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Dans cette thèse, nous nous intéressons au problème général de contrde de 

flux dans les ateliers de fabrication flexibles. La thèse est composée de deux parties 

principales consacrées respectivement à la commande sous-optimale sur horizon fini 

des ateliers de fabrication mono-pièce, et la commande soiis-optimale sur horizon 

infini des ateliers de fabrication miilti-pièce. Pliis précisément dans la première 

partie, le problème de prodiiction sur horizon fini dans un atelier mono-pièce est 

considéré. Lorsque le taux de demande de pièces est constant, pour ime fonction 

coût d'inventaires ou de retards de production par ilni té de temps convexe, il est 

établi que les politiques de prodiiction optimale sont de t-ype seuils critiqiies. Pour 

un horizon de commande infini, ces politiques sont caractérisées par un ensemble 

de seuils dhrentaires critiqiies associés à chaque mode de la machine pour lequel 

le t a ~ ~ v  de demande peut être satisfait et qii'il s'agit de maintenir lorsque possible. 

Dans le cas d'un horizon fini (commande transitoire), les seuils critiques existent 

toujours mais varient dans le temps, et de ce fait deviennent des coiirbes critiques, 

en général très difficiles à caractériser. Dans un effort de simplification, la com- 

mande transitoire optimale pour ateliers de fabrication mono-pièce est recherchée 

à l'intérieur de la classe (sous-optimale) des politiqites à seuils critiques invari- 

ants. Une équation de renouvellement est développée pour la fonctionnelle coût 

sur horizon hi sous une loi de commande arbitraire de type de seuil critique in- 

variant. Le noyau de l'équation de renouvellement correspond à une Fonction de 

densité de probabilité de premier temps de retour obtenue comme solution d'un 

système auxiliaire d'équations aux dérivées partielles (EDP). Le système auxiliaire 

d'EDP ainsi que l'équation de renouvellement sont ensuite conjointement utilisés 

pour générer récursivement les termes d'une série infinie correspondant à l'expansion 

de la transformée de Laplace (par rapport à la longueur d'horizon T) de la fonc- 

tionnelle coût. Les termes de l'expansion sont utilisés pour obtenir un approximant 

de Padé fournissant après inversion une très bonne approximation de la valeur de 



la fonctionnelle coût pour un choix donné de T et des seuils d'inventaires critiques. 

Ce schéma d'approximation est par la suite utilisé à l'intérieur d'un algorithme 

d'optimisation numérique à partir duquel les niveaux d'inventaires optimaux pour 

une longueur d'horizon donnée sont optimaux. La même technique d'optimisation 

peut être envisagée dans le contexte rnulti-pièce si les politiques de production sont 

de type seuils critiques constants avec découplage de la politique de production 

pour chaque type de pièce (utilisation d'hypercubes inscrits pour l'approximation 

de l'espace de capacité de production de Caramanis et Sharifnia). 

Dans la deuxième partie de la thèse, nous considérons le cas de systèmes de 

production à deux modes, mul ti-pièce. Bien que les poli tiques sous-opt imales de 

Caramanis et Sharifnia soient intéressantes ail niveau de la simplicité des calciils en 

cause, elles présentent le désavantage important que les seuls hypercubes souscrits 

dans l'espace de capacité permis sont ceux pour lesquels le niveau de production 

maximal pour chaque type de pièce est en moyenne suffisant pour répondre à la 

demande individuelle poiir ce type de pièce (demande "faisable"). 11 est également 

à noter que le caractère totalement découplé des poli tiques de production poiir 

chaque type de pièce fait en sorte que même l'utilisation du sous-espace de pro- 

duction réduit est sous-optimale. Une classe de politique de production basée sur 

des hypercubes inscrits dans l'espace de capacité est introduite. ces politiques dites 

politiqiies maximales simples à points critiques (politiques MSP), sont telles que 

les niveaux de production pour chaque type de pièce sont couplés, l'exigence de 

faisabilité pour chaque composante de l'hypercube inscrit est éliminée, et il n'y a 

jamais sous-utilisation de la capacité de production. En se fondant sur les tech- 

niques développées dans le première partie de la thèse, il est alors possible de mon- 

trer que pour un système avec p types de pièces, des fonctionnelles coûts additives 

pour chaque type de pièce, l'analyse de performance d'une politique hISP donnée 

se réduit à l'analyse de p machines (fictives) semi-markoviennes découplées. Les 

machines sont markovianisées moyennant une analyse de premier temps de passage 

ainsi que l'application d'une technique d'approximants de Padé. L'optimisation 

numérique sur la classe de politiques MSP indique que, du moins pour l'exemple 



numérique étudié, leur performance est éminemment comparable à celle de la com- 

mande optimale. 



ABSTRACT 

In this thesis are address the flow control problem in manufacturing systems. 

The thesis consists of two main parts respectively corresponding to finite horizon 

suboptimal control of single part manufacturing systems, and infinite horizon sub- 

optimal control of multi-port manufacturing systems. More specificall~ in the first 

part, Part prodiiction is considered over a h i t e  horizon in a single part multiple 

failure state maniifactiiring system. When the rate of demand for parts is constant. 

for Marko\*ian machine mode dynamics and for convex ninning cost functions asso- 

ciated with part inventories or backlogs, it is k n o m  that optimal part production 

policies are of the so-called hedging tj-pe. For the infinite horizon case, such policies 

are characterized by a set of constant critical machine mode dependent inventory 

levels that must be aimed a t  and maintained whenever possible. For the finite hori- 

zon (transient) case, the criticd levels still exist but they are now time-varying and 

in general very difficult to characterize. Thiis, in an attempt to render the problem 

tractable, transient prodiiction optimization is soiight within the (siiboptimal) dass 

of time-invariant hedging control policies. A renewal equation is developed for the 

cost functional mer  b i t e  horizon under an arbitrary time-invariant hedging control 

policy. The kernel of that renewal equation is a first return time probability density 

function nhich satisfies an aiunlliary system of Kolmogorov S p e  of partial differ- 

entiel eqiiations (PDE). The r e n e d  equation and the auxilliary PDE system are 

used to generate recursively the terms of an infinite series expansion of the Laplace 

transform (with respect to horizon length) of the resulting cost functional. Padé 

approximants to the resulting infinite series expansion yield a quite accumte ap- 

proximations of the cost fimetional in terms of T and the arbitrary hedging levels. 

This is subsequently w d  as part of an optimization scheme whereby hedging levels 

which are optimal for a given h i t e  horizon length are efkiently computed. The 

algorithms presented here can also be applied to the finite horizon optimization 

for multi-parts failure-prone manufacturnig systems provided that only the part- 



wise decoupled capacity set inscribed hypercube-based hedging control policies are 

considered (Caramanis and Sharifnia) . 

In the second part of the thesis, we consider the case of the two-state mdti-part 

manufacturing systems. The near optimal controllers of Caramanis and Sharifni a. 

while computationally attractive, suffer from the drawback that the production Ca- 

pacity set must be approxirnated via a very restricted set of inscribed hypercubes. 

namely those for which a componentwise feasibility reqiiirement is satisfied. Aso. 

due t o  the completely decoiipled nature of prodiict.ion along each component . even 

the utilization of the restricted capacity set is siiboptimal. A class of capacity set 

incribed hypercube policies called simple maximal hedging (SXIH) policies is intro- 

duced. In SMH policies production along the varioiis components of the capacity set 

are cotipled, the componentwise feasibility reqriirement is lifted, and there is no un- 

derutilization of production capacity if needed. Using the resuits of the first part of 

the thesis, in a p part types manufactunng system, for partwise additive cost func- 

tionals, it is s h o w  that performance evaliiation of a given SMH policy reduces to 

the analysis of p decoupled (ficti tious) semi-Mnrkovian machines. The machines are 

hlarkovianized via first passage-time analysis and a Padé approximants technique. 

Numerical optimization over the class of ShIH policies in a sample manufactur- 

ing systern indicate that their performance can corne close to that of the optimal 

cont rol. 
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CHAPITRE 1 

INTRODUCTION 

Dans un contexte de libéralisation des marchés, l'optimisation de tous les aspects 

du processus de fabrication devient un impératif pour les compagnies manufac- 

turières. L'objectif ultime est de demeurer compétitif au niveau de la qualité tout 

en répondant à la demande avec les coûts les plus bas possible dans un contexte de 

capacité de production restreinte. La robotisation et l'informatisation industrielles 

en général gagnent donc du terrain. À ce sujet, l'atelier de fabrication flexible con- 

st i tue le moyen technologique le plus avancé. Il s'agit cependant d'une technologie 

très coûteuse et dont il faut essayer d'assurer la rentabilité. 

L'objectif d'un atelier de fabrication flexible est de satisfaire, au coût le plus 

bas, les exigences d'une demande, qui peut varier dans le temps, tout en réduisant le 

niveau de surplus de production qui pourra être positif ou négatif. Un siirplus positif 

correspond à l'existence d'un inventaire et une demande satisfaite; par contre un 

surplus négatif reflète l'état d'un stock épuisé et d'une demande non respectée. Les 

différents problèmes qui surgissent lors du fonctionnement d'un atelier de fabrication 

flexible, incluent les décisions qui régissent la planification et l'ordonnancement 

de la production, l'injection et le chargement de la matière première ainsi que 

l'acheminement des pièces à l'intérieur de l'atelier. Dans ce qui suit nous passons 

en revue le segment de la littérature scientifique auquel se rattachent directement 

les travaux de recherche dans cette thèse. 

Olsder et Suri [4] sont les premiers à fomiler un modèle de contrôle stochas- 

tique basé sur les résultats de Rishel [21] concernant la théorie de contrôle des 

systèmes markoviens à sauts. En utilisant l'approche de la programmation dy- 

nami que, ils traitent le problème d'acheminement des tâches dans l'atelier comme 

un problème de commande optimale en temps minimal. La loi de commande qu'ils 



trouvent en utilisant un certain nombre d'hypothèses simplificatrices, est la so- 

lution d'un système complexe d'équations fonctionnelles intercouplées résultant 

du principe d'optimalité de Bellman. Ils mentionnent la difficulté d'obtenir des 

solutions analytiques et proposent d'autres approches approximatives essentieile- 

ment numériques. Toutefois, ils montrent que l'espace de production est divisé en 

plusieurs régions et la décision optimale est déterminée par la région où se situe le 

niveau d'inventaire global. 

Les caractéristiques qualitatives du contrôle optimal pour la minimisation 

du niveau d'inlrentaire ont été étudiées par Kimemia et Gershwin [î]. Dans (71, 

une décomposition hiérarchique spécifiquement conqtie pour pouvoir tenir compte 

de manière efficace du problème des pannes aléatoires de machines, permet 

d'approximer, à un certain niveau de décision, la d.ynamique du processus de pro- 

duction par un modèle Ruide (variables continues). Cette dynamique est ponctuée 

de sauts brusques et généralement aléatoires dans la capacité de production ou 

dans la demande. Ces sauts sont dus aux changements de l'état opérationnel de 

l'atelier (panne, arrêt d'entretien...). L'analyse fondée sur un tel modèle permet de 

conclure sous certaines circonstances que la politique de production optimale sur 

horizon infini se caractérise par des niveaux d'inventaire critiques. Chaque mode 

de l'atelier (panne partielle) faisable, c'est à dire un mode où on peut produire à 

un taux égal ou supérieur au taux de la demande, possède son propre niveau. La 

stratégie de production optimale consiste alors à s'organiser de sorte à atteindre le 

niveau critique associé au mode faisable actuel le plus rapidement possible et d'y 

demeurer tant que l'état de l'atelier le permet. Kimemia et  Gershwin mentionnent 

la difficulté d'obtenir une expression analytique exacte de la solution optimale. En 

effet, la solution exacte de ce problème de contrôle de la production exige la solution 

d'un système d'équations différentielles qui n'est possible que dans des cas simples 

scalaires (mono-pièce); ce n'est pas la situation pour les ateliers de fabrication flex- 

ibles qui sont en général multi-dimensionnels (multi-pièce). Pour contourner cette 

difficulté, Kimemia et Gershwin (71 proposent une heuristique qui permet de calculer 

des lois de contrôle sousoptirnales plus simples et  plus pratiques. 



Dans le cas mono-pièce, Akella et Kurnar [16] réussissent à trouver une ex- 

pression analytique pour le calcul du point d'inventaire optimal. Le système qu'iis 

considèrent est formé d'une machine à deux états, état opérationnel et état de 

panne respectivement, et  produit un seul type de pièces . La fonction de pénalité 

! (x ( t ) )  est linéaire par rapport au niveau d'inventaire x ( t )  considérée comme une 

variable continue. Akella et Kumar démontrent à partir d'une analyse de l'équation 

de Hamilton-Jacobi-Behan correspondante, que dans ce cas la politique optimale 

de contrôle satisfait la stratégie suivante: 

où z' représente le point d'inventaire optimal. Sous cette politique à point critique, 

le taux de production varie selon le lieu où l'état continu du système x ( t )  se trouve 

par rapport à 2'. L'objectif est de rejoindre ce point le plus rapidement possible 

en produisant à un t a u  maximal ou en arrêtant la production selon que x ( t )  < 2' 

ou x ( t )  > z' respectivement. Une fois ce point atteint ( i .e . ,x(t)  = z * ) ,  le système y 

reste tant que l'état discret le permet. Akella et Kumar montrent que la condition 

nécessaire à l'optimalité de cette politique est re!iée directement à la convexité de 

la fonction valeur par rapport à ses entrées. La convexité du coût instantané assure 

la convexité du coût résiduel. Cependant, même pour le cas le plus élémentaire 

d'un système à deux états, l'analyse de l'équation de la programmation dynamique 

s'avère compliquée. 

Partant de la constatation que I'analyse de l'équation de la programmation 

dynamique permet de conclure que la loi de commande optimale est une loi à 

seuil critique, Bielecki-Kumar transforment le problème de recherche de commande 

optimale sur horizon infini en un problème beaucoup plus simple d'optimisation 

paramétrique sur l'ensemble des lois à seuils critiques d'inventaires. Bielecki et . ' 

Kumar [27] initient une nouvelle approche qui se comportant quatre étapes: 

considérer l'ensemble des stratégies de commande à seuil critique tel que décrit 

par l'équation (1.1); 



0 choisir un niveau critique z arbitrairement (paramètre définissant de manière 

non équivoque la stratégie de production); 

calculer lorsqu'elles existent les fonctions de densi tés de probabilité station- 

naires décrivant les statistiques de x(t )  (le niveau du stock), sous l'action de 

la loi de commande à seuil critique ainsi paramétrisée; 

calculer le coût (indice de pedomance) en fonction de i ;  

optimiser le choix de a de manière à minimiser le coût. 

Rs reconsidèrent le problème traité dans [161, d'une machine à deux états. 

Seul le critère de minimisation a changé. En effet, au lieu d'utiliser comme critère 

d'optimisation l'intégrai d'un coût avec facteur d'escompte (exp( - p  t )  ) , ils utilisent 

cette fois-ci le critère du coût moyen par unité de temps sur un horizon infini. En 

utilisant les conditions d'optimalité données par des équations de la programmation 

dynamique, ils démontrent par procédure de vérification que la loi de production 

de type à seuils critiques est effectivement optimale. 

L'approche proposée par Bieiecki et Kumar s'avérait simple et prometteuse et 

devait devenir le point de départ de plusieurs autres travaux (Algoet [l], Caramanis 

et Sharihia 191, Sharifnia [25], etc.) Sharifnia [25] postule une structure à seuils 

critiques multiples de la loi optimale du problème mono-pièce avec machine à états 

multiples. Ainsi, l'espace de l'inventaire x ( t )  est divisé en plusieurs régions limitées 

par les seuils d'inventaire optimal dont le nombre est égal à celui des états faisables 

du système. Ces seuils sont classés en ordre décroissant (i.e.,zi > ;j si i < j). En 

faisant, l'équilibre du flux de probabilité passant à travers un élément d'espace de 

largeur At, Sharihia [25] montre que les fonctions de densi té de probabilité stntion- 

naires lorsqu'elles existent, reliées à chaque état de la chaîne de Markov, modélisant 

L'état discret du système, sont solutions d'équations différentielles linéaires couplées 

par rapport à la variable continue x ( t ) .  

Algoet [l] généralise l'approche de Bielecki et Kumar [27] ainsi que le 



développement présenté par Sharifnia [25] pour l'étude et l'analyse des systèmes 

de production multi-mode multi-pièce. En faisant, l'équilibre de flux de probabilité 

à l'intérieur d'un élément de volume il montre que la densité de probabilité station- 

naire du vecteur représentant conjointement le processus d'inventaire et l'état dis- 

cret caractérisant les différents modes de l'atelier satisfait une équation aux dérivées 

partielles. De plus, Algoet mentionne que la projection du vecteur d'inventaire sur 

un axe qrielconque possède aussi une densité de probabilité marginale qui satis- 

fait le même style de système d'équations aux dérivées partielles. Dans le cas oii 

les capacités de productions sur les différents ases (différents types de pièces) sont 

indépendantes le système d'équations aux dérivées partielles se réduit à un système 

différentiel ordinaire. 

Partant sur l'idée proposée à l'origine dans [7], Caramanis et Sharifnia 191 

proposent une approche sous-optimale de conception qui consiste à construire iule 

famille d'approximations de l'espace de controle par des hypercubes souscrits. La 

loi de production qu'ils associent aux hyperciibes souscrits, rend les dynamiques 

associées aux différents types de pièces zndépemiantes, ainsi un problème multi- 

dimensionnel de dimension p au départ est décomposé en p sous-problèmes scalaires 

indépendants. Cependant! tolite forme de dépendance entre les lois de production 

associées aux différents types de pièces ayant été éliminée, le système n'est plus en 

mesure de fonctionner à plein régime (capacité maximale), notamment lorsqu'un 

des inventaires atteint son point critique. 

Suite à ces travaux initiaux, les politiques à points critiques émergent donc 

comme étant les poli tiques optimales pour un horizon d'optimisation infini d'une 

fonctionnelle coût avec un coût instantané convexe. A partir de là, un nombre im- 

portant de travaux est développé autour des propriétés des politiques de production 

à seuils critiques particulièrement dans le cas des systèmes markoviens produisant 

un seul type de pièces. Liberopoulos et Hu [5], Sethi et Zhang [24] se sont intéressés 

à l'ordre qui peut exister entre les seuils critiques pour un système 8 plusieurs états 

produisant un seul type de pièces. Se basant sur les équations de Hamilton-Jacobi- 



Bellman, et pour les cas particuliers où la chaîne de Pvlarkov décrivant le mode de 

l'atelier constitue un processus de naissance et de mort, ils montrent que les seuils 

critiques respectent une certaine monotonicité (pliis la capacité de production dans 

un mode donné est importante, plus le seuil critique associé est faible). 

Dans le cas multi-pièce, Snvatsan et Dallery [ll] étendent les connaissances 

acquises pour le cas mono-pièce notamment en ce qui concerne l'analyse de sta- 

bilité et les conditions d'optimalité au cas à deux oii plusieurs types de pièces. La 

technique utilisée est une combinaison de comparaison et d'analyse de trajectoires 

générées par différentes politiques de production. Srivatsan et Dallery montrent qiie 

ce type d'analyse permet d'aboutir à une caractérisat.ion partielle des politiques de 

contrôle pour les systèmes à ~ ~ L L Y  ou plusietirs types de pièces. Une propriété qui se 

révélera importante pour nos travaux émerge de leur analyse, voulant que pour la 

classe de politiques à seuils critiques où le système produit tout le temps, si besoins 

est au t a u  maximal, indépendamment du mode où il est, le temps qiie met le 

niveau d'inventaire pour revenir au point critique global est le même quel que soit 

le chemin particulier emprunté dans l'espace d'inventaire. 

Pour des machines non markoviennes, Glasserman [14] étudie le problème 

des machines monepièce mui ti-mode , OU le mode est semi-markovien. Glasseman 

considère que tous les seuils critiques sont agrégés en un seul point et obtient des 

résultats analytiques directement utiles lorsqu'il existe un seul état de panne avec 

temps de séjour exponentiel. Les résultats fondés sttr un calcul de valeur propre 

maximale sont obtenus en exploitant le lien qui existe entre le processus d'inventaire 

et une marche aléatoire en temps continu dans un contexte semi-markovien. De 

plus, Glasserman présente, dans le cas de modes semi-markoviens quelconques, des 

seuils critiques asymptotiquement optimaux lorsque le coût pénalisant un inventaire 

négatif tend vers l'infini. 

D'autre part, Biémaud, Malhamé et Massoulié [13] étudient les critères 

d'ergodicité de la fonction coût pour une machine mono-pièce multi-mode et de 

dynamique quelconque, mais ergodique, lorsque la loi de production est de type 



seuils critiques. De plus, une technique de gradient stochastique, de même que 

des conditions garantissant la convergence de l'algorithme, sont développées pour 

l'optimisation par simulation des seuils critiques. E n h ,  il est à noter qu'ils 

présentent des conditions nécessaires et  suffisantes essentiellement identiques à celles 

de Bielecki et Kumar [27] (contexte markovien), pour l'optimaiité des politiques 

juste à temps (seuil critiques nul) pour le cas mono-pièce avec mode ergodique. 

La limitation majeure des travaux présentés précédemment est la nature 

restreinte des phénomènes qui y sont traités: les opérations et les pannes. Cn 

atelier de fabrication flexible présente un catalogiie d'événements plus riche inclii- 

ant des temps de reconfiguration non négligeables. la maintenance préventive. les 

manques éventuels de matières premières, les absences occasionnelles du person- 

nel ... Également, le niveaii du tampon n'est pas traité. Le modèle utilisé dans les 

travaux ci-dessus ne permet pas l'accumulation interne des pièces dont l'usinage est 

en cours. 

La considération de tous ou de certains de ces phénomènes représente un 

problème difficile voir analytiquement impossible à résoudre. Pour éviter ces dif- 

ficultés, des stratégies de nature heuristique sont alors mis de l'avant ( [33], (311, 

[35], [36]). Le système généralement étudié est iui atelier de fabrication composé 

d'une seule machine et produisant plusieurs types de pièces. Le temps de reconfi- 

guration peut être non nul et la demande pour les produits est stochastique. 

Une autre limitation de cette littérature vient du fait que l'on met énormément 

d'emphase sur la caractérisation de la solution optimale en régime stationnaire. 

Cependant, aucune caractérisation du temps de stabilisation ou de façon équivalente 

de la vitesse de convergence vers le régime stationnaire n'a été abordée. En effet, 

en pratique, la majorité des décisions dans un atelier de fabrication sont à moyen 

ou à court terme afin de permettre une adaptation rapide à une demande qui peut 

varier dans le temps. La détermination du temps de convergence vers le régime 

stationnaire peut alors nous informer sur la longueur d'horizon minimale à partir 

de laquelle il devient raisonnable d'utiliser la solution en régime permanent. En 



deçà de cette longueur d'horizon, la solution stationnaire n'est plus très fiable; or' 

il y a une absence quasi-totale de résultats concernant la commande sur horizon 

h i .  La raison sous-jacente à ce manque d'information est la difficulté maintes fois 

exprimée de traiter ces questions. 

A ce sujet les seuls travaw, à notre connaissance, qui ont constitué une 

première tentative sont ceux de Malhamé et Boukas 1191 ainsi que Zhang et Yin 

[isl 

blaihamé et  Boukas [19], présentent tme caractérisation de la d-mamique tran- 

sitoire des fonctions de densité de probabilité, décrivant l'évolution de la variable 

~ ( t ) .  De plus, Ils mettent en évidence le caractère de renouvellement de la du- 

namique de processus contrôlé. Les résultats obtenus permettent non seulement de 

caractériser le comportement transitoire e t  stationnaire des statistiques de proba- 

bilité rejoignant ainsi les travaux de Sharifnia et dlAlgoet, mais aussi de dériver 

plusieurs propriétés statistiques reliées au processus hybride [z(t), cr(t)l t  , telles que 

le temps de séjour dans une région quelconque, les premiers temps de passage 

etc. De plus dans [IO] I'ergodicité des politiques de commande à seuils critiques 

est étudiée pour les systèmes multi-mode produisant un seul type de pièce. Trois 

critères de vérification simples de l'ergoàicité du système sont aussi établis. 

Dans le cas d'un horizon fini, les niveaux critiques existent toujours mais varient 

dans le temps et sont en général difficiles à caractériser [15]. M n  de caractériser 

les seuils critiques sur horizon fini, Zhang et  Yin [15] ont cherché à résoudre les 

équations de la programmation dynamique qui apparaissent comme des conditions 

d'optimalité de telles politiques. Les point critiques d'inventaire deviennent variant 

dans le temps et  sont appelés courbes critiques. Zhang et Yin [15] présentent une 

solution analytique du problème de contrôle transitoire pour le cas d'une machine 

mono-pièce à deux états où l'état de panne constitue un état absorbant. Une 

variation du problème a été aussi traitée dans le cas d'une machine mono-pièce 

ayant une capacité constante et une demande markovienne à deux états dont l'un 

est absorbant avec valeur de demande nulle. 



Notre objectif dans cette thèse est de répondre à trois questions. Les deux 

premières concernent les ateliers mon+pièces, alors que la troisième concerne les 

ateliers midti-pièces. Les questions sont les suivantes: 

Quelle doit être la plus petite valeur de la longueur de l'horizon T à partir 

de laquelle on peut utiliser avec un certain degré de confiance la politique 

optimale stationnaire?. 

Pour la classe de politiques à seuils cri tiqiies invariants, comment peiit-on 

optimiser les seuils cri tiques d'inventaire sur iin horizon fini et  comment sont- 

ils affectés par la longueur de I'intendle d'optimisation?. 

Comment peut-on améliorer le contrôleur sous-optimal de Caramanis et Shar- 

ihin dans le cas d'un atelier de fabrication flexible produisant plusieurs types 

de pièces.? 

En effet, nous considérons pour les deux premières questions un atelier de fab- 

rication flexible multi-mode produisant im seul type de pièce et soiunis à la classe de 

politiques à seuils critiques invariants mais dépendants de la longueur de l'horizon. 

Nous montrons que la fonctionnelle coût obéit à une équation de renouvellement 

caractérisée par la fonction de densité de probabilité du premier temps de retour 

au seuil critique. De plus, un système auxiliaire d'équations différentielles permet 

d'obtenir récursivement les approximants de Padé pour la fonctionnelle coût en 

fonction des seuils critiques. Par la suite, une optimisation numérique est menée 

afin de déterminer les seuils optimaux. Notons qu'en utilisant le contrôleur sous- 

optimal de Caramanis et Sharifnia ces résultats peuvent être appliqués pour le cas 

des systèmes multi-mode multi-pièce puisque les lois de commande de Caramanis 

et Sharifnia sont découplées d'un type de pièces à l'autre. 

Pour la troisième question nous considérons un système produisant p types de 

pièces et pouvant être dans deux modes: opération normale et panne. L'analyse est 

confinée à la classé de politiques à seuils critiques invariants pour laquelle la capacité 



maximale de production de l'atelier est utilisée en autant qu'elle soit nécessaire 

(déficit par rapport aux seuils d'inventaires cri tiques). L'espace de production est 

alors divisé en piusieurs régions. Ces régions sont telles que le processus d'inventaire 

est contraint de visiter les seuils critiques de divers types de pièces dans un ordre 

h e .  Les résultats développés dans la première partie ainsi que les techniques de 

rnarkovianisation par les approximants de Padé ont rendu la caractérisation du coût 

et des points critiques d'inventaire possible, 

Ainsi cette thèse comporte les chapitres suivants. Au chapitre II, nous 

définissons l'atelier de fabrication flexible, ses avantages ainsi qiie les aléas qui 

viennent compliquer l'optimisation de son fonctionnement. Sous présentons la 

structure hiérarchique d'analyse des ateliers de fabrication développée par Kimemia 

et Gershwin [7]. Enfin tme description du contrôleur sous-optimal proposé par 

Caramanis et Sharihia [9] est présentée. Elle sera iitile au chapitre V. Au chapitre 

III, nous rapportons les résultats les plus importants de [19] et [IO] qui ont servi aux 

développement des résultats du chapitre N. En effet, ces deux articles constituent 

la base immédiate de notre contribution. Aux chapitres IV et V, nous présentons 

l'essentiel de notre contribution. Chaque chapitre commence par reprendre les 

résultats importants et donne un a p e r p  des hypothèses de base et des concepts 

importants. L'article intitulé "Padé Approximants for the Transient Optirnization 

of Hedging Control Policies in Manufacturing " constitue la référence principale du 

chapitre IV. Notons cependant, que l'analyse des singularités pour caractériser la 

vitesse de convergence vers le régime stationnaire présentée à la fin de ce chapitre 

ne figure pas dans l'article et constitue un développement à part. L'article de 

conférence intitulé "Optimizing the Transient Behavior of Hedging Control Policies 

in Manufacturing Systems" présenté à l'annexe III de ce chapitre donne un exemple 

d'utilisation de l'analyse des singularités pour l'optimisation des seuils critiques sur 

horizon h i .  L'article intitulé "A Tractable Class of Maximal Hedging Policies in 

Multi-Part hianufacturing Systems " constitue la référence principale du chapitre 

V. Dans le chapitre VI nous présentons nos conclusions et proposons des extensions 

possibles à nos recherches. 



CHAPITRE II 

NOTIONS SUR LES ATELIERS DE 
FABRICATION FLEXIBLES 

2.1 Définition d'un atelier de fabrication flexible 

Un atelier de fabrication flexible est constitué de pliisieiirs stations de travail per- 

mettant plusieurs types d'opérations. Un mécanisme de transport assure la li- 

aison entre ces stations. L'atelier produit une famille de pièces avec des car- 

actéristiques d'usinage présentant de grandes similarités ou qui encore constituent 

les composantes d'un même produit final ime fois assemblées. Les pièces sont intro- 

duites dans le système à une station de chargement et le quittent à une station de 

déchargement. Au cours de son parcours, une pièce subit une séquence d'opérations 

bien définie. La flexibilité de l'atelier réside dans le fait qiie les opérations peuvent 

être effectuées sur une séquence arbitraire de pièces, awc des temps de réajustement 

et de réglage relativement courts d'un type de pièce à l'autre. De plus, une ou 

plusieurs stations peuvent être choisies pour chaque type d'opération. Ceci fait en 

sorte que la production est continue même si une des stations de travail est hors ser- 

vice à cause d'une panne ou pour fin de maintenance, et que le type de production 

peut être modifié au besoin relativement rapidement [22]. 

Le temps requis pour établir la configuration nécessaire pour une famille de 

pièces est de plus en plus négligeable grâce à des machines à commande numérique. 

Ces types de machines possèdent un magasin d'outils nécessaires aux différentes 

opérations qu'elles permettent de réaliser et sont presque autonomes. De plus, 

la robotisation étroitement couplée à un développement informatique sans cesse 

croissant fournissent une plus grande efficacité et rapidité lors de l'établissement 

de la configuration et le calibrage de départ. Dans la majorité des cas, un logiciel 

détermine la séquence des opérations ainsi que les ajustements nécessaires d'une 



opération à une autre ou d'un type de pièce à l'autre. Le changement dans les 

lignes du code ou du logiciel peut se faire de faqon instantanée comparativement au 

temps nécessaire pour effectuer les différentes opérations. 

La diversité des domaines d'application de cette technologie, qui autrefois était 

réservée aux très grandes compagnies, intéresse de nos jours de pIus en plus de 

moyennes et petites entreprises. La capacité qu'un atelier flexible fournit de pro- 

duire simultanément une famille de pièces, de réduire le stock de produits, d'éliminer 

la congestion et  de diminuer la retard, procure donc ime rapidité de réponse à une 

variation de la demande tant au niveau de la quantité que de la qualité. Cette ca- 

pacité de réponse à une variation de la demande représente un atout très important 

pour une compagnie cherchant à demeurer compétitive dans un marché libre. 

L'atelier de fabrication flexible représente par ailleurs un investissement élevé 

et  par conséquent il est vital, lorsque l'investissement a été fait, de pouvoir utiliser 

efficacement cet te technologie. 

Pour atteindre cet objectif de rentabilité, une modélisation et une analyse du 

fonctionnement des ateliers devraient être effectitées. Cependant, la majorité des 

systèmes de fabrication sont des systèmes à grande échelle et complexes. De plus 

ces systèmes sont sujets à des événements qui peuvent être de nature stochastiques 

ou déterministes. Parmi, ces événements on peut citer ( (221, chap.9): 

pannes ou réparations des machines 

modifications subites des plans de production 

0 manque imprévu de matière première 

Une reconnaissance rapide des événements cités plus hauts ainsi qu'une poli- 

tique d'action en conséquence représentent des exigences incontournables. Vu la 

diversité des problèmes, l'obtention de politiques optimales basées sur un seul 

modèle mathématique est un objectif virtuel à la fois théoriquement et  conceptuelle- 

ment (241. Une technique de décomposition hiérarchique s'impose ainsi comme une 



des rares voies possibles (Kimernia et Gershwin [7], Sethi et Zhang [21]). L'idée est 

de réduire de facon exacte ou approximative le système global en des sous-systèmes 

qui peuvent être traités plus facilement. La solution des ces sous-problèmes permet 

la construction d'une solution globale. Lors du fonctionnement d'un atelier flexi- 

ble les problèmes qui intéressent les responsables de la production sont surtout les 

problèmes 

de chargement (injection des pièces dans le système), 

d'acheminement (détermination de la séquence des machines que la pièce doit 

visiter pour effectuer ses tâches). 

de planification et d'ordonnancement (détermination des taux de production). 

Plusieiirs critères sont utilisés pour déterminer les performances d'une poli tique 

particulière. Parmi ces critères, nous troiivons: 

la minimisation du coût d'installation, 

la minimisation du temps total requis polir finir toutes les opérations, 

la minimisation du nombre d'opérations dans le système, 

le jumelage de la production et de la livraison (Just-in-Time), 

la minimisation du temps où les machines sont libres, 

la minimisation des coûts de production et d'entreposage. 

Les objectifs ultimement visés sont entre autres de: 

satisfaire une demande souvent incertaine. 

minimiser les coûts globaux pour rester concurrentiel. 



produire avec les compromis idéaux de qualité, coût et quantité pour conserver 

une bonne part du marché. 

Dans la section suivante nous d o n s  illustrer la décomposition hiérarchique pro- 

posée par Kimemia et  Gershwin [7]. Cette décomposition représente les différents 

niveaux de contrôle de la politique de production spécifiquemmt conçue pour 

contrôler l'explosion de complexité provenant de la prise en compte des pannes 

dans l'atelier. 

2.1.1 Décomposition hiérarchique 

Dans [7], Kimemia and Gershwin proposent une décomposition hiérarchique com- 

posée de trois niveaux. Cette décomposition exploite la capacité disponible en anti- 

cipant dans un sens statistique les pannes, les réparations des stations de travail ainsi 

qu'un changement dans les exigences de la demande. Chaque niveaii de hiérarchie 

est caractérisé par la longueur de l'horizon de planification ainsi que le type de 

données requis pour le processus de prise de décisions. Les plus hauts niveau 

de la hiérarchie possèdent typiquement des horizons longs et utilisent des données 

fortement agrégées. Cependant, les niveaux les plus bas possèdent des horizons 

de planification plus courts et utilisent des informations plus détaillées. La nature 

des aléas sur chaque niveau peut également différer. Une politique de production 

adéquate est celle qui doit anticiper ces événements ainsi que les changements dans 

la demande. 

Les politiques d'acheminement et  d'ordonnancement sont basées s u  un ensem- 

ble d'hypothèses sur les échelles de temps de différentes classes d'événements qui 

surviennent durant le fonctionnement d'un système de fabrication flexible (71: 

le temps le plus court est celui des ajustements (reconfiguration) requis lors 

d'un changement d'opération ou lors du traitement d'une nouvelle pièce. Ce 

temps est supposé négligeable comparativement au temps de fonctionnement; 



O la deuxième plus grande période de temps est celle consacrée à une opération 

moyenne; 

ensuite vient les valeurs moyennes des périodes de fonctionnement ou des 

périodes de pannes; 

enfui le temps le plus long est l'horizon sur lequel on doit effectuer le controle. 

De plus [22]: 

les tampons internes sont considérés de longiieiir négligeable. Par conséquent 

le temps requis pour remplir les tampons est très petit lorsque comparé a 

la moyenne des périodes de pannes et  la moyenne des périodes de fonction- 

nement. Cependant ils sont assez grands pour contenir les pièces qui atten- 

dent pour subir une nouvelle opération. Il y a donc de manière générale une 

synchronisation des taux de production des divers éléments d'une chaîne de 

production. 

le temps de transit des pièces dans l'atelier est négligeable par rapport à la 

moyenne des périodes de panne et des périodes de fonctionnement. 

Ces hypothèses sur les valeurs relatives des temps entre les événements 

permettent la décomposition hiérarchique suivante: 

Le niveau de contrôle de flux (planification et ordonnancement): 

Ce niveau détermine les taux de production moyens à court terme de chaque 

type de pièce. Les taux doivent être déterminés conjointement car les pièces se 

partagent le temps disponible à la station de travail. En plus, la demande, la 

capacité du système de transport, la limite de stockage et la fiabilité des ressources 

doivent être prises en considération. Le mélange de pièces au cours de la production 

doit être ajusté continuellement de manière à tenir compte des pannes aléatoires 

des stations de travail. 



Le niveau de contrôle d'acheminement: 

Une pièce entrant dans le système peut suivre un ou plusieurs chemins dans 

le but de subir toutes les opérations requises. La proportion des pièces qui 

doivent suivre chaque chemin disponible, est choisie par le niveau de contrôle 

d'acheminement. L'objectif est de respecter le taux dicté par le contrdeur de fli~u 

et de minimiser la congestion et par conséquent, le retard à travers le système. Ce 

dernier peut être modélisé comme un système de files d'attentes en considérant les 

stations comme des noeiids de services. Le taux d'amvée des pièces est déterminé 

par le niveau de contrôle de flux. 

Le niveau de contrôle de séquence (injection des pièces): 

C'est le niveau de contrôle le plus bas. À ce niveaii se situent les algorithmes 

permettant de régler Le rythme d'introduction des pièces à usiner dans le système, 

ainsi que la supervision des opérations des stations de travail. L'objectif est de 

maintenir les t a i~u  de flux choisis aux niveaux précédents. 

- calcul des paramètres 
(nécessaires à déterminer 
les taux de production ) 

Prograrmwaiorrs des taux moyens 
de productiori. (tenir compte de 

-détaYls d'opérdions machines 
-gestion des tampons 

(Mdèie fluide) 

Figure 2.1: Décomposition hiérarchique pour répondre aux pannes 
aléatoires telle que suggérée par Kimemia et Gershwin 

Dans la présente thèse nous mettons l'accent particulièrement sur le niveau de 

contrôle de flux. La formulation du problème est présentée dans la section s i  ,vante. 



2.2 Problème de contrôle de flux 

2.2.1 Formulation du problème 

Le problème du contrôle de flux de production d'un atelier de fabrication flexible a 

été formulé et partiellement traité à l'origine par Kimemia et Gershwin [7]. 

Soit un atelier de fabrication flexible pouvant produire p types de pièces et 

dont les machines peuvent être dans plusieurs modes de pannes. L'état global de 

l'atelier est représenté par une variable discrète notée a( t )  qui correspond à une 

chaîne de Markov à temps continu pouvant prendre valeur à l'intérieur d'lm espace 

d'état fini. Cette chaîne de Markov est irréductible, homogène et caractérisée par 
n 

la matrice de transition A = [A,] , (Aii = - Xij ), où n représente les différents 
i f i  

modes du système et les Xij, qui représentent les taux de transitions du mode i vers 

le mode j, sont tels que 

P [a(t + dt) = jl a(t) = i] = A, d t  + 0 [dt] 

P [a(t +dt) = il ~ ( t )  = il = 1 +Ai dt + ~ [ d t ]  

où lim O [dt] = O. Le système doit satisfaire une demande par unité de temps connue 
dt+O 

d(t) E W. Soit x ( t )  E IRP le vecteur représentant le surplus qui est la différence 

cumulative entre la production et la demande pour tous les types de pièces. Les 

coordonnées de ~ ( t ) ,  xi@), i = 1, . . . ,p,  peuvent être soit positives soit négatives. Des 

valeurs positives de xi@) correspondent à un inventaire de pièces en stock tandis 

que xi(t) négatif reflète le cas où le stock est épuisé avec un déficit de production par 

rapport à la demande. Les taux de production u,(x, t )  E IRP doivent être choisis 

pour chaque mode et pour chaque niveau x, dans un espace convexe $2,. Cet espace 

représente l'ensemble des commandes admissibles e t  définit également les limites de 

capacité disponible quand le système est en mode a. Pour une politique particulière 

u,(s, t ) ,  la dynamique de la variable z(t) est dictée par a(t). Le taux de changement 

net de x( t )  à l'instant t quand a(t) = a et x ( t )  = x est caractérisé par l'équation 



différentielle suivante: 

q = u&) - d ( t ) ,  

avec x(0)  = xo et a(0) = ao. 

La précision du modèle est adéquate pour un horizon de temps long par rapport au 

temps nécessaire pour produire une pièce individiielle. Idéalement les pièces sont 

produites sur demande conservant ainsi le niveau d'inventaire égal à zéro (Just-in- 

Time). 

Supposons à présent que l'atelier est composé de Ar stations de travail ayant 

chacune I, machines identiques avec rn = 1, ..., hl. L'état ~ ( t )  est alors un hl-uplet 

de variables entières, cr,(t), où pour un m donné, a&) est égale au nombre de 

machines opérationnelles à la station m. Dans ces conditions l'espace de contrôle 

admissible quand le système est à l'état n est donné par: 

L'ensemble de tous les vecteurs u., (x, t )  E IRP 
tout 1 < i 5 A{, 1 5 j 5 p 
5 %(t) 
I O  

où Tij représente le temps requis par la machine i, i = 1, ..., A f ,  pour effectuer toutes 

les opérations sur la pièce , j = 1, ...,p. Dû a u  différents sauts aléatoires de rr(t) ,  

la capacité du système n'est pas un espace fixe mais plutôt un ensemble aléatoire 

variant dans le temps. 

Ceci nous amène à définir deux types d'états. Un état est dit faisable si le 

vecteur de demande d ( t )  s'inscrit à l'intérieur de l'espace R, et non faisable dans 

le cas contraire [22]. 

Le modèle tel que décrit est un modèle fluide à structure variable puisque 

~ ( t )  est une variable continue dont la dynamique change selon l'état discret o(t). 

Le système est complètement caractérisé par un état hybride [x(t), a(t)lt . De plus 

pour un état a(t)  connu, la dynamique de x( t )  est connue et déterministe. Ainsi, 

( ~ ( t ) , a ( t ) )  fait également partie de l'ensemble des processus déterministes par 

morceaux [31]. 



mode faisable modes non faisables 
f 

Figure 2.2: Exemple de variation de l'espace de capacité en fonction 
des différents modes de l'atelier 

A présent, le problème de contrôle de flux peut être formulé. Ainsi, étant donné 

un atelier de fabrication flexible, soit [zr(to), a(to)lt l'état hybride initial, l'objectif 

est de déterminer une politique de production à l'intérieur de [to, T] solution du 

problème de minimisation donné [22], (121 par: 

J(x, a ,  tO) = min E x(to) = x, O&) = a u 1 
sujet aux contraintes suivantes: 

("=u(t)-d(t) .  a v e c r ( t o ) = q a ( ~ ) = a ,  (2.3~) 

Le coût instantané !(x) pénalise le contrôleur pour son échec à satisfaire la demande 

ou pour avoir créé un inventaire suite à un excès de production. t(x) est une 

fonction qui peut s'écrire comme la somme des coûts instantanés pénalisant le niveau 

d'inventaire de chaque type de pièces respectivement . Ceci implique que: 



où tj(x) est une fonction scalaire tel que 

lim t,(x) = a, 
z-w 

mintj(x) = O, 
lj(0) = O. 

De plus (voir Sethi et Zhang [21] chap. 3), lj(x) est une fonction non négative. 

convexe tel qu' il existe des constantes positives plc,  pzt, m, kit 2 O, kzc 2 O, de 

sorte que 

La classe de politique de production à considérer est constittiée de fonctions en 

boucle fermée "feedback" u,(x, t )  E na. La caractérisation de la politique optimale 

du problème (2.2) a été l'objet de plusieiirs travaux. La technique communément 

utilisée exploite les conditions d'optimalités données par les équations de Hamilton- 

Jacobi-Bellman (équations de la programmation dynamique). Les détails de cet te 

caractérisation feront l'objet de la prochaine sous section. 

2.2.2 Caractérisation de la politique optimale et notion de point cri- 
tique d'inventaire (Hedging point) 

Pour une politique particulière u,(x, t) ,  définissons le tout résiduel comme suit: 

J, (x, a, t) représente l'espérance de la pénalité totale subie par le contrôleur 

pour le temps résiduel, sachant que z(t) = z, et a ( t )  = a à l'instant t. Rishel [21], 

Tsitsikilis [8], Sethi and Zhang [24], Akella et Kurnar [16], Bieledri et Kumar [27] 

etc. montrent sous des conditions et des hypothèses généralement différentes que 

dans le cas du problème (2.2), la politique optimale est caractérisée par une équation 



similaire à l'équation de Hamilton-Jacobi-Bellman. Soit ui(x, t) la politique opti- 

male si elle existe, alors la fonction coût optimale Juo (x, a, t )  satisfait l'équation 

aux dérivées partielles suivante: 

où les différentes dérivées de Ju; (x, a, t) sont évaluées à x(t ) , a (t) et  t . L'équation 

(2.9) fournit des conditions suffisantes pour identifier simultanément, dans le cas 

des ateliers de fabrication flexibles, une loi optimale en boucle fermée et le coüt 

résiduel optimal (théorème de vérification). Sa principale difficulté est qu'elle est 

non linéaire e t  généralement de dimension élevée. Par conséquent. les chances 

de pouvoir obtenir une solution analytique (sauf pour certains cas très particuliers) 

sont très minces, alors que la résolution niunériqiie s'avère être très lourde au niveau 

des calculs même pour des cas à faible dimension [9], [22]. Sa valeur cependant 

réside dans le fait qu'elle représente un moyen (unique en dehors du principe du 

maximum stochastique) pour déterminer les caractéristiques structurelles générales 

de la politique optimale uL(x,t) et du coiit résiduel, sans chercher à obtenir ces 

derniers directement à partir de l'équation. Ces informations constituent ensui te la 

base de construction d'une heuristique sous-optimale. Sachant que u appartient au 

polyèdre SI, (contraintes linéaires) et étant donné qu'à la sede place où elle apparaît 

explicitement dans (2.9) elle est sous forme linéaire, le problème d'optimisation en 

(2.9) revient au problème de programmation linéaire décrit comme suit [7]: 

sujet aux contraintes linéaires (2.3b) (2.11) 

Pour un z donné, le gradient 2 joue le rôle de vecteur coût attribué au taux 

de production des types de pièces dans le choix de la loi de contrôle. Vu les car- 

actéristiques des programmes linéaires, une politique optimale de (2.10) prendra en 

général sa valeur à 19un des sommets du polyèdre S2, lorsque 2 "ste. Par contre 

dans les cas particuliers où soit que '3 n',ste pas, soit qu'il est perpendiculaire 

aux faces R, ou soit qu'il est nulle, une solution unique pour (2.10) n'existera pas. 



Le cas traité dans Ia littérature est celui ou 7' -, oo, c'est à dire l'horizon 

d'optimisation est infini. Dans ce cas, la fonction coîit optimale JuA (x(t), a( t ) ,  L )  si 

eue existe, est indépendante explicitement de t et peut être écrite JuA ( x ( t ) ,  a( t ) ,  t) = 

J&(t), a@)). A cause des propriétés d'insensibilité des solutions des programmes 

linéaires à des k~riations bornées et continues des coefficients coûts (les coordonnées 
83,. 

de &), la solution optimale est égale à un sommet de R, et demeure constante 

pour un ensemble de valeurs de x dans l'espace de surplus. Elle se situera ensuite 

à un autre sommet lorsque l'on quitte cet ensemble. Quand les coefficients coiit 

prennent la valeur causant le saut, toute la partie entre l'ancien sommet. et le niveau 

sommet constitue une solution optimale. Par conséquent, pour chaque Ctat Q de 

la machine. une politiqiie optimale divise l'espace en des régions dans lesqiielles les 

taux de production sont 

plus, à cause de (2.1) et 

(2.12) représente la 

constants (voir Rishel [21], Kimemia et Gershwin [7]). De 

pour d(t) constant égal à d, on peut écrire que 

dérivée totale du coût résiduel par rapport au temps sur 

la trajectoire de x ( t ) .  Si le système ne peut satisfaire la demande, la production 

sera de manière à minimiser le taux de croissance de JUg(x(t)) a(t)). Dans le cas 

oii le système est dans un mode faisable (u, > d ) !  la politique de production doit 

choisir le plus haut taux de u, de manière à forcer J,; (x(t), a(t))  à décroître jusqu'à 

atteindre le point 2: où il est minimum. L'existence de ce point est intimement liée à 

la convexité de Ju; ( x ( t ) ,  cr(t)) par rapport à x (voir Sethi e t  Zhang [21], chap.3) elle 

même liée à la convexité de la fonction coût par unité de temps t(x) par rapport à x. 

Par conséquent pour chaque état faisable a, il existera un point critique z i .  Le point 

z: est alors appelé point critique d'inventaire optimal (seuil critique) et la politique 

en boucle fermée u,(x, t) est appelée politique à point critiques d'inventaire. 

IE concept de seuils critiques est important. En effet, il est la conséquence 

immédiate de l'incertitude qui régit le fonctionnement de l'atelier à cause des 

différents types de pannes partielles dans lesquels il pourrait se trouver. Le seuil cn- 

tique représente donc un niveau de réserve minimal qu'il faut bâtir pour se protéger 



des pannes éventuelles à un coût moyen minimal sur l'horizon considéré. 

Figure 2.3: Division de l'espace de production en différentes régions à 
taux de production constants. 

Dans ce qui suit, nous abordons spécifiquement le cas des ateliers de fabrication 

flexibles produisant un seul type de pièces. Notre objectif est de donner quelques 

résultats qui ont permis récement  de caractériser les seuils critiques. De plus, nous 

présenterons les cas classiques étudiés dans la littérature (spécifiquement Akeila et 

Kumar [16], Bielecki e t  Kumar [27], Sharifnia [25])  . 

2.3 Optimisation des seuils critiques: cas mono-pièce 

2.3.1 Cas d'un coût actualisé 

[16] est le premier travail où une analyse rigoureuse du problème de contrôle de flux 

a été faite. Le système considéré par Ake11a et  Kumar 1161 est formé de machines 

mono-pièce pouvant se trouver dans l'un de deux modes: le mode opérationnel 1 

ou le mode panne 2. La fonction de pénalité t(z(t)) est une fonction suilaire et 

linéaire par rapport au niveau d'inventaire x( t )  et est donnée par: 



La fonction coût est considérée sur un horizon infini et est décrite par l'équation 

suivante: 
J(xo, crO) = min E {JF exp(-pt) f(z(t)dllx(O),a(O) } 

u(.) (2.14) 

sujet aux contraintes: u(t)  5 ul ,, , u(t) 2 0 

où x+(t) = max(x(t), O) et x- ( t )  = m a ( - x ( t ) ,  O) ,  et avec c+ , c- des constantes 

positives. Les variables, u, ( t  ) et d ( t )  sont également considérées constantes. De 

plus l'espace de production R, est équivalent à l'intendle [O, u1 mm]. Pour sa part 

ul,, représente le taux maximal de la capacité de prodtiction de la machine et est 

strictement supérieur à la demande d (ul ,, > d ) .  Akella et Kurnar démontrent 

dans ce cas la convexité de la fonction valeur opt,imale. alors que la politique opti- 

male de contrôle satisfait la stratégie suivante: 

ulmrrx si x(t) < Y ,  
d si x ( t )  = z* ,  
O si x ( t )  > z*.  

z* représente le point critique d'inventaire optimal. Sous cette politique, le taux 

de production varie selon la position de x ( t )  par rapport à z* .  L'objectif est de 

rejoindre ce point le plus rapidement possible soit en produisant à un taux maximal 

ou en arrêtant la production selon les cas respectifs où x(t) < z* ou x(t) > z*.  

Une fois ce point atteint (i.e.,x(t) = ;'), le système y reste tant que l'état discret 

le permet. Akella et Kumar montrent que la condition nécessaire à l'optimalité de 

cette politique est reliée directement à la convexité et à la dérivabilité de la fonction 

valeur par rapport à ses entrées. La convexité de l'intégrant dans (2.14) assure la 

convexité du coût résiduel. De plus, la variable de contrôle il&) doit appartenir 

à un ensemble de politiques admissibles. Pour être considérées admissibles, ces 

politiques doivent vérifier certaines conditions suffisantes [16] définies par: 

Définition 2.1 Une fonction mesumble ?r : R -t [O,  uimu] est appelé une politique 

admissible si pour tout couple ( r , x o )  E m2 avec T 3 O ,  il &te une  fonction 



y, ( t;  T ,  xo) qui satis/ail: 

y,(t; r, x0) est absolument continue en t 
( t ;  T ,  XO) = xo + J: (X (yr (s; r7 zo)) - à) ds pour 1 2 r 

y, (t;  r, xo) est continue e n  ( t ;  T ,  xO) 
y, (.) est unique 

L'adrnissi bilité de u, ( t ) ,  garantit donc l'existence d'une solution unique de 

l'équation x(t)  = uQ(t) - d. La condition d'optimalité décrite par l'équation de la 

programmat ion d-ynamique s'écrit: 

dans le cas d'un horizon infini 

Le contrôle optimal prend ces valeurs sur les sommets de 12, (contraintes 

linéaires) selon le signe de y. Sous une politique de production dérivable par 

morceaux de type (2.15)) z' est donné par 

où dans (2.17) orni, est la seille valeiir propre négative de la matrice 

o ù & =  - A - .  ,, , i =  1'2, représentent les taux de transition de la chaine de Markov 

caractérisant la dynamique de l'état discret de la machine. 

Cependant, même pour u n  cas aussi élémentaire dans l'échelle de complexité, 

l'analyse s'avère compliquée. 

2.3.2 Calcul des densités de probabilités stationnaires d'un système à 
deux états soumis à une politique à seuils critiques 

Bielecki et Kumar [27] inaugurent une nouvelle approche qui consiste à calculer la 

fonction de densité de probabilité stationnaire du surplus x ( t )  lorsqu'elle existe. Ils 



considèrent le cas de la machine à deux états traitée par [16]. Seul le critère de 

minimisation a changé. En effet, au lieu d'un cout avec un facteur d'actualisation 

(exp(-p t )) , ils résolvent le problème d'optimisation d'un coût moyen par uni té de 

temps sur un horizon infhi. 

T f i - l  J(x(O), cr(0)) = min Lm E {I, 1z(0), a(0)d t )  
uf R, T-Cu 

En plus de satisfaire les conditions suffisantes d'ndmissi bili té (2.16): la polit iqiie 

de production doit garantir la stabilité du  système. Cette stabilité est satisfaite si 
E, 2' lim 9 = O. Une condition suffisante d'optimalité d'une loi admissible ainsi 

T-Co 

que d'existence d'une fonction coût moyen optimale (théorème de vérification) est 

dérivée dans [27]: 

Théorème 2.1 Supposons que T' est m e  politique admissible et stable alors il 

existe des jonclions conlinCrnent diflérentiables W(x, i) et une constante J* telles 

que: 

dllr(z.a) 
[T' (x, i) - d] - Ai [ZV(x, i) - W(z, 1 - i )]  + € ( x )  - J9 = O 

1 pour i = 0 , l  et pour tout x, 

~ L C ' ( Z  il - min [ u - d ] ~ ,  - dW(r.i) 
[Z*(X, i) - d]  

O<ulul mer  

( IW(x,i)l 5 klz2 + k2, pour kt,k2 donnés. 

Alors 

1 
lim LE, [iT t (z( t ) )  dt] = J* < lim ini - [E. [ q X ( t ) )  dt]  , 

T-00 T T-00 T 

pour toute politique admissible et stable ir et pour toutes conditions initiales x(0).  

La démonstration de ce théorème fait intervenir l'ergodicité du système afm de 

justifier I'existence et la valeur de J'. L'équation de (2.17) représente la condition 

suffisante d'op timalité similaire à I'équat ion de Hamilton- Jacobi-Behan. 

La procédure suivie par Bieledci et Kumar [27] est intéressante et  se compose 

de quatre étapes: 



choisir la politique de contrôle dans un ensemble de politiques sous la 

forme 

( ul , si x(t) < z ,  a(1) = 1 (opérationnel), 
d si z(t) = 2, a(t)  = 1 , 

si x( t )  > z ,  a(t)  = 1 , 
si a(t) = 2 (panne). 

Il est montré que ces politiques vérifient les conditions d'admissibilité et 

de stabilité. Le seul paramètre inconnu est alors z qu'il faut déterminer 

pour optimiser au sein de la classe de politiques à seuil cri tique (2.20). 

calculer les fonctions de densité de probabilité stationnaires en fonction 

du paramètre z .  

calculer le coiit tel que décrit par (2.18). 

minimiser le coiit par rapport à la variable z .  

En suivant cette procédure, Bielecki et Kurnar [27] arrivent à démontrer 

l'existence de ;* et par voie de vérification (théorème 2.1) que (2.20) est bien la 

politique de contrôle optimale. L'expression de ;' est la suivante: 

Le critère de performance J' est donné par: 

2.3.2.1 Extension de la méthode de Bielecki-Kumar 

L'approche proposée par Bielecki et Kumar s'avère simple et prometteuse. En effet, 

Sharihia 1251, Caramanis et Sharihia [9], Algoet [l] ont tous utilisé cette approche 

mais de manières différentes. En particulier Sharihia 1253 divise l'espace de la 

variable z(t) en plusieurs régions limitées par les seuils optimaux d'inventaire dont 



le nombre est égal à celui des états faisables du système. Ces seuils sont classés en 

ordre décroissant (i.e., > 2, si i < j). En faisant, l'équilibre du flux de probabilité 

passant à travers un élément d'espace de largeur AI, Sharihia [25] montre que 

les fonctions de densité de probabilité reliées à chaqiie état de la chaine de Markov 

sont solutions d'équations aux dérivées partielles par rapport à la variable continue 

x ( t ) .  Sharihia utilise les hypothèses suivantes: 

- x ( t )  est un processus ergodique 

* la variable discrète ~ ( t )  qui représente les différents modes de l'atelier 

est rine chaine de hiarkov irrédiictible 

* u.(t)  est telle que x ( t )  est stationnaire 

- ~ ( 1 )  est stationnaire si le système est strictement faisable à long terme 

La condition de faisabilité (2.23) signifie que si on produit au taux m a -  

imal dans chaqiie état du système, l'inventaire x ( t )  possède à long terme 

une tendance positive. La moyenne des vitesses de variation de x ( t )  dans 

la région (-CO, 0) est toujours positive. Ceci fait que le point d'inventaire 

optimal limitant cette région est récurrent. Cependant, puisque les seuils 

critiques sont compris dans un espace hi tous les seuils critiques vont 

être récurrents et ainsi z ( t )  va être stationnaire. 

Jusqu'à présent les travaux décrits concernaient les ateliers de fabrication flex- 

ibles produisant un seul type de pièce. cependant, en général, un des points forts 

des ateliers de fabrication flexible est précisément cette possibilité de travailler avec 

plusieurs pièces simultanément. Cependant, la difficulté de traiter directement ce 

genre de situation multi-dimensionnelle en tenant compte des pannes dans l'atelier 

a été maintes fois soulignée (41, [7], [16]. En se basant sur une idée originelle- 

ment formulée par Kimernia et Gershwin (71, Caramanis et Sharifnia [9] proposent 

une approche approximative qui vise à décomposer le problème multi-dimensionnel 



d'origine en plusieurs sous-problèmes scalaires indépendants. Cette approche est 

présentée dans la prochaine section. 

2.4 Optimisation des seuils critiques: cas multi-pièce 

Caramanis and Sharihia [9] décrivent une méthode approximative qui permet de 

réduire le problème de contrôle de flux dans le cas des systèmes multi-pièce en un 

ensemble de sous-problèmes découplés correspondant à des problèmes de contrôle de 

flux pour systèmes mono-pièce. Ils utilisent à cette fin m e  décomposition de l'espace 

de prodiict ion en pliisieiirs régions orthogonales oii la capacité de production pour 

une pièce indi\-idiielle est comprise entre O et lin taitx maximal de production. 

L'affectation de la capacité de production est faite de fqon  indépendante et sans 

tenir compte de la position des niveaux d'inventaires des autres pièces par rapport à 

leurs seuils critiques respectifs. Ceci est équivalent à remplacer l'espace de capacité 

de production stochastique Ra par des hypercubes souscrits. Soit 8 2 ,  la frontière 

de Ra et soit c un point décrit par (ui, mrul uLÎ mu, . .. , max2 .. -) appartenant à 

80, et représentant le sommet d'un hypercube souscrit. Étant donné que cette 

décomposition résulte en une dynamique indépendante pour chaque pièce, un choix 

spécifique de c appartenant à la frontière de R, n'est permis que si la contrainte 

d'ergodici té (E [u& ,,] > d i )  est satisfaite pour totis les types de pièces où uk,, est 

le taux maximal de production de la pièce i quand la machine est au mode a et pour 

un choix particulier de c E a, . Ainsi, même si ce contrôleur sous-optimal présente 

au niveau calcul un grand intérêt, de par sa simplicité, il correspond néanmoins à 

d'importantes limitations dans le choix de la capacité de production, principalement 

à cause de la condition d'ergodicité exigée sur chaque type de pièce. En effet, 

l'espace de capacité résultant est un sous espace restreint de a, tel qu'illustré à la 

figure 2.1 suivante pour le cas d'un système produisant deux types de pièces. 

De plus, le découplage complet des dynamiques des inventaires correspond à 

une sous utilisation de la capacité de production quand au moins une des pièces a 

atteint son point critique. En effet, à ce moment le point de production se situe à 



2.5 
espaœ de capaabe assoa6 au mode 1 

espaœ de capaciie moyen 

Figure 2.4: Les désavantages du contrôleur sous-optimal suggéré par 
Caramanis et Sharifnia 

l'intérieur de l'espace R, e t  non plus sur la frontière aR, (production maximale). 

Il y a donc là matière à amélioration. 

Dons ce que nous venons de voir, nous observons que la théorie développée 

ne correspond pas toujours aux exigences réelles dans les ateliers de fabrication 

flexible. En effet, la majorité des décisions et de la planification de la production se 

fait à court ou i moyen terme or les lois de commande sont construites sur la base 

d'un horizon inh i .  Dans la sous-section suivante nous abordons les raisons pour 

lesquelles les résultats sur horizon infini ne répondent pas à toutes les attentes de 

rentabilité et d'efficacité recherchées. 

2.5 Importance de l'analyse transitoire 

Dans de nombreuses situations de contrôle reliées aux systèmes de fabrication flex- 

ibles, le décideur doit travailler sur horizon h i .  En effet, visant un objectif à court 



ou à moyen terme, le décideur est plus intéressé à trouver une stratégie optimale ou 

sous-optimale pour une durée finie que pour celle d'im horizon lointain, la solution 

sur horizon infini constituant une limite asymptotique de la solution sur horizon 

fini. 

De plus, forts de l'interprétation donnée au point critique comme étant une 

réserve biitie pour se protéger des interruptions de production dues aux pannes 5 

un coût minimal en moyenne, nous pouvons nous attendre à ce que ce point \varie 

selon l'horizon puisque la probabilité de tomber en panne augmente avec la longiieiir 

de l'horizon et par conséquent la proportion moyenne de temps passé dans l'état de 

panne croit ail moins initialement, sachant qu'ail départ l'atelier est opérationnel. 

Notons égaiement qu'aucune détermination, même par voie d'estimation? n'a 

été faite pour déterminer l'intervalle de temps à partir duquel la solution sur hori- 

zon infini peut être tolérée (sans impliquer une perte d'optimalité importante). 

L'utilisation de la solution sur horizon infini risque en effet de nous éloigner de 

l'objectif de rentabilité de l'investissement dans les ateliers de fabrication flexibles 

surtout, si des modifications fréquentes font en sorte que le système n'atteint jamais 

un régime stationnaire. 

De plus les hypothèses sur un temps de reconfiguration négligeable dépendent 

des types d'opérations à effectuer et de l'intervention humaine. En général un coût 

doit être associé à cette période représentant d'une part la perte de production, 

d'autre part le coût attribué au personnel qui établit la configuration. Le travail de 

Zhang [29] constitue entre autres un début d'analyse de cette dasse de problème 

(Set-ups) . 

En résumé il est naturel de s'attendre à ce que les seuils critiques correspon- 

dant à la politique de production optimale varient selon la longueur de l'horizon 

considéré. Il serait important de caractériser, au moins partiellement, cette varia- 

tion. D'autre part, une estimation du temps de convergence du coût sous l'action de 

la politique optimale sur horizon infmi vers le régime stationnaire, si nous insistons 



à utiliser cette même politique pour un horizon hi, est primordiale. 

2.6 Conclusion 

Dans ce chapitre nous avons présenté les différentes notions et définitions relatives 

à l'atelier de fabrication flexible. Cette technologie représente de part sa flexibilité 

un outil de plus en plus attrayant et  indispensable polir demeurer compétitif sur un 

marché libre. Cependant, elle représente aussi im investissement important qu'il 

faut rentabiliser par l'utilisation efficace des ressources disponibles. Le but est de 

satisfaire une demande pouvant en général varier dans le temps et ce. à LUI coût bas 

et à l'intérieur de certaines contraintes de qualité. Cette tâche est rendue difficile 

par la présence d'aléas, en particulier les pannes de machines. Kimemia et Gershwin 

[7] proposent un contrôleiir à structure hiérarchique où le contrôle de flux représente 

une phase importante et concerne la détermination des taux de production moyen à 

court terme en anticipant dans un sens statistique les différents modes du système 

et en respectant la capacité disponible dans chaque mode i. L'indice de performance 

est un coût infligé au contrôleur pour son échec à satisfaire la demande ou pour avoir 

produit avec excès. La solution optimale de ce problème de minimisation dans le cas 

mono-pièce, révèle l'existence d'un point critique associé à chaque mode faisable. 

La politique optimale serait d'atteindre ce point rapidement et d'y demeurer tant 

que possible. La politique prend alors le nom de politique à points critiques. 

Cependant la majorité des travaux qui ont été faits pour la caractérisation de 

cette solution, ont été réalisés en considérant un horizon de planification infini. Des 

questions importantes sur la caractérisation du régime transitoire n'ont pas trouvé 

de réponse. Dans le prochain chapitre nous allons présenter deux travaux récents 

sur cette question. Les travaux de Malhamé et bukas [19], et  de hlalhamé [IO] 

constituent pour cette thèse un point de départ essentiel. C'est pour cette raison 

que nous avons choisi de leur consacrer un chapitre à part. 



CHAPITRE III 

3.1 Hypothèses de base et formulation du problème 

Soit wi système man~ifacturier produisant un seid type de produit et pouvant 

être dans LUI certain nombre de modes décrits par une variable aléatoire discrète 

~ ( t )  évoluant selon une chaîne de bIarkov irrédiicti ble caractérisée par la mat rice 

d'intensité A. Le système doit satisfaire un ta ix  demande par unité de temps d 

donné. A chaque instant t ,  x ( t )  est une vanable aléatoire représentant le niveau de 

surplus. Le taux de production u,(x) doit être sélectionné pour chaque état discret 

a du système et pour chaque valeur d'inventaire x, sur un polyèdre convexe 0,. 

L'ensemble Ra représente l'ensemble de contrôles admissibles et stables qui inclut 

la limite de capacité du système quand il est dans l'état a. Le taux de changement 

l ( t )  à l'instant t ,  quand a(t)  = a et ~ j t )  = x, est donné par: 

L'objectif est de trouver un taux de production uk(x) E R, pour chaque mode du 

système et pour chaque valeur du niveau d'inventaire x ,  de manière à minimiser le 

coût moyen par unité de temps, avec l ( x )  convexe positive, et e(0) = 0: 

Hypothèses: 

x(t) est prise comme une variable scalaire continue. 

R, est un segment positif de l'axe réel borné par le taux de production 

maximale à l'état a, donc 0, = [O uo mu]. 



J ( x ,  a) est convexe 

Vu les résultats de Bieledti et Kumar [27], Sethi et Zhang [21]. la politique 

optimale est de type à points critiques. Considérons donc le système (3.1) sous 

l'ensemble de politiques de production à points critiques (Hedging point policies). 

Soit: 

f ,(x,  t )  : la fonction de densité de probabilité hybride associée 
à l'état hybride du processus de LIarkov [ x ( t ) ,  n(l)]'  

et 

P,(t) : la masse de probabilité que x ( t )  = , et ~ ( t )  = a 
pour CY = 1, ..,, n 

Les seuils ii sont constants et ordonnés dans l'espace du surpliis x ( t )  en ordre 

décroissant ci > q > . . . > z, et sont associés avec les états faisables conven- 

ablement indexés de i = 1,. . . ,m. Les états non faisables sont indexés à partir de 

m + 1, . . . , n. Définissons aussi les régions R, = { X ~ Z ~ + ~  < ~ ( t )  = x < r i }  et où 

R, = {XI& < x ( t )  = x < m} ainsi que R, = { X I  - 00 < x ( t )  = z < zm). Pour un 

état a donné, le taux de production maximale est constant à l'intérieur des régions 

R, et est noté uh,. Le taux de variation de l'inventaire x(t) est noté v:, quand 

a(t) = a et x ( t )  E &, v i  = uh,, - d. Sous ces considérations, v i  est toujours 

positif indépendant de i pour tout CI 5 i et v6 = -d pour tout a > i (Fig2.1) 

En utilisant les équations d'équilibre des courants de Aux de probabilité dans 

un élément A z  et pour un intervalle de temps At, Malharné et Boukas démontrent 

le théorème suivant [17]: 

Théorème 3.1 Le veeteur des fonctions de densité de probabilité hybrides 

L(z, t )  = [fi(=, t )  f&, t )  . . . f,(z, t)lT évolue selon le système d'équations aux 

dérivées partielles suivant: 



Figure 3.1: Représentation géométrique des poli tiques à points cri- 
tiques pour un système ayant n états dont m sont faisables 

où = ddig [vil.  Au niveau des seuils critiques ri, z2, . . . . ;, el o ù  %+!  = -m. 

les conditions frontières s'écfivent comme suit: 

de plus 

Notons qu'en supposant l'existence d'un régime stationnaire, = O et  

dp2(r' = O quand t -. oo, le système d'équations aux dérivées partielles se réduit 

au système d'équations différentielles en x présenté par Sharihia [25]. 

Interprétation du théorème Ce système d'équations aux dérivées partielles 

représente les équations de Kolmogorov d'un système à états hybrides. Il décrit la 



dynamique et la propagation des probabilités à l'intérieur de l'espace du processus 

d'inventaire z. Les échanges entre les densités de probabilité à l'intérieur de cet 

espace sont assurés par la matrice de transition A. C'est un système conservatetir. 

En effet, In probabilité totale donnée par la somme des aires sous les fonctions de 

densité de probabilité plus la somme des masses de probabilité aux seuils critiques 

est toujours égale à 1. La masse de probabilité notée par Pz, ( t )  , i = 1, .. . , ml esprime 

la possibilité que la trajectoire du processus d'inventaire séjourne un temps non nul 

au point ;. Si nous interprétons v i ( t )  fi(xl t )  comme LLII courant de probabilité à 

une position x donnée, alors (3.4a) exprime qiie les coiirants de probabilités sont 

généralement discontinus au niveau du point critiqiie associé ail mode i f j. Le 

niveau de discontinuité est égal à AG Pz,@) qui est aussi la probabilité de quitter r, 

dans le mode j. L'équation (3.4b) est la contre partie de (3.4a). Elle met en relief 

le fait que le taux de variation de la masse de probabilité à ;. est égal à un courant 

positif venant des régions autour de zi grire ailx densités de probabilité associées 

au mode i, moins le taux avec lequel une machine déjà à ti dans le mode i quitte ce 

mode et contribue à soutenir les courants de probabilités associés aux autres modes 

autoiir de 4. Cette échange au nimau des frontières et la propagation à Ilintérietir 

de l'espace du processus d'inventaire x ( t )  font en sorte qu'il n'y a attcune perte de 

probabilité. 

En notant que l'état x ( t )  ne peut évoluer que d'une région {q < x < 4 + 1 }  

et {Z = G}, à une région {zj < x < ~ j + ~ }  OU x = { x  = zj}, j = i f 1, Malhamé 

et Boukas définissent un nouveau processus ponctuel marqué "Marked renewal pro- 

cess", P(t)  [26], où les événements sont associés avec chaque transition de ~ ( t )  

dans ces régions disjointes. Les nouveaux états du processus sont: 

j(') : ~ ( t )  entre {z = zj) à l'état a = j à l'instant de transition 

j(') : z(t) entre {ri+, < z < Zj) à l'état a = 1 à l'instant de transition 

j(') : ~ ( t )  entre { z ~ + ~  < x < z j )  à l'état a = i à l'instant de transition 



j(") : ~ ( t )  entre < z < z j )  à i'état a = n à l'instant de transition 

où j = 1, . . . ,m. Le nouveau processus Y( t )  est constant par morceaux. Il constitue 

un processus de renouvellement markovien avec matrice d'intensité de transitions 

Q = [qij(t)]. Le processus Y ( t )  ne diange d'état qu'après avoir atteint une des 

frontières limitant la région Rjl j = 1, . . . , m. L'espace d'état de Y (t ) est composé 

de m (n + 1) états. En numérotant, ces événements j(') par un entier k où k = 1 

pour l'événement 1(*), k .= 2 pour l'événement 1(') etc ..., l'espace d'état de Y (t) 

sera formé par S = {1,2, . . . , m (n + 1)). Ces événements constituent des instants 

Soit P = [p i j ]  = [ t-w lim q i j ( t ) ]  = matrice de probabilité de de renouvellement. 

temps 

Figure 3.2: Exemple de réalisation des événements j(') 

1 temps 

Figure 3.3: Réalisation correspondante du processus de renouvellement 
markovien Y (t) 

transition de la chaîne de Markov discrète emboîtée associée à Y ( t )  et soit ;;, tels 

que 1 Xj = 1 et 
j €  S 



L'existence et  I'unici té du régime statique s t a t i o ~ a i r e  repose sur le théorème suiv- 

ant prouvé par exemple dans Çinlar [28] : 

Théorème 3.2 Soit le processus de renouvellement markouien Y ( t )  irréductible, 

récurent et apéhudique avec r(k)  moyenne du temps de séjour dans l'état k, finie 

pour tout k E S, S étant l'espace d'état fini. Alors pour un i E S 

lim P[Y( t )  =jlY(O)] = TW rj 
t-oo Ck ~ ( i )  ri ' 

Les propositions suivantes sont démontrées dans [17]. 

Proposition 3.1 En vue de  gamntir l'ergodicité d u  processus de renouvellement 

markovien Y(t), il est sufiant de montrer que la chatne de hfarkoz~ discrète 

emboîtée assoczée à Y ( t )  est irréductible et que tous les temps de séjour dans la 

chaâne sont finis. 

De plus, si la chaine emboîtée est apériodique, toutes les valeurs propres de P 

excepté une, appartiennent à un cercle de rayon strictement inférieur à 1. Le nombre 

de transitions, requises pour la convergence au régime stationnaire. est donné par 

une limite supérieure finie NT dictée par la valeur propre de P ayant le plus grand 

module strictement inférieur à 1. 

Proposition 3.2 S i  la matrice P camctérisanl les tmrwitions de la chaîne 

de Markov emboîtée associée à un processus de renouoelleme7il markouien est 

irréductible, apériodique, alors il est posszble de dériver une borne supérieure A+ 
sur le nombre de tmnsitions requises avant de converger vers le régrne pemanenl.  

Cette borne est mmct&.sée par le module de la valeur pmpre ayanl le plus grund 

module sthctement inférieur à 1. 

En se fondant sur la proposition 3.2, Mnlhnmé e t  Boiikns [17] proposent un 

critère d'évaluation d'une borne supérieure sur le temps moyen de convergence du 

processus stochastique du surplus vers le régime stationnaire: 



Proposition 3.3 le temps moyen de f i  tmnsitions dZL pmcessu de re- 

nouvellement markouien possède une borne moyenne supén'eum donnée par 

NT rnax(q , T*, . .. , r k  , . . . ) , avec k E S et où les a son1 strpposés /ini.s. 

Le calcul des temps de séjour ainsi que les probabilités de transitions des 

événements partant d'un point autre que les seuils z+, peut se faire en utilisant la 

transformée de Laplace [17] du système d'équations aux dérivées partielles données 

par le théorème 3.1. Le calcul peut être long et fastidieux. Malhamé [IO] propose 

alors une autre méthode pour le calcul de la matrice de probabilité de transition de 

la chaine discrète associée à Y ( t ) ,  ainsi que les moyennes de temps de séjour dans 

chaque état appartenant à S. Le calcul de ces statistiques est basé sur la résolution 

d'un système d'équations différentielles linéaires couplées. 

Remarque sur Le temps de convergence vers le régime stationnaire. 

Notons que la borne du temps de convergence vers le régime stationnaire donnée 

par la proposition précédente est en faite une estimation basée sur les moyennes 

des temps de séjour et par ce fait ne peut être une borne supérieure absolue. La 

variance des temps de séjour est alors cruciale pour avoir une estimation plus serrée 

et donc un degré de confiance plus élevé. En effet si la variance des temps de séjours 

est élevée (grandes dispersion dans les statistiques), cette borne aura peut de signi- 

fication pratique. De plus cette borne exprime en fait la vitesse de convergence des 

statistiques de probabilités du processus hybride [z(t ) , a@)]' e t  non de la fonction- 

nelle coût calculée le long d'une réalisation particulière et qui peut avoir un temps 

de convergence plus long. 

3.1.1 Critère d'ergodicité 

Dans (101 pour la première fois, une preuve dans un cadre théorique général du 

critère d'ergodicité est donnée. Le théorème suivant est établi dans [IO]: 



Théorème 3.3 Pour le système (3.1) soumis à la classe de politiques de production 

à points mtiques, les afimationî  suivantes sont équivalent es: 

1. les conditions de la proposition 3.1 sont satisfaites; 

2. le nombre de valeurs propres de A' V;' avec une partie réelle positive est 

exactement n - m. 

Sous I'hypothèse de valeurs propres distinctes de la matrice A' VA ' y la condition 

2) du théorème 3.3 est équivalente à deux autres conditions. L'une d'elles représente 

la condition de faisabilité à long terme proposée par Sharifnia (2.23). En effet, soit 

pl,  /12 . . . A, les valeurs propres de At V; l ,  Malhamé [IO] démontre le théorème 

suivant: 

Théorème 3.4 Supposons que la malrice At Vi l  possède des valeurs propres dts- 

tinctes, alors les a m a t i o n s  suivantes sonl équivalenles: 

1. At V;' possède exactement (n  - m) valeurs propres positives. 

alors d,, > O 

3. Soit 5 = [al i12 . . . T,,]' 1 'unique vecteur de probabilité slalionnaire associé a la 

chaîne de Markou, cont inae et irréductible, représentant 1 'étal d e  la machine. 
m 

alors CzR=, Ri vi > O 1 ri ûi > d , (La demande est faisable a Long terme). 
a= 1 

Dans la section suivante, nous donnerons un exemple de calcul d'une borne 

supérieure du temps moyen de convergence du cout vers son régime statistique 

stationnaire lorsque la loi à seuil critique optimale sur horizon infini est appliquée. 



3.2 Exemple d'application 

Nous avons choisi l'exemple présenté dans [25], afin de vérifier et d'appliquer la 

théorie présentée précédemment [20]. Il s'agit d'un système pouvant être dans trois 

modes de fonctionnement différents et caractérisé par: 

une matrice de taux de transitions: 

un ensemble de taux de production maximaux pour chaque mode. 

La demande par unité de temps est constante. 

Le coùt instantané est mesuré par: 

C+S s i z Z 0  
-c-x sinon ' 

oii c+ et c- sont des constantes réelles, connues et positives 

Par conséquent, les états 1 et 2 (% > d ,  i = 1,2)  sont faisables tandis que l'état 

3 ne l'est pas. Les régions de l'espace de x ( t )  sont données par: 

Pour A = zl - q, les fonctions de densité de probabilité stationnaires dérivées par 

Sharihia [25] sont données par: 



Pour une telle politique, le coût moyen par unité de temps à long terme: 

En optimisant la relation (3.10) par rapport aux paramètres 21 et 22, Sharifnia 

obtient le système d'équations suivant permettant de calciiler les valeurs optimales 

de 21 et de 22: 

Le système d'équations aiLu dérivées partielles (3.3) s'écrit: 

Les conditions frontières correspondantes sont: 

f(::,t) = O, 



La résolution de ce système d'équations aux dérivées partielles à été faite 

numériquement par la méthode de Lax-Wendroff à deux étapes. Les résultats de 

simulation, pour la solution en régime stationnaire, sont présentés à la figure (3.1). 

Figure 3.4: Solution en régime stationnaire du système d'équations 
aux dérivées partielles décrivant les fonctions de densités de probabilite 
(théorèmes 3.1) 

Notons que ces résultats vérifient les équations (3.8,3.9) avec une précision de 2%. 

Calcul des moments et du temps de convergence vers le régime sta- 

t ionnaire 

Le processus de renouvellement markovien est composé de six états, soit 1('), 



1(l), 1(2)t 1(3)t 2(O) et 2(3). Iks expressions analytiques des probabilités de transition 

de Ia chaîne de Markov emboîtée associée et fondée sur un calcul de densité de 

probabilité de premier temps de passage, sont données dans [18] par: 

où @(A, s) = exp(-V1(s I - At)A),  1 étant la matrice identité. Pour zl = t; = 

1.1758 et tz = 2; = 0.8265, la matrice de probabilité de transitions P: 



Les moyennes du temps de séjour sont données par: 

La borne m 

est donnée par: 

axirnale du temps de convergence moyen vers le régime stationnaire 

T- = N rnaz(mi) = 74 unités de temps.. 

Observons que cette borne correspond à une erreur relative de 2% dans le coût 

moyen par rapport au coiit moyen stationnaire (Fig.3.5) 

I 1 

fenip= 
Figure 3.5: Dynamique de Pz, (t) illustrant la borne maximale moyenne 
du temps de convergence vers le régime stationnaire 

3.3 Conclusion 

Nous avons passé en revue dans ce chapitre les résultats dans [17] et [IO]. Ces 

derniers travaux ont constitué une base essentielle pour nos recherches. Le premier 

critère d'ergodicité dans le théorème 3.4 nous sera utile pour le développement de 

conditions frontières simples à gérer dans le cas d'un système multi-mode. De plus, 



pour la première fois à notre connaissance une mise en évidence et une analyse de la 

structure de renouvellement du  processus de surplus contrôlés par lois de commande 

à points critiques ont été effectuées. Ceci a permis, de construire une chaîne de 

Markov emboîtée dont le calcul exact de la matrice de transition a rendu possible 

une estimation d'une bome supérieure du temps moyen de convergence des coût 

vers le régime stationnaire. Cet te borne supérieure possède le désavantage d'et re 

uniquement une bome sur la moyenne du temps de convergence et pourrait perdre 

son intérêt si la variance du temps de convergence est élevée. De pluso elle représente 

la vitesse de convergence des statistiques du processus hybride [z(t ) , a(t )]' et non 

de la fonctionnelle coitt calculée le long d'une réalisation et qui aiira en général un 

temps de convergence plus long. 

Dans le prochain chapitre nous allons présenter les résultats constituant notre 

première contribution où nous nous intéressons à l'optimisation des politiques à 

points critiques sur horizon h i ,  et  l'estimation du temps de convergence vers le 

régime stationnaire de ia fonctionnelle coiit. 



CHAPITRE IV 

UTILISATION DES APPROXIMANTS DE 
PADÉ POUR L'ANALYSE TRANSITOIRE 

Ce chapitre est consacré à la planification sur horizon h i  de la production d'un 

atelier de fabrication mono-pièce. L'importance de cette planification qui peut être 

à court ou à moyen terme émerge d'un besoin réel. En effet, dans diverses ap- 

plications industrielles, plusieurs problèmes d'optimisation du fonctionnement des 

ateliers de fabrication sont des problèmes sur un horizon hi. Souvent, pour un ob- 

jectif à moyen ou à court terme le responsable de la gestion, soucieux de s'adapter 

rapidement à l'évolution du marché, est plus intéressé à trouver des stratégies op- 

timales ou sous-optimales pour une durée finie que celle d'un Futur éloigné. Deux 

questions (non indépendantes) se posent alors: 

Étant donné la disponibilité de solutions analytiques optimales (mono-pièce) 

ou sous-optimales (mdti-pièce) sur horizon hi, quelle doit être la plus petite 

valeur de la longueur de l'horizon T à partir de laquelle on peut utiliser sans 

trop de pertes d'optimalité la politique correspondant à l'horizon infini?. 

Pour la classe de politiques de contrôle à points critiques invariants sur un hori- 

zon h i ,  comment calculer les seuils optimaux et de quelle manière dépendent- 

ils de la longueur de l'intervalle d'optimisation? . 

Dans [17], Malhamé et Boukas ont apporté une réponse partielle à la première 

question. Nous avons présenté les résultats correspondant au chapitre III. Dans ce 

chapitre, nous apporterons des méthodes plus précises de calcul de durée des tran- 

sitoires. Ainsi, nous développons d'abord des résultats pour la pluparts originaux 

permettant l'estimation de la fonctionnelle coût et par suite son optimisation sur 

un horizon h i .  L'apport constitue un raffinement et une précision supplémentaire 



importante par rapport à l'analyse en régime stationnaire telle que présentée par 

[l], (251 et [27]. De plus, l'analyse transitoire est enrichie par une étude des sin- 

gulan'lés. Le but de cette étude est de mieux caractériser la vitesse avec laquelle le 

système atteint son régime stationnaire sous l'action de politiques à points critiques 

invariants. 

L'article intitulé "Padé Approximants for the Transient Optimization of Hedg- 

ing Control Policies in Manufacturing" mis en annexe constitue le corps de ce 

chapitre. 

4.1 Formulation du problème 

Nous considérons un atelier de fabrication flexible potivant être dans n différents 

modes de fonctionnement. Ces différents modes sont représentés par une chaîne de 

Markov irréductible et à états continus a(t). La matrice de transition de a(t)  est 

une matrice constante A = [A,] (avec Ai = - 5 A,). L'atelier produit un seul type 
a= 1 

de pièce afin de satisfaire une demande constante de taux d. Le niveau d'inventaire 

de pièces au temps t est modélisé par une variable contintte x(t). Pour chaque mode 

a, x(t) évolue selon l'équation dynamique donnée par: 

où u, est le taux de production quand l'atelier est en mode a. La valeur de u, 

appartient à un espace convexe fl, considéré dans le cas présent comme étant 

l'intervalle [O, u,,,] . u,, est le taux de production maximal permis selon la 

capacité disponible quand l'atelier est au mode a. On suppose que parmi les n 

différents modes, il existe m modes faisables (tl,, > d ) .  Ces modes seront indexés 

de 1, ..., m, quant aux autres modes ils seront indexés de m + 1, ... , n. Un coût 

convexe t(x) pénalise le niveau d'inventaire (négatif ou positif). L'objectif est de 

déterminer une politique de production en boucle fermée qui minimise le coût sur 

horizon fini suivant: 

,(.O, ,) = . [bT l [ X ) d t  ] 
ZOtQO 

(4-2) 



où T représente la longueur de I'horizon et E [.I,,~,] est l'opérateur d'espérance 

conditionnelle à l'état hybride initiale [z(O) , a(0)lt = [xo, aolt . Rappelons que dans 

le chapitre précédent on a vu que, lorsque l'horizon est fini [15]: 

la politique optimale demeure de type seuils cri tiques. 

ces seuils varient en fonction du temps et constitue plutôt des courbes cri- 

tiques. 

une caractérisation analytique de la politique optimale est jusqu'à nouvel 

ordre impossible. 

Pour contourner ces difficultés d'ordre analytique, les recherches seront con- 

finées à la classe (sousoptimale) de politiques à points nitiques iiu~ariants. 

La justification de ce choix se résume dans les trois raisons suivantes: 

0 cet te classe inclut asymptotiquement la classe optimale exacte quand 7' co; 

un point critique constant peut être vu comme approximativement équivalent 

à une moyenne sur un horizon T d'un point critique variant dans le temps; 

L'implantation de la loi de contrôle en atelier demeure simple. 

Sous ces politiques, il est alors possible d'utiliser certains parmi les résultats de 

Malhamé et Boukas [19] rapportés au chapitre III, pour caractériser le transitoire. 

Dans la section suivante nous présentons une méthode de calcul des fonctions de 

densi té de premier temps de passage (ou de retour) qiii se révélera très utile dans 

le développement de nos résultats. 



4.2 Méthode des courants de probabilité et calcul des fonctions de den- 
sité du premier temps de retour 

Dans [IO], Malhamé montre comment dans le cas des processus de Markov à tra- 

jectoires continues, les équations de Kolmogorov peuvent être utilisées pour calculer 

les densités de premier temps de passage. Le principe est le suivant: 

Un processus de Markov continu ne peut atteindre une Frontière donnée à 

l'instant t que s'il est dans son voisinage immédiat à l'instant t -dt ,  dt  infinitésimal. 

Avant qu'il atteigne cette frontière et qu'il ne soit alors arrêté, le processus ne peut 

"connaître" son existence et continue donc à satisfaire les équations de Kolmogorov 

ordinaire. Une fois la frontière atteinte le processus doit être éliminé (puisqu'il s'agit 

d'un calcul de premier temps de passage) . Mathématiqiiement, ceci revient à in- 

troduire à la frontière d'intérêt une nouvelle condition qui assure que les courants 

de probabilités de retour émanant de cette frontière soient mis à zéro. Ainsi la 

frontière est dite absorbante. Le système n'est plus conservateur et présente des 

p d e s  de probuûilités. De plus, si la probabilité que le système atteigne la frontière 

éventuellement est égale à 1, la probabilité totale résidiielle à l'intérieur du système 

quand T -+ ca est égale à zéro. Puisque, les premiers passages par la frontière 

d'intérêt ne peuvent être possibles qu'à partir de son voisinage immédiat, la prob- 

abilité que ie processus traverse la frontière entre t et t + dt ,  notée g ( t )  d t ,  pour 

tout t > O et  dt infinitésimal, g ( t )  étant la densité de probabilité du premier temps 

de passage à la frontière et à l'instant t ,  est donnée par la quantité de probabilité 

s'échappant à travers la frontière autour de t. Ceci n'est rien d'autre que le courant 

de prubabilité net à la frontière multiplié par dt. Étant donné que le courant de 

probabilité est éliminé à la frontière absorbante nous concluons que g( t )  courant 

de probabilité s'échappant de la frontière. Cette analyse prend le nom de la méthode 

des coumnts de probabilité. 

Si l'on désire à présent calculer la densité de probabilité du premier temps de 

retour du surplus x ( t )  à un seuil critique zi. i donné, et dans le mode i (nous nous 

référons à un tel événement comme un événement critique de type i), le principe 



décrit précédemment dicte une modification des conditions frontières à s. faut que 

chaque trajectoire qui atteint ce y en mode a = i, soit éliminée. En d'autres termes, 

une condition absorbante doit être instaurée à et elle ne peut être active que si la 

partie discrète de l'état hybride est i. Ceci est équivalent à affirmer que la condition 

frontière doit inclure /i(z:, t) et fi(<, t). En reconsidérant (3.4b) ainsi que son 

sens physique dans le chapitre précédent, la quantité vj f i (< ,  t )  - vi-' fi(%', t )  est 

précisément la probabilité de retour totale à la frontière v à l'état i. La condition 

d'absorption requise est réalisée si ce courant de probabilité de retour est éliminé. 

Ainsi, pour un i particulier, (3.5b) doit être écrite cette fois-ci: 

La fonction de densité de probabilité gii(t) à l'instant t est simplement le taux 

auquel !a probabilité s'échappe à la frontière absorbante. Ceci nous amène à con- 

clure que gii(t) est égale à la probabilité totale vj fi(;:, t )  - vi-' Ji($' t)  qui est 

éliminée. Nous avons donc le lemme suivant: 

Lemme 4.1 La jonction de densité de pmbabililé d u  temps entre les événements 

critiques de type i * ,  gigi* ( l )  pour i* = 1, . . . , ml peut être obtenue du système 

d'équations a w  dhivées partielles avec les conditions frontières (3.3), (3.4a) and 

(3.4bJ. excepté que pour i = i', la condition jmn.tière (3.4bj doit être écrite: 

Les condilions initiales sont: 

Pz,. (O) = 1: 
fi(x,O)=O i . VZE R j ;  j=  1 ,  . . . l  my (4.3) 
Pz,(0) = 0 pour i = 1 ,  .... ml i # i', 

gi.i. ( 1 )  est donnée p a r  

A la section 1.3 nous développons une équation de renouvellement qui constitue 

le fondement de l'analyse de la performance des lois à seuils critiques sur horizon 

fini. 



4.3 Équation de renouvellement du coût 

Les temps de retour successifs à un seuil critique t i  dans le mode i constituent d'un 

point de vue stochastique des instants de régénération. Sachant que z(0) = s et 

a(0) = i, définissons alors le processus x ( t )  indiscernable de x ( t )  jusqu'au moment 

de la première régénération r après quoi 5 ( t )  = O ( I ( t )  est éliminé après la première 

régénération). Cette élimination coïncide en réalité avec le fait que z(t) atteint son 

point cntique ri dans le mode i pour la première fois après l'avoir quitté. Pour 

le processus Z ( t ) ,  zi agit donc comme une barrière absorbante au sens du lemme 

précédent. Par conséquent, 2 ( t )  possède les mêmes caractéristiques statistiques que 

x ( t )  et satisfait de ce fait les mêmes équations de Kolmogorov avec toutefois les 

conditions frontières modifiées (3.4b1). Larsque dans (U), Les conditions initiales 

sont x(0)  = ri et a(0) = i ,  le coût résultant sera dénoté C i ( T )  et appelé fonctionnelle 

coût de type i pour une longueur d'horizon T. Le coîit pouvant s'écrire comme la 

somme des coüts de O à min(rlT) et de  T à T si T < T ,  nous avons le théorème 

suivant: 

Théorème 4.1 La /onctionnelle coût de type i pour m e  longueur d'horizon T as- 

sociée à une politique de pmdlrction sezrils critiques in twiants  ( L I ) ,  et pour un 

indexe i fié dans 1 ,  2 ,  . . . , rn, satisfait l'équation de ren.outiellemenl suivante. 

ou la /onction de densité de probabilité gii ( t )  est calculée selon le lemme 4.1, et OU 

le processus hybride [5(t), a ( t ) ]  évolue statistiquement selon les mêmes équations 

directes de Kolmogorov et respectent les mêmes conditions /rentières que dans le dit 

lemme, avec les conditions initiules suivantes: 

Pz$) = 1, 
f i ( x , 0 ) = 0  i = 1 , .  n; VX E R,; j = l ,  ..., m, 
Pz, ( O )  = O poar j=  1, ..., ml j # i. 

Ce résultat est fondamental et sert à caractériser la dépendance qui existe 

entre le coût sur horizon hi et la longueur de l'horizon T. Cette dernière équation 



comporte deux termes importants. Le premier correspond à la contribution de 

toutes les trajectoires jusqu'à leur premier temps de retour à dans le mode i, ainsi 

que celles qui n'ont pas atteint zi dans l'état i à l'instant T. Le deuxième représente 

la contribution après la première régénération. Vue l'integral de convolution qui 

apparaît dans le terme de droite de l'équation (4.4)' l'utilisation de la technique de 

la transformée de Laplace s'avère appropriée. En effet, si nous déhissons, F,(z, s) , 

Gii(s) et C~(S) comme étant les transformées de Laplace de fj (x, t ) ,  gii (t) and Ci(t), 

i = 1, .. . , ml j = 1, . . . , n, respectivement, alors après prise de transformée de 

Laplace de l'équation de renouvellement (4.4) donne: 

La détermination de la transformée de Laplace inverse de (4.5) est en générai très 

difficiles, sinon impossible analytiquement. Pour contourner cet te difficuité nous 

calculons une expansion en série infinie de Ci(s) autour de Y = O. L'analyticité à 

s = O de toutes les transformés de Laplace des fonctions apparaissant dans (4.5) est 

assurée lorsque le processus de surplus contrôlé est ergodique. La démonstration 

est présentée l'annexe A de l'article dans l'annexe II. Le développement de G,,(s) 

en série de Taylor autour de s = O est donné par: 

où p = E [ r ] ,  et pk = E[r" ,  k = 1, 

représentant le premier temps de retour. 

2, . . . , et où 

Définissons: 

r est Ia variable aléatoire 

2, ... v;r: E Ri, (4-7) 

fik(x) représente le vecteur des moments d'ordre k associés au vecteur de fonctions 

densités de probabilité f(z, s) à +1 < z < A. q , k  représente le moment d'ordre 

k de la durée de séjour à x = G. 

C:(S) autour de s = 0, donne: 

Le développement en série de Laurent infinie de 

bO 

f (x) 1' C (- 1) T& (x) dx 
k =O 



Notons cependant que la valeur de Ci,o est indépendante de la condition initiale 

représenté par l'évenement i (voir [14], corollaire 1). Par conséquent, le coüt en 

régime stationnaire sers noté C, = Q (expression de Bielecki et Kumar [27] dans 
Cr 

le cas n = 2). L'évaluation de (4.11) requiert évidemment de pouvoir déterminer 

les différents moments qui y apparaissent. 

Lemme 4.2 Soit ni,(x) le vecteur des moments  d'ordre q correspondant au 

vecteur des fonctions d e  densités de probabilité /(z, t ) ,  p > O. Sous le critère 

d 'ergodicité(2.23), et pour f(z, 0 )  = O V x E &, le vecteur fi, (z) satisfait le système 

d 'équations diflérent iel les suivants: 

q = 1, 2, S . . ,  i =  1. 3. . . . .  rn. 

avec 

Définissons 

Fk (r)  obéit au système d'équations différentielles suivant: 



Par sui te: 

avec, 
li~n~--~ Pk(x) = O , (1 .16~)  
et r k ( x ) = O  V x E R o  (4.166) 
pour k = 1, 2, ... 

La démarche globale pour les caiculs des coefficients de l'expansion peut être 

résumée dans le théorème suivant: 

Théorème 4.2 Soit i l'état de  régénémtîon the régénémtion (pour un  certain i = 

1, 2, . . . , m .  les coeficients de i 'eqansion en série infinie j ~ s q u  'à I 'ordre k de  la 

tmnsfonée de Laplace de la fonctionnelle coût Ci(s) sont o6~ewus comme suil. 

1. Initialiser le vecteur des moments à 21, ( en  t e r n e  de I'iririque composante 

inconnue m1.o si i # 1,  ou ml&;) si i = 1 )  - Pour i # 1 

La ml *q + v; ma,, (2; ) = O 
a E [2, . .. , n], 

(4.18a) 
X I I  ml,, - qml,,-l + v: ml&J = O û = 1; 

pour q = 1, . . . ,  k, 

- Pour i = 1 



Les seuls pammélres inconnus à gauche de l'équation (4. Ma-b) sont les 

u a h r s  scalaires ml,q, q = 0,1, ..., k, si i # 1 ou ml,&;), q = 1, . .. , k, 
si i = 1. Notons pue (x) est In am composante de TZ, (z) . 

2. Propager le ~ e c t e u r  initial Fk(z;) en utilisant (4.16), donnant ainsi- 

P, étant d é h i  dans (4.14): 

ce stade, toules les valeurs à z l  sont ezprimées en forrction d e  ml,,(:;), 

q = O, . . . , k si i # 1 ou mi,,(;;), q = O, . . . , k si i = 1 .  Fk($) est alors 

déterminé e n  résolvant les équations suivantes: 

- Pour i # 2 

- Pour i = 2 

En combinanl (4.19) et (4 .20~)  l'ensemble des inconrrues additionnelles est 

respectivemei~t m2,,, q = 0,1, . . . , k si i # 1 oir rn2,(:; ) . q = 0.1. . . . . k, 
si i = 1. 



3. Répéter l'étape 2 avec Aj,k au lieu de Al,k dans (4.19), t j  au lieu de 21 et q + 1  

au lieu 1 2 .  De plus, (4 .20~)  et (4.206) sont remplacées par: 

- pour j # i qui n'est pas un état de régénémtiorx 

1 xja + 4 mcq(z:) - e-' (27) = O 
a = l , . . . ,  n a # j ,  pour q = 0,11 ..., kl 
Xjj mj,* - q m,,,l + 4 mj,q(~y)  - $-' mj,,(t;) = O 

pour q = 1, ..., k, (1.21~) 

A j, j m jVo + 4 j,o (*y) - 4- ' mj,, (z;) = O 
L pour q = O. 

- pour j = i 

XiQ miwp + vi m,,, (z; ) - vb-' ma,, (2:) = O (4.2 16) 
a = 1, 3, . . . l  TL; pour q = O J ,  .... k 

Pour chaque val eu^ de j ,  les inconnues additionnelles sont soit q = 

O, 1, . . . , k ,  si j # il OU m j , q ( ~ y ) ,  q = 0,1, . . . , k ,  si j = i. 

4. .A k ,  îk(r;) doit satisfaire la condition dlhortogonalzté suivante: 

où wi,,, j = 1, 2 , .  . . , m, 1 = 0,  2 , .  . . , k représentent les vectezrrs propres 

a gauche généralisés de grode I de A,$ nssoczés avec les rn z~aleirrs pmpres 

a partie réelle non positive. Une fois m , ( x )  et TB,,, q = 0.1, . . . . k, j = 

1, . . . , rn, sont connus, Ci,, pour q = 0,1, . . . , k sont obtenus par irdégrntion 

sur x selon l'équatio~i (4.11) 



4.4 Les approximants de Padé pour l'estimation de Ci(s) 

Notre objectif principal est d'estimer le coût sur horizon h i  sous une politique à 

seuils critiques invariants. Les apprmirnants de Padé représentent un outil com- 

munément utilisé pour la construction d'une approximation rationnelle d'une fonc- 

tion [3]. L'idée principale derrière l'utilisation de cette technique d'estimation est 

de pouvoir reproduire les séries de Taylor de la transformée de Laplace des fonctions 

aussi loin que possible. Ainsi, I'utilisation des approximants de Padé permet de con- 

s qui reproduit partiellement (premiers 2 p + v struire une fraction rationnelle qp(,l 

coefficients) les séries de Taylor apparaissant au numérateur et au dénominateur de 

la transformée de Laplace de C:(s) (4.10). P,+,(s) et QP(s)  sont des polynômes 

de degré p + v et p respectivement, v 2 (-1) [3]. Sachant que lorsque s + O 

dans une transformée de Laplace c'est le comportement à T - cm qui est capturé, 

la transformation inverse des fractions rationnelles fournit une estimation du coût 

sur horizon fini pour une politique à seuils critiq~ies donnée qui s'améliore pour 

un degré d'approximation donné lorsque T -, W. Il est donc possible d'évaluer la 

performance pour un choix particulier de seuils. La recherche de la commande sous- 

optimale devient un problème d'optimisation numérique. Ceci permet de répondre 

à la deuxième question posée en introduction. Pour répondre à la première ques- 

tion concernant la ~ i tesse  de convergence vers le régime stationnaire, un indicateur 

important est fourni par les singularités (pôles où points de branchement) de la 

transformée de Laplace C; (s). 

4.5 Estimation du temps de convergence vers le régime stationnaire par 
l'analyse des singularités 

L'objectif de cette section est de caractériser la vitesse de convergence de la fonc- 

tionnelle coût vers le régime stationnaire à partir de l'analyse des singularités. En 

effet, la vitesse de convergence vers le régime stationnaire est dictée d'abord par le 

pôle dominant (le pôle le plus proche de l'we imaginaire dans le plan complexe). 



Notons que les pôles de la transformée de Laplace de C,'(s) sont composés du pôle 

s = O et des pôles pj solutions 1 - Gii(s) = 0. 

4.5.1 Caractérisation des pôles 

Il est clair que s = O est aussi une solution de 1 - GE(s) = O (puisque G,(O) = l), et 

par suite s = O représente un pôle double de C,:(s) indiquant une croissance linéaire 

de Ci(T) avec T. De plus, Ct(s) possède d'autres pôles caractérisés en partie par 

le théorème suivant: 

Théorème 4.3 les valeurs propres de la matrice de taux de transitions A de la 

chaîne de hlarkov représentant f 'état de la machine sont également solvtions de 

1 'équat.ion: 

De plus, dans le cas n = 2, ce sont les sedes solutions de cette équation. 

Démonstration: voir annexe 1. . 
Ceci implique que si on considère le coût moyen Ci(T), il ne peut atteindre 

son régime stationnaire plus rapidement que les statistiques de la chaine de Markov 

de l'état de la machine considérée. Ceci permet de définir une borne inférieure sur 

la longueur de l'horizon après laquelle on peut espérer que les points d'inventaire 

optimaux [27] où [25] deviennent des approximations acceptables des points réels. 

Nous avons donc: 

Corollaire 4.1 Dans le c ~ s  ergodique (F - cm) est air moins O(exp(&, t ) )  

où L,, est la iiahcr propre non nulle et ùominante de la matrice de tmnsition de la 

chaîne de Markov représentant le mode de la machine, C, élant le coût stationnaire 

par unité de temps. 



4.5.2 Caractérisation des points de branchements 

Corollaire 4.2 Les point de bmnchernent de 7 solution de 

I r ~ + ~ ! : - l ( s ~ - ~ T ) I  = O  

sont les seuls points de bmnchement de G&). 

Le calcul de ces points de branchement peut se faire en utilisant la notion de 

discriminant d'un polynôme. Soit 

et soit ~ ( s )  une solution de P(7, s) = O. so est un point de branchement de ~ ( s )  si 

7(so) est une solution multiple de P ( y  (so), so) = O (61. Ce qui revient à dire que le 

déterminant de la matrice de Vandermonde est égale à O pour s = so 

Soit alors ok = y: +.  . . +Y: et soit 

Dp est un polynôme en s appelé discriminant du polyn6me P ( y ) .  Les valeurs de s 

qui sont solution de DP(s)  = O sont les point de branchements de ~(s). De plus, le 

calcul des oi peut se faire en évitant de résoudre P(7) = O. En effet, le calcul des 

Oi peut se faire en résolvant le système linéaire suivant 



pour i 2 n 

Nous pouvons alors écrire la décomposition asymptotique de Ci (s) sous la 

forme suivante [2j, Bi étant défmi comme le point de branchement ie plus proche 

de l'axe imaginaire: 

+ (Une série de Taylor de Ct*(s) autour de s = B I }  

ce qui donne: 

L J + {contribution des pdes pi # 0 } 
t:pi #O 

+ { la contribution de la série de Taylor autour de BI } 

L'existence des singularités p: $ O à t'intérieiir dit cercle de rayon 1 BI 1 est très 

difficile à prouver analytiquement. Cependant, il est établit que ies approximants 

de Padé permettent de construire les singularités se trouvant à l'intérieur de la 

région de convergence représentée par le cercle de rayon 1 BI  1 131. En plus de ces 

singularités? les approximants de Padé auront tendance à créer une concentration de 

pôles et de zéros sur la bmnche ozmerte reliant les points de bmîrchemeitts. Les plus 

proches de l'axe des imaginaires. Notons que ces pdes et ces zéros n'existent pas 

en réaiité mais leur apparition dans le cacul est révélatrice de la présence de points 

de branchement. Par ailleurs, nous pouvons observer de l'équation (4.23) qu'en 

réalité le terme vraiment dominant et qui dictera la vitesse de convergence vers le 
c,., +c, régime stationnaire est celui en 

YS 
. Ce qui correspond si nous calculons le 

c,., +c, = 
coût moyen par unité de temps i [ ' ] t. L'erreur relative introduite sui 



l'évaluation du coût stationnaire par la considération de ce t e m e  est donnée par 

). Il est donc possible de définir un degré de tolérance sur la longueur 

de l'horizo~ à partir de laquelle il est acceptable de considérer le système en régime 

stationnaire. Ce qui donne la proposition suivante: 

Proposition 4.5.1 la longueur minimale de l'horizon qu 'il faut attendre pour que 

le coût soit à l'intérieur de  la bande de E, (en %) par rapport à la valeur en régime 

stationnaire Cm est donnée par 

oii CiVI est donné par (4.10), et Cm est le coût stationnaire. p et p2 sont donnés 

par (4.6), et représentent la moyenne el le deirn'ème moment d u  premier temps 

inter-ét~énements critiques de type i . 

Notons que zmin dépend nécessairement du choix des points critiques, des 

vitesses de production ainsi que des pénalités attribuées a w  surplus négatifs ou posi- 

tifs respectivement. L'application de la décomposition (4.23) pour l'optimisation 

des seuils critiques est rapportée dans l'article de conférence intitulé "Optimizing 

the Transient Behavior of Hedging Control Policies in Afanufîcturing Systems" mis 

à l'annexe III de ce chapitre. 

4.6 Conclusion 

Nous avons considéré le problème d'optimisation du contrôle de flux sur un horizon 

fini, pour une système multi-mode et produisant un seul type de pièces. La classe 

des lois de production est caractérisée par des points critiques invariants à l'intérieur 

de l'horizon d'optimisation. Une équation de renouvellement pour la fonctionnelle 

coût sur horizon h i  a été développée et utilisée pour générer les coefficients d'une 

expansion en série infini de la transformée de Laplace du coût vu comme fonction 

de la longueur de l'horizon T. 



Le calcul des coefficients dans la série infinie est basé sur une résolution d'un 

système d'équations différentielles récursives. Les coefficients dépendent du choix 

particulier des seuils critiques d'inventaires et l'optimisation procède par la suite 

numériquement. 

L'application des approximants de Padé donne d'excellents résultats 

numériques et nous a permis d'estimer correctement le CO& même pour des 

longueurs d'horizons de temps faibles (voir annexe II). La validation des approx- 

imations numériques a été possible par la comparaison des résultats numériques 

directe du système d'équations aux dérivées partielles donné au théorème 3.1 basé 

sur la méthode de Lax-Wendroff [30] pour des points critiques fixés. 

De plus, en utilisant le contrôleur découplé sous-optimal de Caramanis et Shar- 

ifnia (91, la technique d'analyse transitoire développées ici peut être appliquées pour 

les systèmes multi-mode produisant plusieurs types de pièces. 

L'estimation du temps de convergence vers le régime stationnaire n été possible 

par l'analyse des singularités de la transformée de Laplace de la fonctionnelle coût. 

Le résultat nous donne un critère d'estimation de la longueur minimale d'horizon 

requise pour garantir un pourcentage d'erreur maximal en fonction du pourcentage 

d'erreur par rapport au coiit en régime stationnaire. 



ANNEXE 1 

Pour procéder à la démonstration du théorème 4 3 ,  nous avons besoin du lemme 
t 

suivant: Soit iE = [ -Ajl -Aj2 - * *  Oj  * * *  +Ajn ] oh Oi = O signifie que la ihe 

entrée du vecteur est nulle. 

Lemme 4.3 Sozt -4 = (s I - At) ,  et Z j  le point de ré@aémtion.. Soit @i(z, s) = 

exp(-K-' Ax) pour x E Ri. Sozt ei = [O,. . . , li, . . . , O l t ?  avec li = 1 à la iihe 

colonne Ln condition fmtrliére à z; peul êIre écrile comme stril: 

où o r 1  = v , + ~ ( A ~ ~ + ' , s )  y-1, P ( z ~ , s )  = 1 et Aii+' = - 2:. k 
J - ~ J J  

représente le khLe points critiques et 1 représente le point où nous sommes entrain 

de calculer la condition frontière. 

Preuve: Rappelons que Les points critiqrtes 21 > 22 > + > k1 où m est le 

nombre d'états faisable et n le nombre d'états du système. En prenant la trans- 

Formée de Laplace du système d'éqiiations au dérivées partielles donné par le lemme 

4.1 et en résolvant le système d'équations différentielles par rapport à x nous pou- 



vans propager les conditions frontières à partir de z; . CeCi donne: 

21) 1 4 F(z;, 3) 

ce qui donne: 

'*- Nous continuons à propager cette condition frontière jusqu'à zj, où nous avons 

instauré la condition d'absorbtion donnée par (3.5b'). Cette condition modifie la 

relation à la frontière z; de la façon suivante: 
ï 

avec 

la transformée de Laplace de la condition (3.54 donne 

( S) - ( ) = XjiP(zj,  S )  

i = 1 .  n i#j, 

3 

puis repropagé F (z;, s)  jusqu'au point critique k. Supposons que la condition 

frontière au point d'ordre j < k < m. satisfait (A.1). Ce qui signifie que: 



En remplagant F(r i ,  s) dans (A.4) nous démontrons par récurrence que le résultats 

e t  vrai pour n'importe quel indice k y compris pour k = m. W 

Preuve du théorème 4.3 La condition de stabilité (3.4~) s'écrit 

lirn F(zls) = O  pourx E &,. 
2--w 

Cette condition est équivalente à choisir la condition initiale z; orthogonale aux 

vecteurs associé aux valeurs propres à partie réelle négative de A. Ce qui revient 

à dire qtie la condition initiale est une combinaison linéaire des vecteurs propres 

associés a u  valeurs propres à partie réelle strictement positive. Dans [IO], le critère 

d'ergodicité implique que le système possède n - m valeurs propres à partie réelle 

strictement positive. Soient les hi pour i = 1,2,. . . n - m les valeurs propres de 

V: ' .4 à partie réelie strictement positive et umi les vecteurs propres correspondants. 

Soient les oi, i = 1 , 2 ,  . . . , n - m une série de coefficients réels. La condition de 

stabiiité peut ètre écrite comme suit: 

n-m 

En rernplaqant (A.5) dans (A- l ) ,  la condition frontière à cm est alors un ensemble 

de n éqiiations, impliquant n paramètres inconnus donnés par: 

ai i = I ,  2 ... n-m,  
P(&s)  i = 1' 3, ... 772; i # j '  

Gjj (SI 
Pour l'unicité de la solution le déterminant suivant doit être différent de zéro. 



De plus la fonction de densité de probabilité Gjj(s) est donnée par: 

Ceci nous permet d'écrire quand Gjj(s) = 1 

-v;'+:-~ iieiv; 
Iwmi wm2 . . . Wm(n - m) S - ~ I  . . .  

- v"+~- '"~ A ej = O, 
- V ~ l a ; - ~ A e ~  ... m s- A j j  ... V i l A  eml 

ce qui donne: 

ddi(z.a) - sachant que - ~ - ' A # i ( x l s )  = 4i(xl  s )  K - ' A  and A = 

nb, V,di(x ,  s)v;-' A = A nf=, &(x, s), (A.6) peut être réécrite comme suit: 

donnant 
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Abstract 

Part production is considered over a finite horizon in a single part multiple failure 

mode manufacturing system. When the rate of demand for parts is constant, for 

Markovian machine-mode dynamics and for convex running cost functions associ- 

ated ivith part inventories or backiogs, it is known that optimal part production 

policies are of the so-called hedging type. For the infinite horizon case, such policies 

are characterized by a set of constant critical machine-mode dependent inventory 

levels that must be aimed at  and rnaintained whenever possible. For the finite hori- 

zon (transient) case, the critical levels still exist but they are now time-varying and 

in general very difficult to characterize. Thus, in an attempt to render the prob- 

lem tractable, transient production optimization is sought within the (suboptimal) 

class of time-invariant hedging control policies. A renewal equation is developed 

for the cost functional over fini te horizon under an arbit rary t ime-invariant hedging 

control policy. The kernel of that renewal equation is a first return tirne probability 

density function which satisfies an auxiliary system of Kolmogorov type of partial 
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different i d  equat ions (PD E) . The renewal equat ion and the awiliary PD E sys t em 

are used to generate the terms in an infinite Laurent series expansion of the Laplace 

transforrn of the finite horizon cost functionai viewed as a function of the lengt h of 

that horizon T. The terms in the infinite series expansion are generated recursively 

and their calculation is based on the solution of a system of piecewise smooth cou- 

pled linear differential equations, the associated Jordan canonical form of which is 

explicitly constructed. In the two-state machine case, this shows immediately that 

the Bielecki-Kumar infinite horizon cost is approached via a term that decays to 

zero as  ) and that can be computed exactly. Furthermore, Padé approximants to 

the resulting infinite series expansion yield a generic (and quite accurate) appro'r- 

imate expression of the cost functional in terms of T and 2, the arbitrary hedging 

level. In the multi-state case, Padé approximants yieid excellent numerical approx- 

imations to the cost functional as a function of T for given choices of hedging levels. 

This is subsequently used as part of an optimization scheme whereby hedging levels 

which are optimal for a given finite horizon length are efficiently computed. The 

algorithms presented here can also be applied to the finite horizon optimization 

for mult i-part failure-prone manufacturing systems provided t hat only the partwise 

decoupled hedging control policies of Caramanis and Sharifnia are considered. 

Padé approsimants - Finite horizon manufacturing Aow control - Hedging control 

policies 



1 Introduction 

Organization of Bow control can be viewed as an important phase in a hierarchically 

structured scheme for the control of rnanufacturing systems [XI. S tarting wi t h the 

work of Olsder and Suri 151, a common paradigm for the analysis of this control 

problem has been a fluid mode1 characterizing parts production, punctuated by 

random jumps either in the production capacity (due to machine failures or repairs), 

or in the dernand for parts [26]. 

While the general mat hernatical t heory for the optimal stochast ic-control prob- 

lems in such jump models was first formulated by Rishel [20], the specificity of 

the flexible manufacturing problem lies in the boundedness of the controls (parts 

production capacity sets), as well as the occasionally non negligible set-up times in 

changing over [rom set-up for one part to that for another part. 

The qualitative features of the optimal control problem of minimizing inventory 

and backlog costs in mult i-part manufacturing systems were st udied by Iiirnemia 

and Gershwin [7]. An important concept emerged frorn their study, that of hedging 

type part production control policies. Relevance of the notion of a hedging policy 

\vas sii bseqiiently reinforced by a mat hematically complete st udy of failure prone 

single part manufact uring system by Akelia and Iiumar [l6]. Here. hedging policies 

emerged as the optimal ones for an infinite horizon, discounted integral cost func- 

tional with conves running cost. Since then, a growing body of research has been 

developed around t h e  properties of hedging policies particularly in blarkovian sin- 

gle part. single or multiple failure mode machines (See Liberopoulos and Hu [6] for 

a comprehensive list of references), but  also in mult i-part manufact uring systems 

( 9 ,  [ O , [ )  For non hlarkovian machines see for example Glasserman [14] and 

Bréniaud et al. [13]. 

For t he infini te horizon single part production problem, hedging policies are 

characterized by a set of constant machine mode dependent inventory levels, that 

the production policy must aim at reaching at the fastest rate possible, and main- 



taining as long the associated machine mode prevails. Most of the existing hedging 

control literature has been focused on the infinite horizon problem, essentially for 

reasons of mathematicai tractability. However, in the manufacturing systems com- 

munity, it is widely recognized t hat many of the flow control problems can be 

classified as fini te horizon because production requirements can change before the 

system has time to settle long enough into a statistical steady-state. 

Using a Markov reneival viewpoint of hedging control policies, Bfalhamé and 

Boukas (191 made preliminary attempts at assessing the speed of convergence of 

such policies to a statistical steady-state. This could give preliminary criteria for 

separating finite horizon problems, from what could be considered as infinite-horizon 

problems. Also, iorward Kolmogorov equations for the t ransient evolution of the 

system under hedging policies were presented. 

Zhang  and Yin (1.51 seeked independently to solvc t h c  dyiiamic programming 

eqiiations which arisc in developing verification theorems for characterizing optimal 

flow control policies o\.er finitctime horizon. In  particular they looked for so- 

called tiirripike sets (switching curves) where value îunctions are minimized (hedging 

points in  the single part infinite horizon problem). In the finite horizon case, the 

cri tical i nveritory levels become timc-varying and t hus can be qualified as crit ical 

ciirvrs. Thang  aiid )'in [ ln]  are able to solve completely the transient optimal 

coiitrol problcin. single part two-state machine. witli failure as an absorbing state, 

iiiitlcr cotistaiit deniand for parts. :\ slight variation of the problem is also solved 

wlien capacity is constant and demand is a two-state Markov chain with zero as its 

ahsorbiris state. 

[ r i  the following paper, we scek instcad optimal finite-horizon flow control poli- 

cics wi t hin the (suboptimal) class of time-invariant hedging control policies (TIHC). 

.\niong the reasons for focusing on TIHC policies are relative tractability, ease of 

iriiplcriicntat ion. and asyniptotic optimality as the length of the control horizon 

iiicrrascs. The class of rnaniilact uring systems considered is single part. multl- 
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ple failure modes. The paper is organized as follows. In section 2, we develop 

the mathematical mode1 of the manufacturing system, state the optimal control 

problem, and give a preliminary characterization of the class of control policies of 

interest (TIHC policies). In section 3, a renewai equation is developed for the cost 

functional over finite-time horizon under arbitrary TIHC policies. The kernel of 

that renewal equation is a first return probabitity density function, and a partial 

differeotial equation (PDE) characterization of t hat densi ty function is given. In 

section 4, theorems are developed to compute an infinite series expansion of the 

Laplace transform of the cost functional based on the renewal equation. The terms 

in the series are obtained as the solutions of recursive systems of coupled linear 

differential equations wit h boundary conditions. In section 5 ,  the t heory of Stielt- 

jes' series is used to first develop Padé approximants of the Laplace transform of 

the cost functional, and eventually compute asymptotic approximations of the cost 

functiorial itself as the length of the horizon increases. In section 6, "partialiy an- 

a ly t i~a l '~  expressions of the terms in the infinite series for the two modes machine 

case are given. .41so. test results comparing the Padé approsimaiits results with 

iinwieldy Lax-Wendroff solutions of the PDE system in section 3 are given for the 

two modes and t lie t hree niodes machine cases respectively. Subopt imal cont rol 

syntliesis is illustrated. Section 7 contains concluding remarks. 

2 Suboptimal finite horizon production control 

consider a single-part-multiple-state manulacturing system. The system is 

characterized by a hybrid state [x(t), ( ( t ) ] ' .  The discrete variable ( < ( t ) , t  2 O} 

is a continuous irreducible hlarkov chain with known intensity matrix A = [ A i j ] ,  

( A i i  = -Cj A,), and taking its value on a finite state space E. The continuous 

variable x ( l )  represents the production surplus of the product at time t .  The sys- 

teni mttst satisly a certain given constant demand per unit time d. For each a e E ,  



z( t )  evolves according to the following differential equation 

where u, is the production rate under the failure rate mode a. T h e  production 

rate takes its value on a convex set Ra assumed here as the closed interval [O ü,]. 

ü, represents the maximum production rate allowed by the capacity constraints of 

the manufacturing system when it is in mode a. Using the modeling frarnework of 

Sharifnia [23], or Caramanis and Sharifnia [IO], the state space E is composed of n 

states representing the different failure modes of the system. Among these modes, 

rn are said to be feasi ble (6, > d), and indexed by ct = 1. . . . , rn; ot herwise the 

states are called infeasible and are indexed by cr = m + 1,. . . . n. A cost t ' ( x ( t ) )  

is incurred for either inventories or backlogs represented by r ( l )  > O or x ( t  ) < O 

respectively. t ( x ( t ) )  is assumed to be convex. 

Our objective is to identify an admissible feedback (sec [IG]) production policy 

which minimizes the foltowing cost functional: 

for T a finite time horizon. given state equation ( l ) ,  the machinc mode dynamics, 

and wlicrc E[. Iro. au] is the espectation operator condi tional on [x(O)? {(O)]' = 

[ah aoi'. 

For the iiifinite horizon version of this problem rvhere the long-term average cost 

pcr unit timc is to be minimized, i-e.,: 

it is d l  known (see [22], c h 3  for a tliorough analysis), that the optimal control 

policy is of the so-called hedging type. Thus, it is characterized by a set of constant 

cri t ical iriaciiine mode-dependent invcntory levels that the control effort must aim at 

nttainiiig at the fastest rate and maintaining whenever possible. In the finite horizon 

cwc ('1) (sec Zhang and Yin [l.j]), the optimal control policy is still of the hedging 
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type, except that the critical levels are now time varying and the trajectories they 

follow c m  be t e m e d  critical curves. Except for the case of a two-state machine 

with an absorbing failure state [15], no known analytical expressions are available 

for the critical curves. Given the great difficulty of obtaining such expressions, as 

ive11 as the nature of the resulting production control laws ivhich may not be very 

practical to implement, ive seek control laws for the finite horizon problem which 

ivould be optimal wit hin the (suboptimal) class of time-invariant hedging control 

policies, i.e., where the critical levels are constant. Justification for the choice of 

such a class of control policies is threefold: 

The class tvill asymptotically include the true optimal control as 

An optimal constant critical level can be viewed as coinciding with the "av- 

erage" over the control horizon T of a time-varying optimal critical level. 

The implemeritation of the control latv is simple. 

As in S harifnia [23], the tiine invariant hedging control policies are characterized 

hy a set of arbitrary finite hedging levels r, associated with the leasible states 

0 = 1. . . . , rn. Conscqucntly. 

III infeasible modes, it  is assumed tliat one always produces at the maximum rate. 

This is tantamount to assurning that the lowest hedging level associated with the 

infeasible modes is higher than or equal to the highest level associated with the fea- 

si ble niodes (see [22] ch.3 and 161 Section I I I  for interesting partial results concerning 

this point). 

Furt hermore, the surplus production space is divided into a set of open regions 

& = { Z C R I Z ~ + ~  < x < z,),Û = 1 ,..., m - 1 ,  and R, = { x c R l x  < r,}, 
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& = {z eRlzl < 3). Here, it is assurned that a relabeling of machines states has 

been performed whereby {z,} are ordered as z, < r,-~ < . . . < zl. Between 

jumps of the discrete state E( t ) ,  U:(X) is constant and thus x ( t )  evolves, in a given 

region Re, according to a deterministic differential equation wit h a constant velocity 

ug(x )  - d denoted by v; where ,d is the current mode. For simplicity and although 

this is not indispensable, we assume throughout that for al1 states B É E  and a = 

1, . . . , rn, vg # O. Rernoval of this assumption would indeed greatly cornplicate 

the formulation of Lemma 2 (moments would propagate according to linear singular 

systems) and Lemma 3 and 4, section 4 below, whereby one would have to deal with 

Jordan lorms for singular systems. Also, probability masses would appear in more 

than one mode at  hedging points. See Fig.1 for a geometric representation of the 

dynarnics. 

Hedging control policies have been the subject of a growinp and interesting 

literature (see 16) for references). Iiowever, except for Malhamé and Boukas [19], 

Zhang and Yin [ l j ] .  t h e  is a paucity of analytical results concerning their transient 

hehavior. The lollowing result is rcported in [lg]: 

Tlieorern 1 Thc hg'lbi-id d e n s i f y  ceetor f(z, t )  will satisfg in region Ri, 

irheir 1; = d i a g [ u i ] .  i = 1, . . . . ni, o = 1, . . . , n. and V k R i  and for infinilesimal 

dA. /,(x. l )  is such thal: 

i )  = [ (  t )  . . . ( 1 .  The boundaq conditions associated with (5) are as 

joflorra; nt hedging point z; ,  i = 1. . . . , rn: 



where Pzi ( t )  is the probability mass at zi and t irne t ,  i = 1, 2, . . . , m .  In addition 

f(z, t ) i s  zero at f m. More precisely: 

Figure 1: vector fields associated wit h hedging points control policies in region Ri 
for al[ possible modes $' = 1, . . . . ti respectively from left to right 

The set (5)-(6) of PDE's ivith boundary conditions Ilas a transparent physical 

mcnning which it is important to discuss because it will be very instrumental for 

a ntimber of developments in  the  paper. (5)-(6) represent a probability flotv bal- 

ance equation. If one interprets v : ( t )  J j ( 2 ,  t )  as the probability current at (surplus) 



77 

position t, time t in region R- and machine mode j (probability per unit time), 

then (6a) is a mathematical expression of the fact that probability currents will in 

general be discontinuous across a hedging level, Say z;, if they are associated with 

a machine mode j # i. The size of the discontinuity is given by the average rate 

Aij  P, ( t )  at  which a machine in mode i when the inventory is ri will switch to mode 

j (and thus leave the hedging point). (6b) is the counterpart of (6a) when dealing 

with probability currents associated with mode i across hedging point z;. Indeed 

here, the probability currents point towards zi and are in fact the only positive 

contribution to !lie probability m a s  at zi ( a  machine will spend a non zero time 

at si only if it was in mode i when it hit ri). Thus (6b) expresses the fact that 

the rate of change of the probability mass at zi is equal to positive currents from 

mode i densities around zi minus the rate ( - A i i  P r i ( t ) )  at which a machine already 

in niode i at z; leaves that mode and thereby contributes through ( 6 4  to feeding 

the probability currents associated with other modes around 2;. Finally note that 

the condition (6c) at (-CO) is irnportant to ensure that the total probability mass is 

boiinded at al1 times. 

Iri the following section; we shall develop a renewal equation satisfied by the 

fini te horizon cost functionai in (2 ) .  Starting with Akella- Iiurnar [16]. and partic- 

tilaily tri t h hlalliamé- Roiikas [IS]? rcnewal viewpoints of hedging control policies 

Iiavc proved to be estremeiy useful particularly wlien it conies to making state- 

rticiits about t lie ergodici tp ancl t ransient behavior of such policies. The Markovian 

st rticture of the con~rolled [r(t ). { ( t  )IL process is such t hat any fised particular point 

sa- [z&~] '  can, as long as it is reachable, constitute a regeneration point for the 

process. Regeneration points of particular interest are the ones associated with 

so-called hedging point evcnts, i.e., instants where a hedging inventory level Say i 

is jiist reached while the machine is in mode i. Hereon. we shall denote by type 

i siicti rc~erieration events wi th i = 1, . . . , m. Also, for t hc rest of the paper we 

assiiinc t liat matrices F-' :\', i = 1. . . . , m have dislincl eigenvalues. While this 
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assumption is not indispensable, it makes a simple recursive computation of the 

generalized eigenvectors in equation (41), section 4 below, possible. Notice that the 

assumption of distinct eigenvalues will in most cases be satisfied. Indeed, consider 

the very demanding case where the manufacturing system of interest is made up 

of Say k identical (unreliable) independent parallel machines; while the transpose 

of the system intensity matrix il will have multiple eigenvalues, y-' At will not 

because the velocity matrix I/;: does not sufficiently preserve the syrnmetry of the 

problem. 

3 Renewal equation for the finite horizon cost 

The follorving Lemma is concerned with a modification of PDE system (5)-(6) to 

compute the probability density function (p.d.f.) of times between successive type 

i regeneration events. Let g i i ( t )  denote that p.d.f. . 
In Malhamé [17], it  vas s h o w  how in Markov processes with continuous trajec- 

tories. one could use the forward I<olmogorov equations to compute first passage- 

time deiisities. The gist of tlie argument is as follows: a continuous Markov pro- 

cess caiiiiot attain a given boundary unless it is in the immediate viciriity of that 

hot~ridary the instant.  hefore. l rnt i l  it hits that boondary (wherrhy i t  iç stopped), 

the process cannot -knowr' about the existence of the boundary and tlierefore it 

sat isfies ( locally) the usual forward Iiolmogorov equations. Upon hi  t t ing the bound- 

ary. the process must be "killed' (because it is not allowed to propagate again). 

.\Iathcmatically. this is implementcd by introducing at the boundary of interest a 

new boundary condition which insures that return probability currents lrom the 

boundary, il any, are set to zero. The boundary becomes absorbing. This is the 

point of drast ic departurc îroni t lic iisual forward Iiolmogorov equat ion which can 

be characterized as a consercation equation (total probability mass in tlie system 

is constarit). In the case of a first passage-time (absorbing) boundary. the system 

starts -1caking" and i f  the original Slarkov process is such that it hits the barrier 
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with probability one, then the total probability remaining in the system as t - oo 
is zero. Now recalling that first passages to the boundary of interest can only be 

achieved from the immediat e vicini ty of t hat boundary, the probability t hat escape 

occurs between t and t + dt ,  say g ( t )  dt  for t > O, d t  infinitesimal is given by the 

amount of probability that leaks across the absorbing boundary around time t .  

This is nothing but the net probability current at  the boundary multiplied by dt. 

Given that the return probability current is extinguished at  the absorbing bound- 

ary we conclude that g ( t )  G outward pointing probability current ut the boundary. 

This is the essence of the probabiliiy current method of cornputing first passage-time 

densi t ies. 

How can we apply this kind of computational principle for determining p.d.f. 

g i i ( t )  of first return to zi in mode i? 

The principle dictates a modification of the boundary conditions at z; in such 

a way tliat any trajectory tliat attains zi in machine state mode i is "killed." In 

other worcls. an absorbing boundary condition must set up nt z; but it must be 

active only i f  the discrcte pari of the hybrid state is i. This is ccluivalent to 

stnting ttiat ~ h c  boundary coiidition should only irivolve f i ( ~ i . t )  and Ji(:;. t ) .  

Sou- rccorisiclrring (ûb) and its physical interpretation in section 2 .  the quantity 

L*: /i(z:-. t )  - rf-' j t ( z + .  1 )  is preciscly the total return probability current at bound- 

aq. z ,  iri rtiodr i. i f  al1 probability mass at time zero is concent rated at 2; in mode 

i. Tlic rcqiiircd absorption will bc achieved if that relurn probability ciirrent is 

cs~iiigiiislied. Thiis for a particular i of interesto (Gb) should read: 

'I'lie first return p.d.f. g ; ; ( t )  at  time t would then simply bc (under the modified 

houndary condition) the rate nt ivhich probability leaks at the absorbing boundary, 

i.c.. i t  is eqiial to tlie total retiirn probability currcnt ci ,fi(:;, t )  - ui-' f*(r+, t )  

wliicti is heing estinguislied. This leads us to the following Lemma. 

Lemnia 1 The p.d.1. O/ tirne between regenerations O/ type i œ ,  gimi*(t) for  
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i' = 1. . . . , rn, con be obtained /rom the PDE system with boundary conditions (j), 

(6a) and (6b), except that for i = i', boundary condition (6b) should read: 

dP='* ( t )  = xi. i. pz,. ( t ) .  
dt 

The initial conditions should be: 

gi-;-(t) is then given by: 

In the next theorem, we use the regenerative structure of the  controlled surplus 

process to develop a renewal equation for the finite horizon cost, assuming at time 

O. ~ ( 0 )  = zi and ~ ( 0 )  = i. Define 

\Vhiie. in general the initial inventory will be at a value r(0) = ro # z; ,  if  the 

time horizon is sufficiently long, the initial transient from xo to Zi ivill not have 

a lwting effect. Thus in order to limit the number of arbitrary parameters to be 

clealt trith. Ive deliberately set x(0) to ii. Note that the general case can easily be 

haiidled by appropriately modifying the initial p.d.f of x(t) in Theorem 2.  We shall 

refer to C, (T )  as the type i cost functional for length T. Let r be t h e  first type i 

rcgeneration epoch after O. Throughout the rest of the paper? we assume that the 

deniand is feasible in the long run. Le., i f  a = [R(  1 ), a(?), . . . ~ ( n ) ]  represents the 

crgodic steady-state distribution of the machine mode Markov chain, 

Siich an assiimption is known (see [ t  11) to guarantee the ergodicity of the finite state 

Slarkov renewal process embedded in the [ x ( t  ), ( ( t  )]' hlarkov process as defined by 
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Malhamé and Boukas (191. This process is constructed by focusing on the successive 

instants at which the open regions Ri,  RÎ,  . . . , flm are first entered and recording 

thereupon the machine state, as well as the instants, of hedging point regeneration 

events. Thus hedging point events will al1 be positive recurrent and in particular 

PP[T < m] = 1. Let us define 

= ~ ( i )  I { K ~ )  , ( 19) 

where II.) is the set indicator function. f(t) is indistinguishable from x ( t )  until 

the first renewal epoch r upon which I ( t )  = O (the process is stopped). Given the 

additive nature of the cost functional in (IO), total cost from O to T c m  be divided 

up into costs from O up to rn~rr(r,T)~ and subsequently costs from r to T il r < T .  

More preciscly: 

Since we know [rom 

T 

] 1 Ci(T - T )  g i i ( ~ ) d ~ .  [ ~ ( ~ ( t ) ) ~ a = i , z ~ o ~ = z ,  di + (13)  

Lemma 1, horv to determine g i i ( t )  the p.d.f. of tirnes of rc- 

currcncc of tupe i cvents. it remains to espress the  first espectation in the riglit 

hand-side 01 ( 1 3 )  in  order to make the equation useful. Now. rccall thnt P(0) = x ( 0 ) ,  

aiid i n  fact k( l )  is indistinguisliable [rom x ( t )  until the first rcgcneration tinie upon 

trliicli tlic process is killed. This "killing" coincides in fact with x(t) hitting Zi in 

ii:ac!iirie rriodc i. for thc first timc after lcaving z; .  Tlius z,  riiust act as an absorb- 

iiig houndary in the scnse of Lemma 1 .  As a result. I ( t ) .  will lia\-e a statistical 

crolii t iori cliaracterized by the sanie lorward I<olmogorov equations as x ( t )  escept 

t h  bo~itidary conditions must bc modified the same way as in Lcnima 1 (7). 

Lcriirna 1 provides thcn a mcans of computing both gi i ( t )  and the first especta- 

tioii ii i  the right-hand-sidc of (13) .  and ive have the following theorein: 

Theorem 2 The t ype  i cost functionai for fength T associated with an arbitrary 

iirrrc incariant hedging control policy in system ( I l ,  and for i sonze Jxed index in 

1. 2 .  . . . . m.  salisfies the following renetcnl equûtion. 
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where the kernef gi i ( t )  is calculated according to Lemma 1, and where the [5 ( t ) ,  t ( t ) ]  

process statistically evolves according to the same forruard Kolmogorov equations and 

boundary conditions as in Lemma 1, with initial conditions: 

S i ( 0 )  = 1. 

I i ( x , 0 )  = O i = 1, .. . , n; V x e R j ;  j = l ,  . . . ,m ,  

P,(O) = O  for j = 1 ,  ..., m, j # i. 

Theorem 2 is the fundamental result that we will need in the rest of the paper to 

characterize the dependence of the finite horizon cost on the length of the horizon 

T. In view of the convolution in the right-hand side of (14), Laplace transforms 

will prove to be a valuable tool in the rest of the analysis. While in the two-state 

inachine problem (Bielecki-Iiumar [X I ) ,  an exact Laplace transform expression of 

the type i cost functional for length T can be obtained (see blalhame-Boukas [lS]), 

this is not possible in the multi-state problem. Enstead, we can recursively generate 

an infinite Laurent series expansion of the Laplace transform. This the object of 

the riest section. 

4 Asymptotic Laurent series for the Laplace trans- 
form of Ci(t) 

Define. when t h e  exist, F j ( s ,  s) ,  Cii(s) and Ci(s) as the Laplace transforms of 

I j ( r .  1 ) .  g i i ( t )  and C;(t) .  i = 1, . . . , rn, j = 1, . . . , n, respectively. Laplace trans- 

forniatioii of the cost renewal equation in Theorem 2 yields: 

i n  this section. we shall be concerncd with developing an infinite series espansion 

of C,(s) around s = O. In order to justify looking for sucli an espansion, we 

first need to establish the analyticity of al1 Laplace transforms in (15) at s = 
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O. Under the ergodicity condition in ( I l ) ,  it is possible to establish the required 

analyt icity proprieties. However, the proof is long, somewhat technical, and i t 

consists of an extension of the arguments in Malharné (111, Section III. Thereiore, in 

the interest of conciseness, we proceed by assuming as already proved the result t hat 

m u n d e r  ergodicity cr i ter ion ( I l ) ,  F,(x, s), j = 1, . . . , n V x  e Ui=, Ri and P,(s), i = 

1, . . . , m are analytic at  s = O. A sketch of the proof under the title Usketch of the 

proof of Analyticity of Laplace Transforms at s = O" is reported in Appendix A. In 

view of ( 9 ) ,  Gii(s) will be analytic nt s = O. So let 

where ,u = E [ T I ,  and p i  = E[sk], k = 1, 2, . . .. If we now define: 

&(r)  rcprcserits th t  vector moments of kth order associatccl with tlic vector of - 
p.d.f*s / ( r . s )  nt z;+i < x < =i. wliereas rn+ represents thc nioment of Pth order 

at r = z , .  \\e obtairi the following infinite Laurent scries cspansion of C,(s) near 

i s l  k = ~  J 

Evaliiatiii~ the above expression evidently requires the ability to c o m p t e  the dif- 

fcrciit nionients appearing in it. This is the object of t he  next lemma. This lemma 



constitutes also a generalization of the result that was first developed in (1 11 on 

the computation of moments of sojourn times of the surplus process in the regions 

comprised between successive hedging points in the parts surplus space. 

Lemrna 2 Let rï iq(x) be the vector of moments of bh order corresponding to the 

vector p.d.1. f(s, t ) ,  q 2 O .  Under ergodicity assurnption ( I l ) ,  and for f(z, O )  = O 

V z  E &, the vectors Gq(z )  satisfy the following recursive system of linear ordinary 

difierenlia1 equations (ODE): 

4 

lim rk(z)=O , (242) 
r- -CU 

ntld F k ( x ) = O  V . X C R ~  

for A. = 1, 2, . . . 
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Proof: : See Appendix A.W 

In view of the block triangular structure of Ai,k in (25), if X is an eigenvalue of 

-1 A t , it is also an eigenvalue of AiVk with mdtipiicity (k + 1). In what follows, 

we use the Jordan canonical form to derive analytical expressions for the matrix 

exponential in (25). 

Let Pi,k, QisC be the matrices with cohmns respectively corresponding to the 

generalized left and right eigenvectors of matrix Ais associated with computations 

up to the kth order moments in region Ri. (25) can be  then put into the Jordan 

canonicai form so t hat : 

where i r i  (26) J ; , ~  stands for t h e  Jordan biocks associated with tlic j th  eigenvalue 

, f . 1 ,  2 .  . n i = 1. 2, . . . m. Tlie ncst two Lenimas are proved 

in Appendis  A and provide a rnctbod for recursively computing the generalized 

cigcrircctors of .-li,k. Recuif that  uVe haue assurned thnt the eigencnfues O/ l<-l A L ,  

- Leninia 3 LEI L J k  = A, - .- l ik.  for. giuen i ,  j ,  k. i = 1. . . . , m ,  j - 1, . . . , n , 

thc ge~rcr-nlized grade E eigenvectors in niatr-lces Ait respecticely for l = O, . . . , k ,  

und associa&ed ruith eigenvalue A,. Suppose there exists a sequence O/ scalars a[, 

C = O. . . . . k - 1, and rectors ut .  C = 1, . . . . k, in Rn S U C I L  thal 



t h e n  the following must hold 

Cl0 = -vli , 
C 

at-1 = C!a0 ! = 2, . .., k 

k L 2, 

w h e ~ e  y' = Pi.0 K-' Qi,o, Pino and Qip0 are defined in (26) and vii is the j th diagonal 

e lement  o f  m a t n i  V;>. 

Proof: : See Appendix A.. 

Lemma 4 Let  wj,k-1 be a grade k generalized eigenuector of a m a t r i x  Ai,k-l, k 2 

1, as  defined i n  (.?4), with Ai*o = y-' A', associated with t h e  eigenualue A, for 

s o m e  Jired i n d e x  j = 1, . . . , n. Then a grade X: + 1 generalized e igenvector  o f  Aipi, 

associated with Ai c m  be constructed as follows: 

r~*hhrre (11. must  satisfg the / o l l o u ~ i ~ ~ g  equat ion f o r  sorne scalar ai,-* # O 

for. k 2 

Ftirtherrnore it is always possible t o  j n d  ui, # O satisjgiiig (29) a n d  ul # O and 

û a  # O sal is fging (30). 

Proof.: See Appendix A. 4 



Now, let 

{ul, 712, . . . , chfl } represents a chain of generalized eigenvectors of lengt h (k  + 1). 

Using Lemma 4, we note that 

Hence. I* ;  has the following cntries: 

Fiirt liwriiorc rtiatris PiSh iri  (26)  is cornposed of n hlocks of ( k  + 1) generalized 

cigci~vectors cadi associated \vit ti a n  eigenvalue A,. Each block lias the  following 

forni: 

SOW. frorn t tle proof of Lcninia 3 in Xppendis A. (27) can be written as: 



where A = diag [A - Ac], C = 1, . . . , n. Let IL; 
of u; is equal to zero. Define: 
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= Q; ,  uc with the jth component 

= 

We have: 

k-1 
(k- 1 - p )  

u; = [a;'] aai-1 Qi .0  wjo  - {C [AilP Qi.0 [O 3 -k v - l ] ~ j , k - i  
p=O 

for k > L  . 

Finally 

(3  1 ). (33). 34, (35) summarizc t hc rccursivc computst ion of t hc gcncralizcd eigcnvcc- 

tors of matrices Aik. In fact the CQ, ! = 0, . . . , k - 1 are calculated from the Lemma 

3 and subsequently used in (34) and (33) to obtain the generalized eigenvectors. 

Thus, the iollowing Jordan canonical block form associated with the eigenvalue Aj 

is obtained: 

b'ith this in rnind: 



where exp [& (z - z;)] is a {(k + 1) x (k + 1)} block diagonal mat* with Jordan blodts 
as f0lIows [l]: 

We have now a11 that is needed to characterize the asymptotic expression given 

by the Laurent series in equation (1s). Under ergodicity assumption (1 l), the next 

theorem provides essentially an algori t hm for computing the different terms in (19). 

The theorem is obtained by applying the type of calculations in Lemma 2 to al1 

the quantities in the  PDE system of Lemma 1. Thus every Laplace transform, 
- 

be it F(x, s) or PL, ( s ) ,  i = 1, . . . , m, is associated with a string of coefficients, 

f i ( )  f i ( )  6 )  . and mi,o, miel, mi.2, . . ., i = 1, . . . . m respectively, corre- 

sponding to its infinite series expansion near s = O. The former string of (vector) 

coefficients satisfies piecewise smooth linear differential equations with constant co- 

efficients as in Lemma 2, while the latter satisfies sets of algebraic equations. The 

linear differential equations are such that (see (%1), (24)) G q ( x )  for some index q is 

determined in region Ri by nij(:;).  j = 1. . . . . q - 1 but is not affected by fij(t.) 

j > q. while t h e  sets of algebraic equations involve nt;,, and fiq(z;), fiq($), 

i = 1. . . . . m. for q 2 1. As a result, it is most efficient to first conipute S o ( x ) ,  

i = 1, . . . , m, then given mi.0, Go(:;), i = 1, . . . , rn, compute 1n,(~), mi.1, 

i = 1. . . . . m and so forth, given rni.0, iiio(:,-), nti.1, fil(zIY), mi.2, &(:;), ..., mi,,, 
- 

rR,(:l-). cornpute mi,9+l, m,+l(x), i = 1, . . ., m, q 2 1. 
4 

Furthermore, notice that assuming &(z;), . . . , mq-L(z;), mi,q-l? i = 1, . - .  , m 

are known for a fixed index q, and given ml,, it is possible to compute (see (37) 

below) vector fiq(=;) as long as zl is not the chosen regeneration hedging point. If 

it is. then m l ,  is known at that point (since P,,(t) = exp(All 1 ) )  and given for ex- 
- ample ~ T Z ~ , ~ ( Z ~  ), vector ni,(z;) can be entirely determined. In both cases, fiq(z;) is 
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obtained via use of algebraic equations. We then use this knowledge and differentid 

equation (24) with k = q, i = 1, to compute fiq($). Now, given m2, and arguing 

similady, we see that vector 6,(z;) can be obtained via aigebraic equations. Sub- 

sequently, a differential equation ( ( 24 )  wi th k = q, i = 2) is used to compute G,(z,f) 

and so lorth until one cornputes Tn,(z;). Note that a t  each hedging point ri, we have 

assumed that either mi,, or mi,,(z,T) was known. Thereiore f i , (z;)  is a function of 

a total of m unknowns. This is the point where boundary condition (24a) cornes 

to bear on the problem. Indeed, this boundary condition which is valid only under 
t 

ergodicity assurnption (1 1), requireç that vector [ 6 ~ ( r ~ ) ,  f i :  (r;), . . . , 6 t ( r ; ) ]  be 

orthogonal to the left eigenspace associated wi t h the eigenvalues wi t h negative or 

zero real part of matrix A , ,  in (24). Now, rnatrix A,,, has the same distinct 

eigenvalues as matrix V;' At which under (1 1) must have exactly m eigenvalues 

with non positive real parts (see (1 11, Theorern 2) .  This happens as we show in the 

proof of the theorem, to provide the required m equations to compIete the cycle of 

computations associated with determining &(x) and mi,, i = 1 ,  . . . m. At that 

point everything is in  place for starting computations for G,+l(+) and mi,,+l. 

While the actiial calculations for forthcoming Section 6 were organized in an 

entirel? recursive manner? in Theorem 3, ive prcsent a block calculation of the 

moments u p  to some fised order k 2 0. 

Theorem 3 Let i be the regeneration hedging state (/or sorne i = 1, 2, . . . , m). 

Coeficients of the injinile series erpansion up to some f i e d  index C in (18) are 

obiained as fol10 ws. 

1. Set the initial ualues of the ueclor mornenls al zl, (in terms of the single 

unknown componenl m1.o iji # 1, or m ( )  2 = 1) 

- For i # 1 

a€[?, ..., n], 



and 

- For i = 1 

The only unknown parameters in  the feft-hnnd side of (37~-6) are the scalar 

~ a l u e s r n ~ , ~ ,  q = 0,1, ..., k ,  i f i f  1 o r m i , q ( r J ,  q = 1, ..., k ,  i / i  = 1 .  

;Vote that m,,,(z) is Ihe ath component ofrG,(x). 

2. Prapagale the inilial ceclor &(zJ by using (15), Tttus given: 

aiid recalling the definition O/ rk in (2.3): 

* 4 

( )  = e p ( -  * ( - 2 ) )  ( )  k 2 0 . 

.4t that point, al1 calues ut 2: are h o w n  as a function of n ~ ~ , ~ ( z ; ) ,  q = - 
O. . . . . k i f i  f 1 or n ~ ~ , ~ ( r J ,  q = O, . . . , L if i = 1. rk(=F)  is then computed 

b y soluing the following equat ions: 



Combining (38) and (390) the additional set of unknowns is respectiuely mz,,, 

q = 0 , l .  ..., k i / i  # 1 o r m 2 , & ; ) , q  = 0,1, ..., k, i f i  = 1 .  

3. Repeat step 2 with AjVk substituted for Alek in (38), zj substituted for ,-1 and 

z,+1 substituted for 22. Furthermore (39a) and (396) are replaced by:  

- f o r  j # i not a regeneration state: 

j , j j , q j , q -  + V q ( )  - ( )  = 0 
Ior q = 1, ..., k, ( 4 0 4  

A j j  mj.0 f ü: m j n o ( q )  - vj-'  = O 
for. q = 0. 

j o r û  # i 

For each value of j ,  additional sets ojunknowns are e i t h ~ r  mj,, , q = 0,1, . . . , k ,  

i j j  # i , ~ r r n , , ~ ( z ; ) , q  = O , l , . . . ,  k , q j  = i. 



4. At z,, ïk(z;) must satisfy the /ollowing orthogonality condition: 

where in ( d l ) ,  w ; , ~ ,  j = 1 , 2, . . . , m, 1 = 0 ,  2 ,  . . . , k represent the generaliied 

grade 1 lejt eigenvectors of Amc associated with the m eigencalues with non 

positive real part. 

Once G , ( x )  and mj,, q = O? 1, . . . , k, j = 1, . . . , m, are known, Ci, /or 

q = 0.1. ... , k are obtained by inleyrating ouer x according to eqnatiori (20). 

Proof: 

The theorcm can be derived by perlorrning calculations similar to tliose in Lemma 

2 on a Laplace transform version of the PDE system defined in Lcnima L combined 

w i t h  utiiizatiori of Lemma 2. Thus (37a), (39a), (4Oa) follow from boundary con- 

ditioris of t~.pc (Ga) and (6b) i n  Tlieorem 1. (3s) follows from Lemrna 2. (37b), 

(39b) and (-[Ob) follow from the modified boundary condition (7) in Lemma 1 to- 

jether with initial condition (S). (41) derives from boundary condition (Y4a) (as 

r + -x?) in Lemma 2. Indced, the calculation ol  T E , ( Z )  q = 0. 1, . . . , P and 

rn,+ j = 1,. . . , m. q = 0, 1, . . . , L proceeds by propagating equations from the 

first region R i ,  down to the last rcgion R,. In each region, a total of k + 1 new 

unknowns is generated. namely q = 0, 1, . . . , k. i f  j f i (not a regeneration 

tiedging point) or mj,,(~,-), i f  j = i (i-e 5 is the chosen regeneration hedging point). 

Oncc the infini te region R, is reached, a total of rn x (k + 1) unknowns has been 

accuniulateci. At that point one uses the additional boundary conditions at minus 

infinit!. stating that lim,--, 6 , ( x )  = O, g = O, 1, . . . , k, which is equivalent to 
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requiring that the vector r r ( z ; )  = [Gh(z), . . . , fi:(z)lt be orthogonal t o  the left 

eigenspace associated with the exactly m distinct eigenvalues of Am,k with negative 

or zero real parts, and multiplicity k + 2 .  That rn is the number of such eigenvalues 

is dictated by the ergodicity criterion developed in [Il] Theorem 2, and equivalent 

to assumption (11). This eigenspace is of dimension (k + 1) x rn and (41) provides 

the required addit ional equat ions. H 

5 Padé approximants and asymptot ic estimates 
of the cost functional 

Recall that our main objective is to  be able to estimate the finite horizon cost under 

an arbitrary t ime-invariant hedging point control policy. Thus, an inverse Laplace 

transform must be performed using equation (1s). The Padé approximants are a 

particular type of rational fraction approximation to the value of a function [9]. In 

this context. the main idea behind the  use of this approximation technique is to 

match t tie Taylor series expansion or the Laplace transîorni of functions of time of 

interest as far as possible. Thus. Padé approximants will provide a rational fraction 

approsimation which will partially match (first 2 p + v coefficients) the 

Taylor icries cspansion associatcd say with both the numcrator and dcnominator 

of the Laplace transform of the cost functional in (1s). P,+,(s) and Q,(s) are 

pol~*rioriiials with degree p u and p respectively, v 2 ( -  11, [-1. Given that as 

s + O in a Laplace transform, it is the behavior as 1' 4 ca which is captured, 

inverse transformation of the Padé approximants will provide estimates of the finite 

horizon cost iunctional which improve for a given order of approximation as T 

increases. For applications of Padé approximants in the area of communications 

see [-51. 

Sow when carrying out Padé approximants, a question of great relevance is 

wliether the series to be approsimated is a so-called Stieltjes' series (21. The impor- 

tance of Stieltjes' series stems [rom the fact that, even though in many practical 



95 

applications Padé approximants can still function very well for non Stieltjes' series, 

few general results are known outside the realm of such series insofar as convergence 

characteristics and structural properties of the approximants. Importantly, Stiel t- 

jes' series are such that any sequence of approxirnants to an analytic function 

in the cut cornplex plane converges to that function as p tends to infinity, v 3 (-1). 

The convergence is uniform with respect to p for every point in Isl < R , whereas 

it is geometric with respect to p and it is pointwise in -m < s < -R, where R is 

the radius of convergence of the power series En=, I, sn (theorem 16.2 pp.220 [2]). 

Furt hermore, for Stieltjes' series, al1 poles given by Padé approximants to this type 

of series are negative real with al1 residues positive and the roots of the numerator 

interlace wi t h t hese poles ( t  heorem 15.1 pp.2 13 [2]). Therefore,pi*ovided that both 

numerator and denominalor infinite series in (18) are Slieltjes' series, by using 

higher orders of Padé approximants for each. one can improvc the  approximation 

of C i ( T )  via a sequence of stable approximating functions. 

In what follows, we review the definition of Stieltjes' scrics and report a deter- 

niinantal condition which is botli necessary and sufficient for a series to be Stieltjes. 

Sti t>scquciitl~ we prescrit arguments tliat establish t hat bot h numerator and denom- 

inator of ( I d )  satisfy nt least necessary conditions for beiiig series of St ieltjes. 

.-\ serics /(s) = xo fj (-s)' is said to be a Stieltjes' series [5] i f  and only i f  

tlicrc is a boiinded, non decreasing function d(l)  taking on infinitely many values 

in ttic intcrval 0 5 1 5 oo such that 

Flirt herniore. a necessary and sufficient condition for a scries to be Stieltjes [-] is 

tha t  al1 determinants D(m, n )  defiiied by: 

f m  fm+i - - -  fm+n 

D(nr.  r z )  = 

for m,n = 0,1 ,2  ,..., 
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be positive. Note that for the above determinanta1 inequalities to hold, they should 

at least hold for the associated senes f (s) = fj j! ( - s )J .  

We now go back to (18) and establish that the above necessary condition holds 

for the infinite series in both numerator and denominator. We start with the de- 

nominator of (18) which satisfies the n e c e s s q  condition automatically since the 

sequence of pi's corresponds by definition to the moments of the time to first return 

to zi in mode i p.d.f, i.e., p k  = Jo t j g i i ( t )  dt .  This, by definition, corresponds to 

a Stieltjes series. Furthermore, the numerator of (IS), is given by 

and the associated series obtained by elirninating the & term can be shown to be a 

Stieltjes' series. Indeed, we have the following proposition 

Proposition 1 I j  the mnning cost [(x) is convex, with a min imum at zero, and 

boundcd in growth b y M Jx JP for 1i.I some positive constant and finite integer po wer 

p > 1. then the following infinite series: 

Proof: See Appendix A.. In Summary, while t h e  numerical results to be 

reported in the next section correspond to a Stieltjes' series type of behaoior, we 

are only able to establish that necessary conditions for the two infinite series in the 

numerator and denominator of (18) to be Stieltjes' series hold. 

6 Analyt ical and simulation result s 

\\le start by considering the type of system presented in (241. The manufacturing 

system is characterized by a two states àlarkov chain having the following transition 

matris: 
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Let r = and q l  = -All. The system must satisfy a given and constant demand 
-111 

rate d. The randorn capacity sf the machine is such that ü1 > d and ù2 = 0. 

Define ul and vs as in Theorem 1. The index of the generic region is omitted 

since we have only one feasible state and hence one hedging inventory ievel. CVe 

assume t hat transition rates are such that ergodicity assurnpt ion (1 1) is satisfied. 

Under assumption (1 l), the systern admits one zero eigenvalue and one positive real 

eigenvalue, 72 and 71 respectively: 

h ( r v 1  + v2) 
-Yi = 

211 2'2 
(44) 

Using Lemmas 3 and 4, the obtained grade 4 generalized eigenvectors associated 

with y j ,  j = 3, 1, are respectively as follows: 

Sote that  frorn these two vectors one can retrieve grade 12,3 generalized eigen- 

vcctors for the matrices Ai,  k < -4 (31). Also, they are sufficient to generate the 

corrcsponding chain of independent eigenvectors vj,l as defined before, j = 1, 2, and 



The different moments of gi i ( t )  are given by 

In order to sirnplify the expressions reported here, we will fix vl = 1 and v2 = -1. 
The first two coefficients in the infinite series a t  the numerator of (19) are given by 

The complexity of the analytic expressions increases as we consider higher order 

terrns in the  asymptotic series. If we now keep only the inventory level rl as a 

parameter and we fix r = 2, ql = 1, application of Padé approximation to equation 

(19) for k =1, v = -1 and p = 2 ,  yields: 

in Xppendix B. 

For the  three-state (trvo feasible) machine case [23], analytical Padé approsi- 

mants are obtained when hedging levels are left in symbolic form. Unfortunately 
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the expressions calculated using Mathematica software becorne so complex that 

they are no longer of great use. 

The chosen sample manufacturing system evolves according to  m irreducible 

Markov chah  with intensity rnatrix: 

-4 3 2 1 0  0 
O -1 O 

-2 O O -1 

- 
c+ = 0.2, c = 1; 

In addition, Figure 2 and Figure 4 represent (for the two-state machine and the 

three-state machine cases respectively) a verification of the quality of the Padé 

approximation with seven coefficients retained in the series expansion, by comparing 

it for a given choice of the hedging level (the infinite horizon optimal value) to the 

results ob tained by direct numerical (Lax- Wendroff met hod [?T l )  of the PD E system 

in Theorem 1. Note that the curves shown are for v, and they match very closely 

ecen /or small values of the horizon length. Figure 3 and Figure 5 are examples of 

numerical synthesis of a n  optimal TlHC policy for the two-state machine and the 

ttircc-state machine examples respectively, using the Padé approximants approach. 

The important fact that must be underlined here is that for esample in the trvo- 

state machine cwe, Padé approxiniants provide after a short one-t ime calculation 

baseci on Theorem 3 a generic expression of Ci(T)  as a function of the arbitrary 

tiedgirig lcvel 21 (see (52)).  Optirnization can be readily carried out using that 

es pression. The al ternative optimizat ion met hodology based on the numerical so- 

lution of the PDE system of Theoreni 1, would require the Lax- Wendroff solution of 

a two-dimensional PDE /or euenj search value in the hedging level space. Further- 

more, rvhile in the multi-state machine case no useful generic expressions of Ci(T)  

in terms of the hedging levels can be developed, al1 Jordan types of computations 

( 3 1 )  need to be carried out only once (Jordan forms are not affected by the par- 

ticular clioices of hedging levels). The calculations that need to be perlormed for 

every point in the hedging Ievels search space are the relatively innocuous (linear 



infinite hortzon optimal average cost 
. 

Y l 

Figure 2: Application of Padé approximants to the  two s ta te  (one feasible) machine 
case (r l  = 1.3863). Rational approximants of order 5 have been used. 

Figure 3: Optimal hedging point using Padé approximants 
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Figure 4: Application of Padé approximants to the  three state (twvo feasible) ma- 
chine case (zl = 3.0678, 2 2  = 2.9156). Rational approximants of order 5 have bcen 
used. 

n t ,  

2.91 
, - -  

sfeady state optimal hedgtng point zl 
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Figure 5: Optimal hedging levels using Padé approximants 
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algebraic) ones in Theorem 3, while generic expressions for integrals such as in (20) 

in terrns of the arbitrary unknowns of Theorem 3 equation (44a-b) can be developed 

off-line based on the calculated Jordan form. In addition, once enough terms of the 

infinite senes are computed, simple linear algebraic types of computations for Padé 

approximants must be carried out. Thus, the repetitive part of the computations is 

quite limited compared to a cornplete Lax-Wendroff solution up to time T (together 

with the numerical integration to compute the cost functional) if a PDE based type 

of algorithm is chosen. Finally note that while in the paper (Fig. 5 for example), 

we have computed optimal hedging levels for euery horizon length up  lo tirne T, in 

practice we only need the optimum for a single length of horizon T. This means 

having to search over a lot fewer points in the hedging levels search space (partic- 

ularly for large T where one can initialize the search with infinite horizon hedging 

levels) . 

7 Conclusion 

We have considered the finite horizon optimal floiv control problem for single part 

multiple Failure state manufacturing systems when controls are restricted to the sub- 

optimal class of t i me-invariant hedging control policies (TIHC!. A renewal equation 

for the finite horizon (length T)  cost functional has been developed and used as a 

basis for generating the coefficients of an infinite series expansion of the Laplace 

t ransform of the functional when viewed as a function of T. 

Calculation of the infinite series coefficients is based on solving a system of 

piecewise-smooth coupled differential equations, and is organized according to a 

recursive scheme. The coefficients depend on the particular choice of hedging level 

parameters. For each choice of parameters, Padé approsimants can be used to 

obtain an approximation of the cost functional which improves as the length of the 

cont rol horizon increases. Numerical experiments suggest t hat the quali ty of the 

approximation is in fact very good. The search for optimal parameters becomes 
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a numerical optimization problem. For a given numerical application, cdculations 

can be performed orders of magnitude quicker than the competing optimization 

method based on repetitive solutions of the PDE system of Theorem 1 for different 

hedging levels. In order to give an idea of the Iength of computations, for the 

particular sample three-state manufacturing system in Section 6, optimization for a 

single value of control horizon required on average approximately 10 minutes. That 

is 15 tirnes less than what is required for a single run of Lax-Wendroff solution for a 

fited hedging level (without optimization). Notice that the algorithms proposed in 

this paper can also be applied to the transient optirnization of failure prone multi- 

part rnanufacturing systerns if one uses the partwise decoupled subopt imal control 

strategies of Caramanis and Sharifnia (101. Furthermore, the same theory can, with 

very minor changes, be applied to tlie case where machines failure rates depend on 

the instantaneous machine rates of production (See Mu and al. (SI). Indced, the 

renerval structure of the cost functional (equation (13)) is still preserved in that 

case. 

In  future work, rve sball report on a n  analysis of the singularitics associated ivi t  h 

t he  Laplace transform of tlie finite horizon cost functional. what they can tell us 

about the rates of convergence to steady-state, and suboptimal control policies. 
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Appendix A 

Sketch of the proof of the analyticity of the Laplace 
Transform at s = O 

The proof proceeds in two steps. In the first step, following Malhamé [11] we adjoin 

to the PDE system with boundary conditions in Lemma 1, an additional absorbing 

boundary in the R, infinite region at some finite level Zn. We show via stochastic 

domination types of arguments that for t his modified system, the total enclosed 

probability mass decays exponentially with time, and are able to conciude that al1 

Laplace transforms exists for Be[s] > a where ct is strictly positive scalar. Thus, 

s = O is tnside the region of convergence of al1 Laplace transforrns. But Laplace 

transforms are analytic inside their region of convergence (41. Thus s = O is a 

point of analyticity. We further show that even as za goes to minus infinity, the 

analyticity at  s = O is retained. 

The second step of tlie proof consists in wking whether the introduction of 

an absorbing boundary at minus infinity modifies in any signifiant way the PDE 
4 

system of Lemma L. \.Ve knoiv that for t finite, Lm,-, j ( x ,  t )  = O. However, this 

ma- not be t h e  case as t goes to infinity, particularly i f  the system is  not feasible in 

tlie long run.  However, under t h e  eryodicity criterion in ( 1  l ) ,  a steady-state will be 

reactied and the  steady-state solution iç such that lirn,-, / ( r )  = O. Thus for the 

ergodic case the analyticity of Laplace transforms at s = O is retained, given that 

the added boundary condition at minus infinity does not m o d f i  the PDE system 



Proof of Lemma 2 

Recall, that in each region R, the hy brid density vector f(z. t ) evolves according 

to: 

By taking Laplace transforms on both sides of ( A . l )  we obtain, for s in the region of 

convergence of the Laplace transform, and using Lebesgue's dominated convergence 

theorern together with the assurnption of absolute continuity of f ( x ,  t )  in each Ri: 

i = 1, .... m. and V x € R i  

Sote t h  by evaluating tliis esprcssion at s = O, (which is aliowed because ive 

have assiinied that under condition (1 1), s=O, is in the region of convergence of the 

Laplace trnnsforrn), we obtain (2 1)  for q = O if  we recall that / ( r ,  O )  = O V z c Ri, 

i = 1.  2. . . . . m. Further differentiating once (A.2) with rcspect to s for q = 1: 

Iiccalling [ 16) and let ting s go to zero ive have: 

lr.hic!i is (21 )  for q = 1. Now, differentiating twice (A.?) with respect to s yields: 

V x c  Ri, i = 1 , 2  , . . . ?  m. 

(-4.3) siiggcsts a general formula wliicli we shall prove by induction. Assume that 
3q+ 1 I;l(r,3) 

, I r  6 s q  
satisfies for some q 3 1: 



q+2F z * s  Let us show that will satisfy (A.4) with q replaced by q + 1. Indeed, 

differentiating (A.4) once with respect to s yields: 

which proves that (A.4) is true for (q + 1) substituted for q. Given that (A.4) is 

true for q = 1- it will then be true V q 2 1. Multiplying (A.5) by (- 1)q and letting 

s go to zero yields: 

This establishes (21). Formula (25) in the lemma can be deduced from (24). (24a) 

lollo~r-s from (A.61, and the analyticity requirement of F(z,  s) at s = O (finiteness of 

n i k ( x )  V x 6 Ri. V k 2 O )  under ergodicity assumption (1 1). Indeed otherwise, given 

that under ( I l ) ,  the .4,,e7s, whicli have the same distinct eigenvaiun as V ' '  A t ,  

have esactly n - rn distinct eigenvalues with positive real parts, (theorem 2, [ l l ] ) ,  

uriless (-da) is satisfied, t h e  r i i k ( x )  will be infinite for x finite in R, (see [ I l ]  for 

fcrthcr details). E 

Proof of Lemma 3 

CVe have 

yields after multiplication of botli sides by Qio 



where Aj is a diagonal matrix defined as follows: 

Thus the j ih row of A, presents only zero entries. This implies that the second and 

third term in the Ieft hand of equation (A.7) have their j th eetry equal to zero also. 

Recalling (A. 7) and using (Qio w ~ , ~ ) '  = [O. . . l j in  . . . O l t ,  this yields: 

which is the same as 

where = QiVo L<-' PiBo and a. = -u;;, vji being the j th  diagonal element of matrix 

y. 

Proof of Lemma 4 

Rcfore statirig the proof of Lemma 4. ive need the following technical lemma 

Lemma 5 Le! L = ?., 1 - :1. dier-e X j  e {.\;}, i = 1, . . . . n !he se! al! eigenra!ues 

of .4 nssunied d id inet .  Lei B be alcy given  non-singular rnntr ix,  t h e n  we h a v e  

r n n k [ L  B LI = n - 1 (A .  11) 

Proof: L'sing Sylvester's inequality [ I l ,  we find that 

n-" r a n k [ L B L ]  n - 1 .  (A. 12) 

Thus to satisfy (A.  111, we must prove that rank [ L  B LI # n - 2. Suppose that  is 

not truc and 
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This yields: 

where (*) stands for adjoint operator. Let P and Q such that L = P A  Q, where 

il is a diagonal matrix and P and Q are matrix composed by the right and left 

eigenvectors respectively (P Q = 1). Equation 

A' Q B' P A' = O, with A' = diag 

where the Kronecker delta is such that b i j  = 1 

r n 

(A.14) can be written as 

if i = j and O otherwise. This yields 

Li= Q B* P !lm = diag (A.16) 

with Bij is the j th  diagonal entry of B' = Q B'P which is equal to qj Bœpj.  q j  

and p, are the left and right eigenvectors associated with A j  respectively. Then to 

satisfy (r\.l-L) we must have 

'I, B ' p ,  = Trace [Bu pj q,] = 0 .  

Sow. as B' is a non-sirigdar mat rix. rnnk [ p j  q j ]  = 1, and necessarily ran k B pj qj  = [ =  '1 
1. Trace [B' pl q ] ]  cannot bc ecltial zero since B- pj qj possesses a unique non-zero 

eigcnvalue. Thus [L B LI' # O and consequently rank [L B LI = ri - 1. . 
Proof: of Lemma 4 

In the following, O stands for the nuIl matrix wit h the appropriate dimension and x 's 

denote vectors with possibly non zero elements. Let W ; , ~  be a right eigenvector of 

di,o = \<-' A t  associated with the eigenvalue Ai, for some fised i, j ,  i = 1, . . . , m, 

where L;,, = A j  - Ai,k. 6 = 0, 1. . . ., mith Aiek as defined in (25). In order to 

simplify notation. we shall drop the superscript i in the rest of this proof. Then, is 



easy to see that: 

with 

Focusing now on Lj,l and in view of the fact that X j  is an eigenvalue of Al with 

multiplicity 2, then rank(N(L:,,))  = 2, where N(.) stands for the nul1 space. Let 

iuj,l be a geneialized eigenvector of Lj , l ,  ivhich we partition as wiVI = i u i ]  , 
t hen 

Frorii (:\.22). sincc A, has multiplicity one in iii,o, rank[N(L;,,)] = 1, it follows that 

( 1 1  u = 7 icjs for some scalar 7. Now there always exists a n  eigenvector of Al  such 

~ t i a t  + O ,  otlierwise. from (A.'23), t he  only eigenvectors of ..LI would be of the form 

[O i 3 icj,o] ' ivith 3 # O, whicli cniinot be true rince tliere must exisi tivo linearly 

iridcpenderit generalized eigenvectors associated with A, in .:lj- Thus. one must be 

abIr to pick -, # 0, and in particular 7 = 1. 

In ttiis case (A.23) irnplies tliat there must exist a ul such that: 
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Note that ul # O, otherwise V-' wj-0 would also be an eigenvector of Aj,o which, 

as it can be shown, is excluded if the  generator A corresponds to an irreducible 

Markov c h a h  Furthermore, (A.24) impiies that , 

for some scalar ao. Now a0 cannot be zero for if i t  were the case then ul # O would 

be such that: 

T h u s  using Lemma 5, rank [N(Lko V Ljto)] = 1. Consequently ul would have to be 

equal to some P w,,o w h e n  @ f O. In that case (A.24) yields that V-' wj,o is  also 

an eigenvector of A. which, as Ive mentioned earlier, is excluded. So there must 
t 

erisi a ( i l  # 0. and uo # O satisiying (A.25). in thir case, since [ZU,,~ l u l ]  # 0, 
t t 

[wjVo i u1] = O and L . 1  [wjeo i ui] # O (irorn (A.%)), [uijVo i ul] ia a grade 2 

generalized eigenvector of Al. 

Suppose now that wj ,k -1  = [ w ~ , ~ - ~ ,  ~ h - ~ ] '  is the grade k generalized eigenvector 

of Ae-l  associated with A j  such that: 

irith i i k - ,  f O and nk-, # O. The grade k + 1 generalized eigenvector of A k  

associated with A j  can be constructed as follows: 

L .- A 

iising equation (A.  l g ) ,  L:,, is given by 



we have 

which yields 

Since Aj is an  eigenvafue of Ai-l with multiplicity k, the  r a n k [ ~ ( ~ ~ , ~ ~ , ) ]  = k, thus 

(1)  wjVk = -/ 2uj.k-1 for some scalar 7. There  always esists  a n  eigenvector of Ak such 

that  7 f 0, otherwise, from (A.31), the  only eigenvectors of Ak would be of the  

form O : , $ W ~ . ~  with 8 # O, which cannot be t rue  since t h e  must exist k  + I [ 1' 
linearlj- independent generalized eigenvectors associatcd wi th  A; in Ae. Thus, one 

miist bc able to pick 7 # 0. a n d  in particular y = 1. Tlicn (A.31) implies that there 

miist csist a i r k  sucti that 

for soitic scalar al.-,. Csing cquation (A.27), equation (-4.33) can be written as 

SOW. c t k -  cannot bc zero. For i f  it werc the  casc thcn: 
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Thus the second term in the left-hand side of (A.35) must be equal to some /3 wj.0 

rvhere ,û # O. Using Lemma 5 and equation (A.34) yields that V-' wj1o is also an 

eigenvector of A. which as we mentioned earlier is excluded. Also, uk can not be 

equal zero, for if it rvere the case then 

Two different scenarios can then happen. In the first one, suppose that (an-' I + k ai-2 V- ' )  

is a non-singular matrix then equation (A.36) gives: 

which yields, using Lemma 5 and (A.37), the impossible fact that V-' wj.0 is an 

eigenvector of Ao. In the second scenario, suppose (ak-[ I + V-l)  is a sin- 

gular rnatrix. Thus, there exists at Ieast one entry of V - ' , k  Say, such that: 

Recalling the result given by Lemma 3: 
1 

Let r n n k  ($ I - Y - ' )  = r! 1 5 r 5 11 - 1, then by Sylvester's inequality [l] 

whicli suggests two possible cases. First of all, let 

then, since [($ I - V- ' )  pj.0 e,o] posçesses a unique non-zero eigenvalue, Ive have 



SecondIy, let 

and let qj,o = [xi, . . . , x.] and pj.0 = [yi, . . . , y,] with qj,o-pj,o = 1. Using the 

fact that (1 I - V-' )  is a diagonal rnatrix, then to satisfy ( A . 4 4 ) ,  ive rnust have 
va 

t.1 = y1 = O for al1 Z = 1, . . . . n and 1 #,a and xi 91 = 1 for 1 = a, which is 

excluded if the generator A corresponds to an irreducible Markov chain. Thus, uk 

cannot be equal zero. 

So there must exist a u k  # 0, and a k - ~  # O satisfying (A.33). In this case, since 
t t t 

[ w i k - l  uk] # 0, LfZ1 [wj,k-i Q] = O and LIvk [u>,,k-, i ut]  $ 0, = 1, . . . , k, 
t 

[w,,~-, i U k ]  ir a grade k + 1 generalized eigenvector of Ai. . 
Proof of Proposition 1 

Proof: : Consider the Ph term in the  series: 

w ticrr iisc lias becii niade of Tonnclli's theorem [5] .  Noiv definc: 

In vicw of the non negativity of the time integrand, Q ( 1 )  is monotone increas- 

ing function. Folloiving the definition of Stieltjes' series, (51) would then be a 

Sticljtes' scries if Q(co) is finite. Noiv in view of the assumed properties of P(x),  

and  the fact that at an' t ime T ,  3, - ( d )  ( r )  5 x(r) 5 z l o  and t ( x ( r ) )  5 

r u i t l  [ î (z l  ). [(z,,, - ( d )  ( r ) ) ]  t hen  

+Lm/-, ic [ E ( : ,  - d  r )  fil, t ) ]  dx d r  



ivhere in the above Tonnelli's theorem (31 and the @en bounds on b(z) have been 

used. Now cleariy J" /(x, t )  d r  = 6&), and given the system of equations (theo- 

rem 3) of rvhich Go(x) is a solution, mO(z) is bounded every where in US' &. The 

only region where it is possibly unbounded is Rm, but in fact, in view of (24a), it 

can only be of the form C;:? LVj eep(Aj x )  for some vectors k'Yj c R", with the A,, 

j = 1, . . . , n - m eigenvalues of V;' At with strictly positive real parts. Thus the 

first term in the right-hand side of (54) is bounded (since nio(x) is integrable). Sim- 

ilarly, if  one expands (2, - d r ) P  into a (finite) polynomial in r ,  one obtains for the 

second integrai in (54), a linear combination of terms of the form JTm 1' G , ( x )  dx 

with q = O. . . . , p. Furtherrnore in &, the components of ?ii , (x)  are al1 linear 

conibinations of terms of the form xq exp(Xj x), q = O, . . . , p,  j = 1, . . . . n - m. 

Tliiis the second integral in (5.1) is finite, and Q ( t )  is bounded. This completes the 

proof of the proposition. Notice that the same arguments could go through if the 

bound on the cost E(x) is exponential with the (real) coefficient of the exponential 

iiot esceeding the srnailest real part of the XjYs, j = 1, . . . . n - n2. I 

Appendix B 

1 Coefficients of Padé approximants for the two 
sta te  machine case 
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Abstract 

Single Part multiple failure mode manufacturingsystems under the class of hedging control policies 

are considered. A renewal viewpoint of the dynamics is exploited to develop an integral equation 

for an integral type control cost functional over a finite tirne horizon T. The kernei of the integral 

equation is a first passage-tirne probability density and is obtained as the solution of an appropriate 

system of partial differential equations. We use that frarnework to  show that the convergence to 

steady-state of the average cost per unit time cannot occur any faster than that the statistics of 

the underlying machine failure mode Markov chain. Closed form solutions for the cost functional 

asyrnptotics for the tti'o failure state machine case are obtained for large T, and used to optirnize 

hedging control policies over possibly large but nevertheless finite horizon. 

1 Introduction 

Starting with the serninat work of Kimemia and Gershwin [3], the class of hedging type control 

policies in rnanufacturing systems was recognized as very likeIy to comprise in many situations the 

optimal control policy. In the single part rnultiplestate manufacturing system case, hedging policies 

are characterized by a set of criticai inventory levels ,, one associated with each feasible machine 

state ,, towards which one must converge as quickly as possible. Using a dynamic programming 

framework Akella and Kumar [l] established rigorously the optimality of such a policy in the two 

state, single part, constant demand manufacturing system case. They also solved for the critical 

inventory level. Subsequently, Bielecki and Kumar [2) and Sharifnia [l recognized that it was 

easier to solve a parameter optimization problem within the class of hedging control policies, 

rather than a full-fledged optimal control problem, and did so in the twestate and multiple-state 
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machine cases respectively. AI1 existing resu1î.s however were based on optimizing the statistical 

steady-state of an ergodic system, and thus essentially dealt with infinite horizon problems. 

In this paper we use extensions of the  renewal theoretic frarnework first developed in [dl, to 

derive an integral equation associated with an integrai type performance functional over finite 

horizon, for the single part, multiple machine s ta te  case. The kernel of that  integral equation is 

the probability density function associated with the time to  first return to  a given hedging level 

(in thë corresponding machine state). T h e  main quantities in the integral equation are obtained 

as  solutions of coupled partial differential equations with appropriate boundary conditions. This 

framework is used to  derive a theorem which constitutes a rather intuitive bound on the speed with 

which the time average of the cost functional converges to  its ergodic steady-state (based on which 

existing uptimal solutions have been obtained). I t  States essentially that  this speed is bounded 

above by the settling speed of the statistics of the  underlying machine failure state Markov chain. 

Subsequently, closed form expressions are  obtained for the asymptotic cost functionals associated 

with hedging control policies in the particular case of a two-state manufacturing system, over a 

possibly large but finite time horizon. These expressions are used to optimize the choice of hedging 

levels over a finite horizon. The  minimal length of the horizon for the asymptotic analysis t o  hold 

is characterized in terms of the parameters of the failure mode Markov chain. 

2 An integral equation for finite horizon cost 

We use the rnodeling framework of sharifnia [il. T h e  parts production process is represented by a 

fluid flow with random disruptions. More specifically: 

z( t )  : parts surplus a t  time t 

u, : production rate in failure mode a 

d : rate of demand for parts 

- in mode a, u, is bounded by û, 

- Q evolves according to an irreducible finite s ta te  Markov chah with s ta te  transition intensity 

matrix A. 

- Q = 1, ..., m feasible (i.e û, > d) 

a = m+l,  ..., n infeasible. 
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A finite horizon integral c e t  J is considered: 

where t ( t t )  is the cost per unit time a t  surplus levet zt. This cost is to be minimized. 

The hybrid probability density vector 

fi+. t )  = [ /i(z. t ) ,  . . . . f,(r. t)lT evolves according to [4]: 

at hedging levels 21, 22, . . . . 2, and where Zm+l = -m. The boundary conditions at hedging 

points are given by: 

for j = i 

where the Pz,'s are the probability masses at Z i ,  i = 1, 2,  . . ., m. In addition 

Finallu note that: 

\" = diag [CL] 

III  [LI]. a .\larkov chain ernbedded into the hybrid state Markov process is defined by focusing 

on the successive instants where hedging points are reached and recording thereupon the corre- 

spondirig machine state. IYhen the machiric state is in correspondance with the hedging point, the 

rcgcncration point wilt be called a Iiedging point state of the enibedded Markov chain. 

Tlicorerii 1 Let i be a hedging point regencraiion d a t e  /rom the embedded Markou chain [a. 
f i e  cos1 juricîiotial condittonal t a  the inttial siale i C;(T) salisfies the follouring tniegral equaiion: 
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tuhere in (3) 

gii(t) : the p.d.f. of the firsi return of t ( t )  tu Zi with machine date  a = i. 

Thus the first term in the  right-hand side of (3) represents the  contribution of al1 the possible 

system trajectories u p  t o  the first passagetirne, as well as those t h a t  never reached Zi in s ta te  i 

at time t .  In what folIows, we show how one can obtain g i i ( t )  as the  solution of (1)-(2) but subject 

to slight modifications in the  boundary conditions. Computation of the  p.d.f of the first return to  

Zi in machine s ta te  i proceeds as follows. 

- set the appropriate initial p.d.f7s and probability Pz, (O). ex: Ar, O )  = O ,  & , ( O )  = 1. Pz, ( O )  = 

O V j # i  

- Set the appropriate absorbing boundary conditions relative t o  the initial s t a t e  i by e l imina t ing  

the probability e zchange  t e r m  a i  the right-hand side O/ (26).  T h u s  

but: 
dPz (O I= 

dl AiiPz,(t), for j =  i 

and: 

Theorcrli 2 T h e  ezgcrlralues O/ Ihe zntensity n r a i r i ~  .4 of the  m a c h i n e  s t a t e  Jfarkotl chain are 

also s o l u l w n s  of the equat ion:  

wherc g;'(s) is the  Laplace t r a n s f o m  o / g i i ( f ) .  

XII ptoofs are omitted but can be found in (61. 

Usirig integral equation (3) and theoreni 2, it is possiblc to conclude tha t  the  eigenvalues of 

.1 are poles of the Laplace transforni expression of the cost functionat- This implies that if one 

considers the time average 5 Ci(T) performance functional as  in [2] o r  [II, it cannot reach steady- 

statc any quicker than the  statistics of the underlying machine s t a t e  hlarkov chain. This puts a 

lowcr bound on the length of time horizon before one can hope t h a t  the  ergodic optimum hedging 

points of [2] or [il becorne acceptable approsimations of the true optima. Thus  we have: 
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Corollary 1 In the ergodie case (y - c,) is al ieasf O(erp(Amk t ) )  ruhem Ami, is the 

dominant eigenvalue of the infensity ma tnk  of the machine state Markov chain, and C, is the 

sfeady-state average cost per unit timc. 

tVe now give a complete treaternent of the asyrnptotics of the linear cost functional for the 

twestate machine case. While for lack of space as well as simplicity, we use specific numerical 

values for the dynamic model, the analysis can be carried out in full generality (see [6J). 

3 Asymptotic optimization of the two-state machine 

We consider a sample example with two 

XIarkov chain with intensity matrix: 

modes. The discrete system state evoives according to a 

Furtherrnore let: u1 = 2. ù2 = O, d = 1. 

Bccause only one statc is feasibie, hedging policies are cliaracterized by a si~iglc hedging point 

dcnoted Z. Let Q ( x ) ,  t he  cost per unit time be c+ r if r > O and c- r if x < 0. Application of 

the intrgral equation (3).  together witli the first passagetirne computation in (4) yields: 

wliere it is casiirncd ttiat at t = 0, x ( 0 )  = Z, the machine is in s ta tc  1. and C0(s )  is the  laplace 

t rarisforni of t l i t  COSL functiorial. 
'The singularities of that Laplace transform are a mixture of poles a t  sl = sz = O, SJ = -3 and 

branching points  due to  the square root tcrm 
JI +- -1 r (s + 3) at  s4 = -0.0857864 and ss = -2.9142 respectivelu. The asymptotic behavior of 
C ( T )  crs T grows indefinitelu can be obtaincd by considering the residues of thc poles a t  zeros, as 
w d l  a s  the most dominant branching point (i.e the closest to  the jw auis). Fllowing [a], we neglect 
any iritcger powers in the asymptotic expansion of Cœ(s) around the branching point to obtain: 

1 - (2.88389 (c' + c - )  exp ( -2 )  + ? (c' + c - )  Z exp(-Z) - 2.8889ct] - 
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(S + 0.0857864) f + O[(S + 0.085?864))] 

This in turn yields: 

z 1 - [914.103 (c- + c * )  ( l  + O.414?14 Z) e ~ p ( - ~ )  - 914-1031 - - m 

W h e r e  in (7) t h e  constant  t e r m  coïncides with the Bielecki-Kumar l imit  [2]. 

Using (7). for T > & = 23.3137, we seek t o  opt imize via  a s teepest  dcscent algorithm 

t h e  cost functional in (7). T h e  results for t h e  cost,  and t h e  op t imal  hedging point  as a function 

of t h e  tength of the  opt imizat ion horizon a r e  shorvn in Fig.1 a n d  2 below. Xlso, note  t h a t  we 

include a figure (Fig.3) illustrating t h e  betiavior of the closest branching point  ( f rom t h e  j w  a i s )  

as t h e  ratio r = A is varied from 0.01 to 0.9, where ;rl ùl  is t h e  average maxinial  production rl  rii 

capacity. Recall t h a t  the  positioii of this branching point governs t h e  speed a t  whicii convergence 

to steady-state  occurs. 

conchsion 

ti'e have extended the reiiewal theoretic framework of single p a r t  mult iple  s t a t e  maiiufacturing 

systems under hedging policics first developed in [4]. T h i s  \vas used t o  asymptot ical ly  optimize 

hedging point poticies over finite horizons for two-state systems.  In future work, wc will report on 

t h e  theory for three s t a t e  manufacturing systems. 
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Fig. 1. Identification of ~ h c  optirnd Hedgiiig Point level of the tw-state machine case 
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Fig. 3. The optimal finite horizon average cost of the two-state machine case 

F ig. 3. The bchavior or the closest branching point (from the jw  a&) as r = n;bE; is raried 



CHAPITRE V 

POLITIQUES MAXIMALES SIMPLES À 
SEUILS CRITIQUES 

Le problème de contrôle de flux est, en général, un problème multi-dimensionnel 

puisque, dans la majorité des cas, les ateliers de Fabrication flexibles produisent 

plusieurs types de pièces. La détermination de la loi de production optimale est 

complexe. S'inspirant d'une idée présentée par Kimemia et Gershwin [7], Cara- 

manis et Sharifnia [9] proposent une conception sous-optimale où les taux de pro- 

duction appartiennent à des hypercubes souscrits à l'espace de capacité. Cette 

décomposition de l'espace de production fait en sorte que le problème de contrôle de 

Aux multi-dimensionnel se réduit à un ensemble de sous-problèmes scalaires (mon* 

pièce) complètement indépendants. Cette indépendance totale bien qu'intéressante 

au niveau de la réduction de complexité, fait en sorte que la capacité du système est 

sous-utilisée principalement quand le stock de l'une des pièces atteint son propre 

seuil critiqite et qti'une certaine capacité de production est ainsi libérée. 

Dans ce chapitre, nous proposons une nouvelle classe de politiques de produc- 

tion di tes poli tiques maximales simples à seuils critique. Cette classe est incluse à 

l'intérieur de la classe de politiques de production maximales. C'est à dire telies 

que la capacité de production disponible est utilisée en tout temps si nécessaire. 

L'objectif visé a été d é h i  à travers la dernière question posée dans notre chapitre 

d'introduction: 

Comment améliorer le contrôleur sous-optimal de Caramanis et Sharifnia dans 

le cas d'un atelier de fabrication flexible produisant plusieurs types de pièces. 

Ce chapitre représente donc notre deuxième contribution. L'article intitulé "A 

Tractable Class of Maximal Hedging Policies in hlulti-Part 'vfanufacturing Systems" 



mis en annexe constitue le corps de ce chapitre. 

5.1 Formulation du probIème 

Nous considérons une version restreinte du problème 2.2. Le système sur lequel on 

met l'emphase est un système à deux modes produisant plusieurs types de pièces. 

Soit U, ( t )  = [ual ( t  ) , ua2 (t ) , .. . , uq(t)jt le vecteur des taux de production quand le 

système est au mode a. Soit a ( t )  = 1 le mode opérationnel, et o(t) = O le mode de 

panne. La capacité de production dans le mode de panne est supposée constante 

wj(t)  < d j l  j = 1, ... , p, prise sans perte de généralité égale à zéro. ul ( t )  appartient 

à un espace convexe défini par les contraintes linéaires suivantes: 

où ulimw = > d représente la capacité de production maximale quand toute 
ri 

la capacité disponible est allo~~ée à la production de la pièce i, i E B. Soit 
P 

80, = {(uIl, u12. ..., ul,) 1 T ~ u ~ ~  = 1 , la frontiére supérieure de 01. NOUS nous 
i 1 

contenterons de rechercher une poli tique de production optimale à l'intérieur de la 

classe des politiques de production maximales simples à points critiques (politiques 

MSP). Cette classe de politiqiies est incluse dans la classe générale des politiques 

maximales, et ces éléments sont construits comme: 

t étape 1: choisir un point critique arbitraire z = [ri, 22, ..., +,] , 

étape 2: choisir un point particulier c appartenant à anl, avec les composantes 

u;, , ut,, ... , u;,, correspondant aux taux de productions des pièces i E B, re- 

spectivement. c et u; sont appelés le point nominal de production et le vecteur 

nominal des t a u  de production de la poli tique MSP, respectivement. 

étape 3: d é h i r  un ordre de priorité des pièces qui génère une politique MSP 

consistante pour un choix particulier de c. Une politique MSP consistante 



est une politique avec un ordre de priorité des pièces et un vecteur de pro- 

duction nominal tels qu'un processus d'inventaire de pièces ne peut atteindre 

son niveau critique que si tous les stocks associés aux pièces de priorités plus 

élevées sont soit déjà à leurs points critiques ou atteignent leurs points cri- 

tiques au même moment. Dans la proposition suivante, nous établissons que 

pour un vecteur de production nominal doriné il existe toujours une attribu- 

tion des niveaux de priorité garantissant que la politique correspondante est 

consistante. Avec cette attribution de priorité et en supposant que les pièces 

sont réindexées de manière à ce que la priorité décroît avec un indice crois- 

sant, la politique de production MSP résultante est la suivante: pour a(t) = 0, 

tous les niveau. de stock de pièces de type j E B, décroissent respectivement 

à des taux %j - d j .  Quand a(t) = 1, si xi(t) # ;il la production procède 

selon le vecteur de production nominal. Quand a@) = 1, et xi(t) = zi pour 

i = 1, ..., iu, inr 5 p, la vitesse de production est fixée à di pour toutes les 

pièces i = 1, ..., iAf , tandis que pour les pièces i = iArca,.  .., p, la production 

demeure aux tau nominaux Cependant, et en accord avec le caractère ' 

'maximal" de la politique, toute la capacité de production ainsi libérée est 

attribuée à la pièce ihr+i, Le., le type de pièce avec la priorité la plus élevée 

et ayant un inventaire encore déficient. Ainsi, cet te situation perdure jusqu'à 

ce que xl(t) quitte zl (aussitôt que ~ ( t )  saute du mode 1 au mode O) ,  après 

quoi les composantes du processus d'inventaire global, xj (t) , décroissent à 

des taux d j l  j = 1, ...,pl respectivement. Qiiand l'atelier de fabrication re- 

vient de nouveau au mode 1 la production reprend avec les mëmes règles que 

précédemment. 

Il est clair que la performance globale d'une politiqiie MSP donnée dépend du 

choix spécifique de ; et de cl choix qui ont besoins d'être optimisés. Notons que 

cette classe de politiques préserve la notion de seuils critiques d'inventaire comme 

garantie vis-à-vis les pannes de machines. Les performances d'une politique MSP 

en général meilleures que celles données par les poli tiques soiis optimales proposées 

par Caramanis et Sharifnia [9], puisque pour le même choix c E aR1, la capacité 
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Figure 5.1: Application de la politique MSP dans le cas d'un système 
à deux modes produisants deux types de pièces 

de la machine est exploitée au maximum dans le cas des politiques ?VISP. De plus, il 

s'avère que le critère d'ergodicité des politiques blSP est le même que pour n'importe 

quelle politique maximale et correspond à l'appartenance du  vecteur demande au 

poiyèdre de capacité de production moyen . Contrairement, à la technique proposée 

par Caramanis et Sharihia [9] oii une grande portion de l'espace est exclue afin 

de satisfaire le critère d'ergodicité, tout l'espace de production peut être exploité 

dans le ces des politiques klSP. la figure (5.1) illustre l'attribution de priorités pour 

des politiques hISP consistantes dans le cas d'un système produisant deux types de 

pièces. 



5.2 Existence et caractérisation des politiques maximales simples con- 
sistant es 

5.2.1 Politiques maximales consistantes 

Comme nous l'avons mentionné dans la section précédente, les politiques MSP re- 

quièrent un ordre de priorité des pièces caractérisant la manière avec laquelie une ca- 

pacité de production supplémentaire libérée lorsqu'un des processus d'inventaire as- 

socié à un type de pièce donné atteint son niveau critique est affectée pour accélérer 

la croissance des stocks déficients des autres pièces. Rappelons qu'un schéma de pri- 

orité consistant pour une politique MSP est défini comme étant celui où l'inventaire 

d'un type de pièce donné atteint son niveau critique associé, seulement si toutes 

les pièces de priorité supérieures soit sont déjà à leiirs seuils critiques ou atteignent 

leurs niveaux critiques correspondant au même moment. La proposition suivante 

décrit le schéma de priorité qui résulte en une politique hISP consistante. Soit ri, 
les ensembles définis comme suit: 

'lous avons la proposition suivante: 

Proposition 5.2.2 Étant donné un atelier de fabricalion flexible mulli-pièce, soil 

c E a R I  et z définis respectivement comme étant le vecteur de production nominal 

et le point critique visé d ' m e  polilique MSP dont nous n'avons pas encore défini la 

slructure de pnon'té. Soit Di(c) = { j E B 1 c E î i i}  , i E B. L'une des situations 

suivantes peut se présenter: 

(a) aucune paire il j E B, i # j, n'est telle que i E Dj(c) et i E Di(c).  Alors 

un ordre de priorité attribuant à la pièce i, i E BI une p~+on'téplus élevée 

que toutes les autres pièces avec un irldice appartenant à Di(c) résulte 

en une politiqice de production MSP consistante; 
5 

( b )  pour zrne paire i, j E BI i # j, Ut = 2, no?, m o m  i E Dj et j E Di. 

Comme première étape on  utilise lhlgorilhme de priorité prbenté en 



(a) avec la indices i, j ,  ayant le même mng de priorité. Suite à ceLa, une 

attribution aditmire quelconque de priorité ente  indices de même mng 

rchltem en une politique de production MSP consistante 

5.2.2 Caractérisation de la politique de production 

En supposant un réajustement des indices tel que l'indice croît lorsque la pnorité 

décroît, les lois de production de la politique lLISP résultante sont formellement 

décrites comme suit: 

et en général pour la pièce i, i 3 2 : 

où CFi, i = 2, . . . , p ,  est obtenu de l'équation récursive siiivante 

avec ü;, = IL:, . 

5.2.3 Cas générique: machine maître et machine esclave 

La d-mamique du processus d'inventaire de la pièce de type 1 évolue 

indépendamment des autres pièces comme si elle était produite par une machine 

markovienne produisant un seul type de pièce et  ayant comme espace de capacité 

de production l'intervalle [O, ui1] qiiand a = 1. et zéro dans le cas contraire. 



Soit T, l'intervalle de temps entre l'instant où le surplus de la pièce i quitte 

l'état hybride (4,l) et  l'instant où ce surplus revient pour la première fois à (q, 1) , 
i E B. Définissons vlj comme la vitesse de croissance du stock de la pièce de type 

j, j E B, quand le système est dans le mode o = 1. Quand a = O, le stock de 

chaque pièce décroît au taux d j ,  j E B, respectivement. Cependant quand a = 1, si 

XI (t) # ZI, alors 11 (t) croît à une vitesse vil = uil -d l  et zj (t) croît à une vitesse 

vlj = u;j - d j ,  j = 2, ...,p. Notons par &(t) = 1 la situation quand ~ ( t )  = 1 et 

XI (t) = zi, et par g2(t) = O toute autre situation non conforme. De la proposition 

5.2.1, nous savons que xl ( t )  va atteindre la frontière z~ avant que x, (t) n'atteigne 

Zj, j = 1, ...,p. À ce stade, x2 (t) voit sa vitesse changer et croît à ce moment à une 

vitesse différente üi = iï:2 - d2, où Ci2 est d é h i  par l'équation (5.3, pour i = 2). 

Notons que pendant que xi ( t )  possède une dynamique markovienne entièrement 

indépendante de x2 ( t )  , ceci n'est pas le cas pour x2 (t) . Ainsi, la pièce moins 

prioritaire de type 2 peut être vue comme si elle était produite par une machine 

mono-pièce, semi-markovienne à deux modes (02(t) = O et G2(t) = 1) avec un état 

opérationnel qui suit une loi exponentielle (quand xi (t) = zi)  et un état de panne 

associé à un temps de séjour correspondant à la variable aléatoire représentant un 

premier temps de retour (premier retour de xl (t)  à -1  ). 

L'approche pour analyser le coût associé à la machine semi-markovienne se 

compose de deux étapes. Durant In premiére étape la variable aléatoire du premier 

temps de retour est markovianisée en utilisant les approximants de Padé pour des 

machines markovienne multi-mode. Ensuite, en lui associant une constante choisie 

équivalente à la vitesse de décroissance du stock durant le temps de panne marko- 

vianisé et en gardant le taux de variations inchangé quand t i2 ( t )  = 1, une version 

markovienne biaisée (Z2 (t ) , àAr2 (t)) de (Q ( t )  , a2 (t)) est obtenue. Cet te version bi- 

aisée est telle que Za(t) = z2(t) chaque fois 02(t)  = 1 (i-e., quand xi (t) = z1), et 

12(t) > z2(t) dans le cas contraire. Les fonctions de densité de probabilité station- 

naire pour cette machine markovienne multi-mode et  produisant un seul type de 

produit peuvent être obtenues en utilisant la même approche que Sharifnia (251 

(équations différentielles couplées). 



La deuxième étape consiste à reconnaître que la variable aléatoire représentant 

le biais q( t )  G Zz(t) - q ( t )  se comporte quand &(t) = O comme une déviation 

(caradénsable analytiquement) de la dynamique du stock durant le premier retour 

de ~ ~ ( t )  (Ce processus de stock d'une machine markovienne à deux états) à zéro 

(point critique), et  à appliquer subséquemment une correction (convolution) pour 

éliminer le biais. 

En réalité la même procédure peut être appliquée quand nous passons de la 

ik machine semi-markovienne pour le type de pièce i (Gi(t) = O si xi- 1 (t) # G- 1, 

&(t) = 1 si ~ i - ~ ( t )  = z + ~ )  à la (i + 1)- machine semi-markovienne (&+l(t) = O 

si x;(t) # 2, Gici(t) = 1 si xi(t) = 9) pour la pièce de priorité immédiatement 

inférieure i + 1, i = 1, ... , p - 1. Par conséquent, excepté pour i = 1 où la machine 

est rnarkovienne, chaque machine produisant la pièce i, i 2 2, est semi-markovienne 

à d e u  modes (O, 1) caractérisés par le processus semi-markovien i&(t). L'état 

opérationnel suit une loi exponentielle et l'état de panne est associé à une vari- 

able de premier temps de retour (premier retour de ~ i - i ( t )  à ~ i - ~ ) .  

Il s'ensuit que l'analyse d'un problème générique à deux machines il i + 1, 

i = 1, ..., p - 1, produisant les pièces i et i + 1 avec une priorité décroissante, 

respectivement appelée machine maître et machine esclave peut constituer une étape 

très utile pour la détermination des performances d'une poiitique XISP donnée. Cet 

analyse fait l'objet de la prochaine section où nous allons illustrer la construction 

des processus biaisés ainsi que la procédure d'évaluation de la contribution au coût 

de la pièce produite par la machine esclave sous une politique MSP. 

5.3 Approximation du processus d'inventaire de pièces pour la machine 
esclave 

5.3.1 Construct ion de la version biaisée du  processus 

Supposons qu'il existe un processus semi-markovien noté (&(t), Zi(t))et appelé ver- 

sion biaisée de (a&), x;(t))pour un i donné, i = 1, ..., p - 1. &(t) est un processus 



à deux vitesses (une vitesse positive Cli quand &(t )  = 1 (avec Yi  = vil) et une - - 
vitesse négative -4 (avec di = di)), pour un i = 1, ...,p - 1, et  tel que V t 2 0: 

- 
di = di, Zi(t) = q ( t )  
ou 

&(t) = O * 4 < di, Zi(t) > xi (t ) , aussi longtemps que 
&(t-) # 1 et 6 i ( t f )  # 1 

Le lemme suivant établit l'existence d'une version biaisée semi-markovienne de 

(&+ i ( t  ) 9 xi+ 1 ( t ) ) - 

Lemme 5.1 four la pièce immédiatement moins priorilaire, i + 2 ,  une version 

biaisée (6i+i(t),  &+i ( t ) )  de (tià+l(l), xi+1(t)) existe, où ai+ 1 ( t )  = 1 sz xi ( t )  = zi et 
- 
ai+i(t) = O sinon. Zi+l ( t )  est un  processus à deuz vilesses atec une vitesse positive 

i71i+l, et une vitesse négative - 
di+i 5 di+i,  

donnée par 

où le laux d K T ,  peut être ezprimé comme sirzt: 

De plus:  

tandis que 

qt~ancl ai+ 1 (1) = 1. e l  
tarit que Û i + l ( t - )  # 1 et 6,,,(tt) # I 

Le corollaire suivant est une conséquence de l'équation (5.7) 

Corollaire 5.1 soit ~ ( t )  = I i ( t )  - zi(i) ,  le biais e n h  Z,(t)  et xi(l)- Si d; < di ,  

pour tt < t < tt + Tri, tt étant 1 'instant où xi(t) vient juste de quitter , , i,(t) # O 



et évolue selon l'équation dynamique suivante: 

Par conséquent sous une politique MSP, le problème original mdti-pièce de 

contrôle de flux avec p types de pièces peut être réduit à p sous-problèmes mono- 

pièce que nous savons traiter. Le premier problème associé à la pièce 1 peut être 

résolu facilement puisqu'il s'agit d'une machine markovienne produisant un seul 

type de pièce. Sa solution est exactement celle donnée par Bielecki et Kumar [27]. 

Cependant pour i > 2, nous calculons par l'approche de Sharifnia [25] les densités 

de probabilités stationnaires associées à la version biaisée après markovinnisation 

["(t)), 6wi(t)lt ; /;nk (2;) , k = 1, ..., qi + 1, où gi est l'ordre de la rnarkovianisntion. 

Notons que par construction, k = 1 correspond à ànri ( t )  = 1 et k = 2, ...,pi + 1 
q i t 1  - 

correspondent à Gnri(t)  = O. D'où A (S i )  = fhfl (&), et fo(zi) = jnrk ( z i )  . La 
k =2 

quantité encore inconnue à ce stade est Jo(zi) puisque ( x i )  = fi (Zi).  EUe est 

donnée par le lemme suivant: 

Lemme 5.2 : Soil L,(G) la jonclion de densité de probabililé du biais ~ ( t ) ,  i E B. 

Sous la condition d 'ergodicité ( d  E E [O,]), fo(z i )  est oblerrue par 1 ' i n t é p l e  de 

conuolutio~t suivant: 

avec 



A présent, nous pouvons estimer la contribution dans la valeur du coût associée 

à la pièce i par intégration de la fonction !(x) par rapport aux densités de probabilité 

stationnaires. 

L'analyse précédente étant fondée entre autres sur l'hypothèse que le système 

contrôlé était ergodique. Dans la section suivante nous montrons que les politiques 

MSP consistantes sont ergodiques si d E E [QI] . 

5.4 Critère d'ergodicité pour le cas rnulti-pièces 

Dans leur récent travail Srivatsan et Dailery (111 prouvent qiie si la capacité du 

système est toujours utilisée au maximum (sans perte de temps) tant qu'une pièce 

est loin de son point critique, alors toutes les politiques décrites par un vecteur 

nominal c E aRl  génèrent des trajectoires qui atteignent leurs seuils critiques en 

même temps. Par conséquent, en se concentrant e sur les instants de premiers 

retours au point critique z et de premier départ de z. nviis puiivuns constriiire iin 

processus de renouvellement alterné. Ce processus va être ergodique si les retours se 

réalisent avec probabilité un et la moyenne des temps de retuiir est finie [32]. Soit 
,ri 

un point de dRi tel que + = z ,  V 2 ,  j E B. Alors les politiq~ies 31SP vont être 
u -0 

ergodiques si la politique MSP basée sur le choix de est ergodique. Sachant que 

pour une politique bISP basée sur 6,  toutes les pièces possèdent les mêmes priorités 

et atteignent leur seuil critique respectif en même temps (propostion 5.2.1), il est 

suffisant que la pièce 1 ait un temps de retour à 21  fini. Ceci est équivalent à exiger 

que (voir Malhamé [IO], Bieleclci et Kumar [27j): 

Ce qui nous permet d'arriver à la proposition suivante: 



Proposition 5.4.1 Pour le urs des systèmes multi-pièce, La classe de politiques 

MSP est ergodique si le vecteur de demande [d l ,  d2, ..., dp]  E E [ai]. 

Nous avons vu au deuxième chapitre que le cas idéal recherché lors du contrôle 

de flux c'est de produire sur demande et garder le niveau de stock global égal à 

zéro (production just-in-time). Dans la section suivante nous allons présenter les 

conditions nécessaires et des conditions suffisantes respectivement pour que le - 
'just-in-tirne" soit la politique optimale. 

5.5 Conditions d'optimalité du niveau d'inventaire nul (just-in-tirne) 

Dans [13] des conditions nécessaires et suffisantes sont données afin d'établir 

I'optimalité du niveau d'inventaire nul pour une machine non markovienne er- 

godique à deux modes et produisant un seul type de pièce. Le coüt instantané 

est donné par e(x)  =c+ mau(x, 0) + c- max(-x, 0). Brémaud et al. [131 démontrent 

en utilisant les estimés de la première dérivée du coût stationnaire par rapport au 

point critique que le niveau d'inventaire nul est optimal si et seulement si (voir 

Brémaud, Malhamé et Massoulié [13], théorème 2) 

où ri, i = 0,1, est la probabilité stationnaire d'être au  mode i. 

D'un autre part, pour le cas des systèmes produisant p types de pièces, nous 

avons montré précédemment que sous une politique 'VISP le problème de contrôle 

de flux original est équivalent à p sous-problèmes indépendants. 

Cependant pour le cas des systèmes multi-pièces, l'application du critère (5.14) 

sur une base individuelle donne seulement des conditions nécessaires d'optimaiité 

globale de l'inventaire nul z = [q, ..., +] = 0. Ainsi le processus semi-markovien 

caractérisé par [Zi(t), û*(t)lLodmet un nivesu d'inventaire optimal nid si et seulement 

si - 
Ci 5 P [z, = zi1 = P [xi = :,] . (5.15) 

c: + c; 



avec la probabilité P [xi = y ]  donnée par: 

05 Tli et = 1- K l i  représente la distribution de probabilité stationnaire de 6ii(t). 

De plu:  

où T,-, représente la variable aléatoire du premier temps de retour de xi- 1 (1) à 

son niveau critique. E [T,-,] peut être calculée de différentes manières; soit en 

utilisant des résultats connus sur les files M/GI/1 (voir Kleinrock ou Srivatsan et 

Dallery [Il], corollaire 3), ou alternativement en calculant L'espérance de la variable 

aléatoire du premier temps de retour du processus markovien représentant le biais 

êi(t) à zéro en utilisant les techniques présentées au chapitre précédent. Ceci donne: 

pour i = 1, 

où q1 = &, (puisque a ( t )  est un processus markovien). La proposition ci- 

dessous découle facilement de (5.15) 

Proposition 5.5.1 Une coridilion nécessaire pour que f'optirnalité globale d u  

niveau cetique z = [q , ... , ,] = O ,  sous la classe des poliLipires MSP consistant es 

est qu'il &te un vecteur nominal c E dR tel que: 
- 

ci 
+ 5 P [xi = zi] 

Ci +cf 
(5.20) 

i = 1, . . . , p ,  

De plus, sachant que par construction P [XI = z l ]  2 P [x2 = z2] 2 . - 2 

P [z, = G],  nous avons la condition suffisante suivante 
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Proposition 5.5.2 Une condition sumante pour I 'optimalité globale du niveau cr i -  

tique s = [zi, ..., +] = O, sow [a 

P [zl = zl] = 

classe des politiques MSP consistant est que 

En particulier, le point d i q u e  pour ià pièce i est nul s i  

5.6 Conclusion 

Dans ce chapitre, nous avons considéré le problème de contrôle de flux d'un atelier 

de fabrication flexible à deux états et  produisant plusieurs types de pièces. Nous 

avons défini une nouvelle classe de politiques à seuils critiques appelée politiques 

maximales simples à points critiques (politiques MSP). Tout comme les politiques 

caractérisées par des hypercubes souscrits proposées par Caramanis et Sharifnia [9]. 

ces politiques sont fonctions du seuil critique le long de chaque composante ainsi 

que le choix du point c à la frontière supérieure de R I .  Ces politiques de production 

peuvent avoir des performances meilleilres que celles des politiques caractérisées 

par des hypercubes. Ceci est dû au lait que la production est toujours menée 

en exploitant la capacité mmirnale du système. En utilisant I'anaIyse de premier 

temps de passage, ainsi que les approximants de Padé, nous avuns montré comment 

une analyse séquentielle des performances des politiques bISP est possible en com- 

mençant par la pièce ayant la priorité la plus élevée jusqu!à celle ayant la priorité 

la plus faible. Finalement, nous avons également établi que le critère d'ergodicité 

pour le cas multi-pièce est minimal, i.e., le taux de demande des pièces se trouve à 

l'intérieur de l'espace de capacité moyen. Nous avons aussi développé des conditions 

nécessaires et des conditions suffisantes pour l'optimali té du point critique global 

nul. ~~\aLheureusement l'analyse telle que présentée ne peut être appliquée qu'à un 

système à deux modes seulement produisant plusieurs types de pièces. 



ANNEXE IV 

Miilti-Part 
of Maxirnal Hedging Policies iii 
Maniifactiiring Systerns 

Sami El-Férikl, Roland P. Malhamé2, and El-Kébir Boukas3 

Abstract 

The Boat control problem in rnulti-part failure prone manufacturing systems is consid- 

ered. The near optimal controllers of Caramanis and Sharihia, while computationnaly 

attractive, siiffer from the drawbadc that the production capacity set mitst be approx- 

imated via a very restricted set of inscribed hypercubes, namely those for which a 

componentwise feasibility requirement is satisfied. Also, due t o  the completely decou- 

pled nature of production along each component , utilizntion of the restricted capacity 

set is suboptimal. A class of capacity set incribed hypercube policies called simple 

maximal hedging (SMH) policies is introduced. In SMH policies production along the 

various components of the capacity set are coupled, the componentnise feasibility re- 

quirement is lifted, and there is no underutilization of production capacity if needed. 

In a p part types manufacturing system, for partwise additive cost functionals, it is 

shown that performance evaluation of a given SbIH policy reduces to the analysis of 

p decoupled (fictitious) semi-Markovian machines. The machines are Markovianized 

via first passage-time analysis and a Padé approximsnts technique. Numerical opti- 

mization over the class of SMH policies in a sample manufacturing system indicate 

that their performance can corne close to that of the optimal control. 
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1 Introduction 

The problem of flow control is an important phase in a hierarchicdly structured 

scherne for the control of manufacturing systems (Gershwin 1994). In practice, i t  

is a multi-dimensional problem since flexible manufactunng systems are generdy 

expected to produce different part-types. Such systems are subject to random discrete 

events such as machine failures and repairs, jumps in the nature and level of the 

demand, operator and materials absence, etc. Consequently, the production capaci ty 

of the system relative to the demand changes randomly. The flow control problem is 

one of determining the short term individual average part production rates so as to 

rninimize the expected inventory and baddog costs of the manufactunng system in 

the face of existing uncertainty. Starting with the work of Olsder and Suri (1980). 

a common paradigrn for the analysis of this control problem has been a fluid mode1 

which is a highly aggregated representation of the manufacturing system. The mode1 

characterizes parts production and its dynamics is punctuated by random jumps ei ther 

in the production capacity (due to  machine failures or repairs), or in the demand for 

parts (Sethi and Zhang 1994). 

De fine 

E [.] : the expectation operator; 

xi(t) : the production surplus/baddog for the part type i, i = 1, ... , p. Let 
x(t) = [xdt), 4 t ) P  - *  1xp(t)lC 

t?(x) : thecostperunittime,anadditiveconvexfunctioninthe 
P 

elernents of x; for instance t(z)=r [cf max(zi, 0) + cf ma(-z* ,  O)] ; 
i= 1 

u&(t) : the production rate for part type i, i = 1, . .. , p. when the flexible 
manufacturing system is in mode a. 
Let ua(t) = [~ct l ( t ) ,ua~(t) ,  * - - . ,~ap( t ) ]~  

a(t) : the state of a h i t e  irreducible N state Markov chain with known 
intensity matrix A = [A,], (Aii = - x, Aij, X i j  2 O). It represents 
the operating and failure modes of the manufacturing system; 



a, : The set of feasible production rates when the machine 
state is a(t). If the machines are perfectely flexible, then 
the R, sets are convex polyhedra; 

di : the demand rate for the part type i, i = 1, ...,p. 
Let d = [di,d2, ...., 41' 

Then, in mathematical terms the infinite horizon average cost flow control problem 

can be described as follows (Caramanis and Sharifnia 1991): 

- [ min J = iim E {+ ~Et(z)  d t )  , 
~ ( t )  T-a0 

subject to  x ( t )  = u(t) - d, with x(0) = Q 

u(t) E W t ) ,  

Caramanis and Sharifnia (1991) desci be an  approximation met hod that reduces 

the multi-part types fiow control problem to many decoupled single-part type flow 

control problerns. They use an orthogonal partitioning of the production space into 

regions where production capacity for any single part is comprised between O and a 

maximum rate irrespective of the production levels for other parts. This is equivalent 

to replacing the 0, sets with inscribed hypercubes. However, given that the inscribed 

hypercube approximation is aimed a t  making production along separate coordinates 

in the production space independent, a specific choice c of a boundary point of 0, 

is permissible only if feasibility constraints (E [uL,,] > di)are satisfied for al1 part 

types i = 1, ..., p, where uki, is the maximum production rate of part i in mode a 

and for the given choice of c E 0, . Thus, while this near optimal controller presents 

many comput ational and conceptual assets, i t suffers from an important limitation, 

namely the strong componentwise feasibility requirement imposed in the choice of 

the hypercubes. In fact, the allowed capacity set is then a restricted subset of R, as 

shown in Figure 1 (for a two part-types system). 

Furthermore, the complete decoupling of part production along separate coordi- 

nates, causes loss of possibly available capacity, essentially when nt least one of the 

part-types has reached its o m  hedging level. 

In order to overcome the above limitations, we propose a modification of the control 

policies aimed a t  reintroducing a measure of coupling between separate coordinates. 
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Capicfy set ruockted wüh mode 1 1 

Figure 1: Disadvantages of the near-optimal controller as suggested by Caramanis 
and Sharihia 

The admissible control policies are a tractable subset of what shall be termed the 

class of "mm*rnaP' hedging policies, i-e., hedging control policies characterized by an 

arbitrary hedging point z, in the surplus space associated wi th each feasible produc- 

tion mode say a (demand vector inside corresponding capacity set). and such that 

the production sequence utilized to reach the hedging point alwags lies al the *%upper" 
P 

bouBdayiXl,ofR, ( u ~ ~ , z L ~ ~ , . . . , ~ L ~ ~ )  1 x ~ ~ q ~  = 1)) . More specifically, the 
i 

admissible control policies are generated as follows: the upper boundary of n feasible 

capacity set %la is parti tioned into distinct regions. Within each region a choice of 

boundary point c E aR, is made, and a fked given part say i, the so-called priority 

part, is allowed to produce at a rate dictated by the ith component of c until it reaches 

the ith component rai of hedging point z,. The priority ordering of parts is dictated 

by the particular choice of c. During that phase, other parts produce a t  the rate cor- 

responding to the component of the diosen c in $2,. When part i surplus level reaches 

zai, thus requiring only a production of di to maintain itself at  z,, , the extra allowable 
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production capaciw is redocated to the part açsoci~ted with the next lower priority 

part in that region. Consequently, the flexible manufacturùig system is utilized at 

full capacity a t  any instant. The information shared by part-types on their positions 

with respect to their associated hedging level is characterized by a probability density 

function (p.d.f.) whidi is that of a first return time (to the hedging level). The multi- 

part flow control problem is thuç reduced to many single part-type problem where 

the jth part surplus process xj (t) is augmented with a discrete state process 6, (t) 

soon to be defmed such that (x, (t) ,oi j  ( t ) )  forms in general a semi-Markov pmcess. 

Thus, while the decoupled single part machines of Caramanis and Sharihia remain 

Markovian, for SMH policies separate single part machines are semi-Markovian. For 

optimization of semi-hilarkovian machines in a manufacturing context see Glasserman 

(lM), and Brémaud et al. (forthcoming) . 
Note that aware of the disadvantages of decoupled production capacity set in- 

scnbed hypercube controllers, Caramanis and Sharifnia (1991) proposed an heuris- 

tic improvement using a combination of inscribed and circumscribed hypercube con- 

trollers as the ha1  step of the design. Since this heuristic c m  also be applied to SMH 

policies, we focus throughout this work on comparing the performance of inscribed 

hypercube controliers performance to that of SMH policies. 

In (1994), Srivatsan and Dallery extend knom results for single part-t-ype sys- 

tems and analyze stabiii ty and optirnali ty conditions for twepart type systems. The 

approach followed is a combination of sample path cornparisons and average cost 

analysis of trajectories generated by different control policies. An interesting prop- 

erty ernerges from their work, namely that for ail the class of maximal hedging policies 

(i.e., if needed, capacity is always fully utilized), the time required by the surplus tra- 

jectories to reach the hedging point is the sarne. Recently, Perkins and Srikant (1995) 

provided respec tively necessary conditions and sufficien t conditions for the opt imali ty 

of just in time multi-part manufacturing (zero inventory hedging level) under the so- 

called linear switching curve policies. The results presented in (Perkins and Srikant 



1995) can be considered aç a particular case (when the machine requires the same 

time to produce any part-type) of the results presented in Section 7 of the present 

work. 

The rest of this paper is organized as follows. In Section 2, we first formulate the 

problem of optimal flow control for the system with one machine and many part-types. 

We state also the disadvantages of the inscribed hypercube near optimal controllers 

proposed by Caramanis and Sharifnia (1991), and give a preliminary characterization 

of simple maximal hedging (SMH) policies. In section 3, Ive summarize a number of 

results reported in (El-Férik and Malhamé, submitted) concerning the determination 

of first return probability density functions. The theory presented is crucial for the 

decoupling of the part-type flow control problems under SMH policies. The theorems 

and lemmas presented are already adapted in prevision of the cases which are to be 

dealt with in the rest of the paper. In Section 4, the property of consistency is defined 

for SMH policies, and it is shown that for every choice of nominal production vector 

there exists a priority ordering which yields a consistent SMH policy. From this point 

onwards, the focus is over the set of consistent SMH policies. It is shown that the 

ability to annlyze such policies hinges on an understanding of a generic problem for two 

semi-blarkovian machines called the leader and the follower . res pectively associated 

ni th the production of a part with given priori ty and that of the part ivi th next lower 

priority. The leader-follower problem is analyzed in Section 5. While ergodicity of 

the controlled processes was assumed up to that point, criteria for such ergodicity to 

hold are established in Section 6. In Section 7, issues of optimality of just in time 

SMH policies are considered. Finally, in Section 8, the performance of SMH policies 

is nurnerically compared to that of the near optimal inscribed hypercube controllers 

of Caramanis and Sharifnia, and to that of the optimal control as obtained from a 

numerical solution of the associated dynamic prograrnming eqiiations. 



2 Problem statement 

We consider a restricted version of Problem (1) , which is that of a rnulti-part, two-state 

manufacturing system for which optimization is sought wi thin the restricted claw of 

SMH policies. Denote the production rate in mode a to be 

b ( t )  = [uai (t), usa (t), ..., u,(t)lt . Let a( t )  = 1 be the operational mode while a ( t )  = 

O is the failure mode. The production capacity in the failure mode is assumed to be a 

constant w j ( t )  < d j ,  j = 1, ... , p, taken without loss of generali ty to be zero. Assume 

ul(t) belongs to a convex capacity set defined by the following linear constraints: 

where uii- = > d represents the maximum production capacity whenever al1 
ri 

P 
~roduction is dedicated to part i, i E B. Let aRi  = (ul1, ui t ,  -..: ILL,) 1 riuli = 

i 

be the "upper" boundary of nl. The class of simple maximal hedging policies is a 

subset of maximal hedging policies which is relatively tractable. Such policies are 

defined as follows: 

L step 1: select a particular hedging point z = [zI, :2 y . -. , +] . 

step 2: select a particular point c in XIi, with components u:~, ui2. -.., utp, 

corresponding to production rates of ports i E B, respectively. c and ut, wili be 

called respectively the nominul production point and vector of production rates 

of the SMH policy. 

step 3: define a priority ordering of parts which will yield a conîistetit SMH 

poiicy for the given choice of c. A consistent SMH policy is one with a part 

priority ordering and nominal production vector such that under the resulting 

production policy, no part inventory can ever reach its associated hedging level, 

unless al1 other part inventones associated vrith parts of hzgher prion'ty attain 

sirnultaneously, o r  have already atlazned, the+ comesponding hedging levels. In 
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Proposition 1 below, it is established that a nominal production vector depen- 

dent priority ordering yielding a consistent S M H  policy dways exists. With the 

pnority ordering thus defined, and assuming part types are relabeled such that 

priority decreases with an increase in the part index, production for the resulting 

SMH policy is as follonrs: for a(t) = O, al1 part surpluses of type j E B,  decrease 

respectively at rates mj - di. When a(t) = 1, if x i ( t )  # ;, production proceeds 

according to the nominal production vector. When a(t)  = 1, and x i ( t )  = zi for 

i = 1, ..., iM, iM 5 p,  the production rate is set at 4 for parts i = 1, ..., idif, nrhile 

for parts i = iM+*, . . . ,p i  production remains at the nominal rate. However, and 

in line with the "maximal" part of the requirement on the policy, al1 remaining 

auailable production capaczty is dedicated to part ihl+ ,, i-e., the part type with 

highest priority and a still deficient inventory. Thus, this situation will prevail 

until x l ( t )  Falls below zl (as soon as a( t )  switches from mode 1 to mode O ) ,  upon 

which the surplus components x j ( t )  decay at rates d j  , j = 1, .. . , p, respectively- 

When the manufacturing system mode moves back to 1, production resumes 

-5th the same rules as earlier. 

The global performance of a given SMH policy will depend on the specific choices of 

r and c which need to be optimized. 'iote chat the a'oove ciass u i  pdicies preserves the 

notion of hedging points as a safeguard against machine failures, and will do nt ieast 

as well as the inscribed hypercube near optimal policies of Caramanis and Sharifnia 

(1991), since for the same choice of c E aRi ,  machine capacity is fully utilized in the 

SMH policy case. Also, and as Ive show in Section 6 below, the feasibility requirement 

for an SMH policy is the same as For any maximal hedging policy namely that the 

demand vector lie un'lhin the mean capaczty set. Thus, iinlike (Caramanis and Sharihia 

1991) where large sections of the set 8R,  are excluded for feasibility reasons. al1 of 

mi is available for choice when SMH policies are considered. Figure (2) illustrates 

the SMH policy in the tweparts system case. 

Clearly, the dynamics of a lower priority part type depends on times of first re- 



production rate for part 1 

Figure 2: ShdH policies for two-part two-mode systems 

turns to hedging level of the immediately higher priority part type. Consequently, we 

first state relevant results that can be easily obtained from (El-Férik and Malhamé, 

submi tted) , illustrating the computation of fi rst return time probabili ty densi ty func- 

tions. 

3 First return time p.d.f.'s of surplus processes un- 
der hedging control policies 

In this section, ive summarize a number of results concerning the determination of 

first retum probability density functions, which will be essential for the subsequent 

analysis of the class of SMH policies of interest. 

El-Férik and Mulalhamé (submitted) consider the finite horizon single part, manu- 

facturing optimal Aow control problem. For tractability reasons, optimal control laws 

are sought within the (suboptimal) class of time-invariant hedging policies. First re- 

turn p.d.f.'s are central to the dynamics of such policies and the authors show how they 



can be obtained using the so-cailed pmbabdity c u m t  method. The manufacturing 

system is described by a hybnd state (z(t), a(t)) where x ( t )  is the surplus process and 

a(t) is the machine mode characterized by known constant inte~sity matrix A = [Aj]  , 

( X i j  2 O, & = - Ci A,). The following results, adapted for the particular case of a 

multi-mode single part manufactunng system where only one mode, narnely a = 1, 

is feasible (a situation relevant in this paper), can be established from (El-Férik and 

Mahamé). Define the hybnd probability density functions /,(hl t ) ,  i = 1, ..., N, when 

they exist by: 

f i (h , t )dh  = P r [ ( h <  x < h + d h ) , n ( t ) = i ] '  

V h E ]-a, z]  , and dh infinitesimal. 

Also, denote the production rate when the system is in mode a = 1, by u l ( t )  and  the 

demand rate by d. Finally, define: 

ul - d, when a@) = 1. 
= { -dl otherwise. 

nie have the following theorem 

Theorem 1 Under a hedging control polzcy wilh hedging level :. the p.d.f. o j  firsl 

return time T, of the surplus pmcess x (t) to 2, g( t )  is gzueti b y: 

where f 1 (z- , t )  can be obtained fmm the /ollowing partial diflerential equation (PDE): 

urith boundaq conditions as follows: 



At hedging point z and for t > 0: 

fj(z-,t) = O, j = 2 ,..., N ,  

In addition : 

f(z,t) = O  V x  > z , 

lim f (z , t )  =O. 
2--60 

Furthemore, the follouring initial condz'tions mut  be impose&: 

While for a rnulti-state system, a closed form solution of g ( t )  is beyond reach 

this is not so for the sequence of moments of g(t). Indeed, El-Férik and Malhamé 

(submitted) develop a complete algorithm for computing the statistical moments of 

first-passage times for generd mult i-state systems. These moments represent up to 

a sign change the coefficients of the Taylor series expansion of the Laplace transform 

G(s) of g ( t ) .  Subsequently, a rational approximation of arbitraiy degee of G(s), using 

Padé approximants can be constructed. W h e n  the poles of' the rational approximation 

are real, this yields a h i t e  Markouian representation of g( t ) .  

Under the ergodicity assumption, d E E [Cll] (Proposition 2 below), Fi(x, s), i = 

1, .  . . , NI Vx E ]-col 2-1 , the Laplace transfoim of fj(x, t )  with respect to t is onalytic 

at  s = O (El-Férik and Malhamé). Consequently and in view of (3) C(s) will also be 

analytic at s = O. So Let 

ahere pi = E[T,], and pk = E[T:I, k = 1, 2, . . . If Ive now define: 



mk(x)  represents the moment vector of kth order associated with the vector of p.d.f's 

f(x, s) at z E 1-oo,z-1. The following result can be obtained from Lemma 2 in 

(El-Fénk and Malhamé, submi tted): 

Lemma 1 Let mq(z) Le the vector of moments of the qth orùer comspotuàzng to  the 

vector p.d$ f (x, t ) ,  q = 0, 1, 2, ... Under the ergodicity assumptzon (d E E [Ci] , 

Pmposition 2 below), and for f(x, O )  = 0, z E ] -w, z-1, the aectors m,(x) satisfy the 

following mursive system of linear omlinary d i f fmnt ia l  eqvations (ODE): 

Defining 

r t ( x )  obeys the fullowing ODE: 

where 

lim r k ( x )  = O , 
r- -00 

a t t d r k ( ~ ) = O ?  V X ~ Z  
for k = 1, 2, . . . 
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In view of the block triangular structure of Al in (Il), if -y is an eigenvalue of 

V-' At, it is also an eigenvalue of As with multiplicity (k + 1). Let Ps , Qk be the 

matrices with columns respectively corresponding to the generalized left and right 

eigenvec t ors 

region 1-00, 

of Ak associated with computations up to the kth moment vectors in the 

z]. Equation (11) c m  be then put into the Jordan canonical form so that: 

where in JjVk stands for the Jordan blocks associated with the jth eigenvaltie yj  of 

V A j 1 2 . ,N .  

In (El-Férik and Malhamé, subrnitted), it is showt that the generalized eigen- 

vectors can be cornputed recursively and that they are independent of the particular 

choice of z. Furthemore, in order to meet the boundedness requirement expressed by 

boundary condition (12), it is necessary that rk(z-) be orthogonal to the generalized 

left eigenvectors of At associated with eigenvalues of AI. wi th non positive real parts. 

However, in (Malhamé 1993), Theorem 2, it is shown that the ergodicity assump- 

tion (d E E [Ci]) is equivalent to imposing that the number of eigenvalues of matrix 

V- l Ac wi th positive real parts be exactly equal to N - m l  where m is the number of 

feasible modes. In this case, m = 1, and therefore there is only one eigenvalue with 

non positive real part, immediately identified with 7 = O. This observation, together 

with the recursive computation of generalized eigenvectors of AI. permit an efficient 

computation of vector moments of arbitrary order in Lemma 1. The algonthm for 

multiple mode and multiple hedging points is summarized in Theorem 3 of (El-Férik 

and hfalliamé). By matching a sufficient number of moments of G(s). one can obtain a 

rational Padé approximant of that Laplace transform and hence g ( l )  can be expressed 

as a sum O/ ezponential jùnctions if al1 poles of the approxirnant are real. Given that 

G(s)  is the Laplace transform of a p.d.f., the Padé approximant would then yield an 

approximate pamllel hiarkovian realization of g( t ) .  whereby? 



O 
'Pi 

Z 

Note that a competing approach for Markovianization is the method of Coxian 

phases ( s e  for example Hu and Xiang 1995). However, computations can be corne 

very tedious (non linear equations need to be solved) when several moments of g( t )  

are to be matched for greater precision. 

We recall a few useful facts about Padé approximants (see Baker 1975) which 

insure that the application of this approximation approach is relatively safe. In the 

present context, Padé approximants are used to provide a rational fraction npproxi- 

rnation which wili partially match (first 2 0  + j coefficients) of the Taylor series 

expansion at s = O of the Laplace transform G(s). P,+,(s) and Q,(s) are polynornids 

with degree a+ j and o respectively, j 2 1, (Baker 1975). If the Taylor series at s = O 

of G(s) corresponds to a so-calied Stieltjes' series (see Baker 1975, p. 21 l ) ,  then al1 

poles and zeros of the approximant are negative ml and the zeros are interwined wi th 

the poles (see Baker 1973, p.213). Notice that it con be shown that the expansion 

of G(s )  corresponds to a Stieitjes ' series. Thus Padé approximants will always yield 

a LIarkovianization of the Eorm (13). in addition, because of the Stieitjes' property, 

the quality of the approximmts improves monotonically as the order increnses (see 

El-Fénk and Malhamé Section 5 ,  and Baker 1973 for further details). 

Accordin~ly when the high priority part, say 2 ,  is such that z,(t) # 2,. the lower 

priority part, say j, is associated with a fictitious blarkovian machine which can be 

in any one of o (unobservable) Markovian failure states with mean sojourn tirne 

! = 1, ..., o. Thus the Markov process approximation of the  iC,(i) semi-Markov 
vt y 

process ( gj(t) = O, if xi(t) # A,  Bj(t) = 1, if xi(,!) = :*) which \W cal1 dhrj(l) evolves 



according to the following intensity matrix: 

In the following section, we establish the existence of consistent SMH policies, 

in the sense that an SMH policy associated with a given choice c of Xi, dictatez 

a prionty ordenng of parts such that the hedging level associated with the higher 

priority part is dways reached before or at the same tirne as the hedging level of any 

lower priority part. This consistency properQ starts holding after the surplus process 

x ( t )  hits the hedging point z for the first time. In view of the fact that infinite horizon 

performance will be unaffected by the initial (almost surely finite) transient until the 

hedging point is firsr attained, we assume without loss of pnerality and throughout 
L 

section 5 that the initial inventory = [ i l ,  z2, ..., +] . 

4 Consistency of SMH policies 

As mentioned earlier, SàIH policies require an ordering of part privrities characterizing 

the way in which any extra production capacity, freed whenever the inventory of a 

given part attains the required hedging level, is reallocated to speed up inventory 

buildup for the remaining inventory deficient parts. A consistent part priority scheme 

for an S4IH policy is dehed  as one whereby the inventory of a given part will never 

reach the associated hedging level unless al1 inventories of higher priority parts are 

ei t her simultaneously reaching or have already reached t heir corresponding hedging 

levels. Proposition 1 below delineates the priority assignment scheme which results 

in a consistent SMH policy. 

Proposition 1 Let c E aRi  arid z define respectiuely t.he ttom.iml production veclor- 

and the hedging point of an ShlH policy wdh prion'ty ordering j e t  to be defi~ed in a 

mulli-part manujBctunng systems. Let B = (1, . . . , p l  be the parl index sel. Let T i j  be 



the sets defined b y: 

and let Di(c) = { j E B 1 c E rij) , i E B. One 01 two situations con occur: 

(a) no pair i, j E B,  i # j, is such that  i E Dj(c)  and i E Di(c). Then 

a pkority ordering such that part i l  i E B ,  i s  assigned a higher pn'ority 

than dl the parts types &th zndez in Di(c)  results in a consistenl SMH 

production policy 

~e 
(3) for some pairs i, j E B,  i # j, = 2. Then for such pairs i E D, while 

j E Di. A s  a Jrst  step, use the priority ordm'*r~g algorithm in ( 2 )  m+lh the 

pair i, j, equally m d e d .  Subsequenl ly, any arbzlmnj prionly reordering 

amongst equally mnked indices, wzll result in a cortsislenl SblH production 

policy. 

Proof. See Appendix. W 

From Proposition 1, the following c m  be concluded: 

aRI can be partitioned in the capacity set, into mony regions with distinct 

(consistent) priori ty assignments, namely: 

r i = { ~ ~ 8 ~ , : 5 < 5 }  UT, 4 i l  j E B .  i j ,  
uC0 r. = {q, E an, : + = t }  2 ,  j c B. i p j .  
u l i  

In the region of aR1 such that > 2 uti, i E B.  part j will be the high priority 

part, when u z  = 2 u;:! i E BI parts have equal priority and in fact for a choice 

6 such that % = 2 QiJ E B an SMH policy based on ci will performs 
O 

u l ,  

exactly like the associated near optimal policy of (Caramanis and Sharifnia 

1991). Finaliy for u; c < u, part i wiil be assigned the higher priority. 
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0 the only way to reach the hedging point y, associateci with part type i, under 

SMH poiicies is by moving inside the subspace of dimension p - i - 1, i E B, 
defined by the part surplus subspace zj = 5, j = 1, .. . , i - 1. 

Thus, surnmarizing, let c E anl and z d e h e  respectively the nominal production 

vector and the hedging point of an SMH policy. Assume that a relabeling of part type 

indices has been performed so as to associate a decreasing priority with an increasing 

part type index. Shen the production d e s  of the resulting SMH poiicy are formally 

given by: 

u;, i/ X I  < z1; a(t )  = 1, 
Ua1 = d l  i! Xl = 21; a(t)  = 1, { 0 a@) = 0, 

( ut2 if 11 # i l ;  x2 < 22 ; a( t )  = 1. 

and in general for part-type i, i 2 2 : 

where Cfi ,  i = 2, . . . , p ,  is obtained from a recursive equation ive now develop. 

ùki, i E B represents the incrensed production rate of part type i whenever part 

i - 1 reacheç its onm hedging level. 

Ini tially: 

After xl ( t )  attains 21 : 

and comparing the two equations: 



If under the new 

for x2(t)  to reach z2, 

production rates, the machine remains operational long enough 

then, just before: 

After, x2( t )  = 22 : 

and consequently: 

In generai, it is not difficult to see that the following recursion holds: 

with ü;, = u;,. 

Thus part-type 1 surplus evolves as though it was prodiiced by a single-part failure 

prone Markovian machine with capacity set [O, u;,] , when û = 1. and zero otherwise. 

Denote by T,, the time interval between the instant the surplus-type i leaves hybnd 

state (s, 1) to the instant when it first returns to (2,. 1 ) .  i E B. Define tlij as the 

surplus rate of increase for part-type j ,  j E B, when the system is in müde a = 1. 

When a = 0, the surplus of each part decrenses at rates d l ,  j E B. respectively, 

whereas when a = 1, if xl ( t )  # i l ,  x1 ( t )  increases at a rate il1 1 = ui, - d l  and X, (1) 

increases a t  a rate vlj = uij - d,, j = 2 ,  ..., p. Denote by O Z ( t )  = 1 the situation when 

a ( t )  = 1 and X I  (t) = zl, nrhile t i t ( t )  = O otherwise. From Proposition 1. we know 

that X I  ( t )  will hit 21 before x, ((1) hits 3, j = 1, ..., p. At that point x2 (1)  increases at 

a different rate C j  = Ci2 - d2,  where is defined in equation (17). Note that while 

xl (t) has Markovian dynamics entirely independent of x2 ( t )  , this is not so for X* ( t )  . 

Thus, the lower priority part 2 can be viewed as thouph it \vas produced by a single- 

part two-mode ( a 2 ( t )  = O and a 2 ( t )  = 1 )  failure prone semi-hlarkovian machine with 
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one operationai mode associated with an exponential sojourn time (while z1 (t) = zi) 

and a failure mode associated with a sojoum tirne corresponding t o  a first return tirne 

random variable (fi& return of xl(t) to q). 

The approach to andyzing the cost associated with the semi-Markovian machine 

consists in two steps. During the first step the first return random variable (so- 

journ time in failure mode ) is Markovianized using a Padé approxirnants technique 

for multi-mode Markovian machines as summarized in section 4. Subsequently, by 

associating an adequately chosen constant part surplus rate of decrease during the 

Markovianized failure time and leaving the surplus rate of increase unchanged when 

Q2(t)  = 1, a Markovian "biased" version (Z2(t), ZiAI2 (t )) of (x2 ( î )  , 6 2  ( t  )) is obtained 

whereby y ( t )  z2(t)  whenever a2(t) = i (Le., when ri (1) = 2,). while Z2(t) > x2(1) 

otherwise. The surplus steady-s tate p.d.f.'s for this biased two-velocity rnulti-mode 

Markovian machine can be obtained itsing Shanfnia's technique (Sharifnia 1988). The 

second step consists in recognizing that error random variable 4) i 2 2  (t) - x2(t) 

behaves while ài2(t) = O as a surplus deviation during the first return OF s2(t) (the 

surplus process of a two-mode Markovian machine) to zero (hedging level), and sub- 

sequently applying a so-called bias removal procedure based on i-esults summarized 

in Section 4. In fact the same procedure can be applied when moving fsom the ith 

semi-hlarkovian machine for part-type i (ài(t) = O i f  xi- 1 ( t )  # q- 1 : &(t) = 1 if 

xi- (1) = >- i) to the (i + 1)th semi-Markovim (G i+ , ( l )  = O if ~ , ( t )  # zi, ài+, (t) = 1 

if xi(t) = zi) for lower priori ty part type i + 1, i = 1, ... , p - 1. Thus, except for i = 1, 

where the machine is Lfarkovian, every machine, producing part type i Say, is a two- 

mode failure prone semi-Markovian machine characterized by a semi-Markov process 

&(t). &(t) is a two-mode process (O: 1) with one operational mode associated mit  h an 

exponential sojourn time (while xi- 1 ( t )  = zii-l) and a Failure mode associated with 

o sojoum time corresponding to a first return time randorn variable (first return of 

xi- ( t )  to 2;- ,). 



Hence the andysis of a generic two-machine problem, say machine 2 ,  i + 1, i = 

1, . .. , p - 1, producing parts i and i + l of decreasing priority, hereon referred to as the 

leader and the follower respectively can become a useful building block in analyzing 

the performance of a given SMH policy in a multi-parts manufacturing system. This 

is the object of the next section where we develop the approach for computing the 

portion of the cost of a given SMH policy associated Mth the part produced by the 

follower . 

5 Construction of the biased version of the follower 
part surplus process and subsequent removal of 
the bias 

Assume that there exists a semi-blarkovian process denoted (à, ( t  ) ..E, ( L ) )  called the 

biased version of (&(t), xi(t)) for a given i = 1, ... , p - 1. F,(I) is a ttwvelocity pwcess 
- 

(a positive velocity Gli when &(t) = 1 (with VI 1 = vl  1 )  and a negative velocitv -di 

(with d; = dl ) ) ,  for sorne i = 1, ..., p - 1, and such that V t 2 0: 
- 
d* = di Zi(t) = xi(t) 

when &(t) = O either 
8, < d i  Ii(t) > ~ ( t ) ,  as long i i , ( t - )  # 1 and &(t+) # 1 

The next lemma establishes the existence of the biased serni-llarkovian version of 

(&+ I ( t ) ? xi+ i ( t  ) ) 

Lemma 2 For the zmmedzately lower priont y part, if 1, a biased version (Ûi+ (t), Zi+ 1 ( t ) )  

O/ (ûi+ 1 ( t )  , xi+ ( t ) )  exists, where a,+ 1 (t) = 1 if xi(t) = 2, and O othenüise. f i +  (t) is 

a two-velocilg process vi2h a positive z~eloczty üti+lt and a tiegative zdoczty process 

given b y  



when the mte de+* a n  be ezpressed asfollows: 

Furthennon: 
- 

if di+1 = di+i Zi+1 ( t )  = (t) while 

if &+, < di+ 1 I;+ 1 (t) = xi+ 1 (t) when ai+ 1 (t) = 1, and  
(211 

Zi+1 ( t )  > (t) as long û~ ai+, ( t - )  # 1 and ài+ (t') # 1 

Proof. See Appendix. . 
The following corollary is a consequence of inequality (21) 

Corollary 1 let ei(t) = Zi ( t )  - zi (t); be the bias between & ( t )  and zi(l)- I j  d; < d, , 

for tc < t < tt + TG, ~ ~ ( t )  # O and evolves acconling to: 

- 
k i ( t )  -vii - di ij a ( t )  = 1. -= { - 

dt di - di othemzse, 

Thus, under a consistent SMH policy, and given the partwise additive nature of the 

cost functional ([(x)), it is possible to reduce the optimization OF the global hedging 

point to p decoupled scalar optimization problems, one for each part type. The first 

problem associated with the Xlarkov prGcess [ri ( t ) ,  û( t ) i l  can be sülved easily and the 

optimization can be carried out independently and yields che same solution as @en 

by Bielecki and Kumar (1988). Horvever, for i 2 2, by recalling tha t  the off period of 

&(t) is a first return random variable, one can use the material presented in section 

3, to Xlackovianize that return randorn variable and thereby the process [4(t), &(t)lf. 

The Markovianized process will be denoted [Zi(t) , ~ , ~ ~ ~ ( t ) ] '  . 

With the Z,(t) process thus blarkovianized, i = 2, ... , p, i t is possible to determine 
- 

the steady-state p.d.fls of the hybrid kIarkov process [Z*(l). û,,i(l)]' ; f b t ~  (&), k = 

1, ..., q ; + l ,  (where q, is the order of the exponential approximation in Eq. (13)), using 

for example Sharifnia's approach (Sharifnia 1988). In particiilar we are interested in - q i f  1 - 
the p.d.f.'s Il (Zi) = (&), and (Zi) = jnfr ( I i )  , of the semi-Morkov process 

1=2 



Figure 3: Construction of the biased version of zi+~ ( t ) ,  from the follower part surplus 
process 

[E( t ) ,  &(t)lt respectively correspondhg to Gi(t) = 1, and &(t) = O. Define f l  (ri) and 

fo (zi) as the steady stste p.d.f.'s associated with the hybrid process [xi(t).ai(t)]'. 

R e d  that I i ( t )  = q ( t )  whenever &(t)  = 1 whereas for &(t) = 0, Ii(l) = x i ( t )  + ~ ( t )  

where E ~ ( L )  evolves according to corouary 1 .  

Recaiiing Lemma 1, it is then possible to use the PDE system of Theorern 1 with 

the appropriate velocities, to propagate the p.d.f. /(P) of a. The following Lemma 

characterizes the steady-state p.d. f. fo(xi) : 

Lemma 3 : Let be the p.d.f. of the bias ~ ~ ( t ) ,  i E B. Under Ihe  ergodicily 

condition (d E E [fil]), the following holds: 

with 



.-kmple path when &, ( t )  = O <: 
\ 

- 
\ 
\ 

t 

Figure 4: Equivalent regenerative process corresponding to the  off portions of &(t.). 

w h e ~  

Proof. See Appendix. 

In summary in order to evaluate the cost associated with a @en SMH policy, as 

the surn of the contributions of each part type i, i = 1, ..., p. one proceeds as follows: 

Theorern 2 Define the aliernating renewal pmcess &(t )  to be zen, when xi- , ( t )  # 

q - 1  and one for  zi-l ( t )  = s- ,, for i = 2, ..., p. The cost assoczated Wlh part type i. 

can be computed via a four-step proceùure, : 

Construction O/ the bicised version O/ x i ( t )  denoted i,(~) which is a two-aelocity - 
pmcess: a positive velocity Cl, when &(t)  = 1 and a negalive velocity -d, when 

q t )  = O, S U C ~  thal: 



- for i 2 3, 

w h m  the mte dFi+i u n  be ezpressed is given by: 

0 Markovianization of the (Zi(t),&(t))trsing the matefial in Section 3 on first 

m t u n  times and the computation of the associated steady state-densities 

Correction for bim, with 

- q i f  1 - 
f o ( G  - 5 )  = C f (zi - E )  and 

1=2 

and 

detemination of the cosl corrtribution o/part t ype  i 

sponding cost functional over the part i surplus space 

m?amre F*,(P) = I-, [/&) + j,(+)] dx, p E ( -03 ,  

via in1egmtion O/ the con-e- 

eqtripped vith the stationary 

Notice Ulat for i = 1,  cost computations and Iredgrng potnt oplimization proceed as 

for usual two-state Markovian machines (see Bieleclzi-Ktrmni 1988). 



Throughout the above analysis, the existence of an ergodic steady-s tate for each 

of the surplus random variables q (t) , i = 1, . . . , p, has been assumed. In the foiiowing, 

it is shown that the criterion for ergodicity of SMH policies reduces as expected ( s e  

Caramanis and Sharifnia 1991 for example) to requiring that the mean capaci ty set 

contain the wctor of rate of demand for parts. 

6 Ergodicity of SMH control policies 

In the foUowing, we derive conditions under which the maximal hedging policies are 

ergodic, and thus ali component marginal p.d.fts converge to a unique steady-state. 

In (1994), Srivatsan and Dailery prove that if the capacity of the systern is always 

fully utilized whenever one part is away from its associoted hedging point, then al1 the 

policies described by hypercubes defined by c E an1 generate trajectories that reach 

their corresponding hedging levels nt ezactly the same lime. Thiis. une can locus on 

times to first returns to the hedging point to build an embedded alternating renewal 

process. This process will be ergodic if return occurs with probability one and the 

mean return times are finite. Since E aR1 ,  then SMH policies are ergodic if 6 is 
an ergodic hedging policy. Recall from section 4 that under cg al1 the parts have the 

same priorities and reach their respective hedging levels at the same tirne. Thus it 

is sufficient that part-type 1 have a finite mean return time to ~ 1 .  This is equivalent 

(see Mdhamé 1993, Bielecki and Kumar 1988) to requiring: 

where xl represents the stationary probability of the on state. I t  is @en by &, 

and with 

using (33) and the above eqiiation one obtains: 



which is the same as 

where 5 = E [ri] , i = 1, . . . ,p .  This yields 

Proposition 2 For the multi-part systems, the class of SMH policies is ergodic if the 

demand vector [d1,d2, ...,&] E EIRl] 

Note that an equivalent condition was derived by Srivatsan and Dallery (1994). 

However the authors do not seem to have recognized the transparent interpretation 

in Proposition 2. 

7 Optimality of the zero inventory level 

In (Brémaud et al. forthcoming) necessary and sufficient conditions were given to 

establish the optimality of the zero inventory level for a single part two-mode (0.1) non 

Markovian ergodic machine having the following incurred cost C(r) =ct rnsu(r. 0) + 
c-  ma^(-x, 0). It asserts using first derivative estimates of the steady-state optimal 

cost with respect to the hedging level, that zero inventory level is a minimizer if and 

only if (see Brémaud et  al. forthcoming, Theorern 2) 

c- r1 (u1 - d!) - ïiudl 
5 P [ x  = 01 = 

c+ + c- (ut - di)  

nrhere ai, i = 0,1, is the probability distribution of mode i. 

On the other hand for multi-part system with p part-types, we have shown in the 

previous sections that under SMH policies the original flow control probiem can be 

decomposed into p single part independe& flow control problems. 

However for multi-part type systems, the componentwise application of the opti- 

mality cnteria 

zero inventory 

by the process 

in (36) gives only necessary conditions for the optimality of a global 

level z = [ i l ,  ..., +] = O. Thus the semi-kIarkov machine characterized 

[zi(t),  iii(t)]'adrnits a zero inventory level if and only if  





where it is assumed that a relabeling of part types has been performed whereby 

priority decreases with an increase in the part type index and P [x* = s] are given 

by (38), (39), (40) and (41). Furthermore the following suficient condition for a zero 

global inventory hedging level can be written: 

Proposition 4 A suficient condition for the optimality O/ zero inventory hedging 
+,luc'J -di 

level z = [zl, ...,+] = O, within the class of SMH policies is P [xl = zl] 
ui? -di =m2 

m=i=*,.*.,p {&} - 
In particular, the opthal hedging point for part-type i is zem ÿ 

Proof. See Appendix. W 

Note that in the case of a zero optimal inventory level. the semi-Markor ma- 

chine and the original machine respectively characterized by [:.+ l ( t )  , Û,+ l ( t)]' and 

[zi+ 1 ( t ) ,  (t)lt  have the same hedging level. This is not so in general. 

In the following, we numerically test the proposed aigorithms, evaluate the perfor- 

mance of SMH policy by comparing it to that of decoupled insciibed hypercube policy 

and to that of the optimal control as given by the dynamic programming equation. 

8 Numerical results 

Let 

L 

and C; = 6 = 5. For this special case the Laplace transForm G(s )  of g ( t )  can be 

obtained kom the PDE system in theorem 1. The resiilt is 

2X2 (u; - d l )  
G ( s )  = &(u; - d l )  + Xldl  + U ; S  + O ( s )  . 

where 

0 (s) = J ( u ~ ) ~ s ~  + 2s [A2 (ut - dl )  + X L d l ]  ut + [A2 (ut - d l )  + Ald112 . 



Appmxirnate average cust of x2(t) 

with cornedon conpared with Monte-Carlo me-d 

\~~~rox imated average cost for xZt) comoared Ath 
Monte-cario m e h d  

Figure 5: Testing the quality of a Markovian approximation of the biased process 
12( t )  before and after bins correction, for Padé approximants of order 5. 

Using a Taylor series of (41) one can build a Padé approximant of G(s) ,  since the 

direct inversion of the Laplace transfom does not yield a closed form solution. 

Figure 5 is a numerical confirmation of the validity of the presented approximation 

procedure. It shows how the Markovianized biased process can give an estimate of the 

steady-state average cost associated wi th the biased process i tself ( I ,  ( t ) ,  i i n i i ( l ) )  versus 

that associated with the ( Z i ( t ) ,  & ( t ) )  process. Also the cost OF xi ( t )  is compared wi th 

that (f i ( t ) ,  g r r i ( t ) )  after b i s  correction. Padé approximants of order 5 were used. 

Monte-Carlo simulations were utilized to validace the approximations. The results 

are in general very good. 

Figure 6 represents the optimization of the steady-state average ccut functional 

under SMH policies over the production capacity space with numerical minirnization 

to find the hedging level associated with the Markovianized process. The cost over 

the capacity space is then compared to the costs of the decoupled inscribed hyper- 

cube policies of Caramanis and Sherifnia (1988) for the same system. We observe a 
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somewhat signifiant improvement provided by the SMH policy controller design. 

Figure 6: Illustration of the improvements achieved using of SMH policies as compared 
to completely decoupled inscribed hypercube policies. 

Finally Figure 7 illustrates the optimal solution of the Hamil ton- Jacobi-Beurnon 

(HJB) equations for the two-part flow control problem presented above. The optimal 

cost is ?O% less than the cost obtained by using totally decoupied inscribed hypercube 

policies and only 7% less when compared to the cost obtained using the optimal SMH 

policy. On the other hand. the computational requirements cif the HJB solution 

are very large (and can become quite extensive when dealing with more than two 

part-types). Also, the HJB solution does not permit the physical insights that the 

decoupled analysis of SMH policies provide. 



Surplus x l  4 4 Surplus x 2  

Figure 7: Optimal cost solution of the Dynamic Programming Equation for the two- 
state two-part sample manufacturing system. 

9 Conclusion 

We have defined a new class of hedging control policies in multi-part failure prone 

two-state manufacturing systems which Ive called simple maximal hedging control 

policies (SMH policies). Much iike decoupled capacity set inscribed hypercube poli- 

cies (Cnramanis and Sharifnia 1991) of which they are a generaiization. these policies 

are pararneterized by a hedging level dong  each component. as well as the choice of 

a point c a t  the upper boundary of the production capacity set. These production 

policies can perfonn better than inscribed hypercube policies because production if 

needed always proceeds at  maximal capacity. Wsing first-passage time anaiysis and 

Padé approximants, we have shown how a sequential partwise analysis of the perfor- 

mance of S'VIH policies is possible starting fsom the high priürity part and rnuving 

on to the lower priority part. The qudity of the approximants for the diResent o s t s  
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involved was demonstrated via Monte-Carlo simulations. Also, an ergodicity analysis 

indicates that the criterion for the ergodicity of an SMH policy is minimal, Le. that 

the rates of demand for parts vector lie inside the mean capacity set. Numerical re- 

sults for a sample manufacturing system have been presented whereby optimal SMH 

policies favorably compare with optimal decoupled capacity set inscribed hypercube 

policies, and perform almost as weil as dynamic programming based optimal control 

policies. Unfortunately, the analysis as presented can only be applied to two-state 

mdti-part systems. In future work, we shall consider extensions to multi-state multi- 

part manufacturing systems. 
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Appendix A 

Proof of Proposition 1 

The proof relies on an analysis of the first return tirne of each part to its own hedging 

level. Suppose j E Di(c), for some pair i, j E B. Upon leaving 2, surplus levels x i ( t )  

and zj(t)  decay respectiveiy at rates di,  djl when a(t) = 1. up until the instant where 

one of the part surpluses fist retunis to its associated hedging level. Non. suppose 

that it is part type j which returns first. Let Tm and TOI be the total time that the 

surplus for part j wodd have spent respectively increasing ( a = 1) and decreasing ( 

a = O) on its excursion away from and back to 1. Then the following equation holds: 

or equi valen tly: 

However, if after Tm + Toff, surplus for part i has not yet reached its associated 

hedging level, then this would mean: 

In this case, (A.2) and (A.3) would yield: 

But (A.3) is in contradiction with the d e h i n g  property of r,, to which c belongs. 

Thus hypothesis (A. l )  must be false, and it is surplus for part i which will return first 

to and remain there until mode û(t)  moves back to zero. In the meantime, surplus 

for port type j has either already returned to zj or has not yet returned. In the former 

case, using the same arguments as for the first cycle. one coiild conclude that it is 

surplus for part i which will first return to q. In the latter case. the  same conclusion 

holds since surplus for part j would be starting with a net deficit relative to the 
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surpius for part i. Thus a choice of i is as the higher priority part nrhenever j E Di(c) 

wiU yield a consistent SMH policy. Findy, when situation (b)  is encountered, ( A . l )  

can be written for both parts i and j and x i ( t ) ,  z j ( t ) ,  leave ;i and zj respectively, 

simdtaneously, and return to Zi and zj sirnultaneously. H 

Proof of Lemma 2 

Let P( t )  be the mode of a ho-mode machine with an operational mode (P = 1 )  and 

a faiiure mode (p = O). Let tc be an arbitrary instant when ,û(t) switches from 1  to O. 

Define: 
T,(P, tc ,  t )  : the portion of i n t e d  [ t t ,  t ]  , tc 5 t ,  spent in mode 4 = 1. 

where I{*) is the set indicator function. When B ( t )  = Û , ( t ) ,  Let tt + T ,  be the 

instant z i ( t )  first returns to Zi  after just leaving it at time t t .  Over an interval 

[ t t ,  tl + T,,] , since a t  t t ,  & ( t )  just switched from mode 1 to mode O and thus q ( t 0  = 

P i ( t c ) ,  and at te + Tr, , & ( t )  has swi tched back to 1 and t hiiç r, ( t (  + 7>,) = I , ( t <  + 7;,). 

the net increments of x$) and I i ( t )  over [ t t  , te  + T,,] must be eqiial. Furthermore, 

since by definition of te and t c  + T,,, xi ( t e )  = xi( te  + T,,) = :,. the net increments are 

both zero. Two cases must be distinguished, namely when i = 1 and  when i # 1. 

- 
case i = 1 ,  we have & ( t )  = cr(t) ,  d l  = d l ,  C l ,  = t t l , .  Thus x&) = f l ( t )  and 

( a ( t  ) , xl ( t ) )  is a Markovian two-velocity process. Setting B ( t )  = a ( t  ) and ana- 

lyzing the increments of 11 ( t ) .  one can write: 

(A. 5) 



On the other hand 

thus wing (A.5) and (A.6), 

which suggests that while the actual motion of x 2 ( t )  involves two different ve- 

locities 1112 and -d2, respectively, at  l e s t  for intervals corresponding to a first 

retum of zl (t) to z1 after leaving 21, one obtains the same net increment in x2 ( t )  

by assurning a single (avemge) mle of decrease defined by: 

The process which is d e h e d  as decreasing at rate d2 when X I  ( l )  # 2 1 ( 6 2  ( 1 )  = 0) 

and which coincides with x2( t )  when x t ( t )  = q (&( t )  = 1) is called the b i a d  

version of x2( t )  and is denoted &(t) .  Thus when & ( t )  = 1 .  q ( t )  & ( L ) ,  whde 
- 

for û2(t) = O, Z2( t )  decays at velocity -d2. 

case i 2 2, &(t)  = a( t ) ) ,  Setting ,O@) = à$) and analvzing the increments of 

Ii ( t  ) , one can wri te: 

which yields 

(A. 10) 

Sow, define the intermediary process IF,,, ( t )  such when & ( t )  = 1. +4+, ( t )  = 

x , + ~  ( t ) ,  and XE,, ( t )  increases at rate vli+ while x ~ , + ,  ( 1 )  decreases at constant 
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rate dFt+t otherwise. That su& process exists can be seen by considering the 

interval [te, tt + Taj where te + Td is the first time &(t)  returns to mode one after 

leaving it at time te. By definition of the &(t)  process. the net decreases of 4 ( t )  

and xi ( t )  over [tc, tt + Td] are equal and: 

(A. l l )  yields if we recall that Td is the sum of the two tirne variables on the 

right-hand side of (A.11): 

( A .  1 2 )  

dn+, c m  now be obtained by recognizing that it would be the  rate of decrease 

of Ej(t) if the nominal production rate and the dernand rate for part i were 

respectively replaced by the nominal production rate and the demond rate for 

part type i + 1 .  In this case an equation equivalent to ( A .  1 1 )  would be satisfied: 

(A.12) and (A.13) yield after dividing (A.13) by Td: 

( A .  14) 

This shows that if  one attributes to ZR,, ( 1 )  velocity - d R - ,  as given by (A. l-l), 

the constraint X F , , ~  (t) = ~ ~ + ~ ( t )  is satisfied both at il and t t  + Td. On the other 

band, X F ~ ~ ~  (Tri + t t )  - X F . + ~  ( l t )  = xi+ I ( T r .  + t t )  - xi t 1 ( l < )  and 

thus using (A.9) and (A.10), 



which suggests that while the actual motion of (t) as well as xfi+ (t ) involves 

two different velocities ( v ~ ~ + ~ ,  and vli+i, -dFi+, respectively) , at least for 

intervals corresponding to a first return of Zi( t )  (or xi(t)) to q after leaving zi, 

one obtains the same net increment in ~ ~ + ~ ( t )  by assuming a single (average) 

rate of decrease dehed by: 

(A. 15) 

The process which is defined as  decreasing at rate &+ when xi(t) # ri (ai+ 1 ( t )  = 

0) and which coincides with xFici( t)  and xi+,(t) when xi(t) = ; (&+l(t) = 1) 

is c d e d  the biased version of xi+l (t) and is denoted by Zi+ 1 (t) .  Thus when 

(t) = 1 ,  xi+ 1 (t) f i + L  (t) , while for si+ 1 ( t )  = O. Z,+ (l) decays at veluci ty 

W e  now establish inequality (21) for the biased version of r,, 1 (l). We observe 

from (A.8), that & = d2 if and only if u12 = 7.4, - d2 = -d2 which means that al1 

the available capacity is dedicated to part type 1. Consequently (since x2(t) is always 

decreasing at rate d2 until xl(t) hits z l ) ,  & ( t )  = x2(t) while à2(t) = O. However, if 

~ 1 2  # 4 2 ,  22 < d2 and Zî(t) > x2(t) as long as long as &(t - ) # i and û2(tf ) # 1. TO 
see this, suppose that there exists a duration t < tc  + T,, such that form t t l  L e  +ï;, the 

net increments of E2(t) and x2(t) are equal. Thus? (A.7) and &( t l  + b )  - &(tt) = - 
- 
d2 t 1 yield: 

(A. 17) 

which sirnply asserts that the net increments of x l ( t ) ,  form t t .  Lt + T,,, is zero and 

consequently t i  = T,,, which is a contradiction. Further, since &( te )  = x î ( t t )  and 
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- 

Now for i > 2,when di = di or vi i+~ = (which asserts that the total capacity 

is dedicated to part type i), (A.14) and (A.15) give 

- 
di+i = d ~ + ,  = di+i ( A M )  

- 
in whidi case (t] G Zi+l (t) IF,+, (t) while (t) = O. However, if di < di and 

Vl i+ l  # -4+11 (A.14) and (A.15) yield : 

- 
di+i < d~,+* < di+i . (A. 19) 

and consequently, 4+l ( t )  > (t) as long as ai+, (t- ) # 1 and ài+ 1 (t+ ) # 1. This 

can be proven using arguments similar to those for the case i = 1. We sketch here 

the diflerent steps. In the first step we show that given dFi+, < di+, , Zn+, (l) > 

xi+, (t) as long as &(t-) # 1 and &(t+) # 1. In the second step ive show that 
- 

given di+1 < dFi+I, Zi+l(t) > zE+*(t) as long as &+,(t-) # i and &+l(t') # 1. 

Finally since by construction, Ii+,(t) x ~ , ,  (t) whenever a,,. ( t+)  = 1 and that 

consistency of SMH policies implies that ci+, (t) = 1 only if 6 , ( t )  = 1 (in which case 

~ i + ~ ( t )  t Zi+i(t))l we conclude that %+,(t) > ~ i + ~ ( t )  ES long as ai+, (L-) # 1 and 

Gi+i(t+) # 1- 

Proof of Lemma 3 

Under the ergodicity condition (d E E [Ri]), &(t )  is an ergociic alternating renewal 

process with a failure mode and a n  operational mode. During the operational mode 

the process Z i ( t )  q ( t )  and consequently the steady-state p.d.f. Ji (Ti) is identical 

to ft (xi). However, during the failure mode, E,(t) > r,(t). Thus, in order to recover 

fo ( x i ) ,  one must correct for the bias of Zi(t) itself described by jo ( 2 , ) .  In the sequel - 
an expression For thz p.d.f. of ~ , ( t ) ,  j , , ( ~ ~ ) ,  is derived, using Lemma 1 and Theorem 

1. Indeed, if one focuses on the off portions of the ûi(t) renewal process. and using 

the assumed ergodicity of Chat process, a sarnple pnth based estirnate of p.d.f. L, (5,)  

can be wri tten as foliows: 



where the averaging in the right-hand side of (A.20) is considered o d y  over the off 

part of the &(t) renewal cycles (See Fig. (4)). Now given that at the beginning of the 

off portion of a giwn renewal cycle of &(t),  q(t)  = 0,  and otherwise ei(t) evolves in 

a manner identical t o  and independent of the off portions of the other renewal cycles, 

the process in Fig. (4) is itself a regenerative process. Consequently, from the Key 

Renewal Theorem (Wolff 1989): 
- 

L 1 

Applying Theorem 1 to the dynamics of fi(t)> with an absorbing boundary condi- 

tion set up at sEi(t) = 0, yields: 

where f (c,  t) is given by Theorem 1. In fact, denoting by F(E. S) the Laplace 

transfonn of / ( E ,  t ) , yields, using (A.20), (A.21), (A.22): 

C 4 

Equations (23) and (26) derive directly from Theorem 1 ( derivatives of Laplace 

Transforms of first return time densi ties evaluated a t  s = O ) .  and in t w n  (A.23) alsv 

derives from Theorem 1. 

Considering now that  for ài(t) = 0: 

if one notices that the motion of Zi(t) is strictly deterministic on the interval 

[O, T,] , then ~ ~ ( t )  as an excursion rnndom variable is irrdepetidetJ of Z , ( l ) ,  su that one 

obtains for the corrected steady-state p.d.f. of the hybrid process (r,. si = 0): 



Proof Proposition 

The prwf utilizes the sarne arguments presented in the proof of the ergodicity criteria. 

Indeed given that under SMH policies the capacity of the system is always f d y  utiiized 

whenever one part is away from its associated hedging point, then al1 the policies 

describeci by hypercubes defined by c E anl generate trajectories that retum to their 

corresponding hedging point in ezactly the same time (Srivatsan and  Dallery 1994) 

given the same o(t) process sample path. This means that the first return time of 

the lowest priority part type, p in our case, is constant and hence independent of the 

choice of the nominal vector ut for a particular c E &QI. Consequently, the sojourn 

time of x,(t) at its hedging level +, is also constant and independent of the choice of 

u;. Also, recall that under the consistency condition of the SMH policy x,(t) cannot 

reach its own hedging level unless al1 the other part types, 1, . .. . i - 1, just reach or 

are already at their respective hedging levels. Thus, the sojoum times at the hedging 

levels ri and consequently the probabili ty P [xi = zi] , satisb the following inequali ties 

Since E ani, then the constant probability P [xp = +] can be computed from 

the loxest priority part using ui8. Recall that under d l  the parts have the same 

priorilies, reach their respective hedging levels a t  the same time. and consequently 

have the same probability to be at their associated hedging level. This means that 

P [xp = 4 = P [xi = q] = 

Consequently, using (37), (A.26) and (A.Z'), (41) 

r , , u ~  - d l  
(A.27) 

( ~ 2  - 4 )  

and (13) c m  be obtained. . 



CHAPITRE VI 

CONCLUSION 

L'atelier de fabrication flexible représente de par sa flexibilité un outil de plus en PIUS 

attrayant et indispensable pour demeurer compétitif sur un marché libre. L'objectif 

est de satisfaire une demande, qui peut varier dans le temps, tout en réduisant le 

niveau de surplus de production. Cette tâche est rendue difficile par la présence 

d'aléas, en particulier les pannes de machines. Xous avons passé en revue, les 

travaux de recherches existants en rapport plus ou moins étroit avec nos travaux 

Nous avons pu constater que le segment de la littérature scientifique auquel se 

rattachent directement les travaux de recherche dans cette thèse présente plusieurs 

limitations. Une des limitations vient du fait que l'on met énormément d'emphase 

sur la caractérisation de la solution optimale en régime stationnaire par rapport à 

l'analyse et la caractérisation de la solution transitoire (sur horizon fini). La raison 

sous-jacente à ce manque d'information est la difficulté maintes fois exprimée de 

traiter ces qiiestions. Suite à ces constations nous avons entrepris dans cette thèse 

de répondre aux questions suivantes: 

Quelle doit être la plus petite valeur de ln longtieur de l'horizon T à partir 

de laquelle on peut utiliser avec un certain degré de confiance la politique 

optimale stationnaire (dont la structure est bien connue)? 

Pour la classe de politique i seuils critiques invan'ants, comment peut-on 

optimiser les seuils critiques d'inventaire sur un horizon fini e t  comment sont- 

ils affectés par la longueur de l'intervalle d'optimisation? 

Dans le cas d'un atelier de fabrication flexible produisant plusieurs types de 

pièces, comment peut-on améliorer le contrôleur sous-optimal de Caramanis 

et Sharihia ? 



Dans le chapitre II, nous avons présenté les différentes notions et définitions rel- 

atives à l'atelier de fabrication flexible. Nous avow pu remarquer que le contrôle de 

flux représente une phase importante dans une structure de contrôle spécifiquement 

conçue pour répondre à l'explosion de complexité provenant de la prise en compte 

dans l'analyse des pannes des machines [Tl. Le but est de déterminer des taux 

de production moyens à court terme, en anticipant dans un sens statistique les 

différents modes du système de production et  en respectant la capacité disponible 

dans chaque mode. Un important concept émerge des travaux de Kimemia et 

Gershwin [7], celui d'un point critique associé à chaque mode faisable. La poli- 

tique optimale, sur horizon infini, serait d'atteindre ce point le plus rapidement 

possible et d'y demeurer tant que possible. 

Au chapitre III, les résiiltats dans [l?] et [IO] qui constituent pour cette 

thèse un point de départ essentiel, ont été présentés. Une estimation d'une borne 

supérieure du temps moyen de convergence des coiits vers le régime stationnaire a 

été proposée. Cette borne supérieure possède le désavantage d'être uniquement une 

borne sur ln moyenne du temps de convergence et pourrait perdre son intérêt si la 

variance du temps de convergence est élevée. 

Le chapitre IV constitue une réponse aux det~w premières questions posées ci- 

dessus. Nous avons considéré le problème d'optimisation du contrôle de A u x  sur 

un horizon fini, pour une système multi-mode et prodilisant un seul type de pièces. 

La classe (sous-optimale) des lois de production considérées est caractérisée par des 

points cri tiques invariants à 1 'intérieur de l'horizon d'optimisation. Une équation de 

renouveuement pour la fonctionnelle coût sur horizon h i  a été développée et utilisée 

pour générer les coefficients d'une expansion en série infinie de la transformée de 

Laplace du coût vu comme fonction de la longiieur de l'horizon T. 

Le calcul des coefficients dans la série infinie est basé sur une résolution d'un 

système d'équations différentielles récursives. Les coefficients dépendent du choix 

particulier des seuils critiques d'inventaires et sont utilisés pour obtenir une ap- 

proximation de la fonctionnelle coût comme somme de fonction exponentielles. 



L'optimisation du choix des seuils critiques procède par la suite numériquement. 

L'application des appr&ants de Padé donne d'excellents résultats 

numériques et nous a permis d'estimer correctement le coût même pour des 

longueurs d'horizons de temps faibles. La validation des approximants de Padé 

a été possible par comparaison avec les résultats numériques obtenus par résolution 

directe du systè me d'équations aux dérivées partielles donné au théorème 3.1 basé 

sur la méthode de Lax-Wendroff [30] pour des points critiques fixés. 

L'estimation du temps de convergence vers le régime stationnaire a été possible 

par l'analyse des singularités de la transformée de Laplace de la fonctionnelle coût. 

Le résultat nous donne un critère d'estimation de la longueur minimale d'horizon 

requise pour garantir un pourcentage d'erreur maximal en fonction du pourcentage 

d'erreur par rapport au coût en régime stationnaire. 

Le chapitre VI présente une réponse partielle à la troisième question. Nous 

avons considéré le problème de contrôle de flux d'un atelier de fabrication flexible 

à deux états et prod~iisant plusieurs types de pièces. Nous avons défmi une nou- 

velle classe de politiques à seuils critiques appelée politiques maximales simples à 

points critiques (politiques MSP) . Tout comme les poli tiques caractérisées par des 

hypercubes souscrits proposées par Caramanis et Sharihia (91, ces politiques sont 

fonctions du seuil critique le long de chaque composante ainsi que le choix du point 

c à la frontière supérieure de R I ,  l'espace de capacité dans le mode opérationnel. 

Ces politiques de production peuvent avoir des performances meilleures que celles 

des politiques de Caramanis e t  Sharifnia vu le découplage de lois de production 

pour chaque type de pièces. Ceci est dû au fait que la production est toujours 

menée en exploitant la capacité maximale du système. En utilisant l'analyse de 

premier temps de passage, ainsi que les approximants de Padé, nous avons montré 

comment une analyse séquentielle des performances des politiques MSP est possi- 

ble en commenqant par la pièce ayant la priorité la plits élevée jusqu'à celle ayant 

la priorité la plus faible. De plus, nous avons ni également établi que le critère 

d'ergodicité pour le cas midti-pièce est minimal, Le., le t a i~u  de demande des pièces 



se trouve à l'intérieur de l'espace de capacité moyen. Enfin, nous avons développé 

des conditions nécessaires ainsi que des conditions suffisantes pour l'optimaiité du 

point critique global nul. 

Au tableau des limitations de résultats, il est à souligner que l'analyse multi- 

pièce telle que présentée n'est valide que pour un système à deux modes seuie- 

ment produisant plusieurs types de pièces. Cependant, L'amélioration apportée 

par l'utilisation des politiques MSP telle que présentée est restreinte aux systèmes 

à d e w  modes sur horizon infini. Deux généralisations possibles de nos travaux pour- 

raient donc être considérées: d'une part, horizon i n h i  et systèmes multi-mode pro- 

duisant plusieurs types de pièces, et d'autre part systèmes à deux modes produisant 

plusieurs types de pièces sur horizon h i .  La généralisation pour les systèmes multi- 

modes, horizon infini, présente quelques difficultés dans la détermination des ver- 

sions biaisées des processus d'inventaire. Pour m i e ~ ~ x  saisir cette difficulté, con- 

sidérons l'exemple suivant: Soit un système pouvant être dans trois modes et 

produisant deux types de pièces. Définissons, {X:) , les séquences de variables 

aléatoires représentant les durées de séjours successives dans les modes i = 1.2,3, 

k = 1.2  .... Soit uij, i =  1 ,2 ,3 ,  les vitesses de production de la pièce j = 1,2, dans 

mode i et soit m = 2 le nombre d'états faisables. Nous avons donc deux points 

critiques 21, z2. Supposons ZI > ~2 avec zi = [zii, z2i] , i = 1.2. Le premier problème 

provient de la dificulté de définir une politique SEP consistante. En effet s u p  

posons que les taux de production soient choisis dans chaque mode faisable selon 

les règles dictées par la proposition 5.1 de manière à donner la priorité la plus élevée 

à la pièce 1. Supposons qu'à un instant t quelconque oh xl(t) > 212, le mode du 

système saute à l'état 2 et que par conséquent, selon la politique à point critique, 

le taux de production de la pièce 1 doive être mis à zéro. La pièce 2 jouit alors de 

la capacité maximale de production (puisque c'est une poli tique MSP). Ceci fait 

en sorte que la probabilité que x2(t) atteigne in avant que x l ( t )  atteigne ~ 1 2  est 

non nulle et la consistance n'est plus respectée. Il serait intéressant de voir dans un 

travail futur si nous pouvons contourner cette difficulté en cornmutant les vitesses 

de production non pas au point critique de la pièce prioritaire mais par rapport à 



une courbe de commutation plus générale, f (xi, x2). 

La deuxième généralisation possible consiste à considérer le cas à deux modes 

multi-pièce sur un horizon fini. Il est à noter que si l'on ne s'en tenait qu'aux versions 

biaisées des processus, l'analyse transitoire du cas mono-pièce multi-mode pourrait 

être intégralement reproduite. La difficulté principale provient principalement de la 

contribution du terme d'erreur f(~) au lemme 5.2. Nous pensons qu'il est possible de 

développer pour le cas sur horizon h i  des équations de renouvellement spécifiques 

au terme. Ce qui pourrait être là une voie de recherches futures prometteuses. 

Finalement, dans cette thèse, la nature des phénomènes considérés se résume 

à la production des pièces et aux pannes aléatoires des machines. Des aspects tels 

que la maintenance préventive, le vieillissement des machines et son effet sur les 

taux de pannes des machines, de même le caractère à l'occasion non négligeable des 

temps de reconfiguration des machines n'ont pas été abordés. Certains de ces outils 

développés dans cette thèse pourraient constituer un bon point de départ pour la 

prise en compte de tels aspects. 
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