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RESUME

L’analyse statique et dynamique des plaques et des coques minces, vides ou remplies
de fluide a été le sujet de plusieurs recherches. Beaucoup de travaux ont étudié les plaques
et les coques en considérant différents facteurs tels que la variation d’épaisseur, I’anisotropie
des matériaux, I’ imperfection géométrique, I'effet du milieu environnant, etc. La plupart de
ces études traitent de I’analyse linéaire, avec ou sans I’interaction entre ces structures et le
milieu du fluide, des plaques ou des coques fermées selon les premiéres approximations de

la théorie de Love-Kirchhoff.

Aucun travail d’analyse basé sur une théorie ou les effets des déformations de
cisaillement et de I’inertie de rotation aussi bien que ceux de la courbure initiale sont pris en
considération n’a encore été fait pour ['analyse des coques cylindriques ouvertes et
anisotropes laminées et remplies de fluide, ou soumise a un liquide en écoulement. Nous
proposons de développer analytiquement les équations d’équilibre, les relations constituantes
et les relations cinématiques qui décrivent le comportement des coques de forme générale,
fabriquées avec des matériaux anisotropes, laminées multicouches en considérant les effets
des déformations de cisaillement, ceux de ’inertie de rotation ainsi que de la courbure

initiale.
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Par la suite, ces équations sont appliquées aux différentes géométries de coque,
comme les coques de révolution, cylindriques, sphériques et coniques aussi bien que les
plaques rectangulaires et circulaires. Finalement, nous étudions les vibrations libres des
coques cylindriques vides ou remplies (partiellement ou complétement ) d’un liquide, ou
soumises & un écoulement d’un fluide nonvisqueux et incompressible interne ou externe. La

stabilité dynamique des coques cylindriques est aussi analysée.

La méthode développée est une combinaison de la méthode des éléments finis
hybrides, de la théorie des déformations de cisaillement des coques et de celle des fluides.
Les coques cylindriques ouvertes ont des conditions frontiéres arbitraires sur les rives droites

et elles sont simplement supportées selon leur rives courbes.

La premiére partie de ce travail traite de ’analyse linéaire des coques anisotropes
laminées et multicouches de forme générale, analyse basée sur la théorie des déformations
de cisaillement, avec les seules hypothéses de négliger la contrainte normale. Les résultats
qui incluent les effets des déformations de cisaillement et I’inertie de rotation aussi bien que
les effets de la courbure initiale sont déduits par ’application du principe du travail virtuel,
avec les déplacements et les rotations comme variables indépendantes. Ces équations sont
donc appliquées aux différentes géomeétries de coque telles que les coques de révolution,

cylindriques, sphériques et coniques aussi bien que les plaques rectangulaires et circulaires.

Dans la seconde partie de cette thése, nous appliquons la présente théorie pour
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I’analyse statique et dynamique des coques cylindriques minces élastiques et anisotropes
laminées multicouches. L’analyse prend en compte les effets des déformations de
cisaillement, de ’inertie de rotation aussi bien que de la courbure initiale. La méthode
utilisée est une combinaison de la méthode des éléments finis hybrides et de la théorie des
déformations de cisaillement des coques. La coque est divisée en plusieurs éléments finis de
type cylindrique et les fonctions de déplacement sont dérivées de la théorie des coques

cylindriques minces en coordonnées curvilignes orthogonales.

L’ensemble des matrices, les matrices de masse et de rigidité, qui décrivent leurs
contributions relatives a I’équilibre sont déterminées par intégration analytique exacte. Cette
théorie donne les déformations nulles pour le mouvement du corps rigide afin que les
fonctions des déplacements basées sur cette théorie satisfassent le critére de la convergence
de la méthode des éléments finis. Cette théorie conduit a cinq équations différentielles du
deuxiéme ordre, couplées et linéaires avec les coefficients constants. Elles sont résolues
conjointement avec cinq conditions aux rives a chaque bord par la méthode des éléments

finis hybrides. Les résultats obtenus concordent de fagon raisonnable avec d’autres théories.

La troisiéme partie de cette recherche traite des vibrations libres des coques
cylindriques minces, ouvertes ou fermées, anisotropes laminées aussi bien qu’isotropes,
remplies (partiellement ou complétement) d’un liquide ou submergées et soumises
simultanément a un écoulement d’un fluide nonvisqueux et incompressible interne et externe.

Dans cette approche, les déplacements et les rotations de coque, et |a pression dynamique du
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fluide sont modélisés par la méthode des éléments finis hybrides. Les fonctions du
déplacement sont dérivées de la solution exacte d’équations de la coque basées sur les

coordonnées curvilignes orthogonales.

Le potentiel de vitesse, I’équation de Bernoulli et I'imperméabilité linéaire appliquée
a I’interface de fluide-structure ont été utilisés afin de décrire une expression explicite pour
la pression du fluide, menant 4 trois forces (inertielle, centrifuge et de Coriolis) du fluide en
mouvement. Les matrices de masse, de rigidité et d’amortissement dues a I’effet du fluide
peuvent étre obtenues par une intégration analytique de la pression du fluide sur I’élément
liquide. Divers résultats de calcul ont été obtenus pour illustrer la théorie et le comportement
dynamique des coques cylindriques ouvertes et fermées, partiellement ou complétement
remplies de liquide ou soumises a un écoulement. Les résultats numériques prédits par
présente théorie concordent de fagon raisonnable avec les résultats obtenus avec I’application

d’autres théortes.

Cette méthode combine les avantages de la méthode des éléments finis, qui traite des
coques complexes et la précision de la formulation basée sur des fonctions de déplacement
dérivées de la théorie de cisaillement des coques. Sur la base de cette nouvelle théorie, nous
avons donc un modéle puissant qui peut prédire les caractéristiques vibratoires des coques

cylindriques ouvertes ou fermées, anisotropes et soumises a un fluide en écoulement.



ABSTRACT

The static and dynamic analysis of thin plates and shells, empty or fluid-filled, has
been the focus of many researches. There are many works in which the plates and shells were
studied by considering different factors as like the thickness variation, anisotropic materials,
geometric imperfection and the effect of surrounding medium, etc. Most of these theories
were originally developed for linear analysis of the plates or the closed shells, empty or fluid-
filled, based on the first approximations of Love-Kirchhoff theory. This theory could lead
to unrealistic prediction of transverse deflection, natural frequencies and buckling load due
to neglecting of transverse shear deformations effects. No work has been made to analyse the
anisotropic laminated open cylindrical shells filled with or subjected to a flowing fluid by
taking into account the effects of shear deformations and rotatory inertia as well as initial

curvature effects.

Therefore, the first purpose of this study is to develop the general equations,
equilibrium equations, kinematic and constitutive relations, of multi-layered laminated
anisotropic shells by considering the effects of the above mentioned parameters. Afterwards,

the developed equations are applied to different geometries as revolution, cylindrical,
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spherical and conical shells as well as rectangular and circular plates. Finally, free vibrations
of anisotropic open cylindrical shells filled(partially or completely) with or subjected to an
internal or external incompressible, inviscid fluid are analysed by using a combination of
hybrid finite element analysis, the refined shear deformation theory of shells and theory of
fluids. The open shells are assumed to have arbitrary straight edge boundary conditions and
to be simply-supported along their curved edges. The dynamic stability of cylindrical shells

is also analysed.

The first part of this study deals with a generalization of geometrically linear shear
deformation theory for multilayered anisotropic shells of general shape. The only assumption
made is to neglect the transverse normal strain. The results, which include the effects of shear
deformations, rotatory inertia and initial curvature are deduced by application of the virtual
work principle, with displacements and transverse shear as independent variables. These
equations are applied to different shell geometries, such as revolution, cylindrical, spherical

and conical shells as well as rectangular and circular plates.

In the second part of this thesis, the developed theory is applied to static and dynamic
analysis of thin laminated anisotropic cylindrical shells. This theory yields five coupled
linear second-order differential equations with constant coefficients. They are solved in

conjunction with five boundary conditions at each edge by a combination of hybrid finite
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element analysis and shear deformation theory of shells. The shell is subdivided into
cylindrical finite elements and the displacement functions are obtained using the shell
equations based on orthogonal curvilinear coordinates. The set of matrices describing their
relative contributions to equilibrium is determined by exact analytical integration. This
theory gives zero strains for rigid-body motions so that the displacements functions based
on it satisfy the convergence criteria of the finite element method. Reasonable agreement is

found with other theories.

The third part of this research deals with the free vibration of anisotropic laminated
composite open or closed cylindrical shells filled (partially or completely) or submerged in
and subjected simultaneously to an internal and external incompressible, inviscid fluid. In
this approach, displacements and rotations of the shell and the dynamic pressure of the fluid
are modelled by hybrid finite element method. The displacement functions are derived from
the exact solution of refined shell equations based on orthogonal curvilinear coordinates. The
velocity potential, Bernoulli’s equation and linear impermeability condition, applied to fluid-
structure interface, have been used to describe an explicit expression for fluid pressure which
yield three forces (inertia, centrifugal and Coriolis) of the moving fluid. The mass, stiffness
and damping matrices due to fluid effect can be obtained by an analytical integration of the
fluid pressure over the liquid element. Extensive results of computations are carried out to

illustrate the theory and dynamic behaviour of open and closed cylindrical shells partially
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or completely filled with liquid, or subjected to a flowing fluid. A satisfactory agreement is

found between the numerical results predicted by the present theory and the resuits of

previous works.

This method combines the advantage of finite element approach dealing with
complex shells and the precision of formulation using displacement functions derived from
refined shear deformation theory of shells. Hence, a powerful model based on a developed
theory is presented to predict the vibration characteristics of anisotropic open or closed

cylindrical shells subjected to a flowing fluid.
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INTRODUCTION

GENERALITES

Les éléments structuraux, comme les coques et les plaques, fabriqués en matériaux
composites sont considérablement utilisés dans diverses industries, par excmple dans
I’industrie nucléaire, I’industrie aérospatiale et aéronautique, I’ industrie navale et le domaine
pétrolier. Leur application industrielle s’est rapidemem développée a cause de leurs
propriétés mécaniques. C’est pourquoi il est si impératif de bien connaitre les caractéristiques
statiques et dynamiques de ces structures afin d’éviter tout effet destructif durant leur

utilisation industrielle.

Beaucoup de travaux ont étudié les coques en considérant différents facteurs tels que
les grands déplacements, la variation de |’épaisseur, les contraintes résiduelles, I’inertie de
rotation, |’anisotropie, la courbure initiale, I’imperfection géométrique et I’effet du milieu
environnant, etc. La plupart de ces études ont été faites dans les domaines linéaire et non-
linéaire, avec ou sans |’interaction entre ces structures et le milieu fluide environnant, selon
les premiéres approximations de la théorie de Love-Kirchhoff (la normale a la surface
moyenne reste droite et normale aprés déformation) qui donnent dans certains cas des

résultats incomplets en prédisant les déformations, les charges de flambement et les
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fréquences naturelles pour des plaques et des coques ayant une épaisseur modérément

grande.

Les erreurs sont encore plus importantes dans le cas des plaques et des coques
fabriquées de matériaux composites comme le graphite-epoxy ou le boron-epoy, puisque le
rapport E/G est trés grand (de ’ordre 25 a 40 au lieu d’environ 2,5 pour des matériaux
isotropes). On peut donc dire que les déformations de cisaillement jouent un rdle plus
important dans la résolution de la rigidité effective de flexion des plaques et des coques
laminées. Une étude bibliographique exhaustive sur le sujet est présentée dans le premier

chapitre de cette theése.

On étudie dans ce travail une classe générale de problémes qui incluent le
comportement élastique et linéaire des plaques et des coques anisotropes et 1'effet de
déformation de cisaillement transversal, I'inertie de rotation ainsi que 1’interaction avec un

fluide incompressible et non-visqueux.

Dans cette étude nous allons d’abord développer les équations générales (par
exemple, les équations d’équilibre et les relations constituantes et cinématiques) pour
I’analyse linéaire des coques anisotropes laminées et multicouches de forme générale. Ces
équations sont basées sur une nouvelle théorie ot sont pris en considération les effets des
déformations de cisaillement et de l'inertie de rotation aussi bien que ceux de la courbure

initiale.
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Par la suite, nous appliquerons ces équations a différentes géométries de coques et
de plaques, et nous développerons un modéle numérique pour I’analyse dynamique et
statique des coques cylindriques ouvertes ou fermées, anisotropes multicouches et remplies
(partiellement ou complétement) d’un liquide ou soumises a un fluide en écoulement. On
peut classer le milieu fluide environnant selon les caractéristiques suivantes : la viscosité, la
compressibilité, le type d’écoulement (stationnaire ou turbulent), le mouvement de la surface

libre, etc.

Nos études numériques sur des coques cylindriques anisotropes englobent les points

suivants :

a) considération du comportement élastique des matériaux laminés;

b) considération de I’effet des déformations de cisaillement, de |’inertie de rotation

et de la courbure initiale;

c) emploi d’une méthode hybride d’élément finis;

d) étude de I’interaction structure-fluide.

Cette étude entre dans le cadre d’un projet de recherche dont le but est de développer
un modéle numérique d’une coque quelconque soumise 4 un écoulement interne et/ou

externe. Les résultats de ces travaux seront utiles pour tout développement de réservoirs sous



pression, d’échangeur de chaleur, etc.

BUT DE LA RECHERCHE

Comme le montre notre I’étude bibliographique, les coques ont fait I’objet de
plusieurs travaux dans les domaines de la statique et de la dynamique avec ou sans fluide en
écoulement. Parmi les nombreuses théories établies, peu de travaux ont été faits pour
I’analyse des coques ouvertes et anisotropes laminées en considérant les effets des
déformations de cisaillement et de |’ inertie de rotation, notamment pour des coques soumises
a un liquide en écoulement. La plupart des méthodes utilisées sont inaptes a déterminer les
hautes fréquences du systéme coque-fluide avec autant de précision que pour les basses

fréquences.

Les objectifs principaux de notre programme de recherche sont:

a) de développeranalytiquement les équations d’équilibre, les relations constituantes
et les relations cinématiques qui décrivent le comportement des coques de forme générale,
fabriquées avec des matériaux anisotropes, laminées multicouches en considérant les effets
des déformations de cisaillement, ceux de I’inertie de rotation ainsi que de la courbure

initiale.

b) d’appliquer ces équations aux différentes géométries de coque comme les coques

de révolution, cylindriques, sphériques et coniques, aussi bien qu’aux plaques rectangulaires



et circulaires.

¢) d’analyser statiquement et dynamiquement le comportement des coques
cylindriques minces, ¢élastiques et anisotropes laminées multicouches, ouvertes ou fermées

dans le cas vide.

d) d’étudier les vibrations libres des coques cylindriques remplies (partiellement ou
complétement) d’un liquide ou soumises a un écoulement d’un fluide non-visqueux et

incompressible interne ou externe.

Une partie importante du projet consiste donc a développer des méthodes numériques
et des logiciels qui permettent de résoudre numériquement les équations du mouvement
d’une coque cylindrique et d’obtenir les fréquences naturelles. La méthode développée est
une combinaison de la méthode des éléments finis hybrides, de la théorie des déformations
de cisaillement des coques et de celle des fluides. Les coques cylindriques ouvertes ont des
conditions frontiéres arbitraires sur les rives droites et elles sont simplement supportées selon

leur rives courbes.

L’équation du mouvement du systéme coque-fluide peut s’écrire de la facon

suivantes:

[, 1-101, 163 - [c, Koy + [k 1- 1% 3oy =100 @
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ou: {d}est le vecteur déplacement; [M,] et [K,] sont les matrices de masse et de

-------

aux forces d’inertie, de Coriolis et centrifuge dues au fluide en écoulement.

Dans la partie numérique de cette thése, notre objectif est donc de trouver ces
matrices. Nous résoudrons 1’équation du mouvement du systéme coque-fluide (1) afin de
déterminer les fréquences naturelles d’une coque cylindrique ouverte ou fermée, élastique,

mince, anisotrope remplie de liquide ou soumise aux écoulements du fluide.

Cette étude entre dans le cadre d’un large projet de recherche dirigé par le professeur
A.A. Lakis et ayant pour but d’analyser dynamiquement une coque quelconque avec ou sans

fluide en écoulement.

ORGANISATION DE LA THESE

Cette thése a été élaborée sous forme d’articles qui constituent le corps principal du

travail. Elle est divisée en quatre principaux chapitres.

Le premier chapitre présente une revue de la bibliographie consacrée a I’analyse des
plaques et des coques basée sur différentes théories existantes, de différents points de vue tels
que : {) 'importance des applications des matériaux anisotropes dans I’industrie, i) les
théories des coques basées sur les hypothéses de Love-Kirchhoff, iii) les théories des coques

considérant les déformations de cisaillement, iv) I’étude des interactions structures-fluide,



v) la méthode de solution.

Au deuxiéme chapitre, nous étudions d’abord le comportement des matériaux
compaosites, au nivean macroscopique. Nous développons done un pregramme qui peut
calculer la matrice d’élasticité pour un cas général (matériaux anisotropes ayant n couches
orthogonales ou croisées avec propriétés mécaniques et orientation des fibres différentes
d’une couche a I’autre ) qui relie le vecteur des contraintes a celui des déformations (loi de

Hooke).

Nous appliquons par apres le principe du travail virtuel avec les déplacements et les
rotations comme variables indépendantes pour trouver les équations de mouvement. Cette
théorie conduit a cinq équations différentielles couplées et linéaires. Enfin, nous appliquons
ces équations aux différentes géométries de coque comme les coques de révolution,

cylindriques, sphériques et coniques aussi bien qu’aux plaques rectangulaires et circulaires.

Le travail qui constitue le deuxiéme chapitre est présenté dans I’article intitulé
"General Equations of Anisotropic Plates and Shells Including Transverse Shear

Deformations, Rotatory Inertia and Initial Curvature Effects".Cet article a été soumis

a 'International Journal of Engineering Science.

Le troisieme chapitre présente I’application numérique de cette théorie au cas d’une

coque cylindrique ouverte ou fermée, anisotrope et vide. Les résultats obtenus sont comparés
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avec d’autres résultats disponibles dans la littérature. L’analyse est présentée sous la forme
d’un article intitulé "Transverse Shear Deformation in Free Vibration Analysis of

Anisotropic Open Circular Cylindrical Shells" Cet article a été soumis a |'International

Journal of Computers and Structures.

Dans le quatriéme chapitre, nous étudions les vibrations libres des coques
cylindriques minces, ouvertes ou fermées, anisotropes laminées, partiellement ou
complétement remplies de fluide ou submergées dans un fluide, ou bien soumises a un
écoulement d’un fluide non-visqueux et incompressible. Ce travail est présenté dans [’article
intitulé "Shear Deformation in Dynamic Analysis of Anisotropic Laminated Open

Cylindrical Shells Filled With or Subjected to a Flowing Fluid". L article a été soumis

au Journal of Computer Methods in Applied Mechanics and Engineering.

Finalement. nous présenterons les principales conclusions tirées de cette thése et

énumérerons les perspectives des travaux futurs i la suite de cette recherche.



CHAPITRE I

REVUE BIBLIOGRAPHIQUE

Nous divisons ce chapitre en cinq parties :

1) Matériaux anisotropes.

2) Les théories classiques des coques.

3) Les effets des déformations de cisaillement dans ’analyse des plaques et des coques.
4) Etude de Pinteraction dans un systéme couplé structure-fluide.

5) Les méthodes de solution

1.1 Matériaux anisotropes

Les éléments structuraux fabriqués en matériaux composites renforcés ont été
considérablement utilisés dans diverses industries au cours des derniéres années. Leur
application industrielle s'est rapidement développée  cause de leurs propriétés mécaniques.

. En général, ces matériaux sont des laminés de fibres renforcées qui sont dispos€es en
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nombreuses couches avec diverses orientations des fibres(Figures 1.1 et 1.2). L’une des

applications caractéristiques est I'industrie aérospatiale.

En optimisant les propriétés, nous pouvons réduire le poids global d'une structure,
puisque sa rigidité est optimisée aux endroits ol elle est requise. Mais il faut aussi
mentionner que les systémes structuraux optimisés sont souvent plus sensibles aux
instabilités. C'est pourquoi une modélisation exacte du comportement de la
charge-déplacement ou de I'équilibre peut nous aider a prédire la charge limite qui pourra

étre portée par la structure afin d'éviter l'instabilité.

Hilderbrand et ses collégues (1949) ont été les premiers a travatller sur les coques
orthotropes. Ambartsumyan (1964) a consacré un texte entier aux matériaux anisotropes,
basé sur la théorie de Love, avec une certaine discussion des contraintes transversales. Le
texte de Reddy (1984) et celui de Vinson et Sterakowski (1986) discutent des structures

anisotropes laminées incluant divers traitements des déformations de cisaillement.

Par ailleurs, I'anisotropie du laminé suppose un liant parfait entre les couches,
I'adhésif ayant une épaisseur infinitésimale mais de rigidité infinie. Cette fagon de faire
conduit a la théorie des plaques laminées (CLPT: Classical Laminated Plate Theory). Jones
(1975) présente cette théorie (CLPT) qui est reliée aux hypothéses de Love-Kirchhoff. Jones
a signalé€ dans son travail que l'effet de la déformation de cisaillement pour les matériaux

anisotropes est plus significatif que dans le cas des mémes constructions isotropes.
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L'étude des matériaux composites nécessite ’examen de leurs comportements au
niveau macroscopique pour analyser les réponses linéaires et non linéaires, les fréquences
naturelles, les charges de flambement ; il faut aussi examiner leurs comportements au niveau
de la micro-mécanique pour étudier d'autres effets comme la fissuration, le délaminage et la
perte de liaison entre les matrices et les fibres. L'effet des déformations de cisaillement pour
des matériaux anisotropes est plus important parce que le module de cisaillement est plus

grand que le module d'élasticité.

La premicre analyse qui incorporait le couplage flexion-extension di a la
non-symétrie des laminés a été faite par Ambartsumyan (1964). Dans son analyse, il a
supposé que chaque couche est orientée de sorte que les axes principaux du matériau
coincident avec les coordonnées principales de la surface moyenne. Donc son travail traite
de ce qui est maintenant connu comme les coques orthotropes laminées plutdt que les coques

anisotropes.

Il existe dans la littérature un certain nombre de théories pour analyser les coques
anisotropes. La plupart de ces théories ont été développées pour des coques minces basées
sur les hypothéses de Kirchhoff-Love (la normale a la surface moyenne reste droite et
normale aprés déformation). Cependant, ['application de telles théories aux coques
anisotropes laminées pourrait conduire a des grandes erreurs dans |’appréciation des

déformations, des contraintes ainsi que des fréquences.
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1.2 Les théories classiques des coques

Les coques minces ont fait I'objet de plusieurs travaux de recherche allant de la
statique a la dynamique. La premiére tentative pour élaborer une théorie des coques a été
faite par Aron en 1874, en utilisant les équations générales d'élasticité, et a été suivie en 1888
par Love. qui a prouvé une théorie approximative décrivant le comportement des coques
minces et élastiques, et abpelée "Love's first approximation". Depuis 1888 jusqu’a nos jours,

la théorie élastique des coques a été réexaminée périodiquement dans la littérature.

Beaucoup de méthodes ont déja été utilisées pour dériver les équations des coques
via les relations d'élasticité. Dans la réalité, le comportement des coques sous charge peut

étre tres différent pour d’une surface a I’autre.

En dérivant les équations d'équilibre, les forces et les déplacements qui agissent a la
surface sont définis en intégrant les contraintes a travers l'épaisseur. Cependant, les
contraintes dans le plan deviennent dominantes, puisque la coque est supposée mince. On
peut donc décrire d'une fagon approximative le comportement de la coque en se basant
uniquement sur le comportement d'une surface 2-D [Saada (1993) ; Mollman (1981) ; Kraus
(1967), Novozhilov (1959) et Niordson (1980)]. Dans les coques minces, les contraintes

planes ont tendance a dominer la réponse de la coque sous le chargement, donc les



13

contraintes transversales (normales) sont d'importance moindre. Dans ce cas, la contrainte

normale peut étre négligée.

Beaucoup de théories classiques ont été originalement développées pour des coques
minces et élastiques basées sur les hypothéses de Love -Kirchhoff ( Saada (1993)) telles
qu'utilisées dans les travaux de Naghdi (1956), puis de Bert et Francis (1974). Une étude
détaillée des coques minces linéaires et non linéaires peut étre trouvée dans les
monographies de Kraus (1967) et d’Ambartsumyan (1964). Leissa (1973) a produit une

bonne synthése de plusieurs recherches dans une excellente bibliographie vieille de 25 ans.

Les hypothéses de Love sont définies comme suit :

a) Les lignes droites et normales a la surface moyenne restent droites et normales

suite a la déformation.

b) Les contraintes normales perpendiculaires i la surface moyenne peuvent étre

négligées dans les relations constitutives.

¢) Les déplacements transversaux sont indépendants du paramétre d'épaisseur.

d) La coque est mince.

Ces hypothéses conduisent a une théorie des coques minces qui peut étre vue comme

une extension de la théorie des plaques, souvent appelée la théorie des coques de
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Kirchhoff-Love. La premiére hypothése méne a négliger les déformations de cisaillement
bien que la contrainte de cisaillement transversal doive étre incluse dans les équations
d'équilibre. Mais, a mesure que la coque devient épaisse, les effets transversaux deviennent

plus importants, notamment celui de la déformation de cisaillement.

Tous les travaux basés sur les hypothéses de la théorie de Love-Kirchhoff, dans
lesquelles la déformation de cisaillement est négligeable, sont connus comme des

approximations du premier ordre de Love donnant des résultats suffisamment exacts quand:

i) Le rapport de rayon-épaisseur est grand.

i) Les excitations dynamiques sont la plage des basses fréquences.

iif) L'anisotropie des matériaux n'est pas trop forte.

D’autre part, l'effet de la courbure initiale ne doit pas étre négligé dans les relations
constitutives et dans le champ des contraintes, comme I’indiquent Voyiadjis et Shi (1991).

Pour considérer ces effets, le terme /+Z/R doit étre inclus dans |'analyse.

Les élégantes représentations de la théorie de Love peuvent étre strictement dérivées
via la définition de la théorie de surface sans référer aux relations 3-D [Kraus (1967),
Mollman(1981) et Niordson (1980)]. Une inconsistance existe dans la théorie de Love

puisqu'il en résulte des déformations non nulles dans le mouvement de corps rigide. Cette
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inconsistance a vrai semblablement incité beaucoup de chercheurs a développer des théories

de coque légérement différentes.

Sanders (1959) a redéfini les forces et les moments de telle fagon que les
déformations de mouvements rigides disparaissent. Les approximations successives ont été
faites dans les relations constitutives exactes par Sanders(1959) pour analyser des coques

isotropiques et par Liberscu (1987) pour des coques anisotropes.

Les contraintes normales sont en général d'ordre /R (le rapport €paisseur-rayon) fois
les contraintes de flexion tandis que celles de cisaillement sont d'ordre /L (le rapport
épaisseur-longueur ) fois les contraintes de flexion. Donc, pour L/R inférieur a 10, les

contraintes normales sont négligeables en comparaison des contraintes de cisaillement.

Pour quelques cas, les éléments qui forment le systéme éprouvent seulement de
petites déformations sous la charge mais peuvent échouer e fagon catastrophique a cause
de leur configuration géométrique. Donc toute une classe de systémes structuraux peut €tre
représentée exactement sur la base de la non- linéarité géométrique, des petites déformations

et du comportement linéaire des matériaux élastiques.

[l est bien connu que le comportement non-lin€aire des coques cylindriques
composites joue un role important dans la stabilité et la réponse dynamique des coques.

Reissner (1955) est considéré comme un pionnier dans I'analyse des effets de la non-linéarité
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géométrique sur la dynamique des coques cylindriques.

Une nouvelle série de relations constitutives non linéaires pour des coques
axisymétriques a grands déplacements (en retenant plus de termes) a été présentée par Rotter
et Jumikis (1988). Leur travail est basé sur les hypothéses de Kirchhoff. Ils ont retenu
quelques termes des produits des différentiations des déplacements, qui ont été omis dans
les théories précédentes et qui peuvent étre importants dans certains problémes de

flambement.

Lathéorie non linéaire présentée par Sanders (1962) est restreinte aux hypothéses de
Kirchhoff. Les déformations de la surface moyenne sont supposées petites et les rotations
modérément petites. Pour les cas non linéaires, les relations de Sanders(1962), qui sont
beaucoup utilisées, conduisent a des solutions fausses pour les problémes pratiques. du fait
que certains termes des produits de différentiation des déplacements sont négligés dans les
relations constitutives non linéaires (Rotter et Jumikis (1988)). Malgré tout, les théories non
linéaires de Sanders (1962) et de Novozhilov (1953) sont plus exactes que celle de Donnell
(1933) parce que ces deux premiers auteurs ont retenu plus de termes dans leurs relations

constitutives.

Naghdi (1957) a employé le principe variationnel mixte de Reissner (1950) pour
développer une formulation compléte des coques élastiques et isotropes (en appliquant la

méme série tronquée qu'Hilderbrand) en retenant respectivement deux et trois termes dans
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la série de Taylor pour les déplacements tangentiels et transversaux. Inclure le troisiéme
terme dans les déplacements tangentiels n 'a aucune signification pratique pour des coques
suffisamment minces. C'est la raison qui a incité Naghdi (1957) a tronquer 'expansion en
série de Taylor aprés les termes lin€aires dans la coordonnée d'épaisseur pour Ies

déplacements tangentiels. Beaucoup d'auteurs ont suivi cette approche ultérieurement.

Martin et Drew (1971) ont résolu les équations qui décrivent le comportement d'une
coque de révolution et anisotrope. Leur analyse est basée sur la théorie de Sanders (1959)
mais sans considérer les effets des déformations de cisaillement. La méthode de solution suit
la procédure employée par Budianski et Radkowski (1963). Les équations sont découplées
en traitant les termes non linéaires comme des quantités connues (pseudo-charges) et la
procédure d'élimination de Gauss est utilisée pour obtenir la solution. Cette solution est
utilisée pour calculer les termes non linéaires et est par la suite réintroduite dans le systéme
comme une estimation révisée des pseudos-charges. Cette procédure itérative continue

jusqu'a ce que la solution converge.

Cheng (1973, 1984) adéveloppé une théorie linéaire exacte pour la coque cylindrique
et circulaire basée sur des hypothéses de Love. Dong, Pister et Taylor (1962) ont développé
la théorie de Love (petits déplacements, similaires & ceux d'Ambartsumyan ) pour I'analyse
de la flexion des plaques et coques minces, théorie qui se veut une extension de la théorie

développée par Reissner et Stavsky (1961) (plaques anisotropiques selon de la théorie des
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coques incompléte de Donnell (1933 )).

L'analyse non-linéaire des coques minces basée sur les hypothéses de Love-Kirchhoff
a ¢ét¢ faitc par Basar ct Ding(1990). Pagano (1970, 1971) et Srinivas et Rao {1970) ont
développé certaines solutions exactes des équations d'élasticité en 3-D pour des plaques
composites. Ils ont conclu que CLPT donne de bonnes approximations pour les déplacements

et les contraintes si la plaque est mince.

Padovan et Lestinigi (1973, 1974) ont employé une procédure d'intégration
numérique a segments multiples complexes pour analyser statiquement des coques de
révolution laminées sous charges mécaniques et thermiques. Les équations du mouvement
sont basées sur la théorie de Love-Reissner. C’est donc dire que l'effet de déformation de
cisaillement a été négligé. Pour des problémes statiques, Fliigge et Kelkar (1968) ont obtenu
une solution exacte pour des cylindres fermés, longs et isotropes sous des forces de surface

en deux dimensions.

Dowell et Venters (1968) ont présenté une approximation modale afin de dériver les
équations de mouvement pour les vibrations non linéaires d'une coque cylindrique en
utilisant la théorie des coques incompléte de Donnell (1933). Cheng et Ho (1963) ont
présenté une analyse les coques cylindriques et anisotropes en utilisant la théorie de Fliigge

(1960).
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On trouve dans la littérature quelques travaux sur les coques cylindriques ( isotropes
ou orthotropes) basés sur les équations de Fliigge etde Donnell [Saada (1993), Kraus (1967)
et Reddy (1984)]. Les équations gouvernantes des coques cylindriques orthotropes ont été
résolues via une paire d'équations complexes conjuguées de quatriéme ordre par Cheng et

He(1984). Leur travail est basé sur les hypothéses de Kirchhoff.

Dong (1968) a étudi¢ les vibrations libres des coques cylindriques et orthotropes
laminées avec des conditions frontiéres homogénes. La réponse statique d'un probléme
axisymétrique des coques cylindriques et orthotropes avec une longueur finie, en utilisant
les équations d'élasticité en 3-D, a été établie par Jing et Zeng(1993). Les équations
différentielles couplées d'ordre supérieur sont réduites a des équations ordinaires a
coefficients variables en choisissant une solution composée de fonctions trigonométriques

le long de la direction axiale.

Bogner et ses collégues (1967) ont développé une méthode d'éléments finis pour une
coque cylindrique et isotrope basée sur la théorie classique. Pagano(1972) a obtenu le champ
des contraintes pour un cylindre fermé, anisotrope et homogéne sous des charges surfaciques
en 2-D pour lequel le probléme est indépendant de la coordonnée axiale. Les vibrations libres
descoques cylindriques laminées avec des couches orthogonales ont €té étudiées par Timarci

et Soldatos (1995).

Une théorie statique et non linéaire géométrique incluant de grands déplacements et
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de grandes rotations a été développée par Dennis et Palazotto (1990) en utilisant la méthode
des éléments finis et une description Lagrangienne totale pour la solution approximative. Ils
ontemployé cette méthode pour analyser un panneau cylindrique et isotrope. La solution des
équations non linéaires a été faite en utilisant la méthode de Newton-Raphson. Ces équations

ont été linéarisées & l'aide d'une série tronquée de Taylor.

Une étude plus rigoureuse des vibrations libres et non linéaires des coques
cylindriques a éié faite par Atluri (1972) qui a comparé ses résultats avec les données
expérimentales accessibles et qui a aussi conclu sur la possivilité de non-linéarité de type
assouplissement. En adoptant latechnique de perturbation, Chen et Babcork (1975) ont aussi
considéré la vibration & grande amplitude des coques cylindriques et minces. Ramachandran

(1979) a étudié la vibration non linéaire des coques cylindriques a épaisseur variable.

Se basant sur les équations de Von Karman-Donnell, Khot (1970) a étudié le
comportement post-flambement des coques cylindriques sous charge axiale ainsi que la
rotation. Les résultats obtenus montrent qu'en général, les coques composites sont moins

sensibles aux imperfections que celles qui sont isotropes.

[u et Chia (1988) ont discuté des vibrations non linéaires et post-flambement des
coques cylindriques ayant des couches orthogonales et anti-symétriques selon des
suppositions de Von Karman-Donnell. IIs ont négligé certains termes (comme les produits

croisés de différenciation des déplacements ) dans les relations constitutives non linéaires.
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Les réponses dynamiques des coques cylindriques incluant les effets des non-
linéarités géométriques et des matériaux sous charges transitoires ont été présentées par Wu
et Witmer (1974). Les formulations sont basées sur le principe du travail virtuel et sur celui

de D'Alambert ainsi que sur les hypothéses de Love.

1.3 Les effets des déformations de cisaillement dans I’analyse des plaques et des

coques.

Négliger les déformations de cisaillement dans les composites laminés peut conduire

a sous-estimation les déformations et les contraintes ainsi qu'a surestimation les fréquences

naturelles et les charges critiques de flambement a cause du bas module de rigidité. Comme

Koiter (1960) I'a indiqué. 'amélioration de la théorie approximative de Love pour des coques
minces et €élastiques n'a pas de sens 4 moins que les effets des déformations transversales et
des contraintes normales soient pris en compte dans la théorie améliorée. Les thé€ories
classiques donnent des résultats fortement erronés lorsqu’elles sont utilisées pour prédire les
déplacements, les charges de flambement ou les fréquences naturelles quand les coques ou

les plaques deviennent épaisses.

Les erreurs relatives aux déplacements, aux contraintes, aux fréquences naturelles et
aux charges de flambement sont encore plus grandes pour des plaques et des coques

fabriquées en composite comme le graphite-epoxy et le boron-epoxy dont le rapport de
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module d'élasticité /module de rigidité ( £/G) est trés grand (de l'ordre de 25 & 40 au lieu

d'environ 2,5 pour des matériaux isotropes). On peut donc dire que les déformations de
cisaillement jouent un réle beaucoup plus important dans la résolution de la rigidité effective

de flexion des plaques et des coques lamin€es.

Les effets des déformations de cisaillement sur la vibration non linéaire et le
comportement post-flambement sont significatifs, notamment pour les coques laminées ayant

une épaisseur modérément grandz, une rigidité élevée et un grand nombre de couches.

Les effets des déformations de cisaillement, des contraintes normales ainsi que des
déformations normales transversales sur le comportement des coques laminées peuvent étre
incorporées dans le modéle mathématique via l'inclusion de termes d'ordre supérieur dans
la série de puissance du champ des déplacements supposés. Les effets de la déformation

transversale peuvent généralement étre inclus dans I'analyse via les relations constitutives.

L'étude des effets de cisaillement nous montre que ces effets peuvent devenir assez
significatifs pour de petits rapports R/f (rayon-épaisseur) ou L/t (longueur-épaisseur) ainsi
que pour des longueurs d'onde plus courtes. La sévérité des effets des déformations de

cisaillement dépend aussi de 'anisotropie des couches.

Dans la théorie qui présente les déformations de cisaillement, les normaux a la

surface peuvent tourner de sorte que les sections, qui sont originalement perpendiculaires,
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restent planes mais seulement si elles ne sont plus perpendiculaires par suite de la
déformation. L'effet de la déformation de cisaillement est représenté en incluant le degré de
libert¢ indépendant dans les relations cinématiques. Ici encore, la coque est décrite par le
comportement de la surface moyenne ; ces approches représentent donc des théories en 2-D

(Reddy (1984)).

Les théories de cisaillement du premier ordre s’appellent théories de
Reissner-Mindlin (RM). mais celles-ci ne satisfont pas les conditions aux limites de
cisaillement transversal sur les surfaces extérieures des coques ou des plaques. Donc, les
théories basées sur celles de RM requiérent habituellement des facteurs de correction pour
des considérations d'équilibre. Les facteurs de correction ne sont fonction que des paramétres
de laminage (nombre de couches. séquence de couchage, degré d'orthotropie et orientation

des fibres dans chaque couche individuelle).

Stein (1986) a utilisé I'expansion en séries tronquées pour les déformations non
linéaires exactes en considérant I'effet des déformations de cisaillement pour des plaques et
coques isotropes. L'analyse non linéaire géométrique quasi-3D a été faite par Palazotto et ses
collegues (1985, 1986) pour des plaques et des coques composites. Grigolyuk et Kulikov
(1988) ont passé en revue I'analyse des coques composites multicouches dans lesquelles le

principe variationnel mixte de Reissner avait été utilisé.

Widera et Logan (1970) ont utilisé une expansion en série paramétrique ainsi que le
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principe variationnel de Reissner (1950) pour développer une théorie qui décrit le
comportement d'une coque cylindrique circulaire, élastique anisotrope et non-homogéne de
premier ordre pour des coques minces et d'ordre supérieur pour les coques épaisses. Iis ont
employé le méme modéle de déplacement que celui de Naghdi (1956). Reddy (1984) a
développé des théories qui satisfont les conditions de contraintes nulles sur les surfaces

extérieures.

Les effets des déformations de cisaillement et des contraintes normales ont été
considérés par Hilderbrand, Reissner et Thomas (1949) et Reissner(1952). Hilderbrand et ses
collégues(1949) ont trouvé que l'effet des termes de déplacement de deuxiéme ordre et des
termes dans le déplacement transversal donnant les déformations normales non nulles, est
négligeable. Dans le domaine des coques orthotropes et homogeénes, Hilderbrand et al. (1949)
étaient les premiers a ne pas utiliser les hypothéses de Love en supposant une série étendue

de Taylor ayant les trois termes pour le vecteur des déplacements.

Les théories de coque et de plaque présentées dans le travail de Whitney et Sun
(1973) sont basées sur un champ de déplacement dans lequel les déplacements de la surface
sont des expansions linéaires du paramétre d'épaisseur et les déplacements transversaux
sont des expansions quadratiques de la coordonnée d'épaisseur. Les déplacements ont été
développés d'une fagon similaire a ce que Mindlin et Medick (1959) avaient fait pour des

plaques isotropes et homogeénes.
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Ces théories sont encombrantes et exigent plus de calcul que les autres parce qu'une
inconnue dépendante est introduite dans la théorie avec chaque puissance supplémentaire de
la coordonnée. Quand méme, les théories de cisaillement de plus hauts ordres ne donnent pas
des contraintes transversales qui soient significativement meilleures, mais les déplacements

nous montrent une amélioration considérable pour des plaques épaisses par rapport a la

théorie du CLPT.

Jing et Liao (1989) ont proposé une fonctionnelle mixte avec des déplacements et des
contraintes de cisaillement comme variables indépendantes et ont donc établi un élément

hybride pour analyser des plaques laminées et épaisses.

Phan et Reddy (1985) ont présenté une théorie de déformation de cisaillement d'ordre
supérieur afin de déterminer les fréquences naturelles et les charges de flambement des
plaques élastiques. Ils ont aussi établi une solution exacte pour analyser les vibrations libres

et le flambement des plaques rectangulaires et orthotropes.

La théorie développée par Reddy(1984) incluant l'effet de cisaillement pour des
plaques composites contient les mémes inconnues dépendantes que celle de Whitney et
Pagano (1970) tandis que le champ de déplacement utilisé est celui de Levinson (1980).
Reddy a développé des théories de plaque qui incluent des termes cubiques en définissant

des déplacements plans (sur la surface).
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Une théorie simple pour I'analyse de flexion non linéaire des plaques rectangulaires
et laminées, qui tient compte des déformations de cisaillement, a été formulée par Ren (1991)

et Ling en utilisant le principe des déplacements virtuels.

L’étude des plaques laminées nous montre que le champ des déplacements suggéré
par Murakami (1986) peut améliorer les réponses dynamiques dans le plan (qui sont méme
meilleures qu’avec les théories d'ordres élevés). Le champ des déplacements suggéré par
Murakami(1986), ayant des composantes de déplacement linéaires et de déplacement

transversal constant a travers d'épaisseur, est employé pour formuler une théorie mixte.

Reddy (1984) a présenté une théorie a ordre supérieur des déformations de
cisaillement pour des plaques en tenant compte des déformations de Von-Karman. Cette
théorie contient les mémes inconnues dépendantes que celles de Hencky-Mindlin ( 1951).
Les solutions exactes de plusieurs plaques simplement supportées ont été obtenues en
utilisant une théorie linéaire et les résultats ont été comparés avec ceux provenant de
solutions exactes (théorie de I'élasticité 3-D). Reddy a utilisé le principe de Hamilton pour
dériver les équations du mouvement et il a employé la procédure de Navier pour résoudre le

probléme.

Rothert et Di (1994) ont présenté de leurs coté les formulations et la procédure de
calcul pour I'analyse non linéaire géométrique des coques orthotropes laminées, en se basant

sur une méthode modifiée du principe Hellinger-Reissner (référence de Di et Cheung (1991))
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et en utilisant la description Lagrangienne totale.

L’analyse des vibrations des coques de révolution anisotropes laminées ainsi que
la sensibilité de leur réponse aux coefficients des matériaux anisotropes ont ét¢ présentées
par Noor et Peters (1987). Les formulations analytiques sont basées sur la théorie de
Sandres-Budiansky (1963,1968) incluant les effets des déformations de cisaillement. Chaque
variable de coque est exprimée en fonction trigonométrique dans la direction
circonférentielle et un modéle mixte d'éléments finis est employé dans la direction
méridionale. Noor et Peters ont utilisé une méthode de réduction sur l'espace par I'emploi
successif de la méthode des éléments finis et la technique classique de Bubnov-Galerkin

pour réduire les dimensions du probléme aux valeurs propres.

Touratier (1992) a présenté une théorie linéaire incluant la déformation de
cisaillement pour des coques axisymétriques et multicouches. Il a proposé une théorie des
déformations de cisaillement pour des coques axisymétriques, modérément épaisses et
multicouches. Cette théorie est restreinte & une coque axisymétrique sous chargement

axisymeétrique et avec conditions aux rives classiques.

Ji-Fan He (1995) a analysé des coques laminées pour le cas statique en utilisant la
théorie de déformation de cisaillement. Dans cette théorie, I'épaisseur de la coque doit étre

petite en comparaison avec le rayon de courbure principal.
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Une théorie de déformation de cisaillement pour des coques laminées a aussi été
proposée par Dong et Tso(1972), et par Reddy(1984). Ces théories violent en général la
condition de la continuité de traction aux interfaces des couches. Quelques théories ont été
proposées pour surmonter ces inconvénients par Hsu et Wang (1970) et Di Sciuva (1987).
Le travail de Librescu et Schmidt (1988) présente une analyse des coques anisotropes en

considérant les petites rotations.

Une analyse non linéaire géométrique et transiioire des coques composites laminées
(isotropes transversales ) basée sur 1a théorie de Von-Karman a €té présentée par Kant et
Kommineni (1994). Ceux-ci n'ont pas considéré certains produits de différentiation du
premier ordre des composantes des déplzcements tangentiels (relativement aux directions x,
y et z) dans les relations constitutives. Ces relations sont basées sur la théorie de
Von-Karman (Novozhilov (1953)). Kant et Kommineni ont discuté certaines méthodes avec

lesquelles on peut diagonaliser la matrice de masse.

Jing et Tzeng (1993, 1993b) ont établi une méthode pour analyser les effets des
déformations de cisaillement pour des coques anisotropes laminées et épaisses en utilisant
une formulation mixte basée sur la fonctionnelle proposée par Jing et Liao(1989). La
fonctionnelle de Jing et Liao (1989), modifiée par le principe de Hellinger-Reissner, sépare
le champ des contraintes en deux parties en laissant seulement les déplacements et les

contraintes de cisaillement comme variables indépendantes.
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Un élément fini iso-paramétrique basé sur un modéle avec déplacements d'ordre
supérieur pour I'analyse linéaire et non linéaire, qui tient compte des grands déplacements
au sens de Von-Karman, des coques sous charges transversales a été présenté par Kant et

Kommineni (1992).

Kant et Ramesh (1976) ont présenté pour leur part une théorie générale des coques
orthotropes dans les coordonnées curvilignes orthogonales basée sur le modéle de
Hilderbrand et al. (1949). Kant avec ses collégues- aprés avoir fait beaucoup
d’investigations numériques pour des plaques et des coques laminées, soit statiques soit
dynamiques- ont prouvé que I'imposition de la condition libre-contrainte au sommet et au

fond de la surface du laminé donne une solution plus rapide que celle d'élasticité en 3-D.

Noor et Hartely (1977) ont employé la théorie des coques incomplétes avec
déformations de cisaillement et effets de non-linéarité géométrique pour développer des
éléments finis quadrilatéraux et triangulaires. Bhimaraddi (1984) a appliqué une variation
parabolique de I'épaisseur pour les déformations transversales afin d’analyser le
comportement vibratoire linéaire d'une coque cylindrique et isotrope en considérant I'inertie

de rotation. Son analyse est bas€e sur des hypothéses telles que les petits déplacements et

------

Les effets des déformations de cisaillement et d'isotropie transversale ainsi que celui

de I'expansion thermique via I'épaisseur des coques cylindriques ont été considérés par Gulati
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et Essenberg (1967) et Zukas et Vinson (1971), Dong et ses collégues (1962, 1972), Hsu et

Wang (1970) et par Whitney et Sun (1974).

Bert et ses collegues (1967,1981, 1982) ont presenté des solutions exactes pour les
vibrations et la flexion des coques ayant deux couches orthogonales. Ces solutions sont
limitées aux coques cylindriques et aux distributions sinusoidales des charges transversales,
et la procédure employée est similaire a celle qui avait été utilisée par Whitney et Leissa
(1969), Whitney et Pagano (1970), Bert et Chen (1978), Reddy et Chao (1981) pour des

plaques laminées.
1.4 Etude de Pinteraction dans un systéme couplé structure-fluide.

L'eftet de I'environnement (air, liquide, etc.) sur les vibrations des coques et des
plaques est intéressant pour les scientifiques et les ingénieurs qui travaillent dans les secteurs

de I'énergie nucléaire, de 'aérospatiale et de la marine.

La plus basse fréquence naturelle de vibration de flexion d'une coque immergée
dans ou remplie avec un fluide est inférieure 4 celle correspondante d'une coque dans l'air.
Cette fréquence dépend du niveau du liquide, des formes modales ainsi que des paramétres

physiques et géométriques de la coque et du fluide.

L'effet du liquide sur les fréquences naturelles est une combinaison de la distribution

de pression hydrodynamique et des forces exercées par le mouvement de la surface libre. Les
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coques minces contenant un fluide rencontrées en pratique ont des fréquences de "sloshing”
qui sont considérablement en dessous de celles d'un syst¢éme combiné structure-liquide.
L'effet du liquide peut étre pris en compte en considérant des masses ajoutées. Les masses
effectives sont fonctions des formes modales, des paramétres physiques et géométriques de

la coque et du fluide.

Des véhicules de navigation marine, aérienne et méme terrestre ainsi que des
structures stationnaires sont exposées a des collisions, impacts ou autres charges transitoires
et pressions de liquide : de ce fait, ils peuvent subir des dommages importants (grandes
déformations structurales). Par conséquent le besoin de méthodes efficaces et exactes pour
I'analyse et le design de structures dans de telles conditions (non-linéarités géométriques et
non-linéarités des matériaux, charges fluides, charges transitoires, etc.) est de plus en plus

important.

La réponse des coques soumises a un fluide en écoulement ainsi que l'influence de
la vitesse d'écoulement sur les vibrations libres des coques ont été étudiées par plusieurs
chercheurs : Lakis et Paidoussis (1971), Paidoussis et Denis (1972), Weaver et Unny (1973),
Chen (1994), Brenneman et Au-Yang (1992). Paidoussis et 11 (1993) ont publié une revue

bibliographique €laborée du domaine.

L'analyse dynamique des systémes couplés structure-liquide a été considérablement

revue par Au-Yang (1986) et Brown (1982). L'analyse dynamique d'un systéme
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fluide-structure a été faite par Brennemant et Yang (1992) avec une méthode hybride et
modale. Dans leur travail, les modes des structures sont obtenus par la méthode de rigidité
tandis que les modes du fluide sont obtenus par la méthode de flexibilité. Jain (1974) a décrit
une étude du comportement des vibrations des coques cylindriques, orthotropes et

partiellement ou entiérement remplies d'un liquide incompressible non-visqueux.

Crouzet-Pascal et Garnet (1972) ont étudié e comportement dynamique d'une coque
cylindrique et circulaire renforcée d'un anneau, immergée dans un liquide et assujettie a un
effort radial appliqué subitement. Utilisant le procédé de Rayleigh-Ritz, Ramachandran
(1979) a analysé. sans considérer l'effet de cisaillement, les vibrations non linéaires
transversales des coques cylindriques et orthotropes dont I'épaisseur varie linéairement et
qui sont immergées dans un liquide incompressible. encastrées ou simplement supportées

ou une combinaison des deux.

Les vibrations libres des coques cylindriques verticales et simplement supportées
remplies partiellement de liquide ou submergées dans un fluide ont été étudiées par
Gongalves et Batista (1987). Ceux-ci ont employé la technique de Rayleigh-Ritz pour obtenir
une solution approximative qui coincide avec la solution exacte des cas vides ou celle d'un
cas ol la coque est complétement en contact avec le fluide. Leur travail est basé sur la

théorie de Sanders (1959).

Ici, le fluide est considéré non visqueux et compressible, et le couplage entre la coque
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déformée et ce médium est pris en compte. L'effet de la hauteur variable du fluide ainsi que
celui des parameétres géométriques de la coque sur les fréquences naturelles de coque ont été

présentés par ces chercheurs.

Han et Liu (1994) ont analysé les vibrations libres des réservoirs cylindriques ayant
une variation de I'épaisseur dans la direction axiale et partiellement remplis de liquide. Dans
ce travail, la coque est modélisée en utilisant la théorie de Fliigge pour le cas isotrope, le
fluide est supposé non visqueux et incompressible et I'effet de déformation de cisaillement

est négligé.

1.5 Les méthodes de solution.

La solution analytique des équations du mouvement des coques minces est
généralement difficile, voire impossible. Seules les méthodes approximatives peuvent étre
convenablement utilisées (Par exemple, la méthode des différences finies, la méthode de
Galerkin, la méthode de Rayleigh-Ritz, la méthode des matrices de transfert et celle des
éléments finis). Toutes ces méthodes ont des avantages et des inconvénients. La qualité la
plus importante d’une méthode de solution est sa capacité a prédire aussi bien les hautes

que les basses fréquences et les modes propres correspondants avec une bonne précision.

Dans la méthode des différences finies, on donne priori des valeurs initiales de la

fréquence. Cette procédure exige beaucoup de temps de calcul. De méme, la méthode de
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Galerkin perd sa précision aux hautes fréquences de la coque. La méthode de Rayleigh-Ritz
présente des inconvénients parmi lesquels on retrouve le choix des fonctions de déplacement
qui doivent tenir compte des conditions aux rives et la nécessité de retenir un grand nombre
de termes pour l'expression des fonctions de déplacement. La méthode des éléments finis
{Zienkiewicz (1989), Datt et Touzot (1984), Gallagher (1986), Bathe (1982), Tinawi(1981),

Reddy (1984), Shames et Dym (1985), etc.] est, par contre, satisfaisante de ces points de vue.

La précision de la méthode dépend de la nature de ces éléments et des degrés de
liberté retenus pour simuler le comportement des coques et des plaques, et de la nature des
fonctions d'interpolation. Le travail de Figueiras et Owen (1984) présente quelques éléments
qui peuvent étre appliqués avec succés aux plaques ainsi qu’aux coques minces et épaisses.
Kui. Liu et Zienkiewicz (1985) ont appliqué I'élément fini de type déplacement pour

analyser les coques minces.

Pryor et Barker (1971) ont développé un élément plat linéaire basé sur la théorie des
plaques anisotropes laminées incluant les déformations de cisaillement (la théorie de RM).
[ls ont suggére une approche ou chaque couche de laminé a des degrés de liberté en rotation.
De cette fagon, la continuité des contraintes transversales a chaque interface du laminé peut

étre satisfaite.

Hinrichsen et Palazotto (1986) ont utilisé une fonction de spline cubique en utilisant

I'hypothese de Pryor et Barker (1971) afin de représenter les déplacements transversaux
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d’une plaque. Schmit et Monforton (1970) ont formulé un élément de coque cylindrique et
anisotrope qui permet de considérer la non-linéarité géométrique intermédiaire. D’autres
articles récents par Noor et Peters (1986), Meroueh (1986) et Surana (1983, 1986) peuvent

étre cités dans cette méme perspective.

Noor et Peters (1986) ont analysé des panneaux cylindriques, dans le cas non-linéaire,
en utilisant une approche par éléments finis d’une coque incompléte qui inclut les
déformations de cisaillement afin de déterminer les modes de fagon approximative. Par la

suite, la technique de Rayleigh-Ritz est utilisée pour déterminer les amplitudes de ces modes.

I1'y a aussi beaucoup de logiciels généraux qui permettent d’utiliser la méthode des
éléments finis dans le domaine de la mécanique des solides, citons ABAQUS , NASTRAN,

ADINA (dans le cas non-linéaire), ANSYS, etc.

Pour avoir une bonne précision en obtenant les hautes fréquences aussi bien que les
basses fréquences d’un systéme couplé, on doit utiliser un trés grand nombre d’éléments, ce
qui peut causer de grandes difficultés numériques. Pour pallier cette difficulté, I’équipe de
recherche dirigée par le professeur A.A. Lakis a développé un nouveau type d’éléments finis.
Ce sont des €léments hybrides ou les fonctions de déplacement de la méthode des éléments
finis sont dérivées de la théorie des coques. Cette méthode a été appliquée aux analyses

statique et dynamique des différentes géométries de coques et de plaques.
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Les coques cylindriques ont fait I’objet de plusieurs études dans le domaine linéaire

et non linéaire : matériau isotrope et anisotrope, géométrie uniforme et axialement non
uniforme, coques vides, partiellement ou complétement remplies de liquide, avec ou sans
écoulement (liquide 4 une phase ou diphasée) [Lakis et Paidoussis (1971, 1972) Lakis (1976)
Lakis et Doré (1978) Lakis, Sami et Rousselet (1978) Lakis et Laveau (1991) Lakis et Sinno
(1992)] ainsi que les coques cylindriques ouvertes (Selmane et Lakis (1997)). D’autre
travaux ont été faits sur les coques coniques (Lakis, Van Dyke et Ouriche (1992)) et
sphériques (Lakis, Tuy et Selmane (1989)). ainsi que sur des plaques circulaires et annulaires

(Lakis et Seimane (1990)).
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CHAPITRE 1

GENERAL EQUATIONS OF ANISOTROPIC PLATES AND SHELLS
INCLUDING TRANSVERSE SHEAR DEFORMATION, ROTATORY INERTIA

AND INITIAL CURVATURE EFFECTS*

M. H. Toorani and A. A. Lakis
Département de Génie Mécanique, Ecole Polytechnique de Montréal
Case Postale 6079, Succ. Centre-ville, Montréal, Canada H3C 3A7

2.1 Abstract

The present work deals with a generalization of geometrically linear shear
deformation theory for multilayered anisotropic shells of general shape. No assumptions are
made other than to neglect the transverse normal strain. The results, which include the effects
of shear deformations and rotatory inertia as well as initial curvature (included in the stress
resultants and assumed transverse shear stresses) are deduced by application of the virtual
work principle, with displacements and transverse shear as independent variables. These

equations are applied to different shell geometries, such as revolution, cylindrical, spherical

% : Soumis pour publication dans “International Journal of Engineering Science”
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and conical shells as well as rectangular and circular plates.

2.2 Introduction

Shells are widely used as structural elements in modern construction engineering,
aircraft construction, ship building, rocket construction, the nuclear, aerospace and
aeronautical industries as well as the petroleum and petrochemical industries( pressure
vessel, pipeline), etc. It is very important, therefore, that the static and dynamic behavior of
these structure when subjected to different loads be clearly understood, in order to be used

safely in industry.

The analysis of thin elastic shells under static or dynamic loads has been the focus
of a great deal of research. These shells have been studied in the light of such different
factors as the large displacements, thickness variation, residual stresses, rotatory inertia,

anisotropy, initial curvature and the effect of the surrounding medium(air, liquid), etc.

Many theories have been developed for thin elastic shells, in both linear and non-
linear cases, and are based on the first approximation of Love-Kirchhoff theory which,
because it does not take transverse shear deformations into account, can be grossly in error
in predicting the transverse deflections, buckling loads and natural frequencies. In the case
of plates and shells made of advanced laminated composite materials, the prediction errors
are even more marked. The transverse shear effect on non-linear vibration and post-buckling

behavior is significant especially for the laminates with moderately large thickness.
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The present work presents the general equations of anisotropic shells(equilibrium,
constitutive and kinematic relations) by considering the effects of shear deformation, rotatory
inertia and initial curvature. These relations are then applied to different shell geometries:
shells of revolution, cylindrical, spherical and conical shells as well as the circular and

rectangular plates.

2.3 Literature Review

The literature review covers three broad areas. In the first, both linear and non-linear
theories on analysis of plates and shell structures are discussed. These theories were, in
many instances. developed for isotropic materials before being extended to anisotropic
material applications. The second part deals with the study of the effect of shear deformation
on both the static and dynamic behavior of plates and shells, especially those made of
advanced anisotropic materials. In the last part, we briefly discuss the effect of structure-fluid
interaction on the vibrations of plates and shells. Special attention is given to cylindrical

shells immersed in or filled with a liquid or subjected to a flowing fluid.

A shell structure may be defined as a body enclosed between two closely spaced and
curved surface. In general, a shell has three fundamental identifying features: its reference
surfaces, its thickness and its edges. Of these, the reference surface is the most significant

because the behavior of the shell is governed by the behavior of its reference surface.

Many shell theories are derived from the equations of elasticity. The strain-
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displacement relations of shells can be derived from kinematics and the 3-D strain-
displacement relations written in terms of arbitrary curvilinear coordinates [1]. In reality ,the

behavior of the top and bottom surfaces of a shell under load can vary widely.

The first attempt to formulate a bending theory of shells from the general equations
of elasticity was made by Aron in 1874. A thin shell is one in which the thickness is small
compared with the overall dimensions of the reference shell surface, and a two
dimensional(2-D) theory is used to approximate three dimensional (3-D) phenomena. Many
classical shell theories were developed originally for thin elastic shells, and are based on the
Love-Kirchhoff assumptions which are: 1 ) the shell is thin ; 2 ) the displacements and
rotations are small; 3 ) normals to the shell reference surface before deformation remain

normal after deformation; and 4 ) transverse normal stresses are negligible.

These assumptions led to a thin shell theory that can be viewed as an extension to
Kirchhoff plate theory and is often called Kirchhoff-Love shell theory. The effects of the
normal transverse strain are often neglected in the kinematics compared to the effects of the
in-plane strains due to the thinness of the shell, and shell is assumed to be in an approximate
state of plane stress. The in-plane stresses become dominant because the transverse normal
stress is, in general, of order /R times the bending stresses, whereas the transverse shear
stresses, obtained from equilibrium conditions, are of order A/L times the bending stresses.
Therefore, for L/R less than 10, the transverse normal stress is negligible compared to

transverse shear stresses .
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On the other hand, the normal transverse strain can generally be included in the
analysis through the constitutive relations. In deriving the equilibrium equations, statically
equivalent forces and moments acting on the reference surface can be defined by integrating
stresses through the thickness. In this way ,the 3-D shell behavior can be fully described
using a 2-D approximation [1-4].The third assumption of the Love-Kirchhoff theory is that
transverse shear strains may not be written in terms of displacements, which leads to their
being completely ignored although transverse shear stresses should be included in

equilibrium equations.

Surveys of various classical shell theories can be found in the works of Bert [5],
Reissner [6] and Naghdi [7]. The last truncate the Taylor’s series expansion for tangential
displacements after linear terms in the thickness coordinate, and many others followed him.
An excellent collection of the research carried out on this topic has been produced by Leissa
[8]. Elegant representations, both linear and non-linear, of Love’s shell theory can be
derived strictly via definitions from surface theory without reference to 3-D relationships

[3.9].

One of the best-known of these theories, Love's first approximation, yields
sufficiently accurate results when ( i ) the lateral dimension to thickness ratio(L/h) is large;
(i) the dynamic excitations are within the low-frequency range; (iii) the material anisotropy
is not severe. However, the application of such theories to layered anisotropic composites

shells could lead to much errors in prediction of natural frequencies, deflections, stresses and



buckling loads .

There is an inconsistency in the original version of Love’s theory since all strains
do not vanish for rigid body motion. It was perhaps this inconsistency that encouraged many
researchers to develop slightly different shell theories. Many shell theories based more or
less on Love's assumptions have been developed, each different since each neglects or
approximates small terms in its own way. Sanders {45] redefined the force and moment

resultants in such a way that all strains vanish for any rigid body motion.

The thin shell assumption in Love’s theory have not been taken into account in the
theories of Fliigge, Lure and Byrne [3], which impose a less restrictive requirement on the
thinness of the shell. Their theory also eliminates the rigid body strains anomaly. Koiter [11]
discussed the significance of Love’s first theory and, based on an order magnitude study,
states that refinements of Love first theory cannot consistently be made without including
transverse deformation effects. Other prominent theories on this subject include those of

Novozhilov [12].

Two types of basic equation, corresponding either to Fliigge's or Donnell's equations
for isotropic shells, have been formulated in the literature [2,3,13]. Donnell’s derivation is
not easy to follow, since it completely neglects a number of terms both in the relationships
between the changes of curvature and twist and the displacement, and in the relations of

stress resultants and moment resultants in terms of displacement.
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A small displacement Love theory has been used by Dong et al. [14] for the bending
analysis of thin anisotropic plates and shells. These are specialized to give linear Donnell
equations for anisotropic cylindrical shells. Bogner et al.[15] developed a linear cylindrical
isotropic shell finite element based on the classical shell theory. Morley [16] extended the
limits of Donnell theory . Reissner [17] applied the Donnell’s assumptions to a shallow
spherical shell. The Donnell-Mushtari-Vlasov equations [8] result when Donnell’s

assumptions are applied to a shallow shell of arbitrary geometry.

Cheng and He [18,19] have developed an exact linear theory for circular cylindrical
shell based on Love’s assumptions. By retaining all the small terms which are neglected, in
varying degrees, by other theories, the usual eighth order operator in the goveming
equilibrium equation of the transverse displacement can be separated into two complex
conjugate operators, thereby reducing the solution’s complexity. A general theory for thin
isotropic shells, which makes no simplifications for approximations beyond a fundamental

hypothesis, was developed by Markov [20].

Padovan [21]used a complex multi-segment numerical integration procedure which
can handle the static analysis of mechanically and thermally loaded branches laminated
anisotropic shells of revolution with arbitrary meridional variation in thickness and material
properties. The governing equations are based on the Love-Reissner theory. They did not

consider the effects of shear deformation in their work.
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Basar and Ding [22] used the finite rotation elements for the non-linear analysis of
thin shell structures. Their work is based on the Kirchhoff-Love hypothesis. In the
development of non-linear finite element using the Kirchhoff-Love hypothesis, the essential
problem is the elimination of rotation vector(the difference vector)without loss of accuracy.
To do this, the Kirchhoff-Love hypothesis is expressed by two sets of equivalent conditions:
one of them is used in the form of linear variational equations for elimination of the
incremental rotational variables; the other, non-linear one, is needed for the exact

calculation of the rotation vector of the fundamental state.

Most of the theories outlined above have been applied to a shell so thin that all
transverse shear deformation effects, transverse stresses and strains can be neglected. These
transverse effects become more pronounced as the shell becomes thicker relative to its in-
plane dimensions and radius curvature. This is particularly true of the transverse shear
deformations [11] since classical theories can be grossly in error in predicting transverse
deflections, buckling loads or natural frequencies. It is well known from experimental
observations that the fact that classical plate theory neglects transverse shear strains leads to
under-estimations of deflections and over-predictions of natural frequencies and buckling

loads.

These errors are even higher in the case of plates and shells made up of advanced
anisotropic laminated composite materials such as graphite-epoxy and boron-epoxy, where

the ratio of elastic moduli to shear moduli are very great (i.e. of the order 25 to 40 instead
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of 2.6 for isotropic materials). As pointed out by Koiter [11], refinement to Love's
approximation theory of thin elastics shells is meaningless unless the effects of transverse
shear and normal stresses are taken into account. Transverse shear deformation plays a very
important role in reducing the effective flexural stiffness of anisotropic laminated plates and

shells because their in-plane elastic modulus to transverse shear modulus ratio is high.

The transverse shear effect on non-linear vibration and post buckling behavior is
significant, especially for laminates with moderately significant thickness, a high
circumferential wave number and a greater number of layers. Study of shear deformation
effects shows that these effects can become quite meaningful for some geometrical
parameters, such as small radius-thickness or length-thickness ratios, as well as for shorter

wavelengths or longer shells.

In addition to the transverse shear deformation, the initial curvature effect should be
considered for the analysis of thick shells as indicated by Voyiadjis and Shi [23] for isotropic
materials. The initial curvature effect is very important in making accurate predictions of
stresses even in the central region. In the shell structure , the curvature of each parallel
surface through the thickness of the shell is different. To consider the initial curvature effect
, the term /+z/R has to be included. The presence of curvature effectively increases the

structural stiffness.



48

In the refined shell theories that take the transverse shear deformation effect into
account , the normals to the reference surface of shells are permitted to rotate such that plane
sections originally perpendicular to the middle surface remain planar, but, as a result of the
deformation, are no longer perpendicular. The transverse shear is represented by inclusion
of an independent degree of freedom in the kinematics. The shell is still fully described by
the behavior of the reference surface and therefore these approaches represent 2-D theories

[24].

Hildebrand et al. [25] were the first to make significant contributions by dispensing
with Love's assumption and assuming instead a three terms Taylor's series expansion for the
displacement vector for orthotropic and homogeneous shells. Naghdi [26] has employed
Reissner's [27] mixed variational principle to develop a complete shell formulation similar
to that of Hildebrand et al. [25], retaining two and three terms in the Taylor's series
expansions for tangential and transverse displacement components, respectively. The first
analysis to incorporate the bending and stretching ccupling was carried out by

Ambartsumyan [9].

He assumed that the individual orthotropic layers were oriented in such a way that
the principal axes of material symmetry coincided with those of the principal coordinates
of the shell reference surface. The effects of transverse shear deformation .transverse normal
stresses and transverse normal strain on the behavior of laminated shells can be

incorporated, on the basis of a mathematical model, through the inclusion of higher order
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terms in the power series expansion of the assumed displacement field.

Dong and Tso [28] were perhaps the first to present a first order shear deformation
theory , retaining one and two terms in the Taylor's series for transverse and tangential
displacement components, respectively. The theory includes the effects of transverse shear
deformation through the shell thickness, and thence they construct a laminated orthotropic
shell theory. Hildebrand et al. [25] found that the effects of the additional terms in the
transverse displacement that resulted in non-zero transverse normal strains are negligible.
Reissner used these kinematic relations to analyse first plates [29]and then sandwich
shells[30]. The rotatory inertia terms have been included in the dynamic analysis of plates

by Mindlin [31].

The above-mentioned first order shear theories result from the so-called Reissner-
Mindlin (RM) kinematics do not satisfy the transverse shear boundary conditions on the top
and bottom surfaces of the shell or plate, since a constant shear angle through the thickness
is assumed, and plane sections remain plane. For this reason, the theories based on these
kinematic relations usually require shear correction factors for equilibrium considerations.
The shear correction factors are only functions of lamination parameters(number of layers,
stacking sequence, degree of orthotropy and fiber orientation in each individual layer)

[32,33].
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Levinson [34] and Reddy [35] have developed theories that include terms in in-plane
displacement kinematics. They used a parabolic shear strain distribution through the
thickness for satisfying zero transverse shear stress on the top and bottom surfaces of the
shell, thus producing closer agreement with linear elasticity. The parabolic shear strain
distribution has been used to analyze the linear vibrational behavior of isotropic cylindrical

shells by Bhimaraddi [36].

The effects of transverse shear deformation and transverse isotropy as well as thermal
expansion through the thickness of cylindrica shells were considered by Gulati and
Essenburg [37]. Zukas and Vinson [38], Dong and his colleagues [14], Hsu and Wang [39],

Chaudhuri and Abu-Arja [40] and Khdeir et al. [41].

Whitney and Sun [42,43] developed a shear deformation theory for laminated
cylindrical shells that includes both transverse shear deformation and transverse normal
strain as well as expansional strains. The theory is based on a displacement field in which
the displacements in the surface of the shell are expanded as linear functions of the thickness
coordinate and the transverse displacement is expanded as a quadratic function of the
thickness coordinate. They discussed some methods by which one can diagnose the mass
matrix. They did not consider the product of the first order derivatives of the tangential
displacement component with respect to the x, y and z in the strain -displacement relations.

These relations are based on the Von Karman’s theory [12].
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Reddy [44] extended Sanders’ [45] theory for simply supported cross-ply laminated
shells assuming five degrees of freedom per node. The theory is based on a displacement
field in which the displacements of the middle surface are expanded as cubic functions of the
thickness coordinate, and the transverse displacement is assumed to be constant through the
thickness. The Navier-type exact solutions for bending and natural vibration are presented

for cylindrical and spherical shells under simply supported boundary conditions.

A generalization of geometrically linear shear deformation theories for small elastic
strains was presented for multilayered axisymmetric shells of general shape by Touratier
[46]. He proposed a general shear deformation theory for multilayered , moderately thick,
axisymmetric shells. The theory, which is geometrically linear, is developed for small elastic
strain and is restricted to axisymmetric shells under axisymmetric loading and classical
boundary conditions. The principal advantage of this work is that it does not need shear

correction factors.

Static analysis of laminated shells using a refined shear deformation theory was done
by Ji-Fan He [47]. According to this theory, the thickness of the shell must be small
compared to the principal radii of curvature. It can be expected that the present theory would
tend to be fairly accurate for laminated shells with many layers. Hsu and Wang [39] and Di
Sciuva [48] proposed a specially designed displacement field with traction continuity at the
layer interface and Reissner [49] proposed another type of general shell theory for

transversely isotropic materials based on the Reissner mixed variational principle with



independently assumed transverse stresses.

More recently, Jing and Tzeng [50]derived a mixed shear deformation theory for
thick laminated shells of general shape based on proposed method of Jing and Liao [51].
The displacement field uses a zig-zag function in addition to the Reissner -Mindlin type in-
plane displacements and a constant transverse deflection. Kant and Ramesh [52] developed
complete governing equations for a thick laminated composite shell. The theory is based on
a three-term Taylor’s series expansion of the displacement vector and generalized Hooke's
law, as is the displacement model of Hildebrand et al.[25], and is applicable to orthotropic

material layers having planes of symmetry coincident with shell coordinates.

Advanced composites materials are being used more and more in a variety of
industries due to their high strength and stiffness-to-weight ratios; this has led to a rapid
increase in the use of these materials in structural applications during the past decade.
Structural elements made up of advanced fiber-reinforced composite materials offer unique
advantages over those made of isotropic materials. They are being extensively used in high
and low technology areas ,e.g., the aerospace industry, where complex shell configurations

are common structural elements.

The filament-winding techniques for manufacturing composite shells of revolution
has recently been expanded in aircraft, shipbuilding, petroleum and other industries. In

general, these materials are fiber-reinforced laminate, symmetric or anti-symmetric cross-
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ply and angle-ply, which consist of numerous layers each with various fiber orientations.
Although the total laminate may exhibit orthotropic-like properties, each layer of the
laminate is usually anisotropic, thus the individual properties of each layer must be taken into

account when attempting to gain insight into the actual stress and strain fields.

By optimizing the properties we can reduce the overall weight of a structure since
stiffness and strength can be designed only where they are required. A lower weight structure
translates into higher performance. Since optimized structural systems are often more
sensitive to instabilities, it is necessary to exercise caution. The designer would be much
better able to avoid any instabilities if, when predicting a maximum load capacity, he either
knew the equilibrium paths of structural elements or had accurate modeling of the load-

displacement behavior of structure.

Anisotropic laminated plates and shells have a further complication which must be
considered during the design process: potentially large directional variations of stiffness
properties in these structures due to tailoring mean that three-dimensional effects can become
very important. The classical two-dimensional assumptions may lead to gross inaccuracies,

although they may be valid for an identical shell structure made up of isotropic materials.

However, although they have properties that are superior to isotropic materials,
advanced composite structures do present some technical problems in both manufacture and

design. For computational reasons, the study of composite materials involves either their



54

behaviors on the macroscopic level such as linear and nonlinear loading responses, natural
frequencies, buckling loads .etc., or their micro-mechanical properties like cracking,

delamination, fiber-matrix debonding, etc.

A number of theories for layered anisotropic shells exist in the literature. Many of
these theories were developed for thin shells and are based on the Kirchhoff-Love
hypotheses. The first analysis that incorporated the bending-stretching coupling(due to
asymmetric lamination in composites ) was by Ambartsumayan [9]. In his analysis. he
assumed that the individual orthotropic layers were oriented such that the principal axes of
material symmetry coincided with the principal coordinates of the shell reference surface.
He has written extensively on the matter, basing his work on Love’s theory with some

discussion of transverse stresses.

The simplifying assumption of laminated anisotropy is often used in applying a 2-D
theory to plates and shells consisting of layers of composite materials [24]. In this approach,
the individual properties of the composite constituents, the fibers and the matrix, are

"smeared" and thus each lamina is treated as an orthotropic material.

A survey of the analysis of multilayered composite shells using Reissner’s mixed
variational principle was done by Grigolyuk and Kulikov [53]. They maintain that laminated
anisotropy assumes perfect bonding between layers, and that the interply adhesive has

infinitesimal thickness but infinite stiffness. This approach leads to classical laminated plate
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theory (CLPT) and the references by Jones [54] and Whitney and Pagano(55], to CLPT are
based on the Kirchhoff-Love assumptions. However, both references point out that transverse
shear deformation is more significant in laminated anisotropic than in similar isotropic

constructions.

Bert [56] used Vlasov shell theory to formulate a linear laminated shell theory similar
to CLPT. Pagano and Wang [57-60] and Srinivas and Rao [61] have developed some exact
solutions of 3-D elasticity equations governing composite plates that have been used to
validate the shear theory. They concluded that CLPT gives fairly good approximations for
both the displacements and stresses if the plate is thin. Higher order shear theories do not
give much better transverse stress results but displacements show a marked improvement
over CLPT for the thicker plates. Transverse stresses are best calculated from equilibrium
instead of from the constitutive relations [54]. Ren [62] similarly solved 3-D elasticity

equations for a laminated cylindrical shell in cylindrical bending.

His work dealt with what is now known as laminated orthotropic shells rather than
with laminated anisotropic shells. [n laminated anisotropic shells, the individual layers are,
in general, anisotropic, and the principal axes of material symmetry of the individual layers
coincide with only one of the principal coordinates of the shell (the thickness-normal
coordinate). Whitney and Pagano [55] applied the Reissner-Mindlin theory to composite
plate analysis. The buckling of laminated cylindrical shells was studied by Hirano [63].

Reddy and Chao [64] applied the closed form solution to thick composite plates.
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Reddy {24,65] has extended the cubic kinematic approach to analysis of laminated
anisotropic plates and he has applied them for solving several linear static and buckling
problems. Additionally, Soldatos applied the parabolic shear theory to examination of the
stability of asymmetrically laminated cylindrical panels [66,67].Cheng and Ho [68] presented
an analysis of laminated anisotropic cylindrical shells using Fliigge's shell theory [2]. A first
approximation theory for the asymmetric deformation of nonhomogeneous, anisotropic,
elastic cylindrical shells was derived by Widera and his colleagues [69,70] by means of the
asyomptic integration of the elasticity equations. For a homogeneous, isotropic material, the

theory reduces to Donnell's equations.

Noor and Peters [71] presented the free vibration analysis of laminated anisotropic
shells of revolution as well as the sensitivity of their response to anisotropic material
coefficients. Their analytical formulation is based on a form of the Sanders-Budiansky shell
theory, including the effects of both transverse shear deformation and the laminated
anisotropic material response. Each of shell variables is expressed in terms of trigonometric
functions in the circumferential coordinate and a three-field mixed finite element model is
used for the discretization in the meridional direction. They used a reduction method
involving the successive use of the finite element method and classical Bubnov-Galerkin

technique to substantially reduce the size of the eigenvalue problem.

Zienkiewicz [72] introduced a finite element approach with independent transverse

displacement and rotational degrees of freedom such that a RM shear deformable shell
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element is obtained. A small rotation approach for anisotropic shells has been developed by

Librescu and Schmidt [73].

Successive approximations, as steps towards an estimate of exact shell strain
displacement relations where displacements, large strains and rotations were all initially
allowed. are presented for isotropic shells by Sanders [10] and anisotropic shells by Librescu

[73].

Kant and Kommineni [74] presented higher order theories for general orthotropic as
well as laminated shells. These theories were derived from the three-dimensional elasticity
equations by expanding the displacement vector in Taylor's series in the thickness
coordinate. Reference [75] presented some elements which can be successfully applied to
analysis of both thin and thick plate and shells. Kui et al. [76] applied the finite element
method, displacement type, to analyse the thin shells and to overcome the shear locking

phenomena.

Pryor and Barker [77] developed a linear plate element based on the RM theory. They
used a rectangular element with 28 degrees of freedom (8,12,8 for extension, bending and
shear effects, respectively) to have the continuity of transverse stress at any interface.
Hinrichsen and Palazotto [78] applied a cubic spline function to non-linear analysis of thick
composite plates. Their theory is based on the usual Kirchhoff hypothesis. The theory was

developed by considering the Lagrangian strains in conjunction with the second Piola-
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Kirchhoff stress hypothesis. This formulation leads to a quasi-three dimensional element that

combines large displacement with moderately large rotation but is restricted to small strains.

Schmit and Monforton [79] formulated an anisotropic cylindrical shell element which
allows them to predict the geometrically nonlinear behavior of sandwich plate and
cylindrical shell structures, based on accepted thin shell theory assumptions. Other recent
papers by Meroueh [80] and Surana [81,82] can be mentioned. Cylindrical shells are in
general use in the aerospace, shipbuilding, structural and petroleum industries. They are the
simplest shell structure to analyse yet have many of the characteristics of more complex shell
geometries. The linear problem of composite cylindrical shells has been widely investigated
by a number of researchers using different shell theories. Based on the Kirchhoff hypothesis,
for example, Dong {83] studied the free vibration of laminated orthotropic cylindrical shells

with homogeneous boundary conditions.

The governing equations of orthotropic cylindrical shells were solved via a pair of
complex conjugate fourth-order differential equations by Cheng and He [19]. Their work is
based on the Kirchhoff hypothesis. For the static problem, Fliigge and Kelkar [84] and Yao
[85] obtained an exact solution for closed isotropic long cylinders under general two-

dimensional surface traction.

Using the Forbenius method, Srinivas [61] developed an exact three-dimensional

solution for orthotropic finite cylinders with simply supported conditions. Varadan and
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Bhaskar [86] also performed the static stress analysis using the procedures proposed by
Srinivas[61]. Pagano [87] obtained the stress field for a homogeneous, anisotropic closed
cylinder under two-dimensional surface loads in which the problems are independent of the

axial coordinate.

Ren [88] presented an exact solution for simply-supported laminated cross-ply
circular cylindrical panels of infinite and finite length in the axial direction. Leissa et al. [89]
analysed the vibration of cantilevered cylindrical panels by using the Ritz method, with

algebraic polynomial functions fer the displacements.

Widera and Logan [70] studied the non-homogeneous, anisotropic, circular
cylindrical elastic shell, using the method of asymptotic expansion in terms of a small
parameter in conjunction with Reissner's variational principle. In their work, the procedure
used to derive the shell equation starts with substitution of non-dimensional shell
coordinates in terms of characteristic length scale for changes of stresses and displacements
and Reissner functional direction. The employment of the formulation in terms of Reissner’s
principle allows one to obtain automatically all the equations necessary to formulate a
complete boundary value problem for a first approximation shell analysis. Non-dimensional
stresses, displacements and Reissner functional direction are introduced and considered to
be representable by asymptotic expansions in a power series in terms of a small shell

parameter.
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Recently, Bert and his colleagues [90,91] and Hsu et al. [92] presented exact
solutions for bending and vibration of cross-ply, thin cylindrical shells. These solutions are
limited to cylindrical shells and sinusoidal distribution of the transverse load, and the
procedure used in similar to that used by Whitney and Leissa [93], Whitney and Pagano

[55], Bert and Chen [94], and Reddy and Chao [64] for laminated composite plates.

Tzeng (95] proposed a mixed shear deformation theory for the bending analysis of
arbitrarily laminated, anisotropic panels and closed cylinders. The initial curvature effect is
included in the strain -displacement relations, stress resultants and assumed transverse shear
stresses. Two types of shell geometry, infinitely long cylindrical panels and closed cylinders
of finite length, are employed in the numerical study. Suzuki and Leissa [96,97] analysed the
free vibration of circular and non-circular cylindrical shells having circumferentially varying

thickness.

The static response to the axisymmetric problem of arbitrarily laminated, anisotropic
cylindrical shells of finite length using three-dimensional elasticity equations was studied by
Jing and Zeng [98]. The closed cylinder is simply supported at both ends. The highly-
coupled partial differential equations are reduced to ordinary differential equations with
variable coefficients by choosing the solution composed of trigonometric functions along the

axial direction.

Kant et al.[52,74] presented various higher order theories for laminated composite
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cylindrical shells using C° continuous finite element formulation. Kant and co-workers did
extensive numerical investigations on laminated plates and shells, both static and dynamic
analysis, using C° finite elements and different higher order theories. They proved that the
imposition of shear free boundary conditions on the top and bottom bounding planes of the
laminate gives stiffer solutions when compared to three-dimensional(3-D) elasticity solutions
and various displacement models for flat laminates. The one having nine degrees of freedom

per node produces results very close to 3-D elasticity solution.

A higher order shear deformation theory of plates accounting for the Von Karman
strains was presented by Reddy [99]. This theory contains the same dependent unknowns
as those in the Hencky-Mindlin type first-order shear deformation theory. The
displacements are expanded in powers of the thickness of the plate, and accounts for
parabolic distribution of the transverse shear strains through the thickness of plate. The
Hamilton’s principle was used to derive the equations of motions and the Navier solution

procedure was used for solve the equations of the simply supported plates.

Jing and Liao [51] proposed a mixed function with displacements and transverse
shear stresses as independent variables and established the corresponding partial hybrid stress
element for the analysis of thick laminated plates. Some comparison between the results

obtained for plates by these two functions were made by Jing and Tzeng [100].
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A refined laminated plate theory, developed by Whitney and Sun [42], is applicable
to fiber- reinforced composite materials under impact loading. The theory also includes the
first symmetric thickness shear and thickness stretch motion, as well as the first anti-
symmetric thickness shear mode, by including higher order terms in the displacement
expansion about the mid-plane of the laminate in a manner similar to that of Mindlin and

Medick [101] for homogeneous isotropic plates.

Reddy and Phan {65] used a higher order shear deformation theory to determine the
natural frequencies and buckling loads of elastic plates. The theory accounts for the
transverse shear strain and rotatory inertia. This work dealt with the exact solutions of the
theory as applied to the free vibration and buckling of isotropic, orthotropic and laminated

rectangular plates with simply supported edge conditions.

Reddy {35] developed a higher order shear deformation theory for the laminated
composite plates. This theory uses a displacement approach similar to that in the Reissner-
Mindlin type theories. The in-plane displacements are expanded as cubic functions of the
thickness coordinate and the transverse deflection is constant through plate thickness. The
form is dictated by satisfying the conditions that the transverse shear stresses vanish on the
plate surfaces and be non-zero elsewhere. This requires the use of a displacement field in
which the in-plane displacements are expanded as cubic functions of the thickness coordinate

and the transverse deflection is constant through plate thickness.



63

Ren and Hui {102] formulated a simple theory for non-linear bending of generally
laminated composite rectangular plates which taken into account the transverse shear strains
by using the principle of virtual displacements. Moreover, because the total deflection of a
plate is decomposed into a deflection due to bending and a deflection due to shear, solution

of the governing equations of the present theory becomes simpler.

The Jing and Liao's functional, modified from the Hellinger -Reissner principle by
separating the stress field into a flexural part and a transverse shear part and leaving only
displacements and transverse shear stresses as independent variables, has been used by Jing

and Tzeng [50] to analyse laminated plates with satisfactory accuracy.

There are many situations in mechanics in which some simplifying assumptions
have been considered to help the analyst in getting timely and accurate results. However,
various air, water and land vehicles and structures such as aircraft, rocket, pressure vessel,
petroleum and petrochemical units etc., may be subjected to impacts, collisions, blasts and
/or other intensive transient loads which can cause large transient structural deformation and

damage.

Thin shells subjected to dynamic loads could encounter deflections of the order of
the shell thickness or higher. Thin shells could also encounter a phenomenon of dynamic
impacts or dynamic buckling and collapse, which are attributed to the change in the

equilibrium state characterizing the load-response mode. Response of these kind cannot be
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correctly predicted by using the small or intermediate displacement theory. In the
intermediate non-linearity approach, the non-linear terms which represent in-plane rotations

of the shell are neglected [103,104]. This theory is often used in stability analysis.

The structural elements made up of the advanced composite materials undergo large
deformations before they become inelastic, because of the high modulus and high strength
properties of composite materials. Therefore, an accurate prediction of transient response is

possible only when one accounts for the geometric non-linearity.

There are also cases where structural elements experience only small strains under
load but may fail catastrophically due to their geometric configuration. It turns out that this
class of structural system can be accurately analysed on the basis of small strain, nonlinear
geometrical and linear elastic material behavior. The need for accurate and efficient methods
for structural analysis and design .especially for this category of large-deflection
(geometrically non-linear) and elastic -plastic (materially non-linear) dynamic response

problems has recently become increasingly apparent.

In the proposed nonlinear analysis methods, e.g. [10,12,105], many of the nonlinear
displacement terms may be considered negligible depending, of course, on the specific
situation. For example, an accurate load-displacement characterization of a flat plate is based
on the Von Karman equation where many nonlinear rotational terms have been omitted.

Similar assumptions for shell elements result in equations of the type proposed by Donnell,
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Sanders and Novozhilov [105]. These formulations are typically valid for so-called

intermediate nonlinearity or theories that allow only moderate rotations.

The strain-displacement relations that include nonlincar displacemcnt terms arc used
to represent large displacements and rotations of differential elements of the shell. Non-linear
vibrations of generally laminated circular cylindrical shells were examined using the
Timoshenko-Mindlin kinematics hypothesis and an extension of Donnell’s shell theory. The
effects of the transverse shear deformation, rotatory inertia and geometrically initial
imperfection are included in the analysis. The Galerkin procedure furnishes an infinite series

of equations for time functions which can be solved by the method of harmonic balance

[106].

It has been recognised that the non-linear behaviour of composite cylindrical shells
plays an important role in determining the stability and dynamic response of these shells.
Chu [107] first presented an analysis for circular isotropic cylindrical sheils with the
hardening type of non-linearity for the amplitude-frequency response. Nowinski [108]
confirmed the results of Chu [107] by investigating the non-linear vibration of orthotropic
cylindrical shells. Later, Evensen [109] pointed out that the mode shape assumed by Chu
does not satisfy the condition of continuity of the circumferential in-plane displacement. A
more rigorous study of non-linear free flexural vibrations of circular cylindrical shells was

conducted by Atluri [110] who compared his results with the available data and concluded
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by accepting the possibility of the softening type of non-linearity.

Chen and Babcook [111] adopted a perturbation technique in considering the large-
amplitude vibration of a thin-walled cylindrical shell. Ramachandran [112] studied the non-
linear vibration of cylindrical shells of varying thickness. Khot [113] studied the post-
buckling behavior of a laminated cylindrical shell subjected to axial load and torsion using
the Von Karman-Donnell equations. The results obtained by Khot [113] show that, in

general, composite shells are less imperfection sensitive than isotropic shells.

Recently, Iuand Chia [114] discussed the non-linear vibration and post-buckling
of anti-symmetric cross-ply circular cylindrical shells on the basis of Von Karman-Donnell
kinematic assumptions and the effects of transverse shear on the non-linear behavior of these
shells using the Timoshenko-Mindlin kinematic hypothesis. They neglected some terms (e.g

cross-product of displacement derivatives) in non-linear strain-displacement relations.

Neglecting the transverse rotational nonlinear terms as well will result in a linear
Love-type shell theory. These successive approximations to the shell strain-displacement
relations are discussed in the paper by Librescu [115] and Sanders [10]. In the last work, the
deformations are restricted by the Kirchhoff hypothesis(the transverse shear and normal
strains were neglected) , the middle surface strains were assumed small and the rotations
were assumed to be moderately small. Most of the above approaches can include various

degrees of non-linearity in the strain-displacement relations representing the displacements
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and rotations. Considerable simplification was achieved in the Donnell equations by use of

the assumption that the non-linear membrane strains derived only from out-of-plane

rotations.

For example, non-linear Donnell shallow-shell theory is not suitable for the analysis
of shells in which the buckling mode involves fewer than three full waves arjund the
circumference [105]. More accurate non-linear shell equations are given by Sanders and by
Novozhilov , but these were somewhat more complex than the Donnell equations. More
terms are retained because fewer assumptions are made about the relative magnitude of
various terms in the non-linear strain-displacement. Reddy and Chandrashekhara [116]
solved laminated shell problems, both cylindrical and spherical, assuming RM theory and
an intermediate non-linearity. There are few such analytical closed-form solutions for shell

geometries, especially those that govern non-linear behavior.

The formulation and computational procedure are presented for the geometrically
non-linear analysis of laminated orthotropic and anisotropic composite shells based upon a
modified incremental Hellinger-Reissner principal and the total Lagrangian description by
Rothert and Di [117]. In this investigation a computational model for a geometrically
nonlinear analysis has been studied on the basis of a rational approach for a hybrid stress
model. The through-thickness assumption used in the total Lagrangian formulation is

introduced, incorporating the nonlinear formulation fora large rotation assumption. Noor and
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Peters [118] analyzed the non-linear response of anisotropic cylindrical panel that included
transverse shear deformation. Their formulations are based on the Rayleigh-Ritz technique

and the Hu-Washizu mixed shallow shell finite element approach.

Stein [119] used truncated series expansions of exact non-linear strain-displacement
relations in a shell approach that also included transverse shear deformation. The non-linear
strain-displacement relations were expanded into a series that contains all first- and second-
degree terms; only the first few terms have been retained for the displacements.
Geometrically non-linear quasi-three-dimensional approaches for laminated composite plates
and shells have been developed by Palazotto and Witt [120}], Hinrichsen and Palazotto [78]
and Dennis and Palazotto {121]. Their work is restricted to small strains; the exact Green's
strain-displacement and linear strain displacement relations were assumed for the in-plane
strains and the transverse strains, respectively, so the accuracy in rotation is limited by linear

assumption on the transverse shear strains.

Tsai and Palazotto [122] have developed a finite element formulation for the
geometric non-linear vibration analysis of cylindrical shells, based upon a curved
quadrilateral, 36 degree of freedoms, thin shell element. The equations of motion are based
on a total Lagrangian frame of reference. A £ method, which is a generalization of
Newmark's time marching integration scheme and the Newton-Raphson iterative method,

are both applied in order to solve the set of non-linear equations of motion numerically.
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The solution of a set of non-linear, second order differential equations which describe
an anisotropic shell of revolution was presented by Martin and Drew [123]. Their analysis
is based upon Sanders' non-linear shell theory without considering the shear deformation
effects. The method for solving these equations follows the procedure used by Budiansky

and Radkowski [124].

Kant and Kommineni [ 125] presented the geometrically non-linear transient analysis
of laminated composite (transversely isotropic) and sandwich shells, based on Von Karman’s
theory. In the time domain, the explicit central difference integrator is used in conjunction
with the special mass matrix diagonalization scheme which conserves the total mass of the

element and includes effects due to rotatory inertia terms.

Rotter and Jumikis [105] have presented a set of non-linear strain-displacement
relations for axisymmetric thin shells subject to large displacements with moderate rotations,
by retaining more terms. Their works is based on Kirchhoff’s assumptions. They have
shown that nonlinear strains arising from products of in-plane strain terms, which were
omitted in previous theories, may be important in certain buckling problems. The new
relations are particularly important when branched shells are being studied and when the
buckling mode may involve a translation of the branching joint. Their work do not include

any numerical result.

A modal approximation in deriving the equations of motion for the non-linear
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flexural vibrations of a cylindrical shell by using the Donnell shallow shell theory was
presented by Dowell and Ventres [126]. The purpose of their work was to satisfy more
accurately the boundary and the continuity conditions and investigate their effects on the

form of the modal equations.

Horrigmoe and Bergan [127] presented classical variational principles for non-linear
problems by considering incremental deformations of a continuum. Wunderlich [128] and
Stricklin et al.[129] have reviewed various principles of incremental analysis and solution
procedures for geometrical non-linear problems respectively. Noor and Hartley [130]
emploved the shallow shell theory with transverse shear strains and geometric non-linearities

to develop triangular and quadrilateral finite elements.

Chao and Reddy [131], Reddy and Chandrasekhara [116] have presented a first
order shear deformation theory based on kinematic and geometric assumption of Sanders thin
shell theory for geometrically non-linear analysis of doubly curved composite shells. An
analysis of the dynamic responses of cylindrical shells including geometric and material non-
linearities was made by Wu and Witmer [132]. The methods of finite element analysis were
applied to the problem of large deflection, elastic-plastic dynamic response of cylindrical
shells to transient loading. The formulation is based upon the virtual work principle and
D'Alembert's principle. Wu and Witmer used a bilinear polynomial for the axial
displacement, and bicubic polynomials for both the circumferential displacement and the

transverse displacement, and explicitly excluded rigid body modes.
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The analytical solution of shell motion equations is generally considered to be
difficult. Approximation methods can be suitably used (e.g. the finite difference, Galerkin,
Rayleigh-Ritz, Transfer matrix and finite element methods). All of these methods have
advantages and disadvantages. One of the most important criteria in determining the
versatility of the resolution is the capacity to predict, with precision, both the high and the

low frequencies.

In the finite difference method, the initial values are given and this method requires
a great deal of calculation time. The Galerkin approach loose precision in the higher
frequencies of shells. The Rayleigh-Ritz method presents several drawbacks, among which
are the displacement function choice, which has to take the boundary conditions into
account, and the necessity to use a large number of terms to express displacement functions
and also in the Galerkin method ,both geometric and force boundary conditions must be
satisfied. On the other hand, the finite element method [72,133-136] is satisfactory from

these view points.

The accuracy of solutions reached by the finite element displacement formulation
depends on whether the assumed functions accurately model the deformations modes of
structures. To satisfy this criterion, Lakis and his group have developed a hybrid type of
finite element, whereby the displacement functions in the finite element method are derived
from Sanders’ classical shell theory [45]. This method has been applied with satisfactory

results to the dynamic linear and non-linear analysis of cylindrical shells, both closed and
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open [137-147], spherical [148], conical [149], isotropic and anisotropic, uniform and axially
non-uniform shells, both empty and liquid-filled. This method has also been applied to the

dynamic analysis of circular and annular plates by Lakis and Selmane [150-152].

The effect of surrounding medium (air, liquid and etc.) upon the vibration of plates
and shells is of primary interest to scientists and engineers working in aerospace, marine and
reactor technology. The effect of the fluid on the structural response is usually significant
except in the case of extremely thick shells. The dynamic response of the shells when
subjected to a flowing fluid, as well as the influence of fluid speed on the shell free
vibrations, were studied by several researchers: Lakis and Paidoussis [137-139], Paidoussis
and Denis[153], Weaver and Unny [154], Cheng [155] and Jain [156]. Paidoussis and Li

made an elaborate review in this field [157].

The fluid effect on the dynamic behavior of the structure can be taken into account
by considering the hydrodynamic mass which is added to the mass matrix of the structure.
The effective mass is a function of the mode shape being considered, the shell and liquid
geometrical parameters, plus the physical parameters. In addition, the forces exerted by free
surface motion have to be considered; the pressure distribution due to surface motion during
vibration could be neglected, however, since resonant sloshing frequencies of thin shells are

considerably below the natural frequencies of the combined fluid-structure system.

The dynamics of coupled fluid-shells were reviewed extensively by Yang [158] and



73

Brown [159]. Dynamic analysis of the structure-fluid systems was studied by Brenneman
and Yang [160], using the modal and hybrid methods. They obtained the structure and fluid
modes by applying the stiffness and flexibility methods, following MacNeal’s approach.
Crouzet-Pascal and Garnet [161] studied a ring-reinforced cylindrical shell immersed in
a fluid medium, and its dynamic response to an axisymmetric step pulse. MacNeal [162]
presented another approach which is based on a hybrid finite element formulation in which
the structure is modeled with displacements as the unknown variables, and a fluid is modeled
with pressure as the variables. To utilise existing mainframe structural analysis programs,
MacNeal showed how to recover symmetry by manipulating the equations and adding

auxiliary variables to the problem.

The free vibration of simply supported vertical cylindrical shells partially filled with
or submerged in a fluid has been analyzed by Gongalves and Batista [163]. The Galerkin
method was used to obtain an approximate solution which coincide with the exact solution
for the cases of an empty shell or a shell completely in contact with fluid. Their work is
based upon the consistent shell theory of Sanders. The fluid is taken as non-viscous and
incompressible and the coupling between the deformable shell and this acoustic medium is

taken into account.

Since the lowest natural frequency of bending vibration of shells, immersed in of
filled with a fluid, is much less than the corresponding natural frequency of the shell in air,

they investigated the effects of variable height of fluid on the vibration response of vertical
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cylinders filled with or submerged in an acoustic fluid medium. In general, the lowest
frequency depends on liquid level, mode shapes and shell and liquid geometrical and

physical parameters.

The free vibration analysis of cylindrical storage tanks with axial thickness variation
and partially filled with liquid was studied by Han and Liu [164]. The tank is modeled using
Fliigge's thin shell theory (in the isotropic case)and the fluid in the tank, according to
potential flow theory, is assumed to be inviscid and incompressible. In their work, the shear
deformation effects have not been considered. They solved the partial differential equations

by using the transfer matrix technique.

An analysis of the non-linear vibration of cylindrical shells of varying thickness in
an incompressible fluid was made by Ramachandran [112]. The Rayleigh-Ritz procedure
was used to analyze non-linear transverse vibrations of elastic, orthotropic cylindrical shells
of linearly varying thickness, embedded in an incompressible fluid (there is no shear

deformation effect in his work).

In the present thesis, we develop a general linear shell theory -for multilayered
laminated anisotropic materials case- which takes into account the transverse shear
deformations, rotatory inertia and initial curvature effects which were not considered
simultaneously in the previous works. We obtain five coupled second-order differential

equations with five independent variables as components of displacement vector. Also, the
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equilibrium equations, constitutive and kinematic relations for the following shell and plate
geometries are developed: shells of revolution, cylindrical, spherical and conical shells as

well as rectangular and circular plates.

The displacement functions presented, for cylindrical shells, in the last section of this
paper allow us to study the dynamic behaviour analysis of open or closed cylindrical shells
with arbitrary boundary conditions, while most of previous investigations have been limited
to simply supported boundary conditions using the Fourier double series in solving the

equations of motion.

There are several reasons for undertaking the development of this theory. First,
developing a theory for either dynamic or stress analysis of anisotropic laminated plates and
shells, with various geometry shapes. The accurate prediction of the dynamic response or
failure characteristics of these structures made up from advanced composite materials
requires the use of refined theory where the effect of transverse shear deformation and other
factors such as rotatory inertia and initial curvature effects are taken into account. This is
because the transverse shear deformation plays an important role in reducing the effective
flexural stiffness of plates or shells made of these advanced materials than in corresponding

isotropic materials, so the present study focuses on this last effect.

The next step deals with the study of the free vibration characteristics of thin

anisotropic laminated cylindrical shells based on the present theory. One of the criteria of
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success of a method may be considered to be its capability of yielding the high, as well as
the low, natural frequencies and modal shapes with comparable high accuracy. The
numerical method will be based on a combination of hybrid finite element analysis [139]
and refined shear deformation theory of shells. This allows us to use the thin shell equations
in full for the determination of the displacement functions, and hence the mass, stiffness and

stress-resultant matrices, instead of the more usual polynomial displacement functions.

This formulation yieids the natural frequencies and mode shapes of shell defined by
arbitrary conditions without changing the displacement functions in each case. Numerical
results for fundamental frequencies will be presented for anisotropic laminated cylindrical
shells. At the same time, the flowing fluid effect on the natural frequencies of anisotropic,

open cylindrical shells will be studied.

2.4 Theoretical Development

This work is based on the following assumptions:

1) Linear elastic behavior of laminated anisotropic materials;

2) Use of the strain-displacement relations expressed in arbitrary orthogonal

curvilinear coordinate system,;

3) The shell is thin and therefore we assume that the thickness-direction normal stress

is negligible compared with stress tangential to the shell surface;
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4) The transverse shear deformation, rotatory inertia and initial curvature are

considered to influence the governing equations.
2.4.1 Strain-Displaccment Relatioas

The normal and shear strain components are related to the components of the

displacement vector by [3]:
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where (. ;U; and g;are, respectively, the curvilinear coordinates of the

surface, components of the displacement vector and geometrical scale factor quantities, and
are defined below for application to shells (Figure 2.1):
a=a, @@, ag
w=U w=U, u=W 22)

g, A (1+YRY g,=4(1+YRY g=I
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where U,, U,, W, 4;, R; and {are, respectively, the displacement vector components,
Lamé’s parameters, the curvature radius and the thickness coordinate. [f we substitute

equations (2.2) into equations (2.1), we obtain the following strain-displacements equations

in the shell space:

| AU, Uad, AW
c'A(l+g/R)eu Aaa, R)

1 6U UEH -!W

N 4(1+§/R_,) %, 43, R

)

2.3)
U
LAY T S Sl M

Yin" g (T°UR ) 3, X AR

1 o, 4,
T gk e, ! "R)ec[m Ey)

AWGR) 5 U, AGR) 5 U,
Y1 (T°R ) 3a, | A(T-UR) | A(1+0R,) 22, A(T-TR)"

where ¢ and ( y,,, y,2) are, respectively, the normal and shearing strain components.
We can assume that the displacement components are presented by the following

relationships:

Uj(e,a,,0=u(a,a,)+CB (a,a,) (2.4
Wa,,a,.0-w(a,,a)
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The B, and g, represent the rotation of tangents to the reference surface oriented

along the parametric lines a,and a. respectively. We substitute equations (2.4) into equations

(2.3):
1 0 0 0 0
(+R) (oo
) X
e, 0o — 0 0 0 ||fe :
. (I*UR,) 2|k,
2 o
l i Y ] T
vy 4| © 0 0 TEI (2.5)
12 (I'UR) (1-UR) v, 9.
I 0 ! _
0 0 — 0
t2n (I'GR) i
0 0 0 0 (L
(1*UR)
where:
, 1 du, u, ad, 1 GBl B, o4,
£y * =5 KE +
4, &ul AA, auz Rl Al aal ‘41‘42 aaz
o - 1 6u2+ u, BAZ*K e 1 aBI+ B, o4,
2 4,0a, AA,da R A, 00, AA, da
1'n_lauz_ u, 94, . r_laaz_ B, a4,
1A da, AA, da, * VU 4,3a, AA,da, (2.6)
Ya_la“l_ u, 94, ) t_laﬂl_ B, od,
Y4, 9a, AA,da 24, 5a, AA,da
,_1" = 1 aw—ﬁ‘}ﬁ . u" :i_al—iz.q-
! 4 da R ! 2 4,0a, R, :
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Where &, ¥°,; k;; T, and u°, are, respectively, the in-surface normal and in-surface
shearing strain, the change in the curvature and torsion of the reference surface and the
shearing strain components. The Coddazi conditions which were used for the above

equations are:

e
aaz

R PO S P GO P
Ueplgg (0g) 3 g ileplg (g @n

where R,, {, A, and a, were defined earlier by equations (2.1.2.2).

2.4.2 The Relationship Between the Stress and Strain Vectors (Hooke’s law)

The relationship between the stress and strain vectors (Hooke’s law):

{o} =) {e} (2.8)

The constitutive equation of the Kth lamina (for a lamina of fibre reinforced
composite material) in the lamina reference axes (a, £,y) can be written as follows (for only

one lamina) (Figure 2.2):
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g, Qu o ” Q" ] o 0 €,
% |9 % 9 0 O 0 |]5
o, - Qn QYB Qn ° 0 ° & (2‘9)
10 0 02, 0o o]y
o 0o 0o o 20, o ||y
10 0 0 o o 2.l

The [Q] matnix denotes the elastic stiffness in the material coordinates (locai axes). It is
useful to mention that the shear strains used in this work are tensor shear strains, not

engineering shear strains.

Qij’s elements are defined as follows:

0,.E. (1 -vhvﬁ)/A ; Qua=(\.'&x V.V A=V, PR qu)s”m
Qgp =Eﬁﬂ( 1 -vqu)/A ; Qw =(V~,¢ Vel Yﬂ)Em/A =(v“ +v “th)En/A
Q =E (1-v aﬁvﬁu)/A ; Q&f =(vTB v uavm)Ew/A =(vB1r +v6°vm)En/A (2.10)
Q=G 1 Q457G + Q™G
A=l VetYsa Viren VeeVay -Zth 6y

where E 4 ,G 5and v, are, respectively, Young’s moduli of elasticity in the principal
directions, rigidity moduli characterizing the change of angles between the principal
directions, and the Poisson ratios characterizing the transverse contraction (expansion) under

tension (compression) in the directions of the coordinate axes.

The stress-strain relations of the Ktk lamina in the laminate coordinate axes (1,2,3



global coordinates) can be written as (Figure 2.3):

where :

The transformation matrix [T] is defined by:

[0, 0,2, 0 o
0.0.0. 0 0
L=Q‘3'I'Q‘,‘2Qn 0o o
0 o 20, 20,
0 0 20, 20,
26260 0 O
o] -1 [ellr]

3
3

=
~

o o
o o o ¥

0

-mn mn

o O - O O

3 § o © ©

0 2mn

0 -2mn
0 0

-n 0

m 0

0 (m*-n?)

where: m=cosa , n=sina

20,
20,
2Q16

|«

S e o
S
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2.11)

(2.13)

The orientation angle a is measured counter-clockwise from the /-axis to the x-axis
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(Figure 2.3).

[Q |'s elements are defined as follows:

0y, 70’ 205 -20,Jmn? Qun® 0,70, *Qpy 4@, Jm 'n*+Q (m* +n"); 0, =0, m +Qy n’
0= -mn’Quom’nQ_ -mn(m*-n’XQ,-20,)
0,70, 0,20, m’n +Qum* . 0, =0 n*+Qym* Q) =-m’nQy omn’Q ‘mn<m=~n=xg,,-zo,.)
0,:°0,,:05=(Q,, ~Qp Jmn . O (0, 0 ~20 Jm’n* +Q (m* -n
0i=0um* Q0 =0, -0, mn . O =0, m? Q0

2.14)

2.4.3 The Equations of Motion

Using the virtual work principle for the present case yields:

N, AN, 04, 4, QAd,

aal d(z2 12 3q_ da, 23a. aa .

N, AN, My M, 0Ad,

“da. a, acl i acx 'aaz R,

— A g, = 'Isz

+A g1, + 1B,

34,0, A
2, 040, A +_3)_,, A =l (2.15)
2

aal 6(12 1

MM, AM, 34, 3, I
da, da, 12 aal !
GAM, aAM,

da, da, N3 aa

_QzAlAz—I ﬁz*lsﬁz
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where :

N Ry
L10=Y [ p®0.L0a (2.16)
k-1 ;'

L4

where /, , p® and { are, respectively, inertia moments, density of the K*'s
lamina material and the thickness coordinate. The quantities (N17, N22, Niz, N2r) are called
the in-plane force resultants. and (M11, M2z, Mi2, M21) are called themoment resultants; (Q11,

02?) denote the transverse force resultants.

Now, we see that there are five independent boundary conditions to be applied at
given edges. The transverse shear deformations do not vanish in the present theory and,
therefore, the B, cannot be expressed in terms of U,and . The transverse shear theory

recommended here leads to no strains during rigid body motion.
2.4.4 The Stress Resultants and Stress Couples

The stress resultants and stress couples are given by [3] :

N, % N, S,

N, T2 N, T

Q, r= " (1+GR) ;9 Q1= 11T (1+OR)) & (2.17)
S M 4

M, S, 2 O,

M, [ T12 ‘sz e
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The quantities (N11, N2z, Ni2, N2i) are called the in-plane force resultants, and (M1,

M2z, Mi2, M2r) are called the moment resultants; (Q11, Q22) denote the transverse force
resultants. We notice, in equations (2.17), that the symmetry of the stress tensor (712 =72/)

does not necessarily imply that N7z and N2 are equal or that M2 and Mz: are equal except

in the case of a spherical shell, a plate or a thin shell of any shape.

2.4.5 The Constitutive Equations

The stress resultants and stress couples that correspond to the stress components are

given by equations (2.17); therefore, by using equations (2.5), (2.11) and (2.17) we have:

Vr an‘ L
Yie - Gy A, f‘ ».H” 5y R ij=1.6.2.6
N4y 99, e, | |8, HH, K
A T P U R
(.o 2.18
M, e, X, (2.18)
Mo - b 8y L b Ty Py h ij=1,6,2,6
M, |8, e [ 12, %, X,
7 T I P GO

where



G =4, alBU*azDU s U ; H-B a‘D,j azEU
GGU =.-iu +b,B, ]+sz” +b3£'u
[.fBu"alDu"’qu*a;Fq ; 'Ii:D: *“15 “:Ft/ 16
III!=B;l*b.lD;j+b:£,’_}.+b;F‘.j

and

AL R R VY B ISR
'R, R, *ROR RS Rz\Rz
| | 1.1 1 1
b e — by=—A=-=) b z——
'R R ©RR, R ! RZZR,

lN

Ny o
A =£(Qr)k(ht-hk_l) : EU-IZ(Q,)(I:‘ -h*, )

U

L@) B\ Hy F,,=§T.(Q,)(h’ )
6‘[) (hJ -h]‘»[ : ” 6_(?}) (h° -

N: Number of lamina

1 ¥
25
p -1¢
1;3

Note: N1z #N21 and M2 =M21 and

21 -Y/R+({/R)*- +-
a Q/R) -UR+{UR)

This expansion requires only that ({/ R)? « 1. So:

I =D +b.E +bF +bC,

34y

iy
: HH, =B, +b D, +bE +bF,

ij=1.6.2.6
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(2.19)

(2.20)

(2.21)

(2:22)
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A [+i k l+-c—
: R, I 1. K PR e,

&omio Loy B Cd=-2 (=—-—) 2.23
[Teefavm] o [retew en
1g TR

We also have:
0 [frURY| [ty A |1, (2.24)
Q| |[n(1-UR)&| | 4, BB, ||,

where:

Adg=Ag-aB va,Disva E BB =A,+b B, +b,D +b E,

5

o 1y 2
=V - . - 2 152
.‘lue k.‘_.l(Qna)*(hk hk-l) . Bﬂﬂ zgl(Qua)k(h b h nl'-l) u.B=4.,5 (2-25)
] N . 1 N —
Dy 3L@p W Wy ¢ Ey 15 e

Finally:

o ,0 0 @ 0 .0

r
BV ELY LR LK T KT, } (2.26)

{NuNl:Ql11l\'rzzNle225{llM‘anj”21 }T ) [P](IOXIO) {

.,0. . . . .
The &, ;Y| 5... and 7, were given earlier in equations (2.5) whereas Pi's

elements are given in Appendix A and defined by equations (2.19-2.21) and (2.25).

Now, we develop 1)Equilibrium Equations, 2)Constitutive Equations,3)Kinematic
Relations (Strain-Displacement Relations) for the following cases: a) Shells of Revolution; b)
Cylindrical Shells; c) Rectangular Plates; d) Spherical Shells; e) Conical Shellsand f) Circular

Plates.
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2.5 Shells of Revolution

2.5.1 The Equilibrium Equations

We substitute the geometry definitions of shells of revolution (Figure 2.4) into

equations (2.15).

1 . 0, ]
R—Rm[N'Rocos:p *N, Rysing@+Ny R -N.R cosp} ‘i! *q =i 1B,
°

o ®

1

. Qs
R_&,smw"-"ﬂ' *NpRycos@ -N , Rsing+N R cosp] 7?: *qy=1,d, "ze'o
L J

1 . No No P
WH[Q'Rocos:p'Q“Rssmquva]-R— -E i ATAY (227)
9

1 . L
T Rsmw (M, R,sing - M R.cosp M, R -M,R,cos9)-Q =1 « 135’
L

&T‘smwwn_ Mg Rosing +M R, + M, R,c0s0]-Q, =L, LB,
where the (@, 8) and (Ro, R@) are curvilinear coordinates and curvature radius of the
revolution surface, respectively (Figure 2.4),
2.5.2 Constitutive Equations
We have the same equations as those of (2.26), but the definitions given in equations

(2.20) must be changed.

L '8
1 1,1 1 1 (2.28)
b= i by (o) 5 by s
' Rv RC ? R! RQ Rv ? R,Rze

The constitutive equation is given in Appendix A-2.
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2.5.3 Kinematic relations (Linear Strain-Displacement Relations)

Using geometrical parameters given in (Figure 2.4), equations (2.5) can be defined

as shown below:

1
— 0 0
(-UR))

€ 1
: 0 —(l ‘qu) ] 0
(-]
0 _r _ 1
Toof * (I-UR)) (I-UR)
Yﬂ
0 0 0
Tow
[ 0 0 0 0
where
o 1 o 9Y,
=—(F+—=—2)
L 4 O(P
1 9 1 w
0 = e——— r—cotgolU +— ;
® R;sing 60 R, * R,
l GUG
® R. do
1 6U° Ue
e — ~—colge ;
¢ Rsing d0 R,
p"':.l_é.lz-_(j_',vﬁ' 3
Rv o Rv

0 0
[[e
9 ‘.
0 0 ¢, %
1.
0 [ ) (2.29)
Y T
1 o 0
TR i
(TR o
1 By
(1-GR)
L,
° R. do
X, 1%, P, ¢
=+ 20
® Rysing 36 R L
1 aso
T,"ﬁ:a (2.30)
@B
r°=—l_——7'--—-2catgq>
R sing 60 R'
o 1 aw U
P»,:'k.—:—'-—e*ﬁg
Sing ¢8R,
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2.6 Cylindrical Shells

2.6.1 The Equilibrium Equations
Using the geometry definitions of circular cylindrical shells given in (Figure 2.5),
equations (2.27) will become:
GN_ (N,
R A
N, | oN, QM o

dtRaBR 18 "1e

90, 190, Voo _

= R® R (231)
IM_ | oM,

_ax 'E 8 -Qu ll' IIB

1 EM“ M

69

RO Tox Qg =ity 1B,

where x and @ are curvilinear coordinates of the cylindrical shells (Figure 2.5)

2.6.2 Constitutive Equations
Equation (2.26) can be used by changing the definitions given in (Figure 2.5). This
equation is given in Appendix A-2.

1

a,,i;a,.o.;a,.o.;bl 1

1
RO ib 0 (2.32)

2.6.3 Kinematic Relations(Linear Strain-Displacement Relations)

The kinematic relations are obtained by using equation (2.30) and shell geometry

definitions.
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o _ 8 Y" = 9 =, z
. SR R > ' a&x ' "R
B ap 3B p
K =—D ;K= ! - 4 ;0T =_0 [ 4 =l_‘ (2.33)
* Ox % RGO LI 4 ® Ra0
, 2% , 12w U
WoeomtB, 3 Wyems=oh
ox Rd6 R

Substituting the above equations into the constitutive equations (taking into account
the coefficients which were given in equations (2.32)) and then into equations (2.31), we

will obtain:

LUV WP BP0 (k-12,..5) (2.34)

These relations are defined fully by the equations given in Appendix A-2. In order
to compare them with classical shell theory, the three equations of motion for cylindrical
shells are also given in Appendix A [147].

2.7 Rectangular Plates

2.7.1 The Equilibrium Equations

The same cylindrical shell equations are used, taking into account the rectangular

plate geometry definitions (Figure 2.6), so equations (2.31) become:



(2.35)

2.7.2 Constitutive Equations

We have the same equations as those of (2.26), but the definitions (2.20) must be

changed. This equation is defined in Appendix A-2.

(2.36)

a,=a, =“3=b| =62 =b3 =0.

2.7.3 Kinematic Relations(Linear Strain-Displacement Relations)

These relations can be obtained by substituting the structural geometry definitions

into the kinematic relations of cylindrical shells (2.33).

. au, aUy éUy aU,
€ '-_GT v € ’-—ay- s f'-a_x v o oy
g é gl d
K %P, ; k= Py ; T= P ; T= P, (2.37)
T gx r gy * ogx Y o
- _OW ° _BW’
£ ax "B, H ’—3 5,

Now, we can substitute the constitutive equations into equations (2.35) in the same
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way that we obtained the five differential equations for the case of cylindrical shells, and can

obtain the implicit equations as (2.34). These equations are given fully in Appendix B-2.

2.8 Spherical Shells
2.8.1 The Equilibrium Equations
The equilibrium equations for the spherical shells can be derived by using the

equations (2.27) and following definitions (Figure 2.7).

re=rv=R

cosecQ _— +Q¢ .
T[choyp*rNo'vsmcp Ny o~Nycose] -F*qv—lluodzﬁo

1 Q .
2 N, gcoseco+N, coigo+N o +N_cotgy] +TG +qy =15+ 1B,

(2.38)

I N, N, )
R [Q,,CWS‘P +Q19.¢v+ QQ'GCOSCCQD] - —R— '—R— +qn=1|w

1 M n

R M, +M cotgp+M,  cosecop-M, corgo]-Q =/ i + [JBO

1 .
7 M, coseco+M , +M_cotgo+M, corgo]-Q, =L, 1B,

2.8.2 Constitutive Equations
We have the same equations as in (2.26), but the definitions given in (2.20) must be

changed. These relations are given fully in Appendix A-2.

1
e by =b, 0. ;@b (2.39)
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2.8.3 Kinematic Relations

Substituting 7, =r, =R into the definitions of (2.30), equations (2.5) are defined as

below:
1 9U 1 6Us 1 W ldU 1 GU
& = (—2 [ o L Sy —_— . :
2% S mme e RPUR TR D e @ R“”g"u
198, ! B, 1 1 5B, 1 B,
. A . . )
x,* e - Xy= o 30 Rco:gq)ﬁ . Rde T,= Roino 30 Rcorgq)ﬁn (._.40)
. law U 1w A
B et o e *By
*Rop R ' Rsing 68 R

Now, we substitute relations (2.40) into the constitutive equations and then into
equations (2.38), giving five differential equations which describe the equations of motion
in terms of the displacement field and mechanical properties of the shell, so that we have the

same implicit equations as in (2.34). Li’s equations are given in Appendix C-2.

2.9 Conical Shells

2.9.1 The equilibrium Equations

We substitute the geometry definitions of conical shells (Figure 2.8) into equations

(2.27):



coseca
X

coseca 1 " o=
X N9,9+Nx0,x+xtanaQ8+q9=IIuB+IZﬂ0

Nﬂx_e +Nx.x +qx =Il ﬁx +[26 x

coseca | -
= 200" Qs Tmate a0 (2.41)

coseca

Moo "M, -0, =03 1P,

coseca
b4

M, oMy~ QgL+ 1 B,

2.9.2 Constitutive Equations
Equation (2.26) has to be modified by changing the definitions given in (2.20) to

obtain the constitutive equation of the conical shells. This equation is defined in Appendix

A-2.
l
a= = az=0 : aJ=O
e . 2.42)
b =- ; b= i b.=0
' stana 2 an'a ;

2.9.3 Kinematic Relations (Linear Strain-Displacement Relations)
These relations can be obtained by using the strain-displacement relations of shells

of revolution (2.30) and conical shell geometry definitions given in (Figure 2.8).

U lan W an 1 U
e === ; &%= + Y=
* 9 xsina 0 xtana * & % rsina 90
N U . S .. (2.43)
' ox ® xsina 3@ ' * ox 8 xsina 00
1 aw_ Y,

9_3W+B ) -
SR R R e —

+B9
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The five differential equations of motion for conical shells, in terms of the
displacement field and mechanical properties of shells, can be obtained by substituting the
kinematic relations first into the constitutive equations, and then into the equilibrium

equations. These implicit equations L,’s are given fully in Appendix D-2.

2.10 Circular Plates

2.10.1 The Equilibrium Equations

These equations are obtained by using circular plate geometry definitions (Figure

2.9) and the same equations as we used for conical shells (2.41).

laNO’ GN" ) .
R @ o *q =l 1B,
laNae N,
R 3® or
og,, 9Q,

l___m T +q =I W (2'44)

Rdd o ™1
oM, oM,
R ® o =r

oM, oM
lJfJ—Q SR
R 8 ar =< 2' 3Pe

+qy =1, + 1.,

2.10.2 Constitutive Equations

Changing the relations defined in (2.20) and substituting in Equations (2.26), the

constitutive equation for a circular plate can be obtained and is given in Appendix A-2.

(2.45)
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2.10.3 Kinematic Relations (Linear Strain-Displacement Relations)
These equations are obtained by substituting the geometry definitions of circular

plates into the conical shell kinematic relations:

U U, U, 5U
e° =’ . o :-l-_._e. : =___e . =.L_—’
r3r ' ® RG8 r 3 ' '8 RGH
as | 38, 2, 1 38,
=.._’ - = M = s T i 2.46
% %R - F ' "R (2.46)
LW, LW,
L

We substitute relations (2.46) first into the constitutive equations and then into

equations (2.44), and obtain five differential equations which are defined in Appendix E-2.

2.11 Characteristic Equation

In the present theory, 8, and B, which represent the rotation of tangents to the
reference surface oriented along parametric lines a, and a,, cannot be expressed in terms of
U, and W. Therefore, the five differential equations of motion cannot be reduced to 3 as in
classical shell theory. In the case of cylindrical shells, we obtain five differential equations
of motion as shown in A-2.2 to A-2.6 in Appendix A. Also listed in Appendix A are the three

differential equations (A-2.7 to A-2.9) of Sanders’ cylindrical shell theory.

The accuracy of the finite element method depends primarily on the number and size
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of the finite element into which the structure is divided. Good accuracy can generally be
obtained with a sufficiently large number of small elements. The optimum degree of
approximation in the element stiffness and mass matrices will depend upon many factors,
the most important perhaps being the choice of the displacement functions and the degree
to which they satisfy the convergence criteria of the finite element method, here we do not

mean numerical convergence but absolute convergence to the continuum.

The characteristic equations of vibration analysis of anisotropic laminated open
circular cylindrical shells, formulated on the basis of the present theory. have been compared
to that of Sanders’ shell theory [Ref. 147]. Assuming the displacement functions for the

dynamic analysis of anisotropic circular cylindrical shells to be as follows :

u(0) Ae™
Ux,0) Cosmx 0 0 o 0 ' ' o
ixO | Lo s o o o ||MOf |
PO -3 0 o smm o o [{YOr-Y(rifceV}
e [}
B,(x.8) 0 0 0 Cosmx o [|B® De¥ (2.47)
By(x.9) 0 0 o0 0 Sinmx| B, (8)
i E'e"'o
where: L
— mx
el
Z

we substitute these definitions into the equations of motion for cylindrical shells
(2.34). We then take into account that the non-trivial solution leads to a tenth order

polynomial equation (2.48) (characteristic equation) due to five degrees of freedom pernode,
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instead of an 8" order equation (2.49) [Ref. 147, equation 10]:

ARCANARARARAL @49

where f; (i =0 to 10) are the coefficients of the determinant of the matrix [H] given

in Appendix A. For the case of isotropic cylindrical shells based on classical shell theory,

we obtain:

hgn®+hn®+h 0t +h o’ +h =0. (2.49)

where A, (=0 to 8). The coefficients of the characteristic equation of cylindrical
shells based on Sanders’ shell theory, are given in [Ref. 147]. Each root of the characteristic
equation (2.48) yields a solution to the equations of motion (2.34). The complete solution
is obtained by finding the sum of all ten solutions independently with the constants 4, B, C,
D; and E,. The fundamental unknowns consist of the ten strain components, ten stress
resultants and the five generalized displacements of plates or shells.

It is necessary to formulate ten boundary conditions for the finite elements, the axial,
tangential and radial displacements as well as the rotations will be specified for each node.
The displacement functions for this theory are derived and mass and stiffness matrices of

each element are obtained by exact analytical integration
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The roots of the characteristic equation for equations (2.48,2.49) obtained by the
computer program are given for isotropic and anisotropic materials. One such set of
calculation is shown in table (2.1), where the computed values based on Sanders’ theory,
made by authors of reference [139], were compared with those from other theories, given in
ref.[139]. Tables (2.2,2.3) show the characteristic equation values of equation (2.49), ref.
[147], and those of equation (2.48) obtained by the present theory.

A cross-ply layered ( 0°/90°/90°/0°) cylindrical shel! with the following material
properties were used as a anisotropic material example. All layers are assumed to have the
same geometric and material parameters and the individual layer is assumed to be
orthotropic.

E;=25E,; G»=0.2 E, ; G;5=G,,=0.5 E, ; v;,=0.25 ; p=1

2.12 Discussion and Conclusion

General equations of multi-layered laminated anisotropic shells were developed by
taking into account the shear deformation and rotatory inertia effects as well as the initial
curvature. We believe that these effects will be more pronounced on the dynamic behaviour
of anisotropic shells than on the isotropic materials. The derivation was from geometrically
linear theory for small elastic strains and from strains expressed in orthogonal curvilinear
coordinates for general shells. The virtual work principle was applied in order to derive the
equilibrium equations. The work of several researchers on this particular subject has been
reviewed and summarized.

The theory used yields five coupled linear second-order differential equations with
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constant coefficients, instead of 3 equations, as in the case of other theories. The reason for
this is that transverse shear strains do not vanish in the present theory and, therefore, the 5;
cannot be expressed in terms of displacement components. This theory leads to no strain
during rigid body motions.

A paper currently under preparation will deal with the static and dynamic analysis
of open and closed non-uniform anisotropic laminated circular cylindrical shells with
arbitrary boundary conditions. The effects of transverse shear deformations on the vibration
characteristics of cylindrical shells of different geometrical ( R/, L/R and L/t) and material
(isotropic, symmetric and anti-symmetric cross-ply laminated shells) parameters, as well as
axial and circumferential wave number (m, n), are handled through several numerical
examples with reasonable agreement with other theories. The computational method used
is a combination of hybrid finite element analysis based on the method of reference [139] and
refined shell theory. The displacement functions are obtained using the new shell equations
developed in this paper.

The first preliminary results indicate that the presence of the transverse shear
deformation effects is very significant and tends to reduce the frequency parameters specially
for laminated anisotropic shells. It has been suggested that the reason for the difference is a
change in shear angle from layer to layer and the insensitivity of the CST (classical shell
theory) to this change.

Further work is under way to apply this theory to the dynamic analysis of open and

closed anisotropic cylindrical shells filled with or subjected to a flowing fluid.
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2.13 Appendix A-2
This appendix contains the constitutive equations and equations of motion for thin
anisotropic plates and shells which were referred to this paper. The Appendix is divided into
five parts, covering respectively cylindrical shells, rectangular plates, spherical and conical

shells, and circular plates.
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The P,’s elements (4,, B, D; G, GG, H, HH, I, II, J; and JJ,) have been
defined by equations (2.19-2.21) and (25) .
Cylindrical Shells

The equations of motion are defined by the following equations:
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The equations of motion for a thin cylindrical shell (Hybrid finite element method

based on Sanders’ shell theory) are defined as below [147]:
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Rectangular PlatesThe L;’s equations are given below:
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Spherical Shells

The L;s equations (equations of motion) are given below:
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Circular Plates

The five differential equations of motion are defined as follows:
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2.19 NOMENCLATURE

A, A, :Lamé’s parameters

A;; : extensional stiffness Eq. (2.21)

a, b; (i =1,2,3)defined by Eq. (2.20)

B;; : bending-extensional coupling stiffness Eq. (2.21)

D; :bending stiffness Eq. (2.21)

E.s: Young’s moduli of elasticity Eq.(2.10)

f, (=0,2,4....,10): coefficients of the characteristic equation Eq.(2.48)

Ggg: rigidity moduli of elasticity Eq.(2.10)

g (~=1.2,3): geometrical scale factor quantities Eq.(2.2)

[, : inertia moment

L; : motion equations Eq.(2.34)

M; (i=1,2): the moment resultants applied in o;’s direction

M; (ig=1,2 ; i #j) :the moment resultants applied on the middle surface in ¢s direction (g;
=cte)

m : defined by Eq.(2.47)

N; (i=1,2): the in-plane force resultants applied in o;’s direction

N;(1j=1.2; i #j) :the in-plane force resultants applied on the middle surface in a;’s direction

(a;=cte)



P; : terms of elasticity matrix( i=1,... ,10 ; j=1...., 10)

Q; (ij=1.2,3) : the elastic stiffness in the material coordinates Eq.(2.10)

-Q-i,- (1§=1,2,3) : the elastic stiffness in the global coordinates Eq.(2.14)
Q; (i=1,2) : the transverse force resultants

Q> 91, qQ, : the external force vector

R, (i=1,2) : curvature radius

h : thickness of the shell

h,: thickness of the lamina Eq.(2.21)

h; (i=0.2,4,....8): Coefficients of the characteristic equation Eq.(2.49)

uy, u,, w : the displacement vector components
ii,(i=1.2) and w : defined by Eq.(2.15)

T; (1j=1.2,3) :transformation matrix elements Eq.(2.13)
o, and o, : curvilinear coordinates of the surface

B; and B,: the rotations of tangents to the reference surface

B.(i=1.2): defined by Eq.(2.15)
g; : deformation vector components

o; : normal stress vector components Eq.(2.9)
T,: shear stress vector components Eq.(2.9)

p : density of the shell material



145

{ : distance of the point from the corresponding point on the reference surface along the
normal direction

n : roots of characteristic equation Eq. (2.48,2.49)

€%, and €% : normal strains of the reference surface

Yin ( i=1,2) and v,,: shearing strain components Eq.(2.3)

¥°, and ¥%: in-plane shearing strains of the reference surface
K, and K, : change in the curvature of the reference surface
T, and T, : torsion of the reference surface

1 and p% : the shearing strains

v; . Poisson ratios Eq.(2.10)
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Table 2.1 Roots of characteristic equations for 12R2(1-v*)/t*=4x10"* and v=0.3

Fliigget

Vlasovt

Naghdi&
Berryt

Timoshenkot

Novozhilovt

10.2020
+9.8026i

10.1952
+£9.8104i

10.1955
£9.8107i

10.2025
+£9.8027i

10.2022
+9.8024i

10.2027
+£9.8030i

1757
+.17051i

1758
+.17040i

1756
+.17060i

1758
£.17040i

1757
+.170501

1760
+.170201

10.4650

+9.5682i

10.4581
£9.5761i

10.4591
+9.5771i

10.4652
+9.5632i

10.4645
+9.56741

10.4660
£9.5690i

43961
+.40598i

43990
+.40570i

43960
+.40590i

44000
+.40560i

43960
+.40601i

44030
+.40520i

15.2860
+7.3965i

15.2533
+7.4851i

15.2881
+7.4183i

15.2840
£7.3951i

15.2796
£7.3859i

15.2737
+7.40301

5.2613
£2.5783i

5.2610
£2.5719i

5.2759
+2.5766i

5.2645
£2.5741i

5.2657
+2.5779i

5.2860
+£2.5342i

* Data from computer programe of authors [139]
T Data given in [139]
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Table 2.2 Roots of characteristic equations (2.48,2.49) for isotropic materials(m=1).

89 ,+34.0672
L/R=1 +4.8899+1.2551i +5.3039+1.3630i
R/t=20 +2.3750+3.8041i +1.2718+3.7971i ,£69.0023
L/R=1 £5.4940+1.6173i £6.0694+2.1717i

Table 2.3 Roots of characteristic equations(2.48.2.49) for anisotropic materials
(0°/90°/90°/0°).

“ v

+2.7864. +21.9869

+5.4093+4.3960i +5.4873x1.2258i
1
R/t=10 +4.5689, +43.9733 +4.5045+3.83861 ,£6.3269
L/R=1 +11.0662+8.6369i £12.7532+4.7411i




148

Reference Surface E

(B)

Figure 2.1  A) Differential element of a shell
B) Definition of shell coordinate system
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1 (Longitudinal)

. 2 (Transverse)

Unidirectional lamina and principal coordinate axes

e22

Fi
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Mth layer —

\
Kth layer —_—
(K-1)th layer —_—
Ist layer

Middle surface @————-—___
Oth layer —
(-Dth layer ,,»—'f’j )

-(K-Lth layer
-(K)th layer
-(N)th layer

Figure 2.3  A) Multidirectional laminate with coordinate notation of individual plies
B) A fibre reinforced lamina with global and material coordinate systems



O=cte: ds=r, d¢ A=R, A,=R;sind
=cte: ds=rd®@ R,=R, R,=R,
a,=d o,=0 0A,/0a.=0. AA/Ja,=R,cosd

Figure 2.4  Surface of Revolution



\ /72 V_\LW
L _
(A)
(B)
6=6 R,d¢=dx
d=x R¢=~ R,=R
¢=n/2 cos ¢=0. Sin ¢=1.
Figure 2.5  A) Circular cylindrical shell geometry

B) Positive direction of integrated stress quantities
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Figure 2.6  Force and moment resultant on a plate element

[—o 9—+°° r d9—+dy
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Figure 2.7 Geometry of spherical shell
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R,== sing=cosa
R,=xtana. cosd=sina

¢=Tt/ 2-0 l"d‘—!dx

Figure 2.8  Geometry of conical shell
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a=n/2

Figure 2.9  Circular plate element
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CHAPITRE IHI

TRANSVERSE SHEAR DEFORMATION IN FREE VIBRATION ANALYSIS OF
ANISOTROPIC OPEN CYLINDRICAL SHELLS*

M. H. Toorani and A. A. Lakis

Département de Génie Mécanique, Ecole Polytechnique de Montréal
Case Postale 6079, Succ. Centre-ville, Montréal, Canada H3C 3A7

3.1 Abstract

This work presents a refined approach to the static and dynamic analysis of thin
laminated anisotropic, open and closed cylindrical shells by taking into account the shear
deformation effect and rotatory inertia as well as the initial curvature. The method used is
a combination of hybrid finite element analysis and the shear deformation theory of shells.
The shell is subdivided into cylindrical finite elements and the displacement functions are
obtained using the shell equations based on orthogonal curvilinear coordinates. The set of
matrices describing their relative contributions to equilibrium is determined by exact
analytical integration. This theory gives zero strains for small rigid-body motions and

therefore the displacement functions based on it satisfy the convergence criteria of the finite

*: Soumis pour publication dans “ Journal of Computers& Structures”
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element method. This theory yields five coupled linear second-order differential equations
with constant coefficients. They are solved in conjunction with five boundary conditions at
each edge by a hybrid finite element method. Reasonable agreement is found with other

theories.

KEY WORDS: Hybrid Finite Element, Cylindrical Shell, Vibration, Shear

Deformation, Anisotropic

3.2 Introduction

Shells are widely used as structural elements in modern construction engineering,
aircraft construction, ship building, and rocket construction, and in the nuclear, aerospace,
aeronautical, petroleum and petrochemical industries. In order to minimize the number of
problems which may arise during industrial use, it has become very important that the static
and dynamic behavior of these structures, when subjected to different loads, be known and

understood.

Many classical shell theories were developed originally for thin elastic shells, in both
linear and non-linear cases, and are based on the Love-Kirchhoff assumptions which are as

follows:

1) the shell is thin; 2) the displacements and rotation are small; 3) normals to the

middle surface of shells before deformation remain normal after deformation, and 4)
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transverse normal stress is negligible. These assumptions could lead to gross errors in the
prediction of transverse deflections, natural frequencies and buckling load due to the neglect

of transverse shear deformations.

Surveys of various classical shell theories can be found in the works of Bert (1980),
Reissner (1952) and Naghdi (1956). Papers covering the work of several researchers have
been collected by Leissa (1973) into one excellent book. Elegant representations of Love’s
shell theory can be denived strictly by definitions from surface theory without reference to

3-D relationships (Kraus 1967 & Ambartsumyan 1964).

There is an inconsistency in Love’s original theory since all strains do not vanish for
any rigid body motion. This inconsistency was solved by Sanders (1962) by redefining the

force and moment resultants in such a way that the rigid body strain anomaly disappeared

The thin shell assumption in Love’s theory has been replaced by the less restrictive
requirement on the thinness of the shell presented by Fliigge, Lure and Byme (Kraus 1967).
Their theory also eliminated the rigid body strain anomaly. Koiter (1960) discussed the
significance of the Love’s approximations and, based on an order of magnitude study, stated
that refinements cannot be consistently made unless transverse deformation effects are

included. Other prominent related theories include those of Novozhilov (1959).

The majority of the theories listed above have been applied to a shell so thin that all
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transverse deformation effects, transverse stresses and strains, can be neglected. These
transverse effects become more pronounced as the shell becomes thicker relative to its in-
plane dimensions, especially the transverse shear deformations (Koiter 1960). For this
reason, classical theories can be grossly in error in the prediction of transverse deflections,

buckling loads or natural frequencies.

These errors are even higher for plates and shells made of advanced composite
materials like graphite-epoxy and boron-epoxy, where the ratio of elastic modulus to shear
modulus is very large (e.g., of the order 23 to 40 instead of 2.6 for isotropic materials). The
shear deformation effect plays a much more important role in reducing the effective stiffness

of anisotropic laminated composite plates and shells.

Advanced composite materials are increasingly being used in a variety of industries
because they have a high ratio of strength and stiffness to weight. For this reason, structural
elements made up of these materials are being extensively used, e.g. in the aerospace,
shipbuilding and petrochemical industries, etc., where complex shell configurations are
common structural elements and offer unique advantages over those composed of isotropic

materials.

In general, these materials are fiber-reinforced laminates, both symmetric and anti-
symmetric, cross-ply and angle-ply, which consist of numerous layers each with different

fibre orientations. Although the total laminate may exhibit orthotropic-like properties, each
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layer of the laminate is usually anisotropic. Therefore, in order to gain insight into the
actual stress and strain fields, the individual properties of each layer must be taken into
account. A number of theories for layered anisotropic shells exist in the literature. Many of
these theories were developed for thin shells and are based on the Kirchhoff-Love

hypothesis.

The transverse shear deformation effect on non-linear vibration and post-buckling
behaviour is significant, especially for the laminates with moderately significant thickness,
a high circumferential wave number and greater number of layers. Study of this effect shows
that it can become quite meaningful for some geometrical parameters, such as small radius

to thickness or length to thickness ratios, as well as for shorter wavelengths or longer shells.

In addition to the transverse shear deformation, the initial curvature effect should be
considered, as indicated by Voyiadjis and Shi (1991) for isotropic materials. The initial
curvature effect is very important in making accurate predictions of stresses even in the
central region. In the shell structure, the curvature of each parallel surface through the
thickness of the shell is different. To consider the initial curvature effect, the term /+z/R has

to be included. The presence of curvature effectively increases the structural stiffness.

Hilderbrand, Reissner and Thomas (1949) were the first to make significant
contributions by dispensing with all approximations of Love and assuming a three-term

Taylor's series expansion for the displacement vector. Naghdi (1957) employed Reissner's
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(1950) mixed variational principle to develop a complete shell formulation similar to that of
Hilderbrand et al. (1949), retaining two and three terms in the Taylor's series expansions for

tangential and transverse displacement components, respectively.

Dong and Tso (1972) were perhaps the first to present a first order shear deformation
theory, retaining one and two terms in the Taylor's series for transverse and tangential
displacement components respectively . The theory includes the effects of transverse shear
deformation through the shell thickness, and thence they construct a laminated orthotropic
shell theory. The parabolic shear strain distribution has been used by Bhimaraddi (1984) to
analyze the linear vibrational behavior of isotropic cylindrical shells. The effects of
transverse shear deformation and transverse isotropy as well as thermal expansion through
the thickness of cylindrical shells were considered by Gulati and Essenberg (1967), Dong

and his colleagues(1962), Hsu and Wang (1970).

Reddy (1984) extended Sanders’ (1959) theory for simply supported cross-ply
laminated shells assuming five degrees of freedom per node. The theory is based on a
displacement field in which the displacements of the middle surface are expanded as cubic
functions of the thickness coordinate, and the transverse displacement is assumed to be
constant throughout the thickness. The Navier-type exact solutions for bending and natural
vibration are presented for cylindrical and spherical shells under simply supported boundary

conditions.
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A survey of the analyses of multilayered composite shells using Reissner's mixed
variational principle was carried out by Grigolyuk and Kulikov(1988). Noor and Peters
(1987) presented an analysis of the free vibration of laminated anisotropic shells of
revolution and the sensitivity of their response to anisotropic material coefficients. Noor and
Peters’ analytical formulation is based on a form of the Sanders-Budiansky shell theory,
including the effects of both transverse shear deformation and the laminated anisotropic

material response.

Ren (1989) presented an exact solution for simply supported laminated cross-ply
circular cylindrical panels of infinite and finite length in the axial direction. Leissa et al.
(1981) analysed the vibration of cantilevered cylindrical panels by using the Ritz method,

with algebraic polynomial functions for the displacements.

The static response of the axisymmetric problem of arbitrarily laminated, anisotropic
cylindrical shells of finite length using three-dimensional elasticity equations was made by
Jing and Zeng (1993). The closed cylinder is simply supported at both ends. The accuracy
of a solution obtained by the finite element displacement formulation depends on whether
the assumed functions accurately model the deformation modes of the given structure. To
satisfy this criterion. Lakis and his group have developed a hybrid type of finite element, in
which the displacement functions in the finite element method are derived from Sanders’

(1959) classical shell theory.
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This method has been applied with satisfactory results to the dynamic linear and non-
linear analysis of cylindrical shells, both closed and open ((Lakis and Paidoussis (1971),
(1972) & Lakis (1976) & Lakis and Doré (1978) & Lakis and Laveau (1991) & Lakis and
Sinno (1992), Selmane and Lakis (1997), Toorani and Lakis (1999)), spherical (Lakis et al.
1989), conical (Lakis etal. 1992), isotropic and anisotropic, uniform and axially non-uniform

shells, both empty and liquid-filled.

The main purpose of this work is to study the shear deformation, the rotatory inertia
and the initial curvature effects on the static and dynamic behaviour of thin, anisotropic and
non-uniform open and closed cylindrical shells. The flowing fluid effect on the natural

frequencies of these shells will be the subject of a later work.

3.3 Basic Theory and Method

Many classical sheil theories were developed for thin elastic shells and a two-
dimensional (2-D) theory, surface definitions, is used to approximate three-dimensional
phenomena. These theories are based on the Love-Kirchhoff assumptions in which transverse
shear strains and stresses are frequently excluded. In this particular case, we use general 3-D
strain-displacement relations expressed in arbitrary orthogonal curvilinear coordinates to
define the strain displacement relations which can easily be incorporated three-

dimensionally.
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This work is based on the following assumptions:
a) linear elastic behaviour of laminated anisotropic materials;

b) the shell is thin and therefore we can assume that the normal stress is
negligible compared with stress tangential to the shell surface, and also that
the transverse normal strain 83 =() because the transverse fibres of the shell

are approximately inextensible;

c) 3-D strain-displacement relations are expressed in arbitrary orthogonal

curvilinear coordinates;

d) the transverse shear deformations, the rotatory inertia and the initial curvature

form the basis in the development of the governing equations;

Consider the infinitesimal line segment MN, which is infinitesimally near another
one, of length ds embedded in a differential volume element B before transformation. As a
result of the deformation M and N are displaced to M* and N* respectively, by the
displacement vector &« (Figure 3.1). The change in length of the element MN can be

expressed by:

(ds+)*-(ds)? =2y, dy,dy, 3.1
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where the quantity [(ds ')" ~(ds)’]is an invariant and Vi Vi is a second-rank
symmetric tensor called Green’s strain tensor and ): are the orthogonal curvilinear

coordinates of the undeformed system. The physical strains, €ij, are defined as [Saada 1993]:

Y
&= h (3-2)

if
h
1y

where. the A: are called scale factors and defined by Gq =h:'2 (no sum), and Gijis a
metric tensor which links two coordinate systems. The y, are given in the Appendix A-3,
where the u:are the coordinates of the displacement vectors, #. For rigid body motion, the

elongations £, (no sum) and the shears e'.j(i #f)are identically zero, and therefore there are

no theoretical limitations.

The geometrical scale factor quantities (A:i’s) must be defined to use the strain

displacement relations for the shells. We now consider a shell geometry that can be described
by orthogonal curvilinear middle surface coordinates, a and a,, surface normal fand radii
of curvature, Rr and R: as shown in (Figure 3.2). For this geometry, the scale factor terms

are defined below:

h =yE(1-&R) , h,=/G(1-&/R,) , h =1 (3.3)



167

where E and G are called the first fundamental magnitudes and are related to the

elements of the surface metric [Kraus 1967 Page 9].

3.3.1 Kinematics

We consider the following kinematic relations for the arbitrary shell described by

orthogonal curvilinear coordinates.

U@ 5,8)=(1 = (0,0,) 2B, (@2,
i

a,a,8)=(1 ~R£)uz(a,.uz)+§rszcul.uz) G4
2

Waa,8)=w (a,a,)

where the five degrees of freedom, #,, U, W. 8, and f3, are functions of the in-plane

coordinates &, and @, in which %,, %, and W are, respectively, the axial, circumferential

and radial displacements, and fa(oc=1,2) are rotations of tangents to the reference surface

oriented along parametric lines a/ and a2 respectively.

These theories relax the Kirchhoff-Love hypothesis which requires normals to the
mid-plane to remain normal throughout deformation. If we substitute equations (3.4) into

equations (3.2), we obtain the following strain-displacement relations for cylindrical shells:
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a
=g° +
g, =t +Ex,
=p° +
€y=8"s *EK,
wy  =fny0 o =
o= Y )¥E(E +T) (3.5)
=11° =
YIII—'.I Fy 281)‘
=y =2
YOn H 8 "eﬂn
au 3B
e == =t
* ax T
1Y% w « L%
® R R " R0
ol JB, 1 90,
- 8 . re (]
“E VE W (3.6)
o 1% 1P 1,
¢ R0 Y RG8 gl o0
. W . 1w Uy
L Mozm TP

where &, ¥, k,; 7,and u° are, respectively, the normal and in-plane shear strain, the

change in the curvature and torsion of the reference surface, and the shear strain components.

The interested reader is referred to [Toorani and Lakis 1999].

3.3.2 Constitutive Relations

The relationship between the stress and strain vectors (Hook’s law) is:

{o} =[P |{e}

G.7)

The constitutive equation of the Kw lamina (for a lamina of fibre-reinforced
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composite material) in the lamina reference axes (/,2,3) can be written as follows (Figure

3.3):

6l QN QD Ql] o v cl
Sl (€0 @@y 0 0 0 e
o 0.0. 0 0 0 |]e

3 += Q)I n 33 3 \ (3,8)
/|0 0 020, 0 o]||g,
T 0 0 0 o 20, V] £,
)0 0 0 0o 0 20|,
_ lG _ [G ~ lG

rzs“'z' 13%23 tn'i 353 tuz'i 1212 3.9

The [Q] matrix denotes the elastic stiffness in the material coordinates (local axes).

The Qi’s elements are defined as follows:

0,E(1-v,v, ¥a Q=G

Qu=Epfl-v, v, VA ; Q=G

O, =E (1-v v VA ; Q=G
0,50y, "V, VR )E, A=V, *V,V JE,JA (3.10)
0,7V, VoV B, JB=(v,y +V V. E, JA
0,5V, V.Y, |)E:2/A=(Vn +vuvu)En/A

A=l-v v —V,V

2V v._-2v_ v Vv

2 VnYi " VaVn's

where E; ,G,and v;are, respectively, Young’s moduli of elasticity in the principal

directions, rigidity moduli which characterize the change of angle between the principal
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directions, and the Poisson ratios which characterize the transverse contraction (expansion)

under tension (compression) in the directions of the coordinate axes.

The stress-strain relations of the K [amina in the laminate coordinate axes (x,y.z

global coordinates) can be written as (Figure 3.4a):

o, Q_l-; Q_u: Q: 0 0 ZQlc €
5, | 19 0.0, 0 0 20, %
el Em T 0 0y
{0 = = . (" 3.1
Tl [0 0 0 20,20, 0 | |,
tn 0 o o 20,20, 0 Yen
T 5 5 51 Ir
® 16 26 q 0 0 2Q66 ®

where :

[e]=[71"[2](7] (3.12)

The transformation matrix [T] is defined by:
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m® nt 00 2mn
n* m*00 0 -2mm
[T]= 0 0100 0
0 0 0m-n 0 (3,13)
0 0 0nm 0
-mn o 0 0 0 (mi-nd)

where: m=cosa , n=sina

The orientation angle a is measured counter-clockwise from the x-axis to the 1-axis (Figure

3.4b). The [ O]’s elements are defined as follows:

Ey’s elements:
Q_H=Qn’""2(Q|z*2Qw)"'I"Z'sz"‘ ; Q_zz=Qu"u2(Q|z‘2st)mz"2'Qnm‘
0,7(0,,+0,,-40m*n™+Q, (m*snYy : O =0 n*+Qm’

E;:Qumz‘Qu’lz . g;:—m’ngn»mn’Q..*”‘”("‘2-"2)(912’@“) (3.14)

0,g=-mn’Q, +m’nQ, ~mn(m*-n’XQ,*20,) . D=(Q,,+0,,-20,Imn?+Q (m*-n?)
0,70,

0,20, )mn ;. 0 =(Q,-Q, )mn

0,,=0,m*+Qun® ; O =0, m*+Q n’

3.4 Fundamental Equations for Open Cylindrical Shells

3.4.1 The Equations of Motion

Whenever a new theory based on assumed displacements is developed, the governing
equilibrium equations should be derived by using one of the existing methods. We use the

virtual displacements principle. The circular cylindrical shell geometry and the differential
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element studied, as well as the coordinates used, are shown in (Figure 3.5). The equations
of motion are:

Ny 19Ny 1 My

dx R d8 p2 a0

qx :I!Ex+,1ﬁx

oN. oN, oM
"°+l “«—&rl ﬂ*q:[ﬁklﬁ
dx R d6 R 2R ox ¢ Ve 28

aQu . 1 aQoo _Nﬂ

ST W % 3.15
x Roe R WI® G-15)
oM oM
___xz'+_l__u_Q =1 u[ﬁ
dx R d9 xx = Vs
| OM,, M

o
R ox CehhtlPe

where :

N LY
Lolod=3 [ p®0158)d8 (3.16)
hi

where /, , p™ and & are, respectively, the inertia moments, the density of the lamina

material and the thickness coordinate.

It can be seen that there are five independent boundary conditions to be applied at
given edges. The transverse shear deformations do not vanish in the present theory and,
therefore, the £ i cannot be expressed in terms of Uiand W. The transverse shear theory

recommended here leads to no strains during rigid body motion.
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3.4.2 The Stress Resultants and Stress Couples The stress resultants and stress

couples are given by:

N, o, (Yol (%1

Nap={{%e fL+RYE 5 {Nap=[{Te H1+GR)E

2. |t Q| | (3.17)
M,

The quantities (NVx, Noo, Nx6, Nex) are called the in-plane force resultants, (Mxx, Mos,

Mo, Mex) are called the moment resultants and (Ox, Qss) denote the transverse force

resultants. We notice, in equations (3.17), that the symmetry of the stress tensor (Tx¢ =Téx)

does not necessarily imply that N and Nex are equal or that Mxe and Mex are equal except

in the case of a spherical shell, a flat plate or a thin shell of any shape.

3.4.3 The Constitutive Equations

The stress resultants and stress couples that correspond to the remaining stress are

given by equations (3.17), so, using equations (3.5), (3.11) and (3.17) we have:

N_ €. K
N Aq&Bq/R Aq«»By/R Y, By+D /R B 4+D /R T, N
= . B B ij=1,6,2,6
NOG A'j Aif &% i i L (3.18)
N, (4x4) r. (x4) 1,



B,+D /R B +DJR
Bu’ Bll
M (4x4)

v

+

D,+E/R D +E/R

D D
g [}
4x4) T

Note : Nx8 =N6€x and Mx6 =Mbx

where:

N
.4”=k}:“_l(gq)t(hk—h“)

.
B'l:EE_'I(Q PR ij=1,6,2,6

1 N
P, 3L@) )

R
EI[-E;‘:“'(Q")‘(,!* -h k~l)

ij=1,62,6
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(3.19)

(3.20)

The [A] and [D] are the extensional and flexural stiffness matrices, which relate the

in-plane stress resultant (V) to the mid-surface strains and the stress couples (M) to the

curvatures.

The /B] is the bending-stretching coupling matrix. It should be noted that a laminated

structure can have the bending-stretching coupling even if all laminae are isotropic. All of

the B,,j components can be equal to zero if and only if the structure is exactly symmetrical

about its middle surface.
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2. [204,,+BJR) 204, +BJR)] [p: l
e[| 24 24, ” P’a[
where:
N —
.4”:*2 @9 U hy)
;lN —— 2 2 u‘B=4l5
Buazigl(guo)t(h D
Finally:
c."u‘
x
dua
ox
N e, .
v, v, ar
. Idll» w
Q. h. Rd6 R
Nae t’Q 1 &u‘
Ny, ¥ R0
e =[P] Or:[le-un 1 dw u’ﬂ
We e
M_ ‘. »
M, . =
Moo %, ﬁ . 1 aun
| Mex z dx 2R ox
(] l aBo
R0
1P 1 %
k& ZR: 8 (18=1)
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3.2h

(3.22)

(3.23)
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The &€ ,° ..,and 1, were given earlier in equation (3.6). The elasticity matrix [P]

given in equation (3.23) can be applied to shells consisting of a single or an arbitrary number
of isotropic, quasi-isotropic and orthotropic layers. In the case of an arbitrary number of
orthotropic layers, we assume that these layers function concurrently without slippage. The

[P] matrix is given in the Appendix A-3.
3.5 The Displacement Functions

In the continuum, we express U, V, W, . and B,0f the mean surface of the shell by:

A e"’s
Ux,9) Cosmx 0 0 0 0 %9 ’ )
Mx,0) W0 Sinmx 0 0 0 "0 : Be
D
W(x8)} . 0 0 Sinmx 0 o [{"®}- rHce™ }
By | = o 7 |7
(5 0 0 0 Cosmx o0 |[{P.S D e (3.24)
B,(x.8) 0 0 0 0 Snml|p,@® o
4 E’e"’
where:
— mR

where m is the longitudinal wave number. We substitute equations (3.23) into the
equations of motion (3.15), and obtain the five linear differential operators Li(i=1,2,...,5).
These equations, in which the shear deformation effects and inertia terms as well as the initial

curvature are included, are given in the Appendix A-3.
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L(UV.#.BB,P)=0.
LUV, WB B,P)=0.

LUV B B,P)=0. (3.25)
LUV, W.B B,P)=0.

LUV W B B,P)=0.

We substitute equations (3.24) into the equations of motion (3.25), and obtain:

(A 0
B 0
(H] {ce ={0}
3 1p 0
; . (3.26)
L

(5x1) (5<1)

For the non-trivial solution, the determinant of matrix /H ] must vanish. This brings

us to the following polynomial equation (characteristic equation):

Der([HY) =f, 0"+ £ +f ot £, 4 327

where f;(i=0 to 10) are coefficients of the determinant of the equation of motion [H]
given in the Appendix A-3. Each root of this equation yields a solution to the equation of

motion. The complete solution is obtained by the sum of all ten independent solutions with
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the constants A4,, B,,, C,. D,and E, so that:

u(x) =Ape"°

wx) =Bpe“0

w(x):Cpe"e p=|,...,10 (3.28)
B(x)=D,e™
By =Epe"°

The constants A, . B,, C,, D, and E, are dependent: we can therefore express these

constants as a function of C =

Ap=upCp ,Bp=|3pCp ,Dp =prp , Ep=8pCp r=1.2,.,10) (3.29)

The values of up,Bp,yp and Bp can be obtained from the following relations:

Hu H, H, H, a, -Hy,
Hy H, H, Hy Bp o -Hy } (3.30)
H, H, H, H |y, -H,,
_st Hy, Hy Hss_ 3, -H

The elements of matrix [H] are given in the Appendix A-3. The displacements
U(x,6),V(x,6) and W(x,0) as well as Px(x,0) and Pe(x,0) can then be expressed in conjunction

‘ with the ten C, constants only. We then have:
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U(x,8)

V(x,0)

:;j:; =[T1]‘5,ﬂ[§](s-m) {C}ion 3.31)

By(x.0)

where {C} is the tenth order vector of the constants’ C,.

{Ch={CnaCyo)" (3.32)

Setting[fé] =[LL] [X], equation (3.31) becomes:

[ U(x,0)
Hx.,9)
{0 7] (o) [x] {c}

t ‘ 3.33
B,(x.0) !s:ls) (5x10) (10x10){10%1) (3-33)
By(x.0)

where the [LL] and [X] matrices are given in the Appendix A-3. To determine the ten
C, constants, it is necessary to formulate ten boundary conditions for the finite elements, the
axial, tangential and radial displacements as well as the rotations will be specified for each

node. The degree of freedom at nodal line i can be defined by the vector:
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{Si}={ui v, w, a B,}T (3.34)

The elements, which have two nodal lines and ten degrees of freedom. will have (i,

0=0) and (j, 6=¢) as nodal displacements at the boundaries:

)
L ={ uvrw B‘. B", vy ﬂ',- B",- } r:[ALw-u» {C}uo-n (.35
]
Simply Supported : v=w=@,=N,=M,=0.
Clamped : usv=w=¢@, =@,=0.
Free : N, =M, = Q, =N¢ =M =0.

where the [A] matrix terms are obtained from matrix [R] by successively setting =0

and 6=¢. Multiplying equation (3.35) by [4]"' we obtain:

)
{c}=[A]"{5‘} (3.36)

/

where [A] is given in the Appendix A-3. Substituting for equation (3.33) we get:
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[ U(x,0)
V(x,0) 5
{ P | ][] AT

B(x.0)

L 6o(x'6)

o
4”][5'} (337)

These equations determine the displacement functions.

3.6 Determination of Mass and Stiffness Matrices for an Element

The strain vector may be found by using equations (3.5) and (3.37):

l l[:]J [oQ|[4] l;} (3.38)

Assume that [QQ]=[J}[X], therefore equation (3.38) becomes:

8{, o ]
8} =[Tlxo-= 10)[J mem)[X ](10-10)[‘4]-1(1040){5 } :[BB]{S_} (3.39)
(10x1)

J J

The matrices of [T] and [QQ] are given in Appendix A-3 . Combining equations (3.7)

and (3.39), the stress-strain relations, can be written as:

S
(o}=(7 1[331{ } 640

J
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The mass matrix can be expressed as:

] - ptzZ[N]T[N]M G41)

where d4d=Rdx df. Or
m] =pt ZZ[A "]T{ [R]T[TI]T[Tl][R]}[A *raran (3.42)

Using equation (3.37), equation (3.42), after integration with respect to .x and &, over

the interval. becomes:

(] = pe|4 "[T5} ) (3.43)

where:

@ +fB +1+yy +89
(n,+n)

() .

S(@)= —[
(3.44)

S(IJ)-——(M BB 141y +88) if nem=0
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The stiffness matrix can be expressed as:
Ly f[ ey TryTelrio)le 'lrasae (3.45)

after integration, we obtain:

[K=[4"["ela (.46
The Gy’s general element is defined as:

) RL

G(l‘i)=—2—[PllAlAj+PI-5AIDj+Pl7ArGj+Pl9AJ‘I:i+
PZZBlBj +PZSBIE;' +P28311{j +PZIOBF[; *
P,CC +
P-HD:A j +P44D1Dj +P4TDiGj +P-I9D:Ij *
p ExB _]+P5$E z‘E}+P58Eﬂj+P510Ean+
Pt F+
P GA P GD+P GG+P GI+
P, Hp PBSHE P“HH PmHJ
P IA +P ID P71G +P II+

0 i i ij

PmJ,Bj+PmthEj+P JH. +P JJ]

108 ¢ 5 1010

o) 1 Mo _, . o 20
{_(n,+n ) (e )} i n+m

(347)

I Gli)="22 (P A A +P, AD ++P (T H P,y J] if n,+n,=0
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The [G] and [S] matrices were obtained analytically by carrying out the necessary
matrix operations and integration over x and € in equations (3.42) and (3.45). To do this it

was found necessary to introduce several intermediate matrices, eventually obtaining

expressions for the general terms & and i of [k] and [m], respectively. Because of the

complexity of the manipulations, only the final results are given here. The A, B;, C,, ..., J;

components are given by [J] matrix.

3.7 Stiffness and Mass Matrices for the Whole Shell in Vacuo

As previously mentioned, the complete shell is divided into finite elements each of
which is a cylindrical panel segment (Figure 3.6b). The global mass [M] and stiffness /K]
matrices for the whole structure can be constructed whenever the mass /m/ and stiffness

matrices [k for each element are obtained.

Each of these matrices (/M]& [K]) are of order 5(N+1)-J where N is the total number

of finite elements (Figure 3.6a) and J is the number of constraints applied.

The vectors {Fi}, {Fj} represent the internal forces acting at nodes i and j, respectively,
and {di} are the corresponding displacements. As the shell is continuous, the sum of forces
and moments at a particular node must be equal to external forces and moments applied at the

node. Thus,
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I {e) ) a9

{8,}={8,..} (3.49)
These relationships allow us to superimpose the mass and stiffness matrices of
individual finite elements in order to obtain the global mass and stiffness matrices [M] and
TVIE.

(K] for the whole shell in vacuo. The /K] and /M] matrices will be square matrices of order

J(N+1), wher= N is the number of finite elements.

3.8 Free Vibration

For free vibration, the equation of motion may be written in the form :

[M1{A} +[KT{a} =0. (3.50)

where [A] ={3 |, 32, ..., dn-1}T, N is the number of finite elements, /M] and /K] are
real, symmetric matrices of order J(W+1) x5(N+1), and {3 n-1} is the displacement vector
associated with the lower edge of the last finite element. In the case where the shell has rigid
edge constraints, the kinematic boundary conditions must be taken into account. Accordingly,

[K] and fM] are reduced to square matrices of order 5(N+/)-J, where J is the number of the

constraint equations imposed.
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The solution of equation (3.50) now follows by standard matrix techniques, yielding
the natural frequencies, w, i=/, 2, ..., 3(N+1)-Jand the corresponding eigenvectors. It must
be stressed that the mass and stiffness matrices obtained are associated with a specific axial
wave number, m, as is the nodal displacement vector. Thus the analysis is carried out

independently for each m.

3.9 Calculations and Discussion

As a numerical example, the non-dimensional fundamental frequencies of vibration
for simply-supported shell boundary conditions were computed for a four cross-ply layered
(0°/90°/90°/0°) cylindrical shell. All layers are assumed to be of the same geometric and
material parameters and the individual layer is assumed to be orthotropic. The following

material properties are used:

E\=25E, ; G»,=0.2E, : G,;=G,,=0.5E, ; v{,=0.25 ; p=1

These results were compared with those of [Sciuva and Carrera 1992] to demonstrate
the accuracy and range of applicability of the present theory. Also a comparison with Sanders’
theory (Hybrid Finite Element “HFE” method ) [Selmane and Lakis 1997] is given to
illustrate the effect of transverse shear deformation. The results are shown in Table (3.1) for

various length-to-radius ratios and for three radius-to-thickness ratios.

The radius-to-thickness and the length-to-radius ratio effects are studied through this
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example table (3.1). Comparison of the SDT (shear deformation theory) results with those of
CST show that the shear deformation effect is significant for a length-to-radius ratio smaller
than 1.0 for all ratios of R#. For example, the solution reached by applying classical theory
differs from that reached by SDT by 2% for L/R=50; 7% for L/R=1.0 and from 18% to up to
30% for L/R <=0.1. All laminae which are used henceforth have the same properties as those

of the first example.

In the following examples we study the effect of the axial mode (m) on the non-
dimensional natural frequencies of cylindrical shells for different materials and geometry
parameters. The graph showing different longitudinal vibration modes as a function of the
circumferential wave number (1) are shown in figures (3.7-3.10). The first two figures (3.7
and 3.8) show results for four symmetric layer cross-ply (0°/90°/90°/0°) laminated shells
whose mechanical properties are the same as those of the shell in the previous example, but

their radius-to-thickness ratios are different (R/t=50,100).

These graphs show reasonable agreement between the hybrid finite element (HFE)
method [Selmane and Lakis 1997] and the present theory for m=1I (about 4% difference). As
can be seen, the influence of transverse shear deformation on the natural frequencies increases
with increasing m. One may observe that the gap between the two theories increases as the
axial mode (m) is increased and the radius-to-thickness ratio is decreased to a fixed value of

L/R.
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The mechanical parameters of the shell of the third example (figure 3.9) are listed in
Table (3.2). The interface is taken as the reference surface. It should be noted that, in this
example, the laminate structure is composed of one lamina of steel and another of orthotropic
material, so that all of the B;components (the extension-bending, coupling, stiffness matrix)
are not equal to zero, which means that the bending-stretching, coupling, and stiffness
components are present. The results obtained are compared with those of existing classical

shell theories.

The last example of this series (Figure 3.10) is made for isotropic material. In this
graph, the natural frequencies are shown for longitudinal modes (m=1.3 and 5). [t can be seen
that, as expected, the frequencies are much closer for small values of m and n than for their
large values in comparison with results obtained from Sanders’ theory (Selmane & Lakis

[40]) .

The next two examples deal with the shear deformation effect on the natural
frequencies of isotropic cylindrical shells for various values of the radius-to-thickness ratio.
[n the first (Figure 3.11), the non-dimensional natural frequencies are shown as a function of
the circumnferential wave number (n) for three different values of R/ and the fixed value of
L/R and m. As can be seen, the transverse shear deformation causes the remarkable difference
in the natural frequencies obtained from two theories (present theory and Sanders’ theory) for

R/t < 50 and for values of n.
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The variation of vibration parameter (Q2) of isotropic cylindrical shells with the radius-
to-thickness ratio R/ is shown in (Figure 3.12) for two different values of axial mode number
(m=23), fixed values of L/R, and circumferential wave number (#). This graph shows a

greater difference between the results for R/t < 25 than for R/t > 25.

The variation of non-dimensional frequencies (€2) as a function of the length-to-radius
ratio L/R of isotropic and laminated anisotropic (having different symmetric 0°/90°/0°,
0°/90°/90°/0° and anti-symmetric 0°/90° lay-outs) are shown in (Figures 3.13-3.18). The effects

of different values of R/, L/t and axial mode numbers (1) are shown in these graphs.

Figure (3.13) is drawn for an isotropic shell showing the non-dimensional frequency
variations as a function of the L/R ratio and for different longitudinal vibration modes
(m=1,3,5). Figure (3.14) shows the non-dimensional natural frequencies of a cross-ply
cylindrical shell for the symmetric lamination scheme (0°/90°/0°), for two different ratios of

Lr.

Figure (3.15) compares the results obtained from two theories (present theory and
Sanders’ theory [40]) for a anti-symmetric cross-ply cylindrical shell for different values of
L/R and axial mode numbers (m=1,2,3,5). The same study (Figure 3.18) was made for a
symmetric cross-ply (0°/90°/90°/0°) cylindrical shell. In order to show clearly the difference
between the results obtained from the two theories even for m=1, Figure (3.15) is replotted

separately for m=1(Figure 3.16) and m=5 (Figure 3.17). For the length-to-radius ratio L/R
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<10 and high numbers of (m), there are always relatively large differences between the non-
dimensional frequencies obtained from two different theories (present theory and Sanders’

theory [40]).

Figure (3.19) shows the non-dimensional fundamental natural frequencies (m=1) of
cross-ply cylindrical shells for the symmetric lamination scheme (0°90°/0°), for various
different ratios of L/R, and for two values of L/ (L/t=10 & L/t=100). Through this example
(figure 3.19), a thickness study was carried out to determine the effect of transverse shear
deformation. The thickness of the shell # was varied while L and R were kept constant. The
geometries and material parameters as the same as in example / . The layers are of equal

thickness.

This figure (3.19) compares the results obtained from this theory with corresponding
results given in references [Reddy 1984, Selmane and Lakis 1997, Sciuva and Carrera 1992].
The present results are always lower than the corresponding tabulated results of references
[Reddy 1984, Reddy and Liu 19835, Sciuva and Carrera 1992]. However, some remarks
should be made about these results.As can be seen, the frequencies of symmetrically
laminated shells for L/=10 are less sensitive to R/L variations than those of thin shells
L/t=100. Classical shell theory over-predicts, while the SDT under- estimates the frequencies

even for very thin shells.

Figures (3.20-3.23) show the non-dimensional frequencies of isotropic cylindrical
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shells vs. the thickness-to-radius ratio for three different radius-to-length ratios (A=mnR/L )
(m=1, n=1,2,3,4). The results obtained from this work are shown along with those from other
theories [Ref. 3, 44]. There is good agreement between the results from this theory and those
of reference [Bhimaraddi 1984]. In general, classical shell theory is seen to over-predict the
natural frequencies when compared to the shear deformation theory. The error increases as

values of n, R/L and ¢/R increase for a fixed value of m.

The two last examples involve the determination of the natural frequencies of an open
cylindrical shell. Figure (3.24) shows the effect of variation of the length-to-radius ratio on
the frequency parameters of an anisotropic (0°%/90°/90°/0°) open cylindrical shell having both
its straight and curved edges freely simply supported. Figure (3.25) is drawn for an isotropic
open cylindrical shell having its straight edges clamped and the curved edges freely simply

supported. The data are provided with the figures.

3.10 Conclusion

A particular method has been developed to determine the natural frequencies and the
corresponding mode of vibrations for anisotropic, laminated and non-uniform, closed and
open cylindrical shells by taking into account the shear deformation effect and rotatory inertia
as well as the initial curvature. The extensional and bending stiffness as well as the coupling

of these two have been taken into account.

The method is a combination of hybrid finite element analysis and shear deformation
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theory of shells. It combines the advantage of finite element analysis and the precision of
formulation which the use of displacement functions derived from shell theory contributes.
The displacement functions for this theory are derived and the mass and stiffness matrices of

each element are obtained by exact analytical integration.

Results of classical, hybrid finite element and shear deformation shell theories have
been compared with the results of the present solution to emphasise the accuracy of this
theory. Numerical results are presented for different materials (isotropic and cross-ply
laminated materials having a symmetric and an anti-symmetric lay-up) and parametric studies
including circumferential and axial wave number (# ; m); mean radius-to-thickness ratio (R/);
length-to-mean-radius ratio (L/R) and L/, and the lamination scheme and number of layers
are carried out through several numerical examples and results obtained are compared with
those of others, with good agreement, and with results obtained from the hybrid finite element

method.

In general, classical shell theory over-estimates frequencies compared to the shear
deformation theory especially for laminated anisotropic shells. It has been suggested that the
reason for the difference is a change in shear angle from layer to layer and the insensitivity

of the CST to this change.

The next step in this line of work will deal with liquid-filled open and closed non-
uniform, anisotropic cylindrical shells by consideration of the shear deformation, rotatory

inertia and initial curvature effects.
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3.11 Appendix A-3

This appendix contains the equations of motion for the thin cylindrical anisotropic
shell which is referred to in this work:
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The equation of motion for a cylindrical shell (equation 3.25)

L(UVHB fpof’y
EZU JFU
PI (3 (Pu Py} (pl 10 pwl»—
l_(‘pxu P10 ,Pw.lu "10: -l ‘?U.’
R? 2R’ 4R 0@ o
G P 1 PIOJ Plos GZUQ
e

(P »P")—"JU (P P )22
® = '’ e .R’ Y

12 IR &z
Pu Fio4 GIU PuaW Py Py
R W @ R & R zn’);'?
'fﬁ: I Pz E’zﬁx si0_ Liote B: 616
Pge P e o e et
P 6259, ‘(P )_Pm 5250 m.9 By
T MO el R’ ETOETS
L(UVWB,.B}_F
Pll 02 Pllo P' 10 azu
P’l)—( (st Py ._R; 4R’ ZR’ 36
N Pli P‘lﬁ f.'lU
7 R @

Pu Pu p Pa P 1, P (P P+
(—zﬁwnk)—((” .( wh3zg
P U, P,  &U,

0-_._- Y .
R? oo‘ R Vot
oW i 3
(5 (P,,' n) )—- (P P“)ﬁ
Py a‘ﬁ &p,
'(_ 1)—( PrwePi)* )'3705
‘Iﬂa.ﬂ P B
"Ri® R
B, v . B
‘(— P, )'-—( (P P, )’ )-v_;é
Py a’a P [a’p,
R RO iga
LY B8P
PudU, Py, Py 3U,
R E ZRs RI a0
P,
o e PP I

LA W “o‘W Py W

Pt B am R 3 e

P 6ﬁz o Br
e )

By l Py 9By

R

194

(A-3.2,3.3.3.4)
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Matrix [H]:
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Matrix [LL]:
LL(1,) =a,
LL2/)=8B,
LL3)=1 j=1,2,..10
LL4 )=y,
LL(5.)- 81 (A-3.9)
Xij)=e™ if i=f
ij=12,..10
X(ij)=0. if izj
Matrix [A]:

A(l)=a, ; A(6))=A(l))q,
AP, AT)=AQJ))e
ABN=1 ; AB)=a a,=e“r" j=12,.,10 (A-3.10)
A@N=y,  A9)=A(4))a
A(5)=8 5 A(10,)=A(5,)a,

Matrices [QQ] and [J] :

o
{e} =] T](mxm) [QQL,D,ID)[A]-I(W 10) {5 }
(10x1)

J

(A-3.11)

With [QQ](lo,m) =[J](m,m) [X]uoxm) Y =[[€l] [791]]
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Kip=-am i JENH,B)S,

A2./)=B,m i KT.p=-ym
— — m .
J(3vj) -Yj +m » J(87j)'6lm+ﬁﬁl 1= I""'lo
1 1
Jap=2(mB) i JO.N=ZN3, (A-3.12)
| 1 1
JEDHM) 5 KONy~
where:
m=r
L
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3.13 NOMENCLATURE

A, B;, G, .., Ji(i=1,2, .., 10) Eq. (3.47) : defined by matrix components of [J ]
A, B, C, D, E : defined by Eq.(3.24)

A;; : extensional stiffness Eq.(3.20)

Ay :defined by Eq.(3.21)

B;; : bending-extensional coupling stiffness Eq.(3.20)
By :defined by Eq.(3.21)

D; :bending stiffness Eq.(3.20)

f; : coefficients of the characteristic equation (3.27)
hy(i=1,2) : Scale factors Eq.(3.2)

[; : inertia moment

L : length of the shell

L; : motion equations Eq.(3.25)

m : axial mode number
— T
m : defined by mT

M,, My M4, M,, : the moment resultants
n : circumferential wave number

N,, Ng N,g, N, : the in-plane force resultants
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P; : terms of elasticity matrix( i=1....,10 ; j=1,...,, 10)

Q;; : the elastic stiffness in the material coordinates Eq.(3.10)

Q ; : the elastic stiffness in the global coordinates Eq.(3.11)

Q. Qe : the transverse force resultants

R : mean radius of the shell

t : thickness of the shell

u;, Uy, W : the axial, circumferential and radial displacement respectively

Ums Ve Wiy B Bom - amplitudes of u, v, w, B,, and B, associated with m,, axial mode
number

X : axial coordinate

a;, B;, v:and d;defined by Eq.(3.29)

B, and B, : the rotations of tangents to the reference surface
n; : complex roots of the characteristic Eq.(3.27)

g; : deformation vector components

O, . stress vector components

0 : circumferential coordinate

¢+ : angle for the whole open shell

© : natural frequency

Q2 : non-dimensional frequency

p : density of the shell material



Liste of Matrices

[A] : defined by Eq.(3.35)

[B] : defined by equation(3.39)

{C}: vector for arbitrary constants

{f.} : the internal forces acting at node i
{G] : defined by Eq.(3.47)

[H] : defined by Eq.(3.26)

{J] : defined by Eq. (3.39)

[k] : local stiffness matrix Eq.(3.46)
[K]: global stiffness matrix Eq.(3.50)
[m] : local mass matrix Eq.(3.47)

[M] : global mass matrix Eq.(3.50)
[N]: shape function matrix(3.37)
[QQ] : defined by Eq.(3.38)

[R] : defined by Eq.(3.42)

[S]: defined by Eq.(3.44)

[T] : transformation matrix Eq.(3.12)
[Ta] : defined by Eq.(3.24)

{9; } : degrees of freedom at node {

{6} : degrees of freedom for total shell

207
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Table 3.1

Non-dimensional fundamental frequencies (m=1) of simply-supported cylindrical shells with
symmetric cross-ply 0°/90%90%/0° Q = w,R* [ p/E, /'t

R/t=100 R/t=50
F58| HFE' I SDT* HFE! sDT* HFE!
L 1409 1160 1126 815.5 4483
0| 248 R 240.7 B¥2 233.1 205.4 520 220.0
YOS 83.45 60| 82.96 70.07 68.04 65 59.24
k| 3872 A0 38.69 S 2731 27.18 R25338] 18.82
' 17.52 [EOESE] 1751 11.49 [ERESOE| 11.48 3;53'3 6.55
9.37 K376 937 |FOURE| 628 [FEORE| 628 FIRE| 3.70
4.76 gﬁ@ 476 1B 5% | 3.53 1.73
174 BET6E 174 SRR 1.27 4
1.08 }irosof| 1.0s ,.Lfm 54 lgng 54 2

(*) The superscript values identify the circumferential wave numbers (n)

1)HFE : Hybrid finite element method [40], these results were obtained by authors

2)CST : Classical shell theory {36]

3)SDT : Shear deformation theory[36]

4)Present Theory: (Hybrid finite element method + Shear Deformation .Rotary Inertia and Initial Curvature Effects)

Table 3-2

Properties of the shell layers

Layer Qui(psi) Q,.(pst) Qa(psi) Qes(psi) | Thickness | Density
(inches)

1 6.70x10° 2.11x10° | 12.00x10° | 2.51x10¢ 0.20 0.5p

2 33.00x10% | 11.00x10° | 33.00x10° | 13.20x10® 0.20 1.0p
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Figure 3.1 Segment MN deforms to M*N* through displacement vector u
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Reference Surface £

Figure 3.2  Surface and shell coordinate system
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Nth layer ™

Kth layer T
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(K-I)th layer — T,

Ist layer -
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Oth layer T
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Figure 3.4 A) Multidirectional laminate with coordinate notation of individual plies
B) A fibre reinforced lamina with global and material coordinate systems
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(A)

(B)

Figure 3.5  A) Circular cylindrical shell geometry
B) Positive directions of integrated stress quantities
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x(u)

-
o(v)

(C)

Figure 3.6  A) Finite element discretization
B) Nodal displacement at node i for the m’th element. N: Number of elements
C) Definition of variables
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Figure3.16 Variation of non-dimensional natural frequencies (2) of cross-ply

cylindrical shells in terms of L/R’s variations (Anisotropic Materials).
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CHAPITRE IV

SHEAR DEFORMATION IN DYNAMIC ANALYSIS OF ANISOTROPIC
LAMINATED OPEN CYLINDRICAL SHELLS FILLED WITH OR SUBJECTED
TO A FLOWING FLUID*

M. H. Toorani and A. A. Lakis
Département de Génie Mécanique, Ecole Polytechnique de Montréal
Case Postale 6079, Succ. Centre-ville, Montréal, Canada H3C 3A7

4.1 Abstract

The free vibration of anisotropic laminated composite, as well as isotropic open or
closed, cylindrical shells submerged in and subjected simultaneously to an internal and
external incompressible, inviscid fluid are discussed on the basis of a refined shell theory in
which the effects of transverse shear deformations, rotatory inertia and initial curvature are
taken into account. The shell may be uniform or non-uniform in the circumferential

direction. In this approach, displacements and rotations of the shell and the dynamic pressure

% : soumis pour publication dans “Journal of Computer Methods in Applied Mechanics and Enginecring”



of the fluid are modeled by a hybrid finite element method. The displacement functions are
derived from the cxact solution of refined shell cquations bascd on orthogonal curvilinear
coordinates. The velocity potential and Bernoulli’s equation have been used to describe an
expression for fluid pressure which yields three forces (inertial, centrifugal and Coriolis) of
the moving fluid. The mass, stiffness and damping matrices due to the fluid effect can be
obtained by an analytical integration of the fluid pressure over the liquid element. Extensive
results are given of computations carried out to illustrate the theory and dynamic behaviour
of open and closed cylindrical shells partially or completely filled with liquid, as well as
subjected to a flowing fluid. A satisfactory agreement is seen between the numerical results

predicted by the present theory and the results of existing available other theories.

KEY WORDS: Vibration, Shear Deformation, Open Cylindrical Shells, Flowing

Fluid, Anisotropic

4.2 Introduction

The effect of the surrounding medium (air, liquid, etc.) upon the vibration of plates
and shells is of primary interest to scientists and engineers working in aerospace, marine and
reactor technology. Fluid-filled shells have been extensively used in various sectors of the

engineering industry, e.g. aerospace, petrochemical, maritime technology, civil engineering,
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nuclear power reactors, power generation, etc. The presence of fluid has a significant and
complex influence on the dynamic structural behaviour. Knowledge of the dynamic
behaviour of fluid-shell interaction is, therefore, very important in the design of pressure

vessels, fuel tanks, etc., as well as in seismic response studies of liquid storage tanks.

The hydrodynamic coupling between fluid and structure can be evaluated as the sum
of the hydrodynamic pressure distribution and the force exerted by free surface motion.
These effects are shown in a hydrodynamic mass matrix which can then be added to the shell
mass matrix. The hydrodynamic mass is frequency-dependent except when the fluid is
assumed to be incompressible. In the case of a flowing fluid, the fluid pressure expression
is a function of the nodal displacements of the elements and three forces (inertial, centrifugal
and Coriolis) of the moving fluid in which the first two are added, respectively, to the mass

and stiffness matrices.

The effective mass can be a function of the mode shape being studied, the
geometrical and physical parameters of shell and fluid. The speed of sound in the fluid and
the frequency of vibration may influence the added mass matrix when the liquid is taken as

compressible.

Cylindrical shells are a common shell configuration and have been used extensively
as pressure vessels, piping, container and structural members in diverse engineering

applications, such as the aerospace, nuclear and maritime industries. For this reason, the
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dynamic characteristics of these fluid-loaded shells have been extensively studied and, over

the last two decades, have become an active area of engineering research.

A number of theories for the study of fluid-structure interaction are to be found in the
literature. The free vibration of a fluid-filled circular cylindrical shell made of isotropic
materials and filled with fluid has been well studied on the basis of classical shell theory. In
modern engineering design, shell elements made up of advanced composite materials are
being used extensively because of their advantageous stiffness-to-weight and strength-to-

weight ratios.

An excellent literature review of the subject is outlined in [1,2]. The free and forced
vibrations of cylinders submerged in an acoustic medium have been analyzed by Junger[3].
The problem was subsequently developed by Bleich and Baron{4] and Greenspon [5]. In
these investigations, where isotropic shells were concerned, the effects of fluid media on the
motion of cylindrical shells have been described. A survey of the hydro-dynamic response
of fluid-coupled coaxial cylinders under small displacements was made by Brown[1].

Compressible fluids such as gases were not considered in his work.

The free vibration of simply-supported cylindrical shells partially filled with or
submerged in a compressible and non-viscous fluid has been analyzed by Gonglaves and
Batista [6], on the basis of Sanders’ shell theory. They used the Rayleigh-Ritz method to

obtain an approximate solution to the problem. The effects of variable fluid height and shell
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geometric parameters on the natural frequencies were investigated.

The vibration behaviour of cylindrical shells, made of isotropic and transversely
isotropic matcrials, filled partially or completely with an incompressible, non-viscous fluid
was studied by Jain [7]. The free vibration behaviour of cylindrical storage tanks of variable
thickness and partially filled with liquid has been investigated by Han and Liu [8] on the
basis of Fliigge’s thin shell theory. The transfer matrix approach is suggested when solving

the problem of variable wall thicknesses.

A combination of the hydrodynamic mass method and the hybrid finite element
formulation was used by Brennemean and Yang [9] to solve coupled fluid-structure dynamic
problems. Analysis of the breathing vibrations of a partially filled cylindrical tank was
carried out by Wen-Hw-Chu [10] using Galerkin’s technique. The free axisymmetric
vibrations of cylindrical shells under hydrodynamic pressure due to external and internal

fluids were studied by Endo and Tosaka[11] on the basis of Fliigge’s theory.

The effects of the fluid medium on the vibrations of cylindrical shells have been
studied by Ramachandran [12], Crouzet-Pascal and Garnet [13], Au-Yang [14] and
Paidoussis and Li [2]. The effects of unsteady fluid forces and steady viscous forces on the
stability of a simply-supported cylindrical shell coaxially located in a rigid cylindrical pipe
and subjected to axial flow have been studied by A.El Chebair and Mirsa[15], using a

modified version of Fliigge’s shell theory and Galerkin’s method to solve the equations of
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motion. A summary of several proposed methods of calculating the natural frequencies of
plates and shells with various boundary conditions is given in [16]. Some numerical methods
such as the finite element approach and modal reduction procedures were presented by
Morand and Ohayon [17] for the linear vibration analysis of elastic structures coupled to

internal fluids.

Lakis and Paidoussis [18] used numerical methods to investigate thin circular
cylindrical shells partially or completely filled with stationary liquid. An analytical method
for studying the non-linear vibration of anisotropic cylindrical shells containing a flowing
fluid was presented by Lakis and Laveau [19]. The same method was applied to the free
vibration analysis of fluid-filled anisotropic conical shells and the determination of the free
vibration characteristics of axisymmetric and beam-like cylindrical shells partially filled

with liquid [20,21].

Selmane and Lakis [22-25] also presented this method in the analysis of the free
vibration of anisotropic open cylindrical shells subjected to a flowing fluid. It should be
pointed out that in the above-mentioned references a hybrid finite element, a combination
of the finite element method and classical shell theory, has been developed by Lakis et al.

[18-35] for use in numerical analysis.

This hybrid approach has been applied with satisfactory results to both the dynamic

linear and non-linear analysis of cylindrical (Lakis &Paidoussis[18, 26, 27], Lakis [28],



240

Lakis and Sinno [20], Lakis and Laveau {19], Lakis, Sami & Rousslet [29], Selmane & Lakis
[22-25]), conical (Lakis et al [21]) and spherical (Lakis et al. [30]) isotropic and anisotropic

uniform and axially non-uniform shells both empty and filled with liquid.

The free vibration of an isotropic, simply-supported circular cylindrical shell, with
the axis placed horizontally and partially filled with liquid was studied by Amabili [36]
following classical shell theory. The equations used were taken from Donnell’s bending shell
theory and Ritz method was used to obtain the natural frequencies and mode shapes of

structures.

Numerous papers have been written on the free vibration of fluid-filled cylindrical
shells. on the basis of various shell theories. However, no work based on refined shell theory
appears to have been done on the problem of anisotropic, laminated. open, cylindrical shells,
partially or completely filled with or subjected to a flowing fluid, in which the effects of

transverse shear deformations, rotatory inertia and initial curvature are retained.

The primary purpose of this work is to develop an efficient method for the study of
the free vibration characteristics of open, thin, non-uniform and anisotropic laminated
cylindrical shells containing flowing fluid. The structure may be uniform or non-uniform in
the circumferential direction. Since the fluid is assumed to be inviscid, incompressible and

irrotational, the velocity potential function is used to describe the fluid flow.
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The method is a hybrid of the finite element method, refined shell theory (in which
transverse shear deformation, rotatory inertia and initial curvature effects are taken into
account) and fluid dynamic theory. This method is more accurate than the more usual finite
element methods based on polynomial displacement functions because the displacement

functions are derived from refined theoretical equations of cylindrical shells [34,35].

In this approach, the mass and stiffness matrices of individual finite elements are
derived by exact analytical integration. The mass, stiffness and damping matrices for a fluid
element are obtained by analytical integration for the pressure distribution along the element.
Hence, the influence of the variable fluid height and the boundary conditions on the vibration

response of fluid-filled cylindrical shells can be studied.

4.3 Structural Formulation

4.3.1 Basic equations of the shell

Consider an anisotropic, laminated, composite, circular, cylindrical shell filled with
or subjected to a flowing fluid (Figure 4.1). A coordinate system is adopted with axes (x, 6,
R) in the axial, circumferential and radial directions. The displacements are (u, v, w)
respectively, and the two rotations are (5, and ) tangent to the reference surface. L, R and
t denote length, mean radius and thickness of shell, respectively. Based on Green’s exact
strain-displacement relations expressed in arbitrary orthogonal curvilinear coordinates, the

strain-displacement relations for the shell are given by [35]:
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4.1)

where &, y,; k,; t,and u°, are, respectively, the normal and in-plane shearing

strain, change in the curvature and torsion of the reference surface and the shearing strain

components. The constitutive relations for anisotropic laminated cylindrical shells can be

written as [35] :

{N .u’N x6? Qn,N ee’N &’ Qae’Mn’Mxe’Mee*Max}T = [P ](mxm){s}

4.2)

Where {¢ } and [P] are, respectively, the deformation vector defined by equation (4.1)

and the anisotropic matrix of elasticity. P;’s elements are given in Appendix A-4 (see

Reference [35]).
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The equations of motion for thin cylindrical shells in terms of axial, tangential and
radial displacements (u,v,w) of the mean surface of the shell, rotations of tangents of the

reference surface (8, and ;) and in terms of P, ’s elements are given by:

L(UV. 7B B,P)=0.
L(UV.W,B_B,P )=0.
LUV, W.B,.B,P )=0. (4.3)
LUV, W,B,,B,P )=0.
L(UV,W.B_B,.P,)=0.

where L, (i=1.2,... 5) are five linear differential operators, the form of which is fully

explained in Appendix B-4.

The free vibration of an anisotropic, laminated, composite, circular. cylindrical shell
is studied using the hybrid finite element approach, in which a combination of the shear
deformation theory of shells and the finite element method is used to derive the displacement
functions. The symmetric and anti-symmetric modes in the circumferential direction are
coupled with each other due to the presence of in-plane extensional-shear, extensional-
bending, bending-twisting, bending-shearing and twisting-stretching coupling in laminated

composite shells.

The finite element used is shown in Figure (4.2). It is a cylindrical panel segment

defined by nodal lines, i and j. There are five degrees of freedom at each nodal line, axial,
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radial and circumferential displacements (u,v,w) and two rotations (8. and f,). For motion

associated with the axial wave number, we may write:

o) [come 0 o o o ||“® e
Wix,0) 0 Sinm 0 0 0 v (9) B"e"e
Pediel 0 0 smmx o0 o |{"D)-mice™
B8 © 0 o0 Comx o [[B® De™® 4.4
By(x.8) 0 0 0 0 Sinmx B, ® £
where

These definitions yield more precise results than those of displacement functions
defined in polynomial forms. Substituting definitions (4.4) into equations of motion (4.3) and
obtaining the non-trivial solution, the determinant of their coefficients must vanish, leading

to a tenth order characteristic equation in terms of 5 [353].

Fign " Hfnt of gt 4fnt ofyn’ £, =0. (4.5)

where f; (i =0 to 10) are the coefficients of the determinant of five simultaneous
algebraic equations in 4, B, C, D and E. Each root, 7;, yields a solution to equation (4.3), the
complete solution being obtained by the sum of all ten and involving the constants 4, B, C,

D, and E, (i=1,2,...,10).
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As 4;, B;, C,, D; and E, are not independent, we can write:
4;,=a;C,;, B;=,C, D,;=y;,C; and E=5;C.. (4.6)

The displacements Ufx,8), V(x,6) and W(x,6) as well as ,(x,6) and S4(x,6) can then
be expressed in conjunction with the ten C; constants only, which can be determined using
ten boundary conditions.

U(x,8)
V(x,0)

W(x9) } -
B,(.t.e) [Ti](s-s)[R](S-m{C}uo'n (4.7)

B(x)

where [R]is a(5%10) matrix given in Appendix B-4, and {C} is a vector of constants
which are linear combinations of the C, by using equation (4.6). The modal displacement

vector is now expressed as follows:

{3,}={n, v, w o B} (4.8)

Each element has two nodal lines and ten degrees of freedom and @ has a definite
value (@=0. at the s nodal line ) and (&= at the j ’s nodal line), so the element

displacements at the boundaries can be given by the following relation:
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where the [4] matrix elements are obtained from those of /R] matrix and given in

Appendix B-4. Substituting this definition into equation (4.7), we get:

U(x.8)

V(x,8) 5 5

W(x,8) ’=[T.][RM-4 ]-1[8'}4;\/] 8, (4.10)
B (x.0) J ]

By(x.0)

These equations determine the displacement functions.

4.3.2 Determination of Mass and Stiffness Matrices for Empty Finite Elements
The strain vector {€} can now be expressed in terms of J, and J; using equations (4.1) and

(4.10).

fe}=

Ul

I

where [QQ] is a (10x10) matrix given in Appendix B-4. The corresponding stress-

strain relationships can be written as:



The P,’s elements describe the shell anisotropy which depends on the mechanical
properties of the material of the structure. Some coupling, such as in-plane extensional-shear,
extensional-bending and bending-twisting, can be present in anisotropic laminated composite
shells due to the asymmetry of the scheme lamination or fiber orientation. Some of the P,’s
elements can, therefore, be null or not-null. The mass and stiffness matrices for one finite

element can be expressed as:

[m1=p;ZZ[NﬂN1dA
- Z[B]’[P][B]df!

(4.13)

O‘—'—m‘t“

where d4=Rdx df and p, is the density of the shell, /P] the elasticity matrix and the
matrices [N/ and /B] are defined in equation (4.10,4.11), respectively. Substituting them into
(4.13) and integrating them analytically with respect to x and 6, we obtain the matrices [m,/
and [kJ. The global matrices /M,] and /K] can be obtained, by superimposing respectively
the mass and stiffness matrices of each individual finite element and applying the boundary

conditions. Neither intermediate steps nor the final results are given here due to the
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complexity of the work involved. The interested reader is referred to reference [35] for more

detail.

4.4 Dynamic Fluid-Structure Interaction Behaviour

4.4.1 Assumptions

It is assumed that the shell is subjected only to potential flow, inducing inertial,
Coriolis and centrifugal forces which contribute to the structural vibration. These forces are
coupled with the elastic deformation of the shell. The mathematical model developed here

is based on the following hypotheses:

i) the fluid flow is potential;

ii) the fluid is incompressible which moves irrotationally as a consequence of

the shell’s vibration;

iif)  the fluid is inviscid so there is no shear and the fluid pressure on the wall is

purely normal to the surface;

iv) the deformations are small, allowing the use of linear theory;

v) the fluid mean velocity distribution is assumed to be constant across a shell

section.
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4.4.2 Equations of Motion

In general, the free vibration of a fluid-filled shell involves hydrodynamic and
sloshing effects. The hydrodynamic phenomena arc the natural vibrations dominated by the
shell vibration, while the sloshing phenomena are the natural vibrations dominated by the
fluid surface motion. The last effect is not considered in this paper. The physical equations
of motion of each structural and fluid component together provide a set of equations for the

dynamic equations of motion for fluid-structure interaction.

The motion equation of a shell interacting with a fluid can be represented as:

([M]'[M/]){a} —[Cf]{s} [KJ-[K)) (3} ={F) (4.14)

where subscripts ‘s 'and f” refer to the shell in vacuo and fluid filled, respectively.

M ] and [K ] are, respectively, the mass and stiffness matrices of the shell in vacuo. They

have been developed in [35].

The [M,], [C/] and [K/] represent the inertial, Cortolis and centrifugal forces of the
fluid flow, {3} is the displacement vector and {F} represents the external forces. After
applying the boundary conditions. these matrices are reduced to square matrices of order

5(N+1)-J, where N and J are, respectively, the number of elements and the restrictions
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imposed.

4.4.3 Determination of the Mass, Stiffness and Damping Matrices of the Moving

Fluid

The velocity function, v, for ideal, frictionless flow in the linear form must satisfy

the following equation:

L 30 PO, 12907 Al

(4.15)

where C;is the speed of sound in the fluid, ¢, the time variable and V*is the Laplace
operator in cylindrical coordinates. For the steady-state case and with the assumptions of
section 3./, an incompressible non-viscous fluid, equation (4.15) becomes Laplace’s

equation which is expressed in the cylindrical coordinate system by:

2
Fp 109 1 82q>+62(p=0.
art ror p2oe* ax?

(4.16)

where “¢” is the potential function. The components of the flow velocity are given
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y -0,y 130, _de

x x ax [}} R-a_e-’ roor (417)

where U, is the velocity of the fluid through the shell section V. , ¥, and V, are respectively,
the axial, tangential and radial components of the fluid velocity. Using Bernoulli’s equation

for steady flow:

2
[a—(p+z-+£] lr=§=0. (4.18)

Substituting for V"7, the dynamic pressure “P” can be found as:

powp| Py 20U 1] S0 LS00 20,0
D B e [ RO e

] (4.19)
r=R:=R-42

in which the subscript ‘i’ and ‘e’ represent ‘internal’ or ‘external’ locations of the
structure. A full definition of the flow requires that a condition be applied to the shell-fluid

interface. The impermeability condition of the shell surface requires that the radial velocity
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of the fluid, on the shell surface, should match the instantaneous rate of change of the shell
displacement in the radial direction. This condition implies a permanent contact between the

shell surface and the peripheral fluid layer which should be:

_dp, | oW _ dW
V,I,,R—gi,*—( = +U‘§],=R 4.21)

The differential equation can be solved using the separation of variables method. The

radial displacement, from shell theory, is defined as:

10
W(x8.)=) Cexpln +imt]sin-anx (4.22)
j=1

where 1), is the j* root of the characteristic equation and w is the natural angular

frequency. The velocity potential is assumed to be:

10
P(x070)=D R (1) Sx0.) (423)
J:

The function S;(x,8, t) can be explicitly determined after applying the impermeability
condition (21) and using the radial displacement relation given by equation (4.22).

Substituting the explicit term of S;(x,8,t) into equation (4.23), we obtain:
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10 R(r

[ JP—
PN =2 — rUAe (4.24)
/

where (), () and () representd ()/dr, d ( )/0x and J ( )/ct, respectively. Introducing

this explicit term (4.24) and equation (4.22) into equation (4.15), we obtain Bessel’s

homogeneous differential equation.

2
, d°R(r) . dR(r)

’ dr? dr

+R (N[i*m/}r*-(in)*] =0. (4.25)

where “ i” is the complex number, i =-1, and 5, is the complex solution of the

characteristic equation of the empty shell and m, is defined as below:

1 mm2
my (") “E,—Z(m-'U,L"-Ln—) (4.26)

where m, L, @ and U, are the axial mode number, the length of shell, the natural
angular frequency and the flow velocity, respectively. For shells in a liquid medium, #m,’

is usually negative, and the general solution of equation (4.26) is given by:

Rj(r) =AJml(im ) +Bij(im ) 427
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where Jz7; and Y ; are Bessel functions of the first and second kind, respectively. For
a shell filled with a liquid (internal flow), the constant “B" has to be set equal to zero since
the Yz, is singular at r=0. For a shell submerged in a liquid (external flow), the constant “4”
is equal to zero. We have to take the complete solution when the shell is simultaneously

subjected to internal and external flow.

An expression for dynamic pressure as a function of the displacement ¥, and the
function R (r), taking into account only the linear terms, is obtained by substituting equation

(4.24) into equations (4.19, 4.20):

10 Rj(r)
v RS R'j(R)

{WJ_ +2Uij+Ux'W ) (4.28)

where “u” represents “internal” or “external” fluid. By definition. the first order

derivation of the Bessel function of the first kind is defined as:

.

(4.29)

. in,
_ J . _: .
R j(r) =4 —’-_—Jiqj(zm J)-im kJinj’l(xmkr)

With the same definition for the Bessel function of the second kind, and substituting
into the dynamic pressure equation (4.28), we obtain the pressure equation on the structure

wall as follows:
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10
- YR . 4 2 .
P = puj§=l: z (zmkR')[Wj+2Uxqu+U e (4.30)

where “s” refers to the first (“J" ) or second (“Y ") kind of Bessel function

for the internal or external flow, respectively, and Z, is defined as below:

R
Z (im,R)= - R =R-i12
R == T, GmR) (4.31)
in-im R

! e Jln;(imk Rr)

and

R
Z(imR)= LA R =R+112
oA in-im R Iy @m R ) (4.32)
s T+ I (imR)

where 7; (j=1....,10) are the roots of the characteristic equation of the empty shell, J,
and Y, are respectively the Bessel functions of the first and second kind of order in,, m; is

defined by equation (4.26) and R is the mean radius of the shell.

When we substitute the nodal interpolation functions of the empty shell (10), which

can be used for the fluid column, into the dynamic pressure expression in (30) and carry out
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the necessary matrix operations by our chosen method, the mass, damping and stiffness
matrices for the fluid are obtained by integrating the following integral with respect to x and

g:

[, 1{p Jda (4.33)

Finally, the inertial, Coriolis and centrifugal forces due to a flowing fluid, neglecting

the viscous term, can be written as :

(=04, T [S114,"]
[e]=14,"T"[D]I4,"] (4.34)
(K1=04,"T (G114, "]

The matrix /4] is defined by equation (4.9) and the elements of /S,/ and /G,/ matrices

are given by:

.- _RL _
Sf(l:f)" ,!(Pf if per

m*m R

- - 4.35)

D(l) 2L lj(pf xe u pfe xe ;) (
2133

G ("f) - L (pf xe if -pfe szezf)
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Where ij =1,...,10, p; is the density of the fluid and subscripts “i” and “e” mean,

respectively, internal and external flow. U, is the velocity of the fluid, Z, is given in

equations (4.31) and (4.32), and J; is defined by the following equations:

1 (n,*n)0
= e "7 -1
v (n,.+n,)[ :

7, i nn,=0.

gf‘ n,- +njz O'
(4.36)

where 1) is the root of the characteristic equation of an empty shell and 8 is the angle

of each element.
4.5 Analysis of Free Vibrations

The global matrices [fM] and /K] of each structure and fluid column are obtained by
superimposing the mass and stiffness matrices for each individual element. After applying
the boundary conditions, these matrices are reduced to square matrices of order NDF*(N+1)-
Jwhere NDF, N and J are, respectively, the number of degrees of freedom at each nodal line,

nodal lines and restriction imposed.

Finally, the equations of motion of a shell interacting with a fluid are:

(e piad e el-{fe ot )



258

Where [M_] and [K,] are, respectively, the global mass and stiffness matrices for the
empty shell, /M,] and [K,] are the global mass and stiffness matrices for the fluid and [C,/
is the Coriolis force of the fluid. Equation (4.37) is thus solved to obtain S*N+/)-J
eigenvalues and eigenvectors. The matrices /K, and [C,] are not involved in computations

in the non-flowing fluid (U,;=0.0) case.

4.6 Numerical Results and Discussion

Some calculations are made in this section in applying the proposed method for the
case of laminated anisotropic and isotropic open and closed cylindrical shells, partially or
completely filled with or subjected to a flowing fluid. The parametric values suchas R/, L/R,
fluid depth ratio, as well as the circumferential and axial wave number, for all examples, are

provided with the figures.

It should be noted that the results referred to [Ref.23 Selmane& Lakis], except Figure
(4.20), have been obtained by the present authors (Toorani & Lakis) and are based on
Sanders’ theory. All numerical resuits presented for anisotropic laminated (symmetric and
anti-symmetric cross-ply and anti-symmetric angle-ply lay-outs) materials for both openand

closed cylindrical shells are carried out for the following material properties:

E]=212 Gpa G]:;:GB:O.S G[‘_p

E=12.72 Gpa v=1/3



G,=7.42 Gpa

The two first examples (Figure 4.3 and 4.4) are carried out for a simply-supported,
isotropic, thin, circular, cylindrical shell completely filled with liquid (internal). The
frequency parameter (Q) is shown in figures (4.3 and 4.4) for different values of R/t and L/R

and is compared with results provided by Lakis and Sinno [Ref.20].

The effect of the axial mode (m) on the non-dimensional natural frequencies of a
ftuid-filled cylindrical shell for different values of L/R and two fixed values of R/t is shown
in figures (4.5 and 4.6). The difference between the results obtained by the two theories
increases as the axial mode (m) is increased and the radius-to-thickness ratio is decreased for

a fixed value of L/R.

The radius-to-thickness and the length-to-radius ratio effects are studied by means
of the next example (Figure 4.7) for two different values of circumferential wave number.
Comparison of results of the present theory with those of Sanders’ theory [Ref.23] show that
the shear deformation effect is significant and increases as the length-to-radius ratio

decreased for all ratios of R/t.

Figure (4.8) is drawn for an isotropic shell showing different longitudinal vibration
modes (m) as a function of the circumferential wave number (n). As can be seen, the
influence of transverse shear deformation on the natural frequencies is more pronounced with

increasing (m). A similar study is carried out (Figure 4.9) for a symmetric cross-ply
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laminated cylindrical shell having four laminae (0°/90°/90°/0°).

The variation of the non-dimensional frequency parameter (Q2) as a function of the
length-to-radius ratio L/R of isotropic and laminated anisotropic shells (having symmetric
/0°/90°/90°/0° lay-outs) are drawn in Figures (4.10 and 4.11) for different values of L/t and
longitudinal wave number (m). For low ratio of L/R and high numbers of (m), there are
always relatively large differences between the non-dimensional frequencies obtained from
two different theories (present theory and Sanders’ theory [23]). This difference diminished

as L/R increases.

The next example (Figures 4.12) has been made for anti-symmetric cross-ply,
laminated, closed, cylindrical shells in order to study the fluid depth effect on the frequency
parameter (Q2) as a variation of the circumferential wave number (n). The difference between
the present theory and Sanders’ shell theory [23] is more pronounced in the case of

anisotropic material, as expected, due to the shear deformation effect.

The fluid depth effect is studied for open cylindrical shells through Figures (4.13
and 4.14). The first is carried out for an anisotropic (anti-symmetric angle-ply) open
cylindrical shell bhaving its straight edges free, and the curved edges free and simply-
supported. The effect of fluid height on the natural frequency variation is studied as a

variation of the length-to-radius ratio and the axial mode number.

Figure (4.14) shows results obtained for an open cylindrical shell having its straight
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edges clamped and the curved edges freely simply-supported. As an illustration, it is shown
here that the lowest natural frequency of bending vibration of fluid-filled shells is highly

dependent on the fluid level especially for a low ratio of L/R.

[t can be observed, from these figures (4.13 and 4.14), that the general shapes of the
natural frequency curves of the partially fluid-filled shells are similar to those of the
corresponding empty shells. The natural frequencies of the partially fluid-filled shells are
lower than those of the corresponding empty shells. This is due to the fact that the fluid

increases the total mass of the shell.

Numerical results are presented for partially fluid-filled, anisotropic laminated
(Figure 4.15) and isotropic (Figure 4.16) closed, circular cylindrical sheils. The fluid
contained in the shells is taken as water. The effect of transverse shear deformation on the
natural frequencies has been studied by comparing the results obtained from the present
theory with those of Sanders’ theory(Ref.[23] Selmane&Lakis). In this study, the focus is

on the effect of fluid height on the natural frequencies of cylindrical shells.

The liquid depth, b, was varied such that the fractional filling , b/d, took the values
b/d (=0, 0.25, 0.5, 0.75 and 1). For each 6/d, the natural frequencies were measured for a
number of values of axial and circumferential wave number (m, n). As can be seen, the
natural frequencies decrease considerably with increasing b/d in the range 0 <b/d <0.25 (for
m=1, n=2) and 0 < b/d <0.5 (for m=1, n=1) approximately, the decrease being only slight

for higher fractional filling. We concluded that the frequency parameter (€2) depends both
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on physical (m, n) and on geometrical (L/R, R/t, b/d) parameters as a result of the lateral

pressure exerted by the liquid on the structure.

The next example (Figure 4.17) shows the frequency variation as a function of the
circumferential wave number (n) for three different cases, shell in air, fluid-filled shell and
shell immersed in fluid. The results obtained are compared with those of Gongalves and
Batista [Ref.6]. The two theories give nearly identical results for the fluid-filled shell and the

shell immersed in liquid.

The influence of the flow velocity U,; (for internal flow) on the frequency parameter
of isotropic and anisotropic closed cylindrical shells is studied through Figures (4.18-4.21)
for different values of R/, L/R as well as axial and circumferential wave number (m,n). The
results obtained have been compared with those from work based on two other theories

[Ref.23 Sanders’ theory] and [Ref.38 Galerkin method].

The non-dimensional parameters of velocity and frequency used in this section are

U=u/y, and Q=w/w,, where:

2 1 3
o = z (L)3 K=—28 Isotropic
L pt 12(2:- tﬂ)
t
W, = Zo K=—"—  Anisotropic
3 2(1-vz

The u and ® are respectively the velocity of the flowing fluid and the natural
frequency. It is observed that the frequencies associated with all modes decrease as the fluid

velocity increases from zero. The frequency parameters remain real (the system being
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conservative) until they vanish at high velocities, indicating the existence of a buckling-type

instability. In this case, the frequencies become purely imaginary.

Figure (4.18) shows the results obtained for a cross-ply laminated shell along with
those from Sanders’ theory, for different values of axial mode number. In the next example
(Figure 4.19), the results obtained from the present theory have been compared with those
from two other theories, a hybrid finite element method based on Sanders’ theory [23] and
the two-term Galerkin method [38]. As the flow velocity increases, the above two methods
generate significantly different results from those of the present refined hybrid finite element

approach. This might be attributed to:

i) not considering the influence of transverse shear deformation and initial

curvature in their modeling, and

if) limitations associated with the use of too few terms in the application of

Galerkin’s method.

The first mode frequency becomes negative imaginary at U=2.96, indicating static
divergence instability in the first axial mode (m=1), and reappears and coalesces at U/=3.36
with that of the second axial mode (m=2), to produce coupled mode flutter. Figures (4.20
and 4.21) show divergence instability phenomena for an isotropic simply-supported closed

cylindrical shell along with resuits obtained from [Ref.23].

The non-dimensional frequency parameter Q=p,w ,R(Q13-Q,:/Q,,) *is plotted (Figure
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4.22) vs. the thickness-to-radius ratio (#/R), for various values of (y=mR/L) and is compared
with results provided by Jain [Ref.7]. The transversely isotropic material (zinc) with the

following elastic constants is considered in this example:

Q11=Qx=1.5825x10" Q,;=0.6160x10"
Qp=3151x10" Q,5=Q,=0.4744x10" (dyne/cm?)
Qus=Qes=0.4x10" Qs=0.6337x10"

In Figure (4.23), the frequency parameter ratio is sketched as a function of the fluid
depth ratio b/d. In this example, §; and Q, are the natural frequency parameters
corresponding to a fluid-fluid and empty shell, respectively. The curves are drawn for two
mode number pairs (m=1, n=2 and m=2, n=3) and two different length-to-radius ratios L/R.
It is observed that the decrease in the frequency parameter ratio is rapid in the range 0.0<b/d
< 0.5 and, thereafter, it slows down for higher fraction filling. This means that the frequency

parameter of a fluid-filled shell (€; ) decreases rapidly in this range.

In the last example (table 4.1), the natural frequencies of an isotropic cylindrical shell
simply-supported at both ends, for both empty and fluid-filled cases, are calculated for the
first four axial modes and the first circumferential wave number (n=1). The shell had the

following properties:

R/t=60, L/R=24.98, R=35.43", v=0.3, E=29.5x10° Ib/in ?
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p.=0.734x10" Ib-sec /in*, p~0.935x10" Ib-sec ¥/in*

The results are listed in Table (4.1) along with those of Lakis & Sinno [Ref.20] and

Niordson [Ref.37].

4.7 Conclusion

An analytical procedure has been presented for the dynamic analysis of anisotropic
and isotropic circular cylindrical shells, both open and closed. This method is used to predict
the effects of inertia, Coriolis and centrifugal forces on the vibration characteristics of shells
which are partially or completely filled with, submerged in, and subjected simultaneously

to, an internal and external incompressible, inviscid fluid.

The method is a combination of hybrid finite element analysis and refined shear
deformation theory of shells. The displacement functions are derived from an exact solution
of refined shell equations based on the orthogonal curvilinear coordinates and Green’s exact

relations of strain displacements.

The mass and stiffness matrices of each structural element are derived by exact
analytical integration. The velocity potential, Bernoulli’s equation, the linear impermeability
and dynamic conditions applied to the shell-fluid interface have been used to obtain an

explicit expression for fluid pressure.

The fluid pressure has been analytically integrated over the liquid element to obtain
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the mass, stiffness and damping matrices due to the fluid effect. Numerical examples are
given for the free vibration of laminated composite, symmetric and anti-symmetric cross-ply
and anti-symmetric angle-ply, and isotropic materials for both open and closed circular

cylindrical shells.

Parametric studies such as radius-to-thickness ratio (R/f), length-to-radius ratio (L/R),
length-to-thickness ratio (L/f), axial and circumferential mode number (m,n) and fluid depth
ratio are carried out through several numerical examples, to demcnstrate the accuracy and

range of applicability of the present theory, and results obtained have been compared with

those of others.

Some calculations have been carried out to study the convergence of solutions. For
fluid-filled shells (no-flow condition U,,=0.), the natural frequencies could be obtained with
10 to 15 elements with very good accuracy over the range of parametric values shown in all
examples. As U, increased to reach a critical velocity, 20 to 25 elements are necessary to

have acceptable convergence.

The following conclusions may be drawn from the numerical results presented in this

paper:

i) The natural frequencies of fluid-filled shells are lower than the corresponding
values of empty shells due to increased kinetic energy of the system without

a corresponding increase in the strain energy.
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ir) Frequency reduction is shown to increase with liquid depth and is dependent

on the material and geometrical parameters of shell and fluid.

fir) Frequency reduction of fluid-filled shells becomes more significant as the
radius-to-thickness ratio is increased, because the relative increase in kinetic
energy due to fluid as compared to that of the shell itself is greater for thinner

shells than for thicker shells.

iv) Shear deformation effect is more pronounced for anisotropic materials and

thicker shells.

This theory is capable of solving the equations of motion of fluid-filled shells for any
boundary condition (e.g. free, clamped and simply-supported) without the necessity for
changing the displacement functions. This method may be also used in the free vibration
analysis of circumferentially non-uniform open and closed cylindrical shells subjected to a

flowing fluid.

The geometrical non-linearity effect, large displacements and rotations, on the natural
frequencies of open cylindrical shells, fluid-filled with, or subjected to, a flowing fluid, will

be the subject of a later work based on the present theory.
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4.8 Appendix A-4

These appendices contain the equations of motion of cylindrical shells and other

equations which are referred to in the various sections of this work.

A-Constitutive Relations of Anisotropic Circular Cylindrical shells-The stress-

strain relationships for any ply, in the lamina reference axes (1, 2, 3) are given by:

cl Qll Qll QIJ 0 0 0 el
a! QZ! Qn QD 0 0 0 C:
O] Qll Qil Q]3 ¢ 0 Q el A 4 1
ru:oooQ“oo:z,J (A-4.1)
sl 1o 0 0 o o, ofle,
T 0 0 0 0 O Q“ €,

where O,’s elements are related to material properties of a lamina as:

Q) E(1-vyv W8 3 Q=G

Qn=Ep(l-vy v W8 5 04=G,

Oy =E, (1-v v, V8 5 Q=G
Q= (Vyy Vi) B A =0V, ViV JEL/B (A42)
Q:: =(vn H'n":u)En/ a =(V|3 'Vuvn)EH/A
Oy 3V ¥y V3 JE B =(Vyy +Vy v JE /A

A=l-v v

1221 V¥~ vy ViV

ViVis " Va Ve

and £, E,; and Ej; are, respectively, Young’s moduli in the /, 2 and 3 directions.

The G/, G»; and G; are, respectively, shear moduli in the /-2, 2-3 and /-3 planes and v; are
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Poisson’sratios. The stress-strain relations in terms of global coordinates (x, 8, z) are obtained

using transformation manipulations and given as:

o, Qll Qu Q—u 0 0 -Q-l; £
o BT T 0 0 T s
o,| 19,0,0, 0 0 0. |,
{E}= += 31 ¥z ¥y 36 + (A-4.3)
Ton 00 0 9,0, 0] [Y,
T 0o 0 o0 Q; s 0 Yo
) 0, 06 0, 0 0 Q|

where @ij’s elements are the transformed stiffness of any lamina and defined as :

a"'s elements:
0,=0,m*+2Q,,*20 ) m’n*+Q n* | T =0,n*+2Q,,*20, Jm’n*+Q m"*
0,,7(0,,*0:, 40, m’n*+Q (m*+n*) ; Q=0 n*+Q m’
0,°0,m7+ 007 i Op=-m'nQ,-mn’Q, smn(m*-n}Q,,+20,)

D= -mn’Q,-m’nQ, -mn(m*-n’%Q,,+20,) . Up=(Q,*Qy-20 m'n?+Q (m*-n®  (A-44)
2,70,
0,.2(0,,-0)mn ; Dg=(0,-0, mn
0.-0,m*+Q.n* ; 0. =0 m*+Qn’

m=cosa ; n=sina

Finally, the constitutive relations for the anisotropic laminated cylindrical shell are
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obtained by integrating the stress resultants and stress couples through the thickness of the

shell and given by the following equation [see reference 35];

B B 8 B D D D, D
11 16 12 16 1 16 13 16
4 3 ("u“}") 0 A!:'T ("u’T) 0 Bn'_R' (Bm'T) Blz'T (Bls’T)
N, 8“ Bu Bsz Bu Du Du Du D“ '.‘
= .} ) "1 .8 0 (g =% 8 g %
Nﬂ A(I R (A“ R) 0 Au R (A“ R) Bcl R ( o8 R) BQ R ( “ ) 7.‘
B
Quf | 0 0 Uy 0 0 U, o 0 0 0 ",
Yo 1 Ay 0 " 0 2 By By By “
N, .
= ] “ 0 “ 0 .l B, 8.: By Te
5«- 0 0 A, 0 0 A, 0 0 0 0 b,
° D D D D E E E E 3
1 18 3 1 1 | 33 z
ALl [Bu g (B3 0 Bu’TI (Bu’T.) 0 ey (Du"ﬁa) Dy —o (Dm'_g‘_.) .
M, D D D D E E E Ea '
. ] 0 8 8 i} i} o 5,
‘l{‘h Btl R ( (3 R ) Bu R (B“ R ) o Du R (Dw R ) Ds! R (D R ) t'
B, B 0 B, B, 0 D,, D, D, D, |@o=io) ! *° lio=1)
B, B 0 8, 8, 0 D, D, b, D,
(A4.5)
where 4, B,, D, , E,; A,z and B, are defined by;
4, H(Q,) (hyhyy)
B =-z(§f) (h*-h*,) ij=1,6,2,6
(A-4.6)

D, 32(9)0:’ h)

E, 48‘(9,,) -k, )
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N R ——
A aa=‘§-1(Q w)k(hk-hk_l)
Y who43 (A-4.7)
i i@ -

N:Number of lavers

4.9 Appendix B4

B-The Equations of Motion of a Cylindrical Shell (Equation 4.3):

L(UVWB B )

2

c"U' 1 1 GIU‘_
Pn—axT'(ﬁ(P 'Pn)'_u’l m'Pm))T’

'i_(PIOJ Py10 Pmm °1U ,azU,
R? 2R} 4R* oﬂz V2
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(B-4.2)

(B-4.3)
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Intermediate Matrices;

-The [R] 5.1y matrix (equation 4.7 ),

R(l,j)=¢1,e“’6
RQ.j)=B "
RG.j)=e"’ j=12,.,10
R@,j)=y,e”
R(5./)=8 ¢"

- The [A] (10.10) matrix (equation 4.9 );

.-l(l,j)=u, :
~4(2J)=B‘,
A(3.j)=1 ;
A4 J)=y, 5
.4(S.j)=5l

A(6./)=A(1.)a

L AT ))AR) e

A(8,)=a, a]=e"’° j=1.2,...10
A(9./)=4(4./)a

i A(10.5)=A4(5,f) a,
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-The elements of [QQ]10-10)’s matrix (equation 4.11);

0oL )=-ame™ i 00(6./)l5n,B)+s1e
002.)Bme”  ; Qo1.j)-yme”
QQ(3.j)=(yI+E)e"," : QQ(SJ)=[5,E‘%B,18'5° 1,10
1
00(4.)) (1 enB)e™ i 000.)=gn5 e
00 jyLmaye® i 00010./)Ehny, e, 1€ (B-4.8)

R}JZRZ
where:

—_mn
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4.11 NOMENCLATURE

A, B,C, D, E : defined by Eq.(4.4)

A; : extensional stiffness Eq.(A-4.6)

Bj; : bending-extensional coupling stiffness Eq.(A-4.6)

C; :speed of sound in the fluid

D;; :bending stiffness Eq.(A-4.6)

f;(i=1 to 10): coefficients of characteristic equation (4.5)

i :i=-1

Jm; (i myr) : Bessel function of the first kind and of order
L: length of sheil

L; : motion equations Eq.(4.3)

m : axial mode number

- ¥/
m : defined by mnr

M,, Mg M,g, Mg, : the moment resultants (4.2)

n : circumferential wave number

N,, Ng N,g, Ng, : the in-plane force resultants (4.2)
P : lateral pressure exerted on the shell

P; : internal pressure

P.: external pressure
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P; : terms of elasticity matrix( i=l,..,10 ; j=1,..,, 10) Eq. (A-4.5)

Q; : the elastic stiffness in the global coordinates Eq.(A-4.4)

Q. Qaa : the transverse force resultants Eq.(4.2)

R : mean radius of the shell

R; (r) : solution of Bessel equation (4.27)

Si(x, 8, t) : defined by Eq.(4.23)

t : thickness of the shell

u, v, w : the axial. circumferential and radial displacement respectively

Ums Vs Wons Bums Bom © amplitudes of u, v. w, B, and B, associated with m,, axial mode
number

Ux : velocity of the fluid .  internal fluid and e external fluid
V,, Vg, V, : axial, tangential and radial fluid velocity (4.17)

x : axial coordinate

Yin; (i myr) : Bessel function of the second kind and of order ;n;
Z(im, R,) : defined by Eq. (4.31,4.32)

o, Pi, v;: and §; defined by Eq.(4.6)

B, and P, : the rotations of tangents to the reference surface

n; : complex roots of the characteristic Eq.(4.5)

g% and €% : normal strains of the reference surface

¥, and Y% : in-plane shearing strains of the reference surface

K, and kg : change in the curvature of the reference surface



1, and T, : torsion of the reference surface
u® and u% : the shearing strains

0 : circumferential coordinate

¢ : velocity potential

® : natural frequency

p, : density of the shell material

pr: density of fluid, £, for internal fluid and £, for external fluid

V?: Laplacien operator

Liste of Matrices:

[Al16-10 : defined by Eq.(4.9)

[Bl10x10) : defined by equation(4.11)

[C;] damping matrix

[Gy] : defined by Eq.(4.34)

(k] : stiffness matrix for a fluid finite element Eq.(4.34)
[K{] : stiffness matrix for the whole fluid(4.37)

{k.]: stiffness matrix for a shell finite element Eq.(4.13)
[K]: stiffness matrix for the whole shell (4.37)

[mg] : local mass matrix for a fluid finite element Eq.(4.34)
[M;] : mass matrix for the whole fluid Eq.(4.37)

[m,] : local mass matrix for a shell finite element Eq.(4.13)

284



[M,] : mass matrix for the whole shell Eq.(4.37)
[N] : shape function matrix(4.10)

[P] : elasticity matrix Eq.(4.2, A-4.5)

[QQ] : defined by Eq.(4.11, B-4.8)

{R] : defined by Eq.(4.10, B-4.6)

[S{] : defined by Eq.(4.34)

[T,] : transformation matrix Eq.(4.7)

{C}: vector for arbitrary constants (4.7)

{F} : the external forces (4.14)

{8;} : degrees of freedom at node {

{e}: deformation vector Eq.(4.1)



Table 4.1

Free vibration (Hz) of a cylindrical shell simply
supporied at both ends

First line of values corresponds to empty shell; second line

corresponds to fluid-filled shell.

. 9.956 .
4.1965 4.504 4.549
36.189 37.504 37.290
16.062 17.257 17.46
75.042 77271 77.900
34.225 36.361 37.137
121.17 123.693 128.120
55.63 59504 | 62115
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(A)

Figure 4.1

(B)

(€)

A) Circular cylindrical shell geometry
B) Positive directions of integrated stress quantities
C) Flowing fluid open cylindrical shell
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v x(u)

=
8(v)
(C)
Figure 4.2  A) Finite element discretization
. B) Nodal displacement at node i for the 72’th element.

C) Definition of variables
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Frequency distributions (Q2) of a fluid-filled closed cylindrical
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CONCLUSION

Cette thése avait pour but :

a) de développer des équations générales, par exemple les équations d’équilibre et
de développer les relations constituantes et cinématiques pour |’analyse linéaire des coques
anisotropes laminées et multicouches (avec des couches symétriques ou antisymétriques,
couches orthogonales ou croisées ) de forme générale avec la seule hypothése de négliger la
contrainte normale. Ce développement est basé sur une théorie des coques ot les effets des
déformations de cisaillement et de I’inertie de rotation aussi bien que de la courbure initiale
sont pris en considération. Les déformations utilisées sont exprimées en coordonnées
curvilignes orthogonales (les relations exactes de déformation-déplacements de Green). Le
comportement dynamique des coques anisotropes est beaucoup plus sensible a ces effets que

celui des coques isotropes.

Négliger les déformations de cisaillements peut conduire a une surestimation des
fréquences. Ces erreurs sont encore plus grandes pour des plaques et des coques fabriquées
en composites comme le graphite-epoxy et boron-epoxy dont le rapport de module

d’élasticité/module de rigidité ( E/G ) est trés grand (de I’ordre 25 440 au lieu d’environ 2,5



pour des matériaux isotropes).

On peut donc dire que les déformations de cisaillement jouent un rdle beaucoup plus
important dans la résolution de la rigidité cffective de flexion des plaques ct des coques
laminées. Toutefois, la sévérité des effets des déformations de cisaillement dépend aussi de
I’anisotropie des couches. Les équations de mouvement sont déduites par I’application du
principe du travail virtuel avec les déplacements et les rotations comme variables

indépendantes.

b) d’appliquer les équations mentionnées ci-dessus aux différentes géométries des
coques comme les coques de révolution, cylindriques, sphériques et coniques aussi bien que
les plaques rectangulaires et circulaires. Les déformations de ctsaillement ne disparaissent
pas dans la présente théorie et par conséquent, les rotations Pi, qui représentent la rotation
de tangente a la surface de la référence, ne peuvent pas étre exprimées en fonction des
composantes du déplacement. C’est pourquoi cette théorie conduit a cinq équations
différentielles - au lieu de trois équations comme dans le cas d’autres théories- du deuxi¢me

ordre, couplées et lin€aires avec les coefficients constants.

¢) d’analyser dynamiquement des coques cylindriques ouvertes ou fermées, minces,
élastiques et anisotropes laminées multicouches. Les coques cylindriques sont
considérablement utilisées dans diverses industries par exemple, I’industrie aérospatiale,

I'industrie nucléaire et le domaine pétrolier, etc. C’est pourquoi les caractéristiques
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dynamiques de ces coques avec ou sans fluide ont été¢ considérablement étudiées par

plusieurs chercheurs au cours des derniéres années.

d) d’étudier les vibrations libres des coques cvlindriques submergées et soumises
simultanément 4 un écoulement d’un fluide. Le comportement des coques partiellement ou

complétement remplies de liquide a été aussi analysé.

La méthode est basée sur la théorie raffinée des coques, qui prend en compte les
effets des déformations de cisaillement, la mécanique des fluides et la méthode des éléments
finis. Le modéle développé nous permet de déterminer les valeurs propres (fréquences
naturelles) des coques cylindriques ouvertes et fermées, anisotropes et isotropes, vides,

partiellement ou complétement remplies de liquide en régime stagnant ou en écoulement.

En premier lieu, nous avons développé un programme qui peut calculer la matrice
d’élasticité pour un cas général (matériaux anisotropes ayant n couches avec des propriétés
mécaniques et avec une orientation des fibres différentes d’une couche a I’autre). En effet,
les éléments structuraux fabriqués en matériaux composites sont considérablement utilisés

a cause des rapports avantageux de rigidité/poids et solidité/poids.

L’exactitude de la méthode de I'élément fini dépend du nombre et de la dimension
des éléments entre lesquels la structure est divisée. L’approximation optimale des matrices

de masse et de rigidité dépend de beaucoup de facteurs, le plus important étant le choix des
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fonctions du déplacement qui satisfait le critére de la convergence de la méthode de
I’élément fini. C’est pourquoi nous avons développé un élément fini, qui est de type coque
cylindrique ouverte, ou les fonctions de déplacement ne sont pas polynomiales comme c’est
le cas avec la méthode des éléments finis classique, mais ot elles sont dérivées de la théorie

des coques cylindriques minces en coordonnées curvilignes orthogonales.

Cette méthode combine les avantages de la méthode des éléments finis qui traite des
coques complexes (matériaux anisotropes multicouches, épaisseur variable, différentes
conditions aux rives, etc.) et la précision de la formulation utilisant des fonctions de
déplacement dérivées de la théorie raffinée des coques. L’ensemble des matrices, les matrices
de masse et de rigidité qui décrivent leurs contributions relatives a I'équilibre sont

déterminées par intégration analytique exacte.

Cette théorie donne les déformations nulles pour le mouvement du corps rigide afin
que les fonctions des déplacements basées sur cette théorie satisfassent le critére de la
convergence de la méthode des éléments finis. Les cinq équations différentielles de
mouvement sont résolues conjointement avec cinq conditions aux rives a chaque bord par

la méthode des éléments finis hybrides.

Le potentiel des vitesses, 1’équation de Bernoulli et I'imperméabilité linéaire
appliquée a I'interface de fluide-structure ont été utilisés afin de décrire une expression

explicite pour la pression du fluide menant a trois forces (inertielle, centrifuge et de Coriolis)
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du fluide en mouvement. Les matrices de masse, de rigidité et d’amortissement dues a |’effet
du fluide peuvent étre obtenues par une intégration analytique de la pression du fluide sur

I’élément liquide.

Pour vérifier I’exactitude de cette théorie, les fréquences naturelles obtenues ont été
comparées avec celles d’autres théories, par exemple la théorie classique des coques, la
méthode des éléments finis, etc. Les résultats sont présentés pour des coques cylindriques
fermées et ouvertes, isotropes et anisotropes laminées (symétriques ou antisymeétriques, avec
couches orthogonales ou croisées ), vides, partiellement ou complétement remplies de fluide

ou soumises a un écoulement avec différentes conditions aux rives.

Une étude paramétrique, y compris les différents modes circonférentiels et axiaux (m,
n), des paramétres de laminage (nombre de couches, séquence de couche et orientation des
fibres), des différents rapports de R/ ; L/R ; L/t et du rapport de la hauteur du fluide (b/d)
a été effectuée. Les résultats numériques concordent de fagon raisonnable avec les résultats

disponibles par d’autres théories.

Les résultats présentés indiquent que la théorie classique des coques conduit, en
général, A une surestimation des fréquences naturelles surtout pour des coques anisotropes.
La différence s’applique par le changement de I’angle de cisaillement d’une couche 4 I’autre

et I'insensibilité de la méthode classique a ce changement.
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Les fréquences naturelles des coques cylindriques remplies de liquide sont inférieures
aux valeurs correspondantes des coques vides, a cause de ’augmentation de [’énergie
cinétique du systéme sans augmentation correspondante de I’énergie de déformation. Les
fréquences diminuent avec I’ augmentation de la hauteur du fluide et cette diminution dépend

des paramétres géométriques et physiques des fluides et structures.

Toutefois, ce modéle ne peut pas s’appliquer a des coques cylindriques épaisses, ol

les effets des contraintes normales doivent étre pris en considération.

Nous pouvons donc dire que nous disposons d’une méthode adéquate atin de prédire
les caractéristiques dynamiques des coques cylindriques anisotropes laminées multicouches,
ouvertes ou fermées, soumises a un fluide en écoulement. Les coques ont des conditions
frontiéres arbitraires sur les rives droites et elles sont simplement supportées selon leur rives

courbes.

Les travaux effectués dans notre groupe de recherche ont pour but de développer un
modéle numérique d’une coque vide, partiellement ou complétement remplie de liquide, avec
ou sans l’effet de la surface libre (sloshing), soumise a un écoulement de fluide. Pour
atteindre ce but, le groupe de recherche a déja développé un élément cylindrique fermé et
ouvert, conique, sphérique ainsi qu’une plaque circulaire et rectangulaire, en se basant sur
la théorie de Sanders et aussi bien qu’un élément cylindrique ouvert en se basant sur une

nouvelle théorie des coques (cette thése).
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La suite logique de cette étude serait I’analyse des coques cylindriques, anisotropes

et ouvertes, qui peuvent étre classées comme suit :

- Chargement

1) Etude de Ieffet de la surface libre du fluide sur le comportement vibratoire des

coques horizontales.

2) Etude des vibrations forcées d’une coque cylindrique soumise a un chargement

dynamique.

3) Etude des excitations dues a un écoulement turbulent.

- Géométrie

1) Influence des non-linéarités géométriques des parois, dues a de grands

déplacements etde grandes rotations, sur les fréquences naturelles des coques cylindriques.

2) Etude détaillée des effets de I'imperfection géométrique et de la présence des

découpages (cutout) sur le comportement dynamique des coques.

- Matériaux

1) Etude de la sensibilit¢ de la réponse dymamique des coques anisotropes

multicouches aux variations de laminage (séquence de couche et orientation des fibres et
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aussi coefficients des matériaux anisotropes).

2) Développement d’une technique numérique et pratique pour prédire I’initiation et
propagation des défaillances, selon différents critéres disponibles pour des matériaux
composites - voir par exemple Tsai-Hill, Haffman; Chamis ; Tsai-Wu et la déformation

maximale- dans les coques anisotropes soumises aux différentes conditions de chargement.
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