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Résumé 

Cette thèse est consacrée au développement d'une méthode d'éléments finis 

adaptative pour la résolution des écoulements turbulents. Une méthodologie 

précédemment élaborée pour les écoulements laminaires est généralisée afin de simuler 

les écoulements turbulents à l'aide d'un modèle à deux-équations k-  E . 

La méthodologie adaptative utilisée est composée d'une étape de résolution, 

d'estimation d'erreur et de remaillage adaptatif. La résolution est effectuée à l'aide 

d'une méthode d'éléments f i  sur des maillages non-structurés . La solution obtenue 

est analysée afin d'évaluer sa précision et de détecter les régions entachées d'erreur. 

Cette distribution d'erreur est ensuite utilisée pour engendrer un nouveau maillage qui 

permettra d'obtenir une solution améliorée. 

Les écoulements turbulents sont difficile à simuler même à I'aide des hypothèses 

simplificatrices introduites par les modèles de turbulence. La nature des équations et 

leur fort couplage font en sorte que le système d'équations est difficile à résoudre 

numériquement. La solution présente des variations très rapides, de grandes régions où 

le niveau de turbulence est très faible et même des quasi-singularités dues à la 

géométrie. De plus, les variables de turbulence doivent demeurer strictement positives 

sinon il devient impossible d'obtenir la solution numérique. Dans ce contexte on fait 

souvent appel à des techniques de stabilisation numérique. Les méthodes de 

différentiation amont et les procédures de 'clipping' qui ont pour rôle de diminuer les 

oscillations et de préserver la positivité de la solution, en sont des exemples. 
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Dans la littérature on retrouve une grande variabilité dans les prédictions 

numériques. Assez souvent des calculs réalisés avec les mêmes modèles et techniques 

numériques conduisent à des résultats présentant des différences non négligeables. On 

se pose alors tout nanirellement la question à savoir si le modèle de turbulence employé 

est vraiment responsable des résultats décevants ou bien si c'est plutôt le calcul 

numérique lui même qui en est responsable. 

L'objectif principal de cette recherche a été de développer une procédure 

permettant d'obtenir de solutions numériques précises aux équations différentielles qui 

régissent les écoulement turbulents. Dans ce sens on a développé une formulation de 

résolution, une rnéthodolog ie adaptative et des techniques d'estimation d'erreur afin de 

contrôler et diminuer l'incertitude numérique. 

L'estimation d'erreur est basée sur des techniques de projection au sens des 

moindres carrés des dérivées. On explore ici les différentes versions qui font appel à 

des projections globales ou locales. L'approche retenue fonctionne bien pour une vaste 

gamme d'écoulements de la mécanique des fluides, qu' ils soient laminaires. avec 

transfert de chaleur ou bien turbulents. L'estimateur d'erreur analyse la solution en 

regardant comment se comportent les dérivées des différentes variables. On s'attend 

donc à ce qu'il réagisse non seulement aux régions où la physique du problème fait en 

sorte que les variations des variables sont rapides, mais en général aux endroits où le 

résoluteur éprouve de la difficulté à bien décrire la solution. Une mauvaise solution du 

point de vue de l'estimation d'erreur peut être due à une discrétisation inappropriée des 

équations ou bien à l'utilisation de procédure de 'cli@ping'. On peut alors se trouver 

dans une situation où la procédure adaptative concentre les points du maillage dans les 

régions où le résoluteur manifeste de faiblesses, plutet que là où le problème le nécessite 

vraiment. 

Pour assurer la robustesse de la méthode de résolution et de l'algorithme 



adaptatif on propose une nouvelle approche qui garantit ia positivité de la solution pour 

les écouiements turbulents. La méthode est basée sur un changement de variables 

dépendantes, qui respecte la physique de l'écoulement. Les équations de transport pour 

les variables de turbulence n'ont plus k et E comme inconnues mais plutôt leurs 

logarithmes naturels, K=In(k) et E = l n ( ~ ) .  On notera que le modèle de turbulence et 

la formulation du problème demeurent inchangés. La procédure garantie que les 

variables de turbulence k et E sont strictement positives car elles sont calculées en 

prenant l'exponentielle des variables de calcul (K et E). Cette approche améliore 

grandement la solution et cela surtout dans les régions de forts gradients et dans celles 

où le niveau de turbulence est faible (zones d'eau morte). La solution devient plus 

régulière. Cela permet d'utiliser des maillages plus grossiers et de tirer pleinement 

profit de l'algorithme adaptatif. L'approche est générale et est aussi applicable à 

d'autres méthodes de calcul numérique, comme les différences finies où les volumes 

f i s .  Elle conduit à des économies appréciables de temps de calcul et pourrait donc 

devenir très utile lors de la simulation d'écoulements tridimensionnels. 

Une autre source d'erreur peut résider dans l'utilisation de techniques de 

différentiation amont. Ces méthodes présentent l'avantage de diminuer les oscillations 

de la solution, mais elles peuvent fausser la solution car les formes variationnelles 

utilisées peuvent ne pas être consistantes. On compare ici la méthode de différentiation 

amont basée sur le concept de viscosité artificielle à des méthodes de stabilisation 

résiduelles pour lesquelles ia solution exacte est solution du problème var iationnel . 

La méthode de résolution en variables logarithmiques et la méthodologie 

adaptative sont validées en résolvant des problèmes possédant une solution analytique. 

Ceci permet d'analyser les différentes méthodes de résolution en comparant leur solution 

à la solution exacte. Ceci permet aussi de comparer l'estimateur d'erreur à l'erreur 

exacte et d'étudier les distributions de l'erreur et de son estimation. 



Finalement la méthodologie est appliquée à des problèmes d'intérêt pratique et 

les prédictions numériques sont comparées aux mesures expérimentales et à d'autres 

calculs. On traite ici d'écoulements libres tels les couches cisaillées et les jets, 

l'écoulement classique sur une marche descendante. ainsi que l'écoulement autour d'un 

profd NACA 0012. La procédure proposée se montre robuste et fiable. permettant la 

résolution de problèmes difficiles de façon précise et économique. 



Abstract 

This thesis presents an adaptive f ~ t e  element method for solving complex 

nubulent flows. A method previously developed for two-dimensional laminar flows has 

been generalized to turbulent flows modeled by a k - E  mode1 of turbulence. 

The adaptive scheme is composai of the solver, the error estimation module and 

the remeshing procedure. Solutions are obtained in primitive variables using a mixed 

finite element method on unstructured grids. The solution is analyzed to determine 

where the error is important and then a new mesh is generated to irnprove the solution. 

The complex nature of turbulent flows makes them difficult to simulate even 

when turbulence models are used. The solution is cornplex and described by a large 

number of dependent variables. The strong coupling of equations makes the system 

difficult to solve numerically. Solutions are characterized by strong gradients. large 

regions of low level of turbulence and even quasi-singularities due to the geometry. 

Furthermore, for two-equations turbulence models it is of critical importance that the 

turbulence variables always remain positive throughout the computational domain. So. 

to solve such problerns, numerical stabilisation methods such as upwind techniques or 

clipping are usually invoked. This reduces oscillations in the soiution and preserves 

positivity of turbulence variables. 

Numerical solution presented in the iiteranire are characterized by a large level 

of uncertainty and variability. For instance two numerical computations using the same 



hypotheses and numerical algorithm rnay yield sensibly different resuits. This gives rise 

to the following question: Whm is the cause for such possibly bad results in turbulent 

fZow cornpraationr? It is the turbulence model its se[f or it is the solution procedure? 

In this research the main objective was to construct an adaptive solution 

procedure capable to producing accurate solutions to the differential equations governing 

turbulent flows. In this sense we have Uicorporated a k-  E turbulence model in our 

f ~ t e  element code and used adaptive remeshing in order to control the numerical 

accuracy . 

The error is estimated by using a least-squares projection of derivatives in the 

space of the fuiite element interpolation functions. Both global and local projection 

approaches are investigated here. The local projection method. which is retained in the 

end, is a general one and works for laminar flows, for heat transfer cases and for 

turbulent flows. In this approach continuity of the gradients of the solution is the key 

factor which detemines the adaptive process. The mesh will be refined everywhere the 

solution is not sufficiently accurate. This may be due in part to the physics of the 

problem, but also to the use of numerical stabiiization techniques such as upwinding and 

clipping which locally affect the solution. In the last case the adaptive procedure rnay 

be driven by the inability of the solver to produce a smooth solution rather than by the 

flo w ph y s ics . 

A key difficulty in turbulent flow computations is preserving the positivity of 

turbulence variables. One way of achieving this, without changing the soiution, consists 

in solving for their logarithms. This can be viewed as a change of dependent variables, 

K=ln@), E = l n ( ~ ) .  This approach is consistent with the behavior of turbulence 

variables and requires no changes in turbulence model. Moreover, it may be applied 

to any two-equations turbulence model, and solved for using any numerical scheme, be 

it a finite difference, a finite volume or a finite element method. The eddy viscosity, 
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k and E are now obtained as the exponentiai of the computational dependent variables 

and will always be positive. This approach result in improved accuracy in regions of 

rapid variation of turbulence fields as well as in regions of iow turbulence levei. The 

solution becomes smooth and so it can fully benefit from the adaptive procedure. 

Upwinding is freguently used to achieve an oscillation free solution. Such 

methods may also be a source of error because they may give rise to inconsistent 

variational problems. In this work, classical upwinding techniques based on the concept 

of artificial viscosity will be compared with residual stabilisation methods. 

The solution algorithm which makes use of logarithmic variables and the adaptive 

methodology is validated on a shear layer flow for which an analyticai solution is 

available. This provides a fknework for rigorous comparison and validation of the 

various possibilities. This also permits comparison between the estimated error and the 

me error and validation of the error estimation technique. 

The rnethodology is then used to solve turbulent flows of practical interest for 

which experimental measuremenu are available: turbulent free shear layers, turbulent 

jets, flow over a bachard facing step and flow over a NACX0012 airfoil. The 

proposed procedure is robust and provides accurate solutions to turbulent flows. 
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Introduction 

Les fondements physiques des phénomènes naturels tels que l'écoulement des 

fluides, le transfert de chaleur, la déformation des structures et ta formulation 

mathématique qui permet leur modélisation datent de plusieurs dizaines ou même 

centaines d'années. Les équations qui régissent l'écoulement des fluides visqueux 

newtoniens ont été déduites sous différentes formes par Navier (1 827)' Poisson ( 183 1). 

Saint-Venant (1843) et Stokes (1845) [Il. Bernoulli (1730) a même donné bien 

auparavant une forme globale des équations de mouvement pour les fluides non- 

visqueux. Plus tard, Boussinesq (1872) 12) a expliqué le mouvement chaotique des 

particules qui se déplacent à grande vitesse en présence des faibles forces de friction. 

L'écoulement turbulent est un phénomène complexe, non-stationnaire et 

entièrement tridimensionnel. En 1 883 Reynolds [3] étudia expérimentalement les 

écoulements turbulents à l'intérieur des conduites et proposa de décomposer le 

mouvement dans une partie moyenne qui est décrite par les valeurs moyennes en temps 

des variables et une partie fluctuante qui caractérise les fluctuations par rapport à 

l'écoulement moyen. Les équations qui décrivent le mouvement moyen des particules, 

qu'on appelle équations de Reynolds [2,4,5], font apparaître des corrélations entre les 

fluctuations turbulentes. Le système d'équations devient alors non-déterminé car il 

contient plus d'inconnues que d'équations et des hypothèses supplémentaires doivent être 

invoquées afin de fermer le système d'équations. Plusieurs techniques de fermeture ont 

été formulées, telles les modèles de turbulence algébriques , les modèles avec équations 

de transport ou les modèles de fermeture au second ordre. En ce moment il n'existe pas 



un modèle complet, capable donc de prédire les caractéristiques de l'écoulement pour 

n'importe quelle configuration rencontrée en pratique. Tous les modèles se réduisent 

à la résolution d'un système d'équations différentielles et éventuellement algébriques et 

le défi est donc d'obtenir une solution numérique des plus précises à ces équations. 

Les questions qui se posent toujours lorsqu 'on obtient une solution numérique 

sont: La solution numérique est-elle correcte? Si oui: Quelle est sa précision? ou encore 

Quel-est Z'écan entre la solution numérique et la solution exacte des équations? Ce sont 

des questions aux-quelles les numériciens ont dû répondre et qui sont à l'origine de 

I'apparition des techniques d'estimation d'erreur. Lorsqu'on se propose d'obtenir une 

solution numérique précise ou encore la plus précise possible pour une ressource 

informatique donnée, on arrive à la nécessité d'adapter la discrétisation numérique au 

problème a résoudre. L'ensemble formé par l'estimation d'erreur et la technique de 

rédiscrétisation est appelé méthode adaptative. Le but d'une telle méthode est d'obtenir 

une solution numérique de précision préétablie. Parmi les premiers travaux sur les 

méthodes adaptatives on peut noter ceux de Babuska et Rheinboidt 161 et de Zienkiewicz 

et Zhu [l qui traitent des problèmes elliptiques. 

Dans ce travail on se propose de résoudre dans un contexte adaptatif des 

écoulements turbulents complexes. La solution du problème est décrite par plusieurs 

variables telles que la vitesse, la pression ou la tempérame, auxquelles peuvent s'ajouter 

les variables reliées à la modélisation de la turbulence. L'estimation de l'erreur doit 

donc refléter le rôle que joue chacune de ces variables sur la précision globale de la 

solution, afm de piloter correctement le processus adaptatif. Les étapes de résolution, 

d'estimation d'erreur et d'adaptation seront d y s é e s  pour assurer la robustesse et la 

fiabilité de l'algorithme adaptatif. 

La résolution est développée pour une méthode d'éléments f i s  sur des maillages 

non-structurés initialement utilisée pour les écoulements laminaires incompressibles 



[8,9]. La turbulence est modélisée à l'aide d'un modèle k-E à deux équations de 

transport proposé par Launder et Spalding [IO], couplée avec une loi de paroi pour 

représenter les régions près de parois solides. Pour cette classe de problèmes la 

méthode de Galerkin classique peut conduire à des solutions entachée d'oscillations. Par 

conséquent nous ferons appel à des techniques de stabilisation de type SU (Streamline 

Upwind) . SUPG (Streamline Upwind Petrov-Galerkin) et GLS (Galerkin Leas t Squares) 

pour contrôler les oscillations. 

L'estimation d'erreur est réalisée à l'aide d'une méthode de projection utilisée 

avec succès pour des écoulements incompressibles avec transfert de chaleur. 

L'approche, initialement proposée par Zhu et Zienkiewicz [l, utilise un post-traitement 

des dérivées de la solution par éléments finis pour évaluer les erreurs d'interpolation. 

Essentiellement. la méthode consiste à approximer les dérivées de la solution exacte à 

l'aide d'une projection des dérivées éléments fuis sur l'espace des fonctions 

d'interpolation utilisées pour les variables primaires. Une technique de projection 

globale, déjà utilisée avec succès pour les écoulements laminaires incompressibles, sera 

employée dans le cas des écoulements turbulents. D'autres méthodes, basées sur des 

projections locales, seront aussi analysées dans le cas des écoulements d' intérêt. 

L'erreur calculée par l'estimateur d'erreur est ensuite utilisée pour prédire la disuibution 

de taille du prochain maillage qui devrait produire une solution plus précise. Le 

nouveau maillage est construit dans le but d'être optimal, c'est à dire qu'il devra 

minimiser l'erreur globale de la solution pour un nombre de degrés de liberté fixe. On 

y parvient en imposant que l'erreur soit uniformément distribuée dans tout le domaine 

et en tenant compte du taux de convergence a prion' de l'élément. 

L'analyse de l'erreur nous permet de poursuivre le processus adaptatif. Elle nous 

permet aussi de porter un jugement critique tant sur la qualité de la solution que celle 

du résoluteur. II est évident que pour tirer le meilleur parti de l'algorithme adaptatif il 

faut non seulement ajuster constamment la discrétisation à la solution, mais il faut en 



plus s'assurer que chaque module (résoluteur, es tirnation d'erreur et remaillage) 

fonctionne à sa pleine capacité. Dans ce sens on va proposer une nouvelle approche de 

résolution qui fait appel à un changement de variables dépendantes pour les équations 

modélisant la turbulence. Cette méthode qu'on appéle 'résolution en variables 

logarithmiques' apporte des améliorations considérables à la qualité de la solution et 

confère une robustesse accrue au résoluteur et à I'aigorithme adaptatif. 

La méthodologie est validée sur des problèmes artificiels possédant une solution 

analytique. De cette façon, la solution numérique et l'estimation d'erreur pourront être 

comparées à la solution et à I'erreur exactes. Cela nous permet d'évaluer d'une part les 

performances du résoluteur et d'autre part de quantifier la fidélité de l'estimation 

d'erreur et l'amélioration de la solution due à l'adaptativité. Finalement, l'algorithme 

adaptatif est appliqué à la résolution de problèmes d'intérêt pratique pour lesquels les 

prédictions numériques sont comparées à des mesures expérimentales. 



Chapitre 1 

Etude bibliographique critique 

1.1 La méthode des éléments finis en mécanique 
des fluides 

La méthode des éléments finis est une technique numérique maintenant largement 

utilisée pour la résolution de probMmes d'élasticité, de mécanique des fluides, 

d'aérodynamique et d'électricité. Les concepts initiaux de la méthode ont été introduits 

en 1956 par Turner et al. [13] pour des problèmes de structures. La méthode a été 

reformulée en 1965 par Zienliiewicz et Holister 1141, comme une méthode de résidus 

pondérés. Depuis 1967 plusieurs livres sur la méthode des éléments finis ont été 

publiés, on mentionne en particulier ceux de Zienkiewicz [15] et de Oden et Reddy [16]. 

Pendant les années '70 la méthode a été repensée comme une méthode générale pour 

résoudre les systèmes d'équations aux dérivées partielles. Son domaine d'appl icab il ité 

s'est élargi pour englober aussi les problèmes de la mécanique des fluides, de 

i'aérodynamique et de la thermodynamique. Les premières appiications aux équations 

de Navier-Stokes sont celles de Oden [l'il, Baker [18], Taylor et Hood [19]. 

La première étape dans l'application de la méthode des éléments fmû est 

constituée, comme pour toute autre méthode de résolution numérique, par la 



discrétisation du domaine. Le domaine est décomposé en éléments à l'intérieur desquels 

les variables sont représentées à l'aide des fonctions d'interpolation ou de forme. De 

cette façon la solution en tout point est déterminée par les valeurs nodales et les 

fonctions de forme. La méthode des éléments finis considère ensuite la forme intégrale 

des équations, que l'on obtient en multipliant les équations différentielles par des 

fonctions test et en intégrant sur le domaine de calcul. Les équations sont construites 

pou. chaque élément et assemblées dans le système global. 

Pour illustrer l'application de la méthode considérons l'équation suivante: 

où u est la variable à déterminer, 3 est un opérateur différentiel et f une fonction 

donnée, qui dépend de la position à l'intérieur du domaine. 

Le problème discret considère u comme étant représentée par: 

oii A$ est le nombre de points utilisés dans la discrétisation, u, sont les valeurs de u à 

ces points, et 3- les fonctions d'interpolation associées aux noeuds. On voit que la 

solution est entièrement définie par ses valeurs nodales et par les fonctions 

d'interpolation. Pourtant le choix de la décomposition du domaine en éléments et des 

fonctions de forme est arbitraire. Par conséquent la solution numérique n'est pas 

unique, contrairement à la solution exacte de l'équation qui elle est unique. L'équation 

différentielle (1.1) s'écrit maintenant sous la forme suivante: 

j - l  

et elle a comme inconnues les valeun nodales uj de la variable u à déterminer. 

Un point qui différencie la méthode des éléments finis des autres techniques de 

résolution numérique réside dans la façon dont on impose que l'équation (1.3) soit 



satisfaite. Premièrement on peut noter, en général, que l'équation ne peut pas être 

vérifiée en tout point car on dispose d'un nombre fini d'inconnues. On choisit alors de 

multiplier I'équation par des fonctions test W, et de les intégrer sur le domaine de calcul. 

Pour que le problème soit bien posé il faut que le nombre de fonctions test soit égal aux 

nombre d'inconnues. On choisit alors une fonction test pour chaque noeud et on obtient 

le système algébrique suivant: 

Le choix des fonctions test conduit à la méthode de Galerkin (ou Bubnov- 

Gaierkin) lorsqu'elles sont identiques aux fonctions de forme. ou à celle de Petrov- 

Galerkin si elles différent de celles-ci. 

Pour simplifier cette illustration considérons que 1 'opérateur (e est linéaire. 

L'équation (1.4) peut alors s'écrire sous la forme suivante: 

Sous forme matricielle cela revient au système 

où les coefficients A, et b, sont donnés par: 

Les intégrales sont ensuite écrites comme une somme d'intégrales sur tous les éléments. 

Une fois les intégrales élémentaires calculées, les termes obtenus sont assemblés dans 

le système global. La résolution du système permettra ensuite de déterminer les 

inconnues nodales uj. 

À ce point-ci regardons brièvement quelles sont les sources d'erreur propres à 



cette méthode de calcul. Premièrement, on remarque que la solution exacte possède un 

nombre infini de degrés de liberté, tandis que la solution discrète n'est représentée que 

par un nombre f~ de degrés de liberté. Une première approximation est donc 

introduite par la représentation discrète de la solution. C'est I'erreur de discrétisation. 

Elle dépend de la décomposition du domaine en éléments et aussi du choix des fonctions 

d'interpolation. A priori plus le nombre de points (ou d'éléments) est grand et plus les 

fonctions de forme sont riches, plus la solution est précise. De plus, certaines 

discrétisations conduisent à des solutions plus précises que d'autres car elles peuvent être 

mieux adaptées au particularités du problème à résoudre. D'autre part, l'équation 

discrète (1.3) n'est pas vérifiée en tout point par la solution numérique, elle est plutôt 

satisfaite dans un sens moyen ou pondéré dépendant du choix des fonctions test. 

1.2 Modélisation de la turbulence 

1.2.1 Considérations générales 

Dans la plupart des applications industrielles d'intérêt, l'écoulement des fluides 

est turbulent. Même les phénomènes physiques les plus simpies. comme le vent ou 

l'écoulement de l'eau dans une rivière, sont des écoulements turbulents. 

À ce point-ci, il est universellement accepté que les équations de Navier-Stokes 

3-D en régime transitoire modélisent correctement l'écoulement laminaire et turbulent 

des fluides. Cependant, pour les écoulements turbulents, l'échelle de longueur qui 

caractérise les phénomènes de création et de dissipation turbulente est plusieurs ordres 

de grandeur plus petite que la dimens ion caractéristique du problème. Par conséquent, 

un maillage suffsamment fm, pour représenter les petites échelles des écoulements 

turbulents aurait un nombre prohibitif de points même pour les applications les plus 

simples. En pratique, pour décrire de tels écoulements, au lieu d'utiliser les variables 



instantanées, on utilise les variables moyennes [2,4]. Dans ce sens, une approche 

statistique est uulisée pour décomposer la vitesse, la pression et toute variable scalaire 

dans une partie moyenne et une partie fluctuante [20]: 
- 

U = u+u' 

p = p + p /  

T =  T+r 
où dénote une valeur moyenne et x' dénote la fluctuation par rapport à la valeur 

moyenne. Ceci conduit aux équations moyennes de Reynolds modélisant I~écoulement 

moyen: 

Équation de continuité 

Équation de mouvement 

Équation d'énergie 
- 

Ici T~ représente le tenseur de contraintes 

\ - 

Rg est le tenseur de Reynolds, donné par 
J 

q est le flux de chaleur q = kVT, et q, est un Aux de chaleur du à la dissipation 
7 turbulente q, = - p  c, ÿ T . 

On voit que dans ces équations, à part les valeurs moyennes, on a aussi comme 



-7 inconnues des corrélations entre les fluctuations turbulentes ui uj et ui T . Écrire les 

équations de transport pour ces variables additionnelles, engendre l'apparition de 

nouvelles inconnues de plus en plus difficiles à interpréter. On est en présence d'un 

problème de fermeture car on a plus d'inconnues que d'équations. Les modèles de 

turbulence se proposent de décrire le tenseur de Reynolds afin de fermer le système 

d'équations. 

1.2.2 Modèles de turbulence 

Une première approche date de 1877 et est due à Bousssinesq [2] qui a proposé 

pour le tenseur de Reynolds la même forme que celle du tenseur de contraintes: 

Il suppose donc que les contraintes turbulentes sont proportionnelles aux vitesses de 

déformation et introduit la notion de viscosité turbulente, a,, et d'énergie cinétique de 

la turbulence k. L'énergie cinétique de la turbulence est définie comme la moitié de la 
7 trace du tenseur de corrélations turbulentes, u, u, : 

La viscosité turbulente n'est pas une propriété du fluide, mais plutôt une variable qui 

dépend de I'écoulement, du niveau de turbulence et qui varie à l'intérieur de 

I'écoulement. La plupart des modèles de turbulence sont construits avec l'hypothèse de 

Boussinesq comme point de départ et se proposent de modéliser la viscosité rurbulente. 

En général les modèles de turbulence sont classifiés d'après le nombre 

d'équations différentielles à résoudre en plus des équations de l'écoulement moyen. On 

retrouve alors des modèles algtbriques ou à zéro-équation, à une équation, deux- 

équations et des modèles du second ordre. Les trois premières classes de modèles se 



basent souvent sur l'hypothèse de Boussinesq pour modéliser le tenseur de Reynolds. 

Les modèles à zéro-équation n'utilisent aucune équation différentielle 

additionnelle pour représenter les effets reliés à la turbulence. Ils utilisent plutôt des 

relations algébriques pour défm le tenseur de Reynolds. Un premier modèle de ce type 

a été proposé en 1925 par Prandtl [21] qui introduisit la notion de longueur de mélange. 

Initialement la longueur de mélange était une grandeur fixée. Elle était déterminée pour 

différentes classes de problèmes à partir de données expérimentales. Van Driest [22] 

construisit des fonctions d'amortissement pour ajuster la longueur de mélange près de 

parois solides afin de mieux approcher le comportement asymptotique des variables dans 

ces régions. Parmi les modèles à zéro-équation plus récents on peut noter celui de 

Cebeci et Smith 1231 pour la couche limite turbulente et de Baldwin et Lomax [24] pour 

les équations de Navier-Stokes. 

La plupart des modèles à une équation utilisent l'équation de transport de 

l'énergie cinétique de la turbulence comme équation différentielle additionnelle. couplée 

avec une hypothèse supplémentaire pour déterminer l'échelle de longueur de la 

turbulence. Un premier modèle à une équation, proposé par Prandtl [25] en 1945 

suppose que la longueur de mélange est déterminée à priori. On peur noter aussi dans 

cette classe les modèles de Bradshaw, Ferris et Atwell [26], de Baldwin et Barth [27] 

et de Spalart et Allmaras 1281. Ces deux derniers utilisent la viscosité turbulente comme 

variable dépendante en développant des équations de transport pour le nombre de 

Reynolds associé à la viscosité turbulente. 

Les modèles à deux équations utilisent, pour évaluer la viscosité turbulente. 

l'équation de transport de l'énergie cinétique de la turbulence k, et une deuxième 

équation de transport qui sen à déterminer l'échelle de longueur de la turbulence. 

Kolmogorov [29] proposa en 1942 un premier modèle de ce type qui utilise les équations 

pour k et w , où o est le taux de dissipation spécifique d'énergie turbulente: 



où C est une constante et 

turbulence défini par: 

Alors la viscosité turbulente 

et l'échelle de longueur par 

On peut remarquer que w a 

turbulente. Le modèle k -U 

E est le taux de dissipation de l'énergie cinétique de la 

est donnée par 

les unités d'une fréquence et on I'appele aussi fréquence 

a été ensuite développé par Saffman [30] et Wilcox [3 11. 

Chou [32] a utilisé pour la première fois l'équation de transport du taux de 

dissipation de l'énergie cinétique de la turbulence. Le modèle k - E  a été ensuite 

développé et modifié par Harlow et Nakayarna [33] et par Launder et Spalding [34]. 

L'échslle de longueur daos ce cas est d é f ~ e  par 

et la viscosité turbulente dépend de k et e par: 

Un autre modèle à deux équations, qui utilise cette fois l'équation de transport 

pour le temps caractéristique de la turbulence 7, a été introduit par Zeierman et 

Wolfshtein [35] et modifié par Speziale et al. [3q. On défini r par: 



et alors on a: 

Les modèles de turbulence du second ordre utilisent des équations de transport 

additionnelles pour évaluer les composantes du tenseur de Reynolds. Parmi ces modèles 

on peut noter ceux de Rotta [37l, de Launder et al. [38], Speziaie [39], et Reynolds 

[40]. Le développement des équations de transport pour les composantes du tenseur de 

Reynolds permet d'incorporer certains effets, comme ceux dus à la courbure des lignes 

de courant ou ceux causés par les forces d'Archimède. qui sont difficiles à incorporer 

dans les modèles plus simples. Une revue des modèles de nûbulence au second ordre 

et de leurs applications est présentée par Launder [41]. 

1.2.3 Le modèle k-E 

Les modèles à deux équations se différencient par le choix de la variable utilisée 

pour définir l'échelle de longueur et par la présence des certains termes sources 

spécifiques. On présente ici le modèle k - E . tel que décrit par Launder et Spalding 

[IO], qui  est le plus utilisé. 

La viscosité turbulente est défine en fonction de l'énergie cinétique de la 

turbulence k, et de son taux de dissipation e , par: 

Les équations de transport pour k et E sont: 



Les constantes proposées par Launder et Spalding [IO] sont données dans le 

tableau suivant: 

Dans ce modèle, le Comportement du taux de dissipation 6 n'est pas valide près 

d'une paroi. Le modèle est souvent appelé modèle k - E pour les grands nombres de 

Reynolds, car il ne représente pas correctement I'écoulement à proximité d'une paroi 

solide. Plusieurs corrections ont été proposées pour corriger ce défaut et consistent à 

introduire des fonctions additionnelles d'amortissement dont le rôle est de produire le 

bon comportement près de la paroi. Les différentes versions du modèle k - E  à bas 

nombre de Reynolds sont passées en revue et évaluées par Patel et a1.[42] et par Miner 

et a1.[43]. 

1.2.4 Loi de paroi 

Pour palier aux inconvénients générés par le fait que le modèle k - E  standard 

n'est pas valide pour les écoulements à bas nombre de Reynolds, on utilise près des 

parois des fonctions qui représentent correctement le comportement des variables dans 

ces régions. 

Launder et Spaiding [IO] ont proposé une loi de paroi qui comporte deux régions 

définies comme suit: 



Dans la première région, appelée sous-couche visqueuse, la viscosité turbulente est 

négligeable par rapport à celle du fluide. La deuxième région est appelée zone 

logarithmique et est caractérisée par un cisaillement constant. Ici K est la constante de 

K k m h  (K=0.42), E est un paramène de rugosité et y=* est une valeur déterminée de 

façon à assurer la continuité du profd de vitesse d é f ~  par les deux expressions (1.28). 

Elle est donc déterminée par l'équation: 

Les variables adirnensionnelles y' et u+ sont d é f ~ e s  par: 

où la vitesse de frottement uT dépend du cisaillement à la paroi rw, par: 

L'énergie cinétique de la turbulence et son taux de dissipation sont reliés à la vitesse de 

frottement par: 

Spezide propose une loi de paroi à trois couches donnée par: 

où les constantes sont calibrées pour une paroi lisse. 



Reichardt propose une loi de paroi constituée par une seule fonction qui décrit 

le comportement dans la sousîouche visqueuse et dans la zone logarithmique: 

u'= 2.51n(1 +0.4y')+7.8[1 -e-Yofll - x e - o - 3 3 Y -  
11 1 

Cette loi de paroi est uulisée dans les logiciels FIDAP [44] et N3S [45]. 

D'autres approches utilisent l'équation de transport pour k couplée à un modèle 

de longueur de mélange pour déterminer la viscosité nubulente près de paroi [46]. 

1.3 Méthodes adaptatives pour les écoulements 
visqueux 

1.3.1 Considérations générales 

Au cours des dernières années l'application des méthodes adaptatives à montré 

leur efficacité et utilité sur des problèmes des plus divers et complexes. La résolution 

numérique des équations différentielles nécessite leur discrétisation sur un maillage 

représentant le domaine de cdcul. Il est évident que fa distribution des points du 

maillage déterminera la précision de la solution numérique. Le maillage devrait être 

plus fin Ià où la solution comporte des variations rapides. Par conne, de gros éléments 

peuvent être utilisés dans les régions oh la solution varie peu. Dans la plus part des 

applications il est très difficile de déterminer à l'avance les zones où les éléments 

doivent être concentrés et il est pratiquement impossible d'engendrer directement un 

maillage qui soit optimal. Les méthodes adaptatives permettent d'atteindre cet objectif, 

c'est à dire de produire un maillage sur lequel l'erreur est quasi-uniformément 

distribuée. Un algorithme adaptatif cherche aussi à produire la meilleure solution pour 

une capacité de calcul donnée. Finaiement, l'estimation de l'erreur permet d'évaluer en 

tout temps la qualité de la solution obtenue. À ces avantages on peut ajouter que, lors 



du processus adaptatif, la discrétisation du domaine se fait automatiquement, l'effort de 

l'utilisateur s'en trouve donc réduit d'autant. 

Les principales Btapes qui composent l'algorithme d'une méthode adaptative sont 

la génération du maillage, la résolution, l'estimation de l'erreur et ['étape d'optimisation 

du maillage. On s'attend à ce que l'estimateur d'erreur soit aussi général que le 

résoluteur. Il doit êrre précis et capable de fournir toutes les informations dont le 

module d'adaptativité à besoin. L'erreur estimée doit être une bonne indication de 

l'erreur exacte sur des maillages grossiers et elle doit converger vers celle-ci avec le 

raffinement du maillage. 

L'optimisation du maillage consiste dans la prédiction des caractéristiques de la 

. discrétisation optimale basée sur l'estimation de l'erreur. Dans cette étape la 

discrétisation est améliorée en ajustant les valeurs des certains paramètres, comme la 

taille h du maillage, ou le degré p des fonctions d'interpolation. On distingue alors des 

méthodes adaptatives de type h, qui sont basées sur des techniques de raffinement ou de 

remaillage [47, des méthodes r qui procédent à une relocalisation des noeuds du 

maillage existant [48], et des méthodes p basées sur l'enrichissement de l'espace des 

fonctions de base 1491. Enfin on peut avoir des méthodes combinées dans lesquelles les 

techniques précédentes sont utilisées ensemble. 

1.3.2 Techniques d'estimation d'erreur 

L'estimation d'erreur est une étape indispensable dans un algorithme adaptatif car 

c'est elle qui détermine les caractéristiques du nouveau maillage qui devrait améliorer 

la précision des calculs. Les techniques d'estimation d'erreur sont en général basées sur 

une reconstruction de la solution ou de ses dérivées, qu'on dénotent par LI. En suivant 

les suggestions de Babuska et Rodriguez [50] on sépare les différentes méthodes de 



construction de U, dans les classes suivantes: 

- techniques de construction globale; 

- techniques de construction locale; 

- techniques de construction semi-locale. 

D'autre part on distingue des constructions générales de U basées seulement sur 

les informations fournies par la solution, et des constructions de U qui utilisent en plus 

des informations tirées de l'équation différentielle à résoudre. 

Hétu [8] a passé en revue plusieurs techniques d'estimation de l'erreur a 

poste rio^: les méthodes d ' interpolation, de post-traitement par projection, de résolution 

de problèmes locaux, de résidus élémentaires et d'approximation interne-externe. Les 

méthodes d'interpolation sont basées sur l'évaluation des termes d'ordre supérieur qui 

ont été négligés par les fonctions de base. On note ici les formules d'extraction 

développées par Babuska 1511 qui permettent le calcul des dérivées secondes. La 

méthode de projection a été introduite par Zienkiewicz et Zhu [7] et consiste dans une 

projection au sens de moindres carrés des composantes du tenseur des contraintes. La 

différence entre la solution projetée et la solution par éléments finis est alors utilisée 

pour évaluer les erreurs. Dans les méthodes de résolution de problèmes locaux la 

solution exacte est écrite comme la somme de la soiution éléments finis et de son erreur. 

Cela permet d'obtenir un problème variationnel sur chaque élément, dont les inconnues 

sont les erreurs d'approximation [ I l ,  121. La méthode a donné de bons résultats dans le 

cas des écoulements laminaires incompressibles, et a été validée sur des problèmes 

possédant une solution analytique 152-561. Pourtant, son comportement a été décevant 

dam le w des écoulements dominés par la convection [57. Les méthodes de résidus 

élémentaires sont une classe d'estirnateurs apparue dans le développement des bornes 

pour I'estimateur par résolution de problèmes locaux. Ces estimateurs cherchent à 

évaluer l'erreur en calculant une borne supérieure du résidu dans chaque élément [Ill. 



Pour plus de détails voir la référence [a]. 

À la lumière des conclusions tirées dans [SI et [Sv, seulement les méthodes de 

projection aux sens de moindres carrés ont retenu notre attention. 

1.3.3 Estimation d'erreur par projection moindres carrés 

Cette méthode consiste en un post-traitement des composantes du tenseur des 

contraintes visqueuses. La solution éléments fuiis est caractérisée par un champ continu 

de vitesse, mais par un champ discontinu des dérivées. Les composantes du tenseur de 

contraintes visqueuses seront donc discontinues aux interfaces entre les éléments. 

Toutefois, la solution exacte. étant une solution du problème fort, sera caractérisée par 

des valeurs continues des contraintes visqueuses. Une possibilité pour évaluer l'erreur 

est de comparer le champ de flux discontinu avec un champ continu qui approxime le 

flux exact. 

Zienkiewicz et Zhu [7J ont initialement proposé d'obtenir les flux continus à 

l'aide d'une projection globale. au sens des moindres carrées. des flux brut dans 1 'espace 

d'éléments finis employé pour calculer la solution: 

où Np est le nombre de degrés de liberté par élément, +,, sont les fonctions de base, : 

dénote une solution continue et {-},, dénote les valeurs nodales de la projection par 

moindres carrés. La méthode revient à minimiser 1' intégrale 

pour chaque composante du tenseur de contraintes. On obtient alors le problème 

variationnei suivant 



qui conduit aux système d'équations 

Kf T KET 

Des analyses de I'estimateur par projection globale (22-global) sont dues à 

Ainsworth et al. 1581, et à Zienkiewicz et ai. [59]. La méthode a été appliquée aux 

écoulements incompressibles et validée sur des problèmes qui possèdent des solutions 

analytiques par le groupe de Polytechnique [52-561. Les résultats obtenus ont montré que 

même si I'estimateur n'est pas rigoureux, il produit des bonnes estimations de l'erreur. 

Strouboulis et Haque [60] ont fait remarquer le comportement décevant de la méthode 

pour des soIutions particulières de l'équation de Poisson et des fonctions de base de 

degré pair. 

Des méthodes améliorées pour la récupération des dérivées, basées sur des 

projections locales sur des sous-domaines ou groupes d'éléments, ont été proposées par 

Zienkiewicz et Zhu [6 1, 621. Dans ce cas. les valeurs nodales des champs continus sont 

déterminées à l'aide de constructions polynomiales sur les éléments entourant chaque 

noeud: 

Pour des polynômes de degré deux on a: 

p = [ ~ . x . y , x 2 , x y , y 2 1  

Pour la méthode de projection locale [6 11, qu'on dénote ZZ-local , les coefficients ai sont 

obtenus pour chaque composante du tenseur de contraintes en minimisant 1 ' intégrale 

suivante d é f i e  sur le groupe des tléments connectés au noeud: 



On obtient alors le système suivant: 

Ici 0, représente le groupe d'élérnenu défuii wmme l'ensemble des éléments qui 

contiennent le noeud considéré. Une fois déterminées les valeurs nodales des contraintes. 

{Tl,, , les champs continus sont construits comme pour la projection globale, c'est à dire 

en interpolant {Tl,, sur chaque élément en utilisant les fonctions d'interpolation du 

champs de vitesses. 

Une autre méthode de projection locale est la méthode de récupération locale 

superconvergente. Zienkiewicz et Zhu [61,62] ont suggéré d'utiliser la propriété de 

superconvergence des dérivées évduées en certains points. appelés points optimaux, 

pour améliorer l'estimation d'erreur. Cette méthode, qu'on dénote ZZ-SPR (ZZ - 
Superconvergent Patch Recovery rnethod) revient à une méthode de projection locale. 

comme celle décrite précédemment, dans laquelle l'intégrale à minimiser est remplacée 

par une forme discrète, utilisant uniquement les valeurs des dérivées aux points 

optimaux. Le choix de points optimaux reste une question ouverte. car leur existence 

est démontrée seulement pour cenains éléments et des maillages bien particuliers 

[6 1,631. Pour les éléments quadratiques, Zienkiewicz et Zhu ont trouvé que les points 

situés au milieu des côtés semblent optimaux. Pour une équation de Poisson, des essais 

numériques ont montré que les valeurs récupérées pour les dérivées nodales sont 

superconvergentes dans le cas des éléments linéaires et cubiques et qu'elles ont une 

convergence de l'ordre OF3 (ultraconvergence) pour les éléments quadratiques [61]. 

La minimisation de 

où N, est le nombre des points optimaux c ias  un groupe d'éléments, conduit au système 



suivant 

En résolvant ce système on obtient les coefficients ai du développement polynornial de 

7. . Finalement, les contraintes continues sont construites comme pour I'estimateur par 

projection locale. 

Des modifications à la méthode de récupération locale des dérivées ont été 

proposées par Wiberg et Abdulwahab [64] qui ont suggéré d'introduire dans la 

projection moindres carrés des termes provenant de la minimisation du carré du résidu 

de l'équation différentielle que l'on cherche à résoudre. Dans ce cas les coefficients ai 

seront déterminés par moindre carré de la somme du résidu des flux et du résidu de 

l'équation différentielle. La fonctionnelle à minimiser est donc 

où R = T~ -7. est le résidu des flux, R, est le résidu de I'équation différentielle et f i  un 

paramètre de pondération. La méthode donne de très bons résultats. qui s'améliorent 

lorsque des polynômes de degré supérieur sont utilisés dans la construction locale de T' . 
Pourtant, dôos la littérature on retrouve peu d'applications des techniques d'estimation 

d'erreur par projection locale dans le cas équations de Navier-Stokes, et encore moins 

pour les équations de transport avec propriétés variables et termes sources. 



Chapitre 2 

Modélisation du problème 

Dans ce travail on se propose d'employer une méthode d'éléments finis 

adaptative pour résoudre les écoulements turbulents. La turbulence est modélisée à 

l'aide du modèle k - E pour grands nombres de Reynolds avec une loi de paroi à deux 

zones. Dans ce chapitre on présente brièvement les équations du modèle k - E ainsi que 

la loi de paroi utilisée. 

2.1 Équations différentielles 

Les équations moyennes de Reynolds, qui modélisent les écoulements 

stationnaires de fluides visqueux incompressibles en régime turbulent avec l'hypothèse 

de Boussinesq, s'écrivent 

p(u-V)u= - O p  + V - [ ( p + p , ) ( V u + V u T ) J  +pf 

P ~ U  *V)T=V [ ( X + h ) V 1 7  +Pqs 

V - u = O  

où u est le vecteur vitesse, p est la pression, Test la température. f représente une force 

volumique et q, une source de chaleur. La viscosité turbulente, p,, et la conductivité 

turbulente, $, sont calculées à l'aide du modèie k - c proposé par Launder et Spalding 

[IO]: 



- =PPr %-- 
Pr, 

où Pr, est le nombre de Prandtl turbulent (pour la plupart des applications Pr,= 1). Le 

système est complété par les équations de transport de l'énergie cinétique de la 

turbulence k, et de son taux de dissipation E [IO]: 

Les constantes utilisées sont celles suggérées par Launder et Spalding [IO] (voir 

le chapitre 1.2.3). 

2.2 Conditions aux frontières 

Le modèle k - E à grands nombres de Reynolds tel qu'on utilise ici n'est pas 

valide dans les régions près de parois solides, là où les effets dues à la viscosité du 

fluide sont importantes. Même si des corrections ont été apportées au modèle afin 

d'améliorer son comportement dans ces régions. I'intégration des équations 

différentielles jusqu'à la paroi nécessite un très grand nombre de points. D'autre part 

il est bien connu que, dans de nombreux cas, la loi logarithmique représente une bonne 

approximation du profd de vitesses près de paroi. On peut donc en tirer profit en 

utilisant une loi de paroi plutôt que de faire appel à une résolution très couteuse sur le 

domaine complet. L'approche consiste à considérer une frontière fictive déplacée à une 
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distance d par rapport à la paroi solide, comme illustré dans la figure 2.1. La région 

contenue entre la frontière fictive et la paroi solide n'est pas discrétisée, la solution dans 

cette régionétant donnée par la loi de paroi. 

paroi solide 

Figure 2.1 Configuration de calcul avec loi de paroi 

On se propose d'utiliser la loi de paroi à deux couches de Launder et Spaiding 

Ici K est la constante de Kirmin (K=0.42), E est un paramètre de rugosité ( E = 9  pour 

une paroi lisse), et y+ ,  u+ sont des variables adimensionnelles définies par: 

avec y la distance par rapport à la paroi et ur la vitesse de frottement ur = ( T , J ~ ) ' ~ .  

Pour que le profd de vitesses soit continu la valeur doit satisfaire la relation: 



La loi de Launder et Spaiding est illustrée dans la figure 2.2. 

Figure 2.2 La loi de paroi de Launder et Spalding 

Du point de vue pratique, la loi de paroi fournit une relation entre la vitesse 

tangentielle à une distance y de la paroi et le cisaillement 7, au même endroit. On 

utilise alors cette relation pour imposer le cisaillement T,,, sur la frontière fictive. ce qui 

revient à une condition de Neumann non-linéaire. De plus, comme le domaine de calcul 

ne va pas jusqu'à la paroi solide et que la vitesse n'est pas nulle sur ces frontières, on 

doit s'assurer que sa direction reste tangente à la frontière. 

Finalement, l'énergie cinétique de la turbulence et son taux de dissipation sont 

reliés à la vitesse de frottement par: 
2 3 

4 k = -  UT 
, E = -  

KY 
(2.8) 

JC 



Chapitre 3 

Formulation et techniques de résolution 

3.1 Les équations modifiées 

Le système à résoudre est composé des équations de mouvement et de continuité, 

des équations de transport de l'énergie cinétique de la turbulence k et de son taux de 

dissipation E , de la loi de comportement de la viscosité turbulente et possiblement de 

l'équation d'énergie. La viscosité turbulente dépende de k et e et elle intervient dans 

toutes les équations. Les équations de transport de k et c comportent plusieurs termes 

source qui dépendent de la vitesse u,  de la viscosité turbulente p,, de même que de k 

et E .  Une résolution directe et couplée de toutes ces équations nécessiterait alors 

beaucoup de ressources de calcul. De plus. les équations sont très non-linéaires et une 

résolution directe devient d'autant plus difficile. 

On va chercher donc à construire un algorithme itératif de calcul qui résout 

successivement les équations différentielles du problème. Pour cela on procède à la 

réécriture de certains termes des équations de transport de k et E . En utilisant la 

définition de la viscosité turbulente, le terme - p E de (2.3) se réécrit: 



Le terme de production de l'équation d' E devient: 

On obtient alors une structure bloc triangulaire inférieur pour le système d'équations: 

L'algorithme itératif utiiisé résout séparément les équations (2.1 ) , (3.3) et (3.4) 

comme suit: 

1. donner des conditions initiales u, Tm k, et ~ g .  

2. évaluer 14 et )r, en fonction de k et E 

3. pour p, et & données: 

3.1. résoudre les équations de mouvement, de continuité et d'énergie 

3.2. résoudre l'équation de k 

3 -3. résoudre l'équation d' E 

3.4. mise à jour de p, et de )c, et aller à 3. 

De plus, la convergence globale de l'algorithme est grandement accélérée par 

l'introduction d'une boucle de sous-itération sur les variables de turbulence. Cela 

revient à répéter les étapes 3.2 à 3.4 un certain nombre de fois ( - 3) avant de revenir 

à l'étape 3.1. 

Dans cette approche l'étape 3.1 revient à résoudre les équations de Navier-Stokes 

à propriétés variables. La conservation de la masse est imposée par un algorithme de 

Lagrangien augmenté [65] ou bien par une méthode mixte vitesse-press ion. Les 

maaices élémentaires sont construites par différentiation numérique, telle que décrite 

dans l'annexe A. 



3.2 Formulation variationnelle 

La forme variationnelle des équations est obtenue en multipliant les équations 

différentielles par des fonctions test et en les intégrant sur le domaine de calcul. La 

forme faible de Galerkin correspondante est la suivante: 

- équations de mouvement, d'énergie et de continuité 

Ici v, q et w représentent les fonctions test des équations de mouvement, de continuité 

et d'énergie, aR \ r, , aR \ S dénotent une frontière libre ou une sortie et afln I', , 

a Q n  l?, représentent la portion de la frontière où la loi de paroi est imposée. 

- énergie cinétique de la turbulence (étape 3.2) 



- dissipation turbulente (étape 3.3) 

Les équations sont résolues en variables primitives. La discrétisation est réalisée 

à l'aide de l'élément de Crouzeix-Raviart Pl -PL. Les vitesses sont représentées par 

un polynôme quadratique enrichi d'une bulle, alors que la pression est linéaire par 

élément et discontinue au travers des faces d'un élément Les variables scalaires (T, k 

et E )  sont discrétisées par des fonctions quadratiques. La viscosité et la conductivité 

turbulentes sont évaluées en tout point à partir de k et E et de l'équation (2.2). 

3.3 Les enjeux numériques 

Cette section sera réservée à des techniques numériques nécessaires au bon 

fonctionnement de l'algorithme de résolution. On présente dans ce sens les modalités 

d'imposer les conditions aux frontières sur les parois solides. les méthodes de 

stabilisation numérique, ainsi que les techniques employées pour préserver la positivité 

des variables de turbulence. 

3 -3.1 Méthodes d'éléments finis stabilisées 

Pour les problèmes dam lesquels le terme de convection est dominant, les 

formulations de Galericin, (qui utilisent des fonctions test identiques à celles 

d'interpolation), conduisent à des solutions présentant des oscillations. Pour ce type de 

problèmes les méthodes utilisant une différentiation amont dans le sens de l'écoulement 

ont donné de nès bons résultats. Une première approche dans ce sens a été présentée 

par Raithby [66] dans le contexte des différence fies. L'idée a été reprise par Hughes 



et Brooks 1671 et mise en forme pour les méthodes d'éléments f-. La méthode 

proposée consiste dans l'introduction d'une difisivite artificielle qui agit seulement dans 

le sens de l'écoulement. Pour un écoulement multidimensionnel celle-ci prend la forme 

d'un tenseur donné par: 

Ici 1 VI est la vitesse du fluide, h est la taille de I'élément (voir l'annexe B), Pe est le 

nombre de Péclet de l'élément défini par 

et h est le coefficient de diffusion de l'équation de transport. La méthode, connue sous 

le nom de SU (Streamline Upwind), a été formulée pour les équations scalaires de 

convection-difision et pour les équations de Navier-Stokes incompressibles [67,68]. 

Une méthode simiiaire a été présentée par Kelly et al. [69]. 

Sous cette première forme, la méthode produit parfois des résultats incorrects, 

(en présence de terme source), car la formulation n'ut pas résiduelle. II est très utile 

ici d'observer que la diffisivité artificielle peut être transférée du terme de diffusion au 

terme de convection. Cela consiste à modifier la fonction test pour le terme de 

convection comme suit: 

On se retrouve donc à avoir des fonctions test différentes pour le terme de 

convection et pour les autres termes de l'équation (terme source et de diffusion). 



Hughes et Brooks [70] ont proposé alors de modifier les fonctions test pour tous les 

termes de l'équation. La méthode est devenue une méthode de type Petrov-Galerkin et 

le nom sous lequel est connue est SUPG (Streadine Upwind Peuov-Galerkin). Une 

analyse mathématique de la méthode pour différentes problèmes a été faite par Johnson 

et ai. [îl,72]. La méthode SUPG se révèle être une méthode résiduelle, conforme et 

qui nécessite uniquement des interpolations continues [73]. 

Pour une équation différentielle du type 

Y(u) =O 

la méthode SUPG ajoute à la forme faible Galerkin le terme suivant, constitué de la 

somme des intégrales sur les éléments du maillage: 

*, 

Ici S(U) représente le résidu fort de t'équation à résoudre. sont les fonctions 

d'interpolation, a, est un coefficient de diffusion artificielle et 7 est un paramètre de 

stabilisation, r = 6 hl(2 1 VI ) , qui a des unités de temps. Des détails de calcul de la 

fonction r sont donnés dans l'annexe B. Une généralisation aux systèmes 

multidimensionnels de convection-diffusion est présenté dans [74]. 

La forme SUPG pour les équations de Navier-Stokes est: 



Une nouvelle classe des méthodes d'éléments finis stables pour les équations 

dominées par la convection est celle des méthodes dites de Galerkin moindres carrés 

(Galerkin Least-Squares) (75,761. La méthode consiste à ajouter à la forme de Galerkin 

classique un terme additionnel qui a la forme d'un moindre carré du résidu fort de 

l'équation différentielle que l'on veut résoudre. Ce terme a l'effet d'augmenter la 

stabilité de la discrétisation numérique sans trop altérer la précision de la solution. 

donc à 

Encore une fois considérons l'équation type (3.14). La méthode GLS ajoute 

la forme faible les termes issus de la première variation de la fonctionnelle: 

c'est à dire 

Cela revient à minimiser le résidu fort de l'équation à résoudre à l'intérieur d'un 

élément, En résumé les formes faibles Galerkin, SUPG et GLS sont les suivantes: 

Galer kin: 
= O 

Dans le cas des équations de Navier-Stokes on doit résoudre un système formé 

par les équations de mouvement et de continuité. Écrivons le sous la forme suivante: 



où & et 4 sont respectivement le résidu de I'équation de mouvement et le résidu de 

I'équation de continuité. Alors la méthode GLS revient à résoudre le problème 

variationel suivant: 

où 6u, 6p. 6Ru et 6Rp sont respectivement les variations de la solution et des résidus 

forts. On peut exprimer alors 6Ru et bRp en fonction des variations des variables 

primaires bu, 6p comme suit: 

aR aR 
GR, = O b u  + 2 6 p  

au ap 

où plus spécifiquement: 

Ici nous avons considéré la forme linéarisée de I'équation de mouvement et par 

conséquent le terme p bu - Vu n'apparait pas dans I'équation (3.28). On obtient alors: 



Les variations de la solution ont la forme suivante: 

où 6ui.6pi sont les variations nodales des inconnues et vi, qi sont les fonctions 

d'interpolation pour la vitesse et la pression respectivement. Comme l'équation (3.30) 

doit être satisfaite pour tout bui,& on obtient la forme faible G U  suivante pour les 

équations de Navier-Stokes: 

On remarque que si on considère dans la partie moindre carré seulement ie terme 

provenant de la variation du terme de convection on récupère la méthode SUPG telle 

que décrite précédemment. Il est à noter que la méthode GLS contient des ingrédients 

de stabilisation addi t io~ek par rapport à SUPG, notamment le terme de type laplacien 

de la pression dans l'équation de continuité. II est aussi à noter que les méthodes 

Galerkin moindres carrés et SUPG sont des méthodes résiduelles. 



3 A 2  Implantation des conditions aux frontières 

L'utilisation de la loi de paroi sur les parois solides revient à l'imposition dans 

l'équation de mouvement d'un cisaillement rw. La loi de Launder et Spalding prévoit 

que le cisaillement à la paroi est donné par la relation: 

rw = -pufsign(u-î)î (3 -33) 

où ur représente la vitesse de frottement et î est le vecteur unitaire tangent à la paroi. 

Le cisaillement est donc orienté au long de la paroi et dans le sens opposé à la vitesse. 

La vitesse de frottement se calcule à l'aide des relations (2.5) et (2.6). On obtient 

donc: 

où LI est la vitesse tangentielle. Comme la densité p ,  la viscosité p et la distance à la 

paroi y sont données. ainsi que les constantes K et E, la vitesse de frottement est donc 

fonction de la vitesse II: 

u, = Ur (  IJ) (3.35) 

Le terme de bord de l'équation de mouvement s'écrit alors sous la forme suivante: 

et comme ur est une 

de bord nonlinéaire. 

l'aide de la méthode 

fonction nonlinéaire de la vitesse II, on est en présence d'un terme 

Pour accélérer la vitesse de convergence on le linéarise alors à 

de Newton comme suit: 



où U ,  est la vitesse à l'itération précédente et 6LJ est la correction à l'itération courante. 

En plus, comme toutes ces relations font intervenir le module du vecteur vitesse 

U =  (u2+v2)" on a en plus que: 

Le terme de bord s'écrit finalement sous la forme: 

Une fois déterminé le champ de vitesses, on évalue les valeurs de k et d ' e sur 

la frontière à l'aide des relations: 

Cette loi de paroi représente une bonne approximation lorsque l'écoulement est 

proche de l'équilibre, c'est à dire pour un écoulement développé et en présence de 

faibles gradients de pression. Des questions se posent au niveau de sa validité quand 

il s'agit de régions affectées par de forts gradients comme on peut en trouver dans les 

zones de recirculation. Regardons par exemple ce qui arrive proche du point de 

recollement dans un écoulement avec recirculation. La loi de Launder et Spalding prédit 

une énergie cinétique de turbulence nulle au point de recollement, là où la vitesse est 

nulle et par conséquent le cisaillement est nul lui aussi. Pourtant les expériences 

indiquent exactement le contraire car dans cette région on retrouve un niveau maximal 

de turbulence. Cette situation est moins importante lorsqu'on s'intéresse seulement au 

champ moyen de vitesses, mais elle devient critique pour les problèmes de transfert de 

chaleur lo~qu'on veut évaiuer le taux de transfert de chaleur sur la paroi. 

Un modèle de loi de paroi qui représente mieux le comportement de la solution 



dans ces régions fait appel à l'énergie cinétique de la turbulence pour déterminer une 

deuxième échelle de vitesse [10,77,78]. Pour cela on va considérer sur les frontières 

où la loi de paroi est utiiisée que le gradient normal de k est nul: 

De cette façon on peut résoudre l'équation pour k et utiliser les valeurs sur la frontière 

pour déterminer une échelle de vitesse reliée à la turbulence: 
LI4 LI2 u .  = C, k, (3.42) 

Dans ce qui suit on va faire référence à ce modèle en l'appelant loi de paroi à deux 

échelles de vitesse. Notons que la première échelle de vitesse demeure toujours la 

vitesse de frottement, puisqu'elle est reliée à la dynamique de l'écoulement moyen, 

tandis que la vitesse u. est l'échelle de vitesse de la turbulence. 

La loi de paroi est alors définie comme suit: 

Dans cette forme la relation entre la vitesse de frottement ur et le module de la 

vitesse U devient linéaire car la vitesse adimensionnelle uf est entièrement déterminée 

une fois calculé le niveau de turbulence. L'algorithme de calcul devient alors le suivant: 

. résoudre l'équation de I'énergie cinétique de la turbulence 

. évaluer la vitesse u. à I'aide de (3.42). 

. évaluer y'. 

. déterminer u' en fonction de y+ en utilisant les relations (3.43). 

. évaluer la vitesse de frottement ur. 



Finalement le cisaillement à la paroi 

TW = P q u .  

est donné par: 

ce qui représente une relation linéaire entre le cisaillement à la paroi et la vitesse sur la 

frontière. Le taux de dissipation de la turbulence dans ce cas est donné par: 

On peut remarquer cette fois, qu'au point de recollement la vitesse est nulle mais pas 

l'énergie cinétique de la turbulence. La vitesse u. est non-nulle et elle est une mesure 

de la vitesse des échanges dues a la turbulence. En ce point la vitesse de  frottement^^ 
et le cisaillement à la paroi 7, seront toujours nulles. Cette deuxième loi de paroi décrit 

mieux la région du point de recollernent dans un écoulement avec transfert de chaleur 

sur une marche descendante [78,79.80]. La prédiction de l'énergie cinétique de la 

turbulence et du transfert de chaleur à la paroi est beaucoup améliorée par 1' introduction 

de la deuxième échelle de vitesse. 

L'utilisation d'une loi de paroi revient donc à imposer un cisaillement rW dans 

la direction tangente à la paroi et orienté en sens opposé à la vitesse. Cela correspond 

à une condition aux frontières naturelle dans l'équation de mouvement pour la vitesse 

tangentielle. La vitesse normale, elle sera nulle sur les parois solides. Ces conditions 

aux frontières sont facile à imposer sur les frontières horizontales et verticales, là où les 

composantes u et v de la vitesse sont orientées le long de la paroi ou selon la normale 

à celle-ci. L'opération devient par contre assez difficile lorsque la paroi solide est 

oblique et encore plus lorsqu'elle est courbe. 

Dans ce qui suit on va présenter deux façons d' imposer la condition de tangence. 

Tout d'abord remarquons que la vitesse est stockée à chaque noeud. Une première 

possibilité d'imposer que la vitesse soit tangente à la paroi sera donc d'identifier en 

chaque noeud une direction normale et de contraindre la vitesse à être nulle dans cette 



direction. Un sommet sur la frontière appartient à deux arrêtes, elles aussi sur la 

frontière sur laquelle la condition de tangence doit être imposer. Pour une arrête on 

peut identifier une direction normale unique; cela n'est pas aussi simple dans le cas d'un 

noeud. Pour une frontière droite toutes les arrêtes ont la même direction et par 

conséquent la normale à chaque noeud est unique. Elle sera la normale à la frontière. 

Regardons maintenant ce qui arrive lorsque les arrêtes adjacentes n'ont pas la 

même direction, situation illustrée dans la figure 3.1. 

Figure 3.1 Déf~tion de la normale équivalente au noeud 

Dans ce cas il est évident qu'on ne peut pas déterminer une normale unique au 

noeud P. Engeiman et al [81] proposent d'évaluer la direction normale au noeud P de 

façon à ce que le débit global à travers de deux arrêtes soit nul. Cela conduit à la 

relation suivante: 

où n,, L, et n ,  L, sont respectivement les directions normales et les longueurs des deux 

arrêtes. Imposer que la vitesse soit nulle en cette direction normale au noeud P revient 

à permettre un flux non-nul au travers des arrêtes tel que le total des flux sur deux 

arrêtes adjacentes soit nul. Cette défuiition de la normale nodale est en accord dans un 

certain sens avec la loi de conservation de la masse. On remarque tout de même que 

la normale nodale dépend directement du maillage. Regardons par exemple ce qui 



arrive à un noeud qui correspond à un changement fon de la direction pour la frontière. 

La figure 3.2 illustre deux situations où, pour une même géométrie, la normaie au noeud 

P a des directions bien différentes dépendant du rapport entre les longueurs des arrêtes. 

On se trouve donc daos une situation où la direction normale dépend plus du maillage 

que de la physique et de la géométrie du problème. 

Figure 3.2 Dépendance de la normale équivalente au noeud du maillage 

Une fois déterminée la direction normale a chaque noeud il faut imposer que la 

vitesse normale soit nulIe. Le système à résoudre sera donc le suivant: 

où un, u, sont respectivement la vitesse normale et tangentielle, tandis que R, représente 

le résidu de l'équation de mouvement dans la direction tangentielle. Pourtant. nous ne 

disposons pas des équations de mouvement dans les directions normale et tangentielle 

et les variables sont les composantes de la vitesse en direction x et y, soit u et v. 

Soit maintenant RJu, v) =O et &(u, v) =O, les équations de mouvement en direction 

des axes x et y. L'équation de mouvement peut alors être écrite sous forme vectorielle 

comme suit: 

R(u,v) = R , ( u , v ) ?  + R ~ ( u , v ) ~ ^  = O  (3.48) 

où 1 ,; sont les vecteurs unitaires au long des axes de coordonnées. On peut obtenir 

l'équation de mouvement en direction tangentielle tout simplement en multipliant 

l'équation vectorielle (3.48) par la tangente nodale f = fx 1 + fj^ : 



De plus, cette équation a comme inconnues les variables primaires u et v et aucun 

changement de coordonnées n'est nécessaire. Comme on peut le constater cette 

condition de tangence impose d'une manière forte que la vitesse soit nulle dans la 

direction normale au chaque noeud. 

On présente maintenant une deuxième possibilité pour satisfaire la condition de 

tangence, cette fois dans un sens faible. Pour cela considérons que les équations de 

mouvement sont le résultat de la minimisation d'une fonctionnelle qu'on dénote Io@. v). 

Alors on a: 

et donc 

Pour satisfaire en plus la condition de tangence on va chercher à minimiser une 

fonctionnelle modifiée: 

où f est le multiplicateur de Lagrange pou la contrainte de débit nul et r, est la 

frontière sur laquelle on impose la condition de tangence. La variation de la 

fonctionnelle i sera: 

Minimiser la fonctionnelle I revient à résoudre les équations suivantes: 



Le débit au travers de la frontière est donc nul dans un sens faible. On remarque aussi 

que le fait d'imposer une certaine direction à la vitesse résulte aussi dans une 

modification de l'équation de mouvement par la présence de termes de bord 

supplémentaires. On peut identifier ces termes comme déterminés par une force qui 

n'est rien d'autre que la réaction sur la frontière. Le multiplicateur de Lagrange pour 

la contrainte de non-pénétration se retrouve donc à être la réaction sur la paroi. Dans 

notre approche le multiplicateur de Lagrange sera discrétisé par des fonctions 

discontinues. Notons que la fonction unitaire sera toujours une des fonctions test et par 

conséquent la procédure impose que le débit soit nul en moyenne sur chaque arrête. La 

contrainte (3.57) est imposée par une technique de Lagrangien augmenté, telle que 

décrite dans l'annexe C. 

3.3.3 Limiteurs pour k et E 

Les modèles de turbulence à deux équations ont été et sont toujours largement 

employés dans le calcul des écoulements turbulents. Comme on l'a déjà vu, deux 

équations de transport permettent d'évaluer des variables de turbulence pour ensuite 

calculer le niveau de la viscosité turbulente. Par définition, les variables de turbulence 

sont toujours positives, qu'il s'agisse de l'énergie cinétique de la turbulence. k, de son 

taux de dissipation, E , de la dissipation spécifique, w , ou bien du temps caractéristique, 

7 .  Bien que les équations de transport qui modélisent leur comportement admettent des 

solutions strictement positives, rien ne garantit pas que les solutions numériques le 

seront aussi. En pratique, la solution est caractérisée par des variations extrêmement 

rapides, des quasi-singularités déterminées par la géométrie et souvent par de grandes 



régions de très bas niveau de turbulence. Celles-ci représentent autant de possibilités 

pour que la solution numérique prenne des valeurs négatives ou nulles. Une telle 

situation conduit rapidement à la divergence des calculs car comme on le peut constater 

les équations de transport des variables de twbuience, de même que l'équation 

constitutive pour la viscosité turbulente, comportent de divisions à ces variables. 

Plusieurs approches ont été utiiisées afïm de contourner ce problème. On mentionne ici 

l'utilisation des opérateurs de 'clipping' 144.821 et la construction de schémas de 

discrétisation qui aident à préserver la positivité des variables [83,84]. Les méthodes 

de stabilisation de type upwind ont donné d'assez bons résultats surtout pour les schémas 

de volumes fuiis. Pourtant ces techniques ne garantissent pas que les variables de 

turbulence demeureront positives. 

Ici on présente une technique de clipping permettant de consenter de variables 

turbulents strictement positives tout en minimisant l'impact sur la solution. On donne 

aussi des détails de l'implantation telle que nécessaire pour assurer la robustesse de 

l'algorithme de résolution de même que du module adaptatif. Même si cette méthode 

permet d'obtenir de bons résultats, elle reste quand même limitée, dans le sens qu'elle 

nécessite une intervention directe sur la solution, qui est localement reconsuu ite . 

Cela peut avoir de répercussions à deux niveaux. Premièrement la convergence 

de l'algorithme est ralentie, car elle est affectée par le fait que la correction des 

variables inacceptables démit en même temps le résidu des équations. Deuxièmement, 

les modifications apportées à la solution déterminent des oscillations et des gradients 

extrêmement forts. L'effet sur la viscosité est amplifié d'autant car elle est une variable 

secondaire évaluée à partie de k et d ' ~ .  Toutes les régions où la solution sera 

reconstruite pour assurer que les variables demeurent positives seront autant des endroits 

où le module adaptatif sentira des erreurs et par conséquent va commander le 

raffinement du maillage. On se retrouve alors dans une situation où la procédure 

adaptative concentre les points du maillage dans les régions où le résoluteur manifeste 



de faiblesses, plutôt que là où le problème le nécessite vraiment. 

Pour assurer la robustesse de l'algorithme de rkolution, lorsque k et E sont 

utilisées comme variables primaires, on doit s'assurer que la solution demeure positive. 

Des valeurs négatives ou nulles sont inacceptables car certains termes contiennent des 

divisions par k ou e et de plus une viscosité négative peut être catastrophique pour le 

calcul numérique. Une approche très utile, inspirée de celle employée par FIDAP [44], 

est de limiter par le bas k et E en les empêchant de prendre de valeurs non-physiques. 

En pratique, si l'énergie cinétique de la turbulence k prend une valeur trop petite celle 

ci est remplacée par 

k,. k=- k m  , lorsque k < - 
4 4 

où k,, est la valeur maximale pour k dans la solution et d, une constante qui dépende 

du problème à résoudre. D'une manière similaire, si e est trop petite et détermine une 

valeur excessivement grande pour la viscosité turbulente, 

k" 
E =pcP- , lorsque E < t et 

d, Pl 4 
où de et dF sont toujours des constantes et pl représente 

on la remplace par: 

[a viscosité du fluide. Cette 

approche limite k et c par le bas et en même temps contrôle la valeur de la viscosité 

turbulente aux endroits où la procédure est appliquée. 

Une difficulté supplémentaire s'ajoute à ce moment-ci par le fait que les variables 

de turbulence, soit k et E , sont interpolées par de fonctions quadratiques. On peut 

facilement imaginer qu'une situation possible et même probable est celle où k et E sont 

positives à toutes les noeuds, mais négatives en certains points d'intégration à l'intérieur 

des éléments. Comme on fait appel à ces valeurs lors de la consmiction des matrices 

élémentaires, il est très important qu'elles soient aussi strictement positives aux points 

de Gauss. On peut aussi observer qu'en général les valeurs extrêmes au niveau d'un 

élément sont obtenus aux sommets, à l'exception de quelques régions où on retrouve les 



extrernums de la solution. Une procédure qui conduit à des valeurs positives aux points 

d'intégration (points de Gauss) consiste à imposer qu'à l'intérieur de l'élément la 

solution soit plus grande que la valeur minimale aux sommets. On s'assure donc que 

kpG r min (k , )  
i =  1.- 

ePG 2 min (ci) 
i =  i . h  

De plus, chaque fois qu'une des variables est ajustée à un point d'intégration on 

corrige aussi la deuxième variable sin de respecter une bonne représentation de la 

viscosité turbuiente. 

Même si cette procédure est assez robuste on doit souligner encore une fois 

qu'elle conduit à une solution entachée d'oscillations locales qui sont très dommageables 

pour l'estimation d'erreur. Le résultat net, dans un tel cas, est que l'adaptativité est 

pilotée plutôt par les faiblesses du résoluteur que par la physique du problème. Cela 

conduit à l'emploi souvent inutile d'un très grand nombre de points afin de minimiser 

l'influence de régions où les limiteurs sont appliqués [8S, 86,871. 

Une autre observation tirée d'essais numériques est que la faiblesse du résoluteur 

demande souvent de maillages initiaux assez fins qui réduisent encore le bénéfice de la 

méthode adaptative. Une telle situation est d'autant plus critique lorsqu ' on envisage des 

s irnulations tridimensionnelles. 

3.4 Résolution en variables logarithmiques 

Étant donnés les inconvénients inhérents à une technique de clipping, il serait 

bénéfique d'imaginer une méthode qui garantisse par construction que les variables de 

turbulence soient strictement positives. Cela permetaait de tirer pleinement l'avantage 

de la méthode adaptative, car la solution resterait lisse et serait déterminée entièrement 



à partir des équations différentielles du modèle (aucune pollution due aux limiteurs). 

Une telle approche est possible à l'aide d'un changement de variables, en 

considérant au lieu de k et E . plutôt leur logarithme naturel K=in(k) et E = l n ( ~ )  comme 

variables dépendantes. De cette façon on garantit que k, E et la viscosité turbulente 

seront strictement positives, car elles sont obtenues en evaluant l'exponentielle des 

variables de calcul. Le bénéfice à tirer de ce choix est direct au niveau de la positivité 

de la solution, mais en plus on peut tirer plusieurs autres avantages tant du point de vue 

du résoluteur que du module adaptatif. L'accélération de la convergence et une 

robustesse accrue de l'estimation d'erreur et de I'adaptativité en sont seulement des 

exemples. 

Le point de départ est constitué par l'idée que si les variables de turbulence, 

comme c'est le cas pour k et E ,  sont strictement positives. elles peuvent être 

représentées par de fonctions exponentielles. Par exemple: 

E = eE  
Le grand avantage réside dans le fait que la réciproque est toujours valable. Cela veut 

dire que si k et E sont représetitées par des fonctions exponentielles elles sonr touiours 

positives. Par conséquent la viscosité turbulente, sera elle aussi positive et aucun 

traitement supplémentaire de clipping ne sera nécessaire. 

Cette approche ne change en rien le modèle de turbulence ou l'équation 

constitutive ou encore les équations de transport. Le problème résolu reste le même. Du 

point de vue pratique, les variables de turbulence seront cette fois strictement positives 

partout dans le domaine de calcul et cela sans ajuster aucune valeur de quelque façon 

que ce soit. De plus, la procédure résulte dans une amélioration accrue de la précision 

et cela surtout dans les régions de forts gradients ainsi que là où les variables de 

turbulence prennent des valeurs extrêmement basses. Dans ce qui suit, on va appeler 



cette procédure 'résolution en variables logarithmiques'. 

3.4.1 Équations différentielles de transport 

Considérons maintenant les équations différentielles de transport de k et E dans 

la forme utilisée par l'algorithme itératif de calcul: 

et 1 'équation constitutive du modèle k - E : 

On veut donc passer de k et E ,  comme variables dépendantes. à K=ln(k) et 

E = l n ( ~ ) .  Pour cela on divise I'équation de transport de k par k et l'équation de 

transport d' E par E pour obtenir: 

Les termes de diffusion sont décomposés comme suit: 



orcomme v[;] =-k et =-  vc 
k2 

- on obtient: 
2 

Vk] = .- [[.+;] y ]  + 

v.] = v *  [[.+$] :] + 

Le passage aux variables logarithmiques est maintenant facile à compléter car ii 

suffit de remplacer k par 6 E par e E  et d'utiliser les identités suivantes: 

On obtient alors les équations de transport pour les variables logarithmiques sous la 

forme: 

On remarque ici la présence d'un terme supplémentaire, en gradient au carré, 



issu du terme de difision. Ce terme peut être incorporé au terme de convection ce qui 

détermine une modification de la vitesse de convection qui sera alors 

[u  - I / p ( p  + p , / u k ) V a  pour l'éguation de Ket [ u  - I l p ( p  + p , / g ) V E ]  pour l'équation 

de E. On peut alors obtenir différentes formes variationnelles stabilisées, dépendent de 

la façon dont ce terme est traité. Cette question est discutée en détail dans l'annexe D. 

Notons aussi la nouvelle écriture pour les termes sources qui incorporent cette fois des 

fonctions exponentielles. On s'attend donc que les non-linéarités des équations soient 

plus importantes. La situation est moins critique qu'il n'y parait, car les exponentielles 

sont facilement linéarisables pour l'intervalle couvert par les variables de turbulence. De 

plus, les termes de iuiéarisation obtenus à partir de ces termes sources sont tous positifs, 

ce qui contribue à la stabilisation du système numérique. 

Lorsque la résolution est faite en variables logarithmiques la viscosité turbulente 

est évaluée directement à partir de K et E par la relation: 

pT = pCpe2K-E 

ce qui montre que a, sera strictement positive. 

3.4.2 Formulation variatiomelle 

La forme variationnelle des équations (3.74) et (3.75) est obtenue en multipliant 

ces équations par des fonctions test et en les intégrant sur le domaine de calcul. On 

donne ici la forme de Galerkin classique des équations. Les formes variationnelles de 

type SUPG et Galerkin Moindres Carrés sont présentées dans l'annexe D. 

Après l'intégration par parties des termes de difision on obtient les formes 

faibles suivantes: 



Les étapes de l'algorithme de résolution restent inchangées. L'algorithme sera 

donc le suivant: 

1. donner des valeurs initiales ir, k, et co. 

2. pwer  aux variables logarithmiques pour les inconnues de même que pour les 

conditions de Dirichlet: K=ln(k), E = i n ( ~ ) .  

3. évaluer la viscosité turbulente pT en fonction de K et E. 

4. pour p, donné 

4.1. résoudre les équations de mouvement et de continuité. 

4.2. résoudre l'équation pour K. 

4.3. résoudre l'équation pour E. 

4.4. réévaluer la viscosité turbulente et aller à 4. 

Les observations faites dans le cas d'une résolution en k et E comme variables 

dépendantes, telle que l'accélération de la convergence globale à l'aide des sous- 

itérations sur les variables de turbulence, sont toujours applicables. 

Regardons maintenant quel est l'impact du passage aux variables logarithmiques 

sur la discrétisation de la solution. Rappelons que les variables scalaires, telles que k, 

E , ln*) et In(€) sont discrétisées par de fonctions quadratiques. Lorsque la résolution 

est faite avec k et E comme variables dépendantes, on a donc que: 



où 4, ei sont les valeurs nodales de k et E respectivement, et les N, sont les fonctions 

d' interpolation quadratiques. 

Dans une résolution en variables logarithmiques on discrétise le logarithme 

naturel des variables de turbulence. On a donc que: 

Si on recalcule maintenant k et E en fonction des variables logarithmiques on obtient: 

ou bien 

Notons que dans ce cas, si on utilise pour la viscosité turbulente la même 

discrétisation que pour k et E , alors la loi de comportement pour la viscosité turbulente 

est vérifiée en tout point. En effet, soit M le logarithme naturel de la viscosité 

turbulente, qui satisfait la relation suivante: 

On a alors 



La variable M est approximée par de polynômes de degré deux tout comme K et E. 

Finalement, la viscosité turbulente est approximée par: 

c'est à dire sur la même base que celle sur laquelle on discrétise k et E . 

Le passage aux variables logarithmiques fait donc en sorte que toutes les 

variables de turbulence, soit l'énergie cinétique de turbulence k, le taux de dissipation 

de l'énergie cinétique E et la viscosité turbulente p,, sont discrétisées de la même 

façon. 



Chapitre 4 

Remaillage adaptatif 

4.1 Estimation a postenori de l'erreur 

Pour estimer l'erreur de la solution obtenue par la méthode des éléments finis on 

utilise des estimateurs par projection moindres carrés de dérivées. La méthode de 

projection estime l'erreur en comparant les flux bruts de la solution par éléments finis 

à leur projection. au sens de moindre carré, dans l'espace d'éléments finis employé pour 

cdculer la solution: 

où 7 = (Vu +Vu ') /2  est le tenseur des taux de déformation, q, = Vk , q, = QE , qh = Vp7 



dénotent les gradients de k, E et respectif a,, +fl sont les fonctions de base P2, - dénote 

l'approximation continue et { }, dénote les valeurs nodales de la projection par 

moindres carrés. 

Les valeurs nodales {Tlfl, (&, {tk},. {te},, et {ih}, seront calculées par 

projection globale, par projection locale et par récupération locale superconvergente des 

dérivées telles que proposées par Zienkiewicz et Zhu [7,6 1-62], 

L'estimateur d'erreur par projection globale est décrit en détail dans les 

références [8,9]. On cherche à trouver le champs continu Y qui est le plus proche des 

dérivées de la solution éléments f ~ s  au sens des moindres carrés global: 

ce qui conduit au système d'équations: 

La taille du système est égale à N, le nombre de noeuds du maillage. On doit 
- -  - -  

résoudre un tel système pour chaque composante de 7,  q,, 4,. q, ainsi que pour la 

pression. Tous ces systèmes ne diferent que par leur membre de droite, la matrice étant 

la même pour toutes les projections. 

La solution éléments finis pour la vitesse et les variables de turbulence se trouve 

dans l'espace HL@) des fonctions dont les dérivées sont de carré sommable. La 

discrétisation de la pression se trouve dans I'espace L2(G) de fonctions de carré 

sommable. Les nonnes utilisées pour évaluer les erreurs sont alors la semi-norme H' 

pour la vitesse et les variables de turbulence et la norme L2 pour la pression (voir les 

références [8,9]). La norme en vitesse est défiaie à l'aide du tenseur de déformations 

y. Une fois les valeurs de 7, ijk, tje, gh calculées, les nomes de 1 'erreur seront donc 

évaluées à l'aide des expressions suivantes: 



- vitesse: 

- pression: 

- k: 

- E :  

- PT: 

où e' dénote l'erreur dans le champ de l'inconnue x. 

Cette méthode a été intensivement employée par le groupe de Polytechnique pour 

des problèmes de transfert de chaleur en écoulement laminaire [54.88-90). des 

écoulements à propriétés variables [55] et des écoulements turbulents modélisés par des 

modèles à zéro-équation 1561 et à deux-équations [79,85-871. Comme observation 

générale on peut noter que I'estimateur à projection globale est robuste et dirige 

correctement le processus adaptatif, mais il sous-estime constamment l'erreur réelle. 

D'autres techniques améliorant la récupération des dérivées utilisent des 

projections locales sur des sous-domaines ou groupes d'éléments [6 1.621. Dans ce cas. 

les valeurs nodales des champs continus sont déterminées à l'aide de consmctions 

polynomiales sur les éléments entourant chaque sommet, comme illustré dans la figure 

4.1. 

Pour chaque sommet et chaque variables à projeter on construit donc une forme 

polynomiale: 

y' = P a  (4.13) 

où P représente la base des polynômes de degré deux et ai sont les coefficients à 



Figure 4.1 Groupe d'éléments pour la projection locale 

déterminer: 

a = [a,.a2,aya4,a,,a,~' (4.15) 

Dans la méthode de projection locale dans L, les coefficients ai sont obtenus pour chaque 

composante du tenseur de déformations en minimisant l'intégrale suivante défmie sur le 

groupe d'éléments connectés au sommet: 

On obtient alors le système suivant: 

Ici fIs représente l'ensemble d'éléments qui contiennent le sommet considéré (voir la 

figure 4.1). Les noeuds qui se trouvent sur les cotés seront contenus dans deux groupes 

d'éléments, chacun associé à un noeud à l'extrémité de l'arrête. La valeur nodale du 

champ continu aux milieux de coté sera évaluée comme la moyenne des valeurs obtenues 

en ce point par les deux constructions polynomiales associées aux extrémités de l'arrête. 

Une fois déterminées les valeurs nodales des déformations, { T l n ,  les champs continus 



sont construits avec les mêmes interpolants que ceux utilisés pour la projection globale. 

Une autre façon d'obtenir une projection locale est la méthode de récupération 

locale superconvergente. Dans ce cas le problème de moindres caïrés continu (4.16) est 

remplacé par une forme discrète, utilisant uniquement les valeurs des dérivées évaluées 

en cenains points, appelés points optimaux. Zienkiewicz et Zhu [62], ont trouvé que 

les points situés au milieu des côtés sont optimaux. La figure 4.2 illustre la position des 

points de collocation dans le groupe d'éléments qui entourent un sommet. 

points optimaux 

Figure 4.2 Points de collocation pour la projection locale discrète 

La minimisation de la forme quadratique suivante 

où N, est le nombre des points optimaux dans un groupe d'éléments, conduit au système 

suivant 

En résolvant ce système on obtient les coefficients a, du développement polynomial de 

Y' . Finaiement, les déformations continues sont construites comme pour I'estimateur 

par projection locale décrit précédemment. 



Les estimateurs à projection locale se réduisent à la résolution des systèmes 

algébriques de petite taille, (6x6)' pour chaque sommet, à la place des systèmes globaux 

de la projection globale. On notera aussi que la matrice de projection reste la même 

lorsqu'on projet plusieurs variables: seulement le membre de droite change. 

4.2 Les variables logarithmiques et l'erreur de la 
solution 

L'estimation d'erreur est faite en k et E lorsque ces variables sont utilisées 

comme variables dépendantes et en in@) et h ( e )  dans le cas d'une résolution en 

variables logarithmiques. Dans ce deuxième cas on raffine donc le maillage selon les 

gradients de K=fn(k) et E = ~ ( E ) .  Regardons quel est le lien entre les erreurs en k et t 

d'une parte et les erreun dans leur logarithme naturel d'autre part. Rappelons que: 

k = e K  (4.20) 

On peur écrire la solution exacte comme la somme de la solution éléments finis et de 

I 'erreur: 

où l'indice h dénote la solution éléments fuiis, er, et ere dénotent les erreurs en k et€ 

et er, et er, celles dans leur logarithme nanuel. Comme les relations (4.20). (4.21) sont 

vérifiées tant par la solution exacte que par la solution éléments finis, on obtient que: 

OU encore 



Les exponentielles peuvent être développées en série de Taylor, ce qui nous permet 

d'écrire qu'au premier ordre on a: 

Si on néglige maintenant les termes d'ordre supérieur ~ ( e r i )  et O (erz)  on obtient que 

les erreurs en variables logarithmiques correspondent aux erreurs relatives en k et E : 

Quel sera alors I'effet du changement de variables dépendantes sur la précision 

de la viscosité turbulente? Pour répondre à cette question considérons que la solution 

exacte pour la viscosité turbulente est donnée par la somme entre la solution éIérnents 

finis a, et son erreur erh. Encore une fois, tant la solution exacte que la solution 

éléments fmis satisfont l'équation (2.2) pour la viscosité turbulente. On a alors que: 

Après le développement en série de la fonction rationnelle et en négligeant les termes 
erk erc 

d'ordre supérieure en - et - on obtient que: 
k E 

Ceci implique que l'erreur en viscosité turbulente dépend des erreurs relatives en k et 

E , ou bien des erreurs dans les variables logarithmiques. Notons que pour la plupart 

des écoulements on retrouve des régions où k et E prennent des valeurs extrêmement 



basses, mais conduisent à des valeurs importantes de la viscosité turbulente. 

Typiquement les différences entre les maxima et minima dans la solution sont d'environ 

4-6 ordres de grandeurs dans le cas de l'énergie cinétique de la turbulence, de 8-10 

ordres de grandeur pour E et de seulement 2-3 ordres de grandeur pour la viscosité 

turbulente. On peut donc rencontrer des situations où les valeurs de k et E sont 

comparables, ou même plus petites que leurs erreurs. Cela détermine des erreurs 

extrêmement grandes pour la viscosité turbulente car la relation (4.30) comporte des 

divisions par k et E . Cette tendance est entièrement éliminée par le passage aux 

variables logarithmiques. En effet, l'erreur en c<, dépend uniquement et linéairement 

des erreurs en variables logarithmiques par le biais d'une relation qui ne comporte pas 

de divisions par de petites valeurs. C'est un argument de plus qui justifie le fait que la 

résolution en variables logarithmiques est nettement supérieure à celle en k et E . 

4.3 Opérateur de transition 

Le module adaptatif exploite ensuite la connaissance de la distribution d'erreur 

dans le domaine pour concevoir un meilleur maillage. La stratégie retenue procède par 

remaillage adaptatif telle que proposée initialement par Peraire et al. [47]. L'algorithme 

procède comme suit: 

1. générer un maillage initial 

2. calculer une solution par éléments fuiis 

3. calculer l'estimation d'erreur 

4. if (erreur globale < tolérance) alors 

- stop 

else 

- calculer la fonction de maille 6(x ,y )  à partir de l'estimation d'erreur 

- générer un maillage amklioré à l'aide de 6 



- interpoler la solution sur le nouveau maillage 

- goto 2 

end if 

L'erreur globale s'obtient de la norme de l'erreur sur chaque élément à I'aide de: 

II~JI~ = c neKo2 (4.3 1) 

Supposons maintenant que I'on veuille réduire l'erreur d'un facteur à chaque étape 

adaptative. On cherche alors à obtenir une solution ayant une erreur 1 e,  O . 

II ne reste qu'à déterminer la taille b ( x ,  y )  des éléments du prochain maillage. 

La fonction de maille 6 doit être telle que les éléments seront plus petits dans les zones 

entachées d'une erreur importante et plus grands là où la solution est déjà suffisamment 

précise. Pour ce faire, on utilise le principe d'équidistribution de l'erreur qui veut que 

chaque élément soit entaché d'une même erreur moyenne e_, 11 . 

Sachant que I'on cherche à obtenir une diminution de l'erreur par un facteur E : 

$Y 
où Ne est le nombre d'éléments du maillage courant. On obtient l'expression de 6 en 

utilisant le taux de convergence asymptotique qui relie l'erreur à une puissance k de la 

taille h de l'élément: 

On a donc aussi: 

Il.,,[ =cg 

d'où I'on tire: 



Pour l'élément de Crouzeix-Raviart et un interpolant P, de k et E on utilise une valeur 

de k égale à 2. 

Finalement, on se sert de la distribution de taille 6 pour produire le nouveau 

maillage, grâce à un algorithme de maillage fiontal tel que décrit dans [47 .  

Comme on peut le voir la génération du maillage adapté est basée sur la 

connaissance de la distribution de l'erreur. Pour les problèmes qui nous intéressent la 

solution est décrite par plusieurs variables et on évalue pour chacune sa propre erreur. 

II est donc ensuite plus compliqué de compléter le raffinement du maillage de tel sorte 

que la précision sur chaque variable soit améliorée par le facteur imposée E . Une 

première approche, utilisée avec succès pour les écoulements turbulents [85 -87 ,  consiste 

a évaluer une erreur totale défmie de façon à incorporer les erreurs déterminées pour 

toutes les variables d'intérêt. On emploie dans ce cas la formule suivante: 

Dans cette expression les normes des erreun sont éq~ilibrées en les normalisant par les 

valeurs maximales des variables. Les résultats donnés par cette méthode dans le cas 

d'une résolution en k et E sont encourageants. Pourtant son utilisation dans le cas des 

variables logarithmiques soulève des questions quant à la bonne mise à l'échelle des 

erreurs pour les différentes variables. 

Une deuxième approche possible consiste à déterminer une distribution de taille 

pour chaque variable d'intérêt et de choisir ensuite en chaque point la taille la plus 

petite. 



Chapitre 5 

Validation 

On évalue premièrement la performance de l'algorithme de résolution, des 

estimateurs d'erreur et de la stratégie d'adaptativité en solutionnant des problèmes pour 

lesquels il existe une solution anaiyuque. Ceci permet de comparer I'estimateur à 

l'erreur exacte et d'étudier les distributions d'erreur et d'estimateur. Ceci permet aussi 

d'apprécier la qualité de la solution obtenue à l'aide de différentes formulations par 

éléments finis et de vérifier la convergence globale du processus adaptatif. Les équations 

de Navier-Stokes, de k et d' E (respectivement In(k) et In(€ ) ) sont résolues dans leur 

forme adimens ionnelle. La description des géométries et des conditions 1 imites utilisées 

est donc donnée sous forme adimensionnelle. 

5.1 Couche cisaillée 2-D avec une variation 
linéaire de la viscosité turbulente 

L'énoncé de ce problème est inspiré de la solution analytique tirée de Schiichting 

1911. La solution est dom& par: 



CLT = PToX 

On utilise les valeurs suivantes des paramètres 

u, = 1.0 

pu& - 1(T Re, = - - 

En substituant les expressions dans les équations différentielles (2. l ) ,  (3.4) et 

(3.4) on détermine les termes source à incorporer aux équations de mouvement, de k et 

d' e de façon à s'assurer que la solution soit bien donnée par les relations ci-dessus. 

Le problème est résolu sur le rectangle adimensionel LOO 5 x 1  300, 

- 75 y 75. On applique des conditions de Dirichlet à toutes les variables (u, v, k, E) , 



sur toutes les frontières. La seule exception est constituée par la frontière basse (à basse 

vitesse aussi) qui a une condition libre dans la composante v de la vitesse afm de f i e r  

le niveau de la pression à zéro. 

Tout d'abord on résout le problème sur des maillages uniformes afm de 

déterminer le taux de convergence de l'élément pour les différentes variables. On utilise 

une formulation Galerkin moindres carrés et les équations en variables logarithmiques. 

Pour chaque solution on évalue l'erreur exacte en vitesse, infi) ,  In (€)  et a,. Les 

résultats obtenus sont résumés dans le tableau 5.1. Les figures 5.1 et 5.2 présentent les 

trajectoires des erreurs en fonction du nombre de points du maillage et en fonction de 

la taille des éléments. Sur les deux figures les valeurs sont représentées sous échelle 

logarithmique. Remarquons que les quatre courbes ont pratiquement la même pante ce 

qui indique que le taux de convergence de l'élément est le même pour les quatre 

variables. Dans le tableau 5.2 on présente le taux de convergence évalué entre les 

maillages 1 et 2 et respectif entre les maillages 2 et 3. Pour toutes les variables il est 

approximativement 2, l'écart par rapport à cette valeur se situant en-dessous de 6%. 

Cette constatation nous permet d'utiliser cette valeur pour le taux 'a priori' de l'élément 

dans le processus adaptatif. 

Tableau 5.1 Trajectoire des erreurs pour un raffinement uniforme 

Maillage taille des # de Erreur en Erreur en Erreur en Erreur en 

éléments points vitesse In(k. M l  PT 



Tableau 5.2 Taux de convergence de l'élément 

II faut préciser que le taux de convergence de l'élément diminue lorsque 

l'écoulement devient moins visqueux ou bien en présence des singularités. Dans ce 

deuxième cas, même si l'erreur est bornée. il est possible qu'elle ne diminue pas 

localement autour de la singularité lorsque le maillage est rafîïmé. Le fait d'utiliser dans 

certaines régions de l'écoulement une valeur pour le taux de convergence qui est 

supérieure à la valeur réelle entraîne un raffÏÏement local sous-optimal. Pourtant il est 

difficile de connaître a priori la valeur du taux de convergence de l'élément, car il 

dépend des caractéristiques de l'écoulement et peut varier avec le raffinement du 

maillage. Dans nos calculs le processus adaptatif est itératif. Donc, lorsqu'on obtient 

une solution, l'estimation d'erreur indique les endroits où le maillage doit être raffiné. 

Même si le maillage adapté n'est pas optimal, le processus adaptatif sera dirigé 

correctement. De plus, comme la solution change elle même avec le raffinement du 

maillage, cette procédure nous permet d'obtenir 1 'équilibre entre les caractéristiques du 

maillage et celles de la solution. 

Une première série de calculs adaptatifs, qui sera considérée comme calcul de 

référence pour ce cas de validation, est réalisée en variables logarithmiques, à l'aide 

d'une formulation Galerkin moindres carrés (GLS) . Afm de valider le comportement 

de la méthode proposée, les calculs ont été effectués en utiiisant les estimateurs d'erreur 

par projection locale. Pour évaluer aussi les autres techniques d'estimation d'erreur, on 

a calculé les estimations de l'erreur par projection globale et par projection locale 

discrète. Chaque estimé de l'erreur est comparé à l'erreur exacte. Ceci permet de 



vérifier à la fois si les estimateurs sont fiables et si le module d'adaptativité se comporte 

comme prévu. Dans tous les cas, les calculs commencent sur un maillage grossier. Le 

module d'adaptativité conçoit le maillage suivant afin de réduire l'erreur par un facteur 

de 2 pour toutes les variables considérées, soit le champs de vitesse, k, E (ou leur 

logarithme naturel) et p,. On interpole la solution obtenue sur le maillage courant sur 

le nouveau maillage. On notera que lorsque le calcul est fait en k et E . l'erreur est 

évaluée pour ces variables, tandis que l'erreur est évaluée pour ln(k) et ln(€ ) lorsque la 

résoiution est faite en variables logarithmiques. 

Les tableaux 5.3 à 5.6 résument les résultats obtenus. On présente l'évolution 

de l'erreur en vitesse et dans les variables de turbulence. Dans chaque tableau on 

retrouve la norme de I'erreur exacte ainsi que celle des trois estimateurs. On peut 

remarquer que les deux estimateurs d'erreurs par projection locale se comportent de 

façon similaire. L'estimateur à projection globale présente un écart de comportement 

dans le sens qu'il sous-estime l'erreur réelle. Outre ce fait, l'erreur exacte et les 

estimateurs diminuent au même rythme pour toutes les variables. 

Tableau 5.3 Résolution en variables logarithmiques - Trajectoire de I'erreur en vitesse 

Maillage # de # d' Erreur Projection Projection Projection 

points éléments exacte locale discrète globale 



Tableau 5.4 Résolution en variables logarithmiques - Trajectoire de l'erreur en k 

Maillage # de # d' Erreur Projection Projection Projection 

points éléments exacte locaie discrète globale 

Tableau 5.5 Résolution en variables logarithmiques - Trajectoire de l'erreur en E 

Maillage # de # d' Erreur Projection Projection Projection 

points éléments exacte locale discrète globale 

Remarquons que l'erreur diminue à chaque cycle adaptatif par un facteur plus grand que 

2, la cible imposée, résultat normal étant donné qu'on adapte selon plusieurs variables 

en même temps. Les figures 5.3 à 5.6 présentent ces trajectoires de façon graphique. 

L'estimateur à projection globale semble sous-estimer l'erreur alors que les méthodes 

de projection locale sont très proches de l'erreur exacte. 
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Tableau 5.6 Résolution en variables logarithmiques - Trajectoire de l'erreur en p, 

Maillage # de # d' Erreur Projection Projection Projection 

points éléments exacte locale discrète globale 

Les figures 5.7 à 5.14 présentent les histogrammes de l'erreur exacte et de 

l'estimé par projection locale. L'abscisse est la norme de I'erreur sur un élément et 

I'ordonnée le nombre d'éléments ayant cette erreur. On notera que l'échelle horizontale 

est logarithmique. Un maillage optimal ne présentera qu'un pic puisque tous les 

éléments porteront la même erreur. On constate dans les deux w (erreur exacte et 

estimation de l'erreur) que la médiane de l'erreur diminue à chaque cycle et que la 

précision s'améliore partout dans le domaine d'un cycle à l'autre. Dans le w de 

l'erreur en vitesse on constate qu'aux cycles 2 et 3 la grande majorité des éléments sont 

entachés d'une erreur quasi constante car l'histogramme se resserre autour de la valeur 

moyenne (une grande fraction des éléments ont une erreur proche de la moyenne). La 

présence des éléments avec une erreur plus petite que la moyenne s'explique par le fait 

que, dans certaines régions, on raffine selon une des variables même si les autres sont 

calculées avec une bonne précision. Le résultat net est que l'erreur dans ces variables 

diminue d'avantage, effet qui est remarqué sur les histogrammes. On remarque aussi 

que l'histogramme pour I'erreur estimée se compare très bien à celui obtenu pour 

l'erreur exacte et cela pour toutes les variables considérées. 

La figure 5.15 présente la séquence de maillages générés par la stratégie 



d'adaptativité. Les maillages générés sont bien concentrés là où les variables varient 

beaucoup. On remarque sur le dernier maillage une concentration marquée en deux 

bandes correspondantes aux régions de variations rapides en vitesse. en In(k) , In(€ ) et 

en Cr,- 

Les figures 5.16 et 5-17 présentent la solution pour les vitesses u et v. la 

viscosité turbulente pT, l'énergie cinétique turbulente k, son taux de dissipation E ainsi 

que leur logarithme naturel. La colonne de gauche correspond à la solution obtenue sur 

le maillage initiai tandis que celle de droite présente la solution obtenue sur le maillage 

fuial. La solution sur le maillage adapté est de meilleure qualité pour toutes les 

variables. La solution analytique (5.1) indique que les iso-lignes de viscosité turbulente 

devraient être verticales car a, ne dépend que de x. On peut donc mesurer 

l'amélioration des prédictions en comparant les distributions obtenues pour la viscosité 

turbulente. On constate une nette amélioration. A toute fin utile. les iso-lignes de 

viscosité turbulente sur le dernier maillage sont verticales. 

Les figures 5.18 à 5.25 présentent une comparaison d'iso-erreur exacte et estimée 

sur le maillage initial et sur le maillage 1. Sur chaque figure on retrouve les iso-lignes 

de l'erreur exacte en haut et à gauche, de même que les iso-lignes de l'erreur estimée 

par projection locale, par projection locale discrète et par projection globale. On 

présente à la fois I'erreur en vitesse évaluée dans la norme énergie, l'erreur en In(k). 

ln(€ ) et l'erreur en viscosité turbulente. L'interprétation de ces figures doit être faite 

avec prudence. En effet, bien que le nombre de contours soit le même pour tous les 

graphiques, les maximums et minimums varient d'une variable à l'autre et ne sont pas 

les mêmes pour I'erreur exacte et les estimateurs. De plus, on se rappellera que les 

trajectoires indiquent clairement que l'erreur et les estimateurs par projection locale ont 

des niveaux d'erreur globale tout à fait comparables tandis que la projection globale 

sous-estime l'erreur (figures 5.3 à 5.6). Une comparaison des iso-lignes d'erreur ne 

peut donc se faire qu'en cherchant à déterminer si les estimateun capturent bien la 



topologie de la surface de l'erreur (pics, vallées, falaises, plateaux, etc). On remarquera 

que dans tous les cas les estimateurs à projection locale se comportent de la même 

façon, en produisant une très bonne estimation de l'erreur exacte. 

On notera aussi le fait que I'wtimateur à projection locale discrète est parfois 

moins robuste que celui à base de projections continues, ce qu'on peut remarquer à la 

figure 5.6 pour l'erreur en viscosité turbulente sur le dernier maillage. En effet, 

lorsqu'on traite un noeud qui se trouve à l'intérieur du domaine et qui est connecté à 

seulement trois éléments, la construction des dérivées par projection discrète dispose de 

seulement 6 points de relèvement pour déterminer les 6 coefficients du polynôme 

quadratique local. II se peut alors que le système obtenu soit indéterminé ou alors mal 

conditionné, ce qui conduit à une mauvaise évaluation de l'erreur sur ces éléments. 

D'autre part, remarquons que I'estimateur par projection globale génère une 

estimation de l'erreur en quelque sort plus diffuse. Les régions entachées d'erreur sont 

plus grandes et aplaties. La cause réside probablement dans le fait que, dans la 

reconstruction globale des dérivées, une perturbation locale se propage sur plusieurs 

éléments qui réagissent tous comme des ressorts couplés. A ce point-ci on peut 

apprécier que I'estimateur par projection locale est efficace et en même temps robuste. 

Notom aussi que l'erreur en vitesse, en In@) et In(€) est concentrée là où ces 

variables présentent les variations les plus rapides. La solution exacte du problème est 

symétrique dans ses gradients (au signe près). On s'attend donc à ce que l'erreur soit 

elle aussi symétrique par rapport à l'axe des x. C'est le cas de l'erreur en vitesse et 

dans les variables logarithmiques, mais pas celui de la viscosité turbulente sur le premier 

maillage. Ce résultat semble étonnant d'autant plus que l'erreur en viscosité turbulente 

est entièrement déterminée par les erreurs dans les deux variables logarithmiques par: 

erh = p,(2 er,- er,) (5.3) 



Lorsqu'on prend la valeur absolue de l'erreur, on obtient: 

l e h l  = pr(21er,I * ler,I) 

Donc les contributions des erreun en In(k) et ln(€) peuvent soit s'additionner ou 

bien s'annuler réciproquement. C'est exactement ce qui se passe sur le premier maillage 

où dans la partie inférieure les erreurs en In(k) et In(€) se retrouvent cumulées dans 

l'erreur en p,, tandis que dans la partie supérieure l'effet est contraire et par conséquent 

l'erreur en p, est beaucoup plus petite. Voici donc un exemple qui illustre la nécessité 

de considérer dans le processus adaptatif les erreurs dans toutes les variables, incluant 

l'erreur pour la viscosité turbulente. Notons aussi que les contours de p, de la figure 

5.16 présentent des irrégularités exactement là où I'estimateur d'erreur en p, présente 

ses maxima. 

Une deuxième série de calculs a été ensuite réalisée sur les mêmes maillages en 

retenant toujours une formulation de type Galerkin moindres carrés, mais cette fois en 

utilisant k et E comme variables dépendantes. Les trajectoires des erreurs en vitesse, 

k, E et p, sont présentées dans les tableaux 5.7 à 5.10 et sous forme graphique dans les 

figures 5.26 à 5.29. 

Tableau 5.7 Résolution en k et E - Trajectoire de l'erreur en vitesse 

Maillage # de # d' Erreur Projection Projection Projection 

points éléments exacte locale discrète globale 



Tableau 5.8 Résolution en k et E - Trajectoire de l'erreur en k 

Maillage # de # d' Erreur Projection Projection Projection 

points éléments exacte locale discrète globale 

Tableau 5.9 Résolution en k et E - Trajectoire de l'erreur en E 

Maillage # de # d' Erreur Projection Projection Projection 

points éléments exacte locale discrète globale 

On remarquera que le comportement des estimateurs n'est pas affecté par le changement 

de variables. On retrouve les mêmes indices d'eff~cacité (rapport entre l'erreur estimée 

et l'erreur exacte) très bons dans les cas des techniques à projection locale. La 

projection globale sous-estime encore l'erreur. 
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Tableau 5.10 Résolution en k et E - Trajectoire de l'erreur en pT 
- - 

Maillage # de # d' Erreur Projection Projection Projection 

points éléments exacte locale discrète globale 

Comparons maintenant la résolution des équations écrites en k et E à la 

résolution en variables logarithmiques. N'oublions pas que le but du passage en 

variables logarithmiques a été d'augmenter la robustesse de higorithme, d'assurer la 

positivité des variables de turbulence, mais aussi d'obtenir des solutions plus précises. 

Dans un cas le calcul est réalisé avec k et E comme variables primaires, tandis que dans 

1 'autre les inconnues sont In(k) et ln(€ ) . On peut difficilement comparer ces variables. 

Pourtant leur précision est quantifiée dans la précision de la viscosité turbulente qui est 

une variable dérivée, et la seule variable de turbulence qui intervient daos l'équation 

d'énergie. L'erreur pour c<, est calculée de la même façon dans les deux cas et la 

comparaison est rigoureusement correcte. La figure 5.30 illustre les erreurs pour les 

deux séries de calculs. La ligne continue correspond à la résolution en variables 

logarithmiques et celle discontinue à la résolution en variables k et E . On note une 

remarquable amélioration de la précision lorsque les variables logarithmiques sont 

utilisées. En effet, les différences entre les deux courbes sont de deux ordres de 

grandeur. L'effet de l'utilisation des variables logarithmiques est si marqué, que la 

solution dans ce cas sur le premier maillage est plus précise en p, que la solution en (k, 

E )  sur le maillage le plus fin. La figure 5.31 présente les iso-lignes de viscosité 

turbulente dans les deux cas. Rappelons que celles-ci doivent être verticales. A gauche 



on retrouve la solution obtenue avec k et E comme variables primitives, tandis qu'à 

droite se trouve la solution obtenue à l'aide des variables logarithmiques. 

L'amélioration de la solution dans ce dernier cas est clairement illustrée. 

Une autre question à étudier est l'effet de la formulation utilisée pour stabiliser 

les équations (type d'upwinding). Rappelons ici que nous avons programmé cinq 

formulations différentes, soit: Galerkin, SU (upwind sur la convection), SUPG incomplet 

(upwind sur la convection et les termes source). SUPG (upwind sur tous les termes) et 

Gderkii moindres carrés (notée GLS - Gaierkin Least Squares). La solution sur le 

premier maillage adapté a été successivement obtenue a l'aide de ces 5 formulations. 

La figure 5.32 compare les iso-lignes de la viscosité turbulente: en haut on retrouve la 

solution Galerkin, suivie par les solutions SU, SUPG incomplet, SUPG et GLS. On 

remarque que les méthodes SU et SUPG incomplet, qui ne sont pas résiduelles, 

introduisent des erreurs de formulation qui se manifestent sous la forme d'irrégularité 

dans les contours de p,. Les trois autres méthodes, qui sont résiduelles, donnent de très 

bons résultats. Dans ce problème, la viscosité nirbulentc est élevée partout dans le 

domaine de calcul, ce qui fait que la méthode de Galerkin classique se comporte tout 

aussi bien que les méthodes stabilisées SUPG et GLS. 

Tableau 5.1 1 Les erreurs pour différentes formulations éléments finis sur le maillage 1 

Formulation Erreur en Erreur en Erreur en Erreur en 

vitesse in fi) ln(€ ) PT 

Galer kin 3.195~10-~ 1,658~10-~ 3.473~10" 9. 137x103 

SU 4.025~10-~ 2.812~10-' 6.042~10-~ 8.341~10-* 

SUPG-incomplet 6.171~10-~ 1 .855xlD1 4.352~10-' 3.0 13x10" 

SUPG 3.740~10-~ 1.509~10'~ 3.044~10'~ 5.782~10-~ 

G U  3.572~10-~ 1.509x1D1 3.047~10-' 6.060~10-~ 



Dans le tableau 5.1 1 on présente l'erreur exacte en vitesse. In(k). In( e ) et p, 

pour les différentes formulations. Au niveau de l'erreur en vitesse, la méthode de 

Galerkin donne la meilleure réponse, tandis que pour la viscosité turbulente les plus 

performantes s'avèrent être les méthodes stabilisées SUPG et GLS. 

La méthodologie adaptative proposée permet non seulement d'obtenir de solutions 

numériques précises, mais elle représente aussi une approche rapide et économique pour 

résoudre les écoulements turbulents. Le tableau 5.12 présente les temps de calcul 

enregistrés pour la série de calculs considérée comme référence (formulation GLS, 

réduction par un facteur 2 de l'erreur estimée par projection locale). 

Tableau 5.12 Statistique des temps de calcul 

Maillage Génération du Résolution Estimation de Temps 

maillage (sec) (sec) l'erreur (sec) total (sec) 

Cycle - O 2 272 6 

Cycle - 1 6 1006 15 

Cycle - 2 11 2678 39 

Cycle - 3 24 5455 100 

To tai (adaptatif) 43 941 1 160 9614 
- -- - - -  - - -  -- 

Maillage final 16 21901 100 22017 

sans solution initiaie 

Les données couvrent toutes les étapes de cdcui, soit la génération du maillage (avec 

interpolation de la solution, là où une solution a été obtenue sur un maillage précédent), 

la résolution et I'estimation de l'erreur. Rappelons que sur les maillages adaptés le 



calcul utilise comme solution initiale la solution obtenue précédemment, interpolée sur 

le nouveau maillage. Le tableau continent aussi sur la dernière ligne le temps de calcul 

enregistré lorsque le calcul a été réalisé directement sur le maillage le plus fin mais sans 

disposer d'une solution initiale. Les calculs ont été réalisés sur un ordinateur IBM 

R6ûûû modèle 590. 

On remarque que le temps passé dans la génération du maillage et l'interpolation 

de la solution représente moins de 0.5 1 du temps total de calcul. Cela signifie que la 

technique de remaillage employée est peu couteuse tout en conférant une souplesse 

remarquable à l'algorithme adaptatif. L'estimation de l'erreur quand à elle représente 

moins de 2 % du coût total du calcul adaptatif. La résolution complète du problème 

nécessite 96 14 secondes. La résolution du même problème directement sur le maillage 

le plus fm, mais cette fois sans disposer d'une solution initiale obtenue par interpolation, 

coûte 22017 secondes. L'algorithme adaptatif réalise donc une économie de plus de 

50% du temps de calcul. II faut aussi noter que sans l'adaptativité il aurait été 

pratiquement impossible de concevoir un maillage conduisant à une solution tout aussi 

précise que celle obtenue par I'adaptativité. En effet, on a déjà remarqué qu'un maillage 

uniforme avec un nombre comparable de points conduit à une solution dont l'erreur est 

3-4 fois plus élevée (figures 5.3 à 5.6). Le résultat net est que le calcul non-adaptatif 

permettant d'atteindre le même niveau d'erreur que celui enregistré sur le maillage final 

adapté nécessiterait beaucoup plus de points et coûterait beaucoup plus cher que le calcul 

adaptatif. 



Figure 5.1 Trajectoire des erreurs pour un raffmement uniforme 
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Figure 5.2 Trajectoire de l'erreur en fonction de la taüle des déments 
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Figure 5.4 Résolution en variables logarithmiques - Trajectoire de l'erreur en k 
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Figure 5.7 Histogramme de l'erreur en vitesse estimée par projection locale 
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Figure 5.8 Histogramme de l'erreur exacte en vitesse 
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Figure 5.9 Histogramme de l'erreur en k estimée par projection locale 

Cycle - 0 -----.... 

1 Cycle- 1 - - - - -  
Cycle - 2 ---- 
Cycle - 3 - 

le-07 le-06 le-05 0.0001 0-001 0.01 o. 1 
Erreur par element 

Figure 5.10 Histogramme de l'erreur exacte en k 
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Figure 5.11 Histogramme de l'erreur en E estimée par projection locale 
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Figure 5.12 Histogramme de l'erreur exacte en E 
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5-13 Histogramme de l'erreur en IL, estimée Dar ~roiection locale 
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Figure 5.14 Histogramme de l'erreur exacte en pT 
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Figure 5.15 Maillages engendrés par la stratégie adaptative 
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Figure 5.16 Solution sur le maillage initial et sur le maillage fmd: vitesse u, vitesse v 
et viscosité turbulente 
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Figure 5.17 Solution sur le maillage initial et sur le maillage fuial: k, a, ln*) et In(€) 
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Figure 5.18 Distribution de l'erreur évaluée dans la norme énergie sur le maillage 
initial 
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Figure 5.19 Distribution de l'erreur évaluée dans la semi-nonne Hl pour I n 0  sur le 
maillage initial 
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Figure 5.20 Distribution de l'erreur évaluée dans la semi-norme Hl pour ln(€) sur le 
maillage initial 
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Figure 5.21 Distribution de l'erreur évduée dans la semi-norme H1 pour y, sur le 
maillage initial 
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Figure 5.22 Distribution de l'erreur évaluée dans la nonne énergie sur le premier 
maillage adapté 
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Figure 5.23 Distribution de l'erreur évaluée dans la semi-norme H' pour In(k) sur le 
premier maillage adapté 
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Figure 6.24 Distribution de l'erreur évaluée dans la semi-norme H' pour in(€) sur le 
premier maillage adapté 
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Figure 5.25 Distribution de l'erreur évaluée dans la semi-norme H1 pour p, sur le 
premier maillage adapté 
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Figure 5.26 Résolution en k et E - Trajectoire de l'erreur en vitesse 
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Figure 5.27 Résolution en k et E - Trajectoire de l'erreur en k 
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Figure 5.28 Résolution en k et E - Trajectoire de l'erreur en e 
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Figure 5.29 Résolution en k et E - Trajectoire de l'erreur en p, 
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Figure 5.30 Trajectoire de l'erreur exacte en 1, 
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Figure 5.31 Distribution de la viscosité turbulente: résolution en (k,~) et résolution en 
variables logarithmiques 
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5.2 Couche cisaillée 2-D avec une distribution 
gaussienne de la viscosité turbulente 

La solution de ce problème a été construite pour s'approcher le plus possible de 

la solution d'une couche cisaillée réelle que l'on retrouve en aval du coin d'une marche 

descendante ou encore dans des zones de mélange. Ce cas inclus des variations de la 

viscosité turbulente dans la direction y que l'on avait négligé dans la couche cisaillée 

précédente. 

La solution est donnée par: 

Les paramètres prennent les valeurs données par (5.2) sauf le ratio de vitesses 

r qui est maintenant fucé à 0.3. Le domaine de calcul couvre toujours le rectangle 

[ 100 . 3001 x [ -75, 751 . Les conditions aux frontières sont du même type que celles 

utilisées pour le cas de validation précédent. 

Ce cas de validation est complété pour s'assurer que la méthode de résolution, 



le module adaptatif et les techniques d'estimation d'erreur par projection locale se 

comportent bien. On a effectué les calculs en pilotant l'adaptativité par l'estimateur à 

projection locale. À chaque cycle on calcule néanmoins les deux autres estimateurs. 

On cherche toujours à diminuer à chaque cycle l'erreur estimée en vitesse et en variables 

de turbulence par un facteur de 2. 

Les tableaux 5.13 à 5.17 résument les résultats obtenus pour l'erreur exacte et 

les estimations d'erreur. Les mêmes résultats sont présentés sous forme graphique dans 

les figures 5.33 à 5.36. On remarque le même comportement que dans les cas de 

validation précédent. Les estimateurs à projection locale donnent une très bonne 

évaluation de l'erreur globale. L'estimateur à projection globale sous-estime encore 

l'erreur exacte. On notera aussi que l'erreur et ses estimés diminuent à chaque cycle 

par un facteur plus grand que 2 et cela pour toutes les variables considérées dans le 

module adaptatif. 

Tableau 5.13 Couche cisaillée p, gaussieme - Trajectoire de l'erreur en vitesse 

Maillage # de # d' Erreur Projection Projection Projection 

points éléments exacte locale discrète globale 



Tableau 5.14 Couche cisaillée p, gaussieme - Trajectoire de l'erreur en k 
- - -- 

Maillage # de # d' Erreur Projection Projection Projection 

points éléments exacte locale discrète globale 

Tableau 5.15 Couche cisaillée p, gaussienne - Trajectoire de l'erreur en E 

Maillage # de # des Erreur Projection Projection Projection 

points éléments exacte locale discrète globaie 
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Tableau 5.16 Couche cisaillée p~ gaussienne - Trajectoire de l'erreur en p, 
- - -- - - -  

Maillage # de # des Erreur Projection Projection Projection 

points éléments exacte locale discrète globale 

La figure 5.37 présente les maillages engendrés par la stratégie adaptative. La 

solution obtenue sur le maillage initial et sur le maillage fuial est illustrée aux figures 

5.38 et 5.39. Les maillages sont raffinés dans les régions de forts gradients dans la 

solution, au centre du domaine et dans deux régions de part et d'autre de l'axe des x.  

Encore une fois les gradients de la solution sont symétriques en valeur absolue par 

rapport à l'axe des x ce qui explique la symétrie des maillages adaptés. Finalement, on 

remarque que la solution sur le maillage f d  est de très bonne qualité. 

En résumé, ces cas de validation permettent de tirer les conclusions suivantes: 

- les estimateun à projection donnent une représentation fidèle de l'erreur. Les 

valeurs globales et locale de l'erreur et de son estimation sont comparables: 

- I'estimateur par projection globale sous-estime l'erreur plus que les estimateun 

locaux. Les estimateus locaux se comportent de la même façon et l'utilisation 

de points optimaux pour le relèvement des dérivées n'a pas vraiment amélioré 

l'estimation d'erreur. L'estimateur par projection locale est plus robuste que 

celui par projection discrète; 



- la méthodologie adaptative fonctionne bien et les erreurs diminuent à chaque 

cycle comme prévu: 

- l'algorithme de résolution est robuste et fonctionne pour toutes les formulations 

éléments finis employées. Les formulations résiduelles de Galerkin, SUPG et 

G U  permettent d'obtenir de très bonnes solutions. qui convergent vers la 

solution exacte avec le raffmement du maillage; 

- l'utilisation des variables logarithmiques dans la résolution des équations de 

turbulence augmente la robustesse du résoluteur et améliore grandement la 

précision de la solution surtout pour la viscosité turbulente. 



Figure 5.33 Couche cisaillée p, gaussienne - Trajectoire de l'erreur en vitesse 
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Figure 5.35 Couche cisaillée p, gaussienne - Trajectoire de l'erreur en E 
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Fi,we 5.36 Couche cisaillée p, gaussienne - Trajectoire de l'erreur en p, 
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Fi,yre 5.37 Maillages engendrés par la stratégie adaptative 
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Figure 5.38 Solution sur le maillage initial et sur le maillage fmd: vitesse u, vitesse v 
et viscosité turbulente 
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Fi,we 5.39 Solution sur le maillage initial et sur le maillage fmal: k, E, In(k) et In(€) 



Chapitre 6 

Applications 

Cette section présente des applications de la stratégie adaptative à des 

écoulements turbulents pour lesquels on dispose de données expérimentales: couche 

cisaillée, écoulement sur une marche descendante. écoulement autour d'un profil 

NACA0012. Pour chaque problème on analyse le comportement de la méthode de 

résolution, de 1 'estimateur d'erreur et du remaillage adaptatif. L'algorithme adaptatif 

est piloté dans tous les cas par l'estimateur à projection locale. 

6.1. Couche cisaillée avec un rapport de vitesses 

Ce problème a fait l'objet d'une étude expérimentale détaillée par Spencer et 

Jones [92] et d'essais numériques de plusieurs variantes du modèle k - E  par Duncan et 

al [93]. Ce problème représente le comportement d'un écoulement de fluide près du 

bord de fuite d'un profd ou encore d'une zone de mélange entre deux couches d'un 

même fluide s'écoulant parallèlement mais à des vitesses différentes. La figure 6.1 

illustre le domaine de calcul. les conditions limites et les distances à la parois, d,  

utilisées pour reproduire le montage expérimental de Spencer et Jones [92]. 



Figure 6.1 Couche cisaillée de Spencer: Domaine de calcul et conditions limites 

Les équations sont résolues sous leur forme adimensionnelle et les valeurs des 

conditions Dirichlet sur la figure 6.1 correspondent à des variables sans dimensions. 

La vitesse de référence est la vitesse de la couche rapide U, et la longueur de référence 

est L = km. Le nombre de Reynolds basé sur la vitesse de la couche rapide est 

Re = UJv  = 18000/cm. Une plaque =ès mince, dont on considère l'épaisseur négligeable. 

sépare les deux couches de fluide à l'entrée du domaine. Le rapport des vitesses des 

deux couches de fluide est de 0.3. Il reste à déterminer les vaieurs à imposer pour k et E 

à l'entrée. Pour ceci nous avons suivie les recommandations faites dans FIDAP [44]. 

La valeur caractéristique de k est obtenue à l'aide de la relation suivante: 

k = a U Z  (6.1) 

où U est la vitesse et a est un coefficient qui dépende du type d'écoulement. Les 

valeurs suggérées pour a sont entre O et 0.001 pour les écoulements sans frottement et 

autour de 0.1 pour les écoulements cisaillés (couches cisaillées, jets, sillages). Une 

valeur caractéristique pour E est donnée par la relation suivante: 



où Lm représente la longueur de mélange et L est une longueur caractéristique. Notons 

que ces valeurs doivent être regardées plutôt à titre indicatif. Les conditions imposées 

en entrée pour les variables de turbulence doivent aussi être consistantes avec le modèle 

de turbulence et la nature du problème a résoudre. dans le sens qu'elles doivent subir 

de variations minimes dans les régions non-perturbées de l'écoulement. Dans ce 

premier calcul, noté Prob 1, nous avons considérer un niveau de turbulence de 0.5 % 

(a=0.005) pour la couche à haut vitesse et de 3 % (a=0.03) pour la partie à basse 

vitesse. Pour déterminer les valeurs d' E en entrée il faut préciser la longueur 

caractéristique L. Dans ce cas nous avons considéré L - 10. Le nombre de Reynolds 

basé sur la viscosité turbulente aura dors dans I'écoulement non-perturbé des valeurs 

autour de 100, ce qui fait qu'on pourra même utiliser la méthode de Galerkin pour 

résoudre ce problème. 

Une première série de calculs, qu'on considère comme solution de référence. a 

été réalisée en variables logarithmiques. à l'aide d'une formulation de Galerkin 

classique. L'erreur de la solution est estimée par projection locale et les maillages sont 

construits de façon à réduire l'erreur en vitesse, In(kl, In(€) et p, par un facteur 2 d'un 

cycle d'adaptation à l'autre. 

La figure 6.2 présente les maillages générés par la stratégie adaptative. Les 

solutions obtenues sur le maillage initial et sur le maillage finai sont représentée sur les 

figures 6.3 et 6.4. On y remarque que les maillages adaptés ont une très forte 

concentration en avai du bord de fuite ainsi qu'une forte concentration en deux bandes 

obliques étroites correspondant aux fronts de Ln@), In(€) et p,. On remarque aussi une 

nette amélioration de la solution entre les maillages initial et final, notamment près du 

bord de fuite. Les différentes variables sont représentés avec précision et les variations 

de la solution, même si elles sont par endroit très rapides, sont très bien capturées. A 

noter l'amincissement de la solution près du bord de fuite de la plaque où les gradients 

de la solution sont extrêmement forts. Cela explique aussi la nécessité d'un fort 



raffinement du maillage dans cette région. La solution en k sur le maillage f i  

présente un maximum plus constant sur la ligne de centre, ce qui est caractéristique d'un 

écoulement rurbulent similaire. Finalement, la viscosité turbulente présente bien une 

variation linéaire sur la ligne de centre tel que prédit par la théorie simplifiée de la 

couche limite [91]. 

Les figures 6.5, 6.6 et 6.7 illustrent le fonctionnement de la méthodologie 

adaptative. Tout d'abord on résout sur un maillage grossier, noté maillage - O. La 

solution obtenue est analysée et son erreur est évalué par la méthode de projection 

locale. La figure 6.5 présente les iso-lignes des estimations d'erreur de la vitesse, des 

variables logarithmiques et de la viscosité turbulente sur le maillage initial. L'estimation 

d'erreur est ensuite utilisée pour prédire les caractéristiques du prochain maillage adapté 

afm de réduire l'erreur par un facteur 2 pour chaque variable (vitesse, Infi). ln (€)  et 

p .  Finalement, on résout à nouveau sur le maillage adapté en utilisant 1' interpolation 

de la solution précédente sur le maillage courant comme solution initiale. Ce processus 

est ensuite répété jusqu'à ce que la solution obtenue soit sufisamment précise. 

La figure 6.6 présente le premier maillage adapté, les iso-estimation d'erreur 

pour la solution obtenue sur ce maillage et aussi le prochain maillage adapté (maillage- 

2). La même succession d'images, dans ce cas pour le maillage 2, (les erreurs qui 

conduisent au maillage fuial), sont représentées dans la figure 6.7. L'erreur en vitesse 

est le principal responsable du raffinement important observé près du bord de fuite, 

tandis que les variables de turbulence déterminent la concentration des points en deux 

bandes obliques en aval de la plaque. Le ratio d'aire du plus grand au plus petit triangle 

du maillage final est de 1 .4x108, ce qui illustre la capacité du remaillage adaptatif 

d'ajuster la discrétisation du domaine à la solution. 

On notera pour ce problème la ressemblance remarquable des distributions 

d'erreur pour ln@) et ln (€ ) .  Cela indique que le passage au variable logarithmiques fait 



en sorte que les nouvelles variables dépendantes qui modélisent la turbulence ont le 

même Comportement et leurs variations sont localisées au même endroit. Cet effet n'est 

pas étonnant étant donné que les variables logarithmiques sont reliées par une simple 

opération de soustraction dans l'expression de la viscosité turbulente et non par une 

division comme c'est le cas lorsque l'on utilise k et E comme variables dépendantes. 

La figure 6.8 illustre l'effet du maillage sur la précision des prédictions en 

vitesse. On présente les profüs de vitesse axiale aux stations x=25. 50 et 100cm. et les 

résultats obtenus expérimentalement par Spencer [92]. Un tel écoulement en couche 

cisaillée présente la particularité d'avoir une solution dite de similitude. C'est à dire que 

la solution est la même pour toutes les valeurs de x à une dilatation de l'axe des y près. 

Dans la figure 6.8 l'abscisse est donnée par la variable adimensionnelle de similitude 

q = (y -y&,)  l x .  Dans cette formule x et y sont les coordonnées et y,  l'ordonnée du 

point où U= (U, + UJ2. L'ordonnée des graphes est la vitesse adimensionnelle. La 

figure 6.8 montre clairement l'amélioration des prédictions résultant de I'adaptativité. 

L'effet est plus marqué à la première station, (x=25cm). où la solution est plus 

influencée par ce qui ce passe au voisinage du bord de fuite. 

La figure 6.9 présente une comparaison des prédictions et des mesures de 

l'énergie cinétique de turbulence k. Cette figure montre clairement que l'effet de 

I'adaptativité est plus prononcé sur k que sur u. Les prédictions numériques 

s'approchent plus des valeurs expérimentales à la dernière station (x=Iûû) où 

l'écoulement est entièrement développé. On remarque aussi que les solutions sur les 

deux derniers maillages présentent peu de différences, ce qui nous permet de dire que 

la solution f d e  est à tout fi utile indépendante du maillage. 

La figure 6.10 mène aux mêmes conclusions en ce qui concerne les profils du 

tenseur de Reynolds 6. La contrainte turbulente est calculée à l'aide de la formule 

suivante: 



C'est une quantité obtenue par différentiatioa numérique du champs de vitesse. Sa 

prédiction sera donc beaucoup plus sensible au maillage que celle de u. La prédiction 

est meilieure en x= 100, là où l'écoulement est similaire. Encore une fois on remarque 

que la solution f i e  ne dépend plus vraiment du maillage et que les résultats 

numériques s'approchent bien des valeurs expérimentales. Le léger décalage transversal 

du maximum dans le profd du cisaillement a été déjà observé pour le modèle k- E et ses 

variantes à échelles de temps multiples [93]. 

Les figures 6.11 à 6.13 permettent d'apprécier l'effet de I'adaptativité sur la 

tendance de la solution de devenir similaire. On présente pour le maillage initial et le 

maillage fm les profüs de vitesse, de k et de fi aux trois stations. Pour une solution 

similaire les courbes à différents endroits doivent se superposer. On voit que de ce 

point de vue la solution est nettement améliorée par I'adaptativité. Pourtant, même la 

solution obtenue sur le mailiage le plus fin n'est pas parfaitement similaire. Les 

différences minimes entre les solutions obtenues sur les deux derniers maillages nous 

permettent cependant de constater que la solution finale est pratiquement indépendante 

du maillage. 

Cet écoulement a été précédemment résolu par l'auteur à l'aide d'une formulation 

en variables k et E [86]. Le passage aux variables logarithmiques permet de démarrer 

les calculs sur des maillages sensiblement plus grossiers, le bénéfice de I'adaptativité en 

étant d'autant augmenté. De plus, les solutions obtenues en variables logarithmiques 

sont nettement plus précises que celles basées sur une résolution en k et E . La 

robustesse accrue de l'algorithme de résolution et la diminution du temps de calcul sont 

d'autres avantages issus du passage aux variables logarithmiques, qui méritent d'être 

mentionnés. 



Comme on a pu le constater sur les figures 6.3 et 6.4, la solution sur le maillage 

initial est entachée d'osciuations surtout en vitesse. Rappelons que cette solution a été 

. obtenue par une méthode de Galerkin, donc sans termes de stabilisation. Nous avons 

aussi résolu le problème sur le maillage initial à l'aide d'une formulation Galerkin- 

moindre carré (GU) afin de mettre en évidence l'effet des termes de stabilisation et 

d'upwinding. La solution obtenue est comparée à la solution Galerkin dans les figures 

6.14 et 6.15. La méthode GLS conduit à une solution plus propre et cela surtout sur 

les maillages grossiers comme c'est le cas du maillage initial utilisé pour ce problème. 

On se pose alors la question: cela a-t-il du sens de faire encore appel à une méthode de 

Galerkin lorsqu'on sait que les termes de stabilisation GLS réduisent les oscillations tout 

en conservant une formulation résiduelle? Pour être vraiment en mesure de répondre 

à cette question il faut analyser d'avantage le comportement des deux méthodes. 

Notons d'abord que la solution du problème à résoudre contient une singularité 

au bord de fuite de la plaque qui sépare les deux couches de fluide. Les vitesses des 

deux cotés de la plaque sont différentes et les gradients de vitesse sont de plus en plus 

forts lorsque la taille des éléments diminue au voisinage du bord de fuite. Cela 

détermine aussi une augmentation accrue du terme de production dans les équations de 

transport pour les variables de turbulence. Comme effet, on remarque une augmentation 

du maximum de k et E avec le raffinement du maillage. De plus. le maximum est 

atteint dans le premier élément en aval du bord de fuite, ce qui détermine des gradients 

extrêmement élevés pour les variables de turbulence. Si h est la taille du premier 

élément après le bord de fuite, alors les gradients de k et E varient en ce point comme 

I/h, et leur dérivée seconde comme I/h2. Dans le processus adaptatif, I'estimateur 

d'erreur détecte une erreur très importante dans cette région et commande une 

diminution de la taille des éléments. Les gradients des variables de turbulence 

deviennent alors encore plus élevés. On constate alors que l'erreur estimée dans cette 

région ne diminue pas avec le raffimement du maillage, même si la solution est de mieux 

en mieux représentée. D'autre part la présence de la singularité affecte beaucoup le 



comportement des méthodes stabilisées telles SUPG et GU. Rappelons que ces 

méthodes font appel au résidu fort des équations qui fait apparaître les dérivées 

secondes. Celles-ci varient comme l/h2 au voisinage de la singularité et prennent alors 

des valeurs extrêmement élevées. L'effet net est que lorsque la taille du maillage 

diminue trop au voisinage du point singulier, les méthodes SUPG et GLS empêchent 

l'algorithme itératif de converger. 

En conclusion, on peut dire que les méthodes stabilisées sont nettement 

supérieures sur les maillages grossiers. Pourtant, lorsque le nombre de Reynolds n'est 

pas trop élevé, les différences entre les solutions SUPG, GLS d'une part et la solution 

Galerkin de l'autre diminuent considérablement avec le raffinement du maillage. 

Finalement. comme on a déjà mentionné, les méthodes stabilisées sont incapables de 

converger sur des maillages très raffiés au voisinage d'une singularité. 

Une autre série de calculs à été complétée afin d'évaluer I'influence des 

conditions limite à l'entrée sur le comportement de l'algorithme adaptatif et sur la nature 

de la solution. Pour ce problème, qu'on appele Prob2, le niveau de l'énergie cinétique 

de turbulence en entrée a été fixé à 0.2 % (a =0.002) pour la couche rapide et respectif 

à 0.33 1 (a=0.0033) pour la couche à basse vitesse. Dans la partie non-perturbée de 

l'écoulement le nombre de Reynolds est alors autour de 1000 dans la partie à haut 

vitesse et autour de 2500 du coté basse vitesse. Ces conditions représentent une 

meilleure approche vis-à-vis les expériences, qui comportent un niveau de turbulence en 

entrée situé entre O. 1 et 0.5 % . 

Ce problème est plus diff~cile à résoudre et seulement les méthodes stabilisées 

ont pu le traiter. Les calculs ont été complétés à l'aide d'une formulation GLS pour les 

équations de Navier-S tokes. Les équations de tramport des variables logarithmiques ont 

été résolues par une formulation SUPG incomplète, qui ne fait donc pas appel aux 

dérivées secondes des variables. Même si cette méthode n'est pas résiduelle, elle 



demeure une bonne approximation de la méthode SUPG car l'écoulement est très peut 

visqueux. Une première solution a été obtenue sur le maillage 1. Les maillages 

suivants ont été régénéré afin de mieux s'adapter au nouveau problème à résoudre. La 

succession de maillages obtenus est présentée dans la figure 6.16. On remarque cette 

fois une concentration asymétrique des points dans les deux bandes obliques 

correspondantes aux fronts dans les variables de turbulence. Cela reflet le fait que la 

nature de la solution a changé. 

Les solutions obtenues sur le maillage 1 et sur le maillage final adapté sont 

présentées dans les figure 6.17 et 6.18. Rappelons que cette fois les solutions sont 

obtenues par des méthodes stabüisées. Notons d'abord une nette amélioration de la 

solution entre les deux maillages. La solution finaie est extrêmement propre grâce à une 

concentration optimale des points dans les régions où la solution varie le plus. On 

remarque aussi que dans les deux couches obliques les gradients des variables 

logarithmiques sont plus forts qu'ils ne l'étaient pour le problème Prob 1. 

Les solutions finaies des deux calculs. Probl et respectif Prob2, sont comparées 

dans les figures 6.19 à 6.24. La figure 6.19 présente les profils de la vitesse 

longitudinale am trois stations de contrôle, soit it x=25, x=50 et x = 100. Les valeurs 

sont représentées en fonctions des variables de similitude comme décrit précédemment. 

On remarque que la solution Prob2 approche mieux les valeurs expérimentale et ça 

surtout aux deux premières stations. Les figure 6.20 et 6.2 1 comparent les deux 

solutions pour l'énergie cinétique de la turbulence et les contraintes turbulentes. On 

remarque une nette amélioration de la prédiction en k à x=50 et à x= 100. En ce qui 

concerne les contraintes turbulentes on remarque que l'écart par rapport aux valeurs 

expérimentales a diminué. Le maximum est sous-estimé, mais c'est aussi le cas pour 

la solution Prob 1 à la station x= 100. 

Finalement les figures 6.22 à 6.24 nous permettent d'apprécier si les deux 



solutions s'approchent d'une solution similaire. Les différences sont moins marquées 

aux niveau de la vitesse (figure 6.22). Pourtant k et le cisaillement turbulent 

, s'approchent plus de la similitude dans le cas du problème Prob2. L'amélioration des 

prédictions de la solution Prob2 par rapport à Probl est plus marquée sur ces figures. 

Notons aussi l'asymétrie du profil de cisaillement turbulent. telle que remarquée aussi 

dans le cas des valeurs expérimentales. Duncan [93] affirmait que le modèle k-E est 

incapable de reproduire cette asymétrie. Des conditions limites appropriées semblent 

permettre au modèle k-E de reproduire ce comportement. 

On remarque donc que les conditions en entrée pour les variables de turbulence 

sont déterminantes pour la nature de la solution. Le changement de ces conditions a un 

effet direct sur la solution qui dépend surtout du niveau de la viscosité turbulente en 

entrée. 



Cycle - O 

Cycle - 1 

Cycle - 2 

Cycle - 3 

Figure 6.2 Couche cisaillée - Maillages engendrés par la stratégie adaptative 



Solution obtenue sur le mailIage initial Solution obtenue sur le maillage final 

I I I 

Vitesse u Vitesse u 

Vitesse v Vitesse v 

1 1  1 1 

Viscosité turbulente Viscosité turbulente 

Fi,we 6.3 Solution sur le maillage initial et sur le maillage final: vitesse u, vitesse v 
et viscosité turbulente 



124 

Solution obtenue sur le maillage initial Solution obtenue sur le maillage fmd  

Figure 6.4 Solution sur le maillage initial et sur le maillage fuial: h(k),  k, ln(€), E 



Maillage - O 

I 

i 

Erreur en vitesse Erreur en h(k)  

Erreur en viscosité turbulente Erreur en In(€) 

Maillage - 1 

Figure 6.5 Maillage initial, estimation de l'erreur et premier maillage adapté 



Maillage - 1 

1 
Erreur en vitesse Erreur en In(k) 

L 1 I I 

Erreur en viscosité turbulente Erreur en In(€) 

Maillage - 2 

Figure 6.6 Maillage 1, estimation de l'erreur et deuxième maillage adapté 



Maillage - 2 

l 

Erreur en vitesse 

I I 
Erreur en viscosité turbulente 

Erreur en h(k)  
1 

I 
i 

1 

Erreur en in(€) 

Maillage - 3 

Fiw$ 5.7 Maillage 2, estimation de I'erreur et maillage fmd  
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Figure 6.8 Profds de vitesses obtenus à différents stations de contrôle 



x = 50 
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Figure 6.9 Distribution de k à différents stations de contrôle 
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Figure 6.10 Distribution des contraintes turbulentes à différents stations de contrôle 



Maillage final 

Figure 6.1 1 Proffis de vitesses sur le premier et le dernier maillage 



Figure 6.12 Profils de k sur le premier et le dernier mailiage 



Maillage initial 

Maillage final 

Figure 6.13 Profils des contraintes turbulentes sur le premier et le dernier maillage 



Galerkin GLS 

1 I I 

Vitesse u Vitesse u 

Vitesse v 
I 

Vitesse v 

Viscosité turbulente Viscosité turbulente 

Figure 6.14 Solutions en formulation Galerkin et GLS: vitesse u, vitesse v et viscosité 
turbulente 



Galerkin GLS 

Figure 6.15 Solutions en formulation Galerkin et GLS: ln(k), k, In(€), E 



Cycle - 1 

Cycle - 2 

Cycle - 3 

Figure 6.16 Couche cisaillée, calcul Prob2 - Maillages adaptés 



Solution obtenue sur le maillage 1 
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Solution obtenue sur le maillage final 

Vitesse u Vitesse u 

Vitesse v Vitesse v 

1 1 l 

Viscosité turbulente Viscosité turbulente 

Figure 6.17 Calcul Prob2; Solution sur le maillage 1 et sur le maillage final: vitesse 
u, vitesse v et viscosité turbulente 



Solution obtenue sur le maillage 1 
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Solution obtenue sur le maillage fmal 

Figure 6.18 Calcul hob2; Solution sur le maillage 1 et sur le maillage fmal: ln(k), k, 
W), E 



Figure 6.19 Muence des conditions limite à l'entrée sur la solution en vitesse 



Spencer O 
Rob1 --- 
Rob2 - 

x = 50 
0.05 

Spencer O 
Rob1 --- 
Rob2 - 

0.045 

0.01 

Figure 6.20 Influence des conditions limite à l'entrée sur la solution en k 

I 1 1 - Spencer O - - Rob1 --- 
Rob2 - - 



Muence des conditions limite à l'entrée sur les contraintes turbulentes 



Figure 6.22 Muence des conditions limite à I'entrée sur la similitude de la solution 
en vitesse 



Maillage final - Solution Prob 1 
0.05 1 I I l 

Spencer O 
x = 2 5  - - - -  
x = s o  --- 

Figure 6.23 Infiuence des conditions limite à l'entrée sur la similitude de la solution 
en k 



Maillage final - Solution Prob 1 

I I 1 I 

Maillage final - Solution Prob2 

Figure 6.24 Influence des conditions limite à l'entrée sur la similitude des valeurs des 
contraintes turbulentes 



6.2. Marche descendante de Kim 

Ce problème a fait l'objet d'une étude expérimentale par Kim (941. 11 s'agit d'un 

écoulement turbulent sur une marche descendante. La figure 6.16 illustre la géométrie 

du domaine de calcul, les conditions limites et les distances utilisées dans la loi de paroi. 

entrée: Le = 2.0HT Paroi (1): L,=4HT , v=O, d=O.O1 sortie: LS=3.0HT 

u = 1.0 Paroi (2): L,= HT, u=O. d=0.02 u = libre 

Paroi (3): L3=2ûHT, v=O, d=0.01 v = 0.0 
k = libre 

E = 0.01524 Paroi (4): L4=24HT, v=O, d=0.01 E = libre 

Figure 6.25 Marche descendante de Kim: Domaine de calcul et conditions aux limites 

De nombreux résultats numériques obtenus à l'aide du modèle k - E  ont été 

présentés à la Conférence de Stanford sur les écoulements turbuienrs j95-981. Une revue 

des différents essais numériques et une analyse des modèles de turbulence utilisés est 

faite par Nallasamy [99]. 

La présence du coin de la marche engendre une forte couche cisaillée dont le 

comportement ressemble beaucoup à la couche cisaillée étudiée par Patel [100], les 

principales différences étant que l'écoulement est confiné et qu'une zone de recirculation 

importante existe en aval de la marche. Le nombre de Reynolds basé sur la vitesse 

moyenne en entrée et sur l'hauteur de la marche est Re = ( U HT) I V  = 47,625. La 

distance à la paroi est telle que la valeur de la coordonnées adimensionnelle y+ est 

comprise entre 30 et 60, donc dans le domaine de validité de la loi logarithmique. Les 



parois sont toutes horizontales ou verticales et donc on impose soit la vitesse u, soit la 

vitesse v égale à zéro. Sur le coin de la marche on impose que la vitesse verticale v soit 

nulle et on calcule seulement la composante axiale de la vitesse. Le niveau de 

turbulence à l'entrée est fué à 2% et la valeur de la condition de Dirichlet pour E est 

déterminée à l'aide de la rélation (6.2). À noter que la solution du modèle k - E est à 

nouveau singulière, cette fois au voisinage du coin de la marche. Par conséquent on 

s'attend à ce que les méthodes stabilisées acceptent mai un raffinement très important 

autour du point singulier. 

Les calculs ont été effectuées par la méthode de Galerkin. Les équations de 

turbulence sont résolues en variables logarithmiques. L'erreur est estimée par projection 

locale et on cherche à diminuer à chaque cycle adaptatif l'erreur en vitesse, In@), in(€) 

et p, par un facteur 2. 

La figure 6.26 présente les maillages engendrés par la stratégie adaptative. Le 

maillage initial est extrêmement grossier, avec une distribution de taille uniforme. Il 

comporte 4 éléments en entrée et seulement 2 (!!) sur la hauteur de la marche. 

L'utilisation des variables logarithmiques est entièrement responsable du fait que 

l'obtention d'une solution convergée est devenue possible même sur des maillages si 

grossiers. La figure 6.27 présente la solution obtenue sur le maillage initial: les deux 

composantes de vitesse, les variables logarithmiques, k, E et p,. Même si cette solution 

n'est pas de très bonne qualité, elle est très utile pour le processus adaptatif et indique 

les régions qui nécessitent un raffinement du maillage. La solution sur le maillage final 

est représentée sur la figure 6.28. On notera la qualité exceptionnelle de la solution. 

Les iso-lignes sont nettes et lisses, ce qui est d'autant plus remarquable étant donné que 

cette solution est obtenue par une méthode de Galerkin. On remarque aussi le fait que 

les maillages adaptés suivent de près le comportement de la solution. Les points sont 

concentrés surtout autour du coin de la marche là où la solution présente des très forts 

gradients, dans la couche cisaillée développée en aval du coin, de même que dans la 



couche limite le long des parois solides. 

La figure 6.29 présente les erreurs estimées pour la solution obtenue sur le 

maillage initiai et aussi le premier maillage adapté, résultant de l'adaptation tentant de 

réduire ces erreurs par un facteur 2. La figure 6.30 présente la même chose. mais cette 

fois pour la solution obtenue sur le maillage 1. On remarque que l'erreur en vitesse est 

entièrement concentrée au voisinage du coin de la marche. Un module adaptatif qui 

aurait tenu compte uniquement de l'erreur en vitesse aurait conduit à des maillages 

raffinés seulement autour du point singulier. Cependant, on remarque que 1 'es tirnation 

d'erreur pour les variable logarithmiques est plus sensible dans la couche cisaillée 

développée après le coin. L'estimation d'erreur en a, est sensible elle aussi à la couche 

cisaillée et elle est aussi responsable du raffmement observé dans la couche limite. 

Les figures 6.31 à 6.34 présentent une comparaison des prédictions de la vitesse 

axiale u obtenues sur les différentes maillages adaptés avec les mesures expérimentales. 

Les profils de vitesse sont représentés à 8 stations de contrôle où les données 

expérimentaies sont disponibles. Sur l'abscisse on représente la vitesse ii normalisée par 

sa valeur maximale à 1a section courante et en ordonnée on  trouve la coordonnée - 
adimesionaiûée par la hauteur de la marche. On notera que nos courbes n'atteignent pas 

les parois inférieure Cy/HT=O) et supérieure (y/HT=2, respectivement 3 en aval du coin 

de la marche). Ceci est du au fait que le maillage se termine à une distance d de la 

paroi solide, à cause de l'usage de la loi de paroi. 

À la première station (x/HT=-4) on constate que l'accord avec les valeurs 

expérimentales n'est pas eès bon. Cela est en grande partie du au fait que cette section 

est tout près de l'entrée, localisée à x/HT=-5, où toutes les conditions limite pour les 

variables prennent des valeurs constantes (profd plat de vitesse, k et E ). L'accord avec 

l'expérience s'améliore à x/HT=-1 et est encore meilleur à x/HT=O, au fur à mesure 

que le profü de vitesse se développe dans le canai. 



Les coupes aux sections x/HT=4/3, 8/3, et 16/3 se trouvent dans la zone de 

recirculation. En x/HT=4/3 les prédictions sont très bonnes sauf dans la zone de 

recirculation où les calculs reproduisent mai la position du maximum de la vitesse à 

contre-courant. On note une excellente représentation du genoux du profü de vitesse. 

L'effet de I'adaptaùvité est bien visible et on peut constater que la solution sur le dernier 

maillage ne dépend plus de la discrétisation. 

La figure 6.34 représente les profils de vitesse obtenues aux 2 dernières stations. 

À x/HT= 24/3 l'accord avec l'expérience est bon. La section x/HT=48/3 se trouve tout 

près de la sortie du domaine où nous sommes forcés d'imposer de conditions aux limites 

(v=O, Neumann homogènes en u. Infi) et In(€)). Il n'est donc pas surprenant que les 

prédictions ne concordent pas très bien avec les mesures. La longueur de la zone de 

recirculation pour les différentes maillages est résumé dans le tableau 6.1. 

Tableau 6.1 Longueur de la zone de recirculation 

Calcul/Expérience Longueur % d'erreur 

Expérience 

Mansour et Morel 1953 

Pollard [96] 

Rodi et al [97J 

Spalding et al [98] 

Maillage - O 

Maillage - 1 

Maillage - 2 

Maillage - 3 

Maillage - 4 

Maillage - 5 



Les résultats présents doivent être considérk comme bons étant donnée l'extrême 

variation rapportée par différents auteurs utilisant le modèle k - E  pour ce type 

d'écoulement [99]. On remarque encore une fois que les différences sont minimes entre 

les derniers maillages et que I'adaptativité améliore constamment les résultats. 

Les figures 6.35 à 6.39 présentent une comparaison des prédictions de l'énergie 

cinétique de turbulence k avec les mesures expérimentales. Kim ne rapporte des 

mesures que pour Ü" et y''. La determination de la valeur exacte de k est donc 
1 incertaine. Nous avons adopté k = - (Ü" +?') et normalisé les profils de k par la 
2 

valeur maximale relevée en chaque section. On notera I'effet très marqué de 

I'adaptativité aux sections x/HT= 1 .O et 2.3 (figure 6.35) qui se trouvent dans la région 

initiale de la couche cisaillée. On constate une amélioration de la prédiction de la 

position du maximum de k ainsi que de l'épaisseur de la couche cisaillée. Ceci est 

particulièrement évident à la section x/HT= 1.0 où le pic de k est nettement plus mince 

sur le maillage f d  que sur le millage initial. Dans cette région la couche cisaillée est 

très mince. Le terme de production de k est donc très important mais décroît très 

rapidement dès que l'on s'éloigne de la couche cisaillée. Ceci correspond parfaitement 

à l'amincissement des couches cisaillées en u et v observées à la figure 6.28. 

Plus en aval, aux sections x/HT=4.1 et 5.8 de la figure 6-36,  l'effet de 

I'adaptativité est plus faible. On note que la position du maximum de k est légèrement 

décalée par rapport aux mesures expérimentales, le front prédit entre y/HT= 1 et 

y/HT=2 est moins étalé que celui mesuré. Ces sections se trouvent au voisinage du 

point de recollement qui est reconnu comme étant très difficile à prédire. La situation 

est la même en xIHT=6.7 (figure 6.37). En aval du point de recollement, aux sections 

xIHT=7.6. 8.5 et 10.3, la position du maximum de k est bonne. Ici encore le front 

prédit numériquement est moins étalé que celui mesuré. Cette prédiction numérique 

d'un niveau réduit de diffusion de k a déjà été observée dans le cas de la couche cisaillée 

de Patel tant avec notre méthode d'éléments fmis adaptative 1861, qu'avec une méthode 



de différences fuiis sur un maillage très fin [93]. Cette observation sur la diffusion 

réduite de k tient aussi pour plusieurs variantes du modèle k - E [93]. 

La qualité 

comme moyenne 

Thangham et Hur 

des prédictions de k en x/HT= 13.0 et 15.6 doit être considérée 

Nos résultats concordent raisonnablement bien avec ceux de 

[101] et Speziale et Tuan 11021. 

Les figure 6.40 à 6.44 présentent une comparaison des prédictions de la 

composante 5 du tenseur de Reynolds avec les mesures expérimentales. La 

composante dominante du cisaillement turbulent, = p, - + - , est obtenue par ; a:] 
différentiation du champ de vitesse. Elle est donc plus sensible au maillage que la 

vitesse u. L'effet de I'adaptativité du maillage est particulièrement évident aux figures 

6.40-6.43. Il est d'autant plus marqué qu'on est proche du coin; c'est à dire dans la 

région initiaie de la couche cisaillée très mince émanant du coin, Les sections x/HT= 1 

et 2.3 à la figure 6.40 montrent le très fort amincissement de la couche cisaillée due à 

I'adaptativité. 

D'une façon générale on prédit une valeur du pic de 6 plus grande que celle 

mesurée pour les sections en amont du point de recollement (sections x/HT= 1, 2.3'4.1 

et 6.7 aux figures 6.40, 6.41 et 6.42). La valeur des pics aux sections en aval du point 

de recollement est inférieure à la valeur mesurge. L'étonnant accord entre prédictions 

et mesures en xIHT = 7.6 est probablement une coïncidence étant donné le comportement 

observé en amont et en aval. On peut néanmoins dire que les prédictions de fi sont 

qualitativement correctes et en accord avec la revue bibliographique de diverses 

prédictions rapportée par Nailasamy [99]. 

Afin d'évaluer I'influence des conditions limite en entrée pour les variables de 

turbulence nous avons compléter une deuxième série de calculs, noté Prob2 (le calcul 

précédent portera le nom Prob 1). Dans ce cas le niveau de turbulence en entrée est fixé 



à 0.2% et le nombre de Reynolds basé sur la viscosité turbulente en entrée est de 5000. 

La résolution est faite cette fois par une méthode GLS appliquée aux équations de 

Navier-Stokes et une formulation SUPG-incomplet pour les équations des variables de 

turbulence. Les calculs sont réalisés sur les maillages engendrés précédemment dans le 

calcul Probl. Les valeurs obtenues cette fois pour la longueur de la zone de 

recirculation sont présentées dans le tableau 6.2. Notons une dépendance du maillage 

moins marquée que dans le cas précédent. La valeur f d e  de 6.46 est encore plus 

proche de 7 qui est la valeur obtenue d m  l'expérience de Kim. Cela ne signifie 

nécessairement que la solution Prob2 est meüleure que la solution Probl, mais plutôt 

met en évidence l'effet des conditions imposées en entrée aux variables turbulentes sur 

la solution. 

Tableau 6.2 Longueur de la zone de recirculation - calcul Prob2 

Calcul/Expér ience Longueur % d'erreur 

Expérience 7.0 * 1.0 - 
Maillage - 2 6.43 8.1 

Maillage - 3 6.43 8.1 

Maillage - 4 6.47 7.6 

Maillage - 5 6.46 7.7 

La solution f d e  est présentée dans la figure 6.45. On remarque que les 

gradients sont plus forts dans la couche limite proche des parois et aussi dans la couche 

cisaillée comme résultat de la diminution de la viscosité turbulente dans le canal qui 

précède la marche. Pourtant la solution se compare bien à la solution du problème 

Probl et la nature de l'écoulement dans la zone de recirculation ne semble pas être 

affectée par le changement dans les conditions en entrée. 



Les figures 6.46 à 6.48 comparent les profüs de vitesse obtenus dans les deux 

cas. On remarque que la principale différence consiste dans la courbure différente au 

niveau du genou, à la limite de la couche cisaiilée. Le fait que la solution Prob 1 

approche mieux les valeurs expérimentales à cet endroit laisse penser que ces conditions 

en entrée sont plus proche de conditions rencontrées dans l'expérience. 

Les figures 6.49 et 6.50 présentent une comparaison entre les profils de l'énergie 

cinétique de turbulence obtenus dans les deux cas. Les différences sont minimes sauf 

dans la région non-perturbée de l'écoulement, (x/HT entre 1.5 et 2.5). où les valeurs 

sont déterminées en grande partie par le niveau de turbuience imposé en ennée. Les 

figures 6.5 1 et 6.52 comparent cette fois les distributions du cisaillement turbulent. 

Encore une fois les différence sont minimes. Le cisaillement turbulent est toujours 

surestimé dans la zone de recirculation. 
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Figure 6.26 Marche descendante de Kim - Maillages adaptés 
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Figure 6.27 Marche descendante de Kim - Solution sur le maillage initial 
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Figure 6.28 Marche descendante de Kim - Solution sur le maillage final 
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Figure 6.29 Estimation de I'erreur sur le maillage initial 
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Figure 6.30 Estimation de l'erreur sur le premier maillage adapté 
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Figure 6.3 1 Profils de vitesse longitudinale à xMT=-4 et à x/HT=-1 
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Figure 6.32 Profils de vitesse longitudinale à d H T d  et à x/HT=4/3 
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Figure 6.33 Profils de vitesse longitudinale à x/HT=8/3 et x/HT=16/3 
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Figure 6.34 Profils de vitesse longitudinale à x/HT=2413 et à x/HT=48/3 
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Figure 6.35 Profils de k à x/HT= 1.0 et à x/HT=2.3 
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Figure 6.36 Profils de k à xEïî=4.1 et à x/HT=5.8 
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Figure 6.37 Profils de k à x/HT=6.7 et à x/HT=7.6 
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Figure 6.38 Profils de k à x/HT=8.5 et à m = 1 0 . 3  



Figure 6.39 Profils de k à x/HTT=13.0 et à x/HT=15.6 
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Figure 6.40 Profils du cisdlement turbulent à x/HT=l.O et à x/HT=2.3 
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Figure 6.41 Profils du cisaillement turbulent à x/HT=4. I et à x/HT=5.8 



Figure 6.42 Profils du cisaillement turbulent à x/HT=6.7 et à x/HT=7.6 
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Figure 6.43 Profils du cisaillement turbulent à x/HT=8.5 et à x/HT=10.3 
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Figure 6.44 Profils du cisaillement turbulent à x/HT=13.0 et à x/HT=15.6 
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Figure 6.45 Marche descendante de Kim - Solution Prob2 
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Figure 6.46 Solutions Probl et Prob2: Profils de vitesse à x/HT=O et à xMT=4/3 

Figure 6.47 Solutions Prob 1 et Prob2: Profils de vitesse à x/HT=8/3 et à x/HT= 16/3 

Figure 6.48 Solutions Probl et Prob2: Proffis de vitesse à x./HT=24/3 et à ,x/HT=48/3 
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Figure 6.49 Solutions Probl et Prob2: Profils de k à x/HT=l .O et à x/HT=4.1 
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Figure 6.50 Solutions Probl et Prob2: Profils de k à x/HT=6.7 et à x/HT=7.6 



Figure 6.51 SoIutions Probl et Prob2: cisaillement turbutent à x/I-IT=l.O et à x/HT=4.1 
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Figure 6.52 Solutions Probl et Prob2: cisailIement turbulent à x/HT=6.7 et à x/HT=7.6 



6.3. Écoulement autour d'un profil NACA0012 

L'écoulement autour du profü NACA0012 est un cas test amplement rencontré 

en aérodynamique. La géométrie du profil est déterminée par l'expression analytique 

suivante: 

y =5e(0.29696-0. 126x-0.3537x'+0.2843x3 -0. 1015x4) (6-4) 

oh x, y sont les coordonnées adimensionalisées par rapport à la corde du profil c, et e 

représente l'épaisseur relative du profü e=0.12. Des mesures expérimentales du 

coefficient de pression sont disponibles dans la référence [103]. Les données 

expérimentales correspondent à des écoulements compressibles à des nombres de Mach 

qui varient entre M=0.3 et M=0.83. Comme nos calculs sont effectués pour un 

écoulement incompressible, nous avons considéré comme référence les mesures 

expérimentales à M=0.3  où les effets de compressibilité sont réduits. Nous avons 

compléter deux séries de calculs: la première correspond à un angle d'incidence nul, 

a =(Y, et la deuxième correspond à a = 3.590. 

6.3.1. Écoulement à angle d'incidence 

Pour ce cas le nombre de Reynolds basé sur la 

nul 

vitesse à 1' infini et la corde du 1 

profil est Re= 1.85x106. La géométrie est adirnensionalisée par rapport à la corde du 

profil. L'entrée du domaine de calcul se situe à 10 cordes en amont du profil. la sortie 

se trouve à 10 cordes en aval du profü. Finalement, les limites supérieure et inférieure 

du domaine sont placées à 8 cordes par rapport au profi. 

Dans nos calculs toutes les variables sont adimensionalisées. Les valeurs de 

référence sont Um pour la vitesse, U: pour l'énergie cinétique de la turbulence et ~ i l c  

pour E .  On impose les différentes valeurs des variables en entrée, soit u= 1, v=O. 



k= 1 .6x1(r3, e =6x10-'. Toutes les autres frontières ont des conditions libres pour toutes 

les variables. Sur le profd on utilise une loi de paroi avec une distance à la paroi de 

d=O.ûû 1. La condition de tangence est imposée en sens faible, donc on impose que le 

débit soit nul sur chaque face des éléments situés sur le profil. On notera que Le 

problème à résoudre est symétrique et qu'à aucun moment le maillage n'est contraint à 

être symétrique. Le domaine de calcul est discrétisé au complet et le maillage est 

engendré uniquement à partir de la distribution de taille prescrite. 

La résolution est faite en variables logarithmiques à l'aide d'une formulation 

Galerkin moindre carré. Le calcul démarre sur un maillage très grossier. qui à 

seulement 17 éléments de chaque coté du profd. À chaque étape adaptative on cherche 

à diminuer les erreurs en vitesse, pression, In@), In(€ J et p, par un facteur 2. 

Dans la figure 6.53 on présente les maillages engendrés par la stratégie 

adaptative dans une région autour du profü. L'effet de 1 'adaptativi té est remarquable. 

Les points du maillage sont initialement concentrés autour du bord d'attaque et du bord 

de fuite du profü. Ce raffinement est en grande mesure déterminé par l'erreur en 

vitesse. Le maillage est ensuite raffiné dans la couche limite près du profil pour 

capturer les variations très rapides en vitesse, dans ies variables logarithmiques et dans 

la viscosité turbulente. 

La figure 6.54 présente une vue d'ensemble des maillages initial et final. Le 

maillage fuial est considérablement raffhé autour du profil, mais aussi dans son sillage 

en aval. On remarque aussi qu'en amont du profil la transition dans la taille des 

éléments est progressive. Ceci est déterminé par l'erreur en pression qui est plus 

exigeante dans les régions éloignées du profü, cette variable étant discrétisée par des 

fonctions linéaires. 

La solution obtenue sur le maillage f d  est représentée dans la figure 6.55. On 



présente les composantes u et v de la vitesse, la pression, la viscosité turbulente et les 

variables logarithmiques. La solution du problème devrait être symétrique par rapport 

. à l'axe des x. On remarque que, même si le maillage n'est pas symétrique, la solution 

numérique l'est à tout fui utile. Rappelons que la pression est discrétisée par des 

fonctions discontinues. On peut donc mesurer la qualité de la solution en regardant les 

isobares qui sont presque continues. Une analyse plus détaillée de I'influence de la 

formulation élément f ~ s  et de l'avantage apporté par l'utiiisation des variables 

logarithmiques sera présentée pour l'écoulement avec incidence. 

La figure 6.56 présente les courbes de coefficient de pression sur l'extrados du 

profil, qui sont comparées aux mesures expérimentales. Rappelons que l'expérience est 

réalisée à M=0.3. La théorie des petites perturbations indique que le coefficient de 

pression incompressible est donné par: 

c,,. = cP 4 3  (6.5) 

où C, est le coefficient de pression dans l'écoulement compressible et M est le nombre 

de Mach local. Dans ce cas la correction de compressibilité représente environ 5 % de 

la valeur du coefficient de pression, ce qui explique les différences entre la solution 

numérique et les valeurs expérimentales. Outre ce fait, on peut remarquer que la 

solution s'améliore à chaque cycle d'adaptativité. Les différences entre les deux 

derniers maillages adaptés sont invisibles sur cette figure. 
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Figure 6.53 Rofil NACA0012, a=Oo: Maiilages engendrés par la stratégie adaptative 
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Figure 6.54 Profil NACAûû12, a =O0: MaiUage initiai et maillage fuial 
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Figure 6.55 Solution sur le maillage fmal 



Figure 6.56 Profil NACA0012, a =O0: Distribution du coefficient de pression 



Écoulement avec incidence 

Le nombre de Reynolds pour ce problème est Re= 1.86x106. Le domaine de 

calcul est le même que celui utilisé daos le w précédent. On impose toujours des 

conditions de Dirichlet à ['entrée, les composantes de vitesse étant calculées cette fois 

pour que l'écoulement fasse un angle de 3.590 dégrées avec I'axe du profil (l'axe des 

x). Sur toutes les autres frontières les conditions aux limites sont de type Neumann 

nulles. Les variables turbulentes en entrée sont k= 1.6~10"~ E = 6 ~ 1 0 ' ~ .  ce qui fait en 

sorte que I'écoulement est assez visqueux (Re,=260). De cette façon on pourra utiliser 

et comparer toutes les formulations éléments finis stabilisées de même que la méthode 

de Galerkin. La distances à la paroi pour la loi de paroi est d =0.00 1. Notons que ce 

calcul reproduit les conditions de I'expérience réalisée à a =4', la différence entre les 

deux angles d'incidence étant déterminée par la correction de paroi due à la soufflerie. 

Dans la figure 6.57 on présente les maillages engendrés par I'adaptativité au 

voisinage du profil. Comme dans le cas précédent, le maillage est raffiné d'abord 

autour des bords d'attaque et de füite, et ensuite dans la couche limite au long du profil 

et finalement dans le sillage. La qualité des maillages adaptés et le raffinement dans la 

couche limite sont remarquables. Notons que l'introduction de l'erreur en pression dans 

la stratégie adaptative est responsable de la transition progressive dans la taille des 

éléments en amont du profi. Le raffinement dans la couche limite et dans le sillage est 

du aux variables logarithmiques et à la viscosité turbulente. 

Les solutions obtenues sur les différentes maillages sont représentées dans les 

figures 6.58 à 6.63. Les figures 6.58 et 6.59 présentent les deux composantes de 

vitesse. L'amélioration de la solution due à I'adaptativité est très nette. Sur le maillage 

finai on capture très bien les variations rapides dans la solution autour du bord d'attaque 

du profil, près du bord de fuite et dans la couche limite. La figure 6.60 présente la 



distribution de pression sur les différents maillages. Encore une fois I'adaptativité 

améliore remarquablement les prédictions numériques, les lignes isobares étant presque 

continues sur le maillage f d .  La même succession d'images, cette fois pour la 

viscosité turbulente, est présentée dans la figure 6.61. On remarque que même si le 

premier maillage est très grossier, la solution obtenue sur ce maillage indique 

correctement les principales zones de variation dans la solution autour du profil. 

L'utilisation des variables logarithmiques est encore une fois déterminante dans le succès 

du résoluteur sur un maillage si grossier. Non seulement on obtient une solution sur un 

tel maillage, mais en plus cette solution est suff~amment lisse pour permettre de 

démarrer correctement le processus adaptatif. Cependant, on remarquera que les 

variations dans la couche limite ne sont bien reproduites que sur les deux derniers 

maillages. On notera aussi que pour ce problème le nombre de Reynolds très élevé 

cause un amincissement considérable de la couche limite. La résolution devient alors 

d'autant plus difficile à cause du fait que dans la couche limite les variations des 

variables sont extrêmement rapides. 

Sur les figures 6.62 et 6.63 on présente les distribution des variables de 

turbulence. À gauche on présente k et E respectivement, tandis qu'à droite on retrouve 

leurs logarithmes naturels. Les solütioos correspondent au maillage initial, au deuxième 

maillage adapté et au maillage final. Les solutions sur le dernier maillage sont de très 

bonne qualité autant pour infi) ,  que pour ln(a).  Outre ce fait, on remarque une nette 

différence entre les variations de k et d ' ~  d'une part et celles de ln@) et ln(€)  de 

l'autre. On peut voir dans la figure 6.63 que le logarithme d ' ~  a une variation qui 

s'étale sur une région assez vaste autour du profil, tandis q u ' ~  varie très rapidement 

dans une mince couche d'éléments autour du bord d'attaque. Une résolution en (k, E )  

comme variables dépendantes doit composer avec ces variations de k et d' E autour du 

bord d'attaque qui rendent la résolution extrêmement difficile. A vrai dire lorsque la 

résolution à été faite en k et E notre code a souvent été incapable d'obtenir des solutions 

pour certains problèmes. C'est le cas des maillages grossiers, mais aussi de certains 



problèmes où s varie extrêmement rapidement comme c'est le cas ici. On peut donc 

en conclure que l'utilisation des variables logarithmiques a un effet bénéfique au niveau 

de l'ensemble de l'algorithme adaptatif. Elle peut même être essentielle au succès des 

calculs sur certaines configurations. 

La figure 6.64 présente les distributions du coefficient de pression au long du 

profil, pour les différents maillages. Les prédictions sont rapidement améliorées par 

I'adaptativité et on remarque des différences minimes entre les solutions obtenues sur 

les dernièrs maillages. Encore une fois les différences par rapport aux mesures 

expérimentales sont expliquées dans une certaine mesure par les effets de 

compressibilité. 

Finalement, afin d'évaluer les performances des différentes formulations éléments 

finis, nous avons résolu ce problème sur le troisième maillage par toutes les formulations 

implantées, soit Galerkin, SU, SUPG incomplet, SUPG et GU. Les courbes de C' 
obtenues sont tracées dans la figure 6.65 et un détail de la région de vitesse maximale 

est présenté dans la figure 6.66. On remarque d'abord que de toutes ces courbes, celle 

qui correspond à GLS est la plus lisse. Ceci résulte du fait que dans cette formulation 

toutes les équations, y compris l'équation de continuité, sont stabilisées par moindres 

carrés. Outre ce fait, la solution Galerkin est la plus proche de la solution GLS; elle 

est suivie par la méthode SUPG. Ces trois formulations sont d'ailleurs résiduelles et 

leurs solutions convergent vers la solution exacte avec le raffinement du maillage. La 

solution SUPG-incomplet est assez proche de la solution SUPG. Même si elle n'est pas 

résiduelle, elle a l'avantage de ne pas inclure les dérivées secondes dans le résidu fort 

et par conséquent elle est plus robuste en présence de singularités. Li solution SU est 

loin des autres et on voit clairement que cette technique fausse les résultats par 

l'inclusion d'une viscosité artificielle. 

Afin d'apprécier l'influence de conditions en entrée sur la solution nous avons 



complété trois aunes séries de calcul, hob2, Prob3, Prob4, (le calcul précédent est 

appelé ProbI), en variant le niveau de turbulence et de la viscosité turbulente en entrée. 

Les valeurs utilisées sont présentées dans le tableau 6.3. 

Tableau 6.3 Conditions en entrée pour les variables turbulentes 

Calcul 

Prob 1 1 . 6 ~ 1 0 - ~  0.00384 

Prob2 1.OxlW O.9x1O4 

Prob3 1.0x10-~ 0 .9~10 -~  

Prob4 1 .OxlOa 0.9x10a 

Les maillages ont été régénérés à partir du cycle 2 pour les conditions de la 

solution du problème Prob2. Les maillage obtenus sont présentés dans la figure 6.67. 

On remarque a nouveau un très forte concentration dans la couche limite de même que 

dans le sillage développé en aval du profil. Une vue d'ensemble du maillage final est 

présentée dans la figure 6.68. L'effet de I'adaptativité est remarquable: la concenuation 

de points est une illustration des régions de forts gradients dans la solution. Notons que 

le rapport entre l'aire du plus gros et du plus petit triangle est de 1.6x107. 

Les figure 6.69 à 6.71 illustrent l'évolution de la solution dans les variables de 

turbulence lorsque les conditions en entrée sont modifiées. On remarque 

l'amincissement de la région de forts gradients autour du profd. Notons aussi la 

ressemblance entre les distribution des variables logarithmiques (In(k) et ln(€)) ce qui 

augmente l'efficacité du processus adaptatif, leurs erreurs étant concentrées aux mêmes 

endroits. Quant à la viscosité turbulente, on remarque une diminution du maximum 

dans la solution lorsque le niveau de turbulence baisse en amont du profil. La viscosité 



turbulente maximale diminue entre les solutions Prob2 et Rob4 par un facteur 6 pour 

une diminution des valeurs en entrée par un facteur de 100. Notons aussi le fait que la 

solution du problème Prob4 correspond à un écoulement pratiquement non-visqueux sauf 

dans la couche limite et dans le sillage. 

Finalement, la figure 6.72 présente l'influence du niveau de turbulence en entrée 

sur la distribution du coefficient de pression. Les prédictions numériques s'approchent 

de plus en plus des valeurs expérimentales lorsque le niveau de turbulence baisse en 

amont du profil. La solution du problème Prob4 est excellente, les différences par 

rapport aux mesures étant attribuables entièrement aux effets de compressibilité. 
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Figure 6.57 Profil NACA0012 a a -3.59' - Maillages adaptés 
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Figure 6.58 Distribution de la vitesse u 
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Figure 6.59 Distribution de Ia vitesse v 
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Figure 6.60 Disaibution de la pression 
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Figure 6.61 Distribution de la viscosité turbulente 
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Figure 6.62 Distribution de k et de h(k) 
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Figure 6.66 Détail de la distribution du coefficient de pression sur le maillage 3 
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Figure 6.67 Maillages adaptés - Rob2 



Figure 6.68 Profil NACA00 12, a =3.5g0: Maillage fiai (Prob2) 
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Figure 6.69 Influence des conditions limite à l'entrée sur la solution en fn(k) 
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Figure 6.70 Influence des conditions limite à l'entrée sur la solution en ln@) 
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Figure 6.71 Influence des conditions limite à l'entrée sur la viscosité turbulente 



Figure 6.72 Muence des conditions limite à l'entrée sur la distribution du coefficient 
de pression 



Conclusion 

Dans cette thèse nous avons développé une méthodologie adaptative capable de 

traiter les écoulements turbulents. La modélisation de l'écoulement a été réalisée à 

l'aide d'un modèle k - E  à deux équations de mansport. couplé à une loi de paroi. 

L'algorithme adaptatif procède par remaillage adaptatif. À chaque cycle d'adaptation 

la distribution de l'estimation de l'erreur sur le maillage courant est utilisée pour prédire 

les caractéristiques du prochain maillage adapté afin de réduire l'erreur. 

Ce travail avait pour but d'obtenir de solutions numériques précises aux équations 

régissant les écoulements turbulents. Pour cela nous avons développé des techniques de 

résolution et d'estimation d'erreur couplées dans un algorithme adqxzif rcbuste. 

efficace et économique. Les résultats ont montri que l'adaptativité permet d'obtenir de 

solutions ûès précises et à moindre coût qu'une résolution classique. 

La résolution a été effectuée sur de maillages non-structurés en employant un 

algorithme à base d'itérations globales en p,. Afin de préserver la positivité des 

variables de turbulence F, r ,  p d  nous avons proposé un changement de variables 

dépendantes: la solution n'est plus obtenue avec k et e comme variables dépendantes. 

mais plutôt avec leur logarithme naturel. Cette approche nouvelle bien que très simple 

et très efficace n'a jamais été employée auparavant. La résolution en variables 

logarithmiques conduit à des solutions pour lesquelles les variables de turbulence sont 

représentees avec beaucoup plus de précision. Le bénéfice de cette approche a été 



immédiat au niveau de la positivité de la solution. En plus on a pu en tirer plusieurs 

autres avantages tant du point de vue du résoluteur que du module adaptatif. On notera 

l'accélération de la convergence dans l'algorithme itératif de calcul et la robustesse 

accrue de l'estimation d'erreur et de l'adaptativité. Pour le cas de validation, nous 

avons obtenu une réduction de l'erreur en p, de deux ordres de grandeur seulement en 

utilisant les logarithmes naturels de k et E comme variables dépendantes. Outre ce fait, 

nous avons utilisé avec succès des techniques d'éléments finis stabilisées ayant pour rôle 

de réduire où même d'éliminer les oscillations dans la solution lorsque les termes de 

convection sont dominants. 

L'estimation d'erreur a été réalisée par une technique de projection locale de type 

moindres carrés. L'approche est la même pour toutes les variables d'intérêt: vitesse, 

pression, variables de turbulence et viscosité turbulente. Les cas de validation ont 

montré que les estimateurs a base de projection locale sont robustes et représentent 

correctement la distribution et 1 'amplitude de l'erreur. 

La méthodologie adaptative a été appliquée à la résolution des écoulements 

turbulents pour lesquels on disposait de données expérimentales. Nos résultats indiquent 

que l'adaptativité nous permet d'obtenir des solutions qui ne dépendent plus du maillage. 

À toute fin utile la solution finale est numériquement exacte. Les résultats se comparent 

bien avec les mesures. 

Dans tous les cas la solution dépend des valeurs imposées aux variables de 

turbulence en entrée. Dans ce sens on remarque pour la couche cisaillée que la solution 

s'approche plus d'une solution similaire lorsque le niveau de turbulence baisse en amont 

de la zone de mélange. Les résultats viennent aussi confirmer plusieurs constatations 

faites auparavant qui concernent le comportement du modèle k-E . On note pour 

l'écoulement sur la marche une surévaluation du cisaillement turbulent dans la zone de 

récirculation et une sous-évaluation du cisaillement en aval du point de recollement. 



Pourtant, nos prédictions relatives à la longueur de la zone de récirculation se situent 

entre 6.2 et 6.47 (dépendant des conditions imposées en entrée aux variables 

turbulentes). ce qui constitue une amélioration notable par rapport aux autres prédictions 

numériques référées dans la littérature. 

Le calcul de l'écoulement turbulent autour du profil NACAOO 12 pose encore une 

fois la question de l'influence sur la solution des conditions limites. On remarque que 

la solution du problème dépend du niveau de la viscosité turbulente dans l'écoulement 

non-perturbé. La solution numérique s'aproche de plus en plus des mesures 

expérimentales au fur et à mesure que la viscosité turbulente baisse en amont du profil 

jusqu'à des valeurs comparables à la viscosité laminaire du fluide. Cependant le calcul 

dans ces conditions est plus difficile car il comporte des grandes régions où les variables 

de turbulence prennent des valeurs extrêmement faibles et d'autres où les gradients de 

la solution sont très forts. Ces caractéristiques de la solution font apprécier d'autant 

l'avantage d'utiliser les variables logarithmiques. 

Des améliorations sont encore possibles au niveau de l'algorithme de résolution 

car on ne dispose pas encore d'une formulation résiduelle qui fonctionne dans toutes les 

situations. On pense notamment aux équations de transport pour ies variabies de 

turbulence résolues en formulation GLS et SUPG. La présence de singularités et le 

comportement asymptotique des dérivées d'ordre deux, empêchent parfois ces techniques 

de stabilisation de converger. Une possibilité à envisager serait de diminuer la 

contribution de type moindre carré dans la formulation GLS dans les régions autour de 

singularités. là où de toute façon les éléments ont des tailles déjà suffisamment petites. 

il serait aussi utile d'explorer d'autres façon de traiter les régions près des parois 

solides. On pense notamment à l'utilisation des lois de parois sensibles au gradient de 

pression où bien encore à des formulations permettant d'intégrer les équations jusqu'à 

la paroi. 



D'autre part on recommande l'application de la technique de résolution en 

variables logarithmiques et de la méthodologie adaptative à des variantes du modèle k- E , 

de même qu'à d'autre modèles de turbulence à deux équations. Cela permettrait de faire 

des anaiyses comparatives des différents modèles de turbulence étant donné que les 

erreurs numériques sont maintenant bien contrôlées. 

Une suite intéressante à cette recherche serait aussi l'extension des méthodes 

proposées aux écoulements axis ymétriques où tridimensionnels. Cela ouvrirait un plus 

large horizon d'applications étant donné que, sans tenir compte de nos limites 

informatiques, la nature demeure toujours tridimensionnelle. 
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Annexe A. Évaluation des matrices élémentaires 
par différentiation numérique 

Dans cette annexe on présente une technique d'évaluation des ma~ices 

élémentaires par différentiation numérique. Considérons d'abord qu'on doit résoudre 

une équation différentielle scalaire. La forme variationnelle peut être écrite sous la 

forme suivante: 

R(u) = O  (A- 1) 

où R est le résidu de I'équation et u est l'inconnue à déterminer. Notons que le résidu 

R contient tous les termes de I'équation à résoudre et qu'il corresponde à la forme 

variationnelle de I'équation. 

Le système d'équations est résolu de façon itérative. À chaque itération on 

dispose des valeurs déterminées à l'itération précédente u, et on veut évaluer les 

corrections 6u afm de satisfaire I'équation (A. 1). On impose donc que: 

Considérons maintenant le développement en série de Taylor pour R autour du point 24, 

qui est la solution courante. L'équation à résoudre devient: 



et si on néglige les termes d'ordre supérieure en au, on obtient: 

ou bien 

On arrive donc à un système d'équations algébrique dont la matrice est donnée 
i3R par le terme -, qui représente la différentielle du résidu par rapport à l'inconnue u. 
au 

Le membre de droite du système dépende du résidu évalué à l'itération précédente. Le 

système à résoudre s'écrit alors sous la forme suivante: 

A&, = bi (A 6) 

Ici R, dénote le résidu de I'équation i (on associe une équation à chaque fonction test), 

et u, représente la variable 

évalués par différentiation 

u associée au noeud J. Finalement, les coefficients A, sont 

numérique: 

Notons que cette procédure est générale. Elle demeure inchangée peut importe la forme 

de l'équation différentielle à résoudre et donc elle est indépendante de la forme de 

l'opérateur intégro-différentiel R. Remarquons que l'équation ( A S )  est rigoureuse 

lorsque le résidu est une fonction linéaire de la variable u. Cependant, même si 

I'équation est non-linéaire, (AS)  représente une bonne approximation de I'équation 

initiale (A.2) lorsque les correction 6u sont suffisamment petites par rapport à la 

solution u,. 
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Dam le cas des équations de Navier-Stokes le système à résoudre est composé 

par les équations de mouvement et de continuité. Écrivons le sous la forme suivante: 

R,(~,V,P) = O  

Rv(u,v,p) = O  (A. 10) 

RP(u,v) = O  

où 4, R,, sont les résidus des équations scalaires de mouvement et l$, est le résidu de 

l'équation de continuité. On développe alors les résidus &, R,, et % en série de Taylor 

autour de (u, v, p& pour ensuite obtenir le système suivant: 

On peut aussi écrire le système à résoudre sous forme matricielle comme suit: 

(A. 11) 

(A. 12) 

Ici encore une fois les coefficients de la matrice sont évalués par différences 

centrées. 



Annexe B. Calcul du 
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paramètre de stabilisation 
. 7 et de la taille de l'élément 

La méthode GLS ajoute à la forme variationnelle de Galerkin le terme de 

minimisation du carré du résidu fort de l'équation différentielle à résoudre. Ce terme 

est pondéré par le paramètre r qui a la forme suivante: 

Bien que cette expression soit rigoureusement correcte seulement pour le cas des 

éléments linéaires et des équations scalaires, son application aux équations de Navier- 

Stokes discrétisées avec des éléments quadratiques a donné des très bons résultats. Dans 

(B. 1). le coefficient 6 dépend du nombre de Péclet local de l'élément: 

Comme on peut le constater les équations à résoudre auront des valeurs différentes du 

paramètre 7 car le nombre de Péclet dépend du coefficient de diffusion de I'équation 

de transport en question. Pour I'équation de mouvement on a X = (p +p,) , pour les 

équations de k et de K, X = (p +p,/o,), et pour les équation de E et de E, h = (p + p T i g ) .  

Fidement. le terme de difision dans l'équation de continuité étant nul, on aura pour 

cette équation Pe = et donc rp est donné par: 

Dans ces relations on a noté par V la norme du vecteur vitesse et par h la taille de 

l'élément. Dans la littérature il existe plusieurs possibilités de calculer h pour les 

maillages non-sûucturés. Notons que cette valeur représente la taille de l'élément dans 

direction de l'écoulement et donc qu'elle est une fonction de la vitesse. Dans nos calcul 

nous avons considéré pour h l'expression suivante: 



1 (~~-3) '  + ( y i - y j ) v  ( 
h = max 

i j  I VI 

. Cette valeur est illustrée dans la figure B.1. 

Figure B. 1 Calcul de la taille de I'élément en direction de I'écoulement 



Annexe C. La méthode de Lagrangien augmenté 
. pour satisfaire la contrainte d'incompressibilité et 

la condition de tangence 

Considérons qu'on doit résoudre le système formé par les équations de 

mouvement (3.55)' (3 .%), l'équation de continuité et I'équation pour la contrainte de 

tangence (3.57). Le système d'équations peut d o n  être mis sous la forme suivante: 

A u + B T p + C f f = b  

Bu = g (c. 1) 

Cu = '? 

où u est la vitesse, p est la pression (multiplicateur de Lagrange pour la contrainte 

d'incompressibilité) et f est le multiplicateur de Lagrange pour la condition de débit 

imposé. Notons que la matrice du système est symétrique par blocs. B étant la matrice 

divergence et C la matrice débit. Dans le membre de droite g est un terme qui dépende 

de la divergence du vecteur vitesse (en incompressible g=O), tandis que q dépend du 

débit de fluide à travers la frontière. Pour une condition de non-pénétration (débit nul) 

on a q=O. 

La méthode d'Uzawa fait appel à un algorithme itératif dans lequel à chaque 

étape on résout seulement pour les vitesses, les multiplicateurs de Lagrange p et f étant 

mis à jour afin de satisfaire les contraintes d'incompressibilité et de tangence. 

L'algorithme d'Uzawa pour la résolution du système (C. 1) est le suivant: 

1. donner p, fo 

1.1. résoudre Au = b-Bh-cfo  

1.2. évaluer 4 =Bu-g , R,= Cu-q 

1.3. calculer p=po+rl$, f=fo+rRf 

2. résoudre Au = b-#&cf 



Ici l'étape 1 est répétée tant que nécessaire pour obtenir une solution convergée. 

L' inconvénient principal pour 1 'algorithme d' Uzawa réside dam une mauvaise vitesse 

de convergence et donc un temps de calcul trop élevé. Ceci est du au fait que 

I'algorithme d'Uzawa est un algorithme explicite, à l'étape 1.1 étant utilisées les valeurs 

de p et f de l'itération précédente. On s'attend donc à ce que la vitesse de convergence 

soit grandement améliorée par un traitement implicite de la pression p et de la réaction 

normale f dans l'étape 1.1. Cela revient à résoudre l'équation suivante: 

AU = b - B T p - C r f  ( C a  

À l'étape 1.1 on a donc à résoudre l'équation suivante: 

(A+rBrB+rCTC)u  = b + r B T g + C T q - B T p - C T f  (c-4) 

OU encore 

A,u = b r - B T p - C y  

On arrive alors à la méthode de Lagrmgien augmenté (algorithme d'Uzawa 

implicite) dont l'algorithme est le suivant: 

1. donner p, f, 

1.1. résoudre A p  = b$?$, -c f ,  

1.2. évaluer R,, =Bu-g , RF Cu-q 

1.3. calculer p=p,+rZ$, f=f,+rR, 

2. résoudre A#=biB%-cf 



Annexe D. Les formulations éléments finis 
stabilisées dans le cas des équations de transport 
des variables turbulentes 

Comme on a vu dans le chapitre 3.2 que les équations de transport de k et d' E 

sont les suivantes: 

Pour stabiliser la solution lorsque I'écoulement est dominé par la convection on utilise 

des schémas à base de différentiation amont dans le sens de l'écoulement (upwinding). 

Comme pour les équations de Navier-Stokes nous avons considérer quatre formulations 

permettant de stabiliser les équations, soit SU (upwinding sur les termes de convection). 

SUPG-incomplet (upwinding sur tous les termes sauf celui de diffusion). SUPG 

(upwinding sur tous les termes de l'équation) et GLS (Galerkin Lat-Squares). Les 

formes variationnelles correspondantes à ces méthodes sont les suivantes: 

- équation de transport de k 

SU: PT k2 [ p u  - V k w  + ( p + - ) V k -  V w  +p2Cp-w - p,P(u)w]dQ 
Ok PT +z bpu V X r u  -vwtiv = O 



SUPG: 6 k' [ p u  - V k w  + ( p + ? ) v k - V w  + p ' C p - ~ - ~ T P ( u ) ~ ] d R  
Ok PT 

GLS: 

- équation de ûaospon d' E 

Galer kin: E 
[[PU - V E W  + ( p + 5 ) ~ ~  . V w - p C , - w  -pC,CPkP(u)w]dQ = O 

9 - k 

SU: k e2 [ p u .  V E  w + ( p  +-)VE V W  +pC,-w -pC,C'kP(u)w]dfI 
4 - k  



SUPG: E' [ p u  - V E W  + ( ~ + ! ? ) v E  - V W  +pC,-w -pC&kP(u)w]dR 
9 - k 

Dans le cas d'une résolution en variables logarithmiques les équations à résoudre 

sont les suivantes: 

Les formes variationnelles associées aux différentes formulations seront alors les 

suivantes : 

- équation de transport de K 

e K  PT [ [(pu - ~ ~ - ( p + - ) ( o K ) ~ - ~ , e - ' ~ ( u )  + p 2 ~ p - ) w  + ( p + - ) V K  - v w ] d n =  O 
Gk PT Ok 



SU: 
e K  

[(pu - VK-@+-)(vK)'-~~~'~P(u) +p2CP-)w + (~+%)vK - vw]dn  
ak PT Ok 

GU: 



- équation de transport de E 

SU: 

+ E  [ [pu - V E  - p C I C p e K - E P ( ~ )  + C2peE-K]  TU - V w d P  = O 

SUPG: 



Le terme qui contient le gradient au carré de la variable logarithmique peut être 

associé au effets de convection et il détermine alors une modification de la vitesse de 

convection. Les équations s'écrivent alors sous la forme suivante: 

et la vitesse de convection sera: 

La méthode GLS peut être appliquée aussi en utilisant ces vitesses de convection 

modifiées dans le calcul du paramètre de stabilisation T. Considérons le cas de 

l'équation en K. Le paramètre r basé sur la vitesse u, sera donné par: 

où 6 dépend du nombre de Péclet de l'élément: 



On a donc que 

(D. 10) 

Dom lenombrede Pédavarieparrapportàsavdmbaséenirlavitesseuparauplush IVKI / 2  

qui représente approximativement la variation de K à l'intérieur de l'élément. Dans les 

régions où le terme de stabilisation est important ce terme est en général petit par 

rapport à la valeur Peu et son importance diminue avec I'adaptativité. On s'attend donc 

a ne pas avoir des différences entre les solutions obtenues avec une ou l'autre des 

formes pour le paramètre de stabilisation. 

Remarquons aussi que, lorsqu'on évalue les termes moindre carré des équations (D.5) 

et (D.6) sous leur forme linéarisée au niveau du terme de convection, on obtient les 

équation GLS suivantes: 

équation de K: 

e PT [(pu - VK- ( ~ + - ) ( v K ) z  -p,e-~?'(u) +pZCF-) w + &+-)TIC - v w ] ~ Q  
Uk PT Ok 



équation de E: 

[(pu VE-(~+!?)@E)~-~C,C~~ 
"e 

Notons que maintenant le terme ( p  + pT/ o,)VK Vw dans la variation du résidu fort n'est 

plus multiplié par 2 car il provient de la variation d'une forme linéarisée. Les 

différences sont minimes entre les deux formulations GLS (une basée sur la vitesse u 

comme vitesse de convection et l'autre avec une vitesse de convection u, modifiée) et 

elles diminuent avec le raffinement du maillage. Nous avons alors opté pour la première 

forme des équations, car elle comporte moins de non-linéarités. 
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