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Résumé 

Le sujet de ce mémoire est la simulation numérique des écoulements régis par les 

équations d'Euler. Les équations d'Euler sont utilisées pour obtenir des solutions 

des écoulements nonvisqueux, compressibles et rotationnels. La stratégie numérique 

de résolution utilisée consiste à discrétiser les équations par la technique de volumes 

finis, à l'aide d'éléments triangulaires. 

Pendant tout ce travail on a poursuivi deux objectifs principaux. Premièrement. 

on propose des méthodes robustes de prédiction pour des écoulements compressibles 

subsoniques et supersoniques ainsi que pour des écoulements avec des discontinuités 

comme les ondes de choc. Deuxièmement, mais le plus important, on présente un 

estimateur d'erreur basé sur l'analyse a posteriori de la solution. 

Les méthodes de calcul proposées sont basées sur une technique de volumes finis 

du premier ou du deuxième ordre dans l'espace et sur une discrétisation explicite 

dans le temps, qui utilise des ressources informatiques moins importantes qu'une 

discrétisation implicite même si l'avancement de la solution dans le temps est moins 

rapide. 

Pour évaluer le flux à l'interface des éléments on utilise un schéma basé sur 
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le solveur de Roe qui consiste à trouver la solution exacte au problème approché 

de Riemann. Ce schéma amont satisfait implicitement les conditions de Rankine- 

Hugoniot a travers un choc et ne demande pas de viscosité artificielIe explicite. 

L'amélioration de la précision a nécessité l'extension du schéma à un ordre 

supérieur, en utilisant plusieurs techniques de reconstruction de La solution. On 

a fait des comparaisons entre les différentes techniques utilisées en calculant les er- 

reurs par rapport aux solutions analytiques et le taux de convergence pour chaque 

méthode. Pour accélérer la convergence on utilise une technique multi-grille par 

agglomération. 

On desire développer une méthode adaptative qui utilise l'estimation d'erreurs 

dans la solution numérique. L'estimateur d'erreur proposé est basé sur la technique 

d'extrapolation de Richardson et il peut être utilisé pour un facteur de rbffinement 

quelconque. Premièrement, on détermine le taux de convergence a l'aide de trois 

solutions obtenues sur des maillages différents et deuxièmement on évalue les erreurs 

sur les trois maillages. Par la suite, on préscnte une procédure d'adaptation du 

maillage basée sur le critère de l'uniformisation de I'erreur dans le domaine de calcul. 

On présente des simulations d'écoulements compressibles subsoniques (problème 

de Ringleb), d'écoulements supersoniques sans ondes de choc (Vortex superson- 

ique) et avec ondes de choc, dont on a trouvé les solutions analytiques. À la 

fin, on applique la méthodologie développée pour un écoulement autour du profil 

NACA - 0012. 



Abstract 

The subject of this master's thesis is the numericai simuIation of flows governed 

by the Euler equations. The Euler equations, directly obtained by means of the 

Navier - Stokes equations ignoring the terms of the viscous dissipation, are used to 

obtain solutions of non-viscous, compressible and rotational flows. The numerical 

solution strategy consists in the discretisation of the equations by means of finite- 

volume technique using triangular elements. 

During this work, two main objectives were considered. We tried first to propose 

sorne robust prediction methods for cornpressibie subsonic and supersonic 0ows and 

for flows with discontinuities such as shock waves. But, mainly, we tried to develop 

an error estimator based on a posteriori analysis of the solution. 

The computational methods showed are based on a finite volumes technique 

of first or second order in space solved using an explicit time discretisation. This 

technique use low computationd ressources compared to the implicit discretisation, 

but the convergence of the solution in time is not as fast. 

The flux across the ce11 faces is evaluated using a scheme based on Roe's solver 

which applies an exact solution to the linearized Riemann problem. This upwind 



scheme satisfies implicitly the Rankine - Hugoniot conditions across a shock wave 

and doesn't require an explicit artificial viscosity. 

The improvement of the accuracy requires the extension of the scheme at a 

higher order. This is accomplished using several reconstruction techniques of the 

solution, We compare the different techniques employed by computing the numerical 

solution errors and comparing to the ady t i ca i  solution and aiso by computing the 

convergency rate for each method. In order to accelerate the convergence, we have 

used a multi-grid agglomeration technique. 

Most of the adaptive methods needs an estimation of the error in the numerical 

solution. The error estimator proposed in this work is based on Richardson extrap- 

olation technique and it can be used for any refhement factor. First, we have to 

establish the convergence rate by using three solutions obtained on different grids 

and subsequently we c m  estimate the errors on the three grids. We propose after 

that an adaptive method based on the uniformization of the error in the computa- 

tional domain. 

Several simulations including Ringleb subsonic flow, supersonic flows without 

shock waves (Supersonic Vortex), supersonic flows with shock waves (wedge), are 

presented in this study. Finally, the coupled grid adaptation - error estimation pro- 

cedure was applied to the computation of the flow field around the NACA - 0012 

profile. 
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Chapitre 1 

Introduction 

Dans le passé, les aérodynamiciens utilisaient des résultats expérimentaux afin 

de prédire les caractéristiques d'un écoulement. Même si une telle procédure a 

l'avantage de générer la solution la plus réaliste, ce type de méthode exige un prix 

très élevé et nécessite beaucoup de temps. Aujourd'hui, en dynamique des fluides 

et en aérodynamique, les résultats numériques sont obtenus plus rapidement et i 

un coût moindre que les résultats expérimentaux 1101. Cela fait que les compagnies 

aéronautiques, même les plus grandes qui ont les moyens pour obtenir des résultats 

expérimentaux, accordent de plus en plus d'importance aux codes numériques afin 

de réaliser leurs projets. 

La calcul numérique est d'autant plus attirant lorsqu'il est possible d'estimer 

les erreurs qui existent dans la solution numérique. Pour contrôler et diminuer ces 

erreurs, plusieurs procédures d'adaptation sont envisageables. En fait, aujourd'hui, 

tous les chercheurs impliqués dans la CFD considèrent que l'estimation d'erreur est 



un problème important et difficile à résoudre lors d'un calcul numérique. 

Le but principal de ce mémoire est de développer une nouvelle technique d'esti- 

mation d'erreur basée sur la technique d'extrapolation de Richardson et d'établir ses 

performances. En utilisant cette technique, une procédure d'adaptation du maillage 

sera proposée dans le but d'équi-distribuer l'erreur. Ce travail sera réalisé en utilisant 

des méthodes de calcul basées sur la technique de voiumes finis et des études de 

convergence seront réaiisées afin d'atteindre nos objectifs. 

1.1 Les équations d'Euler 

La simulation numérique d'un écoulement est reliée au choix du modèle ma- 

thématique. Lorsqu'on néglige la dissipation visqueuse? la représentation physique 

la plus rigoureuse des écoulements est fournie par les équations d'Euler. Elles 

représentent l'expression mathématique de la loi de conservation pour la masse, de 

la quantité du mouvement et de l'énergie. Les équations d'Euler forment un système 

hyperbolique non-linéaire et  selon la méthode utilisée pour avancer Ia solution dans 

le temps, la résolution demande plus ou moins de ressources informatiques. 

Le fait que l'on puisse représenter des écoulements avec des ondes de choc est dû 

au choix de ce modèle et  à l'utilisation d'une technique de discrétisation appropriée. 

Dans certains cas, les conditions de Rankine-Hugoniot à travers un choc sont au- 

tomatiquement satisfaites. Étant donné que les écoulements-test qui sont visées par 

ce mémoire présentent des ondes de choc, cette propriété demeure très importante. 



1.2 Schémas numériques de discrét isat ion 

On pourrait classifier les méthodes en explicites, qui sont soumises à des re- 

strictions du pas de temps imposé par le critère CFL ( Courant-Friedrichs-Levi) de 

stabilité, et implicites, qui solutionnent les équations de conservation d'une façon 

couplée, ce qui fait qu'elles ne sont pas Limitées par le critère CFL. Par contre, 

les schémas numériques implicites demandent beaucoup de ressources informatiques 

parce qu'ils conduisent à la résolution d'une matrice mdtidimensionnelle. La tech- 

nique employée lors de ce travail est basée sur une discrétisation explicite dans le 

temps. 

Regardons rapidement les schémas numériques de discrétisation les plus connus 

qui ont été développés par la technique des volumes finis. S.K. Godunov (1959) [7] 

a été le premier à résoudre le problème de Riemann qui se manifeste comme une 

discontinuité entre deux états uniformes de fluide. 11 a trouvé un procédé itératif 

pour résoudre les problèmes Riemann présents à l'interface de chaque paire d'états 

adjacents. Cependant, le coût de calcul est très élevé lorsqu'on utilise une solution 

initiale inadéquate. Toutes les méthodes développées pendant les années 1960- 1970 

consistent à trouver la solution au  problème approché de Riemann. Ces schémas de- 

mandaient de la viscosité artificielle explicite pour satisfaire les critères de stabilité. 

Les schémas proposés après l'année 1970 sont basés sur la théorie des car- 

actéristiques et on peut les classifier en deux catégories: 'Division du vecteur du 

flux' (FVS - Flux Vector Splitting) et 'Division de la différence du  flux' (FDS - Flux 

Difference Splitting). 

Steger et Warming (1979) [24] ont été les premiers à diviser le flux à un point 



d'écoulement en deux composantes de flux et chaque composante pouvait être di- 

fférenciée en amont suivant le signe des valeurs propres correspondantes. Partic- 

ulièrement, pour les équations d'Euler les valeurs propres représentent les vitesses 

et les directions d'ondes de propagation de l'information dans l'écoulement. 

En 1982, Van Leer [26] a suggéré une autre méthode FVS très simple et facile à 

linéariser pour être utilisée dans les schémas implicites. 

Une des méthodes les plus connues actuellement est celle proposée par Roe 1221, 

[23]. Elle est basée sur la théorie de la division de la différence du flux entre deux 

états du fluide séparés par une interface (FDS). La linéaxisation introduite par Roe 

assure alors que les équations de W n e - H u g o n i o t  sont satisfaites pour un choc et 

ne demande pas de viscosité artificielle explicite. Cependant, le schéma proposé par 

Roe admet des ondes d'expansion comme solutions non-physiques et demande une 

correction d'entropie comme celle introduite par Harten [6]. 

La méthode de Enquist et Osher [5j satisfait la condition d'entropie mais l'ex- 

ploitation de ce schéma demeure très coûteuse relativement au schéma de Roe. 

Plus récemment (1991), Liou et  Steffen [El ont proposés une combinaison entre la 

méthode de la division du vecteur flux et celle de division de la différence du fiux 

qui s'appelle AUSM (Advective Upwind Splitting Method). Elle rivalise en précision 

et robustesse avec le schéma de Roe, d'autant plus que la complexité numérique y 

est moins élevée. Cependant, la propriété de satisfaire exactement les conditions de 

Rankine-Hugoniot est perdue. 

Le chapitre 2 de ce mémoire présente la méthode de calcul proposée qui est basée 

sur une discrétisation explicite dans le temps et sur une technique de volumes finis 



du premier ou du deuxième ordre dans l'espace qui utilise le solveur développé par 

Roe. Le domaine de caicul est subdivisé à l'aide d'éléments triangulaires. 

L'application de la technique multi-grille (Multi-Grid) aux équations d'Euler 

a permis d'avancer la solution plus vite dans le temps, en réalisant de grandes 

économies sur Le temps de calcul. Panni les méthodes les plus connues pour accélérer 

la convergence des schémas explicites, on remarque celles de Ni [15], Jarneson [11] 

et  Venkatakrishnm (Implicit Residual Averaging Technique). La procédure utilisée 

Iors de ce travail est basée sur la technique multi-grille par agglomération. Cela va 

permettre d'utiliser un schéma explicite, même si la restriction CFL imposée au pas 

de temps devient sévère lorsqu'on utilise un maillage fin. 

L'extension du schéma de Roe au deuxième ordre est basée sur la substitution de 

la solution supposée constante sur chaque élément par une autre linéaire. On propose 

deux façons de calculer les gradients. La première méthode utilise le théorème de 

Gauss [3] en considérant un gradient constant sur le volume de contrôle. La deuxième 

méthode est une reconstruction basée sur la technique des moindres carrés [lï]. 

1.3 Calcul des erreurs exactes et évaluation du 

taux de convergence 

Pour un problème dont la solution exacte est connue on peut facilement calculer 

les erreurs. Tout d'abord on calcule les erreurs sur chaque élément à l'aide d'une 

technique d'intégration de Gauss. Ensuite, en utilisant soit la norme Li, soit la 

norme L2, on somme les erreurs pour tout le domaine de calcul [9]. 



L'ordre de convergence de la méthode de résolution peut être extrait d'une étude 

de raffinement du mailiage sur un problème où la solution exacte est connue [l].La 

façon de calculer les erreurs exactes et l'ordre de convergence d'une méthode pour 

un problème dont la solution exacte est connue est illustrée au chapitre 3. 

Pour un problème dont Ia solution exacte est inconnue, Roache[30] suggère une 

méthode d'évaluation du taux de convergence par une étude de raffinement du mail- 

lage de type a posteriori. 

On peut déterminer le taux de convergence à l'aide de 3 solutions globales, en 

utilisant la norme Li ou Lql obtenues sur des maillages différents, pour un facteur 

de raffinement quelconque. Si le facteur de raibernent est constant, l'expression 

du taux de convergence est très simpIe. Dans le cas contraire, si il n'est pas 

constant, l'équation à résoudre est transcendente et Roache propose une méthode 

d'itération par substitution [21]. Le taux de convergence differe d'un problème à 

l'autre dépendant si l'on a réussi ou non à atteindre la zone asymptotique. Cette 

technique d'évaluation du taux de convergence est présentée au chapitre 3. 

1.4 L'estirnateur d'erreur 

Les estimateurs d'erreur peuvent être de type a posteriori, utilisant la solution 

calculée, ou de  type a priori, utilisant des informations génériques au sujet de la 

solution et du maillage. L'analyse d'erreur avec un estimateur a posteriori peut 

donner des informations concernant la solution et peut être utilisée pour piloter le 

schéma adaptatif qui optimise le maillage. 



Une large classe de méthodes adaptatives utilisent l'estimation de l'erreur dans 

la solution numérique comme base à l'adaptation. Les estimateurs d'erreur peuvent 

être classifiés en trois grands groupes: les estimateurs de projection de flux, les 

estimateurs résiduels et les estimateurs basés sur des techniques d'extrapolation. 

Ce type d'études peuvent être facilement retrouvés dans le travail réalisé à l'aide de 

la méthode des éléments finis [18], [19], [25], [30]. 

La méthode de projection, [30] est basée sur l'observation que, dans la discrétisa- 

tion par éléments finis, la solution approximative est continue, mais les dérivées sont 

discontinues aux interfaces des éléments. Ces dérivées discontinues sont projetées 

dans un espace de fonctions continues, une norme de la différence entre les dérivées 

continues et celles discontinues étant utilisée comme une mesure de l'erreur. 

Plus récemment, des estimateurs résiduels ont été développés en vue d'obtenir 

une équirépartition de l'erreur dans une solution calculée sur un maillage non- 

isotropique [8] 

Pour les problèmes de type elliptique, ces estimateurs ont donné de très bons 

résultats mais, lorsqu'on essaie d'appliquer ces techniques pour des probkmes hyper- 

boliques, la précision diminue. Norton [16] a prouvé le fait que l'erreur de la solution 

numérique d'un problèmes de type hyperbolique est formée par deux composantes: 

une composante locale et une composante convective qui n'était pas prévue par ces 

estimateurs. 

Dans le cadre de la solution numérique des équations d'Euler par la méthode des 

volumes finis, des indicateurs d'erreur ont plutôt été utilisés. L'indicateur d'erreur le 

plus simple, utilisé de façon intensive, est le gradient d'une variable de l'éc~ulement 
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comme la densité. On suppose que les plus grandes erreurs se trouvent dans les 

régions de forts gradients. Dans le cas des écoulements compressibles avec des 

ondes de choc, les erreurs calculées sur la base du gradient de la solution ont la 

tendance à augmenter au fur et à mesure que la discontinuité est résolue d'une 

meilleure façon. Des estimateurs d'erreur apparaissent lentement dans la littérature. 

L'estimateur d'erreur proposé par Van Straalan et  al. [27] utilise Ia solution d'une 

équation écrite pour les erreurs estimées. Mais, quelquefois. pour des problèmes de 

type hyperbolique, la résolution d'une telle équation devient aussi difficile que la 

résolution du problème lui-même. 

L'estimateur d'erreur utilisé dans ce mémoire, et présenté au chapitre 3, est basé 

sur la technique d'extrapolation de Richardson PO], [21]. On utilise 2 solutions 

obtenues sur des maillages différents, pour un facteur de r&nement quelconque, 

avec le taux de convergence déjà calculé ['iO]. Cette technique implique l'hypothèse 

de la convergence monotone de Ia solution vers Ia solution exacte, ce qui n'est pas 

toujours le cas. 

1.5 Méthodes d'adaptation du maillage 

L'objectif d'une procédure d'adaptation est d'optimiser la discrétisation du do- 

maine de calcul pour atteindre une haute précision avec un faible coût de calcul. 

Cette procédure consiste dans des changements de taille et d'orientation des éléments 

afin d'améliorer la précision de la solution qu'on a calculée au cycle précédent et, en 

même temps, de distribuer uniformément l'erreur dans les éléments du maillage. 



Il y a plusieurs techniques pour atteindre l'objectif prévu: des méthodes de 

raffinement et de déraffinement local 191, [18], [28], des techniques basées sur le 

déplacement des noeuds [14] par analogie avec le comportement élastique des ressorts 

en tension et en torsion. Les techniques basées sur le déplacement des noeuds 

peuvent être utiles surtout dans les cas tridimensionnels à cause des limitations de 

la mémoire. 

La procédure d'adaptation proposée dans ce mémoire est basée sur le changement 

de la taille des éléments selon les informations données par l'estimateur d'erreur. Le 

remaillage est réalisé en utilisant les sous-routines ADX [28]. 

La stratégie d'adaptation, présentée au chapitre 3, consiste à imposer une erreur- 

cible pour tous les triangles du domaine. Si l'erreur estimée est plus grande que 

l'erreur - cible, le triangle est divisé, en accord avec la différence entre les deux 

erreurs, en deux triangles plus petits. Sinon, le triangle sera visé pour effacement. 

Si un noeud du domaine n'appartient qu'aux triangles qui sont visés pour efface- 

ment. il sera effacé et un remaillage local sera réalisé. Afin d'augmenter la qualité 

du maillage, des techniques de relaxation et de changement de diagonales seront 

utilisées. 

1.6 Applications - Test 

Lors des simulations numériques présentées au chapitre 4, on rencontre deux 

catégories de maillages aux triangles: des maillages structurés et des maillages non- 

structurés. Dans un maillage structuré tous les noeuds sont entourés par le même 
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nombre d'éléments et on peut construire une application biunivoque sur un trian- 

gle logique. Pour les maillages non-structurés aucune restriction topologique ne 

s'applique et Ies noeuds ne sont pas entourés par le même nombre d'éléments. En 

utilisant ces deux types de maillages, ainsi que les techniques de câlcul proposées 

aux chapitres 2 et 3, on va faire apparaitre par des épreuves les qualités et les défauts 

pour chacun de ces types de mnilIages. 

La méthodoIogie présentée aux chapitres 3 et 3 sera appliquée pour plusieurs 

types d'écoulement: écoulement subsonique ou supersonique. écoulement avec ondes 

de choc ou sans ondes de choc. Les résultats obtenus seront illustrés au chapitre 4. 



Chapitre 2 

Formulation mat hématique et 

numérique du problème 

2.1 Introduction 

La première étape consiste à établir le modèle mathématique de I'écoulement e t  

le schéma numérique pour Ia résolution de ce modèle. Les écoulements qui seront 

étudiés sont régis par les équations d'Euler qui forment un système hyperbolique 

non-linéaire. La discrétisation spatiale sera effectuée par une technique de volumes 

finis basée sur le solveur de Roe [22], [23]. Par la suite, on propose deux techniques 

de reconstruction de la solution afin d'améliorer la précision du schéma de Roe. 



2.2 Les équations d'Euler 

En négligeant les termes de dissipation visqueuse dans les équations de Navier- 

Stokes, on obtient les équations d'Euler qui représentent le modèle le plus exact pour 

la description des écoulements compressibles non-visqueux, d'autant plus que leur 

résolution représente un chemin naturel vers la simulation numérique des équations 

de Navier-S tokes. 

Pour le cas bi-dimensionnel cartésien, on peut écrire les équations d'Euler de la 

façon suivante: 

où les variables conservatives U et les flux convectifs f et g sont les suivants: 

Le système sera fermé par I'équation d'état pour les gaz parfaits: 

où p représente la densité, u et v sont les vitesses dans les directions x et y, E 

représente l'énergie totale par unité de masse et p la pression statique. (7 +\c, = 

174) 



2.3 Discrét kat ion des équations d'Euler 

2.3.1 Introduction sur les schémas 'upwind' 

Les méthodes de discrétisation 'upwind' sont basées sur la théorie des car- 

actéristiques. Le nom 'upwind' est justifié par les différences en amont utilisées 

selon les directions caractéristiques. Ces schémas sont appliqués aux équations de 

la forme suivante, dont l'information se propage selon des directions préférentielles: 

Considérons la résolution de l'équation de convection scalaire: 

où a > O et a = ct.. Dans ce cas, le schéma 'upwind' classique s'écrit de la façon 

suivante: 

où le terme de droite représente une différence en amont ('upwind') et Ie terme de 

gauche est une discrétisation explicite dans le temps. Un tel décentrage en espace 

fait que le schéma est stable. L'équation 2.6 peut se réécrire: 

Le schéma est stable si % 5 1. Ceci représente la condition connue dans la 

littérature sous le nom CFL (Courant - Friedrichs - Lewy) [4]. 

En pratique, le coefficient a # ct. et une généralisation de ce schéma est requise. 

Cette fois, on ne connait pas 'à priori' la direction caractéristique selon laquelle 



t'information se propage. Cette direction est reliée au signe du coefficient a. On 

définit donc: 

On remarque que lorsque a > O alors a- = O et a+ = a. alors que si a < O on 

a a+ = O et a' = a. Dans ces conditions, le schéma 'upwind' s'écrit dans la forme 

connue dans la littérature sous le nom CIR (Courant - Isaacson - Rees) [4]: 

En remplaçant Les formules 2.8 dans 2.9, on a: 

OU encore: 

où le terme de droite représente la somme d'une différence centrée et d'un terme de 

viscosité artificielle qui assure la stabilité du schéma. Le terme de viscosité artificielle 

contient une différence centrée du deuxième ordre et il peut être écrit de la façon 

suivante: 

Le schéma de Roe appliqué aux équations d'Euler utilise la même méthodologie. 

Pour le cas unidimensionnel, on découple les trois équations en fonction du signe de 

la vitesse de chaque onde. Par la suite, en utilisant une discrétisation de type 2.11, 

deux sommations seront faites: une sommation sur les ondes avec vitesse négative 

et l'autre sur les ondes avec vitesse positive. Findement, en prenant la moyenne des 

deux sommations, on recouple les trois équations. 



2.3.2 Schéma de Roe pour le cas unidimensionnel 

La méthode de Roe est appliquée premièrement a un écoulement unidimensionnel 

gouverné par les équations de type hyperbolique d'Euler [22]: 

La méthode proposée par Roe et basée sur la théorie de la division de la différence 

du flux entre deux états du fluide séparés par une interface (FDS). L'approche de 

Roe est basée sur l'observation de Godunov que l'avancement dans le temps de ta 

solution peut être réalisé par la résolution d'une série de problèmes de Riemann [7] 

(voir la figure 2.1 ) . 

h gauche (x<O) les variables conservatives sont U = Ur. et à droite (x>O) 

U = UR. Roe propose une approximation linéaire du problème de Riemann pour 

les équations d'Euler. Le Aux F est localement linéaire par rapport i U et on peut 

écrire: 

où les coefficients de la matrice jacobienne A sont constants et  ils sont calculés de 

la façon suivante: 



Figure 2.1: Décomposition de la différence du flux pour résoudre le problème de 

Riemann 

où: 

dF1 -- 
au, - 1 

La matrice A s'écrit en terme des variables conservatives: 



où encore en terme des variables primitives p, u,  E et p: 

Finalement, on peut écrire: 

où H est l'enthalpie totale: 

PE+P Hz- 
P 

Le système d'équations (2.13) devient: 

Compte tenu du fait que la matrice A est diagonaiisabie, il existe donc une base 

composée par les vecteurs propres de A: 

1 

u - a  

H - ua 

où a est la vitesse du son: 
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De plus, on peut écrire un vecteur dans l'espace réel en utilisant cette base, selon: 

où les coefficients al, a2, a3 sont constants. En utilisant la propriété que Aek = Xkek 

et en multipliant les deux membres de la relation 2.30 par A, on obtient: 

oh Xk sont les valeurs propres de la matrice A: 

Étant donnés les deux états à gauche UL et à droite UR et tenant compte de la 

propriété 2-31 ,  on peut écrire la relation suivante pour la différence du flux entre ces 

deux états du fluide: 

où ek représentent les vecteurs propres de la matrice A à droite. Chaque terme de 

la somme représente l'effet d'une onde. crk est l'intensité de  l'onde et Ak: sa vitesse. 

De plus, en utilisant la technique de discrétisation en amont ("upwind*) basée sur 

la théorie des caractéristiques, le flux à l'interface peut être calculé de deux façons 

différentes: 

Fi+lj2 (UL, UR) = FL f C ( - ) o * x * ~ L  (2.34) 

si on considère les ondes avec vitesse négative comme direction de propagation, ou: 

si les ondes avec vitesse positive sont prises comme direction de propagation. c(-) 
et r(+) dénotent une sommation sur les ondes avec vitesse négative et positive, re- 
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spectivement. En pratique, on prend la moyenne des deux expressions e t  on obtient: 

Pour les problèmes linéaires cette solution est exacte, mais dans le cas non- 

linéaire, Roe a proposé de construire une matrice linéarisée A(uL, UR) dont les 

valeurs et vecteurs propres vérifient les relations suivantes: 

1. FR - FL = CukXkerc (voir 2.33) 

2. UR - UL = 1 a k e k  (voir 2.30) 

3. F R  - FL = S(UR - Ur;), où S est la vitesse du choc. Ceci représente la 

condition Rankine - Hugoniot qui est ajoutée aux premières deux conditions. 

Ces trois conditions définissent l'état moyen de Roe. 

Lorsque toutes les conditions sont vérifiées, on aura que Sak = Akcrk pour tous 

les k. Roe a calculé les valeurs des variables primitives b, 6, fi qui interviennent 

dans la matrice A(UL, UR) pour satisfaire la consistance des équations avec celles 

de départ (les conditions (1) et (2)), et aussi les conditions de saut de Rankine- 

Hugoniot (la condition (3)). 

La satisfaction de ces trois conditions définit ce qu'on appele 'l'état moyen de 

Roe' que l'on retrouve souvent dans la littérature sous le nom de 'propriétés U': 

1. A représente une application linéaire de U vers F 

2. les vecteurs propres de A sont linéairement indépendants. 



3. Lorsque UL - UR -t U, alors A(UL, UR) - A 

4. Pour chaque paire (UL, UR), À(uL, UR) (UL - UR) = FL - FR 

Les valeurs moyennes calculées par Roe, données par les formules suivantes, sont 

appelées 'les valeurs moyennes de Roe': 

où: 

Le système d'équations à résoudre devient donc: 

On peut facilement remarquer la similitude qui existe entre les matrices A et A. 

En fait, A = A(U) et A = A(u), où Ü = Ü(u~ ,uR) .  On remarque aussi que 

lorsque UL -, UR -+ U, alors A(uL ,uR)  --, A. 
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Si ü # O la matrice À possède trois vecteurs propres linéairement indépendants 

et par conséquent. on peut y appliquer une décomposition spectrale sous la forme: 

où est une matrice diagonale qui contient les valeurs propres ik de À sur la 

diagonale principale: 

Toutes les variables ayant le symbole : sont évaluées à l'état moyen de Roe. Les 

trois vecteurs propres de la matrice A sont donnés par les relations suivantes: 

En plus, Q et Q-' sont les matrices des vecteurs propres èk à droite et à gauche, 

respectivement. 



Compte tenu du fait que le déterminant de la matrice engendrée pour les vecteurs 

propres l(êl, ë2, ë3)1 = est nui lorsque ü f O, les vecteurs propres de A sont 

linéairement indépendants. Cela est une des 'propriétés U'. 

La relation (2.36) qui exprime le flux à l'interface s'écrit alors: 

où: 

AU = UR -UL 

et 1 A 1, la matrice diagonale des valeurs absolues des valeurs propres de A. En 

écrivant le flux à l'interface de cette façon, l'extension d u  schéma de Roe pour le cas 

bidimensionnel devient une tâche possible. 

En conclusion, la méthode de Roe consiste à trouver la solution exacte à un 

problème approché de Riemann en linéarisant ce problème afin qu'il devienne résol- 

vable par une méthode directe. La linéarisation est faite à en remplaçant la matrice 

A avec une matrice A qui représente la matrice jacobienne évaluée à l'état moyen 

de Roe. De plus, la définition de cet état découle de la satisfaction des certaines 

conditions appelées 'les propriétés U'. 

2.3.3 Extension du schéma de Roe pour le cas bidimen- 

sionnel 

Pour le cas bidimensionnel, la méthodologie de calcul demeure la même. Dans 

ce cas, l'échange d'information entre les deux états du fluide est fait en suivant une 



direction normale aux interfaces qui séparent deux éléments du maillage. Il faut 

donc calculer le flux normal à l'interface des éléments L et  R illustrés à la figure 3 - 2  

Figure 2.2: Discontinuité entre deux états du fluide pour le cas bidimensionnel 

Le flux normal à l'interface de deux états de Riemann s'exprime par les deux 

composantes de la normale unitaire extérieure à l'interface, n, et n,, selon: 

Par analogie avec le cas uni-dimensionnel, on linéarise le flux F par rapport au 

vecteur U et on introduit les valeurs moyennes de Roe: 

où est une matrice diagonale qui contient les valeurs propres X k  de A sur la 



diagonale principale. 

et p, p-' sont les matrices des vecteurs propres à droite et à gauche, respectivement. 

Les vitesses normale et tangentielle à l'interface sont: 

- 
Cr = iin, + ün, V = fin, - Ùny 

Le module de la vitesse moyenne est: 

$2 = 62 f 6 2  

Les autres valeurs moyennes seront définies par: 

La reIation (2.36) qui exprime le flux normal à l'interface s'écrit: 



- -  * 
où les éléments de la matrice A = PAP-' sont les suivants [SI: 

1 (9~~ - H ) Ü ,  

où ün = ü Iorsqu'on écrit le jacobien du vecteur flux selon la direction x. et  ü, = .tt 

lorsque la direction de référence est y. 

2.3.4 Discrét isation explicite dans le temps 

L'avancement dans le temps du vecteur des variables conservatives U est fait 

d'une façon explicite: 

où f est une fonction qui représente le bilan des flux calculés aux interfaces de 

l'élément k. Le vecteur de variables conservatives U au pas de temps n + 1 sera 

donc calculé en utilisant seulement le vecteur U obtenu au pas de temps n: 

L'avantage d'utiliser une méthode explicite de discrétisation réside dans le fait qu'elle 

ne demande pas beaucoup de mémoire d'ordinateur. Cet avantages est important, 

surtout lorsque le maillage contient beaucoup d'éléments. Le désavantage de la 

méthode explicite consiste dans la limitation des pas de temps par le critère CFL, 

phénomène qui rend la vitesse de convergence très faible. 

Le critère CFL demande un pas de temps At qui satisfait les conditions de sta- 

bilité numérique Courant-Friedrich-Levy. La vitesse de propagation de l'informa- 



tion dans le domaine est égale à la vitesse des ondes, donnée par les valeurs propres 

de la matrice A: Ü - 6, Ü, Ü, Ü + 6, (Ü étant la vitesse normale à l'interface). Pour 

chaque interface du domaine de calcul on détermine le module des valeurs propres. 

La valeur maximale de ces modules sera la vitesse de référence pour I'irnposition du 

critère CFL et la valeur maximale du pas de temps sera donnée par le plus petit 

quotient entre la longueur et  la vitesse de référence pour toutes les interfaces du 

domaine de calcul. 

Finalement, le vecteur de variables conservatives U pour un élément k du do- 

maine de calcul, au pas de temps n + 1, s'écrit de la façon suivante: 

où Sk est la surface de l'élément k et ii sont les longueurs de chaque face de l'élément 

k. Les flux Fi sont les flux calculés pour les interfaces du domaine de calcul en 

utilisant la méthodologie présentée dans la section précédente. 

2.3.5 Condit ions aux limites 

Une des étapes de la résolution numérique des équations différentielles d'Euler 

est l'imposition des conditions aux limites. Compte tenu du fait que les problèmes 

à traiter présentent des écoulements subsoniques et supersoniques, l'analyse des 

condit ions aux limites fait apparai tre plusieurs types de frontières dépendant du 

régime de l'écoulement. Les types de frontières utilisées sont les suivantes: 'entrée 

subsonique', 'entrée supersonique', 'sortie subsonique', 'sortie supersonique' et 'paroi 

solide'. 

L'implantation des conditions sur les frontières du domaine de calcul est faite à 



l'aide des éléments 'miroirs' tels que présentés à la figure 2.3. 

Figure 2.3: Élément 'miroir' utilisé pour l'implantation des conditions aux limites 

L'imposition des conditions aux limites pour un système d'équations hyper- 

boliques est basée sur la théorie des caractéristiques. Pour le système des équations 

présenté à la section 3-32: quatre conditions doivent être imposées. On doit donc 

fournir des valeurs pour quatre variables. En termes des conditions aux limites, deux 

types de frontières 'entrée' sont étudiés: 'entrée subsonique' et 'entrée supersonique'. 

Pour l'entrée subsonique, trois conditions sur quatre sont imposées (l'angle d'en- 

trée, la pression totaie et la température totale) e t  on fait l'hypothèse d'une détente 

isentropique. Pour une frontière de type 'sortie subsonique7, le rapport entre la 

pression statique à la sortie et la pression totale au réservoir est imposé. 

Pour l'entrée supersonique, toutes les variables d'écoulement sont imposées. Au- 

cune condition n'est imposée à la 'sortie supersonique'. 

Sur les parois solides on impose que le flux à travers la frontière soit égal à zéro. 

Cette condition peut s'écrire en termes de vitesses normales U et tangentielles V à 

l'interface des deux éléments tels que présentés à la figure 2.3: 



ud = -um vd = tm (3.59) 

où Lld et Vd sont les vitesses sur l'élément du domaine de calcul. tandis que Cr,,, et 

I/, sont les vitesses sur l'élément 'miroir'. 

2.4 Extension du schéma de Roe au deuxième 

ordre 

L'extension du schéma de Roe au deuxième ordre est basée sur la reconstruc- 

tion de la solution constante sur chaque élément en une autre solution linéaire par 

élément. L'algorithme contient les étapes de calcul suivantes: 

1. Calcul de gradients. 

2. Construction d'une solution linéaire par élément, mais discontinue entre les 

éléments. 

3. Évaluation des flux aux interfaces. 

4. Calcul de la solution à l'étape suivante. 

On propose deux façons de calculer les gradients. 
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2.4.1 Reconstruction basée sur le théorème de Gauss 

La première méthode utilise le théorème de Gauss sur un volume de contrôle 

entourant un noeud tel que montré à la figure 2.4. Les centroides des éléments en- 

tourant Ie noeud et les centres des faces voisines sont pris comme chemin d'intégration. 

Figure 2.4: Volume de contrôle utilisé pour la reconstruction basée sur le théoréme 

de Gauss 

Pour le cas bi-dimensionnel, le théorème 

/s 0W' Y Idfi = 

de Gauss s'écrit de la façon suivante: 

En considérant un gradient constant sur le volume de contrôle, l'équation (2.60) 

devient: 

La procédure utilisée est iIIustrée à la figure 2.5 pour le triangle ABC. On illustre 

la contribution du triangle ABC à la valeur du gradient en A. 



En pratique, on peut faire une simplification du calcul en démontrant que: 

Alors une seule contribution pour chaque triangle voisin sera nécessaire pour 

calculer le gradient. Ceci découle directement du fait que l'on puisse considérer la 

solution U constante sur l'élément ABC et donc aussi sur le triangle DEF. En 

utilisant la définition de l'intégrale de contour, on aura pour le triangle DEF: 

Cela conduit à la relation suivante: 

Cependant, on a: 

Finalement, la contribution du triangle ABC s'écrit: 

À l'aide du gradient ainsi calculé à chaque noeud. on calcule un gradient au 

centroide du triangle par simple moyenne pondérée par le volume. On peut alors 

reconstruire une solution linéaire par élément selon: 

où U(xol yo) est la valeur de la solution moyenne, constante par élément, VU = 

(VU,, VU,) le gradient calculé au centre de cet élément et r = ( x  - xo1 y - yO) 

représente la position par rapport au centre du triangle. 



Figure 2.5: Procédure utilisée pour le calcul du gradient à l'aide du théorème de 

Gauss 

2.4.2 Reconstruction basée sur la technique des moindres 

carrés 

Cette méthode est une reconstruction basée sur la technique des moindres carrés 

[17!. Le but de cette technique est la reconstruction de la solution Lr à l'aide de 

poIynôrnes de degré k avec une erreur locale O(Axkf l )  (k-exact Least-Square Re- 

constructioa). Le terme k-exact signifie que la reconstruction d'une fonction polyno- 

rniale sera exacte jusqu'à I'ordre k. Si k = 1, la reconstruction va créer des fonctions 

linéaires sur chaque élément avec une erreur locale plus petite que 0 ( A x 2 ) .  SOUS 

forme mathématique, on écrit pour tous les voisins i qui entourent un élément c 

illustré à Ia figure 2.7: 

(W2 AU; = k ; U ,  + AyiU, + - (4yiI2 
uzz + , (Azi)(Ayi) 

2 U, + ... (2.68) 
2 

qui représente un développement un serie de Taylor où Au; u; - u,, Ax; xi - x,, 

Ag; G y; - y, et toutes les dérivées sont évaluées en (x , ,  y,), le centroide du triangle 



c. Compte tenu du fait que la reconstruction visée est d'ordre 1, on néglige les 

termes quadratiques et la relation 2-68 s'écrit de la façon suivante : 

En écrivant la relation 2.69 pour les n voisins qui entourent un élément c (voir 

la figure 2.7), on aura: 

On a un système de n équations à 2 inconnues q u e  l'on peut résoudre par une 

technique de moindres carrés. Nous avons retenu l'algorithme connu sous le nom 

'Data-independent least-squares reconstruction' (DI-L2) [17]. 

Pour tenir compte de la topologie du maillage, on va introduire un facteur 

géométrique W .  On peut voir à la figure 2.6 que l'influence de chaque triangle est 

différente en fonction de sa position par rapport au  triangle C. Si un éIément voisin 

est proche du triangle C,  le facteur w est élevé et  son influence sera importante. Au 

contraire, si un élément voisin est loin du triangle C, le facteur u est petit et son 

influence sera donc moins importante. Alors on peut pondérer chaque équation de 

2.70 par un facteur w et on obtient: 



La méthode des moindres carrés consiste à multiplier les deux termes par [RIT: 

[R l T 2 . 1 1 [ ~ l i 1 . 2 ~ ~ 1 2 ~ ~  = [ R I ~ ~ , ~ ~ [ A U J ~ I . I  (2.74) 

O n  obtient donc le système suivant, 

normales': 

onnu aussi sous le nom des 'équations 

Cette façon de calculer le gradient est similaire à celle proposée par Ollivier- 

Gooch [17] et correspond à un moindre carré pondéré: 



Figure 2.6: Facteur géométrique pour la reconstruction basée sur la technique de 

moindres carrés 

où n est le nombre de voisins, A,(.) G w;A(-) et wi = 1 avec t = 
[ ( ~ , - + c ) ~ + ( ~ t  -Yc)2lf 

0,1,2. 

Le facteur géométrique choisi pour nos calculs, wi, est donné par la relation 

suivante et il représente exactement la pondération utilisée par Ollivier-Gooch [17] 

pour t = 2: 

On évalue les gradients aux centres de chaque élément en tenant compte de tous 

les voisins (voir fig.S.7). Le système à résoudre sur chaque élément peut être écrit 

d'une manière plus compacte: 



Figure 3.7: Voisins considérés pour la reconstruction basée sur la technique des 

moindres carres 

( t:: t:: ) (Il) = (::) 
Les coefficients L I 1 ,  L12, LZ1 et L22 sont caIculés une sede  fois au début du 

programme, tandis que les coefficients fi et f2 changent à chaque pas de temps. 



Chapitre 3 

Estimation de l'erreur et 

adaptation du maillage 

3.1 Taux de convergence 

L'un des facteurs les plus importants pour la précision et la robustesse d'une 

méthode est le taux de convergence, d'autant plus qu'il est demandé explicitement 

Lorsqu'on fait l'estimation de l'erreur. Le taux de convergence differe d'un problème 

à l'autre et i l  a été démontré que, si l'on a réussi ou non à atteindre la zone asymp- 

totique, les résultats seraient différents. 



3.1.1 Taux de convergence exact 

Le taux de convergence de la méthode de résolution peut être extrait d'une étude 

de raffinement du maillage sur un problème où la solution exacte est connue [l]. Soit 

deux maillages avec les tailles linéaires caractéristiques h('). h(2)  et h(*1 = 2h(') .  On 

peut calculer les erreurs globales en densité à l'aide des normes LI ou L2 selon les 

relations suivantes, où p; et p,; sont Ies solutions numériques et analytiques sur 

chaque élément. 

L'ordre de convergence peut être écrit de la façon suivante: 

On peut facilement voir que pour h(2 )  = 3h(l)  l'équation 3.3 devient: 

Par example, le taux de convergence p = 1 si II E I[ ( L k ) ( 2 )  = 211 E l ~ ( L k ) ( l )  et la 



3.1.2 Tawc de convergence estimé 

Pour un problème où la solution exacte est inconnue, Roache[20] suggère une 

méthode d'évaluation du taux de convergence impliquant une étude de rafinement 

du maillage de type a posteriori. On peut déterminer le taux de convergence à l'aide 

de 3 solutions f ( ' ) ,  f ( 2 ) :  f ( 3 )  obtenues sur des maillages différents et interpolées sur le 

maillage le plus fin, pour un facteur de raffinement quelconque ( f ( ' )  est la solution 

sur le maillage le plus fin). La technique d'extrapolation des solutions f ( 2 )  et f ( 3 )  

sur le maillage le plus fin (1) est illustrée à la section suivante. 

Si le facteur de raffinement r est constant, l'expression du taux de convergence 

Les termes f ( 3 )  - f ( 2 )  et f ( l )  - f ( ' )  sont les normes Li ou L2 appliquées aux 

différences entre les solutions f  (3)  et f ( 2 ) ,  et f ( 2 )  et f ( ' )  respectivement. Pour la 

norme L2 on peut écrire: 



ou, en utilisant la norme LI: 

Dans le cas où r n'est pas constant, l'équation à résoudre est transcendente: 

oii I, = fIi)  - f(j) et r,j est le facteur de raffinement entre les maillages i et j .  

Pour résoudre cette équation et extraire p, on utilise une méthode d'itération 

par substitution [20]. Si p est la valeur de p à l'itération précédente et w un facteur 

de relaxation (w = 0.5), la valeur de p à l'itération courante sera: 

3.2 La technique de transfert de la solution entre 

deux maillages 

Des différences entre les solutions calculées sur plusieurs maillages sont requises 

lors du processus d'estimation de t'erreur. Ceci implique le transfert de toutes les 



solutions sur le maillage le plus fin. Dans notre cas, les solutions obtenues sur deux 

maillages grossiers seront transférées sur le maillage le plus fin. 

Cette procédure nécessite une technique d'interpolation dans un maillage non- 

structuré. Cette technique est basée sur le calcul du gradient aux centres de chaque 

élément par la méthode des moindres carrés illustrée au chapitre 2.4.2. Supposons 

qu'il faille interpoler une solution du maillage grossier (1) sur le maillage fin (2). 

On connait la solution U(') et les gradients U('), et LI('), aux centroides de chaque 

élément du maillage (1). 

La première étape consiste à trouver tous les éléments du maillage (2) dont Les 

centroides sont à l'intérieur du chaque triangle du maillage (1 ) (voir la figure 3.1). 

Si le centroide E d'un élément du maillage (2) se trouve à l'intérieur d'un élément 

ABC du maillage ( 1 ) ,  on considère que l'élément de centroide E est à l'intérieur de 

l'élément ABC d e  centroide O. 

Figure 3.1: Interpolation de la solution à partir d'un mailiage grossier sur un maillage 

plus fin 
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On peut alors reconstruire une solution U(2) au centroide E du maillage (2), avec 

La formule suivante: 

où U(')(xo,yo) est la vaieur de la solution moyenne sur l'élément du maillage ( l ) ,  

VU(') = (U(')I, U(l)B) est le gradient calculé au centre de cet élément et i = 

F(xE - 20, y~ -y*)  représente la position du centroide E du maillage (2) par rapport 

à O. 

3.3 Estirnateur de l'erreur 

L'estimateur d'erreur proposé est basé sur la technique d'extrapolation de Ri- 

chardson généralisée [20]. Dans cette technique, on suppose que les solutions discrètes 

J ont une représentation en série de Taylor du type: 

où h est la taille du maillage et ai sont des coefficients qui ne dépendent pas de la 

taille h dans la zone asymptotique. En faisant une combinaison entre deux solutions 

discrètes fl et f2, on peut facilement obtenir une approximation pour la solution 

exacte faad. Pour des méthodes d'ordre 1, on obtient la relation suivante: 

alors que pour des méthodes d'ordre 3 on peut écrire: 



où r - est le facteur de raffinement. En généralisant, à une méthode d'ordre p, 
h 1 

les expressions (3.15), (3.16) conduisent à la relation suivante: 

L'estimateur d'erreur pour la solution sur le maillage grossier sera donc donné 

par: 

tandis que pour la solution sur le maillage fin, on aura 17estimateur: 

où fi2 = f2 - fi est calculé soit comme une norme LI, soit comme une norme L2 

(voir les relations (3.'i), (3.9)). 

En concluçion, l'algorithme à suivre est présenté à la figure 3.2. l'aide de trois 

solutions obtenues sur trois maillages différents, on calcule le taux de convergence 

p. En utilisant les formules 3.18 et 3.19 appliquées aux soliitions obtenues sur les 

maillages (1) et (2)' les estimés de l'erreur seront calculées. De la même façon, les 

estimés de l'erreur pour les solutions obtenues sur les maillages (2)  et (3) seront 

calculés. Finalement, un estimé sur le maillage le plus grossier ( l) ,  deux estimés sur 

le maillage moyen (2) et un estimé sur le maillage le plus fin (1) seront obtenus. 

3.4 Adaptation du maillage 

Le couplage entre le maillage et la solution numérique représente un facteur im- 

portant pour diminuer les ressources informa.;iques requises et augmenter la précision 



Solution sur maillage 1 Solution sur maillage 

4 
[ Erreur sur maillages 1.2 Erreur sur maillages 2.3 

Figure 3.2: Les étapes à suivre pour l'estimateur d'erreur 

de calcul. L'objectif de la procédure d'adaptation est de réduire l'erreur dans tout 

le domaine de calcul et,  en même temps, de distribuer uniformément I'erreur dans 

l'éléments du maillage. Cela n'implique pas nécessairement une augmentation du 

nombre de points du maillage. En effet, dans beaucoup de cas pratiques, le nombre 

de points pourra être réduit par la procédure adaptative tout en diminuant l'erreur 

par une redistribution judicieuse des éléments. 

3.4.1 Adaptation du maillage par rafbement et déraffine- 

ment 

La relation entre l'erreur globale E et  les erreurs locales e; peut s'écrire de la 

façon suivante: 

II E Il2= C II ei Il2 (3.20) 
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On va essayer maintenant de réduire l'erreur globale d'un facteur e à chaque 

étape adaptative. L'erreur globale cible devient donc: 

On utilise le principe d'équidistribution de l'erreur cible et  on aura pour l'erreur 

globale cible: 

II &are Il2= x II ei,ue 112 = NeIl %arc il2 (3.22) 

et encore pour l'erreur locale cible: 

oii Ne est le nombre d'éléments du maiiiage courant. Cette relation est une bonne 

approximation à condition que le nombre d'éléments du maillage suivant ne soit pas 

trop différent de celui du maillage initial. Par la suite, en tenant compte du fait qu'il 

y a une d a t i o n  de couplage entre l'erreur locale ( 1  e II et la taille h de l'élément, on 

peut écrire: 

II e II= khP II eable II= kh,b[eP k = const. (3.24) 

où p est le taux de convergence déjà calculé (voir le chapitre précédent). Donc, la 

taille cible pour chaque élément sera: 

Compte tenu du fait que Les sous-routines ADX utilisent les aires des éléments 

au Iieu des tailles afin de réaliser le remaillage, on va reécrire les relations 3.24 et 

3.25 de la façon suivante: 



L'aire cible pour chaque élément sera donc: 

De cette façon, l'aire de chaque élément va augmenter ou va diminuer selon la 

relation 3.27. Pour certains éléments, les aires cibles seront beaucoup plus grandes 

ou beaucoup plus petites que les aires initiales. Dans ces conditions, des éléments 

voisins peuvent avoir des aires trop grandes, une par rapport à l'autre. Ceci pour- 

rait causer des difficultés au solveur. De plus, des facteurs de raffinement ou de 

déraffinernent locai trop grands peuvent produire des oscillations de la solution d'une 

étape adaptative à l'autre. Afin d'éviter ces anomalies, on va utiliser les limitateurs 

suivants: 

Ai < ~ d k .  - < 4A; 
4 - t - (3.28) 

Il faut aussi imposer un nombre maximal de points permis par les ressources 

informatiques disponibles. 

3.4.2 Algorithme d'adaptation 

On présente à la figure 3.3 les étapes à suivre dans le cycle d'adaptation. 

A l'aide de l'estirnateur d'erreur on va calculer le nouveau maillage 3' par raf- 

finement et déraffinement. Les maillages 2' et 1' seront obtenus par grossissement 

uniforme du maillage 3'. Par la suite, on va calculer les soIutions sur les maillages 

grossiers 2' et 1' pour estimer les erreurs de la solution sur le maillage 3': en utilisant 

le nouveau taux de convergence. De cette façon on va obtenir ie maiilage 3" et on 

continue la procédure d'adaptation afin d'obtenir l'erreur désir&. 



Solution sur maillage 1 Solution sur maillage 2 Solution sur maillage 

Taux de convergence Erreur sur maillage 3 
I 

1 Adaptation -+ 
\1/ 

maillage 2' maillage 3' 1 
I I 

\I/ 
Solut. sur maillage 1'  Soiut. sur maillage 3' 

v 
Erreur sur maillage 3' 

Adaptation ... h 
-- 

Figure 3.3: Les étapes à suivre dans le cycle d'adaptation 



Chapitre 4 

Résultats 

Ce chapitre présente les résultats obtenus lors des simulations numériques en util- 

isant les différentes méthodes de prédiction présentées dans Ies chapitres précédents. 

On propose des comparaisons avec des solutions analytiques et aussi des études 

d'erreur. 

4.1 Le vortex supersonique 

Des simulations sont réalisées pour l'écoulement d'un vortex supersonique tel 

que présenté à la figure 4.1 [l]. 
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4.1.1 Modèle physique et solution analytique pour le vor- 

tex supersonique 

La géométrie du problème est illustrée schématiquement à la figure 4.1. Le 

rayon intérieur est rint = 1 et le rayon extérieur est r,t = 1.384. L'écoulement est 

supersonique avec Mint = 2.25, p;,, = 1, pi,, = '. 
7 

I 

Figure 4.1: Lignes de courant pour le vortex supersonique 

Tous les paramètres, densité p, pression p, température T, nombre de Mach M 

et vitesse du son a ne dépendent que du rayon r et sont donnés par: 

7-1 
p(r) = [l + (1 - (i)')] * 2 f int 



Les composantes cartésiennes de Ia vitesse du fluide, u et v .  sont données par les 

relations suivantes: 

Les conditions aux limites sont les suivantes: 'entrée supersonique' (à droite et en 

haut de la figure 4.1) pour laquelle toutes les variables d'écoulement sont imposées 

en utilisant les formules déjà présentées; aucune condition n'est imposée à la sortie 

(à gauche et en bas de la figure 4.1) et  les variables conservatives sont extrapolées 

de l'intérieur du domaine; sur les parois solides on impose Ies conditions illustrées à 

ia section 2.3.5. 



4.1.2 Analyse de l'erreur 

Pour chaque résolution du problème, on a utilisé trois maillages avec un facteur 

de raffinement égal à 2. Différents types de maillages triangulaires sont utilisés, soit 

les structurés et les non-structurés (voir la figure 4.2). 

Les erreurs globales exactes pour différents maillages structurés sont présentées 

au tableau 4.1. Pour calculer les erreurs globales, on a utilisé les deux normes 

LI et  Lz .  Les taux de convergence exacts, calculés en utilisant la norme L2, sont 

présentés au tableau 4.3. Compte tenu du fait que les taux de convergence varient 

d'une paire de maillages à l'autre, on présente les valeurs obtenues pour chaque 

paire de maillages. Les taux de convergence calculés avec la norme LI sont presque 

identiques. En regatdant le tableau 4.1, on voit que les erreurs sont différentes 

en fonction de la norme utilisée. Cependant, compte tenu du fait que les taux de 

convergence calculés à l'aide de ces deux normes sont presque identiques, on peut 

tirer la conclusion que les deux normes LI et L;! conduisent aux mêmes résultats 

pour l'étude d'erreur. Pour les maillages non-structurés, les erreurs globales exactes, 

ainsi que les taux de convergence exacts sont présentés aux tableaux 4.2 et 4.4 

respectivement. 

Pour le schéma d'ordre 1, on obtient presque les mêmes taux de convergence quel 

que soit le type du maillage, même si les erreurs globales sont plus élevées pour les 

maillages structurés. Pour les deux schémas d'ordre 2, les taux de convergence sont 

plus élevés lorsqu'on utilise des maillages structurés. 

Les tableaux 4.5 et 4.6 permettent de mettre en évidence la précision de l'esti- 

mateur lorsque les erreurs globales estimées pour différents maillages structurés et 



Taille Erreur 

Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés) 

L1 L-1 L 1 L2 L1 L2 

Tableau 4.1 : Les erreurs globales exactes pour différents maillages structurés 

Taille Erreur 

Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés) 

- - - - 

Tableau 4.2: Les erreurs globales exactes pour différents maillages non-structurés 

non-structurés sont présentées. Les erreurs globales estimées et exactes demeurent 

Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés) 

Tableau 4.3: Les taux de convergence exacts pour différentes méthodes sur des 

maillages structurés 



Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés) 

Tableau 4.4: Les taux de convergence exacts pour différentes méthodes sur des 

maillages non-structurés 

Roe Ordre 2 

Tableau 4.5: Les erreurs globales estimées pour différents maillages structurés 

presque égales pour les deux types de maillage. Pourtant, la précision des estimations 

Taille Erreur 

Roe Ordre 2 

L 1 L2 L1 L2 

Tableau 4.6: Les erreurs globales estimées pour différents maillages non-structurés 
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est moins bonne pour les schémas d'ordre 2. Ceci est peut-être dû à l'interpolation 

linéaire de la solution d'un maillage à l'autre, lors du processus d'estimation. 

La même conclusion s'applique pour les taux de convergence estimés (le tableau 

4.7) avec des différences plus significatives par rapport au taux de convergence exact, 

surtout pour les maillages non-st ructurés. 

Roe Ordre 2 

maillages structurés 

maillages non-structurés 

Tableau 4.7: Les taux de convergence estimés pour différentes méthodes 

La figure 4.3 présente les distributions de la densité en utilisant le schéma de 

Roe pour les deux types de maillage. On y remarque que l'utilisation d'un maillage 

non-structuré va conduire vers une solution avec des oscillations plus fortes, surtout 

lorsque le maillage est grossier. Les solutions obtenues sur les maillages les plus fins 

sont presque identiques. 

Les distributions de l'erreur en densité en utilisant le schéma de Roe sont présen- 

tées i la figure 4.4. On remarque l'apparition d'une onde de choc dans le voisinage de 

l'entrée. Cette discontinuité est plus significative pour les distributions de  l'erreur 

obtenues sur les maillages structurés, tandis que sur les maillages non-structurés 

les distributions sont plutôt bruités. La remarque la plus importante est que, en 



regardant encore une fois les tableaux 4.1 et 4.2 (pour schéma de Roe), cette onde 

de choc diminue la qualité de  Ia solution. Ce phénomène est aussi illustré à la figure 

4.9 qui présente les erreurs globales exactes en utilisant le schéma de Roe. Malgré 

la discontinuité remarquée pour les solutions obtenues sur les maillages structurés, 

les taux de convergence demeurent égaux pour les deux types de maillage. 

La situation change beaucoup lorsqu'on regarde les figures 4.5 et  4.6 pour le 

schéma d'ordre 3. On remarque les mêmes oscillations dans le cas d'un maillage 

non-structuré grossier, mais cette fois il n'y a aucune onde de choc dans le voisinage 

de I'entrée pour les maillage structurés. De plus, la qualité d'une solution obtenue sur 

un maillage structuré est meilleure que celle d'une solution obtenue sur un maillage 

non-structur6, phénomène qui peut être vérifié aussi a l'aide des tableaux 4.1 et 4.2. 

Les différences entre les solutions obtenues en utilisant les deux schémas d'ordre 2 

sont peu significatives, les résultats présentés étant obtenus pour chacune des deux 

méthodes. 

Les estimés de l'erreur obtenus pour les maillages structurés ou non-structurés 

(ordre 1) les pIus fins sont présentées à la figure 4.7. Les contours obtenus sont com- 

parables et cela nous conduit à la conclusion que les estimés sont corrects, d'autant 

plus qu'entre les erreurs globales estimées et exactes il n'y a qu'une faible différence. 

Pour les schémas d'ordre 2, les estimés de l'erreur sont présentés à la figure 4.8. 

On remarque que les distributions de l'erreur sont assez régulières sur les maillages 

structurés, tandis que sur les maillages non-structurés, les distributions sont bruités. 

L'estimateur d'erreur reproduit ce phénomène. En fait, on avait observé le même 

phénomène lors de simulations faites en utilisant le schéma de Roe. 
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Les distributions de l'erreur estimée pour les schémas d'ordre 2 ne présentent 

pas de concentration de l'erreur sur les parois solides et à la sortie. Ceci nous fait 

croire que la couche présentée par Ies distributions de l'erreur exacte à la figure 4.8 

est due a l'implantation de la solution analytique. De cette façon. on pourrait aussi 

expliquer le fait que les taux de convergence pour les schémas d'ordre 2 sont plus 

petits que 2. 

Finalement, plusieurs améliorations sont envisageables: l'augmentation de la 

précision de la solution andytique (y compris Ia qualité de la géométrie); l'amélio- 

ration des conditions aux limites, surtout pour les parois solides. 



a )  maiIlages structurés b) maillages non-structurés 

Figure 4.2: Maillages pour le vortex supersonique 



min.: 1.110 ; ma.: 2.837 

min.: 1.032 : rnax.: 2.765 

min.: 1.006 ; rnax.: 2.736 

a)  maillages structurés 

min.: 1.077 ; rnax.: 2.847 

min.: 1.031 ; m u . :  2.769 

min.: 1.013 ; rnax.: 2.737 

b) maiIIages non-structurés 

Figure 4.3: La distribution de  la densité en utilisant le schéma de Roe 



min.: 5.25E-4 ; m a . :  5.OSE-1 min.: 2.OSE-3 ; rnax.: 3.86E-1 

min.: 3.41E-4 : m a . :  2.44E-1 min.: 1.63E-5 : rnax.: 1.6SE-1 

min.: 1.81E-5 ; m a . :  1.19E-1 

a) maillages structurés 

min.: 3.87E-6 ; rnax.: 8.38E-2 

b) maillages non-s tructurés 

Figure 4.4: La distribution de l'erreur exacte en densité pour le schéma de Roe 



min.: 1.110 ; rnax.: 2.616 min.: 1.073 ; rnax.: 2.657 

min.: 1.055 ; m a . :  2-64? min.: 1.040 : m u . :  2.665 

min.: 1.027 ; mu. :  2.665 

a) maillages structurés 

min.: 1.020 ; rnax.: 2.673 

b) maillages non-structurés 

Figure 4.5: La distribution de la densité en utilisant le schéma d'ordre 2 



min.: 5.653-5 ; rnax.: 1.00E3 min.: 1.59E-4 ; rnax.: 6.5OE-3 

min.: I S E - 5  ; rnax.: 5.00E-4 min.: 7.9SE-5 ; ma.: l .2lE-3 

min.: 5.403-6 ; rnax.: 1.00E4 

a) maillages structurés 

min.: 1.34E-5 ; rnax.: 2.54E-4 

b) maillages non-st ructurés 

Figure 4.6: La distribution de l'erreur en densité en utilisant le schéma d'ordre 2 



min.: 1.8lE-5 : max.: 1.19E1 min.: 7.72E-4 : m a . :  8.00E-2 

min.: 3.87E-6 ; max.: 8.3SE-2 

a) exacte 

min.: 3.78E-4 ; max.: 8.67E-2 

b) estimé 

Figure 4.7: La distribution de l'erreur en densité en utilisant le schéma de Roe. Les 

soIutions sont obtenues pour Ies maiIlages les plus fins structurés ou non-structurés. 



min.: 5.40E6 ; max-: I.OOE-4 
I 

I 

min.: 1.34E-5 ; rnax.: I.OOE4 

a) exacte 

min.: 1.00E-5 ; rnax.: l.5OE-4 

min.: 1.00E-6 ; rnax.: 1-OOE-4 

b) estimé 

Figure 4.8: La distribution de l'erreur en densité en utilisant le schéma d'ordre 2. Les 

solutions sont obtenues pour les maillages les plus fins structurés ou non-structurés. 



ERREURS LI. U EN FONCiïON DE L A  TAILLE D'ELEMPTTS 
I I 1 1 1 1 1 1 

Figure 4.9: Les erreurs globales exactes en utilisant le schéma de Roe 



64 

4.2 Résultats pour le problème de Ringleb 

4.2.1 Modèle physique et solution analytique pour le pro- 

blème de Ringleb 

L'écoulement de Ringleb fait partie de la famille des écoulements potentiels bi- 

dimensionnels régis par l'équation 4.8: 

u2 U v v2 
(1 - -$am - 2-+ + (1 - $<Pm = O (4.8) 

Afin de calculer la solution analytique, on utilise la méthode de la transformation 

hodographique. La vitesse q et 17angIe 9 par rapport à la direction de référence sont 

utilisées comme variables indépendantes et seront fonctions de x et y. Il y a deux 

méthodes principales e t  la plus connue est celle indirecte, qui utilise la transforma- 

tion de Legendre: 

I t ( u , v ) = s u + y v - c P  (4.9 1 

À l'aide de cette transformation, l'équation (4.8) devient: 

q2 q2 
q2% - d l  - Z)nqa f(1- f;)%7e = O  (4.10) 

où, en utilisant la transformation de Molenbrock-Tschapligin [13] pour la fonction 

de courant ik ,  on obtient: 

Soit la quantité r = (kI2, où qlim est la vitesse limite de l'écoulement. La 

famille de solutions peut s'écrire: 

\I1&(~,9) = r f ~ , ( a , ,  b,,a + l,.r)eiae (4.12) 
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où: 

Pour obtenir l'écoulement de RingIeb, on impose a = -1 dans (4.12). Dans ce 

cas, on obtient la solution suivante: 

a) iso-vitesses (q) entre 2 lignes de courant b) lignes de courant ( q )  

Figure 4.10: Modèle physique pour l'écoulement de Ringleb 

Les formules suivantes seront utilisées pour calculer la solution analytique qui 

est présentée à la figure 4.10 (Ia densité p, la vitesse du son c et le module de la 

vitesse q sont considérées comme des valeurs de stagnation): 



1 
k = - , constant sur les lignes de courant 

dJ 

-4 l'aide de ces formules, on peut construire le domaine de calcul (p, c, q, k sont 

considérées comme des valeurs connues). LXentrée subsonique' est en bas sur la 

figure 4.10, tandis que la sortie est en haut. La construction du domaine de calcul fait 

apparaitre certaines difficultés dues au fait que les parois solides sont représentées 

par des courbes de pente très élevée dans le voisinage de y = O. Ceci implique 

l'utilisation d'une technique d'interpolation afin de trouver plus de points sur Les 

frontières solides. Sinon, la qualité de la solution serait diminuée. 

En utilisant une méthode itérative de Newton-Raphson, on peut trouver toutes 

les variables p, c, q, k en fonction de x et y donnés (à la figure 4.10 on présente 

la distribution de la vitesse q et les lignes de courant ik ' ) .  On obtient aussi que - = 0.9384. 
PO 



4.2.2 Analyse de l'erreur 

Les erreurs globales exactes pour les différents maillages structurés ou non- 

structurés (illustrés à la figure 4-11), sont présentées aux tableaux 4.5 et 4.9. Il 

n'y a que des faibles différences entre les résultats obtenus pour les deux types de 

maillage. On remarque que la précision du schéma basé sur la technique de moindres 

carrés est plus élevée que celle du schéma basé sur le théorème de Gauss, autant 

pour les maillages structurés que pour les maillages non-structurés. 

On constate sur les tableaux 4.10 et 4.11 que pour les deux méthodes d'ordre 2, les 

taux de convergence calculés en utilisant la norme L1 varient beaucoup d'une paire 

de maillages à l'autre. Lorsqu'on utilise la norme LI, cette variation diminue. Les 

variations sont encore plus significatives pour la technique de moindres carrés. Donc, 

on pourrait dire que les erreurs sont différentes en fonction de la norme utilisée. Mais, 

ceci serait en contradiction avec Les résultats obtenus pour le vortex supersonique. 

Il faut chercher une raison pour laquelle le taux de convergence obtenu à l'aide 

des maillages moyen et fin est plus petit que celui attendu. En tenant compte que, 

surtout pour les méthodes d'ordre 2 et en utilisant un maillage très fin, les différences 

entre la solution exacte et celle numérique sont très faibles, on s'est rendu compte 

que Ie niveau de  précision de la solution numérique dépasse la précision du calcul de 

la solution analytique. Donc, la précision des erreurs exactes n'est plus très élevée, 

ce qui fait que le taux de convergence exact soit plus petit que celui prévu par la 

théorie. 

Les erreurs globales estimées sont présentées aux tableaux 4.12 et 4.13, ce qui 

permet de mettre en évidence une faible dégradation de la précision de l'estimateur. 



Taille Erreur 

Roe Ordre 2 Ordre 3 (Moindres carrés) 

Tableau 4.8: Les erreurs globales pour différents maillages structurés 

Taille Erreur 

Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés) 

L1 L3 L1 L2 L1 L2 

Tableau 4.9: Les erreurs globales pour différents maillages non-structurés 

Même si la précision des estimés est diminuée par rapport à ceux obtenus pour 

Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés) 

Tableau 4.10: Les t a u  de convergence globales pour différentes méthodes sur des 

maillages structurés 



Roe Ordre 2 (Gauss) Ordre 2 (Moindres carrés) 

Tableau 4.11: Les taux de convergence globales pour différentes méthodes sur des 

maillages non-s tructurés 

Ie vortex supersonique, les résultats permettent d'avoir une bonne idée sur l'ordre 

de grandeur de l'erreur dans la solution. 

Les taux de convergence estimés pour les différentes méthodes utilisées sont 

présentés au tableau 4.14. On y remarque aussi une dégradation de la précision 

par rapport aux résultats exacts. D'ailleurs, on s'attendait a cette dégradation car 

les erreurs globales estimés sont reliées au calcul du taux de convergence estimé. 

Taille Erreur 

Roe Ordre 2 

L1 L2 L1 L2 

Tableau 4.12: Les erreurs globales estimés pour différents maillages structurés 

Les distributions de la densité et de l'erreur en densité, utilisant le schéma de 

Roe, sont présentées par les figures 4.12 et 4.13. On remarque des petites oscillations 

de la solution dans le cas d'un maillage non-structuré grossier. En regardant les 



Taille Erreur 

Roe Ordre 2 

L1 L2 L1 LI 

Tableau 4.13: Les erreurs globales estimés pour différents maillages non-structurés 

Roe Ordre 2 

maillages structurés 

0.43 0.42 2.55 2.31 

maillages non-s tructurés 

Tableau 4-14: Les taux de convergence estimés pour différentes méthodes 

distributions de  l'erreur, les oscillations sont encore plus fortes sur les maillages 

non-structurés. 

Les différences entre les solutions obtenues en utilisant les deux schémas d'ordre 

2 sont très faibles (voir les figures 4.14, 4.15, 4.16, 4.17). Cependant, on constate 

que les erreurs sont concentrées dans les zones où les parois solides sont représentées 

par des courbes de pente très élevée (dans le voisinage de y = O). Ceci est peut-être 



dû à l'implantation de la solution analytique dans la construction du domaine de 

caIcul. 

Les estimés de l'erreur obtenus pour les maillages les plus fins structurés ou 

non-structurés obtenus par le schéma de Roe sont présentés à la figure 4.18. Pour 

les schémas d'ordre 2, les estimés de l'erreur sont présentés à la figure 4.19. On 

remarque une très bonne précision de l'estimé pour le cas d'un schéma d'ordre 1 

implanté sur des maillages structurés. Pour les schémas d'ordre 3, l'apparition d'une 

couche Limite est très évidente sur la paroi interne. Ce phénomène demeure toujours 

i n c o ~ u  mais est peut-être dû à l'implantation des conditions limites au deuxième 

ordre. Une autre raison pour la dégradation de la précision de l'estimation pourrait 

être la façon d'interpoler les solutions obtenues sur les maillages grossiers lors de la 

procédure d'estimation. 



a) maillages structurés b) maillages non-structurés 

Figure 4.11: Maillages utilisés pour le problème de RINGLEB 



min.: S.63E-1 ; max.: 9.73E-1 

min.: S.32E-1 ; m a . :  9.67E-1 

I 

min.: S.73E-1 ; mm.: 9.74E-1 

min.: S.50E-1 : max.: 9.6SE-1 

min.: 8.01E-1 ; m a . :  9.62E-1 min.: 8.21E-1 ; max.: 9.63E-1 

a) maillages structurés b) maillages non-structurés 

Figure 4.12: La distribution de la densité en utilisant le schéma de Roe 



min.: 9.39E-4 ; max.: 8.53E-2 min.: 3.90E-4 : max.: 9.01E-2 

min.: 2.70E-4 ; mu. :  5.85E-2 min.: 2.22E-4 : max.: 729E-2 

min.: 7.21E-5 ; rnax.: 3.74E2 

a) maillages structurés 

min.: 5.53E-5 ; max.: 4.66E-2 

b) maillages non-structurés 

Figure 4.13: La distribution de l'erreur exacte en densité pour le schéma de Roe 



min.: 7.90E-1 ; rnax.: 9.56E-1 

min.: 7.79E-1 ; m u . :  9.55E-1 

min.: 7.99E-1 : m u . :  9.57E-1 

min.: 7.81E-1 : m a . :  9.56E-1 

min.: 7.73E-1 ; rnax.: 9.55E-1 

a) maillages structurés 

min.: 7.5'iE-1 ; rnax.: 9.56E-1 

b) maillages non-structurés 

Figure 4.14: La distribution de la densité en utilisant le schéma d'ordre 2 basé sur 

le théorème de Gauss 



min.: 7.99E-5 ; mu.: 7.35E-3 min.: 1.75E-4 ; m a . :  l . l lE-3 

min.: 2.15E-6 ; max.: 2.32E-3 min.: 1.84E-5 : m a . :  2.lïE-3 

min.: 4.94E-7 ; max.: 3.48E-3 

a) maillages structurés 

min.: S.80E-7 ; max.: 2.61E-3 

b) maillages non-structurés 

Figure 4.25: La distribution de l'erreur exacte en densité en utilisant le schéma 

d'ordre 2 basé sur le théorème de Gauss 



min.: 7.86E-1 ; rnax.: 9.532-1 

I 

min.: 7.94E-1 : rnax.: 9.56E-1 

min.: 7.78E-1 ; max.: 9.55E-1 min.: 7.8lE-1 : m a . :  9.56E-1 

min.: 7.733-1 ; rnax.: 9.55E-1 

a)  maillages structurés 

min.: :.:SE-1 ; rnax.: 9.56E-1 

b ) maillages non-structurés 

Figure 4.16: La distribution de la densité en utilisant le schéma d'ordre 2 basé sur 

la technique de moindres carrés 



min.: 5.13E-5 ; mu.: 3.21E-3 min.: 1.34E-5 ; rnax.: 6.49E-3 

min.: 5.66E-6 ; mu.: 2.34E-3 min.: 3.34E-6 ; max.: '2.03E-3 

min.: 1.09E-6 ; m a . :  3.54E-3 

a) maillages structurés 

min.: 1.41E-6 : rnax.: 2.99E-3 

b) maillages non-structurés 

Figure 4.17: La distribution de I'erreur exacte en densité en utilisant le schéma 

d'ordre 2 basé sur la technique de moindres carrés 



min.: 7.2lE-5 ; rnax.: 3.74E2 
r 

L 

min.: 5.53E5 ; rnax.: 4.66E3-2 

a) exacte 

min.: 1.12E-4 ; rnax.: f.18E-2 

- -- 

min.: 2.13E4 ; m u . :  7.94E-2 

b) estimé 

Figure 4.18: La  distribution de l'erreur en densité en utilisant le schéma de Roe. Les 

solutions sont obtenues pour les maillages les plus fins structurés ou non-structurés. 



I 

min.: 1.09E-6 ; ma.: 3.54E-2 min.: 1.39E-6 ; rnax.: 1.12E-3 

1 

min.: 1.49E-6 ; max.: 2.61E-3 min.: 9.72E-8 ; max.: 9.90E-4 

a)  exacte b) estimé 

Figure 4.19: La  distribution de l'erreur en densité en utilisant le schéma d'ordre 

2. Les solutions sont obtenues pour les maillages les plus fins structurés ou non- 

structurés. 



8 1 

4.3 Résultats pour le problème de confluence de 

deux écoulements supersoniques 

Des simulations ont été réalisées pour un écoulement supersonique avec chocs, 

dont la géométrie et les paramétres de l'écoulement sont montrés à la figure 4.20. 

Pl 

4.3.1 Modèle physique et solut ion analytique 

Figure 4.20: Solution analytique 

On a partagé le domaine en 4 zones, dans lesquelles t'écoulement est isentropique. 

Dans les zones 3 et 4, la pression = p4 = 1.7238, la densité p3 = p4 = 1.468 et 

la température t g  = t 4  = 1.1738. Les angles formés par les ondes de choc sont 



p3 = 33.605 degrés et ,& = 44.992 degrés. 

4.3.2 Analyse de l'erreur 

Lors des simulations suivantes, on va réaliser un couplage entre les procédures 

d'estimation de l'erreur et d'adaptation du maillage. Les maillages aux triangles 

utilisés sont non-structurés et la résolution du problème est effectuée par le schéma 

de Roe. La figure 4.21 illustre les maillages utilisés ainsi que les résultats pour la 

densité. Les erreurs globales exactes sont présentées au tableau 4.15, tandis que les 

erreurs globdes estimés sont présentées au tableau 4.16. Les taux de convergence 

sont calculés en utilisant la nome LI ou la norme L2. Les valeurs sont plus petites 

que 1, fait qui est peut-être dû à la présence des ondes de choc, en supposant qu'à 

l'intérieur d'une onde de choc le taux de convergence locale est beaucoup diminué. 

Pourtant, la raison pour laquelLe le taux calculé en utilisant la norme LI est deux 

fois plus grand que celui calculé en utilisant la norme L2 demeure toujours inconnue. 

On observe qu'il y a des différences plus significatives (par rapport aux problèmes 

présentés auparavant) entre les résultats exacts et nos estimations, surtout lorsqu'on 

utilise la nonne L2. Les taux de convergence estimés sont aussi plus petits que les 

taux exacts. Cependant, la figure 4.22 montre que la distribution de l'erreur estimée 

ressemble beaucoup à celle de l'erreur exacte. 

Afin d'augmenter la précision de l'estimateur et, en même temps, la qualité de la 

solution numérique, une procédure d'adaptation du maillage sera utilisée. Cela va 

mettre en évidence le couplage qui existe entre la procédure d'estimation de  l'erreur 

et celle d'adaptation du maillage. 



Ordre 1 

Maillage LI L2 

Maillage* 2.6738E2 4.7639E-2 

Maillage3 1.52803-2 3.6470E-2 

Convergence taux p w 0.7 taux p = 0.38 

Tableau 4.15: Les erreurs globales exactes 

Ordre 1 

Maillage LI L2 

Maillagel 8.413-2 0.242 

Maillage;! 6.143-2 0.208 

Maillagea 4.493-2 0.168 
- -- -- - - 

Convergence taux p = 0.451 taux p = 0.22 

Tableau 4.16: Les erreurs globales estimées 

4.3.3 Adaptation du maillage 

On présente l'adaptation du maillage en fonction des caractéristiques de la solu- 

tion. On utilisera la méthode basée sur l'estimateur d'erreur présenté auparavant. 

Le maillage initial est un maillage non-uniforme qui contient 7360 noeuds et 14450 

éléments. Les deux autres maillages utilisés pour faire les estimations ont 1856 

noeuds et 3575 éléments, et 507 noeuds et 945 éléments (voir la figure 4.21). On va 

tenter de réduire l'erreur d'un facteur E = 0.7 à chaque étape adaptative. 

Cependant, à chaque étape adaptative, il faut créer deux autres maillages, plus 



grossiers, à partir de celui le plus fin et semblables à celui-ci. Le facteur de grossisse- 

ment utilisé est approximativement égal à 2. Ces deux maillages seront utilisés lors 

du processus d'estimation de l'erreur sur le maillage le plus fin. 

Après le premier cycle d'adaptation, le maillage obtenu a 5'706 noeuds et 11319 

éléments. Ce maillage et les deux autres qui seront utilisés au cycle suivant d'ada- 

ptation sont présentés à la figure 4.23, tandis que les erreurs exactes et  estimées sont 

présentées au tableau 4.17. Même si Ie nombre d'éléments du maillage adapté est 

plus petit que celui d u  maiiiage initial, l'erreur globale est diminuée d'un facteur 

6 zz 0.76, ce qui se trouve dans le voisinage de celui prévu (eP,,, = 0.7). De 

plus, la précision de l'estimateur d'erreur augmente pour les solutions obtenues sur 

les maillages adaptés. Cette affirmation est aussi illustrée par la figure 4.27 qui 

présente les erreurs globales exactes et estimées en fonction du nombre d'éléments. 

avant et après l'adaptation du maillage. 

En utilisant la même procédure d'adaptation, cette fois appliquée aux maillages 

obtenus après le premier cycle d'adaptation, on va obtenir un nouveau maillage 

adapté présenté à la figure 4.25. Ce maillage contient 5624 noeuds et 11211 éléments. 

On remarque que le nombre d'éléments du maiIIage adapté est encore plus petit que 

celui obtenu après le premier cycle d'adaptation, tandis que l'erreur globale exacte 

(2.452E-2 pour la norme La)  est diminuée d'un facteur E M 0.85. La distribution de 

la densité et les erreurs exactes en densité sont illustrées à la figure 4.26. 



éléments: 945 min.: 1.00 ; mu.:  1.465 

éléments: 3575 

- -- 

min.: 1.00 ; max.: 1.468 

déments: 14450 

a) maillages 

min.: 1.00 ; max.: 1.470 

b) distribution de la densité 

Figure 4.21: Maillages utilisés et distribution de la densité en utilisant le schéma de 

Roe 



min.: 2.68E-9 ; mu.:  1.55E-1 min.: 1.49E-6 ; max.: 4.96E-1 

min.: 5.95E-9 ; max.: 1.57E-1 min.: 1.09E-6 ; m a . :  3.62E-1 

min.: 3.13E-9 ; max.: 1.79E-1 min.: 5.17E-8 ; m a . :  3.19E-1 

a)  exacte b)  estimé 

Figure 4.22: La distribution de l'erreur en densité pour le schéma de Roe 



éléments: 115 1 

éléments: 3627 

éléments: 11319 

a )  maillages 

Figure 4.23: Maillages obtenus après un 

I 

min.: 1.00 ; rnax.: 1.466 

min.: 1.00 ; max.: 1.467 

min.: 1.00 ; rnax.: 1.469 

b) distribution de la densité 

cycle d'adaptation et distribution de la 

densité pour le schéma de Roe 



min.: 8.37E-6 ; max.: 2.52E-1 min.: 1.42E-7 ; m a . :  5.35E-1 
I I 

min.: 4.36E-6 ; m a . :  2.15E-1 min.: 9.26E-8 ; m a . :  3.49E-1 
1 

i 
1 

I 

I 

min.: 4.10E-9 ; m a . :  1.87E-1 min.: 1.56E-7 ; m a . :  2.37E-1 

a) exacte b) estimé 

Figure 4.24: La distribution de l'erreur en densité après un cycle d'adaptation pour 

le schéma de Roe 



Maillage Erreurs exactes Erreurs éstimées 

- - -- 

Convergence taux p = 0.4 t a u  p = 0.74 

Tableau 4.17: Les erreurs globales exactes et estimées (les normes L2) pour différents 

maillages non-structurés après le premier cycle d'adaptation 

Figure 4.25: Maillage obtenu après deux cycles d'adaptation 



Figure 4.26: La distribution de la densité et de l'erreur exacte en densité après deux 

cycles d'adaptation 



1 

O.' 

Figure 4.27: Les erreurs globales exactes et estimées en norme L2 en utilisant le 

schéma de Roe 



4.4 Résultats pour un écoulement autour du pro- 

fil NACA-0012 

Le dernier test consiste à simuler un écoulement autour du profil NACA - 0012 

pour un nombre de Mach à l'infini égal à 0.8 et avec un angle d'incidence égai à 0. 

La figure 4.28 illustre Ie domaine de calcul et les maillages initiaux utilisés ('zoom7 

sur le profil). La frontière numérique du domaine est un cercle de rayon égal à 20 

cordes. Sur la circonférence de ce cercle, nous imposons des conditions aux limites 

de type infini. La simulation expérimentale d'un tel écoulement a montré l'existence 

d'une onde de choc, 

La résolution du problème est effectuée par le schéma de Roe. Le maillage initiai 

est un mailIage non-uniforme qui contient 2883 noeuds et 5576 éléments. Les deux 

autres maillages utilisés pour faire les estimations ont 1579 noeuds et 3021 éléments, 

respectivement 813 noeuds et 1529 éléments et sont illustrés sur la figure 4.28. Les 

erreurs globales estimées en norme Lz  sont présentées au tableau 4.18. En utilisant 

la méthode d'adaptation basée sur l'estimateur d'erreur présenté auparavant, le 

maillage obtenu après l'adaptation a 6100 noeuds et 12032 éléments. L'erreur globale 

estimée sur le maillage le plus fin est diminuée d'un facteur E N 0.613, ce qui se 

trouve dans le voisinage de celui prévu (e,,, = 0.7), même un peu plus petit 

(voir le tableau 4.19). La distribution de la densité sur les maillages adaptés est 

illustrée à la figure 4.29. En regardant la figure 4.30, on remarque que l'estimateur 

d'erreur prédit une erreur plus uniforme pour les solutions obtenues sur les maillages 

adaptés. À l'étape suivante d'adaptation, le maillage obtenu a presque le même 

nombre d'éléments que le précédent (voir la figure 4.32). La distribution de Ia 



densité ainsi qu'un 'zoom' sur le maillage adapté près du profii sont présentés à la 

figure 4.31. 

Mailiàge Erreurs estimées 

Maillage* 9.1765E-2 

Maillage2 7.7950E-2 

Mai UageJ 6.7303E-2 

Convergence taux p = 0.479 
- 

Tableau 4.18: Les erreurs globales estimées en norme L:! sur différents maillages 

non-structurés initiaux 

Maillage Erreurs estimées 

Maillage3 4.1261E-2 

Convergence taux p = 0.675 

Tableau 4.19: Les erreurs globales estimées en norme L2 sur les différents maillages 

non-structurés après le premier cycle d'adaptation 

On constate que lorsqu'on rafhne le maillage dans le voisinage de l'onde de choc, 

celle-ci se déplace vers l'arrière. Après un cycle d'adaptation la position du choc 

était à = 0.48, tandis qu'après deux cycles d'adaptation la position du choc est à 

= 0.495. Cela est dii au fait que le facteur de raffinement est trop élevé pour une 

seule étape d'adaptation. Donc, pour aboutir à un mailiage précis (compte tenu de 

l'influence du maillage sur la qualité de la solution), on devrait faire encore plus de 

cycles d'adaptation avec des facteurs de raffinement plus petits pour ne pas avoir 
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d'oscillations du maillage d'une étape à l'autre. En tenant compte que cela implique 

un travail très long et que la qualité de la solution est déjà fortement supérieure à 

celle initiale, on s'est anété après les deux cycles d'adaptation déjà présentés. 



a) maillages b) distribution de Ia densité 

Figure 4.28: Maillages initiaux et distribution de la densité pour le schéma de Roe 



a) maillages b) distribution de la densité 

Figure 4.39: Maillages obtenus après un cycle d'adaptation et distribution de la 

densité pour le schéma de Roe 



min.: 3.68E-6 : ma.: 4.34Ec1 

min.: 3.13E-6 ; m a x :  3.6SE-1 

min.: 6.71E-5 ; m u . :  SAGE-1 

min.: 5.34E-.5 : max.: 4.67E-1 

min.: 5.81E-7 ; rnax.: 5.17E-1 

a) maillages initiaux 

min.: 4.73E-5 ; rnax.: 5.54E-1 

b) maillages adaptés 

Figure 4.30: Les distributions de l'erreur sur les maillages initiaux et après un cycle 

d'adaptation 



a) densité (min.: 5.07E-1 ; max.: 9.73E-1) b) maillage ("zoom") 

Figure 4.31: La distribution de la densité et le maillage après deux cycles d'adapta- 

t ion 



Figure 4.32: Maillage obtenu après deux cycles d'adaptation (vue générale) 



Chapitre 5 

Conclusion 

L'objectif principal de cette étude était le développement d'une méthode d'esti- 

mation d'erreur basée sur la technique d'extrapolation de Richardson [20], [XI, 

appliquée aux écoulements régis par ies équations de Euler. La stratégie numérique 

de résolution utilisée a consisté à discrétiser les équations d'Euler par volumes finis. 

à l'aide d'éléments triangulaires, et  en utilisant le schéma de Roe. L'extension du 

schéma de Roe au deuxième ordre a été réalisée par une reconstruction de la solution 

supposée constante sur chaque élément par une autre linéaire. 

La procédure de calcul ainsi développée a été validée sur quelques tests pour 

lesquels on disposait de solutions analytiques: un écoulement supersonique sans 

ondes de choc (vortex supersonique), un écoulement supersonique avec ondes de 

choc (problème de confluence) et un écoulement compressible subsonique (problème 

de Ringleb) . On propose aussi une procédure d'adaptation du maillage utilisant 

une analyse d'erreur de la solution. Pour ces problèmes, des comparaisons avec 



les solutions analytiques ont été faites et, en général, une bonne concordance a été 

observée entre nos prédictions et les résultats analytiques. Finalement, on a simulé 

un écoulement autour du profX NACA - 0012. Les prédictions numériques pour 

cet écoulement ont montré encore une fois que Ie couplage entre l'estimateur d'erreur 

et l'adaptation permet d'améliorer les solutions. 

II demeure quelques anomalies que l'étude de convergence a fait apparaitre, à 

savoir: 

0 Le taux de convergence varie avec le rufinement du maillage d'une paire de  

maillages u l'autre. 

Les valeurs observées du taux de convergence sont parfois plus petites que celles 

prédites par la théorie. 

Le taux calculé en utilisant la norme LI est parfois différent de celui calculé 

en utilisant la norme L2. 

Ceci démontre que certaines améliorations sont nécessaires afin d'augmenter la 

précision des calculs. Parmi ces améliorations, on peut citer: 

Augmenter la précision de la solution analytique ( y  compris la construction 

du domaine de calcul). 

0 Améliorer l'implantation des conditions auz limites pour le schéma d'ordre 2, 

surtout sur les frontières solides. 

En condusion, la méthode d'estimation d'erreur basé sur la technique d'extrapo- 

Iation de Richardson représente un chemin très simple vers une bonne prédiction de 



l'erreur dans une solution numérique. La précision des estimations est moins bonne 

pour les schémas d'ordre 2; ceci est probablement dû à Ia technique d'interpolation 

linéaire de la solution d'un maillage à l'autre. Une des améliorations envisageables 

pour cette technique est l'utilisation de 'points Gauss' lors du transfert de la solution 

sur les éléments du maillage fin. Cependant, le comportement général demeure bon. 

De plus, cette technique ne demande pas de grandes ressources informatiques parce 

que seulement des maiUages plus grossiers sont utilisés lors du processus d'estimation 

de l'erreur. 

A la suite de ce travail, des extensions de la méthode d'estimation d'erreur 

sont envisageables. L'une de ces extensions est l'utilisation de l'estimateur pour les 

maillages multigriiies agglomérés. Ceci permettrait d'économiser sur la résolution et 

la construction des maillages grossiers car les maillages agglomérés sont construits 

automatiquement par la procédure de multi-grille. On peut aussi envisager des 

améliorations pour la procédure d'adaptation du maillage. Le nombre d'éléments 

du domaine pourrait être minimisé par L'utilisation de triangles élancés suivant la 

direction du choc ou suivant la direction d'écoulement dans Ies zones où il n'y a pas 

de choc. 
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