
Titre:
Title:

Affectation de cellules à des commutateurs dans les réseaux de
communications personnelles

Auteur:
Author:

Fabien Houeto

Date: 1999

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Houeto, F. (1999). Affectation de cellules à des commutateurs dans les réseaux
de communications personnelles [Mémoire de maîtrise, École Polytechnique de
Montréal]. PolyPublie. https://publications.polymtl.ca/8782/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/8782/

Directeurs de
recherche:

Advisors:
Samuel Pierre

Programme:
Program:

Génie électrique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/8782/
https://publications.polymtl.ca/8782/

AFFECTATION DE CELLULES À DES COMMUTATEURS DANS LES &SEAUX

DE COMMUNICATIONS PERSONNELLES

FABIEN HOUETO

DÉPARTEMENT DE GÉNE ÉLECTRIQUE ET DE GÉNIE INFORMATIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMoIRE PRÉSENTÉ EN VUE DE L'OBTENTION

DU DIPLÔME DE MAÎTRISE ÈS SCIENCES APPLIQUÉES

(GÉNIE ÉLECTRIQUE)

AOÛT 1999

@Fabien Houeto, 1999.

National Library 1*1 of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographic Services services bibliographiques

395 Watlington Street 395. rue Wellington
Ottawa ON K I A ON4 OnawaON KlAON4
Canada CaMda

The author has granted a non-
exclusive licence aiiowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic fonnats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or othenvise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Ce mémoire intitulé :

AFFECTATION DE CELLULES À DES COMMUTATEURS DANS LES &SEAUX

DE COMMUNICATIONS PERSONNELLES

présenté par : HOUETO Fabien

en vue de l'obtention du diplôme de : Maîtrise ès sciences ap~liciuées

a été dûment accepté par le jury d'examen composé de :

M. CONAN Jean, Ph-D., président

M. PERRE Samuel, Ph-D., membre et directeur de recherche

M. PESANT Gilles, Ph.D., membre

REMERCIEMENTS

À M. Samuel Pierre dont le soutien et les conseils m'ont guidé tout au long de

ma recherche.

À Marionne, ma saur aînée qui a montré la voie.

À mes parents, frère et sœurs pour leur soutien constant et indéfectible.

À M. Ronald Beaubrun et à tous mes collègues du Laboratoire de Recherche en

Réseautique et Informatique Mobile (LARIM) pour leur collaboration et surtout pour

t'ambiance de travail chaleureuse.

À mon pays dont la contribution financière m'a permis de mener toutes mes

études universitaires.

À ma grande famille et à tous ceux qui m'ont soutenu et aidé, en particulier à

Linda et Indira pour leurs relectures.

Durant les dernières décennies, le domaine des communications a connu beaucoup

de changements. L'introduction du concept de mobilité à travers de nouveaux

développements comme les cellulaires a amené de nouveaux problèmes qui ne se

posaient pas avec les télécommunications fixes traditionnelles (réseaux de téléphone.

d'ordinateurs, . . .). Le problème d'affectation des cellules à des commutateurs dans des

réseaux de communications personnelles en est un. Étant donné un ensemble de cellules

et de commutateurs (dont les emplacements sont connus), on veut affecter les cellules

aux commutateurs de façon à minimiser une fonction de coût qui intègre une

composante de coût de liaison et une autre composante de coût de relève. En outre.

l'affectation doit tenir compte de la contrainte de capacité des commutateurs qui ne

peuvent accepter qu'un nombre limité d'appels. On introduit des variantes en permettant

aux cellules d'être affectées à un ou plusieurs commutateurs. Le nombre d'affectations

possibles est énorme et risque d'entraîner une explosion combinatoire.

Ce mémoire a pour objectif principal la mise au point d'une méthode heuristique de

type recherche îaboue (tabu search) pour résoudre le problème d'affectation énoncé

précédemment. Pour y parvenir, nous avons défini une formulation mathématique du

problème qui explicite la fonction objectif à minimiser, les contraintes à satisfaire et les

variables dont dépendent la fonciion et les contraintes. Puis, nous avons défini les

paramètres de base de la recherche taboue dans le contexte spécifique de notre

problème, et les avons raffinés dans le but d'obtenir de meilleurs résultats.

Lors de la mise en œuvre de la méthode, comme contributions de ce mémoire, nous

avons d'abord établi un parallèle entre le problème d'affectation et celui bien connu en

optimisation combinatoire de localisation d'entrepôts. Ensuite, pour implémenter notre

adaptation, nous avons défini une structure de gains et des procédures de mise à jour

pour choisir efficacement à chaque itération la meilleure solution dans le voisinage

courant. Enfin. à défaut de connaître l'optimum global, nous avons déterminé deux de

ses bornes inférieures afin de juger de la qualité des solutions.

Les résultats obtenus par notre méthode se comparent avantageusement à ceux

fournis par d'autres heuristiques appliquées au même problème, en particulier pour des

problèmes de grande et moyenne taille.

ABSTRACT

During the last decades, the introduction of the concept of mobility through new

developments such as the cellular brought changes to the communications' fields. From

these changes arose new difficulties which were unknown with traditional fixed

telecommunications (cornputers, phone networks, ...). The assignment of cells to

switches in personal communication networks is one of these new problems. Given a set

of cells and switches (whose locations are fixed and known), the problem is to assign the

cells to switches in order to minimise the costs of trunking (or cabling) and handoffs.

~Moreover, the assignment must tdce into account the restrained capacity of the switches

which can accept only a limited number af calls. Variants of the problem are introduced

by allowing the cells to be assigned to one or many switches. The enormous number of

possible assignments malces the problem NP-hard.

This thesis has as principal objective the development of a tabu search method to

solve the assignment problem. For that purpose, we defined an integer prograrnming

formulation of the problem, the basic parameters of tabu search in the specific context of

Our problem, and refined them in order to obtain better results. For the implementation

of the method, we established a paralle1 between Our problem and the one of warehouse

location. We also defined a structure of gains and the appropriate update procedures so

that the best solution in the current neighbourhood could be chosen efficiently. Finally

we deterrnined two lower bounds of the problem in order to judge the quality of our

solutions. The results obtained by our method are compared advantageously with those

provided by other heunstics applied to the same problem, in particular for big and

average size instantiations.

.. REMERCIEMENTS i v

... ~sulW2 v

- - ... ABSTRACT VII

... TABLE DES MATI~RES ix

..* ... LISTE DES TABLEAUX X I U

.. LISTE DES FIGURES xv

... .. LISTE DES SIGLES ET ABR~VIATIONS X V I H

... LISTE DES ANNEXES xix

.. C HA PITRE 1 INTRODUCTION 1

.. 1.1 Definitions et concepts de base 1

.. 1.2 Elements de la problematique
,

3

.. 1.3 Objectifs de recherche et resultats attendus 5

... 1.4 Principales contributions 6

... 1.5 Plan du mimoire 6

CHAPITRE 2 AFFECTATION DE CELLULES A DES

... COMMUTATEURS DANS LES RCP 8

.. 2.1 Definitions et concepts de base 8

... 2.2 Formulation du probl&me 10

........................... 2.2.1 Problime giniral pour une domiciliation simple LO

........................... 2.2.2 Probliime gknkrd pour une domiciliation double 14

2.3 Fondernentsduproblèmed'affectation ... 17

... 2.3.1 Problème de localisation d'entrepôts 17

.................................... 2.3.2 Problème de partitionnement de graphes 21

... 2.4 Méthodes classiques de résolution 24

... 2.4.1 Approches globales et voraces 25

.................. 2.4.2 Localisation de p concentrateurs fixes à capacité limitée 26

.. 2.4.3 Partitionnement de graphes 28

......................... CHAPITRE 3 LA &THODE DE RECHERCHE TABOUE 35

.................................... 3.1 Fondements de la méthode de recherche taboue 35

.. 3.1.1 Mouvements et voisinage 36

... 3.1.2. Algorithme de descente simple 37

.................................... 3.1.3 Algorithme général de recherche taboue 39

.................................... 3.2 Caractéristiques de la méthode de recherche taboue 41

... 3.2. L Exploration de l'espace de recherche 42

... 3.2.2 Mémoire à coun terme 43

.. 3.2.3 Critère d'aspiration 44

... 3.2.4 Critères de fin 47

...................................... 3.3 Adaptation de la méthode de recherche taboue 48

.. 3.3.1 Liste de solutions candidates 48

.. 3.3.2 Liste taboue 50

.. 3.4 Raffinements possibles 54

... 3.4.1 Mémoire à moyen terme 54

3.4.2 Mémoire à long terne .. 55

....................... 3.5 Exemples d'application de la méthode de recherche taboue 56

3.5.1 Problème d'arbre de recouvrement minimum avec contraintes 56

3 S.2 Partitionnement de graphe 57

CHAPITRE 3 AFFECTATION DE CELLULES PAR LA

... MÉTHODE DE RECHERCHE T A B O ~ 62

... 4.1 Adaptation de la méthode de RT 62

... 4.2 Mémoire à court terme 64

.. 4.2.1 Génération de la solution initiale 64

... 4.2.2 Mouvements et gain 67

... 4.7.3 Liste taboue et aspiration 69

.. 4.3 Mémoire à moyen terme 71

... 3.3.1 Régions d'intensification 71

4.3.2 Mouvements, liste taboue, aspiration et critères d'arrêt 72

.. 4.4 Mémoire à long terme 74

.. 4.5 Implémentation 75

... 4.5.1 Formats de fichiers 75

................................. 4.5.2 Implémentation des principaux algorithmes 76

4.5.3 Détails d'implémentation~....................~.............--.- 76

4.6 Mise en œuvre ... 84

.. CHAPITRE 5 ANALYSE DES RÉSULTATS 88

... 5.1 Génération de tests 88

xii

... 5.2 Plan d'exp&iences 90

... 5.2.1 Memoire 5 court terrne 90

5.2.2 Mimoire 2 rnoyen terme .. 95

.. 5.2.3 MCmoire B long terme 98

.. 5 -3 Comportement general de la methode 99

........................ 5.4 Cornparaison avec une estimation de I'optimum global 108

... 5.3.1 Definition d'une borne inferieure 108

.. 5.4.2 Cornparaison avec la borne inferieure 113

.. 5.5 Cornparaison avec d'autres heuristiques 115

... 5.5.1 Heuristique de Merchant et Sengupta 115

................................... 5.5.2 Heuristique de Beaubrun, Pierre et Conan 116

5.5.3 Recuitsimule ... 118

.. CHAPITRE 6 CONCLUSION 121

... 6.1 S ynthkse des mvaux 121

.. 6.2 Limitations des travaux 123

.. 6.3 Indications de recherche future 124

BIBLIOGRAPHIE .. 125

LISTE DES TABLEAUX

Interdiction d'un mouvement susceptible d'amener à des

solutions non encore visitées ... 53

Retour à des solutions déjà visitées .. 53

Coûts de liaison pour un réseau de 14 cellules et 3 commutateurs 64

Volumes d'appel et capacités ... 66

Coût de relève entre cellules .. 85

Cas tests utilisés pour l'exécution du plan d'expériences 90

Détails des séries de tests exécutés .. 1 0

Distance par rapport à la borne inférieure (série nO1) 113

Distance par rapport à la borne inférieure (série n02) 113

Distance par rapport à la borne inférieure (série n03) 114

Distance par rappon à la borne inférieure (série n04) 114

Distance par rapport à la borne inférieure (série n05) 114

Distance par rapport à la borne inférieure (série n06) 1 14

Comparaison de notre adaptation de RT

avec l'heuristique de Merchant et Sengupta ... 116

Comparaison de notre adaptation de RT

avec l'heuristique de Beaubrun . Pierre et Conan (série n02) 117

Comparaison de notre adaptation de RT

avec l'heuristique de Beaubrun, Pierre et Conan (série n06) 117

Com~araison avec la méthode de recuit simulé (série n02) 119

xiv

5-17 Comparaison avec la méthode de recuit simulé (série n06) 119

... A . 1 Composition des séries de tests no 1. 2 et 3 128

... A 2 Composition des séries de tests n04, 5 et 6 128

LISTE DES FIGURES

Découpage géographique dans un réseau mobile

et relève (handoff) entre commutateurs .. 3

Partitionnement d'un graphe avec une coupe de coût 3 1 21

77 Un problème d'affectation (le commutateur est dans la cellule 2) --
Algorithme général de la méthode de descente .. 38

Algorithme général de la méthode de recherche taboue 41

Composante de mémoire à court terme de la

méthode de recherche taboue .. 44

Procédure de sélection du meilleur candidat admissible 46

Algorithme de génération de la solution initiale ... 65

Solution initiale .. 66

Noyau de la composante de mémoire à court terme ... 77

Composante de mémoire à court terme ... 78

Mécanisme d'intensification .. 79

Mécanisme de diversification ... 80

Diagramme des principales classes .. 81

Solution finale obtenue par la composante de mémoire à court terme 85

Solution finale obtenue avec le mécanisme de diversification 86

Solution initiale pour le premier redémarrage .. 86

Solution finale obtenue avec l'activation de tous les mécanismes 87

Effet de la taille de la LT sur les solutions obtenues ... 92

xvi

Effet du délai de déclenchement du dispositif de

rappel sur les solutions obtenues .. 93

Effet de la variation de l'intensité maximale du dispositif de

rappel sur les solutions obtenues ... 94

Effet du délai de déclenchement des mouvements

de type 2 sur les solutions obtenues .. 96

Effet de la taille de la région d'intensification sur les

solutions obtenues ... 98

Effet du nombre de redémarrage sur les solutions obtenues 100

Contribution en pourcentage de chaque mécanisme à

... l'amélioration des solutions obtenues (série no 1) 10 1

Contri bution en pourcentage de chaque mécanisme

à l'amélioration des solutions obtenues (série n02) ... 101

Contribution en pourcentage de chaque mécanisme

à l'amélioration des solutions obtenues (série n03) .. 102

Contribution en pourcentage de chaque mécanisme

à l'amélioration des solutions obtenues (série n04) 102

Contribution en pourcentage de chaque mécanisme

à l'amélioration des solutions obtenues (série n05) ... 103

Contribution en pourcentage de chaque mécanisme

à l'amélioration des solutions obtenues (série n06) 103

xvii

Pourcentage de solutions faisables pour chaque

mécanisme (série nO1) ... 104

Pourcentage de solutions faisables pour chaque

mecanisme (série n02) ... 105

Pourcentage de solutions faisables pour chaque

mécanisme (série n03) 105

Pourcentage de solutions faisables pour chaque

.................... mécanisme (série n04) 106

Pourcentage de solutions faisables pour chaque

... mécanisme (série n05) 106

Pourcentage de solutions faisables pour chaque

.. mécanisme (série n06) 107

.. Temps moyen d'exécution (série no 1) 129

Temps moyen d'exécution (série nOZ) .. 129

Temps moyen d'exécution (série n03) .. 130

.. Temps moyen d'exécution (série n04) 130

.. Temps moyen d'exécution (série n05) 131

Temps moyen d'exécution (série n06) 131

xviii

LISTE DES SIGLES ET ABRÉVIATIONS

Sigle ou abréviation

SCP

RCP

BB

RT

LT

Comm.

Cell.

Heur.

Signification

Système de communications personnelles

Réseau de communications personnelles

Branch and bound

Recherche taboue

Liste taboue

Commutateur

Cellule

Heuristique

xix

LISTE DES ANNEXES

Annexe A : COMPOS~ION DES SÉRIES DE TESTS 128

Annexe B : TEMPS MOYEN D'EXÉCUTION .. 129

CHAPITRE 1

INTRODUCTION

Durant les dernières décennies, la révoiution des communications a changé le monde

et conduit à une véritable démocratisation de l'information. Les communications sont

devenues une nécessité vitale pour les entreprises et les personnes. Malgré tous les

changements dont elles ont déjà été la cause, les communications modernes nous

réservent encore bien des bouleversements. En effet, l'avènement du téléphone cellulaire

a introduit dans le domaine l'important concept de mobilité des utilisateurs.

L'introduction de ce concept ne va pas sans un certain nombre de problèmes qui ne se

posaient pas avec les télécommunications fixes traditionnelles (réseaux de téléphone,

d'ordinateurs, . . .). Ce mémoire traite un de ces problèmes, soit celui de l'affectation des

cellules à des commutateurs dans des réseaux de communications personnelles. Dans ce

chapitre d'introduction, nous préciserons d'abord quelques concepts de base et les

éléments de la problématique, par la suite nous résumerons nos objectifs de recherche.

les résultats attendus et nos principales contributions, avant d'esquisser les grandes

lignes du mémoire.

1.1 Définitions et concepts de base

Un réseau de commrrnicarions est un ensemble d'équipements de communications

répartis géographiquement mais reliés entre eux pour permettre à des usagers distants

d'échanger de l'information. Les systèmes de télécommunications qui intègrent la

transmission de voix. de messages numériques, de textes. de coumer vocal et divers

autres services sur un même support, éventuellement sans fil. dans un seul contrat et sur

une seule facture, sont appelés des systèmes de communications personnelles (SCP).

Dans les SCP. les usagers ont un identifiant leur permettant de se faire reconnaître

par le réseau et ce, peu importe l'endroit où ils se trouvent. Par conséquent, un usager

peut se connecter au réseau et profiter des services offerts de n'importe quel endroit où

l'accès au réseau est possible. Les SCP sont offerts sur des réseau de cornmimications

personnelles (RCP) utilisant une organisation géographique du temtoire semblable à

celle des communications mobiles.

Dans un RCP, la zone de couverture est souvent découpée géographiquement en

cellriles (ou nœuds) hexagonales. comme l'illustre la figure 1.1. Ces cellules sont

organisées hiérarchiquement afin de réduire les coûts de liaison (ou de câblage) . Ainsi.

toutes les cellules ne communiquent pas directement entre elles. On choisit un certain

nombre de cellules privilégiées, où l'on installe des commutateurs qui communiquent

entre eux et servent de relais pour des communications entre paires de cellules.

Pour diverses raisons et surtout à cause de la mobilité, les commutateurs servant de

relais à un usager donné peuvent changer si ce dernier change de cellule. L'opération qui

consiste à noter le changement de cellule d'un utilisateur et à effectuer les mises à jour

nécessaires constitue une relève (Izandufj). Quand la relève s'effectue entre deux cellules

reliées à un même commutateur, on parle de relève simple car les mises à jour à

effectuer sont peu nombreuses. Par contre. quand la relève se déroule entre deux cellules

reliées des commutateurs différents, on parle alors de relève complexe puisque les

mises à jour consomment plus de ressources.

1

Commutateur
2 -

Figure 1.1 Découpage géographique dans un réseau mobile

et relève (handof'f) entre commutateurs

1.2 Éléments de la problématique

Dans les RCP, chaque cellule est desservie par une antenne utilisée pour

communiquer avec les usagers sur des fréquences pré-affectées. Les communications

des usagers d'une cellule sont ainsi relayées par le commutateur qui dessert celle-ci.

Pour un usager qui se déplace, le signal envoyé est pris en charge par les cellules les plus

proches. Souvent. on définit un seuil de filtrage au-delà duquel le signal ae l'usager est

suffisamment important pour être pris en compte par la cellule, ce qui peut entraîner

queIques complications.

En se référant à la figure 1.1 par exemple, les cellules A et B relèvent du

commutateur 1, tandis que les cellules C et D relèvent du commutateur 2. Considérons

un usager se trouvant dans la cellule B, le signal que reçoivent les cellules B et C peut

être supérieur au seuil de filtrage compte tenu de la proximité de ces deux cellules. Il

faut donc un réseau de signalisation (qui n'est pas dessiné sur la figure 1.1) pour savoir

quelle cellule reçoit le plus fort signal et déterminer, de ce fait, le commutateur qui

gérera Ia communication. intuitivement, si l'usager se trouve dans la cellule B, la

communication sera acheminée par le commutateur 1 auquel est reliée ladite cellule.

Si I'usager se déplace de la cellule B vers la cellule A, on assiste à une relève simple.

La base de données du réseau qui garde en mémoire le commutateur gérant chaque

usager n'a pas besoin d'être mise à jour. De plus, seul le commutateur 1 est concerné par

cette mise à jour et aucune autre entité du réseau n'intervient. Par contre, si I'usager se

déplace de la cellule B vers la cellule C, on a une relève complexe. En effet, les

commutateurs 1 et 2 doivent échanger de l'information sur l'usager et la base de

données du réseau doit être mise à jour. De plus, si le commutateur 1 est responsable de

la facturation, la relève (handoff) ne peut pas simplement remplacer le commutateur 1

par le commutateur 2. En fait, [a communication continue à être relayée à travers le

commutateur 1 (à cause de la facturation) même après la relève. On aura donc une

connexion de I'usager au commutateur 2, puis au commutateur 1, et enfin au réseau. Le

coût d'une relève complexe est donc beaucoup plus élevé que celui d'une relève simple.

Si la fréquence des relèves entre les cellules A et B de la figure 1 est très élevée

tandis que Ia fréquence des relèves entre les cellules B et C est faible, i l apparaît alon

raisonnabIe et moins cher de connecter les cellules A et B au même commutateur (si cela

est possible) en vue de réduire les coûts de relève. Ainsi apparaît le problème

d'affectation de cellules ii des commutateurs qui peut être résumé comme suit: étant

donné un ensemble de cellules et de commutateurs (dont les positions sont connues), le

problème consiste donc à affecter les cellules aux commutateurs de façon à minimiser

une fonction de coût qui intègre une composante de coût de liaison et une autre

composante de coût de relève. En outre, l'affectation doit tenir compte de la contrainte

de capacité des commutateurs qui ne peuvent accepter qu'un nombre limité d'appels.

Ce problème d'affectation a été étudié en particulier par Merchant et Sengupta

(L994, 1995). Leur algorithme part d'une solution initiale qu'il essaye d'améliorer par

une série de mouvements de type glouton, tout en évitant de s'enfermer dans un

minimum local. Les mouvements proposés pour échapper à un minimum local

n'explorent qu'une partie très limitée des possibilités. De plus, ils dépendent de la

solution initiale, et celle adoptée dans leur algorithme ne garantit pas forcément une

bonne solution finale.

1.3 Objectifs de recherche et résultats attendus

Ce mémoire a pour objectif principal la mise au point d'une méthode heuristique de

type reclterclie raborde (tabu search) pour résoudre le problème d'affectation énoncé

précédemment. Pour y parvenir. nous commencerons par une formulation mathématique

du problème qui explicite la fonction objectif à minimiser. les contraintes à satisfaire et

les variables dont dépendent fonction et contraintes. Puis, nous définirons les paramètres

de base de la recherche taboue dans le contexte spécifique de notre problème, et

essayerons par la suite de les raffiner dans le but d'obtenir de meilleurs résultats.

Nous espérons que les résultats ainsi obtenus pourront se comparer avantageusement

à la méthode proposée par Merchant et Sengupta (1995) et qui est spécialement adaptée

au problème d'affectation. De plus, notre méthode devrait aussi pouvoir tenir la

comparaison avec d'autres méta-heuristiques bien connues telles que le recuit simulé et

les algoritlunes géngliques appliquées au même problème.

1.4 Principales contributions

Les principales contributions de ce mémoire sont au nombre de quatre et consistent

en :

- l'établissement d'une équivalence entre notre problème d'affectation et celui

bien connu en optimisation combinatoire de localisation d'entrepôts :

- la définition de mouvements, de critères d'aspiration, de mécanismes

d'intensification et de diversification à la fois efficaces et adaptés au problème ;

- In définition d'une structure de gains et de ses procédures de mise à jour pour une

implémentation efficace des mouvements ;

- la définition de deux bornes inférieures de la solution optimale du problème.

1.5 Plan du mémoire

Ce mémoire comprend six chapitres. Suivant ce premier chapitre d'introduction. le

chapitre 2 présente une formulation mathématique, de type programmation en nombres

entiers, du problème d'affectation de cellules et fait une revue sélective des méthodes

existantes de résolution. Le chapitre 3 décrit la méthode générale de recherche taboue

qui sert de base à l'approche que nous proposons ici pour résoudre le problème

d'affectation. Le chapitre 4 présente les détails d'adaptation et d'implémentation de la

recherche taboue dans le cadre du problème d'affectation de cellules dans les réseaux

mobiles. Au chapitre 5, nous présentons une analyse détaillée des résultats fournis par

l'implémentation du chapitre 4 et faisons quetques comparaisons avec d'autres méthodes.

Enfin, nous conchmns au chapitre 6 en résumant les principaux résultats obtenus, les

limitations de notre méthode et les extensions possibles aux travaux déjà entrepris.

CHAPITRE 2

AFFECTATION DE CELLULES À DES

COMMUTATEURS DANS LES RCP

Le problème d'affectation de cellules, comme son nom l'indique, consiste à

déterminer un patron d'affectation de cellules à des commutateurs dans le but de

minimiser une fonction de coût quadratique, tout en respectant un certain nombre de

contraintes notamment sur la capacité des commutateurs. Dans ce chapitre, nous faisons

une revue sélective des travaux recensés dans la littérature qui traitent d'un ou de

plusieurs aspects de ce problème. Après avoir défini les concepts de base, nous

présenterons une formulation mathématique de ce problème, suivie d'une analyse

mettant en évidence les points de ressemblance avec d'autres problèmes déjà connus de

recherche opérationnelle. Ceci nous permettra d'évaluer les méthodes appliquées ou

applicables au problème d'affectation ainsi que leurs limitations.

2.1 Définitions et concepts de base

Dans les RCP, les cellules, les commutateurs, ainsi que les liens entre cellules et

commutateurs définissent la topologie du réseau pouvant être représentée par un graphe

G=(N,A). N désigne l'ensemble des nœuds qui sont tantôt des commutateurs, tantôt des

antennes desservant les cellules, et A désigne l'ensemble des arcs ou des liaisons. Ces

dernières possèdent des attributs tels la capacité, le flot. la longueur. etc. Les liaisons de

la topologie peuvent être représentées, entre autres, par une matrice d'incidence. ilne

matrice d'adjacence, ou un vecteur caractén'stique.

On parle aussi parfois de patron. Un patron est un ensemble de données qui

définit complètement l'état d'un attribut du réseau. Ainsi. un patron d'appels définit le

flot d'appels entre deux cellules quelconques du réseau; un patron d 'afiectation définit

complètement le commutateur auquel est affectée chacune des cellules du réseau.

Dans un patron d'affectation, on peut avoir une domiciliation simple ou double

des cellules. On parle de domiciliation simple des cellules lorsqu'une cellule ne peut

être reliée qu'à un et un seul commutateur. Par contre, on parlera de domicilia~ion

double quand une cellule peut être connectée à au plus deux commutateurs. Si le patron

des appels et des relèves ne reste pas le même pendant toute la journée, on peut avoir

deux patrons : un pour le matin et l'autre pour l'après-midi, par exemple. Dans ce cas.

les celluies ont une domiciliation double. Les deux commutateurs auxquels une cellule

est reliée sont actifs alternativement et jouent le rôle de commutateur de base à des

périodes précises de la journée.

Dans un problème d'affectation, on dispose de deux ensembles disjoints de

même cardinalité, et on essaie d'étabIir une correspondance biunivoque entre les

éléments de ces ensembles. Un problème de transport est un peu plus général. En effet,

on retrouve toujours deux ensembles disjoints : des usines de production d'une part et

des entrepôts d'autre pari. Mais, on essaie plutôt de stocker la production des usines

dans des entrepôts. tout en respectant les contraintes relatives à la capacité de ces

derniers. En effet, la capacité de stockage totale doit être supérieure à la production

totale. En général, on ajoute des centres de production fictifs pour équilibrer production

et capacité de stockage.

2.2 Formulation du problème

Le problème d'affectation de cellules à des commutateurs consiste

essentiellement à minimiser une fonction de coût composée du coût de liaison et du coût

des relèves sous des contraintes de capacité de commutateurs et selon une domiciliation

simple ou double des cellules. Nous formulerons d'abord le problème général pour une

domiciliation simple, tel que présenté par Merchant et Sengupta (1994, 1995). Ensuite,

nous apporterons quelques simplifications et aborderons le problème avec domiciliation

double.

2.2.1 Problème général pour une domiciliation simple

Soient n cellules à affecter à m commutateurs. La localisation des celIules et

commutateurs est fixe et connue. Soient Hi, le coût par unit6 de temps d'une relève

simple entre les cellules i et j impliquant un seul commutateur, et H', le coût par unité

de temps d'une relève complexe entre les cellules i et j (i , j = 1, n avec i # j)

impliquant deux commutateurs. H, et H P G sont proportionnels à la fréquence des relèves

entre les cellules i et j. Soit Cik le coût d'amortissement de la liaison entre la cellule i

et le commutateur k (i = 1, . . ., n; k = l , . . ., m) et soit Ai le nombre d'appels par unité de

temps destinés à la cellule i.

de temps est notée Mk.

Soit

X" = 10 sinon.

L' affectation des cet lules

La capacité d'un commutateur en nombre d'appels par unité

cellule i est reliée au comrnutateu r k,

aux commutateurs est sujette à un certain nombre de

contraintes. En effet, chaque cellule doit être assignée à un et un seul commutateur, ce

qui se traduit par la relation suivante :

2 x, = 1 pour i = i n.

Soient zg et yu définis par :

-. - .. - x, x jk pour i, j = 1. i r et k = 1. ..., m. avec i t j.
v k

...
y, = x z , pour i. j = 1. n. e t i# j .

+i est égai à 1 si les cellules i et j, avec i + j. sont toutes deux connectées au même

commutateur k, sinon il est nul.

y, prend la valeur 1 si les cellules i et j sont toutes deux connectées au même

commutateur, et la valeur O si les cellules i et j sont connectées à des commutateurs

différents.

Le coût par unité de temps f s'exprime comme suit:

Le premier terme est le coût de liaison, le deuxième terme prend en compte le coût des

reIèves complexes et le troisième terme celui des relèves simples. On note que la

fonction de coût est quadratique en x,k , car y,-j est une fonction quadratique des -rik.

Si hi est le nombre d'appels par unité de temps destinés à la cellule i, la capacité limitée

des commutateurs impose la contrainte sui vante:

n

 CA^^^^ S M , pour k=L, ..., rn

selon laquelle la charge totale de toutes les cellules assignées à un commutateur ne

dépasse pas la capacité de ce commutateur.

Enfin, pour compléter les contraintes du problème, on a :

= O ou 1 pour i = I , ..., n et k = 1, ..., m. (2.4)

. . -

y , = C z,, pour il j = Il ..., rt
k =l

En rajoutant au besoin des cellules fictives avec des volumes d'appeIs fictifs non

nuls, on peut ramener la contrainte (2.3) à une égalité. Les contraintes (2. l), (2.3) et

(2.4) sont alors des contraintes de problème de transport. En effet, chaque cellule i peut

être assimilée à une usine qui produit un volume d'appels Ai. Les commutateurs sont

alors des entrepôts de capacité Mk où on peut stocker la production des cellules. Le

problème revient donc à minimiser (2.2) sous Ies contraintes (2 4 , et (2.3) à (2.6). Ainsi

formulé, le problème ne peut être résolu avec les méthodes standards de programmation

linéaire à cause de la non-linéarité de la contrainte (2.5). Merchant et Sengupta (1994,

1995) l'ont remplacée par l'ensemble équivalent de contraintes suivant :

Z,jk < Xik

z, jk < -r,k

Zijk 2 .rik + Xjk - 1

z*L O

Le problème peut alors se reformuler comme suit :

Minimiser (2.2) sous les contraintes (2. l), (2.3), (2.4) et (2.6) à (S. 10).

On peut encore procéder à une simplification du problème en posant :

h, =HP,- H , .

6, est le coût réduit par unité de temps d'une relève complexe entre les cellules i et j. La

relation (2.2) se récrit alors :

v

CON tan rr

Le problème d'affectation prend alors la forme suivante :

Minimiser

sujet à :

.ril,=Oou 1 pour i = I ,..., n et k = I , ..., m

2 x, = 1 pour i = I , n
k = l

pour k = 1, ..., rn

Ainsi transformé, le problème d'affectation peut se résoudre par les méthodes

usuelles de programmation en nombres entiers. De plus, nous avons montré que la

fonction de coût est quadratique et que les contraintes peuvent se ramener à celles d'un

problème de transport.

2.2.2 Problème général pour une domiciliation double

Pour une domiciliation double, le patron des appels et des relèves ne reste pas le

même pendant toute la joumée. On a par exemple deux patrons pour la joumée : un pour

la matinée et l'autre pour l'après-midi. Les deux problèmes reliés à chaque partie de la

journée ne sont pas découplés et ne peuvent donc être résoIus séparément. ii faut

optimiser non pas par rapport à chacun des patrons, mais par rapport aux deux

simultanément, de telle sorte que le coût total (surtout celui de liaison) soit minimum.

Nous proposons une formulation introduite par Merchant et Sengupta (1995).

Gardons les mêmes définitions de hi et ho, sauf qu'elles s'appliquent seulement pour un

patron donné, en l'occurrence celui de la matinée. Soient A'i et h', respectivement le

nombre d'appels par unité de temps destinés à la cellule i et le coût réduit par unité de

temps d'une relève compIexe entre les cellules i et j dans le patron 2 de l'après-midi.

Dans ce cas, cil, peut être interprété comme le coût des mises à jour nécessaires pour

assigner la cellule i au commutateur k. Ml, est toujours défini comme la capacité

maximale du commutateur k Les valeurs de Mk et c2 restent les mêmes dans les deux

patrons.

Selon le principe de la double domiciIiation, une cellule peut être connectée à un

ou deux commutateurs mais, dans chaque patron, seulement un commutateur à la fois est

actif. On doit alors trouver deux patrons d'affectation pour chacune des parties de la

journée, en indiquant s'il est plus économique ou non (avec les variations entre les deux

patrons) d'avoir une cellule connectée à deux commutateurs avec un basculernent d'un

commutateur à un autre, ou d'avoir la cellule connectée à un seul commutateur. La

différence entre les deux formuiations est qu'il faut éviter que le coût de liaison Cik ne

soit compté doublement dans le cas où une cellule reste connectée au même

commutateur dans les deux patrons d'affectation.

Pour le patron 1, définissons comme précédemment les variables xik, Z Q ~ , yq.

Elles doivent, avec les variables Ai et hg, satisfaire les contraintes (2.1)' (2.3)' (2.4) et

(2.6) à (2.10). Pour le patron 2. définissons les variables équivalentes .Ca, z ' Q ~ , y > qui,

avec les variables hVi et i l ' , satisfont les mêmes contraintes (2.1)- (2.3), (2.4) et (2.6) à

(2.10). Le coût de liaison entre la cellule i et le commutateur k est compté si la cellule i

est affectée au commutateur k dans au moins un des deux patrons d'affectation, c'est-à-

dire si .w = I ou x'&=l. Soit w& la nouvelle variable qui indique si I'on doit ou non

compter le coût de liaison entre i et k. On a :

W& = 1 si xik =1 OU x'& = I .

\Vix. est donc défini par :

w t ~ = .rik vxtiit pouri=l. ..., n et k=l,,.., nt

avec «v désignant l'opérateur logique << ou ».

La fonction

f =

objectif est alors :

sous les contraintes (2. l), (2.3), (2.4) et (2.6) à (2. IO), pour les variables xik, i ~ k , y,, A; et

hg d'une part, et xÿ, z P e , y',, A'; et h', d'autre part. À tout cela. s'ajoute la contrainte

supplémentaire :

~ i k = -rik vxtik pour i = I , n et j= l , ..., m (2.12)

Le problème est totalement défini mais n'est pas linéaire à cause de la contrainte (2.12)

que I'on peut alors remplacer par l'ensemble équivalent de contraintes suivant :

w i k 2 xik (2.14)

w i k 2 ';k (2.15)

W Q ~ < xik + x 'ik (2-16)

w ; k I 1 (2.17)

D'où la formulation finale suivante :

Minimiser (S. 13) sous les contraintes (2. 1)' (2.3), (2.4)' (2.6) à (2.10) et (2.14) à (2.17)

pour les variables -rit, w,b zu~, y,. hi et II, d'une part. et les variables x*,k. z '@k, y ',, et

li *,, d'autre part.

2.3 Fondements du problème d'affectation

Le problème d'affectation peut se ramener à un certain nombre de types de

problèmes bien connus en recherche opérationnelle, tels le parti tionnement de graphes

ou le problème de localisation d'entrepôts ou de concentrateurs. Notre analyse portera

d'abord sur le problème à domiciliation simple.

2.3.1 Problème de localisation d'entrepôts

La formulation du problème de localisation d'entrepôts qui correspond le mieux

au problème d'affectation de cellules est connue sous le nom de problème de localisation

de p concentrateurs fixes (p-fixed hubs location) et a été introduit par Skorin-Kapov et

al. (1994) et Sohn et Park (1998).

Soient H un ensemble de positions connues et fixes de concentrateurs avec

IHI = in et c»l le coût fixe pour établir une liaison entre le nœud i et le concentrateur k.

L'ensemble des concentrateurs H et l'ensemble des cellules (ou nœuds) N sont disjoints.

Le problème s'énonce dors comme suit :

Minimiser

sujet à :

a = 1 pour k =1, ..., m

2 x,,, = z , pour i = l, 0 - 1 et j = i + I n . k = 1, ..., in (2.21)

C x , & = z , pour i = I 1 1 - I et j = i + l n. p = l rn (2.22)

zik = O ou 1 pour i = 1, ..., n et k = l , ..., m

.ygb L O, pour i= 1, n-1. j=i+ 1, n. k= 1. rn et p=I. m

- v, = Wu + Wji ou Wu désigne le flot du nœud i au nœud j;

- A,@ = an + aab + a, où a, est le coût par unité de flot entre les noeuds i et

- a 5 l est un facteur sur Ie coût par unité de flot entre concentrateurs (on

suppose que Cii=O pour i = 1, .. ., n).

- est la fraction du flot entre les nœuds i et j acheminée à travers les

concentrateurs se trouvant aux ncruds k et p (i est relié à k et j à p).

- zik = I si le n ~ u d i est affecté au commutateur k et O sinon.

Le fait que les nœuds de H soient des concentrateurs se traduit par la contrainte (2.19).

La contrainte (2.20) traduit le fait que chaque noeud est affecté à un seul concentrateur.

Les contraintes (2.21) et (2.22) traduisent le fait que tout le flot d'un nœud est acheminé.

Le problème de localisation de p concentrateurs fixes, tel que présenté ici, a été

relativement peu étudié. Dans la littérature, il est en général décomposé en deux sous-

problèmes: (1) localiser la position des concentrateurs, (2) affecter les nœuds aux

concentrateurs (Abdinnour-Helm, 1998; Klincewicz, 199 1 ; Skonn-Kapov et al., 1994;

Sohn et Park, 1998). Seule la deuxième partie du problème nous intéresse dans ce

mémoire.

Dans le problème d'affectation, les commutateurs équivalent aux concentrateurs

et les cellules aux ncleuds. On a H n N=0. où H est l'ensemble des commutateurs et N

l'ensemble des cellules. De plus, Wii =O pour i= l n. c'est-à-dire qu'il n'y a pas de

flot d'une cellule i vers la même cellule. Supposons que Avb=Ajipk pour i l j= l n et

k,p=Il ..., rn (c'est-à-dire que le coût de la relève entre les cellules i et j est le même que

le coût de la relève entre les cellules j et i). De ce fait, (2.18) se réécrit comme suit :

Dans le cas du problème d'affectation, le coût unitaire du flot entre les nœuds i et J.

Ag@, sera le coût par unité de temps de la relève entre i et j. Posons alors :

B', = a, + m,, + a, pour un transfert complexe entre les cellules i et j

= { B ~ , = a, + a , pour un transfert simple entre les ceiluies i et j.

Pour le problème d'affectation, la relève entre les cellules i et j est totalement acheminée

par les commutateurs k et p auxquels elles sont reliées, c'est-à-dire qu'on n'a pas de flot

fractionnaire. De ce fait. = xikxjP , za = xü et on peut poser :

I ~ ' ~ , x , , . x , ~ . = b ' , si k V + p ' et i relié à k', j relié à p' - - - 1 ~,x,.x,~. = 6, si kt = p' , i et j reliés au même cornmutate" r k'

En posant Hu = Wubg et H P q = W$ ' , (2.18') devient :

où y, est défini comme dans (6).

(2.18") se ramène donc à (2.2) et au niveau des contraintes, on a :

- la contrainte (2.19) peut être éliminée car elle est déjà traduit

toutes les cellules de H sont des concentrateurs;

r le fait que

- la contrainte (2.20) équivaut à la contrainte (2.1) et traduit le fait que chaque

cellule doit être affectée à un et seul concentrateur;

- les contraintes (2.21) et (2.22) entraînent que zik = x , ~ et en fait se ramènent à

la contrainte (2.20);

- les contraintes (2.23) et (2.24) sont évidentes et correspondent au fait que le

patron d'affectation est composé seulement de O (pour l'absence de liaisons)

et de 1 (pour la présence de liaisons).

La relation (2.3) est une contrainte supplémentaire sur la capacité des

commutateurs. Le problème d'affectation de cellules peut donc se ramener à un

problème de localisation de p concentrateua fixes à capacité limitée. Notons toutefois

que. dans le problème de localisation de p concentrateun, le flot entre deux cellules peut

être partiellement acheminé par des concentrateurs différents, ce qui donne des valeurs

de x o k p non entières et un problème de programmation mixte. alors que le problème

d'affectation de cellules ne fait intervenir que des valeurs entières.

2.3.2 Problème de partitionnement de graphes

Le partitionnement de graphes est un problème très courant dans le domaine des

technologies de l'information. Il survient par exemple en VLSI dans la disposition des

composants, et en calcul parallèle où on doit répartir des calculs entre un nombre donné

de processeurs (Kerninghan, 1970: Fidducia et Mattheyses, 1962; Sanchis, 1989). Dans

cette section, nous exposons le problème de partitionnement en mettant en évidence ses

liens avec le problème d'affectation.

Soit G un graphe avec des coûts associés à chacun de ses arcs. Le problème de

partitionnement consiste à diviser l'ensemble N des nœuds du graphe en des sous-

ensembles de carciinalité inférieure à un nombre maximal donné, de manière à

minimiser le coût total des coupes, c'est-à-dire la somme des coûts des arcs ayant leurs

extrémités dans des sous-ensembles différents. La figure 2.1 en est un exemple.

Figure 2.1 Partitionnement d'un graphe avec une coupe de coût 21

Pour représenter le problème d'affectation sous forme d'un graphe, on assimile

chaque cellule à un nœud du graphe. Les antennes des cellules sont situées à leur centre

et un arc (ij) a comme coût la somme des coûts h,+liji de transfen entre les cellules i et

j. Les coûts de liaison sont proportionnels aux distances, comme illustré ai la figure 2.2.

Figure 2.2 Un problème d'affectation (le commutateur est dans la cellule 2)

Le problème est ramené à un problème de partitionnement par les transformations

sui van tes exposées par Merchant et Sengupta (1994):

- Chaque cellule avec un volume d'appels h, est représenté par un nœud primaire et

L K A J - I nceuds secondaires. Le facteur multiplicatif K est un entier qui permet de

transformer les volumes d'appels non entiers en nombres entiers. Un facteur K trop

petit entraîne une perte de précision dans les données du problème. En théorie donc,

K peut prendre des valeurs assez grandes, mais en pratique, une valeur de K

comprise entre 1 et 10 est souvent suffisante. Le nœud primaire et les nœuds

secondaires sont reliés par des arcs de coût M, où M est un entier très grand. Ceci

assure que les nœuds secondaires et primaire correspondant à une même cellule

restent à tout moment dans le même sous-ensemble. Une cellule ayant un volume

d'appels ptus grand sera divisée en un nombre plus grand de nœuds pour refléter son

volume d'appels.

- Pour chaque paire /i,jjl de cellules, l'ancien arc (i , j) est reporté entre le nœud

primaire représentant i et le nœud primaire de j avec les mêmes coûts.

- Un commutateur k est représenté par un nœud et demeure associé de manière

permanente à un sous-ensemble de taille maximale LKMJ + I V o ù K est le facteur

multiplicatif entier et Mk la capacité du commutateur k. Le fait de lier le

commutateur de manière permanente au sous-ensemble fait que l'on ne peut pas

déplacer le commutateur de son sous-ensemble.

- Enfin, le coût de liaison est représente par l'ajout d'un arc entre le nœud primaire de

chaque cellule i et le nœud représentant le commutateur k. À cet arc, on associe un

coût c, défini par :

Ainsi, si la cellule i est associée au commutateur k', le coût de liaison CL pris en compte

par la coupe sera :

1 m m m

= ~[- - - - (~c , . .) -cl, j = (m -l)-(zc,,)- z c t k = x c , - X c l k = '1,.

k = l m - ,=l m - 1 ,=, k =l k =l
k * k * j= ' k g k m

k tk'

qui est bien le coût de liaison entre la cellule i et le commutateur k'. On a donc une

équivalence entre les deux problèmes. En conséquence, les méthodes de résolution du

problème de partitionnement peuvent donc s'appliquer au problème d'affectation.

Le problème de partitionnement de graphes et celui de localisation d'entrepôts

sont connus comme étant des problèmes NP-difficiles (Garey et Johnson, 1979;

Sanchis, 1989; Skorin-Kapov et al., 1994). Le problème d'affectation de cellules

pouvant être ramené à un de ses problèmes et vice-versa. il est lui aussi NP-difficile. De

ce fait. on ne connaît pas d'algorithme pour le résoudre en temps polynomial. Les

méthodes exactes de prograrnrnation en nombres entiers ont une complexité

exponentielle et explosent avec la taille du problème. On doit donc se contenter

d'heuristiques qui fournissent en temps raisonnable des résultats éventuellement sous

optimaux, mais assez proches de l'optimum.

Comme nous l'avons déjà mentionné, le problème d'affectation intègre une

fonction de coût quadratique et des contraintes qui peuvent se réduire à celles d'un

problème de transport : les commutateurs sont des usines qui ont une demande égale à

leur capacité et les cellules sont des fournisseurs qui ont une offre égale à leur charge.

Chaque cellule doit être affectée à un commutateur et la capacité des commutateurs doit

être respectée (en ajoutant des cellules fictives s'il le faut). Le problème d'affectation de

cellules pourrait donc être appelé problème de transport quadratique, par anaIogie au

problème d'affectation quadratique (QAP) qu'on appelle ainsi parce qu'il possède une

fonction de coût quadratique et des contraintes d'affectation.

2.4 Méthodes classiques de résolution

Le problème d'affectation étant un problème NP-difficile, les algorithmes exacts

souvent basés sur une énumération de toutes les possibilités ne peuvent être appliqués

qu'à des problèmes de petite taille. En ramenant le problème à un problème de

partitionnement de graphe, Kerninghan et Lin (1970) ont montré que le nombre de

combinaisons possibles croît très rapidement. Pour un problème de localisation de nt

concentrateurs avec n cellules par exemple, on doit examiner à première vue rran

corn binaisons.

2.4.1 Approches globales et voraces

Des méthodes globales ont été développées pour essayer de limiter l'espace des

combinaisons à explorer. Ainsi, la technique de limitation d'exploration (BB pour

Branch and Bound) permet de limiter le domaine de recherche grâce à une fonction de

coût associée à chaque possibilité ou solution du domaine de recherche (Horowitz et

Sahni, 1990). On part donc d'un point ou solution quelconque considéré comme la

racine, sur laquelle on effectue une seule transformation à la fois. La transformation à

effectuer est celle qui, (théoriquement) de toutes les transformations possibles, minimise

le coût des efforts additionnels pour atteindre l'optimum. Malheureusement, calculer le

coût des efforts additionnels pour atteindre I'optimum revient presqu'à connaître cet

optimum, ce qui est aussi difficile que le problème initial. On propose donc souvent une

fonction de coût qui est une approximation de la fonction de coût réelle.

Des algorithmes comme ADD et DROP (Kuehn et Hamburger, 1963) prennent

comme estimation du coût additionnel requis pour atteindre l'optimum, l'opposé du gain

fait par rapport à la solution initiale. Ceci se justifie par le fait que plus on a déjà gagné

par rapport à la solution de départ, moins il reste d'effort à faire pour parvenir à une

solution. Ces algorithmes sont dits voraces car ils améliorent la solution au maximum à

chaque étape. Toutefois, ils dépendent fortement de la manière dont les concentrateurs

sont ajoutés et ne peuvent échapper au piège d'un minimum local.

2.1.2 Localisation de p concentrateurs fixes à capacité limitée

Dans la littérature, le problème de p concentrateurs fixes a été relativement peu

étudié. Sohn et Park (1998) sont parmi les rares à aborder le problème de localisation de

p concentrateurs avec des coûts fixes pour la création des liaisons. Cependant, te

problème ressemble assez à celui d'affectation simple étudié antérieurement par les

mêmes auteurs. Le problème d'affectation simple a été formulé par O'Kelly (1987) et

consiste à déterminer ta localisation des concentrateurs et I'affectation des cellules sous

la seule contrainte que chaque cellule doit être affectée à un seul concentrateur.

En général, les algorithmes proposés jusqu'ici se concentrent surtout sur la partie

localisation et font I'affectation d'abord selon la distance (les cellules sont affectées au

commutateur le plus proche), ou selon le taux de transfert entre deux cellules (les

cellules qui échangent beaucoup d'informations sont affectées au même concentrateur),

ou encore selon un critère mixte. Ensuite, cette première affectation est améliorée par

différentes techniques. O'Kelly (1987) a donc proposé deux méthodes : la première

affecte une cellule au concentrateur le plus proche, tandis que la deuxième considère les

deux concentrateurs les plus proches. Bien qu'explorant toutes les possibilités de

localisation des concentrateurs, la partie affectation (des cellules aux concentrateurs) de

l'algorithme est très pauvre et n'est efficace que pour un nombre très restreint de

concentrateurs (l'optimum est atteint à coup sûr quand on a un ou deux concentrateurs).

Klincewicz (1991) a exposé une heuristique basée sur un critère multiple prenant

en compte aussi bien la distance que le taux de transfert entre cellules, avec des poids

normalisés respectifs wl et wz. Cette heuristique procède comme suit :

Étape I : Répéter pour chaque cellule i,

Calculer, pour chaque concentrateur k, l'inverse de la distance de i à k

et normaliser les distances inverses de telle sorte que le maximum soit

1. Soit Dik la distance inverse normalisée de i à k.

Calculer, pour chaque concentrateur k, le trafic total échangé par i

avec les cellules déjà affectées à k. Appeler cette mesure Tik et la

normaliser de telle sorte que le maximum soit 1.

Calculer, pour chaque concentrateur k, Gik=wI Dik +w?T,~.

Affecter i au concentrateur ayant le plus grand Gik et ayant une

capacité sufisante pour prendre i.

Étape 2 : Pour chaque cellule i. faire les calculs suivants : pour chaque

concentrateur k, calculer le gain Sa de la fonction objectif résultant de

la réaffectation de i à k au lieu de son affectation actuelle.

Éraoe 3 : Choisir le Sik maximum pour tous les i et tous les k qui respectent les

contraintes de capacité-

Étape 4 : Si Sik > 0, réaffecter i à k et retourner à l'étape 2, sinon arrêter.

Un désavantage des heuristiques proposées réside dans le fait qu'elles essayent à

la fois de localiser les concentrateurs et de faire l'affectation. Cela donne souvent lieu à

des algorithmes d'affectation qui ne prennent en compte ni les contraintes de capacité du

problème d'affectation, ni le fait que les positions des commutateurs sont fixées et

connues. Par exemple, l'algorithme de Klincewicz (1991) exposé précédemment peut

être adapté au problème d'affectation en utilisant la fonction objectif à la place de Gik.

Cependant, cet algorithme est myope et ne peut échapper à un minimum local.

Sohn et Park (1998)' après avoir énoncé le problème de localisation de p

concentrateurs fixes avec coût fixe de liaison, ont utilisé une résolution de la relaxation

lagrangienne du problème pour obtenir une bome inférieure de la fonction objectif. Cette

bome est utilisée pour évaluer les différents schémas de localisations des concentrateurs

afin d'en choisir rapidement un.

2.4.3 Partitionnement de graphes

L'une des premières heuristiques de partitionnement de graphes a été introduite

par Kemighan et Lin (1970). Cette heuristique permet de partitionner un graphe G=(N,

A) avec c sommets (c pair) en 2 blocs de CR sommets chacun. On part d'une partition

quelconque (A,B) que l'on améliore itérativement en choisissant une cellule dans chaque

bloc, puis en les permutant selon les étapes suivantes :

Étape 1 : AfTecter à p la valeur 1. A, devient l'ensemble A et Bp l'ensemble B.

Étape 2 : Enlever les marques de tous les sommets et initialiser i à 1.

Étape 3 : Pour tout élément (ou sommet) n de N non marqué, calculer le gain

(éventuellement négatif) sur la fonction objectif résultant du

déplacement de l'élément n de son bloc (par exemple A) vers l'autre

bloc (par exemple B).

Érape 4 : Choisir le couple (ai. bi) avec ai E A, et bi E Bp, ai et bi non marqués.

tel que la permutation de ai et bi donne le plus grand gain gi sur la

fonction objectif (ce gain peut être négatif).

Étape 5 : On permute ai et bi et on obtient ainsi A,+] et BP+, . On marque ai et bi

et on incrémente i et p.

Étape 6 : S'il reste des sommets non marqués. retourner à l'étape 3.

e
Étape 7 : Choisir k tel que le gain G = g. soit maximal.

14

Étape 8 : Si G > O alors A devient A-{ar. ..., a&] u { bl, ..., bi) et B devient B-

/bl, ..., b J u/ a,. .. ., a J et on retourne à l'étape 1, sinon on arrête.

Des formules sont fournies pour calculer les gains, faire les mises à jour et

choisir les permutations de façon optimale. L'algorithme peut être adapté pour

partitionner en sous-ensembles de tailles inégale (bornée supérieurement ou

inférieurement). Pour faire un partitionnement multiple, on utilise le même algorithme

en décomposant l'optimisation du partitionnement mukiple en plusieurs optimisations

entre sous-paires. On peut, par exemple, faire un partitionnement en m blocs, en faisant

un partitionnement entre le premier bloc et les m-1 autres, et ensuite appliquer le même

schéma m-3 fois aux m-1 blocs restants. Cependant, cette optimalité par paires ne

garantit par I'optimalité globale des m blocs entre eux.

Fiduccia et Mattheyses (1982) ont améliore l'algorithme de Kernighan et Lin

(1970) en proposant le déplacement d'une cellule à la fois, ce qui introduit une plus

grande flexibilité dans la taille des blocs et permet de choisir plus facilement les

permutations à effectuer. Ils ont introduit la notion de gain d'une cellule C noté gain(C)

et défini comme I'arnélioration sur la fonction objectif obtenue en déplaçant la cellule C

d'un bloc à un autre; gain(C) est compris entre p et -p. où p est le degré du graphe.

c'est-à-dire le degré du sommet ayant le plus grand degré. Dans un tableau de taille Zp+l

indexé par les valeurs possibles du gain [-p ,p] , on peut maintenir des pointeurs vers les

cellules ayant comme gain la valeur de l'index. Les ccllules sont ainsi constamment

gardées en ordre de gains croissants et on peut facilement choisir les cellules donnant le

plus fort gain. Bien entendu, des formules et méthodes sont fournies pour mettre à jour

le tableau des gains de façon simple.

Krishnarnurthy (1987) a ajouté des méliorations telles le ?"' niveau de gain qui

ont permis à Sanchis (1989) de pouvoir adapter l'algorithme au partitionnement

mu1 tiple, mais de façon uniforme, en considérant à chaque itération tous les mouvements

possibles d'une cellule de son bloc vers n'importe lequel des autres blocs.

Merchant et Sengupta (1995) ont introduit une méthode plus efficace

spécialement adaptée au problème d'affectation de cellules. Elle consiste à trouver une

solution initiale de la manière suivante :

Étape I : Classer les cellules par ordre décroissant de volume d'appels. On

commence avec une seule affectation vide.

Étape 2 : Pour chaque cellule prise dans l'ordre imposé ci-dessus, étendre les

affectations précédemment retenues en leur ajoutant toutes les

affectations de la k""' cellule aux différents commutateurs.

Étape 3 : Éliminer les affectations qui violent la capacité des commutateurs. S'il

ne reste pas d'affectations, l'algorithme échoue. S'il reste b ou moins

que b affectations, les retenir toutes. Sinon retenir les b meilleures

affectations selon la fonction objectif (b est un paramètre, fixe au

départ, qui ne doit pas être trop grand pour éviter tout risque

d'explosion combinatoire, mais assez grand pour garantir une

meilleure solution initiale).

Étape 4 : S'il reste des cellules non encore affectées, retourner à l'étape 2, sinon

arrêter et retourner la meilleure des affectations trouvées.

Pour améliorer la solution initiale trouvée, on définit un mouvement faisable

comme un mouvement qui n'impIique pas de celluies marquées et qui conduit à une

solution faisable ne violant pas la contrainte de capacité des commutateurs. Ensuite, on

complète les étapes suivantes :

Étape I : Effacer les marques de toutes les cellules.

Étape 2 : De tous les mouvements faisables. choisir celui qui affecte une cellule i

à un commutateur k et qui réduit la fonction objectif de la plus grande

valeur. Si aucun des mouvements faisables ne réduit la fonction

objectif, prendre le mouvement faisable qui augmente le moins la

fonction objectif.

Étape 3 : Affecter la cellule i au commutateur k, marquer la cellule i et noter le

schéma d'affectation courant.

Étape 4 : S'il reste des cellules non marquées, retourner à I'étape 2.

Étape 5 : De tous les schémas d'affectation générés. choisir celui ayant la plus

petite valeur de fonction objectif.

Étape 6 : Si la valeur de la fonction objectif obtenue à l'étape 5 est inférieure à

celle du schéma d'affectation courant, alors celui-ci devient le schéma

choisi à l'étape 5 et on retourne à l'étape 1 en ignorant alors tous les

schémas d'affectation précédents, sinon on arrête.

Merchant et Sengupta (1995) ont aussi proposé un algorithme pour résoudre le

problème d'affectation avec domiciliation double. En voici les principales étapes :

Étape I : Former deux problèmes d'aectation avec domiciliation simple

correspondant chacun à un patron d'une partie de la journée.

É f a ~ e 2 : Résoudre les deux problèmes avec l'algorithme précédent. Soit Q le

problème dont [a solution A a la plus petite valeur de fonction objectif

et Q ' l'autre solution.

Étape 3 : Soit Q, le problème d'affectation avec domiciliation simple identique

au problème Q'. à la différence que si la solution A affecte la cellule i

au commutateur k, le coût de liaison cik est nul dans QI. Résoudre Ql

et soit A ' sa solution.

Étape 4 : Sirnilairement, soit Qz le problème d'affectation avec domiciliation

simple identique au problème Q à la différence que si la solution A'

affecte la cellule i au commutateur k, alors le coût de liaison c ,k est nul

dans Q2. Résoudre Q2 et réini tialiser A comme solution de Qz.

Étape 5 : Répéter les étapes 3 et 4 jusqu'à ce que les affectations ne donnent plus

d'amélioration de la fonction objectif. Les affectations dans A et A'

forment la solution du problème d'affectation avec domiciliation

double.

Les méthodes exposées précédemment, bien qu'assez efficaces et parvenant à

une solution en des temps assez courts, intègrent des mécanismes souvent complexes

pour échapper au piège du minimum local (Kerninghan et Lin, 1970; Merchant et

Sengupta, 1994, 1995). Ces méthodes comptent surtout sur une bonne solution initiale

pour atteindre l'optimum. Les approches exactes telles que la programmation linéaire

profitent de la convexité de l'espace de recherche pour développer des algorithmes

optimaux qui sont très performants. Malheureusement, en programmation entière, on ne

bénéficie pas de cette convexité. Dans ces circonstances, les méthodes d'exploration

conduisent à des optima qui souvent sont [ocaux. Dans le chapitre suivant, nous

exposons la méthode de recherche taboue qui est aussi une méta-heuristique générale qui

tire profit de l'histoire de l'exploration du domaine de recherche pour converger vers

une « bonne » solution.

CHAPITRE 3

LA MÉTHODE DE RECHERCHE TABOUE

La méthode de recherche taboue (RT) est une technique adaptative introduite assez

récemment en optimisation combinatoire pour résoudre des problèmes difficiles. Elle est

considérée comme une méta-heuristique, e n ce sens qu'elle peut s'appliquer à

différentes instances de problèmes et y fournir de bonnes solutions. Dans ce chapitre,

nous présentons d'abord les fondements de la méthode en exposant brièvement son

historique et ses concepts de base. Ensuite, nous la caractérisons en décrivant ses

différents mécanismes de fonctionnement et les paramètres qui permettent de les adapter

à un problème spécifique. Enfin, nous explorons et illustrons les raffinements possibles

inhérents à cette méthode.

3.1 Fondements de la méthode de recherche taboue

Le concept d'algorithme de RT remonte aux années 70 et provient des

procédures combinatoires appliquées aux problèmes non linéaires. La méthode a été

introduite dans sa forme actuelle par Glover (1989) et est maintenant devenue une

approche d'optimisation qui s'étend à plusieurs domaines. Les résultats obtenus par

I'application de RT à des problèmes comme le design de circuits intégrés, la coloration

de graphes, le problème du commis voyageur. ont démontré la capacité de RT à fournir

des solutions de bonne qualité au prix d'un effort de calcul relativement modeste

comparé à des méthodes alternatives. Après avoir introduit les notions de mouvement et

de voisinage nécessaires à la compréhension de RT, nous exposerons la méthode de RT

proprement dite en la comparant avec l'algorithme plus simple de descente générale.

3.1.1 Mouvements et voisinage

De façon générale, un problème d'optimisation combinatoire peut se représenter

sous la forme :

Minirniserflx),

su j e t à :~ E X G R " .

La fonction objectif f(x) peut être linéaire ou non et la condition r E X contraint souvent

x à prendre des valeurs discrètes, souvent entières.

Trouver directement la solution x* qui minirnisefix) sous la condition x E X n'est

souvent pas possible. La plupart des méthodes et procédures proposées partiront d'une

solution initiale xo, et lui appliquerons de petites perturbations pour aboutir à de

meilleures solutions (Pierre, 1998a, 1998b). Ces perturbations qui permettent de se

déplacer d'une solution à une autre définissent des mouvements (Pierre, 1997). Un

mouvement m est donc défini comme une application :

m : X(m) + X

s -i m(s)= s ' = s e m (par abris de notation)

o ù X(m) c X est l'ensemble des solutions auxquelles peut être appliqué le mouvement m.

En général, les mouvements sont invenibles et on définit l'inverse m-' d'un mouvement

rn par :

,,,-I . . x=x(m-') + X(m)

s '=m(s) ,, m - ' (s ~ = s ' 8 m - ' = s @ m e m - ' = s

Soient M l'ensemble des mouvements applicables aux éléments de X, et M(s) I'ensemble

des mouvements applicables à la solution S. On a :

M(s)= l m E M : m(s)=(s 8 p) E X I ,

et on définit le voisinage d'une solution s par :

N(s) ={sr E X : 3 rn E M(s) , s' = rn(s)).

3.1.2. Algorithme de descente simple

L'algorithme général de descente part d'une solution initiale qu'il essaye

d'améliorer de manière itérative. Pour cela, il génère a chaque étape un sous-ensemble V

du voisinage N(s) de la solution courante S. Ensuite. il choisit parmi cet ensemble V la

meilleure solution, c'est-à-dire celle qui minimise la fonction objectif sur V. Cette

dernière solution devient la solution courante et l'algorithme continue jusqu'au moment

où aucun élément de V ne permet d'avoir une meilleure fonction objectif. L'algorithme

général de la méthode de descente est présenté à la figure 3.1 -

Initialisation : Choisir une solution initiale s dans X.

Continuer := vrai

Tant que Continuer faire

Générer un sous-ensemble V de solutions dans N(s)

Trouver la meilleure solution s' dans V (f(s1)=rnin f(s) avec s E V)

Si f(sl) 2 f(s) alors Continuer := faux

Sinon s := s*

Fin si

Fin tant que

Figure 3.1 Algorithme général de la méthode de descente

À l'examen de cet algorithme, on constate que :

- Le choix du sous-ensemble V de N(s) n'est pas précisé. V(s) peut donc

être choisi égal à N(s) (c'est le cas si IN(s)l est assez petit) ou à l'autre

extrême, V peut être un singleton dont le seul élément est généré

aléatoirement (c'est le cas dans certaines versions de la méta-

heuristique de recuit simulé). Le choix de V aura donc une influence

sur les résultats obtenus.

- La recherche de la meilleure solution dans V constitue un sous-

problème (local) d'optimisation. Elle peut donc s'avérer assez

compliquée et nécessiter l'utilisation d'autres heuristiques. La méthode

de descente est donc elle aussi une méta-heuristique.

- L'optimum final est un minimum qui n'est pas garanti global et qui

souvent est local.

RT essaie surtout de pallier ce dernier défaut, en améliorant la méthode de descente.

3.1.3 Algorithme général de recherche taboue

La méthode de recherche taboue est une amélioration de l'algorithme général de

descente. Elle essaie principalement d'éviter le piège des minima locaux. Pour cela. i l est

nécessaire d'accepter de temps en temps des solutions qui n'améliorent pas la fonction

objectif, en espérant ainsi parvenir plus tard à de meilleures solutions. La condition

d'arrêt de l'algorithme décrit à la figure 3.1 doit donc être modifiée en conséquence.

Cependant, le fait de vouloir accepter des solutions non forcément meilleures introduit

un risque de cycle, c'est-à-dire un retour vers des solutions déjà explorées. D'où l'idée

de conserver une liste taboue T (tabu list) des solutions déjà visitées. Ainsi, lors de la

génération de l'ensemble V des solutions voisines candidates, on enlève toutes les

solutions appartenant à la liste taboue.

Si la conservation d'une liste taboue permet de conjurer le risque de cycle, elle

s'avère peu pratique par ailleurs. En effet, le stockage de toutes les solutions déjà visitées

peut nécessiter beaucoup de mémoire. D'autre part, il peut s'avérer utile de revenir à une

solution déjà visitée pour continuer la recherche dans une autre direction. Un compromis

est obtenu en gardant dans la liste taboue seulement les k dernières solutions. Ainsi,

quand une nouvelle solution devient taboue, elle remplace la plus ancienne dans la liste,

ce qui permet d'éviter des cycles de longueur inférieure ou égale à k. Toutefois, des

cycles de longueur supérieure à k peuvent toujours survenir.

L'algorithme s'arrête quand aucune amélioration n'est intervenue depuis un

nombre kmar d'itérations, ou si toutes les solutions voisines candidates sont taboues,

c'est-à-dire V- T = 0. La figure 3.2 expose l'algorithme général de la méthode de RT.

Notons que :

- L'utilisation de la liste taboue T et d'une liste de solutions candidates V

introduit une contrainte dans l'exploration de l'espace de recherche et, de ce

fait, les solutions obtenues dépendront de la composition de T et de V.

- La méthode de RT ne fait pas référence à des conditions d'optimalité (même

locales), sauf implicitement quand un optimum local est meilleur que la

meilleure solution s* obtenue jusque là.

- La méthode choisit à chaque itération la meilleure solution parmi les

solutions candidates V, même si cette solution ne constitue pas une

amélioration par rapport à s*, la meilleure solution actuellement connue.

4 1

Initialisation : Choisir une solution initiale s dans X.

Tant que

Fin tant que

s* := s (s* est la meilleure solution obtenue à jusqu'ici)

nbiter := O (nbiter est le compteur des itérations)

bestiter := O (bestiter est le numéro de l'itération à laquelle on a

obtenu la dernière amélioration, i.e le dernier s*)

T := 0 (T est la liste taboue)

Continuer := vrai

Continuer faire

Si (nbiter - bestiter > kmax) ou (V-T=0)

alors Continuer := faux

Sinon nbiter := nbiter + 1

Générer V c N(s)

Trouver la meilleure solution s' dans V (f(sl)=min f(s) avec s E

V-T)

s := s'

Mettre à jour T

Si f(sl) < f(s*) alors s* := s'

bestiter:= nbiter

Fin s i

Fin si

Figure 3.2 Algorithme général de la méthode de recherche taboue

3.2 Caractéristiques de La méthode de recherche taboue

La méthode de RT étant itérative, elle procède par améliorations successives à

partir d'une solution initiale. Elle essaie d'explorer << intelligemment D l'espace des

solutions possibles (ou espace de recherche). Dans cette section, nous exposerons les

éléments essentiels du fonctionnement de RT, notamment sa manière de parcourir

l'espace de recherche, sa structure de mémoire a court terme, ses critères d'aspiration et

de fin.

3.2.1 Exploration de l'espace de recherche

Pour minimiser la fonction objectif, la méthode de recherche taboue part d'une

solution initiale et essaie d'atteindre un optimum global par l'application de mouvements

permettant de passer d'une solution si à une solution si+/ choisie dans le voisinage N(si)

de si. À chaque itération i, le voisinage où les solutions sont sélectionnées est redéfinî

comme le voisinage de la solution courante si- À cela, s'ajoute le fait que les conditions

taboues changent et les solutions admissibles ne sont plus les mêmes.

L'exploration de l'espace de recherche peut être représentée par un graphe

G=(X,A) où X désigne I'ensemble des solutions et A l'ensemble des arcs (x,ni(x)), m(x)

étant la solution obtenue en appliquant le mouvement m à x. Un mouvement donné

équivaudra donc à l'ensemble des arcs /(.r,mLr)). x E Xj. Le graphe G est symétrique car,

pour chaque arc (x, rn(x)). il existe un arc (m(x), x) obtenu en appliquant le mouvement

inverse rn-' à m(x). La méthode de recherche taboue part d'une solution initiale xo, nœud

du graphe G, et cherchera dans G un chemin .ro. XI, ..., .Q, où Xi= mCri-,) avec i= l , ..., k.

Chaque solution intermédiaire du chemin est obtenue en appliquant un mouvement à la

précédente. Les arcs (xi. xitl) du chemin sont choisis en résolvant le problZme

d'optimisation :

La méthode de RT se distingue donc de celle de descente générale par l'utilisation d'une

structure de mémoire à court terme qui permet d'accepter des solutions moins bonnes

pour sortir des optima locaux, tout en évitant les cycles.

3.2.2 Mémoire à court terme

La liste taboue de RT est une structure de mémoire à court terme qui garde les

k = l q dernières solutions visitées (ou mouvements appliqués) en vue d'éviter les cycles.

Elle est implémentée sous forme d'une liste FIFO. La dernière solution visitée (ou le

dernier mouvement) remplace la première, c'est-à-dire la plus ancienne de la liste. La LT

permet aussi, si un cycle survient malgré toutes les précautions, d'amener avec une plus

grande probabilité, l'exploration à se faire dans une direction différente. La LT intervient

donc surtout lors de la sélection de la meilleure solution admissible dans V. La figure 3.3

résume le fonctionnement de la mémoire à court terme dans le processus global de RT.

Dans cette figure, on remarque l'introduction des notions de mémoire à moyen et long

terme dont on reparlera plus loin. On introduit aussi la notion de critère d'aspiration.

r

Commencer avec une solution initiale obtenue par initialisation ou à partir f
des composants de mémoire à moyen ou long terme

Choisir le meilleur candidat admissible (L'admissibilité est basée sur les conditions
taboues et les critères d'aspiration). La solution obtenue est la nouvelle solution et devient la
meilleure si elle améliore la précédente meilleure solution

Créer une liste de mouvements (ou de solutions) candidat(e)s

Terminer globalement ou t r d é r e r (le
transfert initie une intensification ou une
diversification i n d u i t e par les composants
de mémoire j; moyen et long terme).

4

(c'est-à-dire les conditions taboues et le critère
d'aspiration).

Figure 3.3 Composante de mémoire à court terme de la

méthode de recherche taboue

3.2.3 Critère d'aspiration

La méthode de RT inclut des structures lui évitant de boucler en revenant à des

solutions déjà visitées. Cependant, il peut être nécessaire de revenir à une solution déjà

explorée pour continuer la recherche dans une autre direction. Pour ce faire, on modifie

la mémoire à court terme par l'introduction d'un critère d'aspiration qui permet d'annuler

temporairement le statut tabou d'un mouvement (ou d'une solution), afin de le rendre

admissible.

On définit un sezd or1 critère d'aspiration A(s,m) et on associe à chaque

mouvement rn applicable à une solution s, un niveau d'aspiration a(s,m). Plus

généralement, le critère d'aspiration A(s,m) est défini comme un ensemble de valeurs

préférentielles prises par le niveau d'aspiration a(s.m). Une solution vérifie le critère

d'aspiration si son niveau d'aspiration est une des valeurs préférentielles, c'est-à-dire

ai(s,tt1) E Ai(s,ni), i= 1l, où a(s,m) est une fonction vectorielle de composantes ai(s,m)

et A(s.nz) un ensemble de points de l'espace de dimension I, Le statut tabou d'un

mouvement m est annulé si ledit mouvement vérifie une ou un nombre spécifié des

conditions ci-dessus.

Par exemple, le niveau d'aspiration d'une solution peut être son coût, et le seuil

ou critère d'aspiration A(s,m) sera l'ensemble des valeurs inférieures au coût de la

meilleure solution actuellement connue. Ainsi, un mouvement tabou nr sera accepté si

son coût est inférieur à celui de la meilleure solution courante.

La sélection de la meilleure solution admissible dans V est donc modifiée. La

figure 3.4 décrit en détail les différents mécanismes mis en œuvre.

Non
meilleur par rapport aux précédents
mouvements trouvés jusqu'ici?

+

1 Oui (Acceptation potentielIe)

Évaluerchaquemouvement
candidat.

Les conditions taboues

Non

1

Oui
Reste-t-il des solutions candidates?

l

mouvement choisi

Figure 3.4 Procédure de sélection du meilleur candidat admissible

En résumé, RT trouve la meilleure solution du voisinage V en évaluant chaque

solution de V. Ensuite, elle vérifie son statut tabou. Si le mouvement générant la solution

est tabou, RT examine son critère d'aspiration. En fin de compte, la meilleure solution

non taboue ou la meilleure solution taboue qui vérifie les critères d'aspiration est

sélectionnée. Si l'évaluation du niveau d'aspiration des mouvements n'est pas trop

coûteuse, i l est préférable de tester d'abord si un mouvement aboutit à une solution ayant

un << bon >> niveau d'aspiration, avant de vérifier son statut tabou.

3.2.4 Critères de fin

Puisqu'elle n'a pas un test pour déterminer l'optimum global, la méthode de RT,

lonqu'elle arrive à un optimum, continue sa recherche en considérant le meilleur résultat

actuel comme un optimum local et en cherchant de meilleurs optima. Ainsi, en l'absence

d'un test d'optimum global, on doit définir d'autres critères d'arrêt. La méthode s'arrête

lorsque l'une au moins des quatre situations suivantes se présente :

- aucun mouvement n'est possible à partir de la solution courante, c'est-à-dire tous les

mouvements du voisinage sont tabous et ne vérifient pas le critère d'aspiration donc

ne sont pas admissibles;

- le nombre total d'itérations est supérieur au nombre permis;

- le nombre d'itérations depuis la dernière meilleure solution est supérieur à un nombre

spécifié;

- un certain temps s'est écoulé depuis le début de l'algorithme.

Si on connaît une «bonne» borne inférieureSr de la fonction objectif f fx) on peut aussi

arrêter quand la meilleure solution actuelle a un coût suffisamment proche d e p .

Les critères de fin peuvent être aussi utilisés dans l'implémentation de stratégies

de recherche plus élaborées, notamment les stratégies de diversification ou

d'intensification. Quand un optimum local est atteint, on peut, au lieu de terminer la

recherche, faire un transfert vers une autre région de recherche (diversification) ou

raffiner la recherche (intensification) dans la région courante. La figure 3.3 illustre ces

différentes possibilités. Nous reviendrons plus tard sur les stratégies d e diversification et

d'intensification.

3.3 Adaptation de la méthode de recherche taboue

La méta-heuristique de RT peut s'appliquer à divers types d e problèmes. Pour

être efficace, elle nécessite donc une adaptation de certains de ces paramètres au type du

problème. Les définitions de ces adaptations peuvent être plus ou moins intuitives. Nous

présenterons les paramètres généraux d'adaptation de RT, plus particulièrement la liste

de solutions candidates et la liste taboue.

3.3.1 Liste de solutions candidates

Pour chaque application, la méthode de RT possède un certain nombre d'attributs

qui doivent être adaptés au contexte. Globdement, on définit des mouvements adaptés

au problème et à partir de ces mouvements, on déduit la notion d e voisinage d'une

solution. Ceci étant fait, on se penche sur la liste des solutions candidates V qui est un

sous-ensemble du voisinage N(s) défini précédemment. Ensuite, on définit les attributs

de la liste taboue, plus précisément sa taille et sa représentation. La définition des

critères d'aspiration et d'arrêt dans le contexte du problème complète les éléments de

RT.

L'une des difficultés de Ia méthode de RT est de déterminer la liste des solutions

candidates, c'est-à-dire le sous-ensemble V c N(s). Prendre V= N(s) donne de bons

résultats (Glover et al., 1993) mais demande beaucoup de calcul, car on doit examiner

tout le voisinage. On choisit donc en général comme ensembie V , un petit sous-ensemble

du voisinage N(s) tout en ayant soin de considérer quand même les bonnes solutions. Le

choix de V peut se faire selon deux stratégies : les meilleurs candidats et les mouvements

préférés.

Cas 1 : Meilleurs candidats

V est représenté sous forme de mouvements candidats et contient les

mouvements qui conduisent à une solution de meilleur coût. A une itération donnée. on

examine d'abord les mouvements dans V (qui proviennent des itérations précédentes).

Ensuite, on considère une partie du voisinage courant N(s) et on remplace dans V les

solutions devenues obsolètes ou peu intéressantes par des solutions issues du voisinage

courant. Périodiquement, après un certain nombre d'itérations ou quand la qualité

globale de V se détériore, on inspecte une plus grande portion de N(s) pour reconstruire

la liste V. Cette approche est motivée par le fait qu'un bon mouvement, s'il n'est pas

appliqué à l'itération courante, demeure encore un bon mouvement, pour un certain

nombre d'itérations.

Cas 2 : Mouvements préférés

Dans certaines applications, on isole certains attributs communs aux mouvements

menant à une bonne solution. On limite ensuite V aux solutions obtenues par des

mouvements ayant les attributs préférentiels détectés.

3.3.2 Liste taboue

Selon le problème et l'importance accordée au caractère tabou. la LT peut être

représentée sous diverses formes. Celles-ci donnent lieu à autant de cas que nous allons

explici ter ci-après.

Cas 1 : Représentation itnplicite de la LT

Si la taille du voisinage est assez petite, on peut associer à chaque mouvement

des éléments qui définissent son statut tabou. Par exemple, on peut lier aux mouvements

le numéro d'itération (c'est-à-dire le moment) ou ils ne sont plus tabous. Ainsi, le statut

tabou d'un mouvement se vérÏfie en temps constant, par examen de son numéro

d'itération. De plus, l'espace mémoire nécessaire ne dépend pas de la taille de la LT mais

de celle du voisinage. Cependant, dans la plupart des cas, le voisinage est assez grand et

la LT est représentée par un ensemble de solutions interdites o u de mouvements

interdits.

Cas 2 : Représentation de la LT sous fonne d'une liste de solutions ~uboues

On conserve dans la LT les k=lU dernières solutions générées. À chaque fois

qu'on génère un voisinage V c N(s), les solutions candidates ne doivent pas appartenir à

Ia LT. Ainsi, on est sûr qu'on n'aura pas de cycle de longueur inférieure à k. D'un autre

côté, on ne peut pas revenir, avant k itérations, à une solution déjà visitée afin de

continuer l'exploration dans une autre direction. Pour pallier cet inconvénient, on peut

adopter des listes taboues de tailles variables portant sur différents attributs des

solutions.

En pratique, il est difficile de représenter la LT sous forme de liste de solutions

car cela exige une grande capacité de stockage. De plus, comme on teste assez souvent si

une solution est dans la LT, ceci peut prendre beaucoup de temps. On représente donc la

LT sous forme de mouvements interdits.

Cas 3 : Représentafion de la LT sous fonne d'une liste de mouvements tabous

Dans ce cas, ce sont des mouvements qui sont enregisîrés dans la liste taboue. À

chaque itération où on effectue un mouvement m, on met dans la liste taboue l'inverse

in-' de m. On espère ainsi interdire tous les mouvements qui retournent à des solutions

déjà visitées.

Cette représentation a aussi ses inconvénients. Ainsi, le fait d'interdire des

mouvements à la place des solutions peut s'avérer trop rigide (en interdisant un

mouvement, on proscrit toute une classe de solutions au lieu d'une seule : exemple 3.1)

ou trop flexible (on peut boucler par un chemin autre que celui interdit par la LT :

exemple 3.2)

Exemple 3.1

Soit un ensemble X de solutions faisables S qui correspondent aux paires de

l'ensemble W= {a,b,c,d, . . . j . Un mouvement rn se définit ici comme le remplacement de

i dans S par un j dans W-S. et on note m= (i c j). La liste taboue est représentée comme

un ensemble de mouvements interdits et sa taille est fixée à 3. On part de la solution

S=[a, b) et on cherche à aller à la solution S={a,ej.

Tableau 3.1 Interdiction d'un mouvement susceptible d'amener à

des solutions non encore visitées

On observe que la LT interdit le mouvement a + d de telle sorte qu'on ne peut pas

atteindre la solution lape) non encore visitée.

LT

Liste taboue

S

Solution courante

m

Mouvement

a b c + b b e - c

Exemple 3.2

Les solutions S sont des sous-ensembles de W de cardinaIité 3. La LT a une taille

supérieure ou égale à 4. On part de S={a.b.c}. On observe qu'après trois itérations on

retourne à la solution initiale, alors que la LT a une taiile supérieure à 3.

Tableau 3.2 Retour à des solutions déjà visitées

S

Solution courante

m

Mouvement Liste taboue

a b c

a b d

On constate qu'il n'est pas toujours facile d'adapter la liste taboue au problème

courant. -Même une bonne adaptation peut se révéler inefficace dans certaines

conditions. C'est la raison pour laquelle la liste taboue est utilisée conjointement avec

des mécanismes d'aspiration et parfois de mémoire à moyen et long terme que nous

aborderons dans la prochaine section.

En général, i l est préférable d'adopter une représentation de la LT qui ne limite

pas trop le choix des mouvements disponibles et qui n'introduit pas trop de rigidité.

Cependant, le mieux est toujours un compromis entre la flexibilité et la rigidité des

contraintes introduites par la LT. Dans certains cas où on a des attributs sujets à des

d t c

a c d

a b c

c + d

c c b c c d ; b c c

b t d c t d ; b c c ; d + b

contraintes différentes, on peut utiliser plusieurs listes taboues. La taille de ces listes ne

devrait être ni trop élevée, ni trop petite. Selon Glover (1989), elle devrait se situer

autour de 7, indépendamment de la taille et de la structure du problème.

3.4 Raffmements possibles

Dans plusieurs applications, l'implémentation de RT avec la structure de

mémoire à court terme suff3 pour générer de meilleurs résultats comparés à d'autres

méthodes. Toutefois, on peut ajouter des composants de mémoire à moyen et long terme

(Skorin-Kapov, 1989) qui intensifient et diversifient la recherche. La forme modulaire

de RT permet d'implanter d'abord la composante à court terme, et d'ajouter par la suite

les autres composantes, si cela s'avère nécessaire.

3.4.1 Mémoire à moyen terme

La mémoire à moyen terme procède par comparaison des meilleures solutions

générées par RT pendant une période donnée. Les attributs qui sont communs à toutes

les solutions ou à une grand partie de celles-ci (comme par exemple, la valeur prise par

certaines variables) sont considérés comme des prémices d'une bonne solution. Pendant

la période d'intensification de la recherche, RT cherche des solutions ayant les attributs

désirés en pénalisant ou en restreignant les mouvements di sponi bies.

Le cas de problèmes où la taille des données est grande se prête bien à

l'application d'un tel mécanisme. Au début, on cherche les solutions en exploitant toutes

tes données disponibles. Après un certain nombre d'itérations, on déduit un nouvel

ensemble de données constitué uniquement des attributs présents dans les premières

solutions générées. On suppose que les attributs qui ne sont pas utilisés dans les

premières solutions ne le seront pas non plus dans d'autres solutions. La taille du

problème est donc réduite et on peut examiner plus de possibilités de solutions, ce qui

augmente les chances d'en trouver une « bonne W .

3.4.2 Mémoire à long terme

À l'inverse de la mémoire à moyen terme, celle à long terme cherche à diversifier

la recherche. Pour cela, elle utilise des principes intrinsèquement opposés à ceux de la

mémoire à moyen terme. Au lieu de concentrer la recherche dans des régions qui

contiennent de bonnes solutions trouvées précédemment, la mémoire à long terme guide

l'exploration vers des régions qui contrastent avec celles explorées jusque là. Elle essaie

donc de tirer profit de l'histoire de la recherche pour diversifier l'exploration. En cela,

elle diffère des méthodes qui diversifient leur recherche en générant aléatoirement

plusieurs solutions initiales sans tenir compte des explorations déjà effectuees.

Cependant, certaines versions de RT allient l'aspect aléatoire et l'utilisation des

statistiques de recherche (Glover, 1989).

La mémoire à long terme crée un critère d'évaluation qui pénalise les attributs qui

sont fréquents dans les solutions déjà trouvées. Ce critère est ensuite utilisé pour générer

de nouvelles solutions initiales. La mémoire à long terme peut être vue comme une liste

taboue sanctionnant les solutions les pIus fréquentes, alors que la mémoire à court terme,

elle, sanctionne les solutions les plus récentes.

3.5 Exemples d'application de la méthode de recherche taboue

La méthode de RT est très utilisée en optimisation combinatoire. Elle a été

appliquée avec succès à plusieurs problèmes difficiles tels : le problème d'affectation

quadratique (Skorin-Kapov, 1989), le problème de coloration de graphes (Hertz et de

Werra, 1987), le problème de conception topologique de réseau (Lee, 1989; Pierre et

Elgibaoui, 1997). Nous présentons deux exemples d'application de RT. Le premier

concerne le problème d'arbre de recouvrement minimum avec contraintes et le

deuxième, le problème de partitionnement de graphes.

3.5.1 Problème d'arbre de recouvrement minimum avec contraintes

Le problème d'arbre de recouvrement minimum (Glover, 1990a) consiste à

trouver dans un graphe pondéré G=(N.A), l'arbre de recouvrement minimum sous des

contraintes de type :

(i) certains arcs ne peuvent apparaître ensemble dans l'arbre;

(ii) la présence de certains arcs dans l'arbre de recouvrement est reliée à celle

d'autres arcs.

La complexité du problème d'arbre de recouvrement sans aucune contrainte est

pol ynomiale. L'introduction des contraintes (i) et (ii) complique le problème et le rend

difficile. Pour appliquer la méthode de RT à ce problème, on définit des mouvements rn

caractérisés par :

m : ajout d'un arc et retrait d'un autre a f i de transfornier L'arbre courant en un

nouvel arbre-

Le mouvement m a pour attributs I'arc à retirer xi et I'arc à ajouter xj. xi et .q sont reliés

par le fait que .ri est toujours dans le cycle résultant de l'ajout de x,. La liste des solutions

candidates V est égale au voisinage N(s). La liste taboue T a une longueur k égaie à 2 et

est constituée en affectant un statut tabou aux deux derniers arcs ajoutés. Un mouvement

sera tabou s'il implique le retrait d'un arc tabou. La fonction objectif est la somme des

coûts de tous les arcs présents dans l'arbre. On définit le critère d'aspiration par

l'ensemble des valeurs inférieures au coût de la meilleure solution courante. Si une

solution s, résultant d'un mouvement tabou, a un coût meilleur que celui de la meilleure

solution déjà obtenue, on ne tient pas compte du caractère tabou de S.

Cet exemple simple est cité pour illustrer rapidement les divers détails de

l'implémentation de RT. L'application de la méthode de RT à ce problème mène à

l'optimum global.

3.5.2 Partitionnement de graphe

Le problème de partitionnement de graphes consiste à diviser l'ensemble N des

nœuds d'un graphe en des sous-ensembles de cardinalité inférieure à un nombre

maximal donné, de manière à minimiser le coût total des coupes, c'est-à-dire la somme

des coûts des arêtes ayant leurs extrémités dans des sous-ensembles différents. Ce

problème avait été déjà défini au chapitre 2, illustré à la figure 2.1 et comparé avec le

problème d'affectation de cellules. Nous exposons dans cette section, une application de

RT à un cas particulier du problème de partitionnement : la bipartition uniforme de

graphes. Dans ce cas, on cherche à diviser I'ensemble des nœuds N en deux sous-

ensembles dont les cardinalités diffèrent d'au plus un élément (Kernighan et Li, 1970).

Plus formellement, soit (iJ) un arc e de G, w, ou w(i.j), le coût (ou poids) de cet

arc, et s=(S,MS) une bipartition uniforme. Soit &S) = {(i,j) E N : i E S. j E NU j

l'ensemble des arcs de la coupe définie par la partition S. Si INI=n, on cherche à :

Minimiser z(s) = ç w,
e 6 (S)

sujet à :

pl= nR

On peut supposer, sans perte de généralité, que n est pair et d? entier.

Dell'Amico et Trubian (1998) utilisent la méthode de RT pour résoudre le

probIème de bipartition uniforme. Les mouvements m sont définis par :

m(a,b) : permutation de la paire de nœuds (a. b) avec a E A=S et b E B = N

Soient &= xFB w(a, j) le corît externe du nœud a E A et I,= ZfiA w(a, j) son cofit

interne. On définit de façon similaire les coûts interne et externe du nœud b E B. Pour

un nœud j. la différence Dj=Ej - ij est le gain sur la fonction objectif ~ (s) si on déplace j

de son sous-ensemble (par exemple A) vers l'autre sous-ensemble (par exemple B).

Après l'application du mouvement m(a.b), a se retrouve dans B = M , b dans A=S et la

fonction objectif z(s') de la nouvelle solution s ' est diminuée de Da + Db -2,v(a,b).

Le voisinage N(s) d'une solution s=(A,B) est défini par tous les mouvements qui

permutent une paire de nœuds dont l'un provient de I'ensemble A et l'autre de l'ensemble

B. Pour déterminer la liste V de solutions candidates, on calcule pour chaque nœud n

de N, le gain D,: en fait, les D, sont cdculés au début et i l existe des techniques très

efficaces pour les mettre à jour (Kemighan et Li, 1970). Les ensembles A et B sont

ordonnés par valeur non décroissante des gains D,. Les mouvements candidats sont

choisis en parcourant les deux ensembles A et B selon les gains décroissants. La logique

qui sous-tend cette approche est que le gain sur la fonction objectif croît avec les gains

de chacun des nœuds permutés. On a donc des mouvements préférés qui sont ceux qui

permutent deux nœuds ayant des gains élevés.

L'algorithme démarre avec une solution faisable et applique des mouvements qui

conservent la faisabilité. La composante de mémoire à court terme est constituée de

deux listes taboues : was-in-A et was-in-B. Un mouvement est caractérisé par les noms

et les ensembles d'origine des deux nœuds permutés. Pour un mouvement m t a b) , on

enregistre le naxd a dans w a s - i n et le nœud b dans was-inJ, et pendant un certain

nombre d'itérations subséquentes, tous les mouvements qui proposent le retrait du nœud

a de B (ou le retrait du noeud b de A) seront tabous. La longueur k des listes taboues est

variable. Initialement, k est fixé à une valeur tabu-tenrrre égale à 10. Ensuite, si on a

Aip=5 itérations consécutives qui diminuent la valeur de la fonction objectif, on diminue

k et on le fixe au m N k - 1 . OS*rabu-tenure). Si au contraire, on a Awp=3 itérations

consécutives qui ne diminuent pas la valeur de la fonction objective, on augmente k en le

fixant au min(k+l, I.S*tabu-tenure).

Le statut tabou est supprimé par deux critères d'aspiration : le premier consiste

simplement à accepter un mouvement tabou s'il améliore la meilleure solution

actuellement connue; le deuxième critère prend en compte les cas où, après la

permutation de deux nœuds, disons (a,b), et l'exécution d'au moins une autre

permutation n'impliquant ni a ni b, une bonne solution peut être atteinte en permutant a

ou 6, mais non a et 6.

Les éléments d'intensification et de diversification sont mis en œuvre par la

variation de la longueur k de la liste taboue. Une réduction de k correspond à une

intensification locale. et une augmentation à une diversification. À cela, s'ajoute une

structure de mémoire à long terme. Dans cette structure appelée Second, on garde

quelques-unes des bonnes solutions examinées, mais qui n'ont pas été choisies car elles

n'étaient pas les meilleures solutions admissibles. Second est implanté avec une liste

ordonnée de longueur L. Soit s-, la meilleure seconde solution trouvée dans le voisinage

courant. s7 est ajouté à Second si ce dernier n'est pas plein, ou bien sl remplace s,,, la pire

solution dans Second, si s-, est mieux que s,,.. La solution sz est ajoutée à Second avec une

copie. dans leur état courant, des deux listes taboues. Notons que si lors de l'exploration

des solutions candidates dans V, on trouve directement la meilleure solution, on ne

continue pas à chercher une seconde meilleure solution pour l'ajouter à Second. On passe

plutôt directement à l'étape suivante. Une deuxième procédure d'intensification est mise

en œuvre en utilisant la meilleure solution dans Second (avec les listes taboues qui lui

ont été associées) comme nouveau point de départ, dans l'un des cas suivants :

- on ne trouve aucune solution admissible dans le voisinage courant;

- pendant une série de MC=7 itérations, la valeur de la fonction objectif ne

s'améliore pas;

- pendant une série de M B = 2 0 itérations la meilleure solution trouvée ne

s'améliore pas.

La longueur L de Second est fixée entre 5 et le degré moyen des nœuds- Cela permet de

ramener la recherche dans des zones prometteuses non encore totalement explorées. Le

fait d'ajouter au plus une solution à Second dans chaque voisinage joue un rôle de

diversification de la recherche.

Enfin, l'algorithme se termine après un temps max-rime prédéfini. Il fournit un

plus grand nombre de meilleures solutions en des temps plus courts que d'autres

méthodes utilisées pour le partitionnement de graphes (Dell'Arnico et Trubian, 1998).

Globalement donc, la méthode de RT s'est révélée assez souple et efficace pour

résoudre une grande variété de problèmes. Dans le chapitre suivant, nous entreprendrons

de l'adapter à la résolution du problème spécifique d'affectation de ceIIules à des

commutateurs dans les RCP

CHAPITRE 4

AFFECTATION DE CELLULES PAR LA MÉTHODE DE

RECHERCHE TABOUE

Le problème d'affectation de cellules est un probième difficile qui ne peut pas se

résoudre de manière exacte en des temps de calcul acceptables. Le compromis que nous

proposons consiste à utiliser la méta-heuristique de recherche taboue (RT) pour obtenir

des solutions acceptables en des temps de calcul raisonnables. Ce chapitre expose une

adaptation de la méthode de RT à ce problème d'affectation. La démarche consiste

globalement à modifier itérativement une solution initiale en espérant aboutir à une

solution finaie respectant les contraintes du problème. Après avoir esquissé les grandes

lignes de notre adaptation, nous exposons les détails d'implémentation et de mise en

œuvre des trois composantes de mémoire à court, moyen et long termes.

4.1 Adaptation de la méthode de RT

La méthode de RT utilise des mouvements pour passer d'une solution à une autre

à l'intérieur d'un espace de recherche prédéfini. Si le sous-ensemble de solutions à

explorer est trop grand, le coût induit par l'algorithme peut devenir prohibitif. À

l'opposé, un sous-ensemble trop petit limite la qualité des soiutions obtenues. Dans notre

adaptation, l'espace de recherche choisi est libre des contraintes de capacité sur les

commutateurs, mais respecte la contrainte d'affectation unique des cellules aux

commutateurs. La faisabilité de la solution finale n'est donc pas garantie, mais te fait de

pouvoir examiner un plus grand nombre de possibilités augmente les chances d'aboutir à

de bonnes solutions. RT associe à chaque solution deux valeurs numériques : la première

est le coût intrinsèque (ou tout simplement coût) de la solution, calculé à partir de la

fonction objectif; la deuxième est une évaluation de la solution prenant en compte le

coût et une sanction pour le respect des contraintes de capacité. Cette sanction comprend

une partie fixe appelée PENAUTEFIXE et une partie variable par unité de violation

désignée par PENALITE. À chaque étape. RT choisit la solution ayant la meilleure

évaluation.

Contrairement à la méthode de descente, la méthode de RT, quand elle arrive à

un optimum local, choisit la solution voisine qui dégrade le moins la fonction objectif.

Pour éviter les cycles autour de cet optimum, une liste taboue garde les k dernières

solutions et interdit momentanément un retour vers ces solutions. Les solutions sont

libérées après k itérations ou lorsqu'elles satisfont un critère d'aspiration. Une

composante de mémoire à moyen terme garde les m dernières meilleures solutions et

essaie, plus tard, d'intensifier la recherche dans leurs voisinages. En se basant sur les

statistiques de recherche, la composante de mémoire à long terme détermine un nouveau

point de départ contrastant le plus possible avec les solutions visitées jusqu'ici.

Notre adaptation de la méthode de RT construit une solution initiale à partir des

données du problème. La composante de mémoire à coun terme essaie par la suite

d'améliorer itérativement cette solution tout en évitant les cycles. Une composante de

mémoire à moyen terme intensifie la recherche dans des voisinages précis, tandis que la

composante de mémoire à long terme permet une diversification de l'exploration du

domaine.

4.2 Mémoire à court terme

Ln mémoire à court terme passe itérativement d'une solution à une autre par

l'application de mouvements, tout en interdisant un retour vers les k dernières solutions

visitées. Elle débute donc avec une solution initiale.

4.2.1 Génération de la solution initiale

Le domaine d'exploration défini plus haut étant libre des contraintes de capacité

sur les commutateurs, la solution initiale doit seulement respecter les contraintes

d'affectation unique des cellules. Le Tableau 4.1 illustre les coûts de liaison pour un

réseau de 14 cellules et 3 commutateurs.

Tableau 4.1 Coûts de liaison pour un réseau de 14 cellules et 3 commutateurs

Comm. O Comm. 1 Comm. 2
O 2 2
1 1.73 1.73
1 L 2.65
1 1.73 3
1 2.65 2.65

, 1 3 1.73
1 2.65 1

1.73 1 2.65
1.73 1 3.6 1
2 O 3 -46
2 2 2

1.73 2.65 1
2 3.46 O

1.73 3.6 1 1

La solution initiale est générée selon l'algorithme de la Figure 4.1. En effet, selon cet

algorithme, on affecte tout simplement chaque cellule au commutateur le plus proche en

terme de distance qui les sépare. Si une cellule se trouve à égale distance de deux

commutateurs, elle est affectée au premier commutateur dans l'ordre spécifié par le

problème.

Initialisation : Obtenir la matrice de coût de liaison.

Pour chaque cellule i faire :

Meilleur := +-;
Meilleur-comm := O; (Meilleur-comrn est le commutateur le plus près de i)

Pour chaque commutateur k faire :

Si c* < Meilleur

alors Meilleur := cd;

Meilleur-comm := k;

Fin si

Fin pour

Affecter Ia cellule i au commutateur Meilleur-comm ;

Fin pour
-

Figure 4.1 Algorithme de génération de la solution initiale

La solution initiale obtenue à partir du Tableau 4.1 est celle de la Figure 4.2. Son coût

est de 132 unités.

Cellules affectées
commutateur O

Cellules affectées
commutateur 1

Cellules affectées
commutateur 2

Figure 4.2 Solution initiale

Le Tableau 4.2 indique les volumes d'appels ou le trafic des cellules, ainsi que les

capacités des commutateurs. La première ligne donne le numéro de la cellule ou du

commutateur, et les deux autres lignes les volumes d'appels des cellules ou les

capacitées des commutateurs. Ainsi, le commutateur 1 a une capacité de 8 unités, et la

cellule 10 génère un volume d'appels d'une unité.

Tableau 4.2 Volumes d'appels et capacités

V I 0 1 2 3 4 5 6 7 8 9 10 11 12 13

La solution de la Figure 4.2 viole les contraintes de capacité notamment au

niveau du commutateur O où le volume total des appels affectés est de 8 unités, alors

que sa capacité est de 7 unités. De ce fait, son évaluation diffère de son coût . Pour une

valeur de 100 unités de la constante PENALITEFIXE et une valeur de 50 unités de

PENALITE, l'évaluation s'élève à 282 unités.

1.2.2 Mouvements et gain

Le but de la composante de mémoire à court terme est d'améliorer la solution

courante, soit en diminuant son coût, soit en diminuant tes pénalités encourues. Pour y

parvenir, elle utilise des mouvements m(a,b) définis comme suit :

m(a,b) : réaflecrarion de la cellule au comnrrrtatertr 6.

Ce type de mouvement offre une grande souplesse. En effet, il ne comporte pas de

contraintes de capacité. De plus, il constitue un mouvement de base permettant

d'effectuer toutes sortes de mouvements plus cornpiexes, comme par exemple la

permutation de deux cellules. Les solutions explorées sont alors pIus nombreuses,

puisqu'on n'est pas limité aux seules solutions faisables.

Le voisinage N(S) d'une solution S est défini par toutes les solutions accessibles à

partir de S par l'application d'un mouvement m(a,b) à S. Pour évaluer rapidement les

solutions du voisinage N(S), on définit le gain Gda.b) associé au mouvement tn(a.b) et à

la solution S par :

L M sinon

- I~~désigne le coût de relève entre les cellules i et j ;

- bo le commutateur de la cellule a dans la solution S, c'est-&-dire avant

l'application du mouvement m(a,b) ;

- xik prend la valeur 1 si la cellule i est affectée au commutateur k, 0 sinon ;

- Cik est le coût de liaison de la cellule i au commutateur k ;

- M est un nombre arbitrairement p n d .

À chaque itération. la méthode de RT sélectionne, parmi tous les mouvements possibles.

celui ayant le gain minimum. Si b f bO, GS(0.b) représente le gain sur le coût RS) de la

solution S lorsqu'on effectue le mouvement rn(a,b). Pour b = bo, le mouvement rn(a,b)

ne modifie pas la solution et le gain Gs(a.6) devrait donc être nul. Mais, dans ce dernier

cas, on affecte au gain une valeur arbitrairement grande. Ainsi, lorsqu'on anive à un

optimum local et qu'aucun des mouvements disponibles n'améliore le coût de la

solution. le mouvement ayant le gain minimum ne sera pas le mouvement m(a,bo) qui

cycle sur la même solution. L.e coût de la nouvelle solution S' est tout simplement

obtenue à partir de la formule :

fis') =fis) + G d a h) (4.2)

Au début, on génère dans un tableau nxm, où n désigne le nombre de cellules et

riz le nombre de commutateurs, tous les gains Gs(i,k). Après chaque mouvement m(a,b).

on met à jour le tableau des gains. Cette mise à jour se fait rapidement, car seules les

colonnes correspondant aux commutateurs b et 6' et la ligne de la cellule a changent.

Pour une cellule p et un commutateur q, notons C, le commutateur de p dans la nouvelle

solution S'. Les nouveaux gains Gs-(a.b) sont obtenus à partir des anciens par les

formules suivantes :

Gss(p.q) = ~ s (p 4 si C,#b'. C , ,#b .q#b ' . q # b (4.3)

Gs.(p,@ = si C,= q (4.4)

si Cp= b', q= b

si CP=b9, q # b', q # b

si Cp= b, p # a, q=b'

si C,=b, q it b'. q # b

4.2.3 Liste taboue et aspiration

À chaque itération, RT définit un voisinage de la solution courante composée

des solutions engendrées par tous les mouvements m(a.6). Elle choisit ensuite le

mouvement qui améliore le plus le coût de la solution, c'est-à-dire celui ayant le gain

minimum. Si aucun mouvement n'améliore le coût actuel, la solution engendrant une

dégradation minimum du coût est sélectionnée. Pour chaque mouvement m(a,b)

effectué. la méthode garde dans une liste taboue de taille TAILLELT, le mouvement

inverse nt(a.6') où 6' désigne le commutateur de la cellule a avant l'application du

mouvement tn(a.6). On arrête s'il s'est écoulé kmax itérations depuis la dernière

meilleure solution ou s'il n'y a plus de mouvements disponibles.

A priori, on a plus de chance d'aboutir à une meilleure solution en augmentant le

délai bar. Cependant, on constate que, si on prend des valeurs de plus en plus grandes

de hmur, la recherche s'éloigne des solutions faisables avec peu de chance d'y revenir.

On utilise alors un mécanisme de « rappel » pour ramener l'exploration vers les

solutions faisables. Pour y parvenir, après un nombre DRESPECT de solutions

consécutives non faisables, on pénalise les gains des mouvements menant à des solutions

non faisables. On ajoute progressivement une pénalité, composée d'une partie fixe

PRIMECAPAFIXE et d'une partie variable PRIMECAPA. au gain des mouvements qui

ajoutent une cellule à un commutateur ayant déjà une capacité résiduelle négative. Le

caractère progressif de la pénaiité est mis en œuvre en introduisant un multiplicateur

SEVERITE sur la partie variable. À chaque solution non faisable, le multiplicateur

SEVERITE est incrémenté jusqu'à un maximum de M M S E V . À la première solution

faisable, le dispositif de «rappel n est désactivé. En pénalisant progressivement les

mouvements, on évite une transition brutale qui pourrait ignorer de bonnes solutions. Le

mouvement ni(a.6) défini plus haut s'applique donc dans deux contextes : un premier

qui ignore totalement les contraintes de capacité et un second qui en tient compte d'une

certaine manière.

La liste taboue définie plus haut permet à RT d'éviter les cycles. Toutefois, il est

parfois avantageux de revenir à une solution taboue pour continuer la recherche dans une

autre direction. Le critère tabou d'un mouvement sera donc annulé si ce dernier conduit

à une solution dont I'évaluation est inférieure à celle de la meilleure solution

actuellement connue.

En résumé, la mémoire à court terme génère une solution initiale, calcule le

tableau des gains qui lui permet de choisir dans le voisinage de la solution courante,

celle donnant le meilleur coût. Si la recherche s'éloigne trop des zones de solutions

faisables, un dispositif de « rappel >> est mis en jeu pour ramener l'exploration vers de

bonnes régions. Enfin, si un mouvement tabou a un gain assez faible, la mémoire à court

terme vérifie son niveau d'aspiration. Le mouvement est choisi s'il respecte les critères

d'aspiration. Pour avoir de meilleurs résultats, on ajoute à la composante de mémoire à

court terme, une composante à moyen terme.

4.3 Mémoire à moyen terme

La composante de mémoire à moyen terme de RT a pour but d'intensifier la

recherche localement dans des régions prometteuses. CeIa permet de revenir à des

solutions qu'on avait peut-être omises. Il s'agit donc d'abord de définir les régions

d'intensification, et ensuite de choisir les types de mouvements à appliquer.

3.3.1 Régions d'intensification

Définir des régions prometteuses pour y intensifier la recherche n'est pas chose

aisée. Dans notre adaptation de RT, nous avons choisi de conserver dans une liste FIFO

les lTAlLLEBEST dernières meilleures solutions. Les solutions sont gardées avec les

vaIeurs associées des gains pour permettre de restaurer plus tard le contexte de la

recherche. Chaque fois qu'on trouve une solution se qui améliore la meilleure solution

trouvée jusqu'à présent. s' remplace dans la liste FIFO la plus ancienne meilleure

solution. Cette approche est justifiée par le fait que, dans le problème d'affectation, nous

supposons que les bonnes solutions ne sont pas topologiquement très éloignées les unes

des autres. Ceci nous amène du coup à définir les mouvements d'intensification.

4.3.2 Mouvements, liste taboue, aspiration et critères d'arrêt

L' idée fondamentale de l'intensification est de varier les mouvements pour aller

vers des solutions ignorées par les mouvements de la mémoire à court terme. Dans notre

cas, deux mouvements d'intensification ont été définis :

- i](a,c) : permutation des cellules a et c selon les plzis faibles gains ;

- i2(a,b) : déplacemenr de la cellule a vers le commutateur b en vue de rétablir

les contraintes de capacité.

Cas 1 : Mouvement ir(a.c) -
Le but de ce mouvement est d'améliorer l'évaluation des solutions en diminuant

le coût associé. Toutefois, pour ne pas reprendre le mouvement m(a,b) déjà défini dans

la composante de mémoire à court terme, nous avons choisi de parcourir tout le tableau

des gains et de choisir les deux cellules dont la permutation semble engendrer le plus

grand gain. En fait, les deux cellules sont sélectionnées sans tenir compte du fait

qu'après le déplacement de la première cellule a, le tableau de gain change et la cellule b

n'est plus forcément la meilleure à déplacer. Cependant, comme ce mouvement

s'applique généralement à des solutions faisables, le but est de ne pas trop perturber la

topologie de la solution, tout en essayant quand même de l'améliorer. L'estimation du

gain ainsi obtenue se calcule rapidement même si elle ne tient pas compte des

contraintes de capacité, elle s'avère suffisante pour guider la recherche. En pratique,

dans un souci d'efficacité et sans perte de généralité, nous avons implémenté la

permutation avec les mécanismes déjà définis pour les mouvements m(a,b). La

permutation est décomposée en deux sous-déplacements consécutifs de cellules. De ce

fait, deux mouvements inverses seront enregistrés dans la liste taboue LTI de taille

2*ITNUELT associée aux mouvements il. Une permutation est taboue si l'un au moins

de ses sous-déplacements l'est. Le facteur multiplicatif S est mis pour pouvoir conserver

à chaque fois les deux sous-déplacements tabous. Le critère d'aspiration est défini de la

même manière que dans le cas de la composante de mémoire à court terme ; i l consiste à

accepter une permutation taboue si elle mène à une solution meilleure que celles déjà

obtenues.

Le mouvement ir(a.c) s'applique donc généralement à des solutions déjà

faisables. Il ne tient pas compte des contraintes de capacité et s'appuie exclusivement

sur une estimation des gains pour le choix de la permutation. Pour des solutions non

faisables, le mouvement i7(a,b) sera plus souvent appliqué.

Cas 2 : Mouvement i2(a,b) -
Comme nous l'avons déjà dit, le but visé par ce type de mouvement est de

restaurer les contraintes de capacité et, de ce fait, diminuer les pénalités et l'évaluation

de la solution. Le mouvement i2(a,b) consiste à :

- déterminer le commutateur c' ayant la capacité résiduelle minimale,

- trouver la cellule a affectée à c' qui génère le volume d'appel minimai,

- l'affecter au commutateur b qui a une capacité résiduelle suffisante et qui

permet d'obtenir le gain minimal.

Ce mouvement se fonde donc à la fois sur les contraintes de capacité et les gains. II est

activé dès qu'on a DRESPECT solutions non faisables consécutives et le demeure tant

que les solutions trouvées ne sont pas faisables. II possède une liste taboue séparée LI2

de même taille que la liste LT1 et ne met en œuvre aucun critère d'aspiration.

La composante de mémoire à moyen terme, tout comme celle de mémoire à court

terme, s'arrête si la meilleure solution n'a pas été améliorée pendant les ikma~ dernières

itérations ou s'il n'y a plus de mouvements disponibles. On peut alors enchaîner avec

des mécanismes de diversification.

4.4 Mémoire à long terme

Pour diversifier sa recherche, RT utilise une structure de mémoire à long terme

pour amener la recherche dans des rbgions jusqu'ici peu explorées. Ceci se fait souvent

en générant de nouvelles solutions initiales. Dans ce cas-ci, un tableau n x m (où n est le

nombre de cellules et m le nombre de commutateurs) compte, pour chaque arc (a,b), le

nombre de fois où ce dernier apparaît dans les solutions visitées. Une nouvelle solution

initiale est générée en choisissant pour chaque cellule a, l'arc (a b) le moins visité. Les

solutions visitées lors de la phase d'intensification ne sont pas prises en compte car elles

résultent de mouvements différents de ceux appliqués dans les composantes de mémoire

à court et long termes. À partir de la nouvelle solution initiale. on démarre une nouvelle

recherche en appliquant les mécanismes de mémoire à court et à moyen termes.

4.5 Implémentation

Dans cette section, nous présentons les détails de l'implémentation de RT pour

résoudre le problème d'affectation de cellules. Nous précisons d'abord les formats de

fichiers utilisés, ensuite nous décrivons les algorithmes des principales parties de

l'adaptation proposée, ainsi que les classes utilisées.

4.5.1 Formats de fichiers

Pour résoudre le problème d'affectation. le programme doit d'abord acquérir les

spécifications du problème. Celles-ci sont fournies dans deux types de fichiers :

- Le premier appelé « fichier de données » fournit les données concernant le

nombre de cellules n et le nombre de commutateurs rn sur sa première ligne.

Ensuite vient une matrice nxm, où chaque ligne i donne les coûts de liaison

de la cellule i aux rn commutateurs. La dernière matrice n x n du fichier

présente sur chaque ligne i les coûts de relève de la cellule i par rapport aux rt

autres cellules.

- Le deuxième appelé « fichier de capacité » donne sur sa première ligne les

capacités des n cellules, et celles des rn commutateurs sur sa deuxième ligne.

Les résultats obtenus par le programme sont écrits dans un fichier G result-dat *

qui contient l'évaluation de la solution. ainsi que le patron d'affectation sous forme

d'une matrice nxm.

4.5.2 Implémentation des principaux algorithmes

La méthode de RT comprend globalement trois parties : la mémoire 2 court

terme, la mémoire à moyen terme et celle à long terme. La Figure 4.3 illustre

l'organigramme du noyau de la composante de mémoire à court terme. Ce noyau sera

réutilisé dans le mécanisme de diversification illustré à la Figure 4.6. La composante de

mémoire à court terme est elle-même illustrée à la Figure 4.4. Enfin, la Figure 4.5

présente 1 'organigramme du mécanisme d' intensification.

4.5.3 Détails d'implémentation

Les expériences ont été réalisées sur une machine « SUN SPARCStarion 5 Mode1

110 » en environnement UNDI. La Figure 4.7 donne le diagramme UML des principdes

classes utilisées dans notre adaptation. La plupart des classes possèdent une méthode

init et une méthode dermit qui se charge de la gestion de la mémoire.

La classe données

Elle regroupe les principales données statiques du problème. Elle comprend : le

nombre de cellules, nbcell, le nombre de commutateurs, nbcomm, le tableau des coûts de

liaison, rabcable, le tableau des coûts de relève, ta&-releve, le tableau des volumes

d'appel des cellules, capa-cell. le tableau des capacités des commutateurs, capaconirn.

,
Générer gains initiaux.
rtbiter :=O; besrirer :=O; besrsol :=s;

Choisir mouvement de gain minimal; 4

nbirer :=nbirer + 1;

Appliquer mouvement à s pour obtenir s';
Mise à jour de la liste taboue;
Mise à jour du tableau des gains;
Mise à jour de star-sol : le tableau de
statistiques des arcs visités;

S .-=se;
Si é~aluarion(s) < évaluarion(bestso1)

alors besrirer :=nbirer
s remplace la plus ancienne
solution dans rabesr;

1

Non
nbirer -

Oui 1 Sortie 1

Figure 4.3 Noyau de la composante de mémoire a court terme

coûts de liaison;

1 Sortie 1 I

-

Vers I'intensification. I

Noyau de la composante de mémoire à
court tenne;

Figure 4.4 Composante de mémoire à court terme

, '

On y trouve aussi un tableau dynamique, capa-resi qui donne les capacités résiduelles

des commutateurs. Les principales méthodes sont :

- lire() qui lit les données du fichier de relève et les transfère dans les

structures adéquates de la classe ;

- lirecapa() qui lit les données du fichier de capacité et les garde dans les

champs adéquats de la classe ;

- evaluariun() et trewevd() qui calculent respectivement l'évaluation et la

nouvelle évaluation de la solution après modifications.

i := O;
Compte-nonfaisable := 0;
nbiter := O; bestiter := 0;

s := iemc élément de rabest;
Gactuel := gain associé à s;

Compre-nonJiaisable := 0; Compte-non faisable u; l
1 i

Chercher mouvement i2

1 1 Appliquer mouvement à s pour obtenir s':
I 1 Mise i jour de la liste taboue;

Mise à jour du tableau des gains;
Mise à jour de srat-sol : le tableau de 1 statistiques der arcs visités:

S :=sl;
Si évaluation(s) < évakcatioti(bestso1)
alors bestirer :=nbirer

1 Vers la diversiticauon 1
Figure 4.5 Mécanisme d'intensification

Début Q

I court terme; I
I 1 Sortie 1 I

Figure 4.6 Mécanisme de diversification

robl'm

iL;Ii
données
nbcornm
nbcel!
tab-cable
tab-releve
capa-ceIl
capacomm
capa-resi

gain
nbcomm
nbcell
tab

sol
nbcomm
nbcel I
tab

L

1 I

, liste
noeud
tête
queue
taille

Figure 4.7 Diagramme des principales classes

1 1 I I

intense
LT I ; LTZ
Sactuel
Gactuel
comm

La classe sol

Elle représente la solution et comprend principalement un tableau nx nz nommé

tub qui donne le patron d'affectation de la solution. Les principales fonctions sont :

- initiale() qui calcule la solution initiale à partir des coûts de liaison ;

- objectfl) qui calcule la valeur de la fonction objectif pour la solution

courante.

diverse
nbstan
sut-sol

La classe intense

Elle représente le mécanisme d'intensification. Elle est composée de :

- deux listes taboues, LTI et L E , pour les mouvements de type il et iz ;

- deux pointeurs, Sactuel et Gacruel, qui pointent respectivement sur la

solution courante ayant servi de départ à l'intensification et le tableau des

gains associés à Sactuel ;

- un tableau, comm, qui donne pour chaque cellule le numéro du commutateur

auquel elle est affectée ;

- un tableau dynamique iabest qui garde les ITAILLEBEST dernières

meilleures solutions avec les gains associés.

Les principales méthodes sont :

- ajoute() qui ajoute une meilleure solution à rabest ;

- mvt-iriten() qui cherche les mouvements de type i , ;

- mvt_inten2() qui cherche les mouvements de type iZ ;

- intensïjie() qui applique le processus d'intensification.

La classe diverse

Elle représente le mécanisme de diversification. Elle est composée d'un entier

nbstart qui indique le nombre de redémarrages, et d'une table nx m qui indique les

statistiques de visite de chaque arc. Elle a une seule fonction principale, cornpie(), qui

met à jour, pour chaque solution, les statistiques des arcs visités.

La classe nain

Elle représente le tableau des gains et comprend principalement un tableau n x rn

nommé tab qui donne les gains potentiels de tous les mouvements rn(a.6). Les

principales fonctions sont :

- generer() qui génère le tableau initial des gains ;

- maj() qui effectue la mise a jour des gains après chaque mouvement.

La classe liste

C'est une iiste circulaire servant à implémenter les listes taboues. Chaque

élément de la liste est un nœud qui contient un mouvement et un pointeur sur le nœud

suivant. La liste est accessible par un pointeur tete qui en indique la tête. Un pointeur

qlreitr marque la fin de la liste. La variable taille donne la taille maximale de la liste.

Les principales méthodes sont :

- insere() qui ajoute un élément dans la liste ;

- appanient() qui vérifie si un élément est dans la liste.

La classe solauin

Elle hérite des classes sol et gain et sert juste à garder les ITAILLEBEST

dernières meilleures solutions avec Ieurs gains, pour leur appliquer le mécanisme

d'intensification.

La classe problem

C'est la classe la plus globale. Elle regroupe toutes les autres classes et permet

ainsi de définir le problème, les solutions, les gains, etc. Ses principales méthodes sont :

- choir_mvt() qui choisit le mouvement m(a.6) à appliquer dans la composante

de mémoire à court terme ;

- CMtclbo~leO qui applique les composantes de mémoire à court e t moyen

terme de RT ;

- rtabozde() qui applique la méthode de RT avec les différents raffinements

possibles.

4.6 Mise en œuvre

Pour améliorer la solution initiale de la Figure 4.2, nous lui avons appliqué noue

adaptation de RT. Pour cela. nous avons défini, entre chaque couple (i,j) de celiules, un

coût horaire de relève hg comme présenté au Tableau 4.3.

Dans un premier temps, nous avons appliqué seulement la composante de

mémoire à court terme de RT. Au bout de 13 itérations, qui correspondent à 13

perturbations de la solution initiale, l'algorithme trouve la solution de la Figure 4.8 qui

ne pourra plus être améliorée. Nous avons fixé à 20 le nombre maximal bnar

d'itérations entre deux améliorations successives de la meilleure solution. Dans ce cas,

l'algorithme s'arrête après avoir atteint ce nombre maximal.

Tableau 4.3 Coût de relève entre cellules

Cellules
C
1
2
'a
Y

4
5
6
7
8
9

10
11
12
13

Cellules
O 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3
O 3 8 3 1 8 1 5 7 0 0 0 0 0 0 O

O CelIules affectées au
commutateur O

Cellules affectdes au
commutateur 1

ffl Cellules affectées au
commutateur 2

Figure 4.8 Solution finale obtenue par la composante de mémoire à court terme

La solution obtenue respecte les contraintes de capacité. Son coût et son évaluation ont

la même valeur de 93.3 unités. On peut noter qu'aucune cellule n'est affectée au

commutateur 1.

Une application simultanée des composantes de mémoire à court et moyen

termes ne donne aucune amélioration sur la solution finale. Par contre, I'appIication de

la diversification, avec un nombre de redémarrages nbstart égal à 3, nous donne la

solution finale de la Figure 4.9. Elle a un coût et une évaluation de 85.1 unités, soit une

améIioration de 8.8 %.

Celluies affectées au
commutateur O

Cellules affectées au
commutateur 1

Cellules affectées au
commutateur 2

Figure 4.9 Solution finale obtenue avec le mécanisme de diversification

Cette fois-ci, c'est le commutateur O qui ne re~oit aucune affectation. Cette solution

faisable a été obtenue à l'itération 24 après le premier redémarrage. La solution initiale

pour ce premier redémarrage est présentée à la Figure 4.10.

Cellules affectées au
commutateur O

Cellules affectées au
commutateur 1

Cellules affectées au
commutateur 2

Figure 4.10 Solution initiale pour le premier redémarrage

On remarque que, sur les 14 cellules, seules les cellules 1 et 10 sont affectées au même

commutateur que dans la solution initiale de la Figure 4.2.

Enfin, avec une activation simultanée des mécanismes d'intensification et de

diversification, on aboutit à la solution de la Figure 4.1 1 qui a un coût et une évaluation

de 77.8 unités, soit une amélioration de 16.6 % par rapport à la solution obtenue

seulement avec la composante de mémoire à court terme.

O Cellules affectées au
commutateur O

Cellules affectées au
commutateur 1

ffl Cellules affectées au
commutateur 2

Figure 4.11 Solution finale obtenue avec l'activation de tous les mécanismes

Même si l'intensification seule ne donne pas d'amélioration, elle se révèle assez efficace

lorsqu'elle est combinée avec la diversification. En effet, chaque redémarrage de la

diversification lui fournit de nouvelles zones

chance de tomber sur une meilleure solution.

Ces résultats préliminaires présagent

prometteuses. La recherche a donc plus de

d'un bon comportement de la méthode de

RT. Dans le chapitre suivant, nous soumettrons notre adaptation à une série de tests pour

déterminer 1' influence de certains paramètres; puis nous comparerons ses performances

avec celles d'autres heuristiques appliquées au même problème.

CHAPITRE 5

ANALYSE DES RÉSULTATS

La performance de l'adaptation de la méthode de RT repose sur un bon choix de

ses paramètres. Pour évaluer notre implémentation, nous l'avons soumise à une série de

tests pour déterminer son efficacité et sa sensibilité par rapport à différents paramètres.

Les résultats obtenus sont ensuite comparés à une borne inférieure, estimation de

I'optimum global. Enfin, nous avons comparé notre adaptation à d'autres heuristiques

appliquées au même problème d'affectation.

5.1 Génération des tests

Pour dégager un comportement global valable, nous avons exécuté notre

programme sur un grand nombre de cas tests. Les tests ont été générés par un

programme MarlabB en supposant que les cellules sont disposées sur une @IIe

hexagonale de longueur et de largeur à peu près égales. Les antennes sont situées au

centre des cellules et distribuées uniformément sur la grille. Toutefois, lorsque deux ou

plusieurs antennes sont trop proches. la disposition des antennes est rejetée et on la tire

de nouveau. Le coût de liaison d'une cellule à un commutateur est proportionnel à la

distance les séparant. Nous avons pris un coefficient de proportionnalité égal à l'unité.

Le taux d'appel y;- d'une cellule i suit une loi gamma de moyenne et de variance égales à

l'unité. Les temps de service (ou temps de séjour) des appels à l'intérieur des cellules

sont distribués selon une loi exponentielle de paramètre 1. Si une cellule j possède k

voisins, I'i ntervalle [O, 11 est divisé en k+l sous-intervalles en choisissant k nombres

aléatoires distribués uniformément entre O et 1. À la fin de la période de service dans la

cellule j, l'appel peut être, soit transféré au ii"V voisin (i=l, k) avec une probabilité de

relève ru égale à la longueur du ri"c intervalle. soit clos avec une probabilité égale à la

longueur du k + f m e intervalle. Pour trouver des volumes d'appel et des taux de relève

cohérents, les ceIIdes sont considérées comme des files d'attente M / U / I formant un

réseau de Jackson (Kleinrock, 1975). Les taux d'anivées ai dans les cellules à

l'équilibre sont obtenus en résolvant le système :

n

ai - x a j r J i = yi avec i = 1, ..., n

Les CY~ sont normalisés en les divisant par le double du plus grand taux d'arrivées a,, ce

qui garantit le respect de la condition de stabilité ai 5 pi = 1 pour i = l, n. On choisit

comme volume d'appel d'une cellule j, la longueur moyenne de sa file d'attente. Le taux

de relève h, est défini par :

h, = Ab ru

Tous les m commutateurs ont la même capacité M calculée comme suit :

où K est choisi uniformément entre 10 et 50, ce qui assure un surplus global de 10 à 50%

de la capacité des commutateurs par rapport au volume d'appel des cellules.

5.2 Plan d'expériences

La méthode de RT est constituée essentiellement de trois composantes : les

mémoires à court, moyen et long termes. Notre plan d'expériences vise à tester les

paramètres mis en jeu par chaque composante. Compte tenu du grand nombre de

combinaisons possibies, nous faisons varier un seul paramètre à la fois. Pour chaque

paramètre, nous choisissons trois valeurs discrètes possibles. L'algorithme est exécuté

pour chacune des valeurs du paramètre sur un ensemble de 300 cas tests avec un nombre

de cellules variant de 15 à 200 et un nombre de commutateurs allant de 2 à 7. Le

Tableau 5.1 donne les détails des cas utilisés.

Tableau 5.1 Cas tests utilisés pour l'exécution du plan d'expériences

5.2.1 Mémoire à court terme

Dans notre adaptation, la mémoire à court terme met en jeu essentiellement deux

processus : une liste taboue pour diminuer les risques de cycle et un mécanisme de

cc rappel » qui ramène l'exploration vers les solutions faisables. Les tests sont effectués

en désactivant toutes les autres composantes de mémoire à moyen et long termes.

Nombre de cas tests
50
50

Nombre de cellules
15
30

Nombre de commutateurs
2
3

50
1 00
1 50
200

4
5
6
7

50
50
50
50

Effet de la taille de la LT

Selon Glover (1989). la taille de la LT devrait se situer autour de 7,

indépendamment de la taille et de la structure du problème. Nous avons cependant voulu

étudier l'impact de différents choix de taille pour la LT sur la qualité des solutions

obtenues. À cette fin. nous avons exécuté notre programme avec des listes taboues de

taille respective 5, 7 et 9. Ensuite, nous avons fait une moyenne pour tous les cas-tests

ayant un même nombre de cellules et de commutateurs. La Figure 5.1 représente la

moyenne de l'évaluation des solutions obtenues en fonction du nombre de cellules et de

commutateurs. et cela pour chacune des valeurs choisies pour la taille de la LT.

(tell-corn rn)

Ldaende 1

cell-comm : 1
nombre de I

cetlutes - !

- -- --

Figure 5.1 Effet de la taille de la LT sur les solutions obtenues

On note qu'une liste taboue de taille 9 donne en moyenne de meilleurs résultats. c'est-à-

dire des solutions de coûts moindres. En effet, le mécanisme de « rappel » a tendance à

ramener l'exploration vers des zones de solutions faisables. Par suite, si la liste taboue

est courte, la recherche a plus de chance de quitter les zones de solutions non faisables

en retournant à une sotution déjà visitée. De ce fait, on explore beaucoup moins de

solutions et on a moins de chance d'aboutir à de bonnes.

Effet du délai de déclenchement du mécanisme de «. ruopel »

Lors de l'exploration de la zone de recherche, la composante de mémoire à court

terme utilise un mécanisme de << rappel » pour ramener la recherche vers des régions de

solutions fais2bles. Le mécanisme de << rappel » est activé après un certain délai mesuré

en nombre de solutions consécutives non faisables. Ce délai ne doit pas être a priori, ni

trop grand sinon la recherche s'éloigne beaucoup trop des zones prometteuses, ni trop

petit, sinon la recherche est constamment ramenée vers des zones de solutions faisables

et peut ainsi omettre de bonnes solutions. Nous avons étudié les cas où le dispositif de

<< rappel » se déclenche après respectivement 2, 5 et 8 solutions consécutives non

faisables. La Figure 5.2 donne la moyenne de l'évaluation des solutions obtenues en

fonction du nombre de cellules et de commutateurs, et cela pour chacune des valeurs

choisies pour Ie délai de déclenchement du dispositif de << rappel m.

aende 1
cell-comm : !

l

nombre de
cellules -
nombre de t i commutateurs ;

Figure 5.2 Effet du délai de déclenchement du dispositif

de rappel sur les solutions obtenues

Un délai de déclenchement de deux solutions consécutives non faisables donne en

moyenne des solutions meilleures. En effet, comme nous l'avions déjà dit, le mécanisme

de « rappel » est appliqué progressivement. II doit donc se déclencher le plus tôt possible

pour avoir le temps d'agir (c'est-à-dire, attirer la recherche vers des régions de solutions

faisables) sans cependant avoir à le faire soudainement.

Effet de la variation de l'intensité maximale du mécanisme de retour

L'intensité du mécanisme de rappel » est modulée progressivement à l'aide

d'un multiplicateur SEVERITE qui est incrémenté à chaque solution non faisable jusqu'à

une valeur maximale MAXSEV. La Figure 5.3 représente la moyenne de l'évaluation des

solutions obtenues en fonction du nombre de cellules et de commutateurs, et cela pour

des valeurs de MAXSEV de 10, 15 et 18 respectivement.

Léaende i

cell-comm : j
nombre de i

0 6\ cellules- a g @' *' @' &' !
L e e @ nombrede j

commutateurs j

Figure 5.3 Effet de la variation de l'intensité maximale du dispositif de

rappel sur les solutions obtenues

On ne note pas de différence sensible entre les résultats pour les trois valeurs de

MAXSEV choisie. Cela signifierait donc qu'en général, le mécanisme de rappel D n 'est

pas appliqué jusqu'à la plus petite des valeurs choisies pour I'intensité maximale. car on

ne trouve pas plus de 10 solutions consécutives non faisables lors des exécutions de

l'algorithme. Nous avons donc pris une valeur de 15 pour notre adaptation, car elle

constitue la moyenne parmi les trois valeurs utilisées pour notre test et le temps

d'exécution ne s'en trouve pas particulièrement affecté. De plus, on pense intuitivement

assurer ainsi l'efficacité de notre adaptation dans des cas où on aurait plus de 10

solutions consécutives non faisables.

5.2.2 Mémoire à moyen terme

La composante de mémoire à moyen terme raffine l'exploration dans des régions

prometteuses. Dans notre adaptation, elle retient les ITAILLEBEST dernières meilleures

solutions et intensifie la recherche dans leurs voisinages. Pour cela, elle utilise deux

types de mouvement : le premier permute deux ceilules, le second consiste à réaffecter

des cellules pour rétablir les contraintes de capacité. Le premier type de mouvement est

ceIui appliqué par défaut ; le second mouvement, quant à lui, est mis en œuvre après un

nombre IDRESPECT de solutions consécutives non faisables. Dans cette section, nous

étudions I'intluence du délai de déclenchement des mouvements du second type en

modifiant la variable IDRESPECT et l'effet de la variable KAZLLEBEST qui est la triille

de la région d'intensification. Comme le mécanisme de diversification fait appel à

1 'intensification à chaque redémarrage, les tests sont effectués en activant tous les

mécanismes de mémoire à court, moyen et long termes.

Effet du délai de déclen cllement des mouvements du second rvpe

Tout comme dans le cas de la composante de mémoire à court terme, le

mécanisme d' intensification utilise des mouvements de type différent pour rétablir les

contraintes de faisabilité. Le délai IDRESPECT de mise en œuvre de ce type de

mouvement ne doit pas être a prion, ni trop grand sinon la recherche sort des zones

prometteuses, ni trop petit sinon la recherche est trop contrainte et peut manquer de

bonnes solutions. Nous avons choisi des valeurs de IDRESPECT de 2, 5 et 8

respectivement.

La Figure 5.4 représente la moyenne de I'évaluation des solutions obtenues en fonction

du nombre de cellules et de commutateurs, et cela pour chacune des valeurs de

lDRESPECT choisies. De meilleures soIutions sont obtenues avec un délai de

déclenchement faible, soit une valeur de 2 pour la variable IDRESPECT. Comme dans le

cas de la mémoire à court terme, un déclenchement rapide du mécanisme de choix des

mouvements de type 2 permet à l'algorithme de commencer très tôt la recherche des

sotutions faisables. Pendant la phase d'intensification, le gain fait en ramenant

l'exploration dans des zones faisables est donc suffisant pour justifier qu'on applique

très tôt les mouvements de type 2 qui sont beaucoup plus contraignants que les

permutations.

hmoyenne 2 /
1 .moyenne 5 j
[Ornoyenne 8 1
Léuende
cell-comm :
nombre de
cellules -
nombrede

t
t commutateurs

1 (cell-comm)

Figure 5.4 Effet du délai de déclenchement des mouvements

de type 2 sur les solutions obtenues

Effet de la taille de la rénion d'intensification

Dans noue adaptation, la taille de la région d'intensification est déterminée par le

nombre ITAILLEBEST de dernières meilleures solutions retenues. En effet, la recherche

est intensifiée dans les voisinages de ces solutions. Nous avons étudié l'impact de la

taille de la région d'intensification sur les solutions obtenues. Les valeurs de

ZTMLLEBEST choisies sont de 3, 5 et 7. il est évident qu'une région d'intensification

plus grande donne de meilleures solutions, mais au prix d'un temps de calcul beaucoup

plus long. Pour pouvoir comparer les résultats obtenus pour différentes valeurs de

ITMLLEBEST, nous avons pris une valeur de référence 3. Ensuite, nous avons calculé

les améliorations des solutions ainsi que l'augmentation du temps d'exécution par

rapport aux valeurs de référence. La Figure 5.5 donne le rapport des améiiorations aux

augmentations de temps d'exécution en fonction du nombre de cellules et de

commutateurs, et cela pour les différentes valeurs de ITAILLEBEST. Notons qu'un

rapport élevé suppose une bonne amélioration en un temps relativement court, donc une

bonne valeur de la variable ITNLLEBEST.

lmoyenne 7 i j

Léaende i
cell-comm :
nombre de ,

celluies -
nombre de i
commutateurs i

Figure 5.5 Effet de la taille de la région d'intensification sur les solutions obtenues

On constate que pour des problèmes de petite taille Cjusqu'à 30 cellules et 3

commutateurs), une zone d'intensification de taille 3 convient parfaitement. Par contre,

pour des problèmes de taille plus élevée, une valeur de 5 de la variable ITAlLLEBEST

donne de meilleurs résultats. En effet, pour un problème de petite taille, on imagine que

l'intensification améliore assez vite la solution de la composante de mémoire à court

terme, puisque les possibilités sont moindres. Pour un problème de taille plus élevée, on

a un plus grand nombre de possibilités et les améliorations apportées par

l'intensification se justifient bien par rapport au temps investi. jusqu'à une taille de la

zone d'intensification de l'ordre de 5 solutions.

5.2.3 Mémoire à long terme

Pour la diversification, le paramètre le plus important est le nombre nbstan de

redémmages. Les tests sont effectués sans activation du mécanisme d'intensification.

Effet du nombre de redémarrages

Nous avons étudié l'influence du nombre nbstart de redémarrages sur la qualité

des solutions obtenues. Les valeurs choisies pour la variable nbstart sont de 1, 3. et 5

respectivement. Le cas d'un seul redémarrage sert de référence. Comme dans le cas de la

taille de la zone d'intensification, l'influence du temps d'exécution est prise en compte

en considérant le rapport des améliorations des solutions aux augmentations de temps

d'exécution. La Figure 5.6 illustre les résultats obtenus. Même si l'écart entre les

différentes valeurs choisies pour nbstart n'est pas très grand, on note tout de même

qu'avec trois redémarrages, on obtient en général des solutions meilleures.

1 =moyenne 5

Leaende
cell-corn m :
nombre de
cellules -
nombre de
commutateur

Figure 5.6 Effet du nombre de redémarrage sur les solutions obtenues

5.3 Comportement général de la méthode

Pour étudier ie comportement général et l'efficacité des mécanismes mis en

œuvre dans notre adaptation de RT, nous avons généré six séries de tests en faisant

varier séparément, puis simultanément le nombre de cellules et le nombre de

commutateurs. Le Tableau 5.2 donne le détail des séries de tests exécutés. La

composition de chaque série est présentée à ['Annexe A.

Tableau 5.2 Détails des séries de tests exécutés

1 6 1 Variable (15-20) 1 Variable (2-7) 1 300 1

N" de la sériede tests

1
2
3
4
5

Pour chacune des séries, nous avons exécuté notre programme respectivement avec la

composante de mémoire à court terme, puis avec les combinaisons de mémoire à court et

Nombre de cellules

Variable (15-200)
Variable (15-20)
Variable (15-20)

50
150

moyen termes, et celles de mémoire à court et long termes, et enfin avec toutes les

composantes de RT. Les figures 5.7 à 5.12 et 5.13 à 5.18 décrivent d'une part

Nombre de
commutateurs

2
3
4

Variable (2-7)
Variable (2-7)

l'amélioration apportée par l'intensification et la diversification par rapport à la

Nombre total de cas de
tests
700
700
700
300
300

composante de mémoire à court terme uniquement, et d'autre part le pourcentage de

sotutions faisables obtenues pour chaque mécanisme.

/ -c am6iioration moyenne pour 1 1

I
I'intensification I

j
5

4- am6lioration moyenne pour (1
h diversification (1

I

amélioration moyenne pour j 1 iktensification et ia
i diwrsification

nombre de celluks

Figure 5.7 Contribution en pourcentage de chaque mécanisme à
l'amélioration des solutions obtenues (série nO1)

-- -- -

Figure 5.8 Contribution en pourcentage de chaque mécanisme
à l'amélioration des solutions obtenues (série n02)

am6iioration moyenne pour 1
l'intensification et la , !

dNersification I

Figure 5.9 Contribution en pourcentage de chaque mécanisme
à l'amélioration des solutions obtenues (série n03)

2 3 4 5 6 7

nom br8 de comm utat8urs

+am dlioration 1
moyenne pour I
l'intensification I

I

1 +am hlioration
moyenne pour la
diversification

am dlioration
moyenne pour
l'intensification et la '
diversification

Figure 5.10 Contribution en pourcentage de chaque mécanisme
à l'amélioration des solutions obtenues (série n04)

+ amelioration moyeruie pour , I

i'intensifiition i
1
1

I + an&ioration moyeme pour i
la dmsifiitiori l

!
1

améiioration moyenne pour i

i ' intensifii et la
1

diversification

Figure 5.11 Contribution en pourcentage de chaque mécanisme
à l'amélioration des solutions obtenues (série n05)

nbcom m -nbcell

+amélioration
moyenne pour
l'in te n sifica tio n

+amélioration
moyenne pour la , ;
diversification

, .
amélioration I I

t . I
, , moyenne pour

l'intensification et la i
diversification

I

- -

Figure 5.12 Contribution en pourcentage de chaque mécanisme
à l'amélioration des solutions obtenues (série n06)

On constate que la contribution des mécanismes d'intensification et de

diversification à l'amélioration des solutions croît avec la taille des données du

problème. En particulier, l'intensification etfou la diversification n'améliorent les

solutions obtenues de façon sensible que pour un nombre de commutateurs supérieur à

deux. Ceci s'explique par le fait que, pour deux commutateurs, la composante de

mémoire à court terme, lors des mouvements de réaffectation, examine la plupart des

possibilités par rapport aux deux commutateurs. L'intensification et la diversification

mènent donc rarement la recherche vers des zones non encore explorées. Par contre.

pour plus de deux cellules, on a plus de choix qu'une simple réaffectation.

L'intensification permet alors de raffiner les choix faits par la composante de mémoire à

court terme. De même, la diversification amène la recherche dans des zones comportant

des alternatives non encore visitées. Enfin, les mécanismes d'intensification et de

diversification sont plus efficaces pour un plus grand nombre de commutateurs, ou iî

nombre égal de commutateurs, pour un petit nombre de cellules.

i l
.< pourcentage p a i r 1 ;

rsmmaionet 1 1
iritensification 1 i

Figure 5.13 Pourcentage de solutions faisables pour chaque mécanisme (série nol)

4% Q @ A ! ap , $
nombre de cellules

+- pourcentage sans I
intensification ni I

diversification / j
/ ;

-+- pourcentage pour ;
l'intensification seule i /

I !

pourcentage pour la i
diversification seule ;

1 - pourcentage pour ' I
diversification et ' 1
intensification

1
1

Figure 5.14 Pourcentage de solutions Faisables pour chaque mécanisme (série n02)

-t pourcentage sans 1
intensification ni i ' diversification l I

I
1

pourcentage pour
l'intensification seule

!
1 + pourcentage pour la 1 1 diversification seule /

!
l

/ -rt Bourcentape pour 1
1 diversification et 1 j * 9 9 4 Op,@$ I intensification I I

nombre de dlules

Figure 5.15 Pourcentage de solutions faisables pour chaque mécanisme (série n03)

2 3 4 5 6 7

nombre de commutateurs

diversification
f ' +pourcentage pour i : I

l
t'intensification seule :

I
I pourcentage pour la : !
1 diversification seule ; 1
j -pourcentage pour j
! diversification et 1 ,

intensification ' t

Figure 5.16 Pourcentage de solutions faisables pour chaque mécanisme (série n04)

pourcentage sans

1 intensification ni
diversification

1 +pourcentage pour
l l'intensification seule

i pourcentage pour la

1 diversification seule
i
1 * . .

I
- pourcentage pour

I diversification et
2 3 4 5 6 7 i intensification :

1 l
1 nombre de commutateurs 1

!

Figure 5.17 Pourcentage de solutions faisables pour chaque mécanisme (série nOS)

I

; 1
-c- pourcentage sans ; i

intensification ni 1 1
dimrsificat ion I j

~i
-c pourcentage pour i

l'intensification seule i i
I

pourcentage pour la : ;
, t diwrsification seule ; ;

1

- pourcentage pour ; ;
diwrsification et ! /
intensification / I

Figure 5.18 Pourcentage de solutions faisables pour chaque mécanisme (série n06)

Le pourcentage de solutions faisables obtenues par la composante de mémoire à

court terme décroît en règle générale avec le nombre de commutateurs. En particulier,

pour un nombre élevé de commutateurs, la composante de mémoire à court terme génère

difficilement une solution faisable. Pour un nombre de commutateurs fixe et un nombre

variable de cellules, le pourcentage de solutions faisables reste à peu près du même

ordre, quels que soient les mécanismes mis en jeu. Avec l'activation de I'intensification

et/ou de la diversification, on obtient plus de solutions faisables. Toutefois, la

composante de mémoire à moyen terme se révèle plus efficace que celle de mémoire à

long terme pour générer des solutions faisables. Ceci s'explique par le fait que

I'intensification applique des mouvements ayant pour but explicite le rétablissement de

la faisabilité, alors que la diversification essaie d'améliorer globalement la solution sans

chercher spécifiquement à rétablir la faisabilité. De toute manière, une action combinée

de l'intensification et de la diversification engendre presque toujours des solutions

faisables.

Globalement. notre adaptation de la méthode de RT donne d'assez bons résultats.

De plus, une exécution du programme requiert un temps raisonnable qui ne croît pas trop

vite avec la taille du problème. L'Annexe B donne à titre illustratif les temps

d'exécution sur une « SUN SPARCStation 5 Mode1 1 IO ».

5.4 Comparaison avec une estimation de l'optimum global

La solution obtenue par la méta-heuristique de RT est souvent un optimum local.

À défaut de connaître l'optimum global, nous définissons une borne inférieure pour

évaluer la qualité de nos solutions.

5.4.1 Définition d'une borne inférieure

Soient un ensemble de n cellules à affecter à m commutateurs et une variable

de décision telle que :

(1 si la cellule i est reliée au commutateur k,
.% -

- 10 sinon.

Soient A, le volume d'appels horaires destiné à la cellule i, Mi la capacité horaire du

commutateur k, ci* le coût de liaison de la cellule i au commutateur k, et Ii, le coût de

relève horaire de la cellule i à la cellule j. Le problème d'affectation consiste

essentiellement à :

Minimiser

sujet aux contraintes suivantes déjà formulées au chapitre 1 :

.r& = O ou 1 pour i = 1. 12 et k = 1, ..., rn

2 x, = 1 pour i = 1, n

n

Aixik I M , pour k = 1. ..., rn

En associant les multiplicateurs pk et Bi aux contraintes (2.1) et (2.3)' le

Iagangien s'écrit :

En utilisant la contrainte (2.1)' on a :

avec pk 20. k=l, m et a. E R. i = I , n.

Le dual du problème ci-dessus s'exprime comme suit :

où est un réel quelconque, p un réel positif ou nul et r un nombre binaire.

Reécrivons le lagrangien sous la forme suivante:

Le sous-problème inf L(x. p. #3) a comme solutions :
I

n

(iii) x j k = O , s i Q , < o e t Q l k + x h u (l - r , ,) > O

Prenons le cas (5.1). le plus simple pour tous les i et k. On a donc Qik > 0. V i et k. Avec

la solution xik =O V i et k, le dud (D) devient donc :

sujet à :

11 s'ensuit que:

a 2 max (-pkhi- ce), i=l. n
k

et par suite :

Le problème dual se ramène à :

(D) max min(& + c,
P 20 (' 1 1 [k

Ce qui équivaut à :

Posons p,, = min p, , alors :
k

et par suite :

m m

p m n T ~ , s ~ ~ ~ ~ M ~ car 54 I ~ M , et p_>O

D'où :

m

et max min(c,,) + Ai (min p,) - p,M, est atteint pour pl. = O. V k. [I I , () (k) k-1]
Ainsi, une bome inférieure pour le problème prima1 est :

Cette borne inférieure ne tient pas compte des coûts de relève. En fait, on suppose que la

contrainte (2.3) de capacité est relaxée et que toutes ies cellules peuvent être affectées à

un seul commutateur. On a donc une borne inférieure valable quelles que soient les

valeurs des ML- et Ai.

Pour les cas (5.2) et (5.3) ou pour une combinaison quelconque de (5.1)' (5.2) et

(5.3), l'analyse peut se faire d'une manière similaire. Toutefois, les bornes inférieures

obtenues sont très compliquées et dépendent de l'affectation à faire (ce qui revient à

résoudre d'abord le problème prima1 pour trouver une borne inférieure!).

En ne considérant pas le cas trivial où toutes les cellules sont affectées à un

même commutateur, nous pouvons supposer sans grande perte de généralité qu'un seul

commutateur ne peut prendre en charge toutes les cellules. On a donc au moins une

bipartition de l'ensemble des cellules. Dans le cas d'une bipartition (p ,q) d'un ensemble

de n cellules, le nombre total de coûts de relève à prendre en compte est t = 2pq. Le

nombre minimal de relèves à considérer pour une bipartition est obtenue en résolvant le

problème :

min 2pq

sujet à : p + q = n, p 2 1, 4 1 1.

Le problème ci-dessus a pour solution les bipartitions (1.n-1) et (n-1.1). Ces solutions

sont celles qui, de toutes les partitions possibles, engendrent le moins de relèves (car une

multipartition est obtenue en divisant plusieurs fois encore une bipartition). Donc, une

borne inférieure pour le nombre de relèves est 2(n-1). Notons que si la relève i-j est

prise en compte, il en est forcément de même avec la relève j-t i. Soit alors hT la partie

triangulaire supérieure de la matrice (H + H ~) où H désigne la matrice des coûts de relève

et H' sa transposée. Si on veut prendre en compte le coût des relèves dans la borne

inférieure, on doit considérer au moins n-I relèves de hT. De ce fait, une nouvelle borne

inférieure est :

où N désigne l'ensemble des n-1 premiers minima de la matrice triangulaire hT, 2 , ~ -

désigne la fonction indicatrice de l'ensemble N-. avec I+v_{.t]= 1 si x E N et O sinon.

Enfin 1tdp.q) désigne l'élément à la ligne p et à la colonne q de la matnce triangulaire

JIT. Pour finir, notons que LBI I LB2 et donc LB2 est a priori une meilleure borne

inférieure que LBl.

5.4.2 Comparaison avec la borne inférieure

Comme nous l'avons déjà dit, Li32 est a priori une meilleure borne inférieure que

LBI, mais pour un nombre de cellules dépassant la dizaine, la matrice H contient

<< beaucoup w d'éléments nuls, car chaque cellule a au plus 6 voisins sur la grille. De ce

fait, les 11-1 plus petits éléments de hT sont en général tous nuls et les bornes LBI et LB2

sont alors égales. C'est le cas pour les tests que nous avons utilisés. Les tableaux 5.3 à

5.8 donnent, pour chacune des séries de tests définies au Tableau 5.2, la distance

moyenne par rapport à la borne inférieure des solutions obtenues pour un nombre donné

de cellules et de commutateurs.

Tableau 5.3 Distance par rapport à la borne inférieure (série nOl)

Tableau 5.4 Distance par rapport à la borne inférieure (série n02)

#cellules
Distance
moyenne
(%)

90
2

15
10

100
2

90
4

bkellules
Distance
moyenne
1%)

20
16

15
25

125
1

20
7

100
4

70
2

80
2

150
2

30
4

80
4

125
4

30
12

175
1

40
4

150
3

50
6

40
7

200
2

50
3

175
3

60
5

60
2

200
3

70
5

Tableau 5.5 Distance par rapport à la borne inférieure (série n03)

Tableau 5.6 Distance par rapport à la borne inférieure (série n04)

Tableau 5.7 Distance par rapport à la borne inférieure (série n05)

90
8

[~istance moyenne (96) 1 1 1 3 5 1 6 1 8 1 9]

70
7

#cellules
Distance
moyenne

#commutateurs
Distance movenne (%)

Tableau 5.8 Distance par rapport a la borne inférieure (série n06)

20
24

80
6

15
37

6
20

200
4

7
21

La méthode de RT donne des résultats assez « proches » de la bome inférieure, donc de

l'optimum. Rappelons que notre bome inférieure ne tient pas compte des coûts de

relève, ce qui fait qu'aucune de nos solutions ne peut être égale à la borne inférieure. On

note que les solutions obtenues sont plus proches de la bome inférieure pour des

problèmes de grande taille, en particulier pour un plus grand nombre d e cellules. Ceci

s'explique par le fait que, pour les problèmes de taille élevée, les coûts de liaison sont

primordiaux. En effet, une cellule a au plus six voisins et, de ce fait, un accroissement du

nombre de cellules entraîne des coûts de relève pratiquement nuls. Ces derniers

contribuent donc de moins en moins à l'évaluation d e la solution.

, 3 0
16

100
6

4 1 5
1 1 1 15

2
3

150
5

125
6

3
6

(200-7) ,

8

175
5

6 0
8

40
12

(30-3) 1 (50-4)
9 1 10

(cell-comm)
Distance moyenne (%)

(100-5)
9

50
10

(15-2)
11

(1 5 0 4)
9

5.5 Comparaison avec d'autres heuristiques

Du point de vue théorique, notre adaptation de RT génère d'assez bons résultats.

Pour confirmer notre analyse, nous la comparons dans cette section avec d'autres

heuristiques appliquées au même problème d'affectation de cellules.

5.5.1 Heuristique de Merchant et Sengupta

Cette heuristique (HI) proposée par Merchant et Sengupta (1995) est conçue

spécialement pour le problème d'affectation de cellules. Elle a été déjà présentée au

chapitre 2 de ce mémoire. Les données de comparaison fournies par ces chercheurs sont

peu nombreuses et pas très pertinentes dans notre cas. Toutefois, nous avons comparé les

temps d'exécution et le pourcentage de solutions faisables pour quelques cas. Nos tests

ont porté sur des cas ayant un nombre variable de cellules et quatre commutateurs. Ces

cas ont été extraits de la série n03 de tests. Pour avoir les mêmes conditions que ces

chercheurs, nous avons exécuté notre programme sur une d U N SPARCStatiorz 2

(4175) D. Le Tableau 5.9 présente une comparaison des moyennes obtenues.

Les deux heuristiques trouvent toujours une solution faisable. Pour un grand

nombre de cellules, l'algorithme de RT est un peu plus rapide que l'heuristique de

Merchant et Sengupta. Par contre, pour des problèmes de taille moins élevée, notre

adaptation est un peu plus lente. Toutefois, ces résultats nous renseignent seulement sur

la faisabilité des solutions obtenues, sans pour autant révéler si ce sont de bonnes

solutions (avec une faible évaluation) ou non. Merchant et Sengupta (1995) donnent un

exemple détaillé d'application de leur méthode. Sur les données de l'exemple, notre

adaptation, tout comme la méthode de Merchant et Sengupta, aboutit à l'optimum.

Tableau 5.9 Comparaison de notre adaptation de RT avec

l'heuristique de Merchant et Sengupta

5.5.2 Heuristique de Beaubrun, Pierre et Conan

Beaubnin et al. (1999) présentent aussi une heuristique (HZ) adaptée

ce~lules
- -

15
20
30
40
50

spécifiquement au problème d'affectation. L'idée principale de leur algorithme est de

trouver une fonction de décision permettant de déterminer à chaque étape une bonne D

problèmes % solutions
faisables

affectation de la cellule courante. Pour cela, leur méthode s'inspire de la programmation

Hl
74
74
74
29
9

Temps CPU (sec)

H l
100
100
100
100
100

dynamique et du principe d'optimalité de Bellman. Les cellules sont d'abord triées selon

RT
50
50
50
50
50

Hl
0.05
0.09
0.16

_ 0.30
0.43

RT
100
100
100
100
100

certains critères constitués essentiellement des coûts induits de relève et de liaison.

RT
0.08
0.13
0.24
0.37
0.53

Ensuite, une fonction de décision permet à chaque étape d'affecter les cellules dans

l'ordre obtenu par le tri. Les tableaux 5.10 et 5.1 1 présentent une comparaison entre

l'heuristique H2 et notre adaptation de RT sur les moyennes des résultats obtenus à

partir des séries de tests n02 et 6.

Tableau 5.10 Comparaison de notre adaptation de RT
avec l'heuristique de Beaubmn, Pierre et Conan (série n02)

Tableau 5.11 Comparaison de notre adaptation de RT
avec l'heuristique de Beaubmn, Pierre et Conan (série n06)

1 # cellules 1 # commutateurs 1 % amélioration moyenne RT par 1

% amélioration moyenne RT par
rapport H2

34
34
34
38

cellules

15
20
30
40

La méthode de RT se révèle de manière constante meilleure à l'heuristique Fi2

Les résultats trouvés par notre adaptation sont en général de 30 à 50% meilleurs à ceux

commutateurs

3
3
3
3

de l'heuristique H2. En particulier pour des problèmes de taille élevée, notre adaptation

fournit des solutions de coût remarquablement moindre- Ceci s'explique par le fait que

l'heuristique H2 affecte les cellules au fur et à mesure en tenant compte seulement des

cellules déjà affectées auparavant. Si la taille du problème croît, les premières décisions

prises ont beaucoup plus de chances de ne pas être bonnes, puisqu'elles ne tiennent pas

compte des affectations faites à leur suite.

5.5.3 Recuit simulé

La méthode du recuit simulé (SA pour simulated annealing) est une approche

algorithmique probabiliste pour la résolution de problèmes d'optimisation. Le nom de la

méthode dérive d'une analogie entre la résolution de problèmes d'optimisation et la

simulation du recuit des solides proposée par Metropolis et al. (1953). La méthode a été

adaptée à l'optimisation combinatoire par Kirkpatrick et al. (1983). Contrairement à un

algorithme de recherche locale, la méthode de recuit simulé permet, dans un problème

d'optimisation donné, d'envisager des solutions qui dégradent le coût. quitte à

abandonner plus tard lesdites solutions si elles n'offrent toujours pas d'améliorations.

Pour ce faire, elle utilise le hasard pour décider si elle accepte ou non une solution qui

dégrade le coût. Nous avons comparé notre adaptation de RT à une application de SA au

problème d'affectation. L'implémentation de SA utilisée a été développée au

Laboratoire de Recherche en Réseautque et Informatique Mobile (LARIM) de l'École

Polytechnique de Montréal. Comme la solution finale obtenue par la méthode de SA

dépend du hasard, nous avons choisi dans chacune des six séries deux cas de test pour un

nombre de cellules et de commutateurs donnés. L'implémentation de SA a été exécutée

500 fois sur chacun des cas et nous retenons la meilleure évaluation obtenue. Les

tableaux 5.1 1 et 5.12 présentent une comparaison des solutions obtenues pour quelques

séries de tests.

Tableau 5.12 Comparaison avec la méthode de recuit simulé (série n02)

Tableau 5.13 Comparaison avec la méthode de recuit simulé (série n06)

% amélioration RT par rapport SA
2

cellules
15

commutateurs
3

cellules
15
15
30
30
50

RT
130
118
382
324
689
580
1374
1234
2013
2010
2948
2768

SA
105

% amélioration RT par rapport SA
-5
4
5
28
28
32
3 1
52
53
38
47
64

commutateurs
2
2
3
3
4

RT
103

SA
124
123
405
448
951
851
1999
2595
4271
3240
5550
7801

50
100
100
150

4
5
5
6

150
200
300

6
7
7

La méthode de RT est de manière générale plus performante que l'adaptation de

SA. En particulier, pour des problèmes de grande taille, notre adaptation trouve parfois

des solutions deux fois meilleures à celles de SA.

En résumé, notre adaptation de RT semble convenir très bien à des problèmes de

tailIe assez élevée. En effet, les solutions obtenues sont en général meilleures par rapport

à d'autres méthodes, mais aussi sont assez proches de l'optimum. De plus, le temps de

calcul ne croît pas exponentiellement avec la taille des problèmes. Par contre, pour des

problèmes de taille plus petite, bien qu'il ait toujours un comportement convenable,

notre aigorithme ne donne pas toujours les meilleurs résultats. Dans ces cas, il serait

préférable de désactiver tous les mécanismes d'intensification et de diversification, ce

qui permettrait de gagner en temps de calcul sans trop perdre en qualité de solution.

CHAPITRE 6

CONCLUSION

Le problème d'affectation de cellules est un problème difficile que nous avons

essayé de résoudre dans ce mémoire, en lui appliquant la méthode de RT. Les résultats

obtenus sont assez concluants. Dans ce chapitre final, nous présentons une synthèse

générale des travaux avant d'aborder les limitations de notre adaptation et les indications

de recherche future.

6.1 Synthèse des travaux

Le problème d'affectation de cellules à des commutateurs consiste à affecter un

nombre rz donné de cellules à m emplacements possibles de commutateurs, tout en

respectant des contraintes sur la capacité des commutateurs et en affectant chaque

cellule à un commutateur unique. Compte tenu de sa complexité, ce problème ne peut, à

l'heure actuelle, être résolu de manière exacte, surtout pour des instanciations de taille

élevée. On a alors recours à des heuristiques qui fournissent des solutions souvent sous-

optimales. Dans ce mémoire, l'heuristique adaptée est celle de recherche taboue. Elle a

été introduite en optimisation combinatoire par Glover (1989, L990a, 1990b) et utilise

des techniques d'exploration sophistiquées pour éviter à une autre heuristique le blocage

à un minimum local. Elle est de ce fait une méta-heuristique.

Avant d'adapter la méta-heuristique de RT, nous avons proposé une nouvelle

formuIation du problème, mettant en évidence les similitudes avec le problème bien

connu en optimisation combinatoire de localisation d'entrepôts.

L'implémentation de la méthode a consisté à définir une série de mouvements

pour les composantes de mémoire à court et à moyen termes. Ces mouvements visent

une amélioration du coût de la solution et un rétablissement de sa faisabilité. Ceci nous a

amené à définir une structure de gains avec des procédures de mise à jour pour choisir

efficacement à chaque itération la meilleure solution dans le voisinage courant. La mise

en œuvre des composantes de mémoire à moyen et long termes a nécessité un choix des

zones d'intensification et la définition d'une politique de diversification.

Pour évaluer les performances de I'adaptation, nous avons déterminé deux bornes

inférieures de l'optimum global. Ces deux bornes nous ont servi d'estimés pour juger de

la qualité des solutions obtenues. De manière générale, les résultats sont convaincants et

nos solutions sont assez proches de l'optimum global. Notre implémentation a été aussi

testée par rapport à différents paramètres de la méthode de RT pour améliorer sa

robustesse et son efficacité. Ainsi, nous avons étudié, entre autres, l'influence de ia taille

de la liste taboue, l'effet de la taille de la zone d'intensification et celui du nombre de

cycles de diversification. Enfin, les résultats ont été confrontés à ceux obtenus par

d'autres heuristiques appliquées au même problème, ce qui a confirmé l'efficacité et la

robustesse de I'adaptation, surtout pour des problèmes de taille assez élevée (à partir de

50 cellules et 3 commutateurs). Cependant, notre adaptation n'est pas parfaite et

comporte quelques limitations.

6.2 Limitations des travaux

En dépit des résultats satisfaisants obtenus, les performances de notre approche

dépendent fortement du choix des paramètres. Ceux-ci ne sont pas faciles à choisir, et

les valeurs utilisées dans le programme sont des valeurs qui donnent globalement de

bons résultats, mais qui ne sont pas forcément les meilleures pour un type donné de

problème. De plus, les données des tests utilisés pour calibrer ces différents paramètres

proviennent de simulations et ne sont donc pas des données réelles.

Notons aussi que la méthode ne garantit pas la faisabilité de la solution finale. On

peut donc aboutir dans certains rares cas à une solution finale qui, malgré les pénalités,

possède une meilleure évaluation que les solutions faisables trouvées. En ce moment,

nous avons préféré la solution non faisable, quitte à ce que le concepteur modifie

légèrement le problème pour la rendre faisable si cela n'engendre pas de trop grands

coûts.

Les bornes inférieures utilisées comme estimation de I'optimum global se

retrouvent, surtout dans le cas de problèmes de taille moyenne, trop loin de l'optimum.

L'estimation n'est donc plus très bonne.

Enfin, notre implémentation ne prend pas en compte le problème d'affectation

avec domiciliation double des cellules.

6.3 Indications de recherche future

Le problème d'affectation de cellules à des commutateurs demeure un problème

ouvert. Les pistes d'amélioration sont nombreuses. Les recherches futures pourraient

essayer de déterminer de meilleures bornes inférieures prenant adéquatement en compte

les coûts de relève, surtout pour des problèmes de taille moyenne. II faudrait également

envisager une implémentation de la méthode de RT pour le problème avec domiciliation

double. Cette implémentation pourrait être directe et utiliser une structure de gains,

comme nous l'avons fait pour le cas de domiciliation simple, ou bien elle pourrait être

définie comme ensemble de sous-problèmes à domiciliation simple tel que proposé par

Merchant et Sengupta (1995). Dans ce cas, les sous-problèmes de domiciliation simple

pourraient être résolus avec notre adaptation. Enfin, de nouvelles heunstiques ou des

com binai sons d' heunstiques pourraient être proposées et adaptées au problème.

BIBLIOGRAPHIE

Abdinnour-Heim S. « A hybrid heuristic for the uncapacitated hub location problem »,

Eri ropean Jortmal of Operational Research, vol. 106, 1998, pp. 489-499.

Beaubrun R., Pierre S. et Conan J. « An efficient Method for Optimizing the Assignrnent

of Cells to MSCs in PCS Networks n, Proceedings II''' Int. Con$ on Wireless

Cornnt., Wïreless 99, vol. 1, July 1999, Calgary (AB), pp. 259-265.

Dell'Amico M., Trubian M. « Solution of large weighted equicut problems », Eriropean

Jo~iniul of Operational Research, vol. 106, 1998, pp. 500-52 1.

Fiduccia C. M. et. Mattheyses R. M. « A Linear-time Heuristic for Improving Network

partition », Proceedings 1 gi' Design Automat. Con$, 1982. pp. 175- 1 8 1.

Garey M. R. et Johnson D. S., Cornputers and intractabiliry, San Francisco, C A ,

Freeman, 1979.

Glover F. « Tabu Search - Part 1 », ORSA Journal on Computing, vol. 1 , No. 3, 1989, pp.

1 90-306.

Glover F. « Tabu Search : A Tutorial », INTERFACES, vol. 20, No. 4, 1990a, pp. 74-94.

Glover F. « Tabu Search - Part II », ORSA Joumal on Con~puring, vol. 2, 1990b, pp. 4-

Glover F., Taillard E. et de Werra D. << A user's guide to tabu search », Annals of

Operations Research, vol. 41, No. 3, 1993, pp. 3-28.

Horowitz E. et Sahni S., Fundamentals of cornputer algorithms, Cornputer science Press,

Inc., 1990.

Kernighan B. W. et Lin S. « An Efficient Heunstic Procedure for Partitioning Graphs D,

The Bell Sysrem Technical Journal, vol. 49, 1970, pp. 291-307.

Kirkpatrick S., Gelatt Ir. C. D. et Vecchi M. P. «Optimization by Simulated

Annealing », Science, vol. 220, 1983, pp. 671-680.

KIeinrock L. Queriing Systems 1: 77zeory, New York, Wiley, 1975.

Klincewicz J. G. « Heuristics for the p-hub location problem », European Jorrrnal of

Operarional Research, vol. 53, 1991, pp. 25-37.

Krishnarnurthy B. « Constructing Test Cases for Partitioning Heuristics », IEEEE

Transacrions on Cornputers, vol. C-36, Sept. 1987, pp. 1 1 12- 1 1 14.

Kuehn A.A. et Hamburger M. J. « A heuristic program for locating warehouses »,

Management Science, vol. 9, 1963, pp. 643-666.

Meuopolis N., Rosenbluth A., Rosenbluth M., Teller A. et Teller E. << Equation for State

Calculations by Fast Computing Machines », Jorinzal of chernical pltysics, vol. 2 1,

1953, pp. 1087-1092.

Merchant A. et Sengupta B. « Multiway graph partitioning with applications to PCS

networks », IEEE lnfocom '94, vol. 2, 1994, pp. 593-600.

Merchant A. et Sengupta B. a Assignment of Cells to Switches in PCS Networks »,

IEEEYA CM Transactions on Networking, vol. 3, NO. 5, 1995, pp. 52 1-526.

O'Kelly M. E. « A quadratic integer program for the location of interacting hub

facilities >>, European Journal of Operational Research, vol. 32, 1987, pp. 393-404.

Pierre S. et Elgibaoui A. « A Tabu-Search Approach for Designing Cornputer-Network

Topologies with Unreliable Components », IEEE Transactions on Re1iabilif-y. vol. 46.

n03. Sept. 1997. pp. 350-359.

Pierre S . et Legault G. << A Genetic Algorithm for Designing Distnbuted Computer

Network Topologies », IEEE Transactions on Systems, Man, und Cybernetics-Part

B : Cybenzetics. vol. 28, No 2, April. 1998. pp. 249-258.

Pierre S. « Infemng New Design Rules by Machine Learning : A Case Study of

Topological Optimization », IEEE Transactions on Systems. Man, and Cybemetic-

Pari A : Systems and Hurnans, vol. 28, No 5, Sept. 1998, pp. 575-585.

Sanchis L. A. « Multiple-Way Network Partitioning P. ZEEE Transactions on

Contputers, vol. 38, No 1, 1989, pp. 62- 81.

Skonn - Kapov J. « Tabu search applied to the quadratic assignrnent problem >>. ORSA

Jounial on Computing, vol. 2, No. 1, 1989, pp. 3345.

Skorin-Kapov D. et Skonn-Kapov J. « On tabu search for the location of interacting hub

faci lities », European Journal of Operational Research, vol. 73, 1994. pp. 502-509.

Sohn J. et Park S. « Efficient solution procedure and reduced size formulations for p-hub

location problems », European Journal of Operational Research, vol. 108. 1998. pp.

118-126.

ANNEXE A

COMPOSITION DES SÉRIES DE TESTS

Tableau A.l Composition des séries de tests nO1, 2 et 3

1 Nombre de cellules 1 Nombre de cas 1

Tableau A.2 Composition des séries de tests n04, 5 et 6

1 Nombre de commutateurs 1 Nombre de cas 1

ANNEXE B
TEMPS MOYEN D'EX~CUTION

s s s z o 4 ? g f l
nombre de cellules

/ -sans intensification r ,

ni diversifiaction 1 t pour Inintensification 1
! i seule 1

pour la
diversification seule

j i.1 pourl'intensification 1 1 et la diversification j
1 +c- (n bcell'n bc0mm)~l .4 :
I

Figure B.1 Temps moyen d'exécution (série nO1)

, a s <30 A' Q , 4%
1
I nombre de cellules

+sans intensification ni i
diversif iaction / ;

1

-m- pour i'intensification : !
1 !

seule * i

pour la diversification I
seule ;

-pour i'intensification et la : i
diversification $ 1

Figure 8.2 Temps moyen d'exécution (série n02)

-sans intensification ni ' ! I diversifiaction
4 pour i'intensification j

seule < I
1

pour la diversification 1

seule t

1-pour I'intensification et la '
i
! diversification
/ ((nbcell*nb~ornm)~1.4)/1 ;

Figure B.3 Temps moyen d'exécution (série n03)

1500

rooo ;

nombre de commutateurs

+sans intensification ni '
diversifiaction

+pour I'intensification seule 1 ,

pour la diversification
seule l , -- pour I'intensification et la
diversification

+b+ (nb~ell'nbcomm)~l.4/1,5 .

-

Figure B.4 Temps moyen d'exécution (série n04)

2 3 4 5 6 7

nombre de commutateurs

+sans intensification ni : i
diversifiaction l ! /

+pour I'intensificatior! i
seule ! l

! i
pour la diversification i

seule I ,

Y pour l'intensification et la i 1
diversification

-II+ (nbcell'nbcomm)*l.4/1.
5 : ;

Figure B.5 Temps moyen d'exécution (série n05)

- !
+sans intensification 1

ni diversifiaction ! 1
: +

+pour I'intensification ! 1
seule j i

! 1
pour la ; 1

l i

diversification seule / 1
.y: pour l'intensification i 1

et la diversification 1 1
1 2

l

Figure B.6 Temps moyen d'exécution (série n06)

