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Résumé

Cette thése est consacrée au développement d'une méthode d’éléments finis
adaptative pour la résolution des écoulements turbulents.  Une méthodologie
précédemment €laborée pour les écoulements laminaires est généralisée afin de simuler

les écoulements turbulents a I’aide d’un modéle a deux-équations k-e.

La méthodologie adaptative utilisée est composée d’une étape de résolution,
d’estimation d’erreur et de remaillage adaptatif. La résolution est effectuée a I'aide
d’une méthode d’éléments finis sur des maillages non-structurés. La solution obtenue
est analysée afin d’évaluer sa précision et de détecter les régions entachées d’erreur.
Cette distribution d’erreur est ensuite utilisée pour engendrer un nouveau maillage qui

permettra d’obtenir une solution améliorée.

Les écoulements turbulents sont difficile & simuler méme a [’aide des hypothéses
simplificatrices introduites par les modéles de turbulence. La nature des équations et
leur fort couplage font en sorte que le syst¢éme d'équations est difficile a résoudre
numériquement. La solution présente des variations trés rapides, de grandes régions ot
le niveau de turbulence est trés faible et méme des quasi-singularités dues a la
géométrie. De plus, les variables de turbulence doivent demeurer strictement positives
sinon il devient impossible d’obtenir la solution numérique. Dans ce contexte on fait
souvent appel a4 des techniques de stabilisation numérique. Les méthodes de
différentiation amont et les procédures de ’clipping’ qui ont pour rdle de diminuer les

oscillations et de préserver la positivité de la solution, en sont des exemples.
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Dans la littérature on retrouve une grande variabilité dans les prédictions
numériques. Assez souvent des calculs réalisés avec les mémes modeéles et techniques
numériques conduisent a des résultats présentant des différences non négligeables. On
se pose alors tout naturellement la question a savoir si le modéle de turbulence employé

est vraiment responsable des résultats décevants ou bien si c’est plutdt le calcul

numérique lui méme qui en est responsable.

L’objectif principal de cette recherche a été de développer une procédure
permettant d’obtenir de solutions numeériques précises aux équations différentielles qui
régissent les écoulement turbulents. Dans ce sens on a développé une formulation de
résolution, une méthodologie adaptative et des techniques d’estimation d’erreur afin de

contrdler et diminuer !’incertitude numérique.

L’estimation d’erreur est basée sur des techniques de projection au sens des
moindres carrés des dérivées. On explore ici les différentes versions qui font appel a
des projections globales ou locales. L’approche retenue fonctionne bien pour une vaste
gamme d’écoulements de la mécanique des fluides, qu’ils soient laminaires, avec
transfert de chaleur ou bien turbulents. L’estimateur d’erreur analyse la solution en
regardant comment se comportent les dérivées des différentes variables. On s’attend
donc a ce qu'il réagisse non seulement aux régions ou la physique du probléme fait en
sorte que les variations des variables sont rapides, mais en général aux endroits ou le
résoluteur éprouve de la difficulté a bien décrire la solution. Une mauvaise solution du
point de vue de [’estimation d’erreur peut étre due & une discrétisation inappropriée des
équations ou bien a I’utilisation de procédure de ’clipping’. On peut alors se trouver
dans une situation ol la procédure adaptative concentre les points du maillage dans les
régions ou le résoluteur manifeste de faiblesses, plutét que 12 ou le probléme le nécessite

vraimeant.

Pour assurer la robustesse de la méthode de résolution et de I’algorithme



viil
adaptatif on propose une nouvelle approche qui garantit Ia positivité de la solution pour
les écoulements turbulents. La méthode est basée sur un changement de variables
dépendantes, qui respecte la physique de I’écoulement. Les équations de transport pour
les variables de turbulence n’ont plus k et e comme inconnues mais plutdt leurs
logarithmes naturels, K=In(k) et E=In(e). On notera que le modéle de turbulence et
la formulation du probléme demeurent inchangés. La procédure garantie que les
variables de turbulence k et e sont strictement positives car elles sont calculées en
prenant !’exponentielle des variables de calcul (K et E). Cette approche améliore
grandement la solution et cela surtout dans les régions de forts gradients et dans celles
ou le niveau de turbulence est faible (zones d’eau morte). La solution devient plus
réguliere. Cela permet d’utiliser des maillages plus grossiers et de tirer pleinement
profit de I’algorithme adaptatif. L’approche est générale et est aussi applicable a
d’autres méthodes de calcul numérique, comme les différences finies ou les volumes
finis. Elle conduit & des économies appréciables de temps de calcul et pourrait donc

devenir trés utile lors de la simulation d’écoulements tridimensionnels.

Une autre source d’erreur peut résider dans I'utilisation de techniques de
différentiation amont. Ces méthodes présentent I’avantage de diminuer les oscillations
de la solution, mais elles peuvent fausser la solution car les formes variationnelles
utilisées peuvent ne pas €tre consistantes. On compare ici la méthode de différentiation
amont basée sur le concept de viscosité artificielle & des méthodes de stabilisation

résiduelles pour lesquelles ia solution exacte est solution du probléme variationnel.

La méthode de résolution en variables logarithmiques et la méthodologie
adaptative sont validées en résolvant des problémes possédant une solution analytique.
Ceci permet d’analyser les différentes méthodes de résolution en comparant leur solution
a la solution exacte. Ceci permet aussi de comparer I’estimateur d’erreur a I'erreur

exacte et d’étudier les distributions de I’erreur et de son estimation.
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Finalement la méthodologie est appliquée a des problémes d’intérét pratique et

les prédictions numériques sont comparées aux mesures expérimentales et a d’autres
calculs. On traite ici d’écoulements libres tels les couches cisaillées et les jets,
I’écoulement classique sur une marche descendante, ainsi que 1’écoulement autour d’un
profil NACA 0012. La procédure proposée se montre robuste et fiable, permettant la

résolution de problémes difficiles de fagon précise et économique.



Abstract

This thesis presents an adaptive finite element method for solving complex
turbulent flows. A method previously developed for two-dimensional laminar flows has

been generalized to turbulent flows modeled by a k—¢ model of turbulence.

The adaptive scheme is composed of the solver, the error estimation module and
the remeshing procedure. Solutions are obtained in primitive variables using a mixed
finite element method on unstructured grids. The solution is analyzed to determine

where the error is important and then a new mesh is generated to improve the solution.

The complex nature of turbulent flows makes them difficult to simulate even
when turbulence models are used. The solution is complex and described by a large
number of dependent variables. The strong coupling of equations makes the system
difficult to solve numerically. Solutions are characterized by strong gradients, large
regions of low level of turbulence and even quasi-singularities due to the geometry.
Furthermore, for two-equations turbulence models it is of critical importance that the
turbulence variables always remain positive throughout the computational domain. So,
to solve such problems, numerical stabilisation methods such as upwind techniques or
clipping are usually invoked. This reduces oscillations in the solution and preserves

positivity of turbulence variables.

Numerical solution presented in the literature are characterized by a large level

of uncertainty and variability. For instance two numerical computations using the same
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hypotheses and numerical algorithm may yield sensibly different resuits. This gives rise
to the following question: What is the cause for such possibly bad results in turbulent

Sflow computations? It is the turbulence model its self or it is the solution procedure?

In this research the main objective was to construct an adaptive solution
procedure capable to producing accurate solutions to the differential equations governing
turbulent flows. In this sense we have incorporated a k-¢ turbulence model in our
finite element code and used adaptive remeshing in order to control the numerical

accuracy.

The error is estimated by using a least-squares projection of derivatives in the
space of the finite element interpolation functions. Both global and local projection
approaches are investigated here. The local projection method, which is retained in the
end, is a general one and works for laminar flows, for heat transfer cases and for
turbulent flows. In this approach continuity of the gradients of the solution is the key
factor which determines the adaptive process. The mesh will be refined everywhere the
solution is not sufficiently accurate. This may be due in part to the physics of the
problem, but also to the use of numerical stabilization techniques such as upwinding and
clipping which locally affect the solution. In the last case the adaptive procedure may
be driven by the inability of the solver to produce a smooth solution rather than by the

flow physics.

A key difficulty in turbulent flow computations is preserving the positivity of
turbulence variables. One way of achieving this, without changing the solution, consists
in solving for their logarithms. This can be viewed as a change of dependent variables,
K=lIn(k), E=In(e). This approach is consistent with the behavior of turbulence
variables and requires no changes in turbulence model. Moreover, it may be applied
to any two-equations turbulence model, and solved for using any numerical scheme, be

it a finite difference, a finite volume or a finite element method. The eddy viscosity,
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k and e are now obtained as the exponential of the computational dependent variables
and will always be positive. This approach result in improved accuracy in regions of

rapid variation of turbulence fields as well as in regions of low turbulence level. The

solution becomes smooth and so it can fully benefit from the adaptive procedure.

Upwinding is frequently used to achieve an oscillation free solution. Such
methods may also be a source of error because they may give rise to inconsistent
variational problems. In this work, classical upwinding techniques based on the concept

of artificial viscosity will be compared with residual stabilisation methods.

The solution algorithm which makes use of logarithmic variables and the adaptive
methodology is validated on a shear layer flow for which an analytical solution is
available. This provides a framework for rigorous comparison and validation of the
various possibilities. This also permits comparison between the estimated error and the

true error and validation of the error estimation technique.

The methodology is then used to solve turbulent flows of practical interest for
which experimental measurements are available: turbulent free shear layers, turbulent
jets, flow over a backward facing step and flow over a NACAQ012 airfoil. The

proposed procedure is robust and provides accurate solutions to turbulent flows.
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Introduction

Les fondements physiques des phénoménes naturels tels que 1’écoulement des
fluides, le transfert de chaleur, la déformation des structures et la formulation
mathématique qui permet leur modélisation datent de plusieurs dizaines ou méme
centaines d’années. Les équations qui régissent I'écoulement des fluides visqueux
newtoniens ont été déduites sous différentes formes par Navier (1827), Poisson (1831),
Saint-Venant (1843) et Stokes (1845) [1]. Bernoulli (1730) 2 méme donné bien
auparavant une forme globale des équations de mouvement pour les fluides non-
visqueux. Plus tard, Boussinesq (1872) 2] a expliqué le mouvement chaotique des

particules qui se déplacent & grande vitesse en présence des faibles forces de friction.

L’écoulement turbulent est un phénoméne complexe, non-stationnaire et
entiérement tridimensionnel. En 1883 Reynolds [3] étudia expérimentalement les
écoulements turbulents a ['intérieur des conduites et proposa de décomposer le
mouvement dans une partic moyenne qui est décrite par les valeurs moyennes en temps
des variables et une partie fluctuante qui caractérise les fluctuations par rapport a
I’écoulement moyen. Les équations qui décrivent le mouvement moyen des particules,
qu’on appelle équations de Reynolds [2,4,5], font apparaitre des corrélations entre les
fluctuations turbulentes. Le systéme d’équations devient alors non-déterminé car il
contient plus d’inconnues que d’équations et des hypothéses supplémentaires doivent étre
invoquées afin de fermer le systéme d’équations. Plusieurs techniques de fermeture ont
été formulées, telles les modéles de turbulence algébriques, les modéles avec équations

de transport ou les modéles de fermeture au second ordre. Ence moment il n’existe pas
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un modéle complet, capable donc de prédire les caractéristiques de 1’écoulement pour
n’importe quelle configuration rencontrée en pratique. Tous les modeles se réduisent
a la résolution d’un systéme d’équations différentielles et éventuellement algébriques et

le défi est donc d’obtenir une solution numérique des plus précises a ces équations.

Les questions qui se posent toujours lorsqu’on obtient une solution numérique
sont: La solution numérique est-elle correcte? Si oui: Quelle est sa précision? ou encore
Quel-est I'écart entre la solution numérique et la solution exacte des équations? Ce sont
des questions aux-quelles les numériciens ont dii répondre et qui sont a ['origine de
I’apparition des techniques d’estimation d’erreur. Lorsqu’on se propose d’obtenir une
solution numérique précise ou encore la plus précise possible pour une ressource
informatique donnée, on arrive a la nécessité d'adapter la discrétisation numérique au
probléme a résoudre. L’ensemble formé par I'estimation d’erreur et la technique de
rédiscrétisation est appelé méthode adaptative. Le but d’une telle méthode est d’obtenir
une solution numérique de précision préétablie. Parmi les premiers travaux sur les
méthodes adaptatives on peut noter ceux de Babuska et Rheinboldt [6] et de Zienkiewicz

et Zhu [7] qui traitent des problémes elliptiques.

Dans ce travail on se propose de résoudre dans un contexie adaptatif des
écoulements turbulents complexes. La solution du probléme est décrite par plusieurs
variables telles que la vitesse, la pression ou la température, auxquelles peuvent s’ajouter
les variables reliées a la modélisation de la turbulence. L’estimation de I'erreur doit
donc refléter le role que joue chacune de ces variables sur la précision globale de la
solution, afin de piloter correctement le processus adaptatif. Les étapes de résolution,
d’estimation d’erreur et d’adaptation seront analysées pour assurer la robustesse et la
fiabilité de I’algorithme adaptatif.

La résolution est développée pour une méthode d’éléments finis sur des maillages

non-structurés initialement utilisée pour les écoulements laminaires incompressibles
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[8,9]. La turbulence est modélisée i I'aide d’un modéle k-e¢ i deux équations de
transport propos€ par Launder et Spalding [10], couplée avec une loi de paroi pour
représenter les régions prés de parois solides. Pour cette classe de problémes la
méthode de Galerkin classique peut conduire a des solutions entachée d’oscillations. Par
conséquent nous ferons appel a des techniques de stabilisation de type SU (Streamline
Upwind), SUPG (Streamline Upwind Petrov-Galerkin) et GLS (Galerkin Least Squares)

pour controler les oscillations.

L’estimation d’erreur est réalisée a I'aide d’une méthode de projection utilisée
avec succés pour des écoulements incompressibles avec transfert de chaleur.
L’approche, initialement proposée par Zhu et Zienkiewicz [7], utilise un post-traitement
des dérivées de la solution par éléments finis pour évaluer les erreurs d’interpolation.
Essentiellement, la méthode consiste & approximer les dérivées de la solution exacte a
l'aide d’une projection des dérivées éléments finis sur [’espace des fonctions
d’interpolation utilisées pour les variables primaires. Une technique de projection
globale, déja utilisée avec succés pour les écoulements laminaires incompressibles, sera
employée dans le cas des écoulements turbulents. D’autres méthodes, basées sur des
projections locales, seront aussi analysées dans le cas des écoulements d’intérét.
L’erreur calculée par ’estimateur d’erreur est ensuite utilisée pour prédire la distribution
de taille du prochain maillage qui devrait produire une solution plus précise. Le
nouveau maillage est construit dans le but d’étre optimal, c’est & dire qu’il devra
minimiser I’erreur globale de la solution pour un nombre de degrés de liberté fixe. On
y parvient en imposant que !’erreur soit uniformément distribuée dans tout le domaine

et en tenant compte du taux de convergence a priori de 1’élément.

L’analyse de I’erreur nous permet de poursuivre le processus adaptatif. Elle nous
permet aussi de porter un jugement critique tant sur la qualité de la solution que celle
du résoluteur. Il est évident que pour tirer le meilleur parti de I’algorithme adaptatif il

faut non seulement ajuster constamment la discrétisation  la solution, mais il faut en
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plus s'assurer que chaque module (résoluteur, estimation d’erreur et remaillage)
fonctionne 4 sa pleine capacité. Dans ce sens on va proposer une nouvelle approche de
résolution qui fait appel & un changement de variables dépendantes pour les équations
modélisant la turbulence. Cette méthode qu’on appéle 'résolution em variables
logarithmiques’ apporte des améliorations considérables a la qualité de la solution et

confere une robustesse accrue au résoluteur et a 1’algorithme adaptatif.

La méthodologie est validée sur des problémes artificiels possédant une solution
analytique. De cette fagon, la solution numérique et I’estimation d’erreur pourront étre
comparées a la solution et a 'erreur exactes. Cela nous permet d’évaluer d’une part les
performances du résoluteur et d’autre part de quantifier la fidélité de l'estimation
d’erreur et I’amélioration de la solution due a I’adaptativité. Finalement, [’algorithme
adaptatif est appliqué a la résolution de problémes d’intérét pratique pour lesquels les

prédictions numériques sont comparées a des mesures expérimentales.



Chapitre 1
Etude bibliographique critique

1.1 La méthode des éléments finis en mécanique
des fluides

La méthode des éléments finis est une technique numérique maintenant largement
utilisée pour la résolution de problémes d’élasticité, de mécanique des fluides,
d’aérodynamique et d'électricité. Les concepts initiaux de la méthode ont été introduits
en 1956 par Turner et al. [13] pour des problémes de structures. La méthode a été
reformulée en 1965 par Zienkiewicz et Holister {14], comme une méthode de résidus
pondérés. Depuis 1967 plusieurs livres sur la méthode des éléments finis ont été
publiés, on mentionne en particulier ceux de Zienkiewicz [15] et de Oden et Reddy [16].
Pendant les années '70 la méthode a été repensée comme une méthode générale pour
résoudre les systemes d’équations aux dérivées partielles. Son domaine d’applicabilité
s'est €largi pour englober aussi les problémes de la mécanique des fluides, de
’aérodynamique et de la thermodynamique. Les premiéres applications aux équations
de Navier-Stokes sont celles de Oden {17], Baker [18], Taylor et Hood {19].

La premiére étape dans |’application de la méthode des éléments finis est

constituée, comme pour toute autre méthode de résolution numérique, par la
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discrétisation du domaine. Le domaine est décomposé en éléments & I’intérieur desquels
les variables sont représentées a I’aide des fonctions d’interpolation ou de forme. De
cette facon la solution en tout point est déterminée par les valeurs nodales et les
fonctions de forme. La méthode des éléments finis considére ensuite la forme intégrale
des équations, que ['on obtient en multipliant les équations différentielles par des
fonctions test et en intégrant sur le domaine de calcul. Les équations sont construites

pour chaque élément et assemblées dans le systéme global.

Pour illustrer I’application de la méthode considérons [’équation suivante:

L) - f b

ol u est la variable a déterminer, &£ est un opérateur différentiel et f une fonction

donnée, qui dépend de la position a I’intérieur du domaine.

Le probléme discret considére # comme étant représentée par:
u = f': uN (1.2)
& 5T

ot N, est le nombre de points utilisés dans la discrétisation, «; sont les valeurs de « a
ces points, et N; les fonctions d’interpolation associées aux noeuds. On voit que la
solution est entirement définie par ses valeurs nodales et par les fonctions
d’interpolation. Pourtant le choix de la décomposition du domaine en éléments et des
fonctions de forme est arbitraire. Par conséquent la solution numérique n’est pas
unique, contrairement a la solution exacte de I’équation qui elle est unique. L’équation

différentielle (1.1) s’écrit maintenant sous la forme suivante:

Nr

sz(jz'; uN) = f (1.3)

et elle a comme inconnues les valeurs nodales u; de la variable 4 a déterminer.

Un point qui différencie la méthode des éléments finis des autres techniques de

résolution numérique réside dans la facon dont on impose que I’équation (1.3) soit
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satisfaite. Premiérement on peut noter, en général, que 1’équation ne peut pas étre

vérifiée en tout point car on dispose d’un nombre fini d’inconnues. On choisit alors de

multiplier I’équation par des fonctions test W, et de les intégrer sur le domaine de calcul.

Pour que le probléme soit bien posé il faut que le nombre de fonctions test soit égal aux

nombre d’inconnues. On choisit alors une fonction test pour chaque noeud et on obtient
le systéme algébrique suivant:

Np

Lx(g uN) W,dQ = \[fWidﬂ . i=1,2,..N, (1.4)

Le choix des fonctions test conduit a la méthode de Galerkin (ou Bubnov-

Galerkin) lorsqu’elles sont identiques aux fonctions de forme, ou & celle de Petrov-

Galerkin si elles différent de celles-ci.

Pour simplifier cette illustration considérons que 1'opérateur £ est linéaire.

L’équation (1.4) peut alors s’écrire sous la forme suivante:

N,
j;l [‘[2(1\6)“’,[19] u = l;fﬁfl.dﬂ , i=l’2"-~va (1.5)

Sous forme matricielle cela revient au systéme
A;u, = b, (1.6)
ou les coefficients 4; et b, sont donnés par:
A, = \[ L(N)W,da

(1.7)
b, = ‘[fW.-dﬂ

Les intégrales sont ensuite écrites comme une somme d’intégrales sur tous les éléments.
Une fois les intégrales élémentaires calculées, les termes obtenus sont assemblés dans
le systtme global. La résolution du systtme permettra ensuite de déterminer les

inconnues nodales u;.

A ce point-ci regardons briévement quelles sont les sources d’erreur propres a
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cette méthode de calcul. Premi€rement, on remarque que [a solution exacte posséde un
nombre infini de degrés de liberté, tandis que la solution discréte n’est représentée que
par un nombre fini de degrés de liberté. Une premiére approximation est donc
introduite par la représentation discréte de la solution. C’est I’erreur de discrétisation.
Elle dépend de la décomposition du domaine en éléments et aussi du choix des fonctions
d’interpolation. A priori plus le nombre de points (ou d’éléments) est grand et plus les
fonctions de forme sont riches, plus la solution est précise. De plus, certaines
discrétisations conduisent a des solutions plus précises que d’autres car elles peuvent étre
mieux adaptées au particularités du probléme a résoudre. D’autre part, I’équation
discréte (1.3) n’est pas vérifiée en tout point par la solution numérique, elle est plutot

satisfaite dans un sens moyen ou pondéré dépendant du choix des fonctions test.

1.2 Modélisation de la turbulence
1.2.1 Considérations générales

Dans la plupart des applications industrielles d’intérét, 1’écoulement des fluides
est turbulent. Méme les phénoménes physiques les plus simpies, comme le vent ou

I’écoulement de 1’eau dans une riviére, sont des écoulements turbulents.

A ce point-ci, il est universellement accepté que les équations de Navier-Stokes
3-D en régime transitoire modélisent correctement 1’écoulement laminaire et turbulent
des fluides. Cependant, pour les écoulements turbulents, I’échelle de longueur qui
caractérise les phénoménes de création et de dissipation turbulente est plusieurs ordres
de grandeur plus petite que la dimension caractéristique du probléme. Par conséquent,
un maillage suffisamment fin, pour représenter les petites échelles des écoulements
turbulents aurait un nombre prohibitif de points méme pour les applications les plus

simples. En pratique, pour décrire de tels écoulements, au lieu d’utiliser les variables
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instantanées, on utilise les variables moyennes [2,4]. Dans ce sens, une approche
statistique est utilisée pour décomposer la vitesse, la pression et toute variable scalaire

dans une partie moyenne et une partie fluctuante [20]:

/

u=u+u
p =E+p/ (1-8)
T=T+T

ol x dénote une valeur moyenne et x’ dénote la fluctuation par rapport a la valeur
moyenne. Ceci conduit aux équations moyennes de Reynolds modélisant |'écoulement

moyen:

Equation de continuité

% +V-(pE) = 0 (1.9)
Equation de mouvement
p%%-*p(E-V)E - -Vp+V.7,+V-R, (1.10)
Equation d’énergie
pcp%:z*pcp(ﬂ-V)T=(E~V)ﬁ+V-q+V-qT+qs (1.11)

[ci 7, représente le tenseur de contraintes

T. = _— 2
i~ H dx; ox,

R; est le tenseur de Reynolds, donné par

du, 35,-] (1.12)

R, = ~pul & (1.13)
q est le flux de chaleur ¢ =kVT, et g, est un flux de chaleur du a la dissipation

turbulente ¢, = -pc,u T.

On voit que dans ces équations, a part les valeurs moyennes, on a aussi comme
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inconnues des corrélations entre les fluctuations turbulentes W et u, T’ . Ecrire les
équations de transport pour ces variables additionnelles, engendre 1’apparition de
nouvelles inconnues de plus en plus difficiles & interpréter. On est en présence d’un
probléme de fermeture car on a plus d’inconnues que d’équations. Les modeles de
turbulence se proposent de décrire le tenseur de Reynolds afin de fermer le systéme

d’équations.

1.2.2 Modéles de turbulence

Une premiére approche date de 1877 et est due 4 Bousssinesq [2] qui a proposé

pour le tenseur de Reynolds la méme forme que celle du tenseur de contraintes:

7 2
-pU; Uy = ;AT(Vu-*VuT)—gpké,.j (1.14)

Il suppose donc que les contraintes turbulentes sont proportionnelles aux vitesses de
déformation et introduit la notion de viscosité turbulente, u., et d’énergie cinétique de
la turbulence k. L’énergie cinétique de Ia turbulence est définie comme la moitié de la
trace du tenseur de corrélations turbulentes, ;,T

k=t = Lamam e (1.15)

2

N

La viscosité turbulente n’est pas une propriété du fluide, mais plutdt une variable qui
dépend de I'écoulement, du niveau de turbulence et qui varie & ['intérieur de
I’écoulement. La plupart des modéles de turbulence sont construits avec I’hypothése de

Boussinesq comme point de départ et se proposent de modéliser la viscosité turbulente.

En général les modéles de turbulence sont classifiés d’aprés le nombre
d’équations différentielles a résoudre en plus des équations de I’écoulement moyen. On
retrouve alors des modeéles algébriques ou a zéro-équation, a une équation, deux-

équations et des modéles du second ordre. Les trois premiéres classes de modeles se
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basent souvent sur I’hypothése de Boussinesq pour modéliser le tenseur de Reynolds.

Les modéles a zéro-équation n’utilisent aucune équation différentielle
additionnelle pour représenter les effets reliés a la turbulence. Ils utilisent plutdt des
relations algébriques pour définir le tenseur de Reynolds. Un premier modéle de ce type
a été proposé en 1925 par Prandtl [21] qui introduisit la notion de longueur de mélange.
Initialement la longueur de mélange était une grandeur fixée. Elle était déterminée pour
différentes classes de problémes a partir de données expérimentales. Van Driest [22]
construisit des fonctions d’amortissement pour ajuster la longueur de mélange prés de
parois solides afin de mieux approcher le comportement asymptotique des variables dans
ces régions. Parmi les modéles & zéro-équation plus récents on peut noter celui de
Cebeci et Smith [23] pour la couche limite turbulente et de Baldwin et Lomax [24] pour

les équations de Navier-Stokes.

La plupart des modéles a une équation utilisent 1'équation de transport de
I’énergie cinétique de la turbulence comme équation différentielle additionnelle, couplée
avec une hypothése supplémentaire pour déterminer l'échelle de longueur de la
turbulence. Un premier modéle i une équation, proposé par Prandtl [25] en 1945
suppose Gue la longueur de mélange est déterminée a priori. On peut noter aussi dans
cette classe les modéles de Bradshaw, Ferris et Atwell [26], de Baldwin et Barth [27]
et de Spalart et Allmaras [28]. Ces deux derniers utilisent la viscosité turbulente comme
variable dépendante en développant des équations de transport pour le nombre de

Reynolds associé a la viscosité turbulente.

Les modéles a4 deux équations utilisent, pour évaluer la viscosité turbulente,
I’équation de transport de ['énergie cinétique de la turbulence k, et une deuxiéme
équation de transport qui sert 3 déterminer 1’échelle de longueur de la turbulence.
Kolmogorov [29] proposa en 1942 un premier modéle de ce type qui utilise les équations

pour k et w, ol w est le taux de dissipation spécifique d’énergie turbulente:
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3
- 1.16
YT Tk (1.16)

ol C_ est une constante et e est le taux de dissipation de I'énergie cinétique de la

turbulence défini par:

EYACYRA
-, o du (1.17)

dx, dx,

~ Alors la viscosité turbulente est donnée par
=k (1.18)
w
et I’échelle de longueur par
[~ k2 (1.19)
w

On peut remarquer que w a les unités d’une fréquence et on I’appele aussi fréquence

turbulente. Le modéle k-w a été ensuite développé par Saffman [30] et Wilcox [31].

Chou [32] a utilisé pour la premiére fois I’équation de transport du taux de
dissipation de |’énergie cinétique de la turbulence. Le modéle k-¢ a été ensuite
développé et modifié par Harlow et Nakayama [33] et par Launder et Spalding [34].

L’échelle de longueur dans ce cas est définie par

- K2 (1.20)

€
et la viscosité turbulente dépend de k et e par:

b = pC K (1.21)
€
Un autre modeéle a deux équations, qui utilise cette fois I’équation de transport
pour le temps caractéristique de la turbulence 7, a été introduit par Zeierman et
Wolfshtein [35] et modifié par Speziale et al. {36]. On défini 7 par:

k i
=N = 1.22
T - =T ( )

B’
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et alors on a:
By = pkT (1.23)

[~ g2, (1.24)

Les modeles de turbulence du second ordre utilisent des équations de transport
additionnelles pour évaluer les composantes du tenseur de Reynolds. Parmi ces modéles
on peut noter ceux de Rotta [37], de Launder et al. [38], Speziale [39], et Reynolds
[40]. Le développement des équations de transport pour les composantes du tenseur de
Reynolds permet d’incorporer certains effets, comme ceux dus & la courbure des lignes
de courant ou ceux causés par les forces d’Archiméde, qui sont difficiles & incorporer
dans les modéles plus simples. Une revue des modéles de turbulence au second ordre

et de leurs applications est présentée par Launder [41].

1.2.3 Le modéle k-¢

Les modeles a deux équations se différencient par le choix de la variable utilisée
pour définir ['échelle de longueur et par la présence des certains termes sources
spécifiques. On présente ici le modéle k-¢. tel que décrit par Launder et Spalding

[10], qui est le plus utilisé.

La viscosité turbulente est définie en fonction de l’énergie cinétique de la

turbulence %, et de son taux de dissipation ¢, par:

2
Br = pC,‘%- (1.25)

Les équations de transport pour & et € sont:

oY)k = V- [u+E1)Vk] + u P(u) - pe (1.26)

g,
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p(u-V)e = V- [(p+%f)ve] + Cl%uTP(u) - Czpil:- (1.27)

ot P(u) = Vu:(Vu+VuT).

Les constantes proposées par Launder et Spalding [10] sont données dans le

tableau suivant:

c

B

Cl

CZ

O

0.09

1.44

1.92

1.0

1.3

Dans ce modele, le comportement du taux de dissipation ¢ n’est pas valide prés
d’une paroi. Le modele est souvent appelé modéle k-e pour les grands nombres de
Reynolds, car il ne représente pas correctement [’écoulement a proximité d'une paroi
solide. Plusieurs corrections ont été proposées pour corriger ce défaut et consistent a
introduire des fonctions additionnelles d’amortissement dont le role est de produire le
bon comportement prés de la paroi. Les différentes versions du modéle k-e a bas
nombre de Reynolds sont passées en revue et évaluées par Patel et al.[42] et par Miner
et al.[43].

1.2.4 Loi de paroi

Pour palier aux inconvénients générés par le fait que le modéle k-e¢ standard
n’est pas valide pour les écoulements a bas nombre de Reynolds, on utilise prés des
parois des fonctions qui représentent correctement le comportement des variables dans

ces régions.

Launder et Spalding [10] ont proposé une loi de paroi qui comporte deux régions

définies comme suit:
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u> =y si y* <y’
. 1 - . +* * (1-28)
u = _Eln(Ey ) sty =y,

Dans la premiére région, appelée sous-couche visqueuse, la viscosité turbulente est
négligeable par rapport a celle du fluide. La deuxiéme région est appelée zone
logarithmique et est caractérisée par un cisaillement constant. Ici K est la constante de
Kéarmén (K=0.42), E est un paramétre de rugosité et y, est une valeur déterminée de
facon 2 assurer la continuité du profil de vitesse défini par les deux expressions (1.28).

Elle est donc déterminée par 1’équation:

yo = Tl(ln(Ey;) (1.29)

Les variables adimensionnelles y* et u* sont définies par:

yo= 2P e B (1.30)
2 u,

ou la vitesse de frottement «#_dépend du cisaillement a la paroi 7, par:

172
[Tw] (1.31)
U = | —

L’'énergie cinétique de la turbulence et son taux de dissipation sont reliés a la vitesse de

frottement par:

k - € = (1.32)

Speziale propose une loi de paroi i trois couches donnée par:

ur =y’ si y*<5
u* = -3.05+5Iny"* si 5<y" <30 (1.33)

u* =55+25Iny* si 30<y"

ou les constantes sont calibrées pour une paroi lisse.
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Reichardt propose une loi de paroi constituée par une seule fonction qui décrit

le comportement dans la sous-couche visqueuse et dans la zone logarithmique:

u*=25In(1+0.4y")+7.8[1 -1 —{—;e‘o-”?'] (1.34)

Cette loi de paroi est utilisée dans les logiciels FIDAP [44] et N3S [45].

D’autres approches utilisent I’équation de transport pour & couplée & un modéle

de longueur de mélange pour déterminer la viscosité turbulente prés de paroi [46].

1.3 Méthodes adaptatives pour les écoulements
visqueux

1.3.1 Considérations générales

Au cours des derniéres années I'application des méthodes adaptatives 4 montré
leur efficacité et utilité sur des problémes des plus divers et complexes. La résolution
numeérique des équations différentielles nécessite leur discrétisation sur un maillage
représentant le domaine de calcul. Il est évident que la distribution des points du
maillage déterminera la précision de la solution numérique. Le maillage devrait étre
plus fin 13 ou la solution comporte des variations rapides. Par contre, de gros éléments
peuvent €tre utilisés dans les régions ol la solution varie peu. Dans la plus part des
applications il est trés difficile de déterminer & !’avance les zones ou les éléments
doivent étre concentrés et il est pratiquement impossible d’engendrer directement un
maillage qui soit optimal. Les méthodes adaptatives permettent d’atteindre cet objectif,
c’est a dire de produire un maillage sur lequel I'erreur est quasi-uniformément
distribuée. Un algorithme adaptatif cherche aussi a produire la meilleure solution pour
une capacité de calcul donnée. Finalement, I'estimation de I’erreur permet d’évaluer en

tout temps la qualité de la solution obtenue. A ces avantages on peut ajouter que, lors
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du processus adaptatif, la discrétisation du domaine se fait automatiquement, I’effort de

I’utilisateur s’en trouve donc réduit d’autant.

Les principales €tapes qui composent I’algorithme d’une méthode adaptative sont
la génération du maillage, la résolution, I’estimation de I’erreur et |’étape d’optimisation
du maillage. On s’attend a ce que l’estimateur d’erreur soit aussi général que le
résoluteur. I doit étre précis et capable de fournir toutes les informations dont le
module d’adaptativité a besoin. L’erreur estimée doit étre une bonne indication de
'erreur exacte sur des maillages grossiers et elle doit converger vers celle-ci avec le

raffinement du maillage.

L’optimisation du maillage consiste dans la prédiction des caractéristiques de la
discrétisation optimale basée sur I’estimation de ['erreur. Dans cette étape la
discrétisation est améliorée en ajustant les valeurs des certains parameétres, comme la
taille £ du maillage, ou le degré p des fonctions d’interpolation. On distingue alors des
méthodes adaptatives de type £, qui sont basées sur des techniques de raffinement ou de
remaillage [47], des méthodes r qui procédent a une relocalisation des noeuds du
maillage existant [48], et des méthodes p basées sur I'enrichissement de I'espace des
fonctions de base [49]. Enfin on peut avoir des méthodes combinées dans lesquelles les

techniques précédentes sont utilisées ensemble.

1.3.2 Techniques d’estimation d’erreur

L’estimation d’erreur est une étape indispensable dans un algorithme adaptatif car
c’est elle qui détermine les caractéristiques du nouveau maillage qui devrait améliorer
la précision des calculs. Les techniques d’estimation d’erreur sont en général basées sur
une reconstruction de la solution ou de ses dérivées, qu'on dénotent par U. En suivant

les suggestions de Babuska et Rodriguez [S0] on sépare les différentes méthodes de
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construction de U, dans les classes suivantes:

- techniques de construction globale;
- techniques de construction locale;

- techniques de construction semi-locale.

D’autre part on distingue des constructions générales de U basées seulement sur
les informations fournies par la solution, et des constructions de U qui utilisent en plus

des informations tirées de 1’équation différentielle a résoudre.

Héw [8] a passé en revue plusieurs techniques d’estimation de !’erreur a
posteriori: les méthodes d’interpolation, de post-traitement par projection, de résolution
de problémes locaux, de résidus élémentaires et d’approximation interne-externe. Les
méthodes d’interpolation sont basées sur |'évaluation des termes d’ordre supérieur qui
ont été négligés par les fonctions de base. On note ici les formules d’extraction
développées par Babuska [S1] qui permettent le calcul des dérivées secondes. La
méthode de projection a été introduite par Zienkiewicz et Zhu [7] et consiste dans une
projection au sens de moindres carrés des composantes du tenseur des contraintes. La
différence entre la solutiom projetée et la solution par éléments finis est alors utilisée
pour évaluer les erreurs. Dans les méthodes de résolution de problémes locaux la
solution exacte est écrite comme la somme de la solution éléments finis et de son erreur.
Cela permet d’obtenir un probléme variationnel sur chaque élément, dont les inconnues
sont les erreurs d’approximation [11,12]. La méthode a donné de bons résultats dans le
cas des écoulements laminaires incompressibles, et a été validée sur des problémes
possédant une solution analytique [52-56]. Pourtant, son comportement a été décevant
dans le cas des écoulements dominés par la convection [57]. Les méthodes de résidus
élémentaires sont une classe d’estimateurs apparue dans le développement des bornes
pour [’estimateur par résolution de problémes locaux. Ces estimateurs cherchent a

évaluer I’erreur en calculant une borne supérieure du résidu dans chaque élément [11].
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Pour plus de détails voir la référence [8].

A la lumiére des conclusions tirées dans [8] et [57], seulement les méthodes de

projection aux sens de moindres carrés ont retenu notre attention.

1.3.3 Estimation d’erreur par projection moindres carrés

Cette méthode consiste en un post-traitement des composantes du tenseur des
contraintes visqueuses. La solution éléments finis est caractérisée par un champ continu
de vitesse, mais par un champ discontinu des dérivées. Les composantes du tenseur de
contraintes visqueuses seront donc discontinues aux interfaces entre les éléments.
Toutefois, la solution exacte, étant une solution du probléme fort, sera caractérisée par
des valeurs continues des contraintes visqueuses. Une possibilité pour évaluer 1’erreur
est de comparer le champ de flux discontinu avec un champ continu qui approxime le

flux exact.

Zienkiewicz et Zhu [7] ont initialement proposé d’obtenir les flux continus a
[’aide d’une projection globale, au sens des moindres carrées, des flux brut dans I'espace
d’éléments finis employé pour calculer la solution:

N,
P34l (1-33)

nsl
ou N, est le nombre de degrés de liberté par élément, ¢, sont les fonctions de base, ~
dénote une solution continue et { -} dénote les valeurs nodales de la projection par

moindres carrés. La méthode revient a minimiser 1’intégrale

L (7,-7)%dQ (1.36)

pour chaque composante du tenseur de contraintes. On obtient alors le probléme

variationnel suivant
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) {L¢m(fh—?)dﬂ} =0 (1.37)
KET

qui conduit aux systéme d’équations

[,@, L¢m¢,dn] (7}, = {;T Lq&mrhdﬂ} (1.38)

Des analyses de l’estimateur par projection globale (ZZ-global) sont dues a
Ainsworth et al. [58], et 3 Zienkiewicz et al. [59]. La méthode a été appliquée aux
écoulements incompressibles et validée sur des problémes qui possédent des solutions
analytiques par le groupe de Polytechnique [52-56]. Les résultats obtenus ont montré que
méme si I’estimateur n’est pas rigoureux, il produit des bonnes estimations de I’erreur.
Strouboulis et Haque [60] ont fait remarquer le comportement décevant de la méthode
pour des solutions particuliéres de I'équation de Poisson et des fonctions de base de

degré pair.

Des méthodes améliorées pour la récupération des dérivées, basées sur des
projections locales sur des sous-domaines ou groupes d’éléments, ont été proposées par
Zienkiewicz et Zhu [61, 62]. Dans ce cas, les valeurs nodales des champs continus sont

déterminées a l’aide de constructions polynomiales sur les éléments entourant chaque

noeud:
= Pa (1.39)
Pour des polynomes de degré deux on a:
P =1[1,xyx%xyy?] (1.40)
a = [a,,a,,a,,4,4a,a]" (1.41)

Pour la méthode de projection locale [61], qu’on dénote ZZ-local, les coefficients g; sont
obtenus pour chaque composante du tenseur de contraintes en minimisant !’intégrale
suivante définie sur le groupe des éléments connectés au noeud:

1 (r,-7" )dQ (1.42)

s
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On obtient alors le systéme suivant:

IPTPdQS {a} = IPTrthS (1.43)

s s

Ici Qg représente le groupe d’éléments défini comme I'ensemble des éléments qui
contiennent le noeud considéré. Une fois déterminées les valeurs nodales des contraintes,
{7},, les champs continus sont construits comme pour la projection globale, c’est 4 dire
en interpolant {7} sur chaque élément en utilisant les fonctions d’interpolation du

champs de vitesses.

Une autre méthode de projection locale est la méthode de récupération locale
superconvergente. Zienkiewicz et Zhu [61,62] ont suggéré d’utiliser la propriété de
superconvergence des dérivées évaluées en certains points, appelés points optimaux,
pour améliorer [’estimation d’erreur. Cette méthode, qu’on dénote ZZ-SPR (ZZ -
Superconvergent Patch Recovery method) revient 2 une méthode de projection locale,
comme celle décrite précédemment, dans laquelle 1’intégrale @ minimiser est remplacée
par une forme discréte, utilisant uniquement les valeurs des dérivées aux points
optimaux. Le choix de points optimaux reste une question ouverte, car leur existence
est démontrée seulement pour certains éléments et des maillages bien particuliers
[61,63]. Pour les éléments quadratiques, Zienkiewicz et Zhu ont trouvé que les points
situés au milieu des c6tés semblent optimaux. Pour une équation de Poisson, des essais
numériques ont montré que les valeurs récupérées pour les dérivées nodales sont
superconvergentes dans le cas des éléments linéaires et cubiques et qu’elles ont une

convergence de I'ordre O(r*) (ultraconvergence) pour les éléments quadratiques [61].

La minimisation de

N!
Y (7, (y) -7 (X, 9) P (1.44)

i=1

ol Nj est le nombre des points optimaux dans un groupe d’éléments, conduit au systéme



suivant
N‘s NI
(Y PT(x,y)P(x,y)1{a} = {X PT(x,y)7,} (1.43)
i=l i=l
En résolvant ce systéme on obtient les coefficients a; du développement polynomial de
7° . Finalement, les contraintes continues sont construites comme pour |’estimateur par

projection locale.

Des modifications a la méthode de récupération locale des dérivées ont été
proposées par Wiberg et Abdulwahab [64] qui ont suggéré d’introduire dans la
projection moindres carrés des termes provenant de la minimisation du carré du résidu
de I’équation différentielle que ’on cherche a résoudre. Dans ce cas les coefficients g;
seront déterminés par moindre carré de la somme du résidu des flux et du résidu de
’équation différentielle. La fonctionnelle 3 minimiser est donc

I(a) = RTR + 1 BR.4R, dQ, (1.46)

s
ou R=7,-7" estle résidu des flux, R,, est le résidu de I’équation différentielle et 8 un
paramétre de pondération. La méthode donne de trés bons résultats, qui s’améliorent
lorsque des polyndmes de degré supérieur sont utilisés dans la construction locale de 7° .
Pourtant, dans la littérature on retrouve peu d’applications des techniques d’estimation
d’erreur par projection locale dans le cas équations de Navier-Stokes, et encore moins

pour les équations de transport avec propriétés variables et termes sources.



Chapitre 2

Modélisation du probléme

Dans ce travail on se propose d’employer une méthode d’éléments finis
adaptative pour résoudre les écoulements turbulents. La turbulence est modélisée a
I’aide du modele k£ -e¢ pour grands nombres de Reynolds avec une loi de paroi 4 deux
zones. Dans ce chapitre on présente briévement les équations du modéle k - ainsi que

la loi de paroi utilisée.

2.1 Equations différentielles

Les équations moyennes de Reynolds, qui modélisent les écoulements
stationnaires de fluides visqueux incompressibles en régime turbulent avec I'hypothése
de Boussinesq, s’écrivent

p(u-Viu=-Vp+V -[(p+p)(Vu+VuT)] «of
pc,(u-V)T=V -[(A+\)VT]+pgq, @.1)
V-u=0
ol u est le vecteur vitesse, p est la pression, T est la température, f représente une force
volumique et g, une source de chaleur. La viscosité turbulente, p,, et la conductivité

turbulente, A\, sont calculées a I’aide du modéle k ~¢ proposé par Launder et Spalding
(10]:
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k2

il 2.2)

A= Cobr .
Pr,

ou Pry est le nombre de Prandtl turbulent (pour la plupart des applications Pr,=1). Le
systtme est complété par les équations de transport de l'énergie cinétique de la

turbulence £, et de son taux de dissipation e [10]:

p(u-V)k:V- [[p{,i-ﬁ' Vk] +#TP(u) - pe 2.3)
Oy
7l 2
p(u-V)e=Vv- Hw?j Ve] « CpirPu) - Cop = 24

ol P(u)=Vu:(Vu+VuT).

Les constantes utilisées sont celles suggérées par Launder et Spalding [10] (voir
le chapitre 1.2.3).

2.2 Conditions aux frontiéres

Le modéle k-e a grands nombres de Reynolds tel qu'on utilise ici n’est pas
valide dans les régions prés de parois solides, 14 ou les effets dues a la viscosité du
fluide sont importantes. MéEme si des corrections ont été apportées au modele afin
d’améliorer son comportement dans ces régions, ['intégration des équations
différentielles jusqu’a la paroi nécessite un trés grand nombre de points. D’autre part
il est bien connu que, dans de nombreux cas, la loi logarithmique représente une bonne
approximation du profil de vitesses prés de paroi. On peut donc en tirer profit en
utilisant une loi de paroi plutot que de faire appel i une résolution trés couteuse sur le

domaine complet. L’approche consiste & considérer une frontiére fictive déplacée a une
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distance d par rapport a la paroi solide, comme illustré dans la figure 2.1. La région
contenue entre la frontiére fictive et la paroi solide n’est pas discrétisée, la solution dans

cette région étant donnée par la loi de paroi.

Ay

frontiére de calcul

Figure 2.1 Configuration de calcul avec loi de paroi

On se propose d’utiliser la loi de paroi & deux couches de Launder et Spalding
[10]:

u* =y si y* <y’
l - *
u* = — In(Ey’ sl y' =2y,
Kn(y) y y

Ici K est la constante de Kdrman (K=0.42), E est un paramétre de rugosité (E=9 pour

une paroi lisse), et y*, #* sont des variables adimensionnelles définies par:

y*= yplu, ’ ut= u (2.6)
U u,

avec y la distance par rapport 2 la paroi et «_la vitesse de frottement u_= (1, /p)"2.

Pour que le profil de vitesses soit continu la valeur y. doit satisfaire la relation:
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v = —Il(ln(Ey;) 2.7

La loi de Launder et Spalding est illustrée dans la figure 2.2.

11+¢

u+=yi‘; ; f -
' ue=1/K*In(Ey-)
10 107 100 ¥

Figure 2.2 La loi de paroi de Launder et Spalding

Du point de vue pratique, la loi de paroi fournit une relation entre la vitesse
tangentielle & une distance y de la paroi et le cisaillement 7, au méme endroit. On
utilise alors cette relation pour imposer le cisaillement 7, sur la frontiére fictive, ce qui
revient a une condition de Neumann non-linéaire. De plus, comme le domaine de calcul
ne va pas jusqu’a la paroi solide et que la vitesse n’est pas nulle sur ces frontiéres, on

doit s’assurer que sa direction reste tangente a la frontiére.

Finalement, I'énergie cinétique de la turbulence et son taux de dissipation sont

reliés A la vitesse de frottement par:

k = , €= (2.8)
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Chapitre 3
Formulation et techniques de résolution

3.1 Les équations modifiées

Le systéme & résoudre est composé des équations de mouvement et de continuité,
des équations de transport de l'énergie cinétique de la turbulence k et de son taux de
dissipation ¢, de la loi de comportement de la viscosité turbulente et possiblement de
I’€quation d’énergie. La viscosité turbulente dépende de k et € et elle intervient dans
toutes les équations. Les équations de transport de k et ¢ comportent plusieurs termes
source qui dépendent de la vitesse &, de la viscosité turbulente k., de méme que de &
et e. Une résolution directe et couplée de toutes ces équations nécessiterait alors
beaucoup de ressources de calcul. De plus, les équations sont trés non-linéaires et une

résolution directe devient d’autant plus difficile.

On va chercher donc & construire un algorithme itératif de calcul qui résout
successivement les équations différentielles du probléme. Pour cela on procéde i la
réécriture de certains termes des équations de transport de k et €. En utilisant la
définition de la viscosité turbulente, le terme -pe de (2.3) se réécrit:

cpe = 2 Cope (3.1)
@
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Le terme de production de 1’équation d’ e devient:

Cl%yTP(u ) = pC,C k*P(u) (3.2)

On obtient alors une structure bloc triangulaire inférieur pour le systéme d’équations:

o(u-V)k =V - [[pq-ﬁ Vk] +pu P(u) —pZCFE (3.3)
O'k #T
p(u-V)e =V- [ F+ﬁ. Ve} +pClC“kP(u) _Czp% (3.4)

L’algorithme itératif utilisé résout séparément les équations (2.1), (3.3) et (3.4)
comme suit:

1. donner des conditions initiales u, Tp, &, et ¢,.

2. évaluer u, et A, en fonction de k et ¢

3. pour pu, et A, données:
3.1. résoudre les équations de mouvement, de continuité et d’énergie
3.2. résoudre 1’équation de &
3.3. résoudre I’équation d’ e

3.4. mise a jour de p, et de A, et aller a 3.

De plus, la convergence globale de I’algorithme est grandement accélérée par
I'introduction d’une boucle de sous-itération sur les variables de turbulence. Cela
revient a répéter les étapes 3.2 4 3.4 un certain nombre de fois ( ~3) avant de revenir

a I’étape 3.1.

Dans cette approche 1’étape 3.1 revient a résoudre les équations de Navier-Stokes
a propriétés variables. La conservation de la masse est imposée par un algorithme de
Lagrangien augmenté [65] ou bien par une méthode mixte vitesse-pression. Les
matrices élémentaires sont construites par différentiation numérique, telle que décrite
dans I’annexe A.
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3.2 Formulation variationnelle

La forme variationnelle des équations est obtenue en multipliant les équations
différentielles par des fonctions test et en les intégrant sur le domaine de calcul. La

forme faible de Galerkin correspondante est la suivante:

- équations de mouvement, d’énergie et de continuité

Lpu-vu vdQ + LZ(yﬁur)'y(u):'i/(v)dQ— LpV-de= Lfde + <t v>

chpu -V TwdQ + L (AN VT Vwd@ = <gq,,w> 3-3)
(V-u,q)=0
ou
¥w) = 2[Vu+VuT]
<t‘,V>=m[ [2(p+py) ¥ (u) - i-p i) -vdF+aL 7, -vdl (3.6)
r aanr,

<qw,w>=ﬂ[ ()\+?\T)VT-ﬁde‘+ﬂL g, wdrl
'\l d l"

1

Ici v, g et w représentent les fonctions test des équations de mouvement, de continuité
et d'énergie, dQ\T,, dQ\T  dénotent une frontiére libre ou une sortie et Qf}T,,

oQ(T, représentent la portion de la frontiére ol la loi de paroi est imposée.

- énergie cinétique de la turbulence (étape 3.2)

2
L[pu-Vlcw+(y.+.“—T)Vk-Vw+p2C“k_w]dQ - ‘[p,P(u)wdQ 3.7

o Ky



30
- dissipation turbulente (étape 3.3)

[ou-Vew+(p+E)\We-Vw+pC,EwidQ = [pC,C kP(u)wd2 (3.8)
¢ ‘k Le

Les équations sont résolues en variables primitives. La discrétisation est réalisée
a I’aide de I’élément de Crouzeix-Raviart P, -P, . Les vitesses sont représentées par
un polyndme quadratique enrichi d’une bulle, alors que la pression est linéaire par
élément et discontinue au travers des faces d’un élément. Les variables scalaires (7T, &
et €) sont discrétisées par des fonctions quadratiques. La viscosité et la conductivité

turbulentes sont évaluées en tout point A partir de k et € et de [’équation (2.2).

3.3 Les enjeux numériques

Cette section sera réservée a des techniques numériques nécessaires au bon
fonctionnement de I’algorithme de résolution. On présente dans ce sens les modalités
d’imposer les conditions aux frontiéres sur les parois solides, les méthodes de
stabilisation numérique, ainsi que les techniques employées pour préserver la positivité

des variables de turbulence.

3.3.1 Méthodes d’éléments finis stabilisées

Pour les problémes dans lesquels le terme de convection est dominant, les
formulations de Galerkin, (qui utilisent des fonctions test identiques & celles
d’interpolation), conduisent & des solutions présentant des oscillations. Pour ce type de
problémes les méthodes utilisant une différentiation amont dans le sens de I’écoulement
ont donné de trés bons résultats. Une premiére approche dans ce sens a été présentée

par Raithby [66] dans le contexte des différence finies. L’idée a été reprise par Hughes
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et Brooks [67] et mise en forme pour les méthodes d’éléments finis. La méthode
proposée consiste dans I’introduction d’une diffusivité artificielle qui agit seulement dans
le sens de I'écoulement. Pour un écoulement multidimensionnel celle-ci prend la forme

d’un tenseur donné par:

o,
= u.u. (3.9
ay |V|2 L
ou
o, = i;’l_” (3.10)
5 = coth(Pe) - G.11)
Pe

Ici | V] est la vitesse du fluide, A est la taille de [’élément (voir I’annexe B), Pe est le

nombre de Péclet de I'élément défini par

h|V|
Pe = P 3.12)
€= %

et A est le coefficient de diffusion de I’équation de transport. La méthode, connue sous
le nom de SU (Streamline Upwind), a été formulée pour les équations scalaires de
convection-diffusion et pour les équations de Navier-Stokes incompressibles [67,68].

Une méthode similaire a é1é présentée par Kelly et al. [69].

Sous cette premiére forme, la méthode produit parfois des résultats incorrects,

(en présence de terme source), car la formulation n’est pas résiduelle. [l est trés utile

ici d’observer que la diffusivité artificielle peut étre transférée du terme de diffusion au

terme de convection. Cela consiste & modifier la fonction test pour le terme de
convection comme suit:

W= Mw+ia_ﬂf (3.13)

V|7 ox
On se retrouve donc & avoir des fonctions test différentes pour le terme de

convection et pour les autres termes de l’équation (terme source et de diffusion).
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Hughes et Brooks [70] ont proposé alors de modifier les fonctions test pour tous les
termes de [’équation. La méthode est devenue une méthode de type Petrov-Galerkin et
le nom sous lequel est connue est SUPG (Streamline Upwind Petrov-Galerkin). Une
analyse mathématique de la méthode pour différentes problémes a été faite par Johnson
et al. [71,72]. La méthode SUPG se révéle étre une méthode résiduelle, conforme et

qui nécessite uniquement des interpolations continues [73].

Pour une équation différentielle du type
L(u)=0 (3.14)

la méthode SUPG ajoute a la forme faible Galerkin le terme suivant, constitué de la
somme des intégrales sur les éléments du maillage:

N‘
Y (W, 2w) (3.13)

e=1

W/ = WSUPG _ \Gal

AN (3.16)
! = _a‘l7uj__'__ = 7u-VN,
VI o,

Ici L(u) représente le résidu fort de I’équation & résoudre, N, sont les fonctions
d’interpolation, «, est un coefficient de diffusion artificielle et 7 est un paramétre de
stabilisation, 7=8Ah/(2|V]), qui a des unités de temps. Des détails de calcul de la
fonction 7 sont donnés dans I'annexe B. Une généralisation aux systémes

multidimensionnels de convection-diffusion est présenté dans [74].

La forme SUPG pour les équations de Navier-Stokes est:
Lpu - VuvdQ + L 2 () (W) 1 () dQ - LpV - vdQ

P g

+y l’{pu -Vu+Vp-V - [(u+p)Vu+VuTl-pf}ru - Vvd ¥ (3.17)

e=]

=£fvdﬂ+ <t ,v>
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Une nouvelle classe des méthodes d’éléments finis stables pour les équations
dominées par la convection est celle des méthodes dites de Galerkin moindres carrés
(Galerkin Least-Squares) [75,76]. La méthode consiste a ajouter a la forme de Galerkin
classique un terme additionnel qui a la forme d’un moindre carré du résidu fort de
I'équation différentielle que I’on veut résoudre. Ce terme a [’effet d’augmenter la

stabilité de la discrétisation numérique sans trop altérer la précision de la solution.

Encore une fois considérons 1’équation type (3.14). La méthode GLS ajoute

donc a la forme faible les termes issus de la premiére variation de la fonctionnelle:

J = %i L) dOF (3.18)
e=l
c’est a dire
8J = S‘: ‘L.Sf(u)ra,%(u) der 3.19)
e=]

Cela revient & minimiser le résidu fort de l'équation a résoudre a I’intérieur d’un

élément. En résumé les formes faibles Galerkin, SUPG et GLS sont les suivantes:

Galerkin: \[Ef(u) wdQ =0 (3.20)

SUPG: \[EE(u) wda + ¥ J’se(u)fu-de(r - 0 (3.21)
e=]

GLS: Lf£(u)wd9 -> Lse(u)fase(u) dgr = 0 (3.22)

Dans le cas des équations de Navier-Stokes on doit résoudre un systéme formé

par les équations de mouvement et de continuité. Ecrivons le sous la forme suivante:

R

u

pu-Vu +Vp -V -[(u+p)(Vu+VuT)] -pf = 0 (3.23)

R =V-u=90 (3.24)
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ol R, et R, sont respectivement le résidu de I’équation de mouvement et le résidu de
I’équation de continuité. Alors la méthode GLS revient a résoudre le probléme

variationel suivant:

L R 6udQ + LRpéde +):; J; [R,7,0R, + R 7,6R 1dO = 0 (3.25)
ou du, dp, 6R, et 6R, sont respectivement les variations de la solution et des résidus
forts. On peut exprimer alors 6R, et 3R, en fonction des variations des variables

primaires du, 6p comme suit:

oR = iR_"ﬁu + aR" op (3.26)

Y du ap

dR dR
o0R = __2 —r5 3.27)

P ou ou + ap P
ou plus spécifiquement:

6R, = pu-Vou +Vép -V -[(u+p)(Vou+VéuT)] (3.28)
OR, = V-du (3.29)

Ici nous avons considéré la forme linéarisée de I’équation de mouvement et par

conséquent le terme pdu - Vu n’apparait pas dans I’équation (3.28). On obtient alors:

\[ ot -Vu+Vp-V-(2(u+pu,)¥®)) -of1ud + [ V-ubpdQ +

Bm

-Vu+Vp-V- + )3 -of] -
,}.:1‘[["" u+Vp-9-(2(r+pu)9@)) -of] (3.30)
7, [pu - Vou+Vop-v-(2(u+p,)y(u))] s +

Y ‘[v.ufpv-audrr =0

e=]
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Les variations de la solution ont la forme suivante:

N
du =Y ouy,
=t (3.31)

N
ép = Y opq,

i=1
ou du,,dp, sont les variations nodales des inconnues et v, g; sont les fonctions
d’interpolation pour la vitesse et la pression respectivement. Comme |’équation (3.30)
doit étre satisfaite pour tout éu;,dp; on obtient la forme faible GLS suivante pour les

équations de Navier-Stokes:

‘[pu -VuvdQ - LpV-vdﬂ + L 2 (u +pp) Y1) (v) dQ - Lpfvdﬂ

e=1

7, - [ou - Vv-V-(2(u+p)y(v)) 14O (3.32)

-»-E V-urpV~de‘ =0

e=]

> l[[pu Vu+Vp -V (2 +p) (@) -pf] -

LV»uqu ¥ [ lou-Vu+Vp-V-(2(u+p)¥@) -pf17,9gdQ = 0
e=l

On remarque que si on considére dans la partie moindre carré seulement e terme
provenant de la variation du terme de convection on récupére la méthode SUPG telle
que décrite précédemment. Il est & noter que la méthode GLS contient des ingrédients
de stabilisation additionnels par rapport a SUPG, notamment le terme de type laplacien
de la pression dans 1’équation de continuité. [l est aussi a noter que les méthodes
Galerkin moindres carrés et SUPG sont des méthodes résiduelies.
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3.3.2 Implantation des conditions aux frontieres

L’utilisation de la loi de paroi sur les parois solides revient a |’imposition dans
I’équation de mouvement d’un cisaillement 7,. La loi de Launder et Spalding prévoit
que le cisaillement a la paroi est donné par la relation:

1, = -pu’sign(u-f)i (3.33)
ol u_ représente la vitesse de frottement et 7 est le vecteur unitaire tangent a la paroi.

Le cisaillement est donc orienté au long de la paroi et dans le sens opposé & la vitesse.

La vitesse de frottement se calcule a 1’aide des relations (2.5) et (2.6). On obtient

donc:

Mk _ .
u, = [p_y] si y° <y, (3.34)

KU

u, ln(Ef_X u“) si yo =y,
L ©w
ou U est la vitesse tangentielle. Comme la densité p, la viscosité u et la distance 2 la

paroi y sont données, ainsi que les constantes K et E, la vitesse de frottement est donc
fonction de la vitesse U:
u = uf( U) (3.35)

Le terme de bord de I'équation de mouvement s’écrit alors sous la forme suivante:

T= l[ 7 vdl = —J pu’signu-t)fvdl (3.36)

,
et comme u«_ est une fonction nonlinéaire de la vitesse U, on est en présence d’un terme
de bord nonlinéaire. Pour accélérer la vitesse de convergence on le linéarise alors a

I’aide de la méthode de Newton comme suit:

oT aT du
T =1w)+ L su =Ty + 9T %% su (3.37)
(O) =T+ =5 (o) + 3u, 90
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ou U, est la vitesse a I’itération précédente et 6U est la correction a |’itération courante.
En plus, comme toutes ces relations font intervenir le module du vecteur vitesse

U=u?*+v)* on a en plus que:

sU=9Ys, . 9Us, _ udu+vév (3.38)

ou av (u*+v?)*
Le terme de bord s’écrit finalement sous la forme:

_ 3T U, ydu+vody
(V) —T(U°)+§ZG_-UW (3.39)

Une fois déterminé le champ de vitesses, on évalue les valeurs de k et d’ e sur

la frontiére a 1’aide des relations:

_ (3.40)

Cette loi de paroi représente une bonne approximation lorsque |’écoulement est
proche de I'équilibre, c’est a dire pour un écoulement développé et en présence de
faibles gradients de pression. Des questions se posent au niveau de sa validité quand
il s’agit de régions affectées par de forts gradients comme on peut en trouver dans les
zones de recirculation. Regardons par exemple ce qui arrive proche du point de
recollement dans un écoulement avec recirculation. La loi de Launder et Spalding prédit
une énergie cinétique de turbulence nulle au point de recollement, 1a ou la vitesse est
nulle et par conséquent le cisaillement est nul lui aussi. Pourtant les expériences
indiquent exactement le contraire car dans cette région on retrouve un niveau maximal
de turbulence. Cette situation est moins importante lorsqu’on s’intéresse seulement au
champ moyen de vitesses, mais elle devient critique pour les problémes de transfert de

chaleur lorsqu’on veut évaluer le taux de transfert de chaleur sur la paroi.

Un modeéle de loi de paroi qui représente mieux le comportement de la solution
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dans ces régions fait appel a I’énergie cinétique de la turbulence pour déterminer une

deuxiéme échelle de vitesse [10,77,78]. Pour cela on va considérer sur les frontiéres

ou la loi de paroi est utilisée que le gradient normal de & est nul:

dk
= (3.41)
an

De cette fagon on peut résoudre I'équation pour £ et utiliser les valeurs sur la frontiére
pour déterminer une échelle de vitesse reliée a la turbulence:
u, = C,f“kp"z (3.42)

Dans ce qui suit on va faire référence a ce modéle en I’appelant loi de paroi & deux
échelles de vitesse. Notons que la premiére échelle de vitesse demeure toujours la
vitesse de frottement, puisqu’elle est reliée a la dynamique de I’écoulement moyen,

tandis que la vitesse u, est I'échelle de vitesse de la turbulence.

La loi de paroi est alors définie comme suit:

u> =y si y* < y/
Y yos (3.43)

1 . .

u* = _In(Ey*) si y =y

4 (Ey*) y y
.. oyu, U
ol y° = et u, = 2.
n u,

Dans cette forme la relation entre la vitesse de frottement «_ et le module de la
vitesse U devient linéaire car la vitesse adimensionnelle ™ est entiérement déterminée

une fois calculé le niveau de turbulence. L’algorithme de calcul devient alors le suivant:

résoudre I’équation de I’énergie cinétique de la turbulence
. évaluer la vitesse u, a I’aide de (3.42).
. évaluer y*.
. déterminer 4" en fonction de y* en utilisant les relations (3.43).
( . évaluer la vitesse de frottement «_.
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Finalement le cisaillement & la paroi est donné par:

7, =puu, =pZu, (3.44)

w
u
ce qui représente une relation linéaire entre le cisaillement 4 la paroi et la vitesse sur la

frontiere. Le taux de dissipation de la turbulence dans ce cas est donné par:

3

e = 2o (3.45)
P Ky

On peut remarquer cette fois, qu’au point de recollement la vitesse est nulle mais pas
I’énergie cinétique de la turbulence. La vitesse u. est non-nulle et elle est une mesure
de la vitesse des échanges dues a la turbulence. En ce point la vitesse de frottementu_
et le cisaillement a la paroi 7, seront toujours nulles. Cette deuxiéme loi de paroi décrit
mieux la région du point de recollement dans un écoulement avec transfert de chaleur
sur une marche descendante [78,79,80]. La prédiction de 1'énergie cinétique de la
turbulence et du transfert de chaleur a la paroi est beaucoup améliorée par ’introduction

de la deuxiéme échelle de vitesse.

L’utilisation d’une loi de paroi revient donc a imposer un cisaillement . dans
la direction tangente a la paroi et orienté en sens opposé i la vitesse. Cela correspond
a une condition aux frontiéres naturelle dans I'équation de mouvement pour la vitesse
tangentielle. La vitesse normale, elle sera nulle sur les parois solides. Ces conditions
aux frontiéres sont facile a imposer sur les frontiéres horizontales et verticales, 1a ou les
composantes « et v de la vitesse sont orientées le long de la paroi ou selon la normale
a celle-ci. L’opération devient par contre assez difficile lorsque la paroi solide est

oblique et encore plus lorsqu’elle est courbe.

Dans ce qui suit on va présenter deux fagons d’imposer la condition de tangence.
Tout d’abord remarquons que la vitesse est stockée a chaque noeud. Une premiére
possibilité d’imposer que la vitesse soit tangente a la paroi sera donc d’identifier en

chaque noeud une direction normale et de contraindre la vitesse a étre nulle dans cette
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direction. Un sommet sur la fronti€re appartient & deux arrétes, elles aussi sur la
frontiére sur laquelle la condition de tangence doit étre imposer. Pour une arréte on
peut identifier une direction normale unique; cela n'est pas aussi simpie dans le cas d’un
noeud. Pour une frontiere droite toutes les arrétes ont la méme direction et par

conséquent la normale a chaque noeud est unique. Elle sera la normale a la frontiére.

Regardons maintenant ce qui arrive lorsque les arrétes adjacentes n’ont pas la

méme direction, situation illustrée dans la figure 3.1.

S np
L
—o— ’ P
s ~ \_:‘, L2 n2

Figure 3.1 Définition de la normale équivalente au noeud

Dans ce cas il est évident qu'on ne peut pas déterminer une normale unique au
noeud P. Engelman et al [81] proposent d’évaluer la direction normale au noeud P de
facon a ce que le débit global a travers de deux arrétes soit nul. Cela conduit a la
relation suivante:

n, = _":?____:Z:Lz (3.46)

1 2
ou n, L, etn, L,sont respectivement les directions normales et les longueurs des deux
arrétes. Imposer que la vitesse soit nulle en cette direction normale au noeud P revient
a permettre un flux non-nul au travers des arrétes tel que le total des flux sur deux
arrétes adjacentes soit nul. Cette définition de la normale nodale est en accord dans un
certain sens avec la loi de conservation de la masse. On remarque tout de méme que

la normale nodale dépend directement du maillage. Regardons par exemple ce qui
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arrive a un noeud qui correspond a un changement fort de la direction pour la frontiére.
La figure 3.2 illustre deux situations ou, pour une méme géométrie, la normale au noeud
P a des directions bien différentes dépendant du rapport entre les longueurs des arrétes.
On se trouve donc dans une situation ou la direction normale dépend plus du maillage

que de la physique et de la géométrie du probléme.

Figure 3.2 Dépendance de la normale équivalente au noeud du maillage

Une fois déterminée la direction normale a chaque noeud il faut imposer que la
vitesse normale soit nulle. Le systéme a résoudre sera donc le suivant:

u, =0
(3.47)

R(u,u) =0
ol u,, u, sont respectivement la vitesse normale et tangentielle, tandis que R, représente
le résidu de I'équation de mouvement dans la direction tangentielle. Pourtant, nous ne

disposons pas des équations de mouvement dans les directions normale et tangentielle

et les variables sont les composantes de la vitesse en direction x et y, soit « et v.

Soit maintenant R (4, v) =0et R (u,v) =0, les équations de mouvement en direction
des axes x et y. L’équation de mouvement peut alors étre écrite sous forme vectorielle

comme Suit:
R(u,v) =R (u,v)I +R (u,v)j =0 (3.48)
oii 7,/ sont les vecteurs unitaires au long des axes de coordonnées. On peut obtenir

I’équation de mouvement en direction tangentielle tout simplement en multipliant

I’équation vectorielle (3.48) par la tangente nodale 7 =z_{ + t_j :
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R(u,v)=R(u,v)-f =R (u,v)t, +R (4,v)t,=0 (3.49)

De plus, cette équation a comme inconnues les variables primaires « et v et aucun
changement de coordonnées n’est nécessaire. Comme on peut le constater cette
condition de tangence impose d’une maniére forte que la vitesse soit nulle dans la

direction normale au chaque noeud.

On présente maintenant une deuxi€me possibilité pour satisfaire la condition de
tangence, cette fois dans un sens faible. Pour cela considérons que les équations de

mouvement sont le résultat de la minimisation d’une fonctionnelle qu’on dénote I,(x,v).

Alors on a:
al,(u, ol (u,
R(u,v) = 8l (u,v,ou,dv) = ISP CIOPY (3.50)
du av
et donc
R (u,v) = Mau 3.5D
dau
R (u,v) = ij"_f;iﬂav (3.52)
’ v

Pour satisfaire en plus la condition de tangence on va chercher & minimiser une

fonctionnelle modifiée:

I(u,v.f) = I,(u,v)+ If(unany)ds (3.53)

ou f est le multiplicateur de Lagrange pour la contrainte de débit nul et T, est la
frontiere sur laquelle on impose la condition de tangence. La variation de la

fonctionnelle [ sera;

8I(u,v.f,bu,8v,8f) = oI, + ‘[(fnx6u+fny6v)d.$ + \[6f(unx+vny)ds (3.54)

Minimiser la fonctionnelle 7 revient & résoudre les équations suivantes:

_ L (u,v)

R.(u,v) —

du + 1 fn duds = 0 (3.55)
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I
R (u,v) = E—"%éw» ‘[ fn dvds (3.56)

’

laf(un,*-vn,)ds =0 (3.57)

Le débit au travers de la frontiére est donc nul dans un sens faible. On remarque aussi
que le fait d’imposer une certaine direction a la vitesse résulte aussi dans une
modification de [’équation de mouvement par la présence de termes de bord
supplémentaires. On peut identifier ces termes comme déterminés par une force qui
n’est rien d’autre que la réaction sur la frontiére. Le multiplicateur de Lagrange pour
la contrainte de non-pénétration se retrouve donc a étre la réaction sur la paroi. Dans
notre approche le multiplicateur de Lagrange sera discrétisé par des fonctions
discontinues. Notons que la fonction unitaire sera toujours une des fonctions test et par
conséquent la procédure impose que le débit soit nul en moyenne sur chaque arréte. La
contrainte (3.57) est imposée par une technique de Lagrangien augmenté, telle que

décrite dans ’annexe C.

3.3.3 Limiteurs pour k et €

Les modéles de turbulence & deux équations ont été et sont toujours largement
employés dans le calcul des écoulements turbulents. Comme on I'a déja vu, deux
équations de transport permettent d’évaluer des variables de turbulence pour ensuite
calculer le niveau de la viscosité turbulente. Par définition, les variables de turbulence
sont toujours positives, qu’il s’agisse de I’énergie cinétique de la turbulence, k, de son
taux de dissipation, ¢, de la dissipation spécifique, w, ou bien du temps caractéristique,
7. Bien que les équations de transport qui modélisent leur comportement admettent des
solutions strictement positives, rien ne garantit pas que les solutions numériques le
seront aussi. En pratique, la solution est caractérisée par des variations extrémement

rapides, des quasi-singularités déterminées par la géométrie et souvent par de grandes
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régions de trés bas niveau de turbulence. Celles-ci représentent autant de possibilités
pour que la solution numérique prenne des valeurs négatives ou nulles. Une telle
situation conduit rapidement a la divergence des calculs car comme on le peut constater
les équations de transport des variables de turbulence, de méme que I’équation
constitutive pour la viscosité turbulente, comportent de divisions a ces variables.
Plusieurs approches ont été utilisées afin de contourner ce probléme. On mentionne ici
I'utilisation des opérateurs de ’clipping’ [44.,82] et la construction de schémas de
discrétisation qui aident a préserver la positivité des variables [83,84]. Les méthodes
de stabilisation de type upwind ont donné d’assez bons résultats surtout pour les schémas
de volumes finis. Pourtant ces techniques ne garantissent pas que les variables de

turbulence demeureront positives.

Ici on présente une technique de clipping permettant de conserver de variables
turbulents strictement positives tout en minimisant I’impact sur la solution. On donne
aussi des détails de I’implantation telle que nécessaire pour assurer la robustesse de
I’algorithme de résolution de méme que du module adaptatif. Méme si cette méthode
permet d’obtenir de bons résuitats, elle reste quand méme limitée, dans le sens qu’elle

nécessite une intervention directe sur la solution, qui est localement reconstruite.

Cela peut avoir de répercussions a deux niveaux. Premiérement la convergence
de l'algorithme est ralentie, car elle est affectée par le fait que la correction des
variables inacceptables détruit en méme temps le résidu des équations. Deuxiémement,
les modifications apportées a la solution déterminent des oscillations et des gradients
extrémement forts. L’effet sur la viscosité est amplifié d’autant car elle est une variable
secondaire évaluée a partie de k et d'e. Toutes les régions ou la solution sera
reconstruite pour assurer que les variables demeurent positives seront autant des endroits
ol le module adaptatif sentira des erreurs et par conséquent va commander le
raffinement du maillage. On se retrouve alors dans une situation ou la procédure

adaptative concentre les points du maillage dans les régions ou le résoluteur manifeste
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de faiblesses, plutdt que 1a ot le probléme le nécessite vraiment.

Pour assurer la robustesse de l’algorithme de résolution, lorsque & et ¢ sont
utilisées comme variables primaires, on doit s’assurer que la solution demeure positive.
Des valeurs négatives ou nulles sont inacceptables car certains termes contiennent des
divisions par k ou e et de plus une viscosité négative peut étre catastrophique pour le
calcul numérique. Une approche trés utile, inspirée de celle employée par FIDAP [44],
est de limiter par le bas k et € en les empéchant de prendre de valeurs non-physiques.
En pratique, si I’énergie cinétique de la turbulence & prend une valeur trop petite celle
ci est remplacée par

k=Ko orque k< Ko (3.58)
k dk
ol k... est la valeur maximale pour & dans la solution et d, une constante qui dépende
du probléme a résoudre. D’une maniére similaire, si e est trop petite et détermine une
valeur excessivement grande pour la viscosité turbulente, on la remplace par:

5 €ane 5
e=pC, Tn lorsque €< ra et e<pC, STh (3.59)

ou d, et d, sont toujours des constantes et u, représente la viscosité du fluide. Cette
approche limite & et e par le bas et en méme temps contrdle la valeur de la viscosité

turbulente aux endroits ol la procédure est appliquée.

Une difficulté supplémentaire s’ajoute a ce moment-ci par le fait que les variables
de wurbulence, soit k et e, sont interpolées par de fonctions quadratiques. On peut
facilement imaginer qu’une situation possible et méme probable est celle ol & et € sont
positives a toutes les noeuds, mais négatives en certains points d’intégration a I’ intérieur
des éléments. Comme on fait appel a ces valeurs lors de la construction des matrices
élémentaires, il est trés important qu’elles soient aussi strictement positives aux points
de Gauss. On peut aussi observer qu'en général les valeurs extrémes au niveau d’un

élément sont obtenus aux sommets, i I’exception de quelques régions ou on retrouve les
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extremums de la solution. Une procédure qui conduit & des valeurs positives aux points
d’intégration (points de Gauss) consiste a imposer qu’a !’intérieur de I'élément la

solution soit plus grande que la valeur minimale aux sommets. On s’assure donc que

k.o > min (k) (3.60)
i=lng,

€pe = min (¢, (3.61)
i=1,n5,

De plus, chaque fois qu’une des variables est ajustée a un point d’intégration on
corrige aussi la deuxiéme variable afin de respecter une bonne représentation de la

viscosité turbulente.

Méme si cette procédure est assez robuste on doit souligner encore une fois
qu’elle conduit a une solution entachée d’oscillations locales qui sont trés dommageables
pour ’estimation d’erreur. Le résultat net, dans un tel cas, est que 1’adaptativité est
pilotée plutot par les faiblesses du résoluteur que par la physique du probléme. Cela
conduit a I'emploi souvent inutile d’un trés grand nombre de points afin de minimiser

I'influence de régions ou les limiteurs sont appliqués [85,86,87].

Une autre observation tirée d’essais numériques est que la faiblesse du résoluteur
demande souvent de maillages initiaux assez fins qui réduisent encore le bénéfice de la
méthode adaptative. Une telle situation est d'autant plus critique lorsqu’on envisage des

simulations tridimensionnelles.

3.4 Résolution en variables logarithmiques

Etant donnés les inconvénients inhérents a une technique de clipping, il serait
bénéfique d’imaginer une méthode qui garantisse par construction que les variables de
turbulence soient strictement positives. Cela permettrait de tirer pleinement 1’avantage

de la méthode adaptative, car la solution resterait lisse et serait déterminée entiérement
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a partir des équations différentielles du modéle (aucune pollution due aux limiteurs).

Une telle approche est possible a I'aide d’un changement de variables, en
considérant au lieu de ket e, plutdt leur logarithme naturel K=In(k) et E=In(e) comme
variables dépendantes. De cette facon on garantit que k, e et la viscosité turbulente
seront strictement positives, car elles sont obtenues en evaluant |’exponentielle des
variables de calcul. Le bénéfice a tirer de ce choix est direct au niveau de la positivité
de la solution, mais en plus on peut tirer plusieurs autres avantages tant du point de vue
du résoluteur que du module adaptatif. L’accélération de la convergence et une
robustesse accrue de l’estimation d’erreur et de [’adaptativité en sont seulement des

exemples.

Le point de départ est constitué par I'idée que si les variables de turbulence,
comme c’est le cas pour k& et e, sont strictement positives, elles peuvent étre
représentées par de fonctions exponentielles. Par exemple:

k = ek
(3.62)

e = ef
Le grand avantage réside dans le fait que la réciproque est toujours valable. Cela veut
dire que si k et ¢ sont représentées par des fonctions exponentielles elles sont toujours
positives. Par conséquent la viscosité turbulente, sera elle aussi positive et aucun

traitement supplémentaire de clipping ne sera nécessaire.

Cette approche ne change en rien le modéle de turbulence ou |’équation
constitutive ou encore les équations de transport. Le probléme résolu reste le méme. Du
point de vue pratique, les variables de turbulence seront cette fois strictement positives
partout dans le domaine de calcul et cela sans ajuster aucune valeur de quelque fagcon
que ce soit. De plus, la procédure résulte dans une amélioration accrue de la précision
et cela surtout dans les régions de forts gradients ainsi que 1a ou les variables de

turbulence prennent des valeurs extrémement basses. Dans ce qui suit, on va appeler
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cette procédure 'résolution en variables logarithmiques’.

3.4.1 Equations différentielles de transport

Considérons maintenant les équations différentielles de transport de &k et ¢ dans

la forme utilisée par I’algorithme itératif de calcul:

pu-Vk =V || u+ET| vk WTP(,,)_po“k_z (3.63)
o, thr

pe b
g

pu-Ve = V- { Ve:I +pClC#kP(u)—C2p_2: (3.64)

et I’équation constitutive du modéle k-e:

w=pC K (3.65)

2
3
€

On veut donc passer de k et e, comme variables dépendantes, a K=in(k) et
E=ln(e). Pour cela on divise |’équation de transport de k par k et |’équation de

transport d e par e€ pour obtenir:

Vk _ 1 Hr Hr 2 Kk (3.66)
> =_v. L \Vk| +—LP -0°C —

pU-— = & _[wak ] T (u)-p o

pu..—v_e = _IV' [ #4—_’:7,‘] Ve} +pClC“£P(u)_C’p_G_ (3.67)
€ € o, € “ k

Les termes de diffusion sont décomposés comme suit:

_I.V- y+ﬁ‘ Vk| =V- p.+ﬁ V_k - #4-_#_7'
k A o | k 0,

v[1) G.68)
Vk V[z]
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_ .
p+#_r] Ve] =V. [p*—ﬂ- E:l —[#+#_T
o, o, € a,

v (1] 6o

€

or comme V H =—ﬂc et V l =—E,on obtient:
kj k? € | €
[ - [ N Vk- ( Vi)’
lV- #4-& Vk| =V- ,“fI - + ﬂ+ﬁ [_k—] (3.70)
k { o, | | o, | & akJ
- - o - ( 2
_l_V p,-(»ﬁ VE =V. u-’-ﬁ‘ E + Ju-.-ﬁ .Y_e. (371)
€ o, i o] € i a” €

Le passage aux variables logarithmiques est maintenant facile & compléter car il
suffit de remplacer k par €, ¢ par e£ et d’utiliser les identités suivantes:

Vk

=V (3.72)
T K

Ve
€

VE (3.73)

On obtient alors les équations de transport pour les variables logarithmiques sous la

forme:
. = . Hr K 2 -X _ 2 eK
pu-VE = V- || p+ BT vE|+ |n+ 21| vE2+pC CeXEP) - C,pet-k
o, g, Lok 2 (3.75)

On remarque ici la présence d’un terme supplémentaire, en gradient au carré,
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issu du terme de diffusion. Ce terme peut étre incorporé au terme de convection ce qui
détermine une modification de la vitesse de convection qui sera alors
[u~1/p(u+p,/0,)VK] pour I’équation de K et [u-1/p(p +p,/0,) VE] pour I’équation
de E. On peut alors obienir différentes formes variationnelles stabilisées, dépendent de
la facon dont ce terme est traité. Cette question est discutée en détail dans I’annexe D.
Notons aussi la nouvelle écriture pour les termes sources qui incorporent cette fois des
fonctions exponentielles. On s’attend donc que les non-linéarités des équations soient
plus importantes. La situation est moins critique qu’il n’y parait, car les exponentielles
sont facilement linéarisables pour I’intervalle couvert par les variables de turbulence. De
plus, les termes de linéarisation obtenus a partir de ces termes sources sont tous positifs,

ce qui contribue a la stabilisation du syst¢éme numérique.

Lorsque la résolution est faite en variables logarithmiques la viscosité turbulente

est évaluée directement a partir de K et E par la relation:

Kr = pC“eﬂf‘E (3.76)

ce qui montre que u, sera strictement positive.

3.4.2 Formulation variationnelle

La forme variationnelle des équations (3.74) et (3.75) est obtenue en multipliant
ces équations par des fonctions test et en les intégrant sur le domaine de calcul. On
donne ici la forme de Galerkin classique des équations. Les formes variationnelles de
type SUPG et Galerkin Moindres Carrés sont présentées dans |'annexe D.

Aprés |’intégration par parties des termes de diffusion on obtient les formes

faibles suivantes:
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[ Lot - VK =2 ORP g Pt -0C,E )w
* Fr (3.77)
+(p.+£I)VK-VW]dQ = J (;;.+ﬁ')a_lgwdr'
0, A o, dn
\[ [(ou - VE—(w%T }VE):-p C,C,eXEP(u) + C,peE ") w
‘ (3.78)

+ P VE -vwlda = J@+“_T)§Ewdr
o A g, dn

[3

Les étapes de 1’algorithme de résolution restent inchangées. L’algorithme sera

donc le suivant:

1. donner des valeurs initiales &g, &, et ¢;.
2. passer aux variables logarithmiques pour les inconnues de méme que pour les
conditions de Dirichlet: K=in(k), E=in(¢).
3. évaluer la viscosité turbulente u. en fonction de K et E.
4. pour g, donné
4.1. résoudre les équations de mouvement et de continuité.
4.2. résoudre 1’équation pour K.
4.3. résoudre {’équation pour E.

4.4, réévaluer la viscosité turbulente et aller a 4.

Les observations faites dans le cas d’une résolution en k et e comme variables
dépendantes, telle que l’accélération de la convergence globale & I’aide des sous-

itérations sur les variables de turbulence, sont toujours applicables.

Regardons maintenant quel est I’impact du passage aux variables logarithmiques
sur la discrétisation de la solution. Rappelons que les variables scalaires, telles que &,
€, In(k) et In(e) sont discrétisées par de fonctions quadratiques. Lorsque la résolution

est faite avec k et e comme variables dépendantes, on a donc que:
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N

k=Y kN(x.y) (3.79)
i=]
N

e=Y eN(x.y) (3.80)

i=l
ou k;, ¢ sont les valeurs nodales de k et € respectivement, et les /V, sont les fonctions

d’interpolation quadratiques.

Dans une résolution en variables logarithmiques on discrétise le logarithme

naturel des variables de turbulence. On a donc que:

N
i=1
E=z E.N.(x.,y) (3.82)

i=l

Si on recalcule maintenant k et e en fonction des variables logarithmiques on obtient:

K _eK=e§ KN(x.y) (3.83)
_ LENEY) (3.84)
e=e“=¢e"
ou bien
k= I (3.85)
iml]
=11 Pl (3.86)

Notons que dans ce cas, si on utilise pour la viscosité turbulente la méme
discrétisation que pour k et €, alors la loi de comportement pour la viscosité turbulente
est vérifiée en tout point. En effet, soit M le logarithme naturel de la viscosité
turbulente, qui satisfait la relation suivante:

,u.T=pC“e“ (3.87)

On a alors

M=2K-E (3.88)
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La variable M est approximée par de polynémes de degré deux tout comme K et E.

Finalement, la viscosité turbulente est approximée par:

N
pr=pCoe¥=pC, Mu " (3.89)

c’est & dire sur la méme base que celle sur laquelle on discrétise k et €.

Le passage aux variables logarithmiques fait donc en sorte que toutes les
variables de turbulence, soit I'énergie cinétique de turbulence &, le taux de dissipation
de I’énergie cinétique e et la viscosité turbulente p,, sont discrétisées de la méme

facon.
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Chapitre 4
Remaillage adaptatif

4.1 Estimation a posteriori de I’erreur

Pour estimer 1’erreur de la solution obtenue par la méthode des éléments finis on
utilise des estimateurs par projection moindres carrés de dérivées. La méthode de
projection estime 1’erreur en comparant les flux bruts de la solution par éléments finis
a leur projection, au sens de moindre carré, dans I'espace d’éléments finis employé pour
calculer la solution:

6
7= Y o), @b

n=l

6
5= X 4ph, “-2

n=l

6

4, = 21 %{5;:},, “.3)

7= Lo fa), ¢4
6

7, = Y 4.{a.}, @.3)

ns=l

od v=(Vu+VuT)/2 est le tenseur des taux de déformation, g,=Vk, g, =Ve.q, =Vur
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dénotent les gradients de X, € et respectif u,, ¢, sont les fonctions de base P,, © dénote
I’approximation continue et { - } dénote les valeurs nodales de la projection par

moindres carrés.

Les valeurs nodales {v},, {p},. {4.}.. {¢.}. et {g,}, seront calculées par
projection globale, par projection locale et par récupération locale superconvergente des

dérivées telles que proposées par Zienkiewicz et Zhu [7,61,62].

L’estimateur d’erreur par projection globale est décrit en détail dans les
références [8,9]. On cherche a trouver le champs continu 4 qui est le plus proche des

dérivées de la solution éléments finis au sens des moindres carrés global:

) { J;qu('yh—-?)dx} =0 (4.6)

KET

ce qui conduit au systéme d’équations:
[E Ld’m‘ﬁndx] {‘7},. = { E Lémyhdx} @.7)
KET KET

La taille du systéme est égale a N, le nombre de noeuds du maillage. On doit
résoudre un tel systéme pour chaque composante de 7, g, 4., g, ainsi que pour la
pression. Tous ces systémes ne différent que par leur membre de droite, la matrice étant

la méme pour toutes les projections.

La solution éléments finis pour la vitesse et les variables de turbulence se trouve
dans I'espace H'(Q2) des fonctions dont les dérivées sont de carré sommable. La
discrétisation de la pression se trouve dans !’espace L*(Q)) de fonctions de carré
sommable. Les normes utilisées pour évaluer les erreurs sont alors la semi-norme H’
pour la vitesse et les variables de turbulence et la norme L? pour la pression (voir les
références [8,9]). La norme en vitesse est définie a 1’aide du tenseur de déformations
v. Une fois les valeurs de %, §,, 4., d, calculées, les normes de I’erreur seront donc

évaluées a I’aide des expressions suivantes:
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45 -v,): (¥ —7,,)49}3 (4.8)

A -

- vitesse: le“f a0 =

1)
-2
n
<2
_Q
Q
v
]

- pression:  f[e?f,q = {Lle"lzdﬂ 1. {\[(p._ph)ldﬂ}% (4.9)
-k le*lza = {Le“' e"'dﬂ}’i’ - {\[(cik-qk,,):(qk—qk,,)dﬂ}% (4.10)
- e lelzq = {ie"- e"dﬂ}Il - {L(qt—qeh):(q‘—q!h)dﬂ}é 4.11)

- up le*leq = {Le""w""dﬂ}% - {‘[(r?u,-qu,,,)ﬁ(ép,-qu,,,)dﬂ}’ @.12)

ol ¢* dénote I'erreur dans le champ de \’inconnue x.

Cette méthode a été intensivement employée par le groupe de Polytechnique pour
des problémes de transfert de chaleur en écoulement laminaire [54,88-90], des
écoulements a propriétés variables [55] et des écoulements turbulents modélisés par des
modéles a zéro-équation [56] et & deux-équations [79,85-87]. Comme observation
générale on peut noter que l'estimateur a projection globale est robuste et dirige

correctement le processus adaptatif, mais il sous-estime constamment |’erreur réelle.

D’autres techniques améliorant la récupération des dérivées utilisent des
projections locales sur des sous-domaines ou groupes d’éléments {61,62]. Dans ce cas,
les valeurs nodales des champs continus sont déterminées a !’aide de constructions
polynomiales sur les éléments entourant chaque sommet, comme illustré dans la figure
4.1,

Pour chaque sommet et chaque variables a projeter on construit donc une forme

polynomiale:
v =Pa “4.13)

ou P représente la base des polynomes de degré deux et aq; sont les coefficients a



57

Figure 4.1 Groupe d’éléments pour la projection locale

déterminer:

P =[1,x,y,x%xy,y?*] 4.14)
a = [a,a,4a,aq,a,a]" (4.15)

Dans la méthode de projection locale dans L, les coefficients a; sont obtenus pour chaque
composante du tenseur de déformations en minimisant I’intégrale suivante définie sur le
groupe d’éléments connectés au sommet:

1 (v, -7 )d9 (4.16)

s

On obtient alors le systéme suivant:

l PTPdQ, | {a} = [lPTyhdﬂs:l 4.17)

s s

Ici Qg représente I'ensembie d’éléments qui contiennent le sommet considéré (voir la
figure 4.1). Les noeuds qui se trouvent sur les cotés seront contenus dans deux groupes
d’éléments, chacun associé a un noeud a I'extrémité de I’arréte. La valeur nodale du
champ continu aux milieux de coté sera évaluée comme la moyenne des valeurs obtenues
en ce point par les deux constructions polynomiales associées aux extrémités de 1’arréte.

Une fois déterminées les valeurs nodales des déformations, {v},, les champs continus
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sont construits avec les mémes interpolants que ceux utilisés pour la projection globale.

Une autre facon d’obtenir une projection locale est la méthode de récupération
locale superconvergente. Dans ce cas le probléme de moindres carrés continu (4. 16) est
remplacé par une forme discréte, utilisant uniquement les valeurs des dérivées évaluées
en certains points, appelés points optimaux. Zienkiewicz et Zhu [62], ont trouvé que
les points situés au milieu des cotés sont optimaux. La figure 4.2 illustre la position des

points de collocation dans le groupe d’éléments qui entourent un sommet.

A points optimaux

Figure 4.2 Points de collocation pour la projection locale discréte

La minimisation de la forme quadratique suivante
NS
Z ['Yh(xi'yi) _,Y- (xi’yi)]2 4.18)
=]
ol N; est le nombre des points optimaux dans un groupe d’éléments, conduit au systeme
suivant
NS NS
(Y PT(x.y)P(x,y)1{a} = {Y PT(x, %)) (4.19)
i=] i=1
En résolvant ce syst¢tme on obtient les coefficients a; du développement polynomial de
v" . Finalement, les déformations continues sont construites comme pour 1'estimateur

par projection locale décrit précédemment.
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Les estimateurs a projection locale se réduisent a la résolution des systémes
algébriques de petite taille, (6x6), pour chaque sommet, a la place des systémes globaux
de la projection globale. On notera aussi que la matrice de projection reste la méme

lorsqu’on projet plusieurs variables; seulement le membre de droite change.

4.2 Les variables logarithmiques et ’erreur de la
solution

L’estimation d’erreur est faite en k& et ¢ lorsque ces variables sont utilisées
comme variables dépendantes et en /n(k) et In(e) dans le cas d’une résolution en
variables logarithmiques. Dans ce deuxiéme cas on raffine donc le maillage selon les
gradients de K=In(k) et E=In(e). Regardons quel est le lien entre les erreurs en k ete

d’une parte et les erreurs dans leur logarithme naturel d’autre part. Rappelons que:
k=eX (4.20)

¢ =ek 4.21)

On peut écrire la solution exacte comme la somme de la solution éléments finis et de

I'erreur:
k, =k=+er, (4.22)
€, =e+er,
K, =K-+er,
a 4.23
E_=E+er; ( )

ou I'indice h dénote la solution éléments finis, er, et er, dénotent les erreurs en & ete
et ery et erg celles dans leur logarithme naturel. Comme les relations (4.20), (4.21) sont

vérifiées tant par la solution exacte que par la solution éléments finis, on obtient que:

— o Krery

E-+
e+er,=e¢ """

Ou encore
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k+erk=ke”‘ (4 »)5)
e+er, =ee
Les exponentielles peuvent étre développées en série de Taylor, ce qui nous permet

d’écrire qu’au premier ordre on a:

1 +% =1+er +O(erg) (4.26)

er 2
1+~ =1+er,+O(er;) (4.27)
€

Si on néglige maintenant les termes d’ordre supérieur O(erg) et O(er?) on obtient que

les erreurs en variables logarithmiques correspondent aux erreurs relatives en k et «:

er, = il:.’f : er, = eert (4.28)
Quel sera alors I’effet du changement de variables dépendantes sur la précision
de Ia viscosité turbulente? Pour répondre a cette question considérons que la solution
exacte pour la viscosité turbulente est donnée par la somme entre Ia solution éléments
finis u, et son erreur er, . Encore une fois, tant la solution exacte que la solution

éléments finis satisfont I’équation (2.2) pour la viscosité turbulente. On a alors que:

er,
. 2 (1+ —’k )?

u+er, =pC, (i j;i) -y ;n (4.29)

] + =
€

Aprés le développement en série de la fonction rationnelle et en négligeant les termes
. er er, i
d’ordre supérieure en _kf et — on obtient que:
€
er, e

r
erﬁ,:f""r(z X - p )

(4.30)

er, = pr(2er -er.)

Ceci implique que !'erreur en viscosité turbulente dépend des erreurs relatives en & et
€, ou bien des erreurs dans les variables logarithmiques. Notons que pour la plupart

des écoulements on retrouve des régions ou k et € prennent des valeurs extrémement
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basses, mais conduisent a des valeurs importantes de la viscosité turbulente.
Typiquement les différences entre les maxima et minima dans la solution sont d’environ
4-6 ordres de grandeurs dans le cas de I’énergie cinétique de la turbulence, de 8-10
ordres de grandeur pour e et de seulement 2-3 ordres de grandeur pour la viscosité
turbulente. On peut donc rencontrer des situations ol les valeurs de k& et € sont
comparables, ou méme plus petites que leurs erreurs. Cela détermine des erreurs
extrémement grandes pour la viscosité turbulente car la relation (4.30) comporte des
divisions par k£ et e. Cette tendance est entiérement éliminée par le passage aux
variables logarithmiques. En effet, I’erreur en u, dépend uniquement et linéairement
des erreurs en variables logarithmiques par le biais d’une relation qui ne comporte pas
de divisions par de petites valeurs. C’est un argument de plus qui justifie le fait que la

résolution en variables logarithmiques est nettement supérieure a celle enk et €.

4.3 Opérateur de transition

Le module adaptatif exploite ensuite [a connaissance de la distribution d’erreur
dans le domaine pour concevoir un meilleur maillage. La stratégie retenue procéde par
remaillage adaptatif telle que proposée initialement par Peraire et al. [47]. L’algorithme

procéde comme Suit:

générer un maillage initial
calculer une solution par €léments finis

calculer [’estimation d’erreur

AW N

if (erreur globale < tolérance) alors
- stop
else
- calculer la fonction de maille 6(x,y) a partir de |’estimation d’erreur

- générer un maillage amélioré a ’aide de 6
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- interpoler la solution sur le nouveau maillage
- goto 2
end if

L’erreur globale s’obtient de la norme de |’erreur sur chaque élément & I'aide de:
leol? = X lecl? (4.31)

Supposons maintenant que 1’on veuille réduire ['erreur d’un facteur £ a chaque étape

adaptative. On cherche alors  obtenir une solution ayant une erreur ¢ [ e | .

Il ne reste qu’a déterminer la taille 6(x,y) des éléments du prochain maillage.
La fonction de maille 6 doit étre telle que les éléments seront plus petits dans les zones
entachées d’une erreur importante et plus grands la ol la solution est déja suffisamment
précise. Pour ce faire, on utilise le principe d’équidistribution de I’erreur qui veut que

chaque élément soit entaché d’une méme erreur moyenne [le [ .

Sachant que I’on cherche & obtenir une diminution de I’erreur par un facteur £:

£ el

.

ou N, est le nombre d’éléments du maillage courant. On obtient I’expression de é en

le. 0 = (4.32)

utilisant le taux de convergence asymptotique qui relie I’erreur a une puissance & de la

taille # de 1I’élément:

lel =ch* (4.33)
On a donc aussi:
"emoyll =cak (4.34)
d’ou I'on tire:
1k
5o ) Eleal | (4.35)
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Pour I’élément de Crouzeix-Raviart et un interpolant P, de k et ¢ on utilise une valeur
de k égale a 2.

Finalement, on se sert de la distribution de taille 6 pour produire le nouveau

maillage, grace a un algorithme de maillage frontal tel que décrit dans [47].

Comme on peut le voir la génération du maillage adapté est basée sur la
connaissance de la distribution de I’erreur. Pour les problémes qui nous intéressent la
solution est décrite par plusieurs variables et on évalue pour chacune sa propre erreur.
Il est donc ensuite plus compliqué de compléter le raffinement du maillage de tel sorte
que la précision sur chaque variable soit améliorée par le facteur imposée £. Une
premiere approche, utilisée avec succes pour les écoulements turbulents [85-87], consiste
a évaluer une erreur totale définie de facon a incorporer les erreurs déterminées pour

toutes les variables d’intérét. On emploie dans ce cas la formule suivante:

-

€ 2 2 2 ell? 2
[ e*.e?.e*.e ,e“’)[|0={[|e"||5.n+ lerl o+ fet e[l za+ “e"’ﬂm} (4.36)
Dans cette expression les normes des erreurs sont équilibrées en les normalisant par les
valeurs maximales des variables. Les résultats donnés par cette méthode dans le cas
d’une résolution en k et e sont encourageants. Pourtant son utilisation dans le cas des
variables logarithmiques souléve des questions quant & [a bonne mise & 1'échelle des

erreurs pour les différentes variables.

Une deuxiéme approche possible consiste & déterminer une distribution de taille
pour chaque variable d’intérét et de choisir ensuite en chaque point la taille la plus

petite.



Chapitre 5

Validation

On évalue premiérement la performance de |’algorithme de résolution, des
estimateurs d’erreur et de la stratégie d’adaptativité en solutionnant des problémes pour
lesquels il existe une solution analytique. Ceci permet de comparer I'estimateur a
I’erreur exacte et d’étudier les distributions d’erreur et d’estimateur. Ceci permet aussi
d’apprécier la qualité de [a solution obtenue a |’aide de différentes formulations par
éléments finis et de vérifier la convergence globale du processus adaptatif. Les équations
de Navier-Stokes, de k et d’ e (respectivement In(k) et In(e) ) sont résolues dans leur
forme adimensionnelle. La description des géométries et des conditions limites utilisées

est donc donnée sous forme adimensionnelle.

5.1 Couche cisaillée 2-D avec une variation
linéaire de la viscosité turbulente

L’énoncé de ce probléme est inspiré de la solution analytique tirée de Schlichting

[91]. La solution est donnée par:
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(5.1

k‘
|
oy
|
"ﬁ
+
(3}
—
w8
L

)9
L
to

Y

Hr = KHp X

On utilise les valeurs suivantes des paramétres

U, = 1.0
r =0.0
c = 13.5
343 2 o
ko= 2% uyr1-r L
0 = Z5 900 0t (171 =
343 ; o2
=2 cuvia-rprZ
= 333500 ox TV
343
by = 750,000
UL
Re,=p =10
1

En substituant les expressions dans les équations différentielles (2.1), (3.4) et
(3.4) on détermine les termes source a incorporer aux équations de mouvement, de & et

d’ e de fagon a s’assurer que la solution soit bien donnée par les relations ci-dessus.

Le probléme est résolu sur le rectangle adimensionel 100 <x <300,

-75 <y <75. On applique des conditions de Dirichlet a toutes les variables (u,v,k,¢),
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sur toutes les frontiéres. La seule exception est constituée par la frontiére basse (a basse
vitesse aussi) qui a une condition libre dans la composante v de la vitesse afin de fixer

le niveau de la pression a zéro.

Tout d’abord on résout le probléme sur des maillages uniformes afin de
déterminer le taux de convergence de I’élément pour les différentes variables. On utilise
une formulation Galerkin moindres carrés et les équations en variables logarithmiques.
Pour chaque solution on évalue [’erreur exacte en vitesse, In(k), In(e) et pr. Les
résultats obtenus sont résumés dans le tableau 5.1. Les figures 5.1 et 5.2 présentent les
trajectoires des erreurs en fonction du nombre de points du maillage et en fonction de
la taille des éléments. Sur les deux figures les valeurs sont représentées sous échelle
logarithmique. Remarquons que les quatre courbes ont pratiquement la méme pante ce
qui indique que le taux de convergence de I’élément est le méme pour les quatre
variables. Dans le tableau 5.2 on présente le taux de convergence évalué entre les
maillages 1 et 2 et respectif entre les maillages 2 et 3. Pour toutes les variables il est
approximativement 2, I’écart par rapport a cette valeur se situant en-dessous de 6%.
Cette constatation nous permet d’utiliser cette valeur pour le taux 'a priori’ de I’élément

dans le processus adaptatif.

Tableau 5.1 Trajectoire des erreurs pour un raffinement uniforme

Maillage taille des # de Erreur en Erreur en Erreur en  Erreur en
éléments points vitesse In(k) In(e) Ky

1 6.25 3705 8.041x10° 2.848x10" 5.894x10! 1.455x102

2 4.167 8153 3.681x107% 1.284x10"' 2.682x10" 6.725x10°

3 2.778 18349  1.621x10% 5.536x10% 1.156x10" 2.828x10*
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Tableau 5.2 Taux de convergence de I'élément

Raffinement vitesse Ink) In(e) By
1-2 1.93 1.96 1.94 1.90
2-3 2.02 2.07 2.07 2.13

Il faut préciser que le taux de convergence de I'élément diminue lorsque
I’écoulement devient moins visqueux ou bien en présence des singularités. Dans ce
deuxiéme cas, méme si ’erreur est bornée, il est possible qu’elle ne diminue pas
localement autour de la singularité lorsque le maillage est raffiné. Le fait d’utiliser dans
certaines régions de I'écoulement une valeur pour le taux de convergence qui est
supérieure a la valeur réelle entraine un raffinement local sous-optimal. Pourtant il est
difficile de connaitre a priori la valeur du taux de convergence de |’'élément, car il
dépend des caractéristiques de 1'écoulement et peut varier avec le raffinement du
maillage. Dans nos calculs le processus adaptatif est itératif. Donc, lorsqu’on obtient
une solution, I’estimation d’erreur indique les endroits ol le maillage doit étre raffiné.
Méme si le maillage adapté n’est pas optimal, le processus adaptatif sera dirigé
correctement. De plus, comme la solution change elle méme avec le raffinement du
maillage, cette procédure nous permet d’obtenir |’équilibre entre les caractéristiques du

maillage et celles de la solution.

Une premiére série de calculs adaptatifs, qui sera considérée comme calcul de
référence pour ce cas de validation, est réalisée en variables logarithmiques, a I'aide
d’une formulation Galerkin moindres carrés (GLS). Afin de valider le comportement
de la méthode proposée, les calculs ont été effectués en utilisant les estimateurs d’erreur
par projection locale. Pour évaluer aussi les autres techniques d’estimation d’erreur, on
a calculé les estimations de ['erreur par projection globale et par projection locale

discréte. Chaque estimé de I'erreur est comparé a I'erreur exacte. Ceci permet de
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vérifier a la fois si les estimateurs sont fiables et si le module d’adaptativité se comporte
comme prévu. Dans tous les cas, les calculs commencent sur un maillage grossier. Le
module d’adaptativité concoit le maillage suivant afin de réduire |’erreur par un facteur
de 2 pour toutes les variables considérées, soit le champs de vitesse, k, € (ou leur
logarithme naturel) et .. On interpole la solution obtenue sur le maillage courant sur
le nouveau maillage. On notera que lorsque le calcul est fait en k et e, I'erreur est
évaluée pour ces variables, tandis que I'erreur est évaluée pour In(k) et In(e) lorsque la

résoiution est faite en variables logarithmiques.

Les tableaux 5.3 a 5.6 résument les résultats obtenus. On présente 1’'évolution
de I'erreur en vitesse et dans les variables de turbulence. Dans chaque tableau on
retrouve la norme de I'erreur exacte ainsi que celle des trois estimateurs. On peut
remarquer que les deux estimateurs d’erreurs par projection locale se comportent de
fagon similaire. L'estimateur & projection globale présente un écart de comportement
dans le sens qu’il sous-estime l’erreur réelle. Outre ce fait, |’erreur exacte et les

estimateurs diminuent au méme rythme pour toutes les variables.

Tableau 5.3 Résolution en variables logarithmiques - Trajectoire de i'erreur en vitesse

Maillage  # de #d Erreur Projection Projection  Projection

points  éléments exacte locale discréte globale
0 1611 774 1.116x10" 1.061x107 1.047x10"' 8.937x107

3049 1496 3.572x10? 3.208x10? 3.187x10? 2.453x107

[y

6890 3409 1.347x10?% 1.175x10% 1.157x10% 8.055x10°

[\

3 16700 8299 5.255x10° 4.592x10° 4.558x10° 2.825x10°

smm—
—
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Tableau 5.4 Résolution en variables logarithmiques - Trajectoire de [’erreur en &

Maillage  # de #d Erreur Projection Projection Projection
points éléments exacte locale discréte globale

0 1611 774 3.756x10" 4.221x10" 4.169x10*' 2.610x10!

1 3049 1496 1.509x10" 1.615x10" 1.548x10" 9.589x102

2 6890 3409  5.572x10? 5.942x10* 5.767x10% 3.108x10*

3 16700 8299  2.143x10° 2.228x107% 2.185x107* 1.126x107

Tableau 5.5 Résolution en variables logarithmiques - Trajectoire de ’erreur en €

Maillage  # de #d Erreur Projection Projection Projection

points  éléments exacte locale discréte  globale
0 1611 774 7.778x10" 8.769x10" 8.690x10* 5.715x10"
1 3049 1496  3.047x10*' 3.259x10!' 3.129x10" 1.973x10!

[ X% )

6890 3409 1.133x10"  1.187x10" 1.153x10" 6.237x107?

3 16700 8299  4.261x107 4.432x107% 4.357x102 2.207x107

—
—

Remarquons que I’erreur diminue a chaque cycle adaptatif par un facteur plus grand que
2, la cible imposée, résultat normal étant donné qu’on adapte selon plusieurs variables
en méme temps. Les figures 5.3 a 5.6 présentent ces trajectoires de fagon graphique.
L’estimateur a projection globale semble sous-estimer 1'erreur alors que les méthodes

de projection locale sont trés proches de I’erreur exacte.
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Tableau 5.6 Résolution en variables logarithmiques - Trajectoire de I’erreur en uy

Maillage  # de #d Erreur Projection  Projection Projection
points  éléments exacte locale discréte  globale

0 1611 774 3.204x10? 2.430x10? 2.417x10? 2.005x107

1 3049 1496  6.060x10° 5.269x10° 5.284x10° 4.540x10°

2 6890 3409 1.991x10° 1.826x10° 1.830x10° 1.643x10°

3 16700 8299  5.928x10* 5.506x10* 1.034x10° 4.914x10°

Les figures 5.7 & 5.14 présentent les histogrammes de |'erreur exacte et de
I’estimé par projection locale. L’abscisse est la norme de I'erreur sur un élément et
['ordonnée le nombre d’éléments ayant cette erreur. On notera que |'échelle horizontale
est logarithmique. Un maillage optimal ne présentera qu’un pic puisque tous les
éléments porteront la méme erreur. On constate dans les deux cas (erreur exacte et
estimation de [’erreur) que la médiane de I'erreur diminue i chaque cycle et que la
précision s’améliore partout dans le domaine d’un cycle a I'autre. Dans le cas de
I'erreur en vitesse on constate qu’aux cycles 2 et 3 la grande majorité des €léments sont
entachés d’une erreur quasi constante car 1’histogramme se resserre autour de la valeur
moyenne (une grande fraction des éléments ont une erreur proche de la moyenne). La
présence des éléments avec une erreur plus petite que la moyenne s’explique par le fait
que, dans certaines régions, on raffine selon une des variables méme si les autres sont
calculées avec une bonne précision. Le résultat net est que ’erreur dans ces variables
diminue d’avantage, effet qui est remarqué sur les histogrammes. On remarque aussi
que [’histogramme pour |’erreur estimée se compare trés bien a celui obtenu pour

I’erreur exacte et cela pour toutes les variables considérées.

La figure 5.15 présente la séquence de maillages générés par la stratégie
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d’adaptativité. Les maillages générés sont bien concentrés 1a ol les variables varient
beaucoup. On remarque sur le dernier maillage une concentration marguée en deux
bandes correspondantes aux régions de variations rapides en vitesse, en In(k), In(e) et

€n u..

Les figures 5.16 et 5.17 présentent la solution pour les vitesses u et v, la
viscosité turbulente u,, I’énergie cinétique turbulente k, son taux de dissipation e ainsi
que leur logarithme naturel. La colonne de gauche correspond a la solution obtenue sur
le maillage initial tandis que celle de droite présente la solution obtenue sur le maillage
final. La solution sur le maillage adapté est de meilleure qualité pour toutes les
variables. La solution analytique (5.1) indique que les iso-lignes de viscosité turbulente
devraient étre verticales car u, ne dépend que de x. On peut donc mesurer
I’amélioration des prédictions en comparant les distributions obtenues pour la viscosité
turbulente. On constate une nette amélioration. A toute fin utile, les iso-lignes de

viscosité turbulente sur le dernier maillage sont verticales.

Les figures 5.18 4 5.25 présentent une comparaison d’iso-erreur exacte et estimée
sur le maillage initial et sur le maillage 1. Sur chaque figure on retrouve les iso-lignes
de I'erreur exacte en haut et & gauche, de méme que les iso-lignes de I'erreur estimée
par projection locale, par projection locale discréte et par projection globale. On
présente a la fois I'erreur en vitesse évaluée dans la norme énergie, I'erreur en In(k),
In(e) et I'erreur en viscosité turbulente. L’interprétation de ces figures doit étre faite
avec prudence. En effet, bien que le nombre de contours soit le méme pour tous les
graphiques, les maximums et minimums varient d’une variable i 1'autre et ne sont pas
les mémes pour l'erreur exacte et les estimateurs. De plus, on se rappellera que les
trajectoires indiquent clairement que [’erreur et les estimateurs par projection locale ont
des niveaux d’erreur globale tout & fait comparables tandis que la projection globale
sous-estime I'erreur (figures 5.3 4 5.6). Une comparaison des iso-lignes d’erreur ne

peut donc se faire qu’en cherchant a déterminer si les estimateurs capturent bien la
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topologie de la surface de I’erreur (pics, vallées, falaises, plateaux, etc). Onremarquera
que dans tous les cas les estimateurs & projection locale se comportent de la méme

facon, en produisant une trés bonne estimation de [’erreur exacte.

On notera aussi le fait que I’estimateur a projection locale discréte est parfois
moins robuste que celui a base de projections continues, ce qu’on peut remarquer a la
figure 5.6 pour I'erreur en viscosité turbulente sur le dernier maillage. En effet,
lorsqu’on traite un noeud qui se trouve a l'intérieur du domaine et qui est connecté a
seulement trois éléments, la construction des dérivées par projection discréte dispose de
seulement 6 points de relévement pour déterminer les 6 coefficients du polynéme
quadratique local. Il se peut alors que le syst¢me obtenu soit indéterminé ou alors mal

conditionné, ce qui conduit & une mauvaise évaluation de 'erreur sur ces éléments.

D’autre part, remarquons que |’estimateur par projection globale génére une
estimation de [’erreur en quelque sort plus diffuse. Les régions entachées d’erreur sont
plus grandes et aplaties. La cause réside probablement dans le fait que, dans la
reconstruction globale des dérivées, une perturbation locale se propage sur plusieurs
éléments qui réagissent tous comme des ressorts couplés. A ce point-ci on peut

apprécier que I’estimateur par projection locale est efficace et en méme temps robuste.

Notons aussi que |’erreur en vitesse, en In(k) et In(e) est concentrée 1a ou ces
variables présentent les variations les plus rapides. La solution exacte du probléme est
symétrique dans ses gradients (au signe prés). On s’attend donc a ce que I'erreur soit
elle aussi symétrique par rapport a I’axe des x. C’est le cas de I'erreur en vitesse et
dans les variables logarithmiques, mais pas celui de la viscosité turbulente sur le premier
maillage. Ce résultat semble étonnant d’autant plus que 1’erreur en viscosité turbulente
est entiérement déterminée par les erreurs dans les deux variables logarithmiques par:

er, = ur(Qerg-ery) (5.3)
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Lorsqu’on prend la valeur absolue de ’erreur, on obtient:
ler, | = ur(2lere] £ |erg]) (5.4)

Donc les contributions des erreurs en In(k) et In(e) peuvent soit s’additionner ou
bien s’annuler réciproquement. C’est exactement ce qui se passe sur le premier maillage
ol dans la partie inférieure les erreurs en ln(k) et In(e) se retrouvent cumulées dans
I'erreur en u,, tandis que dans la partie supérieure 1’effet est contraire et par conséquent
I'erreur en u, est beaucoup plus petite. Voici donc un exemple qui illustre la nécessité
de considérer dans le processus adaptatif les erreurs dans toutes les variables, incluant
I'erreur pour la viscosité turbulente. Notons aussi que les contours de u.. de la figure
5.16 présentent des irrégularités exactement la ou I'estimateur d’erreur en p,. présente

ses maxima.

Une deuxiéme série de calculs a été ensuite réalisée sur les mémes maillages en
retenant toujours une formulation de type Galerkin moindres carrés, mais cette fois en
utilisant k et ¢ comme variables dépendantes. Les trajectoires des erreurs en vitesse,
k, € et p, sont présentées dans les tableaux 5.7 a 5.10 et sous forme graphique dans les
figures 5.26 2 5.29.

Tableau 5.7 Résolution en £ et € - Trajectoire de |'erreur en vitesse

—

Maillage  # de #d Erreur Projection Projection  Projection

points  éléments exacte locale discrete globale
0 1611 774 1.169x10" 1.080x10" 1.047x10" 9.065x107
1 3049 1496 3.607x10* 3.197x10? 3.174x10? 2.432x107
2 6890 3409 1.355x10% 1.173x10? 1.156x10? 8.011x10?

3 16700 8299 5.284x10° 4.597x10° 4.564x10° 2.831x103
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Tableau 5.8 Résolution en k et € - Trajectoire de [’erreur en &

Maillage  # de #d Erreur Projection Projection Projection

points  éléments exacte locale discréte globale
0 1611 774 7.636x10° 7.318x10®° 7.109x10° 5.159x10°
1 3049 1496  2.546x10° 2.534x102 2.535x10° 1.556x103
2 6890 3409 1.266x10° 1.260x10% 1.283x10° 6.987x10*
3 16700 8299  6.079x10* 6.107x10* 6.159x10* 3.250x10*

Tableau 5.9 Résolution en k et ¢ - Trajectoire de I’erreur en ¢

Maillage  # de #d Erreur Projection Projection Projection

points  éléments exacte locale discréte globale
0 1611 774 2.647x10* 3.350x10°* 3.246x10* 2.249x10*
1 3049 1496  7.357x10° 7.639x10° 7.461x10° 5.158x10*
2 6890 3409  4.045x10° 4.158x10° 4.128x10° 2.479x10°
3 16700 8299 1.714x10° 1.746x10° 1.738x10° 9.749x10¢

On remarquera que le comportement des estimateurs n’est pas affecté par le changement
de variables. On retrouve les mémes indices d’efficacité (rapport entre 1’erreur estimée
et I’erreur exacte) trés bons dans les cas des techniques a projection locale. La

projection globale sous-estime encore |’erreur.
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Tableau 5.10 Résolution en k et ¢ - Trajectoire de I’erreur en ur

Maillage  # de #d Erreur Projection Projection  Projection
points  éléments exacte locale discréte globale

0 1611 774 1.088 1.173 1.191 8.585x10"

1 3049 1496  4.335x10" 4.956x10" 5.057x10" 3.549x10

2 6890 3409 1.052x10*" 1.096x10" 1.094x10" 6.805x10*

3 16700 8299  4.566x10% 4.677x107 4.690x10° 2.592x10%

Comparons maintenant la résolution des équations écrites en k et ¢ a la
résolution en variables logarithmiques. N’oublions pas que le but du passage en
variables logarithmiques a été d’augmenter la robustesse de [’algorithme, d’assurer la
positivité des variables de turbulence, mais aussi d’obtenir des solutions plus précises.
Dans un cas le calcul est réalisé avec k et e comme variables primaires, tandis que dans
I’autre les inconnues sont In(k) et In(e). On peut difficilement comparer ces variables.
Pourtant leur précision est quantifiée dans la précision de la viscosité turbulente qui est
une variable dérivée, et la seule variable de turbulence qui intervient dans 1'équation
d’énergie. L’erreur pour p, est calculée de la méme fagon dans les deux cas et la
comparaison est rigoureusement correcte. La figure 5.30 illustre les erreurs pour les
deux séries de calculs. La ligne continue correspond a la résolution en variables
logarithmiques et celle discontinue a la résolution en variables k et ¢e. On note une
remarquable amélioration de la précision lorsque les variables logarithmiques sont
utilisées. En effet, les différences entre les deux courbes sont de deux ordres de
grandeur. L’effet de I'utilisation des variables logarithmiques est si marqué, que la
solution dans ce cas sur le premier maillage est plus précise en u, que la solution en (k,
€) sur le maillage le plus fin. La figure 5.31 présente les iso-lignes de viscosité

turbulente dans les deux cas. Rappelons que celles-ci doivent étre verticales. A gauche
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on retrouve la solution obtenue avec k et € comme variables primitives, tandis qu’a
droite se trouve l[a solution obtenue a l'aide des variables logarithmiques.

L’amélioration de la solution dans ce dernier cas est clairement illustrée.

Une autre question a étudier est I'effet de la formulation utilisée pour stabiliser
les équations (type d’upwinding). Rappelons ici que nous avons programmé cing
formulations différentes, soit: Galerkin, SU (upwind sur la convection), SUPG incomplet
(upwind sur la convection et les termes source), SUPG (upwind sur tous les termes) et
Galerkin moindres carrés (notée GLS - Galerkin Least Squares).

premier maillage adapté a été successivement obtenue a 1'aide de ces 5 formulations.

La solution sur le

La figure 5.32 compare les iso-lignes de la viscosité turbulente: en haut on retrouve la
solution Galerkin, suivie par les solutions SU, SUPG incomplet, SUPG et GLS. On
remarque que les méthodes SU et SUPG incomplet, qui ne sont pas résiduelles,
introduisent des erreurs de formulation qui se manifestent sous la forme d’irrégularité
dans les contours de u,. Les trois autres méthodes, qui sont résiduelles, donnent de trés
bons résultats. Dans ce probléme, la viscosité turbulente est élevée partout dans le
domaine de calcul, ce qui fait que la méthode de Galerkin classique se comporte tout
aussi bien que les méthodes stabilisées SUPG et GLS.

Tableau 5.11 Les erreurs pour différentes formulations éléments finis sur le maillage 1

Formulation Erreur en Erreur en Erreur en Erreur en
vitesse ink) in(e) pr

Galerkin 3.195x10%  1.658x10* 3.473x10* 9.137x10°

SuU 4.025x10%  2.812x10" 6.042x10™ 8.341x10%

SUPG-incomplet  6.171x10%?  1.855x10"  4.352x10" 3.013x10%

SUPG 3.740x10?  1.509x10* 3.044x10" 5.782x10°

GLS 3.572x10%  1.509x10* 3.047x10?! 6.060x10

!I

——
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Dans le tableau 5.11 on présente I’erreur exacte en vitesse, In(k), In(e) etp,
pour les différentes formulations. Au niveau de I’erreur en vitesse, la méthode de
Galerkin donne la meilleure réponse, tandis que pour la viscosité turbulente les plus

performantes s’averent étre les méthodes stabilisées SUPG et GLS.

La méthodologie adaptative proposée permet non seulement d’obtenir de solutions
numeériques précises, mais elle représente aussi une approche rapide et économique pour
résoudre les écoulements turbulents. Le tableau 5.12 présente les temps de calcul
enregistrés pour la série de calculs considérée comme référence (formulation GLS,

réduction par un facteur 2 de I’erreur estimée par projection locale).

Tableau 5.12 Statistique des temps de calcul

Maillage Génération du  Résolution  Estimation de Temps
maillage (sec) (sec) I’erreur (sec) total (sec)

Cycle - 0 2 272 6 280
Cycle - 1 6 1006 15 1027
Cycle - 2 11 2678 39 2728
Cycle - 3 24 5455 100 5579
Total (adaptatif) 43 9411 160 9614
Maillage final 16 21901 100 22017

sans solution initiale

Les données couvrent toutes les étapes de calcul, soit la génération du maillage (avec
interpolation de la solution, 1 ol une solution a été€ obtenue sur un maillage précédent),

la résolution et I'estimation de I’erreur. Rappelons que sur les maillages adaptés le
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calcul utilise comme solution initiale la solution obtenue précédemment, interpolée sur
le nouveau maillage. Le tableau continent aussi sur la derniére ligne le temps de calcul
enregistré lorsque le calcul a été réalisé directement sur le maillage le plus fin mais sans
disposer d’une solution initiale. Les calculs ont été réalisés sur un ordinateur IBM
R6000 modéle 590.

On remarque que le temps passé dans la génération du maillage et I’interpolation
de la solution représente moins de 0.5% du temps total de calcul. Cela signifie que la
technique de remaillage employée est peu couteuse tout en conférant une souplesse
remarquable a I’algorithme adaptatif. L’estimation de I’erreur quand a elle représente
moins de 2% du coit total du calcul adaptatif. La résolution compléte du probléme
nécessite 9614 secondes. La résolution du méme probléme directement sur le maillage
le plus fin, mais cette fois sans disposer d’une solution initiale obtenue par interpolation,
coiite 22017 secondes. L’algorithme adaptatif réalise donc une économie de plus de
50% du temps de calcul. [l faut aussi noter que sans l|’'adaptativité il aurait été
pratiquement impossible de concevoir un maillage conduisant a une solution tout aussi
précise que celle obtenue par I’adaptativité. En effet, on a déja remarqué qu’un maillage
uniforme avec un nombre comparable de points conduit & une solution dont I’erreur est
3-4 fois plus élevée (figures 5.3 4 5.6). Le résultat net est que le calcul non-adaptatif
permettant d’atteindre le méme niveau d’erreur que celui enregisiré sur le maillage final
adapté nécessiterait beaucoup plus de points et coliterait beaucoup plus cher que le calcul

adaptatif.
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5.2 Couche cisaillée 2-D avec une distribution
gaussienne de la viscosité turbulente

La solution de ce probléme a été construite pour s’approcher le plus possible de
la solution d’une couche cisaillée réelle que I’on retrouve en aval du coin d’une marche
descendante ou encore dans des zones de mélange. Ce cas inclus des variations de la
viscosité turbulente dans la direction y que I’on avait négligé dans la couche cisaillée

précédente.

La solution est donnée par:

u =

I
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Les paramétres prennent les valeurs données par (5.2) sauf le ratio de vitesses
r qui est maintenant fixé 4 0.3. Le domaine de calcul couvre toujours le rectangle
[100 , 300] x [-75, 75]. Les conditions aux frontiéres sont du méme type que celles

utilisées pour le cas de validation précédent.

Ce cas de validation est complété pour s’assurer que la méthode de résolution,
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le module adaptatif et les techniques d’estimation d’erreur par projection locale se
comportent bien. On a effectué les calculs en pilotant 1’adaptativité par I’estimateur a
projection locale. A chaque cycle on calcule néanmoins les deux autres estimateurs.
On cherche toujours a diminuer a chaque cycle ’erreur estimée en vitesse et en variables

de turbulence par un facteur de 2.

Les tableaux 5.13 a 5.17 résument les résultats obtenus pour [’erreur exacte et
les estimations d’erreur. Les mémes résultats sont présentés sous forme graphique dans
les figures 5.33 a 5.36. On remarque le méme comportement que dans les cas de
validation précédent. Les estimateurs a projection locale donnent une trés bonne
évaluation de !’erreur globale. L’estimateur a projection globale sous-estime encore
Perreur exacte. On notera aussi que 'erreur et ses estimés diminuent a chaque cycle
par un facteur plus grand que 2 et cela pour toutes les variables considérées dans le

module adaptatif.

Tableau 5.13 Couche cisaillée ur gaussienne - Trajectoire de l'erreur en vitesse

Maillage  # de #d Erreur Projection Projection Projection
points  éléments exacte locale discréte globale

0 1611 774 6.894x102 6.619x10% 6.515x10? 5.442x107

1 3056 1499  2.694x107 2.443x102 2.448x10° 1.867x10?

2 6380 3155 1.132x10? 1.015x10? 1.003x10?* 7.016x10°

3 15021 7462 4.662x10° 4.133x10° 4.104x10° 2.532x10°
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Tableau 5.14 Couche cisaillée u; gaussienne - Trajectoire de I'erreur en k

Maillage  # de #d Erreur Projection Projection Projection
points  éléments exacte locale discréte globale

0 1611 774 1.041 1.091 1.066 7.767x107

1 3056 1499  4.363x10" 4.705x10" 4.523x10" 3.270x10"

2 6380 3155 1.663x10" 1.648x10" 1.601x10" [1.115x10"

3 15021 7462  6.127x10? 5.998x10? 5.861x10? 3.814x107
Tableau 5.15 Couche cisaillée u; gaussienne - Trajectoire de I'erreur en e

Maillage  # de # des Erreur Projection ) Projection Projection
points  éléments exacte locale discrete globale

0 1611 774 1.052 1.101 1.077 7.861x10™"

1 3056 1499  4.389x10" 4.730x10" 4.551x10" 3.307x10

2 6380 3155 1.677x10"  1.659x10" 1.613x10* 1.131x10?

3 15021 7462  6.184x107 6.048x10% 5.912x10?* 3.883x10?
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Tableau 5.16 Couche cisaillée u; gaussienne - Trajectoire de I'erreur en ur

Maillage  # de # des Erreur Projection Projection Projection
points  éléments exacte locale discréte globale

0 1611 774 5.157x10" 5.445x10* 5.317x107 3.909x10?

1 3056 1499  2.127x10" 2.303x10" 2.206x10"' 1.608x10™*

2 6380 3155 8.209x102 8.166x10* 7.881x10% 5.533x10?

W

15021 7462 3.029x107 2.956x10% 2.878x10* 1.885x10%

La figure 5.37 présente les maillages engendrés par la stratégie adaptative. La
solution obtenue sur le maillage initial et sur le maillage final est illustrée aux figures
5.38 et 5.39. Les maillages sont raffinés dans les régions de forts gradients dans la
solution, au centre du domaine et dans deux régions de part et d’autre de |’axe des x.
Encore une fois les gradients de la solution sont symétriques en valeur absolue par
rapport a I’axe des x ce qui explique la symétrie des maillages adaptés. Finalement, on

remarque que la solution sur le maillage final est de trés bonne qualité.

En résumé, ces cas de validation permettent de tirer les conclusions suivantes:

- les estimateurs a projection donnent une représentation fidéle de ’erreur. Les

valeurs globales et locale de I'erreur et de son estimation sont comparables;

- ['estimateur par projection globale sous-estime 1’erreur plus que les estimateurs
locaux. Les estimateurs locaux se comportent de la méme fagon et I’utilisation
de points optimaux pour le relévement des dérivées n'a pas vraiment amélioré
’estimation d’erreur. L’estimateur par projection locale est plus robuste que

celui par projection discréte;
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la méthodologie adaptative fonctionne bien et les erreurs diminuent a chaque

cycle comme prévu;

I’algorithme de résolution est robuste et fonctionne pour toutes les formulations
éléments finis employées. Les formulations résiduelles de Galerkin, SUPG et
GLS permettent d’obtenir de trés bonnes solutions, qui convergent vers la

solution exacte avec le raffinement du maillage;

I’utilisation des variables logarithmiques dans la résolution des équations de
turbulence augmente la robustesse du résoluteur et améliore grandement la

précision de la solution surtout pour la viscosité turbulente.
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Figure 5.37 Maillages engendrés par la stratégie adaptative
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Maillage initial Maillage final

Vitesse u Vitesse u

Vitesse v Vitesse v

Viscosité turbulente Viscosité turbulente

Figure 5.38 Solution sur le maillage initial et sur le maillage final: vitesse u, vitesse v
et viscosité turbulente
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Figure 5.39 Solution sur le maillage initial et sur le maillage final: k, €, In(k) et In(€)
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Chapitre 6
Applications

Cette section présente des applications de la stratégie adaptative i des
écoulements turbulents pour lesquels on dispose de données expérimentales: couche
cisaillée, écoulement sur une marche descendante, écoulement autour d’un profil
NACAQQ012. Pour chaque probléme on analyse le comportement de la méthode de
résolution, de 1’estimateur d’erreur et du remaillage adaptatif. L’algorithme adaptatif

est piloté dans tous les cas par I’estimateur a projection locale.

6.1. Couche cisaillée avec un rapport de vitesses
U,/)U,=0.3

Ce probléme a fait I’objet d’une étude expérimentale détaillée par Spencer et
Jones [92] et d’essais numériques de plusieurs variantes du modéle & -e par Duncan et
al [93]. Ce probléeme représente le comportement d’un écoulement de fluide prés du
bord de fuite d’un profil ou encore d’une zone de mélange entre deux couches d’un
méme fluide s’écoulant parallélement mais a des vitesses différentes. La figure 6.1
illustre le domaine de calcul, les conditions limites et les distances & la parois, d,

utilisées pour reproduire le montage expérimental de Spencer et Jones [92].
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(-10,30) u=0.3, vk eslibres (120,30)
u=03 Parci (L1): v=0, d~0.5
v=00 v Parai (2): v=0, d=0.5
k=0.003 b
e=led | @00 wv.ke
(D x
u=1.0
v=0.0
k=0.005
e=2.e-4
(-10,-30) u=1.0, vk e=libres (120,-30)

Figure 6.1 Couche cisaillée de Spencer: Domaine de calcul et conditions limites

Les équations sont résolues sous leur forme adimensionnelie et les valeurs des
conditions Dirichlet sur la figure 6.1 correspondent i des variables sans dimensions.
La vitesse de référence est la vitesse de la couche rapide U, et la longueur de référence
est L=lcm. Le nombre de Reynolds basé sur la vitesse de la couche rapide est
Re=U, /v =18000/cm. Une plaque trés mince, dont on considére 1'épaisseur négligeable,
sépare les deux couches de fluide a I'entrée du domaine. Le rapport des vitesses des
deux couches de fluide est de 0.3. Il reste a déterminer les valeurs & imposer pour & ete
a I'entrée. Pour ceci nous avons suivie les recommandations faites dans FIDAP [44].

La valeur caractéristique de & est obtenue a I’aide de la relation suivante:

k=al? (6.1)

ou U est la vitesse et a est un coefficient qui dépende du type d’écoulement. Les
valeurs suggérées pour a sont entre 0 et 0.001 pour les écoulements sans frottement et
autour de 0.1 pour les écoulements cisaillés (couches cisaillées, jets, sillages). Une
valeur caractéristique pour e est donnée par la relation suivante:

e

€
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ou L, représente la longueur de mélange et L est une longueur caractéristique. Notons
que ces valeurs doivent étre regardées plutdt a titre indicatif. Les conditions imposées
en entrée pour les variables de turbulence doivent aussi étre consistantes avec le modéle
de turbulence et la nature du probléme & résoudre, dans le sens qu’elles doivent subir
de variations minimes dans les régions non-perturbées de ’écoulement. Dans ce
premier calcul, noté Probl, nous avons considérer un niveau de turbulence de 0.5%
(@=0.005) pour la couche a haut vitesse et de 3% (a=0.03) pour la partie & basse
vitesse. Pour déterminer les valeurs d’e en entrée il faut préciser la longueur
caractéristique L. Dans ce cas nous avons considéré L ~ 10. Le nombre de Reynolds
basé sur la viscosité turbulente aura alors dans I’écoulement non-perturbé des valeurs
autour de 100, ce qui fait qu’'on pourra méme utiliser la méthode de Galerkin pour

résoudre ce probléme.

Une premiére série de calculs, qu’on considére comme solution de référence, a
été réalisée en variables logarithmiques, a I’aide d’une formulation de Galerkin
classique. L’erreur de la solution est estimée par projection locale et les maillages sont
construits de fagon a réduire ['erreur en vitesse, n(k), In(e) et p, par un facteur 2 d'un

cycle d’adaptation a [’autre.

La figure 6.2 présente les maillages générés par la stratégie adaptative. Les
solutions obtenues sur le maillage initial et sur le maillage final sont représentée sur les
figures 6.3 et 6.4. On y remarque que les maillages adaptés ont une trés forte
concentration en aval du bord de fuite ainsi qu’'une forte concentration en deux bandes
obliques étroites correspondant aux fronts de n(k), in(e) et u,. Onremarque aussi une
nette amélioration de la solution entre les maillages initial et final, notamment prés du
bord de fuite. Les différentes variables sont représentés avec précision et les variations
de la solution, méme si elles sont par endroit trés rapides, sont trés bien capturées. A
noter I’amincissement de la solution prés du bord de fuite de la plaque ou les gradients

de la solution sont extrémement forts. Cela explique aussi la nécessité d'un fort
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raffinement du maillage dans cette région. La solution en k sur le mailiage final
présente un maximum plus constant sur la ligne de centre, ce qui est caractéristique d'un
écoulement turbulent similaire. Finalement, la viscosité turbulente présente bien une
variation linéaire sur la ligne de centre tel que prédit par la théorie simplifiée de la

couche limite [91].

Les figures 6.5, 6.6 et 6.7 illustrent le fonctionnement de [a méthodologie
adaptative. Tout d’abord on résout sur un maillage grossier, noté maillage - 0. La
solution obtenue est analysée et son erreur est évalué par la méthode de projection
locale. La figure 6.5 présente les iso-lignes des estimations d’erreur de la vitesse, des
variables logarithmiques et de la viscosité turbulente sur le maillage initial. L’estimation
d’erreur est ensuite utilisée pour prédire les caractéristiques du prochain maillage adapté
afin de réduire I’erreur par un facteur 2 pour chaque variable (vitesse, [n(k), In(e) et
k7). Finalement, on résout a nouveau sur le maillage adapté en utilisant |’ interpolation
de la solution précédente sur le maillage courant comme solution initiale. Ce processus

est ensuite répété jusqu’a ce que la solution obtenue soit suffisamment précise.

La figure 6.6 présente le premier maillage adapté, les iso-estimation d’erreur
pour la solution obtenue sur ce maillage et aussi le prochain maillage adapté (maillage-
2). La méme succession d’images, dans ce cas pour le maillage 2, (les erreurs qui
conduisent au maillage final), sont représentées dans la figure 6.7. L’erreur en vitesse
est le principal responsable du raffinement important observé prés du bord de fuite,
tandis que les variables de turbulence déterminent la concentration des points en deux
bandes obliques en aval de la plaque. Le ratio d’aire du plus grand au plus petit triangle
du maillage final est de 1.4x10% ce qui illustre la capacité du remaillage adaptatif

d’ajuster la discrétisation du domaine a la solution.

On notera pour ce probléme la ressemblance remarquable des distributions

d’erreur pour /n(k) et In(e). Cela indique que le passage au variable logarithmiques fait
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en sorte que les nouvelles variables dépendantes qui modélisent la turbulence ont le
méme comportement et leurs variations sont localisées au méme endroit. Cet effet n’est
pas étonnant étant donné que les variables logarithmiques sont reliées par une simple
opération de soustraction dans I’expression de la viscosité turbulente et non par une

division comme c’est le cas lorsque 1’on utilise k£ et ¢ comme variables dépendantes.

La figure 6.8 illustre I’effet du maillage sur la précision des prédictions en
vitesse. On présente les profils de vitesse axiale aux stations x=25, 50 et 100cm, et les
résultats obtenus expérimentalement par Spencer [92]. Un tel écoulement en couche
cisaillée présente la particularité d’avoir une solution dite de similitude. C’est & dire que
la solution est la méme pour toutes les valeurs de x 2 une dilatation de [’axe des y prés.
Dans la figure 6.8 ’abscisse est donnée par la variable adimensionnelle de similitude
n=(y-ys)/x. Dans cette formule x et y sont les coordonnées et y, |'ordonnée du
point ou U=(U,+U,)/2. L'ordonnée des graphes est la vitesse adimensionnelle. La
figure 6.8 montre clairement ’amélioration des prédictions résultant de |’adaptativité.
L’'effet est plus marqué a la premiere station, (x=25cm), ot la solution est plus

influencée par ce qui ce passe au voisinage du bord de fuite.

La figure 6.9 présente une comparaison des prédictions et des mesures de
I'énergie cinétique de turbulence k. Cette figure montre clairement que |’effet de
['adaptativité est plus prononcé sur k que sur u. Les prédictions numériques
s'approchent plus des valeurs expérimentales a la derniére station (x=/00) ou
I’écoulement est entierement développé. On remarque aussi que les solutions sur les
deux derniers maillages présentent peu de différences, ce qui nous permet de dire que

la solution finale est a tout fin utile indépendante du maillage.

La figure 6.10 méne aux mémes conclusions en ce qui concerne les profils du
tenseur de Reynolds uv. La contrainte turbulente est calculée a I’aide de la formule

suivante:



117

_pu“v=pT[g_;‘+%] 6.3)

C’est une quantité obtenue par différentiation numérique du champs de vitesse. Sa
prédiction sera donc beaucoup plus sensible au maillage que celle de u. La prédiction
est meilleure en x=100, 13 ot I’écoulement est similaire. Encore une fois on remarque
que la solution finale ne dépend plus vraiment du maillage et que les résultats
numériques s’approchent bien des valeurs expérimentales. Le léger décalage transversal
du maximum dans le profil du cisaillement a été déja observé pour le modéle k-¢ et ses

variantes a échelles de temps multiples [93].

Les figures 6.11 4 6.13 permettent d'apprécier |'effet de !’adaptativité sur la
tendance de la solution de devenir similaire. On présente pour le maillage initial et le
maillage final les profils de vitesse, de k et de uv aux trois stations. Pour une solution
similaire les courbes a différents endroits doivent se superposer. On voit que de ce
point de vue la solution est nettement améliorée par [’adaptativité. Pourtant, méme la
solution obtenue sur le maillage le plus fin n’est pas parfaitement similaire. Les
différences minimes entre les solutions obtenues sur les deux derniers maillages nous
permettent cependant de constater que la solution finale est pratiquement indépendante

du maillage.

Cet écoulement a été précédemment résolu par I’auteur a I’aide d'une formulation
en variables k et ¢ [86]. Le passage aux variables logarithmiques permet de démarrer
les calculs sur des maillages sensiblement plus grossiers, le bénéfice de 1’adaptativité en
étant d’autant augmenté. De plus, les solutions obtenues en variables logarithmiques
sont nettement plus précises que celles basées sur une résolution en k et e. La
robustesse accrue de I’algorithme de résolution et la diminution du temps de calcul sont
d’autres avantages issus du passage aux variables logarithmiques, qui méritent d’étre

mentionnés.
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Comme on a pu le constater sur les figures 6.3 et 6.4, la solution sur le maillage
initial est entachée d’oscillations surtout en vitesse. Rappelons que cette solution a été
obtenue par une méthode de Galerkin, donc sans termes de stabilisation. Nous avons
aussi résolu le probléme sur le maillage initial a I’aide d’une formulation Galerkin-
moindre carré (GLS) afin de mettre en évidence !’effet des termes de stabilisation et
d’'upwinding. La solution obtenue est comparée a la solution Galerkin dans les figures
6.14 et 6.15. La méthode GLS conduit & une solution plus propre et cela surtout sur
les maillages grossiers comme c’est le cas du maillage initial utilisé pour ce probléme.
On se pose alors la question: cela a-t-il du sens de faire encore appel a une méthode de
Galerkin lorsqu’on sait que les termes de stabilisation GLS réduisent les oscillations tout
en conservant une formulation résiduelle? Pour étre vraiment en mesure de répondre

a cette question il faut analyser d’avantage le comportement des deux méthodes.

Notons d’abord que la solution du probléme a résoudre contient une singularité
au bord de fuite de la plaque qui sépare les deux couches de fluide. Les vitesses des
deux cotés de la plaque sont différentes et les gradients de vitesse sont de plus en plus
forts lorsque la taille des éléments diminue au voisinage du bord de fuite. Cela
détermine aussi une augmentation accrue du terme de production dans les équations de
transport pour les variables de turbulence. Comme effet, on remarque une augmentation
du maximum de k et ¢ avec le raffinement du maillage. De plus, le maximum est
atteint dans le premier élément en aval du bord de fuite, ce qui détermine des gradients
extrémement élevés pour les variables de turbulence. Si & est la taille du premier
élément apreés le bord de fuite, alors les gradients de k et € varient en ce point comme
1/h, et leur dérivée seconde comme I/h*. Dans le processus adaptatif, 1’estimateur
d’erreur détecte une erreur ftrés importante dans cette région et commande une
diminution de la taille des éléments. Les gradients des variables de turbulence
deviennent alors encore plus élevés. On constate alors que 1'erreur estimée dans cette
région ne diminue pas avec le raffinement du maillage, méme si la solution est de mieux

en mieux représentée. D’autre part la présence de la singularité affecte beaucoup le
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comportement des méthodes stabilisées telles SUPG et GLS. Rappelons que ces
méthodes font appel au résidu fort des équations qui fait apparaitre les dérivées
secondes. Celles-ci varient comme //h? au voisinage de la singularité et prennent alors
des valeurs extrémement €levées. L’effet net est que lorsque la taille du maillage
diminue trop au voisinage du point singulier, les méthodes SUPG et GLS empéchent

I'algorithme itératif de converger.

En conclusion, on peut dire que les méthodes stabilisées sont nettement
supérieures sur les maillages grossiers. Pourtant, lorsque le nombre de Reynolds n’est
pas trop élevé, les différences entre les solutions SUPG, GLS d’une part et la solution
Galerkin de I'autre diminuent considérablement avec le raffinement du maillage.
Finalement, comme on a déja mentionné, les méthodes stabilisées sont incapables de

converger sur des maillages trés raffinés au voisinage d’une singularité.

Une autre série de calculs a été complétée afin d’évaluer I’influence des
conditions limite 4 I’entrée sur le comportement de I’algorithme adaptatif et sur la nature
de la solution. Pour ce probléme, qu’on appele Prob2, le niveau de I’énergie cinétique
de turbulence en entrée a été fixé 4 0.2% (@=0.002) pour la couche rapide et respectif
40.33% (2a=0.0033) pour la couche a basse vitesse. Dans la partie non-perturbée de
I’écoulement le nombre de Reynolds est alors autour de 1000 dans la partie & haut
vitesse et autour de 2500 du coté basse vitesse. Ces conditions représentent une
meilleure approche vis-a-vis les expériences, qui comportent un niveau de turbulence en

entrée situé entre 0.1 et 0.5%.

Ce probléme est plus difficile a résoudre et seulement les méthodes stabilisées
ont pu le traiter. Les calculs ont ét€ complétés a I'aide d’une formulation GLS pour les
équations de Navier-Stokes. Les équations de transport des variables logarithmiques ont
été résolues par une formulation SUPG incompléte, qui ne fait donc pas appel aux

dérivées secondes des variables. Méme si cette méthode n’est pas résiduelle, elle
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demeure une bonne approximation de la méthode SUPG car [’écoulement est trés peut
visqueux. Une premiére solution a été obtenue sur le maillage 1. Les maillages
suivants ont été régénéré afin de mieux s’adapter au nouveau probléme a résoudre. La
succession de maillages obtenus est présentée dans la figure 6.16. On remarque cette
fois une concentration asymétrique des points dans les deux bandes obliques
correspondantes aux fronts dans les variables de turbulence. Cela reflet ie fait que la

nature de la solution a changé.

Les solutions obtenues sur le maillage 1 et sur le maillage final adapté sont
présentées dans les figure 6.17 et 6.18. Rappelons que cette fois les solutions sont
obtenues par des méthodes stabilisées. Notons d’abord une nette amélioration de la
solution entre les deux maillages. La solution finale est extrémement propre grace a une
concentration optimale des points dans les régions ou la solution varie le plus. On
remarque aussi que dans les deux couches obliques les gradients des variables

logarithmiques sont plus forts qu’ils ne I’étaient pour le probléme Probl.

Les solutions finales des deux calculs, Probl et respectif Prob2, sont comparées
dans les figures 6.19 a 6.24. La figure 6.19 présente les profils de la vitesse
longitudinale aux trois stations de controle, soit & x=25, x=50 et x=100. Les valeurs
sont représentées en fonctions des variables de similitude comme décrit précédemment.
On remarque que la solution Prob2 approche mieux les valeurs expérimentale et ¢a
surtout aux deux premiéres stations. Les figure 6.20 et 6.21 comparent les deux
solutions pour I’énergie cinétique de la turbulence et les contraintes turbulentes. On
remarque une nette amélioration de la prédiction en k 4 x=50 et 2 x=100. En ce qui
concerne les contraintes turbulentes on remarque que I’écart par rapport aux valeurs
expérimentales a diminué. Le maximum est sous-estimé, mais c’est aussi le cas pour

la solution Probl a la station x=100.

Finalement les figures 6.22 a 6.24 nous permettent d’apprécier si les deux
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solutions s’approchent d’une solution similaire. Les différences sont moins marquées
aux niveau de la vitesse (figure 6.22). Pourtant k et le cisaillement turbulent
s’approchent plus de la similitude dans le cas du probléme Prob2. L'amélioration des
prédictions de la solution Prob2 par rapport & Probl est plus marquée sur ces figures.
Notons aussi I’asymétrie du profil de cisaillement turbulent, telle que remarquée aussi
dans le cas des valeurs expérimentales. Duncan [93] affirmait que le modéle k-€ est
incapable de reproduire cette asymétrie. Des conditions limites appropriées semblent

permettre au modéle k-¢ de reproduire ce comportement.

On remarque donc que les conditions en entrée pour les variables de turbulence
sont déterminantes pour la nature de la solution. Le changement de ces conditions a un
effet direct sur la solution qui dépend surtout du niveau de la viscosité turbulente en

entrée.
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Figure 6.2 Couche cisaillée - Maillages engendrés par la stratégie adaptative
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Solution obtenue sur le maillage initial Solution obtenue sur le maillage final
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Figure 6.3 Solution sur le maillage initial et sur le maillage final: vitesse u, vitesse v

et viscosité turbulente
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Solution obtenue sur le maillage final
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Figure 6.4 Solution sur le maillage initial et sur le maillage final: In(k), k, In(€), €
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Figure 6.5 Maillage initial, estimation de 'erreur et premier maillage adapté
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Figure 6.6 Maillage 1, estimation de I'erreur et deuxiéme maillage adapté
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Figure 6.7 Maillage 2, estimation de l’erreur et maillage final
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Galerkin GLS

Vitesse u Vitesse u

Vitesse v Vitesse v

Viscosité turbulente Viscosité turbulente

Figure 6.14 Solutions en formulation Galerkin et GLS: vitesse u, vitesse v et viscosité
turbulente
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Galerkin GLS

Figure 6.15 Solutions en formulation Galerkin et GLS: In(k), k, In(€), €
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Cycle - 1

Cycle - 2

Cycle - 3

Figure 6.16 Couche cisaillée, calcul Prob2 - Maillages adaptés



137

Solution obtenue sur le maillage 1 Solution obtenue sur le maillage final

Vitesse u Vitesse u

Vitesse v Vitesse v

e PSS = |

Viscosité turbulente Viscosité turbulente

Figure 6.17 Calcul Prob2; Solution sur le maillage 1 et sur le maillage final: vitesse
u, vitesse v et viscosité turbulente
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Solution obtenue sur le maillage 1 Solution obtenue sur le maillage final

inCk) S In(k)

S —

In(e) l In(e)

—T ————
€ €

Figure 6.18 Calcul Prob2; Solution sur le maillage 1 et sur le maillage final: In(k), k,
In(e), €
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Figure 6.22 Influence des conditions limite a I'entrée sur la similitude de la solution
en vitesse
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Maillage final - Solution Probl
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Figure 6.23 Influence des conditions limite a I'entrée sur la similitude de la solution
en k
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Figure 6.24 Influence des conditions limite & l'entrée sur la similitude des valeurs des
contraintes turbulentes
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6.2. Marche descendante de Kim

Ce probléme a fait I'objet d’une étude expérimentale par Kim (94]. Ils’agitd’un
écoulement turbulent sur une marche descendante. La figure 6.16 illustre la géométrie

du domaine de calcul, les conditions limites et les distances utilisées dans la loi de paroi.

4)

= @ Y

Q) =x 3

entrée: L,=2.0HT Paroi (1): L,=4HT , v=0, d=0.01 sortie: L, =3.0HT

u=1.0 Paroi (2): L,= HT , u=0, d=0.02 u = libre
v = 0.0 . T _ _ v = 0.0
k= 0.02 Paroi (3): L,=20HT, v=0, d=0.01 k = libre
e = 0.01524  Paroi (4): L,=24HT, v=0, d=0.01 e = libre

Figure 6.25 Marche descendante de Kim: Domaine de calcul et conditions aux limites

De nombreux résultats numériques obtenus 4 l'aide du modéle k-¢ ont éié
présentés a la Conférence de Stanford sur les écoulements turbuients [95-98]. Une revue
des différents essais numériques et une analyse des modéles de turbulence utilisés est

faite par Nallasamy [99].

La présence du coin de la marche engendre une forte couche cisaillée dont le
comportement ressemble beaucoup & la couche cisaillée étudiée par Patel [100], les
principales différences étant que I’écoulement est confiné et qu’une zone de recirculation
importante existe en aval de la marche. Le nombre de Reynolds basé sur la vitesse
moyenne en entrée et sur ’hauteur de la marche est Re = (U -HT)/v =47,625. La
distance a la paroi est telle que la valeur de la coordonnées adimensionnelle y* est

comprise entre 30 et 60, donc dans le domaine de validité de la loi logarithmique. Les
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parois sont toutes horizontales ou verticales et donc on impose soit la vitesse «, soit la
vitesse v égale a zéro. Sur le coin de la marche on impose que la vitesse verticale v soit
nulle et on calcule seulement la composante axiale de la vitesse. Le niveau de
turbulence a I’entrée est fixé 3 2% et la valeur de la condition de Dirichlet pour e est
déterminée i 1’aide de la rélation (6.2). A noter que la solution du modéle k-¢€ est a
nouveau singuliére, cette fois au voisinage du coin de la marche. Par conséquent on
s’attend a ce que les méthodes stabilisées acceptent mal un raffinement trés important

autour du point singulier.

Les calculs ont été effectuées par la méthode de Galerkin. Les équations de
turbulence sont résolues en variables logarithmiques. L’erreur est estimée par projection
locale et on cherche a diminuer & chaque cycle adaptatif 1’erreur en vitesse, In(k), in(e)

et u, par un facteur 2.

La figure 6.26 présente les maillages engendrés par la stratégie adaptative. Le
maillage initial est extrémement grossier, avec une distribution de taille uniforme. Il
comporte 4 éléments en entrée et seulement 2 (!!) sur la hauteur de la marche.
L’utilisation des variables logarithmiques est entiérement responsable du fait que
I’obtention d’une solution convergée est devenue possible méme sur des maillages si
grossiers. La figure 6.27 présente la solution obtenue sur le maillage initial: les deux
composantes de vitesse, les variables logarithmiques, «, € et ¢,.. Méme si cette solution
n’est pas de trés bonne qualité, elle est trés utile pour le processus adaptatif et indique
les régions qui nécessitent un raffinement du maillage. La solution sur le maillage final
est représentée sur la figure 6.28. On notera la qualité¢ exceptionnelle de la solution.
Les iso-lignes sont nettes et lisses, ce qui est d’autant plus remarquable étant donné que
cette solution est obtenue par une méthode de Galerkin. On remarque aussi le fait que
les maillages adaptés suivent de prés le comportement de la solution. Les points sont
concentrés surtout autour du coin de la marche 12 ou la solution présente des trés forts

gradients, dans la couche cisaillée développée en aval du coin, de méme que dans la
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couche limite le long des parois solides.

La figure 6.29 présente les erreurs estimées pour la solution obtenue sur le
maillage initial et aussi le premier maillage adapté, résuitant de I’adaptation tentant de
réduire ces erreurs par un facteur 2. La figure 6.30 présente la méme chose, mais cette
fois pour la solution obtenue sur le maillage 1. On remarque que !’erreur en vitesse est
entiérement concentrée au voisinage du coin de la marche. Un module adaptatif qui
aurait tenu compte uniquement de [’erreur en vitesse aurait conduit 3 des maillages
raffinés seulement autour du point singulier. Cependant, on remarque que |’estimation
d’erreur pour les variable logarithmiques est plus sensible dans la couche cisaillée
développée aprés le coin. L’estimation d’erreur en u,. est sensible elle aussi a la couche

cisaillée et elle est aussi responsable du raffinement observé dans la couche limite.

Les figures 6.31 & 6.34 présentent une comparaison des prédictions de la vitesse
axiale u obtenues sur les différentes maillages adaptés avec les mesures expérimentales.
Les profils de vitesse sont représentés a 8 stations de contrdle ou les données
expérimentales sont disponibles. Sur |’abscisse on représente la vitesse 4 normalisée par
sa valeur maximale a la section courante et en ordonnée on trouve la coordonnée v
adimesionalisée par la hauteur de la marche. On notera que nos courbes n’atteignent pas
les parois inférieure (y/HT=0) et supérieure (y/HT =2, respectivement 3 en aval du coin
de la marche). Ceci est du au fait que le maillage se termine a une distance d de la

paroi solide, a cause de I'usage de la loi de paroi.

A la premiére station (x/HT=-4) on constate que l’accord avec les valeurs
expérimentales n’est pas trés bon. Cela est en grande partie du au fait que cette section
est tout prés de ’entrée, localisée a x/HT=-5, ou toutes les conditions limite pour les
variables prennent des valeurs constantes (profil plat de vitesse, ket €). L’accord avec
I’expérience s’améliore a x/HT=-1 et est encore meilleur & x/HT=0, au fur a mesure

que le profil de vitesse se développe dans le canal.
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Les coupes aux sections x/HT=4/3, 8/3, et 16/3 se trouvent dans la zone de
recirculation. En x/HT=4/3 les prédictions sont trés bonnes sauf dans la zone de
recirculation ou les calculs reproduisent mal la position du maximum de la vitesse 3
contre-courant. On note une excellente représentation du genoux du profil de vitesse.
L’effet de 1’adaptativité est bien visible et on peut constater que la solution sur le dernier

maillage ne dépend plus de la discrétisation.

La figure 6.34 représente les profils de vitesse obtenues aux 2 derniéres stations.
A x/HT=24/3 I’accord avec I’expérience est bon. La section x/HT=48/3 se trouve tout
prés de la sortie du domaine ou nous sommes forcés d’imposer de conditions aux limites
(v=0, Neumann homogénes en «, In(k) et In(e)). Il n’est donc pas surprenant que les
prédictions ne concordent pas trés bien avec les mesures. La longueur de la zone de

recirculation pour les différentes maillages est résumé dans le tableau 6.1.

Tableau 6.1 Longueur de la zone de recirculation

Calcul/Expérience Longueur % d’erreur
Expérience 7.0+1.0 -
Mansour et Morel [95] 5.2 26
Pollard [96] 5.88 16
Rodi et al [97] 5.8 17
Spalding et al [98] 6.0 14
Maillage - 0 5.2 26
Maillage - 1 5.42 22.5
Maillage - 2 5.92 15.4
Maillage - 3 6.12 12.5
Maillage - 4 6.2 11.4
Maillage - § 6.19 11.5
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Les résultats présents doivent étre considérés comme bons étant donnée I’extréme
variation rapportée par différents auteurs utilisant le modéle k-¢ pour ce type
d’écoulement [99]. On remarque encore une fois que les différences sont minimes entre

les derniers maillages et que [’adaptativité améliore constamment les résultats.

Les figures 6.35 a 6.39 présentent une comparaison des prédictions de 1'énergie
cinétique de turbulence k avec les mesures expérimentales. Kim ne rapporte des
mesures que pour #’° et v/>. La détermination de la valeur exacte de k est donc
incertaine. Nous avons adopté k = %(E’ ?+v’?) et normalisé les profils de k par la
valeur maximale relevée en chaque section. On notera ['effet trés marqué de
I’adaprativité aux sections x/HT=1.0 et 2.3 (figure 6.35) qui se trouvent dans la région
initiale de la couche cisaillée. On constate une amélioration de la prédiction de la
position du maximum de X ainsi que de [’épaisseur de la couche cisaillée. Ceci est
particulierement évident a la section x/HT=1.0 ot le pic de & est nettement plus mince
sur le maillage final que sur le millage initial. Dans cette région la couche cisaillée est
trés mince. Le terme de production de & est donc trés important mais décroit trés
rapidement dés que I’on s’éloigne de la couche cisaillée. Ceci correspond parfaitement

a I’amincissement des couches cisaillées en « et v observées 4 la figure 6.28.

Plus en aval, aux sections x/HT=4.1 et 5.8 de la figure 6.36, l'effet de
I’adaptativité est plus faible. On note que la position du maximum de k est légérement
décalée par rapport aux mesures expérimentales, le front prédit entre y/HT=1 et
y/HT=2 est moins étalé que celui mesuré. Ces sections se trouvent au voisinage du
point de recollement qui est reconnu comme €étant trés difficile & prédire. La situation
est la méme en x/HT=6.7 (figure 6.37). En aval du point de recollement, aux sections
x/HT=7.6, 8.5 et 10.3, la position du maximum de & est bonne. Ici encore le front
prédit numériquement est moins étalé que celui mesuré. Cette prédiction numérique
d’un niveau réduit de diffusion de k a déja été observée dans le cas de la couche cisaillée

de Patel tant avec notre méthode d’éléments finis adaptative [86], qu’avec une méthode
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de différences finis sur un maillage trés fin [93]. Cette observation sur la diffusion

réduite de k tient aussi pour plusieurs variantes du modéle k—e [93].

La qualité des prédictions de k en x/HT=13.0 et 15.6 doit étre considérée
comme moyenne. Nos résultats concordent raisonnablement bien avec ceux de

Thangham et Hur [101] et Speziale et Tuan [102].

Les figure 6.40 & 6.44 présentent une comparaison des prédictions de la
composante 4v du tenseur de Reynolds avec les mesures expérimentales. La
composante dominante du cisaillement turbulent, uv = p, ? + % , est obtenue par
différentiation du champ de vitesse. Elle est donc plus se)l"lsible au maillage que la
vitesse u. L’effet de I’adaptativité du maillage est particuliérement évident aux figures
6.40-6.43. 1l est d’autant plus marqué qu’on est proche du coin; c’est a dire dans la
région initiale de la couche cisaillée trés mince émanant du coin. Les sections x/HT=1
et 2.3 a la figure 6.40 montrent le trés fort amincissement de la couche cisaillée due i

[’adaptativité.

D’une fagon générale on prédit une valeur du pic de puv plus grande que celle
mesurée pour les sections en amont du point de recollement (sections x/HT=1, 2.3, 4.1
et 6.7 aux figures 6.40, 6.41 et 6.42). La valeur des pics aux sections en aval du point
de recollement est inférieure a la valeur mesurée. L’étonnant accord entre prédictions
et mesures en x/HT =7.6 est probablement une coincidence étant donné le comportement
observé en amont et en aval. On peut néanmoins dire que les prédictions de uv sont
qualitativement correctes et en accord avec la revue bibliographique de diverses

prédictions rapportée par Nallasamy [99].

Afin d’évaluer ['influence des conditions limite en entrée pour les variables de
turbulence nous avons compléter une deuxiéme série de calculs, noté Prob2 (le calcul

précédent portera le nom Probl). Dans ce cas le niveau de turbulence en entrée est fixé
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40.2% et le nombre de Reynolds basé sur la viscosité turbulente en entrée est de 5000.
La résolution est faite cette fois par une méthode GLS appliquée aux équations de
Navier-Stokes et une formulation SUPG-incomplet pour les équations des variables de
turbulence. Les calculs sont réalisés sur les maillages engendrés précédemment dans le
calcul Probl. Les valeurs obtenues cette fois pour la longueur de la zone de
recirculation sont présentées dans le tableau 6.2. Notons une dépendance du maillage
moins marquée que dans le cas précédent. La valeur finale de 6.46 est encore plus
proche de 7 qui est la valeur obtenue dans I’expérience de Kim. Cela ne signifie
nécessairement que la solution Prob2 est meilleure que la solution Probl, mais plutdt
met en évidence I’effet des conditions imposées en entrée aux variables turbulentes sur

la solution.

Tableau 6.2 Longueur de la zone de recirculation - calcul Prob2

Calcul/Expérience Longueur % d’erreur
Expérience 7.0+1.0 -
Maillage - 2 6.43 8.1
Maillage - 3 6.43 8.1
Maillage - 4 6.47 7.6
Maillage - § 6.46 7.7

La solution finale est présentée dans la figure 6.45. On remarque que les
gradients sont plus forts dans la couche limite proche des parois et aussi dans la couche
cisaillée comme résultat de la diminution de la viscosité turbulente dans le canal qui
précéde la marche. Pourtant la solution se compare bien a la solution du probléme
Probl et la nature de I'écoulement dans la zone de recirculation ne semble pas étre

affectée par le changement dans les conditions en entrée.
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Les figures 6.46 & 6.48 comparent les profils de vitesse obtenus dans les deux
cas. On remarque que la principale différence consiste dans la courbure différente au
niveau du genou, a la limite de la couche cisaillée. Le fait que la solution Probl
approche mieux les valeurs expérimentales a cet endroit laisse penser que ces conditions

en entrée sont plus proche de conditions rencontrées dans I’expérience.

Les figures 6.49 et 6.50 présentent une comparaison entre les profils de 1’énergie
cinétique de turbulence obtenus dans les deux cas. Les différences sont minimes sauf
dans la région non-perturbée de 1’écoulement, (x/HT entre 1.5 et 2.5), ou les valeurs
sont déterminées en grande partie par le niveau de turbulence imposé en entrée. Les
figures 6.51 et 6.52 comparent cette fois les distributions du cisaillement turbulent.
Encore une fois les différence sont minimes. Le cisaillement turbulent est toujours

surestimé dans la zone de recirculation.
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Figure 6.27 Marche descendante de Kim - Solution sur le maillage initial
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Figure 6.29 Estimation de I'erreur sur le maillage initial
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6.3. Ecoulement autour d’un profil NACA0012

L’écoulement autour du profil NACAQO12 est un cas test amplement rencontré
en aérodynamique. La géométrie du profil est déterminée par ’expression analytique

suivante:

y=5€(0.2969yx -0.126x -0.3537x>+0.2843x° -0.1015x*) (6.4)

ol x, y sont les coordonnées adimensionalisées par rapport a la corde du profil ¢, et e
représente 1'épaisseur relative du profil e=0./12. Des mesures expérimentales du
coefficient de pression sont disponibles dans la référence [103]. Les données
expérimentales correspondent a des écoulements compressibles a des nombres de Mach
qui varient entre M=0.3 et M=0.83. Comme nos calculs sont effectués pour un
écoulement incompressible, nous avons considéré comme référence les mesures
expérimentales 3 M=0.3 ou les effets de compressibilité sont réduits. Nous avons
compléter deux séries de calculs: la premiére correspond a un angle d’incidence nul,

a=0°, et la deuxiéme correspond & «=3.59°.

6.3.1. Ecoulement 4 angle d’incidence nul

Pour ce cas le nombre de Reynolds basé sur la vitesse a 1'infini et la corde du
profil est Re=1.85x10°. La géométrie est adimensionalisée par rapport a la corde du
profil. L’entrée du domaine de calcul se situe a 10 cordes en amont du profil, la sortie
se trouve a 10 cordes en aval du profil. Finalement, les limites supérieure et inférieure

du domaine sont placées a 8 cordes par rapport au profil.

Dans nos calculs toutes les variables sont adimensionalisées. Les valeurs de
référence sont U_ pour la vitesse, U2 pour I’énergie cinétique de la turbulence et Ullc

pour e. On impose les différentes valeurs des variables en entrée, soit u=1, v=0,
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k=1.6x10?, ¢ =6x10~. Toutes les autres frontiéres ont des conditions libres pour toutes
les variables. Sur le profil on utilise une loi de paroi avec une distance & la paroi de
d=0.001. La condition de tangence est imposée en sens faible, donc on impose que le
débit soit nul sur chaque face des éléments situés sur le profil. On notera que le
probléme a résoudre est symétrique et qu’a aucun moment le maillage n’est contraint a
étre symétrique. Le domaine de calcul est discrétisé au complet et le maillage est

engendré uniquement a partir de la distribution de taille prescrite.

La résolution est faite en variables logarithmiques a 1’aide d’une formulation
Galerkin moindre carré. Le calcul démarre sur un maillage trés grossier, qui a
seulement 17 éléments de chaque coté du profil. A chaque étape adaptative on cherche

a diminuer les erreurs en vitesse, pression, In(k), In(e) et p, par un facteur 2.

Dans la figure 6.53 on présente les maillages engendrés par la stratégie
adaptative dans une région autour du profil. L’effet de ['adaptativité est remarquable.
Les points du maillage sont initialement concentrés autour du bord d’attaque et du bord
de fuite du profil. Ce raffinement est en grande mesure déterminé par ’erreur en
vitesse. Le maillage est ensuite raffiné dans la couche limite prés du profil pour
capturer les variations trés rapides en vitesse, dans les variables logarithmiques et dans

la viscosité turbulente.

La figure 6.54 présente une vue d’ensemble des maillages initial et final. Le
maillage final est considérablement raffiné autour du profil, mais aussi dans son sillage
en aval. On remarque aussi qu’en amont du profil [a transition dans la taille des
éléments est progressive. Ceci est déterminé par l'erreur en pression qui est plus
exigeante dans les régions éloignées du profil, cette variable étant discrétisée par des

fonctions linéaires.

La solution obtenue sur le maillage final est représentée dans la figure 6.55. On
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présente les composantes « et v de la vitesse, la pression, la viscosité turbulente et les
variables logarithmiques. La solution du probléme devrait étre symétrique par rapport
a I’axe des x. On remarque que, méme si le maillage n’est pas symétrique, la solution
numérique 1’'est & tout fin utile. Rappelons que la pression est discrétisée par des
fonctions discontinues. On peut donc mesurer la qualité de la solution en regardant les
isobares qui sont presque continues. Une analyse plus détaillée de ['influence de la
formulation élément finis et de l'avantage apporté par I’utilisation des variables

logarithmiques sera présentée pour |’écoulement avec incidence.

La figure 6.56 présente les courbes de coefficient de pression sur I’extrados du
profil, qui sont comparées aux mesures expérimentales. Rappelons que I'expérience est
réalisée 3 M=0.3. La théorie des petites perturbations indique que le coefficient de

pression incompressible est donné par:

C,. = CJ1-M* (6.5)
ol C, est le coefficient de pression dans I’écoulement compressible et M est le nombre
de Mach local. Dans ce cas la correction de compressibilité représente environ 5% de
la valeur du coefficient de pression, ce qui explique les différences entre la solution
numérique et les valeurs expérimentales. Outre ce fait, on peut remarquer que la
solution s’améliore a chaque cycle d’adaptativité. Les différences entre les deux

derniers maillages adaptés sont invisibles sur cette figure.
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Figure 6.53 Profil NACAQ012, =0% Maillages engendrés par la stratégie adaptative
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Figure 6.54 Profil NACAO0012, «=0° Maillage initial et maillage final
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6.3.2. Ecoulement avec incidence

Le nombre de Reynolds pour ce probléme est Re=1.86x10°. Le domaine de
calcul est le méme que celui utilisé dans le cas précédent. On impose toujours des
conditions de Dirichlet & I’entrée, les composantes de vitesse étant calculées cette fois
pour que I’écoulement fasse un angle de 3.59° dégrées avec 1’axe du profil (I’axe des
X). Sur toutes les autres frontiéres les conditions aux limites sont de type Neumann
nulles. Les variables turbulentes en entrée sont k=1.6x107, e =6x10%, ce qui fait en
sorte que ['écoulement est assez visqueux (Re;=260). De cette fagon on pourra utiliser
et comparer toutes les formulations éléments finis stabilisées de méme que la méthode
de Galerkin. La distances a la paroi pour la loi de paroi est 4=0.001. Notons que ce
calcul reproduit les conditions de ’expérience réalisée & o =4, la différence entre les

deux angles d’incidence étant déterminée par la correction de paroi due 4 la soufflerie.

Dans la figure 6.57 on présente les maillages engendrés par l'adaptativité au
voisinage du profil. Comme dans le cas précédent, le maillage est raffiné d’abord
autour des bords d’attaque et de fuite, et ensuite dans la couche limite au long du profil
et finalement dans le sillage. La qualité des maillages adaptés et le raffinement dans la
couche limite sont remarquables. Notons que I'introduction de 1'erreur en pression dans
la stratégie adaptative est responsable de la transition progressive dans la taille des
éléments en amont du profil. Le raffinement dans la couche limite et dans le sillage est

du aux variables logarithmiques et a la viscosité turbulente.

Les solutions obtenues sur les différentes maillages sont représentées dans les
figures 6.58 a 6.63. Les figures 6.58 et 6.59 présentent les deux composantes de
vitesse. L’amélioration de la solution due a 1’adaptativité est trés nette. Sur le maillage
final on capture trés bien les variations rapides dans la solution autour du bord d’attaque
du profil, prés du bord de fuite et dans la couche limite. La figure 6.60 présente la
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distribution de pression sur les différents maillages. Encore une fois I’adaptativité
améliore remarquablement les prédictions numériques, les lignes isobares étant presque
continues sur le maillage final. La méme succession d’images, cette fois pour la
viscosité turbulente, est présentée dans la figure 6.61. On remarque que méme si le
premier maillage est trés grossier, la solution obtenue sur ce maillage indique
correctement les principales zones de variation dans la solution autour du profil.
L’utilisation des variables logarithmiques est encore une fois déterminante dans le succés
du résoluteur sur un maillage si grossier. Non seulement on obtient une solution sur un
tel maillage, mais en plus cette solution est suffisamment lisse pour permettre de
démarrer correctement le processus adaptatif. Cependant, on remarquera que les
variations dans la couche limite ne sont bien reproduites que sur les deux derniers
maillages. On notera aussi que pour ce probléme le nombre de Reynolds trés élevé
cause un amincissement considérable de la couche limite. La résolution devient alors
d’autant plus difficile a cause du fait que dans la couche limite les variations des

variables sont extrémement rapides.

Sur les figures 6.62 et 6.63 on présente les distribution des variables de
turbulence. A gauche on présente k et e respectivement, tandis qu'a droite on retrouve
leurs logarithmes naturels. Les solutions correspondent au maitlage initial, au deuxiéme
maillage adapté et au maillage final. Les solutions sur le dernier maillage sont de trés
bonne qualité autant pour [n(k), que pour /n(e). Outre ce fait, on remarque une nette
différence entre les variations de k et d’e d’une part et celles de In(k) et In(e) de
I’autre. On peut voir dans la figure 6.63 que le logarithme d’e a une variation qui
s’étale sur une région assez vaste autour du profil, tandis qu’e varie trés rapidement
dans une mince couche d’éléments autour du bord d’attaque. Une résolution en (k,¢)
comme variables dépendantes doit composer avec ces variations de k et d’e autour du
bord d’attaque qui rendent la résolution extrémement difficile. A vrai dire lorsque Ia
résolution 3 été faite en k et ¢ notre code a souvent été incapable d’obtenir des solutions

pour certains problémes. C’est le cas des maillages grossiers, mais aussi de certains
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problémes ou € varie extrémement rapidement comme c’est le cas ici. On peut donc
en conclure que I'utilisation des variables logarithmiques a un effet bénéfique au niveau
de '’ensemble de [’algorithme adaptatif. Elle peut méme étre essentielle au succés des

calculs sur certaines configurations.

La figure 6.64 présente les distributions du coefficient de pression au long du
profil, pour les différents maillages. Les prédictions sont rapidement améliorées par
I’adaptativité et on remarque des différences minimes entre les solutions obtenues sur
les derniérs maillages. Encore une fois les différences par rapport aux mesures
expérimentales sont expliquées dans une certaine mesure par les effets de

compressibilité.

Finalement, afin d’évaluer les pertormances des différentes formulations éléments
finis, nous avons résolu ce probléme sur le troisiéme maillage par toutes les formulations
implantées, soit Galerkin, SU, SUPG incomplet, SUPG et GLS. Les courbes de C,
obtenues sont tracées dans la figure 6.65 et un détail de la région de vitesse maximale
est présenté dans la figure 6.66. On remarque d’abord que de toutes ces courbes, celle
qui correspond a GLS est la plus lisse. Ceci résulte du fait que dans cette formulation
toutes les équations, y compris |’équation de continuité, sont stabilisées par moindres
carrés. Qutre ce fait, la solution Galerkin est la plus proche de la solution GLS; elle
est suivie par la méthode SUPG. Ces trois formulations sont d’ailleurs résiduelles et
leurs solutions convergent vers la solution exacte avec le raffinement du maillage. La
solution SUPG-incomplet est assez proche de la solution SUPG. Méme si elle n’est pas
résiduelle, elle a I'avantage de ne pas inclure les dérivées secondes dans le résidu fort
et par conséquent elle est plus robuste en présence de singularités. La solution SU est
loin des autres et on voit clairement que cette technique fausse les résultats par

I"inclusion d’une viscosité artificielle.

Afin d’apprécier I’influence de conditions en entrée sur la solution nous avons



186

complété trois autres séries de calcul, Prob2, Prob3, Prob4, (le calcul précédent est
appelé Prob1l), en variant le niveau de turbulence et de la viscosité turbulente en entrée.

Les valeurs utilisées sont présentées dans le tableau 6.3.

Tableau 6.3 Conditions en entrée pour les variables turbulentes

Calcul K pirie Br,. .

Probl 1.6x1073 0.00384
Prob2 1.0x10* 0.9x10*
Prob3 1.0x1073 0.9x103
Prob4 1.0x10¢ 0.9x10%

Les maillages ont été régénérés a partir du cycle 2 pour les conditions de la
solution du probléme Prob2. Les maillage obtenus sont présentés dans la figure 6.67.
On remarque a nouveau un trés forte concentration dans la couche limite de méme que
dans le sillage développé en aval du profil. Une vue d’ensemble du maillage final est
présentée dans la figure 6.68. L’effet de |'adaptativité est remarquable; ia concentration
de points est une illustration des régions de forts gradients dans la solution. Notons que

le rapport entre I’aire du plus gros et du plus petit triangle est de 1.6x10".

Les figure 6.69 4 6.71 illustrent I'évolution de la solution dans les variables de
turbulence lorsque les conditions en entrée sont modifiées. On remarque
I’amincissement de la région de forts gradients autour du profil. Notons aussi la
ressemblance entre les distribution des variables logarithmiques (In(k) et In(e)) ce qui
augmente |’efficacité du processus adaptatif, leurs erreurs étant concentrées aux mémes
endroits. Quant a la viscosité turbulente, on remarque une diminution du maximum

dans la solution lorsque le niveau de turbulence baisse en amont du profil. La viscosité
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turbulente maximale diminue entre les solutions Prob2 et Prob4 par un facteur 6 pour
une diminution des valeurs en entrée par un facteur de 100. Notons aussi le fait que la
solution du probléme Prob4 correspond a un écoulement pratiquement non-visqueux sauf

dans la couche limite et dans le sillage.

Finalement, la figure 6.72 présente I’influence du niveau de turbulence en entrée
sur la distribution du coefficient de pression. Les prédictions numériques s’approchent
de plus en plus des valeurs expérimentales lorsque le niveau de turbulence baisse en
amont du profil. La solution du probléme Prob4 est excellente, les différences par

rapport aux mesures étant attribuables entiérement aux effets de compressibilité.
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Figure 6.68 Profil NACA0012, &=3.59°: Maillage final (Prob2)
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Conclusion

Dans cette thése nous avons développé une méthodologie adaptative capable de
traiter les écoulements turbulents. [a modélisation de ’écoulement a éié réalisée a
I'aide d'un modéle k-e & deux équations de transport, couplé i une loi de paroi.
L’algorithme adaptatif procéde par remaillage adaptatif. A chaque cycle d’adaptation
la distribution de I’estimation de !’erreur sur le maillage courant est utilisée pour prédire

les caractéristiques du prochain maillage adapté afin de réduire I’erreur.

Ce travail avait pour but d’obtenir de solutions numériques précises aux équations
régissant les écoulements turbulents. Pour cela nous avons développé des techniques de
résolution et d’estimation d’erreur couplées dans un algorithme adaptatif robuste,
efficace et économique. Les résultats ont monwré que |’adaptativité permet d obtenir de

solutions trés précises et 4 moindre coiit qu'une résolution classique.

La résolution a été effectuée sur de maillages non-structurés en employant un
algorithme i base d’itérations globales en u,. Afin de préserver la positivité des
variables de turbulence (k, ¢, u,) nous avons proposé un changement de variables
dépendantes: la solution n’est plus obtenue avec k et ¢ comme variables dépendantes,
mais plutdt avec leur logarithme naturel. Cette approche nouvelle bien que trés simple
et aés efficace n’a jamais été employée auparavant. La résolution en variables
logarithmiques conduit & des solutions pour lesquelles les variables de turbulence sont

représentées avec beaucoup plus de précision. Le bénéfice de cette approche a été
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immeédiat au niveau de la positivité de la solution. En plus on a pu en tirer plusieurs
autres avantages tant du point de vue du résoluteur que du module adaptatif. On notera
I’accélération de la convergence dans l’algorithme itératif de calcul et la robustesse
accrue de I'estimation d’erreur et de ’adaptativité. Pour le cas de validation, nous
avons obtenu une réduction de I'erreur en u, de deux ordres de grandeur seulement en
utilisant les logarithmes naturels de k et e comme variables dépendantes. Outre ce fait,
nous avons utilisé avec succes des techniques d’éléments finis stabilisées ayant pour role
de réduire ou méme d’éliminer les oscillations dans la solution lorsque les termes de

convection sont dominants.

L’estimation d’erreur a été réalisée par une technique de projection locale de type
moindres carrés. L’approche est la méme pour toutes les variables d’intérét: vitesse,
pression, variables de turbulence et viscosité turbulente. Les cas de validation ont
montré que les estimateurs a base de projection locale sont robustes et représentent

correctement la distribution et [’amplitude de I'erreur.

La méthodologie adaptative a été appliquée a la résolution des écoulements
turbulents pour lesquels on disposait de données expérimentales. Nos résultats indiquent
que I'adaptativité nous permet d’obtenir des solutions qui ne dépendent plus du maillage.
A toute fin utile la solution finale est numériquement exacte. Les résultats se comparent

bien avec les mesures.

Dans tous les cas la solution dépend des valeurs imposées aux variables de
turbulence en entrée. Dans ce sens on remarque pour la couche cisaillée que la solution
s’approche plus d’une solution similaire lorsque le niveau de turbulence baisse en amont
de la zone de mélange. Les résultats viennent aussi confirmer plusieurs constatations
faites auparavant qui concernent le comportement du modéle k-e. On note pour
I’écoulement sur la marche une surévaluation du cisaillement turbulent dans la zone de

récirculation et une sous-évaluation du cisaillement en aval du point de recollement.
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Pourtant, nos prédictions relatives a la longueur de la zone de récirculation se situent
entre 6.2 et 6.47 (dépendant des conditions imposées en entrée aux variables
turbulentes), ce qui constitue une amélioration notable par rapport aux autres prédictions

numériques référées dans la littérature.

Le calcul de I’écoulement turbulent autour du profil NACA0012 pose encore une
fois la question de I’influence sur la solution des conditions limites. On remarque que
la solution du probléme dépend du niveau de la viscosité turbulente dans I’écoulement
non-perturbé. La solution numérique s’aproche de plus en plus des mesures
expérimentales au fur et 4 mesure que la viscosité turbulente baisse en amont du profil
jusqu’a des valeurs comparables a la viscosité laminaire du fluide. Cependant le calcul
dans ces conditions est plus difficile car il comporte des grandes régions o les variables
de turbulence prennent des valeurs extrémement faibles et d’autres ou les gradients de
la solution sont trés forts. Ces caractéristiques de la solution font apprécier d’autant

I’avantage d’utiliser les variables logarithmiques.

Des améliorations sont encore possibles au niveau de [’algorithme de résolution
car on ne dispose pas encore d’une formulation résiduelle qui fonctionne dans toutes les
situations. On pense notamment aux équations de transport pour les variables de
turbulence résolues en formulation GLS et SUPG. La présence de singularités et le
comportement asymptotique des dérivées d’ordre deux, empéchent parfois ces techniques
de stabilisation de converger. Une possibilité a envisager serait de diminuer la
contribution de type moindre carré dans la formulation GLS dans les régions autour de

singularités, la ot de toute facon les éléments ont des tailles déja suffisamment petites.

[1 serait aussi utile d’explorer d’autres fagon de traiter les régions prés des parois
solides. On pense notamment a I’utilisation des lois de parois sensibles au gradient de
pression ou bien encore & des formulations permettant d’intégrer les équations jusqu’a

la paroi.
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D’autre part on recommande l’application de la technique de résolution en
variables logarithmiques et de la méthodologie adaptative a des variantes du modeéle k-¢,
de méme qu’a d’autre modeles de turbulence & deux équations. Cela permettrait de faire
des analyses comparatives des différents modeéles de turbulence étant donné que les

erreurs numériques sont maintenant bien contrdlées.

Une suite intéressante a cette recherche serait aussi I’extension des méthodes
proposées aux écoulements axisymétriques ou tridimensionnels. Cela ouvrirait un plus
large horizon d’applications étant donné que, sans tenir compte de nos limites

informatiques, la nature demeure toujours tridimensionnelle.
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Annexe A. Evaluation des matrices élémentaires
par différentiation numérique

Dans cette annexe on présente une technique d’évaluation des matrices
élémentaires par différentiation numérique. Considérons d’abord qu’on doit résoudre
une équation différentielle scalaire. La forme variationnelle peut étre écrite sous la
forme suivante:

R(u) =0 (A.1)

ol R est le résidu de I’équation et « est I'inconnue a déterminer. Notons que le résidu
R contient tous les termes de I’équation a résoudre et qu’il corresponde a la forme

variationnelle de 1’équation.

Le systeme d’équations est résolu de facon itérative. A chaque itération on
dispose des valeurs déterminées a ['itération précédente u, et on veut évaluer les

corrections du afin de satisfaire I'équation (A.1). On impose donc que:

R(u,+6éu) =0 (A.2)

Considérons maintenant le développement en série de Taylor pour R autour du point «,

qui est la solution courante. L’équation a résoudre devient:

2 2
R(uo)+g—§6u+%lgﬁ'2‘—+.... -0 (A.3)



9
~J
({8}

et si on néglige les termes d’ordre supérieure en dx, on obtient:

R(u0)+g—R6u=O (A.4)

u

ou bien

dR
HzSu = -R(u,) (A.5)

On arrive donc & un systéme d’équations algébrique dont la matrice est donnée

par le terme g_R qui représente la différentielle du résidu par rapport a I’inconnue «.
u

Le membre de droite du systéme dépende du résidu évalué i I'itération précédente. Le

systéme & résoudre s’écrit alors sous la forme suivante:

A;ou; =b, (A.6)
ol
R.
4 =R (A.7)
Y du,
J
b =-R (A.8)

Ici R; dénote le résidu de I'équation / (on associe une équation a chaque fonction test),
et 4; représente la variable u associée au noeud ;. Finalement, les coefficients 4; sont
évalués par différentiation numérique:
A = R (u, +ou;) - R, (uy-bu;)
v 2 6u,

(A.9)

Notons que cette procédure est générale. Elle demeure inchangée peut importe la forme
de I’équation différentielle a résoudre et donc elle est indépendante de la forme de
I'opérateur intégro-différenticl R. Remarquons que I’équation (A.5) est rigoureuse
lorsque le résidu est une fonction linéaire de la variable u. Cependant, méme si
[’équation est non-linéaire, (A.S) représente une bonne approximation de |’équation
initiale (A.2) lorsque les correction du sont suffisamment petites par rapport a la

solution .
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Dans le cas des équations de Navier-Stokes le systéme a résoudre est composé

par les équations de mouvement et de continuité. Ecrivons le sous la forme suivante:

R (u,v,p)=0
R, (u,v,p)=0 (A.10)
Rp(u,v) =0

ol R, R, sont les résidus des équations scalaires de mouvement et R, est le résidu de
I’équation de continuité. On développe alors les résidus R,, R, et R, en série de Taylor

autour de (&, Vv, p,) pour ensuite obtenir le systéme suivant:

3R R 9R :
IAB ua lla =_R u ’v ,

i my Pl A SR Y

R, 3R, OR

EVRar M R (A.11)

oR 3R

o Son

On peut aussi écrire le systéme a résoudre sous forme matricielle comme suit:

[~ T ( - 3

aRu aR" aRu Su l -R“(uoevo 7pc)

du dv dp

dR, OR, OR

v v v 16 > = _Rv(u Vo, (A.IZ)

= = ap 1% 070 po) ¢

OR, OR,

W | P [ Rew)

Ici encore une fois les coefficients de la matrice sont évalués par différences

centrées.
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Annexe B. Calcul du parametre de stabilisation
7 et de la taille de I’élément

La méthode GLS ajoute a la forme variationnelle de Galerkin le terme de
minimisation du carré du résidu fort de 1’équation différentielle a résoudre. Ce terme

est pondéré par le parameétre r qui a la forme suivante:

oh
= B.1)
Y 7] (

Bien que cette expression soit rigoureusement correcte seulement pour le cas des
¢léments linéaires et des équations scalaires, son application aux équations de Navier-
Stokes discrétisées avec des éléments quadratiques a donné des trés bons résultats. Dans

(B.1), le coefficient 6 dépend du nombre de Péclet local de 1’élément:

pe =PRIVl (B.2)
N

Comme on peut le constater les équations a résoudre auront des valeurs différentes du
parameétre 7 car le nombre de Péclet dépend du coefficient de diffusion A de [’équation
de transport en question. Pour I’équation de mouvement on a A=(u+g,), pour les
équations de k et de K, A =(u+u,/0,), et pour les équation de e etde E, A=(u+u/0,).
Finalement, le terme de diffusion dans I'équation de continuité étant nul, on aura pour

cette équation Pe=oo et donc 7, est donné par:

r=_"N (B.3)

P21V

Dans ces relations on a noté par V la norme du vecteur vitesse et par & la taille de
I’élément. Dans la littérature il existe plusieurs possibilités de calculer 4 pour les
maillages non-structurés. Notons que cette valeur représente la taille de I’élément dans
direction de I'écoulement et donc qu’elle est une fonction de la vitesse. Dans nos calcul

nous avons considéré pour h 1’expression suivante:



b = max | (xc=x)u+(y,-y)v|
i [V]

Cette valeur est illustrée dans la figure B.1.

Figure B.1 Calcul de la taille de I’élément en direction de [’écoulement
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Annexe C. La méthode de Lagrangien augmenté
pour satisfaire la contrainte d’incompressibilité et
la condition de tangence

Considérons qu’on doit résoudre le systéme formé par les équations de
mouvement (3.55), (3.56), I’équation de continuité et |’équation pour la contrainte de
tangence (3.57). Le systéme d’équations peut alors étre mis sous la forme suivante:

Au+Bp+Cf=b

Bu =g (C.1)

Cu =q
ou « est la vitesse, p est la pression (muitiplicateur de Lagrange pour la contrainte
d’incompressibilité) et f est le multiplicateur de Lagrange pour la condition de débit
imposé. Notons que la matrice du systéme est symétrique par blocs, B étant la matrice
divergence et C la matrice débit. Dans le membre de droite g est un terme qui dépende
de la divergence du vecteur vitesse (en incompressible g=0), tandis que g dépend du
débit de fluide a travers la frontiére. Pour une condition de non-pénétration (débit nul)

on a ¢=0.

La méthode d’Uzawa fait appel a un algorithme itératif dans lequel a chaque
étape on résout seulement pour les vitesses, les multiplicateurs de Lagrange p et f étant
mis & jour afin de satisfaire les contraintes d’incompressibilité et de tangence.

L’algorithme d’Uzawa pour la résolution du systéme (C.1) est le suivant:

1. donner p, f,
1.1. résoudre Au=b-B'p,-C"f,
1.2. évaluer R,=Bu-g, R=Cu-q
1.3. calculer p=p,+rR,, f=f,+IR,
2. résoudre Au=b-Bp-C’f
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Ici I’étape 1 est répétée tant que nécessaire pour obtenir une solution convergée.
L’inconvénient principal pour !’algorithme d’Uzawa réside dans une mauvaise vitesse
de convergence et donc un temps de calcul trop élevé. Ceci est du au fait que
Palgorithme d"Uzawa est un algorithme explicite, 4 I’étape 1.1 étant utilisées les valeurs
de p et f de I’itération précédente. On s’attend donc 4 ce que la vitesse de convergence
soit grandement améliorée par un traitement implicite de la pression p et de la réaction

normale f dans I'étape 1.1. Cela revient & résoudre [’équation suivante:

Au=b-B'p-CTf (C.2)
ou
p=p,+r(Bu-g) C.3)
f=f+r(Cu-q)
A I’étape 1.1 on a donc & résoudre I’équation suivante:
(A+rB™B+rCTC)u = b+rBTg+CTq-BTp-C'f (C.4)
ou encore
Au=b-BTp-C'f (C.5)
ou
A =A+r(B'B+CT()
(C.6)

b =b+r(BTg+CTq)

On arrive alors 4 la méthode de Lagrangien augmenté (algorithme d’Uzawa

implicite) dont I’algorithme est le suivant:

1. donner p, f,
1.1. résoudre Au=b-Bp,-C,
1.2. évaluer R,=Bu-g, R=Cu-q
1.3. calculer p=p,+rR,, f=fy+IR;
2. résoudre Au=b-Bp-C'f
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Annexe D. Les formulations éléments finis
stabilisées dans le cas des équations de transport
des variables turbulentes

Comme on a vu dans le chapitre 3.2 que les équations de transport de k etd’e

sont les suivantes:

p(u-V)k = V- Hwi‘-’] Vk] cuP(w) -p2C,E (D.1)
g, fy
P(u-V)E =V. [[#ﬁ'ﬁl Vé] +pCIC“kP(u) -C‘.’p_ek_: (D.2)
(1}

Pour stabiliser la solution lorsque 1’écoulement est dominé par la convection on utilise
des schémas a base de différentiation amont dans le sens de I’écoulement (upwinding).
Comme pour les équations de Navier-Stokes nous avons considérer quatre formulations
permettant de stabiliser les équations, soit SU (upwinding sur les termes de convection),
SUPG-incomplet (upwinding sur tous les termes sauf celui de diffusion), SUPG
(upwinding sur tous les termes de |’équation) et GLS (Galerkin Least-Squares). Les

formes variationnelles correspondantes a ces méthodes sont les suivantes:
- équation de transport de &k

2
Galerkin: i[pu -Vkw+ (y+ﬂ")Vk- Vw +p2C“.k_w - pu P(u)wld? = 0

O kr

2
SU: \[[pu Viw + @ Lk - Vw2 K w - P(aywide
Kr

0y

+¥ lpu-Vkru-deﬂ' =0

esl



SUPG-inc: L

SUPG: \[[pu'ka+(y+“_T)Vk°Vw+p2C“

+ﬂfl{

ex]

GLS:

+

[ou-Vkw +(u+ET)Vk-Yw+p2C,
O

k.’.

k:

T

[£8]

w - pu P(u)wldQ

+f ‘[,[pu -Vk+p’C,—w-p P(u)l7u-Vwdd =0
e=]

KT

Oy

k

Kr

-
-

k2

pu-Vk-V - [(a+D)Vk] + 2C, 5
g,

k Br

w - uP(u)wldQ

prP(u)} Tu -Vwd =0

L[pu Vkw+ @iy k- Vw02 C K w - Py widD
Hr

Oy
Kr

g

e=l k

Kr

y L{Pu'Vk-V'[(u+—)Vkl+02C,£-uTP(u)}'

r{pu-Vw-V. [(,u+#_T)Vw] +p2C“%w}dﬂ‘ =0

0

- équation de transport d’e

Galerkin: ‘[

Su: \[

SUPG-inc: ‘[

HBr

[ou-Vew +(u +£I)Ve . Vw+pC:%w -pC,CkP(u)wld@ =0
o

€

[ou-Vew+(p+ET)Ve -vw +pc2%'w - pC,C.kP(u)w]dQ
g

€

+E- Lpu-Ve-ru-deQ' =0

ex]

lou-Vew + (u+=I)Ve - Vw+pC, 2w - pC,CkP(a)whiQ

e=]

L. 2
+y L[pu-Ve+pC2% -pC,C.kP(u)]7u-Ywd®¥ =0



€

SUPG: L[pu Vew+(u+iT)ve.vw +pC, W = pC,CkP(u) wld0

L.

> L{pva -V-[(y-ﬁ?)V&] +pc2%' -pC,C.kP(u)}ru - Vwdd¥ = 0

e=l ¢

€

GLS: L[pu Vew+ (F+%T)V€ -Vw +pcf_k'w -pC,C kP(u)w]dQ

+y L{pu - Ve -V'[(/H%I)Ve] +pC26—k- -pC,CkP(u)}-

e=]

r{pu-Vw-V- [(#*7)VW]

€

Dans le cas d’une résolution en variables logarithmiques les équations a résoudre

sont les suivantes:

ou-VK = - || u+ BT VK| + |pe 21| (VRP* ppe*Pu) - p2C 5=

% a (D3
pu-VE = V- | | u+ BT | VE|+|u+ET| (vE¥+pC CeXEP(u) - Cope®

o, a, (D.4)

Les formes variationnelles associées aux différentes formulations seront alors les

suivantes:
- équation de transport de K

Galerkin:
L[(p" VK- (u+ET) (VEY - ure'KP(u)w’C—)W*f(w T)VK - Yw]dQ = 0

Oy BT Oy



Su:

3 HKr 3

[ tou- VK (e E1) (VKY - re ™ P0) +9°C, S0 + o+ 1) VK -Fwid

+E ou-VKru-Vvwd¥ =0
e=1

SUPG-incomplet:
K
[ o VK - (u+ET) (VED? = e 5P +0°C, 5 Y + (u+2T) VK -Tw)d@
Oy Kr O

dom K
¥ ‘[[pu-VK—pTe’KP(u)*»poF.e_]Tu-de ¢ =
e=]

Hr

SUPG:

k KT 0y

[ tow K = D) TR e 0 0, )W+ (urET) VK -vwida
g,

> L{pu-VK—V-[(W%’-')VK]-(u+?)(VK)2-#Te"‘P(u)+plCP£f}-

k k Er

Tu-Vwdd =0

GLS:
‘[ (o - VK - (u+ET) (VY - pye¥P) +0C, 5w + (u+ET) VK -Ww]d
(4

k Br 0y
n

e=1 k ‘uT
r{ou-Yw-V-[(p+E0)Vw] - (u+E)2VK -Yw + pe P (u)w
g, g,
k eK k
+p’C,—w}dl¥F =0

Hr

dom K
> l{pu-VK—V-uw“?’)vxl-(w?)(vmz-nre"‘mm+p2q5—}-
k



- équation de transport de E

Galerkin:

1]
o

€ €

L [(ou - VE -(u+ET) (VEY - C,CeXEP(u) + C,p0 =Ky w + (p%I)VE -Vw]dQ
g

SU:

L [(o - VE - (u+LT) (VEy - pC, C,eX"EP(u) + C,peE ) w + (p+%I)VE-VW]dQ
(13

€ ¢

+Y [ pu-VEru-Vwdd = 0
e=1

SUPG-incomplet:

[ CGou- VE- (u+ZT) (VEY!-pC,C,e" EPu) + C,pe= ) w + (u+-I) VE -Yw]dQ

U e

€

+§ l[ [ou-VE-pC,Ce* P(u) +Cypef*)ru-Vwdl =0

e=1

SUPG:

€

\[ [(ou - VE - (u+£T) (VEY -0 C, C, eX-EP() + C,pe= E)w + (;u-%T)VE -Vw]dQ
o

3

=Y [ tou-VE-V-[(u+ED)VE] - (u+ ED)(VEY - C,Ce5 P () + C,pe" )
[13

es| A ¢

-ru-Vwdd =0



GLS:
L [(ou - VE-(#-bﬂ)(VE)z—pClC“eK'EP(u)+C2peE'K)W + (y«-ﬁ)VE -Vw]dQ
g ag

e €

Y [ {pu-VE-V - [+ E)VE] - (u+ E)(VEY - pC,Ce¥ 2P (w) + Cpe5)

e=] € k

-t{pu-Vw-V - [(y,+£_7.')Vw] —(p,+ﬁ')2VE -Vw +pC,C“eK'EP(u)w
g g,

€

+ C,peEkw} d = 0

Le terme qui contient le gradient au carré de la variable logarithmique peut étre
associé au effets de convection et il détermine alors une modification de la vitesse de

convection. Les équations s’écrivent alors sous la forme suivante:

KT -K 10 ¥
+— | VK| +p e ®P(u) -p°C,— (D.5)
Hr

[pu—(w%’)vm-vx -v. H#

k

v -
G(

O

[pu-(u+ENWVE] -VE &

u+£f] VEjl +pC,C e**P(u) - C,pef*  (D.6)

et la vitesse de convection sera:

uK=u-l(,u+ﬁ)VK pour K
P o

a5=u—l(p+££)VE pour E
P o,

€

La méthode GLS peut étre appliquée aussi en utilisant ces vitesses de convection

modifiées dans le calcul du paramétre de stabilisation r. Considérons le cas de

I’équation en K. Le parameétre 7 basé€ sur la vitesse u, sera donné par:

’r:
2| uy|

ou 6 dépend du nombre de Péclet de I'élément:



phluxl
Pe=— —
¢ PR (D.8)
2(p+—
Uk
On a donc que
ph|a-l(p+f£)VK|
Pe = P % o ehlul J"ZKI (D.9)
2(u+fir 2(u+f—r
Oy 0
Pe < pe,+ 11 VK| (D.10)

2

Donc le nombre de Péclet varie par rapport 4 sa valeur basée sur la vitesse « par au plus 2 | VK| /2
qui représente approximativement la variation de K a !’intérieur de I’élément. Dans les
régions ou le terme de stabilisation est important ce terme est en général petit par
rapport a la valeur Pe, et son importance diminue avec ’adaptativité. On s’attend donc
a ne pas avoir des différences entre les solutions obtenues avec une ou l’autre des

formes pour le paramétre de stabilisation.

Remarquons aussi que, lorsqu’on évalue les termes moindre carré des équations (D.5)
et (D.6) sous leur forme linéarisée au niveau du terme de convection, on obtient les

équation GLS suivantes:

équation de K:

L [(ou - VK—(p.+ﬂ)(VK)2—pTe'KP(u) +p2C“f.f)w + (;u-ﬁ)VK-Vw]dQ

0 Hr O

Il‘- .
+3 J;{pu VK-V -[(e+E)VEK] - (u+ B (VB - preKP(u) < 07 C, 2} -
e=] 0 o, Ky
r{ou-Vw -V [(p+ED)Vwl - (u+ED)VE - YW+ pre 5P ()W

0, g,

k eK k

+p*C,——w}dlF = 0
Kr



équation de E:

L [(ou - VE - (u+ T) (VEy - p C,C eXEP(u) + C,peE Xy w + (u+2T)VE - Vw1dQ
g a

e=1

D> l {pu-VE-V - [(u+D)VE] - (u+ L) (VEY - C,Ce% 5P(u) + C,pe5 7}

6: Uk

r{ou-Vw-V-[(e+ E)Vw] - (u+PT)VE - Yw + pC. C eXEP(u)w
o o 1o

¢

+C,pef fwldd = 0

Notons que maintenant le terme (x +p./0,)VK - Vw dans la variation du résidu fort n’est
plus multiplié par 2 car il provient de la variation d’'une forme linéarisée. Les
différences sont minimes entre les deux formulations GLS (une basée sur la vitesse u
comme vitesse de convection et |’autre avec une vitesse de convection u; modifiée) et
elles diminuent avec le raffinement du maillage. Nous avons alors opté pour la premiére

forme des équations, car elle comporte moins de non-linéarités.
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