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La contamination des eaux souterraines et la pollution du sol par des déchets 

industriels, par lixiviation des dépotoirs et par des activités agricoles. sont reconnues 

comme étant le problème environnemental le plus important des deux dernières 

décennies. La reconnaissance du problème a été suivie par des législations afin de 

restaurer les sites contaminés et prévenir les problèmes futurs. Reste que la pollution 

de l'eau souterraine est un problème parfois difficile a détecter ( invisibilité, accès 

coûteux) et souvent impossible à comger. Dans ce contexte, il est apparu que la 

modélisation numérique de transport des polluants dans un milieu poreux est nécessaire 

pour reconstruire l'histoire de pollution, concevoir des stratégies de remédiation et 

éviter les problèmes futurs 

La modélisation mathématique de la migration des contaminants dans un milieu 

poreux a fait des avancées ces dernières années aussi bien au  niveau de la 

conceptualisation des phénomènes que du couplage avec les équations du transport. 

Cependant la plupart des modèles existants qui traitent la contamination de la nappe, 

considèrent que la densité du fluide contenu dans le panache est égale à celle du milieu 

ambiant. Ces dernières années plusieurs études expérimentales, théoriques et 

numériques ont abordé la compréhension des migrations de lixiviat à partir des 

dépotoirs de surface. 

Ces travaux impliquent le transport d'un seul panache de polluant. En réalité 

une source de pollution comporte plusieurs composantes organiques et inorganiques. 11 

s'agit d'un phénomène de transport plus complexe. Dus aux effets de l'adsorption et de 

la différence de densité, différents panaches peuvent se former comme ceux observés 



vii 

observés dans l'aquifere du site d'enfouissement Borden en Ontario et celui de Babylon 

à New York. 

Ces deux dernières décennies plusieurs algorithmes de calcul ont été développés 

pour résoudre les équations de transport, mais seulement quelques problèmes 

spécifiques ont été résolus efficacement et exactement. C'est parce qu'il existe une 

difnculté fondamentale à résoudre les équations de transport dû à leurs caractères 

hyperbolique et parabolique. Le développement d'une méthode numérique efficace et 

précise pour résoudre l'équation (parabolique-hyperbolique) de transport est essentielle 

pour comprendre et simuler les systèmes physiques. De plus, étant donné que l'échelle 

de temps propre au transport de tels polluants dans le milieu poreux peut être de l'ordre 

de quelques années, il est important que le schéma utilisé pour la simulation possède 

des qualités de dispersion numérique minimales. Les méthodes lagrangiemes, et 

particuliérement le schéma non oscillatoire avec évaluation exacte du fiont "an exact 

peak capturing and oscillation-free scheme ", EPCOF, constituent un choix intéressant. 

L'objectif de ce travail est la modélisation numérique des caractéristiques de 

transport et de dispersion d'un lixiviat comportant plusieurs composantes polluantes 

dans un milieu poreux en utilisant le schéma ''EPCOF". Le code de calcul repose sur un 

modèle mathématique qui réalise le couplage entre un module hydrodynamique et un 

module de transport du soluté, en tenant compte du contraste de masse volumique, de la 

viscosité, de la convection, de la dispersion, de la dégradation et de la sorption sous les 

conditions d'équilibre et non-équilibre local. 

Le modèle appliquera la méthode EPCOF, modifiée pour résoudre les 

problèmes de transport en deux dimensions sur des maillages non structurés. Le schéma 

a été utilisé en conjonction avec la méthode des volumes finis, basée sur des éléments 

triangulaires: les termes convectifs de l'équation de transport sont évalués en utilisant 



une technique de suivi des particules arrières "Backward tracking", une technique de 

suivi des noeuds avant "forward node ", et un raffinement adaptatif des maillages. Le 

terme de diffusion est évalué par son intégration sur un volume de contrôle. Une 

formulation en volumes nnis a aussi été utilisée pour la résolution des équations 

hydrodynamiques décrivant le champ d'écoulement. 

Le modèle a été validé en comparant les résultats numériques obtenus avec les 

résultats expérimentaux et numériques disponibles dans la iittérature. Le modèle ainsi 

validé a été utilisé pour simuler la migration d'un panache constitué des trois 

contaminants (chlorite, sulfate et potassium) dans le site d'enfouissement Borden en 

Ontario. Une bonne concordance entre les résultats numériques et les résultats observés 

sur le terrain a été observée. Une analyse de la sensibilité a monbé que, parmi les 

facteurs innuençant les caractéristiques de l'écoulement et la formation des instabilités, 

on trouve essentiellement la densité, la sorption, la perméabilité, la dispersivité et la 

vitesse. 

Il a été démontré que la méthode c'EPCOF' est capable de résoudre le problème 

de dispersion +convection avec une grande précision en utilisant un nombre de Péclet 

variant entre O et et un nombre de Courant élevé, la taille du maillage étant limitée 

par la précision de calcul des termes diffusifs. Ceci permet de diminuer la durée du 

temps de calcul. C'est pourquoi notre modèle est avantageux pour des simulations à 

long terme. 



ABSTRACT 

Groundwater contamination and soi1 pollution have become recognized as 

important environmental problems over the last 20 years. The origins of this 

contamination range fiom everyday activities (disposal of urban sewage and industrial 

wastes, uses of pesticides and fertilizers in agriculture). To more senes disposal 

problem such as burying of nuclear waste. Recognition of the problem has generally 

been followed by legislation to remediate the sites and to prevent further contamination. 

Monitoring and remediation of these sites have proved to be costly and time 

consuming, and contaminant modeling of the subsurface is necessary in order to 

reconstruct the pollution history and to devise remediation strategies. 

Most transport studies in groundwater have been restncted to transport due to 

forced convection (i.e. transport driven by a hydraulic gradient). In recent years a 

variety of experimental and theoretical studies have begun to elucidate the important 

effects related to flow of variable density. These studies deal with the transport of one 

component in a variable-density flow system. Real contaminant plumes, however, are 

cornprised of a variety of organic and inorganic species. Due to the retardation effects 

and to the density difference, different plumes may form as observed at Camp Borden 

(Ontario) as wel1 as at Babylon (New York). Thus the potential for coupling through 

reaction and variable density £Iow have generally remained unexplored. 

Numerous computationd algorithms have been developed to solve transport 

equations in the past two decades, but only a few specific problems were solved 

eEciently and accurately. This is due to the fact that is a fundamental difnculty in 

solving transport equations due to their mixed parabolic and hyperbolic nature. The 

development of efficient and accurate numerical methods to solve the mixed parabolic- 

hyperbolic transport equation is essential to an understanding and simulation of the 

underlying physical systems. 



This work is devoted to the numerical simulation of the transport and dispersion 

of multispecies contaminant plumes of variable density within the groundwater 

environment. Particular attention has been paid towards investigating the complex 

character of these multispecies plumes that may develop in variable density flow 

systems. The final goal is to be able to predict the movement and ultimate fate of 

chemicals h o u &  a sorbing porous media. Sorption under equilibrium and 

nonequilibriurn conditions, in the latter case using a "dual porosity" concept that 

subdivides the porous medium into mobile and immobile regions has been modeled. 

The mode1 is essentially comprised of two modules: the &st calculates the 

pressure distribution in the domain of interest, which enables computation of the 

velocities and soi1 moisture content. The second module cornputes the migration of the 

various species taking into account the major processes associated with the transport 

phenornena in porous media: advection, diffusion, decay and sorption. The innuence of 

density and viscosity on the transport characteristics are also considered. The first 

module may be used independently of the second, and uses an implicit numencal 

formulation. 

Since typicd time scales for the movement of such plumes may attain the order 

of several years, it is important that the numerical schemes used in the simulation have 

minimal numerical dispersion as well as being fiee of spurious oscillation 

charactenstics. Consequently, a hybrid Lagrangian-Eulerian finite volume method with 

adaptive local grid refkernent and peak capturing and oscillation-fiee (EPCOF), 

properties has been developed. The scherne uses advection-dispersion decoupling, 

together with a backward method of characteristics, forward mode tracking, and local 

grid refinernent, to solve the transport equations. 



The goveming equations for the flow field have been solved using a control 

volume finite element method implemented on a trïangular stencil. 

As part of the model validation, an attempt to reproduce experirnentally 

observed gravitational instabilities that f o m  dong the lower edge of negatively buoyant 

plumes was made. The model was able to faithfidly reproduce the lobe shaped 

instabilities in the plume that have been obsewed as well as to correctly simulate the 

ambient groundwater flow. Further validation was effected by simulation of field data 

gathered during observations on the Camp Borden (Ontario) plume site that has given 

rise to a leachate plume. 

This study illustrates also how numerical errors in mass transport code can serve 

as a perturbing function during numencal computation and lead to the development of 

instabilities. 

A sensitivity analysis shows that organic compounds that may be present, may 

separate fiom the dense plume due to sorption and take paths different to those taken by 

the dense species. 

The numerical model developed displays excellent stabiiity characteristics. It 

completely elirninates numencal oscillations due to the advection terms and can use 

very large time steps to reduce numencal diffusion. Mesh Peclet numbers ranging fiom 

O to ionnity have been tested. The magnitude of the rnesh Courant number is Iimited 

only by the accuracy requirements of the dispersion solver. 



DÉDICACE ................................................................................................ ........... iv 

........................................................................................ REMERCIEMENTS ...... v 

* , ............................................................................................. RESUME .................... ....... vi 

ABSTRACT .......... ................................... .................................................................... ix 

. . TABLE DES MAT~ÈRES ........................... ................. ...................................... xri 

LISTE DES TABLEAUX .............................. ........................................................... xix 

LISTE DES FIGURES ................................................. ........... xx 

LISTE DES SIGLES ET ABRÉVIATIONS ...................................... - i  

................ ........................................****.. CHAPITRE: 1: INTRODUCTION .,...... 1 

..................................................... CHAPITRE: II: ÉTUDE BIBLIOGRAPHIQUE 8 

2.1 Introduction ............................................................................................................. 8 

..................................... 2.2 Transport de contaminant dans un milieu poreux.. .8 

Effet de fa densité. ................................................................ .9 

, 
2.2.1 .1 Etude expérimentaie .................................................................... 9 



..................................................................... 2.2.1.3 Étude sur le terrain 19 

...................................................................... 2 .2.1.4 Etude numérique 2 I 

..................................................................................... 2.2.2 Effet de la sorption 29 

............................................................................................ 2.3 Etudes comparatives 3 5 

................................................................ 2.3 . 1 Etudes comparatives: transport 3 5 

....................................................... 2.3 -2 Études comparatives: écoulement 4 0  

................................................................................................................ 2.4 Objectifs 41 

CHAPITRE III: LES ÉQUATIONS DE BASE .................................................... 43 

3.1 Introduction ........................................................................................................... 43 

. . .  Équation de contmuite ........................................................................................... 43 

..................... 3.2.1 Détermination des courbes caractéristiques des sols ...... 48 

-9 ............................................................................................ Équation de transport 33 

transport 

transport 

d'un soluté sous 

d'un soluté sous 

condition d'équilibre de sorption ... 5 3 

condition de non-équilibre 

.................................................................................................. de sorption 5 6  

. I . C 

3.4 Densite et viscosrte .......... .. ................................................................................ 61 

. \ .................................................................................... 3.5 Les conditions de fiontiere 63 



.............................................................. ............ 3 S.1 Conditions de dirichlet .... 64 

. . 
3.5.2 Condition fiontiere de neuman .................................................................... 64 

............................................................................................................. 3.6 Conclusion 65 

CHAPITRE: IV SOLUTION ~WM~?RIQUE ...................................................... 67 

...................................................................................................... 4.1 Introduction 6 7  

. . ..................................................................................... 4.2 Discrktlsatlon du domaine 67 

............................................................................... 4.3 Discr6tisation des equations 6 8  

4.3.1 Les fonctions d'interpolations pour. h. C. d. p. k ..................................... 69 

4.3.2 IntCgration des equations ........................................................................... 70 

CHAPITRE V: SCKI?MA NON OSCILLATOIRE AVEC EVALUATION 

EXACTE DU FRONT .............................................................. 77 

.......................................................................................................... 5.1 Introduction 7 7  

....................................................... 5 -2 Caract Crisat ions des probkmes numCriques 7 9  

5.2.1 Schemas aux differences fhies ............................................................ 83 

.................................................................... 5.2.2 Schkmas aux caracteristiques 84 

5.3 Sch6ma non oscillatoire avec Cvaluation exacte du fiont a ID ............................. 89 

5.3.1 Integration de I'dquation de convection diffusion .................................... 90 



.......................................................... 5.3.2 Particularit6s: principales difficultés 9 5  

5.3 Schéma non oscillatoire avec évaluation exacte du fiont à 2d .............................. 99 

5 -5 Technique de suivi des particules ........................................................................ 105 

5.6 Conclusion ........................................................................................................... 109 

CHAPITRE VI: ÉTUDE NUMÉRIQUE DES TRANSFERTS BIDIMENSIONNELS 

DANS LA ZONE NON SATURÉE. APPLICATION À L~ÉTIJ-DE 

DU DRAINAGE ET DE LA RECHARGE D'UNE NAPPE 

.................................................................... À SURFACE LIBRE 111 

......................................................................................................... 6 1 Introduction 111  

.................................................................. 6.2 Recharge d'une nappe à surface libre 112 

.................................................................. 6.3 Drainage d'une nappe à surface libre 118 

.................................................................. 6 -4 Drainage d'une nappe à surface libre 122 

CHAPITRE W: MODÉLISATION DE LA MIGRATION D'UN 

CONTAMINANT DENSE DANS UN MILIEU 

................................................................... POREUX SATURE 

......................................................................................................... 7.1 Introduction 125 

7.2 Comparaison de nos résultats avec les observations expérimentales 



xvi 

de schincariol et al.. 1990 ................................................................................... 127 

Comparaison des nos résultats avec les résultats numériques 

de schincariol et ai., 1995 ................................................................................... 140 

Étude du mécanisme de développement et d'amplification des instabilités ...... 142 

.............................................. 7.4.1 Sensibilité des instabilités B la dispersion 143 

7.4.2 Sensibilité des instabilités à la taille du maillage du domaine modélisé . 147 

7.4.3 Sensibilité des instabilités à la vitesse de l'écoulement ......................... 149 

7.4.4 Sensibilité des instabilités à la perméabilité ...................................... 151 

C - 
7.5 Conclusion .......................................................................................................... 132 

CHAPITRE wI: TRANSPORT D'UN PANACETE À PLUSIEURS 

ÉLÉMENTS CONTAMINANTS DANS UN ÉCOULEMENT 

........................................................ À DENSITÉ VARIABLE 156 

......................................................................................................... 8.1 Introduction 156 

.................................................................. 8.2 Calcul de la densité et de la viscosité 156 

8.3 Les facteurs influençant la propagation d'un panache à plusieurs éléments 

...................................................................................................... contaminants 159 

........................................................................................... 8.3.1 Milieu saturé 160 

. . .................................................................................... 8.3.2 Milieu non saturé 164 



xvii 

8.4 Conclusion ......................................................................................................... 178 

CHAPITRE M: MODÉLISATION DE LA MIGRATION DE CONTAMINANT 

DANS LE SITE D'ENFOUTSSEMENT BORDEN 

............................................................................. EN ONTARIO 180 

......................................................................................................... 9.1 Introduction 180 

. * ............................................................................................... 9.1 Description du site 182 

9.3 Modélisation de la migration d'un panache constitué de trois éléments 

.................................................... contaminants: chlorure. sulfate et potassium 185 

9.4 Analyse de sensibilité .......................................................................................... 193 

........................................................................................... 9.4.1 Dispersivités 193 

................................................................................. 9.4.2 Effet de la sorption 197 

9.4.3 Effetdeladensité ............................................................................... 197 

9.5 Conclusion ........................................................................................................... 201 

...... CHAPITRE X: CHAMPS D'APPLICATION DE LA MÉTHODE EPCOF 202 

....................................................................................................... 1 O . 1 Introduction 202 

10.2 Les équations de saint-venant ....................................................................... 203 

.................................................................. 10.3 Simulation d'une brèche de barrage 204 



xviii 

10.4 Conclusion ............................................................................................................................. 206 

CHAPITRE XI: CONCLUSIONS .................... ... .......................................... 2 0 7  



sis 

LISTE DES TABLEAUX 

Tableau 6.1 

Tableau 6.2 

Tableau 6.3 

Tableau 6.4 

Tableau 7.1 

Tableau 8.1 

Tableau 8.2 

Tableau 8.3 

Tableau 8.4 

Tableau 8.5 

Tableau 8.6 

Tableau 8.7 

Tableau 8.8 

Tableau 8.9 

Paramètres représentatifs de différents types de sols (Rawls et al., 1982. 

............................................................. in Van Genuchten et al.. 199 1) 52 

Conditions initiales et aux limites ..................................................... 113 

Paramètres de la fonction qui décrit les propriétés hydraulique 

.......................................................... du sol ............................. ...... 113 

...................................................... Conditions initiales et aux limites 120 

Paramètres de la fonction qui décrivent les propriétés hydrauliques 

.................................................................................................. du sol 120 

.......................................................................................... Paramètres 127 

Paramètres de calcul de la densité et de la viscosité .......................... 158 

............................... Densité et viscosité de NH3 [Zhang et al.. 19941 158 

Densité et viscosité de NaCl [Zhang et al.. 19941 .............................. 159 

Conditions initiales et frontières du problème d'écoulement ............. 165 

Paramètres de la fonction qui décrit les propriétés hydraulique 

.................................................................................................. du sol 166 

Conditions initiales et fhntières du problème de transport ............... 166 

Propriétés des deux contaminants simulés ......................................... 166 

Paramètres de calcul de la densité et de la viscosité .......................... 176 

Propriétés des contaminants simulés ...................... .. ...................... 176 



LISTE DES FIGURES 

Figure 2.1 

Figure 2.2 

Figure 2.3 

Figure 2.4 

Figure 2.5 

Figure 2.6 

Figure 2.7 

Figure 2.8 

Figure 2.9 

Figure 2.10 

Figure 2.1 1 

Figure 2.12 

Effets d'un contraste de mobilité défavorable (Backwell et al., 1959) 

dans (Oltean, 1995; Aachib, 1987) ........................................................... 9 

Développement d'un doigt au cours d'un déplacement air -'huile dans 

@ombre et Hakim, 1986) .................................................................... 1 1 

Influence du paramètre hydrodynamique G* sur Rm* (Buès et Aachib, 

.................................................................................................... 1991) 13 

Modes de développement de la zone de mélange (Zilliox et Muntzer., 

...................................................................................................... 1975) 15 

Résultats obtenus en milieu homogène, (a)C=5000mg/lY t=36h; 

(b)C=5000mg/l, t=54h; (c ) C=2000mg/l, t-72h; 

...................................... (Schincariol et al., 1990) ,.. ................................ 17 

........ Résultats obtenus en milieu lenticulaire (Schincariol et al., 1990) 1 7 

......................................... Résultats obtenus par (Oostrom et al., 1992) 1 8 

Modèle conceptuel de déploiement d'un panache au site 'enfouissement 

sanitaire de Babylone à New York (Kimmel et Braids, 2980) ............... 19 

Déploiement d'un panache au site d'enfouissement sanitaire de Borden 

.............................................................. en Ontario (Frind et al., 1985). 2 0  

.............................. Résultat obtenu (C=2000rng/ly t=72h) (Fan, 1995) 23 

Résultats numériquesC=2000mg/l (a): Ax=15mm, Ay=1 5mm7 Pe=l 4, 

Cdx)=l , C@=O .5; (b): Ax=2.5mmY Ay=2.5mmy Pe=2.4, C,(x)=l. 1, 

............................................................................................. C,-(z)=O.5. .26 

Résultats obtenus par (Zhang et Schwartz. 1 9951, (a): Q;=5000mg/l 



Figure 3.1 

Figure 3.2 

Figure 4.1 

Figure 4.2 

Figure 5.1 

Fimgpue 5.2 

Figure 5.3 

Figure 5.4 

Figure 5.5 

Figure 5.6 

Figure 5.7 

F i p r e  5.8 

Figure 5.9 

Figure 5.20 

Figure 5.11 

Figure 5.12 

Figure 5.13 

Figure 5.14 

(NaCi). r 4 2 0  jours; (b) q=5000mg/l (NaCl). t=780 jours; 

(C )q=5000mg/l (NaCl). t=1140 jours; (d)-=LOOmg/l (NH3). 

t ~ 4 2 0  jours; (e)q=100mg/l (NH3). F780 jours; (f) 

C2=100mg/l (NH3). ~ 1 1 4 0  jours ......................................................... 50 

Courbes Caractéristiques du sol (F0.3, K. 4 0  cm/hr) 

(Vauclin. 1975) ..................................................................................... 50 

Conditions aux limites ................... .. ................................................. 63 

Discrétisation du domaine ..................................................................... 68 

(a) Volumes de contrôle; @) et (c ) points de calcul à la frontière ........ 68 

L'organigramme du code de calcul 78 

Transport d'un contaminant à travers le milieu poreux ......................... 80 

....................................................... Effets de la dispersion cinématique 81 

Courbe de distribution de la concentration dérivé à partir de l'équation 

........................................................................ de convection dispersion 82 

Principe de la technique lagrangieme à 1D ......................................... 83 

Courbe de distribution de la concentration dérivé à partir de l'équation 

de convection dispersion (Fredj, 1994) ............................................. 86 

Les problèmes numériques causé par la résolution des termes convectifs: 

(a) perte de fiont (pic), @) difision numérique, (c ) oscillations 

numériques (Yeh, 1992) ................................................................ 87 

Définition d'un élément Iisse et raide .................................................... 90 

Exemple de calcul (ID), utilisant le schéma non oscillatoire avec 

évaluation exacte du front .................................................................. 94 

Domaine de calcul de l'exemple de démonstration ............................. 97 

.............................................................................. Problème frontière 9 8  

Domaine de calcul .............................................................................. 99 

Technique de suivit de particule arrière (première étape) .................. 100 

Technique de suivit de particule avant (étape 2) ............................... 101 



Figure 5.15 

Figure 5.16 

Figure 5.17 

Figure 5.1 8 

Figure 5.19 

Figure 6.1 

Figure 6.2 

Figure 6.3 

Figure 6.4 

Figure 6.5 

Figure 6.6 

Figure 6.7 

Figure 6.8 

Figure 6.9 

Figure 6.10 

Figure 6.11 

Figure 6.12 

Figure 6.13 

Figure 6.14 

Figure 6.15 

Figure 6.16 

.................. Ra£nnement des éléments raides par un noeud au centre 104 

Discrétisation de domaine en utilisant la technique de Delauney ...... 105 

Domaine de calcd de l'exemple de démonstration du schéma 

de R-Kutta .......................................................................................... 106 

Vecteurs vitesse .............................. ................................................... 107 

Évolution de la position de la particule (a) t=1000. (b) -2000 ........ -108 

Domaine de calcul : Application à l'étude de la recharge 

d'une nappe ......................................................................................... 112 

Discrétisation du domaine (Maillage 1) .............................................. 114 

Discrétisation du domaine (MaiIlage 2) ............................................. 114 

Débit spécifique au temps t4h (maillage 1) ...................................... 115 

Lignes de pressions au temps t=4h. (maillage 1) ................................ 115 

Débit spécifique au temps t=8h en utilisant le maillage 1 .................. 116 

Lignes de pressions au temps t=8h (maillage 1) ................................. 116 

Comparaison de l'évolution de la position de la surface libre. 

expérimentale. schéma des éléments finis (FEM) et calculée en utilisant 

le (maillage 1) ..................................................................................... 117 

Comparaison de l'évolution de la position du surfice libre. 

expérimentale et calculée en utilisant le (maillage 2) ......................... 118 

Domaine de calcul et conditions aux limites ..................................... 119 

Débit spécifique au temps t=l h ........................................................ 121 

Comparaison de l'évolution de la position de la sudace libre: 

expérimentale et calculée à t=l h ........................................................ 121 

Domaine de calcul et conditions aux limites (exemple 3) ................. 122 

Débit spécifique et la ligne de la surface libre à t= 1 h ........................ 123 

Lignes de pression à t=lh .................................................................. 123 

Comparaison de l'évolution de la position du surface libre. 



expérimentale et calculée à F0.1, 0.5 et 1 h ....................................... 1 24 

Figure 7.1 

Figure 7.2 

Figure 7.3 

Figure 7.4 

Figure 7.5 

Figure 7.6 

Figure 7.7 

Figure 7.8 

Figure 7.9 

Figure 7.10 

Figure 7.1 1 

......................................... Domaine de calcul et conditions frontières 127 

Discrétisation du domaine de calcul en utilisant un maillage 

uniforme .............................................................................................. 1 2 8 

Discrétisation du domaine de calcul en utilisant un maillage raffiné 

(maillage2) ..................................... ... ................................................. 1 2 8 

Résultat expérimental du déploiement d'un contaminant de 

concentration (C=2000 mg/l de NaCl) à t=72h 

Schincariol et al., 1 990 ..................................................................... 1 29 

Résultat numérique du déploiement d'un contaminant de 

concentration (C=2000 mu) à t=72h en utilisant le maillage 1, 

................................. aL=0.03cin, 0y0.003~111 Pe=l 5.5 et Cr=2.95 129 

Résultat numérique du déploiement d'un contaminant de 

concentration (C=2000 rng/l) a t=72h en utilisant le maillage 2, 

............................... aL=0.03cm, aT=0.003cm, Pe=15.5 et Cr=2.95 129 

Rbsultat numérique du déploiement d'un contaminant de 

concentration (C.=2000 mg/l) à t=72h en utilisant le maillage 1, 

.................................... aL=O. k m ,  a ~ 0 . 0 3 c m  Pe=6.3 3 et Cf2.95 13 1 

Résultat numérique du déploiement d'un contaminant de concentration 

(G2000 rng/l) à t=72h en utilisant le maillage 1, 

aL=O. lcm, ay0.02crn Pe6.33 et Cr=2.95 ........................................ 1 3 1 

Suivi d'une particule dans le temps (t=72h, C=2000mg/l) ................ 132 

Résultats expérimentaux du déploiement d'un contaminant de 

concentration (C=5000 mg/l) à t=24h Schincariol et al., 1990 ......... 133 

Résultats numériques du déploiement d'un contaminant de 

concentration (C=5000 mg/l) à t=24h en utilisant le maillage 2, 

aL=O. 1 cm, ~ ~ ~ 0 . 0 2 c m  Pe~6.33 et Cr=2.95 ........................................ 1 3 3 



Figure 7.12 

Figure 7.13 

Figure 7.14 

Figure 7.15 

Figure 7.16 

Figure 7.17 

Figure 7.18 

Figure 7.19 

Figure 7.20 

Figure 7.21 

Figure 7.22 

Figure 7.23 

Figure 7.24 

Résultats numériques du déploiement d'un contaminant de 

concentration (C=5000 m g )  à t24h en utilisant le maillage 2, 

aL=0.03cm, a.r=O.O02cm Pe=l 8.17 ................ ...... ......-... ..... .. . .  . 13 3 

Résultats expérimentaux du déploiement d'un contaminant de 

concentration (QX000 mgIl) à t=54h Schincariol et al., 1990 ......... 134 

Résultats numériques du déploiement d'un contaminant de 

concentration (G5000 mg/I) à t44h  en utilisant le maillage 2, 

aL=O. lcm, ay0.01cm Pe=7 ........................................................... 134 

Résultats numériques du déploiement d'un contaminant de 

concentration (G5000 mg/l) à t 4 4 h  en utilisant le maillage 2, 

aL=0.03cm, ay0.002cm Pez18.5 ........ ..a.. ......... .. .......................... 134 

Résultats expérimentaux du déploiement d'un contaminant de 

concentration (C-5000 mg/l) a t=72h Schincariol et al., 1990 ......... 135 

Résdtats numériques du déploiement d'un contaminant de 

concentration (C=5000 mg/l) à ~ 7 2 h  en utilisant le maillage 2, 

aL=O.lcm, ayO.Olcm P,=7 ............................................................. 135 

Résultats numériques du déploiement d'un contaminant de 

concentration (C=5000 mgA) à t=72h en utilisant le maillage 2, 

aL=0.03cm, a~=0.002cm Pe=18.6 ................................................. 135 

Les champs de vitesse à t=54h (C=5000mg/l) .. ........... . . .... . . . .... . ... . . .. 13 6 

Les champs de vitesse à t=72h (C=5000mg/l) ............................... ... 136 

Suivi d'une particule dans le temps (t=72h, C=5000rng/l) ............... 137 

Résultats expérimentaux du déploiement d'un contaminant de 

concentration (C=10000 mgA) à ~ 5 4 h  Schincariol et aI., 1990 ....... 138 

Résultats numériques du déploiement d'un contaminant de 

concentration (G10000 ma) à t=54h en utilisant le maillage 2, 

aL=0.03cm, ay0.002cm P,=24.4 ........ . . .... ..... ........ .... . . .  . . . . .. 13 8 

Les champs de vitesse à t54h (C=10000mg/l) ........................... ..... 139 



Figure 7.25 

Figure 7.26 

Figure 7.27 

Figure 7.28 

Figure 7.29 

Figure 7.30 

Figure 7.3 1 

Figure 7.32 

Figure 7.33 

Suivi d'une particule du panache de concentration (C=2000,5000 et 

10000 mgIl) ....................................................................................... 139 

Comparaison entre le code VaporT (a), (b) et (c ), 

Schincariol et ai., 1990 et la présente étude (d), (C=2000 mg/l, 

F90h ) ............................................................................................... 141 

Déploiement du contaminant (C=2000 mg/l) à t g 0  h 

(maille 5 -0mm x 5.0mm, a ~ =  3 -0x 1 o4 , at=O.O, 

maximum Pe= 13. Schincariol et al., 1995 ..................... .,.,... ........... 142 

Déploiement du contaminant (C=2000 mg/l) à t=90 h 

(maille 7.5mm x 7.5mm, a ~ =  3 . 0 ~ 1 0 ~  , at=O.O, 

............................................................................ maximum Pe= 1 9.4 142 

Déploiement du contaminant (maille l Omm x lUmrn, a ~ =  3 . 0 ~  1 o1 , 
a,=3.0xi0-~, (a) C=2g/l, @) C=3g/l, (c )C=5g/17 (d) C=1 Og/l, 

les contours de concentration représentent la concentration 

................................................................................ relative ((L'/Co) 143 

Déploiement du contaminant (maille 1 Omm x 1 Omm, a ~ =  6 . 0 ~  1 o4 , 

at=6.0x1 o - ~ ,  (a) &=2g/L, (b) C=3g/l, (c )C=5g/l, (d) C=1 OgA, les 

contours de concentration représentent la concentration 

relative (C/C0) ............................................................................... 144 

Déploiement du contaminant (maille 10m.m x 1 Omm, a ~ =  1 . 5 ~  10"m , 

at=l.5x104m, (a) C=2g/l, @) C=3g/l, (c )C=5g/l, (d) C=lOg/l, 

les contours de concentration représentent la concentration 

.................................................................................. relative (c/C?'~) 145 

Contours des concentrations relatives (C/Co , Co = 5000mg l Z) à 

t=72h, (a) aL=l S x l ~ ' ~ r n ,  aF1 Sxlo-'m (b) aL=3xl O%, 
-5 ....................................................................................... a ~ 3 x l 0  m 146 

Suivi d'une particule de concentration 500, 1000,2000,3000, 5000 et 



Figure 7.34 

Figure 7.35 

Figure 7.36 

Figure 7.37 

Fiame 7.38 

Figure 7.39 

Figure 7.40 

Figure 7.4 1 

Fiame 7.42 

Figure 8.1 

........................................................................... 10000 mgA de NaCl t 46 

Déploiement du contaminant (maille 15mm x 15mm, a ~ =  6.0x 1 o4 , 
.................................................... at=6.0x1 O", maximum Pe=22.4 147 

Déploiement du contaminant (maille 7Smm x 7.5mm, a ~ =  3 . 0 ~ 1 0 ~  , 

......................................................... at=3 .0x1 O-', maximum Pe=20 148 

Contours des concentrations relatives (ClCo , Co = 5000mg 1 Z) à t=72h, 

(a) &=&y= 1 Omm (b) Ax =Ay=7.5mra ........................................ 149 

Contours des concentrations relatives (C/c0) à t=72h7 (a) Co =3g/l, 

v/vO=O.75 @) c0=5g/l, v/v0=0.75 (C ) c0=3g/l, v/vo=1 (d) c0=59/1, 

........................... v/vo= 1 (e) Co =3 g/& v/vo= 1 -5 (f) $=5g/l, v/vo= 1.5 1 50 

Contours des concentrations relatives (ClCo, Co = 5g / 1) à t=54h, 

........................................ (a) v/vo= 1, dm= 1.5 (b) VIVO= 1.5, dao= 1 1 5 1 

Contours des concentrations relatives (Cf$) à t=54h, (a) c0=3g/l, 

v/v0=o.75 @) c0=5g/l, W&=0.75 (C ) c0=3g/l, (d) c0=5g/1, 

==l (e) C0=3g/l, K&=1.5 (f) Co=5g/l, K&=1.5 .................... 152 

Contours des concentrations relatives (C/CO, Co = 5g 1 Z) à t=54h, 

(a) v/vo=l, K/Ko=l, cda0=1.5 (b) v/vo=1.5, K&=1, or/ao=l 

(C ) K/Ko=1.5, d%=l ..................................................................... 153 

Déploiement du contaminant (maille 1 Ornm x 1 Omm, a ~ =  3 . 0 ~  1 o4 , 
5 -3 .ox 1 0- , (Kx/Kz)=2. 5 ................................................................. 1 5 3 

Contours des concentrations relatives (C/Co) , (a) Q , =3g/l, W K p  1, à 

-Oh @) i&=5g/l, -1 a t=72h (c ) c0=3g/l, K&=2.5, à r9Oh 

(d) Co=5g/l, K K p 2 . 5 ,  à t 7 2 h  (e) coo=3g/1, W ' p 5  à t=90h 

(f) Co=5g/l, -5 à t=72h .......................................................... 154 

Déploiement des contaminants 1 et 2: (a) Cl =10,00Omg/ RI= 1 .O; 

@) C2=100mg/l, R2=l.8; ( C) CI=lO,OOOmg/ 1 ,  Ri=l.O; 



Figure 8.2 

Figure 8.3 

Figure 8.4 

Figure 8.5 

Figure 8.6 

Figure 8.7 

Figure 8.8 

Figure 8.9 

Figure 8.10 

Figure 8.11 

Figure 8.12 

Figure 8.13 

(d) ~=100rng& R2=4.0.. ... .. ... .... ...... ..... . ... .. ... .... .. .. . . . . .... ..l6l 

Suivi de particules (a, =10,00Omg/l et -=100mg/l) ........................ 161 

Déploiement des contaminants 1 et 2: (a) C1=5,000mg/ Rl=l .O; 

@) ~=100mg/l ,  R2=L.8; ( C) C1=5,000mg/ 1 , Ri=l.O; 

(d) C2=100mg/l, Rz=4.0 .................................................................. 162 

Suivi de particules (Cl =5,00Omg/l et -= 100rngA) ................. . . . -..... . 1 63 

Déploiement des contaminants 1 et 2: (a) Cl =5,00Orng/ Ri=l .O; 

(b) C2=100rng/l, R2=l.8; ( C) C,=5,000mg/ 1, Ri=l.O; 

(c) ~=3,00Omg/l, Rz=l.8.0; (e)  E1=5,000mg/ 1 , Ri=l.O; 

(0 ~=3,OOOmg/l, R2=1.2 .............................................................. 164 

Domaine de calcul et conditions initiales et frontières ....................... 167 

Domaine de calcul en utilisant un maillage uniforme ....................... 167 

Lignes de pression et vecteurs de vitesse de l'écoulement permanent: 

(a) Gambaloti et al., 1996; (b) la présente étude .................................. 168 

Contours de concentrations relatives (c lCo) ,  à t-90.775jours, des deux 

contaminants: réactif et non-réactif (a) et (b) Gambaloti et al., 1996, 

(c ) présente étude .......................................................................... 169 

Influence de la fiaction de liquide mobile (4) sur la migration 

d'un polluant (a) 4 = 0.25, @) 4 = 0.5, (c) 4 = 0.75, (d) 4 = 1.0 ....... 171 

Innuence de la fiaction d'adsorption dans la région mobile (f) sur 

la migration d'un polluant (a) f = 0.25, @) f = 0.4, (c) f = 0.75, 

(d) f = 1.0 ........................................................................................ 172 

Influence du coefficient de transfert de masse (a) entre les régions 

mobile et immobile sur la migration d'un polluant (a) a = 0.0, 

@) a = 0.1, (c) a = 0.5, (d) a = 1.0 ........................ ,. .......... .... ........... 173 

Innuence du coefficient d'adsorption 6) sur la migration d'un 

poUuant (a) Kd = 0.0, (b) Kd = 0.5, (c) Kd = 1 .O, (d) K d  = 2.0 ........... 174 



Figure 8.14 Contours des concentrations relatives (ClCo) du contaminant réactif 

(Li+, Co =680mgll) dans la région mobile à t=90.775 jours .............. 1 77 

Figure 8.15 Contours des concentrations relatives (c/Q?'~) du contaminant non 

réactif (Br-, Q',,=IOOmg/l) a -0.775 ......................................... 177 

Figure 8.16 Contours des concentrations relatives (C/c0) de deux contarninants: 

réactif (NH3, Co = 100mg/l) et non-réactif (NaCl, Co =5000mg/l) 

à L-90.775jours ................................................................................. 178 

Figure 9.1 

Figure 9.2 

Figure 9.3 

Figure 9.4 

Figure 9.5 

Figure 9.6 

Figure 9.7 

Figure 9.8 

Figure 9.9 

Localisation du site d'enfouissement sanitaire de Borden (Vue en plan ) 

(d'après MacFarlane et al., 1983) ....................................................... 18 1 

Localisation du site d'enfouissement sanitaire de Borden. 

La section A-A' est une coupe longitudinale selon l'axe du panache 

(d'après Frind et Hokkanen, 1 9 87) ..................................................... 1 82 

Panache du chlorure selon la section A-A', basé sur les données 

de mesure de 1979; les contours sont en mgIl 

(d'après Frind et Hokkanen, 1 987) ........................... ... ............... 1 8 3 

Panache du potassium selon la section A-A', basé sur les données 

de mesure de 1977 et 1978; les contours sont en mg/l 

................................................................. [d'après Sykes et al, 1987 184 

Panache du sulfate selon la section A-A', basé sur les données 

de mesure de 1979; les contours sont en mg/l 

[d'après Sykes et al, 19821 ................................................................... 1 83 

.............................. Conditions frontières du modèle de l'écoulement 187 

Conditions frontières du modèle de transport ..................................... 187 

........................ Fonction de recharge et le niveau de la nappe calibré 188 

Discrétisation du domaine de calcul ................................................... 1 88 



......................................... Figure 9.10 Lignes d'isopressions à l'état permanent 189 

.................................................... Figure 9.1 1 Vecteurs vitesse à l'état permanent. 189 

Figure 9.12 Évolution du panache du chlorure dans le cas: a~=lO rn, a ~ O . 0 1  m, 

les contours représentent la concentration relative (C./c0) avec un 

intervalle de 0.2 ................................................................................ 190 

Figure 9.13 Évolution du panache du sulfate dans le cas: aL=l O m, a y 0 . 0  1 m, 

les cootours représentent la concentration relative (c/C0) 

avec un intervalle de 0.2.. ................................................................... 1 9 1 

Figure 9.1 4 Evolution du panache du Potassium dans le cas: aL= 1 O m, a y 0 . 0  1 m, 

et R4.8,  les contours représentent la concentration 

relative (ClCo) .................................................................................. 1 92 

Figure 9.1 5 Effet de la dispersivité transversale avec aL= 1 O m; (a) ay 1 .O m 

(b) ayO.1 m (c ) aT=O.Ol m (d) af0.005 m, les contours représentent 

la concentration relative ((l'/Co) à t 4 0  ans avec un 

......................................... intervalle de 0.2 ....................... .,.. ,.. 1 94 

Figure 9.1 6 EEet de la dispersivité transversale avec aL= 1 O m; (a) a?- 1 .O m 

(b) a ~ 0 . 1  m (c ) ay0.01  m (d) ay0.005 m, les contours 

représentent la concentration relative (ClCo) à t 4 0  ans avec un 

................................................... intervalle de 0.2 ......................... .,, 1 95 

Figure 9.1 7 Effet de la dispersivité longitudinale avec af0.0 1 m; (a) aL=2 .5 rn 

@) aL=5 m (c ) aL=l 0.0 m (d) aL=20.0 m, les contours représentent 

la concentration relative (ClCo) à t = O  ans avec un 

intervalle de 0.2 ........................................................................... 1 96 

Figure 9.18 Effet de l'adsorption sur le déploiement du panache de Potassium avec 

aL=10 m; ay0.01 m; (a) R=3.0 @) R=2.7; (c) R=1.8; les contours 

représentent la concentration relative (C/Co) à t 4 O  ans avec 

un intervalle de 0.2 ............................................................................ 1 9 8 



Figure 9.19 Effet de la densité sur le déploiement du panache de chlorure avec 

aL=10 m; af0.01 m; (a)~p/p,=0.0015 (b) ~p/p,=0.0022; 

(C ) Ap/p,, =0.0036, (d) Ap/po =0.005; les contours représentent 

............................... ia concentration relative (e/C,,) à -0 ans 1 99 

Figure 9.20 Effet de la densité sur le déploiement du panache de sulfate avec 

aL=10 m; a y 0 . 0 1  m; (a)~p/p,=0.0015 (b) ~p/p,=0.0022; 

(c ) Ap/p, =0.0036, (d) Ap/p, =0.0071; les contours représentent 

.................................... la concentration relative (ClCo) à t 4 O  ans 200 

Fiapre 10. 1 Rupture de barrage: ~ 7 . 1  secondes, Cr=5 ............................................... 205 



Liste des sigles et abréviations 

Concentration de la soluté (ML-3) 

Concentration de la solution dans la région immobile (ML-') 

Concentration de référence du polluant k 

Concentration de la solution dans la région mobile (ML") 

Concentration injecté ou pompé par la source ou puits (ML*~) 

Nombre de Courant 
2 1 Tenseur de dispersion hydrodynamique (L T ) 

Composantes de la dispersion (L~T') 

tenseur de diffusion moléculaire (fi') 
Fraction d'adsorption dans la région mobile 

Accélération gravitatio~elle (LP) 
Charge hydraulique (L) 

Coefficient dans l'isotherme de Freundlich 

Tenseur de conductivité hydraulique 

Composantes de conductivité hydraulique 

Conductivité hydraulique du milieu saturé 

Conductivité relative (varie entre O et 2 )  

Porosité 

Porosité dans la region mobile 

Porosité dans la région immobile 

Porosité totale (nt =n,+n,) 

Pression (ML,-'T2) 



Vitesse de Darcy 

Source ou puits 

Coefficient de retard Rd = 1 + - 

Isotherme de Freundlich ((s = K,c") 

Concentration adsorbé dans la région mobile du sol (Sm=&&,,,) 

Concentration adsorbé dans la région immobile du sol 

(Sm=KdmQ"im ) 

Coefficient spécifique d'emmagasinement (M L'?') 

(S,=pog(a+nP)) 

Degré de saturation 

Température 

Vitesse du fluide dans les pores(u, = q, /O) 

Vitesse du contaminant (v, = y IR,) 
Coordonnée spatiale (L) 

Coordonnée spatiale 

Coefficient de transfert de la masse entre la région mobile et 

immobile 

Dispersivité intrinsèque longitudinale (L) 

Dispersivité intrinsèque transversale (L) 

Compressibilité de l'eau P = -- ( 3 
Delta Kronecker @,=1 pour i=j et ~5,,~=0 pour i#j) 

Coefficient de dégradation 

Viscosité dynamique de l'eau avec une concentration (ML'T~)  

Viscosité dynamique de l'eau (~!E'T') 



Viscosité du mélange 

Viscosité de référence du polluant k (ML?~) 

Teneur en eau 

Teneur en effective eau 

Teneur saturé en eau 

Teneur en eau dans la dans la région mobile ( 8 ~  nmswm) 

Teneur en eau dans la dans la région mobile (O,= n,) 

Densité de l'eau 

densité du fluide dont la concentration est C 

densité du fluide dont la concentration est Cm, 

Densité du mélange 

Densité de réfërence du polluant k 



CHAPITRE 1 

INTRODUCTION 

" Art is the lie that helps us to see the huth " 

- Pablo Picasso 

L'eau souterraine, bien quelle soit logée dans le sous-sol, n'est pas à l'abri de la 

pollution. Elle est de plus en plus contam.in6e par des divers polluants (tableau 1.1). La 

contamination des eaux souterraines et la pollution du sol par des déchets industriels, 

par lixiviation des dépotoirs et par des activités agricoles, sont reconnues comme étant 

le problème environnemental le plus important des deux dernières décennies. Souvent, 

on se rend compte du problème une fois la cause de la contamination disparue 

(industrie fermée, lieu d'enfouissement abandonné, etc.). La reco~aissance du 

problème a été suivie par des législations a h  de restaurer les sites contaminés et 

prévenir les problèmes futurs. Reste que la pollution de I'eau souterraine est un 

problème parfois difficile à détecter et souvent impossible à corriger. Les méthodes de 

décontamination de l'eau souterraine ont la réputation d'être coûteuses, longues à 

donner des résultats et pas toujours efficaces. La prévention est donc l'option à 

privilégier et demeure la moins onéreuse des mesures de protection de la qualité de 

I'eau souterraine. Pour ce faire, il est nécessaire de développer des travaux 

fondamentaux liés à l'impact des activités humaines sur la pollution des nappes 

aquifères. Dans ce contexte, il est apparu particulièrement intéressant de construire un 

modèle mathématique afin d'étudier le transport des polluants dans un milieu poreux 

pour éviter la contamination de l'eau souterraine, composante précieuse de 

l'environnement et, pour bien des personnes, l'unique source d'eau. 



SOURCES PONCTUELLES 
Installations septiques. 
Fuites de réservoirs ou de pipelines contenant des produits pétroliers. 
Pertes ou déversements de produits chimiques industriels à l'usine. 
Puits d'injection de déchets industriels (solides et liquides). 
Eaux s'écoulant des dépotoirs ( M a t ) .  
Fumiers. 
Fuites des réseaux d'égouts. 
Produits chimiques utilisés dans les usines de préparation de bois traités contre la 
pourriture. 
Résidus miniers. 
Cendres volantes (poussières) des centrales thermiques alimentées au charbon. 
Lieux d'élimination des boues dans les r f i e r i e s  de pétrole. 
Épandage des boues résiduaires. 
Cimetières. 
Lieux d'entreposage des sels de déglaçage pour routes. 
Ruissellement des sels et autres produits chimiques sur les routes et autoroutes. 
Déversements liés aux srccidents routiers ou ferroviaires. 
Goudron de houille dans les anciens lieux de gazéification. 
Usines de béton bitumineux et terrain de nettoyage de l'équipement. 

SOURCES D r n S E S  
Engrais sur les terres agricoles. 
Pesticides sur les terres agricoles et les forêts. 
Contaminants dans les précipitations. 

Tableau 1. 1 Sources de contamination susceptibles de polluer l'eau souterraine. 
(Environnement Canada, 1993, dans Génie et environnement) 

La modélisation mathématique de la migration des contaminants dans un milieu 

poreux a fait des avancées ces dernières années aussi bien au niveau de la 

conceptualisation des phénomènes que du couplage avec les équations du transport. 

Cependant la plupart des modèles existants qui traitent la contamination de la nappe, 

considèrent que la densité du fluide contenu dans le panache est égale à celle du milieu 

ambiant. En fait, des études ont montré qu'une densité de 0.2% plus haute que celle de 

l'eau peut modifier considérablement le comportement du panache. Il faut donc en tenir 

compte car il existe à la surface du sol plusieurs sources qtii û t  une différence de 

densité qui varie entre 0.5% et 4%. Ces différences peuvent faire évoluer l'écoulement 



vers un régime instable qui se traduit par I'apparition des instabilités (digitations) et de 

diffusion au niveau de la zone de mélange ce qui peut rendre difficile la localisation de 

la zone contaminée. 

La plupart des études touchant les écoulements de densité variable dans le 

milieu poreux sont consacrés au traitement du problème des intrusions salines près des 

aquiferes Littorales. Quelques travaux ont abordé la compréhension des migrations de 

lixiviat a partir des dépotoirs de surface (List, 1965; Wooding, 1969; Schincariol et 

Schwartz, 1990; Oostrorn et 1992; Dorgarten et Tsang, 1991; Koch et Zhang 1992, 

Schincariol et al. 1994, Fan et Kahawita, 1994). Les résultats expérimentaux et 

numériques de ces travaux ont montré qu'à partir d'une certaine concentration, 

I'écoulement perd son caractère stable. Les instabilités qui apparaissent se manifestent 

par la formation de lobes à la limite inférieure de la zone de mélange qui peuvent être 

accompagnés d'un phénomène d'enfouissement. De plus, si le nombre de Rayleigh, qui 

sert de critère de stabilité est dépassé, des instabilités locales de grandes amplitudes 

peuvent apparaître, modifiant encore plus les caractéristiques dispersives du lixiviat. 

Cependant une publication (Schincariol et al., 1996) montre que les instabilités (ou 

digitation) hydrodynamiques produites par les modèles numériques sont dues au 

caractère diffusif des schémas utilisés et que le critère de stabilité critique basé sur le 

nombre de Rayleigh n'est pas approprié pour évaluer le problème du transport d'un 

panache dense. 

Ces travaux impliquent le transport d'un seul panache de polluant. En réalité 

une source de poilution comporte plusieurs composantes. R s'agit d'un phénomène de 

transport plus complexe pour lequel ont doit coupler le transport de plusieurs panaches 

réactifs sous l'effet d'une densité variable dans le temps et l'espace. Une seule étude, à 

notre coonaissance, a été menée sur un modèle numérique pour étudier la propagation 



de deux panaches au site d'enfouissement de déchets à Babylon, New York (Zhang et 

Schwartz, 1995) 

Un des plus importants processus influençant la propagation d'un contaminant 

dans un milieu poreux est l'immobilisation par adsorption (sorption en surface des 

particules de sol) et absorption (sorption â l'intérieur des particules de sol) des 

contaminants aux sols. Dans la plupart des modèles, la sorption de polluants est simulée 

par des isothermes et notamment l'isotherme linéaire qui suppose que l'équilibre de 

sorption "local equilibniim assumption" (LEA) est atteint instantanément 

immédiatement après la réception du contaminant dans un sol. Cette approche très 

simplifiée des échanges solide-liquide ne peut se justifier que si: 

Le milieu est homogène et que la composition ionique de la solution est constante 

(pas de modification de la distribution des différents complexes présents dans la 

solution) 

01 Le taux de sorption doit être rapide par rapport aux autres processus (advection, 

dispersion) qui affectent la concentration du contaminant. 

Cependant, dans un milieu poreux la cinétique de la sorption est caractérisée par deux 

processus dynamiquement distincts. Immédiatement après la réception du contaminant 

dans un sol, une première phase d'adsorption rapide et relativement réversible 

compétitionne avec la biodégradation. Elle est suivie par un processus d'absorption 

plus lent et plus stable, qui dure jusqu'à ce que l'équilibre de sorption soit atteint. 

Young et Ball, 1994, ont trouvé que la sorption de trichlroethylene et 

tetrachiorobenzene 1 ,2 ,4  et 5 prend des années pour atteindre l'équilibre. Dans le cas 

de non-équilibre de sorption le taux de masse échangée pour atteindre l'équilibre 

influencera la propagation de la concentration dans l'espace et dans le temps. 

Le modèle de porosité double "dzialporosity mode[" constitue une approche qui 

décrit mathématiquement le phénomène de transport dans la condition de non-équilibre 



de sorption "non-MA". Cette approche consiste à diviser le phase fluide en deux 

régions, une région mobile et une région immobile. Le transport de la solution dans la 

région mobile se fait par advection, dif%sion et uniquement par difibion dans la région 

immobile. 

L'objectif de ce travail est la modélisation numérique des caractéristiques de 

transport et de dispersion d'un lixiviat comportant plusieurs composantes polluantes 

dans un milieu poreux saturé et non saturé. Le modèle de transport considère la 

convection, dispersion, diffusion, réaction chimique, dégradation et la sorption sous les 

conditions d'équilibre et non-équilibre local. Le modèle tient aussi compte du contraste 

de masse volumique et de la viscosité. Le développement du code de calcul a été réalisé 

dans un premier temps pour la simulation d'un panache de polluant de masse 

volumique variable afin de comprendre le problème de naissance et de I'amplification 

des instabilités hydrodynamiques. À cette étape, le code a été testé sur des exemples 

trouvés dans la littérature. La bonne concordance entre ces résultats nous a permis de 

passer à l'étape h a l e  de l'étude soit le développement du code pour le calcul de 

plusieurs polluants réactifs. 

Le code de calcul repose sur un modèle mathématique qui réalise le couplage 

entre un module hydrodynamique et un module de transport du soluté, en tenant compte 

du contraste de masse volumique et de la viscosité. Dans la zone de mélange, la masse 

volumique et la viscosité dynamique varient linéairement en fonction de la 

concentration. De plus, la détermination de la conductivité hydraulique tient compte de 

la variation de la viscosité et de la masse volumique. 

Le code de calcul doit résoudre les équations du modèle mathématique. 

Les méthodes usuelles employées pour les résoudre sont les différences finies, éléments 

fmis et volumes finis. Ces méthodes classiques se heurtent à la diffusion numérique au 



niveau des fionts de concentration raides et/ ou à des oscillations numériques au niveau 

de ce fiont ou dans leur voisinage lorsque la discrétisation du domaine modélisé est 

trop grossière. Un critère de discrétisation couramment admis est que la taille de la 

maille doit être plus petite que le double de la valeur de la dispersivité (Ackerer et al., 

1994). Compte tenu des valeurs de dispersivité rencontrées lors de simulation de 

transport des polluant à plusieurs dimensions (quelques dizaines de centimètres), le 

nombre de noeuds dans le domaine simulé devient très élevé et le calcul nécessite 

beaucoup de moyens informatiques. De plus étant donné que l'échelle de temps propre 

au transport de tels polluants dans le milieu poreux peut être de l'ordre de quelques 

années, il est important que le schéma utilisé pour la simulation possède des qualités de 

dispersion numérique minimales. Les méthodes lagrangiennes, et particulièrement le 

schéma non oscillatoire avec évaluation exacte du fiont "an exact peak capturing and 

oscillation--ee scheme ", EPCOF, constituent un choix intéressant. La technique 

EPCOF est incontestablement la plus précise pour résoudre l'équation d'advection- 

dispersion à une dimension et elie ne génère aucune dispersion numérique ni instabilité 

(Cheng et al 1996, Yeh et al 1992). 

Le code de calcul appliquera la méthode EPCOF, modifiée pour résoudre les 

problèmes de transport en deux dimensions sur des maillages non structurés. Le schéma 

a été utilisé en conjonction avec la méthode des volume finis, basée sur des éléments 

triangulaires: Les termes convectifs de l'équation de transport sont évalués en utilisant 

une technique de suivi des particules arrière "Backward tracking", une technique de 

suivi des noeuds avant "forward node ", et un ratnnement adaptatif des maillages. Le 

terme de diffusion est évalué par son intégration sur un volume de contrôle. Afin de 

conserver l'aspect physique du problème dans la formulation tout en profitant de la 

flexibilité que procure les méthodes des volumes de contrôle pour le traitement de 

géométrie complexe, une formulation en volumes finis a aussi été utilisée pour la 

résolution des équations hydrodynamiques décrivant le champ d'écoulement. 



Plan de la thèse 

Le deuxième chapitre présente une revue bibliographique non-exhaustive du 

problème. Le troisième chapitre est consacré à la présentation des équations de base. 

Dans le quatrième chapitre nous présentons les intégrations des équations. Dans le 

cinquième chapitre nous présentons le schéma non oscillatoire avec évaluation exacte 

du front (EPCOF), nous évoquerons ses avantages et ses inconvénients. Dans les 

chapitres 6, 7, 8, 9 et 10 nous présentons les résultats numériques obtenus avec le 

présent schéma. Les résultats sont comparés principalement à des résultats 

expérimentaux et numériques d'autres logiciels provenant de la littérature. Enfin, une 

conclusion ainsi que des suggestions pour une extension de ce travail sont données au  

chapitre 1 1. 



CHAPITRE II 
Étude bibliographique 

2.1 Introduction 

L'objectif de ce travail est la modélisation numérique des caractéristiques de 

transport et de dispersion d'un lWviat comportant plusieurs composantes polluantes 

dans un miiieu poreux saturé et non saturé. Le modèle de transport considère la 

convection, la dispersion, la diffusion, la dégradation et la sorption sous des conditions 

d'équilibre et de non-équilibre local. Le modèle tient aussi compte du contraste de 

masse volumique et de la viscosité 

Afin de justifier le but de notre travail ainsi que la méthodologie utilisée, nous 

allons donner un aperçu des modèles physiques et numériques élaborés aux cours des 

deux dernières décennies pour éhidier les mécanismes du transport de deux ou plusieurs 

fluides miscibles et réactifs et non réactifs dans un milieu poreux saturé et non saturé. 

Nous évoquerons les problèmes qui inteMement lors de l'utilisation des méthodes 

numériques ainsi que les techniques proposées pour y remédier, en insistant sur l'aspect 

numérique de la résolution. 

2.2 Transport de contaminants dans un milieu poreux 

La migration de polluants dans le sol et les eaux souterraines dépend des 

propriétés physico-chimiques du sol et des contaminants. Parmi les principales 

propriétés des contaminants qui jouent un rôle important dans le transport et le devenir 



des contaminants dans les sols et les eaux souterraines, on retrouve, la solubilité 

aqueuse, la masse volumique, la viscosité, La biodégradation et la sorption. 

2.2.1 Effet de la densité 

Parmi les facteurs influençant la dispersion des contaminants en milieux poreux, 

il semble que les contrastes de masse volumique et de viscosité soient les plus 

importants. Plusieurs études expérimentales et numériques ont essayé de comprendre 

l'incidence des contrastes de la masse volumique et de la viscosité sur les 

caractéristiques de l'écoulement et du transport. 

Figure 2.1 Effets d'un contraste de mobilité défavorable (Backwell et al., 1959) dans 
(Oltean, 1995; Aachib, 1987) 

2.2.1.1 Étude Expérimentale 

Le déplacement d'un polluant dépend des propriétés hydrodynamiques des 

fluides. La non uniformité des propriétés hydrodynamiques (masse volumique et/ou 

viscosité) au sein d'un fluide saturant un milieux poreux sont, en grande partie, à 

l'origine des instabilités qui y apparaissent. Cette non uniformité peut être due soit ii un 

gradient de température lorsqu'il s'agit d'un seul fluide en écoulement non isotherme, 

soit à un gradient de concentration lorsqu'il s'agit de l'écoulement isotherme de deux 



fluides miscibles de composition chimique différente. Les situations évoquées font 

intervenir deux mécanismes couplés (Aachib, 1987): 

Le mécanisme du type Rayleigh-Bernard relatif aux situations de convection 

naturelle où un fluide initialement au repos se met en mouvement sous l'action 

des forces de pesanteur en raison d'un gradient de masse volumique. 

Le mécanisme du type SafiamTaylor correspondant aux phénomènes de 

digitation à l'origine desquels se trouve un gradient de viscosité dans un champ 

de vitesses non nulles; ces digitations ont toujours lieu lorsque le contraste de 

mobilité M est défavorable (i.e. M = > I ; dans le cas d'un écoulement 

miscible, M se réduit au rapport des viscosités (pd2)(fiWe 2.1)- 

D'après Couder et Rabaud (dans Dombre et Hakim, 1986), l'apparition des 

instabilités peut se décomposer en trois phases distinctes (figure 2.2) 

Phase 1- perte de stabilité de l'interface (figure 2.2a). 

Phase II- développement non linéaire et interaction de perturbations de 

différentes longueurs d7onde(figure 2.2b) 

Phase DI- établissement dans un canal très long d'un doigt unique (figure 2 .2~)  



huile 

Figure 2 .2  Développement d'un doigt au cours d'un déplacement air -'huile dans 
@ombre et Hakim, 1986) 

Wooding (1959), a développé le nombre de Rayleigh pour décrire la stabilité de 

deux fluides de densité et/ou de viscosité différentes dans un massif poreux homogène 

cylindrique, d'axe vertical. Le nombre de Rayleigh est défini par 



dp où - est le gradient de la densité, g est la constante gravitationnelle, p est le 
d7 

coefficient de la viscosité moyenne, b est la dimension caractéristique du tube occupé 

par le milieu poreux et D* est le coefficient de diffusion. (Backmat et Elrick, 1970; 

Schincariol, 1993). Le nombre de Rayleigh est proportionnel à la perméabilité, au 

gradient de la densité et inversement proportionnel à la diffusion. La stabilité d'un 

système peut être définie en comparant le nombre de Rayleigh calculé et critique. 

Le nombre de Rayleigh développé par Wooding, (1 959), est sirnilaire à celui développé 

par Rayleigh, (1916); Horton and Roger, (1945) et Lapwood, (1948) pour étudier la 

convection de chaleur. 

List (1965) a effectué une série d'expériences sur un modèle de laboratoire 

(250cm x 35cm x 15cm) rempli d'un milieu poreux homogène de perméabilité 

(KSat=85m/d). Une solution saline de concentration égaie à 14gA (soit une différence de 

densité de 1%) a été injectée verticalement en haut du réservoir. La vitesse horizontale 

de Darcy dans ces expériences varie de15 à 36 djour. List a remarqué que tous les 

écoulements étaient stables . Il a conclu que la stabilité de l'écoulement est le résultat 

du faible contraste de densité et de la valeur de vitesse qui est relativenent élevée. 

Donc, il a effectué d'autres expériences avec une solution plus dense soit 30gA (une 

contraste de densité de 2,1%) et une vitesse de Darcy plus faible soit 1,2 m'jour. Sous 

ces nouvelles conditions, l'écoulement a perdu son caractère stable. Les instabilités se 

manifestent par la formation de lobes à la limite inférieure de la zone du mélange. 

List (1 965) a aussi effectué une analyse théorique de stabilité d'un écoulement à 

densité variable à 2D. Dans cette étude, il a généré une perturbation sinusoïdale au 

vecteur vitesse et au pronl vertical de la densité. Les résultats de cette analyse montrent 

qu'un panache dense est, en fait, instable, le paramètre gouvernant la stabilité étant le 



nombre de Rayleigh. Il a calculé les courbes critiques de stabilité basées sur le nombre 

de Rayleigh défini par 

OU 1 est la zone du mélange entre deux fluides, K est la perméabilité intrinsèque, E est 

la porosité, g est la constante gravitationnelle, p est la viscosité et & est la diffusion 

laterale. L'auteur a remarqué que l'écoulement est toujours instable quand le nombre de 

Rayleigh est positif, cc. à. d. A p O .  

Aachib (19871, a étudié l'influence des contrastes de masse volumique et de 

viscosité sur le déplacement de deux fluides miscibles (CaCh et l'eau) dans une 

colonne verticale. Deux diamètres de colonne ont été utilisés, 9 et 5 cm, pour des 

longueurs respectives de 0.505 et 2 m. La colonne était remplie d'un sable de quartz en 

prenant toutes les précautions pour assurer l'homogénéité de ce dernier. Trois 

granulométries différentes(0.26, 0.3575 et 1.425 mm) ont été utilisées. L'auteur a 

montré les paramètres hydrodynamiques et physiques (contraste de la viscosité et de la 

densité, vitesse de l'écoulement et texture du milieu poreux ) qui peuvent influencer la 

stabilité de l'écoulement. Il a mis  en évidence un critère de stabilité critique, en 

fonction des paramètres hydrodynamiques. Ces critères sont exprimés par des nombres 

adirnensionnels G,* et &* . 

À partir des expériences, Buès et Aachib, 199 1, proposent un critère de stabilité 

en fonction des paramètres hydrodynamiques décrits par des nombres adimensiomeis 

(G*, R* ) . Le paramètre G* est défini par 



Figure 2 . 3  Muence du paramètre hydrodynamique G* sur Rm* (Buès et Aachib, 1991) 

où n est la porosité, U est la vitesse de l'écoulement dans les pores, p, est la viscosité 

moyenne. 

Le paramètre sans dimension ~ m *  est défini comme le nombre de Rayleigh modifié, 

défini par: 

où l'indice 1 réfere au fluide au dessus de la zone de mélange et L'indice 2 réfere au 

fluide au dessous, h est la largeur de la zone de mélange, DL est le coefficient de 



nt% 
dispersivité longitudinale, 4-est le nombre de Peclet modiné eœ = - . Un critère de 
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stabilité critique correspond à l'apparition des digitations, défini par le couple 

(G: * ~m;). 

Figure 2.4 Modes de développement de la zone de mélange (Zilliox et Muntzer., 1975) 

Zilliox et Muntzer, (1975), ont étudie le cas d'une source ponctuelle d'eau 

saumâtre dans un écoulement uniforme. Les auteurs ont distingué trois modes de 

développement de la zone de rnéIange: 

+ l'entraînement sbble avec prédominance du coiirant primaire d'eau et formation 

d'une zone de mélange dans le sens de I'écoulement principal horizontal (figure 

2.4a); 



4 le régime des instabilités, caractérisé par la formation de poches à la Limke 

inférieure de la zone de mélange et l'abaissement progressif de sa Limite 

supérieure (figure 2.4b); 

4 l'enfouissement, avec prépondérance de l'infiltration verticale ( figure 2.4~). 

Schincariol et al., (1990), ont effectué des travaux sur un modèle de laboratoire 

(1 16.8 x 71 x 5 cm) concernant le comportement d'une solution saline dense injectée 

horizontalement au milieu d'un écoulement souterrain saturé. Cette expérience 

concernait un milieux poreux homogène, un milieu stratifié et un milieu contenant des 

lentilles de perméabilités différentes. Leur appareil consistait en un réservoir étroit par 

rapport à sa hauteur et sa longueur. Le réservoir était rempli avec des bues de verre de 

diamètres variés. Des réservoirs à niveaux constants étaient installés à l'entrée et à la 

sortie du réservoir pour permettre ainsi un bon réglage du débit. La solution dense de 

chlorure de sodium pouvait être introduite par une fente située au milieu du réservoir. 

Les résultats ont révélé que, dans un milieu homogène, l'écoulement perd son caractère 

stable à partir d'une certaine concentration. Les instabilités qui apparaissent se 

manifestent par la formation d'amplitudes significatives le long de la Limite infërieure 

de mélange. Dans un milieu stratifié, les résultats révèlent qu'une faible variation de 

conductivité hydraulique peut engendrer une accumulation de la concentration entre les 

couches. Cette accumulation a pour effet d'augmenter la vitesse du déplacement du 

contaminant. Dans un milieu lenticulaire, le déplacement du polluant est plus complexe 

que dans le deux autres cas. La présence des zones de perméabilités différentes est le 

facteur prédominant qui régit la dispersion du polluant. 



Figure 2 .5  Résultats obtenus en milieu homogène, (a)C.=5000mg/l, t=36h; 
@)C=5000mg/l, t44h; (c ) C=2000mg/l, ~ 7 2 h ;  (Schincariol et al., 1990) 

Figure 2 .6  Résultats obtenus en milieu lenticulaire (Schincariol et al., 1990) 



Figure 2.7 Résultats obtenus par (Oostrom et al., 1992) 

Oostrom et al., (1992), ont effectuée des travaux en laboratoire concernant le 

comportement d'une solution dense injecté verticalement dans un écoulement 

souterrain non saturé. Les auteurs ont utilisé trois domaines ou réservoirs (A, B, et C) 

différents. Les dimensions du réservoir A sont 80cm x 40cm x 5cm, celes du réservoir 

B sont 205cm x lOOcm x 7.8cm et celles du réservoir C sont 167cm x lOOcm x 51 cm. 

Les conductivités des milieux saturés sont 0.9236 c d s ,  0.0718 cm/s et 0.0417 cm/s 

respectivement. Les extrémités de chaque réservoir sont reliées à des réservoirs 

permettant d'imposer le niveau d'une nappe à surface libre du massif poreux et de faire 

varier ce niveau pour simuler des essais de déplacement de polluant à densité variable 



dans un milieu non- sahiré et saturé. Les résultats ont montré que, pour certains milieux 

poreux, l'écoulement à densité variable est stable, alors que pour d'autres milieux, il est 

instable. La formation des instabilités se manifeste par la formation des poches à la 

limite inférieure de la zone du mélange. 

2.2.1.3 Étude sur le terrain 

Freeze et Cherry, (1979), ont montré que le comportement du panache pouvait 

être fortement affecté lorsque la différence de densité entre le fluide et l'eau était 

supérieure à 0.2%. Il faut donc tenir compte de cette différence, surtout lorsqu'il existe 

plusieurs sources à la surface dont la différence de densité est comprise entre 0.5% et 
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Figure 2.8 Modèle conceptuel de déploiement d'un panache au site d'enfouissement 
sanitaire de Babylone à New York (Kimmel et Braids, 1980) 

Kimmel et Braids ., (1980)' ont étudié la migration des contaminants dans la 

nappe souterraine du site d'enfouissement Babylon à long Island à New York. Ce site 

d'enfouissement sanitaire est situé au-dessus du niveau de la nappe phréatique, il est. 

utilisé pour l'entreposage des déchets domestiques et industriels depuis 1947. Les 

auteurs ont noté que le fond de la nappe phréatique (d'une épaisseur de 28 m) est 



contaminé malgré que la direction de I'écoulement soit horizontale. Les auteurs 

attribuent l'enfouissement vertical du panache à L'innltration importante des flux durant 

l'hiver et, aussi, à la différence de densité de l'eau contaminée. 

O i s t o n c c  (ml 

Figure 2.9 Déploiement d'un panache au site d'enfouissement sanitaire de Borden en 
Ontario (Frind et al., 1985) 

MacFarlane et al., (1983), ont étudié la migration des contaminants dans la 

nappe soutemine du site d'enfouissement Borden en L'Ontario. Ce site d'enfouissement 

sanitaire est situé à environ 80km de Toronto. Ii est, dans sa majeure partie, situé au- 

dessus du niveau de la nappe phréatique. Utilisé pour l'entreposage des déchets de 1942 

à 1973, on n'y pratiqua L'enfouissement sanitaire qu'à partir de 1973. Il a été finalement 

fermé en 1976. Pendant ces 34 ans, il a été estimé que 80% des déchets consistaient en 

des cendre, du bois et autres débris de construction. Le reste des dépôts était composé 

de déchets domestiques et industriels. La composition du sol et sa conductivité sont 

apparemment très variables, contenant du sable et de l'argile. Les auteurs on noté que la 

direction de l'écoulement de la nappe est normalement horizontal du sud vers le nord, 

mais la zone contaminée s'étend au fond du l'aquifere (20121 au dessous de la surface 

libre). L'enfouissement avec prépondérance de contaminant peut être expliqué par 

l'infiltration verticale d'un débit d'eau important au printemps et à l'été, après la fonte 



de la neige et, aussi, par la différence de densité entre I'eau et le contaminant 

(Ap=O.OO 12) 

2.2.1.4 Étude numérique 

La modélisation numérique est devenue un important outil d'étude de physique 

de sol, particuliérernent pour prédire le mouvement des pesticides, nitrates, métaux 

lourd et autres solutions à travers le sol. 

Le transport de contaminants 

dispersion 

est modélisé par une équation de convection- 

terme dispersif terme instasiomaire terme convectif A 

où C- représente la concentration, ui la vitesse moyenne réelle de l'eau dans les pores et 

D le coefficient de dispersion. 

2.2.1.4.1 Un seul contaminant 

L'équation (2.5) considère que la densité du fluide contenu dans le panache est 

égaie à c e k  du milieu ambiant. En fait, des études ont montré qu'une densité de 0.2% 

plus haute que celle de I'eau peut modifier considérablement le comportement du 

panache. Il faut donc en tenir compte car il existe, à la surface du sol, plusieurs sources 

qui ont une différence de densité qui varie entre 0.5% et 4%. Ces différences peuvent 

faire évoluer l'écoulement vers un régime instable qui se traduit par l'apparition des 



instabilités (digitations) au niveau de la zone de mélange, ce qui peut rendre difficile la 

localisation de la zone contaminée. Une revue de littérature montre plusieurs études 

touchant la modélisation des écoulements à densité variable dans le milieux poreux. 

Cependant, la plupart des ces études sont consacrées au traitement du problème des 

intrusions salines près des aquifres littorales (Voss, 1984; Anderson et al., 1986; 

Hebert et al., 1988; Oldenburg et Pruess, 1995). Peu de travaux ont abordé la 

compréhension des migrations de lwviat à partir des dépotoirs de surface (Fan, 1995; 

Oltean, 1995; Bang et Schwartz, 1995; Frind et al., 1985). 

La majorité des modèles de transport et des logiciels de traitements des 

écoulements souterrains utilisent les techniques des différences h i e s  et des éléments 

finis. 

Voss (1 984)' a développé le modèle SUTRA (Saturated- Unsaturated 

Transport). Le modèle a été utilisé par Souza et Voss (1987), pour la simulation des 

problèmes des intrusions salines. 

Sanford et Konikow ( 1985), ont développé le modèle MOCDENSE qui est une 

extension du modèle MOC ( Konikow et Bredehoeft, 1977). Dans ce modèle, 

l'équation de l'écoulement est résolue avec une méthode de différences finies 

implicites. L'équation de transport est résolue en deux étapes. Le terme convectif est 

résolu par la méthode des caractéristiques, le terme dispersif est résolu par une méthode 

de différences finies explicites. Le modèle a été utilisé par Koch et Zhang (1992), pour 

simuler la migration d'un panache dense. 

Mondoza et Frind (1990a), ont développé le modèle VaporT pour la simulation 

du transport de vapeur dense dans un milieu non saturé. Le code de calcul a été utilisé 

par Zhang et Schwartz, (1995) pour la simulation de la contamination du site 



d'enfouissement de déchets de Babylon, New York. Le cods a été aussi utilisé par 

Schincariol et al., (1995) pour simuler ses expériences en laboratoire. 

Fan (1995)' a développé un modèle numérique pour résoudre les écoulements à 

densité variable ainsi que le transport de c o n t d a n t s  dans les milieux poreux saturés 

et non-sanirés. Les techniques des différences finies et des volumes finis ont été 

udisées. Dans cette dernière, les équations de base sont dégrées sur des volumes de 

géométrie arbitraire, ce qui a pour principal avantage de la rendre applicable au 

traitement des domahes irréguliers. Dans cette étude, la formulation en volumes finis a 

été implantée sur un maillage triangulaire. Dans cette formulation, le traitement 

numérique de l'équation de transport a été réalisé en utilisant un schéma basé sur la 

méthode des caractéristiques pour le transport convectif, tandis que le terme de 

diffusion a été évalué sur un maillage triangulaire en utilisant les volumes finis avec 

interpolation linéaire pour la concentration. Fan a validé son modèle avec trois études 

diffirentes. Deux de ces études sont les recherches expérimentales de Schincariol et ai, 

(1 990) et de Oostrom et al, (1992), tandis que la troisième est constituée de mesures 

prises autour d'un site d'enfouissement de déchets a Borden, Ontario. Afin d'obtenir 

une comaissance plus approfondie du mécanisme d'instabilité, une analyse linéaire de 

stabilité a été effectuée. Dans cette technique, une perturbation tridimensionnelle dans 

l'espace avec une amplification exponentielle dans le temps est superposée aux 

équations gouvernantes. Les résultats de cette analyse conknent qu'un panache dense 

est en fait instable, les deux paramètres gouvernant la stabilité étant un nombre de 

Rayleigh basé sur la concentration et une longueur caractéristique, cette dernière 

dépendant de la dispersivité transversale. Les courbes de stabilité critique ont été 

calculées et présentées. D'après l'auteur, le modèle reproduit fidèlement les résultats 

expérimentaux de Schincariol et al, (1990) et Oostrom et al., (1992). 



Figure 2.10 Résultat obtenu (C=2000mg/l, t==72h) (Fan, 1995) 

Oltean (1995) a étudié les mécanismes élémentaires du transport de deux fluides 

miscibles et non- réactifs dans un d i e u  poreux et saturé. Il a obtenu des observations à 

partir d'un programme expérimental. Un modèle physique 3D (1,63 x 0,67 x 0'40 m) a 

permis d'analyser et d'observer le comportement d'un polluant qui transite à travers le 

milieu poreux, en prenant en compte le conkaste de masse volumique et de viscosité. 

L'analyse a porté sur l'identification des paramètres de transport, i. e. : la viscosité 

longitudinale apparente et le coefficient de dispersion longitudinal apparent lorsqu'il 

s'agit des expériences de type "déplacement", en utilisant différentes méthodes de 

traitement monodimensionnel. 

Un modèle de simulation 3D en éléments finis a été développé et validé à l'aide du 

programme expérimental. Le modèle mathématique réalise le couplage entre un module 

hydrodynamique et un module de transport du soluté, en prenant en compte un 

contraste de la masse volumique et de la viscosité. Dans la zone de mélange la masse 

volumique et la viscosité dynamique varient linéairement en fonction de la 

concentration. Le module hydrodynamique a été conçu en utilisant la méthode des 

éléments n n i s  mixtes hybrides, permettant de calculer simultanément le champ des 



potentiels et des vitesses en régime permanent ou transitoire. La méthode des éléments 

finis discontinus d'ordre deux a été utilisée pour simuler l'équation du transport. Selon 

les auteurs, les résultats obtenus par le modèle sont bons. Pour la configuration 2D, les 

courbes calculées se superposent aux courbes issues du dépouillement des essais. Pour 

la configuration 3D, ils ont constaté, dans les sections proches du bac aval des 

différences d'environ 20% entre les courbes calculées et ceiles enregistrées. 11 ont 

attribué ces différences aux conditions aux limites du modèle. 

En se basant sur ses recherches en laboratoire et en utilisant un modèle 

numérique de calcul de transport en milieu à densité variable (VaporT), Schincariol et 

al., (1995) ont essayé de comprendre le mécanisme de développement et l'amplification 

des instabilités. Le code de calcul VaporT a été développé par Mendoza et F M ~  

(1990) pour simuler le transport de vapeur à densité variable dans les milieux poreux. 

I1 a sufn d'une légère modification pour que ce dernier soit capable de résoudre le 

problème des écoulements à densité variable. Le modèle utilise la méthode des 

éléments nnis sur des maillages triangulaires. Tous les calculs ont été effectués sur un 

CRAY Y-MP8/864, un HP 9000/750 et un DEC 5400. 

Les auteurs ont démontré que les instabilités observées au laboratoire ne 

peuvent être reproduites fidèlement par un modèle numérique. Les instabilités produites 

par le modèle numérique sont générées par des erreurs numériques dues aux dispersions 

artificielles ou aux oscillations numériques du modèle. Leurs résultats (figures 2.1 1) 

montrent que la formation des instabilités est directement liée aux erreurs numériques 

qui sont contrôlées par le nombre de Peclet. Quand le nombre de Peclet est égal à 14 et 

9 (figure 2.1 la), des instabilités se forment à la limite infërieure de la zone du mélange 

et ces instabiIités sont différentes de celles observées au laboratoire. Plus la valeur du 

nombre de Peclet diminue plus l'erreur diminue pour disparaître quand le nombre de 

Péclet devient inférieur à 5 (figure 2.11 b). 



Afin d'obtenir une connaissance plus approfondie du mécanisme d'instabilité, 

une analyse de stabilité a été effectuée. Dans cette technique, une perturbation 

sinusoïdale avec une amplification de 2.5 mm, soit 5% de la largeur de la source est 

superposée aux équations. L'analyse des résultats confirme qu'un panache dense est en 

fait instable, Le paramètre gouvernant la stabilité étant la longueur d'onde de la 

perturbation. Les courbes de stabilité critique ont été calculées et présentées. Les 

auteurs ont conclu que, parmi les facteurs influençant la formation des instabilités, on 

retrouvent: la dispersivité, la vitesse et la perméabilité. Ils ont aussi conclu que le 

critère de stabilité critique basé sur le nombre de Rayleigh n'est pas appprié pour 

évaluer le problème du transport d'un panache dense. 

Figure 2. 1 1 Résultats numériquesC =2000mg/l (a): -1 h m ,  Ay=15mm, Pe=l 4, 
C,(x)= 1, C&)=0.5; @): W-2 . h m ,  Ay=2.5mm, PH.4,  Cdx)=l. 1, C~z)=O.S 



Ces résultats contredisent tous les résultats des recherches précédentes (Fan, 1995; 

Oltean, 1995) qui affirment que les schémas numériques sont capables de reproduire les 

observations expérimentales (digitation à la iimite inférieure de la zone de mélange et 

Ies résultats de recherches qui se basent sur le nombre de Rayleigh pour décrire le 

phénomène des instabilités dans le transport d'un panache dense (Fan, 1995; 

Schincariol et al., 1990; Oostrom et al., 1992) 

2.2.1-4-2 Plusieurs contaminants 

La plupart des études touchant les écoulements à densité variable dans le milieu 

poreux sont consacrées a l'étude du transport d'un seul élément polluant. Ceci ne 

reflète pas la réalité sur le terrain. En effet, un panache est composé de plusieurs 

éléments contaminants (NH3 , NaCl, etc.) 

Zhang et Schwartz. (1995) ont développé un modèle numérique pour étudier le 

transport de deux contaminants dans un écoulement à densité variable "Multispecies 

contaminant plumes in variable density flow systems". Les deux composantes sont le 

NaCl et le NH3. Dans le cas du transport de deux ou plusieurs polluants, la variation de 

la masse volumique et de la viscosité du mélange est difficiie à calculer car il n'existe 

pas d'équation exacte. Les auteurs ont supposé que la variation de la densité du 

mélange p, dilué est linéaire en fonction de la concentration de l'ensemble des 

polluants: 

où Ck est la concentration du contaminant k, ak est le paramètre qui décrit la 

dépendance de la densité à la concentration de polluant. Le paramètre ai, peut être 



déterminé à partir des données expérimentales. En assumant que a, = (pcf - ,O,) l c:~, 

l'équation (2.6) s'écrit: 

où Q':' est la concentration de référence du polluant k dont la densité est connue. 

La concentration c:/ est généralement supérieure à la concentration maximale Q; pour 

assurer que le premier terme de l'équation ( 2.7) soit positif. 

Figure 2.12 Résultats obtenus par (Zhang et Schwartz. 1995), (a): ~=5000mg/l (NaCl), 

t=2O jours; (b) q=5000mg/l (NaCl), t=780 jours; (c )q=5000mg/l (NaCl), p l  140 

jours; (d)C2 =100mg/i (NH3), -20 jours; (e)C2= 100mg/l (NH3), t-780 jours; (f) 

~ = i o O m @  w),t=lMo jours 



Le modèle de calcul utilise la méthode des différences finies et la résolution est obtenue 

sur une machine CRAY Y- MP. Pour valider leur modèle, les auteurs ont étudié la 

propagation de deux panaches (NaCl et NH3) au site d'enfouissement de déchets à 

Babylon, New York. D'après les auteurs, b modéle reproduit fidèlement les résultats 

observés sur le site. Les simulations numériques ont toutefois révélé la présence 

d'instabilités gravitationnelles qui se forment le long de la limite inférieure du panache, 

avec des amplitudes verticales importantes. 

2.2.2 Phénomène de sorption 

Un des plus importants processus influençant la propagation d'un contaminant 

dans un milieu poreux est l'immobilisation par adsorption (sorption en surface des 

particules de sol) et absorption (sorption à l'intérieur des particules de sol) des 

contaminants aux sols. Plusieurs des processus majeurs de l'adsorption surviennent à la 

surface des argiles minérales et des matériaux humiques possédant une grande surface 

spécifique. La nature et l'ampleur de l'adsorption des composés organiques par les 

argiles et les sols dépendent largement du pH du milieu et du type de groupes 

fonctionnels de la surface adsorbante. 

Si on considère le phénomène de sorption, un terme additionnel doit être ajouté 

à l'équation (2.2), ce terme représente l'interaction entre le contaminant et le milieu 

poreux. Si la concentration sorbé est noté par la lettre S (mg/g sol), l'équation générale 

de transport s'écrit: 

où p b  est la densité du milieu poreux "BuZk density " (@cm3). 



La solution de l'équation (2.8) peut être obtenue en spécifiant le taux d'adsorption 

La sorption est souvent décrite par l'isotherme de Freundlich qui suppose que 

l'équilibre de sorption est atteint entre la concentration adsorbé et la concentration de la 

solution 

où Q' est la concentration (mglmL), S est la concentration sorbé (mg/g),Kd et N sont les 

constantes de Freundlich qui représentent le degré d'adsorption d'un composé par un 

matériau donné. Plus la valeur de Kd est élevée, plus le composé aura tendance à être 

adsorbé. La substitution de L'équation (2.9) dans l'équation (2.8) montre que le 

processus de sorption peut être présenté comme étant un facteur de retardement. 

où p, est la densité des particules du sol, et R est le facteur de retard. En absence de 

sorption &=O) , le coenicient de retard R est égal à 1. Dans le cas contraire, la valeur 

de R est supérieure à 1. Ce facteur a pour effet de ralentir la migration de polluant. 

Vitesse moyenne de l' eau u, R =  = - ~ 1  
Vitesse moyenne de polluant u, 



Dans la plupart des modèles, la sorption de polluants est simulée par des 

isothermes et, notamment, l'isotherme linéaire qui suppose que l'équilibre de sorption 

"local equilibruim msumption " (LEA) est atteint instantanément immédiatement après 

la réception du contaminant dans un sol. Malheureusement, cette approche très 

simplifiée des échanges solide-liquide n'est pas adéquate pour plusieurs cas réels. Pour 

plusieurs substances hydrophobes organiques, l'adsorption et la desorption prennent 

des mois pour atteindre l'équilibre de sorption (Karickhoff et Morris, 1985; Witkowski 

et al., 1988; Coates and Elzerman, 1986; Wu et Gschwend, 1986). Young et Ball, 

(1994), ont trouvé que la sorption de trichloroethylene et tetrachlorobenzene 1,2,4 et 5 

prend des années pour atteindre l'équilibre. 

Plusieurs études ont utilisés l'approche cinétique ''kinetic approch" pour 

d'écrire le non équilibre de sorption. Cette approche assume que le taux d'adsorption 

est lent par rapport au mouvement des contaminants à travers le sol. Le modèle 

cinétique utilise la relation suivante: 

Dans le cas de non-équilibre de sorption, le taux de masse échangée pour 

atteindre L'équilibre influencera la propagation de la concentration dans l'espace et dans 

le temps, ce qui peut générer un profil de concentration non symétrique comme le 

prédit l'équation (2.9). Plusieurs études expérimentales ont montré que la distribution 

de la concentration est pratiquement non symétrique (Aylmor and Karim, 1970; Kay 

and Elrick; 1967; Green et al., 1972; Giddings, 1963). Certains auteurs comme 

Giddings, (1963); Van Genuchten and Wierenga, (1976); Gambolati et al., (1994) , ont 

utilisé le mot "Tailing" pour décrire ce phénoméne de non symétrie du profil de 

concentration. Le phénomène de "Tailing " a été observé a travers plusieurs conditions 

expérimentales (Van Genuchten and Wierenga, 1976): 



1. Milieu non-saturé - Nielsen et Biggar, (1961) ont noté la présence d'un 

"tailing" important quand on réduit la teneur en eau sous la même vitesse 

d'écoulement. Ils expliquent ceci par l'augmentation de la quantité d'eau 

immobile dans les pores. Cette eau est identifiée comme eau stagnante, morte ou 

h o b i l e  (Turner, 1958; Coats et Smith, 1964; Deans, 1963). La diminution de la 

teneur en eau a pour effet d'augmenter la quantité d'air dans les macropores, ce 

qui se traduit par une augmentation des pores morts "dead endpores " . 
2. Milieu poreux avec agrégats - est composé des pores conducteurs rapides et 

lents. Les agrégats ont plusieurs microspores dans lesquels le déplacement dépend 

uniquement de la diaision puisque la convection, dans ces petits pores, est 

négligeable. 

3. Vitesse de l'eau dans les pores- Plusieurs études expérimentales Biggar et 

Nielsen, (1962); Villemaux et Van Swaay, (1969), Skopp et W h c k ,  (1974) ont 

montré que le "Taiiing" devient plus prononcé quand la vitesse dans les pores 

diminue 

Il est ciair que la solution de l'équation (2.9) ne donne pas toujours une 

description exacte du phénomène physique qui se développe dans un milieu poreux. 

Quelques travaux ont abordé la compréhension de la non uniformité de la distribution 

de polluant c'Tailing" dans un milieu poreux avec agrégats et dans un milieu non saturé. 

(Deams, 1963; Gottschlich, 1963; Coats et Smith, 1964; Van Genuchten, 1976) ont 

utilisé le modèle de porosité double "dual porosity model" qui consiste a diviser la 

phase fluide en deux régions, une région mobile et une région immobile. Le transport 

de la solution dans la région mobile se fait par advection et par diffusion et uniquement 

par diffusion dans la région immobile. Le modèle utilise les équations suivantes: 



où 8, et 8, sont les teneurs en eau dans la région mobile et immobile respectivement, 

C et C. sont les concentrations dans la région mobile et immobile respectivement, v, m zm 

est la vitesse de l'eau dans les pores et a est le coefficient de transfert de masse. 

On note que les équations (2.14) et (2.15) sont mathématiquement similaire aux 

équations (2.8) et (2.13). Si on tient compte du phénomène de sorption les équations 

(2.14) et (2.15) s'écrivent: 

On suppose que la sorption est décrite par l'isotherme de Freundlich, d'où on a 

et les équations (2.16) et (2.17) s'écrivent: 



Le modéle de porosité double ' W p o r o s i t y  model" constitue une approche qui 

décrit mathématiquement le phénomène de transport dans la condition de non-équilibre 

de sorption "non-LEA ". Cette approche a été utilisée par quelques auteurs pour 

modéliser la migration de polluants dans la condition de non équilibre de sorption ('Van 

Genuchten et Wierenga, 1976; Van Genuchten et Wierenga, 1977; Van Genuchten et 

al., 1977; Gaudet et al., 1977; Gambolati et al., 1994). 

La compagnie canadienne Geoslope a créé un groupe de quatre logiciels 

interreliés qui permet de résoudre des problèmes associés à l'écoulement de L'eau dans 

les sols en utilisant un schéma d'éléments finis. Le logiciel de base SEEP/W permet de 

modéliser L'écoulement en deux dimensions dans un milieux poreux. À SEEP/W 

peuvent se greffer: SIG- pour le calcul des contraintes, SLOPEN pour la 

stabilité des pentes et CTRANN pour la modélisation du transport d'un contaminant. 

Le logiciel CTRANN permet de modéliser la propagation d'un contaminant 

miscible à l'eau dans un milieu poreux. Il doit être utilisé conjointement avec SEEP/W 

dont iI tire les valeurs du champ de vitesse. C'I'WW/W permet la résolution des 

problèmes de transport avec adsorption et dégradation, mais il ne tient pas compte du 

contraste de la masse volumique et de la viscosité. Pour mieux contrôler la dispersion 

numérique créé par le modèle, un critère de discrétisation couramment utilisé est que la 

taille de la maille doit être plus petite que le double de la valeur de la dispersivité. 

Compte tenu des valeurs de dispersivité rencontrées lors de la simulation (quelques 

dizaines de centimètres), le nombre des noeuds dans le domaine simulé devient très 

élevé, ce qui a une répercussion sur le temps du calcul. Quand la dispersion devient 

négligeable, le modèle utilise Ie "particle tracking" du module TRACK pour calculer le 

problème d'advection pure. 



2.3 Études comparatives 

La simulation numérique de la contamination des nappes souterraines fait appel 

aux méthodes numériques utilisées pour résoudre les problèmes de convection- 

diaision et les problèmes d'écoulements à densité variable. Le module de calcul doit 

réaliser le couplage entre un module hydrodynamique et un module de transport du 

soluté, en prenant en compte un contraste de la masse volumique et de la viscosité. 

Les modèles de calculs ont augmenté en nombre et en sophistication durant les 

dernières années. Cependant, nous allons voir, à travers une étude comparative, 

comment les méthodes utilisées actuellement limitent les possibilités de la simulation. 

2.3.1 Études comparatives: Transport 

Le transport d'un contaminant, lorsqu'il est considéré comme un marqueur de 

l'eau, est modélisé par une équation de convection dispersion: 

terme dispersif terme instasionnaire terme convectif 

où C représente la concentration, ui la vitesse moyenne réelle de l'eau dans les pores et 

D le coefficient de dispersion, généralement déterminé à l'aide de la relation suivante: 



avec a le coefficient de dispersivité et u la vitesse moyenne réelle de l'eau dans les 

pores. 

Les équations modélisant le processus du transport en milieux poreux 

comportent deux termes: un terme convectif et un terme hyperbolique. La résolution 

numérique de l'équation du transport génère une solution discrète dans le temps et 

l'espace. La représentativité de ces résultats dépend des caractéristiques physiques 

(champ de vitesse, coeficient de dispersion) du domaine modélisé ainsi que de la façon 

de discrétiser ce domaine. Le choix de la méthode de résolution est dicté par la 

combinaison des caractéristiques du domaine et de la grille de calcul. Cette 

combinaison peut être caractérisé à l'aide de deux nombre adimensionnels. Il s'agit des 

nombres de Courant et de Péclet. 

où Al = max(Ax, AY) dans le cas d'un problème à deux dimension 

4 Le nombre de Péclet quantifie, en quelque sorte, l'importance relative des 

phénomènes d'advection et de dispersion, à l'échelle de la grille de calcul. Quand P, 

est petit, la dispersion est dominante et l'équation est parabolique. Quand P, est 

grand, la convection est dominante et l'équation commence à avoir un caractère 

hyperbolique. 

+ Le nombre de Courant mesure le nombre de mailles de la grille de calcul qu'une 

particule du fluide parcourt en un pas de temps. 

Les méthodes numériques usuelles employées pour résoudre l'équation 

d'advection dispersion peuvent être séparées en deux catégories (Simon, 1990, 



Mouche1 et al., 1990): les schémas aux différences finies et éléments finis et les 

méthodes aux caractéristiques. 

La plupart des schémas aux différences finies et élément finis sont limités à des 

problèmes où C e 1  pour des raisons de stabilité numérique. Ces contraintes sont 

particulièrement gênantes dans le cas de simulation à long terme. Face à ces difncultés, 

diverses méthodes implicites ont été proposées pour pallier à cette situation. Mais, pour 

une bonne précision, le pas de temps ne peut être relativement grand. Pour des 

problèmes de contamuiants qui peuvent s'étendre sur des années, ceci entraîne une 

durée de calcul prohibitive. 

De plus, aux forts nombres de Péclet, P,, ( advection prédomhante sur la 

dispersion), les schémas aux dd5érences f i e s ,  qui évitent une forte dispersion 

numérique, provoquent des instabilités: pour éviter que les fionts de concentration ne 

s'écrasent, ces schémas génèrent des concentrations trop fortes ou trop faibles, 

immédiatement à l'amont ou à l'aval du fiont (Mouchel et al., 1990). Le dosage entre 

les deux contraintes (stabilité et dispersion numérique) est très délicat, ce qui fait que 

ces schémas ne sont pas facilement utilisables, ni adaptables à des situations complexes 

comme celle de l'évolution de contaminants dans des situations géographiques 

étendues et hétérogènes. 

Pou  aider à contrôler la dispersion et les oscillations numériques, des critères 

de dimensionnement du maillage et de la sélection de la valeur des pas de temps ont été 

développés: Cr 51 , P. a, ce qui revient à dire: 



Ax et Ay sont l'espacement entre deux noeuds selon l'axe des x et y 

respectivement, At est le pas de temps, a~ et ar sont les coefficients de dispersivité 

longitudinale et transversale respectivement, qx et qy sont les vitesses de Darcy selon 

l'axe des x et y respectivement, v, et v, sont les vitesses dans les pores selon l'axe des x 

et y respectivement, 8 est la teneur en eau , DL et 4 sont les coefficients de dispersion 

longitudinale et transversale respectivement. 

Le critère de discrétisation impose que la taille de la maille soit plus petite que 

le double de la valeur de la dispersivité. Compte tenu des valeurs de dispersivité de la 

simulation (quelques dizaines de centimétres), le nombre de mailles ou des noeuds dans 

le domaine simulé devient très élevé et le calcul nécessite des moyens informatiques 

extrêmement lourds. 

Les schémas aux caractéristiques reposent sur I'approximation suivante: 

l'advection et la diffusion, qui sont des processus physiques simultanés, sont traitées 

comme si elles se produisaient successivement à l'intérieur d'un pas de temps. Ces 

schémas ne souffrent pas des problèmes d'instabilité mais de dispersion numérique due 

au lissage des concentrations causé par un grand nombre d'interpolations. Par contre, 

un schéma similaire aux techniques des caractéristiques a été mimis au point il y a 

quelques années. Ce schéma combine les méthodes d'Euler et Lagrange (ELM). Une 

revue de la littérature sur le traitement numérique de la convection- dispersion montre 

une tendance croissante vers l'approche Lagrangieme (Xeuman, 198 1 ; Cassulli, 1992, 

Mouche1 et al., 1990, Fredj et Kahawita, 1994). Elle est de maniement simple et elle 

évite certains des problémes et des limitations sur les pas de temps et d'espace. La 



technique lagrangienne a été considérée, pendant ces deux dernières décennies, comme 

la méthode la plus précise pour résoudre l'équation d'advection-dispersion. 

La précision de la méthode lagrangienne dépend essentiellement de la formule 

et de l'ordre d'interpolation. En effet, une interpolation d'ordre supérieur à 1 réduit 

considérablement la diffusion numérique mais elle peut générer des oscillations 

numériques (Baptista et al, 1984, Baptista, 1987, Cassuli, 1992; Fredj et Kahawita, 

1994). Par contre, une interpolation de premier ordre réduit les oscillations numériques 

mais sa capacité à réduire la diaision numérique dépend de  la U s  du maillage et du 

pas de temps utilisé (Fredj et Kahawita, 1994; Yeh, 1992). 

Ces problèmes d'interpolation engendrent une atténuation des pics ou des fkonts de 

concentration lors de calculs purement convectifs. Ce phénomène est connu dans la 

littérature comme étant le "peak clipping" Yeh (1992) considère qu'il s'agit de la plus 

importante cause de dispersion numérique dans la méthode. 

Pour pallier le "peak clipping" et les aberrations numériques qu'il génère, Yeh 

(1992), a proposé une nouvelle méthode de résolution à une dimension. Cette méthode 

est basée sur le traitement distinct des termes convectifs et diffusifs par un schéma non 

oscillatoire avec évaluation exacte du fiont 'Xn exact Peak Capturing and Oscillation- 

free Scheme "(EPCOF), qui consiste à: 

+ découpler l'équation de convection-dispersion; 

+ utiliser une technique de suivi des particules arriére "Backward tracking 

method'; 

+ utiliser une technique de suivi des noeuds avant 'Torward node tracking " 

utiliser un rafFnement adaptatif des maillages "Adaptve local grid 

refinement " (ALGR). 

La technique de EPCOF est incontestablement la plus précise pour résoudre l'équation 

d'advection-dispersion à une dimension: elle ne génère aucune dispersion numérique 

ni instabilité. Cette approche peut être appliquée aux problèmes à plusieurs dimensions 



en lui apportant, cependant, certaines modifications (Cheng et al., 1996, Yeh et al., 

1992). 

L'objectif de la thèse est de modifier la méthode de EPCOF afin que celle-ci 

soit capable de résoudre le phénomène de contamination des eaux souterraines en deux 

dimensions sur des maillages non structurés. 

2.3.2 Études comparatives: Écoulement 

Les méthodes numériques usuelles employées pour résoudre l'équation 

décrivant l'hydrodynamique dans les milieux poreux sont les différences finies et les 

éléments finis. Ces méthodes classiques pemettent le calcul de la charge hydraulique. 

Les vitesses d'écoulement sont ensuite calculées à l'aide de la loi de Darcy. Ces deux 

méthodes donnent des résultats tout à fait comparables. Cependant, dériver des charges 

hydrauliques par une méthode numérique pour calculer la vitesse peut conduire à des 

résultats inacceptables dans des conditions de milieu hétérogène ou en présence de 

singularités comme des puits de pompage (Ackerer et al., 1994). La méthode des 

éléments finis mixtes hybrides (Chavent et Jafié, 1987; Mosé, 1990) permet le calcul 

simultané des charges hydrauliques et des vitesses. Le champ des vitesses calculé par 

cette méthode est plus précis que celui obtenu par la méthode des éléments finis ou des 

différences f i e s  (Ackerer et al., 1994). 

Une revue de la littérature sur le traitement numérique de l'équation 

hydrodynamique montre une tendance croissante vers l'approche des volumes finis. 

Cette méthode permet de traiter les géométries complexes avec la même facilité que les 

méthodes d'éléments nnis et conserve l'aspect physique du problème dans la 

discrétisation comme les méthodes des éléments finis. Cette méthode a été développée 

initialement pour des problèmes de convection- diffusion et a ensuite été appliquée a 



des problèmes d'écoulements hcompressibles et à des écoulements dans les milieux 

poreux. (Hookey, 1988% 1 988b; Prakasb, 1985, 1 1987~) ont attentivement 

examiné la méthode et les avantages sont bien escomptés: la discrétisation triangulaire 

permet de traiter des géométries complexes et il n'y a pratiquement pas de diffusion 

artificielle (Prakash,l987c). Fan (1995) a utilisé la méthode des volumes f i s  pour le 

calcul d'un écoulement à densité variable. La formulation en volumes finis utilisée est 

robuste et précise et elle a démontré d'excellentes caractéristiques de stabilité 

numérique. 

2.4 Objectifs 

De la synthèse de la brève revue bibliographique, il ressort que: 

Parmi les facteurs influençant la dispersion des contamuiants en milieu poreux il 

semble que les contrastes de la masse volumique, de la viscosité et de la sorption soient 

les plus importants. 

La plupart des études touchant les écoulements à densité variable dans le milieu 

poreux sont consacrées au traitement du problème des intrusions salines près des 

aquifères littorales. Très peu de travaux ont abordé la compréhension des migrations du 

lixiviat à partir des dépotoirs de surface. 

Le problème de la naissance et l'amplification des instabilités hydrodynamiques 

(ou digitation) n'a pas, jusqu'à présent, été résolu dans son ensemble. Plusieurs études 

numériques basées sur les méthodes des éléments finis, des dSérences finies et des 

volumes finis ont montré que les modèles numériques sont capables de produire 

fidèlement les observations expérimentales. Cependant, une publication récente de 

Schincariol et al., (1996) montre que les instabilités (ou digitations ) hydrodynamiques 



produites par un modèle numérique sont dues au caractére diffusif des schémas utilisés 

et au fait que le critère de stabilité critique, basé sur le nombre de Rayleigh, n'est pas 

approprié pour évaluer le problème du transport d'un panache dense. 

Le transport d'un lwviat comportant plusieurs composantes réactives et non 

réactives dans un écoulement à densité variable est resté inexploré. 

Dans la plupart des modèles, la sorption de polluants est simulée par des 

isothermes et, notamment, l'isotherme linéaire, qui suppose que l'équilibre de sorption 

"local equilibruim msurnption " (LEA) est atteint instantanément immédiatement après 

la réception du contaminant dans un sol. Maiheureusement, cette approche très 

sirnplinée des échanges solide-liquide s'est révélée inadéquate pour plusieurs cas réels. 

La modélisation du transport d'un polluant dans les milieux poreux (écoulement 

+ dispersion + convection) est un problème difficile et sa résolution par des schémas 

numériques classiques (éléments finis, différences finies ou volumes finis) est souvent 

peu satisfaisante du fait du caractère diffusif de ces schémas. 

A la lumière de cette synthèse, l'objectif majeur de cette thèse est l'étude 

numérique des écoulements à densité variable et du transport d'un lixiviat comportant 

plusieurs composantes polluantes réactives et non réactives dans les milieux poreux 

saturés et non saturés. La formulation générale du modèle doit permettre l'analyse des 

problèmes comprenant des processus d'advection, de diffusion, de dégradation et de 

sorption sous des conditions d'équilibre et de non-équilibre. Le modèle tiendra aussi 

compte du contraste de la masse volumique et de la viscosité. Le défit est de modifier la 

méthode de EPCOF afin que celle-ci soit capable de résoudre le phénomène de 

contamination des eaux s o u t e r i e s  en deux dimensions sur des maillages non 

structurés. 



3. i Introduction 

Ce travail porte sur une étude numérique des écoulements à densité variable, 

ainsi que sur le transport des contaminants dans le milieu poreux sahirés et non saturés. 

Le module de transport doit être utilisé conjointement avec le module de l'écoulement 

dont il tire les valeurs du champ de vitesse et de la teneur en eau. La formulation 

générale du modèle permet d'analyser des problèmes comprenant des processus 

d'advection, de diffusion, d'adsorption, de dégradation, de la masse volumique et de la 

viscosité. Les équations gouvernant ce phénomène comprennent l'équation de Darcy, 

l'équation de continuité pour un fluide incompressible, l'équation de transport des 

polluants dans des conditions d'équilibre de sorption et dans des conditions de non- 

équilibre de sorption, et une équation d'état qui relie la densité du fluide à sa 

concentration. 

3.2 Équation de continuité 

L'écoulement souterrain daas un milieu saturé et non saturé peut être décrit 

comme étant une combinaison de l'équation de continuité d'un fluide et de l'équation 

général de Darcy. Dans le cas d'un écoulement à densité variable, l'équation de 

continuité peut être exprimée par (Bear, 1972) 



où qi est la vitesse de Darcy dans la direction xi T'], p est la densité de l'eau FI L-'1, 
3 3 n est la porosité du milieu poreux /L 1, S, est la saturation volumique de l'eau 

(volume des pores / volume de l'eau) (sans dimension), Q est une source ou un puits 

[(L~/T)/L~], t est le temps, et xi est la cordonnée spatiale. 

La loi de Darcy sous Ia forme la plus générale, s'écrit: 

où kij est le tenseur de perméabilité intrinsèque du milieu saturé [L~], k, représente la 

perméabilité relative, p est la viscosité dynamique du fluide FI L - ~  T'], p est la 
1 2  pression du fluide FI L' T 1, g est l'accélération de la gravitationnelle CL T~], X, est la 

cordonnée spatiale (L), et ej est un vecteur égal à 1 dans la direction verticale et égal à O 

dans la direction horizontale. 

En substituant l'équation (3.2) dans (3.1) , l'équation de continuité devient: 

En développant 



La quantité totale de la masse fluide contenue dans un milieu poreux dépend de 

la pression, de la concentration du soluté (2.' et de la température, T, p = p( P, C, T )  , 

Dans le cas isothérmique la relation se réduit à p = p( P, c). La variation de la masse 

totale du fluide s'écrit: 

où p= --- ' " - compressibilité de l'eau 
P +  

La variation total de la porosité s'écrit: 

a2 
où a = -= Compressibilité du sol 

@ 

La variation total de teneur en eau s'écrit: 

En substituant a et p dans l'équation (3.4), on obtient: 



Utilisant la pression hydrostatique 

En dérivant l'équation (3.8) on obtient 

En substituant (3.10) et (3.1 1) dans (3.8)' on obtient: 

. . . . . . . . . . . . . . . . . . . .  - - - 

1 1 1  Utilisons la définition du coetFcient spécifique d'emmagasinement FI L- T 1- 
(Bear, 1972; Freeze and Cherry, 1979). 



on obtient 

On pose 

L'équation (3.14) s'écrit: 

pk. .k a2 e i i p z  p -.+--- +-Q=O 
2 Po a P, 

La conductivité hydraulique dépend de la densité et la viscosité du fluide, ces 

derniers sont fonction de la concentration. 

où 

p : viscosité dynamique de l'eau avec une concentration C; 

9 : teneur en eau; 

k : tenseur de perméabilité intrinsèque du milieu; 

ks : tenseur de perméabilité intrinsèque du milieu saturé; 

k, : conductivité relative; 

Ks : conductivité hydraulique du milieu saturé; 

po : densité du fluide dont la concentration est nulle; 

p : densité du fluide dont la concentration est C. 



l'équation de continuité s'écnt 

Substituons l'équation (3.10) dans l'équation (3.2), L'équation de Darcy s'écnt 

La solution de l'équation de continuité (3.18) est une fonction de h(x, y, t) qui décrit la 

valeur de la charge hydraulique dans l'aquifere en tout temps. Elle requiert la 

connaissance des courbes caractéristiques K(h) et B(h). 

3.2.1 Détermination des courbes caractéristiques des sols 

La conductivité hydraulique effective peut s'écrire comme le produit d'une 

constante non linéaire. 



où k, est la conductivité relative et varie entre O est 1 et Ks est conductivité hydraulique 

du milieu saturé. La perméabilité relative varie en fonction de la teneur en eau. 

La teneur en eau B(h) dans le milieu non saturé est une fonction de la charge 

hydraulique. En effet, dans un sol non saturé, un changement de pression est toujours 

accompagné d'un changement dans la teneur en eau (8) et de la conductivité 

hydraulique (K). Plus la charge est négative, plus la teneur en eau est faible. Lorsque la 

saturation est atîeinte, la teneur en eau est égale à la porosité du sol. La courbe qui 

décrit la relation entre la teneur en eau et la charge hydraulique doit varier entre la 

teneur en eau sahué es, et la teneur en eau relative 8, 

Les courbes de la propriété, B(h) et de K(0) présentent des hystérésis du fait qu'elles 

n'obéissant pas aux mêmes relations selon que le sol s'assèche ou se humidifie. Ces 

relations peuvent être résolues en utilisant les propriétés hydrauliques du sol. On trouve 

dans la littérature plusieurs méthodes pour déterminer les courbes caractéristiques des 

sols. 

3.2. lm 1 Méthode de Gardner, 1958 

La perméabilité relative et le degré de saturation s'écrivent: 

où a, b ont la même unité que hm, alors que c et d ont la même unité que hn5 m, et n 

sont des constantes. La figure (3.1) montre les courbes caractéristiques d'un sol de 

porosité 0.3 et une perméabilité -0 c m h r  (Vauclin et al, 1975). 



Charge hydraulique 

Conductivité hydraulique, cmlh 



Il y a deux possibilités d'écrire la conductivité relative: 

où G(&) = LIS: + (b - 2 a ) ~ ,  +a - 6 ,  s, q, y, p et b sont des constantes, p est la pression 

et p, est la pression de l'air. 

3.2.1.3 Méthodes de Van Genuchten, 1980. 

La perméabilité relative s'écrit: 

a 

où 8, s'écrit 



a 0 est la teneur en eau . 
0 8, est la teneur résiduelle en eau 

O 8, est la teneur saturé en eau. 

O 0, est le teneur effective en eau 

O K, est la conductivité hydraulique du milieu saturé. 

a n et m sont des paramètres déterminés à partir des données expérimentales. 

a est un coefficient spécifique du sol 

Table 3.1 représente un ensemble de valeur de 0, , 8, et les paramètres de Van 

Genuchten a et n pour différents types des sols. 

Tableau 3. 1 Paramètres représentatifs de différents types de sols (Rawls et al., 1982, 
in Van Genuchten et al., 199 1) 

Type de sol 1 Teneur 
1 saturée en 

Sand 

Loarn 1 0.434 

eau, 8, 
0.417 

Loamy Sand 
Sandv Loam 

0.40 1 
0.4 12 

Teneur 
résiduelle en 

eau, 8, 

Silt Loam 
Sandy Clay Loarn 
Clay Loarn 
Silty Clay Loam 
Sandy Clay 
Silty Clay 
Clay 

0.486 
0.33 
0.39 
0.432 
0.32 1 
0.423 
0.355 



3.3. Équation de transport 

3.3.1 Équation de transport d'un soluté sous condition 

d'équilibre de sorption 

L'équation décrivant le processus du transfert d'un soluté non-réactif de 

concentration C dans un milieu poreux peut être mise sous la forme suivant: (Bear, 

1979; Nielson et al., 1985; Hebert et al., 1988; Garnbalati et al., 1992). 

où C est la concentration du contaminant m3], Cs est la concentration injectée ou 

pompée par la source ou puits Q [(M/L)/Tl, Dij est le tenseur de dispersion 

hydrodynamique définie par (Bear, 1972). 

où a= et a= sont les dispersivités intrinsèques longitudinale et transversale du milieu 

m, 141 est la valeur absolue de la vitesse de Darcy , qi est la composante du champ de 

vitesse de Darcy dans la direction j, Do est le tenseur de diaision moléculaire, 61j est le 

delta Kronecker (6ij = 1 pour i = j et 6ü = O pour i + j ). 



Si on dérive explicitement les deux premiers termes de l'équation (3.32), on 

obtient: 

or d'après l'équation ( 3.1) on a: 

En substituant (3.35) dans l'équation de transport (3.34), on obtient: 

L'équation décrivant le processus du transfert d'un soluté réactif avec 

adsorption de concentration C dans un milieu poreux s'écrit: 

où pb est la masse volumique sèche m3], S, est le degré de saturation, est la 

constante de  dégradation[^'], S est la masse du contaminant adsorbée par unité de 

masse du milieu poreux FIIM], n est LUI index dans l'isotherme de FreundIich et est 

un coefficient dans l'isotherme de Freundlich. 



Si le contaminant se propage lentement ce qui permettrait à la solution 

d'atteindre l'équilibre de sorption, la relation entre C et S peut être exprimée par 

l'isotherme de Freundlich S = kdCn. Dans le cas d'un isotherme de sorption linéaire 

(kd=l) t'équation (3.37) s'écrit: 

En utilisant la dérivée lagrangieme, @Jeuman, 198 1, 1984 ; Casulli, 1987, 1990 ). 

où u, =- est la vitesse du fluide dans les pores, Vd est la vitesse du contaminant et 
e 

R,=B+- pb kd est le coefficient de retard. 
B 

L'équation (3.38) peut s'écrire sous la forme lagrangienne . 

ou la dérivée - d(c) indique que Le changement du (2 pendant le pas de temps est 
dt 

calculé le long de la caractéristique. 



3.4.2 Équation de transport d'un soluté sous condition de 

non-équilibre de sorption 

Le transport d'un contaminant dans des conditions de non-équilibre de sorption 

peut être décrit mathématiquement par le modèle de porosité double "dm2 porosiîy 

model" qui subdivise le milieu poreux en cinq régions (Van Genuchten et Wierenga, 

1976; Garnbolati, 1994): 

Phase d'air; 

La région qui contient la phase d'eau mobile. L'écoulement fluide ainsi que le 

mécanisme d'advection dispersion d'un soluté aura lieu uniquement dans cette 

région. L'échange de la solution dans la région 4 se fait par sorption dans une 

condition d'équilibre, et avec la région 3 par diffusion; 

La région qui contient le phase d'eau immobile. Il n'y a pas d'écoulement fluide 

dans cette région. L'échange de la solution se fait par diffusion dans la région 2, 

et avec sorption dans la condition d'équilibre dans la région 5; 

La région dynamique du sol, située autour de la région de l'eau mobile 2. 

L'échange de la solution se fait par sorption dans la condition d'équilibre avec la 

région 2; 

La région stagnante du sol, située autour de la région d'eau immobile 3. 

L'échange de la solution se fait par une sorption sous la condition d'équilibre 

avec la région 3. 



Les équations générales qui décrivent le transport 

masse entre la région mobile et la région immobile sont: 

de polluant et l'échange de 

ou 

8, = n,S, est la teneur en eau dans la région mobile 

SW est la saturation en eau dans la région mobile 

&Il est La porosité de la région mobile 

' r n $  = + (a, -a,)qiq,/lq(+ omD,16, 
est la concentration de la solution danç la région mobile 

est la concentration de la solution dans la région immobile 

est la teneur en eau dans la région immobile 

est la porosité dans la région immobile 

est la porosité totale 

est la fiaction d'adsorption dans la région mobile. Ce paramètre décrit la 

quantité de la solution adsorbée à l'intérieur de la région mobile du sol 

est la concentration adsorbée dans la région mobile du sol 

est La concentration adsorbée dans la région stagnante du sol 

est le coefficient de transfert de la masse du processus de la di&sion 

entre la région d'eau mobile et la région d'eau immobile 



En utilisant l'isotherme linéaire de Freundlich pour simuler l'adsorption dans 

les conditions d'équilibre entre les régions dynamiques 2 et 4, et entre les régions 

stagnantes 3 et 5. Pour la région dynamique on a Sm = k,Cm et pour la région stagnante 

on a Si,,, = khCim. En substituant les expressions des isotherme dans l'équations (3.42) 

et (3.43) on obtient: 



Définissant les coefficients de retard 

En substituant les 'équations (3.48) et (3.49) dans les équations (3.46) et (3.47) 

respectivement on obtient 

l'équation (3 S O )  peut s'écrire sous la forme lagragienne 



U- vm =-- 
Rd. 

où ui = est la vitesse du fluide dans les pores, V, est la vitesse du contaminant. e 
L'équation (3.53 ) peut être intégré analytiquement 

Supposant qu'à t=O, Ch = O,  la solution de I'équation (3.5 3) dévient: 

Substituant l'équation 3.56 et l'équation (3.53) dans l'équation (3.52) on obtient: 



3.4. Densité et viscosité 

Les équations de l'écoulement et du transport sont couplées par l'équation d'état 

concernant la masse volumique, p, [ M L"] et la viscosité dynamique p FI L-' TI]. Ces 

équations qui jouent un rôle essentiel sur le champ des vitesses, sont exprimées en 

fonction de la concentration du polluant 

où C est la concentration du soluté FI L-~J,  et ai, az, a3,bi, bz et b3 sont des paramètres 

@VI?] qui décrivent la dépendance de La densité et la viscosité dynamique de la 

concentration des polluant. 

Dans le cas d'intrusions salines, la relation entre la densité du fluide et la 

concentration est considérée linéaire (Galeti et al 2992, Peter et al 1987) 

où p,, est la densité maximale du fluide qui correspond à une concentration C 

maximale et c est une concentration sans dimension ( concentration actuelle divisée 

par la concentration maximale). 

L'équation de viscosité dans le cas d'intrusions salines s'écrit (Voss, 1984; Hebert et 

ai., 1988) 



Dans le cas du transport de deux ou plusieurs polluants les variations de la 

masse volumique et de la viscosité du mélange sont difficiles à calculer car il n'existe 

pas une équation exacte. La densité du mélange diluée p, est supposée Linéaire en 

fonction de la concentration de l'ensemble des polluants . 

où Ck est la concentration du contaminant k, ak est le paramètre qui décrit la 

dépendance de la densité à la concentration de polluant. Le paramètre ai, peut être 

déterminé à partir des données expérimentales. En assument que ak = ( / ~ y  - po) 1 c:~~ 

l'équation (3.62) s'écrit: 

où Q'tf est la concentration de référence du polluant k dont la densité est connue. 

La concentration Q'cf est généralement supérieure à la concentration maximale Ck pour 

assurer que le premier terme de l'équation (3.63) soit positif. 

En assumant qu'il n'existe pas de réaction chimique entre les dinérents 

polluants, la viscosité du mélange pm est donnée par (Green, 1984; Reid et al., 1987; 

Zhang et al., 1995). 



où ,uCf est la viscosité dynamique du fluide avec une concentration de référencecPf et 

wk est la masse du polluant 

3.5 Les condifions de frontière 

La solution des équations différentielles nécessite la spécification de conditions 

aux f?ontières du domaine. Généraiement, il y a deux types de conditions fiontières: 

celle de Dirichlet et celle de Neuman. La figure (3.2) présente un domaine de calcul, où 

on voit pour chaque type de fiontières les conditions à imposer. 

n. (~DVC) = O 
Zone non saturée 

1 

=u A- &" 

capillaire zb 

1 h20,Kr=l, Sw=l h 4  
h=&-z 

n. (LDVC) = O 
Zone saturée 

h=Z -z 

Figure 3.2 Conditions aux limites 



3.5.1 Conditions de Dirichlet 

+ Équation de continuité 

(sur DE) 

(sur AM) 

(sur CD) 

(sur JIHG) 

où Zo et Zi  sont les niveaux d'eau sur la frontière amont et aval respectivement. 

+ Équation de transport 

La condition limite de Dirichlet de ['équation de transport s'écrit: 

3.5.2 Condition frontière de Neuman 

+ Équation de continuité: 

La condition frontière de Neuman peut s'écrire: 

(sur BC et LA 



+ Équation de transport 

( sur EFG et JKL) 

(sur BC et AL) 3. 72 

E.(~!Dvc) = O (SUI- AB, DE et EF) 3. 73 

où Eest le vecteur normal a la frontière, C est la concentration, C,, est la concentration 

à la frontière, 8 teneur en eau, D tenseur des coefficients de diffusion et q est le tenseur 

de la vitesse de Darcy 

3.6 Conclusion 

Rappelons ici les équations à résoudre par le code de calcul 

H Équation de continuité (Éq3.18) 

B Équation de Darcy &. 3.20): 



Équation de transpott dans des conditions d'équiiibre de sorption (Éq. 3.41): 

E7 Équation de transport dans des conditions de non-équilibre de sorption (Éq. 
3.57): 



CHAPITRE IV 

SOLUTION NUMÉRIQUE 

Le code de calcul sur un modèle réalise le couplage entre un module 

hydrodynamique et un module de transport. L'équation hydrodynamique est résolu par 

une méthode de volume finis sur un maillage triangulaire. L'équation de transport est 

simulée par une méthode de volumes finis avec un rafnnement adaptatif des maillages 

et une évaluation exacte du fiont. La simulation numérique des équations se déroule en 

deux étapes principales: 

la discrétisation du domaine 

la discrétisation des équations de base 

4.2. Discrétisation du domaine 

L'un des objectifs de ce travail est de traiter les géométries complexes qui 

représentent la réalité industrielle. C'est pourquoi le domaine est discrétisé selon un 

maillage non-structuré à éléments triangulaires, car il o s e  la possibilité de varier la 

taille des éléments au gré du comportement de l'écoulement en permettant de brusques 

variations de la taille des éléments pour le raffinement local. 

Le domaine est donc divisé en élément trianguiaire à trois noeud figure (4.1). Le 

volume de contrôle autour de chaque noeud est un polygone construit en joignant le 

centroïde de chaque triangle voisin au milieu des faces correspondant. 



Figure 4.1 Discrétisation du domaine 

Figure 4.2 (a) Volumes de contrôle; (b) et (c ) points de calcul à la fiontiére 

4.3. Discrétisation des équations 

La discrétisation des équations d'après la technique du volume de contrôle se 

déroule de la façon suivante: 

6 choix de la fonction d'interpolation 

intégration des équations sur chaque volume de contrôle , assemblage des 

équations élémentaires et solution du système algébrique. 

Algorithme général de calcul 



4.3.1. Les fonctions d'interpolations pour, h, é, D, p, K 

4.3.1.1 Fonction d'interpolation pour h 

Pour chaque élément triangulaire, la pression est interpolé linéairement 

h =  A x + b z + C  

où les coefficients A, B et C sont déterminés à partir des pression hl, h2 et h3 des trois 

noeuds du triangle 

det 

- 

det 

ou det = (x,z, + x2z3 +x3zl -zlxZ -z,x) -z3x1)  

4.3.1.2 Fonction d'interpolation pour c. 

Pour des éléments triangulaires à trois noeuds La concentration est interpolée 

linéairement 



Les constantes d, e et f sont déterminées en utilisant une procédure similaire à celle 

utilisée pour calculer les constantes A, B et C dans les équations (4.2)-(4.5). 

4.3.1.3 Fonction d'interpolation pour Di/, p et Ku 

On suppose que dans chaque élément la masse volumique p, le coefficient de 

d i f i i o n  D et la perméabilité K ont une valeur moyenne uniforme qui est celle calculée 

au centroide. 

4.3.2. Intégration des équations. 

4.3.2.1. Intégration de l'équation de continuité 

L'intégration de l'équation(3.75) sur un volume de contrôle autour du noeud de 

calcul (i) (figure 4.1) et les points a, c et O désignant respectivement les centres des 

arêtes et le centroïde des éléments voisins s'écrit: 

+ ( contribution des autres éléments associés au noeud i ) 

+ ( contribution des frontières si applicable) =O 



où n est la normale extérieure à la Frontière ds; O, a et c représentent le centre de gravité 

de l'élément , le milieu de ce deux cotés. 

avec 

où ? et 7 sont les vecteurs unitaires dans le plan X, 2. 

A l'aide de la fonction d'interpolation (Éq. 4.2-4.5), les composantes Jx et J, sont 

facilement calculables. 

L'intégrale sur chaque segment du volume de contrôle est approximée comme suit: 



ai ar 
I'intégrale des termes stationnaires- et - est calculée comme suit: a a 

En additionnant les équations (4.15)' (4.16) et (4.17) ,la contribution totale de l'élément 

123 peut être exprimée par L'équation suivante. 

Les processus d'intégration ci-dessus se fait pour tous les ûiangles voisins au point de 

calcul (i). En fin de compte, on aboutit à une équation du type suivant 



4.3.2.2 Intégration de l'équation de transport avec équilibre de 

sorp tion 

L'intégration de l'équation (3.41) sur un volume de contrôle autour du noeud de 

calcd i donne: 

+ ( contributions des autres élément associés à i ) 

+ ( contribution éventuelie des frontières) =O 

où J représente le terme de dispersion 

et Sc est le terme défini par : 

À l'aide de la fonction d'interpolation, les composantes Jx et J, sont faciles à calculer 

où d et e sont donnés par les équations (4.2-4.5). 

L'intégrale de l'équation (4.2 1), qui représente le terme diffusif de l'équation de 

transport est approximée comme suit. (Baliga, 1980, 1988): 



Le terme S, est intégré comme suit: 

Quand au terme stationnaire, il est intégré comme suit: 

où Ar est l'aire du triangle 123: 

où Ci* est la concentration convective. 

Pour calculer la concentration cnfl au temps tn+i, on procède en six étapes en 

utilisant la méthode EPCOF modifié (chapitre V): 



4.3.2 3 Intégration de Iféquation de transport dans la condition 

de non équilibre de sorpfion 

L'intégration de l'équation (3.57) sur un volume de contrôle autour du noeud de 

calcul i donne: 

+ ( contributions des autres élément associés à i ) 

+ ( contribution éventuelle des frontières) =O 

où J représente le terme de dispersion et SCm est le terme défini par : 

L'intégrale de l'équation qui représente le terme diffusif est donnée par les équations 

(4.24) et (4.25). 

Le terme SC, est intégré comme suit: 

/s,& = *[@+A 48 ,  -Q)c+' +QC~] 

Le terme M est intégré comme suit: 



L'intégrale des termes Sr. et gL1 peut être calculé par la théorème d'intégrale ou par la 

méthode de trapèze. Dans notre cas on a opté pour la deuxième méthode, d'ou Ie calcul 

du terme %'-' donne: 

Substituant I'équation ( 4.35) dans l'équation (4.33), l'intégrale de M s'écrit: 

Quand au terme stationnaire, il est intégré comme suit: 

où Cl* est la concentration convective. 

Pour calculer la concentration cn'l au temps h l ,  on procède en six étapes en 

utilisant la méthode EPCOF modifié (chapitre V): 



SCHÉMA NON OSCILLATOIRE AVEC ÉVALUATION EXACTE 
DU FRONT 

Les équations de l'écoulement et du transport du polluant sont couplées par les 

équations d'état concernant la masse volumique p et la viscosité dynamique p.. Le 

déplacement du polluant dans le milieu poreux peut modifier sensiblement les 

propriétés physiques des fluides dans la zone de mélange. Par conséquent, le calcul de 

la pression au temps t+At nécessite la connaissance de I'évolution des concentrations 

entre les temps t et t+At. La méthode de résolution choisie pour ce modèle est implicite 

et se déroule comme suit: 

estimation des concentrations au temps t+At en utilisant le méthode EPCOF 

calcul de l'hydrodynamique 

calcul de la concentration au temps t+At C 

vérification de l'estimation de la concentration en faisant Ia différence entre les 

concentrations estimées ( C -' et celles calculées 

si la différence maximale est supérieure à un seuil de tolérance fixé, ce processus 

itératif est repris en fixant (-' c + *')=(B' + A') jusqu7à convergence. 



Début a 
Lecture des données concernant le maillage, 

les paramètres hydrodynamiques permanents, 
les conditions initiales et les conditions 

aux limites 

- 

Calcul de la densité et de la viscosité 

t U) 

Calcul de la pression E- 
(11 
CI 

1 

T 
a, u 

i 
I cn 

rn Calcul de la vitesse de Darcy a 
U) 
(11 - 
-- 

Calcul de la concentration - Q, 
O 

1 
3 

T O 
I m 

Non 
a - Test de convergence 

Oui 

Figure 5.1 L'organigramme du code de calcul 



Étant donné que I'échelle de temps propre au transport de polluants dans le 

milieu des eaux souterraines peut être de l'ordre de quelques années, il est important 

que le schéma utiiisé pour la simulation possède des qualités de dispersion numérique 

minimales. C'est pourquoi l'attention s'est portée aux méthodes lagrangiennes et 

particulièrement sur le schéma non oscillatoire avec évaluation exacte du fiont "An 

exacte Peak Capturing and Oscillation-fee Scheme "(EPCOF). 

L'objectif de ce chapitre est de présenter la technique EPCOF, de mettre en 

évidence ses avantages et ses inconvénients, et de montrer son intérêt par rapport à 

d'autre méthodes, pour la simulation de la contamination des eaux souterraines 

5.2 Caractérisations des problèmes numériques 

Le transport d'un contaminant, lorsqu'il est considéré comme un marqueur de 

L'eau, est modélisé par une équation de convection dispersion: 

OU C représente la concentration, ui la vitesse moyenne réelle de l'eau dans les pores et 

D le coefficient de dispersion, généralement déterminé à l'aide de la relation suivante: 



avec a le coefficient de dispersivité et u la vitesse moyenne réelie de l'eau dans les 

pores. 

Figure 5.2 Transport d'un contaminant à travers le milieu poreux 

Le premier terme représente la variation de la concentration dans Le temps en un 

point donné. Le second, le terme convectif , représente le déplacement du contaminant 

par advection, c'est à dire à la même vitesse et dans la même direction que l'eau 

souterraine. Le contaminant dissous est transporté par le fluide en mouvement, les 

particules de contaminant se comportant comme des particules d'eau (figure 5.2). Si 

l'advection était le seul phénomène présent, I'eau contaminée se propagerait en 

translation pure dans l'aquifère à une vitesse égale à celle de l'eau dans les pores. En 

réalité, en s'éloignant du lieu d'injection, les particules de substance (traceur) en 

solution dans l'eau s'éparpillent par mélange et s'étalent pour occuper un volume 

croissant, ce qui fait que la concentration décroît (figure 5.2). Cette dispersion du soluté 

résulte de L'action simultanée de deux phénomènes: 



La diffusion moléculaire 

C'est un phénomène physico-chimique, il résulte de l'agitation thermique des 

molécules et prendrait place même en l'absence d'écoulement. 

p~ La dispersion cinématique (ou dispersion mécanique pure) 

C'est un phénomène de mélange essentiellement dû à l'hétérogénéité des 

vitesses microscopiques. Il est dû principalement à trois facteurs (Fried et Combamous, 

197 1): 

+ dans un capillaire, le profil des vitesses est parabolique (figure 5.3a); 

+ les dimensions variables des pores ont pour conséquence une variation des 

vitesses d'un pore à l'autre, ou au sein du même pore (figure 5.3b); 

+ Les lignes de courant fluctuent par rapport à la direction principale de 

l'écoulement (figure 5.3~). 

Ces deux processus agissent simultanément et tendent à séparer deux particules de 

fluide initialement voisines. 

Figure 5.3 Effets de la dispersion cinématique 



Figure 5 .4  Courbe de distribution de la concentration dérivé à partir de l'équation de 
convection dispersion 
- - - - - -  - - - -  

La résolution numérique de l'équation (5.1) génère une solution discrète dans le 

temps et l'espace. La représentativité de ces résultats dépend des caractéristiques 

physiques (champ de vitesse, coefficient de dispersion) du domaine modélisé ainsi que 

de la façon de discrétiser ce domaine. Le choix de la méthode de résolution est dicté par 

la combinaison des caractéristiques du domaine et de la grille de calcul. Cette 

combinaison peut être caractérisée à l'aide de deux nombre sans dimension. Il s'agit des 

nombres de Courant et de Péclet. 



Le nombre de Péclet, qui quantifie en quelque sorte l'importance relative des 

phénomène d'advection et dispersion, à l'échelle de la grille de calcul. Quand P, est 

petit, la dispersion est dominante L'équation est parabolique. Quand P, est grand la 

convection est dominante et l'équation commence à avoir un caractère hyperbolique. 

+ Le nombre de Courant mesure le nombre de mailles de la grille de calcul qu'une 

particule du fluide parcourt en un pas de temps. 

Les méthodes numériques usuelles employées pour résoudre l'équation 

d'advection dispersion peuvent être séparées en deux catégories (Simon, 1990, 

Mouche1 et al., 1990):Les schémas aux différences finies et les méthodes aux 

caractéristiques. 

5.2.1 Schémas aux différences finies 

La plupart des schémas aux différences f i e s  explicites sont limités à des 

problèmes où C p l  pour des raisons de stabilité numérique. Ces contraintes sont 

particulièrement gênantes dans le cas d'une simulation à long terme. Pour faire face à 

ces difficultés, diverses méthodes implicites ont été proposées. Mais pour une bonne 

précision, le pas de temps ne peut être relativement grand. Comme la contamination par 

les lixiviats peut s'étendre sur des années, ceci entraîne une durée de calcul prohibitif. 

De plus, aux forts nombres de Péclet (P,), lorsque l'advection est plus 

importante que la dispersion, les schémas aux diffërences finies qui évitent une forte 

dispersion numérique provoquent des instabilités. Pour éviter que les fionts de 

concentration ne s'écrasent, ces schémas génèrent des concentrations trop fortes ou trop 



faibles immédiatement à l'amont ou à l'aval du fiont (Mouche1 et al., 1990): Le dosage 

entre les deux contraintes (stabilité et dispersion numérique) est t ~ è s  délicat ce qui fait 

que ces schémas ne sont pas facilement utilisables, ni adaptables à des sitüations 

complexes comme l'évolution des contariainants dans des situations géographiques 

étendues et hétérogènes. 

5.2.2 Schémas aux caractéristiques 

Les schémas aux caractéristiques reposent sur l'approximation suivante: 

l'advection et la diffusion, qui sont des processus physiques simultanés, sont traitées 

comme si elles se produisaient successivement à l'intérieur d'un pas de temps. Ces 

schémas ne souffrent pas d'instabilité mais de dispersion numérique due aux lissages 

des concentrations causés par un grand nombre d'interpolations. Un schéma similaire 

aux techniques des caractéristiques a été mis au point il y a quelques années. Ce schéma 

combine les méthodes d'Euler et de Lagrange (ELM). Elle est d'un maniement simple 

et évite certains des problèmes et des limitations sur les pas de temps et d'espace. La 

technique lagrangienne a été considérée durant ces deux dernières décennies comme la 

méthode la plus précise pour résoudre l'équation d'advection dispersion. Dans cette 

méthode, l'équation d'advection dispersion est découplée en utilisant ta dérivée 

lagrangienne, (Neuman, 1 9 8 1 ) 

L'équation (5. I) peut s'écrire sous la forme lagrangienne: 



d e  La dérivée - indique que le changement de la concentration (C) pendant le pas de 
dt 

temps est cdculé le long de La caractéristique définie par: 

* 
Pour calculer la concentration lagrangieme C au temps t"+' au noeud (i) ( point 

M) on procéde comme suit: 

Flux 

Figure 5.5 Principe de la technique lagrangienne à 1D 

0' On cherche P tel que la caractéristique passant par M en f+', passe par P en 

P. Pour cela il faut intégrer l'équation (5.6) 



En général le pied de la caractéristique (P) ne coïncide pas avec les noeud 

fixes de la grille de calcul. Par conséquent une interpolation doit être utilisée 

pour obtenir la valeur de concentration de Lagrange c*(M)--ce, t"). La 

figure (5.5) montre que la concentration en P est obtenue par interpolation 

linéaire de la concentration en i-2 et i-l . 

[nterpolation quadratique 

Figure 5.6 Courbe de distribution de la concentration dérivé à partir de l'équation de 
convection dispersion (Fredj , 1994) 



Il est donc clair que la précision du schéma dépend essentiellement de la 

formule et de l'ordre d'interpolation. En effet une interpolation d'ordre supérieur à un 

réduit considérablement la difiion numérique mais elle peut générer des oscillations 

numériques, (voir figure 5.6 ) (Baptista et al, 1984, Baptiçta, 1987, Cassuli, 1992; Fredj 

et Kahawita, 1994). Par contre, une interpolation de premier ordre, réduit les 

oscillations numériques mais sa capacité de réduire la diffusion numérique dépend de la 

taille du maillage et du pas de temps utilisé (Fredj et Kahawita, 1994; Yeh, 1992). 

Figure 5.7 Les problèmes numériques causé par la résolution des termes convectifs: 
(a) perte de fiont (pic), (b) diffusion numérique, (c ) oscillations numériques (Yeh, 

1992) 



Ces problèmes d'interpolations engendrent une atténuation des pics ou des 

fronts de concentration lors de calcul purement convectif. Ce phénomène est connu 

dans la littérature comme étant le ''peack clipping': (Yeh, 1992) considère qu'il s'agit 

de la plus importante cause de dispersion numérique dans la mithode. La figure (5.7) 

présente un exemple de concentration pour illustrer cette situation. Pendant un 

intervalle de temps At, la distribution de la concentration se déplace d'une certaine 

distance V.At7 généralement VA& n'est pas un entier ce qui veut dire qu'après un pas 

de temps At un noeud projeté vers l'avant n'a pas atteint un autre noeud fixe de la grille 

(figure 5.7a à droite ). Au temps t, le front (pic) de concentration est localisé au noeud 

3. Après le calcul des termes convectifs, le pic de concentraiion au temps tn+i n'est plus 

localisé en un noeud de domaine mais il est situé entre le noeud 3 et 4 , le pic n'est 

alors plus observable, ce qui revient a dire que nous avons perdus le pic (figure 5.7a à 

droite ). La perte de pic de concentration doit être compensée afin de satisfaire la 

conservation de la masse dans le schéma numérique. Cette compensation de la perte du 

pic se manifeste par le développement d'une dispersion numérique (figure 5.7b à droit) 

ou par des oscillations numériques (figure 5 . 7 ~  à droit), cela dépend essentiellement du 

schéma utilisé (yeh and Chang, 1992). 

Pour palier au6'peack clipping" et aux aberrations numériques qu'il génère, 

(Yeh 1992) a proposé une nouvelle méthode de résolution à une dimension. Cette 

méthode est basée sur le traitement distinct des termes convectifs et diffusifs par un 

schéma non oscillatoire avec évaluation exacte dufint "An exact Peak Capturing and 

Oscillation-fiee Scheme "(EPCOF), qui consiste à: 

découpler l'équation de convection-dispersion; 

0 utiliser une technique de suivi des particules arrière "Backward tracking 

method"; 



utiliser une technique de suivi des noeuds avant 'Torward node tracking " 

nutiliser un raffinement adaptatif des maillages "Adoptive local grid 

re$nernent " (A LGR). 

5.3 Schéma non oscillatoire avec évaluation exacte du front 

Pour mieux comprendre la procédure de calcul de l'algorithme de calcul , 

dénnissons tout d'abord deux termes, un élément lisse "smoothJJ et élément raide ou 

cassé "rough" . 

Un élément lisse est un élément dont la valeur, comme la concentration en tout 

point du domaine simulé peut être calculée exactement à partir de ses valeurs aux 

noeuds selon une fonction clairement définie sur l'ensemble du domaine. 

Un élément raide ou cassé, est défini comme étant un élément où il existe au moins 

un point où la concentration ne peut pas être directement déterminé à partir des 

valeurs aux noeuds. 

La figure (5.8) montre un domaine de calcul composé de 3 éléments et de 4 noeuds 

globaux: xi, xz, xs et a. La distribution de la concentration  au temps t. est 
i 

présentée à la figure (5.8). Il est clair qu'une interpolation linéaire de la concentration 

entre les 4 noeuds globaux ne peut être utilisée, pour décrire exactement la 

concentration initiale (q) du domaine. La concentration exacte dans les éléments let 3 

peut être interpolée Linéairement entre les noeuds 1-2et 3-4 respectivement, ces 
* 

éléments sont considirés lisses. Par contre, Iyinterpo1ation de la concentration (C ) 

dans l'élément 2 à partir de la concentration 2 et 3 produit une grande erreur car la 



variation de la concentration dans I'élément 2 n'est pas linéaire, l'élément (2) est dit 

raide. 

Figure 5.8 Déhition d'un élément lisse et raide 

5.3.1 Intégration de l'équation de convection diffusion 

L'algorithme EPCOF peut être utilisé en conjonction avec les méthodes de 

différences finies, d'éléments M s  ou de volumes finis. 

L'équation différentielle qui régit le phénomène de convection diffusion peut être écrite 

~ = e s u k - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - ~  

où J comprend le terme de diffusion. 

La dérivée lagrangienne est calculée par (Neuman, 1984) 



oii cg est la concentration convective. 

Pour calculer la concentration en+' au temps tn+.ci, on procède en quatre étapes 

(Yeh et al., 1992): 

+ première étape: On calcule la valeur de la concentration L,agrangienne(~') des 

noeuds globaux en utilisant la technique de suivi de particule arrière (différenciation 

amont) 

Ainsi une particule de chaque noeud est projetée à partir du temps précédent vers 

l'arrière. 

4 Deuxième étape: On utilise une technique de suivi des noeuds avant "forward node 

f tracking'' pour obtenir la concentration lagrangieme C. z par l'équation suivante: 

Ainsi une particule de chaque noeud est projetée à partir du temps précédent vers 

l'avant 

+ Troisième étape: On détermine si un élément est raide en se basant sur le calcul de 

l'erreur . L'erreur est définie comme étant la différence entre la valeur de la 



concentration lagrangienne interpolée et la valeur exacte da la concentration 

f lagrangieme C. pou  tous les 'Tonvard tracked nodes" 
z 

L'élément sera considéré raide si les relations suivantes ne sont pas respectées. 

f où si et 82 sont les tolérances d'erreur et CMest la concentration maximale de 

l'élément. 

+ quatrième étaoe: Si l'élément est üsse on supprime tous les noeuds activés dans le 

calcul des termes dispersifs au temps t,l et dans le calcul des termes convectifs au 

tn+2. 

Après la résolution du problème de diffusion, on obtient une équation de la forme: 

où N est le nombre des noeuds globaux et Na Le nombre des noeuds activés. 



Pour mieux comprendre L'algorithme de calcul, nous allons l'illustrer par un 

exemple. On suppose que notre domaine de calcul est composé de 5 éléments et de 6 

noeuds globaux: xi, xz, x3 , x4 , xs et xs. La distribution de la concentration enau 
I 

temps t, est présentée à la figure (5.9a). On suppose que la vitesse est constante 

W0.75 d s ,  Ax= 1 m, At- 1s et le nombre de Courant Cr=uAt/&x=0.75. Ii est clair 

qu'une interpolation linéaire de la concentration entre les 6 noeuds globaux ne peut être 

utilisée, pour décrire exactement la concentration initiale (cln) du domaine. La 

concentration exacte dans les éléments 1, 3, 4 et 5 peut être interpolée linéairement 

entre les noeuds 1-2; 3-4 ; 4-5 et 5-6 respectivement. Par contre, l'interpolation de la 
* 

concentration (Q' ) dans l'élément 2 à partir de la concentration 2 et 3 produit une 

grande erreur car l'élément est raide. Si on ra£Ene l'élément 2 avec 1 noeud en x l  (on 

verra plus tard que ce noeud représente un noeud projeté vers l'avant à partir du temps 
* 

f i )  la concentration (C ) dans le domaine est exactement représentée par les 6 noeuds 

globaux et un noeud raffiné. 

La première étape de l'algorithme consiste à calculer la concentration 

lagrangienne des 6 noeuds globaux . Ainsi, tous Les noeuds xi sont projetés vers 

l'arrière. En intégrant l'équatioti (5.12), la position de xi' est de 0.75unité à gauche de 
* 

xi. (Figure5.9a). La concentration (1 ) est obtenue par 

exemple (ci) est obtenue par interpolation des noeuds 1 et 

la distribution de la concentration lagrangieme. 

interpolation linéaire, par 

2. Figure (5.9b) représente 

Dans la deuxiéme étape, on utilise une technique de suivi des noeuds avant pour 

f obtenir la concentration lagrangieme (f ) en utilisant l'équation (5.13). 



Figure 5 .9  Exemple de calcul (ID), utilisant le schéma non oscillatoire avec 
évaluation exacte du fiont. 



Ainsi les 6 noeuds globaux et le noeud f f i é  sont projetés à partir du temps 

f f f f f f  précédent vers l'avant. Les concentrations Cl , C2 ,C3 , C4 ,Cs , C6 et ~ 7 f  aux 

f f f  noeuds xi , xz ,x3 , XA xgf et X: sont égales a C:, c;, CC;, et, et, et C; figure 

f (5 .9~ ) .  est exacte si Cn est exacte et si l'équation (5.14) est intégrée exactement. La 
z 

prochaine étape consiste a déterminer si l'élément est lisse ou raide en utilisant 

l'équation (5.16) et (5.17). Dans notre cas, on remarque que tous les éléments sont 

f raides sauf l'élément 5 carCs est égale à c:. Le noeud xsC est donc supprimé. La zone 

hachuré (figure 5 . 9 ~ )  représente la différence entre la concentration lagrangienne exacte 

et celle interpolée. À la fin de cette étape, on se retrouve avec 6 noeuds globaux et 5 

noeuds rafnnés, xl, xg, x9, xi0 et XII figure(5.9d) . Après la résolution du problème de 

n t 1  cn+l  p + l  cn+l cn+l p + l  p + l  diffusion, on aura 11 concentrations,Cl , , , , , 6 , ,, , 

en + ' iZn + 

+ 'et cnn+l ! e ,  à noter que le nombre de noeuds N est constant 
8 ' 9 "10 11 

alors que le nombre de noeuds activés est variable et dépend du nombre des éléments 

raides présents au temps t,. 

5.3.2 Particularités: Principales ditficulfes 

La mise en ouvre de la méthode de résolution numérique EPCOF à 2D se heurte 

aux problèmes suivants (Cheng et al. 1996): 

5.3.2.1 Suppression de points 

Pour des raisons de vitesse de calcul et d'encombrement de la mémoire, il peut 

etre utile de supprimer des points mobiles lorsque l'information qu'ils véhiculent a 



perdu de son intérêt. La décision de suppression d'un point est fondée sur la linéarité de 

toutes Les concentrations autour de ce point. 

La suppression d'un point dans le cas d'un problème à une dimension peut être 

réalisé sans modifier la forme de la distribution de concentration, puisque les noeuds 

sont situés sur la même ligne, ce qui est extrêmement difncile dans le cas d'un 

problème à plusieurs dimensions. 

5.3.2.2 conservation de la forme de concentration 

L'utilisation de la méthode de triangulation pour raffiner les éléments raides ne 

génère généralement pas une solution unique (Cheng et al. 1996). 

5.3.2.3 Problème de frontières sources 

Le principe du schéma consiste à suivre dans leur mouvement les points 

mobiles dont la concentration est connue et de déterminer tous les éléments raides afin 

d'évaluer exactement le front de concentration raides. L'évaluation exacte des fkonts 

sur les frontières est impossible, lorsque le nombre de Courant est supérieur à un. Pour 

mieux illustrer ce dernier point, nous aborderons un exemple. Supposons que notre 

domaine de calcul est composé de 48 éléments et 34 noeuds globaux (figure 5.10) 

La distribution de la concentration à P est 1 aux deux noeuds 7 et 14, et est 

égale à O aux autres noeuds. On suppose que la vitesse est constante et que le nombre 

de Courant est égale à 3.25 dans la direction x et est égale à 1.25 dans la direction y. 

Calculons les concentrations à P+' . On calcule la valeur de la concentration 



lagrangienne des noeuds globaux en utilisant la technique de suivi de particule arrière 

(première étape). 

1 2 3 4 5 6 

Figure 5.10 Domaine de calcul de l'exemple de démonstration 

La concentration lagrangieme est égaie à 1 pour le noeuds 15, 16 et 24, entre O 

et 1 pour les noeuds 8, 9, 17, 18, 23, 25 et O pour tous les autres noeuds. Après la 

projection avant des noeuds (deuxi2me étape) les noeuds globaux 1,2,3,7, 8,9,  1 0, 1 4, 

15, 16 et 17 sont projetés aux noeuds l*, 2*, 3*, 7+, S*, 9*, IO*, 14*, 15*, 16* et 17+ 

respectivement, les autres noeuds sont projetés en dehors du domaine. Selon la 

démarche de l'étape 3 et les équations 5.16 et 5.17, seulement 5 éléments sont 

considérés raides. Ils sont marqués par un R sur la figure (5.10). Cette analyse est 

inexacte parce que tous les éléments autour des noeuds 15, 16, 17, 18,24 et 25 sont des 

éléments raides Figure (5.1 1). 



et al 1996) ont Pour supprimer ces aberrations (Cheng 

modification au schéma EPCOF " A Lagrangza~ 

présenté une 

?-Eulerian Method with adaptiviy 

Local Zoomin and PearGNalley Capturing Appoach to solve two-dimensional advectio- 

d z ~ i o n  transport equatiom". La modification de schéma EPCOF consiste 

essentiellement à raffiner les éléments raides . Le schéma modifié est utilisé en 

conjonction avec la méthode des éléments &lis en utilisant un maillage rectangulaire 

avec la technique de triangulation de Delarmey pour rafnner les éléments raides. Cette 

méthode s'est avérée satisfaisante et a été utilisée avec succès pour des problèmes 

académiques. Nous L'appliquons, quant à nous, à la simulation numérique de la 

contamination des eaux souterraines, en lui apportant cependant certaines 

modifications. 

1 2 3 4 5 6 

Figure 5.11 Probléme frontière 



5.4 Schéma non oscillatoire avec évaluation exacte du front 

La technique EPCOF est incontestablement la plus précise pour résoudre 

l'équation d'advection dispersion à une dimension, elle ne génère aucune dispersion 

numérique ni instabilité. Cette approche peut être appliquée aux problèmes a plusieurs 

dimensions en lui apportant cependant certaines modifications (Cheng et al 1996, Yeh 

et al 1992) afin que celle-ci soit capable de résoudre le phénomène de contamination 

des eaux souterraines en deux dimensions sur des maillages non structurés. 

Figure 5.12 Domaine de calcul 

Pour mieux illustrer l'algorithme de calcul, nous aborderons un problème à 2D. 

On suppose que notre domaine de calcul est composé de 48 éléments et de 34 noeuds 

globaux (figure 5.12) La distribution de la concentration à t" est 1 au noeud 16 et O aux 

autres noeuds. Les éléments autour du noeud 16 sont raninés par un noeud au centre de 



gravité ( 35*, 36*, 37*, 38*, 39 * et 40*) dont la concentration est nulle (figure 5.12). 

En suite, le domaine est discrétisé en éléments triangulaires en utilisant la technique de 

Delauney ( figure 5.13 ). 

Les conditions d'écoulement sont telies que le nombre de Courant est de 3-2 

dans la direction x et de 0.375 dans la direction y. Ainsi sept étapes sont utilisées par le 

schéma EPCOF modifié pour résoudre le problème d'advection dispersion a deux 

dimensions. 

première étaae: On calcule la valeur de la concentration lagrangienoe (q) des 

noeuds globaux en utilisant la technique de suivi de particule arrière. Ainsi, une 

particule de chaque noeud est projetée à partir du temps précédent vers l'arrière. 

Comme montré à la figure 5-13' le noeud global 19 est projeté vers l'arrière sur 

l'élément raide composé du noeud global 16 et des deux noeuds raffinés 40* et 35*. 

1 2 3 4 5 6 

Figure 5.13 technique de suivit de particule arrière (première éîape) 



Figure 5.14 Technique de suivit de particule avant (étape 2) 

Deuxième étape: On utilise une technique de suivi des noeuds avant "forward node 

tracking" pour obtenir la concentration 1agrangienneqf . Ainsi une particule de chaque 

noeud est projetée à partir du temps précédent vers l'avant. A partir des équations 

suivantes 

Il est noté que la solution présentée par cf est très proche où égale à la solution 

exacte si les équations 5.19 et 5.20 sont intégrées correctement sans une tolérance 



d'erreur. Puisque cf est une solution exacte sans tolérance d'erreur, elle représente 

donc une bonne référence pour déterminer si l'élément est lisse ou raide. 

Les numéros de noeuds marqué d'une indice (') indique la position de la 

particule projetée vers l'avant. La concentration du noeud 7' est O car la concentration 

du noeud globale numéro 7 au temps précédent est 0. La concentration du noeud 16' est 

1 puisque la concentration du noeud globale numéro 16 au temps précédent est 1. 

Chaque élément sur la trajectoire d'un noeud de la frontière projetée vers I'avant est 

marqué par la lettre B (figure 5.13) 

Troisième étape: deux sous étapes sont considérées dans cette étape. La première 

consiste 8 déterminer si un élément est raide en se basant sur le calcul de l'erreur . 
L'erreur est d é f i e  comme étant la différence entre la valeur de la concentration 

lagrangienne interpolée C: et la valeur exacte da la concentration lagrangienne 

f . pour tous les noeuds mobiles (projetés vers l'avant) "forward tracked nodes". 
I 

L'élément sera considéré raide si les relations suivantes ne sont pas respectées. 



où E[ et ~2 sont 

l'élément. 

On remarque que 

f Si Ci est grande 

f les tolérances d'erreur et C est la concentration maximale de M 

J - l'équation (5.23) est inversement proportionnelle à la valeur de 5 . 
elle rend l'élément lisse , si elle est petite elle rendre l'élément raide. 

Pour éviter ce cas, l'équation (5.24) est utilisée pour s'assurer que l'élément est lisse 

quand la différence (C: - qf )est faible. 

EI et ~2 sont deux erreurs relatives. Pour obtenir une solution plus juste, Q doit être très 

faible avec une valeur O comme limite. Quand €2 est égale à 0, si seul peut déterminer 

si l'élément est lisse ou raide. 

La deuxième sous-étape consiste à résoudre le problème des conditions frontières. On 

vérifie les éléments marqués par un B (figure 5.14) pour voir si un élément raide a été 

créé par un noeud mobile situé sur la frontière. Si c'est le cas, tous les éléments raides 

sont r a f i é s  par un noeud au centre de gravité. 

quatrième étape: Si l'élément est lisse, on supprime tous les noeuds activés dans le 

calcul des termes convectifs au tn+z. Après la résolution du problème de diffusion, on 

obtient une équation de la forme: 

où N: nombre des noeuds globaux 

Na nombre des noeuds raffinées 

Compte tenu du nombre des éléments raides rencontrés, le nombre de points 

mobiles (raffinés) dans le domaine simulé devient très élevé. Pour des raisons de 

vitesse de calcul et d'encombrement de mémoire, il peut être nécessaire de supprimer 



les noeuds rafnnés (Na) dans le calcul des termes de diffusion tout en n'affectant pas la 

précision des résultats. Dans ces conditions, la concentration de tous les noeuds activés 

à la £in du pas du temps tk+i, est calculée avec l'équation suivante (Neuman, 1 990; Yeh 

et a1.,1992; Yeh et al., 1995; Cheng et al, 1996). 

Sixième étape: la technique de triangulation de Delauney est de nouveau utilisée pour 

discrétiser le domaine fonné des N noeuds globaux et des Na noeuds mobiles dans les 

éIéments raides (figure 5.15). Ainsi, tous les sous élément raides (figure 5.15 ) sont à 

leur tour rafnnés par un noeud à leurs centre de gravité. 

1 2 3 4 5 6 

Figure 5.15 RaEnernent des éléments raides par un noeud au centre 



Figure 5. 16 Discrétisation de domaine en utilisant la technique de Delauney 

Septième étape: L'étape finale consiste à calculer la valeur de la concentration 

lagrangienne des nouveaux noeuds générés à l'étape 6 en utilisant la technique de suivi 

de particule arrière et de discrétiser le domaine de calcul &é comme illustré P la 

figure (5.16 ) 

5.5 Technique de suivi des particules 

Le principe du schéma consiste à suivre dans leurs mouvements un jeu de points 

mobiles dont la concentration est connue. Pour déterminer la trajectoire des particules, 

différentes méthodes sont disponibles. Une erreur sur la détermination de la trajectoire 

aura le même effet que l'ajout d'un terme de dispersion parasite. La précision peut être 

accrue par l'utilisation d'une des procédures d'intégration de Runge-Kutta. Des 

simulations numériques ont été réalisées à l'aide de l'intégration simple d'Euler et 

d'une méthode de Runge-Kutta à I'ordre quatre. Les résultats révèlent qu'une meilleure 



précision est obtenue avec la méthode de Runge-Km. La performance de ce schéma 

d'intégration peut être illustrée à partir de l'exemple suivant: 

- = = - = ; = : : = = O  

* : : = : : : = : : = :  
+position initiale de la 

<q*=- ; me-.: = = G 
-d particule 

Figure 5.17 Domaine de calcul de l'exemple de démonstration du schéma de R-Kutta 

Soit un domaine de calcul [-3000, 3000lX [-3000, 30001 discrétisé en 288 

éléments et 169 noeuds (figure 5.17). La distribution de vitesse est d é f ~ e  par 

l'équation suivante qui engendre une trajectoire circulaire. 

On suppose qu'au temps t=O une particule est située au point (0, 2000). Après 

une période de temps de 1000, la particule aura boucler son parcours et se trouve au 

même point de départ (0, 2000). Ceci peut être déterminé analytiquement par les 

relations suivantes: 



D'excellent résultats ont été obtenus par le schéma de Runge-Kutta en utilisant 

un nombre de Courant élevé (Cr 40) .  La figure5.19(a) et 5.19@) indique la trajectoire 

de la particule à t=1000 (une période) et a t-2000s respectivement. La solution obtenue 

coïncide avec la solution exacte. Après une période de temps de 1000, la particule aura 

bouclé son parcours (un cercle de rayon 2000m) et se trouver à sa position de départ (0, 

-300 O -2000 -1000 D 1 O O D  2000  3000 

Figure 5.18 Vecteurs vitesse 



-- 

Figure 5.19 Évolution de la position de la particule (a) F1000, (b) t=2000 



5.6 Conclusion 

Dans ce chapitre, nous avons exposé la méthode des volumes finis avec 

rafnnement adaptatif des maillages et une évaluation exacte du front pour la 

modélisation du transport de contaminant réactif ou non réactif dans un écoulement à 

densité variable. Nous proposons de valider cette méthode par différents cas tests en 

comparant les résultats numériques obtenues avec les résultats expérimentaux ou 

numériques disponibles dans la littérature. 

On commence par la validation du modèle d' écoulement bidimensiomels via 

des éîudes numériques des transferts dans la zone non saturée, application à l'étude de 

recharge ethu drainage d'une nappe. Ensuite on effectuera la simulation de 

contamination de la nappe souterraine. 

Les cas de validation considérés sont les suivants: 

1. Étude numérique des transferts bidimensionnels dans la zone non saturée, 

application à l'étude du drainage et de la recharge d'une nappe à surface libre 

(chapitre VI) 

2. Modélisation de la migration d'un contaminant dense dans un milieu poreux 

saturé. (chapitre Vil) 

3. Transport d'un panache à plusieurs éléments contaminants dans un écoulement à 

densité variable. (chapitre VlIi) 

4. Modélisation de la migration des conhminants dans le site d'enfouissement 

Borden en Ontario (chapitre W. 

Pour chacun de ces cas, nous décrivons la géoméûie, le maillage utilisé et les 

conditions fiontières. Les résultats seront présentés sous forme de graphiques illustrant 



l'évolution des paramètres les plus appropriés quand à l'interprétation des phénomènes 

mis en jeux. Nous serons alors en mesure d'évaluer les performances du schéma 

numérique utilisé et de son impact sur le phénomène physique observé. 

Le code de calcul est écrit en Ci+, les calculs ont été effectués sur un ordinateur 

Compatible IBM, Pentium 133 Hz. 



CHAPITRE VI 

Étude numérique des transferts bidimensionnels dans la zone non 

saturée, application à l'étude du drainage et de la recharge d'une 

nappe à surface libre 

6.1 Introduction 

Due à la croissance de la demande d'eau pour répondre aux besoins des zones 

urbaines, l'habilité de prédire le taux de recharge et de drainage des nappes à surface 

libre est d'une importance primordiale. On doit être en mesure d'évaluer la quantité 

mais aussi la qualité des eaux de ces nappes. L'eau souterraine, bien quelle soit logée 

dans le sous-sol, n'est pas à l'abri de la pollution. Elle est de plus en plus contaminée 

par des polluants divers, notamment d'origine industrielle et agricole. 

Ce chapitre est consacré à la validation du modèle d'écoulement via des études 

numériques des transferts bidimensionnels dans la zone non saturée, application à 

l'étude de la recharge et/ou du drainage d'une nappe à surface libre. Les équations et les 

modèles mathématiques utilisables pour décrire correctement ces transferts ont déjà 

donné lieu à des publications (Vauclin et al. 1973, Gureghian, 1983). Notons 

simplement que ces équations sont fortement non-linéaires à cause de la variation 

rapide de la perméabilité et de la succion avec teneur en eau. La mesure des transferts 

de masse dans la zone non-saturée est en effet très délicate suite à la présence de trois 

phases non-miscibles (air - eau - sol). La mesure, dans ces conditions, nécessite la mise 

au point de méthodes non destructives, rapides et sélectives (séparation des phases eau 

et air ). 



6.2 Recharge d'une nappe à surface libre 

Zone non saturé 

Figure 6.1 Domaine de calcul : Application à l'étude de la recharge d'une nappe 

Le premier cas étudié est la recharge d'une nappe à surface libre. Nous avons 

comparé nos résultats avec les résultats expérimentaux de (Vauclin et al. 1979) et les 

résultats numériques obtenus par (Gureghian, 1983) sous les mêmes conditions en 

utilisant un schéma aux éléments finis. Pour des raisons de calcul numérique, deux 

types de maillages ont été étudiés. Dans le premiers cas, un maillage relativement 

uniforme a été utilisé (figure 6.2). Dans le second (figure 6.3), le maillage a été r a f i é  

afin obtenir plus de détails dans la région de recharge. Le domaine de calcul et les 

conditions frontières sont présentés à la figure (6.1). Les équations de base sont 

données par les équations (3.18 et 3.20), dont les conditions initiales et aux limites sont 

données au tableau 6.1 : 



Tableau 6.1 Conditions initiaies et aux limites 

Les courbes caractéristiques du sol sont définie 

(équations 3.22 et 3.23) 

par la méthode Gardner 

ou a, b (ont la même unité que hm), c, d ( ont le même unité que hn), m, et n sont des 

constantes dont les valeurs sont données au tableau (6.2). 

Les lignes des pressions obtenues à partir de modèle et le débit spécifique 

correspondant au temps 4h sont présentés aux figures (6.4 et 6.5), celles qui 

correspondent au temps de calcul 8h sont présentée aux figures 6.6 et 6.7. Sur ces 

figures, on a rapporté également la position de la surface libre. 

Tableau 6 . 2  Paramètres de la fonction qui décrit les propriétés hydraulique du sol 

a 

2.99x106 

c 

4.0x104 

b 

2 .99~1  o6 
d 

4.0x104 

rn 

5.0 

KS 

35cnilbr 

n 

2.9 

# (porosité) 
.L 

0.3cm'/cm' 





Figure 6.4 Débit spécinque au temps t 4 h  (maillage 1 )  

Figure 6.5 Lignes de pressions au temps M h ,  (maillage 1) 



Figure 6.6 Débit spécifique au temps t=8h en utilisant le maillage 1 

Figure 6.7 Lignes de pressions au temps t=8h (maillage 1) 



La figure (6.8) montre une comparaison de l'évolution de la position de la 

surface libre tellequ'observée et calculée en fonction du temps (t=3h et t 4 h )  en 

utilisant le maillage 1. La figure (6.9) montre une comparaison de l'évolution de la 

position de la surface libre: expérimentale, calculée et les résultats numérique obtenues 

par [Gureghian, 19831 en utilisant un schéma des éléments f i s .  On remarque qu'à tout 

instant la surface libre est légèrement plus haute dans le cas réel que dans le modèle 

numérique. Mais généralement les résultats obtenus concordent bien avec les solutions 

expérimentales. Les résultats montrent que la précision du schéma n'est pas affectée 

par le choix du type de maillage. 

Figure 6. 8 Comparaison de l'évolution de la position de la surface libre, expérimentale, 
schéma des éléments nn is  (FEN et calculée en utilisant le (maillage 1) 

200 -- 

180 

160 

140 

+Courbe exp&imentale W h )  
- +Courbe simulée (t4- h) 

~- 4 C o u r b e  expérimentale (Hh) 

- 



180 1 -4- Courbe expMmentaie (t4- h) 

A Courbe simulée (t= h) I 
160 t -X- Courbe sirnul& FEM ( M h )  1 

O Courbe expérimentale (t=2h) 

+Courbe simulée (Wh) 
-X- Courbe simulée FEM (t=2h) 

100 

- 5  

Figure 6.9 Comparaison de l'évoiution de la position du surface libre, expérimentale et 
calculée en utilisant le (maillage 2) 

6.3 Drainage d'une nappe à surface libre 

Vauclin et al. (1973). ont présenté une étude expérimentale consacrée au 

drainage d'une nappe à surface libre. Le domaine de mesure est une tranche de sol de 

200 cm de haut, 300 c m  de long et 5 cm d'épaisseur reposant sui une base horizontale 

imperméable et comprise entre deux parois de Plexiglas. Les deux extrémités 

verticales de cette tranche de sol sont reliées à des réservoirs permettant d'imposer Le 

niveau d'une nappe à surface libre dans ce massif poreux, et de faire varier ce niveau 

pour simuler des essais de rabattement de nappe. 



L'essai présenté est un essai de drainage par rabattement gravitaire consistant a 

partir d'une nappe initialement horizontale à la cote h=143 cm, et en équilibre 

hydrostatique, à laquelle on impose les conditions suivantes: 

à l'aval (x-O) la surface Libre est brutalement abaissée au temps P O  de la cote 143 

cm à la cote 80 cm par l'intermédiaire d'un réservoir. Elle est en suite maintenue à 

cette cote pendant toute la durée de l'essai. 

à l'amont (x=300 cm) le niveau de la surface libre est maintenue constant (à la cote 

h=143 cm) par l'intermédiaire d'un réservoir alimenté (pour t >O) par une pompe à 

débit contrôlé. 

ah 
Zone non saturé 

J -=O 
.. .. - dx Niveau initial de la nappe d'eau 

- - . . . . . . . . . . - . . . . . . . . . . - . - - - - . . . . - - - - - - - - . - . . . . - - 

Surface libre de la nappe 

Zone saturé 

Figure 6.10 Domaine de calcul et conditions aux limites 

Le domaine de calcul et les conditions aux limites sont présentés au figure 

(6.10). Les conditions initiales et aux limites sont données au tableau 6.3 : 



Tableau 6.3 Conditions initiales et aux limites 

Les paramètres de la fonction qui décrivent les propriétés hydrauliques du sol sont 

donnés au tableau 8.4 

Tableau 6.  4 Paramètres de la fonction qui décrivent les propriétés hydrauliques du 

sol 

La figure 6.1 1 présente le débit spécifique et la position de la surface libre 

obtenus au temps lh. La figure (6.12) présente une comparaison de la position de la 

surface libre expérimentale et celle obtenue par le modèle à t=lh. Les résultats 

montrent que la courbe simulée co'hcide sensiblement avec la courbe expérimentale. 
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6.4 Drainage d'une nappe a surface Iibre 

Ce test a pour but d'apporter une validation supplémentaire en ce qui concerne 

la solution du drainage d'une nappe à surface libre. L'exemple de calcul est similaire à 

l'exemple précèdent sauf que la condition aux fiontières aval a changé. 

à l'aval (x=O) la surface libre est brutalement abaissée au temps t=O de la cote 143 

cm à la cote 80 cm par l'intermédiaire d'un réservoir. Elle est en suite maintenue à 

cette cote pendant toute la durée de l'essai. 

à l'amont (x=300 cm) le niveau de la surface libre est égale à 143 cm à t=O. À DO la 

ai 
condition du Neuman est appliqué - = O 

& 

Zone non saturé 

Surface Iibre de la nappe 
200cm 

Zone saturé 

300m 

Figure 6.13 Domaine de calcul et conditions aux limites (exemple 3) 



Figure 6.14 Débit spécifique et la ligne de la surface Libre à t=l h 
. . l  1 1 5 1 1 1 ~ 1 1 1 1  

1 1 1 1  I L I ,  I l I l '  - --------- ----_ ---- - 40.87------------ -------- - - - -- -- - - -- - ---4 ----- c--- ---- - ,------ d-"- ------- - 

5 0  100 1 5 0  2 0 0  

Figure 6.15 Lignes de pression à t=l h 



- Courbe sirnul& ( t a  7 h) 

A Courbe expérimentale (M.5h) - Courbe simulée (t=O.Sh) 

4D t -O- Courbe exp%mentaie (t=l h) 1 - Courbe simulée (t=l h) 
1 I 

Figure 6.16 Comparaison de l'évolution de la position du surface libre, expérimentale 
et calculée à t=0.1,0.5 et lh 

À la figure (6.14), on présente le débit spécinque calculé à H h .  À la figure 

(6.16) on présente la variation du niveau de surface libre au temps @=O. 1, 0.5 et I h), on 

compare avec les résultats expérimentaux de (Vauclin, 1979). Ce test confirme encore 

la précision et la capacité du schéma à bien reproduire, le drainage d'une nappe à 

surface libre. 



Chapitre W 

Modélisation de la migration d'un contaminant dense dans un 

milieu poreux saturé 

7.1 lntroducfion 

La plupart des modèles existants qui traitent de la contamination de la nappe 

considèrent que la densité du fluide est égale à celle de l'eau. Mais des études ont 

montré que le comportement du panache est fortement affecté lorsque la différence de 

densité entre le fluide et l'eau est supérieure à 0.2%. Il faut donc tenir compte de cette 

différence, surtout lorsqu'il existe plusieurs sources a la surface dont la diffërence de 

densité est comprise entre 0.5% et 4%. L'écoulement instable est souvent influencé par 

la force de gravité qui, sous certaines conditions, superpose des perturbations au profil 

de la concentration qui provoque le mélange des fluides afin d'atteindre un gradient de 

densité stable. 

L'impact du développement des instabilités sur le transport de contaminant 

n'est pas bien connu. Les études expérimentales de Schincariol et al., 1990 et Oostrom 

et al., 1992 ont montré qu'au-delà d'une certaine concentration, l'écoulement perd son 

caractère stable. Les instabilités qui apparaissent se manifestent par la formation de 

lobes it la limite inférieure de Ia zone de mélange. 

Le problème du développement et de l'amplification des instabilités n'a pas, 

jusqu'à présent, été résolu dans son ensemble. Plusieurs auteurs ont essayé de 

comprendre I'incidence qu'a ce phénomène sur la structure des écoulements mais ils se 

sont généralement contentés de définir les limites de transition entre déplacement stable 

et instable. Peu d'études ont essayé de comprendre l'origine et la propagation des 



instabilités dans un écoulement à densité variable. Les études numériques de 

Schcariol, 1993, ont essayé de comprendre comment les instabilités se forment et 

grandissent en utilisant le modèle VaporT. Ce code de calcul se heurte à la difision 

numérique qui se traduit par la génération des instabilités. Pour pallier à cette situation, 

la discrétisation du domaine simulé doit être très fine (Ax=Ay=2.5mm). Ceci génère 

évidement des temps de calcul et des besoins en mémoire élevés et, aussi, on pense que 

la dispersion @=a u) est efficace à lisser ou élimine les perturbations avant qu'elles 

aient la chance de croître ou de se former. Pour mieux comprendre les conditions sous 

lesquelles les instabilités se développent et s'amplifient, un modèle numérique 

possédant une qualité de dispersion numérique minimale est nécessaire. Les études 

expérimentales constituent un point de départ et des données pour la calibration du 

modèle d'étude. 

La première partie de ce chapitre porte sur la validation du modèle 

mathématique de calcul de la migration d'un contaminant dense dans un milieu poreux 

saturé. Nous comparons les résultats numériques obtenus avec les résultats 

expérimentaux et numériques de Schincariol et Schwartz, 1990,1995. 

Plusieurs analyses théoriques ont montré que la stabilité du système peut être 

examinée à travers la réponse du système aux variations des variables fondamentales , 

telles que la concentration, la vitesse et la pression. Cette théorie de variation des 

variables peut être utilisée par le modèle numérique pour étudier comment les 

instabilités se forment et quelle influence ils ont sur le champ des vitesses et la 

distribution de la concentration. Plus spécifiquement, la deuxième partie de ce chapitre 

porte sur la compréhension du mécanisme de développement et d'amplification des 

instabilités. 



7.2 Comparaison de nos résultats avec les observations 

expérimentales de Schincariol et a/=, (1 990). 

Le premier cas étudié est 17intnision d'un polluant salé (NaCi) @Ius lourd que 

son environnement) dans un milieu isotopique et saturé- L'écoulement est orienté de 

gauche à droite avec une vitesse horizontale moyenne de 3 .06~10-~  d s .  La 

concentration initiale est de 2000 mgl. Les caractéristiques physiques de l'aquifêre 

ainsi que les paramètres utilisés sont présentés au tableau (7.1). Le domaine de calcul et 

les conditions fiontières sont présentés à la figure (7.1). 

4 1 06.25cm b 

Figure 7. 1 Domaine de calcul et conditions fiontières 

Tableau 7. 1 Paramètres 

Paramètres Valeurs 
conductivité hydraulique 5 . 6 ~ 1 0 ~  m s-' 
perméabilité 5.7x10-" m2 
porosité 0.38 
viscosité de l'eau 1.002~1 0'' g cm-' s-' 
viscosité de 2000 mgL NaCl 1 .006~ 1 o ' ~  g cm-' s-' 
viscosité de 5000 m g 5  NaCl -1  -1  1.01 1x10-? cm s 
densité relative de l'eau à 2 0 ' ~  0.9982 g cm*' 
densité de 2000 m g L  NaCl 0.9997 g cm" 
densité de 5000 mg/L NaCl 1.0018 g c m 3  
dispersivité longitudinale a, 3 . 0 ~ 1 0 ~  m 
dispersivité transversale a,  
difision moléculaire 



O 2 0  40 6 O 8 0  100 

Figure 7.2 Discrétisation du domaine de calcul en utilisant un maillage uniforme 

(maillage 1) 

Figure 7.3 Discrétisation du domaine de calcul en utilisant un maillage raffiné 
(maUage2) 



Figure 7 .4  Résultat expérimental du déploiement d'un contaminant de concentration 
(G2000 mg/l de NaCl) à ~ 7 2 h  Schincariol et al., 1990 

LIU 

30 

20 i 
Figure 7.5 Résultat numérique du déploiement d'un contamÎnant de concentration 
(C=2000 mgA) a t=72h en utilisant le maillage 1,  aL=0.03cm, a~0.003crn P,=15.5 et 

Figure 7.6 Résultat numérique du déploiement d'un contaminant de concentration 
(C=2000 mg/l) i t=72h en utilisant le maillage 2, aL=0.03cm, a~0.003cm,  Pe=15.5 et 

Cr=2.9S 



Pour des raisons de calcul numérique, deux types de maillage ont été étudiés. 

Dans le premier cas, un maillage relativement uniforme a été ~ s é  (figure 7.2). Dans 

le second, le maillage a été raffiné afin d'obtenir des détails dans la région du panache 

(figure 7.3). 

Les figures 7.4, 7.5 et 7.6 détaiilent le déploiement du contaminant 72 h après 

l'injection . La figure 7.4 illustre le résultat expérimental de Schincariol et al., 1990, et 

les figures 7.5 et 7.6 les résultats numériques en utilisant le maillage 1 (Ax = Ay= 

7.5mm, 9380 points ou 18348 éléments) et le maillage 2 ( 6221 points ou 1220 

éléments). Les résultats montrent que la précision du schéma n'est pas dfiectée par le 

type de maillage utilisé. Les résultats obtenus en utilisant un nombre de Péclet et de 

Courant élevés (Pe = 15.5, Cr=2.95) sont appréciables et concordent avec la solution 

expérimentale pour les deux types de maillage utilisés. En effet, on observe la 

formation d'une poche (lobe) à la limite inférieure de la zone de mélange. Cette 

instabilité a été observée dans les résultats expérimentaux. En plus, le temps de 

parcours obtenu par simulation est en accord avec les données expérimentales, ce qui 

tend à valider la technique du suivi des particules dans le temps. Par contre, on observe 

que les résultats obtenus par le modèle ne montrent pas les faibles oscillations 

observées à la limite inférieure du panache dans les résultats expérimentaux. 

Les résultats présentés par les figures 7.7 et 7.8 sont obtenus en utilisant les 

mêmes paramètres que pour la simulation précédente sauf qu'on a augmenté la 

dispersivité longitudinale et transversale à 0.1 et 0.02 cm respectivement. La 

comparaison des figures 7.5-7.8 montre que la diminution de la dispersivité est suivie 

par la formation d'une poche à la limite inférieure de la zone de mélange et 

l'abaissement de sa limite supérieure. 
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Figure 7.7Rhltat numérique du déploiement d'un contaminant de concentration 
(C=2000 mg) à t72h en utilisant le maillage 1, aL=O. lcm, af0.02crn Pe=6.33 et 

C,=2.95 

- - - - -  

Figure 7.8 Résultat iïiEiéiiqüe duaéploTement 8 u n  c o n ~ a n t d e c o n e e ~ ~ m  
(Q+2000 mgA) à t72h en utilisant le maillage 1, aL=O. km, af0.02cm Pe=6.33 et 

Cr=2 .95 

La figure 7.9 représente un suivi de la position d'une particule injectée au 

milieu de la source de pollution a t=O. Le temps de parcours obtenu par simulation est 

en accord avec les données expérimentales, ce qui tend à valider la technique du suivi 

des particules dans le temps en utilisant la rnéthade d'intégration de Runge-Kutta 

d'ordre quatre. 



Figure 7.9 Suivi d'une particule dans le temps (+72h, C=2000mg/l) 

Le deuxième cas étudié est l'intrusion d'un polluant salé (NaCl) de 

concentration 5000 mg/l et de densité 1.00 18 g/cm3. Les figures 7.10 à 7.18 comparent 

les résultats numériques obtenus avec un maillage non unifonne et les résultats 

expérimentaux de Schincariol et al., (1 990). On remarque nettement les instabilités 

gravitatio~elles qui se manifestent sous forme de protubérances dans la partie 

inférieure du panache. Les figures 7.10 à7.18 détaillent le déploiement du polluant 24h, 

54h et 72h après l'injection. La comparaison de la figure 7.1 1 (aL=O.lcm, a~=0.02cm 

et Pe=6.33) et de la figure 7.12 (aL=0.03cm, af0.002cm et Pe=l 8.17) montre que, plus 

la dispersivité diminue, plus le nombre des instabilités augmente. Ces résultats sont 

prévisibles car List's (1965) a montré, dans son travail théorique, que l'augmentation 

de la dispersion réduit les gradients de concentration et, du même coup, réduit les 

risques que se développent des instabilités. 



Figure 7.10 Résultats expérimentaux du déploiement d'un contaminant de 
concentration (Q'=5000 mg) à t34h Schincariol et al., 1990 

Figure 7.11 Résultats numériques du déploiement d'un contaminant de concentration 
(C=5000 m g )  à t=24h en utilisant le maillage 2, a ~ = 0 .  lcm, a-r=0.02cm Pe=6.33 et 
- - - - - - - - - - - Cr=2.95 - - - - - - - - - -  - - - - -  

Figure 7.12 Résultais numériques du déploiement d'un contaminant de concentration 
(C=5000 mgll) à F24h en utilisant le maillage 2, aL=0.03cm, a ~ 0 . 0 0 2 c m  Pe=18. 17 



Figure 7.13 Résultats expérimentaux du déploiement d'un contaminant de 
concentration (C=5000 mg/l) à t 4 4 h  Schincariol et al., 1990 

Figure 7.14 Résultats numériques du déploiement d'un contaminant de concentration 
(C=5000 rng/l) à t=54h en utilisant le maillage 2, aL=O. 1 cm, apO.0 1 cm Pe=7 

- - - - - - -  - - - - - - - - - - - - -  - - - -  - - - -  - - - -  

Figure 7.15 Résultats numériques du déploiement d'un contaminant de concentration 
(G5000 mg) à F54h en utilisant le maillage 2, aL=0.03cm, a~0.002cm Pe=18.5 



Figure 7.16 Résultats expérimentaux du déploiement d'un contaminant de 
concentration ((C=5000 mg/l) à F72h Schincariol et al., 1990 

Figure 7.17 Résultats numériques du déploiement d'un contaminant de concentration 
(C=5000 mgA) à t=72h en utilisant le maillage 2, aL=O. lcm, af0.01cm Pe=7 

Figure 7.18 Résultats numériques du déploiement d'un contaminant de concentration 
(G5000 mgA) a t=72h en utilisant le maillage 2, aL=0.03cm, af0.002cm Pe=18.6 
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Figure 7.19 Les champs de vitesse a t 44h  (C=5000mgA) 

+ =0.001 cmls 

20 40 60 80 

Figure 7.20 Les champs de vitesse à t=72h (C=5000mg5) 



Les figures 7.19 et 7.20 représentent les champs de vitesse calculés 

respectivement à cinquante-quatre heures et soixante-douze heures. Ces figures 

illustrent bien le mouvement du fluide vers le haut et vers le bas. Les temps de parcours 

simulés, dans les deux cas, sont en accord avec les données expérimentales, ce qui tend 

à valider la technique du suivi des particules daos le temps. La figure 7.21 représente le 

suivi d'une particule ( ~ 7 2 )  injectée au milieu de la source d'injection au temps *O. 

Figure 7.21 Suivi d'une particule dans le temps (t=72h, Q3000rngll) 

Le troisième cas étudié est l'intrusion d'un polluant salé (NaCl) de 

concentration 10000 mg/l et de densité 1.0053 g/cm3. Les figures 7.22 et 7.23 

comparent les résultats numériques obtenus avec un mailiage non unifoxme et les 

résultats expérimentaux de Schincariol et al., 1990 (figure 7.22). On remarque 

nettement les instabilités gravitationnelles qui se manifestent sous forme de 

protubérances dans la partie inférieure du panache. 



125d09L can be c i ~ ~ ~ h e c l  in either group) 

Figure 7.22 RésuItats expérimentaux du déploiement d'un contaminant de 
concentration (C=10000 r n d )  à t=54h Schincariol et al., 1990 

Figure 7.23 Résultats numériques du déploiement d'un contaminant de concentration 
(Q'=10000 mgA) à t-54h en utilisant le maillage 2, aL=0.03cm, ay0.002cm Pe=24.4 

La figure 7.24 représente les champs de vitesse calculés à cinquante-quatre 

heures. On observe nettement les instabilités gravitationnelles qui se manifestent par le 

mouvement du fluide vers le haut et vers le bas. La figure 7.25 représente un suivi de la 

position d'une particule injectée au milieu de la source a t=O. Le test a ité effectué pour 

différentes concentrations (2000, 5000 et 10000 mgll). On observe, que plus la 

concentration du panache est élevée, plus la solution pénètre en profondeur. 



20 40 60 80 

Figure 7.24 Les champs de vitesse à M4h (C=10000mg/l) 

Figure 7.25 Suivi d'une particule du panache de concentration (C=2000, 5000 et 
10000 mgh) 



7.3 Comparaison des nos résultats avec les résultats 

numériques de Schincariol et al., (1995). 

Les figures 7.26a7 b, c et d comparent les résultats numériques obtenus par 

Schincariol et ai., 1995, qui ont utilisé le code VaporT, et les nôtres. Schincariol et ai. 

oat montré que les instabilités gravitationnelles très prononcées qui se développent le 

long de la limite inférieure du panache sont générées par des erreurs numériques dues 

aux dispersions artificielles ou aux oscillations numériques du modèle. Leurs résultats 

(figure 7.26a7b,c) montrent que la formation des instabilités est directement liée aux 

erreurs numériques qui sont contrôlées par le nombre de Péclet. Plus la valeur du 

nombre de Péclet diminue, plus l'erreur diminue. Schhcariol et al., 1995 obtiennent un 

meilleur résultat pour un nombre de Péclet égal à 2.4 (figure 7.26~) 

(Ax=Ay=2.5mm,200~425= 85 000 points). Nous avons obtenu presque les mêmes 

résultats avec des maillages grossiers, 6 fois plus grands (Ax = Ay= 15mm, 2457 points 

et 4767 éléments). 

La figure (7.27) montre le résultat numérique du déploiement d'un contaminant 

de concentration 2,00Omg/l, obtenu par Schincariol, (1995), en utilisant un nombre de 

Péclet égal à 13. Malgré que le maillage utilisé soit fin (5mmx5mm), la solution génère 

des oscillations numériques et une concentration relative (zo) 2 1 près de la source 

d'injection. Nous avons obtenu d'excellents résultats sans oscillation numérique en 

utilisant un maillage 1.5 fois plus grand et un nombre de Péclet élevé (Pe=19.4) (figure 

7.28). Donc, le schéma est capable de simuler le transport des contaminants à densité 

variable, en utilisant un nombre de Péclet élevé et un grand pas de temps, tout en 

conservant la précision des résultats. 



Figure 7.26 Comparaison entre le code VaporT (a), (b) et (c ), Schincariol et al., 1990 et 
1a présente étude (d), (C=2000 mgfi, t=90h ) 



Figure 7.27 Déploiement du contaminant (G2000 m g )  à t g 0  h (maille 5.Omrn x 
5.0mm, a== 3.0~10~ , at=O.O, maximum Pe=13. Schincariol et al., 1995 

7.4  Étude du mécanisme de développement et d'amplification 

des instabilités 

Afin d'obtenir une connaissance plus approfondie du mécanisme de 

développement des instabilités, nous avons effectué une analyse de la sensibilité. 



7.4.1 Sensibilité des instabilités à la dispersion 

L'infiuence de la dispeaivité du milieu poreux sur la croissances des instabilités 

a été étudiée à travers 3 exemples de calcul différents. Dans le premier exemple de 

base, les dispersivités longitudinale et transversale sont égales à aL=3 .0x 1 o4 et 

aF3.0x10% respectivement. Dans le second, ces deux paramètres ont été majorés 

d'un facteur 2 soit aL=6.0x104 et a~=6.0x10'*m et, dans Le troisième exemple, d'un 

facteur 5 (aL=l .5xlo5, aFl Sxl~~rn). Le domaine de calcul (figure 7.1) est discrétisé 

en maillage uniforme de 10mmxlOmm. Les caractéristiques de l'aquifêre ainsi que les 

autres paramètres de calcul utilisés sont présentés au tableau (7.1). 

Figure 7.29 Déploiement du contaminant (maille 10- x 1 Omm, a L =  3 . 0 ~ 1  o4 , 
ar3.0x1 om5, (a) C=2g/l, (b) C=3g/l, (c )C=Sg/i, (d) C=lOg/l, les contours de 

concentration représentent la concentration relative (c/c~) 



La variation de la dispersivité modifie le nombre de Péclet mais, comme le 

schéma utilisé est capable de résoudre l'équation de transport en utilisant un nombre de 

Péclet élevé sans générer aucune dispersion numérique ni instabilité, il n'est pas 

nécessaire d'ajuster le maillage du modèle pour chaque simulation. 

I - l ! E  
5 0 ~ . . . . i . ~ = ~ i . . . ~ 1 . = - ~ 1 . - . ~ r ~  0.1 0 3  05 O.? 

Figure 7.30 Déploiement du contaminant (maille lOmm x 1 0 m ,  a ~ =  6 . 0 ~ 1 0 ~  , 
aF6.~xl~-5, (a) C=2g/l, @) C=3g/l, (c )QXgll, (d) C=lOg/l, les contours de 

concentration représentent la concentration relative ((TICo) 

Les figures 7.29 à 7.3 1 détaillent le déploiement des contaminants de 

concentrations 2,3,  5 et log11 de NaCl. La comparaison de ces figures montrent que la 

diminution de la dispersivité est suivie par la formation d'une poche à la limite 

inférieure de panache et l'abaissement de sa limite supérieure. La figure 7.32a montre le 

déploiement d'un panache de concentration de 5g/l de NaCl en utilisant un coefficient 



ar=l S x l ~ - ~ r n ,  aF1 Sxl ~ ' ~ r n  alors que La figure 7.32b représente le déploiement du 

même panache en utilisant un coefficient de dispersivité 5 fois plus petit (aL=3xlo4m, 

aT=3x10-5m). La comparaison de ces deux figures montre que la diminution de la 

dispersivité est suivie par uae augmentation du nombre des digitations ou des 

instabilités. Ces résultats montrent que la croissance et la dégradation des instabilités 

sont très sensibles à la variation de la dispersivité du milieu et à la densité du panache. 

La comparaison des figures 7.30 et 7.3 1 montre comment un panache réagit à une 

augmentation de la densité (facteur de déstabilisation) et de la dispersivité (facteur 

stabilisant). Le panache devient instable ce qui montre que l'instabilité de panache est 

plus sensible à la densité qu'a la dispersivité. 

Figure 7.31 Déploiement du contaminant (maille 1 Omm x 1 O m m ,  a ~ =  1 . 5 ~  1 oJm , 
at=1.5x10"'m, (a) C.=2g/l, @) C=3g/l, (c )&=5gll, (d) C=lOg/l, les contours de 

concentration représentent la concentration relative (C /C~)  



Figure 7.32 Contours des concentrations relatives (C/C,-, , C,, = 5OOOmg 11) à t=72h, 

(a) aL=1.5x10Jm, a~1.5xl0'~m (b) aL=3x104m, q-=3~10'~rn 

La figure 7.33 représente un suivi de la position d'une particule injectée au 

milieu de la source à t=O. Le test a été effectué pour différentes concentrations 500, 

1000, 2000, 3000, 5000 et 10000 mg/l. On observe que, plus la concentration du 

panache est élevée, plus la solution pénètre en profondeur. 

Figure 7.33 suivi d'une particule de concentration 500,1000,2000,3000,5000 et 
10000 mg/l de NaCl 



7.4.2 Sensibilité des instabilités à k taille du maillage 

du domaine modélisé. 

La résolution de I'équation de dispersion-convection se heurte à la diffusion 

numérique qui se traduit par un étalement artificiel du nuage de polluants Lorsque la 

discrétisation du domaine modélisé est trop grossière. 

Figure 7.34 Déploiement du contaminant (maille 15mm x 1 Smm, a== 6.0~1 o4 , 
at=6.0x1 O", maximum Pe=22.4 

Les résultats de Schincariol, 1993 ont montré que, dans un écoulement à densité 

variable, les instabilités peuvent être générées à travers la propagation de l'erreur 

numérique. Ces Uistabilit6s ne sont pas physiquement réelles, elles sont incontrôlabIes 

et difficiles à produire d'un modèle a l'autre. Un critère de discrétisation admis par 

Schincariol, 1993, est que le nombre de Péclet doit êîre inférieur ou égal à deux 



([< = v$] n 2) ce qui revient A dire que la taille de la maille doit être plus petite que 

le double de la valeur de la dispersivité AI 5 - = 2a . Compte tenu des valeurs de 
2v* 1 

dispersivité rencontrées lors de la simulation, la discrétisation du domaine simulé doit 

être t rès fine pour éviter la dispersion et les instabilités numériques. 

Si on observe le problème d'une autre façon , on peut se demander si, dans Le 

cas d'une discrétisation fine du domaine simulé, la dispersion est plus efficace à lisser 

ou éliminer le doigt ou le lobe de perturbation avant que ce dernier ait la chance de 

croître ou de se former dans un écoulement à densité variable. Il est clair que, pour 

étudier l'influence de la taille de la grille de calcul sur le développement des instabilités 

dans un écoulement à densité variable, il est important que le schéma utilisé pour la 



simulation possède des qualités de dispersion numérique minimales. La méthode 

EPCOF constitue un choix intéressant- En effet, comme l'ont montré les résultats 

précédents, le schéma est capable de résoudre le phénomène de transport sans générer 

de dispersion numérique ni instabilité en utilisant un nombre de Péclet élevé. 

La sensibilité du développement des instabilités au changement de la taille de la 

grille de calcul a été testée à travers 3 exemples de simulation en utilisant un maillage 

de 7.5, 1 .O et 1.5 mm respectivement. Les résultats obtenus (figure 7.32) montrent que 

la taille de la grille de calcul n'a pas d'influence sur le développement des instabilités. 

Figure 7.36 Contours des concentrations relatives (c/c,, , Co = 5000mg l Z) à t=72h, 
(a) Ax=Ay= l Ornm (b) Ax =Ay=7.5mm 

- - - - - - -  - - - -  - - - -  

7.4.3 Sensibilité des instabi~it&a lav%esse d e  I'écoukmen f 

La sensibilité du développement des instabilités aux variations de la vitesse de 

l'écoulement a été testée a travers trois séries d'exemples de trois simulations chacune 

avec des panaches de concentration 2000mgA , 3000mgA et 5000mg/l. La vitesse de 

l'écoulement de la première série est de 2.76x10~m/s. Dans la seconde série, elle a été 

rkduite d'un facteur 0.75 (v=2.07~10~ d s )  et eiie a ét6 augmentée d'un facteur 1.5 

(A. 1x10'~ m/s) dans la troisième série. La figure 7.37 montre clairement que les 

instabilités sont sensibles à la vitesse de l'écoulement. L'augmentation de la vitesse 



réduit le nombre des instabilités, alors que la diminution de la vitesse augmente le 

nombre des instabilités. 

Figure 7.37 Contours des concentrations relatives (Cl'/$) à t~72h ,  (a) C0=3g/l, 
v/v0=o.75 (b) c,, =5g/l, v/v0=o.75 (c ) C?,, =3 g/i, v/vo=l (d) $ =5g/l, v/vo= 1 (e) 

QO =3g/l, v/vo=l .5 (f) Co =Sg/l, v/vo=l .5 

Puisque le coefficient de dispersion est Ie produit de la dispersivité et de la 

vitesse @=av), le changement de la vitesse par une constante est similaire à un 



changement de la dispersivité par la même constante. La figure 7.38 représente le 

déploiement des panaches pour une augmentatiodréduction de la dispersivité et une 

augmentatiodréduction de la vitesse par le même facteur. On peut voir que les 

déploiements des panaches sont similaires mais pas identiques. La 

croissance/dégradation des instabilités est plus sensible à la variation de la dispersivité 

qu'à celle de la vitesse. L'effet de ces deux paramètres est différent; ceci est peut-être 

dû à la présence des termes de dispersion (D) et de vitesse (v) considérés séparément 

dans l'équation de continuité et de transport. 

Figure 7.38 Contours des concentrations relatives (C/c0, Co = 5g / I )  à t=54h, (a) 
v/vo=l, da0=1.5 (b) v/vo=1.5, d ~ = l  

7.4.4 Sensibilité des instabilités a la perméabilité 

L'exemple suivant examine comment la croissance/dégradation des instabilités 

dépend de la caractéristique de perméabilité du milieu. Nous avons fait varier la 

perméabilités dans cinq séries d'exemples de trois simulations chacune avec des 

panaches de concentration 2000mg/& 3000mgll et 5000mgA. Les 3 premières séries de 

simulations impliquent un milieu homogène isotropique (K, =Kz= constante). La valeur 

de la perméabilité a été modifiée d'un facteur de 0.75 et 1.5 par rapport à la valeur de 
-11 2 base de 57x10 rn . La figure 7.39 illustrant le déploiement d'un panache, montre 



qu'une augmentation de la perméabilité favorise la croissance des instabilités, alors que 

sa réduction réduit la croissance des instabilités. 

Figure 7.39 Contours des concentrations relatives (C/Co) à t=54h, (a) c0',=3g/l, 
v/vo=0 .75 (b) c,,=5 g/l, K/Ko=O. 75 (c ) cO=3fl, ICI&= 1 (d) Co =5g/l, K/&= 1 (e) 

%=3gli, K/&=1.5 (f) C0=5g/l, K&=1.5 

Puisque la valeur de la vitesse est le produit de la perméabilité et du gradient 

K a  
hydraulique (Y =--), le changement de la perméabilité par une constante est 

0 & 

similaire à un changement de la vitesse par la même constante. Le changement de la 



vitesse par une constante produit le changement de la diaision par la même constante 

(DL=arv et m T v ) .  La figure 7.40 représente le déploiement des panaches pour une 

augmentation/réduction de la perméabilité, une augmentation/réduction de la vitesse et 

une augmentation/&duction de la dispersion. On peut voir que les déploiements des 

panaches ne sont pas identiques. La croissance/dégradation des instabilités est plus 

sensible à la variation de la perméabilité qu'à celle de la dispersivité et de la vitesse. 

Figure 7.40 Contours des concentrations relatives (ClCo, Co = 5g / l )  à t=54h, (a) 
v/vo=i, %=I, a/c~=1.5  (b) v/vo=1.5, K/Ko=l, a/ao=l (C ) K/&=1.5, d q = l  

Figure 7.41 Déploiement du contaminant (maille 1  Omm x 1 Omm, a== 3 . 0 ~ 1  o4 , 
aF3 .OX 1  O", (KX/KZ)=2 .5 



Figure 7.42 Contours des concentrations relatives (C/G), (a) Q, =3g/i, KK&, à 
t=90h @) C0=5gA, W&=l à e72h (c) Co=3g/l, K&=2.5, à t=90h (d) Q',,=Sg/l, 

WKz=2.5, à t=72h (e)  $=3g/l, K/Kz=S à t=90h(f) Co=5g/l, K/K& à t 7 2 h  

Les deux dernières séries ont examiné l'effet de l'anisotropie sur la propagation 

des instabilités. La figure 7.42 c et d reporte les simulations dans lesquelles 

l'anisotropie du milieu a été moditiée d'un facteur de ( h k ~ 2 . 5 )  et la figure 7.42 e et f 



reporte les simulations dans lesquelles l'anisotropie a été augmentée d'un facteur de 

(-5). Ces figures montrent que l'anisotropie réduit la croissance des instabilités. 

L'augmentation de 1 'anisotropie d'un facteur de 2.5 rend un panache de concentration 

initiale 3000mg/l stable, cependant une augmentation de d'un facteur de 5 rend le 

panache de concentration 5000mgll stable. La figure 7.20 de distribution de vitesse 

montre que, pour que les instabilités se forment, il faut que le fluide plus dense coule 

davantage vers ie bas et le fluide moins dense se déplace vers le haut pour balancer le 

mouvement du fluide le plus dense. Dans un milieu anisotrope (K>Kz) homogène, le 

fluide à tendance à se déplacer dans la direction horizontale, ce qui réduit le 

mouvement vers le bas et vers le haut, réduisant ainsi la croissance des instabilités. 

7.5 Conclusion 

La comparaison de nos résultats numériques avec les observations 

expérimentales et les résultats numériques de Schincariol et al. montre que notre 

modèle est en mesure de traiter le transport d'un panache de polluant de masse 

volumique variable dans un écoulement à densité variable. 

Le modèle est capable de résoudre le problème de dispersion + convection avec 

une grande précision en utilisant un nombre de Péclet variant entre O et oc et un nombre 

de Courant élevé, la taille du maillage étant limitée par la précision de calcul des termes 

diffusifs. Ceci permet de diminuer la durée du temps de calcul . C'est pourquoi notre 

modèle est avantageux pour des simulations à long terme. 

Les résultats ont révélé que l'écoulement perd son caractère stable à partir d'une 

certaine concentration. Les instabilités qui apparaissent se manifestent par la formation 

de lobes d'amplitude significative le long de la limite inférieure du mélange. L'analyse 

de la sensibilité a montré que, parmi les facteurs influençant la formation des 

instabilités, on trouve essentiellement la dispersivité, la vitesse et la perméabilité. 



CHAPITRE VLII 

Transport d'un panache à plusieurs éléments contaminants 

dans un écoulement à densité variable 

8.1 Introduction 

Au chapitre 7, nous avons étudié l'origine et la propagation des instabilités dans 

un écoulement à densité variable. Cette étude, comme la plupart des autres études 

touchant les écoulements à densité variable dans le milieu poreux, se limite à l'analyse 

du transport d'un seul élément polluant. En réalité, un panache est composé de 

plusieurs éléments contaminants (Na+, ~ a ' ,  M ~ ~ ~ ,  Cl-, ~04~3.  De plus, I'incidence de la 

densité et de l'adsorption sur le transport et le devenir d'un panache à plusieurs 

éléments contaminant ne sont pas bien connus. 

L'objectif de ce chapitre est de tester la capacité du modèle a calculer le 

transport de deux ou plusieurs contaminants dans un écoulement à densité variable, et 

de comprendre comment une simple réaction chimique dans un écoulement à densité 

variable peut modifier les caractéristiques de l'écoulement et la forme du panache. 

8.2 Calcul de la densité et de la viscosité 

Dans le cas du transport de deux ou plusieurs polluants, les variations de la 

masse volumique et de la viscosité du mélange sont W c i l e  à calculer car il n'existe 

pas d'équation exacte. Bang et Schwartz (1995) ont étudié le transport de deux 

contamuiants (NH3, NaCl) dans un écoulement a densité variable. Les auteurs ont 



supposé que la variation de la densité du mélange p, dilué est linéaire en fonction de la 

concentration de l'ensemble des poIIuants . 

où Ck est la concentration du contaminant k, ak est le paramètre qui décrit la 

dépendance de la densité à la concentration de polluant. Le paramètre ai, peut être 

déterminé à partir des données expérimentales. En supposant que 

a, = (p:f - l ccf' l'équation (8.1) s'écrit: 

où eFf est la concentration de référence du polluant k dont la densité est connue. 

La concentration ~2~ est généralement supérieure à la concentration maximale Ck pour 

s'assurer que le premier terme de l'équation ( 8.1) soit positif. 

En supposant qu'il n'existe pas de réaction chimique entre les différents 

polluants, la viscosité du mélange ~ 4 ,  est donnée par [Green, 1984; Reid et al., 1987; 

Zhang et al., 19953. 

où ,uff est la viscosité dynamique du fluide avec une concentration de référencecrf et 

wk est la masse du polluant k. 



Les relations empiriques (8.2) et (8.3) ont été testées par [ Zhang et al., 19951 

pour deux types de polluants: NaCl et NH3. La concentration des polluants, les valeurs 

expérimentales [Weast, 19891, les valeurs estimées de la densité, de la viscosité et 

l'erreur de calcul sont données aux tableaux 8.2 et 8.3. Alors que les valeurs utilisées 

dans ce calcul sont présentées au tableau 8.1. 

Tableau 8. 1 Paramètres de calcul de la densité et de la viscosité 
-- - 

Paramètres Valeurs 

densité de l'eau à 20 OC ppo 998.2 kg rn-' 

densité de référence:20200 mg/L (NaCl) 1012.5 k g K J  

densité de référence54400 mglL (NH3) 973 kgm" 

Viscosité de l'eau à 20 OC 1 .O02 x 10" s-' 

Viscosité de référence: 20200 rn& (NaCl) 1.002 x 10'' kgm" s-' 

viscosité de référence : 54400 mg/L (lW3) ,DE, 1 .002~  10-' kgm-' s-' 

Tableau 8. 2 Densité et viscosité de NH3 [Zhang et al., 19941 
- 

C N H ~  p?hHt Erreur % pNHl/kau p H  / p u  Erreur 
s / I  kdm kgim' Y0 

5 996 996.04 -0.0043 1.007 1 .O067 0.0307 
9.9 993.8 993 -93 -0.0 129 1.013 1.0133 -0.03 16 
14.9 99 1.7 99 1.77 -0.007 1 1 .O2 1.0202 -0.0 156 
19.8 989.5 989.66 -0.0 158 1.027 1 .O269 0.0063 
24.7 987.4 987.54 -0.0 144 1 .O34 1 .O33 8 0.0308 
29.6 985.3 985.43 -0.0 129 1 .O41 1 .O407 0.0275 
34.4 983.2 983.36 -0.0 159 1 .O48 1 .O476 0.041 1 
39.2 981.1 98 1 .Z? -0.0 188 1 .O55 1 .O545 0.0472 
44.2 979 979.17 -0.0 174 1 .O62 1.0617 0.0322 
48.8 977 977.14 -0.0 146 1 .O69 1 .O686 0.0378 
53.6 975 975.07 -0.0073 1 .O76 1.0758 0.0224 
58.4 973 973.0 0.000 1.083 1 .O83 0.000 



Tableau 8.3 Densite et viscositt5 de NaCl [Zhang et al., 19941 

8.3 Les facteurs influeneant la propagation d'un panache a 

plusieurs elements contaminants 

Le chapitre 7 a illustrk comment m e  variation de la densite, de la dispersiviti, 

de la vitesse et/ou de la permkabiliti peut modifier le comportement d'un panache. 

Dans la premiere partie de ce chapitre, nous allons etudier I'effet de la densite et de 

l'adsorption sur la propagation d'un panache B plusieurs Cltments contaminants dans un 

milieu poreux sature. Dans la deuxieme partie, nous allons 6tudier l'influence de la 

fiaction d'eau mobile, de l'adsorption et de la densite sur la propagation d'un panache a 

plusieurs CMments contaminants dans un milieu poreux non saturC. 



8.3.1 Milieu saturé 
Dans cette partie, nous allons étudier l'influence de la densité et de I'adsorption 

sur la migration d'un panache constitué de deux contaminants (NaCl et NH3) dans un 

milieu isotopique et saturé. Les caractéristiques de l'aquifère ainsi que les paramètres 

utilisés sont similaires à ceux des exemples précédents (tableau 7.1 et figure 7.1). Le 

NaCl est consideré comme un contaminant non réactif (M) et plus dense que l'eau, 

alors que Le NH3 est considéré réactif ( R> 1) et moins dense que l'eau. 

8.3.1.1 EHet de la variation de facteur de retard du 

contaminant 2 (m) 
L'effet de facteur de retard du contaminant 2 (NH3) sur la distribution de la 

concentration relative a été examiné à travers deux séries de simulations en utilisant un 

coefficient de retard Rfi.0 et 1.8 respectivement. La concentration initiale de chaque 

élément dans les deux sùnulations estC, =10000mgll et 6?2=10Gmgll. 

Les déploiements du contaminant 1 (NaCl) des deux simulations sont comparés 

à t=72h. Comme le montre la figure 8.1, les panaches obtenus par les deux simulations 

sont visiblement les mêmes. Le déploiement du contaminant 2 (NH3), qui est présent en 

faible quantité, n'est pas capable de changer le comportement de l'écoulement qui est 

dominé par la densité et la viscosité du panache 1 (NaCl). 

La mobilité du panache 2 dans les eaux souterraines est fortement affectée par 

le coefficient de retard. Quand R2=4, le panache 2 se détache du panache 1 et suit une 

trajectoire différente du premier panache. Le déploiement du contaminant 2 est 

Légèrement affecté par les instabilités de l'écoulement créés par le panache 1. Par 

contre, quand on réduit le coefficient de retard à 1.8, le contaminant 2 a tendance à 

suivre le trajectoire du contaminant 1. Le panache 2 descend jusqu'au fond de 

l'aquifere comme le premier panache, et on observe la formation des instabilités sur le 

profil des deux panaches. La zone de mouvement de fluide vers le haut et vers le bas est 

visible dans la figure (8.2 ) de suivi des particules. 



Figure 8 .1  Déploiement des contaminants 1 et 2: (a) g =10,00Orng/ Rl=l .O; (b) 
@=100mg/l, R2=l.8; ( C) Q;=10,000mg/ 1, RI=l.O; (d) a2=100mg/L, R2=4.0 

Contaminant 1: R4.O 

- Contaminant 2 Rtl.8 

Figure 8.2 Suivi de particules (C, =10,00Om~ et C2=100mg/l) 



8.3.1.2 Effet de la variation de la concentration du 

contaminant 1 (NaCl) 

Afin d'étudier l'effet de la concentration du contaminant 1 sur Ie déploiement 

des contaminants 1 et 2, nous avons répété les simulations de l'exemple précèdent en 

réduisant la concentration du contaminant 1 à Q', =5OOOmg/l. 

La comparaison des figures 8.la et 8.3a. montre que, plus le panache est dense, 

plus il pénètre à une grande profondeur. De plus, on observe une croissance des 

instabilités locales de grandes amplitudes modifiant les caractéristiques de déplacement 

des deux panaches. 

Figure 8.3 Déploiement des contaminants 1 et 2: (a) C,=5,000rngl Ri=l .O; @) 
C,=lOOms/i, R2=1 .8; ( C) C,=5,000mg/ 1 , Ri=l .O; (d) -=100mg/l, Rfl.0 



Contaminant 1 : R=l .O 

- - - CoMamin8nt 2: R=1.8 

c. 

- 
Contaminant 2: Rq.0 - 

O .. -.- a -- _.- . - - a 
---etc -.- 

Figure 8.4 Suivi de particules (Cl =5,00Omg/l et C2=100mgn) 

8.3.1.3 Effet de la variation de la concentration du 

contaminant 2 (m). 

Les 3 simdations suivantes étudient l'effet de variation de la concentration du 

contaminant 2. Dans ces simulations, la concentration $=5,00Omg/l dors que la 

concentration et le coefficient de retard ( R) du panache 2 ont été variés dans les 3 

simulations. Dans la première simulation, Q'2=100mg/l. et R2=l.8, dans la seconde 

@ =3,OOOmg/l. et Rz=l .8 et, dans la troisième, C2=3,000mg/l et R2=1 .2. 

La figure (8.5) montre le déploiement des deux contamiDants à ~72h. L'analyse 

de cette figure montre que l'influence du panache 2 sur la densité est visible. En effet, 

on observe que, plus la concentration du contaminant 2 ( moins dense que L'eau) est 

importante, plus les instabilités locales du panache 1 perdent de l'amplitude. 



Figure 8 .5  Déploiement des contaminants 1 et 2: (a) C,=5,000mg/ RI=l.O; (b) 
&=100mg/l, R2=1 .8; ( C) Cl =5,00Omg/ 1 , R1=l .O; (d) ~=3,00Omg/l, Rz=l .8.O; (e) 

C.,=5,000mg/ 1 , Ri=l.O; ( f )  -=3,00OmgA, Rz=l .2 

8.3.2 Milieu non saturé 

Avant d'étudier I'innuence de la fiaction mobile, de la densité et de l'adsorption 

sur la migration d'un panache constitué de plusieurs contaminants dans un milieu non- 

saturés, nous proposons tout d'abord de valider le modèle de transport dans un milieu 



non saturé en comparant les résultats numériques obtenus avec les résultats numériques 

de Gambaliti, 1996. 

8=3.2.7 Test de validation 

Ce test de validation est adopté à partir des études numériques de Gureghian, 

1983 et Gmbaliti, 1996.11 concerne l'écoulement et te transport dans une nappe 

drainée avec infiltration à la surface. La figure 8.6 montre Ir domaine de calcul. La 

surface du sol (ligne FC) est sujette à une infiltration de la pluie de l'ordre de Vz=O. 1 

K,, où K, est la conductivité hydraulique saturée (K,=lcm/j) qui est considérée 

homogène et isotropique. La portion de surface du sol (ED) correspond à un bassin de 

rétention, qui constitue une source supplémentaire d'infiltration de l'ordre de 0.05 K,. 

Ce bassin a été utilisé pour une période de 15 jours comme un site de déversement de 

deux déchets liquides: le premier contaminant est non réactif alors que le second est 

réactif. 

Le domaine de calcul et les conditions frontières sont présentés a la figure (8.6). 

Les équations de base sont données par les équations (3.18 et 3.20), dont les conditions 

initiales et frontières du problème d'écoulement sont données au tableau 8.4: et celles 

du problème de transport sont données au tableau 8.6 

Tableau 8.4 Conditions initiales et frontières du problème d'écoulement 



Les courbes caractéristiques du sol sont définies par la méthode de Gardner 

(1958). 

où a, b (ont les mêmes unités que hm), c, d ( ont les mêmes unités que hn), m, et n sont 

des constantes dont les valeurs sont données au tableau (8.5). 

avec h# =- 10 cm, la teneur en eau relative €+=O. 165, la compressibilité de l'eau ~ = 1  O-' , 

Tableau 8. 5 Paramètres de la fonction qui décrit les propriétés hydraulique du sol 

la compressibilité du sol a=lo4 et la densité du sol ys=2.0 gm/cm3. 

Tableau 8 .6  Conditions initiales et frontières du problème de transport 

c = O à t  = O 
C = 1 à t  4 15 jours sur ED 
C = O à t > 15 jours sur ED 
a/& = O sur AB, EF et CD 
LX/& = O sur AF et BC 

(P 
(porosité) 

3 

0.3crn'/cm 
3 

Les propriétés des deux contaminants simulés sont: 

Tableau 8 . 7  Propriétés des deux contarninants simulés 

K, 

Icrn/j 

contaminants a~ a~ DO- F ci kdm kdim nm nim 

n 

3.9 

cm cm cm2/j .? 
non réactif 0.5 O. 1 O O 0.0 0.0 0.0 0.3 0.0 
réactif 0.5 0.1 10.' 0.1 0.1 0.5 0.5 0.3 0.14 

d 

4.0~10' 

c 

4.0~1 o4 

a 

3 . 6 ~ 1 0 ~  

rn 

4.5 

b 

3.6~10' 



t  * * VT * O * * * * * t  * * * 

D * . . * v , * *  E 
F - .- -- -_--.-__* -IL-- --. . C - -6- 

V,  =V,;  dC/&=O - 3Scm - dC/rlz=O v2 = v, +y 
C=l pour t 4 5 j  

Zone non saturée C=O pour t> 1 5j 

v , = o  
dC/dr = O /- 
II S o m  

/' & = O  , 
,/' 

Zone saturée 
dC/& = O 

Figure 8.6 Domaine de calcul et conditions initiales et frontières 

Figure 8.7 Domaine de calcul en utilisant un maillage Ul[ilfonne 



Figure 8.8 Lignes de pression et vecteurs de vitesse de i'écoulement permanent: 
(a) Gambaloti et al., 1996; (b) la présente étude 



Figure 8.9 Contours de concentrations relatives (C/C,-,) , à H0.775jours, des deux 
con taminants: réactif et non-réactif (a) et (b) Gambaloti et al., 1996, (c ) présente 

étude 



Le problème de l'écoulement a été résolu jusqu'à ce que l'état permanent de 

t'écoulement ait été atteint. Ensuite, la vitesse de Darcy, ainsi que les valeurs de teneurs 

en eau, ont été utilisées pour simuler le problème de transport pour une période de 90 

jours. Les résultats des simulation de l'écoulement et du tramport sont présentés aux 

figures 8.8 et 8.9. 

Nous avons comparé nos résultats avec les résultats numériques obtenus par 

Gambaloti et al., 1996, sous les mêmes conditions en utilisant un schéma des éléments 

fuiis. La figure 8.8 représente une comparaison entre les lignes des pressions obtenues à 

partir des deux modèles. 

La figure 8.9 compare le déploiement d'un panache non réactif et d'un panache 

réactif qui a subit une sorption dans les régions mobile et immobile. La comparaison de 

nos résultats avec ceux de Gambaloti et al., 1996 montre une bonne concordance entre 

les deux modèles, aussi bien pour le transport des polluants réactifs que pour les 

polluants non-réactifs. 

8.3.2.2 influence de la fraction d'eau mobile 

Ce test considère le problème de l'exemple précédent, mais évalue, cette fois ci, 

l'influence de la fiaction de l'eau mobile sur la forme du panache 

simulé. 

La figure 8.10 montre l'influence de la fraction de l'eau mobile sur la forme de 

la distribution de la concentration. Quand le taux d'eau immobile augmente ( 4 décroît), 

le transfert par advection dans la région mobile augmente en raison de l'augmentation 

de la vitesse du soluté dans cette région (Y, = q/B,, 8 = 8, + 8,). 



Figure 8. 10 Innuence de la fiaction de liquide mobile ($) sur la migration d'un 
polluant (a) 4 = 0.25, @) Q = 0.5, (c) 4 = 0.75, (d) 0 = 1.0 

La figure 8.10d montre le déploiement du panache pour Q = 1, c'est à dire pas 

d'eau immobile dans le milieu poreux. Dans ce, cas le transfert de la solution se fait par 

advection dispersion et par adsorption dans les conditions d'équilibre, uniquement dans 

la région mobile. L'adsorption est simulée par un isotherme linéaire, qui suppose que 

l'équilibre de sorption est atteint instantanément après la réception du contaminant dans 

le sol. Dans ces conditions, le processus de sorption peut être présenté, dans l'équation 

de transport, comme étant un facteur de retardement 

où est le coefficient de distribution ~ ~ h 4 - 9 ,  pb est la densité du sol 'Cbuik density" et 

0 est la teneur en eau. 



La comparaison de la figure 8.10a et de la figure 8. I Od illustre bien l'influence de la 

fiaction de teneur d'eau mobile tant qu'il existe une partie d'eau immobile dans le 

milieu poreux (e0.999 ou cl), le phénomène de "taihg " sera aussi présent. Quand 

el, le panache de la concentration devient plus ou moins symétrique. 

La figure 8.11 montre l'influence du taux d'adsorption totale (0. Ce paramètre 

décrit la quantité d'adsorption qui prend place dans la région mobile du sol. La figure 

8.1 1 a montre le déploiement d'un panache où approximativement 60% de sorption a eu 

lieu dans la région immobile (e0.4). Quand I l ,  l'adsorption a lieu uniquement dans la 

région mobile, et un transfert de la solution par diffusion se produit entre la région 

mobile et immobile. La figure 8.1 1 montre que la croissance de taux d'adsorption dans 

la région mobile (adsorption relativement plus importante dans la region mobile et 

relativement moins importante dans la région immobile, sachant que l'adsorption totale 

est constante) réduit la mobilité du soluté dans le milieu poreux. 



Figure 8.12 Innuence du coefficient de transfert de masse (a) entre les régions 
mobile et immobile sur la migration d'un polluant (a) a = 0.0, (b) a = 0.1, (c) a = 

0.5, (d) a = 1 .O 

La figure 8.12 montre l'influence du coefficient de transfert de masse entre les 

régions mobile et immobile (a). Quand a =O, il n'y a pas de m i o n  de masse dans la 
- 

ré$oc&obile. QUaniFla-vdieS d e  a-esfpettte, lin echange len-ntreta régiorrmobik 

et la région immobile prend place, causant la diminution du pic de concentration et un 

"iailing" considérable. En augmentant le valeur du coefficient de îransfert (a), le taux 

d'échange entre les deux régions augmente, conduisant éventuellement à un nouvei 

équilibre, dans lequel les concentrations dans les régions mobile et immobile sont 

égales (Cm = Ci,,,). Le modèle de transport (équations 3.55 et 3.57 ) se réduit donc à une 

seule équation (a+a): 



Figure 8.13 Influence du coefficient d'adsorption &) sur la migration d'un 
polluant (a) Kd = O .O, (b) & = O S ,  (c)  Kd = 1 .O, (d) Kd = 2.0 

La figure 8.13 montre l'influence du coefficient d'adsorption (&) sur la forme 

et la position du panache. Le panache & = O ( E H )  représente la solution pour un 

milieu non adsorbant. On note Notant que la forme du panache est aussi asymétrique 

pour un milieu non adsorbant. Quand la valeur de & augmente, le coefficient de retard 

(R) augmente aussi, ce qui se traduit par un ralentissement de la migration du panache 

ainsi qu'une diminution du pic de concentration. Aussi, le phénomène de "'tailing " 

devient plus prononcé avec I'augmentation de la valeur de &. Ceci etait prévisible 

puisque, au départ avec I'augmentation de Kd, le soluté a plus tendance à diffuser et à 

être adsorbé dans la région stagnante du sol. Ensuite, le soluté d i f i e  lentement en sens 

inverse c'est à dire dans la région mobile, causant ainsi un phénomène de "tailing" 

plus prononcé. 



8.3.2.3 Effet de la densité et de la sorption 

La simulation d'un écoulement à densité variable avec le transport d'une 

solution réactive et non réactive a été testée à travers deux séries d'exemples: dans la 

première série d'exemples, on considère la simulation du bromure (Br-), un 

contaminant non réactif, et du lithium (Li?, un contaminant réactif. Les concentrations 

utilisées dans la simulation de Br- et de ~ i +  sont 640 et 80 mg/l respectivement. La 

solution des deux contaminants est considérée plus dense que l'eau. La concentration 

de référence de Br- est de 20200 mg/l avec une densité de 10 12.5 g/l et une viscosité de 

1.036~10'~ kg/(rns). La concentration de référence de ~ i '  est de 500mgA, avec une 

densité de lOOOlgA et une viscosité de 1.029 x 10-~ kg/(ms). La densité de l'eau 

souterraine est de 998.2 gll et sa viscosité est de 1 .O02 x 1 O-) kg/(ms). 

Dans la deuxième série d'exemples, on considère la simulation du NaCl, un 

contaminant non réactif, et du NH3, un contaminant réactif. La concentration initiale de 

NaCl est de 2000mg/l, alors que la concentration initiale de NH3 est de 100 mg/l. La 

solution de NaCl est considérée plus dense que l'eau. La concentration de référence de 

NaCl est de 20200 mgA avec une densité de 1012.5 g/l et une viscosité de 1.036~10" 

kg/(ms). La solution de NH3 est considérée plus légère que l'eau. La concentration de 

référence du NH3 est de l9,8OOmg/l, avec une densité de référence de 989.5 .g/l et une 

viscosité de référence de 1 .O2 1 x 1 O" kg/(ms). 

Dans le cas du transport de deux ou plusieurs polluants, les variations de la 

masse volumique et de la viscosité du mélange sont calculées par les relations (8.2 ) et 

(8.3). Les valeurs des concentrations et des viscosités de référence de NaCl, NH3, Br- et 

~ i +  sont données au tableau 8.8. 



Tableau 8 .8  Paramètres de calcul de la densité et de la viscosité 

Paramètres Valeurs 
densité de l'eau à 20 OC po 
densité de référence:20200 mglL (NaCI) &, 
densité de référence54400 mg/L (NH3) && 
densité de référence:-20200 mg/l ( ~ r - ) ~ :  

densité de référence::5000 mg/l (~i3 p z  

Viscosité de I'eau à 20 OC 

Viscosité de référence: 20200 m a  (NaCi) 
ré f 

P NKI 

viscosité de référence : 54400 rngK w3) 

P Ni3  

Viscosité de référence: 20200 mg/L (Br-) pyI 
viscosité de référence : 51400 mg/L (Li') py{ 

Les propriétés des contaminants simulés sont: 

Tableau 8. 9 Propriétés des contaminants simulés 

cm cm cm'lj m 

B i  0.5 0.1 0 1.0 0.0 0.0 0.0 0.3 O. 



~ i +  

E 
O réactif 
20 i 

Figure 8.14 Contours des concentrations relatives (C/Co) du contaminant réactif 
(Li+, Co =68Omg/l) dans la région mobile à t=90.775 jours 

Figure 8.15 Contours des concentrations relatives (Q'/c,,) du contaminant non 
réactif (Br-, Co =100mg/l) à e90.775 



réactif 

40 (cm) 

Figure 8.16 Contours des concentrations relatives (C/CO) de deux contaminants: 
réactif (NH3, Co=l 00rng/l) et non-réactif (NaCl, $ =5OOOmg/l) à t=90.775jours 

8.4 Conclusion 

Les résultats montrent que les facteurs qui influencent le comportement de 

l'écoulement sont la densité et la sorption. Notre étude a montré que, dans le cas d'un 

panache à plusieurs éléments, la concentration du contaminant le plus dense fait évoluer 

I'écoulement vers un régime instable qui se traduit par l'apparition de agitations au 

niveau de la zone du mélange. L'amplitude et le nombre de ces instabilités dépendent 

de la concentration de chaque contaminant du panache. En effet, plus la concentration 

des contaminants les plus denses est élevée et Ia conczntration des contaminants les 

moins denses est faible, plus les contaminants du panache pénétrent à une grande 

profondeur et des instabilités locales de grande amplitude peuvent apparaître. En raison 

de l'adsorption de certains contaminants, la réduction de la vitesse de transport de ces 

derniers cause la séparation des divers contaminants qui empruntent des trajectoires 

différents. 



n est claire que la naissance et l'amplification des instabilités hydrodynamiques 

ainsi que la réaction chimique dans un écoulement à densité variable peuvent modifier 

les caractéristiques de I'écoulement. Ceci peut nuire, éventuellement, au pilotage précis 

d'une opération industrielle, telle la récupération des hydrocarbures, ou rendre difficile 

la localisation d'un domaine contaminé en cas de pollution d'une nappe aquifere. 



CHAPITRE IX 

Modélisation de la migration de contaminant dans le site 
d'enfouissement Borden en Ontario 

9.1 Introduction 

Les études expérimentales sur des sites biens équipé ont joué un rôle très 

important dans les efforts pour mieux comprendre le phénomène de migration et le 

devenir des contaminants dans un d i e u  poreux (Zheng et Bennett, 1995). En 

particulier, plusieurs études expérimentales ont été menées sur des sites bien connus 

comme Borden (e.g, MacFarlane et al., 1983; Mackay et al., 1986), Twin Lake (e.g., 

Killey et Moltyaner., 1988; Moltyaner et Killy, 1988a, b), Mobile (e.g., Mola et al., 

1986), Cape Cod (e.g., Garabedian, 1987; LeBlanc et ai., 1991) et Columbus (e.g., 

Boggs, 1991; Boggs et al., 1993). Ces études ont permis de rassembler plusieurs 

données très importantes qui constituent une base pour développer et tester la théorie de 

transport ainsi que les modèles numériques. 

Dans la province de l'Ontario, à 80 km de la ville de Toronto, il existe une zone 

de pollution de l'eau souterraine juste au-dessous d'un ancien dépotoir de déchets 

@orden). La nappe a été contaminée essentiellement par des contaminants solubles tels 

que le chlome, le sulfate et le potassium. L'étendue de la contamination de l'eau 

souterraine a été délimitée à partir des données recueillies au cours des campagnes 

d'échantillonnage. 

Ce chapitre est consacré à la modéiisation de la migration de contaminants au 

site d'enfouissement Borden en Ontario, ce site étant probablement l'un des sites 

expérimentaux les mieux équipés et les mieux étudiés au monde. 



Figure 9. 1 Localisation du site d'enfouissement sanitaire de Borden ( Vue en plan ) 
(d'après MacFarlane et al., 1983) 

rF\ 



9.2 Description du site 

MacFarlane et al., 1983, ont étudié la migration des contaminants dans la nappe 

souterraine du site d'enfouissement Borden en Ontario. Ce site d'enfouissement 

sanitaire est situé à environ 80km de Toronto. I1 est, dans sa majeure partie, situé au- 

dessus du niveau de la nappe phréatique. Utilisé pour l'entreposage des déchets de 1942 

a 1973, on n'y pratiqua l'enfouissement sanitaire qu'à partir de 1973. Il a été finalement 

fermé en 1976. Pendant ces 34 ans d'opération, il a été estimé que 80% des déchets 

consistaient en des cendre, du bois et autres débris de construction. Le reste des dépôts 

était composé de déchets domestiques et industriels. 

Figure 9.2 Localisation du site d'enfouissement sanitaire de Borden. La section A-A' 
est une coupe longitudinale selon l'axe du panache (d'après Frind et Hokkanen, 1987) 



La nappe a été contaminée par les eaux s'écoulant du dépotoir (lixiviat), 

contenant essentiellement des contaminants solubles tels que le chlorure, le sulfate et le 

potassium (Figures 9.3-9.5). Le site a été décrit en détail par Sykes et al. (1982). 

La composition du sol et sa conductivité sont apparemment très variables, 

contenant du sable et de l'argile. La conductivité hydraulique horizontale de l'aquifère 

a été estimée à 1 x IO-' à 2.2 x 10-~ c d s ,  avec une anisotropie verticale de l'ordre de 1 B 

2. La porosité du milieu a été estimée à 0.38. Les auteurs ont noté que la direction de 

I'écoulement de la nappe est normalement horizontale du sud vers le nord, mais la zone 

contaminke s'étend jusqu'au fond de l'aquifêre (20m au dessous de la surface libre). La 

migration en profondeur des contaminant s peut être expliquée par 1' infiltration verticale 

d'un débit d'eau important au printemps et a l'été, après la fonte de la neige et, aussi, 

par la différence de densité entre l'eau et les contaminants (Ap=0.0012). L'infiltration 

moyenne de l'eau près du dépotoir est de l'ordre de 10 à 20 c d a n  mais la recharge au 

niveau de la zone de dépotoir (une dépression) est plus importante (Frind et Hokkanen, 

1987). 

Figure 9.3 Panache du chlorure selon la section A-A', basé sur les données de mesure 
de 1979; bs contours sont en mg/l (d'après Frind et Hokkanen, 1987) 



Figure 9 .4  Panache du potassium selon la section A-A', basé sur les données de 
mesure de 1977 et 1978; les contours sont en r n d  [d'aprés Sykes et al, 19873 



Figure 9.5 Panache du sulfate selon la section A-A', basé sur les données de mesure de 
1979; les contours sont en mg/l [d'après Sykes et al, 19821 

9.3 Modélisation de la migration d'un panache constitué de 

trois éléments contaminanfs: chlorure, sulfate et potassium 

Le domaine de calcul (figure 9-6) utilisé représente une coupe longitudinale 

A-A' selon l'axe du panache (figure 9-2). Les conditions frontières du module 

d'écoulement sont présentées à la figure 9-6, la frontière iaférieure, constituée d'argile, 

a été considérée comme étant imperméable. Le niveau de la nappe a été obtenu par 

calibration en comparant les niveaux d'eau calculé et observé sur le site. La fonction 

finale de recharge utilisée par le modèle est montrée à la figure 9.8. Les propriétes du 

sol reproduites sont essentiellement celles estimées par Frind et Hokkanen (1987), des 

conductivités hydrauliques horizontale et verticale sont égales à I .16xlo4 cmfs et 0.5 8 

1 ogcm/s respectivement et une porosité de 0.38. 



Les conditions fkontières du module de transport sont présentées à la figure 9.7, 

la figure 9.9 représente la discrétisation du domaine de calcul en éléments triangulaires 

selon la technique de Delauney. 

La migration des trois contaminants (chlorure, sulfate et Potassium) est 

gouvernée par l'advection, dispersion, la sorption et la variation de la densité. La 

différence de densité entre l'eau et la solution utilisée par le modèle est celle enregistrée 

sur le site soit Ap=0.00 12. Pour la modélisation du potassium, un isotherme linéaire 

d'adsorption est donné par l'expression suivante 

a été utilisé, où S (en milligramme par gramme) est la masse totale de la solution 

adsorbée par unité de masse du sol et C est la concentration de la solution ( en m&). 

L'isotherme représenté par l'équation 9.1 représente une linéarisation de l'isotherme de 

Freundlich pour calculer la concentration exacte de potassium adsorbé à partir de la 

concentration du panache de potassium qui est égale à 183 m g 5 .  

En utilisant l'isotherme de sorption de l'équation 9.1, le coefficient de retard de 

potassium a été estimé à 2.7 1 en fonction de l'équation R = 1 + p, K, 10. 

Les coefficients de retard de chlorure et du potassium sont égaux à 1 .O, puisqu'ils sont 

considérés comme des contamuiants non réactifs. 

L'influence de la sorption, de la dispersivité et de la densité sur la migration des 

trois contaminants a été étudié à l 'ide d'une étude de sensibilité. 



Figure 9.6 Conditions frontières du modèle de l'écoulement 

Figure 9.7 Conditions frontières du modèle de transport 
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Figure 9 .8  Fonction de recharge et le niveau de la nappe calibré 

Figure 9.9  Discrétisation du domaine de calcul 



Figure 9. 10 Lignes d'isopressions a l'état permanent 

Figure 9.11 Vecteurs vitesse à l'état permanent 
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Figure 9.12 Évolution du panache du chlorure dans le cas: aL=l O rn, a ~ O . 0  1 m, les 
contours représentent la concentration relative (CIC,,) avec un intervalle de 0.2 



30 ans 

40 ans 

Figure 9. 13 Évolution du panache du sulfate dans le cas: aL=10 m, aT=O.Ol rn, les 
contours représentent la concentration relative (C/(Z0) avec un intervalle de 0.2 
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Figure 9.14 Évolution du panache du Potassium dans le cas: aL=10 rn, a f i . 0  1 m, et 
R= 1.8, les contours représentent la concentration relative (C/Co) 



9.4 Analyse de sensibilité 

9.4.1. Dispersivités 

Les figures 9.12 à 9.14 montrent l'évolution des fionts de chlorure, de sulfate et 

du potassium simulés pendant une période de 40 ans, pour le cas de base avec aL=lOm, 

awO.Olm et hWium=l .8, avec une condition fiontière de Cauchy à la surface de la 

nappe , et une source de contamination constante. 

Les figures 9.12 à 9.14 montrent les contours de la concentration relative (Q'/Co) 

avec un intervalle de 0.2. La forme générale des panaches de chlorure, de potassium et 

de sulfate simulés après une période de 40 ans, (figure 9.124 9.13d et 9.14d) se 

compare favorablement avec celle des panaches observés (figure 9.3,9.4 et 9.5). 

Avant d'obtenir ces résultats nous avons tout d'abord étudié la sensibilité du 

panache constitué des 3 contaminants (chlorure, suLfate et potassium) pour des 

variations de la dispersivité, de l'adsorption et de la densité. 

Le cas de base montré aux figures 9.12 à 9.14- incorpore une dispersivité 

transversale an-0.0 1 m. Une dispersivité transversale de 0.0 lm et une vitesse 

d'écoulement de l'ordre de 1oe3 djour  donne une dispersion verticale @, = v . aTv) de 

l'ordre de la diffusion moléculaire soit 10" rn2/jour. Les figures 9.15 et 9.16 montrent 

l'effet de la dispersivité transversale sur le déploiement du panache de chlorure et de 

sulfate. Il est clair, qu'une dispersivité verticale de l'ordre de 0.1 à lm donne des 

résultats moins proches des résultats observés. La valeur de 0.01m est déjA 

suffisamment faible, sa réduction à 0.005 n'a aucun effet sur la forme du panache 

simulé. 



Figure 9. 15 Effet de Ia dispersivité transversale avec aL=10 rn; (a) cc+ .O m (b) 
UFO. 1 m (c ) cr~O.01 m (d) apO.005 m, Ies contours représentent la concentration 

relative (Cl$) à -0 ans avec un intervalle de 0.2 
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Figure 9. 16 Effet de la dispersivité transversale avec crL=10 m; (a) a ~ l  .O m (b) 
UFO. 1 m (c ) ccyO.01 m (d) aT=0.005 m, les contours représentent la concentration 

relative (Q'/C0) à t 4 O  ans avec un intervalle de 0.2 



Figure 9. 17 Effet de la dispersivité longitudinale avec a ~ 0 . 0 1  rn; (a) aL=2.5 m (b) 
aL=5 rn (c ) aL=lO.O m (d) aL=20.0 m, les contours représentent la concentration 

relative (Q'/$) à t 4 O  ans avec LUI intervalle de 0.2 



La figure 9.17 montre l'effet de la variation de la dispersivité longitudinale sur 

la forme du panache simulé. La dispersivité transversale utilisée dans ces simulations 

est de 0-Olm, alors que les valeurs de la dispersivité longitudinale utilisé sont 2.5, 0.5? 

10.0 et 15.0 m. Plus la dispersivité longitudinale augmente, et plus le déploiement 

longitudinal du panache augmente. Cependant, on observe que la forme du panache 

simule est moins sensible à la dispersivité longitudinale qu'à la dispersivité 

transversale. 

9.4.2 Effet de la sorption 

Pour étudier la sensibilité de l'adsorption sur la prévision du panache de 

potassium, la valeur du coefficient de retard R a été modifié pour 3 valeurs: R=1.8, 2.7 

et 3.0. Les résultats de ces modifications sont présentés à la figure 9.18. Dans cette 

analyse, tous les autres paramètres sont égaux à ceux du cas de base. L'effet de la 

variation de la valeur de l'isotherme se traduit par une variation de la mobilité du soluté 

du potassium mais n'a aucun effet sur la migration du chlorure et du sulfate. On observe 

que la valeur de R=1.8 donne des résultats les plus proches des résultats observés 

(figure 9.4) 

9.4.3 Effet de la densité 

La sensibilité du déploiement du panache constitué de la chlorure, du sulfate et 

du potassium aux variations de la densité a été testée à l'aide de 4 séries d'exemples. La 

variation relative de la densité du panache de la première série est de Aplp ,  =0.00 15. 

Dans la seconde série, elle est égale à Aplp, =0.0022, dans la troisième, elle est égale à 

A&, =O.OO3 5 et elle est égde à A p l p ,  =0.005 dans la quatrième. Les figures 9.1 9 

montrent clairement que le déploiement du panache est sensible à la variation de la 

densité. Ces figures 9-19 montrent que la migration du chlorure est la plus affectée par 

la variation de la densité, car plus elle augmente et plus le panache de chlorure touche le 



fond de la nappe et a tendance à se déplacer dans le sens contraire de l'écoulement. 

Cependant, on observe que la forme du panache de sulfate est moins sensible à la 

variation de la densité. Il est clair qu'une variation de la densité relative de l'ordre de 

0.00 15 donne des résultats plus proches des résultats observés. D'ailleurs, cette valeur 

de @/p, =0.00 15 a été enregistrée sur le site. 

Potassium " i 

Figure 9. 18 Effet de l'adsorption sur le déploiement du panache de Potassium avec 
ar= 1 O m; uyO.0 1 rn; (a) R=3 .O (b) R=2.7; (c ) R= 1 -8; les contours représentent la 

concentration relative (ClCo) a t=40 ans avec un intervalle de 0.2 
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Figure 9.19 Effet de la densité sur le déploiement du panache de chlorure avec a ~ =  l O 
rn; ar.0.01 m; (a)~p/p,=0.0015 @) ~p/p,=0.0022; (c ) Ap/po=0.0036, (d )  

~ ~ / p ,  =0.005; les contours représentent la concentration relative (c/c0) a ~ 4 0  ans 



Sulfate 

Figure 9.20 Effet de la densité sur le déploiement du panache de sulfate avec aL=10 m; 
a~0.01 m; (a)Ap/po=0.0015 @) Ap/po=0.0022; (c ) ~p/p,=0.0036, (d) 

~ p / p ,  4 0 0 7  1; les contours représentent la concentration relative (c lCo) a t=40 ans 



9.5 Conclusion 

Les simulations de propagation de polluants dans les eaux souterraines de 

Borden illustrent bien la capacité d'application du modèle sur des cas réels. Les 

concentrations de chlorure, de potassium et de sulfate mesurées dans l'aquifere de 

Borden ont pu être simulées de manière très satisfaisante. La qudité des simulations 

dépend étroitement des comaissances que l'on a des processus et des paramètres 

nécessaires à la mise en oeuvre du modèle numérique. 



CHAPITRE X 

Champs d'application de la méthode EPCOF 

10.1 INTRODUCTION 

L'évaluation de la méthode EPCOF pour la modélisation numérique de 

l'équation de transport a démontré que la méthode est capable de résoudre le problème 

de dispersion +convection avec une grande précision en utilisant un nombre de Péclet 

variant entre O et m et un nombre de Courant élevé, la taille du maillage étant limitée 

par la précision de calcul des termes diasifs.  Ce qui revient à dire que la méthode 

limite le temps de calcul au strict nécessaire et qu'elle n'impose aucune contrainte sur 

le pas du temps de et d'espace. C'est pour cette particularité qu'elle est particulièrement 

adaptée aux simulations à long terme. Elle constitue alors un outil de choix pour la 

simulation du phénomène de transport dans le milieu poreux, de transport de sédiments, 

de pollution et autres en raison de sa souplesse d'utilisation et des faibles contraintes 

numériques qu'elle impose. Nous pensons que la souplesse de cette méthode peut être 

appréciable dans la discrétisation des équations des écoulements à surface libre (Saint- 

venant) et des équations de Navier-Stokes. La méthode EPCOF évite certains 

problèmes et limitations sur le pas de temps et d'espace, en l'occurrence, le critère de 

Courant Friedrichs-Lewy. La résolution des équations de Saint-Venant basée sur le 

traitement séparé des termes convectifs, en utilisant la méthode (EPCOF) permet de 

prendre en compte le caractère hyperbolique de la convection et, par conséquent, 

d'obtenir des résultats pour des nombres de Courant élevés, indépendamment de la 

célérité J g h .  



L'objectif de ce chapitre est d'évaluer la méthode EPCOF pour la modélisation 

des écoulements à surface libre. 

10.2 Les équations de Saint- Venant 

Les équations de Saint-Venant "d'onde longue", qui traduisent le bilan de la 

quantité de mouvement et la conservation de la masse, s'écrivent de la façon suivante: 

où 

u et v sont les composantes de la vitesse suivant les axes ox et oy, z est la côte de la 

surface libre, h est la profondeur d'eau, g est l'accélération de la pesanteur, r est le 

coefficient du fiottement de l'air sur la surface libre, E est le coefficient d viscosité et y 

est le coefficient de frottement de l'écoulement sur le lit, souvent exprimé par la 

relation de Manning, 

où H=h+z est la hauteur d'eau totale et n est le coefficient de Manning qui dépend de la 

nigosité. 



Les équations 10.1 - 10.2 peuvent s'écrire sous la forme lagrangieme: 

du dv 
ou les dérivées - et - indiquent le changement du u et v pendant le pas de temps et 

dt dt 

sont calculées le long de la caractéristique. 

Pour calculer tes valeurs des vitesses u, v et z au temps t,,!, on utilise 

l'algorithme EPCOF. 

10.3 Simulation d'une brèche de barrage 

La simulation d'une brèche partielle d'un barrage a été testée pour évaluer le 

comportement du modèle dans un cas où l'écoulement est critique. Le domaine de 

calcul est défmi par un canal de 2001-11 de longueur sur 200m de largeur. La brèche, 

d'une largeur de 75m, est symétrique et la profondeur d'eau dans le réservoir est de 

10m. La figure 10.1 montre le profil de surface libre en trois dimensions obtenu à t=7.1 

secondes en utilisant un nombre de Courant égal a 5. 

L'écoulement critique en aval de la brèche provoque l'instabilité de plusieurs 

schémas numériques. Le schéma de MacCormack échoue si le rapport entre le niveau 

d'eau amont et aval est inférieur à 0.25. Celui de Gabbutti échoue si le rapport est 

inférieur à 0.2. Par contre, ce schéma est capable de calculer t'écoulement critique pour 

un rapport inférieur à 0.00 1. 



ZOO a0 

1 a0 00 

i a0 00 

140 O0 

120.00 

3 00 00 

Figure 10. 1 Rupture de barrage: t=7.l secondes, C;5 



L'évaluation de la méthode EPCOF a démontré que la méthode constitue un 

outil de choix pour la simulation du phénomène de transport ainsi que la simulation des 

écoulements à surface libre en raison de sa souplesse d'utilisation et des faibles 

contraintes numériques qu'elle impose. 



CHAPITRE XI 

CONCLUSlONS 

L'objectif principal de cette étude consistait à développer un nouveau schéma 

numérique pour la modélisation des caractéristiques de transport et de dispersion d'un 

lixiviat comportant plusieurs composantes polluantes dans un milieu poreux sur des 

maillages non structurés. Le modèle considère les processus les plus importants 

influençant la migration et le devenir des contaminants dans le sol et l'eau souterraine. 

Ainsi, le nouveau modèle numérique peut tenir compte de la variation, dans le temps et 

l'espace, de la masse volumique, de la viscosité et de la sorption. Le code de calcul 

réalise le couplage entre le module hydrodynamique et le module de transport par les 

équations d'état. Le module hydrodynamique a été conçu en utilisant la méthode des 

volumes finis, permettant de calculer simultanément le champ des potentiels et des 

vitesses. Le module de transport applique le schéma non-oscillatoire avec une 

évaluation exacte du fiont "an emct peak capturing and oscillation-fiee scherne" 

(EPCOF). Le schéma a été utilisé en conjonction avec la méthode des volumes finis, 

basée sur des éléments triangulaires. Les termes convectifs de l'équation de transport 

sont évalués en utilisant la technique de suivi des particules avec un raffiement 

adaptatif des maillages. Les termes de diffusion de l'équation de transport sont évalués 

par leur intégration sur un volume de contrôle. 

Il a été démontré que la méthode est capable de résoudre le problème de 

dispersion +convection avec une grande précision en utilisant un nombre de Péclet 

variant entre O et oo et un nombre de Courant élevé, la taille du maillage étant limitée 

par la précision de calcul des termes difisifs. Ceci permet de diminuer la durée du 



temps de calcul. C'est pourquoi notre modèle est avantageux pour des simulations à 

long terme. 

Le développement du code de calcul a été réalisé dans un premier temps pour la 

simulation d'un panache de polluant de masse volumique variable afin de comprendre 

le problème de la naissance et de l'amplification des instabilités hydrodynamiques. A 

cette étape, le code a été testé sur des exemples trouvés dans la littérature. Une bonne 

concordance avec ces résultats a été observée. Les résultats ont révélé que I'écoulement 

perd son caractère stable à partir d'une certaine concentration. Les instabilités qui 

apparaissent se manifestent par la formation de lobes d'amplitudes significatives le long 

de la limite inférieure du mélange. L'analyse de la sensibilité a montré que, parmi les 

facteurs influençant la formation des instabilités, on trouve essentiellement la 

dispersivité, la vitesse, la perméabilité, la densité et la viscosité. 

La bonne concordance entre les résultats numériques et les résultats existants 

dans la littérature nous a permis de passer à l'étape finale de l'étude, soit le 

développement du code pour le calcul de plusieurs polluants réactifs et non-réactifs. Les 

résultats ont montré que le problème de la naissance et de l'amplification des 

instabilités hydrodynarniques et la réaction chimique dans un écoulement à densité 

variable peuvent modifier les caractéristiques de l'écoulement. Ceci peut nuire 

éventuellement au pilotage précis d'une opération industrielle, telle la récupération des 

hydrocarbures, ou rendre difficile la localisation d'un domaine contaminé en cas de 

pollution d'une nappe aquifere. 

La capacité d'application du modèle sur le plan industrielle est mise à l'épreuve 

par la modélisation de la migration d'un panache constitué des trois contaniinants 

(chlonte, sulfate et potassium) sur le site d'enfouissement de Borden, en Ontario. Une 



bonne concordance entre les résultats numériques et les résultats observées sur le terrain 

a été observée. 

Dans le perspective de ce travail, plusieurs axes de recherche complémentaires 

se présentent: 

C8- La modélisation du transport du contaminant en milieux fissurés ou karstique; 

W la contamination du sol et du sous-sol par les hydrocarbures; 

la protection des sols et la restauration des lieux contaminés. 

L'ambition de ce type de modélisation est, d'une part, de reproduire les 

observations obtenues sur les sites contaminés et, d'autre part, d'effectuer des 

prévisions pour éviter les problèmes futurs. Quand la nappe est polluée, il est 

généralement difficile de corriger la situation. Les méthodes de décontamination de 

l'eau souterrain ont la réputation d'être coûteuses, longues à donner des résultats et pas 

toujours efficaces. La prévention est donc l'option à privilégier et demeure la moins 

onéreuse des mesures de protection de la qualité de l'eau souterrain 
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