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RESUME

Ces demiéres années, la surveillance et le diagnostic des machines par |’analyse des
vibrations sont devenus un outil efficace pour détecter précocement les défauts et en suivre
I’ évolution dans le temps. Lamaintenance des machines nécessite une bonne compréhension
des phénoménes liés a I’apparition et au développement des défauts. Détecter |’apparition
a un stade précoce d’un défaut et suivre son évolution présente un grand intérét. De fait, il
existe un vaste choix de techniques de traitement de signal appliquées au diagnostic des
machines, mais I’opinion générale est que ces techniques ne sont pas suffisamment efficaces
et fiables. L’intérét economique de mettre en place une méthode de maintenance

prévisionnelle favorise les programmes de recherche en techniques de traitement du signal.

Les techniques de traitement du signal dans le domaine temporel et dans le domaine
fréquentiel peuvent étre utilisées pour identifier et isoler les défauts dans une machine
tournante. Alors que I’analyse de spectre peut nous aider a détecter I’apparition d’un défaut,
la décomposition du signal dans le temps peut nous fournir la nature et la position du défaut

dans la machine tournante.

Cependant, bien que ces techniques puissent s’avérer trés utiles dans des cas simples ou

permettre la formulation rapide d’un pré diagnostic, elles présentent un certain nombre
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d’inconvénients. Ces inconvénients conduisent souvent a des pertes de temps considérables
ou a la formulation de diagnostics erronés. La localisation de I’origine des chocs et des
phénomeénes de modulation et, en particulier, des événements non stationnaires ou cyclo-
stationnaires nécessite la mise en oeuvre de techniques encore plus élaborées, basées sur

I’analyse tridimensionnelle (temps-fréquence-amplitude).

Cetravail consiste a étudier, comparer, modifier et adapter des techniques de représentation
temps-fréquence qui peuvent €tre utilisées pour étudier le contenu fréquentiel d’un processus

non stationnaire.

Dans la premiére partie de ce travail, les méthodes courantes de diagnostic des machines
basées sur le temps ou la fréquence sont présentées et les avantages et désavantages de
chaque méthode sont notés. Ensuite, on discute de la nécessité de la recherche dans le
domaine des techniques de traitement du signal appropriées pour résoudre les problémes de

surveillance et de diagnostic des machines.

Finalement, I’application de la transformée de Fourier a fenétre glissante (Short-time Fourier
Transform), la plus simple et la plus rapide des méthodes temps-fréquence, au diagnostic de
machine est présentée. Les avantages et les inconvénients de cette méthode sont également
expliqués et une solution pour améliorer la performance de la transformée de Fournier a
fenétre glissante est proposée. En bref, cette partie montre I’efficacité des méthodes temps-

fréquence et particuliérement I’efficacité de la transformée de Fourier a fenétre glissante par
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rapport aux méthodes traditionnelles de surveillance et de diagnostic des machines.

Dans la deuxieme partie du travail, les différentes techniques des raéthodes temps-fréquence,
comme la distribution Wigner-Ville, la distribution Choi-Williams et la distribution RID,
sontbrievement expliquées et leur avantages et désavantages examinés avec un "programme
maison” (in-house program). D’abord, on s’est servi de signaux créés par ordinateur pour
vérifier I efficacité et la marche du programme. Ensuite, les signaux enregistrés durant les
essais expérimentaux ont été utilisés pour vérifier la performance de chaque méthode.
Finalement, les signaux enregistrés durant les essais industriels sur une boite d’engrenage

défectueuse et sur un séchoir de machine a papier ont ét¢ évalués.

Dans la troisiéme partie de cette recherche, les plus récentes méthodes pour une présentation
temps-fréquence, soit les méthodes temps-échelle, sont expliquées. L'une de ces méthodes,
la transformée en ondelettes, donne la possibilité de compenser les faiblesses des méthodes
temps-fréquence. La transformée cn ondelettes a une caractéristique particuliére dans le plan
temps-fréquence par laquelle elle est devenue un outil trés efficace pour I’analyse des

événements transitoires et variables dans le temps.

Cette partie du travail présente les différentes méthodes temps-échelle, comme la
transformée en ondelettes, la transformée en paquet d’ondelettes et les transformeées en
ondelettes adaptatives. Les exemples donnés dans cette partie montrent les avantages et les

désavantages des méthodes temps-échelle. Enfin, Iefficacité de ces méthodes pour la
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surveillance et le diagnostic des machines est vérifiée par des signaux expérimentaux et des

signaux industriels.

La quatriéme partie de cette thése présente un logiciel temps-fréquence convivial qui cst
développé pour faire le pont entre le bureau de recherche et le service d’ingénierie de la
maintenance. Pour utiliser le programme, il suffit de choisir le signal 4 analyser puis de
répondre aux quelques questions concernant les caractéristiques du signal telles que la
fréquence d’échantillonnage, lataille dusignal et les paramétres d’analyse. Ensuite, on peut
visualiser la représentation temps-fréquence de chacune des méthodes temps-fréquence et

temps-échelle.

Ce logiciel est équipé selon une nouvelle méthode qui s’appelle "Zoom in Wavelet
Transform" pour obtenir plus de résolution fréquentielle par rapport a la transformée en
ondelettes. Le logiciel exploite aussi deux nouvelles méthodes de "de-noising" par des

transformées en odelettes.

L’environnement de fenétrage de ce programme et l’affichage en couleurs de la
représentation temps-fréquence font de I’outil un logiciel professionnel et puissant pour

I’analyse temps-fréquence.



ABSTRACT

The analysis of vibration signals has proven to be a powerful and effective tool for the early
detection of developing failure in rotating machines. The detection and diagnosis of
rotating/reciprocating machines can be achieved by analyzing the vibration generated by
defects. The benefits obtained in predicting failures in rotating/reciprocating machines in
critical plant is needless to say, wide-ranging. A variety of signal processing techniques has
been used for this purpose but a complete consensus on their effectiveness does not yet exist.
The growing interest in the application of advanced methods of signal processing,

emphasizes further the need for additional studies in this area.

Signal analysis techniques in time and frequency domains can be applied to identify and
isolate abnormalities in rotating/reciprocating machines. While spectrum analysis aids
indicating the presence of an abnormality, decomposition of the time domain signal into
periodic and position locked components can be used to isolate the location of the

abnormality in the machine.

Although the traditional techniques are useful in simple cases and may provide a pre-
diagnostic in the complex machine but they have several limitations which reduce their

performance. These limitations may often mislead us. The application of conventional
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methods to the diagnostic of rotating machines for which the stationary or pseudo-stationary
vibration signals cannot be assumed yields incorrect results. The analysis of non-stationary,
cylco-stationary or time-varying signals needs advance methods capable to represent signals

in time-frequency-amplitude domain.

The objective of the present work is to study, compare, modify and adapt the time-frequency

representation techniques which can be used to analyses non-stationary phenomena.

In the first part of this thesis the classical vibration techniques in time domain and in
frequency domain are presented and the advantages and disadvantages of each technique are
described. In fact, in certain cases such as transient events in a machine or varying speed
rotating machinery, traditional vibration analysis methods in time or in frequency are
incapable of reflecting changes in the operating conditions of machines. Time-frequency
methods are introduced to solve some of these problems. Among these methods, Short-Time
Fourier Transform (STFT) is considered to be the simplest technique of analysis. The first
part of this work proposes the application of STFT as a time-frequency method which can
provide more information about a signal both in time and in frequency and demonstrate a
better representation of the signal than that of the conventional methods in machinery

diagnosis.

In the second part of this thesis, some of the time-frequency methods such as Wigner

distribution, Choi-Wiiliams distribution, and RID distribution are briefly reviewed and
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advantages and disadvantages of different methods are examined. Then the capacity of each
method is examined in a practical application by an in-house program developed for all of
time-frequency methods. Primarily, computer generated signals are used to perform a
preliminary test to evaluate the efficiency of the methods. Then, the signal recorded from an
experimental set up is applied to verify the performance of these methods. Finally, the
different methods are evaluated by using realistic signal recorded from a defective gearbox

and a defective dryer machine.

The third part of this research deals with the development of new techniques such as wavelet
analysis, by which it is possible to compensate for weaknesses in other time-frequency
methods. Wavelet analysis has a special characteristic of time-frequency localization, which
is very effective in the analysis of transient or time-varying signals. Also, a brief study of
the wavelet transform, wavelet functions, the discrete wavelet transform, the wavelet packet
transform and adaptive wavelet transforms is presented. Then, the advantages and
disadvantages of different wavelet transforms are shown by using appropriate examples.
Finally, the effectiveness of wavelet analysis in condition monitoring and diagnostics of
machines is illustrated by experimental results obtained from a defective bearing and a

faulty gearbox.

The fourth part of this thesis presents a user-friendly software designed to be a bridge

between theoretical research in time-frequency/time-scale methods and the practical
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applications of these methods in different domains. The software is able to calculate and
display different time-frequency transforms from time signal data file. The software contains
a number of time-frequency algorithms, such as: the Short-Time Fourier transform, the
Wigner-Ville distribution, the smoothed Wigner-Ville distribution, the Choi-Williams
distribution, the Born-Jordan-Cohen distribution, the Rihaczek-Marginau distribution, the
Wavelet transform, the Wavelet packet transform, and the Adaptive Wavelet transforms. A
graphical interface with color display and window environment of this program make the

software a powerful and professional tool for time-frequency analysis.
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INTRODUCTION

L’analyse du signal vibratoire d’'une machine est 'une des principales méthodes de
surveillance et de diagnostic des machines. Au début, 'objectif de surveillance d’une
machine était d’assurer la sécurité et d’éviter les dégradations importantes. Si I’amplitude
de la vibration (déplacement ou vitesse) dépassait des valeurs proposées pour le bon
fonctionnement de la machine, le systéme de surveillance déclenchait une alarme ou I’arrét
de la machine. Ce mode de surveillance est connu sous le nom de maintenance préventive
conditionnelle. Aujourd’hui, le concept de maintenance préventive conditionnelle a évolué
vers celui de maintenance prévisionnelle. Ce nouveau concept non seulement comprend la
fonction initiale de surveillance mais surtout permet de détecter d’une maniére précoce les
défauts d’une machine et d’en suivre I’évolution dans le temps. La détection des défauts au
stade initial donne le temps nécessaire pour planifier, préparer et effectuer des réparations

tout en provoquant des arréts programmeés a des moments opportuns.

En effet, pour un ingénieur de maintenance, il est trés important de connaitre la nature du
défaut et sa gravité pour prendre une décision. Donc, les fonctions clés de [a maintenance
prévisionnelle sont la surveillance et le diagnostic. Cependant, les fondements du diagnostic
et lasurveillance reposentsur le traitement des signaux délivrés par les capteurs. Choisirune

méthode du traitement du signal dans le domaine temporel, dans le domaine fréquentiel ou
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dans le domaine du temps-fréquence peut considérablement affecter le résultat et la fiabilité
d’une surveillance. Donc il n’est pas déraisonnable d’étudier I’efficacité et I’ évolution des
méthodes de traitement du signal afin de connaitre laquelle ou lesquelles on doit choisir pour

détecter I’ origine exacte d’une anomalie dans le fonctionnement de la machine.

Les méthodes traditionnelles de surveillance

Surveiller une machine nécessite la détermination d’un certain nombre d’indicateurs avec un
seuil associé a chacun. Tout dépassement de seuil signifie I’apparition ou I’aggravation d’un
défaut ou d’un ensemble de défauts. Il faut noter que les indicateurs de surveillance peuvent

étre classés en deux groupes :

- Les indicateurs scalaires qui permettent desuivre I’évolution d’une grandeur dérivant

de la puissance ou (et) de I’amplitude créte du signal vibratoire |

- Les indicateurs de forme qui permettent de suivre a la fois I’ évolution de la forme et

de la puissance du signal.

Parmi les techniques d’analyse de vibration qui sont basées sur un indicateur de surveillance

dans le domaine temporel, on peut signaler les suivantes :

1- La mesure de la valeur efficace du signal (Archambault, 1983; Barkov, Barkova

et Mitchell, 1995; Ulieru, 1993).



2- La détection du niveau créte (Collacott, 1979; Swarup, 1990).
3- Le facteur créte (Archambault, 1983; Barkov, Barkova et Mitchell, 1995).

4- L'impulsion de choc (shock pulse) (Collacott, 1979; Lipovszky, Solyomvari et

Varga, 1990; Mcfadden et Smith, 1983).
5- "Spike energy" (Julien Le Bleu et Ming 1995; Lipovszky, Solyomvari et Varga, 1990).
6- La méthode de Kurtosis (Brennan, Chen et Reynolds, 1997).

7- La méthode de démodulation (Barkov, Barkova et Mitchell, 1995; Enrico et

Paolo, 1989; Jones, 1996; Brennan, Chen et Reynolds, 1997; Reynolds, 1995).
8- La forme d'onde dans le domaine du temps (Eshleman, 1983).

9- La méthode des orbites (Bently, Zimmer, Palmattier et Muszynska, 1986;
Liangsheng, Yaodong et Jiyao, 1989; Liangsheng, Yaodong et Xiong, 1989;

Lipovszky, Solyomvari et Varga, 1990).
10- La ligne centrale d’arbre (Bently, Zimmer, Palmattier et Muszynska, 1986).

D'autre part, la transformée de Fourier est un outil traditionnel, qui nous permet de passer
d'une représentation temporelle i une représentation fréquentielle et d'évaluer le spectre ou

la distribution d'énergie des signaux dans le domaine fréquentiel.



Parmi les techniques d'analyse de vibration dans le domaine des fréquences notons :

1- L’analyse spectrale (Angelo, 1987; James, 1986; Robert, 1994; Robert, 1985).

2- L’Holospectrum (Liangsheng, Yaodong et Jiyao, 1989).

3- Le diagramme en cascade (Leuridan, Auweraer et Vold, 1994; Trevillion, Parge,

Carle, Good, 1989; Sculthorpe et Johnson, 1987).

4- Le cascade-Holospectrum (Liangsheng, Yaodong et Jiyao, 1989).

5- Le diagramme de Nyquist et Bode (Bently, Zimmer, Palmattier et Muszynska,
1986; Trevillion, Parge, Carle, Good, 1989; Majovsky et Salamone, 1988; Smith et

Woodward, 1988).

6- L’analyse cepstrale (Archambault, 1989; Debao, Hongcheng, Yuanyun et Bo, 1989).

Les méthodes temps-fréquence

L'information utile est souvent véhiculée a la fois par les fréquences émises et par lastructure
temporelle du signal (I'exemple de la musique est caractéristique). La représentation d'un
signal comme fonction du temps montre mal le spectre des fréquences en jeu, alors qu'au

contraire son analyse de Fourier masque I'instant d'émission et la durée de chacun des
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éléments du signal. Une représentation adéquate devrait combiner les avantages de ces deux

descriptions complémentaires.

Or, dans le cas des machines tournantes, les défauts sont caractérisés par un écho en
fréquence localisé dans le temps. Nous nous sommes donc tourné vers des méthodes mettant
en valeur des perturbations fortement localisées en temps et en fréquence, ce qui nous a

amené a considérer les transformées temps-fréquence.

La premiére méthode en temps-fréquence qui a été utilisée dés 1940 par Gabor pour la
transmission de données était le spectrogramme ou la transformée de Fourier a fenétre
glissante (TFFG). C'est une méthode simple et efficace qui s utilise surtout pour analyser des

signaux non stationnaires.
Les principaux avantages de cette méthode sont les suivants :

a) elle donne toujours une distribution positive.
b) elle présente I'énergie totale du signal.

Les inconvénients de cette méthode sont les suivants:

a) elle dépend complétement de la longueur temporelle de la fenétre.

b) elle donne les fréquences existantes dans chaque intervalle de temps mais elle ne

donne pas le temps exact de chaque fréquence ni sa durée.

. c) elle ne peut pas donner I'énergie instantanée ni le spectre instantané.
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D.Gabor (1946) et J. Ville (1947) se sont attaqués au probléme de la représentation mixte du
signal. Une premiére idée, qui a été présentée par Gabor, est une méthode mathématique qui
s'appelle "coherent states" en mécanique quantique. Ville a dérivé la distribution que Wigner
avait élaborée en 1932 pour étudier la statistique de la mécanique quantique (quantum
statistical mechanics). Ville, a la recherche du spectre instantané, voulait déployer I'énergie
du signal dans le plan temps-fréquence et obtenir une densité d'énergie ayant au moins les

propriétés suivantes :

- La somme des énergies pour toutes les fréquences a un temps particulier donne |'énergie

instantanée.

- La somme des énergies pour tous les temps a une fréquence particuliére donne le spectre

instantané.

Ces deux propriétés s'appellent les conditions marginales en temps et en fréquence. On peut
tout de suite constater que contrairement au spectrogramme, la transformée de Wigner-Ville
donne la fréquence instantanée. Mais la distribution Wigner-Ville présente aussi des

désavantages :
a) elle ne donne pas toujours une distribution positive.

b) pour un signal a composantes multiples, elle induit les termes rectangulaires (cross

terms) qui sont des artefacts dont la localisation dans le plan temps-fréquence est a mi-



chemin de celle des termes carrés (self terms) correspondants.

Un an apres Wigner, Kirkwood (1933) développait une autre distribution et il soutenait que
celle-ci était plus simple a appliquer, dans certains cas, que la distribution de Wigner. Cette
distribution est identifiée comme le spectre d'énergie complexe. Elle satisfait les conditions

marginales mais elle ne donne pas la fréquence instantanée.

Une nouvelle formulation de cette distribution considérant le point de vue physique fut
donnée par Rihaczek en 1968. Margenau et Hill (1961) ont obtenu cette méme distribution

par la méthode de la fonction caractéristique.

En 1952, Page a obtenu une nouvelle distribution qui s'appelle la puissance instantanée du
spectre. La distribution de Page satisfait les conditions marginales mais elle ne retourne pas

a zéro a la fin du signal.

En 1980, Classen et Mecklenbrauker ont donné une formulation générale englobant les
distributions temps-fréquence engendrées a ce jour. Cette formule a une fonction arbitraire
appelée noyau. En choisissant des noyaux différents, on peut avoir des distributions
différentes. Cette méthode simple qui produit toutes les distributions a l'avantage de
permettre la prévoyance de résultats généraux. De plus, en ajoutant des contraintes sur le
noyau, on peutobtenir une distribution avec des propriétés particuliéres (Cohen, 1966). Dans

une importante série d'articles, Classen et Mecklenbrauker (1980) ont développé une
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approche compléte et ils ont présenté des idées et procédures nouvelles pour étudier les

distributions mixtes.

En 1989. Choi et Williams ont présenté une nouvelle approche ot ils se sont attaqués a
l'inconvénient principal de la distribution de Wigner-Ville, soit les termes rectangulaires. Le
noyau de leur distribution a une constante telle qu’en ajustant cette constante, on peut
minimiser les termes rectangulaires qui sont des artefacts dont la localisation dans le plan
temps-fréquence est a mi-chemin de celle des termes carrés correspondants. En augmentant
la constante, on va vers la distribution de Wigner-Ville et en diminuant le paramétre, on
élimine les termes rectangulaires mais en méme temps on perd de la résolution dans le temps

et dans la fréquence.

En 1966, Born et Jordan ont utilisé le noyau "sinc". Mais les propriétés intéressantes de ce
noyau, qui font diminuer I'amplitude des termes rectangulaires, étaient découvertes apreés le
travail de Jeang et Williams (1992). Une revue bibliographique compléte sur les méthodes

temps-fréquence a été donnée par Cohen (1989).

En 1990, une nouvelle distribution était développée par Zhao, Atlas et Marks. Leur
distribution non seulement diminue les termes rectangulaires mais elle les transfére a

'endroit des termes carrés.

En 1993, Louglin, Pitton et Atlas ont élaboré une méthode générale pour transférer les termes
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rectangulaires a l'endroit des termes carrés. [Is ont utilisé un noyau en forme de fonction
générale. Ce choix d’une fonction générale aménera a perdre quelques propriétés désirables

de la distribution.

En 1994, Zhang et Sato ont présenté un noyau composé qui a été produit en combinant le
noyau de Choi-Williams et celui de Margenau-Hill. Cette distribution aussi transfére les

termes rectangulaires a l'endroit des termes carrés.

Mais le probleme de toutes ces distributions est que le transfert des termes rectangulaires
donne une modulation des termes carrés, ce qui nous empéche de trouver la vraie modulation

sur les termes carrés.

Diethorn (1994) a étudié une généralisation du noyau de type Choi-Williams. Il a exprimé
le noyau en forme exponentielle avec trois paramétres. En manipulant adéquatement les trois
parametres, on peut obtenir une meilleure résolution que celle de Choi-Willams avec une

diminution des termes rectangulaires.

Zhengu Guo, Daurand et Haward C. Lee (1994) ont présenté un noyau basé sur la fonction
de Bessel de premier type. Cette distribution élimine les termes rectangulaires et donne une

bonne résolution dans le domaine temps-fréquence.

On peutdire que Boashash (1978) fut le premier a utiliser la technique temps-fréquence pour

des problémes réels et a développer de nouvelles méthodes et & les appliquer a des problémes
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d'exploration géophysique. Bazelaire et Viallix (1987) ont utilisé la distribution de Wigner
pour étdier les tremblements de terre. Dans le domaine du diagnostic de machine, Forrester
(1989) a utilise la distribution de Wigner pour trouver des défauts dans le systéme de
transmission d'un hélicoptére. [l a montré que la distribution Wigner-Ville peut révéler le

défaut avec plus précision que les méthodes conventionnelles.

Dans une série d'articles, Mcfaden et Wang (1990; 1991; 1992) ont expliqué comment ils ont
appliqué les méthodes temps-fréquence au diagnostic des machines. [Is ont présenté la
complexité de la représentation temps-fréquence produit par la méthode de Wigner-Ville et
ont suggéré une fenétre temporelle qui peut améliorer les résultats de Wigner-Ville

(Boudreaux-Bartels et Hiawatsch, 1992).

Rohrbaugh (1993) a utilisé I’analyse temps-fréquence pour des machines marines. Il a
compare la STFT avec la représentation temps-fréquence de Cohen ayant un noyau céne
(cone-kernel). Rohrbaugh et Cohen (1995) ont appliqué une nouvelle méthode de temps-
fréquence qui est développée par Louhlin, Pitton et Atlas (1994) au diagnostic de pompes.
Cette méthode est appelée “positive time-frequency distribution” et elle est plus efficace que

la méthode de STFT pour le diagnostic de machines alternatives.

Quelques applications des méthodes temps-fréquence a la surveillance de processus
d’usinage comme le pergage et le broyage ont été présentées par Loughlin, Atlas, Bernard

et Pitton (1995). IIs ont montré que les nouvelles méthodes peuvent foumir plus de détails,



11

sur signal que la méthode STFT. Atlas, Bernard et Narayanan (1996) ont offert un résumé
des applications de I’analyse temps-fréquence dans différents domaines de diagnostic des
machines. Ils ont souligné I’importance d’applications des méthodes temps-fréquence dans

le secteur industriel et la surveillance des machines.

Dans un travail récent, Loughlin et Bernard (1997) ont présenté quelques applications de la
méthode “positive time-frequency distribution” aux signaux vibratoires de différentes

machines.

Les méthodes de temps-échelle (ondelettes)

Tout comme les techniques "temps-fréquence”, ces techniques appartiennent a un ensemble
plus général d'algorithmes qu'on retrouve aussi bien chez les mathématiciens que chez les

spécialistes du traitement de signal.

Les premiéres publications sur les ondelettes remontent & 1984 avec l'article d'Alex
Grossmann et Jean Morlet. L'essentiel de leurs idées s'inspire de travaux théoriques déja
anciens (notamment le théoréme des fonctions élémentaires introduit vers 1960), d'idées plus
récentes exploitées dans le traitement numérique de certains signaux sismiques et d'outils

mathématiques utilisés en physique théorique (Gasquet et Witmoski, 1992).
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En 1982, J. Morlet a proposé une ondelette prototype ainsi que son spectre d'amplitude. Cette
ondelette montre que, comme dans le cas de temps-fréquence, les fonctions élémentaires de
la transformée en ondelettes sont des filtres a bande passante avec I'avantage que procurent

des bandes variables, soit d'obtenir une analyse multi-résolution.

En 1989, Stephane Mallat a utilisé les filtres miroirs en quadratures (FMQ) pour construire
a I'aide d'une organisation hiérarchique des algorithmes temps-échelle qui permettent de
calculer rapidement les coefficients d'ondelettes orthogonales. Cet algorithme est appelé la
transformée en ondelettes rapides (TOR) et la transformée correspondante est appelée la
transformeée discréte en ondelettes (TDO) (Rioul et Vetterli, 1991). La division logarithmique
de la bande fréquentielle dans la TDO est appelée le "splitting algorithm" (Meyer, 1992) ou
algorithme de décomposition. Une série des conditions suffisantes pour la régularité de ces
filtres a été donnée par Daubechies (1988, 1992). Une revue de la transformée discréte en
ondelettes et le lien entre la transformée en ondelettes et la banque de filtres ont été donnés

par Shensa (1992), Vetterli (1992)et Ramchandram et Vetterli (1996).

L'inconvénient majeur d'une TDO est qu'elle présente une échelle logarithmique de
fréquence, ce qui ne permet pas une analyse fréquentielle plus fine aux fréquences élevées.
L'algorithme ayant une échelle fréquentielle plus fine est la transformée en paquets
d'ondelettes (TPO) (Hess-Nielsen et Wickerhauser, 1996; Ramchandram et Vetterli, 1996).

Dans la transformée en paquets d'ondelettes, on applique le "splitting algorithm"
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simultanément aux deux canaux fréquentiels. Ceci nous donne une échelle linéaire de
fréquence. Pour rendre la transformée encore plus flexible et plus précise, on doit aller vers

la transformée adaptative au signal (Mallat, 1993).

L'utilisation des méthodes d'ondelettes pour le diagnostic des machines est trés récente.
L'identification des défauts dans les roulements a billes (Li et Ma, 1992; Hongbin, 1995) et
dans les boites d’engrenage (Mcfadden et Wang, 1993; Mcfadden et Wang, 1995; Lopez,
Tenney et Deckert, 1994) sont des exemples d’application de cette méthode aux éléments
essentiels des machines tournantes. Dans le cas des machines réciproques, la méthode des
ondelettes est une méthode satisfaisante pour fournir les caractéristiques des signaux
vibratoires (Grivelet, 1990). Zhongxing et Liangsheng ont appliqué la méthode du paquet
d’ondelettes au diagnostic d’'un compresseur (Zhongxing et Liangsheng, 1994). Dans une
autre approche, Dalpiaz et Rivola (1995, 1997) ont utilisé la transformée en ondelettes pour

la surveillance et le diagnostic dans les mécanismes contenant des cames.

Objectifs du présent travail

Comme le montre I’étude de la bibliographie, le diagnostic des machines a fait l'objet de
quelques travaux dans les domaines du temps et de la fréquence. La méthode usuelle de

traitement du signal présente de nombreux inconvénients dans ce type de probléme.
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L'utilisation de la transformée de Fourier (FFT) a ses limites. D'une part, il faut respecter le
théoréme d'échantillonnage. D'autre part, les signaux concernés doivent €tre stationnaires,

ce qui limite l'utilisation de la transformée dans les applications.

Dans notre cas, les défauts sont caractérisés par des phénomeénes transitoires, non
stationnaires ou cyclo-stationnaires. Vu la difficulté de trouver les défauts dans la
représentation temporelie ou fréquentielle, il est nécessaire d'aller vers la représentation

mixte ou la représentation temps-fréquence-énergie, qui nous permet :

- de détecter et de suivre I'évolution de défauts qui induisent une puissance vibratoire fiable,
qui cependant peut modifier considérablement [a forme du signal. C'est notamment le cas des
défauts qui induisent une modulation de l'amplitude ou de la fréquence de certaines
composantes caractéristiques de la chaine cinématique complexe (roulement des paliers des
lignes d'arbre a faible et trés faible vitesse de rotation : broyeurs a boulets, fours rotatifs,

laminoirs, cylindres sécheurs et sections "presses" de machine a papier, etc);

- de surveiller les installations dont le processus de fonctionnement normal génére des chocs
périodiques d'amplitudes élevées (compresseurs a vis, & pistons, machines alternatives, etc)
susceptibles de masquer l'apparition de défauts induisant des forces impulsionnelles
(dégradation de roulement, écaillage de denture, jeux de palier, d'accouplement, de clavette,

etc).
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Dans cette thése nous prenons en charge les points suivants:

a) Un probléme que pose la représentation temps-fréquence est le manque de précision et de
résolution dans des méthodes temps-fréquence et temps-échelle telle que la méthode en
ondelettes et STFT. Pour résoudre ce probléme, nous développons une nouvelle méthode
appelée “Zoom in wavelet transform”qui permet & " utilisateur d"aller chercher une préciston
désirable dans une bande de fréquence choisie. Ainsi, nous proposons une méthode de STFT
qui utilise un indicateur courant du diagnostic de machine pour ajuster la résolution dans le

plan temps-fréquence.

b} Un autre probléme de représentation temps-fréquence est le bruit qui nous empéche de

voir le signal. Malgré le fait que la représentation temps-fréquence disperse le bruit sur le
plan temps-fréquence donc garde le niveau du bruit bas, il reste que le niveau du bruit

complique parfois I’identification des défauts.

Pour résoudre ce probléme, deux méthodes de “de-noising” sont utilisées :

1- “De-noising” par la méthode en ondelettes.

2- “De-noising” par I’algorithme de “Matching Pursuit”.

Il faut noter qu’on ne peut pas appliquer la méthode courante de “de-noising”, qui est de faire

la moyenne, parce que les signaux captés sur une machine peuvent étre non stationnaires.
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¢) Un autre probléme de représentation temps-fréquence est le manque d’un logiciel facile
a utiliser. Pour résoudre le probléme, un logiciel de traitement de signal utilisant les
différentes méthodes du type "temps-fréquence” et du type "temps-échelle” ainsi que la
méthode FFT, et en tenant compte des améliorations décrites en @) et en b) est développé
dans le cadre de cette thése. Ce logiciel permet aux ingénieurs ou aux techniciens en
surveillance de machine de faire le traitement de signal vibratoire de machines et de

structures méme s’ils n’ont pas d’expérience spécifique en analyse de signal.

d) Un autre probléme de représentation temps-fréquence est le choix de la méthode
d’analyse. Pour examiner la fiabilité des techniques d’investigation temps-fréquence sur

lesquelles repose le logiciel, nous procédons a des analyses de signaux dotés de

caractéristiques différentes créés par ’ordinateur.

Ensuite, nous effectuons quelques essais expérimentaux dans le laboratoire de diagnostic des
machines afin de passer au diagnostic industriel des machines. A cette étape, les difficultés
posées par les signaux réels et la nécessité de développer des techniques encore plus

complémentaires pour résoudre ces problémes sont apparus.

Apreés avoir surmonté les problémes pratiques, nous exécutons quelques essais industriels

sur les signaux captés sur une boite d’engrenages et sur un séchoir de machine & papier.
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Organisation de la thése

Cette thése est constituée d’articles qui forment le corps principal du travail. Commeon vient
de voir, I’ introduction comporte une bréve revue historique suivie par une bibliographie des
méthodes traditionnelles de surveillance de machine, des méthodes temps-fréquence et des
méthodes temps-échelle. Les objectifs du travail et ’organisation de cette thése sont
également définis dans ces pages. Le premier chapitre présente |’application de la méthode
de la transformée de Fourier a fenétre glissante au diagnostic de machines. Dans ce chapitre
les avantages et les inconvénients des méthodes traditionnelles de diagnostic de machines
sont étudiés et la nécessité d’appliquer des méthodes temps-fréquence est discutée par
quelques exemples. Cet article a été soumis & I’ International Journal of Condition Monitoring
and Diagnostic Engineering Management (COMADEM). Le deuxiéme chapitre présente les
distributions temps-fréquence et les applications de ces distributions a la détection des
défauts. La classe générale des méthodes temps-fréquence et une étude approfondie des
méthodes temps-fréquence sont également présentées dans ce chapitre. Ainsi, les différentes
méthodes temps-fréquence sont comparées au moyen de plusieurs exemples. L’article a été

soumis au Journal of Sound and Vibration.

Le chapitre trois présente I’application de la transformée en ondelettes dans le domaine du
diagnostic des machines. Dans ce chapitre une autre représentation temps-fréquence par des

méthodes temps-€échelle est présentée et les avantages et désavantages de cette méthode sont
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montrés par quelques exemples. De plus les nouvelles méthodes du “Zoom in Wavelet
Transform” et du “de-noising” sont décrites. Cet article a été soumis au Joumnal of

Mechanical Systems and Signal Processing.

Le quatriéme chapitre porte sur les algorithmes temps-fréquence et sur leurs applications. Ce
chapitre décrit le logiciel général qui a été développé dans le cadre de cette recherche et les
options qu’on peut obtenir par ce logiciel. Cet article a été soumis a I’ International Journal

of Computers and Their Applications.

Enfin, la conclusion de cette thése suivie par quelques perspectives de travaux futurs sont

présentées.
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CHAPITRE I

USING SHORT-TIME FOURIER TRANSFORM

IN MACHINERY FAULT DIAGNOSIS*

'M.S. Safizadeh, 'A.A. Lakis and M. Thomas

I: Département de Génie Mécanique, Ecole Polytechnique de Montréal
Case Postale 6079, Succ. Centre-ville, Montréal. Canada H3C 3A7
2: Département de Génie Mécanique, Ecole de Technologie Supérieure
1100. rue Notre-Dame Ouest, Montréal, Canada H3C 1K3

1.1 Abstract

The detection of faults in machinery is based on the verification of classical vibration
parameters, including both time domain and frequency domain parameters. There areseveral
methods by which one can estimate these parameters and each of the methods has advantages
and disadvantages. In certain cases, such as transient events in machinery or varying speed
rotating machinery, traditional methods of vibration analysis either in time or in frequency

are incapable of reflecting changes in the operating conditions. The use of time-frequency

% Soumis pour publication dans *“International Journal of Condition Monitoring and Diagnostic Engineering

Management (COMADEM)”
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methods is one step towards a solution of some of the problems and the Short-Time Fourier

Transform (STFT) is the simplest method of time-frequency analysis.

This paper proposes the application of the STFT as a time-frequency method which can
provide more information about a signal both in time and in frequency, and give a better

representation of the signal than the conventional methods used in machinery diagnosis.

In this paper, we review the traditional vibration analysis techniques which are widely used
in practice. Secondly, we discuss the necessity of time-frequency analysis in the field of
machinery diagnostics. Thirdly, the theory of the Short-Time Fourier Transform is briefly
explained. Some practical examples of defective bearings and defective gearboxes are
analyzed by the STFT method and, in conclusion, the effectiveness and advantages of the

STFT are demonstrated.

1.2 Introduction

With increased competition in the production and greater pressure on the price of industrial
rotating machinery, the necessity for efficient methods of the condition monitoring and
detecting faults in machinery has become apparent. It is necessary to find, on the one hand,
ways to protect the productivity of critical equipment and, on the other hand, ways to reduce

operating and maintenance costs. The most efficient method will be one which recognize that
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a problem exists before damage has occurred in machine, so that ample time is available to

schedule repairs with mintmum disruption to operations and production [1].

The wave forms of vibration signals from rotating machinery are often recorded and
analyzed by processing the data using analysis techniques. Each different technique gives
some information about the condition of the machinery but the need exists for a technique

which gives all the necessary information.

In practice, after deciding on the type of sensor, its location and the parameter to be
monitored [2], the processing technique to be chosen will depend upon the precise condition
we wish to monitor. If fault detection is our objective, then the speed and reliability of the
processing technique are important but, if fault diagnosis is our objective, the accuracy of

the method is critical.

There are several conventional methods for the detection and identification of faults. Some
of these methods provide a representation of signals in the time domain and others in the
frequency domain. In all of the methods, it is assumed that signals are stationary. This
assumption, however, is not always accurate. In certain machines, in the early stages of
defects, vibrational signals become non-stationary; in this case, conventional methods are

not applicable.

In recent years, a number of new analytical methods have been developed in the field of
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signal processing: these are called “joint time-frequency analysis methods”. However, they
are not generally used in the field of machinery diagnostics. There has been considerable
progress in research into the development of the theory of joint time-frequency methods and
other non-stationary signal processing methods, but more work must be carried out to prove
to industry that these new methods are effective in the condition-monitoring of mechanical

systems.

The objective of this work s, firstly, to outline the limitations of conventional methods and,
secondly, to demonstrate the speed and accuracy which can be obtained by using joint time-
frequency analysis methods in the field of machinery diagnostics. In this paper we first
present a review of traditional methods with their advantages and disadvantages. Secondly,
we discuss the necessity for using time-frequency methods, and present a brief theory of the
Short-Time Fourier Transform as the fastest and the easiest method among other time-
frequency methods. Thirdly, a technique of adaptively adjusting the window length used
in the Short-Time Fourier Transform is presented. Finally, some examples of fault detection

and the identification of real problems are given, using the Short-Time Fourier Transform.

1.3 Time-based and frequency-based vibration analysis techniques

There are a large number of vibration analysis techniques which may be applied to the
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processing of a vibrational signal. These techniques can highlight different characteristics
of the signal which may beused in the detection and diagnosis of faults in machinery. Many
studies have been carried out to find the most effective technique for the analysis, monitoring
and diagnostics of machines. Unfortunately, none of these techniques has been proven to be
efficient. In the following section, the advantages and disadvantages of conventional

methods are described in order to understand why time-frequency methods are needed.

Conventional vibration analysis methods fall into two categories:

a) Time-domain vibration analysis techniques

b) Frequency-domain vibration analysis techniques

1.3.1 Time-domain vibration analysis techniques

I) Time wave form:

Using an instrument as simple as an oscilloscope or FFT analyzer, it is possible to view the
wave form of the vibration. It may be possible to identify the period of events existing ina
machine and any amplitude modulation in the vibration signal [3]. However, although the
time domain often shows the nature of the mechanical problem better than the frequency

domain, there are several reasons which lead us to avoid the use of the time domain display
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in machine monitoring. For instance, in the case of a complex machine, the vibration
signature may combine several signals with different frequencies, amplitudes and phases, and
it would be virtually impossible to decompose the signature into its separate components.

However, used in conjunction with other methods, it could prove helpful.

Il Overall level (R.M.S.) measurements:

Overall level measurements [4-6] are the most common vibration measurement in use. It is
a simple and inexpensive type of measurement, which is calculated by estimating the root
mean square (RMS) level of the time record. It has been found that, in rotating machinery,
velocity is the best indicator of general condition. Charts are available which indicate
acceptable levels, for example VDI 2056 (table 1.1). The greatest limitation is the lack of
precise information to be extracted from the data. These charts are extremely generalized in

conception, and have little regard to mobility. The mobility relationship is defined as:

Vibration = Force x Mobility

where the mobility is the ability of a structure to move under force. Since the mobility
changes from machine to machine, vibration level changes accordingly. For example, the
measurement of a damaged bearing must be made on the outside of the bearing housing

support. The signal detecting procedure is affected by the transmission path to the sensor.
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Unless a problem is severe, the overall level measurements may not change significantly.
Unfortunately, people have relied too heavily on these measurements alone, and have been

surprised to see machines fail, apparently without warning.

III) Peak level detection:

As an altemative to RMS, the peak level of the signal can be used [7, 8]. A baseline “peak”
level is defined for a new machine, and any variations from this norm would be indicative
of a change in machine condition. Operational standards have been developed which
recommend vibration boundary levels for satisfactory or unsatisfactory running conditions.
For example standard API 610 [API standard 610, 7" edition, Centrifugal Pumps for
General Refinery Services] defines vibration limits for centrifugal pumps. This is particularly
useful for monitoring the change in the amount of impulsion, possibly due to the occurrence
of impacts. However, this method is not reliable, since resonant behavior often dominates
the vibration signal, and therefore only a very severe transient impact will bring about any

change in the peak level.
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IV) Crest factor:

The crest factor [4, 6] (sometimes called the impact index) is the ratio of the peak level to
the RMS level of the vibrational signal. The time waveform of 2 machine in good health is
mostly random. When a localized faultappears, a periodic peak is seen to occur in the signal.
As the fault increases, the waveform becomes far more impulsive, with higher peak levels,
but the RMS value is not affected significantly. In work carried out by the General Electric
Company [9], it was shown that the crest factor could be used as an indicator of bearing
condition. The crest factor limits are as follows: 2 to 3 indicates a normal bearing, 3 to 8
indicates fault initiation and 8 to 10 indicates fault growth. However, this method has certain
limitations. The RMS level is significantly increased in bearings with multiple or spreading
defects, resulting in the reduction of the crest factor. Background noise is also a problem

because it increases the RMS level and consequently decreases the crest factor.

V) Shock pulse:

The shock pulse method [7, 10] detects the development of a mechanical shock wave caused
by increasing damage. For example, impacts produced by small defects in a bearing may
excite resonances in the bearing and the machine. The periodic signals with characteristic

frequencies from a bearing may indicate deformations or defects in the bearing, but they are
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not always visible and frequently follow the rhythm in higher frequencies (higher of 2kHz).
To observe the shock pulses, first the vibration is measured by a transducer mounted on the
casing of the machine. Then, the signal from the transducer is passed through a bandpass
filter to isolate one of the resonances. Finally, the filtered signal is transformed into a train

of impulses by passing it through a pulse converter (Figure 1.1).

By observing the increase of the level and the rhythm, it is possible to determine which of
the bearing elements is damaged (Figure 1.2). It is aiso useful to calculate the amplitude
spectrum of the train of impulses; the complete procedure is also known as the high
frequency resonance technique or high frequency shock pulse[ 1 1]. This approach is efficient
but has certain disadvantages. When there is more than one fault in a machine, the pulse
repetition will not correspond to one single fault. For example, if there are simultaneous
cavities on the inner and outer races of a bearing, the frequency of the shock pulses will
correspond to neither BPFI (ball-pass frequency on the inner race) nor BPFO (ball-pass

Jfrequency on the outer race) but with their sum: BPFI+BPFO.

V1) Spike energy:

This method was developed in 1970 to measure the condition of rolling bearings [10]. Itis

based on the high frequency peak value of the acceleration. Spike Energy shows the intensity
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of impact energy caused by mechanical faults. To measure Spike Energy, as with the Shock
Pulse method, the output signal of the accelerometer is filtered through a bandpass filter, and
the time variation of the signal is measured by a peak-to-peak detector as an indicator of the
severity of the impact measurements. Spike Energy is expressed in “gSE” units. Spike
Energy Spectrum may also be obtained by using FFT analysis. This technique is often used
in high frequency vibration such as metal-to-metal contact and cavitation. Details of an

application of this technique to vibration monitoring of seal-less pumps are given in [12].

This method has proven satisfactory in fault detection, but it has problems similar to those

of the Shock Pulse method and may be misleading in the case of simultaneous faults.

VII) Demodulation:

An alternative way to monitor rotating machines is demodulation or the enveloping method.
This method is based on the properties of amplitude-modulated signals which are often
encountered in machine monitoring. The type of fault is indicated by the impact rates. The
envelope of a wave modulated in amplitude reveals the repetition frequency of the impacts
(Figure 1.3). The potential applications of these properties hinge on the availability of
mathematical tools that enable assessment of the envelope function characteristics.

Demodulation analysts of a bandpass filtered signal is based on the Hilbert Transform which
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generates theenvelope of the timesignal. The Hilbert Transform (A') ofthesignalintime s(¢)

is defined as

Hls(t)]

lj 5@ 4 = 500 (L.1)
T [ T

This constitutes the imaginary part of the analytical signal defined as

(1) = s(0) + j5 (1) = |s(1)]e™®” (12)

where 8(1)= ar(.tg|:§;:i and the module of the analytical

signal, I:(l )| = .\/ s*(t) + 5 (¢) , represents the envelope of the time signal s(f). Thetime

envelope calculated by the Hilbert Transform can be useful in bearing defect detection [6,
13, 14] or gearbox defect detection {15]. The problem with the demodulation method [16]
is that the Hilbert Transform cannot be used to demodulate the whole vibration signal. The
signal first has to be filtered by passing it through a bandpass filter in order to separate one
of the dominant harmonics and all of its sidebands. If a narrow bandpass filter is chosen, it
is likely to miss some of the higher order sidebands of the chosen harmonic. And if a broad

bandpass filter is used, it is likely to pass some of the sidebands from adjacent harmonics.
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In both cases, the modulation calculated by the Hilbert Transform will not represent the
amplitude modulation of the signal. As a solution to this problem, the rectification process

in the demodulation method is replaced by peak value waveform [17].

VIII) Kurtosis:

The technique of Kurtosis analysis is another method used to indicate the “peakedness” of
the signal. Kurtosis ( Ku ) is a statistical parameter, derived from the statistical moments of

the probability density function of the vibrational signal. “ Ku " is defined as

_ fm s*P(s)ds

Ku=—
([ s2P(s)ds]:

(1.3)

where s is the magnitude of the vibration signal with zero meanand P(.s) is the distribution of s .

To give a simple explanation of this parameter, knowing that the first moment about zero

gives the mean value of distribution:

= [sp(s)ds (14)

The second moment called variance gives the standard deviation and is defined as:
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L]

U, =0 = Iszp(s)ds (1.5)

<

—0

Higher order moments are defined by the general integral.

x

p, = [s"p(s)ds (16)

—0

Then, Kurtosis is just the fourth moment, #, , normalized with respect to the square of the

variance.

Kurtosis = ,u_: (1.7)
o

A bearing in good condition has a Gaussian distribution function and the Kurtosis value of
its signal is equal to three, but a damaged bearing has a Kurtosis value which will be greater
than three. Advantages of this methods are: a) Kurtosis value is independent of load and
speed conditions, b) it has been found that the amplitude distributions, and therefore the
Ku value, are relatively unaffected by variations in the transmission paths of vibrational

signals. But for modulated signals this technique may lead to inaccurate predictions [15].



IX) Orbits:

Orbits display or Lissajous curves [10, 18] are obtained by displaying time base waveforms
from two transducers whose outputs are phase shifted by 90 degrees (Figure 1.4). Orbits are
particularly useful in the analysis of the vibration of a shaft during rotation. The shaft orbit
can provide basic amplitude, frequency and phase lag angle information. It is able to indicate
wear in a journal bearing, shaft misalignment, shaft imbalance and shaft rub. Since the orbits
are directly constructed in the time domain, they are deformed by noise, surface quality and
self-excited low frequency vibration of the rotating shaft {19]. Consequently, the detection
of faults in rotating machinery by this method is often unsuccessful. Nevertheless, Orbits

display is used to complement other methods [20].

X) Shaft centerline:

The shaft centerline position is used to estimate the shaft centerline relative to the geometric
centerline and clearance of the bearing. From these data, the shaft attitude or position, its
angle and eccentricity ratio can be calculated and may be used as an indication of bearing
wear and misalignment generated by heavy loads [20]. The Shaft centerline position method

has the same limitations as the Orbits method.



1.3.2 Frequency domain vibration analysis «.chniques

I) Spectrum analysis:

A spectrum is derived from the vibration waveform by performing a “Fast Fourier
Transform” [3]. The benefit of the spectrum is that each rotating element in a machine
generates identifiable frequencies; the peaks in frequencies define the type of fault and the
amplitude of the peaks indicates the severity of the fault [21, 22]. Spectrum analysis
information may be used in different ways to recognize defects in machines. The spectral
indices such as R.M.S. levels [23] can show the difference between the current spectrum and
the baseline or the previous spectrum. These indices are good indicators of the overall
performance of machinery. An alternative way is to define an allowable tolerance limit on
the baseline spectrum such that, if there is a fault in the machinery, the spectrum will exceed
the limit. The narrow bandwidth spectrum may be replaced by a constant percentage

bandwidth spectrum in order to simplify its application.

Although spectrum analysis is one of the best vibration indicators of machine condition, it
must be pointed out that the defect frequency may be close to frequencies excited by other
components in machines; therefore, by a smail change in speed, the position of the peaks
may change and give incorrect results. To prevent this problem, a new spectrum called the
Synthesized Spectrum may be used [24]. However, these fault frequencies and fault

conditions are not always easily identifiable. A discussion on how spectrum analysis may
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provide erroneous results and therefore false warnings is presented in [25] and a number of
conditions which are necessary in order to obtain correct results with different types of

spectrum are given.

IT) Waterfall plot:

A Waterfall plot (also known as a cascade plot) is composed of FFT magnitude spectrums
displayed at different machine speeds (Figure 1.5). This method is used to examine sub-
synchronous and super-synchronous components during run-up or run-down stages of a
machine [26]. The advantage of this format over single or overlaid spectrum displays is that
changes in the spectrum versus changes of speed may be identified visually. This method is
specially applied to certain types of fault such as oil whirl/whip, cracked shaft [27] and rubs.
Although Waterfall display is useful, it has some limitations. When the characteristics of the
signal are changing rapidly in time, the spectral representation of the signal at each speed is
degraded. If the speed varies relatively slowly (1000-4000 RPM over 60 sec) the Waterfall
technique may give data of an acceptable order of magnitude [28]. If the speed varies more

rapidly, this technique may provide inaccurate resuits.
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I11) Holospectrum:

This method [19] provides information not only about peak frequency and amplitude, but
also about phase relationships In general, vibrations of a rotor are measured by two
accelerometers, as in the Orbits method. Holospectrum is formed by a simple vector in each
frequency (Figure 1.6). It is composed of a circle, line and ellipse placed on the frequency
axis. A circle is obtained if the amplitudes of two components are equal and their phases are

90 or 270. A circle is obtained in the rotating frequency of a shaft if there is imbalance in

the shaft. A line is obtained if the phase lag between two elements of a machine is 0° or

180° and the slope of the line depends on their amplitude proportion. This method has the

same limitations as the Orbits method.

IV) Cascade Holospectrum:

Following the Cascade spectrum diagram principle, the 2-dimensional Holospectrum can be
used to construct the Cascade Holospectrum diagram (Figure 1.7). The Cascade
Holospectrum diagrams [19] may provide us with more information about the transient
events of a machine during run-up and run-down, and may intuitively demonstrate the
change in the Holospectrum components of different orders. In contrast to the Cascade

diagram, the Cascade Holospectrum gives the phase relations between the two
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accelerometers. This method has the disadvantages of Waterfall diagram and Holospectrum

technique.

V) Bode and polar plot:

The Bode plot is a log-log diagram of the amplitude of a complex signal (often transfer
function) versus the frequency accompanied by a semi-log diagram of the phase of the signal.
The Polar plot, also known as the Nyquist plot, is another representation of the signal in
polar coordinates with the radius of the curve corresponding to the amplitude of the signal,
and the phase signal corresponding to the value of the phase to the horizontal axis. Frequency
or running speed is changed along different points (Figure 1.8). Although these plots are
useful in the field of balancing problems, mode shape of the rotor, cracked shaft detection
and rubs [20, 26, 29, 30], they are of littleuse in the case of machine monitoring. In this case,
spectrum representation is préferred to the Bode plot. The Polar plot is also of little help in
finding the natural frequencies of a system because it needs curve-fitting algorithms. These

plots are a different way of displaying results, but do not offer a new method of analysis.
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VI) Cepstrum analysis:

If the inverse Fourier Transform of the logarithm of the correlation function is taken, we
obtain what is termed as the Cepstrum which is a function of the independent variable

“Quefrency” in milliseconds [24].

C(r) = FFT '[log G (f)] (1.8)
It is used to highlight periodicities in the spectrum, in the same way that the spectrum is used
to highlight periodicities in the time waveform. Thus, the harmonics in the spectrum are
summed into one peak in the cepstrum, making it easier to identify, and observe trends in.
specific fault frequencies. Quefrency shows frequency spacing in the spectrum but it shows
nothing about absolute frequency. On the other hand, it is possible to edit out the effect of
the transmission path because both this and the excitation, which are multiplicative in the
spectrum, become additive in the Cepstrum. It has been found to be useful in bearing and
gear-box analysis [4, 31]. However, this method has some disadvantages. Firstly, the
spectrum sometimes has several harmonics and sidebands in the low and middle frequencies;
these appear in the Cepstrum and distort the harmonics and sidebands in the higher
frequencies. In such a case, it may be hard to identify the type of dgfect by the Cepstral
method. Secondly, there is no relationship between the magnitude of the Cepstrum and the

severity of the defect.
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1.4 Time-frequency analysis

1.4.1 Is time-frequency analysis really necessary?

As mentioned in the last section, each of the conventional vibrational methods used in fault
detection and identification for steady speed machines has several limitations. The
assumption of constant speed in the above methods results in stationary and pseudo-
stationary vibration signals. However, even if we take this assumption into account, the
limitations of the above methods reduce their performance. On the other hand, there are
presently several types of varying speed rotating machinery for which the stationary or
pseudo-stationary vibration signals cannot beassumed to be accurate. These types of rotating
machinery include gear drives, rolling element bearings, internal combustion engines, cam-
driven mechanisms and reciprocating machinery. Rapidly varying speed in this group of
rotating machinery generates non-stationary vibrational signals. The application of
conventional techniques to the analysis of non-stationary vibrational signals may yield

incorrect results.

The most common traditional techniques of vibration analysis are based on frequency
domain analysis and, among these, spectral analysis plays a major role. The use of spectral
analysis techniques with machines of rapidly varying speed often results in a smeared

spectrum because the frequency components are changed over time, and averaging over
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several blocks of analysis may result in an obscured spectral representation. Although the
presentation of the signal in the time domain may indicate some modulations, it will be very
difficult to identify the sources of these modulations. It appears, therefore, that it is
necessary to employ a new technique which would combine frequency information with
amplitude changes intime. Furthermore, the initial appearance of a defect in a machine can
produce transient phenomena in the vibrational signal. Passage of a ball over a localized
defect in a bearing, contact of a damaged tooth with other teeth in the gearbox, and piston
slap in the engine are examples of well-known industrial problems generating transient
events. Frequency domain vibration analysis methods, such as the power spectrum, average
the transient events so that they do not appear clearly in the spectral lines. Time domain
methods, which are also used to analyse transitory signals, can loose the frequency
information of different machine components. Finally, if both methods are used, it will be
difficult to relate the frequency information to the forces causing the amplitude variation of
the signal in the time domain. Therefore, rather than separate observation of the time from
observation of the frequency characteristics of a signal, it is necessary to use a joint time-

frequency technique.

In 1946, time-frequency (TF) analysis was applied to speech communication [32] for the first
time, but application of this method to the field of mechanical signature analysis started only
in the early 1990's. The earliest time-frequency method is known as the Spectrogram or

Short-Time Fourier Transform (STFT). In recent years, various TF techniques, such as the
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Wigner-Ville Distribution and Wavelet transforms, have been developed in the signal

processing field.

Only the STFT method will be discussed in the following sections, as being a technique
which is very fast and very easy to interpret. This technique will be applied to fault detection
and identification in two well-known industrial elements, the ball-bearing and gearbox. The

suitability of this method in the field of machinery diagnostics will be demonstrated.

1.4.2 The short-time Fourier transform

The STFT may be considered a method that breaks down the non-stationary signal into many
small segments which can be assumed to be locally stationary, and applies the conventional

FFT to these segments.

The STFT of asignal §,(7) is achieved by multiplying the signal by a window function,

h(t), centered at “ ¢ ”, to produce a modified signal. Since the modified signal emphasises

the signal around time “ ¢ 7, Fourier Transforms will reflect the distribution of frequency

around that time.

S(w)= L j e s(t)h(r - t)dr (1.9)
2 2.
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We may consider S, (@) as the sum of the Fourier base functions but the base functions are

a modulated version of the window function (Figure 1.9).

The energy density spectrum at time “ {”’ may be written as follows:

2

P(t,w) = |S,(a))|2 = 51; fe-fms(r)h(r ~t)dt (1.10)

For each different time we get a different spectrum and the ensemble of these spectra provide

the time-frequency distribution P(f,®).

Resolutions in time and frequency will be determined by the width of window h(z). A large
window width is chosen when we need greater accuracy in frequency and a small window
width when we want to have greater accuracy in time. However, the STFT depends greatly
on the width of the window and by varying the window used, one can exchange resolution
in time for resolution in frequency. Figure 1.10 shows a signal composed of a constant
frequency and an impulse. A great difference in the STFT representation of the signal is

apparent if the width of the window is changed.
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1.4.3 Adapting the short-time Fourier transform

To solve the problem of the “trade-off” in resolution between the time and frequency
domains in the Short-Time Fourier Transform, we must consider the origin of the problem.
Use of a single fixed window during the analysis of the signal is the origin of the STFT

problem.

We compute the adaptive STFT using a window of variable length. The criterion for
adjusting the window length is the Kurtosis parameter. As mentioned in 2.1.8 of this article,
this parameter is an indicator of the signal’s “peakedness” as a consequence of the presence

of defects in the machine.

The window length is determined by considering an initial T length for the window, thus
computing the Kurtosis parameter for this slice of the signal. If it is greater than 3, the
window length is divided into two. This work is repeated until the Kurtosis parameter for
the signal segment in the window is less than or equal to 3. During this time, the spectrum
of the signal segment is calculated. Then we move the window and repeat the same steps

for the whole of the signal.

By this technique, the window length is adjusted depending on the characteristics of the

signal. The benefits of this technique are:

- obtaining a performance surpassing that of the fixed window length STFT.
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- providing a technique that is better suited to the diagnosis of mechanical signals than

other methods.

1.5 Applications of time-frequency analysis to machinery diagnosis

1.5.1 Some industrial applications of time-frequency analysis in mechanical systems

In the last few decades, many methods of time-frequency analysis have been applied to
various areas of physics and engineering, such as speech processing and image processing.
In the field of machinery diagnostics, Forrester [33] has used time-frequency methods in the
detection of damaged gears in helicopter gearboxes. He has shown that, with the signal
enhancement techniques (conventional methods) offered by Stewart and McFadden, it is
difficult to distinguish one type of fault, e.g. tooth-cracking or pitting, from another but the
Wigner-Viile Distribution (one of the time-frequency methods) can more accurately reveal
the type of defect. Wang and McFadden [34-37] have also studied the application of time-
frequency analysis to the detection of gear damage. They have demonstrated that direct use
of the Wigner-Ville Distribution can produce a complicated time-frequency representation
of the signal and, furthermore, it has been suggested that the application of an appropriate
window function in the time domain can improve the results of Wigner-Ville [38]. On the

other hand, they have shown that the complexity of the Wigner-Ville representation,
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although reduced, still remains and still makes it difficult to detect mechanical failure in gear
systems. They have proven that application of the Spectrogram (STFT) for the early
detection of damage in gears has some advantages over the application of Wigner-Ville

Distribution [39].

In another work, Rohrbaugh [40] has applied time-frequency analysis to several sets of
marine machinery. He compared the Spectrogram (STFT) with cone-kernel time-frequency
representation from Cohen class distributions. He showed that, while the Spectrogram can
reveal the general time-varying characteristics of a vibrational signal, for more information

about the signal we must consider other time-frequency methods.

Rohrbaugh and Cohen [41] outlined another new time-frequency method developed by
Loughlin, Pitton and Atlas [42] for the detection of faults in pumps, and found it to have
several advantages over the Spectrogram when dealing with reciprocating machinery. This
method is known as “positive time-frequency distribution” and is based on a minimum cross-
entropy scheme (MCE). Some applications of time-frequency analysis to the monitoring of
machining processes, such as drlling and grinding operations, have been presented by
Loughlin, Atlas, Bemard and Pitton [43]. They showed that, although the Spectrogram
(STFT) is an efficient method for the demonstration of the time-varying characteristics of
a process, sometimes newer time-frequency methods can provide more detail on the signal.

They concluded that the newer methods of time-frequency analysis may assist in the early
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detection of problems. Atlas, Bemard and Narayanan [44] summarized some applications
of time-frequency analysis in different domains of machinery diagnostics. They emphasised
the importance of using time-frequency analysis in manufacturing and monitoring
applications. In a recent work, Loughlin and Bemard [45] presented some applications of

MCE time-frequency methods to different machine vibrational signals.

The papers cited above give some examples of the application of different time-frequency
methods, including the STFT, to condition monitoring of mechanical systems. Each of these
papers shows the way in which a new time-frequency method can reveal certain information

about the signal that can not be obtained by traditional methods.

Today, one of the most important factors limiting the progress of machine diagnostic
techniques is the lack of familiarity of mechanical engineers with new signal processing
methods. The complicated theory of time-frequency analysis and the absence of an
operational software for time-frequency analysis restrict engineers from using these methods

in machine diagnosis.

Among the various time-frequency methods, the Short-Term Fourier Transform is the easiest

and the fastest method.

This work is an attempt to present the limitations of conventional methods of vibration

analysis in machine diagnosis and to emphasise the application of the STFT to fault detection
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and identification.

A user-friendly software has also been developed to facilitate the use of time-frequency

methods by engineers whether or not they are familiar with time-frequency analysis.

1.5.2 Software for time-frequency analysis of signals

The software is designed to be run interactively; it produces and represents results in the
energy-time-frequency plane for sampled time signals. Firstly, we choose the required
signal from the list of available signals in the principal window, by mouse. Secondly, we
select the method of analysing the signal: the FFT, the STFT, or the adaptive-window STFT,
and provide information about the signal and options relating to the chosen method, such as
the length and type of window for the STFT. Finally, the program represents the results in
the form of the time-frequency plane projection of the signal and a three dimensional
representation of the signal in the energy-time-frequency space. The energy intensity is
conveyed by different colors. The three dimensional representation can be rotated in order

to obtain the best point of view.

The working and accuracy of the program can be verified by a theoretical signal. The first
example is a sum of sines (Figure 1.11). The signal is composed of the sum of three sines:

100 Hz, 300 Hz and 1000 Hz. As predicted, the time-frequency plane of the STFT shows
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three lines at 100 Hz, 300 Hz and 1000 Hz parallel with the time axis and the time-

frequency-energy space shows three peaks constant in time (Figure 1.12).

The next examples are an amplitude-modulated sine at 1000 Hz (Figures 1.13 to 1.14) and
a frequency-modulated sine at 1000 Hz (Figures 1.15 to 1.16). The modulation may easily
be seen in the time domain and it appears to be unnecessary to use the STFT; however, in
real cases we never have a signal without noise and it is often impossible to find a
modulation in time. A frequency moduiation is particularly difficult to identify by its
spectrum. [n the time-frequency domain, the modulations are very clearly displayed. The
importance of the STFT is more apparent when applied to industrial signals. It is noted that
signals with different modulations in time and frequency are very usual in machinery

diagnosis and the time-frequency representation gives a good interpretation of these signals.

1.5.3 Experimental application of short-time Fourier transform

After verifying the program by computer-simulated signals, we can investigate the data
obtained from an experimental case: the application of the STFT method to pin-point a
defect, the characteristics of which are known, located on a rolling bearing. The test was
conducted on a bearing having a simple defect on the inner raceway. This test was performed

in a laboratory using the test setup shown in Figure 1. 17. An interchangeable rotating shaft
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was supported by two journal bearings (SKF 1210 EKTN9 self-aligning double row) labelled

2 and 3. Anelectric motor provided 12.2Hz rotation for the bearing shaft. Load was imposed

by the break which was installed on the gearbox output. The defective bearing was mounted

on support A.

The defect was created by scratching the bearing raceway with an electric pen. Figure 1.18

shows the signal measured on bearing A and its spectrum. The results for the defective

bearings were also verified by calculating the frequency at which the rolling elements passed

over the defects [1]. The geometric characteristics of the system are as follows:

pitch diameter D=69 mm
Diameter of the rolling body d=10.32 mm

Contact angle a =7.87 deg

Number of rolling elements N =17

Bearing frequency of rotation £, =12.2 Hz

On the inner raceway, the frequency of rolling body defect impact is:

F, = EN l+£1-cos(a):|
2 D

(1.11)

The pass frequency on a point of the inner raceway computed by using equation (1.11)is at
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approximately 238 Hz. We can find the default frequency among other frequencies by the
spectrum in Figure 1.18 but we cannot be certain that this is indeed the default frequency
because the default frequency must have a special characteristic. In this case, the default
frequency must be an amplitude-modulated wave at approximately 238 Hz with the

frequency of modulation being equal to the rotating frequency.

The time-frequency representation of the signal provided by the STFT shows the amplitude-
modulated signal at the default frequency and its harmonics (Figure 1.19). We can easily
calculate the frequency of modulation and verify that it is correct and equals the rotating

frequency.

1.5.4 Industrial application of short-time Fourier transform

The second case of data obtained from a real case concerns the defective gear train of a hoist
drum in a large shovel operating at an open pit iron mine. The data are measured by

[nternational Measurement Solutions company in order to find the problem in the machine.

Gears generate a mesh frequency equal to the number of teeth on the gear multiplied by the
rotational speed of the shaft driving it. A high vibration level at the mesh frequency is often
caused by tooth error, wear of the meshing surfaces, or any other problem that would cause

the profiles of meshing teeth to deviate from their ideal geometry. Sidebands at the mesh
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frequency, on the other hand, are typically due to a failure of mating teeth. Imagine a
cracked tooth which is not yet broken, and will consequently not be noticed by the operating
personnel. However, it will, due to its weakened mechanical condition, deflect more under
load than the other (healthy) teeth when it goes into mesh. This results in a signal with
amplitude modulation. Thus, an increasing level in the sidebands spaced with rotation speed

in the frequency spectrum results from the cracked tooth.

A minimum length of time is required to perform an FFT analysis of each process. The time
resolution required will depend on the period of each tooth mesh and the desired level of
accuracy. Sometimes, it is not possible to measure the signal for a time long enough to

provide the periodicity of shock in the FFT spectrum.

[n this particular case, the process did not even last one revolution of the driven gear. The
case was investigated by time-frequency distribution precisely because itis known thattime-

frequency methods do not need as much time signal as the FFT spectrum.

Figure 1.20 shows respectively the signal and its spectrum. The spectrum of the signal
indicates some large peaks around 200 Hz and some other smaller peaks in the vicinity of
400 Hz, 800 Hz and 1200 Hz. However, it is very difficult to assume or confirm any defects
at this point. On the other hand, the amplitude-modulated characteristic of the signal is
clearly displayed in the representation of the signal in the time-frequency domain, as shown

in Figure 1.21. It is very simple to read the gear-meshing frequency at approximately 200Hz
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and three large impacts due to three partially broken teeth at a frequency of approximately
400 Hz and obtain the frequency of the modulation. In addition, the time and frequency of

each peak are easily identified.

1.6 Conclusion

It has been shown that, although the majority of conventional methods may give good results
when detecting a single fault in various simple elements of machines, no single technique
can provide all the answers for all cases. It is difficult to decide which method gives the best

result, in particular when the precise type of fault is not known.

The Short-Term Fourier Transform is an effective method of time-frequency analysis and
a powerful tool in machine condition monitoring. The short-time spectrum gives a clear
representation of the time-frequency plane and asimple interpretation of the energy variation
due to damage. There is, unfortunately, a fundamental problem with this approach: high
resolution cannot be obtained simultaneously in the time domain and the frequency domain.
Although this method gives the time-frequency information with limited precision, in order
to achieve greater precision we must turn to advanced time-frequency methods such as the
adaptive Short-Term Fourier Transform. This method produces reasonable and useful

window lengths for the Short-Term Fourier Transform.
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The development of a user-friendly software package facilitates the use of time-frequency
techniques in machine diagnosis. The time-frequency methods, including the short-time
spectrum, have been implemented on a computer and used, along with conventional
methods, in the analysis of vibrational signals. The advantages of the short-time spectrum
have been demonstrated by using this method, not only on measured signals from bearings

installed in an experimental set-up, butalso on vibrational signals from an industrial gearbox.
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1.8 Nomenclature

s(t)

P(x)

Hy

C(r)
FFT

Go(f)

P(t,w)

S(w)

5,(7)

h(r)

S, (@)

STFT

The magnitude of the vibration signal with zero mean

The distribution of the signal s(#)

The n" moment of the signal s(¢)

The Cepstrum of a signal

Fast Fourier transform

The complex spectrum of the signal s{t)

The joint distribution function of time and frequency

The spectrum of the signal s(t)

The short-time Fourier transform of the signal s(7)

Window function
The spectrum of the short-time Fourier transform of the signal s(?)

Short-time Fourier transform
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Table 1.1
18145 Not Not Not Just
Permissible | Permissible | Permissible Tolerable
11.2 141 Just
Tolerable
7.1 137 Just Allowable
Tolerabl
45 133 Just olerable Allowable
Tolerable
2.8 129 Allowable Good
Turbo-
1.8 125 Allowable Good machines
2 121 Good Large
112 - M (;_ machines
edium > 75 KW
0.71 17 (S}oz?l machines
m -

0.45 114 machines I5-75 KW

0.28 109 <15 KW
RMS Veloci V dB

) 24 (Ref 1056 mms) Group L Group M Group G Group T
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‘ Figure 1.9:  Basis functions and time frequency resolution of the short-time Fourier transform (STFT)
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79
a2r2ax_4.asc Time-Frequency Plane Projection
-1 700
N
g-15 ¥ 600
5 -2 & 400
=25 3 300
" 200
-3
100 ,
-3.5 — - :
0 0.2 04 0.6 0.8 0.2 0.4 0.6
Time (S) Time (s)

Short-time Fourier Transform

Magnitude
o

oo w

400
600

Frequency (Hz)

0.6

0.8 800

Time (S)

Figure 1.19: Short-time Fourier transform of the defective bearing signal.



Magnitude

30

specl.asc

-1.5 L L 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

time (s)
FFT Transform
1 .5 1 I 1] 1 T ]

g T
=
=
(o))
[+
= 0.5}

0 ! T P vebabia.aai. . . M |

0 200 400 600 800 1000 1200 1400

Frequency (Hz)

Figure 1.20: The signal measured on a defective gearbox and its spectrum.



81
speci.asc Time-Frequency Plane Projection
15 - . ,
1
g 05
=
€ 0
[@))]
A}
2-05
-1t
-1.5 — :
0 0.5 1 1.5 2 0.5 1 1.5

Time (S) Time (s)
Short-time Fourier Transform

Magnitude
- N

oo

500

1000

2 1600

Time (S) Frequency (Hz)

‘ Figure 1.21: Short-time Fourier transform of the defective gearbox signal.



82

CHAPITRE II
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2.1 Abstract

Time-frequency analysis is relatively new in the field of mechanical signal processing and
has yet to be applied to its full potential. This method of analysis is effective in the detection
of faults in machinery and, in certain instances, is the most efficient method available. In this
paper, some of the methods of time-frequency analysis such as the Wigner Distribution, the
Choi-Williams Distribution, and the RID Distribution, are briefly reviewed and the
advantages and disadvantages of each are considered. The efficacy of each method is tested

by the practical application of an in-house software program developed for all time-

*: Soumis pour publication dans “Journal of Sound and Vibration™
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frequency methods. Firstly, computer-generated signals are used to determine the
effectiveness of a method. Secondly, the signal recorded from an experimental set-up is
applied in order to verify performance. Finally, the various methods are evaluated using real-
life signals recorded from a defective gearbox and a defective dryer machine. This paper
demonstrates the effectiveness of time-frequency analysis in presenting a clear and exact
representation of asignal, and compares the results with those obtained using the Short-Time
Fourier Transform and traditional methods of analyzing signals measured on a rotating

machine.

2.2 Introduction

The primary objective of all research into signal processing has been to find an efficient
method which would generate results rapidly and clearly and in a manner which could be

relatively easily interpreted.

The Short-Time Fourier Transform (STFT), used as a time-frequency representation of the
signal energy, was one of the first attempts to see a signal in three dimensions and obtain
rapid calculation and clear interpretation. The STFT is obtained by applying a fixed-length
moving window to the non-stationary data sequence prior to computing the spectrum. The

result is a time average of the signal spectrum over the window width. However, although
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this method provides a time-frequency representation of the signal, both the time and the
frequency resolution are completely dependent upon the choice of the window length and the

method does not satisfy certain prerequisites for a joint time-frequency distribution.

Use of the STFT in the solution of problems in signal processing was followed by the
development of time-frequency methods. Researchers tried to find a way to show the
distribution of signal energy as a joint function of time and frequency which, on the one
hand, satisfy certain conditions and, on the other hand, reduce the time-frequency resolution

dependence on the window.

The Wigner Distribution (WD), first used in quantum mechanics 1], has been used to
overcome the problem of the STFT. It was employed in signal processing by Ville in 1948
[2]. The WD has very desirable properties which have been extensively investigated by
Classen and Mecklenbrauker [3]. The major draw-back of the WD is the presence of cross
terms between frequency components in the time-frequency plane. Cross terms and their

properties have been studied by Hlawatsch and Flandrin [4-5].

Some smoothing of the Wigner Distribution is needed to suppress the cross terms. A

windowed- Wigner Distribution by a function that is peaked around 7, A(7), will be called

a pseudo-Wigner Distribution (PWD) [3]. If the smoothing is carried out in both the time and

frequency domains, the distribution will be called a smoothed Wigner Distribution (SWD)
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[6]. In addition to the Wigner Distribution, several others have been developed but all had
the problem of cross terms [7-8]. In 1966, Cohen provided a general formula for generating
different distributions [9]. Other distributions are obtained by changing an arbitrary function
called the kernel. In his recent work, he gave a complete review of the time-frequency

distributions [10].

Instead of smoothing the Wigner Distribution to eliminate the cross terms, Choi-Williams
introduced a new kernel which can reduce the cross terms [11]. Unfortunately, the Choi-
Williams Distribution does not completely satisfy the support properties in time and
frequency. Recently, Jeong and Williams [12] defined the conditions which a kernel must
satisfy to suppress the cross terms. This class of distribution is called the Reduced

Interference Distributions (RID), and is an improved version of the exponential distribution.

It can be seen that each distribution has both advantages and disadvantages; the choice of
distribution for a given practical application depends on the problem concemed. In Section
2, the necessary properties of a time-frequency distribution are summarized, time-frequency

distributions are compared, and their advantages and disadvantages are given.

In Section 3, the history of time-frequency applications is presented; an in-house software
developed for time-frequency distribution is discussed; and the effectiveness of the time-
frequency distribution is shown by analyzing signals measured from experimental and on-site

tests.
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2.3 Time-frequency distributions
2.3.1 Time-frequency distribution property requirements

An ideal joint time-frequency function of signal S(¢) possesses a number of important

properties, which form the basis for interpreting the function as a time-frequency distribution

of the signal energy.
These properties discussed in [3] are summarized as follows:

a) the instantaneous signal power at a certain time is equal to the projection of the

P(1,w) on the time axis: —1- JP(t,O))d(U = ‘s(t)lz
2r =

b) the energy density spectrum of s(¢) at a certain frequency is equal to the projection of

the P(f,@) on the frequency axis: IP([,a))dt = [.S'(a))l2

The a) and b) definitions are called time and frequency marginal conditions.
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¢) the first-order moment of the P(¢, @) with respect to frequency may be expressed as

follows

Q) = }%)-Ta)l’(t,a})dco whete P(1) = TP(t,w)dw

TheC)(¢) can be interpreted as the average frequency of the P(f, @) attime! .

Forreal signals the average frequency provides no information. Let us therefore assumethat s(t)
is complex-valuedin the form s(t) = v(¢)e’®” where v(t) and @ (1) arereal functions, v(t)
is the envelope of s(?), and @(¢) is the phase of s(t). Using this representation of 5(¢),

we find that Q(¢) = @'(t) . Therefore it can be concluded that the instantaneous frequency

is an average frequency at a particular time.

d) the first moment of the P(!,®) with respect to time at a particular frequency is

1 = x
T(a))zp(—w)-:[utP(t,a))dt where P(@) = i P(t,w)d!
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If we consider the complex spectrum F(@) = A(@w)e’¥®’ where A(@) is its amplitude

and () is its phase angle, we can prove that 7(@) = —y'(w).

Thus, the average time of the I’{(#, @) at a particular frequency is equal to the negative of

the derivative of the spectral phase of the signal.

e) the time shift: If s(t) > s(t—17) then P(t,w)—> P(t-r1,0)

J) the frequency shift: [f s(t) > s(t)ejm then P(t,w)—> P{t,0-Q)

g) the time limited signal property.

[fs(¢) is restricted to a finite time interval only and s(¢) =0 for t <t,ort>1t,
then the P(#, @) is restricted to the same time interval P(t,@)=0 fort <t ort >1,

h) the frequency limited signal property.

If S(w)=0forw<w, orw>w, then P(t,w)=0 for w <®, or ® > o,

From a mathematical point of view, there is an infinite number of joint functions which
satisfy these conditions since the conditions do not define the problem uniquely. Several

distributions have been proposed over the last fifty years but in this section only certain

distributions with desirable properties will be studied.
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2.3.2 Time-frequency methods

The Wigner Distribution (WD) is one of the joint time-frequency distributions that is

fundamentally different fromthe STFT The original formulation was proposed by Wigner

in 1932 and used in quantum mechanics. The Wigner Distribution of signal s(t) is defined

WD (t,w) = r’ s(t+7/2)s (1-1/2)e dr @1

I %1y

where s(1) is a continuous complex signal and ”*” denotes the complex conjugate (unless

otherwise indicated, the ranges of integrals are from — oo to oo throughout this paper.)

This representation may be interpreted as the Fourier Transform of

R,(t,r)=s(t+7/2)s'(t—-1/2) (2.2)

with respect to the lag variable v where R (¢,7) is defined as the instantaneous auto

correlation of a complex signal s(¢), Therefore :

WD.(t,w) = j R, (t,7)e ™ dr (2.3)
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The Wigner Distribution possesses very high resolution in both time and frequency, and it
has the properties a) to i). Despite the desirable properties of the Wigner Distribution, it has
two major draw-backs: it is not necessarily non-negative and it is a bilinear function

producing interferences or cross terms for multi-componentsignals. The Wigner Distribution

of the sum of two signals §,(f) + 5, (¢) is

WD, ., (t,@) = WD, (t,@)+2Re¥D,, (,0)|+ WD, (t,0) 2.4)

which has a cross term “ .?.Re[WDsl& (t,a))] ", in addition to the two auto terms.

Cross terms lie between signal components in different regions in the time-frequency plane
and are oscillatory. They can have a peak value as high as the auto terms and make the
interpretation of the time-frequency representation of signals very difficult. Ville used the

Wigner Distribution in signal analysis in 1948 when he replaced the continuous complex

signal with the analytical signal. s(¢) is an analytical signal if the imaginary part of s(¢)is

equal to the Hilbert transform of the real part of s(¢), so that

1(t) = —‘I al. (t) 2.5)
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In the case where s(?) is an analytical signal, the Wigner Distribution is termed the Wigner-

Ville Distribution (WVD). By using the analytical signal in the Wigner Distribution firstly,
the negative frequencies which have no physical significance for a real signal are eliminated
and, consequently, the cross terms between the negative and positive parts of the spectrum
are eliminated; secondly, the Nyquist frequency can be applied to the sampling frequency
of the signal. However, although the analytical signal eliminates some cross terms, there

are still cross terms between multiple components which make interpretation difficult.

In practical applications, the Wigner Distribution requires some smoothing in order to

suppress the cross terms. The pseudo-Wigner Distribution (PWD) is detined by:

PWD,(t,@) = [ s(t+7/2)s"(t —/ 2)h(r)e /™ dr (2.6)

where A(7) is a window function or a low pass filter in order to reduce cross terms which

have oscillations of relatively high frequencies. The pseudo-Wigner Distribution can be

considered as a frequency-domain variation of the Wigner Distribution.

PWD (t,0) =WD,(t,)*,6 H(®) (2.7

where H (@) is the Fourier Transform of A(7).
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Filtering broadens the representations in the frequency domain and, as a result, the pseudo-
Wigner Distribution gives a modest time resolution at the expense of sacrificing the
frequency resolution. Such smoothing is desirable when time-domain filtering is not needed

and the sacrifice of frequency resolution for time resolution is acceptable.

If, in order to suppress cross terms in the Wigner Distribution, smoothing in both the time
and frequency domains is needed, a smoothed Wigner Distribution (SWD) is appropriate.

The smoothed Wigner Distribution is defined as

SWD.(t,w) = HWD,(u,g)cb(: —u,@ - E)dud& (2.8)

where @(f,w) is a two-dimensional smoothing function. The smoothed Wigner

Distribution reduces cross terms with oscillations in the time and frequency domains at the

expense of resolution in both domains.

The Short-Time Fourier Transform (STFT), which is the most widely used time-frequency

representation in practical application, is defined as

STFT, (t,@) = [ s(z)h(z - )e™ " dr (2.9)
where A(t) is a window function. The modulus squared of the STFT is called a

spectrogram.
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S, (t,w) = |STFT,(t,0)|" (2.10)

By two-dimensional convolution theorem, we have

ISTFT, (1, 0)| = —;—WD, (t,0)* WD, (~t,@) @.11)
/4

The spectrogram is a special case of the smoothed Wigner Distribution in which the

smoothing filter is O(f,w) = %WDW (~t,w).
T

The spectrogram has the non-negativity property which facilitates the interpretation of the
spectrogram as the signal energy distribution, but does not preserve the time and frequency
energy marginals of a signal. In general, the non-negativity property often conflicts with
otherdesirable properties. However, a major drawback of the STFT is that it requires a trade-
offbetween the time and frequency resolutions. Although, the Short-Time Fourier Transform
with a window that conforms to the signal components provides maximum resolution in the
smoothed Wigner Distribution, the STFT has less concentration than the Wigner
Distribution. Moreover, for unknown signals, how can appropriate windows be found

without a priori knowledge of the signal components?

Apart from the Wigner Distribution, several other distributions have been proposed. These
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are similar to the Wigner Distribution in that they satisfy the marginal, the instantaneous
frequency condition, and various other properties. The Rihaczek [7] and the Page [8]

Distributions are two of those proposed.

The Rihaczek distribution, which gives a complex energy spectrum, is defined as

e(t,w) = s()S" (w)e™™ (2.12)

1
J2rx
The real part of the Rihaczek distribution, which is called Margenau-Hill distribution, lacks

many desirable properties such as instantaneous frequency, but does satisfy the marginal

conditions.

Page considered only the signal up to the present time { and abandoned the future because

it is unknown. A new signal is defined as follows :

s,(tY=s(t") for ' <t
5,N=0 for t'>t

The Page Distribution for the above signal definition may be written as follows :

P-(t.w)=2Re 5 (0)S; (w)ei= (2.13)

1
J2r



95

where S, (@)= L js([')e'j“’{dt'
27 2

The Page Distribution satisfies the marginal conditions but is unable to show correctly a
multi- components signal in the time-frequency plane. Figure 2.1 shows a representation of

a muiti- components signal by the Wigner, Rihaczek and Page distributions. The signal is

asinewith frequency @, startedats = O andstoppedat! = {,, restarted againat = f, with
another frequency @, , and ended at ¢ = £, . Each of the three distributions displays energy

density where one does not expect to find it.

In 1966, a method was derived that could generate an infinite number of new distributions

in a very simple way. This general distribution formula is obtained by replacing ¢(8, 7)

with ® (¢, @) in the formula (2.8):

WD, (o) = [[[e" ™ p(8,0)s(u+7/2)s" (u—7/2)dudrd®  (2.14)

where @(8,7) is the two dimensional inverse Fourier transform of ® (¢, @) and & and 7
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are respectively the frequency lag and the time lag. Formula (2.14) is referred to as Cohen’s

class of time-frequency distributions and characterizes time-frequency distributions by an

auxiliary function, called the kernel function @(@,7) . The properties of a distribution are

reflected by simple constraints on the kernel, and by examining the kernel one can readily
be assured of the properties of the distribution. This allows one to pick and choose those
kernels that produce distributions with prescribed, desirable properties. By using this general
formula we can find the kernel function for each of the distributions which have been

defined, such as the Wigner, Rihacezk, Margenau-Hill and Page. The kernel function for the

Wigner, Rihacezk, Margenau-Hill and Page distributions are respectively 1, el”'?,

Ot igtz]/2
cos-;)-and P

-

In 1980, Choi and Williams presented a new kernel for reducing cross terms in the Wigner

Distribution. Their kemnel is defined as

0(8,7) = e-o%ia (2.15)

where o 1s a parameter which trades off auto-term resolution for cross term suppression or
vice versa. By increasing o, we achieve a distribution similar to the Wigner Distribution and

by decreasing o, we eliminate the cross terms but we loose resolution in the time and
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frequency domains. The Choi-Williams distribution may be written as follows :

CWD,(t,w) = l _fu-ty ]r(u —7/2)s(u+7/2)e-rordudr (2.16)

1
43 Hmm[ 4t /o

Figure 2.2 shows the Choi-Williams representation with a different value of ¢ for a
sinusoidal signal with two constant frequencies. Although, the Choi-Williams Distribution
satisfies the marginal conditions, it violates the support properties g) and A). It attenuates
the cross terms equally in the time and the frequency domains and provides a higher
resolution than the smoothed Wigner Distribution. Although the Choi-Williams Distribution
is the best choice for analyzing mutli-component signals in which the components have a
constant frequency content, its resolution for signal components with significant frequency
modulation or time-varying signals is very poor. However, the Choi-Williams Distribution

is insensitive to the time-scale of the components, due to the shape of its kernel.

By generalizing from Choi-Williams’ work, a broader class of exponential distribution (ED)

defined by Diethomn [13] induces a kernel of the following form:

AN
pO.0)=¢ < &

By carefully selecting parameters p,q and o, we may obtain the desired properties.

To reduce the cross terms and preserve simultaneously the properties @) to k), Jeang and
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Williams [12] introduced a new class of time-frequency distribution, called the Reduced

Interference Distributions (RID). The RID satisfies properties a) to &), as does the WD. The

RID kernel should be not only a low-pass filter but also a function of &7 which satisfies

lp(8,7)| =<1 for |6z|>>0

where & and 7 are respectively the frequency lag and the time lag.
The kernel of the RID is defined as follows :

Prp (8,7) = H(Er) (2.18)

where H is a two dimensional low-pass filter type. The WD is not a member of the RID

because its kernel does not have the reduced interference property. Although the RID
satisfies many properties, it has many disadvantages. First, the RID may or may not satisfy
the regularity property and it does not have the unitary property. Secondly, the RID only

reduced the height of the cross terms and spread them over a larger time-frequency area. In
particular, the RID is not able to suppress the cross term which is located on the & or the

T axis.

In 1966, Born and Jordan [14] used a sinc kernel which is defined as
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sin(afr)
abr

with @ = 1/2 . But its property of reducing interference distributions was derived from the

@(0,7) = (2.19)

work of Jeang and Williams in 1992.

In 1990, a new time-frequency distribution with very interesting features, called the cone-
shaped kernel, was developed by Zhoa, Atlas and Marks (ZAM) [15]. This distribution not
only suppresses the cross terms, but also produces good resolution in both time and
frequency. Their kernel is defined as

sin(afr)
abr

02 (0:7) = g(7)r] (2.20)

where g(r)=1, a=1/2.

Figure 2.3 shows the comparison between the Spectrogram and the ZAM Distribution. This

distribution hides the cross terms by placing them under the auto terms.

In 1993, Louglin et al. [16] studied a general method for placing cross terms under auto

terms. They used a kernel in the form of

¢(8,7) = f(8,7)sin(abr) 2.20)
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Depending on the choice of f(8,7) these kernels may or may not satisfy other desirable

properties. In 1994, a new kernel function called the “compound kemnel” was presented by
Zhang and Sato [17]. This kemel is the product of the Choi-Williams and Margenau-Hill

kernels.

p., =exp(-2xz26%c /o *)cos(2rp6r) (2.22)

where o and [ are two parameters which may be identified as follows:

when & — ©, [ — 1/2, we obtain the Margenau-Hill Distribution;

when f# — 0, we have the Choi-Williams Distribution, and

when ¢ — «, 8 — 0, we get the Wigner-Ville Distribution.

In this distribution, the cross terms are transposed with the auto terms. Consequently, the
correct value of the auto terms is slightly modulated due to cross terms. Figure 2.4 illustrates

the cross- sectional features of both distributions for various values of the parameter o .

The last three types of kernel are of little interest because they change the forms of auto

terms which are very important in fault detection in machinery.
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Zhenyu Guo et al. [18] presented a new kernel based on the first order Bessel function. The

kernel is given by

_ J,(2nabr)

(2.23)
ralr

:dh

wherea is a scaling factor and ./, is the first order Bessel function. For a < 0.5, this

distribution can be considered as a member of the RID, and when @ > 0.5, it behaves like

the Choi-Williams distribution but is not identical to it. Although the Bessel distribution does
not have the non-negativity property, by adjusting « , it is possible to analyse the time-

frequency behaviors of transient deterministic and random signals.

It has been shown that the different distributions perform better for some signals than others,
and that the choice of kemel is very important and may be dependent on the signal. A
general method for constructing the distributions of which the kernel is dependent on the
signal, and which possess certain desirable properties of the distribution, has been developed
by Baraniuk and Jones [19]. It is noted that distributions with signal-independent kernels are
called bilineardistributions, but distributions with signal-dependent kernels wherethe kemel

is adjusted according to the signal at hand, are called adaptive optimal kernel distributions.

In this method, an optimization procedure is applied to a case where the kernel is adjusted
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in accordance with the signal at hand.

2.4 The application of time-frequency analysis to machinery diagnostics

2.4.1 Brief historical perspective

From an application point of view, Boashash [20] was the first to use the time-frequency
technique for real problems. He applied it to geophysical exploration. The Wigner
Distribution was used by Bazelaire and Viallix [21] to obtain data to measure the absorption
and dispersion coefficients of the ground and to formulate a new understanding of seismic
noise. Forrester [22] has made a great contribution to machinery diagnostics by using the
WVD in the vibration analysis of defective helicopter gearboxes. He showed that signal
enhancement techniques are not capable of distinguishing tooth cracking from spalling and
can be misleading in their indications of the extent of damage, but WVD can detect both the
type and extent of faults. Meng and Qu [23] presented the effectiveness of using WVD in

rotating machinery fault diagnosis.

In a series of reports, McFadden and Wang [24-27] reviewed several definitions of the
continuous and the discrete WVD, implemented WVD for the detection of gear damage, and
compared the results with those from existing narrow band enhancement techniques. In

another application of time-frequency analysis, Rohrbaugh [28] used the time-frequency
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method to find defects in different elements of several sets of marine machinery, such as fans
and motor-generators. Rao, Taylor and Harrison [29] used the Wigner Distribution in the
diagnosis of faults in a high-power gas turbine. They described the advantages of WD in
providing high-resolution estimates of non-stationary, narrow-band signals in the time-
frequency domain. Another application of time-frequency analysis to the detection of faults

in a gearbox is described by Oehimann et al. [30].

Williams [3 1] used the Reduced Interference Distributions (RID) time-frequency technique
in the analysis of signals measured from bearings. He showed that the spectrogram and

Waterfall Plot do not adequately represent time-varying signals.

The detection of faults in reciprocating machines such as internal combustion engines and
pumps is particularly difficult. Rohrbaugh and Cohen [32] applied time-frequency methods
to the analysis of a cam-operated pump. They showed that time-frequency methods can
provide more detail about the signal, thus facilitating the detection of faults. In comparing
time-frequency analysis with the STFT and traditional methods, they found time-frequency
methods to be superior. In anotherwork, Samimy and Rizzoni [33] presented the application
of time-frequency analysis to the detection of internal combustion engine knock. The
transient nature and time-varying characteristics of the signal mean that only time-frequency

methods will give a satisfactory result.

Another application of time-frequency methods is in machine tool monitoring. Zheng and
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Whitehouse [34] described the potential of the Wigner Distribution for the detection of
incipient chatter. Loughlin et al. {35] discussed the application of time-frequency analysis
to drilling and grinding operations. They demonstrated how a new technique can reveal

features that do not appear in the Short-Time Fourier Transform.

The Wigner-Ville Distribution has been applied in various fields : as an indicator of dnll
attrition in industry or surface-fault in a diesel engine.  Changes in the dynamic
characteristics of ground using seismic analysis were presented by Bigret et al. {36]. Atlas,
Bernard and Narayanan {37] gave a review of the application of time-frequency analysis to

different elements of rotating machine monitoring and machine tool monitoring.

[n 1992, Boashash [38] published a book about time-frequency analysis and its application.
[n this book, he reviewed several articles on different methods of time-frequency analysis

and applications of the analysis in several different domains.

All of the above papers show the potential of time-frequency analysis in different fields of
mechanical engineering. They demonstrate the applicability of time-frequency analysis to
the solution of problems in machine monitoring. In the next section we will compare some

of the time-frequency analyses by applying these methods in experimental and real cases.
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2.4.2 Software for time-frequency analysis of signals

Anin-houseuser-friendly software program has been developed fortime-frequency analysis.
This program is capable of calculating and demonstrating the different time-frequency
transforms in two and three dimensions. The program includes the Fourier spectrum analysis,
the Short-Time Fourier Transform, the Wigner-Ville Distribution, the smoothed Wigner-
Ville Distribution, the Choi-Williams Distribution, the Rihaczek-Margenau Distribution, the
Bom-Jordan-Cohen Distribution, and many other time-frequency methods. In this section,
the performance of each method is illustrated by a test signal generated by computer. The test

signals are similar to those which are often observed in machine diagnosis.

The first example, which is called a sum of sines, is a multi-component signal with constant

frequencies. This kind of signal is generated by faults such as imbalance, misalignment,
looseness, and resonance which cause the constant frequencies at N x RPM . The signal

consists of three sines with frequencies 100 Hz, 300 Hz and 1000 Hz. In the time-frequency
plane, one sees three lines at 100 Hz, 300 Hz and 1000 Hz parallel with the axis of time and,
in time-frequency-energy, the three sines are shown in the form of three peaks constant in
time. Figure 2.5 shows the signal and its Fourier spectrum. As shown in Fig. 2.6, the STFT
of the signal presents exactly what we expected. Figure 2.7 shows the Wigner-Ville
distribution of the signal, and we can see that the autoterms are contaminated by the

interference terms. It is very difficult to identify the three frequencies without advance
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knowledge of the signal.

The SWV (smoothed Wigner-Ville) shows the three peaks clearly in Figure 2.8. In the Choi-
Williams Distribution of the signal, bv changing the value of ¢ | we can obtain a good
representation of the three frequencies, as shown in Figure 2.9. In the Born-Jordan-Cohen
Distribution of the signal, shown in Figure 2.10, resolution is lost due to the elimination of

the cross-terms.

The second example is an amplitude-modulated cosine at 1000 Hz with frequency
modulation equal to 15 Hz, as shown in Figure 2.11. Cases such as a damaged gearbox and
a defective bearing usually generate amplitude-modulated signals. Whilst it is not always
possible to identify these by the Fourier spectrum or time waveform, with time-frequency
analysis it is relatively simple. Figures 2.12 to 2.17 show the different time-frequency
representations of the signal, and all these methods give a clear representation of the signal
with varying resolution. It must be noted that the STFT requires an adjustment of the window
and the Choi-Williams method requires an appropriate value of ¢ in order to provide
satisfactory resolution. Among these representations, the Wigner-Ville Distribution provides

the best result.

Certain types of gearbox problem may result in a frequency-modulated signal that is
extremely difficult to identify. Such asignal is represented by a frequency-modulated cosine

at 1000 Hz with frequency modulation equal to 20 Hz, as shown in Figure 2.18. As shown
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in Figure 2.18, it is not possible to determine the characteristics of the signal using its Fourier
spectrum. On the other hand, time-frequency methods clearly demonstrate the time-varying
characteristic of the signal, as shown in Figures 2.19 to 2.24 . The Wigner-Ville, the
smoothed Wigner-Ville, and the Choi-Williams Distributions give better representations of

the signal than the others.

The last example is a frequency and amplitude modulated cosine at 1000 Hz, as shown in
Figure 2.25. This case is more complicated than the others but time-frequency methods
provide clear representations of the signal, as shown in Figures 2.26 to 2.3 1. In this case, the
Wigner-Ville, the smoothed Wigner-Ville, and the Choi-Williams Distributions again give

better representations of the signal than do the others.

2.4.3 Experimental study of time-frequency methods

2.4.3.1 Experimental apparatus

In this section, an experimental installation which enables us to simulate different defect
configurations in rotating machinery is presented. The experimental prototype (see Figure

2.32) consists of three distinct parts: part I, motor; part I, journal, and part IIl, receptor.

Part[is a three-phase asynchronous motor (550-575 V, power 2 HP). The rotating speed can
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vary from 0-1725 r.p.m. Part I consists of an interchangeable rotating shaft which is
supported by two journal bearings (SKF 1210 EKTNO self aligning double row) labeled A
and B. There are three shafts on which bearings with different defects are mounted. And Part
I consists of a reducing gearbox with a ratio of 40:1 and a brake that can produce a variable
resistance torque. Parts [, II, and III are connected by two couplings. An accelerometer is

mounted on the experimental installation and is connected to an analyser.

2.4.3.2 Tests and resuits

We examined the time-frequency methods to pin-point defects of known characteristics and
location on the rolling bearing. There was a small defect on the inner raceway of the bearing.
The defect was created by scratching the bearing raceway with an electric pen. Figures 2.32
to 39 show the signal measured on bearing A, its spectrum and all other distributions. The
results for the defective bearing were also verified by calculating the frequency at which the
rolling elements passed over the defects [39]. The geometric characteristics of the bearing

are as follows:

pitch diameter D=69 mm
Diameter of the rolling body d=10.32 mm

Contact angle a =7.87 deg



109

Number of rolling elements N =17 (per row)
Bearing frequency of rotation /,=12.2 Hz

On the inner raceway, the frequency of rolling body defect impact is:

F, = Ffz N [1 +%cos(a)} (2.24)

The pass frequency on a point of the inner raceway is calculated and is equal to 238 Hz. The
spectrum in Figure 2.33 shows the default frequency, along with other frequencies.

However, the spectrum can be misleading [23]: we cannot be certain which is the default
frequency unless we know its special characteristics. In this case, the default frequency
should be an amplitude-modulated wave at approximately 238 Hz with the frequency of

modulation being equal to the rotating frequency.

The amplitude-modulated signal at the default frequency and at 2 X default frequency in the

STFT is shown, and we calculate the frequency of modulation and verify that it is correct and

equal to the rotating frequency.

Among time-frequency methods, the Wigner-Ville cannot provide a good representation of
the signal due to the cross terms which are generated between the signal components. The
smoothed Wigner-Ville shows the signal even better than the STFT and we can clearly see

the amplitude modulation and easily calculate the frequency of the modulation. The Choi-
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Williams gives a representation which is not as satisfactory as that produced by the smoothed
Wigner-Ville as it is necessary to choose an appropriate value of . The Born-Jordan-
Cohen gives a good appearance of the signal but, again, the resolution in time and frequency
is not as satisfactory as that produced by the smoothed Wigner-Ville or the Choi-Williams.

The Rihaczek-Margenau cannot even give a good appearance of the signal.

Therefore, after comparing the different time-frequency transforms of this signal we

conclude that the SWV gives the best representation of the signal in this case.

2.4.4 Application of time-frequency methods to industrial problems

2.4.4.1 Gearbox test

The first set of data is obtained from a defective gear train of a hoist drum in a large shovel
operating at an open pit iron mine. The data are measured by International Measurement

Solutions company in order to find the problem in the machine.

Gears generate a mesh frequency equal to the number of teeth on the gear multiplied by the
rotational speed of the shaft driving it. A high vibration level at the mesh frequency is often
caused by tooth error, wear of the meshing surfaces, or any other problem that would cause

the profiles of meshing teeth to deviate from their ideal geometry. Sidebands at the mesh
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frequency, on the other hand, are typically due to a failure of mating teeth. Imagine a
cracked tooth which is not yet broken, and will consequently not be noticed by the operating
personnel. However, it will, due to its weakened mechanical condition, deflect more under
load than the other (healthy) teeth when it goes into mesh. This results in a signal with
amplitude modulation. Thus, an increasing level in the sidebands spaced with rotation speed

in the frequency spectrum results from the cracked tooth.

A minimum length of time is required to perform an FFT analysis of each process. Here, the
time resolution required will depend on the period of each tooth mesh and the desired level
of accuracy. Sometimes, it 1s not possible to measure the signal for long enough to provide
the pentodicity of shock in FFT spectrum.  In our case, the process does not even last one

revolution of the driven gear.

Figures 2.40 to 2.46 show respectively the spectrum, the STFT, the Wigner-Ville, the
smoothed Wigner-Ville, the Choi-Williams, the Born-Jordan-Cohen and the Rihaczek-
Margenau representation of the signal (SPEC1). The FFT spectrum of the signal shows some
peaks around 200 Hz and other smaller peaks at 400 Hz, 800 Hz and 1200 Hz. However,
it is very difficult to find the problem without more information, and we are unable to
visualize the pattern of the signal in the time-frequency plane. It is possible to see the
amplitude-modulated signal in the STFT of the signal. The gear-meshing frequency is seen

to be at approximately 200Hz and three large impacts due to three partially broken teeth at
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approximately 400 Hz. Itis possible to find the frequency of the periodicity of the peaks on
the STFT. However, thesmoothed Wigner-Ville gives abetterrepresentation than the STFT.
The frequency of the periodicity is found with more precision in the smoothed Wigner-Ville
representation than in the STFT representation. The Choi-Williams, with an appropriate
value of o, gives a representation of the signal in which a part of the energy of the second
peak is dispersed between the first peak and the third peak. In the Born-Jordan-Cohen, the
second peak is almost invisible and it is difficult to obtain satisfactory information about the
signal. The Rihaczek-Margenau does not give a clear representation of the signal and the
second peak has completely vanished. Here, again the SWV gives the best representation of

the signal.

2.4.4.2. Bearing test

The second test was carried out on the dryer of a paper machine at the Abitibi-Consolidated
Company in Quebec. A typical dryer section consists of about 60 paper-drying cylinders
which are divided into five top and five bottom sections, as shown in Fig. 2.47. The standard
paper dryer is a four- or five-foot diameter hollow cylinder of cast iron. The dryer journals
must support the dryer which is extremely heavy and rugged. The drive of the dryer section
has a critical function and any undesirable vibration in one of the cylinders can affect the

passage of the paper over this section. Therefore, a precise and periodic diagnosis of the
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dryer bearing is essential. An efficient diagnostic method can recognize the problem before
damage has occurred. For this reason, time-frequency methods are used in this particular case

to show their capacity, potential and credibility.

Figure 2.48 shows the measured signal on dryer # 27 and its spectrum. From the individual
impacts which appear at regular intervals in the spectrum, one can conclude that there is a
problem in the dryer. The low-level intense noise in the spectrum makes it impossible to see
the amplitude modulations associated with the impacts. Time-frequency analysis makes the
detection of this fault a straight-forward matter. Figures 2.49 to 2.52 show the different
time-frequency representations of the signal. The constant impacts in time lead us to the
defects which cause frequency constants components such as the defect on the outer race of
a bearing. In this machine, bearings play an important role and it is to be expected that we
first verify the bearing defaults. From the characteristics of the bearings, it is possible to
calculate the different frequency of the bearing defaults. The frequency of the first impact

corresponds to the BPFO (ball-pass frequency on the outer race) of the bearing and the other

impacts are 2x BPFO ,3x BPFQ,.... After replacing the bearing by a new one, this
diagnosis is confirmed by an inspection of the old bearing.
In this case, there is not a great difference between the time-frequency distributions, and the

STFT with an appropriate window may provide a clear representation. Thus, it is not

possible, in this instance, to choose one method as being superior to the others, because the
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choice of method depends on the signal and the resolution requirement in the analysis.

2.5 Discussion and conclusion

By comparing the results obtained from time-frequency analysis of different mechanical

signals, we can conclude that :

l- Time-frequency analysis has definite advantages over time-based vibration analysis
or frequency-based vibration analysis and these advantages make it a powerful tool

in machine monitoring.

2- The STFT can give a satisfactory representation of a signal in the time-frequency
plane provided that an appropriate length of window for cutting the signal is chosen.

The resolution in time or frequency is always dependent on the length of window.

3- The Wigner-Ville is not able to produce a satisfactory representation of muiti-
component signals due to the presence of cross terms. It is valid only for mono-

frequency signals.

4- The smoothed Wigner-Ville is the most appropriate among the transforms which we
have studied in this paper. It gives not only a clear representation of the signal but

also satisfactory resolution in time and in frequency.
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5- The Choi-Williams may give a representation of the signal which is as satisfactory

as that of the SWV but it is necessary to find a suitable value of o .

6- By the Born-Jordan-Cohen, we can obtain an image of the signal in the time-
frequency plane; however, the resolution in time and in frequency are not always
accurate and it is not possible to calculate exactly the frequency of modulation or the

frequency and the time of a transient peak in a time-frequency plane.

7- The Rihaczek-Margenau may not provide a satisfactory representation of the signal
when the signal comes from a real case, but for theoretical signals it gives a good

representation.

In summary, the choice of a distribution in a practical application depends on the problem
concerned, and none of these distributions provides us with complete and conclusive resuits,
thus we cannot rank one above the others. For this reason, we recommend that researchers

consider all distributions and compare the results in each case studied.
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2.7 Nomenclature

s(t) Magnitude of the vibration signal with zero mean

S(w) Spectrum of the signal s(¢)

P(t,w) The joint distribution function of time and frequency

Q(2) The first order moment of the P(¢, @) with respect to frequency
T (w) The first order moment of the P(¢, @) with respect to time

v(t) Amplitude of the signal s(!)

o(t) Phase of the signal s(¢)

A(w) Spectral amplitude of the signal S(@)

v(w) Spectral phase of the signal S(@)

WD(t,w) Wigner distribution

R(t,7) Instantaneous auto correlation function

s (1) Imaginary part of the signal



sp(1)

WVD(t,w)

PWD(t, )

SWD(t,w)

e(t,w)

p(0,7)

CWD(t,w)

RID(t.w)

BJC(t,®)

Real part of the signal

Wigner-Ville distribution

Pseudo-Wigner distribution

Smoothed Wigner distribution

Energy density in time and frequency

Kernel function

Choi-Williams distribution

Reduced interference distribution

Bom-Jordan-Cohen distribution
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FREQUENCY -
(a) {b) (<)

Figure2.1:  Representation of a multi components signal by (a) Wigner, (b) Rihaczek and
(c) Page distribution (Cohen, 1966)
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(a) (b) ()

Figure2.2:  (a) Wigner and (b), (c) Choi-Williams distributions for the sum of two sine waves
with (b) & = 10° and (c) & = 10° (Zhao, Atlas et Marks, 1990)
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13)

tb)

()

Figure2.3:  The comparison between (b) the STFT and (c) the ZAM distribution of a signal
. with a rapid frequency change (Loughlin, Atlas et Pitton, 1993)
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a) (b)

Figure2.4: A comparison among (a) the Wigner-Ville (b) the Choi-Williams with & =10 and (c) the
Zhang-Sato with o =10 for a sinusoidal signal with two and three components (Zhonyu,
Daurand et Howard, 1994)
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Figure 2.32:  Test setup.
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‘ Figure 2.36:  Smoothed Wigner-Ville representation of the signal measured on a defective bearing.
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Figure 2.40: Time and spectrum representation of the signal measured on a defective gearbox.
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. Figure 2.42: Wigner-Ville representation of the signal measured on a defective gearbox.
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. Figure 2.44: Choi-Williams representation of the signal measured on a defective gearbox.
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. Figure 2.45: Bom-Jordan-Cohen representation of the signal measured on a defective gearbox.
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Figure 2.47: Paper machine dryer part
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Figure 2.48: Time and spectrum representation of the signal measured on a defective dryer machine.
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. Figure 2.50: Wigner-Ville representation of the signal measured on a defective dryer machine.
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Figure 2.52: Choi-Williams representation of the signal measured on a defective dryer machine.
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3.1 Abstract

Time-frequency analysis has been found to be effective in monitoring the transient or time-
varying characteristics of machinery vibration signals, and therefore its use in machine
condition monitoring is increasing. While the short-time Fourier transform and the Wigner-
Ville distributions are generally considered satisfactory in the field of time-frequency
analysis, the development of such new techniques as wavelet analysis, by which it is possible

to compensate for weaknesses in other time-frequency methods, may lead to new solutions

*: Soumis pour publication dans “Journal of Mechanical Systems and Signal Processing”



178

to unsolved problems. Wavelet analysis has a special characteristic of time-frequency

localization, which is very effective in the analysis of transient or time-varying signals.

In this paper, we present a brief study of the wavelet transform, wavelet functions. the
discrete wavelet transform, the wavelet packet transform and adaptive wavelet transforms.

Examples are given to show the advantages and disadvantages of different wavelet
transforms. Finally, the effectiveness of wavelet analysis in condition monitoring and
diagnostics of machines is illustrated by experimental results from a defective bearing,

followed by the application of this technique to the detection of a broken tooth in a gearbox.

3.2 Introduction

A diagnosis is not an assumption, it is a conclusion reached after a logical evaluation of the

observed symptoms. The diagnostic process includes the following steps:

a) Observation of the different symptoms and determination of the various defects in

the machinery which may have caused them;

b) A systematic search for possible defects in the measured signals;

c) Evaluation of various hypotheses and determination of the one which is compatible

with all apparent symptoms.
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The diagnosis, therefore, is based on the systematic analysis of the symptoms found in the
measured signals. The key factor is the signal analysis. A great many indicators have been
developed for machine condition monitoring and fault detection, such as the crest factor and
Kurtosis. Comparing new reading against published severity chart such as VDI 2056 shows

the existence of defaults.

Machine monitoring and/or diagnusis on the basis of variations in the indicator values of the
signal spectrum in "large bands" and in "narrow bands" is very unreliable. One reason for
this is that it is necessary to define a large number of indicators corresponding to a small

number of defects.

In addition, we need to take into consideration not only the increase in the power of the
signal, but also the development of its form. Analysis of this development is carried out in

the frequency domain (diagnosis by comparison of the spectrums).

On the other hand, the identification of tooth comb parts in high frequency by traditional
spectrum analysis is often impossible, since the frequencies of these components correspond
to very high orders of the rotation frequency, and all fluctuations in the rotation frequency
produce important frequency variations in each of the components by sweeping across
several spectral lines. The spectrum obtained in this way is very noisy and it is difficult to

determine the repetitive frequencies of the shocks.
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Modifications to the form of representation of the signal, such as Cepstrum (the inverse
Fourier transform of the logarithmic spectrum of the signal) and the Hilbert transform of the
narrow band of the signal, reveal further information. Here, we are dealing with non-
stationary or cyclo-stationary events in the time domain. Advanced signal processing
techniques are required to enable us to represent the signal in three dimensions (time-

frequency-amplitude). These techniques permit us:

a) To detect and follow the development of the defects which generate weak vibrational
power. However, the weak vibrational power can modify the form of the signal to
a considerable extent, as happens when defects produce the amplitude modulation or
frequency modulation of certain characteristic components. Examples of this are the
journal bearing of a shaft with a slow or very slow rotational velocity, a rotating

oven, dryer cylinders, the press sections of a paper machine, etc.,

b) To supervise the installations in which the normal functional process produces high
amplitude periodic shocks (piston or screw compressor, reciprocating machinery [1]
and cam mechanisms [2], ...) which may mask the faulty frequency producing the

impulsive forces. (fault in a bearing, coupling, ...).

The time-frequency methods are regarded as advanced diagnostic techniques which offer

high sensitivity to faults and a good diagnostic capability.
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The Short-Time Fourier Transform (STFT) is one method of time-frequency analysis which
we have studied [3]. Inthe STFT, signal is cut by a window with length 7 and centered at
time f; the spectrum coefficients are calculated for this portion of the signal. The window
is then moved to a new position and so on. The major drawback of the STFT is the
fixed-length of the window (7) during the analysis of the signal. This limitation of the STFT
creates the fundamental problem of the STFT, namely that high resolution can not be
obtained simultaneously in the time and frequency domains. If the window length is 7, then
its frequency bandwidth is of the order //T (because of B7=1). Thus, the two conditions of

a narrow window and a narrow bandwidth are irreconcilable.

Another time-frequency method which we have studied [4] are the Wigner-Ville

distributions. In this case, it is postulated that a series of sampled data is available for analysis.

The instantaneous correlation, R (7, £, ), at time (¢,) with a time lag 7, is defined as

fp+7

R, (z,t,) = lim [fu-t/2)f(t+2/2)at 3.1

and its Fourier transform may be written as follows:

S (@,1,)= [R,(z,t,)e-rdr (G2
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Where S P (@,1,) is the instantaneous spectrum density function according to frequency w

and time ¢, . Theoretically, S ;(@,1,) is the frequency content measurement of a non-stationary

random process at time ¢, .

In practice, it is impossible to calculate the correlation function R (7,£,) on a series of
samples from — 0 to + o , because this type of sample is never available.
Therefore, if we replace:

fj-r

[fa-c/)f+7/2)dr
f
in the equation (3.2), by the instantaneous value:  f(t —7/2)f(t+7/2) wewill obtain
W (w.0)=[f(t—1/2)ft +7/2)er=dT (3.3)
W, (@,t) is a function of @ and  for a sampled single x and is called the Wigner
Distribution of ff2).

In the case of deterministic signals, we use the analytical signal z() instead of the real signal

(1), and the distribution is called the Wigner-Ville Distribution. The analytical signal z(?) is
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defined as

20) = &)+ if (0 (3.4)

Where f (1), the imaginary part of the signal z(%), is the Hilbert transform of the real signal /1) .
In this way, the negative frequencies are eliminated and the signal is represented only by the
real part of a rotary phaser with positive frequencies.

The analytical signal is very useful when we study the amplitude and modulation of the
phase since this signal introduces the concept of instantaneous frequency and instantaneous
power. The sampling frequency may also be used, followed by the Nyquist criteria because

the spectrum of an analytical signal is a one-sided spectrum with only positive frequencies.
The Wigner-Ville Distribution is a distribution of energy in the time and frequency domains, where:

E,=[[WVD, (o,0)dde (3.5)
Unfortunately, the Wigner-Ville transform presents several anomalies:

a) This transform is a bilinear transform i.e. the cross terms generate a certain

non-linearity;

b) The random noise in the original signal has a tendency to spread to other regions in
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the time domain. Since the integral of equation (3.3) is centered at time £, the integral
covers an infinite period of 7 (time delay). Therefore, it depends on the characteristics

of x as distinct from the local time ¢;

c) These transforms often give negative values, which makes the interpretation of the

distribution difficult.

Furthermore, the Wigner-Ville method presents another difficulty: it is almost impossible
to obtain a local spectrum density because of the continuity nature of the harmonic waves.
To overcome this limitation attributable to harmonic analysis, an alternative method of

signal analysis has, at a theoretical level, been developed.

Instead of using sines and cosines as base functions to decompose a signal, a set of
orthogonal functions, called wavelets, has been used. Whilst, by definition, harmonic
functions go to infinity, the wavelets are, in contrast, local functions. Gathering these
wavelets and using different scales, itis possible to assemble a set of base functions in order

to examine the local character of non-stationary signals.

The theory of wavelets is a mathematical method in which a series of special signals is used
to constructa model for a signal, asystem or a process. These special signals are small waves
or wavelets. They must be oscillatory and possess an amplitude which decreases rapidly to

zero in both positive and negative directions.
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The first classical wavelet was derived by J. Morlet [5], a geophysical engineer at a French
oil company, in 1982. He wanted to analyse some signals which had shorter-time transient
components in high frequency than in low frequency. He needed both satisfactory frequency
resolution in low frequency and satisfactory time resolution in high frequency. The usual
method of time-frequency analysis at that time was the Short-Time Fourier Transform
(STFT). As previously mentioned, the major disadvantage of the STFT is that it is

impossible to obtain high resolution simultaneously in time and in frequency. Morlet’s idea

was to use a smooth window with some oscillations, as /(¢) , and generate a label family

from y(¢) by translation and dilation. As a basis for the wavelet transform, he chose a

windowed cosine wave which was compressed in time for a higher frequency function and
spread out for a low frequency function. He finally characterized his signal by inner products
of the signal with these transform functions. A few years later, Alex Grossmann, a theoretical
physicist, presented an exact inversion of Morlet’s formula and helped him to find several
applications for the wavelet transform [6]. In 1985, Y. Meyer, a pure mathematician,
recognized that the wavelet transform had been already introduced as a mathematical tool
in harmonic analysis by Calderon in the 1960s. He correlated the work of Grossmann and
Morlet with Calderon’s formula in harmonic analysis and also constructed the basis of an
orthonormal wavelet with excellent time-frequency localization properties. In 1986, S.
Mallat, a specialist in computer vision and image processing, used the multi-resolution

approaches in computer vision and its application to a method of image coding called
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“Pyramid”, in order to define a similar structure for wavelet expansions. Mallat and Meyer
succeeded in developing the mathematical structure for wavelet construction on the basis of
multi-resolution signal representation {7, 8]. Meyer’s work on the mathematical structure of
the wavelet is documented in his book [9]. Using multi-resolution analysis, S. Mallat
proposed that the wavelet coefficients may be computed using an efficient algorithm
produced by a filter bank. To use filters in wavelet decomposition instead of deriving the
filters from a wavelet basis, we can first construct a pair of appropriate FIR (finite impulse
response) filters and then investigate whether they correspond to an orthonormal wavelet
basis. The characteristics of such a pair of filters were discovered in 1970 and given the name
“quadrature mirror filters” (QMF). By using QMF, exact construction of orthonormal
wavelet bases has been possible. A sufficient condition for regularity of these filters has been
given by Daubechies [10, 11]. This work resulted in a discrete-time wavelet transform [12,
13]. One of the important disadvantages of the wavelet transform is the logarithmic scale of
the frequency axis in the time-frequency plane. As an alternative, an interesting
generalization of the filter bank trees of the wavelet transform is the wavelet packets

transform, which provides a linear scale frequency axis in the time-frequency plane [14, 15].

This paper presents the wavelet analysis as a newly-developed technique with important
properties which make it a powerful tool in machine condition monitoring and fault
detection. In section 2, the theory of wavelet transform is briefly described, followed by a

discussion of the properties of different wavelet functions. Then, the discrete wavelet
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transform and the fast wavelet transform based on multi-resolution analysis are studied and
the wavelet packet transform and adaptive wavelet transforms are presented as variations of
wavelet analysis. In this section, we also present a new method, called the “zoom in wavelet
transform”, by means of which the wavelet transform is used to obtain a finer resolution in
the frequency domain. This method is a variation of the adaptive wavelet transform. In
section 3, a computer program to implement the different methods of wavelet analysis is
described and the different ways of using the wavelet transform to determine time-frequency
localization are compared. Finally, wavelet analysis is applied to experimental vibration

signals received from a damaged bearing and a broken tooth in a gearbox.

3.3 Wavelet transforms

[t is known that discrete-time signal decompositions are methods of expressing an energy-

limited signal as a linear combination of transform bases. The linear integral transforms can

be considered as an inner product of a signal f(¢) with a transformation function. The

standard example is the Fourier transform £, (@) of signal f(¢) which is defined as:

F@)=<f.h>=[_f)h@)dt (3.6)



188

where the transformation kernel is A(t) = e .

From a mathematical point view, equation (3.6) decomposes f(¢) into a family of pure

frequency signals e’® which play the role of the Fourier transform bases. The sine-cosine
q gn

functions are highly localized in frequency but widely spread in time. Therefore, the time
domain information of the spectral components is hidden in the phase of the Fourier

transform. Consequently, the Fourier transform is not well suited for time-place analysis.

For non-stationary signals, the Short-Time Fourier Transform (STFT) is the first and

simplest method which is defined as

STFT, (t,0) =< f,h, >= ﬁ f(O h(t)de (.7
where h_(f) = g(¢{ — ) ™ and r define the translation of the window function g(t).As
the window is shifted in time, a new spectrum is obtained at each position, producing a time-

frequency representation of the signal. The efficiency of the localization in the time-

frequency plane depends on the width of the window function. The uncertainty factor,
At Aw 2 1/2 | sets alimit on the product of time and frequency. This means that we cannot

simultaneously obtain high resolution in both the time and frequency domains. However, by

changing the width of the window, we can trade resolution in time for resolution in



189

frequency.

In a similar way, the wavelet transform can be defined if the Fourier transform bases are

repiaced by the waveiet wransform bases, /() , as shown in Figure 3.1.

The wavelet transform is defined as:

W,(s.0) =< f,h,, >=[ f@O)h(s,7)de (3.8)
The wavelet transform bases are a family of functions which are obtained from a single

prototype wavelet by transiation and dilation/contraction :

h,,(r)=%h[’;f)

where “ 5 7 is a real variable, known as the scale of wavelet transform and  /1(.) is a fixed

function, called “mother wavelet function”. From equation (3.9), we can say that the wavelet
transform extracts spectral information from the signal around time T by means of inner

links between the signal and scaled versions of the wavelet.

In the case of the wavelet transform, the selection of the basis functions is more flexible than

the case with the STFT. The choice of short basis functions for low frequencies and long



190

basis functions for high frequencies makes the wavelet transform sharper in time in the

higher frequencies and sharper in frequency at low frequencies.

3.3.1 Wavelet functions

The mother wavelet function may be any function satisfying the necessary condition that

warrants the existence of the inverse wavelet transform. This admissible condition is defined as
[ hwde=0 (3.10)

which means that the wavelet must be oscillated and have a zero mean. Different families
of wavelets can be generated by taking different admissible wavelet functions. The choice
of the wavelet function is important and rather critical. The selection of the wavelet depends
on the characteristics of the signal and on the acceptability of other effects in the
representation due to the wavelet function. In the following we review some popular

wavelets:

a) Haar wavelet

The Haar wavelet is the first and the simplest wavelet function which was constructed by
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Haar in 1910.

He was a mathematician who looked for an orthonormal system with the functions

hy(x),h(x), -, A, (x), - defined between interval [0,1], such that the scries

< f.hy >hy(xX+ < foh >h(x)+-+< f,h, >h (x)+-- @3.11)

1
where < 1,V >= J; u(x)v" (x)dx

Haar chose the step function /(x), called Haar’s wavelet function, which is defined as:

h(x) = rectangle[2(x — 1/ 4)] - rectangle[2(x - 3/4)] (3.12)

which is real and antisymmetric about # = 1/2, as shown in Figure 3.2. For n > 1, we have

n=2"+k,j20,0<k<2/ and h_(x)=272h(27 x - k) . Inthis case, the series

hy(x),h,(x),-##,h_(x),-+ is called an orthonormal base or Hilbertian base of L>[0,1].

It is easy to show that the functions of the series are orthonormal with respect to the scalar

product and they are normalized by the factor 2//%. Several years later, it was shown that
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the Haar base has the multiscale structure which is a prerequisite for wavelet function.

A major disadvantage of Haar’s wavelets is the discontinuity of this wavelet which cannot
providea good approximation forsmooth functions. The Fourier transform of Haar’s wavelet

may be written as

H(f) = 2 exp(—inf )220 7 ‘;)f’?f (3.13)

The decay of the Haar wavelet is very slow. Figure 3.2 shows Haar’s wavelet and its Fourier

spectrum.

b) Morlet wavelet

This wavelet is in essence a Gaussian modulated harmonic function which was used by J.

Morlet for the analysis of sound patterns:

: t?
h(t) = exp(i2af,t) exp(— ?J (3.14)
Its real part is an even cos-Gaussian function. The Fourier transform of the Morlet wavelet

H(f) = 2zfxp[-272(f - f,) 1+ exp[-273(F + £,)*]}  G.19)
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is the Gaussian functions shifted to f,and — f;:

which is even and real positive valued. This wavelet does not satisfy the admissible

condition, because A (0) 2 0. In practice, one often chooses f; so that the ratio of the
highest and the second highest maximum of A(t) is approximately 1:2, i.e. 22f, = 5.1In

this case, the value of H (0) is very close to zero, i.e. H(0) =3.7x 107 Here, it can be

considered as zero with a good approximation.

By this wavelet , the analysis is not orthogonal. The real part of the h(l‘ ) and its Fourter

spectrum are shown in Figure 3.3.

¢) Mexican-hat wavelet

This wavelet is in fact the second derivative of the Gaussian function which is introduced by
Gabor.
i

h(t) = (1=t Yexp - (3.16)
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It is even and real valued. The Fourier transform of the Mexican-hat wavelet is

H(f)=4x*f* exp(-21f ) G.17)

which is even and real valued, as shown in Figure 3.4. The decay of the wavelet coefficient

is fast. This wavelet has been applied in vision analysis.

d) Meyer wavelet

Y. Meyer is a pure mathematician who constructed an orthonormal wavelet basis with

excellent time-frequency localization properties in 1985. The Meyer wavelet is defined in

H(f)=exp(~iaf)sin[v(f)] (3.18)

the frequency domain as

which v( f) is a symmetric function defined by

v(l- f)=2-wf) for 1/3<f<2/3
2 (3.19)

v(2f)=—;£—v(f) for 1/3<f<2/3
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The Meyer wavelets in the time domain can be written as follows:

One can easily check that it is a real symmetric function at ¢ =1/2 . By changing the
auxiliary function v(f),we obtain a different family of wavelets. Aithough the Meyer

wavelet shows rapid polynomial decay, it has wide support. This wavelet is also infinitely

h(t) =2 j:’ sin[v(f)]cos2z(t —1/2)f lf (3.20)

differentiable.

The Meyer wavelet for v(x) = x*(35 —84x + 70x* — 20x*) is shown in Figure 3.5.

e) Lemarie-Battle’s wavelets

Lemarie was a student of Meyer who worked in harmonic analysis and Battle was a
mathematical physicist who was interested in quantum field theory. Independently of one
another, they developed wavelet bases consisting of spline functions. An explicit expression
for this wavelet family does not exist and the properties of each member of the family can
be different and depend on the choice of the spline function. For a constant spline, the
wavelets become similar to Haar wavelets. More detail for constructing filters using this

wavelet family may be found in [11].
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Although the wavelets have exponential decay which is an improvement over the decay of
the Meyer wavelet, they loose regularity and are not compactly supported. One of the

wavelets is shown in Figure 3.6.

f) Daubechies wavelets

Apart from the Haar wavelet function, almost all the orthonormal wavelet functions listed
above consist of infinitely supported functions. One desirable property is to have a wavelet
with compact support in the time domain, i.e,, it is time limited in that it is non-zero only
over a given interval. Such a wavelet gives a true sense of time locality. Daubechies

constructed a family of orthogonal wavelets which converge to continuous functions with
compact support. These wavelets have no explicit expression except for b1, which is the
Haar wavelet. The Daubechies family wavelets are real but neither symmetrical nor
asymmetrical and their regularity increases as the order of Daubiechies’ wavelet increases.

One member of the Daubechies family ( D4) is shown in Figure 3.7. Details of the

procedure for constructing au orthonormal base of compactly supported wavelets may be

found in Daubechies’ original paper [10].

These wavelets have other desirable properties. It can be shown that they are bounded,

continuous functions and they are continuously differentiable.



197

3.3.2 Discrete wavelet transform

In order to apply the wavelet transform for digital signals, the wavelet parameters s, 7 must

be discretized. If we consider s = S and T = nS; 7}, , the corresponding wavelets become:

h, (0)=s;™'% +h(s;™t = nT,) (3.21)

where mneZ, S,>1, T,#0

This way of discretization may be modified to give a dyadic grid by considering

T, = 1; therefore

h =2”"’2'h(2'"'t—-n) mn=12,... (3.22)

mn

It is possible to obtain an orthonormal basis for special choices of /(). The dyadic

sampling grid in the time-scale plane is shown in Figure 3.8(a). The scale axis is often

expressed in terms of frequency under transformation s — k / f where & is a constant. In

fact, it can be shown that the Short-Time Fourier Transform, time-frequency distributions

and time-scale methods (wavelet transforms) are members of a common class of energy
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representations [16, 8]. A comparison between the basis functions and the time-frequency
plane of the Short-Time Fourier Transform (STFT) and those of the wavelet transform is
shown in Figure 3.8(b) and 3.8(c); the self-adjusting window (zooming) property is the
major difference between the wavelet transform and the STFT. The zooming property of the
wavelet transform is similar to a microscope or a telescope, where the resolution is
automatically adjusted to a different scale of magnification. As shown in Figure 3.8(c), the
important properties of the wavelet transform, such as its localisability and changeable
resolution in the time and frequency domains, make it both more suitable and more effective

in the analysis of non-stationary vibration signals such as transients.

The implementation of the wavelet transform according to (3.22) may only be carried out

with some difficulty because, as m increases, A(t) must be sampled at progressively more

points. This makes the computations very slow. In 1989, Stephane Mallat [17, 7] proposed
an efficient discrete-time algorithm for the computation of the wavelet transform. Mailat,
using quadrature mirror filters and multi-resolution analysis, constructed a new algorithm
for the computation of the wavelet transform, which calculates the wavelet coefficients very
rapidly. It is called the Fast Wavelet Transform and its idea comes from a method called
subband coding, which has been used in speech compression. Subband coding, which
consists of two branches with filtering followed by down sampling by two, can decompose

a signal into two parts. The part that is passed through a low-pass filter gives an
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approximation of the signal, and the part that is passed through a high-pass filter gives the
detail. It is interesting to note that the original signal can be recovered from its two filtered
and subsampled parts if the filters have the property of perfect reconstruction, as shown in
Figure 3.9(a). Such filters are called quadrature mirror filters. As shown in equation (3.8),
a wavelet transform can be interpreted as a decomposition of a signal into a set of frequency
channels of different band widths. Mallat’s algorithm is a cascade extension of this

elementary two-channel filter bank in a binary tree structure, as shown in Figure 3.9(b).

A review of discrete-time wavelet transform and the relationship between wavelet transform

and filter banks is given by Shensa [19], Vetterli et al. [15, 18].

2.3. Wavelet packet transform and adaptive wavelet transforms

In wavelet transform, the frequency axis has a logarithmic scale which gives good frequency
resolution at lower frequencies and good time resolution in the higher frequencies. For this
reason, it is suggested that the wavelet transform be used to analyse signals with long-

duration events in the lower frequencies and short-duration events in the higher frequencies.

The generalisation of the discrete-time wavelet transform is called the wavelet packet
transform and can be described as a full-tree-structured filter bank, as shown in Figure 3.10.

An interesting advantage of the wavelet packet is that the frequency axis has linear scale
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which gives better frequency resolution in the higher frequencies, at the price of some loss

of time resolution.

It is clear that the wavelet transform is appropriate for signals with transient phenomena in
the higher frequencies; however, it may perform less well over other time-frequency
transforms. The resolution exchange between time and frequency in the wavelet transform
is always fixed and independent of the signal being analysed. This may not be satisfactory
in the analysis of an arbitrary class of signals with either unknown or time-varying
characteristics. To improve the performance of the wavelet transtform, it is necessary to use
the signal-adaptive transform, which is more satisfactory than the original fixed transform

although it is important to ensure that this flexibility does not come at too great a cost.

There are two way of achieving this objective:

a) By selecting filter banks to optimize the time and frequency resolutions:

we may select the binary trees in filter banks by taking the characteristics of the
signal into account, instead of using the fixed tree of the wavelet transform or the
wavelet packet transform, as shown in Figure 3.11. In this way, we can locally

exchange resolution in time for resolution in frequency and vice versa.

b) By optimizing the wavelet function with respect to the signal structure:
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the second way involves the construction of waveform libraries and the choice of
those particular waveforms which are the best adapted for the decomposition of the
signal structures. Such waveforms are called time-frequency atoms and the libraries

of waveforms are called the dictionary of time-frequency atoms.

One method which follows the idea of searching for good representation from a dictionary
of time-frequency atoms is the method of matching pursuit [21]. This method is a linear
decomposition of any signal into waveforms that are selected from a dictionary of Gabor

functions.

A general family of time-frequency atoms can be generated by scaling (s > 0),

translating (7) and frequency modulating () a single window function g(t).

g, ()= -}—;g(’ — r]e"f’ (3.23)

A}

where the index ¥ = (s,7,&) denotes an element of this family of atoms. The g(¢)is the

Gaussian window g(f) = 2"/*e™
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Then f(¢) can be written
f=>a,g,® (3.24)

where a, are the expansion coefficients which provide some information on certain types

of properties of f(¢), depending upon the choice of the atoms g (¢).

This method is particularly suitable for decomposing signals whose localizations in time and

frequency vary widely.

3.3.4 De-noising

Removing noise from a signal by wavelet analysis is one of the most recent applications of

wavelets [22].

The idea of de-noising by wavelet analysis consists of decomposing the signal by wavelet

transform, removing noise from components, and reconstructing the signal.

Wavelet analysis is a linear method; therefore the wavelet coefficients of the linear

combination of two signals are equal to the linear combination of their wavelet coefficients.



w =W , + sz (3.25)

(Ni+)2)

A noisy signal can be modeled in the following form:

() =s(t)+e(?) (3.26)
Where f{1) is a noisy signal, s(?) is the onginal signal, and e(?) is the noise. Eliminating the
noise part of the signal may be done in three following steps:

a) Compute the wavelet decomposition of the signal f{1)

b) Determine a limit for optimal de-noising and suppress only the portion of the

wavelet coefficients that exceeds this limit.
c¢) Reconstruct the signal with the help of modified wavelet coefficients s(2).

In practice, the decomposition and reconstruction procedures are accomplished respectively

by the fast wavelet transform and the inverse fast wavelet transform.

It is clear that the performance of the de-noising method depends mostly on the step (B).
Suppressing a part of a signal, called the thresholding procedure, is carried out using
different optimization techniques, which give different threshold values [23]. In the next

section, we will see how this application of the wavelets can improve the wavelet transform
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representation of signals.

3.4 Application of the wavelet transform to machinery fault diagnosis

The wavelet transform is one of the newer methods of time-frequency analysis thathave been
used in various science and engineering fields in recent decades. Although the wavelet
transform has been applied to image processing and speech recognition with great success,
there have been only a few applications in machinery diagnostics, for example, the work of
McFadden et al. in the application of the wavelet transform to fault detection in a gearbox
(24, 27]. Damage in bearing elements is one of major problem in rotating machines that can
be detected by the wavelet transform [28, 29]. Fault detection and identification in a

helicopter gear-box was carried out by Lopez et al. [30].

It has been shown that, in the diagnosis of faults in reciprocating machines, the wavelet
transform may be considered as a satisfactory technique for extracting the characteristics of
vibration signals [31]. Zhongxing and Liangsheng [32] used the wavelet packet technique
to analyse the vibration signals of a compressor. In another approach, Dalpiaz and Rivola
[2, 33] applied the wavelet transform to the condition monitoring and diagnostics of cam
mechanisms. We note that in most of the above applications the Gaussian wavelet function

was chosen as a mother wavelet function.
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3.4.1 Software for wavelets transforms

A user-friendly software has been developed to permit the use of different methods of time-
frequency analysis such as the Short-Time Fourier Transform, the Wigner-Ville
Distributions, and the Wavelet Transforms. The program allows the user to carry out
different distributions of Cohen’s class of time-frequency methods such as the Choi-
Williams Distribution and the Born-Jordan-Cohen Distribution. In addition, it provides
differentkinds of wavelet transforms, for example: the wavelet transform, the wavelet packet
transform, and the wavelet transform by the Gabor Dictionary. [n addition, the new technique
of the “zoom in wavelet transform” makes it possible to obtain very satisfactory frequency

resolution.

This program has been developed especially for the diagnosis of defects in machinery, and
includes most of the commonly-used methods of time-frequency analysis. We have tried
to use those kemels and filters which are compatible with the current signals in machine
diagnostics. The program has some interesting options which are of considerable practical
value in such cases. For example, de-noising by wavelet transform, which is an important
tool in the analysis of noisy signals, allows the user to obtain an improved time-frequency

representation.

Some examples from simulated signals have been used to verify the function and accuracy

of the program. The first example is the sum of three sines: 300Hz, 1000 Hz and 3000 Hz;
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the time frequency plane shows three constant frequency bands. Although the wavelet
transform of the signal, as shown in Figure 3.12(b), indicates a concentration of the signal’s
energy In the three bands, there is also the dispersion of this energy in the adjacent bands
especially when an incorrect filter is chosen, as shown in Figure 3.12(c). On the other hand,
it is impossible to determine the exact values of the frequencies by the logarithmic scale of

the frequency axis.

The wavelet packet transform of this example gives better representation in the time-
frequency plane than the wavelet transform of this signal (Figure 3.13). The linear scale of
the frequency axis gives better frequency resolution. Filter selection plays an important role

here also.

The matching pursuit algorithm gives the best representation of this signal, as shown in

Figure 3.14. The resolution of frequencies in the time-frequency plane is very satisfactory.

The second example is a Dirac function in 0.1 sec. This function is an example of transitory
signals. The wavelet transform of the example is shown in Figure 3.15. This time, the
wavelet transform gives the best representation of the signal in the time-frequency plane. The
peak appears exactly at 0.1 sec. The very good time resolution provided by the wavelet
transform in the higher frequencies makes it a powerful tool for the detection of transitory

phenomena in the signals.
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The wavelet packet transform shows the Dirac function in approximately 0.1 sec (Figure
3.16). Its time resolution is not as satisfactory as that of the wavelet transform. There is a
difference between the results obtained by the wavelet transform and those obtained by the
wavelet packet transform (the wavelet packet transform has better frequency resolution in
the higher frequencies than the wavelet transform, but at the expense of a loss of time

resolution in these frequencies).

The matching pursuit algorithm gives a representation of the signal that is not as good as that
given by the wavelet transform, but is better than that given by the wavelet packet transform,

as shown in Figure 3.17.

The next example is an amplitude-modulated cosine at 1000 Hz. The wavelet transform
representation of the signal in the time-frequency plane shows the modulation of the signal.
To obtain a clear representation of this signal, it is preferable to see simuitaneously the
mean-square wavelet map (three-dimensional representation) of the signal, as shown in
Figure 3.18. The wavelet packet transform of the signal accompanied with the mean-square
wavelet packet map of the signal is shown in Figure 3.19. Here, we use Haar wavelet
function which provides a good time resolution. To obtain clear representation of the signal
in frequency, we can use a Daubechies 20 wavelet function which provides good frequency

resolution at the expense of a loss of time resolution.

For this type of signal, the matching pursuit algorithm is not recommended because the
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modulation is not displayed (Figure 3.20).

The final example is a frequency-modulated signal at 1000 Hz. The wavelet transform and
the mean-square wavelet map cf the signal are shown in Figure 3.21. In the time-frequency
plane, the representation of the signal is once again unclear. [f there are other components
in the signal, it will be very difficult to identify the signal. The mean-square wavelet map

of the signal is not clear, either.

The wavelet packet transform gives a better representation of the signal than the wavelet
transform; in particular, the mean-square wavelet packet map of the signal is clear, as shown

in Figure 3.22.

Again, the matching pursuit algorithm cannot be recommended because the frequency

modulation cannot be identified (Figure 3.23).

3.4.2 Experimental application of the wavelet transforms

After comparing the theoretical behavior of several variations of the wavelet transform when
applied to different signals, we now investigate signals obtained from experimental cases.
A pin-point defect with known characteristics and location was created on a rolling bearing.

The test set-up consisted of an electric motor, a shaft mounted on two journal bearings (SKF
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1210 EKTNO self-aligning, double row), labelled 2 and 3, a gear-box and a break to impose
the load. The defect was created on support A by scratching the inner raceway of the bearing

with an electric pen. Figure 3.24 shows the experimental set-up.

The vibration signal was measured on support A by an accelerometer and transferred to an
analyser. The measured signal was converted into American National Standard Code for
Information Interchange (ASCII) format and transferred to the in-house software program

for analysis.

The frequencies of different types of bearing defect may be computed using the geometric
characteristics of the bearing and the rotating frequency [34]. The geometric characteristics

of the damaged bearing are as follows:

Pitch diameter D=69 mm

Diameter of the rolling body d=10.32 mm

Contact angle a =7.87 deg

Number of rolling elements N =17 (per row)

Bearing frequency of rotation £, =12.2 Hz
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The frequency defect caused by damage on the inner raceway of this bearing can be

computed by the following formula:

d
F, = 1+— 3.27
, [ 5 cos(a):l (3.27)

Equation (3.25) gives us a value for the pass frequency on a point of the inner raceway which
equals approximately 238 Hz. Note that the frequency of this type of defect has a special
characteristic. The default frequency should be an amplitude-modulated wave at

approximately 238 Hz with the frequency of modulation equal to the rotating frequency.

Figures 3.25-3.26 show respectively the wavelet transform and the wavelet packet transform
of the vibrational signal of the defected bearing. It is almost impossible to identify the defect
by theses figures because the original signal is very noisy. To obtain clear representation of
the signal, it is necessary to remove at first the noise from the signal. To do this, there are

two possibilities in the software: De-noising by classical wavelet transform and De-noising

by Matching Pursuit algorithm. Here, we use the de-noising by matching pursuit algorithm

and The de-noised signal is called dn-bearing. Figures 3.27-3.28 show respectively the
wavelet transform and the wavelet packet transform of the de-noised signal. As shown, the
wavelet transform of the de-noised signal clearly shows the repetitive peaks in frequency

band 200-400 Hz. The frequency of amplitude modulation in this band is approximately 12.2
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Hz which equals to the rotating frequency. Then, the default in bearing may be easily be
identified by the wavelet transform of the de-noised signal. The wavelet packet transform
of this signal provides more frequency resolution but it is not as clear as the wavelet transform

of the signal. The default frequency is situated in frequency band 200-300 Hz.

3.4.3 Industrial application of the wavelet transform

In the last section, the performance of wavelet transforms for a defect created on the inner
raceway of a bearing was described. In this section, the efficiency of wavelet transforms for
an industrial case without any prediction of defects is demonstrated. This case comes from

the defective gear-train of a hoist drum in a large shovel operating at an open-pit iron mine.

Gearbox faults may be classified into shaft (misalignment, imbalance) and tooth (wear,
scuffing, cracking) related problems. Damage to a single tooth is called a local tooth fault,
and will be investigated in this section. Vibration signals measured on a gearbox include the
tooth-meshing frequency, transient events caused by defects, gearbox resonance vibrations
and system and sensor transmission characteristics. These vibration signals are non-
stationary signals which require specific techniques because application of the conventional
methods, such as Fourier analysis, to gearbox fault detection are often difficult. Time-

frequency methods provide new techniques for the analysis of non-stationary signals and
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have advanced capabilities for the separation of different phenomena. The application of
some time-frequency methods to the analysis of gearbox faults has been described in [3, 4],
and here, the application of another group of time-frequency methods, called time-scale

analysis, is presented.

The time signal of the damaged gearbox and its wavelet transform are shown in Figure 3.29.
The repetitive pulses in the wavelet transform in the band between 320 Hz and 640 Hz are
caused by a broken tooth. The mean square wavelet map of this signal gives representation
of the wavelet transform in three dimensions. The wavelet packet transform of the signal in
Figure 3.30 gives not only a better time-frequency representation of the signal but also better
frequency resolution than the wavelet transform. The mean square wavelet packet of the

signal clearly shows the pulses.

The time-frequency plane projection by the Gabor Dictionary of the signal is shown in

Figure 3.31 but it is not easy to obtain the characteristics of the signal from this figure.

Although the mean square wavelet packet map of the signal gives the best representation of
the signal, the frequency resolution of the signal may not be as fine as is needed. To obtain

a finer frequency resolution , we can use the zoom in wavelet transform which is based on

choosing the best trees in the filter bank. By this method, first, the desired frequency band
is selected and, second, a suitable frequency resolution is achieved by wavelet packet

transform of this frequency band. A zoom in wavelet transform in the frequency band




between 320 Hz and 640 Hz is shown in Figure 3.32.

3.5 Conclusion

The above study has shown the performance of a new method for the diagnosis of defects
in machinery. We have demonstrated that the wavelet transform provides a high frequency
resolution in the lower frequencies and a high time resolution in the higher frequencies.

This characteristic of the wavelet transform may be advantageous in machinery fault
detection. The wavelet functions play an important role in obtaining a good representation

of a signal and they are chosen in accordance with the characteristics of the signal.

The wavelet packet transform is a full tree filter bank which gives a linear-scale frequency
axis. It gives better frequency resolution than the wavelet transform but the latter gives
superior time resolution. In machine monitoring and fault detection, it is sometimes
necessary to have high frequency resolution in order to identify the type of defect and, in this
case, one could recommend the use of the wavelet packet transform. However, this
approach does result in a loss of information in the time domain and the time-frequency
representation becomes complicated. For this reason, we have presented a new technique
which is called the “zoom in wavelet transform”. This technique permits us to obtain

desirable frequency resolution with clear time-frequency representation.
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This article has also presented an easy-to-use software package which includes the majority
of methods of time-frequency analysis and compares the wavelet transforms with other
methods. The software is equipped with several interesting options such as a new method of
de-noising by wavelet transform. This method, which has been applied recently in signal

processing, improves the time-frequency representation of noisy signals.

Thetransient and the time-varying signals in machine condition moritoring present different
behavior in their time-duration. The adaptive wavelet transforms are powerful tools which
are capable of decomposing the signal into those waveforms that are best adapted to the

signal structure.

A computer program implementing the wavelet transforms has been used to compare the
performance of different wavelet methods. It has been shown, by the numerically generated
signals and two experimental tests on a damaged bearing and a broken gear tooth, that the
wavelet analysis methods are effective in machine condition monitoring especially when a
transient phenomenon exists in the signal. In the case where a defect in a machine generates
amplitude-modulation signals or frequency-modulation signals, it is preferable to use other

time-frequency methods such as the Wigner-Ville distributions or the STFT.
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3.7 Nomenclature

£ Magnitude of the vibration signal with zero mean
R (z,1) Instantaneous correlation function

S (@,1)) Instantaneous spectrum density function

F (@) Spectrum of the signal f(¢)

h(t) Transformation kernel

STFT, (t,w) Short-time Fourier transform of the signal f (¢)
W,(s,1) Wavelet transform of the signal f(f)

h,_(1) Mother wavelet function

s Scale of wavelet transform

T Time shift of wavelet transform
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Moriet wavelet
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Figure3.3:  Morlet wavelet and its Fourier spectrum



224

Mexican hat wavelet

Fourier spectrum of Mexican hat wavelet
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Figure3.4:  Mexican-hat wavelet and its Fourier spectrum
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Meyer wavelet function
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. Figure3.5: Meyer Wavelet function
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Battle-Lemarie wavelet function
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Daubechies wavelet function (D4)
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. Figure 3.7:  Daubechies wavelet function
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:  Test setup.

Figure 3.24
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CHAPTIRE IV

TIME-FREQUENCY ALGORITHMS

AND THEIR APPLICATIONS*

'M.S. Safizadeh, 'A.A. Lakis and M. Thomas

1: Département de Génie Mécanique, Ecole Polytechnique de Montréal
Case Postale 6079, Succ. Centre-ville, Montréal, Canada H3C 3A7
2: Département de Génie Mécanique, Ecole de Technologie Supérieure
1100. rue Notre-Dame Ouest. Montréal, Canada H3C 1K3

4.1 Abstract

Time-frequency software is designed to be a bridge between theoretical research into
methods of time-frequency analysis and the practical applications of these methods in
different domains. The lack of an easy-to-use time-frequency software has tended to reduce
the likelihood that those engineers with little or no knowledge of time-frequency will use this

method of analysis. One of the most important applications of this type of analysis is in the

detection of defects in machinery.

This paper presents a user-friendly software designed to perform time-frequency analysis.

*: Soumis pour publication dans “Intemnational Journal of Computers and Their Applications™
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The software reads a time signal from its data file, and then calculates and displays different
time-frequency transforms of the signal. The software contains a number of time-frequency
algorithms, such as, for example: the Short-Time Fourier transform, the Wigner-Ville
distribution, the smoothed Wigner-Ville distribution, the Choi-Williams distribution, the
Born-Jordan-Cohen distribution, the Rihaczek-Marginau distribution, the Wavelet transform,

the Wavelet packet transform, and the Adaptive Wavelet transforms.

The results are displayed in colour in a graphical interface, which provides a clear and easy-
to-interpret time-frequency representation. The window environment of this program and

the menu commands make it a powerful, professional tool for time-frequency analysis.

In the first section, existing problems in the diagnostics of machinery and the importance of
the application of time-frequency methods in the detection and identification of defects are
studied. In the second section, a presentation of the time-frequency software is given. In
the third section, each time-frequency method is briefly described and examples are given
to show the advantages and disadvantages of each method for different types of signal, in
particular for current signals in the diagnostics of machinery. Finally, we show some results

for an industrial case.
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4.2 Introduction

The purpose of using vibration analysis to monitor machines has changed considerably in
recent years. [nitiaily, machines were monitored tor purposes of security: if a machine was
subjected to significant damage, and the vibration amplitude (displacement, velocity,

acceleration) exceeded the permissible limit, the machine was stopped or an alarm rang.

Today, the monitoring of machinery is seen more in the light of preventive maintenance.

[t is, therefore, expected that the monitoring will not only achieve the initial purpose of
security, but will also detect the beginning of a defect and follow its development over time.
Such early detection makes it possible to plan and to schedule repairs for a suitable time in
order to avoid production interruption. An engineer is able to determine the nature of the
defect, monitor its development, estimate the significance of the damage, and finally decide

on the most opportune time for repairs.

The diagnostic techniques incorporated in the software have, therefore, been developed in
response to the requirements of preventive maintenance. The techniques are based on the
methodical analysis of defects and their symptoms. To identify these symptoms, it is
necessary to systematically analyze recorded vibration signals obtained from machinery.
The analysis of signals in order to extract the hidden information is known as the signal

processing method.
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Signal processing methods are the principal tools used in the diagnostics of machinery. The
complexity of the signal processing operation and the time required to analyze the signal,
extract and analyze the relevant information is frequently too great for on-line signal
processing. For this reason, the off-line approach to machinery diagnostics has become one
of the fastest-growing sectors of the machinery maintenance industry. Vibration and
performance data may be measured and stored directly in a hand-held unit, such as a tape
recorder or portable data collector. These data can either be gathered directly in digital form,

or can be gathered in analog form and converted later to digital form.

From the information obtained, it is possible to diagnose the defect in the machine,
determine the severity of the problem, and thus estimate how long the machine can safely
be left inservice. This requires experience, quality instrumentation and, ideally, a computer
to assist in the identification of the frequencies and perform the comparisons between the

results of the various transformations.

A number of transformations can be performed to aid in the analytical process. One of the
most powerful techniques is spectrum analysis, which relates each rotating element in a
machine to identifiable frequencies. By subtracting a "healthy" baseline spectrum from
measurements made on new machinery, it is possible to identify changes quickly. Cepstrum
analy