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Dans le but d'améliorer le traitement des eaux souterraines contaminées par les BTEX ce 

projet se penche sur une nouvelle approche consistant en un biofiltre in sitir. 

Essentiellement, le défi consiste a créer directement au niveau de la nappe aquifère une 

zone de biodégradation très active oii les eaux contaminées peuvent être acheminées et 

traitées et ce, en perturbant le moins possible le régime d'écoulement naturel des eaux de 

la nappe aquifére. 

Afin d'être efficace, la biofiltration in siru nécessite l'utilisation d'un milieu filtrant 

présentant des propriétés mécaniques a microbiologiques avantageuses. L'objectif de ce 

projet de recherche était d'abord d'identifier un tei milieu, puis, de concevoir et d'évaluer 

le biofiitre à l'échelle de laboratoire. 

Quatre différents milieux filtrants ont été évalués dans le but de déterminer celui offiant le 

plus d'avantages pour une application en biofïitration in situ. Ces milieux étaient de Ia 

vermiculite ensemencée, un géotextile ensemencé, un milieu organique et de la tourbe 

granulaire. 

La tourbe granulaire, un mélange de tourbe de sphaigne et d'un agent polyménque, a été 

retenue compte tenu de ses excellentes propriétés mécaniques et microbiologiques. En 

effet, ce milieu est caractérisé par une porosité et une conductivité hydraulique élevées 



(80,8 % et 1,23*10-~ cds ,  respectivement). De plus, il n'est pas sujet a des problèmes de 

compaction ou de colmatage. Des essais en microcosmes ont également perrnis de 

démontrer qu'après une courte période d'acclimatation, les micro-organismes indigènes de 

la tourbe granulaire avaient la capacité de minéraliser le toluène (ayant été choisi pour 

représenter l'ensemble des composés BTEX) sous conditions aérobies et anaérobies 

dénitfiantes, à 10°C et sans ajout de nutriments. Le benzène a également été démontré 

biodégradable sous conditions anaérobies dénitfiantes par la microflore indigéne du 

milieu filtrant. 

Des essais ont été réalisés a l'aide d'un biofiltre de 0-5 titre de volume. Une étude de  la 

distribution des temps de séjour a permis de démontrer que le biofiltre opérait en régime 

piston avec dispersion axiale intermédiaire, sans zones mortes ni chemins préférentiels. En 

effet, pour des temps de résidence aiiant de 4 minutes a 8 heures, des nombres de Peclet 

entre 24.8 et 96.8 ont été obtenus. 

La consommation volumétrique d'oxygène dissous dans le fltre a été mesurée en absence 

de polluant (sans toluène) et une valeur de 0.5 mg.lT'.h-' a été obtenue. Cette faible 

consommation d'oxygène signifie que les sources de carbone propres a la tourbe 

granulaire ne sont pas Fdcilement biodégradables, ce qui diminue Ie risque de 

développement de zones anaérobies au sein du filtre. 
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L'adsorption du toluène sur la tourbe granulaire a été étudiée et un facteur de retardement 

de 22,6 a été mesuré. Ce résultat élevé s'explique par la présence de l'agent polymérique 

présent dans la tourbe granulaire. Toutefois, il a été démontré que les sites disponibles 

pour I'adsorption étaient rapidement saturés et que le phénomène de biodégradation était 

le principal facteur responsable de l'enlèvement du toluène au sein du filtre. 

La cinétique de biodégradation du toluène dans le filtre sous conditions aérobies à 10°C et 

sans ajout de nutriments a été évaluée. Pour une concentration moyenne de toluène à 

l'entrée de 1,3 mg, des concentrations à la sortie entre 16 pg/i et 390 pgll ont été 

mesurées pour des temps de résidence situés entre 10.6 minutes et 2,l minutes. 

respectivement. Ces résultats ont pennis de calculer une constante cinétique d'ordre un 

de 0,41 min? Une seconde série d'expériences a été réalisée pour une concentration 

moyenne en toluène à l'entrée de 9,4 mgA. Des concentrations à la sortie du biofiltre 

situées entre 61 pgA et 1 300 pg/l ont été mesurées pour des temps de résidence ailant de 

9.5 minutes à 2,1 minutes, respectivement. Une constante cinétique de premier ordre de 

0.45 min-' a ainsi pu être calculée. La cinétique de biodégradation du toluène a également 

été évaluée sous conditions anaérobies dénitrifiantes. Pour une concentration moyenne à 

l'entrée de 6.3 rng/I, des concentrations à la sortie entre 2.0 mg/l et 6,O mg/l ont été 

mesurées pour des temps de résidence aiiant de 122 minutes à 43 minutes respectivement. 

Une constante d'ordre un de 0-0 1 min*' a ainsi été évaluée. 



Ainsi, iI serait possible d'opérer un biofiltre comprenant deux sous-sections, une première 

sous conditions aérobies, jusqu'à l'épuisement de I'oxygéne dissous contenu dans l'eau 

souterraine contaminée et une seconde sous conditions anaérobies dénitrifiantes. Ceci 

présente une solution intéressante au problème de la faible concentration en oxygène 

dissous généralement retrouvée dans les eaux souterraines contaminées. 

Finalement, il a été démontré que le biofiltre pouvait opérer de façon autonome sur une 

période de temps prolongée. Une expérience a été réalisée où le biofltre a opéré de façon 

continue durant 20 semaines à 10°C et sans ajout de nutriments avec une concentration en 

toluène à l'entrée de 400 pgll et un temps de résidence de 3,s heures. Après une période 

de iatence d'une semaine, l'efficacité d'enlèvement du toluène dans ie filtre s'est stabilisée 

a une valeur approchant 100 %. En effet, la concentration moyenne a la sortie du filtre 

était de 10,7 pg/l et la plupart des échantillons prélevés se sont retrouvés sous la Limite de 

détection (0,01 pgl). L'enièvement du toiuène a été essentiellement attnbué a la 

biodégradation, tel que démontré par les bilans sur l'oxygène dissous. La consommation 

d'oxygéne dissous dans le filtre a osciiié entre 2 et 3 mg/l et le biofltre a démontré être 

autosuffisant au niveau nutritionnel. La croissance bactérienne dans le filtre a été faible et 

aucun phénomène de colmatage ou de compaction n'a été observé au cours des 20 

semaines d'opération. 



Ainsi, les résultats ont illustré que la tourbe granulaire présentait beaucoup de potentiel 

pour la mise en oeuvre d'un systeme de biofiltration in situ. Ii est maintenant possible 

d'entrevoir une mise à I'échelie du systeme sans complication majeure. 



A new approach to bioremediation of BTEX-contaminated groundwater is in situ 

biofiftration. Essentialiy, this technique consists in creating, directiy at groundwater level, 

an active zone where biodegradation of poiIutants is optirnized and towards which 

contaminated groundwater can be directed, without dismption of its naturd 0ow regime. 

In order to be efficient, the in situ biofltration technolog requires a filtering media that 

offers great advantages both at the mechanical and microbiological Ievels. The airn of this 

study was to first find such a support media and then to design and evduate a laboratory- 

scde biofilter. 

Four different fitering media were studied in order to optimize the efficiency of the 

biofilter inoculated vermiculite, inocuIated geotexble, an organic medium and granular 

peat moss. 

GranuIar peat moss, which resuIts tiom a mixture of sphagnum peat moss and a polymeric 

agent, was chosen because of its excellent mechanicd and microbio1ogical properties. 

Results showed that this medium had a hi& porosity and a high hydraulic conductivity 

(80,s % and 1.23*10-~ d s ,  respectively). Moreover it was not subject to clogging or 

compaction problems. Microcosms studies also showed that, after a short adaptation 

period, the indigenous rnicroflora of the grandar peat moss develops the capabiiity to 



minerafize toluene (chosen to represent BTEX compounds) under aerobic conditions as 

weil as under d e n i m g  conditions, at 10°C, without nutrient addition. Benzene was 

also found to be biodegradable under d e n i w n g  conditions by the indigenous microflora 

of the granular peat rnoss. 

Studies were conducted with a 0,5 iiter biofilter. Residence Urne disuibution experhents 

within the colurnn were conducted for residence times between 4 minutes and 8 hours. 

PecIet numbers between 24-8 and 96,8 were obtained indicating that the biofiiter operated 

under plug fiow regime with intermediate axial dispersion, without dead zones or 

preferential flow paths. 

In absence of toluene, oxygen consumption within the biofilter was low, in the order of 

0.5 rng.l-'.h-' indicating that carbon sources associated to the granular peat rnoss were not 

readily biodegraded. This reduces the nsk of development of anaerobic zones in the 

bioreactor. 

Sorption of toluene on çranular peat rnoss was studied and a retardation factor of 27-6 

was calculated. This relatively important sorption is partly attributable to the polymenc 

agent in the granular peat rnoss. However, experiments showed that sorption sites were 

quickIy saturated and that biodegradation was the main factor responsible for toluene 

rernoval in the biofilter. 



Kinetics of toluene biodegradation within the bioflter were studied under aerobic 

conditions, at 10°C and without nutrient amendments. For an average toluene 

concentration of 1,3 mg/i at the inlet. outlet concentrations between 16 pg/l and 390 pg/l 

were measured for residence times in the biofdter of 10,6 minutes to 2.1 minutes, 

respective-. A first order kinetic constant of 0,41 min-' was caiculated. A second 

experiment was canied out with an average inlet toluene concentration of 9.4 mgA- 

Outlet concentrations between 61 pg/f and 4 300 pg/l were measured for residence times 

ranging from 93 minutes to 2,1 minutes, respectively. A £irst order kinetic constant of 

0,45 min-' was obtained. Kinetics of toluene biodegradation under denitrifying conditions 

were aiso studied. For an average toluene concentration of 6,3 mg/l at the inlet, outlet 

concentrations ranging between 2.0 mgli and 6,O mg11 were measured for residence times 

between 122 minutes and 43 minutes, respectively. A first order constant of 0,01 min-' 

was calculated. 

Therefore, it would be possible to operate a biofilter that would include two sub-sections. 

The first one would operate under aerobic conditions, until exhaustion of the dissolved 

oxygen contained in the contaminated groundwater, and the second one wouId operate 

under d e n i m g  conditions. This presents an interesthg solution to the problem of low 

dissolved oxygen concentrations usuaiiy found in contaminated groundwater. 



Finaily, the Iong term behavior of the biofilter was studied over a 20 weeks period for an 

average toluene concentration of 400 pg/l at the idet and a residence tirne of 3.5 hours. 

The bioreactor was operated steadily at 10°C, without nutrient addition. M e r  a Iag phase 

of 7 days, the eaciency of toiuene removai in the reactor stabilized at a vaiue near 100 % 

and remained stable throughout the experiment. The average toluene concentration at the 

outlet was of 10,6 pg/l and most of the sarnples were found to be below the detection limit 

(0,O 1 pgil). Toluene removd was entirely attributable to biodegradation. Oxygen 

consumption in the filter fluctuated between 2 and 3 m g .  Nutrients concentration were 

foiiowed at the iniet and at the outiet of the filter and the system was found to be ser- 

sufiïcient. Biomass growth was monitored in the reactor and found to be quite Iow. No 

clogging or compaction of the f i i t e ~ g  medium was observed over the 20 weeks of 

experirnentation. 

in summary, this study showed that granular peat moss presented excellent rnecharucai and 

rnicrobiological properties and, therefore, has a great potentiai as a fiitering media for the 

in situ bioremediation of BTEX-contaminated groundwater. It is thus possible to foresee 

an on-site scaie-up of the system w i t h  a short tirne. 
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1. INTRODUCTION 

La contamination des eaux souterraines par des hydrocarbures s'échappant de réservoirs 

souterrains est un problème de taille au Québec et à I'échele internationale. En effet, dans 

la province en 1995, on estimait a 50 000 le nombre de réservoirs soutenains en acier non 

protégés contre la corrosion. De ceux-ci, on estimait que 35 % laissaient s'échapper des 

hydrocarbures (anonyme, 1995). Ces hydrocarbures, bénéficiant du vecteur qu'est I'eau 

de pluie, peuvent être entraînés jusqu'au niveau de la nappe aquifére. Ceci s'applique de 

façon toute particulière au groupe des BTEY soit le benzène, le toluène, I'éthylbenzène et 

le xylène. En effet, ces composés toxiques retrouvés dans l'essence sont caractérisés par 

un faible coefficient d'adsorption au sol. Ainsi, ils sont très mobiles au sein de la croûte 

terrestre et se retrouvent rapidement au niveau de la nappe phréatique. 

D'ici l'an 200 1, la totalité de ces réservoirs auront été remplacés mais les propriétaires de 

stations-service resteront aux prises avec le problème de restauration des nappes aquseres 

contaminées. A ce jour, plusieurs technologies permettant le traitement des eaux 

souterraines ont été mises sur pied. Toutefois, aucune ne semble apporter au problème 

une solution à la fois efficace et économiquement viable. En effet, les techniques de 

traitement conventionnelles ex situ de pompage et traitement entraînent des coûts 

considérables reliés à la main-d'oeuvre ainsi qu'à I'énergie requise pour le pompage et le 



traitement (Starr et Cherry, 1994). Quant aux technoIogies in situ, consistant à injecter de 

l'oxygène ainsi que d'autres nutriments au niveau de la nappe, elles présentent également 

plusieurs obstacles. En effet, la perméabilité hétérogène de la zone saturée entraîne Ia 

création de chemins préférentiels empruntés par les nutriments. Également, on assiste 

avec ce procédé à une croissance bactérienne accme au niveau des puits d'injection ce qui 

entraîne le colmatage de certains puits (Baker et ai., 1993). 

1.2. APPROCEE ENVISAGÉE 

Dans le but d'améliorer le traitement des eaux souterraines contaminées par de l'essence, 

ce projet propose une nouvelle approche consistant en un biofiltre in situ. Ce procédé 

consiste a forcer le passage de la totalité de l'eau souterraine contaminée a travers une 

zone très perméable et biologiquement active où la biodégradation des BTEX est 

optimisée. Les eaux contaminées seront acheminées vers cette zone de traitement. soit a 

l'aide de paiplanches, soit à l'aide de systèmes de pompage. L'ensemble du procédé 

s'effectuera en perturbant le moins possible le régime d'écoulement des eaux de la nappe 

aquifère. La figure 1.1. iilustre le principe de ce procédé. 



Figure 1.1 Schématisation de Ia biofdtration in sim 

L'intérêt pour le concept de la biofiltration in sim vient du fait que le procédé: 

Assure Ie passage de la totalité de l'eau contaminée par la zone de traitement et donc la 

restauration complète de l'aquifère; 

Entraine une diminution importante des coûts relatifs a l'énergie requise pour le 

pompage et le traitement; 

Ne requiert aucune supervision une fois le traitement amorcé et résulte donc en une 

réduction s i d c a t i v e  des coûts associés à la main-d'oeuvre; 

Préserve la ressource qu'est l'eau souterraine en évitant son extraction et son 

élimination. 



Certaines limites inhérentes au procédé devront toutefois ètre prises en considération [ors 

de la mise sur pied d'un tel système. Notamment. la technologie: 

Est passive et nécessite une opération a long terme; 

Peut entrainer des couts importants d'installation si le niveau de Ia nappe aquifere est 

trop bas; 

Est liée, au niveau de la performance, à la perméabilité de la zone saturée du site à 

traiter. 

1.3. OBJECTIFS DE RECaERCaE 

Dans le but, d'améliorer le procédé de biofiitration in situ, ce projet avait pour objectif 

p ~ c i p a l  d'identifier et de caractériser un nouveau milieu filtrant présentant des propriétés 

mécaniques et micro biologiques avantageuses. 

Le premier objectif spécifique de ce projet était d'étudier différents milieux filtrants 

potentiels afin d'identifier celui oEant le plus d'avantages pour une application en 

biofiltration in situ. La deuxième phase consistait en la conception et I'évduation du 

biofiltre à I'échelie de laboratoire. L'adsorption du polluant sur la matrice filtrante, la 

consommation d'oxygène dissous dans le tiltre. la cinétique de biodégradation du polIuant 

dans le filtre et la stabilité du biofiltre à long terme devaient être étudiés. Finalement, le 

potentiei du bioiiltre pour la biodégradation anaérobie dénitrifiante du polIuant devait ètre 

évalué. 



Afin d'être viable, le biofiltre tel que conçu devait: 

1" Supporter une activité de minéralisation importante; 

2" Être très perméable; 

3" Pouvoir opérer à une température de 10°C; 

4" Pouvoir opérer a de faibIes concentrations d'oxygène dissous ou sous 

conditions anoxies; 

5" Pouvoir être installé facilement dans I'aquifere; 

6' Empècher toute volatilisation des BTEX; 

7" Être stable a long terme, et; 

8" Pouvoir opérer en régime piston. 



2.1. LES BTEX 

2.1.1. Description et propriétés 

Le benzène, le toluène, I'éthylbenzène et Ies xylènes (BTEX) sont des composés 

constitués d'un noyau benzénique. Ce sont des composés toxiques, incolores et 

transparents dégageant une odeur importante. La figure 2.1 présente la structure de ces 

composés. 

Figure 2.1 Structures du a) benzène, b) toIuène, c) éthylbenzene, d) ortho-, e) méta- 

et f )  para-xylènes 



Les principales propriétés des BTEX sont présentées au tableau 2.1. t a  solubilité de ces 

composés dans l'eau se situe entre modérée (de 152 mgA pour I'éthylbenzène a 5 15 mg/l 

pour le toluène en passant par Ies xylènes) et élevée (1780 mg1 pour Le benzène) et leur 

tension de vapeur est relativement élevée (de 9 à 76 mm Kg). De plus, ces composés sont 

caractérises par leurs faibles coefficients de partage octanol-eau (phw allant de 2.17 à 

3,15) et matière organique-eau (pk,  d a n t  de 1.8 1 a 2,84). Ainsi, ce sont des composés 

soIubles très volatils qui ne tendent pas à s'adsorber sur la matière organique du sol. 

Tableau 2.1 Principales propriétés des BTEX (20°C, 1 atm) 

Composé SoIubilité Tension de vap. P ~ W  PL 
(a) (4 (a) (a) 

( m d )  (m Hg) 

benzène 

toluène 

m-xylène 200 9 2,20 2.84 

O-xyiene 170 7 3-22 2,84 

p-xylène 198 9 2,15 2.84 

(a) Merck index (1 976) 

2.1.2. Sources et rejets 

Le benzène, le toluène, I'éthylbenzène et les xylènes sont produits commercialement a 

partir du pétrole, de condensats du gaz naturel ou du charbon. Avec des taux de 



production annuels de l'ordre de millions de tonnes, ils font partie des 50 produits 

chimiques les plus commerciaiisés au monde (Smith, 1990). Ils sont utilisés dans 

l'industrie comme solvants volatils et comme intermédiaires pour la production d'un grand 

nombre de produits chimiques. Les BTEX font également partie de la composition 

naturelle du pétrole. Dans l'essence. ils améliorent l'indice d'octane et agissent comme 

antidétonants (Environnement Canada, 1984, 1993 qb,c). 

Quoique ces composés organiques se retrouvent à l'état naturel dans le milieu ambiant, la 

grande majorité des BTEX retouvés dans I'enviro~ement est d'origine anthropique. [1 

peut y avoir rejet de ces composés dans l'environnement à partir de toute étape de la 

production, du stockage, de l'utilisation ou du transport des produits purifiés ainsi que du 

pétrole brut et de l'essence ce qui comprend également la combustion de combustibles 

(Environnement Canada 1 984, 1993 a b,c). 

Toujours selon Environnement Canada (1993a,b), la grande partie des BTEX rejetés 

chaque année au Canada est libérée directement à l'atmosphère. Des quantités beaucoup 

moins importantes sont libérées dans les eaux (par exemple, 3% de la quantité totale dans 

le cas du benzène et O, 1% dans le cas du toluène) et dans les sols (par exemple, 0,6% dans 

le cas du benzène a O, 1% dans Ie cas du toluéne). Les BTEX pénètrent dans le sol et les 

eaux souterraines principalement a partir de déversements d'hydrocarbures ou d'essence, 

de hites de réservoirs souterrains d'entreposage et par percolation à partir de sites 

d'élimination de déchets. 



2.1.3. Devenir et concentrations dans l'environnement 

Plusieurs mécanismes agissent sur le devenir des BTEX dans l'environnement, dont la 

photo-oxydation, la volatilisation, I'advection et la biodégradation. Puisque les BTEX 

sont caractérisés par leurs tensions de vapeur assez élevées, leurs solubilités dans I'eau 

élevées et leurs faibles coefficients de partage octanol-eau (k,,,), l'atmosphère et les plans 

d'eau constituent des points de fùite importants pour ces composés (Environnement 

Canada, 1984, 1993a,b,c). 

Alors que ta photo-oxydation est la voie principale d'élimination des BTEX dans I'dr. la 

volatilisation et la biodégradation sont de première importance en ce qui a uait a leur 

étimination dans I'eau. Le principal mécanisme responsable de l'élimination des BTEX 

dans les sois est le ruissellement. En effet, VU leurs faibles coefficients d'adsorption sur la 

matière organique, les BTEX sont considérés comme étant moyennement à fortement 

mobiIes dans les sols et pour cette raison, ils se retrouvent rapidement dans les eaux 

souterraines ou de surface. 

Les concentrations en BTEX retrouvées dans les eaux soutemaines varient 

considérablement. Par exemple, au Canada, la concentration en benzène dans les nappes 

aquiféres situées à proximité de hites d'essence de réservoirs de stockage souterrains a 

été mesurée. Dans la majorité des cas, les concentrations étaient comprises entre la limite 



de détection (soit 0,05 pg/i) et 15 rng/l. Quant au toluène, les concentrations maximales 

retrouvées dans les eaux souterraines ont été mesurées dans des nappes aquiEres peu 

profondes situées à proximité de sites d'élimination de déchets chimiques. Des 

concentrations supérieures à 3 900 pgi ont ainsi été mesurées. Les concentrations de 

xylènes Ies plus élevées dans les eaux souterraines au Canada ont été observées pres des 

sites d'élimination (de moins de 0,2 pgA a 123 pg/l d'o-xylène et de 0.2 pfl à 19 1 pgA de 

rn- et de p-xylènes confondus), près de puits d'injection profonde auparavant utilisés pour 

l'élimination de déchets industrieIs liquides (325 CLgn à 374 pg/l de xylènes) et pres d'un 

bassin d'élimination de déchets chimiques (jusqu'à 1700 pg/l d'o-xylène et 3 100 pgA de 

m- et p-xyiènes confondus) (Environnement Canada, I984, 1993 a, b,c). Évidemment, 

certaines observations de terrain ont déjà montré des concentrations beaucoup plus 

élevées. 

Vu ie haut degré de toxicité des BTEX et i'irnportance de l'eau souterraine en tant qu'une 

des premières ressources mondiales d'eau potable, Ie gouvernement canadien a jugé 

important de prendre les mesures nécessaires a la protection et à la restauration des eaux 

aquifëres. 



2.2. BIODÉGRADATTON DES BTEX 

2.2.1. MétaboIisrne 

Les mécanismes de biodégradation des BTEX ont fait l'objet de nombreuses études et la 

quasi totaiité des voies métaboliques impliquées a été élucidée (Gibson et Subramanian, 

1984). 

Des travaux préIiminaires réalisés par Wieland et ai. (1958) ont permis d'identifier le 

catéchol en tant que principal produit intennédiaire de L'utilisation du benzène par les 

micro-organismes. Des études plus approfondies ont par la suite permis de définir deux 

voies divergentes menant à la minéralisation du benzène en conditions aérobies (figure 

2 2 ) .  

-Voie meta-fision 

2Semi-aldéhyde O-@:% hydroxymuconique 

Benzène Catécùol CE::: -voir odo- nio on 

CG. cis- acide 
muconique 

Figure 2.2 Les voies de biodégradation du benzène en conditions aérobies (I) méta- 

fission @) ortho-fission (Smith, 1990) 



Toutes deux suivent le même cheminement initiai, soit I'oxydation de l'anneau de benzène 

menant a la formation du catéchol. Ce dernier est ensuite oxydé, soit par ortho-fission par 

l'intermédiaire de l'enzyme catéchol 1,2-dioxygénase ou par méta-fission via l'enzyme 

catéchot 2,3-dioxygénase. La voie empruntée dépend du type de micro-organisme. Il en 

résulte la destruction de l'anneau aromatique donnant lieu à un hydrocarbure aliphatique 

facilement oxydable (Smith, 1990). 

La présence d'un ou de plusieurs groupements aikyls sur l'anneau benzénique présente 

deux possibilités pour la dégradation aérobie des composés de type aikylbenzène (toluène, 

éthyIbenzène. xylènes) par les micro-organismes. D'une part, une attaque oxydative du 

noyau est possible, menant a la formation d'un alkyl-catéchol. substrat pour la fission 

aromatique. D'autre part, la biodégradation peut ètre réalisée via l'oxydation du 

groupement WI, menant a la formation d'un acide carboxylique aromatique, Iequel est 

par la suite oxyde en un substrat propre à la fission aromatique (Gibson et Subramanian, 

1984). Ces deux voies métaboliques sont illustrées a la figure 2.3 pour le cas du toluène. 

Des voies métaboliques similaires ont été observées pour I'éthyibenzène. 



GO& 6-.&---.&m~-* OH * 

Toluine 
OH 

3-Méthyl 
'O 

3-Méthyle 2-Oxopmta- 
catéchol 7-scM-aidéhyde J-Crioatc 

I alcool benzoique 

Figure 2.3 Voies de biodégradation aérobie du toluène (Gibson et Subramanian, 

1984) 

Jusqu'à récemment, seuls les isomères méta- et para- du xyiène avait été démontres 

biodégradables sous conditions aérobies. Ces deux composés sont initialement oxydes au 

niveau d'un de leurs groupes méthyles puis, jusqu'à la forme rnéthyl-catéchol, substrat 

propre à la fission aromatique. Cette voie est illustrée à la figure 2.4 pour le para-xylène 

Les méta- et para-xylènes peuvent également être dégradés via une attaque oxydative 

directe de l'anneau avec conversion subséquente au catéchol substitué correspondant. 

Toutefois, les catéchols résultants ne sont pas dégradés (Smith, 1990). Les premières 

démonstrations de biodégradation aérobie complète de 1'01-tho-xyiene servant comme 

seule source de carbone et d'énergie ont été rapportées par Baggi et al. (1987) et Schraa 



et al. (1987). Ces études ont démontré que I'ortho-xylène est oxydé via le 3,4-diméthyl- 

catéchol avec méta-fission subséquente (Smith, 1990). 

I p-Xylène p-Mithylcbenzyl p-Tolualdihyde Acide 4-MCthyle 
alcool p-toluiquc cakchol 

Figure 2.4 Voie possible pour la biodégradation aérobie du para-xylène (Smith, 

1990) 

Plusieurs voies de biodégradation anaérobies ont également été rapportées dans la 

littérature. Aivarez et al. (1994) ainsi que Fries et al. (1994) ont observe Ie processus de 

dégradation des hydrocarbures aromatiques sous conditions dénitrifiantes. Rabus et al. 

(1993) et Beller et al. (1996) ont étudie le métabolisme sous conditions sulfato-réductrices 

de dégradation du toluène. 

Finalement, Lovley et Lonergan (1990) et Lovley et al. (1994) ont étudié Ies conditions 

ferro-réductrices de biodégradation d'hydrocarbures aromatiques. 



2.2.2. Facteurs influençant la biodégradation des BTEX dans les eaux souterraines 

2.2.2.1. Structure chimique 

De façon générale, le benzène est considéré comme étant le composé aromatique le plus 

récalcitrant à la biodégradation (Gibson, 1978). Toutefois, ce siijet est controversé car 

des études ont démontré que le benzène était dégradé tout aussi rapidement que le toluène 

et les xylènes sous conditions aérobies (Barker et al., 1987). Ce résultat semble indiquer 

que l'étape limitante dans la voie de biotransformation des BTEX serait la fission de 

l'anneau aromatique et que la présence et la position des groupes méthyles seraient de 

moindre importance. 

2.2.2.2. Température 

II a été largement démontré que de façon générale, conformément à la loi d'Arrhenius, Ies 

vitesses de biodégradation des BTEX décroissent avec un abaissement de la température. 

En effet, de faibles températures ont pour effet l'accroissement de la viscosité des 

hydrocarbures ce qui rend leur biodégradation plus difficile (Leahy et Colwell, 1990). 

Ainsi. des températures extrêmes peuvent devenir le facteur limitant lors d'une réaction de 

biodégradation. La plupart des micro-organismes hétérotrophes sont efficaces a des 

températures aiiant de moins de 10°C à 40°C. La majorité de ces micro-organismes cesse 

toute activité métabolique à des températures situées légèrement au-dessus de 0°C 

(Cookson, 1995). 



Le pH a un effet considérable à la fois sur les micro-organismes, en ce qui a trait a leur 

capacité d'effectuer des fonctions cellulaires et le transport transmembranaire, et à la fois 

sur l'équilibre des réactions catalytiques. La majorité des micro-organismes est favorisée 

par des pH allant de neutre à légèrement alcalin. Ainsi, le pH devrait idéalement être 

maintenu entre 7 et 8 (Dibble et Bartha, 1979). 

2.2.2.4. Nutriments 

La présence de nutriments est une condition nécessaire à la biodégradation des 

hydrocarbures. L'azote et le phosphore sont les principaux éléments limitant la survie et 

la croissance des micro-organismes. Le déversement d'hydrocarbures peut entrainer, vu la 

grande quantité de carbone ajouté, des ratios carbone/azotw'phosphore démesurément 

élevés. II est dors essentiei d'ajouter le phosphore et l'azote nécessaires afin de diminuer 

ce ratio et d'éviter que Ies micro-organismes ne se retrouvent en conditions limitames en 

nutriments Geahy et Colwell, 1990). Un ratio C:N:P de 100: 10: 1 est généralement 

optimal. 



2.2.2.5. Accepteurs d'électrons 

Toutes les réactions biologiques sont de type rédox. Ainsi, la présence d'un accepteur 

d'électron est essentieue à la biodégradation des hydrocarbures. Les principaux 

accepteurs d'électrons connus sont I'oxygéne, le nitrate, le sulfate, le dioxyde de carbone 

et les composés organiques. Le type d'accepteurs d'électrons utilisé établit la voie 

métabo tique empruntée (Cookson, 1995). 

La présence d'un accepteur d'électrons en quantité suffisante est généralement le critère le 

plus daci le  à satisfaire dans les procédés de bioremédiation des eaux souterraines. En 

effet, ce facteur a été identifxé comme étant l'élément Lunitant dans plusieurs études 

portant sur la biodégradation Ni siru des hydrocarbures (Barker et ai., 1987; Leahy et 

Colwell, 1990). Il est donc généralement nécessaire d'implanter des systèmes sophistiques 

visant l'apport et le contrôle de la concentration d'accepteurs d'électrons au panache de 

Dans la majorité des cas, de l'air ou de I'oxygène purs sont utilisés. Cette option esr 

toutefois problématique vu la faible solubilité de l'oxygène dans I'eau. Pour pallier ce 

problème, de nombreux auteurs suggèrent l'utilisation du peroxyde d'hydrogêne qui peut 

entraîner des concentrations en oxygène jusqu'a 50 fois supérieures à celles obtenues par 

saturation avec l'air (1 1,7 mgA à 10°C) et 10 fois supérieure à ceiles obtenues avec 

l'oxygène pur (58'5 mg/l a 10°C) (Brown et Noms, 1994). La catalase, une enzyme 



respiratoire presque toujours présente dans les systèmes biologiques, permet la scission de 

la molécule de H202 en H20 et en 02. Certaines études rapportent toutefois que le 

peroxyde d'hydrogène peut être toxique à des concentrations aussi basses que 30 mg/i 

(Anid et al., 1993). D'autres études démontrent qu'une augmentation graduelle de la dose 

permet aux bactéries de tolérer des concentrations en HtOt ailant jusqu'a 500 m g  en 

colonne (Flathman et al., 1991) et jusqu'a 1000 mg1 en traitement in situ (Wilson 199 1).  

Le peroxyde peut également entraîner des problèmes relatifs a sa courte durée de vie dans 

I'eau et a la précipitation du fer et du manganèse. 

Aiin de contourner les problèmes relatifs a l'utilisation d'oxygène. d'autres accepteurs 

d'électrons potentiels, tels le nitrate, le dioxyde de carbone, le fer et le sulfate ont été 

étudiés. De ces derniers, le nitrate a reçu le plus d'attention. L'avantage de son utilisation 

vient du fait qu'il est peu coùteq très soluble dans l'eau, non adsorbé sur la matrice 

géologique et ne se décompose pas (Hutchins, 1993). Ainsi, il se distribue très bien dans 

la nappe aquifére. Des taux significatifs de biodégradation ont été obtenus avec les 

alkylbenzènes (TEX) sous des conditions dénitdiantes en microcosmes (Hutchins, 1993) 

et sur Ie terrain (Hutchins et Wilson, 1994). Toutefois, le cas du benzène demeure 

énigmatique. Certains chercheurs ont rapporté que le benzène était récalcitrant dans ces 

conditions (Hutchins et al., 1991; Kuhn et al., 1988; Patterson et al. 1993; Anid et al., 

1993), alors que d'autres ont indiqué qu'il était dégradé (Battermann, 1986; Major et al., 

1988). 



2.2.3. Cinétique de biodégradation 

Dans plusieurs des études rapportées dans la littérature, le modèle cinétique de Monod est 

utilisé pour modétiser la biodégradation des BTEX. Ce modèle décrit le taux d'utilisation 

du substrat de la façon suivante: 

ou C: concentration du substrat (mg/I) 

t : temps (h) 

k: taux maximal d'utilisation du substrat (mg/ceU. h) 

X: concentration de Ia biomasse (ce1l.A) 

Ks: coefficient de mi-saturation (rng/l) 

Puisque les BTEX se retrouvent a de faibles concentrations dans les aquiferes. il est 

possible d'affirmer dans la plupart des cas que K P X ,  ainsi, en posant X constant, une 

réaction de premier ordre de la forme suivante est retrouvée: 

ou K: constante cinétique d'une réaction de premier ordre (h-') 



11 existe un écart considérable entre les divers coefficients de Monod concernant les BTEX 

publiés dans la Littérature (Alvarez et ai. 199 1). Ceci s'explique par le fait que ['équation 

de Monod est empirique et que les coefficients trouvés sont spécifiques a chaque système 

étudié. 

Dans leur article, Alvarez et al. (1991) Srment  que, quoiqu'il y ait eu de nombreuses 

études sur la cinétique de dégradation des BTX individuels, peu de recherche a été 

effectuée sur la capacité des composés individuels de stimuler ou d'inhiber la 

biodégradation des autres composés BTX lorsqu'en présence d'un mélange. Les auteurs 

ont mené une série d'expériences visant à évaluer les interactions ayant lieu entre le 

benzène, le toluène et le p-xylène durant leur biodégradation par des cultures pures et des 

cultures mixtes. Après avoir constaté diverses interactions, ils sont arrivés à la conclusion 

que, nie la diversité cataboiique des micro-organismes dans i'envuomement, il esr 

impossible d'établir des principes généraux concernant ces interactions. 11 est donc 

essentiel de procéder à des études cas par cas. 

2.2.4. Atténuation naturelle des BTEX dans les eaux souterraines 

Plusieurs études ont démontré, à l'aide d'expériences réalisées en microcosmes ou sur le 

terrain, que les micro-organismes retrouvés dans les nappes aqureres avaient la capacité 

de dégrader les BTEX de façon naturelle sans intervention humaine. Lorsque présents, 



différents accepteurs d'électrons (oxygène, nitrates, sulfates, etc.) peuvent alors entrer en 

jeu. Des taux de biodégradation différents sont associés a chaque accepteur d'électrons. 

Ainsi, les BTEX sont dégradés plus rapidement en conditions aérobies qu'en conditions 

anaérobies (Davis et al-, 1994). Cependant. les processus de biodégradation anaérobies 

peuvent devenir plus importants vu la limitation en oxygène souvent retrouvée dans les 

nappes. 

En effet, des vaieurs situées entre 6 et 12 pg/l d'oxygène sont parfois mesurées dans les 

eaux souterraines contaminées. Par opposition, la minéralisation complète de 1 pg/l d'un 

hydrocarbure aromatique te[ Ie toiuène requiert environ 3 pgfl d'oxygène. Ainsi, il est 

possible d'estimer qu'entre 2 et 4 pg/i de BTEX peuvent être enlevés du milieu par le 

processus aérobie strict (Borden et ai., 1995). 

De plus, il est reconnu que l'oxygène est utilisé de façon préférentielle par les rnicro- 

organismes puisque ces derniers tirent davantage d'énergie des réactions aérobies (Borden 

et al., 1995). Aivarez et VogeI (1991) ont observe une dégradation complète en 

microcosmes d'un mélange de benzène, toluène et p-xylene (50 mgIl de chacun) mis en 

présence de matériaux aquiféres sous des conditions aérobies après seulement 6 semaines 

d'essais. Hunt et ai. (1995) ont réalisé des expériences en laboratoire et sur le terrain 

démontrant des taux de dégradation intrinsèques aérobies allant de 0,0049 jour-' pour le 

benzène à 0,00 1 jourAL pour le toluéne dans les matériaux aquifêres. 



Lorsque la nappe phréatique ne contient pas d'oxygène ou que ce dernier a été 

complètement consommé, les processus de biodégradation anaérobies entrent en jeu. Le 

coeur du panache devient rapidement anaérobie, seules les extrémires entrent en contact 

avec Les eaux propres et oxygénées (voir figure 2.5). 
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Figure 2.5 Différentes zones d'oxydo-réduction dans un panache de contamination 

Lorsqu'une certaine quantité de nitrates est présente dans I'aquifêre, une fraction des 

polluants restants pourra généralement être dégradée sous conditions dénitrifiantes. 

Plusieurs études ont démontré !a biodégradabilité du toluène, de I'éthylbenzène et des 

xylènes dans les eaux souterraines lorsque le nitrate était utiiisé comme accepteur 

d'étectrons (Kuhn et al., 1988; Hutchins et al., 199 1 ; Mihelcic et Luthy, 199 1). Le cas du 

benzène reste à être écIairci. Certains auteurs ont rapporté que ce dernier était récalcitrant 



dans les aquifëres en conditions anoxies ~ u t c h i n s  et al., 1991; Kuhn et al.. 1988) alors 

que d'autres ont indiqué qu'il était dégradé sous de telles conditions (Major et al., 1988; 

Kukor et Oisen, 1989). 

Une fois L'oxygène et les nitrates consommés, la troisième source d'accepteur d'électrons 

servant à la biodégradation intrinseque des hydrocarbures aromatiques dans les eaux 

souterraines est le fer ferrique, présent en grande quantité dans les sédiments de la 

majorité des nappes phréatiques (Borden et al., 1995). Lovley et al. (1989) ont démontré 

que I'edèvement des BTEX dans un aquifëre contaminé était accompagné par la 

formation de fer ferreux et par l'enlèvement de fer ferrique. 

Certaines recherches ont également démontré que les aikyibenzènes pouvaient être 

dégradés de façon intrinseque sous conditions sumo-réductrices ou encore sous 

conditions méthanogènes (Grbic-Gaiic et Vogel, 1987; Davis et ai., 1994; et al., 

1986). 

Quoique l'atténuation naturelle puisse contribuer de façon significative a l'enlèvement des 

BTEX dans les eaux souterraines, ce phénomène demeure très passif et marginal. Pour 

cette raison, l'usage de technologies de traitement est généralement nécessaire pour 

assurer la décontamination efficace des eaux. 



2.3. ADSORPTION DES BTEX 

Plusieurs études portant sur 17adsorption des BTEX sur différents sols et milieux 

organiques ont été réalisées à ce jour. Des expériences en flacons agités ont permis 

d'établir que l'isotherme de Freundlich est tout indiqué pour représenter ce phénomène 

(Zytner, 1994; Voice et al., 1992; Ahlert et Uchrin, 1990). Cet isotherme, qui symbolise 

l'adsorption muIticouche se produisant à la surface de différents milieux, s'exprime 

comme suit: 

où 9: masse du substrat adsorbée (mg) 

m: masse du milieu adsorbant (kg) 

Ki. constante d'équilibre d'adsorption (mg/kg)(mg/l)-"nr 

Ce: concentration du substrat à l'équilibre (mg/l) 

nf: constante adhensiomelle 

Ainsi. plus les constantes Kf et nf sont élevées, plus le milieu en question a de grandes 

capacités d'adsorption. L'isotherme de Freundlich peut aussi bien être appliqué au 

phénomène de désorption qu'à celui d'adsorption. Des expériences distinctes doivent être 

réalisées afin d'obtenir les valeurs respectives des constantes. 



Pour de faibles concentrations en substrat, une linéarité entre la masse de substrat 

adsorbée et la concentration résiduelle du substrat à l'équilibre est généralement observée. 

Un isotherme d'adsorption linéaire de la forme suivante est alors employé: 

où Kd: constante d'équilibre d'adsorption linéaire (I/kg) 

Les recherches menées à ce jour ont pennis d'identifier trois propriétés physico-chimiques 

prédominantes permettant de prédire l'importance relative de I'acisorption sur un milieu 

donné soit, par ordre d'importance, la teneur en carbone organique, la capacité d'échange 

cationique et la surface spécifique. L'importance de la teneur du milieu en carbone 

organique a été démontrée par Karichoff et al. (1979). Leur étude a démontré que les 

composés hydrophobes étaient facilement adsorbés par le carbone organique. La 

littérature donne des coefficients de répartition octanol-eau (Kow) pour les BTEX allant 

de 2,13 pour le benzène à 3,20 pour le métha-xylène (Zytner 1994) ce qui indique que ce 

sont des composés modérément hydrophobes. 

Malgré ces notions, Bouchard et al. (1990) ont démontré qu'il est difficile de prédire le 

comportement d'un milieu en ce qui a trait à la sorption puisque toutes les propriétés d'un 

milieu sont interreliées et qu'il est diicile de séparer les effets individuels de chaque 



facteur. Pour cette raison. les coefficients de sorption doivent kre  déterminés pour 

chaque type de sol ou milieu organique et pour chaque composé chimique. 

Les résultats obtenus par Zytner (1994) au cours de ses expériences traitant de 

['adsorption des BTEX sur dïérents milieux permettent d'affirmer que cette catégorie de 

composés possède des propriétés d'adsorption fort semblables. Ceci s'explique entre 

autres par le fait que les BTEX sont dotés de coefficients de répartition octanol-eau très 

rapprochés (de 2,13 à 3,15) et ont donc a peu près le même degré d'hydrophobicité. De 

légeres différences prévalent toutefois, Ie toluène étant plus fortement adsorbé que les 

autres composés, suivent ensuite les xyienes, I'éthylbenzène et le benzène. Quant à la 

nature du milieu mis en jeu, la littérature démontre qu'elle a une grande influence sur les 

coefficients d'adsorption obtenus, tel qu'attendu. En effet, au cours de l'expérience de 

Zytner, les BTEX étaient faiblement adsorbés par les différents sois testés, alors qu'iIs 

étaient moyennement adsorbés par la tourbe et fortement adsorbés par le charbon activé 

granulaire. 

Stuart et ai. (1991) ont démontré que les coefficients d'adsorption mesurés pour les 

composés BTEX individuels n'étaient pas additifs lorsqu'en présence d'un mélange. En 

effet, plusieurs interactions et effets de compétition surviennent alors, ce qui a pour effet 

de diminuer l'adsorption respective de chacun des composés. Ainsi, les coefficients 

d'adsorption d'un mélange de BTEX doivent être mesurés cas par cas. 



Finalement, Ahlert et Uchrin (1990) ont démontré que l'adsorption des BTEX était 

réversible. En effet, la désorption de ces composés se produit rapidement ce qui s i m e  

que le substrat, même si adsorbé au support filtrant, peut facilement devenir disponible 

pour la biomasse lorsque nécessaire. 

2.4. TECHNOLOGIES DE TRAITEMENT DES EAUX SOUTERRAINES 

CONTAMNÉES PAR LES BTEX 

Les procédés de biotraitement des eaux souterraines consiste a favoriser la biodégradation 

des BTEX par des micro-organismes se servant du poîîuant pour leur croissance. Ces 

procédés peuvent ê e  réalisés de façon ex situ ou in siru. Mors que les technologies in 

situ sont utilisées sans aucune perturbation de l'environnement naturel, les technologies rx 

situ nécessitent un pompage de l'eau en surface et I'instaliation de bioréacteurs. Le 

principe de ces procédés est illustré aux figures 2.6 et 2-7. 

2.4.1. Traitement ex situ de pompage et traitement 

L'utilisation de techniques de traitement ex siru pompage et traitement est très répandue 

pour la restauration des eaux souterraines contaminées par les BTEX. En effet, en 1991 

aux États-unis, 80% des sites gérés par le Superfund faisaient appel à cette technologie 

qui consiste à extraire les eaux souterraines contaminées puis i les traiter en surface a 



l'aide de diverses méthodes. qu'elles soient biologiques, thermiques ou physico-chimiques 

(Cartwright 1991). 

Roc argile imperméable 1 I 

Figure 2.6 Schématisation du traitement er situ Thé de Samson 1994) 

Au cours des dernières années, des études approfondies ont été redisees par le U.S. EPA 

et le Conseil national de recherche américain concernant la performance des systèmes 

pompage et uaitement ayant été implantés à travers les États-~nis (C-pht, 1991; 

Hofian, 1993; Hasbach, 1993). Les différents comités ont conclu que la technologie 

était en général efficace pour assurer le confinement du panache de contamination et donc 

pour empêcher la migration des contaminanu. L a  études ont également permis de 

conclure que cette technique permet, dans la plupart des cas, d'ewaire des quantités 

importantes de contaminants des eaux sou~erraines. Toutefois, les etudes ont démontré 



que Ie traitement ex siru pompage et traitement ne permet généralement pas d'atteindre les 

normes prescrites pour I'eau potable et qu'il est partidèrement inefficace dans [es 

aquieres compIexes (Le. hétérogènes) ou lorsque des composés denses non-aqueux 

@NAPLs) sont présents. 

En effet, on assiste généralement avec ce eype de système à une réduction initiale drastique 

de la concentration des contaminants dans I'aquifére. Par la suite, une fois le pompage 

arrêté, Ie contaminant en phase non-aqueuse continue de se dissoudre lentement dans I'eau 

ce qui contamine la nappe à nouveau. Aùisi, la restauration des eaux souterraines par 

pompage et traitement est eficace seulement si les contarninants présents sont entièrement 

en phase aqueuse, si Ia géologie de la nappe aquifêre contaminée est relativement 

homogène et si la contamination est récente. Pour assurer le succès du procedé, la nappe 

aquifère ainsi que les paramètres de la contamination doivent au préalable être caractérisés 

de façon extensive et le système doit être conçu en conséquence. Dans pratiquement tous 

les cas, les coûts associés a ce type de traitement sont très élevés et le temps requis pour la 

restauration complète est long (RofEnan, 1993). De plus, ce type de procédé nécessite 

une infiastructure lourde et complexe ainsi qu'une main-d'oeuvre importante. 

Afin de contourner ces problèmes, plusieurs auteurs suggèrent l'alternarive des 

technologies innovatrices in siru pouvant être utilisées seules ou en combinaison avec les 

technologies ex siiu conventio~el1es (Hasbach, 1993; Taylor et al., 1993). Également, la 

notion voulant que les technoIogies de remédiation passives soient préférables aux 



technologies artificielles actives attire beaucoup l'attention depuis les dernières annees 

(Cartwright, 199 1 ). 

2.42. Traitement in situ traditionnel 

Les technologies In szru pour le traitement des eaux souterraines contaminees par les 

composes organiques volatils ont suscité un interèt accm depuis les dernieres années 

(Taylor et ai.. 1993). Le principe de base consiste a injecter au niveau de la zone aquifère 

contarninee une quantite suffisante de nutriments ainsi qu'un accepteur d'dectron. 

généralement l'oxygène. afn de favoriser la biodegradation du polluant par les micro- 

organismes en présence. 
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Figure 2.7 Schématisation du traitement in situ (Tire de Samson. 1W-F) 



Afin d'assurer le succes d'un tel traitement, deux criteres doivent être rencontrés. En 

premier lieu, ii est essentiel que Ia matrice géologique soit suffisamment perméable pour 

permettre Ia migration des nutriments et de l'oxygène. Une conductivite hydrauiique de 

['ordre de loJ cm/s est généralement satisfaisante (Thomas et Ward, 1989). En second 

lieu, la présence de micro-organismes indigènes possédant [a capacité génétique de 

dégrader Ie poliuant est indispensable. Des prélèvements de matériel aquifère suivis 

d'études en microcosmes au laboratoire sont habituellement effectués pour s'assurer de la 

faisabilité du projet de traitement (Thomas et Ward, 1989)- 

Une fois la faisabilité du projet établie, iI est essentie1 dans un premier temps de retirer la 

phase Iibre (ex. phase flottante) de l'environnement contaminé. Par la suite, les puits 

d'injection peuvent être installés et les nutriments injectés. Dans la grande majorité des 

cas. de l'air est utiIise pour fournir l'o'rygene nécessaire. Plusieurs projets ont également 

été réalisés avec de l'oxygène pur. du peroxyde d'oxygène (Brown et Norris, 1994) et 

plus récemment avec des nitrates (Battermm et al., 1994; Hutchins et Wilson, 1994). 

Chaque accepteur d'électron a ses limites: dors que l'oxygène est peu soIuble dans l'eau, 

le peroxyde apporte des problèmes de toxicité. Quant aux nitrates, iis semblent aussi être 

problématiques puisque I'on a souvent observé la récdcitrance du benzène a la 

biodégradation en conditions dénitrifiantes (voir section 2.2.2.5). 



Récemment, une nouvelle alternative est apparue sur le marché des technologies de 

restauration de l'environnement. L'ORC ou "Oxygen Releasing Compound" (composé a 

relâchement d'oxygène) est une poudre de peroxyde de magnésium mise au point par la 

compagnie Regenesis permettant le relâchement contrôlé, de façon stable et constante, 

d'oxygène dans le milieu (Bianchi-Mosquera et al., 1994). Kao et Borden ( 1  Ç94) ont mis 

en place un système consistant en une série de puits situés en aval d'un panache de 

contamination aux BTEX. Chaque puits contenait une colonne d70RC permettant la 

difEiision contrôlée d'oxygène dans le milieu. Grâce à ce système, 80 % des BTEX ont pu 

être biodégradés dans le milieu. Les auteurs espèrent pouvoir obtenir des taux de 

dégradation plus élevés avec l'amélioration du système. 

De multiples projets de restauration in situ ont été réalisés sur le terrain à ce jour. Aiors 

que certains se sont avérés efficaces, plusieurs autres ont résulté en échecs (Barker et al.. 

1993). En effet, dans plusieurs cas, on a observé le coimatage des puits d'injection dü a ia 

croissance bactérienne préférentielle au niveau des sources de nutriments. Également, 

dans de nombreux cas. la non homogénéité de la zone saturée a entraîné la création de 

chemins prëférentiels empmntés par les nutriments. Ainsi, seulement certaines portions de 

la nappe aquifere contaminée pouvaient être restaurées de façon adéquate. 



2.4.3. Biofiltration in situ 

La biofiitration i)z situ consiste a créer. directement au niveau de la nappe phréatique, une 

zone active ou la biodégradation des BTEX est optimisée. Les eaux contaminées peuvent 

dors ëtre acheminées vers ce bioréacteur il1 situ. soit a l'aide de palplanches ou a I'aide de 

systèmes de pompage. et ce. sans modifier l'écoulement naturel des eaux. Un exemple de 

ce procédé est schématisé a la fi_mire 2.8 

1 

Figure 2-8 Schématisation de la biofiltration in situ (Tire de Samson. 1994) 

2.4.; 1 .  Choix d'un milieu tiltranr 

Le choix d'un milieu fiItrant adequat est crucial lors de ia mise en oeuvre d'un procede de 

biofiltration. Celui-ci doit posseder a la fois de bonnes proprietes mécaniques et 



rnicrobiologiques. Aucune étude concernant l'élaboration d'un milieu tiltrant dans une 

optique de biofiltration in siîu n'a été recensée dans la littérature. 

En général, la tourbe est souvent choisie en tant que composante principaie de milieux 

filtrants vu ses bonnes propriétés mécaniques, soit une porosité et une aire interfaciaie 

élevées. De plus, elle constitue une source indigène de micro-organismes ainsi qu'un 

support naturel pour la microflore (CQW, 1994). La tourbe est une substance tres 

complexe constituée principalement de cellulose, d'hémiceliuloses, de résines, de cires, de 

sucres, de peptides, de lignine, de substances humiques et de quelques métaux et produits 

inorganiques (Coupai, 1985). Les composés humiques qu'on y trouve sont relativement 

stables mais participent généralement en cours de biofïitration au processus de 

transformation du carbone à une vitesse tres faible (Atlas et Bartha, 1946). 

Dans la majorité des cas. certains amendements sont faits alin d'optimiser les proprietes 

du filtre. Par exemple, une source de nutriments tel le fumier de poulet composte peut 

être ajoutée afk de combler les besoins de la microflore en azote et en phosphore. Un 

tampon, servant à maintenir le pH de façon constante dans le filtre, peut aussi être ajoute 

sous forme de fllrnier de poulet composté ou de chaux. Par la suite, un composé tel le 

bran de scie, la verrniculite ou la perlite peut être incorporé afin d'améIiorer les propriétés 

mécaniques du fïitre et donc d'éviter sa compaction. Findement, Ie filtre est généralement 

inoculé avec des micro-organismes adaptés au contaminant a l'aide d'une quantité de sol 

contaminé par le polluant cibIe ou encore à l'aide d'un certain volume de miiieu lïitrant 



provenant d'un biofïltre actif. D'autres milieux filtrants tiéquemment retrouves dans la 

littérature sont le compost, le gravier et des matériaux aqufies.  

2.4.3.2. Modélisation de i'enièvernent des BTEX dans un biofïitre 

Le transport des BTEX a travers une colonne de milieu filtrant résulte de quatre 

principaux phénomènes: la convection, la dispersion, l'adsorption et la biodégradation. 

L'équation suivante, couramment utilisée dans la littérature pour représenter la variation 

de la concentration du substrat dans le temps ( Bear, 1967; Van Genutchen et Wierenga 

1986; Stuart et ai., 199 1 ), tient compte de ces quatre effets: 

où C: concentration de substrat (mgIl) 

t: temps (h) 

D,: coefficient de dispersion axiale (m2/h) 

U,: vitesse du liquide ( d h )  

2: position verticaie dans le biofïitre (m) 

K: constante cinétique d'une réaction de biodégradation d'ordre un (h-') 

EL: facteur de retardement 



Le facteur de retardement, &, évalue la répartition du substrat entre la phase solide 

(adsorption sur le milieu) et la phase liquide, au cours de son passage à travers la colonne. 

Ce coefficient s'exprime ainsi: 

où p: densité du milieu filtrant (g/cm3) 

&: constante d'équilibre d'adsorption linéaire (Vkg) 

E: contenu en eau dans le milieu filtrant 

Dans plusieurs études, on formule l'hypothèse selon laquelle le biofiltre opère sous un 

régime piston en régime permanent. La forme suivante du modèle de transport est alors 

employée: 

cL/c0=e* 

où C,: concentration en polluant à l'entrée du biofiltre (mg)  

CL: concentration du polluant a la sortie du biofiltre (mgA) 

t: temps de résidence dans le biofltre (h) 

La résolution de cette équation permet de prédire les temps de résidence nécessaires dans 

le biofiltre pour atteindre le taux d'enlèvement désiré. 



2.4.4. Applications de Ia biofiltration in situ 

Très peu d'études ont été réaiisées jusqu'à ce jour sur la biofiltration NI situ. L'Université 

de Waterloo a toutefois produits plusieurs publications à ce sujet. Weber et Barker (1993) 

du "Center for Groundwater Research de l'Université de Waterloo ont réalisé le design 

d'un système entonnoir-barrière consistant en des palplanches (I 'ento~oir) dirigeant Ia 

totalité de l'eau contaminée vers une zone de traitement (la barrière) où de I'oxygène et 

des nutriments sont alimentés de façon continue afb de permettre la biodégradation 

compkte des polluants. 

Les auteurs ont réalisé une étude sur le terrain afin de mettre a l'épreuve la nouvelle 

technologie. Le milieu filtrant consistait en du gravier, pourvu de tubes servant a 

l'injection d'air pressurisé. La concentration en oxygène dissous dans le panache de 

contamination avant le traitement s'élevait à environ 0,07 m@. L'irnpiantarion a u  

système a permis d'élever la concentration en oxygène dissous a une valeur entre 5.3 et 

6,9 mg/I dans la zone de traitement. L'ajout de nutriments n'a pas été nécessaire dans ce 

cas. La concentration en benzène dans la barrière de traitement a chuté d'une valeur 

maximale de 7,6 mgA à une valeur maximale de 0,06 mgIl en 4 jours et la majorité des 

échantillons se sont retrouvés sous la limite de détection. Des échantillonneurs a gaz 

implantés sur Ie site ont permis de déterminer que les pertes par volatilisation n'étaient pas 

importantes. Selon les auteurs, ce site était idéal pour l'implantation du système 



entonnoir-barrière puisque le panache de contamination était peu profond ce qui limite 

grandement les coûts d'instdlation. 

Dans un autre article publié par la même équipe (Barker et al., 19931, les auteurs 

suggèrent que la technologie de l'entonnoir-barrière pourrait être sujette a certains 

problèmes. Par exemple, la présence d'oxygène en grande concentration peut entraîner la 

précipitation du fer et du manganèse présents dans I'eau et résuiter en  un coimatage du 

filtre. Aussi, certains problèmes relatifs au rnéIange pourraient survenir. C'est-à-dire que 

I'eau contaminée pourrait contourner Ies bulles d'air si ces dernières étaient trop grosses 

et donc ressortir du filtre sans avoir été traitée. 

Des recherches menées par Taylor et ai. (1993) suggèrent égaiement l'utilisation de la 

biofïitration in situ, dans ce cas pour traiter des eaux souterraines contaminées au 

trichoroétfiyiéne. Dans cette étude, les micro-organismes méthanotrophes ont été cuitives 

en réacteur dans un premier temps. Par la suite, ils ont été séparés de leur milieu de 

culture puis resuspendus dans une quantité d'eau souterraine. Les micro-organismes ont 

ensuite été injectés au niveau de la nappe phréatique où une certaine fiaction a pu 

s'attacher au sol pour former un biofiitre de dimensions variables. La totalité du 

tnchioroéthylène ayant passé à travers le biofiltre a pu être biodégradée. 



3.1. PRODUITS CHIMIQUES 

Au cours de ce projet, le toluène a été choisi pour représenter I'ensemble des composés 

BTEX (Allen, 1991). Du toluène uniformément marqué au carbone-14 fourni par la 

compagnie Sigma Chernicals (St-Louis, MO) d'activité spécifique égaie à 9,7 mCi/rnmol 

et de pureté supérieure à 98 % a été utilisé dans Ies essais de minéralisation en 

14 microcosmes. Certaines expériences ont égaiement été rédisees avec du C-benzène 

d'activité spécifique égale a 19.34 mCi/mmol et de pureté supérieure à 98%, égaiement 

fourni par Sigma Chemicals. Toutes les autres expériences ont été réalisees avec du 

toluène de pureté supérieure à 99,9% (Anachemia Chernicals, Montréal. Québec). 

L'ensemble des expériences a été réalisé avec une eau souterraine synthétique de 

composition inspirée de celie de I'eau souterraine retrouvée dans la région de Montréal. 

La composition de cette eau était la suivante (en mg/l): FeC12: 1,4; NaCl: 6 17.3; Na~C03: 

678,4; m 0 3 :  6,l; K2HP04: 10,7; CaC03: 15.0 et MgS04; 18,s. Le pH de I'eau a été 

ajusté à une valeur entre 6,8 et 7,2 à l'aide de HzSOo concentré (Anachemia Chemicals, 

Montréai, Québec). 



3 -2.1. Description des milieux filtrants étudiés 

Le premier milieu considéré était composé de 90 % vlv de verrniculite (Peters professional 

VermicuIite, W.R. Grace et CO., W i p e g ,  Manitoba), ensemencée à l'aide de 10% vlv de 

soi contaminé contenant des micro-organismes adaptés au toluène. Ce sol contaminé a été 

obtenu auprès de la compagnie Hydro-Québec sur un site d'entreposage de poteaux 

Pointe-aux-Trembles, Québec). ii était principalement contaminé aux hydrocarbures 

aromatiques paIycycliques (HAP: 5,3 mgkg) et au pentacidorophénol (PCP: 17,O mgkg). 

Le sol a été tamisé au préaiable et les particules de diamètre inférieur a 4.75 mm ont été 

retenues. 

Le second d i e u  consistait en 75% p/p d'un géotextile de polyéthylène de diamètre de 

pores supérieur a 300 Pm (Texel 400, Solmax, Montréal, Québec). Celui-ci était 

ensemence avec le sol contaminé provenant d7Hydro-Québec (25% p/p), brossé a même le 

géotextile. 

Le troisième milieu, nommé "milieu organique", était constitué principalement de tourbe 

de sphaigne (60% v/v) (Les tourbières Premier, Rivière-du-Loup, Québec). Seules les 

particules de tourbe dont le diamètre était supérieur à 1 mm ont été retenues. Du fiirnier 

de poulet composté (10% vlv) (Fafard et fières Ltée, St-Guillaume, Québec) ainsi que de 



la verrniculite (10% v/v) ont été ajoutés au milieu organique afin de servir de source de 

nutriments et d'améliorer les propriétés mécaniques du filtre, respectivement. Le d i e u  a 

également été ensemencé avec le sol contaminé d7Hydro-Québec (20% v/v) pour l'ajout 

de micro-organismes dégradant le toiuene. 

Finalement, le quatrième milieu était [a tourbe granulaire BB2-11-95 développée par 

Premier Tech (Rivière-du-Loup, Québec, Canada). La tourbe granulaire résulte d'un 

mélange de tourbe de sphaigne et d'un agent liant. Les granules utilisées avaient des 

diamètres situés entre I/4 et 3 / 8  de pouce. La majorité des essais a été réaiisée avec la 

tourbe granulaire seule. Quelques essais de minédisation en microcosmes ont également 

été effectués avec de la tourbe granulaire inoculée avec le sol contaminé dYHydro-Québec 

(20% v/v) ou enrichie de fumier de poulet composté (10 % v/v) servant de source de 

nutriments. 

3.2.2. Mesure de Ia porosité, de la masse volumique et de la conductivité 

bydraulique 

La porosité, la masse volumique et la conductivité hydraulique des d e u x  fltrants ont été 

mesurées au département de génie minéral de l'École Polytechnique à l'aide de la méthode 

ASTM D-2434 1974, par poids sec et par l'entremise de perméarnetres à charge constante 

(utilisé pour le milieu organique) ou à charge variable (utilisés pour Ia tourbe granulaire, la 

venniculite ensemencée et le géotextile ensemencé). 



3 -2.3. Évaluation des propriétés microbiologiques en microcosmes 

3.2.3.1. Conditions aérobies 

Des expériences en microcosmes ont été réalisées dans un premier temps afin de 

déterminer si ies micro-organismes indigènes des différents miIieux filtrants (vermiculite 

ensemencée, géotextile ensemencé, milieu organique et tourbe granulaire) avaient la 

capacité génétique de biodégrader le "c-toluène de façon efficace. En second Iieu, des 

essais en microcosmes ont été réalisés afin de déterminer si les micro-organismes 

retrouvés dans Ia tourbe granulaire étaient limités en nutriments au cours de Ia réaction de 

minéralisation du "c-toluène. Finalement, des essais ont été réalisés avec le milieu 

organique afin de déteminer si un composé à relâchement contrôlé d'oxygène (ORC pour 

"oxygen releasing compound") pouvait être utilisé en tant que source d'oxygène dans le 

biofiltre. 

Chacun des microcosmes était constitué d'une bouteille sérologique de 110 ml contenant 

20 ml de milieu filtrant et 80 ml d'eau souterraine synthétique. L'eau souterraine était 

"buliée" durant une heure avec de l'air avant d'être introduite dans les bouteilles afin 

d'assurer des conditions aérobies dans les microcosmes. Un schéma de microcosme est 

présenté a la figure 3.1. 



Figure 3.1 Microcosme utiiisé pour les tests de minéralisation 

Une concentration de 100 000 dpm de toluène marqué au carbone-14 a été injectée dans 

chacune des bouteilles. Du toluène non marqué a été ajouté afin d'atteindre une 

concentration de 4.35 mg/l dans les microcosmes. Une éprouvette (tube de verre de 5 ml) 

contenant I ml de KOH IN a été introduite dans chacune des bouteilles afin de senrir de 

trappe pour capter le COz dégagé au cours de la minéralisation. Les essais ont été réahsés 

en triplicata. De plus, un témoin abiotique contenant 2 % p/p d'azoture de sodium a été 

préparé pour chaque série d'essais. Les trappes à CO2 ont été échantillonnees aux 48 

heures e n v k o ~  selon les besoins. Au cours des échantillonnages, chaque éprouvette a été 

rincée à l'aide de 1 ml d'une solution de KOH 1N puis remplie a nouveau par 1 mi de 

cette mème solution fraiche. La solution de ROH (2 ml) recueillie était mélangée a 10 mi 

de cocktail à scintiliation (Waiiac Optiphase, Turku, Finlande) et la quantité de ''~02 dans 

les trappes était mesurée à l'aide d'un compteur à scintillation (Wallac 1409. Turku, 

Finlande). Les microcosmes ont été incubés a une température de 10°C et agités à une 

vitesse de 100 rpm dans le noir afin d'éviter les pertes de polluant par photo-oxydation. 



Au totd, 20 microcosmes ont été suivis dans le but de déterminer si les micro-organismes 

indigènes des différents milieux fltrants avaient la capacité de biodégrader le toluène. 

Deux séries d'essais ont été réalisées afin de déterminer si la microflore indigène de la 

tourbe granuIaire était Limitée en nutriments lors de la minéralisation du toluène. Dans Ia 

première, 10 % vlv de tùmier de poulet composté (Fafard et fiéres Ltée, St-Guillaume. 

Québec) a été ajouté au milieu filtrant. Dans la deuxième, l'eau souterraine synthétique a 

été remplacée par un milieu salin minéral (MSM). La composition de ce milieu était la 

suivante (en md): Nd2PO4: 883; K ~ ~ O J :  2260; 13H&SOs: 1100; MgS04*7H20: 200 

et NaN03: 1000. Le milieu comprenait égaiement 1 mV1 de la solution de métaux traces 

suivante (mg/l): Co(N03)2'6H20: 0,3; 1U(S04)2~12Hfi: 0.77; CuSOs: 0.17; ZnSOi7H20: 

0,19i FeS047H20: 2,78; MnS04'H20: 1,7 et Na2MoO~2HzO: 0,s. Les essais ont été 

réalisés en triplicata avec témoins abiotiques. Au total, huit microcosmes ont été suivis. 

Finalement, des études ont été rédisées en microcosmes ou de I'ORC ("oxygen releasing 

compound") a été ajouté au milieu fiItrant organique. L'ORC est un peroxyde de 

magnésium développé et commercialise par la compagnie Regenesis (San Juan Capistrano, 

CA). Ces ajouts se sont faits en différentes concentrations de O %, 5 %, 10 %, 15 %, 20 

%, 40 %, 60 %, 80 % et 100% vol ORCIvol milieu organique. Dans le but de purger 

l'oxygène des bouteilles, l'eau souterraine synthétique a été buiiée au préalable durant 30 

minutes dans chacun des microcosmes avec de I'azote à débit modéré. L'azote était 



ensuite continuelIement injecté au niveau de l'espace gazeux jusqu'a ce que [es 

microcosmes soient hermétiquement fermés. Chaque série a été réalisée en tripkata et un 

témoin abiotique a également été préparé pour chaque série. Au total, 36 microcosmes 

ont été suivis. 

3 2 3 . 2 .  Conditions anaérobies dénitrifiantes 

Trois séries de microcosmes en conditions anaérobies dénitrifiantes ont été réalisées afin 

de déterminer si la tourbe granulaire avait la capacité de dégrader le toluène et le benzène 

sous conditions anaérobies dénitrifiantes. Dans le première série, du nitrate a été ajouté 

sous forme de NaN03 (800 rng/l) afin de serW comme accepteurs d'électrons. Dans la 

deuxième série, 1 gramme de fertilisant (HIGHN 32-46, Scotts, Marysviiie, OH). ayant la 

propriété de relâcher de façon contrôlée de I'azote sous forme de nitrates, a été ajouté au 

milieu tiltrant. Aucun ajout d'azote n'a été fait à la troisième série de microcosmes. 

Tous les microcosmes contenaient 20 ml de tourbe granulaire et 100 ml d'eau souterraine 

synthétique. Dans le but de purger l'oxygène contenu dans l'eau souterraine synthétique, 

chacun des microcosmes a été bullé au préalable durant 30 minutes avec de l'azote à débit 

modéré. L'azote a ensuite été continuellement injecté au niveau de l'espace gazeux et les 

microcosmes ont été hermétiquement fermés. 



Une concentration de 100 000 dpm de toluène marqué au carbone- 14 a été injectée dans 

chacune des bouteilles. Du toluène non marqué a été ajouté afin d'atteindre une 

concentration de 4,35 mg/l dans les microcosmes. L'échantillonnage a été: effectué selon 

la méthode décrite a la section 3.2.3.1. Chacune des séries a été réalisée en triplicata et un 

témoin abiotique a également été suivi pour chaque série. Au total, 18 microcosmes ont 

été suivis pour le toluène et 18 autres ont été suivis pour le benzène. De plus. pour 

chacune des séries réalisées, deux microcosmes supplémentaires ont été préparés. Ces 

derniers étaient identiques aux autres à l'exception du fait que le toluène et le benzène 

injectés n'étaient pas marqués. Ces microcosmes ont servi à mesurer la concentration en 

nitrates et en nitrites dans l'eau souterraine au début et a la fin de l'expérience, ceci dans le 

but d'établir s'il y avait réellement consommation de nitrates et donc présence de 

conditions dénitrifiantes. Les échantillons contenant des nitrates et les nitrites ont été 

filtrés (Miilex-HV 0.45 pm) puis analysés par HPLC @ionex Co.) à l'aide d'une colonne 

chromatographique 250x4 mm IOrU'PAC AS4A-SC avec une colonne de garde (IONPAC 

AG4A-SC) et un supresseur d'ions. Une soiution tampon de bicarbonates a servi de phase 

mobile (Hutchins et al., 199 1). 

3.2.4. Adsorption du toluène sur la tourbe granulaire 

Afin de déterminer l'importance de l'adsorption du toluène sur la tourbe granulaire au 

cours de la biofiltration, des expériences en cuvée ont été réalisées à une température de 

IO OC. Ces expériences ont été réalisées conformément à [a méthode présentée par Stuart 



et al. (1991). Des bouteilles sérologiques de 110 ml fermées à I'aide de septa de Tefion 

ont été utilisées. Une quantité de 1,s g de tourbe granulaire séchée à 105 OC pendant 24 

heures a été introduite dans chacune des bouteilles de même que 4 % (p/p) de NaNj et 

100 ml d'eau souterraine synthétique. Une concentration de 100 000 dpm de toluène 

marqué au carbone44 a été injectée dans les bouteilles et du toluène non marqué a été 

ajouté afm d'obtenir des concentrations de 3. 6. 30. 60 et 150 mg/l. Chacune des 

concentrations a été préparée en tripikata à l'exception de la série de 150 mgA, réalisée en 

quadriplicata. Deux témoins ne contenant que de l'eau souterraine contaminée au toluène 

et du NaNj. sans milieu filtrant, ont également été préparés pour chacune des 

concentrations. Ceci permettait de quantifier les pertes attribuables à la volatilisation du 

toluène. 

Afin d'assurer l'atteinte de l'équilibre d'adsorption, les bouteilles ont été agitées a l'aide 

d'un agitateur de type "wrist action" @urrell modèle 75, Pittsburgh, IL) durant 72 heures 

à 10 O C .  Une des bouteilles de la série 150 mgA a été échantillonnée dans le temps aiin de 

confirmer I'atteinte du plateau d'équilibre. Une fois la période d'agitation terminée, les 

bouteilles ont été laissées au repos durant 3 heures afin de permettre la décantation du 

d i e u  filtrant. Un millilitre de surnageant a été prélevé dans chacune des bouteilles et 

analysé à I'aide d'un compteur à scintillation (Wallac 1409, Turku, Finlande) afin de 

déterminer la concentration hale en toluène dans la phase aqueuse à l'équilibre dans les 

bouteilles. 



3 -3.1. Description du montage 

Le montage expérimental utilisé pour l'étude de la biofütration du toluène est illustré a la 

figure 3.2. 11 était constitué d'une colonne en verre de 39 mm de diamètre interne et de 44 

cm de hauteur. Le biofiltre contenait 76,3 g sec de tourbe granulaire retenue par une gdle  

d'acier inoxydable. Il était muni d'un port d'échantillonnage a I'entrée et d'un autre a la 

sortie de la colonne. Les ports d'échantillonnage étaient constitués de bouteilles de verre 

de 40 mi de volume, fermées à ['aide de septa de Teflon et dans lesquelles l'eau 

souterraine synthétique circulait en continu par le biais de tiges d'acier inoxydable, 

insérées dans les bouteilles. Au moment de l'échantillonnage, les boutedles étaient retirées 

et refermées hermétiquement pour être envoyées au laboratoire d'analyse. 

L'eau servant à I'alimentation était contenue dans un réservoir où, soit de l'air, soit de 

l'azote, était builé en continu afin d'atteindre la saturation en oxygène dissous (1 1.7 rng/l) 

ou de purger l'oxygène complètement, dépendement des conditions étudiées (aérobies 

ou anaérobies). Une pompe seringue (Orion, M365) permettait l'injection du toluène en 

amont d'un mélangeur statique (Cole P m e r ,  Niles, IL). Les tubes étaient tous 

recouverts de Teflon sur la surface interne (Tygon SE-200). Le montage était aussi muni 

d'une sonde polarographique à oxygène dissous (Cole Parmer, Vernon Hills, IL) située a 

la sortie du bioiïltre. 



Afin d'éviter les problèmes relatifs a ['adsorption du toluène sur les parois, t'ensemble du 

montage a été réalisé en verre, en acier inoxydable et en Teflon. Le montage se trouvait 

dans une chambre i 10 O C  afin de reproduire les conditions retrouvées au niveau de la 

nappe phréatique. 

point d'échantillonnage 

pompe seringue 

Eau souterraine statique d'échantillonnage 
synthétique 

Figure 3.2 Schéma du montage utilisé 

3.3.2. Étude de la distribution des temps de séjour dans le biofdtre 

Dans le but d'étudier les propriétés hydrodynamiques du biofiltre, des essais de traçage 

aux ions chlorures ont été réalisés. Une soiution de NaCl 0,02 M (pour les temps de 



résidence inférieurs à 30 minutes) ou 1 M (pour Ies temps de résidence supérieurs ou 

égaux a 30 minutes) était pompée durant 30 secondes ou 20 secondes, respectivement a 

l'entrée de la colonne. La concentration en ions chlorures à la sortie de la colonne était 

suivie grâce a une sonde a chlorure (Accumet. Pittsburgh, PA). Les nombres de Peclet 

ont été cdculés par [a méthode des moindres carrés à partir de la courbe représentant fa 

concentration en ions chiontres mesurée en fonction du temps. Cette expérience ht 

réalisée pour des débits de 1, 7, 14, 45 et 100 rnlhin. 

3.3.3. Évaluation de la consommation volumétrique d'oxygène dissous dans le fdtre 

en absence de toIuène 

Au cours d'essais réalisés en colonne en absence de toluène. une sonde polarographique 

(Cote Parmer, Vernon Hïils, IL) a permis de suivre Ia concentration en oxygène dissous a 

l'entrée et à la sortie de la colonne pour différents temps de résidence dans le filtre. 

3.3.4. Évaluation de la cinétique de biodégradation du toluène dans le filtre 

La cinétique de biodégradation du toluène dans le filtre a été évaluée sous des conditions 

aérobies et anaérobies dénitrifiantes. Deux séries d'expériences ont été réalisées en 

conditions aérobies. Dans la première, la concentration en toluène à l'entrée de la colonne 

a été fixée a 1,2 mg/l tandis que dans la deuxième série cette concentration s'élevait a 9,4 

mgl. Un série d'expériences a été réalisée sous conditions anaérobies dénitrifiantes et la 

concentration en toluène a l'entrée du biofiltre a été k é e  a 6,3 mgl. 



L'échanti~omage du liquide à l'entrée ainsi qu'a la sortie du biofiltre a été effectué pour 

des temps de résidence dans le réacteur allant de 2,1 minutes à 2,4 heures. Les 

concentrations en oxygène dissous à l'entrée et à la sortie du bioiïitre ont également été. 

suivies. Les concentrations en nitrates et en nitrites ont aussi été mesurées dans le cas des 

expériences réalisées sous conditions anaérobies dénitrifiantes. Le réservoir d'eau 

souterraine synthétique était alors bulie à l'aide d'azote. Les analyses de nitrites et de 

nitrates ont été réalisées au département de génie chimique de l'École Polytechnique 

conformément a la méthode décrite à la section 3 -2.3 2. 

Les échantilhs d'eau étaient prélevés seulement une fois le régime permanent atteint. On 

considérait le régime permanent atteiht lorsque la concentration en oxygène dissous à la 

sortie de la coionne demeurait stable sur une période équivalente à trois fois le temps de 

résidence dans le biofiitre. Des échantillons d'eau de 40 ml ont été prélevés a l-aide des 

bouteilles servant de ports d'échantillonnage, elles étaient rapidement refermées pour 

éviter toute volatiiisation. Aucun espace gazeux n'était présent dans les bouteilles. Les 

échantillons ont été envoyés pour analyse chez Analex (Laval, Québec) et chez Eco-CNFS 

(Pointe-Claire, Québec) où la concentration en toluène a été mesurée par chromatographie 

en phase gazeuse (Hewlett Packard modèIe 5890, série 2) couplée à un détecteur de 

spectre de masse (modèle 5972). La colonne utilisée était de type HP-624 de 25 m x 0,20 

mm et le gaz porteur était de l'hélium de ultra haute pureté. Le système d'adsorption- 

désorption ("purge and trap") était aussi de marque Hewlett-Packard (modèle 7675). 



3.3.5. Évaluation de la stabilité du biofdtre à long terme 

Un second montage identique à ceIui décrit a la section 3.3.1 a été réalisé dans le but 

d'évaluer les performances du biofiltre à long terme sous conditions aérobies. Le débit 

d'alimentation au réacteur a été h é  à 2 d m u i .  La concentration moyenne en toluène à 

l'entrée était de 400 Le biofïitre a opéré dans ces conditions durant une période de 

20 semaines. Quatre principaux paramètres ont été suivis au cours de cette expérience, 

soit: I'activité de biodégradation, les conditions nutritiomeUes, la croissance bactérienne et 

les propriétés hydrodynamiques. 

3.3.5.1. Suivi de l'efficacité de biodégradation du toluène dans le temps 

Au cours des 20 semaines d'opération du biomtre, des échantillons étaient prélevés une 

fois par semaine, à i'entrée ainsi qu'a la sortie du réacteur pour l'analyse de la 

concentration en toluène. Les échantilions étaient analysés par chromatographie en phase 

gazeuse (Andex, Laval, Québec; Eco-CNFS, Pointe-Claire, Québec) tel que décrit a la 

section 3.3.5. Les concentrations en oxygène dissous à l'entrée et à la sortie du biofiltre 

étaient également mesurées. 



3.3.5.2. Suivi des conditions nutritionnelles 

Des échantillons ont été prélevés une fois par semaine à l'entrée et la sortie du biofiltre 

afin de mesurer la concentration en nutriments (Na*, W , K - ,  M~'-, c&, Cl-, N03-, ~ 0 4 ' -  

et ~0:') dans I'aniuent et l'effluent de la colonne. Ces échantillons ont été filtrés (Millex- 

HV 0,45 pm) puis analysés par HPLC (Dionex Co.) à l'aide d'une colonne 

chromatographique 250x4 mm IONPAC AS4A-SC avec une colonne de garde (IONPAC 

AG4A-SC) et un supresseur d'ions. Une solution tampon de bicarbonates a servi de phase 

mobile. 

3 -3.5.3. Étude de la croissance bacterieme dans le fiItre 

La croissance bactérienne à l'entrée et a la sortie du bioatre a été suivie durant les 20 

semaines d'opération. Un échantillon de 1 gramme de tourbe granulaire était prélevé a 

mème le réacteur a son extrémité inférieure et à son extrémité supérieure une fois par 

semaine. Cette tourbe était remplacée par une quantité équivalente de tourbe granulaire 

fraîche. 

Les comptes bactériens ont été établis à l'aide de la méthode du nombre le plus probable. 

Pour chaque échantillon, 6 bouteilles de dilution en verre (120 ml, bouchons phénoliques) 

contenant une solution stérile de NaCl 0,85% (plp) ont été préparées. Dans la première 

bouteille, identifiée 10'. 1 g de tourbe granulaire était ajouté à 100 ml de solution saline 

stérile (stérilisée à 12 1 O C ,  1,l kglm2 durant 20 minutes) de même que 20 biiles stériles de 



1 mm de diamètre. La bouteiiie était ensuite agitée de façon vigoureuse manuellement 

durant 5 minutes afin de permettre aux micro-organismes de se détacher du milieu filtrant. 

Un miliilitre de cette solution était alors transféré à une autre bouteille de dilution 

contenant 99 mi de solution saline stérile identifiée  IO-^ qui était ensuite agitée à son tour. 

De cette façon, des bouteilles de dilution de loJ, IO-', loa et 1 p7 ont également été 

préparées. Toutes ces manipulations ont été réalisées en conditions stériles, sous une 

hotte laminaire. 

Pour chacune des dilutions de loJ à IO", 5 tubes de verre (15 ml, bouchons phénoliques) 

contenant 9 mi d'une solution stérile de milieu nutritif (4 g~l) ont aussi été préparés. Un 

millilitre de solution saline (0,85 % p/p) provenant de la bouteille de dilution 

correspondante était transféré à chacun des tubes. Cinq tubes témoins (non inoculés) ont 

également été préparés pour chaque compte bactérien. Le contenu de chacun des tubes 

était mélangé à l'aide d'un agitateur de type Vortex durant 15 secondes. Les tubes étaient 

par la suite incubés a une température de 30 O C  durant 4 jours. Les résultats étaient 

ensuite lus. Les tubes turbides étaient considérés positifs et les tubes clairs négatifs. Les 

concentrations étaient ensuite déduites a l'aide des tables associées a la méthode MPN, 

basée sur la loi de Poisson (Wiiam, 1950). 



3.3.5.4. Évolution des propriétés hydrodynamiques du biofltre dans le temps 

Une étude comparative a été réalisée afin de vérifier l'évolution des propriétés 

hydrodynarniques du filtre dans le temps. Pour y arriver, la distribution des temps de 

séjour au sein du filtre a été évaiuée en deux temps, d'abord lors de la mise en marche du 

réacteur puis lors de son arrêt 20 semaines plus tard. Les deux séries d'essais ont été 

réalisées tel que décrit a la section 3.3 2. 

3 5 . 5  Évolution de l'activité de minéralisation du '4~-to~uène au sein du filtre 

Lors de l'arrêt du biofiltre après la 20ièrne semaine d'opération, un échantillon de 7 

grammes de tourbe granulaire y a été prélevé. Une étude en microcosmes a été réalisée 

conformément à la méthode décrite à la section 3.2.3 afin de déterminer l'activité de 

minéraiisation du '"c-toluène au sein du milieu filtrant. 



Quatre différents milieux filtrants ont fait l'objet d'études au cours de ce projet dans le but 

d'identifier celui ofiant le plus d'avantages pour la biofïitration in situ de l'eau souterraine 

contaminée par les BTEX. Ces milieux étaient de la vermiculite ensemencée avec du sol 

contaminé, un géotextile ensemencé à l'aide du même sol, un milieu organique (composé 

de tourbe de sphaigne, de sol contaminé, de vermiculite et de fumier de poulet composté) 

et de la tourbe granulaire. Deux principaux facteurs ont guidé le choix du milieu à retenir, 

soit les propriétés mécaniques et les propriétés microbiologiques des milieux. 

4.1. PROPFUÉTÉS MÉCANIQUES DES MILLEUX ÉTUDIÉS 

Afin d'éviter les problèmes relatifk au contournement de la zone de traitement par les eaux 

souterraines contaminées, il est impomnt que le biofiltre in situ mis en place présente de 

bonnes propriétés mécaniques. ilinsi, ie milieu filtrant utiIisé devrait être caractérisé par 

une porosité ainsi qu'une conductivité hydraulique ékvées. Ceci favorisera le passage de 

l'eau souterraine contaminée à travers la zone de biofïitration. De plus, il est crucial que le 

milieu retenu pour la biofiltration in silu ne soit pas sujet à des probiemes de compaction 

ou de colmatage. 



4.1.1. Porosité 

Les porosités mesurées pour les différents milieux soumis à l'étude sont présentées au 

tableau 4.1. La porosité la pius élevée est associée au géotextile ensemencé (91,3 %) 

tandis que la venniculite ensemencée et la tourbe granulaire possèdent les porosités les 

plus basses (80,6% et 80,9 % respectivement). Malgré tout, les valeurs obtenues sont très 

rapprochées les unes des autres et sont supérieures aux valeurs théoriques associées à la 

plupart des matériaux géologiques généralement retrouvés au sein de la nappe phréarique 

(Todd, 1980). En effet, des valeurs de 39 % sont généralement retrouvées pour les sables 

dors que des vdeurs de 42 % et 46 % sont associées à l'argde et au silt. 

Tableau 4.1 Porosités des milieux étudiés 

Milieu Porosité 

Vermiculite ensemencée 80.6% 

Geotextile ensemencé 91.3% 

Milieu organique 82,2% 

Tourbe granulaire 80,9% 

Ainsi, quelque soit le milieu filtrant retenu, le passage de l'eau souterraine contaminée a 

travers le biofiltre devrait être favorisé. 



4.1.2. Conductivité hydraulique 

Le tableau 4.2 présente les conductivités hydrauliques des quatre milieux filtrants 

considérés par l'étude. Les valeurs mesurées conformément à la loi de Darcy sont toutes 

situées dans la même gamme, soit de I'ordre de IO" c d s ,  ce qui est considéré fort élevé 

dans la perspective de la nappe phréatique. En effet, la littérature rapporte des 

conductivités hydrauliques de l'ordre de 10' à  IO-^ cmh pour des sols sablonneux ou des 

graviers. Par opposition, les sols argi1eu.x sont caractérisés par des conductivités 

hydrauliques de l'ordre de IO-' a IO-" c d s  (Charbenneau et Bedient, 1948). Ainsi fa 

mise en place au niveau de la nappe aquifëre de n'importe quel des quatre dieux fltrants 

soumis a l'étude aurait pour conséquence probable de favoriser le passage de l'eau 

souterraine par le biofiltre. 

Tableau 4.2 Conductivités hydrauliques des milieux étudiés 

Milieu Conductivité hydraulique 
(cm/s) 

Vermiculite ensemencée 1-93 * 10" + 10 % 

Gotextile ensemencé 3,13 * 10-~t IO % 

Milieu organique 1'98 * IO-'+ 10 % 

Tourbe granulaire 1,23 * 10-'k 10 % 

11 est à noter qu'en cours d'opération, il est possible que la perméabilité du biofïitre ait 

tendance a diminuer. En effet, [a formation d'un b i o h  en présence de substrat (polluant) 



entrainera un certain colmatage. Ainsi, Shâïsefdeen et al. (1993) rapportent que la 

conductivité hydraulique de leur biofiltre, composé de tourbe de sphaigne et de perlite, 

avait chuté d'un facteur IO après 12 semaines d'opération lorsqu'utilisé pour la 

biofiltration d'un gaz contaminé au méthanol. 

En plus du coimatage dû a la croissance d'un biofllm. Ie milieu filtrant utilise peut ètre 

sujet a des problèmes de compaction. C'est le cas notamment du milieu organique. En 

effet, lorsque des essais ont été réalisés en colonne de 0,5 litre, des problèmes importants 

de compaction ont été observés après seulement 2 à 3 heures d'opération. Ce phénomene 

est anribuable au gonflement de la tourbe de sphaigne se produisant lorsque celle-ci est 

saturée d'eau. Ce godement a pour effet d'empêcher le cheminement de l'eau 

contaminée a travers la zone de traitement. Par opposition, la tourbe granulaire ne 

présente pas un tel désavantage et ses propriétés mécaniques demeurent stables dans le 

temps. Lorsque des essais ont été réalisés en biofiltre de 0,5 litre, aucune compaction n'a 

été observée après plus de cinq mois d'opération. Ces résultats seront présentés en détail 

au chapitre 5. Vue la faible activité de minéralisation observée au sein de la vermiculite et 

du géotextile ensemencés (voir section 4.2.1) aucun essai n'a été réalisé en colonne avec 

ces deux milieux. 



4.2.1. Activité de minéralisation du "c-toluène au sein des milieux iïitraats sous des 

conditions aérobies 

Des essais de minéralisation ont été réalisés en microcosmes avec Les diérents d i e u x  

filtrants afin de vérifier le potentiel de biodégradation du toluène en biofiitre à 10°C. 

Plusieurs études ont été publiées concernant la biodégradation des BTEX en microcosmes 

dans des matériaux aquiféres (Barker et al., 1987; Corseuil et Weber, 1994; Karison et 

Frankenberger, 1989) mais très peu d'études ont été réalisées en présence d'autres 

milieux. 

La figure 4.1 ilIustre l'évolution de la minéralisation du '"-toluène dans des microcosmes 

contenant 3 des 4 miIieux fütrants étudiés, soit Ie géotextiie ensemencé, la vemicuiite 

ensemencée et le milieu organique ainsi qu'un témoin abiotique. Les écarts-types sont 

également représentés. 



+ müieu organique 

80 - vermicuiite ensemencée 

- * géotezdile ensemencé - T T 

+ témom abiotique 
- 

Figure 4.1 Minéralisation du "c-toluène sous conditions aérobies a 10 OC dans trois 

milieux fdtmnts. Écarts-types basés sur des triplicatas. 

La comparaison des trois premiers profiis permet de constater que le miheu organique est 

le siège d'une activité métabolique de beaucoup supérieure à celle des deux autres d i eux .  

En effet, après une période de 14 jours, environ 68 % du toluène marque a été minéralisé. 

Après ce point, la courbe atteint un plateau, ce qui signifle que 32 % du "c-toluène a été 

incorporé à la biomasse. Il est égaiement possible qu'une certaine hc t ion  se soit 

volatilisée au cours des manipuiations ou ait été adsorbée sur le milieu filtrant. 



Les courbes illustrant la minéralisation du lJ~-toluène au sein des milieux de vermiculite et 

de géotextile ensemencés témoignent d'une dégradation beaucoup plus lente. En effet, 

après une période d'essais de 27 jours, seulement 6 % du toluène marqué a été minéralisé 

au sein du géotextile ensemencé et 9 % a été minéralisé au sein de la vemiiculite 

ensemencée. Aucune activité de minéralisation n'a été notée dans les témoins abiotiques. 

Il est ainsi possible de conclure que ces deux milieux otnent peu d'avantages pour la 

biodégradation du toluène, la vermiculite étant toutefois légèrement supérieure au 

géotextile. 

Il était possible d'anticiper des tels résultats, sachant que la tourbe de sphaigne est un 

excellent support pour la biomasse et que le milieu organique est également composé en 

partie de fumier de poulet composté, une excellente source de nutriments. Par opposition, 

la vermiculite et le géotextile sont deux milieux minéraux qui ne possèdent pas les 

nutriments nécessaires pour permettre la minéralisation optimale du pouuant. 

A la lumière de ces résultats, le milieu organique avait été retenu pour la réalisation 

d'essais en bioatre. Toutefois, vu les sérieux problèmes de compaction observés au sein 

de ce milieu (voir section 4.1.2), ces essais ont dû être abandonnés et le milieu organique a 

été mis de côté. 

Afin de contourner les problèmes d'ordre mécanique, l'utilisation de tourbe granulaire a 

été envisagée. En effet, ce mélange de tourbe de sphaigne et de polymère possède des 



caractéristiques mécaniques très avantageuses (voir section 4.1.2). Afin de védïer la 

minéralisation du toluène au sein de ce milieu, des expériences en microcosmes ont été 

réalisées. Aucune donnée n'existe dans la Littérature a ce sujet. La figure 4.2 illustre trois 

profils de minéralisation: le premier obtenu dans des microcosmes ne contenant que Ia 

tourbe granulaire, le second dans des microcosmes contenant de la tourbe granulaire 

ensemencée à l'aide d'un sol contaminé adapté au toluène et le troisième dans une série de 

témoins abiotiques. Les écarts-types sont également représentés. 

-e- tourbe granulaire seule - tourbe granulaire ensemencée 

80 - -w- témoin abiotique 
r 

Temps (jours) 

Figure 4.2 Minéralisation du '"c-toluène sous conditions aérobies à 10 OC dans la 

tourbe granulaire. Écarts-types basés sur des tripkatas. 



Dans la série de microcosmes non ensemencés, un temps de Iatence de 8 jours a été 

observé puis la minéralisation du toluène a débuté lentement pour atteindre 70 % après 18 

jours d'incubation. Par opposition, le temps de latence observé dans les microcosmes 

ensemencés a été de 5 jours et un taux de 70 % de minéralisation a été obtenu apres 14 

jours. Au jour 21, 4,3 mg/l de toIuène marqué ont de nouveau été injectés dans Les trois 

séries de microcosmes. Des proas cinétiques fort semblables ont alors été observés dans 

les deux premières séries, soit l'élimination du temps de latence et l'atteinte de 70 % de 

minéralisation apres 6 jours d'incubation (jour 27). Aucune minéralisation n'a été 

observée dans les témoins abiotiques. Ainsi, il a été démontre que certains micro- 

organismes indigènes de la tourbe granulaire pouvaient, après une courte période 

d'acciimatation, s'adapter au toluène et le dégrader de façon efficace. Pour cette raison, il 

s'avère inutile de procéder a l'ensemencement du milieu fütrant. Ceci constitue un 

avantage important puisque I'ensemencement du milieu filtrant a I'aide de sol contaminé 

entraîne, dans la plupart des cas, des problèmes de ségrégation et alourdit 

considérablement le procédé de biofdtration. 

4.2.2. Effet de l'ajout de nutriments dans la tourbe granulaire sur l'activité de 

minéralisation du 'J~-toluène 

Dans le but de déterminer si les micro-organismes indigènes de la tourbe granulaire étaient 

limités en nutriments lors de la biodégradation du toluène, quatre séries de microcosmes 



ont été suivies. La première ne contenait que de [a tourbe granulaire, dans la seconde. un 

hrnier de poulet riche en nutriments avait été ajouté. Dans la troisième série, l'eau 

souterraine synthétique avait été remplacée par un milieu saIin minéral (MSM). La 

quatrième série était un témoin abiotique. Les résultats obtenus de même que les ecarts- 

types sont présentés a la figure 4.3. 

8 0 ~  + tourbe granulaire seule 
I 

70 7 -e- tourbe granutaire + MS M 
+ tourbe granulaire + h i e r  

60 Ï * témoin abiotique 

50-  

40 1 

30 - 
20 - 
10 - 

O 

14 Figure 4.3 Minéralisation du C-toluène sous conditions aérobies à 10 OC dans la 

tourbe granulaire sous différentes conditions nutritionnelies. Écarts-types basés sur 

des triplicatas. 



Les courbes démontrent que l'ajout de nutriments n'a pas influencé le taux de 

minéralisation du toluène au cours de la période d'essai. En effet, les profils de 

biodégradation obtenus dans les deux séries amendées en nutriments se sont avérés 

similaires à celui obtenu dans les microcosmes où aucun ajout de nutriments n'a été fait, 

soit un temps de latence de 6 jours et une minéralisation de 70 % après 18 jours 

d'incubation. De plus, aucune activité de minéralisation n'a été notée au sein des témoins 

abiotiques. Ainsi, il semble que les micro-organismes dégradeurs de toluène indigènes de 

la tourbe granulaire n'étaient pas limités en nutriments au cours de l'expérience. 

4.2.3. Effet de l'ajout d'un composé a relâchement contrôlé d'oxygène sur l'activité 

de minéralisation du "c-toluène 

La faible concentration en oxygène dissous généralement retrouvée dans les eaux 

souterraines est reconnue dans la littérature comme étant le principal élément limitant la 

biodégradation aérobie des BTEX par des micro-organismes indigènes de l'aquifère 

(Barker et al., 1987; Leahy et ColweU, 1990). En effet, environ 3 mg.4 d'oxygène sont 

requis pour dégrader 1 mg/l d'un composé BTEX alors que les concentrations en oxygene 

dissous retrouvées dans les nappes sont souvent de I'ordre de 1 mg/l. Ainsi, pour assurer 

la biodégradation efficace des polluants sous conditions aérobies, il est impératif de fournir 

de l'oxygène en concentration suffisante aux micro-organismes dégradeurs. 



Le composé. a relâchement contrôlé d'oxygène (ou ORC pour « oxygen releasing 

compound ») est un peroxyde de magnésium qui, lorsqu'il entre en contact avec de l'eau, 

relâche de l'oxygène dans l'environnement selon la réaction suivante: 

Ce composé est commercialisé sous forme de pochettes pouvant être insérées dans des 

puits interceptant la zone de la nappe phréatique contaminée. Des études menées par 

Biancbi-Mosquera et al. (2994) et Kao et Borden (1994) démontrent I'applicabilité de ce 

produit pour la biodégradation in situ des BTEX. Dans les deux cas, les études ont 

démontré que I'ORC avait la capacité de relâcher de l'oxygène en quantité suffisante pour 

assurer la biodégradation des composés %TEX traversant la zone de traitement. Les 

études ont également démontré que le relâchement d'oxygène avait persiste au cours de 

10 semaines. 

M n  de déterminer si I'ORC pouvait être incorporé au milieu filtrant afin de fournir 

l'oxygène nécessaire à la biodégradation aérobie des BTEX dans le biofdtre, des études en 

microcosmes ont été réalisées à I'aide de 't-toluène. L'ORC a été mélange en différentes 

concentrations au milieu organique et introduit dans les microcosmes desquels tout 

l'oxygène a été purgé au préalable. La figure 4.4 illustre les résultats obtenus avec des 

concentrations de O %, 5 %, 10 % et 15 % (v/v) d'ORC. L'évolution observée dans les 

(tiré de Regenesis Bioremediation Products. 1996) 



témoins abiotiques ainsi que les écarts-types sont aussi représentés. Vu l'absence de 

minéralisation, les profils observés dans les microcosmes contenant de 20 à 100 % d70RC 

ne sont pas présentés. 

14 Figure 4.4 Minéralisation du C-toluène à 10 O C  dans le milieu organique en 

présence d'ORC. Écarts-types basés sur des triplicatas. 

Dans la série de microcosmes ne contenant pas d'ORC, un temps de Iatence de 6 jours a 

été observé. Le processus de minéralisation du toluène a ensuite débuté pour atteindre 

58 % après 25 jours, Aucune minéralisation n'a été observée dans les témoins abiotiques. 



Vue l'absence d'oxygène dans cette série de microcosmes, les nitrates présents dans l'eau 

souterraine synthétique ont sans aucun doute servi d'accepteurs d'électrons. Ainsi, les 

micro-organismes présents dans le milieu organique semblent pouvoir dégrader le toluène 

sous conditions anaérobies dénitdiantes. Cet aspect sera discuté en détail à la section 6. 

Dans toutes les autres séries de microcosmes contenant de I'ORC en concentrations allant 

14 de 5 % à 100 %, aucune minéralisation du C-toluène n'a été observée. Lorsque 

l'expérience a été arrêtée après 25 jours, le pH a été mesuré dans les microcosmes et des 

valeurs situées entre 10 et 1 1  ont été obtenues. Ainsi I'ORC a eu pour effet de faire 

monter le pH de façon considérable inhibant par le fait même toute activité de  

minéralisation (même celle observée sous conditions anaérobies dénitrifiantes) dans un 

rayon rapproché. Ce phénomène est attnbuable à la formation de dioxyde de magnésium 

se dissociant en ions hydroxyles. L'usage de 1'ORC est donc réservé aux systèmes 

ouverts permettant a I'oxygène libéré de d f i s e r  à travers le panache de contamination. II 

est à rejeter pour les systèmes fermés tels les biofiltres. Suite à ces résultats, l'idée 

d'incorporer de I'ORC au milieu filtrant a été abandonnée et aucun essai n'a été réalise a 

['aide d'autre milieux filtrants telle la tourbe granulaire. 



5. BIOFILTRATION D'UNE EAU CONTAMINÉE AU TOLUÈNE SOUS 

CONDITIONS AÉROBIES 

Les résultats obtenus au chapitre 4 ont permis d'identifier !a tourbe granulaire en tant que 

milieu idéal pour la biofiltration in situ des BTEX En effet, ce milieu possède les 

propriétés mécaniques (porosité et conductivité hydraulique élevées, absence de 

compaction) et microbiologiques (activiré de minéralisation élevée du toluène par les 

micro-organismes indigènes de la tourbe grmulaire, présence de nutriments) nécessaires 

pour être utilisé, sans amendement, dans un biofiltre in siru. 

Afin d'approfondir ces résultats préliminaires, des études ont été réalisées dans un biofiltre 

de tourbe granulaire, d'un volume de 0,s litre, d'un diamètre interne de 3.9 cm et d'une 

hauteur de 44 cm. Des essais ont été réaiisés afin de vérifier l'hydrodynamique de la 

colonne et de mesurer la consommation d'oxygène dissous dans le filtre en absence de 

toluene. Par la suite, les phénomènes d'adsorption et de biodégradation du toluène au sein 

d'un biofiltre de tourbe granulaire sous conditions aérobies ont été étudiés. Finalement. la 

stabilité du biofiltre à long terme a été évaluée. 

5.1. EiYDRODYIYAMIQUE DU BIOFlLTRE 

Une étude portant sur la distribution des temps de séjour (DTS) dans le lit filtrant a été 

réalisée afin de caractériser le comportement hydrodynamique du biofiltre. La dispersion 



axiale dans un réacteur de type piston est représentée par I'équation suivante qui résulte 

d'un bilan de masse sur le traceur autour d'un volume éiémentaire du biofiltre: 

où Ci: concentration de traceur (rng/l) 

t: temps 

Dz: coefficient de dispersion auide (m2/s) 

U,: vitesse du liquide ( d s )  

2: position verticale dans le biofiltre (m) 

Le degré de dispersion est généralement quantifié a l'aide du nombre de Peclet 

(Pe=UpH/Dz ou H est la hauteur du biofiltre). Afin de cdcuIer Ie temps de séjour moyen, 

le nombre de Peclet, et par le fait même Dz, la méthode des moindres carrés a été utilisée. 

Ainsi: 

- 

dans laquelle, 

.. - tiré de Bear. 1967 
tiré de Samson 199 1 



3 
ou ~ r - :  variance 

f :  temps de résidence moyen (h) 

ti : temps de la lecture de la concentration Ci de traceur (h) 

Ci : concentration de traceur (mgA) 

Les profiis de distribution des temps de séjour obtenus pour cinq essais de traçage sont 

présentés aux figures 5.1 a 5.5. Ces expériences ont été réalisées pour des temps de 

résidence moyen dans le filtre dant de 4 minutes à 8 heures. Des nombres de Peclet 

situés entre 24.8 et 96,8 ont été calcutés. Ceci signifie que le biofltre opère sous un 

régime piston avec dispersion axiale intermédiaire. 

Tel que Ie démontrent les profils de distribution des temps de séjour, un seul maximum a 

été observé sur chacune des courbes. Ceci démontre qu'aucun chemin préférentiel n'est 

emprunté par te liquide dans le bioréacteur. 
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Figure 5.1 Distribution des temps de séjour dans le filtre à un débit de I mumin 

Figure 5.2 Distribution des temps de séjour dans le fdtre a un débit de 7 mumin 
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Figure 5.3 Distribution des temps de séjour dans le filtre à un débit de 14 mumin 

Tmoy=9,6 min 
Pe=50,4 

Figure 5.4 Distribution des temps de séjour dans le filtre à un débit de 45 mumin 
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Figure 5.5 Distribution des temps de séjour dans le filtre à un débit de 100 rnYmiii 

Le volume utile théorique de 428,24 ml, soit La porosité 80,8% (section 4.1.1) multipliée 

par le volume de la colonne vide 530 id, a été comparé au volume utile mesuré pour 

chacun des essais. Ces mesures, obtenues en multipliant le débit de liquide par le temps de 

résidence moyen calculé, sont illustrées à la figure 5.6. 



Débit ( d m i n )  

Figure 5.6 Volumes utiles mesurés au cours des essais 

La valeur moyenne mesurée. soit 423,56 ml se situe a un écart de seulement 1,2 % de la 

valeur théorique. II n'y avait donc pas de volume mort au sein du bio6itre au cours de 

I'expérimentation. 

5.2. CONSOMMAT~ON VOLUMÉTRIQUE D'OXYGÈNE DISSOUS DANS LE 

FILTRE EN ABSENCE DE BTEX 

La consommation volumétrique d'oxygène dissous en absence de BTEX a été mesurée 

dans le 6itre afh d'évaluer Ie risque de développement de zones anaérobies au sein du 

bioréacteur. En effet, si la biodégradation des sources de carbone propres au milieu 

filtrant par les micro-organismes indigènes est trop importante, il pourra y avoir 



compétition entre ces micro-organismes et ceux dégradant les BTEX. Ainsi, les 

accepteurs d'électrons pourraient devenir limitants dans la réaction de biodégradation des 

BTEX. Ceci est particulièrement pertinent vu la faible concentration en oxygène dissous 

généralement retrouvée dans les eaux souterraines. 

Le taux volumétrique de consommation d'oxygène dissous en absence de BTEX a été 

évalué Far biIan de matière autour du biofiltre de 0,5 L. En supposant un régime 

permanent et un écoulement piston, Ie bilan sur une section transversale de ta cotonne peut 

s'énoncer ainsi: 

ou A : section d3écouIement (m2) 

U, : vitesse superficielle d'écoulement (m/s) 

Co2 : concentration en oxygène dissous (mg/l) 

q02X : consommation volumétrique d'oxygène dissous (mg.!-'.s") 

En posant que AZ tend vers O puis en posant que la biomasse est répartie de façon 

uniforme a travers le fiitre (X constant), il est possible d'intégrer et d'obtenir l'équation 

suivante: 

tiré de Bailey et Oiiis. 1986 



où L : hauteur du biofltre (m) 

Coo= : concentration en oxygène à l'entrée du biofltre ( m d )  

CLCE: concentration en oxygène à Ia sortie du biofiltre (rng/l) 

La figure 5.7 présente la consommation d'oxygène dissous (C&L) mesurée dans Ie filtre 

en absence de toluène en fonction de différents temps de résidence dans Ie fïitre (L/Up). 

La pente illustre une consommation volumétrique d' oxygène dissous de 0,5 142 mg. 1-' . h-' . 

Le coefficient de détermination s'élève à 0.99 17. 

O 0.5 1 1.5 2 2.5 

Temps de tiés idence (b) 

Figure 5.7 Consommation vol. d'O2 dissous dans le filtre en absence de toIuène 



Les résultats montrent que tres peu d'oxygène est consommé par les micro-organismes 

pour la biodégradation des sources de carbone propres a la tourbe granulaire et que les 

sources de carbone de ta matrice tiltrante ne sont pas facilement minéralisées. Par 

exemple, pour un temps de résidence d'une heure dans le bioréacteur, seulement 0,5 mg 

d'oxygend d'eau souterraine serait consommé. Ainsi, le risque de développement de 

zones anaérobies au sein du biofiltre sera limité. Ce résultat s'explique par le fait que les 

substances humiques retrouvées dans la tourbe sont relativement stables. Néanmoins, 

elles participent généralement, au cours de la biofltration, au processus de tramformation 

du carbone mais a une vitesse très lente (Atlas et Bartha, 1946). 

5.3. ADSORPTION DU TOLUÈNE SUR LE MILIEU FILTRANT 

L'erJèvement d'un polluant dans un biofiltre est attribuable à deux facteurs, soit 

l'adsorption physique du composé organique sur la matrice fiitrante et la dégradation 

biologique de ce même composé par les micro-organismes en présence. L'étude 

préliminaire en laboratoire de ces deux phénomènes est essentieIle a la conception d'un 

réacteur a grande échelie. L'équation suivante présente le phénomène d'adsorption du 

polluant sur la matrice fiitrante en présence de dispersion axiale dans le biotiltre et en 

absence de biodégradation. 



ou R, : Coefficient de retardement 

Afin d'évaluer I'irnportance de l'adsorption du toluène sur Ia tourbe granulaire au cours du 

procédé de biofiitration, des expériences en cuvée ont été réalisées. Le tableau 5.1  

présente les résultats obtenus au cours de cette étude. 

Tableau 5.1 Adsorption du toluène sur la tourbe granulaire 

Cto~u&nc dans Écart-type adsorbé Écart-type Pertes par 
l'eau à (basé sur des sur la tourbe (basé sur des voIatiIisationt 

l'équilibre triplicatas) granulaire à triplkatas) 
l'équilibre 

(mg toluène/g (%) 
( m d )  de d i e u  sec) 
1,03 i 0,0608 0, 1 + 0,0034 5.2 

Obtenu a partir des témoins abiotiques 



Pour des concentrations en toluène dans l'eau à l'équilibre allant de 1,03 a 43,05 mg, des 

concentrations en toluène adsorbé à la tourbe granulaire entre O, 1 et 5.2 mg/g sec ont été 

mesurées. La représentation de ces résultats sous forme graphique est illustrée a la figure 

5.8 de même que les écarts-types calculés. 

O 5 10 15 20 25 30 35 40 45 

Concentration de tduéne dprW l'eau à l'équilibre (Wl) 

Figure 5.8 Isotherme d'adsorption du toluène sur la tourbe granulaire 

Un isotherme d'adsorption héaire a été obtenu ce qui est conforme aux résultats attendus 

vu tes faibles concentrations avec lesquelles les expériences ont été réalisées. Ces faibles 

concentrations sont représentatives des valeurs généralement retrouvées dans les eaux 

souterraines. La pente de l'isotherme qui représente le coefficient de répartition tourbe 



granulake-eau pour le toluène se situe à 0,12 13 Wg. Le coefficient de détermination es1 

de 0,993. 

Des expériences réalisées avec le miiieu organique avaient donné un coefficient de 

répartition de l'ordre de 0,0122 Wg. Ce milieu était donc beaucoup moins adsorbant. 

Cette différence considérable s'explique par la présence de l'agent poIyrnérique au sein de 

la tourbe granulaire. Elle s'explique égaiement par le fait que te milieu orgaBique est 

composé en partie de sol et de verrnicuiite, deux milieux minéraux. En effet, tel que 

présenté dans la revue de la littérature, les hydrocarbures hydrophobes sont surtout 

adsorbés sur la matière organique et non sur la matière minérale (Zytner, 1994). 

Plusieurs études portant sur l'adsorption du toluéne sur différents milieux sont rapponées 

dans la littérature. Des travaux réalisés par Stuart et al. (199 1) portant sur un loarn 

sablo~ewc ont iilustré un isotherme linéaire caractérisé par un coefficient de répartition de 

I,6*loJ L/g, donc mille fois moins que le coefficient mesuré avec la tourbe granulaire. 

Zytner (1994) rapporte un isotherme de Freundlich pour l'adsorption du toiuene sur la 

tourbe caractérisé par les coefficients K~0,074 et l/n,-=0,83. Voice et ai. (1992) ont 

étudié l'adsorption du toluène sur un charbon granulaire activé et ont rapporte un 

isotherme de Freundlich de coeiincients K ~ 8 3  et l/n&44. Tous ces résultats sont 

conformes à la théorie voulant que les trois propriétés physico-chimiques d'importance 

permettant de prédire l'importance relative de l'adsorption sur un d e u  donné soient, par 

ordre d'importance, la teneur en carbone organique, la capacité d'échange cationique et 



l'aire surfacique. Ainsi, la tourbe granulaire est beaucoup plus adsorbante qu'un loarn 

sablonneux mais beaucoup moins qu'un charbon active. 

La valeur du coefficient de répartition obtenu a permis de calculer le facteur de 

retardement (Rc) du toluène dans le système selon l'équation suivante: 

où p: densité du milieu dans le biofiltre (@cm3) 

E : contenu en eau dans le biofiltre 

Kd: coefficient de répartition tourbe granulaire-eau &/g) 

La densité du milieu en réacteur ayant été évaluée à 0,144 g/cm3 et le contenu en eau à 

0,81 g/cm3, le facteur de retardement du toluène dans le milieu se situe à 22,6. Ce 

coefficient de retardement représente le rappore entre le temps nécessaire pour observer le 

"breakthrough" du toluène a travers le biotiltre et le temps nécessaire pour observer le 

"breakthrough" d'un traceur (un ion chlorure par exemple). Une valeur de 1 par exemple 

signifierait que le composé étudié n'est pas du tout adsorbé. 

tiré de Stuarf 1991 



Ainsi, l'adsorption du toluène sur le milieu f3trant est importante. En comparaison. Stuart 

et al. (1991) ont mesuré un coefficient de retardement de 1,8 pour le toluene sur un loam 

sablonneux. La valeur élevée obtenue pour la tourbe granulaire s'explique par la nature 

organique de la tourbe de sphaigne et par la présence de l'agent liant, un composé 

polyrnérique. Cette capacité d'adsorption peut s'avérer intéressante pour servir de 

tampon lors de variations de la charge à traiter à l'entrée du biofütre par exemple (Voice 

et al., 1992) ou lorsque l'activité de minéralisation du biofiltre fait défaut (Rael et al.. 

1995). Toutefois, afin d'assurer I'efficacité du filtre à long terme, il est essentiel que la 

biodégradation prédomine comme phénomène responsable de l'enlèvement du polluant 

dans la matrice filtrante. 

5.4.1. Cinétique de biodégradation 

L'équation suivante integre Ies quatre phénomènes responsables du devenir du polluant 

dans un biofiltre, soit la convection, la dispersion, l'adsorption et la biodégradation: 

où K : constante cinétique de biodégradation de premier ordre (h-') 

- tiré de Bear, 1967 



Afin de déterminer la constante cinétique de biodégradation du toluène dans le biofiltre de 

tourbe granulaire, deux hypothèses ont été posées, soit que: 

1" Le biofiltre opérait sous un régime piston, et que; 

2" Le biofiitre opérait en régime permanent Ion de la prise des échantilions. 

Ainsi, l'équation de transport se réduit a la forme suivante: 

concentration en polluant à la sortie du biofiltre (rngll) 

concentration en polluant à l'entrée du biofiltre (mg) 

temps de résidence dans le biofiltre (h) 

La résolution de cette équation permettra pour une concentration a I'entrée donnée, de 

déterminer le temps de résidence nécessaire dans le biofiitre pour atteindre une 

concentration voulue (ex. norme). 

Une première série d'expériences à été réalisée pour une concentration moyenne en 

toluène à l'entrée du biofiltre de 1.3 mg/i. La figure 5.9 illustre le logarithme naturel de 

(Co/Ct) en fonction du temps de résidence dans le réacteur. La pente illustre la constante 



cinétique de biodégradation d'ordre 1 6). La valeur calculée se situe à 0,4128 min-' et le 

coefficient de détermination est de 0,9475. La figure 5.10 présente les vaieurs d'efficacité 

d'enièvernent du toluène dans le biofiltre mesurées en fonction du temps de résidence et le 

pros théorique obtenu avec une constante cinétique de 0,4128 min-'. 

O 2 4 6 8 1 O 12 

Temps de iiésidence (nui) 

Figure 5.9 Cinétique de biodégradation du toluène dans le filtre, conc. initiale: 1,3 

Pour des temps de résidence dans le biofiltre allant de 2,1 minutes à 10,6 minutes, des 

concentrations en toluène a la sortie entre 390 pg/l et 16 pgil ont été obtenues (les 

résultats seront présentés en détails un peu plus loin au tableau 5.2) et ce pour une 

concentration moyenne de toluène à l'entrée de 1,3 mg/i. Cette valeur de 1,3 m g  est 



représentative des concentrations retrouvées dans les eaux souterraines (Environnement 

Canada, 1993b). Ainsi, il est possible d'atteindre, à l'aide du biofiltre de tourbe 

granulaire, le critère B pour les eaux souterraines du Ministère de l'environnement et de la 

faune (1988) de 50 pg. 

- W -  Y 1 observe 

S m  - régression avec K4.4128 r n ~ l  

Temps de résidence (min) 

Figure 5.10 Efficacité d'enlèvement du toIuène dans le filtre, conc. initiale: 1,3 mg/l 

Une deuxième série d'expériences à été réaIisée pour une concentration moyenne a 

l'entrée du biofiltre de 9,4 mg/l, ce qui est représentatif des concentrations les plus élevées 

généralement retrouvées dans les eaux souterraines (Environnement Canada, 1993 b). La 

figure 5.11 présente le logarithme naturei de  (Co/CL) en fonction du temps de résidence 

dans le réacteur. La constante cinétique d'ordre 1 (K), donnée par la pente de cette 



droite, se situe à 0,4506 min". Le coefficient de détermination est de 0,9144. La figure 

5.12 illustre les valeurs d'efficacité d'enlèvement du toluène obtenues dans le biofiitre en 

fonction du temps de résidence ainsi que le profil théorique obtenu avec une constante 

cinétique de 0,4506 min-'. 

Figure 5.11 Cinétique de biodégradation du toluène dans le filtre, conc. initiale: 9,4 

mgA 

Des concentrations à la sortie entre 6 1 pg/i et 4 300 pgA ont été obtenues pour des temps 

de résidence dans le biofiitre ailant de 9,s minutes à 2,1 minutes respectivement. Les 

résultats seront présentés en détails au tabIeau 5.3. 



Ainsi. les deux constantes cinétiques mesurées ne sont séparées que par un écart de 8.9 %. 

Compte tenu des erreurs expénmentaies, il est possible de concIure que cet écart n'est pas 

significatif. Ainsi, les résultats sont conformes a la théorie voulant que la constante 

cinétique ne soit pas affectée par de faibles concentrations en substrat. 

Te- & résidence (mm) 

Figure 5.12 Eftlcacité d'enlèvement du toluène dans le fdtre, conc. initiale: 9,4 mg/l 

Jones (1984) rapporte un constante cinétique de 0,43 min*' pour la biodégradation aérobie 

du toluène en cuvées à l'aide de boues activées. Chang et ai. (1989) rapportent une 

constante de 6,9*106 min" mesurée dans une nappe aquifere sablonneuse limitée en 



oxygène. Aucune étude concernant la cinétique de biodégradation aérobie du toluène 

dans l'eau en biofltre de tourbe n'a été répertoriée. 

Ainsi. la biodégradation du toluène dans le biofiltre de tourbe granulaire s'effectue à un 

taux comparabIe a ceiui observé dans un système de boues activées. Ce résukat est fort 

encourageant et laisse croire que le système de tourbe granulaire pourra compétitiomer 

avec d'autres techo logies. 

5.4.2. Consommation d'oxygène dissous dans le filtre 

Afin de vérifier si I'enievement du toiuène dans Ie biofiitre était attribuable au phénomène 

de biodégradation, la concentration en oxygène dissous a été suivie à l'entrée et à la sortie 

du réacteur. Sachant que 3,13 mg d'oxygène dissous sont requis pour biodégrader 1 mg 

de toluène et connaissant Ia quantité de toluène consommé dans le tiltre pour différents 

temps de risidence, un bilan a été effectué. La consommation d'oxygène dissous pour la 

biodégradation des sources de carbone propres au milieu 6itrant a été négligée, vu les 

résultats obtenus à la section 5.2. En effet, pour un temps de résidence de 10 minutes par 

exemple, la consommation d'oxygène dissous attribuable à ces sources de carbone se 

chiffierait à 0,08 m g  (0,5 mg/l.heure * 10 minutes / 60 rninutedheure). 

Le tableau 5.2 présente les résultats obtenus pour la première série d'expériences ou la 

concentration moyenne en toluène à l'entrée du biofiitre était de 1'3 mgIl. Pour des temps 



de résidence aiiant de 2,l à 10,6 minutes, la consommation en oxygène dissous observée 

dans le filtre s'est retrouvée entre 1,9 et 5,3 mg. Les écarts entre la consommation 

théonque d'oxygène dissous dans le filtre et la consommation observée se situent entre 

13.1 et 34,s %. Étant donné les erreurs expérimentales possibles, telle que la volatilisation 

au cours de la prise d'échantillons, il est possible de conclure que les bilans bouclent et 

que l'enlèvement du toluène dans le biofiItre ai t  été le résultat d'un processus de 

biodégradation aérobie. 

Tableau 5.2 Comparaison entre I'oxygène dissous consommé théoriquement dans le 

biofiltre et la consommation observée (Conc. moyenne toluène entrée: 1,3 mgA) 

Temps de C e  C e  Toluène Consom. Ce-. Co,.. Oz con- Écart 
séjour entrée Sortie dégradé théorique eatrée sortie sommé 

Le tableau 5.3 présente les résultats obtenus lors de la deuxième série d'expériences où la 

concentration moyenne de toluène à l'entrée du biofiltre était de 9,4 mgIl. L'eau 

souterraine synthétique était alors bullée avec de l'oxygène pur plutôt qu'avec de l'air. 



Pour des temps de résidence situes entre 2,1 et 9,s minutes, la consommation d'oxygène 

dissous mesurée s'est reuouvée entre 21,7 et 25.7 mg/l. Les écarts entre la consommation 

théorique d'oxygène et la consommation observée se situent entre 3.2 et I1,3 %. ce qui 

s'explique par Ies erreurs expérimentales encourues lors des mesures. Conséquemment, 

ceci permet de conclure que les bilans massiques effectués sur l'oxygène dissous bouclent. 

Tableau 5 3  Comparaison entre l'oxygène dissous consommé théoriquement dans le 

biofiltre et la consommation observée (Conc. moyenne toluéne entrée: 9,4 mgA) 

Temps CM.~. C Toluène Consom. C o  Ce-, OZ con- Écart 
de entrée Sortie dégradé théorie entrée sortie sommé 

séjour d'O2 
( ~ g n )  (~%1) (CL@) ( m m  (mg/l) (mgfl) (mgfl) O'O 

(min) 
2.1 11000 4300 6700 21,O 58.0 36.3 21.7 32 

Ainsi, pour cette série d'expériences également, il a été démontré que l'enièvement du 

toluène dans le biofiItre était réellement dû à sa biodégradation sous conditions aérobies et 

non a un phénomène d'adsorption ou de volatilisation. 



5.5. STABILITÉ DU BIOFILTRE A LONG TERME 

Afin d'étudier le comportement à long terme du biofiltre, une expérience a été réalisée à 

l'aide d'une colonne de tourbe granulaire de 0,5 litre laissée en opération continue au 

cours d'une période de 20 semaines (140 jours). La concentration moyenne a l'entrée du 

biofïltre se situait à 400 pg/i de toluène et ie temps de résidence dans le biofdtre était de 

3,s heures. La concentration de 400 pgA de toluène se situe légèrement sous la moyenne 

des concentrations généralement mesurées dans les eaux souterraines contaminées mais 

reste représentative des concentrations retrouvées (Environnement Canada, 1993b). 

5.5.1. Suivi de l'efficacité de biodégradation du toluène dans le temps 

La concentration en toluène à l'entrée et à la sortie du biofltre a été mesurée à des 

intervalles d'une semaine environ afin de suivre l'efficacité de sa biodégradation dans le 

temps. La figure 5.13 illustre les résultats obtenus ainsi que les erreurs relatives sur les 

mesures. 



Temps (jours) 

Figure 5.13 Suivi de l'efficacité de biodégradation du totuène dans le temps 

-4près une période de latence d'environ 1 semaine, l'efficacité de biodégradation du 

toluène s'est stabilisée à une valeur approchant 100 oh. Ainsi, la majorité des échantillons 

pris à la sortie du biofltre se sont retrouvés sous la limite de détection qui est de O. 1 @l. 

Il semble donc que le bio6itre ait conservé ses propriétés rnicrobioIogiques tout au long de 

la période d'essai, soit 20 semaines (140 jours). 

5.5.2. Consommation d'oxygène dissous au sein du biofütre 

La figure 5.14 présente la consommation en oxygène dissous mesurée dans le biofiltre en 

fonction du temps de même que les erreurs expérimentales sur ces mesures. Après la 



période de latence initiaie du biotiltre, la consommation en oxygène dissous s'est stabilisée 

à une valeur située entre 0,6 et 0.9 mgi-'.h-'. Il est à noter que la période de latence 

observée correspond à celle de la figure 5.13, ce qui confirme que l'enlèvement du toluène 

dans te biofiltre est attribuable à un phénomene de biodégradation sous conditions 

aérobies. 

Temps Ciours) 

Figure 5.14 Suivi de la consommation d'oxygène dissous dans le biofiltre en fonction 

du temps 

Sachant que la concentration moyenne en toluène à l'entrée du biofiltre était de 400 pg/1 

et que 3,13 mg d'oxygène sont nécessaires pour assurer la biodégradation aérobie de 1 g 



de toluène, il est possible de déduire que 1.2 mg/l d'oxygène dissous ou encore 0,34 

mg/i.heure (I,2 mg/i / 3-5 heures) ont servi à la biodégradation du polluant. De plus, les 

résultats obtenus a la section 5.2 ont permis de conclure que 0,s mg/l.heure d'oxygène 

dissous étaient consommés pour la biodégradation des sources de carbone propres a la 

matrice filtrante lors d'essais réalisés sur une période de 5 jours. Ainsi, iI est possible 

d'assumer que 0,84 rng.l.-'.h-' d'oxygène dissous était consommé théoriquement. Cette 

valeur est conforme aux résultats obtenus. 

Après le 80ième jour d'opération, le graphique démontre une cenaine baisse de Ia 

consommation d'oxygène dissous dans le bioatre. Ce phénomène peut s'expliquer par le 

fait que les sources de carbones propres au milieu sltrant et facilement biodégradables ont 

été assirdées, diminuant par Ie fait mëme la quantité d'oxygène dissous nécessaire a leur 

biodégradation. 

5.5.3. Suivi de la concentration en nutriments et autres sels au sein du biofiltre 

A des intervalles d'une semaine environ, la concentration en sels était mesurée à l'entrée 

ainsi qu'à la sortie du biofiltre dans le but de déterminer les conditions nutritionnelles 

(principalement azote et phosphore) sous lesquefies opérait le biofiitre. La figure 5.15 

iliustre les résultats obtenus pour le sodium (Na3, le potassium (K3, le magnésium 

(Mg23, le calcium (ca23, les nitrates (NOs-) et les sulfates (~0~"). Les concentrations en 

phosphate (PO:*) et en ammoniaque (Nl&3 mesurées se sont retrouvées sous la Limite de 



détection (qui est de l'ordre de 1 mgA) à l'entrée ainsi qu'à la sortie du biofiltre et ne sont 

donc pas présentés. 

I ~ e m p i  Unun) 

l Tampa (laun) 
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Figure 5.15 Suivi de la concentration en nutriments à l'entrée et à la sortie du 

biofiltre dans le temps 



Les résultats montrent que les concentrations mesurées à l'entrée et à la sortie pour les 

autres sels sont très rapprochées et correspondent à peu près à la composition de I'eau 

souterraine synthétique. Ainsi, il n'y a pas eu de consommation mesurable de nutriments 

ou d'autres sels dans Ie filtre. De plus, aucune concentration mesurée à la sortie ne s'est 

retrouvée sous fa limite de détection. Ceci est attribuable a la faible concentration en 

toluène a l'entrée du biofiitre et à l'absence de sources de carbone facilement 

rninéralisables dans la matrice fiitrante. Ainsi, les micro-organismes indigènes de la tourbe 

granulaire se retrouvent dans un état passif "resting-state", limitant la consommation de 

nutriments dans le fltre pour la croissance bactérieme (Taylor et al., 1993). 

Les variations des différentes concentrations de sels mesurées à l'entrée du biofiltre 

s'expliquent par le fait que I'eau souterraine synthétique était préparée manuellement a 

chaque semaine. Ainsi, il pouvait y avoir un certain écart entre les diiérents lots préparés. 

5.5.4. Suivi de la croissance microbienne dans le biofiitre 

La figure 5.16 présente les concentrations en biomasse mesurées dans la tourbe granulaire 

à l'entrée et à la sortie du biotiltre en fonction du temps à l'aide de la méthode du nombre 

le plus probable. Initialement, la concentration en biomasse mesurée dans Ia tourbe 

granulaire était de l'ordre de 5,0*106 WP/g de tourbe granulaire sèche. Une phase de 

croissance a été observée au cours de 30 premiers jours d'opération puis les 

concentrations se sont stabilisées à des valeurs de l'ordre de  2,1 *107 NPP/g de tourbe 

granulaire sèche à l'entrée du bioflire et l,;*lo7 NPP/g de tourbe granulaire sèche a la 



sortie. A titre de comparaison, les concentrations en biomasse retrouvées dans les sols 

sont généralement de L'ordre de 106 NPP/g sec (Atlas et Bartha, 1946). 
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Figure 5.16 Suivi de la concentration en biomasse dans Ie filtre en fonction du temps 

La concentration de biomasse plus importante à l'entrée du biofiltre s'explique par la 

concentration en toluène qui est plus élevée qu'à la sortie, où la concentration est 

pratiquement nulle. Ainsi, la croissance microbienne est favorisée par la présence d'une 

source de carbone. Malgré tout, la concentration en biomasse s'est rapidement stabiIisée 

ce qui suggère que les risques de colmatage du fïitre sont très faibles. Ceci s'explique par 

Ies faibles concentrations de sources de carbone, insuffisantes pour favoriser une 

croissance microbienne d'importance. 



5.5.5. Évolution des propriétés hydrodynamiques du biofiltre dans le temps 

M n  de vérifier si le biofiltre était sujet à des problèmes de compaction ou de colmatage, 

deux séries d'études de distribution des temps de séjour ont été réalisées. soit une au 

début et une lors de l'arrêt du biofiltre, à la 20ième semaine d'opération (140 jours). La 

figure 5.17 présente les résultats obtenus au cours de ces études. 

Les profils de distribution des temps de séjour obtenus initialement et lors de l'arrêt du 

biofiltre sont très semblables. Les écarts entre les nombres de Peclet mesurés se situent 

entre 6 et 9 %. Ceci signifie qu'au cours de la période d'essai (20 semaines), le biofiltre a 

conservé ses propriétés mécaniques et n'a donc pas été soumis à des problèmes de 

colmatage ou de compaction. Cette caractéristique est essentielle au bon fonctionnement 

de tout biofiltre. 

Les nombres de Peclet mesurés se situent entre 23,4 et 92,l pour des temps de résidence 

moyens entre 4 minutes et 8 heures. Ceci démontre que le biofiItre opérait sous un régime 

piston avec dispersion axiale intermédiaire. De plus, un seul maximum a été observé sur 

chacune des courbes, ce qui suggère qu'aucun chemin préférentiel n'était empmnté par le 

liquide dans le réacteur. Finalement, la comparaison entre le volume utiie théorique et le 

volume utile observé a permis de conclure qu'il n'y avait pas de zones mortes au sein du 

bioréacteur. 
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Figure 5.17 Comparaison d'études de distribution des temps de séjour dans le 

biofiltre au début et a la fin de la période d'essai (20 semaines) 



5.5.6. Évolution de l'activité de minéralisation du totuène au sein du milieu filtrant 

L'activité de minéraiisation du toluène au sein de la tourbe granuiaire a été évaluée lors de 

l'arrêt du biofiltre après la 20ième semaine d'opération. La figure 5.18 illustre le profil de 

minéraiisation obtenu en microcosmes de  mème que les écarts-types mesurés. 

Temps (heurts) 
- -- - -  

14 Figure 5.18 Minéralisation du C-toluène sous conditions aérobies a 10°C lors de 

l'arrêt du biofdtre. Écarts-types basés sur des triplkatas. 

Aucune phase de latence n'a été observée et 60 % du toluène injecté a été minéralise au 

cours d'une période de 4 heures. Aucune minéralisation n'a été observée au sein du 

témoin abiotique. Par opposition, les expériences de minéralisation réalisées avec la 



tourbe granulaire non adaptée avaient donné Lieu à un temps de latence de 8 jours et 70 % 

du toluène avait été minérdisé au cours d'une période d e  18 jours (section 4.2.1). La 

comparaison entre ces deux profiIs de minéralisation est illustrée a la figure 5.19. 
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Figure 5.19 Comparaison des profils de minéralisation initiai et final du ' 4~ - to~uène 

a lO0C sous conditions aérobies. Écarts-types basés sur des triplientas. 

Ceci confime le fait que l'enlèvement du toluène dans le filtre était le résultat d'un 

phénomène de biodégradation et que la microflore indigène de la tourbe granulaire, après 

une période d'adaptation, peut biodégrader le toluène de façon efficace. 



6 .  BIOFaTRATION SOUS CONDITIONS ANAÉROBIES DÉNTTRI~FLANTES 

Vu la faible concentration d'oxygène dissous généralement retrouvée dans les eaux 

souterraines, il s'avère avantageux, voire même essentiel, que la biodégradation des 

polluants puisse être réalisée sous conditions anaérobies. Plusieurs auteurs ont rapporté la 

biodégradabilité des composés monoaromatiques sous conditions anaérobies dénitrifiantes 

(Hutchs, 1993; Hutchins et al., 199 1; Anid et al., 1993). 

Ce chapitre présente les résultats obtenus au cours d'études visant à déterminer le 

potentiel d'un biofiltre in situ de tourbe granulaire pour la biodégradation des BTEX sous 

conditions anaérobies dénitrifiantes. En plus des essais effectués avec le toluène. une série 

d'expériences préliminaires visant a vérifier la biodégradabiüé du benzène sous conditions 

anaérobies dénitrifiantes a été réalisée. Certaines études ont rapporté que le benzène était 

récalcitrant sous ces conditions (Hutchins et al., 199 1; Kuhn et al., 1988; Patterson et al.. 

1993; Anid et al., 1993), alors que d'autres ont démontré qu'il était biodégrade 

(Battermann, 1 986; Major et al., 1988). 



6.1. ESSAIS DE MINÉRALISATION DU "c-TOLUÈNE EN MICROCOSMES 

SOUS CONDITIONS ANAÉROBIES DÉNITRIFLANTES 

Des essais en microcosmes ont été réalisés afin de déterminer si la microflore indigène de 

la tourbe granulaire avait la capacité de minéraliser le toluène sous conditions anaérobies 

dénitrifiantes. 

Les quatre profils de minéralisation obtenus en rnicrocosrnes sous conditions anaérobies 

dénitrifiantes de même que les écarts-types calculés sont présentés a la figure 6.1. Dans la 

première série, des nitrates ont été ajoutés sous forme de NaNû3 à l'eau souterraine 

synthétique, dans la deuxième, un fertilisant relâcheur de nitrates (HIGHN, 2246,  Scons, 

Marysville, OH) a été ajouté et finalement, aucun ajout n'a été fait à l'eau souterraine 

synthétique de la troisième série. Un témoin abiotique a également été suivi. 

Des profils de minéralisation simiIaires ont été obtenus dans les trois premières séries aiors 

qu'aucune activité de biodégradation n'a été détectée dans les témoins abiotiques. Une 

période de latence d'environ 5 jours a été observée et 60 % du toluène a été minéralisé sur 

une période de 17 jours. 
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Figure 6.1 Minéralisation du '"c-toluène sous conditions anaérobies dénitrifiantes a 

10°C dans la tourbe granulaire 

Ainsi, il a été démontré que les nitrates pouvaient servir d'accepteurs d'électrons pour la 

biodégradation du toluène par les micro-organismes indigènes de la tourbe granulaire. 

Ceci s'avère très important vu Ia faibIe concentration d'oxygène dissous généralement 

retrouvée dans les eaux souterraines. Les résultats démontrent également, compte tenu de 

la similarité des profils obtenus, que la concentration en nitrates retrouvée dans l'eau 

souterraine synthétique (6,3 mfl) est suffisante pour assurer l'apport d'accepteurs 

d'électrons nécessaires à la biodégradation anaérobie dénitdiante du toluène. 



Des études réalisées en microcosmes sous conditions dénitrifiantes par Hutchins (1993) 

ont démontré que 70 % des 6 mg/i de "c-toluene injectés étaient minéralisés après un 

période de 7 jours en présence de matériaux aquiferes acchatés au polluant. Aucune 

période de latence n'a été observée. Des résultats sindaires ont été obtenus en présence 

de matériaux aquiferes non adaptés au polluant. 

La concentration en nitrates mesurée au début et a la fin de l'expérience dans les 

microcosmes est présentée au tableau 6.1. Une diminution de la concentration a été notée 

dans les trois séries. Ainsi, dans la série où des nitrates ont été ajourés, la concentration a 

chuté de 752.5 mgil à 681,4 mg/l en 30 jours. Dans la série contenant le fertilisant. la 

concentration est passée de 42,7 mgA a 37,2 mgA. Finalement, dans la série sans 

amendement, la concentration est passée de 6,3 mgA a 3,3 mgA. 

Tableau 6.1 Suivi de la concentration en NOS- dans les microcosmes anaérobies 

Série Concentration uiitiaie en nitrates Concentration finde en nitrates 

Ajout de NaNo: 752.5 I 5% 68 1-4 + 5% 

Ajout de fertilisant 42,7 f 5% 37.2 + 5% 

Aucun ajout 6,3 I 5 %  2,3 + 5% 

Ceci confirme que les microcosmes se trouvaient réeuement sous des conditions 

anaérobies dénitrifiantes. Quoique la quantité absolue de nitrates consommés dans les 



trois séries n'est pas la même, cette différence peut s'expliquer par l'erreur relative 

attribuable à chacune des mesures, estimée à 5 %. II est également possible qu'une 

certaine proportion des nitrates ait été utilisée à d'autres fins que la biodégradation. De 

plus, iI est impossible de déterminer avec certitude si les dégradeurs de toluène étaient 

réellement des bactéries dénitrifiantes. 

6.2. CLNÉTIQUE DE BIODÉGRADATION DU TOLUÈNE SOUS CONDITIONS 

ANAÉROBIES DÉNITRIFIANTES DANS LE BIOFIiLTRE 

La cinétique de biodégradation du toluéne dans le biofiftre sous conditions anaérobies 

dénitrifiantes à été mesurée conformément a la procédure décrite à la section 5.4.1 dans 

une colonne de 0,5 litre. 

Pour une concentration moyenne en toluène à l'entrée du biofltre de 6,3 m g 4  la 

concentration en toluène à la sortie a été mesurée en fonction de différents temps de 

résidence. La figure 6.2 iiiustre le logarithme naturel de COKL en fonction du temps de 

séjour dans Ie réacteur. La pente illustre la constante cinétique de biodégradation d'ordre 

I (K). La valeur calculée se situe à 0,0134 min-' et le coefficient de détermination est de 

0,937. La figure 6.3 présente les valeurs d'efficacité d'enlèvement du toluene dans le 

biofililtre mesurées en fonction du temps de résidence et le profil théorique obtenu avec une 

constante cinétique de 0,O 134 min". 



Figure 6.2 Cinétique de biodégradation du toluène dans le filtre sous conditions 

anaérobies dénitnifiantes, conc. initiale: 6,3 mgfl 

Des concentrarions en toluène a la sortie de 470 pg/i. 1 300 pg/l et 6 000 pgjl ont été 

mesurées pour des temps de résidence dans le filtre de 122 minutes, 86 minutes et 43 

minutes respectivement. 

Le taux de biodégradation du toluène mesuré dans cette étude de 0,O 1 min" est environ 40 

fois inférieur sous conditions anaérobies dénitrifiantes que sous conditions aérobies. Un 

temps de résidence de 2 heures dans le bioatre est nécessaire pour atteindre 75 % 

d'enlèvement du toluène sous conditions dénitrifiantes. 
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Figure 6.3 Efficacité d'enlèvement du toluène dans le filtre sous conditions 

anaérobies dénitrifiantes, conc. initiale: 6J mgh 

Patterson et al. (1993) ont mesuré en colonnes filtrantes de grande dimension (35 litres) 

les taux de dégradation d'hydrocarbures monoaromatiques retrouvés en concentrations 

traces dans les eaux souterraines. Les colonnes contenaient du sable non contaminé et 

étaient opérées en mode saturé avec et sans ajout de nitrate dans le courant d'alimentation 

contenant environ 1 mgA de benzène, de toluène, d'éthylbenzène , méta- ou ortho-xylène. 

L'étude a montré que les micro-organismes indigènes du sable étaient capables de 



dégrader le toluène et I'éthylbenzène en conditions dénitrifiantes. Le benzène était 

récalcitrant en conditions anaérobies mais était dégradé en présence d'oxygène. 

Le taux de biodégradation mesuré pour te toluène en conditions anaérobies dénitrifiantes 

était d'ordre 1 et se situait 0,0024 min-'. Les taux de dégradation tendaient à augmenter 

dans le temps suggérant l'acclimatation de la biomasse au polluant. 

Afm d'assurer la présence de conditions anaérobies dans le biofïitre, le réservoir d'eau 

souterraine était bulle en continu avec de l'azote à débit modéré. Les concentrations en 

oxygène dissous ainsi qu'en nitrates et nitrites ont été mesurées à l'entrée et a la sortie du 

biofïitre au cours des expériences. Les concentrations en nitrites mesurées se sont toutes 

retrouvées sous la limite de détection. Le tableau 6.2 présente les concentrations en 

oxygène dissous et en nitrates mesurées. 



Tableau 6.2 Concentrations en oxygène dissous et en nitrates à l'entrée et à la sortie 

Temps de O2 entrée O2 sortie NO3 entrée NO3 sortie 

résidence 

Les concentrations en oxygène dissous mesurées étaient toutes sous la limite de détection 

de la sonde (0,01 mg/l). De plus, une diminution de ia concentration en nitrates a été 

notée au cours des trois essais, ce qui confirme que le biofiltre se trouvait réellement sous 

des conditions anaérobies dénitrifiantes. Dans deux des mesures prises, la concentration 

en nitrates à la sortie du réacteur s'est retrouvée sous la limite de détection. Ainsi, il est 

probable qu'il y ait eu une Limitation a ce niveau. Conséquemment, La constante cinétique 

réeiie est sûrement supérieure à la valeur calculée de 0,0 1 min-'. 



6.3. ESSAIS DE MIN~ALISATION DU "c-BENZENE EN MICROCOSMES 

sous CONDITIONS ANAÉROBIES DÉ-TES 

Quatre séries d'essais en microcosmes ont été réalisées afin de déterminer si la microflore 

indigène de Ia tourbe granulaire avait la capacité de biodégrader le benzène sous 

conditions anaérobies dénitrifiantes. ii existe une grande divergence dans la littérature à 

ce sujet. En effet, certains auteurs ont rapporté que le benzène était récalcitrant sous ces 

conditions (Hutchs et ai., 1991; Kuhn et al., 1988; Patterson et al., 1993; Anid et al., 

1993), alors que d'autres ont indiqué qu'il était facilement dégradé (Battermann, 1986; 

Major et al., 1988). 

La figure 6.4 ilIustre les quatre profils de ïninéralisation obtenus en microcosmes sous 

conditions anaérobies dénitdiantes de même que les écarts-types calculés. Dans la 

première série, des nitrates ont été ajoutés sous forme de NaN03 a l'eau souterraine 

synthétique. Dans ia deuxième, un fertilisant relâcheur de nitrates (JAIGHN. Scotts, 

Marysville, Off) a été ajouté. Finalement, aucun ajout n'a été fait à l'eau souterraine 

synthétique de la troisiéme série. Des témoins abiotiques ont aussi été suivis. 

Te! que pour la section 6.1, des profils de minéralisation similaires ont été obtenus dans les 

trois premières séries alors qu'aucune activité de biodégradation n'a été détectée dans les 

témoins abiotiques. Une période de latence de 12 jours a été observée et 55 % du benzène 

a été minéralisé sur une période de 30 jours. Ainsi, il semble que les nitrates puissent 



servir d'accepteurs d'dectrons pour la biodégradation du benzène par les micro- 

organismes indigènes de la tourbe granulaire. 
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Figure 6.4 Minéraiisation du ''c-benzène sous conditions anaérobies dénitrifiantes a 

10°C dans Ia tourbe granulaire 

Le profl présenté a la section 6.1, présentant la minéralisation du toluène sous conditions 

anaérobies dénitrifiantes, démontre un temps de latence de 5 jours et 60 % de 

minéralisation du lJ~-toluène en 17 jours. Ainsi, la minéralisation du benzène se fait plus 

lentement que ceUe du toluène. Ceci démontre que le benzène est plus récalcitrant que le 

toluène à la minéralisation sous conditions anaérobies dénitrifiantes. 



Les résultats démontrent également, tel qu'a la section 6.1, que la concentration en 

nitrates retrouvée dans I'eau soutenaine synthétique est suffisante pour assurer l'apport 

d'accepteurs d'électrons nécessaires nécessaire à la biodégradation anaérobie dénitrifiante 

du toiuene. 

Lors d'études en microcosmes sous conditions anaérobies dénitrifiantes, Major et ai. 

(1988) ont observé la biodégradation du benzène mis en présence de matériaux aquif^eres. 

Aucune période de latence n'a été observée et 80 % du benzène (pour une concentration 

*uiitiale de 3 mgil) a été biodégradé après 30 jours. 

Afin de confirmer [a présence de conditions dénitrifiantes dans les microcosmes au cours 

de l'expérience, la concentration en nitrates et en nitrites a été mesurée dans I'eau 

souterraine au début et a la fin de la période d'essai. Les résultats sont présentés au 

tableau 6.2. Les concentrations en nitrites se sont retrouvées sous la limite de détection ( I 

mgA) et ne sont donc pas présentées. 

Tableau 6.3 Suivi de la concentration en NO3- dans les microcosmes anaérobies 

Série Concentration initiale en nitrates Concentration finale en nitrates 

(mgfl) (mgm 

Ajout de NaNOf 1135,3 I 5 %  777,5 i- 5% 

Ajout de  fertilisant 168.0 I 5% 108,5 I 5% 

Aucun ajout 5,I I 5% 4,O I 5% 



Une diminution de la concentration en nitrates a été notée dans les trois séries ce qui 

confirme que les microcosmes se trouvaient réellement sous des conditions anaérobies 

dénitrifiantes. Ainsi, dans la série où il y a eu ajout de nitrates, la concentration est passée 

de 1 135,3 mgA à 7773 mgA. Dans la séne avec fertilisant, la concentration est passée de  

168,O m g  a 108,5 mgA. Finalement, dans la série sans amendement, la concentration a 

chute de 5,1 mg/I a 4,O mgA. Même si la quantité absolue de nitrates consommés dans les 

trois séries n'est pas la même, cette différence peut s'expliquer par l'erreur reIative sur les 

mesures. Également, il est possible qu'une certaine proportion des nitrates ait servi à 

d'autres fins que la biodégradation. De plus, iI est impossible d'affirmer avec certitude si 

les micro-organismes responsables de la biodégradation du benzène étaient des bactéries 

dénitrifiantes. 

-4 Ia lumière des résultats obtenus avec le benzène. il est possible de faire l'hypothèse selon 

laquelle l'ensemble des composés BTEX sera biodégradable sous conditions anaérobies 

dénitrifiantes au sein d'un biofiltre de tourbe granulaire. En effet, le benzène est reconnu 

comme étant le composé le plus récalcitrant à la biodégradation sous ces conditions 

(Hutchins, 1993). 



7. CONCLUSIONS ET REC0MMAM)ATIONS 

7.1. CONCLUSIONS 

Les expériences réalisées dans le cadre de cette étude ont permis de conclure que la 

biofiltration in situ sur tourbe granulaire pour le traitement des eaux souterraines 

contaminées aux BTEX avait beaucoup de potentiel. En effet, les résultats ont démontré 

que la tourbe granuIairt possédait d'excellentes propriétés mécaniques et 

microbiologiques. Ce milieu est caractérisé par une porosité et une conductivité 

hydraulique élevées. De plus, il n'est pas sujet aux problèmes de compaction ou de 

colmatage. Des essais en microcosmes ont également démontré que les micro-organismes 

indigènes de la tourbe granulaire avaient la capacité de minéraliser le toluène sous 

conditions aérobies et anaérobies dénitrifiantes. La microflore indigène semble aussi 

pouvoir biodégrader le benzène sous conditions anaérobies dénitrifiantes. 

L'adsorption du toluène sur Ia tourbe granulaire a été jugée relativement importante vu le 

facteur de retardement calculé de 22,6. Toutefois, il a été démontré que Les sites 

disponibles étaient rapidement saturés et que le phénomène de biofïitration était presque 

entièrement attnbuable à la biodégradation. 

Des essais ont été réalisés à l'aide d'un biofltre de 0,5 litre. L'étude de la distribution des 

temps de séjour dans le filtre a permis de démontrer que le bioréacteur opérait sous un 



régime piston avec dispersion axiale intermédiaire. II a également été démontré qu'aucun 

chemin préfkrentiel n'était emprunté par le liquide dans le filtre et qu'aucune zone morte 

n'était présente dans le bioréacteur. 

La consommation d'oxygène dissous dans le fiItre en absence de polluant a été mesurée et 

une valeur de 0.5 mg.1-'.h-' a été obtenue. Ceci signifie que les sources de carbone de la 

matice filtrante ne sont pas facilement minéralisées et que le risque de développement de 

zones anaérobies au sein du biofiltre sera limite. 

La cinétique de biodégradation du toluène sous conditions aérobies dans le biofiitre a été 

évaluée. Un premier essai réalisé pour une concentration en toIuène a l'entrée de 1,3 mgA 

a été effectué et une constante cinétique de 0.41 min-' a été obtenue. Un deuxième essai 

réalisé avec une concentration initiale en toluène de 9,4 mgA a donné une constante 

cinétique de 0,35 min-'. Ahsi, pour une concentration en toluène donnée dans i'eau 

souterraine, il sera possible d'évaluer le temps de résidence nécessaire dans le biofiltre 

pour atteindre une certaine norme. 

La cinétique de biodégradation du toluène sous conditions anaérobies dénitrifiantes dans le 

tiltre a également été évaluée. Une constante cinétique de 0,O 1 min-' a été calculée. Ainsi, 

la biodégradation du polluant en absence d'oxygène est possible, quoique plus lente que 

sous conditions aérobies. 



ii serait ainsi possible d'opérer un biofiltre comprenant deux sous sections: une première 

sous conditions aérobies, jusqu'à l'épuisement de l'oxygkne contenu dans les eaux 

souterraines, puis une seconde sous conditions anaérobies dénitrifiantes. L'imporeante 

concentration en nitrates généralement retrouvée dans les eaux souterraines pourrait ainsi 

servir d'accepteur d'électrons. Ceci s'avère une solution intéressante au problème relié a 

Ia faible concentration en oxygène retrouvée dans Ies eaux soutemines. 

La stabilité du biofltre a long terme a été évaluée sous conditions aérobies avec une 

concentration en toluène a l'entrée de 400 pg/l et un temps de résidence de 3 3  heures. Le 

biofiltre a été opéré de façon continue durant 20 semaines à 10°C et sans ajout de 

nutriments. Après une période de latence d'une semaine environ, l'efficacité d'enlèvement 

du toluène s'est stabilisée à une valeur approchant 100 %. L'enlèvement du toluène a été 

entikrement attribué a ia biodégradation. La consommar,ion d'oxygène dissous dans le 

filtre osciilait entre 0,6 et 0,9 mg.[-'.hm'. Au niveau nutritionnel, le biofiItre s'est démontré 

autosuffisant. La croissance bactérienne dans le filtre a été Limitée et aucun colmatage ou 

compaction n'ont été observés au cours des 20 semaines d'opération. 

Ainsi, il a été démontré que le bioflrre pouvait opérer de façon autonome sur une période 

prolongée. Ceci a pour conséquence de limiter de façon considérable Ies coûts liés à 

l'opération d'un tel système sur le terrain. 



7.2. RECOMMANDATIONS D'ESSAIS EN LABORATOIRE 

À la lumière des résultats obtenus, certaines recommandations peuvent être formulées afin 

d'orienter des recherches complémentaires en laboratoire. 

Tout d'abord, il serait important d'évaluer la performance du biofiltre pour un afnuent 

comprenant un mélange de BTEX et d'essence. La cinétique d'enlèvement de chacun des 

composés ainsi que la cinétique globale de biodégradation des polluants pourraient ainsi 

ëtre évaluées. Les interactions entre les différents composes pourraient aussi Etre 

étudiées. Cette série d'expériences devrait être réalisée sous conditions aérobies et 

anaérobies dénitrifiantes. De plus, il serait intéressant d'étudier les micro-organismes 

présents dans la tourbe granulaire. Finalement, des essais avec d'autres types de polluants 

pourraient être réalisés. 

En second lieu, des essais devraient être réalisés à l'aide d'un biofiltre d'échelle pilote afin 

d'approcher les conditions retrouvées sur un terrain contaminé. Ce biofiltre devrait ètre 

muni de ports d'échantillonnage tout au long de la colonne afin de permettre une 

modélisation plus poussée de l'enlèvement du polluant. Ce bioiïitre pourrait comprendre 

deux sous-sections: une première opérant sous conditions aérobies et une deuxième 

opérant sous conditions anaérobies dénitrifiantes. 



7.3. RECOMMANDATTONS D'ESSAIS SUR LE TERRAIN 

Compte tenu des résultats obtenus au cours de cette étude, il est possible d'entrevoir une 

mise a I'échelie et une application sur ie terrain de la biofiltration in situ sur tourbe 

granulaire sans complication majeure. PIusieurs dternatives sont possibles pour la mise en 

place du système. 

Tout d'abord, il est possible de mettre en place un système conformément a La 

configuration de l'entonnoir-barrière présentée à la figure 1.1 où deux palplanches dirigent 

l'écoulement de l'eau contaminée vers le biofïltre in sztu. Le systeme qui en résuIterait 

serait passif et autosufisant. Toutefois, l'installation de palplanches dans les sols est très 

coûteuse ce qui limite l'application d'un tel système. 

Une deuxième alternative réside dans L'utilisation du système Ecoflo développé par 

Premier Tech et iüustre à la figure 7. i .  Ce système consiste en un caisson en fibre de 

verre contenant un lit filtrant teiie la tourbe granulaire. Ce filtre, opérant en mode de 

percolation, est généralement utilisé afin d'épurer des eaux usées ayant été préalablement 

traitées dans une fosse se~tique. 

Les eaux souterraines contaminées pourraient être acheminées vers le système Ecoflo à 

l'aide d'un système de pompage. Le système de distribution permettrait ensuite de 

répartir les eaux contaminées sur toute la surface filtrante. Les eaux traitées pourraient 



ensuite être évacuées par Ia partie inférieure du caisson pour ensuite être infiltrées dans le 

sol. 

Figure 7.1 Configuration du système Ecoflo (fourni par Premier Tech 1996) 

Findement, iI serait possibk de mettre en place un puits de pompage traditionnel dont la 

batse serait entourée d'une saine contenant Se la tourbe grnuiaire. Ce principe est illustre 

i la figre 7.7. Le passage des eaux contaminées serait ainsi forcé a travers le milieu 

filtrant et les eaux traitées issues du puits pourraient ètre réinjectees dans la nappe. 



Figure 7.2 Configuration du puits de pompage entouré d'une gaine de milieu fitrant 

Cette technologie constitue une alternative simple et un peu plus coûteuse au procédé de 

biosltration in situ conventionnel réalisé par entonnoir-barrière. 
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Annexe 1 : Cinétique de biodégradation du toluène sous conditions aérobies 

Temps de 
résidence 

Ctoluène entrée 1 Ctoluène sortie Coxygène entrée Coxygène sortie 

Ctoluene entrée I ZenC," I Ctoluène sortie Coxygène entrée Coxygène sortie 



Annexe 2 : Stabilité du biofitre à long terme 

Temps Coxygène entrée Ctoluène entrée Coxygène sortie CtoIuène sortie 
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Annexe 3 : Cinétique de biodégradation du toluène sous conditions anaérobies 

dénitrifiantes 

Temps de 
résidence 

Ctoluène entrée C NO;- sortie 

1 

Ctoluene sortie C NO3- entrée 
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