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Puisque personne ne dit cela, je vais le dire, moi, je vais le crier. Je suis 

tellement certain que M. Manet sera un des maîûes de demain, que je 

croirais conclure une bonne affaire, si j'avais de la fortune, en achetant 

toutes ses toiles. Dans dix ans, elles se vendront quinze et vingt fois plus 

cher, et c'est alors que tableaux de quarante mille francs ne vaudront pas 

quarante francs. 

- Émile Zola, ~'Bvénement, 7 mai 1886 

Mais nous autres hommes, nous sommes ainsi faits: nous nous révoltons, 

indignés et furieux, contre les maux médiocres, et nous nous courbons en 

silence sous les maux extrêmes; nous supportons, non pas résignés, mais 

stupides, le comble de ce que, dans les commencements, nous avions 

qualifié d'insupportable. 

- Alessandro Manzoni, Les Fiancés (1 823) 

Cette tête de l'homme du peuple, cultivez-la, défrichez-la, arrosez-la, 

fécondez-la, dclairez-la, moralisez-la, utilisez-la; vous n'aurez pas besoin 

de la couper. 

- Victor Hugo, Claude Gu= (1834) 

Ail models are wrong, but some are useful. 

- George E.P. Box 
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La couleur est une propriétd importante d'un carton multicouche. L'uniformité de cette 

caractéristique est cruciale, une trop grande variabilité résultant en une perte de 

rentabilité pour un imprimeur. Un bon contrôle de cette caractéristique est donc 

nécessaire. Cependant, malgré plusieurs études et percées dans ce domaine, certaines 

compagnies papetières adoptent encore une stratégie de contrôle manuelle, par laquelle 

un opérateur ajuste lui-même des ddbits de colorants aEin de contrer les variations de 

couleur de la feuille produite. C'est notamment le cas de Temboard, partenaire 

industriel du projet. 

Le carton fabriqud par Temboard est utilisé dans la hbrication de paquets de cigarettes, 

de cartes d'affaires et d'emballages divers et est fait de deux types de pâte. La couche 

médiane est la source principale des fluctuations de couleur, étant fabriquée de pâte 

chimico-thermomécanique blanchie (PCTMB), possédant ainsi un aspect jaunâtre ne 

pouvant être complètement m a ~ ~ u 6  par les deux couches extérieures. Ce problème est 

corrigé à l'aide de colorants rouge et bleu ajoutés à la pâte, afin d'atténuer les 

fluctuations de couleur et de donaet un aspect plus blanc au produit M. Or, ces 

colorants sont ajoutés de façon manuelle, sebn l'expérience des opérateurs de l'usine, 

occasionnant des variations indésirables dans l'aspect du produit final. L'implantation 

d'un contrôle automatique est donc souhaitée. 

Aiin d'implanter une sttatdgie de mrSk efficace, un modèle est nécessaire. Étant 

do& la difficulté de développer ua die d y t i q u e  pour la couleur, un modèle 

statistique a été développé, basé sur la Vanation de donuées de procédé. La régression 

PLS a été utilisée afin de déveIoppet ce modele. Des données provenant notamment 

des ddbits de pâte des trois couches, des consistances et des débits de couleur ont été 

utilisées dans le développement de ce modhle. Le d & l e  ainsi obtenu représente bien 

les données utilisées pour la dlisation,  tiiais est cependant moins performant pour la 



prédiction. De plus, la contribution de certaines variables au LaOd6ie sont diflliciies & 

expliquer. Diverses stratégies visant Pamélmration des performances du modéte en 

prédiction ont étk expiordes. Les performances sont cependant restées similaires. 



ABSTRACT 

Colour is an important pperty of a muhiply paperboard. Uniformity is criticai, tw 

much variability resuking in profit losses for printers. ûood colour coatrol is thecefore 

necessaryess(uy However, although many studies have been conducted on the subject, some 

manufacturing companies still use open loop strategies to control colour fluctuations. 

It is notably the case of Temboard, the project's industrial partner. 

Temboard's cardùoard is used in the manufacturing of various packaging and 

commodities (cigarette packs, business cards) and is made of two types of puip. The 

middle ply is made of bleached chemithermomechanical pulp (BCTMP) a d  is the 

main source of colour fluctuations, having a yellowish hue. This variability cannot ôe 

reduced by the top and back plies. Therefore, red and blue dyes are added IO the 

furnish pulp in order to maintain colour specifications within acceptable operating 

limits. However, these dyes are added empirically, based on the operator's knowledge 

of the process and significant variability still prevails. Automatic control is thus 

desired. 

In order to implement a gwd control strategy, a rnodel must ôe avaiiable. Since 

developing a mode1 base on fint priaciples is not an easy task whn deaiing with 

colour, a statistical model was obtained, based on industrial data, ushg PLS regression. 

Data available fiom pulp flows, consistencies and dyes flows, arnong others, were used 

in this model. This model is able to accurately represent the data used for modeling, 

but shown problems in predicting new data Modifications were made to improved 

prediction, but performances remained unchaaged. 
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1 - INTRODUCTION 

La couleur est une propriété importante d'un carton multicouche. L'uniformité de cette 

caractéristique a un effet sur la perception de la qualité globale du carton produit. En 

effet, la couleur est la première chose sur hquelle nous sommes renseignés et on 

imagine difficilement comment un carton peut avoir des propriétés physiques 

uniformes si la variation de couleur est ttop grande. De plus, une grande variabilité de 

la couleur oblige un imprimeur A réajuster fréquemment son procédé d'impression, 

résultant en une perte de temps et de rentabilité, incitant ainsi ce dernier à changer de 

fournisseur. Un bon contrôle est donc crucial afin de réduire la variabilité de cette 

caractéristique. 

Le contrôle de la couleur a déjà été étudie dans le passé, notamment par Bélanger 

(1969), Chao et Wickstrom (1970) et Vincent et ai. (1974). Cette problématique est 

toujours présente, comme en font hi de récentes études (Vincent a al., 1992, 

Shakespeare et Shakespeare, 1998; Masmoudi, 1999). Malgr6 ces études et les percées 

dans ce domaine, certaines compagnies adoptent encore une stratégie de contrôle 

manuelle, par laquelle un opérateur ajuste lui-&me le débit des colorants afin de 

contrer les variations de couleur. C'est notamment le cas de Temboard, partenaire 

industriel du projet. 

Le carton fabriqué par Temboard est utiljsé dans la hbrication de paquets de cigarettes, 

de cartes à'aûiaires et d'embaIlages divers. Ce carton est îàit à partir de deux types de 

pâte. Les couches inférieure et supérieme sont fibriquées de pâte kraft, aux propriétds 

bien contrôlées. La couche médiane, source phipaie des fluctuations de couleur, est 

quant à eiie tiibriquée de pâte chimico---que blanchie (PCIIIû)). Ce type 

de pâte contient une part appréciabIe de lignine résiduelle, d'où la couleur jaunâtre de 



la couche médiane. De plus, les couches inférieures et supérieures ne masquent pas 

compléternent les variations de wuleur de k couche médiane. Afin de contrer ce 

problème, des colorants rouge et bleu sont ajoutés, afin de corriger les fluctuations de 

couleur et de donner un aspect phis blanc au produit hi. Or, ces colorants sont 

ajoutés de façon manuelle, selon L'expérience des opéraieus de i'usine, occasionnant 

des variations indésirables dans l'aspect du produit final. L'implantation d'un contrôle 

automatique est dom: souhaitée. 

Afm de réduire la variabilité dans la couleur du produit, une stratégie de contrôle doit 

être implantée. Cette stratdgie se basera sur un madéle. Or, dans le cas de la couleur, il 

est dificile d'obtenir un modèle thbrique, basé sur des phénomènes physiques. Le 

modèle développé sera donc basé sur des méthodes statistiques multidimensionnelles, à 

l'aide de données provenant d'un procédé de tàbrication de carton muhicouche. Plus 

particulièrement, la régression PLS dynamique sera utilisée. L'objectif de ce projet est 

donc : 

obtenir un modèle dynamique de la couleur 

Suite au développement de ce d k ,  un contrôleur sera développé par une tirme 

externe (Automatismes Syt-M inc.). 

Le procédé de fabrication du carton T m W  (Cabos, 1998; Ivanov, 2000b) est 

illustré à la figure 1.1. La pâte CTMB est produite sur le site de Tembec, à L'usine 

Temcell. La pâte kraft est quant il e k  présente en forme de balle et dhée 

consistance désirée. De plus, divers produits chimiques sont ajoutés ii la pâte, a h  de 



lui conférer les propriétés désirées. Ces deux types de pâte sont acheminés B la 

machine à papier de Temboard, de type fourdrinier triple. La pâte de la couche 

inférieure est premièrement d i s t r i i  sur la table plate, suivi de la couche médiane et 

supérieure. Le carton passe dans une section de presses a h  d'enlever une partie de 

l'eau et est ensuite acheminé à une section de séchage. Finalement, le carton est 

calandré et est ensuite enduit de sauce de couchage, il l'aide de trois coucheuses, 

répondant ainsi aux besoins spécifiques des imprimeurs. Deux coucheuses peuvent 

traiter la couche supérieure et une traite la couche Uiférieure du carton. 

Figure 1.1 Procédé de fabrication de carton de Temboard (Ivanov, 2000b) 

1.4 - LA COULEUR 

La couleur est le résultat d ' m  perception sensorielle de ce qui nous entoure, constituée 

de trois éléments : un objet, une source lumineuse et un observateur. Certains de ces 

éléments peuvent influencer la couleur perçue, en plus de tàcteurs psychologiques 

(Popson et ai-, 1996). Premièrement, h source d'éclairage influencera la couieur, selon 

sa distriution spectrale. Ensuite, la condition de i'œil de i'observateur, ainsi que son 

âge, ont un rôle sur la perception. En effet, de 7% à 10% des hommes et 45% des 

femmes sont daltoniens, alors que l'âge a pour e&t de jaunir les couleurs. De plus, 



l'entourage d'un objet, sa taille, la pmximitd avec un autre objet du même type ainsi 

que le temps d'observation (0ccasioaoant la persisiance rétinieme) sont autant de 

facteurs influençant la couleur. Fidement, au niveau des écarts de couleur, l'humeur 

a un rôle sur le seuil d'acceptabilitd. fl est donc nécessaire de mesurer la couleur a 

l'aide d'un système objectif, de façon h pouvoir s'assurer que le carton produit est de 

couleur uniforme ou, dans le cas contraire, d'y remédier ou de remettre en pâte le 

carton plutôt que de le vendre a un client. 

1.4.1 - Facteur de réflectance spectrale 

Le premier élément du triplet de la couleur est un objet a observer. La lurniére 

incidente sera absorbée ou réflkhie par ce objet, ce qui peut être caractérisé par une 

courbe spectmphotométrique. Cette courbe est le tmé de la Eraçtion réfléchie de 

l'énergie incidente en fonction de la longueur d'onde, dans le domaine visible (380 a 

780 nm). Cette caractdristique des objets peut être mesurée par un spectrophotomètre, 

qui compare la réfiectance de l'objet en question a celle d'un diffiseur parfait. 

L'interprétation de cette courbe n'est cependant pas chose facile, comme on peut le 

montre la figure 1.2, présentant la courbe de réflectance spectrale d'un citron. 11 est en 

effet surprenant de vou qu'une quantité importante de rouge soit réfléchie. 

Figure 1.2 Spectre de r&flectimce d'un citron (Minolta, 1994) 



1.4.2 - Courbe spcetnk d'un iüuminait or  d'une source 

Le second élément du ûiplet de la couleur est une source de lumière. Une source 

lumineuse est un émetteur physique de iumiére, par exemple, une ampoule à filament 

de tungstène, un néon ou le soleil, Un objet o k w 6  à l'aide de rune ou i'autre ces 

sources peut avoir une couleur différente, étant donnée une distribution spectrale 

caractéristique ii chacune. C'est pourquoi i'utilisation d'illuminants est nécessaire, afin 

d'avoir des sources (( normalisées ». Un illuminant n'est pas une source physique, mais 

une distribution spectrale se rapprochant d'une source connue et est utile dans la 

formulation des couleurs, dépendant des lieux et des conditions d'utilisation d'un 

produit. II existe plusieurs illuminants, les plus communs étant ceux de type A, C, D et 

F (Figure 1.3). L'illumiaant A représente une ampoule incandescente, ayant une 

température corrélée de 2855.6 *K. Les illuminant C et D représentent la lumière du 

jour, déterminée ii l'aide de phisieurs mesures prise de par le monde, à différentes 

périodes de l'année. L'illuminant F se rapproche quant à lui de la lumière émise par 

une lampe fluorescente. On peut donc voir qu'une feuille de papier éclairée à partir 

d'une ampoule de tungstène pourra avoir une teinte rosée, alors qu'elle aura une teinte 

bleutée si regardée ii la lumière du jour (Popson et al., 1996). 



Longueur bande (mn) 

Figure 1.3 Énergie spectrale relative de cefiains illumitianis (taprés Judd et Wyszecki, 1975) 

1.4.3 - Colorimétrie 

Le dernier élément du triplet de la couleur est l'observateur, l'œil, modélisé a l'aide de 

la colorimétrie, Celle-ci est basée sur la théorie des trois composantes, stipulant que 

l'œil possède des récepteurs percevant trois coukm primaires (rouge, vert et bleu) et 

que les coulem perçues sont un mélange de ces trois couleun (Minolta, 1994). Cette 

science est a la base de la représentation de la couleur à i'aide d'espaces. Les 

sensibilités des récepteurs de l'œil ont été reproduites en déterminant 

expérimentalement des courbes de sensibilité appelées fonctions colorimétriques. Ces 

fonctions colorimétriques ont éîé déterminées en utilisant un faisceau monochrome et 

en essayant de le reproduire en ajistaat l'intensité relative de trois tàisceaux, rouge 

(595 m), vert (557 m) et bku (455 m). Eues représentent, après transformation 

linéairey l'intensité de chaque fiiisceau nécessaire à i'obtention du fàisceau témoin 

(Popson et al., 19%) et reproduisent la perception qu'a i'œil des couleurs qu'il voit. 



Ces fonctions E, y, et if, représentent respectivement le muge, le vert et le bleu 

(Figure 1.4). 

-r *ad. im) 

Figure 1.4 Fonctim colonmém*ques (d'aprés Judd et Wyszecki 1979 

1.4.4 - Espam couleur 

La couleur étant une perception influencée par plusieurs facteurs, l'établissement de 

systérnes de coordonnées est nécessaire atk de la quantifier. Le premier effort en ce 

sens a été effectué par i'artiste AH. Munsell en 1905. Dans cet espace, les couleurs 

sont caractérisées par leur teinte, luminance et saturation (Figure 1.5) et sont exprimées 

selon la nomenclatm H VIC (H = hue (teinte), V = M m e 1  value (luminance), C = 

chroma (saturation)). 



Plus tard, le besoin d'avou des espaces de couleurs numériques est apparu, notamment 

pour le contrôle de la qualité. Les mesures suivantes ont donc été proposées : 

Ces équations représentent la sommation du produit des éldments du triplet de la 

couleur, soit la disttiution spectraie d'une source lumineuse S(Q, les fonctions 

colorim&iques (E, y et Z)  et la réflectance spectrale R(1) d'un objet. 

L'interprétation des mesures X, Y, Z n'étant cependant pas très intuitive, la Commis- 

sion Internationale de l'Éclairage (CE) a conçu le premier espace couleur numérique 



en 193 1, soit k diagramme de chromaticité CIE 193 1 x,y (Figure 1.6). Les couleurs 

sont exprimées selon le triplet Y, x, y. Y représente la rétlectance spectrale (%) et 

Figure 1.6 Espace CIE 1931 ~ , ~ ( ~ i n o l t a ,  1994) 

Cependant, plusieurs industries ont besoin d'espaces permettant de mesurer les écarts 

de couleur en combinant une diffërence de luminance et de saturation (Wyszecki et 

Stilles, 1967). De plus, les écarts numériques du diagramme CIE 1931 x,y ne 

correspondent aux mêmes écarts de perception. Ceci a mené a la création de l'espace 

Hunter L,a,b en 1948 (Figure 1.7). Cet espace tridimensiomet, basé sur le p ~ c i p e  des 

couleurs antagonistes, est utilisé par Temboard. Le paramétre L est celui de la 

luminance, le paramètre a indique la teinte muge-verte et le paramèîre b indique la 

teinte bleue-jaune, exprimés comme suit (Popson et al., 1996) : 



ou Xo, Yo, Zo, Ka et Kb sont des constantes dépendant de la source lumineuse et de la 

façon qu'est observé l'objet. 

À noter que d'autres espaces couleur existent, propres à certaines industries (CIE 

L*a*b*. C E  L*C*h et CIE L*u*vL). Les écarts de tolktnce dans l'espace Hunter 

L,a,b sont donnés comme suit : 

11 est à souligner que la motivation principale de cet espace couleur est d'avoir un AE 

unitaire identique dans cbaque région de l'espace. Or, cet objectif est rarement 

atteignable, rendant ainsi l'utilisation d'écarts de tolérance basés sur AE peu 

recommandable. Des écarts de tolérance sur chaque mesure individuelle sont dans ce 

cas souhaitable (Popson et al., 1996), tel qu'en vigueur chez Temboard. D'autres 

méthodes sont aussi en vigueur, notamment l'utilisation d'ellipses tridimensionnelles 

définies par la saturation, la teinte et la Iuminance. Ces eUipses sont ajustées à l'aide 



d'un ratio himinancelsahuation et d'un tàcteur commercial d'acceptatb0i& et sont très 

utilisées dans le milieu du textile. 

1.4.5 - Appareils commereiaux 

Deux appareils sont disponibles commercialement pour la mesure de la couleur. Le 

premier est le colorimètre, un appareil de mesure surtout utilisé en contrôle de qualitd, 

afin de s'assurer que les écarts de t o h c e  sont respectés. La source utilide est une 

source de quartz-tungstène, représentant assez fidélement L'illuminant C. Les 

récepteurs tiltrent la couleur selon les fonctions de sensitivités spectrales rendant 

impossible la prédiction du métamérisme (variation de la couleur due à la source 

lumineuse). On peut choisu l'espace dans lequel sera exprimée la couleur. 

Le second est le speçtrophotomètre avec lequel est obtenue une courbe de réflectance 

spectrale. C'est ce type d'appareil qui est utilisé par Temboard. La source de himiére 

utilisée est une source de xénon, filtrée adéquatement pour représenter les iHwninants 

C ou D65. A l'aide de cet appareil on peut obtenir des mesures de couleur selon 

plusieurs espaces. De plus, il est possible de calculer des paramétres de couleur selon 

plusieurs illuminants a l'aide de transformations mathématiques, permettant ainsi de 

prédire le métamérisme. Le spectrophotomètre est nodernent utilisé dans la 

formulation de couleurs, notamment pour des encres ou teintures. 

1.5 - VARIABLES INFLUENTES SUR LA COULEUR 

Plusieurs variables de procédé peuvent idluencer la couleur d'un carton. Dans une 

étude antérieure, les variables hhençant la couleur de fa couche médiane du carton 

trois couches produit par Temboard ont été identifiées (Cabos, 1998). Cette étude a été 

menée à l'aide d'un plan statistique factoriel de niveau IV, comprenant huit facteurs et 

deux modalités. Les facteurs ont été déterminés à l'aide des ingénieurs de procédés de 



l'usine Temboard, en considhnt ce qui varie significativement d'un grade à l'autre, ou 

pouvant potentiellement avoir uae inmience sur la couleur. Ce plan permettait de 

distinguer tous les effets principaux. Les huit hteurs considérés étaient : 

Qualité des fibres (pâte en balle vs pâte fiaiche) : La PCTMB est disponible sous 

forme Mche, ou en balle, lorsque la premiére ne possède pas les caractéristiques 

désirables. 

Degré de ramage : Les cartons produits par Ternboard peuvent être classés en 

deux grandes catégories, soit les cartons couchés et les cartons de couverture 

(linerboard). La principale différence entre ces deux catégories de carton est le 

degré de raftimage, la carton couché étant r a f f i  davantage que le carton de 

couverture. 

Composition de la pâte : La composition de la pâte est partagée par la PCTMB, de 

la pâte recirculée et de la @te multiîibre (mélange de pâte CTMB et recuculée). 

Amidon cationique : Agent de liaison permettant de renforcer les liaisons entre les 

fibres, augmentant ainsi les propriétés mécaniques du carton (éclatement, longueur 

de rupture, cohésion interne, rigidité). 

AKD : L'AKD (AlAyl Ketene Dirner) est un agent d'encollage, permettant 

d'améliorer les qualités hydrophobes du carton. 

Percol : Polymère neutralisant ies charges anioniques à la surfàce des fibres et des 

additifs. Il fàciiite le rapprochement des fibres entre elles et des tibres avec les 

additifs. Ce polymère entraine h formation d'amas de nbres et d'additifs. 



7. Bentonite : Pol* amphotère, possédant deux charges à sa surface. Il permet de 

structurer les flocs entre eux, améliorant ainsi la rétention des fibres. 

8. Alcoûx: Agent coagulant cationique, neutralisant les colloïdes anioniques, 

améliorant ainsi l'efficacité des autres agents de rétention. 

Les modalités des facteurs étaient comprises à l'intérieur des plages d'opération du 

procédé. Les résultats de ce plan fiactionnaire ont permis d'isoler quatre fhctews 

influençant sigdicativement la couleur et le blancheur, soient Iri conceniration en 

amidon cationique, en Alcofix, en AKD et la composition de la pâte (h t ion  de 

PCTMB). L'influence de ces facteurs sur les paramètres de couleur et la blancheur 

étaient la suivante : 

Blancheur: Les quatre facteurs avaient uoe influence sur la blancheur, la 

composition de la pâte ayant le plus grand impact. Une augmentation de 20% du 

contenu de la PCTMB résulte en un gain de deux points de la blancheur. Les trois 

autres variables ont une infiuence négative, la plus grande des trois étant celle de 

1'Alcofix. 

Luminance : L'effet des quatre variables sur la luminance est sembiable a celui de 

la blancheur, mais moins prononcé. Le facteur dominant est toujours la 

composition de la pâte. 

Paramètre a : Daas le cas du paramètre de couleur a, le seul facteur influençant 

signiticativement ce Weur est k composition de la pâte, une augmentation du 

contenu de PCTMB donnant une teinte plus verte à la couche médiane. 

Paramètre b : Dans le cas du paramétre 6, une augmentation de l'un ou L'autre des 

quatre Weurs accentue la teinte jaune de la couche médiane. 



Ce travail a finalement permis de ddmontrer que L'addition d'un colorant bleu était un 

moyen efficace de corriger les variations de couleur. Une corrékation a aussi été 

développée afin d'estimer la rétention du colorant bieu. Le ddveloppement de cette 

corrélation a mené à la conclusion que la rétention du colorant augmentait de paire avec 

la concentration de ce dernier ainsi qu'avec h rétention des fibres. 



De nos jours, les usines sont équipées d'ordioateurs et de systèmes d'archivage de 

données recueillant ii intervalles réguliers une Foule d'information relatives aux 

diverses variables de procédé. II est cependant difacile de s'y retrouver parmi toute 

cette information et de l'analyser convenablement. Traditionnellement, les données de 

qualité sont affichées sur des chartes de controle, en considérant que les variables ne 

sont pas corrélées, ce qui est rarement le cas. En effet, plusieurs des variables de 

qualité d'un produit peuvent être corrélées, corrélations pouvant être issues de relations 

physiques connues ou non. Traiter ces variables comme si elles étaient inddpendantes 

peut dans ce cas mener à de mauvais diagnostiques sur le produit final (Kourti et 

MacGregor, 1995). Cette pratique est malheureusement courante dans plusieurs 

industries, bien que de puissantes méthodes d'analyse existent, notamment les 

statistiques multidimensionnelles. De plus, en ne tenant compte que des variables de 

qualité, i'information contenue dam Ies variables de procédé est mise de côté. Or cette 

information peut être très utile afin d'obtenir un modèle prédictif des propriétés d'un 

produit. En effet, comme certaines variables de qualité ne peuvent pas être obtenues 

immédiatement, mais sont plutôt obtenues à partir de longues manipulations ou 

d'appareils peu rapides, un certain laps & temps est requis pour obtenir une propriété 

et agir, si nécessaire, pour corriger le procédé. C'est dans cette optique que les 

méthodes statistiques muhidimensionnelles (rmrItïvariate statistical methods) trouvent 

leur utilité. De ces m&des, i'analyse en composantes principales (PCA) et la 

projection sur structures iatentes (PLS) ont kit l'objet de nombreuses recherches au 

cours des dernières déçennies. Elles ont notamment étt5 utilisées dans le domaine de ia 

chimie analytique (Wold et al., 1983). 



L'utiliition de ces méthodes daas le domaine du génie chimique est cependant p h  

récente, Ainsi, au cours des dernières années, plusieurs études h l'aide de ces méthodes 

ont été effectuées, autant en simulation que sur des hn&s de procédés indusüiels. 

Ainsi, Skagerberg et al. (1992) ont appliqué les techniques PLS sur un modéle de 

réacteur de polyéthylhe basse densité (LDPE). Kresta et al (1991) ont appliqué ces 

techniques sur des modèles de réacteur à lit fluidisé et d'une colonne A distiller 

extractive. Wise et Gallagher (19%) ont appliqué la technique PCA et PLS ii une unité 

industrielle de vitrification, alors que Hodouin et al. (1W3) ont appliqué ces &mes 

techniques B des données provenant de diffdrentes unitfis d'une usine de traitement du 

minerai et ont ainsi pu approfondir Ies relations entre ces différentes unités. 

Les méthodes statistiques multidimensionnelles sont aussi de plus en plus utilisées dans 

le domaine des pâtes et papiers. Dayal et al. (1994) ont effectué i'analyse PLS de 

données d'un digesteur Karnyr et ont pu améliorer l'efficacité du procédé. Tessier et 

Broderick (2000) présentent des exemples de l'utilisation de ces techniques, 

notamment dans le cadre de l'étude de l'influence de la distribution de la taille des 

copeaux de bois sur diverses proptiétt% d'une pâte &fie à haut rendement. t'étude 

des données a de mettre en lumiére des effets saisonniers et l'effet des 

conditions d'opérations, résultats en accord avec des études plus fondamentales. Ce 

même auteur a aussi dévebppé un modèle reliant diverses variables de qualité de 

formettes aux conditions d'opérations de rétape de ratfùiage. Finalement, une étude 

reliant 27 propiétés des fibres provenant de 30 compagnies diffërentes a été réalisée. 

Certaines compagnies sont très actives dans I'utilisation de ces mithodes d'analyse et 

de contrôle. En effet, la compagnie Tembec inc. utilise présentement ces techniques 

sur Ie procédd de produaion de carton de son usine Temboard, dans un contexte de 

surveillance et de compréhension du procédé et de prédiction de certaines propriétés du 

produit fini (rvmov, 2ûûûb). Certains modèles PLS sont présentement utilisés pour 

prédire I'imptimabilit6 et la résistance au pliage du carton, les résuhats de ces tests 



étant mrmalement très longs A obtenir. En obtenant de l'information sur la tendance 

des proprietés du produit fini, des actions correctrices peuvent être entreprises avant 

l'obtention des d y s e s  de laboratoire, aidant ainsi à minimiser la quantité de carton a 

remettre en pâte. A l'usine de pâte cellulose pour usage spéciaux, les techniques PCA 

et PLS on été utilisées afin de résoudre des problèmes de variabilité de la viscosité de la 

pâte (Ivo~wlv, 2000a). L'analyse statistique a permis d'améliorer la connaissance du 

procédé et d'établir des relations entre certaines variables (effets saisonniers, âge des 

copeaux et contenu en résine, notamment), permettant ainsi d'éviter trop d'écarts 

spontanés. Un modele prédictif de la viscosité de la pâte cellulose a de plus étc? 

développé. La technique PCA est quant à elle utilisée pour le procédé de traitement des 

eaux usées. Cette exercice a permis d'identifier certaines variables responsable de la 

variation du procédé, notamment certains débits, la température et la quantité de boue 

activée dans le bassin d'aération. De plus, le modèle développé permet de surveiller le 

procédé et de diagnostiquer les causes de certaines variations (Bendwell, 2000). 

Champagne et al. (2000) ont quant à eux utilisé la régression PLS, combinée a la 

correction orthogonale du signai (Orthogonal Signal Correction - OSC) et aux 

ondelettes pour l'obtention de propriétés basées sur des lectures spectroscopiques NIR. 

Finalement, Lupien et al. (2000) ont réalisé une étude a h  d'identifier les variables 

d'un procddd de production de papier journal ayant un rôle important dans la résistance 

au déchirement, la résistance à la rupture par traction et l'opacité du papier. Dans le 

cadre de ce projet, la régression PLS a été utilisée. Les bases de cette méthode sont 

maniteaaot présentées. 

2.2 - ANALYSE EN COMPOSANTES PRINCIPALES ( K A )  

L'analyse en composantes phipaies est utile pour analyser un bloc de données du 

même type (variables de procédés ou de qualité). Les données peuvent être analysées 

teiies queues, ou être ptéalablement centrées ou centrées-réduites. Cette dernière fhpn 

est surtout utilisée lorsque les variables de procédé ont différentes unitds de mesure 



(Wmin, O C ,  RPM, A, etc.), accordaat ainsi la même importance B chaque variable. La 

méthode PCA est notamment utilisée pour Ia surveillance de procédé, pour les deux 

types de variables. Mathématiquement, l'analyse en composantes principales permet 

d'exprimer une matrice de doanées sous la forme d'un produit matriciel : 

où T est une matrice de scores orthogonaux et P est une matrice orthonormale 

représentant les poids (loadings) de chaque variable, pour chaque composante. X peut 

aussi être vu comme une somme de matrices de rang unitaire (Geladi et Kowalski, 

1986). Généralement, seulement quelques composantes sont requises afin de bien 

approxirner une matrice de données X. Les composantes restantes sont généralement 

composées de bruit de mesure ou d'erreurs expérimentales. Une méthode ûéquemment 

utilisée dans ia détermination du nombre de composantes significatives est ia validation 

croisée (Wold, 1978), discutée plus loin. Une fois le modéle obtenu, de nouvelles 

données sont prédites par : 

On peut aussi voir le problème d'analyse en composantes ptincipales comme étant un 

problème de détermination de valeurs propres et de vecteurs propres (Wise et al,, 

1990). Les loadings représentent les vecteurs propres de la matrice de corrélation et les 

valeurs propres, égales ti la variance de chaque score t, sont quant à elles une mesure du 

pourcentage de la variance captée par chaque composante. Le problème a aussi une 

équivalence dans le cadre de la décomposition en valeurs singuliétes (Mandel 1982) et 

peut aussi être exprimé comme un problème d'optimisation (Lakshminarayanan, 1997). 



2.2.1 - lnterprétatioa géométrique 

L'interprétation géométrique des composantes principales est présentée à h figure 2.1. 

La première composante principale est la ligne allant dans la direction de la plus grande 

variance (ou minimisant la somme des distances orthogonales de chaque point). Les 

nouvelles coordonnées (scores) sont la distance entre la projection ocîhogonale de 

chaque point et le centre de ia première composante. Les loadings sont quaat à eux le 

cosinus de l'angle entre les axes des variables et la composante. La deuxième 

composante est la droite orthogonale à la première allant dans la direction de h plus 

grande variance des résidus, et ainsi de suite. On voit donc que si I'on affiche les 

scores ti en fonction de tz, on peut avoir une charte très intéressante, permettant de 

résumer les variables de la matrice K. L'affichage des loadings permet quant à lui de 

visualiser les relations entre les variables. 

x1 
X2 

Figure 2- 1 Représenlalim gibm&ique & l'anaiyse en composantes principeies 



2.2.2 - Algorithme NIPALS 

L'analyse en composantes principales s'effectue souvent à L'aide de i'algotithme 

NiPALS (Nonlinear Iterative Partial Least %uares). Cet algorithme va comme suit 

(Geladi et Kowalski, 1986) : 

XfX 

1- Prendre t comme étant une colonne de X; 
T T 2- p =t x/tTt; (régression des colonnes de X sur t) 

3- Normaliser p à une longueur unitaire; 

4- t = xp/pTp; (calcul des scores) 

5- Test de convergence sur t : si oui, étape 6, sinon, étape 2; 

6- ~ = ~ - t p '  (Caicul des résidus) 

7- X=E et retour à l'étape 1, pour une autre composante principale 

L'aIgorithme NIPALS est souvent utilisé, étant donné qu'il peut prendre en compte les 

données manquantes, dues notamment à un capteur dékctueux. 

2.3 - PROJECTION SUR STRUCTURES LATENTES (PLS) 

2.3.1 - Contexte 

Alon que i'analyse en composantes principales permet de résumer un ensemble de 

données, la méthode PLS s'efforce de résumer deux ensembles de données, en plus de 

maximiser la covariance entre deux blocs de données X et Y, Cette dthode trouve 

son utilité dans la détermination de coefficients de kgession entre deux matrices de 

données. Le rnodéle désiré est du type 



pour lequel les paramètres de la matrice f3 sont normalement obtenus par : 

Or, comme c'est souvent le cas avec les données industrielles, les colonnes de la 

matrice X Som souvent colinéaires, ce qui rend diacile l'inversion de la matrice X ~ X .  

Les paramètres issus de cette opération auront ainsi une grande variance et donneront 

de mauvaises prédictions. 11 existe d'autres manières d'obtenir les paramètres de 

régression, notamment en utilisant la régression pseudo-orthogonalisée (Hoerl et 

Kennard, 1970) : 

Le bit d'ajouter un paramètre 0 sur la diagonale de la matrice à inverser lui donne un 

meilleur conditionnement. Les résultats de la régression pseudo-orthogomlisee sont 

cependant peu utiles en terme de prédiction, la valeur optimale optimale de 0 n'étant 

pas h i l e  à détemiiner (Wise et Gallagher, 1996). Une autre façon d'obtenir j3 est 

d'utiliser la régression sur les composantes p~cipales (PCR). Après l'obtention des 

composantes principales de X, on effectue ensuite une rdgression de Y sur T : 

Cette méthode a cependant le désavantage de ne pas prendre en considération la 

corrélation possible à l'intérieur de Y, traitant les variables individuellement. De plus, 

l'espace denni par les composantes principales de X n'est pas nécessairement L'espace 

le plus prédictif de Y. Finalement, une demière façon d'obtenir des paramètres de 



régression réside dans le choix judicieux des variables X, ce qui peut se traduire en 

perte d' uiformation. 

La méthode PLS propose ainsi un compromis en ayant les objectifs suivants : bien 

expliquer la matrice X tout en maximisant la covariance entre la matrice X et Y. De 

plus, la structure interne de la régression PLS est très utiie afin d'obtenir des 

informations sur le procédé étudié. On peut voir la méthode PLS comme deux analyses 

en composantes principales des matrices X et Y (n'étant cependant pas faite de manière 

indépendante), en plus d'une relation tinthiire statique. Les matrices X et Y sont ainsi 

exprimées comme suit : 

Les scores t sont orthogonaux, mais pas les scores u, ceci afin de respecter les deux 

critères de la régression PLS. De plus, une relation linéaire unit les deux nouvelles 

matrices T et U, soit 

La projection sur structures latente peut être réalisé à i'aide de i'algorithme NIPALS 

(Geladi et Kowalski, 1986) : 

X,-X et Yfl  

1. Prendre Ui comme étant une colonne de Y; 
T T 2. w =u X/uTu (régression des colonues de X suru); 

3. Normaliser w à une longueur unit*, 



4. t=xw/wTw (calcul des scores); 

5. qT=tTy/tTt (régression des cobanes de Y sur 1); 

6. Normaliser q à une longueur unitaire; 

7. u = ~ q / q ~ q  (calcul de nouveaux scores); 

8. Test de convergence : si oui, étape 9; sinon, étape 2; 
T T 9. p=X t/t t (calcul des loadings de X); 

10- ~ l l p l l ;  
1 1. 

12. P=P/IIPII; 
T T 13. b=u tlt t (régression B=bt); 

14. E = x - ~ ~ ~  et F=Y-btqT (calcul des matrices de résidus); 

15. X=E et Y=F et retour A l'étape 1, pour une autre variable latente 

L'algorithme utilisé dans te cadre de ce projet est une variante de celui présenté ci-haut. 

En effet, les étapes 6, 10, I l  et 12 ont été omises, afin de pouvoir comparer les résultats 

avec ceux obtenus à l'aide de Simca-P (Tewnhaus, 1998). Dans le cas d'une omission 

de l'étape 6, la matrice de régression entre les scores T et U est B=I et F=Y-tqT. 

Plusieurs autres variantes de cet algorithme existent (voir par exemple, Lindgren et al., 

1993; Ranoat et al., 1994; Dayal et MacGregor, 1997). La projection sur structures 

latentes peut aussi être présentde dans le cadre de la décomposition en valeurs 

singulières (Kaspar et Ray, 1993) ou comme un probléme de détermination de vecteurs 

et de valeurs propres (Hi3skutâsson, 1988). 

On temarque dans L'algorithme phis haut ti présence d'une matrice W, représentant h 

covariance entre les résidus de X et les scores U (Y, indirectement). L'interprétation 

étant cependant dacile, on peut convertir cette matrice W en terme des variables 

originales de X comme étant wt-~(PfW)" et X est ainsi relié à T par T=XW4. On 

obtient finalement les coefficients de régression entre X et Y comme étant (Skagerberg 

et al., 1992) : 



avec 

2.3.3 - Coeflieient de détermination multiple R~ 

Le coefficient de détermination représente la somme des carrés de l'erreur expliquée, et 

mesure quel point le modéle représente bien les données, II se calcule comme 

suit (Umetrics, 1998) : 

Par variable xi, ou yk pour chaque variable latente h : 

Par variable xk ou yk, cumulativement : 

Ces deux coefficients sont donnés sous forme graphique, lors de la présentation des 

résuhats. Pour l'ensemble de X ou de Y, pour chaque variable latente h, on obtient : 

et de façon cumulative : 



Ces deux dernier coefficients sont d o d s  sous f o m  tabulée lors de la présentation des 

résultats. Le terme SSk est la somme des carrés des données initiales, centrées-réduites, 

et RSS désigne la somme des carrés des résidus. 

23.4 - Validation croisée 

La régression PLS est utilisée pour le développement de modèles prédictifs. Un 

nombre approprié de variables latentes doit ainsi être sélectionné, afin d'obtenir de 

bonnes prédictions. Plusieurs hçons sont possibles (Jackson, 1991). La méthode 

utilisée dans le cadre de cette étude est la validation croisée (WoId, 1978). 

Sommairement, cette méthode est la suivante : 

Pour chaque variable latente : 

Séparer les données en quelques sous-ensembles (5 A 7); 

Enlever un sous-ensemble; 

Faire une régression PLS sur les données restantes; 

Calculer la sommes des carrés des erreurs de prédiction (PRESS) 

Recommencer cette procédure h l'aide d'un autre sous-ensemble et en remettant le 

précédent, jusqu'h ce que chaque donnée ait dté enlevée une et une seule fois; 

Calculer un PRESS global, pour chaque variable latente. 

Une fois le PRESS global obtenu, on peut aîlicher ce coefficient en fonction du nombre 

de variables latentes, et prendre le minimum de la courbe ainsi obtenue comme étant le 

nombre de variables latentes significatives. Cependant, Simca-P utilise plutôt cette 

donnée pour calculer k coefficient @, similaire B un d vaiidé de fàçon croisée 

(UrnetriCs, 1998; Tenenhaus, 1998). Pour chaque variable yt, mesurant respectivement 

l'apport marginal de chaque variable latente et l'apport cumulatif des h premières 

variables latentes B la capacité ptédictive du modéle : 



On peut aussi mesurer respectivement I'apport global pour chaque variable latente et 

cumulatif pour h variables latentes, pour i'ensemble des variables de Y : 

Ces deux derniers coefficients sont présent& sous forme tabulée dans le chapitre des 

résultats. Une variable iatente sera simcative si Q: ~(1-0,95') m 0,l ou s'il existe 

au moins un Q', 20,l. On considére par ailleurs qu'une réponse yk est bien modélisée 

23.5 - Interprétation du modik 

Le pouvoir explicatif d'une variable xj sur L'ensemble de Y est exprimé par i'iudice ViP 

(Variable Importunce in the Prqfection) (T'enenhaus, 1998): 



où p est le sombre de variables de X, wu est le poids représentant h contnition d'une 

variable xk à la composante tl et Rd(Y;ti) est la reâondance entre Y et tl. On considère 

qu'un pouvoir explicatif supérieur à 1 indique wie variable importante dans la 

représentation de Y. 

23.6 - Statistiques T~ et SPE 

Les scores t peuvent être présentés graphiquement, en PCA comme en PLS. On peut 

aussi mesurer la variation à l'intérieur du modde PLS à l'aide de la statistique  d de 
Hotelling : 

ou r t  en la variance de la composante th du modèle PLS et a est k mmbre de 

variables latentes du modèle. Géométriquement, cette statistique représente une 

distance par rapport l'intersection des composantes (Figure 2.1, ligne tiret&). Un 

intewalle de confiance peut-être calculé comme suit, la statistique T~ étant teliée B In 

statistique de Fisher : 

où n est le nombre d'observations et a le nombre de variables latentes dans le modèle. 

La b i t e  de confiance, sur un graphique de scores ti en fonction de t2, par exemple, est 

de forme ellipse-de avec des axes de longueur 



où i est le numéro de la variable latente (Wikstrûm ei  al., 1998a). La figure 3.13 

présente une telle ellipse de iiotelling. En ce qui a trait aux résidus, divers moyens de 

contrôle existent, notamment i'erreur de prédiction au carré (Spared Prediction Error, 

SPE) pour chaque variable xi, ou yk (Kresta et al., 1991) : 

SPE, = A(x, - P,)' 
k-l  

Géométriquement, cette erreur représente la distance entre un point dans l'espace et le 

plan formé (ou hyperpfan) formé par les variables latentes (Figure 2.1, ligne pointillée). 

Une limite de confiance peut être déterminée (Jackson et Mudhoikar, 1979). 

Ces deux moyens de contrôle permettent donc d'examiner les causes d'une observation 

suspecte. Si un changement se produit dans une ou plusieurs variables de procédé, tout 

en conservant une structure de corrélation semblable, ce changement se reflétera sur un 

graphique des scores, alors qu'un point sera en dehors de i'ellipse. Si par contre un 

changement est dû à un événement qui n'a pas été modélisé par i'ensemble de données 

ayant servi à la construction du modèle, l'erreur de prédiction SPE sera anonnalement 

grande* Cette statistique permet de repérer l'occurrence de nouveaux événements, ce 

qui se traduit en un changement dans la structure de corrélation entre X et Y (Kresta et 

al., 1991). 

2.4 - PROJECTION SUR STRUCTüRES LATENTES - METHODE DYNAMIQüE 

L'application de la régression PLS sur des données dynamiques a été réalisée par 

quelques auteurs. Ainsi, Ricker (1988) a utilisé la régression PLS afin de déterminer 

les coefficients d'une réponse à uee Unpulsion (FIR) et a aussi déterminé les 

coefficients de la réponse a un échelon d'un procédé de traitement anaérobie de i'eau 



Kaspar et Ray (1992, 1993) ont pur leur part utilisé la régression PLS a h  de 

construire des modéles de procédé, en utilisant un filtre (statique ou dynamique) basé 

sur la dynamique moyenne du procédé en question. Ils ont ainsi écarté l'utilisation 

d'une relation dynamique reliant les t et les u et remplaçant le coefficient de régression 

b. Selon ces derniers, dans certains cas, i'utiiisation de L'algorithme PLS peut s'avérer 

hctueuse, résuhant en un d & l e  tenant compte des dynamiques rapides a l'aide des 

premiéres variables latentes et les dynamiques lentes a L'aide des variables latentes 

mains significatives. Dans d'autres cas cependant, la modélisation pourrait s'avdrer 

fautive, un mauvais choix de relations entrées-sorties étant obtenu en se basant sur de 

mauvaises relations intenies. On obtielmdrait ainsi un mauvais modéle, n'expliquant 

qu'une faible partie de la variam de la matrice de sortie Y .  Lakshminarayanan et al. 

(1997) rdpondent h cette argumentation en disant qu'il est possible d'obtenir des 

modèles adéquats en utilisant des signaux d'entrée comportant une portion sufisante 

de ôasses kéquences (par exemple, des échelons). L'approche utilisie par ces derniers 

auteurs est tout de même intéressante, car elle est utile pour le développement de 

modèles de contrôle avancé En effet, l'utilisation de modèles prédictifs est appropriée 

pour l'utilisation de schémas de contrôle avancé (DMC, par exemple). Une approche 

utilisée est de contrôler les scores (Kaspar et Ray, 1992; Lakshminarayanan et al., 

1997). Cette approche a l'avantage de découpler d'une certaine fàçon le contrôle étant 

donné l'utilisation de variables orthogonales. Dans ce cas, Q, W* et les matrices de 

variariance sont utilisées comme pré- et post-compensateurs. De plus, Lakshminarayanan 

(1997) a pour sa part utilisé les modéles PLS dans un cadre de contrôle par anticipation 

et de contrôle DMC. 

D'un point de vue algorithmique, la modélisation PLS dymdque est ôasée sur le 

remplacement de L'étape 11 de l'algorithme par la détermination, pour chaque variable 

latente S d'une relation dynamique héaire g, (z) . Cette relation linéaire intervient 

ensuite daus le calcul des résidus P de Y, Une fois le modèle obtenu, la prédiction peut 



être e f f i ,  en utilisant les fonctions de transfert comme les composantes d'une 

matrice diagonale C(z) (Figure 2.2). 

Figure 2.2 Prédiction ai l'aide de la régression PLS dynamique 

Les matrices Sx et Sy sont des matrices diagmales de mise à l'échelle, représentant les 

variances. On peut donc voir, selon la figure 2.2, que les différentes relations 

dynamiques internes obtenues contribuent selon i'amplitude des coefficients de Q et de 

W*. Les fonctions de transfert reliant les vaciables xj et Yi sont données par : 

Finalement, il est à noter que cette méthode de modélisation ne fait pas appel à 

l'utilisation de variables décalées, les dynamiques étant contenues dans la matrice C(z). 

2.4.1 - Exemple d'application 

La régression PLS dynamique a été testée sur les données provenant d'une simulation 

d'un systeme bien connu, la colonne à distiller Wood & Berry, un exemple étudié par 

Lakshminarayanan et al. (1997). Cette colonne de séparation d'un mélange méthanol- 

eau est représentée par ies fonctioas de transfert suivantes : 



Les variables y, et y2 teprésentent respectivement les compositions en méthml des 

produits de haut et bas de colonne, dors que les variables manipulées XI et x2 

représentent le reflux et le débit de vapeur au rebouiileur, Les entrées ont été changées 

à L'aide d'une séquence binaire pseudo-aléatoire (PRBS). Les signaux d'entrée et de 

sortie ont ensuite été imités, afin d'obtenir un ratio signaihruit de 10. Ceci a perds 

de reproduire les résultats obtenus par Lakstiniïnarayanan (Figures 2.3 et 2.4). Comme 

on peut le voir, le modèle PLS dynamique représente très bien les données de la 

colonne à distiller. De plus, les gains statiques obtenus sont pratiquement égaux aux 

gains statiques théoriques. 



Figure 2.4 Réporuse dynamiqw et modélisalion PLS dynamique, colonne Wood & Bcrry (2 viuiablcs 
latentes) 

A noter que ces résuhats ont été obtenus à raide de fonctions de tninsfert internes 

d'ordre -1 2, un modkIe d'ordre maximai t donnant quelques écarts tout juste 

avant le changement en échelon de xt ou x2. Un approhndissement de la méthode de 

régression PLS dynamique a permis de f'aire certains constats. Remiétemnt, les 

scores m sont bien approxmiés par les scores dyaamiques (Figures 2.5 et 2.6), 

notamment les scores P & la premike dimension, ce qui est compréhensiiie, Y étant 

expliquée A pius & %%. 

Tableau 2.1 Sommc des car& expliquée - modéle PLS dynamique, colonne Wood & Berry 

Var. Iat, 
1 

R: 
96.35 

(Ri>- 
96.35 

R f 
52.73 

98 -49 2 

(RI)- 
53.73 

47.27 100.00 12.14 



Figure 2.5 Scores de h piemiére dimension, donne  Wood & Berry 

Figure 26 Scores & h deiaaéme dimeasioq coloime Wood & Berry 



On a de plus besoin de toutes les variables latentes afin d'identifier avec succès les 

divers gains. En effet, avec une variable latente, on obtient les gains cidessous, dors 

que les deux variables de sortie sont tout de même très bien expliquées (Figure 2.7). 

Figure 2.7 Réponse dyiiynique et modélisation PLS dynamique, colonne Wood & Berry (1 
latente) 

Ces gains sont relativement acceptables, bien que l'on constate une ceztauie erreur. 

Ceci est compréhensiùle, étant donné que pour une identification, on a généralement 

besoin de toute l'information que les entrées peuvent apporter. Pour ce d è k ,  la 

première variable latente n'expliquant que 52'73% de la variabilitb de X, une partie 

significative de l'information est alors petdue et n'est pas utilisée pour l'identification 

(Figure 2.8)- Des essais successifs ont -s de constater que les performances 



d'identifkation se dégradent queique peu iî partir d'un ratio sigaal/bniit de 3, lorsque 

les deux variables latentes sont utilisées, Les gains pour un tel ratio sont 

Dans le cas d'une seule variable latente, ce ratio est le même et les gains sont 

Figm 2.8 Signaux &entrée et rwxlmahuhi a i'aide du maMe PLS (1 variable latente) 



Le but de cette étude est d'identifier des fonctions de transfert à L'aide de la régression 

PLS dynamique pour un grade important. Ce cb ix  s'est arrêté sur le grade 212, suite B 

des discussions avec le personnel de Tembuard. Uw fois ce grade cimisi, des 

in.hmations sur la dynamique du procédé ont été obtenues à l'aide de données 

provenant de ce grade. Des fonctions de transfert ont été obtenues, les conditions 

d'opérations contenant des échebns individuels et non simultanés alors que les autres 

variables étaient siables pour chacun des deux débits de colorants. Cependant, cians 

l'optique d'une généralisation du modèle du grade 212 aux autres grades n afin de 

pouvoir amparer les présents travaux à ceux réalisés antérieurement, le besoin 

d'exprimer les débits de cobrants en kgMt s'est iinposé. Mais, les débits de pâte 

n'étant pas disponibles, il était difficile d'obtenir ces concentrations. De nouveaux 

fichiers ont donc été reçus, contenant cette ibis-ci les débits de pite et les débits de 

sauce de couchage. 

Plus tard, la nouvelle est venue que les fichiers comportaient un probkme d'acquisition 

de données. En effet, une des variables, le débit de colorant bleu, n'était que du bruit. 

Donc, de nouveaux fichiers ont été envoyés. Cependant, pour des contraintes de temps, 

ne puvant attendre qu'une production de grade 212 ait Leu, l'analyse PLS a été 

effectde à i'aide de do& provenant d'un autre grade. Suite A de vaines tentatives 

pour identifier un systéme 2xS de faCon conventionnelle parmi les autres grades, étant 

donné le nianque de plages appropriées, le choix du grade 607 s'est impod. Ce choix 

s'est inyod prhciiement parce que sufl[isamment de données étaient disponiibq 

permettant i'utiiïsation d'une partie pour la prédiction. La compataison des gains 

identinés à l'aide de la méthode PLS dynamique s'est faite à raide des gains obtenus 

pour le grade 212. 



Le chapitre des résultats va donc comme suit. Premièrement, les propriétés 

dynamiques des données de couleur ont été déterminées et des fonctions de transfert 

ont été identifiées à partir du grade 212. Une autocorrélation des données de couleur 

du gtade 607 a été téaliséq aiin de connah b nature de ces dernières. Les données 

ont été analysées à raide de la régression PLS en négligeant la dynamique contenue 

dans les données, afin d'avoir une idée du comportement des variables. Comme un 

modèle dynamique repose en partie sur les coefficients de W* et Q, cet examen des 

données aiderait h comprendre le modèle et déterminer des variables importantes. 

Des prédictions ont aussi été réalisées h raide de ce modèle statique, afin de vérifier sa 

performance. Suite A cette aaalyse, une comparaison avec la régression PLS auto- 

régressive a été effectuée, étant donnée la nature dynamique des variables de couleur. 

Des prédictions ont aussi été réalisées à l'aide de cette méthode. Finalement, la 

régression PLS dynamique a été appliquée aux données du grade 607, atin de voir s'il 

était possible d'identifier fonctions de transfert en dépit des interactions présentes entre 

les variables, Divers gains ont été obtenus, mais étant donnée notamment la nature 

non-stationnaire des données utilides, rident $cation n'a pas fonctionné aussi bien que 

prévu. 

Les données utilisées dans le cadre de cette recherche proviennent du procédé de 

fabrication de carton de Temboard. Les variables utilisées pour l'analyse sont 

présentées au tableau 3.1. Les premiers fichiers, contenant des données relatives au 

grade 212 et notamment utilisés pour la ditermination des fonctions de transfert reliant 

les débits de colorants aux p d ü e s  de couleur a et 6, ne contenaient pas les variables 

17 à 22. De phs, aucune variable de produits cbirniques ajoutés à la pâte n'était 

disponiile, ces derniéfes n'étant pas disponibles sur une base assez rapide, étant acquis 



par une autre système d'acquisition de données. Les données du tableau 3.1 étaient 

recueillies il chaque 20 secondes. 

12- foatinp; ! grammage sauce & couchage 

Tableau 3.1 Variables de procCdt disponibles 
Unités 
mhin 

Noms des variables 
1- speed 

3- redpv 
4- bluepv 

Signitication 
vitesse machine 

colorant rouge 
coiorant bleu 

5- topcons 
6- topwwcons 

24- colora (Y) paramètre de couieur a 
25- colorb (Y) parametre de couleur b 
26- blancheur (Y) blancheur 

7- topret 
8- fillcons 
9- fillwwcons 
1 O- fillret 
Il- backcons 
12- backwwcons 

Ensuite, les dondes n'ont pas ét4 filtdes, atin de ne pas perdre d'information. De 

plus, les domées contenant des casses n'ont pas été utilisées, le procédé étant trop 

perturbé par ce type d'événement. Le traitement des données s'est donc résumé à 

3 

consistance couche supérieure, caisse d'arrivée 
consistance eau bianche, couche supérieure 

éiiminer la présence de sauts provenant des couclaeuses. En effet, les coucheuses sont 

% 
% 

rétention des fibres, couche supéri eure 
consistance couche médiane, caisse d'arrivée 
consistance eau blanche, couche médiane 
rétention des fibres, couche médiane 
consistance couche inférieure, caisse d'arrivée 
consistance eau blanche, couche inférieure 

périodiquement nettoyées de l'excès de pigment s'accumulant à la surface. Or, ces 

% 
% 
% 
% 
% 
% 

courtes séances de nettoyage ont pur effet de causer de fortes perturbations dans le 



poids total de sauce de couchage, ce qui se r&te sur ia huninance et sur la briîlance. 

Ainsi, ces points ont été enievés, en s'assurant que ks  variables revenaient à leur valeur 

d'avant perturbation. 

3.3 - CONNAISSANCE DYNAMIQUE DU PROCEDE 

Avant de procéder à une méthode d'identification, il est bon de connajûe le procédé le 

mieux possible. Cette connaissance du procédé peut être acquise à i'aide de 

l'expérience des opérateurs, ou à l'aide de i'anaiyse des séries chronologiques. A 

l'aide de ces techniques, on peut obtenir phisieurs Urformations, notamment savoir si le 

procédé est stationnaire, de conna"itre ia « mémoire D du procédé, s'il est possible 

d'améliorer le contrôle déjh en place (Hams, 1989; Stadeij et al., 1993) et le retard du 

procédé (Box et Jenkins, 1976). Ces informations, p b  particulièrement l'obtention de 

fonctions de transfert, diaient être les réfërences pour les autres résultats. 

3.2.1 - Autocorréiatioa 

L'autocorréiation permet d'atteindre les trois premmiers objectifs mentionnées plus haut. 

Cette fonction est décrite comme suit, pour une série de N données : 

On voit d'après cette formule que îes données sont premi&cement centrées par rapport à 

la moyenne. Ensuite, pour chaque indice k, on décaîe d'un pas de temps la série de 

dondes par rapport à elle-même et on obtient la fonction d'autococrélation. 

Finalement, comme cette fonction est symétrique, on ne prend que les résultats pour 

k > O. ii est possible de définir un & d e  de c o k e ,  permettant de dire que la 





Figure 3.2 Fonction d'auloconéhtiai du p m m h ?  b eî & 1;i biancheur, première série de dannées 

Les fonctions d'autocorrélation ne s'atténuant pas après le trentiéme décalage, on peut 

conclure que les données ne sont pas stationnaires. L'expérience a été répétée à l'aide 

des données sous forme de différences. Dans ce cas-ci, les fonctions d'autocorrélation 

s'atténuent après quelques décalages (Figures 3.3 et 3.4). De ceci, il est aussi possible 

de conclure que les méthodes u t i l i h  afia de contrôler les variations de ces variables 

ne sont pas au meilleur de leur &ka~it6. Des conclusions similaires ont été tirées des 

données provenant d'uae seconde série de do& provenant aussi du grade 607 

(Figures 3.5 et 3.6). Cependmt, les fonctions d'autocorrélation des premières 

différences de b l h c e  et de la blancheur montrent un comportement oscillatoire 

s'étendant toujours au-delà de la iimite de c o h e  (Figures 3.7 et 3.8). 



Figure 3.3 Foncîion à'autcodation de VL et Va, première série de données 

Figure 3.4 Fonction d'autcorrélation de Vb et Vbhncbeur, première! série & Qnaees 



Figure 3.5 Fonction d'autoco~lation de la lwninance el du @ue a, delvdeme drie de do- 



Figure 3.7 Fonction d'auiconélûiion & VL et Va, deuxième &rie de données 

Figure 3.8 Fonction d'au(corrc1ation de Vb et Vülaacbarr, deuxième série de &nm&s 



Les conchisions sont aussi restées identiques, qu'importe si les données étaient 

centrées-réduites ou non, et qu'elles contenaient des points artéîàcts ou non. 

Le prochain objectif est Pidentifkation du retard. À cette fin, des données provenant 

d'une production de grade 212 ont été utilisées, contenant des perturbations 

déterministes alors que les autres variables étaient à peu près constantes. Pour le 

présent système, le retard peut en partie être expliqué par la longueur de la feuille, le 

scrutateur étant situé après la section des coucheuses. L'autre partie de ce retard est 

due au transport de la pâte dans la tuyauterie reliant le cuvier de mélange à la caisse 

d'arrivée, brsqu'un changement de débi d'encre est effectué. Le retard inhérent au 

procédé est cependant variable, changeant selon la vitesse machine et le débit de pâte. 

Or, pour un grade donné, la vitesse machine change rarement, ce sont habituellement 

les débits de pâte qui varient, bien que rarement là encore. II existe plusieurs façons 

d'estimer le retard total. Connaissant la vitesse machine et la longueur de la feuille 

entre la caisse d'arrivée de la couche médiane et le scrutateur, on possède par le fait 

même une borne inférieure pour le retard. Cette borne est de plus ou moins une 

minute, dépendant du grade produit. L'intercorrélation peut donc être une bonne façon 

d'estimer la portion inconnue du retard. Cette fonction est décrite par : 

Elle représente un décalage entre deux séries de n données. L'une des deux séries est 

décalée d'une période d'échantillonnage, et ainsi de suite. Il importe de dire que cette 

fonction n'est pas symétrique, c'est pout~uoi ies résultats sont pertinents pour le cas 

k >O, Dans ce cas, on utilise toujours les premiers éléments de la variable manipulée 



(x, le débit de colorant) et on essaie de corréler les éléments de la variable contrôlée (y, 

une variable de i'espace c o h ) .  

Mi de conaaitre b retard du procédé, des données provenant d'une plage contenant 

une perturbation détermiaiste on et6 utilisées, alors que les autres variables étaient 

relativement stables. Premièrement, des plages de données contenant des changements 

de débits des çoiurants bleu et rouge ont éIé: repérées, Le nombre de points 

sélectionnés a été choisi en fonction du temps de réponse des paramètres de couleur. 

Une plage de 100 points a donc été sélectionaé pour le colorant bleu, et une de 40 

points pour le colorant rouge. 

Les fonctions d'inter-corrélation ont été obtenues entre les débits de colorant rouge et 

bleu et les paramètres de coukw a et b (Figures 3.9 et 3.10) 

Fim 3.9 Iatermrrélaîioas enlre le débit de rouge a les.imadüesa et b, grade 212 



Figure 3.10 Intercorréhtians entre le débit de bleu et les paraméires a et ô. griuk 212 

Le colorant rouge est corrélé positivement avec le paramètre a et négativement avec le 

paramètre b, avec un retard total de 4 et 5 périodes respectivement (Figure 3.9). Les 

retards identifiés ont du sens, n'étant pas htërieurs au retard dû à la distance entre la 

caisse d'arrivée et le scrutateur en tin de machine. En ce qui a trait au signe de h 

corrélation, une augmentation du débit de colorant rouge se traduit par une 

augmentation du paramètre a et une diminution du paramètre b, et vice versa. 

11 y a aussi corrélation négative entre le débit de colorant bleu et les paramètres a et b 

(Figure 3.10). En effet, le colorant bleu a tendance il « verdir )) le paramètre a (qui est 

au départ négatif et qui va encore pius vers le négatif). De pius, une augmentation du 

débit de bleu occasionnant une accentuation de la teinte bleue, se traduisant par une 

augmentation dam le sens négatif de l'axe b. On voit aussi appaître le retard total 

pour les paramétres a et 6, tespectivement 4 et 5 périodes après l'échelon (80 et 100 

secondes). Donc, d'après ces résuha& le retard dii à la tuyauterie est du même ordre 

de gnindeur que le retard dû A la toile de fa machhe. 



En ce qui a trait à i'influence du ooIomt bleu sur ia himinance et sur la blancheur, 

i'examen des données ne permet pas de déceler une relation entre les débits de 

colorants et ces deux paramétres. S'il y a un effet, sa dynamique est peut-être trop 

lente et voilée par le bruit de mesure. Elle ne se manifeste peut-être pas non plus dans 

la plage normal des variations des débits. L'analyse multidimensionnelle permettra 

peut-être de jeter un nouvel éclairage sur kt relation entre ces variables. 

3.33 - Fonctions de transfert 

Des fonctions de transfert ont ensuite été identifiées. Les résultats sont présentés 

graphiquement aux figure 3.1 1 et 3.12. 



Figure 3.12 Réponse des paramétreç a et b il un échelon du débit de colorant rouge 

Les fonctions de transfert suivantes ont été identifiées : 

ou, dans le domaine de Laplace, 



Les gains sont exprimés en Aa/kg/adt ou AMrg/adt et, dans b domaine de Laplace, les 

constantes de temps et les retards sont en minutes. Si L'on regarde les fonctions de 

transfèrt trouvées dans le domaine discret, on réaüse en regardant les termes en il au 

dénominateur ne sont pas ceux auquel on s'attendrait. En effet, on devrait avoir un 

terme de valeur égaie à environ 0,90. Ceci démontre que la période d'échantillonnage 

est trop longue pour le procédti en question. On peut aussi le constater en regardant les 

résultats graphiques. Afin d'avoir un échantillonnage adéquat, le temps de montée 

devrait comporter au moins 25 points. On peut voir que les plages de temps de montée 

comptent tout au plus une quinzaine de points. Ce fiiit, couplé à un faible rapport 

signallbruit (variant entre 2 et 3) est probablement la cause de ces termes. De plus, en 

utilisant des séries comportant plus de points après la variation déterministe, on obtient 

un terme plus réaliste. Dans ce cas, cependant, l'exercice d'identification revient un 

peu à faire un modèle du bruit du procédé. Si I'on regarde les coastantes de temps dans 

l'espace de Laplace, on voit que ces constantes de temps sont très courtes, alors que 

graphiquement, elles semblent plus longues. De plus, le hit de prendre une série de 

points plus ou moins longue fait en sorte que la constante de temps varie à L'intérieur 

d'un facteur 5. 11 hut souiigner que le calcul des constantes de temps dans le domaine 

continu à partir du domaine discret est le résultat d'un logarithme d'un paramètre 

compris entre O et 1. Ceci coupY avec k fait que les paramkûes en i' pont impéeiis, 

on obtient ainsi une très grande incertitude sur la constante de temps. Finalement, on 

remarque que les retards varient selon que I'on regarde la variation de a ou de b. Ceci 

peut-être d i  à deux choses, soit le faible rapport signalbit et le fàit que le phénomène 

est approxirné par un système de premier ordre avec retard. De milieures conditions 

d'expériences auraient permis d'obtenir de meilleurs paramètres, notamment le retard 

et la constante de temps (période d'échantillonnage pIus courte, rapport signavbruit 

plus grand, excitation persistante). 



Les gains trouvés ont été comparés à d'autres gains provenant d'autres grades. Ces 

gains sont du même ordre de gmdeur que ceux identifiés à l'aide du grade 212 

(Tableau 3.2). 

Cependant, les gains identifiés dans cette recherche ne concordent pas avec ceux 

identifiés dans les travaux effectués précédemment par Cabos (1998). En effet, les 

gains quantifiant l'effet du colorant bleu sur le paramè:tre b sont de l'ordre de 

-21.7 AWkghdt. II faut cependant préciser que les concentrations de colorant bleu 

utilisées dans le présent travail ne sont pas les mêmes que celles utilisées par l'usine. 

Un hcteur de conversion est probablement à I'origine de cette incompatibilité, mais 

cela n'a pu être conf'rnné par le personnel de l'usine. Un facteur de compatibilité ne 

devrait pas intluencer les gains. De plus, Cabos (1998) n'a pas conclu a une influence 

significative du colorant rouge sur le paramètre b, alors que les gains du paramètre b 

identifiés a l'aide des données d'usine sont comparables. Sachant que les expériences 

de Cabos ont été effectuées àam des conditions contrôlées, l'identification h L'aide de 

données industrielles devrait être reprise à I'aide d'une perturbation déterministe 

permettant d'obtenir un rapport signaihuit supérieur & celui prévalent daos les 

données utilisées. 

Tableau 3 2  Gains de procédds, outres grades 

3.4 - MODÉLISATION ET IDENTIFICATION PLS 

La majorité des calculs a été effectuée B l'aide de Matiab, version 5.3 (The Mathworks) 

et du PLS toolbox, version 2.0lf (Eigenvector Research, Inc.). Le logiciel Simca-P 3.0 

b (Abkdadt) 
_I 

-0'42 (0'50) 

-0'66 (-0,50) 

K21 (AWkgladt) 

-- 
- 

Kiz (Mg!adt) 

-0'42 (-0,30) 

-0'46 (-0'30) 

Grade 

207 - 
207 (2) 

Ki 1 (Adkgkit) 

--- 
---- 



(Umetrics) a quant h lui été utilisé put la validation de certains programmes écrits en 

Matlab et pour la validation du nombre de variables latentes significatives. Les 

p r o ~ ~ s  ont aussi été validds it i'aide des données de Linnenid (voir, par exemple, 

Jackson, 1991), d'après le résultats présentés dans Tenenhaus (1998). 

3.4.1 - Modéluation statique 

La premiére partie de l'étude a été effectuée de façon statique, en ne considérant pas le 

fait que les données étaient dynamiques. Ceci a permis d'avoir un aperçu des relations 

entre les variables. Deux séries de données ont été analysées, pour le grade 607, 

provenant de la même production, mais de deux fichiers différents. Ces données ont été 

scindées en deux, pour fins de prédiction. Le grade 212 n'a pas été analyse, le fichier 

utilisé pour l'identification des fonctions de transfert (section 3.2.3) ne comprenant pas 

les variables 17 a 23. Pour les données étudiées, la vitesse n'a pas été utilisée, etant 

constante. De plus, la sauce de pré-couchage n'étant pas utilisée pour ce grade, elle ne 

figure pas dans l'analyse. 

La première série de données analysée contenait 3639 points, après avoir retranché de 

données considérées comme des artéfacts, provenant de perturbations dans le procédé 

de couchage. Pour cette première série de données, 4 variables latentes étaient 

nécessaires afin de bien décrire les données (Tableau 3.2). Ce modèle explique 62,9% 

de la variation de X et 71'8% de la variation de Y. Selon ces résultats, le modéle 

devrait avoir une bonne capacité de prédiction, ayant un @ supérieur a 0.70. On peut 

c k m e n t  voir, sur le graphique des scores t i  vs tz (Figure 3-13), la fàçon dont les 

variables de procédé de la matrice X se déplacent dans les deux premières dimensions, 

ce qui est un des avantages de la méthodes PLS pour la surveiiiance d'un pro&. Un 

intervalle de confiance à 95%, représenté sous forme d'ellipse de Hotteling, permet de 

voir un point significativement en dehors d'une opération n o d e .  Ce type de 



graphique réswne donc pius ficilement l'information qu'apporteraient phisieurs 

graphiques &chant une seule variable. 

Figure 3.13 Scons des 4 premières dimensions, première série de données 

Tableau 3.2 Résultats de modélisation, première série de données, tegression PLS statique 

On peut aussi voir aussi les écarts par rapport au modèle en suivant l'erreur de 

prédiction au c d .  (Figure 3.14). Une grande valeur de SPE, ou SPEY indique qu'une 

des d o d e s  ddvie signüicativement de l'hyperplan du modkle. On peut voir sur cette 

CQ~L 
0,453 

figure que les déviations sont acceptables. Le présent modèle ne montre pas de 

dt5viatioas soutenues dans les indices SP&. Dans le cas de SPE,, certaines déviations 

Q~ 
0,453 

R: 
0,467 

( R : k  
0,3 14 

Var. Iat. 
1 

( 1  
0,467 

RI 
0,3 14 



sont soutenues, mais l'indice retourne toujours B une valeur inférieure ensuite. 

Cependant, la limite de contiance n'a pu être calcui6e. On peut aussi analyser les 

conûiiutions de chaque variable pour un point possédant une grande distance au 

modèle, approche développée par Miller et al. (1993). 

Figure 3.14 Inlices SPK et SPI+, panière série de données, première sirie de données 

Une fois le rnodéle obtenu, son interprétation est une étape importante et la régression 

PLS permet l'examen de la structure interne du modèle. Aiasi, l'affichage des 

coefficients de W* et de Q est trés utile pour voir l'influence des variables X sur Y, en 

regardant les w*, représentant la corrélation entre les X et les scores U (Y, 

indirectement) (Figures 3.15 et 3.16). On peut ainsi essayer d'identifier une ou 

plusieurs variables expliquant chaque d i i n s i o n .  

Certaines relations physiques sont bien démontdes B i'aide de ces figures. Ainsi, on 

voit que les grammages et les dexts de pâte des trois couches se superposent 

respectivement, ce qui respecte la physique du syst&me. Les rétentions et les 



consistances des eaux blanches sont normalement opposées, ce qui respecte encore ia 

physique du systbne. Ces relations sont d'autant plus respectées lorsque les wuiations 

sont grandes; le modèle peut aiasi mieux en tenir compte. Pour la première dimension, 

de grands w* sont donnés aux débits de colorant bleu et rouge (bluepv et redpv), au 

débit, au grammage et à la consistance de la couche médiane (@lyBow, plywtact2 et 

fillcons2) ainsi qu'à la rétention et à la consistance de l'eau blanche de la couche 

Uif&ieure (backret et backwwcons). En ce qui concerne les débits de coloraats (redpv 

et bluepv), ils peuvent en effet expliquer des effets de variation de couieur. De plus, les 

débits de colorants sont bien expliqub par la premiére dimension PLS (figure 3.17). 

Or, seulement 17% du paramètre b est expliqué par la première dimension, laissant 

croire que d'autres variables, peut-être absentes de L'analyse, influencent ce dernier 

(Figure 3.18)- 

Les débits de colorant ne devraient pas cependant expliquer une variation de luminance 

et de blancheur. Ces dernières peuvent peut-être mieux être expliquées par une 

dans le débit de la couche d i a n e  (fillplyflow), qui est dans le &me 

voisinage sur les chartes de corrélation. En effet, lors de l'examen des données, des 

variations des débits de pâte semblaient avoir une influence sur la luminance et la 

blancheur. Ceci est peut-être confirmé par le fait que la variable plywtact2 posséde un 

w* moyennement élevé dans la première dimension, mais cela ne peut être confirmé. 

Les variations dans ces deux caractéristiques optiques semblent provenir d'autres 

variables n'étant pas disponibles pour la présente anaiyse, notamment le contenu en 

lignine résiduelle, par exemple. Les variations dans ces deux mêmes variables 

pourraient aussi être dues à des fluctuations dans L'application & la sauce de couchage. 

Cependant, cette variable a un poids négligeable dans la premihe dimension et un 

poids moyen dans la deuxiéme, Finalement, on constate que la consistance de L'eau 

blanche de la couche &me (iïiiwwcons) semble avoir une bonne influence sur la 

première dimension, mais cette variable ne devrait pas avoir une influence importante 

sur la couleur. En effet, le scrutateur n'examinant que la couche supériwre, ii serait 



surprenant que h couche inférieure influence l'apparence du carton si 

significativement, considérant que ces effets doivent (( traverset » la couche médiane. 

C'est phôt  le contraire qui se produit, les variations de la couche médiane étant 

visibles au travers des couches infdrieutes et supérieures. Enfia, les deux demi6res 

dimensions du modèle montrent que les variables expliquant b reste de la 

pour les paramètres de couleur a et b sont encore le colorant bleu et les débits de pâîe 

des couches médianes et supérieures 

La figure 3.15 montre aussi une étrange corrélation négative entre le débit de rouge et 

le paramètre a. En effet, selon le signe du gain de la fonction de transfert reliant ces 

deux variables (voir section 3.3.3), on devrait s'attendre à ce que la corrélation soit 

positive, ce qui n'est pas le cas. En examinant les deux autres variables latentes, le 

relation entre le colorant rouge et le paramétre a est mieux respectée. L'examen des 

données utilisées pour la modélisation a montré que lors d'une grande variation du 

paramétre a, les deux colorants ont été changés en même temps (comme c'est souvent 

le cas lors de I'ophtion du procédé). Or, le débit de bleu qui a été varié le plus, alors 

que le débit de rouge a été augmenté mais ensuite ramené à sa valeur initiale.. C'est 

peut-être pour cela que le modèle se rattache plutôt à la variation de bleu rifin d'établir 

sa strucm. 
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Figure 3.15 Charte de corrélation des variables latentes 1 et 2, premiére série de domdes 
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Figure 3.16 Charte & conéiationdes vanables latentes 3 et4, -éresQie & dam& 



Figure 3.17 Variance de X eqQuk par 4 variables lalentes, premiQe série de données 



Finalemut, on voit A l'aide des indices VTP queiles sont les variables X importanies 

dans la projection sur Y (Figure 3.19), soit le débit des colorants bleu (bluepv) et rouge 

(redpv), le débit de pâîe de la couche médiane (fplyilow), la consistance de i'eau 

blanche de la couche inférieure et médiane (backwwcom et fillwwcons), la rétention de 

la couche infërieure et médiane (backret et tiliret) et la consistance de la couche 

supérieure (topcons). 

La figure 3.20 présente la prédiction des données d'étalonnage. On peut voir que ks 

paramétres L, a et b ainsi que la blancheur sont bien modélisés à l'aide de 4 variables 

latentes et que les tendances sont respectées. En ce qui a trait à la prédiction à l'aide 

d'autres données, iI est surtout important de s'attarder à la tendance. En effet, ce qui 

nous intéresse surtout, c'est de connâ rÉre la variation entre un mmnt présent et un 

moment fiitur. Mdgé c e 4  les résultats sont moins convaincants en prédiction qu'en 

modéiisation (Figure 3.21). En effet, bien que certaines tendances soient bien 

respectées, k modèle s'égare parfois. La luminance et la blancheur sont bien prédites, 



sauf wn la fin des dondes Les taidoaas mi p8iamètre b sont respectdes dans 

certaias cas, niais le modèle ne rend pas les soubresauts présents dans les donneeS, 

inversant même ks tendances queiquefoir. Finalement, dans 1e cas du psraaié(re a, k 

modèle tient k tendance au debut, mais inverse ensuite ceue-ci pour le restant de ia 

sxkk de données. 



Figure 3.2 1 Rédiction & la denx ihe  M e  & doiinées avec piinmètres du premier modcle 

Plusieurs raisons peuvent expliquer le pourquoi de la qualité relative des prédictions, 

notamment une plage d'opération diffërente d'une série de données à l'autre. Ceci 

pourrait être montré par une analyse de la statistique T~. De plus, en examinant, les 

indices SPE, en prédiction, on peut voir si la structure du modèle est respectée (Figure 

3.22). L'indice T~ n'esî pas dépassé, ce qui montre que les domées de prédiction sont 

dans les mêmes plages d'opération. Cependant, l'indice SPE, dépasse signiticati- 

vement, en début d'opération, la Limite établie par les données d'étalonnage, ce qui 

porte B croire que la structure des données utilisées pour la prédiction est différente. 

Ceci peut en partie expiiquer le pourquoi des erreurs de prédiction. Une analyse PLS 

des données de prédiction a do& un modèle contenant deux variables latentes et 

présentant des diffërençes au niveau de la stnrchire interne (voir annexe). De plus, si 

L'on voit les variables latentes comme étant des événements indépendants, il est 

possible que les donuées de prédiction n'ont pas dît5 som-ses aux mêmes nombre et 

type de variations, donc, que kur structure & corrélation ne soit pas la mhe. Dans ce 

cas, il est normal que les prédictions ne soient pas satisfaisantes (Kresta et al., 1994). 



Les données doivent aussi provenir d'une opéraîion normale, afin de bien predke des 

événements qui sont anormaux, ce qui n'a peut-être pas été le cas ici. II se peut aussi 

que les données aient subies i'influence de d'autres variables qui n'étaient pas 

considérées dans i'analyse. Finalement, il faut préciser que les prédictions ne sont pas 

aux mêmes valeurs que les données réelles et que certaines sont plus bruitées que 

d'autres. Ceci est dû au fait que les moyennes et les écart-types utilisés pour la remise 

à l'échelle des domées de pdiction sont celles des données d'étalonnage. Il  y a donc 

des différences entre les données au niveau de ces deux caractéristiques. 

Nanbihuobenalioi. 

Figure 3.22 Indices SPE, et T* en pédiaioq deuxitme série de données 

Les résufîats de modélisation de la seconde série de données sont présentés en annexe. 

Dans ce second cas, la prédiction d'autres données présente des problémes similaires 

aux prédictions précédentes (Figure 3.23). La prédiction de la luminance et de la 

blancheur est relativement bonne, mais en fin de production, le modéle a de la dficulté 

a inverser la tendance. Pour ce qui est du pmmèûe a, c'est encore une tbis ce denier 



qui est le moins bien prédit. Les tendances sont en effet invetsees. Quaut au paramètre 

b, la tendance ascendante est bien prédite, mais la descente ne i'est pas toujours. 

Figwe 3.23 Prédiction de la -ère série de dondes, avec pûrameues du dewutirne &le 
(gris : données, noir : modèle) 

Des modèles ont aussi dté gédrès sans k présence de la couche infèrieure. En effet, on 

peut supposer que les variations de la couche infërieure ne sont pas vues par le 

scrutateur, donc, qu'elles n'oat pas d'effet sur ce que i'on voit en regardant le carton 

par le dessus. Une comparaison avec k modèle contenant la couche infërieure 

demontre que le retrait de ces variables ne change tien au pourcentage de variance 

expliquée des variables de couleur, pour le même mmbre de variables latentes. Les 

données de X sont cependant mieux expliguée, ce qui est logique, dtant doad qu'il y a 

moins de variables de procedés. Les chartes de corrélation ont h même allure, ii n'y a 

que les coefficients des variables r e t m c k s  qui n'y sont plus. Le résultat en 

prédiction est semblable aux cas dans lesquels la couche arrière est présente. 

3.4.2 - ModCiisrtion PLS aut~régmsivt 



Comme base de commson, le procédé a aussi été modélisé en p r o h t  de la 

dynamique (auto-régressive) des données. La matrice des X a ét6 augmentée A l'aide 

des valeurs au temps (k-1) des données de couleur et de la blancheur (WîkstrBm et al., 

1998b). C h  peut easuite analyser les données en utilisant les mêmes indices 

qu'auparavant (Ft2, Q ~ ,  VIP, etc...). Pour k première série de dodes ,  ü âut plus de 

variables latentes pour obtenir le modèle, comparativement à I'appmhe statique, Ce 

résultat est quelque peu surprenant, étant donné que les données de X sont aussi bien 

expliquées avec 4 variables latentes que pour le modèle statique. 

Ce modèle donne une meilleure explication de Y, ce qui se refléte aussi sur les 

prédictions l'aide des données d'étalonnage (Figure 3.27). Un examen des chartes 

w2q montre que les variables de couleur au temps k-1 dominent le modéle dans toutes 

les dimensions. Le modéle semble aussi avoir subi une légère rotation d'axe par 

rapport à l'approche staîique (Figures 3.24 et 3.25). Cependant, hormis cela, on ne 

peut tirer plus d'information sur Ia structure du modèle. De plus, l'importance de ces 

données permet à d'autres données de moins se d6marquer, comme par exemple, le 

colorant bleu Les indices VIP indiquent que les variables au temps k-l sont très 

importantes dans la projection sur Y (Figure 3.26). 

Tableau 3.3 Résulîaîs de modtlisation, première série de données, régression PLS auto-rigressive 

Var.lat. 
1 

2 

3 

4 

5 

6 

7 

(RI k m  

0.335 

0.499 

0.580 

0.649 

0.684 

0.743 

0.773 

RI 
0.335 

0.164 

0.08 1 

0.069 

0.035 

0.042 

0.024 

: 
0.556 

0.154 

0.122 

0.0 18 

0.025 

0.0 13 

0.014 

( ~ i b m  
0.556 

0.710 

0.832 

0.850 

0.875 

0.888 

0.902 

@ 
0.538 

0.339 

0.403 

0.1 17 

0.094 

0.077 

0.093 

(@)mm 

0.538 

0.695 

0.818 

0.839 

0.854 

0.865 

0.878 



Figure 3.24 Chaite de corrélation des variables latentes 1 et 2, premipremiére série de données 

Figure 3.25 Charte & corrébiion des variaMes b o t e s  3 et 4, premihe f i e  & données 



Figure 3.26 MCES MP, preniiére série & dormée$ régression PLS au&-régressive 

En ce qui a trait à la prédiction, les résulats sont bons. En effet, les tendances sont 

bien suivies et, contrairement à la régression PLS statique, la tendance n'est pas 

inversée, notamment pour le paramèîre b. On peut s'attendre à une bonne performance 

étant donné, notamment, à la grarade importance des variables de couleur et de 

blancheur au temps k- 1. De pius, les indices ViP du rnodéle est sans équivoque quant à 

l'importance des variables au temps k-1. Le modde possède donc une bonne base de 

prédiction. 
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Figure 3.27 Prédiction des données d'éidonnage, premiQe série de données, régression PLS aute 
régressive (gris : données, noir : modele) 

Figure 3.28 Rédiction des données & la deuxième série avec pataméaes du premier d l e ,  tégression 
PLS auterégressive (gris : données, noir : modéle) 



La prédiction a aussi été effectuée ii l'aide des paramétres de la deuxième série de 

données. Les résultats sont présentés en annexe. La prédiction de h luminance et de la 

blancheur est bonne, sauf un peu moins en fui de la série de données. En ce qui a trait 

au paramètre b, les dsukats sont excellents. II n'y a que le param&tre a qui est un peu 

moins bien prédit. L'établissement d'un modéle sans la couche arrière a donné des 

résultats de prédiction semblables. Encore IB, seul la prédiction du paramètre a s'est 

avéré moins bonne. Donc, globalement, la régression PLS auto-régressive donne de 

meilleurs prédictions pour les variables de couleur que la régression PLS statique, et ce, 

malgré que les données ne soient pas stationnaires. 

3.43 - Régression PLS dynamique 

La méthode PLS dynamique, présentée au chapitre précédent, a été utilisée pour 

l'identification. L'avantage de cette méthode réside dans sa capacité d'identifier des 

modèles dynamiques, en modifiant la relation interne reliant les t et les u. La prisente 

étude ne comparera que les gains obtenus i l'aide des do&s du grade 607 a ceux 

obtenus a l'aide des données provenant du grade 212. Les fonctions de transfert reliant 

les variables de X aux variables de Y ne seront pas comparées, celles obtenues à l'aide 

de la méthode de Lakshminarayanan ayant un ordre au moins équivalent au nombre de 

variables latentes. La comparaison des gains donnera tout de même un bon aperçu de 

la performance de la méthode d'identification. 

La première série de données du grade 607 a été analysée, en utilisant toutes les 

variables de procédé. Tout comme dans Lakshminarayanan et aI- (1997), l'ordre 

maximal des d r a t e m  et des dénominateurs des fonctions de transfért internes est 

de 2 et le retard maximai -s est de 20 périodes d'échantillonnage. Toutes les 

variables latentes ont été utilisées, l'utiiisation d'une partie occasionnant des erreurs 



lors du passage de l'espace latent aux variables véritables. La validation croisée n'a 

donc pas été utilisée. Les gains suivants ont été obtenus : 

Les gains infinis sont certainement dus au &t que les données ne sont pas 

stationnaires, tel que vu A la section 3.2. L'algorithme essaie donc d'identifier des 

paramètres qui évoluent dans le temps. Dom, un des pré-requis de cette méthode 

semble est qu'il faut que les données soient stationnaires. Le résultat est cependant 

diffërent lorsque l'ordre maximal des numérateurs et dénominateurs des fonctions do 

transfert internes est de 1. Dans ce cas, le gain Ki2 est relativement bien identifié, mais 

pas les autres. Un gain est même de signe inversé (Ku) : 

L'identification a aussi été effectuée sur la deuxième série de données. Pour un ordre 

maximal de 2, un gain Si est obtenu pour KIZ . Le gain Ku est quant à lui deux fois 

plus petit que le gain identiG avec les données du grade 212 : 

En restreignant L'ordre maximal 1 pour les numérateurs et dénominateurs, trois gains 

infinis sont obtenus. On voit dom: que ia procédure d'identification, avec les données 

utilisée, est très semile à L'ordre maximai des fonctions de transfert internes. En ce 

qui a trait au nombre de variables latentes, on a vu, dans l'exemple d'application, que 

les gains identifiés avec une partie des variables latentes, bien que pas exacts, donnent 



tout de même une idée des gains véritables. Un coup d'ail au pourcentage de h 

variance expliquée des colorants bleu et rouge daas l'analyse PLS statique montre que 

ces deus variables sont tout de même expbquées au dessus de 90%. Donc, en utilisant 

seulement les 4 premières variables latentes, les résuhats sont les suivants, pour la 

première série de données : 

L'examen des gains montre que seul le gain K12 est dans le bon ordre de grandeur. Le 

gain KE est même inversé de signe, Les résultats ne sont cependant pas cohérent avec 

d'autres nombres de variables latentes. tl iudrait dom trouver un critère permettant de 

dire que l'on a assez de variables latentes et que I'identiiïcation est réaliste. 

Étant donnés les résultats décevants avec les données du grade 607, des essais 

d'identification sur des données du grade 212 ont aussi été effectuée. Bien que celles- 

ci comportaient moins de variables, i'identification a été tentée afin de savoir si la 

méthode pouvait identifier les gains obtenus par 1' identification traditionnelle. Une 

simulation utilisant toutes les variables de procédé sur la plage complète des données, 

ainsi que toutes les variables htentes a dom6 des gains infinis. En utilisant k même 

plage que celle utilisée lors de L'identification des fonctions de transfert G12 et GE 

(échelon sur le débit de colorant bleu), on obtient les résuhats suivants : 

Donc, en ne regardant que les gains Ki2 et Ku, ks résuhats sont très satisfaisants, Ki2 

&nt exact et K22 ayant une erreur de 1296, ce qui est très acceptable. En utilisant que 

quatre variables latentes, on obtient : 



Encore une fois, en n'utilisant que quelques variables latentes, on voit que le gain est 

bien identifié. On profite ainsi du îàit que le débit de colorant bleu est expliqué il %%, 

alors que les paramètres a et b sont expliqués respectivement à 56% et 66%. Donc, en 

utilisant les résultats de la simulation de Wood & Berry, on peut voir que dans le cas 

présent, cette analyse se tient et les présents résultats montrent que la méthode peut 

fonctionner lorsque les variables de procddé sont suffisamment excitées. 

Fiaalement, en utilisant la plage ayant seM à déterminer ks fonctions de transfert G1l 

et Gzi, suite A un changement de débit de colorant rouge, on obtient les gains suivants 

en utilisant la régression PLS dynamique, avec toutes les variables latentes : 

Les gains Kit et ki ont le bon ordre de grandeur, bien que le gain Kzi soit deux fois 

plus petit que celui détermin6 de façon conventio~elle. En n'utilisant que 4 variables 

latentes, expliquant tout de même 87% du débit de rouge et 85% du paramétre de 

couleur a, on obtient : 

On voit donc que dans ce cas-ci, le fàit de prendre moins de variables latentes donne 

des résultats moins convaincants que pour l'échelon sur le débit de bleu. 



Les simulations et les tésuhats obtenus ont soulevé quelques questions. Premièrement, 

on peut se d d e r  si la méthode PLS dynamique est A propos pour identifier des 

&les à l'aide d'un grand nombre de variables latentes. En effet, si l'on utilise toutes 

les variables latentes, on obtient un systéme d'ordre au minimum égal au nombre de 

variables latentes. La fonction de transfert reliant une entrée et une sortie réelle sera 

donc de degré ûès élevé, pour rien. On peut alors réduire le nombre de variables 

latentes, mais il faut au moins que les variables d'entrée soient bien décrites 

individuellement. De plus, lors de l'identification, il faudrait que les variables soient 

excitees, de façon à avoir des coefficients représentatifi du système. De plus, une 

variable possédant un tàible w* devrait être retranché de i'analyse, et un nouveau 

modèle devrait être obtenu. Ceci po-t éviter que le modèle ne tienne pas la route. 

Une bonne expérience serait nécessaire afin d'obtenir de bonnes données, et ayant des 

relations de cause à effet. De plus, des perturbations déterministes amélioreraient 

encore plus la colinéaritd des t et des u, ce qui pourrait réduire l'erreur d'approximation 

entre les u réels et ceux modélisés à l'aide d'une fonction de transfert. La figure 3.29 

illustre l'approximation en question. Comme on a pu le voir avec le système de la 

colonne à distiller de Wood & Berry, l'erreur entre les scores ui réels et approximés 

n'est pas très grande (Figures 2.5 et 2.6). Donc, des perturbations déterministes 

amélioreraient peut-être l'obtention des fonctions de transfert internes pour les 

premières dimensions, à tout le moins. De plus, les coefficients de Q et W* aumient 

un meilleur sens physique. Car pour l'instant, les coefficients de Q et W* sont 

sensiblement les mêmes que dans la cas statique (Figures 3.30 et 3.31). Donc, la 

structure du d h l e  est toujours un peu &ive, et repose sur des coefficients qui 

semblent inappropriés pour l'établissement d'un modèle causal. 



Figure 3.29 Diérence entre les scores u bniis et les scores u obienus de la fonction de aansiert interne, 
premilre série de données, premiére variable latente 
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Figure 3.3 1 Chme de corrélation, premiére série de don&, régression PLS dynamique 



IV - CONCLUSION 

Ce projet visait B obtenir un d b  pour l'application d'une éventuelle stratégie de 

contrôle automatique. La méthode PLS dynamique était la méthode choisie pour 

l'obtention de ce modèle. Les données de procédé ont premièrement été d y s é e s  de 

façon A connaître certaines de teurs caractéristiques dynamiques. Cette analyse a 

permis d'affmer que les données de couleur n'étaient pas stationnaires. De plus, des 

fonctions de transfert ont été identifiées de façon conventionnelle. 

Suite à cette identification conventionnelle, les données du procédé de couleur ont été 

analysées a i'aide de la régression PLS. La premiére étude s'est faite en utilisant la 

méthode PLS conventionnelIe, a h  d'avoir une idée des relations entre les variabIes de 

procédé, et de véntier certaines relations connues. Des prédictions ont été téalisées à 

I'aide d'autres données, et les résuItats se sont révélés décevants. En effet, la tendance 

est quelquefois inversée. A titre de comparaison, les données ont été analysées a i'aide 

de la régression PLS auto-régressive, en tenant compte du fait que les données étaient 

dynamiques. Dans ce cas, les préâictions se sont avérées meilleures qu'avec la 

méthode conventionnelle. Seul la prédiction du paramètre a n'a pas été amkliorée a 

l'aide de cette méthode. il semble que le succès de cette méthode en prédiction repose 

sur des poids élevés accordés par le modéle aux variables de couleur incorporées dans 

la matrice X. 

Finalement, l'identification de modèles dynamiques par ia méthode PLS dynamt*que a 

été tentée. Cette méthode s'est toutefois avérée peu performante, étant donnée 

notamment la nature non-staîiomaire des données disponible pour I'analyse. Il semble 

que la méthode nécessite des données stationnaires. De plus, avec les dormies 

utüisées, la régression PLS dynamique s'est avérée sensible au choix de l'ordre des 

numérateurs et dénominateurs des fonctions de transfert mtemes. 



Suite à ce projet, les recommandations suivantes peuvent être faites : 

il serait intéressant de procéder à une identification conventionnelles de fonctions 

de transfert dans de meilleures conditions d'acquisition de données et à I'aide d'une 

expérience planifiée et sur une période assez longue. Des perturbations plus 

significatives, mais toujours à l'intérieur des plages d'opération du procédd, 

pourraient être effectuées, de façon à obtenir un meilleur rapport signaVbmit. De 

plus, une fXquence d'acquisition plus rapide serait nécessaire, afin d'obtenir des 

constantes de temps réalistes des phénomènes de changement de couieur, 

Toujours dans ces mêmes conditions, une analyse PLS plus approfondie du procédé 

de k couleur pourrait être effectuée. Des données, obtenues à I'aide d'une 

planification, permettrait peut-être d'identifier d'autres variables importantes 

influençant la couleur. De plus, l'information apportée par les produits chimiques 

serait peut-être intéressante pour un modèle. Une fois un modèle obtenu, les 

variables qui ne sont pas importantes pourraient être éliminées, afin d'obtenir des 

fonctions de transfert d'ordre raisonnable pour l'application d'une stratégie de 

contrôle. De plus, avec une planitication d'expdrience, peut-être l'utilisation de 

seulement quelques variables latentes serait plus facile en ce qui a trait au passage 

du domaine latent au domaine réel. 

Il serait intéressant de déterminer des critères, à I'aide de données simulées, 

notamment, afin de savoir quand il est possible d'utiliser un nombre restreint de 

variables latentes sans perdre trop d'information lors du passage du domaine 

latent au domine réel. ûn pourrait ensuite appliquer ces critères a des 

variables provenant d'une expérience planifiée, et de là, obtenir un moâèle plus 

compact* 



r, Étant données des contraintes de temps, le contrôle du procédé, à l'aide des 

modèles identifiés & façon conventionnelle, n'a pu être testé. L'implantation 

d'une stratégie de contrôle avancée @MC, par exemple) pourrait aussi êûe 

envisagée. Cette stratégie serait intéressante étant donnée la nature 

multivariabte du procédé de la couleur. De p h ,  une telle stratégie permet 

l'inclusion de conttaintes sur ies variables manipulées, étant basée sur un 

algorithme d'optimisation. Oa doit souligner qu'une sttatdgie est maintenant 

implantée pour le conirôle de la couleur chez Temboard. Cette stratégie, selon 

les informations disponiileq est basée sur deux contrôleurs PID, chacun 

contrôlant un paramétre de couleur (a ou b), sans tenu compte des interaction 

inhérentes au procédé de couleur, intemctions qui seraient prises en 

considération par une stratdgie de conîdle prédictif. Le réglage des paramétre 

s'est fàit de façon itérative, sans modèle. Selon les données obtenues en boucle 

fermée, le procéd6 est bien contrôlé, mais il serait peut-être possible de faire 

encore mieux avec une sttatégii de contrôle avancée. De plus, la commande 

doit se faire en boucle ouverte lors de grandes perturbations sur les coucheuses. 

Une stratégie avancée pourrait peut-être mieux performer dans ce cas. 
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ANNEXES 

ANNEXE 1 - RÉSULTATS COMPL$MENTAIRES 

Scores des 2 dimensions du modele, deiuaéme série de données, régression PLS staiique 

Résultats de moddlisation, deuxiéme série de données, régression PLS statique 
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Résuliats de modtlisation, deuxième série de données (augmentée) 
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Figure 3.m Indices SPEx et SPEy, deuxiéme série & données, régression PLS aui~dgrPssive 
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ABSTRAC7 
This paper presents a model to describe the influence of process variables on colour and brightness o f  

a pperboard. Conventional identification and dynamic partial least squares (PLS) regression modeling 
technique arc used for this purpose. Somc process insight is gained. However, PLS models obtained 
showed poor predicting capbility. 

INTROOUCTION 
Colour is an impomt feacure of  fine white coated cardboard. Uniformity is critical and reflects 

overall cardboard quality. High variability often resulis in remrns fiom customers or in lower revenues 
due to off-specification product. However, atlour is aiIl controlled in an open-loop way, based on 
operator knowledge of  the procesS. It is thw the aim of this project to develop a dynamic model to 
predict colour and to design a multivariable controller. 

PROCESS OVERVIEW 
Temboard, the industrial partner in this project, manufàctures over 60 grades of three-ply white 

paperboerd at its mil1 in Thiscaming, Quebec. This paperboard has many uses, such as cigarette packs 
and business cards. It is manufactured on a triple foutdnnier-type pape machine. The top and bottom 
plies are made fiom 100% virgin bleached kratt pulp. The filler ply is made fiom BCTMP produced on 
site and also contains broke and rejects from off-specification production. BCTMP induces a yellowish 
hue due to the remaining lignin in the pulp. The two outer plies do not totally mask the yellow hue of  the 
filler ply, theretore introducing the need of a corrective action, wih the addition of  blue and red dyes in 
the pulp. At the time of data collection, this corrective action was done manually by adjusting dye 
flowrates to the filler ply-stock, bascd on operator knowledge of the process. 

COLOUR SPACE MSCRIPTiûN 
Colour perception is not a cational subject cherehre varying km one individual to another. in order 

to reduce perception differcnces, colour spces are used. in this project, the colour space is  the Hunter L, 
a, b space (Fig. 1). Parameter L is the luminance, varying h O (black) to 100 (white). The a 
parameter is for ihe green-red hue and îhc b paramder is hr tbe blue-yellow hue. L, a, b parameters are 
tiinctions o f  spectral powet distrihtim o f  iiluminnot, spcetral refkcmce of paperboard and appropriate 
colour matching fûnctions [il. 

rn 
Recueil de prétiués, conférenœ Conmi Systems 2000, Victoria, B.C. (Canada) 



O*riuri 
Fig. 1. Rrrter L, a, b cobrr r p m  

EFFECT ûF FURNBH COIYPOSTlûN 
Colour can be influenced by many process variables. in a previous study [2, 31, some process 

variables were examined in order to deiemine their influence on colour and on brightness of the f i l la 
ply, This analysis was done using a sliitistical design of experimcnts. Four variables (pulp composition, 
cationic cofactor, AKD and starch) were bund to have a signifiant influence on brightness, pulp 
composition influencing the most; a higha content of BCTMP giving a brighta pulp. Incfeased contents 
of cationic cofactor, AKD and starch had negative effects on brightness. For the luminance parameter, 
increases in one of the four signifiant variables had a positive effect. Finally, increases in one of these 
four variables accentuated the yellow hue ofîhe fil ler ply. Although chemicals could not be used for the 
present study, consistencies and pulp flows ml& help in the analysis. The same study also showed ihat 
consistency had an influence on dye retention. Also, it has to be highlighted that the present study deals 
with the colour of the three plies together, at the end of the pape machine. Some effect highlighted in 
[2,3] can then be anenuated by the top and back ply. 

VARIABLES USE0 FOR MûOEUffi 
Process variables used for the analysis are presented in Table 1. Machine speed was also available, 

but was not included in the study since it did not Vary. Rocess data were collected on a Measurex 
system, at each 20 seconds, while cdour data were coltected using a Measurex Recision PLUS colour 
sensor, model2250, using illuminant C, observer P. Also, since the aim of  this project is to develop a 
dynamic controller, many other potentially interesthg variables could not be used, since they were 
collected fiom another acquisition system at too low a fiequency or simply not available. 

1 TABLE 1: PROCESS VARIABLES 1 
1- mdng 
2- redpv 
3- bliitpv 

- 

toiai amt weight (dm? 
red dyt Oow Wmin) 
Mue dyc How (Umh) 



DATA PROCESSINO 
X and Y data sets were autoscalcd pior to aaalysis. Also, severe outliers were deletcd fot the 

analysis. These outliers usually m u r  when cwter rolls are removed to be cleaned. Since l i s  cleaning 
results in m'ations in colour that m't k mpensated by adding dyes, l e s e  events were not taken into 
account for the modeling process and rcsulting data were thus considaed as outliers. Daia collected 
right after breaks were alsb discardtd. Finally, problems in the data acquisition procedure and time 
constraints made it impossible to buiid a "goodw data set for the modeiing step. The hllowing results 
will then have to be takcn as "casc spccific" instead of  k i ng  a good indicator of the overall behaviour of  
a specific grade. 

PLS ALGOîül'HM 
Rocess data are usually highly ill-conditimed. This is  why the partial least squares (PM) algonihm 

i s  used here to obtain a model. This technique summarises the data while maximising the correlation 
between X and Y blocks. X and Y are then expressed as 

where ti are latent vectors calculaied sequentially using the NIPALS algorithm [4] and validated by cross 
validation [SI. The version ofthe classical NlPALS algorithm used is the one presented in [b]. The final 
model can be expressed by 

where [7] 

The m&od l a t  is to be used is ibe dynamic version of  the PLS as presented in [8]. This method uses 
a dynamic relation (ARX, for cxamplt) betwcen the t's and the u's to predict dynamics as seen in Figl, 
whm s' and S, arc diagonal A i n  matn'x, û(z) is a diagonal matrices o f  dynamic relations relating $ 9 to ui (i=l, 2, ..., a IV's) imd W*=W(P W)". 

Transfer hd ions  arc thus obtaùied by: 



Thus, dynamic relations may or may not contribute to the iesulting transfer lùnction, dependiig on 
the magnitude o f  individual q and w*. lt is n o t t w ~ y  that witb this method, variables are do not need 
to be lagged when building ihc PLS modd. Dynamics are includcd in the G(z) matrix. 

CONVENTIONAL IDENiIFICATlûN FaSULTS 
The foilowing gain matrix pfesents piocess gains (AblWmin) bctween variations in a and b colour 

parameters and dye flowrates. The pmcess was found to be nonlinear, so these gains are presented to 
give an idea of the respective amplihide o f  the effect ofdye flowrates on colour a and b parametns. 

Reganling time delay, autocorrelation analysis gave a time delay o f  around five sampling periods, i.e. 
1 min 40 S. This delay o f  course depends o f  dye flowrate, machine speed and pulp flowrate. For the 
study presented in this paper, based on the machine speed, ifie part of the delay which is known is 1 
minute. Finally, time constants are between 0.5 and I minute. 

PLS RESULTS 
Interpretation o f  a model is a crucial step in modeling. PLS modeling pennits such an interpretation, 

by examination o f  the model's underlying structure. A model was thus first developed using flowrates 
data lagsed according to machine speed (hm m p l i n g  periods), ahhough no significant difference was 
obsewed in loadings and weights with no lag included. Al l  variables on hand were considered in the 
modeling step, in ader to have a fùsî rqresentation of die influence o f  each variables on Y. Four latent 
variables were able to explain 63% o f  sum of squares in the X block and 72% in the Y block. The 
number of variables was detennined by cross-validation 151, 



Looking at the +q plot (Fig. 5) can be helpful in interpreting the model. One can see the influence of X 
on Y variables by looking at the (w*), represmting the correlation between X variables in every 
dimension and the U-scores (Y, indirectly). It is also possible to know how X variables correlate with Y. 

a 

F i  S: ir*q plut of P U  d l  for I* id 2"' diœemabi 

In îht tirst dimension, high w* are given to "bluepv", "tedpv", "fplyflow", "ply~act2~, "tillcons2", 
"backret" and "backwwconsn. Considering blue and red dye flowrates, these can explain variation in 
colour parameters a and b, but should n d  influence brightness and luminance. We can see in Fig. 3, 
presenting the cumulative explained sum of squares for X variables, that dye flowrates variations are 
well explaincd by the first dimension. But seeing that only 17% of the variation in the blue-yellow hue 
("colorb", Fig, 4) is explained by the fint PLS dimension mdicates that something else is influencing the 
b parameter. Consistency variations might have an effect on colour, since it was show in (2, 31 that 
consistency had an effcct on blue dye retention. 

One o f  the variables that might explain the variation in luminance and brightness might be 
fluctuations in the filler ply pulp flow (by influencing ply weight). By lodring at various data sets, 
variations in pulp flowrates (thus ply weight) seemed to have an influence on brightness and luminance. 
This might be reflected in the fict that "plywtactî" has a moderate w* in the first dimension. But this 
cannd be confhed and variatioas in brightness and iuminance seem to corne îiom other variatianq that 
can not be explaineci by the variables at hand (midual lignm content, for example). Coatmg should 
explain some variation in the brightness, but its contribution is negligible to the tint PLS dimension and 
only moderate to the second PLS dimension. Fi i l ly, back ply white wata consistency is  quite prmlent 
in the first dimension, but this is questionable since the back ply is a d  seen fiom the colour scanna and 



thus should not melaie wiih Y p e t e r s .  The last two dimensions of  the model (not shown) show 
that the remaining sum of squares of colora and colorb are explained agin by Mue dye flowrate and 
variations in the top and filler ply flow. 

Fig. 5 also shows a strange negative correlation between r d  dye tlow and the a parameter. As seen 
above (eq, 6), they shoutd cluster togcthn since the transfer hnction hm a positive sîeady-state gain. I t  
was found by looking al process data îhat the blue dye îlow seemd to have a grealer influence on the a 
parameter than the red dyc itsclt We can then question the abiliîy of obtaining good proccss gain signs 
by applying the PLS dynamic identification method for this particular data set. Indced, if the underlying 
PLS structure i s  questionable, using this mcthod with the p w n t  data should n d  give satisfjing results. 
Furthw analysis, including variable pruning, might help in developing a mae coherent model. 

Prediction was aitmpted with this mode1 on anotha run of the same grade, g i h g  poor prediction. 
Investigation revealed ihat the predicted run was dominated by a variation in the first dimension in the 
fillet ply consistcncy and filler pulp flow. This certainly explains why prediction is n a  very good and 
could be improved. In our case, the modelling process looks sensitive to what happens in a particular 
run. A model obtained with the help o f  a designed expriment might be less sensitive in this case 

CONCLUSiûN 
An anempt was made to develop a dynamic PLS model for the influence of process variables on 

colour L, a, b parameters and on brightness. A model was obtained, but stiowed poor prediction 
capability. This might be explained by some variables covering the influence of  other variables. Due to 
this problem, dynamic modelling was not attempted, as a better modei is needed beforehand to catch the 
dynamics of the system. This will be attempted by pruning some variables out of the model. Having 
more data might help as well. Then, transfer functions obtained fiom conventional identification and 
dynamic PLS will be compared. 
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