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Ces demières années, la surveillance et le diagnostic des machines par l'analyse des 

vibrations sont devenus un outil efficace pour détecter précocement les défauts et en suivre 

l'évolution dans le temps. La maintenance des machines nécessiteune bonne compréhension 

des phénomènes liés à l'apparition et au développement des défauts. Détecter l'apparition 

à un stade précoce d'un défaut et suivre son évolution présente un grand intérêt. De fait, il 

existe un vaste choix de techniques de traitement de signal appliquées au diagnostic des 

machines, mais l'opinion générale est que ces techniques ne sont pas suffisamment efficaces 

et fiables. L'intérêt économique de mettre en place une méthode de maintenance 

prévisionnelle favorise les programmes de recherche en techniques de traitement du signal. 

Les techniques de traitement du signai dans le domaine temporel et dans le domaine 

fréquentiel peuvent être utilisées pour identifier et isoler les défauts daas une machine 

tournante. Alors que l'analyse de spectre peut nous aider à détecter l'apparition d'un défaut, 

la décomposition du signal dans le temps peut nous fournir la nature et la position du défaut 

dans la machine tournante. 

Cependant, bien que ces techniques puissent s'avérer très utiles dans des cas simples ou 

permettre la formulation rapide d'un pré diagnostic, eues présentent un certain nombre 



vii 

d'inconvénients. Ces inconvénients conduisent souvent à des pertes de temps considérables 

ou à la formulation de diagnostics erronés. La localisation de l'origine des chocs et des 

phénomènes de modulation et, en particulier, des événements non stationnaires ou cyclo- 

stationnaires nécessite la mise en oeuvre de techniques encore plus élaborées, basées sur 

l'analyse tridimensionnelle (temps-fréquence-amplitude). 

Ce travail consiste à étudier, comparer, modifier et adapter des techniques de représentation 

temps-fréquence qui peuvent être utilisées pour étudier le contenu fréquentiel d'un processus 

non stationnaire. 

Dans la première partie de ce travail, les méthodes courantes de diagnostic des machines 

basées sur le temps ou la fréquence sont présentées et les avantages et désavantages de 

chaque méthode sont notés. Ensuite, on discute de la nécessité de la recherche dans le 

domaine des techniques de traitement du signal appropriées pour résoudre les problèmes de 

surveillance et de diagnostic des machines. 

Finalement, 1' application de la transformée de Fourier à fenêtre giissante ( Short-time Fourier 

Transfomi), la plus simple et la plus rapide des méthodes temps-fréquence, au diagnostic de 

machine est présentée. Les avantages et les inconvénients de cette méthode sont également 

expliqués et une solution pour amélioier la performance de la transfomée de Fournier à 

fenêtre glissante est proposée. En bref, cette partie montre l'efficacité des méthodes temps- 

fréquence et particulièrement l'eficacité de la transformée de Fourier à fenêtre glissante par 
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rapport aux méthodes traditionnelles de surveillance et de diagnostic des machines. 

Dans la deuxième partie du travail, les diRérentes techniques des méthodes temps-fréquence, 

comme !a distribution Wigner-Ville, la disüibution ChdVilliams et la disiribution ND, 

sont brièvement expliquées et leur avantages et désavantages examinés avec un "programme 

maison" (in-house program). D'abord, on s'est servi de signaux créés par ordinateur pour 

vérifier l'efficacité et la marche du programme. Ensuite, les signaux enregistrés durant les 

essais expérimentaux ont été utilisés pour vérifier la performance de chaque méthode. 

Finalement, les signaux enregistrés durant les essais industriels sur une boite d'engrenage 

défectueuse et sur un séchoir de machine à papier ont éte évalués. 

Dans la troisième partie de cette recherche, les plus récentes méthodes pour une présentation 

temps-fréquence, soit les méthodes temps-échelle, sont expliquées. L'une de ces méthodes, 

la transformée en ondelettes, donne la possibilité de compenser les faiblesses des méthodes 

temps-fréquence. La transformée cn ondelettes a une caractéristique particulière dans le plan 

temps-fréquence par laquelle elle est devenue un outil très efficace pour l'analyse des 

événements transitoires et variab les dans le temps. 

Cette partie du travail présente les différentes méthodes temps-échelle, comme la 

transformée en ondelettes, la transformée en paquet d'ondelettes et les transformées en 

ondelettes adaptatives. Les exemples donnés dans cette partie montrent les avantages et les 

désavantages des méthodes temps-échelle. Enfui, lYef£ïcacité de ces méthodes pour la 
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sunreillance et le diagnostic des machines est vérifiée par des signaux expérimentaux et des 

signaux industriels. 

La qu2tn&ne pmie de cette thke présente un logiciel temps-fiQuence con~ivial qui ixt 

developpé pour faire le pont entre le bureau de recherche et le service d'ingénierie de la 

maintenance. Pour utiliser le programme, il suffit de choisir le signal a analyser puis de 

répondre aux quelques questions concernant les caractéristiques du signal telles que la 

Fréquence d'échantillonnage, la taille du signal et les paramètres d'analyse. Ensuite, on peut 

visualiser la représentation temps-fréquence de chacune des méthodes temps-fréquence et 

temps-échelle. 

Ce logiciel est équipé selon une nouvelle méthode qui s'appelle "Zoom in Wavelet 

Transform" pour obtenir plus de résolution fréquentielle par rapport à la transformée en 

ondelettes. Le logiciel exploite aussi deux nouvelles méthodes de "de-noising" par des 

transformées en odelettes. 

L'environnement de fenêtrage de ce programme et l'affichage en couleurs de la 

représentation temps-fréquence font de  l'outil un logiciel professionnel et puissant pour 

l'analyse temps-fréquence. 



ABSTRACT 

The analysis of vibration signals has proveri to be a powemil and effective tool for the early 

detection of developing failure in rotating machines. The detection and diagnosis of 

rotating/reciprocating machines can be achieved by analyring the vibration generated by 

defects. The benefits obtained in predicting failures in rotatingheciprocating machines in 

critical plant is needless to say, wide-ranging. A variety of signal processiog techniques has 

been used for this purpose but a cornplete consensus on their effectiveness does not yet exist. 

The growing interest in the application of advanced methods of signal processing, 

ernphasizes further the need for additional studies in this area. 

Signal analysis techniques in time and frequency domains cm be appiied to i d e n w  and 

isolate abnorrnalities in rotatingfreciprocating machines. mile spectrurn anaiysis aids 

indicating the presence of an abnormality, decomposition of the time domain signal into 

periodic and position locked components can be used to isolate the location of the 

abnomaiity in the machine. 

Althouph the traditionai techniques are usefbl in simple cases and may provide a pre- 

diagnostic in the complex machine but they have several limitations which reduce their 

performance. These limitations rnay often mislead us. The application of conventional 
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methods to the diagnostic of rotating machines for which the stationary or pseudo-stationary 

vibration signals cannot be assumed yields incorrect results. The analysis of non-stationary, 

cylco-stationary or  tirne-varying signals needs advance methods capable to represent signais 

in time-frequency-amplihide domain. 

The objective of  the present work is to study, compare, modify and adapt the time-frequency 

representation techniques which can be used to analyses non-stationary phenornena. 

In the first part of this thesis the classical vibration techniques in time domain and in 

frequency domain are presented and the advantages and disadvantages of each technique are 

described. In facf in certain cases such as transient events in a machine or varying speed 

rotating machinery, traditional vibration analysis methods in time or in frequency are 

incapable of reflecting changes in the operating conditions of machines. Time-frequency 

methods are introduced to solve sorne of these problems. Among these rnethods, Short-Time 

Fourier Transfom (STFT) is considered to be the simpiest technique of analysis. The fint 

part of this work proposes the application of STFT as a time-frequency method which c m  

provide more information about a signal both in time and in frequency and demonstrate a 

better representation of the signal than that of the conventional methods in machinery 

diagosis. 

In the second part of this thesis, some of the tirne-frequency methods such as Wigner 

distribution, Choi-Wiliiarns distribution, and R D  distribution are briefly reviewed and 
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advantages and disadvantages of different methods are examined. Then the capacity of each 

method is examined in a practical application by an in-house program developed for al1 of 

the-fiequency methods. Primarily, computer generated signais are used to perforrn a 

preliminary test to evaluate the efficiency of the methods. Then, the signal recorded from an 

expenmental set up is applied to verify the performance of these methods. Finally, the 

different methods are evaluated by using realistic signal recorded from a defective gearbox 

and a defective dryer machine. 

The third part of this research deals with the development of new techniques such as wavelet 

analysis. by which it is possible to compensate for weaknesses in other time-frequency 

methods. Wavelet analysis has a special charactenstic of time-frequency localization. which 

is very effective in the analysis of transient or time-varying signals. Also, a brief study of 

the wavelet transfom, wavelet functions, the discrete wavelet transfom, the wavelet packet 

transform and adaptive wavelet transfonns is presented. Then, the advantages and 

disadvantages of different wavelet transfomis are shown b y using appropriate examples. 

Finally, the effectiveness of wavelet analysis in condition monitoring and diagnostics of 

machines is illustrated by experimentai results obtained from a defective bearing and a 

faulty gearbox. 

The fourth part of this thesis presents a user-friendly software designed to be a bridge 

between theoretical research in rime-frequency/time-scale methods and the practical 
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applications of these methods in diEerent domains. The software is able to calculate and 

display different time-fiequency transforms from time signal data füe. The software contains 

a number of the-frequency algorithms, such as: the Short-The Fourier transform, the 

Wigner-Ville distribution, the smoothed Wigner-Ville distribution, the Choi-Williams 

distribution, the Born-Jordan-Cohen distribution, the Rihaczek-Marginau distribution, the 

Wavelet transfonn, the Wavelet packet transform, and the Adaptive Wavelet transfomis. A 

graphical interface with color display and window environment of this program make the 

software a powerful and professional tool for time-frequency analysis. 
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INTRODUCTION 

L'analyse du signal vibratoire d'une machine est l'une des principales méthodes de 

surveillance et de diagnostic des machines. Au début, l'objectif de surveillance d'une 

machine était d'assurer la sécurité et d'éviter les dégradations imponantes. Si l'amplitude 

de la vibration (déplacement ou vitesse) dépassait des valeurs proposées pour le bon 

fonctionnement de la machine, le système de surveillance déclenchait une alarme ou l'arrêt 

de la machine. Ce mode de surveillance est connu sous le nom de maintenance préventive 

conditionnelle. Aujourd'hui, le concept de maintenance préventive conditionnelle a évolué 

vers celui de maintenance prévisionnelle. Ce nouveau concept non seulement comprend la 

fonction initiale de surveillance mais surtout permet de détecter d'une manière précoce les 

défauts d'une machine et d'en suivre I'évolution dans le temps. La détection des défauts au 

stade initial donne le temps nécessaire pour planifier, préparer et effectuer des réparations 

tout en provoquant des arrêts programmés à des moments opportuns. 

En effet, pour un ingénieur de maintenance, il est très important de connaître la nature du 

défaut et sa gravité pour prendre une décision. Donc, les fonctions clés de la maintenance 

prévisionnelle sont lasurveillance et le diagnostic. Cependant, les fondements du diagnostic 

et la surveillance reposent sur le traitement des signaux délivrés par les capteurs. Choisir une 

méthode du traitement du signal dans le domaine temporel, dans le domaine fréquentiel ou 
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dans le domaine du temps-fiéqueme peut considérablement affecter le résultat et la fiabilité 

d'une surveillance. Donc il n'est pas déraisonnable d'étudier l'efficacité et l'évolution des 

méthodes de traitement du signal afui de connaître laquelle ou lesquelles on doit choisir pour 

détecter l'origine exacte d'une anomalie dans le fonctionnement de la machine. 

Les méthodes traditionnelles de surveillance 

Surveiller une machine nécessite Ia détermination d'un certain nombre d' indicateurs avec un 

seuil associé à chacun. Tout dépassement de seuil signifie l'apparition ou l'aggravation d'un 

défaut ou d'un ensemble de défauts. II faut noter que les indicateurs de surveillance peuvent 

être classés en deux groupes : 

- Les indicateurs scalaires qui permettent desuivre l'évolution d'une grandeur dérivant 

de la puissance ou (et) de l'amplitude crête du signal vibratoire ; 

- Les indicateurs de forme qui permettent de suivre à la fois l'évolution de la forme et 

de la puissance du signal. 

Parmi les techniques d'analyse de vibration qui sont basées sur un indicateur de surveillance 

dans le domaine tempore1, on peut signaler les suivantes : 

1- La mesure de la valeur efficace du signal (Archambault, 1983; Barkov, Barkova 

et Mitchell, 1995; Ulieru, 1993). 



2- La détection du niveau crête (Collacott, 1979; Swamp, 1990). 

3- Le facteur crête (Archambault, 1983; Barkov, Barkova et Mitchell, 1995). 

4- L'impulsion de choc (shock pulse) (Collacott, 1979; Lipovszky, Solyomvari et 

Varga, 1990; Mcfadden et Smith, 1983). 

5- "Spike energy" (Julien Le Bleu et Ming 1995; Lipovszky, Solyomvari et Varga, 1990). 

6- La méthode de Kurtosis (Brennan, Chen et Reynolds, 1997). 

7- La méthode de démodulation (Barkov, Barkova et Mitcheil, 1995; E ~ ~ c o  et 

Paolo, 1989; Jones, 1996; Brennan, Chen et Reynolds, 1997; Reynolds, 1995). 

8- La forme d'onde dans le domaine du temps (Eshleman, 1983). 

9- La méthode des orbites (Bently. Zimmer, Palmattier et Muszynska, 1986; 

Liangsheng, Yaodong et Jiyao, 1989; Liangsheng, Yaodong et Xiong, 1989; 

Lipovszky, Solyomvari et Varga, 1990). 

1 0- La ligne centrale d'arbre (Bently, Zimmer, Palmattier et Muszynska, 1986). 

D'autre part, la transformée de Fourier est un outil traditionnel, qui nous permet de passer 

d'une représentation temporelle à une représentation fréquentielle et d'évaluer le spectre ou 

la distribution d'énergie des signaux dans le domaine Fréquentiel. 
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Parmi les techniques d'analyse de vibration dans le domaine des fréquences notons : 

1- L'analyse spectrale (Angelo, 1987; James, 1986; Robert, 1994; Robert, 1985). 

2- L'Holospectmm (Liangsheng, Yaodong et Jiyao, 1989). 

3- Le d i a g r m e  en cascade (Leuridan, Auweraer et Vold, 1994; Trevillion, Parge, 

Carle, Good, 1989; Sculthorpe et Johnson, 1987). 

3- Le cascade-Holospectnim (Liangsheng, Yaodong et Jiyao, 1989). 

5- Le d i a g m m e  de Nyquist et Bode Pently, Zimmer, Palmattier et Muszynska, 

1986; Trevillion, Parge, Carle, Good, 1989; Majovsky et Salamone, 1988: Smith et 

Woodward, 1 988). 

6- L'analyse cepstrale (Archarnbault, 1989; Debao, Hongcheng, Yuanyun et Bo, 1989). 

Les méthodes temps-fréquence 

L'information utile est souvent véhiculée à la fois par les fréquences émises et parla structure 

temporelle du signai (l'exemple de la musique est caractéristique). La représentation d'un 

signal comme fonction du temps montre mal le spectre des fréquences en jeu, alors qu'au 

contraire son analyse de Fourier masque l'instant d'émission et la durée de chacun des 
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éléments du signal. Une représentation adéquate devrait combiner les avantages de ces deux 

descriptions complémentaires. 

Or, dans le cas des machines tournantes: les défauts sont caractérisés par un écho en 

fréquence localisé dans le temps. Nous nous sommes donc tourné vers des méthodes niettant 

en valeur des perturbations fortement localisées en temps et en fréquence, ce qui nous a 

amené à considérer les transformées temps-fréquence. 

La première méthode en temps-fréquence qui a été utilisée dès 1940 par Gabor pour la 

transmission de données était le spectrogramme ou la transformée de Fourier à fenêtre 

giissante (TFFG). C'est une méthode simple et efficace qui s'utilisesurtout pour analyser des 

signaux non stationnaires. 

Les principaux avantages de cene méthode sont les suivants : 

a) elle donne toujours une distribution positive. 

b) elle présente i'énergie totale du signal. 

Les inconvénients de cette méthode sont les suivants: 

a) elle dépend complètement de la longueur temporelle de la fenêtre. 

b) elle donne les fréquences existantes dans chaque intemalle de temps mais elle ne 

donne pas le temps exact de chaque fréquence ni sa durée. 

c) elle ne peut pas donner l'énergie instantanée ni le spectre instantané. 
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D.Gabor (1 946) et J.Ville (1947) se sont attaqués au problème de la représentation mixte du 

signal. Une première idée, qui a été présentée par Gabor, est une méthode mathématique qui 

s'appelle "coherent states" en mécanique quantique. Ville a dérivé la distribution que Wigner 

avait élaborée en 1932 pour étudier la statistique de la mécanique quantique (quantum 

statistical rnechanics). Ville, à la recherche du spectre instantané, voulait déployer l'énergie 

du signal dans le plan temps-fréquence et obtenir une densité d'énergie ayant au moins les 

propriétés suivantes : 

- La somme des énergies pour toutes les fréquences a un temps particulier donne l'énergie 

instantanée. 

- La somme des énergies pour tous les temps à une fréquence particulière donne le spectre 

instantané. 

Ces deux propriétés s'appellent les conditions marginales en temps et en fréquence. On peut 

tout de suite constater que contrairement au spectrogramme, la transformée de Wigner-Ville 

donne la fréquence instantanée. Mais la distribution Wigner-Ville présente aussi des 

désavantages : 

a) eile ne donne pas toujours une distribution positive. 

b) pour un signal à composantes multiples, elle induit les termes rectangulaires (cross 

terms) qui sont des artefacts dont la localisation dans le plan temps-fiéquence est a mi- 



chemin de celle des ternes carrés (self terrns) correspondants. 

Un an après Wigner, Kirkwood (1 933) développait une autre distribution et il soutenait que 

celle-ci était plus simple à appliquer. dans certains cas. que la distribution de Wigner. Cette 

distribution est identifiée comme le spectre d'énergie complexe. Elle satisfait les conditions 

marginales mais elle ne donne pas la Fréquence instantanée. 

Une nouvelle formulation de cette distribution considérant le point de vue physique hit 

donnée par Rihaczek en 1968. Margenau et Hill (1 96 1) ont obtenu cette même distribution 

par la méthode de la fonction caractéristique. 

En 1 952, Page a obtenu une nouvelle distribution qui s'appelle la puissance instantanée du 

spectre. La distribution de Page satisfait les conditions marginales mais elle ne retourne pas 

à zéro a la fin du signal. 

En 1980, Classen et Mecklenbrauker ont donné une formulation générale englobant les 

distributions temps-fréquence engendrées à ce jour. Cette formule a une fonction arbitraire 

appelée noyau. En choisissant des noyaux différents, on peut avoir des distributions 

différentes. Cette méthode simple qui produit toutes les distributions a ['avantage de 

permettre la prévoyance de résultats généraux. De plus, en ajoutant des contraintes sur le 

noyau, on peut obtenirune distribution avec des propriétés particulières (Cohen, 1966). Dans 

une importante série d'articles, Classen et Mecklenbrauker (1980) ont développé une 
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approche complète et ils ont présenté des idées et procédures nouvelles pour étudier les 

distributions mixtes. 

En 1989. Choi et Williams ont présent4 une nouvelle approche où ils se sont attaqués à 

l'inconvénient principal de la distribution de Wigner-Ville, soit les termes rectangulaires. Le 

noyau de leur distribution a une constante telle qu'en ajustant cette constante, on peut 

minimiser les termes rectangulaires qui sont des artefacts dont la localisation dans le plan 

temps-fréquence est a mi-chemin de celle des termes carrés correspondants. En augmentant 

la constante, on va vers la distribution de Wigner-Ville et en diminuant le paramètre, on 

élimine les termes rectangulaires mais en même temps on perd de la résolution dans le temps 

et dans la fréquence. 

En 1966, Born et Jordan ont utilisé le noyau "sinc". Mais les propriétés intéressantes de ce 

noyau, qui font diminuer l'amplitude des termes rectangulaires, étaient découvertes après le 

travail de Ieang et Williams (1 992). Une revue bibliographique complète sur les méthodes 

temps-fréquence a été donnée par Cohen (1 989). 

En 1990, une nouvelle distribution était développée par Zhao, Atlas et Marks. Leur 

distribution non seulement diminue les termes rectangulaires mais elle les transfère à 

l'endroit des termes carrés. 

En 1993, Louglin, Pitton et Atlas ont élaboré une méthode générale pour transférer les termes 
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rectangulaires à l'endroit des termes carrés. Ils ont utilisé un noyau en forme de fonction 

générale. Ce choix d'une fonction générale amènera à perdre quelques propriétés désirables 

de 1a distribution. 

En 1994, Zhang et Sato ont présenté un noyau composé qui a été produit en combinant le 

noyau de Choi-Williams et celui de Margenau-Hill. Cette distribution aussi transfère les 

termes rectangulaires à I'endroit des termes carrés. 

Mais le problème de toutes ces distributions est que le transfert des termes rectangulaires 

donne une modulation des termes carrés, ce qui nous empêche de trouver la vraie modulation 

sur Ies termes carrés. 

Diethom (1994) a étudié une généralisation du noyau de type Choi-Williams. 11 a exprimé 

le noyau en forme exponentielle avec trois paramètres. En manipulant adéquatement les trois 

paramètres, on peut obtenir une meilleure résolution que celle de Choi-Willams avec une 

diminution des termes rectangulaires. 

Zhengu Guo, Daurand et Haward C. Lee (1994) ont présenté un noyau basé sur la fonction 

de Bessel de premier type. Cette distribution élimine les termes rectangulaires et donne une 

bonne résolution dans le domaine temps-fréquence. 

On peut dire que Boashash (1978) fut le premier à utiliser la technique temps-fréquence pour 

des problèmes réels et à développer de nouvelles méthodes et a les appliquer à des problèmes 
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d'exploration géophysique. Bazelaire et Viallix (1 987) ont utilisé la distribution de Wigner 

pour ét idier les tremblements de terre. Dans le domaine du diagnostic de machine, Forrester 

(1989) a utilisé la distribution de Wigner pour trouver des défauts dans le système de 

transmission d'un hélicoptère. II a montré que la distribution Wigner-Ville peut révéler le 

défaut avec plus précision que les méthodes conventionnelles. 

Dans uneséne d'articles, Mcfaden et Wang (1 990; 199 1 ; 1992) ont expliqué comment ils ont 

appliqué les méthodes temps-fréquence au diagnostic des machines. Ils ont présenté la 

complexité de la représentation temps-fréquence produit par la méthode de Wigner-Ville et 

ont suggéré une fenètre temporelle qui peut améliorer les résultats de Wigner-Ville 

(Soudreaux-Bartels et HIawatsch, 1992). 

Rohrbaugh (1993) a utilisé l'analyse temps-fréquence pour des machines marines. II a 

comparé la STFT avec la représentation temps-fréquence de Cohen ayant un noyau cône 

(cone-kemel). Rohrbaugh et Cohen (1995) ont appliqué une nouvelle méthode de temps- 

fréquence qui est développée par Louhlin, Pitton et Atlas (1994) au diagnostic de pompes. 

Cette méthode est appelée "positive time-frequency distribution" et elle est plus efficace que 

la méthode de STFT pour le diagnostic de machines alternatives. 

Quelques applications des méthodes temps-fréquence à la surveillance de processus 

d'usinage comme le perçage et le broyage ont été présentées par Loughlin, Atlas, Bernard 

et Pitton (1995). Ils ont montré que les nouvelles méthodes peuvent foumu plus de détails, 



11 

sur signal que la méthode STFT. Atlas, Bernard et Narayanan (1996) ont offert un résumé 

des applications de l'analyse temps-fréquence dans différents domaines de diagnostic des 

machines. Ils ont souligné l'importance d'applications des méthodes temps-fréquence dans 

le secteur industriel et la surveillance des machines. 

Dans un travail récent, Loughlin et Bernard (1 997) ont présenté quelques applications de la 

méthode "positive time-frequency distribution" aux signaux vibratoires de différentes 

machines. 

Les méthodes de temps-échelle (ondelettes1 

Tout comme les techniques "temps-fréquence", ces techniques appartiennent à un ensemble 

plus général d'algorithmes qu'on retrouve aussi bien chez les mathématiciens que chez les 

spécialistes du traitement de signal. 

Les premières publications sur les ondelettes remontent à 1984 avec l'article &Alex 

Grossmann et Jean Morlet. L'essentiel de leurs idées s'inspire de travaux théoriques déjà 

anciens (notamment le théorème des fonctions élémentaires introduit vers 1 %O), d'idées plus 

récentes exploitées dans le traitement numérique de certains signaux sismiques et d'outils 

mathématiques utilisés en physique théorique (Gasquet et Witmoski, 1992). 
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En 1982, J. Morlet a proposé une ondelette prototype ainsi que son spectre d'amplitude. Cette 

ondelette montre que, comme dans le cas de temps-fréquence, les fonctions élémentaires de 

la transformée en ondelettes sont des filtres à bande passante avec l'avantage que procurent 

des bandes variables, soit d'obtenir une analyse multi-r6solution. 

En 1989, Stephane Mallat a utilisé les filtres miroirs en quadratures (FMQ) pour construire 

à l'aide d'une organisation hiérarchique des algorithmes temps-échelle qui permettent de 

calculer rapidement les coefficients d'ondelettes orthogonales. Cet algorithme est appelé la 

transformée en ondelettes rapides (TOR) et la transformée correspondante est appelée la 

transformée discrète en ondelettes P O )  (Rioul et Vetterli. 199 1). La division logarithmique 

de la bande fréquentielle dans la TDO est appelée le "splitting alprithmtl (Meyer, 1997) ou 

algorithme de décomposition. Une série des conditions suffisantes pour la régularité de ces 

filtres a été donnée par Daubechies (1 988, 1992). Une revue de la transformée discrète en 

ondelettes et le lien entre la transformée en ondelettes et la banque de filtres ont été donnés 

par Shensa ( 1992), Vetterli (1 992)et Ramchandram et Vetterli (1 996). 

L'inconvénient majeur d'une TDO est qu'elle présente une échelle logarithmique de 

fréquence, ce qui ne permet pas une analyse fréquentieile plus fine aux fréquences élevées. 

L'algorithme ayant une échelle fréquentielle plus fine est la transformée en paquets 

d'ondelettes (TPO) (Hess-Nielsen et Wickerhauser, 1996; Ramchandram et Vetterli, 1996). 

Dans la transformée en paquets d'ondelettes, on applique le "splitthg algorithm" 
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simultanément awc deux canaux fréquentiels. Ceci nous donne une échelle linéaire de 

fréquence. Pour rendre la transfomée encore plus flexible et plus précise, on doit aller vers 

la transformée adaptative au signal (Mailat, 1993). 

L'utilisation des méthodes d'ondelettes pour le diagnostic des machines est très récente. 

L'identification des défauts dans les roulements à billes (Li et Ma, 1992; Hongbin, 1995) et 

dans les boîtes d'engrenage (Mcfadden et Wang, 1993; Mcfadden et Wang, 1995; Lopez, 

Tenney et Deckert, 1994) sont des exemples d'application de cette méthode aux éléments 

essentiels des machines tournantes. Dans le cas des machines réciproques, la méthode des 

ondelettes est une méthode satisfaisante pour fournir les caractéristiques des signaux 

vibratoires (Grivelet, 1990). Zhongxing et Liangsheng ont appliqué la méthode du paquet 

d'ondelettes au diagnostic d'un compresseur (Zhongxing et Liangsheng, 1994). Dans une 

autre approche, Dalpiaz et Rivola (1995, 1997) ont utilisé la transformée en ondelettes pour 

la surveillance et le diagnostic dans les mécanismes contenant des cames. 

Obiectifs du présent travail 

Comme le montre l'étude de la bibliographie, le diagnostic des machines a fait l'objet de 

quelques travaux dans les domaines du temps et de la fréquence. La méthode usuelle de 

traitement du signal présente de nombreux inconvénients daas ce type de problème. 
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Liitilisation de la transformée de Fourier (FFT) a ses limites. D'une p a .  il faut respecter le 

théorème d'échantillonnage. D'autre part, les signaux concernés doivent Etre stationnaires, 

ce qui limite l'utilisation de la transformée daos les applications. 

Dans notre cas, les défauts sont caractérisés par des phénomènes transitoires, non 

stationnaires ou cyclo-stationnaires. Vu la difficulté de trouver les défauts dans la 

représentation temporelle ou fréquentielle, il est nécessaire d'aller vers la représentation 

mixte ou la représentation temps-fréquence-énergie, qui nous permet : 

- de détecter et de suivre l'évolution de défauts qui induisent une puissance vibratoire fiable, 

qui cependant peut modifier considérablement la forme du signal. C'est notamment le cas des 

défauts qui induisent une modulation de l'amplitude ou de la fréquence de certaines 

composantes caractéristiques de la chaîne cinématique complexe (roulement des paliers des 

lignes d'arbre à faible et très faible vitesse de rotation : broyeurs à boulets, fours rotatifs, 

laminoirs, cylindres sécheurs et sections "presses" de machine à papier, etc); 

- de surveiller les installations dont le processus de fonctionnement normal génère des chocs 

périodiques d'amplitudes élevées (compresseurs à vis, à pistons, machines alternatives, etc) 

susceptibies de masquer l'apparition de défauts induisant des forces irnpulsio~elles 

(dégradation de roulernenk écaillage de denture, jeux de palier, d'accouplemenf de clavene. 

etc). 



Dans cette thèse nous prenons en charge les points suivants: 

a) Un problème que pose la représentation temps-fréquence est le manque de précision et de 

r&slution ilans des méthodes temps-fréquence et temps-échelle telle que la méthode en 

ondelettes et STFT. Pour résoudre ce problème, nous développons une nouvelle méthode 

appelée "Zoom in wuvelet transjmnqui permet à l'utilisateur d'dler chercher une précision 

désirable dans une bande de fréquence choisie. Ainsi, nous proposons une méthode de STFT 

qui utilise un indicateur courant du diagnostic de machine pour ajuster la résolution dans le 

plan temps-fréquence. 

b) Un autre problème de représentation temps-fréquence est le bruit qui nous empêche de 

voir le signal. Malgré le fait que la représentation temps-fréquence disperse le bruit sur le 

plan temps-fréquence donc garde le niveau du bruit bas, il reste que le niveau du bruit 

complique parfois l'identification des défauts. 

Pour résoudre ce problème, deux méthodes de "de-noising" sont utilisées : 

1 - "De-noising" par la méthode en ondelettes. 

2- "De-noising" par l'algorithme de "Matching Pursuit". 

Il faut noter qu'on ne peut pas appliquer la méthode courante de "de-noising", qui est de faire 

la moyenne, parce que les signaux captés sur une machine peuvent être non stationnaires. 
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c) Un autre problème de représentation temps-fréquence est le manque d'un logiciel facile 

à utiliser. Pour résoudre le problème, un logiciel de traitement de signal utilisant les 

diffërentes méthodes du type "temps-fréquence" et du type "tempsichelIe" ainsi que la 

méthode FFT, et en tenant compte des améliorations décrites en a) et en b) est développé 

dans le cadre de cette thèse. Ce logiciel permet aux ingénieurs ou aux techniciens en 

sunteillance de machine de faire le traitement de signai vibratoire de machines et de 

structures même s'ils n'ont pas d'expérience spécifique en analyse de signal. 

d) Un autre problème de représentation temps-fréquence est le choix de la méthode 

d'analyse. Pour examiner la fiabilité des techniques d'investigation temps-fréquence sur 

lesquelles repose le logiciel, nous procédons à des analyses de signaux dotés de 

caractéristiques différentes créés par l'ordinateur. 

Ensuite, nous effectuons quelques essais expérimentaux dans le laboratoire de diagnostic des 

machines afin de passer au diagnostic industriel des machines. A cette étape, les difficultés 

posées par les signaux réels et la nécessité de développer des techniques encore plus 

complémentaires pour résoudre ces problèmes sont apparus. 

Après avoir surmonté les problèmes pratiques, nous exécutons quelques essais industriels 

sur les signaux captés sur une boite d'engrenages et sur un séchoir de machine à papier. 



Or~anisation de la thèse 

Cette thèse est constituée d'articles qui forment le corps principal du travail. Comme on vient 

de voir, I'intrcduchon comporte une brtve revue historique suivie par une bihlicrgraphie des 

méthodes traditionnelles de surveillance de machine, des méthodes temps-fréquence et des 

méthodes temps-échelle. Les objectifs du travail et l'organisation de cette thèse sont 

également définis dans ces pages. Le premier chapitre présente l'application de la méthode 

de la transformée de Fourier à fenêtre glissante au diagnostic de machines. Dans ce chapitre 

les avantages et les inconvénients des méthodes traditionnelles de diagnostic de machines 

sont étudiés et la nécessité d'appliquer des méthodes temps-fréquence est discutée par 

quelques exemples. Cet article a été soumis à l'International Journal of Condition Monitoring 

and Diagnostic Engineering Management (COMADEM). Le deuxième chapitre présente les 

distributions temps-fréquence et les applications de ces distributions à la détection des 

défauts. La classe générale des méthodes temps-fréquence et une étude approfondie des 

méthodes tem ps-fréquence sont également présentées dans ce chapitre. Ainsi, les différentes 

méthodes temps-fréquence sont comparées au moyen de plusieurs exemples. L'article a été 

soumis au Journal of Sound and Vibration. 

Le chapitre trois présente I'application de la transformée en ondelettes dans le domaine du 

diagnostic des machines. Dans ce chapitre une autre représentation temps-fréquence par des 

méthodes temps-échelle est présentée et les avantages et désavantages de cette méthode sont 
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montrés par quelques exemples. De plus les nouvelles méthodes du "Zoom in Wavelet 

Transfrm" et du "de-noising" sont décrites. Cet article a été soumis au Journal of 

Mechanical Systems and Signal Processing. 

Le quatrième chapitre portesur les algorithmes temps-fréquence et sur leurs applications. Ce 

chapitre décrit le logiciel général qui a été développé dans le cadre de cette recherche et les 

options qu'on peut obtenir par ce logiciel. Cet article a été soumis à l'International Journal 

of Cornputers and Their Applications. 

Enfin, la conclusion de cette thèse suivie par quelques perspectives de travaux futurs sont 

présentées. 



CHAPITRE I 

USMG SHORT-TIME FOURIER TRANSFORIV1 

IN MACHINERY FAULT DIAGNOSIS* 

'M.S. Safizadeh, 'A.A. Lakis and 'M. Thomas 

1: Département de Chhie Mécanique, Émle Polytechnique de Montréal 

Case Postale 6079, Succ. Centre-ville, Montréal, Canada H3C 3A7 

2: Département de Génie klécanique. École de Technologie Supérieure 

1 100. rue Notre-Dame Ouest, Montréai, Canada H3C 1 K3 

The detection of faults in machinery is based on the venfication of classical vibration 

parameters, including both time domain and frequency domain parametea. There are seved  

methods by which one can estirnate these parameters and each of  the methods has advantages 

and disadvantages. In certain cases, such as transient events in machinery or varying speed 

rotating machinery, traditionai rnethods o f  vibration analysis either in time or in fiequency 

are incapable of  reflecting changes in the operating conditions. The use of the-frequency 

*: Soumis pour publication dans ''Intemationai Journal of Condition Monitoring and Diagnostic En@-g 

Management (COMADEM)" 
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methods is one step towards a solution of some of the problems and the Short-Time Fourier 

Transfom (STFT) is the simplest method of tirne-frequency analysis. 

This paper proposes the application of the STFT as a tirne-frequency method which can 

provide more information about a signal both in time and in frequency, and give a better 

representation of the signai than the conventional methods used in machinery diagnosis. 

In this paper, we review the traditional vibration analysis techniques which are widely used 

in practice. Secondly, we discuss the netessity of time-frequency analysis in the field of 

machinery diagnostics. Thirdly, the theory of the Short-Time Fourier Transfom is briefly 

explained. Some practical examples of defective bearings and defective gearboxes are 

analyzed by the STFT method and, in conclusion, the effectiveness and advantages of the 

STFT are demonstrated. 

1.2 Introduction 

With increased competition in the production and greater pressure on the price of industriai 

rotating machinery, the necessity for efficient methods of the condition monitoring and 

detecting fauits in machinery has become apparent. It is necessary to fmd, on the one hand, 

ways to protect the produaivity of critical equiprnent and, on the other hand, ways to reduce 

operathg and rnaintenancecosts. The most efficient method will beone which recognize that 
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a problern exists before damage has occurred in machine, so that ample time is available to 

schedule repairs with minimum disruption to operations and production [l]. 

The wave forms of vibration sipals from rotating machinery are often recorded and 

analyzed by processing the data using anaiysis techniques. Each different technique gives 

some information about the condition of the machinery but the need exists for a technique 

which gives al1 the necessary information. 

In practice, after deciding on the type of sensor, its location and the parameter to be 

monitored [2] ,  the processing technique to be chosen will depend upon the precise condition 

we wish to monitor. if f a I f  detection is our objective, then the speed and reliability of the 

processing technique are important but, if fa1111 cüagnosis is our objective, the accuracy of 

the method is critical. 

There are severd conventionai methods for the detection and identification of faults. Sorne 

of these methods provide a representation of signals in the time domain and others in the 

frequency domain. In al1 of the methods, it is assumed that signals are stationary. This 

assurnption. however, is not always accurate. In certain machines, in the early stages of 

defects, vibrational signals become non-stationary; in this case, conventional methods are 

not applicable. 

In recent years, a nurnber of new analyticai methods have been developed in the field of 
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signal processing: these are called "oint tirne-frequency analysis rnethods". However, they 

are not generally used in the field of rnachinery diagnostics. There has been considerable 

progress in research into the development of the theoq ofjoint time-frequency methods and 

other non-stationary signal processing methods, but more work must be carried out to prove 

to industry that these new methods are effective in the condition-monitoring of mechanical 

systems. 

The objective of this work iq firstly, to outline the limitations of conventional methods and, 

secondly. to demonstrate the speed and accuracy which can be obtained by using joint time- 

frequency analysis methods in the field of machinery diagnostics. In this paper we fint 

present a review of traditional methods with their advantages and disadvantages. Secondly, 

we discuss the necessity for using time-frequency methods, and present a brief theory of the 

Short-Tirne Fourier Transfonn as the fastest and the easiest method among other time- 

frequency methods. Thirdly, a technique of adaptively adjusting the window length used 

in the Short-Time Fourier Transfonn is presented. Finally, some examples of fault detection 

and the identification of real problems are given, using the Short-Time Fourier Transfom. 

1.3 The-based and frequency-based vibration analysis techniques 

There are a large number of vibration anaiysis techniques which may be applied to the 
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processing of a vibrational signal. These techniques can highlight different characteristics 

of the signal which may be used in the detection and diagnosis of faults in machinery. Many 

studies have been carried out to find the most effective technique for the analysis, monitoring 

and diagnostics of machines. Unfortunately, none of these techniques has been proven to be 

effkient. in the following section, the advantages and disadvantages of conventional 

methods are described in order to understand why time-frequency methods are needed. 

Conventional vibration analysis methods fa11 into two categories: 

a) Time-domain vibration analysis techniques 

b) Frequency-domain vibration analysis techniques 

1.3.1 Time-domain vibration analysis techniques 

I )  Time wave form: 

Using an instrument as simple as an oscilloscope or FFT analyzer, it is possible to view the 

wave form of the vibration. It rnay be possible to identify the penod of wents existing in a 

machine and any amplitude modulation in the vibration signal [3]. However, although the 

time domain often shows the nature of the mechanical problem better than the frequency 

domain, there are seveml reasons which lead us to avoid the use of the t h e  domain display 
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in machine monitoring. For instance, in the case of a complex machine, the vibration 

signature may combine several signals with different frequencies, amplitudes and phases, and 

it would be vimially impossible to decompose the signature into its separate components. 

However, vsed in conjunction with other methods, it could prove helpful. 

II) Overall level (RM.S.) rneasurements: 

Overall level measurements [4-61 are the most common vibration measurement in use. It is 

a simple and inexpensive type of measurement, which is calculated by estimating the root 

mean square (RMS) level of the time record. It has been found that, in rotating machinery, 

velocity is the best indicator of general condition. Charts are available which indicate 

acceptable levels, for example VDI 2056 (table 1.1). The greatest limitation is the lack of 

precise information to be extracted from the data. These charts are extremely generalized in 

conception, and have little regard to mobility. The mobility relationship is defmed as: 

Vibration = Force x Mobiiity 

where the mobility is the ability of a structure to move under force. Since the rnobility 

changes from machine to machine, vibration level changes accordingiy. For example, the 

measurement of a damaged bearing must be made on the outside of the bearing housing 

support- The signal detecting procedure is affected by the transmission path to the sensor. 
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Unless a problem is severe, the overall level measurements may not change ~ i ~ c a n t l y .  

Unfomuiately, people have relied too heavily on these measurements done, and have been 

surprised to see machines fail, apparently without warning. 

111) Peak level detection: 

As an alternative to RMS, the peak level of the signal cm be used [7, 81. A baseline "peak" 

level is defined for a new machine, and any variations from this nom would be indicative 

of a change in machine condition. Operational standards have been developed which 

recommend vibration boundary levels for satisfactory or unsatisfactory running conditions. 

For example standard API 610 [API standard 610, P edition, Centrifuga1 Pumps for 

General Refinery Services] defines vibration limits for centrifuga1 pumps. This is particularly 

usefbl for monitoring the change in the arnount of impulsion, possibly due to the occurrence 

of impacts. However, this method is not reliable, since resonant behavior often dominates 

the vibration signal. and therefore only a very severe transient impact will bring about any 

change in the peak level. 



IV) Crest factor: 

The crest factor [4, 61 (sornetimes called the impact index) is the ratio of the peak level to 

the RMS level of the vibrational signal. The time wavefonn of a machine in eood health is 

mostly random. When a Iocalized fault appears, a periodic peak is seen to occur in the signai. 

As the fault increases, the waveform becomes far more impulsive, with hi_eher peak levels, 

but the RMS value is not afTected significantly. In work carried out by the General Electric 

Company [9],  it was s h o w  that the crest factor could be used as an indicator of bearing 

condition. The crest factor limits are as follows: 2 to 3 indicates a nonnal bearing, 3 to 8 

indicates fault initiation and S to 10 indicates fault growth. However, this method has certain 

limitations. The R M S  level is significantly increased in bearings with multiple or spreading 

defects, resulting in the reduaion of the crest factor. Background noise is also a problem 

because it increases the RMS level and consequently decreases the crest factor. 

V) Shock pulse: 

Theshock pulse method [7,1 O] detects the development of a mechanical shock wave caused 

by increasing damage. For example, impacts produced by smail defects in a bearing rnay 

excite resonances in the bearing and the machine. The periodic signals with characteristic 

frequencies from a bearing rnay indicate deformations or defects in the bearing, but they are 
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not always visible and frequently follow the rhythm in higher frequencies (higher of 2kHz). 

To observe the shock pulses, fiat the vibration is measured by a transducer mounted on the 

casing of the machine. Then, the signal f?om the transducer is passed through a bandpass 

filter to isolate one of the resoaances. Finally, the filtered signal is transformed into a train 

of impulses by passing it through a pulse converter (Figure 1.1). 

By observing the increase of the level and the rhythm, it is possible to determine which of 

the bearing elements is damaged (Figure 1.2). It is ais0 useful to calculate the amplitude 

spectrum of the train of impulses; the complete procedure is also known as the high 

frequency resonance technique or high frequency shockpulse [ I  I l .  This approach is efficient 

but has certain disadvantages. When there is more than one fault in a machine, the pulse 

repetition will not correspond to one single fault. For example, if there are simultaneous 

cavities on the inner and outer races of a bearing, the frequency of the shock pulses will 

correspond to neither BPFI (ball-pers fiecpency ori the inner race) nor B PFO (bail-pass 

freqzierzcy on the outer race) but with their mm: BPFI+BPFO. 

YI) Spike energy: 

This method was developed in 1970 to mesure the condition of rolling bearings [ 1 O]. It is 

based on the high fiequency peak value of the acceleration. Spike Energy shows the intensity 



28 

of impact energy caused by mechanical faults. To measure Spike Energy, as with the Shock 

Pulse method, the output signal of the accelerometer is filtered through a bandpass filter, and 

the time variation of the signal is measured by a peak-to-peak detector as an indicator of the 

severity of the impact measurements. Spike Energy is expressed in "gSF1 units. Spike 

Energy Spectmm may also be obtained by using FFT analysis. This technique is ofien used 

in high frequency vibration such as metal-to-metal contact and cavitation. Details of an 

application of this technique to vibration monitoring of seal-less pumps are given in [12]. 

This method has proven satisfactory in fault detection, but it has problems sirnilar to those 

of the Shock Pulse method and may be misleadhg in the case of simultaneous faults. 

VII) Demodulation: 

An alternative way to monitor rotating machines is demodulation or the enveloping method. 

This method is based on the propenies of amplitude-modulated signals which are ofien 

encountered in machine monitoring. The type of fault is indicated by the impact rates. The 

envelope of a wave modulated in amplitude reveals the repetition frequency of the impacts 

(Figure 1.3). The potential applications of these properties hinge on the availability of 

mathematicai tools that enable assessrnent of the envelope funaion characteristics. 

Demodulation andysis of a bandpass filtered signal is based on the Hilbert Transforrn which 
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generates the envelope of the time signal. The Hilbert Transform ( H ) of the signal in time s( t ) 

is defmed as 

This constitutes the imaginary part of the analytical signal defined as 

where  6(i)=arctg ] - and the  m o d u l a  of  t h e  a n r l y t i c a l  

signal,lz(l)l = 4- s ( I )  + s (t ) , represents the envelope of the time signal s(t ) . The time 

envelope calculated by the Hilbert Transform can be useful in bearing defect detedon [6, 

13, 141 or gearbox defect detection (1 51. The problem with the demodulation method [ 161 

is that the Hilbert Transform cannot be used to demodulate the whole vibration signal. The 

signal fmt has to be filtered by passing it through a bandpass filter in order to separate one 

of the dominant harmonics and ail of its sidebands. If a narrow bandpass filter is chosen, it 

is likely to miss some of the higher order sidebands of the chosen hamonic. And if a broad 

bandpass füter is used, it is likely to pass some of the sidebands from adjacent harmonics. 



30 

In both cases, the modulation calcdated by the Hilbert Tmnsfom will not represent the 

amplitude modulation of the signal. As a solution to this problem, the rectification process 

in the demodulation method is replaced by peak value waveform [17]. 

VIIr) Kurtosis: 

The technique of Kunosis analysis is another method used to indicate the "peakedness" of 

the signal. Kurtosis ( Kir ) is a statistical parameter, derived from the statistical moments of 

the probability density function of the vibrational signal. " KI[ " is defined as 

where s is the magnitude of the vibration signal with zem mean and P(s) is the dis-triiiution of s . 

To give a simple explmation of this parameter, knolving that the fmt moment about zero 

gives the mean value of distribution: 

The second moment called variance gives the standard deviation and is defined as: 



Higher order moments are defmed by the generd integral. 

Then, Kurtosis is just the fourth moment, p,  , normalized with respect to the square of the 

variance. 

'4 Krrrtosis = - 
0, 

A bearing in good condition has a Gaussian distribution fûnction and the Kurtosis value of 

its signal is equal to three, but a damaged bearing has a Kurtosis value which will be greater 

than three. Advantages of this methods are: a) Kurtosis value is independent of load and 

speed conditions, b) it has been found that the amplitude distributions, and therefore the 

Ku value, are relatively unaffected by variations in the transmission paths of vibrational 

signals. But for modulated signals this technique may lead to inaccurate predictions [15]. 



IX) Orbits: 

Orbits display or Lissajous curves [IO, 181 are obtained by displaying time base waveforms 

from two transducers whose outputs are phase shifted by 90 degrees (Figure 1.4). Orbits are 

particularly useful in the anaiysis of the vibration of a shaft during rotation. The shaft orbit 

can provide basic amplitude, frequency and phase laç angle information. It is able to indicate 

wearin a journal bearing, shaft rnisalignment, shaft imbalance and shaft mb. Since the orbits 

are directly constmcted in the time domain, they are deformed by noise, surface quality and 

self-excited low frequency vibration of the rotating shaft [19]. Consequently, the detection 

of faults in rotating machinery by this method is often unsuccessfùl. Nevertheless, Orbits 

display is used to complement other methods [?O]. 

,Y) Shaft centeriine: 

The shaft centerline position is used to estirnate the shaft centerline relative to the geometric 

centerline and clearance of the bearing. From these data, the shaft attitude or position, its 

angle and eccentricity ratio cm be caiculated and may be used as an indication of bearing 

Wear and misalignment generated by heavy loads [20]. The Sh& centerline position method 

has the same limitations as the Orbits method. 



1.3.2 Frequency domain vibration analysis ~Lchniques 

I )  Spectrurn analysis: 

A spectnim is derived from the vibration wavefom by perfoming a "Fast Fourier 

Transform" [3]. The benefit of the spectnim is that each rotating element in a machine 

generates identifiable frequencies; the peaks in frequencies defme the type of fault and the 

amplitude of the peaks indicates the severity of the fault [2  1, 221. Spectmm analysis 

information may be used in different ways to recognize defects in machines. The spectral 

indices such as R.M.S. levels [23] canshow the difference between the current spectnim and 

the baseline or the previous spectrum. These indices are good indicators of the overall 

performance of machinery. h alternative way is to define an allowable tolerance limit on 

the baseline speanirn such that, if there is a fault in the machinery, the spectmm will exceed 

the Iimit. The narrow bandwidth spectmm may be replaced by a constant percentage 

bandwidth spectnim in order to sirnplify its application. 

Althouçh spectmm analysis is one of the best vibration indicators of machine condition, it 

must be pointed out that the defect fiequency rnay be close to frequencies excited by other 

components in machines; therefore, by a small change in speed, the position of the peaks 

may change and give incorrect rsults. To prevent this problem, a new spectnim called the 

Synthesized Spectnim May be used [Ml. However, these fault frequencies and fault 

conditions are not always easily identifiable. A discussion on how spectnim andysis may 
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provide enoneous results and therefore false wamings is presented in [25]  and a number of 

conditions which are necessary in order to obtain correct results with different types of 

specmim are given. 

II)  Waterfall plot: 

A Waterfall plot (aiso known as a cascade plot) is cornposed of FFT magnitude spectrums 

displayed at different machine speeds (Figure 1.5). This method is used to examine sub- 

synchronous and super-synchronous components during run-up or run-down stages of a 

machine [26]. The advantage of this format over single or overlaid spectnim displays is that 

changes in the spectrurn versus changes of speed rnay be identified visually. This method is 

specially applied to certain types of fault such as oil whirl/whip, cracked shaft [27] and rubs. 

Aithough Waterfâil display is useful, it has some Iimitations. When the characteristics of the 

signal are changing rapidly in time, the spectral representation of the signal at each speed is 

degraded. If the speed varies relatively slowly (1 OOO4OOO RPM over 60 sec) the Waterfall 

technique may give data of an acceptable order of magnitude [BI. If the speed varies more 

rapidly, this technique may provide inaccurate resuits. 



III) Bolospectrum: 

This method [19] provides information not only about peak frequency and amplitude, but 

also about phase relationships In general, vibrations of a rotor s e  mesisured by t ~ o  

accelerometers, as in the Orbits method. Holospectnim is formed by a simple vector in each 

frequency (Figure 1.6). It is composed of a c ide ,  line and ellipse placed on the frequency 

a i s .  A circle is obtained if the amplitudes of hvo components are equal and their phases are 

90 or 270. A circle is obtained in the rotating frequency of a shafk if there is imbalance in 

the shaft. A line is obtained if the phase lag between two elements of a machine is O' or 

180' and the slope of the line depends on their amplitude proportion. This method has the 

same limitations as the Orbits method. 

I V )  Cascade Holospectrum: 

Following the Cascade spectrum diagram principle, the 2-dimensionai Holospectmrn can be 

used to constmct the Cascade Holospectnim d i a m  (Figure 1.7). The Cascade 

Holospectmrn diagrams [19] may provide us with more information about the transient 

events of a machine during run-up and run-down, and may intuitively demonstrate the 

change in the Hoiospectrum components of dserent orden. ui contrast to the Cascade 

diagram, the Cascade Holospectrum gives the phase relations between the two 
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accelerometers. This method has the disadvantages of Waterfâll diagram and HoIospectrurn 

technique. 

Y) Bode and polar plot: 

The Bode plot is a log-log diagram of the amplitude of a cornplex signal @fien transfer 

function) venus the frequency accompanied by a semi-log diagram of the phase of the signal. 

The Polar plot, also known as the Nyquist plot, is another representation of the signai in 

polar coordinates with the radius of the curve corresponding to the amplitude of the signal, 

and the phasesignal corresponding to thevalue of the phase to the horizontal auis. Frequency 

or mnning speed is changed dong dEerent points (Figure 1.8). ..\lthough these plots are 

usehl in the field of baiancing problems, mode shape of the rotor, cracked shaft detection 

and mbs [20,26,29,30], they are of little use in the case of machine monitoring. In this case, 

spectrum representation is preferred to the Bode plot. The Polar plot is aiso of little help in 

finding the natural frequencies of a system because it needs curve-fining algorithms. These 

plots are a different way of displaying results, but do not offer a new method of analysis. 



VI) Cepstrum analysis: 

Lf the inverse Fourier Transform of the logarithm of the correlation function is taken, we 

obtain what is temed as the Cepstrum which is a function of the independent variable 

"Quefrency" in milliseconds [24]. 

C ( r )  = F F T - ' [ ~ o ~ G , (  f)] ( 1 -8) 

It is used to highlight penodicities in the spectrum, in the same way that the spectmm is used 

to highlight periodicities in the time waveform. Thus, the harmonics in the spectrum are 

summed into one peak in the cepstmm. making it easier to identie, and observe trends in. 

specific fault frequencies. Quefrency shows frequency spacing in the spectnim but it shows 

nothing about absolute frequency. On the other hand, it is possible to edit out the effect of 

the transmission path because both this and the excitation, tvhich are multiplicative in the 

spectrum, become additive in the Cepstrum. It has been found to be usefil in bearing and 

gear-box analysis [4, 3 11. However, this rnethod has some disadvantages. Firstly, the 

spectrum sometimes has severai harmonics and sidebands in the low and middle fiequencies; 

these appear in the Cepstnim and distort the harmonics and sidebands in the higher 

frequencies. In such a case, it may be hard to iden* the type of defect by the Cepstral 

method. Secondly, there is no relationship between the mapitude of the Ccpstrum and the 

severity of the defect. 



1.4 The-frequency analysis 

1.41 is time-frequency analysis really necessary? 

As mentioned in the last section, each of the coaventional vibrational methods used in fault 

detection and identification for steady speed machines has several limitations. The 

assumption OF constant speed in the above methods results in stationary and pseudo- 

stationary vibration signals. However. even if we take this assumption into account, the 

limitations of the above methods reduce their performance. On the other hand, there are 

presently several types of varying speed rotating rnachinery for which the station- or 

pseudo-stationary vibration signals cannot beassumed to be accurate. These types of rotating 

machinery include gear drives, rolling element bearings, intemal combustion engines. cam- 

driven mechanisms and reciprocating machinery. Rapidly varying speed in this group of 

rotating machinery generates non-stationary vibrational signals. The application of 

conventional techniques tu the analysis of non-stationary vibrational signals may yield 

incorrect results. 

The most cominon traditional techniques of vibration analysis are based on frequency 

domain analysis an4 among these, speaial analysis plays a major role. The use of spectral 

analysis techniques with machines of rapidly varying speed often results in a smeared 

spectrum because the frequency components are changed over time, and averaging over 
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severd blocks of analysis may result in an obscured spectral representation. Although the 

presentation of the signal in the time domain may indicate some modulations, it will be very 

difficult to identify the sources of these modulations. It appears, therefore, that it is 

necessary to employ a new technique which would combine frequency information with 

amplitude changes in time. Furthemore, the initial appearance of a defect in a machine can 

produce transient phenornena in the vibrational signal. Passage of a bal1 over a localized 

defea in a bearing, contact of a damaged tooth with other teeth in the gearbox, and piston 

slap in the engine are examples of well-known industriai problems generating transient 

events. Frequency domain vibration anaiysis methods, such as the power spectrum, average 

the transient events so that they do not appear clearly in the spectral lines. Time domain 

methods. which are also used to analyse transitory signals, can loose the frequency 

information of different machine components. Finally, if both methods are used, it will be 

difficult to relate the frequency information to the forces causing the amplitude variation of 

the signal in the tirne domain. Therefore, rather than separate observation of the time from 

observation of the frequency charactenstics of a signal, it is necessary to use a joint time- 

frequency technique. 

In 1946, time-frequency (TF) analysis was applied to speech communication [32] for the first 

time, but application of this rnethod to the field of mechanical signature analysis started oniy 

in the early 1990's. The earliest time-frequency method is known as the Spectrogram or 

Short-The Fourier Transform (STFT). In recent yean, various TF techniques, such as the 
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Wigner-Ville Distribution and Wavelet transforms, have been developed in the signal 

processing field. 

Only the STFT method will he discussed in the fdlowuig sections, 2s be in j  a technique 

which is very fast and very easy to interpret. This technique will be applied to fault detection 

and identification in two well-known industrial elements, the bail-bearing and gearbox. The 

suitability of this method in the field of machinery diagnostics will be demonstrated. 

1.4.2 The short-tirne Fourier transform 

The STFT may be considered a method that breaks down the non-stationary signal into many 

small segments which can be assumed to be locaily stationary, and applies the conventionai 

FFT to these segments. 

The STFT of a signal S, (r) is achieved by multiplying the signal by a window fûnction, 

h ( s )  , centered at " t ", to produce a modified signal. Since the modified signal emphasises 

the signal around time " t ", Fourier Transfomis wiil reflect the distribution of frequency 

around that t h e .  



We may consider S ,  (w ) as the sum of the Fourier base fûnctions but the base funaions are 

a modulated version of the window function (Figure 1.9). 

The energy density spectrum at time " t " may be wnnen as  follows: 

For each different time we get a different spectrum and the ensemble of these spectra provide 

the time-frequency distribution P( t ,  w ) . 

Resolutions in time and frequency will be determined by the width of window h(r). A large 

window width is chosen when we need greater accuracy in frequency and a small window 

width when we want to have greater accuracy in tirne. However, the STFT depends greatly 

on the width of the window and by varying the window used, one can exchange resolution 

in tirne for resolution in frequency. Figure 1.10 shows a signal composed of a constant 

frequency and an impulse. A great difference in the STFT representation of the signai is 

apparent if the width of the window is changed. 



1.4.3 Adapting the short-time Fourier transform 

To solve the problem of the "trade-off' in resolution between the time and frequency 

domins in the Short-Time Fourier Tmsfom, we m u t  consider the ori$n of the prcblem. 

Use of a single fixed window during the analysis of the signal is the origin of the STFT 

problern. 

We compute the adaptive STFT using a window of variable length. The criterion for 

adjusting the window length is the Kurtosis parameter. As mentioned in 2.1.8 of this article, 

this parameter is an indicator of the signal's "peakedness" as a consequence of the presence 

of defects in the machine. 

The window length is detennined by considering an initial T length for the window, thus 

computing the Kurtosis parameter for this slice of the signal. If it is greater than 3, the 

window length is divided into two. This work is repeated until the Kurtosis parameter for 

the signai segment in the window is less than or equal to 3. Dunng this time, the spectrum 

of the signai segment is calculated. Then we move the window and repeat the same steps 

for the whole of the signai. 

By this technique, the window length is adjusted depending on the characteristics of the 

signal. The benefits of this technique are: 

- obtaining a performance surpassing that of the fixed window length STFT. 
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- providing a technique that is better suited to the diagnosis of mechanical signais than 

other methods. 

1.5 Applications of time-frequency analysis to rnnchinery diagnosis 

1.5.1 Some industrial applications of time-frequency analysis in mechanical systems 

In the last few decades, many methods of time-frequency analysis have been applied to 

various areas of physics and engineering, such as speech processing and image processing. 

In the field of machinery diagnostics, Forrester [33] has used time-frequency methods in the 

detection of darnaged gears in helicopter gearboxes. He has show that, with the signal 

enhancement techniques (conventional methods) offered by Stewart and McFadden, it is 

di ficult to distinguish one type of fault, e.g. tooth-cracking or p itting, from another but the 

Wigner-Ville Distribution (one of the time-frequency methods) cm more accurately reveal 

the type of defect. Wang and McFadden [34-371 have also studied the application of tirne- 

frequeacy analysis to the detection of gear damage. They have demonstrated that direct use 

of the Wigner-Ville Distribution can produce a complicated time-frequency representation 

of the signal and, furthemore, it has been suggested that the application of an appropriate 

window fùnction in the time domain cm improve the results of Wigner-Ville [38]. On the 

other hand, they have shown that the complexity of the Wigner-Ville representation, 
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aithough reduced, still remains and still makes it dimcult to detect mechanical failure in gear 

systems. They have proven that application of the Spectrogram (STFT) for the early 

detection of damage in gears has some advantages over the application of Wigner-Ville 

Distribution [39]. 

In another work, Rohrbaugh [40] has applied time-frequency analysis to several sets of 

marine machinery. He compared the Spectrogram (STFT) with cone-kernel time-frequency 

representation from Cohen class distributions. He showed that, while the Spectrogram can 

reveal the general time-varying characteristics of a vibrational signal, for more information 

about the signal we must consider other tirne-frequency rnethods. 

Rohrbaugh and Cohen [4 11 outlined another new time-frequency method developed by 

Loughlin, Pitton and Atlas [42] for the detection of faults in purnps, and found it to have 

severai advantages over the Spectrogram when dealing with reciprocating machinery . This 

method is known as "positive tirne-frequency distribution" and is based on a minimum cross- 

entropy scheme (MCE). Some applications of time-frequency analysis to the monitoring of 

machining processes, such as drilling and grinding operations, have been presented by 

Loughlin, Atlas, Bernard and Pitton [43]. They showed that, although the Spectrogram 

( S m  is an efficient method for the demonstration of the tirne-varying characteristics of 

a process, sometimes newer time-frequency methods can provide more detail on the signal. 

They concluded that the newer methods of time-frequency analysis may assist in the early 
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detection of prob lems. Atlas, Bernard and Narayanan 1441 summarized some applications 

of tirne-frequency analysis in different domains of machinery diagnostics. They emphasised 

the importance of using time-frequency analysis in manufacturing and monitoring 

applications. In a recent work, Loughlin and Bernard [45] presented some applications of 

MCE tirne-frequency methods to different machine vibrational signals. 

The papen cited above give some examples of the application of different time-frequency 

methods, including the S m ,  to condition monitoring of mechanicd systems. Each of these 

papers shows the way in which a new tirne-frequency method cm reveal certain information 

about the signal that can not be obtained by traditionai methods. 

Today, one of the most important factors limiting the progress of machine diagnostic 

techniques is the lack of familiarity of mechanical engineen with new signal processing 

methods. The complicated theory of time-frequency analysis and the absence cf an 

operational software for tirne-frequency analysis restrict engineers from using these methods 

in machine diagnosis. 

Among the various time-frequency methods, the Short-Term Fourier Transform is the easiest 

and the fastest rnethod. 

This work is an attempt to present the limitations of conventional methods of vibration 

analysis in machine diagnosis and to emphasise the application of the STFT to fault detection 



and identification. 

A user-friendly software has also been developed to facilitate the use of the-frequency 

methods by engineers whether or not they are familiar with time-frequency analysis. 

1.5.2 Sofhva re for time-frequency analysis of signais 

The sohvare is designed to be mn interactively; it produces and represents results in the 

energy-time-frequency plane for sampied time signals. Fintly, we choose the required 

signal from the list of available signals in the principal window, by mouse. Secondly, we 

select the method of analysing the signal: the FFT, the STFT, or the adaptive-window STFT, 

and provide information about the signal and options relating to the chosen method, such as 

the Iength and type of window for the STFT. Finally, the program represents the results in 

the fom of the time-frequency plane projection of the signal and a three dimensional 

representation of the signal in the energy-time-frequency space. The energy intensity is 

conveyed by different colon. The three dimensional representation can be rotated in order 

to obtaio the best point of view. 

The working and accuracy of the program can be verified by a theoretical signal. The fmt 

exarnple is a sum of sines (Figure 1.1 1). The signal is composed of the sum of three sines: 

100 H q  300 Hz and 1000 Hz As predicted, the tirne-frequency plane of the STFT shows 
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three lines at 100 J3q 300 Hz and 1000 Hz parailel with the time auis and the time- 

frequency-energy space shows three peaks constant in time (Figure 1.12). 

The next examples are an amplitude-modulated sine at 1000 Hz (Figures 1-13 to 1.14) and 

a frequency-modulated sine at 1000 Hz (Figures 1.15 to 1.16). The modulation may easily 

be seen in the time domain and it appears to be unnecessary to use the STFT; however, in 

real cases we never have a signal without noise and it is often impossible to find a 

modulation in time. A frequency modulation is particularly dificult to identify by its 

spectnim. Ln the tirne-frequency domain, the modulations are very clearly displayed. The 

importance of the STFT is more apparent when applied to industrial signals. It is noted that 

signals with different modulations in time and frequency are very usual in machinery 

diagnosis and the time-frequency representation gives agood interpretation of these sipals. 

1.5.3 Experimental application of short-time Fourier transform 

M e r  verifying the pmgram by cornputer-simulated signals, we cm investigaie the data 

obtained from an experimental case: the application of the STFT method to pin-poht a 

defect, the characteristics of which are known, Iocated on a rolling bearing. The test was 

conducted on a bearing having a simple defect on the inner raceway. This test was perîormed 

in a laboratory using the test setup shown in Figure 1. 17. An interchangeable rotating shaft 
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was supported by two journal bearings (SKF 12 10 EKTN9 self-aligning double row) labelled 

2 and 3. An electric motor provided 12.2Hz rotation for the bearing sh&. Load was imposed 

by the break which was installed on the gearbox output The defective bearing was mounted 

on support A. 

The defect was created by scratching the bearing raceway with an elecaic pen. Figure 1.18 

shows the signal measured on bearing A and its spectrurn. The results for the defective 

bearings were also verified by caiculating the frequency at which the rolling elements passed 

over the defects [ 11. The geometric characteristics of the system are as follows: 

pitch diameter D=69 mm 

Diarneter of the rolling body d= 10.3- mm 

Contact angle a =7.87 deg 

Number of rolling elements 1V 4 7  

Bearing frequency of rotation Fr 4 2 . 2  Hz 

On the inner raceway, the frequency of rolling body defect impact is: 

The pass fiequency on a point of the inner raceway computed by using equation (1. I 1) is at 
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approximately 238 Hz. We can fmd the default frequency arnong other frequencies by the 

spectrum in Figure 1.18 but we cannot be certain that this is indeed the default frequency 

because the default frequency must have a special characteristic. In this case, the default 

frequency rnust be an amplitude-modulated wave at approximately 238 Hz with the 

frequency of modulation being equal to the rotating frequency. 

The time-frequency representation of the signal provided by the STFT shows the amplitude- 

modulated signal at the default frequency and its harmonics (Figure 1.19). We can easily 

calculate the frequency of modulation and verify that it is correct and equals the rotating 

frequency 

1.5.4 Industrial application of short-time Fourier transform 

The second case of data obtained from a real case concerns the defective gear train of a hoist 

drum in a large shovel operating at an open pit iron mine. The data are measured by 

International Measurement Solutions Company in order to find the problem in the machine. 

Gears generate a mesh frequency equal to the number of teeth on the gear multiplied by the 

rotational speed of the shaft driving i t  A high vibration level at the mesh frequency is often 

caused by tooth error, Wear of the meshing surfaces, or aoy other problem that would cause 

the profiles of meshing teeth to deviate fmm their ideal geornetry. Sidebands at the mesh 
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frequency, on the other hand, are typically due to a failure of mating teeth. Imagine a 

cracked tooth which is not yet broken, and will consequently not be noticed by the operating 

personnel. However, it will, due to its weakened mechaaicd condition, defled more under 

load than the other (healthy) teeth when it goes into mesh. This results in a signal with 

amplitude modulation. Thus, an increasing level in the sidebands spaced with rotation speed 

in the frequency spectmm results frorn the cracked tooth. 

A minimum length of time is required to perfonn an FFT analysis of each process. The time 

resolution required will depend on the period of each tooth mesh and the desired level of 

accuracy. Sometimes, it is not possible to measure the signal for a time long enough to 

provide the penodicity of shock in the FFT spectrum. 

In this particular case, the pmcess did not even last one revolution of the driven gear. The 

casewas investigated by time-frequency distribution precisely because it is known that time- 

frequency methods do not need as much time signal as the FFT spectrum. 

Figure 1.20 shows respectively the signal and its spectrum. The spectmm of the signal 

indicates some large peaks around 200 Hr and some other smaller peaks in the vicinity of 

400 H z ,  800 Hz and 1200 Hz. However, it is very df in i l t  to assume or confïm any defects 

at this point. On the other hand, the amplitude-rnodulated characteristic of the signal is 

clearly displayed in the representation of the signal in the time-frequency domain, as shown 

in Figure 1 -2 1. It is very simple to read the gear-meshing frequency at approximately 200Hz 
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and three large impacts due to three partiaiiy broken teeth at a frequency of approximately 

400 Hz and obtain the frequency of the modulation. In addition, the time and frequency of 

each peak are easily identified. 

1.6 Conclusion 

It has been s h o w  that, although the majority of conventional methods may give good results 

when detecting a single fault in various simple elements of machines. no singie technique 

can provide al1 the answers for al1 cases. It is dificul t to decide which method gives the best 

result, in particular when the precise type of fault is not known. 

The Short-Term Fourier Transfom is an effective rnethod of time-frequency analysis and 

a powerful tool in machine condition monitoring. The short-tirne spectmm gives a clear 

represeniation of the time-frequency plane and asimple interpretation of the energy variation 

due to damage. There is, unfortunately, a fundamental problem with this approach: high 

resolution cannot b e ob tained s imultaneousl y in the time domain and the fiequency domain. 

Although this method gives the time-fiequency information with [United precision, in order 

to achieve greater precision we must tum to advanced tirne-frequency methods such as the 

adaptive Short-Term Fourier Transfom. This method produces reasonable and usefûl 

window Iengths for the Short-Term Fourier Tramform. 
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The development of a user-fiiendly software package facilitates the use of time-fiequency 

techniques in machine diagnosis. The the-frequency methods, including the short-time 

spectrum, have been implernented on a cornputer and used, dong with conventional 

methods, in the analysis of vibrational sipals. The advantages of the short-time spectrum 

have been demonstrated by using this method, oot only on measured signals from bearings 

installed in an expenmentai set-up. but also on vibrational signals from an industrial gearbox. 
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1.8 Nomenclature 

The magnitude of the vibration signal with zero mean 

The distribution of the signal s ( t )  

The n" moment of the signal s ( t )  

The Cepstmm of  a signal 

Fast Fourier transfonn 

The complex spectnim of the signal s( t  ) 

The joint distribution fbnction o f  time and Frequency 

The spectnim of  the signal s ( t )  

The short-time Fourier transforrn of the signal s ( t )  

W indow fiinction 

The spectnim of the short-time Fourier transform of the signal ~ ( t )  

Short-time Fourier transform 
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e Figure 1.1 : The stages in the conversion of shock pulse waves to high frequency pulses 



Figure 1.2: Pulse shocks fmm damaged imer race and damaged outer race of a bearing 



Figure 1.3: The envelope method shows the behavior of a signal 



@ Figure 1.4: Typical shaft orbital motion (Lissajous' figure) 



Figure 1.5: Waterf'l plot of a turbine cuast down (Trevillion, Page, Carle et Good, 1989) 
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Figure 1.7: The cascade Hobspecmim diagmms of a Mine &iangsheng, Yaodong et Jiyao, 1989) 
a) Nn-up stages. 
b) run-dom stages 
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Figure 1.8: Nyquist plot 



Figure 1.9: Bask bctions and time ngiuency resohrnon of the short-the Fourier ÿaiuform ( S m  
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Figure 1.10: ï h e  STFT of a signal composed of a constant spciuency plus an imp1use. 
(a) we use a shoa window, *ch gives a good indidon of when the impluse 

occurred but gives abroad localization for the fiequency. 
@) we use a long duration window, which gives the oppsite effect 
(c) a compromise window is used. 
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Figure 1. t 1: Sum of sines signal and its spectrum 
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Figure 1.12: Short-the Fourier transform of the sum of sines signal 
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Figure 1.13 : Amplitude-modulated sipal and its spectrum. 
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Figure 1.14: Short-he Fourier hansfonn of the &plitude rnodulated signal. 



Time (S) 
F R  Transform 

I 1 1 I 1 1 1 1 1 

Frequency (Hz) 

Figure 1.15: Frequency-modulated signal and its speanim. 
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Figure 1.16: Short-time Fourier transform of the fiequency-moddated signal 
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Figure 1.18: The signal measured on a defective bearing and its spectnim. 
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a Figure 1.19 : S hort-time Fourier transfom of the defective bearing signal. 
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Figure 1.20: The signal measured on a defective gearbox and its spectmm. 
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Time-frequency anaiysis is relatively new in the field of mechanical signal processing and 

has yet to be applied to its full potential. This method of analysis is effective in the detedon 

of faults in machinery and, in certain instances, is the most efficient method available. In this 

paper, some of the methods of tirne-frequency analysis such as the Wigner Distribution, the 

Choi-Williams Distribution, and the RID Distribution, are btiefly reviewed and the 

advantages and disadvantages of each are considered. The eficacy of each method is tested 

by the practical application of an in-house software program developed for ail cime- 
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frequency methods. Firstly, computer-generated signais are used to determine the 

effectiveness of a method. Secondly, the signal recorded from an experimental set-up is 

applied in order to venfy performance. Finally, the various methods are evaluated using real- 

life signals recorded from a defective gearbox and a defective dryer machine. 'This paper 

demonstrates the effectiveness of time-frequency analysis in presenting a clear and exact 

representation of a signal, and compares the results with those obtained using the Short-The 

Fourier Transfonn and traditional methods of analyzing signals measured on a rotating 

machine. 

2.2 Introduction 

The primary objective of al1 research into signal processing has been to find an efficient 

method which would generate results rapidly and clearly and in a rnanner which could be 

relatively easily interpreted. 

The Short-Time Fourier Transfom (STFT), used as a time-frequency representation of the 

signal energy, was one of the first attempts to see a signal in three dimensions and obtain 

rapid cdculation and clear interpretation. The STFT is obtained by applying a fixed-length 

moving window to the non-stationary data seqyence prior to computing the spectm. The 

r d t  is a time average of the signai spectnim over the window width. However, althou& 



54 

this method provides a time-frequency representatioa of the signal, both the time and the 

frequency resolution are completely depeodent upon the choice of the window length and the 

method does not satisfy certain prerequisites for a joint tirne-frequency distribution. 

Use of the STFT in the solution of problems in signal processing was followed by the 

development of the-frequency methods. Researchers tried to fmd a way to show the 

distribution of signal energy as a joint function of time and frequency which. on the one 

hand, satisfy certain conditions and, on the other hand, reduce the tirne-frequency resolution 

dependence on the window. 

The Wigner Distribution (WD), first used in quantum mechanics [I l ,  has been used to 

overcome the problem of the STFT. It was ernployed in signal processing by Ville in 1948 

[2]. The WD has very desirable properties which have been extensively investigated by 

Classen and Mecklenbrauker 131. The major draw-back of the WD is the presence of cross 

terms between frequency components in the time-frequency plane. Cross terms and their 

properties have been studied by Hlawatsch and Flandrin [4-51. 

Some smoothing of the Wigner Distribution is oeeded io suppress the cross ternis. A 

windowed- Wigner Distribution by a fùnction that is peaked around r , h(r)  , will be called 

a pseudo-Wigner Distribution (PWD) [3]. If the smoothing is cmied out in both the time and 

frequency domains, the distribution will be cdled a smoothed Wigner Distribution (SWD) 
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[6] .  In addition to the Wigner Distribution, several others have been developed but al1 had 

the problem of cross tems [7-81. In 1966, Cohen provided a general formula for generating 

different distributions 191. Other distributions are obtained by changing an arbitrary function 

called the kernel. In his recent w0r4 he gave a complete review of the time-frequency 

distributions [IO]. 

Instead of smoothing the Wigner Distribution to eliminate the cross terms, Choi-Williams 

introduced a new kemel which can reduce the cross terms [ I l ] .  Unfominately, the Choi- 

Williams Distribution does not completely satisfy the support propeNes in time and 

frequency. Recently, Jeong and Williams [12] defined the conditions which a kernel must 

satisfy to suppress the cross tems. This class of distribution is called the Reduced 

Interference Distributions (RID), and is an improved version of the exponential distribution. 

It can be seen that each distribution has both advantages and disadvantages; the choice of 

distribution for a given practical application depends on the problem concemed. In Section 

2, the necessary properties of a time-frequency distribution are summarized, time-frequeacy 

distributions are compared, and their advantages and disadvantages are given. 

In Section 3, the history of time-frequency applications is presented; an in-house software 

developed for tirne-frequency distribution is discussed; and the effectiveness of the time- 

frequency distribution is shown by analyzingsignals measured from experimental and on-site 

tests. 



2.3 Time-frequency distributions 

2.3.1 Time-frequency distribution property requirements 

An ideal joint time-frequency function of signal ~ ( t )  possesses a number of important 

properties, which form the b a i s  for interpreting the function as a the-frequency distribution 

of the signal energy. 

These properties discussed in [3] are summzized as folIo\vs: 

a) the instantaneous signal power at a certain time is equal to the projection of the 

P(1, a )  on the time âuis: 

b) the energy density spectnim of ~ ( l )  at a certain frequency is equal to the projection of 

a 

the P( t ,  o) on the frequency mis: ~ ( t ,  w)dt = IS(U)/' 

The a) and b) definitions are called time and frequency marginal conditions. 
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c) the fmt-order moment of the P(f, w )  with respect to fiequency may be expressed as 

foUows 

Then( t )  can be interpreted as the average frequency of the P( t ,  o) at time f . 

For reai sipals the average frequency provides no information. Let us therefore assumethat S( f ) 

is cornplex-vdued in the form s(t ) = ~ ( t  ) e "(') where v ( f ) and p ( f ) are real f'undons, v ( t )  

is the envelope of s ( t )  , and p(t) is the phase of s ( t )  . Using this representation of s ( t )  , 

we find that n(t) = pr(f ) . Therefore it can be concluded that the instantanmus frequency 

is an average frequency at a particular time. 

J)  the fint moment of the P ( t ,  a)  with respect to t h e  at a partiniiar frequency is 

T ( w )  = - 1 tP( t ,  @(il where P(w) = ~ ( t ,  #)di 
P(@ -, -'x 
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Ifwe consider the cornplex spectrum F(o) = A(w)ejY(") where A(w) is its amplitude 

and ~ ( w )  is its phase angle, we can prove that T ( w )  = - v r ( w )  . 

Thus, the average iime of the f ( t ,  a) at a particular frrquançy is qua i  to the negative of 

the derivative of the spectral phase of the signal. 

e) the time s hifi: If S )  + s - ) then P ( f ,  a )  + P(t  - r , ~ )  

the frequency shift: If ( t )  + ( ) e t  then P(t ,  ci) + P ( t ,  w - Cl) 

g) the time limited signal property. 

Ifs(l) is restricted to a finite time intenral only and s ( t )  = 0 for t + tu or t >. t, 

then the P ( t ,  w )  is restricted to the same time interval P( t ,  w )  = O fort + ta or l t b  

11) the frequency limited signal pmperty. 

if S ( o ) = O  for w <a,  or w +a, then P ( l , w )  = O for w +aa or # r a, 

From a mathematical point of view, there is an infinite number of joint ninctions which 

satisfy these conditions since the conditions do not define the problern uniquely. Several 

distributions have been proposed over the last f i  years but in this section only certain 

distributions with desirable properties will be studied. 



2.3.2 Time-frequency methods 

The Wigner Distribution (WD) is one of the joint the-frequency distributions that is 

fundamentally different from the STFT The original fnmulation was proposed hy Wigner 

in 1932 and used in quantum mechanics. The Wigner Distribution of signal s ( l )  is defined 

where s ( t )  is a continuous complex signal and "*" denotes the cornplex conjugate (unless 

othenvise indicated, the ranges of integrals are from - to m throughout this paper.) 

This representation may be interpreted as the Fourier Transfomi of 

with respect to the lag variable s where R, ( t ,  r) is defined as the instantaneous auto 

correlation of a complex signal s ( t )  , Therefore : 

m, (1, @) = IR ,  ( t ,  s)e-j">'dr 
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The Wigner Distribution possesses very hi& resolution in both time and frequency, and it 

has the properties a .  to h). Despite the desirable properties of the Wigner Distribution, it has 

two major draw-backs: it is not necessarily non-negative and it is a bilinear function 

producing interferences or cross tems for multi-cornponent signals . The Wigner Distribution 

of the sum of two sigals s, ( I )  + s, ( 1 )  is 

which has a cross ierm '' Z R ~ [ W D  ( t ,  O) ]  , in addition to the two auto temr. 
sr + 

Cross tems lie between signal components in different regions in the time-frequency plane 

and are oscillatory. They can have a peak value as high as the auto terms and makc the 

interpretation of the tirne-frequency representation of signals very dificult. Ville used the 

Wigner Distribution in signal analysis in 1948 when he replaced the continuous complex 

signal with the analyticai signal. s(f ) is an analpical signal if the irnaginary part of s(t ) is 

equal to the Hilbert transfocm of the red part of s ( i ) ,  so that 
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ln the case where s ( t )  is an analytical signal, the Wigner Distribution is termed the Wigner- 

Ville Distribution (WVD). By using the anaiytical signal in the Wigner Distribution fmtly, 

the negative frequencies which have no physical simcance for a real signal are elimuiated 

and, consequently, the cross terms bebveen the aegative and positive parts of the spectrum 

are eliminated; secondly, the Nyquist fiequency can be applied to the sampling frequency 

of the signai. However, although the analytical signal elhinates some cross tems, there 

are still cross t e m s  between multiple components which make interpretation difficult. 

In practical applications, the Wigner Distribution requires some smoothing in order to 

suppress the cross tems. The pseudo-Wigner Distribution (PWD) is defined by: 

where h(r)  is a window function or a low pass filter in order to reduce cross terms which 

have oscillations of relatively high frequencies. The pseudo-Wigner Distribution c m  be 

considered as  a frequency-domain variation of the Wigner Distribution. 

P WD,( t ,w)  = WDl(t,w) *, H ( m )  

where H ( w )  is the Fourier Transform of h(r) . 
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Filtering broadens the representations in the fiequency domain and, as a result, the pseudo- 

Wigner Distribution gives a modest time resolution at the expense of sacrificing the 

frequency resolution. Such srnoothing is desirable when the-domain filtering is not needed 

and the sacrifice of frequency resolution for time resolution is acceptable. 

If, in order to suppress cross terms in the Wigner Distribution, smoothing in both the time 

and frequency domains is needed, a smoothed Wigner Distribution ( S m )  is appropriate. 

The smoothed Wigner Distribution is defined as 

where @(t,o) is a hvo-dimensional smoothing hndion. The smoothed Wigner 

Distribution reduces cross terms with oscillations in the time and frequency domains at the 

expense of resolution in both domains. 

The Short-Time Fourier Transfom (STFT), which is the most widely used time-frequeocy 

representation in practical application, 

STFT, ( t ,  w )  = 

where h(t)  is a window funetion. 

spectre erarn. 

The modulus squared of the STFT is called a 



s, ( t ,w)  = ISTFT,  ( t ,  u)12 

By two-dimensional convolution theorem, we have 

The spectrogram is a special case of the smoothed Wigner Distribution in which the 

1 
smoothing filter is Q>(t,w) = -WD,(-l,o). 

2rr 

The spectrogram has the non-negativity property which facilitates the interpretation of the 

spectrogam as the signal energy distribution, but does not preserve the time and frequency 

energy marginals of a signai. In general, the non-negativity property often conflicts with 

other des irab le properties. However, a major drawback of the STFT is that it requires a trade- 

off between the time and frequency reso futions. Although, the S hort-Time Fourier Transfom 

with a window that conforms to the signai components provides maximum resolution in the 

smoothed Wigner Distribution, the STFT has less concentration than the Wigner 

Distribution. Moreover, for unknown signals, how can appropriate windows be found 

without apriori knowledge of the signal components? 

Apart from the Wigner Distribution, several other distributions have been proposed. These 
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are similar to the Wigner Distribution in that they satisQ the marginal, the instantaneous 

frequency condition, and various other properties. The Rihaczek [7] and the Page [8] 

Distributions are two of those proposed. 

The Rihaczek distribution, which gives a complex energy spectrurn, is defined as 

The real part of the Rihaczek distribution, which is called Margenau-Hill distribution, Iacks 

many desirable properties such as instantaneous frequency, but does satisfy the marginal 

conditions. 

Page considered only the signal up to the present time t and abandoned the future because 

it is unknown. A new signal is defined as follows : 

s,(t ' )  = s( t t )  for t f  < t 
s , ( t ' - )=O for t t + t  

The Page Distribution for the above signal defmition may be written as follows : 

1 
P- ( t ,  w )  = 2Re-s9(t)S; (w)ejd 

G 



where S; (a) = - ' ]s(ir)e-'"JI' 
-a 

The Page Distribution satisfies the marginal conditions but is unable to show correctly a 

multi- components signai in the time-frequency plane. Figure 2.1 shows a representation of 

a multi- components signal by the Wigner, Rihaczek and Page distributions. The signal is 

a sine with frequency o, started at t = O andstopped at t = f, , restarted again at t = t ,  with 

another frequency w ,  . and ended at f = 1, . Each of the three distributions displays energy 

density where one does not expect to find it. 

In 1966, a method was derived that could generate an infinite number of new distributions 

in a very simple way. This general distribution formula is obtained by replacing @(O, r) 

with @ ( i ,  w )  in the formula (2.8): 

WD, ( t ,  o) = JJ,Wa-rw+a) p ( @ , ~ ) s ( z ~ + r / 2 ) ~ * ( ~ - ~ / 2 ) d u d s d 0  (2.14) 

where q ( B ,  r) is the two dimensional inverse Fourier transform of (t, w )  and 0 and r 
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are respectively the fiequency lag and the time lag. Formula (2.14) is referred to as Cohen's 

class of tirne-frequency distributions and characterizes tirne-frequency distributions by an 

auxiliary function, cailed the kernel function q(6, s) . The properties of a distribution are 

refiected by simple coastraints on the kemel, and by examining the kemel one can readily 

be assured of the properties of the distribution. This allows one to pick and choose those 

kemels that produce distributions with prescnbed, desirable properties. By usingthis generai 

formula we cm find the kernel hnction for each of the distributions which have been 

defined, such as the Wigner, Rihacezk, Margenau-Hill and Page. The kemel function for the 

Wigner, Rihacezk, hlargenau-Hill and Page distributions are respectively 1. e J& t 2 

82  je!+^ 
cos - and e 

7 - 

In 1980, Choi and Williams presented a new kemel for reducing cross ternis in the Wigner 

Distribution. Their kernef is defmed as 

where a is a parameter which trades off auto-tem resolution for cross term suppression or 

vice versa. By increasing q we achieve a distribution similar to the Wigner Distribution and 

by decreasing a, we etirninate the cross terrns but we loose resolution in the time and 



frequency domaios. The Choi-Williams distribution may be Witten as follows : 

Figure 2.2 shows the Choi-Williams representation with a different value of o for a 

sinusoidal signal with two constant frequencies. Mthough, the Choi-Williams Distribution 

satisfies the marginal conditions, it violates the support properties g) and h) . It attenuates 

the cross ternis equally in the time and the frequency domains and provides a higher 

resolution than the smoothed Wiger  Distribution. Although the Choi-Williams Distribution 

is the best choice for analyzing mutli-component signais in which the components have a 

constant frequency content. its resolution for signal components with significant frequency 

modulation or tirne-varying signals is very poor. However, the Choi-Williams Distribution 

is insensitive to the time-scale of the components, due to the shape of its kemel. 

By generalizing from Choi-Williams' work, a broader class of expooential distribution (ED) 

defined by Diethorn [13] induces a kemel of the following form: 

By carefully selecting parameten p, q and a , we may obtain the desired properties. 

To reduce the cross terms and preserve simultaneously the properties a) to h), Jeang and 
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Williams [12] introduced a new class of time-fiequency distribution, called the Reduced 

Interference Distributions (RID). The RZD satisfies propemes a) to h), as does the WD. The 

RID kemel should be not only a low-pass filter but also a function of Br which satisfies 

where B and r are respectively the frequency lag and the time lag. 

The kernel of the RID is defined as follows : 

where H is a two dimensional low-pass filter type. The WD is not a member of the RID 

because its kernel does not have the reduced interference property. Although the RID 

satisfies many properties, it has many disadvantages. First, the RID rnay or may not satisfy 

the regularîty property and it does not have the unitary property. Secondly, the RID only 

reduced the height of the cross terms and spread them over a larger time-frequency area. In 

particular, the Mû is not able to suppress the cross term which is located on the 0 or the 

r mis. 

In 1966, Born and Jordan [14] used a sinc kemel which is defmed as 



with a = 1 / 2 . But its property of reducing interference distributions was derived fiom the 

work of Jeang and Williams in 1992. 

In 1990, a new time-frequency distribution with very interesting features, called the cone- 

shaped kemel, was developed by Zhoa, Atlas and Marks ( Z N  11 51. This distribution not 

only suppresses the cross terms, but also produces good resolution in both time and 

frequency. Their kemel is defined as 

where g ( r ) = i ,  a = 1 / 2  . 

Figure 2.3 shows the cornparison between the Spectroçram and the ZAM Distribution. This 

distribution hides the cross tems by placing them under the auto terms. 

In 1993, Louglin et al. [16] studied a general method for placing cross tems under auto 

tems. They used a kemel in the fom of 
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Depending on the choice of f (8, r )  these kemels may or may not satisQ other desirable 

properties. In 1994, a new kemel function called the "compound kernel" was presented by 

Zhang and Sato [17]. This kemel is the product of the Choi-Williams and Margenau-Hill 

kemels. 

v _  = exp(-2nWr' / a') cos(2@&) 

where a md p are two parameters which rnay be identified as follotvs: 

when a + a, p + i / 2 , we obtain the Margenau-Hill Distribution; 

when ,8 + O , we have the Choi-Williams Distribution. and 

when a -+ a, + O , we get the Wigner-Ville Distribution. 

In this distribution, the cross terms are transposed with the auto temis. Consequently, the 

correct value of the auto terms is slightly modulated due to cross terms. Figure 2.4 iliustrates 

the cross- sectionai features of both distributions for various values of the parameter a . 

The last three types of kemel are of little interest because they change the forms of auto 

tems which are very important in fault detection in machinery . 
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Zhenyu Guo et al. [ I  81 presented a new kemel based on the firçt order Bessel function. The 

kemel is given by 

where a is a scaling factor and J ,  is the first order Bessel function. For a I 0.5 , this 

distribution can be considered as a member of the RID, and when a + O. 5 , it behaves like 

the Choi-Williams distribution but is not identical to it. Although the Bessel distribution does 

not have the non-negativity property, by adjusting a , it is possible to analyse the time- 

frequency behavion of transient deteministic and random signals. 

It has been s h o w  that the different distributions perform bener for some signais than others, 

and that the choice of kemel is very important and may be dependent on the signal. A 

general method for constnicting the distributions of which the kemel is dependent on the 

signal, and whîch possess certain desirable properties of the distribution, has been developed 

by Baraniuk and Jones [19]. It is noted that distributions with signal-independent kernels are 

calied bilinear distributions, but distributions with signal-dependent kemels where the kemel 

is adjusted according to the signal at han& are cdled adaptive optimal kernel distributions. 

In this method, an optimization procedure is applied to a case where the kemel is adjusted 



in accordance with the signal at hand. 

2.4 The application of tirne-frequency analysis to machinery diagnostics 

2.4.1 Brief his toncal perspective 

From an application point of view, Boashash [20] was the first to use the tirne-frequency 

technique for real problerns. He appiied it to geophysical exploration. The Wigner 

Distribution was used by Bazelaire and Viallix [2 11 to obtain data to measure the absorption 

and dispersion coefficients of the ground and to formulate a new understanding of seismic 

noise. Forrester [22] has made a great contribution to machinery diagnostics by using the 

WVD in the vibration analysis of defective helicopter gearboxes. He showed that signal 

enhancement techniques are not capab le of distinguis hing tooth cracking from spal ling and 

can be misleading in their indications of the extent of damage, but WVD c m  detect both the 

type and extent of faults. Meng and Qu [23] presented the effectiveness of using WVD in 

rotating machinery fault diagnosis. 

In a senes of repom, McFadden and Wang [24-271 reviewed several defuiitions of the 

continuous and the discrete WVD, implemented WVD for the detection of gear damage, and 

compared the results with those fmm existing narrow band enhancement techniques. In 

another application of time-frequency analysis, Rohrbaugh [28] used the the-frequency 
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method to find defects in different elements of several sets of marine machinery, such as fans 

and motor-generators. Rao, Taylor and Harrison [29] used the Wigner Distribution in the 

diagnosis of faults in a hi&-power gas turbine. They described the advantages of WD in 

providing hi&-resolution estimates of non-stationary, narrow-band signais in the tirne- 

frequency domain. Another application of the-frequency analysis to the detection of faults 

in a gearbox is described by OeNmann et al. [30]. 

Williams [3 1 j used the Reduced Interference Distributions (RD) time-frequency technique 

in the anaiysis of signals measured from bearings. He showed that the spectrogram and 

Waterfdl Plot do not adequately represeot time-varying signals. 

The detection of Faults in reciprocating machines such as intemal combustion engines and 

pumps is particularly dificult. Rohrbaugh and Cohen [32] applied tirne-frequency methods 

to the analysis of a camsperated pump. They showed that time-frequency methods can 

provide more detail about the signal, thus facilitating the detection of faults. In cornparing 

time-fiequency analysis with the STFT and traditional rnethods, they found time-frequency 

methods to be superior. In anotherwork, Samimy and Riaoni [33] presented the application 

of time-frequency analysis to the detection of intemal combustion enpine knock. The 

transient nature and time-varying characteristics of the signai mean that only time-frequency 

methods wil1 give a satisfactory result. 

Another application of tirne-frequency methods is in machine tool m o n i t o ~ g .  Zheng and 
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Whitehouse [34] descnbed the potential of the Wigner Distribution for the detection of 

incipient chatter. Louphlin et al. (351 discussed the application of time-frequency analysis 

to drilling and grinding operations. They demonstrated how a new technique c m  reveal 

features that do not appear in the Short-Tirne Fourier Transfom. 

The Wigner-Ville Distribution has been applied in various fields : as an indicator of drill 

attrition in industry or surface-fault in a diesel engine. Changes in the dynarnic 

characteristics of ground using seismic analysis were presented by Rigret et al. [36]. Atlas, 

Bernard and Narayanan [37] gave a review of the application of time-frequency andysis to 

different elements of rotating machine monitoring and machine tool monitoring 

In 1992. Boashash [38] published a book about time-frequency analysis and its application. 

In this book, he reviewed several articles on different methods of time-frequency analysis 

and applications of the analysis in several dflerent domains. 

Ail of the above papen show the potential of time-frequency analysis in different fields of 

mechanicd engineering. They demonstrate the appiicability of time-frequency andysis to 

the solution of problems in machine monitoring. In the next section we will compare some 

of the time-frequency analyses by applying these methods in experimental and real cases. 



2.4.2 Software for time-frequency analysis of signals 

An in-house user-friendly software program has been developed for time-frequency analysis. 

This program is capab le of calculating and demonstrating the di fferent time-freqiiency 

transforms in two and three dimensions. The program includes the Fourier spectrum analysis, 

the Short-Time Fourier Transform, the Wigner-Ville Distribution, the smoothed Wigner- 

Ville Distribution, the Choi-Williams Distribution, the Rihaczek-Margenau Distribution, the 

Born-lordadohen Distribution, and many other time-frequency rnethods. in this section, 

the performance of each method is illustrated by a test signal generated by cornputer. The test 

signals are similar to those which are often observed in machine diagnosis. 

The fint example, which is called a sum of sines, is a multi-component signal with constant 

frequencies. This kind of signal is generated by faults such as imbalance, misalignment, 

looseness, and resoaance which cause the constant frequencies at N x RPM . The signal 

consists of three sines with frequencies 100 H . q  300 Hz and 1000 Hz. in the the-frequency 

plane, one sees three lines at 100 Hz, 300 Hz and 1000 Hz parallel with the axis of time and, 

in time-frequency-energy, the three sines are shown in the form of three peaks constant in 

time. Figure 2.5 shows the signal and its Fourier spectnim. As shown in Fig. 2.6, the STFT 

of the signal presents exactly what we expected. Figure 2.7 shows the Wigner-Ville 

distribution of the signal, and we can see that the autoterms are contaminated by the 

interference terms. It is very dificult to identify the three frequencies without advance 



knowledge of the signal. 

The SWV (smoothed Wigner-Ville) shows the three peaks clearly in Figure 2.8. In the Choi- 

Williams Distribution of the signal; by chanoine the value of rr , we c m  obtain a good 

representation of the three muencies, as shown in Figure 2.9. In the Born-Jordan-Cohen 

Distribution of the signal, shown in Figure 2.10, resolution is lost due to the elimination of 

the cross-ternis. 

The second example is an amplitude-modulated cosine at 1000 Hz with frequency 

modulation equal to 15 Hz, as shown in Figure 2.1 1. Cases such as a damaged gearbox and 

a defective bearing usually generate amplitude-modulated signais. Whilst it is not always 

possible to identify these by the Fourier spectrum or time wavefom, with tirne-frequency 

analysis it is relatively simple. Figures 2.12 to 2.17 show the different time-frequency 

representatioos of the signal, and a11 these methods give a clear representation of the signai 

with varying resolution. It must be noted that the STFT requires an adjustment of the window 

and the Choi-Williams method requires an appropriate value of a in order to provide 

satisfactory resolution. Arnong these representations, the Wigner-Ville Distribution provides 

the best result. 

Certain types of gearbox problem may result in a frequency-rnodulated signal that is 

extremely dificult to identifjr. Such a signal is represented by a frequency-rnodulated cosine 

at 1000 Hz with frequency modulation equal to 20 Hz,  as shown in Figure 2.18. As shown 
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in Figure 2.18, it is not possible to detemine the characteristics of the s ipal  using its Fourier 

spectrum. On the other hand, time-frequency methods clearly demonstrate the tirne-varying 

characteristic of the signal, as shown in Figures 2.19 to 2.24 . The Wigner-Ville, the 

smoothed Wigner-Ville, and the Choi-Williams Distributions give better representations of 

the signal than the others. 

The last example is a frequency and amplitude modulated cosine at 1000 Hz, as shown in 

Figure 2.25. This case is more complicated than the others but time-frequency methods 

provide clear representations of thesignal, as shown in Figures 2.26 to 2.3 1.  In this case, the 

Wigner-Ville. the smoothed Wigner-Ville. and the Choi-Williams Distributions again give 

better representations of the signal than do the othen. 

2.43 Experimental study of tirne-frequency methods 

2.5.3.1 Experimental apparatus 

In this section, an experimental installation which enables us to simulate different defect 

configurations in rotating machinery is presented. The experimental prototype (see Figure 

2.32) consists of t h e  distinct parts: part 1, motor, part II, journal, and part III, receptor- 

Part I is a three-phase asynchronous motor (550-575 V, power 2 HP). The rotating speed cm 
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Vary h m  0-1725 r.p.m. Part II consists of an interchangeable rotating shaft which is 

supported by two journal bearings (SKF 12 10 MTN9 self digning double row) labeled A 

and B. There are three shafts on which bearings with different defects are mounted. And Part 

III consists of a reducing gearbox with a ratio of 40: 1 and a brake that can produce a variable 

resistance torque. Parts L, II, and III are connected by two couplings. An accelerometer is 

mounted on the experimental installation and is connected to an analyser. 

2.4.3.2 Tests and results 

We examined the time-frequency methods to pin-point defects of known c hatacteristics and 

location on the rolling bearing. There was asmall defect on the inner raceway of the bearing. 

The defect was created by scratching the bearing raceway with an electric pen. Figures 2.32 

to 39 show the signal rneasured on bearing A, its spectrum and al1 other distributions. The 

results for the defective bearing were ais0 verified by calculating the frequency at which the 

rolling elements passed over the defects [39]. The geometric characteristics of the bearing 

are as  follows: 

pitch diameter D=69 mm 

Diameter of the rolling body d=10.32 mm 

Contact angle a =7.87 deg 



Number of rolling elements N =17 ber  row) 

Bearing frequency of rotation Fr=12.2 Hz 

On the inner raceway, the frequency of rolling body defect impact is: 

The pass frequency on a point of the inner raceway is calculated and is equai to 23 8 Hz. The 

spectrum in Figure 2.33 shows the default frequency, along with other frequencies. 

However, the spectrum can be misleading [23]: we cannot be certain which is the default 

frequency unless we know its special characteristics. In this case, the default frequency 

shouid be an amplitude-modulated wave at approximately 238 Hz with the frequency of 

modulation being equal to the rotating frequency. 

The amplitude-modulated signal at the default frequency and at 2 x default frequency in the 

STFT is show,  and we calculate the frequency of modulation and verify that it is correct and 

equal to the rotating frequency. 

Punong time-frequency methods, the Wigner-Ville c a ~ o t  provide a good representation of 

the signal due to the cross terms which are generated between the signal components. The 

smoothed Wigner-Ville shows the signal even better thau the STFT and we cm clearly see 

the amplitude modulation and easily calculate the frequency of the modulation. The Choi- 



110 

Williams gives a representation which is notas satisfactory as that produced by the smoothed 

Wigner-Ville as it is necessary to choose an appropriate value of a. The Born-Jordan- 

Cohen gives a good appearance of the signal but, again, the resolution in time and frequency 

is not as satisfactory as that produced by the srnoothed Wigner-Ville or the Choi-Williams. 

The Rihaczek-Margenau cannot even give a good appearance of the signal. 

Therefore, after comparing the different time-frequency transforms of this signai we 

conclude that the SWV gives the best representation of the signal in this case. 

2-44 Application of tirne-frequency methods to industrial problerns 

2.4.1.1 Gearbox test 

The fiat set of data is obtained from a defective gear train of a hoist dnim in a large shovel 

operating at an open pit iron mine. The data are measured by International Measurernent 

Solutions Company in order to find the problem in the machine. 

Gears generate a rnesh frequency equal to the number of teeth on the gear multiplied by the 

rotational speed of the shaft driving it. A high vibration level at the mesh frequency is often 

caused by tooth emr, Wear of the meshing surfaces, or any other problem that would cause 

the profiles of meshing teeth to deviate from their ideal geometry. Sidebands at the mesh 
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frequency, on the other hand, are typically due to a failure of mating teeth. Imagine a 

cracked tooth which is not yet broken, and will consequently not be noticed by the operating 

personnel. However, it will, due to its weakened mechanical condition, deflect more under 

load than the other (heaithy) teeth when it goes into mesh. This results in a signal with 

amplitude modulation. Thus, an increasing level in the sidebands spaced with rotation speed 

in the frequency speanim results from the cracked tooth. 

A minimum length of time is required to perform an FFT analysis of each process. Here, the 

tirne resolution required will depend on the period of each tooth mesh and the desired level 

of accuracy. Sometirnes, it is not possible to measure the signal for long enough to provide 

the periodicity of shock in FFT spectmm. In Our case, the process does not even last one 

revolution of the driven gear. 

Figures 2.40 to 2.46 show respectively the spectmm, the STFT, the Wigner-Ville, the 

smoothed Wigner-Ville, the C hoi-Williams, the Born-Jordan-Co hen and the Rihaczek- 

Margenau representation of thesignal (SPEC 1). The FFT spectrum of the signal shows some 

peaks around 200 Hz and other smaller peaks at 400 Hz, 800 Hz and 1200 Hz. However, 

it is very dmcult to fmd the problem without more information, and we are unable to 

visualize the pattern of the signal in the the-frequency plane. It is possible to see the 

amplitude-modulated signal in the STFT of the signal. The gear-meshing frequency is seen 

to be at approximately 200Hz and three large impacts due to three partiaily broken teeth at 
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approximately 400 Hz. It is possible to fmd the frequency of the penodicity of the peaks on 

the STFT. However, the smoothed Wigner-Ville gives a better representation than the STFT. 

The frequency of the periodicity is found with more precision in the smoothed Wigner-Ville 

representation than in the STFT representation. The Choi-Williams, with an appropriate 

value of a, gives a representation of the signal Ui which a part of the energy of the second 

peak is dispersed between the f int  peak and the third peak. In the Born-Jordan-Cohen, the 

second peak is almost invisible and it is difficult to obtain satisfactory information about the 

signal. The Rihaczek-Evfargenau does not give a clear representation of the signal and the 

second peak has completely vanished. Here, again the SWV gives the best representation of 

the signal. 

2.4.4.2. Bearing test 

The second test was c h e d  out on the dryer of a paper machine at the Abitibi-Consoiidated 

Company in Quebec. A typical dqer  section consists of about 60 paper-drying cylinden 

which are divided into five top and five bottom sections, as shown in Fig. 2.47. The standard 

paper dryer is a four- or five-foot diameter hollow cylinder of cast iron. The dryer journals 

must support the dryer which is extremely heavy and rugged. The drive of the diyer section 

has a critical function and any undesirable vibration in one of the cylinders can affect the 

passage of the paper over this section. Therefore, a precise and periodic diagnosis of the 
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dryer bearing is essential. An efficient diagnostic method c m  recognize the problem before 

darnage has occurred. For this reason, tirne-frequency methods are used in this particular case 

to show their capacity, potential and credibiiity. 

Figure 2-45 shows the measured signal on dryer # 27 and its spectrum. From the individual 

impacts which appear at regular intervals in the spectnirn, one can conclude that there is a 

problem in the dryer. The iow-level intense noise in the speanim makes it impossible to see 

the amplitude modulations associated with the impacts. Time-frequency analysis makes the 

detection of this fault a straight-fonvard matter. Figures 2.49 to 2.52 show the different 

time-frequency representations of the signal. The constant impacts in time lead us to the 

defects which cause frequency constants components such as the defect on the outer race of 

a bearing. In this machine, bearings play an important role and it is to be expected that we 

first venfy the bearing defaults. From the characteristics of the bearings, it is possible to 

calculate the different frequency of the bearing defaults. The frequency of the first impact 

corresponds to the BPFO (ball-pmsjFequencyon the outerrace) of the bearing and the other 

impacts are 2 x BPF0 , 3  x BPFO , . . . . After replacing the bearing by a new one, this 

diagnosis is confirmed by an inspection of the old bearing. 

In this case, there is not a great difference between the tirne-frequency distributions, and the 

STFT with an appropriate window may provide a clear representation. Thus, it is not 

possible, in this instance, to choose one method as being mperior to the others, because the 
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choice of method depends on the signal and the resolution requirement in the aoalysis. 

2.5 Discussion and conciusion 

By comparing the results obtained from time-frequency anaiysis of different mechanical 

signals, we can conclude that : 

1 - Time-frequency analysis has definite advantages over time-based vibration analysis 

or frequency-based vibration anal ysis and these advantages make it a powerful tool 

in machine monitoring. 

2- The STFT can give a satisfactory representation of a signal in the time-frequency 

plane provided that an appropriate length of window for cutting the signal is chosen. 

The resolution in time or frequency is always dependent on the length of window. 

3- The Wigner-Ville is not able to produce a satisfactory representation of multi- 

component signals due to the presence of cross tems. It is valid only for mono- 

frequency signals. 

4- The smoothed Wigner-Ville is the most appropnate among the transforms which we 

have studied in this paper. It gives not only a clear representation of the signal but 

also satisfactory resolution in time and in frequency. 
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5- The Choi-Williams may give a representation of the signal which is as satisfactory 

as that of the SWV but it is necessaq to find a suitable value of a . 

6- By the Born-Jordan-Cohen, we cm &tain an image nf l e  r i s a !  in the t h e -  

frequency plane; however, the resolution in time and in frequency are not aiways 

accurate and it is not possible to calculate exactly the frequency of modulation or the 

frequency and the time of a transient peak in a time-frequency plane. 

7- The Rihaczek-Margenau may not provide a satisfactory representation of the signal 

when the signal cornes from a real case, but for theoreticai signals it gives a good 

representation. 

In summary, the choice of a distribution in a praaical application depends on the problem 

concemed, and none of these distributions provides us with complete and conclusive results, 

thus we cannot rank one above the ohers. For this reason, we recommend that researchers 

consider al1 distributions and compare the results in each case studied. 
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Figure 2.1 : Representation of a rnulti components signal by (a) Wigner, @) Rihaczek and 
(c) Page distribution (Cohen, 1966) 



Figure 2.2: (a) Wigner and @), (c) Choi-Williams distributions for the sum of two sine waves 

with (b) a = 1 0' and (c) o = 10 (Zhao, Atlas et Marks, 1990) 



Figure 2.3: The cornparison between @) the STFT and (c) the ZAM distribution of a signal 
with a rapid fiequency change (Loughlin, Atlas et Pitton, 1993) 



Figure 2.4: A cornparison among (a) the Wgna-Vie @) the Choi-Williams with o =10 and (c) the 
Zhang-Saü, with d =10 for a sinusoicial signai with two and three c o m p e n t s  monyu, 
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Figure 2.5: Time and spectnim representation of a sum of sines. 
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Figure 2.6: Spectrogam representation of a sum of sina.  
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Figure 2.7: Wigner-Ville representatiao of a sum of sines. 
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Figure 2.8: Smoothed Wigner-Vile repreoentation of a sum of sines. 
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Figure 2.9: Choi-Williams representation of a sum of sines. 
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Figure 2. IO: Born-Jordan-Cohen representation of a sum of sines. 
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Figure 2.1 1 : T h e  and spectrum representation of an amplitude-modulated wave. 
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Figure 2.12: Spemogram representatioo of an amplitude-modulated wave. 
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Figure 2.13 : Wigner-Ville representation of an amplitude-moduiated wave. 
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Figure 2.14: Smoothed Wigner-Vide repmentation of an amplitude-modulated wave. 
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Figure 2.15: Choi-Williams representation of an amplitude-modulated wave. 
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Figure 2.1 6: Born- Jordan-Cohen representation of an amplitude-moddated wave. 
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Figure 2.17: Rihacezk-Margenau representation of an amplitude-moddated wave. 
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Figure 2.18: T h e  and spectnim representation of a fiequency-modulated wave. 
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Figure 2.19: Specÿagram representation of a hquency-modulated wave. 
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Figure 2.20 : W igner-Vie representation of a frequency-modulated wave. 
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Figure 2.2 1 : Smoothed Wigner-Vie representation of a nequency-modulated wave. 
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Figure 2.22: C hoi-Williams represeotation of a fiequency-modulated wave 
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Figure 2.23 : B orn-brdao-Co hen representation of a frequency-modulated wave. 
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Figure 2.24: Rihacezk-Margenau representation of a frequency-modulated wave. 
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Figure 2.25: Time and spectnim representation of a frequency and amplitude modulated wave. 
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Figure 2-26: Spectrogram regresentation of a fmiuency and amplitude modulated wave. 



Tirne-Frequency Plane Projection 

-1 d 
O O. 1 0.2 0.3 0.05 0.1 0.15 0.2 

Time (S) Tme (S) 
Wig nef-Ville Transform 

Time (S) 
O O Frequency (Hz) 

Figure 2.27: Wigner-Vilie representation of a frequency and amplitude modulated wave. 
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Figure 2.28: Smoothed Wigner-Vie representztion of a hquency and ampliaide modulated wav~ 
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Figure 2.29: Choi-Williams representation of a fiequençy and amplitude madulated wave. 
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Figure 2.3 0: Born-Jordan-Cohen representation of a fiequency and amplitude rnoduiated wave. 
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Figure 2.32: Test setup. 
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Figure 2.33: Time and spectmm representation of the signal measured on a defective bearing. 
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Figure 2.35: Wigner-Vie repre-sentatian of the signai measured on a defechve bmring. 
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Figure 2.36: Smaathed Wigner-Vie representation of the signal measured on a defective bearhg 
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Figure 2.37: Choi-Williams representation of the signal measured on a defective bearinp. - 
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Figure 2.3 8: Born-Jordan-Cohen representation of the signai measured on a defective beariog. 
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Figure 2.40: T h e  and spectnim representation of the signai measured on a defective gearbox. 
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Figure 2.41: Spectrogram representation of the signal rneasured on a defe&e gearbox. 
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Figure 2.42: WignerWiUe representation of the signal measured on a defective gearbox. 
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Figure 2.44: Chai-Wïlliams represeniation of the signal messurd on a defective gearbox. 
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Figure 2.45: Born-Jordan-Cohen representation of the signal rneasured on a defective gearbox. 
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Figure 2.46: Rihacezk-Margenau represeatatioa of the signai rneasured on a defêdve gearbox. 



Figure 2.47: Paper machine dryer part 
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Figure 2.48: Time and spechum represenühon of the signal measured on a defdve dryer machine. 
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Figure 2.49: Spectrognun representation of the signal measured on a defective dryer machine. 
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Figure 2-50: Wigner-Ville representation of the signai rneasured on a defenive dryer machine. 
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Figure 2.52: Choi-Williams representation of the sipal rneasured on a defective dryer machine. 
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3.1 iîbstract 

Time-frequency analysis has been found to be effective in monitoring the transient or time- 

varying characteristics of machinery vibration signals, and therefore its use in machine 

condition monitoring is increasing. While the short-time Fourier transforrn and the Wigner- 

Ville distributions are generally considered satisfactory in the field of the-frequency 

analysis, the development of such new techniques as wavelet analysis, by which it is possible 

to compensate for weaknesses in other time-frequency methods, may Iead to new solutions 

*: Soumis pour pubticaion dans "Journal of Mechanid Systems and Signal Processing" 
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to unsolved problems. Wavelet analysis has a special characteristic of time-fiequency 

localization, which is very effective in the analysis of transient or tirne-varying signals. 

In this paper, we present a brief study of the wavelet transform. wavelet fiuictions. the 

discrete wavelet transform, the wavelet packet transform and adaptive wavelet transforms. 

Evarnples are given to show the advantages and disadvantages of different wavelet 

transforms. Finally, the effectiveness of wavelet analysis in condition monitoring and 

diagostics of machines is illustrated by experimenial results from a defective bearing, 

followed by the application of this technique to the detection of a broken tooth in a gearbox. 

3.2 Introduction 

A diagnosis is not an assumption, it is a conclusion reached d e r  a logical evaluation of the 

observed symptoms. The diagnostic process includes the following steps: 

a) Observation of the different symptoms and determination of the various defects in 

the machinery which may have caused hem; 

b) A systematic search for possible defects in the measured signals; 

c) Evaluation of various hypotheses and detemination of the one which is compatible 

with d l  apparent symptoms. 
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The diagnosis, therefore, is based on the systematic analysis of the symptorns found in the 

measured signals. The key factor is the signal anaiysis. A great many indicaton have been 

developed for machine condition monitoring and fault detection, such as the crest factor and 

Kurtosis. C o m p a ~ g  new reading against published severity chart such as M I  2056 shows 

the existence of defaults. 

Machine monitoring a d o r  d i apa i s  on the bais of variations in the indicator values of the 

signal spectrum in "large bands" and in "narrow bands" is very unreliable. One reason for 

this is that it is necessary to define a large number of indicators corresponding to a small 

number of defects. 

In addition, we need to take into consideration not only the increase in the power of the 

signal, but also the development of its fom.  halysis of this development is carried out in 

the frequency domain (diagnosis by cornparison of the spectrums). 

On the other hand, the identification of tooth cornb parts in high frequency by traditional 

spectnim analysis is often impossible, since the frequencies of these components correspond 

to very high orders of the rotation frequency, and al1 fluctuations in the rotation frequency 

produce important frequency variations in each of the cornponents by sweeping across 

several spectral lines. The spectnim obtained in this way is very noisy and it is ditficult to 

determine the repetitive frequencies of the shocks. 
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Modifications to the form of representation of the signal, such as Cepstrum (the inverse 

Fourier transfonn of the logarithmic spectrum of the signai) and the Hilbert transform of the 

narrow band of the signal, reveal m e r  infornation. Here, we are dealing with non- 

stationary or cyclo-stationary events in the time domain. Advanced signal processuig 

techniques are required to enable us to represent the signal in three dimensions (time- 

frequency-amplitude). These techniques permit us: 

a) To detect and follow the developrnent of the defects which generate weak vibrationai 

power. However, the weak vibrational power can rnodify the form of the signal to 

a considerable extent, as happens when defects produce the amplitude modulation or 

frequency modulation of certain characteristic components. Examples of this are the 

journal bearing of a shaft with a slow or very slow rotational velocity, a rotating 

oven, dryer cylinders, the press sections of a paper machine, etc.; 

b) To supervise the installations in which the normal functionai process produces hi& 

amplitude periodic shocks (piston or screw cornpressor, reciprocating machinery [1] 

and cam mechanisms [2], ...) which may mask the faulty frequency producing the 

impulsive forces. (fault in a bearing, couplîng, ...). 

The time-frequency methods are regarded as advanced diagnostic techniques which offer 

high sensitivity to faults and a good diagnostic capability. 
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The Short-Time Fourier Transform (STFT) is one method of time-frequency analysis which 

we have studied [3]. In the S T T ,  signai is cut by a window with length T and centered at 

time 1; the spectrum coefficients are calmlated for this portion of the signd. nie whdow 

is then moved to a new position and so on. The major drawback of the STFT is the 

fixed-length of the window (7) during the anaiysis of the signal. This limitation of the STFT 

creates the fundamentai problem of the STFT, namely that high resolution can not be 

obtained simultaneously in the time and frequency domains. If the window length is T, then 

its frequency bandwidth is of the order i / T  (because of BT=I). Thus, the two conditions of 

a narrow window and a narrow bandwidth are irreconcilabie. 

ho ther  time-frequency method which we have studied [4] are the Wigner-Ville 

distributions. in this case, it is postulated that a senes of sampled datais available for analysis. 

The instantaneous correlation, Rf (r, t ,  ) , at time (t,) with a tirne lag z, is defineci as 

and its Fourier transfomi may be written as  follows: 
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Where SI  (a, t ,  ) is the instantaneous spectntm density fimction according to frequency o 

and t h e  t ,  . Theoretically, S I  (a,  t ,  ) is the frecluency content meaniranent of a non-stationary 

In practice, it is impossible to calculate the correlation function RI ( r ,  i, ) on a senes of 

samples from - a, to + oo , because this type of sample is never available. 

Therefore, if we replace: 

in the equation (3.2), by the instantaneous value: f ( t  - r / 2) f ( t  + r / 2) we will obtain 

wf(,(w, t )  is a fundion of o and t for a sampled single x and is cailed the Wigner 

Distribution of for). 

In the case of deteninistic signals, we use the analytical signal r(l) instead of the real signal 

f(0, and the distribution is called the Wigner-Ville Distribution. The analytical signal Z(Z) is 



defmed as 

LVhere J ( t ) ,  the imaginary part of the signal ;O)). k the Hilbert transfomi of the reai signalfl) . 

In this way, the negative frequencies are eliminated and the signal is represented only by the 

real part of a rotary phaser with positive frequencies. 

The analytical signal is very usehl when we study the amplitude and modulation of the 

phase since this signal introduces the concept of'instantaneous frequency and instantaneous 

power. The sampling frequency may also be used, followed by the Nyquist cnteria because 

the spectrurn of an analytical signal is a onesided speanim with only positive frequencies. 

The Wigner-Ville Distribution is a distribution of energ in die hme and Frequency domains, where: 

Unforhmately, the Wigner-Ville transform presents severai anomalies: 

a) This transform is a bilinear transform Le. the cross tems generate a certain 

non-linearity; 

b) The mndom noise in the original signal has a tendency to spread to other regions in 
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the time domain. Since the integral of equation (3 -3) is centered at time t, the integrai 

covers an infinite period of r (time delay). Therefore, it depends on the characteristics 

of x as distinct from the local time t; 

c) These transfomis often give negative values, which makes the interpretation of the 

distribution difficult. 

Furthemore, the Wigner-Ville method presents another difficulty: it is almost impossible 

to obtain a local spectrum density because of the continuity nature of the harmonic waves. 

To overcome this limitation attributable to harmonic analysis, an alternative method of 

signal analysis has, at a theoretical level, been developed. 

Instead of using sines and cosines as base functions to decompose a signal, a set of 

orthogonal functions, called wavelets, has been used. Whilst, by definition, harmonic 

functions go to infinity, the wavelets are, in contrat, local functions. Gathering these 

wavelets and using different scaies, it is possible io assemble a set of base functions in order 

to examine the locai character of non-stationaq signals. 

The theory of wavelets is a mathematical method in which a series of speciai signals is used 

to construct a mode1 for a signal, a system or a process. These special signals are small waves 

or wavelets. They must be oscillatory and possess an amplitude which decreases rapidly to 

zero in both positive and negative directions. 



185 

The fmt  classical wavelet was derived by J. Morlet [5 ] ,  a geophysical engineer at a French 

oil Company, in 1982. He wanted to analyse some signals which had shorter-time transient 

components in high frequency than in low frequency. He needed both satisfactory frequency 

resolution in low frequency and satisfactory time resolution in high frequency. The usual 

method of time-frequency analysis at that time was the Short-Time Fourier Transform 

(STFT). As previously mentioned, the major disadvantage of the STFT is that it is 

impossible to obtain high resolution simultaneously in time and in frequency. Morlet's idea 

was to use a smooth window with some oscillations, as y/([) , and generate a label family 

from y / ( ( )  by translation and dilation. As a bais for the wavelet transform, he chose a 

windowed cosine wave which was compressed in time for a higher frequency function and 

spread out for a low frequency function. He finally characterized his signal by inner products 

of the signal with these transform functions. A few yean iater, Alex Grossmann, a theoretical 

physicist, presented an exact inversion of Morlet's formula and helped him to find several 

applications for the wavelet transform [6]. In 1985, Y. Meyer, a pure rnathematician, 

recognized that the wavelet transform had been already introduced as a mathematical tool 

in harmonic analysis by Calderon in the 1960s. He correlated the work of Grossmann and 

Morlet with Calderon's formula in hannonic analysis and aiso constmcted the bais  of an 

orthonormal wavelet with excellent time-fiequency localization properties. In 1986, S. 

Mallat, a specialist in computer vision and image processing, used the multi-resolution 

approaches in computer vision and its application to a method of image coding called 
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"Pyramid", in order to defme a similar structure for wavelet expansions. Mallat and Meyer 

succeeded in developing the mathematical structure for wavelet construction on the basis of 

multi-resolution signal representation [7,8]. Meyer's work on the mathematical structure of 

the wavelet is documented in his book [9]. Using multi-resolution analysis, S. Mallat 

proposed that the wavelet coefficients may be computed using an efficient algorithm 

produced by a filter bank. To use filters in wavelet decornposition instead of deriving the 

filten from a wavelet basis, we c m  fint construct a pair of appropriate F R  (finite impulse 

response) filters and then investigate whether they correspond to an orthonormal wavelet 

basis. The characteristics ofsuch a pair of filters were discovered in 1970 and given the name 

"quadrature mirror filters" (QMF). By using QMF, exact constmction of orthonormal 

wavelet bases has been possible. A sufficient condition for regularity of these filters has been 

given by Daubechies [ 10, 1 11. This work resulted in a discrete-time wavelet transform [12, 

131. One of the important disadvantages of the wavelet transfomi is the logarithmic scale of 

the frequency axis in the time-frequency plane. As an alternative. an interesthg 

generalization of the filter bank trees of the wavelet transfomi is the wavelet packets 

transfomi, which provides a linear scale frequency axis in the time-fiequency plane [14,15]. 

This paper presents the wavelet analysis as a newly-developed technique with important 

propenies which make it a powemil tool in machine condition monitoring and fault 

detection. In section 2, the theory of wavelet transform is briefly described, followed by a 

discussion of the properties of different wavelet functions. Then, the discrete wavelet 
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transfomi and the fast wavelet transform based on multi-resolution analysis are studied and 

the wavelet packet transform and adaptive wavelet transforms are presented as variations of 

wavelet analysis. In this section, we also present a new rnethod, cdled the "zoom in wavelet 

transform", by means of which the waveiet transform is used to obtain a finer resolution in 

the frequency domain. This method is a variation of the adaptive wavelet transform. In 

section 3, a cornputer program to implement the different methods of wavelet analysis is 

described and the different ways ofusing the wavelet transform to detennine tirne-frequency 

localization are compared. Finally, wavelet analysis is applied to experimental vibration 

signals received from a damaged bearing and a broken tooth in a gearbox. 

3.3 Wavelet transfo rms 

It is known that discrete-time signal decornpositions are methods of expressing an energy- 

limited signal as a linear combination of transform bases. n i e  Iinear integral transforms can 

be considered as an inner pmduct of a signal f ( f )  with a transformation function. The 

standard example is the Fourier transform Ff (O)  of signal f ( t  ) which is defmed as: 

FJo) =< f ,h >= p f ( t )  h(t) dl 
-a0 



where the transformation kemel is h(t ) = ei"< . 

From a mathematical point view, equation (3.6) decomposes f (t)  into a family of pure 

frequency signais ei" which play the role of the Fourier transfocm bases. The sine-cosine 

functions are highly localized in frequency but widely spread in tirne. Therefore, the time 

domain information of the spectral components is hidden in the phase of the Fourier 

iransform. Consequently, the Fourier transform is not well suited for time-place analysis. 

For non-stationary signais, the Short-Time Fourier Transform (STFT) is the first and 

simplest method which is defined as 

STFT, ( t ,  w) =< f. hr >= f ( l )  Gr (i) (II (3.7) 
-<Xi 

where h, ( t  ) = g ( t  - r )  eÏm and r define the translation of the window function g (t ) . As 

the window is shifted in time, a new spectmm is obtained at each position, producing a time- 

frequency representation of the signal. The eficiency of the localizaûon in the tirne- 

frequency plane depends on the width of the window function. The uncertainty factor, 

Al ho 2 1 2 , sets a limit on the produa of time and kequency. This means that we cannot 

simultaneously obtain high resolution in both the tirne and fiequency domains. However, by 

changhg the width of the window, we can trade resolution in time for resolution in 



frequency . 

In a similar way, the wavelet transform can be defined if the Fourier transform bases are 

repiaced by the waveiet rransfom bases, h, il) , as s h o w  in Figure 3.1. 

The wavelet transforrn is defined as: 

IV, (s: r )  =< j , h  ,r., >= $' f ( t )  h(s, r )  lit 
-a 

(3.8) 

The wavelet transform bases are a family of Functions which are obtained from a single 

prototype wavelet by translation and dilatiodcontraction : 

where " s " is a real variable, known as the scale of wavelet transform and h(.) is a fixed 

function, called "motherwavelet function". From equation (3.9), we c m  Say that the wavelet 

transforrn extracts spectral information from the signal around time by means of inner 

links between the signal and scaied versions of the wavelet. 

In the case of the wavelet transform, the seledon of the bais  functions is more flexible than 

the case with the STFT. The choice of short basis fünctions for Iow frequencies and long 
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basis functions for high frequencies makes the wavelet transfomi sharper in time in the 

higher frequencies and sharper in frequency at low frequencies. 

3.3.1 Wavelet functions 

The mother wavelet hinction may be any function satisfyiag the necessaq condition that 

warrants the existence of the inverse wavelet transfom. This admissible condition is defined as 

which means that the wavelet must be osciilated and have a zero mean. Different families 

of wavelets can be generated by taking different admissible wavelet funaions. The choice 

of the wavelet function is important and rather criticai. The selection of the wavelet depends 

on the characteristics of the signal and on the acceptability of other effects in the 

representation due to the wavelet function. In the following we review some popular 

waveIets: 

a) Baar wavelet 

The Haar wavelet is the first and the sirnplest wavelet function which \vas constructed by 



Haar in 1910. 

He was a mathematician who looked for an orthonormal system with the functions 

ho (x), h, (I), - - - , h, (.Y), - - - defined between inteml [[0,1], such thnt the scrics 

I 
where < rr ? v >= ir (+)v8 

Haar chose the step function h ( x )  , calied Haar's wavelet function, which is defined as: 

which is reai and antisyrnmetric about I = 1 / 2 , as show in Figure 3.2. For n 2 I , we have 

n = 2 ' + k ,  j10, O ~ k 1 2 ' , a n d  hn(x)=2"2h(2i . r -k) .~nthiscase , these~es  

h, ( x ) ,  h, (s); , h,, (x); is cailed an orthonormai base or Hilbertian base of L* [0,1]. 

It is easy to show that the finctions of the series are orthonormai with respect to the scalar 

produa and they are oonndized by the factor 2" '. Several years later, it was s h o w  that 
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the Haar base has the multiscale structure which is a prerequisite for wavelet function. 

A major disadvantage of Haar's wavelets is the discontinuity of this wavelet which cannot 

provide a good approximation for smooth fuactions. The Fourier transform of'HaarYs wavelet 

may be writîen as 

1 - cos ,f 
H (  f )  = 2i exp(-ig) 

nf 
- 2 

The decay of the Haar wavelet is very slow. Figure 3.2 shows Haar's wavelet and its Fourier 

b) Mortet wavelet 

This wavelet is in essence a Gaussian modulated hmonic  fundon which was used by J. 

Morlet for the analysis of sound patterns: 

h(t)  = exp(i2&) exp [- $1 
Its real part is an even cos-Gaussian funaion. The Fourier transform of the Morlet wavelet 



is the Gaussian functions shifted to f, md - f, : 

which is even and real positive valued. This wavelet does not satisfy the admissible 

condition, because H(O) 1 O . In practice, one often chooses fo so that the ratio of the 

highest and the second highest maximum of h( t )  is approximately 1:2, ive- 2d0 = 5 -  In 

this case. the value of H(0) is very close to zero, i.e. H ( 0 )  = 3.7 x  IO-^. Here, it can be 

considered as zero with a good approximation. 

By this wavelet , the analysis is not orthogonal. The real part of the h(t ) and its Fourier 

spectrum are show in Figure 3.3.  

c) Mexican-hat wavelet 

This wavelet is in fact the second derivativeof the Gaussian function which is introduced by 

Gabor. 



It is evea and real valued. The Fourier transfonn of the Mexican-hat wavelet is 

which is even and real valued, as shown in Figure 3 -4. The decay of the wavelet coefficient 

is fast. This wavelet has been applied in vision analysis. 

d) Meyer wavelet 

Y. Meyer is a pure mathematician who constmcted an orthonormal wavelet bais with 

excellent time-frequency localization properties in 1985. The Meyer wavelet is defined in 

which v( f )  is a symmetric function defined by 



The Meyer wavelets in the time domain can be wrinen as follows: 

One cm easily check that it is a real symmetric function at t = 1 / 2 . By changing the 

auxiiiary hnction v ( f j  ,we obtain a dzerenr famiiy of waveiets. Aithough the Meyer 

wavelet shows rapid polynomial decay, it has wide support. This wavelet is also infinitely 

differentiable. 

The Meyer wavelet for v ( x )  = .Y" (35 - 84x + 70x2 - ?0x3 ) is shown in Figure 3 .S. 

e) Lemarie-Battie's waveIets 

Lemarie was a student of Meyer who worked in harmonic analysis and Battle was a 

. mathematical physicist who was interested in quantum field theory. hdependently of one 

another, they developed wavelet bases consisting of spline functions. An explicit expression 

for this wavelet family does not exist and the properties of each member of the farnily can 

be dBerent and depend on the choice of the spline funaion. For a constant spline, the 

wavelets becorne simiIar to Haar wavelets. More detail for constructing filten usin3 this 

wavelet family may be found in [Il]. 
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Although the wavelets have exponential decay which is an improvement over the decay of 

the Meyer wavelet, they loose regularity and are not compactly supponed. One of the 

wavelets is s h o w  in Figure 3.6. 

f) Dau bec hies wavelets 

Apart from the Haar wavelet function. almost al1 the orthonormal wavelet functions listed 

above consist of infinitely supported functions. One desirable property is to have a wavelet 

with compact support in the time domain, Le., it is time limited in that it is non-zero only 

over a given interval. Such a wavelet gives a tnie sense of time locality. Daubechies 

constructed a family of orthogonal wavelets which converge to continuous functions with 

compact support. These wavelets have no explicit expression except for dbl , which is the 

Haar wavelet. The Daubechies family wavelets are real but neither symmetrical nor 

asymmetrical and their regularity increases as the order of Daubiechies' wavelet increases. 

One member of the Daubechies family ( 0 4 )  is shown in Figure 3.7. Details of the 

procedure for constructing au orthonormal base of compady supponed wavelets may be 

found in Daubechies' original paper [ 1  O]. 

These wavelets have other desirable properties. It cm be shown that they are bounded, 

continuous funetions and they are continuously differentiable. 



3.3.2 Discrete wavelet transform 

In order to apply the wavelet transform for digital signals, the wavelet parameters s, r must 

be discretized. lfwe consider s = ST and r = nSrT, ,the correspondhg wavelets become: 

h, ( t )  = sirn' --h(somt - nTo ) (3.2 i) 

where m , n E Z ,  S,,>l, T o t O  

This way of discretization rnay be modified to give a dyadic grid by considering 

S, = 2, T, = 1 ; therefore 

hmn = 2 - m ' 2 * h ( 2 - m t - n )  m,n=1,2 ,  ... (3 -22) 

It is possible to obtain an orthonormal bais for special choices of h(t) . The dyadic 

sarnpling g i d  in the time-scale plane is shown in Figure 3.8(a). The scale axis is often 

expressed in terms of frequency under transformation s + k / f where k is a constant. In 

fact, it can be shown that the Short-Time Fourier Traasform, the-fiequency distributions 

and tirne-scale methods (wavelet transforms) are members of a common class of energy 



198 

representations 116, 81. A cornparison between the basis fbnctions and the tirne-fkequency 

plane of the Short-The Fourier Transfomi (STFT) and those of the wavelet transfomi is 

shown in Figure 3.8(b) and 3.8(c); the self-adjusting window (zooming) property is the 

major difference between the wavelet tmnsform and the STFT. The zooming property of the 

wavelet transform is similar to a microscope or a telescope, where the resolution is 

automatically adjusted to a different scale of magnification. As shown in Figure 3.8(c), the 

important pro pert ies of the wavelet transform, such as its localisability and changeab le 

resoiution in the time and frequency domains, make it both more suitable and more effective 

in the analysis of non-stationary vibration sipals  such as transients. 

The implementation of the wavelet transform according to (3.22) may only be carried out 

with some dificulty because, as m increases, h ( f )  must be sampled at progressively more 

points. This makes the computations very slow. In 1989, Stephane Mallat [17, 71 proposed 

an efficient discrete-time algorithm for the computation of the wavelet transform. Mailat, 

using quadrature mirror filters and multi-resolution analysis, constructed a new algorithm 

for the computation of the wavelet transfom, which calculates the wavelet coefficients very 

rapidly. It is called the Fast Wavelet Transfonn and its idea cornes from a rnethod called 

subband coding, which has been used in speech compression. Subband coding, which 

consists of two branches with filtering followed by down sampling by two, can decompose 

a signal into two parts. The part that is passed through a low-pass filter gives an 
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approximation of the signal, and the part that is passed through a hi&-pass filter gives the 

detail. It is interesting to note that the original signal cm be recovered fiom its two filtered 

and subsampled parts if the filters have the property of perfect reconstniction, as shown in 

Figure 3.9(a). Such filters are called quadrature mirror filters. 4 s  shown in equation (3.8), 

a wavelet transform can be interpreted as a decomposition of a signal into a set of frequency 

channels of difTerent band widths. Mallat's algorithm is a cascade extension of this 

elementary two-channel filter bank in a binary tree structure, as s h o w  in Figure 3.9(b). 

A review of discrete-time wavelet transform and the relationship behveen wavelet transform 

and filter banks is given by Shensa [19], Vetterli et al. [15, 181. 

2.3. Wavelet packet transform and adaptive wavelet transforms 

In wavelet transform, the frequency axis has a logarithrnic scale which gives good frequency 

resolution at lower frequencies and good time resolution in the higher frequencies. For this 

reason, it is mggested that the wavelet transform be used to analyse signais with long- 

duration events in the Iower frequencies and short-duration events in the higher fiequemies. 

The generalisation of the discrete-time wavelet transform is called the wavelet packet 

transform and can be described as a full-tree-structured filter bank, as shown in Figure 3.10. 

An interesting advantage of the wavelet packet is that the frequency axis has linear scaie 
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which gives better frequency resolution in the higher frequencies, at the price of some loss 

of t h e  resolution. 

It is clear that the wavelet transform is appropriate for signals with transient phenmena in 

the higher frequencies; however, it may perform less well over other time-frequency 

transfoms. The resolution exchange between time and frequency in the wavelet transform 

is always fixed and independent of the signai being analysed. This may not be satisfactory 

in the analysis of an arbitrary class of signals with either unknown or time-varying 

characteristics. To improve the performance of the wavelet transform, it is necessary to use 

the signal-adaptive transform. which is more satisfactory than the onsinal fixed transform 

although it is important to ensure that this flexibility does not corne at too great a cost. 

There are two way of achieving this objective: 

a) By selecting filter banks to optimize the time and frequency resolutions: 

we rnay select the binary trees in filter banks by taking the charactenstics of the 

signai into account, instead of using the fixed tree of the wavelet transfom or the 

wavelet packet transfom, as shown in Figure 3.1 1. In this way, we can locally 

exchange resolution in time for molution in fiequency and vice versa. 

6) By optimizing the wavelet fùnction with respect ro the signal structure: 
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the second way involves the construction of wavefom libraries and the choice of 

those partinilar wavefoms which are the best adapted for the decomposition of the 

signal structures. Such wavefoms are called tirne-frequency atoms and the libraries 

of waveforms are called the dictionary of the-frequency atoms. 

One method which follows the idea of searching for good representation from a dictionary 

of time-frequency atoms is the method of matching puauit [21]. This method is a iinear 

decornposition of any signal into wavefoms that are selected from a dictionary of Gabor 

functions. 

A general family of time-frequency atoms c m  be generated by scaling (s > O ) ,  

translating ( r) and frequency modulating ( 6 )  a single window function g(t  ) . 

where the index y = (s, r, 6 )  denotes an elemeot of this farnily of atoms. The g(t) is the 

Gaussian window g(t ) = 2 l'' ëmf . 



Then f (t) can be written 

where a, are the expansion coefficients which provide some information on certain types 

of properties of f ( l )  , depending upon the choice of the atoms g, ( l )  . 

This method is particularly suitable for decomposing signals whose localizations in time and 

frequency Vary widely. 

Removing noise from a signal by wavelet analysis is one of the most recent applications of 

wavelets [22]. 

The idea of de-aoising by wavelet analysis consists of decomposing the signal by wavelet 

transform, removing noise from components, and reconstructing the signal. 

Wavelet anaiysis is a linear method; tberefore the wavelet coefficients of the linear 

combination of two sipals are equal to the linear combination of theirwavelet coefficients. 



A noisy signal can be modeled in the following form: 

f ( 1 )  = 40 + e ( t )  (3.26) 

Where f(r) is a noisy signal, s(l) is the original signal, and r(t) is the noise. Eliminating the 

noise part of the signal may be done in three follolving steps: 

a) Compute the wavelet decomposition of the signal f(r) 

6) Determine a iimit for optimal de-noising and suppress only the portion of the 

wavelet coefficients that exceeds this limit. 

C) Reconstruct the signal with the help of modified wavelet coefficients s(0. 

In praaice, the decomposition and reconstmction procedures are accomplished respectively 

by the fast wavelet transform and the inverse fast wavelet transform. 

It is clear that the performance of the de-noising method depends mostly on the step @). 

Suppressing a part of a signal, called the thresholding procedure, is cmied out ushg 

different optimization techniques, which give different threshold values [23]. In the next 

section, we will see how this application of the wavelets c m  impmve the wavelet transform 



representation of signais. 

3.4 Appiication of the wavelet traosform to machinery fault diagnosis 

The wavelet transform is one of the newer methods of time-frequency andysis that have been 

used in various science and engineering fields in recent decades. Although the wavelet 

transform has been applied to image processing and speech recognition with great success, 

there have been only a few applications in machinery diagnostics, for example, the work of 

McFadden et al. in the application of the wavelet transform to fault detection in a gearbox 

[24,27]. Damage in bearing elements is oneof major problem in rotating machines that c m  

be detected by the wavelet transform [28, 291. Fault detection and identification in a 

helicopter gear-box was carried out by Lopez et al. [30]. 

It has been shown that, in the diagnosis of faults in reciprocating machines, the wavelet 

transform may be considered as a satisfactory technique for extracting the characteristics of 

vibration signals [3 11. Zhongxing and Liangsheng [32] used the wavelet packet technique 

to analyse the vibration signals of a cornpressor. In another approach, Dalpiaz and Rivola 

[2,33] applied the wavelet transform to the condition monitoring and diagnostics of cam 

mechanisms. We note that in most of the above applications the Gaussian wavelet funaion 

was chosen as a mother wavelet fùnction. 



3.4.1 Software for waveIets transforms 

A user-friendly software has been developed to permit the use of different methods of t h e -  

frequrnçy aadysis such iis h a  Short-The Fourier Traiisfurni, the Wigner-Ville 

Distributions, and the Wavelet Transforms. The program allows the user to carry out 

different distributions of Cohen's class of tirne-frequency metbods such as the Choi- 

Williams Distribution and the Born-Jordan-Cohen Distribution. In addition, it provides 

different kinds ofwavelet transforms, for example: the wavelet transfom. the wavelet packet 

transform, and the wavelet transform by the Gabor Dictionary. In addition, the new technique 

of the "zoom in wavelet transform" makes it possible to obtain very satisfactory frequency 

resolution. 

This program has been developed especially for the diagnosis of defects in machinery, and 

includes most of the commonly-used methods of time-frequency analysis. We have tried 

to use those kemels and filters which are compatible with the current signals in machine 

diagnostics. The program has some interesting options whicn are of considerable practicd 

value in such cases. For example, de-noising by wavelet transform, which is an important 

tool in the anaiysis of noisy signals, allows the user to obtain an improved time-frequency 

representation. 

Some examples fkom simulated signals have been used to veriQ the funaion and acniracy 

of the program. ï h e  fmt example is the sum of three sines: 300Hz, 1000 Hz and 3000 Hz; 
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the time frequency plane shows three constant frequency bands. Although the wavelet 

transfom of the signal, as shown in Figure 3.12@), indicates a concentration of the signal's 

eoergy in the three bands, there is also the dispersion of this energy in the adjacent bands 

especially when an incorrect filter is chosen, as shown in Figure 3.12(c). On the other hand, 

it is impossible to determine the exact values of the frequencies by the logarithmic scale of 

the frequency auis. 

The wavelet packet transfom of this exarnple gives better representation in the time- 

kquency plane than the wavelet transform of this signai (Figure 3.13). The linear scale of 

the frequency avis gives better frequency resolution. Filter selection plays an important role 

here also. 

The matching pursuit algorithm gives the best representation of this signal, as showri in 

Figure 3.14. The resolution of frequencies in the time-frequency plane is very satisfactory. 

The second example is a Dirac function in 0.1 sec. This function is an exarnple of transitory 

signals. The wavelet trmsform of the example is shown in Figure 3.15. This time, the 

wavelet transform gives the best representation ofthe signal in the time-fiequency plane. The 

peak appears exactly at 0.1 sec. The very good tirne resolution provided by the wavelet 

transform in the higher fiequencies makes it a powefil tool for the detection of transitory 

phenornena in the signais. 
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The wavelet packet transform shows the Dirac fùnction in approximately 0.1 sec (Figure 

3.16). Its time resolution is not as satisfactory as that of the wavelet transfonn. There is a 

difEerence between the results obtained by the wavelet transform and those obtained by the 

wavelet packet transform (the wavelet packet transform has better frequency resolution in 

the higher frequencies than the wavelet transfonn, but at the expense of a loss of time 

resolution in these frequencies). 

The matching pursuit dgonthm gives a representation of the signal that is notas good as that 

given by the wavelet transfonn, but is better than that given by the wavelet packet transform, 

as shown in Figure 3.17. 

The next example is an amplitude-modulated cosine at 1000 Hz. The wavelet transform 

representation of the signal in the time-frequency plane shows the modulation of the signal. 

To obtain a clear representation of this signal, it is preferable to see simultaneously the 

mean-square wavelet map (three-dimeosionai representation) of the signal, as shown in 

Figure 3.18. The wavelet packet transform of the signal accornpanied with the mean-square 

wavelet packet map of the signal is shown in Figure 3.19. Here, we use Haar wavelet 

Function which provides a good time resolution. To obtain clear representation of the signal 

in frequency, we can use a Daubechies 20 wavelet hc t ion  which provides good frequency 

resolution at the expense of a loss of time resolution. 

For this type of signal, the matching pursuit algorithm is not recommended because the 



modulation is not displayed (Figure 3.20). 

The fmal example is a frequency-modulated signal at 1 O00 Hz. The wavelet transform and 

the nem-squue w 3 ~ e ! d  m3p cf the s i p d  are shown in Fi yn: 3.2 1. In the tim-frequency 

plane, the representation of the signal is once again unclear. Ifthere are other components 

in the signal, it will be very difftcult to identify the signal. The mean-square wavelet map 

of the signal is not clear, either. 

The wavelet packet transform gives a better representation of the signal than the wavelet 

transform; in particular, the mean-square wavelet packet map of the signal is clear, as shown 

in Figure 3 2 2 .  

Again, the matching pursuit algorithm cannot be recommended because the frequency 

modulation cannot be identified (Figure 3 .B). 

3.4.2 Experimental application of the wavelet trrnsforms 

After comparing the theoretical behavior of sweral variations of the wavelet transfonn when 

applied to different signals, we now investigate signals obtained from experimental cases. 

A pin-point defect with known characteristics and location was created on a rolling bearing. 

The test set-up consisted of an electnc motor, a shaft mounted on two journal bearings (SKF 
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12 10 EKTN9 self-aligning, double row), labelled 2 and 3, a gear-box and a break to impose 

the load. The defect was created on support A by scratching the inner raceway of the bearing 

with an electric pen. Figure 3.24 shows the experimental set-up. 

The vibration signal was measured on support A by an accelerometer and transferred to an 

analyser. The measured signal was converted into American National Standard Code for 

Information Interchange (ASCII) format and transferred to the in-house software program 

For analysis. 

The frequencies of different types of bearing defect may be computed using the geometric 

characteristics of the bearing and the rotating frequency [34]. The geometric characteristics 

of the damaged bearing are as follows: 

Pitch diarneter D=69 mm 

Diameter of the rolling body d=10.32 mm 

Contact angle a =7.87 deg 

Number of rolling elements N =17 ber row) 

Bearing frequency of rotation Fr =12.2 Hz 



The frequency defect caused by damage on the inner raceway of this bearing can be 

computed by the following formula: 

Equation (3.25) gives us a value for the pass frequency on a point of the inner raceway which 

equals approximately 238 Hz. Note that the frequency of this type of defect has a special 

characteristic. The default frequency should be an amplitude-modulated wave at 

approximately 238 Hz with the frequency of modulation equal to the rotating frequency. 

Figures 3 -25-3 -26 show respectively the wavelet transform and the wavelet packet transform 

of the vibrationai signai of the defected bearing. It is almost impossible to identify the defect 

by theses figures because the original signal is very noisy. To obtain clear representation of 

the signal, it is necessary to remove at fint the noise from the signal. To do this, there are 

two poss i b i l i ties in the software: De-noisina bv ciassical wavelei na~~sforrn and De-noising 

&Y Matchhg P11rs1rit ulaorithm. Here, we use the de-noising by matching pursuit algorithm 

and The de-noised signal is called rln-lieuring. Figures 3.27-3.28 show respeaively the 

wavelet transform and the wavelet packet transform of the de-noised signai. As shown, the 

wavelet transfomi of the de-noised signal clearly shows the repetitive peaks in frequency 

band 200-400 H z  The frequency of amplitude modulation in this band is approximately 12.2 
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Hz which equals to the rotating frequency. Then, the default in bearing rnay be easily be 

identifled by the wavelet transfomi of the de-noised signal. The wavelet packet transform 

of this signai provides more Freqyency resolution but it is not as clear as the wavelet W o m i  

of the signal. The default frequency is situated in frequency band 200-300 H z  

3.53 Industrial application o f  the wavelet transform 

In the last section, the performance of wavelet transfoms for a defect created on the inner 

raceway of a bearing !vas described. In this section, the eficiency of wavelet transforms for 

an industrial case without any prediction of defects is demonstrated. This case cornes from 

the defective gear-train of a hoist drum in a large shovel operating at an open-pit iron mine. 

Gearbox faults may be classified into shaft (misalignment, irnbalance) and tooth (wear, 

scuffing, cracking) related problems. Damage to a single tooth is called a local tooth fault, 

and will be investigated in this section. Vibration signals measured on a gearbox include the 

tooth-meshing frequency, transient events caused by defects, gearbox resonance vibrations 

and system and sensor transmission charaaeristics. These vibration signals are non- 

stationary signals which require specific techniques because application of the conventional 

methods, such as Fourier analysis, to gearbox fault detection are oflen dificult. Time- 

frequency methods provide new techniques for the analysis of non-stationary signals and 



212 

have advanced capabilities for the separation of dflerent phenornena. The application of 

some tirne-frequency rnethods to the analysis of gearbox faults has been descnbed in [3,4], 

and here, the application of another group of tirne-frequency methods, called time-scale 

anaiysis, is presented. 

The time signai of the damaged gearbox and its wavelet transform are shown in Figure 3 .B. 

The repetitive pulses in the wavelet transform in the band between 320 Hz and 640 Hz are 

caused by a broken tooth. The mean square wavelet map of this signal gives representation 

of the wavelet transfomi in three dimensions. The wavelet packet transform of the signai in 

Figure 3 -30 gives not on1 y a better time-frequency representation of the signal but also better 

frequency resolution than the wavelet transform. The mean square wavelet packet of the 

signal clearly shows the pulses. 

The time-fiequency plane projection by the Gabor Didionary of the signal is shown in 

Figure 3.3 1 but it is not easy to obtain the charactenstics of the signal from this figure. 

Although the mean square wavelet packet map of the signal gives the best representation of 

the signal, the frequency resolution of the signal may not be as fine as is needed. To obtain 

a finer frequency resolution , we can use the zoom in wavelet trunsfiorm which is based on 

choosing the best trees in the filter bank. By this method, fint, the desired frequency band 

is selected and, second, a suitable fiequency resolution is achieved by wavelet packet 

transform of this frequency band. A zoom in wuvelef han@ionn in the fiequency band 



between 320 Hz and 640 Hz is s h o w  in Figure 3.32. 

3.5 Conclusion 

The above study has shown the performance of a new method for the diagnosis of defects 

in machinery. We have demonstrated that the wavelet transform provides a high frequency 

resolution in the lower frequencies and a high time resolution in the higher frequencies. 

This characteristic of the wavelet transforrn may be advantageous in machines, fault 

detection. The wavelet functions play an important role in obtaining a good representation 

of a signal and they are chosen in accordance with the characteristics of the signal. 

The wavelet packet transform is a full tree filter bank which gives a linear-scale frequency 

auis. It gives better frequency resolution than the wavelet transfon but the latter gives 

superior time resolution. In machine monitoring and fault detection, it is sornetimes 

necessary to have high frequency resolution in order to identify the type of defect and, in this 

case, one could recommend the use of the wavelet packet transform. However, this 

approach does result in a loss of information in the time domain and the time-frequency 

representation becomes complicated. For this reason, we have presented a new technique 

which is cailed the "zoom in wavelet transform? This technique pennits us to obtain 

desirable fkequency resolution with clear time-frequency representation. 



214 

This article has also presented an easy-to-use software package which includes the majority 

of methods of the-frequency analysis and compares the wavelet transforms with other 

methods. The software is equipped with several interesting options such as a new method of 

de-noising by wavelet transfom. This method, which has been applied recently in signai 

processing, improves the time-frequency representation of noisy signals. 

The transient and the time-varying signais in machine condition mocitoring present different 

behavior in their time-duration. The adaptive wavelet transforms are powerful tools which 

are capable of decomposing the signal into those waveforms that are best adapted to the 

signal structure. 

A computer program implementing the wavelet transforms has been used to compare the 

performance of different wavelet methods. It has been shown, by the nurnerically generated 

signals and two expenmental tests on a darnaged bearinç and a broken gear tooth, that the 

wavelet analysis methods are effective in machine condition monitoring especially when a 

transient phenomenon exists in the signal. In the case where a defm in a machine generates 

amplitude-modulation signals or frequency-modulation signals, it is preferable to use other 

tirne-frequency methods such as the Wigner-Ville distributions or the STFT. 
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3.7 Nomenclature 

Magnitude of the vibration signal with zero mean 

Instantaneous correIation function 

sf (W 4 ) Instantaneous spectmm density ninction 

Spectnim of the signal f ( t )  

Transformation kernel 

S hort-time Fourier transform of the signal f ( t  ) 

Wavelet transform of the signal f ( l )  

Mother waveiet function 

Scaie of wavelet traasfonn 

Time shift of wavelet transfonn 



a Figure 3.1 : Cornparison between Fourier transfom and Waveiet transform 
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Figure 3.2: Haar wavelet and its Fourier spectm 
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Figure 3.3 : Morlet waveIet and its Fourier speb-tnim 
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Figure 3.5: Meyer Wavelet function 



Battle-Lemarie wavelet f unction 

Figure 3 -6: Lemarie-Battie wavelet function 



Figure 3 -7: Daubechies wavelet function 
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Figure 3.8: (a)Dyadic sampling grid in the time-scale plane; 
(b)Tie-fi-equency plane of the short-time Fourier transfomi; 
(c) T'ime-fkequency plane of the wavelet transfom. 



Figure 3.9: (a) Subband coding scheme H: hi& p a s  filter and G: low p a ~ s  filter, 
(b) Filter bank tree of the discrete wavelet transform. 



@ Figure 3.10: Filter bank tree of the wavelet packet transfomi. 



Figure 3.1 1 : Block diagram of the zoom in wavelet transfom. 
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(a) Thne reptesentation of the simi of sine waves 
(b) The wavelet transfomi of the sum of sine waves by Daubechies filter @20) 
(c) The wavelet transfm of the sum of sine waves by Daubechies filter (D2) 
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Figure 3.13: Wavelet packet tnmdionn of a sum of sine waves. 
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Figure 3.14: Tirne-fiequency representation of a SUM of sines wave b y the Gabor dictionary. 
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Figure 3.15: Wavelet transform of a Dirac funetion. 
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Figure 3.17: Time-frequency representation of a Dirac fbnction by the Gabor dictionary. 
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F igurure 3.1 fi : Wavelet transform and mean-square waveiet map of an amplinide-modulateci aine. 
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O Figure 3.19: Wavelet packet transform and mean-square wavelet packet map of an ampliaide- 
rnodulated sine. 
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Figure 3 -20: Tiiefkquency representatîon of an amplitude-mochillated sine by the Gabor ciictionary- 
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Figure 3 -2 L : Wavelet transfomi and mean-square wavelet map of a fregency-modulated sine. 
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Fi,we 33.2: Wavelet packet transfomi and mean-square wavelet packet map of a frequency- 
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Figure 3 -23 : Tie-@ency represaaation of a fireciuedlcy-miodulated sine by the Gabor dictionaxy. 



Figure3.24: Testsetup. 
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Figure 3.25: Wavelet transfonu and mean-square wavelet map of the measured signai on a 
defetive bearhg. 
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Figure 3 -26: Wavelet packet transforrn and mean-square wavelet packet map of the measured 
l signal on a defective bearing. 
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Figure 3.27: Wavelet transform and mean-square waveiet map of the de-noised signal of the 
defective bearing. 
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Figure 3.28: Wavelet packet tmsform and mean-square wavelet packet map of the de-noised 
signal of the defective bearing. 
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Figure 3.29: Wavelet transform and mean-square wavelet map of the signal measured on a 
defective gearbox 
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Figure 3.30: Wavelet packet transform and rnean-square wavelet packet map of the signal 
measured on a defective gearbox. 
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the Gabor dictionary. 
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4.1 Abstract 

Time-frequency software is designed to be a bndge between theoretical research into 

methods of time-frequency analysis and the practical applications of these methods in 

different domains. The lack of an easy-to-use tirne-frequency software has tended to reduce 

the likelihood that those engineen with little or no knowledge of tirne-frequency will use this 

method of anaiysis. One of the most important applications of this type of analysis is in the 

detection of defects in machinery. 

This paper presents a user-friendly software designed to perform tirne-frequency anaiysis. 

*: Soumis pour publication dims "Intemationai Journal of Cornputers and Their AppIications" 
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The software reads a t h e  signal fiom its data file, and then calculates and displays different 

tirne-fkequency transforms of the signai. The software contains a number of time-frequency 

algorithms, such as, for example: the Short-Time Fourier transform, the Wigner-Ville 

distribution, the smoothed Wigner-Ville distribution, the Choi-Williams distribution, the 

Born-Jordan-Cohen distribution, the Rihaczek-Marginau distribution, the Wavelet transform, 

the Wavelet packet transforrn. and the Adaptive Wavelet transfomis. 

The results are displayed in colour in a graphical interface, which provides a clear and easy- 

to-interpret tirne-frequency representation. The window environment of this program and 

the menu commands make it a powerful, professional tool for time-frequency analysis. 

In the fint section, existing problems in the diagnostics of machinery and the importance of 

the application of time-frequency methods in the detection and identification of defects are 

studied. In the second section, a presentation of the time-frequency software is given. In 

the third section, each tirne-frequency method is briefly described and examples are given 

to show the advantages and disadvantages of each method for different types of signal, in 

particdar for current signais in the diagnostics of rnachinery. Finaily, we show some results 

for an industrial case. 



4.2 Introduction 

The purpose of using vibration analysis to monitor machines has changed considerably in 

recent years. Initially, machines were monitored for purposes of security: if a machine was 

subjected to sigificant damage, and the vibration amplitude (displacement, velocity, 

acceleration) exceeded the permissible limit, the machine was stopped or an aiam rang. 

Today, the monitoring of machinery is seen more in the light of preventive maintenance. 

It is. therefore, expected that the monitoring will not only achieve the initial purpose of 

secunty, but will also detect the beginning of a defect and follow its development over tirne. 

Such early detection makes it possible to plan and to schedule repairs for a suitable time in 

order to avoid production intemption. An engineer is able to determine the nature of the 

defect, monitor its development, estimate the significance of the darnage, and finally decide 

on the most opportune time for repairs. 

The diagnostic techniques incorporated in the software have, therefore, been developed in 

response to the requirements of preventive maintenance. The techniques are based on the 

methodical analysis of defects and their symptoms. To identify these syrnptoms, it is 

necessary to systematicail y analyze recorded vibration s ignals O btained from machinev- 

The analysis of signals in order to extract the hidden information is known as the signal 

processing method. 
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Signal processing methods are the principal tmls used in the diagnostics of machinery. The 

complexity of the signal processing operation and the time required to analyze the signal, 

extract and analyze the relevant information is frequently too great for on-line signal 

processing. For this reason, the off-line approach to machinery diagnostics has become one 

of the fastest-growing sectors of the machinery maintenance industry. Vibration and 

performance data may be measured and stored directly in a hand-held unit, such as a tape 

recorder or portable data collecter. These data cm either be gathered directly in digital form, 

or can be gathered in analog form and converted later to digital form. 

From the information obtained. it is possible to diapose the defect in the machine. 

determine the severity of the problem, and thus estimate how long the machine can safely 

be lefl in service. This requires expenence, quality instrumentation and, ideally, a computer 

to assist in the identification of the frequencies and perform the cornparisons between the 

results of the various transformations. 

A number of transformations can be performed to aid in the analytical process. One of the 

most powemil techniques is spectrum analysis, which relates each rotating element in a 

machine to identifiable frequencies. By subtracting a "healthy" baseline spectrum from 

measurements made on new machinery, it is possible to identiQ changes quickly. Ceps tm 

analysis, which extracts periodicity from aspectrum, is another technique and one which has 

proven to be very useful in bearings and gearbox analysis. A complete review of 
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conventional vibration-based techniques is available [LI; however, the techniques covered 

in that review cm only be applied to stationary signals. It is necessary, therefore, to 

examine ways to analyse non-stationary signais. 

Nowadays, technology is progressing very quickly, and machinery diagnostics plays a major 

role in plant maintenance. For this reason, it has become necessary to take advantage of the 

new generation of more powerful methods of signal analysis. These methods, called t h e -  

frequency representations, enable us to analyse the non-stationary or the cyclo-stationary 

signals. Time-frequency representation maps a 1-D signal to a 2-D time-frequency image 

that displays ways in which the frequency content of the signal changes over time. In time- 

frequency representation, time mns horizontaily and frequency vertically, and the energy 

level is indicated by color. 

While each signal ha a unique Fourier spectnim, the time-frequency representation of a 

signal is non-unique. In otherwords, many different time-frequency representations can be 

obtained from the same data. There are several time-frequency representations, such as the 

Short-The Fourier transform, the Wigner-Ville distribution, and the Wavelet transform. 

The choice of representation will depend on the details to be observed, in tirne or in 

frequenc y. 

The calculations involved in most of the above methods would not be possible without a 

cornputer. It is a known fact that the most important phase of maintenance is the period when 
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the operator is studying the measured signals to detennine the condition of the machine. 

During this phase, the operator needs as many tools a s  possible, siace the simple spectrum 

display is often not sufficient. A computer can be used to perform spectnim analysis, various 

tirne-frequency analyses, and other complex calculations, al1 of which contribute to easy 

fault-frequency identification. The results can be displayed in a convenient format on the 

computer screen. Thus, a computer is not only able to carry out spectrum analysis, but can 

also provide agreat number of time-frequency representations, to highlight different aspects 

of the signal. 

However. certain dificulties which limit the efticiency of the diagnosis, are listed below: 

The majority of engineers have Iittie or no knowledge of advanced signal 

processing techniques; 

An easy-to-use software that includes ail the time-frequency methods in 

addition to conventional methods does not exist; 

No program which includes ail rnethods of time-fiequency analysis has yet 

been developed specifically for rnachinery diagnostics. The majority of 

progrms provide only one method, and that is for general rather than specifk 

application. 

For these reasons, it is more practicai to have a user-fnendly software which inchdes both 
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advauced and traditional methods of signal analysis, and having the following properties: 

It should require a minimum of knowledge of the theory of time-frequency 

analysis on the part of the operator: and should pose a minimum numher of  

queries that need a respoase from the operator, 

It should provide the best graphic representations with the possibility of 

rotating the figures; 

It should include the possibility of cornparhg different methods by 

disp laving several time-frequency represen tations sirnuItaneously in one 

figure; 

Coiours should be used in the representations to facilitate interpretation; 

No additional equipment or new tools should be required; 

It should use methods of signal analysis which are adapted with curent 

s ipa l s  in the field of machinery diagnostics. 

In this paper, we present a new, user-fnendly software which allows the user to condua 

time-frequency analyses by the various methods listed above. This software may be applied 
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to any type of sigoal emanating from a rotating machine, but it is more useful when it is 

applied to non-stationary signals. 

In addition. two-dimensional and threedimensional displays of the tirne-frequency 

representations in color give the user an excellent opportunity to compare details of each of 

the different representations of the signal. 

In the next section, the theory behind each rnethod of time-frequency analysis is briefly 

described, and examples are given. 

4.3 Time-frequency software 

4.3.1 Description of the software 

The software program samples a variety of dflerent signals and calculates and displays the 

time-frequency-energy plane projection. It is a user-friendly program and almost al1 

commands may be entered by a mouse. The researcher selects the signal and the chosen 

method of anaiyzing the signal. It is then necessary to enter, depending on the selected 

decomposition method, information such as sampling frequency, type and Iength of the 

window for nitting the signal, and the name of the wavelet function to use in the wavelet 

transform. 



26 1 

The portion of the program that does the cdculating is written in ' C' language. The window 

displays and menus are written using Mztlab functions. Working in a Windows environment 

with menus gives great flexibility to the program and rnakes the displays very easy to 

manipulate. 

For each rnethod of analysis, the program displays the chosen signal, the time-frequency 

plane projection of the signal and a three-dimensional representation of the signal in the 

tirne-frequency-energy plane projection. 

43.2 Software capability 

Figure 4.1 shows a flow chart of the time-frequency software package which supports 

cornputer-aided monitoring and diagnosis of defects in rotating machinery. This software 

has four p n  nci pal menus: Cnlcuiation. Show, Signal and Wmelet firnction. 

The process of analyzing a signal is as follows: 

a .  A partinilx signal is selected in the Sirnul menu using the mouse. A mother 

wavelet fùnction for the wavelet transform may be chosen in the Wmefet 

firnction menu. III this menu a list of several mother wavelets is available 

from which one can select a wavelet funaion using the mouse; 
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b) A time-frequency method is selected in the Calculution menu. The 

Calnrlation menu has six submenus, fiom which one can make seledons 

using the mouse: 

(i) Caladation of  ' 5 T T  CG KT" this calculates the fast Fourier 

transform (FFT), the short-time Fourier transfomi (STFT), the 

wavelet transform and the wavelet packet transform of the selected 

signal; 

(ii) Calculafion of WD-Cohen: this calculates the Wigner-Ville 

dis tnbution, the srnoothed Wigner-Ville distribution, the Choi- 

Williams distribution, the Born-Jordan-Cohen distribution, and the 

Ri haczek-Margenau distribution; 

(iii) Zoom in wmelet ~ransforrn: this calculates one of the adaptive 

wavelet transforms; 

(iv) CalcuIation o f  WT bv Gabor dctionorv: this part of the program 

uses the Matching Pursuit algorithm developed by S. Mallat [2], 

which is one of the adaptive wavelet uansforms; 

(v) De-noising this is carrîed out by classical wavelet transfonn and b y 

the Matching Punuit aigorithm; 



(vi) Chrit: exitfromprogram. 

M e r  the different types of tirne-frequency transforms in this part of the 

progam have ireen cdcu!ated, the results ~re s2wd in sepmte files. 

c) The obtained results from different time-frequency transforms are displayed 

in a graphics window. The presentation of the time-frequency transforms is 

critical because it must be absolutely clear and able to be understood even by 

a technician with minimal knowledge of the theory of time-frequency 

analysis. This part of the program is written using Matlab functions; these are 

simple functions with which it is possible to create a very good graphical 

environment without using complicated algonthms. 

On the principal screen the visualization menu is called Show. When Show is selected, we 

see a series of sub-menus which, in combination with other facilities such as zooming or 

rotating a figure, enable us to see the time-frequency representation in two- and three- 

dimensional color images. Each time-frequency representation can be printed and saved in 

a file. 



4.4 The-frequency techniques 

4.4.1 Fourier transform 

Fourier analysis may be the best-known mathematical technique for transforming the signal 

x(l) from the tirne domain to the frequency domain X ( w )  . 

This is not a time-frequency method, but it is a fundamental transform in signal processing 

and provides a great deal of important information about the signal. However, it has a 

serious drawback. The Fourier transform supplies information only on the frequency of the 

signal; information on the time of the signal is lost. Thus it is not possible to say when a 

particularevent took place. In the diagnostics of machinery, signals are sometimes transitory 

or non-stationary and it is important to find the time of transition or the beginning and ending 

times of an event. In this case, the Fourier transform is not able to fumish us with the 

required information. It becomes necessary, therefore, to apply time-fiequency methods to 

obtain the information. 



44.2 Sho rt-Tirne Fourier Transform 

To estimate the time of events by the Fourier transform, Gabor [3] introduced a new method, 

called ttie Short-The Fouiicr Trmsform. Ta represent a time-vwying signal b y the Fourier 

transform, we can cut the signal around a particular time r by a window and calculate its 

Fourier transform. Then, we can shifi this window on the tirne axis and recalculate the 

Fourier transform until we have covered the whole signal. In this way, a signal is mapped 

into a two- dimensional function of time and frequency. The Short-Time Fourier Transform 

is defined as 

where h(r)  is a window function which is centered at time t ,  and r is time delay. 

Finally, the squared modulus of the STFT is represented in a tirne-frequency plane and is 

calied a Spectrogram which is the spectral energy of the locally windowed signal. For 

exarnple, we consider the spectnim and the STFT of two parallel chirps, as shown in figure 

4.2. We can see how the STFT shows clearly the characteristic of the signal in the tirne and 

frequency domains, while the signal and its spectnim are unable to display the behavior of 

the signal. 

nie major disadvantage of the STFT is the resolution trade-off between thne and frequency 
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[l]. Figures 4.3 and 4.4 illustrate the effect of a short window and a long window on time- 

frequency resolution. A long window provides good resolution in the fiequency domain, but 

poor resolution in the time domain. Conversely, a short window provides good resolution 

in the time domain and poor resolution in the frequency domain. This method, therefore, 

gives time-frequency information with limited precision and, for more precision, we must 

look for a more flexible approach. 

3.4.3 FVavelet Transform 

The wavelet transfom is another linear time-frequency representation, sirnilar to the 

spectrogram but with more flexibility in time and frequency resolution. In the STFT, the 

length of window function will remain constant during the analysis of the signal. in the 

wavelet transform, by translation and dilation / contraction of a window function called the 

mother wavelet function, we build up a family of window hnctions of variable lengths: 

where Y( - ) .  S. and T are, respectively, a mother wavelet function, the scaie of wavelet 

transfom, and time shifb. The variable window length property of the wavelet transform 

gives us the possibility of having the time and frequency resolutions dependent on the 
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frequency under consideration [4]. Figure 4.5 illustrates this point by showing the cells of 

resolution in the the-frequency plane for the STFT and the wavelet transform. One 

important advantage of the wavelet transform is its ability to carry out local anaiysis. This 

property is of sipificant value in revealing any small change in the signai and distinguishes 

the wavelet transform from other signal analysis techniques. If we consider the result 

obtained by applying the wavelet transform on a Dirac puise at time r,=O. I sec (Figure 4.6), 

we see a figure of uiangular shape which points at t =t, in the time-frequency plane. It is 

more localized in high frequencies than in low frequencies. 

The wavelet transform is defined as 

where w&, r )  is called the wavelet coefficients. 

It is knom that the Fourier analysis decomposes a signal into sine waves of various 

frequencies. Similarly, analysis by the wavelet transfom decomposes a signai into a shifted 

and scaled version of the mother wavelet. 

The process of decomposition is similar, we take a wavelet and compare it to the first section 

of the signal. The wavelet coefficients represent the correlation between the wavelet function 

and this section of the signal. In the next step, we shift the wavelet dong the time axis and 
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re-calculate the correlation. When we do it for the whole signal, we scale (sketch or 

cornpress) the wavelet in repeating the above steps. 

The choice of the wavelet fi~nction is an important fact~r in the w z d e t  t ~ a f c r m  md is 

dependent on the signai to be analyzed. For this reason, a list of different wavelet functions 

[5] is available in the FVmelet hrncfion section of the principal menu of this prograrn. The 

possibility also exists of adding to the list a new wavelet function: one created by the 

researcher. Figure 4.7 shows the wavelet transform of the sum of three sines and the effect 

of using different wavelet functions on the time-frequency representation of the wavelet 

transform. In Figure 4.7(b), we select the wavelet function of Daubechies 20, which has 

considerable support, while in Figure 4.7(c), we select the wavelet function of Haar (or 

Daubechies 2), which has little support. We observe that the wavelet function of Daubechies 

20 provides better localization in frequency than the wavelet function of Haar. Here it is 

noted that, in Figure 4.6, we selected the wavelet function of Haar for the presentation of 

Dirac because this wavelet function is better adapted to temporal phenornena. Henceforth, 

we will choose the best wavelet f ic t ion for a gven signal. 

This program computes the wavelet coefficients by using the Fast Wavelet Transfonn 

proposed by S. Mallat [ 6 ] .  The Fast Wavelet Transfonn algorithm is based on 

multiresolution analysis and filter banks denved from older methods of telecommunication, 

cailed sub-band coding. This technique calmIates the wavelet coefficients rapidly [SI. 
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The variable time and frequency raolution of the wavelet transform is one of its advantages; 

however, in the discrete wavelet transform the frequency axis has logarithmic scale (basic 

2) which means that the frequency band is divided by 2 in each iteration. The Iogarithmic 

scale of the frequency axis does not permit either fine frequency resolution of the hi& 

frequencies or fine time resolution of the low frequencies. This characteristic of the 

frequency axis in the wavelet transfomi makes it a speciaiized method to be used for signals 

which contain long-duration events at the iow frequencies and short-duration events at the 

high frequencies. The logarithmic scale of the frequency axis in the wavelet transform may 

at times be considered to be a disadvantage of this method. 

To resolve the inconvenience of the wavelet transform, another method based on the 

principle of the wavelet transform has been introduced. This method is called the wavelet 

packet transform [7,8], and gives a frequency avis with Iinear scale at the expense of Iosing 

the excellent time resolution of the hi& frequencies of the wavelet transform. The algorithm 

of the wavelet packet tmsform is based on a completed tree of filter banks [ 5 ] ,  but the 

program includes an option to select the required number of levels (couples of filten) for 

calculating the wavelet packet transform. For example, if we select "number of levels = 3", 

this means that there are 2' = 8 frequency bands in the tirne-frequency representation of the 

wavelet packet transfom. This option makes it possible to avoid too much complexity in the 

tirne-frequency representation of the wavelet packet transforrn. For example, let us look at 

the wavelet packet transform of the sum of three shes shown ;a Figure 4.8. Ifwe compare 
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this figure to Figure 4.7, we observe that the wavelet packet transform is more effective than 

the wavelet transform for signals locaiized in frequency. The emphasis is on the linear scde 

of the fiequency axis of the wavelet packet transfom. 

4.4.4 Zoom-in wavelet t ransform 

As rnentioned above, the wavelet transform is recommended for signals with transient 

phenornena in high frequencies and is not recommended for arbitrary signals. On the other 

hand, the wavelet packet transform is a modified version of the wavelet transfonn and is 

missing one important property of the wavelet transform: perfect time resolution of the high 

frequencies. 

To improve the performance and, at the sarne time. to preserve the properties of the wavelet 

transform, it is necessary to use the signal-adaptive transformation. With this, the resolution 

exchange between t h e  and frequency in the wavelet transfomi is dependent on the signal 

under andysis. 

The zoom-in wavelet traosform is an interesthg technique for optimizing the time and 

frequency resolutions by filter bank selection. 

To continue the program ushg this technique, we choose the Zoom-in wavelet transforrn, 
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which is a subrnenu in the CaZczilatiori section. This submenu has two other submenus: Show 

wcrvelet tran.@rm and CaZatlation of zoom-in WT, as shown in Figure 4.1. If we select the 

Show wcrvelet transform submenu, a tirne-scale representation of the wavelet transform of 

the signal is displayed. From this representation, we can select the scale in which we want 

to have more resolution. Then, we go to another submenu (Calnriation ufzoom- in WT) and, 

in response to the on-screen queries, we indicate the required scale to zoom and the number 

of levels we wish to obtain. Finaily, we go to the Show menu of the program to display the 

result. The result will be a time-frequency representation of the chosen band. It is noted that 

we must have a suffkient number of wavelet coefficients in the scale (frequency band) to 

execute a zoom, otherwise we will not obtain a good repreientation. Figure 4.9 shows the 

zoom-in wavelet transform for frequency band 1250-2500 Hzof the sum of three sines. This 

figure shows that precision increases signiticantly in the frequency domain if we use the 

Zoom-iri >vavelet transform technique. In the wavelet transform (Figure 4.7(b)), the 

o, = 2000 Hz is located in frequency band 1250-2500 H i ,  while in Figure 4.9, the ai, is 

located in frequency band 1875-203 1 Hz. 

4.45 Calculation of WT by the Gabor dictionary 

The next signai-adaptive transfomation of the wavelet transform is the caimlation of the 
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wavelet transform by the Gabor dictionary. The principle of this method is to optimize the 

wavelet funetions with respect to the structure of the signal. In contrast to the wavelet 

transform, in which the wavelet function is fixed during analysis of the signal, in this 

rnethod, the b a t  adapted wavelet function with respect to the signal structure is chosen from 

a vast waveform library during the analysis of the signal. Such wavefoms are cailed time- 

frequency atoms and the Iibrary of these wavefoms is called the dictionary of tirne- 

frequency atoms. 

In order to calculate the wavelet transfomi by this method, the program makes use of the 

Matching Pursuit algorithm developed by Mallat [2]. In the Cnhrlutiot~ menu of the 

progtam, there is a submenu inviting us to do the wavelet analysis by the Gabor dictionary. 

In order to see the results, we must go to the Show menu. Figures 4.10 and 4.1 1 show two 

examples of the wavelet transform by the Gabor dictionary. As s h o w  in these figures, this 

method provides very high resolution in time and in frequency for signals having 

components parallel with the time axis or the frequency mis. However, in the case of signals 

showing variation in the time-frequency plane, such as two parallel chirps (Figure 4.12), 

signals with frequency modulation (Figure 4.13), or even amplitude modulation (Figure 

1.14), this technique gives poor representations. 



Removing noise from a signal by wavelet analysis is one of the most recent applications of 

waveiets [9]. it consists of decomposing the signai by waveiet transform, rernoving noise 

from components. and reconstructing the signal. 

Wavelet andysis is a linear method; therefore the wavelet coefficients of the linear 

combination of hvo signals are equal to the linear combination of their wavelet coefficients. 

w (x, + X,) = W ( 3 ,  ) + t V ( x 2 )  

A noisy signal can be modeled in the following form: 

x ( t )  = s ( t ) + e ( t )  (4.6) 

where x(t) is a noisy signal, s(Z) is the original signal, and e(r) is the noise. The noise part of 

the signal may be eliminated by taking the following three steps: 

a) Computing the wavelet decomposition of the signal x(t) 

b) Determinhg a limit for optimal de-noising and suppressing o d y  the portion of the 

wavelet coefficieats that exceeds this iimit; 

c) Reconstruction of the signal with the hefp of modified wavelet coefficients s(0. In 

practice, the decomposition and reconstruction procedures are accomplished by the 
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fast wavelet transfomi and the inverse fast wavelet transform respectively; 

It is clear that the performance of the de-noising method depends mostiy on step @). 

Thc suppression of a part of a sipal, calted the ttishoiolding pmcedure, is c&ed sut using 

different optimization techniques, which give different threshold values [l O]. 

To de-noise a signal. we go to the De-noisinx submenu in the Calcdution menu of the 

program. The De-noisinq menu has two other submenus: 1) De-rzoisin.e bv classical ~vaveirt 

rrnnsform and 1T) De-noisit1.a hv rblatchin~ Pirrsirit. The program uses Matlab Mat-files for 

part (I), and the Matching Punuit Algorithm for part (11). 

Figures 4.15-4.21 show examples of de-noising using the classical wavelet transforrn 

accompanied by the STFT, and the wavelet transform of an original, noisy and de-noised 

signal. Figures 4.22428 show an example of de-noising using the Matching Pursuit 

algorithm accompanied by the STFT and the wavelet transfonn of original, noisy, and de- 

noised signal. 

4.4.7 The Wigner-Ville distribution and Cohen's class time-frequency distributions 

One interesting tirne-frequency energy distribution is the Wigner-Ville distribution (WVD) 

[Il], which has recently been applied to the field of mechanical signal analysis [12]. This 
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distribution is a bilinear function, in contrast to the transforms discussed above, which are 

linear transforms. In a linear transfom, the similarity of the signal to a window function is 

measured using the correlation function; on the other hand, the Wigner-Ville distribution 

is the Fourier transfom of the instantaneous auto-correlation of the signal. Thus, its time- 

frequency representation is independent of the window function. 

If the instantaneous correlation, Rx (r, t ,  ) , at time to with a tirne lag r , is defined as 

its Fourier transform may be witten as follows: 

The WVD satisfies a large number of desirable mathematical criteria and has excellent 

resolution in the time and fiequency domains, but it has two major problems. First, it is not 

always non-negative, which, since energy is always positive, rnakes it difficult to interpret 

the Wigner-Ville representation as the energy distribution of the signal in the time-frequency 

plane. Secondly, because it is bilinear, it produces interference terms or cross tems for 

multicomponent signais [13,14]. The interference term is Iocated between two components 

of a multicomponent signal in the Me-frequency representation, and it oscillates with a 

frequency proportional to the distance between these two components, as shown in Figure 



4.29 for two parailel chirps. 

In the numencal method, we cannot use a signal from - to + a . and therefore we use 

2 window fucction tu a t  the sigd in the tint: domain. This timc-ivindow ccnion of thz 

WVD is called the pseudo-WVD [Il]. Windowing in the time domain provides some 

smoothing in the frequency direction of the WVD and reduces the interference tems 

oscillating perpendicularly to the frequency axis, but at the expense of loosing many 

properties of the WVD. 

In addition to the interference ternis, the alias problem may affect the discretization of WVD 

if the signal is real-valued and sampled at the Nyquist rate. To prevent this problem, Ville 

[15] suggested using the andytical signal, a cornplex signal in which the irnaginary part is 

equal to the Hilbert transfomi of the real part. With the analytical signal, the spectral 

domain will be [O, 1/21 of the real signal and consequently the aliasing will not happen. On 

the other hand, since the spectral domain is divided by two, the oumber of cornponents in the 

time-frequency plane is also reduced by half. In addition, application of the analytical signal 

eliminates the negative part of the fiequency axis, so that the interference tems generated 

between negative- and positive-frequency components are eliminated, lead ing to a 

considerable decrease in the number of interference terms. 

Since the developrnent of the WVD, there have been several attempts to find other formulae 

to express the energy of the signai in the time-frequency plane. Cohen classified these 



fomulae by giving a general formula for d l  the-frequency energy distributions [16]. This 

formula is defrned as 

where8 and r are respectively a frequency lag and a time lag. In addition, ~ ( 0 ,  r) is a 

kemel function that, when changed, gives different time-frequency distributions with 

different properties. 

One desirable choice for the kemel function is a separable smoothinç function in both the 

time and frequency domains which attenuates the interference tems of the WVD in both the 

frequency and time directions. The distribution attained in this way is called the smoothed- 

WVD [17], and is defined as 

where 0 ( 1 ,  w ) is a two-dimensional smoothing function. 

The smoothed-WVD may be considered as an intemediate distribution between the STFT 

and the WVD. It has some of their advantages and none of their problems. The WVD 

provides the best resolution in time and in fiequency, but produces some signif~cant 

interference terms in the time and in frequency directions. The STFT is a linear transform 

and does not suffer &om interference terms, but it is unable to give satisfactory resolution 
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simultaneously in time and in frequency. The smoothed-WVD provides the best 

compromise behveen these two problems: interference terms and resolution in time and 

frequency. Figure 4.30 shows the smoothed Wigner-Ville distribution of two parallel chirps. 

Ifthis figure is compared with the STFT of the sarne signal (Figure 4.2), we cm see that the 

srnoothed-WVD provides better resolution and clearer representation of the signal than the 

STFT. 

In addition to the W. other energy distributions have been developed to give the time- 

frequency representation of the signal. One interesting distribution is the Rihaczek 

distribution [18], which presents a cornplex energy density of the signal. This distribution 

is also a mernber of Cohen's class and corresponds to Cohen's general formula. Its kemel 

function is e 1" ' = 

In practice, however, the Margenau-Hill distribution, which is. in fact, the basis of the 

Rihaczek distribution, COS(& / 3) , is preferred to the Rihaczek because it satisfies a 

number of the same desirable mathematical properties as does the WVD. The interference 

terms are also present in the Margenau-Hill the-kequency representation, but with a 

different structure (Figure 4.3 1). However, the specific structure of the interference tems 

in the Margenau-Hill distribution is such that, if the signal is composed of synchronized 

components in t h e  and in frequency, the application of the Margenau-Hill distribution is 

not recommended. 
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Interference tems  are present in al1 members of Cohen's class distributions because of the 

bilinear property. Mathematicians and physicists have been seeking a kemel function which 

is capable of eliminating, or reducing, the interference tems whilst at the same t h e  

preserving the desirable properties. 

One interesting group of kemel fumions is the exponential kemel function [19]. The general 

form of these keme1 fûnctions is defined as 

wherep, q and a are the parameters which are adjusted to produce a compromise between 

the amplitudes of the interference tems and the resolution. The distributions obtained by 

using this type of kernel function are known as Exponential distributions (ED). 

An example of the ED is the Choi-Williams distribution [20] where the kemel function is 

defmed as 

when c -t +a , the CWD becornes the WVD. hvewely, when o « , the interference 

terms diminish, but resolution is lost. The performance of this distribution is dependent on 

the anaiyzed signai. For example, if the signal is composed of multicomponents located at 
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the same position in tirne or in frequency, the eficiency of the CWD will be relatively poor 

and a great number of interference tems will be pment in the time-frequency plane. Figure 

4.32 shows the Choi-Williams distribution of two parailel chirps. It is noted that this 

representation is produced by choosing the best value of the parameter a . 

There is another type of kemel function that reduces the interference terms. This kernel 

function produces tirne-frequency distributions known as Reduced Interference distributions 

(RD). The RID has the desirable properties of the W M ,  but the WVD is not a member of 

the R B .  The RID kemel satisfies some conditions, as  discussed by Ieong and Williams 12 11. 

An example of the RID is the Born-Jordan distribution [22] whose kemel function is a sinc 

defined as 

sin(& l 2 )  
~(@?d = (4.13) 

& / 2  
Although it appears that the RID is a satisfactory distribution, it has many disadvantages. 

One of its main disadvantages is the fact that the RID is oniy able to reduce the amplitude 

of the interference terms and spread ihem over a larger the-frequency area. It is not able, 

particularly when the interference terms are located on the time or frequency ais,  to 

suppress the interference terms. 

Figure 4.33 shows the Born-Jordan distribution of two parallel chirps. The thne and 

frequency resolutions in this representation are very poor. 
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With regard to the advantages and the disadvantages of each distribution, we conclude that 

there is no perfect distribution. Io fact, whiie one distribution gives the best representation 

for a certain type of signal, other tirne-frequency distributions give the best representation 

for other types of signai. 

For this reason, we put the various time-frequency distributions into the program. In this 

way, w hen the researc her selects the Calcuiation of WVDCohen option from the Cuimlation 

menu, al1 the time-frequency distributions are calculated. Then, in the Show section, each 

of the distributions can be selected to represent the time-frequency dornain. The possibility 

exists to see al1 the time-frequency distributions and to compare them. 

4.4.8 Quit 

The last submenu of the Cnlcdation menu is Ouit: the command to exit frorn the program. 

4.5 Industrial application of the tirne-frequency algorithm 

In this section, the efficiency of the the-fiequency software in an industrial case is 

demonstrated. The case is that of the defective gear of a hoist d m  in a large shovel 
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operating at an open-pit iron mine. Two types of defect which tend to be produced in a 

gearbox are shaft-related prob lems, such as misdignment and imbalance, and tooth-related 

problems, such as Wear, scufing, and cracking. The detection of a defect in a single twth 

will be investigated in this section. 

Vibration s ignals measured in a gearbox include tooth-mes hing frequency, transient events 

caused by defects, gearbox resonance vibrations, and system and sensor transmission 

characteristics. The vibration signals are non-stationary signals and require specific 

techniques because it is often dificult to apply conventional methods, such as Fourier 

analysis, to gearbox fault-detection [ I l .  Time-frequency methods provide newtechniques for 

the analysis of non-stationary signals, and have advanced capabilities for the separation of 

different phenornena in non-stationary signals. 

Figures 4.34-4.43 show, respectively, the time signal of the damaged gearbox measured by 

IMS Company and its spectrum, the STFT, the wavelet transform, the wavelet packet 

transform, the wavelet transform by the Gabor dictionary, the Wigner-Ville distribution, the 

smoothed Wigner-ville distribution, theRihaczek-Margenau distribution, the Choi-Williams 

distribution and the Born-Jordan-Cohen distribution. 

- The spectrum of the signal displays some large peaks mund 200 Hz and some 

smaller peaks in the vicinity of 400 Hz,  800 Hz and 1200 Hz. However, it is very 

difficult to assume or confirm any defects; 
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The Short-Tirne Fourier transform clearly displays time-frequency representation of 

the signal . There are a gear meshing frequency at approximately 220 Hz and some 

pulses at approximately 440 Hz. It has known that pulses are appeared in the 

vibration signal of a gearbox if there is a broken tooth. 

Then we rnay conclude that there is a broken tooth in this gearbox. It is also possible 

to find the location of the fault in gearbox. The frequency of repetition of the pulses 

( 
1 

= 1.5 Hz) determines the rotating speed of the shaft with faulty gear in 
= 2.65 sec 

gearbox. As well as, in frequency dornain the frequency of pulses ( = 440 Hz ) is 

equal to the meshing frequency of faulty gear. 

In following, we will compare the resolution and quality of representation of this 

signal which cm be obtained by other time-frequency methods; 

The wavelet transform of the signal shows the three repetitive pulses in the frequency 

band 320640 Hz. The frequency of the periodicity of the signal may be calculated 

frorn the wavelet transfomi more precisely than from the STFT, because the time 

resolution in this band of the wavelet transfonn is finer than in the STFT. But in the 

three-dimensional representation of the signal, the STFT provides better 

representation than does the mean square wavelet; 
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0 The wavelet packet transform provides not only better frequency resolution, but also 

better time-frequency representation (three-dimensional) than does the wavelet 

transform; 

The time-frequency plane projection of the signal by the Gabor dictionary is shown 

in Figure 4.38, but it is not easy to obtain the characteristics of the signal from this 

figure; 

* The Wigner-Ville distribution cannot provide agood representation of the signal due 

to the cross terms, which are generated betweeo the signal components; 

The smoothed Wigner-Ville shows the characteristics of the signal even more clearly 

than the STFT and we can calculate the frequency of repetition of pulses with more 

precision by the smoothed Wigner-Ville than by the STFT; 

The Rihacezk-Margenau cannot give a good representation of the signai and the 

second peak vanishw completely; 

Although the Choi-Williams, withan appropriatevalue of 0, shows a representation 

of the signal in which a part of energy of the first peak is dispened between the 

second peak and the third peak, but &er the smoothed W igner-Ville distribution, it 

gives the best representation of the signal in Cohen's class distribution; 
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In the Born-Jordan-Cohen, the second peak vimially disappears and it is diffiicult to 

obtain satisfactory information about the signal; 

4.6 Conclusion 

A time-frequency software package has been presented in this paper. A number of time- 

frequency methods that cm be used to analyre non-stationary and time-varying signais have 

been described. The advantages and disadvantages of each rnethod of time-frequency 

analysis have been discussed, and the benefits to be obtained from the application of these 

techniques in the monitoring and fault-detection of machinery have been highlighted. The 

comprehensive representation and user-friendly way in which the information is made 

available in this software package make it particularly useful forother applications of signal 

processing. It is stressed, that, while it is imponant to have a certain Ievel of knowledge 

of signal analysis techniques in order to understand al1 the details of the results, the software 

has been designed so that it can be used by an operator-technician with relatively little 

knowledge of the techniques of time-frequency analysis. 
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4.8 Nomenclature 

Magnitude of the signai 

Spectrum of the signal "(') 

Short-tirne Fourier transfomi of the signal "(') 

Mother wavelet tùnction 

Wavelet coefficients of the signai "(O 

Instantanmus correIation function of "(') 

Wigner-Ville distribution of "('1 

Kernel fiuiction 

Smoothed Wigner-Ville dismiution of "(') 
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Figure 43: a) Tme representation of two paralle1 chips; b) Spctmm representation of 
two paralle1 chirps; c) Short-time Fourier transform of two paralle1 chùps. 
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Figure 4.4: Short-time Fourier transform of two pardel chirps with a Long duration window. 
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Figure 4.5: (a) Tme-fiequency plane of the short-time Fourier transform; 
@) Tirne-fkquency plane of the wavelet transfom. 
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Figure 4.19: Wavelet transform of the noisy signal. 
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Figure 4-20: Short-tims Fourier ûansfinn of the de-noiseci signai. 
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Figure 4.2 1: Wavelet transform of the de-noised signal. 
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Figure 4.22: Signal de-noised by Matching Pursuit algorithm. 
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Figure 4.23 : Short-tirne Fourier transform of the onginal signd. 
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Figure 4.25: Short-tirne Fourier transform of the noisy signal. 
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Figure 4-27: Short-thne Fourier transfonn of the deaoised signai. 
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Figure 4.33: Born-Jordan-Cohen distribution of two paraliel chirps. 
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Figure 4.34: Time and spectrurn representation of the signal measured on a defective gearbox. 
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Figure 4.3 5: Short-time Fourier transform of the signal measured on a defective gearbox. 
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Figure 4.37: Wavelet packet transfomi and mean-square wavelet packet map of the signal 
measured on a defective gearbox. 
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Figure 4.39: Wigner-Viiie distribution of the signai measured on a defedve gearbox. 
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Figure 4.40: Smoothed Wigner-Ville distribution of the signal measured on a defecùve gearbox. 
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Figure 4.4 1 : Rihaczek-Margenau reps  entation of the signai measured on a defective gearbox- 
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Figure 4.42: Choi-Williams representation of the signal measured on a defective gearbox. 
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CONCLUSION 

Dans ce travail de thèse, nous avons : 

a) résolu le problème du manque de résolution dans la représentation temps- 

fréquence en développant une nouvelle technique appelée Zoom in ivavelet 

».nnsform, et en proposant une nouvelle méthode de STFT. 

b) appliqué des nouvelles méthodes de "de-noising" par la méthode en ondelettes et 

par l'algorithme de Matching Pursuit. 

c) développé un logiciel de traitement du signal en temps-fréquence. 

d) procédé à des essais expérimentaux. 

e) procédé à des essais industriels. 

Nous avons bien montré que la majorité des méthodes conventionnelles sont applicables 

pour un seul défaut sur un élément de machine simple et qu'aucune de ces méthodes ne peut 

fournir la réponse pour tous les problèmes de diagnostic de machines. II est très difficile d e  

décider laquelle parmi ces méthodes est la plus eff~cace avant d'identifier le type de défaut. 

Ces problèmes des méthodes conventionnelIes nous obligent à aller vers les méthodes de 



traitement de signal plus avancées. 

La représentation temps-fréquence est une solution qui peut apporter beaucoup d'avantages 

et fxilitcr le diagnostic des nachines. La plus simple méthode pour obtenir une 

représentation temps-fréquence est la transformée de Fourier à fenêtre glissante (TFFG). 

Cette méthode peut facilement être utilisée dans la surveillance de machines. La méthode 

TFFG peut nous donner une représentation temps-fréquence de signal vibratoire capté sur 

une machine, lequel peut être interprété facilement par un technicien pour vérifier l'état 

général de machines. Malgré tous les avantages de cette méthode. elle a un défaut 

fondamental qui nous empèche d'obtenir une bonne résolution simultanément dans le temps 

et dans la fréquence. Pour obtenir plus de précision, nous nous sommes tournés vers les 

méthodes un peu plus complexes comme les distributions de Wigner-Ville, Choi-Williams 

et RD. En comparant ces distributions. nous avons conclu que : 

- La distribution de Wigner-Ville peut fournir la fréquence instantanée, qui est très 

importante dans le diagnostic des machines, mais malheureusement elle n'est pas 

capable de produire une représentation temps-fréquence correcte du signal à cause 

des termes rectangulaires (cross terms) qui sont créés artif~ciellement entre les terms 

carrés. 

- La distribution de srnoothed Wigner-Ville donne une meilleure représentation 

temps-fréquence que les autres distributions et fournit une résolution satisfaisante 



335 

dans le temps et dans la fréquence. Dans cette méthode, les termes rectangulaires sont 

éliminés par le fenêtrage. 

- La distribution de C h ~ i - W i h n s  peut nous fournir une aussi bonne représentation 

temps-fréquence que la distribution smoothed Wigner-Ville, à condition qu'on puisse 

choisir une valeur adéquate pour le paramètre o . Cette distribution est un membre 

de la classe générale de distribution ayant un noyau exponentiel. 

- La distribution Born-Jordan-Cohen nous donne une représentation temps-fréquence 

avec une résolution moins bonne que celle de smoothed Wigner-Ville ou Choi- 

Williams. Cette distribution est un membre de la distribution de R D .  

- La distribution Rihaczek-Margenau pour les signaux industriels bruités n'est pas 

très efficace. 

En somme, le choix d'une distribution dans une application pratique dépend du problème 

concerné et aucune de ces distributions ne peut résoudre avec précision tous les problèmes. 

Les méthodes les plus récentes qui sont utilisées pour obtenir une représentation temps- 

fréquence sont les méthodes temps-échelle. Contrairement aux méthodes précédentes qui ont 

une résolution constante dans le plan temps-fréquence, ces méthodes nous permettent d'avoir 

une résolution flexible dans le plan temps-fréquence. 
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-La transformée en ondelettes est une méthode temps-échelle qui produit une très 

bonne résolution temporelle pour les hautes fréquences et une très bonne résolution 

fréquentielle pour les basses fréquences. Cette propriété la rend très puissante pour 

I'étude des phénomènes transitoires qui sont très courants dans le diagnostic de 

machines. Mais le choix de la fonction de base d'ondelenes (mother wavelets) joue 

un rôle très important dans la qualité de la représentation temps-fréquence. Donc, la 

transformée en ondelettes peut être utilisée accompagnée des autres méthodes pour 

fournir les informations qui peuvent être manquées par les autres méthodes. 

-La transformée en paquet d'ondelettes est un autre membre des méthodes temps- 

échelle qui essaie de résoudre le problème de  résolution fréquentielle de la 

transformée en ondelettes. Dans cette méthode, l'échelle logarithmique de l'axe de 

fréquence de la transformée en ondelettes est remplacée par l'échelle linéaire de l'axe 

de fréquence, mais au détriment de l'excellente résolution temporelle de la 

transformée en ondelettes. 

-Parfois, même la résolution fréquentielle de la transformée en paquet d'ondelettes 

n'est pas satisfaisante, surtout dans l'identification des défauts. Dans ce cas, la 

nouvelle méthode appelée "Zoom in Wovelet transfrm" est très utile. Par cette 

méthode, on peut diviser une bande de fréquences en plusieurs bandes de fréquences. 

Cette méthode a été testée pour une boîte d'engrenage et elle a donné un très bon 



résultat. 

-Une autre technique relevant des méthodes temps-échelle et qui a été présentée dans 

ce trîvai! est !a transformée en ondelettes 3dsptrifives (par I'dgcrithme de "Matcbuig 

Pursuit"). Cette technique donne une bonne résolution pour les signaux ayant des 

composantes parallèles à l'axe de temps ou à l'me de fréquence. Mais, pour les 

signaux ayant une modulation en amplitude ou une modulation en fréquence, elle ne 

donne pas une bonne représentation. 

Pour mettre en oeuvre toutes les méthodes temps-fréquence et temps-échelle, un logiciel 

facile à utiliser a été développé. Ce logiciel permet à un ingénieur ou à un technicien ayant 

peu d'expérience dans le traitement de signal d'obtenir différentes représentations temps- 

fréquence d'un signal en deux et trois dimensions, en couleurs et de différents points de vue. 

Ce logiciel est très pratique dans les cas expérimentaux et industriels, surtout avec les 

différentes options qui y sont ajoutées, comme la technique de "De-noising". On sait qu'on 

ne peut pas utiliser les méthodes habituelles de "De-noising" pour des signaux non 

stationnaires et transitoires. On a donc utilisé les méthodes du "Wavelet De-noising" qui 

donnent des résultats très satisfaisants, 

II faut noter qu'il existe depuis 1995 un nouveau logiciel pour exécuter la transformée en 

ondelette qui s'appelle "Wavelet Toolbox" mais la programmation de notre logiciel a 6té 

faite en 1994 et le logiciel était en marche à la fui de 1995. De toute façon, notre logiciel 
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possède les avantages suivants que Matiab ne serait pas en mesure d'exécuter, entre autres: 

a) Exécuter de la distribution de Wigner-Ville et différentes distribution de classe 

Cohen, de classe Evponentielle et de classe RID. 

b) Exécuter de la transformée de Fourier à fenêtre giissante adaptative pour ajuster 

la résolution dans le plan temps-fréquence. 

c) Exécuter de "Zoom in Wavelet Transfom" qui permet d'obtenir une précision 

désirable dans une bande de fréquence choisie. 

d) Fournir la transformée en ondelettes adaptatives par I'dgorithrne de "Matching 

Pursuit" qui nous permet d'avoir des décompositions plus flexible pour la 

représentation d'un signal ayant de propriétés très différentes. 

e) Appliquer la méthode de "De-noising" par I'aigorithme de "Matching Pursuit". 

Enfin le logiciel aété vérifié avec plusieurs signaux théoriques, expérimentaux et industriels. 

Dans tous les cas, le logiciel a montré une effkacité supérieure aux méthodes 

conventionnelles. 

En somme, malgré le fait que toutes les méthodes temps-fréquence et temps-échelle nous 

fournissent beaucoup plus d'information surun signal que les autres méthodes traditionnelles 

aucune de ces méthodes n'est parfaite. Croire en l'existence d'une méthode universelle 
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unique capable de  détecter à un stade précoce n'importe quel défaut susceptible d'affecter 

une machine et d'en suivre I'évolution dans le temps est une pure utopie. Il faut plutôt 

prendre avantages de chacuris de ces méthodes pour obtenir le plus d'infomatioa possible 

d'un signal. 

Ce travail qui a été effectué pour la première fois dans notre groupe de recherche nous a 

donné un très bon outil pour avancer dans le domaine de la surveillance et du diagnostic de 

machines. II nous a ouvert une nouvelle voie non seulement dans le domaine du génie 

mécanique mais aussi dans le domaine de la biomécanique pour la cardiographie et dans le 

domaine du génie électrique pour le traitement du signal. 

Le logiciel pourra servir a d'autres essais sur différents autres défauts mécaniques, pourra 

également servir à enseigner les représentations temps-fréquence aux ingénieurs en 

mécanique qui connaissent très peu de ces méthodes. 

La suite logique de ce travail consisterait à améliorer certains noyaux par des méthodes 

d'optimisation dans le but d'obtenir un noyau plus adapté au signal vibration de  machines. 
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