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L'analyse statique et dynamique des plaques et des coques minces, vides ou remplies 

de fluide a été le sujet de plusieurs recherches. Beaucoup de travaux ont étudié les plaques 

et les coques en considérant différents facteurs tels que la variation d'épaisseur, l'anisotropie 

des matériaux, l'imperfection géométrique, l'effet du milieu environnant, etc. La plupart de 

ces études imitent de l'analyse linéaire, avec ou sans l'interaction entre ces structures et le 

milieu du fluide, des plaques ou des coques fermées selon les premiéres approximations de 

la théorie de Love-Kirchhoff. 

Aucun travail d'analyse basé sur une théorie où les effets des déformations de 

cisaillement et de l'inertie de rotation aussi bien que ceux de la courbure initiale sont pris en 

considération n'a encore été fait pour I'andyse des coques cylindriques ouvertes et 

anisotropes laminiies et remplies de fluide, ou soumise à un liquide en écoulement. NOUS 

proposons de développer analytiquement les équations d'équilibre, les relations constituantes 

et les relations cinématiques qui décrivent le comportement des coques de forme générale, 

fabriquées avec des matériaux anisotropes, laminées multicouches en considérant les effets 

des déformations de cisaillement, ceux de l'inertie de rotation ainsi que de la courbure 

initiale. 
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Par la suite, ces équations sont appliquées aux différentes géométries de coque, 

comme les coques de révolution, cylindriques, sphériques et coniques a w i  bien que les 

plaques rectangulaires et circulaires. Finalement, nous étudions les vibrations libres des 

coques cylindriques vides ou remplies (partiellement ou complètement ) d'un liquide, ou 

soumises à un écoulement d'un fluide nonvisqueux et incompressible interne ou externe. La 

stabilité dynamique des coques cylindriques est aussi analysée. 

La  méthode développée est une combinaison de la méthode des éléments finis 

hybrides, de la théorie des déformations de cisaillement des coques et de celle des fluides. 

Les coques cylindriques ouvertes ont des conditions frontières arbitraires sur les rives droites 

et elles sont simplement supportées selon leur rives courbes. 

La première partie de ce travail traite de I'anaiyse linéaire des coques anisotropes 

laminées et multicouches de forme générale, analyse basée sur la théorie des déformations 

de cisaillement, avec les seules hypothèses de négliger la contrainte normale. Les résultats 

qui incluent les effets des déformations de cisaillement et l'inertie de rotation aussi bien que 

les e f k s  de la courbure initiale sont déduits par l'application du principe du travail virtuel, 

avec les déplacements et les rotations comme variables indépendantes. Ces équations sont 

donc appliquées aux différentes géométries de coque telles que les coques de révolution. 

cylindriques, sphériques et coniques aussi bien que les plaques rectangulaires et circuiaires. 

Dans la seconde partie de cette thèse, nous appliquons la présente théorie pour 
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l'analyse statique et dynamique des coques cylindriques minces élastiques et anisotropes 

laminées multicouches. L'analyse prend en compte les effets des déformations de 

cisaillement, de l'inertie de rotation aussi bien que de la courbure initiale. La méthode 

utilisée est une combinaison de la méthode des éléments finis hybrides et de la théorie des 

déformations de cisaillement des coques. La coque est divisée en plusieurs éléments finis de 

type cylindrique et les fonctions de déplacement sont dérivées de la théorie des coques 

cylindriques minces en coordonnées curvilignes orthogonales. 

L'ensemble des matrices, les matrices de masse et de rigidité, qui décrivent leurs 

contributions relatives à l'équilibre sont déterminées par intégration analytique exacte. Cette 

théorie donne les déformations nulles pour le mouvement du corps rigide afin que les 

fonctions des déplacements basées sur cette théorie satisfassent le critère de la convergence 

de la méthode des éléments finis. Cette théorie conduit à cinq équations différentielles du 

deuxième ordre, couplées et linéaires avec les coefficients constants. Elles sont résolues 

conjointement avec cinq conditions aux rives à chaque bord par la méthode des éléments 

fmis hybrides. Les résultats obtenus concordent de façon raisonnable avec d'autres théories. 

La troisième partie de cette recherche traite des vibrations libres des coques 

cylindriques minces, ouvertes ou fermées, anisotropes laminées aussi bien qu'isotropes, 

remplies (partiellement ou complètement) d'un liquide ou submergées et soumises 

simultanément à un écoulement d'un fluide nonvisqueux et incompressible interne et externe. 

Dans cette approche, les déplacements et les rotations de coque, et la pression dynamique du 
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fluide sont modélisés par la méthode des éléments finis hybrides. Les fonctions du 

déplacement sont dérivées de la solution exacte d'équations de la coque basées sur les 

coordonnées curvilignes orthogonales. 

Le potentiel de vitesse, l'équation de Bernoulli et l'imperméabilité linéaire appliquée 

à I'interface de fluide-structure ont été utilisés afin de décrire une expression explicite pour 

la pression du fluide, menant à trois forces (inatielle, centrifuge et de Coriolis) du fluide en 

mouvement. Les matrices de masse, de rigidité et d'amortissement dues à l'effet du fluide 

peuvent être obtenues par une intégration analytique de la pression du fluide sur l'élément 

liquide. Divers résultats de calcul ont été obtenus pour illustrer la théorie et le comportement 

dynamique des coques cylindriques ouvertes et fermées, partiellement ou complètement 

remplies de liquide ou soumises à un écoulement. Les résultats numériques prédits par 

présente théorie concordent de façon raisonnable avec les résultats obtenus avec 1' application 

d'autres théories. 

Cette méthode combine les avantages de la méthode des éléments finis, qui traite des 

coques complexes et la précision de la formulation basée sur des fonctions de déplacement 

dérivées de la théorie de cisaillement des coques. Sur la base de cette nouvelle théorie, nous 

avons donc un modèle puissant qui peut prédire les caractéristiques vibratoires des coques 

cylindriques ouvertes ou fermées, anisotropes et soumises à un fluide en écoulement. 



The static and dynamic analysis of thin plates and shells, empty or Buid-filled, has 

been the focus of many researches. There are many works in which the plates and shells were 

studied by considering different factors as like the thickness variation, anisotropic matenais, 

geometric imperfection and the effect of surrounding medium, etc. Most of these theories 

were originally developed for Iinear analysis of the plates or the closed shells, empty or fluid- 

fiiled, based on the first approximations of Love-Kirchhoff theory. This theory could lead 

to unrealistic prediction of transverse deflection. natural frequencies and buckiing load due 

to neglecting of transverse shear deformations effects. No work has been made to analyse the 

anisotropic laminated open cylindncai shells filled with or subjected to a flowing fluid by 

taking into account the effects of shear deformations and rotatory inertia as well as initial 

curvature effects. 

Therefore, the first purpose of this midy is to develop the general equations, 

equilibrium equations, bernatic and constitutive relations, of multi-layered laminated 

anisotropic shells by considering the effects of the above mentioned parameters. Merwards, 

the developed equations are applied to Merent geometries as revolution, cylindncal, 
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spherical and conical shells as well as rectangular and circular plates. Finally, free vibrations 

of anisotropic open cylindrical shells filled@artially or cornpletely) with or subjected to an 

intemal or extemd incompressible, inviscid fluid are analysed by using a combination of 

hybnd finite eiement analysis, the rehed shear deformation theory of shells and theory of 

fluids. The open shells are assumed to have arbitrary straight edge boundary conditions and 

to be simply-supported dong their curved edges. The dynamic stability of cylindrical shells 

is also mdysed. 

The first part of this study de& with a generalization of geometrically Iinear shear 

de formation theory for multilayered anisotropic shells of generd shape. The only assumption 

made is to neglect the transverse normal strain. The results, which include the effects of shear 

deformations. rotatory inertia ad initial cwature are deduced by application of the virtual 

work principle, with displacements and transverse shear as independent variables. These 

equations are applied to different shell geometries, nich as revolution, cylindrical, spherical 

and conical shells as well as rectangular and circular plates. 

In the second part of this thesis, the developed theory is applied to static and dynamic 

analysis of thin larninated anisotropic cylindrical shells. This theory yields five coupled 

Iinear secondsrder dif5erential equations with constant coefficients. They are solved in 

conjunction with five boundary conditions at each edge by a combination of hybrid finite 
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element analysis and shear deformation theory of shells. The shell is subdivided into 

cylindncal finite elements and the displacement fünctions are obtained using the shell 

equations based on orthogonal curvilinear coordinates. The set of matrices descnbing their 

relative contributions to equilibrium is detennined by exact analfical integration. This 

theory gives zero stnins for rigid-body motions so that the displacements functions based 

on it satisfy the convergence critena of the finite element method. Reasonable agreement is 

found with other theories. 

The third part of this research deals with the free vibration of anisotropic laminated 

composite open or closed cylindrical shells filled (partially or completely) or submerged in 

and subjected simultaneously to an internai and extemal incompressible, inviscid fluid. In 

this approach, displacements and rotations of the shell and the dynamic pressure of the fluid 

are modelled by hybrid finite element method. The displacement functions are derived fiom 

the exact solution of refined shell equations based on orthogonal curvilinear coordinates. The 

velocity potential, Bernoulli's equation and linear impermeability condition, applied to Buid- 

structure interface, have been used to describe an explicit expression for fluid pressure which 

yield three forces (inertia centrifuga1 and Coriolis) of the moving fl uid. The rnass, stiffhess 

and damping matrices due to fluid effect can be obtabed by an analyticril integration of the 

fluid pressure over the liquid element. Extensive results of computations are canied out to 

illustrate the theory and dynamic behaviour of open and closed cylindrical shells partiaily 
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or completely filled with liquid, or subjected to a flowing fluid. A satisfactory agreement is 

found behveen the numerical results predicted by the present theory and the resuits of 

previous works. 

This method combines the advantage of finite element approach dealing with 

complex shells and the precision of formulation using displacement functions derived fiom 

refmed shear deformation theory of shells. Hence, a powerful mode1 based on a developed 

theory is presented to predict the vibration characteristics of anisotropic open or closed 

cylindrical shells subjected to a flowing fluid. 
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INTRODUCTION 

Les éléments stnicturau~, comme les coques et les plaques, fabriqués en matériaux 

composites sont considérablement utilisés dans diverses industries, par exemple dans 

l'industrie nucléaire, l'industrie aérospatide et aéronautique, l'industrie navale et le domaine 

pétrolier. Leur application industrielle s'est rapidemenl développée à cause de leurs 

propriétés mécaniques. C'est pourquoi il est si impératifde bien connaître les caractéristiques 

statiques et dynamiques de ces structures di d'éviter tout effet destructif durant leur 

utilisation industrielle. 

Beaucoup de travaux ont étudie les coques en considérant différents facteurs tels que 

les grands déplacements, la variation de l'épaisseur, les contraintes résiduelles, l'inertie de 

rotation, l'anisotropie, la courbure initiale, l'imperfection géométrique et l'effet du milieu 

environnant, etc. La plupart de ces études ont été faites dans les domaines linéaire et non- 

linkaire, avec ou sans l'interaction entre ces structures et Ie milieu fluide environnant, selon 

les premières approximations de la théorie de Love-Kirchhoff (la nomale à la surface 

moyenne reste droite et normale aprés déformation) qui donnent dans certains cas des 

résultats incomplets en prédisant les déformations, les charges de flambement et les 



fréquences naturelles pour des plaques et des coques ayant une épaisseur modérément 

grande. 

Les erreurs sont encore plus irnporbntes dans !e CS des plaques et des coques 

fabriquées de matériaux composites comme le graphite-epoxy ou le boron-epoy, puisque le 

rapport E/G est très grand (de l'ordre 25 à 40 au lieu d'environ 2,5 pour des matériaux 

isotropes). On peut donc dire que les déformations de cisaillement jouent un rôle plus 

important dans la résolution de la rigidité effective de flexion des plaques et des coques 

laminées. Une 6tude bibliographique exhaustive sur le sujet est présentée dans le premier 

chapitre de cette thèse. 

On étudie dans ce travail une classe générale de problèmes qui incluent le 

comportement élastique et linéaire des plaques et des coques anisotropes et l'effet de 

déformation de cisaillement transversal, l'inertie de rotation ainsi que I'interaction avec un 

fluide incompressible et non-visqueux. 

Dans cette étude nous allons d'abord développer les équations générales (par 

exemple, les équations d'équilibre et les relations constituantes et cinématiques) pour 

l'analyse linéaire des coques anisotropes laminées et multicouches de forme générale. Ces 

équations sont basées sur une nouvelle théorie oh sont pris en considération les effets des 

déformations de cisaillement et de l'inertie de rotation aussi bien que ceux de la courbure 

initiale. 
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Par la suite, nous appliquerons ces équations à différentes géométries de coques et 

de plaques, et nous développerons un modèle numérique pour l'maiyse dynamique et 

statique des coques cylindriques ouvertes ou fermées, anisotropes multicouches et remplies 

(partiellement ou complètement) d'un liquide ou soumises à un fluide en écoulement. On 

peut classer le milieu fluide environnant selon les caractéristiques suivantes : la viscosité, la 

compressibilité, le type d'écoulement (stationnaire ou turbulent)? le mouvement de la surface 

libre, etc. 

Nos études numériques sur des coques cylindriques anisotropes englobent les points 

suivants : 

a) considération du comportement élastique des matériaux laminés; 

b) considération de l'effet des déformations de cisaillement, de l'inertie de rotation 

et de la courbure initiale; 

c) emploi d'une méthode hybride d'élément finis; 

d) étude de l'interaction structure-fluide. 

Cette étude entre dans le cadre d'un projet de recherche dont le but est de développer 

un modèle numérique d'une coque quelconque soumise à un écoulement interne et/ou 

externe. Les résultats de ces travaux seront utiles pour tout développement de réservoirs sous 



pression, d'échangeur de chaleur, etc. 

BUT DE LA RECHERCHE 

Comme le montre notre l'étude bibliographique, les coques ont fait l'objet de 

plusieurs travaux dans les domaines de la statique et de la dynamique avec ou sans fluide en 

écoulement. Parmi les nombreuses théories établies, peu de travaux ont été faits pour 

l'analyse des coques ouvertes et anisotropes laminées en considérant les effets des 

déformations de cisaillement et de l'inertie de rotation, notamment pour des coques soumises 

à un liquide en écoulement. La plupart des méthodes utilisées sont inaptes à déterminer les 

hautes fréquences du système coque-fluide avec autant de précision que pour les basses 

fréquences. 

Les objectifs principaux de notre programme de recherche sont: 

a) de développer analytiquement les équations d'équilibre, les relations constituantes 

et les relations cinématiques qui décrivent le comportement des coques de forme générale, 

fabriquées avec des matériaux anisotropes, laminées multicouches en considérant les effets 

des déformations de cisaillement, ceux de l'inertie de rotation ainsi que de la courbure 

initiale. 

b) d'appliquer ces équations aux différentes géométries de coque comme les coques 

de révolution, cylindriques, sphériques et coniques, aussi bien qu'au plaques rectangulaires 



et circulaires. 

c) d'analyser statiquement et dynamiquement le comportement des coques 

cylindriques roinees, éIlstiques et m.isrisotropes !minées multiccucfies, ow:ertes ou hmfes 

dans le cas vide. 

d) d'étudier les vibrations libres des coques cylindriques remplies (partiellement ou 

complètement) d'un liquide ou soumises à un écoulement d'un fluide non-visqueux et 

incompressible interne ou externe. 

Une partie importante du projet consiste donc à développer des méthodes numériques 

et des logiciels qui permettent de résoudre numériquement les équations du mouvement 

d'une coque cylindrique et d'obtenir les fréquences naturelles. La méthode développée est 

une combinaison de la méthode des éléments finis hybrides. de la théorie des déformations 

de cisaillement des coques et de celle des fluides. Les coques cylindriques ouvertes ont des 

conditions fkontières arbitraires sur les rives droites et elles sont simplement supportées selon 

leur rives courbes. 

L'équation du mouvement du système coque-fluide peut s'écrire de la façon 

suivantes: 
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où: {S)est le vecteur déplacement; FIs] et [IU sont les matrices de masse et de 

rigidité linéaire de la coque vide; [Md, [Cd et [K,] sont respectivement les matrices associées 

aux forces d'inertie, de Coriolis et c e n a g e  dues au fluide en écoulement. 

Dans la partie numérique de cette thèse, notre objectif est donc de trouver ces 

matrices. Nous résoudrons l'équation du mouvement du système coque-fluide (1) afin de 

déterminer les fréquences naturelles d'une coque cylindrique ouverte ou fermée, élastique, 

mince, anisotrope remplie de liquide ou soumise aux écoulements du fluide. 

Cette étude entre dans le cadre d'un large projet de recherche dirigé par le professeur 

A.A. Lakis et ayant pour but d'analyser dynamiquement une coque quelconque avec ou sans 

fluide en écoulement. 

ORGANISATION DE LA THÈSE 

Cette thèse a été elaboke sous forme d'articles qui constituent le corps principal du 

travail. Elle est divisée en quatre principaux chapitres. 

Le premier chapitre présente une revue de la bibliographie consacrée a l'analyse des 

plaques et des coques basée sur différentes théories existantes, de différents points de vue tels 

que : Q l'importance des applications des matériaux anisotropes dans l'industrie, ii) les 

théories des coques basées sur les hypothèses de Love-Kirchhoff, iii) les théories des coques 

considérant les déformations de cisaillement, iv) l'étude des interactions structures-fluide, 



v)  la méthode de solution. 

Au deuxième chapitre, nous étudions d'abord le comportement des matériaux 

compesites, au niveau macmscopique. Noils d&!eloppons donc vm progrne q ~ i  peut 

calculer la matrice d'élasticité pour un cas général (matériaux anisotropes ayant n couches 

orthogonales ou croisées avec propriétés mécaniques et orientation des fibres différentes 

d'une couche à l'autre ) qui relie le vecteur des contraintes à celui des déformations (loi de 

Hooke). 

Nous appliquons par après le principe du travail virtuel avec les déplacements et les 

rotations comme variables indépendantes pour trouver les équations de mouvement. Cette 

théorie conduit à cinq équations différentielles couplées et linéaires. Enfin, nous appliquons 

ces équations aux différentes géométries de coque comme les coques de révolution, 

cylindriques, sphériques et coniques aussi bien qu'aux plaques rectangulaires et circulaires. 

Le travail qui constitue le deuxième chapitre est présenté dans l'article intitulé 

"General Equations of Anisotropie Plates and Shells Including Transverse Shear 

Deformations, Rotatory Inertia and Initial Curvature EffectsN.Cet article a été soumis 

à I'Intemationai Journal of Engineering Science. 

Le troisième chapitre présente l'application numérique de cette théorie au cas d'une 

coque cylindrique ouverte ou fermée, anisotrope et vide. Les résultats obtenus sont comparés 



avec d'autres résultats disponibles dans la littérature. L'analyse est présentée sous la forme 

d'un article intitulé "Transverse Shear Deformation in Free Vibration Analysis of 

Anisotropic Open Circulai- Cylindrical SheUs" Cet article a été soumis à l'International 

Journal of Com~uters and Structures. 

Dans le quatrième chapitre, nous étudions les vibrations libres des coques 

cylindriques minces. ouvertes ou fermées, anisotropes laminées, partiellement ou 

complètement remplies de fluide ou submergées dans un fluide, ou bien soumises a un 

écoulement d'un fluide non-visqueux et incompressible. Ce travail est présenté dans l'article 

intitulé "Shear Deformation in Dynamic Analysis of Anisotropic Laminated Open 

Cylindrical Shells Filled With or Subjected to a Flowing Fluid". L'article a été soumis 

au Journal of Cornputer Methods in Apdied Mechanics and Engineering. 

Finalement. nous présenterons les principales conclusions tirées de cette thèse et 

énumérerons les perspectives des travaux h i tus  à la suite de cette recherche. 



CHAPITRE 1 

REVUE BIBLIOGRAPHIQUE 

Nous divisons ce chapitre en cinq parties : 

1)  Matériaux anisotropes. 

2) Les theones classiques des coques. 

3) Les effets des déformations de cisainement dans l'analyse des plaques et des coquo. 

4) Étude de I'interactioa dans un système couplé structure-fluide. 

5) Les méthodes de solution 

1.1 Matériaux anisotropes 

Les éléments structuraux fabriqués en matériaux composites renforcés ont été 

considérablement utilisés dans diverses industries au cours des dernières années. Leur 

application industrielle s'est rapidement développée à cause de leurs propriétés mécaniques. 

En général, ces matériaux sont des laminés de fibres renforcées qui sont disposées en 



1 O 

nombreuses couches avec diverses orientations des fibres(Figures 1.1 et 1.2). L'une des 

applications caractéristiques est l'industrie aérospatiale. 

En optimisant les propriétés,  LE poumas réduire !e p i d s  globd d1-m,e strxture, 

puisque sa rigidité est optimisée aux endroits où elle est requise. Mais il faut aussi 

mentionner que les systèmes structuraux optimisés sont souvent plus sensibles aux 

instabilités. C'est pourquoi une modélisation exacte du comportement de la 

charge-déplacement ou de l'équilibre peut nous aider à prédire la charge limite qui pourra 

être portée par la structure afin d'éviter l'instabilité. 

Hilderbrand et ses collègues (1949) ont été les premiers à travailler sur les coques 

orthotropes. Ambartsumyan ( 1964) a consacré un texte entier aux matériaux anisotropes, 

basé sur la théorie de Love, avec une certaine discussion des contraintes transversales. Le 

texte de Reddy (1984) et celui de Vinson et Sierakowski (1986) discutent des structures 

anisotropes laminées incluant divers traitements des déformations de cisaillement. 

Par ailleurs, I'anisotropie du laminé suppose un liant parfait entre les couches, 

l'adhésif ayant une épaisseur infinitésimale mais de rigidité infinie. Cette façon de faire 

conduit à la théorie des plaques laminées (CLPT: Classical Larninated Plate Theory). Jones 

(1 975) présente cette théorie (CLPT) qui est reliée aux hypothèses de Love-Kirchhoff. bnes  

a signalé dans son travail que I'effet de la déformation de cisaillement pour les matériaux 

anisotropes est plus significatif que dans le cas des mêmes constructions isotropes. 
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L'étude des matériaux composites nécessite l'examen de leurs comportements au 

niveau macroscopique pour analyser les réponses linéaires et non linéaires, les fréquences 

naturelles, les charges de flambement ; il faut aussi examiner leurs comportements au niveau 

de la micro-mécanique pour étudier d'autres effets comme la fissuration, le délaminage et la 

perte de liaison entre les matrices et les fibres. L'effet des déformations de cisaillement pour 

des matériau anisotropes est plus important parce que le module de cisaillement est plus 

grand que le module d'élasticité. 

La première analyse qui incorporait le couplage flexion-extension dû à la 

non-symétrie des laminés a été faite par Arnbartsumyan (1964). Dans son analyse, il a 

supposé que chaque couche est orientée de sorte que les axes principaux du matériau 

coïncident avec les coordonnées principales de la surface moyenne. Donc son travail traite 

de ce qui est maintenant connu comme les coques orthotropes laminées plutôt que les coques 

anisotropes. 

11 existe dans la littérature un certain nombre de théories pour anaiyser les coques 

anisotropes. La plupart de ces théories ont été développées pour des coques minces basées 

sur Ies hypothèses de Kirchhoff-Love (la normale a la d a c e  moyenne reste droite et 

normale après déformation). Cependant, l'application de telles théories aux coques 

anisotropes laminées pourrait conduire à des grandes erreurs dans l'appréciation des 

défomations, des contraintes ainsi que des fréquences. 



1.2 Les théories classiques des coques 

Les coques minces ont fait l'objet de plusieurs travaux de recherche allant de la 

statique à la dynamique. La première tentative pour élaborer une théorie des coques a été 

faite par Aron en 1874, en utilisant les équations générales d'élasticité, et a été suivie en 1888 

par Love. qui a prouvé une théorie approximative décrivant le comportement des coques 

minces et élastiques, et appelée "Love's first approximation". Depuis 1888 jusqu'à nos jours, 

la théorie élastique des coques a été réexaminée périodiquement dans la litténnire. 

Beaucoup de méthodes ont déjà été utilisées pour dériver les équations des coques 

via les relations d'élasticité. Dans la réalité, le comportement des coques sous charge peut 

être très différent pour d'une surface à l'autre. 

En dérivant les équations d'équilibre, les forces et les déplacements qui agissent a la 

surface sont définis en intégmnt les contraintes à travers l'épaisseur. Cependant, les 

contraintes dans le plan deviennent dominantes, puisque la coque est supposée mince. On 

peut donc décrire d'une façon approximative le comportement de la coque en se basant 

uniquement sin le Comportement d'une surface 2-D [Saada (1 993) ; Mollman (1 98 1) ; Kraus 

(1967), Novozhilov (1959) et Niordson (1980)]. Dans les coques minces, les contraintes 

planes ont tendance à dominer la réponse de la coque sous le chargement, donc les 
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contraintes transversales (normales) sont d'importance moindre. Dans ce cas, la contrainte 

normale peut être négligée. 

Beaucoup de théories classiques ont été originalement développées pour der ccqcluer 

minces et élastiques basées sur les hypothèses de Love -Kirchhoff ( Sada  (1993)) telles 

qu'utilisées dans les travaux de Naghdi (1956), puis de Bert et Francis (1974). Une étude 

détaillée des coques minces linéaires et non linéaires peut être trouvée dans les 

monographies de Kraus (1967) et d'Ambartsumyan (1964). Leissa (1973) a produit une 

bonne synthèse de plusieurs recherches dans une excellente bibliographie vieille de 25 ans. 

Les hypothèses de Love sont définies comme suit : 

a) Les lignes droites et normdes à la surface moyenne restent droites et normales 

suite à la déformation. 

b) Les contraintes normales perpendiculaires à la surface moyenne peuvent Stre 

négligées dans les relations constitutives. 

c) Les déplacements transversaux sont indépendants du paramètre d'épaisseur. 

d) La coque est mince. 

Ces hypothèses conduisent à une théorie des coques minces qui peut être vue comme 

une extension de la théorie des plaques, souvent appelée la théorie des coques de 
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Kirchhoff-Love. La première hypothèse mène à négliger les déformations de cisaillement 

bien que la contrainte de cisaillement transversal doive être incluse dans les équations 

d'équilibre. Mais, a mesure que la coque devient épaisse, les effets transversaux deviennent 

plus importants, notamment celui de la déformation de cisaillement. 

Tous les travaux basés sur les hypothèses de la théorie de Love-Kirchhoff, dans 

lesquelles la déformation de cisaillement est négligeable, sont connus comme des 

approximations du premier ordre de Love donnant des résultats suffisamment exacts quand: 

i) Le rapport de rayon-épaisseur est grand. 

io Les excitations dynamiques sont la plage des basses fréquences. 

iii) L'misotropie des matériaux n'est pas trop forte. 

D'autre part, l'effet de la courbure initiale ne doit pas être négligé dans les relations 

constitutives et dans le champ des contraintes, comme l'indiquent Voyiadjis et Shi (1 991). 

Pour considérer ces effets. le terme I +UR doit être inclus dans l'analyse. 

Les élégantes représentations de la théorie de Love peuvent être strictement dérivées 

via la déf î t ion de la théorie de d a c e  sans référer aux relations 3-D b u s  j1967), 

Mollman(l981) et Niordson (1980)l. Une inconsistance existe dans la théorie de Love 

puisqu'ii en résulte des déformations non nulles dans le mouvement de corps rigide. Cette 



15 

inconsistance a vrai semblablement incité beaucoup de chercheurs a développer des théories 

de coque légèrement différentes. 

Sanders (l!WJ) a redéfini les forces et les moments de telle façon qtie les 

déformations de mouvements rigides disparaissent. Les approximations successives ont été 

faites dans les relations constitutives exactes par Sanders(1959) pour analyser des coques 

isotropiques et par Liberscu (1 987) pour des coques anisotropes. 

Les contraintes normales sont en général d'ordre f/R (le rapport épaisseur-rayon) fois 

les contraintes de flexion tandis que celles de cisaillement sont d'ordre t/L (le rapport 

épaisseur-longueur ) fois les contraintes de flexion. Donc. pour LM inférieur à 10, les 

contraintes normales sont négligeables en comparaison des contraintes de cisaillement. 

Pour quelques cas, les éléments qui forment le système éprouvent seulement de 

petites déformations sous la charge mais peuvent échouer Je façon catastrophique à cause 

de leur configuration géométrique. Donc toute une classe de systèmes stnic?uraux peut être 

représentée exactement sur la base de la non- Iinéarité géométrique, des petites déformations 

et du comportement linéaire des matériaux élastiques. 

11 est bien connu que le comportement non-linéaire des coques cylindriques 

composites joue un rôle important dans la stabilité et la réponse dynamique des coques. 

Reissner ( 1 955) est considéré comme un pionnier dans l'analyse des effets de la non-linéarité 



géométrique sur la dynamique des coques cylindriques. 

Une nouvelle série de relations constitutives non linéaires pour des coques 

axisyétriques ii grands déplacements (en retenant plus de temer) a été présentée par R~t ter  

et Jumikis (1988). Leur travail est basé sur les hypothèses de Kirchhoff. Ils ont retenu 

quelques termes des produits des différentiations des déplacements. qui ont été omis dans 

les théories précédentes et qui peuvent être importants dans certains problèmes de 

flambement. 

La théorie non linéaire présentée par Sanden ( 1962) est restreinte aux hypothèses de 

Kirchhoff. Les déformations de la d a c e  moyenne sont  supposée^ petites et les rotations 

modérément petites. Pour les cas non linéaires, les relations de Sandea(1962). qui sont 

beaucoup utilisées, conduisent à des solutions fausses pour les problèmes pratiques. du fait 

que certains termes des produits de différentiation des déplacements sont négligés dans les 

relations constitutives non linéaires (Rotter et Jumikis (1 988)). Malgré tout, les théories non 

linéaires de Sanders (1 962) et de Novozhilov (1 953) sont plus exactes que celle de DonneIl 

( 1933) parce que ces deux premiers auteurs ont retenu plus de termes dans leurs relations 

constitutives. 

Naghdi (1957) a employé le principe variatiomel mixte de Reissner (1950) pour 

développer une formulation complète des coques élastiques et isotropes (en appliquant la 

même série tronquée quW1derbrand) en retenant respectivement deux et trois termes dans 
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la série de Taylor pour les déplacements tangentiels et transversaux. Inclure le troisième 

terme dans les déplacements tangentiels n 'a aucune signification pratique pou. des coques 

suffisamment &ces. C'est la raison qui a incité Naghdi (1957) à tronquer l'expansion en 

série de Taylor après les termes linéaires dans la coordonnée d'épaisseur pour les 

déplacements tangentiels. Beaucoup d'auteurs ont suivi cette approche ultérieurement. 

Martin et Drew (1 97 1) ont résolu les équations qui décrivent le comportement d'une 

coque de révolution et anisotrope. Leur analyse est basée sur la théorie de Sandee (1 959) 

mais sans considérer les effets des déformations de cisaillement. La méthode de solution suit 

la procédure employée par Budianski et Radkowski (1 963). Les équations sont découplées 

en traitant les termes non linéaires comme des quantités connues (pseudo-charges) et la 

procédure d'élimination de Gauss est utilisée pour obtenir la solution. Cette solution est 

utilisée pour calculer les termes non linéaires et est par la suite réintroduite dans le système 

comme une estimation révisée des pseudos-charges. Cette procédure itérative continue 

jusqu'à ce que la solution converge. 

Cheng (1 973,1984) a développé une théorie linéaire exacte pour la coque cylindrique 

et circulaire basée sur des hypothèses de Love. Dong, Pister et Taylor (1 962) ont développé 

la théorie de Love (petits déplacements, similaires à ceux GAmbartsumyan ) pour l'analyse 

de la flexion des plaques et coques minces, théorie qui se veut une extension de la théorie 

développée par Reissner et Stavsky (1961) @laques anisotropiques selon de la théorie des 



coques incomplète de DomeIl ( 193 3 )). 

L'analyse nodinéaire des coques minces basée sur les hypothèses de Love-Kirchhoff 

a CtC faitc par Basa; et Dhg(1990). Pagano (1970, 1971) et Srinivai et Rao (1970) on& 

développé certaines solutions exactes des équations d'élasticité en 3-D pour des plaques 

composites. Ils ont conclu que CLPT donne de bonnes approximations pour les déplacements 

et les contraintes si la plaque est mince. 

Plidovan et Lestinigi ( 1973, 1974) ont employé une procédure d'intégration 

numérique a segments multiples complexes pour analyser statiquement des coques de 

révolution laminées sous charges mécaniques et thermiques. Les équations du mouvement 

sont basées sur la théorie de Love-Reissner. C'est donc dire que l'effet de déformation de 

cisaillement a été négligé. Pour des problèmes statiques, Flügge et Kelkar (1968) ont obtenu 

une solution exacte pour des cylindres fermés, longs et isotropes sous des forces de surface 

en deux dimensions. 

Dowell et Venters (1 968) ont présenté une approximation modale afin de dériver les 

équations de mouvement pour les vibrations non linéaires d'une coque cylindrique en 

utilisant la théorie des coques incomplète de Donne11 (1933). Cheng et Ho (1963) ont 

présenté une analyse les coques cylindriques et anisotropes en utilisant la théorie de Flügge 

(1 960). 
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On trouve dans la littérature quelques travaux su. les coques cylindriques ( isotropes 

ou orthotropes) basés sur les équations de Flügge et de Donneli [Saada (1 993), Kraus (1 967) 

et Reddy (1 984)l. Les équations gouvernantes des coques cylindriques orthotropes ont été 

résolues via une paire d'équations complexes conjuguées de quatrième ordre par Cheng et 

He(1984). Leur travail est basé sur les hypothèses de KirchhoK 

Dong (1968) a étudié les vibrations libres des coques cylindriques et orthotropes 

laminées avec des conditions frontières homogènes. La réponse statique d'un problème 

axisymétrique des coques cylindriques et orthotropes avec une longueur finie, en utilisant 

les équations d'élasticité en 3-D, a été établie par Jing et Zeng(1993). Les équations 

différentielles couplées d'ordre supérieur sont réduites à des équations ordinaires à 

coefficients variables en choisissant une solution composée de fonctions trigonométriques 

le long de la direction axiale. 

Bogner et ses collègues (1 967) ont développé une méthode d'éléments finis pour une 

coque cylindrique et isotrope basée sur la théorie classique. Pagano(1972) a obtenu le champ 

des contraintes pour un cylindre fermé, anisotrope et homogène sous des charges surfaciques 

en 2-D pour lequel le problème est indépendant de la coordonnée axiale. Les vibrations libres 

des coques cylindriques laminées avec des couches orthogonales ont été étudiées par Timarci 

et Soldatos (1995). 

Une théorie statique et non linéaire géométrique incluant de grands déplacements et 



20 

de grandes rotations a été développée par Dennis et Palazotto (1990) en utilisant la méthode 

des éléments finis et une description Lagrangie~e totale pour la solution approximative. Ils 

ont employé cette méthode pour analyser un panneau cylindrique et isotrope. La solution des 

équations non linéaires a été faite en utilisant la méthode de Newton-Raphson. Ces équations 

ont été linéarisées â l'aide d'une série tronquée de Taylor. 

Une étude plus rigoureuse des vibrations libres et non linéaires des coques 

cylindriques a éîé faite par Atluri (1972) qui a comparé ses résultats avec les données 

expérimentales accessibles et qui a aussi conclu sur la possibilité de non-linéarité de type 

assouplissement. En adoptant la technique de perturbation. Chen et Babcork (1 975) ont aussi 

considéré la vibration it grande amplitude des coques cylindriques et minces. Ramachandran 

(1979) a étudié la vibration non linéaire des coques cylindriques à épaisseur variable. 

Se basant sur les équations de Von Karman-Donnell, Khot (1970) a étudié le 

comportement post-flambement des coques cylindriques sous charge axiale ainsi que la 

rotation. Les résultats obtenus montrent qu'en générai, les coques composites sont moins 

sensibles aux imperfections que celles qui  sont isotropes. 

Iu et Chia (1988) ont discuté des vibrations non linéaires et post-flambement des 

coques cylindriques ayant des couches orthogonales et anti-symétriques selon des 

suppositions de Von Karman-DomeIl. Ils ont négligé certains termes (comme les produits 

croisés de différenciation des déplacements ) dans ies relations constitutives non linéaires. 
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Les réponses dynamiques des coques cylindriques incluant les effets des non- 

linéarités géométriques et des matériaux sous charges transitoires ont été présentées par Wu 

et Witmer (1 974). Les formulations sont basées sur le principe du travail virtuel et sur celui 

de D'Alambert ainsi que sur les hypothèses de Love. 

13 Les effets des déformations de cisaillement dans l'analyse des plaques et des 

coques. 

Négliger les déformations de cisaillement dans les composites laminés peut conduire 

à sous-estimation les déformations et les contraintes ainsi qu'a surestimation les fiéquences 

naturelles et les charges critiques de flambement à cause du bas module de rigidité. Comme 

Koiter (1 960) I'a indiqué. l'amélioration de la théorie approximative de Love pour des coques 

minces et élastiques n'a pas de sens à moins que les effets des déformations transversales et 

des contraintes normales soient pris en compte dans la théorie améliorée. Les théories 

classiques d o ~ e n t  des résultats fortement erronés lonqu'elles sont utilisées pour prédire les 

déplacements, les charges de flambement ou les fréquences naturelles quand les coques ou 

les plaques deviennent épaisses. 

Les erreurs relatives aux déplacements, aux contraintes, aux fréquences naturelles et 

aux charges de flambement sont encore plus grandes pour des plaques et des coques 

fabriquées en composite comme le graphite-epoxy et le boron-epoxy dont le rapport de 



module d'élasticité /module de rigidité ( E/G) est très grand (de l'ordre de 25 à 40 au lieu 

d'environ 2,5 pour des matériaux isotropes). On peut donc dire que les déformations de 

cisaillement jouent un rôle beaucoup plus important dans la résolution de la rigidité effective 

de flexion des plaques et des coques laminées. 

Les effets des déformations de cisaillement sur la vibration non linéaire et le 

comportement post- flambement sont significatifs, notamment pour les coques laminées ayant 

une épaisseur modérément grand-, une rigidité élevée et un grand nombre de couches. 

Les effets des déformations de cisaillement, des contraintes normales ainsi que des 

déformations normaies transversales sur le comportement des coques laminées peuvent être 

incorporées dans le modèle mathématique via l'inclusion de termes d'ordre supérieur dans 

la série de puissance du champ des déplacements supposés. Les effets de la déformation 

tnnsversale peuvent généralement être inclus dans l'analyse via les relations cons?itutives. 

L'étude des effets de cisaillement nous montre que ces effets peuvent devenir assez 

significatifs pour de petits rapports Rit (rayon-épaisseur) ou Ut (longueur-épaisseur) ainsi 

que pour des longueurs d'onde plus courtes. La sévérité des effets des déformations de 

cisaillement dépend aussi de Panisotropie des couches. 

Dans la théorie qui présente les déformations de cisaille men^ les normaux à la 

surface peuvent tourner de sorte que les sections. qui sont originalement perpendiculaires, 
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restent planes mais seulement si elles ne sont plus perpendiculaires par suite de la 

déformation. L'effet de la déformation de cisaillement est représenté en incluant le degré de 

liberté indépendant dans les relations cinématiques. Ici encore, la coque est décrite par le 

comportement de la surface moyenne ; ces approches représentent donc des théories en 2-D 

(Reddy (1 984)). 

Les théories de cisaillement du premier ordre s'appellent théories de 

Reissner-Mindlin (RM). mais celles-ci ne satisfont pas les conditions aux limites de 

cisaillement transversal sur les swfaces extérieures des coques ou des plaques. Donc, les 

théories basées sur celles de RA4 requièrent habituellement des facteurs de correction pour 

des considérations d'équilibre. Les facteurs de correction ne sont fonction que des paramètres 

de laminage (nombre de couches. séquence de couchage, degré d'orthotropie et orientation 

des fibres dans chaque couche individuelle). 

Stein (1986) r utilisé I'expansion en séries tronquées pour les déformations non 

linéaires exactes en considérant l'effet des déformations de cisaillement pour des plaques et 

coques isotropes. L'analyse non linéaire géométrique quasi-3D a été faite par Palazotto et ses 

collègues (1 985, 1986) pour des plaques et des coques composites. Gngolyuk et Kulikov 

(1988) ont passé en revue Panalyse des coques composites muiticouches dans lesquelles le 

principe variationnel mixte de Reissner avait été utilisé. 

Widera et Logan (1 970) ont utilisé une expansion en série paramétrique ainsi que le 



principe variatiomel de Reissner (1950) pour développer une théorie qui décrit le 

comportement d'une coque cylindrique circulaire, élastique anisotrope et non-homogène de 

premier ordre pour des coques minces et d'ordre supérieur pour les coques épaisses. Ils ont 

employé le même modèle de déplacement que celui de Naghdi (1956). Reddy (1984) a 

développé des théories qui satisfont les conditions de contraintes nulles sur les surfaces 

extérieures. 

Les effets des déformations de cisaillement et des contraintes normales ont été 

considérés par Hilderbrand, Reissner et Thomas (1 949) et Reissner( 1952). Hilderbrand et ses 

collègues(1949) ont trouvé que l'effet des termes de déplacement de deuxième ordre et des 

termes dans le déplacement transversal donnant les déformations normales non nulles, est 

négligeable. Dans le domaine des coques orthotropes et homogènes, Hilderbrand et al. (1 949) 

étaient les premiers à ne pas utiliser les hypothèses de Love en supposant une série étendue 

de Taylor ayant les trois termes pour le vecteur des déplacements. 

Les théories de coque et de plaque présentées dans le travail de Whitney et Sun 

(1973) sont basées sur un champ de déplacement dans lequel les déplacements de la surface 

sont des expansions linéaires du paramètre d'épaisseur et les déplacements transversaux 

sont des expansions quadratiques de la coordonnée d'épaisseur. Les déplacements ont été 

développés d'une façon similaire à ce que Mindlin et Medick (1 959) avaient fait pour des 

plaques isotropes et homogènes. 
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Ces théories sont encombrantes et exigent plus de calcul que les autres parce qu'une 

inconnue dépendante est introduite dans la théorie avec chaque puissance supplémentaire de 

la coordonnée. Quand même, les théories de cisaillement de plus hauts ordres ne donnent pas 

des contraintes transversales qui soient significativement meilleures, mais les déplacements 

nous montrent une amélioration considérable pour des plaques épaisses par rapport à la 

théorie du CLPT. 

Jing et Liao (1 989) ont proposé une fonctionnelle mixte avec des déplacements et des 

contraintes de cisaillement comme variables indépendantes et ont donc établi un élément 

hybride pour andyser des plaques laminées et épaisses. 

Phan et Reddy (1 985) ont présenté une théorie de déformation de cisaillement d'ordre 

supérieur afin de déterminer les fréquences naturelles et les charges de flambement des 

plaques élastiques. Ils ont aussi établi une solution exacte pour analyser les vibrations libres 

et le flambement des plaques rectangulaires et orthotropes. 

La théorie développée par Reddy(1984) incluant l'effet de cisaillement pour des 

plaques composites contient les mêmes inconnues dépendantes que celle de Whitney et 

Pagano (1970) tandis que le champ de déplacement utilisé est celui de Levinson (1980). 

Reddy a développé des théories de plaque qui incluent des termes cubiques en définissant 

des déplacements plans (sur la surface). 
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Une théorie simple pour l'analyse de flexion non linéaire des plaques rectangulaires 

et laminées, qui tient compte des déformations de cisaillement, a été formulée par Ren (1 99 1) 

et Ling en utilisant le pnncipe des déplacements virtuels. 

L'étude des plaques laminées nous montre que le champ des déplacements suggéré 

par Murakami (1 986) peut améliorer les réponses dynamiques dans le plan (qui sont même 

meilleures qu'avec les théories d'ordres élevés). Le champ des déplacements suggéré par 

Munkami(1986), ayant des composantes de déplacement linéaires et de déplacement 

transversal constant à travers d'épaisseur, est employé pour formuler une théorie mixte. 

Reddy (1984) a présenté une théorie à ordre supérieur des déformations de 

cisaillement pour des plaques en tenant compte des déformations de Von-Karman. Cette 

théorie contient les mêmes inconnues dépendantes que celles de Hencky-Mindlin ( 1% 1). 

Les solutions exactes de plusieurs plaques simplement supportées ont été obtenues en 

utilisant une théorie linéaire et les résultats ont été comparés avec ceux provenant de 

solutions exactes (théorie de l'élasticité 3-D). Reddy a utilisé le pnncipe de Hamilton pour 

dériver les équations du mouvement et il a employé la procédure de Navier pour résoudre le 

problème. 

Rothert et Di (1994) ont présenté de leurs coté les formulations et la procédure de 

calcul pour l'analyse non linéaire géométrique des coques orthotropes laminées, en se basant 

su. une méthode modifiée du principe Hehger-Reissner (référence de Di et Cheung (1 99 1)) 



et en utilisant la description Lagrangienne totale. 

L'analyse des vibrations des coques de révolution anisotropes laminées ainsi que 

12 sensibilité de leur n$onse ~ U X  coefficients des matitériaux anisotropes ont ftC prCscntfcs 

par Noor et Peters (1987). Les formulations analytiques sont basées sur la théorie de 

Sandres-Budiansky (1 963,1968) incluant les effets des déformations de cisaillement. Chaque 

variable de coque est exprimée en fonction trigonométrique dans la direction 

circonférentielle et un modèle mixte d'éléments finis est employé dans la direction 

méridionale. Noor et Peters ont utilisé une méthode de réduction sur l'espace par l'emploi 

successif de la méthode des Cléments finis et la technique classique de Bubnov-Galerkin 

pour réduire les dimensions du problème aux valeurs propres. 

Touratier (1992) a présenté une théone linéaire incluant la déformation de 

cisaillement pour des coques axisymétriques et multicouches. II a proposé une théorie des 

déformations de cisaillement pour des coques axisymétriques, modérément épaisses et 

multicouches. Cette théorie est restreinte à une coque misymétrique sous chargement 

misymétrique et avec conditions aux rives classiques. 

Ji-Fan He (1995) a analysé des coques laminées pour le cas statique en utilisant la 

théorie de déformation de cisailfement. Dans cette théorie, l'épaisseur de la coque doit être 

petite en comparaison avec le rayon de courbure principal. 
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proposée par Dong 
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de déformation de cisaillement pour des coques laminées a aussi été 

et Tso(1972), et par Reddy(1984). Ces théories violent en général la 

condition de la continuité de traction aux interfaces des couches. Quelques théories ont été 

proposées pour sumionter ces inconvénients par Hsu et Wang (1 970) et Di Sciuva (1987). 

Le travail de Librescu et Schmidt (1988) présente une analyse des coques anisotropes en 

considérant les petites rotations. 

Une analyse non linéaire géométrique et transitoire des coques composites laminées 

(isotropes transversales ) basée sur id théorie de Von-Karman a Çté présentée par Kant et 

Kommineni (1994). Ceux-ci n'ont pas considéré certains produits de différentiation du 

premier ordre des composantes des déplscements tangentiels (relativement aux directions x, 

y et z) dans les relations constitutives. Ces relations sont basées sur la théorie de 

Von-Karman (Novozhilov (1 953)). Kant et Kornrnineni ont discuté certaines méthodes avec 

lesquelles on peut diagonaliser la matrice de masse. 

Jing et Tzeng (1993, 1993b) ont établi une méthode pour analyser les effets des 

déformations de cisaillement pour des coques anisotropes laminées et épaisses en utilisant 

une formulation mixte basée sur la fonctionnelle proposée par Jing et Liao(1989). La 

fonctionnelle de Jing et Liao (1989), modifiée par le principe de Hellinger-Reissner, sépare 

le champ des contraintes en deux parties en laissant seulement les déplacements et les 

contraintes de cisaillement comme variables indépendantes. 
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Un élément fini iso-paramétrique basé sur un modèle avec déplacements d'ordre 

supérieur pour l'analyse linéaire et non linéaire, qui tient compte des grands déplacements 

au sens de Von-Karman, des coques sous charges transversales a été présenté par Kant et 

Kommineni ( 1992). 

Kant et Ramesh (1 976) ont présenté pour leur part une théorie générale des coques 

ortho&opes dans les coordonnées curvilignes orthogonales basée sur le modèle de 

Hilderbrand et al. (1949). Kant avec ses collègues- après avoir fait beaucoup 

d'investigations numériques pour des plaques et des coques laminées, soit statiques soit 

dynamiques- ont prouvé que l'imposition de la condition libre-contrainte au sommet et au 

fond de la surface du laminé donne une solution plus rapide que celle d'élasticité en 3-D. 

Noor et Hartely (1977) ont employé la théorie des coques incomplètes avec 

déformations de cisaillement et effets de non-linéarité géométrique pour développer des 

éléments finis quacirilatéraux et triangulaires. Bhimmddi (1 984) a appliqué une variation 

parabolique de l'épaisseur pour les déformations transversales afin d'analyser le 

comportement vibratoire linéaire d'une coque cylindrique et isotrope en considérant l'inertie 

de rotation. Son analyse est basée sur des hypothèses telles que les petits déplacements et 

I'élasticité linéaire. 

Les effets des déformations de cisaillement et d'isotropie transversale ainsi que celui 

de l'expansion thermique via répaisseur des coques cylindriques ont été considérés par Gulati 
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et Essenberg (1 967) et Zukas et Vinson (1 971), Dong et ses collègues (1962,1972), Hsu et 

Wang (1 970) et par Whitney et Sun (1974). 

Bert et ses coll2guzs (1 96i,l!JS 1, 1982) ont prGssznî6 des soiutions exac:tcs pour les 

vibrations et la flexion des coques ayant deux couches orthogonales. Ces solutions sont 

limitées aux coques cylindriques et aux distributions sinusoïdales des charges transversales, 

et la procédure employée est similaire à celle qui avait été utilisée par Whitney et Leissa 

(1969), Whitney et Pagano (1970), Bert et Chen (1978), Reddy et Chao (198 1) pour des 

plaques laminées. 

1.4 Étude de I'interaction dans un système couplé structure-fluide. 

L'effet de l'environnement (air, liquide, etc.) sur les vibrations des coques et des 

plaques est intéressant pour les scientifiques et les ingénieurs qui travaillent dans les secteurs 

de l'énergie nucléaire, de l'aérospatiale et de la marine. 

La plus basse fréquence naturelle de vibration de flexion d'une coque immergée 

dms ou remplie avec un fluide est inférieure à celle correspondante dune coque dans l'air. 

Cette fSquence dépend du niveau du liquide, des formes modales ainsi que des paramètres 

physiques et géométriques de la coque et du fluide. 

L'effet du liquide sur les fréquences naturelles est une combinaison de la distribution 

de pression hydrodynamique et des forces exercées par le mouvement de la d a c e  libre. Les 
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coques minces contenant un fluide rencontrées en pratique ont des Equences de "sloshing" 

qui sont considérablement en dessous de celles d'un système combiné structure-liquide. 

L'effet du liquide peut être pris en compte en considérant des masses ajoutées. Les masses 

effectives sont fonctions des formes modales, des paramètres physiques et géométriques de 

la coque et du fluide. 

Des véhicules de navigation marine, aérienne et même terrestre ainsi que des 

structures stationnaires sont exposées à des collisions, impacts ou autres charges transitoires 

et pressions de liquide : de ce fait. ils peuvent subir des dommages importants (grandes 

déformations stmctunles). Par conséquent le besoin de méthodes efficaces et exactes pour 

l'analyse et le design de structures dans de telles conditions (non-linéarités géométriques et 

non-linéarités des matériaux. charges fluides, charges transitoires, etc.) est de plus en plus 

important. 

La réponse des coques soumises un fluide en écoulement ainsi que I'infiuence de 

la vitesse d'écoulement sur les vibrations libres des coques ont été étudiées par plusieurs 

chercheurs : Lakis et Païdoussis (1 97 1). Païdoussis et Denis (1 972), Weaver et Unny (1973), 

Chen (1994), Brenneman et Au-Yang (1992). Païdoussis et Il  (1993) ont publié une revue 

bibliographique élaborée du domaine. 

L'analyse dynamique des systèmes couplés structure-liquide a été considérablement 

revue par Au-Yang (1986) et Brown (1982). L'analyse dynamique d'un système 
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tluide-structure a été faite par Brennemant et Yang (1992) avec une méthode hybride et 

modale. Dans leur travail, les modes des structures sont obtenus par la méthode de rigidité 

tandis que les modes du fluide sont obtenus par la méthode de flexibilité. Jain (1 974) a décrit 

une étude du comportement des vibrations des coques cylindriques, orthotropes et 

partiellement ou entièrement remplies d'un liquide incompressible non-visqueux. 

Crouzet-Pascal et Gamet ( 1972) ont étudié le comportement dynamique d'une coque 

cylindrique et circulaire renforcée d'un anneau. immergée dans un liquide et assujettie à un 

effort radial appliqué subitement. Utilisant le procédé de Rayleigh-Ritz, Ramachandm 

(1979) a analysé. sans considérer l'effet de cisaillement, les vibntions non linéaires 

transversales des coques cylindriques et orthotropes dont l'épaisseur varie linéairement et 

qui sont immergées dans un liquide incompressible. encastrées ou simplement supportées 

ou une combinaison des deux 

Les vibrations libres des coques cylindriques verticales et simplement supportées 

remplies partiellement de liquide ou submergées dans un fluide ont été étudiées par 

Gonçalves et Batista (1 987). Ceux-ci ont employé la technique de Rayleigh-Ritz pour obtenir 

une solution approximative qui coïncide avec la solution exacte des cas vides ou celle d'un 

cas où la coque est complètement en contact avec le fluide. Leur travail est basé sur la 

théorie de Sanders (1 959). 

Ici, le fluide est considéré non visqueux et compressible, et le couplage entre la coque 
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déformée et ce médium est pris en compte. L'effet de la hauteur variable du fluide ainsi que 

celui des paramètres géométriques de la coque sur les fiéquences naturelles de coque ont été 

présentés par ces chercheurs. 

Han et Liu (1 994) ont analysé les vibrations libres des réservoirs cylindriques ayant 

une variation de l'épaisseur dans la direction axiale et partiellement remplis de liquide. Dans 

ce travail, la coque est modélisée en utilisant la théorie de Flügge pour le cas isotrope, le 

fluide est supposé non visqueux et incompressible et l'effet de déformation de cisaillement 

est négligé. 

1.5 Les méthodes de solution. 

La solution analytique des équations du mouvement des coques minces est 

généralement difficile, voire impossible. Seules les méthodes approximatives peuvent être 

convenablement utilisées (Par exemple, la méthode des différences finies, la méthode de 

Galerkin, la méthode de Rayleigh-Ritz, la méthode des matrices de transfert et celle des 

éléments finis). Toutes ces méthodes ont des avantages et des inconvénients. La qualité la 

plus importante d'une méthode de solution est sa capacité a prédire aussi bien les hautes 

que les basses fréquences et les modes propres correspondants avec une précision. 

Dms la méthode des différences finies, on donne priori des valeurs initiales de la 

fréquence. Cette procédure exige beaucoup de temps de calcul. De même, la méthode de 
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Galerkin perd sa précision aux hautes fréquences de la coque. La méthode de Rayleigh-Ritz 

présente des inconvénients parmi lesquels on retrouve le choix des fonctions de déplacement 

qui doivent tenir compte des conditions aux rives et la nécessité de retenir un grand nombre 

de termes pour l'expression des fonctions de déplacement. La méthode des éléments finis 

[Zienkiewicz (1 98!?), Datt et Touzot ( 1984), Gailagher (1 986), Bathe (1 982), Tinawi(l98 1), 

Reddy (1 984), Sharnes et Dym (1 985), etc.] est, par contre, satisfaisante de ces points de vue. 

La précision de la méthode dépend de la nature de ces éléments et des degrés de 

liberté retenus pour simuler le comportement des coques et des plaques, et de la nature des 

fonctions d'interpolation. Le travail de Figueiras et Owen ( 1984) présente quelques éléments 

qui peuvent être appliqués avec succès aux plaques ainsi qu'aux coques minces et épaisses. 

Kui. Liu et Zienkiewicz (1985) ont appliqué l'élément fini de type déplacement pour 

analyser les coques minces. 

Pryor et Barker ( 1 97 1) ont développé un élément plat linéaire basé sur la théorie des 

plaques anisotropes laminées incluant les déformations de cisaillement (la théorie de RM). 

Ils ont suggéré une approche où chaque couche de laminé a des degrés de liberté en rotation. 

De cette façon, la continuité des contraintes transversales a chaque interface du laminé peut 

être satisfaite, 

Hinrichsen et Palazotto (1986) ont utilisé une fonction de spline cubique en utilisant 

l'hypothèse de Pryor et Barker (1 971) afin de représenter les déplacements transversaux 
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d'une plaque. Schmit et Monforton (1970) ont formulé un élément de coque cylindrique et 

anisotrope qui permet de considérer la non-linéarité géométrique intermédiaire. D'autres 

articles récents par Noor et Peters (1986), Meroueh (1986) et Surana (1983, 1986) peuvent 

être cités dans cette même perspective. 

Noor et Peters (1 986) ont analysé des panneaux cylindriques, dans le cas non-linéaire, 

en utilisant une approche par éléments finis d'une coque incompléte qui inclut les 

déformations de cisaillement afin de déterminer les modes de façon approximative. Par la 

suite. la technique de Rayleigh-Ritz est utilisée pour déterminer les amplitudes de ces modes. 

II y a aussi beaucoup de logicirIs généranu qui permettent d'utiliser la méthode des 

éléments finis dans le domaine de la mécanique des solides. citons ABAQUS , NASTRAN. 

ADNA (dans le cas non-linéaire), ANSYS, etc. 

Pour avoir une bonne précision en obtenant les hautes fréquences aussi bien que les 

basses fréquences d'un système couplé, on doit utiliser un très grand nombre d'éléments, ce 

qui peut causer de grandes difficultés numériques. Pour pallier cette difficulté, l'équipe de 

recherche dirigée par le professeur A.A. Lakis a développé un nouveau type d'éléments fmis. 

Ce sont des éléments hybrides ou les fonctions de déplacement de la méthode des déments 

finis sont dérivées de la théorie des coques. Cette méthode a été appliquée aux analyses 

statique et dynamique des différentes géométries de coques et de plaques. 
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Les coques cylindriques ont fait l'objet de plusieurs études dans le domaine linéaire 

et non linéaire : matériau isotrope et anisotrope, géométrie uniforme et avidement non 

uniforme, coques vides, partiellement ou complètement remplies de liquide, avec ou sans 

écoulement (liquide à une phase ou diphasée) Pakis et Païdoussis (1 97 1,1972) Lakis (1 976) 

Lakis et Doré (1 978) Lakis, Sami et Rousselet (1978) Lakis et Laveau (1 99 1) Lakis et Simo 

(1992)] ainsi que les coques cylindriques ouvertes (Selmane et Lakis (1997)). D'autre 

travaux ont été faits sur les coques coniques (Lakis, Van Dyke et Ouriche (1992)) et 

sphériques (Lakis, Tuy et Selmane ( 1989)). ainsi que sur des plaques circulaires et annulaires 

(Lakis et Selmane (1 990)). 
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2.1 Abstract 

The present work deals with a generalization of geornetncally linear shear 

deformation theory for multilayered anisotropic shells of general shape. No assumptions are 

made other than to neglect the transverse normal strain. The results, which include the effects 

of shear deformations and rotatory inertia as well as initial curvature (included in the stress 

resuitants and assumed transverse shear stresses) are deduced by application of the vimial 

work principle, with displacements and transverse shear as independent variables. These 

equations are applied to different shell geometries, such as revolution, cylindncal, sphencal 

*: Soumis pour publication dans "International Journal of Engineering Science" 



and conical shells as well as rectangular and circular plates. 

2.2 Introduction 

Shells are widely used as structural elernents in modem construction engineering, 

a i r c d  construction, ship building, rocket construction, the nuclear, aerospace and 

aeronautical industries as well as the petroleum and petrochernical industries( pressure 

vessel, pipeline), etc. It is very important, therefore, that the static and dynamic behavior of 

these structure when subjected to different loads be clearly understood, in order to be used 

safely in industry. 

The analysis of thin elastic shells under static or dynamic loads has been the focus 

of a great deal of research. These shells have been studied in the light of such different 

factors as the large displacements, thickness variation, residual stresses, rotatory inertia, 

anisotropy, initial cwature and the effect of the surrounding rnedium(air, liquid), etc. 

Many theories have been developed for thin elastic shells, in both linear and non- 

linear cases, and are based on the fm approximation of Love-Kirchhoff theory which, 

because it does not take transverse shear deformations into account? can be grossly in error 

in predicting the transverse deflections, buckling ioads and naturai tiequencies. In the case 

of plates and shells made of advanced laminated composite materials, the prediction errors 

are even more rnarked. The transverse shear effect on non-linear vibration and post-buckling 

behavior is signif~cant especially for the laminates with moderately large thickness. 
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The present work presents the generai equations of anisotropic sheiIs(equilibriurn, 

constitutive and kinematic relations) by considering the effects of shear deformation, rotatory 

inertia and initial curvature. These relations are then applied to different shell geometries: 

shells of revolution, cylindrical, sphericai and conicai shells as well as the circular and 

rectangular plates. 

2.3 Literature Review 

The litenture review covers three broad areas. In the fint, both linear and non-linear 

theories on aalysis of plates and shell structures are discussed. These theories were, in 

many instances. developed for isotropie materials before being extended to anisotropic 

material applications. The second part deais with the study of the effect of shear deformation 

on both the static and dynamic behavior of plates and shells, especially those made of 

advanced anisotropic materials In the last part, we briefly discuss the effcct ofstructure-fluid 

interaction on the vibrations of plates and shells. Speciai attention is given to cylindrical 

shells immersed in or filled with a liquid or subjected to a flowing fluid. 

A shell structure may be dehed  as a body enclosed between two closely spaced and 

curved surface. In general, a shell has three fundamental identimg features: its reference 

surfaces, its thickness and its edges. Of these? the reference surface is the most significant 

because the behavior of the shell is govemed by the behavior of its reference surface. 

Many shell theories are denved fiom the equations of elasticity. The strain- 
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displacernent relations of shells can be derived fiom kinematics and the 3-0 strain- 

displacement relations w&ten in terms of arbitrary curvilinear coordinates [l 1. In reality ,the 

behavior of the top and bottom surfaces of a shell under load can Vary widely. 

The first attempt to formulate a bending theory of shells fiom the general equations 

of elasticity was made by Aron in 1 874. A thin shell is one in which the thickness is smdl 

compared with the overall dimensions of the reference shell surface, and a two 

dimensional(2-D) theory is used to approxhate three dimensional (3-D) phenornena. Many 

classicai shell theones were developed originally for thin elastic shells, and are based on the 

Love-Kirchhoff assumptions which are: 1 ) the shell is thin ; 2 ) the displacements and 

rotations are small; 3 ) normals to the shell reference surface before deformation remain 

normal &er deformation; and 4 ) transverse normal stresses are negligible. 

These assumptions led to a thin shell theory that can be viewed as an extension to 

Kirchhoff plate theory and is oflen called Kirchhoff-Love shell theory. The effects of the 

normal transverse strain are often neglected in the kinematics compared to the effects of the 

in-plane strains due to the thinness of the shell, and shell is assumed to be in an approximate 

state of plane stress. The in-plane stresses become dominant because the transverse normal 

stress is, in general, of order WR times the bending stresses, whereas the transverse shear 

stresses, obtained fiom equilibriurn conditions, are of order WL times the bending stresses. 

Therefore, for UR less than 10, the transverse normal stress is negligible compared to 

transverse shear stresses . 
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On the other hand, the normal transverse stnin c m  generaily be included in the 

analysis through the constitutive relations. In deriving the equilibriurn equations, statically 

equivalent forces and moments acting on the reference surface can be defined by integrating 

stresses through the thickness. In this way ,the 3-D shell behavior can be Mly described 

using a 2-D approximation [l-4].The third assumption of the Love-Kirchhoff theory is that 

transverse shear strains may not be written in ternis of displacements, which leads to their 

being completely ignored although transverse shear stresses should be included in 

equilibrium equations. 

Surveys of various classicai shell theories can be found in the works of Bert [SI, 

Reissner [6] and Naghdi [7]. The last truncate the Taylor's series expansion for tangentid 

displacements after Iinear ternis in the thickness coordinate. and many others followed him. 

An excellent collection of the research carried out on this topic has been produced by Leissa 

[8]. Elegant representations, both linear and non-linear, of Love's shell theory cm be 

derived strictly via definitions fiom surface theory without reference to 3-0 relationships 

[3?91. 

One of the best-known of these theories, Love's first approximation, yields 

d c i e n t l y  accurate results when ( i ) the Iateral dimension to thickness ratio(Uh) is large; 

(ii) the dynamic excitations are within the low-hquency range; (iio the matenal anisotropy 

is not severe. However, the application of mch theories to layered anisotropic composites 

shells could lead to much erron in prediction of natural fkquencies, defl ections, stresses and 



buckling loads . 

There is an inconsistency in the original version of Love's theory since al1 strains 

do not vanish for rigid body motion. It was perha~s this inconsistency that encouraged many 

reseiirchers to develop slightly different shell theories. Many shell theories based more or 

less on Love's assumptions have been developed, each different since each neglects or 

approximates srnail terms in its own way. Sandea [45] redefined the force and moment 

resultants in such a way that al1 strains vanish for any rigid body motion. 

The thin shell assumption in Love's theory have not been taken into account in the 

theories of Flügge, Lure and Byme [3], which impose a less restrictive requirernent on the 

thinness of the shell. Their theory also eliminates the ngid body strains anomaly. Koiter [ I l ]  

discussed the significance of Love's first theory and, based on an order magnitude study, 

states that refinements of Love fim theory cannot consistently be made without including 

transverse deformation effects. Other prominent theories on this subject include those of 

Novozhilov [12]. 

Two types of basic equation, corresponding either to Flügge's or Donnell's equations 

for isotropic shells, have been formulated in the literature [2,3,13]. Domell's derivation is 

not easy to follow, since it completely negiects a number of terms both in the relationships 

between the changes of cwature and twist and the displacement, and in the relations of 

stress resultants and moment resultants in terms of displacement. 
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A small displacement Love theory has been used by Dong et al. [14] for the bending 

analysis of thin anisotropic plates and shells. These are specialized to give linear Donne11 

equations for anisotropic cylindrical shells. Bogner et al.[lj] deveioped a linear cylindrical 

isotropic shell finite element based on the classical shell theory. Morley [16] extended the 

limits of Donne11 theory . Reissner [17] applied the Donnell's assumptions to a shailow 

spherical shell. The Donnell-Mushtxi-Vlasov equations [8] result when Donnell's 

assumptions are applied to a shallow shell of arbitrary geometry. 

Cheng and He [18,19] have developed an exact linear theory for circular cy linclrical 

shell based on Love's assumptions. By retaining al1 the small terms which are neglected, in 

varying degrees, by other theones, the usual eighth order operator in the governing 

equilibrium equation of the transverse displacement can be separated into two complex 

conjugate operators, thereby reducing the solution's complexity. A general theory for thin 

isotropic shells, which makes no simplifications for approximations beyond a fundamental 

hypothesis, was developed by Markov [20]. 

Padovan [21] used a complex multi-segment numerical integration procedure which 

cm handle the static analysis of mecbaaicaily and thermally loaded branches laminated 

anisotropic shells of revolution with arbitrary mendional variation in thickness and material 

properties. The governing equations are based on the Love-Reissner theory. They did not 

consider the effects of shear deformation in their work, 
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Basar and Ding [22] used the f ~ t e  rotation elements for the non-linear analysis of 

thin shell structures. Their work is based on the Kirchhoff-Love hypothesis. In the 

development of non-linear finite element using the Kirchhoff-Love hypothesis, the essential 

problem is the elimination of rotation vector(the difference vector)without loss of accuracy. 

To do this, the Kirchhoff-Love hypothesis is expressed by two sets of equivaient conditions: 

one of them is used in the form of linear variational equations for elirnination of the 

incremental rotational variabies; the other, non-Iinear one, is needed for the exact 

calculation of the rotation vector of the fundamentai state. 

Most of the theories outlined above have been applied to a shell so thin that dl 

transverse shear de formation effects, transverse stresses and stnins can be neglected. These 

transverse effects become more pronounced as the shell becomes thicker relative to its in- 

plane dimensions and radius curvature. This is particularly tnie of the transverse shear 

deformations [ I l ]  since classical theories cm be grossly in error in predicting transverse 

deflections, buckling loads or naturai fiequencies. It is well known from experimental 

observations that the fact that classical plate theory negiects tmmese shear strains leads to 

under-estimations of deflections and over-predicuons of naturai frequencies and buckhg 

loads, 

These errors are even higher in the case of plates and shells made up of advanced 

anisotropic laminated composite materials such as  graphitespoxy and boron-epoxy, where 

the ratio of elastic moduli to shear moduii are very great (i.e. of the order 25 to 40 instead 
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of 2.6 for isotropic materials). As pointed out by Koiter [I l ] ,  refinement to Love's 

approximation theory of thin elastics sheiis is meaningless unless the effects of transverse 

shear and normal stresses are taken into account. Transverse shear deformation plays a very 

important role in reducing the effective f l e x d  stifhess of anisotropic laminated plates and 

shells because their in-plane elastic modulus to transverse shear rnodulus ratio is high. 

The transverse shear effect on non-linear vibration and p s t  buckiing behavior is 

significant, especially for laminates with moderately significant thickness, a high 

circumferential wave number and a greater nurnber of layers. Study of shear deformation 

effects shows that these effects cm become quite meaningful for some geometncal 

parameters, such as small radius-thickness or length-thickness ratios, as well as for shorter 

wavelengths or longer shells. 

In addition to the transverse shear deformation, the initial curvature effect should be 

considered for the analysis of thick shells as indicated by Voyiadjis and Shi [23] for isotropic 

materials. The initial curvature eEect is very important in rnaking accurate predictions of 

stresses even in the central region. In the shell structure , the curvature of each parallel 

d a c e  through the thickness of the shell is different To consider the initial curvature effect 

, the ierm I+dR has to be included. The presence of curvature effectively increases the 

structural stifiess. 
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in the refined shell theories that take the transverse shear defoxmation effect into 

account , the nomals to the reference surface of shells are permitted to rotate such that plane 

sections onginaliy perpendicular to the rniddle surface remain planar, but, as a result of the 

deformation, are no longer perpendicular. The transverse shear is represented by inclusion 

of an independent degree of fieedom in the kinematics. The shell is still fully described by 

the behavior of the reference surface and therefore these approaches represent 2-0 theories 

i241- 

Hildebrand et al. [25] were the first to rnake significant contributions by dispensing 

with Love's assumption and assuming instead a three terms Taylor's series expansion for the 

displacement vector for orthotropic and homogeneous shells. Naghdi [26] has employed 

Reissner's [27] mixed variational principle to develop a complete shell formulation similar 

to that of Hildebrand et al. [25], retaining two and three terms in the Taylor's series 

expansions for tangentid and transverse displacement components, respectiveiy. The first 

anaiysis to incorporate the bending and stretching ccupling was carried out by 

Ambartsumyan [9]. 

He assumed that the individual orthotropic layen were oriented in such a way that 

the principal axes of material symmetry coincided with those of the principal coordinates 

of the shetl reference surface. The effects of transverse shear deformation ,transverse normal 

stresses and transverse normal strain on the behavior of Iaminated shells can be 

incorporated, on the basis of a mathematical model, through the inclusion of higher order 
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Dong and Tso [28] were perhaps the first to present a fist order shear deformation 

theory , r e + ~ q g  one rnd t'm terms in the Taylor's scries for tnis;.cïsc and tangcntial 

displacement components, respectively. The theory includes the effects of transverse shear 

deformation through the shell thickness, and thence they constnict a laminated orthotropic 

shell theory. Hildebrand et al. [25] found that the effects of the additional tems in the 

transverse displacement that resulted in non-zero transverse normal strains are negligible. 

Reissner used these kinematic relations to anaiyse tùst plates [29]and then sandwich 

shells[30]. The rotatory inertia terms have been included in the dynarnic analysis of plates 

by Mindlin [3 11. 

The above-mentioned first order shear theories result fiom the so-cdled Reissner- 

Mindlin (RM) kinematics do not satisq the transverse shear boundary conditions on the top 

and bottom surfaces of the shell or plate, since a constant shear angle through the thickness 

is assurned, and plane sections remain plane. For this reason, the theories based on these 

kinematic relations usually require shear correction factors for equilibriurn considerations. 

The shear correction factors are only bctions of lamination parameters(number of layers, 

stacking sequence, degree of orthotropy and fiber orientation in each individual layer) 
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Levinson [34] and Reddy [35] have developed theories that include terms in in-plane 

displacement kinematics. They used a parabolic shear strain distribution through the 

thickness for satisfying zero transverse shear stress on the top and bottom surfaces of the 

shell, thus producing closer agreement with linear elasticity. The parabolic shear strain 

distribution has been used to analyze the linear vibrational behavior of isotropie cylindrical 

shells by Bhimaraddi [36]. 

The effects of transverse shear deformation and transverse isotropy as well as thermal 

expansion through the thickness of cylindrica shells were considered by Gulati and 

Essenburg [37]. Zukas and Vinson [38]? Dong and his colleagues 1141, Hsu and Wang [39], 

Chaudhi  and Abu-Arja [.(O] and Khdeir et al. [41]. 

Whitney and Sun [42,43] developed a shear deformation theory for larninated 

cylindncal shells that includes both transverse shear deformation and transverse normal 

strain as well as expansional strains. The theory is based on a displacement field in which 

the displacements in the d a c e  of the shell are expanded as linear functions of the thickness 

coordinate and the transverse displacernent is expanded as a quaciratic function of the 

thickness coordinate. They discussed some methods by which one can diagnose the mass 

matnu. They did not consider the product of the fïrst order derivatives of the tangentid 

displacement component wiîh respect to the x, y and z in the strain -displacement relations. 

These relations are based on the Von Karman's theory [12]. 
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Reddy [44] extended Sanders' [45] theory for simply supported cross-ply laminated 

shells assuming five degrees of fieedom per node. The theory is based on a displacement 

field in which the displacements of the rniddle surface are expanded as cubic hctions of the 

thickness coordinate, and the transverse displacement is assumed to be constant through the 

thickness. The Navier-type exact solutions for bending and natural vibration are presented 

for cylindrical and sphencd shells under simply supported boundary conditions. 

A generdization of geometrically linear shear deformation theones for small elastic 

strains was presented for multilayered axisymmetric shells of generai shape by Touratier 

[46]. He pmposed a general shear deformation theory for multilayered , modentely thick, 

axisymmetnc shells. The theory, which is geornetncdly linear, is developed for small elastic 

strain and is restncted to axisymmetnc shells under avisymmeaic loading and classical 

boundary conditions. The principal advantage of this work is that it does not need shear 

correction factors. 

Static analysis of laminated shells using a refined shear deformation theory was done 

by Ji-Fan He [47]. According to this theory, the thickness of the shell must be small 

compared to the principal radii of cmature. It cm be expected that the present theory would 

tend to be fairly accurate for laminated shells with many layes. Hsu and Wang [39] and Di 

Sciuva [48] proposed a specially designed displacement field with traction continuity at the 

layer interface and Reissner [49] proposed another type of general shell theory for 

transversely isotropie materials based on the Reissner mixed variational principle with 
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More recently, Jing and Tzeng [50]denved a mixed shear deformation theory for 

thick laminated shells of general shape based on proposed method of Jing and Liao [F 11. 

The displacement field uses a zig-zag function in addition to the Reissner -Mindlin type in- 

plane displacements and a constant transverse deflection. Kant and Rarnesh [52] developed 

complete governing equations for a thick laminated composite shell. The theory is based on 

a three-term Taylor's senes expansion of the displacement vector and generaiized Hooke's 

law, as is the displacement mode1 of Hildebrand et a1.[25], and is applicable to orthotropic 

material layen having planes of symmetry coincident with shell coordinates. 

Advmced composites materials are being used more and more in a variety of 

industries due to their high strength and stifiess-to-weight ratios; this has led to a npid 

increase in the use of these materials in structural applications during die past decade. 

Structural elements made up of advanced fiber-reinforced composite materials offer unique 

advantages over those made of isotropic materials. They are being extensively used in high 

and low technoiogy areas ,e.g., the aerospace industry, where complex shell configurations 

are common structural elements. 

The filament-winding techniques for manufacturing composite shells of revolution 

has recently been expanded in aircraft, shipbuildhg, petroleum and other industries. In 

general, these materials are fiber-reinforced laminate, symmetric or anti-symmetric cross- 
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ply and angle-ply, which consist of numerous layers each with various fiber orientations. 

Although the total laminate may exhibit orthotropic-like properties, each layer of the 

laminate is usually anisotropic, thus the individual properties of each layer must be taken into 

account when attempting to gain insight into the actual stress and strain fields. 

By optimizing the properties we c m  reduce the overall weight of a stxucture since 

stifhess and strength cm be designed only where they are required. A lower weight structure 

translates into higher performance. Since optimized structural systems are often more 

sensitive to instabilities, it is necessary to exercise caution. The designer would be much 

better able to avoid any instabilities if, when predicting a maximum load capacity, he either 

knew the equilibrium paths of structural elements or had accurate modeling of the load- 

displacement behavior of structure. 

Anisotropic laminated plates and sheils have a M e r  complication which must be 

considered during the design process: potentially large directional variations of stifhess 

properties in these stnictures due to tailoring mean that three-dimensionai effects cm become 

very important. The classical two-dimensionai assumptions rnay lead to gross inaccuracies, 

although they rnay be valid for an identicai shell structure made up of isotropic materials. 

However, although they have properties that are supetior to isotropic materials, 

advanced composite structures do present some technical problems in both manufacture and 

design. For computational reasons, the study of composite materials involves either their 
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behaviors on the macroscopic level such as linear and nonlinear loading responses, natural 

frequencies, buckling loads ,etc., or their micro-mechanical properties like cracking, 

delamination, Liber-matrix debonding, etc. 

A nurnber of theories for layered anisotropic shells exist in the literature. Many of 

these theories were developed for thin shells and are based on the Kirchhoff-Love 

hypotheses. The fint analysis that incorporated the bending-stretching coupling(due to 

asymmetric lamination in composites ) was by Ambartsumayan [9]. In his analysis. he 

assumed that the individual orthotropic layers were oriented such that the principal axes of 

material symrnetry coincided with the principal coordinates of the shell reference surface. 

He has written extensively on the matter, basing his work on Love's theory with some 

discussion of transverse stresses. 

ïhe  simplifjbg assumption of laminated anisotropy is ofien used in applying a 2-D 

theory to plates and shells consisting of layers of composite materials [24]. In this approach, 

the individual properties of the composite constituents, the fibers and the matrix, are 

"smeared" and thus each lamina is treated as an orthotropic material. 

A survey of the analysis of mdtilayered composite shells using Reissner's mixed 

variational principle was done by Grigolyuk and Kulikov [53]. They maintain that laminated 

anisotropy assumes perfect bonding between layers, and that the interply adhesive has 

infinitesimal thickness but infinite stifiess. This approach leads to classical 1;uninated plate 
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theory (CLPT) and the references by Jones [54] and Whitney and Pagano[55], to CLPT are 

based on the Kirc hho ff-L ove assumptions. However, both re ferences point out that transverse 

shear deformation is more significant in laminated anisotropic than in similar isotropie 

constructions. 

Bert [56] used Vlasov shell theory to formulate a linear laminated shell theory sirnilar 

to CLPT. Pagano and Wang 157-601 and Srinivas and Rao [61] have developed some exact 

solutions of 3-0  elasticity equations goveming composite plates that have been used to 

validate the shear theory. They concluded that CLPT gives fairly good approximations for 

both the displacements and stresses if the plate is thin. Higher order shear theories do not 

give much better transverse stress results but displacements show a marked improvement 

over CLPT for the thicker plates. Transverse stresses are best calculated from equilibrium 

instead of fmm the constitutive relations [54]. Ren [62] similarly solved 3-D elasticity 

equations for a laminated cylindrical shell in cylindrical bending. 

His work dealt with what is now known as larninated orthotropic shells rather than 

with larninated anisotropic shells. In laminated anisotropic shells, the individual layers are, 

in general, anisotropic, and the principal axes of materid symmetry of the individual layers 

coincide with oniy one of the principal coordinates of the shell (the thickness-nomal 

coordinate). Whitney and Pagano [55] applied the Reissner-Mindlin theory to composite 

plate anaiysis. The buckling of laminated cylindrical shells was studied by Hiram [63]. 

Reddy and Chao [64] applied the ciosed fom solution to thick composite plates. 
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Reddy [24,65] has extended the cubic kinernatic approach to analysis of laminated 

anisotropic plates and he has applied them for solving several linear static and buckling 

problems. Additionally, Soldatos applied the parabolic shear theory to examination of the 

stability of asymmetrically laminated cylindncd panels [66,67].Cheng and Ho [68] presented 

an analysis of laminated anisotropic cylindncd shells ushg Flügge's shell theory [2]. A fmt 

approximation theory for the asymmetric deformation of nonhomogeneous, anisotropic, 

elastic cylindrical shells was detived by Widera and his colleagues [69,70] by means of the 

asyomptic integntion of the elasticity equations. For a hornogeneous, isotropie material, the 

theory reduces to DomeIl's equations. 

Noor and Peters [7 11 presented the fiee vibration analysis of laminated anisotropic 

shells of revolution as well as the sensitivity of their response to anisotropic material 

coefficients. Their anaifical formulation is based on a form of the Sanders-Budiansky shell 

theory, including the effects of both transverse shear deformation and the laminated 

anisotropic material response. Each of shell variables is expressed in ternis of trigonornetric 

fimctions in the circumferential coordinate and a three-field mixed b i t e  elernent mode1 is 

used for the discretization in the meridional direction. They used a reduction method 

involving the successive use of the fioite element method and classical Bubnov-Galerkin 

technique to substantially reduce the size of the eigenvaiue problem. 

Zienkiewicz [72] introduced a finie element approach with independent transverse 

displacement and rotational degrees of fkedom such that a RM shear deformable shell 
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element is obtained. A small rotation approach for anisotropic shells has been developed by 

Librescu and Schmidt [73]. 

Successive approximations, as steps towards an estimate of exact shell strain 

displacement relations where displacements, large strains and rotations were ail initially 

allowed. are presented for isotropic shells by Sanders [ l  O] and anisotropic shells by Librescu 

VI* 

Kant and Kommineni [74] presented higher order theones for general orthotropic as 

well as laminated shells. These theories were derived from the three-dimensionai rlasticity 

equations by expanding the displacement vector in Taylor's series in the thickness 

coordinate. Reference [75] presented some elements which can be successfully applied to 

analysis of both thin and thick plate and shells. Kui et al. [76] applied the finite element 

method, displacement type, to analyse the thin shells and to overcome the shear locking 

phenornena. 

Pryor and Barker [77] developed a linear plate element based on the RMtheory. They 

used a rectangular element with 28 degrees of fkeedom (8,12,8 for extension, bending and 

shear effects, respectively) to have the continuity of transverse stress at any interface. 

Hinrichsen and Palazotto [78] applied a cubic spline function to non-linear analysis of thick 

composite plates. Their theory is based on the usuai Kirchhoff hypothesis. The theory was 

developed by considering the Lagrangian strains in conjunction with the second Piola- 
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Kirchhoff stress hypothesis. This formulation leads to a quasi-three dimensional element that 

combines large displacement with moderately large rotation but is restricted to srnall strains. 

Schmit and Monforton [79] fermulated an ar?isotmpic cylindncal shel! dement wbich 

ailows them to predict the geometrically nonlinear behavior of sandwich plate and 

cylindrical shell structures, based on accepted thin shell theory assurnptions. Other recent 

papers by Meroueh [80] and Surana [81,82] cm be mentioned. Cylindrical shells are in 

genenl use in the aerospace, shipbuilding, stnictuni and petroleum industries. They cire the 

simplest shell structure to analyse yet have many of the characteristics of more complex shell 

geometries. The linear problem of composite cylindncal shells has been widely investigated 

by a nurnber of researchers using different shell theones. Based on the Kirchhoff hypothesis, 

for example, Dong (831 studied the free vibration of larninated orthotropic cylindrical shells 

with homogeneous boundary conditions. 

The governing equations of orthotropic cylindrical shells were solved via a pair of 

complex conjugate fourth-order differential equations by Cheng and He [19]. Their work is 

based on the Kirchhoff hypothesis. For the static problem, Fliigge and Kekar [84] and Yao 

1851 obtained an exact solution for closed isotropic long cyhders under general two- 

dimensionai surface traction. 

Using the Forbenius method, Srinivas [6 1 ] developed an exact three-dimensional 

solution for orthotropic Finite cylinders with simply supported conditions. Varadan and 
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Bhaskar [86] also performed the static stress analysis using the procedws proposed by 

Srinivas[6L]. Pagano [87] obtained the stress field for a homogeneous, anisotropic closed 

cylinder under two-dimensional surface loads in which the problems are independent of the 

axial coordinate. 

Ren [88] presented an exact solution for simply-supported larninated cross-ply 

circular cylindrical panels of infinite and F i t e  length in the Yaal direction. Leissa et ai. [89] 

analysed the vibration of cantilevered cylindrical panels by using the Ritz method, with 

algebraic pol ynomial Functions fcr the displacements. 

Widen and Logan [70] studied the non-homogeneous. anisotropic, circular 

cylindncal elastic shell, using the method of asymptotic expansion in terms of a smail 

parameter in conjunction with Reissner's variational principle. In their work, the procedure 

used to derive the shell equation starts with substitution of non-dimensional shell 

coordinates in t ems  of characteristic length scde for changes of stresses and displacements 

and Reissner functionai direction. The ernployment of the formulation in terrns of Reissner's 

principle allows one to obtain automatically al1 the equations necessary to formulate a 

com plete boundary value pro blem for a fmt approximation shell analy sis. Non-dimensional 

stresses, displacements and Reissner hctional direction are introduced and considered to 

be representabie by asymptotic expansions in a power senes in t ems  of a srnall shell 

parameter. 
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Recently, Bert and his colleagues [90,91] and Hsu et al. [92] presented exact 

solutions for bending and vibration of cross-ply, t h  cylindrical shells. These solutions are 

limited to cylindncal shells and sinusoida1 distribution of the transverse load, and the 

procedure used in similar to that used by Whitney and Leissa [93], Whitney and Pagano 

[ S I ,  Bert and Chen [94] , and Reddy and Chao [64] for laminated composite plates. 

Tzeng [95] proposed a rnixed shear deformation theory for the bending analysis of 

arbitnnly Iaminated, anisotropic panels and closed cylindes. The initial curvature effect is 

included in the strain -displacement relations, stress resdtants and assumed tnnsverse shear 

stresses. Two types of shell geometry, infinitely long c y lindrical panels and closed cy linders 

of finite length, are employed in the numencal study. Suzuki and Leissa [96,97] analysed the 

Free vibration of circular and non-circular cylindrical shells having circumferentially varying 

thickness. 

The static response to the axisymmetric problem of arbitrarily laminated, anisotropic 

cylindncal shells of fmite length using three-dimensional elasticity equations was studied by 

Jing and Zeng [98]. The closed cylinder is simply supported at both ends. The highiy- 

coupled partial differential equations are reduced to ordinary differential equations with 

variable coefficients by choosing the solution composed of ûigonometric functions dong the 

axial direction. 

Kant et d.[52,74] presented various higher order theories for Iarninated composite 
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cylindrical shells using Co continuous finite element formulation. Kant and CO-workers did 

extensive numerical investigations on laminated plates and shells, both static and dynamic 

analysis, using Co fuiite elements and different higher order theories. They proved that the 

imposition of shear free boundary conditions on the top and bottom bounding planes of the 

laminate gives stiffer solutions when compared to three-dimensional(3-D) elasticity solutions 

and various displacement rnodels for flat laminates. The one having nine degrees of freedom 

per node produces results very close to 3-0  elasticity solution. 

A higher order shear deformation theory of plates accounting for the Von Karman 

stnins was presented by Reddy 1991. This theory contains the same dependent unknowns 

as those in the Hencky-Mindlin type first-order shear deformation theory. The 

displacements are expanded in powen of the thickness of the plate, and accounts for 

parabolic distribution of the transverse shear strains through the thickness of plate. The 

Hamilton's p ~ c i p l e  was used to derive the equations of motions and the Navier solution 

procedure was used for solve the equations of the sirnply supported plates. 

Jing and Liao [51] proposed a mixed funetion with displacements and transverse 

shear stresses as independent variables and established the correspondhg partial hybrid stress 

element for the analysis of thick laminated plates. Some cornparison between the resuits 

obtained for plates by these two functions were made by Jing and Tzeng [IOO]. 
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A refined laminated plate theory, developed by Whitney and Sun [42], is applicable 

to fiber- reinforced composite materials under impact loading. The theory also includes the 

first symmetric thickness shear and thickness stretch motion, as well as the first anti- 

syrnrnetric thickness shear mode, by including higher order terms in the displacement 

expansion about the mid-plane of the Iaminate in a manner similar to that of Mindlin and 

Medick [101] for homogeneous isotropic plates. 

Reddy and Phan [65] used a higher order shear deformation theory to determine the 

naturd Frequencies and buckling loads of elastic plates. The theory accounts for the 

transverse shear strain and rotatory inertia. This work dealt with the exact solutions of the 

theory as applied to the free vibration and buckling of isotropic, orthotropic and lminated 

rectangular plates with simply supported edge conditions. 

Reddy [35] developed a higher order shear deformation theory for the laminated 

composite plates. This theory uses a displacement approach similar to that in the Reissner- 

Mindlin type theones. The in-plane displacements are expanded as cubic functions of the 

thickness coordinate and the transverse deflection is constant through plate thickness. The 

fom is dictated by satisfjbg the conditions that the transverse shear stresses vanish on the 

plate surfaces and be non-zero elsewhere. This requires the use of a displacement field in 

which the in-plane displacements are expanded as cubic functions of the thickness coordinate 

and the transverse deflection is constant through plate thickness. 
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Ren and Hui [IO21 fomulated a simple theory for non-linear bending of generally 

larninated composite rectangular plates which taken into account the transverse shear strains 

by using the principle of virtud displacements. Moreover, because the total defiection of a 

plate is decornposed into a deflection due to bending and a dek t ion  due to shear, solution 

of the goveming equations of the present theory becomes simpler. 

The Jing and Liao's functional, modified fiom the Hellinger -Reissner principle by 

separating the stress field into a flexural part and a transverse shear part and leaving only 

displacements and transverse shear stresses as independent variables, has been used by Jing 

and Tzeng [50] to analyse laminated plates with satisfactory accuncy. 

There are many situations in mechanics in which some simplifying assumptions 

have been considered to help the andyst in getting timely and accurate results. However, 

various air, water and land vehicles and structures such as aircraft, rocket, pressure vessel, 

petroleurn and petrochemical units etc., may be subjected to impacts, collisions, blasts and 

/or other intensive transient loads which can cause large transient stmcturai deformation and 

damage. 

T h  shells subjected to dynamic loads could encounter deflections of the order of 

the shell thickness or higher. ïhin shells could also encounter a phenornenon of dynamic 

impacts or dynamic buckiing and collapse, which are amibuted to the change in the 

equilibrium state characterizhg the load-response mode. Response of these kind cannot be 
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correctly predicted by using the small or intermediate displacement theory. In the 

intemediate non-linearity approach, the non-lhear terms which represent in-plane rotations 

of the shell are neglected [I  03,1041. This theory is often used in stability analysis. 

The structurai elements made up of the advanced composite materials undergo large 

defomations before they become inelastic, because of the high modulus and high strength 

properties of composite materiais. nierefore, an accurate prediction of transient response is 

possible o d y  when one accounts for the geometric non-linearity. 

There are also cases where structurai elements experience only srna11 s a i n s  under 

load but may fail catastrophically due to their geometric configuration. It tums out that this 

class of structural system cm be accurately analysed on the basis of smdl strain, nonlinear 

geometrical and linear elastic material behavior. The need for accunte and efticient methods 

for structurai anaiysis and design ,especially for this category of large-deflection 

(geometrically non-linear) and elastic -plastic (matenally non-linear) dynamic response 

problems has recently become increasingly apparent. 

In the proposed nonlinear analysis methods, e.g. [IO, 12,1051, many of the noniinear 

displacement terms rnay be considered negligible depending, of course, on the specific 

situation. For example, an accurate load-displacement characterization of a flat plate is based 

on the Von Karman equation where many nonlinear rotational terms have been omitted. 

Similar assumptions for sheII elernents result in equations of the type proposed by Donnell, 
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Sanders and Novozhilov [105]. These formulations are typically valid for so-called 

intermediate nonlinearity or theories that allow only moderate rotations. 

The sdq-displxicementnt relations thrit iiiclude xionluicai displaccmcnt tcms arc used 

to represent large displacements and rotations of differential elements of the shell. Non-linear 

vibrations of generally laminated circdar cylindrical shells were examined using the 

Timoshenko-Mindlin kinematics hypothesis and an extension of Donnell's shell theory. The 

effects of the transverse shear deformation, rotatory inertia and geometncally initial 

imperfection are included in the analysis. The Galerkin procedure h i s h e s  an infini te series 

of equations for time functions which c m  be solved by the method of h m o n i c  balance 

[I  061. 

It has k e n  recognised that the non-linear behaviour of composite cy lindncal shells 

plays an important role in deterrnining the stability and dynamic response of these shells. 

Chu [IO71 fim presented an analysis for circular isotropie cylindncal shells with the 

hardening type of non-linearity for the ampiitude-fiequency response. Nowinski (1081 

c ~ ~ r m e d  the results of Chu [107] by investigating the non-linear vibration of orthotropic 

cylindrical shells. Later, Evensen [IO91 pointed out that the mode shape assumed by Chu 

does not satisfy the condition of continuity of the circderential in-plane displacement. A 

more rigorous study of non-linear free fle?nual vibrations of circular cylindrical shells was 

conducted by Atluri [1 IO] who compared his resuits with the available data and concluded 



by accepting the possibility of the soflening type of non-linearity. 

Chen and Babcook [ I l  11 adopted a perturbation technique in considering the large- 

anplihide vibntion of a thin-wdlcd cylindncal shell. Ramachmdran 11 1 4  studied th2 non- 

linear vibration of cylindrical shells of varying thickness. Khot [113] studied the post- 

buckling behavior of a laminated cylindncal shell subjected to axial load and torsion using 

the Von k m n a n - D o ~ e l l  equations. The results obtained by Khot [ I  131 show that, in 

general, composite shells are less imperfection sensitive than isotropie shells. 

Recently, lu and Chia [II41 discussed the non-linear vibration and post-buckling 

of anti-symrnetric cross-ply circula cylindrical shells on the buis of Von Karman-Donne11 

kinematic assumptions and the effects of transverse shear on the non-linear behavior of these 

shells using the Timoshenko-Mindlin kinematic hypothesis. They neglected some ternis (e.g 

cross-product of displacernent denvatives) in non-linear strain-displacement relations. 

Neglecting the transverse rotational nonlinear terms as well will result in a linear 

Love-type shell theory. These successive approximations to the shell strain-displacement 

relations are discussed in the paper by Librescu [Il51 and Sanders [IO]. In the last work, the 

deformations are restricted by the Kirchhoff hypothesis(the transverse shear and normal 

strains were neglected) , the middle surface strains were assumed small and the rotations 

were assurned to be moderately small. Most of the above approaches c m  include various 

degrees of non-linearity in the strain-displacement relations representing the displacements 
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and rotations. Considerable simplification was achieved in the Donnell equations by use of 

the assumption that the non-linear membrane straios derived only h m  out-of-plane 

rotations. 

For example, non-linear D o ~ e l I  shallow-shell theory is not suitable for the analysis 

of shells in which the buclding mode involves fewer than three full waves anund the 

circumference [LOS]. More accurate non-linear shell equations are given by Sûnders and by 

Novozhilov , but these were somewhat more complex than the Donne11 equations. More 

terms are retained because fewer assurnptions are made about the relative magnitude of 

various terms in the non-linear strain-displacement. Reddy and Chandrashekhara [Il61 

solved laminated shell problems, both cylindrical and sphericai, assuming RiM theory and 

an intermediate non-linearity. There are few such analytical closed-fom solutions For shell 

geometries, especially those that govem non-linear behavior. 

The formulation and computational procedure are presented for the geometrically 

non-Iinea. analysis of laminated orthotropic and anisotropic composite shells based upon a 

modified incremental Hellinger-Reissner principal and the total Lagrangian description by 

Rothert and Di [117]. In this investigation a computational mode1 for a geometrically 

nonlinear analysis has k e n  stuclied on the basis of a rational approach for a hybrid stress 

model. The ihrough-thickness assumption used in the total Lagrangian formulation is 

introduced, incorporating the nonlinear formulation for a large rotation assumption. Noor and 
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Peters [Il81 analyzed the non-linear response of anisotropic cylindrical panel that included 

transverse shear deformation. Their formulations are based on the Rayleigh-Ritz technique 

and the Hu-Washizu mixed shallow shell finite elernent approach. 

Stein [ 1 1 91 used truncated senes expansions of exact non-linear saain-displacement 

relations in a shell approach that also included transverse shear deformation. The non-linear 

strain-displacement relations were expanded into a series that contains al1 first- and second- 

degree tenns; only the first few terms have been retained for the displacements. 

Geometrically non-linear quasi-threedimensional approaches for laminated composite plates 

md shells have been developed by Palazotto and Witt (1  201, Himichsen and Palazotto [78] 

and Dennis and Palazotto [12 11. Their work is restricted to small strains; the exact Green's 

strain-displacement and linear strain displacement relations were assumed for the in-plane 

strains and the transverse strains, respectively, so the accuracy in rotation is lirnited by linear 

assumption on the transverse shear strains. 

Tsai and Paiazotto [122] have developed a finite element formulation for the 

geometric non-linear vibration mdysis of cylindncd shells, based upon a curved 

quadrilateral, 36 degree of freedoms, thin shell eiement. The equations of motion are based 

on a totd Lagrangian frYne of reference. A B method, which is a generalization of 

Newmark's time rnarching integration SC heme and the Newton-Raphson iterative method, 

are both applied in order to solve the set of non-linear equations of motion numerically. 
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The solution of a set of non-linear, second order difierential equations which describe 

an anisotropic shell of revolution was presented by Martin and Drew [123]. Their analysis 

is based upon Sanden' non-linear shell theory without considering the shear deformation 

effects. The method for solving these equations follows the procedure used by Budiansky 

and Radkowski [124]. 

Kant and Kommineni [ 1251 presented the geomeûically non-linear transient analysis 

of Iaminated composite (transversely isotropic) and sandwich shells. based on Von Karman's 

theory. In the time domain, the explicit centrai difference integntor is used in conjunction 

with the special mass matrix diagonalization scheme which conserves the total mass of the 

elernent and includes effects due to rotatory inertia terms. 

Rotter and Jumikis [IO51 have presented a set of non-linear stnin-displacement 

relations for avisyrnmetnc thin shells subject to large displacements with modente rotations, 

by retaining more terms. Their works is based on Kirchhoff s assumptions. They have 

shown that nonlinear snains arising fiom products of in-plane strain terms, which were 

ornitted in previous theories, may be important in certain buckling problerns. The new 

relations are particularly important when branched shells are being studied and when the 

buckling mode may involve a translation of the branching joint. Their work do not include 

any numerical result- 

A modal approximation in deriving the equations of motion for the non-linear 
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flexural vibrations of a cylindrical sheli by using the Donne11 shallow shell theory was 

presented by Dowell and Ventres [126]. The purpose of their work \vas to satisfy more 

accuntely the boundary and the continuity conditions and investigate their effects on the 

form of the modal equations. 

Homgmoe and Bergan [1271 presented classical variational pnnciples for non-linear 

problems by considering incrementiil deformations of a continuum. Wunderlich [128] and 

Stncklin et al.[129] have reviewed various principles of incrementd analysis and solution 

procedures for geometrical non-linear problems respectively. Noor and Hartley [130] 

employed the shdlow shell theory with transverse shear strains and geometric non-linearities 

to develop triangular and quadrilaterai finite elements. 

Chao and Reddy [13 11, Reddy and Chanhekhara [116] have presented a first 

order sheardeformation theory based on kinematic and geometric assurnption of Sandea thin 

shell theory for geometrically non-Iinear analysis of doubly curved composite shells. An 

analysis of the dynamic responses of cylindncal shells including geometric and matenai non- 

linearities was made by Wu and Witmer [132]. The methods of finite element analysis were 

applied to the problem of large deflection, elastic-plastic dynamic response of cylindncal 

shells to transient loading. n i e  formulation is based upon the virtual work prïnciple and 

D'Alembert's principle. Wu and Witmer used a bilinear polynomial for the axial 

displacement, and bicubic polynornials for both the circumferential displacement and the 

transverse displacement, and explicitly excluded rigid body modes. 
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The analytical solution of shell motion equations is generally considered to be 

difficult. Approximation methods can be suitably used (e.g. the finite difference, Gaierkin, 

Rayleigh-Ritz, Transfer matrix and finite element methods). Al1 of these methods have 

advantages and disadvantages. One of the most important critena in determinhg the 

versatility of the resolution is the capacity to predict, with precision, both the high and the 

low frequencies. 

In the ffite difference method, the initiai values are given and this method requires 

a great deal of calculation time. The Galerkin approach loose precision in the higher 

frequencies olshells. The Rayleigh-Ritz method presents several drawbacks. among which 

are the displacement function choice, which has to take the boundary conditions into 

account. and the necessity to use a large number of tenns to express displacement functions 

and also in the Galerkin method ,both geometric and force boundary conditions must be 

satisfied. On the 0 t h  hand, the finite element method [72,133-1361 is satisfactory from 

these view points. 

The accuracy of solutioas reached by the finite element displacement formulation 

depends on whether the assumed functions accurately mode1 the defornations modes of 

structures. To satisfy this criterion, Lakis and his group have developed a hybnd type of 

finite element, whereby the displacement functions in the finite element method are derived 

fiom Sanden' classical shell theory [45]. This method has been applied with satisfactory 

resuits to the dynamic linear and non-linear analysis of cylindrical shells, both closed and 
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open [137- 1471, spherical [I 481, conical [149], isotmpic and anisotropic, uniform and axially 

non-uniforrn shells, both empty and liquid-filled. This method has also been applied to the 

dynamic analysis of circular and annulm plates by Lakis and Selmane [150-1521. 

The effect of surrounding medium (air, liquid and etc.) upon the vibration of plates 

and sheiis is of primary interest to scientists and engineen working in aerospace, marine and 

reactor technology. The effect of the fluid on the structural response is usuaily significant 

rxcept in the case of extremely thick shells. The dynmic response of the shells when 

subjected to a flowing fluid. as well as the influence of fluid speed on the shell free 

vibrations. were studied by several researchers: Lakis and Païdoussis [137-1391. Païdoussis 

and Denis[ 1531, Weaver and Unny [ 1 54]? Cheng [155] and Jain [ 1561. Païdoussis and Li 

made an elaborate review in this field [157]. 

The Buid effect on the dynamic behavior of the structure cm be taken into account 

by considering the hydrodynarnic mass which is added to the mass matrix of the structure. 

The effective mass is a function of the mode shape being considered, the shell and liquid 

geornetncal parameters, plus the physical parameters. In addition, the forces exerted by fiee 

surface motion have to be considered; the pressure disûiiution due to surface motion during 

vibration could be neglected, however, since resonant sloshing fiequencies of thin shells are 

considerably below the naturai kquencies of the combined fluid-structure system. 

The dynamics of coupled fluid-shells were reviewed extensively by Yang [158] and 
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Brown [159]. Dynarnic anaiysis of the structure-tluid systems was studied by Brenneman 

and Yang [ 1 601, using the modal and hybrid methods. They obtained the structure and fluid 

modes by applying the stiffhess and flexibility methods, following MacNeal's approach. 

Crouzet-Pascal and Gamet [16 11 studied a ring-reinforced cylincirical shell immersed in 

a fluid medium, and its dynarnic response to an axisymmetric step pulse. MacNeal [162] 

presented another approach which is based on a hybnd finite element formulation in which 

the structure is modeled with displacements as the unknown variables, and a fluid is modeied 

with pressure as the variables. To utilise existing malliframe stniciural analysis prograrns, 

EvhcNeal showed how to recover symrnetry by manipulating the equations and adding 

ûuxiliary variables to the problem. 

The fiee vibration of sirnply supported vertical cylindrical shells partially filled witb 

or submerged in a fluid has been analyzed by Gonçalves and Batista [163]. The Galerkin 

method was used to obtain an approximate solution which coincide with the exact solution 

for the cases of an empty shell or a shell completely in contact with fluid. Their work is 

based upon the consistent shell theory of Sanden. The fluid is taken as  non-viscous and 

incompressible and the coupling between the deformable shell and this acoustic medium is 

taken into account. 

Since the lowest naturai fiequency of bending vibration of shells, Unmersed in or 

filled with a fluid, is much less than the corresponding natural fiequency of the shell in air, 

they investigated the efEects of variable height of fluid on the vibration response of vertical 
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cylinders fdled with or submerged in an ctcoustic fluid medium. In general, the lowest 

frequency depends on liquid level, mode shapes and shell and liquid geornetncal and 

physicd parameters. 

The fiee vibration andysis of cylindrical stonge tanks with axial thickness variation 

and partially filled with liquid was studied by Han and Liu [164]. The tank is modeled using 

Flügge's thin shell theory (in the isotropie case)and the fluid in the tank, according to 

potential flow theory, is assumed to be inviscid and incompressible. In their work. the shear 

deformation effects have not been considered. They solved the partial differential equations 

by using the transfer matrix technique. 

An analysis of the non-iinear vibration of cylindrical shells of varying thickness in 

an incompressible fluid was made by Ramachandran [112]. The Rayleigh-Ritz procedure 

was used to analyze non-linear transverse vibrations of elastic. orthotropic cylindrical shells 

of linearly varying thickness, embedded in an incompressible fluid (there is no shear 

deformation effect in his work). 

In the present thesis, we develop a general linear shell theory -for multilriyered 

larninated anisotropic materials case- which takes into account the transverse shear 

defomations, rotatory inertia and initiai curvature effects which were not considered 

simultaneously in the previous works. We obtain five coupled second-order differential 

equations with five independent variables as components of displacement vector. Also, the 
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equilibrium equations, constitutive and kinematic relations for the following shell and plate 

geornetries are developed: shells of revolutioa, cylindrical, spherical and conical shells as 

well as rectanpuiar and circular plates. 

The displacement hc t ions  presented, forcylindricd shells, in the last section of this 

paper allow us to shidy the dynamic behaviour analysis of open or closed cylindrical shells 

with arbitrary boundary conditions, while most of previous investigations have been limited 

to simply supported boundary conditions using the Fourier double series in solving the 

equations of motion. 

There are several reasons for undertaking the development of this theory. First, 

developing a theory for either dynamic or stress analysis of anisotropic larninated plates and 

shells, with various geometry shapes. The accunte prediction of the dynamic response or 

failure characteristics of these structures made up fiom advanced composite matenals 

requires the use of refined theory where the effect of transverse shear deformation and other 

factors such as rotatory inertia and initial curvature effects are taken into account. This is 

because the transverse shear deformation plays an important role in reducing the effective 

flexural stifiess of plates or shells made of these advanced materials than in corresponding 

isotropie matenals, so the present study focuses on this 1s t  effect. 

The next step deals with the study of the fiee vibration characteristics of thin 

anisotropic larninated cylindncal shells based on the present theory. One of the criteria of 
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success of a method may be considered to be its capability of yielding the high, as well as 

the low, nahual frequencies and modal shapes with comparable high accuncy. The 

numericd method will be based on a combination of hybrid finite element analysis [139] 

and refined shear deformation theory of shells. This ailows us to use the thin shell equations 

in fidl for the determination of the displacement hctions, and hence the mas,  stifiess and 

stress-resultant matrices, instead of the more usud polynomid displacement hctions. 

This formulation yields the natural Frequencies and mode shapes of shell defined by 

arbitnry conditions without changing the displacement fùnctions in each case. Numerical 

results for fundamental frequencies will be presented for anisotropic laminated cylindrical 

shells. At the same time, the fiowing fluid effect on the naturd frequencies of anisotropic, 

open cy lindrical shells will be studied. 

2.4 Theoretical Developmeot 

This work is based on the following assumptions: 

1) Linear elastic behavior of laminated anisotropic materials; 

2) Use of the dn-displacement relations expressed in arbitrary orthogonal 

curvilinear coordinate system; 

3) The shell is thin and therefore we assume that the thickness-direction nomal stress 

is negligible compared with stress tangentid to the shell surface; 
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4) The transverse shear deformation, rotatory inertia and initial curvature are 

considered to influence the goveming equations. 

The normal and shear s t m h  components are related to the components of the 

displacement vector by [3]: 

- 
where a ; u i and gi are. respectively, the curvilinear coordinates of the 

surface. components of the displacement vector and geomeûical scale factor quantities, and 

are defined below for application to shells (Figure 2.1): 
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where U,. LL, W, A,, Ri and Care, respectively, the displacement vector components, 

Lamé's parameters, the curvahire radius and the thickness coordinate. If  we substihite 

equations (2.2) into equations (2. l), we obtain the following strain-displacements equations 

in the shell space: 

where E, and ( y,, y,J are, respectively, the normal and shearing strain components. 

We can assume that the displacement components are presented by the following 

relationships: 
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The ,û, and & represent the rotation of tangents to the reference surface onented 

dong the parametnc lines a, and a: respectively. We substitute equations (2.4) into equations 

where: 

1aui  u2 aA,  w . 
&O = + + -  

l a P l  B2 
K =--+-- 

l A, da, A P 2 d a 2  Ri A ,&,  A,A,da,  
1 a 5  uI dA2 w 

&O = + + -  1 Je* 4 a 4  
A2da1 APlaax % ; 5 = ~ ; q + ~ p , d . ;  

1 hl u, aA, yo =----- 1 a$, Pl a$ - i: =----- 
l A ,  d a ,  A#2du2 ' I A,aa, A#,da2 

1 du, u2 aA, y0 =---- 1 dg, 4 aA2 =----- 
Azda2 A#& ' A,% A,A2da,  

1 dw U, p0 =---+ r aw 
4 . =--- 

l A,  da, R, - +B, 
R, 
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Where f,; 4,; ici; s, and pot are, respectively, the in-surface nomol and Ki-surface 

shearing strain, the change in the curvature and torsion of the reference surface and the 

shearing strain components. The Coddazi conditions which were used for the above 

equations are: 

d 6 aA, 4 a ç aA* 5 - [ A  - 1  - 1  + -  ; - [A,(l +-)] =-(1+-) 
(35 % R, da, - R, da, R, (2.7) 

where R, , C, A, and a, were defined earlier by equations (2.12.2). 

2.4.2 The Relationship Between the Stress and Strain Vectors (Hooke's law) 

The relationship between the stress and st ra in  vectors (Hooke's law): 

(4 = lQl (4 (2-8) 

The constitutive equation of the Kih lamina (for a lamina of fibre reinforced 

composite material) in the lamina reference axes (a .  f i ,  y) c m  be written as follows (for only 

one lamina) (Figure 2.2): 



The [QI matrix denotes the elastic stiffiess in the matenal coordinates (locai axes). It is 

useful to mention that the shear strains used in this work are tensor shear strauis, not 

engineering shear stnins. 

Qij's elements are defined as foilows: 

where Eg ,G@and v4 are, respectively, Young's moduii of elasticity in the principal 

directions, rigidity moduli characterizing the change of angles between the principal 

directions, and the Poisson ratios characterizing the transverse contraction (expansion) under 

tension (compression) in the directions of the coordinate axes. 

The stress-strain relations of the Kth lamina in the laminate coordinate axes (1,2,3 



global coordinates) can be written as (Figure 2.3): 

where : 

The transformation matrix [Tl is defined by: 

m z  n 2 0 0 0  2mn 

n z  m 2  O O O -2mn 

O 0 1 0 0  O 

O  O O m - n  O 

O O O n m  O 

where: m=cosa, n=sina 

The orientation angle a is measured counter-clockwise fkom the I - a i s  to the x-axis 



(Figure 2.3). 

[e 1's elements are defhed as follows: 

2.43 The Equations of Motion 

Using the virtual work principie for the present case yields: 

a4dzQI aA ,Q, N2 -+--A 4 (-+-)-A# q q* 
da, da2 * R, R, 2 i i  1 



where : 

where 1, , p" and are, respectively, inertia moments, density of the K"h 'S 

laminamaterial and the thickness coordinate. The quantities ( N i , ,  Nx, Niz. Nzr) are called 

the in-plane force resultants. and ( M i .  M ~ I ,  hf12, Mri) are called themoment resultants; (Q i i .  

Q2) denote the nanrverse force resultunts. 

Now, we see that there are five independent boundvy conditions to be applied at 

given edges. The transverse shear deformations do not vanish in the present theory and, 

therefore. the /3, cannot be expressed in terms of U, and W. The transverse shear theory 

recornmended here leads to no stnins during ngid body motion. 

2.4.4 The Stress Resultants and Stress Couples 

The stress resultants and stress couples are given by [3] : 
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The quantities (NI I ,  N z ~ .  NIZ, N21) are called the in-plane force resultants, and (Ml]. 

M22, Mir, M I )  are cailed the moment resultants; (QII.  Qz) denote the tramerse force 

resultanis. We notice, in equations (2.17), that the çymmetry of the stress tensor ( r ~ z  =ni) 

does not necessarily imply that NI? and NZI are equal or that M i 2  and M ~ I  are equal except 

in the case of a sphencal shell, a plate or a thin shell of any shape. 

2.45 The Constitutive Equations 

The stress resultants and stress couples that correspond to the stress components are 

given by equations (2.17); therefore: by using equations (2.5), (2.1 1) and (2.17) we have: 

where 



and 

Note: NE e V 2 1  and M1-i and 

This expansion requires only that (C/ R)= « 1. So: 



We also have: 

Finally: 

O 0 .  
The E, ; y ,  , . . . and rz were given earlier in equations (2.5) whereas Pg's 

elements are given in Appendix A and defined by equations (2.19-2.2 1) and (2.25). 

Now, we develop 1)Eqoilibrium Equations, 2)Constitutive Equations,3)Kinematic 

Relations (Strain-Displacement Relations) for the following cases: a) S M s  of Revulution; b) 

Cylindricd S ' l s ;  c) Rectangttlar Plates; 4 Spherical Shells; e) Conical Shellsand fl Circuiar 

Plates, 



2.5 Sbells of Revolution 

2.5.1 The Equilibrium Equations 

We substitute the geometry definitions of shells of revolution (Figure 2.4) into 

equations (2.15). 

where the (cp, 0) and (Rq, RB) are cuMlinear coordinates and curvature radius of the 

revolution surface, respectively (Figure 2.4). 

2.5.2 Constitutive Equations 

We have the same equations as those of (2.26), but the def~t ions given in equations 

(2.20) m u t  be changed. 

The constitutive equation is given in Appendix A-2. 



2.53 Kinematic relations (Linear Strain-Displacement Relations) 

Using geometrical parameters given in (Figure 2.4). equations (2.5) can be defined 

as shown below: 

where 



2.6.1 The Equiiibrium Equatioas 

Using the geometry definitions of circular cylindrical shells given in (Figure 2.51, 

equations (3.27) will becorne: 

where x and 0 are curvilinear coordinates of the cylindncal shells (Figure 2.5) 

2.6.2 Constitutive Equations 

Equation (2.26) can be used by changing the definitions given in (Figure 2.5). This 

equation is given in Appendix A-2. 

2.63 Kinematic Relatioas(Linear Strain-Displacement Relations) 

The kinematic relations are obtained by using equation (2.30) and shell geornetry 

defini tions. 



Substituting the above equations into the constitutive equations (taking into account 

the coefficients which were given in equations (2.32)) and then into equations (2.3 1), we 

will obtain: 

These relations are dehed  fully by the equations given in Appendix A-2. In order 

to compare them with ciassical shell theory, the three equations of motion for cylindncal 

shells are also given in Appendix 4 [I  471. 

2.7 Rectangular Plates 

2.7.1 The Equilibrium Equations 

The same cylindrical shell equations are used, taking into account the rectangular 

plate geometry definitions (Figure 2.6), so equations (2.3 1)  become: 



2.7.2 Constitutive Equations 

We have the same equations as those of (2.26), but the definitions (2.20) must be 

changed. This equation is defined in Appendix A-2. 

2.73 Kinematic Relations(Linear Strain-Displacement ReIations) 

These relations c m  be obtained by substituting the structural geometry definitions 

into the kinematic relations of cylindncal shells (2.33). 

Now, we can substitute the constitutive equations into equations (2.35) in the same 
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way that we obtained the five differentid equations for the case of cylindrical shells, and cm 

obtain the implicit equations as (2.34). These equations are given fully in Appendix B-2. 

2.8 Spherical Shells 

2.8.1 The Equilibrium Equations 

The equilibrium equations for the spherical shells cm be derived by using the 

equations (2.27) and following definitions (Figure 2.7). 

2.8.2 Constitutive Equations 

We have the sarne equations as in (2.26), but the definitions given in (2.20) must be 

changed. These relations are given fidly in Appendix A-2. 



2.83 Kinematic Relations 

Substituthg re =rq = R into the definitions of (2.30), equations (2.5) are defined as 

below: 

1 GU 
L(2 + 

1 1 1 a*, IV f =-- IV) ; r =--+-c~tgcpu +- , 1 J* 1 
" v a d e  ' R  , : Y@@=-* -R"'mu, 'Ra 

1 ". 1 al', 1 1 "8 * 1 0s. 1 r ;-- ; r =-- +-corg~f l~  ; r =- r =----CO(&, R a  Rsiocpd9 R R &p ' O Rsinp de R 

1dW UV p" =-- --*B. ; Pa =-- i Û W - %  
' R h  R 0 king R 'Be 

Now, we substitute relations (2.40) into the constitutive equations and then into 

equations (2.38), giving five differential equations which describe the equations of motion 

in terms of the displacement field and mechanical properties ofthe shell, so that we have the 

sarne implicit equations as in (2.34). Li's equations are given in Appendix C-2. 

2.9 Conical ShelIs 

2.9.1 The equiiibrium Equations 

We substitute the geometry definitions of conical shells (Figure 2.8) into equations 

(2.27): 



coseca 
IVke + N ~ + ~ ~ = I , Ü ~ + I ~ ~ ~  

X 

coseca 1 =I ü +I g 
x % e t N n L + ~ Q e + q o  1 0 2 8 

coseca 1 
QeWe +Qu -=Ne +q,, =Il* 

coseca 
%O +ML - Q , = I ~ Ü ,  + 1 ~ 8 ,  X 

2.9.2 Constitutive Equations 

Equation (2.26) has to be modified by changing the definitions given in (2.20) to 

obtain the constitutive equation of the conical shells. This equation is defined in Appendix 

A-3. 

2.9.3 Kinematic Relations (Linear Strain-Displacement Relations) 

These relations c m  be obtained by using the stnin-displacement relations of shells 

of revolution (2.30) and conical shell geometry defuiitions given in (Figure 2.8). 
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The five differential equations of motion for conical shells, in tenns of the 

displacement field and mechanical properties of shells, c m  be obtained by substituting the 

kinematic relations first into the constitutive equations, and then into the equilibrium 

equations. These Unplicit equations Li's are given fùlly in Appendix D-2. 

2.10 Circular Plates 

2.10.1 The Equilibrium Equations 

These equations are obtained by using circular plate geometry definitions (Figure 

2.9) and the same equations as we used for conical shells (2.41). 

2.10.2 Constitutive Equations 

Changing the relations defmed in (2.20) and substituting in Equations (2.26), the 

constitutive equation for a circular plate cm be obtained and is given in Appendix A-2. 



2.103 Kinema tic Relations (Linear Strain-dis placer nent Relations) 

These equations are obtained by substituthg the geornetry definitions of circular 

plates into the conical shell kinematic relations: 

We substitute relations (2.46) first into the constitutive equations and then into 

equations (2.44), and obtain five differential equations which are defined in Appendix E-2. 

2.1 1 Characteristic Equation 

In the present theory, B, and f12 which represent the rotation of tangents to the 

reference surface oriented dong pararnetric lines a, and a,, cannot be expressed in ternis of 

LI, and W. ïherefore, the five differential equations of motion cannot be reduced to 3 as in 

classical shell theory. Ln the case of cylindncai shells, we obtain five differential equations 

of motion as s h o w  in A-2.2 to A-2.6 in Appendix A. Also listed in Appendix A are the three 

differential equations (A-2.7 to A-2.9) of Sanden' cylindncal sheli theory. 

The accuracy of the finite element method dependsprimarily on the number and size 
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of the finite element into which the structure is divided. Good accmcy can generally be 

obtained with a smciently large number of s m d  elements. The optimum degree of 

approximation in the element stiffness and mass matrices will depend upon many factors, 

the most important perhaps being the choice of the displacement functions and the degree 

to which they satisfi the convergence criteria of the f ~ t e  elernent method, here we do not 

mean numerical convergence but absolute convergence to the continuum. 

The characteristic equations of vibration analysis of anisotropic laminated open 

circular cylindrical shells, formulated on the ba i s  ofthe present theory. have been compared 

to that of Sanders' shell theory [Ref. 1471. Assuming the displacement functions for the 

dynamic analysis of anisotropic circular cylindncal shells to be as follows : 

where: 

we substitute these definitions into the equations of motion for cylindrîcai shells 

(2.34). We then take into account that the non-trivial solution Ieads to a tenth order 

polynomial equation (2.48) (characteristic equation) due to five degrees of fkedorn per node, 



instead of an 8"h order equation (2.49) Pe f .  147, equation 1 O]: 

&,$O +&ri8 +f,ri6+&ri" +f2q2 +$, = 0. 

wheref; ( i = O to 10) are the coefficients of the determinant of the matrix [Hl given 

in Appendix A. For the case of isotropie cylindrical shells based on classical shell theory, 

we obtain: 

where h, ( i= O to 8). The coefficients of the characteristic equation of cylindncal 

shells based on Smden' shell theory, are given in [Ref. 1471. Each root of the chmcteristic 

equation (2.48) yields a solution to the equations of motion (2.34). The complete solution 

is obtained by finding the sum of d l  ten solutions independently with the constants A, B,, C, 

D, and E,. The fundamental unknowns consist of the ten strain cornponents, ten stress 

resultants and the five generalized displacements of plates or shells. 

It is necessary to formulate ten boundary conditions for the finite elements, the axial, 

tangentid and radial displacements as well as the rotations will be specified for each node. 

The displacement huictions for this theory are derived and mass and stiffness matrices of 

each eiement are obtained by exact analyticd integration 
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The roots of the characteristic equation for equations (2.48,2.49) obtained by the 

cornputer program are given for isotropic and anisotropic materials. One such set of 

caiculation is show in table (2. l), where the computed values based on SandersT theory, 

made by authon of reference [139], were compared with those from other theories, given in 

reE[139]. Tables (2.2.2.3) show the charactenstic equation values of equation (2.49), ref. 

[147], and those of equation (2.48) obtained by the present theory. 

A cross-ply layered ( 0°/900/900/00) cylindncal shel! with the following material 

properties were used as a misotropic material example. Al1 Iayen are assurned to have the 

same geometnc and material panmeters and the individual layer is assumed to be 

orthotropic. 

E,=25 E2 ; G3=0.2 Et ; G13=G12=0.5 E2 ; vI2=0.25 ; p=l 

2.12 Discussion and Conclusion 

Genenl equations of multi-layered laminated anisotropic shells were developed by 

taking into account the shear deformation and rotatory inertia effects as well as the initial 

curvahire. We believe that these effects will be more pronounced on the dynainic behaviour 

of anisotropic shells than on the isotropic materials. The derivation was fiom geometricdly 

linear theory for smdl elastic stnins and fxom strains expressed in orthogonal curvilinear 

coordinates for gened shells. The virtuai work principle was applied in order to derive the 

equilibrium equations. The work of several researchen on this particular subject has been 

reviewed and summarized. 

The theory used yields five coupled linear second-order differential equations with 
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constant coefficients, instead of 3 equations, as in the case of other theories. The reason for 

this is that transverse shear strains do not vanish in the present theory and, therefore, the /3, 

cannot be expressed in terms of displacement components. This theory leads to no strain 

during rigid body motions. 

A paper currently under preparation will deal with the static and dynamic analysis 

of open and closed non-uniform anisotropic laminated circular cy lincirical shells with 

arbitrary boundary conditions. The effects of transverse shear deformations on the vibration 

chmcteristics of cylindncal shells of different geometrical( Rh, U R  and Ut) and material 

(isotropic, symmetric and anti-symmetric cross-ply laminated shells) parameters, as well as 

axial and circumferential wave number (m. n). are handled through severai numencal 

examples with remonable agreement with other theories. The computational rnethod used 

is a combination ofhybrid fmite element analysis based on the method of reference [139] and 

refined shell theory. n i e  displacement functions are obtained using the new shell equations 

developed in this paper. 

The first preliminary results indicate that the presence of the transverse shear 

deformation effects is very significant and tends to reduce the fiequency parameten specially 

for laminated anisotropic shells. It has been suggested that the reason for the difference is a 

change in shear angle fiom layer to layer and the insensitivity of the CST (classical shell 

theory) to this change. 

Further work is under way to apply this theory to the dynamic analysis of open and 

closed anisotropic cylindncal shells fiiled with or subjected to a flowing fluid. 
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2.13 Appendix A-2 

This appendix contains the constitutive equations and equations of motion for thin 

anisotropic plates and shells which were referred to this paper. The Appendix is divideci into 

five parts, covering respectively cyluidrical shells, rectuigular plates, spherical and conical 

shells, and circular plates. 

The P,'s elements (A, B, D, G, GG,. H, HH, I, I I ,  J, and JJq) have been 

defmed by equations (2.19-2.2 1 )  and (25) . 

Cylindrical Shells 

The equations of motion are defined by the following equations: 





1 O4 

The equations of motion for a thin cylindrical shell (Hybrid f i t e  element method 

based on Sanders' shell theory) are defined as below [147]: 

The P . 3  elements are defined (only for one lamina) [147]: 
Y 

where 



Matrix [Hl: 



2.14 Appendix B-2 

Rectangular PlatesThe Lis  equations are given below: 



The Lis  equations (equations of motion) are given below: 







1 auQ (p,,-p,> au, 
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2.17 Appendix E-2 

Circular Plates 

The five differential equatiuns of motion are defined as follows: 
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2.19 NOMENCLATURE 

A,, A2 :Lamé's parameters 

Ai, : extensional e e s s  Eq. (2.21) 

a,, bi ( i = 1,2,3)defined by Eq. (2.20) 

B, : bending-extensionai coupling stiffness Eq. (2.2 1) 

Dij :bending stitkess Eq. (2.21) 

E,: Young's moduli of elasticity Eq(2.10) 

f ,  ( i=0,2, 4...., 10): coefficients of the charactenstic equation Eq.(2.48) 

G,: rigidity moduli of elasticity Eq.(2.10) 

g, ( i42.3): geometrical scde factor quantities Eq42.2) 

1, : inertia moment 

Li : motion equations Eq.(2.34) 

Mi (i=1,2): the moment resultants applied in aiYs direction 

Mi, (i j=12 ; i +j) :the moment resultants applied on the middle surface in 9 ' s  direction (ai 

=cte) 

- 
rn : defïned by Eq.(2.47) 

Ni (i=1,2): the in-plane force resultants applied in q ' s  direction 

Ni, (i j= 1 2; i +j) :the in-plane force resuitants applied on the rniddle surface in %'s direction 

(q=cte) 



Pij : terms of elasticity matrix( i=l ,... ,10 ; j=l, ..., 10) 

Q, (i j=1,2,3) : the elastic stifThess in the material coordinates Eq.(2.10) 

- 
Q ij (i j= 1 2 3 )  : the elastic stifhess in the global coordinates Eq(2.11) 

Qi (i= 1,2) : the transverse force resultants 

q,, q,, q, : the extemai force vector 

R, (i= 1,2) : curvature radius 

h : thickness of the shell 

h,: thickness of the lamina Eq42.21) 

hi ( i=O.2,4, .... 8): Coefficients of the characteristic equation Eq.(2.49) 

u,, u2, w : the displacement vector components 

iii (i=1.2) and iü : defined by Eq.(2.15) 

Tij (ij=l J,3) :transformation matrix elements Eq.(2.13) 

a, and a.> : curvilinear coordinates of the surface 

pl and Pz : the rotations of tangents to the reference d a c e  

.. 
p, ( F i  3: defined by Eq.(2.15) 

E, : defonnation vector components 

ai : normal stress vector components Eq.(2.9) 

r, : shear stress vector components Eq.(2.9) 

p : density of the shell material 



< : distance of the point fiom the corresponding point on the reference surface dong the 
normd direction 

q : roots of characteristic equation Eq. (2.48,2.49) 

gYl and : normd strains of the reference surface 

yin ( i=1,2) and y,z: shearing strain components Eq.(2.3) 

f 1  and yo2 : in-plane shearing strains of the reference d a c e  

K, and IC? : change in the curvature of the reference surface 

T, and q : torsion of the reference surface 

pO, and pot : the shearing stnins 

vij : Poisson ratios Eq.(2.10) 



Table 2.1 Roots of characteristic equations for 1 2R2(1 -$)/tL=x 1 O4 and v=0.3 

Sanders* 

Flügget 

Vlasovt 

Timoshenkot 

Naghdi& 
Berryt 

* Data fiom computer prognme of authors [139] 
t Data given in [ 1 3 91 



Table 2.2 Roots of characteristic equations (2.48,2.49) for isotropie materials(m= 1 ). 

Table 23 Roots of characteristic equations(2.48.2.49) for anisotropic materials 
(0°/900/900/00). 



F i w e  2.1 A) DifEerential element of a shell 
B) Definition of sheii coordinate system 



l (Longitudinal) 

F i w e  2.2 Unidirectional lamina and principal coordinate axes 



(- l )th layer --- ' 

-(N)th layer 
, , 

Fi- 2.3 A) Multidirectional laminate with coordinate notation of individual plies 
B) A fibre reinforced lamina with global and material coordinate systems 



Figure 2.4 Surface of Revolution 
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Fimire 2.5 A) Circular cylindricd shelî geometry 
B) Pontive direction of integrated stress quantities 



Figure 2.6 Force and moment reniltant on a plate element 



Figure 2.7 Geometry of sphencal shell 
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Figure 2.8 Geometry of conical shell 



Figure 2.9 Circula plate element 



CHAPITRE Ill 

TMSVERSE SHlEAR DEFORMATION IN FREE VIBRATION ANALYSIS OF 
A"JTSOT22Olf C OPEN C Y L m I U C S  SIELLS* 

M. HI Toorani and A. A. Lakis 

Département de Génie Mécanique, École Polytechnique de Montréal 
Case Postale 6079, Succ. Centre-ville, Montréal, Canada H3C 3A7 

3.1 Abstract 

This work presents a refined approach to the static ruid dynarnic analysis of thin 

Iaminated anisotropic. open and closed cylindrical shells by taking into account the shear 

deformation effect and rotatory inertia as well as the initial curvature. The method used is 

a combination of hybrid finite element analysis and the shear deformation theory of shells. 

The shell is subdivided into cylindricd finite elements and the displacement funftions are 

obtained using the shell equations based on orthogonal curvilinear coordinates. The set of 

matrices describing their relative contributions to equilibrium is determined by exact 

analytical integration. This theory gives zero strains for small rigid-body motions and 

therefore the displacement functions based on it satis& the convergence cnteria of the f ~ t e  

*: Soumis pour publication dans " Journal of CornputersBr Structures" 
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element method. This theory yields five coupled linear second-order differential equations 

with constant coefficients. They are solved in conjunction with five boundary conditions at 

each edge by a hybrid finite element method. Reasonabie agreement is found with other 

amries. 

KEY WORDS: Hybrid Finite Elernent, Cylindrieal Shell, Vibration, Shear 

Deformation, Anisotropie 

3.2 Introduction 

Shells are widely used as structural elements in modem construction engineering, 

aircraft construction, ship building, and rocket construction, and in the nuclear. aerospace, 

aeronautical. petroleum and petrochemical industries. In order to minimize the number of 

problems which may a i se  during industrial use, it has become very important that the static 

and dynarnic behavior of these structures, when subjected to different loads, be known and 

understood. 

Many classical shell theories were developed originally for thin elastic shells, in both 

linear and non-linear cases, and are based on the Love-Kirchhoff assumptions whic h are as 

follows: 

1) the shell is thin; 2) the displacements and rotation are small; 3) normals to the 

middle surface of shells before deformation remah normai after deformation, and 4) 
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transverse normal stress is negligible. These assumptions couid lead to gross erroa in the 

prediction of transverse deflections, natural fkequencies and buckiing load due to the neglect 

of transverse shear defomations. 

Surveys of various classical shell theories cm be found in the works of Bert (1 98O), 

Reissner (1952) and Naghdi (1956). Papers covenng the work of several researchers have 

been collected by Leissa (1 973) into one excellent book. Elegant representations of Love's 

shell theory can be derived strictly by definitions From surface theory without reference to 

3 - 0  relationships (Kraus 1967 & Ambartnimyan 1964). 

There is an inconsistency in Love's original theory since al1 strains do not vanish for 

any rigid body motion. This inconsistency was solved by Sanden (1 962) by redefining the 

force and moment resultants in such a way that the rigid body strain anomaly disappeared 

The thin shell assumption in Love's theory bas been replaced by the less restrictive 

requirement on the thinness of the shell presented by Flugge, Lure and Byme (Kraus 1967). 

Their theory also eliminated the ngid body strain anomaly. Koiter (1960) discussed the 

significance of the Love's approximations and, based on an order of magnitude study, stated 

that refinements cannot be consistently made unless transverse deformation effects are 

included. Other prominent related theones iuclude those of Novozhilov (1 959). 

The majority of the theories listed above have been applied to a shell so thin that al1 
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transverse deformation effects, transverse stresses and stnins, can be neglected. These 

transverse effects become more pronounced as the sheil becomes thicker relative to its in- 

plane dimensions, especially the transverse shear deformations (Koiter 1960). For this 

reason, classical theories cm be grossly in error in the prediction of transverse deflections, 

buckling loads or naturai frequencies. 

These erron are even higher for plates and shells made of advanced composite 

materiais like graphite-epoxy and boron-epoxy, where the ratio of elastic modulus to shear 

modulus is very large (e.g., of the order 25 to -10 instead of 7 6 for isotropic materials). The 

shear deformation effect plays a much more important role in reducing the effective stiffhess 

of anisotropic laminated composite plates and shells. 

Advanced composite materiais are increasingly being used in a variety of industries 

because they have a hi& ratio of strength and stiffness to weight. For this reason, structural 

elements made up of these materials are being extensiveiy used, e.g. in the aerospace, 

shipbuilding and petrochernicd industries, etc., where cornplex shell configuntions are 

cornmon structural elements and offer unique advantnges over those composed of isotropic 

materials. 

In general, these materials are fiber-reinforced laminates, both symmetric and an& 

syrnmetric, cross-ply and angle-ply, which conskt of numerous layen each with different 

fibre orientations. Aithough the total laminate may exhibit orthotropic-like properties, each 
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layer of the laminate is usually anisotropic. Therefore, in order to gain insight into the 

actual stress and strain fields, the individual properties of each layer must be taken into 

account. A number of theones for layered anisotropic shells exist in the literature. Many of 

these theories were developed for thin shells and are based on the Kirchhoff-Love 

hypothesis. 

The transverse shear de formation effect on non-linear vibration and post-buckling 

behaviour is significant, especially for the laminates with moderately significant thickness, 

a hi& circumferential wave nurnber and greater number of layers. Study of this effect shows 

that it can becorne quite rneaninghl for some geometncal panmeters. such as small radius 

to thickness or Iength to thickness ratios, as well as for shorter wvelengths or longer shells. 

In addition to the transverse shear deformation, the initiai curvature effect should be 

considered, as indicated by Voyiadjis and Shi (1991) for isotropic materials. The initial 

curvature effect is very important in making accurate predictions of stresses even in the 

central region. In the shell structure, the curvature of each parailel d a c e  through the 

thickness of the shell is different. To consider the initiai cuntature effect, the tem I +dR has 

to be included. The presence of curvature effectively increases the structural stifhess. 

Hilderbrand, Reissner and Thomas (1949) were the first to make significant 

contributions by dispensing with al1 approximations of Love and assuming a three-terni 

Taylor's series expansion for the displacement vector. Naghdi (1 957) employed Reissner's 
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( 1  950) mixed variational principle to develop a complete shell formulation similar to that of 

Hilderbrand et al. (1 949), retaining two and three tems in the Taylor's series expansions for 

tangential and transverse djsplacement cornponents, respectively. 

Dong and Tso (1 972) were perhaps the fmt to present a first order shear deformation 

theory, retaining one and two terms in the Taylor's senes for transverse and tangentid 

displacement components respectively . The theory includes the effects of transverse shear 

deformation through the shell thickness, and thence they construct a laminated orthotropic 

shell theory. The parabolic shear strain distribution has been used by Bhimaraddi (1 984) to 

cinalyze the linear vibrational behavior of isotropie cylindrical shells. The effects of 

transverse shear deformation and transverse isotropy as well as thermal expansion through 

the thickness of cylindrical shells were considered by GuIati and Essenberg (1 967), Dong 

and his colleagues( 1962), Hsu and Wang (1970). 

Reddy (1984) extended Sanders' (1959) theory for simply supported cross-ply 

laminated shells assuming five degrees of eeedom per node. The theory is based on a 

displacement tield in which the displacements of the middle surface are expanded as cubic 

Functions of the thickness coordinate, and the transverse displacement is assumed to be 

constant throughout the thickness. The Navier-type exact solutions for bending and naturd 

vibration are presented for cylindrical and spherical shells under simply supported boundary 

conditions. 
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A survey of the analyses of multilayered composite shells using Reissner's mixed 

variational principle was carried out by Grigolyuk and Kulikov(1988). Noor and Peten 

(1987) presented an anaiysis of the free vibration of laminated anisotropic shells of 

revolution and the sensitivity of their response to anisotropic material coefficients. Noor and 

Peters' analfical formulation is based on a f o m  of the Sanden-Budimsky shell theory, 

including the effects of both transverse shear deformation and the Iminated anisotropic 

material response. 

Ren (1989) presented an exact solution for simply supported laminated cross-ply 

circular cylindrical panels of infinite and finite length in the axial direction. Leissa et al. 

( 198 1) analysed the vibration of cantilevered cylindricd panels by using the Ritz method, 

with algebraic polynomial functions for the displacements. 

The static response of the axisymmetric problem of arbitrarily laminated, anisotropic 

cylindrical shells of finite length using threedimensional elasticity equations was made by 

Jing and Zeng (1 993). The closed cylinder is simply supported at both ends. The accuncy 

of a solution obtained by the finite element displacement formulation depends on whether 

the assumed functions accurately mode1 the deformation modes of the given structure. TO 

satisQ this criterion. Lakis and his group have developed a hybnd type of finite element, in 

which the displacement functions in the finite element method are derived fiom Sandes' 

( 1959) classical shell theory. 
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This method has been applied with satisfactory results to the dynamic linear and non- 

linear analysis of cylindncal shells, both closed and open ((Lakis and PaTdoussis (1971), 

(1 972) & Lakis (1 976) & Lakis and Doré (1 978) & Lakis and Laveau (199 1) & Lakis and 

Sinno (1 992), Selmane and Lakis (1 997), Toorani and Lakis ( 1999)), sphericd (Lakis et al. 

1989), conicd (Lakis et al. 1992), isotropic and anisotropic, uniform and axially non-uniform 

shells, both empty and liquid-filled. 

ï h e  main purpose of this work is to study the shear deformation, the rotatory inertia 

and the initial curvature effects on the static and dynamic behaviour of thin. anisotropic and 

non-uniform open and closed cylindncal shells. The flowing fluid effect on the natural 

frequencies of these shells will be the subject of a later work. 

3.3 Basic Theory and Method 

Many classicai sheil theories were developed for thin elastic shells and a two- 

dimensional (2-D) theory, surface definitions, is used to approximate three-dimensional 

phenornena These theories are based on the Love-Kirchhoff assumptions in which transverse 

shear strains and stresses are frequently excluded. In this particular case, we use general3-0 

strain-displacement relations expressed in arbitrary orthogonal curvilinear coordinates to 

define the strain displacement relations which c m  easily be incorporated three- 

dimensionall y. 



This work is based on the following assumptions: 

linear elastic behaviour of laminated anisotropic materials; 

the shell is thin and therefore we can assume that the normal stress is 

negligible compared with stress tangential to the shell surface, and also that 

the transverse normal strain E =O because the transverse fibres of the shell 
3 

are approximately inextensible; 

3-0 strain-displacement relations are expressed in arbitrary orthogonal 

curvilinear coordinates; 

the transverse shear defonnations, the rotatory inertia and the initial curvature 

form the bais  in the developrnent of the goveming equations; 

Consider the infinitesimal Iine segment MN, which is infinitesimally near another 

one, of length ds ernbedded in a differential volume element B before transformation. As a 

result of the deformation M and N are displaced to M* and N* respectively, by the 

displacement vector u (Figure 3.1). The change in length of the element MN c m  be 

expressed by: 
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where the quantity [(A ',? -(&)']is an invariant and y.. =y.. is a second-rank 
rl J i  

syrnrnetric tensor called Green's strain tensor and are the orthogonal curvilinear 

coordinates of the undeformed system. The physical stnins, Eij, are defmed as [Saada 19931: 

where, the hi are called scale factors and defmed by G =h?(no sum), and Cij is a 
9 1 

metriç tensor which links two coordinate systems. The y .  are given in the Appendix A-3. 
Y 

where the Ui are the coordinates of the displacement vectors, U. For rigid body motion, the 

elongations cli (no sum) and the shears rq(i+j)are identically zero, and therefore there are 

no theoretical limitations. 

The geometrical sc ale factor quantiti es (hi S) must be defined to use the stnin 

displacement relations for the shells. We now consider a shell geometry that can be described 

by orthogonal cuMlinear middle d a c e  coordinates, a, and a,, d a c e  nomal rand radii 

of curvature, RI and R? as shown in (Figure 3.2). For this geometry, the scale factor terms 

are defined below: 
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where E and G are called the first fundamental magnitudes and are related to the 

elements of the surface mehic [Kraus 1967 Page 91. 

We consider the following kinematic relations for the arbitrary shell described by 

orthogonal cwilinear coordinates. 

where the five degrees of freedom, Zr,. &. W. P, and P, are Functions of the in-plane 

coordinates a, and a, in which u, , zf, and w are, respectively, the axial. circurnferential 

and radial displacements, and /?a (a=l,2) are rotations of tangents to the reference surface 

oriented dong parameuic lines ai and cu respectively. 

These theories relax the Kirchhoff-Love hypothesis which requires nomals to the 

mid-plane to remab normal throughout deformation. I f  we substitute equations (3.4) into 

equations (3.2), we obtain the following strain-displacement relations for cylindrical shells: 



where: 

where P,; )pl; K,; rl and p4 are, respectively, the normal and in-plane shear strain, the 

change in the curvature and torsion of the reference surface, and the shear strain components. 

The interested reader is referred to [Toorani and Lakis 19991. 

3.3.2 Constitutive Relations 

The relationship between the stress and strain vectors (Hook's Iaw) is: 

(4 =Pl I 4  (3.7) 

The constitutive equation of the Rh lamina (for a lamina of fibre-reinforced 
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composite material) in the lamina reference axes (1,2,3) can be written as follows (Figure 

The [QI matrix denotes the elastic stiffness in the material coordinates (local axes). 

The Qu's elements are defined as follows: 

where E, ,G, and v, are, respectively, Young's moduli of elasticity in the principal 

directions, rigidity moduli which characterize the change of angle between the principal 



170 

directions, and the Poisson ratios which characterize the transverse contraction (expansion) 

under tension (compression) in the directions of the coordinate axes. 

n i e  stress-.min relations of the Kth lamina in the laminate coordinate axes (x,y,z 

global coordinates) can be written as (Figure 3 .Ja): 

where : 

The transformation matrix m is dehed by: 



m 2  n ' O 0  O  2mn 

n2 m z  O O  O -2nm 

O 0 1 0 0  O 

O O O m - n  O  

O O O n m  O 

-Iin Tn 0 0 0 (3'-"11, 

where: m icosa , nr sina 

The orientation angle a is measured counter-clockwise fiom the .Y-axis to the 1 -axis (Figure 

3.4b). The [ p l ' s  elements are defined as follows: 

3.4 Fundamental Equations for Open CylindricaI Shelis 

3.4.1 The Equations of Motion 

Whenever a new theory based on assumed displacements is developed the governing 

equilibrium equations should be denved by using one of the existing methods. We use the 

virtual displacements priociple. The circdar cylindilcal shell geometry and the differential 
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element studied, as well as the coordinates used, are shown in (Figure 3.5). The equations 

of motion are: 

where : 

where 1, , pfu and 5 are, respectively, the inertia moments, the density of the lamina 

material and the thickness coordinate. 

It can be seen that there are five independent boundûry conditions to be applied at 

given edges. The transverse shear deformations do not vanish in the present theory and, 

therefore, the /? i cannot be expressed in terrns of Uiand W. The transverse shear theory 

recommended here leads to no strains during rigid body motion. 
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3.4.2 The Stress Resultants and Stress Couples The stress resultants and stress 

couples are given by: 

The quantities (Nn, Ab, Nxs, Ab) are called the in-plane force resultants, (MW Mee, 

ILLU, Mk) are called the moment resuitants and (& Qee) denote the transverse force 

restiltants. We notice, in equations (3.17), that the symmetry of the stress tensor ( G o  =&) 

does not necessarily imply that N x t ~  and Nsr are equal or that Mxu and Mh are equai except 

in the case of a spherical shell, a flat plate or a thin shell of any shape. 

3.43 The Constiîutive Equations 

The stress resultants and stress couples that correspond to the remaining stress are 

&en by equations (3.1 7), so, using equations (3 .9 ,  (3.1 1)  and (3.17) we have: 



Note : Nx8 *IV& and r M ~ 3  ddtk  

where: 

The [AI and [Dl are the extensional and Bexural stiffness matrices, which relate the 

in-plane stress resultant (N) to the mid-surface strains and the stress couples (M) to the 

The [BI is the bending-stretching coupling matrix. It should be noted that a laminated 

structure c m  have the bending-siretchhg coupling even if al1 laminae are isotropie. Al1 of 

the B.. components can be equd to zero if and ody if the structure is exactly symmetrical 
4 

about its rniddle surface. 



We also have: 

where: 
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The cPi QI ..., and r, were given earlier in equation (3.6). The elasticity matnx p] 

given in equation (3.23) c m  be applied to shells consisting of a single or an arbitrary number 

of isotropie, quasi-isotropic and orthotropic layers. In the case of an arbitmy number of 

orthotropic layers, we assume that these layers fùnction concurrently without slippage. The 

[Pl rnatrix is given in the Appendix A-3. 

3.5 The Displacernent Funetions 

In the continuum. we express LI. Y .  W .  B, and P, of the rnean surface of the shell by : 

where rn is the longitudinal wave number. We substitute equations (3.23) into die 

equations of motion (3.1 9, and obtain the five linear differentiai operaton Li(i= 1 2,.. 3. 

These equations, in which the shear deformation effects and inertia tems as well as the initial 

cwatirre are included, are given in the Appendix A-3. 



We substitute equations (3.24) into the equations of motion (3.25), and obtain: 

For the non-trivial solution, the determinant of matrix [HI must vanish. This brings 

us to the following polynomial equation (charactenstic equation): 

wheref;(i=O to 10) are coefficients of the determinant of the equation of motion [Hl 

given in the Appendix A-3. Each root of this equation yields a solution to the equation of 

motion. The complete solution is obtained by the sum of ail ten independent solutions with 



the constants A, , B, , Cp , Dp and E, so that: 

The constants A, . BP , Cp,  D, and Ep are dependent; we can therefore express these 

constants as a function of C,: 

The values of adPp,yp and 6p can be obtained from the following relations: 

The elements of matrix [H] are given in the AppendYr A-3. The displacements 

U(s,@? Ver, 0) and IV&, 6) as well as b(x,0) and fkt(x,0) can then be expressed in conjunction 

with the ten C' constants only. We then have: 

H u  H,, HM 

H21 H, Hz4 H z  

HU 4 HU Hl, 

- H 5 1  HS2 HS HSS -  

, 

'a,' 

pp 
yp 

- , - 

I 

-4 
-4 
3 3  

,-HS3, 



where ( C )  is the tenth order vector of the constants' C,. 

~ e t t i n ~ l ~ ]  =PL] m, equation (3.3 l )  becornes: 

where the P L ]  and M matrices are given in the Appendix A-3. To determine the ten 

C, constants, it is necessary to fornulate ten boundary conditions for the fuiite elements, the 

axial. tangentid and radial displacements as well as the rotations will be specified for each 

node. The degree of  freedom at nodal line i can be dehed by the vector: 



The elements, which bave two nodal lines and ten degrees of freedorn. will have (i, 

B-4) and ( j ,  &=) as nodal displacements at the boundaries: 

Simply Supported : v = w = ( ~ ~ = N , = M ~ = 0 .  

where the [A] matrix tems are obtained from matrix [RI by successively setting B=0 

and O=q. Multiplying equation (3.35) by [A]-'  we obtain: 

where [A] is given in the Appendix A-3. Substituthg for equation (3 -33) we get: 



These equations determine the displacement fùnctions. 

3.6 Determination of Mass and Stiffness Matrices for an Element 

The strain vector may be found by using equations (3.5) and (3.37): 

Assume that [QQ]=[JJM, therefore equation (3.38) becomes: 

The maûices of  [Tl and [QQ] are given in Appendix A-3 . Combining equations (3.7) 

and (3.39), the stress-strain relations, c m  be written as: 



The mass rnatrix c m  be expressed as: 

where & =Rdr de. Or 

Using equation (3.3 7), equation (3.42), d e r  integration with respect to x and O, over 

the interval. becomes: 

[m] = [A -']*[SI [A -'] 

where: 



The stifhess matrix can be expressed as: 

after integration, we obtain: 

[k] = [A -'IT [G] [A -11 

The Go's general element is defined as: 
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The [G] and [SI matrices were obtained analytically by carrying out the necessary 

matrix operations and integration over x and 0 in equations (3.42) and (3.45). To do this it 

was found necessary to introduce several intermediate matrices, eventually obtaining 

expressions for the general terms kij and mij of F] and [ml, respectively. Because of the 

complexity of the manipulations, only the f ia i  results are given here. The A, Bi? Ci  , ..., Ji 

components are given by [JI matrix. 

3.7 Stiffness and Mnss Matrices for the Whole Shell in Vacuo 

As previously rnentioned, the complete shell is divided into finite elements each of 

which is a cylindrical panel segment (Figure 3.6b). The global mass fiVI and stiffness [KI 

matrices for the whole structure can be constnicted whenever the mass [ml and stifmess 

matrices [kl for each element are obtained. 

Each of these matrices ([hg& [KJ are of order j(N+ l ) J  where N is the total nurnber 

of finite elements (Figure 3.6a) and J is the number of consaints applied. 

The vecton (Fi), {Fj} represent the intemal forces acting at nodes iandj, respectively, 

and (6iJ are the correspondhg displacements. As the shell is contiouous, the sum of forces 

and moments at a particular node must be equal to extemal forces and moments applied at the 

node. Thus, 



Morever, the displacement must be continuous, and 

{s,} ={"+1) (3.49) 

These relationships dlow us to superimpose the mass and stifiess matrices of 

individual finite elements in order to obtain the global mass and stifhess matrices [w and 

[tYj 5ir the whole shell in vacuo. The [KI and matrices will be square matrices of order 

j(N+ I ) ,  whei: N is the number of finite elements. 

3.8 Free Vibration 

For fiee vibration, the equation of motion may be written in the form : 

[MI {A} + [a {A} =O- (3.50) 

where [A] =(S 1,82, ..., 6 N+I JT, N is the number of finite elements, [M] and [KI are 

real, symmetnc matrices of order j(N+l) xS(IV+i) ,  and {6 N - i  } is the displacement vector 

associated with the lower edge of the last b i t e  element. In the case where the shell has rigid 

edge constnints, the kinematic boundary conditions must be taken into account. Accordingly, 

[KI and [Ml are reduced to square matrices of order j(N+i)-J, where J is the number of the 

consnint equations imposed. 
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The solution of equation (3.50) now follows by standard matrk techniques, yielding 

the n a d  fiequencies, o, i=l, 2, ..., S(N+I)-Jand the corresponding eigenvectors. It m u t  

be stressed that the mass and stifniess matrices obtained are associated with a specific axial 

wave nurnber, m, as is the nodal displacement vector. Thus the analysis is carried out 

independently for each m 

3.9 Calcufatioas and Discussion 

As a numerical example, the nondimensional fundamental frequencies of vibration 

for sirnply-supported shell boundary conditions were computed for a four cross-ply layered 

(0°/900/900/00) cylindrical shell. Al1 layers are assumed to be of the same geometric and 

material parameters and the individual layer is assumed to be orthotropic. The following 

material properties are used: 

These results were compared with those of [Sciuva and Carrera 19921 to demonstnte 

the accuracy and range of applicability of the present theory. Also a cornpaison with Sanders' 

theory (Hybrid Finite Element "HFE" method ) [Selmane and Lakis 19971 is given to 

illustrate the effect of ûanmerse shear deformation. The resuits are shown in Table (3.1) for 

various length-to-radius ratios and for three radius-to-thickness ratios. 

The radius-to-thickness and the length-to-radius ratio effects are snidied through this 
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example table (3.1). Cornparison of the SDT (shear deformation theory) results with those of 

CST show that the shea. deformation effect is significant for a length-to-radius ratio smaller 

than 1.0 for al1 ratios of Wt. For example, the solution reached by applying classical theory 

diffea fkom that reached by SDT by 2% for U R = j O ;  7% for UR=! .O and from 18% to up to 

30% for UR c= 0.1. Al1 larninae which are used henceforth have the same properties as those 

of the fint example. 

In the following examples we study the effect of the axial mode (m) on the non- 

dimensional natural frequencies of cylindrical shells for different materials and geometry 

parameters. The g n p h  showing different longitudinal vibration modes as a function of the 

circumferentid wave number (n) are shown in figures (3.7-3. IO). The first two figures (3.7 

and 3.8) show results for four symmetric layer cross-ply (0°/900/900/00) larninated shells 

whose mechanicd properties are the same as those of the shell in the previous example, but 

their radius-to-thickness ratios are di fferent (R/t=50,100). 

These gnphs show reasonable agreement between the hybrid finite element (HFE) 

method [Selmane and Lakis 19971 and the present theory for m=l (about 4% difference). As 

can be seen, the influence of transverse shea deformation on the natural fkquencies increases 

with increasing m. One may observe that the gap between the two theories increases as the 

axial mode (m) is increased and the radius-to-thickness ratio is decreased to a fked value of 

m. 
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The mechanicd panmeten of the shell of the third example (figure 3.9) are listed in 

Table (3.2). The interface is taken as the reference surface. It should be noted that, in this 

example, the laminate structure is composed of one lamina of steel and another of orthotropic 

material, so that al1 of the Becomponents (the extension-bending, coupling, stiffness matrix) 

are not equal to zero, which means that the bending-stretching, coupling, and stifiess 

components are present. The results obtained are cornpared with those of existing classical 

shell theories. 

The last example of this senes (Figure 3.10) is made For isotropic material. In this 

gnph. the natural fiequencies are s h o w  for longitudinal modes (FI .3 and 5 ) .  It  c m  be seen 

that, as expected, the fiequencies are much closer for small values of m and n than for their 

large values in cornparison with results obtained fiom Sanders' theory (Selmane & Lakis 

[401) . 

The next two examples deal with the shear deformation effect on the naturai 

frequencies of isotropic cylindrical shells for various values of the radius-to-thickness ratio. 

In the first (Figure 3.1 1), the non-dimensional natural fiequencies are shown as a function of 

the circumferential wave nurnber (n)  for three different values of Rh and the fixed value of 

L/R and m. As can be seen, the transverse shear deformaiion causes the remarkable difference 

in the natural fiequencies obtained h m  two theories (present theory and Sanders' theory) for 

R/t < 50 and for values of n. 
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The variation of vibration parameter (a) of isotropic cylindncal shells with the radius- 

to-thickness ratio Wt is shown in (Figure 3.12) for two different values of axial mode number 

(m=2,3), fixed values of UR, and circumferential wave number (n). This gnph shows a 

greater difference between the results for Rh s 25 than for R/t > 25. 

The variation of non-dimensional tiequencies (Q) as a function of the length-to-radius 

ratio UR of isotropic and laminated anisotropic (having diflerent symmetric 0°/900/00, 

0°/900/900/00 and anti-syrnmetric 0°/900 lay-outs) are shown in (Figures 3.13-3.1 8). The effects 

of different values of Rh, Ut and axial mode numbers (m) are s h o w  in these graphs. 

Figure (3.13) is drawn for an isotropic shell showing the non-dimensional fiequency 

variations as a function of the UR ratio and for different longitudinal vibration modes 

( t ~ 1 , 3 , 5 ) .  Figure (3.14) shows the non-dimensional natural frequencies of a cross-ply 

cylindrical shell for the symmetric lamination scheme (Oo/9O0/O0), for two different ratios of 

LA. 

Figure (3.15) compares the results obtained nom two theones (present theory and 

Sanders' theory 1401) for a anti-symmetric cross-pl y cy lindrical shell for di fferent values of 

L/R and axial mode numbers (m=1,2.3,5). The same study (Figure 3.18) was made for a 

symmetric cross-ply (0°/900/900/00) cylindricd shell. In order to show cleariy the difference 

between the results obtained fiom the two theones even for m=l , Figure (3.15) is replotted 

separately for m=1 (Figure 3.16) and m=j (Figure 3. L 7). For the length-to-radius ratio L/R 
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< 1 0 and high numbers of (m), there are always relatively large differences between the non- 

dimensional fiequencies O btained fiom two di Rerent theones @ment theory and Sandea' 

theory [40]). 

Figure (3.19) shows the non-dimensional fundamental naturai fiequencies (m=l) of 

cross-ply cylindricd shells for the symmetric larnination scheme (0°/900/00), for various 

di fferent ratios of LIR, and for two vaiues of M (Ut= 1 O & Ut= 100). Through this example 

(figure 3.19), a thickness study was carried out to determine the effect of transverse shear 

deformation. The thickness of the shell t was varied while L and R were kept constant. The 

geornetries and material parameten as the same as in example I . The layen are of equal 

thickness. 

This figure (3.19) compares the results obtained from this theory with conesponding 

results given in references [Reddy 1984, Selmane and Lakis 1997, Sciuva and Carrera 19921. 

The present results are aiways lower than the conesponding tabulated results of references 

[Reddy 1984, Reddy and Liu 1985, Sciuva and Carrera 19921. However, some remarks 

should be made about these resu1ts.A~ can be seen, the fkquencies of symmetncdly 

laminated shells for UHO are less sensitive to R/L variations than those of thin shells 

UH 00. Classical shell theory over-predicts, while the SDT under- estimates the frequencies 

even for very thin shells. 

Figures (3.20-3 23) show the non-dimensional fkequencies of isotropie cy lincirical 
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shells vs. the thickness-to-radius ratio for three dif5erent radius-to-length ratios (h=mrrRn ) 

(m= 1, n= 1,2J ,4). The results obtained From this work are shown dong with those from other 

theories pe f .  3,441. There is good agreement between the results from this theory and those 

of reference [Bhimaraddi 19841. In general, classicd shell theory is seen to over-predict the 

n a d  frequencies when compared to the shear deformation theory. The error increases as 

values of n, Rh. and UR increase for a fixed value of m. 

The two last examples involve the determination of the natural frequencies of an open 

cylindrical shell. Figure (3.24) shows the effect of variation of the length-to-radius ratio on 

the fiequency pûnmeten of an anisotropic (0°/900~900/00) open cyiindrical shell having both 

its stnight and curved edges Freely simply supported. Figure (3.25) is drawn for an isotropic 

open cylindricd shell having its straight edges clamped and the curved edges freely simply 

supported. The data are provided with the figures. 

3.10 Conclusion 

A particular method has been developed to determine the natural fkquencies and the 

corresponding mode of vibrations for anisotropic, larninated and non-uniform, closed and 

open cylindncal shells by taking into account the shear deformation effect and rotatory inertia 

as well as the initiai curvature. The extensional and bending stifkess as well as the coupling 

of these two have been taken into account. 

The method is a combination of hybrid finite eIement anaiysis and shear deformation 
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theory of sheils. It combines the advantage of finite element analysis and the precision of 

formulation which the use of displacement functions derived from shell theory contributes. 

The displacement functions for this theory are denved and the mass and stiffiess matrices of 

each element are obtained by exact analytical integration. 

Results of classical, hybrid finite element and shear deformation shell theories have 

been compared with the results of the present solution to emphasise the accuncy of this 

theory. Numerical results are presented for different materials (isotropic and cross-ply 

larninated materials having a symrnetric and an anti-symmetric lay-up) and panmetric studies 

including circumferential and axial wave number (n ; m): mean radius-to-thickness ntio (Mt); 

length-to-mean-radius ntio (UR) and Ut; and the lamination scheme and number of layers 

are carried out through several numencal exarnples and results obtained are compared with 

those of othea, with good agreement, and with results obtained from the hybrid finite element 

method. 

In general, classical shell theory over-estimates frequencies compared to the shear 

deformation theory especiaily for I&ated anisotropic shells. It has becn suggested that the 

reason for the difference is a change in shear angle from layer to Iayer and the insensitivity 

of the CST to this change. 

The next step in this h e  of work will deal with liquid-filied open and closed non- 

d o m ,  anisotropic cylindricd shells by considention of the shear deformation, rotatory 

inertia and initiai curvature effects. 



3.11 Appendix A-3 

This appendix contains the equations of motion for the thin cy l indnd  anisotropic 
shell which is referred to in this work: 

1 du, du2 dh2 Ch, 
y12 =-(h - .hl- -u2- -U -) 

2 '*2 ay, ay, ' d y ,  



The equation of motion for a cylindricai shell (equation 3.25): 
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where: 

where 
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3-13 NOMENCLATURE 

A, , Bi , Ci , ..., Ji (i= 12, ..., 10) Eq. (3.47) : defmed by matrk components of [ J ] 

A, B, C, D, E : defined by Eq.(3.24) 

A, : extensional stifiess Eq.(3.20) 

4 :defmed by Eq.(33 1 )  

Bij : bending-extensionai coupling stimiess Eq.(3.20) 

Ba :defined by Eq.(3.21) 

f, : coefficients of the charactenstic equation (3.27) 

hi(i= 1,2) : Scale factors Eq43.2) 

Ii : inertia moment 

L : Iength of the shell 

Li : motion equations Eq.(3.25) 

m : axial mode number 

- m z  
m : defined bv - 

Mx, M, M,, M, : the moment resultants 

n : circderential wave number 

N, N,.N, N, : the in-plane force resultants 



Pij : terrns of elasticity matrïx( i= 1 ,... ,10 ; j= l ,..., 10) 

Q, : the elastic stifbess in the material coordinates Eq.(3. i O) 

- 
Q ij : the elastic s t f iess  in the global coordinates Eq43.11) 

Q, Qee : the transverse force resultants 

R : mean radius of the shell 

t : thickness of the shell 

u,, uz, w : the axial, circurnferential and radial displacement respectively 

U,, V,, W,, Px,, Pem : amplitudes of U, V, W. Px, and associated with m, axial mode 
number 

x : axial coordinate 

ai, pi, 7, and 8, defined by Eq.(3.29) 

pl and Pz : the rotations of tangents to the reference surface 

qi : cornplex roots of the characteristic Eq.(3.27) 

ci : defonnation vector components 

si : stress vector components 

8 : circderentiai coordinate 

O, : angle for the whole open shell 

o : natural fiequency 

R : nondimensional frequency 

p : density of the shell material 



Liste of Matrices 

[A] : defined by Eq.(3.35) 

[BI : defined by equation(3.39) 

(Cl: vector for arbitrary constants 

( c )  : the intemal forces acting at node i 

[G] : defmed by Eq.(3.47) 

N : defined by Eq.(3.26) 

[JI : defined by Eq. (3.39) 

[kl : local stifiess matrix Eq.(3.46) 

[KI : global stifiess ma& Eq.(3.50) 

[ml : local mass matrix Eq.(3.47) 

Fi] : global mass ma& Eq.(3.50) 

IN] : shape Function matrix(3.37) 

[QQ] : defined by Eq43.38) 

[RI : defined by Eq(3.42) 

[SI : defmed by Eq.(3.44) 

[Tl : transformation matrix Eq43.12) 

Fm] : defmed by Eq.(3.24) 

(ai ) : degrees of freedom at node i 

(h) : degrees of fhedom for total shell 



Table 3.1 

Non-dimensional fundamentai fkequencies (m=l) of simply-supported cylindrical shells with 

symmetric cross-ply 0°/900/900/00 R = w ,  R ,/,o/E, / t 

(*) The superscript values identify the circumferential wave numbers (n) 
1)HFE : Hybrid €mite element method [40], these results were obtained by authon 
2)CST : Classical shell theory (361 
3)SDT : Shear de formation theory[36] 
4)Pcesent Theory: ( ~ ~ b r i d  finite etement method + Shear Defonnation .Rotary Inertin and Initiai Curvature Effccts) 

TabIe 3-2 

Properties of the shell Iayers 

Layer 

1 

2 

Q 1 1 @si) 

6.70x106 

33.00% IO6 

Qn(Ps0 

2.11~10~ 

l1.00~ 106 

Qa @i) 

12.00~10~ 

33.O0x1O6 

Q&i) 

2.51~10~ 

13.20~ IO6 

Thickness 
(inc hes) 

0.20 

0.20 

Density 

0.5~ 

1 .Op 



F i w e  3.1 Segment MN deforms to M*N* through displacement vector Ü 



Fime 3.2 Surface and shetl coordinate system 



1 (Longitudinal) 

Figure 3.3 Unidirectional lamina and principal coordinate axes 



0th layer ---- 

(- 1)th layer -/-- -- 

-(N)th layer 
I 1 

l 

F i w e  3.4 A) Multidirectiond laminate with coordinate notation of individual plies 
B) A fibre reidorced lamina with global and material coordinate systems 



Fiwre 3 -5 A) Circular cy lindrical sheii geometry 
B) Positive directions of integrated stress quantities 



Figure 3.6 A) Finite element discretkation 
B) Nodal displacement at node i for the m'th element. N: Nurnber of elements 
C) Definition of variabIes 



Fi-gue 3.7 Frequency distribution (h, R,(p/F+) ' lt) for various auid wave number (m) for 
anisotropic (O0 /90° /90°/ 0") cylinder (Anisotropic Materials). 



Firure 3.8 Variation of nondimensional natural fiequencies (0) in conjunction 
with variation of (m) (Anisotropic Materiais), 
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Circumkrcnthl Wave Numba (n) 

Fimire 3.9 Variation of non-dimensional fiequencies C! in terms of the @ ) 
variations (Orthotropic Materials). 



Figure 3.10 Variation o f  non-dimensional naniraf fkquencies (Q) in terms of the 
circumferential and axial mode numbers (n p )  (Isotropie Materiais). 



Fiare 3.1 1 Variation of non-dimensional natural fiequencies $2) 
in terms of the (n) and RN variations (Isotropie Materials). 



Finure 3.12 Variation of non-dimensionai naturd frequencies (a) in 
conjunction with Wt and (m) Variations (Isotropic Materials). 



F i w e  3.13 Variation of non-dimensional nahiral frequencies (a) 
in terms of L/R and (m) variations (Isotropie Materiais). 



1 2 3 4 5 6 7 8 

Tht LAagm Radiia Ratio UR 

F i a r e  3.14 The effect of the iength to thickness ratio on the non-dimensionai frequencies $2 ) 
of three Iayered anisotropic cylindrical sheIls (Anisotropic MateriaIs). 



Figure 3.1 5 Viuiation of non-dimensional n a d  fiequencies (Cl) of 
anti-syrnrnetric cross-ply larninated cylindrical shells in conjunction 

with (L/R) and (m) variations (Anisotropic Materials). 
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Fimire 3.1 6 Variation of non-dimensional naturd fiequencies (O) of cross-piy 
cylindncd shells in terms of UR'S variations (Anisotropic Materials). 



Figure 3.17 Variation of non-dimensional natural fkequencies @)of cylindrical 
sheUs in terms of UR'S variations (Anisotropic Materials). 



Figure 3.18 Frequency distributions (Q) for various axial mode nurnbers of symmetrîc 
cross-ply laminated cylindncal shells (Anisotropic Materials). 



Figure 3.19 Variation of non-dimensional natural fkquencies (R) of cross-ply cylindrical 
shells in conjunction with (Mt) and (Ui) variations (Anisotropic Materials). 



Figure 3.20 Frequency distributions (W) for various axial mode 
numbers in tems of m7s variations (Isotropie Matenals). 



The ïbickness Radius Ratio r/R 
OT:ShearDa#iriaticnnieery 

Figure 3.21 Frequency distribution (52) for various axial mode 
ncmber in tenns of a ' s  variations flsotrooic Materials). 



Figure 3.22 Frequency distribution (Q) for various axial mode 
number in terms of un's  variations (Isotropie Materials). 
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Figure 3.23 Frequency distribution (Q) for various axid mode 
number in terms of Mt's variations (Isotropie Materials). 



F i w e  3.24 Variation of non-dimensional frequencies (R) of a cross-ply open 
cyiindrical shell for various number of U R  and m (Anisotropic Matenals). 



Fimre 3.25 Frequency distributions (Q) of an open cylindrical shell in 
conjunction tvith UR and m varîations (Isotropic Materials). 



SHEAR DEFORMATION IN DYNAMIC ANALYSIS OF ANISOTROPIC 

LAMINATED OPEN CYLINDFüCAI, SHlELLS PILLED WITH OR SUBJECTED 

TO A FLOM'ING FLUID* 

M. H. Toorani and A. A. Lakis 

Département de Génie Mécanique, École Polytechnique de Montréal 

Case Postale 6079, Succ. Centre-ville, Montréal, Canada H3C 3A7 

4. t Abstract 

The free vibration of anisotropic laminated composite, as well as isotropic open or 

closed, cylindrical shells subrnerged in and subjected simultaneously to an intemal and 

extemal incompressible, Uiviscid fiuid are discussed on the basis of a refined shell theory in 

which the effects of transverse shear defomations, rotatory inertia and initial curvature are 

taken into account. The shell may be uniform or non-uniform in the circumferential 

direction. In this approach, displacements and rotations ofthe shell and the dynamic pressure 

*: soumis pour publication d m  "Journal of Cornputer Methods in Applied Mechanics and Engineering" 



of the fluid are modeled by a hybrid finite element method. The displacement functions are 

dcrived h m  the ccxct solution of rcfincd shcll cquatiofis bascd on ofilogonal cmilincar 

coordinates. The velocity potential and Bernoulli's equation have been used to descnbe an 

expression for fluid pressure which yields three forces (inertial, centrifuga1 and Coriolis) of 

the moving fluid. The mas .  stimiess and darnping matrices due to the fluid effect can be 

obtained by an analyticd integntion of the fluid pressure over the liquid element. Extensive 

results are given of computations carried out to illustrate the theory and dynarnic behaviour 

of open and closed cylindricd shells partially or completely filled with liquid, as well as 

subjected to a flowing fluid. A satisfactory agreement is seen between the numerical results 

predicted by the present theory and the results ofexisting available other theones. 

KEY WORDS: Vibration, Shear Deformation, Open Cylindnd Shells, Flowing 

Fluid, Anisotropic 

4.2 Introduction 

The effect of the surroundhg medium (air, liquid, etc.) upon the vibration of plates 

and shells is of primary interest to scientists and engineers working in aerospace, marine and 

reactor technology. Fluid-filled shells have been extensively used in various sectors of the 

engineering industry, e.g. aerospace, petrochemical, maritime technology, civil engineering, 
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nuclear power reactors, power generation, etc. The presence of fluid has a significant and 

complex influence on the dynamic structurai behaviour. Knowledge of the dynamic 

behaviour of fluid-shell interaction is, therefore, very important in the design of pressure 

vessels, fuel tanks, etc., as well as in seismic response studies of liquid storage tanks. 

The hydrodynamic coupling between fluid and structure cm be evaluated as the sum 

of the hydrodynamic pressure distribution and the force exerted by free surface motion. 

These effects are s h o w  in a hydrodynamic mass matrix which can then be added to the shell 

mass matnx. The hydrodynamic mass is frequency-dependent except when the fluid is 

assumed to be incompressible. In the case of a flowing fluid, the fluid pressure expression 

is a h c t i o n  of the nodal displacements of the elements and three forces (inertial, centrifuga1 

and Coriolis) of the moving Buid in which the fint two are added, respectiveiy, to the mass 

and stifiess matrices. 

The effective mass can be a function of the mode shape being studied, the 

geometrical and physicai parameters of shell and fluid. The speed of sound in the fluid and 

the frequency of vibration may influence the added mass matrix when the liquid is taken as 

compressible. 

Cylindrical shells are a comrnon shell configuration and have been used extensively 

as pressure vessels, piping, container and structural members in diverse engineering 

applications, such as the aerospace, nuclear and maritime industries. For this reason, the 
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dynamic characteristics of these fluid-loaded shells have ken  extensively studied and, over 

the Iast two decades, have becorne an active area of engineering research. 

-4 ncmkr  of heories for the smdy of Buid-str~cture intcmction x e  to ?x found in the 

literature. The fiee vibration of a fluid-filled circular cylindrical shell made of isotropic 

materials and filled with fluid has been well studied on the bais of classical shell theory. In 

modem engineering design, shell elements made up of advanced composite materials are 

being used extensively because of their advantageous stifiess-to-weight and strength-to- 

weight ratios. 

An excellent literature review of the subject is outlined in [1,2]. The free and forced 

vibrations of cylinders submerged in an acoustic medium have been andyzed by Junger[3]. 

The problem was subsequently developed by Bleich and Baron[4] and Greenspon [SI. In 

these investigations, where isotropic shells were concerned, the effects of fluid media on the 

motion of cylindricûl shells have been descnbed. A niniey of the hydro-dynamic response 

of fluid-coupled coaxial cylinders under small displacements was made by Brown[l]. 

Compressible fluids such as gases were not considered in his work. 

ï h e  fiee vibration of simply-çupported cylindrical shells partially filled with or 

submerged in a compressible and non-viscous fluid has been analyzed by Gonçlaves and 

Batista [6],  on the basis of Sanden' shell theory. They used the Rayleigh-Ritz method to 

obtain an approximate solution to the problem. The eEects of variable Buid height and shell 
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geomebic parameters on the natural fiequencies were investigated. 

The vibration behaviour of cylindrical shells, made of isotropie and transversely 

isotmpic matcrials, fillcd patùally or complctely with an incompressible, am-viscous fluid 

was shidied by Iain [7]. The fiee vibration behaviour of cylindrical storage tanks of variable 

thickness and partially filled with liquid has been investigated by Han and Liu [8] on the 

basis of Flügge's thin shell theory. The transfer matrix approach is suggested when solving 

the problem of variable wall thicknesses. 

A combination of the hydrodynamic mas method and the hybrid finite element 

formulation was used by Brennemean and Yang [9] to solve coupled fluid-structure dynamic 

problems. Andysis of the breathing vibrations of a partidly filled cylindricai tank was 

cmied out by Wen-Hw-Chu [IO] using Gderkin's technique. The fiee axisyrnmetric 

vibrations of cylindncal shells under hydrodynamic pressure due to extemal and intemal 

fluids were midied by Endo and Tosaka[ll] on the basis of Flügge's theory. 

The effects of the fluid medium on the vibrations of cylindrical shells have been 

studied by Ramachandm [12], Crouzet-Pascal and Gamet [13], Au-Yang [14] and 

Païdoussis and Li [2]. The effects of unsteady fluid forces and steady viscous forces on the 

stability of a simply-supported cylindricd sheil coaxially located in a rigid cylindrical pipe 

and subjected to axial flow have been shidied by A.El Chebair and Mirsa[lS], usiog a 

modified version of Flügge's shell theory and Galerkin's method to solve the equations of 
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motion. A summary of several proposed methods of calculating the natural fiequencies of 

plates and shells with various boundary conditions is given in [16]. Some numencal methods 

such as the fuiite element approach and modal reduction procedures were presented by 

Morand and Ohayon [17] for the linear vibration analysis of elastic structures coupled to 

intemal fluids. 

Lakis and Païdoussis [18] used numencal methods to investigate thin circular 

cylindrical shells partially or completely filled with stationary liquid. An analytical method 

for studying the non-lineu vibration of anisotropic cylindrical shells containing a flowing 

fluid was presented by Lakis and Laveau 1191. The same method was applied to the Free 

vibration analysis of fluid-filled anisotropic conical shells and the determination of the free 

vibration chruacte&ics of axisyrnmetric and bearn-like cylindrical shells partially filled 

with liquid [20,21]. 

Selmane and Lakis [22-251 also presented this method in the analysis of the fiee 

vibration of anisotropic open cylindrical shells subjected to a flowing fluid. It should be 

pointed out that in the above-mentioned references a hybrid finite element, a combination 

of the finite element method and classical shell theory, has been developed by Lakis et al. 

[18-3 51 for use in numencd anatysis. 

This hybrid approach has been applied with satisfactory results to both the dynamic 

linear and non-linear analysis of cylindrical (Lakis &Païdoussis[18, 26, 271, Lakis [28], 
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Lakis and Sinno [20], Lakis and Laveau [ 191, Lakis, Sami & Rousslet 1291, Selmane & Lakis 

[22-25]), conical (Lakis et al [2 11) and spherical (Lakis et al. [30]) isotropic and anisotmpic 

wform and axially non-uniform shells both empty and filled with liquid. 

The free vibration of an isotropic, simply-supported circular cylindrical shell, with 

the iLVis placed horizontally and partially filled with liquid was studied by Amabili [36] 

following classical shell theory. The equations used were taken from DomeIl's bending shell 

theory and Ritz method was used to obtain the natural frequencies and mode shapes of' 

structures. 

Nurnerous papen have been written on the fiee vibration of fluid-filled cylindrical 

shells. on the basis of various shell theories. However, no work based on refined shell theory 

appears to have been done on the problem of anisotropic, laminated. open, cylindrical shells, 

partially or completely filled with or subjected to a flowing fluid, in which the effects of 

transverse shear defomations, rotatory inertia and initial curvature are retained. 

The primary purpose of this work is to develop an efficient method for the study of 

the free vibration characteristics of open, thin, non-uniform and anisotropic latninated 

cylindncal shells containing flowing fluid. The structure may be uniforrn or non-uniform in 

the circumferential direction. Since the fluid is assumed to be inviscid, incompressible and 

irrotational, the v e l o c i ~  potential function is used to describe the fluid flow. 
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The method is a hybrid of the finite element method, refined shell theory (in which 

transverse shear deformation, rotatory inertia and initial curvature effects are taken into 

account) and fluid dynamic theory. This method is more accurate than the more usual finite 

element methods based on polynomiai displacement functions because the displacement 

functions are denved from refined theoretical equations of cylindrical shells [34,35]. 

In this approach, the mass and stiffiess matrices of individual finite elements are 

derived by exact andytical integration. The mass, stifiess and damping matrices for a fluid 

element are obtained by analytical integration for the pressure distribution dong the element. 

Hence, the influence of the variable fluid height and the boundary conditions on the vibration 

response of fluid-filled cylindricai shells can be studied. 

4.3 Stmctural Formulation 

4.3.1 Basic equations of the shell 

Consider an anisotropic, laminated, composite, circular, cylindrical shell filied with 

or subjected to a flowing tluid (Figure 4.1). A coordinate system is adopted with axes (x, 0, 

R) in the axial, circumferential and radial directions. The displacements are (u, v, IV) 

respectively, and the two rotations are (B, and B,) tangent to the reference surface. L, R and 

t denote Iength, mean radius and thickness of shell, respectively. Based on Green's exact 

strain-displacement relations expressed in arbitrary orthogonal curvîiinear coordinates, the 

strain-displacement relations for the sheil are given by 1351: 



where P,; y,; K,; r, and y", are, respectively, the normal and in-plane shearing 

stnin. change in the cwature and torsion of the reference surface and the shearing strain 

components. The constitutive relations for anisotropic laminated cylindricd shells can be 

written as [3 51 : 

Where {E] and [Plare, respectively, the deformation vector defined by equation (4.1) 

and the anisotropic rnatrix of elasticity. Pis elements are given in Appendix A-4 (see 

Reference [35]). 
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The equations of motion for thin cylindrical shells in terms of axial, tangentid and 

radiai displacements (wv, w) of the mean surface of the shell, rotations of tangents of the 

reference surface (8, and Po) and in terms of P, 's elements are given by: 

where L, ( i=1 .LS) are five linear differentid operaton, the form of which is fùlly 

explained in Appendix B-4. 

The free vibration of an anisotropic, laminated. composite, circuiar. cylindncal shell 

is studied using the hybrid finite element approach, in which a combination of the shear 

deformation theory of shells and the finite element method is used to derive the displacement 

functions. nie symmetric and anti-symmeûic modes in the circumferential direction are 

coupled with each other due to the presence of in-plane extensional-shear, extensiond- 

bending, bending-twisting, bending-shearing and twisting-stretching coupling in laminated 

composite shells. 

The finite element used is shown in Figure (4.2). It is a cylindrical panel segment 

defined by nodal Iines, i and j. There are five depes  of fieedom at each nodal line, axial, 



244 

ndid and circimiferential displacements (u,v,w) and two rotations (8, and P,). For motion 

associated with the axial wave numkr, we may write: 

where: 

These definitions yield more precise results than those of displacement functions 

defined in polynomial forms. Substituting definitions (4.4) into equations ofmotion (4.3) and 

o btaining the non-trivial solution, the determinant of their coefficients rnust vanish, leading 

to a tenth order characteristic equation in terms of q [35]. 

where f; (i =O to 10) are the coefficients of the determinant of five simultaneous 

algebraic equations in A, B. C, D and E. Each root, qi. yields a solution to equation (4.3), the 

cornpiete solution being obtained by the SURI of al1 ten and involving the constants A, B, C. 

Di and E, (i=1,2 ,..., 10). 



As A,, B,, C,, Di and Ei are not independent, we can write: 

A, =a, C, ,  Bi =/?, Ci, Q=yiC, and Et=& Cl. (4-6) 

The displacements U(x, O), V(x, O) and W(k. 0) as well as B,& 0) and P&, 68) cm then 

be expressed in conjunction with the ten C, constants only, which cm be determined using 

ten boundary conditions. 

where [RI is a (5x 1 O) matrix given in Appendix B-4, and {C) is a vector of constants 

which are linear combinations of the Cl by using equation (4.6). The modal displacement 

vector is now expressed as follows: 

Each element has two nodal lines and ten degrees of fkedom and O has a definite 

vaiue (+O. at the r*s nodal Line ) and (@=O at the j 's nodal Iine), so the element 

displacements at the boundaries can be given by the following relation: 



where the [A] matrix elements are obtained from those of [RI maîrix and given in 

Appendix B-4. Substituting this definition into equation ( 43 ,  we get: 

These equations determine the displacement functions. 

43.2 Determination of Mass and Stiffness Matrices for Empty Finite Elements 

The strain vector ( E )  cm now be expressed in ternis of 6, and G, using equations (4.1) and 

(4.1 O)- 

where [QQ] is a ( 1 0 ~  10) matrix given in Appendix B 4 .  The comsponding stress- 

strain relationships cm be written as: 



The P,'s elements describe the shell anisotropy which depends on the mechanical 

properties of the material of the structure. Some coupling, such as in-plane extensional-shear, 

extensionai-bending and bending-twisting, can be present in anisotropic Iaminated composite 

shells due to the asymmetry of the scheme lamination or fiber orientation. Some of the P,'s 

elements can, therefore. be nul1 or not-nuil. The mass and stithess matrices for one finite 

element can be expressed as: 

where d4 =Rdr  dB and p, is the density of the shell, [P l  the elasticity matrix and the 

matrices [Nl and [BI are defined in equation (4.10,4.11), respectively. Substituting hem into 

(4.13) and integrating them andytically with respect to x and O, we obtain the matrices [mJ 

and FJ- The global matrices [MJ and [KJ can be obtained, by superimposing respectively 

the mass and stiffness matrices of each individual finite element and applying the boundary 

conditions. Neither intermediate steps nor the final results are given here due to the 
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complexity of the work involved. The interested reader is referred to reference [35] for more 

detail. 

4.4 Dynnmic Fluid-Structure Intenetion Behwiorir 

4.4.1 Assumptioas 

It is assumed that the shell is  subjected only to potential flow, inducing inertid, 

Coriolis and centrifuga1 forces which contribute to the structural vibration. These forces are 

coupled with the elastic deformation of the shell. The mathematical mode1 developed here 

is brised on the following hypotheses: 

r? the fluid flow is potential; 

ii) the tluid is incompressible which moves irrotationally as a consequence of 

the shell's vibration; 

iii) the fluid is inviscid so there is no shear and the fluid pressure on the wall is 

purely nomai to the surface; 

iv) the deformations are smail, allowing the use of linear theory; 

V) the fluid mean veiocity distribution is assumed to be constant across a shell 

section. 



4.4.2 Equations of Motion 

in general, the free vibration of a fluid-filled shell involves hydrodynarnic and 

sloshing effkcts. The h y h d j n ~ c  phenoncna an: the natünl vibrations dominatcd by the 

shell vibration, while the sloshing phenornena are the natunl vibrations dorninated by the 

fluid surface motion. The last effect is not considered in this paper. The physical equations 

of motion of each structural and fluid component together provide a set of equations for the 

dynamic equations of motion for fluid-structure interaction. 

The motion equation of a shell intencting with a fluid c m  be represented as: 

where subscripts 's ' and 'f' refer to the shell in van«> and fluid filled, respectively. 

[MJ and [KJ are, respectively, the mass and stimiess matrices of the shell in varno. They 

have been developed in [35]. 

The [Md, [Cd and [KJ represent the inertial, Coriolis and centrihigal forces of the 

fluid flow, (6) is the displacement vector and {FI represents the extemal forces. M e r  

applying the boundary conditions. these matrices are reduced to square matrices of order 

i(n+l)-J, where N and J are, respectively, the number of elements and the restrictions 



imposed. 

4.43 Detemination of the Mass, Stinness and Damping Matrices of the Moving 

Fluid 

The velocity hction, y, for ided, Fnctionless flow in the linear fom mut  satisfy 

the following equation: 

where Cf is the speed ofsound in the fluid, t , the time variable and V? is the Laplace 

opentor in cylindrical coordinates. For the steady-state case and with the assumptions of 

section 3.1, an incompressible non-viscous fluid, equation (4.15) becomes Laplace's 

equation which is expressed in the cylindncal coordinate system by: 

where "tp" is the potential hct ion.  The components of the flow velocity are given 

b y: 



where Ur is the velocity of the fluid through the shell section V'. , V, and V, are respectively, 

the axial, tangentid and radial components of the fluid velocity. Using Bernoulli's equation 

for steady flow: 

Substituting for Y' , the dynamic pressure "P " can be found as: 

in which the subscript 'i ' and 'e ' represent 'intemal' or 'externul' locations of the 

structure. A full definition of the fiow requires that a condition be applied to the shell-fluid 

interface. The irnpermeability condition of the shell surface requires that the radial velocity 
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of the fluid, on the shell surface, should match the instantaneous rate of change of the shell 

displacement in the radial direction. This condition implies a permanent contact between the 

shell d a c e  and the peripheral fluid layer which should be: 

The di Eerential equation c m  be solved using the sepantion of variables rnethod. The 

radial displacement. from shell theory, is defined as: 

1 O mn 
W(x,O,f) = C C .exp[q/B +iot] sin-x 

j : i  J L 

where qj is the$ root of the characteristic equation and o is the natural angular 

frequency. The velocity potential is assumed to be: 

The function Sj(x,O, t) can be explicitly detennined d e r  applying the impermeability 

condition (21) and using the radial displacement relation given by equation (4.22). 

Substituthg the explicit term of Sj(x,O,t) into equation (423), we obtain: 



where ( )' , (1' and ( ) represent a ()/a, Cl ( )/& and a ( )/& respectively. Introducing 

this explicit term (4.24) and equation (4.22) into equation (4.15), we obtain Bessel's 

homogeneous differential equation. 

d *R (r)  dR .(r) ' J r-- +r- +R(r ) [ i2mfr2- ( iq , ) ' ]=~ .  
dr ' dr J 

where " i " is the complex nurnber. i' =- 1 ,  and q , is the complex 

characteristic equation of the empty shell and mk is defined as below: 

solution of the 

where m, L, a> and U, are the axial mode number, the length of shell, the natural 

angular Erequency and the 80w velocity, respectively. For shells in a liquid medium, Pmk2 

is usually negative, and the general solution of equation (4.26) is given by: 
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where JJ, and Yn, are Bessel functions of the fmt and second kind, respectively. For 

a shell filled with a liquid (intemal flow), the constant "B" has to be set equal to zero since 

the Y,q, is singular at FU. For a shell submerged in a liquid (extemal flow), the constant "A" 

is equal to zero. We have to take the complete solution when the shell is simultaneously 

subjected to intemal and extemal flow. 

An expression for dynamic pressure as a function of the displacement W, and the 

function R,(r), taking into account only the linex terms, is obtained by substituting equation 

(4.24) into equations (4.19,4.20): 

where "ti" represents "internai" or "extemal" fluid. By definition. the first order 

denvation of the Bessel hc t ion  of the first kind is defined as: 

Wiîh the same definition for the Bessel fünction of the second kind, and substituting 

into the dynamic pressure equation (4.28), we obtain the pressure equation on the structure 

wall as follows: 



where C's7' refers to the first ("J") or second ("Y") kind of Bessel function 

for the internai or extemal flow, respectively, and 5 is defmed as below: 

and 

where v, (j= l ,..., 10) are the roots of the characteristic equation of the empty shell, Jfi 

and Yj, are respectiveiy the Bessel fûnctions of the first and second kind of order iq,, mm, is 

defined by equation (4.26) and R is the mean radius of the shell. 

When we substitute the nodal interpolation fünctions of the ernpty shell(1 O), which 

can be used for the fluid column, into the dynamic pressure expression in (30) and carry out 
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the necessary matrku operations by our chosen method, the mass, damping and stifkess 

matrices for the fluid are obtained by integrating the following integnl with respect to x and 

8: 

Finally, the inertial. Coriolis and centrifuga1 forces due to a fiowing fluid, neglecting 

the viscous terni, c m  be wi-itten as : 

The matrix [A] is defined by equation (4.9) and the elements of [S'and [CJ matrices 

are given by: 



257 

Where i j  =1, ..., 10 , pf is the density of the fluid and subscripts "7 and "en mean, 

respectively, intemal and extemal flow. Ll, is the velocity of the fluid, 2, is given in 

equations (4.3 1 )  and (4.32), and J, is defined by the following equations: 

where q is the mot of the chmcteristic equation of an empty shell and 8 is the angle 

of each element. 

3.5 Analysis of Free Vibrations 

The global matrices [Ml and [KI of each structure and fluid c o l m  are obtained by 

supenmposing the mass and stiffhess matrices for each individual element. Mer applying 

the boundary conditions, these matrices are reduced to square matrices of order NDF*(N+I)- 

Jwhere NDF, Nand Jare, respectively, the number of degrees of  fkeedom at each nodal line, 

nodal lines and restriction imposed. 

Finally, the equations of motion of a shell interacting with a fluid are: 
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Where [MJ and [KJ are, respectively, the global mass and stiffiess matrices for the 

empty shell, [Md and [K' are the global mass and stiff3ess matrices for the fluid and [Cd 

is the Coriolis force of the Buid. Equation (4.37) is thus solved to obtain 5*(7V+I)-J 

eigenvalues and eigenvectors. The matrices [KJ and [Cd are not involved in computations 

in the non-flowing fluid (U,=O.O) case. 

4.6 Numerical Results and Discussion 

Some calculations are made in this section in applying the proposed method for the 

case of laminated anisotropic and isotropie open and closed cylindrical shells, partially or 

completely filled with or subjected to a flowing fluid. The pararnetric values such as Rit, UR, 

fluid depth ratio, as well as the circumferential and axial wave number, for al1 examples, are 

provided with the figures. 

It should be noted that the results referred to pef.23 Selmane& Lakis], except Figure 

(4.20), have been obtained by the present authors (Toorani & Lakis) and are based on 

Sanders' theory. Al1 numerical results presented for anisotropic laminated (syrnrnetric and 

anti-symmetric cross-ply and anti-symmetric angle-ply lay-outs) materials for both open and 

closed cylindncal shells are camied out for the following material properties: 



The two first examples (Figure 4.3 and 4.4) are carried out for a simply-supported, 

irotrcpic, tliq, circular, cy l ind rd  shell cornpletely fiIled *cith liquid (intemd). The 

Eiequency parameter (fi) is s h o w  in figures (4.3 and 4.4) for different values of R/r and UR 

and is compared with results provided by Lakis and Sinno [Ref.20]. 

The effect of the axial mode (m) on the nondimensional n a d  frequencies of a 

tluid-filled cylindricai shell for different values of LM and two fixed values of W I  is shown 

in figures (4.5 and 4.6). The difference between the results obtained by the two theories 

increases as the axial mode (m) is increased and the radius-to-thickness ratio is decreased for 

a fixed value of UR, 

The radius-to-thickness and the Iength-to-radius ntio effects are studied by means 

of the next example (Figure 4.7) for two different values of circuniferentid wave number. 

Cornparison of results of the present theory with those of Sanders' theory Fef.231 show that 

the shear deformation effect is significant and increases as the length-to-radius ntio 

decreased for al1 ratios of Rh, 

Figure (4.8) is drawn for an isotropie shell showing different longitudinal vibration 

modes (m) as a function of the circumferential wave number (n). As c m  be seen, the 

influence of transverse shear defonnation on the naturd frequencies is more pronounced with 

increasing (m). A similar study is camied out (Figure 4.9) for a symmetric cross-ply 



laminated cylindrical shell hawig four laminae (0°/900/900/00). 

The variation of the non-dimensional frequency panmeter (i2) as a function of the 

length-to-radius ratio LM of isotropie and laminated aniiotropic shellc (having symaetnc 

/0°/900/900/00 lay-outs) are dnwn in Figures (4.1 0 and 4.1 1 ) for di fferent values of Ut and 

longitudinal wave number (m). For low ratio of U R  and high numben of (m), there are 

always relativeiy large differences between the non-dimensional fiequencies obtained from 

two different theories (present theory and Sanden' theory [23]).This difference diminished 

as Ut increases. 

The next example (Figures 4.12) has been made for anti-symmetric cross-ply. 

laminated, closed, cylindrical shells in order to study the fluid depth effect on the frequency 

parameter (a) as a variation of the circumferentiai wave number (n). The difference between 

the present theory and Sanders' shell theory [23] is more pronounced in the case of 

anisotropic material, as expected, due to the shear de formation effect. 

The fluid depth effect is studied for open cylindrical shells through Figures (4.13 

and 4.14). The fint is carried out for an anisotropic (anti-symmetric angle-ply) open 

cylindncal shell h a h g  its straight edges free, and the c w e d  edges fiee and simply- 

supported. The effect of nuid height on the naturai frequency variation is studied as a 

variation of the length-to-radius ratio and the axial mode number. 

Figure (4.14) shows red t s  obtained for an open cylindrical shell having its straight 
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edges clamped and the curved edges freely simply-supported. As an illustration, it is shown 

here that the lowest natural fiequency of bending vibration of Buid-filled shells is highly 

dependent on the fluid level especially for a low ratio of UR. 

It c m  be observed, fiom these figures (4.13 and 4. Pl), that the generai shapes of the 

natural fiequency curves of the partially fluid-Blled shells are sirnilar to those of the 

corresponding empty shells. The natural frequencies of the partidly fluid-filled shells are 

lower than those of the corresponding empty shells. This is due to the fact that the fluid 

increases the total mass of the shell. 

Numerical results are presented for partially fluid-filled, anisotropic laminated 

(Figure 4.15) and isotropie (Figure 4.16) closed, circular cylindrical shells. The Ruid 

contained in the shells is taken as water. The effect of transverse shear deforrnation on the 

natural fiequencies has been studied by comparing the results obtained fiom the present 

theory with those of Sanders' theory(Ref.[23] SelmaneatLakis). In this study, the focus is 

on the effect of fluid height on the natural frequencies of cylindrical shells. 

The liquid depth, b, was varied such that the hctional filling , b/d, took the values 

Md (=O, 0.25, 0.5,0.75 and 1). For each b/d, the natural fiequencies were measured for a 

number of values of axial and circumferential wave number (m, n). As c m  be seen, the 

n a W  frequencies decrease considerably with increasing b/d in the range O < bld <O25 (for 

m=l, n=2) and O c b/d < O S  (for m=l , n=l) approximately, the decrease being only slight 

for higher fiactional filling. We concluded that the fkquency parameter (R) depends both 
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on physical (m. n) and on geornetrical (UR, Rh, b/4 parameters as a resuit of the lateral 

pressure exerted by the liquid on the structure. 

The next exûmplt (Figiuc 4.1?) shows the fïcqucnq variation as a function of thc 

circuderentiai wave nurnber (n) for three different cases, shell in air, fluid-filled shell and 

shell imrnersed in fluid. The results obtained are cornpared with those of Gonçalves and 

Batista Pef.61. The two theories give nearly identical results for the fluid-filled shell and the 

shell imrnersed in liquid. 

The influence of the tlow velocity UXi (for intemal flow) on the fiequency parameter 

of isotropic and misotropic closed cylindrical shells is studied through Figures (4.18-4.2 1) 

for different values of Rh, UR as well as axial and circderential wave nurnber (m.@. The 

results obtained have been compared with those from work based on »vo other theories 

pef.23 Sanden' theory] and [Ref.38 Galerkin rnethod]. 

The non-dimensional parameters of velocity and fiequency used in this section are 

U=u/u, and G!=o/o,, where: 

The u and o are respectively the velocity of the flowing fluid and the natural 

kquency. It is observed that the Frequencies associated with al1 modes decrease as the fluid 

velocity increases fiom zero. The hquency parameters remain reai (the system being 
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conservative) until they vanish at high velocities, indicating the existence of a buckiing-type 

instability. In this case, the fiequencies become purely imaginary. 

Figure - (4.18) shows the results obtained for a cross-ply larninated shell dong with 

those f?om Sandea' theory, for different values of axial mode number. In the next exarnple 

(Figure 4.19). the results obtained h m  the present theory have been compared with those 

fiom two other theorirs, a hybrid finite element method based on Sanders' theory [23] and 

the two-term Galerkin method [38]. As the Row velocity increases, the above two methods 

generate significuitly different results from those of the present refi ned hybrid finite element 

approach. This might be attnbuted to: 

r? not considering the influence of transverse shear deformation and initial 

curvature in their modeling, and 

ii) limitations associated with the use of too few ternis in the application of 

Galerkin's rnethod. 

The fmt  mode fiequency becomes negative imaginary at Uz2.96, indicating static 

divergence instability in the first axial mode (m=l), and reappears and codesces at W3.36 

with that of the second axial mode (m=2), to produce coupled mode Butter. Figures (4.20 

and 4.21) show divergence instability phenomena for an isotropie simply-supported closed 

cylindrical shell dong with results obtained from [Ref.23]. 

The non-dimensional frequency parameter i l=p,~o&(Q~~-Q,~/Q~ I)*'5i~ plotted (Figure 
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4.22) vs. the thickness-to-radius ratio (t/R), for various values of (q=mR/L) and is compared 

with results provided by Jain [ R e t i ] .  The transversely isotropic material (zinc) with the 

following elastic constants is considered in this example: 

In Figure (4.13), the frequency pararneter ratio is sketched as a f i c t i on  of the fluid 

depth ratio b/d. In this example. R, and R, are the natural fiequency parameters 

correspondhg to a fluid-tluid and ernpty shell, respectively. The curves are drawn for hvo 

mode nurnber pairs ( m 4 .  n=2 and m=2, n=3) and two different length-to-ndius ratios UR. 

It is observed that the decrease in the frequency pararneter ratio is npid in the range O.Os bid 

i 0.5 and, thereafter, it slows down for higher fraction filling. This means that the frequency 

pararneter of a fluid-filled shell (Q ) decreases rapidly in this range. 

In the last exarnple (table 4. l), the naturd frequencies of an isotropic cy lindrical shell 

simply-supported at both ends. for both empty and Buid-filled cases, are caicuiated for the 

fm four axial modes and the fmt ci rcderent ia l  wave number (n=I). The shell had the 

fo Ilowing properties: 



ps=0.734x 1 Ib-sec 2/in , p ~ O . 9 3  5 x  1 O-' lb-sec '/in " 

The results are Iisted in Table (4.1) dong with those of Lakis & Sinno [ReE20] and 

Niordson pef.3 71. 

4.7 Conclusion 

An analytical procedure has been presented for the dynamic analysis of anisotropic 

and isotropie circularcylindrical shells. both open and closed. This method is used to predict 

the effects of inertia, Coriolis and centrifuga1 forces on the vibration characteristics of shells 

which are partially or cornpletely filled with, submerged in. and subjected simultaneously 

to, an interna1 and extemal incompressibie, inviscid fluid. 

The method is a combination of hybrid finite element analysis and refmed shear 

deformation theory of shells. The displacement functions are derived from an exact solution 

of refmed shell equations based on the orthogonal curvilinear coordinates and Green's exact 

relations of strain displacements. 

The mass and stiffness matrices of each structural element are derived by exact 

analytical integration. The velocity potential, Bernoulli's equation, the linear irnpermeability 

and dynarnic conditions applied to the shell-fluid interface have been used to obtain an 

explicit expression for fluid pressure. 

The fluid pressure has been analytically integrated over the liquid element to obtain 
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the mass, stifthess and damping matrices due to the fluid effect. Numerical examples are 

given for the f?ee vibration of laminated composite, symrnetric and anti-symrnetrk cross-ply 

and anti-symrnetric angle-ply, and isotropic materials for both open and closed circular 

cylindncal shells. 

Parametric studies such as radius-to-thickness ratio (Wt), length-to-radius ratio (UR), 

length-to-thickness ratio (Ut), avial and circumferential mode number (m,n) and Buid depth 

ratio are carried out through several numencal examples, to demcnstrate the accuracy and 

range of applicability of the present theory, and results obtained have been compared with 

those of others. 

Some calculations have been carried out to study the convergence of solutions. For 

fluid-filled shells (no-flow condition Ut, =O.), the naturai frequencies could be obtained with 

10 to 15 elements with very good accuracy over the range of p m e t r i c  values s h o w  in d l  

examples. As U ,  increased to reach a critical velocity, 20 to 25 elements are necessary to 

have acceptable convergence. 

The following conclusions may be drawn from the numerical results presented in this 

paper: 

0 The natural kquencies of fluïd-filled shells are lower than the corresponding 

values of empty shells due to increased kinetic energy of the system without 

a corresponding increase in the strain energy. 
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ii) Frequency reduction is s h o w  to increase with liquid depth and is dependent 

on the materid and geometrical parameten of shell and fluid. 

iiQ Frequency reduction of floid-filled rhells hecornes mme 5ignificant as the 

radius-to-thickness ratio is increased, because the relative increase in kinetic 

energy due to fluid as cornpared to that of the shell itself is greater for thinner 

shells than for thicker shells. 

iv) Shear deformation effect is more pronounced for anisotropic materials and 

thicker shells. 

This theory is capable of solving the equations of motion of fluid-filled shells for any 

boundary condition (e.g. free. clamped and simply-supported) without the necessity for 

changing the displacement fùnctions. This rnethod may be also used in the fiee vibration 

anal ysis of circurnferentiall y non-uni form open and c losed cy lindrical shells subjected to a 

flowing fluid. 

The geometrical non-linearity effect, Iarge displacements and rotations, on the natural 

fiequencies of open cylindrïcal shells, fluid-filled with, or subjected to, a flowing fluid, will 

be the subject of a later work based on the present theos.. 
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4.8 Appendix A 4  

These appendices contain the equations of motion of cylhdrical shells and other 

eqwiions which are refend to in the various sections of *As m r k .  

A-Constitutive Relations of Anisotropic Circular Cylindrical shells-The stress- 

strain relationships for any ply, in the lamina reference axes ( l ,2 ,3)  are given by: 

and E,,, Ex and EH are, respectively, Young's moduli in the 1, 2 and 3 directions. 

The G,,, G,, and G,, are, respectively, shear rnoduli in the 1-2,2-3 and 1-3 planes and v, are 
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Poisson's ratios. The stress-stnin relations in terms of global coordinates &,a, z) are obtained 

using transformation manipulations and given as: 

--- 
Qii QI2 QI, O O  a 
- 
QZ&& 0 Oz 
--- 
Q3l Q3, Q, O O z 
0 0 o T & p  

0 0 O G Z O  

Cr;6g;6z 0 0 V, 

where Qij's elements are the transformed stiffness of any lamina and defined as : 

Finally, the constitutive relations for the anisotropic lamuiated cylindricai shell are 
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obtained by integrating the stress resultants and stress couples through the thickness of the 

shell and given by the following equation [see reference 351; 

B~~ 4 6  O B u  el, O B I I ' ~  DI,  ( B t 6 ' ~ )  '12'- @ , . + 7 '  
R 

B*1 Bu 6, DL6 U Du DU 
f,, . (A, v ~ )  O A, *R (Au*R) O Bbl 'R (Bag-) Ba *R ('w *-) 

R R 

0 O ( A i s e R )  Es, 0 0 0 

A:, A, O A, A, O Br, B, B, B, 

4, A u  O A, A, O 4 1  B, Ba, 
O O 4 s  O O A, O O O O 

D,l DI* O Dl1 D El, El* El. 
r,, 0- (BI ,  (B , ,  0 Dl, 'T ( D , 6 * T )  Dl: *- '-1 R R R R 

Dbl Du 4, E E1: E,. 
? B -  0 B,+%(B,*-)  O D -  (Da--)  de*^ ( D U W 7 )  

R R R R R 

41 B, O 83 B.J O D:, D, Dx % 
%l Ba 0 Ba BW 0 0, D.2 0,. 

where A,, Bu, D, , E,, , Ag and B, are defined by; 

(IO* 10) 
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B-The Equations of Motion of a Cylindrical Sbell (Equation 4.3): 



qav.w.s,p,Fd = 
P du P,,, P,, au - 4' * *  (---)+- 
R dx Z R ~  ~2 d3 

d'w 1 
+P3,-*- 

a'w PUa'w pu #W , R(PU+P33a;ae +F3 --W-I1- + 

R' dl2  
p 1 Pu,%+ 

*(P,,-">- +-(Pa --+ R ~ ; R  R de 
Pu 43, 1 P* da, 

'(p3& --)- R ax +-(pu-R% R 



L,(V.V.WB,S~~-> = 

P n  d''O 1 P,o ,  2% a'% P x  
*{pn +=>d;i * ( R ( ~ , , * ~ l U ) + - &  ZR' dxde +A- R* # +-II,* R 

'pz i a Pl, 10 #Pr *Pris 'R(P,,lo *--- da. 
R' 

P3$-4- * 
dl' 

r,cav.w.$,$&,~= 
au' 1 %O d'LI PM P9JO 

PBt> +{-(P', -P&-)-+ q7 --y++ 
ax2 R m2 &vil R 2~ @ 

p , * %  1 p9* #% 
(Pn +=* *(R(PM * P ~ P , ) + - ,  + 

ZR' axatl 
 du^ P, "ZU, 

*- R' &y + + - 4 3 +  

P ,  a w ~ P ,  aw 
.(- - p  ++-(- -p* + 

R = & R R  de 

"a, 1 a=P p dk 
P~~~ tR(P9,'Pkl&$ +$3-pU~rt  m: 
$4 1 PSI- +- 

dg, P,dg, a'& ,, p m + P  + +-- -P&-13- 
9s axde ~2 at2 



Intermediate Matrices; 

-The [RI ,,. ,,, matrïx (equation 4.7 ); 

- The [AI i,o.,o, matrix (equation 4.9 ); 



-The elements of [QQl(iox ,o,'s matrix (equation 4.1 1); 

where: 
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4.1 1 NOMENCLATURE 

A, B, C, D, E : defined by Eq.(4.4) 

A, : extensional stiflhess Eq.(A-4.6) 

B, : bending-extensional coupling stifhess Eq.(A-4.6) 

Cf :speed of sound in the fluid 

Dij :bending stiffness Eq.(A-4.6) 

f ,  (i=l to 10): coefficients of characteristic equation (4.5) 

i : iL-1  

Jiqj (i mkr) : Bessel function of the first kind and of order ,qj 

L: length of shefl 

Li : motion equations Eq44.3) 

m : axial mode number 

- m n  
m : defined by - 

L 
Mx, &,Md, M, : the moment reniltants (4.2) 

n : circumferentid wave number 

N, N,N,, Ne. : the in-plane force resuitants (4.2) 

P : laterai pressure exerted on the shell 

Pi : intemal pressure 

P. : extemal pressure 



Pi, : terms of elasticity matrix( i=1, ... ,10 ; j=l, ..., 10) Eq. (A-4.5) 

- 
Q , : the elastic stifiess in the global coordinates Eq.(A-4.4) 

Q,. Qaa : the -verse force resultants Eq(4.2) 

R : mean radius of the shell 

l$ (r) : solution of Bessel equation (4.27) 

Sj(x, 0, t) : defined by Eq.(4.23) 

t : thickness of the shell 

u, v, w : the auiai. circumferential and radial displacement respectively 

U,, V,, W,,,, p,, Ph : amplitudes of u, v. w, Px, and Bo associated with m,, mial mode 
nurnber 

Ux : velocity of the fluid . i intemal fluid and e external fluid 

V,, V,, V, : axial. tangential and radial fluid velocity (4.17) 

x : axial coordinate 

Yiqj (i mkr) : Bessel fimction of the second kind and of order iqj 

Zj(M, R,J : defined by Eq. (4.3 1,4.32) 

ai, pi, y, and Gi defined by Eq.(4.6) 

p, and p, : the rotations of tangents to the reference surface 

qi : complex mots  of the characteristic Eq.(4.5) 

E*, and CO, : normal strains of the reference slnface 

f, and A : in-plane shearing strains of the reference d a c e  

-, and ~g : change in the cwature of the reference d a c e  



s, and r, : torsion of the reference surface 

Px and poe : the shearing strains 

0 : circumferential coordinate 

4 : velocity potential 

o : naturai frequency 

p, : density of the sheli material 

p,: density of fluidJ for interna1 fluid mdf, for extemal fluid 

D? : Laplacien opentor 

Liste of Matrices: 

[A]o,. la, : defined by Eq.(4.9) 

[BIoo, ,,, : defined by equation(4.11) 

[Cf] darnping rnatrix 

[Gf] : defined by Eq44.34) 

Ff] : stifiess matrix for a fluid f i t e  element Eq.(4.34) 

[Kf] : stifiess matrix for the whole fluid(4.37) 

1121: stiffiess matrix for a sheli finite element Eq.(4.13) 

KI: stifkess matrix for the whole shell(4.37) 

[mf] : local m a s  matrix for a fluid finite element Eq.(4.34) 

[Md : rnass matrY< for the whole fluid Eq.(4.37) 

[q] : local m a s  matrix for a shell finite element Eq.(4.13) 



FU : mass matrix for the whole shell Eq.(4.37) 

N : shape function matrix(4. L O) 

[Pl : eiasticity matrix Eq.(4.2, A-4.5) 

[QQ] : defined by Eq.(4.11,8-4.8) 

IR] : defmed by Eq.(4.10, B4.6) 

[S,] : defined by Eq.(4.34) 

[T,] : transformation matrix Eq44.7) 

{C}: vector for arbitnry constants (4.7) 

( F) : the extemal forces (3.14) 

{6i ) : degrees of fieedom at node i 

{E) : deformation vector Eq44.1) 



Table 4.1 

Free vibration (Hz) of a cylindncal shell s h p l y  
aupprted at bath ends 

First line of values corresponds to rmpty shell; second line 
corresponds to fluid-filled shell. 



F i w e  4.1 A) Circular cylindrical shell geometry 
B) Positive directions of integrated stress quantities 
C) Flowing fluid open cyiindricd sheil 



F i w e  4.2 A) Finite element discretization 
B) Nodal displacement at node i for the m'th element. 
C) Dennition of variables 



Figure 4.3 Frequency distributions (a) of a fluid-filled closed cylindricai 
shell as a function of Wi and U R  (Isotropie Matenals). 



Fi-are 4.4 Variation of non-dimensional natural fiequencies (a) in conjunction 
with variation of Wt and UR (Isotropie Materials). 



Fimire 4.5 Natural kquencies (O) of a fluid-filled cy iindrical 
shell in terms of the rn and Un variations (Isotropie Materials). 



m e  4.6 The effect of axial mode number (m) on the frequency 
parameter (R) of a Buid-filled shell (Isotropie Materiais). 



Fi- 4.7 Viriation of non-dimensional naniral fkquencies (fi) as a function 
of Wt , U R  and (n) variations (Isotropie Materiais). 



The Grnmfénntkd Wme Nunba(n) 

Fimre 4.8 Natural fiequency parameter ($2) of a fluid-filled shell as 
variation of circderential mode number (n) (Isotmpic Materials). 



Fimire 4.9 Naniral frequency parameter (R) of a cross-ply fluid-filled shell in 
terms o f  circumferential wave number (n) variations (Anisotropic Matenais). 



Figure 4.10 Frequency distribution ($2) of a cross-ply fluid-filled shell 
for various axial mode number (ni) (Anisotropic Materials). 



Fimue 4.11 V'at ion  of fkquency parameter (R) of a fluid-filled shell in 
conjunction with Ut and nt variations (Isotropic Materiais). 



Fime 4.12 Frequency distribution (Q) of a cross-piy fluid-fdled cylindncal 
shells with respect to the liquid depth ratio (Anisotropic Materials). 



Fime 4.13 Variation of fundamental frequency panmeter (Q) of a 
fluid-filled angle-pIy open cylindrical shell in tems of LA!?, m 
variations and the liquid depth ratio (Anisotropic Materials). 



Fimire 4.14 Frequency parameter (a) variation of clarnped-clamped 
fluid-fiiled open cylindricd shell with respect to variation of L/n 

and the liquid depth ratio (Isotropic Matenals). 



F i w e  4.15 Frequency distribution (R) of fluid-filled cross-ply cylindrical shell for 
various number of (m, n)  and the Liquid depth ratio ( b / i  (Anisotropic Materials). 



Figure 4.16 Variation of non-dimensional fiequency (Cl) of a Buid-filled cylindrical 
shell as variations of b/d and (n)  (Isotropie Materials). 



Fieure 4-17 Frequency variation (R) of empty, fluid-filled and immersed in fl uid 
shell with respect to n variations (Isotropie Materiafs) 



Fiwe 4.18 Stability of a cross-ply cylindrical shell containing a flowing fluid 
as a hinction of flow velocity (Anisotropic Materials). 



Figue  4.19 Stability of a simply-supported cylindrical shell as a function of 
flow velocity (intemal flow, Isotropie Materiais). 



Figure 4.20 Stability of a cylindrical shell with respect to velocity 
of fluid for (n=4,5 Isotropic Matenals). 



F i w e  4.21 Stability of a cylindrical shell as a function of flow 
velocity (Isotropic Materials). 



Fime 4-22 Lowest naturai kequency parameter (n) of a fluid-filled cylindrical 
h conjunction with a variation (A~sotropic Materiais). 



Figure 4.23 Variation ofnon-dimensional fmluency parameter (i2) with 
liquid depth ratio(W4, t/R and (m, n) flsotropic Materials). 



CONCLUSION 

Cette thèse avait pour but : 

a) de développer des équations générales, par exemple les équations d'équilibre et 

de développer les relations constituantes et cinématiques pour l'analyse linéaire des coques 

anisotropes laminées et multicouches (avec des couches symétriques ou antisymétriques, 

couches orthogonales ou croisées ) de forme générale avec la seule hypothèse de négliger la 

contrainte normale. Ce développement est basé sur une théorie des coques oii les effets des 

déformations de cisaillement et de l'inertie de rotation aussi bien que de la courbure initiale 

sont pris en considération. Les déformations utilisées sont exprimées en coordonnées 

curvilignes orthogonales (les relations exactes de déformationdéplacements de Green). Le 

comportement dynamique des coques anisotropes est beaucoup plus sensible à ces effets que 

celui des coques isotropes. 

Négliger les déformations de cisaillements peut conduire à une surestimation des 

fréquences. Ces erreurs sont encore plus grandes pour des plaques et des coques fabriquées 

en composites comme le graphite-epoxy et boron-epoxy dont le rapport de module 

d7élasticité/module de rigidité ( E G  ) est très grand (de l'ordre 25 à 40 au Lieu d'environ 2,s 



pour des matériaux isotropes). 

On peut donc dire que les déformations de cisaillement jouent un rôle beaucoup plus 

:mporta.iit daim la rtsolution dc la ïigiditC cffcctirc dc flcxion dcs plaques ct dcs coques 

laminées. Toutefois, la sévérité des effets des déformations de cisaillement dépend aussi de 

I'anisotropie des couches. Les équations de mouvement sont déduites par l'application du 

principe du ûavail virtuel avec les déplacements et les rotations comme variables 

indépendantes. 

b) d'appliquer les équations mentionnées ci-dessus aux différentes géométries des 

coques comme les coques de révolution, cylindriques, sphériques et coniques aussi bien que 

les plaques rectangulaires et circulaires. Les déformations de cisaillement ne disparaissent 

pas dans la présente théorie et par conséquent, les rotations Pi. qui représentent la rotation 

de tangente à la surface de la référence. ne peuvent pas être exprimées en fonction des 

composantes du déplacement. C'est pourquoi cette théorie conduit à cinq équations 

différentielles - au lieu de trois équations comme dans le cas d'autres théories- du deuxième 

ordre, couplées et linéaires avec les coefficients constants. 

c) d'analyser dynamiquement des coques cylindriques ouvertes ou fermées, minces, 

élastiques et anisotropes laminées multicouches. Les coques cylindriques sont 

considérablement utilisées dans diverses industries par exemple, l'industrie aérospatiale, 

1' industrie nucléaire et le domaine pétrolier, etc. C'est pourquoi les caractéristiques 
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dynamiques de ces coques avec ou sans fluide ont été considérablement étudiées par 

plusieurs chercheurs au cours des dernières années. 

d) d'étudier les vibrations libres des coques cylindriques submergées et sownires 

simultanément à un écoulement d'un fluide. Le comportement des coques partiellement ou 

complètement remplies de liquide a été aussi analysé. 

La méthode est basée sur la théorie ranée des coques, qui prend en compte les 

effets des déformations de cisaillement, la mécanique des fluides et la méthode des éléments 

finis. Le modèle développé nous permet de déterminer les valeurs propres (fréquences 

naturelles) des coques cylindriques ouvertes et fermées, anisotropes et isotropes, vides, 

partiellement ou complètement remplies de liquide en régime stagnant ou en écoulement. 

En premier lieu. nous avons développé un programme qui peut calculer la matrice 

d'élasticité pour un cas générai (matériaux anisotropes ayant n couches avec des propriétés 

mécaniques et avec une orientation des fibres différentes d'une couche à l'autre). En effet, 

les éléments structuraux fabriqués en matériaux composites sont considérablement utilisés 

à cause des rapports avantageux de rigiditdpoids et solidité/poids. 

L'exactitude de la méthode de l'élément fini dépend du nombre et de la dimension 

des éléments entre lesquels ia structure est divisée. L'approximation optimale des matrices 

de masse et de rigidité dépend de beaucoup de facteurs, le plus important étant le choix des 



fonctions du déplacement qui satisfait le cntère de la convergence de la méthode 

l'élément fini. C'est pourquoi nous avons développé un élément fuii, qui est de type coque 

cylindrique ouverte, où les fonctions de déplacement ne sont pas polynorniales comme c'est 

le cas avec la méthode des éléments finis classique, mais où elles sont dénvées de la théorie 

des coques cylindriques minces en coordonnées curvilignes orthogondes. 

Cette méthode combine les avantages de la methode des éléments finis qui traite des 

coques complexes (matériaux anisotropes multicouches, épaisseur variable, différentes 

conditions aux rives, etc.) et la précision de la formulation utilisant des fonctions de 

déplacement dénvées de la théorie rfinée des coques. L'ensemble des matrices. les matrices 

de masse et de rigidité qui décrivent leurs contributions relatives à l'équilibre sont 

déterminées par intégration analytique exacte. 

Cette théorie donne les déformations nulles pour le mouvement du corps rigide afin 

que les fonctions des déplacements basées sur cette théorie satisfassent le cntère de la 

convergence de la méthode des éléments fmis. Les cinq équations différentielles de 

mouvement sont résolues conjointement avec cinq conditions aux rives à chaque bord par 

la méthode des éléments f ~ s  hybrides. 

Le potentiel des vitesses, l'équation de Bernoulli et l'imperméabilité linéaire 

appliquée à I'interface de fluide-structure ont été utilisés a h  de décrire une expression 

explicite pour la pression du fluide menant à trois forces (inertielle, centrifuge et de Coriolis) 
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du fluide en mouvement. Les matrices de masse, de rigidité et d'amortissement dues à l'effet 

du fluide peuvent être obtenues par une intégration analytique de la pression du fluide sur 

l'élément liquide. 

Pour vérifier l'exactitude de cette théorie, les fréquences naturelles obtenues ont été 

comparées avec celles d'autres théories, par exemple la théorie classique des coques, la 

méthode des éléments finis, etc. Les résultats sont présentés pour des coques cylindriques 

fermées et ouvertes, isotropes et anisotropes laminées (symétriques ou antisymétriques, avec 

couches orthogonales ou croisées ), vides, partiellement ou complètement remplies de fluide 

ou soumises à un écoulement avec différentes conditions au,, rives. 

Une étude panmétrique, y cornpis les différents modes circonfërentiels et axiaux (m, 

n), des paramètres de laminage (nombre de couches, séquence de couche et orientation des 

fibres), des différents rapports de R/t ; Mt ; Ut et du rapport de la hauteur du fluide (b/4 

a été effectuée. Les résultats numériques concordent de façon raisonnable avec les résultats 

disponibles par d'autres théories. 

Les résultats présentés indiquent que la théorie classique des coques conduit, en 

général, à une surestimation des fréquences naturelles surtout pour des coques anisotropes. 

La différence s'applique par le changement de l'angle de cisaillement d'une couche à l'autre 

et l'insensibilité de la méthode classique à ce changement. 
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Les fréquences naturelles des coques cylindriques remplies de liquide sont inférieures 

aux valeurs correspondantes des coques vides, a cause de l'augmentation de l'énergie 

cinétique du système sans augmentation correspondante de l'énergie de déformation. Les 

Eéquences diminuent avec l'augmentation de la hauteur du fluide et cette diminution dépend 

des paramétres géométriques et physiques des fluides et structures. 

Toutefois, ce modèle ne peut pas s'appliquer à des coques cylindriques épaisses, où 

les effets des contraintes normales doivent être pris en considération. 

Nous pouvons donc dire que nous disposons d'une méthode adéquate afin de prédire 

les caractéristiques dynamiques des coques cylindriques anisotropes laminées multicouches. 

ouvertes ou fermées, soumises à un fluide en écoulement. Les coques ont des conditions 

frontières arbitraires sur les rives droites et elles sont simplement supportées selon leur rives 

courbes. 

Les travaux effectués dans notre groupe de recherche ont pour but de développer un 

modèle numérique d'une coque vide, partiellement ou complètement remplie de liquide, avec 

ou sans l'effet de la surface libre (sloshing), soumise à un écoulement de fluide. Pour 

atteindre ce but, le groupe de recherche a déjà développé un élément cylindrique fermé et 

ouvert, conique, sphérique ainsi qu'une plaque circulaire et rectangulaire, en se basant sur 

la théorie de Sanders et aussi bien qu'un éIément cylindrique ouvert en se basant sur une 

nouvelle théorie des coques (cette thèse). 
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La suite logique de cette étude serait l'analyse des coques cylindriques, anisotropes 

et ouvertes, qui peuvent être classées comme suit : 

- Chargement 

1) Étude de l'effet de la surface 

coques horizontales. 

libre du fluide sur le comportement vibratoire des 

2) Étude des vibrations forcées d'une coque cylindrique soumise à un chargement 

dynamique. 

3) Étude des excitations dues à un écoulement turbulent. 

- Géométrie 

1) Influence des non-linéarités géométriques des parois, dues à de grands 

déplacements et de grandes rotations, sur les fréquences naturelles des coques cylindriques. 

2) Étude détaillée des effets de l'imperfection géométrique et de la présence des 

découpages (cutout) sur le comportement dynamique des coques. 

- Matériaux 

1) Étude de la sensibilité de la réponse dynamique des coques anisotropes 

multicouches aux variations de laminage (séquence de couche et orientation des fibres et 



aussi coefficients des matériaux anisotropes). 

2) Développement d'une technique numérique et pratique pour prédire l'initiation et 

propagation des défaillances, selon diffërentç critères dispnihles p u r  des matériaux 

composites - voir par exemple Tsai-Hill, Haffman; Chamis ; Tsai-Wu et la déformation 

maximale- dans les coques anisotropes soumises aux différentes conditions de chargement. 
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