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RESUME

La érésente thése présente une contribution originale pour mettre en évidence, par des
techniques expérimentales et simulations numériques, Peffet de I’élasticité sur la
déformation et la rupture de gouttelettes. Le comportement d’une goutte élastique dans
deux écoulements bien caractérisés et maitrisés, soit I’écoulement élongationnel et
’écoulement en cisaillement, a été analysé. Les travaux ont porté sur des systémes de
fluides modéles appelés fluides de Boger. Ces fluides sont tres élastiques, mais possédent

une viscosité presque constante.

Dans un premier temps, les fluides modéles ont été judicieusement préparés au laboratoire
afin d’avoir des combinaisons de fluides ayant différents rapports d’élasticité tout en
gardant les autres propriétés constantes, tels que le rapport de viscosité et la tension
interfaciale. Une partie du travail a porté sur la caractérisation rhéologique de ces fluides.
Les mesures rhéologiques ont été effectuées a 1’aide d’un rhéogoniométre Weissenberg,
pour obtenir la viscosité en régime permanent ainsi que les contraintes normales, et d’un
rhéométre VOR de Bohlin, pour mesurer la viscosité dynamique ainsi que les modules de
stockage et de perte. Ces mesures rhéologiques nous ont permis de calculer certains
paramétres rhéologiques qui donnent le niveau d'élasticité des fluides modéles utilisés
(temps de relaxation, temps de retard, etc.). Les mesures de la tension interfaciale des
différents systémes ont été effectuées a I'aide d'une technique dynamique, nommeée

méthode de la goutte tournante. Malgré la mise en ceuvre trés longue et délicate de cette
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technique, les mesures de la tension interfaciale concordaient bien avec les données de la

littérature pour ces types de fluides modéles.

Par la suite, deux montages expérimentaux ont été congus et fabriqués pour générer les
deux types d’écoulements (I’écoulement élongationnel et le cisaillement), et permettre de
visualiser le comportement des gouttes dans la matrice. L’écoulement élongationnel a été
généré a l'aide d’un montage expérimental, de type convergent-divergent, fabriqué en
acrylique (Plexiglas) et monté sur un rhéométre capillaire de marque Instron.
L’écoulement le long de I’axe central du conduit est largement élongationnel. Quant a
’écoulement en cisaillement, il a été généré entre deux plaques paralléles en acrylique,
fabriquées spécialement pour étre montées sur le rhéogoniometre Weissenberg. Un
systéme de visionnement a été mis en place pour les deux systémes pour permettre de
suivre avec précision le comportement d’une goutte au cours de sa déformation ou de sa
rupture le long de l'axe central du conduit convergent (dans le cas de l'écoulement

élongationnel), ou entre les deux plaques transparentes (dans le cas du cisaillement).

Nos travaux ont permis de tirer des conclusions importantes quant au rdle joué par
I’élasticité sur le comportement de gouttes dans une matrice en écoulement. La
contribution de I'élasticité sur la déformation et la rupture des gouttes a été mesurée en
comparant les résultats obtenus pour des systemes de fluides élastiques avec ceux obtenus
pour des systémes newtoniens possédant la méme tension interfaciale et le méme rapport

de viscosité. Dans le cas de I’écoulement élongationnel, on a démontré que I’€lasticité de
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la goutte ainsi que celle de la matrice avaient un effet inverse sur la déformation de la
goutte. L’élasticité de la matrice aidait la goutte & se déformer davantage, alors que
I’élasticité de la goutte résistait 4 sa déformation et la rendait de plus en plus rigide. Nos
travaux ont aussi montré que, pour un rapport d’élasticité goutte/matrice inférieur a 0.2,
Pélasticité de la matrice avait plus de contrdle sur la déformation de la goutte, alors que
Ieffet de I’élasticité de la goutte était nettement dominant pour des rapports d’élasticité
supérieurs & 0.2. Une relation empirique reliant la déformation de la matrice avec celle de
la goutte a été développée. Cette relation, qui représentait une contribution originale de ce
travail, a permis de quantifier la contribution de Iélasticité des deux phases

(matrice/goutte) dans la déformation de la goutte.

Quant aux résultats obtenus en cisaillement, on a abouti quasiment aux mémes
conclusions quant & Peffet de I'élasticité sur la déformation des gouttes. Le montage
expérimental congu a permis d’aller jusqu’a la rupture de la goutte, et d’étudier ainsi
’effet de I’élasticité sur les mécanismes de rupture. Une relation empirique entre le
nombre capillaire critique (rapport entre les forces visqueuses et les forces interfaciales au
moment du bris) et le rapport d’élasticité goutte/matrice a été développée. On a pu
démontrer que le nombre capillaire critique augmente avec 1’augmentation du rapport
d’élasticité, et atteint une valeur maximale d’environ .75 pour des rapports d’élasticité
supérieurs 4 4. Cette valeur représente la contribution maximale de I’€lasticité dans le

nombre capillaire critique. On a également observé que le temps nécessaire pour briser la

goutte sous cisaillement critique augmente avec 1’augmentation du rapport d’élasticité.
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Pour des faibles rapports d’élasticité goutte/matrice, il n’y a pas de déviation remarquable
du comportement des systémes élastiques par rapport a celui des systémes newtoniens,

possédant le méme rapport de viscosité et la méme tension interfaciale.

La phase finale de ce travail consistait 4 adapter une méthode de simulation en deux
dimensions qui utilise la technique des éléments finis pour simuler la déformation de
gouttes élastiques dans une matrice élastique en écoulement élongationnel 4 travers un
conduit convergent. Le modéle d’Oldroyd-B a été utilisé dans le code de calcul pour
décrire le comportement viscoélastique de la goutte et celui de la matrice. Malgré la
limitation de ce code aux cas d’écoulements bidimensionnels, les résultats de simulation
semblent étre acceptables comparativement aux résultats expérimentaux qui ont été
obtenus pour un écoulement convergent axisymétrique. Les résultats de simulation
prédisent d’une maniére quasi-quantitative les effets de I’élasticité sur la déformation de la

goutte.




ABSTRACT

This thesis presents original techniques for studying the influence of elasticity on the
micro-rheology of binary incompatible polymer blends. The approach that has been
adopted in this work focused on the deformation and breakup mechanisms of isolated
polymer drops under two well-characterized flow fields, shear and elongation. It is worth
noting that those flow fields are encountered in all blending operations. In the
experimental study, the contribution of elasticity on drop deformation was investigated by
using a variety of constant viscosity elastic fluids. Those fluids, so-called Boger fluids,
exhibit an elastic response, e.g., normal stresses in shear flow, but have approximately a

constant viscosity.

Firstly, a series of constant viscosity elastic (Boger) fluid combinations of different
elasticities were prepared and their rheological properties were measured. The steady-state
rheological properties were measured using a R-18 Weissenberg rheogoniometer, and the
dynamic properties were obtained using a Bohlin VOR rheometer. The interfacial tension
between the drop and matrix phases was determined using the spinning drop technique.
All results obtained were in good agreement with previous results presented in the
literature for Boger fluids. The rheological characterization showed that the different
elastic fluid combinations prepared for this study had approximately the same viscosity
ratio and interfacial tension. Only the elasticity ratio between the drop and the matrix
fluids varied from one combination to another. Such properties made it easier to assess the

effect of elasticity on drop behavior under shear or elongation.
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Secondly, two experimental setups were designed to generate the two flow fields (shear
and elongation). The elongational flow setup consisted of a transparent channel of
Plexiglas, with a converging and diverging cross-sectional channel, mounted at the bottom
of the barrel of an Instron capillary rheometer. The shearing flow device was made of two

parallel Plexiglas disks, mounted on a R-18 Weissenberg rheogoniometer.

For the elongational flow study, two series of tests were carried out in order to investigate
the effect of both drop and matrix elasticities on drop deformability. The results revealed
several interesting features about the role played by both the drop and matrix elasticities
on the drop deformability. The drop deformation decreases with increasing elasticity,
while the matrix elasticity have an opposite effect. The drop deformation increases with

increasing matrix elasticity, but the drop elasticity seems to have much more control on

the drop deformability. For elasticity ratio, k'< 0.2, the matrix elasticity has more effect

on the drop deformation than the drop elasticity. However, for k'> 0.2, the drop

deformation is more affected by drop elasticity. A simple empirical relation between the
drop and the matrix elongations, as a function of drop and matrix elasticities, was

established. This relation is wvalid under a narrow range of viscosity ratio

(0.5 £ k £ 1.10) and an approximately constant interfacial tension of about 22 mN/m.

For shearing flow, the results showed remarkable differences in the mechanisms of drop
deformation in the elastic systems compared to that in the Newtonian system of
approximately the same viscosity ratio and interfacial tension. As in the case of the

elongational flow, both the drop and the matrix elasticities affect the steady-state drop
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deformation. The matrix elasticity helps to deform the drop, whereas the drop elasticity
resists drop deformation. An empirical relation between the steady-state drop deformation
and the capillary number was established. This relation quantifies the contribution of both
the drop and matrix elasticities on the drop deformation. For high matrix elasticity (k' <
0.37), the deformation of elastic drops in an elastic matrix under shear is higher than that
of Newtonian drops in a Newtonian matrix with the same viscosity ratio and interfacial
tension. However, for k' > 0.37, the elastic drops deform less than a Newtonian drop in
a Newtonian matrix. The critical shear rate and the breakup time were found to increase
with increasing elasticity ratio. For k' < 4, the critical capillary number increases rapidly
with increasing k', while for k' > 4, it attains a maximum of about /.75, which

corresponds to the maximal contribution of elasticity on drop breakup.

The aim of the final part of this work was to simulate the elastic effects on drop
deformation in elongational flow through a confined converging channel. A
two-dimensional time-dependent numerical method using finite element computations was
used. The rheological behavior of the constant viscosity elastic fluids was described by the
Oldroyd-B constitutive equation. The predicted drop deformation, obtained for different
drop/matrix combinations, was compared with the experimental results obtained for the
elongational flow. Although the numerical method was limited to two-dimensional flows,
good agreement between the simulated results and the experiments was shown. The
simulation essentially predicts the same elasticity effects on drop deformation as those

observed experimentally.
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INTRODUCTION ET OBJECTIFS GENERAUX

Durant les derniéres années, les chercheurs ont porté une attention particuliére sur I’étude
des mélanges de i)olyméres. En effet, cette technique constitue une voie privilégiée pour le
développement de nouveaux matériaux ayant des performances bien spécifiques tout en
étant plus économiques (en temps et en argent) que le développement de nouvelles
résines, qui souvent nécessite des dizaines d’années de recherche avant d’étre fabriquées.
D’une maniére générale, les propriétés des mélanges de polyméres dépendent, d’une part
des propriétés intrinséques des composantes de base (leur viscosité, leur concentration,
leur histoire thermique, etc.), et d’autre part de la morphologie obtenue aprés le malaxage
(taille, forme et arrangement spatial des différentes phases du mélange). La qualité de
Iinterface entre les différentes composantes du mélange est aussi d’une grande
importance, surtout dans le but d'améliorer les propriétés mécaniques, les propriétés
barriéres et la stabilité. On doit donc tenir compte, non seulement des propriétés des
ingrédients de base, mais aussi de la morphologie et de son évolution dans les équipements
de mélange et de mise en oeuvre. La maitrise et le bon contrdle de la morphologie lors des
étapes de transformation est donc la clef pour I'obtention d’un produit plus performant qui
répond aux exigences en matiére de comportement aux chocs, perméabilité, etc. Les deux
exemples qui suivent témoignent bien de I'importance de la morphologie sur les propriétés
finales du matériau. Dans le cas des propriétés mécaniques, on sait que le comportement

aux chocs des thermoplastiques contenant une phase élastomére dépend fortement de la




taille et de la répartition des particules dispersées. Par exemple, lors du renforcement du

polyamide par des particules d’élastoméres, la distance entre les particules, directement
reliée a la taille et la concentration de ces derniéres, est le facteur déterminant pour
améliorer le comportement au choc du polyamide (Yoshida et al., 1990). La forme de la
phase dispersée est tout aussi de grande importance sur les propriétés barriéres de certains
polyméres. On comprendra aisément qu’une dispersion sous forme de lamelles de matériau
imperméable (tel que le polyamide) dans une matrice qui ne I’est pas (en polyoléfine),

diminue considérablement la perméabilité & I'oxygéne et a plusieurs solvants

(Subramanian, 1985).

Des études théoriques et expérimentales ont démontré que la viscosité des composantes
du mélange, leur concentration, leur histoire thermique ainsi que la tension interfaciale
entre ces composantes jouent un role important sur le controle de la morphologie (taille et
forme) de la phase dispersée (Utracki, 1989). Cependant, la majorité de ces études ont été
effectuées sur des systémes de fluides newtoniens et ont négligé I'effet de I’élasticité,
caractéristique importante de la majorité des polymeéres. On sait aussi qu’aux conditions de
mélange, les polyméres sont des liquides viscoélastiques. Les particules de la phase
dispersée sont donc soumises, non seulement aux forces visqueuses et interfaciales, mais
aussi aux forces élastiques de la phase majeure (matrice) ainsi que celles des particules
dispersées elles-mémes. L’évolution de la morphologie (taille et forme des particules) est

donc affectée par I’élasticité des composantes.




A notre connaissance et d’aprés la revue de la littérature sur le sujet, il n'y a pas eu

vraiment de travaux qui ont réussi & mesurer la contribution de I’élasticité sur la
morphologie des systémes de fluides viscoélastiques. Nous mentionnons par ailleurs, que
ceux qui ont étudié le comportement des mélanges de fluides viscoélastiques ont souvent
utilisé des matériaux, non seulement a élasticité élevée, mais aussi qui possédent un
comportement rhéofluidifiant. La différence des comportements par rapport a ceux des
systémes de fluides newtoniens représente un résultat complexe qu’on ne peut pas lier
directement a l'élasticité ou a la viscosité des différentes phases du mélange. La
quantification de la contribution de I’élasticité sur la taille et la forme des particules de la

phase dispersée demeure donc inconnue.

L’objectif principal de ce travail est d’identifier et de quantifier la contribution de
I’¢élasticité dans la déformation de gouttes et son influence sur les conditions critiques de
rupture de ces gouttes. L’approche adoptée consistera a visualiser le comportement d’une
goutte élastique isolée, suspendue dans une matrice élastique dans le cas de deux
écoulements bien caractérisés, soient I’écoulement élongationnel et le cisaillement. En
effet, les écoulements dans les mélangeurs internes ou les extrudeuses sont une
combinaison de cisaillement et d'élongation. Il s'agira donc, en premier temps, de
développer une technique expérimentale de visualisation adéquate pour les deux types
d'écoulement. Pour l'écoulement élongationnel, on s'intéressera a développer une relation
empirique entre la déformation de la goutte et celle de la matrice, qui mettra en évidence la

contribution de I'élasticité des deux composantes (goutte/matrice) sur la déformation de la




goutte. Pour l'écoulement en cisaillement, on s'intéressera, dans un premier temps, a
quantifier la contribution de I'élasticité sur la déformation en régime permanent de la
goutte pour des niveaux de cisaillement inférieurs au cisaillement critique (cisaillement
nécessaire pour briser la goutte). Une relation empirique entre la déformation de la goutte
et le nombre capillaire sera donc établie. Le montage congu pour les essais en cisaillement
nous permettra d'atteindre des niveaux de cisaillement capables de briser la goutte. On
s'intéressera donc, dans un deuxiéme temps, & trouver une relation entre I'élasticité et les
paramétres micro-rhéologiques critiques représentatifs du bris de la goutte, qui sont le

nombre capillaire critique, Ca,, et le temps de bris, #, nécessaire pour briser la goutte

sous cisaillement critique.

Le dernier objectif visé par le présent travail consiste a simuler la déformation de gouttes
dans un écoulement élongationnel. Les données expérimentales obtenues serviront &

valider les résultats de simulations numériques.

Dans cette thése, on présentera tout d'abord une revue de la littérature ainsi qu’une
évaluation critique des travaux effectués sur les mécanismes de déformation et de rupture
de gouttes. Dans le deuxiéme chapitre, on présentera les fluides modéles utilisés dans
cette étude, ainsi que les différentes techniques expérimentales développées. Les trois
articles publiés ou soumis pour publication formeront le corps de ce travail. Ces articles
seront présentés aux chapitres III, IV et V. Ils seront suivis de conclusions et de

recommandations pour des travaux futurs.




CHAPITRE I

REVUE DE LA LITTERATURE SUR LA MICRO—RHEOLOGIE
DES MELANGES BINAIRES DE POLYMERES IMMISCIBLES

1.1 Morphologie des mélanges de polyméres immiscibles

L’opération de mélange de deux polyméres immiscibles a 1’état fondu peut aboutir a
différentes configurations (morphologies) possibles des deux phases qu’on peut classer en
trois types principaux (Van Oene, 1972; Plochoki, 1983): (i) Un premier type de
morphologie, appelé morphologie & phases dispersées, dans lequel la phase mineure se
présente sous forme de petites gouttes ou de fibrilles. (ii) Un second type, appelé
morphologie a phases stratifiées, ot la phase mineure se présente sous forme de lamelles
plus ou moins fines. (iii) Un dernier type, appelé morphologie co-continue, ou les deux

phases sont simultanément continues et prennent une configuration de type éponge.

La diversité des propriétés d’un mélange de polyméres immiscibles, telles que les
propriétés mécaniques, propriétés thermiques, perméabilité, etc., dépendent, d’une part du
choix des polyméres de départ, et d’autre part du type de morphologie générée durant
I'opération de malaxage (Utracki, 1989; Luciani, 1993). Le développement de ces
morphologies dépend, de sa part, du type de mélangeur utilisé, des caractéristiques des
constituants de base, de leur pourcentage dans le mélange et des conditions de mise en
ceuvre.

Dans ce chapitre, on présente une revue bibliographique sur les mécanismes fondamentaux

susceptibles d’intervenir lors de I’élaboration des morphologies. On présente plus




particuliérement les facteurs principaux qui influencent la déformation et la désintégration
des gouttes de la phase dispersée dans le cas ou celles-ci se présentent dans le mélange en

faible pourcentage (cas du premier type de morphologie présenté auparavant).

1.2 Meécanismes de déformation et de rupture des gouttes de la phase

dispersée dans le cas des systémes de fluides newtoniens

Quand un mélange de deux polyméres est soumis & un écoulement, les gouttes de la phase
dispersée (phase mineure) se déforment sous l'effet des contraintes générées dans le
systéme. La déformation d'une goutte isolée est déterminée par la compétition entre les
forces visqueuses et les forces de surface. A des faibles vitesses d’écoulement, les forces
de surface dominent et gardent la goutte sous sa forme sphérique, alors qu'a des niveaux
d’écoulement plus élevés, les forces visqueuses a lintérieur et 4 l'extérieur de la goutte
deviennent importantes et forcent la goutte a se déformer telle que présentée a la
figure 1.1 pour le cas d’un écoulement en cisaillement. La loi de Laplace donne une

relation entre la tension interfaciale, &, la différence de pression de part et d’autre de

l'interface, 4P, ainsi que la géométrie de la goutte. Cette relation est de la forme:

1 1
AP1=20(—+— (1.1)
L B
ou L et B sont les axes principaux de la goutte déformée.
Taylor (1932, 1934) fut le premier a avoir étudié, théoriquement et expérimentalement, la
déformation et la rupture d'une goutte de fluide newtonien dans une matrice newtonienne

sous cisaillement simple en régime permanent ou en écoulement élongationnel. Il montre




qu'en cisaillement simple, la déformation et la rupture de la goutte dépendent des deux

paramétres adimensionnels suivants:

i) Le rapport de viscosité entre la goutte et la matrice:

r=Td (1.2)
Tm

ol 74 et 7, sont respectivement les viscosités de la goutte et de la matrice.

ii) Le nombre capillaire, Ca, qui représente le rapport entre les forces visqueuses et

interfaciales:

a
Ca=ml2 (1.3)
a
ol ¥ représente le taux de cisaillement et 4 le rayon initial de la goutte non déformée.

=4

X
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d

Figure 1.1: Schéma d'une goutte déformée en cisaillement

Dans le cas ou l'effet de la tension interfaciale prédomine celui des forces visqueuses (cas

des faibles déformations), Taylor donne une relation entre la déformation en cisaillement,




D, de la goutte et les paramétres rhéologiques. Cette relation est de la forme

D= (L — B) = Ca(_j_g_.l.c_-'-_&) (1.4)
L+ B 16k + 16

Il déduit ensuite un critére de rupture de la goutte qui parvient dés que les forces

visqueuses dépassent les forces interfaciales. Ce critére est donné par Pexpression

suivante:

Ca(m) >0.5 (1.5)
16k + 16

On remarque donc (d'aprés Taylor) que la rupture en cisaillement de la goutte en deux

gouttelettes soeurs de plus petites tailles se produit quand la déformation, D, est de l'ordre

de 0.5. Les études effectuées par Grace (1982) sont parmi les études les plus poussées au

niveau de la description du comportement en cisaillement ou en élongation d’une goutte
newtonienne dans une matrice newtonienne. Il montre expérimentalement que les modes
de déformation et de rupture, ainsi que le temps de bris (temps nécessaire 4 la rupture),
dépendent non seulement du rapport de viscosité, mais aussi de la différence entre le
niveau de cisaillement appliqué et le cisaillement critique (cisaillement minimum pour
fragmenter la goutte). Grace (1982) a aussi étudié I’élongation nécessaire & la rupture sous
cisaillement critique ainsi que le temps nécessaire a la rupture. Les résultats obtenus sous
un cisaillement critique montrent que la particule s’allonge de maniére importante avant la
division. Si le niveau de cisaillement appliqué excéde le cisaillement critique, I’élongation &
la rupture augmente et la fragmentation donne naissance & un plus grand nombre de

gouttelettes soeurs.




Le tableau 1.1 regroupe plusieurs travaux expérimentaux et théoriques effectués sur la
déformation de gouttes dans le cas des fluides newtoniens. Parmi les études
expérimentales présentées, il y a celle de Bartock et Mason (1959) qui met en évidence un
phénomeéne de circulation interne dans le cas des grosses gouttes qui se déforment en
sphéroides lors d'un cisaillement simple. Le méme phénoméne a été observé en écoulement
élongationnel par Rumscheidt et Mason (1961). Leurs travaux sur une large gamme de
rapport de viscosité et de tension interfaciale leur ont permis d'observer quatre modes de
déformation en cisaillement simple, et deux modes de déformation en écoulement
élongationnel. La figure 1.2 montre une représentation simplifiée de ces différents modes
de déformation. Les résultats de Rumscheidt et Mason ne concordent avec la théorie de
Taylor que pour des faibles rapports de viscosit€.

Il est important de noter que la majorité des travaux expérimentaux confirment que les
théories proposées, y compris celle de Taylor (1932, 1934) ne sont valides que dans le cas
des faibles déformations. En effet, ces théories sont basées sur I’hypothése de faible
déformation. Pour une forme quelconque, ¥, mesurée durant la déformation par rapport au
systéme d’axes placé au centre de la goutte tel que montré a la figure 1.1, la perturbation
par rapport a la forme sphérique initiale est mesurée par un paramétre trés faible, £, selon

la relation suivante (Rallison, 1981; Lee et Park, 1994):

r=a(l+¢f) (1.6)

ol a représente le rayon initial de la goutte non déformée, et {f la déviation du rayon de

la goutte déformée par rapport a son rayon initial.




Tableau 1.1: Sommaire des principaux travaux sur la déformation et la rupture
d'une goutte newtonienne dans une matrice newtonienne.

Type rapport de nombre capillaire Types des travaux
d'écoulement viscosité (k) (Ca) et auteurs
Travaux expérimentaux
Bartok et Mason (1959)
Arbitraire Arbitraire Rumscheidt et Mason (1961)
Grace (1971)
Cisaillement simple
Travaux théoriques
Arbitraire Ca<<l Biesel et Acrivos (1973)
k—0 Arbitraire Cox (1969)
k—0 Ca— Hinch et Acrivos (1979)
k—>1 Arbitraire Rallison (1981)
Travaux expérimentaux
Rumscheidt et Mason (1961)
Arbitraire Arbitraire Grace (1971)
] Choi et Schowalter (1975)
Elongationnel 2D
Travaux théoriques
Arbitraire Ca<x<l Biesel et Acrivos (1973)
k—>0 Ca— Hinch et Acrivos (1980)
k=1 Arbitraire Rallison (1981)
] Travaux théorigues
Elongationnel
Axisymétrique Arbitraire Ca<x<l1 Biesel et Acrivos (1973)
k<30 Arbitraire Van Der Reijden et Sara (198
k—>0 Ca—> o Acrivos et Lo (1978)
k=03 Arbitraire Rallison (1981)
k—>0 Arbitraire

Youngren et Acrivos (1976)
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Figure 1.2: Différents modes de déformations (Rumscheidt et Mason, 1961).
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La plupart des auteurs ont débuté leurs analyses par la résolution des équations de Navier-
Stokes a lintérieur et a l'extérieur de la goutte. En utilisant les conditions d’interface
appropriées: (i) continuité de la vitesse (pas de glissement a l'interface), (ii) continuité des
contraintes, et (iii) immiscibilité¢ des phases, ils ont utilisé la technique d’expansion en
fonction du paramétre de perturbation, {, pour ainsi trouver le champs de vitesse a

I’interface en fonction de § . La vitesse radiale de déformation & l'interface donne la forme

instantanée de la goutte. Le degré de précision des résultats reste cependant fonction de

I’ordre de I’expansion en {, des hypothéses de départ (forces d'inerties négligées,
incompressibilité, etc.) et des cas particuliers traités (Ca<< I, Ca >> I, k << I,
k>> 1, etc).

A titre d'exemples, Cox (1969) a développé une théorie pour prédire la déformation, D, en
cisaillement d'une particule visqueuse dans une matrice visqueuse en cisaillement. Dans
son développement, il n'a traité que le cas ou les rapports de viscosité sont élevés
(k >> I). La prédiction de la déformation de la goutte, par la théorie de Cox, est donnée

par la relation suivante:

2T
D=Ca(—1—M) 1+(1’;kCa) (1.7)
16k +16 20

En résumé, on peut conclure que la majorité des études expérimentales ont fait apparaitre
des limites dans le rapport de viscosité au dessus et en dessous desquelles la rupture de la

goutte est trés difficile. Tous les résultats semblent étre en accord avec ceux de

Grace (1982), qui montre 4 la figure 1.3 que la limite supérieure est de l'ordre de 3.5,
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alors que la limite inférieure varie de 10°% 2 107, D'aprés la figure 1.3, on peut tirer les
remarques suivantes: (i) La rupture est plus facile pour des valeurs de k situées entre 0.1
et /. (ii) La variation logarithmique du nombre capillaire critique par rapport a k est

presque linéaire pour des rapports K inférieurs a /. (iii) Contrairement au cisaillement

simple en régime permanent, la rupture d'une goutte newtonienne dans un écoulement
élongationnel semble étre plus aisée. Il n'y a pas de restrictions quant au niveau du rapport
de viscosité. Au vu de ces résultats, il apparait que les conditions de déformation et de
rupture sont trés dépendantes de la géométrie de I'appareil de mélange utilisé et que
I’écoulement élongationnel est beaucoup plus performant pour déformer et briser une

goutte que le cisaillement simple.

lOOOi-
100 [
3 Clsdllement simple
o -
LV 10k
1 :.. Ecoulement
3 CEn oy ewme aem
0.1 ] | IR | N I | S B PO | I N |

107 100 105 104 103 102 10! 10 10! 102 103
Rapport de viscosite, £.

Figure 1.3: Variation du nombre capillaire critique en fonction du rapport
de viscosité (Grace, 1982).
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1.3 Effet de DP’élasticité sur les mécanismes de déformation et de
rupture de la phase dispersée

1.3.1 Cas ol une seule composante du mélange est viscoélastique

Contrairement aux systémes newtoniens, il y a peu de théories qui tiennent compte du
caractére élastique de la phase dispersée et de la matrice. Quelques études expérimentales
ont été effectuées pour connaitre le comportement de gouttes viscoélastiques se déformant
dans un milieu newtonien et vice-versa (Gauthier et al., 1971; Flumerfelt, 1972,
Elmendorp et Maalke, 1985; De Buijn, 1989; Milliken et Leal, 1991; Varanasi et al,,
1994). Gauthier et al. (1971) ont trouvé que le nombre capillaire critique en cisaillement,

Ca,, est plus élevé dans le cas d’une goutte élastique se déformant dans une matrice

newtonienne, que dans le cas d’une goutte newtonienne dans une matrice newtonienne.
Vu le nombre insuffisant de résultats expérimentaux sur la rupture de la goutte, ils n’ont

pas tiré des conclusions quant & la contribution de I’élasticité sur Ca,. Han et Chuang

(1985) ont étudié théoriquement le comportement d’une goutte newtonienne dans une
matrice viscoélastique en écoulement élongationnel. Ils concluent que la déformation de la
goutte est principalement contrdlée par la viscosité de la matrice. L’¢élasticité de la matrice
ou la viscosité de la goutte n’ont qu’une faible contribution dans la déformation de la
goutte. Cependant, il est intéressant de signaler que le modéle développé n’est valide que
dans le cas des faibles déformations. Varanasi et al. (1994) ont observé que durant le
cisaillement continu, une goutte viscoélastique qui se déforme dans une matrice
newtonienne atteint des allongements trés élevés et ne se fragmente qu'aprés arrét de

l'écoulement. L'élasticité de la goutte a un effet de stabilisation pour un rapport de
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viscosité, k, inférieur & 0.5 et un effet de déstabilisation pour k supérieur & 0.5. Les
résultats de Varanasi et al. (1994) ont été contredites par De Bruinjn (1989) qui a trouvé

une légére augmentation de Ca, dans le cas des gouttes viscoélastiques. Flumerfelt
(1972) a été le premier 4 avoir réussi a formuler une relation entre Ca,, et Iélasticité de la

goutte, dont le comportement rhéologique a été décrit par le modeéle rhéologique de Bird-

Carreau (1968). Pour un écoulement en cisaillement simple, la relation obtenue est de la

forme:

Ca, = fi(kXAy)+ fr(k) (1.10)

ou fi(k) et f5(k) sont deux paramétres expérimentaux qui dépendent du rapport de
viscosité, A; est le temps de relaxation du modéle de Bird-Carreau (s), et 7 le taux de
cisaillement (s”).

Elmendorp et Maalcke (1985) ont visualisé le comportement en cisaillement d'une goutte
viscoélastique dans un milieu newtonien et vice-versa. Dans le premier cas, et ce pour
plusieurs systémes, ils ont observé de faibles déformations. Les gouttes viscoélastiques
sont stables et ne se brisent pas. Dans le second cas, les contraintes normales générées par
la matrice favorisent la déformation et le bris des gouttes newtoniennes. A la figure 1.4, on
fait apparaitre la comparaison de leurs résultats avec la théorie de Cox (1969) et celle de
Van Oene (1972). Les courbes de déformation et de rupture sont numérotées par ordre
décroissant d'élasticité. On voit bien que les gouttes les plus élastiques sont celles qui se
déforment le moins et qu'elles sont plus stables. Le méme travail a été effectué par

Milliken et Leal (1991) en écoulement élongationnel. Ils ont observé que pour des
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rapports de viscosité supérieurs a I’unité, la déformation d’une goutte viscoélastique dans
une matrice newtonienne est identique & celle d’une goutte newtonienne dans une matrice
newtonienne. Cependant, pour des rapports de viscosité inférieurs & I'unité, la goutte
viscoélastique se déforme moins que la goutte newtonienne. La figure 1.5 montre deux
séries de photos pour comparer la déformation dans une matrice newtonienne d’une
goutte de fluide newtonien (& gauche) et celle d'un fluide viscoélastique (& droite). Les
séries de photos ont été prises alors que les gouttes se déforment sous cisaillement élevé
(supérieur au cisaillement critique). Les valeurs indiquées a c6té de chaque photo

représentent la déformation élongationnelle, soit le temps de déformation, , multiplié par

le taux élongationnel, £ . Les deux derniéres photos, correspondant au méme temps de
déformation dans les deux cas, montrent bien que la goutte élastique s'allonge moins que
la goutte newtonienne. Les auteurs n’ont pas formulé de relation qui met en évidence

I’influence de I’élasticité sur la déformation et le nombre capillaire critique.

1.3.2 Cas ot les deux composantes du mélange sont viscoélastigues

Ce qui nous intéresse le plus dans notre étude est le cas le plus réaliste ot les deux
composantes du mélange ont un comportement viscoélastique, caractéristique importante
de la majorité des polymeéres. Van Oene (1972) fut parmi les premiers chercheurs a avoir
étudié les systemes viscoélastiques. Il part du fait que le comportement en écoulement de
ces systémes peut étre décrit en terme de fonctions qui tiennent compte a la fois des forces
dissipatives (ou forces visqueuses), ainsi que des contraintes normales qui décrivent la

distribution de la pression due & l'élasticité ou la déformabilité du fluide.
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Figure 1.4: Courbes de déformation et de rupture d’une goutte viscoélastique (solution
de polyacrylamide) dans un milieu newtonien (huile de silicone) : ( ):
courbes expérimentales, (1°, 2°, 3° et 4°) : théorie de Cox (1969), (1", 2", 3"
et 4"): théorie de Van Oene (1972). (Elmendorp et al., 1985).




Figurel.5: Comparaison entre la déformation d’une goutte newtonienne
et celle d’une goutte viscoélastique (Milliken et al., 1991).
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Tl modifie donc la valeur de la tension interfaciale par ajout d’un terme correctif qui
représente la contribution du caractére élastique des matériaux sous cisaillement. Il

exprime cette modification de la maniére suivante:

a
a=0ay +g[N]g—N1m] (111)

ol ¢ est la tension interfaciale sous cisaillement et @ la tension interfaciale au repos.

a . g g e s
Le terme E[ N g~ N ]m]représente I’énergie libre élastique par unité de surface

interfaciale. Cette nouvelle tension interfaciale est utilisée pour décrire le phénoméne de
déformation et de rupture a l'aide des théories de stabilité hydrodynamique telle que celle
de Cox (1969). Parmi les autres travaux qui ont traité les systémes viscoélastiques, nous
pouvons citer ceux de Han et Funatsu (1978) qui ont étudié expérimentalement 'extension
et la rupture d'une goutte viscoélastique dans une matrice viscoélastique en écoulement &
travers un conduit transparent de type convergent-uniforme. La figure 1.6 montre des
photos d'une goutte déformée dans les deux régions de I'écoulement. Les auteurs ont
trouvé que les gouttes viscoélastiques sont plus stables que les gouttes newtoniennes et
que la stabilité augmente avec leur niveau d'élasticité. Des contraintes de cisaillement plus
élevées sont donc nécessaires pour réussir a fragmenter des gouttes plus élastiques. Par
ailleurs, on signale que Han et Funatsu n’ont pas proposé de théorie pour cerner P’effet de
I’élasticité, mais ils ont réussi & tracer une courbe qui sépare la région stable (la ou il n'y a
pas rupture) de la région instable ou la goutte se fragmente en deux ou plusieurs
gouttelettes. Chin et Han (1979) ont donné suite aux travaux de Han et Funatsu pour

I'écoulement élongationnel a travers un conduit convergent. Leur théorie donne des
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informations qualitatives fondamentales sur I'importance relative des divers facteurs
entrant en ligne de compte dans les phénoménes de division de gouttes viscoélastiques. 1I
ont montré que la déformation de la goutte augmente avec I’accroissement du nombre
capillaire et varie 1égérement avec le rapport de viscosité. Cette déformation augmente
aussi légérement avec I’accroissement de I’élasticité de la matrice. D’aprés les résultats
obtenus par Chin et Han, on constate que la viscosité du milieu joue un réle plus important
sur I’état de déformation que celui de I’élasticité du milieu ou de la viscosité de la goutte.
La figure 1.7 montre que la théorie développée surévalue la déformation pour des

nombres capillaires supérieurs & 0.2. La description du comportement rhéologique des

fluides par le modéle de Jeffreys constitue un simplification importante dans leur modele.

1.4 Résumé et commentaires

La majorité des travaux sur les mélanges de polyméres peuvent étre regroupés en trois
grandes classes:

(i) La premiére classe regroupe les travaux qui ne traitent que les mélanges de fluides
newtoniens. La plupart de ces travaux montrent que:

- Il existe des limites dans le rapport de viscosité au dessus et en dessous

desquelles la rupture des gouttes dispersées est trés difficile.

- La valeur du rapport de viscosité pour lequel la rupture est plus aisée se situe

aux alentours de ’unité.

- La rupture en écoulement élongationnel est plus facile qu'en cisaillement

simple.




Partie convergente Partie uniforme

Figure 1.6: Déformation d’une goutte viscoélastique (solution de polyisobutyléne)
a travers un convergent (Han et Funatsu, 1978).
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Figure 1.7:  Validation expérimentale de la théorie de Chin et Han (1979).
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- La majorité des théories proposées ne sont valides que pour des faibles
déformations, alors que durant I’opération de malaxage, les particules de la phase

dispersée peuvent atteindre des déformations élevées.
(ii) La seconde classe regroupe les travaux qui traitent du comportement des systémes
mixtes dans lesquels une seule composante du mélange est viscoélastique. Ces travaux

montrent que:

- Le nombre capillaire critique dans un systéme mixte (ou I'une des composantes
est viscoélastique) est plus élevé que dans le cas des mélanges des fluides

newtoniens.

- L'élasticité de la phase dispersée a un effet de stabilisation des gouttes dispersées,

alors que I’élasticité de la matrice a un effet de déstabilisation.

(iii) La troisiéme et derniére classe regroupe les quelques travaux qui touchent les cas les
plus réalistes ou les deux composantes du systéme sont viscoélastiques. Ces travaux ne
donnent généralement que des informations qualitatives sur le role de l'élasticité sur la

déformation et la rupture des gouttes dispersées.

Par ailleurs, aucune étude antérieure n’a mis en lumiére ’effet de I’élasticité des gouttes et
de la matrice en absence d’effets rhéofluidifiants. Ceux qui ont étudié le comportement des
mélanges de fluides viscoélastiques ont souvent utilisé des matériaux non seulement &
élasticité élevée, mais aussi qui possédent un comportement rhéofluidifiant. La différence
des comportements par rapport 4 ceux des systémes de fluides newtoniens représente un
résultat complexe qu’on ne peut pas lier directement a I'élasticité ou a la viscosité des
différentes phases du mélange. La quantification de la contribution de I'élasticité sur la

. taille et la forme des particules de la phase dispersée demeure donc inconnue.




CHAPITRE 11

MATERIAUX UTILISES, TECHNIQUES EXPERIMENTALES
ET DISCUSSION DES RESULTATS OBTENUS

Dans ce chapitre, on présente les différents fluides modéles utilisés dans le présent travail,
la technique de préparation ainsi que certaines de leurs propriétés rhéologiques. Les détails
sur la caractérisation rhéologique fera I’objet du chapitre III. En ce qui concerne les
différentes techniques expérimentales utilisées pour la caractérisation rhéologique et la
génération des deux types d’écoulements, on ne présente dans ce chapitre que les points
jugés importants et qui ne seront pas expliqués en détail dans les articles faisant objet des
trois prochains chapitres. Une bréve discussion générale des résultats obtenus sera

présentée a la fin du chapitre.

2.1 Fluides modéles utilisés et mesﬁres rhéologiques

Pour rendre possible la séparation des effets de I’élasticité de ceux des effets visqueux, un
des rares moyens disponibles est I'utilisation des fluides modéles idéalement élastiques
découverts depuis une vingtaine d’années par David Boger (1977). Ces fluides possedent

a la fois une viscosité relativement constante et un niveau d’élasticité élevé.

2.1.1 Caractéristiques générales d’un fluide de Boger

La figure 2.1 illustre respectivement les viscosités en régime permanent, 77, et dynamique,

n', de I'un des fluides de Boger utilisés dans le présent travail (ce fluide est identifié au
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tableau 2.1 par D). On y présente également le module de stockage, G', et la premiére
différence des contraintes normales, N, caractéristiques de 1’élasticité du fluide. On
remarque que 77 et 77" sont presque identiques et présentent une trés légére dépendance
du taux de cisaillement ou de la fréquence angulaire. Quant 4 N; et G’, ils obéissent
généralement a la relation suivante (Boger et al., 1977):

G’ Ny

Lim—=1/2 Lim—- 2.1
w—>0a)2 / 7’—)07'2

L’élasticité de ce type de fluide, caractérisée par le temps de relaxation de Maxwell, A ,
peut €tre calculée a partir des données expérimentales de la premiére différence des

contraintes normales en utilisant la relation suivante :

:2
A=N;/2ny 2.2)
10? T Y T ~r 10°
100 | {104
" . ~~
©
100 b 100 Q
-
o 19 F 10? ED
© o
ST & o §
= A
00 | 100 g_-
10} 4 100 <
107} { 102
100 . : . . 109
107 10+ 100 10" 100 109

7 o(s')

Figure 2.1: Comportement rhéologique d’un fluide de Boger & T= 25°C (solution
formée par 0.244% de polyisobutyléne a haute masse moléculaire dissout

dans du polybuténe newtonien) (Mighri et al., 1997).
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2.1.2 Systémes de fluides de Boger utilisés dans le présent travail
Le choix des matériaux utilisés dans ce travail a été dicté par le fait que les combinaisons
goutte/matrice devraient étre immiscibles. Les combinaisons choisies, dont la composition

est montrée au tableau 2.1, répondent bien a cette exigence.

(a) Pour les fluides de la phase matrice, nommés M, dans le reste du travail, de faibles
quantités de  polyacrylamide & haute  masse moléculaire  (PAA4),
[2x1 0 <M, <4xI 0° kg/kmol, Separan AP30 de Dow Chemical] ont été

dissoutes dans du sirop de maltose (MS), et de I’eau distillée (). Une faible quantité
de bactéricide (300 ppm de NaN5) a été ajoutée au mélange pour éviter la formation

de bactéries a cause de la présence du sucre dans le sirop de maltose. La masse
volumique mesurée du mélange est de ’ordre de /.15 g/mL.

(b) Pour les fluides de la phase dispersée, nommeés D;, de faibles quantités de

polyisobutyléne & haute masse moléculaire (PIB), [[x 10° <M w S 2% 10°
kg/kmol, d’Aldrich] ont été dissoutes dans un mélange de polybuténe newtonien

(PB), [f¢ =24 Pa.s a 25°C, Indopol H100 de Stanchem Canada], et du kéroséne
(Ker.). La masse volumique du mélange est de ’ordre de 0.98 g/mL.

Le mélange a été effectué, dans une enceinte fermée & la température ambiante, a I’aide
d’un agitateur & faible vitesse de rotation afin d’éviter la dégradation des polyméres a
haute masse moléculaire. Une durée de mélange de cing jours a été jugée suffisante pour

assurer une meilleure dissolution (Boger et al.,, 1977). Les solutions ont été gardées
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hermétiquement & des températures d’environ 5°C afin d’éviter toute possibilité

d’évaporation ou de dégradation.

Comme détails complémentaires concernant les conditions expérimentales pour mesurer

les viscosités et les contraintes normales, nous mentionnons :

(a) Les mesures de la viscosité et des contraintes normales ont été effectuées a 'aide d’un
rhéogoniométre Weissenberg, modéle R-18, en utilisant des plateaux paralléles avec
un entrefer de I mm. A cause de la sensibilité de I’appareil, nous n’avons pas pu
mesurer avec précision les valeurs des contraintes normales inférieures a /0 Pa. Seules
les valeurs qui sont supérieures & /0 Pa ont été donc retenues.

(b) Vu qu’on a utilisé du polybuténe et des solvants plus ou moins volatils, tels que le
kéroséne et le sirop de maltose, la viscosité des fluides modéles préparés était donc
trés sensible a la variation de la température. Un contrdle adéquat de la température
d’essais a été effectué et la température 4 Dintérieur de la chambre d’essais a été

maintenue & 25 +£0.5 °C. Des résultats de viscosité en cisaillement continu, obtenus a

I’aide du rhéogoniométre Weissenberg, ont été sensiblement identiques & ceux obtenus
3 P’aide du rhéométre VOR de Bohlin (montage de type couette). Ceci nous a assuré
de la bonne précision et de la répétitivité des résultats. De plus, nous signalons que
nous avons appliqué une mince couche d’huile de silicone, de faible viscosité, au
niveau de la surface libre des échantitlons testés pour empécher ’évaporation de I’eau
contenue dans le sirop. Cette technique a été utilisée par Ait-Kadi et al. (1}988).

Le tableau 2.2 résume les propriétés rhéologiques des différentes combinaisons de fluides
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utilisées, soient le rapport de viscosité, le temps de relaxation de Maxwell ainsi que le
rapport d'élasticité. Ce dernier est défini par le rapport entre le temps de relaxation de
Maxwell de la phase dispersée (goutte) et celui de la matrice. Les figures 2.2 et 2.3
montrent respectivement les résultats correspondant a la viscosité dynamique, 7', aux
modules de stockage, G', et de perte, G", en fonction de la fréquence angulaire, pour les
différents fluides des gouttes et ceux des matrices utilisés dans le présent travail. Nous
remarquons que dans la région des faibles fréquences, le module de stockage augmente
avec le pourcentage de polyisobutyléne ajouté a la solution. De plus, comme déja
mentionné a la section 2.1.1, le module de stockage varie d’une maniére presque
quadratique avec la fréquence angulaire dans le cas des solutions les moins concentrées en

polyisobutyléne ou en polyacrylamide.

Tableau 2.1: Désignation et composition des fluides de Boger utilisés dans

le présent travail.
Désignation des fluides Formulation du mélange ®
Fluides de la matrice My 0.00% PAA+ 92.0% MS + 8.00% W.
M, 0.03% PAA+ 92.0% MS + 7.97% W.
M; 0.06% PAA+ 92.0% MS + 7.94% W.
M; 0.10% PAA+ 92.0% MS + 7.90% W.
Fluides de la goutte Dy 0.000% PIB + 93.0% PB + 7.00% Ker.
D, 0.244% PIB + 92.8% PB + 6.98% Ker.
D, 0.600% PIB +91.0% PB + 8.40% Ker.
D; 0.800% PIB + 93.0% PB + 6.20% Ker.
D, 1.200% PIB + 92.0% PB + 6.80% Ker.

2) Tous les pourcentages sont en masse.




28

Tableau 2.2: Systémes de fluides de Boger utilisés, leurs temps de relaxation, les
rapports de viscosité et d’élasticité des différentes combinaisons,

ainsi que leurs tensions interfaciales.

Fluides de la | Fluide de la [Temps de relaxation| Rapport de| Rapport | Tension

matrice (M;) | goutte (D)) | Matrice  Goutte | viscosité |d’élasticité|interfaciale
Am(S) Aa(s) (k) k%) a (mN/m)

My Dy --- - 0.50 - =22.0

Dy --- 0.50 0.00 225

D, 0.13 0.75 0.37 23.0

M, D, 0.36 0.22 0.52 0.60 19.5

D; 1.44 0.63 4.00 23.5

D, 2.16 1.10 6.00 20.0

D, 0.13 0.71 0.15 225

M, D, 1.00 0.22 0.49 0.22 23.5

D; 1.44 0.60 1.15 22.5

D, 2.16 1.05 1.70 21.0

D, 0.13 0.45 0.03 275

M; D, 4.00 0.22 0.28 0.07 25.0

D; 1.44 0.36 0.30 240

D, 2.16 0.68 0.47 27.0

2.1.3 Technique expérimentale utilisée pour mesurer la tension interfaciale

Dans un systéme de deux liquides immiscibles, les interactions entre les deux constituants

sont caractérisées par un paramétre ¢ appelé tension interfaciale entre les deux milieux /

et 2. Ce paramétre est défini a partir du travail, /¥, nécessaire pour créer I'interface

(frontiére physique) et des tensions de surface «; et &, de chacun des deux
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constituants:

a=0;,~-a,-W (2.3)
Plusieurs techniques expérimentales peuvent étre utilisées pour déterminer la tension
interfaciale. On peut les classer en deux catégories, (i) les méthodes a 1’équilibre (goutte
pendante, goutte posée, etc.) et, (ii) les méthodes dynamiques (rupture capillaire, goutte
tournante, etc.).
Dans ce travail, les mesures de la tension interfaciale ont été effectuées a 'aide de la
technique de la goutte tournante (spinning drop) & cause de sa fiabilité ainsi que de la
disponibilité de I’appareil au laboratoire. Cette technique, utilisée par Elmendorp et De
Vos (1986), consiste a faire tourner un tube transparent contenant une goutte de fluide
suspendue dans une matrice d’un autre fluide plus dense. L’importance de la déformation
en fonction de la vitesse de rotation du tube donne accés 4 la tension interfaciale. Le profil
de la goutte déformée est déterminé par la compétition entre les forces centripétes et les
forces interfaciales. Elmendorp et De Vos (1986) ont démontré qu’a des vitesses de
rotation suffisamment élevées, la goutte devient trés déformée et forme ainsi un profil
cylindrique dont la longueur peut excéder quatre fois son diamétre. Dans ces conditions, la
relation entre la tension interfaciale et le diamétre de la goutte allongée prend la forme

suivante :

R @.4)
T3 '

ol @ est la vitesse de rotation du tube, d le diamétre du cylindre formé par la goutte

déformée, et Ap la différence entre les densités des deux phases. Dans le cas des faibles
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déformations, la tension interfaciale est donnée par I’expression suivante (Elmendorp et
De Vos (1986):

_ w’Ap

T 4C @:5)

ou C est un facteur de forme tabulé pour plusieurs configurations possibles de la goutte
déformée.

Les valeurs des tensions interfaciales des différentes combinaisons de fluides utilisés dans
notre étude, obtenues & I'aide de la technique de la goutte tournante, sont résumées au

tableau 2.2. Les mesures ont été effectuées & 25°C, température & laquelle ont été

effectués les essais de déformation et de rupture des gouttes. Les résultats obtenus
représentent la moyenne de trois essais dont la durée de chacun de ces essais est d’environ

une heure et demie, temps nécessaire pour atteindre une déformation stable de la goutte.
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Figure 2.2 (suite): Courbes de la viscosité dynamique, 7', et des module de stockage et
de perte, respectivement G' et G’ (fluides des gouttes).
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Figure 2.3: Courbes de la viscosité dynamique, 7', et des module de stockage et de
perte, respectivement G’ et G (fluides de la matrice).
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Figure 2.3 (suite): Courbes de la viscosité dynamique, 7', et des module de stockage et

de perte, respectivement G’ et G (fluides de la matrice).

2.2 Présentation des montages expérimentaux et des procédures

d’essais

2.2.1 Ecoulement élongationnel

L’étude en écoulement élongationnel a été effectuée dans une géométrie de type

convergent-divergent. Dans ce type de géométrie, I’écoulement prés des parois de la

convergence ou de la divergence est d{ essentiellement au cisaillement, alors que celui le

long de I'axe central est largement élongationnel. Quant & ’écoulement dans la zone

intermédiaire, il est formé par un mélange de cisaillement et d’élongation. Le montage

expérimental a été congu pour €tre opérationnel sur un rhéométre capillaire de marque

Instron. La figure 2.4 montre un schéma simplifié du montage qui se monte au fond du
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baril du rhéométre, exactement de la méme maniére qu’un capillaire normal. L’écoulement
est donc vertical et s’effectue du haut vers le bas. L’usinage du conduit convergent-
divergent a été réalisé dans un bloc rectangulaire en acrylique afin d’éliminer le maximum
de distorsion optique due aux courbures du cdne. Pour améliorer la qualité de ’image, les
surfaces intérieures du conduit ainsi que les surfaces extérieures du bloc (a travers
lesquelles P’écoulement est visionné) ont été trés bien polies & I'aide d’une péte au
diamant. Une calibration a été ensuite effectuée 4 ’aide d’un élément rigide (bille d’acier),
et le rapport entre les dimensions réelles de la bille et les dimensions lues a travers le bloc
d’acrylique a servi comme facteur de correction lors du calcul de la déformation des
gouttes. Pour des raisons de difficultés expérimentales, I’évolution de la déformation de la
goutte le long de I’axe central de la conduite n’a été suivie que dans la partie convergente
du montage. En effet, il était impossible de suivre I’évolution de la contraction ou de la
rupture de la goutte dés qu’elle sortait de la convergence et rentrait dans la partie
divergente. A cause des contraintes trop élevées générées dans cette zone, la goutte
déviait de sa trajectoire et il était impossible de tirer des conclusions quant a I’évolution de
sa déformation dans la divergence. Les caractéristiques géométriques du conduit

convergent sont: (a) le diamétre 4 ’entrée est de 28 mm, et (b) I’angle de convergence est
de 19° sur une longueur de 39 mm, ce qui correspond 4 un diamétre de sortie de 2 mm.
Le fluide de la matrice est poussé & partir du baril du rhéométre a I’aide d’un piston, de la

méme maniére que si on effectuait les essais avec un capillaire normal. Les fluides de la

goutte sont injectés & I’entrée du convergent (au niveau de I'axe central) & I’aide d’une
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micro-seringue comme indiqué & la figure 2.4. Un systéme d’injection pas a pas
installé sur la micro-seringue permet d’obtenir des gouttelettes de différentes grosseurs
(0.4 - 1.5 mm de diamétre). Une fois la goutte est injectée et la seringue retirée de la
trajectoire de I’écoulement, on laisse la goutte se relaxer pendant environ 5 min, le temps
qu’elle prenne sa forme sphérique de départ. Nous signalons que, si le piston du rhéométre
est maintenu en arrét, il n’y a pas d’écoulement du fluide de la matrice dii 4 la force de
gravité. En plus, la goutte ne monte pas de beaucoup dans la matrice & cause de la faible
différence de densité entre les fluides de la matrice et celui de la goutte. Cette différence
de densité est donc jugée trop faible pour affecter la dynamique de I’écoulement. Lors de
I’écoulement de la matrice, la déformation de la goutte injectée est enregistrée au fur et a
mesure que la goutte avance le long de I’axe central du convergent. A cet effet, un
systéme de caméra-vidéo muni d’un systéme optique de grossissement a été mis en place.
La caméra principale se déplace verticalement sur des rails, et suit le déplacement de la
goutte durant son passage dans le convergent. Une seconde caméra fixe est dirigée vers un
compteur électronique qui permet de donner en temps réel la position exacte de la goutte
le long de I’axe de I’écoulement. Le temps est mesuré & I'aide d’un compteur digital dont
la précision est de /30 s. Un montage spécial a été mis en place pour enregistrer sur le
méme ruban magnétique la forme de la goutte, sa position dans le convergent, ainsi que le
temps écoulé depuis I'instant ou elle rentre dans le convergent. L’enregistrement sur
cassette vidéo est ensuite analysé séparément & I’aide d’un logiciel de traitement de

’image (Image Pros).




2.2.2 Ecoulement en cisaillement

L’écoulement en cisaillement a été généré entre deux plaques paralléles concentriques en
acrylique (bien polies a I’aide d’une pite au diamant), fabriquées spécialement pour étre
installées sur un rhéogoniométre Weissenberg. La plaque supérieure est fixe, alors que la

vitesse de rotation de la plaque inférieure est imposée par le rhéogoniomeétre. Le diamétre

des deux plaques est de 60 mm, alors que 'entrefer entre les deux plaques a été fixé a

2.5 mm. La figure 2.5 montre un schéma simplifié de la partie utile du montage qui ne
nécessite pas de changements majeurs au niveau du rhéogoniométre. En effet, le systéme
de fixation sur le rhéogoniométre est exactement le méme que celui déja utilisé pour fixer
les plateaux normaux & plaques paralléles ou a cone et plaque. Une fois le systéme installé,
le fluide de la matrice est ensuite rempli entre les deux plaques. Les fluides de la goutte
sont ensuite injectés dans la matrice a I’aide d’une seringue, comme indiqué a la figure 2.5.

De la méme fagon qu’en écoulement élongationnel, une fois la goutte est injectée et la

seringue retirée, on laisse la goutte se relaxer pendant environ 5 min, le temps qu’elle

prenne sa forme sphérique de départ. Pour s’assurer que le diamétre de la goutte ne

dépasse pas 0.8 mm, on soumet la goutte & un taux de cisaillement élevé pour la briser et

ne garder que la goutte qui convient le mieux (diamétre entre 0.4 4 0.8 mm de diamétre).

Les autres gouttelettes sont aspirées a 1’aide d’une seringue. Connaissant la vitesse de
rotation du plateau inférieur et la position de la goutte par rapport a I’axe de rotation, le

taux de cisaillement au niveau de la goutte est donné par la relation suivante:




. r
=0 — 2.6
Y p (2.6)

ou {2 est la vitesse angulaire du plateau inférieur, 7 la distance de la goutte par rapport &

’axe de rotation, et /4 I'entrefer entre les deux plateaux.

Comme dans le cas de I’écoulement élongationnel, la déformation de la goutte est
enregistrée a l’aide d’un systéme de caméra-vidéo muni d’un systéme optique de
grossissement. La caméra fixe un miroir placé juste en dessous du plateau inférieur, sur
lequel on voit la goutte entrain de se déformer. Le temps de déformation est mesuré a
I’aide du méme type de chronométre utilisé sur le premier montage. L’enregistrement sur
ruban magnétique est ensuite analysé séparément a I’aide d’un logiciel de traitement de
I'image (Visilog). D’autres détails techniques sur la procédure d’essais sont montrés dans

le chapitre I'V.

2.3 Présentation et discussion des résultats obtenus pour les deux types
d’écoulements

Nos travaux ont permis de tirer des conclusions importantes quant au rdle joué par
I’élasticité sur le comportement de gouttes dans une matrice en écoulement. La
contribution de I'élasticité sur la déformation et la rupture des gouttes a été mesurée en
comparant les résultats obtenus pour des systémes de fluides élastiques avec ceux obtenus
pour des systémes newtoniens possédant la méme tension interfaciale et le méme rapport
de viscosité. Dans le cas de I’écoulement €longationnel, on a démontré que I’élasticité de
la goutte ainsi que celle de la matrice avaient un effet inverse sur la déformation de la

goutte. L’élasticité de la matrice aidait la goutte & se déformer davantage, alors que
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I’élasticité de la goutte résistait & sa déformation et la rendait de plus en plus rigide. Nos
travaux ont aussi montré que, pour un rapport d’élasticité goutte/matrice inférieur & 0.2,
I’élasticité de la matrice avait plus de contrdle sur la déformation de la goutte, alors que

I’effet de Pélasticité de la goutte était nettement dominant pour des rapports d’élasticité

supérieurs a 0.2. Une relation empirique reliant la déformation de la matrice avec celle de

la goutte a été développée. Cette relation, qui représentait une contribution originale de ce

travail, a permis de quantifier la contribution de Pélasticit¢ des deux phases

(matrice/goutte) dans la déformation de la goutte.

Quant aux résultats obtenus en cisaillement, on a aboutit quasiment aux mémes
conclusions quant a I'effet de I’élasticité sur la déformation des gouttes. Le montage
expérimental congu a permis d’aller jusqu’a la rupture de la goutte, et d’étudier ainsi
I’effet de 'élasticité sur les mécanismes de rupture. Une relation empirique entre le
nombre capillaire critique (rapport entre les forces visqueuses et les forces interfaciales au
moment du bris) et le rapport d’élasticité goutte/matrice a été développée. On a pu
démontrer que le nombre capillaire critique augmente avec I’augmentation du rapport
d’élasticité, et atteint une valeur maximale d’environ /.75 pour des rapports d’élasticité
supérieurs & 4. Cette valeur représente la contribution maximale de Délasticité dans le
nombre capillaire critique. On a également observé que le temps nécessaire pour briser la
goutte sous cisaillement critique augmente avec I’augmentation du rapport d’élasticité.
Pour des faibles rapports d’élasticité goutte/matrice, il n’y a pas de déviation remarquable

du comportement des systémes élastiques par rapport a celui des systémes newtoniens,




possédant le méme rapport de viscosité et la méme tension interfaciale.

La figure 2.6 compare deux résultats typiques de déformation de gouttes sous cisaillement

critique avec ceux déja obtenus en écoulement élongationnel. Ces résultats correspondent
aux combinaisons newtonienne et élastique, respectivement My/Dy et M}/D,. On signale

que seules les données de déformation sous cisaillement critique ont été disponibles pour
comparer la déformabilité de gouttes dans les deux cas d’écoulement. En effet, il a été
vérifié que la grandeur de la vitesse élongationnelle n’affecte pas la déformation des
gouttes, qui est plutdt reliée a la déformation totale de la matrice. Les résultats de la figure
2.6 montrent que, pour la méme déformation totale de la matrice, la déformation de la
goutte est plus élevée en élongation qu’en cisaillement. Ces résultats sont en accord avec
ceux de la littérature (Rumsheidt et Mason, 1961; Grace, 1982; Luciani, 1993).

La phase finale de ce travail consistait 2 adapter une méthode de simulation en deux
dimensions qui utilise la technique des éléments finis pour simuler la déformation de
gouttes élastiques dans une matrice élastique en écoulement élongationnel & travers un
conduit convergent. Le modéle d’Oldroyd-B a été utilisé dans le code de calcul pour
décrire le comportement viscoélastique de la goutte et celui de la matrice. Malgré la
limitation de ce code aux cas d’écoulements bidimensionnels, les résultats de simulation
semblent étre acceptables comparativement aux résultats expérimentaux qui ont été
obtenus pour un écoulement convergent axisymétrique. Les résultats de simulation
prédisent d’une maniére quasi-quantitative les effets de I’élasticité sur la déformation de la

goutte.
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Figure 2.4: Schéma du montage expérimental utilisé

pour générer I’écoulement élongationnel.
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CHAPITRE III

INFLUENCE DES PROPRIETES ELASTIQUES
SUR LA DEFORMATION DE GOUTTES EN
ECOULEMENT ELONGATIONNEL

On présente dans cet article les résultats d’une étude expérimentale qui met en évidence la

contribution de P’élasticité dans la déformation d’une goutte dans une matrice en

écoulement élongationnel. Les fluides modéles de type Boger utilisés, leur composition,

ainsi que leur comportement rhéologique sont présentés en détail dans ce travail. On y
présente également la technique expérimentale pour générer 1’écoulement élongationnel et
permettre le suivi en temps réel de la goutte au cours de sa déformation.

Les travaux effectués montrent que 1’élasticité de la goutte ainsi que celle de la matrice ont
un effet inverse sur la déformation de la goutte. L’élasticité de la matrice aide la goutte a
se déformer d’avantage, alors que 1’élasticité de la goutte résiste & la déformation et la
rend de plus en plus rigide. Une relation empirique reliant les déformations de la matrice et
de la goutte a été développée. Cette relation quantifie la contribution de I’élasticité de la

goutte ainsi que celle de la matrice dans la déformation de la goutte.
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INFLUENCE OF ELASTIC PROPERTIES ON DROP
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BY
F. Mighri, A. Ajji** and P. J. Carreau
Centre de Recherche Appliquée sur les Polyméres, CRASP;
Ecole Polytechnique of Montreal, C. P. 6079, Stn. Centre-Ville,
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Synopsis

We report experimental results on the deformation of a single drop suspended in a medium
under uniaxial elongational flow along the central axis of a converging conical channel
made of Plexiglas. Both the drop and the continuous phases consist of constant viscosity
elastic fluids, so-called Boger fluids. This study reveals several interesting features about
the role played by both the drop and matrix elasticities on the drop deformability. In a
given matrix fluid, the drop deformation decreases as its elasticity increases. For a given
drop fluid, the matrix elasticity has the opposite effect: the drop deformation increases
with increasing the matrix elasticity. An empirical relation between the drop and matrix

deformations is established as a function of the drop and matrix characteristic elastic times.
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3.1 INTRODUCTION

Blending of molten polymers is a versatile and economically viable method of
manufacturing new materials with a wide range of properties. The most important
elementary step during the blending process is the deformation and breakup of single
polymer drops of the dispersed phase into the matrix phase polymer. In a polymer mixer,
complex flow fields involving shear and elongation are generally present. A fundamental
understanding of the deformation and breakup mechanisms of isolated polymer drops
under the above two well-defined flow fields will lead to better design and control of the
equipment.

Most of the previous work reported in the literature on drop behavior focused on
Newtonian fluid mixtures, restricted to small deformations. This is far from reality,
considering that polymer blends are viscoelastic and that large deformations are
encountered during the blending operation. Systems of fluids exhibiting non-Newtonian
behavior, characterized by nonlinear stress-strain relationships and elasticity, were less
studied for reasons of complexity. In polymer-polymer systems, the mechanism of drop
deformation differs from that of Newtonian systems. The dispersed drops are subjected to
both viscous forces, which tend to deform the drop, and resisting forces arising from
interfacial forces and fluid elasticity, which have a stabilizing effect during deformation
(Van Oene, 1972; Flumerfelt, 1972; Wu, 1987). Authors who studied viscoelastic systems
used fluids (generally, polymeric melts), which are not only elastic but also shear thinning.

The influence of shear thinning in the absence of any elasticity has not been investigated,
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while the influence of elasticity in the absence of any shear thinning is never obvious from
either a theoretical or experimental point of view. The goal of the present experimental
study is to determine the contribution of elasticity to drop deformability in elongational
flow by using constant viscosity elastic fluids. These fluids, so-called Boger fluids (Boger
and Binnington, 1977), exhibit an elastic response, €.g., normal stresses in shear flow, but
have approximately shear-independent viscosity. Such properties make it possible to
assess the effect of elasticity in a flow field without considering complications associated

with shear thinning.

3.2 EXPERIMENTAL STUDIES ON DROP DEFORMATION
IN ELONGATIONAL FLOW

A number of researchers have carried out many experimental studies on drop deformation
in elongational flow fields. It has been proven that drop deformation and breakup occur
much more easily in elongational fields than in shear fields (Wu, 1987, Chin and Han
1979; Bentley and Leal, 1986). Taylor (1934) was the first to use a four-roll mill
apparatus to study the deformation and breakup of Newtonian drops in a two-dimensional
elongational flow. The same problem was studied by Bentley and Leal (1986) using a
computer-controlled four-roll mill, which allows experiments of long duration. They
measured steady drop shapes and the unsteady stretching of drops. Han and Funatsu
(1978) conducted an experimental investigation on viscoelastic drop elongation and

breakup through converging and uniform cross-section transparent channels. They found
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that viscoelastic drops are more stable than the Newtonian ones in both Newtonian and
viscoelastic media, and required higher shear stresses for breakup. Milliken and Leal
(1991) studied the behavior of viscoelastic drops in a Newtonian matrix under two-
dimensional elongational flows. They found that viscoelastic drops with viscosity ratios

k<1 (k=140 /Mmanx ) have a significantly smaller deformation and critical capillary

number than Newtonian drops. However, for viscoelastic drops with viscosity ratios
k > 1, the deformation is similar to that of Newtonian drops. In particular, they found
that low viscosity viscoelastic drops do not display the highly deformed steady drop
shapes, characteristic of low viscosity Newtonian drops. Recently, Delaby et al. (1994)
used a new technique based on the freezing of the viscoelastic drops by quenching after a
controlled flow in the melt. For a negligible interfacial tension, they also found that the
drops deform less than the far away surrounding matrix for a viscosity ratio £ >/, and
deform more for k < 1. Their findings are in contrast with the results of Meijer and
Janssen (1993) who found that at small viscosity ratios, the drop deformation in planar
elongational flow closely follows that of the matrix. Other experimental studies on drop
elongation can be found in the literature (Rumscheidt and Mason, 1961; Kalb et al., 1981;

Grace, 1982; Sakellarides and Mchugh, 1986; Van Der Reijden-Stolk and Sara 1986).

3.3 EXPERIMENT
3.3.1 Experimental setup and procedure

A sketch of the experimental setup is depicted in Fig. 3.1. The elongational flow setup
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consists of a transparent channel of Plexiglas with a converging and diverging cross-
section channel. In order to avoid optical distortion of the drop due to the conical section,
the channel was bored out off a large rectangular block of Plexiglas. The setup was
mounted at the bottom of the barrel of an Instron capillary rheometer, using the plunger to
pump the matrix fluid through the converging channel. In this study, focus was directed to
the converging section only, in which the drops were stretched. The upper cone diameter
was 28 mm with a convergence angle of 19° over a length of 39 mm, which corresponds
to an exit diameter of 2mm.

The experiments were carried out at room temperature (7~25°C) for different
matrix/drop combinations in which the elasticity of both the drops and the matrix fluids
were changed. Drops of different sizes (0.4 - 0.9 mm in diameter) were injected at the
central axis of the convergent section by means of a microsyringe, as shown in Fig. 3.1. A
video system with magnification optics and a digital chronometer was used to record the
drop position, its shape, and the traveling time along the central axis of the converging
section. The recorded film was then analyzed separately using an image analysis software.
The drop images were scanned at different positions along their course and their

dimensions were then measured.
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Figure 3.1: Sketch of the experimental setup.
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3.3.2 Model fluids and their rheological characterization

The immiscible elastic (Boger) solutions were prepared using a low-speed mixer for a
period of five days to ensure thorough dissolution of the polymer. The suspending media

or matrices, M, were dilute solutions of small amounts of high molecular weight
polyacrylamide, (PAA), (2x 10° < M,, < 4x 10° kg/kmol, Separan AP30) in a mixture
of maltose syrup, MS, and distilled water, /. The specific gravity of the matrix was about
1.15 g/mL. For the dispersed drops, D, small amounts of high molecular weight
polyisobutylene, PIB, (1x10° <M, <2x1 0° kg/kmol) dissolved in kerosene, Ker, and

low molecular weight Newtonian polybutene, PB, (My= 920 kg/kmol, p= 24 Pa.s at

25°C, Indopol HI100) were used. Their specific gravity was about 0.98 g/mL. The
difference in the specific gravity of the matrix and droplets is believed to be too small to
affect the flow dynamics. Table 3.1 lists the different fluids and their composition.

The steady-state shear viscosities, 77, and primary normal stresses differences, N,, were

measured at 25°C using an R-18 Weissenberg rheogoniometer. A thin film of nonvolatile
immiscible material (silicone oil) was applied to the free surface of the matrix fluid sample

to avoid evaporation. As shown in Figs. 3.2(a) and 3.2(b), the fluids exhibit no significant

shear thinning for shear rates up to 30 571 1t should be mentioned that the elongational
viscosity does not necessarily behave analogously to the shear viscosity. Nevertheless,
only the steady shear viscosity was used due to experimental limitations in measuring the
elongational viscosity. Much of the previous work on elongational drop deformations used

the steady-state shear viscosity in calculating the viscosity ratio (Milliken and Leal, 1991,
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Delaby et al., 1994 and 1995). We believe that, for small elongations, the Trouton ratio is

not much different from 3, and the elongational viscosity ratio of the drop and matrix

should be approximately the same as the shear viscosity ratio. The viscosity ratio, &, of

the different matrix/drop combinations, as a function of the shear rate is approximately

constant. The average values are reported in Table 3.2.

Table 3.1: Designation and composition of the elastic fluids used.

Designation Formulation

Matrix fluids My 0.00% PAA+ 92.0% MS + 8.00% W.
M, 0.03% PAA+ 92.0% MS + 7.97% W.
M; 0.06% PAA+ 92.0% MS + 7.94% W.
M; 0.10% PAA+ 92.0% MS + 7.90% W.

Drop fluids Dy 0.000% PIB + 93.0% PB + 7.00% Ker.
D, 0.244% PIB + 92.8% PB + 6.98% Ker.
D; 0.600% PIB + 91.0% PB + 8.40% Ker.
D; 0.800% PIB + 93.0% PB + 6.20% Ker.
D, 1.200% PIB + 92.0% PB + 6.80% Ker.

a) All percentages are in weight.
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Figure 3.2(a): Viscosity and primary normal stress difference of the
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Figure 3.2(b): Viscosity and primary normal stress difference of the
elastic drop fluids (at 25°C).
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The magnitude of the primary normal stress difference, at any given shear rate, was found
to increase with increasing weight fraction of the high molecular weight polyisobutylene
for the drop fluids and that of the high molecular weight polyacrylamide for the matrix
fluids (Fig. 3.2). The slopes of log(N,) versus log(y) are close to 2. This quadratic
behavior is another characteristic of an elastic (Boger) fluid. Figure 3.3 compares the

steady-state shear viscosity and the primary normal stress difference of one of the drop
fluids (fluid D;) to its dynamic viscosity,” (=n*), and storage and loss moduli,

respectively, G’ and G"”, obtained at 25°C with a Bohlin YOR rheometer. Both the
steady shear and dynamic viscosities are essentially the same, as expected for Boger fluids.
The storage modulus, G’ , is closely related to &V, at low frequency:

_G' _ .. N,
Lim o7 = G-

The fluids elasticity, characterized by the Maxwell relaxation time, A, can be calculated
from N, data using the following relation:

A=N,/[2n7° (3:2)
Figure 3.3 shows that, at high shear rates, N, is much higher than 2G’ as observed in
general for polymer solutions and melts. The use of 2G' to approximate the primary
normal stress difference, N, underestimates the elasticity effects on the blend behavior for

large deformation flows. Jackson et al. (1984) conducted steady and oscillatory shear
experiments and concluded that Boger fluids are more elastic in steady shear than in

oscillatory shear. The relaxation time calculated from G’ data is then much smaller than
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that calculated from N, data. For this reason, the relaxation times of the different fluids

used were calculated from the steady shear data rather than the oscillatory shear data.

1 , and were used to calculate

They are approximately constant for shear rates up to 30 s~
the elasticity ratio, £’, defined as the ratio between the drop and matrix relaxation times

(k'=A4/Z). The corresponding values of A4, 4,, and &’ are reported in Table 3.2.
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Figure 3.3: Dynamic properties for the drop fluid, D,, and relation
between N; and G’ (at 25°C).
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Table 3.2: Fluid systems and corresponding relaxation times, viscosity ratio,
elasticity ratio, and interfacial tension.

Matrix fluids Drop fluids

Relaxation time Viscosity Elasticity Interfacial

M) D) Matrix Drop ratio ratio tension
AmfS)  AdS) (k) &) .. a (mN/m)
My Dy -—- - 0.50 - =220 |
|
Dy -—- 0.50 0.00 225
D, 0.13 0.75 0.37 23.0
M, D; 0.36 0.22 0.52 0.60 19.5
D; 1.44 0.63 4.00 235
D, 2.16 1.10 6.00 20.0
D, 0.13 0.71 0.15 22.5
M, D, 1.00 0.22 0.49 0.22 235
D; 1.44 0.60 1.15 225
D, 2.16 1.05 1.70 21.0
D, 0.13 0.45 0.03 27.5
M; D, 4.00 0.22 0.28 0.07 25.0
D;s 1.44 0.36 0.30 24.0
D, 2.16 0.68 0.47 27.0

The interfacial tensions, & , between the drop and matrix phases were determined by using
the spinning drop technique (Elmendorp and De Vos, 1986). For each drop/matrix system,
three measurements were made and the average values are also reported in Table 3.2. It
should be mentioned that no significant variation in the interfacial tension (within the
accuracy of the measurements) was found if the drop fluid is changed in a given matrix
fluid. Only a marginal effect was observed with the matrix fluid M;. The values are

approximately constant at about 22 mN/m for M,/D; and M/D;, and 25 mN/m for M3/ D;.
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Our results are in agreement with those obtained by Shanker et al. (1996) who found that
the incorporation of small amounts of high molecular weight polyisobutylene for
introducing elasticity in an otherwise Newtonian polybutene solvent has only a marginal

effect on the interfacial tension.

3.4 EXPERIMENTAL RESULTS AND DISCUSSION

The first step of this experimental work was the measurement of the centerline
velocity, V,,, in the converging channel of the Newtonian matrix fluid, My, and the three
elastic matrix fluids, M, M and M;. The following technique was used: first, the position,
z, of the top surface of a very small drop (0.4 mm in diameter) injected at the entrance of
the cone was recorded as a function of its traveling time, ¢, along the cone axis. This
information was used to calculate the matrix fluid centerline velocity V, = Az/At . Since
the drop is very small, we assume that the matrix velocity profile at the trailing edge of the
drop is not influenced by the presence of the drop itself. The centerline velocity is then
used to calculate the matrix elongational strain rate &(z)= AV, /Az. Figures 3.4(a) and

3.4(b) show the variation of 7, and &(z) for the four matrix fluids as a function of the

axial position along the cone axis for a matrix flow rate of 28mm’ /s . The dimensionless
axial position with respect to the length, Z,, of the converging channel is used, and the
centerline velocity is normalized with respect to the average velocity, 7, at the entrance of

the cone given by
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4
V= ;D% (3.3)

where Q is the matrix flow rate and D, is the initial cone diameter. Figures 3.4(a) and
3.4(b) show approximately linear increases of the centerline velocity and extensional strain
rate in the first 70% of the converging section, followed by exponential increases near the
end of the converging section. In all cases, the centerline velocity and elongational rate
profiles of the elastic fluids are below the profiles of the Newtonian fluid. James et al.
(1990) observed the same phenomenon for a constant viscosity elastic fluid (a solution of
a copolymer of PAMMA in an organic solvent). They explained that the differences between
the profiles depend directly on the normal stresses in the extension generated in the elastic
fluids. The velocity profile of elastic fluids across each section of the converging flow is
flatter than that of Newtonian fluids of the same viscosity. At a given flow rate, the
velocity or elongational strain rate at the cone axis is then lower than that of a Newtonian
fluid. Using a generalized Maxwell model, Philippe (1981) numerically calculated the
velocity profile of viscoelastic fluids through a converging channel. His numerical results
show also that the centerline velocity decreases with increasing fluid elasticity.

Two approximations are used concerning the flow field: (i) The flow field is considered to
be unbounded and the cone wall has no effects on the drop deformation. This assumption
is justified since the ratio of the initial drop diameter to the upper cone radius is very small

(Dgrop /Dco,,e << 1), and the drop remains far away from the cone during its deformation.

(i1) The elongational strain rate over the length of the drop is supposed to be constant and

equal to the value at the center of the drop (Van Der Reijden-Stolk and Sara, 1986). This
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assumption is valid for the first 70% of the converging section. Each measurement of the
drop deformation will then be related to the position of the center of the drop. In the last
portion of the cone, no measurements of drop deformation were carried out. The
assumption that the small difference in the specific gravity of the matrix and drops has no
influence on the flow dynamics was verified experimentally by stopping the plunger of the
rheometer. No subsequent motion of the drops could be detected.

Figures 3.5(a) and 3.5(b) show typical pictures of two different elastic drops with initial
diameters of 0.80 mm and 1.2 mm, respectively, undergoing elongation at different
positions along the cone axis. The drop shape is magnified on each picture in order to get
a clear contour of the drop. The numerical values in the right-top corner of each
picture correspond to the position of the moving camera, which is used to calculate
the exact position of the drop. The drop, initially of spherical shape when injected at
the entrance of the cone, is stretched progressively as it proceeds further into the
conical section. Figure 3.5(a) shows that the deformation of the smaller drop remains
approximately uniform. In the case of the larger drop, Fig. 3.5(b) shows that the
drop remains axisymmetric, but the deformation is nonuniform along the drop. This
drop is then stretched more at its front than at its top, mainly  when it
approaches the end of the cone. Milliken and Leal (1991) explained the cusp formation
at the front of the drop by the presence of the polymer inside the drop, which may
act as a surfactant. The polymer is swept towards the end of the drop during
deformation and then lowers the interfacial tension. However, their observations

concern mainly highly concentrated polymer solutions, which are viscoelastic materials.
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Figure 3.4(a): Dimensionless centerline velocity along the cone axis for
the matrix flow rate of 28 mm’/s
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Top of

the cone = |

Figure 3.5(a): Typical pictures of an elastic drop at different positions along the
cone axis (drop of 0.8 mm in initial diameter).




the cone

Figure 3.5(b): Typical pictures of an elastic drop at different positions along the
cone axis (drop of 1.2 mm in initial diameter).
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They presented a series of photographs for the particular case of an elastic drop fluid (413
ppm of high molecular weight polyacrylamide, PA4, in 6.7% by weight of low molecular
weight carboxymethyl cellulose, CMC, in deionized water), which clearly show highly
curved ends. We believe that the asymmetric deformation in Fig. 3.5(b) is mainly due to
the variation of the elongational strain rate between the top and at the front of the drop
rather than for the reason given by Milliken and Leal. This variation in the elongational
strain rate is much more important at the end of the conical section, especially for the large
drop. For typical data corresponding to a large drop (Picture No. 4 in Fig. 3.5(b)), the
matrix elongational strain rates at the top and the front of the deformed drop are 102 57!
and 2.4 x 107%s™ | respectively. Such a variation of over 700 % is no longer negligible.
For the data presented here, we restrict the analysis to drops for which the variation in

elongational strain rate between the top and the front does not exceed /0 %.

In order to know how the variation of the drop elasticity affects its deformability in a
given matrix fluid, a series of tests were carried out using one matrix fluid (A}), one
Newtonian drop fluid (Dy), and four elastic drop fluids (D; - Ds). For the Newtonian
drop, the viscosity ratio and the interfacial tension were approximately the same as for the
elastic drops. Because of the large strains involved during drop and matrix elongation, the
Hencky strain, £, was used for the matrix strain measure and the corresponding stretch

ratio is, £, =e®". The aspect ratio, £, = L/D, was used as the measure of drop

elongation because it is a sensitive measure for highly elongated drops (Milliken and Leal,
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1991). L is the major axis of the deformed drop and D is its initial diameter. Some of the
experimental results for the drop elongation as a function of the matrix deformation are
shown in Fig. 3.6. They were obtained for initial drop diameters of 0.5 - 0.9 mm and each
curve corresponds to at least three different initial drop sizes. No significant effects of the
initial drop size on its deformation were observed. This is in concordance with the results
of Van Der Reijden-Stolk and Sara (1986) using Newtonian systems. It is worth noting
that the drop deformation is approximately a linear function of that of the matrix for all the
sets of fluids tested. The Newtonian drop, Dy, deforms approximately as much as the
matrix, M;. One would expect a larger drop deformation for a viscosity ratio equal to 0.5
(Delaby et al., 1994). In our case, the high interfacial stresses due to a higher value of the
interfacial tension (a =22.5 mN/m) oppose more resistance to the viscous and elastic
stresses of the matrix, yielding smaller drop elongations. All the elastic drops are less
deformed than the surrounding matrix inspite their viscosity ratio generally smaller than 1
(only the drop Dy is more viscous than the matrix, with ¥ = 7.70). In addition to the
viscous stresses, two other key stresses could affect the drop deformation: the elastic and
the interfacial stresses. As shown in Table 3.2, drops D; and D; are less elastic than the
matrix M, (k’= 0.37 and 0.60, respectively), whereas drop D, is more elastic (k’= 6.0).
The more elastic the drop is (i.e., larger resisting stresses), the less it is deformed. The
deformation for the Newtonian combination (Dy in My) is shown in Fig. 3.6 for a
comparison. All elastic drops deform less than the Newtonian drop in the Newtonian
matrix. The Newtonian drop has approximately the same deformation in the elastic matrix,

M,, as in the Newtonian matrix, My. The small difference observed for high matrix
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deformations (£,, = 4) could probably be due to the small shear-thinning effect of the

matrix, M;, as presented in Fig. 3.2(a). We believe that the small variation of the viscosity
ratio has a marginal effect on drop deformation. This will be verified in the next section
where the elasticity of the continuous phase is changed. Our experimental results
concerning the role played by the drop elasticity on the deformation are in qualitative
agreement with those obtained in elongational flow by Chin and Han (1979), and Shanker
et al. (1996). They are also in agreement with the results obtained in shear flow by
Elmendorp and Malckee (1985), and Varanasi et al. (1994). The corresponding
conclusions of Chin and Han must be taken with care because the decrease in the drop
deformation could also be due to shear-thinning effects.

Figure 3.7 compares our experimental results for the matrix/drop combination M;/Ds with
those obtained by Delaby et al. (1994) for a matrix/drop combination of the same viscosity
ratio (k=0.63). In both cases, the drop is more elastic than the matrix and the elastic and
interfacial stresses are then resisting stresses. The drop deformation, in our case, is much
lower than that obtained by Delaby et al. The differences between the two results are due
to differences in the elasticity ratio and the interfacial tension, which are higher for the
fluid combination that we used. The first is two times higher, whereas the latter is

approximately four times higher. Also, Delaby et al. used polymer melts, which were shear

thinning with elastic characteristic times decreasing with the deformation rate.
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To examine how the drop deformability is affected by the elasticity of the continuous
phase, a second series of tests were carried out using two more matrix fluids, M> and M;,
and the same elastic drop fluids used before, D, - D,. Some of the corresponding results
are shown in Figs. 3.8(a) and 3.8(b). As before, no effect of the initial drop diameter was
observed and the drop deformation is a linear function of that of the matrix. In some cases,
where the elasticity of the matrix is much higher than that of the drop (combinations:
M/D; and My/D,), the drop deforms more than the matrix. This is due to the combined
effect of the viscous and elastic stresses (deforming stresses), which leads to higher
deformations. To verify if the small variation of the viscosity ratio has a significant effect
on the drop deformation compared to that of the elasticity ratios, two groups of fluid
combinations were selected from the experimental data. The first group consists of fluid
systems with approximately identical viscosity ratios but different elasticity ratios (Fig.
3.9(a)), and the second consists of fluid systems with approximately identical elasticity
ratios and small differences in the viscosity ratios (Fig. 3.9(b)). Figures 3.9(a) and 3.9(b)
show that the small variation of the viscosity ratio has only a marginal effect on drop
deformation, which is seen to be mostly dependent on the elasticity ratio. The deformation
for the Newtonian combination (Dy in My) is also shown for comparison. As before, we
observe that all elastic drops in elastic matrices deform less than the Newtonian drop in the
Newtonian matrix. Keep in mind that the interfacial tension is approximately the same for

all the fluid systems used.
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Under these experimental conditions, the drop and matrix elongations corresponding to
each fluid system can be correlated as

¢€,-D/¢,,-D=Pla,k,A,,A,) (3.9
where P is a deformation parameter, which depends on the drop and matrix relaxation
times, respectively, 1, and 4,,, as well as on the viscosity ratio and interfacial tension.
No simple correlation for the parameter P could be obtained as a function of classical
dimensionless numbers such as capillary, Deborah, or Weissenberg numbers. The variation
of this deformation parameter is shown in Fig. 3.10 for the various drops as a function of
the matrix characteristic elastic time. Figure 3.10 reports also the deformation parameters
corresponding to the two particular fluid systems M;/Dy and My/Dy. It is interesting to
note that the relationship between the deformation parameter and the matrix characteristic
elastic time is approximately linear for all the elastic fluid systems studied, and can be
correlated as

P(a. =cst,k = cst,hy,A,)=ak, +b (3.5)
where the parameters a (s’) and b vary with the drop characteristic elastic time, 4, as
shown in Fig. 3.11. The product al, in Eq. (3.5) remains much smaller than the
parameter b for all the matrix/drop combinations. This means that the drop deformation is
more affected by the drop elasticity than by the matrix elasticity. The deformation
parameters corresponding to the particular cases of the fluid systems My/Dy and M/Dy fit

very well with the extrapolated curve, as presented in Fig. 3.11.
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The contribution of the drop and matrix elasticities to the drop deformation can now be
determined by comparing the deformation of the elastic drops in the elastic matrices to
that of the Newtonian drop in the Newtonian matrix. If the deformation parameter of the
Newtonian system is Py and that of the elastic systems is Pz, Eq. (3.4) can be rewritten as

follows:
(fd)g = (ﬂd),\, ~(Py - Pe)e, 1) (3.6)
where (¢,),and (Py—Pg )€, —1) are, respectively, the viscous and the elastic

contributions to the drop deformation. Figure 3.12 shows the elastic contribution,
(P, — P ), as a function of the elasticity ratio, £*. The curve is valid only for elastic
systems, i.e., the matrix and the drop are both elastic (£'>0). Considering that the small
variation of the viscosity ratio is not affecting the data, the results of Fig. 3.12 show an
increase of ( Py — P;) with the elasticity ratio (k’=A4/4,). For high matrix elasticity (k'<
0.2), the deformation of elastic drops in an elastic matrix is higher than that of Newtonian
drops in a Newtonian matrix with the same viscosity ratio and interfacial tension. For £’<
0.2, the matrix elasticity has more effect on the drop deformation than the drop elasticity.
However, for k’> 0.2, the elastic drop deforms less than a Newtonian drop in a Newtonian
matrix, and the drop deformation is more affected by the drop elasticity. This is also in
agreement with the results of Chin and Han (1979) who found that, for high values of £’
the medium elasticity plays a much smaller role than the drop elasticity in affecting the

drop deformation.
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Figure 3.11 Variation of the parameters a and b as a function of the drop
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3.5 CONCLUSION

In this experimental study, we have investigated the contribution of elasticity on drop
deformation in elongational flow by using a variety of constant viscosity elastic (Boger)
fluids. Two series of tests were carried out in order to know how the drop deformability is
affected by the variation of both the drop or the matrix elasticities. The results have shown
that the drop deformation decreases with increasing its elasticity. The matrix elasticity
have the opposite effect, i.e., the drop deformation increases with increasing matrix
elasticity, but the drop elasticity seems to have much more control on the drop
deformability. For elasticity ratio, £’< 0.2, the matrix elasticity has more effect on the drop
deformation than the drop elasticity. However, for £°> 0.2, the drop deformation is more
affected by drop elasticity.

A simple empirical relation between the drop and the matrix elongations as function of
drop and matrix elasticities was established. This relation is valid under a narrow range of
viscosity ratios (0.5 <k < 1.10) and an approximately constant interfacial tension of about
22 mN/m. More research is needed to include the effects of both the viscosity ratio and the

interfacial tension.

APPENDIX: NOMENCLATURE

D: Drop diameter, m.

G,\G": Storage and loss moduli, Pa.




k':

£,.4,,:

nd’ﬂm:

A4, 2,

Viscosity ratio (k = 1,/7,, ).

Elasticity ratio (k'=A4/Am).

Drop length after elongation, m.

Drop and matrix deformations.

Primary normal stress difference, Pa.
Deformation parameter.

Average velocity, m/s.

Matrix flow rate, m’/s.

Length of the converging channel, m.
Interfacial tension, mN/m.

Drop and matrix Hencky strains.

Elongational strain rate, s-/.

Steady-state and dynamic viscosities, Pa.s.
Drop and matrix steady-state viscosities, Pa.s.
Characteristic elastic time, (4 = N, / 2n7%), s.
Drop and matrix characteristic elastic times, s.
Newtonian viscosity, Pa.s.

Frequency, rad/s or s/.
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CHAPITRE 1V

INFLUENCE DES PROPRIETES ELASTIQUES SUR
LA DEFORMATION ET RUPTURE DE GOUTTES
DANS UNE MATRICE EN CISAILLEMENT

Les résultats des travaux présentés dans ce chapitre complétent ceux déja obtenus au
chapitre précédent. Cette fois-ci, I'étude porte sur l'écoulement en cisaillement, généré
entre deux plaques paralléles. Contrairement au montage congu pour générer
'écoulement élongationnel (sujet du chapitre précédent), le montage congu pour le
cisaillement a permis d'atteindre le cisaillement critique. On a pu ainsi tirer des
conclusions quant a l'influence de l'élasticité de la goutte ou celle de la matrice sur les
mécanismes de déformation ou de rupture de la goutte. Une relation empirique reliant la
déformation en régime permanent de la goutte au nombre capillaire a été développée.
Cette relation met en évidence la contribution de I‘élasticité des deux phases
(matrice/goutte) sur la déformation de la goutte. Les résultats obtenus pour les conditions
critiques de rupture montrent que le nombre capillaire critique ainsi que le temps de bris
sous cisaillement critique augmentent avec l'augmentation du rapport d’élasticité

goutte/matrice.
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Synopsis

We report in this paper experimental results on the deformation and the critical breakup
conditions of a single drop in a medium under simple shear flow. The role played by both
drop and matrix elasticities is quantified by using constant viscosity elastic (Boger)
fluids. The experiments were conducted using two transparent parallel disks mounted on
an R-18 Weissenberg rheogoniometer. The critical shear rate was determined by
imposing successive small changes in shear rate from low to higher values until the drop
breakup was observed. The results show remarkable differences in the mode of
deformation and breakup for Newtonian and elastic fluid systems. It is also found that the
drop resistance to deformation and breakup increases with increasing elasticity ratio. The

contribution of the drop and matrix elasticities is quantified by using an empirical relation

established between the drop deformation and the capillary number, Ca. The critical

breakup conditions, such as a dimensionless breakup time, t*p, and a critical capillary

number, Ca,, are determined as a function of the drop/matrix elasticity ratio, k'. The

* . . . .
values of Ca, and ¢ are found to increase with increasing k.




4.1 INTRODUCTION

Polymer blends are important industrial materials. Their properties can be altered to
satisfy a wide range of properties. A number of industrial processes involve dispersion of
immiscible liquid/liquid systems; the final morphology resulting from the mixing process
influences the properties of the final product. The size, shape of drops, and degree of
dispersion play important roles on the final properties of the blend. It is quite obvious that
a better understanding of the deformation and breakup mechanisms of isolated polymer

drops under shear or elongation will lead to better design and control of the equipment.

Most of the previous work reported in the literature on drop behavior under shear focused
on Newtonian fluid mixtures. Taylor (1932, 1934) performed the pioneering work on the
deformation and breakup of a single Newtonian drop in a Newtonian matrix under simple
shear. Newtonian systems were further investigated by several authors (Cox,1969; Hinch

and Acrivos, 1980; Grace, 1982; Rallison, 1984; Wu, 1987, etc.).

Molten polymers are viscoelastic liquids under processing conditions. The dispersed
drops are subjected to both elastic and viscous forces, arising from the matrix, which tend
to deform the drop. The resisting forces arising from the interfacial tension and drop
elastic and viscous forces tend to retract the drop. Therefore, the mechanism of drop
deformation and breakup is quite different in viscoelastic systems from that in Newtonian
systems. Some interesting results in simple shear flow were obtained by Flumerfelt
(1972) who carried out one of the first experimental studies on the breakup of Newtonian

drops sheared in viscoelastic fluids. He found that, under a certain minimum drop
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diameter, D,.», which varies with each fluid system, breakup cannot be observed. This
minimum drop diameter, as well as the critical shear rate, ¥, required for breakup,
increase with increasing matrix elasticity. He further observed that breakup of a

Newtonian drop occurs at lower shear rates in a Newtonian matrix than in a viscoelastic

matrix of the same viscosity ratio. Flumerfelt (1972) also observed lower values for Dy;n

and ¥, under unsteady shear conditions (shear rate ramp). A linear relationship between
the critical capillary number Ca,(Ca, =1, 7.D/a) , and the matrix elasticity
expressed in terms of A, the first time constant in the Bird-Carreau model (1968), was
developed:

Ca, = fi(k)Ay . + fo(K) CAY)
where f1(k) and f,(k) are functions of the drop/matrix viscosity ratio (k = 777 /1,,).
The critical capillary number is the ratio between the critical viscous stress, ﬂm;}c, and
the interfacial stress, /D, respectively. @ is the interfacial tension and D the drop

diameter. Tavgac (1972) studied the deformation and breakup of viscoelastic drops
suspended in a viscoelastic fluid under shear flow. He observed that, depending on
matrix/drop combined properties, the elastic forces arising from the matrix phase may
have a stabilizing or destabilizing effect on the breakup process. At high values of
viscosity ratio, an elastic matrix favors the breakup of Newtonian drops, but stabilizes the
drops at low values of viscosity ratio. Tavgac (1972) also reported that the breakup of
viscoelastic drops in viscoelastic matrices occurred at lower shear rates under transient

conditions compared to steady-state conditions. Gauthier et al. (1971) also studied the




88

deformation and breakup of viscoelastic drops in Newtonian matrix in Poiseuille flow.
They found that drop deformation and breakup are similar to those of Newtonian drops in
a Newtonian matrix for small values of the viscosity ratio. For high viscosity ratio,
viscoelastic drops were pulled into a thread, which broke once shearing was stopped. The
critical capillary number was considerably higher than that of a Newtonian drop.
Elmendorp and Maalcke (1985) conducted an experimental investigation on viscoelastic
and Newtonian drop deformation and breakup in Newtonian and viscoelastic matrices
respectively. They found that the deformation of a viscoelastic drop in a Newtonian
matrix decreases with increasing drop elasticity. In contrast, the deformation of a
Newtonian drop in a viscoelastic matrix increases with increasing matrix elasticity. The
contribution of elasticity to drop deformation could not be quantified due to
complications associated with shear thinning of the fluid systems used. Varanasi et al.
(1994) showed that, at any given value of the viscosity ratio, the critical capillary number
increased with increasing drop elasticity. Recently, Levitt et al. (1997) investigated the
deformation of polypropylene drops of different viscosities and elasticities, sheared in a
polystyrene matrix. For high elastic matrices, widening of drops perpendicular to the flow
direction was observed. The width of the flattened drops depended on differences in
elasticities between matrix and drop. For viscosity ratio larger than unity and elasticity

ratio above 2, no drop widening was observed. Levitt et al. (1997) developed the

following relation between the second normal stress differences, N, and N, of the

drop and matrix phases respectively, and the degree of widening:

Nag = Now = a/ R§™ % 0.6(G;, - GJ) @2)




89

where Rg”"- is the half drop thickness measured from the cross section of the extended

drop, and G} and G,,, are the drop and matrix storage moduli respectively.

Mighri et al. (1997) investigated the contribution of elasticity on drop deformation in

elongational flow. The elasticity ratio, k' = A;/A,,, defined as the ratio between the

drop and matrix relaxation times, 4; and A, respectively, was found to play a major

role on the drop deformation. The drop deformation was shown to decrease with
increasing drop elasticity. The matrix elasticity has the opposite effect, i.e., the drop
deformation increases with increasing matrix elasticity. For elasticity ratio k' < 0.2, the
matrix elasticity has more effect on drop deformation than drop elasticity. However, for
k' >0.2, drop deformation is more affected by drop elasticity. We should mention that
the breakup mechanisms in elongational flow were not studied because of experimental

limitations.

The goal of this experimental study is to extend our previous work to shear flow field and
determine the contribution of elasticity to drop deformation and breakup in shear using
the same constant viscosity elastic (Boger) fluids. This investigation is restricted to cases
for which the shear rate does not exceed the critical value. Both deformation and breakup
(breakup time and critical capillary number) of elastic drops in elastic matrices are

studied and compared to results obtained for Newtonian systems.
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4.2 EXPERIMENTAL

4.2.1 Experimental setup and procedure

The experimental setup consists of two transparent parallel disks of Plexiglas mounted on
a R-18 Weissenberg rheogoniometer. Disks of 50 mm diameter were used, and the gap
between the disks was 2 mm. The experiments were carried out at room temperature
(T ~ 25°C) for different matrix/drop fluids with approximately the same viscosity ratio
and interfacial tension and different elasticity ratios. Drops of different sizes (0.4 - 0.8
mm in diameter) were injected in the matrix by means of a microsyringe. Once a drop
was properly injected in the matrix, the drop was sheared at high shear rate until broken
down into smaller droplets. Only one selected drop was kept in the matrix; the other
drops were carefully removed using the syringe. The diameter of the selected drop was
about 30 % of the gap distance between the disks. Preliminary tests confirmed that the
disk surfaces had marginal effect on the drop deformation. The drop remained suspended
approximately at the same distance from the two disk surfaces. The shear rate applied to
the drop was calculated from the known position of the drop and the speed of rotation of

the lower disk.

The steady state and critical deformations, and the breakup process were recorded using a
high-speed video system with magnification optics and a digital chronometer. For the
measurement of the steady state drop deformation, the experimental procedure was as
follows: (i) First, the speed of rotation of the lower disk was increased in small
increments and at each speed, the drop shape was recorded until it attained a steady

shape, which was used to determine the drop aspect ratio. (ii) Second, when the critical
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shear rate was attained, the unsteady shape of the drop was recorded with the
corresponding breakup time. The video tapes of the experiments were then analyzed

using an image analysis system, consisting of a video frame grabber and a computer.

4.2.2 Model fluids and their rheological properties

The constant viscosity elastic (Boger) fluids used in this study were the same fluids as
those used in our previous work on drop deformation in elongational flow (Mighri et al.
,1997). More details on the composition, the technique used for their preparation, and
their rheological characterization are given in that work (see also Boger and Binnington,

1977). Table 4.1 lists the different drop/matrix combinations, the corresponding Maxwell

relaxation times (A4; and A,,, respectively), the viscosity ratio (£ ), the elasticity ratio

(k'), and the interfacial tension( & ). The Maxwell relaxation time was calculated from

the first normal stress differences, NV, , data using the following relation:
A= Ny /[2np? 3)

It is worth noting that the values of 4 were approximately constant for all the elastic
fluids used, for shear rates up to 30 s”. The interfacial tension between the drop and
matrix fluids were determined by using the spinning drop technique (Elmendorp and De
Vos, 1986). The values were approximately constant for the different drop/matrix

combinations and the average value of about 22 mN/m was used in our calculations.




Table 4.1: Fluid systems and corresponding relaxation times, viscosity ratio,
elasticity ratio, and interfacial tension.

Matrix fluids Drop fluids Relaxation time Viscosity ratio Elasticity  Interfacial
) D)) Matrix Drop (9] ratio tension
ins)  AdS) (k") a (mN/m)
My Dy - - 0.50 - =220
Dy - 0.50 0.00 225
D, 0.13 0.75 0.37 23.0
M, D, 036 0.22 0.52 0.60 19.5
D; 1.44 0.63 4.00 235
D, 2.16 1.10 6.00 20.0
D, 0.13 0.71 0.15 225
M, D, 1.00 0.22 0.49 0.22 235
D, 1.44 0.60 1.15 225
D, 2.16 1.05 1.70 21.0
D, 0.13 045 0.03 27.5
M; D, 4.00 0.22 0.28 0.07 25.0
D, 1.44 0.36 0.30 240
D, 2.16 0.68 0.47 27.0
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4.3 EXPERIMENTAL RESULTS AND DISCUSSION

First, we consider the steady-state deformation observed for the different matrix/drop
combinations presented in Table 4.1. As mentioned before, the shear rate was increased
in small increments in order to observe the drop deformation from one steady-state to
another. The deformation mechanism was observed to depend on the matrix/drop
combination and the applied shear rate. Figures 4.1(a) and 4.1(b) show typical pictures of

the Newtonian drop, DN, sheared in the Newtonian matrix, M ~ » and the elastic drop,

D,, sheared in the elastic matrix, M3, respectively. The mechanism of drop

deformation was quite different in the elastic system from that in the Newtonian
(inelastic) system. The shape of the Néwtonian drop changed as a function of the shear
rate from a spheroidal shape with highly curved ends to an elongated cylinder, which
conserved its curved ends. In contrast, when the elastic drop was sheared in the
elastic matrix, the steady deformed drop looked like a spheroid with slightly sharper
edges at small shear rate values, and like a cylinder with highly pointed ends when
the shear rate was increased up to a value below the critical shear rate. Widening of

the elastic drop was also observed for the elastic combination, D, in Mj; the

deformed drop became flatter, its width becoming larger than its initial diameter.
This widening increased with increasing applied shear rate. The same phenomenon was
also observed by Levitt et al. (1997). They explained this widening by the secondary
normal stress difference exerted by the matrix on the drop causing stretching
perpendicular to the flow direction. The widening due to the difference between the

dropand matrix elasticities competes with the contraction in the opposite direction
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@Picture #1]

‘r-e #2

Figure 4.1(a): Typical pictures of a Newtonian drop under deformation:
(Newtonian drop/matrix combination: Dy sheared in My)




BN cture #1]

Figure 4.1(b); Typical pictures of an elastic drop under deformation:
‘ (Elastic drop/matrix combination: DD, sheared in M(3)
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caused by the interfacial tension. As mentioned before, Levitt et al. (1997) related the

degree of widening with the differences in drop and matrix elasticities using Eq. 4.2.
Their approximation of (N,; — N,,,) by 0.6(G,, —G;) needs to be verified for
carefully determined normal stress differences.

The following section presents the results for steady-state drop deformation. The aspect
ratio, £, = L/D, was used as the measure of drop deformation because it is a sensitive

measure for highly deformed drops (Milliken and Leal, 1991). L is the major axis of the

deformed drop and D is its initial diameter. The results of drop deformation were
calculated for different elasticity ratios, &', as a function of the capillary number, Ca,
which combines the effects of shear rate, matrix viscosity, interfacial tensfon, and initial
drop diameter (Ca = 77,,#D/ ). The elasticity ratio, k', which includes the combined
effects of both drop and matrix first normal stress differences, and the viscosity ratio, is
given by

k' =(Ag/Am) = Nig (N1 k) (4.4)

Figure 4.2 shows how the variation of the drop elasticity affects drop deformation in a

given matrix fluid. The figure reports the drop deformation as a function of capillary

number for three elastic drops of different elasticities (D, - Ds), sheared in the same

matrix, M. The deformation for the Newtonian combination (Dy in My ) is

also reported in Fig. 4.2 for the purpose of comparing elastic to Newtonian behavior.
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Figure 4.2: Drop deformation, £ 4, as a function of the capillary number, Ca:
(effect of the drop elasticity).
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As observed previously for elongational flow (Mighri et al. (1997)), with k'20.37, the

elastic drops in the elastic matrix, M|, deform less than the Newtonian drop in the

Newtonian matrix of a comparable viscosity ratio and interfacial tension. The drop
elasticity enhances its resistance to deformation and tends to retract the drop, thus

assisting the interfacial forces in minimizing the drop deformation. The more elastic the

drop is (i.e., higher values of k"), the less it is deformed. Figure 4.3 shows how the drop
deformation is affected by the elasticity of the continuous phase. For this case, four

elastic drops (D;-D,), and two more matrix fluids, M, and Mj, of different
elasticities were used. The deformation for the Newtonian combination (Djy in My, ) is
also reported for a comparison. As before (Fig. 4.2), for k' 20.37, which corresponds to
the two other drop/matrix combinations: D, in M5, and D3 inM,, the elastic drops
still deform less than the Newtonian drop in the Newtonian matrix. Since the matrix
M y; is Newtonian, the results reported in Fig. 4.3 for the drop/matrix combination D; in
My, correspond to an infinite elasticity ratio (k' = (44 /4,,) —> ). It will be shown
later that those results give an idea about the maximal contribution of drop and matrix

elasticities on drop deformation. In contrast, for £’ < 0.37 (combinations: D, in M,,

D; in M5, and D, in M3), elastic drops deform more in elastic matrices than the

Newtonian drop in the Newtonian matrix of a comparable viscosity ratio and interfacial
tension. The forces that deform the drop are the matrix elastic forces combined with the

shearing forces. This leads to higher drop deformations, and the more elastic the matrix
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is, the more the drop is deformed. It should be mentioned that drop and matrix elasticities
seems to have the same action on drop deformability in shearing flow field as in the
elongational flow field, i.e., the matrix elasticity has the opposite effect on drop
deformability than the drop elasticity. This is in agreement with the qualitative results of
Elmendorp and Maalcke (1985). Their results could be, however, affected by shear-

thinning effects.

It is worth noting from Figs. 4.2 and 4.3 that, for most of the systems tested, there is a

linear relation between the drop deformation and the capillary number in the range of Ca
experimentally studied (Ca < 1.2). Only the two combinations D, inM, and Dj

in M, present a small nonlinearity for low values of Ca. This is probably due to the

experimental imprecision in the measurement of small deformations at low values of Ca.
Elmendorp and Maalcke (1985) also observed a linear relation between drop deformation
and shear rate for shear rates up to 6 s, which correspond for the fluid systems used to
capillary numbers up to 1.10. Under the experimental conditions, the drop deformation
corresponding to each drop/matrix combination can be correlated by

£;~1=aCa 4.5)
where d is a function of the elasticity ratio, k', as presented in Fig. 4.4. The contribution
of the drop and matrix elasticity can be determined by comparing the deformation of
elastic drops in elastic matrices to that of the Newtonian drop in the Newtonian matrix of

the same viscosity ratio and interfacial tension :

(Kd—l)E=(€d—l)N+(aE-—aN)Ca (46)
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Figure 4.3: Drop deformation, £ 4, as a function of the capillary number, Ca:
(effect of the matrix elasticity).
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Figure 4.4: Variation of the parameter @ and the elastic contribution (g-an)
with the elasticity ratio, k'.
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where the terms (£ ; — 1) and (ag —ay ) are the viscous and elastic contributions to
the drop deformation respectively. The subscripts £ and N refer to elastic and Newtonian
fluids respectively. Figure 4.4 shows also the elastic contribution, (ag —ay), as a
function of the elasticity ratio, k. Considering that the small variation of the viscosity
ratio is not affecting the data (Mighri et al., 1997), the results of Fig. 4.4 show a decrease
of (ag —ay) with increasing k’. For high matrix elasticity (k'< 037), the
deformation of elastic drops in an elastic matrix under shear is higher than that of
Newtonian drops in a Newtonian matrix with the same viscosity ratio and interfacial

tension. However, for k£’ > 0.37, the elastic drops deform less than a Newtonian drop in a

Newtonian matrix.

When the critical shear rate, y,, was attained, the drop shape became unstable (time-

dependent) and after a finite time, the drop broke into two or more smaller droplets. The
following section presents the results for the unsteady drop deformation and breakup at
the critical shear rate. Figures 4.5(a) and 4.5(b) show typical pictures of Newtonian and
elastic drops undergoing unsteady deformation in Newtonian and elastic matrices
respectively. For the Newtonian combination, the drop is stretched to a large aspect ratio
(Fig. 4.5(a)). As the drop stretches, a waist is formed along the midsection. No
fragmentation at the ends of the elongated drop was observed. The ends remain highly
curved, and at the same time, the waist thins progressively until breakup, generally in two
or more smaller droplets. In contrast, Fig. 4.5(b) shows clear differences in the

unsteady
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Figure 4.5(a): Typical pictures of a Newtonian drop under unsteady-state deformation
. until breakup (Newtonian combination: Dy sheared in M)
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Figure 4.5(b): Typical pictures of an elastic drop under unsteady-state deformation
' until breakup (Elastic combination: D, sheared in Mj).
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deformation and breakup of the elastic drop in the elastic matrix. At the beginning of the
unsteady deformation, the elastic drop presents sharply curved ends. With increasing
time, the drop shape becomes progressively thinner and longer. The breakup mechanism
is similar to that observed by Marks et al. (1997) and called dripping. In our case, the
breakup process began from the rear of the elongated drop and resulted in a series of
large and small drops (satellites) on an alternating basis, as shown in the last picture of
Fig. 4.5(b). Compared to the Newtonian case, elastic drops in elastic matrices were
found, in general, to break more uniformly, leading to a narrower size distribution. The
time dependency of the drop deformation depends upon the properties of the matrix/drop

combination.

Figure 4.6 shows typical results on the effect of elasticity on the critical (unsteady) drop
deformation, ¢ :1 , at the critical shear rate, for the three elastic drops D;, D, and Djs,
sheared in the elastic matrix, M. Those results are shown as a function of the
dimensionless elapsed time, #y., from the startup of deformation at critical shear rate,

¥.. The deformation of the Newtonian drop, D), sheared in the Newtonian matrix,

M ~» is also shown in Fig. 4.6 for a comparison. In all cases, only the values of £ :,v,
which vary as a linear function of /7, are presented. During the last stage of the critical

deformation (i.e., just before breakup), the drop shape became non-uniform, and drop

deformation strongly deviated from linearity. As in the case of the steady-state

deformation, for k' 20.37, the unsteady deformation (at the critical shear rate) of the
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Figure 4.6: Critical drop deformation, £ jz, at the critical shear rate

as a function of the dimensionless time, ..
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elastic drops in elastic matrices is less than that of the Newtonian drop in the Newtonian

matrix of a comparable viscosity ratio and interfacial tension. For the same value of ¢y,

drop deformation decreases with increasing elasticity ratio.

Figure 4.7 shows the variation of the critical capillary number, Ca,, with the elasticity
ratio. The value of Ca,(Ca,= 0.47) for the Newtonian combination, shown for a
comparison, is in agreement with that obtained by Torza et al. (1972) for a Newtonian
combination of the same viscosity ratio. The data obtained for all the different
drop/matrix combinations are superimposed, and show a remarkable increase of Ca,
with increasing elasticity ratio, £’ . The increase of Ca,(Ca, = 7,7,D/ct ) with k' is
due only to the increase of y, with k', since the two other properties, nnand o,
remain constant for all the fluid systems used in our study. Our results are in agreement
with the results of Elmendorp and Maalcke (1985), and those of Lee and Flumerfelt
(1981). They found that the critical capillary number increases with increasing drop
elasticity or decreasing matrix elasticity. During their experimental study on the breakup
of viscoelastic drops in a Newtonian matrix, Varanasi et al. (1994) also found that, for
any given value of the viscosity ratio, the critical capillary number increases with
increasing drop elasticity. Fig. 4.7 shows that the critical capillary number increases
rapidly with increasing k' upto k' equal to4. For k' > 4, the critical capillary number
attains a maximum of about 1.75, which corresponds to the maximal contribution of

elasticity on drop breakup. For low values of elasticity ratio, elastic drops do not exhibit
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any noticeable departure from the Newtonian (inelastic) case. The values of Ca,
corresponding to the elastic combinations are approximately the same as that obtained for
the Newtonian combination. This is probably due to the values of the interfacial tension,
« , for the elastic combinations, which are shown in Table 4.1 to be slightly larger than
that of the Newtonian combination.

. . . * . . . .
Figure 4.8 shows the dimensionless breakup time, [, as a function of the elasticity ratio,

k' . The breakup time, f;, is the elapsed time between the startup of deformation and the

first breakup of the drop, and l‘; , is defined by

* .
ty =t,y./Ca, (4.7)
It is evident from the results that the effect of the elasticity ratio is to increase the overall
* » . 3
time for breakup, ;. For low values of elasticity ratio, the dimensionless breakup time,

* 3 3 . 3 - . - . -
1, , corresponding to the elastic combinations of low elasticity ratio, is, as in the case of

the critical capillary number, approximately the same as those of the Newtonian

combination.
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4.4 CONCLUSION

In this experimental study, a visualization system has been used to study the deformation
and the critical breakup conditions of elastic drops in elastic matrices under uniform
shear flow. The contribution of elasticity on drop deformation has been investigated
using a variety of constant viscosity elastic (Boger) fluids. The results have shown
remarkable differences in the mechanisms of drop deformation in the elastic systems
compared to that in the Newtonian system of approximately the same viscosity ratio and
interfacial tension. As in the case of the elongational flow (Mighri et al., 1997), the
steady-state drop deformation for shear rate less than a critical value, is affected by both
the drop or the matrix elasticities. The matrix elasticity helps to deform the drop, whereas
the drop elasticity resists to the drop deformation. An empirical relation between the
steady-state drop deformation and the capillary number was established. This relation
quantifies the contribution of both the drop and matrix elasticities on the drop
deformation. For high matrix elasticity (k' < 0.37), the deformation of elastic drops in an
elastic matrix under shear is higher than that of Newtonian drops in a Newtonian matrix
with the same viscosity ratio and interfacial tension. However, for k’> 0.37, the elastic

drops deform less than a Newtonian drop in a Newtonian matrix.

The critical shear rate and the breakup time have been found to increase with increasing
elasticity ratio. For k'<4, the critical capillary number increases rapidly with
increasing k' ; and for £’ > 4, it attains a maximum of about 1.75, which corresponds

to the maximal contribution of elasticity on drop breakup.
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Ca: Capillary number (Ca = n,yD/ ).

Ca,: Critical capillary number (Ca, = 77,,7.D/a).
D: Drop diameter, m.

k: Viscosity ratio (k = 177 /77, ).

k' Elasticity ratio (k' = A5 /4,,).

L: Drop length after elongation, m.

ty: Breakup time, s.

) Dimensionless breakup time ( t;; =4,y./Ca,).
L4, Drop and matrix deformations.

2% Critical drop deformation.

Ni: Primary normal stress difference, Pa.

a: Interfacial tension, mN/m.

v Steady state shear rate, s™'.

Ve! Critical shear rate, s™.

n: Steady state viscosity, Pa.s.

NasNm: Drop and matrix steady state viscosities, Pa.s.
A: Characteristic elastic time, (4 = N / 2072, s.
Agsp: Drop and matrix characteristic elastic times, s.
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CHAPITRE V

SIMULATION DES EFFETS DE L’ELASTICITE SUR LA
DEFORMATION DE GOUTTES EN ECOULEMENT
ELONGATIONNEL: COMPARAISON AVEC DES
DONNEES EXPERIMENTALES

Le principal objectif de ce dernier article est d’adapter une méthode de simulation
numeérique en deux dimensions, qui utilise la technique des éléments finis, pour simuler la
déformation de gouttes élastiques dans une matrice élastique en écoulement élongationnel.
Cette méthode tient compte a la fois de la tension interfaciale entre la goutte et la matrice
et de leur niveau d’élasticité. En effet, les résultats présentés dans cet article
complémentent ceux déja obtenus expérimentalement. D’ailleurs, les données
expérimentales ont été utilisées pour valider les résultats de simulation numérique. Le
modéle d’Oldroyd-B a été utilisé pour décrire le comportement rhéologique de la goutte et
celui de la matrice. Deux hypothéses déja utilisées dans I’étude expérimentale ont pu étre
vérifiées numériquement: la présence de la goutte dans la matrice n’influence pas le champ
de vitesses, et la grandeur de la vitesse élongationnelle n’affecte pas la déformation de la

goutte.
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Synopsis

The deformation of a single viscoelastic drop suspended in a viscoelastic medium under
uniaxial elongational flow through a confined converging channel has been simulated by
means of a two-dimensional time-dependent numerical method using finite element
computations. The simulated drop deformation, obtained for different drop/matrix
combinations, was compared to experimental results, obtained for an axisymmetric
converging flow, using equivalent experimental conditions. The Oldroyd-B constitutive
equation was used for the simulation of the rheological behavior of the constant viscosity
elastic fluids. Good agreement between the simulated results and the experiments is
shown. The simulation predicts the same elasticity effects on drop deformation as
observed experimentally, i. e., drop elasticity enhances the drop resistance to the
deformation, whereas the matrix elasticity had the opposite effect: the drop deformation

increases with increasing matrix elasticity.




5.1 INTRODUCTION

Numerical simulations of realistic flows of polymer blends are of practical interest in order
to develop and optimize polymer processing techniques such as mixing and compounding.
It is quite obvious that realistic simulations lead to better quality of the final product and

reduce production costs.

During the past two decades, numerous constitutive equations have been proposed for
non-Newtonian fluids. The search for appropriate constitutive equations for polymeric
materials is a major research challenge for rheologists. Generalized Newtonian models are
the most simple class of non-Newtonian models, but they only describe the shear rate
dependence of the viscosity; neither normal stresses nor any other non-Newtonian effect
are included. Non-linear viscoelastic models attempt to model the rheological behavior of
viscoelastic (polymeric) fluids in any type of flow, shear, elongation and complex flow

situations. A detailed discussion of the different rheological models can be found in the

book of Carreau et al. (1997).

With the development of new reliable numerical techniques, simulations with viscoelastic
constitutive equations can be presently made for a reasonable range of complex flows. The
mission is now to compare numerical simulations of these flows with experimental data,
and to assess the constitutive models used. We pursue our study on the application of
finite element method (FEM) to the deformation of a drop in a confined convergent
channel. This problem is of industrial and fundamental importance since converging flows

occur frequently in polymer processing applications such as mixing and compounding. The
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transient nature of the flow process and elastic effects make the simulation of drop
deformation challenging. Both Newtonian and constant viscosity elastic systems (Boger
fluids) are studied. The Oldroyd-B model is used in the simulation program because it
adequately describes the rheological properties of Boger fluids (Prilutski et al, 1983;

Boger, 1994).

To follow the matrix/drop interface during deformation, two strategies are generally used
during computation: (i) The first strategy tracks the interface and requires full or partial
remeshing of the domain occupied by the two fluids. Consequently, the mesh evolves until
it matches the different interfaces. However, this strategy requires very efficient remeshing
techniques. (ii) The second strategy, so-called capturing strategy, requires a single mesh

and the interface between the drop/matrix fluids is determined using a function F (often

called the pseudo-concentration) which is computed in the whole domain occupied by the
two fluids. This strategy was adopted in the pseudo-concentration method of Thompson
(1986), Thompson-Smelser (1988) and Lafaurie et al. (1994). The reader is also referred
to the work of Shen (1992) for the application of the pseudo-concentration method in
injection molding. A major drawback of this method is that the matrix/drop interface is not

explicitly computed but obtained in a posteriori manner as an isovalue of /. Consequently,

it is difficult to impose interfacial boundary conditions as in the case of polymer blends for
which the interfacial tension is large. Beliveau et al. (1997) presented a way to overcome
this difficulty and to impose interfacial tension for the pseudo-concentration method. The

reader is also referred to the work of Beliveau (1997) for more details on mathematical

developments.
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The method of Beliveau et al. (1997) is used in this study to compute the planar
deformation of a drop in a confined convergent channel. Although an axisymmetric or
three-dimensional simulation of drop deformation is more realistic, this needs a complex
formulation of the problem and consequently, important computing resources. We prefer
to test, firstly, if a two-dimensional simulation using the numerical method of Beliveau et
al. (1997) can predict, at least qualitatively, data from our earlier study on drop

deformation in an axisymmetric converging channel (Mighri et al., 1997).

This paper is organized as follows: the constant viscosity elastic fluids of different
elasticities used in the experimental study are discussed in Section 5.2. All the rheological
parameters needed by the numerical simulation are measured, or deduced from rheological
measurements of the elastic fluids. The governing equations for the Newtonian and
Oldroyd-B models are presented in Section 5.3. Numerical results and discussions are
given in Section 5.4. Calculations are carried out, for a two-dimensional converging

geometry, first for a Newtonian fluid system, and second for different elastic systems of

approximately constant viscosity ratio,k = 77, / 7., , and constant interfacial tension, & .

5.2 CONSTANT VISCOSITY ELASTIC (BOGER) FLUIDS USED FOR
COMPARISON WITH NUMERICAL SIMULATIONS

The matrix fluids, M, were dilute solutions of small amounts of high molecular weight
polyacrylamide, PA4, in a Newtonian solvent (a mixture of maltose syrup and distilled
water). For the dispersed drops, Dj;, small amounts of high molecular weight

polyisobutylene, PIB, were dissolved in a Newtonian solvent (a mixture of kerosene and
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low molecular weight Newtonian polybutene, PB). Table 5.1 lists the different fluids and
their composition. More details on the technique used for the solution preparation and
their rheological characterization are given in our previous work on drop deformation in
elongation flow (Mighri et al., 1997). As a characteristic of these solutions, the viscosity is
approximately constant with shear rate and the first normal stress difference varies with
the square of the shear rate, up to moderately high shear rates. We assume that the solvent

viscosity is the same for all solutions although the formulation is slightly changed, as

shown in Table 5.1. The corresponding steady state shear viscosity, 7, were measured at
room temperature (25°C) using a R-18 Weissenberg rheogoniometer and found to be

4.9 Pa.s for the drop fluid and /1.0 Pa.s for matrix fluids.

Prilutski et al. (1983) have clearly shown that the observed steady and dynamic shear
properties for Boger fluids can be explained within the framework of elastic dumbbell
theory. Such properties are more consistent with the Oldroyd-B model than with the
convected Maxwell model. On the basis of many experimental studies, Boger (1994) also
concluded that, despite its relative simplicity, the Oldroyd-B model is adequate for
predicting the rheology in simple or complex flows of constant viscosity elastic (Boger)

fluids.

The Oldroyd-B constitutive equation is given by (Prilutski et al., 1983):

L+21(5L/§t=77(}i+/125£/§t) (5.1)
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where 7 is the stress tensor, ¥ is the rate of deformation tensor, and 5/5t is the

convected Oldroyd derivative. The parameters 4; and 1, are respectively the relaxation

and retardation times. The interpretation of fluid behavior in terms of elastic dumbbell

theory is entirely consistent with the Oldroyd-B model (Boger, 1994), where the solution

viscosity, 77, is visualized as a linear combination of the solvent viscosity (75) and the
polymer contribution to the solution viscosity (77, ):
n=1np+7s (5.2)
The retardation time, 4, , is expressed in terms of the relaxation time and the solvent and
solution viscosities using the following relation (Phan-Thien, 1983; Prilutski et al., 1983):
Ay =A(75/n) (5.3)

The model parameters can be obtained from the measured dynamic viscosity, 77", and the

storage modulus, G', as a function of the frequency, using the following equations

(Carreau et al., 1997):
,_n(1+ 44,0 2)

5.4
(1+1°0?) GH
and
G' = n(A —Az)0 ? (5.5)
(1+10?)

Thus, the Oldroyd-B model prediction for the first normal stress difference, Nj, could be

obtained by the following relation (Carreau et al., 1997):

Ny=yy? = 294 - /12)}"2 (5.6)
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where {1 is the first normal stress coefficient. Table 5.2 shows the selected matrix and
drop fluids to be used later in the numerical simulations, and their corresponding
Oldroyd-B relaxation time, 4,. To be coherent with our previously experimental study,

the same designation as before was used for the selected fluids. It should be mentioned
that the values of the interfacial tension, as measured using the spinning drop technique,

were approximately constant at about 22 mN/m for all the matrix/drop combinations. This

constant value of the interfacial tension will then be used for all the simulations.

Figures 5.1(a) and 5.2(a) compares the steady and dynamic shear viscosities for the drop
fluid, D;, and the matrix fluid, M, obtained at 25°C, with the predictions of the

Oldroyd-B model. The results clearly show that the Oldroyd-B model well predicts the

shear viscosity for Boger fluids. Figures 5.1(b) and 5.2(b) show the observed first normal
stress difference, Ny, and the storage modulus, G’, for the drop and matrix fluids, D) and
M, respectively, in comparison with the predicted results determined from the basic fluid
parameters of the Oldroyd-B model. For low frequencies and shear rates, the storage
modulus and the first normal stress difference are closely related (N;(7 )= 2G' (@ )).

The agreement between the model predictions and the corresponding experimental data is
relatively good for the first normal stress difference. For high frequencies, the Oldroyd-B
model poorly predicts the storage modulus. The model prediction of G’ holds with the

experimental data only in the limit of low frequencies.
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Table 5.1: Designation and composition of the elastic fluids used.

Designation Formulation ¥

Matrix fluids My 0.00% PAA+ 92.0% MS + 8.00% W.
M 0.03% PAA+ 92.0% MS +7.97% W.
M; 0.06% PAA+ 92.0% MS +7.94% W.
M; 0.10% PAA+ 92.0% MS +7.90% .

Drop fluids Dy 0.000% PIB + 93.0% PB + 7.00% Ker.
D, 0.244% PIB + 92.8% PB + 6.98% Ker.
D, 0.600% PIB + 91.0% PB + 8.40% Ker.
D; 0.800% PIB + 93.0% PB + 6.20% Ker.
Dy 1.200% PIB + 92.0% PB + 6.80% Ker.

a) All percentages are in weight.

Table 5.2: Fluid systems and corresponding Oldroyd-B relaxation times.

Oldroyd-B
Designation relaxation time
A4 (8)
My 0.00
Matrix fluids M, 1.60
M, 3.60
M 6.10
Dn 0.00
D 0.58
Drop fluids D, 1.98
Ds 3.55
Dy 6.50
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5.3 THEORETICAL FORMULATION OF THE PROBLEM

This section presents the momentum and mass conservation equations together with the
equilibdum and non-miscibility conditions on the interface between drop and matrix
phases. We consider the case of a two-dimensional domain, {2, occupied by two
viscoelastic incompressible and immiscible fluids, the matrix and the drop phases

respectively. Inertia terms in the momentum equations have been neglected, since most

applications to polymers involve small Reynolds numbers. We denote £2; (i=1, 2) the

domain occupied by the matrix or drop of viscosity 7; respectively, and I" the interface

between the drop and matrix fluids.

5.3.1 Governing equations

The conservation of momentum equation is then given by

V.g, =0 VEe (i=12) .7

and, with neglecting compressibility effect, the mass conservation equation is classically

written as:

V.¥i=0 VX el (i=1 2) (5.8)
In both equations, V=V (5c',t) is the velocity field, X = (x;,x,) is the position in the
domain, and 0 ; is the Cauchy stress tensor given by

o, =7~ pil Vel (i=1,2) (5.9)

=/ = =

in which p; (f,t) corresponds to the pressure field, and / the unity tensor.
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The problem is completely defined when the appropriate rheological constitutive equation

is substituted for the extra-stress field, 7; . For the Newtonian case, the relation between

the stress field and the rate of deformation tensor, ¥ , is given by
i, = 7],2’___ (5.10)
Substitution of ;=7 ¥ in Egs. 5.9 and 5.7 respectively yields to standard Stokes

equation.
The above system of equations has to be satisfied everywhere in the domain £ ,i.e., inthe

matrix and drop phases respectively.

5.3.2 The non-miscibility equation

The first condition on the interface, I, is the non-miscibility of the matrix and drop fluids.

If the interface is in implicit form:
F(xt)=c (5.11)
where 7 is the time and ¢ is a constant, the function F', so-called pseudo-concentration

function, must verify the following relation (Thompson, 1986; Thompson et al., 1988,

Lafaurie et al., 1994):
o - - ~ - -
EF(x,t)+(v-V)F(x,t)=0 Vel (5.12)

Equation 5.12 means that the function /" is constant along the streamlines at the interface,

I, i.e., a particle of fluid situated on J~ always remains on /. This can be generalized to
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the whole domain, i. e., a particle of fluid situated in the domain £2; always remains in

. . Equation 5.12 is then valid for the whole domain (2.
For the pseudo-concentration method, the immiscibility condition is automatically

satisfied. Indeed, defining the pseudo-concentration function, F, as equal to 0 on the
domain (2| occupied by the matrix fluid and / on the domain {25 occupied by the drop
fluid. The interface can then be recovered as the isovalue 0.5 of the function F (see

Beliveau et al., 1998, for more details).

5.3.3 The equilibrium equation at the interface

The second condition on the interface merely states that the interface is at equilibrium and

can be written as:

g, n=

I

- o _ -
2-n+En Vel (5.13)
where the subscripts / and 2 refer to the matrix and drop fluids respectively. R is the

curvature of the interface, # the normal vector to [~ at X, and « is the interfacial

tension.

5.3.4 The variational formulation of the governing equations using the
pseudo-concentration function, F.

The pseudo-concentration method allows us to consider the whole matrix/drop domain,
avoiding the subdivision of (2 into two separate subdomains. To achieve this, the

governing equations are rewritten as follows:




Vg + %Mr -0 Vie  (5.14)
V.5=0 Vie  (5.15)
%+({;‘.V)F=0 Vie  (5.16)

with appropriate boundary conditions. Here d is the Dirac distribution on I’ If the
interface is smooth, which is the case for immiscible matrix/drop fluids, the pseudo-

concentration function, F, is related to the Dirac distribution by

which is valid in the entire domain £2 and in the particular on the interface /= (See

Beliveau,1997; and Beliveau et al., 1998, for more details).

5.3.5 Discretization

The above system of equations is solved by a two-dimensional finite element method. For
a given value of F, the system of equations 5.14 and 5.15 is discretized. The resulting
discretized system is then solved by the Uzawa algorithm as described by Fortin et al.
(1985). The transport equation 5.12 is solved by a modified Lesaint-Raviart method also

known as the discontinuous Galerkin method (Beliveau, 1997). Finally, the global system

of equations 5.14, 5.15 and 5.16 is coupled via a Newtonian-Krylov (Generalized Residual

Method: GMRES).




5.4 RESULTS AND DISCUSSION

This section presents some results of numerical simulation of planar drop deformation in
elongational flow. The accuracy of the numerical method, using the pseudo-concentration

function, F, to recover the drop shape, will be tested by comparison with experimental

results on drop deformation, previously obtained for an axisymmetric converging section
(Mighri et al., 1997). We will examine if the obtained two-dimensional simulated results

are at least in qualitative agreement with the data from our earlier study.

The simulated flow channel was composed of two short rectangular channel sections,
situated on each side of the convergent channel [Fig. 5.3]. The main reason for this was
to impose boundary conditions (velocity and stress profiles) far away from the concerned
(convergent) flow section. The depth of channel was supposed to be small, compared to
its width, in order to neglect side effects and to suppose a two-dimensional flow field. The
drop was simulated by a long cylinder of the same diameter, placed perpendicular to the
flow and undergoing deformation along the flow axis. In order to save computational time
and for reason of symmetry, we considered only one half of the flow domain, as depicted
in Fig. 5.3. The figure shows the typical mesh used during computations. The used mesh
had 2394 elements and was refined in all the region crossed by the simulated drop in order
to get more precision at the interface region between the drop and the matrix fluids. The
time step of the calculation, 4#= 0.3 s, was assumed to be enough to obtain a good

precision for the time evolution of the drop shape.




Zoom ofthe refined mesh

Figure 5.3: convergent flow channel and typical mesh used
for numerical simulation.
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Many authors have shown the existence of a transition zone at the end of the rectangular
section in which the flow is transformed slowly to a convergent flow. It is obvious to see
that simulated drop deformation at the entrance of the converging section was slightly
higher than unity since drop elongation began, not exactly at the entrance, but slightly
before. Due to experimental limitations, we were not able to measure this small
deformation. In their study, Van Der Reijden-Stolk et al. (1986) used a shifted coordinate
system to take into account the transition zone and to locate exactly the beginning of the

convergent flow in the cylindrical section.

Figure 5.4 shows typical evolution of simulated drop shape for the elastic drop Dj in the
matrix M1, undergoing elongation at various positions along the flow axis. A drop of
circular shape of initial diameter equal to / mm was initially placed in the rectangular

section, exactly 4 mm from the entrance of the converging section. At time ¢ =0, the
drop was subjected to the motion of the matrix fluid and the simulation proceeded in time
from the given initial boundary condition. At each time step, the drop proceeded further in
the cone and the numerical simulation gave the position of the interface between the drop
and the matrix. As mentioned in Section 5.3 and as explained by Beliveau et al. (1998), the
interface was recovered as the isovalue 0.5 of the pseudo-concentration function, /. Due
to small numerical diffusion at the interface, basically due to the adopted mesh, it was
impossible to reproduce with high precision the nonuniform drop shape as observed

experimentally for viscoelastic drops of diameters higher than /.2 mm. Nevertheless, a

drop diameter of / mm was used for all the simulations. This diameter was approximately
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the highest diameter, used in our experimental study (Mighri et al.,, 1997), for which we
didn't observe any significant effects of the initial drop size on drop deformation. The
numerical method well conserves the mass of the drop fluid, especially for drop
deformation less than 4. For higher deformation, a small decrease of the drop volume was
detected. We believe that this was basically due to the number of elements inside the drop
which became insufficient (to make accurate calculations) at the end of the convergence,
where the drop was highly elongated. A better mesh refinement of the domain crossed by
the drop will lead to better results, but storage problems forced us to adopt the actual

mesh.

Figure 5.5 shows the velocity field (represented by vectors), inside and outside the drop
D, during deformation in the matrix M. The flow seems to be not perturbed by the
presence of the drop. Also, the velocity field inside the zone crossed by the drop are

approximately parallel to the flow axis and are of the same magnitude. This confirms that

the velocity profile is approximately constant near the flow axis, and the flow is highly

elongational in that region, as mentioned in our previous work (Mighri et al., 1997).
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Figure 5.4: Typical evolution of a simulated drop shape
at six different positions along the flow axis

(matrix/drop combination: Mj/D4)

Figure 5.5: The velocity field inside and outside the drop
(matrix/drop combination: My/D4)
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As in the experimental study (Mighri et al., 1997), the aspect ratio, £ ; = L/ D, was also
used as the measure of drop deformation because it is a sensitive measure for highly

elongated drops (Milliken and Leal, 1991). L is the major axis of the deformed drop and

D is its initial diameter. The Henkey strain, &,,, was also used for the matrix strain

measure and the corresponding stretch ratio was £,, = efm . In the experimental study,
drop deformation was presented as a function of the matrix deformation because a linear
relationship was observed between the drop and matrix deformations. The drop

deformation was then a function of the matrix total strain, &, = £f, the product of the

elongational rate, £ , and time of deformation, £. We also found it of interest to test

numerically if the drop deformation is affected by the elongational rate. We simulated the

drop deformation, under two different matrix flow rates, for the Newtonian combination,

M/Dy, and the elastic combination, M3/D,. Figure 6.6 shows that, doubling the matrix
flow rate from 28 mm’/s to 56 mm’/s had no significant effect on drop deformation for

both the Newtonian and elastic combinations. Thus it appears that the drop deformation is
uniformly related to the matrix deformation (a slow deformation during a long time gives
approximately the same result as a fast deformation during a short time, provided that the
total elongation remains approximately constant). To facilitate the comparison between
the simulated and experimental results, simulated drop deformation was then presented as
a function of the matrix local deformation along the flow axis, with the same manner as in

the experimental study.
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Figure 6.7 shows the two-dimensional simulated drop deformation (dashed line) for the
Newtonian matrix/drop combination (Ma/Dy), together with the corresponding

experimental results (open circles), obtained for the axisymmetric converging flow. The
simulation predicts a linear relationship between the drop and matrix deformations, which

was also observed experimentally. Good agreement was observed between the numerical

prediction and the experiment for matrix deformation up to 2. For higher matrix

deformation, the predicted drop deformation is lower than that observed experimentally. A
maximum deviation of approximately /0% was observed for a matrix deformation of
about 3.2. We believe that the difference is basically due to the two-dimensional
calculations. The predicted drop deformation is then supposed to be lower than the
experimental deformation obtained for an axisymmetric converging flow, for which

stresses are higher than in the simulated situation.

To examine how the effect of drop and matrix elasticities on drop deformation can be
simulated by the developed numerical technique, two simulations were firstly done for two
elastic matrix/drop combinations (M}/D; and M;Dy). As mentioned before in Section
5.2, the drop and matrix elasticities were expressed in terms of the Oldroyd-B relaxation
times. Figures 5.8(a) and 5.8(b) show the predicted drop deformations (dashed lines),
together with the experimental results (open circles) obtained for the same matrix/drop
combinations. In both figures, we note a satisfactory agreement between the simulations

and the experiments for a matrix deformation up to 5. Although linearity between the drop

and matrix deformations was observed for matrix deformations up to 3, a small non-
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linearity is predicted for higher matrix deformation. Considering that we used a two-

dimensional simulation, the prediction of the elasticity effects on drop deformation seems

to be quantitatively accept'able for matrix local deformation up to 4.

————— : Matrix flow rate of 56 mm’/s
- Matrix flow rate of 28 mm’/s

w
1

Drop deformation (£)

1 . S S——— e - T
1 2 3 4 5

Matrix local deformation (£))

Figure 5.6:  Effect of the matrix flow rate on drop deformation for the
matrix/drop combinations Mp/Dy and M,/D.
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Figure 5.7: Numerical prediction of drop elongation, £ 4, as a function of the matrix
elongation, £ ,,, for the Newtonian system Ma/Dy (comparison with
experimental results).
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We shall now use the numerical method to predict the effect of drop and matrix elasticities
on drop deformation. The predicted results are reported in Fig. 5.9 for different

matrix/drop combinations of different elasticities, together with the prediction for the
Newtonian combination My/Dy. The figure shows that the numerical simulation predicts

well the effects of both drop and matrix elasticities on drop deformation, i. €., the matrix

elasticity helps to deform the drop, whereas the drop elasticity resists to the drop

deformation. As observed experimentally, for the same matrix M,, the predicted drop
deformation is lower for the drop D than for the drop D, since the first is more elastic

than the latter (the values of the Oldroyd-B relaxation times, A;, are 6.55 s for D4 and
1.98 s for D). For the same Newtonian matrix My, the elastic drop D3 (4= 3.55 s)

deforms less than the Newtonian drop Dy. This was also observed in our experimental

study and that of Milliken and Leal (1991) who studied the behavior of viscoelastic drops
in a Newtonian matrix under two-dimensional elongational flow. They found that

viscoelastic drops with viscosity ratios & < [/ (which is our case) have a smaller

deformation than Newtonian drops of the same viscosity ratio and interfacial tension.

Fig. 5.9 also shows the predicted drop deformation for another particular case where the

drop is Newtonian (drop, Dy) and the matrix is elastic (matrix, M>). For matrix
deformation up to 2.8, the Newtonian drop Dy deforms more in the elastic matrix M

than in the Newtonian matrix My. For higher matrix deformation strangely enough the

contrary is observed, this is probably due to the non-linear effects associated with slightly
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elastic systems for high deformation. This special case, however, needs to be confirmed

experimentally.

D, in M,: Experimental

Drop deformation (£)
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Figure 5.8(a): Numerical prediction of drop elongation, £ 4, as a function of the matrix

elongation, £ ,,, for the elastic system M}/D, (comparison with

experimental results).
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Figure 5.9: Numerical prediction of drop elongation, £ 7, as a function of

the matrix elongation, £,, : effect of the matrix and drop elasticity.




5.5 CONCLUSION

Drop deformation in uniaxial elongational flow of Newtonian and elastic fluids has been
simulated numerically using two-dimensional finite element method. The numerical
method was developed for two-dimensional time-dependent free-surface or interface
problems where surface tension and elastic effects were taken into account. The
Oldroyd-B constitutive equation, used in the simulation program, predicted well the elastic
effects for constant viscosity elastic (Boger) fluids. The simulated drop deformation,
obtained for different drop/matrix combinations, was compared to experimental results
obtained for an axisymmetric converging flow using the same experimental conditions.
There was an acceptable agreement between the simulated results and the experiments.
The simulation predicted the same effects of elasticity on drop deformation as observed
experimentally. However, there is a need for further work to generalize the numerical

method to axisymmetric and three-dimensional flows.

APPENDIX: NOMENCLATURE

R: Drop radius, m.

G Storage modulus, Pa.

I: Unity tensor.

k- Viscosity ratio (kK = 17, /7, ).
L: Drop length after elongation, m.
4.8, Drop and matrix deformations.

1 Primary normal stress difference, Pa.

Pressure, Pa.

Interfacial tension, mN/m.
Steady state shear rate, 5.

xRV >
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¥ Rate of deformation tensor.

g: Cauchy strain tensor.

n: Total viscosity, Pa.s.

n,: Viscosity of the solvent, Pa.s.

Mp: Polymer contribution to the total viscosity, Pa.s.

Maxwell relaxation time, (4 = N / 2 7]};2 ), S.
Oldroyd-B relaxation Tim, s.
Oldroyd-B retardation time, s.

Frequency, rad/s or s™.
Stress tensor.

el

First normal stress coefficient.

S
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CHAPITRE VI

CONCLUSIONS ET RECOMMANDATIONS

Malgré que les mécanismes de dispersion des gouttes de la phase mineure dans les
mélanges binaires de polyméres immiscibles ont fait 1’objet d’'un nombre important de
publications dans le passé, il n’y a pas eu vraiment de travaux qui ont réussi a mettre en
évidence l'influence de I’élasticité sur ces mécanismes de dispersion. Les études
effectuées sur des fluides newtoniens sont en effet trés insuffisantes pour caractériser les
morphologies dans les mélanges de polyméres. 1l n’est donc pas réaliste de négliger
I’élasticité des différents composants du mélange si on souhaite atteindre un niveau de
compréhension suffisant pour contréler les morphologies lors des opérations de malaxage

et de mise en ceuvre.

Le travail présenté dans cette thése apporte une contribution originale pour mettre en
évidence I’influence de I’élasticité sur la déformation et les mécanismes de rupture de la
goutte, dans le but d’élucider les mécanismes de dispersion dans les mélanges de
ployméres. L'approche adoptée est en effet une approche locale qui consiste & visualiser
le comportement d'une goutte isolée de la phase dispersée, suspendue dans une matrice,
dans deux écoulements bien caractérisés, soient I’écoulement élongationnel et le
cisaillement. En effet, les écoulements dans les mélangeurs internes, les extrudeuses, ou
les moules d'injection sont une combinaison de cisaillement et d'élongation. Les travaux

- ont porté sur des systémes de fluides modéles, appelés fluides de Boger, qui possédent a
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la fois une viscosité relativement constante et un niveau d’élasticité élevé. Les fluides de
la matrice sont des solutions formées par de faibles quantités de polyacrylamide & haute
masse moléculaire dissoutes dans un mélange de sirop de maltose et de ’eau distillée,
alors que les fluides de la goutte sont constitués de faibles quantités de polyisobutyléne &
haute masse moléculaire dissoutes dans un mélange de polybuténe newtonien et de
kérosene. Le choix de ces fluides a été dicté par le fait que les différentes combinaisons

goutte/matrice devraient étre complétement immiscibles.

Dans un premier temps, la caractérisation rhéologique des différents fluides modéles a été
effectuée. Il a été prouvé que ces fluides sont trés adéquats pour dissocier I’influence des
propriétés rhéologiques (telles que la viscosité, l'élasticité et tension interfaciale) sur les
mécanismes de déformation et de rupture de gouttes dans une matrice en écoulement. Les
résultats des mesures de la tension interfaciale ont confirmé que I’ajout de faibles
quantités de polymere & haute masse moléculaire, pour varier 1’élasticité des fluides,
n’avait pas d’influence significative sur la tension interfaciale des différentes
combinaisons goutte/matrice. Une valeur moyenne de la tension interfaciale a été utilisée

pour toutes les combinaisons de fluides préparées. Les rapports de viscosité mesurée pour

les différentes combinaisons variaient entre 0.5 et 1.1, alors que les rapports d’élasticité
étaient compris entre 0.0 et 6.0. Il a été vérifié que la faible variation du rapport de

viscosité n’avait pas d’influence significative sur la déformation de la goutte,

comparativement a celle des rapports d’élasticité.
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Pour générer les deux types d’écoulement, soient I’écoulement élongationnel et le
cisaillement, deux montages en acrylique ont été congus afin de visualiser en temps réel
la déformation et la rupture des gouttes. Le premier montage, de type convergent-
divergent, a ét€ installé sur un fhéométre Instron pour pousser le fluide de la matrice dans
le convergent, alors que le second, formé de deux plateaux paralléles, a été instalié sur un
rhéogoniométre Weissenberg. Les gouttes de la phase dispersée sont injectées dans la
matrice, au niveau de I’axe central du convergent (cas du premier montage) ou entre les

deux plateaux paralléles (cas du deuxiéme montage), a I’aide de microseringue.

Malgré plusieurs limitations expérimentales, les montages congus ont pu étre utilisés
efficacement pour mettre en évidence ’influence de 1’élasticité sur la déformation et la
rupture de gouttes. En effet, il a été observé que 1'élasticité des deux phases (goutte et
matrice) avait une influence visible sur la déformation de la goutte ainsi que sur les
conditions critiques de rupture. L'influence de I'élasticité goutte/matrice sur la
déformation et sur les conditions critiques de rupture de la goutte a été mesurée en
comparant les résultats obtenus pour des combinaisons élastiques avec ceux obtenus pour
des systémes newtoniens ayant le méme rapport de viscosité et la méme tension

interfaciale.

Avant d’aborder l'étude sur la déformation de gouttes en écoulement élongationnel,
Pinfluence de I’élasticité de la matrice sur la vitesse élongationnelle le long de I’axe
central du convergent a été étudiée. Il a été prouvé expérimentalement que la vitesse

élongationnelle le long de I'axe du convergent est plus faible pour un fluide élastique que
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pour un fluide newtonien de méme viscosité. Cette vitesse diminue avec I’augmentation
de I’élasticité de la matrice, ce qui est en parfait accord avec les résultats de la littérature.

Les résultats de déformation de gouttes en écoulement élongationnel montrent que, pour
toutes les combinaisons goutte/matrice étudiées, la déformation de la goutte varie
linéairement en fonction de celle de la matrice. L’élasticité de la goutte ainsi que celle de
la matrice ont un effet inverse sur la déformation de la goutte: I’élasticité de la matrice
déforme la goutte davantage, alors que celle de la goutte résiste a la déformation et rend
la goutte de plus en plus rigide. Pour un rapport d’élasticité goutte/matrice inférieur a
0.2, il s’est avéré que les forces élastiques engendrées par la matrice avaient plus de
contrdle sur la déformation de la goutte que les forces élastiques engendrées par la goutte

elle-méme. Pour des rapports d’élasticité supérieurs a 0.2, ce sont les forces élastiques

engendrées par la goutte qui prédominent. Une relation empirique reliant la déformation
de la matrice avec celle de la goutte a été développée en fonction d’un paramétre relié

directement au rapport d'élasticité goutte/matrice.

Le montage congu pour l'étude des mécanismes de déformation et de rupture de gouttes
en cisaillement nous a permis d’effectuer des essais de déformation de gouttes en régime
permanent ainsi que des essais de déformation et de rupture sous cisaillement critique.
Dans les deux cas, il y avait une nette différence entre les systémes viscoélastiques et les
systémes newtoniens. Comme dans le cas de I'écoulement élongationnel, I’élasticité de la
matrice aide la goutte & se déformer davantage, alors que celle de la goutte résiste a la

déformation. Les résultats de déformation en régime permanent ont été présentés en

fonction du nombre capillaire, Ca. Pour des valeurs de Ca < 1.10, la déformation en
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régime permanent de la goutte varie linéairement en fonction du nombre capillaire et ce
pour toutes les combinaisons goutte/matrice étudiées. Une relation empirique est
proposée pour relier la déformation de la goutte au nombre capillaire, en fonction d’un

parametre relié au rapport d'élasticité goutte/matrice.

Les résultats obtenus sous cisaillement critique montrent que le nombre capillaire critique

augmente avec l'augmentation du rapport d'élasticité et atteint une valeur maximale
d'environ /.75, pour des rapports d'élasticité supérieurs a 4. Cette valeur représente la

contribution maximale de l'élasticité sur le nombre capillaire critique. Les résultats
montrent que le temps nécessaire pour briser la goutte sous cisaillement critique
augmente aussi avec l'augmentation du rapport d'élasticité et plafonne pour des rapports
d'élasticité élevés. Pour des rapports d'élasticité trés faibles (k' << ), les valeurs du
nombre capillaire critique ainsi que celles du temps de bris de la goutte sont presque
identiques aux valeurs obtenues pour des systémes newtoniens de méme rapport de

viscosité et méme tension interfaciale.

Malgré la limitation du code de calcul aux cas simples d'écoulements bidimensionnels,
les résultats de simulation de la déformation de gouttes en écoulement élongationnel le
long de l'axe d'une section convergente semblent étre acceptables comparativement aux
résultats expérimentaux obtenus pour un écoulement convergent axisymétrique. La
méthode de simulation a mis en évidence, d'une maniére quasi-quantitative, I'influence de
I'élasticité sur la déformation de gouttes. L'avantage de cette méthode réside dans le fait

qu'elle tient compte de la tension interfaciale, en plus du caractére viscoélastique des
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deux phases (matrice/goutte). En plus, elle ne nécessite pas de remaillage pour calculer
la position de I'interface goutte/matrice durant I'écoulement. Un seul maillage de départ,
plus raffiné dans la partie traversée par la goutte, est nécessaire. Le modéle d'Oldroyd-B
utilisé dans le code de calcul décrit bien le comportement viscoélastique des fluides de
Boger. La simulation numérique a permis de vérifier deux hypothéses déja utilisées dans
I'étude expérimentale pour I'écoulement élongationnel. En effet, on a pu vérifier, a l'aide
de la simulation du champ de vitesses, que la présence d'une petite goutte dans la matrice
ne perturbe pas I'écoulement autour de la goutte. On a pu aussi vérifier, en faisant varier
le débit du fluide de la matrice, que la vitesse élongationnelle le long de I'axe central du
convergent n'a pas d'influence significative sur la déformation de la goutte. Cette derniére

est étroitement reliée a la déformation totale de la matrice et non au taux de déformation.

Une simulation tridimensionnelle de I'écoulement permettrait d'obtenir des résultats plus

proches de la réalité, mais nécessiterait des moyens informatiques plus importants et une

formulation du probléme plus complexe. Néanmoins, un grand effort est effectué

actuellement par le groupe de recherche en éléments finis du département de

mathématiques appliquées pour étudier des cas d'écoulements plus réalistes, commengant

par le cas des écoulements axisymétriques.

Comme recommandations pour des travaux futurs, il s'avérerait intéressant d'étudier les

points suivants:

- Vérifier si la tension interfaciale a un effet significatif sur les résultats obtenus

concernant la contribution de 1'élasticité sur la déformation de gouttes pour les deux

types d'écoulements étudiés. Il est suggéré de préparer des fluides modeéles dont les
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rapports de viscosité et d'élasticité sont identiques & ceux des fluides utilisés dans ce
travail, mais de tension interfaciale différente.

- Améliorer le montage de cisaillement pour pouvoir mesurer l'aplatissement de la goutte
due aux contraintes normales de la matrice. On pourrait s’inspirer par exemple du
montage expérimental de Levitt et Macosko (1997).

- Etendre I'étude sur des polymeéres industriels et dans des situations réelles d’écoulement,
en mettant en place un montage expérimental de visualisation en temps réel qui pourra

étre monté directement sur une extrudeuse.
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