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Le genou humain est l'une des articulations les plus complexes du corps 

humain. Dotée de surfaces articulaires peu congruentes, cette structure doit concilier des 

impératifs totalement opposés comme celui de transmettre des charges très importantes et 

assurer la mobilité de la jambe par rapport à la cuisse. D'un point de vue anatomique, 

l'emplacement distal du genou par rapport au centre de gravité du corps induit sur 

l'articulation des charges de compression pouvant atteindre 4 à 7 fois le poids du corps 

durant des activités journalières telles que la marche, le jogging ou la montée d'escaliers. 

Les charges agissant sur l'articulation du genou durant la pratique de certains sports de 

performance comme le football, le ski ou le hockey sont beaucoup plus imposantes et du 

même fait, responsables de milliers de blessures et traumatismes liés au genou tels que la 

distension ou rupture des ligaments et la déchirure des ménisques ainsi que les processus 

dégénératifs qui en découlent telle la dégénérescence du cartilage (arthrite). 

Durant les deux dernières décennies, et dans le but de mieux cerner le 

comportement biomécanique du genou humain, des modèles analytiques et d'éléments 

finis avec différents degrés de précision et de raffinement se sont présentés comme une 

alternative fiable et un complément de moindre coiit aux méthodes expérimentales 

courantes. Ces modèles constituent des outils de choix lors des études expérimentales 

d'une part pour decider d'une méthodologie de déroulement d'une expérience ou bien 

pour interpréter les résultats expérimentaux. Dans le domaine clinique, ces modèles seront 

d'un apport certain lors de l'évaluation des procédures chirurgicales et serviront lors du 

design des substituts ligamentaires, méniscaies et des joints artificiels car toute condition 

d'altération peut être simulée par de simples modifications aux donnees initiales. 
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Dans cette optique, un modèle d'éléments finis du genou humain a été élaboré 

en fusionnant les techniques basées sur la tomographie assistée par ordinateur et la 

modélisation par éléments finis. Ce modèle se démarque des précédents modèles 

numériques du fait qu'il reproduit d'une manière beaucoup plus précise la géométrie de 

toutes les composantes d'un spécimen de genou humain, représente aussi bien 

l'articulation fémorotibiale que fémopatellaire, tient compte de la déformabilité des tissus 

mous et de l'aspect composite des ménisques, considère les principaux ligaments du 

genou ainsi que i'enroulement du ligament latéral interne sur le tibia et son attachement B la 

périphérie du ménisque interne, traite l'articulation qui s'opère au niveau du joint et le 

mécanisme d'enroulement du ligament latéral interne autour du tibia par des problèmes de 

contact sans friction à grands déplacements, et enfin, permet d'appliquer des chargements 

et conditions cinématiques multiples et simule des carences et déficiences variées. 

La recons~ction de la géométrie d'un spécimen de genou humain droit provenant 

d'un donneur de sexe féminin âgé de 27 ans est entreprise basée sur une acquisition 

d'images tomographiques obtenue à panir d'un scanner 'Pickers 1200SX'. Cette étape a 

été suivie d'une numérisation des surfaces articulaires et d'une série de mesures effectuée 

sur le spécimen. Ces données, une fois injectées dans les routines de génération de 

maillages et fusionnées avec les données pour les propriétés de matériaux choisies de la 

littérature, vont servir à la génération d'un modèle 3-D d'éléments finis de tout le genou. 

Le modèle ainsi généré est utilisé dans des analyses élastostatiques nonlinéaires dans 

lesquelles on a simulé une charge de compression axiale atteignant lOûûN appliquée sur la 

partie fémorale de l'articulation fémorotibiaie en extension. Les effets des conditions aux 

rives ainsi que ceux d'une rnéniscotomie totale sont analysés. Un comportement 

nonlinéaire du déplacement axial en fonction de la compression appliquée est observé avec 



des déplacements couplés signifxcatifs. A 1000N, les plateau* se partagent la compression 

plus ou moins équitablement quand la rotation axiale fémorale est fixée dors que dans le 

cas inverse, le plateau externe résiste à une charge sensiblement supérieure. Les 

ménisques contribuent au mécanisme de transfert de cette charge en transmettant au moins 

30% de la charge. L'ablation des ménisques altère sensiblement la cinématique du joint, 

cause une augmentation dans la contrainte maximale en compression au sein du cartilage et 

réduit les zones de contact. 

Sirnilairement, pour une position d'extension de l'articulation fémorotibiale, la 

rotation en varus-valgus en réponse à des moments en varus-valgus est nonlinéaire avec 

des déplacements couplés non négligeables. Des moments assez petits sont suffisants pour 

basculer l'articulation en varus ou en valgus avec un contact s'opérant sur un plateau 

seulement, interne en varus et externe en valgus. Les ligaments latéraux sont les 

principaux freins contre ce genre de chargement dû à leurs emplacements anatomiques 

favorables. En plus des effets des conditions aux rives sur les résultats, les conséquences 

d'une lésion du ligament latéral externe en varus et interne en valgus sont andysées. 

Ainsi, les ligaments croisés, mal positionnés, développent des tensions très élevées pour 

compenser l'absence du ligament latéral péndisant par le même fait les plateaux tibiaux qui 

subissent alors des charges compressives plus importantes. 

Lors d'un chargement par tiroirs antéro-postérieurs, une analyse préliminaire a été 

effectuée dans le but de comparer la réponse du genou à deux modes de chargement 

différents soit un tiroir fémoral en maintenant les déplacements couplés sur le tibia Libres 

ou vice versa. Une réponse nonlinéaire pour l'articulation fémorotibiale en extension est 

ainsi observée, caractérisée par une laxité antéro-postérieure d'environs 9mm à MOON. 



Une restriction sur les mouvements couplés du tibia affecte considérablement les résultats 

avec comme effet marquant, une réduction drastique de la laxité. Une section d'un des 

ligaments croisés résulte en une instabilité très marquée de l'articulation avec des laxités 

antéro-postérieures de 6 à 7 fois celle du cas intact. L'ablation du ménisque externe n'a eu 

que peu d'effets sur la cinématique du genou dors que la méniscotomie interne causa une 

altération marquée des déplacements primaires et couplés. 

Dans cette étude nous avons évalué, entre autre, la contribution des ménisques au 

mécanisme de transfert de charges lors des différents chargements à partir des 

composantes axiales des forces de contact agissant sur les zones exposées et couvertes du 

cartilage tibial. Nous avons confirmé la vulnérabilité du ménisque interne lors du tiroir 

fernord postérieur avec déficience du ligament croisé antérieur et lors d'un varus avec 

déficience du ligament latéral externe. En effet, la partie postérieure épaisse du ménisque 

agit comme butée de freinage contre un déplacement postérieur excessif et une rotation 

interne du fémur et doit par conséquent être préservé dans la mesure du possible lors 

d'une méniscotomie. L'ablation des ménisques sollicite les couches de cartilage qui se 

verront à haut risque de développer une dégénérescence. D'autre part, les tensions 

développées dans les ligaments croisés lors du tiroir antéro-postérieur et d'un varus- 

valgus avec déficience de l'un des ligaments latéraux sont considérables. Bien qu'en 

dessous de la charge ultime, ces forces peuvent être encore plus importantes en présence 

de chargements combinés et causer par conséquent des lésions aux ligaments croisés. 

Les résultats obtenus en termes de cinématique du genou, mécanisme de 

transmission de charge, tensions dans les ligaments. forces et pressions de contact pour 

les cas de chargement traités sont en accord avec les mesures expérimentales. 



ABSTRACT 

The h e e  joint is one of the most complex articulations in the human body. Having 

slightly conforming articular surfaces, the knee joint fulfills two tasks with opposite 

demands of transmitting very high loads through the articulation while providing the 

necessary flexibility and mobility of the leg with respect to the thigh. From an matornical 

point of view, the superficial position of the knee joint in the body exposes it to injuries 

and impacts. Moreover, the distal location of the joint below the center of gravity of the 

body causes compressive loads as high as 4 to 7 times the body weight during day to day 

activities such as walking, jogging or ascending stairs. Although yet unmeasured, the 

loads acting on the articulation during some aggressive athletic activities such as football, 

ski or hockey are suspected to be much larger and could, thus, be responsible for 

thousands of knee injuries and degenerative processes like the ligamentous rupture, partial 

or total meniscal tears and their subsequent trauma afTecting the articular cartilage 

(os teoarthritis) . 

During the last two decades, severd analytical and finite element models with 

different degrees of accuracy and sophistication have been introduced. Such model studies 

constitute reliable and low cost means to complement experirnental investigations. They 

can be useful tools for analyzing complex biolcgical systems, interpreting experimental 

observations and designing new experimental procedures. A mathematical model analysis 

of the knee joint is, thus, useful for quantitative investigation of knee joint biomechanics, 

evaluation of existing surgical and diagnostic procedures and design of artificial joints. 

Various physicai and clinical conditions can relatively easily be modeled and analyzed by 

appropriate alterations of the input data 



Merging the cornputer-assisted tomography technique dong with the finite element 

modeling, the present finite element model is distinguished from the previous models for 

taking into account the presence of the knee components with accurate geometries, both 

tibiofemoral and patellofemoral articulations, compliant articular cartilage layers and 

nonhomogeneous composite nature of the menisci, major knee ligaments including the 

wrapping of the medial collateral ligament around the proximal tibial edge and its 

attachment to the periphery of the media1 meniscus, articulation of the femoral and tibial 

cartilage layers with each other as well as with the intervening menisci and the wrapping 

mechanism of the media1 collateral ligament which are treated as general large 

displacement frictionless contact problems, and finally, severai loading and kinematic 

conditions as well as various types of alterations and injuries. 

A fresh frozen right huma. knee joint of a 27-year-old woman was chosen to 

reconstmct the detailed geometry of the bony structures using a 'Picker 1200SX' 

computerized tomography (CT) system. Owing to the poor visibility of the soft tissues on 

CT images, direct digitization of articular surfaces and measurements were also used. 

These data were then merged with a mesh generation algorithm and material properties 

reported in the literature to develop a detailed three dimensional nonlinear model of the 

knee joint. 

Nonlinear eiastostatic analyses were carried out considering the tibiofemoral 

articulation in its full extension position under compressive loads of up to lOOON applied 

to the femorai shaft. The effects of boundary conditions and total bilateral meniscectomy 

on the overall response were also analyzed. The joint exhibits a nonlinear stiffening 

response in the axial direction with large coupled displacements. At 1000N, the load 



xii 

transfemd through the joint was shared nearly equally between lateral and medial plateau~ 

when the fernoral axial rotation was constrained whereas it was greater on the lateral 

plateau as the axial rotation was left free. The menisci contributed to the load-bearing 

mechanism by transmitting at least 30% of the compressive load. Total bilateral 

meniscectomy altered the joint kinematics, increased the contact stresses and reduced the 

con tact areas. 

Under varus-valgus moments of up to f lSN-m, the joint response was nonlinear 

with large coupled displacements. The fully extended tibiofemoral articulation 

demonstrated varus or valgus openings under rather small moments in which the 

articulation occurred at one plateau only, medial in varus and lateral in valgus. The 

collaterals were anatomically the best positioned ligaments to resist varus-valgus 

moments. Effects of boundary conditions as well as  removal of the collaterals were further 

analyzed. Due to their less effective position in resisting varus-valgus moments, the 

cruciates deveioped larger tension to compensate the loss of restraining force caused by 

section of collaterals resulting in an increased compression penalty on the tibial plateaus. 

In anterior-posterior drawers, the laxity of the tibiofemoral articulation at full 

extension was slightly sensitive to whether the load was applied on the tibial shaft while 

keeping the coupled femoral motions unconstrained or vice versa. Nonlinear stiffening 

response of the primary displacement with increasing applied antenor-posterior forces was 

observed leading to a total primary laxity of about 9mm at k400N. Constraint on al1 

coupled motions of the tibia markedly diminished the joint laxity. Section of either cmciate 

Iigaments drastically increased the joint laxity by about 6 to 7 times. While lateral 

meniscectomy had only small effects on the overall joint kinematics, excision of the medial 



meniscus substantially dtered both primary and coupled joint motions. 

In this study, the contribution of the menisci to load-bearing function of the knee 

was demonstrated by evaluating the portion of the axial cornpartmental load transmitted 

through the meniscus (ie, covered zone) as compared with that passing through the entire 

covered and exposed cartilage zones. The vulnerability of the medial meniscus during both 

posterior femord drawer in cruciate ligament-deficient joint and varus moments in lateral 

collateral-deficient joint was confirmed. The medial meniscus experienced large forces 

through its posterior third acting as an efficient wedge against excessive femoral posterior 

displacements and intemal rotations supporting the clinical observations recommending 

the preservation whenever possible of the posterior horn dunng medial meniscectomy. 

Tensile forces developed in the cmciates during anterior-posterior drawers and varus- 

valgus moments in collateral ligament-deficient joint were very large. The cruciates are. 

therefore, at high nsk of failure. specially when other modes of loading are also present. 

The overall predictions of the tibiofemord mode1 in terms of joint kinernatics, 

mechanism of load-transmission across the articulation, tensile forces in ligaments and 

contact forces or pressures on the plateaus for the specific loading cases considered in this 

work are in good agreement with reported experimentai measurements. 
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CHAPITRE 1 

INTRODUCTION 

Le genou humain n'est pas une simple charnière mais une articulation 

beaucoup plus complexe, elle constitue même l'une des structures biologiques les plus 

complexes du corps humain. Cette articulation est souvent considérée comme un organe 

de transmission 'biologique' comparable à un convertisseur de couples. Dans cette 

analogie 'mécanique', les ligaments jouent le rôle de liaisons pour la transmission alors 

que les surfaces articulaires sont considérées comme des paliers de support, enfin, les 

muscles sont les organes moteurs ou freins pour ce système. 

L'articulation du genou est exposée à des chargements combinés, statiques, 

dynamiques, à court et à long terme, dépendement des formes d'activités et types 

d'exercices. Ainsi, à titre d'exemple, lors de la marche, ies niveaux des charges cycliques 

auxquelles est exposée cette articulation sont très élevés, la charge de compression 

maximale peut atteindre 6 à 7 fois le poids total du corps, le cisaillement antérieur- 

postérieur 2 à 3 fois le poids du corps et le moment de torsion généré atteint 150lbf-in 

(17N-m) [25,50]. De plus, la situation superficielle de l'articulation, l'absence de 

protection et le faible emboîtement des surfaces, nécessaire pour permettre de grands 

mouvements relatifs d'une surface par rapport A l'autre, en font une articulation 

particulièrement exposée aux traumatismes, luxations et entorses. D'autre part, lors de la 



pratique de certains sports de performance, le processus de transfert de charge s'opère 

parfois à la limite des capacités mécaniques des tissus biologiques et est par conséquent à 

l'origine de divers traumatismes et blessures qui, en plus des douleurs et malaises qu'elles 

engendrent, causent d'énormes troubles de fonctionnement à l'articulation et limitent par le 

même fait la performance physique du genou. 

Aux Étais Unis, le centre national des études statistiques en santé rapporte plus 

de 7,000,000 opérations chirurgicales exécutées annuel1ement en relation avec des 

problèmes du genou dont 600,000 impliquent les ménisques [59].  La méniscotomie, 

autrefois assez répandue, consiste en l'excision totale des ménisques endommagés. De 

nos jours, cette pratique drastique n'est exécutée que dans des cas ultimes et est de moins 

en moins fréquente grâce à une meilleure compréhension des rôles importants que jouent 

les ménisques dans le mécanisme de transfert de charge à travers le genou. Beaucoup 

d'études de suivi ont par ailleurs établi une association directe entre la méniscotomie et la 

dégénérescence du cartilage [59]. L'arthroplastie qu'est le remplacement total ou partiel de 

l'articulation du genou par un implant suite à cette dégénérescence, demeure, dans 

beaucoup de cas, un choix inévitable. Entre 400,000 et 450,000 interventions 

chirurgicales d'entremise de prothèses de genou sont recensées annuellement aux États- 

Unis [6]. 

On retrouve dans la littérature une multitude de travaux de recherche se 

rapportant à la biomécanique du genou humain et touchant plusieurs aspects: 

Le fonctionnement: dans le but d'aider à comprendre la biomécanique du 

genou par une compréhension du rôle et comportement mécanique de chacune des 



composantes, de la cinématique très complexe du contact qui s'opère entre les différentes 

surfaces articulaires, ainsi que du processus de transfert de charge de 1'0s fémoral à 1'0s 

tibia1 en passant par les structures anatomiques en présence. 

La prévention: prédire les chargements et les types d'activités qui peuvent 

être nocifs à court ou à long terme pour le genou en se basant sur une bonne connaissance 

des propriétés mécaniques des tissus biologiques présents. 

Le diagnostique: évaluer la laxité du genou et le relâchement ou distension 

ligamentaire par le biais de tests in-vivo basés sur l'application au genou de chargements 

simples ou combinés. manuellement ou par le biais de laximètres pour stimuler des 

ligaments bien particuliers et de comparer le comportement global du genou à celui du 

genou normal pour fin de diagnostique. 

Le traitement: prescrire des techniques de réadaptation et traitements en 

physiothérapie pour certains genoux pathologiques afin d'en assurer un retour graduel 

vers l'intégrité articulaire et faire l'étude, dans le cas extrême, de prothèses ligamentaires 

ou de prothèses de l'articulation au complet qui demeure l'unique solution dans les cas de 

dégénérescence avancée du cartilage, rencontrée souvent chez les sujets âgés, obèses ou 

ayant subi au préalable une ablation du ménisque. 

1.2. LE GENOU HUMAIN: DE L'ANATOMIE À LA BIOMÉCANIQUE 

L'anatomie du genou, bien que complexe demeure assez bien connue (Figs 1.1 

et 1.2). Pour une position d'extension complète du genou, l'os du fémur et 1'0s du tibia 

sont presque alignés, I'articulation principale a lieu entre les condyles du fémur et les 

plateaux tibiaux par l'intermédiaire des ménisques et des couches d'épaisseurs variables de 

cartilage, disposées sur la partie proximale du tibia ainsi que sur la partie distale du fémur. 



Un contact additionnel s'opère entre le fémur et la rotule, par le biais des couches de 

cartilage, au fur et à mesure que la flexion du fémur s'amorce. Les principales 

composantes passives de l'articulation sont les suivantes: 

Tissus mous: ménisques, cartilages et ligaments. 

Parties osseuses: fémur, tibia et rotule. 

Les ménisques sont deux structures serni-lunaires de sections transversales 

relativement triangulaires, interposés entre les condyles fémoraux interne et externe et les 

compartiments du plateau tibial correspondant. Us recouvrent, chacun, jusqu'à deux-tien 

de la surface articulaire tibiale [28] et s'ancrent profondément dans l'os tibial, au niveau de 

leurs cornes antérieures et postérieures (Fig. 1.3). Ils sont caractérisés en surface par deux 

fines membranes, constituées d'un réseau de fibres de collagène orientées d'une manière 

aléatoire, l'épaisseur de ces couches est estimée à 30-2ûûpm [3 1,321. Des tests de traction 

sont effectués sur des spécimens de ménisques dans le but de caractériser le matériau et 

d'analyser les mécanismes de chargement qui peuvent provoquer à des lésions méniscales 

[31-34,49,62]. Les spécimens prélevés en surface, dans les directions radiale et 

circonférencielle. ont montré des tendances similaires, par contre ceux prélevés en 

profondeur ont montré des tendances très différentes. LRs résultats de ces tests ont 

confirmé l'existence d'une direction privilégiée pour les fibres de collagène qu'est la 

direction circonférencielle car les échantillons prélevés dans les directions radiales, dans 

différentes positions des ménisques, contrairement aux échantillons dans les directions 

circonférencielles, ont développé peu de résistance lors du test de traction [3 1,33,34,49]. 

Tissakht et Ahmed (1995) lors d'une étude récente ont fourni, par le biais de tests 

d'élongation uniaxiale, un éventail de propriétés mécaniques pour différentes régions et 

profondeurs à travers les ménisques. Cette étude a confirmé entre autres l'existence d'une 



direction privilègiée pour les fibres de collagène qu'est la direction circonférencielle et a 

appuyé le concept d'une modélisation composite pour ce tissu. 

Les cartilages articulaires, dont la structure biologique est similaire à celle des 

ménisques, sont des couches d'épaisseurs variables de substance blanchâtre disposée sur 

chacune des composantes osseuses. On remarque que dans les régions de contact qui sont 

les plus chargées, une épaisseur de cartilage plus importante est présente [74]. Les 

épaisseurs de cartilage varient de Irnm à 5mrn sur la surface de contact de la rotule, ne 

dépassent pas 2mm sur les condyles fémoraux et varient de lmm à 4mm sur les plateaux 

tibiaux. La distribution des fibres de collagène à travers I'épaisseur du cartilage est très 

irrégulière. Selon la proportion et l'arrangement des fibres de collagène au sein du tissu, 

on distingue trois différentes zones [22]. La première zone 'superficielle' représente 10- 

20% de l'épaisseur du cartilage et caractérisée par une densité élevée de fibres de collagène 

qui y sont entassées et orientées arbitrairement dans un plan parallèle à la surface 

articulaire. Dans la deuxième zone 'intermédiaire' (40-60% de l'épaisseur du cartilage), les 

fibres de collagène sont orientées d'une manière aléatoire alors que dans la troisième zone 

'profonde' (30% de l'épaisseur du cartilage) ces fibres s'orientent perpendiculairement à 

l'interface cartilage-cartilage calcifié et contribuent à ancrer le tissu dans l'os sous-jacent. 

Le cartilage articulaire est un matériau biphasique formé d'une phase solide et 

d'une phase fluide. Son comportement viscoélastique dépend non seulement des 

propriétés mécaniques intrinsèques de la phase solide, poreuse et perméable, mais aussi de 

la résistance générée par l'écoulement du fluide interstitiel à travers la matrice solide suite à 

une déformation du tissu 121,611. Des tests d'indentation sont souvent utilisés pour 

caractériser les propriétés viscoélastiques du cartilage. La réponse à court terme du 



matériau au chargement (habituellement entre O et 1 s) procure une estimation des 

paramètres élastostatiques du matériau comme le module d'élasticité E (à partir d'un test de 

défornation uniaxiale), le module de cisaillement G (à partir d'un test de torsion). Ainsi, 

lors de ces tests, des valeurs de 2.3MPa [36], 1 IMPa et l2Mpa ont été obtenues pour le 

module d'élasticité et 4.2MPa pour le module de cisaillement et 0.42 pour le coefficient de 

Poisson [40,6 13. Des valeurs comparables (E= 12MPa et V=0.45) ont été utilisées lors 

d'études élastostatiques d'éléments finis faites sur le cartilage tibial et lors desquelles ce 

tissu a été modélisé par un matériau isotrope élastique linéaire et peu compressible 

139,433. 

Dans des conditions normales, ménisques et cartilages sont fortement hydratés, 

possédant des perméabilités relativement faibles et des comportements mécaniques 

cruciaux comme une bonne résistance en compression, une grande capacité à absorber les 

chocs et une parfaite habilité à répartir les charges, uniformément, sur une zone plus large 

afin de réduire les contraintes 1221. 

Les ligaments, souvent connus comme structures biologiques passives, sont 

une partie intégrante de l'anatomie du genou. On peut énumérer les principaux ligaments 

du genou comme étant: 

- Les ligaments latéraux interne et externe: le latéral interne &LI) représente 

une large bande fibreuse, aplatie, reliant le condyle fémoral interne à l'extrémité interne du 

tibia en s'attachant également à la périphérie interne du ménisque interne. Le ligament 

latéral externe (LLE) est une bande de section transversale presque circulaire attachant le 



condyle fémoral latéral à la face externe de la tête du péroné et n'entretient aucun lien 

anatomique avec la périphérie externe du ménisque latéral [24,28 1. 

- Les ligaments croisés antérieur et postérieur. Le croisé antérieur (LCA) est 

situé au milieu du joint, formé de fibres longues et alignées, il assure le lien entre une zone 

semi-élliptique sur la partie interne postérieure du condyle latéral du fémur avec la surface 

interne du massif des épines tibiales près de la corne antérieure du ménisque interne. Le 

croisé postérieur CCP) est pour sa part fixé à la face externe du condyle interne ainsi qu'à 

la partie postérieure du plateau tibial postérieurement à la proximité de la corne postérieure 

du ménisque externe [28,30]. 

- Le ligament rotulien ou tendon patellaire (TP) qui est une bande fibreuse de 

section transversale elliptique, légèrement aplatie, lie la partie centrale du tendon du 

quadriceps à la tubérosité tibiale en passant par la surface externe de la rotule [28]. 

- La capsule fibreuse (CAP), consiste en une fine membrane ceinturant toute 

la cavité articulaire, s'attachant de façon périphérique de la surface articulaire tibiale 

proximale à celie fémorale distale [24,28]. 

Comme tout les tissus conjonctifs, les ligaments, tendons, cartilages et 

ménisques sont composés principalement d'eau et de fibres de collagène, fibres d'élastine 

et des protéoglycanes [22,27,29]. Ces trois éléments déterminent par leurs proportions et 

orientations les différentes propriétés mécaniques des tissus conjonctifs. Les fibres de 

collagène sont la composante qui procure aux tissus leur résistance élevée en tension, leurs 

module d'élasticité dépasse lOûûMPa pour une limite élastique de 1% à 2%. Leurs rapport 



(longueur/diarnètre) d'environ 200 les rend inefficaces en compression [29]. Les fibres 

d'élastine d'un module d'élasticité d'environ 0.6MPa sont beaucoup moins résistantes 

mais leun limite de déformation élastique atteint parfois 6096, de ce même fait, elles sont 

souvent qualifiée de caoutchouc biologique [29]. La protéoglycane (PG) est un terme 

décrivant un ensemble de glycoaminoglycanes (GAG) qui sont des molécule fortement 

hydrophiles (avide d'eau). Les PG sont la composante primordiale de la matrice 

extracellulaire qui renferme les fibres de collagène et d'élastine et permet. par sa phase 

fluide, le transport des nutriments et d'hormones. 

On remarque que pour les tendons, les fibres de collagène sont pratiquement 

alignées (Fig. 1.4) ce qui leurs confère une résistance très élevée en tension (Fig. 1 S). 

Les fibres de collagène au sein des ligaments sont orientées dépendement de la fonction du 

ligament mais sont en général moins ordonnées (Fig. 1.4), leur résistance en tension est 

moins élevée que celle des tendons. La peau, pour laquelle ces fibres n'ont pas une 

direction prédominante (Fig. 1.4), est moins résistante en tension et est extensible dans 

toutes Ies directions. 

Une bonne connaissance des propriétés mécaniques des ligaments du genou 

demeure un prérequis pour les analyses cinématiques et d'éléments finis du genou 

humain. De plus, ces données seront d'une grande nécessité lors de la sélection, du design 

et de l'évaluation des prothèses ligamentaires. Pour cela, les différents paramètres 

définissant les propriétés mécaniques d'un ligament à savoir le module d'élasticité. la 

déformation maximale, la contrainte maximale et la densité d'énergie à la rupture, sont 

évalués par plusieurs auteurs pour les principaux ligaments [30,37,38,63,76]. Ces 

recherches ont par ailleurs abouti à une grande variabilité dans les résultats, due en partie 2 



la différence d'âge entre les donneurs, aux différents niveaux d'activités des donneurs 

ainsi qu'à des causes purement techniques. Ainsi, la valeur moyenne de la charge à la 

rupture du LCA par exemple varie de 734N pour des spécimens provenant de donneurs 

âgés (plus de 47ans) à 1730N pour ceux provenant de jeunes donneurs [76]. Des modules 

d'élasticité similaires variant de 300-390MPa ont été obtenus pour le LCA, LLE et LCP 

pour une contrainte à la rupture allant de 30-40MPa et une déformation maximale 

d'environs 15%. Le TP plus résistant et rigide possède des valeurs moyennes pour la 

contrainte et déformation à la rupture de 68.5MPa et 13.5% et un module d'élasticité de 

643.IMPa [37]. Contrairement aux résultats cités pour le LCP, une étude plus récente 

[38] a fourni des valeurs différentes pour les faisceaux antéroexterne (aLCP) et 

postérointeme (pLCP) du LCP. Ainsi le aLCP, d'une section transversale 4 fois plus 

grande que celle du pLCP, possède des valeurs moyennes du module d'élasticité de 

248MPa contre 145MPa pour son complémentaire (pLCP) et des valeurs pour la 

contrainte et déformation à la rupture de 35.9MPa et 18% contre 24.4MPa et 19.5% pour 

le pLCP. 

Étant constitués de faisceaux distincts par leurs propriétés mécaniques, 

longueurs et orientations relatives des sites d'insertion, les ligaments présentent des 

comportements en traction qui sont différents selon la direction choisie pour le test 

(orientation du fémur par rapport au tibia). Comme exemple, la charge nécessaire pour 

rompre le LCA est d'environs 2300N si la direction du test coïncide avec l'axe du 

ligament. Cette charge, néanmoins, diminue jusqu'à environs 1700N si le spécimen est 

testé selon une direction parallèle à l'axe du tibia [35]. Durant Ie test, les différents 

faisceaux sont chargés d'une manière non uniforme ce qui résulte généralement en une 

rupture prématurée et séquentielle (en escaliers) du ligament [38]. Pour palier à ça, 



plusieurs auteurs se sont intéressé à tester un faisceau bien spécifique du ligament 

considéré, en le fixant avec ou sans ses attaches osseuses même si l'usage de cette 

dernière méthodologie de fixation demeure controversé car elle peut provoquer une rupture 

prématurée du spécimen testé [38]. 

Récemment, Mommenteeg et al. (1996) ont présenté une nouvelle approche 

expérimentale-numérique pour tenir compte du comportement mécanique 'variable' au sein 

du ligament. Typiquement, plusieurs préparations os-ligament-os d'un même ligament 

sont sélectionnés et testés en traction, un modèle analytique est par la suite introduit pour 

chacun des faisceaux, qui, une fois optimisé, va servir de donnée de base pour prédire le 

comportement du ligament en entier, testé dans n'importe quelle orientation. Cette étude a 

également permis d'évaluer le nombre de faisceaux optimal (entre 4 et 7 faisceaux) pour 

retracer fidèlement le comportement mécanique de chacun des ligaments du genou [63]. 

Un aspect prépondérant de la réponse biomécanique du genou humain est 

principalement dicté par le mécanisme de contact qui s'opère entre les différentes couches 

de cartilage et les ménisques. Deux articulations fonctionneiles sont présentes, la première, 

fémorotibiale de type double condylien s'opère entre le fémur et le tibia et la deuxième 

fémopatellaire de type throchléen, entre la rotule et le fémur. C'est grâce aux mécanismes 

ingénieux de ces articulations que le genou arrive à concilier des impératifs tout à fait 

contradictoires comme: supporter et transmettre des charges très importantes, assurer une 

grande stabilité du membre inférieur et aussi, permettre la mobilité nécessaire de la jambe 

par rapport à la cuisse. Pour une position d'extension complète du genou, la rotule n'étant 

presque pas en contact avec la surface trochléenne d u  fémur, seule I'articuIation 

fémorotibiale est fonctionnelle. En tout, sept régions de contact sont recensées pour ces 



deux articulations entre: ménisque et cartilage tibial, cartilage fémoral et ménisque et entre 

cartilage fémoral et cartilage tibial, pour les côtés interne et externe, séparément. Enfin, le 

dernier contact est établi entre cartilage fémoral et cartilage rotulien quand le mouvement de 

flexion s'amorce (Fig. 1.6). Il est a noter ici que lors de cette flexion l'activité musculaire 

au niveau des quadriceps est notable, des efforts additionnels, variables en direction et 

amplitude, sont appliqués à la rotule (Fig. 1.7). 

Les surfaces de contact ont des géométries très complexes et des profils 

différents. Ainsi, les condyles fémoraux sont convexes avec des rayons de courbure dans 

le plan sagittal qui diminuent de façon marquée vers l'arrière des condyles. Le plateau 

tibial est formé de deux compartiments ou glènes; interne, de forme plutôt elliptique et un 

rayon de courbure légèrement concave, et externe, de fome presque circulaire et un rayon 

de courbure légèrement convexe (Fig. 1.8). Ces deux compartiments sont séparés par 

deux épines tibiales qui se situent sensiblement au centre de I'articulation fémorotibiale. 

Les surfaces articulaires ne sont pas tout à fait congmentes. Le coefficient de frottement au 

niveau de l'articulation étant très faible, des mouvements relatifs très complexes du tibia 

par rapport au fémur sont observés lors d'un chargement quelconque sur genou et sont 

généralement représentés par six degrés de liberté dans l'espace. À titre d'exemple, lors 

d'une simple rotation en flexion-extension, deux mécanismes sont observés; un 

mouvement de roulement du fémur sur le plateau tibial ainsi qu'un mouvement de 

glissement postérieur du tibia sur le fémur: c'est le mécanisme de roulement-glissement 

(Fig. 1.9). L'autre mécanisme dit 'de dévissage' es: représenté par une rotation interne du 

tibia au fur et à mesure que la flexion s'amorce. Les faisceaux constituant un même 

ligament ont alors des comportements différents quand le genou est sollicitée, cette 

observation est plus apparente pour les ligaments croisés (Fig. 1.10). 



Enfin, l'articulation du genou est rendue stable et puissante grâce à des muscles 

longs qui s'insèrent de part et d'autre du genou. On distingue quatre groupes principaux 

de muscIes: antérieur (extenseur), postérieur (fléchisseur), interne (adducteurs) et externe 

(abducteurs). Le muscle essentiel ii l'extension est le quadriceps. Il possède quatre 

composantes: le droit antérieur, le crural, le vaste interne et le vaste externe. Ces quatre 

corps musculaires convergent en un tendon commun qui enveloppe la rotule et s'insère 

plus bas sur la tubérosité tibiale. 

1 .3  REVUE BIBLIOGRAPHIQUE 

Dans la présente revue bibliographique on va se contenter de citer et commenter 

s'il y a lieu les études expérimentales qui se sont intéressées à la réponse de l'articulation 

fémorotibiale sous l'effet des chargements qu'on a choisi d'analyser à savoir une 

compression axiale, des moments en varus-valgus et des tiroirs antéro-postérieurs. 

Ensuite, on fera une vue d'ensemble sur les principaux modèles analytiques et d'éléments 

finis du genou humain présents dans la littérature. 

1.3.1 Études expérimentales 

Les études expérimentales menées dans le domaine de la biomécanique du 

genou sont très nombreuses et variées. Elles touchent plusieurs axes de recherches comme 

celui de la quantification des surfaces de contact et des pressions de contact dans le but de 

mieux cerner le mécanisme de transfert de charge à travers l'articulation et de pouvoir, 

ainsi, prédire les zones de cartilage à haut risque de développer une dégénérescence ou les 

zones de ménisque pouvant développer une lésion. Des techniques basées sur la 

stéréophotogrammétrie [1,2], la radiographie [9] ou le moulage par injection de substances 



au niveau de l'articulation [7,14] sont là pour prédire les zones de contact. D'autres 

techniques peuvent, de plus, détecter en régime permanent [5,7] ou transitoire [8], les 

pressions de contact. Des films sensibles, capteurs de micro-indentation ou piézorésistants 

sont alors interposés entre les surfaces articulaires ou ancrés superficiellement dans le 

cartilage. Ces techniques utilisent des montages (Fig. 1.1 1) permettant de simuler et 

d'appliquer des chargements assez complexes. 

En plus de la rigidité globale de la structure du genou en compression axiale, 

plusieurs auteurs se sont particulièrement intéressés à bien définir le rôle des ménisques 

dans le mécanisme de transfert de charge (Fig. 1.12). Beaucoup d'entre eux s'accordent à 

dire que les ménisques sains peuvent transmettre au delà de 50% de la charge totale en 

compression pour un joint en position d'extension complète [5,13,14]. L'effet d'une 

méniscotornie partielle ou totale sur le mécanisme de transfert de charge a été observé 

[5,10,11] avec une tentative pour trouver une relation quantitative qui exprime, pour des 

angles de flexions variés du fémur, les aires des différentes surfaces de contact ainsi 

qu'une corrélation entre ces mêmes aires et le poids, taille et sexe des donneurs [9]. Une 

étude expérimentale récente a permis, en utilisant une technique de radiographie, de 

déterminer avec une précision moyenne (0.5mm) les mouvements très complexes des 

ménisques allant du simple mouvement d'expansion radiale des ménisques sous l'effet 

d'une compression pure aux mouvements beaucoup plus complexes sous l'effet d'une 

compression combinée à des rotations axiales pour différents niveaux de flexion 1121. 

En varus-valgus, l'investigation de la rigidité globale de l'articulation a fait 

l'objet de plusieurs études in-vitro [51,52,70-73,82,83]. Une laxité primaire variant de 

3.5' à 12" est observée 2 des moments en varus-valgus de f lSN-m dépendement des 



restrictions imposées sur les mouvements couplés du joint. En général lors des tests 

expérimentaux, la réponse la plus flexible correspondait 2 des restrictions minimes sur les 

mouvements couplés [7 1,721. Idéalement, lors de tests in-vitro, on essayera de préserver 

dans la mesure du possible les six degrés de liberté d'une composante osseuse par rapport 

à l'autre. Dans le cas contraire, seuls les déplacements couplés qui affectent par leurs 

absences les résultats seront pris en considération comme c'est le cas pour la rotation 

axiale et le déplacement interne-externe [3,82]. Les changements dans la laxité primaire à 

la suite de l'excision de l'un des latéraux a été mesurée [70,72] alors qu'en terme de 

mouvements couplés, seuls Hollis et ai. (1991) et Gollehon et al. (1987) ont présenté des 

résultats pour la rotation axiale du tibia pour des spécimens avant et après excision du LLE 

et du tendon poplité en varus. 

Depuis l'étude classique publiée par Girgis et al. (1975), plusieurs études in- 

vitro se sost succédées dans le but d'évaluer la contribution des ligaments du genou à 

résister à un tiroir antéro-postérieur. La rigidité antéro-postérieur et la laxité du joint ont été 

évaluées [30,70,72,77-801 avec une grande variabilité dans les résultats due, entre autres, 

aux différences entre les spécimens, aux restrictions imposées aux mouvements couplés 

du joint ainsi qu'aux différences entre les procédures expérimentales utilisées. Il est à 

noter que lors de ces études in-vitro, la charge antéro-postérieure est communément 

appliquée sur le tibia avec, entre autres, la rotation tibiale qui est maintenue libre. Cette 

configuration peut éventuellement mener à une estimation erronée de la laxité du joint car 

la mesure de la laxité est alors strictement dépendante de la position du point de lecture le 

long de l'axe interne-externe. De plus, cette charge horizontale appliquée au tibia est 

susceptible d'induire un moment de torsion axial si elle se trouve décalée par rapport à 

l'axe de rotation axiale. En plus de la rotation axiale (interne lors d'un tiroir tibia1 antérieur 



et externe lors d'un tiroir postérieur) qu'est le mouvement couplé le plus significatif 

[7 1,72,77-801, une importance relative a été attribuée au mouvement couplé interne- 

externe qui, une fois libéré, affecte grandement la rotation axiale en magnitude (diminution 

marquée) et parfois même en sens [72,80]. 

Dans le but d'évaluer la contribution de la structure ligamentaire ou des 

ménisques Ion des différents chargements appliqués sur le genou, plusieurs études in- 

vitro sont effectuées sur des montages qui permettent de mesurer les déplacements 

primaires et couplés induits par l'application de la charge. Le déplacement primaire est 

celui enregistré dans le sens de l'application de cette charge alors que les déplacements 

couplés sont les déplacements mesurés dans les autres directions. Deux approches sont 

utilisées à savoir l'approche de flexibilité et de rigidité. La première consiste à appliquer 

une charge et mesurer le déplacement résultant, sectionner le ligament ou ménisque en 

question et rappliquer la charge et mesurer de nouveau le déplacement- La contribution de 

la structure sectionnée est alors évaluée comme étant la différence entre les charges 

nécessaires pour provoquer le même déplacement avant et après l'excision de la structure 

considérée. Cette procédure peut être reprise plusieurs fois pour une séquence sélective 

d'excisions choisie selon un ordre d'importance décroissant des tissus pour le cas de 

chargement considéré. Il est à noter que lors d'une séquence d'excision bien spécifique, 

l'augmentation de la laxité observée est strictement dépendante de l'ordre selon lequel 

l'excision est faite compte tenu de nonlinéarité de la réponse du système. Lors de la 

seconde approche de rigidité, un déplacement est appliqué alors que la charge de rétention 

est mesurée, le tissu étudié est par la suite excisé et le même déplacement rappliqué de 

nouveau. La contribution du tissu sera évaluée par la reduction observée dans la charge de 

rétention. Bien que cette approche soit indépendante de l'ordre des excisions, il faudra 



s'assurer que pour le cas intact, tous les déplacements couplés soient enregistrés et 

conjointement appliqués avec le déplacement primaire après excision de la structure 

d'intérêt. 

La contribution d'un ligament, exprimée en pourcentage de la charge 

appliquée, confère au ligament son rôle primaire (contribution élevée) ou secondaire 

(contribution faible) mais demeure nkanmoins une évaluation qualitative et ne peut, par 

ailleurs, être considérée comme la force agissant le long du ligament sauf si celui-ci est 

orienté parallèlement à la charge imposée. Les forces agissant sur les ligaments sont 

demeurées inconnues jusqu'à ce que Markolf et collaborateurs introduisirent en 1990 une 

nouvelle technique destinée à mesurer la force résultante agissant sur les ligaments croisés 

lors de différents chargements [87]. Cette technique (Fig. 1.13) consiste à isoler 

l'insertion osseuse tibiale du ligament croisé, la fixer par l'intermédiaire d'un bloc 

d'acrylique à une cellule de charge et repositionner l'ensemble de manière à reproduire les 

résultats d'un test de tiroir effectué sur le spécimen avant l'entremise de la cellule de 

charge [52,85-88 J. 

Une tentative pour mesurer cette tension a été menée auparavant par Ahmed et 

al. (1987) utilisant des gauges de déformation 'Buckle Transducer' (Fig. 1.14). À cause 

d'un problème d'encombrement, juste la bande antérointeme du ligament croisé antérieur, 

la bande postéroexterne du ligament croisé postérieur, la bande superficielle du ligament 

latéral interne et le ligament latéral externe étaient considérés et ce pour des angles de 

flexions du genou allant de 40' à 90'. Des chargements passifs susceptibles de causer des 

tensions importantes dans ces bandes sont appliqués comme la translation antérieure et 

rotation axiale du tibia avec ou sans compression axiale [Ml. Dans une étude ultérieure, 



Ahrned et al. (1992) ont présenté cette fois-ci des résultats similaires mais pour des 

chargements combinés à savoir une translation antérieure appliquée à un tibia ayant subi 

une rotation axiale au préalable ou encore une rotation axiale appliquée au tibia après avoir 

subi une translation antérieure 1651. 

Récemment, en utilisant un montage permettant les six degrés de liberté du 

fémur par rapport au tibia, Hull et al. (1996) ont mesuré, au lieu des tensions 

ligamentaires, les qiéformations s'opérant dans le LLI par Ifinsertion d'un ensemble de 

quatre jauges de déformation à liquide de mercure. Des charges seules ou combinées, 

susceptibles de surcharger le LLI sont alors appliquées sur la partie tibiale. parmi elles, 

des charges antéro-postérieure et inteme-exteme ainsi que des moments en varus-valgus et 

torsion axiale [53]. 

1.3.2 Modèles analytiques et d'éléments finis 

Durant les deux dernières décennies, des études basées sur des modélisations 

mathématiques du genou humain ont vu le jour grâce aux progrès enregistrés dans les 

domaines de l'analyse numérique et techniques de programmation. On distingue 

principalement deux types de modèles basés sur des approches phénoménologique et 

anatomique. La première catégorie englobe les modèles rhéologique et de type charnière. 

Ce sont des représentations utilisés principalement dans les modèles plus globaux afin de 

prédire le comportement dynamique de tout le corps humain. La seconde catégorie, 

regroupe des modèles qui tiennent compte d'un ou plusieurs aspects de Ifanatomie du 

genou. 



Les modèles anatomiques sont apparus dans le but de prédire la cinématique 

etlou cinétique du genou en simulant aussi bien le comportement dynamique que statique. 

Ces modèles, au départ simplifiés, ont considéré une approche 2-D dans un plan sagittal 

quelconque de l1articu1ation fémorotibiale suivis d'un nombre de modèles 3-D décrivant 

les surfaces de contact articulaires par des polynômes de différents ordres en supposant un 

contact rigide ou déformable entre elles et un comportement non linéaire élastique pour les 

ligaments comme c'est le cas pour la représentation faite pour l'articulation fémorotibiale 

[16,20,60] ou fémopatellaire [15,4 1,421. D'autres modèles, néanmoins, n'ont pas pris en 

considération les géométries des surfaces articulaires, leurs intérêts étaient pour 

l'évaluation de la contribution du système ligamentaire à la rigidité totale du genou 

[17,18]. Les approches faites sur l'articulation fémorotibiale modélisent, s'il y a lieu, le 

cartilage par une couche d'épaisseur uniforme [20] et impose des surfaces de contact 

réduites à un seul contact ponctuel simultanément sur chacun des compartiments [16] ce 

qui rend ce dernier type de modèles inefficace lors de chargements procurant des contacts 

sur un seul compartiment comme c'est le cas Ion d'un chargement en varus ou en valgus. 

Parmi les modèles cités, la plupart n'incluent pas les ménisques [l7,18,20,60] alors que 

seuls Blankevoort et Huiskes (1991) et Blankevoort et al. (1991) ont modélisé le 

mécanisme d'enroulement du LLI autour du tibia. 

Les études dynamiques sur les modèles de genou sont moins présentes dans la 

littérature. Ce sont principalement des modèles en 2-D dans un plan sagittal [54,55], qui 

s'intéressent à la réponse d'un joint fémorotibial à un impact (551 ou bien à la réponse des 

articulations fémopatellaire et fémorotibiale à l'action impulsive des muscles ainsi qu'à des 

charges extérieures appliquées au joint par le biais du tibia 1543. 



Plusieurs études par éléments finis ont emboîté le pas aux modèles analytiques. 

Parmi lesquels, on retrouve le modèle GAndriacchi et al. (1983) qui reproduit les surfaces 

articulaires d'une manière précise, considère comme corps rigides le tibia et le fémur et 

modélise la structure ligamentaire par des ressorts linéaires, le contact par des éléments 

hydrostatiques et enfin, les ménisques par deux éléments poutres en cisaillement. 

La figure 1.15 illustre un autre type de modèles présents dans la littérature 

utilisant des géométries simplifiées avec des ménisques sous formes d'anneaux 

axisymétriques de sections transversales triangulaires s'interposant entre un plateau tibial 

osseux plan et un condyle fémoral osseux de forme sphérique [44,45,46]. Dans les 

modèles d'éléments finis. une attention particulière est accordée aux ménisques car ils 

subissent d'importantes déformations, ils sont représentés, lors d'études élastostatiques en 

compression axiale, par un matériau isotropique, orthotropique ou alors composite de 

fibres de collagène dans une matrice très peu compressible [45,46]. Deux couches 

d'épaisseurs égales et uniformes de cartilage ont été ajoutées sur les parties osseuses du 

modèle initial présenté à la Figure 1.15 afin de souligner l'effet de l'épaisseur de la couche 

de cartilage sur l'uniformisation des forces de contact fémorotibiales et méniscotibides 

[46]. Pour les études dynamiques, on retrouve des modèles biphasiques, qui, bien que 

basées sur une géométrie axisymétrique simple des ménisques, supposent un 

comportement anisotropique pour la phase solide du tissu qui représente 17% du volume 

total. Dans ce genre d'études on a appliqué à la surface proximale du ménisque un 

déplacement contrôlé [47] ou bien une charge répartie [48] tout en maintenant la surface 

distale libre de se déplacer radialement sur une surface plane (plateau tibial) où 

I'écoulement de fluide est supposé nul. 



1.4 BUT DE LA RECHERCHE 

La revue des connaissances nous a permis d'avoir une vue d'ensemble sur les 

travaux existants dans la littérature dans le domaine de la modélisation du genou humain. 

Ces travaux nous ont permis de cerner les paramètres manquants lors de ces modélisations 

et de définir ainsi les caractéristiques essentielles du présent modèle d'éléments finis. 

Ainsi, on a opté pour: 

- Une géométrie 3-D précise d'un genou humain droit, provenant d'un 

donneur de sexe féminin âgé de 27ans, dans laquelle on considère aussi bien les structures 

osseuses que les tissus mous (les différentes couches de cartilage, les ménisques et les 

principaux ligaments). 

- Une nonlinéarité matérielle est considérée pour les ligaments et les fibres de 

collagène qui rentrent en ligne de compte lors de la modélisation composite des 

ménisques. 

- On considère six possibilités de contact pour l'articulation fémorotibiale. Sur 

le côté interne comme sur le côté externe, des contacts entre; cartilage fémoral et cartilage 

tibial (zone exposée), cartilage fémoral et ménisque, ménisque et cartilage tibial (zone 

couverte) sont modélisés. 

- On tient compte de l'enroulement du ligament latéral interne sur le bord 

interne osseux du tibia et de son attachement il la périphérie du ménisque interne. 



Comme objectif, nous voulons développer une méthodologie simple et efficace 

pour la génération de maillages d'éléments finis à partir de spécimens de genoux humains 

afin d'analyser la réponse élastostatique sous des cas de chargement variés. En position 

d'extension complète, une charge de compression pure sur le joint est considérée en 

premier lieu dans le but de déterminer la rigidité globale du système pour plusieurs 

conditions aux rives et d'analyser le mécanisme de transfert de charge à travers le joint en 

passant par les différentes structures en présence. On s'intéressera égaiement lors de cette 

analyse aux effets qu'engendre une méniscotomie sur la cinématique du genou ainsi que 

sur la répartition des charges sur les couches de cartilage. Ce chargement va nous 

permettre, entre autre, de valider le choix des paramètres de contact par une comparaison 

des résultats avec les mesures exp6rimentales. On veut également analyser la réponse du 

modèle à un chargement en varus-valgus lors duquel on pourra valider notre choix des 

paramètres de contact et propriétés de matériaux choisis pour les ligaments latéraux et 

croisés. En plus de l'effet des conditions aux rives sur la réponse du joint, on aimerait 

analyser également ies conséquences d'une déficience de l'un des latéraux (structures 

primaires en varus-valgus) sur la rigidité globale du genou, la cinématique et les structures 

secondaires restantes. Des chargements en tiroirs antéro-postérieurs sont prévus pour 

mieux valider la modélisation de la structure ligamentaire (les croisés et les latéraux) par 

une comparaison de la rigidité globale du genou et la contribution de chacun des ligaments 

avec les mesures expérimentales. Deux configurations de chargement sont à analyser et 

consisteront à appliquer la charge sur le fémur tout en évaluant les déplacements couplés 

sur le tibia et vice versa. Par de telles analyses nous voulons nous assurer que le fait 

d'intervertir les points d'application de la charge du fémur (cas de certaines activités in- 

vivo) au tibia (cas des tests in-vitro) n'influe pas sur les résultats. Sirnilairement à ce qui 

est observé lors de tests in-vitro, on procédera à une restriction totale des déplacements 



couplés sur l'une des composantes osseuse (tibia) et on analysera son effet sur la laxité 

mesurée du genou ainsi que sur le processus de transfert de charge. Des cas additionnels 

simulant une déficience dans le LCA ou le LCP lors de tiroirs fémoraux postérieur ou 

antérieur, respectivement ainsi qu'une méniscotomie interne ou externe seront étudiés. Ces 

analyses vont nous servir à mieux cerner le rôle et l'importance de chacune de ces 

structures par une comparaison des résultats obtenus avec et sans leur présence. 

1.5 PLAN DE LA THÈSE 

Cette thèse est répartie en cinq principaux chapitres et est organisée de la 

manière suivante: 

Le premier chapitre englobe, en plus de la description de l'anatomie 

fonctionnelle de la structure étudiée, une présentation des objectives et un plan détaillé de 

la thèse. Des travaux de recherches pertinents sont cités et commentés spécialement les 

études numériques et expérimentales se rapportant aux cas de chargements analysés. 

Le deuxième chapitre passe en revue les étapes nécessaires à la reconstruction 

du modèle d'éléments finis et analyse de la structure sous des charges compressives. On y 

retrouve également des analyses en compression du joint simulant une méniscotomie et ce 

pour différentes conditions aux frontières. Cette partie est présentée sous forme d'article 

intitulé 1561: "Biomechanics of the human knee joint in compression: 

reconstruction, mesh generation, and finite element analysis" . 



Le troisième chapitre s'intéresse à un autre cas de chargement, en varus-valgus 

cette fois-ci. Les ligaments latéraux, qui sont les principales composantes à résister un tel 

chargement se trouvent fortement sollicités. Des simulations de rupture de chacun de ces 

ligaments sont alors analysées pour différentes conditions aux frontières. Ces résultats, 

entre autres. sont présentés sous forme d'article intitulé [57]: "Finite elentent analysri 

of human knee joint in varus-valgus". 

Le quatrième chapitre s'intéresse au chargement par des forces antérieure et 

postérieure qui sollicitent principalement les ligaments croisés. Deux configurations de 

chargement sont présentées et différentes conditions aux rives choisies. En plus des 

analyses effectuées sur le modèles intact, le modèle simulant une déficience de chacun des 

ligaments croisés ainsi que l'ablation totale de l'un des ménisques a également fait l'objet 

d'analyses additionnelles. Ces résultats sont inclus dans l'article intitulé [58]:  

"Biomechanical response of the human knee joint under anterior-posterior 

forces". 

Le cinquième chapitre regroupe une discussion globale du modèle et de tous les 

résultats, des conclusions sommaires et des recommandations générales. 
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Figure 1 .1  : Genou droit en extension, vue dans un plan sagittal passant par le condyle 

interne, ménisque interne, plateau tibial interne et rotule, montrant les 

épaisseurs des différentes couches de cartilage [28]. 
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Figure 1.2: Vue postérieure de l'articulation d'un genou gauche montrant, entre autres, 

les ligaments latéraux, les ligaments croisés et ménisques [28]. 
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Figure 1.3: Vue supérieure des plateaux tibiaux montrant les ménisques. Sont aussi 

présents, les différents ligaments du genou [28]. 
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Figure 1.4: Orientations des fibres de collagène dans certains tissus conjonctifs [27]. 
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Figure 1.5: Courbe contraine-déformation typique d'un tendon et de ses constituants 

[W. 



Figure 1.6: Illustration schématique du contact rotule-trochlée en fonction de la flexion 

du genou [59]. 

Figure 1.7: Représentation du système de forces agissant sur la rotde [59]. 



Figure 1.8: Illustration schématique dans un plan sagittal des glènes tibiales et 

fémoraux internes et externes 1241. 

condyles 

Figure 1.9: Représentation schématique du mouvement de roulement du fémur et 

glissement du tibia [59]. 



Figure 1.10: Exemple illustrant le comportement des différents faisceaux des ligaments 

croisés lors de la flexion du fémur [30]. (a) Antérieur, A-A': antéro-interne. 

B-B ': postéro-externe. (b) Postérieur, A- A': postéro-interne. B-B': antéro- 

externe, C-C': ligament de Humphrey. 
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Figure 1.1 1 : Montage expérimentai typique pour les tests de compression [7]. 

Figure 1.12: ïilustration du mécanisme de transfert de charges à travers un menisque 

externe, (a) intact, (b) nipturé [Il]. 
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Figure 1.13: Schéma du montage servant à mesurer la force développée dans le 

ligament croisé antérieur [3]. 
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Figure 1.14: Représentation schématique du 'Buckle Transducer' 1641. 



Figure 1.1 5: Modèle axisym6trique du f6mur-ménisque-tibia [44]. 



CHAPITRE II 

ÉTUDE BIOMÉCANIQUE DU GENOU HUMAIN EN COMPRESSION: 

RECONSTRUCTION, GÉNÉRATION DE MAILLAGE, 

ET ANALYSE PAR ÉLEMENTS FINIS 

ARTICLE 1 

BIOMECHAMCS OF THE ElUMAN KNEE JOINT IN COMPRESSION: 

RECONSTRUCTION, MESH GENERATION, 

AND FINITE ELEMENT ANALYSIS 

SOMMAIRE 

Une géométrie detaillée d'un spécimen de genou humain a été reproduite en 

utilisant des techniques de tomographie d'impédance assistée par ordinateur, de 

numérisation de surfaces et de mesures effectuées sur le spécimen. Les données ainsi 

recueillies sont jumelées à des algorithmes de génération de maillage et à des données de 

propriétés de matériaux présentées dans la littérature pour développer un modèle 

d'éléments finis détaillé de tout le genou humain. Le modèle ainsi généré est constitué de 

trois composantes osseuses (tibia, fémur et rotule), les couches de cartilages respectives 

qui s'y attachent. les ménisques interne et externe ainsi que cinq ligaments principaux 

(deux latéraux, deux croisés et le ligament rotulien). Les ménisques sont représentés par 

un corps nonhomogène, composite d'une matrice solide renforcée par des fibres de 



collagène orientées dans les directions circonferencielle et radiale. L'articulation, qui 

s'opère entre les différentes couches de cartilage ainsi qu'entre les couches de cartilage et 

les ménisques et le mécanisme d'enroulement du ligament latéral interne sur le tibia sont 

traités comme des problèmes de contact avec grands déplacements, sans frottement. Les 

réponses de l'articulation fémorotibiaie en extension sont obtenues pour tous les 

incréments de charges jusqu'à une charge finale en compression pure de IOOON, 

appliquée sur le fémur. Ces analyses considèrent le tibia comme étant fixe d o n  que le 

fémur, pour l'articulation en position d'extension, est libre de se mouvoir dans les 

directions interneexteme, postérieure-antérieure et proximale-distale; La rotation axiale du 

fémur est soit laissée libre ou fixe dépendemment des cas étudiés. Des analyses simulant 

une méniscotomie totale (ablation des ménisques) sont aussi présentés dans cette étude. 

Avec Ifapplication croissante de la charge, le joint a un comportement nonlinéaire dans la 

direction axiale avec des mouvements couplés assez ~ i g ~ c a t i f s  dans les autres directions. 

À I'issue de l'application d'une compression axiale de IOOON, le plateau externe résiste 

environ à 60% de la charge transmise à travers l'articulation. Cette compression se 

transmet d'autant plus à travers des zones de contact cartilage-cartilage que ménisque- 

cartilage. Les ménisques fermement attachés par leurs cornes à l'os tibia1 subissent une 

expansion radiale sous l'effet de la charge imposée augmentant ainsi la surface totale de 

contact et rendant uniforme la pression de contact. L'excision des ménisques cause une 

augmentation considérable dans les laxités primaire et couplées du joint, réduit les surfaces 

de contact et augmente les pressions de contact. Les prédictions du modèle sont en accord 

avec les mesures expérimentales disponibles dans la littérature. 



SUMMARY 

The cornputer-assisted tornography dong with direct digitization and 

measurements were used to reconstnict the detailed geometry of an entire human knee 

joint specimen. These data were then rnerged with a mesh generation algorithm and 

material properties reported in the literature to develop a 3-D nonlinear finite element 

model of the knee joint This model consists of three bony structures (tibia, femur, and 

patella), their articular cartilage layers, medial and lateral menisci, and five principal 

ligaments (collaterals, cruciates, and patellar tendon). The menisci are represented as a 

non-homogeneous composite of a solid matrix reinforced by radial and circumferential 

collagen fibres. The articulation between cartilage layers with each other as well as with 

intervening menisci and the wrapping of the medial collateral Ligament with tibia are treated 

as general large displacement fnctionless contact problems. The incremental response of 

the tibiofemoral joint in full extension is determined under axial forces of up to lOOON 

applied on the femur. Analyses are carried out with the tibia futed while the femur is set 

free to translate in mediaMateral, anterior/posterior, and proximaVdista1 directions: the 

intemal/external rotation is either left free or fixed. Cases simulating total meniscectomy 

are also considered. 

The joint exhibits a nonlinear stiffening response in axial direction with large 

coupled displacements. At 1000N. the load transferred through the joint is found to be 

greater at the lateral cornpartment in cornparison with the medial comparhnent and at the 

cartilage-cartilage contact in comparïson with the meniscus-cartilage contact. The menisci, 

firmly attached by their homs to the tibia, are radially extruded under the axial 

compression and cause greater contact areas and smdler, more uniform, contact 



pressures. Removai of menisci markedly increases the joint primary and coupled laxities, 

reduces total contact areas, and increases contact saesses. The predictions are in general 

agreement with measurements reported in the literanire. 

2.2 INTRODUCTION 

The human knee joint is distinguished by its complex three dimensional 

geometry and multi-body articulations that generate complex mechanical response under 

physiological loads. The knee joint cornpliance and stability required to optimally perform 

daily functional tasks are provided by various articulations, menisci, ligaments and muscle 

forces. A proper understanding of knee joint biomechanics significantly improves the 

prevention and treatment of knee joint disorders and injuries. The total knee arthroplasty 

and prosthetic ligament replacement are two examples that directly benefit from such 

knowledge. 

Knee joint mechanics have consequently been the subject of a large number of 

studies, the majority of which are experimental and aim at the measurement of the gross 

multidirectional load-displacement response of the joint under both intact and perturbed 

states? Measurements have aiso been reported on the biomechanical role of the ligaments 

and menisci6" as well as the mechanism of load transfer and contact areas and pressures 

at the tibiofemoral and patellofemoral  joint^'^-*^. In spite of continuing increase in 

experimental results, it is recognized that measurements alone are not sufficient to 

delineate the detailed biomechanics of the human knee joint. 

Various applications in orthopedic biomechanics have long demonstrated that 



realistic mathematical modeling is an appropriate tool for the simulation and anaiysis of 

complex biological structures such as the human hee  joint. During the 1 s t  two decades. a 

number of analytical model studies with different degrees of sophistication and accuracy 

have been presented in the literature. These have rnainly attempted to mode1 the 

tibiofemord j ~ i n t ~ ' " ~  while a few studies have aimed at modeling the patellofemorai 

joineg30 and more recently at both the tibiofemoral and patellofemoral joints". As for the 

finite element model investigations, no study of the entire tibiofemoral joint is yet reported 

in the literature. A few model studies of the menisci are found assuming simplified 

axisymmetric geometries for the femoral condyles, tibial plateau, and menisci with no 

consideration of any of cartilage layers or of ligamentous c~ntnbut ion '~~.  More recently, 

using similar axisymmetric geometries, an analysis has been carried out considering 

fernord and tibial articular cartilage layers of uniform th ickne~s~~.  Thus previous studies 

have not taken into account some of the mechanical features essentid for a redistic 

nonlinear elastostatic model study of the knee joint These features are: the complex three 

dimensional kinematics of both tibiofemoral and patellofemoral joints; the presence of 

cartilage layers and menisci with accurate articular geometries; the non-linear response 

including large displacement articulation between cartilage layers of tibia, femur, and 

patella with each other as well as with the menisci; the non-homogeneous composite 

nature of menisci; and the presence of the primary ligaments including the wrapping 

mechanism of the medial collateral ligament. 

The results of previous model studies should be critically evaluated in light of 

their underlying assumptions. Incorporation of the above features is essential for the 

accurate prediction of response under various loading conditions. Such detailed 

investigation. however, requires the use of advanced computer techniques for both the 



geometric reconstruction and the subsequent stress analysis. The objectives of the study 

reported in this paper are, hence, set as: 

1) Detailed reconstruction of a cadaveric total knee joint including bony structures 

(tibia, femur, and patella) and soft tissues (ligaments, menisci, and articular 

cartilage layers). 

2) Finite element discretization of the reconstnicted knee joint accounting for the 

articular surfaces needed for the nonlinear contact analysis, the composite (non- 

homogeneous) nahue of the menisci, the wrapping of the medial collateral ligament 

around proximal tibia, various other ligaments, and the patellar tendon for the 

quadriceps muscle group. 

3) Nonlinear stress analysis of the mode1 under various loads. 

For this study, the results are presented only for the tibiofemoral joint, 

neglecting the patella, at hiIl extension under lûûûN axial compressive force applied to the 

femur. An additional case is also studied in which both rnenisci are removed (i.e., total 

meniscectomy), and the response under sirnilar loading condition is computed. These two 

cases of intact and meniscectomized joint models consider a femur free to translate in al1 

directions but restrained in flexion and varus-valgus rotations; the axial rotation being left 

either free or fixed. 

2.3 METHODS 

2.3.1 Reconstruction of the geometry 

A fresh frozen right human knee joint of a 27 years old femaie subject (Figure 

2.1), obtained following amputation and inspected both visually and radiographically to be 



normal, was used to reconsûuct the geometry and the finite element mesh. The first step 

consisted of the reconstmction of bony structures of the knee joint. A total of 83 images of 

the knee was obtained using a Picker 1200 SX cornputerized tomography (CT) system 

(Picker, Cleveland, OH) based on a specific protocol to optimize the visibility of the bony 

structures. Each image was lrnrn thick and was taken at lmm interval in a sagittal plane. 

The serid 512x 5 12 x 12-bits digital images were then recorded on a magnetic tape and 

transferred to a cornputer work station for hirther analyses and treatments. A threshold 

method was initially used for segmentation based on the analysis of a typical pixel 

intensity curve of each CT image. An averaged CT number for the bony structures was 

chosen and the segmentation performed to separate bony tissues from soft tissues. An in- 

house interactive image processing program was then used to view, verify and eventually 

correct the results of the segmentation process. The segmented images were combined al1 

together to automatically generate a 3-D triangular polygon solid mesh of the bony tissues 

by an in-house 3-D reconstruction algorithm, An interactive program allowed us to 

visualize the model and to obtain the coordinates of specific points on the surface. 

Owing to the poor visibility of the soft tissues on CT scan images, direct 

digitization and measurements were dso used. The overall dimensions of the specimen 

were first measured prior to the separation of tibia, femur, and patella by dissection of 

ligarnen ts and joint capsules. Each component was subsequently fixed through a specially 

designed support on a numerically controlled machine (Matsuura MC-760VX, Fukui, 

Japan) which was used to digitize articular surfaces of cartilage layers and menisci. The 

tibia1 proximal end was once digitized with the menisci intact followed by that without 

menisci. A total number of 140 points was digitized on both surfaces. The insertion points 

of various joint ligaments and menisci were also recorded in addition to points defining the 



tibial medial edge around which the medial collateral ligament wraps. Sirnilar procedure 

was performed for the patellar articular cartilage with 60 digitized points on the surface. 

For the femoral articular cartilage a total number of 170 points was required to digitize the 

surface which was subdivided into five regions digitized by rotating mice the support. 

The thickness of different articular cartilage layen in the direction normal to the surface 

was manually rneasured at the aiready digitized points by a specific reshaped digital 

caliper. A new set of data points was then obtained for each cartilage layer defining its 

underlying attachent surfaces on the bony structure. 

Each set of three-dimensional coordinates of the data points expressed in a 

laboratory-fixed Cartesian coordinate system was surface-fitted in order to obtain the 

mathematicai description of specific regions. For this purpose the Akima's algorithmM for 

bivariate interpolation of any set of irregularly distributeci data points was used to generate 

a spatial complex surface based on the recorded data points. This aigorithm is available as 

a routine in the IMSL library of mathematical subroutines" which allows to fit a fifth 

degree polynornial surface expressing the height z to horizontal plane coordinates x and y 

at nodes of smail triangular cells selected by the user within the main patch by: 

for k=l to 3 

The 21 unknown constants q? are found by imposing continuity conditions 

on each corner node for the spatial coordinate. its tangents, and its curvatures (i.e., z,, 

&&lx, &@y, a2z@x2, a2zk/axay, a2z&lY2) as well as the continuity of the tangents 

(i.e., azdan) perpendicular to each common side between two neighboring triangular 

cells. 



The femoral sub-regions were subsequently patched satisfying smoothing 

conditions and, dong witb other reconstructed surfaces were al1 superimposed on the Cï- 

based reconstnicted bony structures in a unique anatomical Cartesian coordinates system 

resulting in the whole joint. The required transformations were developed based on 

specific landmark points known in both the laboratory-fixed coordinates system and the 

CT-based coordinates system followed by minor adjustments to prevent penetrations 

between surfaces in contact with each other. The completed reconstnicted knee joint 

consists of three bony structures (tibia, femur, patella), their articular cartilage layers, two 

menisci (medial, lateral), and five ligaments (medial collateral, lateral collateral, antenor 

cruciate, posterior cmiate, and patellar tendon). 

2.3.2 Finite element mesh generation 

The finite element grid was developed with the objective to perfonn the 

analyses using an in-house nonlinear finite element package prograrn. The program has 

extensively been employed in our spinal studies. The details of the formulation are 

available for r e f e r e n ~ e j ~ ~ ~  and are not given here to avoid repetition. 

A rigid body representation was considered for each bony structure: tibia, 

femur and patella. This is time efficient in a nonlinear anaiysis and accurate due to their 

much larger stiffness compared to that of soft tissues. Each bony structure was 

represented by a primary node located at its center and by a set of local convective 

coordinates system that rotates with the rigid body. The finite element mesh generation 

was then automatically perfonned leading to 8 1 8-node solid elements for both mediai and 

iateral tibial articular cartilages, 244 8-node solid elements for femoral cartilage, and 49 

8-node solid elements for patellar articular cartilage. For meniscal tissues, a non- 



homogeneous composite model of a matrix of ground substance reinforced by a network 

of radial and circumferentiai collagenous fibres was considered. Due to their shapes, the 

meniscai tissues were modeled by solid elements in the radial, circumferential, and axial 

directions resulting in a total of 424 8-node solid element for both menisci. A total of 

12 12 truss elements reinforcing these solid elements were also used to model the collagen 

network throughout the meniscal material in radial and circumferential directions. 

Moreover, 39 uniaxial elements modeled various Ligaments of the knee joint, the antenor 

and posterior bundles of the anterior cniciate ligaments by 3 elements each; the anterior 

and postenor bundles of the posterior cruciate ligaments by 3 elements each; the anterior, 

posterior, and supenor bundles of the lateral collateral ligament by 3 elements; and finally, 

the patellar ligament by 9 elements. Special attention was focused on the medial collateral 

ligament that wraps around the proximal medial bony edge of the tibia in addition to its 

peripheral attachments to the medial meniscus. This ligament was modeled in its proximal 

part by 15 tmsses in the anterior, posterior, and inferior bundles, each bundle starting 

from the femoral bony insertion to the distal outer surface of the medial rneniscus and 

connected to a wrapping element to give a total of 5 wrapping elements for the distal part 

of the media1 collateral ligament. The overall finite element rnesh is shown in Figures. 2.2 

and 2.3. 

For the frictionless nonlinear contact problem modeling articulation at the 

tibiofemoral and the patellofemoral joints, seven potential contact areas were identified. 

These are the medial femoral condyle against proximal medial meniscus; medial femoral 

condyle against medial tibial cartilage; distal media1 meniscus against medial tibial 

cartilage. Three similar contact regions on the lateral side of the tibiofemoral joint were 

dso deterrnined. Finally contacting regions were defined at the patellofemoral joint 



between the femoral cartilage and the retropatellar articuiar cartilage. In the nonlinear fnite 

element model, the femoral articular cartilage surface and the distai meniscal surfaces were 

considered to be the contactor surfaces represented by nodal points while tibial and pateliar 

articular cartilage surfaces and proximal meniscal surfaces were, on the other hand, taken 

as target areas modeled by triangular patches. For this representation of the contact 

problem, a total nurnber of 758 contactor nodal points and 740 target triangular facets 

were used. 

2.3.3 Material properties, loading, and bonndary conditions 

For the present fuiite element analysis of the model taking into account only 1 

tibiofemoral joint at a fully extended position, the materid properties were derived from 

the data available in the literature. As discussed earlier, the bony structures were modeled 

by rigid bodies. The articula. cartilage layers were assumed to be isotropic with the elastic 

modulus of E=12MPa and Poisson's ratiou2 of V=0.45. Sifnilar values for the elastic 

moduli have been used in previous finite element analyses43*". For the representation of 

the menisci, a composite of isotropic matrix reinforced by collagen fibres was considered. 

The elastic modulus of the matrix was chosen as E=8MPa which is close to values 

obtained from measurements on specimens cut in the radial direction at the deep parts of 

the rneni~ci"*~~. This value is in accordance with the observation that meniscal tissue is 

roughly one-half as stiff in compression as articular cartilage4'. The Poisson's ratio was 

taken as V=0.45. These moduli were used in the hypoelastic constitutive relations 

empioyed in the finite element program. 

The nonlinear material properties for collagen fibres were chosen similar to 

those for disc collagen fibres used in Our spinal model st~dies~~*'? In the 30pm to 150pm 



rhick membrane on the proximal surface as reported by Fithian et al. " or in the 200pm 

thick membrane as suggested by Whipple et al. 46, the fibres are randomly oriented 

resulting in nearly equal properties for meniscal specimens in the radial and circumferential 

directions yielding elastic moduli of 70MPa and Soma, r e ~ ~ e c t i v e i ~ ~ .  A rnean value of 

60MPa was assumed in this work for the purpose of following calculations. In the deep 

region of menisci. the collagen fibres are reported to be predorninant in the circurnferential 

direction4' with a mean tensile elastic modulus of about 170~~a'O. The equivalent 

collagen fibre content in each direction was then evaluated based on the equilibrium 

equation of a meniscal specimen under tension developed to relate a homogeneous 

orthotropic material to a non-homogeneous composite one as that used in the model: 

SEC SEC 
ET = a E, + E, 

Where a is the collagen fibre volume fraction content, EM= 8MPa is the estimated elastic 

modulus of the rnauix. E~~~~ and qEC are the strain-dependent nonlinear elastic secant 

moduli of the meniscus as a homogeneous orthotropic material and collagen fibres, 

respectively. This equation was employed for several strain magnitudes yielding an 

averaged fibre volume fraction content of 14% in the circurnferential direction in the deep 

parts of menisci and 7% in both directions in the superficial regions. 

Material properties for different ligaments were derived from available data in 

the literature. Some specific parameters most commonly reported for ligaments are the 

ligament stiffness K, linear elastic modulus E, initial or reference strain, nonlinear strain 

level parameter El, ultimate stresses and strains, and energy density at failure5'? From 

these data, the stress-strain curves reiating nominal stress to engineering strain were 



reproduced assuming a non-linear quaciratic stress-strain behavior for low strains and a 

linear behavior for strains higher than 2&, as suggested by Wismans et al. 28: 

0 = 0  for E S 0  

o = E & ~ / ~ & ,  for 2&, 2 E 2 0  

C = E ( E - E l )  for E 2 2&, 

The linear elastic moduli of the anterior cruciate ligament, ACL, and lateral 

collateral ligament, LCL, have k e n  reported by Butler et al. The iînear elastic modulus 

for the medial collateral ligament, MCL, was obtained from the stiffness values used in a 

previous mode1 study2' accounting for the ligament's cross sectional area measured 

directly on the specimen. The elastic modulus of the patellar tendon was based on the 

ligament stiffhess values reported by ~ i r o k a w a ~ ~  while data for the anterior and posterior 

bundles of the posterior cmciate ligaments, aPCL and pPCL, were derived from recent 

measurements performed by Race and Amiss2. The nonlinear strain level parameter known 

also as the linear strain limit parameter &, was set to be around 0.03 for al1 ligaments5', 

while the reference strain for each ligarnentous bundle defined as the shlun at no extemal 

load was derived fiom earlier s t u d i e ~ ~ * * ~ ~ ~  and is listed in Table 2.1. 

In the event of contact between a contactor point and a target facet, a two-node 

contact gap element is automatically generated by the contact algorithm in the program 

which is assumed to have a modulus of lOOMPa in compression and ni1 in tension. The 

contact between adjacent bodies is assurned to initiate at distances below 0.15 mm (Le., 

gap limit). These values were chosen based on a number of preliminary studies on the 

effect of contact parameters on predicted results. 



The present nonlinear stress analysis is performed considering the tibiofemoral 

joint onfy. For the sake of validation of the model predictions, the load application and 

boundary conditions are set to be as much as possible similar to those used in 

experimental studies 14~14~18 . The femur is fiee to translate in the proximal-distal, medial- 

lateral, and anterior-posterior directions; the intemalextemal rotation is once left free and 

then fixed while flexion and varus-valgus rotations are maintained fixed throughout the 

analyses. This allows us to apply the compressive load at the primary node positioned 

approximately at the center of mass of the femur instead of attempting to locate the joint 

mechanical balanced point the position of which varies with load The reconstructed joint 

has an initial varus-valgus alignment of 6'. In the presence of initially prestressed 

ligaments, the compressive load on the femur is incrementally applied to reach the 

maximum value of lûûûN while the tibia is completely fixed. Additional analyses are also 

carrieci out in which the meniscal structures are removed from the model to simulate a total 

rneniscectomized joint. 

2.4 RESULTS 

The predicted load-deflection curves of the femoral shaft for the intact and 

meniscectomized joint when the fernora1 axial rotation is Ieft free or fixed exhibit a 

nonlinear stiffening behavior as shown in Figure 2.4. In this figure, the computed axial 

deflections represent the relative increase in femoral displacements from their initial 

equilibrium position under the initial ligamentous prestress forces. Along with prirnary 

axial translation, large coupled displacements are also computed. The coupled femoral 

displacements (shown in Figure 2.5) are influenced by the constraint on the internal- 

extemal rotation. Bilateral meniscectomy markedly increases the coupled media1 



translation and the internai rotation. Similar to the axial translations, the coupled motions 

are evaluated relative to their magnitudes in intact cases following the application of initial 

ligarnentous forces. 

The horizontal nodal displacements within the menisci are maximum on the 

outer radius at the proximal surfaces, in the posterior third for the medial meniscus and the 

middle third for the lateral meniscus. Figure 2.6 shows proximal and posterior views of 

the initial and displaced shapes of the menisci at the final load when the intemal-external 

rotation is left free. The displacements within the medial meniscus are higher than those in 

the lateral one. Maximum values of 2.0Smm and 1.02rnm are obtained in the radial 

direction and 1 -70mm and 1.26mm in the circumferentid direction for the rnedial and 

lateral menisci. respectively. Tensile strains in collagen fibres oriented in the radial 

direction are found to be higher in these regions with values ranging from 4.5% to 7.5%. 

In circumferentid fibres within both menisci, tensile strains are rnainly between 3% and 

4% with an isolated fibre exhibiting 5% in the cenaal part of the laterai meniscus . 

Under no external load, the joint is initially compressed due to the presuess in 

some ligaments (Table 1). The net axial compression experienced by the joint is, hence, 

iarger than the applied external load. Under the final load, the LCL becomes completely 

slack with no axial force, the ACL becomes increasingly tight owing to the coupled 

femoral posterior displacement, the PCL remains slack, while the MCL, firrnly attached to 

the medial meniscus and wrapped dong a bony tibiai proximal edge, shows an increase in 

its initial tensile force under lOOON compressive load. The total initiai and final (at lûûûN 

compression) tensile forces are, respectively, 11N and 117N in the ACL while 44N and 

55N in the MCL. 



The forces transfemd through the femur-rneniscus. femur-tibia, and meniscus- 

tibia contact regions at both lateral and mediai compartments are computed for each 

incremental load and verified to almost completely equilibrate the total load in the joint. 

The intact knee joint mode1 used shows no initial lateral cartilage-cartilage contact at loads 

below 50N while small initiai contact areas exist in al1 the rernaining contact regions within 

the tibiofemoral articulation. Analysis of contact forces indicates that in the intact joint, 

when the axial rotation is not restrained, the lateral compartment carries more load than 

does the medial compartment: at l 0 N  these compartments share the applied load at 

ratios of 60% and 40%, respectively, see Figure 2.7. As the rotation is fixed, under 

1ûûûN. the lateral and rnedial compartments share the load nearly equally. Removal of 

menisci tends to noticeably alter the portion of the axial load on the medial plateau so that, 

at lOûûN, the medial plateau carries much smailer load when axial rotation is free whereas 

nearly the same load as the lateral one when axial rotation is fixed. The contribution of the 

menisci in the load-bearing is demonstrated by evaluating the portion of axial 

compartmental load transmitted through menisci as compared with the whole axial 

comparûnental load. For the srnall to moderate loads, the lateral meniscus resists a larger 

portion of axial load than does its medial counterpart, see Figure 2.8. This relative 

distribution reverses for the unconstrained joint at large loads. The overail portions of 

compartmental load carried by rnenisci diminishes as the axial load increases. The ratios 

obtained for both rnedial and lateral side at lOOON are ranged between 27% and 36%. 

Analysis of the stresses in the tibial cartilage layers, at the centroid of solid 

elements, indicates that the maximum principal stresses are oriented approximately normal 

to the contact surfaces and are almost completely in compression except for some small 

regions on the cartilage edges that undergo negligible tension. At 1000N. with the 



unconstrained femoral intemalextemal rotation, these normal stresses are slightly p a t e r  

in the lateral plateau as compared with those in the mediai one (Figure 2.9). Maximum 

compressive stresses of 2.5MPa and 2.7MPaT respectively in the medial and lateral 

plateaus, are computed in the uncovered cartilage located close to the tibial erninence on 

the medial side and at the center on the lateral side. The opposing fernorai cartilage is also 

mainly in compression and exhibits slightly larger stresses on its lateral condyle with 

maximum compressive stress of 5.5MPa located intemally near the femoral groove. The 

compressive stresses within cartilage layers following meniscectomy are higher than those 

computed in intact joint. Their maximum values in the mediai and lateral tibial plateaus are 

amplified by about 10% and 25%, respectively, and are located nearly at the same region 

in the medial side but more centrally on the laterai side (Figure 2.9). In this case, the 

magnitude and location of the maximum compressive stress in the femorai cartilage layer 

remains nearly unchanged. 

2.5 DiSCUSSION 

In this study the merging of cornputer-assisted tomography and finite element 

modeling proved to be an efficient procedure to develop detailed finite element models of 

complex biological structures such as the human knee joint. In addition to the 

computerized tomography used to reconstruct the bony tissues, digitization with a 

numerically controlled machine and direct measurernents were carried out to develop the 3- 

D mode1 of the menisci, cartilage layers. and ligaments. The treatment of Ci' data did not 

require manual digitization of the medical images. The direct reconstruction of bony 

landmarks is, therefore, advantageous both to preserve accuracy and to save pre- 

processing time. The geomeûic modeling of the entire knee joint is a challenging task that 



was attempted for the first time. In the finite element modeling of the joint, special 

attention was given to the precise reconstruction and discretization of the menisci and 

articular cartilage surfaces. This is due to their relative importance in joint biomechanics. 

The overall level of mesh refinement appears to be adequate for the purpose of this study. 

The procedure adopted in this work was based on and substantially benefited from the 

experience gained during our earlier investigations on biomechanics of the human lumbar 

spine3953. 

Several parameters such as the number of elements to be used dong the 

circumference, throughout the radial direction, or within the thickness of meniscal 

structures, and the type of solid elements for cartilage layers and menisci were introduced 

in the mesh generation algorithm as to be set by the analyst. This is an important step 

towards the parameterization of the knee model which would be of great help in generating 

personalized finite element meshes of live subjects by only inputting a number of specific 

anatomical values into an existing set of data. 

In the present work, neglecting the patella, the response of the tibiofemoral 

joint in the fully extended position is predicted under an axial compressive load applied on 

the femur by increments of 50N for small loads up to 600N and incrernents of lOON for 

higher loads up to IOOON. For each increment, two iterations are executed in order to 

obtain a satisfactory convergence on the overall equilibrîum, contact forces, strains, and 

stresses in uniaxial and solid elements. 

2.5.1 Kinematics of the tibiofemoral joint in compression 

The joint kinematics is influenced by the femoral constraints, applied loads, 



articulation at different regions, menisci, and ligaments. Even under pure axial 

compressive load at full extension with no varus-valgus rotation, the joint exhibits coupled 

horizontal translations and axial rotation in addition to the primary translation in the axial 

direction. The posterior translation is the largest coupled translation computed in the intact 

joint which increases with applied compressive load (Figure 2.5). This coupled translation 

is due likely to the anatomical posterior dope of the tibial plateaus and is primary resisted 

by the tension in the ACL computed to be 117N at the lOOON applied compression. 

Constraint on the axial rotation does not appear to have substantial influence on the 

response in other directions with the exception of increasing the stiffhess in the axial 

direction (Figure 2.4). 

Total bilateral meniscectomy substantially alters the kinematics of the 

tibiofemoral joint by increasing the primary and coupled joint laxities in al1 directions 

except for the posterior one (Figures 2.4 and 2.5). The largest relative increases are noted 

to occur in the coupled axial rotation and media1 translation. In the case of joint with the 

constrained axial rotation, the marked effect of meniscectorny on coupled displacements 

almost disappears. The softening effect in axial translation still persists, although to a 

smaller extent (Figure 2.4). 

Despite of differences in femoral constraints, loadings, and ligamentous 

presence, the in vitro studies of the tibiofemoral joint at full extension under axial 

compression1" report stiffening nonlinear axial load-displacement relations sirnilar to the 

predicted ones in this study. Under smaller loads, the response is nonlinear. As the load 

increases, the joint becomes more congruous resulting in a more linear load-displacement 

relationship (Figure 2.4). The measured axial translations of 0.87fl. 17mm (mean+S.D.) 



under lOOON ', of about 1.3mm under lOûûN ' (Shrive et al., 1978), and of 0.5m.m to 

1. lm under 1500N are in general agreement with Our computed values depicted in 

Figure 2.4. Moreover, the substantial increase in the axial translation following total 

bilaterai meniscectomy found in this snidy is agreement with the results of previous 

experirnental studies that report the same trend1-'. 

2.5.2 Mechanics of load transmission in axial compression 

In this complex multibody contact problem, the analysis predicts the region of 

contacts as well as the transmitted contact force at each contactor node with its target 

element on the opposing surface. The orientation of the contact force varies from a region 

to another depending on the spatial geometry of proximal articulating surfaces of tibial 

cartilage and rnenisci. Analysis of predicted results at each load step verified the 

equilibriurn of extemal and internai loads, accounting for the ligamentous forces as well. 

The relative distribution of load among various articular regions alters as 

applied load changes. At lOOON axial compression, the lateral compartment transfers 60% 

of the total axial load on the joint with the remaining portion carried on the mediai side. 

This difference dirninishes as the axial rotation is constrained (Figure 2.7). In each 

compartment, under moderate to large applied loads, the major portion of the load is 

supported by the uncovered cartilage as compared with the menisci (Figure 2.8). The 

meniscal portion of the cornpartmental load dirninishes as the axial compression increases 

and reaches an average of about 30% under lOOON applied load (Figure 2.8). Bilateral 

rneniscectomy increases the relative load transmitted through the medial plateau (Figure 

2.7), so that the load on the medial plateau at lûûûN is found to be larger than that on the 

lateral plateau as the menisci are removed and axial rotation is restrained. 



Analysis of contact forces and regions on tibial plateaus and stresses at the 

centroid of tibial cartilage layers (Figure 2.9) indicates that the uncovered cartilage is 

loaded pnmarily at the central regions adjacent to the tibial eminence. The covered areas 

transmit a smaller portion of load and experience relativeiy smaller compressive stresses. 

Removal of menisci considerably relieves the stresses on the previously covered regions 

by over-stressing the central uncovered regions inducing large pressure gradients. In this 

case, the regions of contact are computed to diminish by nearly half, and even further as 

the axial rotation is restrained, which signifies the concentration of contact stresses on the 

cartilage in the absence of menisci. 

The measurement of contact loads, pressures, and areas of the intact and 

meniscectomized tibiofemoral joint in compression is a difficult task with inherent errors 

of substantiai magnitude, depending on the method used. These could be due to the 

alterations in joint kinematics and kinetics, limitations in techniques, or assumptions in 

subsequent calculations. Owing to the importance of such data, a number of investigaton 

have attempted these meas~rements'*~~~*'~~~~*~~~'~. Others have estimated the meniscal 

contribution in load transmission approximately by comparing the load-displacement 

curves of the intact and meniscectomized jointsu. 

Overall, the predicted meniscal transmission of about 30% of cornpartmental 

load at lOûûN compression (Fig. 2.8) appears to be situated at the lower lirnits of 

experimental results that report values varying from 35% to as high as IOO%"-'~*'~. The 

relative magnitude of load between uncovered cartilage as compared with meniscus 

markedly depends, amongst others, on the initial positioning of the joint, fernord 

constraints, the joint degeneration, and loading. 



The prediction that, under no load or very small loads, the contact occurred 

primarily on the menisci and medial uncovered cartilage is supported by previous 

observations". The maximum contact pressure of less than 3MPa measured under lOûûN 

load in cartilage of intact  joint^'*'^-'^*'^ appears to be in the range of computed principal 

compressive stresses in the tibia1 cartilage (Figures 2.9). Moreover, in agreement with the 

curent predictions, removal of menisci has been measured to substantially decrease the 

total contact area and increase the maximum contact pressure on each plateau1"*13*14*'7*18. 

Such marked effect of meniscectomy, as shown in Figure 2.9, relieves the previously 

covered areas while the central uncovered regions carry larger stresses resulting in a 

considerable stress gradient on cartilage. 

In conclusion, a realistic 3-D mode1 of the entire human knee joint including 

femur, tibia, patella, cartilage layen, menisci, and joint ligaments has been developed. In 

the present work, the response of the tibiofemoral joint, neglecting the patellofemoral 

joint, is investigated in full extension under axial compression forces of up to 10ûûN. The 

study of the joint including the patellofemoral articulation with different quadriceps 

activations at different flexion angles is planned to be performed in the future. Such 

studies are expected to improve Our understanding of the detailed biomechanics of this 

complex structure in both normal and perturbed States. 
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Table 2.1. Areas and reference strain values for ligament bundles. 

Ligarnen t Bundle 
Area Reference 
(m2) Strain (%) Ref. 

ACL anterornedial (aACL) 

posterolaîeral (PACL) 

PCL anterolaterai (aPCL) 

posterornedial (pPCL) 

LCL anterior (&CL) 

supenor (sLCL) 

postenor (pLCL) 

MCL anterior (aMCL) 

inferior (iMCL) 

posterior (pMCL) 



Figure 2.1: Cadaveric right knee joint specimen used for reconstruction; (a) anterior 

view of the flexed tibiofemoral joint, (b) proximal view of the tibia1 plateau. 



Figure 2.2: A typical posterolateral view of the finite element mesh representation of 

cartilage layers and menisci using 8-node solid elements (M: medial. L: 

Iateral). 



Figure 2.3: Model of menisci and ligaments. Each ligament bundle is represented by a 

2-node tmss element; also shown is the attachment of the rnediai collateral 

ligament to the periphery of the medial rneniscus (ACL: anterior cruciate 

ligament, PCL: posterior cmciate ligament, LCL: lateral collaterai ligament, 

MCL: medial collateral ligament). 
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Figure 2.4: Load-displacement curves for the tibiofemoral joint at full extension for the 

cases with or without menisci and with the axial rotation (TZ) fixed or free. 
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Figure 2.5: Coupled fernoral displacements for the tibiofemoral joint at full extension 

under I O N  axial Ioad for the cases with or without menisci and with the 

axial rotation (TZ) fixed or free. 



Figure 2.6: Initial (gray) and deformed (dark) configurations of the menisci for the 

tibiofemoral joint with the free axial rotation at 1 OûûN axial compression. 
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Figure 2.7: Distribution of the load in media1 and lateral plateaus of the tibiofemoral 

joint at full extension under lOOON axial load for the cases with or 

without menisci and with the axial rotation (TZ) fixed or free. 
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Figure 2.8: Load transmitted by menisci as a ratio of total cornpartmental load for the 

cases with or without menisci and with the axial rotation (TZ) fixed or fnx. 



Figure 2.9: Principal compressive stresses in centroid of tibial cartilage elements for the 

intact and meniscectornized joint with free axial rotation at lOOON external 

load; (a) medial plateau, (b) lateral plateau. The distai boundaries of the 

menisci on the tibial plateaus are also shown by dashed lines. Elements 

with no stress bar are in negligible tension. 





CHAPITRE III 

ANALYSE PAR ÉLÉMENTS FINIS DU GENOU HUMAIN 

EN VARUS-VALGUS 

ARTICLE II 

FINITE ELEMENT ANALYSIS OF EUMAN KNEE JOINT 

IN VARUS-VALGUS 

La présente analyse nonlinéaire par élément finis d'un modèle de genou humain 

s'intéresse particulièrement A la réponse biomécanique de l'articulation fémoro-tibiale 

soumise à un chargement en varus-valgus. Le modéle utilisé est composé de deux 

composantes osseuses (tibia et fémur), les couches de cartilages qui s'y attachent. 

ménisques interne et externe ainsi que quatre principaux ligaments (latéraux et croisés). 

Les couches de cartilage sont représentées par un matériau isotropique alors que les 

ménisques sont modélisés par un matériau composite fomé d'une matrice solide renforcée 

par des fibres de collagène orientées principalement dans les directions radiale et 

circonférencielle. L'articulation, qui s'opère d'un côté, entre les différentes couches de 

cartilage. et d'un autre côté, entre les couches de cartilages et les ménisques qui s'y 

interposent, en plus du mécanisme d'enroulement du ligament latéral interne sur le côté 

proximal de l'os tibial, sont considérés comme des problèmes de contact sans frottement 



avec grands déplacements. La réponse du système est obtenue pour chaque incrément de 

la charge en varus-valgus appliquée sur le fémur sous forme de moments atteignant 

15N-rn tandis que le tibia demeure fve. Subséquemment à des analyses ayant pour but de 

déterminer les effets des mouvements couplés du fémur sur la réponse globale du 

système, plusieurs cas sont égaiement analysés, dans lesquelles une déficience du 

ligament latéral externe lors d'un chargement en varus est simulée sous des conditions 

d'analyse similaires. Aussi examiné, est l'effet d'une déficience au ligament latéral interne 

lors d'un chargement en valgus. Pour le modèle intact comme pour celui simulant une 

déficience de l'un des ligaments latéraux, l'articulation présente des ouvertures en varus 

ou en valgus dans lesquelles la compression sur le joint ne s'opère que sur un seul 

plateau, interne en varus et externe en valgus. Les prédictions du modèle en termes de la 

cinématique du genou et des forces dans les ligaments sont en bon accord avec les 

mesures expérimentales rapportées dans la Littérature. 



3.1 ABSTRACT 

Objective. The overall response, load transmission, role of ligaments, and state of stress 

in various components under varus-valgus moments in the intact and collateral-deficient 

tibiofemoral joint are investigated. 

Design. A nonlinear finite element mode1 consisting of bony structures (tibia and femur), 

their articular cartilage layers, medial and laterd menisci and four primary ligaments 

(cruciates and collaterals) is utilized. 

Background. Valgus and varus stresses are arnong the primary mechanisms of injury to 

knee ligaments. Several in-vitro studies have investigated the role of ligaments in resisting 

such loads and on the way deficiency in either of collaterals may affect the response. 

Methods. Cartilage layen are isotropie while menisci are nonhomogeneous composite. 

The articulation of cartilage layers with each other and with the intervening menisci and the 

wrapping of the media1 collateral ligament around the tibia1 edge are treated as large 

displacement frictionless contact problems. The nonlinear elastostatic response of the joint 

at full extension is cornputed under varus-valgus moments applied to the femur with the 

tibia fixed. Cases simulating deficiency in collaterals and constraint on femoral axial 

rotation are also studied. 

Results. The response is nonlinear with large coupled axial rotations, interna1 in varus 

and external in valgus. In intact and collateral-deficient States, the joint shows varus or 

valgus openings so that the articulation occurs at one plateau only, medial in varus and 

lateral in valgus. Large tensile forces in cruciates in collateral-cut models generate higher 

compression penalty on the loaded plateau. 

Conclusions. Collaterals are the primary load-bearing stmctures; their absence would 

substantially increase pnmary laxities, coupled axial rotations, forces in cruciates, and 



articular contact forces. Good agreement with measurements is found. 

3.2 IRELEVANCE 

Detailed knowledge of joint biomechanics is essential in the diagnosis, 

prevention, and treatment of observed disorden. Absence of collaterai ligaments increases 

the loads in cruciates and contact stresses transmitted through cartilage layers and menisci 

and, hence, places the affected components at more risk specially when varus-valgus is 

accompanied by other modes of loading as well. 

3 .3  INTRODUCTION 

Being one of the most heavily loaded and mobile joints in the human body, the 

knee joint is associated with a high incidence of injuries and osteoarthrosis. The distal 

location of the joint below the center of gravity of the body causes compressive loads 

acting on the tibiofemoral joint to be as high as 4 to 7 times the body weight during day to 

day activities such as walking, running or ascending ~ t a i r s l * ~  and even 24 times the body 

weight during jumping3. Combined loading conditions during aggressive athletic activities 

are, however, not yet rneasured and could place large loads on the knee joint. Some sports 

such as football, ninning, and skiing are known to be responsible for thousands of knee 

injuries and related degenerative processes in many foms such as meniscal tear and more 

particulady, ligamentous darnage and rupnire. 

It is realized that the ligaments of the knee help to guide the joint through 

normal motion and to provide the required stability by contributing to stiffness as well as 



flexibility of the joint The principal mechanisms of injury of the human knee joint 

ligaments have been discussed in the literature4. Valgus stresses and, to a lesser extent, 

varus stresses are some of the most cornmon causes. In varus and valgus rotations, the 

ligarnentous resistance is primarily assumed by the collaterals (lateral collateral, LCL, in 

the former and medid collateral, MCL, in the latter) followed by the cruciates (anterior 

cmciate, ACL, and posterior cruciate, PCL) and the joint capsules as secondary restraints. 

In addition to causing injuries to the LCL and the MCL, excessive varus-valgus stresses 

can damage the ACL as wel14? Such injuries would rnarkedly increase the joint 

functional laxity and, thus, compromise its much needed stability. 

The load bearing function of the knee components in varus-valgus has been the 

subject of a number of experiments yielding as yet a lirnited understanding of the joint 

mechanics. The rnajority of these studies are in-vitro and investigate the contribution of 

ligaments in the joint stiffhess by measuring the gross moment-angulation response of the 

joint in its intact and perturbai States. Most authors have used a flexibility approach dong 

with a selective ligament cutting procedure. Typically, a varus or valgus moment is 

applied on the tibia of the intact knee and the response is recorded, a ligament is then cut, 

the moment reapplied and changes in varus or valgus laxity is rnea~ured~-~.  One 

shortcoming of this approach is that, when performing a sequence of ligament cutting, the 

system is highly nonlinear and an increase in laxity is strongly dependent on the order of 

cutthg. This makes it impossible to precisely detennine the contribution of a specific 

ligament in resisting typical loading. On the other hand, others have used a stifiess 

approach by applying some precise varus-valgus rotations or openings while recording the 

knee's corresponding restraining moments. The contribution of each ligament is then 

identified by the reduction in the restraining moment following its e x c i ~ i o n ~ ~ - ' ~ .  This 



method, however, yields results that are independent of the order in which the ligaments 

are cut only if al1 displacements are prescribed while ail loads in comsponding directions 

are registered. 

Some authors have focused their attention on the in-vitro measurement of force 

or elongation in ligaments under various types of loading. A new technique has been 

introduced to d i r d y  measure the in-vitro tensile forces in ACL for intact knee specimens 

in varus-valgus moments alone15*16 or in combination with anterior force or axial 

torqueL7. The effects of sectioning the LCL and posterolateral structures in varus on 

forces in the ACL have been reported by Markolf et ai. l8 while Shapiro et ai? have 

investigated the effects of sectioning the MCL in valgus. Hollis et ai.9 have, instead, 

determined the elongation of different anatornicai portions of the ACL for specimens under 

varus-valgus moments using a kinematic approach and, more recently, Hull et aL l9 have 

measured strains in the MCL under valgus moments applied alone or combined with axial 

moments, anterior-posterior or medial-lateral forces. 

In spite of a continuing increase in experimental data, it is recognized that 

measurements done are not sufficient to delineate the detailed biomechanics of the human 

knee joint. Recent applications in orthopaedic biomechanics have confirmed that redistic 

mathematicai modelling is an efficient tool for the simulation and anaiysis of complex 

biological structures such as the human knee joint. During the last two decades, a nurnber 

of analytical mode1 studies with different degrees of accuracy have been presented in the 

literature. These have mainly attempted to model the tibiofemoral joint20-27 while a few 

studies have aimed at modelling the patellofemoral and more recently at both the 

tibiofemoral and patellofemoral j o i n t ~ ~ ~ * ~ l .  As for finite element model investigations a 



few studies of the menisci have been reported assuming simplified axisymmenic 

geometries for the femoral condyles, tibial plateau, and menisci with no consideration of 

cartilage layers or of ligaments3*. In a more recent work, using similar axisymmetnc 

geometries, femoral and tibial articular cartilage layers of unifom thickness have also been 

~ o n s i d e r e d ~ ~ .  Merging computer assisted tomography and finite element modelling, the 

authors have developed a realistic 3-D mode1 of the entire human knee joint including 

bony structures (ie, tibia, femur, and patella), articular cartilage layers, composite menisci, 

and ligaments (ie, ACL, PCL, MCL. and L C L ) ~ ~ .  The detailed nonlinear response of the 

tibiofemoral joint in full extension under axial compression force has been studied. The 

effect of the presence and absence of menisci and coupled axial rotation on response have 

also been investigated. In continuation of this study, the objectives of the present work 

are: 

Nonlinear elastostatic finite element analysis of the passive tibiofemoral joint at 

full extension under varus-valgus moments of up to 15N-m. Attention was focused on the 

primary and coupled load-displacement characteristics of the joint, the load distribution 

and contact stresses in media1 and lateral plateaus in both covered and exposed cartilage 

zones, the state of stress and strain within solid and uniaxial elernents, and the mechanical 

role of various ligaments. 

Analysis of the effects of cutting the MCL in valgus and the LCL in varus on 

the foregoing joint biomechanics. 

Determination of the influence of the coupled femoral axial rotation on the 

computed joint response. 



3.4 METHODS 

3.4.1 Finite Elernent Mode1 and Material Properties 

As described in details in our study of the tibiofemoral joint in ~ o r n ~ r e s s i o n ~ ~ ,  

the cornputer assisted tornography and finite element modelling dong with direct 

digitization techniques were used to reconstruct a detailed 3-D model of the entire human 

knee joint specimen of a 27-year-old woman. The finite element model is briefly outlined 

herein for the sake of completeness. For more details, Our earlier work should be 

consulted. 

The tibiofemoral mode1 consists of two bony structures (tibia and femur), their 

articular cartilage layee, menisci, and four principal ligaments (cruciates and collaterals). 

Each bony structure is identified by a master node located at its centroid and by a set of 

local convective coordinates system. Finite element mesh generation was automatically 

performed leading to 8 1 8-node solid elements for both medial and lateral tibia1 articula. 

cartilages, and 244 8-node solid elements for femorai articular cartilage. For the meniscal 

tissues, a non-homogeneous composite model of a matrix of ground substance reinforced 

by networks of circumferential and radial collagenous fibres was considered. Due to their 

semi-lunar shapes, the meniscal tissues were modelled by solid elements in the axial, 

circumferential, and radial directions, resulting in 244 8-node solid elements for both 

menisci (see Figs 3.1 and 3.2). A total of 1212 truss elements reinforcing these solid 

elements was used to model the collagen network in both circumferential and radial 

directions. Moreover, 39 uniaxial elements modelled various ligaments of the knee joint, 

the anterior and posterior bundles of the ACL by 3 elements each; the anterior and 

posterior bundles of the PCL by 3 elements each and the LCL by 3 elements. Special 



treatment was considered for the MCL that wraps around the proximal medial bony edge 

of the tibia in addition to its peripheral attachment to the medial meniscus. This ligament 

was modelled in its proximal part by 15 trusses in the anterior, postenor, and inferior 

bundles, each bundle starting from the femoral bony insertion to the distal outer surface of 

the medial meniscus and connected to a wrapping element to give a total of 5 wrapping 

elements for the distal part of the medial collateral Ligament. The reconstructed joint has 

initial varus-valgus dignment of about 6O and flexion angle of about 5" at the undeformed 

configuration. This latter flexion angle is kept constant during the loading which results in 

a joint position that is referred to in this work as the full extension configuration. The 

overall finite element mesh of soft tissues that constitute the tibiofemoral joint is shown in 

Figs 3.1 and 3.2. 

For the fnctionless nonlinear contact modelling of articulations, six potential 

contact zones were identified where each zone is commonly defined by a set of contactor 

and target surfaces. These are, at the medial compartment, the medial fernoral cartilage 

against both medial tibial cartilage and proximal surface of the medial meniscus as well as  

distal surface of the medial meniscus against the medial tibial cartilage. Three similar 

contact zones were also determined on the lateral compartment. In the event that a contact 

occurs between a contactor point and a target facet, the contact algonthm in the program 

automaticaily generates a two-node contact gap element having a modulus of lûûMPa in 

compression and ni1 in tension. The contact between adjacent bodies is supposed to initiate 

at distances below O. 15mm (ie, gap lirnit). These values were chosen based on a number 

of preliminary studies on the effect of contact parameters on predicted results of the 

tibiofemoral joint in compression34. 



The material properties were derived from the data available in the literature. 

The bony structures were modelled as rigid bodies. This is time-efficient in a nonlinear 

analysis and accurate owing to their much larger stiffness compared to that of the soft 

tissues. The articular cartilage layers were assumed to be isotropic with an elastic modulus 

of I2MPa and Poisson's ratio of 0.45 35J7. Similar values for the elastic moduli have 

been used in previous finite element analyses38~39. For the representation of the menisci, a 

composite of isotropic matrix reinforced by collagen fibres was considered with a 

Poisson's ratio of the matrix chosen as 0.45 and the elastic modulus as 8MPa, a value 

which is close to those obtained fiom measurements on specimens cut in the radial 

direction at the deep parts of the meni~ci~O*~l  and in accordance, as well, with the 

observation t$at meniscal tissue is roughly one-half as stiff in compression as articular 

cartilage42. The nonlinear material properties for collagen fibres were chosen similar to 

those for disc collagen fibres used in Our spinal mode1 s t~dies~~*" .  The equivalent 

collagen fibre content and, hence, the cross-sectional areas for fibre elements in each 

direction were then e ~ a l u a t e d ~ ~  based on reported experimental data for mechanical 

properties of specimen cut in different directions in both superficiai and deep zones of the 

meniscal tissues4 1*42945*46. 

Material properties for different ligaments were also obtained from available 

data in the literature (see Fig. 3.3). As suggested by Wismans et a ~ ~ ~ ,  relations between 

nominal stress to engineering strain were assumed nonlinear for low strains, linear for 

strains higher than 2E1 where &1 is the nonlinear strain level parameter known also as the 

linear strain limit parameter, and finally nonlinear pnor to failure. The linear strain limit 

parameter was set to be around 0.03 for al1 ligaments47. The elastic rnodulus for the linear 

portion of the curves was chosen from expenmental data47*48 or stiffness values used in 



previous mode1 s t ~ d i e s ~ l * ~ *  accounting for the ligament's cross sectional area measured 

directly on the specimen. The reference strain for each Iigarnentous bundle (ie, strain at no 

external load) was derived from earlier s t u ~ i i e s * ~ ~ ~ ~ .  

3.4.2 Loadings, Boundary Conditions and Parameters 

The present nonlinear stress analysis accounting for material and geometric (ie, 

contact, large strain and displacements) nonlinearities was performed considering the 

tibiofemoral joint in full extension. For the purpose of cornparison of predictions with 

reported measurements, the load applications and boundary conditions were set similar to 

those chosen in experiments. In al1 analyses, the flexionextension rotation was fixed for 

the femur at its initial position. The femoral vams-valgus rotation dong with the mediai- 

lateral, anterior-posterior, and proximal-distal translations were set free. The coupled 

intemalextemal rotation was either fixed or left unconstrained. The tibia was completely 

fixed. Cases simulating deficiencies in the collaterals (ie, MCL in valgus and LCL in 

varus) were also investigated. In al1 foregoing analyses, prior to the application of varus- 

valgus moments, the joint response was initially computed due only to the prestresses in 

ligaments. 

3.5 RESULTS 

The tibiofemoral rnodel at full extension exhibits nonlinear varus-valgus 

response (see Fig. 3.4). In the intact model, the moment-angulation curve is stiffer in 

varus than in valgus. In varus, at 15N-m, a maximum lateral opening of about 2.5mm is 

observed. The joint laxity, in this loading case, is found to be relatively unaffected by 

restraining the femoral axial rotation. Larger maximum medial openings of about 3.5mm 



or 4mm are computed under 15N-m valgus with the axial rotation fixed or free, 

respectively. The resulting total varus-valgus laxities at k1SN-m are about 6" and 7.5' for 

cases simulating fixed and fke femoral axial rotation, respectively. When either the MCL 

or the LCL is cut, the joint laxity in valgus or varus markedly increases specially when the 

axial rotation remains unconstrained. As for the coupled axial rotation, the femur rotates 

intemally in varus and extemally in valgus for a total range of 13.5' at +15N-m (see Fig. 

3.5). Section of the LCL or the MCL causes a drastic increase in femoral coupled rotation 

which is in internai direction under both moments. 

Computed large tensile forces in the collateraIs clearly demonstrate their 

primary role in resisting varus-valgus rotations (Fig. 3.6a). Restraint on the coupled 

femoral axial rotation has negligible effect on collateral forces. When restraining the 

femoral axial rotation, the LCL has no role in valgus when the MCL is cut while the MCL 

has no role in varus after sectioning the LCL. The ACL contributes in resisting varus- 

valgus moments in the intact joint to a much smailer extent than collaterals, specially when 

accounting for their effective lever arrns (Fig. 3.6b). Except for the intact joint in valgus, 

the coupled femoral axial rotation has no significant influence on the computed forces in 

the ACL. At 15N-m moment, the ACL force is about 20% and 60% of the MCL force in 

vaigus and 35% and 40% of the LCL force in varus, respectively for cases with free and 

constrained coupled axial rotations. The PCL contnbutes to the load resistance marginally 

only in valgus moments (Fig. 3 . 6 ~ ) .  Constraint on the femoral axial rotation has no 

significant influence on PCL computed forces. Section of either collaterals substantially 

increases forces in both cruciates to reach values of about 300N in the ACL and 2ûûN in 

the PCL at varus and valgus moments close to ION-m. 



Under no extemd loads, the joint is compressed due to the presence of initial 

stresses in some ligaments. The contact forces transferred through the six potential 

articuiation zones in the tibiofemoral joint were computed at al1 load magnitudes and 

verified to almost completely equilibrate the total load in ligaments. In the intact model, as 

varus-valgus moments increase, the total axial contact force on the tibial plateaus also 

increases t~ reach about 3ûûN at 15N-m moment (Figs 3.7 and 3.8). The percentage of 

this load transferred through the menisci, however, does not necessarily follow the same 

monotonic trend. In valgus (Fig. 3.8), the lateral meniscus carries a larger portion of the 

total cornpartmental load than does its counterpart on the medial plateau under varus (Fig. 

3.7). Constraint on the femoral axial rotation tends to increase the portion of axial load 

canied by menisci. When either collateral is sectioned, the total axial contact force on 

plateaus considerably increases at al1 loading levels, for example at 7SN-m these forces 

exceed those computed for the intact model under moments of twice that magnitude (see 

Figs 3.7 and 3.8). 

Analysis of stresses at centroids of solid elements modelling the tibial articular 

cartilage layen indicates that the maximum principal stresses are compressive and oriented 

approximately noma1 to the articular surfaces. Only small cartilage regions at the tibial 

edges are found to undergo some negligible tension. At 15N-m varus moment, the 

compressive stresses in the intact joint reach a maximum of about 1.4MPa at the 

anteromedial side of the covered medid cartilage and remain relatively unaffected by 

constraining the femoral axial rotation. In valgus, coupled femoral axial rotation affects 

these stresses in both magnitude and location so that the maximum compressive stress 

increases by about 50% to reach 2.3MPa and shifts postenorly on the covered lateral 

cartilage (Figs 3.9a and b). Once the LCL or MCL is sectioned, the maximum 



compressive stress values at 8N-m increases h m  0.6MPa to I.35MPa in varus and from 

0.9MPa to I .8MPa in valgus for cases with free femoral axial rotation (see Figs 3.10a and 

b). The femoral intemal rotation cornputed for both collaterai-cut models causes the 

contact areas and thus, the location of maximum compressive stresses, to shift posteriorly 

on the medial covered cartiIage in varus when LCL is cut whereas anteriorly on the lateral 

covered cartilage in valgus when MCL is cut. 

Strains in meniscal collagen fibres are computed for each loading step to reach 

their maximum values in locations close to femur-meniscus contact regions. The radially 

onented fibres are found to be generally more strained in both varus or valgus moments 

whether the femoral axial rotation is fixed or free. In intact model, at 15N-rn valgus 

moment, with free or fked axial rotation, some radial collagen fibres within the lateral 

meniscus experience 3% strain with maximum values reaching 5% to 6%. Under 15N-m 

varus, the collagen fibres within the medial meniscus are found to be less strained, only 

few fibres (ie, 8 among 606) exceed 3% with maximum values about 6%. As in valgus, 

consuaint on the femorai axial rotation has negligible effects on strains in the fibre 

networks. 

3.6 DISCUSSION 

Following Our earlier study of the tibiofemoral joint under axial compressive 

~ o a d ~ ~ ,  this work was pexfonned to investigate the joint biomechanics under varus-valgus 

moments of up to 15N-m by computing the primary and coupled laxities, the mechanism 

of load transmission across the tibiofemoral articulation, and the role of ligaments. The 

tibia remained completely fixed while the fernur was free in al1 directions except the 



flexion-extension one. Effects of constraint on the coupled femoral axial rotation on 

results were also investigated. Moreover. mechanics of MCL or LCL deficient joint in 

varus-valgus were sîudied in order to further delineate the coupled role of ligaments. 

3.6.1 Kinematics of the Joint 

The computed varus-valgus moment-angulation curve for the intact 

tibiofernoral joint at full extension was slightly stiffer in vams than in valgus. The 

cornputed total varus-valgus laxity of 7.5' at +15N-m agrees well with the data in the 

literature. Setting fkee al1 coupled translations on the femoral component and axial rotation 

on the tibial component, Hollis et reported value of 6S0+l O (meanhtandard deviation) 

under f MN-m varus-valgus moments applied on the tibia Markolf et reported stiffer 

response of about 3.5' under I15N-m moments applied manually on the tibia and noted 

nearly linear load-displacement curves. Sirnilarly, for the sarne range of applied moments, 

Wascher et al. l6 obtained laxity of 4.6' M.6" while Gollehon et ale8 found larger laxities 

with mean of about 12'. Piziali et al! l and Seenng et al. l3 measured mean laxities of 

about 1 1 S0 and 9" at t 15 N-m, respectively, using a lirnited number of specimens 

undergoing rotation about a fixed axis. Varus-valgus laxity has been reported to be very 

sensitive to the position of the mis of rotation1*. 

Our predictions demonstrate that the prirnary varus-valgus rotational laxity 

markedly increases following isolated section of collaterals (Fig. 3.4). This is in 

accordance with relatively large forces computed in these ligaments in the intact joint (Fig. 

3.6a) and their advantageous position in the joint to effectively resist applied moments. 

The predictions also show that allowing for the coupled axial rotation further increases the 

primary varus-valgus laxities in collateral deficient joints (Fig. 3.4). Changes in the knee 



motion afkr section of each individual collateral ligament has b e n  measured by Gollehon 

et al. and Markolf et al?. In the former study, the primary varus rotation increased by 1 

to 4" when isolated section of the LCL was p e r f o d  wMe a more significant increase of 

about 8' was observed when the LCL and the popliteus tendon were both sectioned. In the 

latter shidy, the valgus Iaxity was found to increase as much as 4.5 times when the MCL 

was severed in combination with posterior capsule. These reported measurements 

compare well with Our findings in varus and valgus when the LCL or the MCL are cut 

despite the fact that neither posterolateral structures nor capsular ligament have been 

represented in Our model. 

In terrns of coupled axial rotations, the predicted values in the intact joint (see 

Fig. 3.5) are larger than 4" +1 at f MN-m measured by Hollis et alS9. However, Our 

finding of femoral intemal and external rotations in varus and valgus, respectively, 

corroborate with those of Hollis et almg reporting tibial intemal rotation in valgus and 

extemai rotation in varus. In varus as in valgus, significant increase in the femoral internal 

coupled rotation is computed following section of collaterals (Fig. 3.5). This is a 

consequence of the large tensile forces computed in cruciates that, due to their anatornical 

directions, generate internal torques on the femoral shaft. In support of these predictions, 

Gollehon et aL8 reported a significant tibial extemal rotation following combined 

sectioning of the LCL and popliteus tendon. 

3.6.2 Load Transmission 

It is noted that the collaterais are the most efficient ligaments in sustaining 

vanis-valgus moments followed by the ACL in varus and both the ACL and the PCL in 

valgus moments. Apart frorn the recent work of Hull et d l 9  on strains in different 



locations on the MCL in valgus, no strain data in collaterai ligaments under varus-valgus 

moments are cumntly available in the literature. Anticipating that the anterior most 

bundles of the MCL are more likely prone to injuries, Hull et al. l9 measured strains in this 

region of the MCL in its proximal and distal parts for specimens at Full extension under a 

number of loading cases including valgus moments of up to 20N-m. Our predicted strains 

of about 3.2% to 3.8% in similar locations on the MCL are found to be in the sarne range 

as those reported by Hull et al.I9 (ie. 1.8% to 3.5%). In Our model, however, the most 

posterior bundles of the MCL are predicted to undergo larger strains of up to 5.8%. 

As for the tensile forces in cruciate ligaments, our predictions (given in Figs 

3.6b and c) compare well with those reported in the literature for intact knee specimens. 

Markolf et al. 15J7J8 and Wascher et al. l6 have reported ACL tensile forces of about 

lOON under ION-m and 105N to 125N under 15N-m vams moments whereas very small 

PCL forces (about ION) under similar varus moments. In valgus, the ACL is measured to 

cary from SON to 80N under IO- 1 5 ~ - m l ~ - I ~  whereas the PCL resists smaller tensile 

f ~ r c e s l ~ * ' ~  that reach about 3 5 ~ ~ ~  under 15N-m. Following section of one of the 

collaterals in varus-valgus, the cmciates are computed to expenence substantially larger 

loads (Figs 3.6b and c). The loss of resiraining force caused by section of collaterals is, 

thus, compensated by increased tension in cruciates resulting in large coupled intemal 

rotation as well as much larger joint laxity due to the less effective position of cruciates in 

resisting moments as cornpared to collaterals. In agreement, Markolf et al. l8 found that the 

forces in the ACL were 60% to 160% greater following section of the LCL and 

posterolateral structures in vams while those in the PCL remained relatively unaffected. 

Finally, the results of this study suggest that the collaterals are the primary 



elements to resist varus-valgus moments. The cmciates are less loaded in the intact joint 

and positioned much less effectively to resist such rotations. However, in the collateral- 

deficient knee under varus-valgus moments. the cruciates experience very large loads that 

could put them at nsk of failure specially in the presence of additional modes of loading. 

In this latter case, both plateaus and, hence, the articular cartilage layers as well as menisci 

undergo much larger compressive stresses generated due to the greater tensile forces in the 

cruciates. The unconstrained joint aIso experiences large femoral intemal coupled rotations 

that influence the contact areas as well. In addition to the ever presence of the axial 

compression load, excessive cartilage stresses Likely increase its risk of degeneration. 
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Figure 3.1: A typical posterior view of the finite element rnesh representation of 

femoral and tibia1 cartilage layers and menisci using 8-node solid elements; 

M: medial, L: laterd. 
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Figure 3.2: Mode1 of menisci and ligaments. Each ligament bundle is represented by a 

2-node axial element; also show is the attachment of the medial collateral 

ligament to the periphery of the medial meniscus; ACL: anterior cruciate 

ligament, PCL: postenor cruciate ligament, LCL: lateral collaterd ligament, 

MCL: medial collateral ligament, M: medial, A: anterior, P: postenor. 



Figure 3.3: Nonlinear stress-strain curves for different ligaments [47,48]; ACL: 

anterior cruciate ligament, aPCL: anterolateral bundle of the posterior 

cmciate ligament, pPCL: posterornediai bundle of the posterior cruciate 

Ligament, LCL: lateral collateral ligament, MQL: medial collateral ligament. 
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Figure 3.4: Moment-angulation curves in varus-valgus for the intact and collateral-cut 

tibiofemoral models with the axial rotation (TZ) fixed or free. 
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Figure 3.5: Coupled femorai axial rotation for the intact and collateral-cut tibiofemoral 

models in varus-valgus moments. 
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Figure 3.6: Predicted variation of total tensile forces in ligaments with varus-valgus 

moments; (a) in collaterals for the intact mode1 with T m ;  (b) in ACL for 

intact and collateral-cut models with TZ fixed or free; (c) in PCL for intact and 

collaterat-cut models with TZ fixed or free. TZ: femoral coupled axial 

rotation. 
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Figure 3.7: 
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C: LCL cut 

(Fig. 3.7a) 
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Distribution of the load in the medial plateau of the intact and LCL-cut 

modeIs in varus moments; (a) free femoral axial rotation; (b) constrained 

femoral axial rotation. The load is presented as a total of that transferred 

through covered (ie, via meniscus) and exposed cartilage areas. 
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Figure 3.8: Distribution of the load in the laterai plateau of the intact and MCL-cut 

models in valgus moments; (a) free femord axial rotation, (6) constrained 

femoral axial rotation. The load is presented as a total of that transferred 

through covered (ie, via meniscus) and exposed cartilage areas. 
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(Fig. 3.9a) 

Figure 3.9: Principal compressive stresses in centroid of tibial cartilage elemenü for 

the intact tibiofemoral model with free or constrained femoral axial 

rotation; (a) tibial plateau under 15N-m varus, (b) tibial plateau under 

15N-m valgus. Elernents with no stress bar experience either no stress or 

a negligibIe tension. 
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Figure 3.10: Principal compressive stresses in centroid of tibial cartilage elements for the 

intact and collateral-cut tibiofemoral models with fkee fernoral axial rotation; 

(a) tibial plateau under 8N-m varus, @) tibial plateau under 8N-m valgus. 

Elements with no stress bar experience either no stress or a negligible 

tension 
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(Fig. 3.10b) 



CHAPITRE IV 

RÉPONSE BIOMÉCANIQUE D'UN GENOU KUMAIN 

ASSUJETTI À DES FORCES ANTÉRIEURES ET P O S T ~ ~ E U R E S  

ARTICLE III 

BIOMECHANICAL RESPONSE OF THE HUMAN KNEE JOINT 

UNDER ANTERIOR-POSTERIOR FORCES 

SOMMAIRE 

Dans la présente étude, des analyses nonlinéaires par éléments finis sont effectuées 

sur un modèle de genou humain. Le modèle analysé est constitué de deux structures 

osseuses (tibia et fémur), leurs couches de cartilage respectives. les ménisques ainsi que 

quatre principaux ligaments (deux croisés et deux latéraux). Une charge atteignant 400N 

est appliquée soit postérieurement ou antérieurement sur le fémur ou le tibia . Les 

conditions aux rives sur chacune de ces composantes sont choisies de telle façon 2i 

préserver la flexibilité intrinsèque de l'articulation. La laxité primaire ainsi que les 

mouvements couplés du genou sont évalués et le mécanisme de transmission de la charge 

à travers l'articulation est analysé lors de cette étude. Aussi, l'importance du choix des 

conditions aux rives pour ce système est démontrée. La contribution des ligaments croisés 

ià résister un tel chargement est également soulignée par une &ude minutieuse de la réponse 

biomécanique du genou avant et après excision du ligament croisé antérieur lors d'un tiroir 



fémoral postérieur et du croisé postérieur lors d'un tiroir antérieur. Finalement, des cas 

simulant séparément, une excision totale du ménisque interne puis externe sont analysés. 

Les résultats obtenus pour la laxité antéro-postérieure du modèle intact sont peu influencés 

par le fait que la charge soit appiiquée sur le tibia tout en maintenant libres les mouvements 

couplés sur le fémur ou vice versa Dans la plage de charge allant de -400N (postérieure) à 

4ûûN (antérieure), une laxité primaire d'environs 9mm est recensée. Une restriction sur 

les mouvements couplés du tibia affecte sensiblement les résultats surtout ceux de la laxité 

primaire du joint qui se voit réduite d'environs 3 5 4 .  Le ligament croisé antérieur et le 

ligament croisé postérieur sont les principaux éléments limitant un déplacement fémoral 

lors de tiroirs antéro-postérieurs. La laxité du joint augmente de 6 à 7 fois après excision 

du ligament croisé antérieur ou postérieur. En ce qui concerne les cas simulant une 

méniscotomie interne, en plus d'une augmentation sensible de la laxité du système, une 

imposante rotation axiale couplée associée avec le déplacement fémoral postérieur est 

observée. D'un autre côté, alors que la méniscotomie externe n'a eu que peu d'effets sur la 

cinématique du genou ion d'un tiroir fémoral postérieur, la rnéniscotomie interne a 

provoqué, lors de tiroirs antérieur et postérieur. une altération substantielle aux 

mouvements primaire et couplés du joint tout en induisant des compressions accrues sur le 

plateau tibia1 externe. 



4.1 ABSTRACT 

To investigate the mechanics of the intact and perturbed passive knee joints in 

drawer forces. a nonlinear finite element mode1 of the entire human tibiofemoral joint 

consisting of bony structures, their articular cartilage Iayers, menisci, and four principal 

ligaments was utilized. Elastostatic analyses were carried out considering the tibiofemoral 

joint at full extension under anterior and posterior loads of up to 400N applied either to 

tibial or femorai shaft. Situations with various boundary conditions. cruciate (ACL or 

PCL) deficiency and total unilateral meniscectomy (medial or lateral) were anaiyzed. 

The tibiofemoral anterior-posterior laxity was slightiy sensitive to whether the 

load was applied on the tibial shaft while keeping the coupled femoral motions 

unconstrained or vice versa. In addition to the primary anterior-posterior total laxity of 

about 9rmn at &400N, significant coupled extemal tibial axial rotations of 8deg and lOdeg 

were computed under 400N posterior and anterior forces, respectively. Constraint on al1 

coupled motions diminished the joint primary laxity by about 35%. The ACL and PCL 

were the primary restraints to femoral posterior and anterior drawer forces, respectively. 

Section of either of these ligaments drasticdly increased the joint laxity by 6 to 7 times. In 

addition to an increase in joint primary laxîty, mediai meniscectomy induced large coupled 

tibial axial rotation and large forces on the lateral plateau. Lateral meniscectomy altered 

kinematics of the joint only in femoral anterior drawer. Large anterior-posterior shear 

forces/displacements acting on the tibiofemoral articulation in daily and athletic activities 

likely place the cmciates at high risk of failure, specially when combined with other modes 

of loading. When the ACL is tom the medial meniscus experiences greater forces and 

becomes an important component to Iimit excessive fernord posterior displacements. The 



medial cartilage also undergoes substantially larger loads. Our results suppon clinical 

observations in recommending the preservation. whenever possible, of the posterior hom 

during medial meniscectomy as the total excision of the medial meniscus, in contrast to 

that of the lateral meniscus, has drastic effects on the joint stability. 

4.2 INTRODUCTION 

In daily and athleti c activities, th e human knee joints are subjected to a wide 

range of loadings and motions such as the anterior-posterior forces and displacements. 

Since the classic work of Brantigan and Voshell (1941). numerous studies have been 

performed to assess the biomechmical role of the human knee joint ligaments in resisting 

anterior-posterior displacements. Using manual manipulations of cadaveric knees, Girgis 

et al. (1975) obsewed antenor and posterior motions ranging from 2.5mm to 1 Omm and 

2rnrn to 6mm. respectively. Introducing a new 4-degree-of-freedom in-vitro knee testing 

apparatus, Fukubayashi et al. (1982) and Levy et al. (1982) measured the primas, 

antenor-posterior translation as well as coupled axial rotation of the tibia under tibial 

anterior-posterior loads. The measured values were not affected following media1 

meniscectomy (Levy et al., 1982). The media1 meniscus was also suggested to provide 

substantial resistance against tibial anterior drawer only in anterior cruciate deficient knees 

(Levy et al., 1982; Shoemaker and Markolf, 1986). The anterior-postenor displacement 

was markedly affected (ie, 30% decrease) when constraining the tibial axial rotation 

(Fukubayashi et al., 1982). Allowing for the tibial medial-lateral displacement in their 

previously constrained testing apparatus, Sullivan et al. (1984) and Gollehon et al. (1987) 

reported much smaller coupled tibial rotations. With coupled motions constrained, Butler 

et al. (1980) determined the order of importance of each ligament and capsular structure in 



drawer tests by introducing the concept of prirnary and secondary restraints. Using a 

stiffhess approach, Butler et al. (1980) reapplied the same prescribed anterior or posterior 

displacement (ie, 5mm) following excision of a specific ligament the contribution of which 

would then be evduated as the resulting reduction in the restraining force. In their study. 

Butler et al. (1980) reported that the ACL provided about 85% and 87% of the total 

resistant force under tibial antenor drawer at 90deg and 30deg flexion angles, 

respectively, while the PCL accounted for about 94% and 96% of the total applied force 

under tibiai postenor drawer. 

Using similar approach but allowing for al1 coupled tibid motions, Race and 

Amis (1996) recendy perfonned a selective cutting technique to investigate the fùnction of 

different PCL's bundles (ie, anterolateral aPC and posterornedial pPC) in tibial postenor 

drawer at different flexion angles. At full extension, the aPC bundle was reported to resist 

only 1 1 % of the load at 4mm tibial drawer and 12% at 6mm while the pPC bundle resisted 

slightly larger loads (ie. 21 % and 23% at 4rnm and 6mm, respectively). This contribution 

increased substantidly with the joint fiexion. The resistive force dispiayed by ligaments 

should not, however, be considered as the force in ligaments unless they become onented 

in a direction parallel to the applied load. Markolf et al. (1990) presented a technique to 

measure the resultant forces in the ACL and PCL during various loading conditions 

(Markolf et al., 1990,1993,1995,1996; Wascher et al., 1993). At full extension, the ACL 

was highly loaded in tibial anterior drawer (Markolf et al. 1995) whereas the PCL 

displayed only 16N at lOON posterior force (Markolf et al. 1996). 

The scatter in published data for the primary and coupled laxities of the joint is 

likely due to variations between specimens, differences in testing conditions and, in some 



cases, lack of precision in measurernents. For instance, when the axial rotation is left 

unconstrained, a proper description of the resulting translation must include the location of 

the point on the tibia where the translation is k i n g  measured. The point of application of 

the drawer force, in this case, could also influence the results by generating axial torque 

on the joint. Despite the foregoing studies, detailed mechanics (eg, role of coupled 

motions, ligamentous forces. load transmission through menisci and cartilage layers) of 

the intact ant perturbed knee joints in antenor-postenor loads rernain yet to be determined. 

In order to improve our knowledge of joint mechanics, a reaiistic three-dimensional 

nonlinear finite element mode1 of the tibifemoral joint that has previously been used in 

axial compression (Bendjaballah et al. 1995) and varus-valgus moments (Bendjaballah et 

al. 1996) was utilized. The objectives of the present investigation are set as follows: (1) 

Determination of the detailed joint mechanics in full extension under antenor and posterior 

drawer forces of up to 400N; (2) Study of the relative biomechanical effect of the 

application of the load on the femur as compared with that on the tibia. This latter loading 

is used in experimental studies but in-vivo loading is often more complex involving both 

cases; and (3) Investigation of the joint mechanics following deficiency of the ACL. 

deficiency of the PCL, total medial meniscectomy and total laterd meniscectomy. This 

study aims to address a number of questions such as if there is a difference in response by 

loading the joint in drawer tests through either the tibia (as done in experimental studies) 

or the femur, and what mechanical effects have the cruciate deficiency and meniscectomy 

on pathomechanics of the joint as for example related to the cartilage degeneration and 

osteoarthri tis. 



4.3 METHODS 

As described in our earlier study of the tibiofernoral joint in compression 

(Bendjaballah et ai., 1995), the cornputer assisted tomography and finite element modeling 

dong with direct digitization techniques were merged to reconstruct a detailed 3-D model 

of the entire human knee joint specimen. For the sake of completeness, the finite element 

model is only briefly outlined here. The entire mode1 consists of two bony structures (tibia 

and femur). their respective articular cartilage layers, medial and lateral menisci, and four 

principal ligaments (collaterals and cruciates) (Fig. 4.1). For the meniscal tissues, a 

nonhomogeneous composite model of a rnatrix of ground substance reinforced by 

networks of circumferential and radiai collagenous fibres was considered. The major 

ligaments are: the anterornedial and posterolateral bundles of the A m ,  the anterolaterai 

and posterornedial bundles of the PCL, the LCL and the MCL. Special attention was given 

to the simulation of the MCL that wraps around the proximal medial bony edge of the tibia 

in addition to its peripheral attachment to the medial rneniscus. The reconsmicted joint has 

initial varus-valgus alignment of about 6deg and flexion angle of about Sdeg. For the 

fnctionless nonlinear contact modeling articulations at tibiofemoral joint, six potential 

contact zones were identified. Three articulation zones at the media1 cornpartment: the 

medial femoral cartilage against medial tibial cartilage, proximal surface of the medial 

meniscus against the fernoral cartilage and the distal surface of the medial meniscus against 

the tibial cartilage. Three similar contact zones were also determined on the lateral 

cornpartment. The contact between adjacent bodies initiates at distances below 0.15rnm 

(ie, gap limit). This value was chosen based on a number of preliminary studies on the 

effect of contact parameters on predicted results of the tibiofemoral joint in compression 

(Bendjaballah et al., 1995). The nonlinear analysis is performed employing an in-house 



finite element package program (Shirazi-Adl, 1989 and 1994; Shirazi-Ad1 et ai., 1986). 

The materiai properties were denved from the data available in the literature. 

The articular cartilage layers were assumed to be isotropic and the menisci to be a 

composite of an isotropic matrix reinforced by collagen fibres. The nonlinear material 

properties for collagen fibres were chosen sirnilar to those for disc collagen fibres used in 

our spinal model studies (Shirazi-AdI, 1989; Shirazi-Adl et al., 1986). Based on data 

reported in the literature for tensile properties of meniscal specimens in different locations 

and directions, the collagen fibre contents and the cross-sectional areas for fibre elements 

in each direction were evaluated (Bendjaballah et al., 1995). Material properties for 

different ligaments were aIso obtained from data available in the literature (see Fig. 4.2); 

either from experimentd studies (Butler et al., 1986; Race and Amis, 1994) or from 

stiffhess values used in previous model studies (Andriacchi et al., 1983; Hirokawa, 1991) 

accounting for the ligament's cross sectional area measured directly on the specimen. The 

reference strain for each ligamentous bundle (ie, strain at no extemal load) was also taken 

from earlier studies (Blankevoort et al.. 199 1: Grood and Hefzy. 1982: Wismans et al.. 

1980). 

The present elastostatic nonlinear stress anaiysis was perfomed considenng 

the tibiofemoral joint at full extension; ie, flexionextension rotation fixed. Remaining 

boundary conditions were set in such a way as to preserve the joint normal function 

dunng the application of a drawer force of up to 400N. When applying the anterior- 

postenor force on the femur, al1 coupled femoral motions were constrained while medial- 

lateral, proximal-distal, varus-valgus and intemalextemal coupled displacements were set 

free for the tibial component. Sirnilarly, when the drawer force was applied on the tibia, 



coupled tibia1 motions were constrained while coupled femoral motions were set free. In 

this manner, the coupled axial rotation and, therefore, the joint response were not 

influenced by the position of the applied horizontal load. The repetition of test by once 

applying the load on the femur and once on the tibia was done to investigate the role, if 

any, of loading configuration on the response of the joint. The experimental studies ofien 

choose the latter loading condition; in-vivo. however, the joint loadings and motions are 

complex involving both cases. By reproducing testing conditions adopted by some 

authors during in-vitro experirnents, an extra analysis was carried out in which oniy the 

femoral anterior-postenor displacement was lefi free with the tibia completely fixed with 

no coupled motions. Cases simulating total disruption in the ACL or PCL were also 

analyzed under femorai antenor-posterior forces. Moreover, analyses were repeated 

following unilaterd media1 or lateral meniscectomy. These additional cases were carried 

out to further identify the mechanics of load transmission in the knee joint under anterior- 

posterior loads. 

4.4 RESULTS 

Two different configurations for the application of the drawer force were 

considered in this study; one with the femur loaded and the tibia free in coupled motions 

whereas the tibia was loaded in the second one with the femur free in coupled motions. 

Similar results were predicted in both loading cases. For instance, the load-displacement 

curves in the anterior-posterior and axial directions are show in Fig. 4.3 indicating nearly 

the same results. The intact tibiofemoral mode1 at full extension exhibited nonlinear 

response to applied anterior-posterior forces yielding up to 8.5mm or 9.5rnm total laxity 

under MOON force applied on the femur or on the tibia, respectively (Fig. 4.3a). The joint 



closed in the axial direction (ie, distal-proximal translation) as  the load increased, specially 

under femoral posterior force or tibial anterior force (Fig. 4.3b). Since only smail 

difierences were computed between the two cases, the first configuration (ie, Case 1 with 

the drawer force applied on the femur and coupled motions left free for the tibia) was 

considered for remaining analyses. The rnost significant coupled motion was the external 

tibial axial rotation in both forces reaching maximum value of lOdeg at 400N femoral 

anterior force. As for the coupled varus-valgus rotations, the tibia underwent varus and 

valgus orientations in femoral postenor and anterior forces, respectively; the trend was 

more pronounced in varus reaching about ldeg angulation at 400N. 

Leaving only the relative tibiofemoral anterior-posterior motion free while 

constraining al1 the remaining coupled tibial motions, the joint becarne substantially stiffer 

in both directions with diminished laxity of 5.5rnm at M O O N  forces (ie, about 35% 

reduction in laxity, Fig. 4.4). When either of the cniciates was cut (ie, ACL in posterior 

force, PCL in anterior force), the tibiofemoral model becarne extremely flexible with total 

laxities as high as 6 to 7 times greater than those of the intact model under S û û N  (Fig. 

4.4). The coupled axial rotation diminished in posterior drawer for the ACL-deficient 

model while removal of the PCL in anterior drawer reversed the external axial rotation into 

an interna1 one (Fig. 4.5). Total excision of the media1 meniscus caused a noticeable 

increase in the joint primary laxity augmenting the response by about 3045 in both antenor 

and posterior drawer forces for loads beyond lOON (Fig. 4.4). The coupled tibial axial 

rotation in posterior drawer was drastically affected by medial meniscectomy to reach 

lOdeg under 2ûûN applied force. The effect was much less pronounced in anterior force 

(Fig. 4.5). Lateral meniscectomy affected neither the joint primary laxity nor its associated 

coupled tibial axial rotation in posterior drawer while, in anterior drawer, the joint 
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demonstrated larger plimary laxity and coupled tibial extemai rotation (Figs 4.4 and 4.5). 

Computed total forces in ligaments clearly indicate the ACL and PCL as the 

major restraints to femoral posterior and anterior forces, respectively (Fig. 4.6). As for 

collateral ligaments, the MCL had small to negligible contribution in resisting the load 

while the LCL was found to become tense with increasing applied load only in anterior 

drawer reaching a maximum force of 213N at the final load (Fig. 4.6). Ligament forces in 

the direction of the applied load are show in Fig. 4.7. At M N  femoral anterior force, as 

the coupled motions of the tibia were al1 constrained, the ACL and MCL forces remained 

nearly unchanged while the LCL force markedly diminished from 2 13N to 65N and the 

PCL force increased from 396N to 495N. In femoral anterior and posterior drawers, 

tensile forces in both coliaterais drastically increased following section of either cmciates. 

In 2OON posterior drawer, when the ACL was cut, the MCL and LCL underwent tensile 

forces of 230N and 114 N, respectively. In 200N anterior drawer force when the PCL 

was removed, similar trend was noted with the LCL and MCL forces of 2 12N and 182N, 

respectively. Following unicornpanmental meniscectomy, tensile forces in the cruciates 

remained approximately unchanged while the collateral forces altered significantly 

particularly in anterior forces when the medial meniscus was excised resulting in forces of 

about 70N in the MCL and 125N in the LCL at 200N applied force. 

In antenor as in posterior drawers, the lateral plateau canied more load than did 

its medial counterpart, this trend is, however, more pronounced in antenor force (Fig. 

4.8). Menisci carried major portion of cornpartmental loads in d l  cases except for the 

medial meniscus in femoral antenor forces (Fig. 4.8). When the coupled tibial motions 

were constrained, relatively small contact forces were computed on menisci only with 



none on the exposed cartilage areas. Section of the ACL in femoral posterior drawer 

resulted in a signiFicant increase in the load on the rnedial plateau and a decrease in that on 

the lateral plateau (Fig. 4.9). Substantial alterations in the mechanisrn of load-transmission 

were also noted subsequent to isolated unicornpartmental meniscectomy. Following 

excision of the medial meniscus, the lateral cartilage became highly loaded in both its 

covered and exposed areas while lateral meniscectomy caused small changes in total 

cornpartmental loads (Fig. 4.10). The contact area on the lateral cartilage, however, 

diminished yielding high stresses and stress gradients. As in the ACL-deficient model, 

total excision of the lateral meniscus overloaded the posterior third of the medial meniscus 

in femoral posterior drawer. As a consequence, maximum strains in collagen fibers within 

the postenor part of the rnedial meniscus increased significantly from about 8% in intact 

joint under 4ûûN load to 20% after ACL section or the laterai meniscectomy under even 

smaller applied loads of 200N. 

4.5 DISCUSSION 

In previous studies (Bendjabailah et ai., IWS,l996) the nonlinear response of 

the tibiofemoral joint under pure compressive forces of up to lOOON and varus-valgus 

moments of up to 15N-m were investigated. Using the same finite element model, the 

passive elastostatic mechanical response of the joint at full extension under antenor and 

posterior forces of up to 400N, applied to either tibia1 or femoral component, was 

investigated. It is to be emphasized that the boundary conditions greatly influence the 

results of a study, being experimental or numerical. Proper comparison of results of 

various studies, hence, should be done in the light of such dependency. In the current 

work, proper boundary conditions were used to prevent any erroneous displacement 



computations induced by associated rotational degrees-of-freedom. To identify the effect 

of boundary conditions, an additional case was analyzed in which the tibia was completely 

fixed while the femur was free in the anterior-postenor translation only. Also investigated 

were the effects of section of cruciates (ACL or PCL) and total meniscectomy (medial or 

lateral) on the overall biomechanics of the system. It is important to notice that, due to lack 

of diable data, capsular ligaments were not modeled in the present study. 

The computed primary antenor-posterior displacement venus applied load for 

the intact tibiofemoral mode1 is nonlinear reflecting increasing stiffness under additional 

load. The stiffhess is provided pnmarily by cruciates and to a lesser degree by menisci as 

is noted from the load-displacement curves prior and subsequent to removal of cruciates 

and menisci (Fig. 4.4). The LCL also contributes to the joint stiffness in anterior femoral 

force (Fig. 4.6). The response is substantidly stiffened as the coupled motions are 

restrained, this points to the importance of boundary conditions in knee joint studies. 

Quite similar responses are obtained when the load is applied either on the femur or on the 

tibia in which the primary laxity is left free on the loaded component while the coupled 

motions are cornputed on the unloaded one. This suggests that prediction and 

measurement results based on either of these two distinct testing configurations may be 

compared with each other when anterior-posterior loading is considered. This finding, 

however, cannot be extended to other types of loading such as flexion pnor to additional 

studies. The proximal-distal displacement of the joint demonstrates the attraction between 

the tibia and the femur due to tensile forces in ligaments, a movement that M e r  stabiliw 

the joint by more effective articulation. The coupled external rotation of the tibia in the 

intact joint is generated by tensile forces in cmciates (accounting for their insertion points 

and orientations) and resisted by menisci. Removal of either of these components, hence, 



substantially alter- the coupled axial rotation (Fig. 4.5). 

The computed total primary laxity of about 9mm or 5.5rnm at k400N for cases 

with free or constrained coupled motions, respectively, appears to be in the lower range of 

measurement results reported in the literature. In experirnental studies, the stiffest 

response is also associated with higher degree of constraint imposed on joint motions 

during testing procedures. Markolf et al. (1976) obtained relatively smaller laxities when 

coupled motions in specimens tested were constrained; they recorded a mean laxity at 

-00N of about 3.8rnm which is markedly smaller than mean value of 7.7m.m reported by 

Markolf et al. (1990) for the same range of applied loads but allowing for coupled motions 

during tests. Similarly, when constraining coupled motions at 90deg flexed joint, Butler et 

al. ( 1980) recorded maximal resistive forces as high as 6 12N and 662N under relatively 

small tibial anterior and posterior displacements of Smm, respectively. Race and Amis 

(1996), allowing for coupled tibid motions, recorded much smaller loads (ie, more 

flexible response) with mean values of about lûûN and 80N at 4mm and 215N and 200N 

at 6mm posterior drawers in extended and 90deg flexed knee specimens. respectively. 

Fukubayashi et al. (1982) and Levy et al. (1982) reported mean laxity values in fully 

extended specirnens of about 5mm and 3.4rnm at lOON anterior force and 4rnm and 

3.6rnrn at lOON postenor force, respectively. When the tibial axial rotation is constrained, 

Our predicted decrease of about 35% in total laxity (Fig. 4.4) compares favourably with 

the findings of Fukubayashi et al. (1982) of an increase of 30% in laxity when the tibia is 

allowed to rotate freely about a fixed neutral axis. 

As for the joint coupled motions, the tibial axial rotation in the intact mode1 is, 

by far, the most significant one (Fig. 4.5). Under both load directions, the tibia rotates 



externally to reach about 8deg and lOdeg at 400N of postenor and anterior forces, 

respectively. While showing similar trend as that predicted during femoral anterior force 

(ie, the tibia rotates externally in intact joint and that the rotation reverses following section 

of the PCL during tibial posterior force) (Fukubayaçhi et al., 1982; Gollehon et al., 1987; 

Grood et al., 1988; Race and Amis, 1 996), most in-vitro experirnents have recorded an 

intemal tibial rotation under tibial antenor forces ranging between 4.5deg and 8deg at 

f lOON (Fukubayashi et al., 1982; HolIis et al.. 1991; Levy et ai., 1982). Constraints on 

joint coupled motions, the location of the applied load and the initial unloaded 

configuration of the tibiofemoral articulation likely influence the position of the torsional 

axis, resulting in various patterns of tibial rotation. For instance, Sullivan et al. (1984) and 

Gollehon et al. (1987) found that the extemal rotation significantly decreased with some 

specimens even exhibiting an intemal rotation when allowing for coupled mediai-lateral 

translations of less than 2mm (Sullivan et al., 1984). 

The ACL provides almost the entire resistance to applied femoral posterior 

force while the PCL. specifically its anterolateral band, resists a major portion of the force 

followed by the LCL. The LCL resists the antenor forces much less effectively than does 

the PCL aithough the force acting dong its axis is higher than 50% of the force acting 

dong the PCL axis. The load carrying conaibution of the LCL in femoral anterior force 

has also been observed in expenrnental studies (Gollehon et al., 1987; Grood et al., 

1988). The computed 172N force in the ACL at lûûN femoral postenor force compares 

favorably with recent experimental values of about 15ON at lOON antenor tibial force 

recorded by Markolf et al. (1995) for specimens at full extension. As for the PCL, 

Markolf et al. (1996) measured mean force of only 16N under lûûN applied tibial force in 

full extension. This would translate to relatively small contribution of the PCL in resisting 



the applied load when the orientation of the ligament is dso  considered. On the other 

hand, Race and Amis (1996) reported much larger contributions of 288,3395 and 35% 

for the PCL under 2mm (at about 40N), 4mm (at about 105N) and 6mm (at about 215N) 

tibial prescribed displacements, respectively. Butler et al. (1980) have measured rnuch 

larger PCL contribution of 96% at 30deg of knee flexion angle. As noted earlier, restraints 

on coupled motions codd partly be the reason for such differences. 

Tensile forces in ligaments cause substantial compression penalty on 

tibiofemoral plateaus reaching total value of about 450N at 4ûûN anterior and posterior 

forces. This compression is carried more by the lateral plateau than by its medial 

counterpart. In antenor as in posterior forces. the C-shaped lateral meniscus transmits 

nearly identical loads through the joint while the lazy C-shaped medial meniscus is 

efficient only in postenor forces transmitting more than 70% of the cornpartmental load 

through its thick posterior hom. lsolated section of either cmciates generates large tensile 

forces in collaterals which. in mm, increase the compression on the tibial plateaus which 

is transmitted primarily through meniscal tissues (Fig. 4.9). Section of the ACL in 

posterior force causes contact between medial femoral condyle and the medial meniscus 

posteriorly which, in mm, rotates the tibia intemaily until the cornbined effect of the tibial 

rotation and femoral posterior displacement activates the posterornedial band of the PCL 

which resists further tibial axial rotation. Section of the ACL in femoral postenor drawer 

substantially increases the load transmitted through the medial cornpartment on both 

covered and uncovered areas of cartilage. This points to the adverse effect of the ACL 

removal on cartilage loading and, hence, to the likelihood of the cartilage degeneration 

following such deficiency, an association indicated by previous studies (Adams and 

Pelletier, 1988; Jacobsen, 1977). In anterior forces, when the PCL is severed, 



compressive forces are transferred on both plateau with smaiier load on the anteriorly thin 

medial meniscus than the thicker laterai meniscus. 

In agreement with Levy et al. (1 989), total lateral meniscectomy has no 

significant influence on joint kinematics in posterior force. The load transmission across 

the medial plateau, in this case, is computed to remain similar to that in the intact case 

(Fig. 4.10). Medial meniscectorny, however, causes a drastic alteration in axial rotation, a 

noticeable increase in primary laxity and a considerable increase on load transferred via the 

Iateral plateau. These observations dong with those following section of the ACL clearly 

demonstrate that the media1 meniscus is a pnmary structures that controls the joint 

kinematics in intact as weU as ACL-deficient joints rather than only in ACL-deficient joints 

(Levy et al., 1982; Shoemaker and Markolf, 1986). This structure acts as a stabilizing 

wedge against tibial extemal rotation and, to some extent, against femoral posterior drawer 

during posterior forces while the mobility of the lateral meniscus prevents it to react 

sirnilarly . 
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(Fig. 4.la) 

Figure 4.1 : Finite element model of the tibiofemoral joint. The bony structures are 

modeled as rigid bodies and are not shown. (a) A typical posterolateral 

view of the model showing the cartilage layers and rnenisci, (b) Mode1 of 

menisci and ligaments. Each ligament bundle is represented by a 2-node 

axial element; also show is the attachment of the medial collateral ligament 

to the penphery of the medial meniscus; ACL: anterior cmciate ligament, 

PCL: posterior cruciate ligament, LCL: lateral collateral ligament, MCL: 

medial collateral ligament, M: medial, L: lateral, A: anterior, P: posterior. 

The articular cartilage layers and bony structures are not shown. 



(Fig. 4.1b) 



Strain (mmlmm) 

Figure 4.2: Nonlinear stress-strain curves for different ligaments (Butler et al., 1986 

and Race and Amis, 1994); ACL: antenor cniciate ligament, aPCL: 

anterolateral bundle of the posterior cruciate ligament, pPCL: posterornedial 

bundle of the posterior cruciate ligament, LCL: lateral collateral ligament, 

MCL: medial coilateral ligament. 
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(Fig. 4.3a) 

Figure 4.3: Predicted force-displacement results for two boundary cases; (a) Primary 

posterior-anterior displacement curves for case 1 and case2, (b) Coupled 

proximal-DistaI displacement curves for case 1 and case2. Case 1 : force 

applied on the femur, the femur is constrained except in A-P displacement 

while the tibia is free except in A-P displacernent and flexion-extension 

rotation; Casez: force applied on the tibia with foregoing boundary 

conditions reversed. 
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Figure 4.4: Primary displacement curves in femoral posterior-anterior forces for the 

intact model, intact model with the tibia completely fixed, ACL-cut and 

PCL-cut models and models simulating medial or lateral meniscectorny. 
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Figure 4.5: Coupled tibia1 axial rotation associated with applied fernoral posterior- 

anterior forces for the intact model, ACL-cut and PCL-cut rnodels and 

models simulating media1 or lateral meniscectomy. 
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Figure 4.6: Predicted total tensile forces in ligaments of the intact joint mode1 in femoral 

posterior-antenor forces. 
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Figure 4.7: Net horizontal components of forces in ligaments in anterior-posterior 

direction (ie, Y direction) for different loads. These forces demonstrate the 

effectiveness of ligaments in directly resisting the applied horizontal forces. 



Figure 4.8: Distribution of the axial load on the media1 and laterai plateaus of the intact 

mode1 in femoral posterior-anterior forces. The load is presented as a total of 

that transferred through tibial covered (ie, via meniscus) and exposai cartilage 

areas. Contact forces transferred through the six potentid regions of the 

tibiofemoral joint were computed at al1 load levels as a vectorial summation of 

contact forces at different points and were verified to almost completely 

equilibrate the extemal load as well as internai ligament forces. 
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Figure 4.9: Distribution of the axial load on the medial and laterai plateaus of the ACL- 

cut model in femoral posterior forces and PCL-cut model in femoral 

anterior forces. The load is presented as a total of that transferred through 

covered (ie, via meniscus) and exposed cartilage areas. Results for the 

intact cases are presented for the sake of cornparison. 
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Figure 4.10: Distribution of the axial load on the medial and lateral plateaus following 

isolated mediai and lateral meniscectomies in fernoral posterior-anterior 

forces. The load is presented as a total of that transferred through covered 

(ie, via meniscus when applicable) and exposed cartilage areas. Results 

for the intact cases are presented for the sake of cornparison. 



CHAPITRE V 

DISCUSSION, CONCLUSIONS ET RECOMMANDATIONS 

5.1 DISCUSSION 

Dans cette étude nous avons présenté un nouveau modèle d'éléments finis du 

genou humain. Ce modèle, basé sur une reconstruction fidèle de la géométrie des surfaces 

articulaires et sur une modélisation des principales structures constituant le genou, a servi 

à prédire la réponse élastostatique de l'articulation fémorotibiale en position d'extension 

complète par le biais d'analyses nonlinéaires par éléments finis dans lesquelles on a pu 

simuler aussi bien des chargements complexes, des conditions aux rives multiples et des 

déficiences et altérations variées. À ce stade, dû à un manque de données expérimentales 

pour les propriétés de matériaux des ligaments capsulaires et des ligaments coronaires, la 

modélisation de ces deux structures a été omise. Le manchon capsulaire a pour rôle de 

retenir les ménisques dans leurs mouvements d'expansion radiale et contribue 2 la rigidité 

de toute la structure ligamentaire lors de certains cas de chargements alors que les 

ligaments coronaires constituent un attachement ligamentaire fin des ménisques au tibia sur 

presque toute la périphérie. Les effets possibles sur nos résultats de l'absence de ces deux 

structures seront discutés dans ce chapitre. 11 est à noter que le choix d'un matériau 

isotropique élastique pour les couches de cartilages et la matrice méniscale demeure 

approprié du moment qu'on s'intéresse B la réponse à court terme de la structure. Toute 

variation des propriétés des matériaux prises dans la littérature pour les couches de 

cartilage et matrice méniscale (E,V) ainsi que celles caractérisant les ligaments (courbes 6- 



& et déformations initiales &) peut affecter les résultats d'une manière quantitative. La 

géométrie reproduite varie également d'un spécimen à un autre selon le sexe et l'âge du 

donneur et aussi, selon le degré de dégénérescence de l'articulation. Même si on modélise 

l'articulation fémopatellaire, les analyses élastostatiques entreprises dans cette étude ne 

considèrent que l'articulation fémorotibiaie en position d'extension et ne tiennent pas 

compte, à ce stade, de la présence de la rotule ni de l'activité musculaire qui s'y exerce par 

le biais du quadriceps. Les cas de chargements en compression axiale, varus-valgus et 

tiroir antéro-postérieur sont choisis dans le but, entre autres, de valider le modèle par une 

validation du choix des paramètres modélisant le contact et les propriétés de matériaux des 

Ligaments don  que différentes conditions aux rives sont simulées pour attester des rôles et 

degrés d'importance des déplacements couplés dans chacun des cas étudiés. Lors des 

tiroirs antéro-postérieurs, des analyses additionnelles sont présentées, dans lesquelles la 

charge est soit appliquée au fémur avec déplacements couplés pris sur le tibia ou vice 

versa. Pour toutes ces analyses, utilisant la méthode de Newton-Raphson pour la 

résolution du système nonlinéaire, trois itérations de correction sont exécutées pour 

chaque incrément de charge. Un tel nombre d'itérations est paru adéquat pour assurer une 

convergence de la solution pour le 'pas' de calcul considéré. 

Les résultats obtenus lors de cette étude touchent plusieurs aspects de la 

biomécanique du genou. Ils permettent, entre autres, de faire une corrélation entre la 

cinématique du joint et le mécanisme de transfert de charges qui en découle et aussi, entre 

une condition d'altération quelconque et son effet direct sur la cinématique du genou et le 

mécanisme de transfert de charge. Ces corrélations peuvent être utilisées, avec certaines 

réserves, in-vivo lors de l'analyse des causes mécaniques des blessures et traumatismes 

affectant le genou car I'activité musculaire au niveau du quadriceps, pour une position 



d'extension complète du joint, n'influence pas les résultats d'une manière qualitative lors 

des cas de chargement analysés; exception faite du cas de la torsion axiale [26] où la 

position et i'orientation de l'axe de la rotation axiale sont affectées [65]. 

5.1.1 Cinématique du genou 

Lors des analyses exécutées sur le modèle, les déplacements et rotations sont 

évalués dans un repère anatomique dont l'origine est située au centre de I'articulation près 

de l'épine tibiale (Fig. 5.1). Pour chacune des analyses effectuées, dkpendemrnent des 

conditions aux rives choisies, le joint s'équilibre initialement sous le seul effet des 

déformations ou contraintes initiales prescrites dans certains ligaments (déformation 

initiale 6). La configuration ainsi obtenue sera choisie comme position de référence par 

rapport à laquelle seront évalués et discutés tous les déplacements lors de l'application 

subséquente des incréments de charge. Les contraintes et  charges, néanmoins, tiennent 

compte automatiquement de cet état initial. 

Du fait de l'importance des mouvements couplés sur la cinématique du genou, 

les forces ligamentaires et les pressions de contact, un choix judicieux des conditions aux 

rives pour chacune des composantes (tibia et fémur) s'impose. Un mouvement comme la 

rotation en varus-valgus du fémur est alors restreint lors d'une compression pure pour 

éviter la génération d'un moment en varus-valgus additionnel sur l'articulation. La 

situation idéale serait d'appliquer la compression en une position dite d'équilibre 

mécanique qui ne provoquerait pas de rotation en varus-valgus, cette position demeure 

néanmoins variable avec l'application de la charge et est donc difficilement repérable. On a 

préféré alors restreindre cette rotation et appliquer la compression au noeud primaire 

représentant le fémur. Similairement, durant l'application des charges antéro-postérieures 



sur le fémur, une rotation axiale libre du fémur causerait non seulement un moment de 

torsion mais aussi une lecture de la laxité qui va dépendre de la position du point choisi le 

long de l'axe intemeexteme. Pour palier à ce problème, on a préféré fixer ce degré de 

liberté sur le fémur et de le libérer sur le tibia ainsi. Tout en préservant la flexibilité 

intrinsèque du joint, la laxité antéro-postérieure du joint est correctement évaluée. 

5.1.1.1 Prédictions cinématiques du modèle 

Le joint dans son état sain démontre, pour tout les cas de chargement, un 

comportement nonlinéaire du déplacement primaire en fonction de la charge. Dans le cas 

de la compression axiale, ce comportement est dicté principalement par le mécanisme de 

contact s'établissant entre les différentes couches de cartilage et des ménisques alors que 

les ligaments jouent un rôle moindre. Lors des cas de chargements en vas-valgus et en 

tiroir antéro-postérieur, ce sont les ligaments qui dictent ce comportement nonlinéaire. 

Lors d'une compression pure sur le joint, le déplacement axial du fémur par 

rapport au tibia est d'autant plus grand quand la rotation axiale du fémur est maintenue 

Libre (Fig. 2.4). ceci est justifié par le fait qu'un tel mouvement couplé permet au fémur de 

s'orienter sous l'effet du contact qui se produit avec les ménisques et se déplace par 

conséquent plus dans le sens de la charge imposée. 

Dans le cas de la charge en varus-valgus, la courbe présentant la rotation en 

fonction du moment appliqué (Fig. 3.4) démontre une rigidité plus prononcée en varus 

comparée à celle en valgus du fait que le condyle fémoral externe reposait initialement sur 

le ménisque externe et que celui-ci, plus épais, favorisait plus de flexibilité. Similairement 

au cas de la compression axiale, un chargement en valgus provoque une rotation primaire 



qui est d'autant plus marquée quand la rotation axiale du fémur se trouve libérée. Cette 

augmentation est néanmoins minime dans le cas d'un chargement en v a s  dO au contact 

cartilage-cartilage prédominant comparé au contact cartilage-ménisque. 

La laxité primaire antéro-postérieure était peu dépendante du fait que la charge 

soit appliquée sur le fémur ou bien sur le tibia (Figs 4.3a et b). La rigidités de la courbe 

durant un chargement antérieur ou postérieur étaient comparables avec une rigidité 

inférieure pour les parties initiales des courbes où le joint offie une résistance moindre h la 

charge (rigidité primaire). Comme dans le cas des chargements précédents, une restriction 

sur les mouvements couplés diminue substantiellement la laxité primaire totale, suggérant 

qu'en général, un mouvement couplé non restreint rend le joint plus flexible (Fig. 4.5). 

En plus des déplacements primaires recensés, des mouvements couplés assez 

imposants sont aussi observés. C'est le cas durant un chargement en compression, où un 

déplacement couplé postérieur du fémur d'environs 2mm est observé à lOOON (Fig. 2.5), 

dû à la pente anatomique postérieure du plateau tibial causant un glissement postérieur 

croissant du fémur sur le tibia avec l'application de la compression. De plus, on a recensé 

une rotation interne du fémur de plus 2' (Fig.2.5), dictée par les tensions développées 

dans le LCA ainsi que le LLI et par les forces de contact, ce qui induit un glissement 

postérieur beaucoup plus prononcé du ménisque interne comparé à celui du ménisque 

externe (Fig. 2.6). Pour le chargement en varus-valgus comme pour le tiroir antéro- 

postérieur, la rotation axiale constitue le mouvement couplé le plus important (Figs 3.5 et 

4.4) avec des rotations interne et externe du fémur en varus et valgus respectivement et 

une rotation externe du tibia pour des forces antérieure et postérieure. Encore une fois, ces 



mouvements couplés sont dictés par les tensions développées dans les ligaments croisés et 

latéraux ainsi que par les forces de contact. 

Une méniscotomie bilatérale est simulée lors de l'analyse du modèle en 

compression. Comme effets directes sur la cinématique du joint, cette procédure drastique 

cause une augmentation notable du déplacement axial comparé au modèle intact surtout 

pour le cas où la rotation axiale du fémur n'est pas restreinte (Fig. 2.4). Les courbes 

force-déplacement pour le cas altéré présentent des rigidités initialement plus faibles mais 

avec l'application croissante de la charge et la congruence résultante des surfaces 

articulaires, la rigidité incrémentale augmente pour atteindre finalement un niveau 

comparable à celle du modèle intact (Fig. 2.4), suggérant que pour les charges élevées les 

couches de cartilages ont une contribution prépondérante à la rigidité axiale du système. 

De plus, une augmentation marquée est observée pour la rotation axiale (Fig. 2.5) due à 

l'absence du ménisque interne qui, par sa corne postérieure agit comme une butée de 

freinage et contribue ainsi à Iirniter la rotation fémorale interne. 

Pour le cas de chargement en varus-valgus, une rupture du LLE en varus ou du 

LLI en valgus cause une augmentation drastique de la laxité primaire du joint surtout 

quand la rotation axiale du fémur est maintenue libre (Fig. 3.4). Pour chacun de ces cas, la 

rotation axiale couplée du fémur est grandement affectée en direction et surtout en 

amplitude résultant en une instabilité du joint démontrée par une rotation interne assez 

élevée pour des moments relativement faibles (Fig. 3.5). 

Des déficiences du LCA et du LCP lors de tiroirs fémoraux postérieur et antérieur 

sont simulées, respectivement. Pour chacun de ces cas, l'articulation fémorotibiale devint 



extrêmement flexible et ne développe que très peu de résistance à la charge imposée (Fig. 

4.5). La rotation tibiale couplée est également altérée (Fig. 4.4) ce qui démontre clairement 

le rôle que dictent les croisés sur la cinématique du genou sain. Alors que l'ablation totale 

du ménisque externe n'eut que peu d'effets sur la cinématique du joint lors d'un tiroir 

fémoral postérieur, celle du ménisque interne causa une augmentation de la laxité et surtout 

une altération très marquée de la rotation couplée, soulignant l'importance de ce ménisque 

dans la stabilité de toute l'articulation. Par ailleurs, lors d'un tiroir antérieur, les deux 

procédures eurent des effets comparables sur les mouvements primaire et couplés (Figs 

4.4 et 4.5). 

5.1.1.2 Comparaison des résultats cinématiques avec les mesures 

expérimentales 

Les résultats obtenus pour la cinématique du joint en compression axiale sont 

en bon accord avec ceux disponibles dans la littérature [4,14,67]. Les prédictions du 

comportement nonlinéaire du déplacement axial en fonction de la charge ainsi que l'effet 

d'une méniscotornie sur le deplacement axial du joint ont été observés [4,11,14,67,68]. 

Les difficultés rencontrées dans ce genre d'études sont principalement liées à la 

détermination de la position d'équilibre (position neutre) du fémur par rapport au tibia 

avant l'application de la charge ou lors de la reproduction du test après que la 

méniscotomie, l'injection des solutions ou l'entremise de films sensibles servant à cerner 

les surfaces de contact ait été accomplie. En ce qui concerne les déplacements couplés, 

part létude faite par Seedhom et al. (1973) qui permet une rotation en varus-valgus de la 

composante fémorale lors de l'application de la charge sur le fémur et celle entreprise 

Ahmed et Burke (1983) lors de laquelle tout les déplacements relatifs du tibia par rapport 

au fémur lors de l'application sur le tibia de la charge de compression, les autres études 



fÿtaient rigidement les composantes tibiale et fémorale aux mords de la machine de traction 

[4,7,10,14,67,68]. Les résultats obtenus par Seedhom et al. (1 973) demeurent subjectives 

car l'application de la charge au bout de la composante fémorale induit un moment en 

varus-valgus dont l'amplitude est strictement dépendante de l'alignement tibial-fémoral du 

spécimen testé. Lors de l'étude de Ahmed et Burke (1983) par contre, aucune mention n'a 

Cté faite des mouvements couplés, leurs intérêt s'orientait principalement à la détermination 

des pressions et surfaces de contact. 

En varus-valgus, les résultats obtenus sont en accord avec les mesures 

expérimentales [51,52,70-731. À tlSN-m, la laxité totale d'environs 7.5' se trouve 

bornée par le résultat de Markolf et al. (1976) qui ont obtenus la réponse la plus rigide 

(3.5') pour des moments similaires appliqués manuellement au tibia avec une restriction 

totale des mouvements couplés du joint et le résultat de Gollehon et al. (1987), qu'est la 

réponse la plus flexible avec 12" en appliquant le moment sur le fémur pendant que tout les 

mouvements couplés sont maintenus libres sur le tibia. Hollis et al. (1991) ont obtenu une 

laxité comparable à la notre pour des mouvements couplés non restreints soit une valeur de 

6.5' f 1" (valeur moyenne Mcart type) à f MN-m. Des études comme celles menées par 

Piziali et al. (1980) et Seering et al. (1980) ont abouti à des laxités plus prononcées à 

f l5N-m (1 1 S0 et go, respectivement) et ce en utilisant un nombre limité de spécimens. En 

restreignant le déplacement interne-exteme dans leurs études, le tibia s'est trouvé contraint 

de subir une rotation autour d'un axe fixe. Cette configuration de chargement peut 

influencer d'une manière notable les résultats obtenus pour la laxité comme l'avaient 

indiqué Rastegar et al. ( 1979) dans une étude précédente [82]. 



Les résultats des analyses de tiroirs antéro-postérieurs fémoraux sont 

généralement en accord avec les mesures expérimentales. Même si eues sont relativement 

faibles, les laxités totales d'environs 5.5mm et 9mm à 24ûûN pour le modèle avec ou sans 

restriction sur déplacements couplés du tibia, demeurent bornées par les résultats 

expérimentaux. La réponse la plus rigide de 3.8mm à -ON est obtenue par Markolf et 

al. (1976) en restreignant tous les mouvements couplés alors que la plus flexible atteignit 

9rnm à f lûûN en utilisant un montage qui permettait 4 degrés de liberté (mouvements 

restreints: fiexionextension et déplacement interne-externe sur le tibia). Le joint se trouve 

contraint d'avoir une rotation axiale couplée autour de son axe fixe [77]. La diminution 

d'environs 35% dans la laxité totale obtenue lors de notre étude à la suite d'une restriction 

des mouvements couplés sur le tibia est en bon accord avec le résultat de Fukubayashi et 

al. (1982) qui ont prédis une baisse de 30% dans la laxité quand la rotation axiale du tibia 

a été restreinte [77]. En général, la laxité du genou est d'autant plus faible si le nombre de 

restrictions imposées aux mouvements couplés du joint est élevé et vice versa. 

Parmi les mouvements couplés observés lors d'un chargement en tiroir antéro- 

postérieur, la rotation axiale est de loin le mouvement le plus important avec une rotation 

externe d'environ 8deg et lOdeg pour des forces postérieures et antérieures de 400N, 

respectivement. Tandis que cette observation ait été corroborée par les mesures 

expérimentales [66,72,77,78] lors d'un tiroir tibial postérieur (équivalent à un tiroir 

fémoral antérieur), il n'en fut pas de même pour la rotation axiale externe lors du tiroir 

fémoral postérieur qui va à l'encontre des résultats expérimentaux in-vitro prédisant une 

rotation interne du tibia avec l'application du tiroir tibial antérieur [71,77,79]. Les 

restrictions sur les mouvements couplés de l'articulation, sa configuration initiale et la 

position de la charge par rapport à son axe de rotation sont des paramètres qui peuvent 



affecter la rotation axiale du tibia en amplitude et direction. A titre d'exemple, l'ajout du 

déplacement inteme-exteme, au préalable fixé lors des études précédentes [77,79] a 

modifié d'une manière significative les résultats obtenus pour la rotation axiale [72,80]. 

Ce déplacement d'environ 2mm [SOI, a diminué considérablement la valeur moyenne de la 

rotation interne avec des spécimens qui, en accord avec nos résultats, ont montré une 

tendance opposée (rotation axiale externe). 

5.1.2 Mécanisme de transfert de charge 

Due aux tensions initiales dans certains ligaments, une compression 

préliminaire existe au sein de l'articulation. En présence de cette condition initiale, le cas 

de chargement considéré est alors appliqué en incréments croissants jusqulà atteindre sa 

valeur maximale. Lors d'une compression pure, du fait des mouvements couplés, la 

tension change dans certains ligaments causant une compression totale sur le joint 

supérieure à celle appliquée alors que pour les cas de chargements en varus-valgus et 

tiroirs antéro-postérieurs, la compression résulte uniquement de la tension développée 

dans certains ligaments afin de s'opposer aux charges imposées. 

5.1.2.1 Prédictions cinétiques du modèle 

Forces et ~ressions de contact 

Une compression axiale appliquée sur le joint est transmise presque 

équitablement entre les deux plateaus quand la rotation axiale du fémur est bloquée alors 

qu'une rotation interne du fémur obtenue dans le cas contraire favorise plutôt le plateau 

externe. Il est vrai qu'une libération de la rotation en varus-valgus serait plus appropriée 

quant à la détermination de la position d'équilibre finale et des rapports de charge transmis 

par chacun des plateaus, néanmoins, une telle condition devrait être appliquée sur le tibia 



car son application sur le fémur induirait, comme cité ci-haut, un moment en varus-valgus 

si la charge de compression se trouve décalée de l'axe de rotation en varus-valgus. 

La contribution de chacun des ménisques est évaluée pour chaque incrément de 

charge comme étant le rapport de la composante axiale de la force de contact agissant sur la 

surface proximale de chacun des ménisques à celle agissant sur tout le plateau tibial 

correspondant. Ce rapport donne une estimation précise de la charge qui passe à travers 

les ménisques et ce, indépendernrnent de leurs mouvements relatifs par rapport aux 

plateaus. Initialement, aucun contact entre cartilage fémoral et tibial n'était observé sur le 

côté externe de l'articulation, le fémur repose alors entièrement sur le ménisque externe. 

Un comportement similaire a été observé dans neuf des douze spécimens testés en 

compression par Wdker et Erkrnan (1975). Sur le côté interne, le contact s'opère plutôt 

dans les zones exposées du cartilage avec peu de contact observé entre cartilage et 

ménisque. Le mouvement d'expansion radiale du ménisque externe le désavantageait par 

rapport au ménisque interne qui, due aux mouvements de translation postérieure et de 

rotation interne du fémur voit sa contribution augmentée par rapport à son état d'équilibre 

initial. 

Les contraintes induites sur le plateau tibial par un tel chargement sont obtenues 

au centre de chaque élément solide. Le calcul subséquent des contraintes principales nous 

indique que la contrainte normale maximale est en compression et est orientée 

approximativement dans une direction perpendiculaire à la facette externe de l'élément en 

question. À part de petites zones sur la périphérie du cartilage tibial où les contraintes 

principales étaient en faible tension (inférieures à 150KPa), le cartilage tibial a démonté un 

comportement prédominant en compression. La restriction sur la rotation interne du fémur 



quand à elle n'a eu qu'un effet qualitatif sur la distribution des contraintes principales qui 

pour chacun des cas montrait des pics localisés plutôt dans la zone exposée du cartilage. 

Ces contraintes diminuent d'intensité au fur et à mesure que l'on s'éloigne de cette zone 

jusqu'a atteindre la zone couverte et deviennent parfois en tension sur les abords du 

cartilage. Une telle distribution, en plus d'être en accord avec la répartition des charges en 

compression entre les zones exposées et couvertes du cartilage, montre clairement à quel 

point la présence du ménisque peut contribuer à l'uniformisation des contraintes au sein de 

la couche de cartilage. 

L'ablation bilatérale des ménisques influence peu l'amplitude totale de la force 

de compression agissant sur l'articulation mais cause, cependant, une altération marquée 

dans la répartition de cette charge entre les deux plateaux. À la suite d'une telle procédure. 

similairement au cas intact, une rotation axiale libre pénaliserais le plateau externe qui voit 

sa contribution augmenter grâce aux deux mouvements couplés du fémur; déplacement 

postérieur et rotation axiale interne. L'absence du ménisque externe relativement épais 

induit par ailleurs une diminution marquée de la contribution de tout le plateau externe. En 

ce qui concerne les contraintes principales dans le cartilage tibial, la tendance d'un 

comportement principalement en compression persiste sauf que les contraintes maximales 

sont sensiblement plus grandes avec une disiribution qui présente des gradients de 

contraintes plus élevés (sauts brusques) au sein du tissu (Fig. 3.9). 

Le chargement en varus ou en valgus est analogue à une compression 

s'appliquant sur un compartiment à la fois. Un varus induit un contact sur le plateau tibiai 

interne alors que le valgus favorise le plateau externe. Des moments d'environ 0.5N-m ont 

été suffisants pour provoquer la séparation des surfaces articulaires sur les côtés externe 



ou interne, respectivement. Une application croissante de moments en varus résulte en une 

compression de plus en plus imposante sur les surfaces articulaires internes due aux 

tensions développées dans le LLE et dans le LCA. Le ménisque interne supporte alors une 

fraction de la charge de compression qui agit sur le plateau interne. Cette fraction est plus 

élevée si la rotation axiale couplée du fémur est restreinte. Dans le cas contraire, la rotation 

interne induite a permis un dégagement partiel du ménisque interne initialement en contact 

à travers sa zone centraie (Figs 3.7a-b). Lors d'un chargement en valgus, la compression 

est due aux tensions développées dans le LLI, LCA et LCP. Sirnilairement, la fraction de 

la charge supportée par le ménisque est plus élevée si la rotation axiale couplée du fémur 

est restreinte (Figs 3.8a-b). Le ménisque externe relativement plus épais reçoit alors toute 

la charge qui comprime le plateau externe et ce pour des moments allant jusqu'à 1 SN-m 

ou SN-m, valeurs à partir desquelles s'initient des contacts cartilage-cartilage, pour les cas 

simulant une rotation axiale fixe ou libre, respectivement. L'expansion radiale du 

ménisque externe plus mobile le rend inapte, à partir d'une certaine valeur du moment 

appliqué, à supporter une portion croissante de la charge. 

Les contraintes principales induites par un chargement en varus ou en valgus sont 

majoritairement en compression, orientées approximativement dans des directions 

normales aux surfaces de cartilage tibial interne ou externe, respectivement. En varus, la 

distribution des contraintes est peu influencée par le blocage de la rotation axiale alors 

qu'en valgus cette distribution se trouve affectée d'une manière quantitative avec une 

augmentation de près de 508 de sa valeur maximale (Figs 3.9a-b). Ces observations sont 

soutenues par les résultats de la répartition des charges compressives sur chacune des 

zones du cartilage (exposée et couverte) ainsi que par la cinématique du joint y compris le 

mouvement de rotation axiale. 



La distribution de contraintes est grandement altérée par la section du LLE en 

varus ou LLI en valgus. La localisation et grandeur des contraintes maximales est 

corroboré par les résultats obtenus pour la rotation axiale couplée du fémur ainsi que les 

charges de compression transmises à travers le cartilage tibial. Ces valeurs maximales, 

amplifiées au moins par un facteur de deux, affectent les ménisques et les zones de 

cartilages couvertes avec une sollicitation particulièrement élevée des parties centrale et 

postérieure du ménisque interne en varus et des parties centrale et antérieure du ménisque 

externe en valgus (Figs 3.10a-b). 

Lors de l'application sur le fémur de charges horizontales antérieures ou 

postérieures, le LCP ou le LCA, respectivement se trouve de plus en plus tendu causant 

un déplacement proximal tibial, donc une compression de plus en plus accrue sur les 

plateaus qui se trouve partagée presque équitablement durant un tiroir fémoral postérieur 

avec une contribution assez marquée de chacun des ménisques. Lors d'un tiroir antérieur, 

le plateau externe se trouve plus chargé. Le ménisque externe, plus épais dans sa portion 

antérieure, est alon plus sollicité que le ménisque interne, qui, dO à sa forme en C allongé. 

mince dans sa partie antérieure, voit sa contribution diminuer considérablement (Fig. 4.8). 

Quand les mouvements couplés du tibia sont restreints. pour les charges antérieures 

comme pour les charges postérieures, seules quelques zones de contact sont recensées sur 

les surfaces proximales des ménisques et aucune occurrence de contact n'est observée sur 

les zones exposées des cartilages. L'absence, entre autres, du mouvement d'attraction- 

répulsion (proximal-distal) entre les deux composantes osseuses est la cause principale de 

cet état d'équilibre ne sollicitant que les structures ligamentaires. 



L'excision du LCA lors du tiroir fémoral postérieur surcharge le plateau interne 

de l'articulation et plus particulièrement la partie postérieure du ménisque interne dû à la 

flexibilité accrue du joint et le mouvement d'attraction entre les deux composantes 

osseuses qui favorisent un contact plus marqué sur cette zone du ménisque interne (Fig. 

4.9). D'un autre côté, seule la méniscotornie interne causait une grande altération non pas 

à la charge totale de compression induite mais plutôt à la répartition de cette charge entre 

les plateaus (Fig. 4.10). Curieusement, lors d'un tiroir fémoral antérieur, I'absence du 

ménisque interne plus mince dans sa partie antérieure eut des effets similaires sinon plus 

marqués sur la répartition des charges que lors du tiroir postérieur avec I'absence de la 

partie postérieure épaisse du ménisque. Du fait qu'elle ne générait pas de changements 

notables dans la cinématique de l'articulation. l'ablation du ménisque externe causa peu 

d'altérations au mécanisme de transfert de charge. Nous avons analysé la distribution des 

contraintes principales dans la couche de cartilage tibia1 pour les cas de chargements qui 

causent le plus de compression sur le plateau. Ainsi les cas d'un tiroir fémoral postérieur 

avec LCA coupé et d'un tiroir antérieur avec ménisque interne excisé ont été choisi (Figs 

5.2a-b et 5.3a-b). Du fait de la présence de mouvements antéro-postérieurs élevés, les 

contraintes principales calculées ne sont plus orientées normalement à la surface du 

cartilage. Un cisaillement maximal non négligeable est alors observé surtout dans le 

premier cas de chargement, caractérisé par une laxité postérieure plus importante et des 

compressions plus élevées (Fig. 5.2b). Il est à noter que la charge transmise à travers la 

zone exposée du cartilage interne est concentrée postérieurement et près de l'épine tibiale et 

ce dû aux déplacement primaire postérieur du fémur et au déplacement couplé interne du 

tibia sous l'effet de la force de tension développée dans le pLCP, causant ainsi une 

augmentation notable de la contrainte principale en compression et une élévation marquée 

des gradients de contraintes (Fig. 5.2a). D'un autre côté, l'excision du ménisque interne 



lors d'un tiroir antérieur surcharge pareillement le plateau externe mais ne provoque pas 

autant d'effets sur les contraintes principales en compression et sur le cisaillement maximal 

(Figs 5.3a-b) car la laxité et la rotation couplée qui en résultent ne sont pas fortement 

affectées par cette procédure en comparaison avec le cas intact. 

Rôles des lieaments et des ménisques 

Dans le cas de la compression axiale pure, les ligaments qui, initialement 

tendus perdent peu à peu de leurs tensions avec le déplacement axiale de 1'0s fémoral, à 

l'exception du LCA et LLI qui voient leurs contributions augmentées grâce aux 

mouvements couplés. Cette contribution ligamentaire demeure minime devant celle des 

ménisques qui jouent un rôle prépondérant dans le mécanisme de transfert de la charge en 

agissant comme un matériau de rembourrage 'space fiiling matenal', néanmoins, l'absence 

de la modélisation du manchon capsulaire qui retient les ménisques ainsi que des attaches 

tibiales des ménisques (ligaments coronaires), nous porte à croire que notre évaluation de 

la contribution des ménisques demeure inférieure à leur contribution réelle. La charge 

supportée par les ménisques était responsable d'un état de déformation dans les fibres de 

collagène renforçant la matrice méniscale pouvant atteindre, pour la charge de IOON, 

7.5% pour des fibres radiales de la zone postérieure du ménisque interne et 4.5% pour 

ceux de la zone antérieure du ménisque externe qui sont les zones qui transmettent la 

majeure partie de la portion de la charge en compression qui passe à travers les ménisques. 

En vams-valgus, avantagés par leun emplacements anatomiques respectifs, les 

ligaments latéraux sont les éléments les mieux placés (structures primaires) à résister aux 

moments appliqués, suivis des ligaments croisés (structures secondaires) (Figs 3.6a-c). 

Les tensions qui se développent ainsi dans l'un des latéraux et dans les croisés contribuent 



à comprimer les surfaces articulaires en contact sur l'un ou l'autre des plateaus. Quand 

l'un des ligaments latéraux est sévèrement lésé, le moment appliqué est alors résisté par les 

croisés, qui, pour compenser un emplacement anatomique qui les défavorise (bras de 

levier petit), développent des tensions sensiblement élevées (Figs 3.6b-c). Le plateau en 

contact subit alors une compression accrue dont une partie considérable se transmet par 

l'intermédiaire des ménisques résultant en des contraintes assez élevées dans les fibres de 

collagène, plus particulièrement en varus, dans la zone postérieure du ménisque interne. 

Lors d'un tiroir postéro-antérieur, Les ligaments croisés et latéraux sont les 

stnictures primaires et secondaires à résister ce chargement, respectivement. Le rôle 

primaire ou secondaire d'un ligament lors d'un tel chargement est imputable, 

principalement, à l'inclinaison ou verticalité du ligament en question. Le LCA, incliné 

favorablement lors d'un tiroir fémoral postérieur, développe une tension de plus en plus 

grande pour résister le tiroir grandissant (Fig. 4.6). Dans le cas de mouvements couplés 

non restreints du tibia, la rotation externe et déplacement proximal du tibia permettent un 

rapprochement entre les sites d'insertion du ligament et donc un certain relâchement dans 

la tension ligamentaire, justifiant ainsi l'obtention d'une laxité primaire plus élevée pour ce 

cas comparé à celui où les mouvements couplés du tibia étaient restreints (Fig. 4.5). La 

même observation et justification sont faites lors du tiroir fémoral antérieur impliquant 

cette fois-ci le LCP. La contribution de chaque ligament primaire ou secondaire est pour la 

première fois évaluée lors de cette étude comme étant le produit scalaire du vecteur force 

extérieure appliqué sur le joint par le vecteur tension ligamentaire développée dans le 

ligament considéré. II est vrai que l'absence dans notre modélisation de la capsule 

ligamentaire résulte en une surévaluation de la contribution des ligaments primaires lors 

des tiroirs antérieurs ou postérieurs. 



5.1.2.2 Comparaison des résultats cinétiques avec les mesures 

expérimentales 

La majorité des études expérimentales entreprises sur des spécimens de genou 

en compression se sont intéressé principalement au mécanisme de transfert de charge à 

travers l'articulation dans le but de mieux cerner la contribution des ménisques ainsi que 

les répercussions que peut avoir une méniscotomie partielle ou totale sur les surfaces de 

contact et la distribution des charges et pressions sur le cartilage tibiai. Cette tâche difficile 

a été entreprise en utilisant plusieurs approches et techniques résultant en une grande 

variabilité dans les mesures [4,5,7,8,10,14,68,69]. Les techniques de moulage, films 

sensibles et capteurs de pression conventionnels [5,7,8,14] sont les plus utilisés. Les 

résultats obtenus pour la pression maximale de contact sur l'articulation fémorotibiale de 

I'ordre de 3MPa pour une compression de lOOON corroborent nos prédictions pour les 

contraintes principales dans le cartilage. L'étude entreprise par Ahmed et Burke (1983) est 

la plus fiable du fait qu'elle utilise une technique de micro-indentation d'un capteur de 

pression en plastique de 0.05mm d'épaisseur, beaucoup plus mince que le capteur 

conventionnel de pression ou piézorésistant (0.75mm et 0.4mm d'épaisseur, 

respectivement) tous deux utilisés lors d'études similaires [14,8]. L'étude de Ahmed et 

Burke (1983) n'impose aucune restriction sur les mouvements relatifs d'une composante 

osseuse par rapport à l'autre. Une pression de contact maximale variant entre 2.07MPa et 

2.75MPa pour les spécimens en extension sous une charge de 890N est alors indiquée sur 

l'indenteur. Comme c'est le cas dans notre étude, la contribution totale des ménisques 

diminue avec l'application croissante de la charge mais demeure néanmoins supérieure à 

50% de la charge totale de compression à 1335N. La valeur de cette contribution est basée 

principalement sur une estimation des forces transmises à travers les zones exposée et 

couverte du cartilage à partir des distributions de pression et surfaces de contact. Il est il 



noter que les zones couverte et exposée sont définies à partir de la configuration initiale 

(non-déformée) des ménisques. De ce fait, la charge anribuée aux ménisques se trouve 

surévaluée à cause que la zone couverte de cartilage diminue avec l'expansion radiale des 

ménisques. Lors de l'évaluation de la contribution méniscale, une erreur inhérente peut 

donc être commise dont l'amplitude peut parfois être substantielle, c'est le cas par exemple 

des études qui évaluent la contribution des ménisques par une simple soustraction des 

courbes représentant la force appliquée en fonction du déplacement induit et ce pour le 

spécimen avant et après la pratique d'une méniscotomie totale [67,68,69]. 

La contribution des ligaments à résister aux chargements en varus-valgus ou en 

tiroirs antéro-postérieurs à été évaluée en utilisant une technique de dissection sélective des 

ligaments dans un ordre bien choisi. Deux approches sont dés lors adoptées par les 

chercheurs basées sur l'évaluation de la flexibilité ou de la rigidité de l'articulation avant et 

après chaque séquence d'excision ligamentaire. Dans la première approche [52,70-72,77- 

80,85-881, une charge est appliquée sur le tibia d'un genou intact et le déplacement 

résultant enregistré, un ligament est ensuite excisé et la réduction dans la charge qui est 

nécessaire pour reproduire un déplacement représente alors la contribution du ligament 

manquant. Une limitation de cette approche réside dans le fait que l'accroissement dans la 

laxité est étroitement lié avec l'ordre dans lequel les ligaments sont sectionnés. La 

deuxième approche [5 1,66,73,8 1-84] consiste par contre à appliquer un déplacement 

contrôlé tout en mesurant la charge de rétention sur le spécimen. Après qu'un ligament ait 

été sectionné, le même déplacement est rappliqué et la contribution ligamentaire évaluée 

par la réduction de la charge de rétention mesurée suite à cette rupture. Même si 

l'évaluation ainsi faite est indépendante de l'ordre de coupure des ligaments choisi, elle 

demeure peu précise si les mouvements couplés présents sont importants. 



Comme on l'avait anticipé, la contribution d'environ 70% à 4ûûN obtenue 

pour le LCP est plus élevée que celles qui ont été rapportées récemment dans la Littérature 

[66,86] car elle inclue indirectement la contribution des ligaments capsulaires manquant 

lors de cette modélisation. En effet Race et Amis (1996) ont rapporté une contribution 

totale des faisceaux antéro-externe et postéro-interne du LCP environnant 3 3 8  et 35% lors 

de déplacements postérieurs imposés au tibia de 4mrn et 6mm. respectivement. Alors que 

Markolf et al. (1996) ont mesuré une force d'environs 16N pour une charge de lOON 

appliquée postérieurement sur le tibia, ce qui représente, compte tenu de l'inclinaison du 

ligament, une contribution encore plus faible que 16%. Il est à noter que Markolf et al. 

(1996) ne permettent pas le mouvement couplé inteme-exteme du tibia lors du 

chargement. Par contre, Race et Amis (1996) n'imposent aucune restriction sur le 

mouvement tibia1 mais en contre partie, du fait que cette étude est basée sur l'évaluation de 

la rigidité du système avec et sans le LCP, la contribution attribuée à chaque faisceaux peut 

être entachée d'erreurs si les mouvements couplés sont significatifs. 

Lors du tiroir fémoral postérieur, là où la contribution des ligaments 

capsulaires n'est pas aussi importante que le cas précédent, le LCA résiste presque la 

totalité de la charge ce qui est en accord avec les mesures expérimentales qui lui accordent 

environs 86% pour un déplacement de 5mrn à un angIe de flexion de 30" [84]. La force 

développée par le ligament lui même de 172N pour une force fémorale postérieure de 

lOON se compare favorablement avec la valeur moyenne d'environ l5ON obtenue pour 14 

spécimens testés à une charge tibiaie antérieure identique [ S I .  

Lors d'un chargement en vas-valgus, pour une position d'extension du joint, 

les structures capsulaires procurent en moyenne 25.2% du moment nécessaire à résister 



une ouverture de l'articulation en valgus de 5mrn [83]. Cette contribution est plus faible en 

varus (17.2%) [83]. Ceci nous rend confiant dans les résultats obtenus lors de ce type de 

chargements même en l'absence des capsules. De plus, la comparaison de nos résultats 

obtenus pour les forces dans les ligaments croisés avec ceux de Markolf et collaborateurs 

dans plusieurs de leurs études est assez concluante. En varus, une force moyenne dans le 

LCA de IOON est obtenue pour un moment de ION-m et des valeurs allant de 105N-I25N 

pour un moment de 15N-m alon qu'en valgus ces forces sont d'environs 60N pour 10N- 

m et atteignent 70N à 80N pour 1SN-m [52,85,87,88]. Pour le LCP, les forces sont 

minimes en varus (ION) pour des moments similaires et atteignent 35N pour un moment 

valgus de 15N-m [52,86,88]. Nos résultats corroborent également les observations 

voulant que le LCA devient aussi active que le LLI à s'opposer aux moments en valgus 

quand les mouvements couplés du tibia, et particulièrement la rotation axiale et le 

déplacement interneexterne, sont libres [3]. 

On a comparé nos résultats en terme de déformations obtenues pour différentes 

fibres du LLI avec des mesures par jauge de déformation faites par Hull et al. ( 1996) dans 

quatre emplacements différents de la zone antérieure du ligament. En anticipant que la zone 

antérieure du ligament est plus sollicitée lors d'un chargement par moment en valgus, Hull 

et al. (1996) ont obtenus des déformations allant de 1.8% à 3.5% pour un moment de 

20N-m. À part le fait que les déformations obtenues lors de notre étude à 15N-m (3.2% à 

3.8% dans pareils emplacements) sont du même ordre de grandeurs que celles publiées 

par Hull et ai. (1996), les fibres postérieures se sont avérées, néanmoins plus sollicitées 

(5.8%). Ceci se justifie peut être par le fait qu'en position d'extension, déjà, c'est cette 

partie du ligament qui est la plus tendue [74]. 



5.1.3 Implications cliniques 

L'incidence des processus dégénératifs s'opérant à travers l'articulation 

fémorotibiale a toujours été un souci majeur pour les cliniciens surtout depuis que les 

conséquences néfastes de la méniscotomie se sont fait de plus en plus évidentes. L'analyse 

détaillée du processus de transfert de charge à travers l'articulation du genou fut alors 

adoptée par plusieurs chercheur pour mieux justifier cette observation. Les conséquences 

de la concentration des contraintes et des gradients élevés de contraintes sont observés sur 

le cartilage à la suite d'une ablation totale des ménisques, chez les sujets obèses ou ceux 

exerçant des métiers ou activités sportives spécifiques (maçons, mineurs ou footballeurs). 

À I'échelle microscopique, les zones de cartilage présentant un pic de pression sont à haut 

risque de développer une dégénérescence à cause qu'une telle pression expulse le film de 

fluide destiné à lubrifier les surfaces de contact ce qui résulte en une concentration de 

contraintes au niveau des aspérités suivi d'une abrasion localisée du cartilage [23,27]. 

La laxité ligamentaire excessive due à la rupture partielle ou totale d'un 

ligament est responsable de plusieurs symptômes comme la douleur et le dérobement 

qu'est la défaillance subite du contrôle statique du genou suivie d'un déséquilibre et 

parfois même d'une chute, le patient a l'impression que son genou se déboîte ou lâche 

[74]. Une autre conséquence de la laxité excessive est l'augmentation de la charge de 

compression totale appliquée au joint, résultant en une concentration des contraintes 

pouvant causer à long terme une dégénérescence du cartilage. Cette observation a été faite 

par Jacobsen (1977) qui a étudié l'impact d'une laxité anomale du joint provoquée par 

une rupture du LCA sur l'intégrité du cartilage. 



Fermement attaché à la partie profonde du LLI et peu mobile, le ménisque 

interne, est atteint de lésions beaucoup plus souvent que le ménisque externe. On rapporte 

une fréquence de 70% à 75% pour le ménisque interne et 2 5 8  à 30% pour le ménisque 

externe [74]. La rupture longitudinale qui s'initie dans la partie postérieure du ménisque 

interne est de loin la plus répandue aboutissant souvent à une lésion dite en 'anse de sceau' 

[59,74]. Nous avons montré que les fibres de collagène étaient fortement sollicitées dans 

plusieurs cas de chargement y compris le cas de chargement en rotation interne fémorale 

[26]. Cette zone du ménisque est du même fait exposée à un risque accru de développer 

des fissures longitudinales profondes vu que le tissu présente une prédominance de fibres 

de collagène dans la direction circonférencielle seulement. Les tests mécaniques ont par 

ailleurs montré une fragilité constitutionnelle plus grande pour le ménisque interne [74], 

particulièrement dans sa partie postérieure. Un spécimen radial de ménisque interne 

prélevé dans la zone profonde de la partie postérieure s'est avéré beaucoup moins résistant 

que les spécimens prélevés dans les autres régions avec une contrainte maximale à la 

rupture de 0.8 IMPa, sensiblement plus faible que les valeurs moyennes de 2.66MPa et 

3.27MPa obtenues pour les ménisques interne et externe, respectivement [62]. 

Même si le LCA est assez résistant et se rompt à une charge maximale moyenne 

de 734N chez les sujets âgés (au delà de 47 ans) et 1730N chez les jeunes [76], les forces 

développées dans le LCA lors d'un chargement en tiroir fémoral postérieur ou encore en 

varus-valgus avec déficience de l'un des ligaments latéraux peut causer un sérieux 

handicap au LCA chez une population âgée surtout quand d'autres modes de chargements 

sont présent tels une rotation fémorale externe avec un tiroir fémoral postérieur ou le tiroir 

postérieur combiné avec un varus [26,85]. 



5.2 CONCLUSIONS 

Les conclusions tirées de ce travail de recherche sont présentées ci-dessous 

pour les deux principales parties concernant la reconstruction de la géométrie et du 

maillage et la partie analyse par éléments finis. 

5.2.1 Reconstruction de la géométrie et du maillage 

L'emploi d'une technique de tomographie assistée par ordinateur conjointement 

avec la modélisation de structures par éIéments finis s'est avéré efficace pour le 

développement de modèles détaillés de structures biologiques complexes telles que le 

genou humain. 

Subséquemment à une acquisition d'images tomographiques d'un spécimen de 

genou. un +dtement des images suivi d'une reconstruction des composantes osseuses du 

genou ont été entreprises. On a opté, ensuite pour une numérisation directe des surfaces 

articulaires (cartilages et ménisques) du fait que celles-ci étaient difficilement détectable à 

l'aide du premier procédé. Une technique simple pour la mesure de l'épaisseur du cartilage 

en divers emplacements a été adoptée et ces mesures, ont finalement servi à la génération 

analytique de surfaces articulaires ainsi que des surfaces profondes des couches de 

cartilage. La structure a été ensuite discrétisée menant à un maillage relativement raffiné 

pour l'analyse. Des points de repère ont été également utilisés pour chacune des 

composantes (fémur, tibia et rotule) pour permettre des transformations de coordonnées à 

partir de leurs systèmes de repères respectifs à un système de repères anatomique lié au 

spécimen. Et finalement, un choix judicieux des propriétés de matériaux parmi les données 

disponibles dans la littérature a été fait. 



Le choix d'une représentation par un matériau isotropique des couches de 

cartilage et de la matrice méniscale est parfaitement justifiable lors d'analyses 

élastostatiques sur le modèle s'intéressant particulièrement à la réponse à court terme du 

systéme don que le choix d'une représentation rigide pour les structures osseuses est 

avantageux du fait qu'il permet une économie substantielIe sur le temps de calcul tout en 

préservant la précision requise. Le degré de raffinement du maillage s'avère adéquat pour 

les objectifs de la présente étude alors que le choix de plusieurs éléments uniaxiaux pour la 

modélisation d'un même Iigarnent s'est avéré nécessaire pour tenir compte de la variabilité 

dans l'orientation de chacun de ses faisceaux. 

Plusieurs paramètres dont le type et nombre d'éléments à être utilisés pour 

chacune des structures modélisées sont laissés au libre choix de l'analyste. Pour les 

ménisques. t'usager peut également choisir le nombre d'éléments à être utilisés le long des 

directions privilégiés radiale, circonférencielle et axiale (à travers l'épaisseur du 

ménisque). Ceci constitue sans doute un important pas pour s'acheminer finalement à une 

paramétnsation des modèles de genou qui sera probablement d'un grand apport lors de la 

génération de maillages personnalisés de genoux de patients par une injection systématique 

de données anatomiques spécifiques dans les procédures de génération de maillages 

existantes. 

5.2.2 Analyses par éléments finis 

En plus d'avoir servi à valider le modèle soumis à des chargements variés, les 

analyses par éléments finis qui ont suivi nous ont permis de tirer les conclusions 

suivantes: 



La compression axiale sollicite peu les ligaments du genou dans sa position 

d'extension. La contribution la plus marquée demeure celle du LCA qui tend à limiter le 

glissement postérieur du fémur sur le plateau tibia1 caractérisé par une inclinaison 

anatomique postérieure. Les ménisques contribuent également au processus de transfert de 

charge en subissant une partie de la compression appliquée sur le joint. La partie 

postérieure du ménisque interne se trouve alors plus sollicitée car elle agit de plus comme 

une butée et freine la rotation axiale interne du fémur. L'absence, dans cette étude, des 

capsules ligamentaires, qui contribuent à la rétention radiale des ménisques, et des 

ligaments coronaires, qui prodiguent une fixation supplémentaire des ménisques sur le 

tibia, nous porte à croire que la contribution des ménisques au mécanisme de support de la 

charge est calculée par défaut. Si ces composantes sont plus ou moins lâches initialement, 

elles auraient peu d'influence sur les résultats en compression car I'expansion radiale 

observée est généralement petite (valeur maximale de 2mm à 1000N). Le rôle des 

ménisques à limiter les laxités du joint, à répartir les chargements de compression 

uniformément sur le cartilage et par le même fait à réduire les contraintes et les gradients de 

contraintes, a été noté par une simple comparaison des résultats avant et après l'ablation 

totale des ménisques. 

Durant un chargement en varus-valgus, les ligaments latéraux se sont avérés 

les principales structures à résister le moment dû à leurs emplacements anatomiques 

avantageux. Le pivot de l'articulation, les ligaments croisés, viennent en second ordre 

avec une contribution moindre due à un emplacement relativement proche de l'axe de 

rotation en varus-valgus. Si l'un des latéraux est atteint, les croisés deviennent fortement 

sollicités et développent alors des tensions assez élevées pénalisant par le même fait le 



plateau impliqué en y appliquant une compression accrue résistée conjointement par le 

cartilage et le ménisque. 

Lors d'un tiroir antéro-postérieur, les ligaments croisés constituent les 

structures primaires à s'opposer à la charge appliquée. Ce rôle primaire est jusilfié par une 

inclinaison anatomique de chacun des ligaments qui les avantage par rapport aux latéraux. 

La contribution du LCP peut être débattue vue l'absence dans le modèle des capsules 

ligamentaires. Après excision du LCA lors d'un tiroir fémoral postérieur, le ménisque 

interne devient l'une des structures passives les plus sollicitées par cette charge alors que 

pour un tiroir antérieur avec déficience du LCP, c'est le ménisque externe qui se trouve 

fortement sollicité. Contrairement à une méniscotornie externe, la méniscotornie interne 

cause d'importantes altérations à la cinématique du joint. Cette observation avec le rôle que 

joue le ménisque interne au sein du joint dont le LCA est déficient, confirment la 

recommandation clinique qui préconise la préservation, dans la mesure du possible, de la 

portion postérieure du ménisque interne lors d'une méniscotomie. 

5.3 RECOMMANDATIONS 

Pour compléter les travaux de recherches déjà entamés lors de cette étude sur la 

modélisation d'un genou humain par éléments finis, un ensemble de recommandations, 

développements et améliorations pourraient être apportés au modèle selon les objectifs 

futurs et les intérêts particuliers pour l'un ou l'autre des axes de recherches qui sont 

étroitement liés à la présente étude. 



Ainsi, dans le but d'aboutir à des modèles personnalisés de genoux sains ou 

pathologiques, des acquisitions de données à l'aide d'un système d'imagerie par 

résonance magnétique seraient plus adéquates pour le patient (exposition moindre aux 

radiations). Elles permettraient, s'il y a lieu, une reconstruction simultanée des structures 

osseuses et tissus mous. Les routines de génération de maillage utilisées lors de cette étude 

peuvent être alors incorporées pour obtenir finalement un maillage d'éléments finis pour le 

genou en question. Ce maillage serait sans doute bénéfique, entre autres, pour: 

Un design plus précis d'implants de I'articulation du genou qui seront 

reproduits et usinés sur une machine à commande numérique. 

Une optimisation du type et emplacement des substituts ligamentaires de 

manière à aboutir à une compensation mécanique la plus fidèle possible. 

Une évaluation préopératoire, dans le cas d'ostéotomies tibiales ou patellaire, 

de l'angle qui aboutirait à un réarrangement optimal de la distribution de contraintes. 

Pour ce qui est des améliorations a apporter au modèle existant, une 

modélisation des ligaments capsulaires ainsi que des attaches tibiales des ménisques est à 

envisager à condition d'avoir tout I'arsenal de données techniques représentant les 

propriétés mécaniques de ces structures. Des mécanismes d'enroulement seraient alors à 

considérer pour les portions de la capsule ligamentaire qui enveloppent chacun des 

condyles fémoraux. Un raffinement du maillage serait approprié pour les couches de 

cartilage, cette procédure permettrait une modélisation plus exacte du contact aboutissant 

donc à une évaluation plus précise du mécanisme de transfert de charge et de I'état de 

contrainte dans le cartilage, deux aspect des résultats requis lors d'études plus poussées 

sur les causes mécaniques de l'arthrite. 



La modélisation des ménisques et cartilage par un matériau poroélastique 

biphasique est sans doute la plus appropriée lors des études dynamiques et d'impacts. 

Bien que cette formulation soit disponible dans un code d'éléments finis existant, la 

modélisation du contact dans le cas d'une articulation aussi complexe que le genou 

demeure très difficile à réaliser dû aux restrictions imposées par ces codes sur le choix des 

noeuds de contact et facettes cibles afin d'assurer la convergence de la solution. 

Pour les projets futurs, des analyses du comportement passif de l'articulation 

durant un mouvement de flexion combiné ou non avec les cas de chargement analysés ci- 

haut sont à prévoir. A ce niveau, l'incorporation de la rotule dans le modèle ainsi qu'une 

représentation précise de l'activité musculaire, par I'application sur la rotule d'un ensemble 

de charges variables en intensité et direction en fonction du degré de flexion, seraient à 

considérer. 
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Figure 5.1: Illustration schématique du système d'axes anatomique lié au tibia du 

spécimen avec définition des sens correspondants aux différents 

déplacements et rotations. 



(Fig. 5.2a) 

Figure 5.2: Illustration de l'état de contraintes dans le cartilage tibia1 lors d'un tiroir 

fémoral postérieur de 2UûN pour les cas intact ou avec déficience du LCA; (a) 

contrainte maximale en compression, (b) cisaillement maximal. 



(Fig. 5.2b) 



(Fig. 5.3a) 

Figure 5.3: nlustration de l'état de contraintes dans le cartilage tibia1 lors d'un tiroir 

fémoral postérieur de 200N pour les cas intact ou avec méniscotomie interne; 

(a) contrainte maximale en compression, (b) cisaillement maximal. 



(Fig. 5.3b) 
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