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Résumé 

Au cours de cette thèse, nous présenterons les résultats des travaux effectués dans 

le but d'étudier les écoulements li. contre-courant ainsi que le point d'engorgement 

pour des écoulements vertical et vertical à horizontal. Pour réaliser ces travaux, deux 

sections d'essais de 63.5 mm de diamètre intérieur ont été utilisées; la première ayant 

uniquement une branche verticale et la seconde une branche verticale et une branche 

horizontale. Dans les deux cas, les expériences ont été effectuées avec et sans orifices 

de différentes grandeurs placés dans la section d'essais. Pour la section d'essais ayant 

une branche verticale et une branche horizontale l'orifice était placé dans la. partie 

horizontale. Nous présentons aussi les résultats concernant les pertes de pression 

expérimentales en écoulements à contre-courant obtenus uniquement avec la section 

d'essais verticale. 

Pour les deux sections d'essais, nous avons trouvé que pour un débit de liquide donné, 

la présence d'un orifice réduit de façon significative le débit de gaz correspondant 

au point d'engorgement. De plus, nous avons constaté que cette réduction était 

inversement proportionnelle nu rapport 13 de l'orifice. Un autre point intéressant à 

signaler est que pour les deux sections d'essais! le débit de liquide délivré (le débit 

de liquide qui se rend à la sortie de la section d'essais) est fonction uniquement du 

débit de gaz et du rapport ,û de l'orifice; il est indépendant du débit de liquide injecté. 

Nous avons aussi constaté que pour tous les cos étudiés. la vitesse superficielle du gaz 

nécessaire au refoulement total du liquide (point de pénétration nulle) est fonction 

uniquement du rapport 0 de I'orifice; il est aussi indépendant du débit de liquide 

injecté. 

En ce qui concerne le point d'engorgement seulement, nous avons comparé les résultats 

expérimentaux obtenus avec la section d'essais ayant une branche verticale et une 
branche horizontale avec ceux d'autres chercheurs. Malgré le fait qu'aucune des sec- 
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tions d'essais utilisées par les autres chercheurs ne soit identique à celle utilisée dans 
cette étude, leurs résultats sont en accord avec les nôtres. Nous avons également 
constaté que la corrélation d'Ardron et Banerjee [19861 prédit relativement bien nos 
résultats expérimentaux pour les cas sans orifice. 

Des expériences ont également été réalisées dans le but d'étudier l'effet d'hys t érésis 
en utilisant la section d'essais ayant une branche verticale et une branche horizontale. 
Ces expériences ont été menées avec et sans orifices de différentes grandeurs installés 

dans la branche horizontde. Pour tous les cas étudiés, nous avons observé des effets 

d'hystérésis importants. Nous avons constaté qu'il était nécessaire de réduire de 
façon importante le débit de gaz sous celui qui  correspond au point d'engorgement 
afin de rétablir l'acheminement total du liquide. De plus, nous nous sommes aperçus 
que, suite à l'engorgement, les débits de liquide déchargé obtenus avec des débits de 

gaz décroissants et inférieurs B celui correspondant au point d'engorgement , suivent 
les mêmes courbes de décharge partielle que celles obtenues avec des débits de gaz 

croissants. 

Nous avons développé deux modèles phénotnénologiques pour la prédiction du point 
d'engorgement pour des écoulenients ii contre-courant verticaux. Nous présenterons 
une comparaison entre les prédictions de ces modèles et les résultats expérimentaux 
obtenus aux cours de ces travaux. 

Nous avons développé un modèle pour prédire le point d'engorgement pour des 
écoulements à contrecoiirant vertical et horizontal utilisant une extension d'un modèle 
pour le début de l'entraînement appliqué ii la crête du saut hydraulique. La hauteur 
du saut hydraulique est calculée en utilisant des méthodes tirées du domaine de l'étude 
des écoulements à surfaces libres. Nous avons comparé les prédictions de ce modèle 
avec nos résultats expérimentaux ainsi qu'avec ceux d'autres chercheurs. Nous ver- 
rons que les prédictions concordent très bien avec les réçultats expérimentaux. Une 
extension a été apportée à ce modèle afin de tenir compte de l'effet de l'orifice sur 
la hauteur du niveau de liquide dans la section horizontale à la crête du saut hy- 

draulique. De plus nous présenterons une comparaison des prédictions de ce modèle 

avec nos résultats expérimentaux obtenus avec un orifice placé dans la branche hori- 
zontale ainsi qu'avec ceux d'autres chercheurs. De manière générale, ce modèle prédit 
très bien les résultats expérimen t a u .  

Nous avons réalisé une revue bibliographique sur les écoulements diphasiques à contre- 



courants. Une attention spéciale à été accordée aux phénomènes qui pourraient être 

pertinents au refroidissement d'urgence d'un réacteur CANDU suite à une perte de 
calopor teur . Ceux-ci incluent les pertes de charges, l'effet d'hystérésis, l'épaisseur 

de film et le point d'engorgement. Nous émettrons aussi certaines recommandations 

sur les meilleures corrélations empiriques et théoriques permettant la détermination 

du point d'engorgement. Pour conclure, nous suggérerons également des sujets de 

recherches futures qui pourraient approfondir nos connaissances dans ce domaine. 



Abstract 

This thesis presents the results of the work carried out to study counter-current flow 

and flooding phenonema under conclit ions of both vertical and vertical to horizontal 

flow. Two different 63.5 nmz. I.D. test sections were used for this work, The first 

containing only a. vertical leg and the second having both a vertical and a horizontal 

leg. In both cases the experiments were carried out both with and without vsrious size 

orifices placed in the test section. For the test section containing both the vertical and 

the horizontal legs the orifice was pisced in the horizontal Ieg. Results on the pressure 

drop under counter-curent flow conditions obtuined in the vertical test section only 

are also presented. 

For both the vertical and the horizontal test sections, it was found that for a given 

liquid flow rate the presence of an orifice greatly reduced the gas flow rate at which 

flooding occured. Fùrt hermore, th is decrease was found to be inversely proport ional 
to the orifice ,L? ratio. A further point of interest is that for both test sections the 

delivered liquid flow rate (the liquid flow rate thut actudly reaches the outlet of the 

test section) is a function of the gas flow rate and the orifice f l  ratio only and is 

independent of the inlet liquid flow rate. [t was further observed that for al1 the cases 

studied the zero penetration point was only a function of the orifice ,O ratio and of 
the gas flow rate, and was also seen to be independent of the inlet liquid flow rate. 

The experimental results, for the flooding point only, obtained in the test section 

containing both the vertical and the horizontal legs have b e n  cornpareci to the results 

of ot her researchers. In spite of the fact, that none of the test facilities used by the 

other researchers are identical to the one used in the present study, the results of 

the other researchers are in good agreement with the present results. The Ardron & 
Banerjee [1986] correlat ion was found to do a reasonably good job of predicting our 

e.xperimenta1 flooding results in the no orifice case. 



Experiments were also carried out to stucly the hysteresis effect in a test section 

containing both a vertical and a horizontal leg. These experirnents were perforrned 

both with and without various sized orifices placed in the horizontal leg. For dl 
the cases studied, a significant hysteresis effect was observed. It was found that in 

order to re-establish full liquid delivery &ter flooding had occured it was necessary 

to significantly decrease the gaç flow rate below that required to initiate flooding. 

It was also observed that in the post flcxiding state, the delivered liquid flow rate 

with decreasing gas flow rate followed the partial liquid delivery curves obtained with 

increasing gas Row rates. 

Two phenornenological niodels for the prediction of the flooding point for vertical 

counter-current two-phase flows are developed. The first represented flooding as 

being linked bo the mechanisni of dropiet entrainrnent while the second related the 

flooding point to the mechanisrn of film reversal. A cornparison between the predic- 

tions of these model and the experirnental resuits obtained during the course of this 

investigation will be presented. It will be show thiit the models were very sensitive to 

the choice of correlation used for the interfacial friction factor. Using an appropriate 

choice of the correlation to represent the interfacial friction, the model based on the 

rnechanisrn of droplet entrainrnent predicts Our experimental results reosonably well. 

The model based on the mechanisni of flow reversa1 on the other hand under-predicts 

the flooding points at high liquid flow rates. 

A model to predict the Rooding point in a test section containing vertical and hor- 

izontal legs using an extension of a mode1 for entrainment inception applied at the 

crest of the hydraulic jump has been developed. The height of the hydraulic jump is 

calculated using methods taken from the study of open channel flows. The results of a 

cornparison between this mode1 and our experimental results as well as those of other 

researchers is presented. The predictions are seen to be in very good agreement with 

the experimental results. An extension to this mode1 to take into account the influ- 
ence of the various size orifices on the height of the liquid level in the horizontal leg at 

the crest of the hydraulic jump has been developed. A cornparison of the predictions 

of this model against both our experimental results and those of other researchers is 

presented. The agreement between the predictions and the experimental resuits is in 

general very good. 

A review of literature in the area of counter-current gas-liquid flow has been carried 



out. Special emphasis is put on the phenoniena that might be of relevance to the 

emergency core cooling during a postulated loss of coolant accident in a CANDU 
reactor. This includes pressure drop, hysteresis effect, film thickness and counter- 

current flooding Iimits. Recornmendations are made for the best available empirical 

and theoretical correlat ions for the counter-current flooding limit . The problems of 

practical importance that need to be examined in greater detail have been pointed 

out. 
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Condensé en français 

1 Introduction (Chapitre 1) 

Les écoulements à contre-courants en général et 1ü limite d'engorgement en part i- 

culier sont d'une importance capitale dans le domaine de l'analyse de sûreté des 

réacteurs nucléaires. Dans les réacteurs CANDU, suite à certaines pertes de calo- 

porteur hypothétiques, l'eau de refroidissement qui vient des collecteurs d'entrées et 

de sorties est acheminée aux canaux de combustible par les tuyau  d'alimentation. 
Ceux-ci comportent des sections verticales et horizontales; dans certains des tuyau 
d'alimentation des orifices et/ou des venturis sont installés pour fin de contrôle ou 

mesure de débit. La vapeur produite dans les tuyaux d'alimentation et/ou dans 

les canaux de combustible peut s%couIer clans la direction opposée ii celle de l'eau 

de refroidissement créant ainsi un écoulement diphasique à contre-courant dans les 

tuyaux d'alimentation. Dans de telles conditions, le débit de l'eau de refroidise- 
ment qui se rend aux canaux de combustible peut être limité par le phénomène 

d'engorgement. Suite à l'amorce de l'engorgement, l'eau de refroidissement est par- 

tiellement entraînée dans le même sens que la vapeur. Le débit de liquide délivré a u  

cmau de combustible est donc grandement influencé par la géométrie des tuyaux 

d'alimentation, le type et le nombre de raccords, les restrictions hydrauliques et la 

façon que les tuyaux d'alimentation sont connectés aux collecteurs et aux canaux de 
combustible. Ainsi, une compréhension plus profonde du phénomène d'engorgement 
daris une géométrie similaire ii celle qu'on retrouve dans le système d'alimentation 

d'un réacteur CANDU est d'une importance capitale dans le domaine de l'analyse de 

sûreté des réacteurs nucléaires, particulièrement pour l'amélioration de la prédiction 

du temps requis pour que le système d'al imeiitat ion d'urgence remplisse les canaux 
de combustible. Les objectifs de cette recherche sont donc d'étudier tous les aspects 
des écoulements à contre-courant et du phénomène d'engorgement applicable dans 
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des systèmes géométriquement similaire B celui de I'alimentation d'eau d'un réacteur 

CANDU. 

2 Revue bibliographique (Chapitre 2)  

Au cours des 40 dernières années, un grand nombre de travaux expérimentaux et 

analytiques ont été effectués dans le but d'étudier les écoulements à contre-courant 

(Écc) et le phénomène d'engorgement. Dans le passé, trois critères différents ont été 

utilisés pour la caractérisation de la limite d'engorgement. Ceux-ci incluent: 

1. le point où débute l'entraînement des gouttelettes, 

2. le point où le film de liquide commence B s'écouler vers le haut, et 

3. le point de pénétration nulle. 

Cependant, il est important de noter que pour un débit de liquide donné, ces trois 

phénomènes se produisent B des débits de gaz différents. il est donc évident qu'un 

manque de clarté et d'uniformité dans la définition du point d'engorgement aura 

une influence majeure sur l'interprétation des résultats expérimentaux. Certaines des 

corrélat ions les plus connues pour la prédiction du point d'engorgement en écoulement 

à contre-courant vert icai seront présentées. 

Écoulements verticaux 

Un écoulement vertical ii contre-courant s'établit dû i la différence entre les forces 

gravitationnelles par unité de volume qui s'exercent sur les deux phases. Les forces 

de traînée à l'interface gaz-liquide agissent en opposition aux forces gravitationnelles. 

De plus, cette trainée s'accroît avec une augmentation de la vitesse relative entre 

les deux phases. Il est donc clair qu'il existe une vitesse relative au deli de laquelle 

un écoulement ii contre-courant pur ne peut exister. Cette limite est connue sous le 

nom de point d 'engorgement. Comme nous l'avons mentionné auparavant, plusieurs 

critères contradictoires ont été utilisés pour caractériser cette limite. Une définition 

plus claire qui n'est pas sujet a multiples interprétations s'impose donc. La définition 

du point d'engorgement que nous allons utiliser aux cours de ces travaux est: le point 

O$ la décharge du liquide dans sa totalité ne peut plus être soutenue correspond au 
point d 'engorgement. De manière générale, les expériences faites au cours des années 

ont démontré que le débit de gaz correspondant au point d'engorgement diminue 
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avec des débits de liquide qui augmentent. De plus, nous avons trouvé que, pour 

un débit de liquide donné, la perte de pression augmente graduellement avec une 

augmentation du débit de gaz jusqu'au point d'engorgement où un saut brusque de 
sa valeur se produit. Une mesure de la perte de pression en écoulement à contre- 

courant peut donc être utilisée comme critère expérimental pour la détermination du 
point d'engorgement. 

La corrélation la plus connue pour la prédiction du point d'engorgement en écoulement 

à contre-courant vertical est celle de Wallis 119691 qui est donnée par: 

où la vitesse superficielle adiniensionnelle est définie comme: 

où k représente soit la phase liquicle 1 soit la phase gazeuse g. Les constantes m, C 
tiennent compte des effets d'entrée et de sortie. 

Écoulements horizontaux 

Krowlewski [19801 a effectué des expériences sur le point d'engorgement dans une con- 

duite verticale ou inclinée reliée B une conduite horizontale par un coude à 90" ou à 
45", selon le cas. La section d'essais était composée d'une conduite horizontaie d'une 

longueur de 584 mm et d'un diamètre intérieur de 51 mm. L'eau et l'air aux conditions 

atmosphériques ont été utilisés cornrne fluides de travail. La limite d'engorgement 

était déterminée lorsqu'une augnientation soudaine de la perte de pression dans la 

section d'essais était observée. Les données ont été collectées pour différentes con- 

figurations géométriques. L'auteure n observé que le débit de gaz nécessaire pour 

provoquer un engorgement dans une conduite horizontale est beaucoup plus faible 

que celui requis pour une conduite verticale de même diamètre intérieur. 

Siddiqui et al. [19861 ont effectué des expériences dans une conduite verticale reliée 

à une conduite horizontale par un coude à 90" et ce, pour différents diamètres et 

longueurs de conduites ainsi que pour différents rayons de courbure du coude. Les 

auteurs ont observé que pour un débit de liquide injecté élevé, un saut hydraulique se 



forme dans la partie horizontale près du coude. Dans ces conditions, l'engorgement 

est causé par un bouchon qui se forrn 3. 1x crête du saut hydraulique. Sur toute la 

plage de diamètres intérieurs étudiés, lorsque le débit de liquide injecté est faible, le 

saut hydraulique est petit et difficile B observer. Les auteurs ont constaté que la limite 

d'engorgement dépendait du dimètre intérieur de la conduite, de la longueur de la 

conduite horizontale et du rayon de courbure du coude. Les résultats ont montré que le 

débit de gaz  nécessaire pour provoquer uii engorgement est beaucoup plus faible dans 
les configurations étudiées que dans une conduite verticale équivalente. Les auteurs 

ont également observé que, sur la plage de diamètres intérieurs étudiés, la racine 

carrée de la vitesse superficielle non-diniensionnelle du gaz au point de pénétration 

nulle est constante, 

Wan [1986] a effectué des expériences sur les écoulements diphasiques à contre- 

courant dans une section d'essais aymt un coude B 90". Les fluides de travail utilisés 

étaient l'eau et la vapeur d'eau. L'auteur a identifié trois configurations différentes 

d'écoulement cariictérisan t ses expériences: i )  écoulement diphasique à contre-courant 

en régime stationnaire sans bouchon, i i )  bouchon avec refoulement de liquide et i i i )  

bouchon accompagné d'une colonne pulsative dans la conduite verticale mais sans 

refoulement de liquide. 

Kawaji e t  al. [19891 ont étudié la limite d'engorgement dans une conduite verticale 

et dans une conduite verticale reliée piu cles coudes de différents angles à des con- 

dui tes inclinées ou horizontdes. Dans tous les cas, les conduites utilisées avaient un 

diamètre intérieur de 51 mm. Pour les expériences effectuées dans une conduite ver- 

ticale reliée à une conduite horizontale par un coude, deux longueurs ont été utilisées 

pour la conduite horizontale: 0.1 rri et 2.54 ni. Pour la conduite horizontale la plus 

longue et pour de faibles débits de liquide injecté, les auteurs ont observé ln formation 

d'un saut hydraulique dans la conduite horizontale près du coude. Dans ces condi- 

tions, la cause de l'engorgement était la formation d'un bouchon à la crête du saut 

hydraulique. De plus, les auteurs ont observé que, pour un débit de liquide injecté 

donné, le débit de gaz nécessaire à I'obtention d'un engorgement était beaucoup plus 

faible dans un écoulement vert icai- hor izon t al (avec une longue conduite horizontale) 

que dans un écoulement vertical. Pour de grands débits de liquide injecté, les auteurs 

ont observé un changement dans le mécanisme causant l'engorgement. Dans ces con- 

ditions, l'engorgement était provoqué par un bouchon près de la sortie de 1s conduite 
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horizontale. 

Pour la conduite horizontale la plus courte, l'engorgement dû à un saut hydraulique 

a été observé pour de faibles débits de liquide injecté seulement. Dans ces conditions, 

les résultats étaient comparables ceux obtenus dans une longue conduite horizon- 

tale. Pour des débits de liquide injecté plus important, la cause de I'engorgement 

provenait de la formation d'un bouchon (sans saut hydraulique) dans la conduite 
horizontale. Dans ces conditions, le débit de gaz au point d'engorgement était nette- 

ment supérieur ii celui dans 1s longue conduite horizontale et même supérieur & celui 

dans une conduite verticale seule. 

Pour les expériences dans une conduite verticille reliée à une conduite inclinée, trois 

coudes ont été utilisés: 1 12.Eio1 135.0' et 157.5O. Les débits de gaz au point d'engorge- 

ment pour les coudes de 1 L2.5" et 135.0" étaient presque identiques et correspondent 

au débit maximal des géométries étudiées. Le débit de gaz au point d'engorgement 

dans le coude de 157.5" était légèrement inférieur à celui dans les coudes de 112.5" 

et 135.0" mais tout de même supérieur à celui clans un écoulement vertical et B celui 

dans un coude de 90" avec une courte conduite horizontale. Dans toutes les conduites 

inclinées, l'engorgement s'est formé dans la conduite inclinée environ 15 à 50 n plus 

bas que le coude, tout dépendant du débit cle liquide injecté et de l'angle du coude. 

Les auteurs ont également fait des comparaisons avec une corrélation d'écoulement 

par bouchon et un modèle de refoulement du liquide. 

Kawaji et al. (19931 ont effectué des expériences dans le but de déterminer la limi- 

te d'engorgement dans une section d'essais de 51 mm de diamètre intérieur con- 

tenant plusieurs coudes et une obstruction. Les rapports ,O = Dapce/Dtu6e des ori- 

fices utilisés dans ces expériences étaient 0.550, 0.670 et 0.865. Trois configurations 

différentes ont été étudiées: section d'essais contenant trois coudes dont le premier 

et le troisième sont dans le plan vertical, section d'essais contenant trois coudes dont 

le premier et le troisième sont dans le plan horizontal et section d'essais contenant 

trois coudes dont Le deuxiènie et le troisième sont à 45 par rapport au plan verti- 

cal. Bien qu'il y ait certaines différences dans les résultats obtenus pour ces trois 

géométries, plusieurs observations qualitatives ont pu être faites sur l'effet de la di- 
mension de l'obstruction sur la limite d'engorgement. Les auteurs ont observé que 

l'obstruction la plus petite (rapport 0 le plus grand) avait une faible influence sur 
la 1 imite d'engorgement comparée aux expériences effectuées sans obstruction. Pour 
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les deux obstructions les plus importantes (rapport ,d les plus faibles), les auteurs 

ont observé que, pour un débit de liquide injecté donné, le débit de gaz nécessaire 

pour déclencher l'engorgement était beaucoup plus faible que celui observé dans les 

cas avec faible obstruction ou sans obstruction. De plus, le débit de gaz au point 

d'engorgement diminuait en diminuant le rapport 17 (augmentant la dimension de 

l'obstruction). 

Ardron et Banerjee [19861 ont développé une corrélation pour prédire le début de 

l'engorgement pour un écoulement à contre-courant horizontal. Cette corrélation 

donne la vitesse adimensionnelle du gaz à l'engorgenient en fonction de la fraction de 

vide à l'endroit où se situe le saut hydraulique. Des comparaisons ont montré que 

cette corrélation prédit très bien les résultats de plusieurs chercheurs. II est important 

de souligner que cette corrélation est incapable de tenir compte de l'effet de l'orifice. 

3 Montages et procédures expérimentaux (Chapitre 3) 

Le montage expérimental permet I 'utilisation de sections d'essais ayant uniquement 

une branche verticale ou ayant une branche verticale et une branche horizontale. 

L'eau et l'air à pression atmosphérique sont utilisés comme fluides de travail. Les 
deux sections d'essais sont fabriqués dc plexiglass pour permettre la visualisation de 

l'écoulement. Leur diamétre intérieur est 63.5 mm. La section d'essais verticale a une 
longueur de 2578 mm. Une bride dans laquelle une obstruction peut être installée 

est située i 1744 mm de l'entrée d'eau. Lü seconde section d'essai est composée 

d'une branche verticale de 2022 mm de longueur reliée à une branche horizontale de 

3327 mm de longueur par un coude en PVC de 90". Une bride dans laquelle une 

obstruction peut être installée est située dans la branche horizontale ù. 1638 mm du 

coude. Pour les expériences faites dans 1s section d'essais verticale, des orifices ayant 

des rapports P de 0.90, 0.83, 0.72, et 0.66 on été utilisés. Pour les expériences faites 

dans la section d'essais ayant une branche verticale et une horizontale, deux orifices 

additionnels ayant des rapports ,d de 0.77 et 0.55 ont également été utilisés. Les deux 
sections d'essais partagent certaines pièces communes, telles que: 

le système d'injection d'eau qui consiste en un tube de 63.5 mm de diamètre 

intérieur ayant 800 trous de 1 mm percés dans sa paroi et des brides qui per- 

met tent sa fixation aux sections d'essais, 

le réservoir inférieur qui comprend le système d'entrée d'air ainsi que le système 
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de décharge d'eau, et 

le réservoir supérieur qui sert de système de séparation et de collecte de l'eau 

entraînée par l'air. 

Instrumentation 

Le montage expérimental est instrumenté pour mesurer les débits de liquide et de gaz, 

leurs températures, ainsi que la pression absolue du système. La section d'essais ver- 

ticale est également équipée pour permettre la niesure des pertes de pressions axiales. 

Le débit de liquide est mesuré en utilisant des débitmètres à turbine de type "Flow 
Technology" . Ces débitmètres peuvent couvrir la plage allant de 0.05 à 4.54 mJ/h 
avec une précision supérieure ii 1% de la pleine échelle. Le débit de gaz est mesuré en 

utilisant un groupe de cinq rotimiètres "Brook" qui couvrent la plage allant de 0.085 
à 132.5 m3/h B une pression de 2 bar. La précision des rotamètres est de 2% de la 

pleine échelle. La température du gaz est riiesurée i l'aide d'un thermocouple installé 

su  centre de la conduite d'entrée d'air. La température du liquide est également 

mesurée et contrôlé à une température cle 20 f 0.5 O C .  La pression absolue dans le 

réservoir inférieur est mesurée B l'aide d'un capteur de pression 'Sensotec". La plage 

de pression absolue couverte est de 1 h 1.14 bar avec une précision de 0.25% de la 

pleine échelle. Les pertes de pressions dans la section d'essais verticale sont mesurées 

à l'aide de deux capteurs de pressions ciifférentielles "Validyne" couvrant une plage 

de pression différentielle allant de O h 103.4 Pa et de O à 689.5 Pa. La précision de 

ces capteurs est de 0.25% de la pleine échelle. 

Procédures expérimentales 

Deux types d'expériences ont été effectuées clans le cadre de cette recherche; des 

expériences p o u  la détermination du point d'engorgement, du débit de liquide délivré, 

et de l'effet d'hystérésis et des expériences pour Iri détermination des pertes de pres- 

sions en écoulement à contre-courant dans la section d'essais verticale. 

La procédure expérimentale utilisée pour cléterminer le point d'engorgement et le 

débit de liquide délivré est la suivante: 

1. Fixer le débit de liquide injecté à l'entrée de la section d'essais; 

2. augmenter le débit du gaz jusqu'à l'obtention du point d'engorgement; 



3. continuer d'augmenter le débit du gaz (augmentation par palier) en collectant 

et pesant le 1 iquide entraîné jusqu'à l'obtention du point de pénétration nulle. 

Cet te procédure expérimentale doit être répétée pour tous les débits de liquide et tous 

les orifices étudiés. Pour l'étude de l'effet d'hysérésis, la procédure est la même. Mais 

suite à l'engorgement, le débit de gaz est graduellement réduit par palier jusquLau 

point où la décharge totale du débit de liquide est rétablie. La veriation de la perte 

de pression dans la section d'essais verticale est déterminée en mesurant la pression A 
une position axiale donnée par rapport ii une pression de référence (atmosphérique). 

Afin d'obtenir une mesure plus précise de la pression dans la section d'essais, trois 

prises de pressions sont situées B 120° les unes des autres autour de la section d'essais à 

chaque position axiale. Les prises de pressions sont connectées au système de mesure 

à l'aide de colliers spéciaux. 

4 Résultats expérimentaux (Chapitre 4) 

Résultats des expériences ~ ' É c c  verticale 

Les résultats expérimentaux obtenus dans 1s section d'essais verticale ont démontré 

que le débit de gaz correspondant nu point d'engorgement diminue avec des débits 
de liquide qui augmentent. Pour le cas sans orifice, nous avons constaté que pour les 

débits de liquide élevé au point d'engorgement il y à une transition subite jusqu'au 

débit de liquide délivré tandis que pour des débits de liquide faibles la transitions 

se fait d'une façon beaucoup plus graduelle. Dans tous les cas où un orifice est 

présent, la transition entre la livraison totale du débit liquide et la livraison partielle 

se fait d'une façon très graduelle. Nous ;wons également trouvé que, pour un débit 

de liquide donné, la présence d'un orifice réduit de façon significative le débit de 

gaz correspondant au point d'engorgement. De plus, nous avons constaté que cette 

réduction est inversement proport ionnelie au rapport /? de l'orifice. 

Résultats des expériences ~ ' É c c  ver ticale et horizontale 

Pour les résultats expérimentaux obtenus avec la section d'essais ayant une branche 

verticale et une branche horizontale, nous avons observé que le débit de gaz corre- 

spondant au point d'engorgement suit les mêmes tendances que le cas vertical vu 

précédemment; il diminue avec des débits de liquide qui augmentent. Contrairement 

à ce que nous avons trouvé dans la section d'essais ayant uniquement une branche 

verticale, nous avons observé que dans tous les cas (avec et sans orifice) la transi- 



tion entre la livraison totale du débit liquide et la livraison partielle se fait de façon 

subite. Nous avons également constaté que l'effet de l'orifice provoquant la réduction 

du débit de gaz pour lequel l'engorgement a lieu pour un débit de liquide donné est 

aussi présent dans le cas d'un écoulement à contre-courant horizontal. De plus, nous 

nous sommes aperçus que cette réduction était inversement proportionnelle au rap- 

port p de l'orifice tel qu'observé pour les cas verticaux. Suite à l'engorgement, nous 

avons observé que le débit de liquide délivré est fonction uniquement du débit de gaz 

et du rapport B de l'orifice; il ne dépend pas du débit de liquide injecté. Ceci est 

également vrai pour le point de pénétration nulle. 

En ce qui concerne le point d'engorgement seulement, nous avons comparé les résultats 

expérimentaux obtenus avec la section d'essais ayant une branche verticale et une 

branche horizontale avec ceux d'autres chercheurs. blalgré le fait qu'aucune des sec- 

tions d'essais utilisées par les autres chercheurs ne soit identique à celle utilisée dans 

cette étude, leurs résultats sont en accord avec les nôtres. Nous avons également 

constaté que la corrélation d7Ardron et Banerjee 119861 prédit relativement bien nos 

résultats expérimentaux pour les cas sans orifice. 

Des expériences ont également été réalisées dans le but d'étudier l'effet d'hystérésis 

en utilisant la section d'essais ayant une branche verticale et une branche horizontale. 

Ces expériences ont été menées avec et sans orifices de différentes grandeurs installés 

dans la branche horizontale. Pour tous les cas étudiés, nous avons observé des effets 

d'hystérésis importants. Nous avons constaté qu'il était nécessaire de réduire de 

façon importante le débit de gaz sous celui qui correspond au point d'engorgement 

afin de rétablir l'acheminement total du liquide. De plus, nous nous sommes aperçus 

que, suite à l'engorgement, les débits de liquide déchargé obtenus avec des débits de 

gaz décroissants et inférieurs à celui correspondant au point d'engorgement, suivent 

les rnênies courbes de décharge partielle que celles obtenues avec des débits de gaz 

croissants. 

Expérience de pertes de pression 

Nous avons effectué des expériences pour mesurer les pertes de pression en écoulement 

à contre-courant dans la section d'essais ayant uniquement une branche verticale. 

Nous avons trouvé que pour un débit de liquide donné, les pertes de pression s'accrois- 

sent en augmentant le débit de gaz. De plus, pour un débit de gaz donné, les pertes 

de pression augmentent quand on accroit le débit de liquide. 



5 Modélisation du point d'engorgement (Chapitre 5 )  

Nous avons développé deux modèles phénoménologiques pour la prédiction du point 
d'engorgement pour des écoulements k contre-courant verticaux. Le premier représen- 
te la point d'engorgement en fonction du débit de gaz nécessaire pour entraîner une 
gouttelette dans le courant de gaz contre les forces gravitationnelles. Le deuxième 

modèle que nous avons développé représente le point d'engorgement en fonction du 
débit de gaz nécessaire pour rendre nulle la vitesse du film de liquide situé à l'interface 
gaz-liquide. Nous avons constaté que les prédictions des d e u  modèles sont fortement 

dépendantes du choiv de la corrélation utilisée pour représenter le facteur de friction à 

l'interface. En utilisant une corrélation appropriée, nous trouvons que le modèle basé 
sur le mécanisme d'entraînement de gout telet tes réussit bien à prédire les résultats 
expérimentaux tandis que le modèle basé sur le mécanisme de l'écoulement du film 
sous-estime les résultats expérimentaux pour les débits de liquide élevés. 

Nous avons également développé un modèle pour prédire le point d'engorgement pour 
des écoulements contre-courant vertical et horizontal utilisant une extension d'un 

modèle pour le début de l'entraînenient appliqué B la crête du saut hydraulique. La 

hauteur du saut hydraulique est calculée en utilisant des méthodes tirées du domaine 
de l'étude des écoulements B surfaces libres. Nous avons comparé les prédictions de ce 

modèle avec nos résultats expérinientaux ainsi qu'avec ceux d'autres chercheurs. Nous 

voyons que les prédictions concordent très bien avec les résultats expérimentaux. Une 

extension a été apportée à ce mocièle afin de tenir compte de l'effet de Ibrifice sur la 

hauteur du niveau de liquide dans la section horizontale Q la crête du saut hydraulique. 
De plus nous présentons une comparaison des prédictions de ce modèle avec nos 
résultats expérimentaux obtenus avec un orifice placé dans la branche horizontale 

ainsi qu'avec ceux d'autres chercheurs. De manière générale, ce modèle prédit très 

bien les résultats expérimentaux. 

6 Conclusion et recommandation (Chapitre 6) 

Au cours de cette thèse, nous avons présenté les résultats des t rava~v effectués dans 

le but d'étudier les écoulements à contre-courant ainsi que le point d'engorgement 

pour des écoulements vertical et vertical à horizontal. Pour les deau sections d'essais, 
nous avons trouvé que pour un débit de liquide donné, la présence d'un orifice réduit 
de façon significative le débit de gaz correspondant au point d'engorgement. De plus, 

nous avons constaté que cette réduction était inversement proportionnelle au rapport 



,d de l'orifice. Un autre point intéressant à signaler est que pour les deux sections 

d'essais, le débit de liquide délivré est fonction uniquement du débit de gaz et du 

rapport ,û de l'orifice; il est indépendant du débit de liquide injecté. Nous avons aussi 

constaté que pour tous les cas étudiés, la vitesse superficielle du gaz nécessaire au 

refoulement total du liquide (point de pénétration nulle) est fonction uniquement du 

rapport 13 de l'orifice; il est aussi indépendant du débit de liquide injecté. 

Des expériences ont également été réalisées dans le but d'étudier l'effet d'hystérésis 

en utilisant la section d'essais ayant une branche verticale et une branche horizontale. 

Ces expériences ont été menées avec et sans orifices de différentes grandeurs installés 

dans la branche horizontde. Pour tous les cas étudiés, nous avons observé des effets 

d'hystérésis importants. Nous avons constaté qu'il était nécessaire de réduire de 

façon importante le débit de giiz sous celui qui correspond au point d'engorgement 

afin de rétablir l'acheminement total du liquide. De plus, nous nous sommes aperçus 

que, suite à l'engorgement, les débits de liquide déchargé obtenus avec des débits de 

gaz décroissants et inférieurs ù. celui correspondant au point d'engorgement, suivent 

les mêmes courbes de décharge partielle que celles obtenues avec des débits de gaz 

croissants. 

Nous avons développé deux modèles p hénoménologiques pour la prédiction du point 

d'engorgement pour des écoulenien ts il contre-courant vert icaw . Nous avons trouvés 

que le modèle basé sur le mécanisme d'entraînement de gouttelettes réussit bien B 
prédire les résultats expérimentaux tandis que le modèle basé sur le mécanisme de 

l'écoulement du film sous-estime les réçultats expérimentaux pour les débits de liquide 

élevés. 

Nous avons développé un modèle pour prédire le point d'engorgement pour des 

écoulements à contre-courant verticd et horizontal avec et sans orifice placé dans 
la branche horizontale. Nous avons comparé les prédictions de ce modèle avec nos 

résultats expérimentaux ainsi qu'avec ceux d'autres chercheurs. Nous avons démontré 
que les prédictions concordent très bien avec les résultats expérimentaux. 
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Chapter 1 

INTRODUCTION 

Counter-Current Flow (CCF) in general and the Counter-Current Flooding Lirnit 

(CCFL) in particular are of great importance in the area of nucleu reactor safety anal- 

ysis. In CANDU reactors, during sonie postulated loss of coolant accident (LOCA), 
the water coming from the inlet and outlet heders enters the fuel channels through 

the feeder pipes. These pipes consist of vertical and horizontal legs: in sorne feeders, 

orifices snd/or venturi type flow obstructions are installed for flow adjustments and 

measurementç. Steam produced in the feeders and/or in the fuel channels may flow 

in the direction opposite to that of the water, thereby creating vertical and horizontal 

counter-current two-phase fiows in the feeder pipes. Under t hese conditions, the rate 

at which cooling water c m  enter the fuel channels may be lirnited by the flooding 

phenomena. At  flooding, the liquid is partly entrained in the same direction as the 

stearn Aow. The liquid delivery is greatly affected by the geometry of the feeder pipes, 

shape and number of fittings, flow area restrictions and the way the feeder pipe is 

connected to the header and to the end-fitting. Thus, knowledge of the flooding 

phenornena in a geometry similar to the heuder-feeder system in a CANDU reactor 

is of prime importance in the sdety analysis of nuclear reactors in order to improve 

the prediction of the t ime required for the ernergency cooling injection system to re- 

fil1 the fuel channels. The objectives of this research are thus, to study al1 aspects 

of CCF and the flooding phenornena as they apply to systems having a geometry 

similar to that seen in the header-feeder system of a CANDU nuclear reactor. These 

aspects include the study of al1 counter-curent flow phenornena from the flooding 

point through the entire range of partial liquid delivery, up to the point of zero liquid 

penetration as well as the hysteresis effect. Work has also been done on the devel- 



opment of phenornenological models for the prediction of the flooding point in such 

systems. 

The research project presented in this thesis was carried out as part of an industrial 
contract with the CANDU Owners Group (contract # WPIR-1513). Therefore, 

m a t  of the work carried out was presented to COG in several technical reports (Tye 

et a1.[19931, Tye  et a1.[19951, Tye et a1.[19961 , Tye et  a1.[19971). 

1.1 Organization of this Thesis 

Chapter One introduces and outlines the work that has  been done. 

Chapter Two reviews the domain of counter-current two phase flow and flooding. 

The review includes the work done on the erperimental determination of the flooding 

point under conditions of both vertical and vertical to horizontal Flow. A review of 

the various models and correlations available for the prediction of the flooding point 

for vertical and for vertical to horizon ta1 counter-current flows is also presented. 

Chapter Three presents the experirnental facility and the experirnental procedures 

used in the current research. 

Chapter Four presents both the experiniental results obtained in the current research 

and a cornparison of these results with the work of other researchers. 

Chapter Five presents the development of a phenornenological model for the pre- 

diction of the flooding point for vertical counter-current two-phase flows. The de- 
veloprnent of a phenomenological model for the prediction of the flooding point for 

horizontal counter-current two-phase flows without an orifice as  well as its euten- 

sion to inciude the influence of an orifice in the horizontal leg on the CCFL is also 

presented. 

Chapter Six gives the conclusions and recommendations for future work. 



Chapter 2 

LITERATURE REVIEW 

Over the last 40 years a great deal of experiniental and analyt ical wor k has been done 

in the area of counter-current two-phase flows and the Flooding phenornena. The 

number of different experiments that have been carried out to determine the flooding 

point under vertical counter-currcnt two-phase flow conditions is so vast as to make 

a cornplete review imposçible. Furtheririore u lack of clitrity and consistency in the 

definition of the flooding point usecl by the various reseurchers would render such a 

review almost useless. This point may best be illustrated by examining Figure 2.1 
taken lrom McQuillan & Malley (19851 who compiled a data bilnk containing 2762 
flooding points obtained by different researchers around the world. It is clear from 

the scatter in the data presented in this figure that a great deal of confusion exists 

as to the exact phenornena which corresponds to flooding. As described by Tien 

et. al. [19791, three criteria have, in the past, been used for the chaacterization of 

the counter-current fiooding limi t: 

a) point of inception of liquid entrainment, 

b) inception of liquid film upflow, and 

c) zero liquid penetration. 

However, for a given liquid flow rate t hese events occur at significantly different gas 

flow rates. Thus, it is obvious that a lack of clarity and consistency in the definition 

of flooding will significantly influence the interpretation of the experimental results. 



For the prediction of the CCFL in vertical flows the number of available correlations is 
huge and this review cannot claim to be exhaustive. However, a number of the more 
common correlations will be presented. For a more detailed review the interested 
reader is referred to McQuillan & Whalley [19851 and Bankoff & Lee [19861. 

For the case of counter-current two-phase flows occuring in an elbow between a 

vertical and a horizontal tube the amount of experirnental informat ion available in 
the open literature is quite limited and the models available for the prediction of 

the CCFL even more so. For the specific case of the CCFL occuring in an elbow 

between a vertical and a horizontal tube in which an orifice is located, the literature 
is limited to the work of only one other researcher [Kawaji et al. 19931. To the best 

of the author's knowledge no correlations or models exist which were developed to 

predict flooding behaviour due to the interactions of an elbow between a vertical and 

a horizontal run, and an orifice. 

2.1 Vertical CCF and CCFL Experiments 

As has already been stated the amount of available information regarding the exper- 

imental study of counter-current flow and Rooding is quite vast. This review will 
therefore focus on some of the more commonly observed experimental results. What 

little information available on the influence of flow obstructions on the CCFL under 
vertical flow conditions will also be examined. Experirnents carried out to study the 
zero 1 iquid penetrat ion point and pressure drop in counter-current two-phase flow 
will also be reviewed as will the hysteresis effect. 

2.1.1 Counter-Current Flow Generalities 

Vertical counter-curent flow of two phases c m  be sustained only as a result of the 

differences in the gravitational force per unit volume on each phase. For the case 
of an annular gas-liquid counter-current flow where the liquid flows downward and 
the gas flows upward, as shown in Figure 2.2a, a qualitative map of the various 
flow regimes has been given by Bankoff & Lee [19861. The counter-current flow is 
opposed by interfacial friction between the phases. The interfacial friction increases 

as the relative velocity of the phases increases. Thus, there is a maximum relative 



velocity for a pure counter-current flow beyond which there is a partial liquid flow 

reversal. At this point the flow becomes counter-current below and co-current above 

the liquid injection point (Fig. 2.2b). This limit is known as the flooding point. 
In the past, several different physical phenomena have been used to characterize the 

flooding point. Some authors identified it as liquid bridging, surface wave instabilities, 

incept ion of droplet entrainment, etc. However. none of these phenornena necessarily 

le& to a net upward liquid 80w. The liquid that is entrained above the liquid 

inlet may subsequently flow downwwd. Therefore, a more reasonable definition of 

the flooding limit is the point where Ju11 l i p i d  delivery out Ihe bottom of the tube 

rnay no longer be sustained. Such a definition is rigorous but not very convenient for 

practical experimental use. An objective and pract icd criterion for the detect ion of 

the flooding point should be found by studying the coincidence between the flooding 

point as defined above and other accompanying phenomena which rnay be more easily 

measured experimentally. Beyond the CCFL, a furt her increase in the gas fiow rate 

results in a partial liquid entrainment (Fig. 2 . 2 ~ )  in which droplets are wrriecl upward 

by the gas core. An even further increrise in the gas flow rate results in a complete 

liquid flow reversal, Le., there is no net flow below the liquid inlet. This is known 

as the zero downward liquid penetration limit (Fig. 2 - 2 4 .  In turn, when the gas 

flow rate is decreased a point is reachecl where a part of the liquid stluts Rowing 

downward (Fig. 2.2e). As for the flooding point, the partial downward flow reversa1 

should not be confused with the appearance of the liquicl below the liquid inlet. The 

liquid may appear below the liquid inlet in the form of a hanging film as reported 

by Wallis & blakkenchery [1974]. Thus, only the onset of the net downward liquid 

flow rnay be identified as the point of partial downward flow reversal. To reestablish 
a fully counter-current flow the gos flow rate must be decreased well below that of 

the flooding point. This is known as complete downward flow reversa1 or deflooding 

point (Fig. 2.2g). 

2.1.2 Pressure Drop 

The overall pressure drop for vertical counter-current flow was studied by Clift et. al. 
[1966]. It was defined as the pressure difference between the air pressure in the 
lower plenum at the gas inlet and the atmospheric pressure. They detected abrupt 

pressure drop changes at the flooding and deflooding points. Their results are shown 



in Figure 2.3. The overall pressure drop is plotted versus the inlet liquid flow rate for 

a fixed gas flow rate. As the liquid flow rate increases (line O'A') the pressure drop 

is almost constant. At point A' the pressure drop abruptly jumps up to point B'. 
This occurs at the flooding point. A further increase in the liquid flow rate causes 

only a slight increase in the pressure &op (B'C'). Once the column is flooded the 

liquid flow rate may be reduced well below the flooding value without significantly 

altering of the pressure drop (C'Di). At point D' the pressure drop sbruptly jumps 

down to point D" and this is accompanied by the appearance of pure counter-current 

flow in the pipe (deffooding point). These sharp changes of the pressure drop have 

been used as objective criteria for the experimental detection of the flooding (A' to 

B' transition) and deflooding (D' to D" transition) points. 

B harat han et. al. 119791 measured the pressure gradient by the use of three pres- 

sure taps; two of them installed in the test section and the third one in the lower 

plenum. Their experimental results are presented qualitatively in Figure 2.4 using 

the dimensionless superficid velocities and the dimensionless pressure gradient, where 

the dimensionless superficial velocity of the kth phase is defined as: 

the dimensionless pressure gradient is given by: 

and k = g or 1 represent the gas and liquid phuses respectively. The pressure gradient 

shows the same sharp variation as the gas flow rate is increased to the flooding point. 

Siniilar results have also been reported by Dukler et. al. [19791. 

Hawley & Wallis [19821 measured the pressure drop under counter-current flow con- 

ditions across a 1.83 rn long 51 mm I.D. test section. It should be pointed out that 

for these experiments the gas was drawn into the bottom of the test section, which 

was open to the iitmosphere, by a vacuum blower. They presented the dimensionless 

pressure drop which is defined as: 

AP* = 
AP 

[ g D h  - PJ 9 



as a function of the dimensionless superficial gas velocity and compared the various 

characteristic stages in the pressure gradient variation with the observed stages of the 

film flow. At low gas flow rates (stage 1 Fig. 2.5) a srnooth falling film is observed 

in the tube with a correspondingly small pressure gradient. As the gas flow rate was 

increased a region of increased pressure drop was observed where the gas pulled the 

water exiting the tube into a neck, or contraction, as shown in Figure 2.5 (stage 2). 
At yet higher gas flow rates (stage 3 Fig. 2.5) the air entering the test section rips 

droplets from the water exiting the tube. The entrained droplets are only seen to 

occur in the lower 10-30 m of the test section. The impact of the droplets on the 

liquid film causes waves to form, variations are also observed in the film thickness. 

In the upper portion of the tube the film rernains smooth. At this stage a slight 

pressure rise from that of stage 2 is observed. Stage 3, however, is unstable and the 

rough film region grows successively larger (stage 4 Fig. 2.5) unt il  it covers the ent ire 

length of the tube as shown in Figure 2.5 (stage 5).  In the transition from stage 3 to 

stage 5 a sharp increase in the pressure drop across the tube was observed. Hawley 

& Wallis [19821 considered stage 5 to correspond to the onset of flooding. Due to the 

nature of the liquid inlet used by tthese researchers, which was by overflow at the top 

of the tube, the onset of flooding liniited the inlet liquid flow and a decrease in the 

pressure drop was thus observed (stage 6 and 611 Fig. 2.5). It c m  again be seen from 

these results that the flooding point corresponds to the point where a sharp increase 

in the pressure &op occurs. 

Dukler et. al. [19841 measured a pressure gradient in the liquid phrise above and below 

a liquid inlet for a fixed liquid flow rate and a range of the gas flow rates covering the 

flooding point. They found that the pressure gradient exhibits a sharp increase, both 

above and below the liquid inlet, as the gas flow rate approaches the flooding point. 

Zabaras [19851 measured the pressure drop under counter-current two phase flow 

conditions in a 4.56 m long vertical 51 mm I.D. test section. The pressure drop 
was measured using a movable measurement station with the pressure taps spaced 

89 mm apart which was located either 0.15 or 1.7 rn f?om the liquid injection point. 

Four different liquid flow rates were studied for a number of diffèrent gas flow rates 

covering the entire range from zero gas flow up to almost that required to cause 

zero downward liquid flow. The results of Zabaras [19851 are shown in Figures 2.6a 
and 2.6b for the two diEerent positions of the measurement station. In general it 



was found that below the flooding point the pressure gradient increases very slightly 
with increasing liquid flow rate. For a given gas flow an order of magnitude increase 
in the liquid flow rate caused a 50% increase in the pressure gradient. It was also 
found that for dl the liquid fiow rates studied, below the flooding point the pressure 
gradient increased smoothly with increasing gas flow rate. A significant increase in 
the pressure gradient was observed at the flooding point. The increase in the pressure 
gradient becanie sharper wi th increasing liquid flow rates. 

2.1.3 Mean Film Thickness 

The classical theory of falling liquid film was first developed by Nusselt [1916], the 
film thickness corresponding to the idealized case where the equation of motion for 

steady, lamina, one dimensional flow is solved with zero interfacial shear is known 

as the Nusselt filni thickness and is given by the following equation: 

Hewitt & Wallis 119631 measured the film thickness under counter-current flow con- 
ditions with zero gas flow and with a gas flow just below the flooding point. They 

found that the rneasured film thickneses were in very close agreement with those 
given by equation 2.4 not only for the case of zero gas fiow but also for the gas flow 
rate just below the flooding point. The results of Hswley & Wallis [19821 covering a 

wide range of liquid Row rates with no gas flow and with a gaç flow below the flooding 

point also confirm these observations. 

Zabaras [19851 also measured the film thickness under counter-current two phase flow 
for the same conditions as those described in the previous section. The results are 

shown in Figures 2.7a and 2.7b for the two different positions of the rneasurement 
station. The figures a h  show the Nusselt film thicknesç corresponding to the four 

liquid flow rates studied. These results confirm those of Hewitt & Wallis [1963]. 
Zabaras [1985] dso found that just before flooding the mean film thickness increases 
rapidly. While after flooding it decreases and is almost independent of the total inlet 
liquid flow rate. 

If the equation of mot ion for steady, lamina, one dimensional flow is solved wit h the 



boundary condition of zero liquid velocity at the gas liquid interface the film thickness 

is given by the following expression: 

The film thickness calculated using equation 2.5 corresponding to the four liquid flow 

rates studied by Zabaras 119851 are also shown in Figures 2.7a and 2.7b for the two 

different positions of the measurement station. It is interesting to note that the film 
thicknesses corresponding to the condition of zero liquid velocity at the gas liquid 

interface correspond quite well with the rneasured film thicknesses at the flooding 

point particularly for the case were the meusurement station is located further from 

the liquid inlet. 

2.1.4 Flooding and Liquid Delivery 

A gretlt deal of work has  been done to experinientally study the flooding phenornena; 

the liquid flow rates, both upward and clownward in the post flooding region; as well 

as the point of zero liquid penetration or cornplete liquid holdup. Although a great 

deal of scatter exists in the experirnental results some qualitative knowledge about 

flooding and the influence of certain pararneters on its onset hm been acquired. 

Flooding depends on the combination of liquid and gas flow rates. For a fixed inlet 

liquid Flow rate, the higher the inlet liquid flow rate the lower the gas flow rate will 
be at which flooding occurs, similady, for a fixed gas flow rate the higher the gas flow 

rate the lower the inlet liquid flow rate will be at which flooding occurs. 

It has been found, that while, for a given set of experimental conditions the point 

of onset of flooding may be clearly defined [Hewitt 19891 a minor change in the 

configuration of secondary parameters such as  the inlet and exit geometries may have 

a large influence of the measured flooding point. Figures 2.8 a-1 [Bankoff & Lee 

19861 show some of the experimental geometries used by different researchers. Ail 
other pararneters being identical the fiooding point is highest for the case where a 

porous liquid inlet and exit are used as illustrated in Figure 2.8j, next highest for 

the smooth inlet geometries of which Figure 2.8b is an example and finally lowest 

for sharp end geometries as iiiustrated by Figure 2.8a. Data clearly illustrating the 



influence of inlet and outlet geometries on the flooding point are given by Hawley & 

Wallis [1982], Hewitt [L9891 and Govan [L%O]. 

Hewitt [19891 presented results showing the influence of the tube length on flooding. 

For a test section having a porous liquid inlet and exit, his results show a clear 

influence of the tube length with, for a given inlet liquid flow rate, the gas flow rate 

at the flooding point decreasing substant ially with increasing lengt h. Results were 

also presented for a test section having a porous liquid inlet and a shap  edged exit. 

For this case no difference in the flooding point was observed even with a doubiing of 

the tube length. It is clear that for this case the flooding occurs as n result of certain 

phenomens taking place at the exit and not a s  a results of the interaction between 

the gas core and the liquid film inside the tube. 

There is a ciear influence of the tube diameter on the flooding point. Obviously, 

for a given liquid flow rate the gas flow rate at flooding increases with increasing 

tube diameter. Further, when the gas and liquid Rows are expressed in terms of the 

superficial velocities it is found that as the tube diarneter increases the gas superficid 

velocity at the flooding point increases for a fixed inlet liquid superficial velocity 

Experimental evidence to support these stateinents is presented by Suzuki & Ueda 

[19771, Chung [19781, and Celata [19891. 

Suzuki & Ueda [19771 examined other factors -affecting the flooding gas flow rate. 

They presented experimental results on the flooding gus flow rate in vertical tubes 

over a wide range of tube diameter; tube length; liquid flow rate; liquid viscosity 

and surface tension. They found that for u. given liquid flow rate the flooding gas 

flow rate increases with increasing tube ciiameter and decreases with increasing tube 

length. For their particular case, the effect of tube length was small for low liquid 

flow rates but was significant for high liquid flow rates. The effect of tube length is 

less important in the case of high viscosity liquids. This is due to the fact that the 

viscosity attenuates the waves. The flooding gas Row rate has a tendency to increase 

with increasing liquid viscosity, but this trend is not very ciear for thick liquid films. 
I t  seerns that the viscosity is l e s  important for thick films where inertial effects are 

significant. The effect of surface tension is complicated; this may be due to the fact 
that dynamic tension of a newly formed surface differs £rom that of a static one. 

Dukler and Smith 119793 carried out experiments to study the delivered liquid flow 

rate in the post flooding region. They found that beyond the flooding point the 



delivered liquid flow rate was a function of the gas flow rate only and was completely 

independent of the inlet liquid flow rate. The results of both Zabaras [1985] and 

Covan [19901 confirm this observation. The results of both Dukler & Smith [19791 

and Zabaras [19851 also show that the gas flow at the zero liquid penetration point 

depenàs only on the geometry of the test section and not on the inlet liquid flow 
rates, 

2.1.5 Counter-Current Flows Through Obstructions 

Celata et. al. [19891 performed experimen ts wit h air-water counter-current flows 

in a vertical 20 mm I.D. 500 mm long circular test section. Orifices of different 

diameters ranging from L2 to 19 mni were placed concentricdly in the test section 

300 mm downstream from the liquid inlet. Tests were dm carried out with four 

non-concentric orifices, drilleci in the same disk, with the total area equal to the 

area of one of the concentric orifices (D=14 mm). The disk thickness was equal 

to 1/10 of the hole diameter. The fiooding point w u  defined as a point at which 
the falling film began to be entrained by the upward-Rowing gas. The experimental 

data were presented in terms of the superficial velocity calculated with the jree j7o.w 

area offered by  the obstruction (and not tu the area of the test section). At the 

fiooding point the delivered liquid rnoçs flow rate (Le., the mass flow rate of the liquid 

flowing downward) or delivered superficial velocity was expressed in terms of the gas 

superficial velocity. Pressure drop data were slso reported. It was found that the gas 

flow rate at zero downward liquid penetration decreases with decreasing perforation 

ratio ( A O n / . / & ~ ) .  The same is crue for the gas flow rate at the onset of flooding. 

2.1.6 Hysteresis Effect 

From the time some of the earliest experiments on the flooding phenornena were 

carried out, it has been known that a significant hysteresis effect exists under counter- 

current flow conditions when the flooding point was reached [Wallis et al. 19631. Clift 

et al. [19661 termed the point were full liquid delivery was re-established, in the post 

flooding state, the de-fiooding point. Both of these early results indicated that for a 

given inlet liquid flow rate, the gas flow rate at the flooding point was significantly 

larger than at the de-fiooding point. Thus a signifiant hysteresis effect was found to 



exist for counter-current two-phase flows in the post flooded state. For vertical flows 

Celata et al. Il9891 carried out experiments in a 20 n2m I.D. test section in order to 

study the hysteresis effect in counter-current two-phase flows. They found that in 

order to re-establish full liquid delivery a significant decrease in the gas flow rate was 

required below the gas flow rate at the flooding point. Similar experiments were also 

carried out by Shoukri et al. [19911 who alço observed a significant hysteresis effect 

in t heir resul ts. 

2.2 Inclined and Vertical-to-Horizont al CCF and 
CCFL Experiments 

The number of studies which have been carriecl out on counter-current flows in in- 
clined and vertical-to-horizontal flows is quite limited. Krowlewski 119801 carried 

out experirnents to study both flooding and de-flooding for vertical to horizontal and 
inclined to horizontal flows. The test facility consisted of a 51 mm I.D. 584 mm long 

horizontal leg connected to a vertical or inclined leg by either a 90" or a 45" elbow. 

Air and water at atmospheric conditions were used as the working fluids. The point 

of onset of flooding was determined to be the point at which a sudden increase in the 

pressure drop across the test section occured. Data were reported for a number of 

different geometrical configurations. For the one most closely resembling the test fa- 
cility used in the present study, the euthor's results indicate t hat t here is a significant 

decrease in the gas flow rate required to provoke flooding as compared to that which 

would be required for the same tube diameter under vertical flow conditions. It was 

alço found that the hysteresis was much more pronounced than what had previously 

been observed by other researchers in a vertical test section. 

Siddiqui et al. [19861 carried out experiments on air-water flows in a pipe consisting 

of a vertical leg connected to a horizontal leg by an elbow. They found that the 

gas velocities at flooding were well below those expected for vertical pipes, and were 

found to depend on tube diameter, the length of the horizontal leg and on the radius of 

curvature of the bend. The wave instability causing flooding occurs in the horizontal 

part d the test section. The range of parameters studied were: 

36.5 < pipe diameter < 47 mm 



24 < horizontal leg length to diameter ratio < 95 

square edge < elbow radius of curvature < 300 mm 

Their findings may be surnmarized as follows: 

1. for a given liquid fiow rate the onset of flooding in bends took piace at lower 

air flow rates than in vertical tubes, 

2. the inception of flooding wa identified with the occurrence of slugging at the 

hydraulic jump in the horizontal leg near the bend, 

3. larger bend radii led to onset of flooding at lower gas flow rates, 

4. in general, the higher tube diameter led to the onset of flooding at lower non- 
dimensional superficicil gas velocitieç, 

5. the use of smooth exit geonietry led to ri. significmt increase in the air flow rates 

needed to cause flooding, and 

6. for a sliglit upward inclination of 0.6" the air flow rate needed to cause flooding 

was greatly reduced, whereas for an equal downward inclination the opposite 

WÛS seen. 

Siddiqui et ai. [19861 found that for a vertical-to-horizontal pipe the Rooding points 

corresponded to the equation: 

where: 

and a is the local void fraction at the crest of the hydraulic jump. The complete flow 

reversal limit, i.e., no liquid flow at the gas inlet, is predicted reasonably well by the 
following relation: 



which was seen to hoid for al1 tube diameters, bend radii and the liquid supply rates. 

Flooding velocities are very sensitive to the inclination of the horizontal leg. For 

upward inclinations there is a point at which the dope of the interface is such that 

the liquid bridges t the pipe at the elbow. The bridging occurs at the inclination angle, 

4, t hat fulfills the following condit ion: 

D 
sin 4, = - 

L '  

where (# > O for an upward inclination), 

Wan & Krishnan (19861 performed experiments on air-water counter-current flows in 
vert ical-to-horizontal and in vert icai-to-SI igh t ly inclined pipes. Experiniental data 

obtained for the vert ical-to-horizontal pipes are in good agreement with the experi- 

mental data of Siddiqui et al. 119861 and with the predictions by Ardron & Banerjee 

[19861 for low liquid flow rates (J I*$  < 0.5). In this case the hydraulic jurnp was actu- 

ally observed near the elbow and flooding was due to slugging at its crest. However, 

for higher liquid flow rates the hydraulic jurnp moved towaids the horizontal pipe 

exit and the flooding mechanism wos due to slugging at the exit. Ardron & Bmerjee 

[19861 predictions fail in this case due to a change in the flooding mechanism. They 

observed that a slight upward inclination of the lower leg significantly reduces the 

gas flow rate needed to cause flooding, whereas for a slight downward inclination the 

opposite was seen. 

Wan [1986] carried out experiments on steam-water counter-current flows in vertical- 

to-horizontal or slightly inclined pipes. For low liquid flow rates there is general 

agreement between the steam-water data for various subcoolings (AT < 6"C), and 

the air-water data. For 4': > 0.4, there is considerably more scatter in the data 

points and the overall trend is for J,*+ to increase with J ~ * )  , which is opposite to 

that seen in the air-water tests. This trend is also seen in vertical systems and is 
probably due to the condensation effects of the stearn in the subcooled water. Three 
flow regimes were observed: 

1. a regirne characterized by a counter-cunent flow of steam and water, 



2. a regime characterized by a partial or complete carryover of in jected water from 

the vertical leg of the elbow, and 

3. a regime characterized by an unsteady water column in the vertical leg on top 

of a counter-current steam-water region wi t h no water carryover. 

Kawaji et al. [El89 1 studied air-water counter-curent flows in vert ical-to-horizontal 

and in vertical-to-downwardly inclined pipes containing elbows of varying angle. For 

low liquid flow rates (51'4 < 0.4) in vertical-to-horizontal pipes they confirrned the 
qualitative observations and experimentd results of Siddiqui et al. [1986] as well 

as the predictions obtained by Ardron & Bttnerjee [19861. For higher liquid flow 

rates they confirmed the observations of Wun & Krishnan [19861 that the Ardron 

& Banerjee mode1 [19861 friils to reproduce experimental data, because liquid flow 

is supercritical in the Iower kg. For still higher liquid flow rates (J$ > 0.8), they 

observed that flooding occurred in the vertical section near the porous liquicl inlet. In 
al1 vert ical-to-downwardly incl ined pipes. the flooding was init isted in the incl ined 

section, however, no hydraulic jump was observed. Kawaji et ai. [1989] suggested 

that flooding in vertical-to-downwardly inclined pipes is caused by slugging at low 

liquid Row rates and by Iiquid entrilinment at high liquid Row rates. 

Kawaji el al. [L9931 carried out experirnents to determine the flooding limit in a 51 

mm I.D. test section with multiple elbows and orifices having /3 = Doril/DT.lc ratios 

of 0.550, 0.670 and 0.863. Three different geometrical configurations were studied: 

double-vertical elbow in which the second and third elbow are in the vertical plane, 

double-horizontal elbow in which the second and third elbow are in the horizontal 

plane, and double-inclined elbow in which the second and third elbow are at 45" to 

the vertical plane. Although there are some differences in the results for the three 

different geometries studied, qualitative observations can be made as to the effects of 
the orifice size on the flooding point. The aiithors found that the orifice having the 

largest ,û ratio had very little effect on the flooding point as cornpared to the results 

without the orifice. For the two smaller orifices it was found that. for a given liquid 

flow rate, the flooding gas velocities were much smaller than those observed with the 

largest orifice and in the no orifice case. Further, the flooding gas velocity was found 
to decrease with decreasing orifice P ratio. 

Noel et al. [19941 carried out experiments to study the hysteresis effect in an even more 



complex geometry. They studied both the flooding and de-flooding point in a cornplex 
test section containing multiple vertical and horizontal or near horizontal legs. Similar 
to that observed for vertical flows, their results show a significant difference in the 
gas flow rates at the Rooding and de-Aooding points for al1 of the liquid flow rates 
st udied. 

2.3 Models and Correlations for CCFL Prediction 

The models and correlations for vertical CCFL and those for CCFL occuring under 
conditions of inclined or vertical to horizontal flow will be examined separately. 

The correlations for the prediction of the flooding point in a vertical tube may be 
regarded as being of two main types: empiricd and theoretical. The first group are 
based in large part on experimental flooding data supplemented by dimensional anaiy- 

sis. The second group are based on physical and mat hemat ical models for the flooding 
mechanism. These models however frequently make use of empirical correlations to 

specify certain parameters required in the niociel. 

2.3.1 Empirical Correlations for Vertical CCFL 

A number of empirical correlations have been proposeci to predict the onset of fiood- 
ing. Generally, they are valid for the experimental conditions under which they were 
obtained and frequently fail to give reiiable predictions for other experimental con- 

ditions. One of the oldest and the best known is the correlation proposed by Wallis 

[19611: 

where the dimensionless super ficial velocity of the kth phase is defined by equat ion 2.1. 

The coefficients m and C are chosen to fit the experimental data. They are known 
to depend mainly on the tubeend conditions. The following values are commoniy 
used for m and C : m = 0.8 -+ 1.0 and C = 0.7 -. 1.0. It is worth mentioning here 

that the Wallis correlation rnay be derived from the separated cylinders mode1 [Wallis 
1961 1. The coefficients m and C obtained in this manner are equal to 1. 



Several investigators [Bankoff & Lee 19861 have suggested a correlation using the sur- 

face tension, a, instead of the tube diameter for defining the appropriate dimensionles 

quant ity. Such correlat ions have the following form: 

where Kg and KI are the gas and liquid Kutateladze numbers respectively. The 
Kutateladze number for the kth phase is given by: 

iLlcQuillan & Whailey [19851 corn piled 2762 experimental flooding points for vert i- 

cal tubes and used them to test 17 empirical and 5 theoretical flooding correlations. 

They ignored tube-end effects and tube length. However, they included the effects of 

tube diameter and the physical properties of the gas and the liquid. They found that 

the empirical correlat ions were generally more successful t han the t heoret ical corre- 

lations. The correlations which use dimensionless superficial velocities are noticeably 

l e s  accurate than the other empirical correlat ions, particularly for high liquid veloci- 

ties and for non air-water systems. For their data lLlcQuillan & Whdey [19851 found 
that the moçt accurate prediction of the available data was obtaiiied by the modified 

Alekseev et al. [19721 correlation which has the following form: 

where pl is the viscosity of the liquid under consideration, and p, is the viscosity of 
water. Bo is the Bond number given by: 

and Fr is the Froude number given by: 



The modification of the Alekseev et al. 119721 correlation was introduced by LlcQuil- 

lm & Whalley [19851 to account for the effect of liquid viscosity. 

2.3.2 Theoretical Correlations for Vertical CCFL 

McQuiIlan & Whalley [1985j found t hat among the five theoret icai correlat ion the 
modified Bharathan correlation [Bharathan et al. l9X1 yielded the b a t  predictions 

for the experimental data. This correlation has the following form: 

where the wall and interfacial friction factors are f, = 0.005, and 

respectively. lnstead of allowing a to vary and obtaining the limit ing CCF ciirve, as 

was done by Bharathan et d. 119781, McQuillan & Whalley 119851 eliminated cu frorn 

Eq. 2.17 by using an equation relating the dimensionles film thickness which is given 

b y: 

to the film Reynolds number, Ref ,  defined by: 

where P, is the wetted perimeter. McQuillan & Whalley [1985] used 

F = 0 . 9 0 8 ~ e ~ ' ' ~  y 

for film Reynolds numbers less than 2064 and 



for Reynolds number greater than or equal to 2064. 

2.3.3 Inclined and Vertical-to-Horizontal CCFL Prediction 

Ardron & Banerjee [19861 developed a mode1 to predict the experimental results of 

Siddiqui et al. [19861 for flooding in vertical-to-horizontal pipes. They assumed 

a one-dimensional, stcady, stratificd and incompressible flow. They also neglected 

interphase mass transfer and surface tension effects. The pressure variations over the 

cross section of each phase were arjsumed to be due to hydrostatic forces only. Mass 

and rnomentum balance equations were written for the horizontal part of a tube. 

Boundary conditions were irnposed üt the crest of the hydraulic jump and at the  

water outlet. It was hrther assumed that at the time of flooding the dimensionless 

superficial gas velocity at the crest of the hytiraul ic jump was given by: J i  = 0.2a3I2 

while the critical flow condition (daldx - oc) was satisfied at the water  outlet. 

The balance equations were solved malytically and a system of dgebraic equetions 

was then obtained. T h e  data resulting from a numerical solution of this system of 

dgebraic equations was t hen fit to yield the following flooding correlation : 

where: p = 0.057; q = -0.02: T = 0.7; X = ; n = 0.2, D 

and 

and L is the distance between the crest of hydraulic jump and the liquid outlet. For 

the range of parameters: 



The correlation given by Equation 2.22 differs from the numerical solution of the 

system of equations by l e s  than 2%. It should be noted that this model does not 

apply for an inclination higher than the critical one as  described in the previous 

section. Furthermore, Ardron & Banerjee's model fails to account for the observed 

effect of the radius of curvature of the bend on the flooding limit. For a downw~d 

inclination, flow is supercriticai in the lower lirnb, Le., the average liquid velocity is 
higher than the propagation velocity of small surface waves, and this model is not 

valid in this case. 

Kawa ji el.  al. [19891 suggested t hat flooding in vert ical-t~downwardly inclined pipes 

is caused by slugging at low liquid flow rates uncl by liquid entrainment at high liquid 

flow rates. At low liquid flow rates they proposed the following correlation for flooding: 

J9 J1 - + - = O,j,l/? d cos 0 
(PI - Pg)gD- a L-a Pg 

where: 

and the film thickness, 6, is expressed using the following correlation [Wallis L9691: 

At high liquid ffow rates a liquid jet forrns at the elbow md droplets are generated as 

a results of breakup of its surface. The droplets are then entrained by the gas strearn 

and the flooding begins. In this case the correlation for flooding is expressed in the 

following form: 

where dd is a droplet diameter which is cdculated using: 

Kawaji et. al. [1989] suggested the use a critical Weber number of 100. There are 

two points about this correlation that may be regarded as being arguable. The first 
is that, as this correlation represents a force balance required to suspend a droplet 



of diameter dd against the force of gravity, the relative velocity acting on the droplet 

should be (v, - vd) and the liquid film veiocity should not intervene, further if the 
droplet is "just" suspended in the gas stream vd = O. The other point is that the use 

of the liquid density and velocity in the definition of the Weber number implies that 

the drop size is controlled at formation. Kocamustafaogullari et. al. [1993, 19941 state 

that the droplet size is controlled by breakup mechanisms caused by the interaction of 

the droplet and the gas s t rem~.  Fur t her, t h  is correlation yields physically unredistic 
droplet sizes at low liquid velocities. 



Figure 2.1: CCFL data bank [McQuillan & Whalley 19851. 



Figure 2.2: Flow regime transition in vert i d  counter-current annular flow. 
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Figure 2.3: Pressure drop vs. liquid inlet flow rate [Clift et. ai. 19661. 
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Figure 2.4: Pressure gradient in counter-current flow [Bharathan et. al. 19791. 



Figure 2.5: Pressure drop variation and flow regime [Hawley & Wallis 19821. 
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Figure 2.7: Mean film thickness including Aooding state [Zabaras 19851. 



Figure 2.8: Various entrance and exit geometries used in flooding experi- 
rnents [Bankoff & Lee 19861. 



Chapter 3 

COUNTER-CURRENT 
TWO-PHASE FLOW TEST 
FACILITY AND PROCEDURE 

The CCF test facility shown in Figure 3.1 c m  support vertical test sections as well 

as test sections containing both vertical and horizontal legs. The water is supplied to 

the test section by a pump connected to a constant head water tank. The liquid flow 

rate is controlled in two steps: the couse control is done using a set of valves and 
a by-pass circuit at the pump oiitlet, and the fine control is done using a set of two 

different size parallel needle valves located close to the test section. The temperature 

of the inlet water is held constant at 20 I 0.5" C .  The description of the CCF test 

sections will be presented in two parts: 

1. the vertical test section, and 

2. the test section containing botli vertical and horizontal runs. 

VERTICAL CCF TEST SECTION 

Figure 3.2 shows a schematic diagram of the vertical CCF test section. It is con- 

structed of 63.5 mm I.D. clear plexiglass tubes to allow flow visualization. The verti- 

cal structure is supported by an aluminum 1-beam and the test section is positioned 

vertically using 4 adjustable supports. The major components are: 



a the  uwer olenum which is used as a collector/separator for any 

during CCF and CCFL experinients, 

a the oorous wall water injector which consists of a 63.5 mm I.D. 
1 mm holes in the wall, 

31 

liquid hold up 

tube with 800 

the tubular test section with the flanges for orifice insertion and 12 sets of three 

pressure taps distributed angulariy around the test section at each axial loca- 

tion, and spaced essentially every 200 mm dong its entire Iength. 

a the lower plenum contains the liquicl outlet including a water level control sys- 

tem and the air inlet systeni. The level control system consists of a 3.45 kPa 
(0.5 PSID) pressure transducer used as a liquid level transducer. The signal 

produced by this transducer is useci as the process variable input of an elec- 

tronic Ievel controller developed at ICN. The level control system is capable of 

maintaining the water level in the lower plenum constant through a wide range 

of liquid Aow rates, Le.! frotri full clelivery up to the zero liquid penetration 

point. 

the orifices are made of 1.5 rnm thick stainless steel plates without s chamfered 

edge. The /3 ratios (= Dmir/DLuk) of the orifices used in this research are 0.90, 
0.83, 0.72, and 0.66. 

A more detailed descript ion of the major mechan ical components of this test section 

is given in Tye et. al. [1993] and Daividson 1 l9941. 

3.2 CCF TEST SECTION CONTAINING VER- 
TICAL AND HORIZONTAL RUNS 

Figure 3.3 shows a schernatic diagram of the test section containing both vertical and 

horizontal runs. It is constructed of 63.5 mm I.D. clear plexiglass tubes. The vertical 
run is supported by the same aluminum t-beam as is used to position the vertical 

test section. The horizontal nin is alsa supported by an aluminum 1-bearn structure; 

it is positioned horizontdly using 6 adjustable supports of the same type as those 

used to position the vertical run. The 1-beam is supported by 3 adjustable tubular 



steel legs bolted to the floor. The angle of the test section From the horizontal c m  be 

varied as required. The major components are: 

the upoer plenum same as that used in the vertical test section (Section 3. l), 

. . 
the water inlector same as that used in the vertical test section (Section 3.1), 

the t ubular test section consists of ü. 2022 nwl long vert icd  section and a 3327 mm 

long horizontal run. The L/D ratio of the horizontal leg is 52. Both the vertical 

and horizontal runs contain flanges in which an orifice may bbe placed. The 

vertical and horizontal runs  are connected by an opaque 90" PVC elbow. The 
horizontal and vertical runs are centered in the elbow by two plexiglas collars 

and are sealed using O-rings. 

the lower plenum sarne aç that used in the verticai test section (Section 3. L ) ,  

the orifices are same as those used with the vertical test section (Section 3.1), 

however for this test section two additional orifice having 0 ratios of 0.77 and 

0.55 were used. 

A more detailed descript ion of th is test section is given in Tye et .  al. [MM 1. 

3.3 Instrumentation 

The test facility is instrumented to rneasure liquid and gas flow rates, inlet flow 

ternperatures, and absolute pressures. For the experiments carried out in the vertical 

test section, the test section is also instruniented to measure the axial pressure drop 

in the liquid film. 

3.3.1 Liquid Flow Rate 

The water flow rate at the inlet of the test section is measured with a bank of three 

"Flow Technology" flow meters covering a range of 0.05 to 4.54 rn3/h. The detailed 

range of liquid flow rates covered by the set of flow meters is given in Table 3.1. 
According to the manufacturer the accuracy of these meters is better than 1% of the 



readings. This has been confirmed during a number of verificat ion experiments where 

the readings of the turbine flow meters were compared to the weight of water collected 

over a given tirne period. The temperature of the inlet water is kept almost constant 

at 20I0.5"C. A calming tank is located upstream of the flow meters to darnp out 

any oscillations that may be produced by the pump (see Figure 3.1). Due to the fact 

that turbine flow meters are sensitive to swirl, flow straighteners are located both 

upstream and downstrearn of the flow meters. These flow straighteners provide a 

smooth transition between the dimeter of the lines and the bore of the flow meters 

and extend 20 hydraulic diameters upstream and 10 hydraulic diameters downstream 

of the meters. 

Table 3.1: bnges of nirbine Flow Meters 

3.3.2 Gas Flow Rate 

The air flow rate is measured with a bank of five "Brooks" rotameters, covering 

a range of 0.085 to 132.5 m3/h at an outlet pressure of 2 bars. The rotameters 

have been calibrated to an accuracy of 1% of full scale. The pressure at the outlet 

of the rotameters is kept constant and is continuously measured with a bourdon 

type pressure gauge. The temperature of the air is continuously monitored with a 

thermocouple installed in the air fiow line. Figure 3.1 alço shows the arrangement 

used in the gas flow rate measurement systeni. The complete range of gas flow rates 

covered by this system is given in Table 3.2. 



Table 3.2: Ranges of Rotameters 

3.3.3 Absolute Pressure 

The absolute pressure in the lower plenum is memured using a "Sensotec" pressure 

transducer; the range of the sbsolute pressure covered is from 1 to 1.14 bars with an 

accuracy of f 0.25% of full scale. 

3.3.4 Differential Pressure 

For the experiments carried out in the vertical test section, the pressure in the liquid 

film is measured with respect to the atmospheric pressure at  L2 points dong the test 

sectioii using "Val idyne" variable reluctiince differential pressure transducers, the 

ranges of the differential pressures covered are from O to 103.4 Pa (O - O.OL5PSID) 

and from O to 689.5 Pa (O - O.1PSID) with an accuracy of f0.25% of full scale. 

The three prasure taps which are separateci by 120" are drilled into the wall of the 

test section at each axial plane. They are connected to the measurement system by 

specid pressure collars designed for this purpose. Further details of the pressure taps 

and collars are given in Tye et. al. [19931 and Davidson [l9941. 

3.4 Experimental Procedure 

The experimental procedures used for both types of experiments carried out will now 

be presented. The procedure used to c a r y  out the experirnents to study the delivered 

liquid flow rate as a function of the inlet gas Row rate will be given first, then the 

procedure used to carry out the experiments to study the pressure drop profile in the 



vertical test section will be presented. 

3.4.1 Flooding and Liquid Delivery Experiments 

The first objective of this research is to study the entire range of counter-curent flow 
phenomena from the onset of flooding up to the zero penetration limit in tubes both 

with and without flow area restrictions. The influence of an elbow between a vertical 

and a horizontal run on the counter-current flow is also studied as is the influence of 
the interaction between the elbow and an orifice which is placed in the horizontal leg. 

The flow me8 restrictions (orifices) are installed in the test sections by meüns of the 
flanges designed for this purpose. The positions of these flanges for the test section 

with only a vertical leg and for the test section containing both a vertical and a 

horizontal leg are shown in Figures 3.2 and 3.3 respectively. 

Before detailing the procedure used to c a r y  out the flooding experiments we will 
cleiuly state the definition of flooding and the experirnental criterion that we will be 
using in this research. The standard definition of the counter-current flooding limit 
is (Bankoff and Lee [19861): "for u giuen down~warii liguid jlo-w the maxim~um upward 
gas flo*w rate for which Ju11 liqilid dehery out  the bothm of Ihe tube ,k maintained, 

corresponds to Ihe counter-curent flooding limit." It is important to note that the 

counter-current flooding limit is just a limit for the gas flow rate beyond which only 
partial liquid delivery out of the lower end of the test section will occur. This point 
corresponds to the maximum gas Row rate for which full liquid delivery still exists, and 

it is the rnost widely accepted experimental criterion for the point of flooding (Bankoff 
& Lee [L986] and Dukler et al. [19841). 

Having defined our criterion for the experimental detection of the flooding point we 
will now describe the experimental procedure. For these experiments the liquid flow 

rate was first fixed and then a gas flow rate was fixed and the entrained liquid was 

then collected and weighed using the collection system located in the upper plenum. 
In this manner the entire range of CCF phenomena from the point of inception of 

entrainment to the zero penetration point was studied for each liquid flow rate. 



3.4.2 Procedure for Experiments to Study theHysteresisEf- 
fect 

Before describing the procedure used for the experiments to study the hysteresis 

effect, it will be useful to present a definition of the de-flooding point that will be 

used in this research. Rirther, this definition should be consistent with the definition 

of the flooding point given in the previous section. The de-flooding point is therefore 

defined as the point where for a giuen inlet liquid Pow rate and a giwn gus jlow rate 
full l i p i d  delivery out the bottom of the tube is restored (Clift et al. [19661). The 
hysteresis that is ossociated with the Ooocling and de-flooding points corresponds to 

the difference in the gas flow rates iit these two points. 

For the experiments carried out to stucly the hysteresis effect, the liquid flow rate was 

first fixed, fiooding was then initiated usiiig as relatively large gas flow rate. The gas 

flow rate was then slowly decreased by steps al1 the way down to the point were full 

liquid delivery was re-establisheci. At each step of the gas flow the entrained liquid 

is collected using the collection system located in the upper plenum and weighed. In 

this manner the entire range of CCF phenoniena in the region of hysteresis from the 

flooding point al1 the way to the cieflooding point is studied for each liquid flow rate. 

3.4.3 Axial Pressure Drop - Vertical Test Section 

The second objective of this research program is to obtain data on the axial pressure 

variation in counter-current two-phase flow. Thus, the variation of the pressure drop 

in the test section is determined by measuring the pressure at a given a i a l  location 

in the test section with respect to a reference pressure (atrnospheric). In order to 

get a good idea of the average pressure prevailing in the test section, three pressure 

taps are located every 120' arouncl the test section at every axial location as detailed 

in section 3.3.4. They are connected to the measurenient system by special pressure 

collars designed for this purpose. The distance between each station (= 200 mm) has 

been rneasured with a digital caliper to the nearest 0.01 mm Davidson [1994]. 

The pressure measuement system is shown schematically in Figure 3.4. The pressure 

is measured using a f 689.5 Pa (O - 0.1 PSID)  Validyne variable reluctance pressure 

transducer one side of which is open to the atmosphere. The pressure transducer 

is connected to the test section by means of gas filled manometric tubes and an air 



water separator pot. Each pressure measurement station can be isolated from the 
manometric line by a valve. The signal froni the pressure transducer was averaged 

over 60 readings with a sampling rate of 50 rns using a Wavetek data loger. The 
pressure signals were also recorded, on line, with a Yokagawa chart recorder. 

3.4.4 Validation of Pressure Measurement System and Iden- 
tification of Possible Systematic Errors 

The performance of the pressure measurement system described above was evaluated 

using a second system shown schematically in Figure 3.5. It consists of the same 

set of pressure collars, separation pots, nianonietric tubes, md  the Validyne pressure 

transducer as described above. However, a second pressure mesurement pot open 

to the atmosphere and equipped with an impeclance probe mounted on a micrometer 

having a resolution of f 0.01 rnnt was connected in parallel with the first separation 

pot connecting the collar to the pressure transducer. This second pot was used as a 

manometer where the liquid level in the pot balanced the pressure in the test section. 

The performance of the pressure nieasurernent system was evaluated by comparing 

the two sets of readings for a number of different liquid and gas flow rate combinations. 

A detailed error analysis of the pressure meusurement systern was also carried out. I t  

is important to note that the system consist ing of the rnanometer/rnicrometer setup 

was not judged to be suitable for carrying out al1 the experiments as it yielded only 

instantaneous readings and could not tnke into account any variations due to local 

entrainment which caused the pressure to fluctuate slightly. hrther ,  it could only be 

used for a limited range of gas flow rates. 

At the start  of an erperiment the zero of the pressure transducer is fised with both 

sides open to the atmosphere. The collars and the connection lines between the 

collars and the separator pots are purged of any air bubbles that could interfere with 

the measurement. A liquid Flow rate is then fixed in the test section with zero gas 

flow while aii the separator pots are open to the atmosphere. An equilibrium liquid 

level, ho, corresponding to these conditions is thus established in the separator pots. 

Once these initiai equilibrium liquid levels stabilize, the separator pots are connected 

to the manometric tubes. A gas flow rate is then Exed and the valve connecting a 

given pot to the pressure transducer is opened. As the pressure in the test section is 

higher than that for the case with zero gas flow rate, the liquid level in the pot rises 



slightly and a new equilibrium iiquid level, h, is reached. The increase in the liquid 

level causes the gas in the manometric tubing to be compressed to a value Pg. The 

corresponding transducer readings are denoted as  Pm. The difference between the 

transducer reading and the pressure of the gas in the manometric tube is mainly due 
to the difference in gas densities for atmospheric pressure and the actual pressure in 

the manometric tube: 

= Pg + (pg -?9)911 , ( 3 4  

where pi  is the density of the air at atniospheric pressure, p, is the density of air at 

the actud pressure in the manonietric tube, g is the acceleration due to gravity, and 
H is the position of the separator pot with respect to the pressure transducer. The 
density is proportional to the pressure, thus: 

where Pa( is the atmospheric pressure. Combining this equation with equation 3.1 

Since pggH << Pst, the transducer reaciing can 

the actual pressure in the manometric tube: 

(3.3) 

be considered to be almost equal to 

The actual pressure in the test section c m  be expressed in the following form: 

or using equation 3.4: 

P = Pn, + ptgh , 

where pl is the liquid density, and h is the water level in the separator pot when 
the equilibrium is reached. An approximate estimation of this liquid level can be 

obtained in the following manner. Assuming that the gas in the manometric tube 

undergoes an isotherxnal transition. Thus, the pressure in the manometric tube is 



inversely proportional to the total volume of the tube, the fittings, the valve and the 

space in the pot occupied by the gas: 

where Vo and V are the volumes of the air in the manometric tubing at the zero gas 

flow rate and at a fixed non-zero gas flow rate respectively. Pia is the transducer 

reading at the zero gas flow rate, and is assumed to be equal to zero. Furthermore, if 

one assumes that the manornetric volume (Le., tubes, fittings, valve and free space of 

the pot) has an equivalent constant cross sectional area, the pressure of the manomet- 

ric air is inversely proportional to the total length of the manornetric volume. This 
length varies from 1, at the zero gus flow rate to 1 at the fixed non-zero gas flow rate. 

These lengths are related to the equilibrium liquid levels by: 

Combining equations 3.7 and 3.8 the following relationship is obtained: 

h = ho + 1, P m  
Pm + P d  ' 

Substituting equation 3.9 into equetion 3.6 and assuming that: 

the following relationship between the actual pressure in the test section and the 

transducer reading results: 

This equation yields a qualitative estimate of the systematic errors which exist in these 

pressure measurements. As the second and third terms on the RHS of equation 3.1 1 

are always positive: 

P,&P . (3.12) 

Thus, the transducer readings underestimate the actual pressure in the test section. 

The second term on the RHS of equation 3.1 1 is due to the non-zero equilibrium liquid 



level in the pot at the zero gas flow rate and is related to friction between the liquid 

film and the wall of the test section. The third term is due to the cornpressibility of 

the air in the rnanometric tubes. Equation 3.11 may be presented in the following 

form: 

P=aP,+b , (3.13) 

Equation 3.13 has been fitted to experimental data, where P was determined from 

measurements of the liquid level in the nianonieter using the micrometer/conductance 

system and Pm was the transducer reading. The constant a in equution 3.13 varied 

between 0.96 - 1.06 and b wiis found to Vary between 14 - 21 Pa The values of a and 

b averaged over al1 liquid and gas flow rates and dl pressure top positions were 0.975 

m d  20 Pa respectively. The results of this fitting are shown in Figure 3.6 and are 

then used to determine the actual pressure drop in the test section from the pressure 

readings It is important to note that in the determination of the differential pressures 

presented in chapter 4, the 6 terms will al1 cancel each other. 
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Chapter 4 

EXPERIMENTAL RESULTS 

The results for dl the experiments carried out during the course of this research 

project will now be presented. A number of different types of experimentai results 

have been obtained. These are the results for the liquid delivery, which include 

the zero liquid penetration point, the flooding results, the results of the hysteresis 

experinients and the pressure &op results. These results will be presented sepmately. 

4.1 Liquid Delivery Experiments 

The liquid delivery experiments will be presented in two parts, the first part will be 

the experiments carried out in the vertical test section and the second will be the 

e4xperirnents carried out in the test section containing bot h vertical and horizontal 

legs. 

4.1.1 Results of Vertical CCF Experiments 

The results for the vertical tube without an orifice are shown in Figure 4.1 where 
they are presented in terrns of the delivered liquid superficial velocity, Jt &ivrredr VS. 

the gas superficial velocity, J'. It can be seeri that the gas superficial velocity re- 

quired to provoke the transition fiom full to partial delivery decreases with increasing 

liquid superficial velocities. In the partial delivery region our results show the same 

trends as those observed by Zabaras [1985] for inlet liquid superficial velocities up to 

0.01754 m/s .  At higher liquid superficial velocities our results are similar to thme of 



Celata [19891. For the two lowest inlet liquid superficial velocities 0.00877 m / s  and 

0.01754 rnls the variation of the delivered liquid superficid velocity with increasing 

gas superficial velocity is very smoot h throughout the ent ire partial delivery region. 

At higher Iiquid superficid velocities it can be seen that there is a large drop in the 

delivered liquid superficial velocity at a given gas superficial velocity. In the region of 

gas superficial velocities between 5 and 10 m/s a plateau is observed in the delivered 

liquid superficial velocity. At still hiylier inlet liquid superficial velocities, the deiiv- 

ered liquid superficial velocity region exhibits a smooth decrease wit h increasing gas 

superficial velocities. It has b e n  observecl visually that in the partial delivery region 

the liquid upflow occurs due to two niechanisms. At lower gas superficial velocities 

the liquid upflow is due to entrainecl clrops ciirried upwards by the gas flow while 

at higher gas superficial velocities the liquid upflow is due to a combination of both 

entrained drops and film upflow. The delivered liquid (i.e., that whicti reuches the 

lower plenum) is in the form of a liqiiid film that becomes thinner with increasing 

gas flow rate. The s h u p  transition from full to partial delivery at  the highest inlet 

liquid superficial velocities imposes a miuiinum limit on the inlet liquid flows that 

can be studied with the iictual experiirientai facility. This is due to the fact that as 

soon ils partial delivery is reached for these high inlet liquid superficial velocities the 

entrained liquid flow rate is beyond the cnpncity of the entrainment collection systern. 

Figure 4.2 shows the results of the experirtients carried out for vertical counter-current 

flow with orifices of various sizes installecl in the test section. They are presented in 

terms of the delivered liquid superficial velocity, Jr Wivcredt VS. the gas superficiai 

velocity, J,, calculated usinrr the unobstructed tube diameter. It c m  be seen that for 

a given orifice, the delivered liquid superficial velocity depends only on the counter- 

current gas superficial velocity and not on the inlet liquid superficid velocity. It can 

also be seen that for a given gas superficial velocity the delivered liquid superficial 

veloci ty decreases wit h decreasing B ratios (i .e., decreasing orifice diameter). For the 

experiments with an orifice installed, the p henomena govern ing the 1 iquid delivery is 

different than that described for the experiments without the orifice. The gas flow 

causes a pulsating column of gas and entrained liquid to form just above the orifice. 

The steps of the formation of this pulsating column are shown in Figures 4.3 to 4.6. 
As the gas superficial velocity is slowly increased a certain amount of liquid gets 

trapped above the orifice as  shown in Figure 4.3. At this point the delivered liquid 

superficial velocity is less than the inlet liquid superficial velocity. The quantity of 



liquid injected into the test section that makes up the difference between Je de(itpmed 

and Je in-jeCted ad& to the size of the pulsating column, this is shown in Figure 4.4 

and 4.5. Eventually the pulsating colunin builds up sufficiently that it completely fills 
the part of the test section above the orifice, Figure 4.6. At this point, the column 

has reached its mâuimum possible size and any difference between Jc delivered and 

Jc injectcd is recovered by the entrainnient collection system. The magnitude of the 
gas superficial velocity determines how iiiucli liquid penetrates the orifice and how 

rnuch gets trapped above it and thus carried upwards by the gas. This phenornena 

was much more apparent for the smaller orifices. 

For the two smallest orifices studied 13 = 0.66 and ,O = 0.72 an inlet liquid superficial 

velocity was reached where a bubble filleci liquid colurnn formed in the test section 

without any cas beine: in iectecl into the lower plenum. Such a colunin is shown in 

Figure 4.7. The presence of this colunin resulted in an upper limit to the inlet liquicl 

superficial velocities that could be studied. 

4.1.2 Results of CCF Experiments for Vertical to Horizontal 
Legs 

Figures 4.8 to 4.10 show the delivered liquid superficial velocity, Je &livcrcdr VS. the 

gas superficial velocity, J,, for the present tests; seven different cases were studied. 

They are the no orifice case and the cases for orifices having ,d ratios of 0.90, 0.83, 

0.77 0.72, 0.66, and 0.55 installed in the horizontal leg. 

The results for the case without an orifice, ,6' = 1 in Figure 4.8, show that the 

delivered liquid super ficial veloci t ies decreuse srnoot hly wit h increasing gas super ficial 

velocity. For the case without an orifice a hydraulic jump was observed to occur in 
the horizontal leg. As the gas flow rate was increased the hydraulic jump was seen 
to travel back towards the elbow and eventudly enter it. As the gas flow rate was 

increased beyond that required to drive the hydraulic jump into the elbow, entrained 

droplets were observed in the gas streani in the vertical Ieg just above the elbow, 

these droplets did not, however, necessuily lead to the onset of flooding as they were 

frequently seen to be redeposited into the liquid film only a few centimeters above 

the elbow. In this region, it was observed that the flow was in the form of an annula 
film with entrained droplets in the gas core. As the gas flow rate was increased 



an increasing number of droplets were visible in the gas core just above the elbow 

which could not reach the upper plenum. At the flooding point, the flow pattern was 

seen to change from a stable counter-current annular flow with entrained droplets, to 

counter-current churn flow. This churn fiow wus in the form of a pulsating column 

in the vertical leg. This pulsating column caused large amplitude waves to form in 

the horizontal leg that were subsequently driven back into the elbow by the counter- 

current gas flow and upward to the collection system. The rcsults s h o w  in Figures 4.8 

to 4.10 axe similar to those of Kawaji et al. [1991] in that largest orifice used in these 

e.xperiments had almost no influence on the delivered liquid flow rate as cornpared to 

the unobstructed case (P = 1 in Figure 4.8 ancl /3 = 0.90 in Figure 4.9). Further, Our 

results show that this observation can be extended from the flooding limit studied by 

Kawaji et al. [l99l 1, through the entire partial liquid delivery region right up to the 

zero penetrat ion point. 

The results for the largest orifice studied (17 = 0.90) shown in Figure 4.9 are very simi- 

Iar to those observed for the case without im orifice described above. However, for the 

cases with an orifice placed in the horizontal Ieg no hydraulic jump was observed in 
the horizontal leg. Since the fl ow in the vertical leg is supercritical and the flow in the 

horizontal leg is subcritical the transition must therefore take place inside the elbow. 

It can be seen that for this case the delivered liquid superficiai velocities decrease 

srnoothly with increasing gas superficial velocity as observed in the case without an 

orifice. For the caçe having an orifice of j3 = 0.83 (Figure 4.8) at superficial gas ve- 

locities greater than 1 m/s the results are quite sirnilar to the results for ,û = 0.90 in 
that the delivered liquid superficial velocit ies decrease srnoothly wit h increasing gas 

superficial velocity. For lsrgest inlet liquid superficial velocities and for gas superficial 
velocities between 0.5 and 1.0 m / s  it can be seen thst a plateau region is reached in 

the delivered liquid superficial velocity. For gas superficial velocities less than 0.5 m/s 

it can be seen thst the delivered Iiquid superficial velocity ciecreases very rapidly with 

increasing gas superficial velocity. For the smaller orifices (,b' = 0.77 to P = 0.55 see 

Figures 4.9 and 4.10) the results are clearly difFerent than those observed for the cases 

of /3 = 1.0 and ,û = 0.90. At very low gas superficid velocities and high inlet liquid 

superficial velocities the delivered liquid superficial velocity decrenses very rapidly 

with increasing gas superficial velocity. It was visually observed that in this region a 

very densely packed bubble column, with the occasional Taylor bubble rising through 

it, was formed in the vertical leg. The liquid upflow was mostly due to entrainment 



in this bubble column. The passage of the Taylor bubbles caused periodic increases 

in the liquid upflow. In the horizontal leg large slow moving plugs carried the gas 

into the elbow. At gas superficial velocities between approximately 0.5 and 2.5 (rnls) 
(see Figures 4.9 and 4.10) it cm be seen that a plateau is reached in the delivered 

liquid superficial velocity and that the liquid delivery is dmost independent of the 

gas superficial velocity. The size of this plateau seems to increase with decreasuig P 
ratios (Le., increasing the severity of the obstruction). In this region it ivas visually 
observed that the liquid upflow was mostly in the form of very fast moving slugs. 

This region is qualitatively similar to region 2 identified by Wan [1!3861. The slugging 

frequency decreased with increasing gas superficial velocity. At even higher gaç su- 

perficial velocities, the delivered liquid superficid velocity was seen to decrease quite 

smoot hly with increasing gas superficial velocity. In this region a wavy strat ified flow 

existed in the horizontal leg, the waves were seen to travel in the direct ion of the gas 

Flow, while the liquid substrate traveled in the opposite direction. The Iiquid level of 

this stratified flow decreased with increasing distance from the elbow. It appears that 

the case having an orifice of ,û = 0.83 is a transition between two distinct regions of 

flow behaviour. At high gas superficid velocit ies the results for /3 = 0.83 are similar 

to those of B = 1.0 and ,8 = 0.90, while at  lower gas superficial velocities there are 

a number of similarities with the results for $8 = 0.77 to ,8 = 0.55 described above. 

It is also interesting to note that in the region were the triuisition takes place, gas 

superficial velocities between (0.4 to L .O -ml$), the results for this orifice exhibit more 

experimentai scatter than any of the other cases studied. 

For al1 the cases studied it was visually observed that the disturbance that Iead to 

partial liquid delivery always formed in the elbow. The niechanism governing the 

partial delivery was very similar to the case of a vertical tube containing an orifice. A 
pulssting column was fornied in the vertical leg which caused large amplitude waves 

to form in the horizontal leg that were subsequently driven back into the elbow by 

the counter-current gas flow. For the experirnents with an orifice installed in the 

horizontal leg the mechanism was similar to that observed in the case without the 

orifice. The major difference was that the wave produced by the pulsating column 

was seen to be reflected by the orifice and traveled back towards the elbow; it was 
then possible for this wave to interfere constructively with t hose waves generated by 
the pulsating column above the elbow. If the height of the wave resulting from the 

meeting of the two incident waves was sufficient to bridge the tube, a liquid slug 



resulted which was then blown violently back into the elbow and into the vertical leg. 

This sequence of events is shown in Figures (4.1 1-4.18). Figure 4.11 shows the onset 

of entrainment above the elbow. Figure 4.12 shows the pulsating column formed in 

the vertical leg. This results in the production of waves in the horizontal leg shown 
in Figure 4.13. Figure 4.14 shows the wave traveling towards the orifice plate and 

the reflection is shown in Figure 4.15 (note also the very low liquid height on the 
d~wnstrearn side of the orifice). Figure -1.16 shows the incident and reflected w e s  

traveling towards each other. The slug formed by the interference of these waves is 

shown in Figure 4.17. The large liquid plug formed in the vertical leg is shown in 

Figure 4.18 where a bullet shaped gas pocket driving the water slug upward may also 
be seen. For smaller orifices the height of the liquid film in the horizontal leg and 

the size of the wave reflected from the orifice both increased. This resulted in more 

frequent and more violent slugging behaviour being observed for the snialler orifice. 

For the experiments with the f i  = 0.90 orifice no reflection of the wave by the orifice 

was seen to occur. At higher gas superficial velocities s region was reilched where 

the liquid level in the horizontal leg was insufficient to allow bridging to occur and 

a region of steady counter-current flow without slugging but with liquid carryover 

(similar to region 1 of Wan [19861) was established. Another observation is that 

the gas superficial velocity corresponding to the point of zero liquid penetration for 

a given orifice as well as for the no orifice case is the same for al1 the inlet liquid 

superficial velocities. A sirnilar observation for results without an orifice was made 

by Siddiqui et al. [19861. A further point of interest is that, while by strict definition 

as soon as Jr delivered is l e s  than Jt injected the flooding limit has been reached, a 
large increase in the gas superficial velocity is still required to reach the point of zero 

liquid penetration as shown in Figures 4.8 to 4.10. This is an important point for the 

refilling of a nuclear reactor following a LOCA. 

4.2 Flooding Results 

The results for the flooding point will be presented in two parts, the first part will be 

the experiments carried out in the test section with only a vertical leg and the second 

will be the experiments carried out in the test section containing both vertical and 

horizontal legs. 



4.2.1 Results of Vertical CCFL Experiments 

For the partial delivery results obtained in the vertical test section shown in Figure 4.1 
two distinct sets of data points can be seen. This is the result of the sharp decrease 

in the delivered liquid superficial veiocity that occur at the transition from full to 

part i d  delivery. The first curve is the locus of partial delivery whose behaviour has 

been described in the previous section. The second curve is the locus of flooding. For 

a given inlet liquid superficial velocity, these points correspond to the maxinium gas 

superficial velocity for which full liquid delivery out the bottom of the test section 

is milintained. The relationship between the partial delivery, which is simply repre- 

sented as a best fit to d l  the experimental data, and the flooding limit is illustrated 

in Figure 4.19. The insert in t his figure shows the flooding limit as well as the partial 

delivery results for one particular inlet liquid superficial velocity (0.08771 mls in Fig- 

ure 4.1). It c m  be seen that for this case the locus of Aooding points lie considerably 

above the locus of partial delivery points. The two curves approach each other at 

the extreme of very low inlet liquid superficial velocities. Siniilar loci of partial liquid 

delivery also evist for the cases with the various orifices installed in the test section. 

These are shown in Figure 4.20, it cm be seen that due to the very sniooth transition 

from full to partial delivery when an orifice is present in the test section, the locus of 

flooding for any given orifice is nearly identical to the locus of partial delivery. 

The results of the ffooding lirnits only, for both the experiments without an orifice 

and for the various orifices studied are presented in Figure 4.2L. They are given in 
1 1 

terms of the square root of the non-diniensioiial superficial velocit ies, J,' 5 and J;i, 
where J$ is defined as: 

It is important to point out that the non-dimensional superficial velocities used in 

Figure 4.21 are al1 calculated using the unobstructed tube diameter in equation 4.1. 

It can be seen that in al1 cases studied the non-dimensional superficial velocity of 

the gas at the flooding point decreases smoothly with increasing non-dimensional 

superficial velocity of the of the liquid. It can also be seen that for a given non- 
dimensional superficial liquid velocity the values of the non-dimensional superficial 



velocity of the gas at the flooding point decrease with decreasing orifice P ratios. 

4.2.2 Results of CCFL Experiments for Vertical to Horizon- 
tal Legs 

If is important to point out that Figures 4.8 to 4.10 represent the locus of partial 

deiivery for dl the cases studied and not the flooding limits. As 'uaç done for the 
results obtained in the vertical test section, the relationship between the partial liq- 

uid delivery and the flooding limit is illustrated for a given orifice, (/3 = 0.77), in 

Figure 4.22. The insert in this figure shows the flooding liniit as  well as the partial 

liquid delivery results for one part icular inlet liquid superficid velocity (0.12 rnls 
in Figure 4.9). It can be seen that for this orifice the locus of flooding points lie 

considerably above the locus of partial delivery points for most of the range of gas 

superficial velocities covered. The two curves approiich each other at the extremes of 

very low and very high inlet liquid superficial velocities. Figures 4.23 to 4.29 show 

the relationship between the partial liquid delivery and the flooding limit for al1 the 

cases studied. The partial liquid delivery results have been replaced by a best fit of 

the data to clarify the presentation. In general, it cm be seen that the relative drop 

between the locus of flooding points and the locus of partial delivery increases with 

decreasing p ratio. 

In examining Figures 4.23 to 4.29 it is important to recall that the flooding limit 

corresponds to the maximum gas superficial velocity for which full liquid delivery still 

exists. From the insert in Figure 4.22 we can see that as  the superficial velocity of the 

gas is increased the delivered liquid super ficial velocity remains constant at its inlet 

value until a particular gas superficial velocity is reached; at this point the delivered 

liquid superficid velocity drops suddenly. The maximum gas superficial velocity for 

which the delivered liquid superficid veloci ty retains its inlet value corresponds to 

the flooding limit. The abrupt transition from full to partial delivery may be related 

to the hysteresis effect observed by many other researchers [Shoukri et al. 19911. The 

mechanisms governing the transition from full to partial liquid delivery have been 

described in detail in the previous section. 

The flooding limits were obtained in the manner described above for all of the inlet 

liquid superficiai velocities and for al1 of the cases studied. The results of the fiooding 



limits only are presented in Figures 4.30 and 4.31 in terms of the square root of the 

non dimensional superficial velocities, J'; and 5'4 calculated using the unobstructed 

tube diameter. A fit of the (B = 1.0) data has been added to Figure 4.3 1 for reference 

purposes. It can be seen that the flooding limits decrease with decreasing ,û ratios. 

For the case with no orifice in the horizontal leg (Figure 4.30) the results are quite 

similar to those of Siddiqui el al. [19861. Further, it cm be seen that the liugest 

orifice used (3 = 0.90) liad alriiost no efFect on the Rooding liniit as coinparecl to the 

case without an orifice. The sarne observation can be made about the next largest 

orifice (/3 = 0.83) for values of J$ l e s  than  0.4. For the other orifices (P < 0.83) 
that were studied it is quite clem from both Figures 4.30 and 4.31 that for a given 

value of J; a decrease in the ,i3 ratio leads to a decrease in the value of J,'; at the 

flooding lirnit. This result is qualitiitively similar to the observations for vertical pipes 

presented in the previous section. However, the flooding limits are well below those 

presented for vertical flow. 

4.3 Results of Hysteresis Experiments 

Figures 4.32 to 4.38 show the locus of deflooding points for the no orifice case as 

well as for the cases where orifices having ,i3 ratios of 0.90, 0.83, 0.77, 0.72, 0.66, and 

0.55 were located in the horizontal leg. The best fit curves to the partial delivery 

experirnents and to the flooding points are also presented on the same graphs. It cm 

be seen that for dl the orifice sizes studied, the deflooding points follow i h o s t  exactly 

the curve of partial liquid delivery results. This indicates that in the post flooded 

state these curves define a unique relationsh ip between the delivered liquid superficial 

velocity and the gas superficial velocity which do not depend on whether the gas flow 

is increasing or decreasing. For ail the cases studied the clifferences found between gas 

superficial velocity corresponding to the flooding point and the gas superficial velocity 

corresponding to deflooding point indicate thst there is a significant hysteresis effect. 

4.4 Pressure Drop Experiments 

Pressure drop experiments were carried out in the 63.5 mm I.D. vertical test section 

for liquid flow rates ranging from 0.1 to 1.75 m3/h at a number of different gas 



flow rates. The results are shown in Figures 4.39 to 4.44 for the pressure drop profiles 

measured in the liquid film for liquid flow rates of 0.1, 0.25, 0.5, L.0, 1.5, and 1.75 m3/h 

respectively. These pressure differences are measured with respect to the pressure tap 

Located at the top of the test section. They indicate that the pressure decreases in 

the upward direction, Le., in the direction of the gas flow. It can be seen that the 

total pressure difference increases with increasing gas flow rate. Figure 4.45 shows the 

compluison of the pressure clifference results for a fised gas fiow rate of 50.88 m3/h, 

for five different inlet liquid flow rates of 0.1, 0.25, 0.5, 1.0, md  1.5 m3/h. It can be 

observed that the pressure difference increases with increasing liquid flow rate. This 
is seen even more clearly in Figure 4.16 which shows the same results in term of a 

three dimensional figure where the pressure difference is clearly seen to increase with 

increasing gas flow rate for a fixed inlet liquid flow rate. 

4.5 Cornparison of Flooding Results 

In this section the cornparison of the flooding results will be presented. First the 

flooding results obtained in the vertical test section are cornpared aguinst the Wal- 
lis [L9691 flooding correlation. Then the flooding results obtained in the test section 

containing both vertical and horizontal legs will be compared against other exper- 

imentd data and for the case with no orifice a cornpiirison will also be presented 

against the mode1 of Ardron & Bnnerjee [LY86]. 

4.5.1 Vertical Flooding Results 

The results for the case without an orifice are compared to the well known flooding 

correlation of Wallis [1969] given by equation 2.10 in Figure 4.47 where the best fit of 

this equation to the e.xperimenta1 results is obtained using rn = 0.694 and C = 0.74. 

The results for the cases with an orifice are shown in Figure 4.48 where they are also 

compared to the Wallis flooding correlation. It cm be seen that ail the curves can 

be represented quite well by equation 2.10 where the slope of the curve is almost 

constant (m = 0.85 - 0.91) and C is seen to decrease with decreasing ,û ratios. The 
cases for which an orifice is placed in the test section can not be compared to any 

other results due to the fact that no such data is available in the open literature. The 



results of Celata (19891 and Davidson [L9941 can not be used for this cornparison due 

to the fact that they were carried out in test sections of much srnaller diameter than 

that used in the present experiments and that there are well known effects of scale 

[Bankoff & Lee 19861 which are not accounted for by the use of a representation using 

the dimensionless superficial velocit ies. 

4.5.2 Flooding Results for Test Section with Vertical and 
Horizontal Legs 

The flooding results for the test section with vertical and horizontal legs without an 

orifice instdled in the horizontal leg will be cornpared to other experimental results 

obtained on geometrically similar test facilities. They will also be compued to the 

one model available in the literatiire which is able to predict the Rooding point for 

this type of geometry. For the cases where an orifice is installed in the horizontal leg, 

the results will only be compared to other experimental results due to the fact that, 

as yet, no model exists which is able to predict the flooding behaviour due to the 

interactions of an elbow between a vertical and a horizontal run containing an orifice. 

a) Cornparison with Other Experimental Fksults: No Orifice 

Figure 4.49 shows a cornpiirison of our experimental results for the case without an 

orifice with the results of Krowlewski [19801, Siddiqui e t  al. [19861, Kawaji et al. [19911, 

and Wongwises [19941. The geometric arrangement of their various test sections is 

also shown in the same figure. In a11 t hese cases the various sut hors studied the 

influence of different parameters, Le., the radius of curvature of the elbow, the L/D 
ratio of the horizontal leg, the influence of the tube diameter, and the influence of 

the angle of inclination of the lower leg from the horizontal plane. It should be noted 

that none of the test facilities of the other researchers who's data have been used 
for this cornparison is identical in al1 respects to the one used in the present study. 

However, for the cornparisons the results of each author obtained on the geometry 

most sirnilar to the one in the present study were used. At the lower values of J;"? 

the results of Krowlewski [19801, Siddiqui et al. 119861 and Kawaji et al. [1991] are 

in reasonably good agreement with our resul ts. At values of J;"* > 0.4 the results 

of Krowlewski [19801 and those of Kawaji et al. [1991] start to diverge fiom ours. 

This divergence could be due to the influence of parameters that differ between the 



various test facilities. The results of Wongwises [19941 are in total disagreement with 

dl the other available data for the flooding in a test section containing a vertical and 

a horizontal leg connected by an el bow. 

b) Cornparison with Other Experimental Results: Orifice 

Figure 4.50 shows a comparison of the present flooding results with those of Kawaji 

et al. [19931. A schematic of t.he test facility used by Kawaji et al. 119931 is also 

shown in the same figure. It consists of a 1 rn long vertical leg connected to a 1.5 nt 

long horizontal leg contain ing an orifice 1.1 m downstream, wit h respect to the liquid 

flow, of the first elbow. The horizontal leg was connected to a second 1 m long 

vertical leg which was in turn connected to a third 1 rn long horizontal leg. .4t 

high values of J;*" Kawaji et al. [19931 reported that flooding occured in the second 

vertical leg of the test facility. Since the geometrical arrangement used by Kawaji e t  

al. [1993] is different than the one used in the present study the data reflecting the 

occurrence of the flooding in the second vertical leg were not used for cornparison. In 
the region where Kawaji et al. [19931 reported that the flooding occured as a result 

of the orifice their data are in very good agreement with that obtained in the present 

study. In general both sets of results intlicate that the gas superficid velocity required 

to provoke flooding for a given gas flow rate, decrease with decreasing orifice /!l ratio. 

c )  Cornparison with Model: N o  Orifice 

The only mode1 available for the prediction of the flooding in an elbow between a ver- 

tical and a horizontal leg is that of Ardron & Banerjee [1986] given by equation 2.22. 

Figure 4.51 shows the results of a comparison of the above Rooding correlation with 

the experirnental flooding limits obtained in this study for the no orifice case. We can 

see that the correlation is in reasonably good agreement with the experimental results 

over rnost of the range of J;+ studied, but begins to diverge from the experirnental 

resul ts for J'ii > 0.45. 

This correlation is not applicable to the cases having an orifice in the horizontal leg 

and to the best of the authors knowledge no correlations exist which were developed 

to predict flooding behaviour due to the interactions of an elbow between a vertical 

and a horizontal run, and an orifice. 
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Figure 4.1 : Jt delivered vs. J,  vertical test section no orifice. 
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Figure 4.2: J' delivered vs. J' vertical test section with orifices. 



Figure 4.3: Beghning of buildup of liquid column above the orifice, test sec- 
tion with vertical leg only. 



Figure 4.4: Continuation of buildup of liquid colurnn above the orifice, test 
section with vert icai leg only. 



Figure 4.5: F'urther buildup of liquid colurnn above the orifice, test section 
with vertical leg only. 



Figure 4.6: Liquid column fills the entire region above the orifice, test section 
with vertical Ieg only. 



Figure 4.7: Liquid column formed above the smallest orifices at zero gas flow, 
test section with vertical leg only. 



Inlet Liquid Superficial Velocity (ds) 

0 0.00877 0.06139 0.1 1403 @ 0.16665 0.2631 3 
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o 0.04375 0.09648 o 0.1 491 1 @ 0.22805 
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Fi y r e  4.8: Jc delivered vs. J, test section containing vertical and horizontal legs. 



Figure 4.9: Jt delivered vs. J, test section containing vertical and horizontal 
legs (cont .). 



Inlet Liquid Superficial Velocity (rn/s) 

0 0.00877 8 0.061 39 0.1 1403 s 0.16665 @ 0.26313 
o 0.01754 . 0.07017 0.12279 a 0.17542 
A 0.02635 A 0.07894 4 0.13156 r 0.19296 
v 0.03508 v 0.08771 v 0.14034 a 0.21051 
O 0.04375 + 0.09648 O 0.1491 1 0 0.22805 

0.05263 O 0.10525 o 0.15788 v 0.24559 

Figure 4.10: Jt delivered vs. J, test section containing vertical and horizontal 
legs (cont.). 



Figure 4.11: Onset of entrainment above the elbow, test section containing 
vertical and horizontal legs. 



Figure 4.12: Pulsating column formed in the vertical leg, test section con- 
t aining vertical and horizontal legs. 



Figure 4.13: Wave in horizontal leg formed by pulsating column, test section 
containing vertical and horizontal legs. 



Figure 4.14: Wave traveling towards the orifice, test section containing ver- 
t ical and horizontal legs. 



Figure 4.15: Wave reflected from the orifice, test section containing vertical 
and horizont al legs. 



Figure 4.16: Wave traveling towards the orifice and wave reflected from the 
orifice, test section contain ing vertical and horizontal legs. 



Figure 4.17: Liquid slug formed in the horizontal leg, test section cont aining 
vertical and horizont al legs. 



Figure 4.18: Liquid slug and gas bubble in the vertical leg, test section con- 
taining vert icai and horizont al legs. 



Locus of Flooding 
Locus of 

Figure 4.19: J .  delivered vs. J, and Rooding points, test section with vertical 
leg only (no orifice). 
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Figure 4.20: Jc delivered vs. J, and flooding points, test section with vertical 
leg only (orifices). 
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Figure 4.21: Experimental flooding points, test section with vertical leg only 
(al cases st  udied) . 



Figure 4.22: J .  delivered vs. J, and flooding points, test section with vertical 
and horizontal legs (orifice ,û = 0.77). 
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Figure 4.23: Jt delivered vs. J, and flooding points, test section with vertical 
and horizontal legs (no orifice). 
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Figure 4.24: Jt delivered vs. J, and floocling points, test section with vertical 
and horizontal legs (orifice = 0.90). 



Figure 4.25: Jt delivered vs. J, and flooding points, test section with vertical 
and horizontal legs (orifice P =  0.83). 
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Figure 4.26: Jf delivered vs. J, and flooding points, test section with vertical 
and horizontal legs (orifice ,O = 0.77). 
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Figure 4.27: Jr delivered vs. J, and flooding points, test section with vertical 
and horizontal legs (orifice /3 = 0.72). 
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Figure 4.28: Jc delivered vs. J, and flooding points, test section with vertical 
and horizontal legs (orifice ,i3 = 0.66). 
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Figure 4.29: JI delivered vs. J, and flooding points, test section with vertical 
and horizontal legs (orifice 0 = 0.55). 



Figure 4.30: Flooding points, test section with vertical and horizontal legs 
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Figure 4.3 1: Flooding points, test section wit h vertical and horizontal legs (cont .) 
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Figure 4.32: Partial delivery results with decreasing gas flow, test section 
with vertical and horizontal legs (no orifice) 
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Figure 4.33: Partial delivery results with decreasing gas flow, test section 
with vertical and. horizontal legs (orifice = 0.90) 
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Figure 4.34: Partial delivery results with decreasing gas flow, test section 
with vertical and horizontal legs (orifice B = 0.83) 
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Figure 4.35: Part i d  delivery results wit h decreasing gas flow, test section 
with vertical and horizontal legs (orifice ,û = 0.77) 
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Figure 4.36: Partial delivery results wit h decreasing gas flow, test section 
with vertical and horizontal legs (orifice ,û = 0.72) 
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Figure 4.37: Partial delivery results with decreasing gas flow, test section 
with vertical and horizontal legs (orifice P = 0.66) 
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Figure 4.38: Part id delivery results with decreasing gas flow, test section 
with vertical and horizontal legs (orifice P = 0.55) 



Gas Flow Rate (m3/h) 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

TOP Position (m.) B ottom 

Figure 4.39: Presure drop Qi = 0.1 (m3/h), test section with vertical leg only. 
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Figure 4.40: Pressure &op Qi = 0.23 (m3/h): test section with vertical leg only. 



Gas Flow Rate (m3/h) 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

TOP Position (m.) Bottom 

Figure 4.41: Pressure drop Qi = 0.5 (m3/h), test section with vertical leg only. 
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Figure 4.42: Pressure clrop Ql = 1.0 (m3/h), test section with vertical leg only. 



1 Gas Flow Rate (rn3/h) 

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 

TOP Position (m.) Bottom 

Figure 4.43: Pressure &op Qi = 1.5 (m3/h),  test section with vertical leg only. 
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Figure 4.44: Pressure drop Qi = 1.75 (m3/h), test section with vertical leg only. 
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Figure 4.45: Pressure drop Q, = 50.88 (m3/h) for vacious liquid flow rates, 
test section with vertical leg only. 



Figure 4.46: Three dimensional view of pressure drop Q, = 50.88 (m3/h) for 
various liquid flow rates, test section with vertical leg only. 
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Figure 4.47: Cornparison of flooding points obtained in the test section with 
a vertical leg only and Wallis' correlation (no orifice). 
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Figure 4.48: Cornparison of flooding points obtained in the test section with 
a vertical leg only and Wallis' correlation (orifices). 
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Figure 4.49: Cornparison of flooding resuits with those of other researchers 
test section with vertical and horizontal leg (no orifice). 
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Figure 4.50: Cornparison of Rooding results with those of other researchers 
test section with vertical and horizontal leg (orifices). 
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Figure 4.51: Cornparison of flooding points obtained in the test section with 
vertical and horizontal leg and the Ardron and Banerjee flooding 
correlat ion (no orifice). 



Chapter 5 

CCFL MODEL DEVELOPMENT 

The focus of the CCF md CCFL mocleling efforts have been on the developrnent of 

phenomenoiogicd rnodels capable of predicting the Rooding point in a vertical tube 

without an orifice md  in a test section containing both a vertical and a horizontal 

leg. For the case of the test section containing both vertical and horizontal legs 

attention wüs also given to the ability of the riioclel to predict the influence of a n  orifice 

placed in the horizontal Ieg on the Ilooding point. The models for the vertical and 

horizontal CCFL will be presenteci separately. The guiding principle for the mode1 
developmen t is [ Wilcox 1994 1 : **a reul ly gootl rnodel should introduce the minimum 

a m o u n t  of complexzty urhile capt uring Ihe essence of the relevant ph;ysics. " To t his 

end visual observations of the behaviour of the counter-current Bow just prior to and 
at the onset of flooding were heavily reliecl upon to guide the mode1 development. 

5.1 Mode1 for Vertical CCFL 

Visual observations of the nature of the CCF have lead to the adoption of rnodels 

which describe two different phenoniena being retained for testing. Before descr ibing 
the phenomena being modeled it is important to recall the basic definition of the 

flooding point which is [Bankoff &. Lee 19861: "for a given down.uard liquid flow the 

maximum upward gas fZopo.ui rate for which jull liquid delivery out the bottom of the 

tube 2s mazntained, corresponds to the coun ter-cîlmen t fZooding limit. '' Keeping t his 

definition in mind, the mode1 development will focus on two main mechanisms with 

which flooding may be associated. These mechanisms are: 



1. flooding occurs when the g is  flow rate is sufficient to entrain a ciroplet in the 

gas stream against the force of gravity without being redeposited into the liquid 

film, and 

2. flooding occurs when the gas Aow rate is sufficient to cause the velocity of the 

liquid film at the gas liquid interface to become infinitesimdly smaller than 

zero. 

Both of these mechanisnis implicitly result in the definition of the flooding point 

being respected and further coincide wit h the phenomena observed in the vertical 

experiments presented in Chapter 4. At low to intermediate liquid flow rates, even 

at gas flow rates below the flooding point . a nurnber of droplets were observed in the 

gas core. Thus, it is reasonable to iissiitiie that the gas flow rate that is capable of 

supporting these droplets, without therri being redeposited into the liquid film, against 

the force of gravity corresponds to the flooding point. At high liquid fiow rates the 

transition from full to partial liquid delivery is very sudden, it has  Leen observed that, 

this transition coincides with a very thick roll wave being seen to travel up the test 

section in the same direction LIS the gas How. In this case the assumption that the 

flooding point coincides with the gis flow rate required to cause the velocity of the 

liquid film to pass t hrough zero nt the gas liquid interface is also quite logical. At th is 

point the delivered liquid flow rate will be fractionally l e s  than the inlet liquid flow 

rate, this will result in an increase in the liquid film thickness, and thus an increase 

in the interfacial shear. This increase in interfacial shear will then result in a partial 

reversa1 of the liquid film flow, ancl in a further increase in the liquid film thickness, 

and a subsequent further increase in t lie interfacial shear. This buildup will continue 

until the force of the gas flow on the liquid film is sufficient to drag the resulting roll 

wave up the tube against the force of gavity. 

There exists in the two-phase flow literature a considerable amount of support for 

fiooding models based on these two niechanism. Dukler e l  (il. [19841 noted that for 

al1 the inlet liquid flow rates that they stiidied; the gas flow rate at which flooding 

was seen to occur was identicdly the gas flow rate at which entrainment was first 

detected. Moalem-Maron & Dukler (19841 noted that a flooding mode1 based on the 

force balance on a droplet developed solely on theoretical grounds bore a striking 

resemblance to the experimentally based correlation of Pushkina & Sorokin [1969]. 



They also 

presented 

& Dukler 

noted that such 

in Dukler et al. 

[1984] rejected 

s model providecl good agreement with the flooding results 

[l9841. Desp ite, the success of t his mode1 Modem-Maron 

it because of its lack of generality and preferred to base 

their modeling efforts on a film Row model of the flooding phenornena. Although, it 

was noted that droplet entrainment was likely to be a cause of flooding under çome 

circumstances. Recently, Jaysnti el al. [ L  9961 carried out a theoret ical investigation 

of the tube diameter effect on flooding. Thcy observed, that for fixed inlet liquid 
flow rates, in s m d  diameter tubes the gas velocity required to drive a standing wave 

upward was much lower than in a large diameter tube. They argued that in large 

diameter pipes the gas veiocity requirecl to entrain and carry droplets upward may 

be l e s  than that required to transport a wave upward. They therefore claimed, that 

for large diameter tubes flooding mily be associated with ciroplet transport while 

in smaller diameter tubes the flooding phenotnena may be relateci to wave (filni) 

transport. The results presented in Chapter 4 were obtained for a fixed tube dianieter 

of 63.5 mm for various inlet liquid flow rates. An analogy. albeit imperfect, may 

however be drawn with the work of .Jayariti et al. [19961. .4t low inlet liquid flow 

rates the liquid film is much thinner than at high liquid flow rates, while at a given 

liquid flow rate the liquid filni will be itiiich thinner in ÿ. luge diameter tube than in 

a small diürneter tube. Coincident ly, visual observation of the flooding phenoniena 

in the current work, seems to indicate that at low liquid flow rates flooding is related 

to droplet entrainment while A C  high liquid fiow rates that it is related to film flow 

reversai. 

The two phenomenologicai models under consideration for the prediction of the flood- 

ing point will now be exarnined in geater cletail. 

5.2 Droplet Force Balance 

The phenornena being modeled in this particular case is represented schernatically 

in Figure 5.1. It involves a balance of the drag and gravitational forces acting on 

a droplet. The drag force, Fd, will be a function of the drop size and of the drag 

coefficient while the gravitational force, F,, for a constant liquid temperature field, 

will only be a function of the drop size. 

For a given drop size, assuming that the &op is spherical, the magnitude of the 



gravitational force is given by: 

9 (5.2) 

balance of these equations as: 

while the magnitude of the drag force is given by: 

the gas velocity may be obtained explicitiy from the 

where the drag coefficient is calculated using Wallis [1969I: 

1 0.45 for [O3 5 Red < 2 105 

with the droplet Reynolds nuniber given by: 

To close the set of equations given above a met hod is required to specify ka,, which 

is the largest stable &op size that ciin exits in a gas stream. Thus, a literature review 
focusing on droplet size models was carried out. 

5.2.1 Drop Size Modelling 

A huge amount of information is available in the two-phase flow literature on the 

subject of drop size modeling. The mechanisrn of droplet formation in an a n n u l a  
flow which is due to shearing off of the roll wave crests may result in droplets be- 
ing formed which are larger than the maximum stable drop size. Thus, al1 of the 



models reviewed Ishii & Grolmes [19751, Kataoka e l  al. [19831, Lopes 119841, and Ko- 

camustafaogullari (1993, 19941 are based on an idea first proposed by Hinze 119551 in 
which a balance of the disruptive and restorative forces acting on the droplet, control 

the mechanism of droplet disintegration and thus the maximum stable drop size. For 

a given set of flow conditions a wide range of drop sizes rnay be observed. It has 

however been found [Lopes 19841 that while the largest drops account for only a rel- 

atively snidl fraction of the total nurtiber of drops that u e  entrained, they account 

for a major fraction of the mass and monienturn transport. The mode1 development 

will thus be carried out using the mxuiniuni stable &op size. 

The mechanism controlling the break-up of a liquid droplet rnay be regnrded as being 

a balance between the external disruptive stress, r ,  and the surface restorative stress, 

2a/d ,  where o and d are the surface tension and droplet diameter respectively. There- 

fore, the condition which controls the maximum stable drop size can be expressed in 

terms of a critical Weber number which can be defined as: 

The external disruptive forces rnay be due to either; the changes in eddy velocities 

over the length of the droplet. or to the lociil relative velocity around the droplet. In 
both cases the erternal stress can be expresseci in terms of the difference in the kinetic 

energy around the droplet. Lopes 119841 biised Iiis mode1 on the first rnechanism while 
Kocarnustafaogullari et al. [1993, L9941 based their mode1 on the second. Based on 

these two criteria two different critical Weber numbers rnay be defined; t hese are: 

and 

In both of these models a means must be found to specify either if which is the mean 

square of the spatial velocity fluctuation over the drop length, or which is the 

limiting local relative velocity at which a fluid will Row over a droplet suspended in it. 



Both these quantities can be related in sonie way to the turbulent energy dissipation 

rate per unit m a s ,  E ,  thus: 

and 

Replacing and ndv,,,, in equations 5.7 and 5.8 by the expressions given by equa- 

tions 5.9 and 5.10 respectively anci assuniing that the implied proportionality factors 

are both on the order of unity, yields: 

Equations 5.11 and 5.12 can then be solveci for the droplet diameter, yielding: 

and 

respect ive1 y. 

Both Lopes [19841 and Kocarnustafaogull~ui et al. [1993, 19941 assume that in the 

case of pipe flow the local energy dissipation rate per unit m a s ,  c, is equal to the 

average energy dissipation rate per unit m a s ,  < c >, and that the average energy 

dissipation may be approximated as: 



where the interfacial shear stress, ri, is given by: 

The critical Weber nurnbers We,, and CVe, are given by Lopes 

mustafaogullari et al. (1993, 19941 as CVe,, = O. 194 and CVe,, = 

[19841 and Koca- 
12.2 respect ively. 

It should also be pointed out that a study of the work of Lopes [19841 by Koca- 
mustafaogullari et al. [1993, 19941 have leacl thern to suggest thitt a bctter value of 

the critical Weber number is We,, = 0.17. 

The final requirement for the iipplication of either of these drop size models is the 

specification of the interfacial friction factor. Kocamustafaogullari et al. [1993, 19941 

used the model of Ishii & Grolmes [19731 in their correlation. In addition to this model 

a literature review of interfacial friction rtiodeling was also carried out. The avaiiable 

literature on this subject is quite vast. The correlations tested in the present work 

were taken from a review of interfacial friction rnodeling presented by Wallis 119871. 

The interfacial friction rnodels testeci include the following: 

Wallis 119871 

Moeck (Given in Wallis [19871) 

Nimatulin 1 (Given in Wallis [19871) 



Niamatulin 3 [19911 

B harat han 11 9791 

where 6 is the film thickness and D is the tube diameter. A comparison of the pre- 

dicted interfacid friction factors obtained using the above correlations against the 

experimental results of Dukler e l  al. 119841 is given in Figure 5.2. It can be seen 

that for relatively low d/D ratios B harathan's [1979/ correlation yields reasonably 

good results, however at medium to high values of 6 / D  the interfacial friction factor 

is significantly underpredicted. It can also be seen that al1 of the other correlations 

significantly underpredict the interfacial friction factor over the ent ire range of S / D .  
Al1 of the above correlations were developed based on data obtained for air-water 

mnular flows and their extension to conditions of steam-water flows may be in ques- 

tion. It has however been pointed out by Hewitt and Hall-Taylor IL9701 that the 

shear stress under diabatic conditions is often approxirnately equal to that observed 

in adiabatic Row under the same flow conditions. Nigmatulin [19911 shows a compiu- 

ison of equation 5.20 against a, wide variety of both stesm-water and air-water data. 

This comparison shows that, apart from the data of one researcher, no significant 

difference exists between the interfacial friction for steam-water and air-water fl ows, 

Furthermore, correlations of this type are currently being used in both TRAC [Wallis 

19871 and COBRA-TF [Thurgood 19811. 

The use of one of the above friction factor correlations in equation 5.16 perrnits 

the average energy dissipation rate per unit m a s ,  c E >, to be calculated from 
equation 5.15. Then the maximum stable drop size, dm,, may be obtained using 

either of the two drop size correlations given by equations 5.13 or 5.14. Finally, the 
gas velocity required to suspend the droplet in the gas stream can be obtained using 

equat ion 5.3. 

In order to be able to obtain the interfacial friction factor using any of the dore- 

ment ioned correlat ions a means of est imat ing the liquid film thickness is required. 



Assuming that the film can be adequately described by the equation of motion for 

steady, lamina, one dimensionel flow with constant film thickness, in which gravity 

is the only body force and for which the pressure gradient is assumed to be negligible, 

the equation of conservation of momentuni can be written as: 

The velocity profile in the liquid film can be obtained by integrating equation 5.23. 
This yields: 

Applying the following boundary conditions: 

and 

yields the following equation for the velocity profile in the liquid film: 

Two special cases wiil now be considered, these being: 

1. zero interfaciai shear: Ti = O at y = 6, and 

2. zero interfacial velocity: u(y) = O at y = 6. 

For both these cases, the mas ffow rate in the liquid film may be obtained using: 



the results for the two cases can then be solved for the film thickness. This yields: 

which is the classic expression for the Nusselt film thickness in the first case, and: 

for the second case. The results of Zabaras 119851 indicate that below the flooding 

point the measured film thickness agrees very well with that predicted by the Nusselt 

equation. His results also show that at the flooding point the measured film thickness 

is quite close to that obtained using equation 5.30. Rirthermore, the average film 

thickness was found to be very neurly constant for two different positions in the 

test section located at 0.15 and 1.7 rn froni the point of liquid injection respectively. 

Thus these two limiting film thicknesses were used in the calculation of the interfacial 

friction factors given by equat ions 5.17 to 5.22. 

5.2.2 Algorithm for Mode1 Based on Droplet Force Balance 

For a given experimental liquid flow rate the above models were used to predict 

the gas velocity required to suspend a droplet in the gas stream using the following 

procedure: 

1. For a given experimental liquid flow rate calculate the film thickness using either 

equation 5.29 or equation 5.30, 

2. Use this film thickness with one of the giveii interfacial friction factor correla- 

tions to calculate the interfacial friction factor, 

3. Use the interfacial friction factor and s guessed gas velocity in equation 5.16 to 

calculate the interfacial shear stress, 

4. Use the interfacial shear stress together with the guessed gas velocity to calculate 

the average energy dissipation using equation 5.15. 



5. Use the average energy dissipation in either equation 5.L3 or 5.14 to obtain the 

mauirnum stable &op size, 

6. Use the drop size and the drag coefficient from equation 5.4 in equation 5.3 to 
obtain the gas velocity which will support the &op, md 

7. If the gas velocity obtained in step 6 is approximately equd to the original 

guessed velocity, i.e. if - u;ldl 5 E )  stop, if not return to step 5. 

If the assumpt ion of this mechanism beirig linked to the flooding phenomena is correct, 

the resulting gris velocity will correspond to the experimentally observed flooding 

point. 

5.3 Film Flow Modelling 

The phenomena being represented in this mode1 is the case of the interfacial shear 

stress under conditions of vertical annular counter-current flow being sufficient to 

cause the velocity of the liquid film at the gas liquid interface to be zero. 

Assuming the sirnplest case of stendy, lamina, one dimensional flow of a Newtonian 

fluid the velocity profile in the liquicl film is given by equation 5.27 and the mass flow 

rate in the liquid film is given by equation 5.28. 

Solving equation 5.28 as a function of the liquid film thickness yields: 

using the definition of the interfacial sheiu stress, Ti ,  which is given by equation 5.16 
yields the following expression of the liquid film flow rate: 

The velocity of the liquid at the gas liquid interface can be obtained from: 



For a given liquid flow rate equation 5.32 and 5.33 can be solved for a varying gas 

flow rates until the condition of zero velocity at y = B is reached. The procedure used 
is: 

1. For a given experimental liquid flow rate the film thickness for the condition of 

v(6) = O is given by equation 5.30, 

2. Use this film thickness with one of the given interfacial friction factor correla- 

tions to cdculate the interfacial friction factor, 

3. Use the interfacial friction factor and a guessed gtu velocity in equation 5.32 to 

calculate the velocity of the liquid film at the gas liquid interface, 

4. If v(6) f O guess another gas tlow rate and return to 3; if lv(6)I 5 t stop. 

If the above phenomena corresponds to the one that is actually linked to the on- 

set of flooding the gas flow rate required to cause 4 6 )  = O will correspond to the 

experimental gas flow rate at the flooding point. 

5.4 Cornparison of Predicted and Experimental Flood- 
ing Points - Vertical Flow 

A cornparison between the experirnental flooding points for vertical flow without an 

orifice carried out using the 63.5 mm I.D. test section and the predictions obtained 

using the correlations of Wallis 119691 (with m = 1 & C = l), Alekseev et al. [1972], 
and Bharathan et af. [19781 is presenteci in Figure 5.3. It can be seen that none 

of these correlations are capable of correctly predicting the experimental results. As 
shown in Figure 5.4 the parameters m and C in the Wallis [19691 correlation may be 

adjusted in such a way as to produce a very good agreement wit h the experimental 

results. This, however, requires apriori knowledge of the flooding results and thus 

limits its usefulness as a predictive tool [Tye et al. 19951. 

The mode1 for the prediction of the fiooding point in a vertical test section without 

an orifice, based on the droplet entrainment mechanism as described above has been 
compared against the flooding data obtained in our experiments using the 63.5 mm 



I.D. test section. Cornparisons were curied out using two limiting film thicknesçeç, 

the Nusselt film thickness and the film t hickness corresponding to zero liquid veloci ty 

at the gas liquid interface and a number of different correlations for the interfacial 

friction factor. The results are shown in Figures 5.5 and 5.6 using the Nusselt film 
thickness and the film thickness corresponding to Ci1 = O respectively. It can be 

seen that in general the predicted flooding points do not agree with the experimental 
results. 

As was seen in Figure 5.2 with the exception of B harathan's correlation which yielded 

reasonably good results at low values of 6 / D  al1 of the correlations tested significantly 

under predicted the interfacial friction factor. New interfacial friction factors were 

thus obtained from a best fit of the data of Dukler et al. [19841. A corriparison of the 

experiniental and predicted Aooding points using the droplet entrainment model for 

the two limiting film thicknesses using these new interfacial friction factors is shown 

in Figure 5.7. It can be seen t hat for the case using the film thickness corresponding 

to zero interfacial velocity the predicted flooding points are in very good agreement 

with the experimental results. 

Figures 5.8 and 5.9 show a cornparison of the predicted and experimental results 

obtained using the film flow rnodel in which the interfacicial friction factors were ob- 

tainecl from B harat han's [19791 correlation and from the best fit of the data of Dukler 

et al. [19841 respectively. [t ciin be seen that when Bharathan's [1979] correlation is 

used the agreement between the predicted and experimental results is very poor. For 

the case when the interfacial friction factor is obtained from the best fit of the data 

of Dukler et al. [19841 it is interesting to note that while the predictions do under 

estimate the fiooding points for higher liquid flow rates the curves of the predictions 

and the experimental results have very similar shapes. 

5.5 Mode1 for Horizontal CCFL 

As was the case for the developrnent of the rnodel for the prediction of the counter- 

curent flooding limit in vertical tubes, visual observations of the nature of the CCF 
and the CCFL in a test section containing both a vertical and a horizontal leg have 

again been used to guide the model development. 



It was observed that as the gas flow rate was increased, entrained droplets begm 

to appear in the gas stream in the vertical leg just above the elbow. At gas flow 

rates beiow that corresponding to the flooding point the concentration of entrained 

droplets was quite smail. This concentration increased quite rapidly as the flooding 

point was reached. It was thus pastulated that the onset of flooding was in some way 

linked to the onset of entrainment. 

Thus a mechanistic mode1 based on the following prernise has been developed for the 

prediction of the flooding point in an elbow between a vertical and a horizontal kg: 

0 flooding occurs as a results of a buildup of the droplets entrained from the crest 

of the hydraulic junip which occurs inside the elbow. 

In order to calculate the height of the hydraulic junip it is necessary to first obtain 

the depth of the flow iipstream of the jump. To do this, it is iissurned that the void 

fraction in the supercritical region in the horizontal 1eg is equal to t hat in the vertical 

leg. This is a rewnable assumption as it has been observed that the hydraulic jump 

takes place right at the stwt of the horizontal leg. It is now necessary to find a 

means of calculating the film thickness and Iiquid velocity in the vertical leg. Since 

the flooding point in a test section containing both a vertical and a horizontal run is 

weil below that occuring in vertical flow only. and further. since it hm been shown 

experimentally [Zabaras 19851 t hat for vertical fiow below the flooding point, the 

measured film thickness under counter-current flow conditions is very close to the 

Nusselt film thickness it is reasonable to tissume, for alculation purposes, that the 

film thickness is equal to the Nusselt film thickness as given by equation 5.29. The 
void fraction is then obtained from: 

The film thickness in the horizontal leg, &, corresponding to this void fraction is then 

cdculated by the iterative solution of: 



The upstrearn critical depth of the fiow and the height of the hydraulic jurnp can be 

obtained using Straub's method [French 19851: 

where Q1 is the volumetric fiow rate of the liquid phase and 6, is the criticd depth. 

The height of the hydraulic jump may then be obtained by: 

[ ( q l 6 h )  for Fr < 1.7 

where F r  is the upstrem Froude number which is defined as: 

The void fraction at the crest of the hydraulic jump, crj ,  is then calculated frorn: 

and the absoiute value of the corresponding liquid velocity is obtained from: 

where mi is the liquid m a s  flow rate. Note: the velocity is defined to be positive 
in the direction of the gas flow 

The  Ishii & Grolmes [19751 criterion for the inception of entrainment is then applied 

at the crest of the hydraulic jump. This criterion is that the drag force, Fd, acting 

on the wave crest is greater than the retaining force of the surface tension, F,: 

The drag force on the wave crest is given by: 



where X is the wave length, o, is the relative velocity between the gas and the liquid 

phases given by v, = v, -VI, a is the wave amplitude, and the drag coefficient is given 

by an anaiogy to the drag for deformed particles and is taken to be: 

The retaining force of the surface tension is given by: 

where Cs is an interfacial shape coefficient, Ishii & Grolrnes [19751 specify t his coeffi- 

cient as being: 

The entrainment criterion can thus be obtained by substituting equations 5.42 and 

5-44 into equation 5.41: 

A met hod must now be found to specify the wave amplitude! a. Ishii & Grolrnes 119751 
assume that the interfacial shear at the top of the wave crest induces an interna1 fiow 

which is of the order of magnitude of the film velocity and that the motion of the 

wave crest with respect to the film can be expressed by a shear flow model. They 

have thus obtained the following expression for the amplitude of the wave: 

where C, is a factor which is used to account for the effect of the surface tension on 

the internd How. They argue that, since the hydrodynamics inside the wave crest 

can be described as a function of the viscous and surface forces, this parameter will 



be a function of these forces. Ishii &- Grolmes [19751 have obtained the following 

correlation for the factor C,: 

( 11 . ~ B N ; . ~  for Np < 
1 for N p  > , 

where N, is the viscosity number which is defined as: 

They propose that the friction factor, f i ,  be calculated using the relationship given 

by Hughmark 119731: 

where Rer is the film Reynolds number given by: 

and the constants K and rn are given by: 

and Ti is given by: 

where fgi may be specified using any available correlation. For the present study 



was used. It is important to note that the correlations for the interfacial friction 

factor which were presented in section 5.1.2 on drop size modelling should not be 

used for this case as they are applicable only to annular flow. In view of the thickness 

of the liquid film, J j l  at the crest of the hydraulic jump, these correlations would yield 

physically unrealistic values of interfacial friction. In order to apply this mode1 for 

the prediction of the flooding point in a test section containing vertical ruid horizontal 

legs the following procedure is used: 

1. For a given experimental liquid flow rate the Nusselt film thickness is cdcu- 

lated using equat ion 5.29 the corresponding void fraction is t hen obtained using 

equation 5.34, 

2. The film thickness of the stratified flow before the hydraulic jump, &, is t hen ob- 

tained by an iterative solution of equation 5.35 using the void fraction obtained 

in the previous step, 

3. Equations 5.36 and 5.37 are then used to calculate the critical depth of the 

flow and the height of the hyciraulic jump. The void fraction at the crest of 

the hydraulic jump is then obtained using equation 5.39 and the corresponding 

liquid velocity is obtained from equation 5.10. 

4. The criterion for the inception of entrainment given by equation 5.46 is then 

calculated using a guesçed gas velocity where the wave amplitude is calculated 

using equation 5.47 and C,, a, and ri are calculated using equations 5.48, 

5.50 and 5.52 respectively. The gas velocity is updated until the inequality 

which defines the point of incept ion of entrainmen t is satisfied. 

5.5.1 Modification of the Mode1 for Horizontal CCFL to Take 
into Account the Influence of the Orifice 

For the specific case when an orifice is placed in the horizontal leg a provision must 

be made to take into account its influence on the flooding point. In order to do this 

it was assumed that the orifice creates a stagnation region in the flow as illustrated 

in Figure 5.10. This results in the height of the hydraulic jump being offset by the 

height of this region. The offset height for this case ia given by: 



The results of the application of this correction to take into account the influence 

of the orifice on the fiooding point are shown in Appendiu '4 for al1 of the orifices 

used in these experirnents. It can be seen that for the four Iargest orifices tested, Le. 

8 = 0.90 to 0.72 Figures A-l to A-4, the agreement between the predict.ed and the 

experimental flooding points is quite good. For the orifices having /3 ratios of 0.66 and 

0.55 Figures A-5 and A-6 however the flooding points are significantly overpredicted. 

Furt herrnore it cm be seen t hat the degree of over predict ion increases wit h decreasing 

orifice p ratios. Thus a correction was made to the calculated offset height which was 

inversely proportional to the orifice ,û ratio. The offset height which is added to the 

height of the hydraulic jiimp is thus  given by: 

and the rest of the calculation is carried out in the same rnanner as for the case 

without an orifice. A flowchart showing the calculation procedure for the application 

of t his model is given in Figure 5.1 1. 

5.5.2 Cornparison of Predicted and Experimental Flooding 
Points-Horizontal Flow 

The results of a comparison between this model and our experimental results for the 

case without an orifice are shown in Figure 5.12. A comparison of the predicted 

and experimental flooding points using our data and the Ardron and Banerjee [19861 

flooding correlation is also presented. It c m  be seen that the present model is in better 

agreement with the experimental results than t hat of Ardron and Banerjee [l9861. 

Cornparisons of the predictions of the present CCFL mode1 against some of the re- 

sults of Krowlewski [19801 (system most closely resembling the one used in the current 

e?cperiments), Wan & Krishnan [1986], Siddiqui et al. [19861 and Kawaji et al. [19911 

are shown in Figures 5.13, 5.15, 5.14 and 5.16 respectively, predictions obtained using 

the Ardron and Banerjee [1986] flooding correlation are also shown in these figures. 

It can be seen that for the experirnents of Krowlewski [1980], Siddiqui et al. [1986] 



and Kawaji et al. [1991] the 
ment with the experimental 
Ardron and Banerjee [19861 

predictions of the present model are in very good agree- 
results and in fact better than those obtained using the 

flooding correlat ion. This correlat ion does however pro- 
duce a better agreement with the experiments of Wan & Krishnan [1986/ thttn the 

CCFL mode1 developed as part of the current research. The cornparisons with the 
experimental results of both Wan & Krishnan 119861 and Kawaji et al. [1991] are 

only carried out over part of the rcgion of the data. The reason for this is that both 

authors state that at  large values of J;"? the flow remains supercritical throughout 

the horizontal leg. ünder these conditions neither the present CCFL model nor the 
Arclron and Banerjee [19861 Booding correlation are applicable since in both cases 

flooding is associated with the presence of a hydraulic jump. 

The standard deviations of the predictions with respect to the experimental results 

which are given by: 

are presented in Table 5.1 for al1 the cases that were studied . It c m  be seen that 

the standard deviations of the present model are lower than those for the Ardron and 
Banerjee 119861 flooding correlation for four of the five cases where this correlation 

was applicable, the only exception being the results of Wan 1G Krishnan [19861. 

The prediction of the flooding point using this model for al1 of the orifice ratios studied 
in this project (p=0.90, 0.83, 0.77. 0.72, 0.66 and 0.55) are shown in Figures 5.17- 

5.22. It should be pointed out that to the best of the authors knowledge there arc no 

models available in the open literature which are capable of predicting the flooding 
point occuring in an elbow between a vertical and a horizontal leg in which an orifice 
is placed. It can be seen that in general the agreement between the predicted and 
experimental ff ooding points is excellent . For the orifices having P ratios of 0.77, 0.72. 
and 0.66 for values of J:'? greater than 0.35 it can be seen that there is a change 
in the slope of the experirnental results which is not predicted by the current model. 
The current model predicts the onset of flooding as being due to the inception of 
entrainment at the crest of a hydraulic jump occuring inside the elbow. For high 
liquid flow rates, both Wan & Krishnan (19861 and Kawaji [19891 found that the 

hydraulic jump was shifted towards the exit of the horizontal leg and flooding was 



due to slugging at this point. The results of both these researchers exhibit a change 

in slope at the highest liquid flow rates similar to that observed in the current results. 
If the phenornena which leads to flooding, at the highest liquid flow rates, is not the 
one represented by the phenomenological model, it will not be surprising if the model 

fails to capture the change in dope seen in the experimental results. 

A cornparison of the predictions of the mode1 against the experimental results of 

Kawaji [1993] for orifices of (0=0.865, 0.67 and 0.55) are shown in Figures 5.23-5.25. 

In general, the agreement between the predictions and the experimental results is 
excellent. At the highest dimensionless liquid superficial velocities for the ,i3 = 0.865 

case were Kawaji's data exhibits an unusual trend of the dimensionless superficial gas 

velocity at flooding being almost constant the predicted and experimental results do 
however diverge. 

Table 5.1: Standard Deviation of Llodel Predictions vs. Experiments. 

Experiments 

Present Work 13 = 1 
Present Work ,û = 1 
Krowlewski [19801 
Krowlewski [1980] 

Wan & Krishnan [19861 
Wan & Krishnan [19861 

Siddiqui et al. [19861 
Siddiqui et al. [L9861 
Kawaji et al. [1991] 
Kawaji et al. 11991 1 

Present Work B = 0.90 
Present Work ,û = 0.83 
Present Work P = 0.77 
Present Work ,O = 0.72 
Present Work p =  0.66 
Present Work ,û = 0.55 

Kawaji et  al. [19931 = 0.865 
Kawaji et  al. [1993] ,~7 = 0.67 

I 
0 .O29 

Kawaj et  al. 119931 0 = 0.55 1 Present Work O .O23 

Mode1 

Present Work 
Ardron & Bunerjee [19861 

Present Work 
i\rdron & Banerjee 119861 

Presen t Work 
Ardron Sr Banerjee [1986] 

Present Work 
Ardron & Banerjee [1986 1 

Present Work 
Ardron & Banerjee [19861 

Present Work 
Present Work 
Present Work 
Presen t Wor k 
P resen t Wor k 
P resen t Wor k 
Present Work 
Present Work 

Standard Deviat ion 
0 

0.036 
0.043 
0.042 
0,096 
0,038 
0.013 
0.019 
O, 044 
0.018 
0.026 
0.050 
O ,048 
0 .O46 
O .O32 
0.033 
0.02 1 
0.157 
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Figure 5.1 : Force balance on a drop. 
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Moeck (Wallis [1987]) 
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Figure 5.2: Cornparison of interfacial friction factor vs. data of Dukier et al. [19841 



Experi mental 
WALLIS 119691 (m=1, C=l)  

...- .... - ALEKSEEV [1972] (modi fied) 
--- BHARATHAN et al. [1978] 

Figure 5.3: Cornparison of experimental flooding points and correlations ob- 
tained from the literature. 



Experimental Results P= 1 

Best Fit of 1 
Wallis [1969] Correlation 

~ g *  
+m J ~ * ' ~ = c  
with 

m=0.694 
C=O. 74 

Figure 5.4: Cornparison of experimentai flooding points and Wailis' correlation. 
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I; from Moeck [Wallis 19871 

-- j; from B harathan [ 19791 

..--..... I; from Wallis [1987] 

-..- I; from Nigrnatulin [1991] 

Figure 5.5: Cornparison of experimental and predicted flooding points test 
section with vertical leg only using droplet force balance mode1 
with Nusselt film thickness and various interfacial friction corre- 
lat ions. 
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/, from Wallis [1987] 

I; from Nigrnatulin [ 199 11 

Figure 5.6: Cornparison of experimental and predicted flooding points test 
section with vertical leg only using droplet force balance mode1 
with film thickness from = O and various interfacial friction 
correlations. 
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Figure 5.7: Cornparison of experimental and predicted Aooding points test 
section with vertical leg only using droplet force balance mode1 
with interfacial friction from best fit of Dukler et al. [19841 data. 



Figure 5.8: Cornparison of erperimentai and predicted flooding points test 
section with vertical leg only using film reversal mode1 and inter- 
facial friction frorn the correlat ion B harat han [l9791. 



Figure 5.9: Cornparison of experimental and predicted flooding points test 
section with vertical leg only using film reversai mode1 and inter- 
facial friction from best fit of Dukler et al. [19841 data. 
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Figure 5.10: Offset region caused by the orifice. 



Filrn Thickness Assume Nusselt 

1 Corresponding Void Fraction 1 

1 Calculate Film Thickness in Horizontal Leg 
Before Hydraulic Jump 6 h  

Assume a in Horizontal Leg Before Jump 
is equal to a in Vertical Leg 

Solve 

I Iteratively for Sh 

at &st of Hydraulic Jump 
Fiim Thickness 6c 

1 Get jump Height h m :  

(4) 
If an Orifice is Present Calculate its Influence on The Liquid 

Height at the Crest of the Hydraulic Jump 
Height of Offset Caused by The Orifice 

Offset Iump Height by the Offset Height 
ô] = 6] + h* 

Figure 5.11 : FIowchart showing the cdculation procedure for the application 
of the horizontai CCFL model. 



Calculaie the Void Fraction and the Liquid Velocity 
at the Crest of the Hydraulic Jump 

Void Fraction 

Corresponding Liquid Velocity 
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Guess a New 
Gas Velocity 

Apply the Entrainment hception Criterion at 
The Crest of the Hydraulic Jump 

Calculate 

Figure 1 1  (cont.). Flow Chart of Calculation Procedure for the Application of the 
Horizontal CCFL Mode1 (Cont.). 
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Figure 5.12: Cornparison of experimental and predicted flooding points, test 
section with vertical and horizontal legs no orifice using the hor- 
izontal CCFL model. 



Experimental System A -oO. - Calculated 
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Figure 5.13: Cornparison of experimentd and predicted flooding points using 
the horizontal CCFL mode1 and the data of Krowlewski [19801. 
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Figure 5.14: Cornparison of experimental and predicted flooding points us- 
ing the horizontal CCFL model and the data of Wan & Krish- 
nan [l9861. 



Figure 5.15: Cornparison of experirnental and predicted Aooding points using 
the horizontal CCFL mode1 and the data of Siddiqui [19861. 
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Figure 5.16: Cornparison of experimentd and predicted flooding points using 
the horizontal CCFL model and the data of Kawaji [19911. 



Figure 5.17: Cornparison of experimental and predicted flooding points, test 
section with vertical and horizontal legs orifice ,O = 0.90 using 
the horizontal CCFL model. 



Figure 5.18: Corn parison of experimental and predicted flooding points, test 
section with vertical and horizontal legs orifice B = 0.83 using 
the horizontal CCFL model. 



Figure 5.19: Cornparison of experimental and predicted flooding points, test 
section with vertical and horizontal legs orifice /3 = 0.77 using 
the horizontal CCFL model. 



Expenmental 
Calculated 

Figure 5.20: Cornparison of experimentd and predicted flooding points, test 
section with vertical and horizontal legs orifice P = 0.72 using 
the horizontal CCFL model. 



Experhental 
Calculated 

Figure 5.21: Cornparison of experimental and predicted flooding points, test 
section with vertical and horizontal legs orifice B = 0.66 ushg 
the horizontal CCFL model. 
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Figure 5.22: Cornparison of experimental and predicted flooding points, test 
section with vertical and horizontal legs orifice ,ü = 0.55 using 
the horizontal CCFL model. 
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Figure 5.23: Cornparison of experimental and predicted flooding points using 
the horizontal CCFL modei and the data of Kawaji et  al. [1993] 
orifice >c = 0.865. 



Figure 5.24: Cornparison of experimental and predicted fiooding points using 
the horizontal CCFL mode1 and the data of Kawaji et al. [1993] 
orifice p =  0.67. 



Figure 5.25: Cornparison of experimentd and predicted flooding points using 
the horizontal CCFL mode1 and the data of Kawaji et al. [19931 
orifice ,8 = 0.55. 
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Chapter 6 

CONCLUSIONS AND 
RECOMMENDATIONS 

In t his thesis the results of work carried out to study coun ter-ciment flow and flooding 

phenomena under conditions of both vertical and vertical to horizontal flow have been 

presented. Two different 63.5 nml. I.D. test sections were used for this work. The first 

containing only a vertical leg and the second having both a vertical and a horizontal 

leg. In both cases the experirnents were ciurieci out both with and wit hout various size 

orifices placed in the test section. For the test section containing both the vertical and 

the horizontal legs the orifice was placed in the horizontal leg. Results on the pressure 

drop under counter-current flow conditions obtained in the test section having only 

a vertical leg were also presented. 

For both the vertical and the horizontal test sections, it was found that for a given 

liquid Flow rate the presence of an orifice greatly reduced the gas flow rate at which 

Booding occured. hrthermore, this tiecrease was found to be inversely proportional 

to the orifice ,û ratio. Results for the delivered liquid flow rate as a function of the gas 

flow rate and of the orifice ,O ratio were obtained using both test sections. These results 

are unique in that al1 of the information available in the literature on counter-current 

flow and flooding for horizontal Bow conditions were limited to the determination of 

the flooding and zero liquid penetration points. Limited information was available in 
the literature on the partial delivery region for vertical CCF conditions but did not 

include experirnents in which an orifice was present. The important points that corne 

out of the study of the partial delivery region is that while the flooding phenomena 

does limit the delivered liquid flow rate some coolant will still reach the fuel channels 



except under specific conditions which occur only at very large gas ffow rates (zero 

liquid penetration point). It was further observed that for ail the cases studied the 

zero penetration point was only a function of the orifice ratio mtl of the gas flow 

rate and was independent of the inlet liquid flow rate. 

The experimental results, for the flooding point only, obtained in the test section 

containing both the vertical and the horizontal runs were compared to the results 

of other researchers. In spite of the fact, that none of the test facilities used by the 

other researchers were identical to the one used in the present study, the results of 

the other researchers were found to he in good agreement with the present results. 

The Ardron & Banerjee (19861 correlation was found to do a reasonably good job of 

predicting our experimental floocling results for the case without an orifice. 

Experiments were also carried out to study the hysteresis effect in s test section 

containing bot h a vertical and a horizontal leg. These experiments were performed 
both with and without vûrious sizetl orifices placed in the horizontal leg. For al1 

the orifices studied, a significant hysteresis effect was observed. It w a s  found that in 

order to re-establish full liquicl delivery after flooding had occured it was necessary 

to significantly decrease the gas flow rate below that required to initiate flooding. It 

was also observed that in the post flooding stiite. the delivered liquicl flow rate with 

decreasing gas flow rate followed the partial delivery curves obtained with increasing 

gas flow rates. 

The experiments for the determination of the pressure drop have shown that for s 

given liquid flow rate the pressure drop increases with increasing gas flow rate. For a 

fixed gas flow rate the pressure &op increases with increasing liquid flow rate. 

Two phenomenological models for the prediction of the flooding point for vertical 

counter-current two-p hase fiows were developed. The first represen ted ff ooding as 

being linked to the mechanism of droplet entrainment while the second related the 
Aooding point to the mechanism of film reversal. A cornparison between the predic- 

tions of these models and the experimental results obtained during the course of this 

investigation was presented. It was fourid that the models were very sensitive to the 

choice of correlation used for the interfacial friction factor. [t has been show that, 

with an appropriate choice of the correlation to represent the interfacial friction, the 

model based on the mechanism of droplet entrainment preclicted our experimental 

results reasonably well. The model based on the rnechanism of fiow reversa1 on the 



other hand under-predicted the flooding points at high liquid flow rates. 

A new model to predict the flooding point in a test section containing vertical and 

horizontal legs using an extension of a mode1 for entrainment inception applied at 

the crest of the hydraulic jump was developed. This model is dso able to take into 

account the influence of the various size orifices on the flooding point. This is to 

the best of the author's knowledge the only model which is capable of predicting the 

flooding point under vertical to horizontal flow conditions when an orifice is placed 

in the horizontal leg. 

The results of a cornparison between this rnoclel and Our experimental results as well 

as those of other reseiirchers for cases both with and without an orifice located in 

the horizontal leg was presenteci. The preclictions were. in penerd, seen to be in very 

good agreement with the experimental results. 

6.1 Recommendations 

The results for the Rooding, partial liquid delivery and zero liquid penetration point 

for conditions of horizontal counter-current two-phase flow presented in this thesis 

were obtained with the orifice located at one fixed position in the horizontal leg. 

In order to better represent the viuious geonietriciil configurations that are present 

in the header-feeder systern of a CANDU reactor it would be useful to study the 

influence of the position of the orifice with respect to the elbow between the vertical 

and horizontal Ieg on: 

1. the flooding point, 

2. the partial liquid delivery, 

3. the zero liquid penetration point, ancl 

4. the hysteresis effect. 

In view of the fact that it has been shown that even after flooding has occured, 

depending on the gas flow rate, a signifiwnt arnount of liquid is still delivered to the 

outlet of the test section, it would be useful to further investigate the phenomena 



which occur in and control the partid liquid delivery. These phenomena are mostly 

linked to the slugging that is seen to occur in this region. In order to be able to 

accurately model the partial delivery region, the following information would be of 

great d u e :  

1. slugging frequency, 

2. slug velocity, 

3. size iength, and 

4. gas holdup in the slug body. 

The aforementioned parameters should be determined as a function d gas and liquid 

flow rates and orifice size, The finul recotnrriendation is that work be done on the 

development of a model capable of predicting the delivered liquid flow rate results 

obtained in this work. This would iencl to iniproved predictions of the time required 

to refill the core of a reactor following certain hypothetical loss of coolant accidents. 
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Appendix A 

ORIFICE OFFSET 

This appendix presents the results obtained using equation A l ,  which is given below, 

to calculate the offset height of the hydraulic junip caused by the orifice. 

It can be seen that for the four largest orifices tested, Le. 6 = 0.90 to 0.72 Figures A- 
L to A-4! the agreement between the predicted and the experimental Rooding points 

is quite good. For the orifices having ,b' ratios of 0.66 and 0.55 Figures A-5 and ,4-6 
however the floocling points are sign ificantly overpredicted. Furthermore it can be 

seen that the degree of over precliction increases with decreasing orifice 0 ratios. 
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Figure A. 1: Test of offset height correction calculated wit h equation A-1, test 
section with vertical and horizontal legs orifice ,û = 0.90 using 
the horizontal CCFL model. 



Figure A.2: Test of offset height correction calculated with equation A-1, test 
section with vertical and horizontal legs orifice ,8 = 0.83 using 
the horizontal CCFL mode!. 



Figure A.3: Test of offset height correction calculated with equation A-1, test 
section with vertical and horizontal legs orifice fl = 0.77 using 
the horizontal CCFL model. 



Figure A.4: Test of offset height correction calculated with equation A-1, test 
section with vertical and horizontal legs orifice ,û = 0.72 using 
the horizontal CCFL model. 



Figure A.5: Test of offset height correction calculated with equation A-1, test 
section with vertical and horizontal legs orifice @ = 0.66 using 
the horizontal CCFL model. 
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Figure A.6: Test of offset height correction calculated with equation A-1, test 
section with vertical and horizontal legs orifice ,8 = 0.55 using 
the horizontal CCFL model. 


