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Les suspensions colloïdales ont un comportement rhéologique particulièrement 

complexe. Les particules interagissent entre elles avec des forces dont l'amplitude et la 

nature dépendent du milieu environnant. Lorsque ces forces sont suffisamment importantes, 

il se crée une structure plus ou moins organisée qui peut être cassée, déformée ou réarrangée 

sous l'action d'un cisaillement. La rhéologie des suspensions dépend donc grandement de 

l'évolution de la structure durant l'écoulement. Peu de modèles sont proposés dans la 

littérature pour décrire le comportement thixotrope de ces suspensions. L'objectif principal 

de ce travail a été de proposer un modèle rhéologique permettant de décrire le comportement 

de ce type de suspensions en tenant compte de l'évolution de la structure. Afin de mieux 

comprendre le comportement rhéologique de ces systèmes, deux suspensions de particules 

collo'idales très distinctes ont été étudiées. 

Le premier système est une suspension "modèle" de fumée de silice. Ces particules, 

de quelques nanomètres de diamètre, interagissent entre elles par des pontages hydrogènes 

entre les groupements silanols qui se trouvent sur leur surface formant ainsi un réseau et ceci 

même à faible fiaction massique. Les propriétés rhéologiques des particules suspendues dans 

deux milieux différents, polaire et non polaire, ont été étudiées en fonction, non seulement, 

de la taille et de la concentration mais également en fonction du traitement de surface des 

particules. Le comportement rhéologique, mesuré à faible amplitude de déformation en 

oscillation, s'est révélé être fortement non linéaire. Ces propriétés viscoélastiques non 

linéaires ont été interprétées en fonction de l'énergie dissipée et attribuées a la destruction 

du réseau. Les résultats expérimentaux ont été comparés aux prédictions des modèles de 

Coussot et d'Oldroyd modifié. Ces deux modèles ne permettent qu'une description 

qualitative du comportement rhéologique des suspensions de fumée de silice dans le milieu 

non polaire. 
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Le second système étudié est une sauce de couchage du papier. Cette suspension 

concentrée est composée principalement de particules de kaolin stabilisées stériquement avec 

des polymères hydrosolubles adsorbés sur leur surface. La viscosité aussi bien en régime 

permanent que transitoire et les propriétés dynamiques ont été étudiées en fonction de la 

concentration pour deux polymères hydrosolubles de nature très différente. Il a été montré 

que les propriétés rhéologiques sont contrôlées par l'évolution de la structure sous 

cisaillement. Le comportement de sauces de couchage en oscillation s'est révélé être très 

similaire à celui des suspensions de fumée de silice et a également été interprété en terme 

d'énergie dissipée. Un modèle structural a été proposé pour comprendre le comportement 

rhéologique de ces sauces de couchage. La viscoélasticité non linéaire a été attribuée au 

déplacement des particules de leur position d'équilibre. 

Un modèle basé sur la théorie des réseaux a été proposé pour décrire le comportement 

rhéologique de ces deux suspensions colloïdales. Le modèle proposé est constitué d'un 

modèle de Jeffreys convecté couplé avec une équation cinétique décrivant Iyévolution de la 

structure sous cisaillement. Trois équations cinétiques ont été proposées. La première dépend 

du second invariant du tenseur des taux de déformation, la seconde du premier invariant du 

tenseur des contraintes et la dernière de l'énergie dissipée. Ces équations cinétiques couplées 

au modèle de Jeffreys permettent de décrire relativement bien le comportement 

viscoélastique non linéaire des suspensions de fumée de silice et des sauces de couchages. 

L'influence de Ia fréquence, lors des mesures en oscillation, dans le domaine non linéaire 

s'est révélée être un test critique pour déterminer la validité des modèles proposés. 

Contrairement aux polymères homogènes, la déformation critique décroît avec la fréquence. 

Le modèle dépendant du premier invariant du tenseur des contraintes n'est donc pas 

approprié pour décrire le comportement des suspensions. Il a été montré que l'équation 

dépendante de l'énergie dissipée est le modèle le plus adapté, malgré qu'elle ne soit pas 

capable de décrire les différents comportements dynamiques étudiés avec les mêmes 

pararnétres. 
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ABSTRACT 

Colloidal suspensions exhibit complex rheological behavior. The particles interact 

between themselves with forces of which the nature and magnitude depend on the 

surrounding medium. When the forces are strong enough, this organized structure which can 

be broken down, distorted or reananged under shear flow. Hence, the suspension rheology 

depends greatly on the structure evolution during the flow. The main objective of this work 

was to propose a rheological model to describe the suspension behavior taking the structure 

evolution into account. To understand the rheological behavior of these systems, two 

different suspensions have been studied. 

The first system is a "model" suspension of iümed silica particles. These colloidal 

particles interact between themselves through hydrogen bonds with silanol groups on their 

surface inducing a network formation even at small mass fraction. The rheological properties 

of particles in suspension in polar and nonpolar media were studied as functions of size, 

concentration and surface treatrnent of particles. The rheological behavior, for small strain 

amplitude oscillatory flow, is strongly nonlinear. These nonlinear viscoelastic properties have 

been interpreted in ternis of dissipated energy and attributed to the network breakdown. The 

experimental data have been compared with Coussot and OIdroyd modified models 

predictions. These two models only descnbe qualitatively the rheological behavior of fumed 

silica suspensions in nonpolar media. 

The second system studied here is a coating color. This concentrated suspension is 

mainly composed by kaolin particles sterically stabilized by water-soluble polymer adsorbed 

on their surface. The steady shear viscosity and the dynarnic properties have been studied as 

a function of polymer concentration for two different water-soluble polymers. It was shown 

that the rheological properties are controlled by the structure evolution under shear flow. A 

structural model has been proposed to describe the rheological behavior of coating colors. 



The nonlinear viscoelasticity was attributed to the motion of the equilibrium particle 

position. 

A mode1 based on the network theory has been proposed to describe the rheological 

behavior of both suspensions. The proposed rnodel is based on a modified upper convected 

Jefieys model coupled with a kinetic equation describing the structure evolution under flow. 

Three kinetic equations have been exarnined. The first one depends on the second invariant 

of the rate-of-strain tensor, the second, on the first invariant of the stress tensor and the last 

one, on the rate of dissipated energy. These kinetic equations coupled with Jeffreys model 

describe fairly well the non linear viscoelastic behavior of the fumed silica suspensions and 

the coating colors. The effect of fiequency, in the nonlinear domain, is a critical test to assess 

the proposed model validity. Contrary to homogeneous poiymers, the cntical strain decreases 

with increasing fiequency. Therefore, the stress-dependent model is inappropriate for 

predicting the rheological behavior of suspensions. The energy-dependent model seems be 

the best adapted. Nevertheless, this model, as the two others, cannot predict the different 

dynamic properties measured here with the same parmeter values. 
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Les suspensions colloïdales sont utilisées dans différents secteurs industriels comme 

les industries agro-alimentaires, pharmaceutiques, cosmétiques ou dans les pâtes et papiers. 

L'optimisation du procédé et la qualité du produit fini sont intimement liées au 

comportement rhéologique des suspensions. Ces suspensions industrielles sont généralement 

très complexes. Elles possèdent de nombreux composants de différentes natures interagissant 

entre eux de diverses façons. L'influence des interactions sur les propriétés rhéologiques a 

largement été étudiée dans des systèmes modèles composés d'une seule sorte de particules 

comme les latex, les billes de verre ou les fumées de silice dont les propriétés physico- 

chimiques sont connues et peuvent être contrôlées. Différents modèles, souvent 

phénoménologiques, ont été proposés afin de décrire les divers comportements rhéologiques 

observés. Il est plus difficile de décrire les propriétés rhéologiques des suspensions 

industrielles. Ces suspensions sont généralement thixotropes, possèdent une contrainte seuil 

apparente et présentent des comportements viscoélastiques non linéaires. Ces propriétés sont 

très importantes pour comprendre et contrôler l'écoulement dans les procédés industriels. Les 

déformations mises en jeu peuvent être très différents de ceux utilisés pour caractériser de 

manière conventionnelle la rhéologie. Ils sont souvent une combinaison de cisaillement 

simple et de déformation élongationnelle en régime non permanent. Peu de modèles sont 

capables de décrire et encore moins de prédire la rhéologie complexe de ces suspensions dans 

de telles conditions d'écoulements. Les codes de calcul employés dans ce but ne considèrent, 

jusqu'a présent, que la viscosité en régime stationnaire et négligent complètement les 

caractères thixotropes et viscoélastiques des suspensions bien que ces propriétés jouent un 

rôle fondamental dans les écoulement de démarrage par exemple. Le principal objectif de ce 

travail a été d'élaborer un modèle constitutif permettant de décrire le comportement 

rhéologique de suspensions composées de particules fortement interactives. À cette fin, les 

propriétés viscoélastiques non linéaires de suspensions colloïdales ont été étudiées pour deux 

systèmes distincts: une suspension "modèle" de fumée de silice dont les propriétés physico- 



chimiques sont très bien connues et une suspension industrielle de sauce de couchage du 

papier. Un modèle basé sur la théorie des réseaux a été proposé pour décrire le comportement 

rhéologique de ces deux fluides complexes. 

Ce chapitre a pour but d'introduire les différents concepts utilisés dans ce travail et 

de faire le point sur l'état des connaissances dans le domaine de la rhéologie des suspensions 

concentrées. Nous verrons également que l'éventail des propriétés rhéologiques de ces 

suspensions est très large et très complexe aussi bien du point de vue expérimental que 

théorique. La première partie présentera une revue succincte de la littérature concernant la 

rhéologie des suspensions concentrées en général; elle permettra un rappel des approches 

théoriques et des concepts utilisés dans ce domaine. Les propriétés physico-chimiques des 

particules de fumée de silice ainsi que le comportement rhéologique de différentes 

suspensions modèles composées de ces particules colloïdales seront exposés dans une 

seconde partie. La dernière partie sera consacrée au fluide industriel utilisé: les sauces de 

couchage du papier et à leurs propriétés rhéologiques rapportées dans la littérature. 

1 Rhéologie des suspensions concentrées 

La rhéologie des suspensions dépend de plusieurs facteurs comme les conditions 

d'écoulement, la concentration de solide dans le milieu suspendant et, dans le cas des fluides 

complexes, des interactions entre les différents composants de la suspension. Dans une 

première partie, un bref résumé du comportement rhéologique des suspensions diluées et 

semi-diluées de particules de sphères dures et faiblement interactives sera présenté. Les 

principales approches théoriques utilisées pour décrire le comportement rhéologique de 

suspensions complexes feront l'objet de la seconde partie. Nous nous intéresserons enfin au 

comportement viscoélastique non linéaire des suspensions concentrées. 

1.1 Suspensions diluées et semi-diluées 

1.1.1 Suspensions de sphères dures 



Dès 1906, Einstein établit une expression de la viscosité en fonction de la fraction 

volumique pour des suspensions très diluées de sphères dures. Ces particules ont un potentiel 

d'interaction infini à la surface de la particule et nul à des distances supérieures à son rayon. 

La théone développée par Einstein néglige les effets hydrodynamiques des particules 

voisines. Batchelor (1 977) propose de tenir compte de ces effets en ajoutant une dépendance 

quadratique de la fraction volumique a la relation d'Einstein. Cet effet d'encombrement de 

particules est également pris en compte par l'expression développée par Krieger et 

Dougherty (1 959) basée sur l'équation de Mooney (1 95 1). La viscosité relative, q,, qui est 

également exprimée en fonction de la fraction volumique @, est donnée par la relation 

suivante : 

où qm est la viscosité du milieu suspendant et p = [q] @,, avec 4, la fraction maximale 

d'empilement et [q] la viscosité intrinsèque. La fraction maximale d'empilement dépend de 

la forme, de la distribution en taille des particules mais aussi de l'arrangement des particules 

qui peut être modifié par l'écoulement. La valeur de 4, varie, dans le cas d'une suspension 

monodisperse de particules sphériques, de 0,52 pour un arrangement cubique à 0'72 pour un 

arrangement hexagonal compact. de Kruif (1985) et Krieger (1976) ont montré 

expérimentalement que a, varie de 0'63 pour les basses vitesses a 0,7 1 pour hautes vitesses 

de cisaillement. Le comportement rhéologique de suspensions de sphères dures est donc 

uniquement contrôlé par les interactions hydrodynamiques et les forces browniennes. Les 

propriétés rhéologiques peuvent donc être exprimées en fonction du nombre de Péclet 

généralisé (Pe = cr n3/ kT, a étant la contrainte, a le rayon des particules, k la constante de 

Boltzmann et T la température ). Krieger (1 976) propose donc une relation semi-empirique 

basée sur l'équation de Cross-Williamson pour décrire la dépendance de la viscosité relative 

en fonction du nombre de Péclet généralisé: 



06 qlo et qa sont les viscosités relatives aux plateaux newtoniens à basses et hautes vitesses 

de cisaillement respectivement et b une constante empirique. La viscosité relative exprimée 

par cette relation est donc indépendante à la fois de la taille des particules et de la nature du 

milieu suspendant. Krieger (1976) vérifie expérimentalement cette relation avec des 

suspensions de Iatex dans différents milieux. 

1.1.2 Suspensions de particules interactives 

L'hypothèse de sphères dures est limitée aux particules dont la taille est supérieure 

au micromètre. L'importance des forces attractives de Van der Waals et répulsives 

électrostatiques croît lorsque le diamètre des particules diminue et ces forces deviennent 

prédominantes dans le cas des particuIes colloïdales. 11 est toutefois possible de stabiliser ces 

suspensions en contrôlant la force ionique du milieu (stabilisation électrostatique) ou en 

ajoutant un polymère dont les chaînes viennent s'adsorber sur la surface des particules 

(stabilisation stérique). Dans le cas de ces suspensions stabilisées, on peut considérer, en 

première approximation, les particules comme des sphères dures en tenant compte de 

l'épaisseur de la couche de stabilisation entourant la particule. Pour la stabilisation 

électrostatique, I'épaisseur de la couche, appelée également longueur de Debye, peut 

facilement être calculée en fonction de la concentration d'électrolyte et de la nature du milieu 

suspendant. Dans le cas de la stabilisation stérique, le rayon effectif de la particule inclut 

l'épaisseur des chaînes de polymère adsorbées sur la surface de la particule. L'épaisseur de 

polymère dépend de l'affinité entre le polymère et le milieu environnant. Cette 

approximation est valide seulement lorsque la compressibilité de la couche est négligeable, 

c'est à dire quand I'épaisseur de la couche de stabilisation est beaucoup plus petite que le 

rayon de la particule et quand la suspension n'est pas très concentrée. Frith et al. (1 987) ont 



proposé de modifier la relation de Krieger (1.2) pour tenir compte d'une légère 

compressibilité afin de décrire la viscosité relative de ces suspensions stabilisées: 

où m est un paramètre empirique qui dépend de l'épaisseur de couche de stabilisation. Frith 

et al. (1 987) ont montré que cette relation décrit correctement Ia viscosité de suspensions de 

latex de PMMA stériquement stabilisées suspendues dans de 1'Exsol. 

Quand les interactions entre les paeicules deviennent dominantes, le comportement 

rhéologique des suspensions différe grandement de celui des sphères dures. Ces suspensions 

deviennent thixotropes et une contrainte seuil apparente est généralement observée à faible 

vitesse de cisaillement. Krieger e t  Eguiluz (1976) ont constaté que des répulsions 

électrostatiques peuvent modifier de manière très importante la viscosité de suspensions de 

latex dans l'eau. Lorsque les répulsions électrostatiques entre les particules sont 

prépondérantes, une structure stable se crée et une contrainte seuil apparente est observée aux 

basses vitesses de cisaillement. Lorsqu'un électrolyte, le HCI, est ajouté à la suspension, afin 

d'écranter les charges à la surface des particules et ainsi réduire les répulsions 

électrostatiques, la contrainte seuil disparaît et, pour certaines concentrations d'électrolytes, 

la viscosité de la suspension devient newtonieme. À haute vitesse de cisaillement, 

l'écoulement est uniquement contrôlé par les forces hydrodynamiques et la viscosité devient 

alors indépendante de la concentration d'électrolyte. En oscillation, ces suspensions 

présentent un module élastique indépendant de la fréquence caractéristique d'un 

comportement du type solide. Un potentiel d'interaction entre particules peut être également 

calculé à partir de la valeur de ce module à différentes concentrations (Buscall et al. (1 982)). 

De fortes interactions entre les particuies induisent donc la formation d'une structure 

stable qui peut être cassée par l'écoulement. 11 en résulte un comportement rhéologique 



complexe difficile a caractériser sur le plan théorique. 

1.2 Modélisation du comportement rhéologique des suspensions complexes 

Les fortes interactions entre les particules induisent des comportements rhéologiques 

caractéristiques comme la thixotropie, évolution des propriétés au cours du temps, et le seuil 

de contrainte apparent relié à la formation d'une structure organisée. Le comportement 

viscoélastique de ces suspensions est donc non linéaire. Dans une première partie, la notion 

de comportement viscoélastique non linéaire sera introduit. Il existe différentes approches 

théoriques permettant de décrire le comportement rhéologique des suspensions composées 

de particules fortement interactives. Lorsque le caractère thixotropique est négligeable, des 

modèles empiriques simples sont souvent utilisés pour décrire qualitativement leurs 

comportements rhéologiques. D'autres modèles utilisent le concept de fonction de structure 

pour caractériser la thixotropie et suivent son évolution en fonction du temps et de 

l'écoulement. Le dernier concept, introduisant la notion de fractal, est peu utilisé pour décrire 

le comportement rhéologique des suspensions mais permet une bonne description de l'état 

de la structure de la suspension au repos. 

1.2.1 Viscoélasticité non linéaire 

La zone de viscoélasticité Iinéaire est caractérisée en oscillation par l'indépendance 

des modules élastiques et visqueux en fonction de la déformation. On considère, alors, que 

la mesure ne perturbe pas la microstructure du matériau. Lorsque l'on excède une certaine 

déformation critique, G' et G" deviennent dépendants de la déformation. Ce domaine est 

appelé zone viscoélastique non linéaire. On observe alors que le signal de réponse mesuré 

n'est plus sinusoïdal comme le montre la figure 1.1, mais possède plusieurs harmoniques. 

La zone viscoélastique non linéaire est généralement attribuée à un changement de structure 

du matériau induit par l'écoulement. Notons cependant que des signaux non sinuso'idaux ont 



été également observés dans le cas de glissement à la paroi. 

-- 

Signal imposé 
Signal réponse 1 - 

Figure 1.1 : Signaux réduits de la contrainte imposée et de la déformation en fonction du 

temps à 1Hz et 860 Pa pour une suspension de fumée de silice dans de l'huile de paraffine 

à 8.2 % en masse. 

L'existence de signaux déformés a été rapportée pour la première fois dans le cas de 

matériaux possédant des contraintes seuil. En 1970, Onogi et al. ont observé et mesuré les 

différentes harmoniques de la contrainte durant des mesures en oscillation sur des 

suspensions de noir de carbone dans une solution de polystyrène. Des résultats similaires ont 

été obtenus par Komatsu et ai. (1973) dans le cas d'émulsions semi-solides. Les auteurs ont 

attribué cette non linéarité à la contrainte seuil. En 1987, Prud'homme et Yoshimura sont les 

premiers à modéliser, à l'aide du modèle d'oldroyd, la forme des signaux. La viscoélasticité 

non linéaire est également observée pour des systemes sans contrainte seuil comme les 



polymères fondus. Dans ce cas, la forme non sinusoïdale des signaux a grande amplitude de 

déformation (LAOS) est également attribuée a la modification de la microstructure par 

l'écoulement. Giacomin et OakIey (1 992) ont appliqué l'équation de Marrucci et aI. (1 973) 

pour décrire la forme de ces signa~ix. Le modèle de Phan Thien Tanner (1977) permet 

également de décrire la viscoélasticité non linéaire en introduisant le concept de déformation 

non affine par l'intermédiaire d'un facteur de glissement. 

Gadala-Maria et Acrivos (1 980) ont également observé un comportement 

viscoélastique non linéaire pour des suspensions concentrées de particules non interactives 

de polysîyrène dispersées dans de l'huile de silicone dans le cas d'induction de structure à 

grande déformation. Ce phénomène a également été observé par Cotton (1998) sur des 

suspensions de particules très concentrées de polypropylène de 10 pm de diamètre dans une 

matrice de polybutène. 

En 1988, Prud'homme et Yoshimura ont démontré que le glissement à la paroi du 

matériau étudié entraîne également l'apparition de signaux déformés similaire à ceux prédits 

par le modèle d'oldroyd modifié. Hatzikiriakos et Dealy (1991) ont observé le même 

phénomène dans le cas des polymères fondus. Mais contrairement au cas oii la déformation 

de la forme du signal est due à la modification de la structure induite par l'écoulement, 

Graham (1995) et Reimers et Dealy (1996) ont obtenu des harmoniques pairs dans le signal 

de réponse. Dans le cas de glissement a la paroi, le signal déformé n'est pas forcément 

symétrique. 

La viscoélasticité non linéaire est caractérisée par la déformation des signaux lors de 

mesures en oscillation. Cette non-linéairité est reliée dans le cas des suspensions à un 

changement de la structure induite par l'écoulement. La plupart des modèles cités ci-dessous 

permettent de décrire ce comportement. 



1.2.2 Modélisation du comportement viscoélastique des fluides à seuil 

Il existe plusieurs approches permettant de décrire le comportement viscoélastique 

des fluides à seuil. La première est d'utiliser une fonction de structure, comme nous le 

verrons dans le paragraphe suivant. La seconde est d'introduire un critère de seuil dans les 

équations constitutives de manière plus explicite. Ce concept, introduit par Oldroyd en 1947, 

permet de décrire qualitativement le comportement viscoélastique des fluides à seuil et de 

comprendre très simplement pourquoi les signaux de la déformation ou de la contrainte 

mesurés lors de tests en oscillation sont déformés. 

Oldroyd (1 947) a proposé des équations constitutives qui considèrent que le fluide 

se comporte comme un solide élastique sous le seuil et comme un fluide newtonien au 

dessus. Prud'homme et Yoshimura (1987) ont modélisé la réponse d'un fluide de Bingharn 

à une déformation oscillatoire entre plaques parallèles en exprimant le modèle d'oldroyd en 

terme de déformation et en introduisant une déformation élastique, y,, en dessous du seuil: 

où G est le module élastique, p la viscosité newtonienne. La déformation seuil, y,, est la 

déformation maximale que le fluide peut supporter 

reliée à la déformation seuil par la relation suivante: 

O', = Gyo 

élastiquement. La contrainte seuil est 

Au dessus du seuil, la déformation élastique est maintenue à sa valeur maximale y,. 

Ainsi l'énergie élastique est stockée durant l'écoulement. 

Ces équations peuvent être appliquées à un écoulement sinusoïdal. Lorsqu'une 

amplitude de déformation inférieure à la déformation seuil est appliquée, le fluide ne coule 



pas mais répond comme un solide élastique. La contrainte et la déformation sont en phase. 

Le module élastique est constant et égal à G et le module visqueux est nul. Lorsque 

l'amplitude de déformation imposée est supérieure à la déformation seuil, la période du 

signal de la contrainte se divise en quatre. Dans la première partie du cycle, la déformation 

est inférieure à y,, le matériau se comporte comme un solide élastique. Dans la second partie, 

la déformation devient supérieure à y,, le matériau s'écoule et la partie correspondante du 

signal s'aplatit. Les deux autres parties du cycle sont les symétriques des deux premières. Le 

signal n'est plus linéaire mais est composé de plusieurs harmoniques. 

Prud'homme et Yoshimura (1987) ont montré que les signaux mesurés sur des 

émulsions d'huile dans l'eau sont décrits par ce modèle. Doraiswarny et al. (1991) ont 

modifié ces équations pour étudier le comportement d'un polymère chargé. Ils ont remplacé 

la viscosité newtonienne par une loi de puissance. Ces nouvelles équations constitutives leur 

ont permis de proposer une extension de la règle de Cox-Merz pour des suspensions 

concentrées ayant une contrainte seuil apparente. Ils ont montré, pour une suspension de 

particules de silicium dans du polyéthylène, que la viscosité en régime permanent et la 

viscosité complexe en dynamique peuvent être superposées si la viscosité complexe est 

rapportée en fonction de l'amplitude de taux de déformation oy" pour des données obtenues 

en oscillation dans le domaine non linéaire. 

Les modèles développés à partir de l'équation d'oldroyd ont l'avantage de pouvoir 

décrire qualitativement et de manière très simple le comportement viscoélastique non linéaire 

des fluides à seuil. Malheureusement, ils ne permettent pas de tenir compte du caractère 

thixotrope des systèmes complexes 

1.2.3 Modèles structuraux et thixotropes 

Dans le cas des particules fortement interactives, des microstructures se forment et 



les propriétés rhéologiques des suspensions deviennent complexes (thixotropie, contrainte 

seuil). En effet, sous l'action de l'écoulement, cette microstructure peut se briser ou induire 

une nouvelle organisation. Ces deux phénomènes contradictoires peuvent avoir lieu durant 

l'écoulement à des taux différents. On peut donc décrire le processus structuration/ 

déstructuration qui gouverne le comportement rhéologiqcie des suspensions de particules 

fortement interactives par une équation cinétique. Selon Barnes (1997), ces équations 

cinétiques décrivant l'évolution de la microstructure peuvent toutes s'écrire sous la forme: 

où E; est une fonction de structure dont les valeurs varient de O à 1, et a, b, c et d sont des 

constantes. Les constantes a et c sont des paramètres cinétiques qui caractérisent la 

destruction et la reconstruction de la structure. Le paramètre c, selon son signe, est associé 

à la destruction ou l'induction de structure sous écoulement (Cheng and Evans (1 965)). 

Quemada (1977) a utilisé une équation cinétique pour décrire la viscosité de 

suspensions concentrées. Il a développé une relation similaire à celle établie par Krieger et 

Dougherty en appliquant le principe d'énergie dissipée minimum: 

où la fraction maximale d'empilement est une fonction de donnée par la relation: 

La fraction maximale d'empilement varie de @,, à basse vitesse de cisaillement à 4, 
à haute vitesse de cisaillement. La fonction de structure ( est obtenue en résolvant l'équation 

cinétique suivante: 



où tu et rd sont des temps caractéristiques associés respectivement au processus d'agrégation 

et de désagrégation des particules. Le rapport fJt, dépend de la vitesse de cisaillement et 

obéit à la relation empirique: 

p est un paramètre empirique positif et t, un temps caractéristique de la suspension souvent 

supposé égal au temps de diffusion brownien. La viscosité en cisaillement simple est obtenue 

en résolvant les équations précédentes: 

Cette relation décrit correctement la viscosité en régime permanent de suspensions 

concentrées de latex et du sang. Baravian et al. (1997) ont modifié les équations 1.7 à 1.9 

pour décrire le comportement de fluides thixotropes et tenir compte des effets d'inertie, liés 

a l'appareillage, fréquemment rencontrés lors de la caractérisation expérimentale de ce type 

de fluides. 

Quemada (1985) a également proposé un modèle du type Jeffreys pour décrire le 

comportement non linéaire des suspensions concentrées: 

G, le module élastique, et A, le temps de relaxation, sont des fonctions de 5. La validité de 



ce modèle n'a pas encore été démontrée expérimentalement. 

De Kee et al. (1983) ont également utilisé un modèle structural pour décrire le 

comportement rhéologique en cisaillement simple de fluides alimentaires comme la 

mayonnaise et le yogourt. La fonction de structure est obtenue en résolvant l'équation 

cinétique suivante: 

où c et n sont des constantes. La contrainte en cisaillement simple est donnée par 

l'expression suivante: 

O, est la contrainte seuil, et q, et rp la  viscosité et le temps caractéristiques respectivement. 

De Kee et Chan Man Fong (1 994) ont proposé une autre relation basée sur le modèle 

de Maxwell pour prédire le comportement viscoélastique de fluides thixotropes et 

rhéoépaississants: 

ou A,, et q,, sont respectivement un temps et une viscosité caractéristiques du système et 
- - 
8/6t la dérivée de Gordon-Schowalter donnée par la relation suivante: 

avec 



où est un paramètre de glissement empirique. Ces relations permettent de prédire 

l'existence de maximum des contraintes lors de tests en accroissement des contraintes et un 

maximum de contraintes normales pour des mesures de contraintes normales à cisaillement 

constant. 

Leonov (1990) a développé un modèle permettant de décrire les phénomènes de 

contrainte seuil et de thixotropie dans Ies polymères chargés. Il a supposé que la contrainte 

totale possède deux contributions : la première due aux interactions entre les particules est 

caractérisée par une contribution viscoélastique, o'; la seconde contribution provient des 

forces hydrodynamiques, a"', et ne dépend donc que de la viscosité de la matrice et de la 

fraction massique de particules: 

La contribution du milieu suspendant est décrite par le modèle de Leonov développé 

pour les polymères homogènes. La contrainte viscoélastique est décrite en termes de 

destruction et reconstruction d'agrégats. Leonov a proposé une équation cinétique qui dépend 

du tenseur des taux de déformation pour décrire l'évolution de la microstructure. Le modèle 

proposé est capable de décrire les effets thixotropiques lors de tests en accroissement des 

contraintes et en relaxation. La validité du modèle a été vérifiée en cisaillement simple 

(viscosité et première différence de contraintes normales) et en déformation élongationelle 

avec des résultats expérimentaux obtenus par Tanaka et White (1 980) pour des suspensions 

de particules de noir de carbone dans du polystyrène et Suetsugu et White (1983) avec du 

polystyrène chargé de carbonate de calcium. Coussot et al. (1 993) ont modifié le modèle de 

Leonov dans le but l'appliquer aux polymères de faible masse moléculaire dont la viscosité 

est newtonienne. La contribution du milieu suspendant est donnée par une relation simple 

du type Krieger-Dougherty, am = q,(@)y . Coussot et al. ont proposé de décrire la 



contribution viscoélastique due aux interactions entre particules par un modèle du type 

Maxwell: 

où G est le module élastique et q(c) le terme visqueux qui dépend de la fonction de structure 

4. La fonction de structure est proportionnelle aux nombres de liens entre les particules et 

varie entre O, lorsque la suspension est complètement structurée, et I dans le cas où la 

structure est complètement détruite. Elle est obtenue en résolvant l'équation cinétique 

suivante: 

x est une fonction cinétique empirique qui dépend de la fonction de structure et de la vitesse 

de cisaillement, 8 un temps caractéristique de la suspension et y, une déformation critique. 

La viscosité de structure et la fonction de structure sont reliées par la relation suivante: 

où q, est une viscosité caractéristique et n un paramètre empirique. En cisaillement simple 

et en régime permanent, les équations 1.19 et 1.21 se réduisent à un modèle de Bingharn dans 

le cas où n=O. Coussot et al. (1993) ont montré que ce modèle permet de décrire le 

comportement rhéologique de suspensions concentrées de graisse et de bentonite dispersée 

dans l'eau possédant un caractère thixotrope et une contrainte seuil. La validité de ce modèle 

n'a pas été démontrée dans le cas de mesures en mode oscillatoire. Les auteurs ont toutefois 

montré que le modèIe est capable de décrire qualitativement la fonne des signaux en 

oscillation dans la zone viscoélastique non linéaire. 



Le comportement viscoélastique de certaines suspensions est similaire à celui des 

polymère fondus. Watanabe et al. (1996) ont utilisé le modèle K-BK2 pour décrire le 

comportement rhéologique en régime permanent et transitoire de suspensions concentrées 

de silice sub-microniqiie dans un mélange d'éthyle glycol et de glycérine. Le modèle de K- 

BKZ modifié par Larson (1988) est donné par l'équation constitutive suivante: 

pour t >O. G(t) est le module de relaxation et h (y) la fonction mémoire. La fonction de 

relaxation G(t,y) peut être séparée en deux fonctions indépendantes: 

G( t J )  = G(t) h ( y )  (1.23) 

G(t,y) peut être obtenu expérimentalement grâce à des mesures de relaxation des 

contraintes. Dans la zone linéaire, à faible déformation, le module de relaxation est 

indépendant de la déformation G(i,y) = G(t); on peut donc en déduire pour des déformations 

supérieures la fonction mémoire. 

Le modèle proposé par De Kee et Chan Man Fong (1994) et le modèle K-BKZ 

permettent de caractériser le caractère viscoélastique non Linéaire des suspensions, mais ne 

tiennent pas compte de l'existence éventuelle d'une structure à faible déformation. Seul le 

modèle de Coussot et al. (1 993) permet de décrire le comportement de type solide élastique 

à faible déformation caractéristique des suspensions composées de particules fortement 

interactives en plus des autres propriétés. Dans ce modèle comme dans celui proposé par De 

Kee et Chan Man Fong (1 994), la viscoélasticité non Iinéaire est associée à I'évolution de 

la structure dans le temps et sous écoulement. De Kee et Chan Man Fong (1.994) introduisent 

également l'hypothèse de déformation non affine en utilisant la dérivée de Gordon 

Schowaiter qui a pour conséquence d'amplifier le caractère viscoélastique non linéaire. 



1.2.4 Analyse fractale et lois d'échelle 

Dans les suspensions complexes, les particules interagissent entre elles pour former 

une structure invariante par dilatation d7écheHe; de telles structures sont dites fractales. La 

compacité de la structure est donnée par la dimension fractale; celle-ci vaut 1 dans le cas où 

la structure rectiligne et 3 lorsque le volume est complètement rempli et que le taux de vide 

est nul. Lorsque les particules s'agrègent, on ne doit plus considérer Ia fraction volumique 

des particules mais celle des agglomérats qui  est donnée par la relation suivante: 

où d,est la dimension fractale, et R et n le rayon de giration de l'agglomérat et de la particule 

individuelle respectivement. 

Rouw et de Kruif (1989) ont montré que la dimension fractale est indépendante de 

la concentration de particules et qu'elle ne dépend que du type d'interactions 

interparticulaires. De nombreuses simulations numériques ont été effectuées pour déterminer 

la dimension fractale en fonction du type d'interactions. Deux principaux types d'interactions 

ont été étudiés. Le premier est le DLA (diffusion limited aggregation) qui décrit la diffusion 

d'une particule vers un agglomérat. Ce type d'interaction peut être élargi à la diffusion d'un 

agglomérat vers un autre agglomérat (DCA ou diffusion cluster aggregation). Le second type 

d'interaction est basé sur la théorie des sphères adhésives (CLA ou chemical limited 

aggregation). Lors de la collision d'une particule ou d'un agglomérat sur un autre 

agglomérat, il existe une certaine probabilité de former un lien chimique comme un pont 

hydrogène par exemple. Dans ce cas, la dimension fractale dépend de la polydispersité des 

particules. Le Tableau 1.1 donne la dimension fractale en fonction du type d'interaction. 



Tableau 1.1 : Dimensions fractales en fonction des interactions interparticulaires d'après 

Rouw et de Kruif (1 989). 

Type d'interaction 

DLA 

1 CLA polydisperse ( 2.1 1 =t 0.03 1 

- - --- 

Dimension fractale 

2.5 h0.1 

DCA 

CLA monodisperse 

L'accroissement de ces agglomérats peut mener à la formation d'un réseau tri- 

dimensionnel de particules ayant le comportement d'un gel. Ces gels ayant des propriétés 

viscoélastiques très similaires à celles des gels de polyméres, on peut donc leur appliquer les 

concepts d'échelle développés par de Gemes (1979). Mal1 et Russel (I987), Buscal et al. 

(1988) et Chen et Russel (1991) ont appliqué ces lois d'échelle pour étudier l'effet des forces 

interparticulaires sur l'élasticité de suspensions floculées. Ils ont montré que le module 

élastique peut être exprimé en fonction de la fiaction volumique des particules @ : G' a a". 
L'exposant de loi de puissance m est relié a la dimension fractale et dépend donc du type 

d'interaction entre particules. Brown et Bal1 (1 985) ont calculé la valeur de l'exposant (m = 

4 & 0.2) dans le cas CLA. Buscall et al. (1988), pour des suspensions de latex et de silice, et 

Khan et Zoeller (1 993)' pour une suspension de fumée de silice dans de l'huile minérale, ont 

obtenu des valeurs similaires : rn = 4 * 0.5. Buscall et al. (1988) proposent une relation 

permettant de relier l'exposant rn à la dimension fractale : 

1.78 =t 0.05 

1.98 0.04 

où d,,,, est un exposant caractéristique d'une longueur chimique. Selon Potanin (1991), le 

rapport df /  d,, peut être considéré comme un invariant et pour un réseau tri-dimensionnel 

avoir pour valeur 312. La valeur de l'exposant rn dépend des interactions entre particules. 



Chen et Russel (1991) ont montré, grâce à des mesures de diffusion de lumière, pour des 

suspensions de particules de silice stabilisées stériquement dans de l'hexane, que les forces 

interparticulaires diminuent avec la température. Ils ont également observé que la valeur de 

rn varie de 3.1 =t 1.6 à 7.0 k 2.8 lorsque la température augmente de 20 à 26 OC. Rueb et 

Zukoski (1 997) ont observé le même phénomène avec des suspensions de particules de silice 

stabilisées stériquement et suspendues dans de la décaline. Khan et Zoeller (1993) ont 

constaté que ta valeur de rn augmente de 4 à 6 lorsqu'ils changent le milieu suspendant non 

polaire (huile minérale) pour un milieu fortement polaire (polypropylène glycol) dans une 

suspension de fumée de silice. Ce changement de solvant a pour conséquence de diminuer 

les interactions entre particules. 

La déformation critique, limite de la non linéarité tors de mesures en oscillation, suit 

également une loi d'échelle. La déformation critique, y,, diminue, lorsque la fraction 

volumique de particules augmente, suivant une loi de puissance: y, = -'. Shih et al (1 991) 

et de Rooij et al (1 994) ont obtenu des valeurs de t égales à 2.1 et 2.3 respectivement pour 

des suspensions de latex. Rueb et Zukoski (1997) ont constaté expérimentalement que la 

valeur de l'exposant dépend des forces interparticulaires et obtiennent des valeurs variant 

entre 4 et 0.7 lorsque la température croît de O à 4 OC. Inversement, Chen et Russel (1 991) 

ont observé que la valeur de la déformation critique augmente avec la température. 

Récemment, ces lois d'échelle ont été démontrées théoriquement par Potanin et al. 

(1994, 1995) dans le cas des suspensions composées de particules faiblement agrégées. 

Comme l'a proposé Leonov (1990), ils ont supposé que la contrainte est la somme d'une 

contribution hydrodynamique liée à 17écoulement des agrégats et d'une contribution 

attribuable à la structure de ces mêmes agrégats. L'évolution de la structure est déterminée 

par des équations cinétiques qui tiennent compte de la création et de Ia rupture des liens entre 

les particules et les agrégats. Les modèles basés sur la théorie fractale restent encore peu 

utilisés et sont très souvent limités à la détermination de la viscosité en cisaillement simple 

(Potanin et al. (1 994), Lapassin et al. (1 996)). 



1.2.5 Conclusion 

Les suspensions composées de particules interagissant entres elles ont des propriétés 

rhéologiques complexes. Les modèles structuraux, bien que plus complexes que les modèles 

du type Oldroyd, semblent être les plus appropriés à la description de tels comportements. 

Mais seul le modèle de Coussot et al. (1993) est capable de prendre en compte à la fois la 

thixotropie et le seuil de contrainte et de décrire le comportement viscoétastique non linéaire 

de ce type de suspensions. Ce modèle a malgré tout des limites: s'il montre de bon résultats 

en accroissement des contraintes, il n'est pas capable de décrire quantitativement la forme 

de signaux lors de mesures en oscillation (Coussot et al. 1993). 

Avant de tenter de modéliser le comportement rhéologique de ces fluides complexes, 

il est important d'étudier leurs propriétés. Nous nous sommes limités à deux suspensions très 

distinctes. La première est une suspension "modèle" de fumée de silice et la seconde une 

suspension industrielle de sauce de couchage du papier. La première suspension a été choisie 

pour les caractéristiques particulières des particules de fumée de silice. Ce système a 

largement été étudié comme nous le verrons dans le prochain chapitre et ces propriétés 

physico-chimiques sont très bien connues. Lorsqu'elies sont dispersées dans un milieu 

polaire, ces particules ont la propriété de former un réseau par l'intermédiaire de pontage 

hydrogène. Ce système est simple et possède seulement deux composants: les particules et 

le milieu suspendant, et les interactions entre les particules connues. Le deuxième système 

est plus complexe, il s'agit d'un fluide utilisé dans I'industrie papetière. Il est composé de 

différents éléments interagissant avec des forces de diverses natures. Les propriétés physico- 

chimiques de ces systèmes sont encore mal comprises. Lors du procédé d'application, les 

sauces de couchage sont soumises à de très fortes déformations pendant des temps très 

courts. L'écoulement est donc essentiellement transitoire, et la viscoélasticité de ces 

suspensions est donc un élément important. De plus plusieurs études ont montré que des 

défauts et les propriétés du produit fini pourraient être liées aux propriétés viscoélastiques 

des sauces de couchage. D'un point de vue industriel, il est donc important de non seulement 



connaître les propriétés rhéologiques des sauces de couchage mais aussi de pouvoir prédire 

leur comportement lors du procédé d'application sur la feuille de papier. 

2 Fumée de silice 

Les particules de fumée de silice possèdent des propriétés physico-chimiques très 

particulières qui rendent leurs comportements, en suspension, variés et donc intéressants du 

point de vue rhéologique. Ces particules colloïdales, de par leur mode de fabrication et leurs 

propriétés chimiques, peuvent être hydrophiles ou hydrophobes et interagissent de différentes 

façons selon la nature du milieu où elles sont suspendues. Nous étudierons dans une première 

partie Ies propriétés physico-chimiques de ces particules et dans une seconde les différentes 

propriétés rhéologiques des suspensions de fumée de silice mentionnées dans la littérature. 

2.1 Caractéristiques physico-chimiques 

Les fumées de silice sont obtenues par hydrolyse du trétrachlorure de silice dans une 

flamme d'oxygène-hydrogène à des températures comprises entre 1600 et 1 800 O C .  

La taille et la surface spécifique des fimées de silice sont contrôlées en faisant varier 

les différentes proportions de réactifs. Durant leur procédé de fabrication, des groupements 

silanoIs, dus à une condeixation incomplète, sont générés sur la surface des particules. Les 

groupements silanols interagissent avec la surface des particules voisines par pontage 

hydrogène ( voir Figure 1.2), dès la fin de leur procédé de fabrication, pour former des 

agrégats primaires très difficiles a détruire. Les fumées de silice sont donc également très 

sensibles à l'humidité at,mosphérique. 



Figure 1.2: Interactions entre particules de fumée de silice via pontage hydrogène 

Figure 1.3: Photographie par microscopie électronique a transmission de particules de fumée 

de silice A200 



Ces propriétés permettent aux fumées de silice dispersées dans des liquides non 

polaires ou faiblement polaires, c'est-à-dire qui n'interagissent pas ou faiblement avec les 

groupements silanols, de former facilement un réseau tridimensionnel comme l'illustre la 

Figure 1.3. 

11 est possible de faire réagir chimiquement une partie des groupements silanols avec 

du diméthyldichIorosiIane dès la fin du procédé afin d'obtenir des particules de fumées de 

silice hydrophobes. Selon le fabriquant des fumées de silice AEROSIL, Degussa, il est 

possible de remplacer 75 % des groupements silanols par des groupements méthyles. Khan 

et Zoeller (1993) ont déterminé, grâce à des analyses de diffraction infrarouge, et sur les 

mêmes particules hydrophobes, que seulement 50% des groupements silanols sont substitués. 

Les particules de h é e s  de silice possèdent des propriétés intéressantes : les particules sont 

sphériques, colloïdales et très monodisperses. 

2.2 Propriétés rhéologiques 

Les propriétés rhéologiques des suspensions de particules de fumées de silice 

dépendent de l'importance des interactions particules/ particules par rapport aux interactions 

particules/ milieu suspendant. Khan et Zoeller (1 993) ont étudié l'influence de la nature du 

solvant et du traitement de surface des particules de fumées de silice sur le comportement 

rhéologique de ces suspensions. Ils ont choisi deux types de solvant une huile minérale, non 

polaire, et du polypropylène glycol, fortement polaire, et de particules de fumées de silice 

hydrophiles et hydrophobes, avec donc différents taux de groupements silanols sur leur 

surface. Ils ont observé pour les suspensions dont le milieu suspendant est non polaire, un 

comportement de gel pour les deux types de particules. Le module élastique est plus 

important dans le cas de suspensions de particules hydrophiles. Le solvant non polaire 

n'interagissant pas avec les particules, les interactions particule / particule, dues aux pontages 

hydrogènes des groupements silanols, induisent la formation d'un réseau. L'existence de 

cette structure tridimensionnelle explique le comportement de gel de la suspension. Plus il 



y a de groupements silanols à la surface des particules plus le réseau est fort et le module 

élastique éIevé. Lorsque le solvant est polaire, il interagit avec les groupements silanols, 

interférant dans la formation du réseau. Khan et Zoeller (1993) ont observé pour ces 

suspensions un comportement de fluide viscoélastique. Un comportement similaire a été 

observé par Watanabe et al. (1996) pour des suspensions concentrées de silice dispersées 

dans un mélange d'éthyle glycol/ glycérine. Lorsque le solvant interagissant avec les 

groupements silanols a une masse moléculaire plus importante, les chaînes de polymère 

adsorbées a la surface des particules peuvent interagir avec les chahes de polymère du milieu 

suspendant et fomer une structure. Zeigelbaur et Caruthers (1 985) et Kosinski et Caruthers 

(1 985, 1986) ont étudié le comportement en régime permanent et transitoire de suspensions 

de fumée de silice dans du polydiméthylsiloxane (PDMS). Ces suspensions sont très 

thixotropes, mais la viscosité et surtout la première différence des contraintes normales sont 

très sensibles aux précisaillements et a la fraction volumique. Les auteurs ont observé des 

dépassements de contraintes lors de test en transitoire. Ils ont constaté que l'importance du 

dépassement des contraintes est liée à Ia masse moléculaire du PDMS et donc au degré de 

structure de la suspension. Plus le degré est important, plus le dépassement est élevé. 

Aranguren et al. (1992) ont h d i é  le même type de suspensions en dynamique. Ils ont 

observé, un comportement de gel avec les modules élastiques et visqueux indépendants de 

la fréquence. Le module élastique croît avec la concentration en particule mais aussi avec la 

masse moléculaire du polymère. Mais ils ont constaté que la déformation critique, y,, est 

indépendante de la fréquence à faible masse moléculaire. Les auteurs ont attribué ce 

phénomène à un changement dans la nature de la structure. Pour des masses moléculaires 

élevés, les chaînes de polymère sont capables de s'adsorber sur plusieurs particules a la fois; 

la structure obtenue est donc plus importante que dans le cas où elle est seulement due à 

I'enchevêtrernent des chaînes adsorbées et du milieu suspendant. 

Il est également possible de stabiliser stériquement les agrégats primaires ou les 

particules. Jiao et al. (1 989) ont modifié chimiquement la surface des particules de fumée de 

silice par estérification avec du méthanol et de I'hexarnéthanol. L'estérification des particules 



diminue la thixotropie des suspensions ainsi que la contrainte seuil et ceci d'autant plus que 

les chaînes de polymères greffées sont longues. Les suspensions peuvent également être 

stabilisées en ajoutant un polymère ayant des affinités pour les groupements silanols. Cabane 

et al. (1997) ont étudié des suspensions de fumées de silice avec de l'oxyde de polyéthylène 

(PEO) et ont observé différents types de comportements rhéologiques en fonction de la 

concentration de polymère. Lorsque la concentration de polymère est supérieure à la 

concentration de saturation de la surface des particules, ils ont observé que la suspension se 

comporte comme un solide élastique. Selon Cabane et al. (1 997), la formation de la structure 

est due a l'enchevêtrement des chaînes adsorbées et en solution comme l'ont proposé 

Aranguren et aL(1992). Pour des concentrations de FE0 moins élevées, la suspension est 

stable jusqu'à une vitesse de cisaillement critique à partir de laquelle ils ont observé un 

rhéoépaississement irréversible. Selon les auteurs, la formation d'une structure due à 

l'adsorption des chaînes de polymères sur plusieurs particules à la fois est induite par 

l'écoulement. Le même phénomène a également été observé par Otsubo et Watanabe (1 990) 

avec des suspensions de fumée de silice avec du polyacrylamide suspendues dans un mélange 

d'eaii et de glycérine. Ils ont également constaté que la vitesse de cisaillement critique 

augmente lorsque le rayon des particules diminue. Pour une certaine masse moléculaire, A 

faible fraction massique et lorsque le solvant est uniquement composé de glycérine, Otsubo 

et Watanabe (1990) ont observé que la viscosité de la suspension est inférieure à celle du 

milieu sans particule. L'adsorption du polyacrylamide sur la surface des particules à pour 

effet de diminuer le rayon de gyration du polymère, diminuant ainsi la viscosité. Zaman et 

al. (1 996) ont également observé Lin minimum de viscosité en fonction de la concentration 

de polymère dans le cas de suspensions de fumée de silice avec du PEO. 

Ils existent donc deux types de comportements rhéologiques caractéristiques observés 

avec les suspensions de fumées de silice. Le premier est celui d'un fluide viscoélastique 

classique lorsque les particules n'interagissent pas entre elles directement ou par l'entremise 

du polymére. C'est le cas lorsqu'un solvant de faible masse moléculaire interapit avec les 

groupements de silanols ou que les particules ou les agrégats primaires sont stabilisés avec 



un polymère de faible masse moléculaire. Le second comportement est celui d'un gel. Il se 

produit lorsque l'on a formation d'une structure tridimensionnelle c'est-à-dire quand les 

particules interagissent directement entre elles grâce au pontage hydrogène entre les 

groupements silanols, mais aussi lorsque des chaînes de polymère viennent s'adsorber à la 

surface des particules. Ces chaînes de polymère adsorbées peuvent interagir avec celles qui 

sont en solution ou si la chaîne est suffisamment longue et la surface des particules non 

saturée, elles peuvent s'adsorber sur plusieurs particules à la fois. Ce dernier phénomène peut 

être induit par l'écoulement et est irréversible. 

3 Sauces de couchage du papier 

Les sauces de couchage sont des suspensions concentrées utilisées dans l'industrie 

papetière pour améliorer les propriétés optiques et la qualité d'impression des papiers et des 

cartons. La formulation de ces suspensions est très complexe et composée de différents 

éléments fortement interactifs. Nous décrirons dans une première partie les sauces de 

couchage typiques, puis les différents types d'interactions existant dans ces suspensions. Une 

dernière partie sera consacrée aux comportements rhéologiques des sauces de couchage 

rapportés dans la littérature. 

Les sauces de couchage sont des suspensions fortement interactives. Ces interactions 

induisent la formation d'une structure tridimensio~elle. Les propriétés rhéologiques des 

sauces de couchage sont donc contrôlées par la cinétique de structuration~déstructuration de 

la rnicrostmctiire. L'amplitude des interactions entre les composants est donc le paramètre 

qui contrôle non seulement l'écoulement de la suspension durant le procédé, mais aussi la 

qualité du produit fini. Selon Engstrom et Rigdahl(1989), la formation d'une microstructure 

comme des agrégats peut induire l'apparition de raies et d'autres défauts à la surface du 

papier couché. Gron et Dahlvik (1997) ont montré l'influence des interactions sur la 

machinabilité (facilité à appliquer une fine couche à haute vitesse avec un haut taux de solide 

élevé sans qu'apparaisse de défauts à la surface du papier couché) et les propriétés finales 



du papier en comparant deux types d'amidon cationique et anionique. L'amidon cationique, 

qui interagit très fortement avec les pigments, provoque la floculation par pontage de la 

suspension. Cette suspension présente une plus mauvaise machinabilité que la sauce de 

couchage composée d'amidon anionique. Cette détérioration est caractérisée par des raies à 

la surface du papier fini. Les auteurs ont montré que l'apparition de défauts est due au bris 

de la couche lors du nivellement pendant le procédé de couchage. 

La formation d'une microstructure peut s'avérer avantageuse si elle est contrôlée 

(Persson et al., 1995). Les suspensions floculées présentent un taux de porosité très élevé 

après le séchage. Cette propriété permet d'augmenter le lustre du papier couché après 

calandrage. Engstrom et Rigdahl (1989) ont montré que, lorsque l'on augmente le degré 

d'agrégation dans une sauce de couchage, on améliore l'homogénéité de la couche et donc 

l'opacité et la brillance du produit fini. 

En résumé, la formation d'une structure due aux interactions dans une sauce de 

couchage permet d'améliorer les qualités du papier couché mais peut également induire la 

formation de défauts lors du couchage. Il est donc important d'étudier le comportement 

rhéologique de ces suspensions en fonction des interactions entre les différents composants. 

Nous allons étudier dans un premier temps les interactions mises en jeu dans des sauces de 

couchage. Le second paragraphe présentera principalement une revue de la littérature du 

comportement rhéologique caractéristique de ce type de sauces de couchage. 

3.2 Interactions 

Comme il a été mentionné dans le paragraphe précédent, la formulation des sauces 

de couchage dépend de la qualité et des propriétés du papier couché que l'on veut obtenir et 

du procédé de couchage utilisé. Nous avons choisi d'étudier des sauces de couchage utilisées 

pour des applications d'impression offset. Le produit final doit avoir, outre une blancheur 

élevée, une bonne résistance à l'arrachage et une bonne rigidité. Ces sauces sont composées 



de kaolin, d'un dispersant, d'un liant, un latex neutre, et d'un polymère hydrophile. Pour 

cette étude nous allons nous restreindre à deux polymères ayant des modes d'interactions 

avec le kaolin différents : la carboxyrnéthyle cellulose (CMC) et le polyvinyle alcool (PVA). 

3.2.1 Le kaolin 

Le kaolin est un minéral appartenant à la famille des silicates d'aluminium hydratés. 

Sa formule chimique est (OH), Si, Al, O,,. Il contient environ 45% de SiO,, 37% de Al,O, 

et quelques traces de Ti02, de Fe,O,, de quartz et de mica. Les particules individuelles de 

kaolin en forme de plaquettes hexagonales sont en fait le résultat d'empilement de couches 

individuelles de silice et d'alumine alternées, de 7.2 A d'épaisseur, reliées ensemble par des 

ponts hydrogènes. La nature chimique du kaolin entraîne une répartition complexe des 

charges à la surface des particiiles. Les faces basales des particules sont chargées 

négativement alors que les faces latérales sont chargées positivement lorsque les particules 

sont s~ispendues dans un milieu neutre ou acide et négativement à pH plus élevé. II en 

résulte, pour des suspensions de suffisamment faible pH, des interactions complexes entre 

les particules. Selon Van Olphen (1977), à faible pH, l'attraction entre les faces et les côtés 

des particules de charge opposée induit la formation d'un réseau tridimensionnel du type 

"château de cartes". À force ionique élevée, les forces électrostatiques deviennent 

négligeable. Van Olphen a suggéré que les interactions entre les faces deviennent 

prépondérantes et que les particiiles s'empilent. Plus récemment, Tessier (1 984, 1991) et 

Ramsay et Linder (1 B Z ) ,  ont démontré l'existence de structures locales organisées appelé 

domaine. Ces domaines résulteraient d'empilements ordonnés de particules de kaolin. 

3.2.2 Liant et CO-liant 

Le principal rôle des liants est d'assurer une bonne adhérence entre la couche et le 

papier et une bonne adhésion entre les pigments. De plus, le liant doit avoir une grande 

affinité avec l'encre, améliorer le lissé, la résistance à l'eau et aux huiles ainsi que la 



résistance à l'arrachage et la pliabilité du papier. Le choix du liant ou du CO-liant et de leur 

concentration dépend donc du type de pigments utilisés, de la méthode employée pour 

coucher le papier et de la qualité du produit fini désirée. Le liant est de tous les composants 

des sauces de couchage le plus coûteux et peut modifier les interactions de manière marquée. 

L'étude des interactions entre le liant ( et les CO-liants) et le pigment est donc essentielle. 

Pour cette étude nous nous sommes restreints à l'étude d'un liant synthétique : un latex 

neutre de styrène butadiène et de deux CO-liants hydrosolubles : la carboxyméthyle cellulose 

(CMC) et le polyvinyle alcool (PVA). 

3.2.2.1 Le latex 

Le latex le plus employé dans les formulations de sauce de couchage est le 

copolymère styrène butadiène. Ce copolymère est vendu en milieu aqueux sous forme de 

micelles stabilisées par des tensioactifs. Ces micelles sont des particules sphériques 

d'environ 0.1 à 0.2 pm de diamètre. Lorsque l'eau s'évapore, les micelles coalescent pour 

former une phase continue. En présence de pigments, des liaisons s'établissent entre les 

particules et entre les particules et le substrat. Les micelles sont hydrophobes, elles 

n'interagissent pas avec l'eau, mais peuvent avoir des affinités avec le pigment. En général, 

le latex utilisé dans les formulations de sauces de couchage est neutre et n'interagit donc pas 

avec le pigment et le polymère. 

3.2.2.2 La carboxyméthyle cellulose (CMC) 

La CMC est un polymère hydrosoluble utilisé dans les sauces de couchage comme 

agent de rétention d'eau et pour contrôler la viscosité. La CMC est un polyélectroIyte dont 

la formule chimique est donnée ci-dessous : 

[ C6H,05 (CW02Na)x % l n  

Les molécules de CMC interagissent avec les particules de kaolin ce qui peut induire 



dans certains cas la floculation par pontage de la suspension. L'adsorption de la CMC sur les 

particules est due aux pontages hydrogènes entre le polyélectrolyte et les surfaces des 

particules de kaolin lorsque les charges sont écrantées. J h s t r o m  et al. (1987) ont montré que 

le degré d'adsorption de la CMC sur les particules augmente lorsque le pH diminue. Ce 

phénomène s'explique par la variation de la charge sur le côté des plaquettes. 

3.2.2.3 Le polyvinyle alcool (PVA) 

Le PVA est un polymère synthétique soluble dans l'eau dont la formule chimique 

est:  

Ce polymère améliore de manière considérable la résistance du papier couché à 

l'huile, aux graisses et aux solvants organiques ainsi que la brillance et l'absorption de 

l'encre. Ce polymère présente d'excellentes propriétés d'adhésion avec la cellulose, 

principale composante du support de couche. Ce polymère interagit grâce à ces groupements 

hydroxyles par pontage hydrogène avec les groupements silanols et alurninols des particules 

de kaolin (Chang (1 992)). Malgré toutes ces qualités, le PVA est très peu employé pour deux 

principales raisons: la première est son coût três élevé et la seconde est qu'il augmente de 

manière très importante la viscosité et l'élasticité des sauces de couchage et ceci même à très 

faible concentration. 

3.3 Propriétés rhéoiogiques caractéristiques des sauces de couchage 

Les sauces de couchage ont un comportement rhéologique con~plexe caractéristique 

des suspensions concentrées. En cisaillement simple, elles ont une contrainte seuil apparente 

à faible taux de cisaillement suivie d'une zone de rhéofluidifiance. A forte vitesse de 

cisaillement et dans certaines conditions de formulations, les sauces de couchage peuvent 



être rhéoépaississantes (Engstrom et Rigdahl (1 989)). Ces suspensions sont également 

thixotropes; Fadat et Rigdahl (1 987) ont observé l'augmentation du module élastique en 

fonction du temps après un pré-cisaillement. Dans la plupart des cas, la viscosité en 

cisaillement simple des sauces de couchage est d.écrite par des modèles empiriques du type 

Bingham et Herschel Buckley. 

La formation d'une structure due aux interactions entre les différents composants 

induit un comportement viscoélastique similaire à celui des gels. À basse déformation, les 

sauces de couchage ont un comportement élastique dominant. On observe pour les 

suspensions de kaolin un module élastique 3 a 10 fois plus élevé que le module visqueux 

suivant la formulation. Le module élastique croît très lentement avec la fréquence dans le 

domaine linéaire. A partir d'une déformation critique, le module élastique décroît tandis que 

le rnoduIe visqueux reste constant; cette transition vers un comportement viscoélastique non 

linéaire est attribuée à la cassure du réseau et dépend donc des interactions mises en jeu 

(Engstrom et Rigdahl (1 991)). La déformation critique est généralement très faible, de 

l'ordre de 1 % (Triantafillopoulos (1 996)), et semble décroître avec la fréquence (Engstrom 

et Rigdahl(1991)). La formulation et la concentration des différents composants ont une très 

grande influence sur les propriétés rhéologiques des sauces de couchage. L'apparition de 

défauts à Ia surface du papier couché est souvent reliée au caractère viscoélastique des sauces 

de couchage. tors  du nivellement, la sauce de couchage induit une force qui tend à soulever 

la lame de dosage ou le rouleau de pré-dosage. Comme l'entrefer entre la lame et le papier 

est régule de manière à être constant, on a apparition de vaguelettes à la surface du papier. 

3.3.1 La fraction totaIe de solide 

La fraction de solide est un des paramètres les plus importants dans les propriétés 

rhéologiques des sauces de couchage. Lorsque la fraction de solide augmente, le réseau est 

renforcé puisque les sites d'adsorption sont accrus. La viscosité, le caractère thi:-:otrope et le 

module élastique augmentent tandis que la déformation critique caractéristique de la 



transition vers le comportement viscoélastique non linéaire diminue. Engstrom et Rigdahi 

(1991) ont observé que le module élastique augmente avec l'inverse de la déformation 

critique au carré. 

3.3.2 Le latex 

Nous avons vu précédemment qu'il existe plusieurs types de latex et que le latex le 

plus employé dans l'industrie des sauces de couchage n'a d'affinité ni avec le pigment ni 

avec le polymère. L'effet observé sur les propriétés rhéologiques est seulement celui d'une 

charge inerte. L'ajout de latex, à une fiaction de solide totde constante, augmente seulement 

la fraction maximale d'empilement ce qui a pour effet de diminuer la viscosité. 

3.3.3 Le polymère hydrosolubles 

Le type de polymère choisi dans la formulation des sauces de couchage joue un rôle 

fondamental dans le comportement rhéologique. Le degré et le mode d'adsorption du 

polymère hydrosolubles sont des paramètres essentiels. Plus le degré d'adsorption sera 

important plus le caractère élastique de la suspension sera élevé. L'augmentation de la masse 

moléculaire accentue les effets selon Fadat et Rigdahl (1 987). Carreau et Lavoie (1 991) ont 

observé que la contrainte seuil apparente augmente linéairement avec la concentration de 

polymère hydrosoluble à fraction de solide constante et ont constaté que les modules 

élastiques croissent avec un rapport G'/û" constant. Fadat et Rigdahl(1987) ont constaté que 

les modules élastiques et visqueux augmentent avec la concentration de polymère, mais que 

le module élastique croît plus vite que le module visqueux. Les auteurs attribuent ce 

phénomène à l'augmentation des sites d'adsorption. 

3.3.4 Induction de structure lors de l'écoulement 

Lavoie et Carreau (1995) ont observé expérimentalement que les modules 



dynamiques et la viscosité augmentent à partir d'une déformation critique lors de mesure en 

oscillation et en fluage. Les auteurs expliquent ce phénomène par l'induction d'une nouvelle 

structure par l'écoulement. Ce changement de microstructure est dû, selon les auteurs, à la 

modification des interactions entre les particules lorsque celles-ci sont suffisamment proches. 

Lavoie et Carreau (1995) ont proposé un modèle phénoménologique afin de décrire la 

contrainte de cisaillement des sauces de couchage: 

où O, est la contrainte seuil, ail y IP la contribution de la contrainte due à la modification des 

interactions entre particules induit par la déformation à partir de la déformation critique. Les 

paramètres a, et p sont ajustables et peuvent être déterminés indépendamment à partir des 

données obtenues en oscillation. 

3.3.5 Conclusion 

Les sauces de couchage sont des suspensions complexes dont les propriétés 

rhéologiques sont gouvernées principalement par les interactions entre les particules via les 

chaînes de polymère hydrophile adsorbées sur sa surface. Ses propriétés sont caractéristiques 

des suspensions concentrées de particules interactives: thixotropie, contrainte seuil et 

viscoélasticité non linéaire. Les propriétés rhéologiques ont une grande influence non 

seulement sur la machinabilité mais aussi sur les propriétés du papier couché. Hormis 1s 

modèle Werschei Buckley, aucun modèle rhéologique n'est rapporté dans la littérature. 

L'écoulement des sauces de couchage, dans le procédé, et plus spécialement sous la lame, 

est modélisé numériquement (Vida1 (1 996)), mais la viscosité des sauces de couchage est 

supposée newtonienne. Gron et Dahlvik (1 997) ont montré l'importance de la viscoélasticité 

de ces suspensions lors du nivellement. II est donc important de tenir compte de la 

viscoéIasticité des sauces de couchage lors d'écoulement transitoire. 



4 Objectifs 

Nous avons vu dans la première partie que les suspensions composées de particules 

fortement interactives avaient un comportement rhéologique complexe. Les interactions entre 

particules engendrent la formation d'une structure tri-dimensionnel qui évolue en fonction 

du temps mais surtout en fonction de l'écoulement. D'un point de vue rhéologique, ce 

comportement se caractérise essentiellement par des propriétés viscoélastiques non linéaires. 

Les modèles structuraux apparaissent être les plus aptes à décrire ces comportements. Le 

modèle de Coussot et al. (1993) montre des résuItats qualitatifs intéressants dans le cas des 

mesures effectuées en oscillations. 

La seconde et la troisième parties de ce chapitre ont été consacrées aux suspensions 

de fumée de silice et les sauces de couchage. Les suspensions de fumée de silice interagissent 

de différentes manières en fonction de la nature du milieu enviromant. Dans un milieu non 

polaire, les particules interagissent entre elles pour former un réseau. Les sauces de couchage 

sont plus complexes, mais ont des propriétés rhéologiques très semblables celles des 

suspensions de filmée de silice dans un milieu polaire. Elles possèdent toutes deux des 

modules élastiques très supérieures aux modules visqueux à faible amplitude de déformation 

et leur viscoélasticité devient non linéaire a partir d'une déformation critique faible. 

L'objectif de cette thèse est de caractériser et de modéliser le comportement 

rhéologique des suspensions de fumée de silice et des sauces de couchage. Ce travail se 

décompose en trois articles: 

L'objectif du premier article est de caractériser le comportement rhéologique des 

suspensions de fumée de silice en fonction des interactions entre particules. Le 

comportement viscoélastique non linéaire sera examiné et interprété en termes de 

modifications de la structure induite par les interactions. Les modèles d'oldroyd modifié et 

de Coussot seront utilisés afin de décrire le comportement rhéologique observé. 



Le second article a pour but de caractériser les propriétés rhéologiques des sauces de 

couchage et de comprendre comment les interactions entre les particules infiuencent ce 

comportement. Les propriétés rhéologiques étudiées en fonction de la concentration et de la 

nature du polymère hydrosoluble utilisé seront interprétées en fonction de l'évolution de la 

structure par l'écoulement. 

L'objectif du troisième article est de proposer un modèle rhéologique basé sur la 

théorie des réseaux afin de décrire le comportement viscoélastique non linéaire des 

suspensions colloïdales. Ce modèle sera constitué d'un modèle mécanique du type Jeffreys 

et d'une équation cinétique permettant de décrire l'évolution de la structure durant 

l'écoulement. Dans cet article, trois équations cinétiques différentes seront testées. Les 

prédictions du modèle seront comparées aux résultats expérimentaux obtenus avec les 

suspensions de fumée de silice et les sauces de couchage. 



CHAPITRE 2:  SYNTHÈSE DES ARTICLES 

Cette thèse est présentée sous la forme de trois articles. Le premier et le second 

articles ont pour sujet la caractérisation du comportement rhéologique des suspensions de 

fumée de silice et de sauces de couchage respectivement. Dans le troisiéme article, un 

nouveau modèle rhéologique est proposé afin de décrire le comportement des deux systèmes 

étudiés préalableinent. 

Les suspensions de fumée de silice possèdent des propriétés rhéologiques qui 

dépendent très fortement de la nature et de l'amplitude des forces interparticulaires. Dans un 

fluide non polaire, Ies particules interagissent entre elles par pontage hydrogène et forment 

un réseau tridimensionnel a très faible fraction massique alors qu'un fluide polaire interagit 

avec la surface des particules limitant ainsi les interactions particule/particule. La formation 

d'une microstructure, comme dans le cas des particules de fumée de silice suspendues dans 

un milieu non polaire, est responsable du comportement viscoélastique non linéaire à faible 

déformation. Les propriétés rhéologiques des suspensions de fumée de silice ont été étudiées 

en fonction de la taille, du traitement de surface et de la concentration de particules ainsi que 

de la polarité du milieu suspendant. 

Lorsque le solvant polaire, ces suspensions ont des propriétés rhéologiques typiques 

des liquides viscoélastiques et peu de différences ont été observé entre les suspensions 

composées de particules ayant des traitements de surface différents. Ces comportements 

s'expliquent par les faibles interactions entre les particules dans le solvant polaire. Aucun 

comportement non linéaire n'a été observé dans la large gamme d'amplitude de déformation 

étudiée. Pour les suspensions suspendues dans un solvant non polaire, les modules élastiques 

et visqueux sont très sensibles à la déformation : le module élastique décroît avec la 

déformation à partir d'une contrainte critique alors que le module visqueux croît avec la 

déformation. Ce comportement viscoélastique non linéaire est également caractérisé par un 

signal réponse, en oscillation, de forme non sinusoïdale. Les modules élastiques et visqueux 



qui ne dépendent que de la première harmonique du signal réponse n'ont plus un sens 

physique clair dans ce cas-ci. C'est pourquoi nous avons choisi d'interpréter les résultats en 

termes d'énergie dissipée. Contrairement aux matériaux linéaires, l'énergie dissipée obtenue 

à partir des résultats expérimentaux n'est pas une fonction quadratique de la déformation, 

mais augmentent ( sur un graphe log-log) avec une pente supérieure à deux. Cet excès 

d'énergie dissipée dépend de la concentration de particules et du traitement de surface des 

particules. Dans le cas des particules hydrophiles (forte interaction entre particules), l'excès 

d'énergie dissipée augmente avec la concentration alors que dans le cas où les interactions 

entre particules sont plus faibles, l'excès d'énergie dissipée est moins important et l'effet de 

la concentration en particules beaucoup moins drastique. Cet excès d'énergie dissipée 

devient négligeable lorsque la suspension a été soumis préalablement à des amplitudes de 

déformation importantes. Le comportement non linéaire a donc été attribué à la cinétique 

destruction/ restauration de la microstructure induit par l'écoulement oscillatoire. De ce fait, 

plus les interactions entre particules sont importantes, plus l'excès d'énergie dissipée par la 

destruction de la structure est important et donc plus le comportement visco6lastique est non 

linéaire. 

Les résultats expérimentaux ont été comparés aux prédictions des modèles de 

Coussot et d701droyd modifié. Ces deux modèles permettent de décrire le comportement 

solide observé à basse amplitude de déformation et de prédire le comportement 

viscoélastique non linéaire comme notamment la distorsion de signaux mesurés. La 

décroissance du module élastique a partir d'une amplitude de déformation critique est 

correctement décrite par les modèles de Coussot et d'Oldroyd modifié, mais l'augmentation 

du module visqueux avec l'amplitude de déformation est seulement décrite que très 

qualitativement. Les valeurs du module visqueux prédites par le modèle de Coussot sont 

considérablement surestimées et le modèle d'oldroyd modifié prédit des valeurs nulles de 

ce module pour des amplitudes de déformation inférieures à la déformation critique. Les 

deux modèles ne permettent donc qu'une description très qualitativement le comportement 

rhéologique des suspensions de furnée de silice dans le fluide non polaire. 



Le second système étudié est une suspension industrielle concentrée 

principalement composée de particules de kaolin et utilisée dans l'industrie papetière pour 

améliorer les propriétés du papier. Les sauces de couchage ont un comportement rhéologique 

complexe qui résulte des interactions entre les différents composants de la suspension. Des 

études antérieures ont montré que les interactions entre particules sont prépondérantes mais 

que l'ajout de polymères hydrosolubles augmente de manière importante les propriétés 

viscoélastiques de ces suspensions. Les interactions induisent la formation d'une 

microstructure responsable du comportement viscoélastique non linéaire de ces suspensions. 

Ces propriétés rhéologiques non linéaires ont été étudiées à faible amplitude d'oscillation 

ainsi qu'en accroissement des contraintes pour deux types de polymères hydrosolubles 

différents: une carboxyméthyle cellulose et un polyvinyle alcool. Les propriétés rhéologiques 

ont été interprétées en ternes de réorganisation de la microstructure des suspensions. Les 

sauces de couchage sont en fait une suspension de domaines dans lesquels les particules sont 

empilées les unes sur les autres. Le polymère hydrosoluble qui s'adsorbe sur les particules 

de kaolin stabilise stériquement la suspension et augmente l'ordre local à l'intérieur des 

domaines. L'importante rhéofluidifiance de ces suspensions, attribuée à l'orientation des 

domaines dans la direction de l'écoulement, augmente de manière non négligeable lorsqu'un 

polymère hydrosoluble est ajouté. Cet effet a été expliqué par la déformation des domaines 

facilité par la meilleure stabilisation des particules de kaolin. Ce phénomène permet 

également d'expliquer le dépassement des contraintes observé lors des mesures en régime 

transitoire seulement en présence d'épaississant. En écoulement oscillatoire, le 

comportement viscoélastique des sauces de couchage est très similaire à celui des 

suspensions de fumée de silice dans de l'huile minérale. Un comportement solide à basse 

amplitude de déformation ainsi qu'une décroissance du module élastique à partir d'une 

déformation critique et un excès d'énergie dissipée ont également été observés. Ces 

phénomènes, impliquant des déformations beaucoup plus faibles que celles observées lors 

des dépassements des contraintes, ont été interprétés en termes de modification de la 

microstructure à l'intérieur des domaines. 



Le comportement viscoélastique non linéaire observé est plus marqué dans le cas des 

suspensions contenant du polyvinyle alcool que dans celles contenant de la carboxyméthyle 

cellulose. Ce phénomène a été expliqué par une plus grande affinité des polymères neutres 

comme le polyvinyle alcool, a la force ionique considérée dans cette étude, pour les 

particules de kaolin et donc par une meilleure stabilisation stérique. 

Nous avons vu dans les deux articles précédents que deux types de suspensions aussi 

différentes que des particules de fumée de silice dans de l'huile de paraffine et que les sauces 

de couchage ont des comportements rhéologiques très similaires qui peuvent être interprétés 

en termes de modification de la structure induite par l'écoulement. L'évolution de la 

structure par l'écoulement est en général modélisée par une équation cinétique, qui, couplée 

à un modèle mécanique, permet de prédire le comportement viscoélastique non linéaire de 

ce type de suspensions. Ce concept a été utilisé par Coussot et al. (1993), mais, comme nous 

l'avons montré dans le premier article, ne permet de décrire que très qualitativement le 

comportement des suspensions de fumée de silice. Dans ce dernier article, un modèle basé 

sur la théorie des réseaux est proposé afin de décrire les propriétés rhéologiques des systèmes 

étudiés dans les deux précédent articles. Ce modèle est constitué d'un modèle de Jeffreys 

modifié et d'une équation cinétique. Dans cet article, nous avons testé trois équations 

cinétiques différentes. La première équation suppose que la destruction de la structure est 

reliée la vitesse de cisaillement. La seconde équation cinétique est très similaire à celle 

utilisée dans le cas des systèmes polymères et dépend des contraintes normales alors que, 

dans la dernière, la modification de la structure est due au taux d'énergie dissipée. Ces trois 

équations couplées avec le modèle de Jeffreys modifié permettent de décrire relativement 

bien le comportement viscoélastique non linéaire des suspensions de fumée de silice et des 

sauces de couchage comme les dépassements des contraintes en régime transitoire ou la 

distorsion des signaux en oscillations. Malgré tout, les prédictions du modèle avec l'équation 

cinétique dépendant de la vitesse de cisaillement montrent une influence beaucoup trop 

importante de la fréquence par rapport aux résultats expérimentaux obtenus. La seconde 

équation cinétique dépendant des forces normales prédit une augmentation de la déformation 



critique avec la fréquence comme il est couramment observé dans le cas des polymères 

homogènes. Les résultats expérimentaux obtenus avec les suspensions de fumée de silice 

montrent l'effet inverse : la déformation critique décroît avec la fréquence. L'utilisation de 

l'équation cinétique dépendant du premier invariant des contraintes n'est donc pas appropriée 

à la prédiction du comportement viscoélastique non linéaire des deux systèmes étudiés. La 

dernière équation cinétique dépendant de l'énergie dissipée est donc la plus adaptée pour 

décrire les propriétés rhéologiques de ces systèmes. Toutefois, ce modèle n'est pas capable 

de prédire avec les mêmes paramètres le comportement rhéologique à la fois en régime 

transitoire et oscillatoire. Ceci peut être expliqué, comme nous l'avons mentionné dans le 

second article, par des modifications de la structure à des différents niveaux selon les 

régimes. 
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Ce premier article a pour but de caractériser les propriétés rhéologiques des 

suspensions "modèles" de fumée de silice. Deux sortes de particules possédant différents 

traitement de surface ainsi que deux types de solvant ont été choisis pour étudier l'influence 

des interactions entre particules sur le comportement rhéologique de ces suspensions 

colloïdales. 

1 Abstract 

Suspensions of h e d  silica exhibit a wide range of rheological properties depending 

on the natiire and magnitude of the interparticle forces. In a nonpolar fluid, the particles 

interact through hydrogen bonding and can form a three dimensional network. Microstructure 

formation is responsible for the nonlinear viscoelastic behavior of h e d  silica suspensions, 

even at very small strain. These nonlinear rheological properties have been studied in srnaIl 

amplitude oscillatory experiments as a function of particle size, surface treatment of 

particles, suspending medium polarity and solids concentration. The non linear viscoelastic 

behavior is characterized by a non sinusoidaI waveform of the signal response. For 

suspensions in a non polar fluid, both the elastic and viscous moduii are shown to be 

sensitive to the strain amplitude: the elastic modulus is decreasing with increasing strain 

whereas the loss moduli is initially increasing with strain. We have chosen to examine the 

dissipated energy which is clearly related to the breakdown of the suspension structure. A 

cornparison of mode1 predictions and the experimental data shows the limitations of these 

models recently proposed on the literature to describe the correct behavior of colloidaI 

suspensions. 

Key words: Fumed silica - colloidal suspensions - nonlinear viscoelasticity - rheological 

models 



2 Introduction 

The use of colloidal particles is comrnon in several industries such as paints, 

foodstuffs and pulp and paper. The rheological behavior of the concentrated colloidal 

suspensions is very sensitive to the nature and the magnitude of the interparticle forces. If 

the attraction forces are Iarger than the repulsion and Brownian forces, partictes can 

aggregate to forrn clusters. Ultimately growing clusters may result a three dimensional 

network of particles, yielding a gel structure. Colloidal gels have viscoelastic proper-es 

similar to polyrner gels. Therefore, the scaling concepts which were developed by de Germes 

(1979) c m  be applied to colloidal gels. Mal1 and Russel (1957), Buscall et al. (1988) and 

Chen and Russel (1991) applied these scaling concepts to study the effects of interparticle 

forces on the elasticity of flocculated suspensions. They have shown that the elastic modulus 

scales with the volume fraction @ with an exponent m : G 'œ 4 ". The power-law exponent 

is related to the fiactal dimension (Buscall et al. (1 988)) and therefore depends on particle- 

particle interactions. For chemically limited aggregation (CLA), Brown and Bal1 (1 985) 

calculated that in = 4.5 * 0.2. This growing mechanism is govemed by a low sticking 

probability when there is a collision between diffusing clusters. The predicted value of rn is 

in agreement with the measurements of Buscall et al. (1988) who obtained m = 4 k 0.5 for 

silica and polystyrene latex suspensions and of Khan and Zoeller (1993) who found rn - 4 

for fumed silica suspensions. For small amplitude oscillatory shear experiment, nonlinear 

effects have been reporîed. The limit of the linearity, y,, decreases with the volume fraction 

of particles following a power-law: y,=@ -'. Shih et al. (1990) for alumina gels and de Rooij 

et al. (1994) for latex suspensions measwed an exponent equals to 2.1 and 2.3. Rueb and 

Zukoski (1997) observed experirnentally that the exponent depends on the interparticles 

forces and obtained t values ranging between 4 and 0.7. 

The scaling concept describes the static properties of a colloidal gel as a fùnction of 

the volume fraction. The microstructure changes in response to stresses or strains. The 

rheological properties are governed by microstructure changes which result from the 



competition between the break-down due to flow and the build-up due to the Brownian 

motion. This kinetics is responsible for the nonlinear rheological behavior. The 

microstructure cm be characterized by a structural parameter <, where E; = 1 for completely 

built-up structure and E; = O for completely broken-down structure. The structural parameter 

evolution is described by a kinetic equation of the following form given by Barnes (1 997): 

where a, b, c and d are characteristic parameters of the material. 

This method has been used to describe viscous thixotropic phenomena. Quemada 

(1 977) applied this approach to blood and De Kee et aL(1983) to various food systerns, but 

only few authors used this kinetic equation to describe viscoelastic effects. Leonov (1 990) 

used a similar concept to describe the rheological behavior of highly filled polymers 

containing small interacting particles. Coussot et al. (1 993) applied a modified Leonov mode! 

to describe the rheological properties of concentrated suspensions in a Newtonian solvent, 

in terms of a structurai function. They assumed that the total stress contains two main 

contributions: a viscoe!astic contribution, cf, from interactions between particles and a 

viscous one from the suspending medium: 

where q,, is the suspension viscosity without interaction. 

The viscoelastic contribution is described by a Maxwell-type equation: 



where G is the elastic modulus of the structure and q(5) is the viscous tenn which depends 

on the structural factor <. This factor is proportional to the total number of bonds and can be 

deterrnined from the following kinetic equation: 

where y, is the yield strain, 8 a characteristic time and x a kinetic function of the structural 

factor and the shear rate. The viscosity and the structural factor are related by the following 

empirical relation: 

GO 
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with 

where n is an empirical parmeter. For steady state, with n = O, equations 3.5 and 3.6 reduce 

to the Bingham model. Coussot et al. (1993) used a viscoelastic Maxwell model coupled 

with a kinetic equation to describe at once thixotropic effects and the yield stress of 

suspensions composed of strongly interactive particles. It is also possible to consider the 

yield phenonlenon with simpler models using a yield stress parameter. 

Oldroyd (1 947) proposed a constitutive equation which considers a linear Hookean 

eIastic behavior before yielding and a fluid behavior after yielding: 

in which G is the eiastic modulus, O, is the yield stress and q is the viscosity after yielding. 



Yoshimura and Prud'homme (1 987) used this equation in term of strain with a Newtonian 

viscosity to mode1 the response of oil in water emulsions to oscillatory deformations in the 

nonlinear regime. Doraiswamy et al. (1 99 1) modified this equation substituting the 

Newtonian by a power-law viscosity to describe the rheological properties of a suspension 

with a yield stress. 

These equations can be applied to a sinusoidal flow. When the strain amplitude 

applied is below the yield strain, the fluid does not flow but behaves like a Hookean solid. 

The elastic modulus is constant and the viscous rnodulus is equal to zero. When the strain 

amplitude exceeds the yield strain, the stress signal is divided in four parts as illustrated in 

Figure 3. 1 which compares the calculated with a typical signal response. In the first part, the 

strain amplitude is smaller than the yield strain, the suspension behaves as an elastic solid. 

In the second part, the strain amplitude becomes larger than the yield strain, the suspension 

flows and the signal is flattened. The two other parts of the signal are syrnrnetric to the two 

first ones. The signal is not linear, but composed by several harmonics. 

From the first harmonics of the output signal, Doraiswamy et al. (1 991) proposed an 

extension of the Cox-Merz rule for the material with an apparent yield stress. They 

demonstrated for silicon particles dispersed in polyethylene that the steady shear and the 

complex viscosity can be superimposed if the complex viscosity is reported as a fiinction of 

the strain rate amplitude wyO, for oscillatory shear data in the nonlinear domain. The 

modified Oldroyd mode1 allows a good prediction of the rheological behavior of systems 

with yield stress in dynarnic measurements. But as it does not include time-dependent effects, 

it is not therefore capable of describing thixotropic fluids. 



Experimental data 

Figure 3.1: Cornparison between the stress response of experimental data of A200 

suspensions at mass 8.2 % calculated from the modified Oldroyd mode1 (y, = 0.07, y* = 

0.032, n = O, mlG = 0.5 s and o = 2n rads). 

The Coussot et al. (1 993) and the modified Oldroyd models predict distortions of the 

waveform of the output signal observed during oscillatory measurements in the nonlinear 

domain. Many authors report the existence of non sinusoidal waveform during dynamic 

measurements: Onogi et al. (1970) observed a nonlinear response for a carbon black 

suspension in polystyrene solutions and Komatsu et al. (1973) obtained sirnilar results for 

semi-solid emulsions. These authors attributed this nonlinear viscoelastic behavior to yield 

stress. 

3 Dissipated energy 

The nonlinear behavior of materials in dynarnic oscillations is characterized by a non 

sinusoidal wavefonn of the output signal as illustrated in Figure 3.1. This response can be 

decomposed in a Fourier series. When a strain y(t) = y" sin ot is applied, the stress response 



is described by: 

For a linear viscoelastic material under small enough strain, the stress is linear with 

respect to the strain and only the fundamental harrnonics (the elastic and loss moduli), are 

not equal to zero. For a nonlinear viscoelastic material, the stress response has higher 

harmonics. Onogi et al. (1 970) and Komatsu (1 973) observed that the output signal includes 

the fundamental components and the odd harmonics. The even harmonics can be observed 

in the case of molten polymers when there is wall slippage (Graham (1 995) and Reimers and 

Dealy (1 996)). In such cases, the waveform is no longer twofold symmetric. Contrary to the 

elastic and viscous rnoduli, the higher harmonics have no clear physical sense. 

A Lissajous figure c m  be used to represent the variation of the stress versus strain. 

For a linear viscoelastic material, the Lissajous figure is an ellipse. When the material 

exhibits a nonlinear viscoelastic behavior, the Lissajous figure is characterized by a departure 

from the elliptic form. The dissipated energy can be calculated from the area of the Lissajous 

figure. The dissipated energy per a unit volume for one cycle is obtained from the relation: 

For a linear viscoelastic material, G" is independent of y" and the dissipated energy 

is a quadratic function of the strain amplitude. 

Particle-particle interactions in concentrated suspensions can induce a network. The 

microstructure c m  then be ruptured during flow and restored again once at rest. This network 

is responsible for the non linearity observed when conducting small amplitude oscillatory 

experiments. The objective of this work is to examine the role of the interparticle interactions 

on the rheological behavior of sub-colloidal suspensions, especially on their nonlinear 



viscoeIastic properties during oscillatory measurements. Fumed silica suspensions are used 

for this purpose. Proposed models from the literature are used to describe the suspension 

rheological behavior and the results of experimental and theoretical studies are compared and 

discussed. 

4 Experirnental 

Fumed silica particles are colloidal particles whose physico-chernical properties are 

well known (Einsenlauer and Killmann (1 980), Degussa (1 989)).These particles are used 

in rnany industrial applications as reinforcing fillers and thixotropic and rheology control 

agents. They are available in various sizes and with a wide variety of surface treatment. 

Thee  different fumed silica particles and two different suspending fluids have been used in 

this study. Fumed silica particles Aerosil A300, A200 and R974 (Degussa Corporation) have 

been selected. These colloidal particles are prepared by flame hydrolysis of silicon 

tetrachloride. Silanol groups are generated on the fumed silica surface. The irreversible 

aggregates, linked by bonds which are too strong to be broken, are formed during the 

fabrication process. Aerosil A300 and A200 particles have a diarneter of 7 and 12 nm 

respectively. They are hydrophilic fùmed silica with surface silanol groups that can 

participate in hydrogen bonding. Aerosil R974 particles have a diameter of 12 nrn and are 

hydrophobic: a significant fraction of silanol groups have been substituted by methyl groups 

by adding dimethyl-dichlorosilanes during the hydrolysis process. 

The fumed silica particles were mixed in two different fluids: a paraffin oil 

(Anachernia) and a polypropylene gIycol (ARC0 PPG, Chemcentral). These fluids are 

Newtonian with a viscosity at 25OC of 0.07 and 0.64 Pas  respectively. The paraffin oil is a 

nonpolar fluid with no hydrogen bonding capacity. On the other hand, the polar 

polypropylene glycol (PPG) c m  form bonds through its terminal OH groups. 

Since the paraffin oil has no hydrogen bonding capacity, the particles c m  only 



interact between themselves. These interactions are stronger for the hydrophilic particles than 

for the hydrophobic fumed silica which has less silanol groups on their surface. The PPG is 

strongly polar and can interact with the silanol groups of the fumed silica. The interactions 

between the particles and the suspending medium dominate. Thus, with the various 

suspensions prepared, three levels of interactions between particles can be investigated, 

namely: strong ones for the suspensions of hydrophilic A200 and A300 fumed silica in 

parafin oil, medium for hydrophobic R974 fumed silica in paraffin oil and weak 

interactions for suspensions of hydrophilic A200 and hydrophobic R974 fùmed silica in PPG. 

The fumed silica particles were first dried under vacuum at a temperature of 80°C for 

a week to remove adsorbed water. The suspending fluid was added to the hmed  silica 

particles and mixed for ten minutes. The suspensions in paraffin oil were homogenized by 

ultrasound for 5 minutes. The suspensions with PPG were placed under vacuum at room 

temperature for three to ten days to remove the air bubbles. The concentrations of fumed 

silica used ranged from 7.0 to 14.5 % by rnass. 

Dynamic measurements were conducted on two different rheometers: a stress 

controlled rheometer (Bohlin CVO) and a strain controlled rheometer (Bohlin VOR). Two 

cone and plate geometries were used: 50 mm diameter and a cone angle of 4 degrees for the 

CVO and 30 mm diameter and a cone angle of 5.2 degrees for the VOR. Measurements were 

also carried out with two standard Couette geometries: C l4  and C25 with a gap of 0.75 and 

1.25 mm respectively. These last geometries were used to study the less concentrated 

suspensions and PPG based suspensions. Al1 measurements were carried out at 25 OC. In al1 

cases, the sarnples were allowed to rest, before any measurements, until the elastic modulus 

reached a plateau at very low strain. The results were checked on the two rheorneters. The 

data reported were reproducible with a relative error of less than 15%. These two rheometers 

were used to make sure that the observed phenomena are real rheological effects and not 

experimental artefacts. For some highly elastic suspensions, the torsion bar of the VOR 

rheometer was not stiff enough, which could cause some extra distortion of the output signal. 



However, no significant differences were observed between the output of the VOR and CVO 

rheometer, the latter being not limited in t e m s  of bar torsion rigidity. 

For concentrated suspensions, an apparent slip may be triggered near the wall by the 

higher velocity gradient or shear stress. The local concentration of the suspended particles 

is lower at the wall than in the bulk. Yoshirnura and Prud'homme (1 988) showed that wall 

slip phenomena can induce nonlinear waveform signals. According to Hatzikiriakos and 

Dealy (1991), in the case of polymer melts, slip is responsible for the nonlinear output 

signal. We do not believe that wall slip may explain the distortions reported here at very 

smali strains, as we obtained the same results using the two rheometers with different gap 

geometries. Cracks were sometimes observed for the suspensions of the A200 and A300 

particles in the paraffin oil at high strain amplitude (y"> 0.05 for 14.5 mass % suspensions 

to y"> O. 1 for 8.2 mass % suspensions) Iimiting the range of the applied strain amplitude 

studied. Due to fracture in the test sarnple, no steady state shear measurements could be 

carried out for these suspensions. 

The rheometers are equipped with a data acquisition system for the dynamic 

measurements signais. These signals are then processed to calculate the first hamonics of 

the output signal. This analysis, however, only holds for a linear material. In this study, the 

output signal was recorded and treated separately. 



5 Results and discussion 

5.1 Nonlinear behavior 

Oscillatory measurements are suitable tests to characterize the elasticity related to the 

microstructure of a material. This technique is used norrnally under sufficient small strain 

amplitude to obtain a linear response. For classical polyrneric systems, the Iinear domain c m  

extend to strains of order uni@. For suspensions, the range of the linear strain domain drops 

by orders of magnitude and sometimes it is not experimentally accessible. In such a case, one 

must study the nonlinear viscoelastic behavior and to relate the rheological properties to the 

evolution of the suspension microstructure. 

Dynamic measurements data on 8.2 mass % suspensions of A200, A300 and R974 

particles in paraffin oil are reported in Figure 3.2. This figure shows the elastic and loss 

moduli as a function of the strain amplitude at 1 Hz. The elastic modulus is shown to 

decrease rapidly above a strain exceeding 0.03 for A200 and A300 particles and 0.012 for 

R974 particles whereas the loss rnodulus increases initially with strain amplitude. The 

nonlinear viscoelastic response shown in Figure 3.2  is typical of suspensions. A similar 

behavior was observed by Frith and Mewis (1987) for suspensions of PMMA particles in 

decalin and exsol, by Tadros and Hopkinson (1 990) for a PS latex dispersion and by Jones 

et al. (1991) for stearyl coated silica particles in cyclohexane. No linear regime is shown as 

the loss modulus increases with strain amplitude whereas the elastic modulus decreases. 

Therefore, the modulus values reported can only be considered as apparent values. The 

effect of the particfe sizes was studied using the A200 and A300 particles which have 

diameters of 12 and 7 nrn respectively, suspended in paraffin oil at a mass fraction of 8.2%. 

The plateau vaIue of the eIastic modulus is the same for the two suspensions. The A300 

suspension appears to be slightly more resistive to strain. The A300 suspension loss modulus 

is smaller than for the A200 suspension but increases more rapidly with strain amplitude. The 

0 effect of surface treatrnent was studied using the two different types of fumed silica particles 



in paraffin oil. A200 and A300 particles are the hydrophilic fiuned silica with surface silanol 

groups, whereas the R974 corresponds to the hydrophobic fùmed silica where many of the 

silanol groups were replaced by methyl groups. The elastic modulus of the A200 and A300 

suspensions are shown to be considerably higher than that of the R974 suspension and the 

R974 elastic modulus starts to drop at a smaller strain amplitude than the A200 and A300 

moduli. The loss modulus increases with strain amplitude in the three cases, but it is less 

important for the R974 suspension For the three suspensions, the elastic effects dominate the 

viscous ones. 

The dynarnic moduli of the A200 and R974 versus frequency were measured at a 

small strain amplitude ( y" = 0.01 and y" = 0.00 1 respectively). The elastic modulus of the 

A200 suspension is observed in Figure 3.3 to be flat and almost independent of the 

frequency, indicating a gel-like behavior. The properties of the A300 suspension were similar 

to those of the A200 suspension (data not reported). For the R974 particles in the paraffin 

oil, the elastic modulus is shown to increase slightly with frequency. The paraffin oil is a 

nonpolar solvent and then cannot interact with the fumed silica particles. The particles 

interact only between themselves and form a three dimensional network. The A200 

suspension has the highest modulus, whereas the R974 suspension has the smallest elastic 

modulus because the particles have fewer silanol groups. The loss modulus is almost 

independent of the frequency, except for the A200 suspension at high frequency, which 

shows a clear increase. 
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Fieure 3.2: Variation of the elastic and loss moduli with strain amplitude for 8.2 mass % 

suspensions of A200, A300 and R974 in paraffin oil (o = 6.28 radis). 

o (rads) 

Figure 3.3 : Variation of the elastic and loss moduli with frequency for 8.2 mass % 

suspensions of A200 and R974 in paraffin oil. 



The nonlinear viscoelastic behavior is also characterized by a distortion of the output 

signal response as shown in Figure 3.1 for a suspension of A200 in paraffin oil. These input 

and output signal can be represented using the Lissajous diagram as exhibited in Figure 2.4 

for the suspension of A200 and R974 in paraffin oiI with different strain amplitudes. These 

figures compare the strain versus stress signals observed with the imposed strain rheometer 

(VOR) and the stress imposed rheorneter (CVO). The Lissajous diagrams obtained from both 

rheometers are also identical. In the A200 case, for a strain amplitude less or equal to 0.01, 

the strain and the stress signals are superimposed and the Lissajous figure is a straight line. 

This behavior is a characteristic of a Hookean solid. For strain amplitudes above the 0.0 1, 

the output signals deviate from the sinusoidal waveforms, the distortions increasing with 

strain amplitude. Figure 3.4 d) exhibits the Lissajous figure for the R974 suspension. 

Contrary to the A200 particles suspension, the output signal is only weakly distorted at high 

strain. The Coussot et al. and the modified Oldr~yd model predictions are compared with the 

experimental data on these Lissajous diagams. The model parameters are given in Table 3.1. 

For the Coussot et al. model, we assurned that the kinetic parameter is constant and equal to 

1 during the oscillatory measurement as proposed by Coussot et al. (1993). In al1 cases, 

except for the modified Oldroyd model predictions shown in Figure 3.4 a), the models 

predict a much larger distortion of the ellipse compared with the experimental data. This is 

indicative that the models predict a too large viscous contribution. In figure 3.4 a), the 

modified Oldroyd model predict a purely elastic behavior below the yield strain, whereas the 

Lissajous diagram calculated with Coussot et al. model gives an ellipse characteristic of a 

viscoelastic material. The Lissajous diagrams obtained with the models in Figure 3.4 b), 

predict more distorted and larger ellipses than observed experimentally. The modified 

Oldroyd model predictions show clearly a larger viscous contribution than the Coussot et al. 

model (larger surface area). The differences between the two model predictions become 

smaller in the case presented in Figures 3.4 c) and d), but the two models predict ever a more 

important viscous contribution than observed experimentally. 



Fi~ure  3.4 : Lissajous figures for different strain amplitudes for 8.2 mass % suspensions of 

A200 and R974 in paraffin oil (w = 6.28 rad/s). Cornparison between the signal observed 

with a imposed strain rheometer (O), a stress imposed rheometer (@) and the Coussot et al 

(- ) and the modified Oldroyd ( - -) mode1 predictions; a) A200, yo = 0.01; b) A200, y" 

= 0.04; c )  A200, yU=0.07 and d) R974, y" = 0.02. 



The dissipated energy per a unit volume for one cycle can be determined fiom these 

Lissajous figures. Figure 3.5 reports the variation of the dissipated energy as a function of 

the strain amplitude for suspensions of A200, A300 and R974 in paraffin oil. As shown 

before, both rheometers give the same results and the dissipated energy increases as a 

function of the strain following a power law: E, y 2-d  in the range of strain amplitude 

investigated. Contrary to a iinear viscoelastic material, the slope of the energy versus strain 

amplitude is not quadratic. For the A200 suspension, the measured slope is 2.43 * 0.05. This 

result implies that this suspension is more dissipative than a linear material. The slope of the 

energy versus strain obtained on the log-log plot is of 2.63 * 0.07 for the A300 suspension. 

This value is greater than 2.43 k 0.05 rneasured for the A200 suspension at the same mass 

fraction. As expected, the break-down of the small particle network is slightly more rapid, 

hence explaining the larger dissipation rate. The dissipated energy was determined for the 

R974 suspension. As for the other suspensions, we obtained a straight line, but the slope 

equals to 2.04 k 0.05. The energy dissipated for the R974 suspension increases at a slower 

rate compared to the energy dissipated for suspensions composed of strongly interactive 

particles. 
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Fieure 3.5 : Variation of the dissipated energy per unit volume with strain amplitude for 

8.2 mass % suspensions of A200, A300 and R974 in paraffin oil (o = 6.28 rads). 

Figure 3.6 a) reports the up and down strain sweep experiments for the A200 

suspension in paraffin oit at a mass fraction of 8.2%. For the upward curves, the 

experimental time for each data was long enough so that steady state was attained, whereas 

for the downward curves, the time was sufficiently small so that the suspensions have no 

time to restructure. The rneasurements were carried out for strain amplitudes ranging from 

0.005 to maximum strain amplitude values equal to y" = 0.01, y" = 0.05 and y" = 0.1. For 

the first curve corresponding to y" = 0.01, the upward and downward dynarnic moduli are 

supenmposed, whereas for the second and third experiments, the moduli are different for the 

upward and downward strain sweeps. For the downward curve, the elastic and loss moduli 

strongly depend on the maximum strain amplitude. The larger the maximum strain, the larger 

the decrease in the elastic modulus and the loss modulus as compared to the upward value. 

Figure 3.6 b) reports the dissipated energy versus the strain amplitude relation 



calculated from the signals obtained fiom the up and down strain sweep data s h o w  in Figure 

3.6 a). The slope of energy versus strain corresponding to the upward strain sweep is 2.43 

& 0.05 as obtained before. For the maximum strain y" < 0.01, the upward and downward 

curves are superimposed, whereas if the maximum strain is superior to the critical value (y0 

= 0.03) , the downward curves are different frorn the upward curves and the slope is now 

close to 2 (2.04+0.05). 

We believe that the increase of the loss modulus with the strain amplitude is due to 

the break-down of the structure. At small strain amplitude, the Brownian motion is able to 

restore the structure to the equiiibrium value during the oscillation cycle. Therefore, the 

elastic modulus remains constant and the upward and downward strain sweep data are 

superimposed. Beyond a strain amplitude of a 0.01, the structure break-down caused by the 

strain amplitude becomes signifiant and the Brownian motion is no longer capable of 

restoring the microstructure. Then the elastic modulus decreases and the loss modulus 

continues to rise with strain amplitude. The larger the strain is, the faster the suspension 

structure is broken down and the more pronounced is the elastic modulus decrease. During 

the downward strain sweep, the strain is not large enough to break down the interparticles 

or cluster bonding. Therefore, the loss modulus becomes approximately strain independent 

and, as expected, the dissipated energy becomes quadratic with respect to the strain. We can 

conclude that the observed power-law exponent of the energy versus strain curve superior 

to 2 is due to an additional energy dissipation caused by the break-down of the suspension 

microstructure. The same argument can explain the weaker exponent obtained for the R974 

particles in paraffin oil. Because of the prior surface treatment, the R974 particles interact 

less than the A200 and A300 particles and the dissipated energy increases less rapidly with 

strain amplitude. As the rheoiogical characterization of concentrated suspensions which have 

an apparent yield stress is very difficult (crack at moderate strain and no linear 

viscoelasticity), the measurement of the slope of the dissipated energy, or the loss modulus, 

versus the strain allows for a quantitative determination of the suspension interactions. 
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Figure 3.6 : Dynamic moduli and dissipated energy for the 8.2 mass % suspension of A200 

in paraffin oil for up and down strain sweeps with three different maximal strain amplitudes: 

(O, 0)  yomU = O.lO;(@,i) y , = O.OS;(*, m) y = 0.01 and (-) linear regression; a) 

variation of the elastic and loss moduli; b) variation of the dissipated energy. 



5.2 Suspending fluid effect 

The nature of the suspending fluid plays a major role in the rheological properties of 

the h e d  silica suspensions. The loss and elastic moduli versus frequency of the 8.2 % mass 

of A200 and R974 suspensions in polypropylene glycol are shown in Figure 3.7. In contrast 

to the experimental data for suspensions in the paraffin oil, there are only weak differences 

between the viscoelastic behavior of the two suspensions. The dynamic moduli of the A200 

suspension are larger than those for the R974 suspension. This is due, as mentioned before, 

to the particle/ particle interactions in the case of A200 particles which form larger 

aggregates than the R974 particles. We observe now that the moduli are strongly dependent 

on the frequency and that the loss modulus is greater than the elastic modulus as expected 

for a typical viscoelastic liquid. As the polypropylene glycol is a polar fluid, it can interact 

with the particles through hydrogen bonding. The silanol groups at surface of the particles 

interacting with the fluid cannot interact with the silanol groups of the other particles and a 

network cannot be formed at this concentration level. The dissipated energy versus strain 

curve for the suspension in polypropylene glycol was found to be quadratic which is typical 

of a linear viscoelastic system. 

o (radis) 

Fisure 3.7 : Variation of the elastic and viscous moduli with frequency for 8.2 mass % 

suspensions of A200 and R974 in PPG. 



5.3 Effect of solids concentration 

The reduced elastic and viscous moduli versus reduced strain amplitude at constant 

frequency for the A200 and R974 particle suspensions in paraffin oil are reported in Figures 

3.8 and 3.9 for different inass fractions. Reduced dynamic moduli are plotted as functions 

of a reduced strain. The moduli are divided by the elastic modulus value at limiting zero 

strain amplitude and the strain amplitude by the critical strain. The elastic moduli and the 

critical strain values are given in Table 3.1. We observe that the reduced elastic modulus is 

independent of the mass fraction for the two types of suspensions. The reduced loss modulus 

for the A200 particles suspensions (Figure 3.8) is a function of the solids concentration and 

increases more rapidly with strstin amplitude when the solids concentration is increased, 

whereas the reduced viscous modulus for the R974 suspensions (Figure 3.9) is independent 

of the mass fraction. The Coussot et al. and the modified Oldroyd model predictions are 

compared with the experimental data in Figures 3.8 and 3.9. The model pararneters were 

obtained from the best fit of the elastic modulus data and are reported in Tables 3.1 and 3.2. 

The rnodified Oldroyd model predicts a constant elastic modulus and a zero value for viscous 

modulus up the yield strair.. Above the yield strain, the elastic modulus decreases with strain 

whereas the viscous modulus increases up to a maximum and decreases with strain 

amplitude. For the chosen pararneters, the modified Oldroyd model predicts well the decrease 

of the elastic modulus, but overestimates the viscous modulus. The elastic modulus 

predicted by Coussot et al. mode1 shows an excellent agreement with the experimental data, 

but the model predicts a too large viscous contribution. 



Coussot et al. mode1 
Oldroyd modified mode1 

Fimire 3.8 : Variation of the reduced elastic and loss moduli with reduced strain amplitude 

for A200 suspensions in paraffin oil at different mass fractions (o = 6.28 rads). 

1 O-' 

Fi~ure  3.9 :Variation of the reduced elastic and loss moduli with reduced strain amplitude 

for R974 suspensions in paraffin oil at different mass fractions (o = 6.28 rads). 
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Tableau 3.1 : Elastic modulus at the plateau and the citical strain for the A200 and R974 

suspensions. 

parafin oil 

Tableau 3.2: Parameters of Coussot et al. and modified Oldroyd models used to predict the 

rheological behavior. 

Figures 3.10 a) and b) report the variation of the elastic modulus at the plateau and 

the critical strain as a function of the solids concentrations. For the A200 suspensions, a 

power-law exponent ( dope of the log-log plot) m = 4.2 0.2 for the elastic modulus and 

t = O for the critical strain is obtained. These results are in agreement with the fiterature 

results ( Khan and Zoeller (1993)) and this behavior corresponds to chemically lirnited 
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aggregation interaction type. For the R974 suspensions, m = 3.9 k 0.1 and t = - 1.6 k 0.2 are 

obtained. For the exponent of the elastic modulus, this result can be explained by the 

structure of the R974 suspensions which is less dense than the structure of the A200 

suspensions. The probability of sticking when there is a collision between two clusters is 

weaker. Sirnilar results were found by Tadros and Hopkinson (1 990). The m and t exponents 

obtained increase with interparticles interactions. The elasticity increases more rapidly and 

the network becomes more resistive with volume fraction for the suspensions composed by 

the strong interactive particles than for the hydrophobic suspensions. These results are in 

contradiction with those found by Rueb and Zukoski (1 997) for colloidal gels consisting of 

sterically stabilizer silica particles for different strengtb of interparticle attraction. They 

obtained lower values of m and I when the attraction forces between particles increased. 

Figures 3.11 a) and b) show the variation of the dissipated energy versus strain for 

different solids concentrations in minera1 oil for the A200 and R974 suspensions 

respectively. The dope of the straight line increases with solids concentration fiom 2.33 to 

3.34 for the A200 suspensions, whereas this dope remains constant for the R974 suspensions 

at about 2. The excess of dissipated energy is due to the break-down of the suspension 

microstructure. Hence the rate of the dissipated energy may be related to the total number of 

bonds between particles which can be broken. This nurnber depends on solids concentration 

and average nwnber of bonds per particle. The elastic modulus of the A200 and R974 fumed 

silica suspension in paraffin oil scales with volume fiaction at an exponent m. According to 

Buscall and Mills (1988) this exponent is related to the fractal dimension: 

where d,, is the chemical length and dfthe fi-actal dimension. According to Potanin (1991) 

the ratio d/d,, can be considered as an invariant. He proposed dl/&, = 312 for a three 

dimensional network. 
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Figure 3.10 : Dependence of the elastic modulus at the plateau and the critical strain on the 

volume fiaction for A200 and R974 suspensions in paraffrn oil; a) elastic modulus; b) critical 

strain. 
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F i ~ u r e  3.1 1 : Variation of the dissipated energy with strain amplitude for A200 and R974 

suspensions in paraffin oil at different mass fractions (a = 6.28 rads); a) A200; b) R974. 



As mentioned before, the A200 and R974 particles interact between themselves 

through the silanol groups via hydrogen bonding, but the number of silanol groups on the 

particle surface is less for the R974 case. We have obtained for the A200 suspensions an 

exponent rn = 4.2 h 0.2 and for the R974 suspensions an lower value, m = 3.9 * 0.1. 

According to relation (3.10), the fractal dimension of the R974 suspensions is smaller (df= 

1.9 k 0.1) than the fiactal dimension of the A200 suspensions (df= 2.0 0.2). The more open 

structure of the R974 suspensions may explain the smaller elastic modulus compared with 

the modulus of the A200 suspension at the same solids concentration. In addition, in open 

structures the average number of bonds per particle is often smaller than in dense structures. 

Therefore the R974 suspensions have a total number of bonds lower that the A200 

suspensions, then less bonds can be broken down during measurement important and the 

rate of increase of the dissipated energy with strain is lower. This remains to be verified 

using particles with different surface treatment. 

6 Conclusion 

The nonlinear viscoelastic behavior of fumed silica suspensions has been 

investigated. The effects of the particle size, the surface treatment of particles, the polarity 

of the suspending medium and the solids concentration have been studied. When the particles 

interact between themselves, the scaling concept may be applied to obtain the power-law 

exponent for the dependence on the elastic modulus and the critical strain of the solids 

concentration. Many studies have shown that these exponents depend on the nature of the 

particle-particle interactions. 

The dissipated energy was calculated fiom oscillatory measurements as a function of 

strain amplitude. Contrary to linear viscoelastic materials, an excess dissipation energy is 

observed because of a break-down of the elastic network of the fumeci silica suspensions. 

This extra dissipation contribution exists only when a particle network is formed. The 

dissipated energy scales in small strain amplitude as: 



where d depends on the suspension microstnicture, i.e. the particle size, the nature of the 

surface and the suspending medium and solids concentration. The fractal nature of fumed 

silica suspensions in nonpolar media allows us to explain the scaIing law observed. 

The modified Oldroyd and the Coussot et al. model predictions have been compared 

with the experimental data of fumed silica suspensions in oil obtained for oscillatory shear 

measurements. Both models are shown to correctly predict that of the elastic modulus for 

suspensions forming a network decreases with increasing strain amplitude above a criticaI 

strain. The increasing of the loss modulus with strain is qualitatively predicted by both 

models. However, the values of the loss moduhs for the Coussot et al. model are 

considerably overestimated and the modified Oldroyd mode1 unreasonably predicts a jump 

fiom a value of zero to an excessively high value as the strain reaches the critical value. 
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Ce second article a pour objectifs principaux de caractériser et de comprendre, a partir 

des propriétés physico-chimiques, le comportement rhéologique des sauces de couchage. 

Contrairement aux suspensions de fumée de silice étudiées dans l'article précédent, ces 

suspensions industrielles ont une formulation beaucoup plus complexe et les interactions 

entre les différents constituants sont encore mal compris. Malgré les natures très différentes 

des sauces de couchage étudiées dans cet article et des suspensions de fumée de silice dans 

un solvant non polaire, ces deux systèmes ont des comportements viscoélastiques non 

linéaires relativement semblables. 

1 Abstract 

Paper coating colors exhibit cornplex rheological properties resulting from the 

interactions between the different components in the formulations. These interactions induce 

a microstructure which is time and shear-dependent and is responsible for the nonlinear 

viscoelastic behavior. The non linear viscoelastic properties have been studied through srnall 

amplitude oscillations, steady shear and stress growth experirnents. nie  observed rheological 

behavior for coating colors containing two different water-soluble polymers was interpreted 

in light of the microstructure. 



2 Introduction 

Paper coating colors are concentrated aqueous suspensions which are applied to the 

surface of paper to improve the optical performance, the surface quality and the printing 

properties of the final product. They consist of minera1 pigments such as kaolin or calcium 

carbonate, binders such as latex or starch to give good adhesive properties and a water- 

soluble polymer to control the flow properties and the water retention. The solids content is 

typically ranging from 45 % to 65 % by weight. Coating color formulations depend on the 

final application of the paper and the coating process employed. The viscoelastic properties 

of the coating coIors control partly the efficiency of the coating process. In particular, after 

the leveling, the rate of the recovery is controlled by both viscoelasticity and processing 

speed Cl]. Surface defects can also be correlated with viscoelasticity [2 ] .  

The rheological behavior of the coating coIors depends strongly on the interactions 

between the different components. In this study, we consider coating colors having 

formulations similar to those used in offset printing. The pigment source in these coating 

colors is kaolin, an hexagonal plate-like shape pigment with negatively charged faces and 

charges on the edges that depends on the pH. The edges are positively charged at low pH and 

become negative as the pH is increased [3]. At low pH, Van Olphen 141 proposed that the 

electrostatic interaction between opposite charges faces and edges leads to the formation of 

"house of cards-type" three-dimensional network. At high ionic strength, when the 

electrostatic repulsion becomes negligible, Van Olphen [4] suggested that the facelface 

interactions dominate to form so-called "card-pack" aggregates. More recently, Tessier 151 

and Ramsay and Linder 161 proposed other structural models to describe the clay 

organization. The authors have shown, with optical rnethods, that a local organized structure 

of particles, so-called domains, exists. The binder generally used is a neutral latex. A minor 

influence of the latex on the viscoelastic properties has been noted [7].  Water-soluble 

polymers play an important role in the rheological behavior of coating colors. These 

polymers are used as thickeners to adjust the rheological properties and to modify water 



retention. Water-soluble polymers such as CMC (carboxymethyl cellulose) and PVA 

(polyvinyl alcohol) are assurned to increase the viscosity of the aqueous suspending medium 

but they can also adsorb on the particle surface and eventually induce bridging flocculation. 

This adsorption increases drasticaliy the viscoelastic properties of the coating colors [8]. The 

rheological behavior and the influence of the different components in the formulations have 

been largely investigated. Triantafillopoulos [1] suggests that particldparticle and 

polymerlparticle interactions induce the formation of an elastic structure responsible for 

yield stress, thixotropy and viscoelastic properties. The elastic modulus of coating colors is 

generally greater than the loss modulus at low strain amplitude and the rheological behavior 

becomes non linear at higher strain [9-101. Recently, Jogun and Zukoski [ I l ]  studied the 

rheological properties of concentrated suspension of kaolin in a watedglycerine mixture at 

different volume fractions. According to these authors, in shear flow, the rheological 

properties are controlled by the strong anisotropy of the particles. 

The objective of this work is to examine the role of two water-soluble polymers, 

CMC and PVA, on the rheological properties of coating colors. The non-Newtonian viscosity 

was determined and the non linear viscoelastic properties were investigated for srna11 

amplitude oscillatory shear and stress growth experiments. The rheological behavior is 

interpreted in light of interaction modes between particles through polymer chains. 

3 Experimental 

3.1 Materials 

A blend of two types of kaolin clay particles was used in the coating color 

formulation: a calcined clay, Alphatex, and a delarninated clay, Astra-Plate, from ECC 

International. These pigments have the following chernical formula (OH),Si,Al,O,, and their 

density is equal to 2.6 g/mL. The average equivalent spherical diameter, obtained by 

sedimentation measwements, is 0.48 pm for the Alphatex and 0.58 pm for the Astra-Plate. 



The delaminated clay particles have a large diameter/thickness ratio (3 1.5) whereas the 

calcined particles have a diarneter equal to the thickness. The particle size distribution, 

surface area and aspect ratio (diameter/thickness ratio) of these pigments are given in Table 

4.1. Dispex N40V from Allied Colloids (Canada) has been added to ease the slurry 

dispersion. This dispersant is a polyacrylate (PAA) with a molecular weight of 3000 

kglkmol. A commercial non-ionic latex (GENFLOSO, Gencorp) based on a carboxylated 

styrene butadiene copolymer was used as binder. Two types of water-soluble polymers 

(thickeners) were employed: a polyelectrolyte, carboxymethy1 cellulose (CMC), and a neutral 

polyrner, polyvinyl alcohol ( 'VA).  The CMC (7LT Aqualon) has a degree of substitution of 

0.76 and a molecular weight of 90 000 kg/kmol with a large polydispersity. The PVA 

(Elvanol, Dupont) is partially hydrolysed and has a molecular weight of 138 000 kglkrnol. 

Tableau 4.1 : Particle size distribution, surface area and aspect ratio of the calcined and 

delaminated kaolin clay particles (data supplied by ECC International). 

1 1 Calcined 1 ~elaminated 1 

1 Aspect ratio 1 1.1 1 31.3 

The coating colors were prepared fiom a slurry composed of 70 m u s  % of pigments, 

containing 90 % delaminated clay and 10 % calcined clay. The dispersion of this slurry was 

optirnized by adding 0.15 pph (parts per 100 parts of dry pigments) of the dispersant. The 



coating colors had a total solids content of 60 mass % which corresponds to a clay mass 

fraction of 57 % and a volume fraction of 34 %. The coating colors were mixed during 20 

min in a laboratory mixer (Cafiamo) equipped with a Cowles (saw tooth) turbine rotating 

at 500 rprn. The pH was adjusted to 8 using NaOH. For al1 suspensions, the coating colors 

contained 10 pph latex. The amount of CMC and PVA was varied between O and 1 and 

between O and 0.25 pph respectively. The rheological measurements were carried out using 

a stress control rheometer (CVO, Bohlin) for the oscillatory experirnents and a strain control 

rheometer (ARES, Rheometnc Scientific) for the stress growth and steady shear experiments. 

In al1 cases a Couette cylinder geometry was used. The imer cylinder diameters were 25 and 

32 mm with a gap size of 1.2 and 1 mm for the CVO and the ARES respectively. The 

intrinsic viscosities were determined with the ARES rheometer equipped with a double 

concentric cylinder geometry. A thin layer of 1ow viscosity oil was placed on the top of the 

sarnple to avoid evaporation. Al1 tests were performed at 23 OC. 

3.2 Component interactions 

Even if the kaolin particles are weakly charged (cation exchange capacity = 6 

meq/IOOg), the ionic strength due to the particle contribution is not negligible for a 

concentrated suspension. An ionic strength of 0.08 mol/L was estimated for the studied 

suspensions. As the corresponding Debye length is of the order of 1 nm, the electrostatic 

(particle/particle, particIe/polymer) interactions in these systems can be considered as 

screened. So, in such conditions and because of volume exclusion interactions, concentrated 

suspensions of rigid plate-shaped particles contain domains of aligned particles at least at a 

small scale [12] However, a discontinuity of particle alignment exists between neighboring 

domains. 



The dispersant improves the suspension stability as the dispersant chains adsorb on 

the particle surface and induce steric repulsion between the particles. The adsorption of a 

polyelectrolyte such as the CMC is strongly affected by the ionic strength and the pH. The 

clay surface at pH = 8 and the CMC molecules are charged negatively. However, due to the 

screening of electrostatic repulsive charges at high ionic strength, the polyelectrolyte 

adsorption becomes possible. Lee et al. [13] have shown that a polyelectrolyte is absorbed 

with the same magnitude that a neutral polyrner at an ionic strength of 1 mol/L. For the 

suspensions considered here, the ionic strength is close to 0.1 rnol/L, then the CMC 

adsorption is less efficient than for a neutral polyrner such as PVA. Moreover, Jarstrom et 

al. [3] have pointed out that PAA, an anionic dispersant like CMC, cm block partially the 

adsorption sites of the CMC. Nevertheless, the CMC has a molecular weight considerably 

higher than the PAA and then it has therrnodynamically more affinity with the kaolin clay 

surface. So, the CMC chains are able to partially desorb PAA and to adsorb on the pigment 

surface 131. Chang et al. 1141 have shown that PVA can be strongly adsorbed on the clay 

surface. It interacts mainly through hydrogen bonding with the aluminol and silanol groups 

on the surface edge. Moreover, Lee et al. [13] reported that the polymer c m  even adsorb on 

the basal kaolin surface - i t h  a weaker density. According to these authors, this adsorption 

is dnven by van der Waals interactions. The polyrner chains adsorbed on the kaolin surfaces 

improve the stabilization of  the suspension through steric repulsion. In this system, the 

rheological behavior is govemed at the sarne time by the exclusion volume interactions due 

to the anisotropy of the particles at high volume fraction (@ ))a* - h/d, where @* is the 

critical volume fiaction characterizing the onset of these interactions) and by the magnitude 

of the steric repulsion between particIes. 



Kaolin clay particle 
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Figure 4.1 : Schematic representation of dornains composed of kaolin clay particles with 

adsorbed polymer chains. The possible unadsorbed polyrner chains are not represented. 



The thickness of the adsorbed polyrner layer is roughly of the sarne order as the radius 

of gyration of an isolated polymer chain in solution [15]. This radius can be estimated from 

the intrinsic viscosity [q] and the molecular weight MW using the Flory equation [16] : 

where <II3lR is the radius of gyration of the polymer chain and 4' (= 2.5 10 I6 kmol") is the 

Flory-Fox parameter. The intrinsic viscosity and the radius of gyration for the different 

polymers are reported in Table 4.2. The CMC and the PVA have very close radii of gyration 

whereas that of the PAA is much smaller. So, we can consider that when the water-soluble 

polymer (PVA or CMC) is adsorbed on the particle surfaces, the role of PAA becomes 

negligible. On the other hand, the radius of gyration of the water-soluble polymers c m  be 

cornpared with the average distance between particles, roughly estimated assuming that al1 

the particles are packed in a cylindrical volume with a diarneter equal to that of a particle. 

The estimated distance (- 36 nm) is close to twice the layer of the adsorbed polymers, 

therefore, steric repulsion is significant and improves the stability of the suspension. A 

sketch for the proposed suspension microstructure is illustrated in Figure 4.1. The domains 

which are composed of packed particles are oriented following a direction vector. At rest, 

the orientation of the domain vectors is random. The particles, inside a domain, position 

themselves in order to be apart as far as possible. The water-soluble polymer can even be 

adsorbed on the edge of particles and could bridge several particles. However, the 

probability of bridging is weak because the molecular weight of the PVA and the CMC is 

relatively small. On the other hand, the polymer concentration is not sufficient in order for 

the particles to interact together via entanglements with the polymer chains in the 

surrounding medium and with the polymer adsorbed on the other particles. Entanglements 

of polymer chains are predicted when the overlap parameter, c[q], is greater dian 1. Here, the 

value of c[q] varies from 0.06 to 0.29 for the PVA and from 0.67 to 3.25 for the CMC 

assuming no adsorption on the pigment surface. Considering adsorption, the effective 

polyrner concentration in the substrate is considerably lower and the overlap parameter is 



expected to be lower than 1 in al1 cases. 

Tableau 4.2: Intrinsic viscosity, molecular weight and radius of gyration of the PAA, CMC 

and PVA measured at k0.08 molL. 

4 Results 

4.1 Structure evolution and reference state 

PAA 

CMC 

PVA 

Paper coating colors are complex susperisions for which the rheological propei-ties 

evolve with time. Therefore, it is very important to know the evolution of the suspension 

microstructure in order that al1 experiments are carried out for the sarne initial structural 

state. The evolution of the coating color microstructure was deterrnined using oscillatory 

shear tests at very small strain (y = 0.001) im~ediately after a pre-sheming at y = 300 s -' 
during 200 S. Figures 4.2 a) and b) report the variztions of the elastic modulus with time for 

different concentratioi~s of CMC and PVA respectively. The elastic rnodulus is more 

sensitive to the microstructure build-up than the viscous modulus. AIso as the test was 

performed at vely small strain amplitude, the viscous modulus is very small and the 

memurement accuracy is marginal. As shown in these figures, the elastic modulus increases 

with time following a power-law relation: G' = t and no equilibrium is reached after 30 min. 

Other experiments were performed and no steady values (equilibrium state) could be 

obtained afier more than 5 h. This behavior seems to indicate that the structure evolves 

indefinitely. For the two polyrners, the exponent n is independent of the polymer 

[q J (Ug) 

0.17 

0.25 
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MW (kgikmol) 
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concentration, but its value depends on the type of polymer ( n = 0.08 0.01 for the CMC 

and n = 0.14 * 0.01 for the PVA). Similar experiments were carried out by Willenbacher [17] 

for aqueous suspensions of Laponite which is smectite clay. He obtained an exponent equal 

to 0.13 which was independent of the initial mechanical treatrnent and the particIe 

concentrations. Even if the exponent n is weak, the G' value can increase by 65% in one h o u  

in the case of the PVA. 

Time is also an important parameter in stress growth experiments. The influence of 

the rest time for stress growth experiments is shown in Figure 4.3 for a suspension containing 

0.10 pph PVA. The reported transient viscosity, qt, is the shear stress divided by the applied 

shear rate. For the case of a rest time of 0, the stress growth experiment was conducted 

immediately after the pre-shearing conditioning. The magnitude of the overshoot and the 

initial slope increase with the rest tirne. For rest time larger than 30 min, the influence of the 

rest time becomes negligible. The increase of the initial slope and of the magnitude of 

overshoot with rest tirne are related to the increase of the elastic modulus reported in Figure 

4.2 b). This experiment demonstrates that the overshoot is largely due to the structure 

rearrangement and increase of the elastic properties. Little influence of the rest time was 

observed for the suspeiisions containing the CMC and, hence, the data are not reported. Our 

results confirm the findings of Jogun ans Zukoski 1111 that the concentrated suspensions of 

kaolin particles have a strong shear history dependence and it is necessary to pre-shear the 

suspension before each measurement to "reset" the mechanical properties. 
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Figure 4.2: Variation with time of the elastic modulus at small strain amplitude (y = 0.001) 

for coating colors containing different concentrations of CMC and PVA; a) CMC; b) PVA. 



Figure 4.3: Influence of the rest time on the transient viscosity for a coating color containing 

O. 10 pph PVA ( y = 0.01 s"). 

Therefore, to obtain reproducible and comparable results, it is important to set a 

reference state. For this purpose, we have applied to al1 sarnples before each test a 

conditioning at a shear rate equal to 300 s-' during 200 S. This was followed by a rest time 

of 30 min. Furtherrnore, because the structure of coating colors evolves, we have restricted 

the experiment time to 15 min for each experience and assumed that the rheological 

properties are constant during this l a p e  of tirne. Therefore, only the rneasurements of the 

steady shear viscosity above a shear rate equal to 10" s-' and of dynamic moduli above 10" 

Hz were canied out. This procedure allowed us to have a reproducibility within k 15 %. 

4.2 Viscosity rneasurements 

The steady state viscosity of the coating colors is presented in Figure 4.4 for a shear 

rate ranging from 10" s" to 300 s". Figures 4.4 a) and b) show the influence of the CMC 



and PVA concentrations on the viscosity of the coating colors respectively. The viscosity 

curve is iypical of that of concentrated suspensions. The viscosity decreases with the shear 

rate according to a power-law model and tends to level off at the higher shear rates. The 

important shear thiming phenornenon is du.: to the hydrodynamic forces which align the 

anisotropic domains in the flow direction. No Newtonian plateau is observed at very low 

shear rates in the range of shear rates investigated. The viscosity changes drastically when 

the water-soluble polymer is added, increasing by more than one decade at low shear rates 

and the slope of the viscosity versus shear rate ( log-log plot) slightly decreases. The addition 

of a thickener has the effect of shifting vertically the viscosity of the coating colors. Shear 

thinning is also enhanced when a water-soluble polyrner is added to the formulation, but the 

dope of the viscosity versus shear rate is independent of the water-soluble polymer 

concentration. A power-law expression with a high shear rate viscosity, q,,,, well describes 

the viscosity of the coating colors: 

The value of the pararneters n, m, q, are reported in Table 4.3. Little differences are observed 

between the two polymers, except that the viscosity for suspensions containing PVA is 

higher than that of with CMC formulations at the sarne polymer concentration. This can be 

attributed to a better stabilization of the suspension in the case of PVA. The exponent n is 

very close for the two polymers used. The parameter rn increases linearly with polymer 

concentration. 
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Figure 4.4: Steady shear viscosity versus shear rate for coating colors at different CMC and 

PVA concentrations and mode1 predictions; a) CMC; b) PVA. 



Tableau 4.3: Parameters of the viscosity model, elastic moduli and critical strain amplitude 

obtained for the different coating colors. 

Coating colors [polyrner] 
(g/L> 

without O 
polyrner 

0.05 pph 0.68 
of PVA 

0.10 pph 
of PVA 1 1*36 

0.15 pph 1 ofPVA 1 2.03 

0.20 pph 1 ofPVA 1 2.72 

0.25 pph 1 3.39 

0.20 pph l ofCMC 

0.30 pph 4 

0.50 pph 
of CMC 1 
1 .O0 pph 
of CMC 

4.3 Non linear viscoelastic behavior 

Oscillatory measurements are used to characterize the microstructure of the materials. 

These measurements are usually camied out at a sufficient small strain amplitude so that the 



structure is not rnodified. At higher strain amplitude, the stress response is no longer linear 

with respect to the strain and the dynarnic moduli have no clear physical sense. For 

concentrated suspensions, the linear zone is restricted to very small strain values, sometimes 

non accessible expenrnentally. Figure 4.5 reports the elastic and viscous moduli as a function 

of the strain at 1 Hz for the coating color formulation without polymer. The elastic modulus 

is constant up to a critical strain (y, - 0.0 15). Above this critical strain, the elastic modulus 

decreases with strain and the viscoelastic behavior becomes non linear. Therefore, the elastic 

and viscous modulus values cm only be considered as apparent values. The viscous modulus 

is considerably smaller than the elastic modulus and constant up to a strain equal to 0.08. 

Above this strain, the viscous rnodulus decreases. 

0.5 1 1 
1 O-' 1 O-' 

Fimire 4.5: Elastic and viscous moduli versus the strain amplitude at 1 Hz for coating colors 

containing no water-soluble polymer. 



4.4 Effects of polymer concentration on the linear and non linear viscoelastic behavior 

The variation of the elastic and viscous moduli with frequency for different water- 

soluble polymer concentrations at small strain amplitude are presented in Figure 4.6. The 

rneasurements were carried out at a strain amplitude of 0.005 for the coating colors without 

polymer and suspensions containing CMC and at 0.002 for the suspensions containing PVA. 

The elastic modulus increases slowly with frequency and its magnitude is considerably larger 

that of the viscous modulus. This behavior is characteristic of an elastic solid. The viscous 

modulus increases with frequency at high frequencies, but the slight viscous modulus 

decrease observed at low frequencies may be due to instrument lin~itations, as these 

measurements were carried out at a very small strain amplitude, at the limit of the rheometer 

sensitivity. In al1 cases, the elastic and loss moduli increase with polymer concentration. The 

elastic modulus becomes almost independent of the frequency when the polymer 

concentration increases. The elastic rnodulus of coating colors containing PVA increases 

more rapidly with polymer concentration than that of the CMC formulations. The viscous 

modulus increases less rapidly with polymer concentration than the elastic modulus. 

The reduced elastic and viscous moduli versus reduced strain at 1 Hz are reported in 

Figures 4.7 a) and b) for different CMC and PVA concentrations respectively. The two 

moduli have been divided by the elastic modulus at the limiting zero strain amplitude, G',, 

and the strain amplitude by the critical strain value, y,, reported in Table 4.3. The ratio 

G'IG ', is equal to tan6 in the limit of linear responses. The reduced elastic modulus shown 

in Figure 4.7 is independent of the polymer concentration for the coating colors containing 

PVA and CMC. In contrast, the reduced viscous modulus is a function of the polyrner 

concentration, decreasing when the polyrner concentration increases. This is due to the strong 

increase of the elastic moduhs with polymer concentration. At low strain amplitude values, 

the reduced viscous modulus increases more rapidly with strain amplitude, reaches a 

maximum and then decreases at higher strains. Similar results have been obtained [18] for 

suspensions of h e d  silica particles in paraffin oil as h c t i o n  of the solids content. 
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Figure 4.6: Elastic and viscous moduli versus the fiequency for coating colors containing no 

water-soluble polymer and CMC and PVA at different concentrations; black symbol 

represent G' and open symbol Gu; a) CMC; b) PVA. 



Fimrre 4.7: Variation of the reduced elastic and viscous moduli with reduced strain amplitude 

for coating colors containing different CMC and PVA concentrations; a) CMC; b) PVA. 



Figure 4.8: Dependence of the elastic rnodulus at the plateau and of the critical strain 

amplitude on the polymer concentration for coating colors containing CMC and PVA; a) 

Elastic moduIus; b) Critical strain. 



Figures 4.8 a) and b) show the elastic modulus at the plateau and the critical strain 

as functions of the polymer concentration respectively. The elastic rnoduIus and the critical 

strain Vary with the polymer concentration following a power-law expressions. For the elastic 

modulus, the exponent of the power-law is 1.8 1 -+ 0.10 for the PVA and of 1 .O5 k 0.05 for 

the CMC. The critical strain decreases with the polymer concentration as observed by 

Engstrom and Rigdahl [9].  The exponent of the power-law is -0.70 0.03 for the PVA and 

-0.30 * 0.02 for the CMC. 

The viscous behavior cm be interpreted in terms of the dissipated energy. The main 

advantage of using the dissipated energy is that it remains valid for linear as well as for non 

linear viscoelastic behavior. The dissipated energy is given by the relation: 

For a linear viscoelastic material, G" is independent of y" and the dissipated energy 

is a quadratic function of the strain amplitude. The plots of the dissipated energy versus the 

strain amplitude are given in Figures 4.9 a) and b) for the coating colors with different CMC 

and PVA concentrations respectively. For the two types of suspension, the dissipated energy 

increases with strain amplitude following a power-Iaw mode1 with a dope superior or equal 

to 2. So, these suspensions dissipate energy at a rate superior to a linear material. On the 

other hand, the exponent increases more rapidly with polymer concentration for the PVA 

(from 2.00 * 0.01 at 0.05 pph to 2.49 k 0.05 at 0.25 pph) than for the CMC (from 1.98 * 0.02 

at 0.2 pph to 2.20 * 0.04 at I .O pph). 
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Figure 4.9: Variation of the dissipated energy with strain amplitude for coating colors 

containing different concentrations of CMC and PVA; a) CMC; b) PVA. 



4.5 Stress growth experiments 

Figures 4.10 a) and b) show the reduced viscosity as a function of the strain 

( y = jt ) for coating coiors containing different CMC and PVA concentrations for a start 

up experiment at constant shear rate equal to 0.01 s". The reduced viscosity is obtained by 

dividing the transient viscosity by the steady viscosity in order to rnake the graph 

interpretation easier. These curves exhibit two distinct parts. The first is a linear increase of 

the reduced viscosity with strain reflecting the elastic contribution of the coating colors. The 

second is the steady viscosity due to the purely viscous contribution. Between these two 

parts, an overshoot is observed resulting of a cornplex combination of these two 

contributions and depending on the microstructure evolution. Figure 4.10 a) shows that the 

CMC concentration has little effect on the reduced transient viscosity. A weak overshoot is 

observed for al1 the concentrations. The effect of the polymer concentration is more 

important in the case of the coating colors containing PVA as shown in Figure 4.10 b). All 

the reduced viscosities exhibit a significant overshoot followed by a decrease to the steady 

state value. The overshoot and the time required to reach steady state increase with PVA 

concentration. The overshoots of the coating colors containing PVA are larger than for the 

suspensions containing CMC and the peaks are observed at shorter times, but the time 

required to reach steady state is shorter in the case of PVA (- 400 s for the coating colors 

containing CMC and 200 s for those containg PVA). No accurate data for the coating color 

containing no thickner polymer could be obtained due to the low torque response for such 

a suspension. 
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Figure 4.1 0: Variation of the reduced viscosity with strain at a shear rate of 0.01 s" for 

coating colors containing different polymer concentrations; a) CMC; b) PVA. 



Fipure 4.1 1 : Variation of the reduced viscosity with strain for three shear rates; 

a) 0.5 pph CMC; 0.1 pph PVA. 



The influence of shear rate on the stress growth response is illustrated in Figures 4.1 1 

a) and b) for coating colors with 0.5 pph CMC and 0.1 pph PVA respectively. In these two 

figures, the shear rate ranges from 0.001 to 0.1 s-'. The overshoot decreases with shear rate 

for the CMC suspensions whereas it increases for the PVA suspensions as usualIy observed 

for polymer solutions [19]. Steady state is reached at smaller strain when the shear rate is 

increased for the coating colors containing CMC contrary to the PVA suspensions. The strain 

at which the overshoot appears is of the order of 0.0 1 for the PVA formulation compared to 

0.03 for the CMC case. 

5 Discussion 

The rheological results are interpreted in light of the previous proposed mechanistic 

model. The role of the calcined clay particles, the latex and the non adsorbed water-soluble 

polymer chains is considered as insignificant in this study. Other studies have shown that a 

neutral latex, like the SBS used here, does not affect the rheological properties. Moreover, 

as the calcined kaolin represents o d y  a volume fraction of 3.4%, it is assumed to have a 

minor contribution. The addition of a water-soluble polymer in an aqueous suspension of 

kaolin particles does not drastically change the rheological behavior of a coating color. In 

steady shear viscometry, the coating colors are highly shear-thinning due to changes in the 

structure and/or alignment of the kaolin domains induced by the flow. The structure 

"breakdown" and complete domains alignment explain the leveling and plateau in the shear 

viscosity at high shear rates. The relative particle motion in their plane increases the 

anisotropy of the domains. The linear viscoelastic behavior of suspensions containing a 

thickener is similar to that of the coating color which does not contain a water-soluble 

polymer. The elastic modulus is slightly dependent on the frequency and the loss modulus, 

a h o s t  constant initially, increases at high frequencies. This observation suggests that a 

struct~~re exists independently of the thickener presence. However, the water-soluble polymer 

increases slightly the shear-thinning character but enhances considerably the viscous and 

elastic responses of the coating colors. This c m  be explained by stronger of steric repulsive 



forces between the particles due to the adsorbed polymer chains which significantly restrict 

the particle motion and improve local order inside the domains. As a consequence, the 

domains are more easily deformed, explaining the properties increase shear-thinning. 

Therefore, the consistency increase is related to a better organization inside the domains due 

to stronger repulsive forces rather than to a viscosity increase of the suspended medium as 

ofien assumed. 

A significant increase of the elasticity of coating color containing CMC or PVA is 

observed. The distance between particles was estimated to be equal to two times the 

thickness of the adsorbed polyrner layer value. Hence, the repulsive force becomes very 

strong and the particles position themselves as far apart as possible. This leads to a iattice 

structure characterized by a fiequency-independent elastic modulus. In spite of the important 

elastic contribution, the viscous modulus increase is not negligible as expected by the large 

increase of the steady shear viscosity. The enhancement of the viscoelastic properties with 

polyrner concentration are also explained by the increasing number of adsorbed polyrner 

chains and therefore by the rise of the repulsion potential. The elastic modulus increases 

more rapidly in the case of coating colors containing PVA as s h o w  Figure 4.8 a). Also, a 

drastic decrease of the linear zone is noted when the polymer concentration increases. Better 

stabilized is the suspension the more restricted is the linear zone. Furtherrnore, the critical 

strain limit of the linear zone decreases more rapidly with polymer concentration in the case 

of PVA. A similar behavior was observed by Yziquel et al. [18] for fumed silica suspensions. 

The critical strain was s h o w  to decrease when the interparticles forces increased. However, 

the mechanism for the structure breakdown in the case of fumed silica suspension is probably 

quite different as the interparticles forces are attractive. The efficiency of polymer adsorption 

is more important for a neutral polymer as PVA than for a polyelectrolyte as CMC at the 

ionic strength considered in this study and in presence of a dispersant. 

The viscous properties of coating colors obtained in oscillatory measurements are 

interpreted in terms of the dissipated energy. A deviation of the classicaI quadratic behavior 



of the dissipated energy vs. strain amplitude is observed when the polymer concentration 

increases. Yziquel et al. Cl81 attributed the excess of energy dissipated due to the interactions 

between particles. The energy is dissipated through two main mechanisms. The first is due 

to the viscosity of the suspending medium filled with low interacting domains and latex 

particIes and is quadratic with respect to the strain amplitude. The second contribution arises 

from the microstructure changes induced by flow resulting into an increase in the flow 

resistance. The Iarger are the interactions between particles, the higher is the excess 

dissipated energy. This excess increases with strain amplitude as E, =y0 ' +  where the 

exponent 2 represents the linear viscous contribution and d depends on the interactions 

between particles. Firth and Hunter [20] have added two other contributions to the excess 

dissipated energy. The first is the energy dissipated due to the rotation of the aggregates. The 

second contribution is the energy dissipated by the stretching and the breakdown of the links 

between the particles. This contribution increases with the interactions between particles. In 

Our case, the high volume fraction restricts significantly the domain motion and the domain 

rotation c m  be neglected in oscillatory shear at relatively small strain amplitude and 

frequency. Then, the rheological behavior is probably to structure changes inside the 

domains. In oscillatory flow, the structure organization inside a domain is perturbed and if 

the strain deformation is weak enough, the initial organization is restored during the 

oscillation cycle. More and more energy is dissipated by the "breakdown" of the structure 

as the interparticle interactions increase. In thiç situation, the structure is restored rapidly and 

then the elastic modulus stays constant. Above an critical strain amplitude, the initial 

organization of the particles cannot anymore be restored during the oscillation period 

resulting in a decrease the elasticity of the suspension due to structure changes. For the 

coating colors studied, the critical strain is the order of 10'). 

Overshoots are observed in stress growth experiments for coating color containing 

CMC or PVA. These overshoots are related to the existence of a structure. A critical strain 

is needed to orient the domains. The viscosity decrease is related to the orientation of the 

domains to an equilibrium state depending on the applied shear rate. As expected, the 



magnitude of the overshoot is larger in the case of the PVA and increases with shear rate as 

observed for typical viscoelastic materials. For the coating colors containing CMC, it seems 

that the domains are aligned more quickly at high the shear rate. It should be remarked that 

no overshoot is observed at the largest shear investigated ( y > O. 1s -' ). It is interesting to 

note that the strain needed to orient a domain is the order of 1 whereas the critical strain 

obtained in oscillatory shear is smaller than 105. This suggests that the structure 

organization of coating colors does not change in the same way during stress growth 

experiments than during oscillatory shear flow. The structure organization is perturbed by 

a smaller strain in oscillatory shear than in stress growth experiments. In stress growth 

experiment, the structure changes are related to the domains orientation in the flow direction 

whereas the structure changes are due to a reorganization of particles inside the domain for 

the oscillatory shear flow. 

6 Conclusion 

The nonlinear rheological properties of kaolin clay based coating colors containing 

different CMC and PVA concentrations have been investigated. Water-soluble polyrners 

added to coating colors to control viscosity and water retention increase their shear-thinning 

properties. It was also found that the presence of polyrner reduces the zone of Iinear 

viscoelasticity. The nonlinear viscoelastic rheological properties have been studied for small 

amplitude oscillation shear experirnents. The coating color behavior is typical of 

concentrated suspensions composed of interactive particles which can induce a 

microstructure of domains of aligned particles. The elastic modulus is constant up to a 

critical strain and then decreases with increasing strain. The viscous modulus is considerably 

smaller than the elastic modulus. It increases with strain amplitude to reach a plateau and 

then decreases at high strain amplitude. The elastic modulus as a fünction of polyrner 

concentration can be described by a simple power-law expression. The viscous modulus 

behavior is more complex and is interpreted in terms of dissipated energy. 



The dissipated energy was calculated from the osciIlatory measurements versus the 

strain amplitude. It increases with strain according to a power-law relation and, contrary to 

the linear viscoelastic rnaterials, the exponent is larger than two. The rate of the dissipated 

energy increases with polyrner concentration and then with interactions between particles. 

The excess rate of the dissipated energy can be attributed to the particle reorganization inside 

the domains induced by the flow. The studied coating colors are thixotropic materials as 

evidenced by stress growth results and the variation with time of the elastic moduius after 

pre-shearing. These suspensions exhibit an overshoot in stress growth experiments, the 

amplitude of which is clearly related to structure changes. 

The nonlinear viscoelastic properties are attributed to the exclusion volume 

interaction, due to the anisotropy of the suspended phase and the high volume fraction, and 

to strong particle/particle interactions. The water-soluble polymers used in this work adsorb 

on the kaolin particle surfaces, and then induce a strong steric repulsion between the 

particles. The adsorbed polymer layers between adjacent particles are very close, and hence 

the repulsion potential tends to a very large value. This important interaction induces a 

structure formation inside a domain. In presence of PVA, the rheological properties of the 

coating colors are enhanced in comparison with CMC. PVA has hydrogen bonding capacity 

and then more affinity with the kaolin clay surface than a polyelectrolyte like CMC. The 

density of adsorbed polymer chains is more important in the case of PVA resulting in a larger 

repulsion potential. It is possible that there exists other interparticle interactions. The 

molecular weight distributions of CMC and PVA are large and hence, it is conceivable that 

some polymer chains can bridge several particles. Furthermore, the influence of caIcined 

kaolin clay particles and the latex neglected in the proposed structure model, may also have 

a non negligible roIe. 
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Dans ce dernier article nous proposons un modèle rhéologique capable de décrire le 

comportement rhéologique de suspensions aussi différentes du point de vue des interactions 

physico-chimiques que les suspensions de fumée de silice dans un milieu suspendant non 

polaire et que les sauces de couchage caractérisées dans les deux articles précédants. 

1 Abstract 

The use of concentrated colloidal suspensions is common in several industries such 

as paints, foodstuffs and pulp and paper. These suspensions are generally cornposed of 

strongly interactive particles. If the attractive forces dominate the repulsion and Brownian 

forces, the particles aggregate to form a three-dimensional network yielding a gel structure. 

Under flow, the microstructure of suspensions is drastically changed. Therefore, the 

rheological properties are governed by the kinetics of breakdown and build-up of the 

structure. In this work, we propose a structural network model based on a modified upper 

convected Jeffreys model with a single relaxation tirne and a kinetic equation to describe the 

flow-induced microstructure evolution. Three distinct kinetic equations are tested for this 

purpose. The proposed mode1 describes yield and thixotropic phenornena, nonlinear 

viscoelastic behavior of suspensions of colloidal particles and output signal distortions 

observed for relatively small strain amplitude during oscillatory measurements. Shear 

overshoots observed in start-up flows are correctly predicted. A cornparison of mode1 

predictions and experirnental data for h e d  silica and industrial (coating colors) suspensions 

is also presented. However, different model pararneters have to be used to correctly predict 

the different flow properties indicating that the proposed kinetic equations will have to be 

enhanced for more versatility. 



2 Introduction 

Concentrated suspensions of colloidal particles exhibit a very wide range of 

rheological behavior depending on the nature and magnitude of the interactions between 

particles (Russel [l]). These interacticns depend on different factors as the physico-chemical 

properties of particles, the suspending medium nature (Yziquel et al. [2], Khan and Zoeller 

[y), the concentration of added stabilized agent (Cabane et a1.[4], Zman  et al. [SI) and the 

temperature (Rueb and Zukoski [6]) .  When the attractive forces dominate, the suspended 

particles form aggregates and the material become highly non-Newtonian. If the forces are 

sufficiently important, these aggregates grow to form a network. These suspensions exhibit 

two important properties which pose a lot of practical and theoretical problems related to 

yield stress and thixotropy. The rheological behavior is govemed by the evolution of the 

induced microstructure and, therefore, by the cornpetition between breakdown under shearing 

and build-up at rest. The material characteristic time depends on the magnitude of the 

interactions in the suspension. The breakdown is related to shear flow and the bonding forces 

between particles whereas the build-up is essentially due to the Brownian motion and the 

collision probability between two particles or one particle with a cluster. Shear induced 

structure changes have been extensively studied experimentally. In particular, Ackerson and 

Clark [7] and Laun et al. [8] using light scattering and neutron scattering techniques 

respectively demonstrated the complex evolution of the microstructure of colloidal 

suspensions at rest and under shear. 

The yield stress is generally characterized by the forces needed to break down the 

microstructure. It is ofien described by simple models using a yield criterion introduced by 

Bingham 193. An extension of this concept proposed by Oldroyd [IO] considers that the fluid 

behaves like a linear Hookean elastic material before yielding and a fluid after yielding: 



where G is the elastic modulus, a, is the yield stress and q is the viscosity after yielding. 

Yoshimura and Prud'homme [ I l ]  used this equation with a Newtonian viscosity to mode1 

the response of oil in water emulsions to oscillatory deformations in the nonlinear regime. 

The Oldroyd equation was also used by Doraiswamy et al. [12] with a power-law viscosity 

to describe the rheological properties of a suspension of silicon particles in polyethylene. 

They obtained a conelation between the steady shear and the complex viscosity. The Oldroyd 

equation allows a good qualitatively prediction of the rheological behavior of systems with 

yield stress in dynamic measurements [2] ,  but as it does not include tirne-dependent effects, 

it is not capable of describing thixotropic fluids. 

Thixotropy was extensively studied for various industrial materials (suspensions, 

liquid crystals, elastomers ...). Mewis [13] and more recently Barnes [14] have presented 

extensive reviews of the subject. Thixotropy is characterized by a decrease of the 

microstructure degree with time under flow, followed by a recovery when the shear stress or 

shear rate is set equal to zero. Therefore, the material responses depend on the structure 

which changes with the flow parameters. Thixotropic behavior is generally described using 

a kinetic equation, analogous to kinetics of reversibie chemical reactions. A structural 

pararneter, 5, is used where 5 = i for completely built-up structure and E, = O for completely 

broken-down structure. The structural parameter is proportional to the total nurnber of bonds 

and the evolution is described by a kinetic equation of the following form given by B m e s  

[14]: 

where a, b, c and d are characteristic parameters of the material. The rate of microstructure 



changes is given by the sum of a build-up and a breakup ternis. The creation process is 

assumed to be due only to the Brownian motion. This build-up term depends on the available 

bonding number assumed to be proportional to (1-f), with 5 = 1 corresponding to the 

bonding number at the equilibrium. The breakup of the structure is induced by the shear rate 

and depends on the bonding number. The parameter c can be positive or negative: c > O 

allows for the description of shear-induced structure as proposed by Cheng and Evans [15] 

and more recently generalized by De Kee and Chang Man Fong [16]. The c < O corresponds 

to the generat case of destructuration. 

Equation (5.2) has been used to describe thixotropic phenornena in purely viscous 

fluids by Quernada [17] for blood and by De Kee et al. [18] for various food systems. Only 

few authors made use of such kinetic equation to account for viscoelastic effects. Leonov 

[19] used a similar concept to describe the rheological behavior of highly filled polymers 

containing small interacting particles. Coussot et al. [20] applied a modified Leonov mode1 

to describe the rheological properties of concentrated suspensions in a Newtonian solvent. 

They assumed that the totaI stress contains two main contributions: a viscoeiastic 

contribution, a', fiom interactions between particles and a viscous one fiom the suspending 

medium: 

O = 0' + q,y 

where q, is the suspension viscosity in absence of interactions. 

The viscoelastic contribution is described by a Maxwell-type equation: 

(5.4) 

where G is the elastic modulus of the structure and q(c) is the viscous terni which depends 

on the structural factor <. This factor (proportional to the total number of bonds) can be 



determined from the following kinetic equation: 

where y, is the yield strain, 0 a characteristic time and x a kinetic function. The viscosity and 

the structural factor are related by the following empirical relations: 

with 

where n is an empirical parameter. For steady state conditions, with n = O, equations 5.5 to 

5.7 reduce to the Bingharn model. Tliis model provides only a qualitative description of the 

dynarnic behavior of colloidal suspensions as shown by Yziquel et al. 123. The mode1 is 

shown to correctly predict decrease of the elastic modulus with increasing strain amplitude 

a'üuve a critical strain. However, the values of the loss moduIus are considerably 

overestimated. 

Similar kinetic structural equations have also been used to predict nonlinear 

viscoelastic effects observed in poiymer melts and solutions for large amplitude oscillatory 

shear and for stress growth and relaxation. The theories are based on the transient network 

models developed by Green and Tobolsky [21], Lodge [22] and Yamamoto [23]. The 

evolution of the structure is not described in tenns of breakdown and build-up of the 

microstructure, but in terms of generation and destruction of polymeric chain entanglements 

(or junctions) where the structural pararneters, 5, indicate how far the interna1 structure is 

away frorn the equilibrium state. Marrucci et al. 1241 introduced a kinetic rate equation 



combined with the upper convected Maxwell model: 

where o is the extra stress tensor, ai is the ith spectral component and Y is the rate 

deforrnation tensor. GOi and Loi are the equilibrium (no flow) values. The dependence of A, 

is chosen so that the zero shear viscosity is proportional to c"', where c is the polyrner 

concentration. The contravariant (upper) convected 

The kinetic equation is given by 

deri vative is defined by: 

oi.vvT 

where 4,.  the structural parameter, ranges from O to 1 and n is a dimensionless parameter 

obtained by fitting steady shear viscosity data; Ila, is the second invariant of the extra stress 

tensor a. The first term of the kinetic equation is related to the generation of entanglements 

due to the Brownian motion and the second to the destruction of entanglements induced by 

stress. 

Different kinetic equations have been proposed. Aciemo et al. [25] introduced the 

first invariant of the extra stress tensor, Io, in the kinetic equation which is given by: 



Aciemo et al. [25] reported a good agreement between the network model predictions 

and the experimental data in shear and elongation stress growth for a low density 

polyethylene melt (LDPE). Mewis and Dem [26] proposed a modified expression of the 

Acierno kinetic equation: 

where k, and k, are kinetic constants characterizing, respectively, the entanglements 

generation due to the Brownian motion and the entanglement destruction induced by the flow 

and m is a dimensionless parameter. According to Giacomin and Oakley [27], this equation 

coupled with the upper convected Maxwell model allows a good description of the LDPE 

under large amplitude oscillation shear flow. 

Liu et a1.[28] suggested that the destruction of entanglements depends on the second 

invariant of the rate of deformation, II Y , on the following way: 

Liu et al. [28] obtained good agreement between the model predictions and the experimental 

data in shear and extensionaI flows for a polyisobutylene in decalin. The spectrum of the 

relaxation times, A,,, was obtained from the molecular weight distribution. 



It should be mentioned that the use of the second invariant of the rate of deformation 

tensor is often criticized. Indeed, as the amplitude of the shear rate (yow ) in oscillatory flow 

increases with the frequency, this implies that the Iinear zone decreases with increasing 

frequency. This is not verified experimentally for homogeneous polymer systems. For this 

reason, the so-caIled rate dependent constitutive equations are often considered as 

inadmissible equations ( Marrucci and Astarita [29]). 

The objective of this paper is to develop a model based on the transient network 

theories to describe the rheological behavior of suspensions which are thixotropic and have 

an apparent yield stress. In the first part, a structure-dependent model with three different 

kinetic equations to characterize the evolution of the microstructure as a b c t i o n  of the flow 

parameters is proposed. The mode1 is used to describe the rheological behavior of two 

distinct suspensions: fumed silica particles dispersed in paraffin oi! and coating colors, 

similar to those used in coated paper industries. The results of experimental data and 

theoretical predictions are compared and discussed in the final part. 

3 Structure-dependent model 

We propose a kinetic network model based on ideas of Marrucci et al. [24] and 

Coussot et a!. [SOI to describe the nonlinear behavior of concentrated suspensions cornposed 

by interactive particles. We assume that the flow properties are controlled by the 

simultaneous breakdown and the build-up of the suspension microstructure. In Coussot et 

al. [20], the total stress contains a viscoelastic contribution due to interactions between 

particles and a Newtonian contribution due to the suspending medium. The stress is 

described by a modifîed upper convected Jeffreys model with a single relaxation tirne: 

with 



where q, and G, are the viscosity and the elastic modulus respectively for the destroyed 

structure and the solvent and Go + G, the equilibrium value of the elastic modulus of the 

structure. 6 /6 t is the upper convected derivative defined by Equation 5.9. Contrary to 

Coussot et al.[SO], we assume that the modulus depends on the structura1 parameter as 

proposed by Mamcci et a1.[24] and Quernada [JO]. It varies fiom Go + G, for a completely 

structured network to G, for a completeiy broken d o m  system. q (6) is the structured 

viscosity defined by the following relation: 

where qo is a characteristic viscosity and f(v an ernpirical structural function defined in such 

a way that an elastic behavior is predicted at very small strain and the steady shear viscosity 

described by a power-law expression with a limiting high shear rate viscosity. 

The evolution of the structural parameter, 6, is described following t h e  possible 

kinetic equations which depend on the flow parameters. The first one assumes that structure 

changes are due to the rate-of-strain; the second one supposes that this evolution is associated 

with the stored elastic energy as in polymer systems; the third one is related to the rate of 

energy dissipated. 

According to Leonov [19], the structure changes can be interpreted in terms of the 

second invariant of the rate-of-strain tensor, II y . We propose a kinetic equation which 

assumes that the breakdowm of the structure is controlled by the second invariant of the rate- 

of-strain tensor. The evolution of the microstructure is given by the following kinetic 

equation: 



where k, and k, are kinetic constants for the thermal build-up of the suspension 

microstructure and for the shear induced breakdown respectively and A, is a characteristic 

relaxation time. Contrary to Aciemo et al. [25], the characteristic relaxation tirne is assurned 

to be constant and is given by the relation: 

A characteristic relaxation time which is a function of the structural parameter t 
cannot be used in this case. The relaxation time would become infinite when the suspension 

is completely structured (6 = 1). The structural function is given by: 

According to Acierno et al. [25], the stored elastic energy is assumed to be 

proportional to the first invariant of the stress tensor 1,. Hence, the second kinetic equation 

proposed is: 

As the first kinetic equation the characteristic time is assumed constant. The 

structural function, is related to the structural parameter by the following expression: 



where n is an empirical power-law coefficient. 

We finally propose another kinetic equation which assumes that the breakdown of 

the suspension microstructure is related to the double dot product of the stress and the rate- 

of-deformation tensors, that is the rate of energy dissipated by the flow process. This idea has 

also been used in other engineering fields like mixing. In turbulent mixing flows, the 

dissipation of energy is directly related to the micromixing mechanism (Villemaux [3 11). 

The proposed kinetic equation is then: 

Via Equation 22, we propose that the structure breakdown is directly proportional to 

the dissipated power. The structural function is then given by the following relation: 

Note that the expressions 5.19, 5.21 and 5.23 have been chosen to given the same 

expression for the steady shear viscosity. The rheological models contain seven adjustable 

parameters Go, G, k,, k,, A, (or y,), q, and n. 

4 Analysis 

As we will see in the forthcoming, several rheological tests including shear flow have 

been used. In shear flow, Equation 5.14 reduces to: 



O i i  - 2y O,, = O at 

As Equation 5.26 holds also for steady shear fiow, O,, is equal to zero. For the 

kinetic equations, the first invariant of the stress tensor and the second invariant of the rate- 

of-strain can be sirnplified. Hence Equations 5.17, 5.20 and 5.22 become: 



For steady state flow, these equations can be easily solved to obtain the steady shear 

viscosity and the primary and secondary normal stress coefficients given by: 

The viscosity function is reduced to a power-law relation with a limiting high shear 

rate viscosity. Figure 5.1 illustrates the viscosity and the first normal stress coefficient as 

function of the shear rate for the case n = 0.1 predicted by the proposed modeI. The first 

normal stress coefficient presents an inflexion point near 3 s" and tends to zero at high shear 

rates. The primary normal stress coefficient lirniting behavior are: 



lim di ( y )  = y-2+2n 
y - O 

lim $ ] ( y )  = yn- '  
y-Cu 

For n = 1, the model predicts that the first normal stress difference (a,, - a,,) is 

quadratic with respect to the shear rate, as for a second order fluid. For n = 0, the viscosity 

is that of a Bingham fluid and the proposed model predicts that the first normal stress 

difference is constant at low shear rate and then increases linearly with shear rate at high 

shear rates. 

1 o3 
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Fipure 5.1 : Steady shear viscosity and first normal stress coefficient as function of the 

dimensionless shear rate predicted by the mode1 ( n = 0.1, G,+G, = 1, GJ(G,+G,) = 0.9, q, 

= 0.01 Pa.s). 



Equations (5.24), (5.25), (5.28), (5.29) and (5.30) c m  be numerically solved to 

predict the dynamic properties of suspensions using a fifth order Runge-Kutta method. 

Above a critical strain, the output signal waveform is no longer sinusoidal. Therefore, the 

elastic and viscous moduli are taken as the first harmonies of the output signal determined 

using a Fast Fourier Transfom. In this study, al1 dynamic moduli reported here were 

obtained from steady wave output signals corresponding to pseudo-steady structural states. 

Therefore, the value of k, has no influence on the dynamic moduli predictions at low strain 

values. For the suspensions cornposed of interactive particles, the elastic modulus depends 

slightly on the frequency at small strain amplitude, then G,+G, is obtained from the 

experimental value at small frequencies. The ratio kJk, sets the value of the critical strain 

from which the elastic modulus begins to decrease. GJ(G,+GJ controls the slope of the 

elastic modulus afier the critical strain. For the rate-dependent and energy models, little 

influence of the parameter n is noted and the viscous modulus is controlled by the 

characteristic time A, . In contrast for the stress-dependent model, the value of the viscous 

modulus is controlled by n and A,. 

Figure 5.2 shows the influence of the fiequency on the elastic and viscous moduli at 

small strain amplitude (y0 = for three different values of the high shear viscosity value, 

q-. The three models predict a constant elastic modulus at low frequencies and a rise of the 

viscous modulus at high fiequencies proportional to o. The high shear viscosity has no effect 

on the elastic rnodulus value, but it influences drastically the viscous modulus behavior. For 

the three models, the viscous modulus is proportional to the high shear viscosity at high 

frequency. This high shear viscosity characterizes the purely viscous contribution of the 

model. The stress-dependent model predicts an elastic modulus almost frequency 

independent and a viscous modulus which is proportional to the frequency over the whole 

frequency range. The rate-dependent and energy-dependent model predictions are similar. 

The elastic modulus decreases at high frequency to reach a plateau value equal to G,. 

However, the energy-dependent model predicts this decrease at considerably higher 

frequency. The viscous modulus predicted by the rate-dependent and the energy-dependent 



models exhibits a shoulder at low fiequencies. In this region, the viscous modulus value is 

higher than that predicted by the stress-dependent model. For the rate-dependent and energy- 

dependent models, the viscosity contribution due to the structure is not negligible for 

relatively small values of the high shear viscosity. At small strain amplitude, the stress- 

dependent model predicts that the structure contribution is independent of the frequency 

contrary to the rate-dependent and the energy-dependent rnodels. Nevertheless, the fiequency 

dependence is less drastic in the case of the energy-dependent model. 

Fieure 5.2: Elastic and loss moduli vs. dimensionless fiequency predicted by the three 

proposed models for different high shear viscosity values (n = 0.1, G,/(G,+G,) = 0.9, w, 
= 1). 

Figure 5.3 reports the stress growth and relaxation at different shear rates as a 

function of dimensionless time, hot. The three models predict overshoots; their magnitude 



and the time required to reach the steady state increase with shear rate. However, the stress- 

dependent model predicts oscillations in stress growth for the highest shear rate value, The 

predictions of the rate-dependent and energy-dependent models are very similar for stress 

growth and relaxation. Relaxation plateaus are predicted. The difference between the initial 

stress value and the plateau increases with shear rate. This behavior is a characteristic of a 

solid. At small shear rates, these two models predict that the structure is little affected and 

this value goes rapidly to 1. The viscosity value tends to an infinite value and only the purely 

elastic contribution in the Jeffreys equation is important. Contrary to the rate-dependent and 

the energy-dependent models, no relaxation plateau is predicted by the stress-dependent 

model. The shear stress relaxes very slowly to zero. In this case, the structure breakdown is 

controlled by the first normal stress. In relaxation, the breakdown contribution in the kinetic 

equation is not equal to zero, but decreases with the first normal stress value. Therefore, the 

structure relaxation decreases at a slower rate than in the case of the two other models and 

no plateau can be predicted. Note that al1 model predicts the sarne pattern for the first normal 

stress difference as for the shear stress. 

In this test, the most important parameter is k, which is related to thixotropy. This 

pararneter controls the amplitude of the overshoots and the relaxation plateau values for the 

transient shear and first normal stress difference. For the three proposed kinetic equations, 

the amplitude of the overshoots and the relaxation plateau increase with k,. As expected, the 

ratio kJk, controls the steady state value and the charactenstic time, ri, as well as the elastic 

modulus, G,+G,, determine the slope of the transient stresses at small strain. Little influence 

of the parameters n and Gd(G,+GJ was noted. Nevertheless, in the Newtonian case ( n = 1) 

no overshoot is predicted for al1 models. For the stress-dependent model, an increase of the 

oscillations is observed when the parameter G/(G,+GJ decreases (results not shown here). 



Figure 5.3: Stress growth and relaxation as fbnction of dimensionless time predicted by the 

proposed mode1 with the three kinetic equations at various shear rate; (-- ) 0.00 1 P'; (- - 
- ) 0.1 s"; (---.) 1 s-'; (n = 0.1, G,+G,= 1 Pa, G/(G,+GJ = 0.9, q, = O Pa.s, k,  = 10); a) 

Rate-dependent model; b) Stress-dependent model; c)Energy dependent model. 



5 Experimental 

Two distinct systems which are thixotropic and have a solid-like behavior at low 

strain are chosen to illustrate this study. The first system is  a suspension of fumed silica 

particles in paraffin oil with different mass fractions and the second is a coating color similar 

to coating colors used for paper offset printing applications. The rheological behavior of 

these two systems was studied by Yziquel et al. [2] and [32J 

Fumed silica particles Aerosil A200 (Degussa Corporation) have been selected. 

Aerosil A200 particles have a diameter of 12 nrn. They are hydrophilic fumed silica with 

surface silanol groups that can participate in hydrogen bonding. The furned silica particles 

were mixed in a paraffin oil (Anachernia), a Newtonian fluid with a viscosity of 0.07 Pas  

at 25°C. Since the paraffin oil has no hydrogen bonding capacity, the particles can only 

interact between themselves and form a network. The concentrations of hmed silica used 

ranged from 7.0 to 14.5 mass %. 

Paper coating colors are concentrated aqueous suspensions. The coating colors are 

applied at high speed on the surface of paper to improve the optical performance, the surface 

quality and the printing properties of the final product. They consist mainly of minera1 

pigments ( kaolin), a natural (starch) or synthetic (latex) binder and a water-soluble polymer. 

In this work, coating colors were prepared from a sluny composed of 70 mass % of 

pigments, containing 90 % of the delaminated kaolin and 10 % of the calcined kaolin 

particles. The dispersion of this sluny was optimized by adding 0.15 pph (parts per 100 parts 

of dry pigments) dispersant. The coating colors had a solid content of 60 mass % and 

contained 10 pph latex (Styrene-Butadiene-Styrene, Genflo, Gencorp). The arnount of PVA 

(Polyvinyl Alcohol, Elvanol, Dupont) used as the water- soluble polymer was varied between 

0.10 and 0.25 pph. These suspensions were stabilized by steric repulsion of polymer chains 

adsorbed on the particles surface. More details on the suspensions used c m  be found in 

Yziquel et al. [2] and [32]. 



For the fumed silica suspensions, dynamic measurements were conducted on two 

different rheometers: a stress-controlled rheometer (CVO, Bohlin) and a strain-controlled 

rheometer (VOR, Bohlin). Two cone and plate geometries were used: 50 mm diameter and 

a cone angle of 4 degrees for the CVO and 30 mm diameter and a cone angle of 5.2 degrees 

for the VOR. A11 measurements were carried out at 25 O C .  In al1 cases, the sarnples were 

allowed to rest, before any measurements, until the elastic modulus reached a plateau at very 

low strain. The results were checked on the two rheometers and the data reported here were 

reproducible with a relative error of less than 15%. These two rheometers were also used to 

ensure that the observed phenornena were real rheological effects and not experimental 

artefacts. The rheological measurements of the coating colors were carried out with a stress- 

controlled rheorneter (CVO, Bohlin) for the oscillatory experiments and a strain-controlled 

rheometer (ARES, Rheornetric Scientific) for the stress growth and viscometry experiments 

using a concentric cylinder geometry. The imer cylinder diameters were 25 and 32 mm with 

a gap size of 1.2 and 1 mm for the CVO and the ARES respectively. A thin layer of oil was 

placed on the top of the sample to avoid evaporation. Al1 tests were performed at 23 O C .  

Before each test and for al1 suspensions, a pre-shearing at a shear rate of 300 s-' during 200 

s followed by a rest time of 1800 s was applied. This shear preconditioning allowed to have 

a reproducibility within k 10%. 

6 Results and discussion 

The mode1 predictions for the three proposed kinetic equations are compared with the 

experimental data of two different suspensions: a coating color and a fumed silica 

suspension. These suspensions differ mainly in the nature of the structure. The coating color 

is a concentrated suspension of 34 vol. % minera1 pigment stabilized sterically by a water- 

soluble polymer adsorbed on the pigment surface. Their nonlinear behavior c m  be attributed 

to the motion and restoration of the particle equilibrium position. The structure formed by 

the fumed silica particles in minera1 oil is very different. The particles interact between 

themselves through hydrogen bonding to induce a network. Under flow, the breakdown and 



build up of the network Iead to a nonlinear behavior. 

6.1 Coating color suspensions 

The steady state viscosity of coating colors containing 0.1 to 0.25 pph PVA is 

presented in Figure 5.4 for shear rates ranging from 10" to 300 se'. An important shear 

thinning effect followed by a constant viscosity at high shear rates is noted. The proposed 

model describes adequately the viscosity of the two coating colors. The parameters are 

reported in Table 5.1. The power-law exponents of the two suspensions are very close 

whereas the high shear viscosity increases with polymer concentration. 

Figure 5.4: Steady shear viscosity as hnction of shear rate for coating colors with three 

different PVA concentrations and model predictions. 



Tableau 5.1 : Parameters of proposed models used to predict the rheological behavior of 

coating colors in steady state experiments. 

1 0.1 10.1 1 8.36 1 0.05 ( 

pph 

PVA 

Figure 5.5 reports the elastic and viscous moduli at 1 Hz vs. the strain amplitude for 

coating colors containing different PVA concentrations. The elastic modulus, shown in 

Figure 5.5 a), is constant up to a critical strain, above which it decreases. As the behavior is 

no longer linear, the modulus values should be considered as apparent values. The viscous 

modulus, reported in Figure 5.5 b) and c), is considerably smaller than the elastic modulus. 

At low strain amplitudes, the viscous modulus increases with strain, reaches a maximum and 

then decreases at higher strains. The dynamic moduli increase with increasing PVA 

concentration. Nevertheless, the elastic modulus increases more rapidly than the viscous 

modulus. This phenomena is explained by a structure consolidation. According to Yziquel 

et al. [32], the plateau value of the elastic modulus can be predicted as a function of the 

polymer concentration using a scaling law. 

The proposed model coupled with the three kinetic equations are shown to be capable 

of describing the coating color behaviors as a function of the strain amplitude. The decrease 

of the elastic modulus with strain amplitude predicted by the models is in good agreement 

with the experirnental data. Nevertheless, the rate-dependent model overestimates the elastic 

modulus values at high strain amplitudes. The prediction differ drastically in the case of the 

viscous modulus. Figure 5.5 b) reports the mode1 predictions using the exponent n and the 

limiting hi& shear rate viscosity, q-, obtained for the steady viscosity reported in Table 5.1, 

q *  1 )  - 
(Pa. s-" ' ) 

q, (Pa-s) 



whereas in Figure 5.5 c), these pararneters are adjusted to obtain the best fit and are given in 

Table 5.2. The elastic modulus value, G,+G, was determined from the plateau value and 

GJ(G,+GJ was fixed to 0.9 for the rate-dependent and energy-dependent models and to 0.8 

for the stress-dependent model. The values of ratio kJk, were obtained from the values of 

the critical strain and the characteristic time from the slope of the viscous modulus as a 

function of the strain amplitude. The exponent n and the limiting high shear rate viscosity, 

qm, values do not influence the elastic modulus, but change drastically the viscous modulus 

values. For the rate-dependent inodel, the pararneters g i v i ~ g  the best fit are the s m e  that 

those obtained for steady shear viscosity. However, the rate-dependent mode1 is not able to 

quantitatively describe the experimental data for the viscous modulus. It predicts correctly 

that the modulus initially increases with increasing strain but the predicted viscous modulus 

starts to decrease at a smaller strain amplitude than experimentally observed. Figure 5.5 b) 

shows that the stress-dependent model is not able to predict the viscous modulus: the viscous 

modulus is underestimated at small. strain and overestimated at higher strain amplitude. 

However, Figure 5.5 c) shows that the stress-dependent mode1 gives a better description of 

the experimental behavior, but overestirnates the strain amplitude value from which the 

viscous modulus decreases. A good fit is observed for the energy-dependent model which 

predicts reasonably well al1 experimental data reported in Figures 5.5 b) and c). However, 

this is achieved by adjusting the limiting high shear viscosity. 



1 O-' 1 O-' 1 O-' 

- - -  

1 O-' 1 0" 1 O.' 

Figure 5.5: Elastic and viscous moduli vs. strain amplitude à 1 Hz for coating colors with 

different PVA concentrations((@) I .O pph, (1) 1.5 pph, (V) 2.5 pph) and rate-dependent 

(-1, stress-dependent (- - - ) and energy-dependent (--~.~.) mode1 predictions; a) G'; b) G 

without adjust parameters; c) G" adjusted parameters. 



Tableau 5.2: Parameters of proposed nlodels used to predict the rheological behavior of 

coating colors in oscillatory shear experiments. 

Figure 5.6 compares the model predictions and the experimental data of a coating 

color containing O. 1 pph PVA for start-up experiments. The transient stress is reported as 

a h c t i o n  of the strain ( y = j t )  for three different shear rates. As expected, the overshoot 

amplitudes and the time required to reach the steady state increase with increasing shear rate. 

The parameters n and q, were obtained fiom steady shear measurement. The elastic modulus, 

G,+G, and Gd(G, +GJ values are the same as detemiined fiom oscillatory expenments. The 

parameters used to fit the expenmental data are reported iq Table 5.3. In the three cases, the 

value of the characteristic time was found equal to 7.0 s for al1 shear rates. For the rate- 

dependent model, the values of kt and kJk, had to be changed with the shear rate. This is less 

important for the energy-dependent model and these parameters rernain nearly constant (less 

fkom 10 % variations) for the stress-dependent model. The predictions of the three models 



are very similar for the two smallest shear rates whereas they differ drastically for 0.1 S.'. The 

time and the magnitude of the overshoots are well predicted, but no model can accurately 

predict the decrease of the transient stress after the overshoot. The rate-dependent mode1 

predicts an inflexion point after the overshoot whereas the stress-dependent model exhibits 

an undershoot. The energy-dependent model, in Our opinion, gives the best fit. However, the 

parameters used for the suspension contained 0.1 pph PVA differ from those obtained to 

describe the strain sweep experiments. The values of the characteristic time and the ratio 

kJk, are considerably higher than those obtained in the previous case for the three kinetic 

equations. 

Rate-dependent model 
Stress-dependent model 

O 1 

Figure 5.6: Variation of the transient shear stress with the strain for a coating color 

containing O. 1 pph PVA and rnodel predictions. 



Tableau 5.3: Parameters of the three models used to predict the rheological behavior of the 

coating color (0.1 pph PVA) in the start-up experiments. 

6.2 Fumed silica suspensions 

Figure 5.7 compares the mode1 predictions with the elastic and viscous moduli 

versus the strain amplitude for the fumed silica suspensions at different mass 

concentrations. The viscoelastic behavior is very similar to that observed for the coating 

colors. The elastic modulus, s h o w  in Figure 5.7 a), decreases fiom a critical strain 

whereas the viscous modulus (Figure 5.7 b)) increases initially with strain amplitude to 

reach a maximum. These figures show a good agreement between the predictions and the 

experimental data repoi-ted here for the elastic modulus behavior although the predictions 

of the stress-dependent model overvalues the elastic modulus at high strain amplitude. 

The agreement is not so good for the viscous modulus behavior. The rate-dependent 

mode1 correctly predicts the initial increase of the viscous modulus with increasing strain 

amplitude, but as in the previous case, it predicts a decrease at higher strains for values 

which are much smaller then that experimentally observed. The stress-dependent model 

overpredicts the viscous modulus at high strain amplitude. The energy-dependent model 

gives the best prediction. 



104 1 I 1 

1 O-' 1 1 0-1 

1 O-' 

Fieure 5.7: Elastic and viscous moduli vs. strain amplitude at 1 Hz for A200 suspensions 

with different mass concentrations ((V) 7.0%, (e) 8.2 %, (M)10.0 %, (A) 11.5 %) and rate- 

dependent (-), stress-dependent (- - - ) and energy dependent (-----) mode1 predictions; 

a) G'; b) Gu. 



The parameters used to fit the experimentai data are reported in Table 5.4. 

According to Yziquel et al. [2], the n value can be set to O as no steady viscosity data 

could be obtained for this system because of fracture in the materid. Nevertheiess, the 

best fit for the stress-dependent mode1 was obtained with n = 0.3 as in the coating cdor 

case. 

Tableau 5.4: Parameters of proposed modeIs used to predict the cornplex properties of 

fumed silica suspensions. 

Mass Go+G, 1 h r t i o n  1 (kW) 1 

Mass 

fractio 

n (Yo) 

8.2 % 

11.5% 

la 

n 

0.3 

0.3 

y: a 

fl, 

(Pas) 

21.9 

2.54 

q m  

(Pa. s) 

123 

218 

ho (SI 

1.27 

1.75 

;ho (s) 

0.14 

0.14 

WkI 

2.2 

1.8 

kzlkl 

0.3 

0.3 

C;d(Go+GS 

0.9 

0.9 

GAGOS-GS 

0.95 

0.95 



Above the critical strain, the viscoelastic behavior becomes nonlinear which is 

characterized by a distortion of the output signal response. These input and output signals c m  

be represented using the Lissajous diagram as shown in Figure 5.8 for the 8.2 mass % of 

fûmed silica suspension in paraffin oil at different strain amplitudes. This figure compares 

the strain versus stress signals observed with the model predictions using the sarne 

parameters as obtained for the strain sweep experiments. For a strain amplitude less or equal 

to 0.01 (Figure 5.8 a)), the strain and the stress signals are superimposed and the Lissajous 

figure is a straight line. This behavior, which is a characteristic of a Hookean solid, is well 

described by the three models. For strain amplitudes above the 0.01, the output signals 

deviate from the sinusoidal waveforms, the distortions increasing with strain amplitude. 

These distortions are accurately predicted by the three models for the strain amplitude equal 

to 0.04 (Figure 5.8 b)). Figure 5.8 c) shows that the three proposed models are not able to 

predict the signal waveform for the largest strain amplitude of O.Oï. The rate-dependent and 

the energy-dependent rnodels underestimate the viscous contribution; therefore, the 

prediction of the width of the Lissajous diagrarn is too small. However, these two models are 

able of describing qualitatively the output signal waveform. The stress-dependent model 

predicts a more important viscous contribution, but no signal distortion is predicted in this 

case. 



Fieure 5.8: Lissajous diagrams for different strain amplitudes for 8.2 mass % suspension of 

fumed silica at 1 Hz. Cornparison between the signal observed ( O ) and rate-dependent 

(-), stress-dependent (- - - ) and energy-dependent (...----) mode1 predictions ; a) y" = 0.0 1 ; 

b) y" = 0.04; c) y0=0.07. 



Fiaure 5.9: Elastic and viscous rnoduli vs. strain amplitude for different frequencies. 

Cornparison between the experimental data of fumed silica at 8.2 mass %( (e) 0.1 Hz; (O) 

1 Hz; (A) 10 Hz) and the mode1 predictions ((-1 0.1 Hz; (- - - ) 1 Hz; (.----) 1 0 Hz);a) Rate- 

dependent model; b) S tress-dependent model; c) Energy-dependent model . 



In the literature, the main objection to the use of the second invariant of the rate-of- 

strain is that the model predicts a linear viscoelastic zone that decreases with fiequency. This 

is in contradiction with the experimental results observed in homogeneous polyrner systems. 

However, in the present work, the use of the second invariant of the rate of strain is justified 

for these suspensions as reported in Figure 5.9. This figure shows the influence of the 

frequency on the elastic and viscous moduli versus the strain amplitude for the 8.2 mass % 

fumed silica suspension and compares the experimental data with three models predictions. 

The parameters used in this case are those reported in Table 5.4. These parameters adjusted 

to describe the strain sweep at 1 Hz are used to predict the effect of the frequency. The 

experimental data show little differences between the behavior at 0.1 and 1 Hz, but an 

important decrease of the linear zone at 10 Hz. This experimental result confirms the 

assumption that a structure is more easily broken down at high frequencies. Therefore, the 

use of rate-dependent and energy-dependent models is completely justified in the case of 

suspensions for which the rheological behavior is controlled by structural changes. The rate- 

dependent mode1 defined in this work provides an over decrease of the linear zone (Figure 

5.9 a)). The influence of the frequency is less important in the case of the energy-dependent 

model (Figure 5.9 c)). It is possible to decrease the influence of the fiequencies for the rate- 

dependent model by adding an exponent as proposed by Liu et al. [ZX], but the mode1 

obtained is no longer able to fit the elastic modulus behavior. The three proposed models 

cannot predict the influence of frequency on the viscous modulus at high strain amplitude. 

The experimental viscous modulus is higher at 10 Hz than at 0.1 and 1 Hz at high strain 

amplitude whereas the models predict a smaller value. 



7 Concluding rernarks 

A mode1 describing the rheological behavior of suspension which is controlled by 

structural changes was proposed. The proposed model is constituted by a rnodified upper 

convected Jeffreys model with a single relaxation time and by a kinetic equation which 

describes the evolution of the microstructure with flow. The proposed model describes the 

nonlinear phenomena observed with the suspension. Three kinetic equations were proposed 

to predict the nonlinear viscoelastic behavior. The first equation depends on the second 

invariant of the rate-of-strain tensor, as proposed by Leonov [19] and Liu et al. [28]. The 

second kinetic equation is based on the polymer theory which assumes that the destruction 

of entanglements is induced by the elastic energy which is related to the first invariant of the 

stress tensor as proposed by Acierno et al. [25]. The last equation assumes that the change 

of the microstructure is caused by the rate of energy dissipated. These equations, coupled 

with the modified upper convected Jeffreys model, predict nonlinear viscoelastic behavior 

of suspensions and the output signal distortions observed for relatively small strain amplitude 

dwing oscillatory measurements. Shear stress and first normal stress difference overshoots 

observed in start-up flows are correctly predicted by these proposed models. In contrast with 

the polymeric systems, the linear zone of suspension decreases with fiequency. This behavior 

is only described by the rate-dependent and energy-dependent models. Therefore, the stress- 

dependent model is not appropriate to predict the behavior of suspensions which is 

controlled by structural changes. Furthermore, the rate-dependent model exhibits an over 

influence of the frequency. The energy-dependent mode1 appears to give the best 

compromise to describe the nonlinear behavior of concentrated suspensions. The mode1 

predictions were compared with experimental data of fumed silica suspensions and coating 

colors. Good agreement was observed especially with the energy-dependent model. 

Nevertheless, this model is not able to predict the transient and the oscillatory behavior using 

the same parameters. The models proposed in this work provide an improved description 

of the nonlinear rheological properties of concentrated colloidal particle suspensions 



compared to the rheological models that can be fowd in the literature. ObviousIy the simpIe 

kinetic equations proposed here are still not flexible enough to quantitatively predict with the 

sarne parameters the complex nodinear behavior depicted by the coating color and the fumed 

silica suspensions. More efforts should be done to obtain a more flexible kinetic equation 

without adding adjustable parameters. 
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CONCLUSIONS ET RECOMMANDATIONS 

L'objectif de cette étude, composée de trois articles, a été de caractériser et de 

modéliser le comportement rhéologique de deux suspensions colloïdales très distinctes de 

fumée de silice et de sauces de couchage. Nous avons ainsi été en mesure: 

- de mesurer et d'analyser le comportement rhéologique de suspensions dans le 

domaine non linéaire en écoulement oscillatoire. Les résultats expérimentaux ont été 

interprétés en termes d'énergie dissipée et ont permis de quantifier les interactions entre 

particules. Cette analyse est particulièrement intéressante dans le cas des suspensions de 

fumée de silice qui ont un domaine linéaire excessivement restreint et dont les propriétés 

rhéologiques ne peuvent être mesurées qu'à très faible déformation. 

- de proposer un modèle stnictural qui permet d'expliquer le comportement 

rhéologique des sauces de couchage et plus spécialement le rôle des polymères 

hydrosolubles. 

- de proposer un modèle rhéologique basé sur la théorie des réseaux qui permet de 

décrire, de manière plus précise que les modèles proposées antérieurement, le comportement 

rhéologique non linéaire des suspensions de fumée de silice et des sauces de couchage. 

Ces trois contributions sont nouvelles et originales et permettent de mieux compendre 

le rôle des interactions dans les suspensions fortement interactives. 

Toutefois, le modèle proposé à des limites : il surévalue l'influence de la fréquence 

et n'est pas capable de décrire les différents comportements rhéologiques mesurés avec les 

mêmes paramètres. Il serait donc intéressant de modifier I'équation cinétique dépendant de 

second invariant du tenseur des taux de déformation ou du taux d'énergie dissipée afin de 

la rendre plus flexible sans toutefois ajouter de paramètres empiriques supplémentaires. 



Il serait également intéressant de refaire ce même travail en écoulement élongationnel 

afin d'étudier le comportement de suspensions de particules fortement interactives et de 

déterminer l'influence des interactions entre particules et donc de la structure dans ce type 

d'écoulement souvent rencontré dans les procédés de mise en oeuvre comme le couchage du 

papier. Ces mesures permettraient de vérifier si le modèle proposé est capable de décrire, 

même quaIitativernent, le comportement rhéologique des suspensions lors d'écoulement 

élongationnel. 

Il serait enfin très intéressant d'implanter le modèle proposé dans un code de calcul 

numérique pour vérifier sa  validité dans le cas d'écoulement plus complexe, comme dans le 

cas du couchage du papier. 



REFERENCES 

ACIERNO, D., LA MANTIA, F.P., MARRUCCI, G. ET TITOMANLIO, G. (1976) A 

Nonlinear Viscoelastic Model with Structure Dependent Relaxation Times. 1. Basic 

Formulation. J. Non-Newt. Fluid Mech., 1, 125- 145. 

ACKERSON, B.J. (1 990) Shear hduced Order and Shear Processing of Model Hard Sphere 

Suspensions. J. Rheol., 34,553-590. 

ARANGUREN, M.I., DE GROOT, J.V., MORA, E. ET MACOSKO, C.W. (1992) Effect 

of Reinforcing Fillers on the Rheology of Polymer Melts. J. Rheol., 36, 1 165-1 182. 

BARAVIAN, C. ET QUEMADA, D. (1 996) Sur les Corrections d'Inertie en Rhéomètrie 

à Contrainte Imposée. Les Cahiers du Groupe Francais de Rheologie, 653-668. 

BARNES, H. (1 997) Thixotropy - a Review. J. Non-Newt. Fluid Mech., B,1-33. 

BATCHELOR, G.K. (1977) The Effect of Brownian Motion on the Bulk Stress in a 

Suspension of Spherical Particles. J. Fluid Mech., u,97-117. 

BINGHAM, E.C. (1 922) Fluidity and Plasticity, Mc Graw-Hill, NY. 

BROWN, W.D. ET BALL, R.C. (1 985) Cornputer Simulation of Chemically Limited 

Aggregation. J. Phvs. A., '8, L5 l7-L52 1. 

BUSCALL, R., GOODWIN, J.W., HAWKINS, M.W. ET OTTEWILL, R.H. (1982) 

Viscoelastic Properties of Concentrated Latexes. Part 1 : Methods of Examinations. J. Chem. 

Soc. Faraday Trans., 78,2873-87. 



BUSCALL, R., MILLS, P., GOODWM, J.W. ET LARSON, D.W. (1988) Scaling Behavior 

of Rheology Aggregate Networks Formed fiom Colloidal Particles. J. Chem. Soc. Faraday 

Trans., 84,4249-4260. 

CABANE, B., WONG, K., LINDNER ET P., LAFUMA, F. (1 997) Shear Induced Gelation 

of Colloidal Dispersions. J. Rheol., 41, 53 1-547. 

CARREAU, P.J., DE KEE, D. ET CHHABRA, R.P. (1997) Rheolow of Polyneric 

Svstems. Principle and Application. Hanser, Munich. 

CARREAU, P.J. ET LAVOIE, P.A. (1991) Coating Colors: A Rheologist Point of View. 

Tappi Press, Coating Conference Proceedin~s. 

CHEN, M. ET RUSSEL, W.B. (1991) Characteristic of Flocculated Silica Dispersions. 

Coll. Int. Sci., 141, 564-577. 

CHANG, S.H., GUPTA, R.K. ET RYAN, M.E. (1 992) Effect of the Adsorption of Polyvinyl 

Alcohol on the Rheology wxd Stability of Clay Suspensions. J. Rheol., 36,273-287. 

CHENG, D.C.H. ET EVANS, F. (1965) Phenomenological Characterization of the 

Rheological of Inelastic Reversible Thixotropic and Antithixotropic Fluids. Brit. J. ADD~.  

Phys., 16, 1599-161 7. 

COTTON, F. (1 998) Corn orternent Rhéolo~ique Non Linéaire des Suspensions Concentrées 

de Particules Non Intéractives. Thèse de Maitrise, École Polytechnique de Montréal, Canada. 

COUSSOT, P., LEONOV, A.I. ET PIAU, J.M. (1993) Rheology of Concentrated Dispersed 

Systems in a Low Molecular Weight Matrix. J. Non-Newt. Fluid Mech., @,94-114. 



DE GENNES, P.P.G. (1 979) Scalin~ Concepts of Polymer Phvsics, Corne11 University Press, 

Ithaca, New York. 

DEGUSSA (1  989) Technical Bulletin Pigments 6,11,12,23. 

DE KEE, D., CODE, R.K. ET TURCOTTE, G. (1983) Flow Properties of Tirne Dependent 

Foodstuffs. J. Rheol., 2 7 , 5  19-536. 

DE KEE, D. ET CHAN MAN FONG, C.F. (1994) Rheological Properties of Structured 

Fluids. Po lm.  E ~ P .  Sci., 34,438-445. 

DE KRUIF, C.G., VAN IERSEL, E.M.F., VRIJ, A. ET RUSSEL, W.B. (1 985) Hard Spheres 

Colloidal Dispersions.: Viscosity as a Function of Shear Rate and Volume Fraction. J. Chem. 

Phys., 83,4717-4725. 

DE ROOIJ, R., VAN DER ENDE, D., DUITS, M.H.G. ET MELLEMA, J. (1994) Elasticity 

of Weakly Aggregating Polystyrene Latex Dispersions. Phys. Rev.. E 49, 3038-3049. 

DORAISWAMY, D., MUJUMBAR, A.N., TSAO, I., DANFORD, S.C. ET METZNER, 

A.B. (1991) The Cox-Merz Rule Extended: a Rheological Mode1 for Concentrated 

Suspensions and Other Materials with a Yield Stress. J. Rheol., 35, 647-685. 

EINSENLAUER, J. ET KILLMANN, E. (1980) Stability of CoIloidaI Silica (Aerosil) 

Hydrosols, 1. Preparation and Characterization of Silica Hydrosols. J. Coll. Int. Sci., 24, 108- 

119. 

ENGSTROM, G. ET RIGDAHL, M. (1991) On Transition fiom Linear to Non-linear 

Viscoelastic Behavior of CMCLatex Coating Colours. Nordic Pulp and P a ~ e r  Res., S,63-65. 



FADAT, G.  ET RIGDAHL, M. (1987) Viscoelastic Properties of CMCLatex Coating 

Colors. Nordic PUID and Paper Res., 1,30-38. 

FADAT, G., E N G S T ~ M ,  G. ET RIGDAHL, M. (1988) the Effect of Dissolved Polymers 

on the Rheological Properties of Coating Colours. Rheol. Acta, 2, 289-297. 

FLORY, P.J. (1953) Princides of Polymer Chemistry, Corne11 Universiiy Press, NY. 

FRITH, B.A. ET HUNTER, R.J. (1977) Flow Properties of Coagulated Colloidal 

Suspensions. III The Elastic Floc Model. J. Coll. Interf. Sci., 57,266-275. 

FRITH, W.J., MEWIS, J. ET STRIVENS, T.A. (1987) Rheology of Concentrated 

Suspensions: Experimental Investigations. Powder Tech., 5 l ,  27-34. 

GADALA-MARIA, F. ET ACRIVOS, A. (1 980) Shear Induced Structure in Concentrated 

Suspension of Solids Spheres, J. Rheol., 24,799-8 14. 

GIACOMIN, A.J. ET OAKLEY, J.G. (1 992) Structural Network Models for Molten Plastics 

Evaluated in Large Amplitude Oscillatory Shear. J. Rheol., 36, 1529-1 546. 

GRAHAM, M.D. (1 995) Wall Slip and the Nonlinear Dynarnics of Large Amplitude 

Oscillatory Shear Flows. J. Rheol., 39,697-712. 

GREEN, M.S. ET TOBOLSKY, A.V. (1 946) A New Approach to the Theory of Relaxing 

Polymeric Media. J. Chem. Phvs., 14, 80-92. 

GRON, J. ET DAHLVIK, P. (1 997) Effect of Coating Colour Chemistry and Temperature 

on Runnability and Coated Paper Properties. J. Pulp and Paper Sci., 23,5422-J427. 



HATZIKIRIAKOS, S.G. ET DEALY, J.M. (1991) Wall SIip of Molten High Density 

Polyethylene. 1. Sliding Plate Rheometer Studies. J. Rheol., 3,497-523. 

JARSTROM, L., STROM, G. ET STENIUS, P. (1987) The Adsorption of Dispersing and 

Thickening Polymers and Their Effect on the Rheology of Coating Colors. T a ~ p i  Journal, 

101-107. 

JIAO, W.M., VIDAL, A. , PAPIRER, E. ET DONNET, J.B. (1989) Modification of Silica 

Surfaces by Grafting of Alkyl Chains. Parts III. Particle/Particle Interactions: Rheology of 

Silica Suspensions in Low Molecular Weight Analogs of Elastomers. Colloids and Surfaces, 

40,279-29 1 .  - 

JOGUN, S. AND ZUKOSKI, C.F. (1996) Rheology of Dense Suspensions of Platelike 

Particles. J. Rheol. 40: 12 1 1 - 1232. 

JONES, DA., LEARY, B. ET BOGER, D. (1991) Rheology of Concentrated Colloidal 

Suspension of Hard Spheres. J. Coli. Int. Sci., u, 479-495. 

KHAN, S.A. ET ZOELLER, N.J. (1993) Dynarnic Rheological Behavior of Flocculated 

Fumed Silica Suspensions. 3. Rheol., 37, 1225-1 235. 

KOMATSU, H., MITSUI, T. ET ONOGI, S. (1973) Nonlinear Viscoelastic Properties of 

Semi-solid Emulsion. Trans. Soc. Rheol., 17, 35 1-364. 

KOSMSKI, L.E. ET CARUTHERS, J.M. (1985) Rheological Pmperties of 

Polydirnethylsiloxane Filled with Fumed Silica: II. Stress Relaxation and Stress Growth. L 
Non-Newt. Fluid Mech., u,69-89. 



KOSMSKI, L.E. ET CARUTHERS, J.M. (1986) The Effect of Molecular Weight on the 

Rheology Properties of Polyrnethylsiloxane Filled with Furned Silica. Rheol. Acta., 25, 153- 

160. 

KRIEGER, LM. ET DOUGHERTY, T.J. (1959) A Mechanism for Non-Newtonian Flow in 

Suspensions of Rigid Spheres. Trans. Soc. Rheol., 3, 137-1 52. 

KRIEGER, LM. ET EGUILUZ, M. (1976) The Second Electroviscous Effect in Polyrner 

Latices, Trans. Soc. Rheol., =,29-45. 

LAPASSIN, R., GRASSI, M. ET PRIL, S. (1996) Fractal Approach to Rheological Modeling 

of Aggregates Suspensions. Aït-Kadi, A. et al. (Eds), Proc. Xnth Int. Conmess on Rheolow, 

Laval University, Quebec City, Canada, 524-525. 

LARSON, R.G. (1988) Constitutive Equations for Polvrner Melts and Solutions. 

Buttenvorths, Boston, MA. 

LAUN, H.M., BUNG, R., HESS, S., LOOSE, W., HESS, O., HAHN, K., MDICKE, E., 

HINGMANN, R., SCHMIDT, F. ET LINDNER, P. (1992) Rheological and Small Angle 

Neutron Scattering Investigation of Shear-induced Particle Structures of Concentrated 

Polyrner Dispersions submitted to Plane Poiseuille and Couette Flows. J.  Rheol., M, 743- 

785. 

LAVOIE, P.A. (1995) Rhéologie de Sauces de Coucha 

Thèse de Maitrise, École Polytechnique de Montréal, Canada. 

LEE, L.T., RAHBARI, R., LECOURTIER, J. ET CHAWETEAU, G.  (1991) Adsorption 

of Polyacrylamides on the Different Faces of Kaolinites. J. Coll. Inter. Sci., 142,3 5 1-3 57. 



LEONOV, A.I. (1 990) On the Rheology of Filled Polymers. J. Rheol., 34, 1039- 1068. 

LW, T.Y., SOONG, D.S. ET WILLIAMS, M.C. (1984) Transient and Steady RheoIogy of 

Polydisperse Entangled Melts, Predictions of a Kinetic Network Model and Data 

Cornparison. J. Polyn. Sci., 22, 1561 -1 587. 

LODGE, AS.  (1956) Network Theory of FIow Birefnngence and Stress in Concentrated 

Polyrner Solutions. Tram. Faradav Soc., 52-1 20. 

MALL, S. ET RUSSEL, W.B. (1987) Effective Medium Approximation for an Elastic 

Network Model of Flocculated Suspensions. J. Rheol., 3, 65 1-68 1 .  

MARRUCCI, G. ET ASTARITA, G. (1974) Cornments on the Validity of a C o m o n  

Category of Constitutive Equations. Rheol. Acta, 13, 754-756. 

MARRUCCI, G., TITOMANLIO, G.  ET SARTI, G.C. (1973) Testing of a Constitutive 

Equation for Entangled Networks by Elongational and Shear Data of Polymer Melts. Rheol. 

Acta, j2, 269-275. 

MEWIS, J. (1 979) Thixotropy- a General Review. J.  Non-Newt. Fluid Mech., 6, 1-20. 

MEWIS, J. ET DE CLEYN, G. (1982) Shear History Effects in the Spinning of Polyrners. 

AIChE J., 28,900-907. 

MEWIS, J. ET DENN, M. (1983) Constitutive Equations Based on the Transient Network 

Concept. J. Non-Newt. Fluid Mech., u,69-83.  

MOONEY, M. (1 95 1 )  The Viscosity of a Concentrated Suspension of Spherical Particles. 

J. Colloid Sci., 6, 162-1 70. 



OLDROYD, J.G. (1947) A Rational Formulation of the Equation of Plastic Flow for a 

Bingham Solid. Proc. Cambridge Philos. Soc., 41, 100-105. 

ONOGI, S., MASUDA, T. ET MATSUMOTO, T. (1970) Non Linear Behavior of 

Viscoelastic Materials. 1. Disperse Systems of Polystyrene Solution and Carbon Black. Tram. 

Soc. Rheol., 14,275-294. 

OTSUBO, Y. ET WATANABE, K. (1 990) Rheological Studies on Bridging Flocculation. 

Colloids and Surfaces, 3 , 3 4 1  -352. 

PERSSON, T., J ~ S T R O M ,  L. ET RIGDAHL, M. (1 997) Effect of Method of Preparation 

of Coating CoIors on the Rheological Behavior and Properties of Coating Layers and Coated 

Papers. Tappi Journal, 2, 1 17-124. 

PHAN THIEN, N., ET TANNER, R.I. (1977) A New Constitutive Equation Derived fi-om 

Network Theory. J. Non-Newt. Fluid Mech., 2,353-365. 

POTANIN, A.A. (1 99 1 ) on the Mechanism of Aggregation in Shear Flow of Suspensions. 

J. Coll. Int. Sci., 145, 140-1 57. 

POTANIN, A.A., DE ROOIJ, R., VAN DEN ENDE, D. ET MELLEMA J. (1994) 

Microrheological Modeling of Weakly Aggregated Dispersions. J. Chern. Phvs., 102, 5845- 

5853. 

POTANM, A.A. ET RUSSEL, W.B. (1995) Fractal Mode1 of Consolidation of Weakly 

Aggregated Colloidal Dispersions. Phys. Rev., E 53,3702-3 709. 

QUEMADA, D. (1 977) Rheology of Concentrated Disperse Systems and Minimum Energy 

Dissipation Principle. 1 Viscosity-Concentration Relationship. Rheol . Acta, &, 82-94. 



QUEMADA, D. (1985) Relation Comportement Structure dans les Dispersions Concentrées. 

Revue Générale de Thermique, 279, 174- 1 93. 

RAMSAY, J.D.F. ET LINDNER, P. (1 992) Small Angle Scattering Investigations of the 

Structure of Thixotropic Dispersions of Smectite Clay Colloids. J. Chem. Soc. Faraday 

Tram., 89,4207-42 1 4. 

REIMERS, M.J. ET DEALY, LM. (1 996) Sliding Plate Rheometer Studies of Concentrated 

Polystyrene Solution; Large Amplitude Oscillatory Shear of a Very High Molecular Weight 

Polyrner in Diethylphtalate. J. Rheol., a, 167-1 86. 

ROUW, P.W. ET DE KRUIF C.G. (1989) Adhesive Hard Sphere Colloidal Dispersions: 

Fractal Structures and Fractal Growth in Silica Dispersion, P h ~ s .  Rev., A 39, 5399-5408. 

RUEB, C.J. ET ZUKOSKI, C.F. (1997) Viscoelastic Properties of Colloidal Gels. J. Rheol., 

41,197-218 

RUSSEL, W.B. (1980) Review of the Role of Colloidal Forces in the Rheology of 

Suspensions. J. Rheol., 24,287-3 17. 

RUSSEL, W.B., SAVILLE, D.A. ET SCHOWALTER, W.R. (1989) Colloidal Dispersions. 

Cambridge Press University. 

SHLH, W.H., S m ,  W.Y., KIM, S.J., LUI, J. ET AKSAY, I.A. (1 994) Scaling Behavior of 

Elasticity Properties of Colloidal Gels. P h ~ s .  Rev., A 42,4772-4779. 

SUETSUGU, Y. ET WHITE, J.L. (1984) A Theory of Thixotropic Plastic Viscoelastic 

Fluids with a Time-Dependent Yield Surface and its Cornparison to Transient and Steady 

State Experiments on Small Particle Filled Polyrner Melts. J. Non-Newt. Fluid Mech., 14, 



TADROS, T.F. ET HOPKINSON, A. (1990) Use of Viscoelastic Measurements for 

Investigation of the Stabilitylflocculation of Concentrated Dispersion. Faradav Discuss. 

Chem. Soc., %,4l-55. 

TANAKA, H. ET WHITE, J.L. (1980) Experimental Investigations of Shear and 

Elongational Flow Properties of Polystyrene Melts Reinforced with Calcium Carbonate, 

Titanium Dioxide and Carbon Black. Pol-vrn. En?. Sci., 20,949-956 . 

TESSIER, D. (1984) Étude Experimentale de I'Oreanisation des Materiaux Argileux. Thèse, 

Université Paris VII, INRA Pub, Versailles. 

TESSIER, D. (1991) Behavior and Microstructure of Clay Minerais. Soi1 Colloids and their 

-e~ates, De Boodt, M., Hayes, M. et Herbillon, A. Eds Plenum 387:415. 

TRIANTAFILLOPOULOS, N.G. (1 996) Paper Coatine Viscoelasticity and its Significance 

in Blade Coating. Tappi Press, Atlanta. 

VAN OLPHEN, H. (1977) An Introduction to Clav Colloid Chemistry, 2nd Ed. John Willey 

and Sons, NY. 

VIDAL, D. (1996) Modélisation Numérique des Écoulements dans une Coucheuse à Lame 

de Type SDTA. Thèse de Maitrise. École Polytechnique de Montréal, Canada. 

VILLERMAUX, J. (1993) Génie de la réaction chimique., 2 "d Ed. Lavoisier Tec Doc. 

Watanabe, H., Yao, L.M. , Ymagishi, A., Osaki, K.,Shikata, T.,Niwa, H. et Morishirna, Y. 

(1 996) Nonlinear Rheological Behavior of a Concentrated Spherical Silica Suspension. 

Rheol. Acta, 3,433-445. 



WILLENBACHER, N. (1 996) Unusual Thixotropic Properties of Aqueous Dispersion of 

Laponite RD. J. Coll. and Inter. Sci., 182, 1 - 10. 

YAMAMOTO, M. (1956) The Viscoelastic Properties of Network Structure. 1 General 

Formalism. J. Phvs. Soc. Japan, 11,413-42 1. 

YOSHIMURA, A.S. ET PRUD'HOMME, R.K. (1 987) Response of an Elastic Bingham 

Fluid to Oscillatory Shear. Rheol. Acta, 26,428-436. 

YOSHIMURA, A S .  ET PRUD'HOMME, R. (1 988) Wall Slip for Couette and Disk 

Viscosimeters. J. Rheol., 32, 53-67. 

ZAMAN, A.A., MOUDGIL, B.M., FRICKE, A.L. ET EL-SHALL, H. (1996) Rheological 

Behavior of Highly Concentrated Aqueous Silica Suspensions in Presence of Sodium Nitrate 

and Polyethylene Oxide. J. Rheol., 4, 1 19 1 - 12 1 0. 

ZEIGELBAUR, R.S. ET CARUTHERS, J.M. (1985) Rheological Properties of 

Polydimethy1siloxane Filled with Fumed Silica: 1. Hysteresis Behavior. J. Non-Newt. Fluid 

Mech., a , 4 5 - 6 7 .  



IMAGE WALUATION 
TEST TARGET (QA-3) 

APPLlED IMAGE. lnc - - - 1653 East Main Street - -. , Rochester, NY 14609 USA -- -- - - Phone: 71 61482-0300 
-7 -- - - Fax: il 61288-5989 

Q 1993. Applied Image. Inc., All Rights Reserved 




