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Dans ce document, la méthode nodale analytique est formulée avec une approximation 

de fuites transversales constantes, ce qui constitue la seule approximation utilisée. Le 

couplage spatial est obtenu à partir de la solution analytique des équadons de 

diffusions unidimensionnelles résultantes. Les équations qui découlent sont exprimées 

en terme des flux moyens et des fuites nettes de surface. Ces équations ont 7a forme 

d'un problème aux valeurs propres classique, qui est résolu par la méthode des 

itérations sur les sources. 

Les modules nécessaires aux calculs statiques et dynamiques en 3-D ont été 

développés et intégrés dans le code NDF, qui ne disposent que des différences finies 

centrées. Deux problèmes ont été analysés avec ces modules : premièrement, le 

problème du CANDU benchmark et un modèle de CANDU-6 typique, avec les 

mécanismes de réactivité ( 19 barres liquides et 21 barres compensatrkes) présents 

dans le cœur. Les propriétés du combustible et des mécanismes de réactivité 

proviennent de DRAGON / DONJON. 

Les calculs démontrent que la méthode nodale analytique avec hites constantes est 

plus précise que la méthode des différences finies centrées pour l'étude des réacteurs 

CANDU, spécialement pour la prédiction des puissances de canal dans les rggimes à 

haute puissance. Les calculs cinétiques espace-temps en 3-D démontrent aussi la 

supériorité de la méthode pour les analyses des transitoires. 
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ABSTRACT 

In this thesis, the formulation of the Analytic Nodal Method (ANM) is derived 

with the flat transverse leakage approximation, which is the only approximation 

introduced dunng derivation. The spatial coupling is determined by the analytic 

solutions of the one-dimensional diffusion equations. The resulting super-matrix 

equations can be written in terms of nodal-avenged fluxes and face-averaged net 

leakages, the form of classical eigenvalue problem which can be solved by a standard 

source iteration procedure, 

Based on the proposed method, the modules used for 3-D static and kinetic 

calculations were developed and programmed into the NDF code, which was a finite- 

difference code speciaily designed for 3-D CANDU kinetics calculation. Two 

problems were tested for these modules: one is a standard CANDU benchmark 

problem, another is a typicd CANDU-6 core with in-core reactivity devices (21 

adjuster rods and 14 liquid zone controllers) present. The fuel and reactivity device 

properties used in the calculations were generated by the DRAGON/DONJON chah 

code- 

The calculations dernonstrate that the ANM with flat Ieakage approximation is 

more accurate than the Coarse Mesh Finite Difference (CMFD) method for CANDU 

analysis, especially for the channel-power prediction in the central high-power region. 

The application of the ANM with flat leakage approximation to 3-D CANDU kinetics 

calculation shows that the ANM with flat leakage approximation is more accurate than 

the CMFD for 3-D CANDU transient analysis- 



1 Introduction 

Des méthodes nodales ont été utilisées pour l'analyse du cmur des réacteurs à eau 

légère ( L m )  et pour les analyses de sûreté pendant plus de vint années. Dans les deux 

dernières décennies, 12s méthodes nodales modernes, par exemple la méthode 

d'expansion nodale (Finnemann et autres, 1977), la méthode nodale analytique 

(ANM) (Smith, 1979) et la méthode nodale de fonction de Green (NGFM) (Laurent et 

autres, 1980), ont été développées avec succès pour résoudre le problème spatial du 

LWR, Cependant, à cause de la grande zone de migration des neutrons dans l'eau 

lourde la méthode des différences finies centrées ( C m )  s'est généralement avérée 

adéquate et a été intensivement utilisée pour l'analyse de CANDU pendant les trente 

dernières années. Pour répondre à la demande d'une plus grande exactitude des 

analyses actuelles et futures, nous avons étudié I'utilisation de la méthode nodale 

comme outil alternatif pour l'analyse du CANDU. 

Panni les nombreuses méthodes nodales avancées, ANM est considérée comme 

méthode numérique précise et efficace pour résoudre l'équation de diffusion 

dynamique, m~ltidimensionnelle~ à deux groupes d'énergie pour LWR (Smith, 1979). 

Cependant, le code d'ANM -QUANDRY (Smith, 1979) ne peut pas être utilisé 

directement pour l'analyse du CANDU parce qu'il a été spécifiquement conçu pour 

LWR. Un grand nombre de difficultés ont été rencontrées dans QUANDRY en 

effectuant des analyses de transitoires de CANDU avec les mécanismes de contrôle de 

le réactivité insérés perpendiculairement par rapport au combustible. Une voie 

alternative est de réétudier le formalisme d'ANM et de développer des modules 



indépendants pour un code de diffusion actuel de CANDU. Le code NDF a été utilisé 

dans cette étude- Le premier objectif de l'auteure est de mettre en application I'ANM 

dans l'environnement de DRAGOWDONJON puis, d'appliquer cette méthode à 

l'analyse des réacteurs CANDU. 

Les objectifs du travail actuel sont divisés en trois parties. D'abord, réétudier la 

procédure de dérivation de la méthode nodale andytique avec l'approximation de fuite 

transversale plate, qui est la seule approximation présentée pendant la dérivation. 

Ensuite, résoudre les équations statiques et cinétiques en utilisant la procédure itérative 

appropriée- Le deuxième objectif consiste à développer les modules utilisés par la 

méthode nodale analytique et mettre en application ces modules dans le code NDF. Le 

troisième objectif est d'appliquer la méthode nodale analytique au problème de 

référence de CANDU et au problème CANDU-6 typique. La solution de !a méthode 

nodale analytique sera comparée à la solution de la méthode des différences finies 

centrées. 

II. Synthèse du problème 

Dans la plupart des situations rencontrées dans l'analyse des réacteurs, il est suffisant 

de modéliser le comportement neutronique du réacteur par une approximation dans 

l'équation de transport des neutrons formellement exacte. L'approximation la plus 

répandue est la théorie de diffusion multigroupe. L'équation de diffusion peut être 

écrite comme 1.1. Si la distribution des propriétés matérielles dans l'espace et dans le 

temps, la distribution initiale de flux de neutrons dans l'espace et dans l'énergie et les 

conditions aux limites appropriées sont indiquées, une unique solution à l'équation 

existe. Les trois conditions aux limites les plus généralement utilisées à la surface 

externe du réacteur sont: le flux nul, le courant réentrant nul et le courant net nui. 



Normalement, le cœur du réacteur est divisé en un certain nombre de parallélépipèdes 

rectangulaires contigus (ou nœuds). Nous supposons également que les propriétés 

nucléaires, les sections effic&es macroscopiques et les coefficients de diffusion sont 

constants en espace dans chaque nœud, bien qu'elles puissent changer par rapport au 

temps. Par conséquent, le calcul du cœur complet est réduit à celui de la détermination 

de la distribution spatiale du flux dans un réacteur contenant plusieurs milliers de 

nœuds, 

III Descriptions des méthodes 

Méthode des Différences Finis de Maille Grossière 

Plusieurs méthodes pour résoudre les équations de diffusion multigroupe dépendantes 

du temps sont actuellement à la disposition de la communauté nucléaire. La méthode 

la plus répandue pour le réacteur CANDU est la méthode des différences finies 

centrées grossière. Cette méthode possède plusieurs avantages par rapport à la plupart 

des autres méthodes pour le réacteur CANDU. Par exemple, cette méthode est 

conceptuellement simple et les équations alge3riques résultantes pour les flux sont 

telles que seulement des nœuds adjacents sont couplés. Une propriété très importante 

de la méthode des différences finies est la suivante : il est prouvé que cette méthode 

converge à la solution exacte des équations de difision multigroupes dans la limite de 

maille infiniment fine. En outre, par suite de la grande utilisation de cette méthode, les 

méthodes numériques associées ont également atteint des niveaux élevés de 

sophistication. Le seul véritable inconvénient de CMFD est que des mailles spatiales 

fines sont exigées pour atteindre une précision acceptable, 

Des travaux récents (Koclas, 1998) ont montré qu'à partir de la méthode nodale 

analytique, en forçant à zéro les fuites transversales et en tronquant l'expansion des 



exponentielles de matrice qui surgissent, CMFD pourrait être obtenu. Ceci indique 

aussi que CMFD est la méthode nodale d'ordre le plus bas. Li1 méthode nodale devrait 

nous permettre d'obtenir des résultats plus précis lors de l'analyse des réacteurs de 

type CANDU. 

Méthode nodale analytique 

Une autre classe de techniques employées pour résoudre les équations de diffusion 

multigroupes est la méthode nodale. Pendant les vint dernières années, la méthode 

nodale a été utilisée avec succès pour la physique des réacteurs à eau légère ( L W )  et 

les analyses de sûreté, Mais elle est rarement utilisée pour le réacteur de type CANDU 

parce que le CMFD s'est généralement avéré adéquat, 

La plupart des méthodes nodales utilisent les flux moyens associés avec de larges 

régions spatiales (définies par des nœuds) et les courants moyens à des sourfaces 

définies par les nœuds. Aucune approximation n'est nécessaire par rapport à l'équation 

de diffusion des neutrons dans la dérivation des équations nodales de bilan- La 

difficulté avec les méthodes nodales est que le rapport entre les f ux moyens dans les 

nœuds et les courants moyens sur les surfaces doit être connu- Une fois que les 

rapports entre les flux moyens dans les nœuds et les courants moyens sur les surfaces 

sont spécifiés, des équations de couplage peuvent être construites, Plusieurs approches 

différentes ont été proposées pour déterminer le couplage flux-courant. Comparé à 

d'autres méthodes nodales, la méthode nodale analytique utilise sedement une 

approximation pour les termes de couplage, soit la forme des fuites transversales. 

L'approximation de fuite transversale plate et l'approximation de fuite transversale 

quadratique sont les deux approximations généralement utilisées. Dans cette thèse, 

nous utilisons l'approximation de fuite transversale plate, pour les raisons suivantes : 



a) Dans un réart_eur CANDU, le courant est très petit par rapport au flux et les fuites 

transversales ont une petite valeur- 

b) Dans un réacteur CANDU, habituellement la CMFD est adéquat La CMFD est la 

méthode nodale d'ordre le plus bas et utilise l'approximation des Fuites 

transversales nulles. Ainsi, il est raisonnable d'utiliser l'approximation des fuites 

transversales plates dans l'analyse du réacteur CANDU. 

La méthode nodale analytique utilise la soIution analytique de l'équation 

unidimensionnelle de diffusion à deux groupes pour déterminer le couplage spatial. 

Les équations finales résultantes peuvent être écrites en terme des flux moyens et des 

fuites nettes de surface, Pour les calcules statiques, elles sont données par l'équation 

1.40; pour la cinétique, elles sont données par l'équation 5.12. 

IV Techniques numériques 

Calcul statique 

L'équation statique pour laquelle une solution est recherchée dans la méthode nodale 

analytique est donnée par 1.40. L'équation sous terme super de matrice est un 

ensembIe d'équations linéaires de quatre vecteurs d'inconnus: flux moyen pour le 

premier vecteur et les fuites nettes de surface pour chaque direction pour les trois 

autres vecteurs. L'équation se présente sous la forme d'un problème classique de valeur 

propre, sauf que Ies éléments de la matrice de coefficient [ H ] dépendent de la valeur 

propre. Afin d'éviter des caractéristiques indésirabies, les trois derniers blocs sont 

substitués dans le premier bloc d'équation pour obtenir l'équation 3.1. Le schéma 

itératif général pour résoudre cette équation est comme suit: 

1. Une valeur initiale pour y (habituellement ~ 1 . 5 )  est employée pour évaluer les 

composants de la matrice de coefficient [ H 1. 



Une itération accélérée de source de fission (externe) est utilisée pour déterminer 

itérativement la valeur propre maximale et le vecteur propre correspondant (y et 

[cpl)- 
Après quelques itérations externes (habituellement 5-10), la dernière évaluation de 

y est employée pour mettre à jour les composants de la matrice de coefficient [ H 1. 
Utilisez une méthode "modifiée" de Gauss-Seidel par bloc pour effectuer les 

itérations internes. 

La méthode d'itération semi-cyclique de Chebyshev (CCSI), ou la méthode 

d'itération de Gauss-Seidel est utilisée pour l'itération de flux. 

Le fait que la matrice de coefficients [ H ] dépende de la valeur propre du problème 

statique global donne aux itérations externes un caractère non linéaire. La pratique de 

mettre à jour les matrices chaque 5 à 10 itérations externes semble appropriée. En 

utilisant la technique de décalage de valeur propre (Wielandt shift) pendant les 

itérations externes, le taux de convergence des itérations externes peut être 

sensiblement augmenté. Les itération internes sont faibles en étapes. D'abord, les flux 

sont déterminés à partir de l'ancienne source de fission et des anciennes hites. 

Ensuite, les nouvelles fuites nettes sont déterminées par les nouveaux flux et les 

anciennes fuites- Normalement, seulement une itération interne par itération externe 

est disponible parce que les fuites sont très petites comparées au flux moyen. 

L'itération pour le flux peut être accélérée en utilisant la méthode de Cyclic Chebyshev 

Semi-Iteration (CCSI) ou la méthode d'itération de Gauss-Seidel. L'itération continue 

jusqu'à ce que la convergence soit atteinte. 

Calcul cinétique 

Les équations dépendant du temps GANM sont données par les équations 5.12 et 5. l b. 

Seul le premier bloc de l'équation 5.12 fait participer un opérateur temporel. Les 



derniers trois blocs sont simplement des expressions pour les fuites transversales, au 

temps t, et ne font pas participer des opérateurs temporels. Par conséquent, tout 

schéma d'intégration qui rapproche les dérivées temporelles peut être utilisé pour 

résoudre les équations dépendantes du temps. Nous utilisons la méthode implicite 

comme méthode d'itération temporelle. Les grandes lignes d'algorithme de solution de 

cinétique sont tracées ci-dessous: 

Choisir les temps (O, Ti, Tz, T3...Ti) qui divisent le problème cinétique en 

domaines. Pour chaque domaine de temps, le critère de convergence de flux E est 

une constante, 

Supposer que les valeurs initiales sont connues au temps t. 

Si t,, =TI;.. changer At et E afin de correspondre à ceux du domaine de temps i+l. 

Calculer les nouveaux paramètres d'optimisation de CCSI, 

Modifier les sections efficaces pour correspondre à la configuration du cœur au 

temps t,+l, 

Calculer des éléments de matrice. 

Obtenir les approximations pour [ ~ r + '  e& r+' par une procédure d'extrapolation. 

Effectuer l'itération de flux pour obtenir [ ~ r + '  et[zU tri' . 
Résoudre l'équation pour obtenir [c, . 

Calculer les nouvelles fréquences d'extrapolation pour le prochain intervalle de 

temps. Répéter les étapes 3 à 9 pour chaque intervalle de temps jusqu'à la fin de la 

dernière étape de temps- 

La mise à jour complète de matrices peut être effectuée toutes les 3 à 10 étapes de 

temps. La matricielle CCSI ou la méthode SOR peuvent être utilisées. Comme les 

fuites et les flux sont estimés par une procédure d'extrapolation, l'effort de calcul exigé 

pour résoudre les équations nodales de diffusion cinétique est sensiblement réduit. 



V Résultats 

Les modules employés par la méthode d'ANA4 pour des cas statiques et cinétiques ont 

été écrits et se mettent en application dans le code NDF, Deux problèmes CANDU et 

un problème PWR ont été testés. Les résultats sont comparés à des solutions avec 

maille fme CMFD et  avec maille grossière C m .  

Résultats statiques 

a) Le problème de référence CANDU 

Le problème de référence CANDU (ANL, 1985) est un problème de référence 

tridimensionnel simplifié, à deux groupes d'énergie, cinétique, comme décrit dans la 

section Al.2 de l'annexe 1. Ii est considéré comme une nonne très importante par 

laquelle le progrès dans des méthodes de calcul de CANDU est mesuré- Nous utilisons 

les résultats d'un calcul à rnailIe fine de CMFD (72 x 72 x 40) comme référence- Les 

résultats détaillés se trouvent montrés dans le chapitre 4, 

Les résultats indiquent que les erreurs maximales pour les densités de puissance de 

grappe pour ANM et CMFD sont d'envircn 4.3% et 5.9% respectivement et situées 

dans le nœud (5,5,2), près de la frontière axiale ou Z.  Les erreurs maximales des 

densités de puissance de canal pour ANM et CMFD sont d'environ 4.3% et 5.9% 

respectivement, pour un canal situé près du réflecteur. Ces résultats montrent que les 

nœuds avec les plus grandes erreurs de densités de puissance sont dans des régions de 

puissance faible, près du réflecteur. La comparaison des solutions de la méthode de 

CMFD et de la méthode d'ANM montre qu'avec la même mailIe, I'ANM obtient une 

solution plus précise- 
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b) Le problème du CANDU-6 typique 

Le problème typique du CANDU-6 (Koclas, 1998 et Navarro Arias, 1996) est un plein 

cœur 3D complet simplifié, avec deux groupes d'énergie, avec l e s  mécanismes 

principaux de réactivité, tels que les contrôleurs liquides de z o n e  et barres de 

compensation présents dans le cœur. Ce problème est similaire à un véritable réacteur 

CANDU-6, contrairement au problème de référence CANDU. Ce problème est 

introduit pour la simulation dynamique, Le problème est en queIque sorte simplifié, 

car l'entaille axiale dans le réflecteur n'est pas présente dans ce modèle- Les sections 

efficaces macroscopiques du combustible et des mécanismes de réactivité sont 

calculées en utilisant la chaîne de calcul DRAGON/DONJON (Marleau et al., 

1993.1994; Roy et al., 1993)- La section A1.3 de l'annexe 1 donne la description 

détaillée de ce problème. Nous utilisons Ies résultats d'un calcul à maille fine (104 x 

104 x 48) de CMFD comme référence- Les résultats détaillés sont donnés dans le 

chapitre 4. 

Les résultats obtenus avec CMFD et ANM tels que la puissance maximale du canal et 

la puissance maximale de grappe sont tous conformes aux valeurs de référence. 

Comparé aux valeurs de référence, les erreurs moyennes et maximalles, prévues par 

ANM, dans le canal et les densités de puissance de grappe sont toutes plus petites que 

celles prévues par CMFD. Les erreurs maximales des densités de puissance de grappe 

pour ANM et CMFD sont environ 2.8% et 6.0% respectivement; les erreurs 

maximales des densités de puissance de canal pour ANM et CMFD somt environ 1.6% 

et 2.2% respectivement. Pour des calculs d'ANM, le pourcentage maximum de l'erreur 

des densités de puissance de canal et de grappe est localisé à W 1 3  et (Wl4, 4) 

respectivement, qui est dans la région périphérique du cceur à côté dei réflecteur. De 
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façon générale, la comparaison entre CMFD et ANM prouve que les résultats d'ANM 

sont plus précis comme prévu- 

L'effet xénon aéré calculé avec le ANM et CMFD pour ce même réacteur- Les résultats 

détaillés peuvent être trouvés dans le chapitre 4, la charge de xénon est de 0.028mk 

dans les deux cas. 

Résultats de la cinétique 

a) Le problème de référence de CANDU 

Un problème tridimensionnel simplifié de référence CANDU (ANL, 1985) avec la 

mise en place asymétrique de mécanismes de réactivité est utilisé afin de contrôler 

notre mise en oeuvre de 1'ANM dans le code NDF, Une description détaillée peut être 

trouvée dans la section A 1-2 de l'annexe 1 - 

Afin d'évaluer I'exactitude des différentes méthodes, il est nécessaire d'avoir une 

solution de référence. Malheureusement, toutes les solutions publiées pour ce 

problème proviennent de la CMFD avec une maille grossière (18 x 18 x IO), qui n'est 

pas considérée comme une référence appropriée. Par conséquent, des résultats d'un 

calcul CMFD avec 54 x 54 x 30 mailles spatiales sont utilisés comme référence dans 

cette étude, Les caiculs de référence utilisent un pas de temps de 12.5 ms, Le critère de 

convergence utilisée par ces calculs est de 10" pour les flux. Les résultats détaillés 

sont donnés en chapitre 6. 

La comparaison des erreurs en pourcentage de la puissance totale obtenues par ANM 

et CMFD avec les mêmes intervalles de temps et la même maille indique que fa 



puissance dépendante du temps obtenue par la méthode nodale analytique est en 

excellent accord avec les valeurs de référence. L'erreur maximale de la puissance totale 

est de 3 %, et il n'y a aucune perte de précision significative pour la méthode nodale 

analytique durant la transitoire- La différence entre les résultats CMFD et les valeurs 

de référence s'accorde bien (légèrement plus grands que Les résultats dlANM) au de'but 

de la transitoire et augmente rapidement pendant 1.2 secondes et atteint 

approximativement 13 % après 1 -8 secondes- Des conchsions semblables sont 

observées pour les prédictions de puissance de canal et de puissance de grappe, comme 

il est représenté sur les figures 7-5 à 7-10, séparément, Cette diminution significative 

de précision indique que CMFD n'est pas aussi fiable que  L'ANM pour le scénario de 

transitoire rapide avec distribution de fuite significative dans le cœur. Pour auamenter 

la précision de calcul dans CMFD, une maille très fine doit être appliquée. 

b) Le problème de CANDU-6 typique 

Dans cette thèse, nous utilisons pour la simulation une éjection de barres- Le transit est 

initialisé par le retrait instantané du premier banc de 5 barres de compensation qui sont 

initialement dans le cœur. La transitoire résultante est suivie pendant 900 secondes, La 

description détaillée de ce problème peut être trouvée dans la section A1.3. 

Le système de régulation de réacteur est utilisé dans ce problème. Au debut, tous les 

mécanismes sont placés en position de référence (Marleau et al., 1996; Varin et al., 

1996). Chaque mécanisme est alors déplacé et placé à une nouvelle position basée sur 

les résultats des algorithmes de régulation de système de réacteur- Aucune soiution de 

référence n'est disponible pour ce problème; par conséquent, il est difficile de mesurer, 

dans le sens absolu, les erreurs dans la solution de la méthode nodale analytique- 



Les calculs ANM ont utilisé la maille 26 x 26 x 12 et un pas de temps de 25 ms. Le 

critère de convergence utilisé par ANM était 10". Les calculs CMFD ont utilisé la 

même maille, te même pas de temps et le même critère de convergence. Les résultats 

détaillés sont donnés dans Ie chapitre 6 .  Tous les résultats montrent que la réponse 

avec ANM est très semblable à la réponse obtenue avec CMFD- ANM constitue donc 

une bonne méthode pour la simulation du réacteur de type CANDU. 

VI Conclusion 

CMFD s'avère la méthode nodale d'ordre le plus bas. Les calculs prouvent que CMFD 

est généralement adéquate pour I'andyse statique de CANDU. La différence entre 

CMFD et ANM s'avère négligeable. Cependant, pour les scénarios de transitoire, avec 

fuites significatives, la différence entre CMFD et ANM n'est pas considérée 

négligeable. Avec les demandes de précisions augmentant pour les analyses actuelles 

et futures, CMFD maille fine ou une méthode nodale d'ordre supérieur devront être 

appliquées pour l'analyse de CANDU. 

Les résultats de calculs pour la réacteurs CANlDU et pour le modèle CANDU-6 

typique montrent que des solutions précises de cinétique pourraient être obtenues avec 

les mailles spatiales de taille de grappe. Les comparaisons avec la CMED ont indiqué 

que les erreurs de ANM étaient faibles. 

L7ANM avec l'approximation de fuite plate s'est avéré une méthode supérieure à 

CMFD pour resoudre l'équation de diffusion cinétique ou statique, 

mukidimensionnelIe à deux groupes d'énergie pour le réacteur CANDU. La méthode 

nodale analytique avec la fuite plate constitue une méthode très précise pour l'analyse 

et la conception de réacteur CANDU. 
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INTRODUCTION 

0.1 Nature of the Problem 

Nodal methods have been used for Light Water Reactors (LWR) core-physics and 

safety analysis for more than 20 years. In the past two decades, the modem nodal 

methods, for example, the Nodal Expansion Method (NEM) (Finnemann et al., 1977), 

the Analytic Nodal Method ( A M )  (Smith, 1979), and the Nodal Green's Function 

method (NGFM) (Lawrence et al., 1980), have successfully been developed to solve 

the spatial problem of the LWR. However, because of the large migration area of 

heavy-water system, the Coarse Mesh Finite Difference method (CMFD) has generally 

been found to be adequate and has been extensively used for CANDU analysis in the 

p s t  30 years. To address the increased accuracy requirements of current and future 

analysis, we investigated the use of noda. method as an alternative tool for CANDU 

andysis- 

Among numerous advanced nodal methods, ANM is noted as an accurate and efficient 

numerical rnethod for solving the time-dependent, rnultidimensional, 2-group neutron 

diffusion equation for LWR. However, the ANM-based QUANDRY code (Smith, 

1979) cannot be used directly for CANDU anaiysis because it was specifically 

designed for LWR A large number of difficulties would be encountered for 

QUANDRY to perform 3-D CANDU transient analysis with the reactivity devices 

inserted perpendicular to the fuel. An altemate way is to review the ANM formalism 

and develop independent modules to a current CANDU diffusion code. The NDF code 

was used in this study. The primary objective of the author is to implement the ANM 

in the DRAGONDONJON environment then apply this method to analysis of 

CANDU reactors. 



0.2 Purpose of Present Work and Organization of Thesis 

The objectives of the present work are divided into three parts. First to review the 

derivation procedure of AnaIytic Nodal Method with flat transverse Ieakage 

approximation, which is the only approximation introduced during the derivation. The 

suitable iterative scheme employed for solving the static and kinetic equations will 

also be investigated. The second objective consists of developing the modules used for 

Andytic Nodal Method and implementing these modules into the NDF code. The third 

objective is to apply the Analytic Nodal Method to the CANDU benchmark problem 

and a typical CANDU-6 problem. The solution fiom Analytic Nodal Method will be 

compared with the solution from Coarse Mesh Finite Difference method. These 

objectives are discussed in the following chapters of this thesis: 

In Chapter 1, the neutron diffusion equations of Analytic Nodal Method for 2 energy 

groups, with the only approximation that the transverse leakages are constants, are 

derived. These equations are written in terms of node-averaged fluxes and face- 

averaged net leakages. The Coane Mesh Finite Difference equation are then obtained 

from the nodal equations. 

The Coarse Mesh Finite Difference Method, which is the lowest order nodal method, 

is used to analyze a typical CANDU-6 mode1 in Chapter 2. Accuracy as a function of 

the coarse mesh size is investigated. 

The properties of the static nodal difision equations are exarnined in Chapter 3. 

Iterative solution technique used for the solution of nodal diffusions is also presented. 



The results of three-dimensional static CANDU problems are exhibited in Chapter 4. 

The Analytic Nodal Method with flat leakage approximation is shown to be an 

accurate method for solving the multidirnensional two-group static diffusion equation 

for the CANDU reactor. It is found that for typical CANDU-6 problem, with the 

standard coarse mesh size, the Analytic Nodal Method yields channel-averaged powers 

accurate to within about 2% and static reactor eigenvalue accurate to within about 

0.02% cornparhg to a very fine mesh reference solution- 

In Chapter 5, the time-dependent AnaIytic Nodal diffusion equations are derived. The 

fully implicit tirne iteration rnethod is employed to solve these equations- An 

algorithm, which makes use of many of the steady-state iterative procedures, is 

detailed for solving the three-dimension two-group diffusion equations of space-time 

ki ne tics. 

Results from CANDU benchmark and typical CANDU-6 mode1 are presented in 

Chapter 6. These results demonstrate that accwate kinetics solutions are obtained with 

bundle size spatial meshes. Cornparisons with Coarse Mesh Finite Difference Method 

indicate that the errors Analytic Nodal Method are lower. Thus, the Analytic Nodal 

Method with flat leakage is a very accurate method for CANDU reactor analysis and 

design. 

Finally, a sumrnary of the conclusions about Analytic Nodal Method, and 

recornmendations for future research are given in Chapter 7- 



CHAPïT,R 1 

REVIEW OF THE ANALYTIC NODAL METHOD FOR 3-D STATIC 

NEUTRON DIFFUSION EQUATION 

1.1 Introduction 

Ln this chapter, the derivation of the Andytic Nodal Method for solving the static 

multigroup difision equations is reviewed, Approximations such as fIat transverse 

leakage and the truncation of the matrix exponential will also be presented in this 

chapter. Throughout the derivation of the Andytic Nodal Method, it is assurned that 

equivdent homogenized difision theory parameters, which are spatially constants 

over the nodes are available. Therefore, only regions that have constant material 

properties will be considered, A11 derivations will be done in three-dimensional 

Cartesian geometry . 

1.2 Neutron Diffusion Theory 

In most situations encountered in the analysis of power reactors, it is sufficient to 

model the neutronic behavior of the reactor by a low order approximation to the 

forrnally exact neutron transport equation. The most widely used of these 

approximations is multigroup neutron diffusion theory. For this model, the set of time- 

and space- dependent coupled partial differential equations (Henry, 1975) for which 

approximate solutions are sought can be written as 



where 

G = total number of neutron energy groups 

D = total number ofdelayed neutron precursor families 

Cd = density of delayed neutron precursors in farnily d (cm-3) 

Dg = diffusion coefficient for group g (cm) 

Z ,  = macroscopic total cross section for group g (cm-') 

&,,. = macroscopic transfer cross section from group g' to group g (cm-') 

En = macroscopic fission cross section for group g (cm-') 

= scalar neutron flux in group g (cm-' sec-') 

x,, = prompt fission neutron spectrum to group g 

XRd = delayed neutron spectrum for famîly d in group g 

v = mean number of neutrons emitted per fission 

y = eigenvalue which makes al1 of the time derivatives identically zero for the initial 

conditions in the core 

Ad = decay constant for delayed neutron precursor family d (sec") 

Pd = fractional yield of delayed neutron precursors in family d per fission, 



v, = neutron velocity for group g (cm sec-') 

The fission neutron spectnirn is assumed to be that of the predominant fissioning 

isotope. If the distribution of material properties in space and time, the initial neutron 

flux distribution in space and energy, and the appropriate boundary conditions are 

specified, a unique solution to equations 1.1 exists. 

The solution to equations 1.1 is usually obtained by first assuming that the reactor is in 

an initial critical configuration; al1 of the properties of the reactor are independent of 

time. Hence al1 of the time derivatives in equations 1.1 are identically zero. The static 

solution of the equations 1.1 is obtained by varying the parameter y (the critical 

eigenvalue) such that a nontrivial solution positive everywhere to the static multigroup 

equations exists. The static rnuItigroup equations can be written as 

~=1,2,3,.-.G b 

In principle, the spatial power distribution in a reactor can be determined by applying 

equations 1.2 and explicitly representing al1 of the geometrical detail that is present. 

The geometrical complexity of reactors is such that direct representation of hi11 

geometrical heterogeneity is precluded for reasons of practicality. The approach that is 

generally taken ta alleviate this difficulty is to treat large spatial regions, the lattice 

cell, as homogenized. The actual spatial detail within each of the homogenized regions 

is treated in an auxiliary calculation, to obtain "equivalent homogenized diffusion 

theory panmeters" which are spatially constant within each region. This 

homogenization is commonly performed for regions that usually contain one fuel 

bundle- The fuIl core reactor calculation is thus reduced to that of detennining the 

spatial power distribution within a domain containing several thousand hornogenized 

regions. 



1.3 Nodal Balance Equation 

The globai reactor problem is treated in three-dimensionai Cartesian geometry, where 

x, y, and z represent the three coordinate directions, The reactor core is divided into a 

nurnber of contiguous rectangular parailelepiped (or nodes), and the nodes are then 

individually specified by their positions on the coordinate mis- As shown in Fig. 1.1, 

the node widths are easily obtained by taking the appropriate differences dong each 

coordinate mis. We also assume that the nuclear properties (rnacroscopic cross 

sections and diffusion coefficients) are spatiaily constant over each such node- 

Figure 1.1: Coordinate system 

We integrate equations 1.2 over the volume of an arbitrary node (i, j, k). The average 

flux in the node (i, j, k )  is simply 



We then apply theorem of Gauss to replace the voIume integrai of the divergence of 

the neutron current by a surface integral. We get the flux equation, 

in this equation the surface average current over the nodal surface at x = xi is given by 

The expressions for the other five surface currents are sirnilar. Equation 1.4 involves 

nodal average fluxes, and average nuclear properties within node (i, j, k). 

The situation is quite different with equation 1.2, which represents the exact neutron 

baiance equation within node (i, j, k). In equation 1.4, relationship between the surface 

average currents and the volume average fluxes is not known. Modem nodal methods 

are used to provide these relationships- 

1.4 Transverse Integration Procedure 

The approach generally taken to obtain the relationships between the surface average 

currents and volume average fluxes is the transverse integration technique which 

consists in the integration of the dif is ion equation over any two directions 

simultaneously. This gives rise to a linear system in one dimension, which c m  be 

solved to obtain surface average currents in terms of the average fluxes of neighboring 

nodes. Repeating this process in al1 three directions in mm will provide expressions 

for each of the six surface average currents appearing in the nodal balance equation. 

We illustrate the process for the x direction. 



1.4.1 Equation for the Fluxes 

Let US integrate equations 1.2 over the direction y and direction z, within the node 

1 1 Y]., dyJ:+l 
(i, j, k). In other words, we apply the opentor L I  .. z to the equation. 

We obtain, 

1 1  a 
l l z - - ri+' d y r + l  dzqg (x, Y,  Z) d Y r d  dza; J ,  (x,  y, z )  - -- 

hi h; Q.I. j.k .. t YI E t  

To simpliS the equation, we define the following quantities: 

The transverse integrated flux, 

The x direction transverse integrated curent, 

The x directed transverse leakage dong Y, 

The x directed transverse leakage dong 2, 

The net x directed transverse leakage 



Sgx.i. j.k ( x )  ' 'gv.i.  ;.k ( x )  + 'g. i .  j.k ( x )  

It is also worthwhile to point out that: 

Jgx.~.;.k (xi ) = Jpi .  j.k (xi ) 
- 

Jgx.i.;.k = J g ~ . Ï , j . i  (x;+I 

With all these definitions, equation 2-6 for node (i, j, k) can be simply written: 

By introducing matrix notation, this equation can be written as 

We define a new rnatrix [z'] 

Finally we get the flux equation 

1.4.2 Equation for the Currents 

An extra relationship is furnished between these variables by Fick's law, 
- 
J ,  = -D,V - qg, which we also transverse integrate over directions Y and Z within 

node (i, j, k) , 



1 1 r,+~ ~ Y ~ ~ ' ~ Z J , ( X ~ Y ~ Z ) = - ~ ~ ~ ~ ~ ~  1 1 Y,., dyr.i ii dz -q$ ax a (x. Y ,  Z) 1.16 -TL hi h, J z4 

which gives 

By introducing matrix notation, we get the cument equation, 

1.4.3 FinaI Form of the One-dimensional System 

We group flux equation and current equation and define the following vectors and 

matrix, 

We now have the following simultaneous equation system for the flux and current 

a 
- [Y(x)]~, j,k + [NI;, j.k [ ~ ( ~ ) l i , ; . k  = LsX ' (XI 1,. jA 1-22 
ax 

To obtain relationships between the transverse integrated fluxes and the directed 

transverse integrated currents, one need o d  y solve the equation 1-22 for [y(x)],-.  j.k . 

Unfominately, the x-dependence of the transverse leakage source term on the right 

hand side of equation 1.22 must be known or  approximated if the solution of the 

equation is to be found. This circumstance rnakes necessary the first, and the only, 

approximation of the Analytic Nodal Method. 



1.5 Transverse Leakage Approximation 

The possibilities for the approximation of the transverse leakage shape in equation 

1.22 appear to be unlimited. It seems reasonable to expect that the more complicated 

the assumed shape, the more difficuit it will be to solve equation 1.22. The "flat" 

approximation and the "quadratic" (Smith, 1979) approximation are the two most 

cornmonly used approximations. We illustrate the approximation process for the x 

direction. 

The "flat7' approximation assumes the transverse leakage shape as spatially flat across 

each node, that is, 

where [c~]~,,, is the nodal-averaged, x directed, net transverse leakage. With the 

definition of x directed net transverse leakage 1.1 1, we obtain 

To simplim this equation we define the following quantities: 

Nodal face-averaged, x directed, net leakage, 

Nodal face-averaged, y directed, net Ieakage, 

Nodal face-averaged, z directed, net leakage, 

with al1 these definitions, equation 1.24 can be written as 



"Quadratic" approximation assumes the spatial shape of the transverse leakage can be 

fit by quadratic polynomials in each node, that is, 

where each of the p is a quadratic polynomial in x, [F~]~-~. jk. [T~]~. j,k, [s ,]+~,~,~,  Xe the 

average net x directed transverse leakages in three adjacent nodes. 

In earlier work (Smith, 1979), it was found that the Andytic Nodal Method with 

"quadratic" approximation could obtain more accurate results for LWR analysis. 

However our current approach is that, for CANDU analysis the flat leakage 

approximation should be sufficiently accurate. 

1.6 Method for Solving the Spatial Coupling Equations with Rat Transverse 

Leakage Approximation 

In Analytic Nodal Method, the spatial coupling equation 1.22 is solved analytically. 

The flat approximation version of 1.22 is 

and the solution of this equation can be wrïtten formally as 

where the solution of the vector [A] is arbitrary, but can be determincd by the choice 

of initial conditions chosen for CG]. If we chose as initial condition the vaiue of cp at 

x = xi , we will have 



and then 

and it folIows that 

on the other hand, if we chose as initial condition the value of @ at x = xi+, ,we will 

In order to close the nodal balance equations, we have to find a relationship between 

the surface average fluxes and currents of each node. To get it we i n t e p t e  equation 

1.34 and 1.35 over x and divide by the width h: of node (i, j, k). We find after 

integration, 

and 

We rewrite the equation 1.37 for the node (i - 1, j ,  k) 



Since equation 1.36 and equation 1.38 are expressed in terms of [ y ( x i ) ] i . j . r  and 

[ I , Y ( X ~ ) ] ~ - , - ~ ,  , and these iwo terms are identical. Thus, it is possible to find a 

relationship between node-averaged fluxes, face-averaged net leakages, and 

The procedure can be repeated to derive a relationship between node-averaged fluxes, 

face-averaged net leakages, and [ J ,  (x,, )],.+,. ,, . Taking the difference of these Iast two 

relationships into equation 1.25 finaily allows us to obtain an equation relating node- 

averaged fluxes and face- averaged net leakages. 

The final equation relating node-averaged fluxes and face-averaged net leakages for x 

direction c m  be expressed in the f o m  

This equation reveals that x directed net leakage is coupled to node-averaged fluxes in 

three adjacent nodes in the x direction, as well as to the transverse leakage in three 

adjacent nodes. 

A similar approach can be followed for the other two directions. Finally we obtain 

three equations of net leakages. With the neutron balance equation, the resulting super- 

matrix equation (Smith, 1979) can be wntten as 



where 

[F] = a column vector of length G x 1 x J x K ( = N ) containing the node-averaged 

fluxes (ordered first by group, then X direction, then Y direction, and finally Z 

direction) - 
[G ] = a column vector of length N containing the u-direction net leakage, u = x, y, z . 

[Fu] = a block tridiagonal rnatrïx of order N x N containing the elernents of [F,"]~.,.~, 

[G,] - a block tridiagonal matrix of order N x N containing the elernents of [GL~.-,.~, 

[&Ir a block diagonal m a w t  of order N x N containing the elernents of 

y. j.k b li. ,, 
[ M I -  a block diagonal rnatnx of order N x N containing the elements of 

The global reactor equation as expressed in equation 1.40 cm be cast the form of a 

classicai eigenvalue problem, 

l ~ l - ' l ~ l  [XI= Axl 
except for the fact that the elernents of [A] depend on the eigenvalue y. 



Equation 1.40 f oms  the ba i s  of the Analytic Nodal Method with flat transverse 

leakage approximation. These equations, dong with the appropnate boundary 

conditions applied to the reactor surface, fully speciQ the global system of static nodal 

diffusion equations. 

1.7 Evaluation of Spatial Coupling Matrix 

The actual application of the Analytic Nodal Method requires evaluation of the 

matrices defined in equation 1.39. Each of these matrices is a G x G matrix whose 

elements depend on the properties of a single node. The essential difficulty in 

evaluating these matrices stems from the fact that the exponential of [N,,.,], as 

defined in equation 1-36, rnust be evaluated. [hi,, ] is a block addiagonal with its 

lower block being partially cornprised of the G x G group-to group scattering matrix. 

In the general multigroup case, it is not apparent how to obtain this exponentid. 

If the number of neutron energy groups is restricted to a small number, direct 

evaluation of the matrices becomes feasible. Since two-group diffusion theory is 

commonly used for normal reactor analysis, we evaluate these matrices directly. 

The Analytic Nodal Method uses the analytic solution of one-dimensional, source-free, 

two-group, difision equation for a homogeneous region to evaluate the exponential. 

The procedure is detailed in (Smith, 1979). nie final results show that ail the matrices 

depend on the eigenvalue of the global static reactor problem. 



1.8 The Coarse Mesh Finite Difference Approximation 

The first approximation leading to the Coarse Mesh Finite Difference is to negIect the 

hypothesis may be questionable, but detailed calculations using nodal rnethods show 

that these transverse leakages are cornparatively srnall in cornparison to the fluxes 

(Koclas, 1998)- 

The other approximation Ieading to the Coarse Mesh Finite Difference consists in 

blocking the series expansion of the matrix exponentials of expression 1.36 and of 

1-38 to linear terrns in x, Therefore 

The flux parts of 1 -4 1 and of 1 -42 are 

We take the difference between 1.43 and 1.44, and use flux and current continuity to 

find 

which gives the relationship between a surface average current and the average fluxes 

of the two nodes delimited by the surface. An identical calcuiation for the node 

(i + 1, j, k) gives the result 



A similar approach can be done for the other two directions. We substitute al1 these 

resuIts to the neutron balance equation 1.4, to obtain 

We write equation 1.47 in matrix form, 

which is the form of a generalized eigenvalue problem, and the elements and [Ml 

depend on the size of the mesh and the properties of the material. The kinetic 

distortion term does not appear. 



Equation 1.47 is the standard Coarse Mesh Finite Difference equation. The derivation 

illustrates that the Coarse Mesh Finite Difference approximation is the lowest order of 

al1 nodal methods (Kocias, 1998)- 

1.9 Boundary Conditions 

The application of boundary conditions on the surface of the reactor slightIy alters 

form of equation 1.39- Application of a zero currznt boundary condition on the xi = O 

surface node (i, j, k)  irnplies that the analogue equation to 1-25 is 

Albedo boundary conditions are also pemitted, The particular forrn of the albedo is 

b (-ri I,,,., '[al [jx (*ri )Ii, j.* 1.50 

where [a] is a G x G matrix., The zero flux boundary condition is applied by setting 

[a] equal to the nuIl matrix, An extrapoiated flux (logarithrnic derivative) 

approximation to a zero incoming current boundary condition for the two-group 

problem is achieved by setting 

where d is the extrapolation distance and X, , is the macroscopic transport cross 

section of each group g. 

1.10 Summary 

In this chapter, the complete derivation of noda .iffusion equations from multigroup 

d i f i s ion  theory has been reviewed. The only approximation that is necessary for the 

Analytic Nodal Method is the spatial shape of the transverse leakage within a node. 

The resulting equations were written in terms of node-averaged fluxes and face- 



averaged net Ieakages. The final super matrïx equation is of the form of a classical 

eigenvalue problem, If we introduce linear expansions for dl terms, we can get the 

Coarse Mesh Finite Difference equation from the nodal rnethod- It shows that the 

Coarse Mesh Finite Difference method is a lowest nodal rnethod, 

In Appendix 2, we will introduce the Coarse Mesh Finite Difference Method with fIat 

transverse leakage approximation, the results of this kind of approximation will also 

be presented, In Chapter 2, we will discuss the numericd methods of Coarse Mesh 

Finite Difference Method used in the code NDF. The applications of this method to the 

CANDU benchmark problems and to typical CANDU-6 problems will be presented in 

Chapter 2 too. In Chapter 3, we will discuss the numerical considerations of Analytic 

Nodal Method, 



CHAPTER 2 

DESCRIPTION OF THE COARSE MESH FINITE DIFFERENCE WTHOD 

IN THE CODE NDF AND STATIC APPLICATIONS 

2.1 Introduction 

In Chapter 1, the spatially-discretized static nodal diffusion equations for Analytic 

Nodal Method were derived from the solution of multigroup diffusion equations. 

Based on some approximations, the Coarse Mesh Finite Difference equation cm be 

obtained. Because of the large migration area in a heavy-water system, Coarse Mesh 

Finite Difference method (CMFD) is generally considered sufficient and has been used 

extensively for CANDU analysis in the past 30 years. In this chapter, results from 

application of Coarse Finite Difference Method to two-group three-dimensional 

typical CANDU-6 problem are presented. Throughout this chapter, the effect of mesh 

size is indicated, 

2.2 Coarse Mesh Finite Difference Method in the NDF Code 

The PUIF computer code has been developed to perfom complicated static and 

dynamic calculations related to control and safety simulations of CANDU-6 reactor. 

(Kaveh et al. 1999). The computer code NDF c m  handle static and dynamic 

calculations using the Coarse Mesh Finite Difference method and now also with 

Analytic Nodal Method. 

NDF is written in FORTRAN 77 Ianguage. The code was compiled under the Visual 

Fortran 5.0 compiler with full optimization and in single precision. The macroscopic 



cross-section used by NDF can be provided by the input file or by the 

DRAGON/DONJON (Marleau et aI-,1993, 1994; Roy et al., 1994) code- 

The Coarse Mesh Finite Difference equation 1.48 can be solved by using the general 

iterative scheme in the NDF code 

1. The components of mauix are evaluated by the coupling coeffkient 

calculation module, 

2. An accelerated fission source (outer) iteration is employed to determine 

iteratively the maximum eigenvalue and the corresponding eigenvector. 

3. The modified block Gauss-Seidel or successive over-relaxation iteration 

method is used for flux iteration. 

4, The iteration continues until both the convergence cnterions on node-averaged 

fluxes and on eigenvalue are attained. 

5. The fluxes are normalized and collapsed into coarse mesh arrangement. 

2.3 Mesh Size Effect for the Typical CANDU-6 Problem 

One disadvantage of the Coarse Mesh Finite Difference Method is that obtaining an 

acceptable degree of accuracy in the flux calculations requires small mesh size. Within 

a typical CANDU-6 reactor, the natural choice for the numerical mesh spacing is the 

channel lattice pitch and the bundle length, Le., 28.575 x 28.575 x 49.53 cm in x, y 

and z directions respectively . At present, the number of meshes used for the CANDU- 

6 problem is 26 x 26 x 12. The details of this problem are shown in Section A1.3 of 

Appendix 1. We use finer mesh (number of mesh points double or triple or more those 

in the original coarse mesh in x, y and z directions) to study the sensitivity of typical 

CANDU-6 problem on mesh spacing. 

The following rnesh-spacing were selected for x, y and z directions 

1. Normal lattices in x, y and z direction, the number of meshes is 26 x 26 x 12. 



2, Normal Iattices in x and y directions, spacing unifonnly refined by a factor of 2 

in z direction, the number of meshes is 26 x 26 x 24. 

3. Al1 mesh spacing uniformly refined by a factor of 2 in x, y and z direction, the 

number of meshes is 52 x 52 x 24, 

4- Al1 mesh spacing uniformly refined by a factor of 3 in x, y and z direction, the 

number of meshes is 78 x 78 x 36. 

5. Al1 mesh spacing uniformly refined by a factor of 4 in x, y and z direction, the 

number of meshes is 104 x 104 x 48- 

To evaluate the influence of mesh spacing, calculations for the above 5 different mesh 

spacing were carried out by the NDF code. The convergence cnterion of flux is IO-'. 

The results are surnmarized in Table 2.1. These results indicate that more iterations 

and CPU time are required for fine-mesh calculation than for coarse-mesh calculation. 

A cornparison of the coarse-mesh results (26 x 26 x 12) with the fine-mesh results 

indicates that small differences appear in absolute eigenvalues and in maximum 

channel ( 1-2%) and bundle powers (1-2%)- 

Figures 2.1 to 2.4 show the percent changes introduced in channel power densities by 

mesh size effect. It should be noted that the high channel powers in the core center 

obtained by the coarse mesh size (26 x 26 x 12) are not conservative, because the 

differences of some meshes are positive but are negative of the other meshes. 

2.4 Sumrnary 

In this chapter, the Coarse Finite Difference Method used in NDF code and the results 

of typicd CANDU-6 mode1 from this code were presented. The Coarse Mesh Finite 

Difference Method was shown to be a significant method for solving the 



multidimensional, two-group static difision equation. It was aIso demonstrated this 

method could achieve high accuracy by fine mesh size. 

In Chapter 1, the Coarse Mesh Finite Difference equation could be obtained from the 

Anaiytic Nodd equatîons based on some approximations. Without these 

approximations, the results are expected to be more accurate. Hence, in Chapter 3 and 

Chapter 4 the Analytic Nodal Method and the applications will be presented. 



Table 2.1: Summary of results from different mesh size for CMFD method 

Meshes Eigenval 
ue 

1-03057 

Mm. channel Max. bundle 1 Oure 1 
power 1 power 1 iterations 1 



A -0.06-0.02 4.06-0.ûâ -0.06-0.U 

B 4-02 0.04 0.06 0.16 0.16 0.14 O-l2 022 0.09 4 - 0 4  4-08 -0.16 

C 0.07 0.24 0.23 O.= 0.18 0.E 0.U 0.12 0.lû 0.11 0.11 0.10 0.09 -0.11 

D 0-06 0.26 0.26 0.22 0.20 0.17 0.U 0.D 0.10 0.08 0.08 0.09 0.09 0.10 0.08 -0.14 

E 43-01 0-24 0-26 0.23 0.20 0.17 0.14 0.10 0.08 0.06 0.05 0.06 0.06 0.a 0.06 0.07 0.04 4-23 

F 0-10 0.24 023 0.19 0.15 0-10 0-04 4-01 4-01 4-06 4-07 -0.05 -0.02 0.00 0.02 0-03 0.03 -O.U 

G -0.QS 0.20 0.Z 0.M 0.15 0.09 0.05 0.01 4-03 4,05 4-07 4-09 4-09 4-08 -0.06 -0.03 -0.M -0.01 Q.W= 

H 0-04 0-22 0-19 0-18 0.12 0.06 0.m 4.a -0.07 -0.10 4-12 4-13 4-13 -0.u -0.10 - 0 , ~  -0.a -0.04 -0.03 4-17 

34-E2 0 3  0-Zl 0.17 0.16 0.07 0.a -0.w -0.07 -0.n -0.14 -0.16 -0.17 -0.17 -0.17 -0.16 4.12 -0.06 -0.06 -0.04 -0.07 4.30 

K O-a O-Z 0-20 0.E 0 3  0.04 4-oi 4.05 4.10 4-14 4.17 -0.19 -0.21 -0.20 4-19 -0.18 -0.16 4-09 -0.08 6-06 4.05 -0.25 

L 0.00 0.20 0.19 0.16 0.15 0.07 0.00 6-06 4-32 4-16 4-lE 4-21 4-23 4-22 4-20 4-17 -0.U 4-06 -0.07 4-06 4-06 -0.28 

M 0.00 0.20 0.20 0.17 0.15 0.07 0.00 -0.06 4-12 -0.17 -0.20 4-22 -0.23 4-22 4-20 -0.17 -0.U -0.07 -0.07 -0.05 -O-% 4-28 

N 0.02 0.Z 0.20 0.17 0.15 0.06 0.m 4.E -0.l.l 4-16 -0.U 4 . Z  -0.22 4.Z -0J.3 -0.16 -0.U -0.07 -0.06 -0.E -0.05 4-25 

O 4-04 0-18 0.20 0.18 0.17 0.08 0.01 -0.04 4.09 - 0 3  4.14 4.16 -0.18 -0.18 -0.17 -0.15 4.10 4.04 4-05 -0.04 4-07 -0.30 

P 0-06 0.19 0.16 0.14 0.08 0.03 -0.01 -0.06 -0.10 -0.U -0.14 -0.15 -0.15 -0.14 -0.12 4.09 -0.06 -0.05 4.04 -0.18 

Q -0.10 0-15 0.15 0-14 0.09 0.03 4-01 4 - 0 4  -0.07 -0.10 4.U 4-12 -0.12 -0.12 -0.U 4.08 4.M 4-05 -0.08 -0.33 

R O.@ 0.16 0.16 0.10 0.07 0-04 4-02 -0.05 -0.07 4.08 4-10 -0.09 4.07 -0.07 43-06 4-02 4.04 -0.19 

S 4-10 0.14 0.17 0.12 O.U 0-10 0.09 0.05 0-w 0.03 0.01 0.01 0.00-0.01-0-02 0.004.04-0.30 

T -0.03 0.18 0-18 0.14 0 2  0.10 0.07 0.06 0-05 0.03 0.03 0.03 0.03 0.a 0.03 -0.20 

O 4.m 0.16 0.16 0-14 0.11 0.W 0.06 0.05 0.04 0.05 0-05 0.05 0.03 -0.18 

V -0.U -0.04 -0.02 0.09 0.10 0.09 0.07 0.06 0.03 -0.09 4.14 -0.23 

W -0.14 -0.09 4.14 -0.15 -O.U -0.19 

The rnarimwn percent chan ze is shown in bold character 

Figure 2.1: Relative percent change of channel power introduced by mesh 

spacing (104 xlO4 x 48 vs 78 x 78 x 36) 



A 4-65 4-55 4-74 43-76 6 - 6 2  -0.80 

B 4 - 6 8  4-41 4-29 0.07 0.11 -0.m - 0 . ~  0.03 -0.06 43-47 -0-s3 -0.94 

C -0.46 0.17 0.25 0.23 0.23 O.2l 0.07 0.04 0.12 0.09 0.05 0.02 4-10 4-77 

D -0.38 0.22 0.28 0.30 0.W 0.a 0.29 0-13 0-09 0-20 0.u 0.B 0.05 4-01 -0.u -0.74 

E 4.58 0.25 0.29 0-29 032 0.34 0-35 037 0-19 0.16 O-2ï 0.19 023 0-07 -0.02 -0.06 -0.u -0.98 

F 4-19 0-32 0-26 0.28 0.26 0.29 0.11 0.U 0.00 -0.00 0-01 -0.05 0.07 -0.01 -0.04 -0.10 -0.07 -0.61 

G -0.67 0.14 0.33 0.24 027 0.22 0.26 0.18 0.19 0.18 014 0.08 0-00 0.02 4-06 -0.06 -0-l3 4.m 4.24 -1-l.3 
H -0.20 0.30 0-36 0.23 0-27 0.28 0.31 0-23 0.22 0.22 0-18 0-11 0-05 0.07 4 . O l  -0.07 -0.15 -0.06 -0.14 6-66 

J -0.Q 0.15 0.33 0-36 0.23 0.19 0.23 0.25 0.25 0.26 0.23 0.20 0.14 0-07 0.01 -0.07 -0.16 -0-16 -0.06 -0.15 4-32 -1.10 

R -0.47 0.20 0.27 0.34 0.U 0.09 0.24 0.m 0.28 0.28 0.20 0.16 0.16 0.09 0-02 -0.07 -0.27 4.27 -0.09 4.18 6-28 -0.96 

L -0.58 0.15 0-25 0-33 0.24 0-20 0.24 0.27 0-28 0.29 O.= 0.11 0-17 0-09 0-02 4-07 -0.15 -0.16 -0.10 4.z -0.33 -1.07 
K -0.59 0.14 0.24 0.31 0.22 0.18 0.Z 0.25 0.26 0.28 0.14 0.10 0.16 0-08 0.M) 4.09 -0.lS 4-18 -0.u -0.22 -0.33 -1.07 

N-0.50 0.16 0.24 0.29 0.19 0.14 0.18 0.22 OZ3 0.23 0.09 0.05 0.12 0.04 -0.m 4-12 -0.20 4-20 4-13 -0.21 -0.30 -0.98 
O -0.66 0-10 0-24 029 0.26 0-21 0.14 0.17 0.18 0.18 0.16 0.12 0.07 0-00 4-06-0.15 -0.U -0.12 -0.12 4-20 4 - 3 6  -= 
P -0.28 0.22 0.26 0.U 0-14 0-18 0.20 0.12 0.U 0.11 0.07 0.01 -0.05 4.02 -0.10 4-18 -0.25 -0.14 4-20 6-72 

Q 6-78 0.09 0-24 0.08 0.11 0.12 0.U 0.04 0.W 0.04 0.W 4-05 -0.12 4-08 -0.14 -0.20 -0.26 -0.U -0.31 -1.20 

R -0.30 0.23 0.06 0.08 0.16 0.15 -0.04 -0.05 -0.11 -0.14 -0.14 4-19 -0.05 -0.09 -0.20 -0.26 -0.U -0.69 

s 4.n 0.15 0.04 O-c6 0x1 0.19 0.17 0-18 -0.01 4-03 0.09 0.m 0.00 -0.m -0.21 -0.26 -0.19 -1.07 

T -0.49 022 0.17 0.15 0.U 0.09 0.09 -0.04 -0.U 0.01 -0.a 4-05 -0.06 -0.08 -0.16 -0.80 

U 43-59 0.03 0.07 0.05 0.03 0.01 -0.20 -022 -0-06-0.09 -0.U -0.12 -0.20 6-85 

V 4-86 4-62 4-50 -0.U 4-08 -0.16 4-18 4-14 -0.24 -0.64 -0.80 -1-08 

W -0.91 -0.n -0.91 4.93 -O.= -1.00 

The maximum percenc chance is shorvn in bold cftaracrer 

Figure 2.2: Relative percent change of charnel power introduced by mesh 

spacing (104 x104 x 48 vs 52 x 52 x 24) 



A -0.48 -0.2 4 -70  4-74  4 - 3 1  -0.65 

B 6-58 0.01 0-43 1-45 1.40 1.07 1.03 1.29 1.27 0.18 -0.30 6 . 9 4  

C 0.06 1.65 1-61 1-53 1.48 1.35 1.12 1.08 1-22 1-23 1-26 1.28 1.27-0-38 

D 0.08 1-74 1.66 1.50 1.40 1.29 1-16 0.80 0.75 1-03 1-08 1.12 1-15 1.25 1.28-0.42 

E 4-Q 1.a 1-60 1.38 1-32 1-27 1.18 1-07 0.65 0.60 0.93 O.% 0.97 0.95 0.95 1.U 1-11-1-17 

F 0.26 1.47 1.Z 0.98 0.69 0-46 -0.36 4.58 -0.92 -0.97 4-72 4-59 0-15 0.30 O.= 0.Z 0.92 4.33 

G -1.17 1-16 1.n 0.98 0.69 o.cn 4-09  4-47 - 0 s  43-59 -0.64 a n  4-72 -0.42 -0.3 0.22 0.46 0.69 O.%= 

H 0.12 1-10 1.00 0.59 0.26 -0.10 4.21 4.61 4-74 4.ô2 -0.87 -0.90 -0.86 -0.55 4.52 4.23 0.05 0-41 0-55 -0.53 

J -0.88 1.04 1-06 0.85 0.44 -0.33 -0.63 4.72 -0.89 -0.98 -1.33 -1-23 -1.14 -1-15 -1.07 -1-06 -0.83 4.Y 0.24 0.41 0.36 -1-56 

K 4-62 0.98 0.88 0.63 -0.W -0.&2 -0.76 4.81 -l.M -1.15 -1.39 -1.45 -L.32 -1.29 -1.16 -1.20 -1-32 -0.64 0.02 0 2 3  0.30 -1.30 

L 4.94 0.85 0.86 0.77 0.46 -0.26 -0.Q -0.80 -1.08 -1.24 -1.56 -1.62 -1.a -1.35 -1.16 -1-06 4-77  4 . U  0.15 0.21 0-16 4-63  
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The maximum percent change is shown in bold characrer 

Figure 2.3: Relative percent change of channel power introduced by mesh 

spacing (26 x 26 x 24 vs 104 x104 x 48) 
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Figure 2.4: Relative percent change of channel power introduced by mesh 

spacing (26 x 26 x 12 vs 104 x104 x 48) 



CRAPTER 3 

NUMERICAL CONSIDERATIONS OF THE ANALYTIC NODAL METHOD 

3.1 Introduction 

In chapter 1, the spatially-discretized static nodal diffusion equations for Analytic 

Nodal Method were derïved from the solution of the rnultigroup diffusion equations, 

based on the single assumption that the transverse leakage shape is spatially flat across 

each node. The flux and coupiing coefficients were obtained by solving analytic 

difference equations. For the difficulty in evaluation of spatial coupling matrix, the 

number of neutron energy groups is restricted to two. Fn this chapter, we analyze the 

numerical properties of the Analytic Nodal Diffusion equations, then a multi-level 

iterative scheme for solving the resulting analytic nodal diffusion equations is 

presented. 

3.2 Numerical Properties of the Analytic Nodal Diffusion Equations 

The equation for which a solution is sought in the Analytic Nodal Method is given in 

Chapter 1, by equation 1.40, The super-matrix equation is a set of linear equations in 

the four vector unknowns, [FI [ E ~  L [ E ~ ]  and [q 1. In its present form, equation 1-40 has 

very Iittle spatial coupling in the nodal-averaged flux terms and most of the coupling 

in the face-averaged net leakage terms. It is known from physical principles that the 

net leakage wiil be small compared to the average fluxes in a large number of reactor 

configurations. Therefore, equation 1-40 h a  the undesirable charactenstic that the 

spatid coupling is dominated by the net Ieakage equations. This situation is dtered by 

substituting the last three blocks of equations into the first block of equations to obtain 

(Smith, 1979) 



w here 

Since each of the matrices pu] is a (2 x 2) tridiagond block, equation 3.1 has 

substantially more spatial coupling in node-averaged flux terms than does equation 

1.40, Equation 3.1 is clearly an eigenvaiue problem in which the elements of the 

matrix [Hl depend on the eigenvalue, 

Any iterative scheme that is used to solve equation 3.1 will require that the matrices 

[Hl and [Pl have certain properties in order to guarantee successfül convergence. It is 

very useful to examine the properties of the matrices in equation 3.1. 

The matrix [Pl is quite simple. The only non-zero submatrix of the matrix [Pl is FT], 

and the matnx [Ml is block diagonal with non-negative components (al1 fission cross 

sections are nonnegative). Unfortunately, the matrix [Hl is not n e d y  as simple. In the 



general case, the only property of the matrix [a that can be guaranteed is that al1 of its 

components are real (Smith, 1979)- 

The expression of matrix CF,] (Smith, 1979) reveals that the matrices, IF,] are 

1- Real 

2. Irreducible 

3- Symrnetric 

4. Diagondly dominant. 

From these properties, it can be proved that equation 3.1 has the following properties 

(Wachspress, 1966): 

There exists a unique positive real eigenvalue, al, which is greater in modulus than al1 

other eigenvalues, and the eigenvector corresponding to the eigenvalue is unique 

and positive, 

These properties and others denved from them will be used in the next section to 

demonstrate that the numerical schemes chosen to solve the Analytic Nodal Diffusion 

equations can be guaranteed to work- 

3.3 Iterative Strategy for Solving the Static Nodal Diffusion Equations 

3.3.1 The General Iterative 

The general scheme for solving equation 3.1 is as following: 

1 An initial guess for y (usually ~1.5) is used to evduate the components of the 

matrix 

2- An accelerated fission source (outer) iteration is empIoyed to determine 

iteratively the maximum eigenvalue and corresponding eigenvector (y and [<pl), 



3, After several outer iterations (usually 5-10), the latest estimate of ii is used to 

update the cornponents of the matrix CH]. 

4, Use "modified" block Gauss-Seidel iteration method to perform the inner 

iteration. 

5. Cyclic Chebyshev Semi(CCSI) iteration rnethod or Gauss-Seidel iteration 

method is used for flwr iteration- 

3.3.2 Eigenvalue Updating 

The fact that the submatrix [Hl depends on the eigenvalue of the global static reactor 

problem gives the outer iterations a nonlinear character. However, the effects of 

updating the matrices on the outer iterations are generally quite negligible, especially 

when a reasonable estimate of the eigenvalue is available. Another characteristic of the 

outer iterations which helps to rnitigate nonlinear effects is that a very good estimate of 

the eigenvalue (accurate to about 0.5%) c m  be obtained in relatively few (3 to 5 )  outer 

iterations. A general practice of updating the matrices every 5 to 10 outer iterations 

seems entirely appropriate. In steady-state iterations for problems with feedback, more 

fiequent updating may be required to account for changes in temperatures, densities, 

etc. No problem has failed to converge because of the nonlinear nature of the outer 

iterations (Smith, 1979), and this also maintains for our CANDU cases. 

3.3.3 Outer Iteration 

The fission source iteration (Wachspress, 1966) is applied to equation 3.1 to detemine 

the maximum eigenvalue and corresponding eigenvector. If p is used as the index of 

the outer iterations, equation 3.1 can be expressed as 



where ypcl is an estimate of the globe static eigenvalue and the matrix [Hl is given a 

subscript p to indicate that its components are updated during the outer iterations. The 

maximum eigenvdue c m  be estimated by the ratio of the vector noms frcm 

successive solution vectors, 

The fission source iteration is guaranteed to converge if the eigenvaIue with the Iargest 

modulus is unique (Varga, 1962)- This property exists in the case of infinitely fine 

mesh spacing, but cannot be demonstrated in the general case. Nevertheless, this 

property is assumed to exist in the general case, and no problem has failed ro converge 

because of eigenvalues with degenerate maximum moduli. 

The rate at which the outer iterations converge is determined by the ratio of the moduli 

of the two maximum e~envalues,  usually called the dominance ratio, defined by 

where y,, y2 are the eigenvdues with the largest and second largest moduli, 

respectively. For most problems, the dominance ratio is very close to unity and 

convergence is very slow; hence, many methods have been developed to increase the 

convergence rate of the fission source iterations. One of the most direct methods of 

altering the convergence rate is "eigenvalue shifting" or Wielandt's fractional iteration 

(Wachspress, 1966). In Wielandt's method, equation 3.1 is modified to obtain 



where y, is arbitrarily selected but subject to certain restrictions discussed below- 

Equation 3.5 is a new eigenvdue problem with much different properties than 

equation 3-5- It is easily demonstrated that the eigenvector associated with the 

maximum value of is identical to the eigenvector associated with the 

maximum value of y in equation 3-1, provided y, is larger in moduIus than y 

(Wachspress, 1966)- The dominance ratio of the new eigenvalue problem is 

Since y, must be chosen such that the moduIus of y. exceeds the modulus of y~ ,  which 

in turn exceeds the modulus of y2, the dominance ratio, d,, is less than unity and less 

than the unshifted dominance ratio, d, Naturally, the convergence rate of the outer 

iterations is maximized by the eigenvalue shift, y,, to be equal to the tnte static 

eigenvalue y*- Unfortunately, this choice makes the flux iteration matrix nearly 

singular, as is pointed out in the next section. Nevertheless, an optimum value of y, 

may exist, and the problem of determining it is addressed in section 4.4. Using the 

eigenvalue shift, the outer iteration is defined by 

where [qI0 is arbitrary (Wachspress-1966). The new eigenvalue estimate can be 

determined using any vector norm. For simplicity, the Ii norm of the fust block of 

vector [q] is chosen (Wachspress, 1966) 



The first block of equation 3-7 c m  be written as 

where [SI is the leakage source terni 

Because the detailed calculations using nodal methods show that the transverse 

leakage is compantively small in cornparison to the fluxes, we c m  assume that the 

leakage source terms of adjacent outer iteration are equd. The outer iteration cm be 

written as 

It is recognized that if y, is fixed throughout the outer iteration process, most other 

conventional methods of accelerating the outer iteration convergence can also be 

applied. For reasons detailed in the section 3.3.3, there seems to be several advantages 

to altering the eigenvalue shift during the outer iterations. Also, the convergence rate 

of the outer iterations c m  be significantly increased by eigenvalue shifting, such that 

additional acceleration schemes are not required. 



3.3.4 Inner Iteration 

The method used to perform the inner iteration is a "modified" block Gauss-Seidel 

iteration, where each block is a square matrix whose order is the number of energy 

groups times the number of spatial mesh points. With q as the index of the inner 

iteration, this "modified" Gauss-Seidel iteration is defined by 

p=0,1,2,3,. ..., 00 

q=Q1,2,3,. ..., 00 

This iterative scheme would be a true block Gauss-Seidel iteration if the latest values 

of the face-averaged net leakage were used. 

This particular scheme is chosen for two reasons. First, it eliminates the need to 

caiculate both [G u ] , ~ ] , ,  and [G J , ~ ] , , q + i ,  which saves computational effort. 

Second, this scheme does not "favor" any one direction in the calculation of leakages. 

The inner iteration, defined by equation 3.1 1, consists of two distinct steps. First, the 

new node-averaged fluxes are determined from the old fission source and the old 

leakages. The second step is the determination of the new net leakages from the new 



flwes and the old leakages. This step is not iterative, but requires a number of matrix 

multiplication, since the matrices [Gu], are block tridiagonal. 

In most cases, there is no reason to coverage the fluxes and leakages cornpleteIy at 

every inner iteration, since the fission source is computed from fluxes at the last outer 

iteration. In problems where the net leakages are small compared to the average fluxes, 

it seems reasonable to perforrn only one inner iteration per outer iterztion and continue 

the outer iterations until the fiuxes are converged. In some cases, however, the net 

leakages can be fairly large compared to the average fluxes, and it may be more 

efficient to perfonn additional inner iterations to converge the net leakages more 

rapidIy than would otherwise be possible- 

3.3.5 Flux Iteration 

In three-dimensional case, m, is a block diagonal matrix, each block being 2 x 2. 

Since primary consideration in this work is with two-group methods, both groups wiil 

be solved simuitaneously. We use CycIic Chebyshev Semi-Iteration (CCSI) method 

(Varga, 1962) or Gauss-Seidel iteration method as the flux iteration method. 

If the rnatrix { [ F ] ,  - 

block diagonal matrix, 

1 -[MI } is spiit into strictly lower block triangular rnatrix, a 
Ys, 

and a strictly upper block tiiangular matrix sucb that 

> = [LI, + [DI, +[a, 
The CCSI method with iterative index r is defined by 

where 



with defined below. 

The Gauss-Seidel iteration method with iterative index r is defined by 

It is as sarne as the CCSI when the relaxation factor is equal to unity. Mathematically, 

the CCST is a permutation transformation of the conventional Gauss-Seidel iteration. 

This transformation crin be thought of as a reordering of equations and unknowns. The 

permutation transformation does not change the properties of the flux iteration matrix. 

Strictly speaking, to parantee that the CCSI method will converge, the flux iteration 

rnatrix must possess several properties. First, the flux iteration rnatnx must be an 

irreducible, consistently ordered weakly cyclic matrix of order 2 ,  which it is. The flux 

iteration matrix must aiso be convergent, which can be guaranteed if the flux 

coefficient matrix is diagonally dominant. Lastly it must be assumed that dl 

eigenvalues of the flux iteration matrix are real (Clark, 1964). 

The CCSI rnethod is related to the block successive overrelaxation (SOR) methods and 

c m  be thought of as SOR method in which the relaxation parameter is varied from 

iteration to iteration in such a way as to increase the average rate of convergence. For 

SOR methods, the optimum choice for the relaxation factor is defined to be the 



relaxation factor that gives the greatest asyrnptotic convergence rate and is given by 

(Varga, 1962) 

where p is the spectral radius of the Jacobi iteration matrix. The relaxation factors in 

the CCSI method are chosen to give the greatest average convergence rate; hence, the 

relaxation factors change from iteration to iteration. Asymptotically, the CCSI 

relaxation factor must equd the SOR relaxation factor, and indeed 

It is apparent from equation 3.13 that the spectral radius of the Jacobi flux iteration 

matnx must be known in order to actually use the CCSI method. Since the flux 

coefficient matrix is to be inverted by the CCSI method, it would be usefuI to be able 

obtain by using this same method. It is easily shown that p' is equal to the spectral 

radius of the Gauss-Seidel iteration matrix. Thus, c m  be determined by perfoming 

a series of flux iterations with unity (Gauss-Seidel iterations) and estimating the 

spectral radius, p(G-S), by 

It is recognized that better estimates of p2 are possible. However, the flux coefficient 

matrix depends on the true static eigenvalue which is not known when p2 is estimated; 

thus, there seerns to be little value in obtaining the "exact" spectral radius of the 

"wrong" matrix. 



3.4 Summary 

In this chapter, the properties of  the nodal diffusion equations were examined. The 

numericai methods used to solve the nodal diffusion equations were also detailed in 

this chapter. 

In chapter 4, applications o f  the Analytic Nodal Method and the numerical methods 

described in present chapter will be presented. 



CHAPTER 4 

STATIC APPLICATION OF THE ANALYTIC NODAL METHOD 

4.1 Induction 

In chapter 1, the static nodal diffusion equations of the Analytic Nodal Method, based 

on the single assumption that the transverse leakage shape is spatially flat across each 

node, were derived. The flux and leakage coupling coefficients were obtained by 

solving anaiytic difference equations- A multi-level iterative scheme for solving the 

resulting analytic nodal diffusion equations was detailed in chapter 3. 

In this chapter, results from applications of the Analytic Nodal Method to a two- 

dimensional, two-group static PWR reactor problem and to two three-dimensional, 

two-group, static CANDU reactor problems are presented- The Xenon effect for a 

typical CANDU-6 problem is also discussed in this chapter- Throughout this chapter, 

the accuracy and computational efficiency of the Analytic Nodal Method are compared 

to those of Coarse Mesh Finite Difference Method- 

4.2 Foreword to Static Results 

4-2.1 Computer Code 

The method developed in chapter 1 and the numencal techniques detailed in chapter 3 

are incorporated into a series of program modules of the NDF (Kaveh, et al., 1999) 

code, which has been originally developed to simulate CANDU reactor transients. Ali 

these modules are written in FORTRAN 77. The code was compiled under the Visual 



Fortran 5.0 compiler with full optimization and in single precision. Al1 computations 

reported in this chapter are performed on an IBM PC computer. 

NDF is capable of handling non-uniform mesh spacing and irregular geometric 

boundaries. The generalized albedo boundary conditions described in chapter 1 are 

incorporated into NDF, but no attempt has been made as yet to utilize the aibedos 

except to mode1 zero flux, zero incoming current and zero current boundary 

conditions. 

4.2.2 Convergence Criteria 

The convergence criterion on the node-averaged fluxes which is employed in the code 

NDF is 

where F(g)e' is the average flux and E is the outer iteration convergence criterion. In 

the IAEA 2-D PWR benchmark problem, we used the convergence criterion of 10-~. In 

the CANDU benchmark problem, we used an outer iteration convergence criterion of 

1 0 ~ ~ .  For the typical CANDU-6 problem which is a large 3-D problem, it is not always 

easy to obtain convergence to 10-~. Therefore, we used an outer iteration convergence 

criterion of 1 O-? 

4.2.3 Errors in Power Distributions 

The static solutions to problems presented in this chapter are compared to reference 

solutions, which are spatidly converged. For purposes of surnmarizing the results, 

some tables are used to present the maximum and average errors in nodal power 

densities. Wiih the power density in the (i, j,k) node defined as e,,, , and the 



reference power density represented as ~-::'2,, the maximum error in nodal power 

density is defined to be 

and the average error is 

where V,,j., is the node (i, j, k)md V, is the total volume of the reactor core. The 

maximum nodal power densities defined as Pm ( I , J ,  K) are also presented in the 

tables too. Al1 nodal powers are normalized such that the total reactor power is unity. 

4.2.4 Execution Times 

In order to establish cornparisons between methods, we use the same computer ( B M  

PC) and the same compiler (Visual Fortran 5.0) to perform the calculations. In this 

thesis, the execution tirnes reported are the total CPU time consumed from the point at 

which the computer begins to read the input files to the point at which solution editing 

begins. 

4.3 Static Results 

4.3.1 The 2-D IAEA PWR Benchmark Problem 

In this section, results from 2-D IAEA PWR benchmark problem are presented. The 

benchmark problem is a highly sirnplified two-dimensional, two-group static 

benchmark problem (Muller et al., 199 l), as described in Section A 1.1 of Appendix 1. 

The reactor consists of a two-zone core containing 177 fbei assernbIies each having a 



width of 20 cm- The core is reflected radially and axially by 20 cm of water, and the 

active core height is 340 cm. Each of nine k l l y  inserted controI rods is represented as 

smeared absorbers in a single fuel assembly- The existence of inserted control rods and 

a water reflector gives this problem severe local flux perturbation, which make the 

problern quite challenging, 

The 2-D probIem was solved with 5cm spatial meshes. Table 4.1 sumrnarizes the 

resuIts of Andytic Nodal Method and Co-arse Mesh Finite Difference Method- The 

normdized assembly power densities are &en in Figure 4.1. The reference solution is 

a 3-1/3 cm nodal caiculation by Wagner (Finnernann et al., 1977), which is spatially 

converged. The assembly with the largest percentage error in power densities is one of 

the Iower assemblies adjacent to the reflectror. These results indicate that the Analytic 

Nodal Method with flat leakage approximation is more accurate than Coarse Mesh 

Finite Difference Method for PWR calculation, but the execution time is longer for the 

same mesh size. 

4.3.2 The 3-D CANDU Benchmark ProbElem 

In this section, the static results from 3-D CANDU benchmark problem are presented. 

The CANDU benchmark problem (AB& 1985) is a simplified three-dimensional, 

two-group kinetics benchmark problem as described in Section A1.2 of Appendix 1. 

The kinetics results will be presented in chapter 6- This benchmark has been proven to 

be a very important standard by which progress in CANDU reactor calculation 

methods have been measured. Following the introduction of this problem, rnany 

solutions were obtained (ANL, 1985), but most of these solutions were calculated by 

Coarse Mesh Finite Difference Method. 



The reactor core of this benchmark has 88 channels that are divided into imer  and 

outer fuel regions. Each charme1 is assumed to have 10 fuel bundles each having a 

length 60cm. The cell-averaged cross sections for each region are provided as part of 

the benchmark specification. 

The solution of the 3-D CANDU benchmark problem with 18 x 18 x 10 spatial mesh 

is summarized in Table 4.2, A comparison of Analytic Nodal Method (ANM) with 

Coarse Mesh Finite Difference Method (CMFD) for this problem is given in Table 4.2 

also. The reference case for this benchmark is the solution of a fine mesh CMFD 

calculation split to 72 x 72 x 40, obtained by using the NDF code. 

The following results are given: 

Figure 4-2: Normalized channel power densities. 

Figure 4.3: Normalized bundle power densities on plane I .  

Figure 4.4: Norrnalized bundle power densities on plane 5. 

Figure 4.5: Comparison of percent errors in power densities from CMFD and 

ANM method. 

Figure 4.6: Graph of normalized bundle power density distributions on plane 5. 

Figure 4.7: Graph of absolute percent errors in bundle power densities on plane 5. 

Figure 4-8: Graph of transverse leakages of thermal group on plane 5. 

Compared with the reference values, the maximum error of bundle power densities for 

ANM and CMFD are about 4.3% and 5.9% respectively, and located in the node 

(5,5,2), near the boundary of Z axial; the maximum error of channel power densities 

for ANM and CMFD are about 4.3% and 5.9% respectively, located near the reflector- 

These results indicate that al1 the nodes with larger percent errors of power densities 

are in lower power regions, near the reflector. Because the core of the CANDU 

benchmark is essentially homogenous in the axial direction for the static calculation, 



the percent errors of bundle power densities are identical on each plane. The 

comparison of solutions from CMFD method and ANM rnethod illustrates that with 

the same mesh size, the ANM can get more accurate solution- 

4.3.3 The Typical CANDU-6 without Xenon Effect Problem 

In this section, the static results of a typical CANDU-6 problem are presented, The 

typical CANDU-6 problem (Koclas, 1998 and Navarro Arias, 1996) is a sirnplified 3- 

D fui1 core, 2 energy group model of CANDU reactor, with main reactivity devices, 

such as liquid zone controllers and adjuster rods are presented in the core. This 

problem has 380 fuel channels with 12 bundles in each channel. The core is divided 

into three fuel regions. The lattice pitch is 28.575 cm and the bundle length is 49.53 

cm. This problem is much like the tme CANDU-6 reactor core, in contrast to the 

CANDU benchmark problem. This problem is introduced on purpose of full-core 

dynarnic simulation. The problem is somewhat simplified, as the axial notch in the 

reflector is not present in this model, and Xenon is not taken into account. The fuel 

and reactivity device macroscopic cross-sections were calculated using the 

DRAGON/DONJON chah code (Marleau et al., 1993,1994; Roy et al., 1993). Section 

A1.3 of Appendix 1 gives the detailed description of this problem. 

The reference solution for this problem is the result of a fine mesh CMFD calculation 

with 104 x 104 x 48 spatial meshes obtained by the NDF code. The main results 

without Xenon effect from CMFD and ANM calculations with the sarne coarse 

meshes (26 x 26 x 12) are surnmarized and compared in Table 4.3. The more detailed 

results are given as following: 

Figure 4.9: Normalized channel power densities (without Xenon). 

Figure 4.10: Normalized bundle power densities on plane 1 (without Xenon). 

Figure 4.1 1: Normalized bundle power densities on plane 6 (without Xenon). 



Figure 4.12: Nomalized bundle power densities on plane 8 (without Xenon), 

Figure 4.13: Cornparison of percent errors in channel power densities from CMFD 

and ANM Method (without Xenon), 

Figure 4.14: Graph of normalized bundle power density distributions on plane 6 

(without Xenon)- 

Figure 4.15: Graph of absolute percent errors in bundle power densities on plane 6 

(without Xenon). 

Figure 4.16: Graph of the transverse leakages of thermal group on plane 6 (without 

Xenon) . 

Table 4-3 indicates that both CMFD- and ANM-derived eigenvalues, maximum 

channel power and maximum bundle power agree well with the reference values. 

Compared with the reference values, the average and maximum errors in ANM- 

predicted channel and bundle power densities are al1 smaller than those predicted with 

CMFD. The maximum error of bundle power densities for ANM and CMFD are about 

2.8% and 6.0% respectively; the maximum error of channel power densities for ANM 

and CMFD are about 1.6% and 2.2% respectively. For ANM calculations, the 

maximum percent errors of channel and bundle power densities are located at W13 

and (W14, 4) respectively, wtiich is in the core periphery region adjacent to the 

reflector. Overail, cornparison between CMFD and ANM shows that the ANM results 

are more accurate as expected, 

4.3.4 The Typical CANDU-6 with Xenon Effect Problem 

In this section the results with Xenon effect for the typical CANDU-6 problem are 

presented. The reactivity effect that due to the concentration of this fission product 

Xenon is a particularly important aspect of thermal-reactor operation. We shall use the 

prernise that the effect of Xenon is limited to neutron absorption. The change in the 



absorption cross section due to the presence of Xenon is calculated by 

DRAGONDONJON chain code (Marleau et al., l993,1994; Roy et al,, 1993)- 

The reactivity of Xenon can be expressed as 

where y, is the eigenvalue with Xenon effect, y is the eigenvalue without Xenon 

effect, 

Table 4.4 surnmaries the results of typical CADU-6 with Xenon effect problem from 

Analytic Nodal Method and Coarse Mesh Finite Difference Method, It indicates that 

the difference of Xenon reactivity is about 0.038 rnk, The Xenon effect on the power 

density distribution is shown by Figures 4.17 and 4.18, The power density 

distributions tend towards flat in account of the Xenon effect- 

4.4 Summary 

Although the Analytic Nodal Method has been dernonstrated to be a supenor and more 

accurate method than Coarse Mesh Finite Difference Method for solving PWR 

problems, nodd methods such as the Analytic Nodal Method are seldom used for 

CANDU system. In this chapter, the static AnaIytic Nodal Method results of one PWR 

problem and two CANDU problerns were presented and compared with the results 

calculated with the Coarse Mesh Finite Difference Method- 

Cornparison of 2-D IAEA PWR problern shows that the Analytic Nodal Method is a 

much more accurate method than Coarse Mesh Finite Difference Method for light- 

water system as expected. However, because of the large migration area in a heavy- 

water system, the Coarse Mesh Finite Difference Method is found to be generally 



adequate for CANDU problerns, Al though the advantage of Anal ytic Nodal Method 

with flat transverse leakage approximation in the calculation accuracy is Uustrated, the 

improvernent is not ûs obvious as shown for PWR probIem. For the static 3-D 

CANDU benchmark problem, by using the Andytic Nodal Method instead of the 

Coarse Mesh Finite Difference Method, the maximum error in the channel power 

densities c m  be improved from about 5.9% to 4.3%; and the average error in the 

channel power densities can be improved from about 1.4% to 0.8%. However, the 

computational efficiency of the Analytic Nodd Method is lower than that of the 

Coarse Mesh Finite Difference Method with the same spatial rneshes. 

From the calculation results shown in this chapter, we conclude that the derivation of 

the Analytic Nodal Diffûsion Equations in Chapter 1 is correct, the implementation of 

the iterative procedures and the development of the Analytic Nodd Method within the 

NDF code is successful- It is demonstrated that the Analytic Nodal Method is not only 

applicable for P m ,  but also good for CANDU reactor. With the increasing accuracy 

requirements of current and future CANDU analysis, the Analytic Nodal Method is 

expected to act as an alternative tool for CANDU analysis- 



Table 4.1: Summary of results for the 2-D IAEA PWR benchmark problem 

Outer iterations 

Eigenvalue 

-- - 

.F (assembly, %) 

Execution time (s) 

Coarse Finite Difference 

Method (CMFD) 

Reference eigenvalue: 1 -02959 

Reference maximum nodal power density: 1.480 

Outer iteration convergence criterion: 10.~ 

Flux iteration convergence criterion: 10-~  

Andytic Nodal Method 



Table 4.2: Summary of results for the 3-D CANDU benchmark problem 

Coarse Finite Difference 

Met hod (CMFD) 

Outer iterations 

Pm (1, J) (channel ) 1.252 (10,13),(9,13) 

E,, (1, J ,  K)(bundle ,%) 5.889 (14,5,5) 

E (bttndle ,%) 1,419 

Eigenvalue 

Reference eigenvalue: 1 -00338 

Reference maximum channel power density: 1.228 

Reference maximum bundle power density: 1.897 

Outer iteration convergence criterion: 10-~ 

Flux iteration convergence criterion: 10-~ 

1-00355 

Andytic Nodd Method 

(ANW 



Table 4.3: Summary of results for the 3-D typical CANDU-6 wïthout Xenon 

effect problem 

1 Outer iterations 1 91 1 93 

Coarse Fini te Difference 

Method (CMFD) 

Analytic Nodal Method 

(ANM) 

ElTl, (1, J)(channeZ,%) 

E (channel,%) 

Pm, (1, J) (channel ) 

E,, (1, J ,  K)(brtndle ,%) 

E (bundle ,%) 

Reference eigenvdue: 1.03057 

Reference maximum channel power density: 1 .250 

Reference maximum bundle power density: 1.846 

Outer iteration convergence criterion: 10'~ 

Flux iteration convergence criterion: IO-' 

Pm (1, J ,  K )  (bundle ) 

Execution time (s) 

2.176 (G21) 

0,735 

1-249 (E 14) 

6.045 (K12,8) 

1.552 

1-606 (W11) 

0.5 16 

1,246 (F15) 

2.792 (W 12,4) 

0.646 

1 -853 (E 13,6) 

1 3 -74 

1.843 (E 12,6) 

42.85 



Table 4.4: Summary of resuits for the 3-D typical CANDU-6 with Xenon effect 

problem 

1 P , ( I . J , K )  @undle)  1 1,845 (El 1,6) 1 1.835 (E12,6) 1 

Eigenvalue 

Xenon Reactivity (rnk) 

Total reactor power is 2.154 x 10' w 

Coarse Finite Difference 

Method (CMFD) 

1.00275 

-26.952 

Analytic Nodal Method 

( A m  

1 .O0258 

-26.990 



The maximum assernblv porver densi& and rhe niarimum percent errors are shown in bold characrer 

Figure 4.1: Normalized assembly power densities and percent errors of the 2-D 

IAEA PWR benchmark problem 



16 0 - 6 4  0 -8 1 0 - 8 9 0 -8 9 0 - 8 1 0 - 6 4  -Reference chunnel power densiries 
- 2 . 8 3  -1-51 -1-28 -1.28 -1-51 -2,83-PercenrermrrfirANM(18x18xIO) 

Reference is  the re-rulr o f  CMFD (72 x 72 x 40)- 
The maxîrnum nonnulized channef power demifv and the maximum percent error are shown in bold choracrer 

Figure 43: Normalized channel power densities and percent errors of the 

CANDU benchmark problem for ANM (18 x 18 x 10) 



0 - 16  0 - 2 0 0 -22 0 - 2 2 0 -2 0 0 -16-Reference channe1 nower denriries 
-2 -83 -1.51 -1-28 -1-28 -1-51 -2.8>PercentemrsforANM118xIRx10) 

Reference is rhe remit o f  CMFD 173 x 72 x 10) 
The muximurn nnnnaiized bundle porver densitv and the marimurn percent error are sftown in boid characrer 

Figure 4.3: Normalized bundle power densities and percent errors on plane 1 of 

the CANDU benchmark problem for ANM (18 x 18 x 10) 



16 0-99 1 - 2 5  1-37 1-37 1-25 0.99-Refemmechannelmerde~ines 
-2-83 -1-51 -1-28 -1-28 -1-51 -2.83Pe~~enremrsforIWM(I8x~8xIO) 

Refèrence is the result of  CMFD (72 x 72 x 40) 
n e  maximum normalized bundle power densirv and rhe marimm percent error are shown in bold character 

Figure 4.4: Normalized bundle power densities and percent errors on plane 5 of 

the CANDU benchmark problem for ANM (18 x 18 x 10) 
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-2 -83 -1-51 -1 - 28  -1-28 -1 .51  -2 ~ 8 ~ P e m m r e m r s f o r ~ M f 1 8 x I R x I O )  

Reference is the resuh of  CMFD (72 x 72 x 40) 
n e  marirnurn percent erron are shown in bold character 

Figure 4.5: Cornparison of percent errors in channe1 power densities frorn 

CMFD (18 x 18 x 10) and ANM (18 x 18 x 10) for the CANDU benchmark 

problem 





Figure 4.8: Transverse leakages of thermal group on plane 5 of the CANDU 

benchmark problem for A N .  (18 x 18 x10) 



0.55 0.60 O.Q 0.62 0.60 0.55 ----Referenceclzmnelnniverdensiries 
0.45 1.43 1,Q 1.58 1.36 0.34 - p) 

Rderence is the resulr of CMFD (104 x 104 x 48) 
The maximum noml i zed  channel nnwer densitv and the manmanmurn percenr error are shoivn in bofd character 

Figure 4.9: Normalized channel power densities and percent errors of the typical 

CANDU-6 without Xenon effect problem for ANM (26 x 26 x 12) 
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Figure 4.10: Normalized bundle power densities and percent errors on plane 1 of 

the typical CANDU-6 without Xenon effect problem for ANM (26 x 26 x 12) 
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Figure 4.11: Normalized bundle power densities and percent errors on plane 6 of 

the typical CANDU-6 without Xenon effect problem for ANM (26 x 26 x 12) 
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C 0.83 1-03 1.X 1-35 1.45 1-50 1.51 1.51 1.50 1.45 1.35 1.n 1.03 0.83 
-1.32 6-06 -0.02 -0.06 4-15 -0.27 -0.19 -0.18 -0.24 -0.10 0.01 0.07 0.04 -1.U 

D 0.85 1.08 1.29 1.46 1.58 1-64 1-07 1.66 1-66 1.61 1.H 1-58 1.46 1.30 1.08 0.85 
-1.44 -0.15 -0.09 -0.S -0.19 4-28 -0.54 4-54 -0.52 4.9 -0.23 -0-l2 -0.B 0.02 -0.03 -1.31 

E 0.80 1.07 1.31 1.49 1.Q 1.69 1-70 1-69 1.6û 1.68 1.70 1,70 1.69 1-62 1-50 1-31 1.07 0.80 
-1.42 -0.29 -0.18 -0.33 -0.34 -0.56 4.60 -0.94 -1.09 -1-08 -0.90 -0.54 -0.48 -0.24 -0.21 4.06 4.15 -1-28 

F 1.00 1.26 1.47 1-61 1.67 1.68 1-60 1-57 1.58 1.58 1.57 1.60 1-68 1.67 1-62 1.48 1.26 1-00 
-1.15 4-32 -0.35 -0.66 4-53. -1.U -0.94 -1.27 -1.65 -1.a -1.23 4.87 -1.03 -0.40 -0.53 -0.X -0.17 -0.99 

G 0.86 1.16 1.a 1-58 1.a 1-64 1-a 1-n 1-49 1-51 1.a 1-49 1.3 1-Q 1.a i.sl 1 s  1.u 1-16 0.86 
-1.59 4.45 -0.46 -0.49 -0.89 -0.79 -1.52 -1.26 -1.53 -2-m -2-00 -1.48 -129 -La -0.67 -0.76 4.35 4.31 -0.29 -1.43 

H 1.01 1.30 1.52 1.63 1.66 1.60 1-55 1.47 1-43 1.45 1.45 1-43 1.47 155 1.60 1.66 1-63 1-52 1-30 1.01 
-0.90 6.32 -0.60 4-62 -1.15 -1.08 -1-74 -1.47 -1.Q -2.15 -2.14 -1-59 -1-40 -1-64 -0.96 -1.01 -0.47 43-44 4-15 -0.73 

J 0.80 1.U 1.40 1.58 1-04 l -6 l  1.53 1.47 1.41 1.38 1.39 1.39 1-38 1-41 1-47 1-53 1.Q 1-64 1-54 2-41 1.12 0-91 
4.32 4-02 -0.28 -0.74 4.74 -1-48 -1.29 -1-79 -1.73 -1-78 -2.28 -2.27 -1-74 -1-66 -1-69 -1.17 -1.34 -0.58 -0.57 -0.n 0.16 4-14 

K 0.88 1.21 1.47 1.Q 1-62 2-56 1.48 1-43 1-37 1.34 1-34 134 1-34 1-37 1.43 1.48 1.56 1.Q 1-63 1-48 1.X 0.88 
0-61 0.29 -0.17 4.84 -0.67 -1-45 -1-44 -1-76 -1-86 -1.91 -2-34 -2.32 -1-86 -1-78 -1.66 -1.32 -131 -0.51 -0.67 0.m 0.47 0-79 

L 0.93 1-25 1-51 1.65 1-63 1-55 1.47 1.41 1.35 1.31 1-30 1.30 1-31 1-35 1.41 1.47 1.56 1.63 1.6 1.V 1.25 0.93 
0.68 0-41 -0.m 4-73 4 . S l  -1.26 -1.30 -1.63 -1.83 -1-94 -2.30 -2.28 -1-89 -1.75 -1.53 -1.17 -12 -0.35 4.56 0 .E 0.60 0.86 

M 0.93 1-25 1.51 1.6 1-64 1.56 1.47 1.40 1.34 1.30 1-29 1.29 1-30 1.34 1.40 1.47 1.56 1.64 1-65 1.V 1.25 0.93 
0.75 0-50 0.10 -0.53 4.29 -1.03 -1.06 -1.45 -1.69 -1.83 -2.21 -2.20 -1.78 -1.61 -1.34 -0.94 -0.89 -0.U -0.36 0.28 0.69 0.93 

N 0.88 1-20 1.47 1.63 1.64 1.58 1.49 1.42 1.36 1.32 1.31 1.31 1.32 1.36 1.42 1.49 1.58 1.64 1.63 1.m 1-20 0.88 
0.81 0-55 0.20 -0.29 -0.10 -0.85 -0.81 -1.26 -1.44 -1.53 -1.93 -1.92 -1.48 -1.36 -1.15 -0.69 -0.n 0.E -0.U 0.38 0.73 0.99 

O 0.8û 1-ll 1.39 1.58 1.a 1.6i 1.52 1.45 1-39 1.35 1.36 1.36 1.35 1.39 1.45 1-52 1-61 1-65 1.9 1.39 1-il 0.80 
0.01 0.39 0.25 -0.03 -0.a 4-71 -0.48 -1.06 -1-06 -1.10 -1.55 -1.54 -1.05 -0.99 4 - 9 6  4.36 4-58 0.14 0.U 0.42 0.57 0.19 

P 0-99 1.27 1.48 1-59 1.Q 1.56 1.51 1.43 1.40 1.41 1-41 1.40 1.43 1 - V  1.56 1-Q 1-59 1.48 1.27 0-99 
4-37 0-29 0.07 0.07 -0.41 4.27 6 - 8 8  4-56 -0.69 -1.29 -1.18 -0.64 -0.49 -0.78 -0.15 -0.28 0-22 0.22 0-45 -0.20 

Q 0.83 1-11 1-35 1.50 1.58 1.9 1.55 1-47 1.45 1.47 1.47 1.45 1.47 1.55 l S 7  1.58 L M  1.35 1.12 0.84 
-0.95 0-19 O-U 0.19 -0.H 4.01 -0.56 4-15 -0.35 -0.85 -0.84 -0.31 4 -08  -0.47 0.10 -0.05 0.33 0.28 0.35 4-79 

R 0-94 1-18 1.37 1.9 1.9 1-60 1.3 1-51 1-53 1-53 isi 1.2 1-60 1 . ~ 7  1-50 1-37 i.is 0.94 
-0.48 0.27 0.40 0.11 0.33 4 -04  0.35 0.12 -0.23 -0.22 0.15 0.4i 0.05 0.43 0.23 0.D 0.42 -0.33 

s 0.75 0.99 1.20 1-38 1-52 1-60 1-62 1-62 LQ 1-62 1.e LQ 1.m 1.n 1.39 1.2 0.99  o.^ 
4-69 0.42 O-n 0.61 0.m 0.68 0.81 0.9 0.49 O.% 0.62 0.87 0.75 0.77 0.72 0.133 0.5 -0.54 

T 0.79 1.W l.2l 1.38 1.49 1.56 1.59 1.58 1.58 1.59 1.56 1.49 1.38 1.21 1-00 0.79 
4.52 0.94 1.09 1-12 1.21 1.23 1.02 1-04 1.05 1.05 1.28 1.28 l . 2 l  1.M 1.06 -0.39 

U 0.78 0.97 1.14 1.28 1.37 1.42 1.43 1-43 1.42 1.37 1-28 1.14 0.97 0-78 
4-05 1.33 1.46 1-48 1.45 1.35 1.47 1-48 1.38 1-50 1-54 1.54 1.43 0.05 

V 0.69 0.85 0-99 1-09 1.16 1.19 1.19 1-16 1-09 1-00 0.85 0.70 
0.32 0.90 0.74 1-53 1.76 1.91 1.92 1-79 1-58 0.81 0.98 0.42 

w 0.79 0.85 0.89 0.89 0.85 0 . a R e f e r e n c e  bundleuower ckrtiiis 
1.16 2.13 2.26 ~p 2.16 1-2B--Percent emorr forANM (26 x 26 x 12) 

Rderence i s  the resulr o f  CMFD f IO4 x IiM x 48) 
The Nuimum normalired bundle ooiver densirv and the maximum percenr error are shown in bold characrer 

FEgure 4.12: Normalized bundle power densities and percent errors on plane 8 of 

the typical CANDU-6 without Xenon effect problem for ANM (26 x 26 x 12) 



1 2  3 4 5 6 7 8 9 1 0 E L 1 2 X 3 1 4 I S 1 6 1 7 1 8 1 9 2 0 2 i Z T  

A -1.05 -0.77 -1.24 -1.28 -0.88 -1.P 
0.12 1 . O l  1.25 1.22 0.93 4.a 

B -1-12 -0.55 -O,= 0.90 0.87 0.56 0.52 0.75 0.70 -0.39 4.87 -1-9 
4.30 0.06 -0.17 0.56 0.73 0.99 0-96 0.65 0.42 -0.36 4 -18  4-S9 

C -0.45 12.3 1.08 1-00 0.97 0.m 0.69 0.65 0.74 0.77 0-72 0-73 0-72 4.91 
-0A 0.86 0-72 0-65 0.55 0.45 0.83 0.80 0.36 0.40 0.44 0.47 0-56 4-68 

D -0.38 1.27 1-18 1.02 0-93 0.W 0.76 0-46 0.42 0.62 0-62 0-63 0-65 0-7s 0-78 -0.91 
-0.63 0-83 0-84 0.59 0.52 0-41 0-13 0.66 O.& 0.09 0.25 0-30 0-32 0 .9  0-47 4-02 

E -1.m 1-22 1.19 0-97 0.91 0.87 0.82 0.75 0.40 0 3 5  0.Q 0.58 0.56 OS2 0 . n  0.67 0.65-1.63 
-0.69 0 .9  O-ao 0-6 0.43 0 . z  0.â) -0.10 0.25 o.= -0.21 0-03 0 . a  0.15 O.= 0.42 0.10 -1.12 

F -0.12 1-il 0.88 0.66 0-37 0.16 4-Q 4-79 -1.08 -1-ï3 6-95 4-86  4-17 -0.m 0-18 0.34 0.52 -0.75 
4.43 0.46 0.63 0.41 0.28 -0.a 0-04 -0.25 4.09 4 - 3 3  -0.36 4-14 -0.27 -0.01 0.07 0.24 0.03 -0.89 

G -1.S 0.83 0.98 0-74 0.48 -0.10 -0.29 4 -63  -0.68 4.67 -0.72 -0.84 -0.89 -0.a 4.56 -0.m 0.19 0.36 0.18= 
-0.S 0.25 0.31 0.60 0.32 0.02 4-34 4-22 4-42 -0.48 6-9 -0.54 -0.41 4-59 -0.28 -0.04 0.20 -0.14 4.2 -1.46 

H 4-19 0.90 0-78 0.46 0.17 -0.ZO 4-29 4 - 6 5  6.75 4-81 -0-S7 4-92 4-92 -0.66 -0.64 4-35 4-12 0.15 0.B -0.68 
-0.30 0.38 0.15 0.64 0.26 4 - 2 5  4 - 5 6  -0.47 4.a 4.75 -0.79 -0.3 4-56 4 -82  -0.57 4-12 0-22 -0.31 -0.u 4-81 

J -1.17 0.76 O.= 0.69 0.39 -0.33 -0.a -0.70 -0.82 -0.88 -1.01 -1.07 -1.05 -1.10 -1.07 -1.08 4.86 4-23. 0.04 0-14 0.05 -1.90 
0.18 0.54 0.38 0.03 0.51 0.04 -0.41 -0.64 -0.70 -0.85 4-99  -1-û3 4-97 4-90  -0.90 -0.74 -0.35 0.07 -0.44 -0.U 0.02 -0.36 

K 4 .W 0.74 0.69 0 . 9  -0.Uï -0.76 -0.68 -0.69 6 -86  -0.95 -1-15 -1.U. -1-12 -1.15 -1.07 -1.14 -1.29 4.68 -0.14 4.01 0.M -1.61 
1.06 0.79 0.43 4-02 O.% 0.04 -0.49 -0.69 -0-8s -1.03 -0.97 -LU2  -1-16 -1.05 4-96 4 - 8 3  -0.3s 0-06 -0.49 4-07 0.26 O S l  

L -1.18 0.63 0.70 0.68 0.47 -0.18 -0.49 -0-61 -0.a -0.94 -1.21 -1.77 -1.12 -1.12 -0.99 4-95 4 - 7 2  4 -14  o.ce o m  -0.m -1.9 
1.08 0.M 0.48 0.07 O.4l 0.04 -0.41 -0.69 -0.91 -1.14 4.85 -0.90 -1.26 -1.U -0.36 4-75 4-36 0.03 -0.40 4.02 0.31 OS2 

M -1.U 0.69 0-76 0.72 0.45 -0.20 4-44 4 - 5 4  4-78 -0.90 -1.20 -1.27 -1.07 -1.07 -0.92 4 - 9 1  6-74 4-16 0.06 0.07 -0.03 -1.86 
1.08 0.86 0.53 0.17 0-50 0-08 -0.30 4-63 4 -88  -1.14 4 - 9 1  -0.95 -1.27 -1.08 4-90 6.64 -0.32 O-% 4.30 0 . a  0.33 0-53 

N -0.74 0.90 0.90 0.80 0.45 4-20 4.40 4.48 4.71 4.84 -1.21 -1.27 -1.01 43-99 -0.85 4-86 4-73 4-14 0.15 0-22 0.B -1.47 
1.08 O.= OS4 0.25 0.54 0-10 -0.20 -024 4 -76  4-98 4-83 -0.81 -1.U 4.96 -0.m 4-54 4.28 0-10 4-2l 0.05 0.31 0.54 

O -1.01 0.98 1-09 1.03 0.94 0-26 4-29 -0.42 4 - 5 8  -0.61 -O.Q -0.69 -0.78 -0.85 -0.78 -0.74 -0.26 0-36 0.40 0.42 0.28 -1.n 
0.21 0.60 0 . 9  0-31 0-54 0-ii -0.12 -0.47 -0.56 -0.70 -0.n -0.75 -0.82 -0.76 4.73 -0.44 -0.26 0.U -0.14 0.02 0.10 4.31 

P 0,aO 1,ll 0.97 0.59 0.27 4 -01  43-06 4 - 4 0  -0.49 4-53 -0.59 -0.65 -0.66 -0.40 6 . 4 3  -0.22 0-03 0.36 0.46 -0.67 
4.23 0.48 0.27 0-68 0.29 -0.U -0.40 -0.29 -0.U -0.53 4-57 -0.9 4-41 -0-Q -0.43 -0.07 0-27 -0.17 0.01 4-72 

Q -1.39 O.% 1-09 0.71 0.38 -0.01 -0.08 -0.37 -0.43 4.52 -0.57 -0.58 6 - 6 1  -0.41 -0.41 -0.09 0.24 0.51 0.34 -2.02 
4.89 0.30 0.26 0.82 0-43 0.00 -0.X 4-01  -0.18 -0.32 -0.36 4.28 -0.18 -0.44 -0.29 0.09 0-43 -0.16 -0.15 -1-36 

R -0.m 1-24 0.99 o s  0.9 0.39 4 - 3 1  4.41 -0.51 -0.56 -0.55 4 - 5 4  0.09 0.15 0.12 0-49 0.69 6 - 6 0  
-0.44 0.33 0.96 0.56 0.20 0.09 0.27 0.08 0.18 0.E -0.02 O . i l  -0.U -0.07 0.24 0.60 -0.07 4 -87  

S -0.89 1.37 1-23 0.81 1-12 1.17 1-16 1.14 0.85 0.81 1.01 0.95 0.88 0.77 0.40 0.76 0.85 -1.44 
-0.74 0.37 1.10 0.76 0.40 0.42 0.46 0.25 0.68 0.65 0.16 0-31 0.22 0.E 0.47 0.76 0.M) -1.14 

T 0.W 1.87 1.72 1.45 1.32 1.23 1.16 0.88 0.84 1.04 1.03 1.05 1.U 1.33 1.42-0.41 
-0.65 0.95 0.96 o .n  o .n  0.69 0.48 0.96 0.93 0.39 0.54 O.Q 0.49 0.68 0-64 -1.00 

U 4-02 1.Q 1.53 1.43 1-38 1.22 0.79 0.75 1.10 1-20 1.19 1.23 1.244.42 
4.29 0.99 0.97 0.89 0.85 0.74 1-24 1.2l 0.66 0.72 0.72 0.75 0 .n  -0.59 

V -0.72 4.12 0.32 1.39 1.43 1-32 1-23 1.33 1.22 0-10 4-40 -1.05 
4-15 0.34 0.12 0-88 1.E 1-44 1-41 1.04 0.76 -0.05 0.U -0.39 

w 4-55 4-22  4-62 -0.66 -0.31 -o.~o--Percenr errors for CMFD (26 x26 x I 2  1 
0.45 1.43 1-61 1.58 1.36 0.34- Percenr errors for ANM f 26 x 26 x I2 J 

Reference is rhe resuft of CMFD ( 1 0 4  x IOJ x 4SJ 
The tmzrimum percenr errors are shown in bold chraczer 

Figure 4.13: Comparison of percent errors of channel power densities from 

CMFD (26 x 26 x 12) and ANM (26 x 26 x 12) for the typical CANDU-6 without 

Xenon effect problem 



Figure 4.14: Normalized bundle powes densities on plane 6 of the typical 

CANDU-6 without effect Xenon problem for ANM (26 x 26 x12) 

Figure 4.15: Absolute percent errors of bundle power densities on plane 6 of the 

typical CANDU-6 without Xenon effect problern for ANM (26 x 26 x12) 



Figure 4.16: Transverse leakages of thermal group on plane 6 of the typical 

CANDU-6 without Xenon effect problem for ANM (26 x 26 x12) 



1 2  3 4 5 6 7 8 9 1 0 1 l 1 2 U 1 4 I S 1 6 1 7 1 8 1 9 2 0 2 2 ~  

A 0.87 O.% 0.99 0.99 0.95 0.61 
0-88 0.95 1-Cû 1-00 O.% 0.88 

B 0.78 0.95 1.n 1-24 1.x 1.36 1 3 6  1-32 1-24 1-12 O,% 0-78 
6-78 0.96 1-12 1-24 1-33 1-37 127 1-33 1-24 1-12 o.% 0-78 

C 0.89 1-ïi 1.30 1-45 1-56 1.63 1.66 1.66 1.63 1-56 1.45 1-30 1.11 0.89 
0.89 1.ïi 1.30 1-45 1-56 1.63 1.66 1.66 1.Q 1-56 1.45 1-30 1.n 0.89 

D 0.91 1-17 1.40 1.57 1-69 1-76 1.81 1-83 1.83 1-81 1-76 1.69 1-57 1.40 1.17 0.91 
0.91 1.17 1.40 1-57 1-68 1-76 1-80 1.m 1.83 1.80 1.76 1.68 1-57 1.40 1-17 0.91 

E 0-85 1.16 1.42 1.Q 1-74 1-80 l S  1.84 1-85 = 1.84 122 1.80 1-74 1-62 1.42 1.16 0.85 
0-85 1-16 1.42 1.61 1-73 1.79 1.82 Lü3 =5 1.85 1.83 1-82 1-79 1-73 i.62 1.42 1.16 0.85 

F 1-07 1-37 1-61 1-74 1.78 1-77 1.68 1.67 1.70 1.70 1.61 1.68 1.77 1.78 1.75 1-61 1.37 1.07 
1.07 1.37 1-60 1-74 1-71 1-76 1-68 1.66 1.69 1.69 1.66 1-68 1.76 1-77 1.74 1.60 1.37 1-07 

G 0.91 1.25 1.54 1.73 1.81 1-74 1-69 1.60 1.51 2-59 1.59 1.57 1-60 1.69 1-75 1.8i 1-73 1-54 1.25 0.91 
0.91 1.25 1.53 1-7'2 1.80 1.74 2-68 1-59 1-56 1-59 1.59 1-56 1-59 1.68 1.74 1.80 1-72 1.5 1.25 0.91 

H 1-07 1.41 1-66 1-80 1-82 1-71 LQ 1-9 1-49 1-n 1.9 1-49 1-52 LQ 1-n 1.a 1.m 1-66 1-41 1-07 
1.07 1.40 1.65 1-78 1-81 1-70 1.61 1.Q 1-48 1.50 1.50 1.48 1-52 1.Q 1-70 1-81 1-78 1.65 1.40 1-07 

J o.as 1.2 1-52 1-73 1.m 1-75 1-62 1-53 1-45 1.42 1-44 1-44 1-42 1-45 1.3 LQ 1-75 1-81 1.n 1.n 1.z o.as 
o.as 1.20 1.9 1-72 1.80 1-74 1-61 1-52 1-45 1-42 1.a 1-43 1-42 1-45 1.2 1-61 1-74 1-80 1-72 1.9 1-20 o.as 

K 0.93 1.2'9 1.59 1.76 1.78 1.69 1.57 1.48 1.4.i 1.38 1-39 1.39 1-38 1-91 1.48 1-5' 1.69 1-78 1-76 1.59 1.30 0.93 
0.93 1-29 1-58 1-75 1.76 1-68 1.56 1-47 1.40 1.37 1.38 1 3 8  1.37 1.40 1-47 1-56 1.68 1-76 1-75 1.58 1.29 0.93 

L 0.97 1 - 3 U  1.Q 1-78 1.77 1.67 1-54 1.45 1-38 1-35 1.36 1.36 1.35 1.38 1.45 1-9 1.67 1-77 1-78 1-62 1.34 0.97 
0.97 1-33 1-61 1-76 1-75 1.a 1.5 LM 1-37 1-34 1.3s 1-35 1-34 1-37 1-44 1.9 1-65 1-75 1-76 1-61 1-33 0.97 

M 0.97 1-34 1.Q 1-78 1-77 1.67 1.54 1.45 1-38 1.35 1.36 1.36 1.35 1-38 1.45 1-9 1.m 1.77 1-78 1-62 1.34 0.97 
0.97 1-33 1-61 1-76 1-75 1.65 1-53 1.44 1-37 1-34 1.35 1.35 1.34 1.37 1.44 1.53 1-65 1-75 1.76 1-61 1.33 0.97 

N 0.93 1-29 1.58 1-76 1-78 1.68 1-56 1.47 1.40 1.37 1.38 1.38 1-37 1.40 1.47 1.56 1.69 1-78 1.76 1.59 1.29 0.93 
0-92 1-28 1-57 1-74 1.76 1.61 1.55 1.46 1-39 1 2 6  1.37 1.37 1.36 1.39 1.46 1.55 1-67 1-76 1.74 1-57 1.28 0.92 

O 0.84 1 2 0  1-51 1.72 1.80 1-74 1-62 1-52 1.44 1-41 1.42 1.42 1.41 1.44 1.52 1-61 1-74 1-W 1.n 1Sl 1-20 0.84 
0-84 1.19 1-49 1-70 1.78 1-72 1.59 1.50 1-42 1.39 1.40 1.40 1.39 1.42 1-50 1.59 1-72 1-78 1.70 1-49 1-19 0.84 

P 1-06 1.39 1.Q 1-77 1.79 1.68 1.59 1-50 1.46 1.48 1.48 1.46 1-50 1.60 1-68 1-79 1-77 1.a 1-39 1-06 
1.05 1.37 1.61 1.74 1.76 1.66 1-57 1.48 1.45 1.4ï 1.47 1.45 1.48 1.57 1-66 1-76 1-74 1-61 1-37 1.05 

Q 0.89 1-22 1.SO 1.68 1.76 1.70 1.65 1-56 1.54 156 1.56 1.54 1.56 1.65 1-70 1-76 1-68 1.50 1.23 0.89 
0.88 12l 1.49 1-66 1-74 1.68 1.63 1.54 1-52 1.54 1-54 1-52 1-54 1-63 1-68 1-74 1-66 1.49 1-21 0-88 

R 1-03 1.33 1.55 1.69 1.B 1.72 1.a 1.63 1.66 1.66 1.63 1-M 1.72 1-72 1-69 1-55 1-33 1.03 
1.03 1.31 1.53 1.66 1.70 1.70 1.Q 1.61 1.63 1.63 1.Q 1.Q 1.70 1-70 1.66 1-53 1.31 1-03 

S 0.82 1.ll 1.37 1.55 1,- 1.74 1.77 1.79 1-81 1-81 1.79 1.77 1-75 1-68 1.56 1-37 1-ll O.= 
0.81 1.10 1.35 1.54 1-65 1-72 1-74 1.76 1.78 1.78 1.76 1-74 1.72 1-65 1.54 1-35 1.10 0.81 

T 0.81 LU 1.35 1.51 1.63 1-71 1-76 1-78 1-78 1.76 1-71 1.a 1-n 1-35 1-13 o m  
0.86 1.12 1-33 1-49 1-61 1.68 1-73 1.Z 1.75 1.73 1.68 1.61 2-49 1.33 1.12 0.86 

U 0.85 1-07 2-25 1-40 1.51 1-58 1.61 1-61 1.58 1 s  1.40 1-25 1-07 0.85 
0.84 1.06 1-24 1-38 1.49 1-56 1.59 1.59 1.56 1.49 1.38 1-24 1.06 0.84 

V 0.75 0.92 1.08 1.20 1-29 1.33 1.33 1.29 1.20 1.08 0.92 0.75 
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Figure 4.17: Xenon effect on normalized bundle power densities at plane 6 of the 

typical CANDU-6 problem for CMFD (26 x 26 x 12) 
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Figure 4.18: Xenon effect on normalized bundle power densities at plane 6 of 

typical CANDU-6 problem for ANM (26 x 26 x 12) 



CIZAPTER 5 

ANALYTIC NODAL METHOD FOR 3-D SPACE-TIME IBNETICS 

NEUTRON DWFUSION EQUATION 

5.1 Introduction 

In chapters 1 and 3, the Analytic Nodal Method was denved for the solution of the 

two-group, static diffusion equations for multi-dimensional reactors consisting of 

homogenized Cartesian nodes. The only approximation required in the denvation was 

that the shape of the transverse leakage is spatiaily flat across each node. Efficient 

numerical solution procedures were developed and the CANDU benchmark probIem 

and typical CANDU-6 problem were solved. In al1 of the test cases, the Analytic Nodal 

Method was shown to have a higher accuracy while ernploying bundle-sized spatial 

meshes. Cornparison of solutions with Coarse Mesh Finite Difference Method 

revealed that the nodal method could get more accurate solution for the CANDU 

reactor problem. 

It is possible to take advantage of power of the Analytical NodaI Method with the flat 

transverse leakage approximation to solve kinetic diffusion problems for the CANDU 

reactors as well. In this chapter, the three-dimensional, temporally- and spatially- 

discretized Analytic Nodal diffusion equations are derived. An algorithm for solving 

these neutronic equations in tandem is presented. Solutions to three-dimensional, tkne- 

dependent problems for CANDU reactors are presented in next Chapter- 

5.2 Formulation of the Kinetics Nodal Diffusion Equations 

The time-dependent nodal balance equations are found by integrating the time- and 

space-dependent multigroup neutron equations 1.1 over the volume of an arbitrary 

node (i, j, k) to obtain (Smith, 1979) 



l a -  - - k -(T - ( y j + 1 9 t ) - ~ F , ; . k ( ~ j ~ t ) ) h ~ h ~  --@;* j,k (?)y- jVk = -(Jgx- jSk (xi+l , t ,  - Jg.r. ,.k ( x i  y t))h!hZ gy.1.k - at 

where the surface average current over the nodal surface at x = xi of time t is given by 

with very similar expressions for the other five surface currents. The nodal average 

flux and node average precursor are 

Then we integrate equations 1.1 over the direction y and direction z, to obtain a 

differential equation from which the x-directed spatial coupling of equations 5.la c m  

be detennined for node (i, j, k) 



and 

In order to sîmpli@ the algebra, we introduce the exponential transforrn mP of the flux 

@g .i.;.k (x,  ' )  

and nd of the precursor Cd,i. j.k 

a d 
-Cd,; . ; ,k  ( ~ 7 ~ )  = mi. ,.k 'd.i. ,.k (x") 
at 

The precursor equation 5.2b becomes 

while the transverse integrated flux equation 5-2a becomes 

by introducing matrix notation, this last equation can be written as 



We define a new rnavix [x'] 

to finally write 

Using the Fick's law, an extra relationship is obtained 

for a fixed time, t, equation 5.9 and equation 5.10 can be solved andyticdly (provided 

the mP and md are known) in the same manner as in Chapter 1,  by using the average 

transverse leakage. Hence, the coupling equation is given by equation analogous to 

equation 1.39, 

the matrix elernents of equation 5.11 are different depend on the kinetic distortion 



A sirnilar approach c m  be folIowed for the other two directions. The final three 

equations for the leakages combine with equation 5.1, we obtain the kinetic Analytic 

where 

Equations 5.12 and 5-1b represent the global system of equations which must be 

solved to obtain the time- and space-dependent reactor power distributions. 



5.3 Time Iteration Method and Solution Techniques 

Equations 5.12 represent a system of spatidly-discretized, time-dependent ordinary 

differential equations. Of the four blocks of equation 5.12, only the first involves a 

temporal operator. The latter three blocks are simply expressions for the transverse 

Ieakages at time t and do not involve temporal operators- Hence, any time integration 

scheme which approximates the temporal derivatives of equation 5.lb and the first 

biock of equation 5.12 c m  be employed to solve the time-dependent equations. If 

solutions to the kinetic nodal diffusion equations are desired oniy at discrete times, a 

finite difference approximation to the temporal derivatives c m  be used- 

Let it be desired to approximate the solutions to kinetic nodal equations at the times 

t =t,,C,,t,, --., 

where time intervals are defined as 

Atn = tn+, - tn 

Equation 5.lb and the first block of equation 5.12 can be written in a much simpler 

form as 

where 



Equations 5.13 c m  be differenced using the fÙIIy implicit method to obtain the 

approximations 

Equation 5.14b can be rearranged to obtain 

[c, ln" = (1 + &Atn )-' ( [cd ]" + Atn [Md ln" [TF' ) d=1,2,. . .,D 5.15 

Equation 5.15 can be substituted into equation 5. 14a, and the resulting equation c m  be 

solved for [TT''. Performing the substitution and some subsequent reamngernent 

yields 

Equations 5.15 and equation 5.16 do not completely specify the temporal integration 

scheme. In order to advance the node-averaged fluxes from one time step to the next 

- n t 1  
by use of equation 5.16, [S ] rnust be known. Since [$' depends upon Erc', it is 

not possible to solve directly for [TT+'. The full set of kinetic, spatially-discretized 

Analytic Nodal diffusion equations can be obtained by combining equations 5.12, 

5.15, and 5.16. 



where 

The details of the iterative process will be provided in the next section. 

5.4 Kinetics Solution Techniques 

The full set of ternporally- and spatially-discretized Analytic Nodal difision equations 

are given by equations 5.15 and 5.17. This section provides the details of a kinetics 

solution technique required to solve the equations. 



5.4.1 Matrix Updating 

The complicated matrices in equation 5.16 arise from the andytic solutions to the 

leakage equation. If these matrices are updated at each time step, the computational 

effort expended in the updating process will donlinate the total solution time. It is 

unnecessary to recompute these matrices every time step, the complete matrices 

updating can be performed every 3 to 10 time steps (Smith, 1979). 

5.4.2 Frequency Estimations 

Since the leakage coupling matrices obtained depend on air, and üTd,  it is necessary to 

estimate these quantities. We use such approximations as at time step n, the 

frequencies are assumed to be given by the expressions: 

In al1 but the most rapidly changing kinetics, the frequencies play a very minor role 

(Smith, 1979). 

5.4.3 Iteration 

In solving the static problem, it is found that performing one inner iteration per outer 

iteration was adequate. In the kinetic case, it also appears possible to perforrn only one 

inner iteration per tirne step, provided those reasonable estimates of Ieakages at the 

advanced tune step are available. n iese  estimates of leakages are obtained by using 



the estimated space-dependent frequencies, given by equation 5.18 to extrapolate the 

Ieakages- That is, the leakages at time step n+l are approximated by 

Since the leakages terms in nodal balance equations are generally small in magnitude 

compared to the flux terms, the errors introduced when only one inner iteration is 

performed are generally quite acceptable. 

The flux iterations performed at each inner iteration are identical with those of the 

static probIem. To facilitate rapid convergence of the node-averaged fluxes at each 

time step, the fluxes are extrapolated to the advanced tirne step in the sarne rnanner as 

the Ieakages, 

In most kinetics problems, less than five flux iterations are required to achieve an error 

reduction of 105 in node-averaged fluxes. A larger number of flux iterations may be 

required when extrapolated fluxes are poor estimates of the actual fluxes. Such 

erroneous situations c m  occur when sudden movements of control rods take place or 

in time domains near local power extreme. Nevertheless, the extrapolation procedure 

significantly reduces the computational effort required to solve the kinetic nodal 

diffusion equations, 

The Cyclic Chebyshev Semi-Iterative (CCSI) flux iterations or Gauss-Seidel flux 

iterations or successive overrelaxation (SOR) flux iterations c m  be used. At each inner 

iteration, the convergence is defined as the sarne as for static calculation. 

5.4.4 Kinetics Solution Algorithm 

A description of kinetics solution algorithm is outlined below: 



1. Choose the times (O,TI, T2, T3 ... Ti) which divide the kinetics problem into 

domains within each Ai, E is a constant- 

2. Assume [TT, [zu T, [cd ]" , bp ]" and [& ]" are known at tirne tn- 

3. If t.=T, change At and E to correspond to those of time domain i + 1. Calculate 

new CCSI optirnization parameters. 

4. Alter cross sections to correspond to core status at time tn+i. 

5. Calculate matnx elements. 

6.  Obtain approximations for [ ~ r + '  and[zU r+' by extrapolating with equations 5.19 

and 5.20. 

7. Solve equation 5-17 for [TF'' and [E, Tc' - 
8. Solve equation 5.15 for [cd r+' . 
9. Calculate new frequencies, [mp )+', [mdInf' with equation 5.18. 

10. Repeat steps 3-9 for each time step until the end of the last tirne domain. 

5.5 Summary 

In this chapter, the three-dimensional, temporally- and spatially-discretized Analytic 

Nodal diffusion equations were denved by employing hl ly implicit time iteration 

method. An efficient algorithm for solving the equations in tandem was detailed. 

The method descnbed in this chapter wili be applied to the CANDU benchmark and 

the typical CANDU-6 problem in Chapter 6. The accuracy and efficiency of Analytic 

Nodal Method are presented. Cornparisons of Analytic Nodal Method with Coarse 

Mesh Finite Difference are also presented. 



CHAPTER 6 

NUMERICAL RESULTS FOR 3D SPACE-TIME KINETICS NEUTRON 

DIFFUSION CALCULATIONS 

6.1 Introduction . 

In chapter 5, the spatialIy- and temporally-discretized Analytic Nodal diffusion 

equations were denved. A method for solving these equations was presented for two- 

group case. 

In this chapter, the kinetic Analytic Nodal Method is applied to 3-D kinetic CANDU 

benchmark probIem and the typical CANDU-6 problem. The results of these two 

problems are presented, including the cornparison to the results from Coarse Mesh 

Finite Difference Method, 

6.2 The 3-D CANDU Kinetics Benchmark Problem 

A simplified three-dimensional CANDU benchmark problern (ANL, 1985) with 

asymmetric reactivity insertion is used for the purpose of checking our impiementation 

of the ANM in the NDF code. A detailed description of the benchmark can be found in 

section A1 -2 of Appendix 1. 

This problem is modeled with two neutron groups, six-delayed precursor families- The 

core has 88 channels divided into inner and outer fuel regions. Each channel is 

assumed to have IO fuel bundles. The cell-averaged cross sections for each region, 

including the reflector are provided by the benchmark specification. 



The reactivity insertion in the benchmark problem has two components: 

A component that introduces a negative incremental thermal absorption cross 

section that varies linearly in time over a fixed volume of the reactor, and is 

intended to represent a positive reactivity insertion as from a loss-of coolant 

accident. 

A component that introduces a fixed positive incrementd thermal-absorption 

cross section over a volume that varies with time, to represent the negative 

reactivity insertion frorn a shutdown system- 

The regions affected by two types of perturbation are showed in Section A1.2. The 

resulting transient is followed for 2-5 seconds. 

The static solution to the 3-D CANDU benchmark problem was described in Section 

4.3.2. It is believed that the small errors (less than 4.3%) of the Analytic Nodal 

Method in predicting the spatial power distribution should have littie effect on the 

kinetic solution presented in this section. 

Ln order to evaluate the accuracy of the different methods, it is necessary to have a 

reference solution- Unfortunately, al1 the published solutions for this problem were 

from Coarse Mesh Finite Difference Method with the coarse spatial meshes (1 8 x 18 x 

IO), which is not considered suitable as reference, Hence a Coarse Mesh Finite 

Difference Method results with 54 x 54 x 30 spatial meshes from NDF calculation is 

used as the reference in this study. The reference calcuIations use a tirne step size of 

12.5 ms. These calculations employed convergence cnterion of i d .  

The Analytic Nodal Method caiculations employed the mesh size (18 x 18 x 10) and 

the tirne step of 12.5 rns or 25 ms. The convergence criterion used by ANM was lad. 
Results for the 3-D CANDU benchmark with time step size 12.5ms obtained by 

Analytic Nodal method and Coarse Mesh Fiinite Difference Method with the sarne 



spatial meshes are displayed in Figure 6.1. Comparison of the percent errors of total 

power is contained in Figure 6.2- Resutts for time step size 25ms obtained by Analytic 

Nodal method and Coarse Mesh Finite Difference Method are displayed in Figure 6.3. 

Comparison of the percent errors of total power is contained in Figure 6-4- These 

results indicate that the time-dependent total power predicted by the Analytic Nodal 

Method has an excellent agreement with the reference values. The maximum error in 

total power is of 3 %, and there is no significant loss of accuracy for Analytic Nodal 

Method dunng the transient- The difference between Coarse Mesh Finite Difference 

Method results and the reference values is very srnail (slightly larger than the ANM 

results) in the beginning of the transient, but the difference increases quickly in 1.2 

seconds and reaches to about 13% after 1-8 seconds, which is not considered 

negligible. Similar conclusions are observed for the transient channe1 power and 

bundle power predictions, as shown in Figures 6.5 to 6. f O, separately. This significant 

decrease in accuracy indicates that the CMFD is not as reliable as the ANM for rapid 

transient scenario with significant Ieakage distribution in the core. To improve the 

caiculation accuracy, either the fine mesh with finite difference method or the nodd 

method must be applied- 

The foIlowing detailed results are given for this kinetic probiem: 

Figure 6.5: Relative channel power density of channel (5,lO) versus time. 

Figure 6.6: Percent average error of channel power density versus time. 

Figure 6.7: Relative bundle power density of bundle (6,10,5) versus time. 

Figure 6.9: Relative bundle power density of bundle (7,3,1) versus tirne. 

Figure 6.10: Relative bundle power density of bundle (9,9,5) versus time. 

Figure 6.1 1 : Relative bundle power distribution on plane 5 versus time. 

Figure 6.12: Relative channel power density distribution at time 0.9s. 

Figure 6.13: Relative bundle power density on plane 5 distribution at time 0.9s. 



Figure 6.14: Cornparison of percent errors in bundle power density on plane 5 

from CMFD and ANM. 

AI1 these results indicate that the Anaiytic Nodal Method is more accurate than the 

CMFD for 3-D CANDU kinetic benchmark problem with the bundle-size meshes, 

6.3 The TypicaI CANDU-6 Kinetics Problem 

The typical CANDU-6 problem is a full core 3-D, 2-group model, with al1 reactivity 

devices, such as Iiquid zone controllers and adjuster rods. The problem is somewhat 

sirnplified, as the axial notch in the reflector is not present in this problem, and Xenon 

is not taken into account. The fueI and reactivity device macroscopic cross-sections 

were calculated using the DRAGONIDONJON chah  code (Marieau et al. 1993, 1994; 

Roy et al., 1993). The detailed description of this problem can be found in Section 

Al-3, 

This problem can be used to simulate both normal and abnormal situations. In this 

thesis, kve use it for rod ejection simulation, The transient is initiated by instantaneous 

withdrawd of the first bank of 5 dl-inserted adjuster rods, initially in the core. The 

resulting transient is followed for 900 seconds. 

The static solution to the typical CANDU-6 model was described in Section 4.3.3. It 

was found that the errors of nodal power were lower, these small errors should have 

little effect on the kinetics solution. 

The reactor regulation system is used in this problem. Al1 the devices are initially set 

to reference positions. Each device is then moved and set to a new position 

independently based on the results of the reactor regulating system algorithms. No 



reference solution is available for this problem, hence, it is difficult to measure, in 

absolute sense, the errors in the solution of the Analytic Nodal Method. 

The Andytic Nodal Method calculations empIoyed the mesh size (26 x 26 x 12) and 

the time step size of 25 ms. The convergence criterion used by ANM was 10". The 

Coarse Mesh Finite Difference Method calculations used the sarne mesh size sarne 

time step and sarne convergence critenon. The resulting plots of total power density as 

a function of time are shown in Figure 6.15- It indicate that the agreement of Andytic 

Nodal Method with Coarse Mesh Finite Difference Method is well. 

Figure 6.16, Figure 6.17 and Figure 6-18 present the channel power density of a 

channel as a function of time for channel (E12), (L11) and (L22). Figure 6.19, Figure 

6.20 and Figure 6-21 present the bundle power density of a bundle as a function of 

time for bundles (E 1 Z,6), (L L 1-6) and (S 17,6)- 

Al1 the results exhibit that the curve obtained from Analytic Nodal Method is similar 

to the curve obtained from Coarse ,Mesh Finite Difference Method. The Analytic 

Nodal Method has been demonstrated to be a good method for the simulation of the 

CANDU reactor. 

6.4 Summary 

Zn this chapter, the kinetic Analytic Nodal Method with flat teakage approximation has 

been applied to two CANDU reactor problems. Results indicate that the accurate time- 

dependent solutions c m  be obtained with coarse spatial and temporal rneshes. The 

Analytic Nodal Method with flat transverse leakage approximation was shown to be a 

very accurate method for solving the multidimensional, two-group kinetics diffusion 

equation for the CANDU reactor. 
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Figure 6.1: Relative total power density versus time for the CANDU benchmark 

problem (time step = 0.0125s) 
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Figure 6.2: Percent error of relative total power density versus time for the 

CANDU benchmark probtem (time step = 0.0125s) 
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Figure 6.3: Relative total power density versus time for the CANDU benchmark 

problem (tirne step =0,025s) 
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Figure 6.4: Percent error of relative total power density versus time for the 

CANDU benchmark problem (time step = 0.025s) 
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Figure 6.7: Relative bundle power density of bundle (6,10,5) venus time for the 

CANDU benchmark probIem ( the  step = 0.025s) 
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Figure 6.8: Percent average error of relative bundle power density versus time 

for the CANDU benchmark problem (time step = 0.025s) 
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Figure 6.9: Relative bundle power density of bundle (7,3,1) versus time for the 

CANDU benchmark problem (tirne step = 0.025s) 

Figure 6.10: Relative bundie power demity of bundle (9Q5) versus tirne for the 

CANDU benchmark problem (üme step =0.025s) 
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Figure 6.12: Relative channel power densities and percent errors of the CANDU 

benchmark problem at time 0.9s for ANM (18 x 18 x 10 x 0.025) 
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Figure 6.13: Relative bundle power densities and percent errors on plane 5 of the 

CANDU benchmark problem at time 0.9s for ANM (18 x 18 x 10 x 0.025) 
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Figure 6.14: Cornparison of percent errors in relative bundle power densities 

from CMFD (18 x 18 x 10 x 0.025) and ANM (18 x 18 x 10 x 0.025) on plane 5 at 

time 0.9 s for the CANDU benchmark problem 
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Figure 6.15: Relative total power density versus time for the typical CANDU-6 

problem 
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Figure 6.16: Relative channel power density of channel (E12) versus t h e  for the 

typical CANDU-6 problem 
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Figure 6.17: Relative channel power density of channel (Lll) versus tirne for the 

typical CANDU-6 problem 

Time (s) 

F i p r e  6.18: Relative channel power density of channel (L22) versus tirne for the 

typical CANDU-6 problem 
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Figure 6.20: Relative bundle power density of bundle (E12,6) versus time for the 

typical CANDU-6 problem 
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Figure 6.21: Relative bundle power density of bundle (S17,6) versus time for the 

typical CANDU-6 problem 



Figure 6.22: Relative bundle power density distributions versus time on plane 6 

of the typical CANDU-6 problern for ANM 



CHAPTER 7 

CONCLUS1 ONS 

To practically apply ANM for CANDU analysis, a complete derivation of ANM 

formalism for solving 3-D 2-group static and kinetics diffusion equations were 

reviewed in this work- The numencal methods used to solve the ANM equations were 

also examined- 

Based on the presented ANM forrnalism and numerical methods, the modules used for 

3-D nodal method module were developed and prograrnmed independentiy into the 

NDF code, which was specially designed for 3-D CANDU kinetics calculation. 

The Andytic Nodal Method with flat !eakage approximation was shown to be a 

superior method to CMFD for solving the multidimensional two-group static, kinetics 

diffusion equation of the CANDU reactor. The Analytic Nodal Method with flat 

leakage is a very accurate method for CANDU reactor analysis and design- 

The Coarse Mesh Finite Difference Method is found to be the Iowest order nodal 

rnethod. The calculations show that CMFD is generdy adequate for static CANDU 

analysis. The difference between CMFD and ANM is found to be not important. 

However, for transient scenarios, with significant leakages, the difference between 

CMFD and ANM is not considered negligible. With the increased accuracy 

requirements of current and future analysis, either fine mesh finite difference or higher 

order nodai methods wiI1 have to be appIied for CANDU analysis. 



It was found that, for the typical static CANDU-6 problem, with the normal coarse 

mesh size, the Analytic Nodd Method could be expected to yield channel-averaged 

powers accurate to within about 2% and static reactor eigenvalue accurate to within 

about 0.02%- 

Results from CANDU benchmark and typical CANDU-6 mode1 demonstrate that 

accurate kinetics solutions could be obtained with bundle size spatial rneshes, 

Cornparisons with Coarse Mesh Finite Difference Method indicated that the errors 

Analytic Nodd Method was lower. 

7.2 Recornrnendations for Future Research 

This section contains a description of several items of potential interest that has been 

left unresolved or untouched- 

1, The Transverse Leakage Approximation 

As the only approximation in Our implementation of the static Analytic Nodal Method 

is that the transverse leakage is constant, improvements in this approximation would 

lead to increased accuracy. In particular, it would be very fmitful if a quadratic 

polynomial could be used for the Ieakage approximation. 

2- Coarse-Grid Acceleration 

The phiiosophy of the coarse-grïd acceleration techniques is that the rapid convergence 

can be maintained by projecting a fine-grid problem to an equivdent coarse grid 

problem. Nodal equivalence theory can be used as a restriction operator in a rnultigrid 

acceleration rnethod for classical iterative procedures. Numerical expenments showed 



this employing acceleration technique in Coarse Mesh Finite Difference Method could 

reduce CPU b e  effïciently (Kaveh et al., 1999). 
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APPENDIX 1 

DESCRIPTION OF TEST PROBLEM 

1 .  The 2-D IAEA P m  Static Benchmark Problern 

Geometry 

Figure Al. l:  Quadrant of reactor horizontal cross section of the 2-D IAEA PWR 

static benchmark problem 



Material Proper ties 

* Axid buckling of 0.8 x104 cm-2 for all compositions in 2-D problem. 

xI = 1 -0, x3 = O 



AL2 The 3-D CANDU Benchmark Problem 

Geometry 

Figure A1 -2: Initial back view of reactor for the CANDU benchmark problem 

Figure A1.3: Reactor region affected by voiding for the CANDU benchmark 
problern 



Figure A1.4: Reactor region affected by the shutdown system in front half of the 

reactor for the CANDU benchmark problem 

Figure AIS: Reactor region affected by the shutdown system in horizontal cross- 

section at Y=390cm for the CANDU benchmark problem 



Materiai Properties 

1, Initial two-group constant 

x ~ = I . O ,  X a = O  

2. Speed: vl=lo7 cmls v2=3x 10~cm/s 

3. Delayed neutron data: 



4, Initial perturbations: 

x, , Regions 5,6,10,11,17,18,22 and 23, varies Iinearly in time, with 

az, [ - 1 . 0 ~ 1 0 ~ ( c m - s ) - ' ,  for t 5 0.4s 

5. Absorbers insertions 

An incremental cross-section, A x2, is added to regions 2,4,7,9,14,16,18,19,21,22,23 

and 24 to simulate asyrnmetric insertion of absorbers. 

AC, 6- 15x 1 o3 cm-' 

Insertion start at 0.6 s 

Absorber velocity 520 c d s  



A1.3 The TypicaI CANDU-6 Problem 

Geometry 

Figure A1.6: Vertical cross-section at Z=0 cm illustrating grid layout in XY 

plane of the typical CANDU-6 problem 

Figure A1.7: Horizontal cross-section at Y = 382.85~1~1 illustrating grid layout in 

the XZ plane of the typical CANDU-6 probIem 



Material Properties 

1 .  Initial two-group constant 

The initial two-group constant is calculated by DRAGON/DONJON chain code. 

2, Delayed neutron data: 

Perturbation: 

A group of rods are ejected fiom the reactor core at begiming- Figure A1.8 shows the 

location of these rods. The response of the reactor regulation system and the 

incremental cross-section are calculated by DRAGONfDONJON chain code, 



Bank num ber 

~ o d  nurnber 

The instantaneous withdrawal rods: No. 1, No 7, No, I l ,  No. 15 and No. 2 1 

Figure A1.8: Adjust location in the typical CANDU-6 problem 



APPENDIX 2 

THE COARSE MESH FINITE DIFFERENCE METHOD WITH FLAT 

TRANSVERSE LEAKAGE APPROXIMATION 

A2.1 Derivation of Equations 

The fundamental hypothesis leading to Coarse Mesh Finite Difference Method with 

flat transverse leakage approximation is to expand rnatrix exponentials of 1.36 and 

1.38 to Taylor's series, When higher order terrns approach zero, many of the leading 

terrns cancel, and they become 

The flux parts of 1.4 1 and of 1-42 are 

We take the difference between A2-3 and A2.4, and use flux and current continuity to 

find 



W c h  gives the relationship between a surface average current and the average fluxes 

of the two nodes deiirnited by the surface. An identical caiculation for the node 

(i + 1, j, k) gives the result 

using the definition of the face-averaged net leakages for x direction, the final equation 

can be expressed in the form 1-39? except the efements inside the matrix are different. 

A similar approach can be down for the other two directions. Finally we obtain three 

equations of net leakages. With the neutron balance equation, the resulting super- 

matrix equations can be written as 1-40, sarne as the equations of the Analytic Nodai 

Method, but with the different content of each sub-rnatrix. Each element inside these 

sub-matrixes c m  be easily obtained by expressions A2.5, A26 and the  similar 

expressions for the other directions. The global reactor equation is one of the form of 

classicai eigenvalue problem, and the elernents of matrix independent on the 

eigenvalue y- 

A2.2 Results of the Typical CANDU-6 Problem and Conclusion 

We developed the modules used for Coarse Mesh Finite Difference Method with flat 

transverse leakage approximation and implernented them into the NDF code. The 

typical CANDU-6 problem of static status has been cdculated by these modules. The 

description of typical CANDU-6 problem is shown in Section Al  -3 of Appendix 1. 



The solution of typical CANDU-6 problem with 26 x 26 x 12 spatial meshes is 

summarized in Table A2-1. A comparison of Coarse Mesh Finite Difference Method 

with flat transverse leakage approximation (CMFD+F) to Coarse Mesh Finite 

Difference Method (CMFD) is given in Figure A2.1. The reference is the result of 

CMFD with split 104 x 104 x 48, obtained by the NDF code- 

These results indicate that introducing the flat transverse Ieakage approximation into 

the Coarse Mesh Finite Difference Method causes a loss of accuracy. This is attributed 

to an inconsistency between the exponentid hnction expansions for flux shape and 

leakage shape. This inconsistency is the most probable cause of the obvious accuracy 

loss* 



Table A2.1: Summary of results for the 3-D typical CANDU-6 problem 

Coarse Finite 

Difference Method 

(CMFD) 

Reference eigenvalue: 1.03057 

Reference maximum channel power density: 1.250 

Outer iteration convergence criterion: 10-~ 

Flux iteration convergence criterion: 10-~ 

Coarse Finite Difference 

Method with flat transverse 

leakage approximation 

Eigenvalue 

E- (1, J)(channel,%) 

E (channe[,%) 

P- (1, J )  (channel ) 

1,03067 

2.176 (G21) 

0,735 

1.03 103 

3.157 (G2 I)  

1.018 

1.249 (E14) 1 -253 (E 14) 



1 2  3 4 5 6 7 0 9 1 0 U U U 1 4 1 5 1 6 1 7 I s f 9 2 0 2 1 2 2  

A -1.05 4-77 -1.24 -1.28 -0.88 -1.22 
-2.20 4-50 4-55  -0.58 -0.59 -2-35 

B -1.12-0.55 -0-l3 0.90 0-87 0.56 0.52 0.75 0.70 -0.39 -0.87 -1.9 
-2.m-0.65 -0.63 0.84 1.14 1.15 1.l.2 1-04 0.68 6.84 -0.93 -2.34 

C 4-45 1.13 1-08 1.00 0.97 0.87 0.69 0.65 0.74 0-77 0.72 0.73 0.72 -0.91 
-1.92 0-93 1.22 1-20 1.16 1 - 3 3  1.10 1-07 1-03 0.99 0.96 0.93 0.58 -2.30 

D -038 1-27 1.18 1-02 0.93 0-84 0-76 0.46 0-42 0.Q 0.62 0.63 0.65 0.75 0.78 -0.91 
-1.94 0-92 2 -T ;I 1.Z 1-18 1-06 0.58 0-54 0.94 1-00 O.% 0.91 0.76 0 . 9  -2.39 

E -1.03 1.22 1-19 0.97 0.91 0.81 O.&! 0-75 0.40 0-35 0.61 0-58 0.56 O.= 0.51 0.6'7 0.65 -1.a 
-230 0.86 2-10 1 - O ï  1-16 1-07 1.10 0-91 0.30 0.26 0.79 0-90 0.81 0.83 0.66 0 . 3  0.38-2-79 

F -0.12 1-ii 0.88 0.66 0.37 0.16 4 -62  -0.79 -1.08 -l.U -0.95 4-86 -0.17 6.04 0-18 0.34 0.52 4-75 
-0.86 1-02 1-06 0.92 OS9 0.36 4-78 -0.96 -1.29 -1.33 -1.09 -0.98 0.08 0.25 0.52 0.61 0.53 -1.38 

G -1.51 0.83 0.98 0-74 0.48 -0.14 -0.29 4-h3 -0.68 4-67 4-72 -0.84 -0.89 -0.63 13.56 -0.02 0.14 0.36 0.18 = 
-2.60 0.65 0.98 0-98 0.77 4-14 -0.44 6-93 -1.06 4-85  4-89 -1.19 -1.14 4.73 4 - 3 3  0.35 0.51 0.46 0 .10516 

H 4-19 0.90 0-78 0.46 0.17 -0.20 4.29 -0.65 4-75 -0.m -0.87 4-92 -0.92 -0.66 -0.a -0.35 -0.U 0.E 0.23 -0.88 
-0.82 0.92 0.91 0.54 0.Z 4-30 -0.51 -1.08 -1.B -1.09 -1.U -1.32 -1.31 4-87 4-61 4-21 0-05 0.38 0.36 -1.40 

J -1.17 0.76 O.&! 0.69 0.39 -0.33 6.63 -0.70 6-82 -0.88 -1-01 -1-07 -1-05 -1.1@ -1-07 -1-08 -0.86 -0.21 0.04 0.14 0.05 -1-90 
-2.22 0.75 0.95 0.83 0-46 -0.50 -0.94 -1.10 -1.22 -1.32 -1-38 -1.43 -1.46 -1.6 -1-41 -1.32 -0.94 -0.M 0.29 0.38 0.15 -2.83 

K4.87 0.74 0.69 O.= -0.07 -0.76 -0.68 -0.69 4.86 -0.95 -2-15 -1.21 -1.12 -1-15 -1.07 -1.14 -1.29 -0.68 -0.14 -0.01 0.01 -1.Q 
-0.55 1.08 1.W 0.n -0.23 -1.14 -0.97 -1.08 -1.29 -1.41 -1-61 -1.72 -1.56 -1-52 -1.39 -1.36 -1.58 -0.73 0.22 0.42 0.47 -1.17 

L -1-l8 0.63 0.70 0.68 0.47 -0.18 -0.49 -0.Q -0.84 4.94 -1.21 -1.27 -1-U -1-1Z 4-99 4.95 -0.72 -0.14 0.M 0.00 -0.09 -1.92 
-0.55 1-14 1-04 0.83 0-49 -0.38 -0.89 -1.05 -1.28 -1.44 -1-86 -1.91 -1.58 -1.2 -1-9 -la 4.m -0.02 0.28 0.45 O.Q -1.17 

M-1-U 0.69 0.76 0.72 O.& -0.20 -0.44 -0.54 -0.78 4-90 -1-20 -1.27 -1.07 -1-07 -0.92 -0.91 -0.74 -0.16 0.06 0-07 4-03 -1.86 
4-53 1.16 1.09 0.92 0.49 6 -37  -0.79 4-90 -1-23 -1-40 -1.86 -1.91 -1.55 -1.47 -1.29 -1.18 -0.82 6.02 0.37 O . i l  0.56 -1.15 

N -0.74 0.90 0.90 0.80 0.4.5 4.20 -0.40 -0.48 -0.n -0.84 -1.21 -1.27 -1-01 6.99 -0.85 6.86 4.73 4.14 0.15 0.22 0.B -1.47 
-0.49 1-17 1.14 1.03 0.55 6.32 -0.69 4-89 -1.22 -1.27 -1.82 -1.m -1.U -1.35 -1.20 -1.07 4-77 0.06 0.49 OS6 0.57 -1.10 

O -1.01 0.98 1.09 1.03 0.94 0.26 -0.29 -0.42 -0.58 6-61 -0.63 -0.69 -0.78 -0.85 -0.78 -0.74 4.26 0.36 0.40 0.42 0.28 -1.71 
-2.10 0.90 1-16 1.17 1.29 0-38 -0.58 4-83 4-96 -1-03 -0.95 -1.00 -1.17 -1.18 -1.U -0.95 -0.05 0.80 0.64 0.60 0.32 -2.69 

P 0.00 1.U 0.97 0.59 0.27 -0.a -0.06 -0.40 -0.49 -0.54 -0.59 -0.65 -0.66 -0.40 4.9 4.22 0.03 0.36 0-46 -0.61 
-0.60 1.20 1-22 0-71 0.~16 0.03 -022 -0,n -0.81 4-71 4-75  -0.94 -0.94 -0.50 4 - 3 2  0.05 0.31 o .n  o.& -1.16 

Q -1.39 O.% 1.09 0.71 0.38 -0.a 4-06 -0.37 -0.43 -0.9 -0.9 -0.58 -0.61 -0.41 4-41 6.09 0.24 0 . 9  0.34 -2.02 
-2.29 0.98 1.28 1-02 O-TL 0 , s  -0.03 4-46 -0-6l -0.52 -0.56 -0.13 -0.68 -0.30 -0.15 0.31 0.58 0.79 0.46 -2.82 

R -0.m 1.24 0.99 0.56 0 . 5  0.39 4 -31  -0.41 -0.51 -0.56 4.55 -0.54 0.09 0.E 0-12 0.49 0.69 4-60 
-0.50 1.36 1-19 0.85 0.97 O.& -0.25 -0.39 -0.40 -0.44 -0.51 -0.44 0.59 0.66 0.48 O.TI 0.90 4.99 

s -0.83 1-37 1.2 o.m 1-12 1-17 1-16 1.14 o.as 0.81 1-01 0.9s o,ss 0-7 0.40 0.76 0.85-1-44 
-1.91 1.25 1-22 0.96 1.63 1.63 1-70 1.57 1-01 0.98 1.46 1.53 1.39 1-33 0.61 0.82 O.=-2.36 

T 0.07 1.87 1.n 1.45 1.32 1.23 1.16 0.88 0.84 1.04 1.CQ 1.05 1-12 1-33 1.42-0.41 
-1.44 1.m 2.05 1.83 1 . a ~  1-84 1-72 1-26 1-22 I.Q 1-67 1.m 1-56 1-73 1.50-1.84 

U -0.02 1.Q 1.5 1.43 1.38 1.22 0.79 0.75 1 J 0  1-20 1.L9 1-23 1.24 -0.42 
-1.09 1.83 1-92 1.87 1-87 1-83 1-34 1.31 1.74 1.Z 1.61 1.67 1.53-1.42 

V -0.72 -0.U 0.32 1.39 1.43 1.32 1.29 1.33 1.22 0.10 6-40 -1.05 
-1.26 0.06 0.07 1-57 1.93 2.28 2.25 1.85 1.43 -0.12 -0.17 -1.54 

w 43-55 4-22 -0-Q -0.66 -0.31 -O-7-Percent crrors for CMFD 
-1.49 0.30 0-47 0.44 0.23 -1.61 Pcrcrnf rrrors for CbfFD+ F 

Reference is the resulr of  CMFD 110.1 x 104 x 48) 
m e  marirnurn erron are shown in bold characier 

Figure A2.1: Cornparison of percent errors of channel power densities from 

CMFD (26 x 26 x 12) and CMFD with flat transverse leakage approximation 

(26 x 26 x 12) for the typicaï CANDU-6 without Xenon effect problem 




