . . . . . . ... .o .,
3.1.1 Taux de convergenceexact . . . . . . . .. .. ........
3.1.2 Taux de convergenceestimé . . . . ... ...........

3.2 La technique de transfert de la solution entre deux maillages . . . .

3.3 Estimateurdel’erreur . ... .. ... .. ... ... ... ...

3.4 Adaptationdumaillage. . . . .. ... o oo
3.4.1 Adaptation du maillage par raffinement et déraffinement
3.42 Algorithme d’adaptation . . . ... ... ... ........

Résultats. . ....oooiinii i i e e i e e

4.1 Le vortex supersonique . . . . . . . . . . . .. ..o oL

2.4.2 Reconstruction basée sur la technique des moindres carrés

..................

xi



xi1

4.1.1 Modéle physique et solution analytique pour le vortex super-

SOMIQUE . . . . v i i e e e e e e e e e e e 48
4.1.2 Analysedelerreur . .. .. .. .. .. ... ... ... ..., 50
4.2 Résultats pour le problemede Ringleb . . .. ... ... ... .. .. 64

4.2.1 Modéle physique et solution analytique pour le probleme de
Ringleb . . .. ... .. ... . 64
422 Analysedelerreur . .. ... . .. .. ... .. L. 67

4.3 Résultats pour le probleme de confluence de deux écoulements super-

SOMIQUES &+ . v v v v v v i e e e e e e e e e e e e e e e e e 81

4.3.1 Modeéle physique et solution analytique . . . . ... ... ... 81

4.3.2 Analysedelerreur .. ... ... ... ... ... ... 32

4.3.3 Adaptationdumaillage . ... ... ... ... ... 83

4.4 Résultats pour un écoulement autour du profii NACA-0012 . . . . 92

5 Conclusion . ... . ..o e 100

b3S S = 2 Lo =< AR 103



Liste des tableaux

4.1
4.2
4.3

4.4

4.5
4.6
4.7
4.8
4.9
4.10

4.11

4.12

4.13
4.14

Les erreurs globales exactes pour différents maillages structurés

Les erreurs globales exactes pour différents maillages non-structurés .
Les taux de convergence exacts pour différentes méthodes sur des
maillagesstructurés . . . . . . .. .. ... oL oL
Les taux de convergence exacts pour différentes méthodes sur des
maillages non-structurés . . . .. ... ... oo 0oL
Les erreurs globales estimées pour différents maillages structurés . . .
Les erreurs globales estimées pour différents maillages non-structurés
Les taux de convergence estimés pour différentes méthodes . . . . . .
Les erreurs globales pour différents maillages structures . . . . . . ..
Les erreurs globales pour différents maillages non-structurés . . . . .
Les taux de convergence globales pour différentes méthodes sur des
maillages structurés . . . . . . ... L Lo oL
Les taux de convergence globales pour différentes méthodes sur des
maillages non-structurés . . . . . ... ..o Lo 0oL
Les erreurs globales estimés pour différents maillages structurés

Les erreurs globales estimés pour différents maillages non-structurés .

Les taux de convergence estimés pour différentes méthodes . . . . . .

xiii

o1

51

W
o

(V3]
o

33
68
68

68

69

69
70



4.15

4.16

4.17

4.18

4.19

Les erreurs globalesexactes . . . . .. .. ... ... .........
Les erreurs globales estimées . . . . .. . ... .. .. .........
Les erreurs globales exactes et estimées (les normes L,) pour différents
maillages non-structurés apres le premier cycle d’adaptation . . . . .
Les erreurs globales estimées en norme L, sur différents maillages
non-structurés imitiauX . . .. . ... ... ..ol
Les erreurs globales estimées en norme L, sur les différents maillages

non-structurés apres le premier cycle d’adaptation . . . . . .. .. ..



Xv

Liste des figures

o
—

!O
(3%

o
-

o

3.1

4.1
4.2

Décomposition de la différence du flux pour résoudre le probléme de

Discontinuité entre deux états du fluide pour le cas bidimensionnel . . 23
Elément ‘miroir’ utilisé pour 'implantation des conditions aux limites 27
Volume de controle utilisé pour la reconstruction basée sur le théoréme

de Gauss . . & v v v e e e e e e e e e e e e e e e e e e e e e e e e 29

Procédure utilisée pour le calcul du gradient a ’aide du théoréme de

Facteur géométrique pour la reconstruction basée sur la technique de
moindres Carrés . . . . . . . .. L .. e e e e e e 34
Voisins considérés pour la reconstruction basée sur la technique des

MOINATES CATITES . . . v v v e e e e e e e e e e e e e e e e e e e 35

Interpolation de la solution a partir d’'un maillage grossier sur un

maillageplusfin . . . . ... .. o Lo o 40
Les étapes a suivre pour l'estimateur d’erreur . . . . . ... ... .. 43
Les étapes a suivre dans le cycled’adaptation . . ... ... ... .. 46
Lignes de courant pour le vortex supersonique . . . .. ... ... .. 48

Maillages pour le vortex supersonique . . . . . . . ... ... ... .. 56



4.3
4.4
4.5
4.6
4.7

4.8

4.9

4.10
4.11
4.12
4.13

4.14

4.135

4.16

4.17

La distribution de la densité en utilisant le schéma de Roe . . . . ..
La distribution de |'erreur exacte en densité pour le schéma de Roe
La distribution de la densité en utilisant le schéma d’ordre 2 . . . . .
La distribution de I'erreur en densité en utilisant le schéma d’ordre 2
La distribution de l'erreur en densité en utilisant le schéma de Roe.
Les solutions sont obtenues pour les maillages les plus fins structurés
OU MOM-SEFUCLUTES. . . . . . . . .t v v e v e v e e e e e e et e e e
La distribution de l'erreur en densité en utilisant le schéma d’ordre 2.
Les solutions sont obtenues pour les maillages les plus fins structurés
OU NON-SETUCLUTES. . . . . . . .ttt v v e v e e et e et et e e e
Les erreurs globales exactes en utilisant le schéma de Roe . . . . . . .
Modele physique pour 'écoulement de Ringleb . . . . . .. .. .. ..
Maillages utilisés pour le probléeme de RINGLEB .. . ... ... ..
La distribution de la densité en utilisant le schémade Roe . . . . ..
La distribution de I’erreur exacte en densité pour le schéma de Roe
La distribution de la densité en utilisant le schéma d’ordre 2 basé sur
le théoremede Gauss . . . ... . ... .. ... ... .........
La distribution de ’erreur exacte en densité en utilisant le schéma
d’ordre 2 basé sur le théoremede Gauss . . . .. ... .... .. ..
La distribution de la densité en utilisant le schéma d’ordre 2 basé sur
la technique de moindrescarrés . . . . .. ... ... ... ... ...
La distribution de l'erreur exacte en densité en utilisant le schéma

d’ordre 2 basé sur la technique de moindres carrés . . . . . ... ...

xvi

~1

(S]]

59
60

61

75

76



4.18

4.19

4.28
4.29

4.30

La distribution de l'erreur en densité en utilisant le schéma de Roe.
Les solutions sont obtenues pour les maillages les plus fins structurés
ou nON-Structurés. . . . . . . . . . ... o e e e e e e e e 79
La distribution de 'erreur en densité en utilisant le schéma d’ordre 2.
Les solutions sont obtenues pour les maillages les plus fins structurés
ou NON-SErUCtUTES. . . . . . . . . . .ttt e e e e e e e e e e 80
Solution analytique . . . . . ... ... .. ... ... ... ... . 81

Maillages utilisés et distribution de la densité en utilisant le schéma

La distribution de |’erreur en densité pour le schéma de Roe . . . . . 86
Maillages obtenus apres un cycle d’adaptation et distribution de la
densité pour le schémadeRoe . . . . . .. .. ... ... ... .... 87
La distribution de I'erreur en densité apres un cycle d’adaptation pour
leschémadeRoe . . ... .. ... ... ... .. ... ... ... 88
Maillage obtenu apres deux cycles d’adaptation . . . .. ... . ... 89
La distribution de la densité et de ’erreur exacte en densité apres
deux cycles d’adaptation . . . ... .. ... ... ... ... 90
Les erreurs globales exactes et estimées en norme [, en utilisant le
schémadeRoe . ... ... ... ... .. ... . ... 91
Maillages initiaux et distribution de la densité pour le schéma de Roe 95
Maillages obtenus aprés un cycle d’adaptation et distribution de la
densité pour le schémade Roe . . . . . . .. ... ... ... 96
Les distributions de 'erreur sur les maillages initiaux et aprés un cycle

d’adaptation . . . . . . .. ... o e 97



xXviii

4.31 La distribution de la densité et le maillage aprés deux cycles d’adapta-

4.32 Maillage obtenu aprés deux cycles d’adaptation (vue générale} . . . . 99



Liste des sigles et abréviations

Ac:'b!c

bl
Amb ei

Cpr Gy
E

€L

Il e i

I ecisie |
HE|

| Ecibte |
fg

I

Sfezac

vitesse du son

la matrice jacobienne du vecteur du flux
aire élémentaire

aire €lémentaire cible

aire cible du élément z

vitesse du son (valeur de stagnation)
chaleurs spécifiques du gaz

énergie totale de 'unité de masse

vecteurs propres de la matrice jacobienne du vecteur du flux
erreur locale

erreur locale cible

erreur globale

erreur globale cible

composantes cartésiennes du vecteur du flux
solution discréte sur le maillage i

solution discrete exacte

xXix



f eract (t)

Fit1/2

solution discréte exacte pour une méthode d’ordre ¢

le vecteur flux

le vecteur flux a I'interface

enthalpie de 'unité de masse

taille élémentaire

taille élémentaire du maillage 1

taille élémentaire cible

taille cible du élément 7

verseurs des axes de coordonnées cartésiennes

frontiere du domaine

matrice obtenue par la méthode des moindres carrés
nombre de Mach

vecteurs de la normale extérieure

composantes cartésiennes du vecteur de la normale extérieure
pression

taux de convergence

la matrice des vecteurs propres a droite pour le cas 2-D
facteur de raffinement constant

facteur de raffinement entre les maillages ¢ et

vecteur position

la vitesse du choc



Sk la surface du élément k&

t temps

T température

u,v composantes cartésiennes de la vitesse de fluide u

u vitesse du fluide

uv les vitesses normale et tangentielle a une face du maillage

Us, Vy les vitesses normale et tangentielle 2 une face du maillage sur I’élément

du domaine de calcul

'ms Vi les vitesses normale et tangentielle 2 une face du maillage sur I’élément
‘miroir’
U vecteur des variables conservatives
U, U, les dérivées du vecteur des variables conservatives selon les directions

z et y, respectivement

U, la dérivée du vecteur des variables conservatives par rapport au
temps ¢

U le vecteur des variables conservatives au pas de temps n

U; le vecteur des variables conservatives pour l’élément :

LosY le vecteur des variables conservatives pour un élément du maillage 2

wi facteur de pondération géométrique

q module de la vitesse de 1’écoulement

Q la. matrice des vecteurs propres e; a droite pour le cas 1-D

z,y coordonnées cartésiennes



(273

Ak

xxit
intensité de 'onde k
facteur de reduction
rapport des chaleurs spécifiques du gaz
le pas de temps
la taille élémentaire du maillage dans le cas 1-D
la fonction du potentiel
la fonction de courant
valeurs propres de la matrice jacobienne du vecteur du flux

la matrice des valeurs propres de la matrice jacobienne du vecteur

du fux

densité

facteur de relaxation

surface élémentaire

surface d’un ‘volume de controle’ en 2-D
la fonction de transformation de Legendre
valeurs absolues

norme L,

norme Lo

valeurs évaluées a l'état moyen de Roe
valeurs évaluées i droite d’une interface

valeurs évaluées a gauche d’une interface



=

Chapitre 1

Introduction

Dans le passé, les aérodynamiciens utilisalent des résultats expérimentaux afin
de prédire les caractéristiques d’un écoulement. Méme si une telle procédure a
I'avantage de générer la solution la plus réaliste, ce type de méthode exige un prix
trés élevé et nécessite beaucoup de temps. Aujourd’hui, en dynamique des fluides
et en aérodynamique, les résultats numeériques sont obtenus plus rapidement et a
un coit moindre que les résultats expérimentaux [10]. Cela fait que les compagnies
aéronautiques, méme les plus grandes qui ont les moyens pour obtenir des résultats
expérimentaux, accordent de plus en plus d’importance aux codes numeériques afin

de réaliser leurs projets.

La calcul numérique est d’autant plus attirant lorsqu’il est possible d’estimer
les erreurs qui existent dans la solution numérique. Pour contréler et diminuer ces
erreurs, plusieurs procédures d’adaptation sont envisageables. En fait, aujourd’hui,

tous les chercheurs impliqués dans la CFD considérent que |’estimation d’erreur est



un probléme important et difficile & résoudre lors d’un calcul numérique.

Le but principal de ce mémoire est de développer une nouvelle technique d’esti-
mation d’erreur basée sur la technique d’extrapolation de Richardson et d’établir ses
performances. En utilisant cette technique, une procédure d’adaptation du maillage
sera proposée dans le but d’équi-distribuer ’erreur. Ce travail sera réalisé en utilisant
des méthodes de calcul basées sur la technique de volumes finis et des études de

convergence seront réalisées afin d’atteindre nos objectifs.

1.1 Les équations d’Euler

La simulation numérique d’un écoulement est reliée au choix du modeéle ma-
thématique. Lorsqu’on néglige la dissipation visqueuse, la représentation physique
la plus rigoureuse des écoulements est fournie par les équations d'Euler. Elles
représentent |'expression mathématique de la loi de conservation pour la masse, de
la quantité du mouvement et de |'énergie. Les équations d'Euler forment un systéeme
hyperbolique non-linéaire et selon la méthode utilisée pour avancer la solution dans

le temps, la résolution demande plus ou moins de ressources informatiques.

Le fait que I'on puisse représenter des écoulements avec des ondes de choc est dil
au choix de ce modéle et a |'utilisation d’une techrique de discrétisation appropriée.
Dans certains cas, les conditions de Rankine-Hugoniot a travers un choc sont au-
tomatiquement satisfaites. Etant donné que les écoulements-test qui sont visées par

ce mémoire présentent des ondes de choc, cette propriété demeure trés importante.



1.2 Schémas numeériques de discrétisation

On pourrait classifier les méthodes en explicites, qui sont soumises a des re-
strictions du pas de temps imposé par le critéere CFL (Courant-Friedrichs-Levi) de
stabilité, et implicites, qui solutionnent les équations de conservation d’une fagon
couplée, ce qui fait qu’elles ne sont pas limitées par le critere CFL. Par contre,
les schémas numeériques implicites demandent beaucoup de ressources informatiques
parce qu’ils conduisent a la résolution d’'une matrice multidimensionnelle. La tech-
nique employée lors de ce travail est basée sur une discrétisation explicite dans le

ternps.

Regardons rapidement les schémas numériques de discrétisation les plus connus
qui ont été développés par la technique des volumes finis. S.K. Godunov (1959) [7]
a été le premier a résoudre le probleme de Riemann qui se manifeste comme une
discontinuité entre deux états uniformes de fluide. Il a trouvé un procédé itératif
pour résoudre les problemes Riemann présents & I’interface de chaque paire d’états
adjacents. Cependant, le colit de calcul est trés élevé lorsqu’on utilise une solution
initiale inadéquate. Toutes les méthodes développées pendant les années 1960-1970
consistent a trouver la solution au probléme approché de Riemann. Ces schémas de-

mandaient de la viscosité artificielle explicite pour satisfaire les critéres de stabilité.

Les schémas proposés apres ’année 1970 sont basés sur la théorie des car-
actéristiques et on peut les classifier en deux catégories: 'Division du vecteur du
flux’ (FVS - Flux Vector Splitting) et 'Division de la différence du flux’ (FDS - Flux

Difference Splitting).

Steger et Warming (1979) [24] ont été les premiers a diviser le flux & un point



4

d’écoulement en deux composantes de flux et chaque composante pouvait étre di-
fiérenciée en amont suivant le signe des valeurs propres correspondantes. Partic-
uliérement, pour les équations d’Euler les valeurs propres représentent les vitesses

et les directions d’ondes de propagation de I'information dans I'écoulement.

En 1982, Van Leer [26] a suggéré une autre méthode FVS trés simple et facile a

linéariser pour étre utilisée dans les schémas implicites.

Une des méthodes les plus connues actuellement est celle proposée par Roe [22],
[23]. Elle est basée sur la théorie de la division de la différence du flux entre deux
états du fluide séparés par une interface (FDS). La linéarisation introduite par Roe
assure alors que les équations de Rankine-Hugoniot sont satisfaites pour un choc et
ne demande pas de viscosité artificielle explicite. Cependant, le schéma proposé par
Roe admet des ondes d’expansion comme solutions non-physiques et demande une

correction d’entropie comme celle introduite par Harten [6].

La méthode de Enquist et Osher [5] satisfait la condition d’entropie mais 1'ex-
ploitation de ce schéma demeure trés coiteuse relativement au schéma de Roe.
Plus récemment (1991), Liou et Steffen [12] ont proposés une combinaison entre la
méthode de la division du vecteur flux et celle de division de la différence du flux
qui s’appelle AUSM (Advective Upwind Splitting Method). Elle rivalise en précision
et robustesse avec le schéma de Roe, d’autant plus que la complexité numérique y
est moins élevée. Cependant, la propriété de satisfaire exactement les conditions de

Rankine-Hugoniot est perdue.

Le chapitre 2 de ce mémoire présente la méthode de calcul proposée qui est basée

sur une discrétisation explicite dans le temps et sur une technique de volumes finis



b)

du premier ou du deuxiéme ordre dans 1’espace qui utilise le solveur développé par

Roe. Le domaine de calcul est subdivisé a I’aide d’éléments triangulaires.

L’application de la technique multi-grille (Multi-Grid) aux équations d’Euler
a permis d’avancer la solution plus vite dans le temps, en réalisant de grandes
économies sur le termps de calcul. Parmi les méthodes les plus connues pour accélérer
la convergence des schémas explicites, on remarque celles de Ni [15], Jameson [11]
et Venkatakrishnan {Implicit Residual Averaging Technique). La procédure utilisée
lors de ce travail est basée sur la technique multi-grille par agglomération. Cela va
permettre d’utiliser un schéma explicite, méme si la restriction CFL imposée au pas

de temps devient sévere lorsqu’on utilise un maillage fin.
p q g

L'extension du schéma de Roe au deuxiéme ordre est basée sur la substitution de
la solution supposée constante sur chaque élément par une autre linéaire. On propose
deux facons de calculer les gradients. La premiére méthode utilise le théoréme de
Gauss [3] en considérant un gradient constant sur le volume de controle. La deuxieme

méthode est une reconstruction basée sur la technique des moindres carrés [17].

1.3 Calcul des erreurs exactes et évaluation du

taux de convergence

Pour un probléme dont la solution exacte est connue on peut facilement calculer
les erreurs. Tout d’abord on calcule les erreurs sur chaque €élément a l'aide d’une
technique d’intégration de Gauss. Ensuite, en utilisant soit la norme L, soit la

norme L, on somme les erreurs pour tout le domaine de calcul [9].
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L'ordre de convergence de la méthode de résolution peut étre extrait d’une étude
de raffinement du maillage sur un probléme ot la solution exacte est connue [1].La
fagon de calculer les erreurs exactes et 'ordre de convergence d’'une méthode pour

un probleme dont la solution exacte est connue est illustrée au chapitre 3.

Pour un probléme dont la solution exacte est inconnue, Roache[20] suggére une
méthode d’évaluation du taux de convergence par une étude de raffinement du mail-

lage de type a posteriori.

On peut déterminer le taux de convergence a l’aide de 3 solutions globales, en
utilisant la norme L, ou L,, obtenues sur des maillages différents, pour un facteur
de raffinement quelconque. Si le facteur de raflinement est constant, ’expression
du taux de convergence est trés simple. Dans le cas contraire, si il n'est pas
constant, ’équation a résoudre est transcendente et Roache propose une méthode
d’itération par substitution [21]. Le taux de convergence differe d'un probléme &
I'autre dépendant si I’on a réussi ou non a atteindre la zone asymptotique. Cette

technique d'évaluation du taux de convergence est présentée au chapitre 3.

1.4 L’estimateur d’erreur

Les estimateurs d’erreur peuvent étre de type a posteriori, utilisant la solution
calculée, ou de type a priori, utilisant des informations génériques au sujet de la
solution et du maillage. L’analyse d’erreur avec un estimateur a posteriori peut
donner des informations concernant la solution et peut étre utilisée pour piloter le

schéma adaptatif qui optimise le maillage.
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Une large classe de méthodes adaptatives utilisent [’estimation de 'erreur dans
la solution numérique comme base a 'adaptation. Les estimateurs d’erreur peuvent
étre classifiés en trois grands groupes: les estimateurs de projection de flux, les
estimateurs résiduels et les estimateurs basés sur des techniques d’extrapolation.
Ce type d’études peuvent étre facilement retrouvés dans le travail réalisé a 'aide de

la méthode des éléments finis [18], [19], [25], {30].

La méthode de projection, [30] est basée sur I'observation que, dans la discrétisa-
tion par éléments finis, la solution approximative est continue, mais les dérivées sont
discontinues aux interfaces des éléments. Ces dérivées discontinues sont projetées
dans un espace de fonctions continues, une norme de la différence entre les dérivées

continues et celles discontinues étant utilisée comme une mesure de ’erreur.

Plus récemment, des estimateurs résiduels ont été développés en vue d’obtenir
une équirépartition de l'erreur dans une solution calculée sur un maillage non-

isotropique (8]

Pour les problemes de type elliptique, ces estimateurs ont donné de trés bons
résultats mais, lorsqu’on essaie d’appliquer ces techniques pour des problémes hyper-
boliques, la précision diminue. Norton [16] a prouvé le fait que I’erreur de la solution
numérique d’un problémes de type hyperbolique est formée par deux composantes:
une composante locale et une composante convective qui n’était pas prévue par ces

estimateurs.

Dans le cadre de la solution numeérique des équations d’Euler par la méthode des
volumes finis, des indicateurs d’erreur ont plutét été utilisés. L’indicateur d’erreur le

plus simple, utilisé de facon intensive, est le gradient d’une variable de I'écoulement
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comme la densité. On suppose que les plus grandes erreurs se trouvent dans les
régions de forts gradients. Dans le cas des écoulements compressibles avec des
ondes de choc, les erreurs calculées sur la base du gradient de la solution ont la
tendance a augmenter au fur et a mesure que la discontinuité est résolue d’une
meilleure facon. Des estimateurs d’erreur apparaissent lentement dans la littérature.
L’estimateur d’erreur proposé par Van Straalan et al. [27] utilise la solution d’une
équation écrite pour les erreurs estimées. Mais, quelquefois. pour des problemes de
type hyperbolique, la résolution d’une telle équation devient aussi difficile que la

résolution du probléme lui-méme.

L’estimateur d’erreur utilisé dans ce mémoire, et présenté au chapitre 3, est basé
sur la technique d’extrapolation de Richardson [20], [21]. On utilise 2 solutions
obtenues sur des maillages différents, pour un facteur de raffinement quelconque,
avec le taux de convergence déja calculé [20]. Cette technique implique I"hypothese
de la convergence monotone de la solution vers la solution exacte, ce qui n’est pas

toujours le cas.

1.5 Meéthodes d’adaptation du maillage

L’objectif d’'une procédure d’adaptation est d’optimiser la discrétisation du do-
maine de calcul pour atteindre une haute précision avec un faible colt de calcul.
Cette procédure consiste dans des changements de taille et d’orientation des éléments
afin d’améliorer la précision de la solution qu’on a calculée au cycle précédent et, en

méme temps, de distribuer uniformément I’erreur dans les éléments du maillage.
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Il y a plusieurs techniques pour atteindre I'objectif prévu: des méthodes de
raffinement et de déraffinement local [9], [18], [28], des techniques basées sur le
déplacement des noeuds [14] par analogie avec le comportement élastique des ressorts
en tension et en torsion. Les techniques basées sur le déplacement des noeuds
peuvent étre utiles surtout dans les cas tridimensionnels a cause des limitations de

la mémoire.

La procédure d’adaptation proposée dans ce mémoire est basée sur le changement
de la taille des éléments selon les informations données par I'estimateur d’erreur. Le

remaillage est réalisé en utilisant les sous-routines ADX [28].

La stratégie d’adaptation, présentée au chapitre 3, consiste a imposer une erreur—
ctble pour tous les triangles du domaine. Si 'erreur estimée est plus grande que
I'erreur — cible, le triangle est divisé, en accord avec la différence entre les deux
erreurs, en deux triangles plus petits. Sinon, le triangle sera visé pour effacement.
Si un noeud du domaine n’appartient qu'aux triangles qui sont visés pour efface-
ment, il sera effacé et un remaillage local sera réalisé. Afin d’augmenter la qualité
du maillage, des techniques de relaxation et de changement de diagonales seront

utilisées.

1.6 Applications - Test

Lors des simulations numériques présentées au chapitre 4. on rencontre deux
catégories de maillages aux triangles: des maillages structurés et des maillages non-

structurés. Dans un maillage structuré tous les noeuds sont entourés par le méme
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nombre d’éléments et on peut construire une application biunivoque sur un trian-
gle logique. Pour les maillages non-structurés aucune restriction topologique ne
s’applique et les noeuds ne sont pas entourés par le méme nombre d’éléments. En
utilisant ces deux types de maillages, ainsi que les techniques de calcul proposées
aux chapitres 2 et 3, on va faire apparaitre par des épreuves les qualités et les défauts

pour chacun de ces types de maillages.

La méthodologie présentée aux chapitres 2 et 3 sera appliquée pour plusieurs
types d’écoulement: écoulement subsonique ou supersonique, écoulement avec ondes

de choc ou sans ondes de choc. Les résultats obtenus seront illustrés au chapitre 4.
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Chapitre 2

Formulation mathématique et

numérique du probleme

2.1 Introduction

La premiére étape consiste a établir le modele mathématique de 'écoulement et
le schéma numérique pour la résolution de ce modéle. Les écoulements qui seront
€tudiés sont régis par les équations d’Euler qui forment un systéme hyperbolique
non-linéaire. La discrétisation spatiale sera effectuée par une technique de volumes
finis basée sur le solveur de Roe [22], [23]. Par la suite, on propose deux techniques

de reconstruction de la solution afin d’améliorer la précision du schéma de Roe.



2.2 Les équations d’Euler

En négligeant les termes de dissipation visqueuse dans les équations de Navier-
Stokes, on obtient les équations d’Euler qui représentent le modele le plus exact pour
la description des écoulements compressibles non-visqueux, d’autant plus que leur
résolution représente un chemin naturel vers la simulation numérique des équations

de Navier-Stokes.

Pour le cas bi-dimensionnel cartésien, on peut écrire les équations d’Euler de la

facon suivante:

au af dg

4+ L =0 2.1
ot + dz ¥ dy (2-1)
ou les variables conservatives U et les flux convectifs f et g sont les suivants:
[ 7 " ] F a
p pu pv
2
pu pu”+p puv
U= f= g= (22)
pv ouv pri+p
| PE | (PE +plu | | (PE +pju |

Le systéeme sera fermé par 'équation d’état pour les gaz parfaits:

u)? + (pv)?
p=(7—nFE—@J3Ji— (23)
p
ou p représente la densité, u et v sont les vitesses dans les directions z et y, £

représente ’énergie totale par unité de masse et p la pression statique. (v = ¢\¢, =

1,4)
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2.3 Discrétisation des équations d’Euler

2.3.1 Introduction sur les schémas ‘upwind’

Les méthodes de discrétisation ‘upwind’ sont basées sur la théorie des car-
actéristiques. Le nom ‘upwind’ est justifié par les différences en amont utilisées
selon les directions caractéristiques. Ces schémas sont appliqués aux équations de

la forme suivante, dont 'information se propage selon des directions préférentielies:

U+ f(U): =0 (2.4)

Considérons la résolution de 'équation de convection scalaire:

Ut+aU==O (.

9
()]
N

ot a >0 et a = ct.. Dans ce cas, le schéma ‘upwind’ classique s’écrit de la fagon

suivante:

U~ - Ut u"-u..,"
= 2.
At a Az (2.6)

ou le terme de droite représente une différence en amont (‘upwind’) et le terme de

gauche est une discrétisation explicite dans le temps. Un tel décentrage en espace

fait que le schéma est stable. L'équation 2.6 peut se réécrire:

aAt
UM =US + —A?(Uin - Ui") (2.7)

88t < 1. Ceci représente la condition connue dans la

Le schéma est stable si A

littérature sous le nom CFL (Courant - Friedrichs - Lewy) [4].

En pratique, le coefficient a # ct. et une généralisation de ce schéma est requise.

Cette fois, on ne connait pas ‘a priori’ la direction caractéristique selon laquelle
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'information se propage. Cette direction est reliée au signe du coefficient a. On

définit donc:

+_atlal -_a—|al ,
a’ = —5 a”=— (2.8)
On remarque que lorsque a > 0 alors a~ = 0 et at = a, alors quesi a < 0 on
a at =0 et a~ = a. Dans ces conditions, le schéma ‘upwind’ s’écrit dans la forme
connue dans la littérature sous le nom C[R (Courant - [saacson - Rees) [4]:
UMt -ut Ut -0 U;" -U;,"
= - Q.
At ¥TTAr TP T Az (2:9)
En remplacant les formules 2.8 dans 2.9, on a:
Uttt - Ut a+la|\ Ugun"-U" [fa—|(a| \ U"-U_"
= l I +1 + I |) 1 (2.10)
At 2 Az 2 Az
ou encore:
U:Tl+l - U'n U{ "~ U;_ " U; . 2U“ﬂ. Ul— n
=a—* Lo+ |aj =% + i (2.11)

At 2Az 2Az
oil le terme de droite représente la somme d’une différence centrée et d’un terme de
viscosité artificielle qui assure la stabilité du schéma. Le terme de viscosité artificielle

contient une différence centrée du deuxieéme ordre et il peut étre écrit de la fagon

suivante:

(lalAzAt) Uiy =2U0" + U" (2.12)

2 Ar?

Le schéma de Roe appliqué aux équations d’Euler utilise la méme méthodologie.
Pour le cas unidimensionnel, on découple les trois équations en fonction du signe de
la vitesse de chaque onde. Par la suite, en utilisant une discrétisation de type 2.11,
deux sommations seront faites: une sommation sur les ondes avec vitesse négative
et 'autre sur les ondes avec vitesse positive. Finalement, en prenant la moyenne des

deux sommations, on recouple les trois équations.



2.3.2 Schéma de Roe pour le cas unidimensionnel

La méthode de Roe est appliquée premiérement 2 un écoulement unidimensionnel
gouverné par les équations de type hyperbolique d’Euler [22]:

du oF

—t - = 2.

5 + 9z 0 (2.13)
P pu
pE pEv + up

La méthode proposée par Roe et basée sur la théorie de la division de la différence
du flux entre deux états du fluide séparés par une interface (FDS). L'approche de
Roe est basée sur 'observation de Godunov que {’avancement dans le temps de la
solution peut étre réalisé par la résolution d’une série de problémes de Riemann {7]

(voir la figure 2.1).

A gauche (x<0) les variables conservatives sont U = U, et a droite {x>0)
U = Ugr. Roe propose une approximation linéaire du probleme de Riemann pour
les équations d’Euler. Le flux F est localement lin€aire par rapport a U et on peut
écrire:
JF

_ - - 2_ 5
F=>5U=AU (2.15)

ol les coefficients de la matrice jacobienne A sont constants et ils sont calculés de

la fagon suivante:
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Figure 2.1: Décomposition de la différence du flux pour résoudre le probléme de

Riemann
ou:
OF1 OF1 _ OF1 _
au; aUs ~ aUz
dF2 (pu)? dF2  (pu) dFy
90, " 2 7Y g, =, 08 gy, <
OF3 _v—1(pu)® pE +p(pu)
U, 2 o> p p
8F E+ 2
6U3 _pE+Dp _(7_1)(/”12)
2 P
OFs __(pu)
8Us ' 5

La matrice A s’écrit en terme des variables conservatives:

0 1 0

A= (-3 -y 9-1

Ll | pEtp(om) eE4p _ (y _1)lenll (o)
2 P PP p 7 o2 T

(2.22)
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ou encore en terme des variables primitives p, u, E et p:
0 1 0
A=l 5(1-3) u3-7) 71—l (2.23)
i e e S L UL
Finalement, on peut écrire:
0 1 0
A=l $(r-3)  u@B-7 -1 (2.24)
Tl —ull H—(y-1p qu
ou H est |'enthalpie totale:
E
H=22tP (2.25)
p
Le systeme d’équations (2.13) devient:
au au
— +A—= 2.2
5 + A 32 0 (2.26)

Compte tenu du fait que la matrice A est diagonalisable, il existe donc une base

composée par les vecteurs propres de A:

e. = (e, ez e3) (2.27)
1 1 1
e1=| u—a e2=1| u e3=| u+a (2.28)
H—ua ;¥ H + ua

ou ¢ est la vitesse du son:

@ =(y—1) (11 ~ L ) (2.29)
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De plus, on peut écrire un vecteur dans 'espace réel en utilisant cette base, selon:
U = a;e; + aze; + aze; (2.30)

ol les coefficients ay, ay, a3 sont constants. En utilisant la propriété que Aex = Acex

et en multipliant les deux membres de la relation 2.30 par A, on obtient:
AU = /\1&181 + /\2&282 + A3&383 (2.31)
ol A sont les valeurs propres de la matrice A:

e = (M, Az, ha) = (v — ayu,u+a) (2.32)

Etant donnés les deux états a gauche Uy et a droite Up et tenant compte de la
propriété 2.31, on peut écrire la relation suivante pour la différence du flux entre ces

deux états du fluide:

FR - FL = Z ak)q,ek (2.33)
k

oll e représentent les vecteurs propres de la matrice A a droite. Chaque terme de
la somme représente 'effet d’'une onde. «; est l'intensité de 'onde et A, sa vitesse.
De plus, en utilisant la technique de discrétisation en amont ("upwind”) basée sur
la théorie des caractéristiques, le flux & 'interface peut étre calculé de deux fagons

différentes:

Fir12(UL, UR) =Fr + 3 Clagdeer (2.34)

si on considere les ondes avec vitesse négative comme direction de propagation, ou:
Fis12(Ur, Ur) =Fr— Y Mlaghces (2.35)

si les ondes avec vitesse positive sont prises comme direction de propagation. PR

et T+ dénotent une sommation sur les ondes avec vitesse négative et positive, re-
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spectivement. En pratique, on prend la moyenne des deux expressions et on obtient:

1
F,‘+1/2 (UL,UR) = (FL + FR) - ;Zak I Ar I e (2.36)
=k

1
2

Pour les problemes linéaires cette solution est exacte, mais dans le cas non-
linéaire, Roe a proposé de construire une matrice linéarisée A{(U.,Ug) dont les

valeurs et vecteurs propres vérifient les relations suivantes:

1. Fr— Fp =3 arAre (voir 2.33)

[S%]

. Up = UL =T axe; (voir 2.30)

3. Fp—F; = S(Ugr—Uyg), ou S est la vitesse du choc. Ceci représente la
condition Rankine - Hugoniot qui est ajoutée aux premiéres deux conditions.

Ces trois conditions définissent 1’état moyen de Roe.

Lorsque toutes les conditions sont vérifiées, on aura que Say = Agay pour tous
les k. Roe a calculé les valeurs des variables primitives j,%, H qui interviennent
dans la matrice A(Up, Ug) pour satisfaire la consistance des équations avec celles
de départ {les conditions (1) et (2)), et aussi les conditions de saut de Rankine-

Hugoniot (la condition (3)).

La satisfaction de ces trois conditions définit ce qu’on appele ‘I’état moyen de

Roe’ que 'on retrouve souvent dans la littérature sous le nom de ‘propriétés U’:

1. A représente une application linéaire de U vers F

2. les vecteurs propres de A sont linéairement indépendants.



3. Lorsque Uy — Ugp — U, alors A(UL, Ugr) — A

4. Pour chaque paire (U, Ug), A(Uy, Ug)(U -~ Ugr) = F, — Fg

Les valeurs moyennes calculées par Roe, données par les formules suivantes, sont

appelées ‘les valeurs moyennes de Roe’:

p VPLPR
VPL

I

© T VLt

t = wup+(l —w)un

H = wHr + (1 —w) Hp

E = wEL+(1-w)Eg

i = (-,-1)(&--;-112) (2.37)

Le systéeme d’équations a résoudre devient donc:

%‘; + AUy, UR)%&I‘ = (2.38)
ou:
0 1 0
A= Z(r-3)  iB-v) -1 (2.39)

On peut facilement remarquer la similitude qui existe entre les matrices A et A.
En fait, A = A(U) et A = A(fl), ou U = ﬂ(UL,UR). On remarque aussi que
lorsque Uy, — Ug — U, alors A(UL,UR) — A.
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Si @ # 0 la matrice A posséde trois vecteurs propres linéairement indépendants

et par conséquent. on peut y appliquer une décomposition spectrale sous la forme:

A=QAQ! (2.40)

ol A est une matrice diagonale qui contient les valeurs propres i de A sur la

diagonale principale:

Ak = (A, A2y As) = (@ — &, @, 4 + &) (2.41)
i-a 0 0
A= 0 u 0 (2.42)
0 0 a+a

Toutes les variables ayant le symbole ~ sont évaluées a I'état moyen de Roe. Les

trois vecteurs propres de la matrice A sont donnés par les relations suivantes:

i 1 1
&=| i-a é=| @ &a=| d+a (2.43)
H —ua La? H + 1a

En plus, Q et Q’l sont les matrices des vecteurs propres € a droite et a gauche,

respectivement.

O
i
2
|
=1
[
[
an
o

Ay
{
&
-
R
oY
+ o+
[~}
[~1]
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Compte tenu du fait que le déterminant de la matrice engendrée pour les vecteurs
propres |(&,,€,,8&3) = % est nul lorsque @ # 0, les vecteurs propres de A sont

linéairement indépendants. Cela est une des ‘propriétés U’.
La relation (2.36) qui exprime le flux a l’interface s’écrit alors:

1~ -
Fit1/2(UL,Up) = 5 (FL + Fr) — §Q |A|Q7TAU (2.45)

[

ou:
AU =Ug-1U, (2.46)
et | A |, la matrice diagonale des valeurs absolues des valeurs propres de A. En

ecrivant le flux a I'interface de cette fagon, ’extension du schéma de Roe pour le cas

bidimensionnel devient une tache possible.

En conclusion, la méthode de Roe consiste a trouver la solution exacte a un
probléme approché de Riemann en linéarisant ce probleme afin qu’il devienne résol-
vable par une méthode directe. La linéarisation est faite 2 en remplagant la matrice
A avec une matrice A qui représente la matrice jacobienne évaluée 2 1'état moyen
de Roe. De plus, la définition de cet état découle de la satisfaction des certaines

conditions appelées ‘les propriétés U’ .

2.3.3 Extension du schéma de Roe pour le cas bidimen-

sionnel

Pour le cas bidimensionnel, la méthodologie de calcul demeure la méme. Dans

ce cas, |'échange d’information entre les deux états du fluide est fait en suivant une
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direction normale aux interfaces qui séparent deux éléments du maillage. Il faut

donc calculer le flux normal a I'interface des éléments L et R illustrés a la figure 2.2.

Figure 2.2: Discontinuité entre deux états du fluide pour le cas bidimensionnel

Le flux normal 2 l'interface de deux états de Riemann s'exprime par les deux

composantes de la normale unitaire extérieure a l’interface, n . et n,, selon:

F = (fi+gj) (nei + nyJ) (247)

Par analogie avec le cas uni-dimensionnel, on linéarise le flux F par rapport au

vecteur U et on introduit les valeurs moyennes de Roe:

OF
=—U-= 2.
F=-=U=AU (2.48)
A =PAP! (2.49)

ol A est une matrice diagonale qui contient les valeurs propres Ay de A sur la



diagonale principale.

A = (2.50)

U+a

et P, P~1 sont les matrices des vecteurs propres i droite et & gauche, respectivement.

Les vitesses normale et tangentielle a |'interface sont:

U = an, + im, V = on, —an, (2.51)
Le module de la vitesse moyenne est:

q2=_&2+1}2 (.

(&)
(V)]
o
g

Les autres valeurs moyennes seront définies par:

5 = JoieR
w = —VPL
VPL + /PR
t = wur+(l —-w)ur
v = wyr+(l-w)ur
H = wHp + (1 —w) Hg
E = wEL+(1—w)ER
& = (y—1) (H—éqz) (2.53)

La relation (2.36) qui exprime le flux normal a 'interface s’écrit:

1 1~ + =
F,’.{.l/g (UL, UR) = é’ (FL + FR) - ;P I A | PT'AU (254)



ol les éléments de la matrice A = PAP~! sont les suivants [§]:

0 ne ny 0

2L, — Gy Ga— (Y= 2)in:  dn, —(y—1)in: (- s

P
I
~
!\D
()]
w
o

_;lq2nz —ui, on;—(y-1l)in, tUn—(y-—2)on, (yv-—lln,

(34 - H)in Hno—(y = 1)ida Hny — (7= in  7ia

ou %, = u lorsqu’on écrit le jacobien du vecteur flux selon la direction z, et 4, =¥

lorsque la direction de référence est y.

2.3.4 Discrétisation explicite dans le temps

L’avancement dans le temps du vecteur des variables conservatives U est fait

d’une fagon explicite:
Upt - Up
—— =f(U%,z 2.56
——* = £(U}, 2) (2.56)
ou f est une fonction qui représente le bilan des flux calculés aux interfaces de
I'élément k. Le vecteur de variables conservatives U au pas de temps n + 1 sera

donc calculé en utilisant seulement le vecteur U obtenu au pas de temps n:
Ut = U” + f(U", z)At (2.57)

L'avantage d’utiliser une méthode explicite de discrétisation réside dans le fait qu’elle
ne demande pas beaucoup de mémoire d'ordinateur. Cet avantages est important,
surtout lorsque le maillage contient beaucoup d’éléments. Le désavantage de la
méthode explicite consiste dans la limitation des pas de temps par le critere CFL,

phénoméne qui rend la vitesse de convergence trés faible.

Le critere CFL demande un pas de temps At qui satisfait les conditions de sta-

bilité numérique Courant-Friedrichs-Levy. La vitesse de propagation de I'informa-
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tion dans le domaine est égale a la vitesse des ondes, donnée par les valeurs propres
de la matrice A: U — &, 0,0, +a, (U étant la vitesse normale & I'interface). Pour
chaque interface du domaine de calcul on détermine le module des valeurs propres.
La valeur maximale de ces modules sera la vitesse de référence pour I'imposition du
critére CFL et la valeur maximale du pas de temps sera donnée par le plus petit
quotient entre la longueur et la vitesse de référence pour toutes les interfaces du

domaine de calcul.

Finalement, le vecteur de variables conservatives U pour un élément k£ du do-

maine de calcul, au pas de temps n + 1, s’écrit de la facon suivante:
At N]acu:s

Uit =Ur+ 3 2 FH (2.58)

ou S est la surface de I’élément k et [; sont les longueurs de chaque face de I’élément

=1

k. Les flux F; sont les flux calculés pour les interfaces du domaine de calcul en

utilisant la méthodologie présentée dans la section précédente.

2.3.5 Conditions aux limites

Une des étapes de la résolution numérique des équations différentielles d’Euler
est 'imposition des conditions aux limites. Compte tenu du fait que les problemes
a traiter présentent des écoulements subsoniques et supersoniques, l'analyse des
conditions aux limites fait apparaitre plusieurs types de frontiéres dépendant du
régime de 'écoulement. Les types de frontieres utilisées sont les suivantes: ‘entrée
subsonique’, ‘entrée supersonique’, ‘sortie subsonique’, ‘sortie supersonique’ et ‘paroi

solide’.

L’implantation des conditions sur les frontieres du domaine de calcul est faite a
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'aide des éléments ‘miroirs’ tels que présentés a la figure 2.3.

clement du domaine element “miror”

Figure 2.3: Elément ‘miroir’ utilisé pour l'implantation des conditions aux limites

L’imposition des conditions aux limites pour un systéme d’équations hyper-
boliques est basée sur la théorie des caractéristiques. Pour le systéme des équations
présenté a la section 2.3.2, quatre conditions doivent étre imposées. On doit donc
fournir des valeurs pour quatre variables. En termes des conditions aux limites, deux

types de frontiéres ‘entrée’ sont étudiés: ‘entrée subsonique’ et ‘entrée supersonique’.

Pour 'entrée subsonique, trois conditions sur quatre sont imposées (1’angle d’en-
trée, la pression totale et la température totale) et on fait I'hypothese d’une détente
isentropique. Pour une frontiére de type ‘sortie subsonique’, le rapport entre la

pression statique a la sortie et la pression totale au réservoir est imposé.

Pour 'entrée supersonique, toutes les variables d’écoulement sont imposées. Au-

cune condition n’est irmposée a la ‘sortie supersonique’.
p

Sur les parois solides on impose que le flux a travers la frontiére soit égal a zéro.
Cette condition peut s’écrire en termes de vitesses normales U et tangentielles V &

I'interface des deux éléments tels que présentés a la figure 2.3:



U= -Un Va=Vn (2.59)

ou U; et V; sont les vitesses sur |’élément du domaine de calcul. tandis que U, et
q

V.. sont les vitesses sur 'élément ‘miroir’.

2.4 Extension du schéma de Roe au deuxiéme

ordre
L’extension du schéma de Roe au deuxiéme ordre est basée sur la reconstruc-
tion de la solution constante sur chaque élément en une autre solution linéaire par

élément. L’algorithme contient les étapes de calcul suivantes:

1. Calcul de gradients.

o

Construction d’une solution linéaire par élément, mais discontinue entre les

éléments.
3. Evaluation des flux aux interfaces.

4. Calcul de la solution a [’étape suivante.

On propose deux facons de calculer les gradients.



2.4.1 Reconstruction basée sur le théoréeme de Gauss

La premiére méthode utilise le théoréme de Gauss sur un volume de contréle
entourant un noeud tel que montré a la figure 2.4. Les centroides des éléments en-

tourant le noeud et les centres des faces voisines sont pris comme chemin d’intégration.

Figure 2.4: Volume de contréle utilisé pour la reconstruction basée sur le théoreme

de Gauss

Pour le cas bi-dimensionnel, le théoréme de Gauss s’écrit de la fagon suivante:

/5 YU(z,y)dQ = /l U(z, y)adl (2.60)

En considérant un gradient constant sur le volume de contrdle, ’équation (2.60)

devient:

1 i
VU(,y) ~ o /: U(z, y)ndl (2.61)

La procédure utilisée est illustrée & la figure 2.5 pour le triangle ABC. On illustre

la contribution du triangle ABC a la valeur du gradient en A.
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En pratique, on peut faire une simplification du calcul en démontrant que:

1
ndl = — 7 262
/DEFU(:L',y)ndl 5 '[BCU(I,y)ndI (2.62)

Alors une seule contribution pour chaque triangle voisin sera nécessaire pour
calculer le gradient. Ceci découle directement du fait que ’on puisse considérer la
solution U constante sur I'élément ABC et donc aussi sur le triangle DEF. En

utilisant la définition de I'intégrale de contour, on aura pour le triangle DEF":

/ Undl =0 (2.63)
triangleper

Cela conduit a la relation suivante:

/ Uriydl + / Uriydl = / Uadl (2.64)
DE EF DF

Cependant, on a:

Uhdl = + [ ura (2.65)
DF 2JsC

Finalement, la contribution du triangle ABC s’écrit:

1 .
> 2 P ’ 9
/DE Uridl + /EF Utizdl = ]B ,Undl (2.66)

A laide du gradient ainsi calculé a chaque noeud, on calcule un gradient au
centroide du triangle par simple moyenne pondérée par le volume. On peut alors

reconstruire une solution linéaire par élément selon:
U(z,y) = U(zo,y0) +rvU (2.67)

ou U(zg,y0) est la valeur de la solution moyenne, constante par élément, YU =
(WU, 7U,) le gradient calculé au centre de cet élément et r = (z — Zo,¥ — Yo)

représente la position par rapport au centre du triangle.



31

Figure 2.5: Procédure utilisée pour le calcul du gradient a 'aide du théoreme de

Gauss

2.4.2 Reconstruction basée sur la technique des moindres

carreés

Cette méthode est une reconstruction basée sur la technique des moindres carrés
[17]. Le but de cette technique est la reconstruction de la solution [V & l'aide de
polynémes de degré k avec une erreur locale O(Ax¥*!) (k-exact Least-Square Re-
construction). Le terme k-exact signifie que la reconstruction d'une fonction polyno-
miale sera exacte jusqu’a I'ordre &£. Si k = 1, la reconstruction va créer des fonctions
linéaires sur chaque élément avec une erreur Jocale plus petite que O(Ax2). Sous
forme mathématique, on écrit pour tous les voisins ¢ qui entourent un élément c

illustré a la figure 2.7:

A2 A2 . i
AU; = Az, U, + Ay, U, + (Aff‘] U + %'JQ-UW + E—A—”’%"\‘L‘)U,y + ... (2.68)

qui représente un développement un serie de Taylor ot Au; = u; —u., Az; = T;— T,

Ay; = y; — y. et toutes les dérivées sont évaluées en (z.,y.), le centroide du triangle
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c. Compte tenu du fait que la reconstruction visée est d’ordre 1, on néglige les

termes quadratiques et la relation 2.68 s’écrit de la fagon suivante :

AU; = Az;U; + Ay U, (2.69)

En écrivant la relation 2.69 pour les n voisins qui entourent un élément ¢ (voir

la figure 2.7), on aura:

AU, = Az, U, + Ay U,
AUy = Az, U, + Ay U,
AU, = Az3U, + AysU, (2.70)

AU, = Az,U, + Ay, U,

On a un systeme de n équations & 2 inconnues que |'on peut résoudre par une
technique de moindres carrés. Nous avons retenu 1’algorithme connu sous le nom

‘Data-independent least-squares reconstruction’ (DI-L,) [17].

Pour tenir compte de la topologie du maillage, on va introduire un facteur
géométrique w. On peut voir i la figure 2.6 que ['influence de chaque triangle est
différente en fonction de sa position par rapport au triangle C. Si un élément voisin
est proche du triangle C, le facteur w est élevé et son influence sera importante. Au
contraire, si un élément voisin est loin du triangle C, le facteur w est petit et son
influence sera donc moins importante. Alors on peut pondérer chaque équation de

2.70 par un facteur w et on obtient:
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wlAUl = wl(AxlU, + Aley)
w2AU; = w(Az,U; + Ay, U,)
w3AU; = w3(Az;3U; + AysU,) (2.711)

wa AU, = wa(Az.U: + Ay, U,)

que P'on peut écrire de fagon symbolique:

[Rln2(X]21 = [AU]ns (2.72)
ol
Arnyw Ay w1 AU,
szwg Aygwg Ur UP;AUg
[R] = (X] = [AU] = (2.73)
. U,
Azaw, Ayaw, w, AU,

La méthode des moindres carrés consiste & multiplier les deux termes par [R]T:

[R)T 5 11 [RlualXar = [R]T,,1,[AU. (2.74)

On obtient donc le systéme suivant, connu aussi sous le nom des ‘équations

normales’

?=1 A.‘.L‘.'z'w,'2 E?:l A:c;Ay,—w.-z U, ?=1 A.T.;AU,-w,-z

= (2.75)
Z?:l A:L',-Ay;w,-z ?=1 Ay;zwiz Uy by Ay;AU,—w,—Z

t=1

Cette facon de calculer le gradient est similaire a celle proposée par Ollivier-

Gooch [17] et correspond & un moindre carré pondéré:
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Figure 2.6: Facteur géométrique pour la reconstruction basée sur la technique de

moindres carres

z:"=1(wai)2 r waiAwyi Ur Ja AwuiAwl'i

=1 =1

Z?:l AwIiAwyi Z?:l(Awyi)2 Uy Z?:l AwuiAwyi

1
[(zi =z} + (3 —ye)?] 5

ou n est le nombre de voisins, A,(-) = w;A(-) et w; = ,avec t =

0,1,2.

Le facteur géométrique choisi pour nos calculs, w;, est donné par la relation
suivante et il représente exactement la pondération utilisée par Ollivier-Gooch [17]

pour { = 2:
_ 1
[(z:i — zc)? + (yi — ye)?]

wy

(2.76)

On évalue les gradients aux centres de chaque élément en tenant compte de tous
les voisins (voir fig.2.7). Le systéme & résoudre sur chaque élément peut étre écrit

d’une maniere plus compacte:
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l%v

Figure 2.7: Voisins considérés pour la reconstruction basée sur la technique des

moindres carrés

Litn L2 Uz f,

Ly L2 Uy fa

Les coefficients Ly;, L1z, L21 et Lj; sont calculés une seule fois au début du

programme, tandis que les coefficients f; et f, changent a chaque pas de temps.
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Chapitre 3

Estimation de ’erreur et

adaptation du maillage

3.1 Taux de convergence

L'un des facteurs les plus importants pour la précision et la robustesse d’une
meéthode est le taux de convergence, d’autant plus qu'il est demandé explicitement
lorsqu’on fait ’estimation de I’erreur. Le taux de convergence differe d’un probléme
a ’autre et il a été démontré que, si I'on a réussi ou non a atteindre la zone asymp-

totique, les résultats seraient différents.
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3.1.1 Taux de convergence exact

Le taux de convergence de la méthode de résolution peut étre extrait d'une étude
de raffinement du maillage sur un probléme ot la solution exacte est connue [1]. Soit
deux maillages avec les tailles linéaires caractéristiques A1), A(? et £ = 24(1), On
peut calculer les erreurs globales en densité a I'aide des normes L; ou L, selon les
relations suivantes, ol p; et p,; sont les solutions numériques et analytiques sur

chaque €élément.

IET = 3 [ (= pu)d (3.1)

I = \J > [ (pi = oo (3.2)

L’ordre de convergence peut étre écrit de la fagon suivante:

p(1ELH

_ | E ”(Lk)(z)
P D)
In(z37)

5
Il

P—
(o)

(3.3)

On peut facilement voir que pour £?) = 24(!) Péquation 3.3 devient:

L E e

(” E ”(Lk)(2)
Pp= 1

ln(g)

Par example, le taux de convergence p = 1 si || E ") = 2| E ||*90) ¢t 1a

-

I
e

(3.4)
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méthode est d’ordre 1, ou p = 2 si || E [[*¥@ = 4|| E [[(*)M) et |a méthode est

d’ordre 2.

3.1.2 Taux de convergence estimé

Pour un probléme ou la solution exacte est inconnue, Roache[20] suggére une
méthode d’évaluation du taux de convergence impliquant une étude de raffinement
du maillage de type a posteriori. On peut déterminer le taux de convergence a I'aide
de 3 solutions f(1), f(), f3) obtenues sur des maillages différents et interpolées sur le
maillage le plus fin, pour un facteur de raffinement quelconque (f(! est la solution
sur le maillage le plus fin). La technique d'extrapolation des solutions f(*) et f(

sur le maillage le plus fin (1) est illustrée a la section suivante.

Si le facteur de raffinement r est constant, 'expression du taux de convergence

est trés simple:

O @, ) ]
p= ln(fm —f(l))ln(r) (3.5)

Les termes f(® — f(? et f(2) — (1) sont les normes L, ou L, appliquées aux
différences entre les solutions f® et f() et f(?) et f(}) respectivement. Pour la

norme L, on peut écrire:

fO — f® = \} 3 [ (9, - j@, )0 (3.6)

£ - f0 = \l > [ (s, - fo,ydan (3.7)



39

ou, en utilisant la norme L;:

O - @ = 30 159, - 7@, jag (39)

FO— 0 = 30 15, — 0, jao (39)
1

Dans le cas ou r n’est pas constant, ’équation & résoudre est transcendente:

s rlzp(—-ﬁ"—) (3.10)

T'gsp -1 - T12p -1

ol fi; = f¥ ~ fl9) et r;; est le facteur de raffinement entre les maillages i et j.

Pour résoudre cette équation et extraire p, on utilise une méthode d’itération
par substitution [20]. Si p est la valeur de p & l'itération précédente et w un facteur

de relaxation (w = 0.5), la valeur de p a I'itération courante sera:

In(e)

P=wp+(1 —w)ln(ru) (3.11)
ri2® =1 fa3

= = 3.12

* r23® — 1 fi2 ( )

3.2 Latechnique de transfert de la solution entre

deux maillages

Des différences entre les solutions calculées sur plusieurs maillages sont requises

lors du processus d’estimation de ’erreur. Ceci implique le transfert de toutes les
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solutions sur le maillage le plus fin. Dans notre cas, les solutions obtenues sur deux

maillages grossiers seront transférées sur le maillage le plus fin.

Cette procédure nécessite une technique d’interpolation dans un maillage non-
structuré. Cette technique est basée sur le calcul du gradient aux centres de chaque
élément par la méthode des moindres carrés illustrée au chapitre 2.4.2. Supposons
qu’il faille interpoler une solution du maillage grossier (1) sur le maillage fin (2).
On connait la solution U et ies gradients U}, et U, aux centroides de chaque

élément du maillage (1).

La premiére étape consiste & trouver tous les éléments du maillage (2) dont les
centroides sont a l'intérieur du chaque triangle du maillage (1) (voir la figure 3.1).
Si le centroide £ d’un élément du maillage (2) se trouve a !'intérieur d’un élément
ABC du maillage (1), on consideére que I’élément de centroide E' est a l'intérieur de

I’élément ABC de centroide O.

Figure 3.1: Interpolation de la solution a partir d’un maillage grossier sur un maillage

plus fin
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On peut alors reconstruire une solution U(®) au centroide £ du maillage (2), avec

la formule suivante:
U(zg,yg) = UN(z0,y0) + F7UM (3.13)

ot UM (zp,yo) est la valeur de la solution moyenne sur 'élément du maillage (1),
UM = (UM, UM, est le gradient calculé au centre de cet élément et 7 =
7(zE—z0,YE—Yo) représente la position du centroide E du maillage (2) par rapport

a 0.

3.3 Estimateur de ’erreur

L’estimateur d’erreur proposé est basé sur la technique d’extrapolation de Ri-
chardson généralisée [20]. Dans cette technique, on suppose que les solutions discrétes

f ont une représentation en série de Taylor du type:
S(R) = fezact + arh + az2h* + azh® + ... (3.14)

ou A est la taille du maillage et a; sont des coefficients qui ne dépendent pas de la
taille & dans la zone asymptotique. En faisant une combinaison entre deux solutions
discretes f) et f,, on peut facilement obtenir une approximation pour la solution

exacte f.ra- Pour des méthodes d’ordre 1, on obtient la relation suivante:

ffz

fez:act = fl (3.15)

alors que pour des méthodes d'ordre 2 on peut écrire:

feesa® = el (3.16)
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our= % est le facteur de raffinement. En généralisant, a2 une méthode d’ordre p,

les expressions (3.15), (3.16) conduisent i la relation suivante:

funca® m fo+ L (317)

L'estimateur d’erreur pour la solution sur le maillage grossier sera donc donné

par:
Pf
E® = 1 1
TP (3.18)
tandis que pour la solution sur le maillage fin, on aura I’estimateur:
E(l) = f12 .
— (3.19)

ou fi2 = f» — f1 est calculé soit comme une norme L;, soit comme une norme L,

(voir les relations (3.7), (3.9)).

En conclusion, I'algorithme & suivre est présenté a la figure 3.2. A Daide de trois
solutions obtenues sur trois maillages différents, on calcule le taux de convergence
p. En utilisant les formules 3.18 et 3.19 appliquées aux solutions obtenues sur les
maillages (1) et (2), les estimés de 1'erreur seront calculées. De la méme facon, les
estimés de l'erreur pour les solutions obtenues sur les maillages (2) et (3) seront
calculés. Finalement, un estimé sur le maillage le plus grossier (1), deux estimés sur

le maillage moyen (2) et un estimé sur le maillage le plus fin (1) seront obtenus.

3.4 Adaptation du maillage

Le couplage entre le maillage et la solution numérique représente un facteur im-

portant pour diminuer les ressources informa:iques requises et augmenter la précision
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E‘-}olution sur maﬂlagﬂ Eolution sur maillageg @olntion sur maillage Z’J

Fl‘aux de convergencej

y
Erreur sur maillages I, 2 J Erreur sur maillages 2, 3 _]

Figure 3.2: Les étapes a suivre pour l'estimateur d’erreur
P

de calcul. L'objectif de la procédure d’adaptation est de réduire l'erreur dans tout
le domaine de calcul et, en méme temps, de distribuer uniformément ['erreur dans
I’éléments du maillage. Cela n’implique pas nécessairement une augmentation du
nombre de points du maillage. En effet, dans beaucoup de cas pratiques, le nombre
de points pourra étre réduit par la procédure adaptative tout en diminuant ’erreur

par une redistribution judicieuse des éléments.

3.4.1 Adaptation du maillage par raffinement et déraffine-

ment

La relation entre l'erreur globale E et les erreurs locales e; peut s’écrire de la

fagon suivante:

NEP=3"le? (3.20)
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On va essayer maintenant de réduire |'erreur globale d’un facteur ¢ a chaque

étape adaptative. L’erreur globale cible devient donc:

| Ecste |=€ || E || (3.21)

On utilise le principe d’équidistribution de I'erreur cible et on aura pour 'erreur
globale cible:
i 2 ‘
| Eciste 12=3_ || €ciste | = Nel| ewee |I? (3.22)

et encore pour l’erreur locale cible:

e M Ewe |l
“ ecinle ||= \/N:

ol N, est le nombre d'éléments du maillage courant. Cette relation est une bonne
approximation a condition que le nombre d’éléments du maillage suivant ne soit pas
trop différent de celui du maillage initial. Par la suite, en tenant compte du fait qu’il
y a une relation de couplage entre I’erreur locale || e || et la taille A de 1’élément, on
peut écrire:

| e li= kkP | ecivte ||= khcisie® k = const. (3.24)

ou p est le taux de convergence déja calculé (voir le chapitre précédent). Donc, la

taille cible pour chaque élément sera:

P
peible. _ h,(ll €cible ”) (3.25)
t t .
Il e |l
Compte tenu du fait que les sous-routines ADX utilisent les aires des éléments
au lieu des tailles afin de réaliser le remaillage, on va reécrire les relations 3.24 et

3.25 de la fagon suivante:

llel=kA" I} €cnte l|= kAspeT k= const. (3.26)
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L’aire cible pour chaque €lément sera donc:

Ale, = Ai(l”e%hilu) ° (3.27)

De cette facon, |’aire de chaque élément va augmenter ou va diminuer selon la
relation 3.27. Pour certains éléments, les aires cibles seront beaucoup plus grandes
ou beaucoup plus petites que les aires initiales. Dans ces conditions, des éléments
voisins peuvent avoir des aires trop grandes, une par rapport a ’autre. Ceci pour-
rait causer des difficultés au solveur. De plus, des facteurs de raffinement ou de
déraffinement local trop grands peuvent produire des oscillations de la solution d’une
étape adaptative a 'autre. Afin d’éviter ces anomalies, on va utiliser les limitateurs
suivants:

Ai _ jable
— S AT <44 (3.28)
Il faut aussi imposer un nombre maximal de points permis par les ressources

informatiques disponibles.

3.4.2 Algorithme d’adaptation

On présente a la figure 3.3 les étapes a suivre dans le cycle d’adaptation.

A laide de l’estimateur d’erreur on va calculer le nouveau maillage 3’ par raf-
finement et déraffinement. Les maillages 2’ et 1’ seront obtenus par grossissement
uniforme du maillage 3'. Par la suite, on va calculer les solutions sur les maillages
grossiers 2’ et 1’ pour estimer les erreurs de la solution sur le maillage 3', en utilisant
le nouveau taux de convergence. De cette fagon on va obtenir le maillage 3" et on

continue la procédure d’adaptation afin d’obtenir 'erreur désirée.



[Solution sur mailiage | J ' Solution sur maillage 2] Eoluu’on sur maillage 3]

[ Taux de convergence H Erreur sur maillage 3 J

4
L Adaptation ]

[ maillage 1’ H maillage 2’ H maill

age 3’ ]

[ Solut. sur maillage ﬂ LSolut. sur maillage 2'j [ Solut. sur maillage 3 ]

Taux de convergence H Erreur sur maillage 3'}

/
[ Adaptation... ]

Figure 3.3: Les étapes a suivre dans le cycle d’adaptation
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Chapitre 4

Résultats

Ce chapitre présente les résultats obtenus lors des simulations numeériques en util-
isant les différentes méthodes de prédiction présentées dans les chapitres précédents.
On propose des comparaisons avec des solutions analytiques et aussi des études

d’erreur.

4.1 Le vortex supersonique

Des simulations sont réalisées pour l'écoulement d’un vortex supersonique tel

que présenté a la figure 4.1 [1].
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4.1.1 Modéle physique et solution analytique pour le vor-

tex supersonique

La géométrie du probléme est illustrée schématiquement 2 la figure 4.1. Le

rayon intérieur est r;¢ = 1 et le rayon extérieur est ro; = 1.384. L’écoulement est

2 |

supersonique avec M = 2.25, pine = 1, Pin: =

Figure 4.1: Lignes de courant pour le vortex supersonique

Tous les parametres, densité p, pression p, température T, nombre de Mach M

et vitesse du son @ ne dépendent que du rayon r et sont donnés par:

p(r) = [L+ Lo m? (1= (2)1)] 7 (4.1)

ptr) = 2 [1+ LMl (1= (2))] 7 (42)
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T(r) = 27} (4.3)

a(r) = \/7T{(r) (4.4)

M(r)= |———=7= . k=158 (4.5)

Tint <

Les composantes cartésiennes de la vitesse du fluide, u et v. sont données par les

relations suivantes:

u(z) = a[r(i)]M[r(i)]—gE—::-;— (4.6)
(i) = ——a[r(i)]M[r(i)]% (4.7)

Les conditions aux limites sont les suivantes: ‘entrée supersonique’ (a droite et en
haut de la figure 4.1) pour laquelle toutes les variables d’écoulement sont imposées
en utilisant les formules déja présentées; aucune condition n’est imposée a la sortie
(2 gauche et en bas de la figure 4.1) et les variables conservatives sont extrapolées
de I'intérieur du domaine; sur les parois solides on impose les conditions illustrées &

ia section 2.3.5.
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4.1.2 Analyse de ’erreur

Pour chaque résolution du probleme, on a utilisé trois maillages avec un facteur
de raffinement égal 4 2. Différents types de maillages triangulaires sont utilisés, soit

les structurés et les non-structurés (voir la figure 4.2).

Les erreurs globales exactes pour différents maillages structurés sont présentées
au tableau 4.1. Pour calculer les erreurs globales, on a utilisé les deux normes
L, et L,. Les taux de convergence exacts, calculés en utilisant la norme L,, sont
présentés au tableau 4.3. Compte tenu du fait que les taux de convergence varient
d’une paire de maillages a 'autre, on présente les valeurs obtenues pour chaque
paire de maillages. Les taux de convergence calculés avec la norme L, sont presque
identiques. En regardant le tableau 4.1, on voit que les erreurs sont différentes
en fonction de la norme utilisée. Cependant, compte tenu du fait que les taux de
convergence calculés a 'aide de ces deux normes sont presque identiques, on peut
tirer la conclusion que les deux normes L; et L, conduisent aux mémes résultats
pour I'éiude d’erreur. Pour les maillages non-structurés, les erreurs globales exactes,
ainsi que les taux de convergence exacts sont présentés aux tableaux 4.2 et 4.4

respectivement.

Pour le schéma d’ordre 1, on obtient presque les mémes taux de convergence quel
que soit le type du maillage, méme si les erreurs globales sont plus élevées pour les
maillages structurés. Pour les deux schémas d’ordre 2, les taux de convergence sont

plus élevés lorsqu'on utilise des maillages structurés.

Les tableaux 4.5 et 4.6 permettent de mettre en évidence la précision de I'esti-

mateur lorsque les erreurs globales estimées pour différents maillages structurés et



Taille Erreur
Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés)
L1 L2 L1 L2 L1 L2
1.00 0.0877 0.1209 1.743E-03 3.242E-03 1.921E-03 3.219E-03
0.50 0.0437 0.0596 4.673E-04 8.555E-04 6.105E-04 9.700E-04
0.25 0.0225 0.0313 1.867E-04 3.220E-04 1.869E-04 3.143E-04

Tableau 4.1: Les erreurs globales exactes pour différents maillages structurés

Taille Erreur
Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés)
L1 L2 L1 L2 L1 L2
1.00 0.0546 0.0837 2.332E-03 4.411E-03 2.570E-03 4.306E-03
0.50 0.0267 0.0390 8.437E-04 1.742E-03 8.802E-04 1.733E-03
0.25 0.0141 0.0203 3.304E-04 6.124E-04 3.368E-04 6.285E-04

Tableau 4.2: Les erreurs globales exactes pour différents maillages non-structurés

non-structurés sont présentées. Les erreurs globales estimées et exactes demeurent

Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés)

0.96 .. 1 1.41 .. 1.92 1.63 .. 1.73

Tableau 4.3: Les taux de convergence exacts pour différentes méthodes sur des

maillages structurés



Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés)

092 .1 1.34 .. 1.51 1.31 .. 1.46

Tableau 4.4: Les taux de convergence exacts pour différentes méthodes sur des

maillages non-structurés

Taille Erreur
Roe Ordre 2
L1 L2 L1 L2

1.00  0.0847 0.1211 1.290E-03 1.826E-03
0.50 0.0418 0.0563 3.704E-04 5.020E-04
0.25 0.0200 0.0262 1.063E-04 1.380E-04

Tableau 4.5: Les erreurs globales estimées pour différents maillages structurés

presque €gales pour les deux types de maillage. Pourtant, la précision des estimations

Taille Erreur
Roe Ordre 2
L1 L2 L1 L2

1.00 0.0732 0.1086 1.272E-03 1.913E-03
0.50  0.0323 0.0475 3.039E-04 4.494E-04
0.25 0.0142 0.0207 7.262E-05 1.055E-04

Tableau 4.6: Les erreurs globales estimées pour différents maillages non-structurés
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est moins bonne pour les schémas d’ordre 2. Ceci est peut-étre di a I'interpolation
p rp

linéaire de la solution d'un maillage a ’autre, lors du processus d’estimation.

La méme conclusion s’applique pour les taux de convergence estimés (le tableau
4.7) avec des différences plus significatives par rapport au taux de convergence exact,

surtout pour les maillages non-structurés.

Roe Ordre 2

maillages structurés
Ly L, Ly L,
.1 1.06 1.8 1.86

maillages non-structurés

Ly Lo L L,
1.18 1.19 2.06 2.09

Tableau 4.7: Les taux de convergence estimés pour différentes méthodes

La figure 4.3 présente les distributions de la densité en utilisant le schéma de
Roe pour les deux types de maillage. On y remarque que I'utilisation d’un maillage
non-structuré va conduire vers une solution avec des oscillations plus fortes, surtout
lorsque le maillage est grossier. Les solutions obtenues sur les maillages les plus fins

sont presque identiques.

Les distributions de 'erreur en densité en utilisant le schéma de Roe sont présen-
tées 4 la figure 4.4. On remarque I'apparition d’'une onde de choc dans le voisinage de
'entrée. Cette discontinuité est plus significative pour les distributions de ’erreur
obtenues sur les maillages structurés, tandis que sur les maillages non-structurés

les distributions sont plutot bruités. La remarque la plus importante est que, en
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regardant encore une fois les tableaux 4.1 et 4.2 (pour schéma de Roe), cette onde
de choc diminue la qualité de la solution. Ce phénomeéne est aussi illustré a la figure
4.9 qui présente les erreurs globales exactes en utilisant le schéma de Roe. Malgré
la discontinuité remarquée pour les solutions obtenues sur les maillages structurés,

les taux de convergence demeurent égaux pour les deux types de maillage.

La situation change beaucoup lorsqu'on regarde les figures 4.5 et 4.6 pour le
schéma d’ordre 2. On remarque les mémes oscillations dans le cas d’un maillage
non-structuré grossier, mais cette fois il o’y a aucune onde de choc dans le voisinage
de 'entrée pour les maillage structurés. De plus, la qualité d’une solution obtenue sur
un maillage structuré est meilleure que celle d'une solution obtenue sur un maillage
non-structuré, phénomene qui peut étre vérifié aussi a 1’aide des tableaux 4.1 et 4.2.
Les différences entre les solutions obtenues en utilisant les deux schémas d’ordre 2
sont peu significatives, les résultats présentés étant obtenus pour chacune des deux

méthodes.

Les estimés de l'erreur obtenus pour les maillages structurés ou non-structurés
(ordre 1) les plus fins sont présentées a la figure 4.7. Les contours obtenus sont com-
parables et cela nous conduit a la conclusion que les estimés sont corrects, d’autant

plus qu’entre les erreurs globales estimées et exactes il n’y a qu’une faible différence.

Pour les schémas d’ordre 2, les estimés de 'erreur sont présentés a la figure 4.8.
On remarque que les distributions de ’erreur sont assez réguliéres sur les maillages
structurés, tandis que sur les maillages non-structurés, les distributions sont bruités.
L'estimateur d’erreur reproduit ce phénoméne. En fait, on avait observé le méme

phénomene lors de simulations faites en utilisant le schéma de Roe.
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Les distributions de I'erreur estimée pour les schémas d’ordre 2 ne présentent
pas de concentration de |’erreur sur les parois solides et & la sortie. Ceci nous fait
croire que la couche présentée par les distributions de I'erreur exacte a la figure 4.8
est due a I'implantation de la solution analytique. De cette fagon, on pourrait aussi
expliquer le fait que les taux de convergence pour les schémas d’ordre 2 sont plus

petits que 2.

Finalement, plusieurs améliorations sont envisageables: I'augmentation de la
précision de la solution analytique (y compris la qualité de la géométrie); I'amélio-

ration des conditions aux limites, surtout pour les parois solides.
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Figure 4.3: La distribution de la densité en utilisant le schéma de Roe
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.2 3.86E-1

.2 1.68E-1

min.: 1.81E-5 ; max.: 1.19E-1 min.: 3.87TE-6 ; max.: 8.38E-2
a) maillages structurés b) maillages non-structurés

» Figure 4.4: La distribution de I’erreur exacte en densité pour le schéma de Roe
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a) maillages structurés b) maillages non-structurés

Figure 4.5: La distribution de la densité en utilisant le schéma d’ordre 2
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|
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min.: 5.40E-6 ; max.: 1.00E-4 min.: 1.34E-5 ; max.: 2.54E-4

a) maillages structurés b) maillages non-structurés

Figure 4.6: La distribution de l'erreur en densité en utilisant le schéma d’ordre 2
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min.

min.: 3.87E-6 ; max.: 8.38E-2 min.: 3.78E-4 ; max.: 8.67E-2

a) exacte b) estimé

Figure 4.7: La distribution de I'erreur en densité en utilisant le schéma de Roe. Les

solutions sont obtenues pour les maillages les plus fins structurés ou non-structurés.
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Figure 4.8: La distribution de l'erreur en densité en utilisant le schéma d’ordre 2. Les

solutions sont obtenues pour les maillages les plus fins structurés ou non-structurés.
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Figure 4.9: Les erreurs globales exactes en utilisant le schéma de Roe
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4.2 Reésultats pour le probleme de Ringleb

4.2.1 Modele physique et solution analytique pour le pro-
bleme de Ringleb

L'écoulement de Ringleb fait partie de la famille des écoulements potentiels bi-

dimensionnels régis par l'équation 4.8:

2 2

uvy v
(1= 5)®er = 2500y + (1 = )8y, =0 (4.8)

Afin de calculer la solution analytique, on utilise la méthode de la transformation
hodographique. La vitesse ¢ et ’angle 8 par rapport a la direction de référence sont
utilisées comme variables indépendantes et seront fonctions de z et y. Il y a deux
méthodes principales et la plus connue est celle indirecte, qui utilise la transforma-
tion de Legendre:

Qu,v)=zut+yv—9 (4.9}

A I'aide de cette transformation, l’équation (4.8) devient:

2 ¢ ¢
9 aq ~ (1 = =5)ep + (1 = )9 = 0 (4.10)
ott, en utilisant la transformation de Molenbrock-Tschapligin [13] pour la fonction

de courant ¥, on obtient:

2 Qz l,'{2
¢ ¥ = q(1 — )W + (1 — ) Va5 =0 (4.11)

2
Soit la quantité 7 = (q—f;) , OU Giim est la vitesse limite de I'écoulement. La

famille de solutions peut s’écrire:

Wo(r,0) = 72 Fo(ag, bay a + 1, 7)e™? (4.12)



ou:
1 a(a +1) Cp
g +bg=a— —— Goby = ———m— = = 4.13
71 27 —1) 1)
Pour obtenir I’écoulement de Ringleb, on impose « = —1 dans (4.12). Dans ce
cas, on obtient la solution suivante:
1.
¥ = —sinf (4.14)
q
a) iso-vitesses (gq) entre 2 lignes de courant b} lignes de courant {¥)

Figure 4.10: Modele physique pour |'écoulement de Ringleb

Les formules suivantes seront utilisées pour calculer la solution analytique qui
est présentée a la figure 4.10 (la densité p, la vitesse du son c et le module de la

vitesse ¢ sont considérées comme des valeurs de stagnation):

z= ll(i—i) +é (4.15)
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i g\?2
V= 1—(k) (4.16)
1 .
k= E , constant sur les lignes de courant (4-17)
1 1 1 I. 1+¢
J= =4 — 4+ — 4= = 4.18
c+3 +5 +21g1—c J(e) (4.18)

c=y1-12¢2 = () (4.19)

(S

p=c?T—1 =pc) (4.20)

A laide de ces formules, on peut construire le domaine de calcul (p, ¢, q, k£ sont
considérées comme des valeurs connues). L™entrée subsonique’ est en bas sur la
figure 4.10, tandis que la sortie est en haut. La construction du domaine de calcul fait
apparaitre certaines difficultés dues au fait que les parois solides sont représentées
par des courbes de pente tres élevée dans le voisinage de y = 0. Ceci implique
I'utilisation d’une technique d’interpolation afin de trouver plus de points sur les

frontieres solides. Sinon, la qualité de la solution serait diminuée.

En utilisant une méthode itérative de Newton-Raphson, on peut trouver toutes
les variables p,c, ¢,k en fonction de = et y donnés (2 la figure 4.10 on présente
la distribution de la vitesse ¢ et les lignes de courant ¥). On obtient aussi que

Baue = (),9384.

Po
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4.2.2 Analyse de ’erreur

Les erreurs globales exactes pour les différents maillages structurés ou non-
structurés (illustrés a la figure 4.11), sont présentées aux tableaux 4.8 et 4.9. 1l
n'y a que des faibles différences entre les résultats obtenus pour les deux types de
maillage. On remarque que la précision du schéma basé sur la technique de moindres
carrés est plus élevée que celle du schéma basé sur le théoreme de Gauss, autant

pour les maillages structurés que pour les maillages non-structurés.

On constate sur les tableaux 4.10 et 4.11 que pour les deux méthodes d’ordre 2, les
taux de convergence calculés en utilisant la norme L, varient beaucoup d’une paire
de maillages a 'autre. Lorsqu'on utilise la norme L,, cette variation diminue. Les
variations sont encore plus significatives pour la technique de moindres carrés. Donc,
on pourrait dire que les erreurs sont différentes en fonction de la norme utilisée. Mais,
cect serait en contradiction avec les résultats obtenus pour le vortex supersonique.
Il faut chercher une raison pour laquelle le taux de convergence obtenu a 1'aide
des maillages moyen et fin est plus petit que celui attendu. En tenant compte que,
surtout pour les méthodes d’ordre 2 et en utilisant un maillage trés fin, les différences
entre la solution exacte et celle numérique sont tres faibles, on s’est rendu compte
que le niveau de précision de la solution numeérique dépasse la précision du calcul de
la solution analytique. Donc, la précision des erreurs exactes n'est plus tres élevée,
ce qui fait que le taux de convergence exact soit plus petit que celui prévu par la

théorie.

Les erreurs globales estimeées sont présentées aux tableaux 4.12 et 4.13, ce qui

permet de mettre en évidence une faible dégradation de la précision de l’estimateur.
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Taille Erreur
Roe Ordre 2 Ordre 2 (Moindres carrés)

L1 L2 L1 L2 L1 L2

1.00  0.5573 0.1328 4.541E-02 1.255E-02 1.828E-02 5.150E-03
0.50 0.3600 0.09%94 7.235E-03 2.149E-03 3.364E-03 1.181E-03
0.25 0.2140 0.0594 1.402E-03 8.642E-04 9.489E-04 7.953E-04

Tableau 4.8: Les erreurs globales pour différents maillages structurés

Taille Erreur
Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés)
L1 L2 L1 L2 L1 L2

1.00  0.6005 0.1647 7.045E-02 1.945E-02 3.230E-02 9.248E-03
0.30 0.4574 0.1256 9.373E-63 2.657E-03 3.462E-03 1.110E-03
0.25 0.2800 0.0775 2.296E-03 8.996E-04 1.161E-03 7.787E-04

Tableau 4.9: Les erreurs globales pour différents maillages non-structurés

Méme si la précision des estimés est diminuée par rapport a ceux obtenus pour

Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés)

0.75 1.31 .. 2.54 0.57 .. 2.12

Tableau 4.10: Les taux de convergence globales pour différentes méthodes sur des

maillages structurés
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Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés)

0.72 1.56 .. 2.87 0.56 .. 3.05

Tableau 4.11: Les taux de convergence globales pour différentes méthodes sur des

maillages non-structurés

le vortex supersonique, les résultats permettent d’avoir une bonne idée sur l'ordre

de grandeur de 'erreur dans la solution.

Les taux de convergence estimés pour les différentes méthodes utilisées sont
présentés au tableau 4.14. On y remarque aussi une dégradation de la précision
par rapport aux résultats exacts. D’ailleurs, on s’attendait & cette dégradation car

les erreurs globales estimés sont reliées au calcul du taux de convergence estimé.

Taille Erreur
Roe Ordre 2
L1 L2 L1 L2

1.00  0.760 0.212 4.385E-02 1.473E-02
0.50 0.560 0.158 T7.469E-03 2.95TE-03
0.25 0417 0.118 1.272E-03 5.935E-04

Tableau 4.12: Les erreurs globales estimés pour différents maillages structurés

Les distributions de la densité et de I'erreur en densité, utilisant le schéma de
Roe, sont présentées par les figures 4.12 et 4.13. On remarque des petites oscillations

de la solution dans le cas d’'un maillage non-structuré grossier. En regardant les



Taille

Erreur
Roe Ordre 2
L1 L2 L1 L2

1.00
0.50

0.25

0.832 0.225 6.850E-02 2.179E-02
0.618 0.169 8.745E-03 3.539E-03
0.477 0.121 1.116E-03 5.748E-04
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Tableau 4.13: Les erreurs globales estimés pour différents maillages non-structurés

Tableau 4.14: Les taux de convergence estimés pour différentes méthodes

Roe Ordre 2

maillages structurés

Ll Lz Ll L2

0.43 0.42 255 231

maillages non-structurés

L]_ L2 L1 L2

0.41 04 297 2.62

distributions de I’erreur, les oscillations sont encore plus fories sur les maillages

non-structures.

Les différences entre les solutions obtenues en utilisant les deux schémas d'ordre

2 sont trés faibles (voir les figures 4.14, 4.15, 4.16, 4.17). Cependant, on constate

que les erreurs sont concentrées dans les zones ou les parois solides sont représentées

par des courbes de pente trés élevée (dans le voisinage de y = 0). Ceci est peut-étre
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dd 2 I'implantation de la solution analytique dans la construction du domaine de

calcul.

Les estimés de l'erreur obtenus pour les maillages les plus fins structurés ou
non-structurés obtenus par le schéma de Roe sont présentés a la figure 4.18. Pour
les schémas d’ordre 2, les estimés de l'erreur sont présentés a la figure 4.19. On
remarque une tres bonne précision de ’estimé pour le cas d’un schéma d’ordre 1
implanté sur des maillages structurés. Pour les schémas d’ordre 2, I’apparition d’une
couche limite est tres évidente sur la paroi interne. Ce phénomene demeure toujours
inconnu mais est peut-étre di a I'implantation des conditions limites au deuxiéme
ordre. Une autre raison pour la dégradation de la précision de I’estimation pourrait
étre la fagon d’interpoler les solutions obtenues sur les maillages grossiers lors de la

procédure d’estimation.
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b) maillages non-structurés

maillages structurés

a)

Figure 4.11: Maillages utilisés pour le probleme de RINGLEB
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min.: 8.32E-1 ; max.: 9.6TE-1

min.: 8.07E-1 ; max.: 9.62E-1 min.: 8.21E-1 ; max.: 9.63E-1

a) maillages structurés b) maillages non-structurés

Figure 4.12: La distribution de la densité en utilisant le schéma de Roe
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min.: 9.39E-4 ; max.: 8.53E-2 min.: 3.90E-4 : max.: 9.01E-2

¢

min.: 2.70E-4 ; max.: 5.85E-2

;i l i

min.: 7.21E-5 ; max.: 3.74E-2 min.: 5.53E-5 ; max.: 4.66E-2

a) maillages structurés b) maillages non-structurés

Figure 4.13: La distribution de l'erreur exacte en densité pour le schéma de Roe
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: max.: 9.57E-1

min.: 7.79E-1 ; max.: 9.55E-1 min.: 7.81E-1 ; max.: 9.536E-1
-] 1
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i |
J/
min.: 7.73E-1 ; max.: 9.535E-1 min.: 7.37TE-1 ; max.: 9.56E-1
a) maillages structurés b) maillages non-structurés

Figure 4.14: La distribution de la densité en utilisant le schéma d’ordre 2 basé sur

le théoreme de Gauss
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min.: 7.99E-5 ; max.: 7.35E-3 min.: 1.75E-4 ;: max.: 1.11E-2
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|
min.: 2.153E-6 ; max.: 2.32E-3 min.: 1.84E-5 ;: max.: 2.17E-3
] —~ i
/ i | / |
min.: 4.94E-7 ; max.: 3.48E-3 min.: 8.80E-7 ; max.: 2.61E-3
a) maillages structurés b) maillages non-structures

Figure 4.15: La distribution de l'erreur exacte en densité en utilisant le schéma

d’ordre 2 basé sur le théoréme de Gauss
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.2 9.56E-1
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|
min.: 7.73E-1 ; max.: 9.55E-1 .. 9.56E-1
a) maillages structurés b) maillages non-structurés

Figure 4.16: La distribution de la densité en utilisant le schéma d’ordre 2 basé sur

la technique de moindres carrés
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min.: 5.13E-5 ; max.: 3.21E-3 min.: 1.34E-5 ; max.: 6.49E-3
{ I
min.: 5.66E-6 ; max.: 2.34E-3 min.: 3.34E-6 ; max.: 2.03E-3
u
( !
A
min.: 1.09E-6 ; max.: 3.534E-3 min.: 1.41E-6 ; max.: 2.99E-3
a) maillages structurés b) maillages non-structurés

Figure 4.17: La distribution de l'erreur exacte en densité en utilisant le schéma

d’ordre 2 basé sur la technique de moindres carrés
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min.: 7.21E-5 ; max.: 3.74E-2 min.: 1.12E-4 ; max.: 7.18E-2

min.: 5.53E-5 ; max.: 4.66E-2 min.: 2.13E-4 ; max.: 7.94E-2

a) exacte b) estimé

Figure 4.18: La distribution de I'erreur en densité en utilisant le schéma de Roe. Les

solutions sont obtenues pour les maillages les plus fins structurés ou non-structurés.
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min.: 1.09E-6 ; max.: 3.54E-2

min.: 1.49E-6 ; max.: 2.61E-3 min.: 9.72E-8 ; max.: 9.90E-4

a) exacte b) estimé

Figure 4.19: La distribution de l’erreur en densité en utilisant le schéma d’ordre
2. Les solutions sont obtenues pour les maillages les plus fins structurés ou non-

structures.
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4.3 Résultats pour le probléme de confluence de

deux écoulements supersoniques

Des simulations ont été réalisées pour un écoulement supersonique avec chocs,

dont la géométrie et les parameétres de 1’écoulement sont montrés 4 la figure 4.20.

[2]

4.3.1 Modéle physique et solution analytique

M=2.3 @

Figure 4.20: Solution analytique

On a partagé le domaine en 4 zones, dans lesquelles I'écoulement est isentropique.
Dans les zones 3 et 4, la pression p; = py = 1.7238, la densité P3 = ps = 1.468 et

la température t3 = t, = 1.1738. Les angles formés par les ondes de choc sont
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Bs = 33.605 degrés et 84 = 44.992 degrés.

4.3.2 Analyse de 'erreur

Lors des simulations suivantes, on va réaliser un couplage entre les procédures
d’estimation de l'erreur et d’'adaptation du maillage. Les maillages aux triangles
utilisés sont non-structurés et la résolution du probleme est effectuée par le schéma
de Roe. La figure 4.21 illustre les maillages utilisés ainsi que les résultats pour la
densité. Les erreurs globales exactes sont présentées au tableau 4.13, tandis que les
erreurs globales estimés sont présentées au tableau 4.16. Les taux de convergence
sont calculés en utilisant la norme L, ou la norme L,. Les valeurs sont plus petites
que 1, fait qui est peut-étre di & la présence des ondes de choc, en supposant qu’a
I'intérieur d’une onde de choc le taux de convergence locale est beaucoup diminué.
Pourtant, la raison pour laquelle le taux calculé en utilisant la norme L, est deux
fois plus grand que celui calculé en utilisant la norme L, demeure toujours inconnue.
On observe qu’il y a des différences plus significatives (par rapport aux problémes
présentés auparavant) entre les résultats exacts et nos estimations, surtout lorsqu'on
utilise la norme L,. Les taux de convergence estimés sont aussi plus petits que les
taux exacts. Cependant, la figure 4.22 montre que la distribution de 'erreur estimée

ressemble beaucoup a celle de I’erreur exacte.

Afin d’augmenter la précision de l’estimateur et, en méme temps, la qualité de la
solution numeérique, une procédure d'adaptation du maillage sera utilisée. Cela va
mettre en évidence le couplage qui existe entre la procédure d’estimation de I'erreur

et celle d’adaptation du maillage.
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Ordre 1
Maillage L, L,
Maillage, 4.1330E-2 6.1994E-2
Maillage, 2.6738E-2 4.7639E-2
Maillages 1.5280E-2 3.6470E-2

Convergence taux p= 0.7 taux p = 0.38

Tableau 4.15: Les erreurs globales exactes

Ordre 1
Maillage L, L,
Maillage, 8.41E-2 0.242
Maillage, 6.14E-2 0.208
Maillages 4.49E-2 0.168

Convergence taux p = 0.451 tauxp = (.22

Tableau 4.16: Les erreurs globales estimées

4.3.3 Adaptation du maillage

On présente 'adaptation du maillage en fonction des caractéristiques de la solu-
tion. On utilisera la méthode basée sur |'estimateur d’erreur présenté auparavant.
Le maillage initial est un maillage non-uniforme qui contient 7360 noeuds et 14450
éléments. Les deux autres maillages utilisés pour faire les estimations ont 1856
noeuds et 3575 éléments, et 507 noeuds et 945 éléments (voir la figure 4.21). On va

tenter de réduire 'erreur d’un facteur € = 0.7 a chaque étape adaptative.

Cependant, a chaque étape adaptative, il faut créer deux autres maillages, plus
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grossiers, a partir de celui le plus fin et semblables a celui-ci. Le facteur de grossisse-
ment utilisé est approximativement égal a 2. Ces deux maillages seront utilisés lors

du processus d’estimation de I’erreur sur le maillage le plus fin.

Apres le premier cycle d’adaptation, le maillage obtenu a 5706 noeuds et 11319
éléments. Ce maillage et les deux autres qui seront utilisés au cycle suivant d’ada-
ptation sont présentés a la figure 4.23, tandis que les erreurs exactes et estimées sont
présentées au tableau 4.17. Méme si le nombre d’éléments du maillage adapté est
plus petit que celui du maillage initial, I'erreur globale est diminuee d’un facteur
€ = 0.76, ce qui se trouve dans le voisinage de celui prévu (€prey, = 0.7). De
plus, la précision de 1’estimateur d’erreur augmente pour les solutions obtenues sur
les maillages adaptés. Cette affirmation est aussi illustrée par la figure 4.27 qui
présente les erreurs globales exactes et estimées en fonction du nombre d’éléments,

avant et apres 'adaptation du maillage.

En utilisant la méme procédure d’adaptation, cette fois appliquée aux maillages
obtenus aprés le premier cycle d’adaptation, on va obtenir un nouveau maillage
adapté présenté a la figure 4.25. Ce maillage contient 5624 noeuds et 11211 éléments.
On remarque que le nombre d'éléments du maillage adapté est encore plus petit que
celui obtenu aprés le premier cycle d’adaptation, tandis que l'erreur globale exacte
(2.452E-2 pour la norme L,) est diminuée d'un facteur € = 0.85. La distribution de

la densité et les erreurs exactes en densité sont illustrées a la figure 4.26.
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éléments: 14450 min.: 1.00 ; max.: 1.470

a) maillages b) distribution de la densité

Figure 4.21: Maillages utilisés et distribution de la densité en utilisant le schéma de

Roe
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min.: 2.63E-9 ; max.: 1.55E-1 min.: 1.49E-6 ; max.: 4.96E-1

min.: 3.95E-9 ; max.: 1.57E-1 min.: 1.09E-6 ; max.: 3.62E-1

min.: 3.13E-9 ; max.: 1.79E-1 min.: 5.17E-8 ; max.: 3.19E-1

a) exacte b) estimé

Figure 4.22: La distribution de 'erreur en densité pour le schéma de Roe
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€éléments: 1151 min.: 1.00 ; max.: 1.466

min.: 1.00 ; max.: 1.467
1

|

éléments: 11319 min.: 1.00 ; max.: 1.469

a) maillages b) distribution de la densité

Figure 4.23: Maillages obtenus aprés un cycle d’adaptation et distribution de la

densité pour le schéma de Roe
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min.: 8.37E-6 ; max.: 2.52E-1

>%

min.: 4.36E-6 ; max.: 2.15E-1

<

min.: 4.10E-9 ; max.: 1.87E-1 min.: 1.56E-7 ; max.: 2.37E-1

a) exacte b) estimé

Figure 4.24: La distribution de ’erreur en densité apres un cycle d’adaptation pour

le schéma de Roe
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Maillage Erreurs exactes Erreurs éstimeées
Maillage; 4.7852E-2 8.7974E-2
Maillage, 3.7125E-2 5.7460E-2
Maillages 2.8110E-2 3.7666E-2

Convergence taux p = 0.4 taux p = 0.74

Tableau 4.17: Les erreurs globales exactes et estimées (les normes L) pour différents

maillages non-structurés apreés le premier cycle d’adaptation

Figure 4.25: Maillage obtenu aprés deux cycles d’adaptation
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a) dens.(min.:1.00 ; max.:1.47) b) erreur(min.:7.5E-12 ; max.:2.3E-1)

Figure 4.26: La distribution de la densité et de I’erreur exacte en densité apres deux

cycles d’adaptation
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Figure 4.27: Les erreurs globales exactes et estimées en norme L, en utilisant le

schéma de Roe
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4.4 Résultats pour un écoulement autour du pro-

fil NACA-0012

Le dernier test consiste a simuler un écoulement autour du profil NACA — 0012
pour un nombre de Mach a ['infini égal & 0.8 et avec un angle d’incidence égal 2 0.
La figure 4.28 illustre le domaine de calcul et les maillages initiaux utilisés (‘zoom’
sur le profil). La frontiére numérique du domaine est un cercle de rayon égal & 20
cordes. Sur la circonférence de ce cercle, nous imposons des conditions aux limites
de type infini. La simulation expérimentale d’un tel écoulement a montré [’existence

d’une onde de choc.

La résolution du probléme est effectuée par le schéma de Roe. Le maillage initial
est un maillage non-uniforme qui contient 2883 noeuds et 5576 éléments. Les deux
autres maillages utilisés pour faire les estimations ont 1579 noeuds et 3021 éiéments,
respectivement 812 noeuds et 1529 éléments et sont illustrés sur la figure 4.28. Les
erreurs globales estimées en norme L, sont présentées au tableau 4.18. En utilisant
la méthode d’adaptation basée sur l'estimateur d’erreur présenté auparavant, le
maillage obtenu aprés I’adaptation a 6100 noeuds et 12032 éléments. L’erreur globale
estimée sur le maillage le plus fin est diminuée d'un facteur ¢ = 0.613, ce qui se
trouve dans le voisinage de celui prévu (€préyy = 0.7), méme un peu plus petit
(voir le tableau 4.19). La distribution de la densité sur les maillages adaptés est
illustrée a la figure 4.29. En regardant la figure 4.30, on remarque que l'estimateur
d’erreur prédit une erreur plus uniforme pour les solutions obtenues sur les maillages
adaptés. A l'étape suivante d’adaptation, le maillage obtenu a presque le méme

nombre d’éléments que le précédent (voir la figure 4.32). La distribution de la
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densité ainsi qu'un ‘zoom’ sur le maillage adapté pres du profil sont présentés a la

figure 4.31.
Maillage Erreurs estimées
Maillage, 9.1765E-2
Maillage, 7.7950E-2
Maillage; 6.7303E-2

Convergence taux p = 0.479

Tableau 4.18: Les erreurs globales estimées en norme L, sur différents maillages

non-structurés initiaux

Maillage Erreurs estimées
Maillage; 6.4934E-2
Maillage, 5.1715E-2
Maillage; 4.1261E-2

Convergence taux p = 0.675

Tableau 4.19: Les erreurs globales estimées en norme L, sur les différents maillages

non-structurés aprés le premier cycle d’adaptation

On constate que lorsqu’on raffine le maillage dans le voisinage de 'onde de choc,
celle-ci se déplace vers I’arriere. Apres un cycle d’adaptation la position du choc
était a Z = 0.48, tandis qu’aprés deux cycles d’adaptation la position du choc est a
£ =(.495. Cela est di au fait que le facteur de raffinement est trop €levé pour une
seule étape d’adaptation. Donc, pour aboutir & un maillage précis (compte tenu de
Vinfluence du maillage sur la qualité de la solution), on devrait faire encore plus de

cycles d’adaptation avec des facteurs de raffinement plus petits pour ne pas avoir
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d’oscillations du maillage d’une étape a 'autre. En tenant compte que cela implique
un travail tres long et que la qualité de la solution est déja fortement supérieure a

celle initiale, on s'est arrété apres les deux cycles d’adaptation déja présentés.



a) maillages b) distribution de la densité

Figure 4.28: Maillages initiaux et distribution de la densité pour le schéma de Roe
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a) maillages b) distribution de la densité

Figure 4.29: Maillages obtenus apres un cycle d’adaptation et distribution de la

densité pour le schéma de Roe
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min.: 6.71E-5 ; max.: 5.86E-1

min.: 3.13E-6 ; max.: 3.68E-1 min.: 3.34E-5 ; max.: 4.67E-1
I !

| |

min.: 3.81E-7 ; max.: 5.17E-1 min.: 4.73E-5 ; max.: 5.54E-1

a) maillages initiaux b) maillages adaptés

Figure 4.30: Les distributions de I'erreur sur les maillages initiaux et aprés un cycle

d’adaptation
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a) densité (min.: 5.07E-1 ; max.: 9.73E-1) b} maillage ("zoom™)

Figure 4.31: La distribution de la densité et le maillage aprés deux cycles d’adapta-

tion
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Figure 4.32: Maillage obtenu aprés deux cycles d’adaptation (vue générale)
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Chapitre 5

Conclusion

L'objectif principal de cette étude était le développement d’une méthode d’esti-
mation d’erreur basée sur la technique d’extrapolation de Richardson [20], [21},
appliquée aux écoulements régis par les équations de Euler. La stratégie numérique
de résolution utilisée a consisté a discrétiser les équations d’Euler par volumes finis.
a l'aide d’éléments triangulaires, et en utilisant le schéma de Roe. L’extension du
schéma de Roe au deuxieme ordre a été réalisée par une reconstruction de la solution

suppos€e constante sur chaque élément par une autre linéaire.

La procédure de calcul ainsi développée a été validée sur quelques tests pour
lesquels on disposait de solutions analytiques: un écoulement supersonique sans
ondes de choc (vortex supersonique}, un écoulement supersonique avec ondes de
choc (probléme de confluence) et un écoulement compressible subsonique (probléeme
de Ringleb). On propose aussi une procédure d’adaptation du maillage utilisant

une analyse d’erreur de la soiution. Pour ces problémes, des comparaisons avec
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les solutions analytiques ont été faites et, en général, une bonne concordance a été
observée entre nos prédictions et les résultats analytiques. Finalement, on a simulé
un écoulement autour du profil NACA — 0012. Les prédictions numeériques pour
cet écoulement ont montré encore une fois que le couplage entre 'estimateur d’erreur

et ’adaptation permet d’améliorer les solutions.

[ demeure quelques anomalies que 1’étude de convergence a fait apparaitre, a

savoir:
e Le taur de convergence varie avec le raffinement du maillage d’une paire de
maillages a autre.

o Les valeurs observées du taux de convergence sont parfois plus petites que celles

prédites par la théorie.

o Le taur calculé en utilisant la norme L, est parfois différent de celui calculé

en utilisant la norme L,.

Ceci démontre que certaines améliorations sont nécessaires afin d’augmenter la

précision des calculs. Parmi ces améliorations, on peut citer:

e Augmenter la précision de la solution analytique (y compris la construction

dv domaine de calcul).

o Améliorer U'implantation des conditions auz limites pour le schéma d’ordre 2,

surtout sur les frontiéres solides.

En conclusion, la méthode d’estimation d’erreur basé sur la technique d’extrapo-

lation de Richardson représente un chemin trés simple vers une bonne prédiction de
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I’erreur dans une solution numeérique. La précision des estimations est moins bonne
pour les schémas d’ordre 2; ceci est probablement di a la technique d’interpolation
linéaire de la solution d’un maillage & 'autre. Une des améliorations envisageables
pour cette technique est 1'utilisation de ‘points Gauss’ lors du transfert de la solution
sur les éléments du maillage fin. Cependant, le comportement général demeure bon.
De plus, cette technique ne demande pas de grandes ressources informatiques parce
que seulement des maillages plus grossiers sont utilisés lors du processus d’estimation

de ’erreur.

A la suite de ce travail, des extensions de la methode d’estimation d’erreur
sont envisageables. L’une de ces extensions est |'utilisation de |'estimateur pour les
maillages multigrilles agglomérés. Ceci permettrait d’économiser sur la résolution et
la construction des maillages grossiers car les maillages agglomérés sont construits
automatiquement par la procédure de multi-grille. On peut aussi envisager des
améliorations pour la procédure d’adaptation du maillage. Le nombre d’éléments
du domaine pourrait étre minimisé par 'utilisation de triangles élancés suivant la
direction du choc ou suivant la direction d’écoulement dans les zones ot il n’y a pas

de choc.
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