POLYPUBLIE e |

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o

Identification de modeles dynamiques de la couleur d'un carton
multicouche

Antoine Mongrain

2000

Mémoire ou these / Dissertation or Thesis

Mongrain, A. (2000). Identification de modeles dynamiques de la couleur d'un
carton multicouche [Mémoire de maitrise, Ecole Polytechnique de Montréall].

PolyPublie. https://publications.polymtl.ca/8864/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/8864/

Directeurs de
recherche: Michel Perrier, & Michel Bernier

Programme:

Advisors:

Program: Non spécifié

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/8864/
https://publications.polymtl.ca/8864/

UNIVERSITE DE MONTREAL

IDENTIFICATION DE MODELES DYNAMIQUES
DE LA COULEUR D’UN CARTON MULTICOUCHE

ANTOINE MONGRAIN
DEPARTEMENT DE GENIE CHIMIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’'OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE CHIMIQUE)

DECEMBRE 2000

© Antoine Mongrain, 2000.



Bell S Semlere

uisitions and Acquisitions et

raphic Services  services bibliographiques
305 Welington Street 395, rue Wellingion
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your Nig Votry niidrence
Our e Noire réldrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de

reproduce, loan, distribute or sell reproduire, préter, distribuer ou

copies of this thesis in microform, vendre des copies de cette thése sous

paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

The author retains ownership of the ~ L’auteur conserve la propriété du
copyright in this thesis. Neither the  droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-60906-5

Canadi



UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

IDENTIFICATION DE MODELES DYNAMIQUES
DE LA COULEUR D’UN CARTON MULTICOUCHE

présenté par: MONGRAIN Antoine
en vue de I’obtention du diplome de: Maitrise és sciences appliquées

a été dliiment accepté par le jury d’examen constitué de:

M. LAFLEUR Pierre, Ph.D., président

M. PERRIER Michel, Ph.D., membre et directeur de recherche

M. BERRADA Moubhsine, Ph.D., membre et codirecteur de recherche
M. POMERLEAU Yves, Ph.D., membre




iv

Puisque personne ne dit cela, je vais le dire, moi, je vais le crier. Je suis
tellement certain que M. Manet sera un des maitres de demain, que je
croirais conclure une bonne affaire, si j’avais de la fortune, en achetant
toutes ses toiles. Dans dix ans, elles se vendront quinze et vingt fois plus
cher, et c’est alors que tableaux de quarante mille francs ne vaudront pas

quarante francs.

- Emile Zola, L'Evénement, 7 mai 1886
Mais nous autres hommes, nous sommes ainsi faits: nous nous révoltons,
indignés et furieux, contre les maux médiocres, et nous nous courbons en
silence sous les maux extrémes; nous supportons, non pas résignés, mais
stupides, le comble de ce que, dans les commencements, nous avions
qualifié d'insupportable.

- Alessandro Manzoni, Les Fiances (1823)
Cette téte de 'homme du peuple, cultivez-la, défrichez-la, arrosez-la,
fécondez-la, éclairez-la, moralisez-la, utilisez-1a; vous n'aurez pas besoin

de la couper.

- Victor Hugo, Claude Gueux (1834)

All models are wrong, but some are useful.

- George E.P. Box
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RESUME

La couleur est une propriété importante d’un carton multicouche. L’uniformité de cette
caractéristique est cruciale, une trop grande variabilité¢ résultant en une perte de
rentabilité pour un imprimeur. Un bon contrdle de cette caractéristique est donc
nécessaire. Cependant, malgré plusieurs études et percées dans ce domaine, certaines
compagnies papetiéres adoptent encore une stratégie de contrle manuelle, par laquelle
un opérateur ajuste lui-méme des débits de colorants afin de contrer les variations de
couleur de la feuille produite. C'est notamment le cas de Temboard, partenaire
industriel du projet.

Le carton fabriqué par Temboard est utilisé dans la fabrication de paquets de cigarettes,
de cartes d’affaires et d’emballages divers et est fait de deux types de pite. La couche
médiane est la source principale des fluctuations de couleur, étant fabriquée de pite
chimico-thermomécanique blanchie (PCTMB), possédant ainsi un aspect jaunitre ne
pouvant étre complétement masqué par les deux couches extérieures. Ce probléme est
corrigé 4 I'aide de colorants rouge et bleu ajoutés a la pate, afin d’atténuer les
fluctuations de couleur et de donner un aspect plus blanc au produit final. Or, ces
colorants sont ajoutés de fagon manuelle, selon I’expérience des opérateurs de I’usine,
occasionnant des variations indésirables dans ’aspect du produit final. L’implantation
d’un contréle automatique est donc souhaitée.

Afin d’implanter une stratégie de contrble efficace, un modéle est nécessaire. Etant
donnée la difficulté de développer un modéle analytique pour la couleur, un modéle
statistique a été développé, basé sur la variation de données de procédé. La régression
PLS a été utilisée afin de développer ce modéle. Des données provenant notamment
des débits de péte des trois couches, des consistances et des débits de couleur ont été
utilisées dans le développement de ce modéle. Le modéle ainsi obtenu représente bien
les données utilisées pour la modélisation, mais est cependant moins performant pour la
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prédiction. De plus, la contribution de certaines variables au modéle sont difficiles a
expliquer. Diverses stratégies visant I’amélioration des performances du modéle en
prédiction ont été explorées. Les performances sont cependant restées similaires.



ABSTRACT

Colour is an important property of a multiply paperboard. Uniformity is critical, too
much variability resulting in profit losses for printers. Good colour control is therefore
necessary. However, although many studies have been conducted on the subject, some
manufacturing companies still use open loop strategies to control colour fluctuations.
It is notably the case of Temboard, the project’s industrial partner.

Temboard’s cardboard is used in the manufacturing of various packaging and
commodities (cigarette packs, business cards) and is made of two types of puip. The
middle ply is made of bleached chemithermomechanical pulp (BCTMP) and is the
main source of colour fluctuations, having a yellowish hue. This variability cannot be
reduced by the top and back plies. Therefore, red and blue dyes are added to the
furnish pulp in order to maintain colour specifications within acceptable operating
limits. However, these dyes are added empirically, based on the operator’s knowledge
of the process and significant variability still prevails. Automatic control is thus
desired.

In order to implement a good control strategy, a model must be available. Since
developing a model base on first principles is not an easy task when dealing with
colour, a statistical model was obtained, based on industrial data, using PLS regression.
Data available from pulp flows, consistencies and dyes flows, among others, were used
in this model. This model is able to accurately represent the data used for modeling,
but shown problems in predicting new data. Modifications were made to improved
prediction, but performances remained unchanged.
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I- INTRODUCTION
1.1 - PROBLEMATIQUE

La couleur est une propriété importante d’un carton multicouche. L’uniformité de cette
caractéristique a un effet sur la perception de la qualité globale du carton produit. En
effet, la couleur est la premiére chose sur laquelle nous sommes renseignés et on
imagine difficilement comment un carton peut avoir des propriétés physiques
uniformes si la variation de couleur est trop grande. De plus, une grande variabilité de
la couleur oblige un imprimeur & réajuster fréquemment son procédé d’impression,
résultant en une perte de temps et de rentabilité, incitant ainsi ce dernier a changer de
fournisseur. Un bon contréle est donc crucial afin de réduire la variabilité de cette

caractéristique.

Le contrdle de la couleur a déja été étudié dans le passé, notamment par Bélanger
(1969), Chao et Wickstrom (1970) et Vincent et al. (1974). Cette problématique est
toujours présente, comme en font foi de récentes études (Vincent et al, 1992;
Shakespeare et Shakespeare, 1998; Masmoudi, 1999). Malgré ces études et les percées
dans ce domaine, certaines compagnies adoptent encore une stratégie de contrle
manuelle, par laquelle un opérateur ajuste lni-méme le débit des colorants afin de
contrer les variations de couleur. C’est notamment le cas de Temboard, partenaire
industriel du projet.

Le carton fabriqué par Temboard est utilisé dans la fabrication de paquets de cigarettes,
de cartes d’affaires et d’emballages divers. Ce carton est fait & partir de deux types de
pite. Les couches inférieure et supérieure sont fabriquées de péte kraft, aux propriétés
bien contrblées. La couche médiane, source principale des fluctuations de couleur, est
quant a elle fabriquée de pate chimico-thermomécanique blanchie (PCTMB). Ce type
de piéte contient une part appréciable de lignine résiduelle, d’ot la couleur jaunitre de



la couche médiane. De plus, les couches inférieures et supérieures ne masquent pas
complétement les variations de couleur de la couche médiane. Afin de contrer ce
probléme, des colorants rouge et bleu sont ajoutés, afin de corriger les fluctuations de
couleur et de donner un aspect plus blanc au produit final. Or, ces colorants sont
ajoutés de fagon manuelle, selon I’expérience des opérateurs de I'usine, occasionnant
des variations indésirables dans P’aspect du produit final. L’implantation d’un contréle

automatique est donc souhaitée.

1.2 - OBJECTIFS

Afin de réduire la variabilité dans la couleur du produit, une stratégie de contréle doit
étre implantée. Cette stratégie se basera sur un modéle. Or, dans le cas de la couleur, il
est difficile d’obtenir un modéle théorique, basé sur des phénoménes physiques. Le
modele développé sera donc basé sur des méthodes statistiques multidimensionnelles,
I'aide de données provenant d’un procédé de fabrication de carton muiticouche. Plus
particuliérement, la régression PLS dynamique sera utilisée. L’objectif de ce projet est
donc :

e obtenir un modéle dynamique de la couleur

Suite au développement de ce modéle, un contrdleur sera développé par une firme

externe (Automatismes Syt-M inc.).

1.3 - PROCEDE TEMBOARD

Le procédé de fabrication du carton Temboard (Cabos, 1998; Ivanov, 2000b) est
illustré a la figure 1.1. La pite CTMB est produite sur le site de Tembec, i ['usine
Temcell. La pate kraft est quant a elle présente en forme de balle et diluée a
consistance désirée. De plus, divers produits chimiques sont ajoutés a la péte, afin de



lui conférer les propriétés désirées. Ces deux types de pite sont acheminés 3 la
machine A papier de Temboard, de type fourdrinier triple. La péte de la couche
inférieure est premiérement distribuée sur la table plate, suivi de la couche médiane et
supérieure. Le carton passe dans une section de presses afin d’enlever une partie de
I’eau et est ensuite acheminé 4 une section de séchage. Finalement, le carton est
calandré et est ensuite enduit de sauce de couchage, a I’aide de trois coucheuses,
répondant ainsi aux besoins spécifiques des imprimeurs. Deux coucheuses peuvent

traiter la couche supérieure et une traite la couche inférieure du carton.

|
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|
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. |

Couche infériewre _ ="~ "%/ " L
Colorants

Caisses d’amvivées et Presses Section de 'g Coucheuses ?
fourdriniers séchage 3 =

Figure |.1 Procédé de fabrication de carton de Temboard (Ivanov, 2000b)

1.4 - LA COULEUR

La couleur est le résultat d’une perception sensorielle de ce qui nous entoure, constituée
de trois éléments : un objet, une source lumineuse et un observateur. Certains de ces
éléments peuvent influencer la couleur perue, en plus de facteurs psychologiques
(Popson et al., 1996). Premiérement, la source d’éclairage influencera la couleur, selon
sa distribution spectrale. Ensuite, la condition de I’eil de ’observateur, ainsi que son
ige, ont un role sur la perception. En effet, de 7% a 10% des hommes et 0,5% des
femmes sont daltoniens, alors que I'dge a pour effet de jaunir les couleurs. De plus,



I’entourage d’un objet, sa taille, la proximité avec un autre objet du méme type ainsi
que le temps d’observation (occasionnant la persistance rétinienne) sont autant de
facteurs influencant la couleur. Finalement, au niveau des écarts de couleur, I’humeur
a un role sur le seuil d’acceptabilité. Il est donc nécessaire de mesurer la couleur a
I’aide d’un systéme objectif, de fagon & pouvoir s’assurer que le carton produit est de
couleur uniforme ou, dans le cas contraire, d’y remédier ou de remettre en péte le

carton plutot que de le vendre a un client.

1.4.1 - Facteur de réflectance spectrale

Le premier élément du triplet de la couleur est un objet a observer. La lumiére
incidente sera absorbée ou réfléchie par ce objet, ce qui peut étre caractérisé par une
courbe spectrophotométrique. Cette courbe est le tracé de la fraction réfléchie de
I’énergie incidente en fonction de la longueur d’onde, dans le domaine visible (380 a
780 nm). Cette caractéristique des objets peut étre mesurée par un spectrophotométre,
qui compare la réflectance de I’objet en question & celle d’un diffuseur parfait.
L’interprétation de cette courbe n’est cependant pas chose facile, comme on peut le
montre la figure 1.2, présentant la courbe de réflectance spectrale d’un citron. Il est en

effet surprenant de voir qu’une quantité importante de rouge soit réfléchie.

400 600 700
Wavelength (nm)
Figure 1.2 Spectre de réflectance d’un citron (Minolta, 1994)



1.4.2 - Courbe spectraie d’un itluminant ou d’une source

Le second élément du triplet de la couleur est une source de lumiére. Une source
lumineuse est un émetteur physique de fumiére, par exemple, une ampoule a filament
de tungsténe, un néon ou le sokeil. Un objet observé a I’aide de I’une ou I'autre ces
sources peut avoir une couleur différente, étant donnée une distribution spectrale
caractéristique a chacune. C’est pourquoi I’utilisation d’illuminants est nécessaire, afin
d’avoir des sources « normalisées ». Un illuminant n’est pas une source physique, mais
une distribution spectrale se rapprochant d’une source connue et est utile dans la
formulation des couleurs, dépendant des lieux et des conditions d’utilisation d’un
produit. Il existe plusieurs illuminants, les plus communs étant ceux de type A, C, D et
F (Figure 1.3). L’illuminant A représente une ampoule incandescente, ayant une
température corrélée de 2855.6 °K. Les illuminant C et D représentent la lumiére du
jour, déterminée a I'aide de plusieurs mesures prise de par le monde, a différentes
périodes de I’année. L’illuminant F se rapproche quant a lui de la lumiére émise par
une lampe fluorescente. On peut donc voir qu’une feuille de papier éclairée a partir
d’une ampoule de tungsténe pourra avoir une teinte rosée, alors qu’elle aura une teinte

bleutée si regardée i la lumiére du jour (Popson et al., 1996).
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Figure 1.3 Energie spectrale relative de certains illuminants (d"aprés Judd et Wyszecki, 1975)

1.4.3 - Colorimétrie

Le dernier élément du triplet de la couleur est "observateur, I'ceil, modélisé a I’aide de
la colorimétrie. Celle-ci est basée sur la théorie des trois composantes, stipulant que
I'eil posséde des récepteurs percevant trois couleurs primaires (rouge, vert et bleu) et
que les couleurs percues sont un mélange de ces trois couleurs (Minoita, 1994). Cette
science est 4 la base de la représentation de Ia couleur a I’aide d’espaces. Les
sensibilités des récepteurs de I'eeil ont ¢été reproduites en déterminant
expérimentalement des courbes de sensibilité appelées fonctions colorimétriques. Ces
fonctions colorimétriques ont été déterminées en utilisant un faisceau monochrome et
en essayant de le reproduire en ajustant I'intensité relative de trois faisceaux, rouge
(595 nm), vert (557 nm) et bleu (455 nm). Elles représentent, aprés transformation
linéaire, l'intensité de chaque faisceau nécessaire a Pobtention du faisceau témoin

(Popson et al., 1996) et reproduisent la perception qu’a P’ceil des couleurs qu’il voit.



Ces fonctions X, ¥, et Z, représentent respectivement le rouge, le vert et le bleu

(Figure 1.4).
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Figure 1.4 Fonctions colorimétriques (d’aprés Judd et Wyszecki 1975)

1.4.4 - Espaces couleur

La couleur étant une perception influencée par plusieurs facteurs, I’établissement de
systémes de coordonnées est nécessaire afin de la quantifier. Le premier effort en ce
sens a été effectué par 'artiste A.H. Munsell en 1905. Dans cet espace, les couleurs
sont caractérisées par leur teinte, luminance et saturation (Figure 1.5) et sont exprimées
selon la nomenclature H V/C (H = hue (teinte), V = Munsel value (luminance), C =
chromaq (saturation)).



Figure 1.5 Espace couleur Munsell (X-Rite, 1990)

Plus tard, le besoin d’avoir des espaces de couleurs numériques est apparu, notamment

pour le contrdle de la qualité. Les mesures suivantes ont donc été proposées :

X=K jsm;(x)a(x)dx

380

80 _
Y=K [S()y(IRO)

380

780
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100
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Ces équations représentent la sommation du produit des éléments du triplet de la
couleur, soit la distribution spectrale d'une source lumineuse S(L), les fonctions
colorimétriques (X, Y et Z) et la réflectance spectrale R(A) d’un objet.
L’interprétation des mesures X, Y, Z n’étant cependant pas trés intuitive, la Commis-
sion Internationale de I’Eclairage (CIE) a congu le premier espace couleur numérique



en 1931, soit le diagramme de chromaticité CIE 1931 x,y (Figure 1.6). Les couleurs
sont exprimées selon le triplet Y, x, y. Y représente la réflectance spectrale (%) et

__ X Cy= Y
X+Y+2Z X+Y+Z
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Figure 1.6 Espace CIE 1931 x.y (Minolta, 1954)

Cependant, plusieurs industries ont besoin d’espaces permettant de mesurer les écarts
de couleur en combinant une différence de luminance et de saturation (Wyszecki et
Stilles, 1967). De plus, les écarts numériques du diagramme CIE 1931 x.y ne
correspondent aux mémes écarts de perception. Ceci a mené i la création de I’espace
Hunter L,a,b en 1948 (Figure 1.7). Cet espace tridimensionnel, basé sur le principe des
couleurs antagonistes, est utilisé par Temboard. Le paramétre L est celui de la
luminance, le paramétre a indique la teinte rouge-verte et le paramétre b indique la
teinte bleue-jaune, exprimés comme suit (Popson ef al., 1996) :

L =100Y/Yo
an Ka(X/Xo-Y/Yo)

1/Y/Yo
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be Kb(X/Xo-Z/Zo)

,{Y/Yo

ou Xo, Yo, Zo, Ka et Kb sont des constantes dépendant de la source lumineuse et de la

fagon qu’est observé |’objet.

Figure 1.7 Espace Hunter L,a,b (Popson et al., 1996)

A noter que d’autres espaces couleur existent, propres a certaines industries (CIE
L*a*b*, CIE L*C*h et CIE L*u*v*). Les écarts de tolérance dans I’espace Hunter
L,a,b sont donnés comme suit :

AE =AL? +Aa? + Ab?

Il est & souligner que la motivation principale de cet espace couleur est d’avoir un AE
unitaire identique dans chaque région de l’espace. Or, cet objectif est rarement
atteignable, rendant ainsi [’utilisation d’écarts de tolérance basés sur AE peu
recommandable. Des écarts de tolérance sur chaque mesure individuelle sont dans ce
cas souhaitable (Popson et al., 1996), tel quen vigueur chez Temboard. D’autres
méthodes sont aussi en vigueur, notamment I’utilisation d’ellipses tridimensionnelles

définies par la saturation, la teinte et la luminance. Ces ellipses sont ajustées a I’aide
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d’un ratio luminance/saturation et d’un facteur commercial d’acceptatbilité, et sont trés
utilisées dans le milieu du textile.

1.4.5 - Appareils commerciaux

Deux appareils sont disponibles commercialement pour la mesure de la couleur. Le
premier est le colorimétre, un appareil de mesure surtout utilisé en controle de qualité,
afin de s’assurer que les écarts de tolérance sont respectés. La source utilisée est une
source de quartz-tungsténe, représentant assez fidélement Dilluminant C. Les
récepteurs filtrent la couleur selon les fonctions de sensitivités spectrales rendant
impossible la prédiction du métamérisme (variation de la couleur due i la source

lumineuse). On peut choisir I’e dans lequel sera exprimée la couleur.
pe space q

Le second est le spectrophotométre avec lequel est obtenue une courbe de réflectance
spectrale. C’est ce type d’appareil qui est utilisé par Temboard. La source de lumiére
utilisée est une source de xénon, filtrée adéquatement pour représenter les illuminants
C ou Des. A I'aide de cet appareil, on peut obtenir des mesures de couleur selon
plusieurs espaces. De plus, il est possible de calculer des paramétres de couleur selon
plusieurs illuminants & ’aide de transformations mathématiques, permettant ainsi de
prédire le métamérisme. Le spectrophotométre est normalement utilisé dans la

formulation de couleurs, notamment pour des encres ou teintures.
1.5 - VARIABLES INFLUENTES SUR LA COULEUR

Plusieurs variables de procédé peuvent influencer la couleur d’un carton. Dans une
étude antérieure, les variables influen¢ant la couleur de la couche médiane du carton
trois couches produit par Temboard ont été identifiées (Cabos, 1998). Cette étude a été
menée a I’aide d’un plan statistique factoriel de niveau I'V, comprenant huit facteurs et

deux modalités. Les facteurs ont été déterminés a I’aide des ingénieurs de procédés de
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I’usine Temboard, en considérant ce qui varie significativement d’un grade a I’autre, ou
pouvant potentiellement avoir une influence sur la couleur. Ce plan permettait de

distinguer tous les effets principaux. Les huit facteurs considérés étaient :

1. Qualité des fibres (pate en balle vs pate fraiche) : La PCTMB est disponible sous
forme fraiche, ou en balle, lorsque la premiére ne posséde pas les caractéristiques

désirables.

2. Degré de raffinage : Les cartons produits par Temboard peuvent étre classés en
deux grandes catégories, soit les cartons couchés et les cartons de couverture
(linerboard). La principale différence entre ces deux catégories de carton est le
degré de raffinage, la carton couché étant raffiné davantage que le carton de

couverture.

3. Composition de la péte : La composition de la péte est partagée par la PCTMB, de
la pite recirculée et de la péte multifibre (mélange de pate CTMB et recirculée).

4. Amidon cationique : Agent de liaison permettant de renforcer les liaisons entre les
fibres, augmentant ainsi les propriétés mécaniques du carton (éclatement, longueur

de rupture, cohésion interne, rigidité).

5. AKD: L’AKD (d4lkyl Ketene Dimer) est un agent d’encollage, permettant
d’améliorer les qualités hydrophobes du carton.

6. Percol : Polymére neutralisant les charges anioniques a la surface des fibres et des
additifs. Il facilite le rapprochement des fibres entre elles et des fibres avec les
additifs. Ce polymére entraine la formation d’amas de fibres et d’additifs.
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7. Bentonite : Polymére amphotére, possédant deux charges i sa surface. Il permet de
structurer les flocs entre eux, améliorant ainsi la rétention des fibres.

8. Alcofix: Agent coagulant cationique, neutralisant les colloides anioniques,

améliorant ainsi I’efficacité des autres agents de rétention.

Les modalités des facteurs étaient comprises a 'intérieur des plages d’opération du
procédé. Les résultats de ce plan fractionnaire ont permis d’isoler quatre facteurs
influencant significativement la couleur et le blancheur, soient la concentration en
amidon cationique, en Alcofix, en AKD et la composition de la pate (fraction de
PCTMB). L’influence de ces facteurs sur les paramétres de couleur et la blancheur

étaient la suivante :

o Blancheur: Les quatre facteurs avaient une influence sur la blancheur, la
composition de la pite ayant le plus grand impact. Une augmentation de 20% du
contenu de la PCTMB résulte en un gain de deux points de la blancheur. Les trois
autres variables ont une influence négative, la plus grande des trois étant celle de
I’ Alcofix.

e Luminance : L’effet des quatre variables sur la luminance est semblable a celui de
la blancheur, mais moins prononcé. Le facteur dominant est toujours la

composition de la pate.

¢ Paramétre a: Dans le cas du paramétre de couleur a, le seul facteur influengant
significativement ce facteur est la composition de la pite, une augmentation du
contenu de PCTMB donnant une teinte plus verte i la couche médiane.

e Paramétre b : Dans le cas du paramétre b, une augmentation de I’'un ou I’autre des
quatre facteurs accentue la teinte jaune de la couche médiane.
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Ce travail a finalement permis de démontrer que I’addition d’un colorant bleu était un
moyen efficace de corriger les variations de couleur. Une corrélation a aussi été
développée afin d’estimer la rétention du colorant bleu. Le développement de cette
corrélation a mené a la conclusion que la rétention du colorant augmentait de paire avec

la concentration de ce dernier ainsi qu’avec la rétention des fibres.
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I1 - REVUE DE LITTERATURE ET THEORIE

2.1 - REVUE DE LITTERATURE

De nos jours, les usines sont équipées d’ordinateurs et de systémes d’archivage de
données recueillant & intervalles réguliers une foule d’information relatives aux
diverses variables de procédé. Il est cependant difficile de s’y retrouver parmi toute
cette information et de Panalyser convenablement. Traditionnellement, les données de
qualité sont affichées sur des chartes de controle, en considérant que les variables ne
sont pas corrélées, ce qui est rarement le cas. En effet, plusieurs des variables de
qualité d’un produit peuvent étre comrélées, corrélations pouvant étre issues de relations
physiques connues ou non. Traiter ces variables comme si elles étaient indépendantes
peut dans ce cas mener a4 de mauvais diagnostiques sur le produit final (Kourti et
MacGregor, 1995). Cette pratique est malheurcusement courante dans plusieurs
industries, bien que de puissantes méthodes d’analyse existent, notamment les
statistiques multidimensionnelles. De plus, en ne tenant compte que des variables de
qualité, I’information contenue dans les variables de procédé est mise de cté. Or cette
information peut étre trés utile afin d’obtenir un modele prédictif des propriétés d’un
produit. En effet, comme certaines variables de qualité ne peuvent pas étre obtenues
immédiatement, mais sont plutét obtenues & partir de longues manipulations ou
d’appareils peu rapides, un certain laps de temps est requis pour obtenir une propriété
et agir, si nécessaire, pour corriger le procédé. C'est dans cette optique que les
méthodes statistiques multidimensionnelles (multivariate statistical methods) trouvent
leur wtilité. De ces méthodes, I'analyse en composantes principales (PCA) et la
projection sur structures latentes (PLS) ont fait I’objet de nombreuses recherches au
cours des derniéres décennies. Elles ont notamment été utilisées dans le domaine de la
chimie analytique (Wold et al., 1983).



16

L'utilisation de ces méthodes dans le domaine du génie chimique est cependant plus
récente. Ainsi, au cours des derniéres années, plusieurs études a I'aide de ces méthodes
ont &é effectuées, autant en simulation que sur des données de procédés industriels.
Ainsi, Skagerberg et al. (1992) ont appliqué les techniques PLS sur un modéle de
réacteur de polyéthyléne basse densité (LDPE). Kresta et al. (1991) ont appliqué ces
techniques sur des modéles de réacteur & lit fluidisé et d’une colonne a distiller
extractive. Wise et Gallagher (1996) ont appliqué la technique PCA et PLS a une unité
industrielle de vitrification, alors que Hodouin et al. (1993) ont appliqué ces mémes
techniques & des données provenant de différentes unités d’une usine de traitement du

minerai et ont ainsi pu approfondir les relations entre ces différentes unités.

Les méthodes statistiques multidimensionnelles sont aussi de plus en plus utilisées dans
le domaine des pdtes et papiers. Dayal er al. (1994) ont effectué I'analyse PLS de
données d’un digesteur Kamyr et ont pu améliorer I'efficacité du procédé. Tessier et
Broderick (2000) présentent des exemples de [utilisation de ces techniques,
notamment dans le cadre de ’étude de I’influence de la distribution de la taille des
copeaux de bois sur diverses propriétés d’une pate sulfite 3 haut rendement. L’étude
des données a permis de mettre en lumiére des effets saisonniers et I'effet des
conditions d’opérations, résultats en accord avec des études plus fondamentales. Ce
méme auteur a aussi développé un modéle reliant diverses variables de qualité de
formettes aux conditions d’opérations de I’étape de raffinage. Finalement, une étude
reliant 27 propriétés des fibres provenant de 30 compagnies différentes a été réalisée.

Certaines compagnies sont trés actives dans Putilisation de ces méthodes d’analyse et
de contrble. En effet, la compagnie Tembec inc. utilise présentement ces techniques
sur le procédé de production de carton de son usine Temboard, dans un contexte de
surveillance et de compréhension du procédé et de prédiction de certaines propriétés du
produit fini (fvanov, 2000b). Certains modéles PLS sont présentement utilisés pour
prédire I’imprimabilité et 1a résistance au pliage du carton, les résultats de ces tests
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étant normalement trés longs & obtenir. En obtenant de I'information sur la tendance
des propriétés du produit fini, des actions correctrices peuvent étre entreprises avant
I’obtention des analyses de laboratoire, aidant ainsi 4 minimiser la quantité de carton 4
remettre en pite. A l'usine de pate cellulose pour usage spéciaux, les techniques PCA
et PLS on été utilisées afin de résoudre des problémes de variabilité de la viscosité de la
péte (Ivanov, 2000a). L’analyse statistique a permis d’améliorer la connaissance du
procédé et d’établir des relations entre certaines variables (effets saisonniers, dge des
copeaux et contenu en résine, notamment), permettant ainsi d’éviter trop d’écarts
spontanés. Un modele prédictif de la viscosité de la péte cellulose a de plus été
développé. La technique PCA est quant a elle utilisée pour le procédé de traitement des
eaux usées. Cette exercice a permis d’identifier certaines variables responsable de la
variation du procédé, notamment certains débits, la température et la quantité de boue
activée dans le bassin d’aération. De plus, le modéle développé permet de surveiller le
procédé et de diagnostiquer les causes de certaines variations (Bendwell, 2000).
Champagne et al. (2000) ont quant 2 eux utilisé la régression PLS, combinée a la
correction orthogonale du signal (Orthogonal Signal Correction - OSC) et aux
ondelettes pour I'obtention de propriétés basées sur des lectures spectroscopiques NIR.
Finalement, Lupien et al. (2000) ont réalisé une étude afin d’identifier les variables
d’un procédé de production de papier journal ayant un réle important dans la résistance
au déchirement, la résistance a la rupture par traction et I’opacité du papier. Dans le
cadre de ce projet, la régression PLS a été utilisée. Les bases de cette méthode sont

maintenant présentées.

2.2 - ANALYSE EN COMPOSANTES PRINCIPALES (PCA)

L’analyse en composantes principales est utile pour analyser un bloc de données du
méme type (variables de procédés ou de qualité). Les données peuvent étre analysées
telles quelles, ou étre préalablement centrées ou centrées-réduites. Cette derniére fagon
est surtout utilisée lorsque les variables de procédé ont différentes unités de mesure
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(L/min, °C, RPM, A, etc.), accordant ainsi la méme importance a chaque variable. La
méthode PCA est notamment utilisée pour [a surveillance de procédé, pour les deux
types de variables. Mathématiquement, I'analyse en composantes principales permet
d’exprimer une matrice de données sous la forme d’un produit matriciel :

X=TP'+E=) t,p] +E

i=l

ou T est une matrice de scores orthogonaux et P est une matrice orthonormale
représentant les poids (loadings) de chaque variable, pour chaque composante. X peut
aussi étre vu comme une somme de matrices de rang unitaire (Geladi et Kowalski,
1986). Généralement, seulement quelques composantes sont requises afin de bien
approximer une matrice de données X. Les composantes restantes sont généralement
composées de bruit de mesure ou d’erreurs expérimentales. Une méthode fréquemment
utilisée dans la détermination du nombre de composantes significatives est la validation
croisée (Wold, 1978), discutée plus loin. Une fois le modéle obtenu, de nouvelles

données sont prédites par :
T=XP

On peut aussi voir le probléme d’analyse en composantes principales comme étant un
probléme de détermination de valeurs propres et de vecteurs propres (Wise et al.,
1990). Les loadings représentent les vecteurs propres de la matrice de corrélation et les
valeurs propres, égales a la variance de chaque score t, sont quant a elles une mesure du
pourcentage de la variance captée par chaque composante. Le probléme a aussi une
équivalence dans le cadre de la décomposition en valeurs singuliéres (Mandel, 1982) et
peut aussi étre exprimé comme un probléme d’optimisation (Lakshminarayanan, 1997).
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2.2.1 - Interprétation géométrique

L’interprétation géométrique des composantes principales est présentée a la figure 2.1.
La premiére composante principale est la ligne allant dans la direction de Ia plus grande
variance (ou minimisant la somme des distances orthogonales de chaque point). Les
nouvelles coordonnées (scores) sont la distance entre la projection orthogonale de
chaque point ¢t le centre de la premiére composante. Les loadings sont quant a eux le
cosinus de I'angle entre les axes des variables et la composante. La deuxiéme
composante est la droite orthogonale 4 la premiére allant dans la direction de la plus
grande variance des résidus, et ainsi de suite. On voit donc que si I’on affiche les
scores ¢; en fonction de t, on peut avoir une charte trés intéressante, permettant de
résumer les variables de la matrice X. L’affichage des loadings permet quant a lui de

visualiser les relations entre les variables.

X2
Figure 2.1 Représeniation géométrique de 1’analyse en composantes principales

x1
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2.2.2 - Algorithme NIPALS

L’analyse en composantes principales s’effectue souvent i I'aide de I'algorithme
NIPALS (Nonlinear Iterative Partial Least Squares). Cet algorithme va comme suit
(Geladi et Kowalski, 1986) :

X=

1- Prendre t comme étant une colonne de X;

2- pT=tTXItTt; (régression des colonnes de X sur t)

3- Normaliser p 4 une longueur unitaire;

4- t=Xp/p'p; (calcul des scores)

5- Test de convergence sur t : si oui, étape 6, sinon, étape 2;
6- E=)(-t|)T (Calcul des résidus)

7- X=E et retour a I’étape 1, pour une autre composante principale

L’algorithme NIPALS est souvent utilisé, étant donné qu’il peut prendre en compte les

données manquantes, dues notamment a un capteur défectueux.
2.3 - PROJECTION SUR STRUCTURES LATENTES (PLS)

2.3.1 - Contexte

Alors que I’analyse en composantes principales permet de résumer un ensemble de
données, la méthode PLS s’efforce de résumer deux ensembles de données, en plus de
maximiser la covariance entre deux blocs de données X et Y. Cette méthode trouve
son utilité dans la détermination de coefficients de régression entre deux matrices de
données. Le modeéle désiré est du type
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pour lequel les paramétres de la matrice B sont normalement obtenus par :
p=(x"x)"'x"Y

Or, comme c’est souvent le cas avec les données industrielles, les colonnes de la
matrice X sont souvent colinéaires, ce qui rend difficile I’inversion de la matrice X"X.
Les paramétres issus de cette opération auront ainsi une grande variance et donneront
de mauvaises prédictions. Il existe d’autres maniéres d’obtenir les paramétres de
régression, notamment en utilisant la régression pseudo-orthogonalisée (Hoerl et
Kennard, 1970) :

B=(x"X+o01)"'X"Y

Le fait d’ajouter un paramétre 0 sur la diagonale de la matrice a inverser lui donne un
meilleur conditionnement. Les résultats de la régression pseudo-orthogonalisée sont
cependant peu utiles en terme de prédiction, la valeur optimale optimale de 0 n’étant
pas facile & déterminer (Wise et Gallagher, 1996). Une autre fagon d’obtenir §§ est
d’utiliser la régression sur les composantes principales (PCR). Aprés I'obtention des
composantes principales de X, on effectue ensuite une régressionde Y sur T :

p=(T"T)"'T'Y

Cette méthode a cependant le désavantage de ne pas prendre en considération la
corrélation possible a I’intérieur de Y, traitant les variables individuellement. De plus,
I'espace défini par les composantes principales de X n’est pas nécessairement I’espace
le plus prédictif de Y. Finalement, une demiére facon d’obtenir des paramétres de



régression réside dans le choix judicieux des variables X, ce qui peut se traduire en
perte d’information.

La méthode PLS propose ainsi un compromis en ayant les objectifs suivants : bien
expliquer la matrice X tout en maximisant la covariance entre la matrice X et Y. De
plus, la structure interne de la régression PLS est trés utile afin d’obtenir des
informations sur le procédé étudié. On peut voir la méthode PLS comme deux analyses
en composantes principales des matrices X et Y (n’étant cependant pas faite de maniére
indépendante), en plus d’une relation linéaire statique. Les matrices X et Y sont ainsi

exprimées comme suit :

X=TP' +E
Y=UQ' +F

Les scores t sont orthogonaux, mais pas les scores u, ceci afin de respecter les deux
critéres de la régression PLS. De plus, une relation linéaire unit les deux nouvelles

matrices T et U, soit

2.3.2 - Algorithme NIPALS

La projection sur structures latente peut étre réalisé & I’aide de I’algorithme NIPALS
(Geladi et Kowalski, 1986) :

XcXet Y=

1. Prendre u; comme étant une colonne de Y;

2. w=u'X/u'u (régression des colonnes de X sur u);
3. Normaliser w 4 une longueur unitaire;



t=Xw/w'w (calcul des scores);

q"=t"Y/t"t (régression des colonnes de Y sur t);
Normaliser q & une longueur unitaire;

u=Yq/q"q (calcul de nouveaux scores);

Test de convergence : si oui, étape 9; sinon, étape 2;

. p=X"t/t"t (calcul des loadings de X);

10. =t/|Ipll;

1. w=w"/pll;

12. p=p/lipl;

13. b=u"t/t"t (régression d=bt);

14. E=X-tp" et F=Y-btq" (calcul des matrices de résidus);
15. X=E et Y=F et retour a I’étape 1, pour une autre variable latente

© % N W o

L’algorithme utilisé dans le cadre de ce projet est une variante de celui présenté ci-haut.
En effet, les étapes 6, 10, 11 et 12 ont été omises, afin de pouvoir comparer les résultats
avec ceux obtenus a I’aide de Simca-P (Tenenhaus, 1998). Dans le cas d’une omission
de DPétape 6, la matrice de régression entre les scores T et U est B=I et F=Y-tq".
Plusieurs autres variantes de cet algorithme existent (voir par exemple, Lindgren et al.,
1993; Rinnar et al., 1994; Dayal et MacGregor, 1997). La projection sur structures
latentes peut aussi étre présentée dans le cadre de la décomposition en valeurs
singuliéres (Kaspar et Ray, 1993) ou comme un probléme de détermination de vecteurs
et de valeurs propres (Hoskuldsson, 1988).

On remarque dans I’algorithme plus haut la présence d’une matrice W, représentant la
covariance entre les résidus de X et les scores U (Y, indirectement). L’interprétation
étant cependant difficile, on peut convertir cette matrice W en terme des variables
originales de X comme étant W*=W(P'W)"! et X est ainsi relié a T par T=XW*. On
obtient finalement les coefficients de régression entre X et Y comme étant (Skagerberg
etal., 1992) :
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B=W({P'W)'BQ"
avec
B =diag(b)

2.3.3 - Coefficient de détermination multiple R
Le coefficient de détermination représente la somme des carrés de 1’erreur expliquée, et
mesure 4 quel point le modéle représente bien les données. Il se calcule comme

suit (Umetrics, 1998) :

Par variable xi ou yi, pour chaque variable latente h :

RSS
R:.h =1- =
RSS, .,
Par variable x; ou yi, cumulativement :
RSS
R om =1-—
( k.b )am SSk

Ces deux coefficients sont donnés sous forme graphique, lors de la présentation des

résultats. Pour I’ensemble de X ou de Y, pour chaque variable latente h, on obtient :

9

RN

9

ot RSSip

et de fagon cumulative :
q
RSS

2 ] L=l kh

SS,

k=1
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Ces deux dernier coefficients sont donnés sous forme tabulée lors de la présentation des
résultats. Le terme SSi est la somme des carrés des données initiales, centrées-réduites,
et RSS désigne la somme des carrés des résidus.

2.3.4 - Validation croisée

La régression PLS est utilisée pour le développement de modéles prédictifs. Un
nombre approprié de variables latentes doit ainsi étre sélectionné, afin d’obtenir de
bonnes prédictions. Plusieurs fagons sont possibles (Jackson, 1991). La méthode
utilisée dans le cadre de cette étude est la validation croisée (Wold, 1978).

Sommairement, cette méthode est la suivante :

Pour chaque variable latente :

1. Séparer les données en quelques sous-ensembiles (5 & 7);

Enlever un sous-ensemble;

Faire une régression PLS sur les données restantes;

Calculer la sommes des carrés des erreurs de prédiction (PRESS)

U

Recommencer cette procédure a I’aide d’un autre sous-ensemble et en remettant le
précédent, jusqu’a ce que chaque donnée ait été enlevée une et une seule fois;
6. Calculer un PRESS global, pour chaque variable latente.

Une fois le PRESS global obtenu, on peut afficher ce coefficient en fonction du nombre
de variables latentes, et prendre le minimum de la courbe ainsi obtenue comme étant le
nombre de variables latentes significatives. Cependant, Simca-P utilise plutot cette
donnée pour calculer le coefficient Q, similaire 4 un R? validé de fagon croisée
(Umetrics, 1998; Tenenhaus, 1998). Pour chaque variable yx, mesurant respectivement
I’apport marginal de chaque variable latente et I'apport cumulatif des h premiéres
variables latentes i la capacité prédictive du modéle :
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PRESS,

Qi =1-
e RSS,,,

PRES
Q) =1- || Rsskst’
,-

On peut aussi mesurer respectivement I’apport global pour chaque variable latente et

cumulatif pour h variables latentes, pour Pensemble des variables de Y :

. PRESS,,

Q;=1-
;‘,lesu,,

PRESS,
* RSS, .,

Q) =1 [Iz""

Ces deux derniers coefficients sont présentés sous forme tabulée dans le chapitre des

résultats. Une variable latente sera significative si Q? 2(1-0,95%)=0,1 ou s’il existe
aumoinsun QJ, 20,1. On considére par ailleurs qu’une réponse yx est bien modélisée

lorsque (Qf, e 20.5.

2.1.5 - Interprétation du modéle

Le pouvoir explicatif d’une variable x; sur 'ensemble de Y est exprimé par U'indice VIP
(Variable Importance in the Projection) (Tenenhaus, 1998):

p : 2
VIP,, = ZRd(Y;t w
M JRd(Y;t,,...,t,) = T
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ol p est le nombre de variables de X, wix est le poids représentant la contribution d’une
variable xi 4 la composante ¢, et Rd(Y;t)) est la redondance entre Y et t;.. On considére
qu'un pouvoir explicatif supérieur a 1| indique une variable importante dans la

représentation de Y.
2.3.6 - Statistiques T et SPE

Les scores t peuvent étre présentés graphiquement, en PCA comme en PLS. On peut
aussi mesurer la variation a D'intérieur du modéle PLS 4 I'aide de la statistique Tde

Hoteiling :

ou 5‘2‘ est la variance de la composante t, du modéle PLS et a est le nombre de

variables latentes du modéle. Géométriquement, cette statistique représente une
distance par rapport I’intersection des composantes (Figure 2.1, ligne tiretée). Un
intervalle de confiance peut-étre calculé comme suit, Ia statistique T2 étant reliée 2 la
statistique de Fisher :

T2 = (n—-1)n+1)a
nn-a)

ou n est le nombre d’observations et a le nombre de variables latentes dans le modéle.
La limite de confiance, sur un graphique de scores ¢, en fonction de t;, par exemple, est

de forme ellipsoidale avec des axes de longueur

20’ -5 E,,, ,

V w@-2)
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ou i est le numéro de la variable latente (Wikstrom ef al., 1998a). La figure 3.13
présente une telle ellipse de Hotelling. En ce qui a trait aux résidus, divers moyens de
contrdle existent, notamment I’erreur de prédiction au carré (Squared Prediction Error,
SPE) pour chaque variable xi ou yi (Kresta et al., 1991) :

SPE, =3 (x, - %,

k=1

Géométriquement, cette erreur représente la distance entre un point dans 'espace et le
plan formé (ou hyperplan) formé par les variables latentes (Figure 2.1, ligne pointillée).
Une limite de confiance peut étre déterminée (Jackson et Mudholkar, 1979).

Ces deux moyens de controle permettent donc d’examiner les causes d’une observation
suspecte. Si un changement se produit dans une ou plusieurs variables de procédé, tout
en conservant une structure de corrélation semblable, ce changement se reflétera sur un
graphique des scores, alors qu’un point sera en dehors de 'ellipse. Si par contre un
changement est dii 2 un événement qui n’a pas été modélisé par I’ensemble de données
ayant servi i la construction du modéle, ’erreur de prédiction SPE sera anormalement
grande. Cette statistique permet de repérer 'occurrence de nouveaux événements, ce
qui se traduit en un changement dans la structure de corrélation entre X et Y (Kresta et
al., 1991).

2.4 - PROJECTION SUR STRUCTURES LATENTES - METHODE DYNAMIQUE

L’application de la régression PLS sur des données dynamiques a été réalisée par
quelques auteurs. Ainsi, Ricker (1988) a utilisé la régression PLS afin de déterminer
les coefficients d’'une réponse & une impulsion (FIR) et a aussi déterminé les

coefficients de la réponse a un échelon d’un procédé de traitement anaérobie de I'eau.
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Kaspar et Ray (1992, 1993) ont pour leur part utilisé la régression PLS afin de
construire des modéles de procédé, en utilisant un filtre (statique ou dynamique) basé
sur la dynamique moyenne du procédé en question. Ils ont ainsi écarté I'utilisation
d’une relation dynamique reliant les ¢ et les u et remplagant le coefficient de régression
b. Selon ces derniers, dans certains cas, I’utilisation de I’algorithme PLS peut s’avérer
fructueuse, résultant en un modeéle tenant compte des dynamiques rapides a I'aide des
premiéres variables latentes et les dynamiques lentes a4 ’aide des variables latentes
moins significatives. Dans d’autres cas cependant, la modélisation pourrait s’avérer
fautive, un mauvais choix de relations entrées-sorties étant obtenu en se basant sur de
mauvaises relations internes. On obtiendrait ainsi un mauvais modéle, n’expliquant
qu’une faible partie de la variance de la matrice de sortie Y. Lakshminarayanan et al.
(1997) répondent a cette argumentation en disant qu’il est possible d’obtenir des
modéles adéquats en utilisant des signaux d’entrée comportant une portion suffisante
de basses fréquences (par exemple, des échelons). L’approche utilisée par ces derniers
auteurs est tout de méme intéressante, car elle est utile pour le développement de
modéles de controle avancé En effet, I'utilisation de modéles prédictifs est appropriée
pour I'utilisation de schémas de contréle avancé (DMC, par exemple). Une approche
utilisée est de controler les scores (Kaspar et Ray, 1992; Lakshminarayanan et al.,
1997). Cette approche a I’avantage de découpler d’une certaine fagon le contrdle étant
donné Iutilisation de variables orthogonales. Dans ce cas, Q, W* et les matrices de
variance sont utilisées comme pré- et post-compensateurs. De plus, Lakshminarayanan
(1997) a pour sa part utilisé les modéles PLS dans un cadre de contréle par anticipation
et de contrdle DMC.

D’un point de vue algorithmique, la modélisation PLS dynamique est basée sur le
remplacement de I'étape 11 de |’algorithme par la détermination, pour chaque variable
latente &, d’une relation dynamique linéaire g, (z). Cette relation linéaire intervient
ensuite dans le calcul des résidus F de Y. Une fois le modéle obtenu, la prédiction peut
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étre effectuée, en utilisant les fonctions de transfert comme les composantes d’une
matrice diagonale G(z) (Figure 2.2).

—»{s,! | W* [ Gl QT || s, >
Xp—i X T 0 ¥ Veun

Figure 2.2 Prédiction  I’aide de larégression PLS dynamique

Les matrices S, et Sy sont des matrices diagonales de mise a I'échelle, représentant les
variances. On peut donc voir, selon la figure 2.2, que les différentes relations
dynamiques internes obtenues contribuent selon I’amplitude des coefficients de Q et de

W*. Les fonctions de transfert reliant les variables x; et y; sont données par :

e

iqi.ka (z)w;-k)

k=l

B

Finalement, il est 4 noter que cette méthode de modélisation ne fait pas appel a

I"utilisation de variables décalées, les dynamiques étant contenues dans la matrice G(z).

2.4.1 - Exemple d’application

La régression PLS dynamique a été testée sur les données provenant d’une simulation
d’un systéme bien connu, la colonne a distiller Wood & Berry, un exemple étudié par
Lakshminarayanan ef al. (1997). Cette colonne de séparation d’'un mélange méthanol-
eau est représentée par les fonctions de transfert suivantes :
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12.8¢" -189¢™

[y.(S)]_ 167s+1  2lIs+1 ["n(s)]

y,()| | 6.6 -194e* [|x,(s)
109s+1 14.4s+1

Les variables y, et y, représentent respectivement les compositions en méthanol des
produits de haut et bas de colonne, alors que les variables manipulées x, et x;
représentent le reflux et le débit de vapeur au rebouilleur. Les entrées ont été changées
a l'aide d’une séquence binaire pseudo-aléatoire (PRBS). Les signaux d’entrée et de
sortie ont ensuite été bruités, afin d’obtenir un ratio signal/bruit de 10. Ceci a permis
de reproduire les résultats obtenus par Lakshminarayanan (Figures 2.3 et 2.4). Comme
on peut le voir, le modéle PLS dynamique représente trés bien les données de la

colonne a distiller. De plus, les gains statiques obtenus sont pratiquement égaux aux

gains statiques théoriques.
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Figure 2.3 Signaux d'entrée et réponses, colonne Wood & Berry
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Figure 2.4 Réponse dynamique et modélisation PLS dynamique, colonne Wood & Berry (2 vanables
latentes)

Tableau 2.1 Somme des carrés expliquée - modéie PLS dynamique, colonne Wood & Berry

Var. lat. R? (R )aum R} (R} Jeum
I 52.73 53.73 96.35 96.35
2 4727 100.00 2.14 98.49

1249 -1804
" 6,68 —1929

A noter que ces résultats ont éé obtenus  I'aide de fonctions de transfert internes
d’ordre maximal 2, un modéle d’ordre maximai [ donnant quelques écarts tout juste
avant le changement en échelon de x; ou x2. Un approfondissement de la méthode de
régression PLS dynamique a permis de faire certains constats. Premiérement, les
scores m sont bien approximés par les scores dynamiques (Figures 2.5 et 2.6),
notamment les scores u de la premiére dimension, ce qui est compréhensible, Y étant
expliquée a plus de 96%.




~= Scores bruls
~— gcofes modéie

L 1 ) L L 5 L L I

200 400 800 800 1000 1200 1400 1600 1800 2000
Temps {min)

Figure 2.5 Scores de la premiére dimension, colonne Wood & Berry
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Figure 2.6 Scores de la deuxiéme dimension, colonne Wood & Berry
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On a de plus besoin de toutes les variables latentes afin d’identifier avec succés kes
divers gains. En effet, avec une variable latente, on obtient les gains ci-dessous, alors

que les deux variables de sortie sont tout de méme trés bien expliquées (Figure 2.7).

10,95 -19,02
992 -17,23

0 200 400 600 800 1000 1200 1400 1600 1808 2000
Temps (min)

Figure 2.7 Réponse dynamique et modélisation PLS dynamique, colonne Wood & Berry (1 vaniable
latente)

Ces gains sont relativement acceptables, bien que I'on constate une certaine erreur.
Ceci est compréhensible, étant donné que pour une identification, on a généralement
besoin de toute I'information que les entrées peuvent apporter. Pour ce modeéle, la
premiére variable latente n’expliquant que 52,73% de la variabilité de X, une partie
significative de I’information est alors perdue et n’est pas utilisée pour I'identification
(Figure 2.8). Des essais successifs ont permis de constater que les performances
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d’identification se dégradent quelque peu a partir d’un ratio signal/bruit de 3, lorsque

les deux variables latentes sont utilisées. Les gains pour un tel ratio sont

1L,73 -16,19
619 ~-17,64

Dans le cas d’une seule variable latente, ce ratio est le méme et les gains sont

K 997 -17,31
1910 -1580

b 1 L L | % L ]
600 800 1000 1200 1400 1600 1800 2000
Yemps (min)

Figure 2.8 Signaux d'entrée et reconstitution a l'aide du modéle PLS (1 variable latente)
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III - RESULTATS

3.1 - METHODOLOGIE

Le but de cette étude est d’identifier des fonctions de transfert i ’aide de la régression
PLS dynamique pour un grade important. Ce choix s’est arrété sur le grade 212, suite &
des discussions avec le personnel de Temboard. Une fois ce grade choisi, des
informations sur la dynamique du procédé ont été obtenues & I'aide de données
provenant de ce grade. Des fonctions de transfert ont été obtenues, les conditions
d’opérations contenant des échelons individuels et non simultanés alors que les autres
variables étaient stables pour chacun des deux débits de colorants. Cependant, dans
l’optique d’une généralisation du modéle du grade 212 aux autres grades et afin de
pouvoir comparer les présents travaux a ceux réalisés antérieurement, le besoin
d’exprimer les débits de colorants en kg/adt s’est imposé. Mais, les débits de pite
n'étant pas disponibles, il était difficile d’obtenir ces concentrations. De nouveaux
fichiers ont donc été recus, contenant cette fois-ci les débits de péte et les débits de

sauce de couchage.

Plus tard, la nouvelle est venue que les fichiers comportaient un probléme d’acquisition
de donndes. En effet, une des variables, le débit de colorant bleu, n’était que du bruit.
Donge, de nouveaux fichiers ont été envoyés. Cependant, pour des contraintes de temps,
ne pouvant attendre qu'une production de grade 212 ait lieu, 1’analyse PLS a été
effectuée 3 I’aide de données provenant d’un autre grade. Suite 4 de vaines tentatives
pour identifier un systéme 2x2 de facon conventionnelle parmi les autres grades, étant
donné le manque de plages appropriées, le choix du grade 607 s’est imposé. Ce choix
s’est imposé principalement parce que suffisamment de données étaient disponibles,
permettant Putilisation d’une partie pour la prédiction. La comparaison des gains
identifiés a I’aide de la méthode PLS dynamique s’est faite 4 I'aide des gains obtenus
pour le grade 212.
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Le chapitre des résultats va donc comme suit. Premiérement, les propriétés
dynamiques des données de couleur ont été déterminées et des fonctions de transfert
ont été identifiées a partir du grade 212. Une autocorrélation des données de couleur
du grade 607 a été réalisée, afin de connaitre la nature de ces derniéres. Les données
ont été analysées 4 Paide de la régression PLS en négligeant la dynamique contenue
dans les données, afin d’avoir une idée du comportement des variables. Comme un
modéle dynamique repose en partie sur les coefficients de W* et Q, cet examen des
données aiderait & comprendre le modéle et & déterminer des variables importantes.
Des prédictions ont aussi été réalisées a I'aide de ce modéle statique, afin de vérifier sa
performance. Suite a cette analyse, une comparaison avec la régression PLS auto-
régressive a été effectuée, étant donnée la nature dynamique des variables de couleur.
Des prédictions ont aussi été réalisées a I'aide de cette méthode. Finalement, la
régression PLS dynamique a été appliquée aux données du grade 607, afin de voir s’il
était possible d’identifier fonctions de transfert en dépit des interactions présentes entre
les variables. Divers gains ont été obtenus, mais étant donnée notamment la nature
non-stationnaire des données utilisées, I’identification n’a pas fonctionné aussi bien que

prévu.

3.2 - TRAITEMENT DE DONNEES

Les données utilisées dans le cadre de cette recherche proviennent du procédé de
fabrication de carton de Temboard. Les variables utilisées pour I’analyse sont
présentées au tableau 3.1. Les premiers fichiers, contenant des données relatives au
grade 212 et notamment utilisés pour la détermination des fonctions de transfert reliant
les débits de colorants aux paramétres de couleur a et b, ne contenaient pas les variables
17 4 22. De plus, aucune variable de produits chimiques ajoutés i la pate n’était
disponible, ces derniéres n’étant pas disponibles sur une base assez rapide, étant acquis
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par une autre systéme d’acquisition de données. Les données du tableau 3.1 étaient

recueillies & chaque 20 secondes.

Tableau 3.1 Variables de procédé disponibles

Noms des variables | Signification Unités
1- speed vitesse machine m/min
2- coating grammage sauce de couchage g/m’
3- redpv colorant rouge kg/adt
4- bluepv colorant bleu kg/adt
5- topcons consistance couche supérieure, caisse d’arrivée %

6- topwwcons consistance eau blanche, couche supérieure %

7- topret rétention des fibres, couche supérieure %

8- fillcons consistance couche médiane, caisse d’arrivée %

9- fillwwcons consistance eau blanche, couche médiane %

10- fillret rétention des fibres, couche médiane %

1 1- backcons consistance couche inférieure, caisse d’arrivée %

12- backwwcons | consistance eau blanche, couche inférieure %

13- backret rétention des fibres, couche inférieure %

14- plywtact! e, matiére fibreuse, couche supérieure g/m’”
15- plywtact2 grammage, matiére fibreuse, couche médiane g/m’
16- plywtact3 grammage, matiére fibreuse, couche inférieure g/m"
17- tplyflow débit de péte, stock chest, couche supérieure L/min
18- folyflow débit de péte, stock chest, couche médiane L/min
19- bplyflow débit de pate, stock chest, couche inférieure L/min
20- precoatflow débit de sauce de pré-couchage, couche supéricure L/min
21- topcoatflow débit de sauce de couchage, couche supérieure L/min
22- bakcoatflow | débit de sauce de couchage, couche inférieure L/min
23-luminance (Y) |luminance wee
24- colora (Y) paramétre de couleur a o
25- colorb (Y) paramétre de couleur b —
26- blancheur (Y) | blancheur % ISO

Ensuite, les données n’ont pas été filtrées, afin de ne pas perdre d’information. De
plus, les données contenant des casses n’ont pas été utilisées, le procédé étant trop
perturbé par ce type d’événement. Le traitement des données s’est donc résumeé a
éliminer la présence de sauts provenant des coucheuses. En effet, les coucheuses sont
périodiquement nettoyées de ’excés de pigment s’accumulant a la surface. Or, ces
courtes séances de nettoyage ont pour effet de causer de fortes perturbations dans le
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poids total de sauce de couchage, ce qui se refléte sur la luminance et sur la brillance.
Ainsi, ces points ont été enlevés, en s’assurant que les variables revenaient 4 leur valeur
d’avant perturbation.

3.3 - CONNAISSANCE DYNAMIQUE DU PROCEDE

Avant de procéder & une méthode d’identification, il est bon de connaitre le procédé le
mieux possible. Cette connaissance du procédé peut étre acquise a laide de
IPexpérience des opérateurs, ou & I'aide de I'analyse des séries chronologiques. A
I’aide de ces techniques, on peut obtenir plusieurs informations, notamment savoir si le
procédé est stationnaire, de connaitre la « mémoire » du procédé, s’il est possible
d’améliorer le controle déja en place (Harris, 1989; Stanfelj et al., 1993) et le retard du
procédé (Box et Jenkins, 1976). Ces informations, plus particuliérement I’obtention de

fonctions de transfert, allaient étre les références pour les autres résultats.
3.2.1 - Autocorrélation

L’autocorrélation permet d’atteindre les trois premiers objectifs mentionnées plus haut.

Cette fonction est décrite comme suit, pour une série de N données :

S i[ IZI ‘Z) k20

J-o [-n l-o

On voit d’apres cette formule que les données sont premiérement centrées par rapport a
la moyenne. Ensuite, pour chaque indice k, on décale d’un pas de temps Ia série de
données par rapport a elle-méme et on obtient la fonction d’autocorrélation.
Finalement, comme cette fonction est symétrique, on ne prend que les résultats pour
k>0. Il est possible de définir un intervalle de confiance, permettant de dire que la



S3PUUOP 3P JuPS AR ‘2 anuresed np 12 OULURLN] ] 3P TOHEILICOOME P BT |°¢ AM31J

oe 4 ® St oL S 0
T T T T T SO
= — 30 »
H
2
I 160
< < L [ e 8 o 4 1
ot -4 (14 Sl oL S )
T T T ¥ T so
Y e S S S g W Nnar =323 ot vashur Deubar o funthr i ot e e e | )
&
-
z
I 180
1 L
1 1 1 i : i

*S1d uoissai3p1 e] mod sapsimn 912 U0 b $319UIdp $35 Ju0s 30 anb
uuop JUE ‘uoiiPjaLIodoINE | Jnod SIISINN 219 WO SAUUOP SA) (T'¢ W '¢ sam3Ly)
0f © 0 2p weje sae[eogp sap mod sounpaI-s3NUd L9 dpeid np SaNuQ SIPUUOP
S9p apie | & ‘mayoduelq g} 12 q ‘@ “] sanuresed saj mod 23jnofed 912 © UOKE]ALI0d0INE, ]

() "reafz s

: sad£)-sB09 XNIP 2P 159 9,66 © DUBLUOD IP J[jea1au | op sanewrxoidde ayun| sup)

A< .?v e ”NN + _vm & ?_v n.__.a>

: A s3poupd

ap aquou wiepdd un syide aanedymudis snjd 1S2.U 39 UONEBIPLIOIOINEP UOHIOUO)

or




41

Ry (k)
o
Q (2]
T T
T
|
1
—l——-———————-v
|
|
]
|
i
!
|
R m—
[}
] .

0.5 L v v L
0 5 10 15 2 % k1]
1 T v T
I
05|
=
»
J Q= AT oy S L T A m T T U I I I T R T T I IR T I T I T I T I TR T E T I TS
05 L I It 1 1
0 5 10 15 20 25 30

Figure 3.2 Fonction d’antocorrélation du paramétre b ¢t de la blancheur, premiére série de données

Les fonctions d’autocorrélation ne s’atténuant pas aprés le trentiéme décalage, on peut
conclure que les données ne sont pas stationnaires. L’expérience a été répétée a I'aide
des données sous forme de différences. Dans ce cas-ci, les fonctions d’autocorrélation
s’atténuent aprés quelques décalages (Figures 3.3 et 3.4). De ceci, il est aussi possible
de conclure que les méthodes utilisées afin de contréler les variations de ces variables
ne sont pas au meilleur de leur efficacité. Des conclusions similaires ont été tirées des
données provenant d’une seconde séric de données provenant aussi du grade 607
(Figures 3.5 et 3.6). Cependant, les fonctions d’autocorrélation des premiéres
différences de la luminance et de la blancheur montrent un comportement oscillatoire
s’étendant toujours au-dela de la limite de confiance (Figures 3.7 et 3.8).
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Figure 3.4 Fonction d’autcorréiation de Vb et Vblancheur, premitre série de données
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Figure 3.7 Fonction d’aulcorrélation de VL et Va, deuxiéme série de données
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Figure 3.8 Fonction dautcorrélation de Vb et Vblancheur, deuxiéme série de données
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Les conclusions sont aussi restées identiques, qu’importe si les données étaient

centrées-réduites ou non, et qu’elles contenaient des points artéfacts ou non.
3.3.2 - Intercorrélation

Le prochain objectif est I'identification du retard. A cette fin, des données provenant
d’une production de grade 212 ont été utilisées, contenant des perturbations
déterministes alors que les autres variables étaient a peu prés constantes. Pour le
présent systéme, le retard peut en partie étre expliqué par la longueur de la feuille, le
scrutateur étant situé aprés [a section des coucheuses. L’autre partie de ce retard est
due au transport de la pite dans la tuyauterie reliant le cuvier de mélange a la caisse
d’arrivée, lorsqu’un changement de débit d’encre est effectué. Le retard inhérent au
procédé est cependant variable, changeant selon la vitesse machine et le débit de pate.
Or, pour un grade donné, la vitesse machine change rarement, ce sont habituellement
les débits de pate qui varient, bien que rarement 1A encore. Il existe plusieurs fagons
d’estimer le retard total. Connaissant la vitesse machine et la longueur de la feuille
entre la caisse d’arrivée de la couche médiane et le scrutateur, on posséde par le fait
méme une borne inférieure pour le retard. Cette borne est de plus ou moins une
minute, dépendant du grade produit. L’intercorrélation peut donc étre une bonne fagon

d’estimer la portion inconnue du retard. Cette fonction est décrite par :

1',‘,,(k)=(n—_ll*"—sys—g:-l(xj —%nz.lxi)(ym -%.Z-l yi), k20

=0 i=0 i=0

Elle représente un décalage entre deux séries de n données. L’une des deux séries est
décalée d’une période d’échantillonnage, et ainsi de suite. Il importe de dire que cette
fonction n’est pas symétrique, c’est pourquoi les résultats sont pertinents pour le cas
k >0. Dans ce cas, on utilise toujours les premiers éléments de la variable manipulée
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(x, le débit de colorant) et on essaie de coméler les éléments de la variable contrdlée (y,
une variable de I’espace couleur).

Afin de connaitre le retard du procédé, des données provenant d’une plage contenant
une perturbation déterministe on été utilisées, alors que les autres variables étaient
relativement stables. Premiérement, des plages de données contenant des changements
de débits des colorants bleu et rouge ont éé repérées. Le nombre de points
sélectionnés a été choisi en fonction du temps de réponse des parameétres de couleur.
Une plage de 100 points a donc été sélectionné pour le colorant bleu, et une de 40
points pour le colorant rouge.

Les fonctions d’inter-corrélation ont été obtenues entre les débits de colorant rouge et

bleu et les paramétres de couleur a et b (Figures 3.9 et 3.10)

Comelation cromee colorant rouge et parametre 3 et b

T ™ T Tt

:i HHH““ “TITTTITIT

5 10 15 0 % 30
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Figure 3.9 Intercorrélations entre le débit de rouge ct les paramétres a et b, grade 212
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Correlation croisee colorant bleu et parametre a et b
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Figure 3.10 Intercorrélations entre le débit de bleu ¢t les paramétres a et b, grade 212

Le colorant rouge est corrélé positivement avec le paramétre a et négativement avec le
paramétre b, avec un retard total de 4 et 5 périodes respectivement (Figure 3.9). Les
retards identifiés ont du sens, n’étant pas inférieurs au retard du a la distance entre la
caisse d’arrivée et le scrutateur en fin de machine. En ce qui a trait au signe de la
corrélation, une augmentation du débit de colorant rouge se traduit par une

augmentation du paramétre a et une diminution du paramétre b, et vice versa.

Il y a aussi corrélation négative entre le débit de colorant bleu et les paramétres a et b
(Figure 3.10). En effet, le colorant bleu a tendance i « verdir » le paramétre a (qui est
au départ négatif et qui va encore plus vers le négatif). De plus, une augmentation du
débit de bleu occasionnant une accentuation de la teinte bleue, se traduisant par une
augmentation dans le sens négatif de Paxe b. On voit aussi apparaitre le retard total
pour les paramétres a et b, respectivement 4 et 5 périodes aprés I’échelon (80 et 100
secondes). Donc, d’aprés ces résultats, le retard di} 3 la tuyauterie est du méme ordre
de grandeur que le retard dii 4 la toile de la machine.
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En ce qui a trait 4 I'influence du colorant bleu sur la luminance et sur la blancheur,
I’examen des données ne permet pas de déceler une relation entre les débits de
colorants et ces deux paramétres. S’il y a un effet, sa dynamique est peut-étre trop
lente et voilée par le bruit de mesure. Elle ne se manifeste peut-étre pas non plus dans
la plage normal des variations des débits. L’analyse multidimensionnelle permettra

peut-étre de jeter un nouvel éclairage sur la relation entre ces variables.

3.3.3 - Fonctions de transfert

Des fonctions de transfert ont ensuite été identifiées. Les résultats sont présentés

graphiquement aux figure 3.11 et 3.12.

b i 1 1 1 1
0 50 60 70 80 90 100
Nombre d'obmsrvations

Figure 3.11 Réponse des paramétres a et b 3 un échelon du débit de colorant bleu
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Figure 3.12 Réponse des paramétres a et b 3 un échelon du débit de colorant rouge

Les fonctions de transfert suivantes ont été identifiées :

0,56z° -0,18z°

Aa(z)| [1-0,22z" 1-0,41z" | Arouge(z)
Abz)| | -035z7 -022z° | Ableu(z)

1-0,05z" 1-0,55z"

ou, dans le domaine de Laplace,

0 72 e-l.‘l!: - 0 30e-l,155

-0,50e** | Ableu(s)

Aa(s)| | 0,23s+1  0,39s+1 |Arouge(s)
Ab(s)| |[-0.37¢%%

0,12s+1  0,58s+1
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Les gains sont exprimés en Aa/kg/adt ou Ab/kg/adt et, dans le domaine de Laplace, les
constantes de temps et les retards sont en minutes. Si I’on regarde les fonctions de
transfert trouvées dans le domaine discret, on réalise en regardant les termes en 2" au
dénominateur ne sont pas ceux auquel on s’attendrait. En effet, on devrait avoir un
terme de valeur égale a environ 0,90. Ceci démontre que la période d’échantillonnage
est trop longue pour le procédé en question. On peut aussi le constater en regardant les
résultats graphiques. Afin d’avoir un échantillonnage adéquat, le temps de montée
devrait comporter au moins 25 points. On peut voir que les plages de temps de montée
comptent tout au plus une quinzaine de points. Ce fait, couplé i un faible rapport
signal/bruit (variant entre 2 et 3) est probablement la cause de ces termes. De plus, en
utilisant des séries comportant plus de points aprés la variation déterministe, on obtient
un terme plus réaliste. Dans ce cas, cependant, I’exercice d’identification revient un
peu i faire un modéle du bruit du procédé. Si I'on regarde les constantes de temps dans
I’espace de Laplace, on voit que ces constantes de temps sont trés courtes, alors que
graphiquement, elles semblent plus longues. De plus, le fait de prendre une série de
points plus ou moins longue fait en sorte que la constante de temps varie i I’intérieur
d’un facteur 5. Il faut souligner que le calcul des constantes de temps dans le domaine
continu a partir du domaine discret est le résultat d’un logarithme d’un paramétre
compris entre 0 et 1. Ceci couplé avec le fait que les paramétres en z" sont imprécis,
on obtient ainsi une trés grande incertitude sur la constante de temps. Finalement, on
remarque que les retards varient selon que I’on regarde la variation de a ou de b. Ceci
peut-étre di & deux choses, soit le faible rapport signal/bruit et le fait que le phénomeéne
est approximé par un systéme de premier ordre avec retard. De meilleures conditions
d’expériences auraient permis d’obtenir de meilleurs paramétres, notamment le retard
et la constante de temps (période d’échantillonnage plus courte, rapport signal/bruit
plus grand, excitation persistante).
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Les gains trouvés ont éé comparés a4 d’autres gains provenant d’autres grades. Ces
gains sont du méme ordre de grandeur que ceux identifiés & P’aide du grade 212
(Tableau 3.2).

Tableau 3.2 Gains de procédés, autres grades

Grade Kii (Aw/kg/adt) [Kiz (Aa/kg/adt) |Kai (Ab/kg/adt) | Kzz (Ab/kg/adt)
207 — 20,42 (-030) |- -0,42 (0,50)
207 (2) — 0,46 (-030) |— 20,66 (-0,50)
6209 0,55(0,72)  |— — —

Cependant, les gains identifiés dans cette recherche ne concordent pas avec ceux
identifiés dans les travaux effectués précédemment par Cabos (1998). En effet, les
gains quantifiant I'effet du colorant bleu sur le paramétre b sont de I'ordre de
-21.7 Ab/kg/adt. 1l faut cependant préciser que les concentrations de colorant bleu
utilisées dans le présent travail ne sont pas les mémes que celles utilisées par I’usine.
Un facteur de conversion est probablement a I’origine de cette incompatibilité, mais
cela n’a pu étre confirmé par le personnel de I'usine. Un facteur de compatibilité ne
devrait pas influencer les gains. De plus, Cabos (1998) n’a pas conclu a une influence
significative du colorant rouge sur le paramétre b, alors que les gains du paramétre b
identifiés & I’aide des données d’usine sont comparables. Sachant que les expériences
de Cabos ont été effectuées dans des conditions contrdlées, I’identification a I’aide de
données industrielles devrait étre reprise a I’aide d’une perturbation déterministe
permettant d’obtenir un rapport signal/bruit supérieur a celui prévalent dans les

données utilisées.

3.4 - MODELISATION ET IDENTIFICATION PLS

La majorité des calculs a été effectuée a I'aide de Matlab, version 5.3 (The Mathworks)
et du PLS roolbox, version 2.01f (Eigenvector Research, Inc.). Le logiciel Simca-P 3.0
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(Umetrics) a quant 3 lui été utilisé pour la validation de certains programmes écrits en
Matlab et pour la validation du nombre de variables latentes significatives. Les
programmes ont aussi été validés a I'aide des données de Linnerud (voir, par exemple,
Jackson, 1991), d’aprés le résultats présentés dans Tenenhaus (1998).

3.4.1 - Modélisation statique

La premiére partie de I’étude a été effectuée de fagon statique, en ne considérant pas le
fait que les données étaient dynamiques. Ceci a permis d’avoir un apergu des relations
entre les variables. Deux séries de données ont été analysées, pour le grade 607,
provenant de la méme production, mais de deux fichiers différents. Ces données ont été
scindées en deux, pour fins de prédiction. Le grade 212 n’a pas été analysé, le fichier
utilisé pour Pidentification des fonctions de transfert (section 3.2.3) ne comprenant pas
les variables 17 4 23. Pour les données étudiées, la vitesse n’a pas été utilisée, étant
constante. De plus, la sauce de pré-couchage n’étant pas utilisée pour ce grade, elle ne

figure pas dans I’analyse.

La premiére série de données analysée contenait 3639 points, aprés avoir retranché de
données considérées comme des artéfacts, provenant de perturbations dans le procédé
de couchage. Pour cette premiére série de données, 4 variables latentes étaient
nécessaires afin de bien décrire les données (Tableau 3.2). Ce modéle explique 62,9%
de la variation de X et 71,8% de la variation de Y. Selon ces résultats, le modéle
devrait avoir une bonne capacité de prédiction, ayant un Q° supérieur 4 0.70. On peut
clairement voir, sur le graphique des scores t; vs t; (Figure 3.13), la fagon dont les
variables de procédé de la matrice X se déplacent dans les deux premiéres dimensions,
ce qui est un des avantages de la méthodes PLS pour la surveillance d’un procédé. Un
intervalle de confiance & 95%, représenté sous forme d’ellipse de Hotteling, permet de
voir un point significativement en dehors d’une opération normale. Ce type de
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graphique résume donc plus facilement I'information qu’apporteraient plusieurs

graphiques affichant une seule variable.

Tableau 3.2 Résultats de modélisation, prem

iére série de données, régression PLS statique

Var.lat. |R} (R)am |R, (R))am |Q (@um
1 0,314 0,314 0,467 0,467 0,453 0,453
2 0,170 0,484 0,136 0,604 0,261 0,595
3 0,066 0,550 0,085 0,689 0,202 0,677
4 0,079 0,629 0,029 0,718 0,073 0,701

A

0
t[3)
Figure 3.13 Scores des 4 premiéres dimensions, premiére série de données

~-
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On peut aussi voir aussi les écarts par rapport au modéle en suivant I’erreur de
prédiction au carré. (Figure 3.14). Une grande valeur de SPE, ou SPE, indique qu'une
des données dévie significativement de I’hyperplan du modéle. On peut voir sur cette

figure que les déviations sont acceptables. Le présent modéle ne montre pas de

déviations soutenues dans les indices SPE,. Dans le cas de SPE,, certaines déviations
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sont soutenues, mais I'indice retourne toujours & une valeur inférieure ensuite.
Cependant, la limite de confiance n’a pu étre calculée. On peut aussi analyser les
contributions de chaque variable pour un point possédant une grande distance au
modele, approche développée par Miller er al. (1993).

1& T T 3 LI ¥ ¥ T

(4] 500 1000 1500 2000 2500 3000 3500
Nombre d'obsenations

Figure 3.14 Indices SPE, et SPE,, premiére série de données, premiére série de données

Une fois le modéle obtenu, son interprétation est une étape importante et la régression
PLS permet I’examen de la structure interne du modéle. Ainsi, I'affichage des
coefficients de W* et de Q est trés utile pour voir I’'influence des variables X sur Y, en
regardant les w*, représentant la corrélation entre les X et les scores U (Y,
indirectement) (Figures 3.15 et 3.16). On peut ainsi essayer d’identifier une ou

plusieurs variables expliquant chaque dimension.

Certaines relations physiques sont bien démontrées 4 I'aide de ces figures. Ainsi, on
voit que les grammages et les débits de pdte des trois couches se superposent
respectivement, ce qui respecte la physique du systéme. Les rétentions et les
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consistances des eaux blanches sont normalement opposées, ce qui respecte encore la
physique du systéme. Ces relations sont d’autant plus respectées lorsque les variations
sont grandes; le modéle peut ainsi mieux en tenir compte. Pour la premiére dimension,
de grands w* sont donnés aux débits de colorant bleu et rouge (bluepv et redpv), au
débit, au grammage et 3 la consistance de la couche médiane (fplyflow, plywtact2 et
fillcons2) ainsi qu’a la rétention et a la consistance de I’eau blanche de la couche
inférieure (backret et backwwcons). En ce qui concerne les débits de colorants (redpv
et bluepv), ils peuvent en effet expliquer des effets de variation de couleur. De plus, les
débits de colorants sont bien expliqués par la premiére dimension PLS (figure 3.17).
Or, seulement 17% du paramétre b est expliqué par la premiére dimension, laissant
croire que d’autres variables, peut-étre absentes de I’analyse, influencent ce dernier
(Figure 3.18).

Les débits de colorant ne devraient pas cependant expliquer une variation de luminance
et de blancheur. Ces derniéres peuvent peut-étre mieux étre expliquées par une
variation dans le débit de la couche médiane (fillplyflow), qui est dans le méme
voisinage sur les chartes de corrélation. En effet, lors de I’examen des données, des
variations des débits de pate semblaient avoir une influence sur la luminance et la
blancheur. Ceci est peut-étre confirmé par le fait que la variable plywtact2 posséde un
w* moyennement élevé dans la premiére dimension, mais cela ne peut étre confirmé.
Les variations dans ces deux caractéristiques optiques semblent provenir d’autres
variables n’étant pas disponibles pour la présente analyse, notamment le contenu en
lignine résiduelle, par exemple. Les variations dans ces deux mémes variables
pourraient aussi étre dues a des fluctuations dans I’application de la sauce de couchage.
Cependant, cette variable a un poids négligeable dans la premiére dimension et un
poids moyen dans la deuxiéme. Finalement, on constate que la consistance de I’eau
blanche de la couche médiane (fillwwcons) semble avoir une bonne influence sur la
premiére dimension, mais cette variable ne devrait pas avoir une influence importante
sur la couleur. En effet, le scrutateur n’examinant que la couche supérieure, il serait
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surprenant que Ia couche inférieure influence I'apparence du carton si
significativement, considérant que ces effets doivent « traverser » la couche médiane.
Clest plutét le contraire qui se produit, les variations de la couche médiane étant
visibles au travers des couches inférieures et supéricures. Enfin, les deux derniéres
dimensions du modéle montrent que les variables expliquant le reste de la variance
pour les paramétres de couleur a et b sont encore le colorant bleu et les débits de pate

des couches médianes et supérieures

La figure 3.15 montre aussi une étrange corrélation négative entre le débit de rouge et
le paramétre a. En effet, selon le signe du gain de la fonction de transfert reliant ces
deux variables (voir section 3.3.3), on devrait s’attendre & ce que la corrélation soit
positive, ce qui n’est pas le cas. En examinant les deux autres variables latentes, le
relation entre le colorant rouge et le paramétre a est mieux respectée. L’examen des
données utilisées pour la modélisation a montré que lors d’une grande variation du
paramétre a, les deux colorants ont été changés en méme temps (comme c’est souvent
le cas lors de I’opération du procédé). Or, le débit de bleu qui a été varié le plus, alors
que le débit de rouge a été augmenté mais ensuite ramené a sa valeur initiale.. C’est
peut-étre pour cela que le modéle se rattache plutdt & la variation de bleu afin d’établir
sa structure.
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T 1] T T 13
o8k
o8t 4 bjuepy
Aghpataett
<47 |
o J—
3 02F A topret .
plywtactd
Atopcons  backcons| m;m AWEQ
, A A topx Qcolorb
Aredgy
(e o |
Ocolors [*]
o2t “m"f"""'""
ANt
0.4 1 L i L L i L
24 03 02 01 0 o1 0.2 03 04 as 06
L 4
W9

Figure 3.16 Charte de corrélation des variables latentes 3 et 4, premiére série de données

57



12}

eum
[ -]
[
T

(R2

04 g

0.2

2 4 ¢ s 109 12 14
Variables X

Figure 3.17 Variance de X expliquée par 4 variables latentes, premiére série de données

-
i

1.2F T T

luminanocs
brightness

0s

04

0.2

1 2 3 4
Variables Y

Figure 3.18 Variance de Y expliquée par 4 variables [atenies, premiére série de données

58



59

Finalement, on voit a I’aide des indices VIP quelles sont les variables X importantes
dans la projection sur Y (Figure 3.19), soit le débit des colorants bleu (bluepv) et rouge
(redpv), le débit de péte de la couche médiane (fplyflow), la consistance de I’eau
blanche de la couche inférieure et médiane (backwwcons et fillwwcons), la rétention de
la couche inférieure et médiane (backret et fillret) et la consistance de la couche
supérieure (topcons).
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Figure 3.19 Indices VIP, premiére série de données
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La figure 3.20 présente la prédiction des données d’étalonnage. On peut voir que les
paramétres L, a et b ainsi que la blancheur sont bien modélisés a I’aide de 4 variables
latentes €t que les tendances sont respectées. En ce qui a trait 3 ]a prédiction a Vaide
d’autres données, il est surtout important de s’attarder & la tendance. En effet, ce qui
nous intéresse surtout, c’est de connaitre Ia variation entre un moment présent et un
moment futur. Malgré cela, les résultats sont moins convaincants en prédiction qu’en
modélisation (Figure 3.21). En effet, bien que certaines tendances soient bien
respectées, le modéle s*égare parfois. La luminance et la blancheur sont bien prédites,



sauf vers la fin des données. Les tendances du paramétre b sont respectées dans
certains cas, mais le modéle ne rend pas les soubresauts présents dans les données,
inversant méme les tendances quelquefois. Finalement, dans le cas du paramétre a, le
modéle tient la tendance au début, mais inverse ensuite celle-ci pour le restant de la

série de données.
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Figure 3.20 Prédiction des données d"éalonnage, premiére série de données
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Figure 3.21 Prédiction de la denxi¢me série de données avec paramétres du premier modéle

Plusieurs raisons peuvent expliquer le pourquoi de la qualité relative des prédictions,
notamment une plage d’opération différente d’une série de données a I'autre. Ceci
pourrait étre montré par une analyse de la statistique T2 De plus, en examinant, les
indices SPE; en prédiction, on peut voir si {a structure du modéle est respectée (Figure
3.22). L’indice T2 n’est pas dépassé, ce qui montre que les données de prédiction sont
dans les mémes plages d’opération. Cependant, I'indice SPE. dépasse significati-
vement, en début d’opération, la limite établie par les données d’étalonnage, ce qui
porte  croire que la structure des données utilisées pour la prédiction est différente.
Ceci peut en partie expliquer le pourquoi des erreurs de prédiction. Une analyse PLS
des données de prédiction a donné un modéle contenant deux variables latentes et
présentant des différences au niveau de la structure interne (voir annexe). De plus, si
I’on voit les variables latentes comme étant des événements indépendants, il est
possible que les données de prédiction n’ont pas été soumises aux mémes nombre et
type de variations, donc, que leur structure de corrélation ne soit pas la méme. Dans ce
cas, il est normal que les prédictions ne soient pas satisfaisantes (Kresta ef al., 1994).
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Les données doivent aussi provenir d’une opération normale, afin de bien prédire des
événements qui sont anormaux, ce qui n’a peut-étre pas été le cas ici. 1l se peut aussi
que les données aient subies I'influence de d’autres variables qui n’étaient pas
considérées dans I'analyse. Finalement, il faut préciser que les prédictions ne sont pas
aux mémes valeurs que les données réelles et que certaines sont plus bruitées que
d’autres. Ceci est dii au fait que les moyennes et les écart-types utilisés pour la remise
a Péchelle des données de prédiction sont celles des données d’étalonnage. 1! y a donc

des différences entre les données au niveau de ces deux caractéristiques.
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Figure 3.22 Indices SPE, et T en prédiction, deuxiéme série de données

Les résultats de modélisation de la seconde série de données sont présentés en annexe.
Dans ce second cas, la prédiction d’autres données présente des problémes similaires
aux prédictions précédentes (Figure 3.23). La prédiction de la luminance et de la
blancheur est relativement bonne, mais en fin de production, le modéle a de la difficulté
a inverser la tendance. Pour ce qui est du paramétre a, c’est encore une fois ce dernier
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qui est le moins bien prédit. Les tendances sont en effet inversées. Quant au paramétre
b, la tendance ascendante est bien prédite, mais la descente ne I’est pas toujours.

Luminance

Paramétrie b

Figure 3.23 Prédiction de la premiére séric de données, avec paramétres du deuxiéme modéle
(gris : données, noir : modéle)

Des modéles ont aussi été générés sans la présence de la couche inférieure. En effet, on
peut supposer que les variations de la couche inféricure ne sont pas vues par le
scrutateur, donc, qu’elles n’ont pas d’effet sur ce que I’on voit en regardant le carton
par le dessus. Une comparaison avec le modéle contenant la couche inférieure
démontre que le retrait de ces variables ne change rien au pourcentage de variance
expliquée des variables de couleur, pour l¢ méme nombre de variables latentes. Les
données de X sont cependant mieux expliquée, ce qui est logique, étant donné qu’il y a
moins de variables de procédés. Les chartes de corrélation ont Ia méme allure, il 'y a
que les coefficients des variables retranchées qui n’y sont plus. Le résultat en
prédiction est semblable aux cas dans lesquels la couche arriére est présente.

3.4.2 - Modélisation PLS auto-régressive
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Comme base de comparaison, le procédé a aussi été modélisé en profitant de la
dynamique (auto-régressive) des données. La matrice des X a été augmentée a I’aide
des valeurs au temps (k-1) des données de couleur et de la blancheur (Wikstrém et al.,
1998b). On peut ensuite analyser les données en utilisant les mémes indices
qu’auparavant (R%, Q%, VIP, etc...). Pour le premiére série de données, il faut plus de
variables latentes pour obtenir le modéle, comparativement a I’approche statique. Ce
résultat est quelque peu surprenant, étant donné que les données de X sont aussi bien

expliquées avec 4 variables latentes que pour le modéle statique.

Tableau 3.3 Résultats de modélisation, premiére série de données, régression PLS auto-régressive

Var.lat. |R? (R))am |R} (R} am  |Q (@)aum
0335|0335  |0.556  |0.556  |0.538  |0.538

0.164 0.499 0.154 0.710 0.339 0.695

0.081 0.580 0.122 0.832 0.403 0.818

0.069 0.649 0.018 0.850 0.117 0.839

0.035 0.684 0.025 0.875 0.094 0.854

0.042 0.743 0.013 0.888 0.077 0.865
0.024 0.773 0.014 0.902 0.093 0.878

3| N | ] W N e

Ce modéle donne une meilleure explication de Y, ce qui se refléte aussi sur les
prédictions a 1’aide des données d’étalonnage (Figure 3.27). Un examen des chartes
w*q montre que les variables de couleur au temps k-1 dominent le modéle dans toutes
les dimensions. Le modéle semble aussi avoir subi une légére rotation d’axe par
rapport a P’approche statique (Figures 3.24 et 3.25). Cependant, hormis cela, on ne
peut tirer plus d’information sur la structure du modele. De plus, I'importance de ces
données permet i d’autres données de moins se démarquer, comme par exemple, le
colorant bleu. Les indices VIP indiquent que les variables au temps k-1 sont trés
importantes dans la projection sur Y (Figure 3.26).
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Figure 3.26 Indices VIP, premiére série de données, régression PLS auto-régressive

En ce qui a trait 4 la prédiction, les résultats sont bons. En effet, les tendances sont
bien suivies et, contrairement a la régression PLS statique, la tendance n’est pas
inversée, notamment pour le paramétre b. On peut s’attendre a une bonne performance
étant donné, notamment, a la grande importance des variables de couleur et de
blancheur au temps k-1. De plus, les indices VIP du modéle est sans équivoque quant a
I'importance des variables au temps k-1. Le modéle posséde donc une bonne base de
prédiction.



67

06 . -
0.4
[ ]
5 02
a
e O
02
0 1000 2000 3000
16 824
155 822
° 5 g
s 15 2
E © ]
1 4 -
& D g1.6|]
14 y 814
135 i 81.2
0 1000 2000 3000 [} 1000 2000 3000
Nombre dobsenations Nombre dobservations

Figure 3.27 Prédiction des données d’étalonnage, premiére série de données, régression PLS auto-
régressive (gris : données, noir : modéle)
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Figure 3.28 Prédiction des données de la deuxiéme série avec paramétres du premier modéle, régression
PLS auto-répressive (gris : données, noir : modéle)
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La prédiction a aussi été effectuée 4 I'aide des paramétres de la deuxiéme série de
données. Les résultats sont présentés en annexe. La prédiction de la luminance et de la
blancheur est bonne, sauf un peu moins en fin de la série de données. En ce qui a trait
au tre b, les résultats sont excellents. I! n'y a que le paramétre a qui est un peu
moins bien prédit. L’établissement d’un modéle sans la couche arriére a donné des
résultats de prédiction semblables. Encore 14, seul la prédiction du parametre a s’est
avéré moins bonne. Donc, globalement, la régression PLS auto-régressive donne de
meilleurs prédictions pour les variables de couleur que la régression PLS statique, et ce,

malgré que les données ne soient pas stationnaires.

3.4.3 - Régression PLS dynamique

La méthode PLS dynamique, présentée au chapitre précédent, a été utilisée pour
I’identification. L’avantage de cette méthode réside dans sa capacité d’identifier des
modéles dynamiques, en modifiant la relation intemne reliant les t et les u. La présente
étude ne comparera que les gains obtenus a I’aide des données du grade 607 a ceux
obtenus i I’aide des données provenant du grade 212. Les fonctions de transfert reliant
les variables de X aux variables de Y ne seront pas comparées, celles obtenues a 1’aide
de la méthode de Lakshminarayanan ayant un ordre au moins équivalent au nombre de
variables latentes. La comparaison des gains donnera tout de méme un bon apergu de

la performance de la méthode d’identification.

La premiére série de données du grade 607 a été analysée, en utilisant toutes les
variables de procédé. Tout comme dans Lakshminarayanan et al. (1997), 'ordre
maximal des numérateurs et des dénominateurs des fonctions de transfert internes est
de 2 et le retard maximal permis est de 20 périodes d’échantillonnage. Toutes les
variables latentes ont été utilisées, ’utilisation d’une partie occasionnant des erreurs
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lors du passage de I’espace latent aux variables véritables. La validation croisée n’a
donc pas été utilisée. Les gains suivants ont éé obtenus :

Les gains infinis sont certainement dus au fait que les données ne sont pas
stationnaires, tel que vu a la section 3.2. L’algorithme essaie donc d’identifier des
paramétres qui évoluent dans le temps. Donc, un des pré-requis de cette méthode
semble est qu’il faut que les données soient stationnaires. Le résultat est cependant
différent lorsque I'ordre maximal des numérateurs et dénominateurs des fonctions de
transfert internes est de 1. Dans ce cas, le gain K, est relativement bien identifié, mais

pas les autres. Un gain est méme de signe inversé (Ky2) :

003 -023
K”[-om 0,03]

L’identification a aussi été effectuée sur la deuxiéme série de données. Pour un ordre
maximal de 2, un gain infini est obtenu pour K;;. Le gain Kj; est quant a lui deux fois
plus petit que le gain identifié avec les données du grade 212 :

011 @
K ‘[-0,03 -0.23]

En restreignant I’ordre maximal 4 1 pour les numérateurs et dénominateurs, trois gains
infinis sont obtenus. On voit donc que [a procédure d’identification, avec les données
utilisée, est trés sensible 4 I’ordre maximal des fonctions de transfert internes. En ce
qui a trait au nombre de variables latentes, on a vu, dans I’exemple d’application, que
les gains identifiés avec une partie des variables latentes, bien que pas exacts, donnent
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tout de méme une idée des gains véritables. Un coup d’eeil au pourcentage de la
variance expliquée des colorants bleu et rouge dans I’analyse PLS statique montre que
ces deus variables sont tout de méme expliquées au dessus de 90%. Donc, en utilisant
seulement les 4 premiéres variables latentes, les résultats sont les suivants, pour la

premiére série de données :

Ko -0,03 -039
“1-004 0,04

L’examen des gains montre que seul le gain K, est dans le bon ordre de grandeur. Le
gain Ky est méme inversé de signe. Les résultats ne sont cependant pas cohérent avec
d’autres nombres de variables latentes. I faudrait donc trouver un critére permettant de

dire que ’on a assez de variables latentes et que 'identification est réaliste.

Etant donnés les résultats décevants avec les données du grade 607, des essais
d’identification sur des données du grade 212 ont aussi été effectuée. Bien que celles-
ci comportaient moins de variables, I'identification a été tentée afin de savoir si la
méthode pouvait identifier les gains obtenus par I’identification traditionnelle. Une
simulation utilisant toutes les variables de procédé sur la plage compléte des données,
ainsi que toutes les variables latentes a donné des gains infinis. En utilisant la méme
plage que celle utilisée lors de I'identification des fonctions de transfert G2 et G

(échelon sur le débit de colorant bleu), on obtient les résultats suivants :
o« =030
K=
[- 0,14 -0,56]

Donc, en ne regardant que les gains K2 et Kz, les résultats sont trés satisfaisants, Ki»
étant exact et K; ayant une erreur de 12%, ce qui est trés acceptable. En utilisant que
quatre variables latentes, on obtient :
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K- 0,03 -0,28
10,09 -052

Encore une fois, en n’utilisant que quelques variables latentes, on voit que le gain est
bien identifié. On profite ainsi du fait que le débit de colorant bleu est expliqué i 96%,
alors que les paramétres a et b sont expliqués respectivement a 56% et 66%. Donc, en
utilisant les résultats de la simulation de Wood & Berry, on peut voir que dans le cas
présent, cette analyse se tient et les présents résultats montrent que la méthode peut

fonctionner lorsque les variables de procédé sont suffisamment excitées.

Finalement, en utilisant la plage ayant servi & déterminer les fonctions de transfert Gy
et Gy), suite 4 un changement de débit de colorant rouge, on obtient les gains suivants

en utilisant la régression PLS dynamique, avec toutes les variables latentes :

K= 0,52 ~-4,00
019 321

Les gains Ky et K;; ont le bon ordre de grandeur, bien que le gain K3 soit deux fois
plus petit que celui déterminé de fagon conventionnelle. En n’utilisant que 4 variables
latentes, expliquant tout de méme 87% du débit de rouge et 85% du paramétre de
couleur a, on obtient :

0,03 -0,
K= 0,41
0,06 -137

On voit donc que dans ce cas-ci, le fait de prendre moins de variables latentes donne
des résultats moins convaincants que pour I’échelon sur le débit de bleu.



Les simulations et les résuitats obtenus ont soulevé quelques questions. Premiérement,
on peut se demander si la méthode PLS dynamique est & propos pour identifier des
modéles a I’aide d’un grand nombre de variables latentes. En effet, si ’on utilise toutes
les variables latentes, on obtient un systéme d’ordre au minimum égal au nombre de
variables latentes. La fonction de transfert reliant une entrée et une sortie réelle sera
donc de degré trés élevé, pour rien. On peut alors réduire le nombre de variables
latentes, mais il faut au moins que les variables d’entrée soient bien décrites
individuellement. De plus, lors de I’identification, il faudrait que les variables soient
excitées, de facon a avoir des coefficients représentatifs du systéme. De plus, une
variable possédant un faible w* devrait étre retranché de I’analyse, et un nouveau
modéle devrait étre obtenu. Ceci pourrait éviter que le modéle ne tienne pas la route.
Une bonne expérience serait nécessaire afin d’obtenir de bonnes données, et ayant des
relations de cause a effet. De plus, des perturbations déterministes amélioreraient
encore plus la colinéarité des t et des u, ce qui pourrait réduire 1’erreur d’approximation
entre les u réels et ceux modélisés a I’aide d’une fonction de transfert. La figure 3.29
illustre Papproximation en question. Comme on a pu le voir avec le systéme de la
colonne a distiller de Wood & Berry, I’erreur entre les scores w réels et approximés
n’est pas trés grande (Figures 2.5 et 2.6). Donc, des perturbations déterministes
amélioreraient peut-étre I'obtention des fonctions de transfert internes pour les
premiéres dimensions, a tout le moins. De plus, les coefficients de Q et W* auraient
un meilleur sens physique. Car pour I’instant, les coefficients de Q et W* sont
sensiblement les mémes que dans la cas statique (Figures 3.30 et 3.31). Donc, la
structure du modéle est toujours un peu fautive, et repose sur des coefficients qui
semblent inappropriés pour I’établissement d’un modéle causal.
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IV - CONCLUSION

Ce projet visait & obtenir un modéle pour ’application d’une éventuelle stratégie de
controle automatique. La méthode PLS dynamique était la méthode choisie pour
I"obtention de ce modéle. Les données de procédé ont premiérement été analysées de
fagon A connaitre certaines de leurs caractéristiques dynamiques. Cette analyse a
permis d’affirmer que les données de couleur n’étaient pas stationnaires. De plus, des

fonctions de transfert ont été identifiées de fagon conventionnelle.

Suite a cette identification conventionnelle, les données du procédé de couleur ont été
analysées a I'aide de la régression PLS. La premiére étude s’est faite en utilisant la
méthode PLS conventionnelle, afin d’avoir une idée des relations entre les variables de
procédé, et de vérifier certaines relations connues. Des prédictions ont été réalisées a
I’aide d’autres données, et les résultats se sont révélés décevants. En effet, la tendance
est quelquefois inversée. A titre de comparaison, les données ont été analysées a I'aide
de la régression PLS auto-régressive, en tenant compte du fait que les données étaient
dynamiques. Dans ce cas, les prédictions se sont avérées meilleures qu’avec la
méthode conventionnelle. Seul la prédiction du paramétre a n’a pas été améliorée a
I’aide de cette méthode. Il semble que le succés de cette méthode en prédiction repose
sur des poids élevés accordés par le modéle aux variables de couleur incorporées dans
la matrice X.

Finalement, lidentification de modéles dynamiques par la méthode PLS dynamique a
été tentée. Cette méthode s’est toutefois avérée peu performante, étant donnée
notamment la nature non-stationnaire des données disponible pour I’analyse. Il semble
que la méthode nécessite des données stationnaires. De plus, avec les données
utilisées, la régression PLS dynamique s’est avérée sensible au choix de 'ordre des

numérateurs et dénominateurs des fonctions de transfert internes.
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Suite A ce projet, les recommandations suivantes peuvent étre faites :

® [] serait intéressant de procéder a une identification conventionnelles de fonctions
de transfert dans de meilleures conditions d’acquisition de données et a I’aide d’une
expérience planifiée et sur une période assez longue. Des perturbations plus
significatives, mais toujours a l'intérieur des plages d’opération du procédé,
pourraient étre effectuées, de fagon a obtenir un meilleur rapport signal/bruit. De
plus, une fréquence d’acquisition plus rapide serait nécessaire, afin d’obtenir des

constantes de temps réalistes des phénoménes de changement de couleur.

® Toujours dans ces mémes conditions, une analyse PLS plus approfondie du procédé
de la couleur pourrait étre effectuée. Des données, obtenues a I'aide d’une
planification, permettrait peut-étre d’identifier d’autres variables importantes
influencant la couleur. De plus, I’information apportée par les produits chimiques
serait peut-étre intéressante pour un modeéle. Une fois un modéle obtenu, les
variables qui ne sont pas importantes pourraient étre éliminées, afin d’obtenir des
fonctions de transfert d’ordre raisonnable pour I'application d’une stratégie de
controle. De plus, avec une planification d’expérience, peut-étre I'utilisation de
seulement quelques variables latentes serait plus facile en ce qui a trait au passage

du domaine latent au domaine réel.

® [l serait intéressant de déterminer des critéres, a I'aide de données simulées,
notamment, afin de savoir quand il est possible d’utiliser un nombre restreint de
variables latentes sans perdre trop d’information lors du passage du domaine
latent au domaine réel. On pourrait ensuite appliquer ces critéres a des
variables provenant d’une expérience planifiée, et de 13, obtenir un modéle plus
compact.
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e FEtant données des contraintes de temps, le contrdle du procédé, a Iaide des

modeles identifiés de fagon conventionnelle, n’a pu étre testé. L’implantation
d’une stratégie de contrble avancée (DMC, par exemple) pourrait aussi étre
envisagée.  Cette stratégie serait intéressante étant donnée la nature
multivariable du procédé de la couleur. De plus, une telle stratégie permet
Pinclusion de contraintes sur les variables manipulées, étant basée sur un
algorithme d’optimisation. On doit souligner qu’une stratégie est maintenant
implantée pour le contrdle de la couleur chez Temboard. Cette stratégie, selon
les informations disponibles, est basée sur deux controleurs PID, chacun
controlant un paramétre de couleur (a ou b), sans tenir compte des interaction
inhérentes au procédé de couleur, interactions qui seraient prises en
considération par une stratégie de contrdle prédictif. Le réglage des paramétre
s’est fait de fagon itérative, sans modéle. Selon les données obtenues en boucle
fermée, le procédé est bien contrdlé, mais il serait peut-étre possible de faire
encore mieux avec une stratégie de controle avancée. De plus, la commande
doit se faire en boucle ouverte lors de grandes perturbations sur les coucheuses.

Une stratégie avancée pourrait peut-étre mieux performer dans ce cas.
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ANNEXES

ANNEXE I - RESULTATS COMPLEMENTAIRES

Résultats de modélisation, deuxiéme série de données, régression PLS statique
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Var. lat. |R? (R )am |R} (R})wm  |Q (Qeum
1 0.341 0.341 0.694  |0.694  |0.660 0.660
2 0.119  |0.460 0.035 0729  l0.117 0.700
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Scores des 2 dimensions du modéle, deuxiéme série de données, régression PLS statique
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Résultats de modélisation, deuxiéme série de données (augmentée)
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Var.lat. |R? (R)am |R? (R)am  |Q (@am
1 04060 {04060 |0.7675  [0.7675  [0.741 0.741
2 0.1015 {05076 [0.0506 |0.8181  [0.199 0.793
3 0.0864  [0.5940  [0.0304 [0.8485  |0.158 0.826
4 0.0481  [0.6420 [0.0276 [0.8760  [0.158 0.853
5 0.0410 (06830 [0.0243 {09003 [0.137 0.873
6 00335 [0.7165  [0.0131  [0.9134  |0.095 0.885

Scores des 4 premiéres dimensions, deuxiéme série de données, régression PLS auto-régressive
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'Université du Québec en Abitibi-Témiscamingue

ABSTRACT

This paper presents a model to describe the influence of process variables on colour and brightness of
a paperboard. Conventional identification and dynamic partial least squares (PLS) regression modeling
technique are used for this purpose. Some process insight is gained. However, PLS models obtained
showed poor predicting capability.

INTRODUCTION

Colour is an important feature of fine white coated cardboard. Uniformity is critical and reflects
overall cardboard quality. High variability often results in retuns from customers or in lower revenues
due to off-specification product. However, colour is still controlled in an open-loop way, based on
operator knowledge of the process. It is thus the aim of this project to develop a dynamic model to
predict colour and to design a multivariable controller.

PROCESS OVERVIEW

Temboard, the industrial partner in this project, manufactures over 60 grades of three-ply white
paperboard at its mill in Témiscaming, Quebec. This paperboard has many uses, such as cigarette packs
and business cards. It is manufactured on a triple fourdrinier-type paper machine. The top and bottom
plies are made from 100% virgin bleached kraft pulp. The filler ply is made from BCTMP produced on
site and also contains broke and rejects from off-specification production. BCTMP induces a yellowish
hue due to the remaining lignin in the pulp. The two outer plies do not totally mask the yellow hue of the
filler ply, therefore introducing the need of a corrective action, with the addition of blue and red dyes in
the pulp. At the time of data collection, this corrective action was done manually by adjusting dye
flowrates to the filler ply-stock, based on operator knowledge of the process.

COLOUR SPACE DESCRIPTION

Colour perception is not a rational subject therefore varying from one individual to another. In order
to reduce perception differences, colour spaces are used. In this project, the colour space is the Hunter L,
a, b space (Fig. 1). Parameter L is the luminance, varying from 0 (black) to 100 (white). The a
parameter is for the green-red hue and the b parameter is for the blue-yellow hue. L, a, b parameters are

functions of spectral power distribution of illuminant, spectral reflectance of paperboard and appropriate
colour matching functions [{].

* Recueil de prétirés, conférence Control Systems 2000, Victoria, B.C. (Canada)
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Fig. 1. Huater L, a, b colowr space

EFFECT OF FURNISH COMPOSITION

Colour can be influenced by many process variables. In a previous study [2, 3], some process
variables were examined in order to determine their influence on colour and on brightness of the filler
ply. This analysis was done using a statistical design of experiments. Four variables (pulp composition,
cationic cofactor, AKD and starch) were found to have a significant influence on brightness, pulp
composition influencing the most; a higher content of BCTMP giving a brighter pulp. Increased contents
of cationic cofactor, AKD and starch had negative effects on brightness. For the luminance parameter,
increases in one of the four significant variables had a positive effect. Finally, increases in one of these
four variables accentuated the vellow hue of the filler ply. Although chemicals could not be used for the
present study, consistencies and pulp flows could help in the analysis. The same study also showed that
consistency had an influence on dye retention. Also, it has to be highlighted that the present study deals
with the colour of the three plies together, at the end of the paper machine. Some effect highlighted in
{2, 3] can then be attenuated by the top and back ply.

VARIABLES USED FOR MODELING

Process variables used for the analysis are presented in Table 1. Machine speed was also available,
but was not included in the study since it did not vary. Process data were collected on a Measurex
system, at each 20 seconds, while colour data were collected using a Measurex Precision PLUS colour
sensor, model 2250, using illuminant C, observer 2°. Also, since the aim of this project is to develop a
dynamic controller, many other potentially interesting variables could not be used, since they were
collected from another acquisition system at too low a frequency or simply not available.

TABLE 1: PROCESS VARIABLES
i- coating total coat weight (g/m’)
2- redpv red dye flow (L/min)
3- bluepv blue dye flow (L/min)
4- topcons 1op ply consistency (%)
5- topwwcons top ply white water consistency (%)
6- topret top ply retention (%)
7 - fillcons filler ply consistency (%)
$- fillwwoons filler ply white water consistency (%)
9- fillret filler ply retention (%)
10- backcons back ply consistency (%)
11- backwwcons | back ply white water consistency (%)
12- backret back ply retention {
13- plywtactl top ply weight (g/m
14- plywtact2 filler ply weight (g/m’)
15- plywtact3 back ply weight (g/m®)
16- tplyflow top ply pulp flow (L/min)




17- fplyflow filler ply pulp flow (L/min)

18- bplyflow back ply pulp flow (L/min)

19- topcoatflow | top ply coating flow (1/min)

20- bakcoatflow | back ply coating flow (E/min)

21-luminance (Y) | Hunter L colour parameter (—)

22- colora (Y) Hunter a colour parameter {(—)

23- colorb (Y) Hunter b colour parameter (—)

24- brightness (Y) | (% 1SO)

DATA PROCESSING

X and Y data sets were autoscaled prior to analysis. Also, severe outliers were deleted for the
analysis. These outliers usually occur when coater rolls are removed to be cleaned. Since this cleaning
results in variations in colour that can’t be compensated by adding dyes, these events were not taken into
account for the modeling process and resulting data were thus considered as outliers. Data collected
right after breaks were also discarded. Finally, problems in the data acquisition procedure and time
constraints made it impossible to build a “good” data set for the modeling step. The following resulis
will then have to be taken as “case specific” instead of being a good indicator of the overall behaviour of
a specific grade.

PLS ALGORITHM

Process data are usually highly ill-conditioned. This is why the partial least squares (PLS) algorithm
is used here to obtain 2 model. This technique summarises the data while maximising the cotrelation
between X and Y blocks. X and Y are then expressed as

X=.§l(ip;r+E=TPT+E (1)
i=|

a
Y= igluiqiT +F=UQT +F @

where t; are latent vectors calculated sequentially using the NIPALS algorithm [4] and validated by cross
validation [5). The version of the classical NIPALS algorithm used is the one presented in [6]. The final
model can be expressed by

Y=XB+F 3
where {7]

1
p=wTw] QT @

The method that is to be used is the dynamic version of the PLS as presented in [8]. This method uses
a dynamic relation (ARX, for example) between the ¢’s and the u’s to predict dynamics as seen in Fig.2,
where S, and Sy are diagonal scalingrmatrix, G(z) is a diagonal matrices of dynamic relations relating t;
tow; (i=1, 2, ..., a Iv’s) and W*=W(P'W)"'

—9S! - W FRIGr-» QT -3 Sy [
Xian X T 1 Y Yeu

Fig. 2: Dysamic modeling strategy

Transfer functions are thus obtained by:
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Thus, dynamic relations may or may not contribute to the resulting transfer function, depending on
the magnitude of individual q and w*. It is noteworthy that with this method, variables are do not need
to be lagged when building the PLS model. Dynamics are included in the G(z) matrix.

CONVENTIONAL IDENTIFICATION RESULTS

The following gain matrix presents process gains (Ab/L/min) between variations in a and b colour
parameters and dye flowrates. The process was found to be nonfinear, so these gains are presented to
give an idea of the respective amplitude of the effect of dye flowrates on colour a and b parameters.

Abf (-27 -086)]A bluedye ©)
Aa| {-14 247 || Areddye
Regarding time delay, autocorrelation analysis gave a time delay of around five sampling periods, i.e.
1 min 40 5. This delay of course depends of dye flowrate, machine speed and pulp flowrate. For the

study presented in this paper, based on the machine speed, the part of the delay which is known is 1
minute. Finally, time constants are between 0.5 and | minute.

PLS RESULTS

Interpretation of a model is a crucial step in modeling. PLS modeling permits such an interpretation,
by examination of the model’s underlying structure. A model was thus first developed using flowrates
data lagged according to machine speed (three sampling periods), although no significant difference was
observed in loadings and weights with no lag included. All variables on hand were considered in the
modeling step, in order to have a first representation of the influence of each variables on Y. Four latent
variables were able to explain 63% of sum of squares in the X block and 72% in the Y block. The
number of variables was determined by cross-validation [5].

TABLE 2. % EXPLAINED SUM OF SQUARES

X-Block Y-Block

LV # |ThisLV | Total ThisLY | Total

1 3140 3140 46.63 46.63

16.94 48.34 13.80 60.43

2
3 6.63 5497 8.43 68.91
4 7.94 62.91 2.85 71.76
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Fig. 3: Explained sum of squares for X variables (4 lvs model)

Looking at the w*q plot (Fig. 5) can be helpful in interpreting the model. One can see the influence of X
on Y variables by looking at the (w*), representing the correfation between X variables in every
dimension and the U-scores (Y, indirectly). It is also possible to know how X variables correlate with Y.
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Fig. 4: Explained sum of squares for Y varisbles (4 vs model)
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Fig. S: w*q plut of PLS model for 1 and 2™ dimension

In the first dimension, high w* are given to “bluepv”, “redpv”, “fplyflow”, “plywac12”, “fillcons2”,
“backret” and “backwwcons™. Considering blue and red dye flowrates, these can explain variation in
colour parameters a and b, but should not influence brightness and luminance. We can see in Fig. 3,
presenting the cumulative explained sum of squares for X variables, that dye flowrates variations are
well explained by the first dimension. But seeing that only 17% of the variation in the blue-yellow hue
(“colorb”, Fig. 4) is explained by the first PLS dimension indicates that something else is influencing the
b parameter. Consistency variations might have an effect on colour, since it was shown in [2, 3] that
consistency had an effect on biue dye retention.

One of the variables that might explain the variation in luminance and brightness might be
fluctuations in the filler ply pulp flow (by influencing ply weight). By looking at various data sets,
variations in pulp flowrates (thus ply weight) seemed to have an influence on brightness and luminance.
This might be reflected in the fact that “plywtact2” has a moderate w* in the first dimension. But this
cannot be confirmed and variations in brightness and luminance seem to come from other variations, that
can not be explained by the variables at hand (residual lignin content, for example). Coating shouid
explain some variation in the brightness, but its contribution is negligible to the first PLS dimension and
only moderate to the second PLS dimension. Finally, back ply white water consistency is quite prevalent
in the first dimension, but this is questionable since the back ply is not seen from the colour scanner and
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thus should not correlate with Y parameters. The last two dimensions of the model (not shown) show
that the remaining sum of squares of colora and colorb are explained again by blue dye flowrate and
variations in the top and filler ply flow.

Fig. 5 also shows a strange negative correlation between red dye flow and the a parameter. As seen
above (eq. 6), they should cluster together since the transfer function has a positive steady-state gain. It
was found by looking at process data that the blue dye flow seemed to have a greater influence on the a
parameter than the red dye itself. We can then question the ability of obtaining good process gain signs
by applying the PLS dynamic identification method for this particular data set. Indeed, if the underlying
PLS structure is questionable, using this method with the present data should not give satisfying results.
Further analysis, including variable pruning, might help in developing a more coherent model.

Prediction was attempted with this model on another run of the same grade, giving poor prediction.
Investigation revealed that the predicted run was dominated by a variation in the first dimension in the
filler ply consistency and filler pulp flow. This certainly explains why prediction is not very good and
could be improved. In our case, the modelling process looks sensilive to what happens in a particular
run. A model cbtained with the help of a designed experiment might be less sensitive in this case

CONCLUSION

An attempt was made to develop a dynamic PLS model for the influence of process variables on
colour L, a, b parameters and on brightness. A model was obtained, but showed poor prediction
capability. This might be explained by some variables covering the influence of other variables. Due to
this problem, dynamic modelling was not attempted, as a better modet is needed beforehand to catch the
dynamics of the system. This will be attempted by pruning scme variables out of the model. Having
more data might help as well. Then, transfer functions obtained from conventional identification and
dynamic PLS will be compared.
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