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RESUME

L'analyse des coques minces soumises a un fluide en écoulement a été le sujet de
plusieurs recherches. La plupart de ces études traitent de 1'analyse lin€aire des coques
cylindriques fermées avec ou sans interaction avec un fluide en écoulement. Peu de
travaux ont été faits pour des coques cylindriques ouvertes, anisotropes, non uniformes et

soumises a un fluide en écoulement.

Nous proposons de développer une méthode pour ['analyse linéaire et non-linéaire
des coques minces, élastiques, anisotropes, ouvertes et soumises a un écoulement interne
et externe. La stabilit¢ dynamique des coques cylindriques fermées et le cas des coques
partiellement ou complétement remplies de liquide sont aussi analysés. La méthode
développée est une combinaison de ia mérhode des éléments tinis, de la théorie des coques

et de celle des fluides.

Les coques ouvertes sont simplement supportées selon leurs rives courbes et elles
ont des conditions frontiéres arbitraires sur les rives droites. La structure peut étre

uniforme ou non uniforme dans la direction circonférencielle.
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La premiére partie de ce travail traite de |'analyse linéaire des coques cylindriques

vides ouvertes ou fermées. La coque est divisée en plusieurs éléments finis de type coque
cylindrique ouverte et les fonctions de déplacement sont dérivées de la théorie des coques
cylindriques minces de Sanders. Les expressions des matrices de masse et de rigidité sont
déterminées par intégration analytique exacte. Les vibrations libres des coques cylindriques
ouvertes et fermées sont analysées par cette méthode dans le cas isotrope et anisotrope,
uniforme et non uniforme. Les résultats obtenus nous permettent de conclure qu'il y a une
bonne concordance entre les fréquences calculées par cette méthode et celles obtenues par

d'autres auteurs.

Dans la seconde partie de cette thése, nous présentons une théorie pour I'analyse
dynamique des coques cylindriques ouvertes, anisotropes et soumises a un fluide en
écoulement interne et externe. L'équation du potentiel des vitesses et |'équation de
Bernouilli de 1'élément fini fluide nous permettent d’exprimer [a pression exercée par le
fluide comme une fonction des déplacements nodaux et de trois forces (inertie, centrifuge
et Coriolis) du fluide en écoulement. L'intégration analytique de la pression nous donne
trois matrices pour le fluide en écoulement (masse, rigidité et amortissement). Plusieurs
exemples illustrent la théorie et le comportement dynamique des coques cylindriques
ouvertes et fermées, soumises a un fluide en écoulement et & des coques partiellement ou

complétement remplies de fluide. Une bonne concordance des résultats a été obtenue avec
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d'autres théories et expériences.

Dans la troisiéme partie de cette étude, nous présentons une approche générale pour
prédire I'influence des non-linéarités géométriques des parois sur les fréquences naturelles
des coques cylindriques ouvertes ou fermées, élastiques, minces, orthotropiques et non
uniformes. Les coefficients modaux sont dérivés de la théorie non linéaire de Sanders-
Koiter pour les coques cylindriques en termes de fonctions de déplacement développées
dans la premiére partie. Les matrices de rigidité non linéaires du second et troisi€éme ordre
sont déterminées a partir de la méthode des éléments finis. Les équations non linéaires sont
résolues par la méthode numérique de Runge-Kutta du quatriéme ordre. Les fréquences
linéaires et non linéaires sont alors déterminées en fonction de 1'amplitude du mouvement
de la coque pour plusieurs cas. Les résuitats obtenus sont en bonne concordance avec ceux

des autres auteurs.

La quatriéme et derni€re partie de cette recherche présente un modéle pour prédire
I'influence des non-linéarités associées aux parois de la coque et au fluide en écoulement
des coques ouvertes, élastiques, minces, orthotropiques, non-uniformes, submergées et
soumises simultanément i un écoulement interne et externe. Avec les matrices de masse
et de rigidités linéaires et non linéaires de la coque vide ainsi qu'avec les matrices de

masse, de rigidité, et d'amortissement linéaires du fluide en mouvement, nous
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développons dans cette partie trois matrices non linéaires pour le fluide en écoulement. En
dérivant une expression non linéaire pour la pression dynamique en fonction des
déplacements nodaux, des forces d'inertie, centrifuges et Coriolis ainsi que de la
combinaison des effets non-linéaires du fluide en écoulement, ['équation non linéaire
obtenue est résolue par la méthode numérique de Runge-Kutta du quatriéme ordre. Les
fréquences linéaires et non linéaires sont alors déterminées en fonction de I'amplitude du

mouvement de la coque pour plusieurs cas.

Cette méthode combine les avantages de la méthode des éléments finis qui traite
des coques complexes et la précision de la formulation basée sur des fonctions de
déplacement dérivées de la théorie des coques. Nous avons ici un modéle puissant pour
prédire les caractéristiques vibratoires linéaires et non linéaires des coques cylindriques
ouvertes ou fermées, non uniformes dans la direction circonférencielle et soumises a un

fluide en écoulement.



ABSTRACT

The analysis of thin shells subjected to a flowing flow has been the focus of many
investigations. Most of the research has involved analysis of linear thin closed cylindrical
shells with and without interaction between the structure and the surrounding fluid
medium. Very little is known concerning the linear and non-linear dynamics of non-

uniform open cylindrical shells subjected to a flowing flow.

The purpose of this study is to present a method for the linear and non-linear
dynamic analysis of thin, elastic, anisotropic open cylindrical shells submerged and
subjected simultaneously to an internal and external flow. The dynamic stability of closed
cylindrical shell and the case of an open or closed cylindrical shell partially or completely
filled with liquid are also investigated. The method developed is a hybrid of finite

element method, classical shell theory and fluid theory.

The open shells are assumed to be freely simply-supported along their curved edges
and to have arbitrary straight edge boundary conditions, and the structure may be uniform

or non uniform in the circumferential direction.

The first part of this work dealt with the linear analysis of an empty open or closed
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cylindrical shell. The shell is subdivided into cylindrical panel segment finite elements, the
displacement functions are derived from exact solutions Sanders’ equations for thin
cylindrical shells. Expressions for the mass and stiffness matrices are determined by
precise analytical integration. The linear free vibration of open and closed cylindrical
shells are studied by this method as well as anisotropic shells and shells having
circumferentially varying thicknesses. The results obtained reveal that the frequencies

calculated by this method are in good agreement with those obtained by others.

In the second part of this thesis, a theory is presented for the determination of the
linear effects of a flowing fluid on the vibration characteristics of an open, anisotropic
cylindrical shell submerged and subjected simultaneously to an internal and external flow.
The velocity potential and Bernoulli's equation for a liquid finite element yield an
expression for fluid pressure as a function of the nodal displacements of the element and
three forces (inertial, centrifugal and Coriolis) of the moving fluid. An analytical
integration of the fluid pressure over the liquid element leads to three components: mass,
stiffness and damping matrices. Calculations are given to illustrate the dynamic behaviour
of open and closed cylindrical shells subjected to a flowing fluid and shells partially or
completely filled with liquid. Reasonable agreement is found with other theories and

experiments.
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In the third part of this study, we present a general approach to predict the
influence of geometric non-linearities on the free vibration of elastic, thin, orthotropic and
non-uniform empty open cylindrical shells. The modal coefficients derived from the
Sanders-Koiter non-linear theory of thin shells are obtained for the displacement functions
developed in part one. Expressions for the second order and third order non-linear stiffness
matrices are then determined through the finite element method. The non-linear equation
of motion is solved by the fourth-order Runge-Kutta numerical method. The linear and
non-linear natural frequency variations are determined as a function of shell amplitudes for
different cases. The results obtained reveal that the frequencies calculated by this method

are in good agreement with those obtained by other authors.

The fourth and last part of this research present a model to predict the influence of
non-linearities associated with the wall of the shell and with the fluid flow on the dynamic
of elastic, thin, orthotropic and non-uniform open cylindrical shells submerged and
subjected simultaneously to an internal and external fluid. With the mass, linear and non-
linear stiffness matrices for the empty shell and linear matrices for the moving fluid, we
develop in this part three non-linear matrices for the fluid by deriving an expression for
non-linear pressure as a function of nodal displacements, the inertial, centrifugal and
Coriolis forces and a combination of non-linear effects of the fluid flow. The non-linear

equation of motion is then solved by the fourth-order Runge-Kutta numerical method. The
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linear and non-linear natural frequency variations are determined as a function of shell

amplitudes for different cases.

This method combines the advantages of finite element analysis which deals with
complex shells, and the precision of formulation which the use of displacement functions
derived from shell and fluid theories contributes. We have here, a powerful model to
predict linear and non-linear vibrationary characteristics of circumferentially non-uniform

open and closed cylindrical shells empty or subjected to a flowing fluid.
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CHAPITRE I

INTRODUCTION

1.1 GENERALITES

Les coques sont des structures utilisées dans différents domaines de 1'ingénierie.
Pour ne citer que quelques applications mentionnons: 1'industrie aérospatiale et
aéronautique (fuselages d'avions, fusées, turboréacteurs), |'industrie nucléaire (enceintes
des réacteurs), |'industrie navale (composantes de sous-marins et de navires), le domaine
pétrolier (réservoirs, pipelines), le génie civil (construction sous forme de domes et de
voiles minces). La connaissance des caractéristiques statiques et dynamiques de ces
structures est importante aussi bien pour le chercheur désirant comprendre leur
comportement que pour l'ingénieur soucieux d'éviter tout effet destructif lors de leurs

utilisations industrielles.

Les coques sont le sujet de recherche par excellence de plusieurs travaux allant de
la statique a la dynamique. De nombreuses théories ont €té établies. [l est généralement
convenu de classer les études pour ce type de structures en considérant des facteurs tels que

la courbure, 1'anisotropie, les contraintes résiduelles, la variation de 1'épaisseur, les grands
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déplacements, 1'inertie de rotation, l'effet du milieu environnant, la forme des bords de

la coque, le type des conditions aux rives, etc.

La plupart de ces études ont porté sur ['analyse linéaire des coques minces de
révolution fermées avec ou sans interaction entre cette structure et le milieu fluide
environnant. On classe le milieu fluide environnant selon les caractéristiques suivantes: le
type d'écoulement, la viscosité, la compressibilité, le mouvement de la surface libre, la

linéarité ou ia non-linéarité des équations gouvernant l'écoulement, etc.

Dans cette étude nous allons développer un nouveau modéle pour i'analyse
dynamique et statique des coques cylindriques ouvertes, non uniformes dans la direction
circonférentielle, anisotropes et soumises a un fluide en écoulement, dans le domaine

linéaire et non linéaire.

Cette étude entre dans le cadre d'un projet de recherche dirigé par le professeur
A.A. Lakis et dont le but est de développer un modéle numérique d'une coque quelconque

soumise a un écoulement interne et/ou externe.
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Les résultats de ces travaux seront utiles pour tout développement de réservoirs

sous pression, échangeurs de chaleur, pipelines, fuselages d'avions, construction sous
forme de domes en génie civil. Ces résultats serviront aussi a I'analyse de 1'influence des
non-linéarités associées a la coque et au fluide en écoulement sur le comportement

dynamique du systéme coque-fluide.

1.2 REVUE BIBLIOGRAPHIQUE

La premitre tentative pour élaborer une théorie des coques minces en flexion a
partir des équations générales de |'élasticité a été réalisée par Aron en 1874. Love en 1888
développait une série d'équations fondamentales décrivant le comportement des coques
minces €élastiques. Ces équations et les hypothéses sur lesquelles elles sont baties, sont

souvent identifiées comme la premiére approximation de Love.

Depuis, la théorie des coques minces linéaires a été réexaminée a plusieurs reprises.
Reissner (1941) et Knowies et Reissner (1957) ont fait une nouvelle dérivation des
équations pour des coordonnées orthogonales. Certaines théories additionnelles ont été
proposées: Sanders (1959, 1963), tout en conservant les hypothéses originales de Love,
a construit un systéme d'équations induisant des déformations nulles provenant des

mouvements rigides. Ces équations sont identiques a celle dérivées par Byrne (1944),
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Lu're (1959), Koiter (1960) et Fligge (1973) qui ont présenté, indépendamment les uns
des autres, une théorie d'ordre supérieur dans laquelle 1'hypothése portant sur ['épaisseur
de la coque est différée dans les formulations. Les effets des contraintes de cisaillement
transversal et des déformations de cisaillement ont été examinés par Hildebrand, Reissner
et Thomas (1949), Green et Zerna (1950), Reissner (1952), Naghdi (1956, 1957, 1961,

1963). Les résultats du travail de Naghdi (1957) incluent aussi |'effet des forces d'inertie.

Un certain nombre de travaux ont été faits sur |'analyse des coques cylindriques
ouvertes, généralement pour un seul type de conditions frontiéres. Bogner et al. (1967)
ont développé un élément fini cylindrique ouvert ot les fonctions de déplacement sont de
type Hermite de premier ordre. Des travaux similaires ont été réalisés par Cantin et
Clough (1968). Olsen et Lindberg (1968) ont développé un élément fini cylindrique a 4
noeuds et 7 degrés de liberté par noeud. ou le mouvement de corps rigide a été vérifié.
Boyd (1969) analysa des coques ouvertes en solutionnant les équations de Donnels pour
des conditions frontiéres de type simplement supportées. Kurt et Boyd (1971) ont analysé
les vibrations libres des coques cylindriques ouvertes avec des conditions aux fronti€res
de type simplement supportées, tout en exprimant les fonctions de déplacement en double
série trigonométrique et polynomiale. Petyt (1971) obtient les fréquences naturelles d'une
coque cylindrique ouverte ayant les quatre rives encastrées en utilisant les méthodes des

éléments finis, de Rayleigh-Ritz et de Kantorivich. Srinivasan et Boby (1976) ont
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développé une méthode pour |'analyse des coques cylindriques ouvertes et encastrées en
utilisant les fonctions de Green. Massalas et al. (1980) ont analysé des coques cylindriques
non circulaires en assumant des fonctions de déplacement en double série de cosinus et

sinus avec des conditions aux frontiéres de type simplement supportées.

Blevins (1981) simplifia les travaux de Sewall (1967) pour analyser les coques
cylindriques ouvertes. Leissa et al. (1981) ont étudié les vibrations des coques
cylindriques ouvertes encastrées sur une rive et libre sur les trois autres. En utilisant la
méthode de Rayleigh-Ritz, Tonin et Bies (1979) et Suzuki et Leissa (1985, 1986) ont
étudié des coques ouvertes avec une épaisseur variable dans la direction circonférencielle.
Srinivasan et Krishnan (1987) ont analysé les coques ouvertes ayant des rives encastrées
dans la direction latérale et libres dans les deux autres directions. Cheung et al. (1989) ont
utilisé la méthode de "Spline finite strip” pour 1'analyse des vibrations forcées des coques

ouvertes.

Plus récemment, Kumar et Singh (1993) ont analysé les vibrations des coques
cylindriques non circulaires. Cette analyse est basée sur la méthode de Ritz ou les
déplacements sont une combinaison des fonctions des vecteurs propres des poutres et des
fonctions de Bezier. Jiang et Olsen (1994) ont développé un élément fini pour 1'analyse

des coques cylindriques orthotropiques. Ils ont utilisé des fonctions de déplacement
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polynomiales et analytiques. Leissa (1973) a regroupé dans une excellente référence le

travail de plusieurs recherches.

Quand le déplacement de la paroi d'une coque est supérieur a son épaisseur, une
théorie non linéaire est alors nécessaire pour !'étude du comportement de cette coque.
Plusieurs théories traitant des non-linéarités géométriques pour des coques de forme
arbitraire ont été développées. Reissner (1963) est considéré comme un pionnier dans
'analyse des effets de la non-linéarité géométrique sur la dynamique des coques
cylindriques. Actuellement, plusieurs théories sont disponibles pour décrire la non-
linéarité géométrique dans les coques . Citons celles développées par Naghdi et Nordgren

(1963), Sanders (1963), Koiter (1966), Yokoo et Matsunaga (1974).

Beaucoup de méthodes ont été développées pour I'étude des vibrations non linéaires
des coques cylindriques. Parmi celles-ci, la méthode de Galerkin [ Nowinski (1963),
Evensen (1967), Dowell et Ventres (1968), Leissa et Kadi (1971), Birman et Bert (1987),
Raouf et Palazotto (1994) et Kobayashi et Leissa (1995) ], la méthode des petites
perturbations [ Alturi (1972), Ginsberg (1972) et Chen et Babcock (1975) ], la méthode
d'expansion modale [ Meirovitch (1967) et Radwan et Genin (1975) ] et la méthode des
éléments finis [ Raju et Rao (1976), Basar et Ding (1990), Tsai et Palazotto (1991) et Jiang

et Olsen (1991) ]. La plupart de ces recherches ont été faites sur des coques isotropes.
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Seulement Nowinski (1963), Raouf et Palazotto (1994) et Jiang et Olsen (1991) ont
développé des modeles pour des coques orthotropes. Ambrasumyan (1961) a produit un

important travail pour 1'analyse de |'anisotropie dans les coques.

La réponse des coques due au fluide en écoulement a été étudiée par plusieurs
chercheurs qui ont appliqué plusieurs techniques telles que les fonctions de Green avec
Cottis et Jasonides (1964), les fonctions de Dirac Delta avec Nasser (1968), la méthode
de Join-Acceptance avec Clinch (1970), la théorie de Timoshenko avec Magrab et
Burroughs (1972), les fonctions de Transfert par Cottis (1968), la méthode de Rayleigh
avec Dym (1970) et la simulation numérique et les équations de Fokker-Planck (Nash et

Kahematsu, 1972).

Fung (1957) analysa le spectre de fréquence et les modes de vibration d'une coque
cylindrique avec un écoulement interne. Kuleshov et al. (1971) ont proposé une méthode
pour analyser les coques cylindriques avec fond plat rigide et partiellement remplies de
liquide. Housner et al. (1958) ont présenté une série de représentations du comportement
oscillatoire d'une coque avec un fluide incompressible non visqueux. Jain (1974) a étudié
le comportement des vibrations des coques cylindriques orthotropes partiellement ou

entierement remplies de fluide incompressible et non visqueux.
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L'influence de la vitesse d'écoulement sur les vibrations libres d'une coque
cylindrique a €té décrite par plusieurs chercheurs. Lindholm et al. (1963) ont étudié les
vibrations d'une coque cylindrique avec un écoulement interne. Paidoussis et Denis (1972)
et Weaver et Unny (1973) ont étudié 1'instabilité dans des coques cylindriques avec un
fluide en écoulement. Des travaux ont aussi été réalisés sur les vibrations des coques avec
une excitation aléatoire [ Townsend (1956), Corcos (1963), Lakis et Paidoussis (1972b),

Mulhearn (1975) ].

Plus récemment, la dynamique du systéme coque-fluide a ét€¢ examinée par
plusieurs auteurs. Brown (1982), Au-Yang (1986) et Paidoussis et Li (1993) ont fait une
revue bibliographique €laborée dans ce domaine. Ces derniéres années plusieurs articles
sont parus: Citons ceux de Mistry et Menenzes (1995), Harari et al. (1994), Cheng
(1994), Han et Liu (1994), Terhune et Karim-Panahi (1993), Brenneman et Au-Yang

(1992), Endo et Tosaka (1989) et Goncalves et Batista (1987).

La solution analytique des équations de mouvement des coques minces est
généralement difficile; seules les méthodes d'approximation sont utilisées. Parmi celles-ci
il y a la méthode des différences finies, la méthode de Galerkin, la méthode de Rayleigh-
Ritz, la méthode des matrices de transfert et celle des éléments finis. Toutes ces méthodes

ont des avantages et des inconvénients; un des critéres importants de succés d'une méthode
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est sa capacité de prédire aussi bien les hautes que les basses fréquences et les modes

propres correspondants avec une bonne précision.

Dans la méthode des différences finies, on donne & priori des valeurs initiales de
la fréquence. Cette procédure exige beaucoup de temps de calcul; d'autre part, elle ne
détermine pas tout le spectre de vibration. De méme, la méthode de Galerkin perd sa
précision aux hautes fréquences de la coque. La méthode des matrices de transfert a fait
ses preuves ces derniéres années, ceci par les travaux de Dupuis et Rousselet (1985) et
Tran Van (1987), mais présentement les résultats obtenus ne sont valables que pour des
coques cylindriques. La méthode de Rayleigh-Ritz et la méthode des éléments finis
répondent a ce critere. Elles raménent le probléme de vibrations 4 un probléme symétrique

de valeurs propres.

La méthode de Rayleigh-Ritz présente des inconvénients parmi lesquels on retrouve
le choix des fonctions de déplacement qui doit tenir compte des conditions aux rives et la
nécessité de retenir un grand nombre de termes pour l'expression des fonctions de
déplacement. La méthode des éléments finis [ Zienkiewicz (1977), Tinawi (1981), Datt
et Touzot (1984), Gallagher (1985) et Yang (1986) ] est, par contre, satisfaisante de ces
points de vue. La coque est modélisée par un assemblage d'éléments finis. La précision

de la méthode dépend de la nature de ces éléments et des degrés de liberté retenus pour
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stimuler le comportement de la coque.

De nombreux programmes généraux de calcul permettent d'utiliser industriellement
la méthode des €léments finis, principalement dans le domaine de la mécanique des

solides. Citons par exemple: MSCPAL, ABAQUS, ADINA et NASTRAN.

En général les éléments triangulaires et quadrilatéres sont utilisés ou les fonctions
de déplacement sont polynomiales. Pour augmenter la précision, on a été amené i choisir
des éléments courbes qui modélisent mieux la géométrie de 1'enveloppe. La formulation

analytique de ces éléments est complexe.

L'un des critéres les plus importants pour déterminer la flexibilité d'une méthode
est sa capacité a solutionner le probléme d'interaction coque-fluide pour les hautes
fréquences aussi bien pour que les basses, avec une bonne précision. Ce critére nécessite
I'utilisation d'un trés grand nombre d'éléments dans la méthode des éléments finis. Pour
pallier a ce défaut 1'équipe de recherche dirigée par le professeur Lakis a développé un
nouveau type d'éléments finis. Ce sont des éléments hybrides ou les fonctions de
déplacement de la méthode des éléments finis sont dérivées de la théorie des coques. Cette

méthode a été appliquée aux analyses statiques et dynamiques des coques fermées de

révolution. Les coques cylindriques fermées ont fait 1'objet de plusieurs études dans le
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domaine linéaire et non linéaire, isotrope et anisotrope, uniforme et axialement non
uniforme, vide, partiellement ou complétement remplie de liquide, avec ou sans
écoulement, liquide & une phase ou biphasique [ Lakis et Paidoussis (1971, 1972a, 1972b,
1973), Lakis (1976a, 1976b), Lakis et Doré (1978), Lakis, Sami et Rousselet (1978),
Lakis et Laveau (1991), Lakis et Sinno (1992) ]. D'autres travaux ont été faits sur les
coques coniques (Lakis, Van Dyke et Ouriche, 1992) et sphériques (Lakis, Tuy et
Selmane, 1989), ainsi que sur des plaques circulaires et annulaires [ Lakis et Selmane

(1990a, 1990b) ).

1.3 BUT DE LA RECHERCHE

Une synthése de la revue bibliographique nous méne a dire que les coques ont fait
I'objet de plusieurs travaux dans le domaine statique et dynamique. avec ou sans
écoulement. De nombreuses théories ont été établies. Vu la difficulté de solutionner les
équations différentielles des coques, les résultats généralement obtenus ne sont valables que
pour des coques fermées de révolution. Peu de travaux ont été faits pour des coques
ouvertes avec ou sans fluide en écoulement. Rares sont les méthodes capables de
déterminer les hautes fréquences du systéme coque-fluide avec autant de précision que les

basses fréquences, et ce dans le domaine linéaire et non linéaire.
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Nous proposons de développer un modéle pour I'analyse linéaire et non linéaire des
coques minces, élastiques, anisotropes, ouvertes et soumises a un écoulement interne et
externe. La stabilit¢ dynamique des coques cylindriques fermées et le cas des coques
partiellement ou complétement remplies de liquide sont aussi analysés. La méthode
développée est une combinaison de la méthode des éléments finis, de la théorie des coques

et de celle des fluides.

Les coques ouvertes sont simplement supportées selon leurs rives courbes et elles
ont des conditions frontiéres arbitraires sur les rives droites. La structure peut étre

uniforme ou non uniforme dans la direction circonférencieile.

L'équation du mouvement du systéme coque-fluide, en tenant compte des matrices
lin€aires et non linéaires associées a la coque et au fluide en écoulement, peut s'écrire de

la fagon suivante:

[IM,] - iIMP1] (8} - (cP1 &) + [IK®T - (kP11 ¢33
+ K11 (8% + [KT] (8%} (1.1)
- 1P (8% - (ke M) (8 8) - K1) (81 = (0}
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ol: {8} est le vecteur déplacement; [M_], [K.*] sont les matrices de masse et de rigidité
linéaire de la coque vide; [K.™], [K,"™] sont les matrices de rigidité non linéaire du
second et troisiéme ordre de la coque vide; [M{"], [C"'] et [K{"'] sont respectivement
les matrices linéaires associées aux forces d'inertie, de Coriolis et centrifuge dues au
fluide; [CAV], [KCAM] et [K™V] sont les matrices non linéaires associées au fluide en

écoulement.

Dans cette thése, notre objectif est donc de trouver les matrices [M,], [K, "],
[K N9, KA, (M1, (CEPTL K, [CA™MT, [KCAM] et [K™M). Nous résoudrons
dans cette étude 1'équation du mouvement du systéme coque-fluide (1.1) afin de déterminer
les modes de vibration et les fréquences naturelles du systéme dans le cas linéaire, de
trouver |'influence du fluide sur une coque cylindrique ouverte ou fermée et de prédire,
dans le cas non linéaire, 1'influence des non-linéarités associées aux parois de la coque et
au fluide en écoulement dans une coque ouverte, élastique, mince, orthotropique, non

uniforme, submergée et soumise simultanément a un écoulement interne et externe.

Cette étude entre dans le cadre d'un large projet de recherche dirigé par le
professeur A.A. Lakis, et ayant pour but d'analyser dynamiquement une coque quelconque

avec ou sans fluide en écoulement.
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1.4 PLAN DE LA THESE

Cette thése est répartie en six principaux chapitres et est organisée de la maniére

suivante.

A la suite de cette introduction, le deuxiéme chapitre présente |'analyse linéaire des
coques cylindriques vides. Cette étude est présentée sous la forme d'un article intitulé:
"Dynamic Analysis of Anisotropic Open Cylindrical Shells" (Selmane et Lakis, 1995a).
Cet article développe un nouvel éiément fini pour la détermination des vibrations libres des

coques cylindriques ouvertes et fermées.

Au troisieme chapitre, nous développons un modéle pour 1'analyse dynamique des
coques cylindriques ouvertes soumises i un fluide en écoulement. Ce modéle est présenté
dans l'article intitulé: "Vibration Analysis of Anisotropic Open Cylindrical Shells
Containing Flowing Fluid" (Selmane et Lakis, 1995b). Cet article présente 1'analyse de
la stabilité dynamique des coques cylindriques ouvertes soumises simultanément a un
écoulement interne et externe, ainsi que l'analyse des coques partiellement ou

complétement remplies de liquide.
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Le quatriéme chapitre présente l'analyse non linéaire des coques cylindriques
ouvertes vides. Cette analyse est présentée sous la forme d'un article intitulé: "Influence
of Geometric Non-Linearities on the Vibrations of Orthotropic Open Cylindrical

Shells" (Selmane et Lakis, 1996a).

Dans le chapitre cing, nous résolvons le probléme général de 'interaction coque-
fluide en tenant compte des non-linéarités associées aux parois de la coque et au fluide en
écoulement. Ce travail est présenté dans 1'article intitulé: "Non-Linear Dynamic Analysis
of Orthotropic Open Cylindrical Shells Subjected to a Flowing Fluid" (Selmane et

Lakis, 1996b).

Finalement, nous conclurons et élaborerons sur les avenues & de recherche

potentielle.



16

CHAPITRE I

ARTICLE I

DYNAMIC ANALYSIS OF ANISOTROPIC OPEN

CYLINDRICAL SHELLS

2.1 ABSTRACT

This paper presents a method for the dynamic and static analysis of thin, elastic,

anisotropic and non-uniform open cylindrical shells.

The open shells are assumed to be freely simply-supported along their curved edges
and to have arbitrary straight-edge boundary conditions. The method is a hybrid of finite

element method and classical shell theories.

The shell is subdivided into cylindrical panel segment finite elements, the
displacement functions are derived from Sanders’ equation for thin cylindrical shells.

Expressions for the mass and stiffness are determined by precise analytical integration.
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The free vibration of open and closed cylindrical shells are studied by this method

as well as anisotropic shells and shells having circumferentially varying thicknesses. The
results obtained reveal that the frequencies calculated by this method are in good

agreement with those obtained by others.

2.2 INTRODUCTION

The analysis of thin shells under static or dynamic load has been the focus of many
theories. Most of the research in this field has involved analysis of linear thin closed
cylindrical shells. Very little is known concerning the dynamics of open cylindrical shells

with circumferentially varying geometry and material properties.

This paper presents a method for the dynamic and static analysis of thin, elastic,

anisotropic and circumferentially non-uniform open cylindrical shells.

The first attempt to formulate a bending theory of thin shells from the general
equations of elasticity was made by Aron in 1874, and was followed by a successful
approximate theory known as Love's first approximation [1]. Since then the theory of

elastic shells has repeatedly been re-examined, [2]-[8].
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Open cylindrical shells (panels) have been analyzed by a number of authors. In
general, the finite element method was used for solving these problems [9]-[16]. Various

types of finite elements were used and a-polynomial displacement functions were assumed.

Boyd [17] analysed a simply supported open cylindrical shell by solving Donell
equations. Kurt and Boyd [18] used a trigonometric and polynomials displacement
function and solved the dynamics of simply supported cylindrical panels. Strinivasan and
Bobby [19] developed a matrix method for analysis of clamped cylindrical shell panels by
using a Green function. Massalas et al. [20] analyzed a non-circular cylindrical panel by

choosing a double series of cosine and sine for the displacement functions.

Blevins [21] simplified the work of Sewall [22] by studying an open cylindrical
shell. Leissa et al. [23] analyzed the vibration of cantilevered cylindrical panels by using

the Ritz method, with algebraic polynomial trial functions for the displacements.

Tonin and Bies [24] used the Rayleigh-Ritz method; Suzuki and Leissa [25]-[26],
analysed the free vibration of circular and non-circular cylindrical shells having
circumferentially varing thickness. Srinivasan and Krishnan [27] calculated the natural
frequencies of cylindrical panels with clamped edges in the lateral direction and free to

move in the in-plane directions. Cheung et al. [28] applied the Spline finite strip method
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to the forced vibration analysis of a singly curved shell panel.

Recently, Kumar and Singh [29] analysed the vibration of non-circular cylindrical
shells. This analysis is based on the Ritz method in which a combination of eigenfunctions
for beams and quintic Bezier functions are used to represent the displacement. Jiang and
Olsen [30] developed a finite element to analyse the vibration of orthogonally stiffened
cylindrical shells and panels. They used a combination of polynomials and analytical

functions to formuilate the displacement functions.

Leissa [31] collected the work of several researchers into one excellent book. We
find in different types of shells and panels, a particular study of Heki [32] in analytical and
experimental analysis have been used to compare with our study. In that work the solution
is developed for the Donnell-Mushtari theory neglecting tangential inertia, where the
straight edges of the panel are free and the others edges are supported by shear

diaphragms.

One of the most important criteria in determining the versatility of a method is the
capacity to predict, with precision, both the high and the low frequencies. This criterion
demands the use of a great many elements in the finite element method, and in order to

meet it, our research group has developed a hybrid type of finite element, wherein the
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displacement functions in the finite element method are derived from Sanders' classical
shell theory [S]. This method has been applied with satisfactory results to the dynamic
linear and non-linear analysis of cylindrical [33]-[39], conical [40], spherical [41],
isotropic and anisotropic, uniform and axially non-uniform shells, both empty and liquid-
filled. This method has also been applied to the dynamic analysis of circular and annular

plates [42], [43].

The purpose of this study is to explore the static and dynamic analysis of thin,
elastic, anisotropic and non-uniform open cylindrical shells subjected to a flowing fluid.
Here we consider the problem of panels which are freely simply-supported along their
curved edges and have arbitrary straight edge boundary conditions. The effect of the

flowing fluid on the natural frequencies of these paneis will be the subject of a later work.

2.3 FUNDAMENTAL EQUATIONS FOR OPEN CYLINDRICAL SHELLS

Sanders' thin shell theory [5] is used in order to obtain the equations of motion.
These equations are based on Love's first approximation [1] and give zero strain for small
rigid-body motion, this is not the case with other theories. The geometry of the mean

surface of the shell studied and the coordinates used are shown in Figure 2.1.



Figure 2.1

(a) Open cylindrical shell geometry.
(b) Differential eiment for an open cylindrical shell.
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The equilibrium equations of an open cylindrical shell may be written as follows:

aNn*laNm_ 1 3M‘o -
ax R 46 2R 2 430

P % _9 @1

where N,, N;, N_,, M,, M, and M_, are the stress components and x and 6 are the

coordinates of the shell.

The strain vector of the middle surface is:

(e} = {e,, €, 2¢

= T
xB? KK’ Ko7 2K‘ﬁ}

where e, ¢, are the in-plane tensile or compressive strains, 2€_, is the in-plane shear, «,,

x, are the bending components and 2k, is the torsion of middle surface during

deformation. For a linear elastic behaviour, the strain vector is related to the

displacements through the following equation:



{e} = < r (2.2)

where U, V, W are axial, tangential and radial displacements.

For an anisotropic and elastic material, the constitutive equation which links the

stress vector to the strain vector is:

{o} = [P]{e} (2.3)

where [P] the elasticity matrix may be given as follows:
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Pll Pu 0 P14 PlS 0
P, P, 0O P, P, O
0 0 P, O 0 Py
(P] = (2.4)
PAI P42 0 PM P4S 0
I:.Sl P52 0 PS4 PSS 0
0 0 Py O 0 Py
For isotropic material, the only non-vanishing terms are
P,=P,=D P,=Ps=K
P,=P, =vD P, =P, =vK 2.5)
_ (1-v) (1-v)
Py = ——D Py = K

3
p - _Et K = —Et
1-v? 12(1-v?

E being Young’s modulus, v Poisson's ratio and t the shell thickness.

The elements P; of [P] characterize the shell's anisotropy which depends on the

mechanical properties of the material of the structure.
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By substituting equations (2.2) and (2.3) in the equilibrium equations (2.1), we

obtain new equations (2.6) in terms of axial, tangential and radial displacements (U, V,
W) of the mean surface of the shell and in terms of the element P; of the matrix of

elasticity [P], these equations are:

L, UV,WP) =0

L, (UV,WP) =0 (2.6)

L, (UV,WP) =0

where L, (k = 1, 2, 3) are three linear differential operators, the form of which is given

in Appendix 2.1.

The solution of equations (2.6) will permit us to derive the displacement functions.

2.4 DISPLACEMENT FUNCTIONS

The finite element used in this theory, as shown in Figure 2.2, is a cylindrical
panel segment defined by two nodal lines i and j. As stated in the introduction, in the
present method, we employ the equilibrium equations of this cylindrical shell to obtain the
pertinent displacement function, instead of using the more common arbitrary polynomial

forms.



Figure 2.2

(a) Finite element idealization.
(b) Nodal displacements at node i for the finite element m.
N: number of finite elements.
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By assuming that the panels are to be freely supported (V = W = 0) along their
curved edges, the displacements are periodic functions of x, and therefore, they may be

developed into a Fourier series as follows:

{U(x,0), W(x,0), V(x,0)}" = 3= [T ] {U_(0), W_(6), V (B)} (2.7)

m=1

where m is the axial wave number and [T_] is a 3 x 3 square diagonal matrix given in

Appendix 2.2. U, W, V,, are the magnitudes of the deflections and depend on 6 only.

Upon substituting equation (2.7) into equation (2.6), we obtain three ordinary
differential equations in U,, W_ and V. Solutions of these equations have the general

form [8]:

U8 =Ae™ V (0)=Be"™ W (8 =Ce" (2.8)

where 7 is a complex number.

The substitution of equation (2.8) into equations (2.6) yield three ordinary linear

equations in A, B and Cof the form:

(H] = {0} (2.9)

QLW i
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For a non-trivial solution of (2.9), the determinant of [H] must vanish yielding the

following characteristic equation:

hyn® +h,n® +h, n*+h,n?+h, =0 (2.10)

The expressions for [H] and hi are given in Appendix 2.2.

Equation (2. 10) provides for eight complex roots, the complete solution is a linear

combination of these eight solutions:

8
U8 =Y A e™
i= ]
8
vV.@ =Y B " (2.11)
i= |
8
W (0 =Y Ce"

iw ]

A;, B, and C, are not independent, we shall next express the A, and B, in terms of C;

as:

A=« C B, ,=BpC. i=12,..38 (2.12)

where «; and B, are complex. Substituting equation (2.12) into equation (2.9), we may

now determine «; and B; by solving the simple Cramer system:
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4. { Ho 2.13
- 5] e

H;; are the terms of matrix [H] given in Appendix 2.2.

The final form of U, V and W may be written as:

U
W or=[T,][RI{C} (2.14)
\"

where [T.] and [R] are shown in Appendix 2.2 and {C} = {C,, ..., C,}" is a set of
constants. The C; (i = 1,8) are the only free constants in our problem and must be

determined from eight boundary conditions, four at each edge of constant 6.

We are now in position to specify the displacement function. At each node in
Figure 2.2, the axial, circumferential and radial displacements, as well as a rotation, will

be prescribed. The displacement of node i can thus be defined by the vector:

dw T
(8} = {Um. W, [ de" ] LV } (2.15)
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where all these components represent amplitudes of U,V, W and dW/d6 associated with
the m th axial wave number. The element, having two nodes and eight degrees of

freedom, will have the following nodal displacements:

T
8, dw aW
LI - n ) ‘ . m . } ,

where [A] is given in Appendix 2.2, the terms of [A] being obtained from the terms of

[R].-

Now, pre-multiplying by [A™"] , we obtain:

5.
(cy - [A"l{a'} 217)

and substituting into equation (2.14), we obtain:

u 3.
Wo=[TTRIAT]Y, (2.18)
' j

The displacement function is defined by:

[Nl =[TI[RI[AT] (2.19)
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2.5 STRESS VECTOR

The strain vector may be found by using equations (2.2) and (2.18):

5 5.
[Q][A"]{bf}qa] {a} (2.20)

where the matrices [T], [A] and [Q] are given in Appendix 2.2.

RS R
{E}‘[m (T, ]

Referring to equation (2.3), the stress vector is given as:

L
{0} = [P] {e} = [P] [B] {bf} 221)

)

2.6 MASS AND STIFFNESS MATRICES FOR ONE FINITE ELEMENT

Following the framework of the finite element approach [44], the mass and

stiffness matrices may be expressed as:

L ¢

m] = pt [ [ [N]' [N] dA (2.22)
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L ¢
] = [ [ BI" [P] [B] ¢A (2.23)
[V ]

where dA = rdxd6. Here, [N], [B] and [P] are defined in equations (2.19), (2.20) and
(2.3). Using these equaticns in equations (2.22), (2.23) and integrating over x and 6, we

obtain:

m] =[AT ] [S][A™"] (2.24)

k] = [ATT[G] [AT] (2.25)

where [S] and [G] are defined by the above equations:

RIJ (ai dj“‘pi Bj + 1) (e(qiq‘}» _ 1)
2 (m;+ ny)

5 (i.j)= if o, = 0 (2.26)

(@; & + B, B, + 1) ifq, +n, =0 (2.27)
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G G = ==

(P, A, A +P A B +P AD +P AE

+P,B,A +P_ B B «+P, B D «P, BE
+P,D A +P,D B +P,DD +P,DE
+ Py E A +P E B +P,ED +P EE
+ P, C,C +P CF +P FC +P,F F)

M+ npé
(c_____l fn +n =0
(n; + 0y LY

A, Aj + +P,FF) ifn +n, =0 (229

where 7, (i=1,...,8) are the complex roots of the characteristic equation (2.10), «; and B;
are the solutions of system (2.13), R is the mean radius of the shell, L its length, ¢ is the

angle for one finite element and P are the terms of elasticity matrix.

The terms A;, B;, C;, D,, E;and F, (i = 1, ..., 8) may be expressed as follows:
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A i 2.30
i T (2.30)
- n,; B. + 1
B. = - __‘__, 2.31
; o (231)
m . )
C, = - b, i (2.32)
L R
p,- - @) (2.33)
|3 L2 .
2
+ . .
O [ 11 (2.34)
1 Rz
2mmn, 3mmn B, n, «,
and F = - + - (2.35)

2.7 THE GLOBAL MASS AND STIFFNESS MATRICES

The complete shell or panel is divided into finite elements each of which is a
cylindrical segment panel. The position of the nodal points (nodal lines) may be chosen
arbitrarily. With the mass and stiffness matrices known of each element, the global mass

and stiffness matrices for the whole structure, M and K, respectively, may be constructed
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by superposition in the normal manner. Each of these square matrices will be of order

4(N+1), where N is the total number of finite elements (see Figure 2.2).

[f the panel has in the straight edges constraints such as simply-supported, clamped,
etc., the appropriate lines and columns in [M] and [K] are deleted to satisfy these
constraints. Consequently, matrices [M] and [K] reduce to square matrices of order
4(N+1)-J, where J is the number of constraints applied. Thus, for a closed cylindrical
shell, free simply supported along its curved edges, no specification of boundary
conditions need be made and J = 0. For this case we connect the last node of the structure
to the first node with the total angle ¢ equal 360°. For a panel with two straight edges

clamped we have ] = 8.

2.8 ANALYSIS OF AN OPEN SHELLS SUBJECTED TO STATIC LOADS

The study of the static equilibrium is carried out in the following manner:
When: {F,} is the vector of the forces applied to the nodes of the shell
{Fg} is the vector of unknown reactions

{6,} is the vector of unknown nodal displacements
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{6} is the vector of displacements defined by the boundary

conditions

The static equilibrium equation [K] {8} = {F} becomes

KM KAB 6;\ _ FA
KHA KBB 6B ) FB
We have therefore
{8,} = [K,, 1! ({F - [Kg1 {81

{Fp} = [Kp, 1 {8,} + [Kgp ] {85}

(2.36)

Finally, the stresses can then be found from the displacements by relation (2.21).

2.9 FREE VIBRATIONS

In the case of free vibrations, the equations of motion are:

M1 {8}, + [K] {3}; = {0}

(2.38)
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where {M] and [K] are the global mass and stiffness matrices, {8} is the vector for the

global displacements of the whoie shell.

{6'1'} = {61 » 62 s =ees bu.[}r

N being the number of finite elements.
By specifying:

{8;} = {8,}; sin(wt + ) (2.39)

where w is the natural angular frequency and v is the phase angle.

By introducing equation (2.39) in (2.38), we obtain

(K] - @’M]) {3.}; = 0 (2.40)

This relation holds only for certain values of w where the determinant of the matrix
in parentheses is zero. These values define the natural angular frequencies of the structure

and give rise to a typical problem of eigenvalues and eigenvectors.

det [[K] - @’[M 1] =0 (2.41)
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2.10 CALCULATIONS AND DISCUSSION

2.10.1 Convergence of the method

A first set of calculations was undertaken to determinc the requisite number of
finite elements for a precise determination of natural frequencies. Calculations were made
for the same panel with the number of finite elements N = 2, 4, 6, 8, 10. The data for
the panel are as follows : R = 2.286 m, t = 0.01143 m, L = 1.143 m, ¢, = 30°,
E = 193.26 GPa, v = 0.3 and p = 7933 kg/m’, the boundary conditions are clamped
at the straight edges and free simply-supported in the curved edges. The results for
m = 2,10 and n = 1,2 are shown in Table 2.1. We conclude that the convergence of the

system demands 6 finite elements for both the low and the high modes.
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Table 2.1
Convergence study for increasing number of finite element (N)
form=2,10and n = 1,2

2 4 6 8 10
m=2,n=1 313.8 298.1 288.9 286.8 286.2
m=2,n=2 407.0 307.5 299.1 296.8 296.1
m=10,n =1 2310 2244 2133 2105 2098
L _m=10,n=2 A 3435 2305 2199 2166 2158

2.10.2 Calculations for uniform panels and shells

The eigenvalues of a uniform shell may unquestionably be calculated by simpler
methods than these. Our main aim here is to test the correctness of the mass and stiffness

matrices in their general form as developed in this paper.

(a) The first calculation involves the determination of the natural frequencies of a

particular panel, having its straight edges free and the others free simply-supported.
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The data of the panel are as follows : ¢ = 60°, L = 20 cm, R = 10 cm,

t=0.1cm, E =210GPa, v =0.3 and p = 7800 kg/m’.

As may be seen in Table 2.2, our results are in fairly good agreement with other

theories and with experiments.

Table 2.2

Frequency (Hz) of cylindrical panel having its straight edges free
and the others free simply-supported

(m,m) Theory [32] Experimental Present

[32] method
= =
(1, 1) 299 300 286
{l

{1, 2) 474 470 476

(1, 3) 1530 1490 1486

(2, 1) 860 870 859

2, 2) 840 850 819

3, 2) 1[ 1320 1330 1341

(3, 3)Jl 1450 1460 1440
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(b) The second calculation involves the determination of natural frequencies of a
particular simply-supported closed shell which has been analysed by Michalopoulos and

Muster [45], Baron and Bleich [46], Lakis and Paidoussis [33] and many others.

The data for the shell are as follows : R = 103.6 mm, t = 1.194 mm,

L = 471 mm, ¢; = 360°, E = 207 GPa, v = 0.3, p = 7790 kg/m’.

The natural frequencies of this shell for n = 0 to 5 and m = [ are shown in
Table 2.3. The results obtained by our method were calculated using 10 equal finite
elements. As may be seen, the results obtained by this method are in good agreement with

those from other theories.



Table 2.3

Natural frequencies, in Hz, for a particular uniform closed shell, as calculated by
various theories (m = 1)

n Michalopoulos Baroix and - Lakis and Present method
and Muster [45] | __ Bleich [46] Paidoussis [33] __
0 3384 3540 3398+* 3385
1 1775 1920 1790* 1777
2 750 760 752 750
3 436 435 436 435
4 467 463 468 468
5 675 E_670 678 675
* Lakis and Sinno [37]
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2.10.3 Caiculations for orthotropic shell and panel

This example illustrates that of the hybrid finite element method developed in this

paper can be used with success for an orthotropic closed or open cylindrical shell.

The data for the shell are the same as for the panel except the total angle ¢.

$dr = 360° for closed shell and ¢, = 90° for the panel described in Figures 2.3 and 2.4.

For n = 1 (beam bending mode) and long axial wave lengths, the frequency
parameters are asymptotic to those of beams according to the Euler-Bernouilli theory [32].

This asymptotic behavior is shown in Figure 2.3 for the case when E,/E, > 1.

The results for an open cylindrical shell are given in Figure 2.4 for different axial
and circumferential modes. This figure shows that the small axial wave length 'mR/L" has
little effect on the frequency. This effect decreases when the circumferential mode

increases.
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Figure 2.3  Frequency parameters for the beam-type mode (n=1) of simply-
supported orthotropic closed cylindrical shells.

R/t = 1000, E/E, = 24.2, G/E, = 0.527, v, = 0.527
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2.10.4 Calculations for shells having circumferentially varying thickness

The present method has been applied to a cylinder whose inner bore is circular but
non-concentric with circular outer surface (Figure 2.5). This case was studied by Tonin

and Bies [24] using the Rayleigh-Ritz method.

The steel cylinder is free simply supported at both ends, and the data for this

analysis are as follows :

a = 37.83mm, a* = 40.75 mm, a = 39.29 mm, L = 398.8 mm,

and the eccentricity e was studied for three values e = 0, 0.5 and | mm. The effect of the
eccentricity on the calculated natural frequencies for various modes is detailed in Table

2.4. Note that the effect of increasing eccentricity is to lower the frequencies of the shell.



Figure 2.5

C— O —> € —>

a

Geometry of the distortion.
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Table 2.4

Variation of natural frequencies (Hz) of some modes with varying distortion

e =0 mm e = 0.5 mm e = 1 mm
TONIN present Experimental | present || [24] present
am;zz?is method [24] method method
1340 1341 1330 1343 1302 1303
3553 3540 3442 3410 3060 2949
6773 6758 6495 6479 6177 5499
2105 2090 2063 2062 1955 1954
3740 3728 3627 3596 3243 3132
6905 6890 6617 6607 6308 5618
3598 3568 3463 3518 3302 3253
4204 4188 4085 4071 3816 3743
7159 7144 6861 6860 6575 5869
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2.11 CONCLUSIONS

A method based on Sanders' equations for thin shells and making use of the finite
element method has been formulated for the static and dynamic analysis of thin, elastic,
anisotropic and non-uniform open cylindrical shells. The extensional and bending

stiffnesses of the structures have been taken into account.

A new panel finite element was developed, making possible the derivation of the
displacement functions from the equation of motion of the shell. Mass and stiffness
matrices were also determined by analytical integration. The convergence of the method
was established and the natural frequencies were obtained for different shells and panels.
These were compared with the results of other investigations and satisfactory agreement

was obtained.

This method combines the advanges of finite element analysis and the precision of

formulation which the use of displacement functions derived from shell theory contributes.

Only a few cases have been presented here; a sufficient number, the authors
believe, to illustrate the capabilities of the method. Several other cases could also have

been tackled, but were not because of the volume of the paper.
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A paper currently under preparation will deal with liquid-filled open and closed
cylindrical shells. The dynamic stability of shells containing flowing fluid will also be
analysed. Further work is under way to deal with the non-linear dynamic analysis of an

open cylindrical shell containing flowing fluid.
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2.13 NOMENCLATURE

A ,B,,C,D , E,F

E,, E,

(+
£Gi=1,12)
G

h.

1
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Defined by equations (2.30) to (2.35)

Defined by equation (2.8)
Defined by equation (2.11)

Membrane Stiffness

Young's modulus for isotropic shell

Young's modulus for orthotropic shell
Distortion (Figure 2.5)

Defined in Appendix 2.2, Table 2.6

Shear modulus

Coefficients of the characteristic equation (2.10)
Bending stiffness

Length of the shell

Bending moments

Axial mode number

Defined by mn/L



U v, w

Un, Vo . W,
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Number of finite elements

Stress components

Circumferential mode number

Terms of elasticity matrix

Mean radius of the shell

Thickness of the shell

Axial, tangential and radial displacements
Amplitudes of U, V, W associated with m th axial
mode number

Axial coordinate

Defined by equation (2.12)

Complex roots of the characteristic equation (2.10)

Deformation of reference surface
Changes in curvature and torsion of reference

surface

Circumferential coordinate
Poisson's ratio for isotropic shell
Poisson's ratio for orthotropic shell

Angle for the whole open shell



Natural frequency (rad/s)

Nondimensional frequency, Figures 2.3 and 2.4

Density of the shell material

LIST OF MATRICES

[A]
[B]

{C}
(G]
[H]
(k]

(K]
(m]
[M]
[N]
[P]

[Q]
[R]
[S]

Defined by equation (2.16)

Defined by equation (2.20)

Vector for arbitrary constants

Defined by equations (2.28) and (2.29)
Defined by equation (2.13)

Stiffness matrix for one finite element
Global stiffness matrix

Mass matrix for one finite element
Global mass matrix

Displacement function defined by equation (2.19)
Elasticity matrix

Defined by equation (2.20)

Defined by equation (2.14)

Defined by equations (2.26) and (2.27)
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[Tl
{}
{o}
{84
{8}

Defined by equation (2.14)
Deformation vector

Stress vector

Degrees of freedom at node i

Degrees of freedom for total shell
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APPENDIX 2.1

EQUATIONS OF MOTION

This appendix contains the equations of motion for a thin cylindrical anisotropic

shell.
2 P 2 3
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Appendix 2.2 contains the matrices referred to in the text which were too large to

be included therein. The matrices are listed as follows.

[H] (See Table 2.5)
hi (1=0,2,4,6,8) (See Table 2.6)
[T,] (See Table 2.7)
[R] (See Table 2.8)
[A] (See Table 2.9)
[Ql (See Table 2.10)

Table 2.5 : Matrix [H];, 3

[H] = {0} (2.9)

Ol Wi g

Where:
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33
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where

Table 2.6 : Characteristic Equation

byn® +h,n® +h, n*+h,n? +h, =0

2

h, = f £ £, - £ £
hy=f £ £, + £ £, £, - 2f £ £

.’.

£,f, £, -, 6 - £ f

2 76 710 10

+
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2
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2
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The coefficients f; (i = 1,12) are given by the above equations :

and

10

11

12

Bi

2
— P,

R3

2
2 R

1
R

36

m
+ ; (2P45 + 4P66)

P

24

m?-P

44

m

66



[T

Table 2.7 : Matrix [T_] 5,

0 0
L
0 mrx
L
0 0

Table 2.8 : Matrix [R] ;.

R (1)) LR E:
R (2.) j=18
R @) =8¢ j=18

"
R
o

[}
(]

Table 2.9 : Matrix [A] 4,5

|
P
v
-]

For j =

A(ly)
A(2y)
AQBY)
A4y)
A(5))
A(6.))
A7) = 1. e
A@GY = B, e

i
o
5
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Table 2.10 : Matrix [Q] .5

For j 1,8

QL) = A;e™
Q@) = B;e™

QB = €™
Q(4J) = D, e
QG4) = E; ™

Q(64) = Fe™

The terms A, B, C;, D;, E; and F; (j =1,8) are given by equations (2.30) to (2.35).
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CHAPITRE I

ARTICLE I

VIBRATION ANALYSIS OF ANISOTROPIC OPEN CYLINDRICAL

SHELLS CONTAINING FLOWING FLUID

3.1 ABSTRACT

A theory is presented for the determination of the effects of a flowing fluid on the
vibration characteristics of an open, anisotropic cylindrical shell submerged and subjected
simultaneously to an internal and external flow. The case of an open shell partially or
completely filled with liquid is also investigated. The structure may be uniform or non
uniform in the circumferential direction. The formulation used is a combination of finite
element method and classical shell theory. The displacement functions are derived from

exact solutions of Sanders' shell equations.

The velocity potential and Bernoulli's equation for a liquid finite element yield an

expression for fluid pressure as a function of the nodal displacements of the element and



70
three forces (inertial, centrifugal and Coriolis) of the moving fluid. An analytical
integration of the fluid pressure over the liquid element leads to three components: mass,

stiffness and damping matrices.

Calculations are given to illustrate the dynamic behaviour of open and closed
cylindrical shells subjected to a flowing fluid and shells partially or completely filled with

liquid. Reasonable agreement is found with other theories and experiments.

3.2 INTRODUCTION

Knowiedge of the vibration characteristics of fluid-filled cylindrical shells and
panels is of considerable practical interest, since cylindrical shells and panels are
commonly used to contain or convey fluids. There are many ways in which the presence
of the fluid may influence the dynamics of the structure. If the structure contains a
stationary gas at low pressure, then the vibration of the shell differs only slightly from that
of the same shell in vacuo. If the fluid is compressible, the compressibility of the fluid
alters the effective stiffness of the system. Also, if the density of the fluid is relatively
high, as in the case of a liquid, then the fluid exerts considerable inertial loading on the
shell, and this results in a significant lowering of the resonant frequencies. Other effects

of coupled fluid-shell motions occur when the fluid is flowing. Depending upon the
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boundary conditions, if the flow velocities are high, buckling or oscillatory flexural

instabilities are possible.

The dynamics of coupled fluid-shells were reviewed extensively by Brown (1982),
Au-Yang (1986), Paidoussis & Li (1993) and others (Mistry & Menenzes 1995; Harari,
Sandman & Zaldonis 1994; Cheng 1994; Han & Liu 1994; Terhune & Karim-Panahi
1993; Brenneman & Au-Yang 1992; Endo & Tosaka 1989 and Goncalves & Batista 1987).
There have been few analyses of closed cylindrical shells having axially varying thickness.
Similarly, while there is extensive literature relevant to the vibration of empty open
cylindrical shells (cylindrical panels), no analysis has been found of open cylindrical
shells, circumferentially non-uniform, totally submerged and subjected simultaneously to

an internal and external flow.

The purpose of this study is to present a method for the dynamic and static analysis
of open, thin, anisotropic cylindrical shells containing flowing fluid (Figure 3.1). The
structure may be uniform or non-uniform in the circumferential direction and we consider
the problem of open cylindrical shells which are freely simply-supported along their curved

edges and have arbitrary straight edge boundary conditions.



Figure 3.1

Open cylindrical shell geometry.
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The method is a hybrid of finite element method, classical shell theories and fluid
theories. The structure is subdivided into cylindrical panel segment finite elements. The
displacement functions are derived from Sanders' (1959) equation of thin cylindrical
shells. In this approach, it is possible to determine the mass and stiffness matrices of the
individual finite elements by exact analytical integration. Accordingly, this method is
more accurate than the more usual finite element methods based on polynomial

displacement functions.

To account for the fluid effect on the structure, a panel finite fluid element bounded
by two nodal lines was considered. By solving the equations of motion for the fluid
element, an expression for fluid pressure as a function of the displacements of the element
was obtained. Analytical integration for the pressure distribution along the element yielded
three components: the mass, stiffness and damping matrices for a fluid element. Global
matrices are, then, obtained by superimposing the individual matrices. The eigenvalue

and eigenvector problem is solved by means of the equation reduction technique.

The hybrid approach (Finite element - Shell theory - Fluid theory) has been applied
with satisfactory results to the dynamic linear and non-linear analysis of cylindrical (Lakis
& Paidoussis 1971; Lakis & Paisoussis 1972: Lakis & Paidoussis 1973; Lakis 1976a;

Lakis 1976b; Lakis, Sami & Rousselet 1978; Lakis & Laveau 1991 and Lakis & Sinno
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1992), conical (Lakis, Van Dyke & Ouriche 1992), spherical (Lakis, Tuy & Selmane
(1989), isotropic and anisotropic, uniform and axially non-uniform shells both empty and
liquid filled. This method has been applied also to the dynamic analysis of circular and
annular plates (Lakis & Selmane 1990a and Lakis & Selmane 1990b) and to an open
anisotropic and circumferentially non-uniform cylindrical shell (Selmane & Lakis 1995).
This study is an attempt to determine the vibration of a circumferentially non-uniform open
cylindrical shell, subjected to a flowing fluid. The case of an open cylindrical shell

partially or completely filled with liquid is also studied.

3.3 DETERMINATION OF THE DISPLACEMENT FUNCTIONS

Sanders' (1959) equations for thin, cylindrical shells, in terms of axial, tangential
and radial displacements (U, V, W) of the mean surface of the shell (Figure 3.1) and in

terms of element P;; of the anisotropic matrix of elasticity [P] are:

L, (U,V,W,P) = 0
L, (UV,W,P,) = 0 (3.1)
=0

L, (U,V,W,P,) =
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where L, (k = 1, 2, 3) are three linear differential operators, the form of which is fully

explained in Selmane & Lakis (1995).

The strain-displacement relation is given by:

u |
ox
( ) 1 oV W
ex —_— o —
R g6 R
. v, 18U
26, ax R d6 L
e} =9 = 3.2
{e} . ( W aw (3.2)
ox?
¥
_L@w v
szxﬁ‘ RI ael Rl a0
_1@W 3V 1
R 6x38 2R 68 p: a0

The finite element used is shown in Figure 3.2. [t is a cylindrical panel
segment defined by two line nodes i and j. Each node has four degrees of freedom: three
displacements (axial, circumferential and radial) and one rotation. The panels are assumed
to be freely simply-supported along their curved edges and to have arbitrary straight edge

boundary conditions.



Figure 3.2

(b)

(a) Finite element idealization.

(b) Nodal displacements at node i.

N: Number of finite elements.
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For motions associated with the m th axial wave number, we may write:

U(x.9) cos m ®x/L 0 0 Ua(® Ua(®
W(x,0) [ = 0 sinm nx/L 0 W@ ¢ = [T 1 (W0 (3.3)

By substituting equation (3.3) into equation (3.1) and letting

U, () =Ae"
V (@) =Be™ (3.9)
W (0 =Ce™
we obtain
U (x,9)
W(x,0) (= [T,][R]{C} (3-5)
V(x,0)

where [R] is a (3 X 8) matrix given by:

R(L) = o, e j=1,..8
RQ,j) =™ j=1,..8 (3.6)
RGJ) = B;e™  j=1,.8
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n; = 1,..., 8) are the roots of the characteristic equation of the empty panel. As A, B
and C are not independent, we may write A = «C and B = pC, which determine «; and
B;- {C} is a vector of eight constants which are linear combinations of the C;. The eight
C, are the only free constants, which must be determined from eight boundary conditions,

four at each straight edge of the finite element.

We now express the nodal displacement vectors as follows

T
(8.} ={Um., W, ( d::“‘) , V., } (3.7

Each {8,} may be determined from equation (3.5), where 6 in [R]} now has a

definite value, 8 =0 or 8 = ¢, as the case may be; hence we obtain

3.
{éf }= [A] {C} (3.8)

]

where the elements of matrix [A] are determined from those of matrix [R] and given by:
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For j = 1,...,8
A1) = « AGH) = o ™
AQj) =1 Ay = ™ (3.9)
ABJ) = 7 Ay =1, e
A(4)) = B, A@Bj) =B, e
Finally, combining equation (3.5) and (3.8), we obtain:
U(x,9)
5. 8.
W(x,8) (= [T,] [R][A™] {5' }= (N] {6'} (3.10)
j j
V(x,0)

which defines the displacement functions.
3.4 MASS AND STIFFNESS MATRICES FOR EMPTY FINITE ELEMENTS

The strains are related to the displacements through equations (3.2); accordingly,

we may now express {e} in terms of 3;and $&;, and after lengthy manipulations we obtain:

a8t 5 3.11

]

[T,] ©
{e} = 0 (T.]
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where [Q] is a (6 X 8) matrix given in Selmane & Lakis (1995).
The corresponding stresses may be related to the strains by the elasticity matrix [P].
6i
{o} = [P] {e} = [P] [B] 5 (3.12)

J

The matrix P of an anisotropic shell is given as follows :

"P[l P12 0 Pl4 Pls O
le PZZ 0 P24 P25 0
[P] = PP P 00 R (3.13)
P‘" P42 0 P“ P4S 0
PSI PSZ 0 PS4 PSS 0
0 0 Py 0 0 Py

The elements P; of [P] characterize the sheil's anisotropy which depends

on the mechanical properties of the material of the structure.

The mass and stiffness matrices, [m,] and [k,] respectively, for one finite element

may be written as follows:
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L ¢ L ¢
[m,1=p¢ [ [[NT'INIdA ed [k l=f [[BI'[P][BldA. (3.14)

where p, is the density of the shell, t its thickness, dA a surface element, [P] the elasticity
matrix and the matrices [N] and [B] are derived from equations (3.10) and (3.11),

respectively.

The matrices [m,] and [k,] were obtained analytically by carrying out the necessary
matrix operations and integration over x and 6 in equation (3.14). The global matrices
[M,] and [K,] may be obtained, respectively, by superimposing the mass [m,] and
stiffness {k,] matrices for each individual panel finite element. See (Selmane & Lakis

1995) for more details.

3.5 BEHAVIOUR OF THE FLUID-SHELL INTERACTION

3.5.1 Equations of motion

The dynamic behaviour of an open shell subjected to a pressure field can be

represented by the following system:

[[M,] - [M]] {8} - [C{d} +[[K,] - [K]] {8} = {F} (3.15)
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where {6} is the displacement vector, [M,] and [K,] are, respectively, the mass and
stiffness matrices of the system in vacuo; [M{] and [C/] and [K] represent the inertial,

Coriolis and centrifugal forces of the-liquid flow and {F} represents the external forces.

3.5.2 Assumptions

We assume here that the structure is subjected only to potential flow which induces
inertial, Coriolis and centrifugal forces to participate in the vibration pattern. These forces

are coupled with the elastic deformation of the shell.

The mathematical model which is developed is based on the following hypothesis:
(i) the fluid flow is potential ;
(ii))  vibration is linear (small deformation) ;
(iif)  pressure on the wall is purely lateral ;
(iv) the fluid mean velocity distribution is assumed to be constant across a shell
section ;

and (v) the fluid is incompressible.
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3.5.3 Mass, stiffness and damping matrices of the moving fluid

With the assumptions of section 3.5.2, the velocity potential must satisfy the

Laplace equation. This relation is expressed in the cylindrical coordinate system by:

+=— =0 (3.16)

o ( a«b) 1 3%*d 3*®
r + —
r? 90° ax?

® is the potential function that represents the velocity potential.

Therefore:

a® 1 0® L)
VemUpr =i Vo= o =3 Vo= — (3.17)

where U, is the velocity of the liquid through the shell section; V,, V, and V, are

respectively the axial, tangential and radial components of the fluid velocity.

The Bernouilli equation is given by:

2.2+lvz+_

leag =0
w3 o e (3.18)
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Introducing equation (3.17) into equation (3.18) and taking into account only the

linear terms, we find the dynamic pressure P:

e, a®,
R e o (3.19)

where u subscript represents "internal” or "external” fluid as the case may be:

=
=
[}
g
e
]
~
]
P
|

t
. — 3.20
l > (3:20)

R
=
I
[4]
B
8
e
"
"
1]
o
+
|

(3.21)

A full definition of the flow requires that a condition be applied to the structure-

fluid interface. The impermeability condition ensures contact between the shell and the

fluid. This should be:

r It-R -

2
ad oW oW U, a?w
lr-R = * Ux + 'r-R

ar at ax 2 ox?

(3.22)

From the theory of shells (equation 3.5), we have:

8
W(x0,t) =Y C e sin m;"‘ et (3.23)

j=1
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Assuming then,

2
®(x,0,r,t) = ¥} R;(1) 5;(x, 0.t (3.24)

j=1

and applying the impermeability condition (equation 3.22) with the radial displacement
given by relation (3.23), we determine the function S; (x, 8, t). Introducing this explicit
term §; (x, 8, t) into equation (3.24) and then into equation (3.19), we find a relation for

the dynamic pressure as a function of the displacement W, and the function R;(r):

2

g R. (I') - .t Um 0 4 0 Um tn
P, = -p, . W, +2U W, + W. +U W + — W (3.25)
i=1 RI(R) J 2 ] ) 2 1
)]
where (' ),(-) and (') re resenti—), 0 and 90) res ectively.
().() and () represent 22, 2 > respectively

By using relation (3.16), we obtain the following differential Bessel equation:

, 4R () dR (r)
r? +r
dr? dr

+ R () (%“]2 r? - (inj)2 } = 0 (3.26)

where i is the complex number, i = -1 and n; is the complex solution of the characteristic

equation.
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The general solution of equation (3.26) is given by:

m;ﬂ“ r) (3.27)

im=n

L

Rj(r) = Aij( f) + BYi,‘j(

where J;,; and Y,,; are, respectively, the Bessel functions of the first and second kind of

order "in;".

For inside flow, the solution (3.27) must be finite on the axis of the shell (r = 0);
this means we have to set the constant 'B' equal to zero. For outside flow (r -~ =); this
means that the constant ‘A’ is equal to zero. When the shell is simultaneously subjected

to internal and external flow, we have to take the complete solution (3.27).

Finally. we obtain the equation for the pressure on the wall as follows:

2 3
n

s imnR, | | L Ug v, e U
.- = = 3.28
P=-p, ¥ zuj[ - ] [wj + 2U W, + W, v UoW, + —= W, (3.28)

2

=1

where (-) and (') representﬁ and ? respectively, and
X

at
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mnR R, . )
. = - fu =1t
L _ imaR, Jy . (mR/L) (3.29)
in, -
j L I (im=R/L)
j

, ( im xR ) R, .
. = u ==e€
"\ L _ imnR, Y, ., (im7R /L) (3.30)
! L Y, (im®R /L)
)

where n; (j = 1,..., 8) are the roots of the characteristic equation of the empty shell; J;;
and Y, ; are, respectively, the Bessel functions of the first and second kind of order "in;";
m is the axial mode number; R is the mean radius of the shell; L its length; the subscript

"u" is equal to "i" for internal flow and is equal to "e" for external flow.

By introducing the displacement function (3.10), into the dynamic pressure
expression (3.28) and performing the matrix operation required by the finite element
method, the mass, damping and stiffness matrices for fluid are obtained by evaluating the

following integral:

[INT (P} dA (3.31)
A
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we obtain:
[m,]=[AT[S,]{A7] (3.32)
[e] =[ATTT[D)[AT] (3.33)
k] =[ATT[G][AT] (3.34)

The matrix [A] is given by equation (3.9) and the elements of [S;], [D,] and [G,] are given,

as follows.

RL
Sf(r,s) = -T I“ (piZi_‘ - ngs) (3.35)
R 2 Tt:
D,(r,s) = ”;L L (pUSZ, - UL Z,) (3.36)
Rm? n? 2 2
G,(5,5) = L (pUS2Z, - UL Z.) (3.37)
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wherer,s = 1, ..... , 8; p is the density of the fluid; U, is the velocity of the fluid; Z is
defined by relations (3.29) and (3.30); the subscript "i" means internal flow and "e”

means external flow and [ is defined by :

I _l__[e(‘\g"lt)‘ - l] for ,nr + n’ * 0
(n,+n,) (3.38)

p—
]

==& for y_ +1n, =0

where r, s=1,...,8; n is the root of the characteristic equation of the empty shell and ¢

is the angle for one finite element.

Finally, the global matrices {M], [C,] and [K,] may be obtained, respectively, by
superimposing the mass [m,], damping [c;] and stiffness [k ] matrices for each individual

fluid finite element.



3.6 EIGENVALUE AND EIGENVECTOR PROBLEM

The eigenvalue and eigenvector problem is solved by means of the equation

reduction technique. Equation (3.15) may be rewritten as follows:

] LM

E 8] | -2 o) |[s
) ! 1+ £, = {0} (3.39)
LM} =1qc] |8 (0] ky | 1

3 &

~

where

[M] = (IM,] - [MD)/ptR

[K] = ([K,] - [K])/P (3.40)
[C] = -[CJ/(P,p R
[M,] and [K,] are the global mass and stiffness matrices for the empty shell, [M], [C] and
[K,] are the global mass, damping and stiffness matrices for the fluid.
£ = P,/p, t, R : where P, is the first element of the elasticity matrix;

p.. t, and R, are respectively, the density, thickness and radius of the first element of the

shell.
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The problem for eigenvalues is given by:
| [DD] - AfI]| =0 (3.41)
where
(0] (1]
(D] =1 - Lk My - L kg ey (3.42)
2 Eo
and A=,
1@

o is the natural frequency of the system.

Particular case: If the velocity of the fluid (U, = 0), the eigenvalue problem may

be reduced to:

LRI M) - A =0 (3.43)

mo
and o (rad/s) = (1/A)"?.

Matrices (K], [M] and [C] are square matrices of order NDF (N+1)-J, where NDF
is the number of degrees of freedom at each node, N is the number of finite elements in

( the structure and J is the number of constraints applied.
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3.7 CALCULATIONS AND DISCUSSION

Calculations have already been conducted to test the theory in the case of EMPTY
open and closed shells. The free vibrations of uniform and circumferentially non-uniform,
isotropic and orthotropic open and closed shells were obtained for a variety of boundary
conditions (Selmane & Lakis 1995). The computed natural frequencies were compared
with those obtained by other theories and from experiments; the results were in agreement

within a range of 5%.

Here we present some calculations to test the theory in the case of liquid-filled open
and closed cylindrical shells. In the case when the shell is subjected to flowing fluid, the

dynamic stability of this type of problem is analysed.

3.7.1 Free vibration of closed and open cylindrical shells partially or completely

filled with liquid

3.7.1.1 Shell completely filled with liquid:
a) For the first set of calculations, we determine the frequency parameters (Q) for

different values of R/t and L/R for shells completely filled with liquid (internal).
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The results obtained (10 elements) for n = 1 are given in Table 3.1 in the case of free
simply-supported shells. We conclude that, as a result of the lateral pressure exerted by
the liquid on the structure, the frequeney parameters (Q) depend both on L/R and R/t, in
contrast to the case of the empty shell, where R/t ratio has only a slight effect upon the

results.

TABLE 3.1 : Vibration parameter (Q) of cylindrical shells simply-supported at both
ends and filled with liquid. (n = 1, m=1, v = 0.3, p, = 1000 kg/m®

and Q = wR yp(1-v)/E).

R/t Baron &
20 50 100 200 Bleich all
values of R/t

Empty 0.5775 0.5900 0.6067 0.5711 0.5728
2.0

Full 0.4196 0.3288 0.2629 0.1810 —

Empty 0.2572 0.2581 0.2594 0.2603 0.2569
4.0

Full 0.1809 0.1372 0.1065 0.07998 | ----

Empty 0.08744 0.08747 0.08752 0.08756 | 0.0874
8.0

Full 0.06020 0.04489 0.03424 0.02269 | ----

Empty 0.05911 0.05911 0.05913 0.05914 | 0.0592
10.0

Full 0.04044 0.03005 0.02283 0.01684 | —-
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b) Next calculations were made for a steel cylindrical shell simply supported at both

ends, empty or completely filled with liquid. The pertinent data are as follows:

R=377mm, t=0.229mm, L =234mm, v=20.29, p,/p, =0.128.

The effects of the inertial force were calculated by this theory assuming U, = 0
in equations (3.35) to (3.37). Table 3.2 shows some frequencies computed by the present
method and compared with experimental results (Lindholm, Kana & Abramson 1962) in
the case of a closed cylindrical shell both empty and completely filled with liquid. As may

be seen the results obtained by the present method agree with experimental results to

within 10%.



TABLE 3.2 : Natural Frequencies (Hz) of a simply-supported closed cylindrical
shell, both when empty and when completely filled with liquid.

Empty Full (inside fluid)
Present Experimental | Present | Experimental
(m, n)
Method (Lindholm et || Method (Lindholm et
al.) al.)
376 375
234 250
270 300
422 430
651 680
940 970
784 813
568 600
561 625
714 755
978 1000
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3.7.1.2 Shells partially filled with liquid:

Here, we consider the case of a shell partially filled with liquid without taking into
account the effects of the free surface. In the case of vertical cylindrical shells, partially
filled with liquid, it has been determined, by comparing the results of Mistry & Menenzes
(1995) with those based on the theory presented by Lakis & Paidoussis (1971), that these
effects are negligible for low frequencies (less than 3 %), but may go up to 30% for modes
higher than seven (m > 7). In the case of horizontal shells partially filled with liquid, the
results might be different due to a larger free surface. Nevertheless, our results presented
here are an indication of the dynamic behaviour of such a system. A paper, under
preparation, will consider in detail the effects of the free surface in the case of both

horizontal and vertical shells partially filled with liquid.

a) In the case of a closed cylindrical shell, Figures 3.3 and 3.4 show some frequencies
computed by the present method in which the liquid level was varied from zero to full in
a cylinder with horizontal axis.

We see that, for some modes, the frequency decreases rapidly with increasing
d,/d in therange 0 < d,/d < 1/4 approximately and then decreases only slighly for
higher fractional fillings. For other modes, however, the frequencies decrease appreciably

with increasing d,/d over the whole range of d,/d, as might be expected.



97

1400 T T T

1200

1000

800

600

Natural Frequency [Hz]

400

200 [ Il [
0.00 0.25 0.50 0.75 1.00

d,/d

Figure 3.3 Natural frequencies of a partially filled closed cylindrical shell
supported at both ends as a function of liquid level, m=1.
R = 37.7 mm, t = 0.229 mm, L = 234 mm,
v = 0.29, p, /p, = 0.128.
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Figure 3.4 Natural frequencies of a partially filled closed cylindrical shell
supported at both ends as a function of liquid level, m=2.
R = 37.7 mm, t = 0.229 mm, L = 234 mm,
v = 0.29, p, /p, = 0.128.
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b) Here, we present some results for an open cylindrical shell partially or completely
filled with liquid. The open cylindrical shell is constructed of steel, is filled with water and

is simply-supported at its four edges.

The pertinent data are as follows (see Figure 3.1):

¢ =180°, R =37.7mm, t=0.229mm,L =23 mm, v =029 p,/p, =0.128

In Figure 3.5, we see the behaviour of an open cylindrical shell empty and filled
with liquid as a function of the number of circumferential modes. For a given m, the
frequencies decrease to a minimum before they increase as the number of circumferential
waves (n) is increased. This behaviour was first observed for a shell in vacuo by Arnold
& Warburton (1953) , who were able to explain it by a consideration of the strain energy
associated with bending and stretching of the reference surface. [t may be concluded from
their work, that at low » the bending strain energy is low and the stretching strain energy
is high; while at the higher n, the relative contributions from the two types of strain energy
are reversed. The interchange in the relative contributions of the bending and stretching
strain energy as the circumferencial wave number # is increased explains the decrease and
subsequent increase in the natural frequencies indicated in Figure 3.5. An open cylindrical

shell partially or completely filled with liquid will behave in the same way.
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(a) Natural frequencies of an empty and liquid-filled open cylindrical

shell with W=V=0 at the four edges as a function of circumferential
mode number.

(b) The circumferential shapes of a liquid-filled open cylindrical
shell for n=4, S and m=1
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Figure 3.6 shows that when an open cylindrical shell is partially filled with liquid,
the curves show a rapid decrease of the natural frequencies as a,/a, increases from O to 3/4

approximately, and then decrease only slightly for higher fractional fillings.

To see the influence of the orientation of the shell, we present in Figure 3.7, the
natural frequency as a function of the orientation of the shell and the free surface of the

liquid, the liquid level a, / a, = 0.64 (see Figure 3.6).

We observe that the natural frequencies of the system decrease between the two

extreme positions. The reduction is about 11% for the two modes (m = 1, n = 2) and
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3.7.2 Closed orthotropic cylindrical shells submerged in an incompressible fluid

In this calculation, we analyse the transverse vibration of isotropic and orthotropic
cylindrical shells submerged in an incompressible fluid, simply-supported at both ends.
This case was analysed by Ramachandran (1979) who use the Rayleigh-Ritz procedure.

In Table 3.3, the values of the material properties used in the calculations are shown.

TABLE 3.3 : Material and physical properties of the shell

E, E, G
(x 10"N/m?% | (x 10" N/m? | (x 10"'N/m?)
Isotropy 21.981 21.981 0.8454 0.3 0.3
Orthotropy 1.0 0.5 0.1 0.05 0.025

R =0.235m, 1t =0.00235 m. p, = 7850 N/m’, p, = 1000 N/m’

The natural frequencies of this shell-liquid system for n = 4 ,8; m=1;
L/R = 2, 4 and different material properties of the shell are given in Table 3.4. Four
cases were studied, when the shell is empty; when the fluid is inside or outside of the

shell; and when the shell is submerged in a fluid.
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[f we compare our results with those of Ramachandran (1979), we find that there

is agreement within 6% in the case of the empty isotropic shell. In the case of submerged
isotropic shell (internal and external fluid), the agreement varies from 11% to 15%. But
when the material of the shell is orthotropic, we find big differences between the two
models (in the order of 98 %). On the other hand, in the case of the empty orthotropic
cylindrical shell, our model has been tested (Selmane & Lakis 1995) and the results have

been found to be within 5% of those of (Leissa 1973).

Our model combines the advantages of finite element method which deals with
complex shell (variable thickness, non-uniform materials, various boundary
conditions,...), and the precision of formulation which the use of dispacement functions

derived from shell theory contributes (Lakis, Van Dyke & Ouriche 1992).
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TABLE 3.4 : Frequency values (Hz) for simply-supported cylindrical shells, empty
and filled with liquid.

= = 3

l Mat. L | (n,m) Theories Empty | Inside Inside | OQutside

- and fluid fluid
R outside
fluid
* (full)
'—J_L_J_—;—”——_“
Present Method 659 251.4 333.2 331.4
Ramachandran
4,1 (1979) 700 294.2 — —

Lakis (1976a)* 659 251.7 333.8 3317

[sotropy 4 Present Method 2187 1064 1361 1361 ]

Ramachandran
8,1) (1979) 2200 9441 — —_—

Lakis (1976a)* 2177 1073 1362 1360

Present Method 240.1 92.2 121.9 121.6

Ramachandran
4,1) (1979) - 183.1 -—-- -—--
Lakis (1976a)* 238.8 92.4 121.7 121.9
Orthotropy | 2 Present Method | 327.3 158.5 203.3 200.2
Ramachandran
8.1) (1979) — 248.5 —— ---

Lakis (1976a)* 324.1 160.7 203.2 203.9

* These results are computed from a computer program developed by A.A. Lakis & his
co-workers and based on the theory presented in Lakis (1976a).
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3.7.3 Dynamic stability of closed and open cylindrical shells subjected to a flowing
fluid

3.7.3.1 Closed cylindrical shell containing flowing fluid:

When the fluid is flowing, the shell will be subjected to centrifugal, Coriolis and

inertia forces. A simply-supported shell with the following characteristics:

L/R =2, R = 0.0, p, /p, = 0.128, n =5

has been analysed, to see the influence of the speed of the flow U, on the frequencies

(internal flow).

The dimensionless parameters of frequency and velocity are @ = w/w_ and

U = U/U, where:

2 3
©, = I (K/p)? | K = Bt
L? 12 (1-v?)
U = = (K/pt)?
o L [ 4

w and U are respectively the natural frequency and the velocity of the flowing fluid.
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The results are compared to a previous analysis by Weaver & Unny (1973) in
Figure 3.8. We observe that the natural frequencies decrease with flow velocity. At zero
flow velocity, the two methods give the same results but, as the flow velocity increases the
two term Galerkin method used by Weaver & Unny (1973) generates significantly different
results from those of the present hybrid finite element method. This is due to the
limitations associated with the use of too few terms in the application of Galerkin's

method.

One of the most important criteria in determining the versatility of a method is the
capacity to predict, with precision, both the high and low frequencies. This criterion
demands the use of a great many terms in Galerkin's method. The choice of the
displacement functions which are derived from Sanders' (1959) classical shell theory
enables our hybrid finite element model to give good low, as well as high frequencies,

with a small number of finite elements.

Our results predict that the first mode frequency becomes negative imaginary at

U = 3.1, indicating static divergence instability in this mode. If the velocity is increased
further, the first mode reappears and coalesces at U = 3.95 with that of the second mode

to produce coupled mode flutter.
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Figure 3.8  Stability of a simply-supported closed cylindrical shell as a function of
flow velocity. (internal flow).
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3.7.3.2 Totally submerged open cylindrical shell subjected simultaneously to an

internal and external flow:

An open cylindrical shell subjected simultaneously to an internal and external flow
has been analysed. [n this case there are no effects of the free surface because the shell is

totally submerged in the flowing liquid.
The data for the shell are as follows:
R/t = 165, L/R = 6.2, ¢ = 180°, p./p, =0.128, v =0.29,

and the dimensionless parameters of frequency and velocity are ¢ = w/w_ and

U =U0/U, where

2 3
w. = X (K/p‘t)"z , K = __Et°
L? 12 (1-v?)

,nl
Up = — (K/pp)"

w and U are respectively the natural frequency and the velocity of the flowing fluid.
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We present here an examination of the natural frequencies of the system as
functions of the flow velocity, and thereby a determination of the effect of flow on the

dynamic behaviour of the system.

a) Simply-supported - simply-supported shell

A simply-supported open cylindrical shell containing flowing fluid (internal and
external) has been analysed. Figure 3.9 shows the frequencies of the system as a function
of the flow velocity. As the velocity increases from zero, the frequencies associated with
all modes decrease, they remain real (the system being conservative) , until at sufficiently
high velocities, they vanish, indicating the existence of buckling-type (divergence)

instability. At higher flow velocity the frequencies become purely imaginary.

We predict the first loss of stability at a flow velocity equal to U = 7.75 for the

mode (m = |, n = 4).
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Figure 3.9 Stability of a simply-supported submerged open cylindrical shell in a
flowing fluid as a function of flow velocity.
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b) Free-Free Shell

The case of an open cylindrical shell having its straight edges free and the curved
edges freely simply-supported has been studied by means of the present theory. Figure

3.10 shows that natural frequencies associated with all modes decrease with increasing

flow velocity until ata value of U = 8.5 (m = 1, n = 6) the system buckles.

c) Clamped-Clamped Shell

The calculations were performed for one open cylindrical shell having its straight
edge clamped and the curved edges freely simply-supported. Here, we study the influence
of the flow velocity on the dynamic stability of the open shell containing internal and
external flow. We observe in Figure 3.11 that the trequencies associated with all modes
decrease with increasing flow velocity, and similarly to the case of simply supported-
simply supported and free-free open shells, the frequencies remain real until at a

sufficiently high velocity, they vanish, indicating the instability. For the stipulated

boundary conditions, we predict the first loss of instabilityat U = 8.25 for the

mode (m = 1, n = 4).
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Figure 3.10  Stability of a free-free submerged open cylindrical shell in a flowing
fluid as a function of flow velocity.
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Figure 3.11 Stability of a clamped-clamped submerged open cylindrical shell in a
flowing fluid as a function of flow velocity.
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d) Comparison between the boundary conditions

In order to establish the effects of boundary conditions on the critical flow
velocities which render the system dynamically unstable, we turn to Figure 3.12. We
observe for the same mode and the same open shell with different boundary conditions,
that the shell with free-free boundary conditions in its straight edges is the one which loses

dynamic stability first.

For the mode (m = 1, n = 7) we have critical velocities as follows: Free-Free
shell (U = 15.5), simply supported - simply supported shell (U = 24.4) and clamped-
clamped shell (I_J = 29). For the mode (m = 2, n = 7), we have respectively U =85:

11.5 and 12.5.
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3.8 CONCLUSIONS

The theory developed in this paper is used to predict the effects of inertia, Coriolis
and centrifugal forces on the vibration characteristics of totally submerged anisotropic
open and closed cylindrical shells, subjected simultaneously to an internal and external

flow.

A cylindrical panel finite element was developed, making possible the derivation
of the displacement functions from the equations of motion of the shell. Mass and stiffness

of each element were obtained by exact analytical integration.

The fluid pressure was derived from the velocity potential and from the linear
impermeability and dynamic conditions applied to the shell-fluid interface. The finite
element method was used to obtain the mass, stiffness and damping of fluid element. The
results obtained by this method were compared with other investigations and satisfactory
agreement was obtained. This method combines the advantages of finite element analysis
which deals with complex shells, and the precision of formulation which the use of

displacement functions derived from shell and fluid theories contributes.
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This method enables us to predict the vibrationary characteristics of
circumferentially non-uniform open and closed cylindrical shells subjected to a flowing
fluid. In addition, this theory may be applied to a curved plate subjected to a flowing fluid

in the case of large values of a shell’s radius.
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3.10 NOMENCLATURE

LIST OF SYMBOLS

A,B,C Constants in equations defining U, V, W respectively

a,/a, Liquid level ratio for an open cylindrical shell

c Velocity of sound in fluid

d,/d Liquid level ratio for closed cylindrical shell

E Young's modulus

e exponential

i i = -1

Jinj Bessel function of the first kind and of order inj

K Bending stiffness, E/12(1 - v%)

L Length of the shell

m Axial mode number

n Circumferential mode number

P, Lateral pressure exerted on the shell, u = i for internal pressure and
u = e for external pressure

P; Terms of elasticity matrix (i= 1,...,6 ; j= 1, ..., 6)

R Mean radius of the shell
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Pe
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Solution of Bessel equation (3.27)
Defined by equation (3.24)

Thickness of the shell

Axial, tangential and radial displacements
Velocity of the liquid

Defined by (x%/L) (K/p t)'?

Dimensionless velocity, U, /U,

Axial. tangential and radial fluid velocity (3.17)

Axial coordinate

Bessel function of the second kind and of order inj

Defined by equation (3.29) for u=i and equation (3.30) for u=e
Complex roots of the characteristic equation

Detformation of reference surface
Changes in curvature and torsion of reference surface

Circumferential coordinate
Poisson's ratio

Angle for one finite element
Angle for the whole open shell
Velocity potential

Density of the shell material

Density of fluid, f = i for internal fluid and f = e for external fluid



w Natural frequency (rad/s)

wg Defined by (n*/L?) (K/p,)"*

@ Dimensionless frequency, w/w,

LIST OF MATRICES

[A] Defined by equation (3.9)

[B] Defined by equation (3.11)

[cd] Damping matrix for a fluid finite element
[C Damping matrix for the whole fluid

{C} Vector of arbitrary constants

[D{] Defined by equation (3.36)

[G{] Defined by equation (3.37)

[kel Stiffness matrix for a fluid finite element
(k] Stiffness matrix for a shell finite element
K Stiffness matrix for the whole fluid

(K] Stiffness matrix for the whole shell

[m] Mass matrix for a fluid finite element
[m,] Mass matrix for a shell finite element

[M{]

Mass matrix for the whole fluid

127



M,
[N]
(P]

Mass matrix for the whole shell

Displacement function defined by equation (3.10)
Elasticity matrix

Defined by equation (3.11)

Defined by equation (3.6)

Defined by equation (3.35)

Defined by equation (3.3)

Degree of freedom at node i

Deformation vector

Stress vector

128
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CHAPITRE IV

ARTICLE 1I

INFLUENCE OF GEOMETRIC NON-LINEARITIES
ON THE FREE VIBRATIONS OF ORTHOTROPIC OPEN

CYLINDRICAL SHELLS

4.1 ABSTRACT

This paper presents a general approach to predict the influence of geometric non-
linearities on the free vibration of elastic, thin, orthotropic and non-uniform open
cylindrical shells. The open shells are assumed to be freely simply-supported along their
curved edges and to have arbitrary straight edge boundary conditions. The method is a

hybrid of finite element and classical thin shell theories.

The solution is divided into two parts. In part one, the displacement functions are
obtained from Sanders’ linear shell theory and the mass and linear stiffness matrices are
obtained by the finite element procedure. In part two, the modal coefficients derived

from the Sanders-Koiter non-linear theory of thin shells are obtained for these
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displacement functions. Expressions for the second order and third order non-linear

stiffness matrices are then determined through the finite element method.

The non-linear equation of motion is solved by the fourth-order Runge-Kutta
numerical method. The linear and non-linear natural frequency variations are determined
as a function of shell amplitudes for different cases. The results obtained reveal that the
frequencies calculated by this method are in good agreement with those obtained by other

authors.

4.2 INTRODUCTION

The analysis of thin shells under static or dynamic load has been the focus of
many investigations. Most of the research in this field has involved analysis of linear thin
shells. The results have proven to be satisfactory in cases where deflections of the shell
were very small compared to the thickness of the shell itself. In several practical
experiments, however, the linear analysis was not sufficiently accurate for satisfactory

design. In those cases, a non-linear analysis was required.

The first paper to deal with non-linear vibrations of shells was the pioneering
work of Reissner’. There are now several theories available dealing with geometric non-

linearities in shells®* and many others.
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More specifically, several methods have been developed for the analysis of
dynamic non-linear thin cylindrical shells. Among these were Galerkin’s method®!2, the
small perturbation method'*", the modal expansion method'® and the finite element

method'”%0,

Most of the research done in references 6 to 20 was limited to studies of isotropic
shells. Only Nowinski®, Raouf & Palazotto' and Jiang & Olsen? made a generalization
concerning orthotropic shell theory. Ambartsumyan? produced an important work

involving a number of cases for anisotropic shells.

All of these methods have their advantages and disadvantages. The best test of any
method is probably its general content and the capacity to predict, with precision, both
the high and the low frequencies of vibration. These criteria were not met in Galerkin’s
small perturbation method, and studies in references 6 to 15 applied only to the particular
case where the shell was simply-supported on both edges. Furthermore the analytical
forms for the displacement components in the modal expansion'é apply only to those

cases where a uniform cylinder is supported at both ends.

The finite element method appears to be ideally suited to the analysis of complex
shell structures. Numerous general computer programmes are available for industrial use

in the linear and non-linear analysis, where the displacement functions of the finite
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elements used are assumed to be polynomial. To be able to predict with precision, both
the high and the low frequencies, requires the use of a great many elements in the
classical finite element method. In order to achieve this, the present paper presents a new
finite element for the static or dynamic analysis of non-linear, elastic, thin, anisotropic
and circumferentially non-uniform open cylindrical shells (Figure 4.1). The shells are
assumed to be freely simply-supported along their curved edges and to have arbitrary
straight edge boundary conditions. The finite element method is employed, but it is a

hybrid, a combination of the finite element method and shell theory.

This choice allows us to use the complete equilibrium equations to determine the
displacement functions and, further, the mass and stiffnesses matrices. This method

proves to be more accurate than the usual finite element methods>2°.

The dynamic behaviour of an empty open or closed cylindrical shell, in the

absence of external loads, can be represented by the following equation:

[IM] {8} + [K.] {6} + [K\,] {6} + [Ky.] {8} = {0} 4.1

where {6} is the displacement vector; [M] the mass matrix, [K;] the linear stiffness
matrix, [Ky,,] the second order non-linear stiffess matrix and [Ky; ;] the third order non-

linear stiffness matrix of the system.
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Figure 4.1  Open cylindrical shell geometry.
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The analytical solution involves two steps:

a) Using the linear strain-displacement and stress-strain relationships which are
inserted into Sanders’ equations of equilibrium®®, we determine the displacement
functions by solving the linear equation system. We then determine the mass and linear

stiffness matrices for a finite element and assemble the matrices for the complete shell.

b) Using strain-displacement relationships from the Sanders-Koiter non linear
theory’*, the modal coefficients are obtained from the displacements functions. The
second and third order non-linear stiffness matrices for a finite element are then

calculated by precise analytical integration with respect to modal coefficients'.

The linear and non-linear natural vibration frequency ratio is then obtained by

solving equation (4.1).

4.3 EQUATIONS OF MOTION

4.3.1 Hypotheses

Non-linear elastic thin shell theory is derived by approximation from the three-

dimensional elasticity equation. As in the case of linear theory, it is based on Love’s
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"First Approximation” but the assumption concerning the order of magnitude of the

bending has been modified.

The non-linear theory is based on the following hypotheses:

a) Thickness (t) is infinitesimal in comparison with the minimum radius of curvature

Rpin), R/t > 10);

b) the displacement gradients are small and the squares of the rotation do not exceed

reference surface deformation in order of magnitude, (A/t < 2.5);

c) the normal constraints, normal to the surface of reference, are negligible;

d) the normals to the surface of reference remain normal after deformation and are

not subject to any elongation.

The theory based on these four hypotheses is known as the Sanders-Koiter non-linear

theory**"; it has been used throughout this paper.
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4.3.2 Strain-displacement and stress-strain relations
The non-linear Sanders-Koiter theory for thin shells postulates differences in the
first and second fundamental forms between the reference surfaces, deformed and non

deformed.

Generally, the deformation vector {¢} is written as:

J 2¢, | 4.2)
{e} ={a} +{en} = | %«

where subscripts "L" and "NL" mean "linear” and "non-linear”, respectively.
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For a cylindrical shell, the expressions for {¢ } and {ey } are given by :

_ 3
{e} X @.3)

and

EY.] 3 4.4)
lew?d =) 1 [aw oW aw]

where U, V and W are, respectively, the axial, tangential and radial displacements of the

shell’s surface of reference.
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It is evident that in equations (4.3) and (4.4) the expressions for components «,,,
Kge, 2K,4 are linear. This fits in with hypothesis (b) from paragraph 4.3.1.
The constituent relations between the stress and deformation vectors of the surface

of reference for anisotropic shells are given as follows:

{a} = { N, Ny N, M, My M, }7 = [P] {e} @.5)

where [P] is the matrix of elasticity. The elements p; in [P] determine the orthotropy of

the shell, which depends on the mechanical characteristics of the structure’s material.

In general, this implies that:

Phn P O py Ps O
Py Pn O Py Ps O
0 0 p;, 0 0 py 4.6)
Pa Po O Py Ps O
Pss P O ps bPss O

[P] =
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4.3.3 Equations of equilibrium

By applying the virtual work principle to the infinitesimal element of the

deformed surface of reference, the three equations of equilibrium, describing the non-

linear behaviour of an arbitrarily formed shell, are obtained® (see Figure 4.2).

N, 1 N, 1 M,
dx R 96 2R? 26
1 a

4.7
5% 35 [ ¢ Mu + Ng) =0

5 @.8)
1
7x [® M m No) |

4.9)
¢xNx0 + d)GNﬂd ] =0

where

4.10)
W _y ]
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Figure 4.2  Differential element for an open cylindrical shell.



141
Substituting equations (4.2) to (4.6) for the equilibrium equations (4.7) to (4.10),
we obtain equations as a function of elements p; in [P] and the axial, tangential and

radial displacements U, V and W from a point on the shell surface of reference. The

linear terms of these equations will be written as follows:

L, (U, V,W,p;) =0
L,(U,V, W, p;) =0 (4.11)
L, (U, V, W, pij) =0

These equations are given in Appendix A4-1.

4.4 DISPLACEMENT FUNCTIONS

The shell is subdivided into several finite elements defined by two nodes i and j
and by components U, V, W and dW/df, representing axial, tangential. radial
displacements and the rotation, respectively, from a point located on the shell’s surface

of reference (Figure 4.3).
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Figure 4.3  (a) Finite element idealization.
(b) Nodal displacements at node i.
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The displacement functions are then assumed to be:

Ux,8) U
W(x,0) + - T 1 1W() “.12)
V(x,8) ml 1 V(8)

where m is the axial mode, [T,] is a (3 x 3) matrix in given in Appendix A4-3 and U(6),

W(6) and V() are functions of the 6 coordinate and the shell’s characteristics.

Assuming:

U@®) = Ae™, V(@) =Be™, W() = Ce™ @.13)

Substituting (4.12) and (4.13) into the equations of motion (4.11), three
homogeneous linear functions of constants A. B and C are obtained. For the solution to
be non-trivial, the determinant of this system must be equal to zero. This brings us to

the following characteristic equation:

Det ((H]) = hgn® + hyn® + hyn* + hyn* + hy, = 0 4.14)

where hy, h,, h,, he and hg are listed in Appendix A4-2
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Each root of this equation yields a solution to the equations of motion (4.11). The
complete solution is obtained by adding the eight solutions independently with the

constants A, B, and C, (p = |, ..., 8), so that:

8 8 8
U =Y Ae™, V@) =Y Be™, W) =Y Ce (4.15)
p=[ p=1 p=l

The constants A, B, and C, are not independent. We can therefore express A,

and B, as a function of C,, for example:

A, =c¢C, and B,=8C, , p=1,.8 (4.16)

The values of ¢, and B, can be obtained from system (4.11) by introducing
relations (4.16). Substituting expressions (4.15) and (4.16) into equations (4.12), the
displacements U(x.6). V(x.0) and W(x.6) can then be expressed in conjunction with the

eight C, constants only. We then have:

{ Ux,0), W(x,0), V(x,0) }T = [T_] [R] {C} 4.17)

where matrices [T, ] and [R] are given in Appendix A4-3 and {C} is an 8" order vector

of the C, constants:



145

{C} = {C,C,...C}" 4.18)

To determine the eight C, constants, it is necessary to formulate eight boundary
conditions for the finite elements. The axial, tangential and radial displacements, as well
as rotation, will be specified for each node. The degrees of freedom at node i can be

defined by the vector:

4.19
dW ] v, 4.19
The elements which have two nodes and eight degrees of freedom will have

i(@ = 0) and j(@= ¢) as nodal displacements at the boundaries:

where the terms of matrix [A], given in Appendix A4-3, are obtained from matrix [R]

by successively setting § = 0 and § = ¢.
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Multiplying equation (4.20) by [A"'] we obtain:

{C} = (A7] { 2 } @.21)

]

Substituting equation (4.21) into equations (4.17), we obtain:

U(x,

W(xig) = -1 6i = 6i
WO [~ [T,] [RI [A] { ; } [N] { : }

4.22)

where the matrices [T,], [R] and [A] are given in Appendix A4-3. [N] represents the
displacement functions matrix.

4.5 MASS AND LINEAR STIFFNESS MATRICES FOR AN ELEMENT

The linear deformation vector can be obtained from equations (4.3) and (4.22),

therefore:
J

(T, (O] N X
o) - [ 0] [T ]] Q) (A" { : } - (8] { 5'_} “29)
m J

where the matrices [A] and [Q] are given in Appendix A4-3.
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Combining equations (4.5) and (4.23), the stress-strain relations can be written

0.
{0} = (P] [B] { X } .24
J
The mass and linear stiffness matrices can then be expressed as:
[m] = pt j j [NT] [N] dA,
4.25)
(k] = ] j [BT] [P] [B] dA

where dA = Rdxd§, p is the density of the shell, t its thickness, [P] the elasticity matrix

and the matrices [N] and [B] are derived from equations (4.22) and (4.23) respectively.

The matrices [m] and [k;] were obtained analytically by carrying out the

necessary matrix operations and integration over x and @ in equation (4.25). These

matrices are also given in Appendix A4-3.
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4.6 NON-LINEAR MATRIX CONSTRUCTION

The following approach, developed by Radwan and Genin'®, was used with
particular attention to geometric non-linearities. The coefficients of the modal equations
were obtained through the Lagrange method. Thus, the non-linear stiffness matrices,
once calculated, were overlaid onto the linear system. Before we embark on matrix

formulation, however, a brief summary of the method is in order.

(a) Shell displacements are expressed as generalized product coordinate sums and

spatial functions;

(b) the deformation vector is written as a function of the generalized coordinates by

separating the linear portion from the non-linear;

(© these expressions are then introduced into the Lagrange equations up to and

including the degree corresponding to the deformation energy;

(d) by substituting the expressions in a) into the strain-displacement relations in the
Sanders-Koiter™* non-linear theory, the generalized coordinate coefficients appearing in

the equation derived under c) are determined in terms of spatial functions.
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This approach give us the following non-linear modal equations:

Emprsr * E k;:‘) 6r * Z Ekp(zu)aras * Z Z: Z k;:?)araséq =0, p=1(’§'2'6')
r r r s r s q .

where m,,, k, " are the terms of mass and linear stiffness matrices given by equation
(4.25); the terms k™2 and k™ which represent the second and third non-linear

stiffnesses are given by the following integrals in the case of orthotropic open cylindrical

shell.

(NL2

NLDY o I J { PuAp * PuBy + Pu(D, + E ) +pC . } dA @.27
and

(NL3)

sq  C J I { puAmq + Panm + plZ(Dprsq + Ep“q) + p33Cprsq } dA (4.28)

where dA = Rdxd#d, p; are the terms of the elasticity matrix [P}, and the terms A,;, B,
Corss Doy Eps @and Ajrg, Bprsgs Crsgr Dprsgr Eprsq TepIesent the coefficients of the modal

equations mentioned in step d).

These coefficients are given by the following equation:
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Ay = 3 Ava A +a A Ay = 2AA,
B,, = b,B +bB_+b B B,. = 2B,B,
C,s = ¢,Cy*c,C+c,C, C, = 2C,.C, (4.29)
D, = 2B, +aB, +b A, D,., =2A,B,
E,. = bA_+bA +aB_ E.. = 2B, A,
with
1 1. U,
a,=U,, b= R (Voo * W, ), ¢,= 5 (_RP_" + V) (4.30)
1 1
Ay =— RV, -U )RV, -Uyp+_W W, (4.31)
8R 2
1
B, = = (RV,, ~U).RV, -TU,) @32
| .
* oxa (W, ~ V). (W, - V)

Pq q  px

_ 1 1
Con = 2R WouWao = Wou W) = (VW = VW) (@4.33)

where U, V and W are spatial functions determined by equation (4.17).

In equations (4.29) to (4.33), the subscripts 'p.q’, 'p.r,s’ and ’p,r,s,q’ represent

the coupling between two, three and four modes respectively.



Introducing equation (4.17) into equations (4.30), we obtain:

_ s n6 , a ... = M —
a, —Cpape', a >

= a, sin mx, a, = -m«

P P

- + 1
b, =C,b,e™, b’ =b," sin mx, b = %——

— n.o m3
cos mx, c,’ = L2 + P
2R 2

= 11,8 v _ D
c, =Cyc’e™, ¢’ =¢
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4.34)

(4.35)

(4.36)

And introducing equation (4.17) into equations (4.31) to (4.33), we obtain:

= o (1, 1,00
qu Cpap‘} e Cq,
a, = aj; cos’ mx,

= _8}? [RmB, -o, 7, I[RMB, ~a, 7, ] + é‘?‘l

= * o (m, +n,)8
B,, = C,b e ™C,
b, = byg €Os®> Mx + b sin® mx ,

1 — —
bpg = s [RmB, oy, I[RMB, -ayn, ]
1

be = szl = Bllng - B]

(4.37)

(4.38)
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s o (1, )0
oq Cpcpq e Cq,
’

C
m

Cpq' = Cpg COSIX sinmx, 4.39)

S = gx [ + 1 = B, ~ B]
7, (p=1,..8) are the roots of characteristic equation (4.14); o, and B, are given by
relation (4.16); R is the mean radius of the shell; m = m#/L where m is the axial wave

number and L the length of the shell. The constants C, (p=1...,8) and C, (q=1,..,8)

may be obtained from equation (4.21).

Here we are limited to solving the equation of motion in the cases where the
coupling between different modes is ignored. The fact nevertheless remains that the
present theory constitutes a general approach to the dynamic study of non-linear

cylindrical shells.

Assuming r=s in equation (4.27), replacing the terms of A, B,, C,, D, and
E,s by their expressions (equation 4.29), using relations (4.34 - 4.39) and then

integrating over x and 6, we obtain for the second order non-linear matrix for an empty

element the following expression:

(k™) = (AT I [A ] (4.40)
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where the (p,q) term in matrix [J™V] is written as:

[
Za: R GG(p.g) [e(w,’n.'n.) -1 ]
2 tmg )
. “4.41)
JOLD(p q) = ) if g, + M, +m =0
8
kE R GG(p.q) ¢ ifn, +n +m =0
=1

GG(p.q) is a coefficient in conjunction with «, 8, 7 and element p; in matrix [P]. The

general expression of GG(p,q) is:

GG(p.@) =
pllll[ a(l) p-ql a‘::) - a‘:l) Aq-kl ag’) + aél) Ak;l n +
Pl [ b;” -1 b(” b“’ -1 b“’ b Akpl b;;) 1+
p.L[ b(” A-l bq b(” Aq" ba) " Ak-pl ba) 1+
P31, [ c(” p;[ cé,? + c(” Aq',:l c,g’ + M Akp “’
pLI a“’ Aq;' b”’ (1) Ak: b‘” bm A' m .
b:” Aq-kl ag) bm Ak-pl a.;;) . a‘” -1 b( ]+ 4.42)

puIz[ a‘:l) Aqk bkp (n Akv bsﬁczl) ;1) qu qk ]

where:

_ 4.43
I, - 3—1_[1 (-], L =2[, @ =mn/L @.43)
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The terms a,"), b,"", ¢, a,", b, ™, ¢, and b,@ are terms appearing in expressions
of coefficients a,, b, c,, Ay, By, and C,, [relations (4.34 - 4.39)] and A" is the term

(p.q) of matrix [A™'], where [A] is the matrix defined by relation (4.20).

Assuming r=s=q in equation (4.28), replacing the terms of A 4, Byrsq» Corsqr Dprsq
and E,, by their expressions (equation 4.29), using relations (4.37 - 4.39) and then
integrating over x and 6, we obtain for the third order non-linear matrix for an empty

element the following expression:

(k"] = [AT]T[TO][A ] @.44)

Where the (p,q) term in matrix J™ is written as:

3 3 RLEMLD SS®A [eu-n-n-m _ ]
k=t =l 8(’7,, PP T "h)
IO q) = ] if g, +n v+ +n #0 (4.45)
8 8 1
Y Y - RLEWLK SS(p.g) ¢
k=1 1=l 8

if np+nq+r,k+17l=0
E(l,k) is the term (1,k) of matrix [E], where [E] represents a matrix of constants defined
by [E] = [A']"[A'], SS(p.q) is a coefficient in conjunction with «, 3, 1 and element

Py in matrix [P].
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The general expression of SS(p,q) is:

SS(p.q) =
™ _ M )

3Py, 3 g * Py Cp Sk
11 q 33 *p q W (4-46)

+ Py 3by by + 3by b2 + by’ bS + by b))

N (M (1) Q) (n @ )
+ P Gay by + ay by +3b, a, + by ag

where the terms a, ", b, ", ¢, and b, @ are coefficients given in relations (4.37 -

4.39).

4.7 THE INFLUENCE OF GEOMETRIC NON-LINEARITIES OF THE WALLS
ON THE NATURAL FREQUENCIES OF AN OPEN CYLINDRICAL

SHELL

The mass and stiffness matrices obtained apply to only one element. After the
shell is subdivided into several open cylindrical elements (Figure 4.3), the global mass
and stiffness matrices are determined by assembling the matrices for each element.
Assembling is done in such a way that all the equations of motion and the continuity of
displacements at each node are satisfied. These matrices are designated as [M], [K],
[Knio] and {Ky;3) respectively. They are square matrices of order NDF * (N + 1),
where N represents the number of finite elements and NDF represents the number of

degrees of freedom at each node. In practice, very specific conditions are applied to the
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shell boundaries. Thus, matrices [M], [K.], {Kni2] and [Kyp;] are reduced to square

matrices of order NREDUC = NDF * (N + 1) - J, where J represents the number of
constraints applied. These reduced matrices are written as [M“], [Ky."] and [K;5“].

The superscript "r" means "reduced”.

The system of equations (4.26) then becomes:

[M©] {87} + [KP] {89} + [K§h]l {89} + [K;] {6} = {0} 4-47)

Setting:

(89} = [#] {q} (@.49)

where [®] represents the square matrix for the eigenvectors of the linear system and {q}

is a time-related vector.

Substituting equation (4.48) into system (4.47) and multiplying by [®'], we

obtain:

[$TI[M©@][®]1{d} + [®T1[K1[®1{q} + (4.49)
(®TI[KNLIU®1{q})* + [®"1[Ksa1([®1{q})® = {0}
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The products of matrix ([#]T [M“] [®]) and ([®]" [K. ] [®]) represent diagonal

matrices, written as [M®'] and [K_ ®)], respectively.

The (4.49) system of equations is written:

[M®] {4} + [K] {q} + 4.50)
[27] [K2] ([2] {q})* + [®"] [Knis] ([®] {q})’ = {0}

We saw how matrices contained in the linear part of the system (4.47) could be
reduced to diagonal matrices. On the other hand, by neglecting the cross product terms

in ([®] {q})* and ([®] {q})? of equation (4.50) we obtain:

NREDUC NREDUC

T ST S I
s= 5=

where coefficients m,, and k', represent the p* diagonal terms of matrices [M®™] and
[K.™], respectively; [K,,“] and [K,, "] are the (p,s) term of the product

([]" [Ky,“T [#°]) and ([8]7 (Kyps“] [E°]).

Here we have "NREDUC" simuiltaneous equations of the form of (4.51).
Numerical solution of such a system is difficult and costly. At first, we limit ourselves
to solving equation (4.51) by taking into account only the diagonal terms of the product

([®)" [Kn2"1 [9%]) and ([®]" [Knis“] (®°]) and therefore equation (4.51) would be



written as follows:

. 2
+ k ;:JL.)

(L (NL3) 3
My dp ~ kPP 9, 0

qj"' p do =

Setting:

q,() = A £, ()

which satisfies the conditions:

£,0) = 1 and fp(O) =0

Equation (4.52) becomes, after the A, simplification:

m f o+ k£« kD LA/ + kg (AN, = 0

P

where t represents shell thickness.

Dividing this last equation by m,,, it becomes:

£+ wpf, + AF (AT + AT (A 1PE, =<0

where
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4.52)

4.53)

4.59)

(4.55)

4.56)



_ k)

(!.)2
p == c——
mPP
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4.57)

The coefficient " k,, / m,, " represents the p® linear vibration frequency of the shell.

and

(NL2)
(NL2) P
Al t
mPP
(NL3)
A;NLJ) = P t2
m

(4.58)

4.59)

The solution f,(7) of the non-linear differential equation (4.56) which satisfies the

conditions in (4.54) is calculated by a fourth order Runge-Kutta numerical method. The

linear and non linear natural frequencies are evaluated by a systematic search for the f,(r)

roots as a function of time. The wy/w ratio of linear and non-linear frequency is

expressed as a function of non-dimensional ratio (A,/t) where A, is the vibration

amplitude.
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4.8 CALCULATIONS AND DISCUSSION

The influence of the wall’s geometric non-linearity on the open or closed
cylindrical shell’s free vibrations is expressed by equation (4.56). For a shell having the
particular physical characteristics given, the ratio wy/w; of linear and non-linear
frequency have been graphically represented in Figures 4.4 to 4.9 with respect to the
non-dimensional ratio, A,/t. The straight horizontal line represents the linear vibration

cases, where the frequency is independent of the motion’s amplitude.

4.8.1 Non-linear free vibration of closed cylindrical shell

The first example of calculations to determine the influence of non-linearities in
strain-displacement relations on the free vibrations of a simply-supported cylindrical shell

is shown in the analyses in references 6 and 17. The shell has the following properties:
E =200GPa, »=0.3, p =7800Kg/m?,
R=2.54cm, L=40cm, t=0.0254cm, ¢.=360°.

The variation in natural frequencies of this shell was calculated using the method
we propose, and compared to the results Nowinski® and Raju and Rao'” obtained for the

case of n = 4 and m = 1 (Figure 4.4).
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Figure 4.4  Comparison of the effect of amplitude upon frequency for an empty
simply-supported closed cylindrical shell, (m = 1, n = 4).
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Nowinski® based his analytical development on Donnell’s simplified non-linear
method. Only lateral displacement was considered. For their part, Raju and Rao"’,

beginning with an energy formulation, used the finite element method.

In Figure 4.4, we observe that the variation ratio between the linear and non-
linear frequency increases as ratio A/t increases. Non-linearity has a hardening effect.
These variations are small for values A/t below 1.0. For values above 1.0, the variation

is more pronounced than that which Nowinski® and Raju and Rao'” obtained.

Its appears that these differences might be due to the fact that Nowinski® neglected
in-plane inertia and took into account only lateral displacement. As for Raju and Rao'’,
who used the Sanders-Koiter’* non-linear theory, they expressed the displacement of

components along the shell generator in polynomial form.



163
4.8.2 Non-linear free vibration of open cylindrical shell

One of the great advantages of the finite element method is the ease with which
it can be applied to any geometry and any boundary condition. Thus, the second step
of calculation is to study the non-linear dynamic characteristics of open cylindrical shells

as a function of circumferential and axial modes for various boundary conditions.
4.8.2.1 Influence of the circumferential mode n

In Figure 4.5, we present the effect of large amplitude on the frequency of
vibration for axial mode m = 1 and various circumferential mode n ( 1 to 12 ). The open

shell is simply-supported at the four edges and the data are as follows :

E=200GPa, »=0.3, p =7800Kg/m?,
R=254cm, L=40cm, t=0.0254cm, ¢, =135°.

The Figure shows that the non-linearity is of the hardeniﬁg type for
circumferential mode n=1 and n > 9 and is of softening type for n between 2 and 9.
We see also that the non-linear effect is more pronounced for the mode n = 5 and the

variation is small for the case of n = 1.
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Figure 4.5  Influence of large amplitude on natural frequency of simply-
supported open cylindrical shell for various circumferential

mode n and axial mode m = 1.
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Figure 4.6 shows the variation in frequency ratio as a function of A/t for axial
mode m = 2 and circumferential mode n = 1 to 12. As in Figure 4.5, the same
phenomena can be observed for this axial mode, the non-linearity is of the hardening type
for circumferential mode n = 1, 2, 3 and n > 9 and is of softening type for n between
4 and 9. We see also that the non-linear effect is more pronounced for the mode n = 7

and the variation is smalil for the case of n = 1.

4.8.2.2 Influence of the boundary conditions and of the opening angle ¢

In order to establish the effect of boundary condition on non-linear free vibration,
we turn to Figure 4.7. We observe for the mode (n = [, m = 2 ) and the same open
shell with different boundary conditions, that the shell with the clamped - simply
supported boundary conditions in its straight edges is the one on which the effect of non-
linearity is the more pronounced, The effect is small for a panel with clamped - free

boundary conditions. The steel panel analysis in Figure 4.7 has the following data:

R =37.7mm, L =234 mm, t = 0.229 mm and ¢é; = 180 deg.

With the same data, Figure 4.8 shows the effect of the opening angle ¢; on the
non-linear free vibration of the open cylindrical shell. It shows that the panel with
opening angle ¢; = 135 deg. is the one which has the smaller effect on the non-linearity

and the more pronounced effect is for ¢ = 10 deg.
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Figure 4.7  Influence of large amplitude on natural frequency of an open
cylindrical shell for different boundary conditions, (n = 1, m = 2).
( F: Free, S: Simply-supported, C: Clamped )
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4.8.2.3 Non-linear free vibration of orthotropic cylindrical shell

The present method has been applied to the analysis of the non-linear vibration
of an orthotropic open cylindrical shell, clamped along its straight edges and simply-

supported along its curved edges.

The data for the open shell are as follows:

E,=1.0x 10N/m?, E,=0.05xE, »=0.2, »,=0.05xy,
G,,=0.05XE,, p,=7800N/m?,
R/L=1, R/t=50, ¢,=180°.

The results for the axial mode m = 2 and circumferential modes n = 1, 2, 3 and
4 are given in Figure 4.9. We observe that the non-linearity is of the hardening type for
these modes. We see also that the non-linear effect is more pronounced for the mode
n = 1. An exhaustive numerical investigation is needed in this matter in order to draw

any concrete conclusion.

Our model combines the advantages of the finite element method which deals with
complex shell (orthotropy, variable thickness,...) and the precision of formulation which

the use of displacement functions derived from shell theory contributes.



w
G)NL/ L

170

Figure 4.9

Influence of large amplitude on natural frequency of clamped-
clamped orthotropic open cylindrical shell for varicus
circumferential mode n, m = 2.
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4.9 CONCLUSION

The method discussed in this paper demonstrates the influence of geometric non-
linearities of the walls on the free vibrations of empty open or closed cylindrical shells.
It is a hybrid method, based on a combination of thin shell theory and the finite element

method.

An open cylindrical finite element was developed, so that the displacement

functions could be derived directly from classical thin shell theory.

The solution was divided into two parts. In part one, the displacement functions
were obtained from linear shell theory and the mass and linear stiffness matrices were
determined by the finite element procedure. In part two, the modal coefficients
corresponding to non-linearities in strain-displacement relations were obtained for the
displacement functions. The second and third order non-linear stiffness matrices were

then calculated using the finite element method.

With the help of a computer program, variations in the free vibration frequencies
were determined in conjunction with motion amplitude for a closed or open cylindrical
shell. Deviations in terms of linear vibrations were observed. The results obtained with

this method are in agreement with other analytical and numerical methods.
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A paper currently under preparation will deal with the non-linear free vibration
analysis of liquid-filled open or closed cylindrical shells. The non-linear dynamic stability

of shells containing flowing fluid will also be investigated.
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4.11 NOMENCLATURE

LIST OF SYMBOLS

A, B, C
A;

ay, by, ¢

ap(l)’ bp(l), cp(l)
a(l)'b(l) b(2),c(l)
aA,, bB,y, CCpr,
aByr;, bA,,

AP‘I’ BPQ’ CPq

Aprsqr Bprgs Corsar

AB, ., BA

prsq» prsq

E

Constants in equation (4.13) defining U, V, W respectively
Motion amplitude
Modal coefficients determined by equation (4.30)

Coefficient determined by equations (4.34-4.36)

Coefficient determined by equations (4.37-4.39)

Modal coefficients determined by equation (4.29)

Modal coefficients determined by equations (4.31-4.33)

Modal coefficients determined by equation (4.29)

Young’s modulus

Exponential

Function determined by equation (4.53)
Coefficient determined by equation (4.42)
Length of the shell

Axial mode number

Number of finite elements



Pij

SS(p.q)

U, V., W

T

% By

b1
b

Wy

WL

(NL2) (NL3)
AT, A3
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Circumferential mode number

Terms of elasticity matrix (i= 1,...,6 ; j= 1, ..., 6)
Mean radius of the shell

Coefficient determined by equation (4.46)
Thickness of the sheil

Axial, tangential and radial displacements

Axial coordinate

Complex roots of the characteristic equation (4.14)
Determined by equation (4.16)

Circumferential coordinate

Poisson’s ratio

Opening angle for one finite element

Opening angle for the whole open shell

Density of the shell material

Linear frequency of free vibrations

Non-linear frequency of free vibrations

Time related coordinates

Coefficient determined by equation (4.57)

Coefficients determined by equations (4.58) and (4.59)
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LIST OF MATRICES

[A]

(B]

{C}
[k™1, [N,
[k,
[my]

[N]

[P]

[Ql

{q}

R]

(Tl

{64

{6}

{6}

{o}

{ec} {em}
[€]

Defined by equation (4.20)
Defined by equation (4.23)
Vector of arbitrary constants

Linear and non-linear stiffness matrices for a shell finite element

Mass matrix for a shell finite element

Displacement function defined by equation (4.22)
Elasticity matrix

Defined by equation (4.23)

Time-related vector coordinates

Defined by equation (4.17)

Defined by equation (4.12)

Vector of degrees of freedom at node i

Vector of degrees of freedom for total shell
Reduced vector of degrees of freedom for total shell
Stress vector

Linear and non-linear components of the deformation vector

Matrix of eigenvectors, equation (4.48)
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APPENDIX Ad4-1

EQUATIONS OF MOTION

This appendix contains the equations of motion for a thin orthotropic cylindrical

shell.
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APPENDIX A4-2

Characteristic Equation (4.14)

by n® « b n® + by n® + by n? + by = 0

where

2
hy = f fs £ - £ f5
he = f, fo £, + £, £, £, - 2f £ £
6 fi £ - f) f82 - f32 fio

B f f, + £ f £ - f) £

by = f £, « £ £ £, - £ £5 + £ f fir

+f, £ £

2
+5 6 - 26, fg £, - £5 £ 3 Ig Iy

+

£, f f5 + £, £, f, - £ f, - f, £, f,

+

£ f, f, - £ f, f,

2
h =fifEf,+ L, +L6f, - f
SR T R A AR A A A A A

-f f f, - £ f,

h =f2f7f12'f7f52

a
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The coefficients f; (i = 1,...,12) are given by the above equations :

1 1 1
f1=R_(Pss"P36"’"‘_‘P66)

R 4R?
f2=—PuE12
f3=ﬁi(Pl2+p)+_l_(p +p6)_ip
R 13 Rz 15 3 4R’ 6
m 1
f4=_E2-(PlS 2 Py - — Py
P, _ -
f5=—1;2-m+P14m3
1 1 2
fs = E_Z(PH+EP55+E 25)
f7“ﬁ.l(P33+_P36+ > Peo)
4R?
1 1
fa‘E(st*"‘_ss)
_ 1 1 m? 3 |
f = E;(Pzz“‘ﬁ 52)_?(2P36+P24+EP66+E s4)
3
fxoz'—R;Pss
£ = 2P+ ™ op .4p)
R AT 4s 66
f,=-Lp, -2Pp @m?-P,m
12 2" R M “



APPENDIX A4-3

MATRICES A m] and
MATRIX [T_la,s
[T_] = Diag[ cosmx, sinmx, sinmx ]
m = ma/L
MATRIX [R]g,s

R(2,) = e",
R(3.j) = Be"’
MATRIX {Als.s
A(lj) = o  AG.) = e
AQR,j) =1 A6, ="
AB.j) = AT.j) = ne™

AG) =B, AGB.) = Be™
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MATRIX [Q] s

QL.j) = Ae™ Q@&.j) = De™
Q2.j) = Be™ Q5. = Ee"
QB3,j) = Cee™  Q(6.j) = Fe

The terms A, B;, C;, D;, E;and F; (i = 1, ..., 8) may be expressed as follows:

2
E:-".i+“iﬁj

and R o-2mTn 3mmp mo
! RL 2 RL 2R 2
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MATRICES [m],q and [k ]

[m] = [A7']T [S]1[A7'], [k ] =[ATT"[GI[A™]

where [S] and [G] are defined by the above equations:

. .+, B. + 1 o
S(i,j)“RL ( L) ‘31 B] ) (e("li ﬂ,)d’ - 1) if ﬂi"'nj £ 0
2 (n;*+ np)
S = T2 (o o+ BB+ D) if 0+ n; = 0
GGj) = X p, A A +p,A B +p, A D, «pg.A E
J 5 Pu B Ay Pia Ay By * Prg A3 Y; * Pis A By

+

Poy By Aj + Py B B; + pyy B; D; + pys B E;
* Py D Aj + Py Dy By + py Dy Dy + pys D, E;
*Psi E; Ay + p, E; B, + ps, E; D; + pss E; E

* Py G G + P G F +pg3 F; G + pgs F, F)

(e(n;»nj)cb_l) Fn v e 0
(m; + 7, F
n; Tl,)
GGi.j) = —RL2¢ @y A; A, * ot Pes F; ) if n, + ;=0

The terms A;, B, C,, D;, E;and F; (i = 1, ..., 8) are listed with matrix [Q].
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CHAPITRE V

ARTICLE IV

NON-LINEAR DYNAMIC ANALYSIS OF ORTHOTROPIC OPEN

CYLINDRICAL SHELLS SUBJECTED TO A FLOWING FLUID

5.1 ABSTRACT

A theory is presented to predict the influence of non-linearities associated with the
wall of the shell and with the fluid flow on the dynamic of elastic, thin, orthotropic and
non-uniform open cylindrical shells submerged and subjected simultaneously to an

internal and external fluid.

The open shells are assumed to be freely simply-supported along their curved
edges and to have arbitrary straight edge boundary conditions. The method developed is

a hybrid of thin shell theory, fluid theory and the finite element method.

The solution is divided into four parts. In part one, the displacement functions are

obtained from Sanders’ linear shell theory and the mass and linear stiffness matrices for
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the empty shell are obtained by the finite element procedure. In part two, the modal
coefficients derived from the Sanders-Koiter non-linear theory of thin shells are obtained
for these displacement functions. Expressions for the second and third order non-linear
stiffness matrices of the empty shell are then determined through the finite element
method. In part three a fluid finite element is developed, the model requires the use of
a linear operator for the velocity potential and a linear boundary condition of
impermeability. With the non-linear dynamic pressure, we develop in the fourth part

three non-linear matrices for the fluid.

The non-linear equation of motion is then solved by the fourth-order Runge-Kutta
numerical method. The linear and non-linear natural frequency variations are determined

as a function of shell amplitudes for different cases.

5.2 INTRODUCTION

The analysis of thin shells containing flowing fluid has been the focus of many
investigations. Most of these studies have involved linear analyses of thin shells both with
and without interaction between the structure and the surrounding fluid medium. Results
proved to be satisfactory where wall deflections of the shell are very small compared to

the wall thickness [1-11]. In several practical reports, however, the linear analysis was
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not sufficiently accurate for satisfactory design. In those cases, a non-linear analysis was

required.

Several methods have been developed for the analysis of dynamic non-linear thin
cylindrical shells. Among these were Galerkin’s method [12-14], the small perturbation
method [15-16], the Rayleigh-Ritz method [17], the modal expansion method [18-19],

the finite element method [20-22] and the hydrid finite element method [23].

The finite element method appears to be ideally suited to the analysis of complex
shell structures. Numerous general computer programmes are available for industrial use
for the linear and non-linear analysis, where the displacement functions of the finite
elements used are assumed to be polynomial. Precise prediction of both the high and the
low frequencies requires the use of a great many elements in the classical finite element

method.

In order to achieve this, the present study presents a general approach to the non-
linear analysis of elastic, thin, orthotropic and circumferentially non-uniform open
cylindrical shells submerged in liquid under flow or no-flow condition (Figure 5.1). We
investigate the effect of non-linearities associated with the wall of the shell and with fluid

flow on the natural frequencies of an interactive fluid-shell system.
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Figure 5.1  Open cylindrical shell geometry.
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The shells are assumed to be freely simply-supported along their curved edges and

to have arbitrary straight edge boundary conditions.

The finite element method is employed, but it is a hybrid, a combination of the
finite element method, shell theory and fluid theory. This choice allows us to use the
complete equilibrium equations to determine the displacement functions and, further, the

mass, stiffness and damping matrices for the shell and the fluid element.

The analytical solution involves four steps:

a) Using the linear strain-displacement and stress-strain relationships which are
inserted into Sanders’ equations of equilibrium [24], we determine the displacement
functions by solving the linear equation system. We then determine the mass and linear
stiffness matrices for an empty finite element and assemble the matrices for the complete

shell.

b) Using strain-displacement relationships from the Sanders-Koiter non linear theory
[25-26], the modal coefficients are obtained from the displacement functions. The second
and third order non-linear stiffness matrices for an empty finite element are then

calculated by precise analytical integration with respect to modal coefficients.
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c) To account for the effect of the fluid on the structure, a panel finite fluid element
bounded by two nodal lines is considered. By solving the linear equations of motion for
the fluid element, an expression for linear fluid pressure as a function of the displacement
of the element is obtained. Analytical integration for the pressure distribution along the
element yields three components: the mass, linear stiffness and linear damping matrices

for a fluid element.

d) With the non-linear dynamic pressure, we develop in the fourth part three non-

linear matrices for the fluid: stiffness, damping and combination of the two.

The linear and non-linear natural vibration frequency ratio is then obtained by

solving the non-linear equations of motion.

5.3 DISPLACEMENT FUNCTIONS

Sanders’ [24] linear equations for thin cylindrical shells, in terms of axial,
tangential and radial displacements (U, V, W) of the mean surface of the shell (Figure

5.1) and in terms of elements p; of the orthotropic matrix of elasticity [P] are:

L (U,V,W,p,) =0, i=1to3 6.
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where L; (i = 1, 2,3) are three linear differential operators. These equations are given

in Appendix AS-1.

The shell is subdivided into several finite elements defined by two nodes i and j
and by components U, V, W and dW/df, representing axial, tangential, radial

displacements and the rotation, respectively (Figure 5.2).

The displacement functions are assumed to be:

U(x,8)=Ae"™ cos mwx/L
V(x,0)=Be™ sin mwx/L 5.2)
W(x,0)=Ce” sin mwx/L

where m is the axial mode, and 7 is a complex number.

Substituting (5.2) into equations of motion (5.1), a system of three homogeneous
linear functions of constants A, B and C are obtained. For the solution to be non-trivial,
the determinant of this system must be equal to zero. This brings us to the following

characteristic equation in 7:

hgns + hﬁqﬁ + h4'q4 + h2172 + ho =0 (5.3)

where hy, h,, hy, hs and hg are listed in Appendix AS-2.
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Figure 5.2  (a) Finite element idealization.
(b) Nodal displacements at node i.
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Each root 5 of this equation yields a solution to the linear equations of motion
(5.1). The complete solution is obtained by adding the eight solutions independently with
the constants A,, B, and C, (p = 1,...,8). The constants A,, B, and C, are not

independent. We can therefore express A, and B, as a function of C,, for example:

A, =C, and B =8C, , p=1,..38 (5.4)

The values of «, and §, can be obtained from linear system (5.1) by introducing
relations (5.4). Substituting expressions (5.4) into equations (5.2), the displacements
U(x,8), V(x,8) and W(x,0) can then be expressed in conjunction with the eight C,

constants.

We then have:

{Ux.0), W(x,6), V(x,0)}" = [T_] [R] {C} (.5

where [T,] and [R] are matrices given in Appendix A5-3 and {C} is an 8" order vector

of the Cp constants:

To determine the eight C, constants, it is necessary to formulate eight boundary
conditions for the finite elements. The axial, tangential and radial displacements, as well

as rotation, will be specified for each node. The elements
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which have two nodes and eight degrees of freedom will have i (§ = 0) and j (f = ¢)

as nodal displacements at the boundaries:

T

5 dw dw ¢0
(4] [ (3] vesow ()0 -

where the terms of matrix [A], given in Appendix AS5-3, are obtained from matrix [R]

by successively setting § = 0 and 8 = ¢.

Multiplying equation (5.6) by [A™'] and substituting into equations (5.5) we obtain:

U(x, 8)

W(x,0) ¢ - - 61 _ 5, (5.7
V(x,0) (T [R) (AT { 8; } ™ { 5, }

where the matrices [T,], [R] and [A] are given in Appendix A5-3. [N] represents the

displacement functions matrix.
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5.4 MASS AND LINEAR STIFFNESS MATRICES FOR AN EMPTY ELEMENT

Introducing the displacement functions (equation 5.7) into the linear deformation
vector {¢_ } (Sanders [24]), we obtain:
[T,] [O]
m 0. 8, .
te} = [ [0] [T ]J [Q1 A" { 5 } = [B] {a‘.} &9
m ) J

where the matrices [A] and [Q] are given in Appendix AS-3.

For an orthotropic laminated material, the stress resultants may be expressed as

follows:

{0} = {N,N, N, M_M, M, }T =[P] {¢} (5.9)
where [P] is the elasticity matrix, in which the general term is designated by p;, may be

written as follows:

[Py Po O Py P O
Pu Pn O Py Py O
0 0 py 0 0 P36 (5.10)
Pu Po O Py Py O
pS 1 pSZ O de pSS O

[P] =
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Referring to equation (5.8), the stress vector (5.9) may be rewritten as follows:

{o} = (] [B] {g} .11

J

The mass and linear stiffness matrices can then be expressed as:

[m,] = ot ” [NT] [N] dA, [kM] = ” [BT] [P] [B] dA (5-12)

where dA = Rdxd@, p is the density of the shell, t its thickness, [P] the elasticity matrix
given by equation (5.10) and the matrices [N] and [B] are derived from equations (5.7)
and (5.8) respectively. The matrices [m,] and (k'] were obtained analytically by
carrying out the necessary matrix operations and integration over x and # in equation

(5.12). These matrices are also given in Appendix A5-3.
5.5 NON-LINEAR STIFFNESS MATRICES FOR AN EMPTY ELEMENT

The non-linear Sanders-Koiter [25-26] theory for thin shells describes the
behaviour of open cylindrical shells. This theory is derived by approximation from the
three-dimensional elasticity equation. In common with linear theory, it is based on
Love’s "First Approximation" but the assumption concerning the order of magnitude of

the bending has been modified. The displacement gradients are small and the squares of
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the rotation do not exceed the reference surface deformation in order of magnitude.

The following approach, developed by Radwan and Genin [18], is used with
particular attention to geometric non-linearities. The coefficients of the modal equations
are obtained through the Lagrange method. Thus. the non-linear stiffness matrices, once
calculated, are overlaid onto the linear system. Before we embark on formulation,

however, a brief summary of the method is in order.

(a) Shell displacements are expressed as generalized product coordinate sums and

spatial functions;

u, = Z q,() U(x,6)
u, = z q,(t) V(x,0) (5.13)
w = Z q,(ty W(x,0)

where the functions q(t) are the generalized coordinates and the spatial functions U, V,

W are given by equation (5.2)

(b) the deformation vector is written as a function of the generalized coordinates by

separating the linear portion from the non-linear;
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{e} = {e} + {en) = { € €6 264 K Ko 2Ky 7 (5.14)

where subscripts "L" and "NL" mean "linear" and "non-linear”, respectively; ¢,,, €ge,
€0 Trepresent the deformations of reference surface and «,,, kgg, K are the changes in
curvature and torsion of the reference surface. These expressions are given in ref. [25-

26]

© these expressions are then introduced into the Lagrange equations up to and

including the degree corresponding to the deformation energy;

(d) by substituting the expressions in a) into the strain-displacement relations in the
Sanders-Koiter [25-26] non-linear theory, the generalized coordinate coefficients

appearing in the equation derived under c) are determined in terms of spatial functions.

The dynamic behaviour of an empty cylindrical shell, in the absence of external

loads, can be represented by the following non-linear modal equations [18]:

zmprsr * Eké‘l:)ar M sz?(:u)aras * Z E zk;:flj)arasaq =0, p=1i§’1'5)
r r ros r s g .

where m,,, k, ™ are the terms of mass and linear stiffness matrices given by equation

(5.12); the terms k,;™? and k™ which represent the second and third non-linear
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stiffnesses may be obtained by the following integrals in the case of the laminated

orthotropic open cylindrical shell.

(:u) ) J I {p“AprS * pZ‘.’Bprs * plZ(Dprs * Eprs) * p33cprs } dA (5.16)

and

.17
kp(:?) ) J J {p“AP“q * panrsq * plZ(Dprsq M Eprsq) * p33cpxsq } dA

where dA = Rdxd#, p; are the terms of the elasticity matrix [P], and the terms A, B,.
Coess Dpnsy By and Ay, Bigs Corsgs Dy Eprsq Tepresent the coefficients of the modal

equations mentioned in step d). These coefficients are given by the following equation:

A =3 ,AvaA va Al Ag = 2A A,
B, = b,B,+b,B_ +b B, B, = 2B, B,
Cons = cpC5+chsp+cstf Cosq = 2C.C,, (5.18)
Dprs = arBsp+asBpr-t-prrs Dprsq =2A, B,
E, = b A,+bA +a B _ E . =2B A,
with
a="U b—l(V + W ) c=1(U""’+V y (5.19)
P Tpx PR - pf p P. 3 "R p.x
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L 1
qu = ﬁ{_z (Rvp,x - Up_a)-(RVqJ - Uq.a) + 5 wp.qu.x (5.20)
1
B, = — RV, - U, .(RV,, - U,
Pq 8R12 P p.8 q. q.6 (5.21)
T (Weo = Vi) (Wge = V)

=1 1
Coa = R WeuWas = WouWo0) - o (V, We, + VW) (5.22)

Pq

where U, V and W are spatial functions determined by equation (5.5):

In equations (5.18) to (5.22), the subscripts 'p,q’, 'p.r.s’ and ’p.r,s,q’ represent

the coupling between two, three and four modes respectively.

Introducing equation (5.5) into equation (5.19), we obtain:

_ > 6 N () R m _ _= .23

a, = Cpalp e™, a’ =a, sinmx, a, = -mq, (5.23)

_ T I R m _ Ty * 1 5.24

b, = C,b’e™, b’ =b, sinmx, b, = e (5.29)
_ a m

c, = Cpcp’e""", c, = c,’ cos mx, c.’ = nZPRP + f" (5.25)

And introducing equation (5.5) into equations (5.20) to (5.22), we obtain:
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= 1 o (0, om0 (RN () 2 =
qu Cpapq e Cq, a, a,, COS” mX,

! . (5.26)
ay, = = [RmB, -a,7,[RmMB, -, 7,] + —2-512

- v o (m, *n)0 LN ¢ 2 = @ 2 =
qu = Cpbm e Cq, bpq by, €OS® mx + by sin® mx ,

b - # [RMB, -a,7,)[RmB, -o, 7, ] (5.27)

1
2R?

@ _
by =

[n, - B,l{n, - B,]

_ s o -0 )8 y _ — .=
Cpq = Cpc:Pq e Cq, C,, = Cpq COSIX sinmx,

(5.28)

(1 m
Cpq = ==
4R

[n, + 0, - B, - B]
7, (P=1,..8) are the roots of characteristic equation (5.3); «, and 3, are given by relation
(5.4); R is the mean radius of the shell; m = mx/L where m is the axial wave number

and L the length of the shell.

The constants C, (p=1,..,8) and C, (q=1,..,8) may be obtained from equation

(5.6) as follows:
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{C} = [A-l]{;i } (5.29)

The matrix [A'] is the inverse of [A], where [A] is given by equation (5.6) and listed

in Appendix AS-3.

Here we are limited to solving the equation of motion in the cases where the
coupling between different modes is ignored. The fact nevertheless remains that the
present theory constitutes a general approach to the dynamic study of non-linear

cylindrical shells.

Assuming r=s in equation (5.16), replacing the terms of A, B, Cp5, D, and
E,s by their expressions (equation 5.18), using relations (5.23 - 5.28) and then
integrating over x and @, we obtain for the second order non-linear matrix for an empty

element the following expression:

[K™MD] = [A-T[JMD][A] (5.30)

where the (p,q) term in matrix [JN] is written as:



J™N(p,q) = |

.
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8
R GG(p'q) m, ~m, -n) _ 1
g(np*fnq*fnk)[e ]

5.31
if 9, + 9, + 1 #0 ¢ )

8
Y R GG@p.9 ¢ ifg, +n, +7 =0
k=1

GG(p,q) is a coefficient in conjunction with «, 8, n and element p;; in matrix [P]. The

general expression of GG(p,q) is:

-1

GG(p.q@) = p, L[ 3" A, al +al" Aqk a, +a Ay ay ]+
pz_I [ b(l) -l b(l) b(l) A b(l) - b“) Ak-pl b;;) ] +

pulz[ b(l) 'l b‘:i) b(l) Aqk bk(;) + b(l) Ak—pl bp(z-) ] +

1 .

‘v -1 (M W Ao b m L -l
Pisl[ S Apg Cae + € A Ciqg *C Ay Cpg

qk

M A=l p W ) M 4 -1 ()
Pol[ a4 bp + & Akp bpg + by Apg 2+

qk

bél) Aq-kl a:;) b(ll Ak;l ;c[l) - a;l) -l b( ] -
plzlz[ a';l) Aq-k bk + ak(l) Akp b(’) + a(l) Ap-ql b(2) (5.32)

where:

1

I =

1 m - = _
37::1[1"(-1) l, L =2[, m =m=/L (5.33)

The terms a,", b, ¢, a,*, by, ¢, and b, ? are terms appearing in expressions
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of coefficients a,, b, ¢,, Ay, By, and C,, [relations (5.23 - 5.28)] and A" is the term

(p,q) of matrix [A™], where [A] is the matrix defined by relation (5.6).

Assuming r=s=q in equation (5.17), replacing the terms of A, Bq: Corgr Dore

and E,,, by their expressions (equation 5.18), using relations (5.26 - 5.28) and then

integrating over x and 6, we obtain for the third order non-linear matrix for an empty

element the following expression:

k™) = [ATTIMD][A] (5.34)

Where the (p,q) term in matrix J¥ is written as:

J(NU) (P,Q) =

8

y 3 RLEQK SS@@ oo -n-n-w _ ]
k=1 =l 8(71,, L R PR n,)

£+t +m =0

8 8
> ¥ £ RLEWK SS@a) o ifn, +n, +m +m =0
k=1 =] (5.35)
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E(l.k) is the term (1,k) of matrix [E], where [E] represents a matrix of constants defined
by [E] = [A™M]T[A"], SS(p.q) is a coefficient in conjunction with «, 8, 5 and element

p; in matrix [P]. The general expression of SS(p,q) is:

SS(p.9) = 3p, 2y aG + Py GbY bY + IbH bZ + b’ bD «

bprl2 ) bk(;)) * Pi3 c;ll) Ck(;) + P (3ap(l1 ! b{f,’ + a;,l) bg) - (5.36)

M ,m @ M
3by a, + by ag)

where the terms a,", b, ¢, and b, @ are coefficients given in relations (5.26 -5.28).

5.6 DYNAMIC BEHAVIOUR OF THE FLUID-SHELL INTERACTION

The pressure exerted by the fluid is given by using a non-linear development of
the Bernoulli equation. From the solution of the potential equation we derive an
expression of non-linear pressure as a function of 1) the nodal displacements of the fluid
element, 2) the inertial, centrifugal and Coriolis forces and 3) a combination of non-
linear effects. Through the usual finite element procedure, we obtain the linear mass,
damping and stiffness matrices for the fluid as well as the non-linear matrices for

damping and stiffness and a combination of the two.
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The mathematical model which is developed is based on the following hypothesis:
(i) the fluid flow is potential; (ii) vibration is non-linear; (iii) pressure on the wall is
purely lateral; (iv) the fluid mean velocity distribution is assumed to be constant across

a shell section and (v) the fluid is incompressible and non-viscous.

5.6.1 Dynamic pressure

With the previous hypothesis, the potential function must satisfy the Laplace

equation. This relation is expressed in the cylindrical coordinate system by:

1 P
qu) ) ? (r(px).r * r'go M F 0 (5.37)

¢ is the potential function that represents the velocity potential.

Therefore:

@
Vv =Uxu+(p‘x; Vez_i'.e.; Vf:"pJ (5.38)

where V,, V, and V, are respectively the axial, tangential and radial components of the

fluid velocity; U,, is the velocity of the liquid through the shell section
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The Bernouilli equation is given by:

P
(pt+lV2+_‘i|r=£=0 (5.39)
. ] »

Introducing equation (5.38) into equation (5.39) and taking into account the linear

and non-linear terms, we find the dynamic pressure P,:

(9,)° ,
Py = ~Pg [m * Un 0, 51 [ (@) + q;f * () H e &

where u subscript represents "i: internal" or "e: external" fluid as the case may be:
pt rep 4

(5.41)

=

e
n
0]

P
|

i then & =R,

N |~

(5.42)

]
~
+

if u=e then £ =R,

N

A full definition of the flow requires that a condition be applied to the structure-

fluid interface. The impermeability condition ensures contact between the shell and the

fluid. This should be:
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U2
V.| = =W +UW. + 2w 2 (5.43)

=R q’.r |r=R K X 2 XX Ir=

From the theory of shells (equation 5.5), we have:

8
Wx8,t) = 3 Ce'fsin 5 et (5.44)
i=t

Assuming then,

8
e(x0,n,t) =Y R® S;(x,6,1 (5.45)
j=1

and applying the impermeability condition (equation 5.43) with the radial displacement
given by relation (5.44), we determine the function S; (x, 6, t) explicitly. Using equation

(5.37), we find the following differential Bessel equation:

2 .
2 ddRrJZ(r) ‘r d.Rdfﬂ . Rj(r) [(_ﬂ%‘fi)z 2 - (inj)z J =0 (5.46)

2

where i is the complex number, i* = -1 and #; is the complex solution of the

characteristic equation for the empty shell (relation 5.3).
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The general solution of equation (5.46) is given by:

_ imn . imr
R(r) = AJin;(Tr) Bij(—L—r) (5.47)

where J;; and Y, are, respectively, the Bessel functions of the first and second kind of

complex order "i;".

For inside flow, the solution (5.47) must be finite on the axis of the shell (r=0);
this means we have to set the constant 'B’ equal to zero. For outside flow (r — oo); this
means that the constant A’ is equal to zero. When the shell is simultaneously subjected

to internal and external flow, we have to take the complete solution (5.47).

We carry the Bessel equation solution back into (5.45) to obtain the final

expression of velocity potential evaluated at the shell wall:

(5.48)

it Xu U jx 2 jxx

imnR U:u
‘pu(r,eaxat)j = Zu"(——L—) W +U W._+ — W,

where
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2 ( imRu] i R, fu -
Y imnR, T, . (immR /L) (5.49)
L J, (imxR,/L)

inj -

im7R, R, |
Z . = ifu =

“’( ) R, Y, (miRjL) (550
L Y, (immR/L)

where 9; (j = 1,..., 8) are the roots of the characteristic equation of the empty shell; J;;
and Y, are, respectively, the Bessel functions of the first and second kind of order "in;";
m is the axial mode number; R is the mean radius of the shell; L its length; the subscript

"u" is equal to "i" for internal flow and is equal to "e" for external flow.

Substituting relation (5.48) into the non-linear condition (5.40), we obtain the
equation for the pressure on the shell wall. It is useful to separate the total pressure into

its linear and non-linear terms:

P, =Py +Puq (5.51)

where
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(5.52)
U
U,‘,JW”x + > ij
and
e & & ) u;
xu
Pa = =57 1 kz’: ZZu L Wia Wi * UaWin Wi + 77 Wi Wi *
1* *
3 2
2UWieWin * UnWin Wi * UnWiaWies 1 * (5.53)

4

Tl'flk 2 U
([’{—zu].zuk s DWW, + U, W, W, v TNanWm +

-
-

2U W, W, - ULW, W, «ULW, W, __]

xu gt kx o xu Ut

5.6.2 Linear matrices for the moving fluid

By introducing the displacement function (5.44), into the dynamic pressure
expression (5.52) and performing the matrix operation required by the finite element
method, the mass, damping and stiffness matrices for fluid are obtained by evaluating the

following integral:

[ [NT*{P, }dA. (5.54)
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we obtain:

[m®™] = [ATTF (ST (A7)
1 = (AT [DP] [A7Y (5.55)
(k1 = (AT (GP1 [A™Y]

The matrix [A] is given by equation (5.6) and the elements of {S;"], [D{"'] and [G"]

are given, as follows:

sP,s) = —% I.06Z, (5.56)

@ _ Rm? r? 2 5.57)
Df (r,s) = T Its pquxu Zus (5.

L _ Rm? =? 2 (5.58)
Gf (r,S) = T IlspquXl-l Z .

where r, s = 1,....8; pg is the density of the fluid; U,, is the velocity of the fluid; Z,
is defined by relations (5.49) and (5.50); the subscript "u" is equal to "i" for internal

flow and is equal to "e" for external flow and I; is defined by :
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_ 1 (n,+n )4
= e - 1] fornq, +1n, =0
(m.+n) [ ] (5.59)

s

I.=¢ forn +n, =0

wherer, s = 1,...,8; », are the roots of the characteristic equation of the empty shell and

¢ i1s the angle for one finite element.

Finally, the global matrices [M®], [C'] and [K/'] may be obtained,
respectively, by superimposing the mass [m/"], damping [c"] and stiffness [k ]

matrices for each individual fluid finite element.

5.6.3 Non-linear matrices for the moving fluid

We use the procedure outlined in the previous section, ignoring the cross products
in the non-linear dynamic pressure expression (5.53). We obtain the following matrices
for the non-linear effects:

[er 1 = AT [DA™] [A]

[ked™] = (A7 [GDMNM] [A ] (5.60)
k™) = (AT [GTV] (AT

The matrix [A] is given by equation (5.6) and the elements of [DV], [GD™Y] and

[G™Y] are given, as follows:
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on o | mm? n,
DM (5,s) = __22[[rs l (EL’.‘_) Z2Lo + _R_zzfslss - } (5.61)
2
P s n,
G " (@s) = Tﬁlnrs {szu (I—nLﬁ) zxzusIsa * E;(%)zzilscz * (%)zlscz }
U:u mn. %2 le MR 4.2 mx .4
T | ) el ‘E(T) Zuslss + ()
(5.62)
aDM™ () = - LR vz | (B z21,, - "—;(E)szsls3 -
2 ° L Rz L (5.63)

where r, s = 1,...,8; pg, is the density of the fluid; U, is the velocity of the fluid; Z

is defined by relations (5.49) and (5.50); the subscript "u" is equal to "i" for internal
flow and is equal to "e" for external flow; Il is defined by:
1 (1, *29)¢
0 =————le™ —1] forn, +2n, =0
5 (m,+2n) [ ' (5.64)

oI =4¢ forn, +2n, =0
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where r, s = 1,...,8; 7, are the roots of the characteristic equation of the empty shell

and ¢ is the angle for one finite element, and I, and I are defined by:

L -
b = 3py L1 D7) (5.65)
Iy = 5= [0 - 3¢-DP ]

where m is the axial mode number and L is the length of the shell.

Finally, the global matrices [C™V], [KC,"Y] and [K™] may be obtained,
respectively, by superimposing the non-linear damping [c,""], non-linear combination
of damping and stiffness [kc"] and non-linear stiffness [k“] matrices for each

individual fluid finite element.

5.7 INFLUENCE OF THE NON-LINEARITIES ON THE NATURAL

FREQUENCIES

Taking into account the linear and non-linear matrices of the shell and of the fluid
and in the case where the coupling between different modes is ignored, the dynamic
behaviour of the open or closed cylindrical shell containing flowing fluid can be

represented by the following system:

7N



218

IM®1 {8} - [CP] {8} + [K™M] {8}
- [KM™1 {8 + (K™ {8 (5.66)
- [CAM] 8% - [KCM™M] (86} - [KM™] {82 = {0}

where: M®] = M,] - MY]; [KY] = [KY] - [K®M;

{6} is the displacement vector; [M,], [K\™] are the global mass and linear stiffness
matrices for the shell in vacuo; [K™?], [K.M] are the global second and the third
order non-linear stiffness matrices of the shell in vacuo; [M/"], [C/*'] and [K,"“] are the
global linear mass, damping and stiffness matrices for the fluid; [C™V], [KC™"] and

[K{™M] are the global non-linear matrices for the fluid.

These matrices are square matrices of order 4(N +1), where N represents the number
of finite elements. In practice, very specific conditions are applied to the shell
boundaries. Thus, matrices are reduced to square matrices of order NREDUC =

4(N+1)-J, where J represents the number of constraints applied.

Setting:

{8} = 1] {aq} (5:67)
where [®] represents the square matrix for the eigenvectors of the linear system and {q}

is a time-related vector.
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Substituting equation (5.67) into system (5.66) and multiplying by [®]T, we

obtain:
IMPPP {a} - [CP1P {q} + (KPP {q} +
[TIIKTA®] {a})? + [2T1IK "™ 1(®] {q})® - (5.68)
[®T1{CM1(®] {4}) - [®TIHKCM™1[®] {q}[®] {a} -
[T1K (2] {q})* = {0}
where:

IMPP = [¢T}[MP][®]
[CPP = [87] [CP][8] (5.69)
[Kl“')]D - [q,r] [K((L)][‘b]

where D stands for diagonal, the matrices quantifying the fluid contribution to the matrix
equations of motions are non-symmetric. To facilitate the analysis, therefore, we consider
only the symmetric portion of the matrices. This simplifying hypothesis is valid, since
the original and simplified systems have comparable dynamic behaviour, the maximum
variance between the natural frequencies obtained for the two systems is in order of 20%.

(see ref. [23] for more justification).
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We saw how matrices contained in the linear part of system (5.66) could be
reduced to diagonal matrices. On the other hand, by neglectiong the cross product in

([®1{q})’,... of equation (5.68) we obtain:

NREDUC

md, - ci'g ki’ v Y (kg < kg (5.70)

j=t

- Mg’ - KC{Vqg, - Kig) =

)

where coefficients m;, ¢, and k; represent the i"" diagonal terms of linear matrices
MMP, [CH]° and [K®M]°, respectively; k™2 and k;™™ are the (i,j) terms of the
products ([®]" [K,"“] [$]?) and ([8]" [K"©] [8]%); C;™Y, KC;™ and K™ are the (i,j)
terms of the products ([8]7] (CM] [#]%), ([2]7) [KC™] [2F) and ([2]7] [K(™] [219),

respectively.

Here we have "NREDUC" simultaneous equations of the form of (5.70).
Numerical solution of such a system is difficult and costly. At first, we limit ourselves
to solving equation (5.70) by taking into account only the diagonal terms of the products

([®]7] [(KN] [®]%),... and therefore equation (5.70) is written as follows:

myd, - ci’q + kPq, « k"7 + kg’ (5.7)

- CV¢? - KCM™qq, - KiPq' =0

Setting:
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q(7) = Affi(r) with f(0)=1 and f,(0)=0 (5.72)

Equation (5.71) becomes, after the A, simplification and dividing by m, :

£- kf o+ @l f, + NADE + o (AJE
£ - kf + o, +>\ (A,/f)f, + o (A (5.73)
- (Ai/t)[gqf; + §fF + viff] =0

where
@ w
O M (5.74)
m; my
(NL2) L)
NSt e (5.75)
m; my
C .(.NL) KC _(.NL) K'('NL)
g-l = ;[ ; Ei = " t ; -Yi = " t (5-76)
my mii il

where t represents shell thickness, the coefficient [k;/m,] represents the i® linear

vibration frequency of the system.
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The solution f(7) of the non-linear differential equation (5.73) which satisfies the
conditions in (5.72) is calculated by a fourth order Runge-Kutta numerical method. The
linear and non linear natural frequencies are evaluated by a systematic search for the fi(7)
roots as a function of time. The wy/w;, ratio of linear and non-linear frequency is
expressed as a function of non-dimensional ratio (A;/t) where A, is the vibration

amplitude.



223
5.8 CALCULATIONS AND DISCUSSION

The influence of non-linearities associated with the wall of the shell and with the
fluid on the open or closed cylindrical shell’s free vibrations is expressed by equation
(5.73). For a shell of given physical characteristics, we first present the results for the
convergence of the model and, second, those obtained by the present method in the case
of linear vibration. Then the ratio wy/w, of linear and non-linear frequency is
graphically represented in Figures 5.5 to 5.10 with respect to the non-dimensional ratio,
A,/t. The straight horizontal line represents the linear vibration cases, where the

frequency is independent of the motion’s amplitude.

5.8.1 Convergence of the method

A first set of calculations was undertaken to determine the required number of
finite elements for a precise determination of natural frequencies. Calculations were made
for the same closed cylindrical shell completely filled with internal fluid for the number
of finite elements N = 2, 4, 6, 8, 10, 15 and 20. This steel shell is simply supported

at both ends and has the following data:

R=37.7mm, t=0.229mm, L =234mm, »=0.3, p./p =0.128
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The results form = 1 and forn = 2, 3, 4, 5 and 6 are shown in Figure 5.3. We
conclude that the convergence of the shell-fluid system demands ten elements for both

the low and the high modes.

5.8.2 Linear free vibration of closed cylindrical shell

We present a calculation to test the method incorporating linear analysis which
is developed in this paper. The closed cylindrical shell is simply supported at both ends
and has the same physical properties as those given in the previous section. This shell
was studied by Goncalves and Batista [3], who used the Rayleigh-Ritz technique to obtain
the natural frequencies of the shell-fluid system. Figure 5.4 shows the linear natural

frequencies as a function of the circumferential mode number n for the axial mode m=1.

As may be seen the results obtained by the present method are in good agreement
with those of Goncalves & Batista [3]. For the case of empty or liquid-filled shells, there
is the well- know dip in the frequency curve as the shell makes a transition through the
lower values of n. This phenomenon can be explained by the interchange in the relative

contributions of the bending and stretching strain energies of the shell.
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Number of Finite Elements

Linear natural frequency for a simply-supported closed cylindrical
sheli completely filled with internal fluid as a function of the number
of finite elements;

n is the number of circumferential mode,

m is the number of axial mode.

R=37.7mm, t=0.229 mm, L=234 mm, v =0.3, ps/p =0.128
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Linear natural frequency for an empty and liquid-filled closed simply-
supported cylindrical shell as a function of the number of
circumferential mode n; (m=1).

R=37.7Tmm, t=0.229 mm, L =234 mm, v =0.3, Pa/P,=0.128
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5.8.3 Non-linear free vibration of closed cylindrical shell

5.8.3.1 Empty shell

This set of calculations is designed to determine the influence of geometric non-
linearities in strain-displacement relations on the free vibrations of an empty isotropic

cylindrical shell, simply-supported at both ends. The shell has the following properties:

¢ =wRm/nL =2, ¢ =(@?/R)?> =1 and v=0.3

The variations in frequency ratio as a function of A/t for this shell (Figure 5.5)
were calculated using the present method, and compared to the results of Evensen [13]
and Atluri {15]. Evensen’s analysis involved a two modes approximation and his equation
was obtained using the Galerkin procedure. The work ot Atluri is based on Donnell’s
equations, a modal expansion was used for displacements and the Galerkin technique was
used to reduce the problem to a non-linear ordinary differential equation for the modal

amplitudes.

As may be seen, the results obtained by the present method are in satisfactory

agreement with those of other authors.
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Figure 5.5  Comparison of the effect of amplitude upon frequency for an empty

simply-supported closed cylindricai shell.

{=rRm/nL=2, x=(n’t/R)*=1, v=0.3
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5.8.3.2 Submerged shell

The second comparative example is shown in Figure 5.6, the closed cylindrical
shell is simply-supported at both ends and completely submerged in liquid. The pertinent

data are as follows:

E=21.981 X 10"N/m?, »=0.3, p,/p, =0.128
R=0.235m, t=0.00235m, ¢,=360°.

This case was previously analysed by Ramachandran [17] who used the Rayleigh-
Ritz procedure. In his study, he took into account only the influence of non-linearities
associated with the shell and neglected the effect of non-linearities associated with the

fluid. In addition, only lateral displacements were considered for the non-linear analysis.

In Figure 5.6, we present a comparison between the present work and that of
Ramachandran [17], and show results for differents modes and geometry. For ratio
L/R = 4 and the mode (n = 4, m = 1), we observe that the ratio between linear and
non-linear natural frequency decreas as ratio A/t increase. The variations are small for
values A/t below 1.0. For the value of A/t = 2, the variation calculated by the present
method is more pronounced than that of Ramanchadran [17], the results obtained are in

agreement within a range of 5%.
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Figure 5.6  Comparison of the effect of amplitude upon frequency for a
submerged simply-supported closed cylindrical shell.
E=21.981 x10"'"N/m?, v=0.3, p/p,=0.128
R=235mm, t=2.35mm, ¢, =360°.
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For ratio L/R = 2 and the mode (n = 8, m = 1), we observe that the ratio
between linear and non-linear natural frequency decrease and is more pronounced than
the previous results. For the value A/t = 2, the variation calculated by the present
method is less pronounced than that of Ramanchadran [17], the difference between the

two results is in order of 25 %.

5.8.4 Non-linear free vibration of an open cylindrical shell totally submerged in

liquid and subjected simultaneously to an internal and external fluid

One of the great advantages of the finite element method is the ease with which
it can be applied to any geometry and any boundary condition. Thus, this step of
calculation is to study the non-linear dynamic characteristics of an open cylindrical shell
totally submerged in liquid as a function of flow velocity, circumferential and axial

modes, boundary conditions, material properties, etc...



232

5.8.4.1 Influence of non-linearities associated with the wall of the shell versus

non-linearities associated with the fluid

In this first calculation, we analyse the influence of non-linearities associated with
the wall of the shell versus the non-linearities associated with the fluid at rest. The study
is made on an open cylindrical shell totally submerged in fluid. Calculations have been
made by solving equation (5.73), both when the non-linearity associated with the fluid

is taken into account and when it is not taken into account.

The steel open shell is simply-supported at the four edges and has the following

data:

R=450mm, t=1.5mm, L=1350mm, ¢,.=100°, po,/p =0.128

The results for this analysis are presented in Figure 5.7. We observe that the

influence of non-linearities associated with fluid on the dynamic behaviour of the shell-

fluid structure is negligible.
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Figure 5.7  Influence of non-linearities associated with the wall of the shell versus
non-linearities associated with the fluid at rest for a simply-supported
open cylindrical shell.

R=450mm, t=1.5mm, L=1350 mm, ¢,=100°, p,/p_=0.128
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5.8.4.2 Effects of flow velocity

In order to establish the effect of the flow velocity on the non-linear free

vibration, we turn to Figure 5.8.

The parameters of the investigation are as follows: m = 1, n = 9 and 10;
Reynolds number, Ry =0.0 and 1.0 10°, with Ry = 2 U, R p;/ v;, where U, is the mean
velocity of the flow, R is the average radius of the open cylindrical shell and p; and »;

are respectively the density and viscosity of the flowing fluid.

The other data are:

R=225mm, t=1.5mm, L=1350mm, ¢.=120°, p,/p =0.128

The Figure shows that the non-linearity is of the softening type for circumferential
mode n = 9 and is of hardening type for n = 10 for both flow and no-flow condition.
We see also that the non-linear effect is more pronounced for the shell-fluid system when

the fluid is moving. The difference between the the cases is of the order of 10%.
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Figure 5.8 Influence of large amplitude on the natural frequency of a submerged
clamped-clamped open cylindrical shell for different Reynolds
numbers.

R=225mm, t=1.5mm, L =135 mm, ¢,=120°, p,/p =0.128
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5.8.4.3 Effects of material properties

With the same geometric data, Figure 5.9 shows the effect of non-linearities upon
frequency for different material propertics. When the open shell is simply-supported at

the four edges and is completely submerged in water, the data are as follows :

R=450mm, t=1.5mm, L=1350mm, ¢,=180°.

The materials chosen are steel, acrylic, rubber and an orthotropic material where

the physical properties are:

E,=1.0x 10'"N/m?, E,=0.05xE, »,=0.2, »,=0.05Xv,
G_,=0.05XE,, p,=7800N/m’,

We observe for the mode (m = 2. n = 3) that the steel shell is the one on which
the effect of non-linearity is more pronounced, the orthotropic shell is the one on which

the effect of non-linearity is less pronounced.
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Figure 5.9  Influence of large amplitude on the natural frequency of a submerged
simply-supported open cylindrical shell for different material
properties, (m =2, n = 3).

R=450mm, t=1.5mm, L = 1350 mm, ¢ =100 °, p = 1000 Kg /m
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5.8.44 Effects of the circumferential mode n

In Figure 5.10, we present the effect of large amplitude on the frequency ratio
as a function of A/t for axial mode m=1 and circumferential mode n = 6 to 12. The
open shell is clamped along the straight edges and simply-supported along its curved

edges. The data for the steel shell are:

R=225mm, t=1.5mm, L=1350mm, ¢,.=120°, p./p,=0.128

The Figure shows that the non-linearity is of the hardening type for
circumferential mode n = 10, 11 and 12 and is of softening type for n between 6 and
9. We see also that the non-linear effect is more pronounced for the mode n = 6 and the

variation is small for the case of n = 9.
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Figure 5.10 Influence of large amplitude on the natural frequency of a submerged
clamped-clamped open cylindrical shell for various circumferential
mode n and axial mode m = 1.

R=225mm, t=1.5mm, L =1350 mm, ¢,=120°, p/p_=0.128
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5.9 CONCLUSIONS

The method developed in this paper demonstrates the influence of the non-
linearities associated with the wall of the shell and with the fluid flow on the free
vibrations of totally submerged open or closed cylindrical shells, subjected simultaneously
to an internal and external flow. It is a hybrid method, based on a combination of non-

linear thin shell theory, non-linear fluid theory and the finite element method

An open cylindrical finite element is developed, in order that the displacement
functions can be derived directly from classical thin shell theory. Mass and linear
stiffness matrices are then obtained for the empty shell by the finite element method.
With the modal coefficients derived from the Sanders-Koiter non-linear theory of thin
shells and corresponding to non-linearities in strain-displacement relations, the second
and third order non-linear stiffness matrices are then calculated using the finite element

method.

The pressure exerted by the fluid is given using a non-linear development of
Bernoulli’s equation. From the solution of the potential equation we derive an expression
of linear and non-linear pressure as a function of the nodal displacements of the fluid
element, the inertial, centrifugal, Coriolis forces and a combination of non-linear effects.

Through the finite element procedure, we obtain the linear mass, damping and stiffness
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matrices for the fluid as well as the non-linear matrices for damping and stiffness and a
combination of the two.

The non-linear equations of motion are solved by the fourth-order Runge-Kutta
numerical method. Variations in the free vibration frequencies are determined in
conjunction with motion amplitude for a closed or open cylindrical shell, empty or

submerged in flowing fluid. Deviations in terms of linear vibrations are observed.

This method combines the advantages of finite element analysis which deals with
complex shells, and the precision of formulation which the use of displacement functions

derived from shell and fluid theories contributes.

This area of investigation is still wide open and there is very little on the subject
in the literature. We are unable, therefore, to confirm whether, in the context of a
dynamic analysis, we are justified in completely neglecting the influence of non-
linearities associated with fluid flow. On the other hand, the effect of geometric non-
linearities associated with the walls is not negligible and should be taken into account in
calculating the dynamic behaviour of shell-fluid interactions when the amplitude of

vibration is greater than the thickness of the shell.
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5.11 NOMENCLATURE

LIST OF SYMBOLS

A, B, C
A;

aP’ bP’ CP

ap(l)’ bp(l)’ cp(l)
a6, b el
aA,r, bByry, €Cps,
aB,, bA,,,

qu’ qu’ Cpq

Aprsqr Borgr Corsgr

AB .., BA

prsq» prsq

E

Constants in equation (5.2) defining U, V, W respectively
Motion amplitude
Modal coefficients determined by equation (5.19)

Coefficient determined by equations (5.23 - 5.25)

Coefficient determined by equations (5.26 - 5.28)

Modal coefficients determined by equation (5.18)

Modal coefficients determined by equations (5.20 - 5.22)

Modal coefficients determined by equation (5.18)

Young’s modulus

Exponential

Function determined by equation (5.72)
Coefficient determined by equation (5.32)

it =-1

Bessel function of the first kind and of order i,

Length of the shell



~ 7~

w

—

SS(p.q)

U, v, w

xu

V., Vg, V

r
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Axial mode number

Number of finite elements

Circumferential mode number

Lateral pressure exerted on the shell, u=i for internal pressure
and u=e for external pressure

Terms of elasticity matrix (i= 1,...,6 ; j= 1, ..., 6)

Mean radius of the shell

Solution of Bessel equation (5.47)

Defined by equation (5.45)

Coefficient determined by equation (5.36)

Thickness of the shell

Axial, tangential and radial displacements

Velocity of the liquid

Axial, tangential and radial fluid velocity (5.38)

Axial coordinate

Bessel function of the second kind and of order in;

Defined by equation (5.49) for u=i and equation (5.50) for u=e
Complex roots of the characteristic equation (5.3)

Determined by equation (5.4)

Circumferential coordinate

Poisson’s ratio
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10 Opening angle for one finite element

b7 Opening angle for the whole open shell

$ Velocity potential

s Density of the shell material

Pe Density of fluid, u=i for internal fluid and f = e for external
fluid

Wy, Linear frequency of free vibrations

WNL Non-linear frequency of free vibrations

T Time related coordinates

W, K Coefficient determined by equation (5.74)

N, o, Coefficient determined by equation (5.75)

Co £, Coefficient determined by equation (5.76)

LIST OF MATRICES

[A] Defined by equation (5.6)
[B] Defined by equation (5.8)
(S I (e | Linear and non-linear damping matrices for a fluid finite element

{C} Vector of arbitrary constants



[D™]
(D]
[G™]
[G™Y]
[GD]
k™ k™
[k, [k,
(k"]
[ke ™M)
[m "]
(m]

[N]

[P]

[Ql

{q}

[R]
[S“]
(Tl

{o:}

{8}

{o}
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Defined by equation (5.57)
Defined by equation (5.61)
Defined by equation (5.58)
Defined by equation (5.62)
Defined by equation (5.63)
Linear and non-linear stiffness matrix for a fluid finite element

Linear and non-linear stiffness matrices for a shell finite element

Defined by equation (5.60)

Mass matrix for a fluid finite element

Mass matrix for a shell finite element
Displacement function defined by equation (5.7)
Elasticity matrix

Defined by equation (5.8)

Time-related vector coordinates

Defined by equation (5.5)

Defined by equation (5.56)

Defined by equation (5.5)

Vector of degrees of freedom at node i
Vector of degrees of freedom for total shell

Stress vector
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{er} {enr} Linear and non-linear components of the deformation vector,
respectively

[®] Matrix of eigenvectors, equation (5.67)
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APPENDIX AS5-1

EQUATIONS OF MOTION

This appendix contains the equations of motion for a thin orthotropic cylindrical

shell.
_ FU P , FV W F W

OV TP R G e P e
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U P >V W W
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APPENDIX AS-2

Characteristic Equation (5.3)

by n® + hgn® + by n* + by n* + by =0

where

2
hy = f f, £, - £ £
hy = £ fs £y, + £ 5 £y - 2, f £
2 2
+ 6 fsfo - £y - £ £

£ f £, + £, £, f, - f; f,

h, = f f f, + £, £, £, - f fg2 + 1, £ £,

vh 6 - 26 fg fy - 5 fp+ 661,

+

£, fo £ + £, £, - £5 £, - f, f, £,

+

£ 6, f - f, f, f,

2
=fi i, v+ ff, + 6,66, -6

N

-f f, +E f - f f £ + £, f

- £ f, f, - 2 f,

2
h, =f £ f, - £, f5

o
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The coefficients f; (i = 1,...,12) are given by the above equations :

1 1 1
f1=E(Pss”_P36+_P66)

R _ 4R?
f2=-p“512
Y LN H I I
3 R G 13 2B 3 RS
m 1
f, = P(Pls+2p36 KP“)
P, _ -
f5=—§—m+P14m3
1 1 2
fs = E(Pzz*'FPss*E 25)
~ 3 9
f‘r:m(Pss*EPss*@Pss)
1 1
fs=‘—3(P25+EP55)
1 1 m? 3 1
f9=‘§(Pzz+'ﬁPsz)‘_R‘(sz*Pu*EPss*Eps‘t)
1
fio = ijpss
£, = = Py + B P, + 4Py
nT o3 a5
1 2 - -
fo=- 2 Pp- o B @ -B, i
and m = m-
L
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APPENDIX AS-3

MATRICES

MATRIX [T ls.

[T_] = Diag[ cosmx, sinmx, sinmx ]

m =

m~n/L

MATRIX [R]g,s

i

R(Lj) = e
RQ2.j)
RG3.j) = Be

1]
(14
e
]
Pt
0o

MATRIX [A] g

A(Lj) = o
AQ,j) =1
AQ,)) = n,
A@.j) = B

°

A(S.j) = ae”
A@G.j) = e
A7) = ne™

AG.j) = Be™
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MATRIX [Ql.s
Q(Lj) = Ae™  Q@j) = D
Be' Q) = Ee"
Ce™ Q. = Fe"

The terms A;, B;, C, D;, Ejand F; (j = 1, ..., 8) may be expressed as follows:

_ mnal
L k]
leB,-+1
R b ]
mw B on
L R
_ (m n)?
L
n; + n; B;
RZ
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MATRICES [m] 5,5 and [k4] 5.4

Img] = [AMT[ST[A7'],  [kM] = [AT [G] [A"']

where [S] and [G] are defined by the above equations:

. a.+B. B. + 1 o .
S(l,)_RL ( i Bl ‘3] ) (e('lg e 1) ifn.+n. =20
J 1 ]
2 (n;+ ny)
S = 2¢(aiaj+ﬁiﬁj+l) ifn; +m =0
.. RL
G @) = — @y A Ay + P A B + Py A D + pis A E;
* Py B; Aj + Py B; B; + py, B, D; + pys B; E

* Pay D; Ay + py D; B; + py D; D; + p; D; E
* Psy E; A; + ps; E; B, + py E; D; + pss E; E;
*Pi3 GG+ G F +pg; F C + pgs F F)

( e(ﬂ; e l‘lj)¢ -1 )

if'r].+<r|.¢0
(m; +ny b

... RL .
G(i,j) =T‘i’(p11 A A + ...+ pg F, F) if n, +n =0

The terms A;, B, C;, D, E;and F; (i = 1, ..., 8) are listed with matrix [Q].
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CHAPITRE VI

INNOVATIONS, CONCLUSIONS ET RECOMMANDATIONS

Cette thése avait pour but de développer une méthode pour |'analyse linéaire et
non linéaire des coques cylindriques ouvertes, non uniformes, minces, élastiques,
anisotropes et soumises a un écoulement interne et externe. La stabilité dynamique des
coques cylindriques et le cas des coques partiellement ou complétement remplies de liquide

ont été aussi analysés.

La méthode est basée sur la théorie des coques, la mécanique des fluides et la
méthode des éléments finis. Le modéle développé nous permet de déterminer les
fréquences naturelles des coques cylindriques ouvertes et fermées, vides, partiellement ou
complétement remplies de liquide en régime stagnant ou en écoulement. De plus, il nous
permet de prédire 1'influence des non-linéarités géométriques associées aux parois de la
coque et des non-linéarités associées a la définition du fluide en écoulement sur le

comportement dynamique du systéme coque-fluide.
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En premier lieu, nous avons développé un nouvel élément fini, qui est de type

coque cylindrique ouverte, ou les fonctions de déplacement ne sont pas polynomiales
comme dans le cas de la méthode des éléments finis classique, mais ou elles sont dérivées
de la théorie des coques cylindriques minces. Les matrices de masse et de rigidité linéaire

sont déterminées par intégration analytique exacte.

A partir de I'équation du potentiel des vitesses et de 1'équation de Bernouilli, nous
avons développé un nouvel élément fini fluide. La pression exercée par le fluide a été
exprimée comme une fonction de déplacements nodaux et de trois forces (inertie,
centrifuge et Coriolis) du fluide en écoulement. L'intégration analytique de cette pression
nous a donné trois matrices pour le fluide en écoulement (masse, rigidité et

amortissement).

Pour prédire l'influence des non-linéarités géométriques des parois sur les
fréquences naturelles des coques cylindriques ouvertes ou fermées, un modeéle basé sur les
coefficients modaux dérivés de la théorie non linéaire des coques cylindriques a été
développé, ce qui nous a permis de déterminer les matrices de rigidité non linéaires du

second et troisiéme ordre a partir de la méthode des éléments finis.
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La non-linéarité associée au fluide en écoulement nous a permis de développer une
expression pour la pression dynamique non linéaire. A partir de cette pression nous avons

développé trois matrices non linéaires pour le fluide en écoulement.

La convergence de la méthode étant établie, les fréquences naturelles sont obtenues
pour différentes conditions aux rives et pour différents modes circonférenciels et axiaux,
pour des coques cylindriques ouvertes et fermées, isotropes et anisotropes, uniformes et
non uniformes, partiellement ou compléiement remplies de fluide, soumises a un
écoulement interne ou/et externe. La stabilit¢é dynamique des coques soumises
simultanément a2 un écoulement interne et externe est aussi analysée. Une bonne
concordance des résultats a été obtenue avec d'autres théories et expériences. Nous avons
présenté beaucoup de nouveaux résultats pour des coques cylindriques ouvertes soumises

a un fluide en écoulement.

L'influence des non-linéarités géométriques des parois sur les fréquences naturelles
des coques cylindriques ouvertes ou fermées a été représentée en fonction du rapport entre
I'amplitude de vibration et I'épaisseur de la coque. Des déviations par rapport aux
fréquences linéaires ont ét€ observées. Les tendances des non-linfarités sont du type
hardening et softening, dépendamment des conditions aux rives et des modes de vibration.

Ce méme phénomeéne est observé pour des coques avec un fluide en écoulement. Par



261

contre, I'influence de la non-linéarité associée au fluide en écoulement est complétement

négligeable.

Cette méthode combine les avantages de la méthode des éléments finis qui traite
des coques complexes (€paisseur variable, matériaux anisotropes et non uniformes,
différentes conditions aux rives, ect.) et la précision de la formulation en utilisant des
fonctions de déplacement dérivées de la théorie des coques. Ce modéle prédit le
comportement dynamique dans le domaine linéaire et non linéaire des coques ouvertes et

fermées soumises a un fluide en écoulement.

Cette méthode pourra permettre de compléter le peu de résultats disponibles quant
aux fréquences naturelles élevées associées aux modes circonférenciels et axiaux élevés
pour des coques avec ou sans fluide en écoulement. ainsi que de déterminer |'influence des

non-linéarités géométriques sur le comportement dynamique du systéme coque-fluide.

Toutefois, ce modéle ne peut pas s'appliquer a des coques cylindriques épaisses ou

a des coques soumises a un écoulement turbulent.

Nous pouvons donc considérer que nous disposons d'une méthode adéquate pour

prédire les caractéristiques vibratoires linéaires et non linéaires des coques cylindrigues
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ouvertes ou fermées, non uniformes dans la direction circonférencielle et soumises a un
fluide en écoulement. Les coques sont simplement supportées selon leurs rives courbes et

elles ont des conditions frontiéres arbitraires sur les rives droites.

Les travaux effectués dans notre groupe de recherche ont pour but de développer
un modéle numérique d'une coque vide, partiellement ou totalement remplie de liquide,
soumise ou non 4 un fluide en écoulement. Pour atteindre ce but, le groupe de recherche
a déja développé un élément cylindrique fermé, conique, sphérique, une plaque circulaire

et annulaire, et un élément cylindrique ouvert (cette thése).

De méme, la suite logique de cette étude serait I'analyse des coques cylindriques
ouvertes ayant des conditions frontiéres autre que simplement supportées sur les rives
courbes. L'étude de 1'effet de la surface libre du fluide sur le comportement dynamique
des coques horizontales serait également nécessaire pour des coques partiellement remplies
de liquide. D'autre part, il serait intéressant d'inclure dans ce travail 1'étude des vibrations
forcées d'une coque cylindrique soumise & un chargement dynamique. L'étude des

excitations dues a un écoulement turbulent serait particuliérement intéressant.
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