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RESUME

Dans ce document, la méthode nodale analytique est formulée avec une approximation
de fuites transversales constantes, ce qui constitue la seule approximation utilisée. Le
couplage spatial est obtenu & partir de la solution analytique des équattions de
diffusions unidimensionnelles résultantes. Les équations qui découlent sont exprimées
en terme des flux moyens et des fuites nettes de surface. Ces équations ont da forme
d’un probléme aux valeurs propres classique, qui est résolu par la méthrode des

itérations sur les sources.

Les modules nécessaires aux calculs statiques et dynamiques en 3-D ont été
développés et intégrés dans le code NDF, qui ne disposent que des différencees finies
centrées. Deux problémes ont été analysés avec ces modules : premi€rexnent, le
probléme du CANDU benchmark et un modéle de CANDU-6 typique, avec les
mécanismes de réactivité ( 19 barres liquides et 21 barres compensatrices) présents
dans le cceur. Les propriétés du combustible et des mécanismes de r€activité

proviennent de DRAGON / DONJON.

Les calculs démontrent que la méthode nodale analytique avec fuites constantes est
plus précise que la méthode des différences finies centrées pour I’étude des réacteurs
CANDU, spécialement pour la prédiction des puissances de canal dans les ré€gimes a
haute puissance. Les calculs cinétiques espace-temps en 3—D démontrent aussi la

supériorité de la méthode pour les analyses des transitoires.
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ABSTRACT

In this thesis, the formulation of the Analytic Nodai Method (ANM) 1s derived
with the flat transverse leakage approximation, which is the only approximation
introduced during derivation. The spatial coupling is determined by the analytic
solutions of the one-dimensional diffusion equations. The resulting super-matrix
equations can be written in terms of nodal-averaged fluxes and face-averaged net
leakages, the form of classical eigenvalue problem which can be solved by a standard

source iteration procedure.

Based on the proposed method, the modules used for 3-D static and Kinetic
calculations were developed and programmed into the NDF code, which was a finite-
difference code specially designed for 3-D CANDU kinetics calculation. Two
problems were tested for these modules: one is a standard CANDU benchmark
problem, another is a typical CANDU-6 core with in-core reactivity devices (21
adjuster rods and 14 liquid zone controllers) present. The fuel and reactivity device

properties used in the calculations were generated by the DRAGON/DONJON chain

code.

The calculations demonstrate that the ANM with flat leakage approximation is
more accurate than the Coarse Mesh Finite Difference (CMFD) method for CANDU
analysis, especially for the channel-power prediction in the central high-power region.
The application of the ANM with flat leakage approximation to 3-D CANDU kinetics
calculation shows that the ANM with flat leakage approximation is more accurate than

the CMFD for 3-D CANDU transient analysis.
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CONDENSE EN FRANCAIS

I Introduction

Des méthodes nodales ont ét€ utilisées pour 1’analyse du cceur des réacteurs a eau
l€gére (LWR) et pour les analyses de stret€ pendant plus de vint années. Dans les deux
demiéres décennies, les méthodes nodales modernes, par exemple la méthode
d'expansion nodale (Finnemann et autres, 1977), la méthode nodale analytique
(ANM) (Smith, 1979) et la méthode nodale de fonction de Green (NGFM) (Laurent et
autres, 1980), ont été développées avec succés pour résoudre le probléeme spatial du
LWR. Cependant, & cause de la grande zone de migration des neutrons dans ’eau
lourde la méthode des différences finies centrées (CMFD) s'est généralement avérée
adéquate et a €té intensivement utilisée pour I'analyse de CANDU pendant les trente
demniéres années. Pour répondre a la demande d’une plus grande exactitude des
analyses actuelles et futures, nous avons €tudié I'utilisation de la méthode nodale

comme outil alternatif pour I'analyse du CANDU.

Parmi les nombreuses méthodes nodales avancées, ANM est considérée comme
méthode numérique précise et efficace pour résoudre 1’équation de diffusion
dynamique, muitidimensionnelle, a deux groupes d’énergie pour LWR (Smith, 1979).
Cependant, le code dANM -QUANDRY (Smith, 1979) ne peut pas é&tre utilisé
directement pour l'analyse du CANDU parce qu'il a été spécifiquement con¢u pour
LWR. Un grand nombre de difficultés ont été rencontrées dans QUANDRY en
effectuant des analyses de transitoires de CANDU avec les mécanismes de contrfle de
le réactivité insérés perpendiculairement par rapport au combustible. Une voie

alternative est de réétudier le formalisme d'ANM et de développer des modules
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indépendants pour un code de diffusion actuel de CANDU. Le code NDF a été utilisé
dans cette étude. Le premier objectif de I'auteure est de mettre en applicationr 'ANM
dans l'environnement de DRAGON/DONIJON puis, d’appliquer cette méthode a
I'analyse des réacteurs CANDU.

Les objectifs du travail actuel sont divis€s en trois parties. D'abord, réétudier la
procédure de dérivation de la méthode nodale analytique avec I'approximation de fuite
transversale plate, qui est la seule approximation présentée pendant la dérivation.
Ensuite, résoudre les équations statiques et cinétiques en utilisant la procédure itérative
appropriée. Le deuxiéme objectif consiste a développer les modules utilisés par la
méthode nodale analytique et mettre en application ces modules dans le code NDF. Le
troisiéme objectif est d'appliquer la méthode nodale analytique au probléme de
référence de CANDU et au probléeme CANDU-6 typique. La solution de la méthode
nodale analytique sera comparée a la solution de la méthode des différences finies

centrées.
II. Synthése du probléme

Dans la plupart des situations rencontrées dans l'analyse des réacteurs, il est suffisant
de modéliser le comportement neutronique du réacteur par une approximation dans
I'équation de transport des neutrons formellement exacte. L’approximation la plus
répandue est la théorie de diffusion multigroupe. L'équation de diffusion peut €tre
écrite comme 1.1. Si la distribution des propriétés matérielles dans l'espace et dans le
temps, la distribution initiale de flux de neutrons dans l'espace et dans I'énergie et les
conditions aux limites appropriées sont indiquées, une unique solution a I'équation
existe. Les trois conditions aux limites les plus généralement utilisées a la surface

externe du réacteur sont: le flux nul, le courant réentrant nul et le courant net nul.



Normalement, le cceur du réacteur est divisé en un certain nombre de parallélépipedes
rectangulaires contigus (ou nceuds). Nous supposons €galement que les propri€tés
nucléaires, les sections efficices macroscopiques et les coefficients de diffusion sont
constants en espace dans chaque nceud, bien qu'elles puissent changer par rapport au
temps. Par conséquent, le calcul du cceur complet est réduit a celui de la détermination
de la distribution spatiale du flux dans un réacteur contenant plusieurs milliers de

nceuds.
III Descriptions des méthodes
Méthode des Différences Finis de Maille Grossiére

Plusieurs méthodes pour résoudre les équations de diffusion multigroupe dépendantes
du temps sont actuellement 2 la disposition de la communauté nuci€aire. La méethode
la plus répandue pour le réacteur CANDU est la méthode des différences finies
centrées grossiére. Cette méthode posséde plusieurs avantages par rapport & la plupart
des autres méthodes pour le réacteur CANDU. Par exemple, cette méthode est
conceptuellement simple et les équations algébriques résultantes pour les flux sont
telles que seulement des nceuds adjacents sont couplés. Une propri€t€ trés importante
de la méthode des différences finies est la suivante : il est prouvé que cette méthode
converge 2 la solution exacte des équations de diffusion multigroupes dans la limite de
maille infiniment fine. En outre, par suite de la grande utilisation de cette méthode, les
méthodes numériques associ€es ont €galement atteint des niveaux €Elevés de
sophistication. Le seul véritable inconvénient de CMFD est que des mailles spatiales

fines sont exigées pour atteindre une précision acceptable.

Des travaux récents (Koclas, 1998) ont montré qu’a partir de la méthode nodale

analytique, en forcant a zéro les fuites transversales et en tronquant l'expansion des



exponentielles de matrice qui surgissent, CMFD pourrait étre obtenu. Ceci indique
aussi que CMFD est la méthode nodale d’ordre le plus bas. La méthode nodale devrait
nous permettre d’obtenir des résultats plus précis lors de I’analyse des réacteurs de

type CANDU.

Méthode nodale analytique

Une autre classe de techniques employées pour résoudre les équations de diffusion
multigroupes est la méthode nodale. Pendant les vint derniéres années, la méthode
nodale a été utilisée avec succés pour la physique des réacteurs a eau légére (LWR) et
les analyses de siireté. Mais elle est rarement utilisée pour le réacteur de type CANDU

parce que le CMFD s'est généralement avéré adéquat.

La plupart des méthodes nodales utilisent les flux moyens associ€s avec de larges
régions spatiales (définies par des nceuds) et les courants moyens a des sourfaces
définies par les nceuds. Aucune approximation n’est nécessaire par rapport a I’équation
de diffusion des neutrons dans la dérivation des équations nodales de bilan. La
difficulté avec les méthodes nodales est que le rapport entre les flux moyens dans les
neeuds et les courants moyens sur les surfaces doit étre connu. Une fois que les
rapports entre les flux moyens dans les nceuds et les courants moyens sur les surfaces
sont spécifiés, des équations de couplage peuvent étre construites. Plusicurs approches
différentes ont été proposées pour déterminer le couplage flux-courant. Comparé a
d'autres méthodes nodales, la méthode nodale analytique utilise seulement une

approximation pour les termes de couplage, soit la forme des fuites transversales.

L'approximation de fuite transversale plate et I'approximation de fuite transversale
quadratique sont les deux approximations généralement utilisées. Dans cette thése,

nous utilisons l'approximation de fuite transversale plate, pour les raisons suivantes :



a) Dans un réacteur CANDU, le courant est trés petit par rapport au flux et les fuites
transversales ont une petite valeur.

b) Dans un réacteur CANDU, habituellement la CMFD est adéquat. La CMFD est la
méthode nodale d’ordre le plus bas et utilise l'approximation des fuites
transversales nulles. Ainsi, il est raisonnable d'utiliser l'approximation des fuites
transversales plates dans 1'analyse du réacteur CANDU.

La méthode nodale analytique utilise la solution analytique de [I’équation

unidimensionnelle de diffusion a deux groupes pour déterminer le couplage spatial.

Les €quations finales résultantes peuvent €tre €crites en terme des flux moyens et des

fuites nettes de surface. Pour les calcules statiques, elles sont données par 1'équation

1.40; pour la cinétique, elles sont données par 1'équation 5.12.

IV Techniques numériques

Calcul statique

L'équation statique pour laquelle une solution est recherchée dans la méthode nodale
analytique est donnée par 1.40. L'équation sous terme super de matrice est un
ensemble d'équations linéaires de quatre vecteurs d’inconnus: flux moyen pour le
premier vecteur et les fuites nettes de surface pour chaque direction pour les trois
autres vecteurs. L'équation se présente sous la forme d'un probléme classique de valeur
propre, sauf que les éléments de la matrice de coefficient [ H ] dépendent de la valeur
propre. Afin d'éviter des caractéristiques ind€sirables, les trois derniers blocs sont
substitu€s dans le premier bloc d'équation pour obtenir I'€quation 3.1. Le schéma
itératif gé€néral pour résoudre cette €quation est comme suit:

1. Une valeur initiale pour y (habituellement y=1.5) est employée pour évaluer les

composants de la matrice de coefficient [ H ].
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2. Une itération accélérée de source de fission (externe) est utilis€ée pour d€terminer
itérativement la valeur propre maximale et le vecteur propre correspondant (y et
[o])-

3. Apreés quelques itérations externes (habituellement 5-10), la derniére évaluation de
v est employée pour mettre & jour les composants de la matrice de coefficient [ H ].

4. Utilisez une méthode "modifiée” de Gauss-Seidel par bloc pour effectuer les
itérations internes.

5. La méthode d'itération semi-cyclique de Chebyshev (CCSI), ou la méthode

d'itération de Gauss-Seidel est utilisée pour I'itération de flux.

Le fait que la matrice de coefficients [ H ] dépende de la valeur propre du probléme
statique global donne aux itérations externes un caractére non linéaire. La pratique de
mettre 2 jour les matrices chaque 5 a 10 itérations externes semble appropri€e. En
utilisant la technique de décalage de valeur propre (Wielandt shift) pendant les
itérations externes, le taux de convergence des itérations externes peut étre
sensiblement augmenté. Les itération internes sont faibles en étapes. D'abord, les flux
sont déterminés A partir de ’ancienne source de fission et des anciennes fuites.
Ensuite, les nouvelles fuites nettes sont déterminées par les nouveaux flux et les
anciennes fuites. Normalement, seulement une itération interne par itération externe
est disponible parce que les fuites sont trés petites comparées au flux moyen.
L'itération pour le flux peut étre accélérée en utilisant la méthode de Cyclic Chebyshev
Semi-Iteration (CCSI) ou la méthode d'itération de Gauss-Seidel. L’itération continue

jusqu’a ce que la convergence soit atteinte.

Calcul cinétique

Les équations dépendant du temps d'ANM sont données par les équations 5.12 et 5.1b.

Seul le premier bloc de lI'équation 5.12 fait participer un opérateur temporel. Les



derniers trois blocs sont simplement des expressions pour les fuites transversales, au

temps t, et ne font pas participer des opérateurs temporels. Par conséquent, tout

schéma d'intégration qui rapproche les dérivées temporelles peut étre utilis€ pour

résoudre les équations dépendantes du temps. Nous utilisons la méthode implicite

comme méthode d'itération temporelle. Les grandes lignes d'algorithme de solution de

cinétique sont tracées ci-dessous:

1.

Choisir les temps (0, T, T,, T3...Ti) qui divisent le probléme cinétique en
domaines. Pour chaque domaine de temps, le critére de convergence de flux € est
une constante.

Supposer que les valeurs initiales sont connues au temps t.

Si t, =T, changer Ar et € afin de correspondre a ceux du domaine de temps i+l.
Calculer les nouveaux parameétres d’optimisation de CCSI.

Modifier les sections efficaces pour correspondre a la configuration du cceur au
temps to.q.

Calculer des éléments de matrice.

Obtenir les approximations pour [5 ]"+l et[zu ]"J'l par une procédure d'extrapolation.

Effectuer l'itération de flux pour obtenir [5 ]M' et[zu ]’M .

Résoudre 1'équation pour obtenir [f:'_ p ]MI .

Calculer les nouvelles fréquences d'extrapolation pour le prochain intervalle de
temps. Répéter les étapes 3 a 9 pour chaque intervalle de temps jusqu’a la fin de la

demniére €étape de temps.

La mise & jour compléte de matrices peut étre effectuée toutes les 3 a 10 €tapes de

temps. La matricielle CCSI ou la méthode SOR peuvent étre utilis€ées. Comme les

fuites et les flux sont estimés par une procédure d'extrapolation, I'effort de calcul exigé

pour résoudre les équations nodales de diffusion cinétique est sensiblement réduit.
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V Résultats

Les modules employés par la méthode d’ANM pour des cas statiques et cinétiques ont
été €crits et se mettent en application dans le code NDF. Deux problémes CANDU et
un probléme PWR ont ét€ testés. Les résultats sont comparés a des solutions avec

maille fine CMFD et avec maille grossiere CMFD.

Résultats statiques

a) Le probléme de référence CANDU

Le probléme de référence CANDU (ANL, 1985) est un probléme de référence
tridimensionnel simplifi€, a deux groupes d’énergie, cinétique, comme décrit dans la
section Al.2 de l'annexe 1. Il est considéré comme une norme trés importante par
laquelle le progrés dans des méthodes de calcul de CANDU est mesuré. Nous utilisons
les résultats d'un caicul a maille fine de CMFD (72 x 72 x 40) comme référence. Les

résultats détaillés se trouvent montrés dans le chapitre 4.

Les résultats indiquent que les erreurs maximales pour les densités de puissance de
grappe pour ANM et CMFD sont d’environ 4.3% et 5.9% respectivement et situées
dans le nceud (5,5,2), prés de la frontiére axiale ou Z. Les erreurs maximales des
densité€s de puissance de canal pour ANM et CMFD sont d’environ 4.3% et 59%
respectivement, pour un canal situé prés du réflecteur. Ces résultats montrent que les
nceuds avec les plus grandes erreurs de densités de puissance sont dans des régions de
puissance faible, prés du réflecteur. La comparaison des solutions de la méthode de
CMED et de la méthode d'ANM montre qu'avec la méme maille, 'ANM obtient une

solution plus précise.
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b) Le probléeme du CANDU-6 typique

Le probléme typique du CANDU-6 (Koclas, 1998 et Navarro Arias, 1996) est un plein
cceur 3D complet simplifi€, avec deux groupes d’énergie, avec Mes mécanismes
principaux de réactivité, tels que les contrdleurs liquides de zome et barres de
compensation présents dans le cceur. Ce probléme est similaire a un ve«€ritable réacteur
CANDU-6, contrairement au probléme de référence CANDU. Ce probléme est
introduit pour la simulation dynamique. Le probléme est en quelque sorte simplifi€,
car l'entaille axiale dans le réflecteur n'est pas présente dans ce modéesle. Les sections
efficaces macroscopiques du combustible et des mécanismes de réactivité sont
calculées en utilisant la chaine de calcul DRAGON/DONJON (HMarleau et al.,
1993.1994; Roy et al., 1993). La section Al.3 de l'annexe 1 donne la description
détaillée de ce probléme. Nous utilisons les résultats d'un calcul a maille fine (104 x

104 x 48) de CMFD comme référence. Les résultats détaillés sont donnés dans le

chapitre 4.

Les résultats obtenus avec CMFD et ANM tels que la puissance maxirnale du canal et
la puissance maximale de grappe sont tous conformes aux valeurs de référence.
Comparé aux valeurs de référence, les erreurs moyennes et maximalles, prévues par
ANM, dans le canal et les densités de puissance de grappe sont toutes plus petites que
celles prévues par CMFD. Les erreurs maximales des densités de puissance de grappe
pour ANM et CMFD sont environ 2.8% et 6.0% respectiveme=nt; les erreurs
maximales des densités de puissance de canal pour ANM et CMFD somt environ 1.6%
et 2.2% respectivement. Pour des calculs d'ANM, le pourcentage maxirnum de 1’erreur
des densités de puissance de canal et de grappe est localisé a WHK3 et (W14, 4)

respectivement, qui est dans la région périphérique du ceeur a coté dm réflecteur. De
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facon générale, la comparaison entre CMFD et ANM prouve que les résultats d'ANM

sont plus précis comme prévu.

L'effet xénon aéré calculé avec le ANM et CMFD pour ce méme réacteur. Les résultats

détaillés peuvent étre trouvés dans le chapitre 4, la charge de xénon est de 0.028mk

dans les deux cas.

Résultats de la cinétique
a) Le probléme de référence de CANDU

Un probléme tridimensionnel simplifi€é de référence CANDU (ANL, 1985) avec la
mise en place asymétrique de mécanismes de réactivit€ est utilisé afin de contrdler
notre mise en ceuvre de 'ANM dans le code NDF. Une description détaillée peut étre

trouvée dans la section Al.2 de l'annexe 1.

Afin d'évaluer l'exactitude des différentes méthodes, 1l est nécessaire d'avoir une
solution de référence. Malheureusement, toutes les solutions publi€es pour ce
probléme proviennent de la CMFD avec une maille grossiere (18 x 18 x 10), qui n'est
pas considérée comme une référence appropriée. Par conséquent, des résultats d'un
calcul CMFD avec 54 x 54 x 30 mailles spatiales sont utilis€és comme référence dans
cette étude. Les calculs de référence utilisent un pas de temps de 12.5 ms. Le critére de

convergence utilisée par ces calculs est de 107° pour les flux. Les résultats détaillés

sont donnés en chapitre 6.

La comparaison des erreurs en pourcentage de la puissance totale obtenues par ANM

et CMFD avec les mémes intervalles de temps et la méme maille indique que la
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puissance dépendante du temps obtenue par la méthode nodale analytique est en
excellent accord avec les valeurs de référence. L'erreur maximale de la puissance totale
est de 3 %, et il n'y a aucune perte de précision significative pour la méthode nodale
analytique durant la transitoire. La différence entre les résultats CMFD et les valeurs
de référence s’accorde bien (Iégérement plus grands que les résultats d’ANM) au début
de la transitoire et augmente rapidement pendant 1.2 secondes et atteint
approximativement 13% aprés 1.8 secondes. Des conclusions semblables sont
observées pour les prédictions de puissance de canal et de puissance de grappe, comme
il est représenté sur les figures 7.5 a 7.10, séparément. Cette diminution significative
de précision indique que CMFD n'est pas aussi fiable que 'ANM pour le scénario de
transitoire rapide avec distribution de fuite significative dans le cceur. Pour augmenter

la précision de calcul dans CMFD, une maille trés fine doit étre appliquée.

b) Le probléeme de CANDU-6 typique

Dans cette thése, nous utilisons pour la simulation une éjection de barres. Le transit est
initialisé par le retrait instantané du premier banc de 5 barres de compensation qui sont
initialement dans le cceur. La transitoire résultante est suivie pendant 900 secondes. La

description détaillée de ce probléme peut étre trouvée dans la section A1.3.

Le systéme de régulation de réacteur est utilisé dans ce probléme. Au début, tous les
meécanismes sont placés en position de référence (Marleau et al., 1996; Varin et al,
1996). Chaque mécanisme est alors déplacé et placé a une nouvelle position basée sur
les résultats des algorithmes de régulation de systéme de réacteur. Aucune solution de
référence n'est disponible pour ce probléme; par conséquent, il est difficile de mesurer,

dans le sens absolu, les erreurs dans la solution de la méthode nodale analytique.



Les calculs ANM ont utilis€ la maille 26 x 26 x 12 et un pas de temps de 25 ms. Le
critere de convergence utilis€é par ANM était 105, Les calculs CMFD ont utilisé la
méme maille, le méme pas de temps et le mé€me critére de convergence. Les résultats
détaillés sont donnés dans le chapitre 6. Tous les résultats montrent que la réponse
avec ANM est trés semblable a la réponse obtenue avec CMFD. ANM constitue donc

une bonne méthode pour la simulation du réacteur de type CANDU.

VI Conclusion

CMED s'avére la méthode nodale d’ordre le plus bas. Les calculs prouvent que CMFD
est généralement adéquate pour l'analyse statique de CANDU. La différence entre
CMEFD et ANM s'avére négligeable. Cependant, pour les scénarios de transitoire, avec
fuites significatives, la différence entre CMFD et ANM n'est pas considérée
négligeable. Avec les demandes de précisions augmentant pour les analyses actuelles
et futures, CMFD maille fine ou une méthode nodale d'ordre supérieur devront étre

appliquées pour l'analyse de CANDU.

Les résultats de calculs pour la réacteurs CANDU et pour le modéle CANDU-6
typique montrent que des solutions précises de cinétique pourraient €tre obtenues avec
les mailles spatiales de taille de grappe. Les comparaisons avec la CMFD ont indiqué

que les erreurs de ANM étaient faibles.

L’ANM avec l'approximation de fuite plate s'est avéré une méthode supérieure a
CMFD pour résoudre I’équation de diffusion cinétique ou statique,
multidimensionnelle & deux groupes d’énergie pour le réacteur CANDU. La méthode
nodale analytique avec la fuite plate constitue une méthode trés précise pour 'analyse

et la conception de réacteur CANDU.
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INTRODUCTION

0.1 Nature of the Problem

Nodal methods have been used for Light Water Reactors (LWR) core-physics and
safety analysis for more than 20 years. In the past two decades, the modern nodal
methods, for example, the Nodal Expansion Method (NEM) (Finnemann et al., 1977),
the Analytic Nodal Method (ANM) (Smith, 1979), and the Nodal Green’s Function
method (NGFM) (Lawrence et al., 1980), have successfully been developed to solve
the spatial problem of the LWR. However, because of the large migration area of
heavy-water system, the Coarse Mesh Finite Difference method (CMFD) has generally
been found to be adequate and has been extensively used for CANDU analysis in the
past 30 years. To address the increased accuracy requirements of current and future

analysis, we investigated the use of nodal method as an alternative tool for CANDU

analysis.

Among numerous advanced nodal methods, ANM is noted as an accurate and efficient
numerical method for solving the time-dependent, multidimensional, 2-group neutron
diffusion equation for LWR. However, the ANM-based QUANDRY code (Smith,
1979) cannot be used directly for CANDU analysis because it was specifically
designed for LWR. A large number of difficulties would be encountered for
QUANDRY to perform 3-D CANDU transient analysis with the reactivity devices
inserted perpendicular to the fuel. An alternate way is to review the ANM formalism
and develop independent modules to a current CANDU diffusion code. The NDF code
was used in this study. The primary objective of the author is to implement the ANM
in the DRAGON/DONJON environment then apply this method to analysis of
CANDU reactors.



0.2 Purpose of Present Work and Organization of Thesis

The objectives of the present work are divided into three parts. First to review the
derivation procedure of Analytic Nodal Method with flat transverse leakage
approximation, which is the only approximation introduced during the derivation. The
suitable iterative scheme employed for solving the static and kinetic equations will
also be investigated. The second objective consists of developing the modules used for
Analytic Nodal Method and implementing these modules into the NDF code. The third
objective is to apply the Analytic Nodal Method to the CANDU benchmark problem
and a typical CANDU-6 problem. The solution from Analytic Nodal Method will be
compared with the solution from Coarse Mesh Finite Difference method. These

objectives are discussed in the following chapters of this thesis:

In Chapter 1, the neutron diffusion equations of Analytic Nodal Method for 2 energy
groups, with the only approximation that the transverse leakages are constants, are
derived. These equations are written in terms of node-averaged fluxes and face-
averaged net leakages. The Coarse Mesh Finite Difference equation are then obtained

from the nodal equations.

The Coarse Mesh Finite Difference Method, which is the lowest order nodal method,
is used to analyze a typical CANDU-6 model in Chapter 2. Accuracy as a function of

the coarse mesh size is investigated.

The properties of the static nodal diffusion equations are examined in Chapter 3.

Iterative solution technique used for the solution of nodal diffusions is also presented.



The results of three-dimensional static CANDU problems are exhibited in Chapter 4.
The Analytic Nodal Method with flat leakage approximation is shown to be an
accurate method for solving the multidimensional two-group static diffusion equation
for the CANDU reactor. It is found that for typical CANDU-6 problem, with the
standard coarse mesh size, the Analytic Nodal Method yields channel-averaged powers
accurate to within about 2% and static reactor eigenvalue accurate to within about

0.02% comparing to a very fine mesh reference solution.

In Chapter 5, the time-dependent Analytic Nodal diffusion equations are derived. The
fully implicit time iteration method is employed to solve these equations. An
algorithm, which makes use of many of the steady-state iterative procedures, is
detailed for solving the three-dimension two-group diffusion equations of space-time

kinetics.

Results from CANDU benchmark and typical CANDU-6 model are presented in
Chapter 6. These results demonstrate that accurate kinetics solutions are obtained with
bundle size spatial meshes. Comparisons with Coarse Mesh Finite Difference Method
indicate that the errors Analytic Nodal Method are lower. Thus, the Analytic Nodal
Method with flat leakage is a very accurate method for CANDU reactor analysis and

design.

Finally, a summary of the conclusions about Analytic Nodal Method, and

recommendations for future research are given in Chapter 7.



CHAPTER 1
REVIEW OF THE ANALYTIC NODAL METHOD FOR 3-D STATIC
NEUTRON DIFFUSION EQUATION

1.1 Introduction

In this chapter, the derivation of the Analytic Nodal Method for solving the static
multigroup diffusion equations is reviewed. Approximations such as flat transverse
leakage and the truncation of the matrix exponential will also be presented in this
chapter. Throughout the derivation of the Analytic Nodal Method, it is assumed that
equivalent homogenized diffusion theory parameters, which are spatially constants
over the nodes are available. Therefore, only regions that have constant material
properties will be considered. All derivations will be done in three-dimensional

Cartesian geometry.

1.2 Neutron Diffusion Theory

In most situations encountered in the analysis of power reactors, it is sufficient to
model the neutronic behavior of the reactor by a low order approximation to the
formally exact neutron transport equation. The most widely used of these
approximations is multigroup neutron diffusion theory. For this model, the set of time-
and space- dependent coupled partial differential equations (Henry, 1975) for which

approximate solutions are sought can be written as



- G
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where

G =total number of neutron energy groups

D =total number of delayed neutron precursor families

Cq =density of delayed neutron precursors in family d (crn'3 )
D, =diffusion coefficient for group g (cm)

2., = macroscopic total cross section for group g (cm™)

)

¢ = Mmacroscopic transfer cross section from group g’ to group g (cm™)

— . . . -1
> & = macroscopic fission cross section for group g (cm™)

¢, = scalar neutron flux in group g (cm sec™)

X . = prompt fission neutron spectrum to group g

X, = delayed neutron spectrum for family d in group g

v = mean number of neutrons emitted per fission

y = eigenvalue which makes all of the time derivatives identically zero for the initial
conditions in the core

Agq = decay constant for delayed neutron precursor family d (sec D)

Ba = fractional yield of delayed neutron precursors in family d per fission,

B= ﬁd)

BV



vg = neutron velocity for group g (cm sec’)

The fission neutron spectrum is assumed to be that of the predominant fissioning
isotope. If the distribution of material properties in space and time, the initial neutron
flux distribution in space and energy, and the appropriate boundary conditions are

specified, a unique solution to equations 1.1 exists.

The solution to equations 1.1 is usually obtained by first assuming that the reactor is in
an initial critical configuration; all of the properties of the reactor are independent of
time. Hence all of the time derivatives in equations 1.1 are identically zero. The static
solution of the equations .l is obtained by varying the parameter 7y (the critical
eigenvalue) such that a nontrivial solution positive everywhere to the static multigroup

equations exists. The static multigroup equations can be wntten as
VT (-5, (P8, () + ST, )+ 2, ~V (PN, (F) =0
g =t Y 1.2

J,(F)==D,(F)V¢,(F)

g=1,23,...G
In principle, the spatial power distribution in a reactor can be determined by applying
equations 1.2 and explicitly representing all of the geometrical detail that is present.
The geometrical complexity of reactors is such that direct representation of full
geometrical heterogeneity is precluded for reasons of practicality. The approach that is
generally taken to alleviate this difficulty is to treat large spatial regions, the lattice
cell, as homogenized. The actual spatial detail within each of the homogenized regions
is treated in an auxiliary calculation, to obtain “equivalent homogenized diffusion
theory parameters” which are spatially constant within each region. This
homogenization is commonly performed for regions that usually contain one fuel
bundle. The full core reactor calculation is thus reduced to that of determining the
spatial power distribution within a domain containing several thousand homogenized

regions.



1.3 Nodal Balance Equation

The global reactor problem is treated in three-dimensional Cartesian geometry, where
X, Y, and z represent the three coordinate directions. The reactor core is divided into a
number of contiguous rectangular parallelepiped (or nodes), and the nodes are then
individually specified by their positions on the coordinate axis. As shown in Fig.1.1,
the node widths are easily obtained by taking the appropriate differences along each
coordinate axis. We also assume that the nuclear properties (macroscopic cross

sections and diffusion coefficients) are spatially constant over each such node.

— N

Zkb‘

% Rl Y™

Figure 1.1: Coordinate system

We integrate equations 1.2 over the volume of an arbitrary node (i, j, k). The average
flux in the node (i, j, k) is simply

— 1 1 1 Za+1 ¥+t Xiel
P:ix =;z-:';);;: ., dZL}_ dyj;._ dx ¢,(x,y,2) 1.3



We then apply theorem of Gauss to replace the volume integral of the divergence of

the neutron current by a surface integral. We get the flux equation,

~ (T e ) =T o ik CDRIRE = (T i (¥ 50 ) =T xR

— — - - — G —
- (‘,gz.i.j () — ‘Ig:,i.j (Zk ))h;h,j - ng,i.j.k ¢gj.j.k Vi,,’,k + z Zg«—g'.i,j,k ¢g',i.j.k Vi.j.k

g=l

1 S —
+—x7 zvzfg'.i.j.k¢g'.i.j,kvi.j.k =0
vooes 1.4

in this equation the surface average current over the nodal surface at x = x; is given by
7 ( _ 11 .V,--udj-zk-xd]( 2) L5

gx.ik xi)_h—:.:zzf L, D), A Y2 )
The expressions for the other five surface currents are similar. Equation 1.4 involves

nodal average fluxes, and average nuclear properties within node (i, j, k).

The situation is quite different with equation 1.2, which represents the exact neutron
balance equation within node (z', j,k). In equation 1.4, relationship between the surface
average currents and the volume average fluxes is not known. Modern nodal methods

are used to provide these relationships.

1.4 Transverse Integration Procedure

The approach generally taken to obtain the relationships between the surface average
currents and volume average fluxes is the transverse integration technique which
consists in the integration of the diffusion equation over any two directions
simultaneously. This gives rise to a linear system in one dimension, which can be
solved to obtain surface average currents in terms of the average fluxes of neighboring
nodes. Repeating this process in all three directions in turn will provide expressions
for each of the six surface average currents appearing in the nodal balance equation.

We illustrate the process for the x direction.



1.4.1 Equation for the Fluxes

Let us integrate equations 1.2 over the direction y and direction z, within the node

(i, j.k). In other words, we apply the operator hL/ th J:)};x

¥

a(y_[ZM dz to the equation.
b13

We obtain,
1 1 ¥ et Zg o1 a 1 i1 Tt a
", dy[ dem—T o (53,20 - h_’—h_"- dy[ dzz T o (x3,0)
1 1 Vet kol a 1 ¥ el el
‘h_fﬁ"— dy[” dz=-J (%3, )_h—’—h_’: wiie [, [ da, (3. 2)
h/ h¥ sz—gux .[p 4 J’“dz Py (% 3.2)
- g=l
I 1 fan Ttel
T S0 s [ [ 0,050 =0
1.6

To simplify the equation, we define the following quantities:
e The transverse integrated flux,
l 1 ‘,.: kel
¢g.i.j.k (X) Eo—— J- dz¢g ,,k(x Yy, Z) 1.7
o The x direction transverse integrated current,

|

zxuk( x) = h’ hk )Nd dezj (x,y,2) 1.8

e The x directed transverse leakage along Y,
g)ll"( x) = hf kk rmd(‘] 6 Yjn2) = ‘,gy(x yJ’Z)) 1.9

e The x directed transverse leakage along Z,

1 1 Yjsl
Seiix®=—5—1]"

s dy(J g (%, ¥, 24) = o (%, 3, 2)) 1.10

e The net x directed transverse leakage



Seijk XY =S i a (X)+ 5 52 (%)

It is also worthwhile to point out that:

1 Xiel
h_i . dx¢g.,~_,;k (x) = ¢g.i.j.k

J gx.i.jk (x;)= J gui.fk (x;)

ng.i,j.k ()= ‘]gx.i.j.k (Xi1)

With all these definitions, equation 2-6 for node (i, j, k) can be simply written:

p G
_g‘,gxa’.j.k (x)— ng.i.i.lc (x)— ng.i,j.k Dpijn(X)+ Z:lzg(—g’¢g'.i.j.k (x)
g:

1 G
+;Zp Zv 2 ik Periin (X)=0
g=t

By introducing matrix notation, this equation can be written as

aa_x[“’x (x)].'.j'k = _[Sx(x)],"j'k + [Z]i.i.k [¢(x)]i.j.k +;1;[Zp] [v 2] ]:j.k [¢(x)]1/k

We define a new matrix [X]
===l bz, T

Finally we get the flux equation
0

5;[1 x(x)]i. jet [Z’].-,,-,k [6¢x) ]i,i.k =-|s, (x)]f-j.k

1.4.2 Equation for the Currents

10

1.11

1.12

1.13

1.14

1.15

An extra relationship is furnished between these variables by Fick’s law,

node (i, j, k),

J, =—ng-¢g , which we also transverse integrate over directions Y and Z within
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l l )‘j-ol

i pk Jy.
hi BE

Teel 1 1 Yjel g el 8
dy[" de] (2,7, 2) =D, E;l_j dy|; de=—g,(x.y.0) 116
which gives

9
2 ox

By introducing matrix notation, we get the current equation,

ng.r‘.j.k (x)=-D ¢g.i,j,k (x) 1.17

[‘,; (x)]i.j,k = _[Dx ]i.j,k 'aa_[¢(x)]i,j,k 1.18
X

1.4.3 Final Form of the One-dimensional System

We group flux equation and current equation and define the following vectors and

matrix,

vl . {[&Krﬂm ] 1.19

Eo] A
[s°, 0, . =[_[S [((i])]_ .k] 1.20
_| o [p.J,
[N ]i, ik = I:[z’],;j.k [0] ] 1.21

We now have the following simultaneous equation system for the flux and current
a ?
)+ IVl ) =[50 1.22

To obtain relationships between the transverse integrated fluxes and the directed

transverse integrated currents, one need only solve the equation 1.22 for [y/(x)],.v k-

Unfortunately, the x-dependence of the transverse leakage source term on the right
hand side of equation 1.22 must be known or approximated if the solution of the
equation is to be found. This circumstance makes necessary the first, and the only,

approximation of the Analytic Nodal Method.
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1.5 Transverse Leakage Approximation

The possibilities for the approximation of the transverse leakage shape in equation
1.22 appear to be unlimited. It seems reasonable to expect that the more complicated
the assumed shape, the more difficult it will be to solve equation 1.22. The “flat”
approximation and the “quadratic” (Smith, 1979) approximation are the two most
commonly used approximations. We illustrate the approximation process for the x

direction.

The “flat” approximation assumes the transverse leakage shape as spatially flat across

each node, that is,

[5.),,, =[5} 1.23

where [§ . ]

ik is the nodal-averaged, x directed, net transverse leakage. With the

definition of x directed net transverse leakage 1.11, we obtain

= 1 11

SS"-i-j-k =77 h h; hk ‘.l de--‘ ldz(‘l (\'.' y]-l—l"Z) ] (x yij))

1.24
P11 oena 1
R dx[ " dy(J (6,9, 20) = (63, 20)
To simplify this equation we define the following quantities:
Nodal face-averaged, x directed, net leakage,
[L ]JJL J (xH-I )],+1 ik [‘I (X )],]k 1.25
Nodal face-averaged, y directed, net leakage,
[Z" ]i.j.k - [Jy Dy )]c'.iﬂ.k - [Jy(y j )]i.j.k 1.26
Nodal face-averaged z directed, net leakage,
L ]ljlc J (Zk+l )]z Jok+l [J (zk ]: j.k 1'27

with all these definitions, equation 1.24 can be written as
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_ — 1 —
[S.r ]i,j,k = —hl;'[Lx ]i.j,k + h_k[Lz ]i,j,k 1.28
y z

“Quadratic” approximation assumes the spatial shape of the transverse leakage can be

fit by quadratic polynomials in each node, that is,

[s.0] ;4 = 5, ]z—l. e P )+ [s. ]f.j.k P+ 5. ]i+l.i.k P ) 1.29

where each of the p is a quadratic polynomial in X, [STX]‘._LJ. " [Sx ]i.j'k_[‘i ]M'j_k’ are the

average net x directed transverse leakages in three adjacent nodes.

In earlier work (Smith, 1979), it was found that the Analytic Nodal Method with
“quadratic” approximation could obtain more accurate results for LWR analysis.
However our current approach is that, for CANDU analysis the flat leakage

approximation should be sufficiently accurate.

1.6 Method for Solving the Spatial Coupling Equations with Flat Transverse

Leakage Approximation

In Analytic Nodal Method, the spatial coupling equation 1.22 is solved analytically.

The flat approximation version of 1.22 is

d T
a—x[W(x)];,,-,k + [N]i.i.k [‘//(x)]i,j.k = [S x]i,j,k 1.30
and the solution of this equation can be written formally as
[W(x)]i‘j,k = CXP(—[N];J./C X)[A] + [N]x_,;.k [§’x ]i,j,k 1.31

where the solution of the vector [A] is arbitrary, but can be determined by the choice

of initial conditions chosen for [¢]. If we chose as initial condition the value of ¢ at

x=x, , we will have

[l//(x,. )];_,-_k = exp(_[N]i.j.k xi)[A] + [N]:_l;k [‘-S'_,x ]i,j.k 1.32
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and then
[l=expN],ox)( x| VIS, ) 133
and it follows that
ol ju = expAN] o e = xDw )],

+ IV [N]-expANT, e o= x) )] o

on the other hand, if we chose as initial condition the value of g at x =x,,, ,we will
have

I E (L A CESS)] 7€)
IV [-exp V)= Y5 L o

In order to close the nodal balance equations, we have to find a relationship between

the surface average fluxes and currents of each node. To get it we integrate equation

1.34 and 1.35 over x and divide by the width k. of node (i,j,k). We find after

integration,

i =i.[N]z',-,k( (11— expC-{N], 1)) Y],

h, 1.36
[N]1]k< [ ] [ ]:;k([[] exp(— [ ]1;k 1) )[S_,x]i.j,k
and
7). =—INTE (L] expN), 1) e,
h" 1.37
o VL -V e exp(N], i) S

We rewrite the equation 1.37 for the node (i —1, j, k)
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Wl =

P [N ],—1 ok "[I ]‘*‘ exp([N ]i—l. ik hi-l) >['/’ (xi)]i—l.j.k
h;

1 -1 i i
+F[N]i-l.j,k< h, I[I]‘{ ].-x jx (- [I]'*'e’(p( .—1 i " >[ ]:-l.j.k

1.38

Since equation 1.36 and equation [.38 are expressed in terms of [V/(X;)];,j . and
[u/(x,,)]‘._l_j'k, and these two terms are identical. Thus, it is possible to find a

relationship between node-averaged fluxes, face-averaged net leakages, and

V. Gl -

The procedure can be repeated to derive a relationship between node-averaged fluxes,

face-averaged net leakages, and [J (x +1)].+n ;«- Taking the difference of these last two

relationships into equation 1.25 finally allows us to obtain an equation relating node-

averaged fluxes and face- averaged netleakages.

The final equation relating node-averaged fluxes and face-averaged net leakages for x
direction can be expressed in the form
12 Ll W) PP [ N ) R Lol WL ) P
+ler] Bl +leld 5+ 6] 5

This equation reveals that x directed net leakage is coupled to node-averaged fluxes in

1.39

three adjacent nodes in the x direction, as well as to the transverse leakage in three

adjacent nodes.

A similar approach can be followed for the other two directions. Finally we obtain
three equations of net leakages. With the neutron balance equation, the resulting super-

matrix equation (Smith, 1979) can be written as
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(2,1 wntlr) wrilr] mnll]
] -1 le] —xle]|[l]] [] o] O] [T Tg]

1 ’ : L]|_1 0 D] b pIf|Z]] |,
r] el -l Fle NE)| ™A o k] bl oIf |l ~
] e el -0 L Lol ot bl bR

where

[5 ]E a column vector of length G x I x J x K ( = N ) contairing the node-averaged
fluxes (ordered first by group, then X direction, then Y direction, and finally Z
direction).

[Z,-,, ]E a column vector of length N containing the u-direction net leakage, u = x, y, z.

[Fu ]= a block tridiagonal matrix of order N x N containing the elements of [F "],.'I._k ,

u=x,y,z,U'=i—Li,i+L,j—-1j,j+Lk-Lk,k+1.
[G,]= ablock tridiagonal matrix of order N x N containing the elements of [G:l._j_k ,
w=xy.2, P=i-Lii+l, j—1j, j+Lk—Lkk+1.

[Z,]= a block diagonal matrix of order N x N containing the elements of

V.2 ]

i.j.k )

[M ]= a block diagonal matrix of order N x N containing the elements of

Viik [v 2, ]:“ -

The global reactor equation as expressed in equation 1.40 can be cast the form of a

classical eigenvalue problem,

[A]"[B] [x]=+IXx]

except for the fact that the elements of [A] depend on the eigenvalue .
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Equation 1.40 forms the basis of the Analytic Nodal Method with flat transverse
leakage approximation. These equations, along with the appropriate boundary
conditions applied to the reactor surface, fully specify the global system of static nodal

diffusion equations.
1.7 Evaluation of Spatial Coupling Matrix

The actual application of the Analytic Nodal Method requires evaluation of the
matrices defined in equation 1.39. Each of these matrices is a G x G matrix whose
elements depend on the properties of a single node. The essential difficulty in

evaluating these matrices stems from the fact that the exponential of [N,._ l.'k], as
defined in equation 1.36, must be evaluated. [N,.’ M] is a block antidiagonal with its

lower block being partially comprised of the G x G group-to group scattering matrix.

In the general multigroup case, it is not apparent how to obtain this exponential.

If the number of neutron energy groups is restricted to a small number, direct
evaluation of the matrices becomes feasible. Since two-group diffusion theory is

commonly used for normal reactor analysis, we evaluate these matrices directly.

The Analytic Nodal Method uses the analytic solution of one-dimensional, source-free,
two-group, diffusion equation for a homogeneous region to evaluate the exponential.
The procedure is detailed in (Smith, 1979). The final results show that all the matrices

depend on the eigenvalue of the global static reactor problem.
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1.8 The Coarse Mesh Finite Difference Approximation

The first approximation leading to the Coarse Mesh Finite Difference is to neglect the
transverse leakage terms of [S ] and [S ], .7« On expressions 1.36 and 1.38. This

hypothesis may be questionable, but detailed calculations using nodal methods show
that these transverse leakages are comparatively small in comparison to the fluxes

(Koclas, 1998).

The other approximation leading to the Coarse Mesh Finite Difference consists in
blocking the series expansion of the matrix exponentials of expression 1.36 and of

1.38 to linear terms in x. Therefore

7Le = ( 0150 s a1

Lo =( 1150 L s 42

The flux parts of 1.41 and of 1.42 are

h, -1
[¢ ]l ik ¢(x )]r Jk 7 [Dx ]i.j.k [Jx (xi)]i,j.k 1.43

t'—l
2
We take the difference between 1.43 and 1.44, and use flux and current continuity to

find

[¢ ].—l gk ¢( )],_1 A Ic [Dx ]:_Il_j‘k [Jx (I‘. )]t‘—l,j.k 1'44

-1

[J (x )]: Jk ——( x rD ]: Jk 'hT[Dx ;-Il,j_k)_l ([a]i,j,k _[a]i—l.j.k) 1.45

which gives the relationship between a surface average current and the average fluxes

of the two nodes delimited by the surface. An identical calculation for the node

(i +1, j, k) gives the result



i+l

h "
[‘Ix (X )]i,j.k = _(;2' [Dx i-:l.i.k

2

A similar approach can be done for the other two directions.

results to the neutron balance equation 1.4, to obtain

hf

hi+l h; _ = ) f _
+ > D g::.i.j.lc )™ Peivijx T hih; (—2- D gxl’x ik

WAt D .

¥
Jj+l
¥

. h
+h Rt
R C 5

hi
-1 ¥ -1 -1 7.k
D gy.i. j+ik + "I,_Dgy.i.j.k ) ¢g.i. j+lk + hxhz (

V]
v

D—I

gy.d.j.k

2
+Iz"hf(——h§+l D! —-‘k~D“ )'e. +h"hf(f’-§-D"
x'ty 2 2 8z.i, j.k 8.0, j . k+] Ty 2 gz.i.j.k

gz, j.k+1

4 A

. i+l hi
_h;{h:( ,X, D, +—;‘D;tl.i.j.k)_l

gx.i+l.j.k

+h_“[Dx ],—ka )-l ([a]i-bl,j.k -
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1,0 1.46

We substitute all these

-1

-1 -1 &
; Dgx.i—l.j.k) ¢g.i—l.j.k

j-1
¥ A e
+ 5 D iinx) Pgijx

hk—l
+—=—D"
2

-1 e
82.i.j k=1 ) ¢g RN

el o ,
—h] hzk (—Z—D gx';. jx Tt EXN D g;.i—l. ix) !

R ! -
_h.’(hzl( 2 Dg_‘l'.r'.j+l.k '*'7)03_\]-.:'.].1:) :
. k!
—hh* (LD
T2

gy.a.j.k

G
+ z Z geg i jk ¢g 'Vi.i.k

g=l

¢g,i.j.k - ng ¢g.i.j,kvi.j.k

Jj-1

v -1 -1
+ 5 Dg_\'.i.j—l.k)

k+1
—hih":(hz D]
T2

gz.d. . jk+1

R 4
+ "5' D gzi.j.k )
k-1
+ Z
2

&
*hih{(hz
\ T2

-1 -1
D D 8.4, j k=1

gz.i.j .k

)-"
J
1 & —
+_pr szfg'qjg'vi.j.k =0
Y =
1.47

We write equation 1.47 in matrix form,

1.48

which is the form of a generalized eigenvalue problem, and the elements [F] and [M]
depend on the size of the mesh and the properties of the material. The kinetic

distortion term does not appear.
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Equation 1.47 is the standard Coarse Mesh Finite Difference equation. The derivation
illustrates that the Coarse Mesh Finite Difference approximation is the lowest order of

all nodal methods (Koclas, 1998).
1.9 Boundary Conditions

The application of boundary conditions on the surface of the reactor slightly alters

form of equation 1.39. Application of a zero current boundary condition on the x; =0
surface node (i, j,k) implies that the analogue equation to 1.25 is
L] =7l 1.49
Albedo boundary conditions are also permitted. The particular form of the albedo is
[pCe]; i =lod ., . 1.50
where {a] 1s a G x G matrix.. The zero flux boundary condition is applied by setting
[a] equal to the null matrix. An extrapolated flux (logarithmic derivative)

approximation to a zero incoming current boundary condition for the two-group

problem is achieved by setting

3dzrrl 0
[af]—[ o 3d2”2] 1.51

where d is the extrapolation distance and Z; , is the macroscopic transport cross

section of each group g.

1.10 Summary

In this chapter, the complete derivation of nodal diffusion equations from multigroup
diffusion theory has been reviewed. The only approximation that is necessary for the
Analytic Nodal Method is the spatial shape of the transverse leakage within a node.

The resulting equations were written in terms of node-averaged fluxes and face-
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averaged net leakages. The final super matrix equation is of the form of a classical
eigenvalue problem. If we introduce linear expansions for all terms, we can get the
Coarse Mesh Finite Difference equation from the nodal method. It shows that the

Coarse Mesh Finite Difference method is a lowest nodal method.

In Appendix 2, we will introduce the Coarse Mesh Finite Difference Method with flat
transverse leakage approximation, the results of this kind of approximation will also
be presented. In Chapter 2, we will discuss the numerical methods of Coarse Mesh
Finite Difference Method used in the code NDF. The applications of this method to the
CANDU benchmark problems and to typical CANDU-6 problems will be presented in
Chapter 2 too. In Chapter 3, we will discuss the numerical considerations of Analytic

Nodal Method.



22

CHAPTER 2
DESCRIPTION OF THE COARSE MESH FINITE DIFFERENCE METHOD
IN THE CODE NDF AND STATIC APPLICATIONS

2.1 Introduction

In Chapter 1, the spatially-discretized static nodal diffusion equations for Analytic
Nodal Method were derived from the solution of multigroup diffusion equations.
Based on some approximations, the Coarse Mesh Finite Difference equation can be
obtained. Because of the large migration area in a heavy-water system, Coarse Mesh
Finite Difference method (CMFD) is generally considered sufficient and has been used
extensively for CANDU analysis in the past 30 years. In this chapter, results from
application of Coarse Finite Difference Method to two-group three-dimensional
typical CANDU-6 problem are presented. Throughout this chapter, the effect of mesh

size 1s indicated.
2.2 Coarse Mesh Finite Difference Method in the NDF Code

The NDF computer code has been developed to perform complicated static and
dynamic calculations related to control and safety simulations of CANDU-6 reactor.
(Kaveh et al. 1999). The computer code NDF can handle static and dynamic

calculations using the Coarse Mesh Finite Difference method and now also with

Analytic Nodal Method.

NDF is written in FORTRAN 77 language. The code was compiled under the Visual

Fortran 5.0 compiler with full optimization and in single precision. The macroscopic
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cross-section used by NDF can be provided by the input file or by the
DRAGON/DONJON (Marleau et al.,1993, 1994; Roy et al., 1994) code.
The Coarse Mesh Finite Difference equation 1.48 can be solved by using the general
iterative scheme in the NDF code
1. The components of matrix [F] are evaluated by the coupling coefficient
calculation module.
2. An accelerated fission source (outer) iteration is employed to determine
iteratively the maximum eigenvalue and the corresponding eigenvector.
3. The modified block Gauss-Seidel or successive over-relaxation iteration
method is used for flux iteration.
4. The iteration continues until both the convergence criterions on node-averaged
fluxes and on eigenvalue are attained.

5. The fluxes are normalized and collapsed into coarse mesh arrangement.

2.3 Mesh Size Effect for the Typical CANDU-6 Problem

One disadvantage of the Coarse Mesh Finite Difference Method is that obtaining an
acceptable degree of accuracy in the flux calculations requires small mesh size. Within
a typical CANDU-6 reactor, the natural choice for the numerical mesh spacing is the
channel lattice pitch and the bundle length, i.e., 28.575 x 28.575 x 49.53 cm in X, y
and z directions respectively . At present, the number of meshes used for the CANDU-
6 problem is 26 x 26 x 12. The details of this problem are shown in Section Al.3 of
Appendix 1. We use finer mesh (number of mesh points double or triple or more those
in the original coarse mesh in x, y and z directions) to study the sensitivity of typical

CANDU-6 problem on mesh spacing.

The following mesh-spacing were selected for x, y and z directions

1. Normal lattices in x, y and z direction, the number of meshes is 26 x 26 x 12.
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2. Normal lattices in x and y directions, spacing uniformly refined by a factor of 2
in z direction, the number of meshes is 26 x 26 x 24.

3. All mesh spacing uniformly refined by a factor of 2 in X, y and z direction, the
number of meshes is 52 x 52 x 24.

4. All mesh spacing uniformly refined by a factor of 3 in x, y and z direction, the
number of meshes is 78 x 78 x 36.

5. Al mesh spacing uniformly refined by a factor of 4 in x, y and z direction, the
number of meshes is 104 x 104 x 48.

To evaluate the influence of mesh spacing, calculations for the above 5 different mesh
spacing were carried out by the NDF code. The convergence criterion of flux is 107.
The results are summarized in Table 2.1. These results indicate that more iterations
and CPU time are required for fine-mesh calculation than for coarse-mesh calculation.
A comparison of the coarse-mesh results (26 x 26 x 12) with the fine-mesh results
indicates that small differences appear in absolute eigenvalues and in maximum

channel (1-2%) and bundle powers (1-2%).

Figures 2.1 to 2.4 show the percent changes introduced in channel power densities by
mesh size effect. It should be noted that the high channel powers in the core center
obtained by the coarse mesh size (26 x 26 x 12) are not conservative, because the

differences of some meshes are positive but are negative of the other meshes.

2.4 Summary

In this chapter, the Coarse Finite Difference Method used in NDF code and the results
of typical CANDU-6 model from this code were presented. The Coarse Mesh Finite

Difference Method was shown to be a significant method for solving the
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multidimensional, two-group static diffusion equation. It was also demonstrated this

method could achieve high accuracy by fine mesh size.

In Chapter 1, the Coarse Mesh Finite Difference equation could be obtained from the
Analytic Nodal equations based on some approximations. Without these
approximations, the results are expected to be more accurate. Hence, in Chapter 3 and

Chapter 4 the Analytic Nodal Method and the applications will be presented.
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Table 2.1: Summary of results from different mesh size for CMFD method

Case Meshes Eigenval | Max. channel Max. bundle Oute
X Y Z * power power iterations
1 104 | 104 | 48 | 1.03057 | 1.2495(F,15) | 1.8461(E12,7) 229
2 78 78 36 | 1.03053 | 1.2493(F,15) | 1.8376(E12,7) 191
3 52 52 | 24 | 1.03071 | 1.2503(F,15) | 1.8398(El12,7) 155
4 26 26 | 24 | 1.03055 | 1.2542(E,14) | 1.8566(E12,6) 120
5 26 26 12 | 1.03067 | 1.2549(E,14) | 1.8528(E12,6) 91




QmmonN Wy

0.07

0.06 0.26

-0.01 0.24 0.2%6

0.10 0.24 0.23

-0.05 0.20 0.21 0.20
0.03 0.22 0.19 0.18

J-0.02 0.19 0.21 0.17 0.16
K 0.3 0.21 0.20 0.15 0.13
L 0.00 0.20 0.19 0.16 0.15
M 0.00 0.20 0.20 0.17 0.1S
N 0.02 0.21 0.20 0.17 0.15
0 ~0.04 0.18 0.20 0.18 0.17

I <Cc R0 PO

0.06 0.18 0.16 0.14
-0.10 0.15 0.1S 0.14
0.2 0.16 0.16

-0.10 0.14 0.17

-0.03 0.18

-0.03

-0.02 0.4
0.24 0.3
0.26 0.2
0.23 0.20
0.18 0.15
0.15 0.09
0.12 0.06
0.07 0.01
0.04 -0.01
0.07 0.00
0.07 0.0C
0.06 0.00
0.08 0.01L
0.08 0.03
0.03 0.3
0.10 0.07
0.12 011
0.18 0.14
0.16 0.16

-0.11 -0.04

0.06
0.21
0.20
0.17
0.10
0.05
0.2
-0.04

10 11 12 1B

-0.06 -0.02

0.16
a.18
0.17
0.14

0.18
0.15
0.3
0.10

14 15 16 17 18 i)

-0.06 -0.08 -0.06 -0.13

0.14
0.3
0.12
0.08

0.04 -0.01 0.4
0.01L -0.03
0.3 -0.07

-0.05 -0.10 -0.14
-0.06 -0.12 -0.16 -0.18 -0.21 -0.23
-0.06 -0.12 -0.17 -0.20 0.2 0.3
-0.11 -0.16 -0.19 -0.21 0.2
-0.14 -0.16 -0.18
-0.06 -0.10 -0.12 -0.14 -0.15
-0.10 -0.12 -0.12 -0.12 -0.12 -0.11 -0.08 -0.04 -0.05
-0.07 -0.08 -0.10

-0.05
-0.4
-0.01
-0.01
0.3z
0.10
0.12
0.14
-0.02

-0.03 0.13

-0.04 -0.07
-0.G2 -0.05

0.09
0.10
c.11
0.09

0.05
0.07
0.08
0.10

0.4
0.06
0.06
0.09

0.12
c.12
0.10
0.06

0.12
0.10
0.08
0.05

-0.06 -0.07
-0.05 -0.07 -0.09
-0.10 -0.12 -0.13
-0.07 -0.11 -0.14 -0.16 -0.17
-0.17 -0.18 -0.21

0.@
Q.05
0.05
0.07

¢.0L
.3
0.04
0.06

-0.14 -0.09 -0.14 -0.15 0.13

0.09 -0.04 0.08 0.16

0.11 0.11 0.10 0.09 -0.11

0.08 0.09 0.09 0.10 0.08 -0.14
0.06 0.06 0.06 0.06 0.07 0.4
-0.05 -0.02 0.00 0.02 0.03 0.0
-0.09 -0.08 -0.06 -0.03 -0.01 -0.01
-0.13 -0.11 -0.10 -0.06 -0.03 -0.04
-0.17 -0.17 -0.16 -0.12 ~0.06 -0.06
-0.20 -0.19 -0.18 -0.16 -0.09 -0.08
-0.22 -0.20 -0.17 -0.13 -0.06 -0.07
-0.22 -0.20 -0.17 -0.13 -0.07 -0.07
~0.21 -0.19 -0.16 -0.13 -0.07 -0.06
-0.18 -0.17 -0.15 -0.10 -0.04 -0.05
-0.15 -0.14 -0.12 -0.09 -0.06 -0.05

-0.09 -0.07 -0.07 -0.06 -0.02 -0.04
0.01 0.00 -0.01 0.C2 0.00 -0.04
0.3 0.3 0.3 0.04 0.03 -0.20
0.05 0.05 0.05 0.03 -0.18
0.03 0.09 -0.14 -0.23

-0.19

27

20 21 2

-0.23

-0.3

-0.0¢ -0.30

-0.3 ~0.17

-0.04 -0.07 -0.30
-0.06 -0.05 -0.25
-0.06 -0.06 -0.28
-0.05 -0.06 -0.28
-0.05 -0.05 0.5
-0.04 -0.07 -0.30
-0.04 0.18
-0.08 -0.33

-0.19

-0.30

The maximum percent change ts shown in bold character

Figure 2.1: Relative percent change of channel power introduced by mesh
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CHAPTER 3
NUMERICAL CONSIDERATIONS OF THE ANALYTIC NODAL METHOD

3.1 Introduction

In chapter I, the spatially-discretized static nodal diffusion equations for Analytic
Nodal Method were derived from the solution of the multigroup diffusion equations,
based on the single assumption that the transverse leakage shape is spatially flat across
each node. The flux and coupling coefficients were obtained by solving analytic
difference equations. For the difficulty in evaluation of spatial coupling matrix, the
number of neutron energy groups is restricted to two. In this chapter, we analyze the
numerical properties of the Analytic Nodal Diffusion equations, then a multi-level
iterative scheme for solving the resulting analytic nodal diffusion equations is

presented.
3.2 Numerical Properties of the Analytic Nodal Diffusion Equations

The equation for which a solution is sought in the Analytic Nodal Method is given in

Chapter 1, by equation 1.40. The super-matrix equation is a set of linear equations in

the four vector unknowns, [¢ }[Z, l[fy] and [L,]. In its present form, equation 1.40 has

very little spatial coupling in the nodal-averaged flux terms and most of the coupling
in the face-averaged net leakage terms. It is known from physical principles that the
net leakage will be small compared to the average fluxes in a large number of reactor
configurations. Therefore, equation 1.40 has the undesirable characteristic that the
spatial coupling is dominated by the net leakage equations. This situation is altered by
substituting the last three blocks of equations into the first block of equations to obtain

(Smith, 1979)
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1] [p)=—[7] [o] 31
Y

where

pl=cot {F] E] £, [E] }

[F] @tloJeriled wilol+rle) wile]+rlc,)]

AN —lG.] 6]
el el -0 7o)

F] el ~lo.] -[1]

[F1=[S, ]+ hiRE(F, )+ hint[F, ]+ hini[F, ]
[

Since each of the matrices [F,] is a (2 x 2) tridiagonal block, equation 3.1 has
substantially more spatial coupling in node-averaged flux terms than does equation
1.40. Equation 3.1 is clearly an eigenvalue problem in which the elements of the

matrix [H] depend on the eigenvalue.

Any iterative scheme that is used to solve equation 3.1 will require that the matrices
[H] and [P] have certain properties in order to guarantee successful convergence. It is

very useful to examine the properties of the matrices in equation 3.1.

The matrix [P] is quite simple. The only non-zero submatrix of the matrix [P] is [M],
and the matrix {M] is block diagonal with non-negative components (all fission cross

sections are nonnegative). Unfortunately, the matrix [H] is not nearly as simple. In the
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general case, the only property of the matrix [H] that can be guaranteed is that all of its
components are real (Smith, 1979).
The expression of matrix [F,] (Smith, 1979) reveals that the matrices, [F,] are

1. Real

2. Irreducible
3. Symmetric
4

Diagonally dominant.

From these properties, it can be proved that equation 3.1 has the following properties

(Wachspress, 1966):

There exists a unique positive real eigenvalue, a,, which is greater in modulus than all
other eigenvalues, and the eigenvector corresponding to the eigenvalue i, is unique

and positive.

These properties and others derived from them will be used in the next section to
demonstrate that the numerical schemes chosen to solve the Analytic Nodal Diffusion

equations can be guaranteed to work.
3.3 Iterative Strategy for Solving the Static Nodal Diffusion Equations
3.3.1 The General Iterative

The general scheme for solving equation 3.1 is as following:
1. An initial guess for v (usually y=1.5) is used to evaluate the components of the
matrix [H].
2. An accelerated fission source (outer) iteration is employed to determine

iteratively the maximum eigenvalue and corresponding eigenvector (Y and [@]).
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3. After several outer iterations (usually 5-10), the latest estimate of i is used to
update the components of the matrix [H].

4. Use “modified” block Gauss-Seidel iteration method to perform the inner
iteration.

5. Cyclic Chebyshev Semi(CCSI) iteration method or Gauss-Seidel iteration

method is used for flux iteration.

3.3.2 Eigenvalue Updating

The fact that the submatrix [H] depends on the eigenvalue of the global static reactor
problem gives the outer iterations a nonlinear character. However, the effects of
updating the matrices on the outer iterations are generally quite negligible, especially
when a reasonable estimate of the eigenvalue is available. Another characteristic of the
outer iterations which helps to mitigate nonlinear effects is that a very good estimate of
the eigenvalue (accurate to about 0.5%) can be obtained in relatively few (3 to 5) outer
iterations. A general practice of updating the matrices every 5 to 10 outer iterations
seems entirely appropriate. In steady-state iterations for problems with feedback, more
frequent updating may be required to account for changes in temperatures, densities,
etc. No problem has failed to converge because of the nonlinear nature of the outer

iterations (Smith, 1979), and this also maintains for our CANDU cases.

3.3.3 Outer Iteration

The fission source iteration (Wachspress, 1966) is applied to equation 3.1 to determine
the maximum eigenvalue and corresponding eigenvector. If p is used as the index of

the outer iterations, equation 3.1 can be expressed as
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[e],.. =——[HT[P] [0, ; p=0,1,.....c0 3.2

P+l

where Y4 is an estimate of the globe static eigenvalue and the matrix [H] is given a
subscript p to indicate that its components are updated during the outer iterations. The
maximum eigenvalue can be estimated by the ratio of the vector norms frem

successive solution vectors,

| e,

Vo =t
| fel,]

The fission source iteration is guaranteed to converge if the eigenvalue with the largest
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modulus is unique (Varga, 1962). This property exists in the case of infinitely fine
mesh spacing, but cannot be demonstrated in the general case. Nevertheless, this
property is assumed to exist in the general case, and no problem has failed to converge

because of eigenvalues with degenerate maximum moduli.

The rate at which the outer iterations converge is determined by the ratio of the moduli
of the two maximum eigenvalues, usually called the dominance ratio, defined by
0=l 34
Il
where v, Y. are the eigenvalues with the largest and second largest moduli,
respectively. For most problems, the dominance ratio is very close to unity and
convergence is very slow; hence, many methods have been developed to increase the
convergence rate of the fission source iterations. One of the most direct methods of
altering the convergence rate is “eigenvalue shifting” or Wielandt’s fractional iteration

(Wachspress, 1966). In Wielandt’s method, equation 3.1 is modified to obtain
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where v; is arbitrarily selected but subject to certain restrictions discussed below.

Equation 3.5 is a new eigenvalue problem with much different properties than

equation 3.5. It is easily demonstrated that the eigenvector associated with the

-1

. 1 1 .. . . . .

maximum value of [——— is identical to the eigenvector associated with the
vy 7

maximum value of Yy in equation 3.1, provided <y, is larger in modulus than vy
(Wachspress,1966). The dominance ratio of the new eigenvalue problem is

1 1

d, = i Y 3.6
1 1
5w)

Since Ys must be chosen such that the modulus of s exceeds the modulus of y;, which
in turn exceeds the modulus of v», the dominance ratio, ds, is less than unity and less
than the unshifted dominance ratio, d. Naturally, the convergence rate of the outer
iterations is maximized by the eigenvalue shift, ¥;, to be equal to the true static
eigenvalue y;. Unfortunately, this choice makes the flux iteration matrix nearly
singular, as is pointed out in the next section. Nevertheless, an optimum value of 7,
may exist, and the problem of determining it is addressed in section 4.4. Using the

eigenvalue shift, the outer iteration is defined by

[co],,+,=( L 1 [H], - ! [P]} [P] (@], p=0,1,....,8 3.7
Yo Vs Ys

where [¢@]o is arbitrary (Wachspress.1966). The new eigenvalue estimate can be
determined using any vector norm. For simplicity, the 1; norm of the first block of

vector [@] is chosen (Wachspress,1966)
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The first block of equation 3.7 can be written as

o e [DORS y

75 p+l Sp

14

where [S] is the leakage source term

[s], = tlG, ], +RilGIDIL],. + tlG.], +hilG.IIL.]
+ile,] +nilc L,

p+!

Because the detailed calculations using nodal methods show that the transverse
leakage is comparatively small in comparison to the fluxes, we can assume that the
leakage source terms of adjacent outer iteration are equal. The outer iteration can be

written as

61, ={ [FJ,,—; [M] }"[ S

s yp+[ Y:

4 14

J M1 (5],

3.10
~{IF], ‘%[M] Fls),

1.4

It is recognized that if 7, is fixed throughout the outer iteration process, most other

conventional methods of accelerating the outer iteration convergence can also be
applied. For reasons detailed in the section 3.3.3, there seems to be several advantages
to altering the eigenvalue shift during the outer iterations. Also, the convergence rate
of the outer iterations can be significantly increased by eigenvalue shifting, such that

additional acceleration schemes are not required.
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3.3.4 Inner Iteration

The method used to perform the inner iteration is a “modified” block Gauss-Seidel
iteration, where each block is a square matrix whose order is the number of energy
groups times the number of spatial mesh points. With q as the index of the inner

iteration, this “modified” Gauss-Seidel iteration is defined by

B, =] 7], -] ¢ [yL- 1 ] ] 5],

Y., A
~tle,) +rilGI)IE], -wtle.], +kilG.IL ], 3.11a
~wjG,), +rilc, L], )

£,0n =171, +--6 L, +o2 0 2],
£),..=lF B+ l6 ) 2], +- 6] [E], 3.11b

£, 0 =[£1 ), 0+ l6 2], 62,

p=0,1,2,3,....,00
g=0,1,2,3,....,00
This iterative scheme would be a true block Gauss-Seidel iteration if the latest values

of the face-averaged net leakage were used.

This particular scheme is chosen for two reasons. First, it eliminates the need to
calculate both [G lp[lylpq and [G u]p[Lulp.g+1» Which saves computational effort.
Second, this scheme does not “favor” any one direction in the calculation of leakages.
The inner iteration, defined by equation 3.11, consists of two distinct steps. First, the
new node-averaged fluxes are determined from the old fission source and the old

leakages. The second step is the determination of the new net leakages from the new
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fluxes and the old leakages. This step is not iterative, but requires a number of matrix

multiplication, since the matrices [G,]p are block tridiagonal.

In most cases, there is no reason to coverage the fluxes and leakages completely at
every inner iteration, since the fission source is computed from fluxes at the last outer
iteration. In problems where the net leakages are small compared to the average fluxes,
it seems reasonable to perform only one inner iteration per outer iteration and coitinue
the outer iterations until the fluxes are converged. In some cases, however, the net
leakages can be fairly large compared to the average fluxes, and it may be more
efficient to performm additional inner iterations to converge the net leakages more

rapidly than would otherwise be possible.

3.3.5 Flux Iteration

In three-dimensional case, [F], is a block diagonal matrix, each block being 2 x 2.
Since primary consideration in this work is with two-group methods, both groups will
be solved simultaneously. We use Cyclic Chebyshev Semi-Iteration (CCSI) method

(Varga, 1962) or Gauss-Seidel iteration method as the flux iteration method.

If the matrix { [F], - 1 [M] } is split into strictly lower block triangular matrix, a

Vs

14

block diagonal matrix, and a strictly upper block triangular matrix such that

{[F], - y’ [M]}=(z], +[D], +[U), 3.12

Sp

The CCSI method with iterative index r is defined by
[a]p.q.ﬂ-l = (1 - wr-{»l )[¢_]p.q,r + wr+l [D]p + [L]P }—l{ [Q]p_q - [U]p [a]P.q.r } 3.13

where
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with p? defined below.

The Gauss-Seidel iteration method with iterative index r is defined by

2 72 R 12 R o o) W 7 W 3 3.14

It is as same as the CCSI when the relaxation factor is equal to unity. Mathematically,
the CCSI is a permutation transformation of the conventional Gauss-Seidel iteration.
This transformation can be thought of as a reordering of equations and unknowns. The

permutation transformation does not change the properties of the flux iteration matrix.

Strictly speaking, to guarantee that the CCSI method will converge, the flux iteration
matrix must possess several properties. First, the flux iteration matrix must be an
irreducible, consistently ordered weakly cyclic matrix of order 2, which 1t is. The flux
iteration matrix must also be convergent, which can be guaranteed if the flux
coefficient matrix is diagonally dominant. Lastly it must be assumed that all

eigenvalues of the flux iteration matrix are real (Clark, 1964).

The CCSI method is related to the block successive overrelaxation (SOR) methods and
can be thought of as SOR method in which the relaxation parameter is varied from
iteration to iteration in such a way as to increase the average rate of convergence. For

SOR methods, the optimum choice for the relaxation factor is defined to be the
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relaxation factor that gives the greatest asymptotic convergence rate and is given by
(Varga,1962)

@ =2 3.15

Pl 1-p?

where p is the spectral radius of the Jacobi iteration matrix. The relaxation factors in
the CCSI method are chosen to give the greatest average convergence rate; hence, the
relaxation factors change from iteration to iteration. Asymptotically, the CCSI
relaxation factor must equal the SOR relaxation factor, and indeed

. -2 3.16

T oi-p?
It is apparent from equation 3.13 that the spectral radius of the Jacobi flux iteration
matrix must be known in order to actually use the CCSI method. Since the flux
coefficient matrix is to be inverted by the CCSI method, it would be useful to be able
obtain p? by using this same method. It is easily shown that p”is equal to the spectral
radius of the Gauss-Seidel iteration matrix. Thus, p2 can be determined by performing

a series of flux iterations with unity (Gauss-Seidel iterations) and estimating the

spectral radius, p(G~S), by

| Bl.-B1]

Sl m-[a],_ll, R

It is recognized that better estimates of p” are possible. However, the flux coefficient

matrix depends on the true static eigenvalue which is not known when p2 is estimated;
thus, there seems to be little value in obtaining the “exact” spectral radius of the

“wrong” matrix.
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3.4 Summary

In this chapter, the properties of the nodal diffusion equations were examined. The
numerical methods used to solve the nodal diffusion equations were also detailed in

this chapter.
In chapter 4, applications of the Analytic Nodal Method and the numerical methods

described in present chapter will be presented.
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CHAPTER 4
STATIC APPLICATION OF THE ANALYTIC NODAL METHOD

4.1 Induction

In chapter 1, the static nodal diffusion equations of the Analytic Nodal Method, based
on the single assumption that the transverse leakage shape is spatially flat across each
node, were derived. The flux and leakage coupling coefficients were obtained by
solving analytic difference equations. A multi-level iterative scheme for solving the

resulting analytic nodal diffusion equations was detailed in chapter 3.

In this chapter, results from applications of the Analytic Nodal Method to a two-
dimensional, two-group static PWR reactor problem and to two three-dimensional,
two-group, static CANDU reactor problems are presented. The Xenon effect for a
typical CANDU-6 problem is also discussed in this chapter. Throughout this chapter,
the accuracy and computational efficiency of the Analytic Nodal Method are compared

to those of Coarse Mesh Finite Difference Method.

4.2 Foreword to Static Results

4.2.1 Computer Code

The method developed in chapter 1 and the numerical techniques detailed in chapter 3
are incorporated into a series of program modules of the NDF (Kaveh, et al., 1999)

code, which has been originally developed to simulate CANDU reactor transients. All

these modules are written in FORTRAN 77. The code was compiled under the Visual
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Fortran 5.0 compiler with full optimization and in single precision. All computations
reported in this chapter are performed on an IBM PC computer.

NDF is capable of handling non-uniform mesh spacing and irregular geometric
boundaries. The generalized albedo boundary conditions described in chapter 1 are
incorporated into NDF, but no attempt has been made as yet to utilize the albedos

except to model zero flux, zero incoming current and zero current boundary

conditions.
4.2.2 Convergence Criteria

The convergence criterion on the node-averaged fluxes which is employed in the code
NDF is
16 ()74 —0()77%]
o()1

where ¢ (g)?" is the average flux and ¢ is the outer iteration convergence criterion. In

< &

the IAEA 2-D PWR benchmark problem, we used the convergence criterion of 10°. In
the CANDU benchmark problem, we used an outer iteration convergence criterion of
10°. For the typical CANDU-6 problem which is a large 3-D problem, it is not always
easy to obtain convergence to 10°. Therefore, we used an outer iteration convergence

criterion of 107,
4.2.3 Errors in Power Distributions

The static solutions to problems presented in this chapter are compared to reference
solutions, which are spatially converged. For purposes of summarizing the results,
some tables are used to present the maximum and average errors in nodal power

densities. With the power density in the (i, j,k) node defined as P, ,, and the
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reference power density represented as P,';'fk, the maximum error in nodal power

density is defined to be
—p

i.fk 6j.k

Emx (I, J,K) = maximum over all i,j.k {I_P"f—}

i.j.k

and the average error is

P ref

sy PRl
J &k

i l[k

ﬁ<:|_

where V, ., is the node (i, j.k)and V. is the total volume of the reactor core. The

maximum nodal power densities defined as P, (/,J,K) are also presented in the

tables too. All nodal powers are normalized such that the total reactor power is unity.

4.2.4 Execution Times

In order to establish comparisons between methods, we use the same computer (IBM
PC) and the same compiler (Visual Fortran 5.0) to perform the calculations. In this
thesis, the execution times reported are the total CPU time consumed from the point at

which the computer begins to read the input files to the point at which solution editing

begins.
4.3 Static Results
4.3.1 The 2-D IAEA PWR Benchmark Problem

In this section, results from 2-D IAEA PWR benchmark problem are presented. The
benchmark problem is a highly simplified two-dimensional, two-group static
benchmark problem (Muller et al., 1991), as described in Section Al.1 of Appendix 1.

The reactor consists of a two-zone core containing 177 fuel assemblies each having a
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width of 20 cm. The core is reflected radially and axially by 20 cm of water, and the
active core height is 340 cm. Each of nine fully inserted control rods is represented as
smeared absorbers in a single fuel assemblw. The existence of inserted control rods and
a water reflector gives this problem severe local flux perturbation, which make the

problem quite challenging.

The 2-D problem was solved with Scm spatial meshes. Table 4.1 summarizes the
results of Analytic Nodal Method and Covarse Mesh Finite Difference Method. The
normalized assembly power densities are giiven in Figure 4.1. The reference solution is
a 3-1/3 cm nodal calculation by Wagner (FFinnemann et al., 1977), which is spatially
converged. The assembly with the largest prercentage error in power densities is one of
the lower assemblies adjacent to the reflecttor. These results indicate that the Analytic
Nodal Method with flat leakage approximmation is more accurate than Coarse Mesh
Finite Difference Method for PWR calculat ion, but the execution time is longer for the

same mesh size.

4.3.2 The 3-D CANDU Benchmark Probilem

In this section, the static results from 3-D CANDU benchmark problem are presented.
The CANDU benchmark problem (ANL, 1985) is a simplified three-dimensional,
two-group kinetics benchmark problem as described in Section Al.2 of Appendix 1.
The kinetics results will be presented in chaapter 6. This benchmark has been proven to
be a very important standard by which progress in CANDU reactor calculation
methods have been measured. Following the introduction of this problem, many
solutions were obtained (ANL, 1985), but mmost of these solutions were calculated by

Coarse Mesh Finite Difference Method.
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The reactor core of this benchmark has 88 channels that are divided into inner and
outer fuel regions. Each channel is assumed to have 10 fuel bundles each having a
length 60cm. The cell-averaged cross sections for each region are provided as part of

the benchmark specification.

The solution of the 3-D CANDU benchmark problem with 18 x 18 x 10 spatial mesh
is summarized in Table 4.2. A comparison of Analytic Nodal Method (ANM) with
Coarse Mesh Finite Difference Method (CMFD) for this problem is given in Table 4.2
also. The reference case for this benchmark is the solution of a fine mesh CMFD

calculation split to 72 x 72 x 40, obtained by using the NDF code.

The following results are given:

e Figure 4.2: Normalized channel power densities.

e Figure 4.3: Normalized bundle power densities on plane 1.

e Figure 4.4: Normalized bundle power densities on plane 5.

e Figure 4.5: Comparison of percent errors in power densities from CMFD and
ANM method.

e Figure 4.6: Graph of normalized bundle power density distributions on plane 5.

e Figure 4.7: Graph of absolute percent errors in bundle power densities on plane 5.

e Figure 4.8: Graph of transverse leakages of thermal group on plane 5.

Compared with the reference values, the maximum error of bundle power densities for
ANM and CMFD are about 4.3% and 5.9% respectively, and located in the node
(5,5,2), near the boundary of Z axial; the maximum error of channel power densities
for ANM and CMFD are about 4.3% and 5.9% respectively, located near the reflector.
These results indicate that all the nodes with larger percent errors of power densities
are in lower power regions, near the reflector. Because the core of the CANDU

benchmark is essentially homogenous in the axial direction for the static calculation,
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the percent errors of bundle power densities are identical on each plane. The
comparison of solutions from CMFD method and ANM method illustrates that with

the same mesh size, the ANM can get more accurate solution.

4.3.3 The Typical CANDU-6 without Xenon Effect Problem

In this section, the static results of a typical CANDU-6 problem are presented. The
typical CANDU-6 problem (Koclas, 1998 and Navarro Arias, 1996) is a simplified 3-
D full core, 2 energy group model of CANDU reactor, with main reactivity devices,
such as liquid zone controllers and adjuster rods are presented in the core. This
problem has 380 fuel channels with 12 bundles in each channel. The core is divided
into three fuel regions. The lattice pitch is 28.575 cm and the bundle length is 49.53
cm. This problem is much like the true CANDU-6 reactor core, in contrast to the
CANDU benchmark problem. This problem is introduced on purpose of full-core
dynamic simulation. The problem is somewhat simplified, as the axial notch in the
reflector is not present in this model, and Xenon is not taken into account. The fuel
and reactivity device macroscopic cross-sections were calculated using the
DRAGON/DONION chain code (Marleau et al., 1993,1994; Roy et al., 1993). Section
A1.3 of Appendix 1 gives the detailed description of this problem.

The reference solution for this problem is the result of a fine mesh CMFD calculation
with 104 x 104 x 48 spatial meshes obtained by the NDF code. The main results
without Xenon effect from CMFD and ANM calculations with the same coarse
meshes (26 x 26 x 12) are summarized and compared in Table 4.3. The more detailed
results are given as following:

e Figure 4.9: Normalized channel power densities (without Xenon).

e Figure 4.10: Normalized bundle power densities on plane 1 (without Xenon).

e Figure 4.11: Normalized bundle power densities on plane 6 (without Xenon).
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e Figure 4.12: Normalized bundle power densities on plane 8 (without Xenon).

e Figure 4.13: Comparison of percent errors in channel power densities from CMFD
and ANM Method (without Xenon).

e Figure 4.14: Graph of normalized bundle power density distributions on plane 6
(without Xenon).

e Figure 4.15: Graph of absolute percent errors in bundle power densities on plane 6
(without Xenon).

e Figure 4.16: Graph of the transverse leakages of thermal group on plane 6 (without

Xenon).

Table 4.3 indicates that both CMFD- and ANM-derived eigenvalues, maximum
channel power and maximum bundle power agree well with the reference values.
Compared with the reference values, the average and maximum errors in ANM-
predicted channel and bundle power densities are all smaller than those predicted with
CMFD. The maximum error of bundle power densities for ANM and CMFD are about
2.8% and 6.0% respectively; the maximum error of channel power densities for ANM
and CMFD are about 1.6% and 2.2% respectively. For ANM calculations, the
maximum percent errors of channel and bundle power densities are located at W13
and (W14, 4) respectively, which is in the core periphery region adjacent to the
reflector. Overall, comparison between CMFD and ANM shows that the ANM results

are more accurate as expected.
4.3.4 The Typical CANDU-6 with Xenon Effect Problem

In this section the results with Xenon effect for the typical CANDU-6 problem are
presented. The reactivity effect that due to the concentration of this fission product
Xenon is a particularly important aspect of thermal-reactor operation. We shall use the

premise that the effect of Xenon is limited to neutron absorption. The change in the
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absorption cross section due to the presence of Xenon is calculated by

DRAGON/DONIJON chain code (Marleau et al., 1993,1994; Roy et al., 1993).

The reactivity of Xenon can be expressed as
Yx —7
YxV

where y, is the eigenvalue with Xenon effect, y is the eigenvalue without Xenon

p Xenon =

effect.

Table 4.4 summaries the results of typical CADU-6 with Xenon effect problem from
Analytic Nodal Method and Coarse Mesh Finite Difference Method. It indicates that
the difference of Xenon reactivity is about 0.038 mk. The Xenon effect on the power
density distribution is shown by Figures 4.17 and 4.18. The power density

distributions tend towards flat in account of the Xenon effect.

4.4 Summary

Although the Analytic Nodal Method has been demonstrated to be a superior and more
accurate method than Coarse Mesh Finite Difference Method for solving PWR
problems, nodal methods such as the Analytic Nodal Method are seldom used for
CANDU system. In this chapter, the static Analytic Nodal Method results of one PWR
problem and two CANDU problems were presented and compared with the results

calculated with the Coarse Mesh Finite Difference Method.

Comparison of 2-D IAEA PWR problem shows that the Analytic Nodal Method is a
much more accurate method than Coarse Mesh Finite Difference Method for light-
water system as expected. However, because of the large migration area in a heavy-

water system, the Coarse Mesh Finite Difference Method is found to be generally
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adequate for CANDU problems. Although the advantage of Analytic Nodal Method
with flat transverse leakage approximation in the calculation accuracy is iilustrated, the
improvement is not as obvious as shown for PWR problem. For the static 3-D
CANDU benchmark problem, by using the Analytic Nodal Method instead of the
Coarse Mesh Finite Difference Method, the maximum error in the channel power
densities can be improved from about 5.9% to 4.3%; and the average error in the
channel power densities can be improved from about 1.4% to 0.8%. However, the
computational efficiency of the Analytic Nodal Method is lower than that of the

Coarse Mesh Finite Difference Method with the same spatial meshes.

From the calculation results shown in this chapter, we conclude that the derivation of
the Analytic Nodal Diffusion Equations in Chapter 1 is correct, the implementation of
the iterative procedures and the development of the Analytic Nodal Method within the
NDF code is successful. It is demonstrated that the Analytic Nodal Method is not only
applicable for PWR, but also good for CANDU reactor. With the increasing accuracy
requirements of current and future CANDU analysis, the Analytic Nodal Method is

expected to act as an alternative tool for CANDU analysis.
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Table 4.1: Summary of results for the 2-D IAEA PWR benchmark problem

Coarse Finite Difference Analytic Nodal Method

Method (CMFD) (ANM)
Outer iterations 100 187

Eigenvalue 1.02922 1.02972

E... (I, J)assembly, %) 14.200 (3,8) 3.699 (3,8)
E (assembly,%) 5.341 1.291
P (I, J) 1.567 (3,2),(2,3) 1.496 (3,2),(2,3)

Execution time (s) 0.77 2.82

Reference eigenvalue: 1.02959
Reference maximum nodal power density: 1.480
Outer iteration convergence criterion: 10°

Flux iteration convergence criterion: 10
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Table 4.2: Summary of results for the 3-D CANDU benchmark problem

Coarse Finite Difference Analytic Nodal Method
Method (CMFD) (ANM)
Outer iterations 32 132
Eigenvalue 1.00355 1.00318
E e (I, J)(channel %) 5.889 (14.5) 4.252 (5.,5)
£ (channel %) 1.419 0.847
P (I,J) (channel ) 1.252 (10,13),(9,13) 1.239 (10,13),(13,10)
e (I.J,K)(bundle %) 5.889 (14,5,5) 4.253(5,5,2)
£ (bundle %) 1.419 0.847
P .U, J,K) (bundle ) 1.934 (10,13,5),(9,13,5) 1.914
Execution time (s) 1.32 12.26

Reference eigenvalue: 1.00338

Reference maximum channel power density: 1.228
Reference maximum bundle power density: 1.897
Outer iteration convergence criterion: 10

Flux iteration convergence criterion: 10°
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Table 4.3: Summary of results for the 3-D typical CANDU-6 without Xenon

effect problem
Coarse Finite Difference Analytic Nodal Method
Method (CMFD) (ANM)
Outer iterations 91 93
Eigenvalue 1.03067 1.03047
e_.. I, J)(channel %) 2.176 (G21) 1.606 (W1l)
E (channel, %) 0.735 0.516
P_.(.,J) (channel ) 1.249 (E14) 1.246 (F15)
Epax (I, J, K)X(bundle %) 6.045 (K12,8) 2792 (W124)
€ (bundle ,%) 1.552 0.646
P (I,J,K) (bundle ) 1.853 (E12,6) 1.843 (E12,6)
Execution time (s) 13.74 42 .85

Reference eigenvalue: 1.03057

Reference maximum channel power density: 1.250
Reference maximum bundle power density: 1.846
Outer iteration convergence criterion: 10°°

Flux iteration convergence criterion: 107
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Table 4.4: Summary of results for the 3-D typical CANDU-6 with Xenon effect

problem

Coarse Finite Difference

Analytic Nodal Method

Method (CMFD) (ANM)

Eigenvalue 1.00275 1.00258

Xenon Reactivity (mk) -26.952 -26.990
P (I.J,K) (bundle ) 1.845 (E11,6) 1.835 (E12,6)

Total reactor power is 2.154 x 10° w
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1 2 3 4 5 6 7 8

0.746 1.310 1.454 1.211 0.610 0.935 0.935 0.755
2.780 7.642 6.109 6.157 -0.775 1.104 -3.070 -9.714
-0.588 2.071 1.279 1.741 -1.298 0.808 -0.670 -2.054

1.310 1.435 1.480 1.315 1.070 1.036 0.950 0.736
7.642 6.728 5.867 5.135 3.876 0.326 -3.370 -10.025
2.071 1.334 1.095 1.013 1.330 0.076 -0.829 -2.le64

1.454 1.480 1.469 1.354 1.179 1.071 0.975 0.692
6.109 5.867 5.213 3.504 2.331 -0.677 -4.098 -14.188
1.279 1.095 0.886 0.091 0.537 -0.219 -0.797 -3.685

1.211 1.315 1.345 1.193 0.967 0.906 0.846
6.157 5.135 4.196 3.480 2.283 -1.800 -9.085
1.741 1.013 0.761 0.690 1.014 -0.331 -2.223

0.610 1.070 1.178 0.967 0.471 0.686 0.597
-0.775 3.876 2.331 2.283 -4.646 -3.183 -13.938
-1.298 1.330 0.537 1.014 -2.053 0.398 -3.346

0.935 1.036 1.071 0.906 0.686 0.585
1.104 0.326 -0.677 -1.800 -3.183 -13.173
0.808 0.076 -0.219 -0.331 0.398 -3.372

0.934 0.950 0.975 0.846 0.597
-3.019 -3.370 -4.098 -9.085 -13.938
-0.617 -0.82%9 -0.797 -2.223 -3.346

0.755 0.736 0.692-———————--——em e Reference normalized power densities
-9.714 -10.013 -14.200---———-————~— === —— Percent errors for CMFD (5cm x Scm)
-2.054 -2.150 -3.699-——-—-—-——-mmmmeeeu- Percent errors for ANM (5¢cm x S5cm)

Reference is the result of 3-1/3 cm _nodal calculation by Wagner
The maximum assembly power density and the maximum percent errors are shown in bold character

Figure 4.1: Normalized assembly power densities and percent errors of the 2-D

TIAEA PWR benchmark problem
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Figure 4.2: Normalized channel power densities and percent errors of the

CANDU benchmark problem for ANM (18 x 18 x 10)
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CHAPTER 5
ANALYTIC NODAL METHOD FOR 3-D SPACE-TIME KINETICS
NEUTRON DIFFUSION EQUATION

5.1 Introduction

In chapters 1 and 3, the Analytic Nodal Method was derived for the solution of the
two-group, static diffusion equations for multi-dimensional reactors consisting of
homogenized Cartesian nodes. The only approximation required in the denivation was
that the shape of the transverse leakage is spatially flat across each node. Efficient
numerical solution procedures were developed and the CANDU benchmark problem
and typical CANDU-6 problem were solved. In all of the test cases, the Analytic Nodal
Method was shown to have a higher accuracy while employing bundle-sized spatial
meshes. Comparison of solutions with Coarse Mesh Finite Difference Method
revealed that the nodal method could get more accurate solution for the CANDU

reactor problem.

It is possible to take advantage of power of the Analytical Nodal Method with the flat
transverse leakage approximation to solve kinetic diffusion problems for the CANDU
reactors as well. In this chapter, the three-dimensional, temporally- and spatially-
discretized Analytic Nodal diffusion equations are derived. An algorithm for solving
these neutronic equations in tandem is presented. Solutions to three-dimensional, ti:ne-

dependent problems for CANDU reactors are presented in next Chapter.

5.2 Formulation of the Kinetics Nodal Diffusion Equations

The time-dependent nodal balance equations are found by integrating the time- and
space-dependent multigroup neutron equations 1.1 over the volume of an arbitrary

node (Z, j, k) to obtain (Smith, 1979)
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10—

=3 —0: i OV == i Gt ) = T g (s DRIRE —(T i (V) = T s (3 EDRLRE

_(jg:.i.i(zlu-l’t) _7gz.i.i(zk ’t))hih{ _Z,g i.j. k(t)¢g,1k(t) ijk

G
+ z Z gegli.jk (t)¢g ik ([)Vi.i.k

+(1~ﬁ) ngzvzfguk(t) ¢s 'Jk(t) ;k*‘zl':’l Cdr/k(t) Ljk

5.1a

Jd =~ <1 — —
sgcd.i.j.k ) =4, Zl;vz/g it OBi ;) = 4, C 54 (0) 5.1b
g =
where the surface average current over the nodal surface at x = x; of time t is given by

.IOId j~hl ddgx(xi’y’z’[)

x:uk( r’t) , hk ¥,

with very similar expressions for the other five surface currents. The nodal average

flux and node average precursor are

Y 1 Teat 11
¢g_,-.j_k(t)"hk W I dz J d I dxp, (x,y,z,t)
S L (O dxC, t
dzjk() hk h! h, e J. j ('fy2~)

Then we integrate equations 1.1 over the direction y and direction z, to obtain a
differential equation from which the x-directed spatial coupling of equations 5.1a can

be determined for node (i, j, k)

1 9 0
Z§¢gi.j.k (x.1)= "o J i o) =S g i ) =2 i (D@ 4 (x,0)
G 1 G
+ z 23«—3'(t)¢g'.i.j.k (x0)+x, (- B ;Z vz!g'.i.j,k (0P, s (x:1)
g'’=t g=l

D
+ Z Xi4,Cyhs e (%:0)
d=1

5.2a
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9
ot

1 G
Cd,r',i.k (x.t)= 5, ‘;z v ng i jk (t)¢'g i ja () — A4 Cd.i.i.k (x,1)
g=l
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5.2b

In order to simplify the algebra, we introduce the exponential transform @* of the flux

¢g.i.i.k (x,t)

d

at ¢g1/k(x t) ggl Jk¢g,i.j.k (x’t)

and @ of the precursor C, ;. ik

9
ot

The precursor equation 5.2b becomes

Chiju(xt)= &)’, ixCaija(X10)

Ba IZG
C,.. )= v§, iy T TIC. N1
d.i.j.k (X ) w'flA +/14 = fg--J.k( )¢g-.1.l (x )

i.j.k
while the transverse integrated flux equation 5.2a becomes

2
0= ‘“B;ng.f.j.k (6, 8) =S i ja (x0) — zrg,i.j,k (P ju (x.1)

4

& o i j.k
RIS IRIOT RN C ) Rt YN €S
g=l

&

] G
+Z: a- ﬂ)_zvzfg'.i.i.k ()P ju (X:1)

+ZZ8 dﬂd szfg l]k(t)¢g t]k(x t)

by introducing matrix notation, this last equation can be written as

5.3

54

5.5

5.6
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i[-,x (x, t)],-'j.k = —[Sx (x,t)],._“ - [Z(t)]i,j,k [¢(x7t)]i.j.k

ox
1
+(1- ﬁ)[z"}}—,[vzf of [peen), .
3 d ld ﬂd _1_ 5.7
+§1‘ [X ]@':,-.k +A, }’[vzf (t)]ir.i.k lox.0}, .
ar.
—[TJ [pcx.n], ;.
We define a new matrix []
1 o, 4B 1 . o°
) = —(1— Pl — _dr7d 4= d —£
Eol=[Enl-a-plx ]y bx,of > y [z ]y[vz,ct)]r +diag(C5)
5.8
to finally write
d
g[Jx (x’t)],‘_j'k + [2,(r)]i.j.k [¢(x’ t)]i.j,k = _[Sx (X, t)]i.j.k 5.9
Using the Fick’s law, an extra relationship is obtained
d
7, (x’t)]i,j,k =D, (t)]i-j'k $[¢(xvt)]i.j.k 5.10

for a fixed time, t, equation 5.9 and equation 5.10 can be solved analytically (provided

the @” and @?are known) in the same manner as in Chapter 1, by using the average

transverse leakage. Hence, the coupling equation is given by equation analogous to

equation 1.39,

[Ex (t)]i.i.k = [F G )]i. .k [5(1 )].--1. e T [F MG )];. jk [5 ( )]i. jx ¥ [F G )]i. Jk [a(t )]M.j.k

+ler ol 5.0l +eiol L 5.0, +er ol 5.0l .

5.11

the matrix elements of equation 5.11 are different depend on the kinetic distortion

terms.
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A similar approach can be followed for the other two directions. The final three

equations for the leakages combine with equation 5.1, we obtain the kinetic Analytic
Nodal diffusion equations,

(Wi o] [o] [o]] [lpew]
ol [o] [o] [o]|a][L.0]
ol [o] [o] [olfor|[Z, )]
| o] [o] o] [ol] L[]
[F@)] -kt ,0)+ri[G.0) -ttc.ol+k[G.(0) -¢ilG, ]+rilG.®D]

[F.®)] ~l1] hl G, )] %[Gx(r)]
[F, ] ;—;[Gycr)} ~l1] hi[G ]
_[F: ®)] hii[G; ®)] hl G. )] ~l1]

b)) V.. [z WG,
L0l ¢ [o]

Lol & [o]

[Zz 0] [0]

5.12

where

[F@)]= (2, )] rIRE[F.0)- kikt[F, )= hini[F, )]+ [M ()]
[M @)= {a -BW,,.Lx? ]%[vzf.,».,».k (r)]’}
V" =diagly,, 1"}

Equations 5.12 and S.1b represent the global system of equations which must be

solved to obtain the time- and space-dependent reactor power distributions.
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5.3 Time Iteration Method and Solution Techniques

Equations 5.12 represent a system of spatially-discretized, time-dependent ordinary
differential equations. Of the four blocks of equation 5.12, only the first involves a
temporal operator. The latter three blocks are simply expressions for the transverse
leakages at time t and do not involve temporal operators. Hence, any time integration
scheme which approximates the temporal derivatives of equation 5.1b and the first
block of equation 5.12 can be employed to solve the time-dependent equations. If
solutions to the kinetic nodal diffusion equations are desired only at discrete times, a

finite difference approximation to the temporal derivatives can be used.

Let it be desired to approximate the solutions to kinetic nodal equations at the times
t = t07r11t27 L ]

where time intervals are defined as

Equation 5.1b and the first block of equation 5.12 can be written in a much simpler

form as
e— — D "
vl —gt—[¢ 0l=[F®] [p0]-[s0]+3 4[C, 0] 5.13a
d=1
%[Ed ol=M,0] [pm]-1,[C,®]; d=1,2,3,....D 5.13b
where

[So]= ntle,®]+rilc, @) L. o]
+( k(G @]+ 160, @)
+( ke, 0]+ rilc.oIL, @)

€, @0)=cotl, . [r*] Torpu 0}
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1
[Md ] = {V-‘.f.kﬂd [Zd ];[v Zf,i.i.k (t)]r}
Equations 5.13 can be differenced using the fully implicit method to obtain the
approximations

w1 { B -G = el - S ale ] 5.14a

n

SR A A Y S RN A 5146

n

Equation 5.14b can be rearranged to obtain

[E.]" =a+ a8y [C,] +ac, M, 1B d=12,....D 5.15
Equation 5.15 can be substituted into equation 5.14a, and the resulting equation can be
solved for [5 ]'l+l . Performing the substitution and some subsequent rearrangement

yields

1 n+l D nel | [T+l —Tn+l 1 -1
Lg I rm A}M =T ]

D l‘! - s
+dz=:'(1+,1dmn)[c"]

5.16

Equations 5.15 and equation 5.16 do not completely specify the temporal integration

scheme. In order to advance the node-averaged fluxes from one time step to the next
by use of equation 5.16, [S|™ must be known. Since [S|""" depends upon [p1 . itis

not possible to solve directly for [5 ]"H. The full set of kinetic, spatially-discretized

Analytic Nodal diffusion equations can be obtained by combining equations 5.12,
5.15,and 5.16.



3 [ P]n+l

[Fx ]nH

[F, ]ml

[F: ]n+1

B [‘;]ul T

Azr
[[—‘-‘ }m

.1 ]

where

(h: [G-‘.]m-l +h;:[Gz]n+l) _(h: [Gx]nﬂ +hi[Gz]n+‘)
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G, ]"*‘ + 1[G I

hk [G ]n+l

5.17
,D 5.15

-0 o1

%hﬁ -[r]
I n+l 1 n+l

;T;[ J ';7[ ]

or [ o] O [BF] [Se—2[e}

] [ ] Ol |[EF ] |7

] [0 ] Dol |} o]

ol fol o] P [[F] | o]

[C. " =a+a,a) [E,] +ar M, I 6]y d=12,...

[P]n+[ = Altn [V]-l —[F]”] _dz:‘ < jaAZtn)[Md]nn
lof =T

The details of the iterative process will be provided in the next section.

5.4 Kinetics Solution Techniques

The full set of temporally- and spatially-discretized Analytic Nodal diffusion equations

are given by equations 5.15 and 5.17. This section provides the details of a kinetics

solution technique required to solve the equations.
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5.4.1 Matrix Updating

The complicated matrices in equation 5.16 arise from the analytic solutions to the
leakage equation. If these matrices are updated at each time step, the computational
effort expended in the updating process will doniinate the total solution time. It is
unnecessary to recompute these matrices every time step, the complete matrices

updating can be performed every 3 to 10 time steps (Smith, 1979).

5.4.2 Frequency Estimations

Since the leakage coupling matrices obtained depend on &', and &@,, it is necessary to

estimate these quantities. We use such approximations as at time step n, the

frequencies are assumed to be given by the expressions:

B = L ‘f.‘"{* 5.18a
o Atrz—l ¢gn.;'_.j.k
C,.,
Dy = L —coht | 5.18b
o Atn-l Cdn.r'.j.lc

In all but the most rapidly changing kinetics, the frequencies play a very minor role

(Smith, 1979).

5.4.3 Iteration

In solving the static problem, it is found that performing one inner iteration per outer
iteration was adequate. In the kinetic case, it also appears possible to perform only one
inner iteration per time step, provided those reasonable estimates of leakages at the

advanced time step are available. These estimates of leakages are obtained by using
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the estimated space-dependent frequencies, given by equation 5.18 to extrapolate the

leakages. That is, the leakages at time step n+1 are approximated by

[Z’.u.i.j.lc ]MI = [[_:ux j.kr exp([&)’ pi.jk ]n At); u=x.y.z 5.19
Since the leakages terms in nodal balance equations are generally small in magnitude
compared to the flux terms, the errors introduced when only one inner iteration is
performed are generally quite acceptable.
The flux iterations performed at each inner iteration are identical with those of the
static problem. To facilitate rapid convergence of the node-averaged fluxes at each
time step, the fluxes are extrapolated to the advanced time step in the same manner as

the leakages,

[ai_j,k ],H-l = [&2 Kk ]ﬂ CXP([(‘TP.f. ik ]" Ar,) 5.20
In most kinetics problems, less than five flux iterations are required to achieve an error
reduction of 107 in node-averaged fluxes. A larger number of flux iterations may be
required when extrapolated fluxes are poor estimates of the actual fluxes. Such
erroneous situations can occur when sudden movements of control rods take place or
in time domains near local power extreme. Nevertheless, the extrapolation procedure
significantly reduces the computational effort required to solve the kinetic nodal

diffusion equations.
The Cyclic Chebyshev Semi-Iterative (CCSI) flux iterations or Gauss-Seidel flux

iterations or successive overrelaxation (SOR) flux iterations can be used. At each inner

iteration, the convergence is defined as the same as for static calculation.
5.4.4 Kinetics Solution Algorithm

A description of kinetics solution algorithm is outlined below:
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Choose the times (0,T;, T2, T3...T;) which divide the kinetics problem into
domains within each Ar, € is a constant.

assume [ L] [C.].lz ) Fand [@,]" are known at time t,

If t,=T,, change At and € to correspond to those of time domain i+1. Calculate

new CCSI optimization parameters.

4. Alter cross sections to correspond to core status at time to.

8.

9.

Calculate matrix elements.

Obtain approximations for [a ]’M and [E" r“ by extrapolating with equations 5.19
and 5.20.

Solve equation 5.17 for [5 ]M' and [Eu ]’”' .

Solve equation 5.15 for [C'_ 2 ]M .

Calculate new frequencies, [&7 » }”' , [&)’ " ]""' with equation 5.18.

10. Repeat steps 3-9 for each time step until the end of the last time domain.

5.5 Summary

In this chapter, the three-dimensional, temporally- and spatially-discretized Analytic

Nodal diffusion equations were derived by employing fully implicit time iteration

method. An efficient algorithm for solving the equations in tandem was detailed.

The method described in this chapter will be applied to the CANDU benchmark and

the typical CANDU-6 problem in Chapter 6. The accuracy and efficiency of Analytic
Nodal Method are presented. Comparisons of Analytic Nodal Method with Coarse

Mesh Finite Difference are also presented.
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CHAPTER 6
NUMERICAL RESULTS FOR 3D SPACE-TIME KINETICS NEUTRON
DIFFUSION CALCULATIONS

6.1 Introduction

In chapter 5, the spatially- and temporally-discretized Analytic Nodal diffusion
equations were derived. A method for solving these equations was presented for two-

group case.

In this chapter, the kinetic Analytic Nodal Method is applied to 3-D kinetic CANDU
benchmark problem and the typical CANDU-6 problem. The results of these two
problems are presented, including the comparison to the results from Coarse Mesh

Finite Difference Method.
6.2 The 3-D CANDU Kinetics Benchmark Problem

A simplified three-dimensional CANDU benchmark problem (ANL, 1985) with
asymimnetric reactivity insertion is used for the purpose of checking our implementation
of the ANM in the NDF code. A detailed description of the benchmark can be found in
section Al.2 of Appendix 1.

This problem is modeled with two neutron groups, six-delayed precursor families. The
core has 88 channels divided into inner and outer fuel regions. Each channel is
assumed to have 10 fuel bundles. The cell-averaged cross sections for each region,

including the reflector are provided by the benchmark specification.
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The reactivity insertion in the benchmark problem has two components:
e A component that introduces a negative incremental thermal absorption cross
section that varies linearly in time over a fixed volume of the reactor, and is
intended to represent a positive reactivity insertion as from a loss-of coolant
accident.
e A component that introduces a fixed positive incremental thermal-absorption
cross section over a volume that varies with time, to represent the negative
reactivity insertion from a shutdown system.

The regions affected by two types of perturbation are showed in Section Al.2. The

resulting transient is followed for 2.5 seconds.

The static solution to the 3-D CANDU benchmark problem was described in Section
4.3.2. It is believed that the small errors (less than 4.3%) of the Analytic Nodal
Method in predicting the spatial power distribution should have little effect on the

kinetic solution presented in this section.

In order to evaluate the accuracy of the different methods, it is necessary to have a
reference solution. Unfortunately, all the published solutions for this problem were
from Coarse Mesh Finite Difference Method with the coarse spatial meshes (18 x 18 x
10), which is not considered suitable as reference. Hence a Coarse Mesh Finite
Difference Method results with 54 x 54 x 30 spatial meshes from NDF calculation is
used as the reference in this study. The reference calculations use a time step size of

12.5 ms. These calculations employed convergence criterion of 10 .

The Analytic Nodal Method calculations employed the mesh size (18 x 18 x 10) and
the time step of 12.5 ms or 25 ms. The convergence criterion used by ANM was 10°®.
Results for the 3-D CANDU benchmark with time step size 12.5ms obtained by
Analytic Nodal method and Coarse Mesh Finite Difference Method with the same
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spatial meshes are displayed in Figure 6.1. Comparison of the percent errors of total
power is contained in Figure 6.2. Results for time step size 25ms obtained by Analytic
Nodal method and Coarse Mesh Finite Difference Method are displayed in Figure 6.3.
Comparison of the percent errors of total power is contained in Figure 6.4. These
results indicate that the time-dependent total power predicted by the Analytic Nodal
Method has an excellent agreement with the reference values. The maximum error in
total power is of 3 %, and there is no significant loss of accuracy for Analytic Nodal
Method during the transient. The difference between Coarse Mesh Finite Difference
Method results and the reference values is very small (slightly larger than the ANM
results) in the beginning of the transient, but the difference increases quickly in 1.2
seconds and reaches to about 13% after 1.8 seconds, which is not considered
negligible. Similar conclusions are observed for the transient channel power and
bundle power predictions, as shown in Figures 6.5 to 6.10, separately. This significant
decrease in accuracy indicates that the CMFD is not as reliable as the ANM for rapid
transient scenario with significant leakage distribution in the core. To improve the
calculation accuracy, either the fine mesh with finite difference method or the nodal

method must be applied.

The following detailed resuits are given for this kinetic problem:

e Figure 6.5: Relative channel power density of channel (5,10) versus time.
e Figure 6.6: Percent average error of channel power density versus time.

e Figure 6.7: Relative bundle power density of bundle (6,10,5) versus time.
e Figure 6.9: Relative bundle power density of bundle (7,3,1) versus time.
e Figure 6.10: Relative bundle power density of bundle (9,9,5) versus time.
e Figure 6.11: Relative bundle power distribution on plane 5 versus time.

e Figure 6.12: Relative channel power density distribution at time 0.9s.

e Figure 6.13: Relative bundle power density on plane 5 distribution at time 0.9s.
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e Figure 6.14: Comparison of percent errors in bundle power density on plane 5

from CMFD and ANM.

All these results indicate that the Analytic Nodal Method is more accurate than the
CMFD for 3-D CANDU kinetic benchmark problem with the bundle-size meshes.

6.3 The Typical CANDU-6 Kinetics Problem

The typical CANDU-6 problem is a full core 3-D, 2-group model, with all reactivity
devices, such as liquid zone controllers and adjuster rods. The problem is somewhat
simplified, as the axial notch in the reflector is not present in this problem, and Xenon
is not taken into account. The fuel and reactivity device macroscopic cross-sections
were calculated using the DRAGON/DONIJON chain code (Marleau et al. 1993, 1994,
Roy et al., 1993). The detailed description of this problem can be found in Section
Al3.

This problem can be used to simulate both normal and abnormal situations. In this
thesis, we use it for rod ejection simulation. The transient is initiated by instantaneous
withdrawal of the first bank of S all-inserted adjuster rods, initially in the core. The

resulting transient is followed for 900 seconds.

The static solution to the typical CANDU-6 model was described in Section 4.3.3. It
was found that the errors of nodal power were lower, these small errors should have

little effect on the kinetics solution.

The reactor regulation system is used in this problem. All the devices are initially set
to reference positions. Each device is then moved and set to a new position

independently based on the results of the reactor regulating system algorithms. No
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reference solution is available for this problem, hence, it is difficult to measure, in

absolute sense, the errors in the solution of the Analytic Nodal Method.

The Analytic Nodal Method calculations employed the mesh size (26 x 26 x 12) and
the time step size of 25 ms. The convergence criterion used by ANM was 10°. The
Coarse Mesh Finite Difference Method calculations used the same mesh size same
time step and same convergence criterion. The resulting plots of total power density as
a function of time are shown in Figure 6.15. It indicate that the agreement of Analytic

Nodal Method with Coarse Mesh Finite Difference Method is well.

Figure 6.16, Figure 6.17 and Figure 6.18 present the channel power density of a
channel as a function of time for channel (E12), (L11) and (L22). Figure 6.19, Figure
6.20 and Figure 6.21 present the bundle power density of a bundle as a function of

time for bundles (E12,6), (L11,6) and (S17,6).

All the results exhibit that the curve obtained from Analytic Nodal Method is similar
to the curve obtained from Coarse Mesh Finite Difference Method. The Analytic
Nodal Method has been demonstrated to be a good method for the simulation of the

CANDU reactor.

6.4 Summary

In this chapter, the kinetic Analytic Nodal Method with flat leakage approximation has
been applied to two CANDU reactor problems. Results indicate that the accurate time-
dependent solutions can be obtained with coarse spatial and temporal meshes. The
Analytic Nodal Method with flat transverse leakage approximation was shown to be a
very accurate method for solving the multidimensional, two-group kinetics diffusion

equation for the CANDU reactor.
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Figure 6.13: Relative bundle power densities and percent errors on plane 5 of the

CANDU benchmark problem at time 0.9s for ANM (18 x 18 x 10 x 0.025)
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Figure 6.14: Comparison of percent errors in relative bundle power densities

from CMFD (18 x 18 x 10 x 0.025) and ANM (18 x 18 x 10 x 0.025) on plane 5 at

time 0.9 s for the CANDU benchmark problem
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Figure 6.19: Relative bundle power density of bundle (L11,6) versus time for the
typical CANDU-6 problem
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Figure 6.20: Relative bundle power density of bundle (E12,6) versus time for the
typical CANDU-6 problem
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Figure 6.21: Relative bundle power density of bundle (S17,6) versus time for the
typical CANDU-6 problem
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CHAPTER 7
CONCLUSIONS

7.1 Conclusions

To practically apply ANM for CANDU analysis, a complete derivation of ANM
formalism for solving 3-D 2-group static and kinetics diffusion equations were
reviewed in this work. The numerical methods used to solve the ANM equations were

also examined.

Based on the presented ANM formalism and numerical methods, the modules used for
3-D nodal method module were developed and programmed independently into the

NDF code, which was specially designed for 3-D CANDU kinetics calculation.

The Analytic Nodal Method with flat leakage approximation was shown to be a
superior method to CMFD for solving the multidimensional two-group static, kinetics
diffusion equation of the CANDU reactor. The Analytic Nodal Method with flat

leakage is a very accurate method for CANDU reactor analysis and design.

The Coarse Mesh Finite Difference Method is found to be the lowest order nodal
method. The calculations show that CMFD is generally adequate for static CANDU
analysis. The difference between CMFD and ANM is found to be not important.
However, for transient scenarios, with significant leakages, the difference between
CMFD and ANM is not considered negligible. With the increased accuracy
requirements of current and future analysis, either fine mesh finite difference or higher

order nodal methods will have to be applied for CANDU analysis.
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It was found that, for the typical static CANDU-6 problem, with the normal coarse
mesh size, the Analytic Nodal Method could be expected to yield channel-averaged

powers accurate to within about 2% and static reactor eigenvalue accurate to within

about 0.02%.

Results from CANDU benchmark and typical CANDU-6 model demonstrate that
accurate kinetics solutions could be obtained with bundle size spatial meshes.
Comparisons with Coarse Mesh Finite Difference Method indicated that the errors

Analytic Nodal Method was lower.
7.2 Recommendations for Future Research

This section contains a description of several items of potential interest that has been

left unresolved or untouched.
1. The Transverse Leakage Approximation

As the only approximation in our implementation of the static Analytic Nodal Method
is that the transverse leakage is constant, improvements in this approximation would
lead to increased accuracy. In particular, it would be very fruitful if a quadratic

polynomial could be used for the leakage approximation.
2. Coarse-Grid Acceleration

The philosophy of the coarse-grid acceleration techniques is that the rapid convergence
can be maintained by projecting a fine-grid problem to an equivalent coarse grid
problem. Nodal equivalence theory can be used as a restriction operator in a multigrid

acceleration method for classical iterative procedures. Numerical experiments showed
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this employing acceleration technique in Coarse Mesh Finite Difference Method could

reduce CPU time efficiently (Kaveh et al., 1999).
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APPENDIX 1
DESCRIPTION OF TEST PROBLEM

Al.1 The 2-D IAEA PWR Static Benchmark Problem

Geometry

170
160 A

140 4

ng'\:O

120 A 4

100 +

80—3| 3

40

Y (cm)

20 4

3] [
0 20 40 60 80 100 120 140 160 170
X (cm)

Figure A1.1: Quadrant of reactor horizontal cross section of the 2-D IAEA PWR

static benchmark problem



Material Properties
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Composition.  Group,g  Dg S YZp Za
em)  mY (ecm') (em™)
1 1 1.5 0.01 0.0 0.02
2 04 0.08 0.135
2 1 1.5 0.01 0.0 0.02
2 0.4 0085 0.135
3 1 1.5 0.01 0.0 0.02
2 04 0.13 0.135
4 1 2.0 0.00 00 0.04
2 0.3 0.01 00

* Axial buckling of 0.8 x10™ cm™ for all compositions in 2-D problem.

X =10,

xX.=0
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Al1.2 The 3-D CANDU Benchmark Problem

Geometry
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Figure A1.2: Initial back view of reactor for the CANDU benchmark problem
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Figure A1.3: Reactor region affected by voiding for the CANDU benchmark
problem
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Figure A1.4: Reactor region affected by the shutdown system in front half of the
reactor for the CANDU benchmark problem
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Figure A1.5: Reactor region affected by the shutdown system in horizontal creoss-

section at Y=390cm for the CANDU benchmark problem



Material Properties

1. Initial two-group constant

112

Region Group, g D, )2 Y, 2
(cm) (cm™) (cm™) (cm™)
1,2,3,4,13,14,15,16 1 131 1.018x107 0.0 1.018x1
02
2 0.8695 2.117x10™* 0.0
5,6,7,8,9,10,17,18,19, 1 1.264  8.154x107 0.0 7.368x1
20,21,22 03
2 09328 4.014x10° 4.723x10°
11,12,23,24 1 1.264 8.154x107 0.0 7.368x1
0-3
2 09328 4.01x10° 4.562x10°
xn =10, x,=0
2. Speed: v1=107cm/s vz=3x105cm/s
3. Delayed neutron data:
Type B A
1 4.170x10™*  1.244x10*
2 1.457x10>  3.063x107
3 1.339x10>  1.139x10™
4 3.339x10°  3.079x107!
5 8.970x10*  1.198x10°
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6 3200x10*  3.212x10°

4. Initial perturbations:

>.,, Regions 5,6,10,11,17,18,22 and 23, varies linearly in time, with

0%, _ —-1.0x107%(em-5)", for t < 0.4s
ot | —8.88889x10~¢(cm-s)™, for t > 0.4s

5. Absorbers insertions
An incremental cross-section, AY.,, is added to regions 2,4,7,9,14,16,18,19,21,22,23

and 24 to simulate asymmetric insertion of absorbers.

AY, 6.15x10% cm’

Insertion start at 06s

Absorber velocity 520 cm/s
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Al1.3 The Typical CANDU-6 Problem

Geometry

700
600 4
500
§ w0 F
>
300 |
200 1
100
(] T T T T 3
-] 100 200 300 400 500 600 700

X (cm)

Figure A1.6: Vertical cross-section at Z=0 cm illustrating grid layout in XY
plane of the typical CANDU-6 problem

Figure A1.7: Horizontal cross-section at Y = 382.85cm illustrating grid layout in
the XZ plane of the typical CANDU-6 problem



Material Properties

1. Initial two-group constant

The initial two-group constant is calculated by DRAGON/DONJON chain code.

2. Delayed neutron data:

Type B; 4;
1 4.170x10™*  1.244x1072
2 1.457x107  3.063x107
3 1.339x10°  1.139x107!
4 3.339x10° 3.079x107"
5  8.970x10™ 1.198x10°
6  3.200x10® 3.212x10°
Perturbation:

L15

A group of rods are ejected from the reactor core at beginning. Figure A1.8 shows the
location of these rods. The response of the reactor regulation system and the

incremental cross-section are calculated by DRAGON/DONJON chain code.
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Figure A1.8: Adjust location in the typical CANDU-6 problem

——p

50 100 150 200 250 300 350 400 450 S00 S50 600 650 700 750

>

o

x {cm)

116



117

APPENDIX 2
THE COARSE MESH FINITE DIFFERENCE METHOD WITH FLAT
TRANSVERSE LEAKAGE APPROXIMATION

A2.1 Derivation of Equations

The fundamental hypothesis leading to Coarse Mesh Finite Difference Method with
flat transverse leakage approximation is to expand matrix exponentials of 1.36 and
1.38 to Taylor’s series. When higher order terms approach zero, many of the leading

terms cancel, and they become

P Rt L

1.,k>[§ L.

A2.1
. Rt Bl hi—lz -
[W].'-l_;_k = < [1]+ ; [N]i-l.j.k >[’/’(x.')],-_|_,~_k + - ; [I]- x6 [N]i—l.j.l: [S e ]i—t.j.k
A2.2
The flux parts of 1.41 and of 1.42 are
3 PO R A P SR V) L S a23
i jk tike o ek je £ T 6 BIIEI WA :

i-1 :-12

[5]1‘—!.}’.!: = [¢(xi)]i—l.j,k + ; [D ]l—l e [‘I (x )]I—I.J k

[D 0. J.k [§x ]l'-l,j.k A24

We take the difference between A2.3 and A2.4, and use flux and current continuity to

find
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B A

[Jx (xf)]i,j,k =—(_:2—[Dx i.;’.k + 5
R’
6

Which gives the relationship between a surface average current and the average fluxes

[Dx ]:1 ik )-] ([97 l jk [;5]:'—!.}'.1:

_ R’ o=
[Dx ],_I}k [Sx ].-’_j,k + 4\'6 [Dx iﬂll.j.k [Sx ].'-I.i.k)

of the two nodes delimited by the surface. An identical calculation for the node

(i +1, j, k) gives the result

hi+| - i O = _
Ul ==,y + 203,07 Bl - 6L

hi+|2
6

using the definition of the face-averaged net leakages for x direction, the final equation

A2.6

L (= R e 0 e
[D.r ],’ll,j,e [Sx ]H—Lj.k + _g_[Dx ]i.lj.lc [Sx ]i.i.k )

can be expressed in the form 1.39, except the elements inside the matrix are different.
A similar approach can be down for the other two directions. Finally we obtain three
equations of net leakages. With the neutron balance equation, the resulting super-
matrix equations can be written as 1.40, same as the equations of the Analytic Nodal
Method, but with the different content of each sub-matrix. Each element inside these
sub-matrixes can be easily obtained by expressions A2.5, A2.6 and the similar
expressions for the other directions. The global reactor equation is one of the form of

classical eigenvalue problem, and the elements of matrix independent on the

eigenvalue .
A2.2 Results of the Typical CANDU-6 Problem and Conclusion

We developed the modules used for Coarse Mesh Finite Difference Method with flat
transverse leakage approximation and implemented them into the NDF code. The
typical CANDU-6 problem of static status has been calculated by these modules. The
description of typical CANDU-6 problem is shown in Section A1.3 of Appendix 1.
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The solution of typical CANDU-6 problem with 26 x 26 x 12 spatial meshes is
summarized in Table A2.1. A comparison of Coarse Mesh Finite Difference Method
with flat transverse leakage approximation (CMFD+F) to Coarse Mesh Finite
Difference Method (CMFD) is given in Figure A2.1. The reference is the result of
CMEFED with split 104 x 104 x 48, obtained by the NDF code.

These results indicate that introducing the flat transverse leakage approximation into
the Coarse Mesh Finite Difference Method causes a loss of accuracy. This is attributed
to an inconsistency between the exponential function expansions for flux shape and
leakage shape. This inconsistency is the most probable cause of the obvious accuracy

loss.
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Table A2.1: Summary of results for the 3-D typical CANDU-6 problem

Coarse Finite Coarse Finite Difference
Difference Method Method with flat transverse
(CMFD) leakage approximation
Eigenvalue 1.03067 1.03103
€ ux (I, J )(channel %) 2.176 (G21) 3.157 (G21)
E (channel %) 0.735 1.018
P_.(,J) (channel ) 1.249 (E14) 1.253 (E14)

Reference eigenvalue: 1.03057
Reference maximum channel power density: 1.250
Outer iteration convergence criterion: 10°

Flux iteration convergence criterion: 10”
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