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RESUME

Dans cette theése, nous nous intéressons au probléme général de controle de
flux dans les ateliers de fabrication flexibles. La thése est composée de deux parties
principales consacrées respectivement a la commande sous-optimale sur horizon fini
des ateliers de fabrication mono-piéce, et la commande sous-optimale sur horizon
infini des ateliers de fabrication multi-piéce. Plus précisément, dans la premiere
partie, le probléeme de production sur horizon fini dans un atelier mono-piéce est
considéré. Lorsque le taux de demande de piéces est constant, pour une fonction
coit d'inventaires ou de retards de production par unité de temps convexe, il est
établi que les politiques de production optimale sont de type seuils critiques. Pour
un horizon de commande infini, ces politiques sont caractérisées par un ensemble
de seuils d'inventaires critiques associés a chaque mode de la machine pour lequel
le taux de demande peut étre satisfait et qu’il s'agit de maintenir lorsque possible.
Dans le cas d'un horizon fini (commande transitoire), les seuils critiques existent
toujours mais varient dans le temps, et de ce fait deviennent des courbes critiques,
en général tres difficiles & caractériser. Dans un effort de simplification, la com-
mande transitoire optimale pour ateliers de fabrication mono-piéce est recherchée
a l'intérieur de la classe (sous-optimale) des politiques a seuils critiques invari-
ants. Une équation de renouvellement est développée pour la fonctionnelle cotit
sur horizon fini sous une loi de commande arbitraire de type de seuil critique in-
variant. Le noyau de l'équation de renouvellement correspond & une fonction de
densité de probabilité de premier temps de retour obtenue comme solution d’un
systéme auxiliaire d'équations aux dérivées partielles (EDP). Le systéme auxiliaire
d’EDP ainsi que 1'équation de renouvellement sont ensuite conjointement utilisés
pour générer récursivement les termes d'une série infinie correspondant & I’expansion
de la transformée de Laplace (par rapport a la longueur d’horizon T') de la fonc-
tionnelle colit. Les termes de ’expansion sont utilisés pour obtenir un approximant

de Padé fournissant aprés inversion une trés bonne approximation de la valeur de
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la fonctionnelle cout pour un choix donné de T et des seuils d'inventaires critiques.
Ce schéma d’approximation est par la suite utilisé & l'intérieur d'un algorithme
d’optimisation numérique a partir duquel les niveaux d’inventaires optimaux pour
une longueur d’horizon donnée sont optimaux. La méme technique d’optimisation
peut étre envisagée dans le contexte multi-piéce si les politiques de production sont
de type seuils critiques constants avec découplage de la politique de production
pour chaque type de piéce (utilisation d’hypercubes inscrits pour I’approximation

de I'espace de capacité de production de Caramanis et Sharifnia).

Dans la deuxiéme partie de la thése, nous considérons le cas de svstémes de
production a deux modes, multi-piéce. Bien que les politiques sous-optimales de
Caramanis et Sharifnia soient intéressantes au niveau de la simplicité des calculs en
cause, elles présentent le désavantage important que les seuls hypercubes souscrits
dans I'espace de capacité permis sont ceux pour lesquels le niveau de production
maximal pour chaque type de piéce est en moyenne suffisant pour répondre a la
demande individuelle pour ce type de piéce (demande “faisable™). Il est également
4 noter que le caractére totalement découplé des politiques de production pour
chaque type de piéce fait en sorte que méme l'utilisation du sous-espace de pro-
duction réduit est sous-optimale. Une classe de politique de production basée sur
des hypercubes inscrits dans 'espace de capacité est introduite. ces politiques dites
politiques maximales simples & points critiques (politiques MSP), sont telles que
les niveaux de production pour chaque type de piéce sont couplés, l'exigence de
faisabilité pour chaque composante de I’hypercube inscrit est éliminée, et il n’y a
jamais sous-utilisation de la capacité de production. En se fondant sur les tech-
niques développées dans le premiére partie de la thése, il est alors possible de mon-
trer que pour un systéme avec p types de piéces, des fonctionnelles cotits additives
pour chaque type de piéce, ’analyse de performance d'une politique MSP donnée
se réduit & ’analyse de p machines (fictives) semi-markoviennes découplées. Les
machines sont markovianisées moyennant une analyse de premier temps de passage
ainsi que I'application d'une technique d’approximants de Padé. L’'optimisation

numeérique sur la classe de politiques MSP indique que, du moins pour I’exemple
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numérique étudié, leur performance est éminemment comparable a celle de la com-

mande optimale.
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ABSTRACT

In this thesis we address the flow control problem in manufacturing systems.
The thesis consists of two main parts respectively corresponding to finite horizon
suboptimal control of single part manufacturing systems, and infinite horizon sub-
optimal control of multi-part manufacturing systems. More specifically., in the first
part, Part production is considered over a finite horizon in a single part multiple
failure state manufacturing system. When the rate of demand for parts is constant.
for Markovian machine mode dynamics and for convex running cost functions asso-
ciated with part inventories or backlogs, it is known that optimal part production
policies are of the so-called hedging type. For the infinite horizon case, such policies
are characterized by a set of constant critical machine mode dependent inventory
levels that must be aimed at and maintained whenever possible. For the finite hori-
zon (transient) case, the critical levels still exist but they are now time-varying and
in general very difficult to characterize. Thus, in an attempt to render the problem
tractable, transient production optimization is sought within the (suboptimal) class
of time-invariant hedging control policies. A renewal equation is developed for the
cost functional over finite horizon under an arbitrary time-invariant hedging control
policy. The kernel of that renewal equation is a first return time probability density
function which satisfies an auxilliary system of Kolmogorov type of partial differ-
entiel equations (PDE). The renewal equation and the auxilliary PDE system are
used to generate recursively the terms of an infinite series expansion of the Laplace
transform (with respect to horizon length) of the resulting cost functional. Padé
approximants to the resulting infinite series expansion yield a quite accurate ap-
proximations of the cost functional in terms of T and the arbitrary hedging levels.
This is subsequently used as part of an optimization scheme whereby hedging levels
which are optimal for a given finite horizon length are efficiently computed. The
algorithms presented here can also be applied to the finite horizon optimization

for multi-parts failure-prone manufacturnig systems provided that only the part-



wise decoupled capacity set inscribed hypercube-based hedging control policies are

considered (Caramanis and Sharifnia) .

In the second part of the thesis, we consider the case of the two-state multi-part
manufacturing systems. The near optimal controllers of Caramanis and Sharifnia,
while computationally attractive, suffer from the drawback that the production ca-
pacity set must be approximated via a very restricted set of inscribed hypercubes.
namely those for which a componentwise feasibility requirement is satisfied. Also.
due to the completely decoupled nature of production along each component, even
the utilization of the restricted capacity set is suboptimal. A class of capacity set
incribed hypercube policies called simple maximal hedging (SMH) policies is intro-
duced. In SMH policies production along the various components of the capacity set
are coupled, the componentwise feasibility requirement is lifted, and there is no un-
derutilization of production capacity if needed. Using the results of the first part of
the thesis, in a p part types manufacturing system, for partwise additive cost func-
tionals, it is shown that performance evaluation of a given SMH policy reduces to
the analysis of p decoupled (fictitious) semi-Markovian machines. The machines are
Markovianized via first passage-time analysis and a Padé approximants technique.
Numerical optimization over the class of SMH policies in a sample manufactur-
ing system indicate that their performance can come close to that of the optimal

control.
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CHAPITRE I

INTRODUCTION

Dans un contexte de libéralisation des marchés, I'optimisation de tous les aspects
du processus de fabrication devient un impératif pour les compagnies manufac-
turiéres. L’objectif ultime est de demeurer compétitif au niveau de la qualité tout
en répondant a la demande avec les colits les plus bas possible dans un contexte de
capacité de production restreinte. La robotisation et l'informatisation industrielles
en général gagnent donc du terrain. A ce sujet, I'atelier de fabrication flexible con-
stitue le moyen technologique le plus avancé. Il s’agit cependant d’une technologie

trés colteuse et dont il faut essayer d’assurer la rentabilité.

L'objectif d’un atelier de fabrication flexible est de satisfaire, au coiit le plus
bas, les exigences d’une demande, qui peut varier dans le temps, tout en réduisant le
niveau de surplus de production qui pourra étre positif ou négatif. Un surplus positif
correspond 3 'existence d’un inventaire et une demande satisfaite; par contre un
surplus négatif reflete 1'état d’un stock épuisé et d’'une demande non respectée. Les
différents problémes qui surgissent lors du fonctionnement d'un atelier de fabrication
flexible, incluent les décisions qui régissent la planification et 'ordonnancement
de la production, l'injection et le chargement de la matiére premiere ainsi que
I'acheminement des piéces a 'intérieur de |’atelier. Dans ce qui suit nous passons
en revue le segment de la littérature scientifique auquel se rattachent directement

les travaux de recherche dans cette these.

Olsder et Suri [4] sont les premiers a formuler un modéle de contréle stochas-
tique basé sur les résultats de Rishel [21] concernant la théorie de contréle des
systemes markoviens & sauts. En utilisant 'approche de la programmation dy-
namique, ils traitent le probléme d’acheminement des taches dans 'atelier comme

un probléme de commande optimale en temps minimal. La loi de commande qu'ils



trouvent en utilisant un certain nombre d’hypothéses simplificatrices, est la so-
lution d’un systéme complexe d'équations fonctionnelles intercouplées résultant
du principe d'optimalité de Bellman. IIs mentionnent la difficulté d’obtenir des
solutions analytiques et proposent d'autres approches approximatives essentielle-
ment numériques. Toutefois, ils montrent que 1’espace de production est divisé en
plusieurs régions et la décision optimale est déterminée par la région ou se situe le

niveau d’inventaire global.

Les caractéristiques qualitatives du controle optimal pour la minimisation
du niveau d'inventaire ont été étudiées par Kimemia et Gershwin [7]. Dans [7],
une décomposition hiérarchique spécifiquement congue pour pouvoir tenir compte
de maniére efficace du probléme des pannes aléatoires de machines, permet
d’approximer, & un certain niveau de décision, la dynamique du processus de pro-
duction par un modéle fluide (variables continues). Cette dynamique est ponctuée
de sauts brusques et généralement aléatoires dans la capacité de production ou
dans la demande. Ces sauts sont dus aux changements de 1'état opérationnel de
I'atelier (panne, arrét d’entretien...). L’analyse fondée sur un tel modéle permet de
conclure sous certaines circonstances que la politique de production optimale sur
horizon infini se caractérise par des niveaux d’inventaire critiques. Chaque mode
de I’atelier {panne partielle) faisable, c’est 3 dire un mode ou on peut produire &
un taux égal ou supérieur au taux de la demande, possede son propre niveau. La
stratégie de production optimale consiste alors & s'organiser de sorte a atteindre le
niveau critique associé au mode faisable actuel le plus rapidement possible et d'y
demeurer tant que 1’état de 1'atelier le permet. Kimemia et Gershwin mentionnent
la difficulté d’obtenir une expression analytique exacte de la solution optimale. En
effet, la solution exacte de ce probléme de contréle de la production exige la solution
d’un systéme d’équations différentielles qui n'est possible que dans des cas simples
scalaires (mono-piéce); ce n’est pas la situation pour les ateliers de fabrication flex-
ibles qui sont en général multi-dimensionnels (multi-piéce). Pour contourner cette
difficulté, Kimemia et Gershwin [7] proposent une heuristique qui permet de calculer

des lois de controle sous-optimales plus simples et plus pratiques.



Dans le cas mono-piéce, Akella et Kumar [16] réussissent & trouver une ex-
pression analytique pour le calcul du point d’'inventaire optimal. Le systéeme qu'’ils
considérent est formé d’une machine a deux états, état opérationnel et état de
panne respectivement, et produit un seul type de piéces . La fonction de pénalité
¢(z(t)) est linéaire par rapport au niveau d’inventaire z(t) considérée comme une
variable continue. Akella et Kumar démontrent a partir d’une analyse de |'équation
de Hamilton-Jacobi-Bellman correspondante, que dans ce cas la politique optimale

de controle satisfait la stratégie suivante:

™

U1 max si x(t) <
72 (z(t)) = d siz(t)=2z" (1.1)
0 siz(t)>z

™

™

ou z* représente le point d’inventaire optimal. Sous cette politique a point critique,
le taux de production varie selon le lieu oti I'état continu du systéme z(t) se trouve
par rapport & z*. L'objectif est de rejoindre ce point le plus rapidement possible
en produisant a2 un taux maximal ou en arrétant la production selon que z(t) < z*
ou z(t) > z* respectivement. Une fois ce point atteint (i.e.,.z(¢) = z*}), le systéme y
reste tant que 1'état discret le permet. Akella e¢ Kumar montrent que la condition
nécessaire a |’optimalité de cette politique est reliée directement a la convexité de
la fonction valeur par rapport a ses entrées. La convexité du coit instantané assure
la convexité du cout résiduel. Cependant, méme pour le cas le plus élémentaire

d’un systéme a deux états, 'analyse de I'équation de la programmation dynamique

s'avere compliquée.

Partant de la constatation que I'analyse de 1'équation de la programmation
dynamique permet de conclure que la loi de commande optimale est une loi a
seuil critique, Bielecki-Kumar transforment le probleme de recherche de commande
optimale sur horizon infini en un probléme beaucoup plus simple d’optimisation
paramétrique sur l’ensemble des lois & seuils critiques d’inventaires. Bielecki et

Kumar [27] initient une nouvelle approche qui se comportant quatre étapes:

e considérer 1’ensemble des stratégies de commande a seuil critique tel que décrit

par ’équation (1.1);



¢ choisir un niveau critique z arbitrairement (parameétre définissant de maniére

non équivoque la stratégie de production);

e calculer lorsqu’elles existent les fonctions de densités de probabilité station-
naires décrivant les statistiques de z(t) (le niveau du stock), sous !'action de

la loi de commande & seuil critique ainsi paramétrisée;
e calculer le coit (indice de performance) en fonction de z;

e optimiser le choix de 2z de maniére & minimiser le cout.

IIs reconsidérent le probléme traité dans [16], d’une machine & deux états.
Seul le critére de minimisation a changé. En effet, au lieu d'utiliser comme critére
d’optimisation l'intégral d’un coit avec facteur d’escompte (exp(—pt)), ils utilisent
cette fois-ci le critére du colt moyen par unité de temps sur un horizon infini. En
utilisant les conditions d’optimalité données par des équations de la programmation
dynamique, ils démontrent par procédure de vérification que la loi de production

de type & seuils critiques est effectivement optimale.

L’approche proposée par Bielecki et Kumar s'avérait simple et prometteuse et
devait devenir le point de départ de plusieurs autres travaux (Algoet (1], Caramanis
et Sharifnia {9], Sharifnia [25], etc.) Sharifnia [25] postule une structure & seuils
critiques multiples de la loi optimale du probléme mono-piéce avec machine a états
multiples. Ainsi, I’espace de l'inventaire z(t) est divisé en plusieurs régions limitées
par les seuils d’inventaire optimal dont le nombre est égal a celui des états faisables
du systéme. Ces seuils sont classés en ordre décroissant (i.e.,z; > z;si¢ < j). En
faisant, I’équilibre du flux de probabilité passant & travers un élément d’espace de
largeur Az, Sharifnia [25] montre que les fonctions de densité de probabilité station-
naires lorsqu’elles existent, reliées 4 chaque état de la chaine de Markov, modélisant
P’état discret du systéme, sont solutions d'équations différentielles linéaires couplées

par rapport & la variable continue z{t).

Algoet [1] généralise 'approche de Bielecki et Kumar [27] ainsi que le



[$1]

développement présenté par Sharifnia [25] pour I'étude et 'analyse des systémes
de production multi-mode multi-piéce. En faisant, I’équilibre de flux de probabilité
a l'intérieur d’'un élément de volume il montre que la densité de probabilité station-
naire du vecteur représentant conjointement le processus d’inventaire et l’état dis-
cret caractérisant les différents modes de |'atelier satisfait une équation aux dérivées
partielles. De plus, Algoet mentionne que la projection du vecteur d’inventaire sur
un axe quelconque posséde aussi une densité de probabilité marginale qui satis-
fait le méme style de systéme d’équations aux dérivées partielles. Dans le cas ol
les capacités de productions sur les différents axes (différents types de piéces) sont
indépendantes le systeme d’équations aux dérivées partielles se réduit a un systéme

différentiel ordinaire.

Partant sur l'idée proposée a l'origine dans [7], Caramanis et Sharifnia {9]
proposent une approche sous-optimale de conception qui consiste a construire une
famille d’approximations de l'espace de contrdle par des hypercubes souscrits. La
loi de production qu’ils associent aux hypercubes souscrits, rend les dynamiques
associées aux différents types de piéces indépendantes, ainsi un probléme multi-
dimensionnel de dimension p au départ est décomposé en p sous-problemes scalaires
indépendants. Cependant, toute forme de dépendance entre les lois de production
associées aux différents types de pieces ayant été éliminée, le systéme n’est plus en
mesure de fonctionner a plein régime (capacité maximale), notamment lorsqu'un

des inventaires atteint son point critique.

Suite & ces travaux initiaux, les politiques & points critiques émergent donc
comme étant les politiques optimales pour un horizon d’optimisation infini d'une
fonctionnelle cotit avec un cott instantané convexe. A partir de la, un nombre im-
portant de travaux est développé autour des propriétés des politiques de production
a seuils critiques particulierement dans le cas des systémes markoviens produisant
un seul type de piéces. Liberopoulos et Hu [5], Sethi et Zhang [24] se sont intéressés
a l'ordre qui peut exister entre les seuils critiques pour un systéme & plusieurs états

produisant un seul type de piéces. Se basant sur les équations de Hamilton-Jacobi-



Bellman, et pour les cas particuliers ou la chaine de Markov décrivant le mode de
I’atelier constitue un processus de naissance et de mort, ils montrent que les seuils
critiques respectent une certaine monotonicité (plus la capacité de production dans

un mode donné est importante, plus le seuil critique associé est faible).

Dans le cas multi-piéce, Srivatsan et Dallery [11] étendent les connaissances
acquises pour le cas mono-piéce notamment en ce qui concerne l’analyse de sta-
bilité et les conditions d’optimalité au cas & deux ou plusieurs types de piéces. La
technique utilisée est une combinaison de comparaison et d’analyse de trajectoires
générées par différentes politiques de production. Srivatsan et Dallery montrent que
ce type d’analyse permet d’aboutir & une caractérisation partielle des politiques de
contrdle pour les systémes & deux ou plusieurs types de piéces. Une propriété qui se
révélera importante pour nos travaux émerge de leur analyse, voulant que pour la
classe de politiques a seuils critiques ou le systéme produit tout le temps, si besoins
est au taux maximal, indépendamment du mode ot il est, le temps que met le
niveau d’inventaire pour revenir au point critique global est le méme quel que soit

le chemin particulier emprunté dans 1’espace d’inventaire.

Pour des machines non markoviennes, Glasserman [14] étudie le probléme
des machines mono-piéce multi-mode, ol le mode est semi-markovien. Glasserman
considére que tous les seuils critiques sont agrégés en un seul point et obtient des
résultats analytiques directement utiles lorsqu’il existe un seul état de panne avec
temps de séjour exponentiel. Les résultats fondés sur un calcul de valeur propre
maximale sont obtenus en exploitant le lien qui existe entre le processus d'inventaire
et une marche aléatoire en temps continu dans un contexte semi-markovien. De
plus, Glasserman présente, dans le cas de modes semi-markoviens quelconques, des
seuils critiques asymptotiquement optimaux lorsque le cotit pénalisant un inventaire

négatif tend vers l'infini.

D’autre part, Brémaud, Malhamé et Massoulié [13] étudient les critéres
d’ergodicité de la fonction coilit pour une machine mono-piéce multi-mode et de

dynamique quelconque, mais ergodique, lorsque la loi de production est de type



seuils critiques. De plus, une technique de gradient stochastique, de meme que
des conditions garantissant la convergence de I'algorithme, sont développées pour
I’optimisation par simulation des seuils critiques. Enfin, il est a noter qu’ils
présentent des conditions nécessaires et suffisantes essentiellement identiques a celles
de Bielecki et Kumar [27] (contexte markovien), pour l'optimalité des politiques

juste a temps (seuil critiques nul) pour le cas mono-piéce avec mode ergodique.

La limitation majeure des travaux présentés précédemment est la nature
restreinte des phénoménes qui y sont traités: les opérations et les pannes. Un
atelier de fabrication flexible présente un catalogue d'événements plus riche inclu-
ant des temps de reconfiguration non négligeables. la maintenance préventive, les
manques éventuels de matiéres premiéres, les absences occasionnelles du person-
nel... Ega.lement, le niveau du tampon n’est pas traité. Le modéle utilisé dans les
travaux ci-dessus ne permet pas l’accumulation interne des pieces dont I'usinage est

€ cours.

La considération de tous ou de certains de ces phénomeénes représente un
probléme difficile voir analytiquement impossible & résoudre. Pour éviter ces dif-
ficultés, des stratégies de nature heuristique sont alors mis de l'avant ( [33], [34],
[35], [36]). Le systéme généralement étudié est un atelier de fabrication composé
d’une seule machine et produisant plusieurs types de piéces. Le temps de reconfi-

guration peut étre non nul et la demande pour les produits est stochastique.

Une autre limitation de cette littérature vient du fait que 'on met énormément
d’emphase sur la caractérisation de la solution optimale en régime stationnaire.
Cependant, aucune caractérisation du temps de stabilisation ou de fagon équivalente
de la vitesse de convergence vers le régime stationnaire n’a été abordée. En effet,
en pratique, la majorité des décisions dans un atelier de fabrication sont a moyen
ou a court terme afin de permettre une adaptation rapide & une demande qui peut
varier dans le temps. La détermination du temps de convergence vers le régime
stationnaire peut alors nous informer sur la longueur d’horizon minimale & partir

de laquelle il devient raisonnable d'utiliser la solution en régime permanent. En



deca de cette longueur d’horizon, la solution stationnaire n'est plus trés fiable; or,
il y a une absence quasi-totale de résultats concernant la commande sur horizon
fini. La raison sous-jacente & ce manque d'information est la difficulté maintes fois

exprimée de traiter ces questions.

A ce sujet les seuls travaux, a notre connaissance, qui ont constitué une
premiére tentative sont ceux de Malhamé et Boukas {19] ainsi que Zhang et Yin

[15].

Malhamé et Boukas [19], présentent une caractérisation de la dynamique tran-
sitoire des fonctions de densité de probabilité, décrivant I'évolution de la variable
z(t). De plus, Ils mettent en évidence le caractére de renouvellement de la dy-
namique de processus contrdlé. Les résultats obtenus permettent non seulement de
caractériser le comportement transitoire et stationnaire des statistiques de proba-
bilité rejoignant ainsi les travaux de Sharifnia et d’Algoet, mais aussi de dériver
plusieurs propriétés statistiques reliées au processus hybride [z(t), a(t)]*, telles que
le temps de séjour dans une région quelconque, les premiers temps de passage
etc. De plus dans [10] 'ergodicité des politiques de commande & seuils critiques
est étudiée pour les systémes multi-mode produisant un seul type de piéce. Trois

critéres de vérification simples de 'ergodicité du systéme sont aussi établis.
P

Dans le cas d’un horizon fini, les niveaux critiques existent toujours mais varient
dans le temps et sont en général difficiles & caractériser [15]. Afin de caractériser
les seuils critiques sur horizon fini, Zhang et Yin [15] ont cherché i résoudre les
équations de la programmation dynamique qui apparaissent comme des conditions
d’optimalité de telles politiques. Les point critiques d'inventaire deviennent variant
dans le temps et sont appelés courbes critiques. Zhang et Yin [15] présentent une
solution analytique du probléme de contréle transitoire pour le cas d’'une machine
mono-piece & deux états ol ['état de panne constitue un état absorbant. Une
variation du probléme a été aussi traitée dans le cas d’une machine mono-piece
ayant une capacité constante et une demande markovienne & deux états dont l'un

est absorbant avec valeur de demande nulle.



Notre objectif dans cette thése est de répondre a trois questions. Les deux
premiéres concernent les ateliers mono-piéces, alors que la troisieme concerne les

ateliers multi-piéces. Les questions sont les suivantes:

e Quelle doit étre la plus petite valeur de la longueur de I'horizon T' a partir
de laquelle on peut utiliser avec un certain degré de confiance la politique

optimale stationnaire?.

e Pour la classe de politiques a seuils critiques invariants, comment peut-on
optimiser les seuils critiques d’'inventaire sur un horizon fini et comment sont-

ils affectés par la longueur de I'intervalle d’optimisation?.

e Comment peut-on améliorer le contréleur sous-optimal de Caramanis et Shar-
ifnia dans le cas d'un atelier de fabrication flexible produisant plusieurs types

de piéces.?

En effet, nous considérons pour les deux premiéres questions un atelier de fab-
rication flexible multi-mode produisant un seul type de piéce et soumis a la classe de
politiques & seuils critiques invariants mais dépendants de la longueur de I'horizon.
Nous montrons que la fonctionnelle coit obéit & une équation de renouvellement
caractérisée par la fonction de densité de probabilité du premier temps de retour
au seuil critique. De plus, un systéme auxiliaire d'équations différentielles permet
d’obtenir récursivement les approximants de Padé pour la fonctionnelle coit en
fonction des seuils critiques. Par la suite, une optimisation numérique est menée
afin de déterminer les seuils optimaux. Notons qu’en utilisant le contréleur sous-
optimal de Caramanis et Sharifnia ces résultats peuvent étre appliqués pour le cas
des systémes multi-mode multi-piéce puisque les lois de commande de Caramanis

et Sharifnia sont découplées d’un type de piéces & [’autre.

Pour la troisieme question nous considérons un systéme produisant p types de
piéces et pouvant étre dans deux modes: opération normale et panne. L'analyse est

confinée 4 la classé de politiques & seuils critiques invariants pour laquelle la capacité
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maximale de production de l'atelier est utilisée en autant qu’elle soit nécessaire
(déficit par rapport aux seuils d'inventaires critiques). L’espace de production est
alors divisé en plusieurs régions. Ces régions sont telles que le processus d’inventaire
est contraint de visiter les seuils critiques de divers types de pieces dans un ordre
fixe. Les résultats développés dans la premiere partie ainsi que les techniques de
markovianisation par les approximants de Padé ont rendu la caractérisation du cout

et des points critiques d'inventaire possible.

Ainsi cette thése comporte les chapitres suivants. Au chapitre II, nous
définissons ’atelier de fabrication flexible, ses avantages ainsi que les aléas qui
viennent compliquer l'optimisation de son fonctionnement. Nous présentons la
structure hiérarchique d’analyse des ateliers de fabrication développée par Kimemia
et Gershwin [7]. Enfin une description du contréleur sous-optimal proposé par
Caramanis et Sharifnia [9] est présentée. Elle sera utile au chapitre V. Au chapitre
III, nous rapportons les résultats les plus importants de [19] et [10] qui ont servi aux
développement des résultats du chapitre IV. En effet, ces deux articles constituent
la base immédiate de notre contribution. Aux chapitres IV et V, nous présentons
I'essentiel de notre contribution. Chaque chapitre commence par reprendre les
résultats importants et donne un aper¢u des hypothéses de base et des concepts
importants. L’'article intitulé “Padé Approximants for the Transient Optimization
of Hedging Control Policies in Manufacturing ” constitue la référence principale du
chapitre IV. Notons cependant, que 'analyse des singularités pour caractériser la
vitesse de convergence vers le régime stationnaire présentée a la fin de ce chapitre
ne figure pas dans l'article et constitue un développement & part. L’article de
conférence intitulé “Optimizing the Transient Behavior of Hedging Control Policies
in Manufacturing Systems™ présenté a 1’annexe III de ce chapitre donne un exemple
d’utilisation de I’analyse des singularités pour I'optimisation des seuils critiques sur
horizon fini. L'article intitulé “A Tractable Class of Maximal Hedging Policies in
Multi-Part Manufacturing Systems ” constitue la référence principale du chapitre
V. Dans le chapitre VI nous présentons nos conclusions et proposons des extensions

possibles a nos recherches.
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CHAPITRE II

NOTIONS SUR LES ATELIERS DE
FABRICATION FLEXIBLES

2.1 Définition d'un atelier de fabrication flexible

Un atelier de fabrication flexible est constitué de plusieurs stations de travail per-
mettant plusieurs types d'opérations. Un mécanisme de transport assure la li-
aison entre ces stations. L’atelier produit une famille de pieéces avec des car-
actéristiques d'usinage présentant de grandes similarités ou qui encore constituent
les composantes d’'un méme produit final une fois assemblées. Les piéces sont intro-
duites dans le systéme & une station de chargement et le quittent a une station de
déchargement. Au cours de son parcours, une piéce subit une séquence d’opérations
bien définie. La flexibilité de I’atelier réside dans le fait que les opérations peuvent
étre effectuées sur une séquence arbitraire de piéces, avec des temps de réajustement
et de réglage relativement courts d'un type de piece a 'autre. De plus, une ou
plusieurs stations peuvent étre choisies pour chaque type d'opération. Ceci fait en
sorte que la production est continue méme si une des stations de travail est hors ser-
vice a cause d’une panne ou pour fin de maintenance, et que le type de production

peut étre modifié au besoin relativement rapidement [22].

Le temps requis pour établir la configuration nécessaire pour une famille de
piéces est de plus en plus négligeable grice 4 des machines & commande numérique.
Ces types de machines possédent un magasin d'outils nécessaires aux différentes
opérations qu’elles permettent de réaliser et sont presque autonomes. De plus,
la robotisation étroitement couplée & un développement informatique sans cesse
croissant fournissent une plus grande efficacité et rapidité lors de I'établissement
de la configuration et le calibrage de départ. Dans la majorité des cas, un logiciel

détermine la séquence des opérations ainsi que les ajustements nécessaires d'une
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opération & une autre ou d’un type de piéce a 'autre. Le changement dans les
lignes du code ou du logiciel peut se faire de fagon instantanée comparativement au

temps nécessaire pour effectuer les différentes opérations.

La diversité des domaines d’application de cette technologie, qui autrefois était
réservée aux trés grandes compagnies, intéresse de nos jours de plus en plus de
moyennes et petites entreprises. La capacité qu'un atelier flexible fournit de pro-
duire simultanément une famille de piéces, de réduire le stock de produits, d’éliminer
la congestion et de diminuer le retard, procure donc une rapidité de réponse a une
variation de la demande tant au niveau de la quantité que de la qualité. Cette ca-
pacité de réponse a une variation de la demande représente un atout trés important

pour une compagnie cherchant a demeurer compétitive dans un marché libre.

L'atelier de fabrication flexible représente par ailleurs un investissement élevé
et par conséquent il est vital, lorsque I'investissement a été fait, de pouvoir utiliser

efficacement cette technologie.

Pour atteindre cet objectif de rentabilité, une modélisation et une analyse du
fonctionnement des ateliers devraient étre effectuées. Cependant, la majorité des
systémes de fabrication sont des systémes a grande échelle et complexes. De plus
ces systémes sont sujets & des événements qui peuvent étre de nature stochastiques

ou déterministes. Parmi, ces événements on peut citer ( [22], chap.9):
e pannes ou réparations des machines
e modifications subites des plans de production
e manque imprévu de matiére premiére
Une reconnaissance rapide des événements cités plus hauts ainsi qu’une poli-
tique d’action en conséquence représentent des exigences incontournables. Vu la
diversité des problémes, l'obtention de politiques optimales basées sur un seul

modele mathématique est un objectif virtuel a la fois théoriquement et conceptuelle-

ment [24]. Une technique de décomposition hiérarchique s’impose ainsi comme une
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des rares voies possibles (Kimemia et Gershwin [7], Sethi et Zhang [24]). L'idée est
de réduire de fagon exacte ou approximative le systéme global en des sous-systémes
qui peuvent étre traités plus facilement. La solution des ces sous-problémes permet
la construction d’une solution globale. Lors du fonctionnement d’un atelier flexi-
ble les problemes qui intéressent les responsables de la production sont surtout les

problémes

e de chargement (injection des piéces dans le systéme),

e d’acheminement (détermination de la séquence des machines que la piéce doit

visiter pour effectuer ses taches).

e de planification et d’ordonnancement (détermination des taux de production).

Plusieurs critéres sont utilisés pour déterminer les performances d’une politique

particuliére. Parmi ces critéres, nous trouvons:

e la minimisation du cout d'installation,

e la minimisation du temps total requis pour finir toutes les opérations,
e la minimisation du nombre d’opérations dans le systéme,

® le jumelage de la production et de la livraison (Just-in-Time),

® la minimisation du temps ol les machines sont libres,

e la minimisation des coiits de production et d’entreposage.

Les objectifs ultimement visés sont entre autres de:

e satisfaire une demande souvent incertaine.

e minimiser les cotts globaux pour rester concurrentiel.
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e produire avec les compromis idéaux de qualité, cout et quantité pour conserver

une bonne part du marché.

Dans la section suivante nous allons illustrer la décomposition hiérarchique pro-
posée par Kimemia et Gershwin [7]. Cette décomposition représente les différents
niveaux de contréle de la politique de production spécifiquement congue pour
controler 'explosion de complexité provenant de la prise en compte des pannes

dans 1’atelier.

2.1.1 Décomposition hiérarchique

Dans [7], Kimemia and Gershwin proposent une décomposition hiérarchique com-
posée de trois niveaux. Cette décomposition exploite la capacité disponible en anti-
cipant dans un sens statistique les pannes, les réparations des stations de travail ainsi
qu’un changement dans les exigences de la demande. Chaque niveau de hiérarchie
est caractérisé par la longueur de I’horizon de planification ainsi que le type de
données requis pour le processus de prise de décisions. Les plus hauts niveaux
de la hiérarchie possédent typiquement des horizons longs et utilisent des données
fortement agrégées. Cependant, les niveaux les plus bas possédent des horizons
de planification plus courts et utilisent des informations plus détaillées. La nature
des aléas sur chaque niveau peut également différer. Une politique de production
adéquate est celle qui doit anticiper ces événements ainsi que les changements dans

la demande.

Les politiques d’acheminement et d'ordonnancement sont basées sur un ensem-
ble d’hypothéses sur les échelles de temps de différentes classes d’événements qui

surviennent durant le fonctionnement d'un systéme de fabrication flexible [7]:

e le temps le plus court est celui des ajustements (reconfiguration) requis lors
d’un changement d’opération ou lors du traitement d'une nouvelle piéce. Ce

temps est supposé négligeable comparativement au temps de fonctionnement;
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e la deuxieme plus grande période de temps est celle consacrée a une opération

moyenne;

e ensuite vient les valeurs moyennes des périodes de fonctionnement ou des

périodes de pannes;

e enfin le temps le plus long est I’horizon sur lequel on doit effectuer le controle.

De plus (22]:

e les tampons internes sont considérés de longueur négligeable. Par conséquent
le temps requis pour remplir les tampons est trés petit lorsque comparé a
la moyenne des périodes de pannes et la moyenne des périodes de fonction-
nement. Cependant ils sont assez grands pour contenir les pieces qui atten-
dent pour subir une nouvelle opération. Il y a donc de maniére générale une
synchronisation des taux de production des divers éléments d'une chaine de

production.

e le temps de transit des piéces dans l'atelier est négligeable par rapport a la

moyenne des périodes de panne et des périodes de fonctionnement.

Ces hypothéses sur les valeurs relatives des temps entre les événements

permettent la décomposition hiérarchique suivante:
Le niveau de contrdle de flux (planification et ordonnancement):

Ce niveau détermine les taux de production moyens & court terme de chaque
type de piéce. Les taux doivent étre déterminés conjointement car les piéces se
partagent le temps disponible a la station de travail. En plus, la demande, la
capacité du systéme de transport, la limite de stockage et la fiabilité des ressources
doivent étre prises en considération. Le mélange de piéces au cours de la production
doit étre ajusté continuellement de maniére & tenir compte des pannes aléatoires

des stations de travail.
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Le niveau de contréle d’acheminement:

Une piéce entrant dans le systéme peut suivre un ou plusieurs chemins dans
le but de subir toutes les opérations requises. La proportion des piéces qui
doivent suivre chaque chemin disponible, est choisie par le niveau de contrdle
d’acheminement. L'objectif est de respecter le taux dicté par le contréleur de flux
et de minimiser la congestion et par conséquent, le retard & travers le systéme. Ce
dernier peut étre modélisé comme un systéme de files d’attentes en considérant les
stations comme des noeuds de services. Le taux d’arrivée des piéces est déterminé

par le niveau de contréle de flux.
Le niveau de contrdle de séquence (injection des pieces):

C’est le niveau de controle le plus bas. A ce niveau se situent les algorithmes
permettant de régler le rythme d’introduction des piéces a usiner dans le systéme,
ainsi que la supervision des opérations des stations de travail. L’objectif est de

maintenir les taux de flux choisis aux niveaux précédents.

Niveau |
- calcul des paramétres
(nécessaires a déterminer
ies taux de production )

Nivldau ]
Programmations des taux moyens (Modéle fluide)
de production. (tenir compte de
l'étet de la machine)

Niveau il
-détails d'opérations machines
-gestion des tampons

Figure 2.1: Décomposition hiérarchique pour répondre aux pannes
aléatoires telle que suggérée par Kimemia et Gershwin

Dans la présente thése nous mettons l'accent particuliérement sur le niveau de

contrdle de flux. La formulation du probléme est présentée dans la section suivante.
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2.2 Probléme de contrdle de flux
2.2.1 Formulation du probléme

Le probléme du contrdle de flux de production d'un atelier de fabrication flexible a

été formulé et partiellement traité a I'origine par Kimemia et Gershwin [7].

Soit un atelier de fabrication flexible pouvant produire p types de piéces et
dont les machines peuvent étre dans plusieurs modes de pannes. L’'état global de
I'atelier est représenté par une variable discréte notée a(t) qui correspond a une
chaine de Markov a temps continu pouvant prendre valeur a l'intérieur d'un espace
d’état fini. Cette chaine de Markov est irréductible, homogéne et caractérisée par
la matrice de transition A = [\;;], (As = — i Aij ), ol n représente les différents
modes du systéme et les A;j, qui représententjfe‘s taux de transitions du mode i vers

le mode j, sont tels que

Pla(t +dt) =jla(t) =i = Aijdt+ol[dt]
Pla(t+dt) =ia(t)=1i = 1+ X;dt+o[dt]

ol dlti_r% o[dt] = 0. Le systéme doit satisfaire une demande par unité de temps connue
d(t) € IRP. Soit z(t) € IR? le vecteur représentant le surplus qui est la différence
cumulative entre la production et la demande pour tous les types de pieces. Les
coordonnées de z(t), z;(t), ¢ = 1, ..., p, peuvent étre soit positives soit négatives. Des
valeurs positives de z;(t) correspondent & un inventaire de piéces en stock tandis
que z;(t) négatif reflete le cas ol le stock est épuisé avec un déficit de production par
rapport & la demande. Les taux de production u,(z,t) € IRP doivent étre choisis
pour chaque mode et pour chaque niveau z, dans un espace convexe 2,. Cet espace
représente ’ensemble des commandes admissibles et définit également les limites de
capacité disponible quand le systéme est en mode a. Pour une politique particuliere
uq(z,t), la dynamique de la variable z(t) est dictée par a(t). Le taux de changement

net de z(t) & l'instant ¢ quand a(t) = « et z(t) = z est caractérisé par 1’équation
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différentielle suivante:

=0 = ua(t) - d(t),

(2.1)
avec z(0) = z5 et a(0) = aq.

La précision du modele est adéquate pour un horizon de temps long par rapport au

temps nécessaire pour produire une piéce individuelle. Idéalement les piéces sont

produites sur demande conservant ainsi le niveau d’inventaire égal & zéro (Just-in-

Time).

Supposons a présent que l’atelier est composé de Af stations de travail ayant
chacune [/, machines identiques avec m = 1,..., Af. L’état a(t) est alors un Af-uplet
de variables entiéres, a,(t), ol pour un m donné, am(t) est égale au nombre de
machines opérationnelles & la station m. Dans ces conditions l'espace de controle

admissible quand le systéme est a I'état o est donné par:

L’ensemble de tous les vecteurs uq(z,t) € IR?
telque pourtout 1 <i <M, 1<7<p

Q(a) =
(e) il Tijlla; < oi(t)
ou T;; représente le temps requis par la machine 7, 1 = 1, ..., M, pour effectuer toutes

les opérations sur la piéce , 7 = 1,...,p. Dl aux différents sauts aléatoires de af(t),
la capacité du systéme n'est pas un espace fixe mais plutot un ensemble aléatoire

variant dans le temps.

Ceci nous améne a définir deux types d'états. Un état est dit faisable si le
vecteur de demande d(t) s’inscrit & l'intérieur de 1’espace €2, et non faisable dans

le cas contraire [22].

Le modele tel que décrit est un modéle fluide & structure variable puisque
z(t) est une variable continue dont la dynamique change selon 1'état discret a(t).
Le systéme est complétement caractérisé par un état hybride [z(t), a(t)]°. De plus
pour un état a(t) connu, la dynamique de z(t) est connue et déterministe. Ainsi,
(z(t),a(t)) fait également partie de l'ensemble des processus déterministes par

morceaux (31].
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aj e modes non faisables

0 Uilmaz

a(t) =1

Figure 2.2: Exemple de variation de l'espace de capacité en fonction
des différents modes de ’atelier

A présent, le probléme de contréle de flux peut étre formulé. Ainsi, étant donné
un atelier de fabrication flexible, soit [z(t), a(to)] I’état hybride initial, I'objectif
est de déterminer une politique de production a l'intérieur de [t, 7] solution du

probléme de minimisation donné [22], [12] par:

T
J(z,a,tg) =minE [/ ¢(z(t)) dt|z(to) = z, a(te) = a} (2.2)
“ to
sujet aux contraintes suivantes:
%(:Q = u(t) — d(t). avec z(ty) = z, a(tp) = ¢, (2.3a)
Z_‘;:l TijUaj < ai(t)y
iy > 0. (2.3b)

Le cott instantané £(z) pénalise le contrdleur pour son échec 2 satisfaire la demande
ou pour avoir créé un inventaire suite 4 un excés de production. #(z) est une
fonction qui peut s’écrire comme la somme des cotits instantanés pénalisant le niveau

d’'inventaire de chaque type de pieces respectivement. Ceci implique que:

fz) = 3 45(2), (2.4)

j=t
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ol Z;(z) est une fonction scalaire tel que

lim £;(z) = oo,

rnzinfj(:c) =0, (2.5)
De plus (voir Sethi et Zhang [24] chap. 3), ¢;(z) est une fonction non négative,
convexe tel qu’ il existe des constantes positives pye, p2e, pac, K1e 2 0, koe > 0, de

sorte que

prela™ = pae < €5(z) < pae (| +1). (2.6)

La classe de politique de production a considérer est constituée de fonctions en
boucle fermée “feedback” u,(z,t) € Q4. La caractérisation de la politique optimale
du probléme (2.2) a été l'objet de plusieurs travaux. La technique communément
utilisée exploite les conditions d'optimalités données par les équations de Hamilton-
Jacobi-Bellman (équations de la programmation dynamique). Les détails de cette

caractérisation feront ’'objet de la prochaine sous section.

2.2.2 Caractérisation de la politique optimale et notion de point cri-
tique d’'inventaire (Hedging point)

Pour une politique particuliére u,(z,t), définissons le cott résiduel comme suit:

T
Juo(z,00t) = E [/; Uz)ydT|z(t) = z,e(t) = ], (2.7)

Ju, (2,0, T) = 0. (2.8)

Ju,(z,a,t) représente I'espérance de la pénalité totale subie par le contréleur
pour le temps résiduel, sachant que z(t) = z, et a(t) = « a I'instant ¢. Rishel [21],
Tsitsikilis [8], Sethi and Zhang [24], Akella et Kumar [16], Bielecki et Kumar [27]
etc. montrent sous des conditions et des hypothéses généralement différentes que

dans le cas du probléme (2.2), la politique optimale est caractérisée par une équation
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similaire a I'équation de Hamilton-Jacobi-Bellman. Soit u}(z,t) la politique opti-
male si elle existe, alors la fonction cott optimale Jy.(z,a,t) satisfait I’équation

aux dérivées partielles suivante:

() a::' + 23: Aagdug [2(t), B, t]} : (2.9)

. 0Ju,, aJy,
0= min {€(z(t)) + -b-z:_(u —-d)+

ou les différentes dérivées de J,.(z,,t) sont évaluées a z(t),a(t) et ¢t. L’équation
(2.9) fournit des conditions suffisantes pour identifier simultanément, dans le cas
des ateliers de fabrication flexibles, une loi optimale en boucle fermée et le cout
résiduel optimal (théoréme de vérification). Sa principale difficulté est qu’elle est
non linéaire et généralement de dimension élevée. Par conséquent, les chances
de pouvoir obtenir une solution analytique (sauf pour certains cas trés particuliers)
sont trés minces, alors que la résolution numérique s’avere étre tres lourde au niveau
des calculs méme pour des cas & faible dimension [9], [22]. Sa valeur cependant
réside dans le fait qu'elle représente un moyen (unique en dehors du principe du
maximum stochastique) pour déterminer les caractéristiques structurelles générales
de la politique optimale u(z,t) et du cout résiduel, sans chercher a obtenir ces
derniers directement & partir de 1'équation. Ces informations constituent ensuite la
base de construction d’une heuristique sous-optimale. Sachant que u appartient au
polyédre £, (contraintes linéaires) et étant donné qu’a la seule place ou elle apparait
explicitement dans (2.9) elle est sous forme linéaire, le probléme d’optimisation en

(2.9) revient au probléme de programmation linéaire décrit comme suit ([7]:

min OJy,
ve Q. ozt (2.10)
sujet aux contraintes linéaires (2.3b) (2.11)

i . By . - - .
Pour un z donné, le gradient —* joue le réle de vecteur coiit attribué au taux
de production des types de piéces dans le choix de la loi de contrdle. Vu les car-
actéristiques des programmes linéaires, une politique optimale de (2.10) prendra en
Py T N . .
général sa valeur a I’un des sommets du polyédre ), lorsque —>* existe. Par contre
T . . e ., . . s . .
dans les cas particuliers ol soit que —>* n’existe pas, soit qu’il est perpendiculaire

aux faces Q, ou soit qu'il est nulle, une solution unique pour (2.10) n’existera pas.



22

Le cas traité dans la littérature est celui ou T — 00, c’est a dire |’horizon
d'optimisation est infini. Dans ce cas, la fonction cotit optimale Jy. (z(t), a(t), t) si
elle existe, est indépendante explicitement de t et peut étre écrite Jy. (z(t), a(t), t) =
Jus (z(t), a(t)). A cause des propriétés d'insensibilité des solutions des programmes
linéaires & des variations bornées et continues des coefficients coiits (les coordonnées
de a—;‘j‘), la solution optimale est égale & un sommet de ), et demeure constante
pour un ensemble de valeurs de z dans |’espace de surplus. Elle se situera ensuite
a un autre sommet lorsque 'on quitte cet ensemble. Quand les coefficients cotit
prennent la valeur causant le saut, toute la partie entre I'ancien sommet et le niveau
sommet constitue une solution optimale. Par conséquent, pour chaque état a de
la machine, une politique optimale divise ’espace en des régions dans lesquelles les
taux de production sont constants (voir Rishel [21], Kimemia et Gershwin [7]). De
plus, a cause de (2.1) et pour d(t) constant égal a d, on peut écrire que

dJu;, (.’L‘(t), a(t)) - a‘]“&

0t 5 (v —d). (2.12)

(2.12) représente la dérivée totale du colt résiduel par rapport au temps sur
la trajectoire de z(t). Si le systéme ne peut satisfaire la demande, la production
sera de maniére & minimiser le taux de croissance de Jy,:(z(t),a(t)). Dans le cas
ol le systéme est dans un mode faisable (u, > d), la politique de production doit
choisir le plus haut taux de u, de maniére a forcer J,; (z(t), a(t)) a décroitre jusqu’a
atteindre le point =, ot il est minimum. L’existence de ce point est intimement liée a
la convexité de Jy. (z(t), a(t)) par rapport & z (voir Sethi et Zhang [24], chap.3) elle
méme liée 4 la convexité de la fonction cotit par unité de temps £(z) par rapport & z.
Par conséquent pour chaque état faisable «, il existera un point critique z;. Le point
z;, est alors appelé point critique d'inventaire optimal (seuil critique) et la politique

en boucle fermée u,(z,t) est appelée politique & point critiques d’inventaire.

Le concept de seuils critiques est important. En effet, il est la conséquence
immédiate de l'incertitude qui régit le fonctionnement de 'atelier a cause des
différents types de pannes partielles dans lesquels il pourrait se trouver. Le seuil cri-

tique représente donc un niveau de réserve minimal qu’il faut batir pour se protéger
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des pannes éventuelles & un coit moyen minimal sur I'horizon considéré.

Ulimaz -

Figure 2.3: Division de I'espace de production en différentes régions a
taux de production constants.

Dans ce qui suit, nous abordons spécifiquement le cas des ateliers de fabrication
flexibles produisant un seul type de pieces. Notre objectif est de donner quelques
résultats qui ont permis récemment de caractériser les seuils critiques. De plus, nous
présenterons les cas classiques étudiés dans la littérature (spécifiquement Akella et

Kumar [16], Bielecki et Kumar [27], Sharifnia [25]) .

2.3 Optimisation des seuils critiques: cas mono-piéce
2.3.1 Cas d'un coiit actualisé

[16] est le premier travail olt une analyse rigoureuse du probléme de contréle de flux
a été faite. Le systéme considéré par Akella et Kumar [16] est formé de machines
mono-piéce pouvant se trouver dans 'un de deux modes: le mode opérationnel 1
ou le mode panne 2. La fonction de pénalité £(z(t)) est une fonction scalaire et

linéaire par rapport au niveau d’inventaire z(t) et est donnée par:

z(t)) =ctz*(t) + ¢~z (t), (2.13)
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La fonction coit est considérée sur un horizon infini et est décrite par [’équation

suivante:

J(zo,0) = min B {5° exp(~pt) €z(t)dtl=(0), a(0) }
(2.14)
sujet aux contraintes: u(t) < Uymax, u(t) >0

ou z*(t) = max(z(t),0) et z~(t) = max(—z(t),0), et avec c*,c” des constantes
positives. Les variables, u,(t) et d(t) sont également considérées constantes. De
plus I’espace de production Q, est équivalent & I'intervalle [0, pay|- Pour sa part
U} max T€Présente le taux maximal de la capacité de production de la machine et est
strictement supérieur a la demande d (U] may > d). Akella et Kumar démontrent
dans ce cas la convexité de la fonction valeur optimale, alors que la politique opti-

male de contrdle satisfait la stratégie suivante:

Upmax s Z(l) < z°,
7. (z(t)) = d siz(t) ==z, (2.15)
0 siz(t)>=z.

z* représente le point critique d’inventaire optimal. Sous cette politique, le taux
de production varie selon la position de z(t) par rapport a z*. L’objectif est de
rejoindre ce point le plus rapidement possible soit en produisant & un taux maximal
ou en arrétant la production selon les cas respectifs ou z(t) < z* ou z(t) > z*.
Une fois ce point atteint (i.e.,z(t) = z*), le systéme y reste tant que |'état discret
le permet. Akella et Kumar montrent que la condition nécessaire & |'optimalité de
cette politique est reliée directement & la convexité et a la dérivabilité de la fonction
valeur par rapport a ses entrées. La convexité de l'intégrant dans (2.14) assure la
convexité du cout résiduel. De plus, la variable de contréle u,(t) doit appartenir
a un ensemble de politiques admissibles. Pour étre considérées admissibles, ces

politiques doivent vérifier certaines conditions suffisantes [16] définies par:

Définition 2.1 Une fonction mesurable w : IR — [0, %) max] st appelé une politique

admissible si pour tout couple (T,z9) € IR® avec T > 0, il eziste une fonction



y=(t; 7, Zo) qui satisfait:

Yx(t; T, To) est absolument conlinue en t

Ye(t; 7, T0) = To + JF (7 (v (5; 7, Zg)) —d)ds pour t> 1 (2.16)
Yx(t; T, Tq) est continue en (t;T,Zo) )
Yr(.) est unique

L’admissibilité de u,(t), garantit donc l'existence d’une solution unique de
I’équation Z(t) = us(t) — d. La condition d’optimalité décrite par l'équation de la

programmation dynamique s’écrit:

® dans le cas d'un horizon infini

= 52}2 {E(:r) + ZJ: J(z,7) Aja + %a—)(ua - d)}

Le contrdle optimal prend ces valeurs sur les sommets de 2, (contraintes
linéaires) selon le signe de Q(;:;‘el. Sous une politique de production dérivable par

morceaux de type (2.15), z* est donné par

z* = maz{0 1 lo c’ 1+ pd
- ' min g C++C_ ’\ld—(p+)‘2+dﬁmin)(ulmax—d')

(2.17)
ou dans (2.17) Bmin est la seule valeur propre négative de la matrice
gt . |
A= [ Tt Mgy ] = V7S
d d
ou )\, = —Ay, ¢ = 1,2, représentent les taux de transition de la chaine de Markov

caractérisant la dynamique de |'état discret de la machine.
Cependant, méme pour un cas aussi élémentaire dans 1'échelle de complexité,

I’analyse s'avere compliquée.

2.3.2 Calcul des densités de probabilités stationnaires d'un systéeme a
deux états soumis & une politique a seuils critiques

Bielecki et Kumar [27] inaugurent une nouvelle approche qui consiste & calculer la

fonction de densité de probabilité stationnaire du surplus z(t) lorsqu'elle existe. Ils
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considérent le cas de la machine & deux états traitée par [16]. Seul le critére de
minimisation a changé. En effet, au lieu d’un coit avec un facteur d’actualisation
(exp(—pt)), ils résolvent le probléme d’optimisation d’'un cout moyen par unité de
temps sur un horizon infini.
J(2(0),2(0) = min Tim £ {) “2z(0),a(0)dt}
l(z) = (ctzt(t) + ¢~z (t))
En plus de satisfaire les conditions suffisantes d’admissibilité (2.16), la politique

(2.18)

de production doit garantir la stabilité du systéme. Cette stabilité est satisfaite si

lim él’%‘-m = 0. Une condition suffisante d’optimalité d'une loi admissible ainsi
——s 00

que d’existence d’une fonction coit moyen optimale (théoréme de vérification) est

dérivée dans [27):

Théoréme 2.1 Supposons que @* est une polilique admissible et stable alors i
eziste des fonctions conliniment différentiables W (z,1) et une constante J* telles
que:

([ [*(z,i) — d] L&D — N [W(z, i) — W(z,1—i)] + &z) - J =0

pouri = 0,1 el pour tout z,
{ o o (2.19)
[7*(z,0) - d] &0 = in [y - g] W),

dz 0<u<u1 mex

| |W(z,i)] < k122 + ko, pour ky, ke donnés.
Alors
1 T 1 T
Jim =B [ L o(z(t)) dt] = J* < Jim inf [E,, /0 ¢(z(t)) dt] :

pour toute politique admissible et stable m et pour toutes conditions initiales z(0).

La démonstration de ce théoréme fait intervenir 'ergodicité du systéme afin de
justifier existence et la valeur de J*. L’équation de (2.17) représente la condition

suffisante d’optimalité similaire a 1’équation de Hamilton-Jacobi-Bellman.

La procédure suivie par Bielecki et Kumar [27] est intéressante et se compose

de quatre étapes:
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1. choisir la politique de contrdle dans un ensemble de politiques sous la

forme
Umax  Si Z(t) < z, &(t) = 1 (opérationnel),
_ ) d siz(t)=z,a(t)=1,
Ua(t) = 0 siz(t) >z, at)=1, (2.20)
0 si a{t) = 2 (panne)

Il est montré que ces politiques vérifient les conditions d’admissibilité et
de stabilité. Le seul paramétre inconnu est alors z qu'il faut déterminer

pour optimiser au sein de la classe de politiques a seuil critique (2.20).

2. calculer les fonctions de densité de probabilité stationnaires en fonction

du parametre :.
3. calculer le cout tel que décrit par (2.18).

4. minimiser le colit par rapport a la variable z.

En suivant cette procédure, Bielecki et Kumar [27] arrivent & démontrer
l'existence de z* et par voie de vérification (théoréme 2.1) que (2.20) est bien la

politique de contrdle optimale. L’expression de z* est la suivante:

M mnx'\ £ ++ -)
Fa 0 S1 C*u(lul m-x‘_dc) (’\lt""\o) - 1
= 1 Uy max A1 (€T+c7) 3
R -Gi=) log [ mu-d)(xmo)] sinon
(2.21)
Le critére de performance J* est donné par:
c”A maxd o~
. (Al‘f‘AO)[‘\O(tullmax"d) '\ld] st = 0
J = ctd ct 1) max A {cF +e7) 3 ~* (2'22)
+ lo [ siz*>0
AFdo T (B (2) 08 [ (w mex—d) (1 r0) ==z

Ul max
2.3.2.1 Extension de la méthode de Bielecki-Kumar

L'approche proposée par Bielecki et Kumar s’avére simple et prometteuse. En effet,
Sharifnia [25], Caramanis et Sharifnia [9], Algoet [1] ont tous utilisé cette approche
mais de maniéres différentes. En particulier Sharifnia [25] divise l'espace de la

variable z(t) en plusieurs régions limitées par les seuils optimaux d’inventaire dont
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le nombre est égal a celui des états faisables du systéme. Ces seuils sont classés en
ordre décroissant (i.e., z; > z;j si ¢ < j). En faisant, I’équilibre du flux de probabilite
passant & travers un élément d’espace de largeur Az, Sharifnia [25] montre que
les fonctions de densité de probabilité reliées a chaque état de la chaine de Markov
sont solutions d’équations aux dérivées partielles par rapport 2 la variable continue

z(t). Sharifnia utilise les hypothéses suivantes:

— z(t) est un processus ergodique

= la variable discréte a(t) qui représente les différents modes de l'atelier

est une chaine de Markov irréductible

* u(t) est telle que z(t) est stationnaire

— z(t) est stationnaire si le systéme est strictement faisable a long terme
m
D MiUimax > d (2.23)
i=1

La condition de faisabilité (2.23) signifie que si on produit au taux max-
imal dans chaque état du systéme, l'inventaire z(t) possede a long terme
une tendance positive. La moyenne des vitesses de variation de z(t) dans
la région (—o0, 0) est toujours positive. Ceci fait que le point d’inventaire
optimal limitant cette région est récurrent. Cependant, puisque les seuils
critiques sont compris dans un espace fini tous les seuils critiques vont

étre récurrents et ainsi z(t) va étre stationnaire.

Jusqu’a présent les travaux décrits concernaient les ateliers de fabrication flex-
ibles produisant un seul type de piéce. Cependant, en général, un des points forts
des ateliers de fabrication flexible est précisément cette possibilité de travailler avec
plusieurs piéces simultanément. Cependant, la difficulté de traiter directement ce
genre de situation multi-dimensionnelle en tenant compte des pannes dans 1'atelier
a été maintes fois soulignée [4], [7], [16]. En se basant sur une idée originelle-
ment formulée par Kimemia et Gershwin [7], Caramanis et Sharifnia [9] proposent

une approche approximative qui vise & décomposer le probléme multi-dimensionnel
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d’origine en plusieurs sous-problémes scalaires indépendants. Cette approche est

présentée dans la prochaine section.
2.4 Optimisation des seuils critiques: cas multi-piéece

Caramanis and Sharifnia [9] décrivent une méthode approximative qui permet de
réduire le probléme de contréle de flux dans le cas des systémes multi-piéce en un
ensemble de sous-probléemes découplés correspondant a des problémes de contrdle de
flux pour systémes mono-piéce. Ils utilisent a cette fin une décomposition de l'espace
de production en plusieurs régions orthogonales ot la capacité de production pour
une piece individuelle est comprise entre 0 et un taux maximal de production.
L’affectation de la capacité de production est faite de fagon indépendante et sans
tenir compte de la position des niveaux d'inventaires des autres piéces par rapport a
leurs seuils critiques respectifs. Ceci est équivalent a remplacer I'espace de capacité
de production stochastique {2, par des hypercubes souscrits. Soit ), la frontiére
de Q, et soit ¢ un point décrit par (US; yax: Yoo maxs -+ Yaimax: ---) 2Ppartenant a
A, et représentant le sommet d’un hypercube souscrit. Etant donné que cette
décomposition résulte en une dynamique indépendante pour chaque piéce, un choix
spécifique de ¢ appartenant a la frontiére de €, n'est permis que si la contrainte
d’ergodicité (E [uS; ., ] > d;) est satisfaite pour tous les types de piéces ol ug; ., est
le taux maximal de production de la piéce i quand la machine est au mode « et pour
un choix particulier de ¢ € €, . Ainsi, méme si ce contréleur sous-optimal présente
au niveau calcul un grand intérét, de par sa simplicité, il correspond néanmoins a
d’importantes limitations dans le choix de la capacité de production, principalement
4 cause de la condition d’ergodicité exigée sur chaque type de piéce. En effet,
l'espace de capacité résultant est un sous espace restreint de 2, tel qu'illustré a la

figure 2.4 suivante pour le cas d’un systéme produisant deux types de piéces.

De plus, le découplage complet des dynamiques des inventaires correspond a
une sous utilisation de la capacité de production quand au moins une des pieces a

atteint son point critique. En effet, & ce moment le point de production se situe a
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Figure 2.4: Les désavantages du contrdleur sous-optimal suggéré par
Caramanis et Sharifnia

I'intérieur de 1'espace 2, et non plus sur la frontiere 8§, (production maximale).

[l y a donc la matiére 2 amélioration.

Dans ce que nous venons de voir, nous observons que la théorie développée
ne correspond pas toujours aux exigences réelles dans les ateliers de fabrication
flexible. En effet, la majorité des décisions et de la planification de la production se
fait & court ou & moyen terme or les lois de commande sont construites sur la base
d’un horizon infini. Dans la sous-section suivante nous abordons les raisons pour
lesquelles les résultats sur horizon infini ne répondent pas & toutes les attentes de

rentabilité et d’efficacité recherchées.
2.5 Importance de I'analyse transitoire

Dans de nombreuses situations de controle reliées aux systémes de fabrication flex-

ibles, le décideur doit travailler sur horizon fini. En effet, visant un objectif & court
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ou & moyen terme, le décideur est plus intéressé a trouver une stratégie optimale ou
sous-optimale pour une durée finie que pour celle d'un horizon lointain, la solution
sur horizon infini constituant une limite asymptotique de la solution sur horizon

fini.

De plus, forts de l'interprétation donnée au point critique comme étant une
réserve batie pour se protéger des interruptions de production dues aux pannes a
un cout minimal en moyenne, nous pouvons nous attendre a ce que ce point varie
selon I'horizon puisque la probabilité de tomber en panne augmente avec la longueur
de I'horizon et par conséquent la proportion moyenne de temps passé dans l'état de

panne croit au moins initialement, sachant qu’au départ |'atelier est opérationnel.

Notons également qu’aucune détermination, méme par voie d’estimation, n'a
été faite pour déterminer l'intervalle de temps & partir duquel la solution sur hori-
zon infini peut étre tolérée (sans impliquer une perte d'optimalité importante).
L’utilisation de la solution sur horizon infini risque en effet de nous éloigner de
I'objectif de rentabilité de I'investissement dans les ateliers de fabrication flexibles
surtout, si des modifications fréquentes font en sorte que le systéme n’atteint jamais

un régime stationnaire.

De plus les hypothéses sur un temps de reconfiguration négligeable dépendent
des types d’opérations a effectuer et de l'intervention humaine. En général un cout
doit étre associé a cette période représentant d'une part la perte de production,
d’autre part le colt attribué au personnel qui établit la configuration. Le travail de

Zhang [29] constitue entre autres un début d’analyse de cette classe de probléme

(Set-ups).

En résumé il est naturel de s’attendre a ce que les seuils critiques correspon-
dant a la politique de production optimale varient selon la longueur de I’horizon
considéré. Il serait important de caractériser, au moins partiellement, cette varia-
tion. D’autre part, une estimation du temps de convergence du coit sous 1’action de

la politique optimale sur horizon infini vers le régime stationnaire, si nous insistons
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a utiliser cette méme politique pour un horizon fini, est primordiale.

2.6 Conclusion

Dans ce chapitre nous avons présenté les différentes notions et définitions relatives
a l'atelier de fabrication flexible. Cette technologie représente de part sa flexibilité
un outil de plus en plus attrayant et indispensable pour demeurer compétitif sur un
marché libre. Cependant, elle représente aussi un investissement important qu'il
faut rentabiliser par l'utilisation efficace des ressources disponibles. Le but est de
satisfaire une demande pouvant en général varier dans le temps et ce. a2 un cout bas
et a 'intérieur de certaines contraintes de qualité. Cette tache est rendue difficile
par la présence d’aléas, en particulier les pannes de machines. Kimemia et Gershwin
[7] proposent un contrdleur & structure hiérarchique oli le contréle de flux représente
une phase importante et concerne la détermination des taux de production moyen a
court terme en anticipant dans un sens statistique les différents modes du systéme
et en respectant la capacité disponible dans chaque mode i. L'indice de performance
est un cout infligé au controleur pour son échec 4 satisfaire la demande ou pour avoir
produit avec exces. La solution optimale de ce probléeme de minimisation dans le cas
mono-piéce, révele l’existence d'un point critique associé a chaque mode faisable.
La politique optimale serait d’atteindre ce point rapidement et d'y demeurer tant

que possible. La politique prend alors le nom de politique & points critiques.

Cependant la majorité des travaux qui ont été faits pour la caractérisation de
cette solution, ont été réalisés en considérant un horizon de planification infini. Des
questions importantes sur la caractérisation du régime transitoire n’'ont pas trouvé
de réponse. Dans le prochain chapitre nous allons présenter deux travaux récents
sur cette question. Les travaux de Malhamé et Boukas [19], et de Malhamé [10]
constituent pour cette thése un point de départ essentiel. C’est pour cette raison

que nous avons choisi de leur consacrer un chapitre a part.
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CHAPITRE III

CARACTERISATION DES STATISTIQUES
TRANSITOIRES ET CRITERES
D’ERGODICITE

3.1 Hypotheéses de base et formulation du probléme

Soit un systéme manufacturier produisant un seul type de produit et pouvant
etre dans un certain nombre de modes décrits par une variable aléatoire discréte
a(t) évoluant selon une chaine de Markov irréductible caractérisée par la matrice
d’intensité A. Le systéme doit satisfaire un taux demande par unité de temps d
donné. A chaque instant ¢, z(t) est une variable aléatoire représentant le niveau de
surplus. Le taux de production u,(z) doit étre sélectionné pour chaque état discret
a du systéme et pour chaque valeur d’inventaire , sur un polyédre convexe {,.
L’ensemble 0, représente i'ensemble de controles admissibles et stables qui inclut
la limite de capacité du systéme quand il est dans 'état . Le taux de changement
z(t) a I'instant t, quand a(t) = @ et z(t) = z, est donné par:

T(t) =vp(z) = ue —d (3.1)
L’objectif est de trouver un taux de production u.(z) € Q, pour chaque mode du

systéme et pour chaque valeur du niveau d’inventaire z, de maniére & minimiser le
colit moyen par unité de temps, avec £(x) convexe positive, et £(0) = 0:
1 0+T
J*(z(0),a(0)) = Tlim T E /;o £(z(t)) dt|z(0), a(O):I (3.2)

Hypothéses:

o z(t) est prise comme une variable scalaire continue.

® (2, est un segment positif de |’axe réel borné par le taux de production

maximale a ’état a, donc Qs = [0 Ugmax]-
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e J(z,a) est convexe

Vu les résultats de Bielecki et Kumar [27}, Sethi et Zhang [24], la politique
optimale est de type & points critiques. Considérons donc le systéme (3.1) sous

I’ensemble de politiques de production & points critiques (Hedging point policies).

Soit:
fo(z,t)dz = Pz < z(t) < z+dzr,a(t) =a, a=1,2,....n]
fa(z,t) : la fonction de densité de probabilité hybride associée
& ’état hybride du processus de Markov [z(t), a(t)]*
et
P. (t) : la masse de probabilité que z(t) =z, et a(t) =
pour a=1..,n

Les seuils z; sont constants et ordonnés dans l’espace du surplus z(t) en ordre

décroissant z; > z, > ... > z,, et sont associés avec les états faisables conven-
ablement indexés de i = 1,...,m. Les états non faisables sont indexés a partir de
m + 1, ..., n. Définissons aussi les régions R; = {z|z;;1 < z(t) = < z;} et o

Ry = {z|z; < z(t) = £ < oo} ainsi que R, = {z| — o0 < z(t) = £ < z,}. Pour un
état & donné, le taux de production maximale est constant a I'intérieur des régions
R; et est noté vl . Le taux de variation de l'inventaire z(t) est noté v}, quand

a(t) = a et z(t) € R, v, = u!__, — d. Sous ces considérations, v}, est toujours

positif indépendant de i pour tout a < i et v}, = —d pour tout & > i (Fig2.1)

En utilisant les équations d’équilibre des courants de flux de probabilité dans
un élément Az et pour un intervalle de temps At, Malhamé et Boukas démontrent

le théoréme suivant [17]:

Théoréme 3.1 Le vecteur des fonctions de densité de probabilité hybrides
falz,t) = [fi(z,t) falz,t) ... falz,t)]T évolue selon le systéme d’équations auz

dérivées partielles suivant:

8fl(z,t df(z,t 7
f(a-: ) _ _V;_f_g::__) + At f(z,t)Van <z <z (3.3)

i=1,...m,
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IR .

Titl

0
.

Figure 3.1: Représentation géométrique des politiques a points cri-
tiques pour un systéme ayant n états dont m sont faisables
ou V; = diag [v;] . Au niveav des seuils criliques 2, Z3, ... . Zm €l 0% Sy = —O0,
les conditions frontiéres s'écrivent comme suil:
Xj P (t) + vie) f; (a5 t) —ui M (t) fi(zHt) = 0 pour j=1,2,....n; (8.4a)
e
2 (¢ i - i-
Pl = N Pu(0) + O K00 -0 (O L) (340)

pour =1

de plus _
flz,t)=0 Vz> 7

Jim_ flz,0)=0;

Notons qu'en supposant l'existence d'un régime stationnaire, a_/g_,q =0 et
dp,. . , . . c
—%-;-(ﬂ = 0 quand t — 00, le systéme d'équations aux dérivées partielles se réduit
au systéme d'équations différentielles en z présenté par Sharifnia [23].

Interprétation du théoréme Ce systéme d’'équations aux dérivées partielles

représente les équations de Kolmogorov d'un systéme a états hybrides. Il décrit la
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dynamique et la propagation des probabilités a l'intérieur de I'espace du processus
d’inventaire z. Les échanges entre les densités de probabilité a l'intérieur de cet
espace sont assurés par la matrice de transition A. C’est un systéme conservateur.
En effet, la probabilité totale donnée par la somme des aires sous les fonctions de
densité de probabilité plus la somme des masses de probabilité aux seuils critiques
est toujours égale 2 1. La masse de probabilité notée par P;(t),7 = 1, ..., m, exprime
la possibilité que la trajectoire du processus d'inventaire séjourne un temps non nul
au point z;. Si nous interprétons v;(t) f;(z,t) comme un courant de probabilité a
une position z donnée, alors (3.4a) exprime que les courants de probabilités sont
généralement discontinus au niveau du point critique associé au mode i # j. Le
niveau de discontinuité est égal a A;; P, (t) qui est aussi la probabilité de quitter =,
dans le mode j. L'équation (3.4b) est la contre partie de (3.4a). Elle met en relief
le fait que le taux de variation de la masse de probabilité & z; est égal a un courant
positif venant des régions autour de z; grace aux densités de probabilité associées
au mode i, moins le taux avec lequel une machine déja a z; dans le mode 7 quitte ce
mode et contribue a soutenir les courants de probabilités associés aux autres modes
autour de z;. Cette échange au niveau des frontiéres et la propagation a l'intérieur
de I'espace du processus d’inventaire z(t) font en sorte qu'il n'y a aucune perte de

probabilite.

En notant que I’état z(t) ne peut évoluer que d'une région {z; < T < 41}
et {z = %}, a une région {2; < T < zj31} ouz = {z = z}, j =i £ 1, Malhamé
et Boukas définissent un nouveau processus ponctuel marqué “Marked renewal pro-
cess”, P(t) [26], ou les événements sont associés avec chaque transition de z(t)

dans ces régions disjointes. Les nouveaux états du processus sont:

7@ : x(t) entre {x = z;} & I’état o = j a l'instant de transition

71 z(t) entre {2;41 < T < z;} & I’état & =1 & l'instant de transition

% : z(t) entre {zj4; < T < z;} & I'état o =1 & l'instant de transition
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7™ : z(t) entre {zj41 < Z < 2;} a I'état & = n & l'instant de transition

ol j =1,...,m. Le nouveau processus Y (t) est constant par morceaux. Il constitue
un processus de renouvellement markovien avec matrice d'intensité de transitions
@ = [g:j(t)]. Le processus Y(t) ne change d’état qu'aprés avoir atteint une des
frontiéres limitant la région R;, j=1,...,m. L’espace d'état de Y (t) est composé
de m(n + 1) états. En numérotant, ces événements ;) par un entier k ot k = 1

pour ’événement 1), k = 2 pour 1’événement 10} etc..., I'espace d'état de Y (t)

sera formé par S = {1,2,...,m(n + 1)}. Ces événements constituent des instants
de renouvellement. Soit P = [p;;] = Llim q.:j(t)] = matrice de probabilité de
P(t)
1(0) 1(1) 1(2) 2(0)
temps

Figure 3.2: Exemple de réalisation des événements j(*)

Y(t)
1

temps

Figure 3.3: Réalisation correspondante du processus de renouvellement
markovien Y'(t)

transition de la chaine de Markov discréte emboitée associée a Y () et soit =, tels
que ) m;=1et
JES
T=xP.
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L’existence et I'unicité du régime statique stationnaire repose sur le théoréme suiv-

ant prouvé par exemple dans Ginlar [28]:

Théoréme 3.2 Soit le processus de renouvellement markovien Y (t) irréductible,
récurent et apériodique avec T(k) moyenne du temps de séjour dans l'état k, finie
pour tout k € S, S étant l'espace d’état fini. Alors pour unie€ S

7(j) 75

Jim PY(t) = j]Y(0)] = @

Les propositions suivantes sont démontrées dans [17].

Proposition 3.1 En vue de garantir l'ergodicité du processus de renouvellement
markovien Y(t), il est suffisant de montrer que la chaine de Markov discréte
emboitée associée ¢ Y (t) est irréductible et que tous les temps de séjour dans la

chaine sont finis.

De plus, si la chaine emboitée est apériodique, toutes les valeurs propres de P
excepté une, appartiennent a un cercle de rayon strictement inférieur 2 1. Le nombre
de transitions, requises pour la convergence au régime stationnaire, est donné par
une limite supérieure finie N dictée par la valeur propre de P ayant le plus grand

module strictement inférieur a 1.

Proposition 3.2 Si la matrice P caractérisant les transitions de la chaine
de Markov emboitée associée d¢ un processus de renouvellement markovien est
wrréductible, apériodique, alors il est possible de dériver une borne supérieure Nr
sur le nombre de transitions requises avant de converger vers le régime permanent.
Cette borne est caructérisée par le module de la valeur propre ayant le plus grand

module strictement inférieur d 1.

En se fondant sur la proposition 3.2, Malhamé et Boukas [17] proposent un
critére d’évaluation d’une borne supérieure sur le temps moyen de convergence du

processus stochastique du surplus vers le régime stationnaire:
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Proposition 3.3 le temps moyen de Nr transitions du processus de re-
nouvellement markovien posséde une borne moyenne supérieure donnée par

Nrmax(1,72,..., Tk, -..), avec k € S et ot les 7, sont supposés finis.

Le calcul des temps de séjour ainsi que les probabilités de transitions des
événements partant d’un point autre que les seuils =;, peut se faire en utilisant la
transformée de Laplace [17] du systéme d’équations aux dérivées partielles données
par le théoréme 3.1. Le calcul peut étre long et fastidieux. Malhamé [10] propose
alors une autre méthode pour le calcul de la matrice de probabilité de transition de
la chaine discréte associée a Y(t), ainsi que les moyennes de temps de séjour dans
chaque état appartenant 8 S. Le calcul de ces statistiques est basé sur la résolution

d’un systéme d’équations différentielles linéaires couplées.

Remarque sur le temps de convergence vers le régime stationnaire.
Notons que la borne du temps de convergence vers le régime stationnaire donnée
par la proposition précédente est en faite une estimation basée sur les moyennes
des temps de séjour et par ce fait ne peut étre une borne supérieure absolue. La
variance des temps de séjour est alors cruciale pour avoir une estimation plus serrée
et donc un degré de confiance plus élevé. En effet si la variance des temps de séjours
est élevée (grandes dispersion dans les statistiques), cette borne aura peut de signi-
fication pratique. De plus cette borne exprime en fait la vitesse de convergence des
statistiques de probabilités du processus hybride [z(t), a(t)]* et non de la fonction-
nelle colit calculée le long d’une réalisation particuliére et qui peut avoir un temps

de convergence plus long.

3.1.1 Ciritere d’ergodicité

Dans [10] pour la premiére fois, une preuve dans un cadre théorique général du

critére d’ergodicité est donnée. Le théoréme suivant est établi dans [10}:
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Théoréme 3.3 Pour le systéme (3.1) soumis ¢ la classe de politiques de production

@ points critiques, les affirmations suivantes sont équivalentes:

1. les conditions de la proposition 3.1 sont satisfaites;

2. le nombre de valeurs propres de A®V,;! avec une partie réelle positive est

exactement n — m.

Sous I’hypothése de valeurs propres distinctes de la matrice A* V,; !, la condition
2) du théoréme 3.3 est équivalente & deux autres conditions. L'une d’elles représente
la condition de faisabilité & long terme proposée par Sharifnia (2.23). En effet, soit
L1, 42 ... [n, les valeurs propres de A*V,;!, Malhamé [10] démontre le théoréme

suivant:

Théoréme 3.4 Supposons que la matrice A V]! posséde des valeurs propres dis-

tinctes, alors les affirmations suivantes sont équivalentes:

1. A*V! posséde ezactement (n — m) valeurs propres positives.
2 Soitpy =0 etd, =(=-1)""De™elel .. py ...y, alorsd, >0
3. SoitT = [my7a ... 7a)t I'unique vecteur de probabilité stationnaire associ€ d la

chaine de Markov, continue et irréductible, représentant ['état de la machine,

alors o mv; > 0 &= ‘Z‘_ w;u; > d , (la demande est faisable a long terme).
i=1

Dans la section suivante, nous donnerons un exemple de calcul d'une borne
supérieure du temps moyen de convergence du colut vers son régime statistique

stationnaire lorsque la loi & seuil critique optimale sur horizon infini est appliquée.
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3.2 Exemple d’application

Nous avons choisi 'exemple présenté dans {25], afin de vérifier et d’appliquer la
théorie présentée précédemment [20]. Il s’agit d'un systéme pouvant étre dans trois

modes de fonctionnement diftérents et caractérisé par:

une matrice de taux de transitions:

-4 2 2
A=| 2 -3 1 |,
1 1 =2

un ensemble de taux de production maximaix pour chaque mode.

2 sia=1
Ug=4¢ 2 sia=2
0 sie=3

La demande par unité de temps est constante.

d=1.

Le cout instantané est mesuré par:

+ .
ccrx siz2>20
{z) = { - . ,
—c"zr sinon

ol ¢t et ¢~ sont des constantes réelles, connues et positives

Par conséquent, les états 1 et 2 (u; > d, ¢ = 1,2) sont faisables tandis que I’état

3 ne l'est pas. Les régions de I'espace de z(t) sont données par:

R1 = {IEI 1>z> 22}, (3.6)
Ry, = {z| 2o > z}. (3.7)

Pour A = z; — 25, les fonctions de densité de probabilité stationnaires dérivées par
Sharifnia {25] sont données par:

0.468
f@) = Fma_o13

+0.1266(z — z)], (3.8)

{e~2.54(3~21) _ 0'00163.54(2—21)
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Si2 2> 2 et

0.398e2-544
fl=) = €254 —0.13

si z < 29, f(z) = fi(z) + falz) + f3(z)-

[€934GE-22) 4 0.1816(x - 2,)], (3.9)

Pour une telle politique, le coiit moyen par unité de temps a long terme:

ct

J.(Zl, Zg) = mv'(L'l, 22),

ou

V*(z1,22) = (1.37 + (z—;) e 032 4 oy — 1.3) e2348, (3.10)

—0.126(z + A) — 0.073.

En optimisant la relation (3.10) par rapport aux paramétres z, et z,, Sharifnia

obtient le systéme d'équations suivant permettant de calculer les valeurs optimales

de z; et de zp:

1+ 5
Iy = 1.85 lOg (135 _ 0.178_2'54A) ' (3.11)

= :2+A. (3'12)

Le svstéme d’équations aux dérivées partielles (3.3) s’écrit:

. r 1 0 0 I~ —4 2 1
afg;,z) R e }Qf_é()%‘_u[ 9 -3 1 } f(,t),
Vr € Rll (3.13)
. 10 0 F -4 2 1
[0 0 -1 2 1 =2
Vz € R,, (314

olt i:(I, t) = (fl(‘r: t)i f?(x! t),f3($, t))T
Les conditions frontiéres correspondantes sont:

fizht) = o, (3.15)
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P (t) = —4P.,(t) + fi(z].1), (3.16)
f2(z1,t) = 2P, (1), (3.17)
f3(zr.t) = 2P, (), (3.18)

0 = —fi(zF,t) + fiz7 . t) + 2P, (1), (3.19)

P,(t) = =3P,(t) + fo(z7,t) + fo(z3 ,t), {320

0 = [fa(z,t) — falz3,t) + Py (t), (3.21)
f(=o0,t) = 0. (3.22)

La résolution de ce systéme d’équations aux dérivées partielles a été faite
numériquement par la méthode de Lax-Wendroff 4 deux étapes. Les résultats de

simulation, pour la solution en régime stationnaire, sont présentés a la figure (3.4).

0.25}

0.2r

015+ B

les [.d.p stationnaires

L'inventaire x
Figure 3.4: Solution en régime stationnaire du systéme d’équations
aux dérivées partielles décrivant les fonctions de densités de probabilite
(théorémes 3.1)

Notons que ces résultats vérifient les équations (3.8,3.9) avec une précision de 2%.

Calcul des moments et du temps de convergence vers le régime sta-

tionnaire

Le processus de renouvellement markovien est composé de six états, soit 1),
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1) 1™ 16) 200 et 203), Les expressions analytiques des probabilités de transition

de la chaine de Markov emboitée associée et fondée sur un calcul de densité de

probabilité de premier temps de passage, sont données dans [18] par:

P
Pas
P2
Pai
P3s
P36
Pa

Pas

Pe2
DPes

ou (A, s) = exp(-V~I(sI

1
®1,(4,0)’
q)%l (Av 0)
®1,(4,0)’
Qél (A,O)
®1:(4,0)’
®1,(4.0)
~2h(4,0)
Q%l (A10)¢}2(A10)
@}I(A, 0) ’
q)l _ q):l!I(A!O)q)}‘Z(Aio)
% q)}l(A1 0) '
35(4,0)
(4,0
Q;l (A10)¢}3(As0)
Q}I(AYO) ’
®3:(4,0)815(A,0)
®1,(4,0)

1
<I’22 -

1
®y —

b33 —
0.463
0.537

At)A), I étant la matrice identité. Pour z; = z} =

1.1758 et 2z = z; = 0.8265, la matrice de probabilité de transitions P:

[ 0 0 0.5000 0.5000 0 0 ]
0.3088 0 0 0 0.3272 0.3640
p= 0.3088 0 0 0 0.4513 0.2398
0.2003 0 0 0 0.2071 0.5926
0 0.6667 0 0 0 0.3333
0 0.4630 0 0 0.5370 0
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Les moyennes du temps de séjour sont données par:

0.3142
0.3569
0.3655
3.7010

La borne maximale du temps de convergence moyen vers le régime stationnaire

est donnée par:
Timar = Nmaz(m;) =74 unités de temps..

Observons que cette borne correspond a une erreur relative de 2% dans le cott

moyen par rapport au coilit moyen stationnaire (Fig.3.5)

i
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2
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a
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2
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=
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*
0.01 . v -
o] 20 40 60 80 100 120 140 160

lemps
Figure 3.5: Dynamique de P, (¢) illustrant la borne maximale moyenne
du temps de convergence vers le régime stationnaire

3.3 Conclusion

Nous avons passé en revue dans ce chapitre les résultats dans [17] et [10]. Ces
derniers travaux ont constitué une base essentielle pour nos recherches. Le premier
critére d’ergodicité dans le théoréme 3.4 nous sera utile pour le développement de

conditions frontiéres simples & gérer dans le cas d’un systéme multi-mode. De plus,
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pour la premiere fois & notre connaissance une mise en évidence et une analyse de la
structure de renouvellement du processus de surplus contrélés par lois de commande
a points critiques ont été effectuées. Ceci a permis, de construire une chaine de
Markov emboitée dont le calcul exact de la matrice de transition a rendu possible
une estimation d'une borne supérieure du temps moyen de convergence des cout
vers le régime stationnaire. Cette borne supérieure posséde le désavantage d’etre
uniquement une borne sur la moyenne du temps de convergence et pourrait perdre
son intérét si la variance du temps de convergence est élevée. De plus, elle représente
la vitesse de convergence des statistiques du processus hybride [z(t), a(t)]* et non
de la fonctionnelle cout calculée le long d'une réalisation et qui aura en général un

temps de convergence plus long.

Dans le prochain chapitre nous allons présenter les résultats constituant notre
premiere contribution ol nous nous intéressons a l'optimisation des politiques a
points critiques sur horizon fini, et ’estimation du temps de convergence vers le

régime stationnaire de la fonctionnelle cont.
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CHAPITRE IV

UTILISATION DES APPROXIMANTS DE
PADE POUR L’ANALYSE TRANSITOIRE

Ce chapitre est consacré & la planification sur horizon fini de la production d'un
atelier de fabrication mono-piéce. L'importance de cette planification qui peut étre
a court ou 4 moyen terme émerge d'un besoin réel. En effet, dans diverses ap-
plications industrielles, plusieurs problémes d'optimisation du fonctionnement des
ateliers de fabrication sont des problémes sur un horizon fini. Souvent, pour un ob-
jectif 2 moyen ou & court terme le responsable de la gestion, soucieux de s’adapter
rapidement a 1'évolution du marché, est plus intéressé a trouver des stratégies op-
timales ou sous-optimales pour une durée finie que celle d’'un futur éloigné. Deux

questions (non indépendantes) se posent alors:

e Etant donné la disponibilité de solutions analytiques optimales (mono-piéce)
ou sous-optimales (multi-piéce) sur horizon fini, quelle doit étre la plus petite
valeur de la longueur de ’horizon T & partir de laquelle on peut utiliser sans

trop de pertes d’optimalité la politique correspondant & 1’horizon infini?.

e Pour la classe de politiques de contrdle & points critiques invariants sur un hori-
zon fini, comment calculer les seuils optimaux et de quelle maniére dépendent-

ils de la longueur de l'intervalle d’optimisation?.

Dans [17], Malhamé et Boukas ont apporté une réponse partielle 4 la premiére
question. Nous avons présenté les résultats correspondant au chapitre I[I. Dans ce
chapitre, nous apporterons des méthodes plus précises de calcul de durée des tran-
sitoires. Ainsi, nous développons d’abord des résultats pour la pluparts originaux
permettant I’estimation de la fonctionnelle coiit et par suite son optimisation sur

un horizon fini. L’apport constitue un raffinement et une précision supplémentaire
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importante par rapport a l'analyse en régime stationnaire telle que présentée par
[1], [25] et [27]. De plus, l'analyse transitoire est enrichie par une étude des sin-
gularités. Le but de cette étude est de mieux caractériser la vitesse avec laquelle le
systéme atteint son régime stationnaire sous I’action de politiques a points critiques

invariants.

L’article intitulé “Padé Approximants for the Transient Optimization of Hedg-
ing Control Policies in Manufacturing” mis en annexe constitue le corps de ce

chapitre.
4.1 Formulation du probléme

Nous considérons un atelier de fabrication flexible pouvant étre dans n différents
modes de fonctionnement. Ces différents modes sont représentés par une chaine de
Markov irréductible et a états continus a(t). La matrice de transition de a(t) est
une matrice constante A = [\;;] (avec A\; = — i Aij). L'atelier produit un seul type
de piéce afin de satisfaire une demande consta‘.:t:e de taux d. Le niveau d'inventaire
de piéces au temps t est modélisé par une variable continue z(t). Pour chaque mode

a, z(t) évolue selon 1'équation dynamique donnée par:

dz(t)
T = Ug — d, (4.1)

ol u, est le taux de production quand l'atelier est en mode a. La valeur de u,
appartient & un espace convexe ), considéré dans le cas présent comme étant
l'intervalle [0,Uamax) - Yamax ©St le taux de production maximal permis selon la
capacité disponible quand 'atelier est au mode . On suppose que parmi les n
différents modes, il existe m modes faisables (g max > d). Ces modes seront indexés
de 1,...,m, quant aux autres modes ils seront indexés de m + 1,...,n. Un cout
convexe £(z) pénalise le niveau d'inventaire (négatif ou positif). L'objectif est de
déterminer une politique de production en boucle fermée qui minimise le coit sur

] (4.2)

horizon fini suivant:

J(zo,a0) = E [ /0 " y(z)dt
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ou T représente la longueur de I'horizon et E ['lzo.ao] est |'opérateur d’espérance
conditionnelle & 1’état hybride initiale [z(0),(0)]° = [zo, a0]®. Rappelons que dans

le chapitre précédent on a vu que, lorsque I'horizon est fini [15]:

e la politique optimale demeure de type seuils critiques.

e ces seuils varient en fonction du temps et constitue plutot des courbes cri-

tiques.

e une caractérisation analytique de la politique optimale est jusqu'a nouvel

ordre impossible.

Pour contourner ces difficultés d’ordre analytique, les recherches seront con-

finées 4 la classe (sous-optimale) de politiques d points critiques invariants.

La justification de ce choix se résume dans les trois raisons suivantes:

e cette classe inclut asymptotiquement la classe optimale exacte quand T — o0;

® un point critique constant peut étre vu comme approximativement équivalent

a une moyenne sur un horizon T' d'un point critique variant dans le temps;

e L’implantation de la loi de contréle en atelier demeure simple.

Sous ces politiques, il est alors possible d’utiliser certains parmi les résultats de
Malhamé et Boukas [19] rapportés au chapitre III, pour caractériser le transitoire.
Dans la section suivante nous présentons une méthode de calcul des fonctions de
densité de premier temps de passage (ou de retour) qui se révélera trés utile dans

le développement de nos résultats.
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4.2 Méthode des courants de probabilité et calcul des fonctions de den-
sité du premier temps de retour

Dans [10], Malhamé montre comment dans le cas des processus de Markov & tra-
jectoires continues, les équations de Kolmogorov peuvent étre utilisées pour calculer

les densités de premier temps de passage. Le principe est le suivant:

Un processus de Markov continu ne peut atteindre une frontiére donnée a
'instant ¢ que s’il est dans son voisinage immédiat & l'instant ¢t —dt, dt infinitésimal.
Avant qu'il atteigne cette frontiére et qu'il ne soit alors arrété, le processus ne peut
“connaitre” son existence et continue donc & satisfaire les équations de Kolmogorov
ordinaire. Une fois la frontiére atteinte le processus doit étre éliminé (puisqu'il s’agit
d’un calcul de premier temps de passage) . Mathématiquement, ceci revient a in-
troduire a la frontiére d’intérét une nouvelle condition qui assure que les courants
de probabilités de retour émanant de cette frontiére soient mis & zéro. Ainsi la
frontiére est dite absorbante. Le systéme n’est plus conservateur et présente des
pertes de probabilités. De plus, si la probabilité que le systéme atteigne la frontiere
éventuellement est égale a 1, la probabilité totale résiduelle a 'intérieur du systéme
quand T — oo est égale a zéro. Puisque, les premiers passages par la frontiere
d’intéret ne peuvent étre possibles qu’a partir de son voisinage immédiat, la prob-
abilité que le processus traverse la frontiére entre ¢t et t + dt, notée g(t) dt, pour
tout ¢ > 0 et dt infinitésimal, g(t) étant la densité de probabilité du premier temps
de passage a la frontiére et i l'instant ¢, est donnée par la quantité de probabilité
s’échappant a travers la frontiere autour de ¢. Ceci n’est rien d'autre que le courant
de probabilité net a la frontiére multiplié par dt. Etant donné que le courant de
probabilité est éliminé A la frontiére absorbante nous concluons que g(t) = courant
de probabilité s’échappant de la frontiere. Cette analyse prend le nom de la méthode

des courants de probabilité.

Si l'on désire & présent calculer la densité de probabilité du premier temps de
retour du surplus z(¢) & un seuil critique z;, i donné, et dans le mode ¢ (nous nous

référons a un tel événement comme un événement critique de type i), le principe
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décrit précédemment dicte une modification des conditions frontiéres a z;. Il faut que
chaque trajectoire qui atteint ce z; en mode a = 1, soit éliminée. En d’autres termes,
une condition absorbante doit étre instaurée a z; et elle ne peut étre active que si la
partie discréte de 1’état hybride est i. Ceci est équivalent & affirmer que la condition
frontiere doit inclure fi(z},t) et fi(z7,t). En reconsidérant (3.4b) ainsi que son
sens physique dans le chapitre précédent, la quantité vifi(z,t) — vi™! fi(z],t) est
précisément la probabilité de retour totale & la frontiére z; a I'état i. La condition
d’absorption requise est réalisée si ce courant de probabilité de retour est €liminé.

Ainsi, pour un i particulier, (3.5b) doit étre écrite cette fois-ci:
dP,(t)

La fonction de densité de probabilité g;;(¢) & I'instant ¢ est simplement le taux
auquel la probabilité s’échappe a la frontiére absorbante. Ceci nous améne a con-
clure que g;(t) est égale a la probabilité totale vif;(z;7,¢) — vi™! fi(zF,t) qui est

éliminée. Nous avons donc le lemme suivant:

Lemme 4.1 La fonction de densilé de probabilité du temps entre les événements
critiques de type i*, gi-i-(t) pour i* = 1, ..., m, peut éire obtenue du systéme
d’'équations aur dérivées partielles avec les conditions frontiéres (3.3), (3.4a) and

(3.4b), excepté que pour i = 1", la condition frontiére (3.40) doil éire écrite:

dp, . (t) _
= Airie Py (8).
Les conditions tnitiales sont:
PZ"O (0) = 1:
fi(z,0)=0 i=1,...,n; VrzeR;; i=1 ..., m, (4.3)

P.(0)=0 pouri=1,....m, i # i,

gi-i-(t) est donnée par:

gii(8) = vi fio (2 t) — vl fie (2E00).

A la section 4.3 nous développons une équation de renouvellement qui constitue
le fondement de 1'analyse de la performance des lois a seuils critiques sur horizon

fini.



52
4.3 Equation de renouvellement du coiit

Les temps de retour successifs & un seuil critique z; dans le mode ¢ constituent d’un
point de vue stochastique des instants de régénération. Sachant que z(0) = z; et
a(0) = 2, définissons alors le processus z(t) indiscernable de z(t) jusqu’au moment
de la premiére régénération T aprés quoi Z(t) = 0 (Z(¢) est éliminé apreés la premiére
régénération). Cette élimination coincide en réalité avec le fait que z(t) atteint son
point critique z; dans le mode ¢ pour la premiére fois aprés l'avoir quitté. Pour
le processus Z(t), z; agit donc comme une barriére absorbante au sens du lemme
précédent. Par conséquent, Z(t) posséde les mémes caractéristiques statistiques que
z(t) et satisfait de ce fait les mémes équations de Kolmogorov avec toutefois les
conditions frontiéres modifiées (3.4b’). Lorsque dans (4.2), les conditions initiales
sont £(0) = z; et @(0) = %, le colit résultant sera dénoté C;(T') et appelé fonctionnelle
cotit de type ¢ pour une longueur d’horizon 7. Le colit pouvant s’écrire comme la
somme des colits de 0 & min(r,T) et de 7 &4 T si T < T, nous avons le théoréme

suivant:

Théoréme 4.1 La fonctionnelle coit de type i pour une longueur d'horizon T as-
soctée a une politique de production & seuils critiques invariants (1.1), et pour un

indeze i fir€ dans 1, 2, ..., m, satisfait l'équation de renouvvellement suivante.
T T
C(T) = /0 E [5(5(7'))|a=i.:'(0)=;,-] dr +'/(; C(T — 7) gus(7)dr, (4.4)

ot la fonction de densité de probabilité g;;(t) est calculée selon le lemme 4.1, et ot
le processus hybride [Z(t), a(t)] évolue statistiquement selon les mémes équations
directes de Kolmogorov et respectent les mémes conditions frontiéres que dans le dit

lemme, avec les conditions iniliales sutvantes:

P,.(0) =1,
fi(z,0)=0 i=1,...,n; VzER; j=1,...,m,
P.;(0) =0 pour j=1,....m, j #1i

Ce résultat est fondamental et sert & caractériser la dépendance qui existe

entre le cout sur horizon fini et la longueur de I'horizon T. Cette derniére équation
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comporte deux termes importants. Le premier correspond a la contribution de
toutes les trajectoires jusqu’a leur premier temps de retour a 2; dans le mode ¢, ainsi
que celles qui n'ont pas atteint z; dans I’état z a l'instant 7. Le deuxiéme représente
la contribution aprés la premiére régénération. Vue l'integral de convolution qui
apparait dans le terme de droite de 1'équation (4.4), I'utilisation de la technique de
la transformée de Laplace s’avére appropriée. En effet, si nous définissons, Fj(z,s),
Gii(s) et Ci(s) comme étant les transformées de Laplace de f;(z,t), gii(t) and Ci(t),
i=1,...,m, 7 =1, ..., n, respectivement, alors apres prise de transformée de
Laplace de I'équation de renouvellement (4.4) donne:

Cils) = lff"w i1 Uz) Fi(z,s)dz + 3T, €(=:) P, () ‘

s 1 -Gu(s)

La détermination de la transformée de Laplace inverse de (4.5) est en général trés

(4.5)

difficiles, sinon impossible analytiquement. Pour contourner cette difficuité nous
calculons une expansion en série infinie de C;(s) autour de s = 0. L'analyticité a
s = 0 de toutes les transformés de Laplace des fonctions apparaissant dans (4.5) est
assurée lorsque le processus de surplus controlé est ergodique. La démonstration
est présentée 'annexe A de l’article dans I'annexe II. Le développement de G,;(s)
en série de Taylor autour de s = 0 est donné par:

Gi,-(s)=1-us+%sﬂ+...+(—1)'—'s‘+... (4.6)
ot p = E[r], et uyr = E[+*], K = 1,2,..., et ot 7 est la variable aléatoire
représentant le premier temps de retour. Définissons:

k 8"1?'(:1:, S)

ek k=0,1,2, ... Vx € R;, (4.7)

me(z) = (1)

&P, (s)
ot M =
=0

() représente le vecteur des moments d'ordre k associés au vecteur de fonctions

i=12,...,m (4.8)

densités de probabilité f(:z:, S) & 5j4 < T < z;. ™y, représente le moment d'ordre
k de la durée de séjour & z = z;. Le développement en série de Laurent infinie de
C:(s) autour de s = 0, donne:

Ci(s) = ﬁ{ f: (z)1" g(—l)"rﬁk(x)dx



m o £ 1
+ £ Uz) b — 4.9
i;“;)m‘.k (Zx)} k! [1_2;12 ik(_l)n Jk! ] (4.9)
- Lo Cus s (4.10)

2, | &-17
S 1 - T2 B (-1 5]
oulf=[1...1] € R" et
~ = l

C{‘k = {/:: E(.’B) 1* (—l)k mk(:z:) dr + Zl myix g(:,‘) } E" . (4.11)
Notons cependant que la valeur de C;q est indépendante de la condition initiale
représenté par 1’évenement i (voir [14], corollaire 1). Par conséquent, le coit en
régime stationnaire sera noté Cy = C;" (expression de Bielecki et Kumar [27] dans
le cas n = 2). L’évaluation de (4.11) requiert évidemment de pouvoir déterminer

les différents moments qui y apparaissent.

Lemme 4.2 Soit ri,(z) le vecteur des moments d'ordre g correspondant au
vecteur des fonctions de densilés de probabilité f (z,t), ¢ = 0. Sous le crilére

d'ergodicité(2.23), et pour f(z,0) =0V € R;, le vecteur my(x) satisfail le systéme

d’équations différentielles suivants:

i
_";qz(m) =V At ig(z) + ¢V ' igoa(z) Yz € R (4.12)
g=12,..., i=1.2.....m

avec

dn;ogfl‘) = V7! A riig(z) Vr €R; (4.13)
i=1, 2, , m
Définissons

Fi(z)' = [mi(z), Mi(z), my(z), ... Ai(z)];  k=0.1.2. ... (4.14)

[« (z) obéit au systéme d'équations différentielles suivant:

oy x(z)

dz = Ai.k Ly (I)
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[ V7IAt 0 0 0
‘/i_l v;—l At 0 0
= 0 2%Vl VTN 0 Ti(z) . (4.15)
: 0 .. 0
I 0 k * V;-l V,_IAL
Par suite:
fk(:zz) =exp(Ai'k*(1:—z‘-))f,‘(z‘-') YVzeR, 1i=1,...,m, (4.16)
avec,
lim,_, _ [i(z) =0, (4.16a)
et fk($) =0 Vz € Ry (4.16b)
pour k=1,2, ...

La démarche globale pour les calculs des coefficients de l'expansion peut etre

résumée dans le théoréme suivant:

Théoréme 4.2 Soit i l'état de régénération the régénération (pour un certain i =
1,2,...,m). les coefficients de l’ezpansion en série infinie jusqu'a l'ordre k de la

transformée de Laplace de la fonctionnelle coit C;(s) sonl obtenus comme suit.

1. Initialiser le vecteur des moments & z;, (en terme de l'unique composante
inconnue myg sii # 1, oumg(z;) sii = 1) - Pouri # 1
{ /\[1 mio + Ull ml.o(z{) = 0 (4170.)

AlaMip + vymao(zy) = 0
a € [2,...,n],

et

’\l,a qu + v; mﬂv‘?(z;) = 0

a € (2,...,n]
T - 4.18a
AiMig = qMig1 +vimig(sr) = 0 a =1 ( )
pour q =1,... k,

-Pouri =1

a=12....n; a#l ¢=0,1,...,k
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Les seuls paraméires inconnus @ gauche de l’équation (4.18a-b) sont les
valeurs scalaires myq, ¢ = 0,1,..., k, sit # 1 oumyqo(z1), g = 1,..., k,

sii = 1. Notons que m, o(z) est la a®®™ composante de 17i,(z).

2. Propager le vecteur initial [r(z) en utilisant (4.16), donnant ainsi:

;:ﬁu myq(2r)
=2z -_‘;\gu M q(2r)

Mg, Sit#1etmg(z;) = )

=2 _—u\l:n myq(2r)

To(z7) = Pl mpo(zy) pour q = 0,

Ty étant défini dans (4.14):

Ti(zf) = exp(—Aix = (21 - 22)) T(s7) & > 0. (4.19)

A ce stade, toutes les valeurs & =z} sont exprimées en fonction de my (z]),
’ 2 AN

q=0,...,ksii# loumg(z), ¢=0,....,ksii= 1. L) est alors

délerminé en résolvant les équations suivantes:

- Pouri # 2
( A2.:: My q + Ug m&.q(z{) - vzlx mo.q(::j..) =0
a=1,....n a#?2, pour q =0, ... k.
‘ A2 Mag — qMagqoy + vimgg(2s) — vimaye(zd) = O (4.20a)
pour g =1 ...k,
AnMag + VEmaog(zy) ~— vmao(zy) =0
L pour q = 0.
- Pouri = 2
q!
Myq = q=20,1,....k . (4.208)

(—Az)et!
En combinant (4.19) et (4.20a) l'ensemble des inconnues additionnelles est
respeclivement maq, q = 0,1, ...,k sit # 1 oumyy(zy), g = 0.1. ...k,

sti = 1.
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3. Répéter Uétape 2 avec Aj au liew de A, dans (4.19), z; au lieu de z; et zj4,
au lieu z;. De plus, (4.20a) et ({.20b) sont remplacées par:

- pour j # i qui n'est pas un état de régénération:

Aja Mg + ”ima.q(zj— )— '”i_l ma.q(z;- ) = 0
a=1,...,n a#j, ~pour ¢=0,1,...,k,
pour g=1, ...k, ’

Ajimio + vimyo(z;) — vl mye(z)) =0

pour q = 0.

-pourj =1

-_ ¢ _ &
Tni.q—'(_/\“)q_n q_ovlv"'a r

poura # t
AiaTnig + A Maq(27) — vyt Maq(zf) =0 (4.21b)
a=1,2 ..., n; pour ¢ =0,1,....k

Pour chaque valeur de j, les inconnues additionnelles sont soit m,,, ¢ =

0,1,...,k, st # 1, oumjg(z),¢g=0,1,... .k, sij =1

4. A zm, [i(z,) doit satisfaire la condition d’hortogonalité suivante:

w),
wh, [0 ]
Telzn) = | (4.22)
Wrn 11 | 0]
Wiy i
J =1...,m [=0,...k,
ot w;‘,, J=5412,...,m, 1 =0,2,..., k représentent les vecteurs propres

@ gauche généralisés de grade | de Anx associés avec les m valeurs propres
@ partie réelle non positive. Une fois mq(z) et m,q, ¢ = 0,1,...,k, j =
I, ..., m, sont connus, C; 4 pourq = 0,1, ..., k sont obtenus par intégration

sur z selon Uéguation (4.11)
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4.4 Les approximants de Padé pour l'estimation de C;(s)

Notre objectif principal est d’estimer le colit sur horizon fini sous une politique a
seuils critiques invariants. Les approximants de Padé représentent un outil com-
munément utilisé pour la construction d’une approximation rationnelle d’'une fonc-
tion (3]. L’idée principale derriére |'utilisation de cette technique d’estimation est
de pouvoir reproduire les séries de Taylor de la transformée de Laplace des fonctions
aussi loin que possible. Ainsi, I'utilisation des approximants de Padé permet de con-
struire une fraction rationnelle fﬁf—;ﬂ qui reproduit partiellement (premiers 2p + v
coefficients) les séries de Taylor apparaissant au numérateur et au dénominateur de
la transformée de Laplace de C;(s) (4.10). FPpsu(s) et Qp(s) sont des polyndmes
de degré p + v et p respectivement, v > (—1) [3]. Sachant que lorsque s — 0
dans une transformée de Laplace c’est le comportement a T — oo qui est capturé,
la transformation inverse des fractions rationnelles fournit une estimation du cout
sur horizon fini pour une politique a seuils critiques donnée qui s’améliore pour
un degré d’approximation donné lorsque T' — oo. Il est donc possible d’évaluer la
performance pour un choix particulier de seuils. La recherche de la commande sous-
optimale devient un probléme d’'optimisation numérique. Ceci permet de répondre
a la deuxiéme question posée en introduction. Pour répondre a la premiére ques-
tion concernant la vitesse de convergence vers le régime stationnaire, un indicateur
important est fourni par les singularités (péles oli points de branchement) de la

transformée de Laplace C;(s).

4.5 Estimation du temps de convergence vers le régime stationnaire par
I’analyse des singularités

L’objectif de cette section est de caractériser la vitesse de convergence de la fonc-
tionnelle cout vers le régime stationnaire & partir de l'analyse des singularités. En
effet, la vitesse de convergence vers le régime stationnaire est dictée d’abord par le

pole dominant (le pdle le plus proche de l'axe imaginaire dans le plan complexe).
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Notons que les péles de la transformée de Laplace de C?(s) sont composés du pole

8 = 0 et des pdles p; solutions 1 ~ G;;(s) = 0.

4.5.1 Caractérisation des pdles

Il est clair que s = 0 est aussi une solution de 1 —G(s) = 0 (puisque Gi;(0) = 1), et
par suite s = 0 représente un péle double de C;(s) indiquant une croissance linéaire
de C;(T) avec T. De plus, C;(s) posséde d'autres pdles caractérisés en partie par

le théoréme suivant:

Théoréme 4.3 les valeurs propres de la matrice de tauz de transitions A de la
chaine de Markov représentant l'état de la machine sont également solutions de
l'équation:

1—05,‘(8) = 0.

De plus, dans le cas n = 2, ce sont les seules solutions de cette équation.

Démonstration: voir annexe [. B

Ceci implique que si on considére le cout moyen 7 Ci(T), il ne peut atteindre
son régime stationnaire plus rapidement que les statistiques de la chaine de Markov
de 'état de la machine considérée. Ceci permet de définir une borne inférieure sur
la longueur de I'horizon apreés laquelle on peut espérer que les points d’inventaire
optimaux [27] olt [25] deviennent des approximations acceptables des points réels.

Nous avons donc:

Corollaire 4.1 Dans le cas ergodique (C—,[(.ﬂ — Coo) est au moins O(exp(Amint))
0t Anun est la valeur propre non nulle et dominante de la matrice de transition de la
chaine de Markov représentant le mode de la machine, C,., élant le coit stationnaire

par unité de temps.
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4.5.2 Caractérisation des points de branchements

Corollaire 4.2 Les point de branchement de v solution de
I+V o (sI-AT)| =0

sont les seuls points de branchement de G(s).

Le calcul de ces points de branchement peut se faire en utilisant la notion de

discriminant d’un polynéme. Soit
P(7,8) =9" + an1(8)7" "' + ... + ao(s)

et soit ¥(s) une solution de P(vy,s) = 0. sp est un point de branchement de 7(s) si
¥(s0) est une solution multiple de P(v(sg),s0) =0 [6]. Ce qui revient & dire que le

déterminant de la matrice de Vandermonde est égale 4 Q0 pour s = sg

1y o
17 ... w3
) = I (=)
: : 1<i<s<n
1 Y% ... "
Soit alors g% = ¥F + ... + 7X et soit

Jo gy ... Op '
D, =

On-t Cn ... O2p-2

Dp est un polynéme en s appelé discriminant du polynéme P(+y). Les valeurs de s
qui sont solution de D,(s) = 0 sont les point de branchements de (s). De plus, le
calcul des o; peut se faire en évitant de résoudre P(y) = 0. En effet, le calcul des

g; peut se faire en résolvant le systéme linéaire suivant

@n-1(8) +an(s)oy = 0

2an,-2(s) +an-1(s) o1 + an(s)oa = 0

(n—1)ay(s) +as(s)oy +...+ a,(s)on-y = Opouri<n-—1
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pour: > n
On = —[ag...an-1][00 ... gn-i]”
Ont1 = —[ao ...a.,,..I] [0’1 .. O'n]T
O2n-2 =~ —[ao oo Gn—l] [Un—z ses 02n—3]T

Nous pouvons alors écrire la décomposition asymptotique de C;(s) sous la
forme suivante (2], B, étant défini comme le point de branchement le plus proche
de ’axe imaginaire:

Cr(s) = Sp + | SutC=P 1
i s n s

+ Y. {residu du péle p; #0si |p;| < |B]}
i:pi#0

+ {Une série de Taylor de C?(s) autour de s = B}

ce qui donne:

C(T — Cl l+Can 1

_’I(‘_l =Cop + | 2t=2| 1

+ 3 {contribution des pdles p; # 0} (4.23)
t:pi £0

+ { la contribution de la série de Taylor autour de B}

L’existence des singularités p; # 0 a l'intérieur du cercle de rayon |B,| est tres
difficile a prouver analytiquement. Cependant, il est établit que les approximants
de Padé permettent de construire les singularités se trouvant a l'intérieur de la
région de convergence représentée par le cercle de rayon |B,| {3]. En plus de ces
singularités, les approximants de Padé auront tendance a créer une concentration de
poles et de zéros sur la branche ouverte reliant les points de branchements. Les plus
proches de I'axe des imaginaires. Notons que ces pdles et ces zéros n'existent pas
en réalité mais leur apparition dans le cacul est révélatrice de la présence de points
de branchement. Par ailleurs, nous pouvons observer de l'équation (4.23) qu’en

réalité le terme vraiment dominant et qui dictera la vitesse de convergence vers le
C.1+Cx 2
Hs

- " . | Ciai+Cax B2 N .
colit moyen par unité de temps a [——’——“—';-L] -.,’-. L'erreur relative introduite sur

régime stationnaire est celui en . Ce qui correspond si nous calculons le

m



62

I’évaluation du colit stationnaire par la considération de ce terme est donnée par

[g‘-—’—ﬁ} -11-. Il est donc possible de définir un degré de tolérance sur la longueur

Coops
de I'horizon a partir de laquelle il est acceptable de considérer le systéme en régime

stationnaire. Ce qui donne la proposition suivante:

Proposition 4.5.1 la longueur minimale de l'horizon qu'il faut attendre pour que
le cotit soit & l'intérieur de la bande de €, (en %) par rapport & la valeur en régime
stationnaire C est donnée par

Cii+Cso 82 1
T;min =|—2| = 4.2
[ Coott ] Es (4:24)

ot C;; est donné par (4.10), et Cy est le coit stationnaire. p et u, sont donnés
par (4.6), et représentent la moyenne et le deuriéme moment du premier temps

inter-événements criliques de type t .

Notons que T, nin dépend nécessairement du choix des points critiques, des
vitesses de production ainsi que des pénalités attribuées aux surplus négatifs ou posi-
tifs respectivement. L'application de la décomposition (4.23) pour l'optimisation
des seuils critiques est rapportée dans l’article de conférence intitulé “Optimizing
the Transient Behavior of Hedging Control Policies in Manufacturing Systems” mis

a 'annexe III de ce chapitre.

4.6 Conclusion

Nous avons considéré le probléme d'optimisation du contréle de flux sur un horizon
fini, pour une systéme multi-mode et produisant un seul type de piéces. La classe
des lois de production est caractérisée par des points critiques invariants a |’intérieur
de I’horizon d’optimisation. Une équation de renouvellement pour la fonctionnelle
cott sur horizon fini a été développée et utilisée pour générer les coefficients d’une
expansion en série infini de la transformée de Laplace du coiit vu comme fonction

de la longueur de 1'horizon T.
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Le calcul des coefficients dans la série infinie est basé sur une résolution d’un
systéme d'équations différentielles récursives. Les coefficients dépendent du choix
particulier des seuils critiques d’inventaires et I’optimisation procéde par la suite

numériquement.

L’application des approximants de Padé donne d’excellents résultats
numériques et nous a permis d'estimer correctement le coit méme pour des
longueurs d’horizons de temps faibles (voir annexe II). La validation des approx-
imations numériques a été possible par la comparaison des résultats numériques
directe du systéme d’'équations aux dérivées partielles donné au théoréme 3.1 basé

sur la méthode de Lax-Wendroff [30] pour des points critiques fixés.

De plus, en utilisant le contrdleur découplé sous-optimal de Caramanis et Shar-
ifnia {9], la technique d’analyse transitoire développées ici peut étre appliquées pour

les systemes multi-mode produisant plusieurs types de piéces.

L’estimation du temps de convergence vers le régime stationnaire a été possible
par l'analyse des singularités de la transformée de Laplace de la fonctionnelle conit.
Le résultat nous donne un critére d’estimation de la longueur minimale d’horizon
requise pour garantir un pourcentage d'erreur maximal en fonction du pourcentage

d’erreur par rapport au cout en régime stationnaire.
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ANNEXE I

DEMONSTRATION DU THEOREME 4.3

Pour procéder a la démonstration du théoréme 4.3, nous avons besoin du lemme
t
suivant: Soit ¥ = [ =Aj1 —Ajp e 05 -0 A ] , ou 0; = 0 signifie que la i*™®

entrée du vecteur est nulle.

Lemme 4.3 Soit A = (sI — A*), et z; le point de régénération.. Soit ¢;(z,s) =
exp(—V."' Az) pour z € R;. Soite; = [0,...,1;, ...,0]%, avec 1; = 1 @ la i®*™e

colonne La condition frontiére d =, peul élre écrite comme suit:

1
vy

F(z7,s) =V {‘DT" Ae Fi(z7,s)

s— Ay
+OP7 Aey Pzg,9)... + 75 Aejo1 P30, 9)
~®7 Y P(z;,5) + 87 e; Gyy(s) (A1)

L0 — .46," P(:ﬂlvs)

s Hl-1 — -t -1 - _ _1 — -+ =
ou &7 = [L;Zx Vidi(Diiy1,8) Vi, Plzj.8) = vy, ot D=z, - - k
représente le k®™¢ points critiques et / représente le point ol nous sommes entrain

de calculer la condition frontiére.

Preuve: Rappelons que les points critiques 2y > 2 > .-+ > z,,, o m est le
nombre d’états faisable et n le nombre d'états du systéme. En prenant la trans-
formée de Laplace du systéme d’équations au dérivées partielles donné par le lemme

4.1 et en résolvant le systéme d’équations différentielles par rapport & z nous pou-
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vons propager les conditions frontiéres & partir de z; . Ceci donne:

F(zt,s) = #((z2 — 21), 8) F (21, 3)

( [ —Aa ] )
(s — Az)
— s
Fe.s) = i Vidl@—a)o) Far,s) + | | Plas) b
~Ae (A.2)
—Ajn )
= V! {‘/195((42 —z1),8) F(zy ,s) +Ae2P(.2,s)}
Fzr,e) = [1, ”2‘2’:\:\21!) - i) ARG
= Vi 'Ae U R
(s=an1) ?

ce qui donne:

Fzy,s) = V! { Vid((z2 — 21), )Vt Ay LEGLD 4 400 Py, s)}

e=dn) (A.3)
- -
F(z7,5)=Vy'®lAe 5’1&-—&2‘11—)-’-)- + Aey P(z9,5).

" Nous continuons & propager cette condition frontiére jusqu'a z;, oll nous avons
instauré la condition d’absorbtion donnée par (3.5b’). Cette condition modifie la

relation 4 la frontiére z; de la fagon suivante:

1
8= Aj;

P(’:j’s) =

avec
% F (35 8) = o) R 1 8) = Gis(s),
la transformée de Laplace de la condition (3.5a) donne
R 8) =T () = AeP(s09),
NN () 7£ ja

T = 1

puis repropagé F(zj,s) jusqu'au point critique k. Supposons que la condition
frontiére au point d’ordre j < k < m, satisfait (A.1). Ce qui signifie que:
v}

F(zg,s) = V! {cp* ‘AeI F,(h.,s)
+ cI)'{“ AeQP(Zg,S)... @j_,Ae,-_IP(:j-nS)

+ BTV UP(zj,8) + B e; Gyils) + oo + Aex Plzk, ),
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or

F(zh1,9) = ¢((2ke1— 2),9) F(z,9)
F(ziy1,8) = Vigh Vi F(zd,8) + Vi Aeen
= Vier Ve &((zk41 — 2),9) F(zg,8) + Vil Aeraa, (A.4)

En remplagant F(z,s) dans (A.4) nous démontrons par récurrence que le résultats

et vrai pour n'importe quel indice k y compris pour k = m. &

Preuve du théoréme 4.3 La condition de stabilité (3.4c) s’écrit

lim F(z,s)=0 pourz € Rpn.

T—s—00

Cette condition est équivalente & choisir la condition initiale 2, orthogonale aux
vecteurs associé aux valeurs propres a partie réelle négative de A. Ce qui revient
a dire que la condition initiale est une combinaison linéaire des vecteurs propres
associés aux valeurs propres a partie réelle strictement positive. Dans [10], le critére
d’ergodicité implique que le systéme posséde n — m valeurs propres a partie réelle
strictement positive. Soient les ym; pour i = 1,2,... n — m les valeurs propres de
V.7 ' A 3 partie réelle strictement positive et wyy; les vecteurs propres correspondants.
Soient les o;, 7 = 1,2,...,n — m une série de coefficients réels. La condition de
stabilité peut étre écrite comme suit:

n-m

F(zr,s) = Z; 0t Wing. (A.5)

i=

En remplacant (A.5) dans (A.1), la condition frontiére & z,, est alors un ensemble

de n équations, impliquant n parametres inconnus donnés par:

Q; i=1,2...n—m,
P(z,8) i=1,3,...m; i#],
Gjs(s)-

Pour 'unicité de la solution le déterminant suivant doit étre différent de zéro.

=2

1
Wml Wm2 *°° Wm(n-m) _Vn-‘-lq)rln—lAel_";_ £0
—V;107 Ay o= V0™ Agyee —VilAenm | T
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De plus la fonction de densité de probabilité G;;(s) est donnée par:

—VileT" "t Aeu!
Iwml. «++o  Wm(n-m) = ,i,\u L.

- - v.olem-t _
~Va'eglAey ... TSV ... ~VilAen|
Gji(s) = —Ve @T ™ Ay vl )
Wm1 “m2 .- Wmin-m) s=A11
Valdf T Aey - V@i ey o —VilAen|

Ceci nous permet d’écrire quand G;;(s) =1

-V '@ ™™ Aeyul
1 1

[wml Wm2 .- . A “m(n-m) A =0
_ _ —V, lgm-m , _ [}
—Val®p ™ Aey ... —RRE L VinlAem|
ce qui donne:
1
an:lwml V,;lwmg . V,;lwm(n_m) —(I)fl‘_m Ae; sTv}\T - (AG)
- - 1
_q); mA€2 —CDj“ MAejm ... —Aen l = 0,
sachant que %ﬁ = V7 'A¢(z,s) = ¢i(z,5)V;''A and A =
X Vigi(z,s)Vi A= AL, ¢i(z, s), (A.6) peut étre réécrite comme suit:
-A -t di(z.3) e v}
Avmzt Aumezt ... AWmn-mygo m,-x,, =
-A P oi(zs i
CATI ais)er .. SHLZHEDS g | =0,
donnant
Iwml Wm2... Wm({n-m) Hrln-l (bi(zs 3) €l
I‘4i = 0.
T3 ¢z, s)e2 ... ;" ¢iz.s)e; ... em
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Abstract

Part production is considered over a finite horizon in a single part multiple failure
mode manufacturing system. When the rate of demand for parts is constant, for
Markovian machine-mode dynamics and for convex running cost functions associ-
ated with part inventories or backiogs, it is known that optimal part production
policies are of the so-called hedging type. For the infinite horizon case, such policies
are characterized by a set of constant critical machine-mode dependent inventory
levels that must be aimed at and maintained whenever possible. For the finite hori-
zon (transient) case, the critical levels still exist but they are now time-varying and
in general very difficult to characterize. Thus, in an attempt to render the prob-
lem tractable, transient production optimization is sought within the (suboptimal)
class of time-invariant hedging control policies. A renewal equation is developed
for the cost functional over finite horizon under an arbitrary time-invariant hedging
control policy. The kernel of that renewal equation is a first return time probability

density function which satisfies an auxiliary system of Kolmogorov type of partial
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differential equations (PDE). The renewal equation and the auxiliary PDE system
are used to generate the terms in an infinite Laurent series expansion of the Laplace
transform of the finite horizon cost functional viewed as a function of the length of
that horizon T'. The terms in the infinite series expansion are generated recursively
and their calculation is based on the solution of a system of piecewise smooth cou-
pled linear differential equations, the associated Jordan canonical form of which is
explicitly constructed. In the two-state machine case, this shows immediately that
the Bielecki-Kumar infinite horizon cost is approached via a term that decays to
Zero as % and that can be computed exactly. Furthermore, Padé approximants to
the resulting infinite series expansion yield a generic (and quite accurate) approx-
imate expression of the cost functional in terms of T and z, the arbitrary hedging
level. In the multi-state case, Padé approximants yield excellent numerical approx-
imations to the cost functional as a function of T for given choices of hedging levels.
This is subsequently used as part of an optimization scheme whereby hedging levels
which are optimal for a given finite horizon length are efficiently computed. The
algorithms presented here can also be applied to the finite horizon optimization
for multi-part failure-prone manufacturing systems provided that only the partwise

decoupled hedging control policies of Caramanis and Sharifnia are considered.

-Keywords—

Padé approximants - Finite horizon manufacturing flow control - Hedging control

policies
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1 Introduction

Organization of flow control can be viewed as an important phase in a hierarchically
structured scheme for the control of manufacturing systems {21]. Starting with the
work of Olsder and Suri [5], a common paradigm for the analysis of this control
problem has been a fluid model characterizing parts production, punctuated by
random jumps either in the production capacity (due to machine failures or repairs),
or in the demand for parts [26].

While the general mathematical theory for the optimal stochastic-control prob-
lems in such jump models was first formulated by Rishel [20], the specificity of
the flexible manufacturing problem lies in the boundedness of the controls (parts
production capacity sets), as well as the occasionally non negligible set-up times in
changing over from set-up for one part to that for another part.

The qualitative features of the optimal control problem of minimizing inventory
and backlog costs in multi-part manufacturing systems were studied by Kimemia
and Gershwin [7]. An important concept emerged from their study, that of hedging
type part production control policies. Relevance of the notion of a hedging policy
was subsequently reinforced by a mathematically complete study of failure prone
single part manufacturing system by Akella and Kumar [16]. Here. hedging policies
emerged as the optimal ones for an infinite horizon, discounted integral cost func-
tional with convex running cost. Since then, a growing body of research has been
developed around the properties of hedging policies particularly in Markovian sin-
gle part. single or multiple failure mode machines (See Liberopoulos and Hu [6] for
a comprehensive list of references), but also in multi-part manufacturing systems
([9]. [10},[12]). For non Markovian machines see for example Glasserman [14] and
Brémaud et al. [13].

For the infinite horizon single part production problem, hedging policies are
characterized by a set of constant machine mode dependent inventory levels, that

the production policy must aim at reaching at the fastest rate possible, and main-
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taining as long the associated machine mode prevails. Most of the existing hedging
control literature has been focused on the infinite horizon problem, essentially for
reasons of mathematical tractability. However, in the manufacturing systems com-
munity, it is widely recognized that many of the flow control problems can be
classified as finite horizon because production requirements can change before the
system has time to settle long enough into a statistical steady-state.

Using a Markov renewal viewpoint of hedging control policies, Malhamé and
Boukas [19] made preliminary attempts at assessing the speed of convergence of
such policies to a statistical steady-state. This could give preliminary criteria for
separating finite horizon problems, from what could be considered as infinite-horizon
problems. Also, forward Kolmogorov equations for the transient evolution of the
system under hedging policies were presented.

Zhang and Yin [15] seeked independently to solve the dynamic programming
equations which arise in developing verification theorems for characterizing optimal
flow control policies over finite-time horizon. In particular they looked for so-
called turnpike sets (switching curves) where value functions are minimized (hedging
points in the single part infinite horizon problem). In the finite horizon case, the
critical inventory levels become time-varying and thus can be qualified as critical
curves. Zhang and Yin [13] are able to solve completely the transient optimal
control problem. single part two-state machine, with failure as an absorbing state,
under constant demand for parts. A slight variation of the problem is also solved
when capacity is constant and demand is a two-state Markov chain with zero as its
absorbing state.

[n the following paper, we seek instead optimal finite-horizon flow control poli-
cies within the (suboptimal) class of time-invariant hedging control policies (TIHC).
Among the reasons for focusing on TIHC policies are relative tractability, ease of
implementation. and asvmptotic optimality as the length of the control horizon

increases. The class of manufacturing systems considered is single part, multi-
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ple failure modes. The paper is organized as follows. In section 2, we develop
the mathematical model of the manufacturing system, state the optimal control
problem, and give a preliminary characterization of the class of control policies of
interest (TIHC policies). In section 3, a renewal equation is developed for the cost
functional over finite-time horizon under arbitrary TIHC policies. The kernel of
that renewal equation is a first return probability density function, and a partial
differential equation (PDE) characterization of that density function is given. In
section 4, theorems are developed to compute an infinite series expansion of the
Laplace transform of the cost functional based on the renewal equation. The terms
in the series are obtained as the solutions of recursive systems of coupled linear
differential equations with boundary conditions. In section 5, the theory of Stielt-
jes’ series is used to first develop Padé approximants of the Laplace transform of
the cost functional, and eventually compute asymptotic approximations of the cost
functional itself as the length of the horizon increases. In section 6, “partiailly an-
alytical” expressions of the terms in the infinite series for the two modes machine
case are given. Also. test results comparing the Padé approximants results with
unwieldy Lax-Wendroff solutions of the PDE system in section 3 are given for the
two modes and the three modes machine cases respectively. Suboptimal control

synthesis is illustrated. Section 7 contains concluding remarks.

2 Suboptimal finite horizon production control

We consider a single-part-multiple-state manufacturing system. The system is
characterized by a hybrid state [z(t), £(¢)]*. The discrete variable {£(¢),¢ > 0}
is a continuous irreducible Markov chain with known intensity matrix A = [A;],
(\i = —Z; Aij), and taking its value on a finite state space E. The continuous
variable r(t) represents the production surplus of the product at time t. The sys-

tem must satisfy a certain given constant demand per unit time d. For each a ¢ E,



z(t) evolves according to the following differential equation
Z(t) = u, — d , (1)

where u, is the production rate under the failure rate mode «. The production
rate takes its value on a convex set ), assumed here as the closed interval [0 @,].
Ui, represents the maximum production rate allowed by the capacity constraints of
the manufacturing system when it is in mode . Using the modeling framework of
Sharifnia [23], or Caramanis and Sharifnia [10], the state space £ is composed of n
states representing the different failure modes of the system. Among these modes,
m are said to be feasible (2, > d), and indexed by = 1....,m; otherwise the
states are called infeasible and are indexed by a = m + 1,..., n. A cost £(z(t})
is incurred for either inventories or backlogs represented by z{t) > 0 or z(¢) < 0
respectively. £(x(t)) is assumed to be convex.

Our objective is to identify an admissible feedback (see [16]) production policy

which minimizes the following cost functional:

T
J(rg. a0} = E[/(; f(.r(t))dtho.ao:l , (2)

-

for T a finite time horizon. given state equation (1), the machine mode dynamics,
and where E[.[rq.ay] is the expectation operator conditional on [z(0),£(0))! =
(20, ao}’.

For the infinite horizon version of this problem where the long-term average cost

per unit time is to be minimized. i.e.,:

1 [T
J =T E [/0 i’(z(t))dt[,o_ao] , (3)

it is well known (see [22], ch.3 for a thorough analysis), that the optimal control
policy is of the so-called hedging type. Thus, it is characterized by a set of constant
critical machine mode-dependent inventory levels that the control effort must aim at
attaining at the fastest rate and maintaining whenever possible. In the finite horizon

case (2) (see Zhang and Yin [15}), the optimal control policy is still of the hedging
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type, except that the critical levels are now time varying and the trajectories they
follow can be termed critical curves. Except for the case of a two-state machine
with an absorbing failure state [15], no known analytical expressions are available
for the critical curves. Given the great difficulty of obtaining such expressions, as
well as the nature of the resulting production control laws which may not be very
practical to implement, we seek control laws for the finite horizon problem which
would be optimal within the (suboptimal) class of time-invariant hedging control
policies, i.e., where the critical levels are constant. Justification for the choice of

such a class of control policies is threefold:

e The class will asymptotically include the true optimal control as

T — oo.

¢ An optimal constant critical level can be viewed as coinciding with the “av-

erage” over the control horizon T of a time-varying optimal critical level.

e The implementation of the control law is simple.

As in Sharifnia [23], the time invariant hedging control policies are characterized
by a set of arbitrary finite hedging levels z, associated with the feasible states
a=1...., m. Consequently,

Uy I < 24
u(z)=<¢ d =z a=1,...,m. (4)
0 r>:z

In infeasible modes, it is assumed that one always produces at the maximum rate.
This is tantamount to assuming that the lowest hedging level associated with the
infeasible modes is higher than or equal to the highest level associated with the fea-
sible modes (see [22] ch.3 and [6] Section III for interesting partial results concerning
this point}.

Furthermore, the surplus production space is divided into a set of open regions

R, = {z€eR|za41 < T < z3},a=1,...,m-1, and R, = {zeR|z < za},
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Ro = {z€R|z; < z}. Here, it is assumed that a relabeling of machines states has
been performed whereby {z,} are ordered as zm < zm-1 < ... < z;. Between
jumps of the discrete state £(t), u>(z) is constant and thus z(t) evolves, in a given
region R,, according to a deterministic differential equation with a constant velocity
ug(z) — d denoted by v§ where f is the current mode. For simplicity and although
this is not indispensable, we assume throughout that for all states B¢ £ and a =
l,...,m, vy # 0. Removal of this assumption would indeed greatly complicate
the formulation of Lemma 2 (moments would propagate according to linear singular
systems) and Lemma 3 and 4, section 4 below, whereby one would have to deal with
Jordan forms for singular systems. Also, probability masses would appear in more
than one mode at hedging points. See Fig.1 for a geometric representation of the
dynamics.
Hedging control policies have been the subject of a growing and interesting
literature (see [6] for references). However, except for Malhamé and Boukas [19],
Zhang and Yin [13]. there is a paucity of analytical results concerning their transient

behavior. The following result is reported in [19]:

-

Theorem 1 The hybrid density vector f(z,t) will satisfy in region R;,

i=1.....m. the associated forwerd RKolmogorov PDE's given by:
Of(x.t 3f(z.t .
f('r ) = -V ij:(r_) + N\ f(x,t),V zeR; (5)
ot or

t=1,..m,

where V, = diag[v;]_. i=1,....m a=1,....,n and VAeR; and for infinitesimal

d\. f(r.t) is such that:
fA8)dh = Pr[(A <z < A +d)X) N (&) =1)]

flr.t) = [filz,t) ... falz,t))'. The boundary conditions associated with (5) are as

Jollows: at hedging point z;, 1 =1. ..., m:

Ny P () + 0 fi(z7 ) — v fi(sE ) = 0 for j = 1,2,..., ni(6a)
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J#1,
—-dP;‘t(t) = Xi P (1) + vf filz,t) — vt fizF 1) (6b)
for j=1i,

where P, (t) is the probability mass at z; and time t, i =1, 2, ..., m. In addition

—

f(z,t) is zero at £oo. More precisely:

-

flz,t) = 0 V> z

-

lim flz,t) = O. (6¢)

I s = OO

il T_T-I_-_‘.-I_tj_v&q____h

U

Figure 1: vector fields associated with hedging points control policies in region R;
for all possible modes 3 = 1, .... n respectively from left to right

The set (5)-(6) of PDE’s with boundary conditions has a transparent physical
meaning which it is important to discuss because it will be very instrumental for
a number of developments in the paper. (5)-(6) represent a probability flow bal-

ance equation. [f one interprets u_;:(t) fi(z,t) as the probability current at (surplus)
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position z, time t in region R; and machine mode j (probability per unit time),
then (6a) is a mathematical expression of the fact that probability currents will in
general be discontinuous across a hedging level, say z;, if they are associated with
a machine mode j # i. The size of the discontinuity is given by the average rate
Aij Pe,(t) at which a machine in mode i when the inventory is z; will switch to mode
7 (and thus leave the hedging point). (6b) is the counterpart of (6a) when dealing
with probability currents associated with mode i across hedging point z;. Indeed
here, the probability currents point towards z; and are in fact the only positive
contribution to the probability mass at z; (a machine will spend a non zero time
at z; only if it was in mode i when it hit z;). Thus (6b) expresses the fact that
the rate of change of the probability mass at z; is equal to positive currents from
mode : densities around z; minus the rate (—A; Pz;(¢)) at which a machine already
in mode ¢ at z; leaves that mode and thereby contributes through (6a) to feeding
the probability currents associated with other modes around z;. Finally note that
the condition (6¢) at (-oco) is important to ensure that the total probability mass is
bounded at all times.

[n the following section, we shall develop a renewal equation satisfied by the
finite horizon cost functional in (2). Starting with Akella-Kumar [16], and partic-
ularly with Malhamé-Boukas [18], renewal viewpoints of hedging control policies
have proved to be extremely useful particularly when it comes to making state-
ments about the ergodicity and transient behavior of such policies. The Markovian
structure of the controlled [z(¢). £(t)]* process is such that any fixed particular point
say [Lo.%]* can, as long as it is reachable, constitute a regeneration point for the
process. Regeneration points of particular interest are the ones associated with
so-called hedging point events, i.e., instants where a hedging inventory level say :
is just reached while the machine is in mode :. Hereon, we shall denote by type
¢ such regeneration events with ¢ = 1, ..., m. Also, for the rest of the paper we

assume that matrices V"' A, i = 1. ..., m have distinct eigenvalues. While this
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assumption is not indispensable, it makes a simple recursive computation of the
generalized eigenvectors in equation (41), section 4 below, possible. Notice that the
assumption of distinct eigenvalues will in most cases be satisfied. Indeed, consider
the very demanding case where the manufacturing system of interest is made up
of say k identical (unreliable) independent parallel machines; while the transpose
of the system intensity matrix A will have multiple eigenvalues, V;™' A* will not
because the velocity matrix V; does not sufficiently preserve the symmetry of the

problem.

3 Renewal equation for the finite horizon cost

The following Lemma is concerned with a modification of PDE system (5)-(6) to
compute the probability density function (p.d.f.) of times between successive type
{ regeneration events. Let g;;(¢) denote that p.d.f. .

In Malhamé [17], it was shown how in Markov processes with continuous trajec-
tories, one could use the forward Kolmogorov equations to compute first passage-
time densities. The gist of the argument is as follows: a continuous Markov pro-
cess cannot attain a given boundary unless it is in the immediate vicinity of that
boundary the instant before. Until it hits that boundary (whereby it is stopped),
the process cannot “know” about the existence of the boundary and therefore it
satisfies (locally) the usual forward Kolmogorov equations. Upon hitting the bound-
ary, the process must be “killed” (because it is not allowed to propagate again).
Mathematically, this is implemented by introducing at the boundary of interest a
new boundary condition which insures that return probability currents from the
boundary, if any, are set to zero. The boundary becomes absorbing. This is the
point of drastic departure from the usual forward Kolmogorov equation which can
be characterized as a conservation equation (total probability mass in the system
is constant). In the case of a first passage-time (absorbing) boundary. the system

starts “leaking” and if the original Markov process is such that it hits the barrier
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with probability one, then the total probability remaining in the system as ¢ — oo
is zero. Now recalling that first passages to the boundary of interest can only be
achieved from the immediate vicinity of that boundary, the probability that escape
occurs between t and ¢ + dt, say g(t)dt for ¢t > 0, dt infinitesimal is given by the
amount of probability that leaks across the absorbing boundary around time t.
This is nothing but the net probability current at the boundary multiplied by dt.
Given that the return probability current is extinguished at the absorbing bound-
ary we conclude that g(t) = outward pointing probability current at the boundary.
This is the essence of the probability current method of computing first passage-time
denstties.
How can we apply this kind of computational principle for determining p.d.f.
gii(¢t) of first return to z; in mode 7
The principle dictates a modification of the boundary conditions at z; in such
a way that any trajectory that attains z; in machine state mode i is “killed.” In
other words. an absorbing boundary condition must set up at z; but it must be
active only if the discrete part of the hybrid state is :. This i1s equivalent to
stating that Lhe boundary condition should only involve fi(zF.¢) and fi(z.¢).
Now reconsidering (6b) and its physical interpretation in section 2, the quantity
et f(z7 O =Tt fu(zF 1) is preciscly the total return probability current at bound-
ary =, in mode i. if all probability mass at time zero is concentrated at z; in mode
t. The required absorption will be achieved if that return probability current is

extinguished. Thus for a particular ! of interest, (6b) should read:

dP. ()
dt
The first return p.d.f. g¢;(f) at time ¢ would then simply be (under the modified

= A Po(t) . (6))

boundary condition) the rate at which probability leaks at the absorbing boundary,
i.e.. it is equal to the total return probability current ! fi(z7,¢) — v!™! fi(zF, ¢)

which is being extinguished. This leads us to the following Lemma.

Lemma 1 The p.d.f. of time belween regenerations of type i*, gi+i-(t) for
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i"=1, ..., m, can be obtained from the PDE system with boundary conditions (3),
(6a) and (6b), ezcept that for i = i~, boundary condition (6b) should read:

dP..(t) _ ,
o = e Pu(8). (7)

The initial conditions should be:

P..(0) =1
fi(tz,0) = 0 :=1,...,n; VzeR;; 1=1,...,m, (8)
P.(0) = 0 fori=1,....,m, t #17,

Gi=i(t}) s then given by:
givie () = vl fie(3,8) — v 7" fie (21, 0). (9)

In the next theorem, we use the regenerative structure of the controlled surplus
process to develop a renewal equation for the finite horizon cost, assuming at time

0. r(0) = z; and a(0) = ¢. Define
T = [ E [t D atomsiores] &7 (10)

While. in general the initial inventory will be at a value r(0) = 1o # z, if the
time horizon is sufficiently long, the initial transient from z¢ to z; will not have
a lasting effect. Thus in order to limit the number of arbitrary parameters to be
dealt with, we deliberately set r{0) to =;. Note that the general case can easily be
handled by appropriately modifying the initial p.d.f of z(¢) in Theorem 2. We shall
refer to C;(T') as the type ¢ cost functional for length T. Let  be the first type i
regeneration epoch after 0. Throughout the rest of the paper, we assume that the
demand is feasible in the long run. i.e,if # = [#(1), #(2), ... 7(n)] represents the
ergodic steady-state distribution of the machine mode Markov chain,

S # (i)™ > 0. (11)

=1

Such an assumption is known (see [11]) to guarantee the ergodicity of the finite state

Markov renewal process embedded in the [z(t), £(¢)]* Markov process as defined by
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Malhamé and Boukas {19]. This process is constructed by focusing on the successive
instants at which the open regions Ry, Ra, ..., Rm are first entered and recording
thereupon the machine state, as well as the instants, of hedging point regeneration
events. Thus hedging point events will all be positive recurrent and in particular

Pr[r < o] = 1. Let us define

where [} is the set indicator function. Z(t) is indistinguishable from z(t) until
the first renewal epoch T upon which z(¢) = 0 (the process is stopped). Given the
additive nature of the cost functional in (10), total cost from 0 to T can be divided
up into costs from 0 up to min(r, T), and subsequently costs from 7 to T if 7 < T.

More precisely:

CAT f E [ecz(t |a_‘,(0,_,,]dz+/ r) ga(r)dr . (13)

Since we know from Lemma I, how to determine g;;(¢) the p.d.f. of times of re-
currence of type { events. it remains to express the first expectation in the right
hand-side of (13) in order to make the equation useful. Now. recall that z(0) = z(0),
and in fact F(¢) is indistinguishable from z(t) until the first regenreration time upon
which the process is killed. This “killing” coincides in fact with r(t) hitting z; in
machine mode ¢. for the first time after leaving z;. Thus z; must act as an absorb-
ing boundary in the scnse of Lemma 1. As a result, #(¢). will have a statistical
evolution characterized by the same forward Kolmogorov equations as z(¢) except
that boundary conditions must be modified the same way as in Lemma 1 (7).
Lemma | provides then a means of computing both g;;(¢) and the first expecta-

tion in the right-hand-side of (13), and we have the following theorem:

Theorem 2 The type i cost functional for length T associated with an arbitrary
time tnvariant hedging control policy in system (1), and fort some fired indez in

. 2, .... m, satisfies the following renewal equation.

CuT) = / E [0(2(7)lazizo)=s) d7 + /OT Ci(T — 7) gi(7)dr. (14)
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where the kernel g;;(t) is calculated according to Lemma 1, and where the [Z(t), ()]
process statistically evolves according to the same forward Kolmogorov equations and

boundary conditions as in Lemma I, with initial conditions:

P..(0) =1,
fi(z,0) =0 :=1,...,n; VzeR; j=1,...,m,
P.(0)=0 for j=1,...,m, j #1i

Theorem 2 is the fundamental result that we will need in the rest of the paper to
characterize the dependence of the finite horizon cost on the length of the horizon
T. In view of the convolution in the right-hand side of (14), Laplace transforms
will prove to be a valuable tool in the rest of the analysis. While in the two-state
machine problem (Bielecki-Kumar [24]), an exact Laplace transform expression of
the type ¢ cost functional for length T can be obtained (see Malhame-Boukas [18]),
this is not possible in the multi-state problem. Instead, we can recursively generate
an infinite Laurent series expansion of the Laplace transform. This the object of

the next section.

4 Asymptotic Laurent series for the Laplace trans-
form of Ci(t)

Define. when they exist, Fj(z,s), Gi(s) and Ci(s) as the Laplace transforms of
fi(z.t). gii(t) and Ci(t).t =1, ..., m, 5 = 1,..., n, respectively. Laplace trans-
formation of the cost renewal equation in Theorem 2 yields:

_ L B Ux) Fi(z, s)de + 5L, (=) P, (s)
B 3 1 — G,’,‘(S) '

[n this section. we shall be concerned with developing an infinite series expansion

C.(s) (13)

of C.(s) around s = 0. In order to justify looking for such an expansion, we

first need to establish the analyticity of all Laplace transforms in (15) at s =
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0. Under the ergodicity condition in (11), it is possible to establish the required
analyticity proprieties. However, the proof is long, somewhat technical, and it
consists of an extension of the arguments in Malhamé [11], Section III. Therefore, in
the interest of conciseness, we proceed by assuming as already proved the result that
under ergodicity criterion (11), Fi(z,s),j=1,...,nVze U2, Ri and P (s),1 =
1, ...,m are analvtic at s = 0. A sketch of the proof under the title “Sketch of the
proof of Analyticity of Laplace Transforms at s = 0” is reported in Appendix A. In

view of (9), Gii(s) will be analytic at s = 0. So let

Gals)=1—ps+ 50+ + (-1 st +

where ¢ = E[r], and u = E[7¥], k = 1, 2, .... If we now define:

k7 .
mm)zhwi%ﬁ. k=0,1.2, ... VzeR. (16)
s s=0
k
and m;; = %Iﬂn t=1.2,..., m. (17)

me(r) represents the vector moments of k** order associated with the vector of
p.d.['s f(z.s) at zi41 < T < = whereas m; represents the moment of k*® order

at r = z,. We obtain the following infinite Laurent series expansion of Ci(s) near

Cs) = __;_{/‘” ((x)1¢ Z(—l)kfﬁk(r)dr
STH - k=0
m 0 .k 1
*'ZZW“M}L = - (13)
i=1 k=0 k! [1_2?__2 %(_l)n,k! ]
_ L Yo Cik s )
Sl - o, e (-1 2]
where 1* =[1 ... 1] ¢ R*, and
(= v} - m 1
Cos = {/ ()1 (1)  mu(r)dr + 5 mix f(:i)} I (20)
e =1 .

Evaluating the above expression evidently requires the ability to compute the dif-

ferent moments appearing in it. This is the object of the next lemma. This lemma
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constitutes also a generalization of the result that was first developed in [11] on
the computation of moments of sojourn times of the surplus process in the regions

comprised between successive hedging points in the parts surplus space.

Lemma 2 Let m(z) be the vector of moments of ¢* order corresponding to the
vector p.d.f. f(a:,t), q 2 0. Under ergodicity assumption (11), and for f(z,O) =0
Vz e R;, the vectors my(z) satisfy the following recursive system of linear ordinary

differential equations (ODE):

din
_n:i%:@ = Vi A ig(z) + q Vi g () VzeR: (21)
g=1,2,..., t=1,2,...,m,
with
4
";"x(r) =V ' Atmg(z)  VzeR: (22)
=1, 2, , m
Defining
[i(z) = [e(x), mi(z), miz), ... m(z)]s  k=0,1,2,... (23)
Ci(z) obeys the following ODE:
iy .
;(x) Aix Ci(x)
T
[yt A 0 0 0
ICAL I (AR ¢ 0 0
= 0 2+ VT LA 0 Fi(z) . (24)
: 0 . 0
0 e kxVTD VTRAY
Thus:
I-:k(.r) =exp (Aix * (z — =) fk(:-:,»') VzeR;, :=1,....m, (25)
with,
:Lnj Fx(l‘) =0 R (..).4(1)
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Proof: : See Appendix A.l
In view of the block triangular structure of A;« in (25), if A is an eigenvalue of
Vol A%, it is also an eigenvalue of A;x with multiplicity (k + 1). In what follows,

we use the Jordan canonical form to derive analytical expressions for the matrix
exponential in (23).

Let Pix, Q;: be the matrices with columns respectively corresponding to the
generalized left and right eigenvectors of matrix A; associated with computations
up to the k** order moments in region R;. (25) can be then put into the Jordan
canonical form so that:

1.k

Tda) o, o Qi Tx(2) (26)

nk
where in (26) J{, stands for the Jordan blocks associated with the j* eigenvalue
Nof VAL =1, 2. ... .n, ¢ =1,2,..., m. The next two Lemmas are proved
in Appendix A and provide a method for recursively computing the generalized
cigenvectors of A; . Recall that we have assumed that the eigenvalues of V™' A,

{ = L.....m are all distinct.

Lemma 3 Let L} = Aj — A for given &, j, k. i = 1,....m, j =1,....n,
k > 0. and where A, is the J* distinct eigenvalue of Au. Let w0, Wiy, ... Wik, be
the generalized grade { eigenvectors in matrices Ay respectively for € =0, ..., k,
and assoctated with eigenvalue \;. Suppose there erists a sequence of scalars ay,

(=0.....k—=1, and vectorsue. £ =1, .... k, in R" such that

r—1
{57 L84 [Onxn(e-ty - =€ Vi LG TP Y oy + Lig ue = army wig (27)
p:U

for £=2, ...k k> 2,

with

—‘.—l Wro + LJ,O Uy = g Wj0 fOT’ k = 1, (28)

13
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then the following must hold

Qi = Z!af, (=2,...,k
where V! = P;q V7' Q;0, Pio and Q;o are defined in (26) and v;i is the j** diagonal

element of matriz V;.

Proof: : See Appendix A.l

Lemma 4 Let wji_; be a grade k generalized eigenvector of a matriz Ay, k >
L, as defined in (24), with A;p = V7' A', associated with the cigenvalue A; for
some fired indez j =1, ..., n. Then a grade k + | generalized eigenvector of A;

associated with A; can be constructed as follows:

Wy k-1
Wik = .
U

where up must satisfy the following equation for some scalar aj_y # 0

k-1
{Z Lf:'o [Onx"(k_” . —k "‘;'._l] Li;i—l'p} wj‘k—l + Lf.o U = Qi< “—‘]'O (29)
=0
for k > 2,
with
_V’.—l uyj.o + Lj,O up = Qg wj.o for k = ]., (30)

1

Furthermore it is always possible to find ui # 0 satisfying (29) and u, # 0 and
ag # 0 satisfying (30).

Proof.:  See Appendix A. K
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Now, let
Ve = W5k

k-1 = Ljkwjk

2
Vkez = L, wix
k
un = Lj.k-1wj.kv

{v1,v2,...,vrs1} represents a chain of generalized eigenvectors of length (& + 1).

Using Lemma 4, we note that

W;o
Wy k-2
. P u
Wj k-1 !
s — I — — —
LL-]_k = = Up-1 = ... = . . (31)
bk iy :
uy.

Hence. v; has the following cntries:

0
a; Wip
= X 0

(32)

v
IN
o

Ukes

X

Furthermore matrix £ in (26) is composed of n blocks of (k + 1) generalized

eigenvectors cach associated with an eigenvalue A;. Each block has the following

form:
C 0 0 ... 0 wjo]
0 0 Qg W; 0 X
Qp ;o x X
[ Qp—y w0 ... X X X |

Now. {rom the proof of Lemma 3 in Appendix A, (27) can be written as:

A=1
{3 AP Qiol0, =k V7Y Lji—_ll-p)} Wik-1 + [A;]* Qiotrrr = ar-1 QioWjo-
=0
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where A; = diag[A; — A, £ =1, ...,n. Let u} = Q;oux with the j** component
of u}, is equal to zero. Define:

[ : |
-xl—xl ‘
x:“lxj-l i
A;l = 0
I
Ar=d4
1
L \J-‘\'I
We have:
[A 1] {Olo Q:owm + Q!U wJO} (33)
fork = 1 and
= [A7'F {a;. 1 Qiowjp — {E (AP Qiol0, —k V7Y LY wj.k—l(}4)
p=0
or
Finally
U, = P,"o ui. y (35)

{31), {33), 34, (35) summarize the recursive computation of the generalized eigenvec-
tors of matrices A;x. In fact thea,, £ =0, ..., £—1 are calculated from the Lemma
3 and subsequently used in (34) and (33) to obtain the generalized eigenvectors.
Thus, the following Jordan canonical block form associated with the eigenvalue A;

is obtained:

A1 0 0 ]
0 A 1 0
J".k= 0 0 /\j I ..
: 0 A 1

0 ... 0 0 A |

With this in mind:
Ti(z) = Pirexp [Jj'k(:c — ) QinCr(z7) VzeR:
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where exp [J;:'k (z — z7)]is a {(k+1) x (k+1)} block diagonal matrix with Jordan blocks
as follows [1]:

[ exp[i (@ = 5] (e - ) ee-) o L ez - =)
0 exp[Aj(z — z7)] (i(-fil)TeXp[/\j(I—Z‘-—)]

(z—z")*2

0 0 -—(r':g')!—exP['\j(z—zi_)]

0 0 o exp (e = ) J

We have now all that is needed to characterize the asymptotic expression given
by the Laurent series in equation (18). Under ergodicity assumption (11), the next
theorem provides essentially an algorithm for computing the different terms in (19).
The theorem is obtained by applying the type of calculations in Lemma 2 to all
the quantities in the PDE system of Lemma 1. Thus every Laplace transform,
be it F(z,s) or P.(s), i = 1, ..., m, is associated with a string of coefficients,
mo(z). my(z), ma(z),... and m;p, m;y, Mia, ..., ¢ = L, ..., m respectively, corre-
sponding to its infinite series expansion near s = 0. The former string of (vector)
coefficients satisfies piecewise smooth linear differential equations with constant co-
efficients as in Lemma 2, while the latter satisfies sets of algebraic equations. The
linear differential equations are such that (see (21), (24)) m4(z) for some index q is
determined in region R; by m;(z7). j = 1..... ¢ — 1 but is not affected by m;(z)
j > q. while the sets of algebraic equations involve m; 4—y, m;, and mg(z]7), mqe(zF),
i=1.....,m.for ¢ > 1. As a result, it is most efficient to first compute my(z),
Mmig. § = l.- ..., m, then given m;q, mo(z7), ¢t = 1, ..., m, compute m;(r), my,,
i =1..... m and so forth, given m; g, mo(z7), mi 1, m((27), miz, ma(z7), ..., mig,
Mmy(z ). compute m; g4, Mo (z),2=1,...,m,q 2 L.

Furthermore, notice that assuming mo(2), ..., Me-1(2{ ), Mig-1, 2 =1, ..., m
are known for a fixed index ¢, and given m,,, it is possible to compute (see (37)
below) vector my(=1 ) as long as z; is not the chosen regeneration hedging point. If
it is. then my 4 is known at that point (since P, (¢} = exp(A1; ¢)) and given for ex-

ample m; o(z7), vector m4(z1 ) can be entirely determined. In both cases, mq(z;) is
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obtained via use of algebraic equations. We then use this knowledge and differential
equation (24) with k = ¢, i = 1, to compute M (25 ). Now, given my, and arguing
similarly, we see that vector mi,(z; ) can be obtained via algebraic equations. Sub-
sequently, a differential equation ((24) with k = ¢, ¢ = 2) is used to compute mm(zF)
and so forth until one computes r,(z,;). Note that at each hedging point z;, we have
assumed that either m; 4 or m;4(z) was known. Therefore i (z;;) is a function of
a total of m unknowns. This is the point where boundary condition (24a) comes
to bear on the problem. Indeed, this boundary condition which is valid only under
ergodicity assumption (11}, requires that vector [r?zf,(z,‘,;), mi(zm)s - -, n'iq(z;)]‘ be
orthogonal to the left eigenspace associated with the eigenvalues with negative or
zero real part of matrix An,q in (24). Now, matrix An,, has the same distinct
eigenvalues as matrix V! A* which under (11) must have exactly m eigenvalues
with non positive real parts (see [11], Theorem 2). This happens as we show in the
proof of the theorem, to provide the required m equations to complete the cycle of
computations associated with determining M (z) and m;, 7 = 1, ..., m. At that
point everything is in place for starting computations for g4 (z) and mig41.

While the actual calculations for forthcoming Section 6 were organized in an
entirely recursive manner, in Theorem 3, we present a block calculation of the

moments up to some fixed order £ > 0.

Theorem 3 Let i be the regeneration hedging state (for somei =1,2,...,m).
Coefficients of the infinile series erpansion up to some fized indez k in (18) are

obtained as follows.

1. Set the initial values of the vector moments at z,, (in terms of the single

unknown componenl myg if i # 1, ormyg(zy) ift = 1)

-Fori # 1
Aumg + U} ml‘g(zl_) =0
{ Ao myo + Ucl, ma.O(:l-) = 0 (360)

ael2, ..., n],
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and
Mamig + V3 Mag(zr) = 0
a€l2, ..., n],
- 7
AMimyg— qmig+vimig(zf) = 0 a =1 (37a)
for ¢g=1,...,k,
-fori =1
q!
Mg = eSS q=0,1,...,k (366)
Ma g + Vg Mag(zy) = 0 (37b)

a=12...,n a#l q=01,...,k%

The only unknown parameters in the left-hand side of (37a-b) are the scalar
values myq, ¢ = 0.1, ...k, if it #FLormigzr), g =1,...,k, ifi = 1.

Note that m, 4(z) is the a'* component of rii(z).

2. Propagate the initial vector fk(:-:l') by using (25), Thus given:

- My q(=7)
. _ —l;\ o o - _ __;,\;"1 ml q(:l )
me(zf) = ’ mye ifiF L, my(z) =
:zT\,'J.n —{}; ™ q(27)
fi=1. ¢=0,1,..., 4k
1
Mz ¥
= AL v
Co(zr)=| "7 | miolsD) for ¢ =0,
Mg o
My owh
and recalling the definition of Ty in (23):
Fe(zF) = exp(=Ae* (z1 — 22)) Tu(z7) k20 . (38)

At that point, all values at =3 are known as a function of my(z7), ¢ =

0.....kift # lormg(zy),q=0,...,kifi = 1. f;,.(::{) is then computed
by solving the following equations:



-Fori # 2

I
o

[ A2amzq + ViMae(z7) — g Maq(27)
a=1,...,.n a#2, for ¢=0,...,k,
J ’\22 M2, — qM24-1 + U% mQ-Q(ZZ-) - ‘U% mz'q(ng) =0 (390)
for ¢g=1,...,k,

A2z a0 + v3mao(z7) — v mao(z7) =0
{ for ¢ =0.
-Fori =2
_ 4 _ .
mz'q_(———A;FIT q—O,l,...,L . (3917)

Combining (38) and (39a) the additional set of unknowns is respectively m,,,
g=0,1.....,ktft #1lormag(z3),q=0,1,....k ifi = 1.

. Repeat step 2 with Ay substituted for A,y in (38), =; substituted for z, and
241 substituted for z,. Furthermore (39a) and (39b) are replaced by:

- for j # 1 not a regeneration state:

( Ajam,, + v Maq(z]) —vg‘lma'q(z;") = 0
a=1Ll....,n a#j, for ¢=01,..., k,
AjiMjq— qmMje-1 + U; m.i.q(zj-) - Uj_l mj.q(:f) =0 40
< for g =1,...,k (40a)
Ajimjo + vimjoe(zy) — v}"lm]—_o(:j-') =0
{ for q = 0.
-Forj =1
q!
fora # 1

Aiamig + v:, Mmaq(z7) — v:';l ma'q(:f) =0 (106)

a=1,2...,n; for ¢ =0,1,...,k

For each value of j, additional sets of unknowns are eitherm;,, q = 0,1, ..., k,

ifj# tormig(z7), ¢ =01,...,k ifj =1
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{. At zm, Tr(z3) must satisfy the following orthogonality condition:

[ wyy ] .
Wy, ( 0
Ta(zm) =1 (41)
w:n—l.l L 0 i
[ W,

j=l,...,-m, {=0,...,k

where in (41), wiy, j=1,2,...,m, 1=0,2,..., k represent the generalized
grade [ left eigenvectors of Am i associated with the m eigenvalues with non

positive real part.

Once my(z) and mj,, ¢ = 0,1,....k, 7 = 1,..., m, are known, C;, for

g = 0.1. ..., k are obtained by integrating over x according to equation (20).

Proof:
The theorem can be derived by performing calculations similar to those in Lemma
2 on a Laplace transform version of the PDE system defined in Lemma | combined
with utilization of Lemma 2. Thus (37a), (39a), (40a) follow from boundary con-
ditions of type (6a) and (6b) in Theorem 1. (38) follows from Lemma 2. (37b},
(39b) and (-10b) follow from the modified boundary condition (7) in Lemma 1 to-
gether with initial condition {8). (41) derives from boundary condition (24a) (as
r — —x) in Lemma 2. Indeed, the calculation of M, (z) ¢ = 0.1,..., % and
mje ) =1...,m,q = 0,1, ..., k proceeds by propagating equations from the
first region Ry, down to the last region R.,. In each region, a total of £ +1 new
unknowns is generated. namely m;,, ¢ = 0,1, ..., A&, if j # ¢ (not a regeneration
hedging point) or m;.(=7), if j = i (i.e zj is the chosen regeneration hedging point).
Once the infinite region lm is reached, a total of m x (kK + 1) unknowns has been
accumulated. At that point one uses the additional boundary conditions at minus

infinity stating that limy—._ m4(z) = 0,q = 0, 1, ..., &, which is equivalent to
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requiring that the vector Fi(z3) = [Ri(z),..., it (z)]° be orthogonal to the left
eigenspace associated with the exactly m distinct eigenvalues of A, x with negative
or zero real parts, and multiplicity k+ 1. That m is the number of such eigenvalues
is dictated by the ergodicity criterion developed in [11] Theorem 2, and equivalent
to assumption (11). This eigenspace is of dimension (k£ + 1) x m and (41) provides

the required additional equations. B

5 Padé approximants and asymptotic estimates
of the cost functional

Recall that our main objective is to be able to estimate the finite horizon cost under
an arbitrary time-invariant hedging point control policy. Thus, an inverse Laplace
transform must be performed using equation (18). The Padé approximants are a
particular type of rational fraction approximation to the value of a function [2]. In
this context. the main idea behind the use of this approximation technique is to
match the Taylor series expansion of the Laplace transform of functions of time of
interest as far as possible. Thus, Padé approximants will provide a rational fraction
approximation %l;ﬁ)i) which will partially match (first 2p + v coefficients) the
Taylor scrics expansion associated say with both the numerator and denominator
of the Laplace transform of the cost functional in (18). Ppy.(s) and Q,(s) are
polynomials with degree p ® v and p respectively, v > (-1}, [2]. Given that as
s — 0 in a Laplace transform, it is the behavior as T — oo which is captured,
inverse transformation of the Padé approximants will provide estimates of the finite
horizon cost functional which improve for a given order of approximation as T
increases. For applications of Padé approximants in the area of communications
see [23].

Now when carrying out Padé approximants, a question of great relevance is
whether the series to be approximated is a so-called Stieltjes’ series [2]. The impor-

tance of Stieltjes’ series stems from the fact that, even though in many practical
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applications Padé approximants can still function very well for non Stieltjes’ series,
few general results are known outside the realm of such series insofar as convergence
characteristics and structural properties of the approximants. Importantly, Stielt-
jes’ series are such that any sequence of %’%3’—) approximants to an analytic function
in the cut complex plane converges to that function as p tends to infinity, v > (—1).
The convergence is uniform with respect to p for every point in [s| < R, whereas
it is geometric with respect to p and it is pointwise in —c0 < s < —R, where R is
the radius of convergence of the power series 322, f. s* (theorem 16.2 pp.220 {2]).
Furthermore, for Stieltjes’ series, all poles given by Padé approximants to this type
of series are negative real with all residues positive and the roots of the numerator
interlace with these poles (theorem 15.1 pp.213 [2]). Therefore,provided that both
numerator and denominator infinite series in (18) are Stieltjes” series, by using
higher orders of Padé approximants for each, one can improve the approximation
of Ci(T) via a sequence of stable approximating functions.

In what follows, we review the definition of Stieltjes’ series and report a deter-
minantal condition which is both necessary and sufficient for a series to be Stieltjes.
Subsequently we present arguments that establish that both numerator and denom-
tnator of (13) satisfy at least necessary conditions for being series of Stieltjes.

A series f(s) = T3 f;(—s)’ is said to be a Stieltjes’ series [2] if and only if
there is a bounded, non decreasing function ¢(t) taking on infinitely many values
in the interval 0 < ¢ < oo such that

~
= [ tdele).
0
Furthermore. a necessary and sufficient condition for a series to be Stieltjes [2] is

that all determinants D(m,n) defined by:

fm fm-H LI fm+n
D(m.n) _ :fm-{—l fm+2 :fm+n+l
fm+n .fm+n+l e fm+2n

forr m,n =20,1,2,...,
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be positive. Note that for the above determinantal inequalities to hold, they should
at least hold for the associated series f(s) = 3°3° f; j! (—s).

We now go back to (18) and establish that the above necessary condition holds
for the infinite series in both numerator and denominator. We start with the de-
nominator of (18) which satisfies the necessary condition automatically since the
sequence of yi’'s corresponds by definition to the moments of the time to first return
to z; in mode 7 p.d.f, i.e., ux = [5° 7 g:;(t) dt. This, by definition, corresponds to

a Stieltjes series. Furthermore, the numerator of (18), is given by

) Py PAY
S 1'/ 0(z) rn(z) dz k‘? ,

k=0 ad

and the associated series obtained by eliminating the  term can be shown to be a

Stieltjes’ series. Indeed, we have the following proposition

Proposition 1 If the running cost €(z) is convez, with a minimum at zero, and
bounded in growth by M |z|? for M some positive constant and finite integer power

p > 1. then the following infinite series:
x oo
S 1 / U(z) Ar(z) dz (—s)* (42)
k=0 -

is a Sticltjes’ sertes.

Proof: See Appendix A.M In Summary, while the numerical results to be
reported in the next section correspond to a Stieltjes' series type of behavior, we
are only able to establish that necessary conditions for the two infinite series in the

numerator and denominator of (18) to be Stieltjes’ series hold.

6 Analytical and simulation results

We start by considering the type of system presented in {24]. The manufacturing
system is characterized by a two states Markov chain having the following transition

matrix:

A'|.1 /\12
A = .
[ Azt Az ] (43)
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Let r = %ﬁl and ¢ = —A;;. The system must satisfy a given and constant demand
rate d. The random capacity of the machine is such that #i; > d and @, = 0.
Define v, and v; as in Theorem 1. The index of the generic region is omitted
since we have only one feasible state and hence one hedging inventory level. We
assume that transition rates are such that ergodicity assumption (11) is satisfied.
Under assumption (11), the system admits one zero eigenvalue and one positive real

eigenvalue, 2 and 7, respectively:

v = /\11(7"01+Uz). (44)

U1 T2
Using Lemmas 3 and 4, the obtained grade 4 generalized eigenvectors associated

with v, J = 2, 1, are respectively as follows:

r

1

roa(—u +a)
q1(rv1+v2)?
"Ul!"l VQ!
n(rvtem)?
way = =2r{vi—v3)? (rur—v2)vn

(ln)z("vx'i'v'z)4
"‘f"l("x-vz) (ruj—vz)
J)T(rvt-(-vz)‘

—6r(u; —tq)S (2 u 3ru1v2+z.2)
(41)3('V|+U2)5
6ruy (v —va )3 (r2 u1—3rulvz+u )
L (9: 3 (rvi +12)8 J

rva(—vy +u2)

qx%rvx-kv'z]’
v +0'23

g1 (rvi+v2)

wyy = 2r(vi=1)? (—rui+w)w . (46)
(91)?(rv1+va)?

2(v:-vz) {=ryr+vz)

;) (rul+v2)‘

-6r(u; — :n) va (r? uL—Sru;uz-{-u )

&)3(’Vx+'a)°

=6{r1 12 )P va(r?v? —3rvy ;a +v3)

L {213 (rv1+v2)8 J

Note that from these two vectors one can retrieve grade 1.2,3 generalized eigen-
vectors for the matrices Ag, & < 4 (31). Also, they are sufficient to generate the

corresponding chain of independent eigenvectors v,; as defined before, j = 1, 2, and
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=1, 2, 3, 4. The different moments of g;;(t) are given by

v (l +r1)
po= ) (47)
ql(rvl + Ug)
2u(rv? + r2v? + r3v? + 2r?vu + V2 + 2102
H2 = 2 3 ’ (48)
gi(rv1 + v2)
v = 6v1(r?v? + riv} + riv + riv — roduy — rloduy + 2r3vdup + 4rtede,)
? 3(rv1 + vz)
vy (4rviv? + 5r2vivi + Triviv? — ruod + 5r2vvd + vl + 3rud)
+ S - (49)
q;(rv1 + v2)
In order to simplify the expressions reported here, we will fix v; =1 and v, = —1.

The first two coefficients in the infinite series at the numerator of (19) are given by

0.2(2 — 12exp(q1(l - 7)21) — 2r + 12rexp(q1(1 — 7)z1))
gi(r— 1)
02(qz1 —qrs —qur’z + @urlz) (50)
gi(r—1)° '
0.2(4 — 24 exp(qi(l — 7)z1) + 2r — 12rexp(q;(1l - 7)z;) + 8r?
Ci2 = 3 5
gi(r—1)
0.2(2r3 — 12r3exp(q1(1 — 7)21) + 3121 + 12q12; exp(qi (1 — r)z1))
+ 3(r— 1)
gi(r—1)
0.2(—5q1rz) — 12qi7z1 exp(gi(l — 7))
G(r—1)°

48r2exp(qi(l - r)z1)) + 2q17%z; — 12q;r%z exp(qy (1 — 7)=1))

g (r—1)° gi(r —1)3
0.2(=2q1r%z + 12732y exp(qu(l — 1)21) + 3qy ¥z — gy 752)

g(r—1)° ’

Cia

+

(31)

The complexity of the analytic expressions increases as we consider higher order
terms in the asymptotic series. If we now keep only the inventory level z; as a
parameter and we fix r = 2, q; = 1, application of Padé approximation to equation
(19) for k=4, v = —1 and p =2, yields :

Cils) ~ L st a s? +0.5615 s + 0.0533 52)
W R T2 bis + bo 0.3641s + 00538 2

a = &, a; = —”‘, bo = 2, by = E*g, with ae1, @02, @11, @12, bor, boz, b11, b1z defined
in Appendix B.
For the three-state (two feasible) machine case [23], analytical Padé approxi-

mants are obtained when hedging levels are left in symbolic form. Unfortunately
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the expressions calculated using Mathematica software become so complex that

they are no longer of great use.

The chosen sample manufacturing system evolves according to an irreducible

Markov chain with intensity matrix:

-4 2 2 1 0 0 1 0 O
A= 2 -3 1|, =0 -1 0|, WV = 01 0

1 1 -2 0 0 -1 0 0 -t
¢t = 0.2 cc =1

In addition, Figure 2 and Figure 4 represent (for the two-state machine and the
three-state machine cases respectively) a verification of the quality of the Padé
approximation with seven coefficients retained in the series expansion, by comparing
it for a given choice of the hedging level (the infinite horizon optimal value) to the
results obtained by direct numerical (Lax-Wendroff method [27]) of the PDE system
in Theorem 1. Note that the curves shown are for %l, and they match very closely
even for small values of the horizon length. Figure 3 and Figure 5 are examples of
numerical synthesis of an optimal TIHC policy for the two-state machine and the
three-state machine examples respectively, using the Padé approximants approach.

The important fact that must be underlined here is that for example in the two-
state machine case, Padé approximants provide after a short one-time calculation
based on Theorem 3 a generic exrpression of Ci(T') as a function of the arbitrary
hedging level =; (see (32)). Optimization can be readily carried out using that
expression. The alternative optimization methodology based on the numerical so-
lution of the PDE system of Theorem 1, would require the Lax-Wendroff solution of
a two-dimensional PDE for every search value in the hedging level space. Further-
more, while in the multi-state machine case no useful generic expressions of C;(T)
in terms of the hedging levels can be developed, all Jordan types of computations
(31) need to be carried out only once (Jordan forms are not affected by the par-

ticular choices of hedging levels). The calculations that need to be performed for

every point in the hedging levels search space are the relatively innocuous (linear
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algebraic) ones in Theorem 3, while generic expressions for integrals such as in (20)
in terms of the arbitrary unknowns of Theorem 3 equation (44a-b) can be developed
off-line based on the calculated Jordan form. In addition, once enough terms of the
infinite series are computed, simple linear algebraic types of computations for Padé
approximants must be carried out. Thus, the repetitive part of the computations is
quite limited compared to a complete Lax-Wendroff solution up to time T (together
with the numerical integration to compute the cost functional) if a PDE based type
of algorithm is chosen. Finally note that while in the paper (Fig. 5 for example),
we have computed optimal hedging levels for every horizon length up to time T, in
practice we only need the optimum for a single length of horizon T. This means
having to search over a lot fewer points in the hedging levels search space (partic-

ularly for large T where one can initialize the search with infinite horizon hedging

levels).

7 Conclusion

We have considered the finite horizon optimal flow control problem for single part
multiple failure state manufacturing systems when controls are restricted to the sub-
optimal class of time-invariant hedging control policies (TIHC). A renewal equation
for the finite horizon (length T) cost functional has been developed and used as a
basis for generating the coefficients of an infinite series expansion of the Laplace
transform of the functional when viewed as a function of T.

Calculation of the infinite series coefficients is based on solving a system of
piecewise-smooth coupled differential equations, and is organized according to a
recursive scheme. The coefficients depend on the particular choice of hedging level
parameters. For each choice of parameters, Padé approximants can be used to
obtain an approximation of the cost functional which improves as the length of the
control horizon increases. Numerical experiments suggest that the quality of the

approximation is in fact very good. The search for optimal parameters becomes
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a numerical optimization problem. For a given numerical application, calculations
can be performed orders of magnitude quicker than the competing optimization
method based on repetitive solutions of the PDE system of Theorem 1 for different
hedging levels. In order to give an idea of the length of computations, for the
particular sample three-state manufacturing system in Section 6, optimization for a
single value of control horizon required on average approximately 10 minutes. That
is 15 times less than what is required for a single run of Lax-Wendroff solution for a
fized hedging level (without optimization). Notice that the algorithms proposed in
this paper can also be applied to the transient optimization of failure prone multi-
part manufacturing systems if one uses the partwise decoupled suboptimal control
strategies of Caramanis and Sharifnia {10]. Furthermore, the same theory can, with
very minor changes, be applied to the case where machines failure rates depend on
the instantaneous machine rates of production (See Hu and al. {§]). Indeed, the
renewal structure of the cost functional (equation (13)) is still preserved in that
case.
In future work, we shall report on an analysis of the singularities associated with
the Laplace transform of the finite horizon cost functional, what they can tell us

about the rates of convergence to steady-state, and suboptimal control policies.
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Appendix A

Sketch of the proof of the analyticity of the Laplace
Transform at s =0

The proof proceeds in two steps. In the first step, following Malhamé [11] we adjoin
to the PDE system with boundary conditions in Lemma 1, an additional absorbing
boundary in the R, infinite region at some finite level z,. We show via stochastic
domination types of arguments that for this modified system, the total enclosed
probability mass decays exponentially with time, and are able to conclude that all
Laplace transforms exists for Re[s] > a where « is strictly positive scalar. Thus,
s = 0 is inside the region of convergence of all Laplace transforms. But Laplace
transforms are analytic inside their region of convergence [¢]. Thus s = 0is a
point of analyticity. We further show that even as z5 goes to minus infinity, the
analyticity at s = 0 is retained.

The second step of the proof consists in asking whether the introduction of
an absorbing boundary at minus infinity modifies in any significant way the PDE
system of Lemma . We know that for ¢ finite, [im; . f(r, t) = 0. However, this
may not be the case as ¢ goes to infinity, particularly if the system is not feasible in
the long run. However, under the ergodicity criterion in (11), a steady-state will be
reached and the steady-state solution is such that lim,__, f(r) = 0. Thus for the
ergodic case the analyticity of Laplace transforms at s = 0 is retained, given that
the added boundary condition at minus infinity does not modify the PDE system

of Lemma 1.
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Proof of Lemma 2

Recall, that in each region R; the hybrid density vector f (z.t) evolves according

to:

af(;tat) = -~y 6f($ t) + \‘f(z t),VzeR; (A.1)

1=1, ....m,

By taking Laplace transforms on both sides of (A.1) we obtain, for s in the region of
convergence of the Laplace transform, and using Lebesgue’s dominated convergence

theorem together with the assumption of absolute continuity of f(a:, t) in each R;:

aF(I,S) — —VK-—I(SI _ .’\‘) F’(r,s) + Vi-lf(lf,O)- (AZ)

T
1=1, ....m, and Y zeR;

Note that by evaluating this expression at s = 0, (which is allowed because we
have assumed that under condition (11}, s=0, is in the region of convergence of the
Laplace transform}, we obtain (21) for ¢ = 0 if we recall that f(r,O) =0VzeR;,

i = 1.2..... m. Further differentiating once (A.2) with respect to s for ¢ = 1:

O F(r.s) A " WOF(z,s)
Nl P rs) ~ VY (s T — _
PR T F(z,s) T (s = AY) ER
Recalling (16) and letting s go to zero we have:
Ity (r) =V rg(z) + VT A'Ru(z) VzeR. i=1.2....,m,
dr
which is (21) for ¢ = 1. Now, differentiating twice (A.2) with respect to s yields:
PF(z.s) F(z,s) 9?F(z.s)
—_— = 2yt yt - A)y—= .
drdst ! s i (sI= A ds? (A.3)
YrekR;, r=1,2,...,m.

(A.3) suggests a general formula which we shall prove by induction. Assume that

a9+l F-'!:.sl

5 satisfies for some ¢ 2 I:

gl - g—1 o
A G B A G B T S

_ JF(z,s)
dr Os9 ! 9571 )

o (A.4)
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Let us show that ZfEa) will satisfy (A.4) with q replaced by ¢ + 1. Indeed,

drdsati

differentiating (A.4) once with respect to s yields:

892 F(z, s) _ F(z,s) _, 09F(z,s) _ 1 F(z, s)

Trasr U gm0 T ge I AT
L B (z,s _ QT F(z, s

= gty TRy qg TS a5

which proves that (A.4) is true for (¢ + 1) substituted for ¢. Given that (A.4) is
true for ¢ = 1, it will then be true ¥V ¢ > 1. Multiplying (A.5) by (—1)7 and letting
s go to zero yields:

drig(z)

- = qVi i meoi(z) + VTA Ry (z) VzeR; (A.6)
This establishes (21). Formula (25) in the lemma can be deduced from (24). (24a)
follows from (A.6), and the analyticity requirement of F’(:z,s) at s = 0 (finiteness of
mi(r) Ve R;. V& > 0) under ergodicity assumption (11). Indeed otherwise, given
that under (11), the Anx's, which have the same distinct eigenvalues as V7! A,
have exactly n — m distinct eigenvalues with positive real parts, (theorem 2, [11]),
unless (24a) is satisfied, the i (z) will be infinite for z finite in R, (see [11] for

further details). M

Proof of Lemma 3
Proof:
We have

-1

- {=1—
(Y L80 kv L T wie + L ue = ary wjo
p=0

vields after multiplication of both sides by Qo
Qiol0 — €V LY wyemn + (A7)

-1
(A7 Qial0 = €V LY wjems 4+ [25]f Qiotesr = aecy Qiowjon

p=1
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where 4; is a diagonal matrix defined as follows:
Aj =diag[h; — Ad] {=1,...,n.

Thus the j** row of A; presents only zero entries. This implies that the second and
third term in the left hand of equation (A.7) have their j** entry equal to zero also.

Recalling (A.7) and using (Qio wjo)® = [0...L;en ... 0}, this yields:
—{ [{Qi,o Vi ayes Pio} Qio wj'O]j"'row = Q- (A.8)

which is the same as

aiy = —lagavj; (A.9)

= 0 af (A.10)

where V' = Q;o V™' P.gand oo = —v};, v; being the j** diagonal element of matrix
v:.

Proof of Lemma 4

Before stating the proof of Lemma 4, we need the following technical lemma

Lemma 5 Let L=21\1— A, where \;e{\;},i=1,.... n the set all eigenvalues

of A assumed distinct. Let B be any given non-singular matrir, then we have

rank[LBL}] = n—1 (A.11)

Proof: Using Sylvester's inequality [1], we find that
n—2 < rank[LBL] < n-—1. (A.12)

Thus to satisfy (A.11), we must prove that rank{L B L] # n — 2. Suppose that is

not true and

rank[LBL] = n—-2 < n-—1. (A.13)
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This yields:

LBI" = 0, (A.14)

where (*) stands for adjoint operator. Let P and Q such that L = P A @, where
A is a diagonal matrix and P and @ are matrix composed by the right and left

eigenvectors respectively (P Q = I). Equation (A.14) can be written as

A°QB " PA =0, with A" = diag H (Aj — A)dijl s (A.15)

1 #)

where the Kronecker delta is such that é;; =1 if : = j and 0 otherwise. This yields

h Q B"PA° = diag ﬁ (/\J - )\,')2 5,'.1' B;J . (Alﬁ)

v=1

¥
with B}, is the j™ diagonal entry of B’ = @ B* P which is equal to ¢; B*p;. g¢;
and p; are the left and right eigenvectors associated with A; respectively. Then to

satisfy (A.14) we must have
q; B p; = Trace[B"pjqj] = 0. (A.17)

Now. as B is a non-singular matrix. rank p; ¢;] = 1, and necessarily rank [B' p; qj‘]
L. T'race {B" p, q;] cannot be equal zero since B” p;, ¢; possesses a unique non-zero
eigenvalue. Thus [L B L]" # 0 and consequently rank{LB L] = n—1. R

Proof: of Lemma 4

In the following, 0 stands for the null matrix with the appropriate dimension and x’s

denote vectors with possibly non zero elements. Let w}, be a right eigenvector of

Aig = V7' At associated with the eigenvalue A;, for some fixed 7, j, i =1, ..., m,
;=1 , T, e,
Ligw;o =0, (A.18)

where L, = A; — Aix, & =0, 1. ..., with A;; as defined in (25). In order to

simplify notation, we shall drop the superscript ¢ in the rest of this proof. Then, is
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easy to see that:

Lk >0
Lix= e k=200, (A.19)
Onxn(k-1) —kV™' 1 Lo
with
Lio : O
Lixn=1 ... ... (A.20)
VTt Lig

Focusing now on Lj,; and in view of the fact that \; is an eigenvalue of A, with

multiplicity 2, then rank(R(L3,)) = 2, where ®(.) stands for the null space. Let

wj,1 be a generalized eigenvector of L;,, which we partition as w}, = [ws-}l) : ul],
then
Lio 0 wj('ll) 0
Ly win = Lo o= (A2
— ol s u 0
VL LV L |
which vields for wﬁ_[,) and uy:
1 Y
Lul) = 0 (A22
(VT Lo — LoV l) + 200 = 0. (A.23)

From (A.22), since A, has multiplicity one in A, g, rank[l\‘(Lio)] = 1, it follows that
wf,v'l’ = = w,p for some scalar 4. Now there always exists an eigenvector of A; such
that v # 0, otherwise, from (A.23), the only eigenvectors of A, would be of the form
[05,3 w,_u}t with 3 # 0, which cannot be true since there must exist two linearly
independent generalized eigenvectors associated with A; in 4;. Thus, one must be
able to pick 4 # 0, and in particular v = 1.

In this case (A.23) implies that there must exist a u; such that:

—LoVT wo + Liow = Lo (V7 'wjo + Lyow) = 0. (A.24)
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Note that u; # 0, otherwise V="' w; o would also be an eigenvector of Ajo which,
as it can be shown, is excluded if the generator A corresponds to an irreducible

Markov chain. Furthermore, (A.24) implies that,
-yt wjo + Lj'o Uy = o Wjg, (A.25)

for some scalar ag. Now ap cannot be zero for if it were the case then u; # 0 would

be such that:
(LioV Ljo)ur = 0. (A.26)

Thus using Lemma 5, rank [R(L;o V L;o)] = 1. Consequently u; would have to be
equal to some Bw;o where 8 # 0. In that case (A.24) yields that V="' w;q is also
an eigenvector of Ag which, as we mentioned earlier, is excluded. So there must

t
exist a u; # 0, and oo # 0 satisfying (A.25). In this case, since [IUJ"()EUI] # 0,

t

t t
2, [wj_oful] —0and Lj, [w,-.oful] # 0 (from (A.25)), [w,-,ozu,] is a grade 2
generalized eigenvector of A;.
Suppose now that w;x—; = [Wjk—2, ur-1]° is the grade k generalized eigenvector

of Ai_; associated with A; such that:
= )
Z L ? rO 1) ‘-’—l] L?‘k-'z} Wi k-2 + L;_al U1 — Or-2 wj.o(:\.?.'?)
2=0

with ux-y # 0 and ar_; # 0. The grade &k + 1 generalized eigenvector of Ag

associated with A; can be constructed as follows:

“L)
w,; = Wi,
7.k ur

using equation (A.19), LI, is given by
Lj-‘.’;ll Poo
Lyi' = . NS B (A.28)
ko L2 0[o —kV=1 L5, 3 L"“

Jk=1
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we have

L5, 0 0

Wjk-1 _ 9
U [ "l ] = | (A-29)
5 o L2[0, —k V1) L3P, : L"“
which yields
L ) = 0 (A.30)
ZLf;P (0, ~kV7] L2 wl) + Li'ue = 0. (A.31)

p=0
Since A; is an eigenvalue of A;_; with multiplicity &, the rank[t\‘(Lﬁﬁl)] = k, thus
wf,? = ywjk~1 for some scalar v. There always exists an eigenvector of A; such
that v # 0, otherwise, from (A.31), the only eigenvectors of A; would be of the

t
form [0.:‘3 wj_g] with 8 # 0, which cannot be true since there must exist & + 1
linearly independent generalized eigenvectors associated with A; in A;. Thus, one
must be able to pick v # 0. and in particular ¥ = 1. Then (A.31) implies that there
must exist a uy such that
(Z LygPm [0 =k VY L2 wjne + LY uk) = 0. (A.32)
p=0

which implies

Z Lyg"™ [ kl"’-l] Ly wikor + Liqui = awywjo (A.33)

p=0
for some scalar ax-,. Using equation (A.27), equation (A.33) can be written as

Z L =p=1 [ kV_l] L?.L-—: Wj k-1

p=0
—kay_, V! wjo + Lf.o Up = Qo Wig . (A.34)

Now, a;_; cannot be zero. For if it were the case then:

( Ul LJO (Z L‘—p—2[ kL_l] LP =1 Wik=1 + LJO UL) =0 (A35)

p=0
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Thus the second term in the left-hand side of (A.35) must be equal to some 3 w;g
where 8 # 0. Using Lemma 5 and equation (A.34) yields that V! w;q is also an
eigenvector of A which as we mentioned earlier is excluded. Also, ux can not be
equal zero, for if it were the case then

k-2
Z Lf'.ap_l [Ov —k V_ll L?,k—l Wik-1 = (ak—lI + kak_z2 V'l) wjo - (A.36)

p=0

Two different scenarios can then happen. In the first one, suppose that (ax—y I + ka2 V1)

is a non-singular matrix then equation (A.36) gives:
ot k=2
Lio (et ] + kawa V1) Lj,ozoLf.o*’ [0, =k V7Y L2 ywinot = 04.37)
p=
which yields, using Lemma 5 and (A.37), the impossible fact that V~'w;g is an
eigenvector of Ag. In the second scenario, suppose (ai_; [ + kar-2V™!) is a sin-
gular matrix. Thus, there exists at least one entry of V"‘,% say, such that:

1
Qp_1 = —kak_z—-. (A38)

Us
Recalling the result given by Lemma 3:

1
— = goV ' pjo- (A.39)

Us

which 1s the same as

1 I
40 (v—[ - V“) po = lrace [(— [ - v-‘) Pio q,_o] = 0.(A.40)

Ug

Let rank (u‘—’ I~ V") =r,1 < r £ n-1, then by Sylvester’s inequality [1]

l .
rank [(v_ I - V'l) Pio q_"’o] < min(r,l) = 1, (A.41)
which suggests two possible cases. First of all, let

rank [(L[ - V"‘) pj'oqj,o] = 1, (A.42)

Uy

then, since [(-&l—; [ - V‘l) Pio (IJ’_()] possesses a unique non-zero eigenvalue, we have

l
trace [(v—[ - V‘l) Pio qj,o] # 0. (A.43)
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Secondly, let

rank [(vil - V‘l) Pio q‘j’g] = 0, (A.44)

and let gjo = [z1, ..., za] and pjo = [y1, ..., ¥n] With g¢jo.pj0 = 1. Using the
fact that (;‘: I - V") is a diagonal matrix, then to satisfy (A.44), we must have
zp =y =0forall!{ =1,...,nand ! #,¢ and 7,y = 1 for | = a, which is
excluded if the generator A corresponds to an irreducible Markov chain. Thus, ux
cannot be equal zero.

So there must exist a ux # 0, and ar—; # 0 satisfying (A.33). In this case, since

t

¢ t
[w,-,k_lfuk] £ 0, LAt [w,.,k_l fuk] =0 and L, [w,-,,c_l fuk] £0,g=1,... k

[w,-,k_l fuk] is a grade &k + 1 generalized eigenvector of A,. B

Proof of Proposition 1

Proof: : Consider the &** term in the series:

co K

. /O:, CEU)""(I)"I = /: 1 f’(r)/o ——f(z r)drdr (A.45)
[ Z(r)f(r.r)er dr. (A.46)

where use has been made of Tonnelli’s theorem [3]. Now define:

/ / [e(z) flz.7)] dedr. (A4T)

[n view of the non negativity of the time integrand, Q(¢) is monotone increas-
ing function. Following the definition of Stieltjes’ series, (31) would then be a
Sticljtes” series if Q(cc) is finite. Now in view of the assumed properties of ¢(z)
and the fact that at any time 7, z,, — (d)(7) < z(r) < =z, and {(z(7)) <
min{((z).{(zm — (d)(7))] then

L7 e fleo) dedr

+ /ON /_: 1 [t(zm — d7) flz,0)] dzdr (A.48)
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< =) [ [T 1 [fe)] drds
+ /_': 1t /O“’ [M (2 — d7)?] fz,t)dr dz (A.49)

where in the above Tonnelli’s theorem [3] and the given bounds on ¢(z) have been
used. Now clearly [;° flz,t)dr = mo(z), and given the system of equations (theo-
rem 3) of which rio(z) is a solution, mg(z) is bounded every where in U™ R;. The
only region where it is possibly unbounded is R™, but in fact, in view of (24a), it
can only be of the form 3°7°" W; exp(); z) for some vectors I'—f/j e R*, with the A;j,
J=1,...,n—m eigenvalues of V7! A* with strictly positive real parts. Thus the
first term in the right-hand side of (54) is bounded (since mip(z) is integrable). Sim-
ilarly, if one expands (z» — d 7)? into a (finite) polynomial in 7, one obtains for the
second integral in (54), a linear combination of terms of the form % 1‘m,(z)dz
with ¢ = 0,..., p. Furthermore in R, the components of mi,(z) are all linear
combinations of terms of the form z? exp(\;z),¢=0,....,p, j=1,....,n—m.
Thus the second integral in (54) is finite, and Q(t) is bounded. This completes the
proof of the proposition. Notice that the same arguments could go through if the

bound on the cost {(z) is exponential with the (real) coefficient of the exponential

not exceeding the smallest real part of the A;’s,j=1,....,.n—m. R

Appendix B

1 Coeflicients of Padé approximants for the two
state machine case

Qg 0.5(=0.4+ 2.4 exp(—2z) + 0.62) (— 198 + exp(z; (66 + 75z — 4.5.‘:?
+ 20.257) + exp(221)(-5.5 — 2.5z + 3F) — (3602, + 8127))

1359 + exp(z )(—453 — 238.5z; + 16522 — 51.7523 + 3.375z]

+ exp(2z1)(37.75 — 14252y + z3) + (19442 + 72:2 - 34227 — 60.752))

Qap2

ay = 2.6 (-564.9-23 + exp(z1)(282.462 + 186.231z; — 31.8462:2 + 112.154z3 + 37.38462)



a2

bOl

bo2

b12

+ I+

+
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exp(2z1) (—47.0769 + 16.1538z; — 10.961527 - 308077

7.788462) — 2.336542]) + exp(321)(2.6154 — 3.5192z; + 4.32723)

(938.7692) + 348.92377 + 37.384627)) (B.1)
exp(z1) (1359 + exp(z) (—453 - 238.52, + 1652

51.752] + 3.3752}) + exp(221)(37.75 — 14.152 + 2%)

(19442 + 7227 — 32427 — 60.752}))

0.5 (~198 + exp(z1)(66 + 75z — 4.527 + 20.2523)

exp(2z1)(~5.5 ~ 2.521 + 27) — (3602 + 8127))

1359 + exp(z1)(—453 — 238.5z; + 16522 — 51.7523 + 3.3752})
exp(221)(37.75 — 14.25zy + 27) + (19442, + 7222 — 34223 — 60.75z}

4.5 (—48 + exp(z,)(16 ~ 23.3333z ~ 21.3333:

5.252) — 2.255)) + exp(221)(~1.3333 + 3.8889z; — =}) + (72:] + 18}))
exp(21) (1359 + exp(z1) (-453 —~ 238.5z; + 16522

51.7523 + 3.375z}) + exp(221)(37.75 — 14.152; + 27)

(19442, + 722f — 3242 - 60.752}))
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ANNEXE III
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Abstract

Single Part multiple failure mode manufacturing systems under the class of hedging control policies
are considered. A renewal viewpoint of the dynamics is exploited to develop an integral equation
for an integral type control cost functional over a finite time horizon T'. The kernel of the integral
equation is a first passage-time probability density and is obtained as the solution of an appropriate
system of partial differential equations. We use that framework to show that the convergence to
steady-state of the average cost per unit time cannot occur any faster than that the statistics of
the underlying machine failure mode Markov chain. Closed form solutions for the cost functional
asymptotics for the two failure state machine case are obtained for large T, and used to optimize

hedging control policies over possibly large but nevertheless finite horizon.

1 Introduction

Starting with the seminal work of Kimemia and Gershwin (3], the class of hedging type control
policies in manufacturing systems was recognized as very likely to comprise in many situations the
optimal control policy. In the single part multiple state manufacturing system case, hedging policies
are characterized by a set of critical inventory levels .. one associated with each feasible machine
state __ towards which one must converge as quickly as possible. Using a dynamic programming
framework Akella and Kumar (1] established rigorously the optimality of such a policy in the two
state, single part, constant demand manufacturing system case. They also solved for the critical
inventory level. Subsequently, Bielecki and Kumar [2] and Sharifnia [7] recognized that it was
easier to solve a parameter optimization problem within the class of hedging control policies,

rather than a full-ledged optimal control problem, and did so in the two-state and multiple-state

? E-mail: malhame®auto.polymtl.ca



Opt. the Transient Behavior of H. P. 121

machine cases respectively. All existing results however were based on optimizing the statistical
steady-state of an ergodic system, and thus essentially dealt with infinite horizon problems.

In this paper we use extensions of the renewal theoretic framework first developed in [4], to
derive an integral equation associated with an integral type performance functional over finite
horizon, for the single part, multiple machine state case. The kernel of that integral equation is
the probability density function associated with the time to first return to a given hedging level
(in the corresponding machine state). The main quantities in the integral equation are obtained
as solutions of coupled partial differential equations with appropriate boundary conditions. This
framework is used to derive a theorem which constitutes a rather intuitive bound on the speed with
which the time average of the cost functional converges to its ergodic steady-state (based on which
existing optimal solutions have been obtained). It states essentially that this speed is bounded
above by the settling speed of the statistics of the underlying machine failure state Markov chain.
Subsequently, closed form expressions are obtained for the asymptotic cost functionals associated
with hedging control policies in the particular case of a two-state manufacturing system, over a
possibly large but finite time horizon. These expressions are used to optimize the choice of hedging
levels over a finite horizon. The minimal length of the horizon for the asymptotic analysis to hold

is characterized in terms of the parameters of the failure mode Markov chain.

2 An integral equation for finite horizon cost

We use the modeling framework of sharifnia {7]. The parts production process is represented by a

fluid flow with random disruptions. More specifically:

dz

E = Ug — d
z(t} : parts surplus at time t

u, : production rate in failure mode o

d : rate of demand for parts

— in mode @, u4 is bounded by i,

— a evolves according to an irreducible finite state Markov chain with state transition intensity

matrix A.

- a = 1, ..., m feasible (i.e 45 > d)

a = m+1, ...,n infeasible.
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A finite horizon integral cost J is considered:

T
/ £(z:) dt |z, aoJ
0

where £(z.) is the cost per unit time at surplus level z,. This cost is to be minimized.

J=F

The hybrid probability density vector
f(z,t) =fi(z.t), --., f,,(:t:,t)]T evolves according to [4]:

af.(rvt) - . aﬂ:vt) t £ .
“'—a—t-————V;a—t+A f(r,t),VZ,.;.x( z < 2Z; (l)
i=1,...m,
at hedging levels Zy, Zs, . .., Z, and where Z,41 = —oc. The boundary conditions at hedging

points are given by:

Aij Pz, (&) + vi(8) (27 0) = o~ () £;(2F . 0) = @ forj = L,2,.... n;(2a)
i#i

dPz (t ) )
SLEL < hi P + 60 R(Z7 0 - w0 F(ZE 0 (25)
forj=1t
where the Pz, 's are the probability masses at Z;, i =, 2, ..., m. In addition
fle.ty=0 Yz> 2
m  f{r.0) =0 (2¢)
Lo = 0

Finally note that:
eh(t) = ul (t) — d with uf, = {0 2

U

INV

V' = diag [L:.,]

In [4]. a Markov chain embedded into the hybrid state Markov process is defined by focusing
on the successive instants where hedging points are reached and recording thereupon the corre-
sponding machine state. When the machine state is in correspondance with the hedging point, the

regeneration point will be called a hedging point state of the embedded Markov chain.

Theorem 1 Let i be a hedging point regeneralion state from the embedded Markov chain [{4].

The cost functional conditional to the initial state i Ci(T) salisfies the following inlegral equation:

T T
Ci(T) =/; E [6z(m)aziro0)=z.] df+/° CiT - 7) gu(r)dr (3)
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where in (3)

gii(t) : the p.d.f. of the first return of z(t) to Z; with machine state a = i.

Thus the first term in the right-hand side of (3) represents the contribution of all the possible
system trajectories up to the first passage-time, as well as those that never reached Z; in state ¢
at time ¢. In what follows, we show how one can obtain g;;(¢) as the solution of (1)-(2) but subject
to slight modifications in the boundary conditions. Computation of the p.d.f of the first return to

Z; in machine state i proceeds as follows.

- set the appropriate initial p.d.f’s and probability Pz_(0). ex: f(t, 0) =0, Pz,(0) =1, Pz,(0) =
OVj#1i
— Set the appropriate absorbing boundary conditions relative to the initial state ¢ by eliminating

the probability exchange lerm at the right-hand side of (2b). Thus

Xj Pz(6) + o0 (270 = o7 O f(2F 1) = 0

forj=1,2,...,n; j#1
but: AP (1
—ft'—(l = XiPz.(t), for j=i
and:
giilt) = vj(t) (27 8) = Vi) fi(ZF 1) (4)

Theorem 2 The eigenvalues of the ntensily malriz A of the machine state Markov chain are

also solutions of the equation:
L-gi(s) =0
where g (s) is the Laplace transform of g;(t).

All proofs are omitted but can be found in [6].

Using integral equation (3) and theorem 2, it is possible to conclude that the eigenvalues of
.1 are pales of the Laplace transform expression of the cost functional. This implies that if one
considers the time average 3 Ci(T) performance functional as in [2] or 1], it cannot reach steady-
state any quicker than the statistics of the underlying machine state Markov chain. This puts a
lower bound on the length of time horizon before one can hope that the ergodic optimum hedging

points of {2] or [7] become acceptable approximations of the true optima. Thus we have:
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Corollary 1 [In the ergodic case (&}—Tl—Cm) is at least O(exp(Amint)) where Amin s the

dominant eigenvalue of the intensity matriz of the machine state Markov chain, and Cy is the

steady-state average cost per unit lime.

We now give a complete treatement of the asymptotics of the linear cost functional for the
two-state machine case. While for lack of space as well as simplicity, we use specific numerical

values for the dynamic model, the analysis can be carried out in full generality (see [6]).

3 Asymptotic optimization of the two-state machine

We consider a sample example with two modes. The discrete system state evolves according to a

1=(3' %)

Furthermore let: u; = 2. 1o = 0,d = 1.

Markov chain with intensity matrix:

Because only one state is feasible, hedging policies are characterized by a single hedging point
denoted Z. Let €(z). the cost per unit time be c* r if £ > 0and ¢ r if £ < 0. Application of

the integral equation (3), together with the first passage-time computation in (4) ytelds:

C_(s)=25+5—\/l+‘ls(s+3) [ 2(ct +¢7) )

252 (s +3) L+ J1+4s(s +3)

EV/EXHCES P
Lct ]* etZ 1+ /T+ds(s+.3)

exp{—(

I+4s(s + 3) s* (s +3) 2
where it is assumed that at { = 0, 2(0) = Z, the machine is in state 1. and C*(s) is the laplace

transform of the cost functional.

The singularities of that Laplace transform are a mixture of poles at s; =s2 =0, s3 = -3 and
branching points due to the square root term
VI + 4s(s + 3)at s4 = —0.0857864 and sg = —2.9142 respectively. The asymptotic behavior of
C(T) as T grows indefinitely can be obtained by constdering the residues of the poles at zeros, as
well as the most dominant branching point (i.e the closest to the jw axis). Fllowing [5], we neglect
any integer powers in the asymptotic expansion of C*(s) around the branching point to obtain:

C*(s) = [0.6667(c* +c™)exp(=2) + c* (Z —0.6667)] ;‘;
— [2.88889 (¢t + c7) exp(~2Z) +2(c* + ¢7) Z exp(—Z) ~ 2.8889c* | é
+ [:*(135.33-3 Z —225.137) + 22517 (c* +¢7) cxp(-%)]
- {914.103(:' +et) (1 +0.414214 Z)exp(——g-) —914.103 « c+] (6)

V3 + 0.0857864 + 178.49 [(—178.243 (ct +¢7) exp(—é) + 178.243c*) -
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(78.9522 Z (c* +¢”) + 7.24264 Z% (¢t + ) + 2% (c* + 7)) exp(—g)]
(s +0.0857864) ¥ + O[(s + 0.0857864)%]
This in turn yields:
%7:—) = {0.6667(c* +c7)exp(=2) + c* (2~ 0.6667)}
- [2.88889 (¢t +c ) exp(=2) +2(ct +¢7) Z exp(~2Z) - 2.8889c+] %
+ “p(_o’(’;ﬂs“ D {c+(135.882 z=225.137) +225.17 (c* + ™) exp(—%}
- [914.103 (c™ +ct)(1 +0.414214 Z)exp(—%) - 914.103] \/:_T

+ 178.49 [(178.243 (c* + ¢ )exp(— -,,Z-) - 178.243c+)
+ (78.9522 2 (c* + ¢7) +7.24264 2 (¢t + )+ 2% (¢t +¢7)) exp(—%)] (M

1

oy chi O[ﬁ}}
Where in (7) the constant term coincides with the Bielecki-Kumar limit {2].

Using (7), for T > 5535 = 23.3137, we seek to optimize via a steepest descent algorithm
the cost functional in (7). The results for the cost, and the optimal hedging point as a function
of the length of the optimization horizon are shown in Fig.l1 and 2 below. Also, note that we
include a figure (Fig.3) illustrating the behavior of the closest branching point (from the jw axis)
as the ratior = # is varied from 0.01 to 0.9, where 7 @, is the average maximal production

capacity. Recall that the position of this branching point governs the speed at which convergence

to steady-state occurs.

conclusion

We have extended the renewal theoretic framework of single part multiple state manufacturing
systems under hedging policies first developed in [4]. This was used to asymptotically optimize
hedging point policies over finite horizons for two-state systems. In future work, we will report on

the theory for three state manufacturing systems.
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CHAPITRE V

POLITIQUES MAXIMALES SIMPLES A
SEUILS CRITIQUES

Le probléme de contrdle de flux est, en général, un probléme multi-dimensionnel
puisque, dans la majorité des cas, les ateliers de fabrication flexibles produisent
plusieurs types de piéces. La détermination de la loi de production optimale est
complexe. S’inspirant d'une idée présentée par Kimemia et Gershwin {7], Cara-
manis et Sharifnia [9] proposent une conception sous-optimale ot les taux de pro-
duction appartiennent & des hypercubes souscrits a l’espace de capacité. Cette
décomposition de 1'espace de production fait en sorte que le probléme de contréle de
flux multi-dimensionnel se réduit 4 un ensemble de sous-problémes scalaires (mono-
piéce) complétement indépendants. Cette indépendance totale bien qu'intéressante
au niveau de la réduction de complexité, fait en sorte que la capacité du systéme est
sous-utilisée principalement quand le stock de 1'une des piéces atteint son propre

seuil critique et qu'une certaine capacité de production est ainsi libérée.

Dans ce chapitre, nous proposons une nouvelle classe de politiques de produc-
tion dites politiques maximales simples & seuils critique. Cette classe est incluse a
Uintérieur de la classe de politiques de production maximales. C'est & dire telles
que la capacité de production disponible est utilisée en tout temps si nécessaire.
L'objectif visé a été défini & travers la derniére question posée dans notre chapitre

d'introduction:

o Comment améliorer le contréleur sous-optimal de Caramanis et Sharifnia dans

le cas d'un atelier de fabrication flexible produisant plusieurs types de piéces.

Ce chapitre représente donc notre deuxiéme contribution. L’article intitulé “A

Tractable Class of Maximal Hedging Policies in Multi-Part Manufacturing Systems”
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mis en annexe constitue le corps de ce chapitre.

5.1 Formulation du probléme

Nous considérons une version restreinte du probléme 2.2. Le systéme sur lequel on
met I'emphase est un systéme a deuz modes produisant plusieurs types de piéces.
Soit ua(t) = [Ua1(t), va2(t), ...,uap(t)]' le vecteur des taux de production quand le
systéme est au mode a. Soit a(t) = 1 le mode opérationnel, et a(t) = 0 le mode de
panne. La capacité de production dans le mode de panne est supposée constante
uo;(t) < dj, j = 1,..., p, prise sans perte de généralité égale & zéro. u,(t) appartient

3 un espace convexe défini par les contraintes linéaires suivantes:

P
cu; <
{El““* = (5.1)
OSUIi < U1i max ieBa Bz{lv"'vp}n

ol Upmax = n > d représente la capacité de production maximale quand toute
la capacité disponible est allouée & la production de la piéce i, i € B. Soit
o0, = {(uu,uw,...,ulp) | i‘r;u“ = 1}, la frontiere supérieure de §2,. Nous nous
contenterons de rechercher 11ne politique de production optimale a l'intérieur de la
classe des politiques de production maximales simples a points critiques (politiques
MSP). Cette classe de politiques est incluse dans la classe générale des politiques

maximales, et ces éléments sont construits comme:

. . . . e, . . t
e étape 1: choisir un point critique arbitraire z = [z, 2z2,...,2p| ,

® étape 2: choisir un point particulier ¢ appartenant a d(2,, avec les composantes
ufy, ufy, ..., uf,, correspondant aux taux de productions des piéces i € B, re-
spectivement. c et uf sont appelés le point nominal de production et le vecteur

nominal des taux de production de la politique MSP, respectivement.

e étape 3: définir un ordre de priorité des piéces qui génére une politique MSP

consistante pour un choix particulier de ¢. Une politique MSP consistante
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est une politique avec un ordre de priorité des piéces et un vecteur de pro-
duction nominal tels qu'un processus d’inventaire de piéces ne peut atteindre
son niveau critique que si tous les stocks associés aux piéces de priorités plus
élevées sont soit déja & leurs points critiques ou atteignent leurs points cri-
tiques au méme moment. Dans la proposition suivante, nous établissons que
pour un vecteur de production nominal donné il existe toujours une attribu-
tion des niveaux de priorité garantissant que la politique correspondante est
consistante. Avec cette attribution de priorité et en supposant que les piéces
sont réindexées de maniére a ce que la priorité décroit avec un indice crois-
sant, la politique de production MSP résultante est la suivante: pour a(t) =0,
tous les niveaux de stock de piéces de type j € B, décroissent respectivement
a des taux ug; — d;. Quand aft) = 1, si z;(t) # =z la production procéde
selon le vecteur de production nominal. Quand a(t) = 1, et z;(¢) = z; pour
t = 1,...,%r, tar £ p, la vitesse de production est fixée a d; pour toutes les
pieces ¢ = 1,...,%5, tandis que pour les piéces ¢ = i,r49,...,p, la production
demeure aux taux nominaux. Cependant, et en accord avec le caractére *
‘maximal” de la politique, toute la capacité de production ainsi libérée est
attribuée a la piéce i,744, i.e., le type de piéce avec la priorité la plus élevée
et ayant un inventaire encore déficient. Ainsi, cette situation perdure jusqu'a
ce que z(t) quitte z, (aussitdt que o(t) saute du mode 1 au mode 0), aprés
quoi les composantes du processus d'inventaire global, z;(t), décroissent a
des taux dj, j = 1,...,p, respectivement. Quand |’atelier de fabrication re-
vient de nouveau au mode 1 la production reprend avec les mémes régles que

précédemment.

Il est clair que la performance globale d’une politique MSP donnée dépend du
choix spécifique de = et de ¢, choix qui ont besoins d’étre optimisés. Notons que
cette classe de politiques préserve la notion de seuils critiques d'inventaire comme
garantie vis-a-vis les pannes de machines. Les performances d’une politique MSP
en général meilleures que celles données par les politiques sous optimales proposées

par Caramanis et Sharifnia [9], puisque pour le méme choix c € 8%y, la capacité
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Figure 5.1: Application de la politique MSP dans le cas d'un systéme
a deux modes produisants deux types de pieces

de la machine est exploitée au maximum dans le cas des politiques MSP. De plus, il
s'avere que le critére d’ergodicité des politiques MSP est le méme que pour n'importe
quelle politique maximale et correspond a l'appartenance du vecteur demande au
polyédre de capacité de production moyen . Contrairement, a la technique proposée
par Caramanis et Sharifnia [9] ol une grande portion de l'espace est exclue afin
de satisfaire le critére d’ergodicité, tout l’espace de production peut étre exploité
dans le cas des politiques MSP. la figure (5.1) illustre l'attribution de priorités pour
des politiques MSP consistantes dans le cas d'un systéme produisant deux types de

piéces.
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5.2 Existence et caractérisation des politiques maximales simples con-
sistantes

5.2.1 Politiques maximales consistantes

Comme nous I’avons mentionné dans la section précédente, les politiques MSP re-
quiérent un ordre de priorité des piéces caractérisant la maniére avec laquelle une ca-
pacité de production supplémentaire libérée lorsqu'un des processus d’inventaire as-
socié & un type de piéce donné atteint son niveau critique est affectée pour accélérer
la croissance des stocks déficients des autres piéces. Rappelons qu’un schéma de pri-
orité consistant pour une politique MSP est défini comme étant celui ou l'inventaire
d'un type de piéce donné atteint son niveau critique associé, seulement si toutes
les piéces de priorité supérieures soit sont déja a leurs seuils critiques ou atteignent
leurs niveaux critiques correspondant au méme moment. La proposition suivante
décrit le schéma de priorité qui résulte en une politique MSP consistante. Soit I';;

les ensembles définis comme suit:
r‘,-j={c’eaalz—”.s—’:} ijE€B; j#i

Nous avons la proposition suivante:

Proposition 5.2.1 Etant donné un atelier de fabrication flezible multi-piéce, soit
c € O, et z définis respectivement comme étant le vecteur de production nominal
et le point critique visé d'une politique MSP dont nous n'avons pas encore défini la
structure de priorité. Soit Di(c) = {j € B | c € I;;}, 1 € B. L’une des situations

sutvantes peut se présenter:

(a) aucune pairei,j € B, i # j, n'est telle que i € D;(c) et i € D;(c). Alors
un ordre de priorité attribuant a la piéce i, 1 € B, une priorité plus élevée
que toutes les autres piéces avec un indice appartenant ¢ D;(c) résulte

en une politique de production MSP consistante;

(b) pour une paire i,j € B, i # j, —i = gf, nous avons t € D; et j € D;.

c
ul

Comme premiére élape on utilise l'algorithme de priorité présenté en
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(a) avec la indices i, j, ayant le méme rang de priorité. Suite a cela, une

attribution arbitraire quelcongue de priorité entre indices de méme rang

résultera en une politique de production MSP consistante

5.2.2 Caractérisation de la politique de production

En supposant un réajustement des indices tel que l'indice croit lorsque la priorité

décroit, les lois de production de la politique MSP résultante sont formellement

décrites comme suit:

Up2 = d2

st

st
st
st
st
st
st

T < z1; aft) =1,
T =2z1; at)=1,
a(t) =0,

Ty # 2 T2 < 2p; aft) =1,
Ty =215 T2< 5; at) =1,
Ty =2; T2 =2; aft)=1,
a(t) =0,

et en général pour la piece 7,71 > 2:

c
Uy
~:C
Uy;

£3

0

si

Tio1 # 21 T < i «ft)
Tiy =5i-p T < 5 oaft)
Tig =i T = oft)
a(t) =0.

]

1
I,
1

1

ot uf,, ¢ = 2, ..., p, est obtenu de I'équation récursive suivante

~C — [+
Uiy = Upigg T+

avec uf, = uf,.

5.2.3 Cas générique: machine maitre et machine esclave

7 (@ — di)

3

i=12..p—1.

(5.2)

La dynamique du processus d'inventaire de la pitce de type 1 évolue

indépendamment des autres piéces comme si elle était produite par une machine

markovienne produisant un seul type de piéce et ayant comme espace de capacité

de production 'intervalle [0, z$;] quand @ = 1, et zéro dans le cas contraire.
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Soit T}, l'intervalle de temps entre l'instant ol le surplus de la piéce ¢ quitte
I"état hybride (2;, 1) et I'instant ol ce surplus revient pour la premiére fois a (z;, 1),
i € B. Définissons v;; comme la vitesse de croissance du stock de la piéce de type
j, § € B, quand le systéme est dans le mode o = 1. Quand a = 0, le stock de
chaque piéce décroit au taux dj, j € B, respectivement. Cependant quand c = 1, si
71 (t) # 21, alors z; (£) croit a une vitesse vy = u§; — d; et z; (t) croit & une vitesse
vy = ui; —dj, j = 2,...,p. Notons par &(t) = 1 la situation quand aft) =1et
z) (£) = z1, et par &;(t) = 0 toute autre situation non conforme. De la proposition
5.2.1, nous savons que I (t) va atteindre la frontiére z; avant que z; (t) n’atteigne
zj,7=1,...,p. A ce stade, z, () voit sa vitesse changer et croit & ce moment a une
vitesse différente T} = 4, — do, ol %, est défini par I'équation (5.3, pour i = 2).
Notons que pendant que z; (¢) posséde une dynamique markovienne entierement
indépendante de z, (t), ceci n'est pas le cas pour z,(t). Ainsi, la piéce moins
prioritaire de type 2 peut étre vue comme si elle était produite par une machine
mono-piéce, semi-markovienne & deux modes (&;(t) = 0 et @,(t) = 1) avec un état
opérationnel qui suit une loi exponentielle (quand z; (¢) = z;) et un état de panne
associé & un temps de séjour correspondant a la variable aléatoire représentant un

premier temps de retour (premier retour de z;(t) a z;).

L'approche pour analyser le coiit associé a4 la machine semi-markovienne se
compose de deux étapes. Durant la premiére étape la variable aléatoire du premier
temps de retour est markovianisée en utilisant les approximants de Padé pour des
machines markovienne multi-mode. Ensuite, en lui associant une constante choisie
équivalente & la vitesse de décroissance du stock durant le temps de panne marko-
vianisé et en gardant le taux de variations inchangé quand @,(t) = 1, une version
markovienne biaisée (Z5(t), Gara(t)) de (z2(t), @2(t)) est obtenue. Cette version bi-
aisée est telle que Z,(t) = z,(t) chaque fois &(t) = 1 (i.e., quand z, (t) = z;), et
Z2(t) > z4(t) dans le cas contraire. Les fonctions de densité de probabilité station-
naire pour cette machine markovienne multi-mode et produisant un seul type de
produit peuvent étre obtenues en utilisant la méme approche que Sharifnia [25]

(équations différentielles couplées).
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La deuxiéme étape consiste a reconnaitre que la variable aléatoire représentant
le biais &2(t) = ZT2(t) — z2(t) se comporte quand &;(¢) = 0 comme une déviation
(caractérisable analytiquement) de la dynamique du stock durant le premier retour
de &5(t) (Le processus de stock d’'une machine markovienne & deux états) a zéro
(point critique), et & appliquer subséquemment une correction (convolution) pour

éliminer le biais.

En réalité la méme procédure peut étre appliquée quand nous passons de la
i*™€ machine semi-markovienne pour le type de piéce ¢ (&;(t) = 0 si z;-1(f) # z-1,
&;(t) = 1 si z;_1(t) = zi-1) & la (i + 1)*™ machine semi-markovienne (&+1(t) =0
si £(t) # =i, @i21(t) = 1 si zi(t) = z) pour la piéce de priorité immédiatement
inférieure i + 1, 7 = 1,...,p — 1. Par conséquent, excepté pour ¢ = 1 ou la machine
est markovienne, chaque machine produisant la piéce 2, 7 > 2, est semi-markovienne
a deux modes (0, 1) caractérisés par le processus semi-markovien &;(t). L'état
opérationnel suit une loi exponentielle et 1'état de panne est associé a une vari-

able de premier temps de retour (premier retour de z;_;(t) & z;—).

Il s’ensuit que l'analyse d'un probléme générique a deux machines ¢, 1 + 1,
i = 1,...,p — 1, produisant les piéces i et i + 1 avec une priorité décroissante,
respectivement appelée machine maitre et machine esclave peut constituer une étape
trés utile pour la détermination des performances d’une politique MSP donnée. Cet
analyse fait I'objet de la prochaine section ol nous allons illustrer la construction
des processus biaisés ainsi que la procédure d’évaluation de la contribution au colt

de la piéce produite par la machine esclave sous une politique MSP.

5.3 Approximation du processus d’inventaire de piéces pour la machine
esclave

5.3.1 Construction de la version biaisée du processus

Supposons qu'il existe un processus semi-markovien noté (&;(t), Z:(t))et appelé ver-

sion biaisée de (&;(t),z:(t))pour un i donné, i = 1,...,p — 1. Z;(t) est un processus
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& deux vitesses (une vitesse positive 7;; quand &;(t) = 1 (avec ¥;; = vy;) et une
vitesse négative —-J,- (avec Jl =d,)),pouruni=1,...,p—1,et tel que V¢ >0:

4

d; = d;, E(t) = z:(t)

ou

d; < d;, Z,(t) > z:(t), aussi longtemps que
&i(t‘) #1let c'i,-(t*) #1

&i(t) =1 = 5{(t) = xi(t)

.

Le lemme suivant établit [’existence d'une version biaisée semi-markovienne de

(Gir1(8), Tisr (B)) -

Lemme 5.1 Pour la piéce immédiatement moins prioritaire, i + 1, une version
biaisée (&,’+!(t),ii+1(t)) de (&i-i-l(t)vzi-f-l(t)) c:riste, ou 5:“.1(1) =1s SC,;((.) =z el
@;+1(t) = 0 sinon. Z,.,(t) est un processus @ deuz vilesses avec une vitesse positive

Uiit1, el une wtesse négative

—~—

i1 < dig, (5.5)
donnée par _
- Ui Viis1ds .
diy, = = — Fimp — = (5.6)
(T + di Uy, + d‘

ot le tauz dr, | peut étre erprimé comme suil:
_ 7~"li+d~id‘ _ di"‘iv _
Furs Vi + d,' i+l Uy + d, e+t
De plus:
st JH»] =dig1 Tig1(t) = 1:41(t) tandis que

~ (5.

st dH.[ < d,'+[ fi,ﬂ(t) = .’L',;+;(t) quand 5”1(5) =1, et
Ziv1(t) > x4 (t) tant que Gy (t7) # 1 et iy (E1) # 1

(S]]
~1
S

Le corollaire suivant est une conséquence de l'équation (3.7)

Corollaire 5.1 soit ;(t) = Zi(t) — zi(¢), le biais entre Z,(t) et z;(t). Sid; < d;,

pourt, < t < t,+ Ty, t, étant l'instant ou xz;(t) vient juste de quitter z;, ,(t) # 0
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et évolue selon U'équation dynamique suivante:

de,-(t)= s Uy d; ifalt) =1, (5.8)
dt d; —d; otherwise, ’

Par conséquent sous une politique MSP, le probléeme original multi-piéce de
contrdle de flux avec p types de piéces peut étre réduit & p sous-problémes mono-
piéce que nous savons traiter. Le premier probléme associé & la piece 1 peut étre
résolu facilement puisqu'il s’agit d’'une machine markovienne produisant un seul
type de piéce. Sa solution est exactement celle donnée par Bielecki et Kumar [27].
Cependant pour i > 2, nous calculons par 'approche de Sharifnia [25] les densités
de probabilités stationnaires associées & la version biaisée aprés markovianisation
[Z:(t), &M.-(t)]t;fuk (Z:;),k=1,...,¢q: + 1, o1 ¢; est 'ordre de la markovianisation.
Notons que par construction, £ = 1 correspond 2 &ai(t) = let k =2,...,¢: + 1
correspondent & &;(t) = 0. D'ott fi(F) = fMl(?i‘,-), et fo(%:) = 12:&:: fak (). La
quantité encore inconnue a ce stade est fo(z;) puisque fi(z;) = ;71(5:,) Elle est

donnée par le lemme suivant:

Lemme 5.2 : Soit f. (2;) la fonction de densité de probabilité du biais =;(t), i € B.
Sous la condition d'ergodicité (d € E[Q]), fo(z:) est obtenue par l'intégrale de

convolution sutvant:

fo(w) = [ Falwi= <) Fe (<) dee 59

Lo G+l o
ou fo(-’ri - 5i) = l):z fan (1‘:' - Si) et

j:i(si) = BCXP(_ﬁE;‘).

o v +d; 1 ]
= [v,-‘ +c?,} (di_d”i) E[Tr._.] : (5.10)
E[T"--l] = *?3-l+&-l~ ,i=3....p+ 1. (5.11)

Vi — Md:
E[T"i-Q] 1%¢-1
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et

1
E[T,]= ,\OU‘ + di (5.12)

‘U% bt Aldl

A présent, nous pouvons estimer la contribution dans la valeur du coit associée
& la piéce 7 par intégration de la fonction £(z) par rapport aux densités de probabilité

stationnaires.

L’analyse précédente étant fondée entre autres sur l'hypothése que le systéeme
controlé était ergodique. Dans la section suivante nous montrons que les politiques

MSP consistantes sont ergodiques si d € E [Q,].
5.4 Critére d’ergodicité pour le cas multi-piéces

Dans leur récent travail Srivatsan et Dallery [11] prouvent que si la capacité du
systéme est toujours utilisée au maximum (sans perte de temps) tant qu’une piéce
est loin de son point critique, alors toutes les politiques décrites par un vecteur
nominal ¢ € 95, générent des trajectoires qui atteignent leurs seuils critiques en
méme temps. Par conséquent, en se concentrant e sur les instants de premiers
retours au point critique z et de premier départ de z. nous pouvons construire un
processus de renouvellement alterné. Ce processus va étre ergodique si les retours se
réalisent avec probabilité un et la moyenne des temps de retour est finie [32]. Soit
cg un point de 952, tel que f;;- = 3, ,V1i,j € B. Alors les politiques MSP vont étre
ergodiques si la politique MSP basée sur le choix de cg est ergodique. Sachant que
pour une politique MSP basée sur cg, toutes les piéces possédent les mémes priorités
et atteignent leur seuil critique respectif en méme temps (propostion 5.2.1), il est
suffisant que la piéce 1 ait un temps de retour a z; fini. Ceci est équivalent a exiger

que (voir Malhamé [10], Bielecki et Kumar [27]):
mui& >d,, (513)

Ce qui nous permet d’arriver a la proposition suivante:
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Proposition 5.4.1 Pour le cas des systémes multi-piéce, La classe de politiques

MSP est ergodique si le vecteur de demande [dy,ds, ...,dy] € E [Q4].

Nous avons vu au deuxiéme chapitre que le cas idéal recherché lors du controle
de flux c’est de produire sur demande et garder le niveau de stock global égal a
zéro (production just-in-time). Dans la section suivante nous allons présenter les
conditions nécessaires et des conditions suffisantes respectivement pour que le -

‘Jjust-in-time” soit la politique optimale.
5.5 Conditions d’optimalité du niveau d'inventaire nul (just-in-time)

Dans [13] des conditions nécessaires et suffisantes sont données afin d'établir
'optimalité du niveau d'inventaire nul pour une machine non markovienne er-
godique a deux modes et produisant un seul type de piéce. Le colt instantané
est donné par £(z) =c* max(z,0) + ¢~ max(—=z,0). Brémaud et al. [13] démontrent
en utilisant les estimés de la premiére dérivée du cout stationnaire par rapport au
point critique que le niveau d'inventaire nul est optimal si et seulement si (voir

Brémaud, Malhamé et Massoulié [13], théoréme 2)

c” _ o - T(u —di) — md, -
<Plz=0]= (o —d)) (5.14)

ou m;, i = 0,1, est la probabilité stationnaire d'étre au mode i.

ct L ¢~

D'un autre part, pour le cas des systémes produisant p types de piéces, nous
avons montré précédemment que sous une politique MSP le probleme de controle

de flux original est équivalent & p sous-problémes indépendants.

Cependant pour le cas des systémes multi-piéces, |'application du critére (5.14)
sur une base individuelle donne seulement des conditions nécessaires d’optimalité
globale de l'inventaire nul z = [z, ...,z,] = 0. Ainsi le processus semi-markovien
caractérisé par [Z;(t), &;(t)]’admet un niveau d’inventaire optimal nul si et seulement

si
c; - o
cf +¢f SPE=2z]=Plz,=z]. (5.15)

T
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avec la probabilité P [z; = z;] donnée par:

BT (ﬁf, ot d,) - ‘JT(}"J,' -
P f = z" = - N ~1
[ ] (us; — ) (5.16)

T = 2,..,D,

ou my; et mo; = 1— my; représente la distribution de probabilité stationnaire de &;(t).

De plus:
1

1+ ME[T]

ou T,,_, représente la variable aléatoire du premier temps de retour de z;_(¢) 2

P [&,(t) = 1] =TM; = (517)

son niveau critique. £ [Tri_l] peut étre calculée de différentes maniéres; soit en
utilisant des résultats connus sur les files M/GI/1 (voir Kleinrock ou Srivatsan et
Dallery [11], corollaire 3), ou alternativement en calculant {'espérance de la variable
aléatoire du premier temps de retour du processus markovien représentant le biais

&i(t) a zéro en utilisant les techniques présentées au chapitre précédent. Ceci donne:

uS,
ET. .| = - —. (5.18)
[ " ‘] do (u§; —di + i) = A (di - )
T = 2,...,p.
pouri =1,
Thuy — 4, -

Pl =] =221 1 5.19
S R Y 19
ou @y = Aoit\;’ (puisque «(t) est un processus markovien). La proposition ci-

dessous découle facilement de (5.15)

Proposition 5.5.1 Une condition nécessaire pour que ['optimalité globale du
niveau critique z = [zy,...,2,] = 0, sous la classe des politiques MSP consistantes

est qu'il eziste un vecteur nominal ¢ € 9N, tel que:

C.
—"___< L=z 3.
TS Plz; 4] (5.20)

T £

i = 1!"‘|p?

De plus, sachant que par construction Pizy =z > Plry =2 > --- >

Pz, = z;], nous avons la condition suffisante suivante
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Proposition 5.5.2 Une condition suffisante pour 'optimalité globale du niveau cri-
tique z = (21, ..., 2p) = 0, sous la classe des politiques MSP consistant est que

s -
Tty — d; G
Plz; = z]] = —"—— > max {—-_-}
1 1] (‘ui‘i _ dl) i=1,..p | ¢t +c;

En particulier, le point critique pour la piéce © est nul si

co -
Plz, = 2| = n 2 g (5.21)
[ ] (u‘;ti _ d1) ch +¢;

5.6 Conclusion

Dans ce chapitre, nous avons considéré le probléeme de contréle de flux d'un atelier
de fabrication flexible & deux états et produisant plusieurs types de piéces. Nous
avons défini une nouvelle classe de politiques a seuils critiques appelée politiques
maximales simples a points critiques (politiques MSP). Tout comme les politiques
caractérisées par des hypercubes souscrits proposées par Caramanis et Sharifnia [9].
ces politiques sont fonctions du seuil critique le long de chaque composante ainsi
que le choix du point ¢ a la frontiére supérieure de ;. Ces politiques de production
peuvent avoir des performances meilleures que celles des politiques caractérisées
par des hypercubes. Ceci est di au fait que la production est toujours menée
en exploitant la capacité maximale du systéme. En utilisant I'analyse de premier
temps de passage, ainsi que les approximants de Padé, nous avuns montré comment
une analyse séquentielle des performances des politiques MSP est pussible en com-
mengant par la piece ayant la priorité la plus élevée jusqu’a celle ayant la priorité
la plus faible. Finalement, nous avons également établi que le critére d'ergodicité
pour le cas multi-piéce est minimal, i.e., le taux de demande des piéces se trouve a
'intérieur de l'espace de capacité moyen. Nous avons aussi développé des conditions
nécessaires et des conditions suffisantes pour 'optimalité du point critique global
nul. Malheureusement 'analyse telle que présentée ne peut étre appliquée qu’a un

systéme & deux modes seulement produisant plusieurs types de piéces.



ANNEXE IV

A Tractable Class of Maximal Hedging Policies in
Multi-Part Manufacturing Systems

Sami El-Férik!, Roland P. Malhamé?, and El-Kébir Boukas®

Abstract

The flow control problem in multi-part failure prone manufacturing systems is consid-
ered. The near optimal controllers of Caramanis and Sharifnia, while computationnaly
attractive, suffer from the drawback that the production capacity set must be approx-
imated via a very restricted set of inscribed hypercubes, namely those for which a
componentwise feasibility requirement is satisfied. Also, due to the completely decou-
pled nature of production along each component, utilization of the restricted capacity
set is suboptimal. A class of capacity set incribed hypercube policies called simple
maximal hedging (SMH) policies is introduced. In SMH policies production along the
various components of the capacity set are coupled, the componentwise feasibility re-
quirement is lifted, and there is no underutilization of production capacity if needed.
In a p part types manufacturing system, for partwise additive cost functionals, it is
shown that performance evaluation of a given SMH policy reduces to the analysis of
p decoupled (fictitious) semi-Markovian machines. The machines are Markovianized
via first passage-time analysis and a Padé approximants technique. Numerical opti-
mization over the class of SMH policies in a sample manufacturing system indicate

that their performance can come close to that of the optimal control.
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1 Introduction

The problem of flow control is an important phase in a hierarchically structured
scheme for the control of manufacturing systems (Gershwin 1994). In practice, it
is a multi-dimensional problem since flexible manufacturing systems are generally
expected to produce different part-types. Such systems are subject to random discrete
events such as machine failures and repairs, jumps in the nature and level of the
demand, operator and materials absence, etc. Consequently, the production capacity
of the system relative to the demand changes randomly. The flow control problem is
one of determining the short term individual average part production rates so as to
minimize the expected inventory and backlog costs of the manufacturing system in
the face of existing uncertainty. Starting with the work of Olsder and Suri (1980),
a common paradigm for the analysis of this control problem has been a fluid model
which is a highly aggregated representation of the manufacturing system. The model
characterizes parts production and its dynamics is punctuated by random jumps either
in the production capacity (due to machine failures or repairs), or in the demand for

parts (Sethi and Zhang 1994).

Define
E{} : the expectation operator;
zi{t) : the production surplus/backlog for the part type i, ¢ = 1,...,p. Let
z(t) = [z1(8), Z2(¢), -, 2 ()]
£(z) : the cost per unit time, an additive convex function in the

elements of z; for instance £(z)=zp: [c,+ max(z;,0) + ¢; max(—:ri,O)] ;
=1

uqi(t) : the production rate for part type i,i = 1,...,p, when the flexible
manufacturing system is in mode a.
Let ua(t) = [ta1(t), ua2(t), -, Uap(t)]*

at) : the state of a finite irreducible N state Markov chain with known
intensity matrix A = [Ay], (A = ~ T, Ayj, Ay 2 0). It represents
the operating and failure modes of the manufacturing system;
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Q2 : The set of feasible production rates when the machine
state is a(t). If the machines are perfectely flexible, then
the 2, sets are convex polyhedra;
d; : the demand rate for the part typei, i =1,...,p.
Let d = [d},ds, ....,dy]*
Then, in mathematical terms the infinite horizon average cost flow control problem

can be described as follows (Caramanis and Sharifnia 1991):
- - - L T
min J = Jm E{}[J Uz) dt},

subject to X (t) =u(t) -d, with x(0) =xo (1)
u(t) € Qa(t),

Caramanis and Sharifnia (1991) describe an approximation method that reduces
the multi-part types flow control problem to many decoupled single-part type flow
control problems. They use an orthogonal partitioning of the production space into
regions where production capacity for any single part is comprised between 0 and a
maximum rate irrespective of the production levels for other parts. This is equivalent
to replacing the (2, sets with inscribed hypercubes. However, given that the inscribed
hypercube approximation is aimed at making production along separate coordinates
in the production space independent, a specific choice ¢ of a boundary point of Q,
is permissible only if feasibility constraints (E [ul;..] > di)are satisfied for all part
types ¢ = 1,..., p, where u; .. is the maximum production rate of part ¢ in mode a
and for the given choice of ¢ € Q, . Thus, while this near optimal controller presents
many computational and conceptual assets, it suffers from an important limitation,
namely the strong componentwise feasibility requirement imposed in the choice of
the hypercubes. In fact, the allowed capacity set is then a restricted subset of 0, as
shown in Figure 1 (for a two part-types system).

Furthermore, the complete decoupling of part production along separate coordi-
nates, causes loss of possibly available capacity, essentially when at least one of the
part-types has reached its own hedging level.

In order to overcome the above limitations, we propose a modification of the control

policies aimed at reintroducing a measure of coupling between separate coordinates.
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Figure 1: Disadvantages of the near-optimal controller as suggested by Caramanis
and Sharifnia

The admissible control policies are a tractable subset of what shall be termed the
class of “mazimal’ hedging policies, i.e., hedging control policies characterized by an
arbitrary hedging point z, in the surplus space associated with each feasible produc-
tion mode say a (demand vector inside corresponding capacity set). and such that
the production sequence utilized to reach the hedging point always lies at the “upper”
boundary 99, of Q. (BQQ = {(u“,um, e Up) | iriu,i = l}) . More specifically, the
admissible control policies are generated as follov:rs: the upper boundary of a feasible
capacity set 0, is partitioned into distinct regions. Within each region a choice of
boundary point ¢ € 98, is made, and a fixed given part say i, the so-called priority
part, is allowed to produce at a rate dictated by the ith component of ¢ until it reaches
the ith component z,, of hedging point z,. The priority ordering of parts is dictated
by the particular choice of c. During that phase, other parts produce at the rate cor-
responding to the component of the chosen ¢ in 2,. When part 7 surplus level reaches

Zo;, thus requiring only a production of d; to maintain itself at z,,, the extra allowable
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production capacity is reallocated to the part associeted with the next lower priority
part in that region. Consequently, the flexible manufacturing system is utilized at
full capacity at any instant. The information shared by part-types on their positions
with respect to their associated hedging level is characterized by a probability density
function (p.d.f.) which is that of a first return time (to the hedging level). The multi-
part flow control problem is thus reduced to many single part-type problems where
the jth part surplus process z; (t) is augmented with a discrete state process &; (t)
soon to be defined such that (z; (t),a; (t)) forms in general a semi-Markov process.
Thus, while the decoupled single part machines of Caramanis and Sharifnia remain
Markovian, for SMH policies separate single part machines are semi-Markovian. For
optimization of semi-Markovian machines in a manufacturing context see Glasserman
(1995), and Brémaud et al. (forthcoming).

Note that aware of the disadvantages of decoupled production capacity set in-
scribed hypercube controllers, Caramanis and Sharifnia (1991) proposed an heuris-
tic improvement using a combination of inscribed and circumscribed hypercube con-
trollers as the final step of the design. Since this heuristic can also be applied to SMH
policies, we focus throughout this work on comparing the performance of inscribed
hypercube controllers performance to that of SMH policies.

In (1994), Srivatsan and Dallery extend known results for single part-type sys-
tems and analyze stability and optimality conditions for two-part type systems. The
approach followed is a combination of sample path comparisons and average cost
analysis of trajectories generated by different control policies. An interesting prop-
erty emerges from their work, namely that for all the class of maximal hedging policies
(i.e., if needed, capacity is always fully utilized), the time required by the surplus tra-
jectories to reach the hedging point is the same. Recently, Perkins and Srikant (1995)
provided respectively necessary conditions and sufficient conditions for the optimality
of just in time multi-part manufacturing (zero inventory hedging level) under the so-

called linear switching curve policies. The results presented in (Perkins and Srikant
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1995) can be considered as a particular case (when the machine requires the same
time to produce any part-type) of the results presented in Section 7 of the present
work.

The rest of this paper is organized as follows. In Section 2, we first formulate the
problem of optimal flow control for the system with one machine and many part-types.
We state also the disadvantages of the inscribed hypercube near optimal controllers
proposed by Caramanis and Sharifnia (1991), and give a preliminary characterization
of simple maximal hedging (SMH) policies. In section 3, we summarize a number of
results reported in (El-Férik and Malhamé, submitted) concerning the determination
of first return probability density functions. The theory presented is crucial for the
decoupling of the part-type flow control problems under SMH policies. The theorems
and lemmas presented are already adapted in prevision of the cases which are to be
dealt with in the rest of the paper. In Section 4, the property of consistency is defined
for SMH policies, and it is shown that for every choice of nominal production vector
there exists a priority ordering which yields a consistent SMH policy. From this point
onwards, the focus is over the set of consistent SMH policies. It is shown that the
ability to analyze such policies hinges on an understanding of a generic problem for two
semi-Markovian machines called the leader and the follower. respectively associated
with the production of a part with given priority and that of the part with next lower
priority. The leader-follower problem is analyzed in Section 3. While ergodicity of
the controlled processes was assumed up to that point, criteria for such ergodicity to
hold are established in Section 6. In Section 7, issues of optimality of just in time
SMH policies are considered. Finally, in Section 8, the performance of SMH policies
is numerically compared to that of the near optimal inscribed hypercube controllers
of Caramanis and Sharifnia, and to that of the optimal control as obtained from a

numerical solution of the associated dynamic programming equations.
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2 Problem statement

We consider a restricted version of Problem (1), which is that of a multi-part, two-state
manufacturing system for which optimization is sought within the restricted class of
SMH policies. Denote the production rate in mode « to be

U () = [ta1(t), Yaz(t), ..., ap(t)]®. Let a(t) = 1 be the operational mode while (t) =
0 is the failure mode. The production capacity in the failure mode is assumed to be a
constant ug;(t) < dj,  =1,..., p, taken without loss of generality to be zero. Assume

u;(t) belongs to a convex capacity set defined by the following linear constraints:

P
U < 1
{ igl Wl > (2)
0<uu < Unmu i€ B, B={1...p}.
where Ui max = + > d represents the maximum production capacity whenever all

: p
production is dedicated to part i, i € B. Let 8Q; = {(un,ulz, s Ugp) | Y ruy = 1} ,
be the “upper” boundary of ;. The class of simple maximal hedging policies is a

subset of maximal hedging policies which is relatively tractable. Such policies are

defined as follows:
e step 1: select a particular hedging point z = [z, 22,..., 3] .

e step 2: select a particular point ¢ in 9, with components u{;,uS, ..., u,,
corresponding to production rates of parts i € B, respectively. ¢ and uf, will be
called respectively the nominal production point and vector of production rates

of the SMH policy.

e step 3: define a priority ordering of parts which will yield a consistent SMH
policy for the given choice of c. A consistent SMH policy is one with a part
priority ordering and nominal production vector such that under the resulting
production policy, no part inventory can ever reach its associated hedging level,
unless all other part inventories associated with parts of higher priority attain

simultaneously, or have already attained, their corresponding hedging levels. In
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Proposition 1 below, it is established that a nominal production vector depen-
dent priority ordering yielding a consistent SMH policy always exists. With the
priority ordering thus defined, and assuming part types are relabeled such that
priority decreases with an increase in the part index, production for the resulting
SMH policy is as follows: for a(t) = 0, all part surpluses of type j € B, decrease
respectively at rates ug; — d;. When a(t) = 1, if z;(t) # z:, production proceeds
according to the nominal production vector. When a(t) = 1, and z;(t) = z; for
i=1,...,4x, tar < p, the production rate is set at d; for parts i = 1,...,7,r, while
for parts i = ipr49, ..., p, production remains at the nominal rate. However, and
in line with the “maximal” part of the requirement on the policy, all remaining
avatlable production capacity is dedicated to part ipy, i-e., the part type with
highest priority and a still deficient inventory. Thus, this situation will prevail
until z,(t) falls below z, (as soon as a(t) switches from mode 1 to mode 0), upon
which the surplus components z;(t) decay at rates d;, j = 1, ..., p, respectively.
When the manufacturing system mode moves back to 1, production resumes

with the same rules as earlier.

The global performance of a given SMH policy will depend on the specific choices of
z and ¢ which need to be optimized. Note that the above class of policies preserves the
notion of hedging points as a safeguard against machine failures, and will do at least
as well as the inscribed hypercube near optimal policies of Caramanis and Sharifnia
(1991), since for the same choice of ¢ € 3, machine capacity is fully utilized in the
SMH policy case. Also, and as we show in Section 6 below, the feasibility requirement
for an SMH policy is the same as for any maximal hedging policy namely that the
demand vector lie within the mean capacity set. Thus, unlike (Caramanis and Sharifnia
1991) where large sections of the set 9, are excluded for feasibility reasons, all of
a8, is available for choice when SMH policies are considered. Figure (2) illustrates
the SMH policy in the two-parts system case.

Clearly, the dynamics of a lower priority part type depends on times of first re-
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Figure 2: SMH policies for two-part two-mode systems

turns to hedging level of the immediately higher priority part type. Consequently, we
first state relevant results that can be easily obtained from (El-Férik and Malhamé,
submitted), illustrating the computation of first return time probability density func-

tions.

3 First return time p.d.f.’s of surplus processes un-
der hedging control policies

In this section, we summarize a number of results concerning the determination of
first return probability density functions, which will be essential for the subsequent
analysis of the class of SMH policies of interest.

El-Férik and Malhamé (submitted) consider the finite horizon single part, manu-
facturing optimal flow control problem. For tractability reasons, optimal control laws
are sought within the (suboptimal) class of time-invariant hedging policies. First re-

turn p.d.f.'s are central to the dynamics of such policies and the authors show how they
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can be obtained using the so-called probability current method. The manufacturing
system is described by a hybrid state (z(t), @(t)) where z(t) is the surplus process and
a(t) is the machine mode characterized by known constant intensity matrix A = [A;],
(A 20, Ai; = — X Ai;). The following results, adapted for the particular case of a
multi-mode single part manufacturing system where only one mode, namely a = 1,
is feasible (a situation relevant in this paper), can be established from (El-Férik and
Malhamé). Define the hybrid probability density functions f;(h,t), i =1,..., N, when
they exist by:

fi(h,t)dh = Pr{(h<z < h+dh), a(t)=1],
Vh € ]-oo,z], and dh infinitesimal.

Also, denote the production rate when the system is in mode & = 1, by u,(¢) and the

demand rate by d. Finally, define:

Va

u; —d, when a(t) = 1.
-d, otherwise.

V = diag[v;}, j=1, ..., N,
and
f(z.t) = [fi(z.t) falz.t), ... fn(z. )]
we have the following theorem

Theorem 1 Under a hedging control policy with hedging level =, the p.d.f. of first

return time T, of the surplus process z (t} to z, g(t) is given by:
g(t) = v fi(z7,¢). (3)

where fi(z7,t) can be obtained from the following partial differential equation (PDE):

of(z.t) _ _y 0flzt) 4. oo,
5 =~V + Af(zt), VT el 3] (4)

with boundary conditions as follows:



152

At hedging point z and for ¢t > 0:

fi(z7,t) = 0, i=2,..,N, (495)

In addition :
f(z,t)=0 VYz>:z, (5)
z_li‘n_}w f(z,t) =0. (6)

Furthermore, the follounng initial conditions must be imposed:
fi(z,0) = ——'6(.'1: -z7), j3j=2.,N, Vre ]—oo,:"] . (7)

While for a multi-state system, a closed form solution of g(¢) is beyond reach
this is not so for the sequence of moments of g(t). Indeed, El-Férik and Malhamé
(submitted) develop a complete algorithm for computing the statistical moments of
first-passage times for general multi-state systems. These moments represent up to
a sign change the coefficients of the Taylor series expansion of the Laplace transform
G(s) of g(t). Subsequently, a rational approximation of arbitrary degree of G(s), using
Padé approximants can be constructed. When the poles of the rational approximation
are real, this yields a finite Markovian representation of g(t).

Under the ergodicity assumption, d € E [Q,] (Proposition 2 below), Fi(z,s), 1 =
1,...,N,Vz € |-00,z7], the Laplace transform of f;(z,t) with respect to ¢ is analytic
at s = 0 (El-Férik and Malhamé). Consequently and in view of (3) G(s) will also be

analytic at s = 0. So let

G(s)=1—/.l.1s-+-¥s2 +...+(—1)k%sk + ...

where p; = E[T}], and . = E[T¥], k =1, 2, ... If we now define:

m(z) = (—l)k—a—kﬁaﬁ—?ﬂs:o k=0,1,2,..., Vz 6]—00._:’]‘ (8)
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my(z) represents the moment vector of kth order associated with the vector of p.d.f’s
f(z,s) at £ € |—00,2z7]. The following result can be obtained from Lemma 2 in

(El-Férik and Malhamé, submitted):

Lemma 1 Let my(z) be the vector of moments of the qth order corresponding to the
vector p.d.f. f(z,t), ¢ = 0,1,2,.. Under the ergodicity assumption (d € E[C],
Proposition 2 below), and for f(z,0) =0, z € |—o0,27], the vectors my(z) satisfy the
following recursive system of linear ordinary differential equations (ODE):

dm,(z
_% = V—IA'- mQ(z) + V_lq mq—l(x)v Vz € ]—00,2] ' (9)
qg=1, 2,
with
dmo(z) (1. -1 M2 A A .
— =V !'A'my(z)+V 0,—/\—“,—/\“,..., | Vz €|-00.z]. (10)

Defining

Tx(z)' = [m§(z), mi(z), mj(z), ... mi(z)|; k=0,1.2 ...

Ci(z) obeys the following ODE:

drd“(”) = A Ti(a). (i1)
ks
where _
VLA 0 0 0
v-l V-oIAS 0 0
Ac=| O 2xVl vV-IAl 0
: 0 .. 0
i 0 k=V~! V-'A“
Thus:
Ci(z) = exp (Ax(z — 2))Tk(z7). Vz €l-oc.z].
with,

:Ergw Fi(z) =0 ,
and T (z) =0 , VY >: (13a)
fork=12 ...
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In view of the block triangular structure of A in (11), if 7 is an eigenvalue of
V-1 A% it is also an eigenvalue of Ax with multiplicity (k + 1). Let Px, Qi be the
matrices with columns respectively corresponding to the generalized left and right
eigenvectors of A, associated with computations up to the kth moment vectors in the

region |—o0, z]. Equation (11) can be then put into the Jordan canonical form so that:

Jlk

[l

dI‘k (.’B) _ J2,k
d:L‘ - Qk

Qx Ti(z), (12)
Jak
where in J;; stands for the Jordan blocks associated with the jth eigenvalue «y; of
V1AL j=1,2, .. ,N.

In (El-Férik and Malhamé, submitted), it is shown that the generalized eigen-
vectors can be computed recursively and that they are independent of the particular
choice of z. Furthermore, in order to meet the boundedness requirement expressed by
boundary condition (12), it is necessary that ['x(z~) be orthogonal to the generalized
left eigenvectors of A associated with eigenvalues of A with non positive real parts.
However, in (Malhamé 1993), Theorem 2, it is shown that the ergodicity assump-
tion (d € E'[C}]) is equivalent to imposing that the number of eigenvalues of matrix
V-! A* with positive real parts be exactly equal to N —m, where m is the number of
feasible modes. In this case, m = 1, and therefore there is only one eigenvalue with
non positive real part, immediately identified with v = 0. This observation, together
with the recursive computation of generalized eigenvectors of A, permit an efficient
computation of vector moments of arbitrary order in Lemma 1. The algorithm for
multiple mode and multiple hedging points is summarized in Theorem 3 of (El-Férik
and Malhamé). By matching a sufficient number of moments of G(s). one can obtain a
rational Padé approximant of that Laplace transform and hence g({) can be expressed
as a sum of ezponential functions if all poles of the approximant are real. Given that
G(s) is the Laplace transform of a p.d.f., the Padé approximant would then yield an

approximate parallel Markovian realization of g(t). whereby,



G(S) o~ ;W,s—{%p: s (13)

withw; >0, ¢; > 0and Yw;=1,i=1,2,...,0.

Note that a competing ;;proach for Markovianization is the method of Coxian
phases (see for example Hu and Xiang 1995). However, computations can be come
very tedious (non linear equations need to be solved) when several moments of g(t)
are to be matched for greater precision.

We recall a few useful facts about Padé approximants (see Baker 1975) which
insure that the application of this approximation approach is relatively safe. In the
present context, Padé approximants are used to provide a rational fraction approxi-
mation %‘?— which will partially match (first 20 + j coefficients) of the Taylor series
expansion at s = 0 of the Laplace transform G(s). F;4;(s) and Q,(s) are polynomials
with degree o+ j and o respectively, 7 > 1, (Baker 1975). If the Taylor series at s =0
of G(s) corresponds to a so-called Stieltjes’ series (see Baker 1975, p. 211), then all
poles and zeros of the approximant are negative real and the zeros are interwined with
the poles (see Baker 1975, p.213). Notice that it can be shown that the expansion
of G(s) corresponds to a Stieltjes’ series. Thus Padé approximants will always yield
a Markovianization of the form (13). In addition, because of the Stieitjes’ property,
the quality of the approximants improves monotonically as the order increases (see
El-Férik and Malhamé Section 5, and Baker 1975 for further details).

Accordingly when the high priority part, say ¢, is such that z,(¢t) # z,, the lower
priority part, say j, is associated with a fictitious Markovian machine which can be
in any one of g (unobservable) Markovian failure states with mean sojourn time

i, £ = 1,..,0. Thus the Markov process approximation of the &,(t) semi-Markov

process ( &;(t) =0, if z;(t) # =, &;(t) = 1, if z;(t) = ;) which we call & (t) evolves
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according to the following intensity matrix:

—/\1 u}ll\l ces wg/\l
A=| B8 TR : (14)
Po —Pa

In the following section, we establish the existence of consistent SMH policies,
in the sense that an SMH policy associated with a given choice ¢ of 9C,, dictates
a priority ordering of parts such that the hedging level associated with the higher
priority part is always reached before or at the same time as the hedging level of any
lower priority part. This consistency property starts holding after the surplus process
x(t) hits the hedging point z for the first time. In view of the fact that infinite horizon
performance will be unaffected by the initial (almost surely finite) transient until the
hedging point is first attained, we assume without loss of generality and throughout

section 5 that the initial inventory xo = (21, 29, ..., zp]‘.

4 Consistency of SMH policies

As mentioned earlier, SMH policies require an ordering of part priorities characterizing
the way in which any extra production capacity, freed whenever the inventory of a
given part attains the required hedging level, is reallocated to speed up inventory
buildup for the remaining inventory deficient parts. A consistent part priority scheme
for an SMH policy is defined as one whereby the inventory of a given part will never
reach the associated hedging level unless all inventories of higher priority parts are
either simultaneously reaching or have already reached their corresponding hedging
levels. Proposition 1 below delineates the priority assignment scheme which results

in a consistent SMH policy.

Proposition 1 Let c € 0, and z define respectively the nominal production veclor
and the hedging point of an SMH policy with priority ordering yet to be defined in a
multi-part manufacturing systems. Let B = {1,...,p} be the part inder sel. Let [';; be
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the sets defined by:

u

p,.,.={cfeaal:—§5—"} LjE€B; j#i

QL

S

] 1

and let Di(c) = {j € B | c €L};}, i € B. One of two situations can occur:

(a) no pair i,j € B, i # j, is such that i € Dj;(c) and i € D;(c). Then
a priority ordering such that part i, i € B, is assigned a higher priority
than all the parts types with indez in D;(c) results in a consistent SMH
production policy

(b) for some pairsi,j € B, i # j, %-;1 = g{-. Then for such pairs i € D, while
j € D;. As a first step, use the priority ordering algorithm in (i) with the
pair 1,3, equally ranked. Subsequently, any arbitrary priority reordering
amongst equally ranked indices, will result in a consistent SMH production

policy.

Proof. See Appendix. W

From Proposition 1, the following can be concluded:

e 3, can be partitioned in the capacity set, into many regions with distinct

(consistent) priority assignments, namely:

Fi={c€6Q|::—§’-<§f} 1, J € B. i #J,

u 0 . - . . .
F0={Co€391:;%=§’7} i, JEB. i#7.
I v
In the region of 9, such that uj; > 5{ uf;, 1 € B, part j will be the high priority
part, when u{ = ‘—‘:f ui}, t € B, parts have equal priority and in fact for a choice
c& ‘
¢g such that :‘—:;- = %‘l Vi,j € B an SMH policy based on ¢j will performs

Uy
exactly like the associated near optimal policy of (Caramanis and Sharifnia

1991). Finally for uj < 3-‘1 uf, part ¢ will be assigned the higher priority.
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e the only way to reach the hedging point 2;, associated with part type 7, under

SMH policies is by moving inside the subspace of dimension p—i—~1, 7 € B,
defined by the part surplus subspace z; =2;, 7 =1,...,i— 1.

Thus, summarizing, let ¢ € 8%2; and z define respectively the nominal production
vector and the hedging point of an SMH policy. Assume that a relabeling of part type
indices has been performed so as to associate a decreasing priority with an increasing
part type index. Then the production rules of the resulting SMH policy are formally
given by:

vy if T < a5 at) =1,

Uor =4 dy if T,=2; at)=1,
0 a(t) =0,
ujy if T Fz; T2<z2; aft)=1. (15)
u _ ﬁiz 1f T =21; T2 < 27 ; a(t,) = 1.
7V dy if Ti=zym=2; alt) =1
0 a(t) =0,
and in general for part-type 7,7 > 2 :
uii if Tic1 F o T <z a(t) =1,
@ if T =nonT< om;oaft)=1,
J— LI -1 ’ 16
Uqi di zf Tio) =241 Ty = 25 Ct(t,) =1 ( )
0 a(t) =0.

where 4{;, 1 = 2, ..., p, is obtained from a recursive equation we now develop.
T§;, ¢ € B represents the increased production rate of part type i whenever part
t — 1 reaches its own hedging level.
Initially:
P
o rmuf =1
=1
After z,(¢) attains z; :

p
nd, + rpul, + Z ruy = 1,
i=3

and comparing the two equations:

~ ¢ c
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Thus:
c c —d

If under the new production rates, the machine remains operational long enough
for z5(t) to reach z,, then, just before:
P
Tidy + 728, + Taulz + Y Tuf; = 1.
i=4
After, z5(t) = 2z, :
Tidy + Tody + T3l + i Ty =1,

i=4

and consequently:
7y (], — da)

~ _ ¢
ujg =1ujz+
T3

In general, it is not difficult to see that the following recursion holds:
Uiips =u§i+x+M o t=12,.,p=- 1 (18)
Tit1
with @f;, = u§,.
Thus part-type 1 surplus evolves as though it was produced by a single-part failure
prone Markovian machine with capacity set [0,u],], when a = 1. and zero otherwise.
Denote by T, the time interval between the instant the surplus-type i leaves hybrid
state (z;,1) to the instant when it first returns to (z,.1). ¢ € B. Define vy, as the
surplus rate of increase for part-type j, j € B, when the system is in mode a = 1.
When a = 0, the surplus of each part decreases at rates d,,j € B, respectively,
whereas when a = 1, if ) (t) # 21, x, (t) increases at a rate v, = u§, —d, and T, (t)
increases at a rate vi; = uf; —d;, j = 2,...,p. Denote by &(t) = 1 the situation when
a(t) = 1 and z; (t) = z;, while &;(t) = 0 otherwise. From Proposition 1. we know
that z; (¢) will hit z; before z; (t) hits z;, = 1,..., p. At that point x; (t) increases at
a different rate U5 = 4§, — d2, where 45, is defined in equation (17). Note that while
z; (t) has Markovian dynamics entirely independent of z (), this is not so for x5 ().
Thus, the lower priority part 2 can be viewed as though it was produced by a single-

part two-mode (&2(t) =0 and &;(t) = 1) failure prone semi-Markovian machine with
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one operational mode associated with an exponential sojourn time (while z, (t) = 21)
and a failure mode associated with a sojourn time corresponding to a first return time
random variable (first return of z,(t) to z;).

The approach to analyzing the cost associated with the semi-Markovian machine
consists in two steps. During the first step the first return random variable (so-
journ time in failure mode ) is Markovianized using a Padé approximants technique
for multi-mode Markovian machines as summarized in section 4. Subsequently, by
associating an adequately chosen constant part surplus rate of decrease during the
Markovianized failure time and leaving the surplus rate of increase unchanged when
&y(t) = 1, a Markovian “biased” version (Z,(t), aar2(t)) of (z2(l). G2(t)) is obtained
whereby Z5(t) = z,(t) whenever &,(t) =1 (i.e., when z; (t) = z;), while Z2(t) > z2(t)
otherwise. The surplus steady-state p.d.f.’s for this biased two-velocity multi-mode
Markovian machine can be obtained using Sharifnia’s technique (Sharifnia 1988). The
second step consists in recognizing that error random variable =,(t) = Z,(t) — z2(t)
behaves while @,(t) = 0 as a surplus deviation during the first return of =2(¢) (the
surplus process of a two-mode Markovian machine) to zero (hedging level), and sub-
sequently applying a so-called bias removal procedure based on results summarized
in Section 4. In fact the same procedure can be applied when moving from the ith
semi-Markovian machine for part-type ¢ (&:;(¢) = 0 if x,_(¢t) # zi-y, &(t) = 1 if
z;-1(t) = zi_1) to the (i + 1)th semi-Markovian (&;+(t) = 0 if z,(¢) # zi, a1 (¢) = 1
if z;(t) = z;) for lower priority part typei+1,7=1,...,p — 1. Thus, except for i =1,
where the machine is Markovian, every machine, producing part type 1 say, is a two-
mode failure prone semi-Markovian machine characterized by a semi-Markov process
&;(t). &(t) is a two-mode process (0, 1) with one operational mode associated with an
exponential sojourn time (while z;_| (¢) = z;-;) and a failure mode associated with
a sojourn time corresponding to a first return time random variable {first return of

.’L‘i_l(t) to zi—l)-
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Hence the analysis of a generic two-machine problem, say machine i, i + 1, i =
1,...,p—1, producing parts 7 and i + 1 of decreasing priority, hereon referred to as the
leader and the follower respectively can become a useful building block in analyzing
the performance of a given SMH policy in a multi-parts manufacturing system. This
is the object of the next section where we develop the approach for computing the
portion of the cost of a given SMH policy associated with the part produced by the

follower.

5 Construction of the biased version of the follower
part surplus process and subsequent removal of
the bias

Assume that there exists a semi-Markovian process denoted (&;(t). £,(t)) called the
biased version of (&;(t),z;(t)) for agiveni = 1,...,p—1. I,(t) is a two-velocity process
(a positive velocity 3j; when &(t) = 1 (with #;; = v,,) and a negative velocity —d;
(with d, = d,)), for somei=1,...,p—1, and such that V ¢t > 0:
d;=di Fi(t) = zi(t)
when &;(t) =0 either or
d; <d; Zi(t) > z:(t), as long as &;(t”) # 1 and &;(t¥) # 1
when &;(t) =1 Z;(¢) = z(¢)
The next lemma establishes the existence of the biased semi-Markovian version of

(Gipr(t), Tig1(2)) -

Lemma 2 For the immediately lower priority part, i+1, a biased version (G4 (L), Zis1(t))
of (@is1(t), Zip1(t)) exists, where &y (t) = 1 if zi(t) = =, and O otherwise. Ty (t) is
a two-velocity process with a positive velocity Uy, 41, and a negative velocily process

diyr < digy. (19)

given by _
5 Uri Vyip1d; (20)

Fiey — T

- r
U + d;
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where the rate dr,,, can be expressed as follows:

Vii +did d; — d;

—5Ci41 — — Vli+l-
vy +d; vy +d;

Fiyy

Furthermore:

if dipr =dip1 Fir(t) = T (t) while
. - - (21)
if diyr <dig1 Zip1(t) = Tig1(t) when @iy (t) =1, and

Tiv1(t) > Tip1(E) aslong as i1 (t7) # 1 and @i (t*) # 1

Proof. See Appendix. &

The following corollary is a consequence of inequality (21)

Corollary 1 let ,(t) = Z;(t) — z:(t); be the bias between E(t) and zi(t). If d; < d.,
fort, <t <t +T,, :(t) # 0 and evolves according to:

dé‘i(t)= —Vi: :d-, lf a(t) =1, (22)
dt d; — d; otherwise,

Thus, under a consistent SMH policy, and given the partwise additive nature of the
cost functional (¢(z)), it is possible to reduce the optimization of the global hedging
point to p decoupled scalar optimization problems, one for each part type. The first
problem associated with the Markov process {z;(¢), a(t)]" can be sclved easily and the
optimization can be carried out independently and yields the same solution as given
by Bielecki and Kumar (1988). However, for i > 2, by recalling that the off period of
&;(t) is a first return random variable, one can use the material presented in section
3, to Markovianize that return random variable and thereby the process (Z;(t), &(t)]".
The Markovianized process will be denoted [Zi(t), @as:(¢)]" -

With the Z;(t) process thus Markovianized, i = 2, ..., p, it is possible to determine
the steady-state p.d.f's of the hybrid Markov process [F:(t).&ar:(t)]"; fare (F:), k =
L,...,qi+1, (where g; is the order of the exponential approximation in Eq. (13)), using
for example Sharifnia’s approach (Sharifnia 1988). In particular we are interested in

qt

- - ~ 1.
the p.d.f.’s fi (Z;) = far1 (Z:), and fo(F:) = ¥ fan (Z:), of the semi-Markov process
=2



163

!\a(t)

Zs

ARER2 I3 )
-~
\

Zi41

1

.‘.l”‘t‘ EERRAR CRARRREY oy oy

0

.

Figure 3: Construction of the biased version of z;,(t), from the follower part surplus
process

[Z:(t), @i(t)]° respectively corresponding to &;(t) = 1, and &i(t) = 0. Define f, (z;) and
fo(z;) as the steady state p.d.f.’s associated with the hybrid process [z;(t). a:(t)]".
Recall that Z;(t) = z;(t) whenever &;(t) = 1 whereas for &,(t) = 0, Z;(t) = z:(¢) +=:(¢)

where £(t) evolves according to corollary 1.

Recalling Lemma 1, it is then possible to use the PDE system of Theorem 1 with
the appropriate velocities, to propagate the p.d.f. f (¢) of . The following Lemma

characterizes the steady-state p.d.f. fo(z:) :

Lemma 3 : Let f, (s;) be the p.d.f. of the bias &,(t), i € B. Under the ergodicity
condition (d € E [Q)]), the following holds:

fo(z:) = /0 Folzi =€) fo (2) de.. (23)
where fo(z: — &) = ‘:g:l fant (zi — &) and
fe(e)) = Bexp(—Bss),

with

5= [vf-&-c{,J _ 1 - (24)
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h&i(t) R

(.(t)

_-':sa.mple path when &,(t) =0

Figure 4: Equivalent regenerative process corresponding to the off portions of &(t).

where -
7 d;_
BT = =, = 3p L (25)
Ty~ Mo
with
vl +d,
Ell.]=—YFA——— 26

Proof. See Appendix. H
In summary in order to evaluate the cost associated with a given SMH policy, as

the sum of the contributions of each part type ¢, ¢ = 1, ..., p, one proceeds as follows:
Theorem 2 Define the alternating renewal process &;(t) to be zero when z;_(t) #
2i-1 and one for z;_1(t) = z;-,, for i = 2,...,p. The cost associated with part lype i,
can be computed via a four-step procedure, :
e Construction of the biased version of z,(t) denoted T,(t) which is a two-velocity
process: a positive velocily vy, when a;(t) = 1 and a negative velocily —d, when

&;(t) = 0, such that:

- fori=2,

7 U vy2d,
= dy — . 27
U1t +d| 2 Y11 +d1 ( )
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— fori >3, ~
7 Uy; V1i+1d;
d;‘ = ———=df, -_—, 28
T betd; T B+, 28)
where the rate dr,,, can be ezpressed is given by:
_uit+d; d; — d;

Fipy = 777 %i+1 — T Vit
v+ d; vi; + d;

o Markovianization of the (Z;(t),&:(t))using the material in Section 3 on first

return times and the computation of the associated steady state-densities

o Correction for bias, with
folz) = [ Folai =) Ju, () de. (29)
()
- Qi+l -
where fo(Ii - S) = [gz fMl (.'B,' - &') and

fle) = Bexp(—B2).

with
(30)

[‘U‘-I +d1} 1
vl +d] (di-d) E[T., |
while

~1 ~.
E[Tr.-l] = ?vi‘l-*-d‘-l . 1‘—‘3p+l (31)

Ull +d1
/\01.)11 _)\ldl

and

E[T.] = (32)

e determination of the cost contribution of part type i via integralion of the corre-
sponding cost functional over the part i surplus space equipped with the stationary
measure [ (1) = [£, [fo(z) + fi(z)]dz, p € (—00, z].

Notice that fori = 1, cost computations and hedging point oplimization proceed as

for usual two-state Markovian machines (see Bielecki-Kumar 1988).
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Throughout the above analysis, the existence of an ergodic steady-state for each
of the surplus random variables z;(t), ¢ = 1,..., p, has been assumed. In the following,
it is shown that the criterion for ergodicity of SMH policies reduces as expected (see
Caramanis and Sharifnia 1991 for example) to requiring that the mean capacity set

contain the vector of rate of demand for parts.

6 Ergodicity of SMH control policies

In the following, we derive conditions under which the maximal hedging policies are
ergodic, and thus all component marginal p.d.f’s converge to a unique steady-state.
In (1994), Srivatsan and Dallery prove that if the capacity of the system is always
fully utilized whenever one part is away from its associated hedging point, then all the
policies described by hypercubes defined by ¢ € 0Q2; generate trajectories that reach
their corresponding hedging levels at ezactly the same time. Thus, vne can focus on
times to first returns to the hedging point to build an embedded alternating renewal
process. This process will be ergodic if return occurs with probability one and the
mean return times are finite. Since ¢j € 8Q;, then SMH policies are ergodic if ¢j is
an ergodic hedging policy. Recall from section 4 that under ¢ all the parts have the
same priorities and reach their respective hedging levels at the same time. Thus it
is sufficient that part-type 1 have a finite mean return time to z;. This is equivalent

(see Malhamé 1993, Bielecki and Kumar 1988) to requiring:
mud > d, (33)

where 7, represents the stationary probability of the on state. It is given by ‘\—0‘:“;,

and with
dy

P ’
1= Tidi

co
up- =

using (33) and the above equation one obtains:

]
ZTidi <m, (34)

i=i
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which is the same as

ST <1, (35)

i=1
where 7; = E [r;], i = 1, ..., p. This yields
Proposition 2 For the multi-part systems, the class of SMH policies is ergodic if the
demand vector [dy,d,,...,d,| € E []

Note that an equivalent condition was derived by Srivatsan and Dallery (1994).
However the authors do not seem to have recognized the transparent interpretation

in Proposition 2.

7 Optimality of the zero inventory level

In (Brémaud et al. forthcoming) necessary and sufficient conditions were given to
establish the optimality of the zero inventory level for a single part two-mode (0,1) non
Markovian ergodic machine having the following incurred cost ¢(x) =c* max(z.0) +
¢~ max(—z,0). It asserts using first derivative estimates of the steady-state optimal
cost with respect to the hedging level, that zero inventory level is a minimizer if and

only if (see Brémaud et al. forthcoming, Theorem 2)

c” wy (ul - dl) - l-'()dl
< Pl = =
ct+c~ ~ [x 0] ("U.[ - d[) (36)

where m;,7i = 0,1, is the probability distribution of mode i.

On the other hand for multi-part system with p part-types, we have shown in the
previous sections that under SMH policies the original flow control problem can be
decomposed into p single part independent flow control problems.

However for multi-part type systems, the componentwise application of the opti-
mality criteria in (36) gives only necessary conditions for the optimality of a global
zero inventory level z = [z, ..., 5] = 0. Thus the semi-Markov machine characterized

by the process [F;(t),&;(t)]’admits a zero inventory level if and only if

e <Pz =z]=Plz: =z (37)
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with the probability P [z; = z] is given by

s (BS; — di) — Toud;
Plzi=z] = — ( Eﬁ'i'. _21~) . (38)
i = 2 Sy

where 7); and mg; = 1— 7; represent the stationary probability distribution of a;(t).

In fact:

P{ae(t)=1]=vru=1“l;[T_ - (39)

with Ty~ representing the first return time random variable of z;_ (¢) to its associated

hedging level. F [T,i_lJ can be computed using known results on M/GI/1 queue (see
Srivatsan and Dallery 1994, corollary 3 and references therein cited) or alternatively it
is easily determined by computing the expected value of the first return time random
variable of the Markov bias ¢;(t) to zero, using the techniques presented in Section 3.

This yields:

us .
E|T.._| = 1 — (40)
- Do (u§; —di +di) — Ay (di — di)
t = 2,..,p.
Fori=1.
7!'1111.‘1:1 - d]

Pizy =z)| = ————— 41
or=al= g “
where 7} = 22— (since a(t) is a Markov process) . Proposition 3 below follows eas-

AgtAp?

ily from (37)

Proposition 3 A necessary condition for the global optimality of the zero invenlory
hedging level z = [z, ..., 2,| = 0, with this class of SMH policies ts that there ezxist a

nominal production point ¢ € 3N, such that:

c
: < = 42
S < Plm=2 (42)

1= 1, <2 Dy
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where it is assumed that a relabeling of part types has been performed whereby
priority decreases with an increase in the part type index and P [z; = z;] are given
by (38), (39), (40) and (41). Furthermore the following sufficient condition for a zero
global inventory hedging level can be written:

Proposition 4 A sufficient condition for the optimality of zero inventory }z:edging
level z = [z1, ..., 2,) = 0, within the class of SMH policies is P [z, = z1] = ?“—:s‘gf‘j >
Uy -6t

maXi=i,...p { %c-—' } .

c; +e.

In particular, the optimal hedging point for part-type i is zero if

"Tlluﬁ —d, ¢
— > —= —. (43)
(ul'} - d;) ¢ +¢

Plz, = 5] =

Proof. See Appendix. ®

Note that in the case of a zero optimal inventory level. the semi-Markov ma-
chine and the original machine respectively characterized by [Z,+(t),&:+1(¢)]' and
[Z:41(t), @is1(t)]" have the same hedging level. This is not so in general.

In the following, we numerically test the proposed algorithms, evaluate the perfor-
mance of SMH policy by comparing it to that of decoupled inscribed hypercube policy

and to that of the optimal control as given by the dynamic programming equation.

8 Numerical results

Let
Ty 1 A= -0.5 0.5

n= —IEm 0T 9 9 , d=[05 1]. ¢f =¢ =1,

?

X1

and ¢{ = ¢; = 5. For this special case the Laplace transform G(s) of g(t) can be
obtained from the PDE system in theorem 1. The result is
24\2 (uﬁ - dl)

= . 44
Gls) Aofu§ — dl) + \idy + u§s + 0 (s) ()

where

8 (S) = \/(u‘{)zsz + 2s [)\2 (u§ - dl) + A]d[]u‘i + [/\2 (u.'g' - dl) + A[d[]2 .
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Figure 5: Testing the quality of a Markovian approximation of the biased process
Z,(t) before and after bias correction, for Padé approximants of order 5.

Using a Taylor series of (44) one can build a Padé approximant of G(s), since the
direct inversion of the Laplace transform does not yield a closed form solution.

Figure 5 is a numerical confirmation of the validity of the presented approximation
procedure. It shows how the Markovianized biased process can give an estimate of the
steady-state average cost associated with the biased process itself (Z;(t), Gasi(t)) versus
that associated with the (Z;(t), &:(t)) process. Also the cost of r;(¢) is compared with
that (Z;(t), &as:(t)) after bias correction. Padé approximants of order 5 were used.
Monte-Carlo simulations were utilized to validate the approximations. The results
are in general very good.

Figure 6 represents the optimization of the steady-state average coust functional
under SMH policies over the production capacity space with numerical minimization
to find the hedging level associated with the Markovianized process. The cost over
the capacity space is then compared to the costs of the decoupled inscribed hyper-

cube policies of Caramanis and Sharifnia (1988) for the same system. We observe a



somewhat significant improvement provided by the SMH policy controller design.

I Sleady-stale average cost obtained

using Caramanis and Sharifnia’approachy

\éﬁm average cost obtained using
)

— .

0.5

1 15 2 25 3

Capacily allocaled (o produce part type 1
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Figure 6: [llustration of the improvements achieved using of SMH policies as compared
to completely decoupled inscribed hypercube policies.

Finally Figure 7 illustrates the optimal solution of the Hamilton-Jacobi-Bellman

(HJB) equations for the two-part flow control problem presented above. The optimal

cost is 20% less than the cost obtained by using totally decoupled inscribed hypercube

policies and only 7% less when compared to the cost obtained using the optimal SMH

policy. On the other hand. the computational requirements of the HJB solution

are very large (and can become quite extensive when dealing with more than two

part-types). Also, the HJB solution does not permit the physical insights that the

decoupled analysis of SMH policies provide.



172

Average cost

| cost=1.7353

0

Surplus x1 4 4 Surplus x2

Figure 7: Optimal cost solution of the Dynamic Programming Equation for the two-
state two-part sample manufacturing system.

9 Conclusion

We have defined a new class of hedging control policies in multi-part failure prone
two-state manufacturing systems which we called simple maximal hedging control
policies (SMH policies). Much like decoupled capacity set inscribed hypercube poli-
cies (Caramanis and Sharifnia 1991) of which they are a generalization, these policies
are parameterized by a hedging level along each component. as well as the choice of
a point ¢ at the upper boundary of the production capacity set. These production
policies can perform better than inscribed hypercube policies because production if
needed always proceeds at maximal capacity. Using first-passage time analysis and
Padé approximants, we have shown how a sequential partwise analysis of the perfor-
mance of SMH palicies is possible starting from the high privrity part and moving

on to the lower priority part. The quality of the approximants for the different costs
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involved was demonstrated via Monte-Carlo simulations. Also, an ergodicity analysis
indicates that the criterion for the ergodicity of an SMH policy is minimal, i.e. that
the rates of demand for parts vector lie inside the mean capacity set. Numerical re-
sults for a sample manufacturing system have been presented whereby optimal SMH
policies favorably compare with optimal decoupled capacity set inscribed hypercube
policies, and perform almost as well as dynamic programming based optimal control
policies. Unfortunately, the analysis as presented can only be applied to two-state
multi-part systems. In future work, we shall consider extensions to multi-state multi-

part manufacturing systems.
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Appendix A

Proof of Proposition 1

The proof relies on an analysis of the first return time of each part to its own hedging
level. Suppose j € D;(c), for some pair ¢, j € B. Upon leaving z, surplus levels z;(t)
and z;(t) decay respectively at rates d;, d;, when (t) = 1, up until the instant where
one of the part surpluses first returns to its associated hedging level. Now suppose
that it is part type j which returns first. Let Ton and Top; be the total time that the
surplus for part 7 would have spent respectively increasing ( @ = 1) and decreasing (

a = 0) on its excursion away from and back to z;. Then the following equation holds:

(uj — d)Ten = d,Toss (A.1)
or equivalently:
(u;' i di) Ta[ /
= . A2
= (A2)

However, if after T,, + T,;, surplus for part ¢ has not yet reached its associated

hedging level, then this would mean:
(uf — di)Ton < diToyy. (A.3)

In this case, (A.2) and (A.3) would yield:

(u; ; di) _ (ujd_jdj) (A4)

But (A.3) is in contradiction with the defining property of I';; to which ¢ belongs.
Thus hypothesis (A.1) must be false, and it is surplus for part 7 which will return first
to z; and remain there until mode «(¢) moves back to zero. In the meantime, surplus
for part type j has either already returned to =; or has not yet returned. In the former
case, using the same arguments as for the first cycle, one could conclude that it is

surplus for part i which will first return to z;. In the latter case. the same conclusion

holds since surplus for part j would be starting with a net deficit relative to the
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surplus for part ¢. Thus a choice of 7 is as the higher priority part whenever j € D;(c)
will yield a consistent SMH policy. Finally, when situation (b) is encountered, (A.1)
can be written for both parts i and j and z;(t), z;(t), leave z; and z; respectively,

simultaneously, and return to z; and z; simultaneously. B

Proof of Lemma 2

Let 5(t) be the mode of a two-mode machine with an operational mode (8 = 1) and
a failure mode (B = 0). Let ¢, be an arbitrary instant when 3(t) switches from 1 to 0.

Define:
Ton(B,te,t) : the portion of interval [t,,t], t, < ¢, spent in mode 8 = 1.

Taﬂ(ﬂ’ Le, t) = fli I(ﬁ(f)':l}dr'
Toss(B,te,t) :  the portion of interval [t t], t, < t, spent in mode 3 # 1.

Tors(Bte.t) = Ji, Iipry20pd
where I, is the set indicator function. When §(t) = a:(t), Let t, + T;, be the
instant z;(t) first returns to z; after just leaving it at time {,. Over an interval
[te,te + T;,], since at t,, &(t) just switched from mode 1 to mode 0 and thus z;(t,) =
Z;(te), and at t, + T, , &;(t) has switched back to 1 and thus z,(¢t,+7},) = Z.(t. + 7T+.)-
the net increments of z;(t) and Z;(t) over [t¢,t, + T+ ] must be equal. Furthermore,
since by definition of ¢, and ¢, + 75, z:(t.) = z:(¢¢ + T;,) = =.. the net increments are

both zero. Two cases must be distinguished, namely when i = 1 and when 7 # 1.

e case i = 1, we have &(t) = aft), d, =d,, ¥, = vy,. Thus z,(t) = £(t) and
(a(t),z1(t)) is a Markovian two-velocity process. Setting 3(t) = a(t) and ana-

lyzing the increments of z,(t), one can write:

U]ITM(Q, t(,Tr, + t() - leo”(a,tl,Tr, + t() =0.

This yields:
Ton(c,be, Ty +l) _ A1 (A.5)
Toff(a,tl,T,., + t() Un

Since T,, = Ton{a, te, Ty, + te) + To,,(a, te. T, + te), (A.3) yields:

Un
Tf‘ = o y ¥ r . A.6
N +leff(a te, Tr, + Le) (A.6)
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On the other hand

$2(Tr1 + tg) - .’Bz(tg) = vlng(a, te, Tr, + tg) - dzTo”(a, te, Tr, + te), (A7)

thus using (A.5) and (A.6),

vidy — d 2

T
v + d; !

Zo(Tr, +te) — z2(te) =

which suggests that while the actual motion of z,(t) involves two different ve-
locities v32 and —d, respectively, at least for intervals corresponding to a first
return of z,(t) to z; after leaving z;, one obtains the same net increment in z5(t)
by assuming a single (average) rate of decrease defined by:

re U1 v12d,
do = dy — ) A8
? un +dy 2 vy +d, (A-8)

The process which is defined as decreasing at rate d; when 2(¢t) # 2, (&(¢t) = 0)
and which coincides with z,(t) when z;(t) = z; (G2(¢t) = 1) is called the biased
version of To(t) and is denoted Z5(t). Thus when @,(t) = 1. I,(t) = I,(t), while

for &;(t) =0, Z2(t) decays at velocity —d,.

case i > 2, (&;(t) = a(t)), Setting 3(t) = &;(¢) and analyzing the increments of

Z{t), one can write:
CliTon(Gi te, Ty, + te) — CZiTaff(antln T, +t)=0

which yields -
Ton (@i be, Tr, +te) _ dy (A.9)

Torp(@te, Ty, +tg) Ty,
Recall that T, = Ton(G:, te, Ty, + te) + Tors (@i, te. Tr, + t¢). (A.9) yields:

—~ L = Ta[f(ai: be, TI‘. + {‘f) (A].O)

i i

T, =

Now, define the intermediary process zg,,, (t) such when &:(t) =1, zf,,(t) =

zi41(t), and zF,,,(t) increases at rate vy;4 while zf,_, (t) decreases at constant
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rate dr,,, otherwise. That such process exists can be seen by considering the
interval {t,, t, + T4] where ¢, +Ty is the first time &;(t) returns to mode one after
leaving it at time t,. By definition of the Z;(t) process, the net decreases of Z;(t)

and z;(t) over [t,,t, + Ty] are equal and:
—dTy = —diTorr(a, te, Ty + te) + viiTon(a, te, Ty + te), (A.11)

(A.11) yields if we recall that Ty is the sum of the two time variables on the
right-hand side of (A.11):

Tyrp(cte, Tu +t Tom(rte, Ta + te) _ vie + s
rr{a, te, Ty + te) —1- o te, Ty + Le) _ Ut ' (A.12)
Td Ty vy + d,

dr,,, can now be obtained by recognizing that it would be the rate of decrease
of %;(t) if the nominal production rate and the demand rate for part i were
respectively replaced by the nominal production rate and the demand rate for

part type 7+ 1. In this case an equation equivalent to (A.11) would be satisfied:

—driz1Ta = —dig1 Topp(a, te, Ta + te) + viee1 Ton(Q, te, Ty + Le). (A.13)

(A.12) and (A.13) yield after dividing (A.13) by Ty:

_ (v“ +a:i) Vlitt ~
U = L T o (B ) (A1)

This shows that if one attributes to zg,,,(t) velocity —df, _, as given by (A.14),
the constraint zr,_, (t) = z;4,(t) is satisfied both at t, and ¢, + T;. On the other

hand, zg,, (T, +t) — zr,, () = 41 (T, + te) — Z.41(te) and
Tr (Tr +te) —zr, (b)) = viis1 Ton(Bi te, Tr, + te) — dF, . Tops(Gui e, Tr, + L),

thus using (A.9) and (A.10),

Viit1id; —df, T,

~ T.,
Uy + d;

Tin(Tr, + te) — Zina (L) =
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which suggests that while the actual motion of z;;:(t) as well as zr,,, () involves
two different velocities (vyi4+1, —di+1, and vii41, —dF,,, respectively), at least for
intervals corresponding to a first return of Z;(t) (or z;(t)) to z after leaving z;,
one obtains the same net increment in z;,,(t) by assuming a single (average)
rate of decrease defined by:

~ Uy Uli-i-ld—i
H V1 + d; ' vy +d; (

The process which is defined as decreasing at rate d;4; when z;(t) # z; (&+1(t) =
0) and which coincides with zf,_, (t) and z;4,(t) when z;(t) = z; (@41 (t) = 1)
is called the biased version of z;;;(t) and is denoted by Z;,;(t). Thus when
Gir1(t) = 1, Ti41(t) = Ziy1(¢), while for &;41(t) = 0. I,41(t) decays at velocity

—dis1-

We now establish inequality (21) for the biased version of r,,(t). We observe
from (A.8), that dy = d, if and only if vy = uf, — d; = —d, which means that all
the available capacity is dedicated to part type 1. Consequently (since z,(t) is always
decreasing at rate d, until z,(t) hits 2,), Z5(t) = z,(t) while &,(t) = 0. However, if
vya # —da, dp < dy and F(t) > z,(t) as long as long as &,(t™) # 1 and & (t*) # 1. To
see this, suppose that there exists a duration ¢; < ¢+ 7, such that form ¢, t,+71; the
net increments of Z,(t) and z,(t) are equal. Thus, (A.7) and Z,(t; + t,) — T2(te) = =

Jg tl yield. -
Tm(a,tg,tl + t() _ dy — dy (A 16)
Torflate, ty +t)  wvio+dy

using (A.8), we have
Tm(&,t(,t; +t¢) — _d_] (A. 17)
Torr(a,tety +t) v’

which simply asserts that the net increments of z(t), form ¢,, ¢, + T},, is zero and

consequently ¢; = T,,, which is a contradiction. Further, since I,(t,) = r2(t,) and

dy < da, then Z(t) > zo(t) as long as &(t™) # 1 and a(t+) # 1.
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Now for i > 2,when d; = d; or vyiy1 = —dis1 (which asserts that the total capacity

is dedicated to part type i), (A.14) and (A.15) give
diy1 = dp,, =dis1, (A.18)

in which case Ti1(t) = Zip1(t) = zr,,, () while &:41(t) = 0. However, if d; < d; and

vii+1 # —dis+1, (A.14) and (A.15) yield :

di+l < de-l <diyg1 - (Alg)

and consequently, Zi41(t) > z:4(t) as long as G:41(t7) # 1 and &4 (t*) # 1. This
can be proven using arguments similar to those for the case i = 1. We sketch here
the different steps. In the first step we show that given dg,, < d;4;, Tg,, (t) >
Z;41(t) as long as &;(t~) # 1 and &;(t*) # 1. In the second step we show that
given diy; < dr.,,, Zis1(t) > zr. (L) as long as @41 (t7) # 1 and G (tt) # 1.
Finally since by construction, Z;41(t) = zg,,(¢t) whenever &y 1(t*) = 1 and that
consistency of SMH policies implies that &;,{t) = 1 only if &(¢t) = 1 (in which case
Ziv1(t) = Zi41(t)), we conclude that Zii(t) > zi41(t) as long as @i 1(L7) # 1 and

Gip1(tt) #1. 1
Proof of Lemmma 3

Under the ergodicity condition (d € £ [Q]), &:(t) is an ergodic alternating renewal
process with a failure mode and an operational mode. During the operational mode
the process Z;(t) = z;(t) and consequently the steady-state p.d.f. f (Z;) is identical
to fi{z:). However, during the failure mode, Z;(¢t) > x,(¢). Thus, in order to recover
fo (z;), one must correct for the bias of Z;(t) itself described by f:, (Z,) . In the sequel
an expression for the p.d.f. of £(t), f;‘.(ig), is derived, using Lemma 1 and Theorem
1. Indeed, if one focuses on the off portions of the &;(t) renewal process, and using
the assumed ergodicity of that process, a sample path based estimate of p.d.f. j.:._—| ()

can be written as follows:

- 1 t
fle)dsi = E [I{s.-els.sm.l} = lim -& /o e ele.c +ae,ydl. (A.20)
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where the averaging in the right-hand side of (A.20) is considered only over the off
part of the &;(t) renewal cycles (See Fig. (4)). Now given that at the beginning of the
off portion of a given renewal cycle of &;(t), ;(t) = 0, and otherwise £;(t) evolves in
a manner identical to and independent of the off portions of the other renewal cycles,
the process in Fig. (4) is itself a regenerative process. Consequently, from the Key

Renewal Theorem (Wolff 1989):

Tr_
EIO ' I{Ei€[€-€+d€il}dt ) (A.21)

E [I{gie[s.z-i-dtil}] = E [T,.._ ]

Applying Theorem 1 to the dynamics of ¢;(t), with an absorbing boundary condi-

tion set up at &;(t) = 0, yields:

T, _
E /o ' Tescrecrasgdt = /Om F(e. t)dedL. (A.22)

where f(c,t) is given by Theorem 1. In fact, denoting by [°(z,s) the Laplace
transform of f(z,t), yields, using (A.20), (A.21), (A.22):

=y F(e, 8)l,-0 A.93
fels) E:Tn-l_ . (A.23)

Equations (25) and (26) derive directly from Theorem 1 ( derivatives of Laplace
Transforms of first return time densities evaluated at s = 0). and in turn (A.23) also
derives from Theorem1.

Considering now that for &;(t) = 0:

z:(t) = Zi(t) — =:(t), (A.24)

if one notices that the motion of Z;(t) is strictly deterministic on the interval
[0,T;], then £;(t) as an excursion random variable is tndependent of Z,(L), so that one

obtains for the corrected steady-state p.d.f. of the hybrid process (x,,&; = 0):

folz:) = /0" falzi = &) [ (&) de. (A.25)

. ~ qi+l ~
with fo(z; — ) = Ez fai(zi—¢). 1
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Proof of Proposition 4

The proof utilizes the same arguments presented in the proof of the ergodicity criteria.
Indeed given that under SMH policies the capacity of the system is always fully utilized
whenever one part is away from its associated hedging point, then all the policies
described by hypercubes defined by ¢ € 3Q; generate trajectories that return to their
corresponding hedging point in ezactly the same time (Srivatsan and Dallery 1994)
given the same af(t) process sample path. This means that the first return time of
the lowest priority part type, p in our case, is constant and hence independent of the
choice of the nominal vector u§ for a particular ¢ € 99Q;. Consequently, the sojourn
time of z,(t) at its hedging level z, is also constant and independent of the choice of
u§. Also, recall that under the consistency condition of the SMH policy z;(t) cannot
reach its own hedging level unless all the other part types, 1,....i — 1, just reach or
are already at their respective hedging levels. Thus, the sojourn times at the hedging

levels z; and consequently the probability P [z; = 2], satisfy the following inequalities
Plzy=2|2Plzy=2)>--- > Plzp, = 2] (A.26)

Since ¢ € 9Q;, then the constant probability P [z, = zp] can be computed from
the lowest priority part using uié. Recall that under ¢ all the parts have the same
priorities, reach their respective hedging levels at the same time. and consequently
have the same probability to be at their associated hedging level. This means that

e
]
Ty — d[

Plz, =z =Plzi =2} = (uc‘.’ y ) (A.27)
n =

Consequently, using (37), (A.26) and (A.27), (41) and (43) can be obtained. B
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CHAPITRE VI

CONCLUSION

L'atelier de fabrication flexible représente de par sa flexibilité un outil de plus en plus
attrayant et indispensable pour demeurer compétitif sur un marché libre. L’objectif
est de satisfaire une demande, qui peut varier dans le temps, tout en réduisant le
niveau de surplus de production. Cette tache est rendue difficile par la présence
d’aléas, en particulier les pannes de machines. Nous avons passé en revue, les
travaux de recherches existants en rapport plus ou moins étroit avec nos travaux.
Nous avons pu constater que le segment de la littérature scientifique auquel se
rattachent directement les travaux de recherche dans cette thése présente plusieurs
limitations. Une des limitations vient du fait que l'on met énormément d’emphase
sur la caractérisation de la solution optimale en régime stationnaire par rapport &
’analyse et la caractérisation de la solution transitoire (sur horizon fini). La raison
sous-jacente a ce manque d’information est la difficulté maintes fois exprimée de
traiter ces questions. Suite A ces constations nous avons entrepris dans cette these

de répondre aux questions suivantes:

e Quelle doit étre la plus petite valeur de la longueur de I'horizon T' & partir
de laquelle on peut utiliser avec un certain degré de confiance la politique

optimale stationnaire (dont la structure est bien connue)?

e Pour la classe de politique a seuils critiques invarants, comment peut-on
optimiser les seuils critiques d'inventaire sur un horizon fini et comment sont-

ils affectés par la longueur de l'intervalle d'optimisation?

e Dans le cas d’un atelier de fabrication flexible produisant plusieurs types de
pieces, comment peut-on améliorer le controleur sous-optimal de Caramanis

et Sharifnia ?



185

Dans le chapitre I, nous avons présenté les différentes notions et définitions rel-
atives a I'atelier de fabrication flexible. Nous avons pu remarquer que le contréle de
flux représente une phase importante dans une structure de contrdle spécifiquement
congue pour répondre a I'explosion de complexité provenant de la prise en compte
dans I'analyse des pannes des machines [7]. Le but est de déterminer des taux
de production moyens & court terme, en anticipant dans un sens statistique les
différents modes du systéme de production et en respectant la capacité disponible
dans chaque mode. Un important concept émerge des travaux de Kimemia et
Gershwin (7], celui d’'un point critique associé & chaque mode faisable. La poli-
tique optimale, sur horizon infini, serait d’atteindre ce point le plus rapidement

possible et d'y demeurer tant que possible.

Au chapitre III, les résultats dans [17] et [10] qui constituent pour cette
thése un point de départ essentiel, ont été présentés. Une estimation d'une borne
supérieure du temps moyen de convergence des colits vers le régime stationnaire a
été proposée. Cette borne supérieure possede le désavantage d’étre uniquement une
borne sur la moyenne du temps de convergence et pourrait perdre son intérét si la

variance du temps de convergence est élevée.

Le chapitre IV constitue une réponse aux deux premiéres questions posées ci-
dessus. Nous avons considéré le probléme d'optimisation du contréle de flux sur
un horizon fini, pour une systéme multi-mode et produisant un seul type de piéces.
La classe (sous-optimale) des lois de production considérées est caractérisée par des
points critiques invariants & l'intérieur de ’horizon d’optimisation. Une équation de
renouvellement pour la fonctionnelle cott sur horizon fini a été développée et utilisée
pour générer les coefficients d’une expansion en série infinie de la transformée de

Laplace du cout vu comme fonction de la longueur de 'horizon T.

Le calcul des coefficients dans la série infinie est basé sur une résolution d’un
systéme d'équations différentielles récursives. Les coefficients dépendent du choix
particulier des seuils critiques d'inventaires et sont utilisés pour obtenir une ap-

proximation de la fonctionnelle colit comme somme de fonction exponentielles.
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L'optimisation du choix des seuils critiques procéde par la suite numériquement.

L'application des approximants de Padé donne d’excellents résultats
numériques et nous a permis d’estimer correctement le coiit méme pour des
longueurs d’horizons de temps faibles. La validation des approximants de Padé
a été possible par comparaison avec les résultats numériques obtenus par résolution
directe du systé me d’équations aux dérivées partielles donné au théoréme 3.1 basé

sur la méthode de Lax-Wendroff [30] pour des points critiques fixés.

L’estimation du temps de convergence vers le régime stationnaire a été possible
par |'analyse des singularités de la transformée de Laplace de la fonctionnelle coit.
Le résultat nous donne un critére d’estimation de la longueur minimale d’horizon
requise pour garantir un pourcentage d'erreur maximal en fonction du pourcentage

d’erreur par rapport au cout en régime stationnaire.

Le chapitre VI présente une réponse partielle & la troisieme question. Nous
avons considéré le probléme de contréle de flux d’un atelier de fabrication flexible
a deux états et produisant plusieurs types de piéces. Nous avons défini une nou-
velle classe de politiques a seuils critiques appelée politiques maximales simples 2
points critiques (politiques MSP). Tout comme les politiques caractérisées par des
hvpercubes souscrits proposées par Caramanis et Sharifnia [9], ces politiques sont
fonctions du seuil critique le long de chaque composante ainsi que le choix du point
c 2 la frontiére supérieure de 2, 'espace de capacité dans le mode opérationnel.
Ces politiques de production peuvent avoir des performances meilleures que celles
des politiques de Caramanis et Sharifnia vu le découplage de lois de production
pour chaque type de piéces. Ceci est dii au fait que la production est toujours
menée en exploitant la capacité maximale du systéme. En utilisant 'analyse de
premier temps de passage, ainsi que les approximants de Padé, nous avons montré
comment une analyse séquentielle des performances des politiques MSP est possi-
ble en commencant par la piéce ayant la priorité la plus élevée jusqu’a celle ayant
la priorité la plus faible. De plus, nous avons vu également établi que le critere

d'ergodicité pour le cas multi-piéce est minimal, i.e., le taux de demande des pieces
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se trouve a l'intérieur de I'espace de capacité moyen. Enfin, nous avons développé
des conditions nécessaires ainsi que des conditions suffisantes pour 'optimalité du

point critique global nul.

Au tableau des limitations de résultats, il est a souligner que I'analyse multi-
piéce telle que présentée n’est valide que pour un systéme & deux modes seule-
ment produisant plusieurs types de piéces. Cependant, L’amélioration apportée
par l'utilisation des politiques MSP telle que présentée est restreinte aux systémes
a deux modes sur horizon infini. Deux généralisations possibles de nos travaux pour-
raient donc étre considérées: d’'une part, horizon infini et systémes multi-mode pro-
duisant plusieurs types de piéces, et d’autre part systémes a deux modes produisant
plusieurs types de piéces sur horizon fini. La généralisation pour les systémes multi-
modes, horizon infini, présente quelques difficultés dans la détermination des ver-
sions biaisées des processus d’inventaire. Pour mieux saisir cette difficulté, con-
sidérons l'exemple suivant: Soit un systéme pouvant étre dans trois modes et
produisant deux types de piéces. Définissons, {Yf}, les séquences de variables
aléatoires représentant les durées de séjours successives dans les modes i = 1,2,3,
k=1,2,.. Soit v;j, i = 1,2,3, les vitesses de production de la piéce j = 1,2, dans
mode i et soit m = 2 le nombre d’états faisables. Nous avons donc deux points
critiques z;, Zo. Supposons z; > 2z avec z; = [z14, 22:] . i = 1, 2. Le premier probléme
provient de la difficulté de définir une politique MSP consistante. En effet sup-
posons que les taux de production soient choisis dans chaque mode faisable selon
les régles dictées par la proposition 5.1 de maniére a donner la priorité la plus élevée
a la piéce 1. Supposons qu'a un instant ¢t quelconque ol z,(t) > zj9, le mode du
systéme saute a 1'état 2 et que par conséquent, selon la politique & point critique,
le taux de production de la piéce 1 doive étre mis a zéro. La piéce 2 jouit alors de
la capacité maximale de production (puisque c’est une politique MSP). Ceci fait
en sorte que la probabilité que z,(t) atteigne =, avant que z;(t) atteigne z;, est
non nulle et la consistance n’est plus respectée. Il serait intéressant de voir dans un
travail futur si nous pouvons contourner cette difficulté en commutant les vitesses

de production non pas au point critique de la piéce prioritaire mais par rapport a
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une courbe de commutation plus générale, f(z, z3).

La deuxiéme généralisation possible consiste & considérer le cas & deux modes
multi-piéce sur un horizon fini. Il est a noter que si 'on ne s’en tenait qu’aux versions
biaisées des processus, I’analyse transitoire du cas mono-piéce multi-mode pourrait
étre intégralement reproduite. La difficulté principale provient principalement de la
contribution du terme d’erreur f| (£) au lemme 5.2. Nous pensons qu'il est possible de
développer pour le cas sur horizon fini des équations de renouvellement spécifiques

au terme. Ce qui pourrait étre 12 une voie de recherches futures prometteuses.

Finalement, dans cette thése, la nature des phénomenes considérés se résume
a la production des piéces et aux pannes aléatoires des machines. Des aspects tels
que la maintenance préventive, le vieillissement des machines et son effet sur les
taux de pannes des machines, de méme le caractére a l'occasion non négligeable des
temps de reconfiguration des machines n'ont pas été abordés. Certains de ces outils
développés dans cette thése pourraient constituer un bon point de départ pour la

prise en compte de tels aspects.
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