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Résumé

Cette thése traite du probléme d'affectation des locomotives et des wagons aux
trains dans le contexte particulier du transport de passagers. Etant donné un horaire
de trains et un ensemble d'unités d'équipement disponibles, le probléme consiste a
affecter 4 chaque train prévu & I’horaire un nombre suffisant de locomotives et de
wagons compatibles, tout en respectant certaines contraintes relatives a |'opération
des trains et & l'utilisation du matériel roulant. En dépit de sa ressemblance avec le
probléme d'affectation des locomotives aux trains de marchandises, ce probléme exige
une approche différente en raison de la nature des interactions qui existent entre les

différents types d'équipement.

Afin de résoudre le probléme, nous proposons différentes approches originales
basées sur des modeles multi-flots comportant & la fois des contraintes et des
variables additionnelles. Dans ces modéles, une unité de flot représente une piéce
d'équipement ou encore un groupe de piéces utilisées sur un méme train. L’affectation
des différents types d’équipement ne peut cependant se faire de maniére individuelle
et indépendante. Les variables et contraintes additionnelles ont donc pour rédle de
traduire les multiples interactions liant les locomotives et les wagons affectés a chaque
train. Une partie importante de la thése est consacrée au développement de méthodes

de décomposition permettant de traiter efficacement ces interactions.

Nous présentons d’abord une revue compléte de la littérature reliée a l'utilisation
de 'optimisation mathématique en transport ferroviaire. Cette revue porte sur les
principaux problémes rencontrés en transport de marchandises et en transport de

passagers. Pour chaque catégorie de problémes, nous proposons une classification des
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modéles et décrivons leurs principales caractéristiques en insistant sur leur structure
et sur les méthodes de résolution utilisées. Les modéles décrits sont regroupés en deux
grandes catégories: les modeéles de routage et les modéles de fabrication d’horaires et
d’affectation d’équipement. Cette derniére catégorie inclut le probléeme d'affectation

des locomotives et des wagons aux trains de passagers.

Nous proposons ensuite trois approches pour résoudre ce probléme. La premiere
approche se fonde sur un modéle trés complet incorporant un large éventail de
possibilités et de contraintes nécessaires dans une application pratique. Ce modéle
a été développé en fonction des besoins spécifiques d'une entreprise canadienne mais
peut néanmoins étre adapté a diverses situations. En plus des contraintes d'entretien
et des possibilités de substitution entre certains types d'équipement, la formulation
comporte des pénalités pour réduire le couplage et le découplage de wagons durant les
connexions entre deux services consécutifs. Ce modéle en nombres entiers est résolu
par une méthode de séparation et d’évaluation progressive dans laquelle les relaxations
linéaires sont résolues par une décomposition de Dantzig-Wolfe. Cette approche est

au coeur d'un systéme complet maintenant en opération chez VIA Rail.

La seconde approche est basée sur un modéle plus simple mais possédant une
structure trés flexible. Ce modéle simplifié traduit les difficultés fondamentales du
probléeme découlant des combinaisons de piéces d’équipement et de leur effet sur la
vitesse d'opération, mais n'incorpore pas les éléments plus complexes tels que les
contraintes d'entretien ou les possibilités de substitution. La formulation utilisée
differe de la précédente et se préte bien 4 une approche de résolution basée sur
une décomposition au niveau des variables. Nous proposons donc une approche de
décomposition de Benders qui, grace a certaines techniques permettant d'accélérer
l'algorithme, s’avere trés efficace. L'approche est également comparée avec des

méthodes alternatives, basées sur la relaxation lagrangienne ou la décomposition de
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Dantzig-Wolfe, dont la performance est de loin inférieure en raison de la formulation

du probleme.

La derniére partie de la thése présente des extensions au modéle simplifié qui
ont pour but de le rendre mieux adapté a des applications réelles. Nous décrivons
donc une formulation étendue incorporant les contraintes d’entretien, les possibilités
de substitution ainsi que les pénalités pour le couplage et le découplage de piéeces
d'équipement. Les contraintes d'entretien sont introduites en remplagant le probleme
de flot associé a chaque type d'équipement par un probléme multi-flots. Ces ajouts
alourdissent considérablement le modéle, mais un algorithme efficace basé sur la
décomposition de Benders est obtenu en résolvant d'abord une relaxation du probléme
dans laquelle les contraintes d'entretien ne sont pas imposées. Ceci permet d’obtenir
une trés bonne approximation de la solution optimale du probléeme et de générer un
ensemble de contraintes accélérant ensuite considérablement l'algorithme. De plus,
la génération de coupes Pareto-optimales permet d'obtenir un gain de vitesse trés
appréciable sur certaines instances. Pour les plus grandes instances, les problemes
multi-flots sont résolus par une décomposition de Dantzig-Wolfe. Cette derniére
approche combine donc la décomposition de Benders et la décomposition de Dantzig-

Wolfe a I'intérieur d'une méthode de séparation et d'évaluation progressive.

En somme, les principales contributions de cette thése sont de proposer des
modeles détaillés et flexibles pour ['affectation des locomotives et des wagons aux
trains de passagers, d'adapter différentes méthodes de décomposition pour résoudre
ces modeles, et de présenter des idées permettant de les résoudre efficacement a l'aide
de la décomposition de Benders. L’utilité pratique des approches présentées est par

ailleurs confirmée par leur application & des problémes réels.
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Abstract

This dissertation addresses the problem of assigning locomotives and cars to trains
in the special context of passenger transportation. Given a train schedule and a set
of available equipment units, the problem is to provide each train with a sufficient
number of compatible locomotives and cars while satisfying supplementary constraints
pertaining to train operations and rolling stock characteristics. Despite the similarities
between this problem and that of assigning engines to freight trains, the former
requires a different approach because of the the nature of the interactions that exist

between the different types of equipment.

To solve the locomotive and car assignment problem, we propese a number of
different approaches based on multi-commodity network flow models with additional
constraints and variables. In these models, the flow represents units of equipment or
groups of units that are used together on the same train. Because the assignment of
the different types of equipment cannot be made individually and independently, the
role of the additional variables and constraints is to reflect the numerous interactions
that link the locomotives and cars assigned to each train. An important portion of the
dissertation is devoted to the development of decomposition approaches that facilitate

the efficient treatment of these interactions.

We first present a complete review of the literature concerning optimization models
in rail transportation. This survey describes the main problems that are treated in
freight and passenger transportation. For each category of problems, we propose a
classification of the proposed models and describe their important characteristics by

focusing on their structure and the solution methods proposed to solve them. The
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models are grouped in two main categories: routing models and scheduling models.
The latter category includes the locomotive and car assignment problem which is the

topic of this dissertation.

We then propose three approaches for solving this problem. The first approach is
based on a very complete model including a large array of possibilities and constraints
that are necessary in a practical application. This model was developed according
to the specific needs of a Canadian railway but can however be customized to deal
with various situations. Besides maintenance constraints and substitution possibilities
between equipment types, the formulation incorporates penalties for switching cars
during a connection between two successive train services. The integer programming
problem is solved by a branch-and-bound method in which the linear relaxations are
optimized through a Dantzig-Wolfe decomposition. This approach is the core of a

complete system that is now implemented at VIA Rail.

We next present an alternative model that is simpler but possesses a very flexible
structure. This model addresses the fundamental difficuities of the problem that
arise when combining equipment units of different types, but does not incorporate
more complex features such as maintenance constraints or substitution possibilities.
The formulation differs from the previous one and is well suited for a variable
decomposition approach. We thus propose a solution approach based on Benders
decomposition which, with the help of some refinements that yield a significant speed
improvement in the algorithm, turns out to be quite effective. The approach is also
compared with alternative methods, based on Lagrangian relaxation and Dantzig-
Wolfe decomposition, whose performance is largely inferior because of problem

formulation.

The last part of the dissertation presents extensions to the simplified model that

make it more appropriate for real-life applications. We thus describe an extended
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formulation incorporating maintenance constraints, substitution possibilities and
penalties for car switching. Maintenance constraints are introduced by replacing the
network flow problem for each type of equipment by a multi-commodity network
flow problem. These additions make the model more difficult to solve but an efficient
algorithm based on Benders decomposition is obtained by first solving a relaxation
of the model in which maintenance constraints are removed. This yields a very good
approximation of the optimal solution and allows the generation of a set of cuts
which then considerably accelerate the algorithm. In addition, the generation of
Pareto-optimal cuts produces a considerable speed improvement when solving certain
instances. To solve larger instances, the multi-commodity network flow models are
solved with a Dantzig-Wolfe decomposition. This last approach thus combines Benders

decomposition and Dantzig-Wolfe decomposition within a branch-and-bound method.

In short, the main contributions of this dissertation are to present detailed and
flexible models for the assignment of locomotives and cars to passenger trains, to adapt
several decomposition methods for solving these models, and to give valuable insight
on the efficient implementation of Benders decomposition. In addition, the practical

usefulness of these approaches is confirmed by their application to real problems.
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Introduction

Bien que peu populaire en Amérique du Nord, le transport ferroviaire de passagers
est néanmoins trés répandu a travers le monde. En Suisse, par exemple, les Chemins
de Fers Fédéraux (CFF) transportent environ 250 millions de passagers annuellement
et la distance totale parcourue chaque jour par leurs trains sur le réseau d’environ
3000 kilometres correspond & deux fois le tour de la Terre. Pour ce faire, les CFF
utilisent plus de 500 locomotives et 4500 wagons répartis en un grand nombre de
catégories. Compte tenu de la taille de la population de ce pays et de la superficie de
son territoire, le transport ferroviaire y est donc extrémement populaire. En Italie, il y
a pres de 16000 kilometres de voies ferrées employées pour le transport de passagers.
En 1995, 450 millions de passagers ont utilisé le train pour parcourir au total plus de
50 milliards de kilometres, et |'entreprise d'état italienne F'S disposait de plus de 1500
locomotives et 12000 wagons pour s’acquitter de sa tiche. En France, plus de deux
millions de passagers utilisent le transport ferroviaire chaque jour alors qu’environ
10000 trains parcourent plus d’un million de kilométres. En Inde, finalement, dix
millions d’individus utilisent le train quotidiennement et les Chemins de Fers Indiens

possédent prés de 40 000 wagons réservés au transport de passagers.

La popularité du transport par train s’explique de plusieurs manieres. D’abord,
il s’agit d’'un moyen de transport peu polluant et hautement sécuritaire. Ensuite, le
transport ferroviaire constitue un mode trés pratique puisqu'il permet de se déplacer
rapidement en échappant aux bouchons de circulation qui sont fréquents dans la
plupart des grandes villes. Lorsque la distance a parcourir est assez courte et que
la fréquence des trains est élevée, il est souvent plus rapide de prendre le train que

d’utiliser sa voiture. Finalement, le transport par train libéere le passager du devoir



de conduire et lui évite ainsi bien des ennuis, tout en lui permettant de travailler ou

de se reposer en se déplacant.

En dépit de I'importance du transport ferroviaire de passagers, on observe dans
plusieurs pays un recul marqué de ce mode par rapport au transport routier et au
transport aérien. Selon une étude récente (KOPECKY, 1998), la part de marché du
transpert ferroviaire en Europe est passée de 10% en 1970 & seulement 6% en 1997. La
principale raison expliquant ce déclin serait 'insatisfaction des clients quant au service
offert, a sa fiabilité, et & son colt trop élevé. Dans l'espoir de rendre le transport par
train plus compétitif, des efforts importants ont donc été entrepris par la plupart des

transporteurs afin d’améliorer la qualité du service et de réduire les coiits.

Le transport ferrovaire de passagers est une activité trés complexe qui cétoie le
transport ferroviaire de marchandises et partage avec lui une partie de ses ressources.
Plusieurs niveaux de planification et de contréle des opérations sont donc nécessaires
afin d’assurer le bon fonctionnement du systéme. La planification stratégique consiste
principalement en des décisions ayant des implications durant plusieurs années telles
que 'acquisition de matériel roulant et les décisions de construction ou d’abandon de
segments de voie ferrée. Le niveau tactique concerne la planification & moyen terme
qui doit étre révisée a tous les trois ou quatres mois selon I'évolution de la demande.
La préparation de 1'horaire des trains et du plan d’utilisation de I’équipement en sont
des exemples. Le niveau opérationnel touche finalement aux décisions de trés court

terme prises en considérant une information ponctuelle détaillée.

Une part trés importante des ressources consacrées a la planification par les
entreprises ferroviaires vise en fait les problémes rencontrés au niveau tactique. La
seule préparation d'un horaire coordonnant I’ensemble du service offert est une tache
ardue faisant intervenir de multiples facteurs. Cet horaire doit d’abord étre adapté

a la répartition géographique et temporelle de la demande. Il doit ensuite faciliter le



voyage des passagers en minimisant les temps de connexion pour les itinéraires les plus
courants. Il doit aussi tenir compte des horaires des trains étrangers puisque certains
clients empruntent des trains opérés par différents transporteurs au cours d'un méme
voyage. Cet horaire doit finalement respecter une série de contraintes provenant de la

configuration du réseau, de ses politiques d’utilisation, et du matériel disponible.

Une fois I’horaire préparé, il faut ensuite décider de !'affectation de 1'équipement
aux trains. Cette affectation doit non seulement satisfaire les besoins de chaque train
prévu a !'horaire mais également respecter un grand nombre de contraintes imposées
par le mode d'utilisation et les caractéristiques du matériel roulant disponible.
Evidemment, la séparation de la planification tactique en un probléme de fabrication
d’horaire et un probleme d’affectation d’équipement peut conduire & une solution
sous-optimale. Cette approche est néanmoins inévitable en raison de la trés grande

taille des problemes.

L'objet de cette theése est le développement de modéles mathématiques et de
méthodes d'optimisation pour ’affectation des locomotives et des wagons aux trains
de passagers. Nous nous intéressons plus particuliérement au probléme de planification
tactique visant a déterminer une affectation de 1'équipement disponible aux trains
prévus a 'horaire tout en respectant certaines contraintes opérationnelles. Les modeles
et les méthodes que nous proposons peuvent aussi étre utilisés au niveau stratégique
afin d’évaluer la composition optimale de l'ensemble d'équipement nécessaire pour

assurer le service décrit par un horaire représentatif.

Dans le cas du transport ferroviaire de marchandises, la formation des trains
et l'affectation des locomotives se font habituellement de facon séquentielle. En
effet, il serait impensable d’utiliser un modele ou chaque wagon serait représenté
explicitement. Ceci donnerait lieu a un modele beaucoup trop gros pour les méthodes

dont on dispose actuellement. On sépare donc le probleme de fagon a établir d’abord



un plan de transport suivi d'un plan d’affectation des locomotives. En d’autres termes,
on décide d’abord des trains que I'on va former et, une fois les caractéristiques de ces

trains connues, on décide de 'affectation des locomotives disponibles.

Le transport des passagers se distingue du transport de marchandises pour
deux principales raisons: les wagons sont beaucoup moins nombreux et le caractére
périodique de la demande fait en sorte qu'il est possible de parvenir a une meilleure
planification en traitant a la fois les locomotives et les wagons. En effet, dans la
plupart des pays, les trains de passagers fonctionnent selon un horaire révisé a
chaque trois ou quatre mois selon 1'évolution de la demande. Ainsi, le nombre et les
caractéristiques des wagons utilisés sur chaque train varient trés peu d’une semaine a
'autre & l'intérieur d’'un méme trimestre. Il est donc possible d’obtenir un plan global
d’utilisation des locomotives et des wagons qui sera répété de fagon cyclique pendant
quelques mois. De cette maniére, on peut réduire  la fois les coiits d'opérations et le

nombre d’unités d’équipement nécessaires pour assurer le service.

La principale difficulté du probléeme d’affectation des locomotives et des wagons
aux trains de passagers provient des incompatibilités et interdépendances qui existent
entre les différents types d’équipement utilisés par une entreprise donnée. En effet,
il est souvent impossible d'utiliser un certain type de wagon avec un certain type
de locomotive pour des raisons techniques ou d’homogénéité. Ainsi, méme si tous
les types d'équipement disponibles peuvent étre utilisés sur tous les trains, certaines
combinaisons peuvent étre interdites. Il existe par ailleurs une interdépendance tres
forte qui lie les types d’équipement entre eux. Cette interdépendance provient de la
vitesse d’opération du matériel qui est déterminée par la plus lente des composantes
d’un train. Or, la vitesse d’opération est une donnée trés importante. Contrairement
au transport de marchandises ol les trains fonctionnent souvent sans horaire précis ou

peuvent dévier sans trop de conséquences de I'horaire prévu, le transport de passagers



est organisé selon un horaire qui doit étre respecté de maniére précise afin d’assurer

la satisfaction des usagers.

En plus de ces difficultés fondamentales du probléme, de nombreuses contraintes
régissent l'affectation des locomotives et des wagons. D’abord, les ressources sont
généralement limitées et les planificateurs doivent tenir compte des limites sur
le nombre d’unités disponibles de chaque type. Ensuite, afin de respecter la
réglementation et d'effectuer des travaux mineurs, chaque unité doit étre inspectée a
intervalle régulier 4 'un des centres d’entretien disponibles. Dans certains cas, cette
contrainte a peu d'impact puisque 'entretien peut étre effectué a I’'une quelconque des
stations ou les trains s’arrétent a la fin d’un service. Dans d’autres situations, seules
quelques stations possédent l'équipement et le personnel nécessaires pour effectuer
les opérations d’entretien. Il faut alors s’assurer que chaque piéce d’équipement soit
régulierement acheminée vers 'une des stations appropriées. Plusieurs contraintes
proviennent également des caractéristiques spécifiques du réseau physique. Par
exemple, le découplage d'un wagon lors de l'arrét a4 une station requiert la présence
d'une voie d'évitement afin d'en permettre le garage jusqu’a ce qu'il soit couplé a un
autre train. Finalement, d’autres éléments de planification tels que les possibilités de

substitution doivent étre pris en compte et compliquent encore davantage le probleme.

Bien que le probléme d'affectation des locomotives aux trains de marchandises
partage certains traits communs avec le probléme d'affectation des locomotives et des
wagons aux trains de passagers, ce dernier posséde donc des caractéristiques qui en

font un probléme plus difficile & résoudre et qui exigent une approche différente.

Puisque le probléme d’affectation des locomotives et des wagons n'a été 'objet que
de trés peu de recherches, le premier objectif de cette thése est de proposer un cadre de
modélisation du probléme qui en capte les difficultés fondamentales tout en possédant

la flexibilité nécessaire pour l’adaptation & divers contextes pratiques. Ce cadre a



donc pour but de saisir les difficultés propres a4 la combinaison de différents types
d'équipements présentant des incompatibilités et des interdépendances. Sa structure
vise par ailleurs a permettre l'introduction de diverses contraintes et possibilités
additionnelles relatives au fonctionnement d’'un systéme de transport ferroviaire. Un
second objectif, intimement lié au premier, est d’adapter différentes méthodes de
décomposition pour résoudre les modeéles proposés et de comparer leur performance.
Plus précisément, cette comparaison vise les possibilités offertes par la relaxation
lagrangienne, la décomposition de Dantzig-Wolfe et la décomposition de Benders.
Une partie de ce travail consiste a évaluer dans quelle mesure ces méthodes peuvent
s'adapter aux variations apportées aux modeéles. Le dernier objectif de la thése est de
démontrer 1'utilité pratique des modéles et des méthodes proposés. A cet effet, des

tests sont réalisés a partir de données réelles fournies par une entreprise canadienne.

Au premier chapitre, nous présentons une revue détaillée de la littérature récente
concernant 'emploi de modéles d’optimisation en transport ferroviaire. Cette revue
déborde largement du cadre de |'affectation des locomotives et des wagons, et traite
de la plupart des probléemes de planification et de contrdle rencontrés en transport
par train de marchandises ou de passagers. Nous proposons une classification des
différents modeéles proposés dans la littérature et insistons plus particuliérement sur
la structure de ces modéles ainsi que sur les méthodes utilisées pour les résoudre.
Nous présentons d’abord les modéles de routage utilisés en transport de marchandises,
suivis des modéles de fabrication d’horaires et d’affectation qui sont utilisés a la fois en
transport de marchandises et en transport de passagers. Cette derniére catégorie inclut
les problémes d’affectation des locomotives et des wagons aux trains de marchandises

et aux trains de passagers.

Au second chapitre, nous décrivons un modele et une méthode de résolution
développés en fonction des besoins spécifiques de 1'entreprise canadienne VIA Rail.

Ce modele tient compte des trés nombreuses caractéristiques du réseau ainsi que



des politiques de fonctionnement de ’entreprise. En particulier, il incorpore des
contraintes d’entretien et des pénalités pour le couplage et le découplage de wagons
qui compliquent considérablement le modéle. Le probléme est résolu a l'aide d'une
approche de génération de colonnes dans laquelle les colonnes correspondent a des
chemins débutant a 'unique centre d’entretien, couvrant un certain nombre de trains,
et se terminant au centre d’entretien dans les délais requis. La méthode de résolution
consiste en une heuristique en deux phases qui permet d’alléger le modéle, au prix

d'une certaine détérioration de la qualité de la solution.

Le troisiéme chapitre décrit un modéle simplifié pour lequel différentes méthodes
de résolution exactes sont comparées. Puisque le modéle posséde une structure tres
appropriée pour une décomposition primale des variables, nous présentons d’abord
une approche de décomposition de Benders. Lorsque sont fixées la combinaison
d’équipement utilisée sur chaque train ainsi que les séquences de trains qui seront
couverts par le méme équipement, le probléme se décompose en des sous-problémes
de flot dans un réseau. Plusieurs concepts sont utilisés pour accélérer I'algorithme de
résolution. En particulier, I'ajout a 'initialisation de contraintes valides au probleme
maitre permet de réduire considérablement les temps de calcul et d'obtenir des
solutions optimales en quelques minutes. Nous comparons également cette approche

avec une relaxation lagrangienne et une décomposition de Dantzig-Wolfe.

Au dernier chapitre, nous décrivons finalement trois extensions importantes du
modeéle simplifié décrit au chapitre précédent. Nous considérons d’abord I'ajout des
contraintes d'entretien. Ceci se fait en remplagant les sous-problémes de flot par
des problémes multi-flots. Ces derniers sont résolus par l'algorithme du simplexe
ou par une décomposition de Dantzig-Wolfe. Nous considérons aussi l'ajout de
pénalités pour limiter les modifications apportées aux trains durant les connexions
entre deux services consécutifs. Finalement, le modele étendu incorpore également la

possibilité de substituer une piéce d'équipement a une autre. Ces deux dernieres



extensions s'ajoutent trés simplement au modeéle par !'introduction de variables
entiéres supplémentaires dans le probléme maitre. Un algorithme de résolution trés.
efficace est obtenu en résolvant d’abord la relaxation du probléme sans les contraintes
d’entretien. De plus, des coupes de Benders non dominée sont générées en résolvant
A chaque itération un probléme auxiliaire. Cette approche permet de résoudre
4 l'optimalité des problémes de grande taille avec tout l'éventail des contraintes

présentes dans une application réelle.

Remarquons finalement que le probleme d'affectation des locomotives et des
wagons aux trains appartient & la classe des problemes NP-difficiles dans le cas ol
plusieurs types de locomotives et plusieurs types de wagons sont utilisés. Il s'agit en
effet d’une généralisation du probléeme d’affectation de véhicules & des itinéraires. Or,
BERTOSSI et al. (1987) ont démontré que ce probléme est NP-difficile dans le cas ol

le nombre de types de véhicules est supérieur a 1.



Chapitre 1

A Survey of Optimization Models
for Train Routing and Scheduling

Jean-Frangois Cordeau, Paolo Toth et Daniele Vigo, Transportation Science 32, pages

380-404, 1998.

Contrairement aux domaines du transport aérien et du transport routier qui
ont été l'objet d'innombrables publications en recherche opérationnelle au cours des
derniéres décennies, le transport ferroviaire n’est parvenu a attirer l'attention des
chercheurs que plus récemment. Plusieurs raisons peuvent expliquer ce constat. Tout
d’abord, les problemes pratiques rencontrés en transport ferroviaire sont généralement
de trés grande taille. Ensuite, les politiques de fonctionnement des transporteurs
sont souvent difficiles a traduire en langage mathématique ou donnent lieu a des
modeles dont la résolution est difficile. Enfin, la seule tache de recueillir I'information
nécessaire pour alimenter les modeéles proposés requiert des systémes de traitement
de l'information dont peu d’entreprises disposaient par le passé. Heureusement, cette
situation change rapidement et on observe depuis une dizaine d’années un intérét
croissant pour l'utilisation de la recherche opérationnelle dans l'espoir d'améliorer a

la fois la rentabilité des entreprises et la qualité du service qu’elles offrent.

Cet article présente une revue de la littérature concernant 1’utilisation de méthodes

d’optimisation en transport ferroviaire. Nous décrivons d’abord briévement les



10

processus de planification et de contrdle des opérations ferroviaires. Cette description
fait ressortir les liens qui existent entre les différentes facettes de |'organisation et
permet d’introduire une taxonomie des problémes étudiés. Les modeles décrits dans
l'article sont regroupés en deux grandes catégories: les modeles de routage et les

modeles de fabrication d’horaires et d’affectation d'équipement.

Les problemes de routage concernent exclusivement le transport de marchandises.
Ils comprennent toutes les politiques de fonctionnement déterminant les étapes
successives suivies par les wagons de marchandises, du chargement initial chez le
client jusqu’'a la livraison chez le destinataire. Plus précisément, ces politiques visent
le routage de la marchandise dans le réseau, le regroupement des wagons pour la
formation des trains, et le routage des trains eux-mémes. Plusieurs modéles ont
été proposés pour chaque catégorie de problémes mais peu d’entre eux intégrent
I'ensemble des politiques. De plus, seuls de rares modeéles incorporent la dimension
temporelle du probléeme. Finalement, ces problémes sont intimement reliés au
probleme de la distribution des wagons vides. Pourtant, ce probléme est généralement
traité indépendamment en considérant comme données les différentes politiques de

fonctionnement.

Les problemes de fabrication d’horaires et d’affectation d'équipement concernent
quant a eux la dimension temporelle de la planification et du contrdle des opérations.
Parmi ceux-ci, on retrouve le probléme de I'utilisation des voies ferroviaires. Puisqu'un
grand nombre de trains doivent habituellement se partager les voies d’un réseau donné,
une coordination précise du mouvement des trains est nécessaire afin de maximiser
I'utilisation des voies et d’assurer la sécurité sur le réseau. Les problemes d’affectation
concernent par ailleurs I'utilisation du matériel roulant et, en particulier, I'affectation
des locomotives et des wagons aux trains. Ces problémes possédent une dimension
temporelle importante et leur solution fournit en fait un horaire d'utilisation de

I'équipement a l'intérieur d'une période donnée.
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La contribution de cet article est de tracer un portrait récent et complet
de l'utilisation de la recherche opérationnelle en transport ferroviaire. En plus
de proposer une classification des différents problemes ayant été étudiés dans la
littérature, il fournit une description détaillée des principaux modeéles en insistant plus
particuliérement sur leur structure et sur la méthode de résolution retenue. En somme,
larticle et les trés nombreuses références qu'il contient constituent un bon point de
départ pour quiconque s’intéresse a l’application de la recherche opérationnelle au

transport ferroviaire de marchandises ou de passagers.
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Abstract

The aim of this paper is to present a survey of recent optimization models for the
most commonly studied rail transportation problems. For each group of problems,
we propose a classification of models and describe their important characteristics by
focusing on model structure and algorithmic aspects. The review mainly concentrates
on routing and scheduling problems since they represent the most important portion
of the planning activities performed by railways. Routing models surveyed concern
the operating policies for freight transportation and railcar fleet management, whereas
scheduling models address the dispatching of trains and the assignment of locomotives
and cars. A brief discussion of analytical yard and line models is also presented. The
emphasis is on recent contributions, but several older yet important works are also

cited.
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1.1 Introduction

The rail transportation industry is very rich in terms of problems that can be modeled
and solved using mathematical optimization techniques. However, the related
literature has experienced a slow growth and, until recently, most contributions
were dealing with simplified models or small instances failing to incorporate the
characteristics of real-life applications. Previous surveys by Assap (1980b, 1981) and
HAGHANI (1987) suggest that optimization models for rail transportation were not
widely used in practice and that carriers often resorted to simulation. This situation
is somewhat surprising given the considerable potential savings and performance
improvements that may be realized through better resource utilization. It is also
contrasting with the rapid penetration of optimization methods in other fields such

as air transportation (Yu, 1998).

In fact, the development of optimization models for train routing and scheduling
was for a long time hindered by the large size and the high difficulty of the problems
studied. Important computing capabilities were needed to solve the proposed models,
and even the task of collecting and organizing the relevant data required installations
that very few railroads could afford. As a result, practical implementations of
optimization models often had a limited success, which deterred both researchers

and practitioners from pursuing the effort.

In the last decade however, a growing body of advances concerning several aspects
of rail freight and passenger transportation has appeared in the operations research
literature. The strong competition facing rail carriers, the privatization of many
national railroads, deregulation, and the ever increasing speed of computers all
motivate the use of optimization models at various levels in the organization. In

addition, recently proposed models tend to exhibit an increased level of realism
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and to incorporate a larger variety of constraints and possibilities. In turn, this
convergence of theoretical and practical standpoints results in a growing interest
for optimization techniques. Hence, although simulation-based approaches are still
widely used to evaluate and compare different scenarios, one witnesses a sustained
development of optimization methods capable of producing high-quality solutions to

complex problems within short computing times.

Problems facing rail transportation planners can be grouped into a number of
classes according to the facet of the organization that is concerned. The most common
approach is to represent the rail transportation system as a network whose nodes
represent yards or stations and whose arcs represent lines of track on which trains
carry passengers or freight. One then distinguishes between local problems involving
only a node or an arc of the network, and global problems involving multiple entities.
Rail transportation problems can also be classified into categories according to the
planning horizon considered. At the strategic level, one is mainly concerned with
the acquisition or construction of durable resources that will remain active over a
long period of time. The tactical level is related to medium and short term issues,
and generally involves the specification of operating policies that are updated every
few months. Finally, the daily tasks that are performed by taking account of the
fine detail of the system belong to the operational level. This popular hierarchical
approach is explained in greater detail by AssAD (1980a), who also gives numerous

examples of problems that pertain to each category.

In this paper, we intend to review most of the recent contributions dealing with
train routing and scheduling with regard to both freight and passenger transportation.
We will thus cover all three levels of planning but focus our attention on global
problems of train management. Because of the large size and the high degree of

heterogeneity that characterize most models, we have opted for a textual description.
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A more involved comparison of mathematical formulations would require focusing on

a much smaller subset of models.

Most reviewed models have been proposed during the last decade although we
also cite several older but important works. Apart from a few exceptions, the survey
concentrates on published and easily accessible material. We have also elected to limit
ourselves to contributions dealing specifically with rail transportation, even though a
lot of work done in the related areas of road and air cargo transportation is certainly
relevant to the rail context. Finally, the field of railway crew management will not be

treated here but we instead refer the interested reader to recent work by CAPRARA

et al. (1997).

The paper is organized as follows. Section 1.2 introduces the necessary background
and definitions concerning the reviewed material. Models for train routing and train
scheduling are reviewed in Sections 1.3 and 1.4, respectively. Conclusions and an

account of current research trends are presented in the last section.

1.2 Background and Definitions

We now give a brief description of railroads and introduce some terminology that will
be used throughout the text. A more detailed account of rail operations and freight
transportation is presented in the book by BECKMANN et al. (1956). The authors

also provide an interesting introduction to rail modeling and optimization.

The first part of the review is devoted to routing problems in the context of rail
freight transportation. Demand for freight transportation is usually expressed in

terms of tonnage of certain commodities to be moved from an origin to a destination.
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Given these demands, the railroad must establish a set of operating policies that will

govern the routing of trains and freight.

For every origin-destination pair of traffic demand, the corresponding freight may
be shipped either directly or indirectly. When demand is important enough, delivery
delays are obviously minimized by using direct trains as opposed to sending the traffic
through a sequence of links. However, when demand does not warrant the dispatching
of direct trains, delays are inevitable. Either the traffic is consolidated and routed
through intermediate nodes, or freight cars have to wait at the origin node until

sufficient tonnage has been accumulated.

To benefit from economies of scale, trains are thus often formed by grouping cars
with various commodities and having different origins and destinations. These trains
operate between particular nodes of the network, called classification yards. At these
yards, cars are separated, sorted according to their final destination, and combined
to form new outbound trains. However, because the classification process requires
considerable resources, cars are not reclassified at every yard on their trip from origin
to destination. Instead, cars with different final destinations but sharing some initial
portion of their trips are assembled into blocks. Cars in the same block may then pass
through a series of intermediate classification yards, being separated and reclassified
only after they have reached the destination of the block. The blocking policy specifies
what blocks should be built at each yard of the network and which cars should go

into each block.

In each yard, blocks are built on classification tracks where they await the
departure of an outbound train. The list of potential blocks that may go into each
outbound train is specified by the makeup policy. Also, when a train passes through
an intermediate classification yard, it may leave or pick up blocks of cars. A block

left by an inbound train is either transfered to a different train or it is broken up and
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its cars are reclassified. Hence, although the origin and destination of a block may
correspond to those of a train, a block may also switch trains several times before

reaching its final destination.

Every loaded movement on a rail network leads to a supply of empty cars at
destination. Therefore, if transportation demand is unbalanced, steps must be taken
to reposition empty cars and avoid their accumulation in some parts of the network
where more traffic is directed. Even if traffic is balanced in the long run, this need
not be the case in the short term. Repositioning empty freight cars can thus help
the railroad offer better service to its customers by reducing the average time they
have to wait for cars, and decrease the capital investment associated with equipment
ownership. The freight car management problem consists of dynamically distributing
empty cars in the network to improve the railroad's ability to promptly answer

requests for empty cars while minimizing the costs associated with their movement.

The second part of the survey discusses models that deal with the temporal
dimension of train management. Scheduling problems appear in both freight
and passenger transport, albeit in slightly different forms. In the case of freight
transportation, trains sometimes operate without schedules and simply depart when
they have accumulated sufficient tonnage. Although this practice is still very
common in North America, it is seldom seen in Europe where freight trains usually
operate according to published schedules just as they do in the case of passenger
transportation. When freight trains do not operate according to a schedule, potential

time slots must still be assigned to them.

Although train timetabling is usually performed at the tactical level of planning,
real-time operations necessitate precise synchronization of freight and passenger train
movements on the lines of the physical railway network. The lines can be made of a

single track, as is often the case in North America and in most developing countries,
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or may contain two or more tracks, as is common in Europe. To allow trains traveling
in different directions on a single-track line to meet, sidings are located at regular
intervals along the line. These short track sections allow one train to pull-over and
free the way for the other one. Sidings are also used to permit a fast train to pass
a slower one. Given a train timetable, the train dispatching problem determines a

feasible plan of meets and overtakes that satisfies a system of constraints on the

operation of trains.

Finally, a related scheduling problem concerns the use of the rolling equipment
stock. Because of the high capital expenditures associated with locomotives, a major
concern to every railway is to maximize the use of these resources. The basic
locomotive assignment problem consists of assigning a set of locomotives to cover
all scheduled trains at minimum cost while satisfying some side constraints such as
compatibility restrictions and maintenance requirements. Although freight trains
generally contain a large number of cars and several engines, passenger trains use a
small number of cars coupled with a few locomotives. In the case of passenger trains,
it is thus possible to perform the simultaneous assignment of both types of equipment

to the trains.

1.3 Routing Problems

Operating plans for rail freight transportation indicate the train connections to be
provided, the blocks to be built in each yard, and the assignment of blocks to trains.
In addition, train timetables must be developed to specify the departure and arrival
times of trains. These closely intertwined policies should ideally be determined
concurrently to identify the most efficient way of delivering all traffic while satisfying

a set of technological constraints on train and yard capacity. However, because this
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leads to a very difficult problem, a sequential approach is often adopted. For example,
a blocking plan may be developed first, followed by a train routing and makeup plan.
Very frequently, train timetables are specified last and are designed around the routing
plans. Operating plans are usually updated every few months but weekly or daily

adjustments must be made to account for demand variability.

Most optimization models for train and freight routing are defined over a network
whose nodes represent origins, destinations or intermediate transfer points for the
traffic to be routed. The arcs then represent existing or possible train connections
between these points that are often aggregated to represent the activities of a wider

geographic area.

Because yard activities constitute an important part of freight transportation
operations, we first present a brief review of analytical models developed to analyze
yard performance under different configurations or traffic conditions. Although these
are not optimization models per se, they may appear within the objective or constraint
structure of large-scale routing models. We then present network models that address
the blocking, makeup and routing problems. Models aimed specifically at the freight
car management process are described in the last section. In each section, models are

presented in ascending chronological order.

1.3.1 Analytical Yard Models

Yard policies concern the specification of the activities to be performed in the yards
of a rail network. More precisely, they indicate how trains entering each yard should
be inspected and disassembled, and how cars should be sorted and reassembled into
blocks that will form new outbound trains. Although reclassification work is also

performed to some extent in less-than-truckload and air cargo transportation, the
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delays associated with these activities are usually negligible for these modes while
they constitute a large portion of the overall transit time for rail freight. As explained
by KEATON (1989), car time in intermediate terminals occurs in classification and
assembly operations and while waiting for the departure of an outbound train, but
also as a result of yard congestion. Car time is also spent in origin and destination
terminals where cars wait either for the departure of an outbound train or for delivery

to the receiver by a local train.

Two types of classification yards are in common use. Flat yards use engines to
move cars from an inbound train to classification tracks. In hump yards, this work
is performed by gravity: cars detached from an inbound train are pushed over the
top of a hump and roll down to the appropriate track. Early work on yard modeling
was realized by CRANE et al. (1955) who presented an analysis of a particular hump
yard and discussed the queuing processes identified in inspection and classification
operations. A simple model for the location of a classification yard was then proposed

by MANSFIELD and WEIN (1958).

A more detailed analysis of railyard operations was performed by PETERSEN
(1977a,b) who developed queuing models to represent the classification of incoming
traffic and the assembly of outbound trains. In these queuing models, the basic units
of arrival are complete trains to be processed. The author also modeled the delay to
a railcar from the end of classification to the start of the train assembly operation
with a bulk queue, and observed that this delay is a minor source of yard congestion
in comparison with classification and assembly operations. The models are used to
compute the probability distribution of connection times for various levels of traffic
given known service times. In the second paper, expressions are derived to relate the
classification and assembly times to the physical characteristics of the yard and traffic

attributes. The accuracy of the models was validated using historic data from two
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railroads. An insightful description of railyards is also presented in the first of these

papers.

TURNQUIST and DASKIN (1982) modeled yard operations from the perspective of
freight cars, rather than from the perspective of trains. They thus developed queuing
models for classification and connection delays that consider individual cars as the
basic units of arrival. Their approach also differs from that of PETERSEN in the sense
that connection to an outbound train and assembly are treated as a single operation.
Expressions for the mean and variance of classification and connection delays are
derived under the assumption of Poisson arrivals using a batch-arrival and a batch-
service queuing model, respectively. The authors also demonstrated how their model
may be used to evaluate the effects of train dispatching strategies on the mean and
variance of delay. In particular, they analyzed two strategies that consist, respectively,
of scheduling trains at regular intervals, and dispatching trains when a given number

of cars become available.

A different approach to the problem of predicting yard time distributions was
studied by MARTLAND (1982) who described a methodology for estimating the total
connection time of cars passing through a classification yard. The model is based on
a function, calibrated using actual data from the railroad, that relates the probability
of making a particular train connection to the time available to make that connection
and other variables such as traffic priority and volume. The function can be adjusted
through different techniques such as regression analysis or simulation experiments.
The approach, which has been tested and implemented by several railroads, is
proposed as an aid to planning but also as a way to control operations by setting

standards for train connection performance.

Other analytical models concern the performance and resource requirements of

sorting strategies that specify what blocks should be assigned to each available
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classification track and how individual cars should be handled. Early work on
this topic was performed by SIDDIQEE (1972) who compared four sorting and train
formation schemes in a railroad hump yard. A screening technique and a dynamic
programming approach were suggested by YAGAR et al. (1983) to optimize humping

and assembly operations.

DAGANZO et al. (1983) investigated the relative performance of different multi-
stage sorting strategies. In multi-stage sorting, several blocks are assigned to each
classification track, and cars must be resorted during train formation. Equations are
derived for the service time per car of triangular sorting in both flat yards and hump
yards. In a series of three papers, different classification strategies were also analyzed
and compared by DAGANZO (1986, 1987a,b), who gave expressions for the switching
work and space requirements. In the last two papers, the author considered dynamic
blocking in which the assignment of blocks to classification tracks is allowed to vary

through time.

Finally, AVvRAMOVIC (1995) modeled the physical process of cars moving down
the hump of a yard. This process is represented by a system of differential equations
that incorporate several factors, such as hump profile and rolling resistance, affecting
the movement of a car. The model can be used in the design of a hump yard to

evaluate the strength of track retarders that regulate the speed of cars.

1.3.2 Network Routing Models

We now discuss network optimization models that address different problems related
to freight train routing. We first review models dealing with the blocking policy,

followed by models addressing the train routing and makeup problem. Compound
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models that integrate blocking, makeup, and scheduling decisions are discussed last.

The characteristics of the most important contributions are summarized in Tabie 1.1.

Table 1.1: Characteristics of network routing models

Authors Problem Planning Objective Model Solution
type horizon function structure approach
Bopin et al. (1980) Blocking Tactical Min operating  Nonlinear Heuristic
and delay costs MIP
ASSAD (1983) Blocking Operational Min total Shortest Dynamic
classification path programming
VaN DyKE (1986) Blocking Tactical Min operating  Shortest Heuristic
costs path
NeEwTON (1996) Blocking Tactical Min operating NDP with Dantzig- Wolfe
costs node budget decomposition
CRAINIC et al. (1984) Routing/ Tactical Min operating  Nonlinear Heuristic
makeup and delay costs MIP decompaosition
HAGHANI (1989) Routing/ Operational Min operating  Nonlinear Heuristic
makeup and delay costs MIP decompeosition
KEaTON (1989) Routing/ Tactical Min operating  Linear Lagrangian
makeup and time costs MIP relaxation
KEATON (1992) Routing/ Tactical Min operating  Linear Lagrangian
makeup and time costs 0-1 [P relaxation
MARTINELL! and Routing/ Tactical Min transit Nonlinear Neural
TENG (1996) makeup time 0-11[P networks
MARIN and Routing/ Tactical Min operating  Nonlinear Local search
SALMERON (1996) makeup costs IP heuristics
MORLOK and Compound Tactical Min operating  Linear Branch-and-
PETERSON (1970) and time costs MIP bound
HUNTLEY et al. (1995) Compound Tactical Min operating  Nonlinear Simuiated
costs MIP annealing
GORMAN (1998) Compound Tactical Min operating  Linear Genetic
costs 0-1 IP search

Blocking models

A blocking policy is usually specified as follows: cars at yard ¢ which are destined
for yard j must be added to a block that will next be shipped to yard k (possibly
transiting by other intermediate yards). As explained in the introduction, cars in a
block will not be reclassified until the block reaches its final destination. A blocking
model thus places the emphasis on the movement of cars as opposed to the movement
of trains. Its solution indicates the routing of freight through the network and the

distribution of classification work among yards, but does not specify the trains to be
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run or the assignment of blocks to trains. Instead, an additional problem must then

be solved to determine the routing of trains and their makeup.

One of the first models for car blocking belongs to BODIN et al (1980), who
suggested a nonlinear, mixed integer programming formulation of the problem. The
model, which is a multi-commodity flow problem with additional side constraints,
simultaneously determines the optimal blocking strategies for all the classification
yards in a railroad system. Besides flow equations that constitute the backbone of
the model, yard capacity and block formation constraints are also considered. In
particular, the model imposes upper bounds on the number of cars that may be
classified and the number of blocks that may be formed in any given yard. This last
constraint originates from the fact that each yard has a limited number of tracks on
which blocks may be built. Block length constraints are also taken into consideration
and guarantee that the number of cars in each block lies between a lower and an upper
bound. Finally, pure strategy constraints are present. These constraints ensure that
all cars in yard 7 destined for yard j are shipped to the same next classification yard.
The objective function considered seeks to minimize the sum of shipping, processing,
and delay costs. Delay costs are represented by piecewise linear functions of the
flow on arcs of the network. With some manual intervention, the authors solved an
instance with 33 classification yards and found a solution within 3% of a tight lower

bound.

AssAD (1983) proposed a solution approach for a problem defined on a line
network composed of n yards, with traffic flowing from yard 1 to yard n. Cars
are received at yard 1 in arbitrary order and must be separated as they proceed along
the line to allow each successive yard to extract the traffic destined for it. Various
classification strategies can be used to distribute the classification work among the
yards. For the special case in which all yards have equal traffic, the author showed

that the search for a solution minimizing the total work can be restricted to strategies
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in which traffic for yard 7 is separated only after previous traffic types 1,...,i =1
are already classified. When this assumption does not hold, a dynamic programming
formulation of the problem leads to an efficient solution method. The author also
discussed extensions to the case in which each yard is a potential source of traffic. It

is shown that a dynamic programming formulation can still be used for this problem.

VAN DYKE (1986, 1988) described a heuristic blocking approach that has been
tested or implemented by several large railroads. The system is based on an iterative
procedure that attempts to improve an existing blocking plan by solving a series of
shortest-path problems on a network whose arcs represent available blocks. Traffic is
assigned to a particular block if the block is on the least cost path from the origin
of the traffic to its destination. The cost of assigning traffic to a block depends on a
number of factors such as block priority, traffic priority, physical rail lines traversed,
and the characteristics of the origin and destination yards of the block. The solution
to these problems determines the least cost distribution of traffic across a set of
existing blocks. An interactive procedure allows the user to delete existing blocks or
introduce additional blocks in the solution. Block capacity constraints are also taken

into account by the heuristic.

Recently, a column generation algorithm was introduced by NEwTON (1996), who
studied the more general network design problem (NDP) with budget constraints.
This problem consists of minimizing the cost of flowing a set of commuodities through
a network while satisfying budget constraints on the fixed cost of the arcs used. The
railroad blocking problem is transformed into this general framework by letting the
nodes represent the classification yards and the arcs represent potential blocks that
can be built. The fixed cost of offering direct service between two yards involves
dedicating a sorting track at the origin yard. Hence, there is a separate node-
budget constraint for each yard based on the number of sorting tracks available.

Flow constraints are also used to restrict the total number of cars that may be
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sorted in each yard. The objective function minimizes the cost of delivering all
commodities. Express and non-express traffics are treated simultaneously using
priority constraints that limit the number of blocks used in delivering each commodity.
The problem is solved using a branch-and-bound procedure with bounds computed at
each node using Dantzig-Wolfe decomposition (DANTZIG and WOLFE, 1960). Using
a labeling algorithm on an acyclic network, blocking paths with a negative reduced
cost are generated for each commodity by solving a shortest path problem with a
priority constraint. A rounding heuristic is also used to obtain good upper bounds.
Disaggregating the bundle constraints that impose common upper bounds on the arcs
of the network gives valid inequalities that strengthen the LP relaxation of the master
problem. Branching is performed on the binary variables indicating whether an arc
is chosen or not. Computational results were presented for instances with 150 nodes,
6000 potential arcs and 1300 commodities. Feasible solutions within a few percent of

a known lower bound were found within a few hours on a workstation computer.

Routing and makeup models

Whereas blocking models indicate the routing of freight and the distribution of
classification work among the yards of the network, routing and makeup models
determine the routing and frequency of trains and the assignment of blocks to
trains. In routing and makeup models, the blocking policy may be either determined
endogenously or given as an input. These models thus produce a complete train and
freight routing plan. However, because they do not provide actual departure times
for the trains to be run, an additional scheduling problem must be solved at a later
stage. Similar models for the service network design problem in the motor carrier

industry were developed, for example, by POWELL and SHEFFI (1989).
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Train formation plans are sometimes developed without regard to the concept
of car blocking. For example, THOMET (1971) developed a cancelation procedure
that gradually replaces direct shipments by a series of intermediate train connections
to minimize operation and delay costs. A model for deciding which pairs of yards
should be offered direct service to minimize total transit time of cars was also proposed
by Suzuki (1973), whereas LEBLANC (1976) suggested a network design model for
strategic planning. One of the first efforts to integrate multiple components of
the freight routing problem is credited to AssaD (1980a) who proposed a multi-
commodity network flow model for train routing and makeup that incorporates some

level of interaction between routing and yard activities.

A more complex problem was studied by CRAINIC et al. (1984) who proposed a
model and a heuristic for tactical planning. The model is a nonlinear, mixed integer,
multi-commodity flow problem that deals with the interactions between blocking,
makeup, and train and traffic routing decisions. Traffic demand is divided into
classes in which each class corresponds to an origin-destination pair, together with a
commodity type. The model is based on a service network that specifies the feasible
routes on which train services may be run. A set of feasible itineraries is defined
for each traffic class. An itinerary specifies the train service path followed and the
operations that must be performed at each intermediate stop. By selecting the best
traffic distribution for each traffic class, one solves the freight routing problem as well
as the blocking and makeup problems. The frequency variables associated with the
possible train services provide a solution to the train routing problem. The objective
function seeks to minimize the sum of operation and delay costs associated with
itineraries and train services. By introducing the train service capacity constraints
in the objective function, the authors obtain a modified problem for which they use
a decomposition scheme that iterates between two problems until the improvement

in the objective function after a complete iteration is less than a preset value. The
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subproblem determines the best traffic distribution for each traffic class for a given
service level, whereas the master problem modifies the service frequencies to improve
the solution value considering the given traffic distribution. The subproblem for each
traffic class is solved using column generation and a descent algorithm. This solution
methodology was explained in greater detail by CRAINIC and ROUSSEAU (1986), who
presented a general framework for the design of the service network and the routing
of traffic in the context of multi-commodity, multi-mode freight transportation. The
model and algorithm were tested on data from the Canadian National Railroads. The
instance contained 2613 aggregated traffic classes and a service network with 415 links.
Computational results indicated a significant cost reduction over the solution used
by the railroad. A comparison with the simulation method used by the company was
done by CRAINIC (1984). Readers interested in strategic planning are also referred

to the work of CRAINIC et al. (1990a).

As was properly highlighted by HAGHANI (1987), there exist intense interactions
among the routing of trains, their makeup, their frequency, and the empty car
distribution process. However, models that take all these aspects of rail transportation
into consideration often get extremely complex if not simply intractable. The
traditional approach has thus been to deal separately with the train routing and
makeup problem and the empty car distribution problem. This obviously leads to
suboptimal decisions, at both the tactical and operational levels. In an effort to
counter the tendency of treating the empty car distribution problem at the operational
level by assuming that routing and makeup decisions are given, HAGHANI (1989)
proposed a formulation and a solution method for a combined train routing and
makeup, and empty car distribution problem. The model is also dynamic and deals
with temporal demand variability, providing empty car distribution decisions as well
as the optimal time interval between consecutive train services between pairs of yards.

To account for demand variations from period to period, each yard is replicated a
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certain number of times in a time-space network, depending on the period length
and the horizon considered. This network has nodes representing inbound and
outbound traffic for every yard in the physical network, and links representing routing,
classification, delays, and deliveries. The decision variables used concern the flows
of loaded cars, empty cars, and engines provided on the different links mentioned.
The objective considered is to minimize the total cost defined by routing costs,
classification costs, delay costs for classification and connection, and penalty costs.
Penalties are imposed for carrying over the demand for empty cars and as a way to
deal with boundary conditions on the shipments. Besides traditional flow conservation
constraints on the loaded cars, empty cars, and engines, linking constraints ensure
that the number of engines provided on each link is compatible with car routing
decisions. This mixed integer model has a nonlinear objective function and linear
constraints. It is solved with a heuristic decomposition approach that exploits the
structure of the problem by solving an integer programming subproblem for the engine
flow variables and a linear programming subproblem for the car flow variables. The
algorithm was tested on a network with four nodes and five two-way links. On average,
the solutions found by the heuristic were within 10% of the lower bound provided by

the LP relaxation of the problem.

KEATON (1989) proposed a model and a heuristic method based on Lagrangian
relaxation for the combined problem of car blocking and train routing and makeup.
The model is based on a set of service networks that specify the possible train
connections and blocking alternatives for each origin-destination pair. Upper limits
are imposed on the number of blocks that can be formed at any terminal and on
the number of cars assigned to any train. The objective function considers train
costs, car time costs, and classification costs. The mixed integer programming model
uses integer variables for train connections and continuous variables for car flows.

By dualizing the constraints that link train variables and car flow variables into the
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objective function, one obtains a series of shortest path problems in the continuous
variables and knapsack problems in the train variables. When ignoring train size
constraints, the model can be solved efficiently with sub-gradient optimization and
special update rules for the multipliers. Feasible solutions are improved by using
a dual adjustment procedure and a greedy heuristic. A hypothetical rail network
was used to generate an instance with 26 terminals and 333 origin-destination pairs.
On average, solutions with duality gaps below 10% were obtained. However, when
limits on train size are imposed, it becomes very hard to obtain tight lower bounds
on the solution values. This model was used by KEATON (1991) to evaluate service-
cost tradeoffs for carload freight traffic in the U.S. rail industry. He applied his
formulation and solution method to hypothetical rail networks with variable train
costs and concluded that the potential for reducing transit times by increasing train

connections and frequency was rather limited.

In a subsequent paper by KEATON (1992), pure strategy constraints for blocking
and maximum transit times for each origin-destination pair are also considered. The
resulting formulation has only binary variables and results in a multi-commodity
network flow problem once the train variables are set. By dualizing the linking
constraints between train and car flow variables, and constraints that place limits
on train size and maximum transit time, the formulation decomposes into two
easily solvable subproblems. In fact, a further relaxation is obtained by discarding
all constraints on train size, yard volumes, and service levels, and dualizing the
linking constraints between train and car flow variables. This relaxation can be
solved efficiently using a dual adjustment procedure, and tight lower bounds can be
generated. By iteratively solving this relaxation and adjusting the car or train costs in
each iteration, a feasible solution to the original problem is finally obtained. However,
this approach, called iterative strategy, does not yield explicit lower bounds on the

cost of the original problem, and thus the quality of the solution obtained cannot be
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evaluated precisely. Computational experiments were performed on a set of three rail

systems containing about 80 terminals and 1300 to 1500 origin-destination pairs.

Neural networks were used by MARTINELLI and TENG (1996) to solve a train
formation problem. For a given distribution of demand, expressed as the number of
cars to be moved between each origin-destination pair, the problem is to assign each
class of demand to a unique itinerary chosen from a predefined subset. An itinerary
specifies a succession of intermediate yards together with the train sequence used. The
problem is formulated as a 0-1 integer program with a nonlinear objective function
that minimizes the total time spent by cars in the system. A back-propagation neural
network model trained with two groups of patterns was used to solve small instances
of the problem. Good performance was obtained, as measured by the quality of the
solutions, but the computation times were rather long. The data used contained 30

demand classes, 44 trains, and 108 combinations of demand-train assignments.

In a series of two papers, MARIN and SALMERON (1996a,b) proposed and analyzed
the expected performance of local search heuristics for the tactical planning of rail
freight networks. Again, the model is based on a service network and considers
demands given in terms of origin and destination yards and freight type. Each train
service is defined by an origin yard, a set of intermediate yards, a destination yard, and
technical characteristics such as speed and capacity. The objective is to minimize car
costs, train costs, and investment costs incurred when not enough trains are available.
This last term, which uses a crude approximation of the required fleet size, makes
the objective function piecewise linear. Because each train service specifies the set of
intermediate stations, restrictions on the number of cars transiting in any yard can be
imposed. Constraints are also imposed on the number of cars assigned to each service
given the chosen service frequency. The three heuristic methods proposed (descent
method, simulated annealing, and tabu search) share a common decomposition that

separates the routing of the freight cars and the choice of train service frequencies. The
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first subproblem, which is solved through a sequential loading algorithm, determines
the best routes for a given choice of train frequencies. The second subproblem, which
may be solved by inspection, readjusts the train frequencies for the given car routing.
In each iteration of the various heuristics, train frequencies are updated according to a
move that is chosen from the neighborhood of the current solution, and the car routing
subproblem is solved. A reformulation of the problem as a linear program leads
to an exact branch-and-bound algorithm that can be used for comparison purposes
with the heuristics. Computational tests on four generated networks showed that
simulated annealing obtained the best solutions but required more time than the other
heuristics. This conclusion was also confirmed by the statistical analysis conducted
in the second paper. The largest instance solved contained 82 train services and 150

demand classes.

Compound routing and scheduling models

Routing and makeup models produce a transportation plan that completely describes
the routing of freight, the set of trains to be operated and their respective frequency.
But because these models do not take scheduling into consideration, it may be difficult
to later find a timetable accommodating all planned trains and satisfying line and
yard capacity. Hence, compound models, which address both the routing and the
scheduling aspects of freight transportation, can significantly help to improve service
reliability and reduce costs. The recent work of FARVOLDEN and POWELL (1994)
described a similar approach for the motor carrier industry. Also, railroad revenue
management models based on profit maximizing and load selection formulations were

introduced by CAMPBELL (1996) and KRAFT (1998).

One of the first efforts to integrate both routing and scheduling decisions into a

single optimization model is probably the work of MORLOK and PETERSON (1970).
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Given a network representing the possible train connections, a binary variable is
associated with each train service that may be operated. Each such service is defined
by a route in the network, a set of stops, a departure time at the initial node, and
additional attributes such as speed and capacity. A second set of binary variables is
used to represent the assignment of demand to trains. Additional variables are also
introduced to keep track of car time in the network. The costs considered include
train and engine crew costs, intermediate yard costs, and car time costs. Besides
traditional demand constraints, the model incorporates constraints on the maximum
number of cars per train as well as scheduling constraints requiring that certain cars
be delivered to given yards before a cut-off time. The model was applied to a very

small instance and solved with a branch-and-bound procedure.

A computerized routing and scheduling system was developed by HUNTLEY et al.
(1995) to help planners at CSX Transportation account for the effects of routing
and scheduling decisions in strategic planning. Demand is represented as batches
that have associated origin and destination yards. Each pair of switching yards in
the network defines a link that may accommodate a certain number of trains. The
output of the model is the sequence of train links that each batch should follow
from origin to destination, as well as the departure times for all train links. The
nonlinear objective function minimizes operational costs defined by fuel cost, crew
cost, locomotive capital cost, and freight car rental cost. The problem is solved using
simulated annealing and a perturbation operator that inserts or deletes a stop from
the route of a batch, and adjusts the departure times of the trains. The system was
tested on a real problem involving 166 batches and 41 yards. Related field testing
showed that the system was useful in analyzing a variety of scenarios, and produced
schedules having similar properties to those of the solutions in use by the company,

but a smaller cost.
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A combination of genetic and tabu search algorithms were used by GORMAN
(1998) to address the weekly routing and scheduling problem. To solve the problem
for actual train departure times, the time horizon is discretized in hours. Each train
may also operate at different speeds and perform a variable sequence of stops on its
way from origin to destination. The mathematical formulation has binary variables
associated with each potential train service that may be operated during the week.
Each possible assignment of demand to a train is also represented by a binary variable.
Constraints are imposed on train size to ensure that trains operate on schedule.
There are also linking constraints to enforce yard and line capacity. The objective
function minimizes the sum of fixed costs of trains and marginal cost per car. The
model decomposes into train-scheduling and traffic-assignment components. To solve
the problem, the author suggested a classical genetic search procedure in which the
population is formed by all possible train schedules. Every time an individual is
generated, its cost is evaluated by solving the traffic-assignment problem. Mutations
are obtained by either adding or deleting a train, or by shifting a train to an earlier
or a later time in the schedule. To improve the performance of the genetic algorithm,
each solution is cloned and modified with a tabu search algorithm, thus simulating
the use of knowledge-based mutation operators. Computational experiments on data
from a major U.S. freight railroad produced solutions that satisfied more constraints

and had a smaller cost than the solution actually used by the railroad.

1.3.3 Freight Car Management Models

The utilization cycle of a freight car starts when a client issues an order for empty cars.
At a nearby yard, compatible cars are selected and moved to a loading point. Once
loaded, they are taken to a classification yard where they are sorted, assembled into

blocks, and put onto outbound trains. When a car has reached its final destination,
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it is unloaded and, unless it is needed by the receiver, it is returned to the railroad.
At this point, the car is available for a new shipment and the cycle may repeat. Very
often, however, it will travel empty to a different location where a request must be
fulfilled. Because demand for transportation is rarely known long in advance, the
railroad must anticipate future requests and manage its fleet accordingly. A good
repositioning strategy helps to reduce the size of the fleet and to decrease the delays

in delivering empty cars to customers.

Models for fleet management and distribution of empty vehicles were reviewed
by DEJAX and CRAINIC (1987). The management of empty railcars shares several
characteristics with the distribution of empty containers used in land, maritime, or
multimode transportation. Dynamic and stochastic models for the land distribution
of empty containers were developed by CRAINIC et al. (1990b, 1993). Also, recent
work on operations planning in intermodal transportation was performed by NOzZICK
and MORLOK (1997). Finally, the related problem of dynamic vehicle allocation
was initially studied by POWELL (1986, 1987) and later developments have been

summarized by POWELL et al. (1995).

We now review optimization models for the distribution of empty rail cars. We
first discuss models used in the case of a single railroad, followed by models for
the case of multiple railroads sharing a fleet of cars under a pooling agreement. The

characteristics of the most recent models in each category are summarized in Table 1.2.

Single railroad models

In the first attempts to optimize the distribution of empty freight cars, the process
was often represented as a simple network flow problem for which efficient algorithms

were available. WHITE and BOMBERAULT (1969) generated a network from a time-
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Table 1.2: Characteristics of freight car management models

Authors Probiem Planning Objective Modei Solution
type horizon function structure approach

BEAUION and Single Tactical Max expected Nonlinear Frank-Wolfe

TURNQUIST (1991) railroad profits network

MoRin (1993) Single Operational Min operating Multi- Decompaosition
railroad costs commodity

SPIECKERMANN and  Single Operational Min transport Job-shap Greedy

Voss (1995) railroad costs scheduling  heuristic

HOLMBERC et al. Single QOperational Min transport and  Multi- Branch-and-

(1996) railroad shortage costs commodity bound

ADAMIDOU et al. Multiple  Tactical Max profits Nash Gauss-Seidel

(1993) railroads equilibrium

SHERALI and Multiple Strategic Min fleet size Network Heuristic

TUNCBILEK (1997) railroads decompaosition

space diagram and solved the resulting transshipment problem with a modified out-
of-kilter algorithm (FORD and FULKERSON, 1962). Also, static formulations solvable
as transportation problems were proposed by ALLMAN (1972) and MISRA (1972).
HERREN (1973, 1977) formulated a more complex problem, with a heterogeneous
fleet of cars and substitution possibilities, as a minimum cost network flow model

that could be solved with a specialized algorithm.

A different approach to freight car management consists of representing the system
with an inventory model. One of the first efforts in this direction is the work of Avi-
ITZHAK et al. (1967) who suggested mathematical models for describing the behavior
of car pool systems. PHILIP and SUussMAN (1977) proposed a discrete event simulation
model to determine the optimum inventory level for a single terminal. The inventory
management approach was later extended to an entire network by MENDIRATTA and
TURNQUIST (1982) who developed a linear programming formulation solvable by a

decomposition algorithm.

One of the first contributions dealing with the stochastic nature of the problem
is from JORDAN and TURNQUIST (1983), who presented a dynamic network

optimization model, based on earlier work by COOPER and LEBLANC (1977), that
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takes into account variability in empty car demand and supply, as well as uncertainty
in travel times. A methodology based on a combination of linear programming and
simulation techniques was proposed by RATCLIFFE et al. (1984) to optimize freight
car dispatching given known and anticipated demands. Also, a real-life application
of linear programming techniques to the daily distribution problem was presented by

Markowicz and TURNQUIST (1990).

A combined model for fleet sizing and vehicle distribution and use was described
by BEAUJON and TURNQUIST (1991). Their approach takes into account the dynamic
nature of these decisions as well as the uncertainty in demand and transit times. They
first proposed an exact formulation which can be viewed as a stochastic programming
problem or as a stochastic control problem. Because this formulation appears
computationally unattractive, a solution method was developed for an approximate
reformulation of the problem. The reformulation replaces random variables associated
with transportation demand and travel times by their expected value to obtain a
network optimization model. The objective function maximizes the expected profit
which is defined by the difference between revenues generated by serving demands
and costs incurred for vehicle ownership, vehicle movement, and unmet demand. To
appropriately model the cost structure of the problem, the concept of net vehicle pool
is introduced. At each terminal, this quantity represents both the expected vehicle
pool and the expected vehicle shortage. Nonlinear costs on the arcs are then used
to account for vehicle holding and unmet demand. Because the random travel times
are replaced by their expectation, the network approximation introduces an error in
representing vehicle arrivals. The solution procedure presented tries to circumvent
this weakness by solving a pure network formulation to determine empty vehicle
dispatching decisions, and adjusting the size of the net vehicle pools to account for this
approximation error by solving a series of unconstrained optimization problems. The

nonlinear objective includes functions of the basic decision variables that are neither



39

convex nor concave because of variance terms. Hence, the network flow problems are
solved using a procedure that iteratively fixes the variance terms, solves the resulting
concave problems using the Frank-Wolfe algorithm (FRANK and WOLFE, 1956) and
updates the variance terms. Numerical experiments performed on instances with up
to 70 nodes and 1330 arcs showed that significant improvements are obtained by

considering the stochastic nature of the problem.

Decomposition approaches were compared by MORIN (1993) who studied the
empty car distribution process at SNCF and formulated the problem as a multi-
commodity network flow problem. Each commodity corresponds to a geographical
area, and linking constraints ensure flow conservation between adjacent areas. Two
formulations that can be solved with sub-gradient algorithms were introduced: a
dual decomposition approach that relaxes the linking constraints and a primal
decomposition scheme that relies on the introduction of coupling variables. The
application of a mixed decomposition approach (MAHEY, 1986) that combines price-
directive and resource-directive allocations was also presented with a specialized
algorithm that exploits the separability of the problem. Results on a set of data

from SNCF indicated that the third method was superior.

SPIECKERMANN and Voss (1995) formulated the empty railcar distribution
problem as a scheduling problem with machines representing railcars and jobs
representing requests for cars. The study is realized in the context of a German car
rental company that provides empty cars to its customers throughout Europe. All
movements are performed by national railways to which the company must pay fees
for movements of either loaded or empty cars. The objective of minimizing costs for
empty moves translates into minimizing the time-dependent setup costs. The model
is solved using a three-stage procedure that is embedded into a greedy heuristic. The
first stage finds a feasible solution using the earliest-due-date (EDD) rule. The second

stage then tries to improve this solution with respect to an objective of minimizing
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the total tardiness in filling the orders. An improvement procedure that tries to
reduce the transport costs without increasing tardiness is used last. The algorithm
was tested on real data from the company and on randomly generated instances. The
largest instance contained 805 requests, 225 railcars, and 205 stations. The system

yields a significant cost reduction but computing times exceed several hours in some

experiments.

HOLMBERG et al. (1998) proposed a multi-commodity network flow model for
operational distribution of empty cars. Each commodity corresponds to a type of car,
and linking constraints impose limits on the total number of empty cars that may
be part of each scheduled train. Train movements are represented on a time-space
network. The objective of the model is to minimize transportation and car shortage
costs. The value of having a car in inventory at a given terminal after the planning
period is also taken into account. A multi-period planning horizon is considered and
the operational model is solved using a sliding horizon framework in which decisions
associated with the initial segment of the period are implemented whereas the others
are reviewed by solving the model over the next segment. The model may also be
used at the strategic level to evaluate the consequences of variations in the fleet
size. A Lagrangian heuristic method was compared with a simple branch-and-bound
procedure. Results obtained on real-life and randomly generated instances led to the
conclusion that the model is very tractable. The largest instance solved contained 100
terminals and 20 car types. Substitution possibilities are also treated by extending
the basic formulation but no specific results are given for this extension. More details
on this approach are given by JOBORN (1995) who also presented an analysis of empty
freight car distribution at Swedish State Railways. An approach to determine train
frequencies to minimize total costs for running trains and distributing empty cars was

also introduced in a related paper by FLISBERG et al. (1996).
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Multiple railroad models

A traditional repositioning strategy for freight cars consists of returning each unloaded
car to its original loading point. This is a very simple and convenient approach given
that a significant portion of freight shipments are made from the territory of one
railroad to that of another. In the hope of reducing costs associated with empty
movements, the concept of car pooling has gradually been introduced. Under a
pooling agreement, railroads and shippers agree that cars unloaded at destination

can be sent to any of a set of loading points.

A transshipment model to determine daily repositioning decisions that minimize
network-wide costs was proposed by KIKUCHI (1985). GLICKMAN and SHERALI
(1985) described two optimization approaches for the distribution of pooled cars that
focus, respectively, on the benefits to the system as a whole and on the benefits to

the individual railroads.

More recently, ADAMIDOU et al. (1993) argued that the problem of finding a
global profit-maximizing distribution strategy for railroads sharing a fleet of cars is
best represented as a generalized Nash equilibrium model. Their model includes
coupling variables that link the individual multi-commodity flow subproblems of the
railroads and is solved through a Gauss-Seidel algorithm that iterates between these
subproblems. When solving the subproblem for a particular railroad, the coupling
variables are fixed using the optimal flows obtained when last solving the subproblems
for all other railroads. The approach was tested on a large-scale, three-railroad
instance generated from actual data, and appeared to be fast and robust. Different

solution strategies were compared as well as various demand conditions.

The pooling of railcars used for the transportation of automobiles was studied

by SHERALI and TUNCBILEK (1997) who proposed static and dynamic models for
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the fleet sizing problem. The static model tends to underestimate the real fleet size
required because it is based on time-independent data. The dynamic model is based
on a time-space network that represents the movement of empty cars between origins
and destinations over the given planning horizon, with an objective of minimizing the
fleet size required to satisfy all demands at different points in time. The problem is
solved by decomposing the model into a series of smaller subproblems with a shorter,
overlapping, temporal horizon. Once a subproblem is solved, the decisions for the
initial part of the considered horizon are fixed, and the next subproblem is solved
with the augmented flows. Test data instances generated randomly with realistic
assumptions were used to evaluate the performance of the algorithm. The models

have also been used successfully by the Association of American Railroads.

1.4 Scheduling Problems

While the models of Section 1.3 are mainly concerned with the efficient routing of
trains and freight, scheduling models address the temporal dimension of railroad
operations. Because the physical rail network is shared by a large number of trains,
it is indeed necessary to synchronize their use of the available resources. Also, the
scheduling of freight and passenger train movements has an important impact on
the quality and level of service provided. Finally, the scheduling of transportation
activities is highly dependent upon the availability of rail equipment, such as the

locomotives and passenger cars, that are needed to operate trains.

Compound models reviewed in Section 1.3.2 are an attempt at integrating the
routing and scheduling aspects of rail freight transportation. However, these two
closely intertwined problems are most often treated separately: operating plans are

developed first, followed by train schedules that specify tentative departure and arrival



43

times for the planned trains. The actual dispatching of trains is then performed by
taking line capacity and other operational factors into account. This dispatching
must often be performed simultaneously with the dispatching of passenger trains

that operate in strict accordance with a timetable.

Most early models for train scheduling considered a set of stations connected by
a single line. For example, the problem of developing timetables for passenger trains
on a line of stations was studied by NEMHAUSER (1969) and SALZBORN (1969). The
minimization of the number of railcars needed in a system of radial lines converging to
a central station was also studied by SALZBORN (1970). Finally, an eflicient approach
for allocating demand to regular and express trains when delivering freight on a line

network was suggested by AssAD (1982).

More recently, the problem of finding a periodic train timetable that minimizes
total passenger waiting time in stations of a network has received a lot of attention
in the literature. Optimization models for that purpose were proposed by CEDER
(1991), NACHTIGALL (1996), NACHTIGALL and VOGET (1996) and ODlIK (1996).
The strategic problem of choosing a set of operating lines and their frequencies to
serve demand and maximize the number of travelers on direct connections was studied
by BUSSIECK et al. (1996). Also, ZWANEVELD et al. (1996) and KROON et al. (1997)
have proposed models and algorithms for the related problem of routing trains through
railway stations. These contributions were reviewed in detail by BUSSIECK et al.
(1997), who discussed models for several discrete optimization problems in public
rail transport. On a similar topic, NACHTIGALL (1995) discussed a problem that
appears in passenger information systems and consists of computing shortest paths
in a network with arc lengths that vary through time. Finally, NACHTIGALL and
VOGET (1997) discussed a model for choosing the track segments to be upgraded to

reduce train running times and thus minimize total passenger waiting time.
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The following section contains a brief review of analytical models developed
to measure the performance of a line relative to the traffic it accommodates, its
configuration, operating policies, or other factors. Optimization models for train

dispatching are then discussed, followed by models for locomotive assignment.

1.4.1 Analytical Line Models

Several models were proposed to estimate the delay to each train caused by
interference on a rail line as a function of dispatching policies, traffic distribution
and physical track topology. Early results were given by FRANK (1966) for the case
of a single-track line with two-way traffic but a single train speed and equally-spaced
sidings. A more elaborate model was then developed by PETERSEN (1974) for trains of
different speeds in each direction and sidings that allow for both meets and overtakes.
His model assumes uniform and independent distributions of trains in each speed
class over the considered horizon. The mean running times for trains in each class are
obtained by solving a set of linear equations. Expressions for the expected meet and
overtake interference delays on a partially double-tracked line were also developed by
PETERSEN (1975). Necessary and sufficient conditions to guarantee that line blocking
does not occur were given by PETERSEN and TAYLOR (1983). Queuing models to
determine the expected dispatching delays on a single-track line with low-speed traffic
and widely-spaced sidings were also described by GREENBERG et al. (1988). Finally,
KRAFT (1988) extended PETERSEN’s approach to take multiple train interactions

into account and compared the results with myopic and optimized train dispatching.

CHEN and HARKER (1990) studied a more realistic problem in which trains have
scheduled departure and arrival times instead of being randomly distributed over the

planning horizon. The mean and variance of travel time are estimated by solving
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a system of nonlinear equations that also take into account uncertainties regarding
actual departures. The extension of this framework to a partially double-tracked line

was later presented by HARKER and HoNG (1990).

Recently, HALLOWELL and HARKER (1996) described a model used to predict on-
time arrival performance of trains on a partially double-tracked line with scheduled
traffic. This model is an interesting alternative to simulation methods for estimating
the lateness of delayed trains and can be used in tactical train scheduling or in train
dispatching applications. In particular, it can be calibrated to generate target arrival

times that can be achieved under an optimal planning of meets and overtakes.

The problem of track time use can also be seen from a game-theoretic standpoint.
For example, HARKER and HONG (1994) presented an equilibrium model of an
internal market for track time allocation. The generalized Nash equilibrium of the

resulting model can be obtained by solving a quasi-variational inequality problem.

Most line delay models assume a fixed track configuration. However, PETERSEN
and TAYLOR (1987) presented a method for finding the optimal location and length of
sidings for a single-track line with high-speed passenger trains. The solution is derived
under the hypothesis of ideal train performance, but an analysis of robustness to small
and large delays is also presented. Simulation experiments were performed using a
methodology, introduced by PETERSEN and TAYLOR (1982), which is a framework

for modeling train movements over single-track and multiple-track lines.

Finally, OZEKICI and SENGOR (1994) analyzed the problem of train dispatching
with the emphasis on suburban passenger rail transport systems. They considered
a train station in which passenger arrivals, although random, are related to train

departures through the published timetable (OzEKICI, 1987). The model is used for



46

evaluating the performance, as measured by the service delay and the average waiting

time of passengers, of different train dispatching strategies.

1.4.2 Train Dispatching Models

The train dispatching problem has received increased attention lately as several
railroads are now developing and implementing advanced train control systems that
provide real-time information on train position and velocity, as well as decisions
to assist operations. These systems should help to reduce energy consumption
and increase railroad lines capacity and service reliability with improved train
dispatching. An introduction to computerized train dispatching was written by
PETERSEN et al. (1986). SMITH (1990) exposed the general guidelines that should
be followed in designing a module for meet/pass planning. JovANOVIC and HARKER
(1990} also presented some analysis on the proper elaboration of computer-aided
train dispatching systems. Then, HARKER (1989, 1995) reviewed some models and
algorithms developed for such systems, and discussed the importance of advanced
train control in the context of the current restructuring of technology and management

practices that is taking place in the railroad industry.

Although most optimization models for train dispatching have appeared in the last
decade, other enumerative approaches have also been in use. In particular, SZPIGEL
(1973) described a method for train dispatching on a single-track line with meets and
overtakes. SAUDER and WESTERMAN (1983) proposed a decision support system for
train dispatching that implicitly enumerates all feasible meet locations and selects
the one minimizing delays. KRAFT (1987) presented a branch-and-bound approach

for resolving train conflicts to minimize a weighted sum of delays.
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Computerized tools have also been developed to assist planners in constructing
feasible dispatch plans. Such systems were described, for example, by RIVIER and

TZIEROPOULOS (1984, 1987) and CHURCHOD and EMERY (1987).

We now discuss the recent optimization models for train dispatching. We first
review models that assume all trains are operating at their maximum velocity, followed
by models for the case in which velocity is variable. A summary of these models is

presented in Table 1.3.

Table 1.3: Characteristics of train dispatching models

Authors Problem Planning Objective Model Solution
type horizon function structure method
Jovanovic and Fixed Tactical Max reliability MIP Branch-
HARKER (1991) velocity and-bound
CAREY and Fixed Operational Min schedule Linear Heuristic
Lockwoop (1995) velocity deviation MIP decomposition
CAREY (1994) Fixed Operational Min schedule Linear Heuristic
velacity deviation MIP decompasition
CAREY (1994) Fixed Operational Min schedule Linear Heuristic
velocity deviation MIP decompeosition
KRAY and HARKER Fixed Tactical Min schedule Nonlinear  Heuristic
(1995) velocity deviation MIP decomposition
BRANNLUND et al. Fixed Tactical Min schedule Linear Lagrangian
(1996) velocity deviation IP relaxation
NG (1997) Fixed Tactical Min schedule Linear Lagrangian
velocity deviation IP relaxation
KRAAY et al. (1991) Variable Tactical Min train delays Nonlinear  Heuristic
velocity and fuel costs MIP
HIGGINS et al. (1996) Variable Operational Min train delays Nonlinear  Branch-
velocity and operating costs MIP and-bound
HIGGINS et al. (1997) Variable Strategic Min conflict delay Nonlinear  Heuristic
velocity and risk of delay MIP decomposition

Fixed velocity models

The aim of train dispatching models is to determine where trains will meet and pass so
as to minimize train delays or deviations from the planned schedule while satisfying a
set of operational constraints. Because the meeting and passing of trains is intimately

related to their operating speed, a complete model should treat velocity as a decision
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variable. However, most dispatching models use a sequential approach and assume
that trains will operate at maximum velocity whenever possible. A velocity profile is

later determined for each train individually.

JovaNovIC and HARKER (1991) proposed the SCAN system for the tactical
scheduling of trains and maintenance operations. The main goal of their approach
is to help in the design of reliable schedules in the sense that they are robust under
stochastic operating conditions. The time horizon considered is a single day. The
system, which can deal with single and double track segments, starts with a proposed
schedule and first verifies its feasibility by separately analyzing each line of the
network. To verify feasibility over a given line, a mixed integer programming problem
with no explicit objective is solved with a branch-and-bound procedure to generate
a feasible plan of meets and overtakes. This procedure incorporates a simulation
method to model train movements and interactions. An automatic update procedure
also helps in modifying an infeasible schedule into a feasible one. The mixed-integer
programming problem has binary variables that indicate the ordering of the trains
and continuous variables that represent departure and arrival times of trains at
meetpoints. A complex set of constraints impose logical conditions concerning the
meeting, passing and following of trains. Time window constraints on the arrival and
departure of each train are also present. The system performed well on a real-life
network with 24 lines and schedules for 100 freight and passenger trains. The authors

also report an implementation at a major U.S. railroad.

CAREY and LockwooD (1995) described a model for the train dispatching
problem on a line composed of several links connected by stations where overtaking
can take place. The line is dedicated to traffic in one direction but trains operate
at different speeds. Their model is a 0-1 mixed integer program that incorporates
several headway constraints, bounds on departure and arrival times, and additional

constraints used to strengthen the model. The headwey is the time or distance
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separating two trains on the same link. The objective function to be minimized
is rather general and takes deviations from the preferred schedule into account. The
authors proposed to solve the model using a heuristic approach that first dispatches
trains one at a time to obtain an initial solution, and then possibly redispatches
individual trains to improve this solution. The subproblem of dispatching a single
train has a reduced number of binary variables because the sequence order of the
already dispatched trains is held fixed while the timings are allowed to vary. This
problem is solved using a branch-and-bound procedure with branching decisions made
on the link variables that specify the sequence order of the trains. Various strategies
were proposed to accelerate the solution of the subproblem. In particular, branching
in a depth-first search on the variables associated with the links in the same order as
they are traversed by the trains seems to dramatically reduce the computing times.
Of course, this method does not guarantee the optimality of the produced solution,
nor does it ensure that a feasible solution will be found even if one exists. Good
results are reported for computational experiments on small instances with 10 trains

and 10 links.

In a follow-up paper, CAREY (1994a) extended the original model to introduce
choices among multiple lines in each direction and choices of platforms to use for
departures, arrivals, and stops at stations. This is done by introducing a more general
type of link with two special cases representing train links and stations. Again, the
model is solved with a heuristic decomposition approach that dispatches trains one
at a time and redispatches individual trains until no further improvement in the
solution is possible. Finally, the extension from one-way to two-way tracks was done
by CAREY (1994b) who showed that the same solution methodology still applies in

that case.

A model for optimizing freight train schedules was proposed by KRAAY and
HARKER (1995). The goal of their approach is to provide a link between tactical
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train scheduling and actual operations by generating target times to be used in
dispatching models such as the SCAN system (JovaANOvIC AND HARKER, 1991).
The model, which is a large nonlinear, mixed-integer program, directly considers
the current position and relative importance of each train. Its solution indicates
the target time for each train at each important point in its itinerary. For given
values of the integer variables that determine the meeting and passing of trains, the
model reduces to a continuous variable subproblem that is solved with an algorithm
combining restricted simplicial decomposition and network flows. A simple heuristic
approach and local search methods can be used to determine feasible values for the
integer variables. Comparisons on a large set of real-life instances showed that the
local search heuristics produced better results than the simple heuristic but required

excessive computing time.

BRANNLUND et al. (1998) proposed a model to determine a profit maximizing
schedule in which profit is measured by estimates of the value of running different
types of services at specified times. The problem is formulated as a large integer
programming problem and is solved with a Lagrangian relaxation approach in which
track capacity constraints are dualized. The relaxed problem thus decomposes
into a shortest path problem in a space-time network for each individual train.
Feasible solutions are obtained with a heuristic that sequentially dispatches each
train according to a priority list given the current dual prices associated with track
capacity constraints. Various dual optimization schemes were compared on instances
with 26 and 30 trains on a single-track line connecting 17 stations. Computational
experiments indicated that feasible solutions within a few percent of the lower bound
were found in rather short computing times. According to this computational
experience, the duality gap appears to increase as the line becomes more congested.
Even though the approach is described for a single-track line, it easily extends to a

double-tracked one.
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In a follow-up paper, NOU (1997) suggested and compared alternative approaches
for generating feasible solutions. The author first extended the priority list heuristic
described previously by BRANNLUND et al. In particular, a tabu search heuristic
was proposed for the problem of finding the best possible permutation of the trains.
Then, a conflict resolution heuristic which treats conflicts in order of occurrence
was described. Finally, a greedy local improvement heuristic was introduced. This
heuristic considers a feasible solution and tries to improve it by performing changes
that maintain feasibility while improving the overall profit associated with the
schedule. Computational experiments were performed on the same data that were
used by BRANNLUND et al. Solution quality improvements in the order of 1% were
obtained while computation times remained rather similar. The author concluded
that the most effective approach is an enhanced priority list heuristic with a tabu

search procedure to update the list.

Variable velocity models

Models that treat velocity as a decision variable are not very common even though
they represent a significant improvement over fixed velocity models. Indeed, by
treating operating speed endogenously, such models not only minimize deviations

from the schedule but also quantify and minimize fuel consumption.

KRAAY et al. (1991) treated a train pacing problem in which train velocity and
meeting and passing schedules are determined together to minimize fuel consumption
and delays while satisfying time windows on the departure and arrival of each train.
Their formulation is a nonlinear mixed integer program with a convex objective
function. First, the authors proposed a branch-and-bound algorithm in which the
initial relaxation is obtained by linearizing the objective function and by ignoring

train interactions. This relaxation decomposes into simple linear programs solvable
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with a sorting routine and a line-search procedure. At each node of the branch-and-
bound tree, cutting planes are added to gradually impose the relaxed constraints.
When the relaxation solved at a node of the tree yields a feasible meet/pass plan,
a feasible solution for the global problem can be computed by solving a nonlinear
program in which the integer variables are held fixed. An alternative approach,
based on the generation of feasible plans for the meeting and passing of trains, was
also proposed. For each plan, the optimal velocity profiles are also computed by
solving the nonlinear program with the integer variables being fixed. This approach
is very convenient because it can use an oracle to generate plans that obey very
complex constraints that do not even possess a mathematical representation. This
approach can also be used to evaluate and rank different scenarios. Feasible meet/pass
plans are generated using the logic of the SCAN system (JOvANOVIC and HARKER,
1991). Finally, the authors proposed a rounding heuristic to filter out meet/pass
plans and retain only those closest to the optimal solution obtained when ignoring
train interactions. Results on instances of a major railroad produced fuel savings in
the order of 5% while the standard deviation in train arrival times decreased by more
than 19%. A theoretical analysis shows that, as the number of sidings goes to infinity,

the probability that the heuristic will give an optimal solution goes to one.

HIGGINS et al. (1996) proposed a model and a solution method for the dispatching
of trains on a single-track line. Their model mainly addresses the operational problem
of dispatching trains in realtime but can also serve at the strategic level to evaluate the
impacts of timetable or infrastructure changes on train arrival times and train delays.
The formulation is a complex nonlinear mixed integer program that incorporates
lower and upper limits on train velocities for each train on each segment. The
objective function seeks to minimize a combination of total train tardiness and fuel
consumption. When a train will be delayed in a conflict at the next siding or has slack

time, it will be paced to reduce fuel costs. The problem is solved using a branch-and-
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bound algorithm with lower bounds computed by using an estimate of the remaining
delay cost, based on the calculation of the least cost path for each train. Comparisons
with both an enumerative procedure that computes lower bounds by relaxing the
remaining conflict constraints and a tabu search heuristic showed that the proposed
method is very effective at finding the optimal solution. A real-life instance with
31 trains and 14 sidings was solved in less than one minute. Other experiments are

reported on instances of similar size.

In a follow-up paper, HIGGINS et al. (1997) extended their solution methodology
for simultaneously deciding the number and location of sidings and the optimal train
schedule for a single-track line. This strategic problem is again modeled as a nonlinear
mixed integer program. It is solved with a heuristic decomposition scheme that
iterates between two subproblems until no further improvement is possible. The first
subproblem chooses the positions of the sidings and the departure and arrival times
for a given fixed schedule; the second subproblem chooses a train schedule, considering
fixed siding locations. The method also considers an initial set of sidings that are
held at fixed position. Because maximum train velocity on a given segment depends
on the sidings location, velocity is determined endogenously. The objective function
minimizes a weighted combination of conflict delay and risk of delay. The risk of delay
represents the likely delay caused by unexpected events. Computational experiments

on instances with up to 30 trains indicated that the algorithm converges very quickly.

1.4.3 Locomotive Assignment Models

Given a planned train schedule, the locomotive assignment problem consists of
assigning a set of locomotives to the scheduled trains to satisfy requirements expressed

as a number of locomotives or as a measure of the pulling power needed (i.e.,
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horsepower and tonnage). At a strategic planning level, the objective followed is
usually to minimize the required fleet size. At the tactical and operational levels,
the available rolling stock is given and one usually wants to minimize costs incurred
by light running. Light running or deadheading occurs when an engine must be

repositioned between two successive trips.

Early research on the problem of assigning engines to trains was conducted by
CHARNES and MILLER (1957) who used linear programming for the assignment of
crew-engine pairings to a set of potential trips to provide each train in a given schedule
with sufficient resources. BARTLETT (1957) gave an algorithm for minimizing fleet
size based on the idea that, for a fixed time horizon, this objective is tantamount
to minimizing total idle time. An algorithm for finding an assignment that satisfies
maintenance constraints while minimizing deviations from a target mileage between
successive maintenance stops was proposed in related work by BARTLETT and

CHARNES (1957).

Over the years, many railways have developed decision support systems to assist
planners in making locomotive assignment and scheduling decisions. Although early
systems relied in large part on simulation techniques and decision rules dictated by
experience, some of them also used optimization methods. For example, GOHRING
(1971) and MCGAUGHEY et al. (1973} described a periodic network flow model,
solved with the out-of-kilter algorithm (FORD AND FULKERSON, 1962), to minimize
fleet size at Southern Railway. Also, HOLT (1973) mentioned the use of branch-
and-bound procedures and decomposition approaches for locomotive distribution at

British Railways.

We now review the more recent optimization models for locomotive assignment.

We first discuss the case in which each train needs a single engine, followed by models
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for the multiple engine case. The simultaneous assignment of both engines and cars

to passenger trains is treated last. Table 1.4 provides a summary of these models.

Table 1.4: Characteristics of locomotive assignment models

Authors Problem Planning Objective Model Solution
type level function structure  method
FORBES et al. (1991) Single Tactical Min operating Assignment Branch-and-
engine costs problems bound
FISCHETTI and TOTH Single Tactical Min fleet size Assignment Lagrangian
(1997) engine and deadheading probiems relaxation
FLORIAN et al. (1976) Multiple Strategic Min investment Multi- Benders
engines and maintenance commodity decomposition
SmiTH and SHEFFI (1988)  Multiple Strategic Min operating Multi- Heuristic
engines costs commodity
CHIH et al. (1990) Multiple Operational Max expected Multi- Heuristic
engines profit commodity decomposition
ZIARATI! et al. (1997) Multiple Operational Min operating Multi- Dantzig-Wolfe
engines costs commodity decomposition
NGu et al. (1997) Multiple Tactical Min operating Multi- Dantzig-Wolfe
engines costs commodity decomposition
ZIARATI et al. (1997) Multiple Operational Min delays Multi- Dantzig-Wolfe
engines commodity decompasition
CORDEAU et al. (1998) Engines Tactical Min operating Multi- Benders
and cars costs commodity decomposition

Single locomotive models

Most models for the problem in which multiple engine types are available but each

train needs a single locomotive have a multi-commodity network flow structure with

linking constraints that ensure that each train is covered exactly once. For example,

BOOLER (1980) proposed a heuristic algorithm that starts with a feasible allocation

of locomotive types to the trains and iteratively updates this allocation using the dual

information gathered when solving the resulting assignment problems. A Lagrangian

relaxation approach, that dualizes the linking constraints in the objective function,

was later proposed by the same author (BOOLER, 1995). WRIGHT (1989) compared

stochastic algorithms based on the solution of assignment problems and the update

of the locomotive types assigned to the trains.
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An exact algorithm for a model with a similar structure was proposed by FORBES
et al. (1991). The objective function takes into consideration fixed costs and operating
costs. The solution technique consists of solving the LP relaxation of an integer
programming formulation before applying a branch-and-bound procedure to obtain an
integer solution. To solve the continuous relaxation, a further relaxation is obtained
by removing the locomotive type restrictions. The solution to that problem is then
converted into a dual feasible solution to the original problem and the dual simplex
method is used to obtain the optimal solution to the LP relaxation. Branching is first
performed on the number of locomotives used. Additional branching is performed
on the successors of the trains and on the locomotive types assigned to the trains.
The data sets used for testing purposes did not impose constraints on the number
of available locomotives of each type, but the authors mentioned how these can be
enforced in their formulation. They reported very small integrality gaps, in particular

when the objective function does not include preferences for locomotive types.

Very recently, a heuristic method for the weekly problem was proposed by
FI1SCHETT!I and ToTH (1997). Engines are distributed across a number of depots
that are associated with stations of the network. Each depot has a maximum number
of engines available and each engine must go through its depot every week to allow for
maintenance. In addition, engine trips must satisfy a set of operational constraints.
By relaxing the maintenance and operational constraints, one obtains an assignment
problem whose solution provides a very good lower bound on the optimal solution.
The objective function is a weighted combination of the number of engines needed,
the number of deadheading trips performed, and the distance covered by deadheading
trips. Real-life instances with up to 10,000 trains are solved in less than one hour on
a workstation computer. Cost savings in the order of 10-20% are typically obtained

over the solution in use by the Italian Railways.
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Multiple locomotive models

When each train may require more than one locomotive but these requirements
are given as a number of engines, the problem can still be formulated as a multi-
commodity network flow problem with rather simple linking constraints. The most
difficult version of the problem occurs when multiple locomotive types are available
and each train may require more than one locomotive to satisfy its requirements

expressed in terms of motive power.

One of the first models dealing with this version of the problem was proposed
by FLORIAN et al. (1976). The strategic problem considered is to select the mix of
engine types that gives the lowest capital investment and maintenance costs over a
long planning horizon, while providing each train with sufficient engines to meet its
motive power requirements. In this model, the motive power requirements of each
train are determined according to its weight and length in terms of cars, and to the
route on which it must travel. The model used is defined on a set of network flow
circulation problems with some linking constraints that translate the motive power
requirements. The solution approach is based on Benders decomposition (BENDERS,
1962) and takes advantage of the particular structure of the problem. Variables in
the integer programming master problem impose lower bounds on the arcs of network
flow subproblems. To speed up the solution of the master problem, a decomposition
scheme is coupled with a rounding heuristic. Upper bounds on the number of engines
of each type are not treated. Computational results were reported on problems with
a few hundred trains and the convergence was deemed slow on the larger instances.
However, it should be emphasized that the algorithm was stopped after less than 30
iterations were performed. Hence, given the performance of today’s computers, it is

very likely that the conclusions would now be different.
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A model that incorporates the uncertainty in locomotive requirements was
suggested by SMITH and SHEFFI (1988). This model has a multi-commodity network
flow structure with linking constraints that enforce locomotive requirements expressed
as a lower bound on the horsepowers supplied to each train. These constraints are
relaxed in the objective function by using a penalty function that permits deviations
from the requirements at a cost. Also, the lower bounds on horsepower are replaced
by random variables with known distributions. The resulting model has a convex
nonlinear cost function and is solved with a two-phase heuristic. In the first phase, a
feasible solution is obtained by incremental flow assignments along shortest paths. In
the second phase, interchanges are performed to improve the solution by identifying
cycles with a negative marginal cost. The major advantage of this heuristic procedure
is that it maintains integrality throughout. To evaluate its performance, lower bounds
were computed with two approaches. The first one relaxes integrality constraints and
solves the resulting problem with a Frank-Wolfe method (FRANK and WOLFE, 1956).
The second one uses a piecewise linearization of the cost function to obtain a pure
network flow problem. Computational experiments on instances with up to 102 trains
produced feasible solutions with short computing times and costs within a few percent

of the best lower bound.

CHIH et al. (1990) described the implementation of an operational planning model
for locomotive assignment. The model, which seeks to maximize the difference
between expected revenue and operational costs, is based on a time-space network
representing all possible locomotive movements during the planning horizon. To
obtain a first approximation of motive power assignments to a set of weekly
scheduled trains, a multi-commodity network flow problem is solved with a resource-
directive decomposition approach. Locomotives that must be directed to a shop
for maintenance are then routed individually by solving a shortest path problem

and horsepower requirements are lowered to reflect these assignments. Given the
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solution to the multi-commodity network flow problem and the residual requirements,
locomotive consists are finally built for each train by an exhaustive enumeration
process. The approach was tested on actual data from the Union Pacific Railroad.
On an instance with 15 types of locomotives and a network for each type containing

more than 25,000 arcs, a solution was found within 30 minutes.

More recently, a Dantzig-Wolfe decomposition approach (DANTZIG and WOLFE,
1960) was developed for the operational version of this problem by ZIARATI et al.
(1997b). Train requirements are determined as above but some engines must also
be dispatched to special stations at which they have to perform local work. A list
of preferred locomotives is considered for each train and care is also taken of the
locomotives that must be routed to a shop for maintenance. The objective considered
is the minimization of the total operational costs. The problem is modeled as a
multi-commodity flow problem with supplementary variables and constraints. The
time horizon considered is a week, but, to solve very large instances, the problem is
divided on a temporal basis into a set of overlapping slices involving fewer trains. Once
the problem for a slice is solved, the problem for the next one is solved with initial
conditions determined by the solution of the preceding slice. The problem for each
slice is solved using a branch-and-bound procedure in which the linear relaxations are
solved by column generation. Constrained and unconstrained shortest path problems
must be solved on an acyclic network to generate columns for the master problem. A
heuristic branching strategy is used, in which many path variables are fixed together.
Branching decisions are made on the path variables with the largest fractional part,
and the selected variables are rounded up to the next integer. Computational
experiments carried out on real-life data involving approximately 2000 trains allowed
an improvement of 7% over the solution in use by the company when taking slices
of two days with a one-day overlap. This improvement goes to 7.5% when slices of

three days are used, but the computations then take a few hours. ZIARATI et al.
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(1998) introduced additional cuts, based on the enumeration of feasible assignments
of locomotive combinations to trains, which strengthen the LP relaxation lower bound
and improve solution quality. A day-to-day operational model was also proposed by

ZIARATI (1997).

A similar approach was used by NOU et al. (1997) for the tactical assignment
problem at Swedish State Railways. In this problem, cyclic locomotive assignments
are sought and maintenance constraints related to cumulated distance must be
satisfied. Two approaches based on a branch-and-bound procedure and Dantzig-Wolfe
decomposition are presented for solving the problem. In the first approach, the weekly
problem is replaced by a series of smaller size problems with overlapping horizons. In
the second one, maintenance constraints are relaxed to obtain a smaller problem that
is solved without being decomposed on a temporal basis. Tests performed with actual
data from Swedish State Railways involving 2422 trains showed that the first approach
failed to produce a feasible cyclic solution. The second approach produced a solution

that violated maintenance constraints for a very limited number of locomotives.

In some cases, the operational locomotive assignment problem may be infeasible
because not enough engines are available. One possibility to circumvent this difficulty
is to allow train undercovering. Undercovering happens when the motive power
requirements are not fully satisfied. This is easily achieved by introducing slack
variables in the appropriate constraints. ZIARATI et al. (1997a) presented an
alternative approach that consists of delaying trains. The basic idea of the method
is to postpone the departure of an undercovered train until enough locomotives are
available at the origin station. For the case of express trains, one can instead postpone
the departure of a preceding train to assign the available engines to the express train.
Using these strategies, one can often find a feasible solution in terms of the covering

constraints. To determine a valid lower bound, the authors use an augmented network
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that includes both penalty and delay costs, as well as fixed and routing costs. The
solution to an instance with almost 2000 train segments was obtained in less than 10

minutes and had a cost within 5% of the lower bound.

Locomotive and passenger car models

Very little work has been accomplished concerning the assignment of locomotives
and cars in the context of passenger transportation. A decision support system was
developed by RAMANI and MANDAL (1992) for the planning of passenger trains at
Indian Railways. However, the assignment of locomotives and cars is dealt with
separately and the system uses a simple local improvement procedure that generates
optimal train connections by examining the departures and arrivals at individual
stations. This procedure is reminiscent of the algorithm given by BARTLETT
(1957) for fleet size minimization. The work of RAMANI and MANDAL extends an

information system for car assignment developed by RAMANI (1981).

Recently, an optimization model for the assignment of both locomotives and
passenger cars was proposed by CORDEAU et al. (1998b). The tactical periodic
problem is formulated as an integer programming problem based on a time-space
network. As in the work of FLORIAN et al. (1976) for locomotive assignment,
this model possesses an interesting variable decomposition: for given values of
the binary variables that represent the assignment of equipment combinations to
trains, the problem decomposes into one network flow problem for each type of
equipment. The formulation incorporates compatibility constraints between the
different types of equipment that may be combined to form valid train consists.
Equipment availability for each type is also enforced. However, the model does

not directly impose maintenance constraints. Comparisons between primal and dual
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decomposition methods and a simplex-based branch-and-bound approach showed
that the formulation was best solved using Benders decomposition (BENDERS,
1962). Algorithmic refinements were suggested to improve the performance of the
algorithm. In computational experiments performed on real-life data, the algorithm
found optimal solutions within short computation times. The largest instance solved

contained six types of equipment and 348 trains over a period of one week.

1.5 Conclusions

This paper has presented a review of the recent optimization models proposed for
solving routing and scheduling problems in rail transportation. The field is clearly
receiving increased attention as measured by the number of contributions in the last
few years. The nature and scope of the research conducted is also gaining in diversity
as nearly every domain of rail transport planning has been the object of some recent

research.

There also appears to be a constant refinement and diversification of the modeling
and solution methods proposed and used. Early models were usually built to have a
structure that made them solvable by linear programming or network optimization.
One then witnessed a gradual introduction of integer programs with simple underlying
structures.  Although some recent models are solved with more sophisticated
mathematical programming techniques, others still are solved using meta-heuristics
that have proven to be very effective for several classes of discrete optimization
problems. Of course, this progression is also made possible by the increased power of

computers and information systems.
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As mentioned in the introduction, optimization models for train routing and
scheduling have advanced tremendously in the last few years. Whereas early
models were often based on very crude approximations of reality, recent applications
demonstrate an important effort to deal with complex yet important characteristics
of the actual functioning of railway systems. As a result, problems which, in the
past, were only approachable by simulation can now be solved, at least approximately,
using mathematical optimization. Nevertheless, simulation techniques have also made
considerable progress in the last decade and remain a very useful tool of analysis and
support to decision making. The recent work of POWELL (1995) is an illustrative

example of this progress.

Also, despite the increasing realism of optimization models, considerable work
remains to be accomplished to make the railways benefit from this wealth of
knowledge. Even though most proposed models are tested on realistic data instances,
very few are actually implemented and used in railway operations. Hence, efforts must
be made to bridge the gap between theory and practice. MARTLAND and SUSSMAN
(1995) presented an interesting discussion of factors that explain the success or failure

of different approaches.

Future research paths in rail transportation planning are oriented toward models
that address the integration of various policies. Because rail activities are generally
complex and involve large-scale systems, the traditional approach in the industry
has been to separate planning activities into several components. This natural
tendency yields more manageable subsystems but also presents several limitations. In
particular, there is a strong incentive to simultaneously treat routing and scheduling
problems because of the important interactions linking these two categories of
decisions. Hence, models that integrate several aspects and levels of planning should

be increasingly common in upcoming years.
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Chapitre 2

Simultaneous Locomotive and Car

Assignment at VIA Rail Canada

Article écrit par Jean-Francois Cordeau, Guy Desaulniers, Norbert Lingaya, Frangois

Soumis et Jacques Desrosiers; soumis pour publication a Transportation Research B.

Comme en témoigne la revue de littérature du chapitre précédent, aucun
modele n'avait précédemment été proposé pour résoudre le probleme de l'affectation
simultanée des locomotives et des wagons aux trains de passagers. Dans cet article,
nous proposons un premier modeéle développé dans le contexte d'une application
pratique chez le transporteur canadien VIA Rail. En développant ce modéle, nous
avons néanmoins tenté de conserver un niveau de généralité suffisant pour que

'approche puisse par la suite étre adaptée aux problémes d’entreprises différentes.

Aprés avoir défini le probleme étudié, nous décrivons en détail les réseaux
espace-temps utilisés pour représenter 1’ensemble des mouvements possibles pour les
différents types d'équipement a l'intérieur de la période de planification. La définition
de ces réseaux sert en outre a imposer certaines contraintes telles que des temps de

connexion qui varient en fonction de l'orientation des trains.

Nous donnons ensuite une formulation mathématique du probléeme qui est

basée sur ces réseaux espace-temps mais qui contient également de nombreuses
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contraintes liantes entre les différentes piéces d’équipement. En plus des contraintes
de demande et des contraintes de capacité des locomotives, le modéle comprend des
contraintes d’entretien, des contraintes de disponibilité d'équipement ainsi que des
contraintes d’espace d'entreposage. La premiére formulation suppose que tous les
trains opérent durant le jour et que l'entretien s’effectue exclusivement pendant la nuit
a l'unique centre d’entretien disponible. Elle suppose également que la combinaison
d’équipement utilisée sur chaque train est choisie a 'avance. Nous expliquons par la

suite comment généraliser le modele afin de relacher ces hypotheses.

Une méthode de résolution par séparation et évaluation progressive est présentée
pour résoudre ce modéle. A chaque noeud de |'arbre de branchement, une relaxation
linéaire est résolue & l'aide d'une approche de génération de colonnes. Chaque colonne
générée correspond en fait & un itinéraire débutant au centre d’entretien, couvrant un
certain nombre de trains, et se terminant au centre d’entretien a l'intérieur de la durée
maximale permise entre deux entretiens successifs. Afin d'imposer les contraintes

d'intégrité, des décisions de branchement heuristiques de plusieurs types sont utilisées.

Ce modele étant trés difficile & résoudre en raison du grand nombre de contraintes
liantes qui apparaissent dans le probleme maitre de la décomposition de Dantzig-
Wolfe, différentes stratégies sont utilisées afin d’en réduire la taille. Une de ces
stratégies consiste a définir des équipements de base comprenant une locomotive et un
certain nombre de wagons nécessaires pour former un train minimal. Ces équipements
de base permettent de réduire le nombre de contraintes de demande et de contraintes

de capacité, allégeant ainsi considérablement le probléme maitre.

Puisque l'entreprise désire non seulement minimiser les coits d’opération mais
également réduire le nombre d’opérations de couplage et de découplage des wagons,
une approche de résolution en deux phases est utilisée. Dans la premiére phase, le

probléme est résolu sans tenir compte de ces opérations mais l'intégrité n’est exigée
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que sur les variables de flot associées aux locomotives. Dans la seconde phase, un
probléme réduit est résolu en fixant les chemins de locomotives obtenus durant la
premiére phase et en imposant des pénalités pour le couplage et le découplage des
wagons. Ce processus de résolution séquentiel est clairement heuristique mais réduit

de maniére trés importante la difficulté du probleme.

Les résultats numériques montrent que la méthode peut résoudre des problémes
réels avec tout I’éventail des contraintes en quelques heures de calcul sur une station
de travail. De plus, les comparaisons avec les solutions produites manuellement par
les employés de planification de VIA Rail indiquent que notre approche permet trés
souvent de réduire a la fois les cotits d’opération et le nombre d'opérations de couplage

et de découplage des wagons.

La principale contribution de cet article est de présenter le premier véritable
modeéle pour I'affectation simultanée de locomotives et de wagons aux trains de
passagers. Le niveau de détail considéré dans ce modéle et les résultats obtenus
confirment qu'il est possible de développer des modéles relativement complets pour ce
type de problemes, et que ces modeéles peuvent étre résolus de maniére approximative
en des temps de calcul raisonnables compte tenu du fait que la planification tactique

n'est revue que quelques fois par année.

Remarquons enfin que cet article fait référence a l'article présenté au prochain
chapitre car, bien que le travail présenté ici ait débuté antérieurement, la rédaction

du texte ne fut réalisée qu'apres l'implantation du logiciel chez VIA Rail.
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Abstract

An important aspect of railway planning concerns the distribution of locomotives
and cars in the network and their assignment to the scheduled trains. In this
paper, we present a sophisticated model and a heuristic solution approach based on
mathematical optimization for the assignment of locomotives and cars to passenger
trains. Given a periodic schedule and a fleet composed of several types of
locomotives and cars, our approach determines a set of equipment cycles that cover
all scheduled trains while satisfying a set of operational constraints. We first present
a basic formulation that translates maintenance requirements and other fundamental
difficulties of the problem. We then discuss several extensions, such as substitution
possibilities and the minimization of switching operations, which are required in a real-
life application. The resulting model is optimized with a branch-and-bound method
in which the linear relaxations are solved by a Dantzig-Wolfe decomposition. The
model and solution strategy were tested on data from VIA Rail in Canada and a

complete system based on this approach is now implemented at the company.

Keywords: Rail passenger transportation; multi-commodity network flow model;

Dantzig-Wolfe decomposition.
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2.1 Introduction

A major concern to every railway is to optimize the distribution and the use of the
available stock of locomotives and cars. In the context of rail freight transportation,
the specification of train formation plans and the assignment of engines to trains are
usually dealt with separately. Once freight cars have been assigned to a set of trains
according to operating policies, the requirements of each train in terms of motive
power can be computed and a locomotive assignment problem can be solved. In
practice, the operating policies are usually updated every few months whereas the
locomotive assignment problem must be solved more frequently to account for daily

or weekly variations in the demand for transportation.

Separating the formation of trains from the assignment of locomotives may
certainly yield suboptimal decisions. However, this is a very natural approach which
significantly reduces the size of the resulting problem. Simultaneously planning the
assignment of freight cars and locomotives to trains would lead to very large problems
even for small railways. Also, since demand varies continually, cyclic solutions are
seldom applicable. Traditionally, a similar sequential planning approach has also
been very common in the context of passenger transportation where the assignment
of locomotives and cars to trains are often treated separately despite the fact that a

simultaneous approach could be used.

However, rail passenger transportation differs from freight in one important
respect: the same trains are usually run each week with more or less the same
number of cars. Indeed, passenger trains generally adhere closely to a published
schedule which is revised on a seasonal basis to account for changes in the demand.
Also, the number of passengers wishing to travel from one city to another at a given

moment varies only slightly from week to week. Hence, there is a strong incentive to
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treat the cars and locomotives together so as to obtain a global equipment assignment
plan that either maximizes fleet utilization or minimizes operating costs. While this
would be extremely difficult in freight transportation given the large number of cars
that make up each train, it is a reasonable goal in passenger transportation. Since
the same schedule is to be repeated cyclically for a certain period of time, important
savings can thus be obtained by treating both locomotives and cars in the same model

as opposed to optimizing their use separately.

Given a periodic train schedule and a fleet composed of several types of equipment,
the simultaneous locomotive and car assignment problem is to determine a set
of minimum cost equipment cycles such that every train is assigned appropriate
equipment and some side constraints are satisfied. A large variety of side constraints
must often be considered and most are dictated by operating policies or the
characteristics of the physical network. For example, each unit of equipment must
usually be inspected at regular intervals to comply with safety regulations and perform
minor repairs. Also, the maximum number of cars which may remain idle in a given

station is limited by track capacity.

The simultaneous locomotive and car assignment problem may be further
complicated by the fact that combining different units of equipment has an effect
on operating speed which, in turn, impacts on the arrival times of the trains. Since
schedule adherence is of prime importance in passenger transportation, operating
speeds must then be considered explicitly. In addition, when equipment units are
combined together to form train consists, compatibility restrictions must be taken
into account: while several types of locomotives and cars may be allowed on a given
train, some of these types may be pairwise incompatible. Finally, when the contents
of a train consist can be modified during its trip through the network by switching cars
on or off the train, a particular modeling approach must be adopted to appropriately

translate the fact that these modifications have an impact on connection times.
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Literature Review. Very few references can be found in the Operations Research
literature regarding the simultaneous assignment of locomotives and cars to passenger
trains. One of the first known efforts in this direction is a decision support system
developed by RAMANI and MANDAL (1992) for the maximization of equipment
utilization on passenger trains at Indian Railways. Improvements over a current
solution are obtained by using a simple local exchange procedure generating optimal
train connections in each station by matching compatible departures and arrivals.
This approach, which is clearly heuristic as it fails to consider the network as a
whole, produced significant savings on the large instances on which it was tested. A
system was also developed by SABRE for the French Railways SNCF (BEN-KHEDER
et al., 1997). This system optimizes the assignment of equipment modules containing
both locomotives and cars. However, these modules are aiready formed and there only
remains to assign a certain number of modules to each train. Also, all modules allowed
to cover a given train are compatible and their coupling does not affect operating

speed. Finally, modules can be coupled and decoupled in just a few minutes.

Very recently, CORDEAU et al. (1998b) proposed a basic modeling and solution
approach for the simultaneous assignment of locomotives and cars. Their model
is based on a set of time-space networks associated with the different equipment
types available. The definition of these networks captures several characteristics of
the problem such as restrictions on train modifications and orientation-dependent
connection times. The networks are linked by demand and capacity constraints as
well as compatibility restrictions. These restrictions are modeled by defining a set of
possible train consist types representing valid combinations of equipment. Each of
these combinations contains a locomotive type and some compatible car types, and
its operating speed is determined by the slowest of its components. The proposed
model possesses an interesting variable partitioning which makes it well suited for a

Benders decomposition approach: for a given assignment of consist types to trains,
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the problem decomposes into a set of network flow subproblems with one additional
constraint per subproblem. However, although it was tested on real-life data and
produced optimal solutions in reasonable computing times, the model is probably
not sophisticated enough to be used in practice. In particular, it does not deal with
maintenance constraints. The model introduced in the present paper incorporates a
much larger set of constraints and possibilities which are required in a commercial
application. Hence, our modeling approach borrows some ideas from the work of
CORDEAU et al. but is clearly differentiated by the broader range of refinements

captured by the formulation.

Whereas the simultaneous assignment of locomotives and cars to passenger
trains has received very little attention in the literature, the problem of locomotive
assignment in the context of freight transportation has been the object of much more
work. In the most simple version of the problem, several locomotive types are available
but each train requires a single engine. Models and algorithms for this version of the
problem were first proposed by BOOLER (1980, 1995), WRIGHT (1989) and FORBES
et al. (1991). Recently, FISCHETTI and TOTH (1997) developed a heuristic algorithm
based on the solution of assignment problems for the weekly cyclic problem. Their
approach takes maintenance and refueling constraints into consideration and was able

to produce near-optimal solutions to very large instances from the Italian Railways

FS.

A more complex problem occurs when each train may require several locomotives.
One of the first models for this case was developed by FLORIAN et al. (1976). The
authors considered the strategic problem of locomotive acquisition and proposed
a multi-commodity network flow (MCNF) formulation solved with an algorithm
based on Benders decomposition. More recently, an MCNF model incorporating
uncertainty in locomotive requirements into the objective function was developed

by SMITH and SHEFFI (1988). The model is solved with a two-phase heuristic
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approach that produced good results on small instances from a railroad. Then,
CHIH et al. (1990) reported the implementation of a planning system based on
mathematical decomposition at the Union Pacific Railroad. The computational
results obtained on some large instances suggested a significant reduction in the
number of locomotives needed, in the operating costs, and in train delays. Finally,
a Dantzig-Wolfe decomposition approach was proposed for the operational version of
the problem by ZIARATI et al. (1997b). The problem is modeled as an MCNF problem
with supplementary variables and constraints. A weekly horizon is considered but in
order to solve very large instances, the problem is decomposed on a temporal basis
into a set of overlapping slices involving fewer trains. The problem for each slice
is optimized using a branch-and-bound procedure in which the linear relaxations are
solved by column generation. Computational experiments carried out on real-life data
from CN North America yielded an improvement of more than 7% over the solution

used by the company.

A review of recent discrete optimization models for public rail transport planning
with an emphasis on line planning and train scheduling was prepared by BUSSIECK
et al. (1997). Also, CORDEAU et al. (1998c) provide a more comprehensive but less

technical survey of optimization models for train routing and scheduling.

Contribution. In this paper, we describe the model and the heuristic solution
approach based on mathematical optimization that we implemented at VIA Rail in
Canada to solve the equipment assignment problem. Although they were developed
with the specific needs of this railway in mind, they have a certain degree of generality
and could certainly be adapted to several other railways. Given a weekly train
schedule, a description of the physical network and a list of the available stock of
locomotives and cars, our method determines a near-optimal assignment of equipment
to trains in the form of a set of cycles which satisfy a large variety of operational

constraints. The approach is based on a multi-commodity network flow formulation
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which is optimized through a branch-and-bound method in which the relaxations are
solved with a Dantzig-Wolfe decomposition. This approach is flexible and facilitates
the introduction of maintenance constraints which represent a major difficulty of the
problem. In CORDEAU et al. (1998b), the authors argued that a straightforward
implementation of Dantzig-Wolfe decomposition was not appropriate to solve their
formulation because of the large size of the resulting master problem. Here, we
propose several refinements which make the problem more tractable, and show that

column generation can indeed be an effective solution approach.

Overview. The rest of the paper is organized as follows. In the next section,
we describe the general equipment assignment problem in a general context similar
to that of VIA Rail. We also introduce several concepts which are then used to
formulate a basic mathematical model of the problem in Section 2.3. Section 2.4
presents a solution approach based on column generation for this basic model, while
Section 2.5 introduces various extensions to the model and the required adaptations
of the solution approach. Computational experiments are reported in Section 2.6 and

conclusions are given in the last section.

2.2 Problem Description

The equipment assignment problem treated in this paper is usually solved every few
months when the train schedule is updated and it thus belongs to the tactical level
of planning. However, its optimization horizon is normally shorter and corresponds
to the period of the train schedule which is often a week. Since we are locking for a
cyclic solution that will repeat period after period, the problem can be appropriately

called the tactical periodic equipment assignment problem.
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We consider a railway that operates locomotives and cars of different types. While
locomotives all serve the same purpose, passenger cars come in different flavors:
railways typically use a mix of club (first-class) and coach (second-class) cars. Besides
its nature, the most important characteristics which distinguish an equipment type
from another are its capacity and its operating speed. For a locomotive, the capacity
is measured by the number of cars it can pull, whereas for a car, it is measured by
its seating capacity. Since we are considering a tactical planning problem with an
horizon of a few months, the fleet can be considered as fixed. Hence, the number
of units of each type which are available is assumed to be known. This number can
nevertheless vary from day to day to account for maintenance activities and other
restrictions. Also, for each type of equipment, we are given per mile costs associated
with fuel and maintenance. These operating costs are variable since they are related
to mileage and not to equipment ownership. The cost of using one unit of equipment
on a given train can then be computed as the distance between the origin and the

destination stations times the total operating cost per mile.

The equipment types which are available to the railway can be combined in various
ways to form train consists. Generally, a train consist contains one or two locomotives
and a certain number of club and coach cars. Occasionally, additional baggage cars
can also be part of a consist. The set of possible consist types is specified originally and

the operating speed of each consist type is set to match that of its slowest component.

One of the basic input of the equipment assignment problem is a periodic schedule
that specifies, for each train operated during the period, resource requirements and
possible pairs of departure and arrival times. For a given train leg, these quantities
are not unique but depend instead on the type of consist that will be used to ensure
service on that leg. Indeed, different consist types may have different operating

speeds and the railway must take this into consideration. Demand on each train leg
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is usually given in terms of the number of first-class and second-class passengers. It
can alternatively be given as a number of club and coach cars. In the latter case,
the requirements may vary depending on the consist type used since cars of different

types do not necessarily have the same seating capacity.

Since the solution to the equipment assignment problem is a set of cyclic equipment
trips, its feasibility is in part determined by the connection possibilities at the various
stations of the network. Hence, for each station, different durations must be known to
determine the possible connections. In most cases, these durations will be dependent
upon the respective orientation of the two successive train legs. Here, we assume that
all trains belong to one of two orientations although this assumption can be easily
relaxed. If one considers eastbound and westbound trains, then the run-thru time
represents the minimum time needed to make a connection between two train legs
that have the same orientation, while the turn-around time is the time needed to make
a connection between two train legs that have opposite directions. These durations
apply only when the train consist used on the first leg is also used unmodified on the
second leg. If cars must be switched on or off the train at the intermediate station, a
longer connection time is required. The necessary duration is given by the switching
time which may depend on the respective orientation of the two trains. In some
stations located at the end of a line, run-thrus may not be feasible. Also, switching
may be restricted to some period of the day and may even be completely forbidden
in certain stations. Finally, each station has a limited storage capacity determined

by the available tracks and this capacity cannot be exceeded.

Normally, operating rules set forth by transport authorities stipulate that
maintenance and inspection must be performed on each unit of equipment at a regular
interval. Hence, every equipment cycle must include periodic stops at one of the

stations associated with maintenance centers. Furthermore, these stops must be long
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enough to allow for maintenance and minor repairs to be performed. When all trains
operate during the day, maintenance can sometimes be restricted to be performed
exclusively at night. In that case, the duration of the stop at the maintenance center

will always be sufficient to permit maintenance.

In short, the basic equipment assignment problem consists in finding a minimum-
cost set of equipment cycles which ensure that sufficient seating capacity (per class)
is supplied on each train while satisfying constraints on minimum connection times,
locomotive pulling capacity, equipment availability, storage capacity and maintenance

requirements.

2.3 Mathematical Model

We now describe a basic mathematical model that integrates the most essential
8gredients of the locomotive and car assignment problem. This model, which is based
on a multi-commodity network flow structure with linking constraints, is a special case
of the unified framework for deterministic time constrained vehicle routing and crew

scheduling problems proposed by DESAULNIERS et al. (1998).

To simplify the notation and the statement of the model, it is first assumed that
each train leg can be covered by a unique consist type. Also, all trains operate during
the day and there is a single maintenance center where all equipment trips must start

and end. Extensions to more complex situations will be discussed in Section 2.5.

Railways operate equipment units of different natures which can be grouped into

a set of classes according to their respective roles. For example, locomotives, club
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cars and coach cars are typical classes used by most railways. In each class, different
makes or models of equipment can also be operated. Given this partitioning, let K
be the set of equipment types where each type k € K corresponds to a particular class
and a make available to the railway. If different equipment makes in the same class
can be considered as identical with regard to their operating characteristics, they can
be treated as a single equipment type. Let R be the set of consist types. Each consist
type r € R is a set {k[,k},...} of compatible equipment types containing at least
a locomotive type and a car type. Let L be the set of train legs. Each train leg
[ € L is defined by origin and destination stations, departure and arrival times, and
resource requirements. Since it is assumed that each train leg [ can be covered by
a single consist type, let 1 € R denote this type. Then, for each equipment type
k € r;, resource requirements can be specified as the minimum number of units of

equipment, n¥, which are required on leg L.

Consider an ordered pair of train legs (I;,!;). These two legs can be successively
covered by the same physical train consist if (i) ry, = r;; (it) the destination station
of leg [; is the origin station of leg [;; and (#77) the connection time between the two
legs is sufficient. A modeling difficulty appears when the minimum connection time in
a station depends on whether the physical train consist is to be modified between the
two consecutive legs. Since switching cars on or off a train consist requires a certain
amount of time, the minimum connection time is normally greater when such work
has to be performed. To take this into consideration in our model, we define a train
sequence as an ordered set of train legs such that these train legs can be covered by the
same train consist only if the consist is not modified at any intermediate station. For
notational convenience, a sequence may contain a single train leg. Let S be the set of
train sequences. The importance of this concept, which was introduced by CORDEAU

et al. (1998b), becomes more apparent when considering the network representation.
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2.3.1 Network Representation

For each equipment type k € K, we define a time-space network structure G¥ =
(N*, A¥) where N* is the node set and A* is the arc set. Since a periodic solution
is sought, all networks are cyclic. A small portion of such a network is presented in
Figures 2.1 and 2.2. The graphical representation has been separated in two parts
because of the large number of different arc types: both figures show the same set of
nodes but a different subset of arcs. The figures represent the train departures and
arrivals taking place in three stations of the network during day 2 of the planning

period.

Nodes. The set N* is composed of nine types of nodes. The first four types serve
to represent the start and the end of each day in the planning period. At the station
associated with the maintenance center (designated by Montréal in the figures), source
and stnk nodes represent, respectively, the start and the end of an equipment trip on
that day. For all other stations of the network, start-of-day (SOD) and end-of-day

(EOD) nodes are used to represent the corresponding moment of each day.

The next five types of nodes are associated with actual train movements. For each
train sequence on which equipment of type & must be used, departure opportunity
(OPP), departure (DEP) and arrival (ARR) nodes are defined. In addition, run-
thru (RT) and turn-around (TA) nodes may be defined to represent the end of the
corresponding activity after the arrival of the train. For every sequence, at least one
of these last two nodes must be defined if the sequence can be followed by another
sequence in the same day. However, if the destination station of the sequence is
located at the end of a line in the network, run-thrus may be impossible. As shall
be explained later, the role of OPP nodes is to simplify the introduction of station

storage capacity constraints in the model.
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Figure 2.1: Portion of network G* for equipment type k (part 1)

The time associated with an OPP node is the actual departure time of the first
train leg in the sequence. On the other hand, the time associated with a RT node or
TA node is the arrival time plus the corresponding switching time. This is where the
notion of sequence comes into play. Consider train legs 2057 and 2075 represented
in Figure 2.1. These two legs can be covered by the same train consist since the
destination station of the first is the origin station of the second and the connection
time between the two is sufficient. However, since the time between the arrival of
the first leg and the departure of the second is small, it is not possible to modify
the consist between the two legs. This is represented in the figure by the fact that
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Figure 2.2: Portion of network G* for equipment type k (part 2)

the RT and TA nodes for leg 2057 are located on the right of the OPP node for leg
2075. Hence, if one wishes to switch a car on or off the train consist used on leg 2057,
the equipment will not be available to cover leg 2075. However, the two legs can be
covered by the same consist if the equipment goes directly from the DEP node of leg
2057 to the ARR node of leg 2075. Without the notion of train sequence, it would be
very difficult to impose the condition that a car cannot be switched on or off the train
consist if the same locomotive covers both train legs. Indeed, since locomotives and
cars have their own individual network, it would be extremely complicated to make

sure that a locomotive does not cover both legs 2057 and 2075 if one of the cars used
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on leg 2057 is not used on leg 2075, or vice-versa. Using sequences, this condition is
easily imposed by using constraints stating that either legs 2057 and 2075 are covered
by completely different units of equipment or they are covered by exactly the same

units.

At each station and for each day of the period, OPP, RT and TA nodes are
divided into two groups as follows. The first group contains OPP nodes associated
with eastbound trains, RT nodes associated with eastbound trains and TA nodes
associated with westbound trains. The second group contains all other nodes. Nodes
within the same group are then sorted in chronological order and aggregated in case

of equality.

Arcs. The arc set A* is composed of eight types of arcs. For each station except
the one associated with the maintenance center, there exists a night arc between each
pair of consecutive EOD and SOD nodes. This arc represents a night stop at that
station. For each station and each day, there is also a wait arc between each pair of
consecutive OPP, RT and TA nodes that belong to the same group. In addition, wait
arcs exist between the last node of each group and the EOD or sink node associated
with the corresponding station and day. Such arcs are also present between ARR
nodes associated with sequences that cannot be followed by another sequence on the

same day and EOD or sink nodes.

For each train sequence on which equipment of type & can be used, there is a
sequence arc that links the corresponding DEP and ARR nodes. Also, run-thru
and turn-around arcs are defined between ARR nodes and associated RT and TA
nodes. These arcs exist if the train consist covering the sequence can connect to
another sequence on the same day. A switching-on arc is also defined between the

corresponding OPP node and the DEP node. This arc represents the possibility of
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switching cars before the departure. The additional time required for switching is

however included in the RT and TA arcs.

For each train sequence, there is a first-sequence arc linking the SOD or source
node of the day to the DEP node. The purpose of these arcs is to allow the proper
computation of the number of units which stay idle in a station during a complete
day. Since the SOD nodes are not linked by any wait arcs, idle units will have to
flow on the storage arcs that link the SOD and EOD nodes of the same day in every
station except at the maintenance center. These two types of arcs are illustrated in
Figure 2.2. The purpose of OPP nodes is to allow train sequences to be covered by
equipment that was not present in the station at the start of the day but has instead

finished a sequence at the origin station during that day.

Finally, to appropriately impose maintenance constraints, the network structure
just described is replicated to generate a set of overlapping subnetworks. Suppose
that there are ¢ days in the planning period and that every unit of equipment must
be inspected at the unique maintenance center at least once every t,, days. Let
P = {0,...,t — 1} denote the set of days in the planning period. To impose these
constraints, a subnetwork is created for each day p € P. Subnetwork for day p € P
has a single source node, which represents the beginning of an equipment trip on
day p, but several sink nodes representing the end of an equipment trip on days
Py---»(p + tm) modt. Therefore, G¥* = (N*P, A*?) will denote the subnetwork
associated with equipment type & and day p. All feasible paths in this network
will correspond to equipment trips leaving the maintenance center on day p and
returning to the maintenance center at most t,, days later. The solution approach
presented in Section 2.4 takes advantage of this subnetwork definition to implicitly

impose maintenance constraints.
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2.3.2 Mathematical Formulation

In order to give an integer programming formulation of the problem, some additional
notation must be introduced. First, it is convenient to partition the set K of all
equipment types into two subsets as follows. Let K¢ C K and K% = K\ K represent
the subsets of equipment types corresponding to car types and to locomotive types,
respectively. Let also V' be the set of all stations represented in the network and
denote the station associated with the maintenance center by the element m € V.
The set V' is not required to contain all stations present in the physical rail network
but only those at which car switching is allowed. It is assumed here that switching is

allowed at the station m associated with the maintenance center.

For every equipment type k € K and every day p € P, let T*P C A*P be the set of
arcs associated with train sequences and let 7} C T*P be the subset of arcs associated
with train sequences containing train leg [ € L. Let Ef? C A* and B C A* be the
sets of arcs directed into the sink node for day ¢ (ending arcs) and out of the source
node for day ¢ (beginning arcs), respectively. Let also C,;"’ denote the set of arcs that
are either directed out of the source node on day ¢ or into a SOD node on day ¢. For
given k € K and p € P, let N¥* C N*? be the subset of nodes that excludes only
source and sink nodes from the set N*P. Then, for every node n € NP let the sets
It C AkP and OkP C A contain all arcs that are directed in and out of node n,

respectively.

Two types of decision variables are used in the formulation. For every equipment
type k € K, every day p € P, and every arc a € AP, let X, be a non-negative integer
variable representing the flow on arc a. For every equipment type k£ € K, and every

day g€ P, let qu be a positive integer variable representing the flow of equipment of
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type k on the storage arc for day ¢ at the maintenance center. The basic locomotive

and car assignment problem can then be written as follows:

Minimize ZZ z caXa

kEK pEP ge Akp

subject to

YN Xuxnf (ke K;lel)

PGP GET;hp

2D D fiXa-

ke KC pEP acTkr

SN Y afixa<o (s€S)

ke KL peP acTkr

T Y f-

PEPaEE:p
Yo > Xa+Yf-Yh =0 (ke K;q€ P)
peP aEB:f_l
YN Xo+¥ <t (k € K)
pepP aGC{,"
Y:Zwk-d;‘ (k€ K;qe P)
Y Yi<hn (g€ P)
keKC
Zzzgg”x,.sh,, (veV\{m};qeP)
kEKC pEP ac Akp
Y Xa- ) X.=0 (k€ K;p € P;n € N*)
acikr acokr

X, >0, integer (k€ K;p€ P;a € A*)
qu > 0, integer (k€ K;q€ P).

2.1)

(2.3)

(2.9)

(2.10)
(2.11)
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If c, is the cost of using one unit of equipment on arc a, then the objective function
(2.1) minimizes the sum of all operational costs. Given that nf is the number of units
of equipment k needed on leg [, constraints (2.2) ensure that enough units of each
type of equipment are supplied on each leg. Constraints (2.3) translate locomotive
pulling capacity limits, where f! is a binary constant equal to 1 if and only if arc a
is associated with sequence s, and z, is the maximum number of cars which can be
pulled by one locomotive over sequence s. Flow conservation between equipment trips
is enforced by (2.4). Constraints (2.5) and (2.6) impose weekly and daily equipment
availability, respectively. In these constraints, w* is the maximum number of units of
equipment k available at any time in the period, while dg is the difference between
w* and the number of units available on day g. By letting h, denote the car storage
capacity in station v, storage capacity at the maintenance center is satisfied with
constraints (2.7). Constraints (2.8) serve the same purpose for all other stations of
the network; here, g3¥ is a binary constant equal to 1 if arc a is the storage arc
for station v on day ¢q. Flow conservation along equipment trips is satisfied through
constraints (2.9). Finally, constraints (2.10) and (2.11) require that each variable take

a non-negative integer value.

2.4 Solution Methodology

The integer programming model (2.1)-(2.11) can be solved by a branch-and-bound
algorithm where lower bounds are computed through a Dantzig-Wolfe decomposition
(DANTZIG and WOLFE, 1960). In Section 2.4.1, we describe the application of this
decomposition approach to our model, followed by an explanation of branching rules

in Section 2.4.2.
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2.4.1 Dantzig-Wolfe Decomposition

Model (2.1)-(2.11) has a block angular structure with linking constraints. Indeed, the
objective function (2.1) and constraints (2.9) and (2.10) are separable by equipment
type k and day p. One can thus take advantage of this structure by decomposing the
model into a master problem and a set of subproblems. For any k£ € K and p € P,

consider the polyhedron defined by

Y Xa- ) Xa=0 (ne N (2.12)

a1k aGOv':P

X.>0 (ac A*). (2.13)

This polyhedron has a unique extreme point, the null vector 0, but a potentially
large number of extreme rays. Let Q%P represent the set of extreme rays of the
polyhedron. Each extreme ray corresponds to a path in the graph G*P from the
unique source to a sink. Hence, any solution to constraints (2.9) and (2.10) for given
k and p can be expressed as a non-negative combination of extreme rays chosen from
Q*_ For every extreme ray w € Q¥ and for every arc a € A*, let z,, be a binary
constant equal to 1 if arc a is part of the path associated with extreme ray w. For
every w € (¥ let also 8, be a non-negative variable. Then, for any k € K, p€ P

and a € A* one can write

X, = Z Taub. .

WwESIkP

By substituting the last expression in the original formulation (2.1)-(2.11), one

obtains the following master problem:



Minimize ZZ Z Cq Z Tawb

kEK pEP ge A*p

subject to

2 2 D zabznf

peEP ,,61-"'9 wENkp

IIPID BRI

keKC pEP qcTkr  weqkr

YN af Y zabs <0

keKL pEP acThr wENkP
D2 D Tabu Y-
k L3
peEP aEEqP weENkP

2 2 D Tabe - Y =0

PEP gepkp | wenke

Z Z Z :cw9w+}’(,k5wk

pEP aeC:P wENkP

k k k

Yq 2w _dq
2 ¥y Shm
kek©C

D229 Y TabiShy

kEKC pEP geAkp wenkp

Z Zq,0, > 0, integer
weQkp

Y;" > 0, integer

6, >0

wenkp

(ke K;le L)

(se€S)

(ke K;q€ P)
(k € K)

(ke K;qe P)
(g € P)

(veV\{m}ige P)
(k€ K;p € P;a € A*)

(ke K;qe P)
(k€ K;p € P;w € Q).
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(2.14)

(2.16)

(2.22)

(2.23)
(2.24)

The last model is obtained by applying the Dantzig-Wolfe decomposition principle
to (2.1)-(2.11) while keeping constraints (2.9) and (2.10) in the subproblem. Since

the only extreme point of the subproblem polyhedron is the null vector, removing the

usual convexity constraint from the master problem does not affect its feasible region.
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Given the potentially large size of the set Q*? for each equipment type k € K and
each day p € P, model (2.14)-(2.24) can be solved by a branch-and-bound method in
which the linear relaxation lower bounds are computed by using a column generation
approach. To this purpose, a relaxed master problem is obtained by replacing the
set QP by the subset QP C QF (7 =0,1,...) of extreme rays available at iteration
T of the column generation process. Since the subproblem decomposes into a set of
flow conservation constraints for each k£ and p, new columns (i.e., extreme rays) are
then generated for the relaxed master problem by solving a shortest-path problem in
each network G*. In fact, extreme rays can be characterized by sending one unit of
flow from the source to any of the sinks in the network. Arc costs are modified from
one iteration to the next to reflect the new values of the dual variables associated
with the constraints of the relaxed master problem. This process continues until no

further negative-cost path can be identified in any of the networks.

Let a=(af >0|keK;leL),B=(B <0ls€S8),v= (7,’;|k € K;q € P),
6= (6" <0[keK)and ¢ = (¢! <0|veV\{m}qec P) be the dual variables
associated respectively with constraints (2.15)-(2.18) and (2.21) of the LP relaxation
of (2.14)-(2.24). Constraints (2.19) and (2.20) need not be dualized since they involve

only the qu variables. For given k and p, the objective function of the subproblem

becomes

E CoXa —

ac Akp
YN ofXa-IkeKC)Y D fiBXa+I(ke KY)S " N zfiB.X. -
IEL geT}e SES aeThp $E€S aeTke
Y3 X+ S X=X #Xa-Ike k€)Y YN geeix,
9€P ac PP 9€P qeBk? acChP vEV\{m} qEP acAkP

where I(-) denotes the indicator function taking the value 1 if its argument is true,

and the value 0 otherwise. By summing over all k£ and p, one obtains the objective
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function derived by applying Lagrangian relaxation to model (2.1)-(2.11) and relaxing
all constraints but (2.9) and (2.10). Since the subproblem has the integrality property,
the optimal value of the Lagrangian dual problem is equal to the LP relaxation bound

of both (2.1)-(2.11) and (2.14)-(2.24) (see, e.g., GEOFFRION, 1974).

2.4.2 Branching Rules

In order to determine a feasible integer solution to model (2.14)-(2.24), a heuristic
branch-and-bound method is used. This method consists in a depth-first search with
very limited backtracking possibilities: if at a given node of the tree the LP relaxation
is feasible but its optimal solution contains variables with fractional values, one or

two child nodes are created by applying one of the following branching criteria.

First, to accelerate the solution of the master problem, the locomotive pulling
capacity constraints (2.16) are relaxed and generated dynamically when they are not
satisfied by the current solution. At a given node of the branch-and-bound tree, all
violated constraints are added at once to the LP relaxation to create the child node.

Constraint generation has the greatest priority and is always applied first.

The second branching rule involves fixing the number of locomatives covering a
given train leg. Without this type of branching, the integrality gap may increase
rapidly and the solution may become infeasible in the last few levels of the branching
tree because of insufficient equipment availability. Different criteria can be used to
choose the train leg on which branching is to be performed. For the case where every
train leg requires at most two locomotives, the following rules have proven to be
quite effective. Let a and S be two thresholds such that 1 < a < 8 < 2. If there

are train legs covered by a fractional number of locomotives lying between 1 and
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«, then branching is performed sequentially on all of these. In addition, branching
is also performed on the train leg with the largest fractional number of locomotives
between a and f, if any. In all cases, branching is performed by adding the constraint
that the number of locomotives be equal to 1 on the corresponding train leg. This
branching rule is applied when all relaxed constraints are satisfied and at least one
train leg is covered with a fractional number of locomotives between 1 and 8. This
type of branching is also the only one for which backtracking is allowed. If the
relaxation becomes infeasible before any other type of branching is applied (excluding
the dynamic generation of constraints), the search backtracks to the node at which
the number of locomotives was fixed and explores the alternative branch obtained by

increasing this number by one.

The third rule for branching consists in choosing a fractional path variable 6,
associated with a locomotive type and setting the value of this variable equal to
1. When branching on a locomotive path variable, arcs can sometimes be eliminated
from several networks. In fact, one can remove all arcs that represent a train sequence
containing a train leg which is present in the locomotive path but in a different train
sequence. This is not only true for the locomotive network but also for all networks
associated with equipment types that are required on any of the train legs which are
part of the fixed path. When applying this rule, the path with the largest fractional

value is chosen.

The fourth type of decision involves specifying that a succession of two train
legs (1;,1;) must be covered by the same locomotive. This decision can be treated
directly in the subproblem by using a shortest-path algorithm that adds an additional
dimension to each label (see, e.g., DUMAS et al., 1991). Again, when such a rule is
applied, all arcs that are incompatible with the decision can be removed from the

corresponding networks. In this case, all arcs associated with sequences that cover



93

leg I; followed by leg I; # I; or cover leg l; # I; followed by leg I; can be eliminated as
they contradict the decision. The last two methods are used whenever the first two
cannot yield any decision. In that case, scores are used to determine which method
should be applied and several decisions can be made at once. Also, branching can
be performed on several path variables or leg successions at the same time provided

that their flow is larger than a preset threshold.

The last branching rule consists in choosing a fractional path variable 6, associated
with a car type and rounding up its value to the next integer. This type of branching

is applied only when none of the four preceding rules can provide a decision.

2.5 Extensions

We now describe several extensions that were necessary to adapt the model of
Section 2.3 to the actual problem at VIA Rail. These extensions are somewhat
general and are likely to be required by other railways as well. Some of them are
treated directly by adapting the networks or the objective function whereas others also
require a modification of the solution approach. For reasons of clarity, all extensions
are presented in an individual and independent manner although their combination

poses no difficulty.

2.5.1 Substitutions Between Equipment Types

A simple yet important extension to the basic model is the ability to take substitution

possibilities into account. For example, a club car can usually be used in place of
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a coach car since the service level provided by the former type is superior to that
of the latter. The reverse can also be allowed but a large penalty cost should be
imposed to avoid such substitutions. Although not very frequent, substitutions help
the railway to reduce unnecessary empty car movements and are particularly useful

when equipment availability is restrictive.

For each type of equipment k € K, let J¥ C K be the set of equipment types
which can be substituted for type k. For notational convenience, assume that k ¢ J*.
Also assume that a locomotive cannot be substituted for a car and vice-versa. Then,
for each sequence arc a € T*? and each j € J*, an additional arc must be added to
AP This arc will represent the substitution of equipment j for equipment k on the
sequence associated with arc a. The cost associated with this arc should take into

account not only operational expenses but also possible penalty costs.

Let T7%P ¢ AJP be the set of arcs corresponding to the substitution of equipment
j for equipment k on train sequences. Let also T/*? C T7*? be the subset of these
arcs that are associated with sequences covering leg [. Let finally T*P be the set of

all sequence arcs in network G*?, including those corresponding to substitutions.

Given these definitions, only constraint sets (2.2) and (2.3) need to be modified
to allow for substitutions. The rest of the model as well as the solution approach are
not affected by the introduction of substitution possibilities. Constraints (2.2) and

{(2.3) now become

Y Y+ Y Y Xaznt  (kekilel) (2.25)

peEP aeT,"” jeJk peP as'l‘,""

Y YN £x-3 Y ) afixa<0 (se ). (2.26)

keKC pEP qeTp k€KL pEP qeTHp
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2.5.2 Basic Consists

A distinguishing characteristic of the VIA Rail application is that some units of
equipment are grouped together to form basic consists. For each consist type r € R,
a basic consist is formed by assembling a certain number of units of each required
equipment type kj,k5,.... The number of units of equipment k] is usually chosen
so as to match the minimum number required on any leg which must be covered
by a consist of type r. For example, if all legs must be supplied with at least one
locomotive, one club car and two coach cars, then a basic consist containing the
corresponding number of units of each type may be defined. For each consist type
r € R and each equipment type k € K, let b¥ be the number of units of equipment, &

needed in a basic consist of type r.

Using these compound equipment types has two main advantages from an
operational standpoint. First, it helps to reduce the amount of car switching
performed since all units in the same basic consist always remain together between
two stops at a maintenance center. Second, it simplifies maintenance activities since
all units in the same consist can be inspected at the same time. From an optimization
point of view, basic consists are also very appealing since they help to reduce the size
and the difficulty of the problem. Indeed, when the resource requirements of a train
leg coincide with the units supplied by a basic consist, a single constraint can replace

the set of all individual demand constraints per equipment type.

A disadvantage of using basic equipment consists is that more dead-heading
movements may be performed if it is necessary to use a complete basic consist
where a single extra car is needed. However, this will not happen if the demand
for transportation is balanced as it is the case in our application. Finally, while

substitutions between elementary (disaggregated) equipment types can still be



96

modeled as explained in the previous section, substitutions between equipment units
in the same basic consist would require using a very large number of variables to take

all possibilities into consideration.

To incorporate basic consists into formulation (2.1)-(2.11), we must first define
a network G'P for each r € R and p € P. These networks are very similar to the
networks G*P defined previously for the elementary equipment types. For each of these
networks, let T, be the subset of arcs associated with sequences covering train leg .

Constraints (2.2) can then be replaced by the following two groups of constraints:

Y x.21 (lel) (2.27)
PEP geT?
SN Xxa+d) D dXaznf  (keKilel) (2.28)
PEP geTH® PEP TP

Constraints (2.27) ensure that at least one basic consist is supplied on each train
leg while constraints (2.28) make sure that the total number of units of each type
supplied to each leg (including the units of the basic consist) satisfies the demand.
Then, whenever nf — b¥ < 0 for given k € K and [ € L, the corresponding constraint
(2.28) can be removed from the model since the demand constraint is automatically
satisfied by the units of the basic consist. Finally, constraints (2.3), (2.4), (2.5) and
(2.8) must be modified to take into account the number of units of each equipment

type which are present in a basic consist. For example, constraints (2.3) become

> [T 5 e ST T sk

keEKC LpEP acTkr reR peP a€Tr?

- [Z Yo oafixa+Y N z,.f:b’:Xu] <0 (s€S). (2.29)

keKEL LpEP acTkr rER pEP a€T™P
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2.5.3 Daytime Maintenance

In our basic model, we assumed that all trains were run during the day and that
maintenance operations were performed at night in the unique maintenance center.
In fact, the model can easily be adapted to deal with many scenarios regarding

maintenance constraints.

We first consider the possibility of performing maintenance during the day if
sufficient time is available during a connection at the station associated with the
maintenance center. To incorporate this additional possibility into our model, we
define supplementary arcs that represent the maintenance activity. These additions
are illustrated in Figure 2.3. Several types of arcs have been omitted from the figure

for reasons of clarity.

DAY | DAY 3

<> source A arrival
& sink QO  departure opportunity
A\ departure ’ turn-around

Figure 2.3: Additional arcs used for daytime maintenance
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After the arrival of a train at the station associated with the maintenance center,
the equipment can go directly to maintenance. This activity is represented by a
special arc whose head is the sink node for the corresponding day. This arc is defined
only when the time between the train arrival and the latest departure on the same
day is greater than or equal to the minimum time needed for maintenance. Also,
an arc links the source node on the same day to the departure opportunity node
corresponding to the first possible departure in each direction after the maintenance.
These arcs do not however contribute to constraints (2.4). Instead, an additional flow
conservation constraint is added to the model to make sure that the flow on the first
arc is equal to the sum of the flows on the other two arcs. Such a constraint is needed
for each train leg after which daytime maintenance can be performed and for each

type of equipment that is required on that leg.

In Figure 2.3 for example, daytime maintenance can be performed after the arrival
of train 2066 since there will be enough time to connect with either train 2026 or train
2069. Hence, there is an arc that goes directly from the arrival node associated with
that leg to the sink node for day 2. Also, there are arcs that link the source node for

day 2 to the departure opportunity nodes for the two trains 2026 and 2069.

This approach also provides a way to relax the assumption that all trains operate
during the day. For any train leg that has the maintenance center as its destination,
arcs would link the arrival node to the sink node of the day during which the arrival
takes place. Also, arcs would link the source node for the day on which the equipment
will become available again after having been maintained to the departure opportunity
node for the first train leg in each orientation that can be covered after maintenance.
Finally, a flow conservation constraint would be needed for each such group of arcs to
make sure that units of equipment leaving the source node on these arcs have indeed

been maintained.
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Obviously, this approach introduces an error in enforcing maintenance constraints
since a unit of equipment which leaves the maintenance center at 11:00 at night will be
considered to have been used during the complete day. To get a better approximation,
source and sink nodes can be replicated and associated with shorter time periods. For
example, instead of using sources and sinks for each day, one could use equivalent
nodes for periods of 6 hours. The drawback is that 28 subnetworks per equipment

type would be necessary in a one-week period instead of 7.

Finally, if more than one maintenance center is available to the railway, the model
can be adapted with little effort to deal with this situation. Source and sink nodes
must be defined for each station where maintenance can be performed. In each
network, equipment trips can then begin and terminate at any of the source and sink

nodes, respectively. Also, (2.4) must be replicated for each maintenance center.

2.5.4 Minimizing Switching Operations

Another important extension which must be considered is the minimization of
switching operations. This objective often conflicts with the minimization of
equipment circulation costs since reducing the total number of switchings generally

has the effect of increasing empty car movements.

Recall that a train sequence is a series of consecutive train legs such that if these
train legs are to be covered by the same train consist, then this consist cannot be
modified at any point from the origin of the sequence to its destination. Hence, no
switching occurs between legs that are covered in the same sequence. On the other
hand, consider two legs such that there is sufficient time to perform switching between
the arrival of the first leg and the departure of the second leg. Given the definition of

train sequences, these two legs cannot be part of the same sequence. This is not to
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say that switching will necessarily be performed during the connection. It is indeed
possible that the best solution is to use exactly the same equipment on both legs.
The difficulty here is to be able to determine whether switching is taking place or
not. One way to circumvent this difficulty would be to broaden the definition of a
sequence to include series of consecutive train legs with no switching, even if switching
is possible at certain places. This way, switching would be performed at both ends
of a sequence or else the corresponding previous and next legs would be covered in
an even longer sequence. The drawback of this approach is obvious: the number of

possible sequences would grow out of proportion.

The approach that we propose consists in using a two-phase method. In the
first phase, the model given previously is solved with the integrality requirements
imposed only on locomotive flows. In the second phase, the locomotive equipment
cycles determined in the first phase are held fixed and a modified network is used to
minimize a weighted combination of circulation costs and switching costs. Since the
locomotive trips are known, it is possible to determine easily if car switching does
take place. For example, if a car used on a leg /; is next used on leg I; while the

locomotive used on leg !; is next used on leg I, then switching has occurred.

To introduce switching costs in the model, additional connection arcs are defined in
the networks associated with car types. Suppose that two train sequences s; and s; are
covered with the same locomotive in the solution of the first phase. Then, a connection
arc with a cost of zero will link the arrival node of sequence s; to the departure node
of sequence s;. In addition, the run-thru and turn-around arcs originating from
the arrival node of sequence s; will be given positive costs representing the cost of
switching one unit of equipment. If any of these arcs is used, switching has necessarily
occurred and will be accounted for in the objective function. Connection arcs are

represented by bold dashed lines in Figure 2.4.
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Figure 2.4: Additional arcs used for switching minimization

The optimization model for the second phase is very similar to the one used in
the first phase. However, networks are no longer needed for locomotive types. Also,
demand constraints (2.2) as well as equipment availability constraints (2.6) and (2.5),
and flow conservation constraints (2.4) and (2.9) are only necessary for car types.
Finally, pulling constraints (2.3) which previously linked car and locomotive types
now only involve car types since the number of locomotives used on each sequence is
known. The resulting model is then solved with the integrality requirements satisfied

for all equipment types.

It is worth mentioning that the connection arcs could have been introduced
directly in the original network representation for each type of equipment. By
using constraints stating that a given arc in a car network cannot be used unless
the corresponding arc is used in the locomotive network, switching costs could have

been taken into account in the original formulation. However, there would be an
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enormous number of such arcs and constraints. Indeed, one arc would be needed
for each possible connection between two legs during the planning period. Since
the additional constraints would appear in the master problem of the Dantzig-Wolfe
decomposition, the model would become intractable. Hence, although it provides only

a heuristic method, the two-phase approach seems to be an acceptable alternative in

practice.

2.5.5 Choosing Between Consist Types

In a tactical planning model, the aim is to optimize the utilization of the stock
of locomotives and cars given a fixed train schedule. Hence, it is reasonable to
assume that the consist type used on each leg is held fixed. In long term planning
however, it may be interesting to consider the possibility of choosing the combination

of equipment used on certain train legs.

Assume that for train leg | € L, one must choose a consist type from the
subset R; € R. To incorporate this possibility into our formulation, several steps
are necessary. First, the networks associated with each type of equipment must be
augmented. Instead of having a single arc for each possible sequence, we must now
introduce one arc for each possible sequence and each possible consist type that can be
used on the corresponding sequence. Thus, let TP be the set of arcs associated with
sequences covering leg ! with a consist of type r. These different arcs are needed for
two main reasons. First, different consist types may have different operating speeds
which affect the arrival times. Second, we must distinguish between consist types so

as to impose compatibility constraints.

For each equipment type k € K and each consist type r € R, let e be a binary

constant equal to 1 if and only if equipment & is included in a consist of type r. For
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each leg | € L and each consist type r € R, let Z] be a binary variable equal to 1
if leg | is to be covered with a consist of type r. Finally, let u¥ be an upper bound
on the number of units of equipment k that may be used on leg !. Then, demand

constraints (2.2) must be replaced with the following sets of constraints:

Yzi=1 (el (2.30)
reRy
Y > Xa-nfefz; >0 (keK;leLir€R) (2.31)
peEP aeTf,”
SN Xa-ufefzi <0 (keKleLircR) (2.32)
pePaETff

Constraints (2.30) state that a single consist type must be chosen for each train
leg while constraints (2.31) and (2.32) ensure that the number of units of equipment
k used on leg [ lies between nf and uf if equipment k is included in the chosen consist
type, and is equal to zero otherwise. Since there may be a large number of constraints
(2.32), these constraints may be originally relaxed and generated dynamically during
the branch-and-bound search. Also, branching should first be performed on the Z7

variables.

2.6 Computational Experiments

Since the primary objective of this paper was to describe the development of a model
and solution strategy for a real-life application, we chose to restrict computational
experiments to the data available from VIA Rail. Nevertheless, we performed a
rather large selection of tests to measure the performance of the algorithm and tune

its parameters. We now describe the data used in the computational experiments,



104

followed by a brief summary of results and a comparison with the solutions used by

VIA Rail.

2.6.1 Description of Data

The data used in all computational experiments concern the trains operated by
VIA Rail in the Québec-Windsor corridor. More than 325 trains are run weekly
in accordance with a schedule that is revised on a seasonal basis to reflect changes
in the demand. These trains, which link together the most important cities in the

provinces of Québec and Ontario, all operate during the day.

The physical rail network considered in this application is composed of nine
primary stations and each train leg originates and terminates in one of these stations.
The physical network also has a large number of secondary stations at which
passengers can get on or off a train but where no train consist modifications can take
place. Hence, only primary stations need to be considered in the model. For each
primary station, minimum run-thru, turn-around, and switching times are known.
These durations generally vary from 30 minutes to a few hours. In each instance
solved, car switching is permitted in either two or three stations. For each station, a
storage limit also specifies the maximum number of cars that may be stored at any

time in that station.

Six types of equipment are used by the company to ensure service on the corridor:
two types of engines (LRC and F40) and two types of club and coach cars (LRC and
HEP). These equipments can be combined in three different ways to create consists
types with different operating speeds. Combining an LRC locomotive with LRC cars

yields a consist with a maximum operating speed of 100 mph while combining an F40
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locomotive with LRC and HEP cars yield consist types with maximum operating
speeds of 95 mph and 90 mph, respectively. For each type of equipment, daily
availabilities are known and must be strictly respected. These availabilities, which
vary only slightly from one day to the next, are rather restrictive in the case of
locomotives but do not lead to particularly tight constraints in the case of cars. The

complete fleet is composed of over 130 units of equipment.

For each train leg, demand is expressed as the minimum number of club cars and
coach cars needed on that leg. This demand must be satisfied and can be exceeded
provided that locomotive pulling constraints are satisfied. The total number of cars
needed on a train normally lies between 3 and 8 whereas the pulling capacity of an
engine varies from 5 to 8 cars depending on different factors such as locomotive make
and the physical characteristics of the train segment. Most trains require a single
locomotive but a few exceptions may require two. Basic consist types are defined
for each of the three consist types enumerated above. For example, a basic consist
for F40 locomotives and LRC cars contains one locomotive, one club car and two
coach cars. This basic consist contains the minimum requirements for any train to

be covered with a consist of that type.

A single maintenance center is used by VIA Rail. This maintenance center is
located in Montréal and is of course associated with a station in which car switching
is allowed. Maintenance must be performed at least once a week on every unit of
equipment. Since all trains are operated during the day, most maintenance activities
take place at night. However, daytime maintenance is also allowed provided that the

time for connection is at least 5 hours.

The primary objective considered in all computational experiments is to minimize

the sum of operational costs associated with total car miles. However, a secondary
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objective of minimizing the number of switchings is also taken into account by

introducing penalties in a modified objective function (as explained in Section 2.5.4).

Three different data sets were provided by VIA Rail, each corresponding to the
schedule used in a different season. From these three data sets, six instances were
derived: in the first group of instances (instances 1 to 3), the type of consist used on
each train leg is chosen to match the assignment that was used by VIA Rail. The last
group of instances (instances 4 to 6) is similar to the first group but incorporates the
possibility of choosing the consist type to be used on certain train legs. In this case,
a choice must be made between two possible consist types for approximately 30%
of all train legs. The number of train legs in each instance varies from 326 to 348.
Finally, three scenarios were considered for each instance by varying the importance
given to the minimization of switching operations. In the first scenario, switching is
barely penalized whereas in the second, a moderate penalty is imposed. In the third
scenario, switching penalties are calibrated so as to produce a solution with a number
of switchings smaller than or equal to the number of switchings in the solution used

by VIA Rail.

2.6.2 Computational Results

All instances were solved with the approach presented in Section 2.4 using am
adaptation of the GENCOL?! software. This adaptation was required to incorporate
the various extensions and to implement the branching strategies described in

Section 2.4.2. All experiments were performed on a Sun Ultra 2 computer (300

MHz).

IGENCOL is an optimization software based on column generation that was developed at
GERAD in Montréal.
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Phase I results

As explained in Section 2.5.4, a two-phase approach is used to minimize switching. If
two instances differ only by the importance given to the minimization of switching,
the solution to the first phase is thus common to the two instances. Table 2.1 reports
the number of branch-and-bound nodes, the number of relaxed constraints generated
dynamically during the search, the total number of iterations of the master problem
for column generation, and the phase I gap for each instance. Recall that in the first
phase, integrality constraints are imposed only on locomotive variables. Hence, the
gap is the relative difference between the cost of the (partially) integer solution and
the cost of the initial relaxation. This gap may be larger than the actual integrality
gap since the initial relaxation does not contain all the constraints of the LP relaxation

of the problem (some of them being generated dynamically).

Table 2.1: Results of Phase I Optimization

Train BB Dynamic MP Phase I CPU time

Instance legs nodes constraints iterations gap (hours)
1 326 249 370 3 006 1.8% 1.30
2 348 308 522 5313 2.7% 3.33
3 347 155 359 3 481 1.3% 2.72
4 326 291 404 5 450 1.6% 4.73
5 348 412 740 10 499 3.2% 14.60
6 347 225 355 4 343 1.5% 4.32

For example, the search tree for the first instance contained 249 nodes and 370
constraints were generated during the exploration of the tree. Solving the linear
relaxations at these nodes with column generation required a total of 3006 iterations
of the column generation process. The problem was solved in 1.3 hours and the
relative integrality gap was 1.8%. As expected, solving each of the last three instances
required more efforts than did solving their corresponding counterpart in which the

consist type assignment was fixed. In particular, instance 5 required more than 14
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hours of computation. However, it is worth recalling that this is a planning problem

that is solved only once every two or three months.

Phase II results

Solving the second phase model is, however, much faster. This process rarely requires

more than 5 seconds of CPU as very few nodes must be explored before an optimal

integer solution is found. Table 2.2 reports the cost of the solutions obtained by

varying the weight assigned to switching minimization. For confidentiality reasons,

we do not directly report the cost of the solution but rather express it as a percentage

of the cost of the solution used by VIA Rail. Hence, the total cost column indicates

the ratio of the cost of the solution produced by the algorithm over the cost of the

solution produced manually by VIA personnel.

Table 2.2: Comparisons with solutions from VIA (fixed consist types)

Total Variable Number of Total
Instance cost cost switchings gap
la 97.3% 55.1% 36 (138.5%) 4.6%
1b 98.2%  69.6% 25 ( 96.2%) 5.5%
1c 99.1% 84.4% 9 ( 73.1%) 6.3%
2a 98.3% 71.7% 40 (181.8%) 5.0%
2b 99.4%  90.5% 9 (131.8%) 6.0%
2c 99.9% 99.1% 21 ( 95.5%) 6.5%
3a 97.3% 56.7% 35 (166.7%) 4.3%
3b 99.1% 85.5% 7 (128.6%) 5.9%
3c 99.8% 96.5% 21 (100.0%) 6.5%

The cost reduction may appear to be small at first sight. However, it must be

emphasized that a large portion of the total cost is in fact a fixed cost for supplying

each train with the minimum number of units of each type of equipment.

Since

demand constraints must be satisfied, this cost cannot be reduced. Thus, the part
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of the cost that can actually be reduced by an improved planning is the variable
cost associated with non-productive (or dead-heading) movements of cars supplied
in excess of the minimum requirements of each train. The variable cost column of
Table 2.2 expresses the variable cost in the computed solution as a percentage of the
variable cost in the solution of VIA Rail. For example, while the total cost decreased

by only 2.7% in scenario la, the variable cost decreased by 44.9%.

Of course, one way to decrease the total number of miles traveled by inactive cars is
to detach unnecessary cars before each train leg when this is possible and to re-attach
them as needed. Hence, we also report the total number of times that switching was
performed. In scenario la, cars were switched on or off a train 36 times whereas this
number was only 26 in the solution used by VIA Rail (an increase of 38.5%). On the
other hand, the solutions obtained for scenarios 1b and 1c dominate the solution of

VIA since they reduce both the variable cost and the number of switchings.

Because our approach is aimed at minimizing operating costs and considers
switching minimization as a secondary (and less important) objective, it is sometimes
difficult to obtain solutions that improve both objectives concurrently. For example,
the solution for instance 3 which had the lowest number of switchings could only
reduce variable costs by 3.5%. However, considering the very significant savings which
are associated with variable cost reduction, a good strategy is to choose a solution
with the least total cost given that the number of switchings does not exceed a chosen
threshold. Since reducing the variable costs by a significant margin translates into
annual savings of hundreds of thousands of dollars, these savings more than offset the

cost associated with performing a few additional switchings.

Finally, the last column of Table 2.2 indicates the relative difference between

the cost of the final phase II integer solution and the cost of the initial phase I
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relaxation. One observes that this gap (which does not take switching penalties into
consideration) grows moderately as the weight attributed to switching minimization
increases. Again, this is a result of the fact that no consideration is given to the
concept of switching in the first phase. Hence, as the importance given to switching
minimization increases, more unproductive movements are required, leading to larger

variable costs.

In the last group of computational experiments, we used the same scenarios but
applied them to the instances in which a choice must be made between two consist
types for certain train legs. Table 2.3 summarizes the results of these tests. Since we
did not have comparable solutions produced by VIA Rail, we could no longer compare
the variable costs as we did for the first three instances. Instead, we computed the
reduction in the fixed cost that resulted from a better assignment of consist types to

the train legs.

Table 2.3: Comparisons with solutions from VIA (variable consist types)

Total Fixed Number of Total
Instance cost cost switchings gap

4a 96.2% 98.7% 33 (126.9%) 4.8%
4b 97.6% 98.7% 21 ( 80.8%) 6.1%
4c 98.2% 98.7% 19 ( 73.1%) 6.7%
5a 98.2% 98.8% 39 (177.3%) 5.9%
5b 99.4% 98.8% 28 (127.3%) 6.9%
5c 100.1% 98.8% 22 (100.0%) 7.6%
6a 96.8% 98.9% 34 (161.9%) 4.3%
6b 98.1% 98.9% 26 (118.2%) 5.6%
6c 99.5% 98.9% 21 (100.0%) 6.9%

For example, the solution for scenario 4a yielded a 3.8% reduction of the total cost.
This reduction, which is larger than the reduction of 2.7% yielded by the solution to

instance la, is in part possible because of a reduction of 1.3% in the fixed cost. As
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before, we also tried to produce a solution that matched or improved the number
of switchings used by VIA Rail with a smaller cost. Whereas this was possible for
instances 4 and 6, we could not obtain such a solution for instance 5. The best solution
that we could obtain had a cost that exceeded that of the VIA Rail solution by 0.1%.
This result, which is somewhat surprising given that instance 5 is a relaxation of
instance 2, can be explained by the fact that we are using a two-phase method with

heuristic branching.

2.7 Conclusions

We have proposed a formulation and a solution method for a real-life application of the
locomotive and car assignment problem in the context of rail passenger transportation
in North America. The basic model captures the fundamental difficulties of the
problem and is also flexible in the sense that it can be customized to deal with
many additional situations. Several extensions that are needed to make the model
useful in practice have been discussed. The algorithm, which has been successfully
implemented at VIA Rail, finds good quality solutions in a few hours of computing
time. This performance is satisfactory given the fact that the model need only be
solved once every few months. The model can also be used to evaluate and compare
different scenarios. For example, VIA Rail could find a solution that required one
less locomotive on one of the data sets, thus realizing potential savings of 400,000 $
annually. To obtain a valuable tool for performing “what-if” analysis, a faster solution
approach would however be required. Also, a different model and solution approach
would be necessary to deal with the daily operations problem in which more details,
such as car positioning and orientation, must be considered explicitly. These areas of

research will be addressed in subsequent papers.
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Chapitre 3

A Benders Decomposition
Approach for the Locomotive and

Car Assignment Problem

Article écrit par Jean-Francois Cordeau, Francois Soumis et Jacques Desrosiers;

accepté pour publication dans Transportation Science en 1999.

La principale faiblesse du modele présenté au chapitre précédent est que le temps
nécessaire a sa résolution est trés fortement lié au nombre de contraintes dans le
probléme maitre de la décomposition de Dantzig-Wolfe. Lorsque ce nombre excéede
1500 ou 2000, le temps de calcul devient rapidement excessif. Or, c’est ce qui se produit
si l'instance a résoudre comporte plus de 500 trains ou encore si la combinaison
d’équipement utilisée sur chaque train n'est pas fixée a priori. C'est également ce
qui se produit si l'instance a résoudre comporte plusieurs centres d’entretien et que
'entretien peut étre effectué en tout temps aprés l'arrivée d’un train a l'un de ces

centres.

Pour plusieurs transporteurs, il est important de pouvoir considérer plusieurs
possibilités quant a la combinaison d'équipement utilisée sur chaque train. Compte

tenu des cofits d’acquisition et d’entretien élevés des locomotives et des wagons, cette
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flexibilité accrue permet souvent de réaliser des économies substantielles en obtenant
une meilleure utilisation de I’équipement. De plus, de nombreuses entreprises opérent
des trains a la fois pendant le jour et la nuit et utilisent plusieurs centres d’entretien
répartis dans le réseau. Afin de résoudre des instances de grande taille dans un tel

contexte, il est clair qu'une approche différente est nécessaire.

Cet article présente un modele simplifié mais plus général pour I'affectation
simultanée des locomotives et des wagons. Le modéle permet de choisir la combinaison
d’équipement utilisée sur chaque train et impose les contraintes de demande, de
capacité, et de disponibilité de I’équipement. Bien qu’il ne tienne pas compte des
contraintes d’entretien, des possibilités de substitution ou des pénalités pour le
couplage et le découplage de wagons, il posséde néanmoins une structure permettant
de traiter simplement ces extensions. Comme le précédent, ce modéle est basé sur un
ensemble de probléemes de flot dans un réseau qui sont cette fois reliés par des variables
et des contraintes exprimant les restrictions relatives au choix des combinaisons

d'équipement et aux séquences de train.

Afin de résoudre le probléme, plusieurs approches exactes sont comparées. Nous
considérons d'abord la relaxation lagrangienne et la décomposition de Dantzig-Wolfe.
En ne conservant que les contraintes de conservation de flot dans le sous-probléme, on
obtient un modele trés facile & résoudre. Malheureusement, le trop grand nombre de
contraintes liantes relaxées ou traitées au niveau du probléme maitre fait en sorte que
les temps de calcul sont trés élevés pour ces deux approches. Par contre, le modéle
peut étre résolu trés rapidement & 1'aide d'une approche basée sur la décomposition de
Benders. Le modéle proposé admet en effet une décomposition primale au niveau des
variables: pour une affectation réalisable de combinaisons d’équipement aux séquences

de trains, le probléme se résume 4 un probléme de flot pour chaque type d’équipement.
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Nous proposons par ailleurs plusieurs raffinements afin d’accélérer 'algorithme
de décomposition de Benders appliqué a ce probleme. Par exemple, la génération a
priori d'un petit nombre de coupes d’'optimalité et I'ajout de contraintes valides au
probléme maitre permettent des gains de vitesse substantiels. En fait, cette approche
permet de résoudre en quelques minutes seulement des instances semblables a celles

décrites au chapitre précédent mais comportant toutefois moins de contraintes.

La contribution de cet article est donc de présenter un modéle simplifié mais
général qui servira de point de départ pour le développement de modeles plus
complexes incorporant tout la gamme des contraintes traitées dans |’application
précédente. La structure de ce modele fait en sorte qu’il peut étre résolu tres
rapidement, méme lorsque le nombre de trains augmente ou que chaque train peut
étre couvert par plusieurs combinaisons d’équipements. Le prochain chapitre présente

différentes extensions & ce modele.
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Abstract

One of the many problems faced by rail transportation companies is to optimize
the utilization of the available stock of locomotives and cars. In this paper, we
describe a decomposition method for the simultaneous assignment of locomotives
and cars in the context of passenger transportation. Given a list of train legs and
a fleet composed of several types of equipment, the problem is to determine a set
of minimum cost equipment cycles such that every leg is covered using appropriate
equipment. Linking constraints, which appear when both locomotives and cars are
treated simultaneously, lead to a large integer programming formulation. We propose
an exact algorithm, based on the Benders decomposition approach, that exploits the
separability of the problem. Computational experiments carried on a number of real-
life instances indicate that the method finds optimal solutions within short computing
times. It also outperforms other approaches based on Lagrangian relaxation or

Dantzig-Wolfe decomposition, as well as a simplex-based branch-and-bound method.

Keywords: Rail transportation; integer programming; multi-commodity network

flow models; Benders decomposition.
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3.1 Introduction

In most countries, passenger trains operate according to schedules which are revised
every few months according to anticipated or observed variations in the demand.
These schedules depend on evaluations of passenger traffic and on the availability of
the resources required to operate the trains. Given a proposed train schedule, the
railway must plan the utilization of the available equipment so as to ensure service
on all scheduled trains while minimizing operational costs. The traditional planning
approach consists in separating the assignment of locomotives to trains from the
assignment of cars. In this paper, we propose a method for simultaneously assigning
both locomotives and cars. Because of the high degree of inter-dependence between

these decisions, our approach can generate very significant savings for most railways.

Railways usually use locomotives and cars of different types which are combined
together to form train consists. A train consist is a group of compatible units of
equipment that travel along on some part of the physical rail network. In the context
of passenger transportation, a train consist is typically formed by attaching to one or
two locomotives a certain number of first-class and second-class cars. Occasionally,
additional restaurant or baggage cars can also be part of it. When multiple types
of locomotives and cars are available, attention must be paid to combine together
compatible units of equipment: some units may not be coupled together for technical
reasons while others should not be combined for the sake of homogeneity. Normally,
each equipment also has an associated (maximum) operating speed and the operating
speed of the consist will be limited by the slowest of its components. While delays
are often tolerated in the case of freight transportation, they are a critical issue in

the case of passenger transportation.
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The equipment assignment plan specifies the composition of the train consist that
will be used on each scheduled train, and indicates which trains will be covered by the
same units of equipment. In a medium-term planning horizon (i.e., a few months),
the fleet of equipment is fixed and the objective followed in making these decisions
is usually to minimize some measure of operational costs. The problem is generally
defined over a given planning horizon that corresponds to the period length of the
schedule. In most cases, this period is equal to a week. However, since the schedule is
updated only every few months, a periodic solution that will repeat cyclically is very
desirable. Hence, the problem can be referred to as the tactical periodic equipment
asstgnment problem. The model and solution methods introduced next could also be

applied to the strategic problem in which resource acquisition is taken into account.

Besides these fundamental aspects of the problem studied, many complicating
constraints must be considered. First, railway equipment is very costly and resources
are generally limited. Hence, planners must deal with upper bounds on the number
of units of equipment of each type they may use. Next, a large varicty of additional
constraints come from the specific characteristics of the physical rail network. For
example, reversing the orientation of a train or detaching a car from a train consist
during a stop in a station may require the presence of special equipment or personnel.
Finally, to comply with safety regulations and perform minor repairs, each unit must

usually be inspected at regular intervals.

The simultaneous assignment of both locomotives and cars has received a rather
limited attention in the operations research literature. Decision support systems for
improving the utilization of locomotives and cars at Indian Railways were developed
by RAMANI (1981) and RAMANI and MANDAL (1992). Very little optimization is
present in their system which basically helps planners to perform local improvements
to the solution by analyzing train connections. A system developed by SABRE
for SNCF (BEN-KHEDER et al., 1997) treats equipment modules containing both
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locomotives and cars. However, these modules are already built and there only
remains to decide which modules will be assigned to each train. Also, all modules
allowed to cover a given train are compatible. The problem treated in the present
paper is more complex since there are separate requirements for each type of

equipment and one must consider compatibility constraints between these equipment

types.

The problem of locomotive assignment has, however, been the subject of much
more research. In particular, BOOLER (1980, 1995), WRIGHT (1989), FORBES et al.
(1991) and FISCHETTI and ToTH (1997) have studied the version in which each
train requires a single locomotive but multiple locomotive types are available. The
more complex problem where each train may require many locomotives was first
studied by FLORIAN et al. (1976). The authors proposed a multi-commodity network
flow formulation and an algorithm based on Benders decomposition for the strategic
problem of engine acquisition. Later, SMITH and SHEFF1 (1988) described a heuristic
for a model that incorporates uncertainty in locomotive requirements through the
definition of the objective-function. Also, the implementation of a planning model
at the Union Pacific Railroad was described by CHIH et al. (1990). Very recently,
ZIARATI et al. (1997b) modeled the operational version of the problem as a multi-
commodity network flow problem with supplementary variables and constraints. A
weekly horizon is considered but in order to solve large instances, the problem is split
on a temporal basis into a set of overlapping slices of two or three days each. The
problem for each time slice is optimized using a branch-and-bound procedure in which
the LP relaxations are solved with a Dantzig-Wolfe decomposition. Computational
experiments performed on data from the Canadian National Railroad generated very
significant savings over the solution used by the company. However, models for the
assignment of locomotives do not generalize easily to the simultaneous assignment

of locomotives and cars since they consider only train-locomotive compatibility and
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neglect the effect of equipment combinations on operating speed. Additionally,
most of these models do not consider connection times that depend on whether the

locomotives are uncoupled after the arrival of the train.

For a recent survey of optimization models for train routing and scheduling, the

reader is referred to the work of CORDEAU et al. (1998c).

The rest of the paper is organized as follows. In Section 3.2, the notation that
is used throughout the text is introduced and a mathematical formulation of the
problem based on a space-time network is presented. An exact algorithm based on the
Benders decomposition approach is then described in Section 3.3, while refinements
and implementation considerations are detailed to some extent in Section 3.4. In
order to investigate the efficiency of the method, computational experiments were
performed using data from VIA Rail Canada. The results of these experiments are
reported in Section 3.5. Conclusions and paths for future research are presented in

the last section.

3.2 Mathematical Model

Let K be the set of equipment types. An equipment type k € K is usually defined
for each make of locomotive or car operated by a railway, and specifies the common
characteristics and availability of a group of units that are considered identical. Let R
be the set of consist types. A consist type r € R identifies a collection of compatible
equipment types containing one locomotive type and some car types that may be
used to form a train consist with a given maximum operating speed. Set R is used to
impose compatibility constraints. Let L be the set of train legs. Each train leg{ € L

is defined by origin and destination stations, resource requirements, and possible pairs
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of departure and arrival times that depend upon the speed of the consist used on the
leg. An ordered set of train legs {l;,,li,,...,li.} is said to be feasible for a given
consist type if for every pair of consecutive legs (l;;,/;, ), the destination station of
the first leg is the origin station of the second leg, and the connection time between
the two legs is sufficient. The feasibility of a set of train legs depends on the consist

type since its operating speed affects the departure and arrival times.

In some cases, even though a pair of legs is feasible, it may be impossible to
modify the consist at the intermediate station, either because the connection time is
too short or because the necessary installations are not available. To take this into
consideration in our model, we define a train sequence as a feasible ordered set of
train legs such that if these legs are covered by the same consist, then the consist
may not be modified at any intermediate point. Let ST (r € R) represent the set of
train sequences on which a consist of type r can be used. For notational convenience,
the set ST also contains sequences composed of a single train leg which can be covered

by a consist of type r.

3.2.1 Network Representation

For each equipment type k € K, we define a space-time network G* = (N*, A*) where

N* is the node set and A is the arc set. A portion of such a network is presented in

Figure 3.1.

The node set N* contains departure, arrival and repositioning nodes for every
train leg on which equipment of type k¥ may be used. While the departure node
corresponds to the exact departure time for the given leg, the arrival node represents
the moment defined by the arrival time plus an additional duration, called the thru-

turn time, which corresponds to the time needed to inspect the train consist after



O Departure node R Sequence arc
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Figure 3.1: Portion of network G* for equipment type &

its arrival and let passengers get on or off the train. This moment thus represents
the time after which the train consist can continue its trip through the network.
Additional nodes are used to represent the repositioning of a unit within the same
station after its arrival. For example, if a station is located along an east-west track,
then a train consist entering the station from the east will need an extra amount of
time, called the turn-around time, to reposition itself for an eastbound leg. When the
train consist can be modified at the end of a leg, the thru-turn and turn-around times

include the time necessary to perform the modifications, called the switching time.
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If switching is completely forbidden in a certain station, that station need not be
represented in the space-time network. Legs that have the corresponding station as
an origin or a destination will necessarily be covered as part of a sequence containing

two or more legs.

The arc set A* contains a train sequence arc for every sequence on which equipment
of type k may be used. Such an arc goes from the origin node of the first leg to the
arrival node of the last leg in the sequence. Define T* C A* as the set of arcs in the

aph G that are associated with train sequences.
gr

To illustrate the purpose of train sequences, consider legs A and B in Figure 3.1.
These two legs constitute a feasible ordered sequence of legs since the arrival time
of the first leg plus the connection time (thru-turn time) is less than the departure
time of the second leg. However, these legs cannot be covered by the same piece of
equipment if modifications are to be made to the consist at the intermediate station.
In the space-time network, the arrival node for leg A is thus located after the departure
node for leg B. Hence, if it is desired to modify the consist covering leg A after its
arrival in the destination station, this equipment cannot be used to cover leg B. If
however, one accepts to use exactly the same equipment on leg B as on leg A, then the
two legs can be covered by the same consist as part of a sequence. In some cases, it
will be preferable to avoid modifying the consist even though unnecessary equipment
can possibly be hauled on one of the two legs. The additional units of equipment
that are present on a consist but not needed for its operation are called dead-heading
units. Dead-heading units usually give rise to unnecessary costs that railways try to

minimize.

The set A* also contains a repositioning arc for every possible movement within
a station. For example, if a station is divided between eastbound and westbound

trains, such arcs would be used to represent the change of orientation of a physical
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train consist. Generally, one repositioning arc is needed for each train leg which can

occur last in a sequence.

Finally, a waiting arc is defined for every pair of nodes that represent consecutive
events (departure, arrival or repositioning) involving trains with the same orientation.
Again, if a station is divided between eastbound and westbound trains, then waiting
arcs exist between departure, arrival or repositioning nodes that involve the trains
oriented accordingly. Since a periodic solution over a given horizon is sought, waiting
arcs are also present between the nodes that represent the last event and the first

event of the period in each station.

3.2.2 A Multi-Commodity Network Flow Formulation

For every consist type r € R and for every sequence s € S", let y,, be a binary
variable equal to 1 if and only if train sequence s is covered using a consist of type
r. For every equipment type k € K and every arc a € A¥, let z, be a non-negative
integer variable representing the flow on arc a and let ¢, represent the operational
cost of using one unit of equipment on that arc. For sequence arcs, this cost depends
on the length (mileage) of the arc and on the type of equipment. It usually concerns
fuel consumption, maintenance and minor repairs, but can also include a depreciation
cost associated with equipment ownership. For waiting and repositioning arcs, this

cost can include a penalty for minimizing their utilization.

For every equipment type k € K and every sequence arc a € T*, define r, € R and
sqs € S™ as the consist type and the sequence associated with the arc a, respectively.
Since a given sequence and a given consist type usually have several arcs associated
with them (one for each type of equipment used in the consist), it is convenient to be

able to refer to the collection of all arcs associated with this sequence and this consist
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type. Hence, define T, = UkeK{“ € T*ir, = 1,5, = s}. For any arc a, let also k,

represent the equipment type associated with this arc.

For any train leg [ and any train sequence s, define the binary constant d;, equal
to 1 if and only if train leg ! is part of sequence s. For every k € K and a € T*, define
{, as the minimum number of units of equipment & needed to cover train sequence s,
and u, as the maximum number of units of equipment k& allowed on train sequence s,.
These numbers, which serve to impose resource requirements and locomotive pulling
capacity, have a meaning only when the corresponding sequence is covered with a
consist using the given equipment. Otherwise, no unit of equipment & will be allowed

on the arc associated with the corresponding sequence.

Finally, for every node n € N* (k € K), the sets [, C A* and O, C A* contain

all arcs that are directed in and out of the node n, respectively.

The tactical periodic equipment assignment problem can now be stated as follows:

Minimize Z Z CaZa (3.1)

kEK ac Ak

subject to

Y diy, =1 (lel) (3.2)

reR s€ST
Ta — laYrs 2 0 (re RyseSa€T,,) (3.3)
Ta = UgYrs < 0 (re RyseS5a€eT,) (3.4)
Y oza- ) za=0 (k€ K;n e N¥ (3.5)
a€l, a€0y

I, > 0 and integer (k € K;a € A%) (3.6)
Yrs € {0, 1} (T € R; s € Sr) (37)
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In this model, the binary y,, variables indicate the assignment of consist types
to train sequences while the integer z, variables represent the actual routing of.
the locomotives and cars. The objective function (3.1) minimizes the sum of all
operational costs. Constraints (3.2) require that each train leg be part of exactly
one sequence covered by an appropriate consist. Constraints (3.3) and (3.4) impose
lower and upper bounds on sequence arcs of all networks depending on the choice
of sequences and consist types. Flow conservation at every node for each equipment

type is imposed by constraints (3.5).

This formulation is rather general and does not take into account the specific
details of any particular application. It can however be customized to deal with many
additional situations. First, equipment availability constraints can be incorporated
easily. Let C* C A* be a set of pairwise incompatible arcs in G* such that the removal

‘ of these arcs makes the network acyclic. For example, this cut can contain all arcs
that traverse a given moment in time. It is easy to verify that when flow conservation
equations are satisfied throughout the network, it suffices to impose an upper bound
on the sum of the flows on all arcs of the cut C* to ensure that equipment availability
will be satisfied at any time. If the number of available units of equipment k£ is denoted

by e*, then the following constraints can be added to the original formulation:

Yz < (keK) (3.8)
aEC*

Next, it is assumed here that the cost of using one unit of equipment is the same
whether the unit is active or inactive. If this is not the case, then for every sequence
arc a € T*, c, may represent the cost of a dead-heading unit on sequence s, and an
additional cost ¢, may then be associated with y.; to represent the supplementary

. expenses, over the dead-heading costs, incurred by all active units required. One
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would then add the term ), .p Y o Crs¥rs to the objective function (3.1). Also,
by setting ¢, = M* for each cut arc a € C* where M* is a large positive constant
representing the fixed cost of owning and maintaining one unit of equipment k over
the considered planning horizon, one will minimize a weighted combination of the

number of units used and the operating costs.

Finally, the inclusion of maintenance constraints is more involved. If the
constraints are expressed in terms of a maximum number of days, say p, between
successive maintenances, these constraints can be incorporated to the formulation by
replacing the network for each type of equipment by a multi-commodity network.
For each day of the planning horizon, a commodity would then be associated with
equipment trips starting at a maintenance station on that day and finishing at most p
days later. Additional flow conservation constraints would also be needed to link these
commodities at every station where maintenance can be performed. Maintenance
constraints will not be treated in this paper but will be the object of subsequent

research to address various extensions.

The formulation contains a large number of variables and constraints, even for
moderate-size instances. The large size of the model is a direct result of the need
to consider connection times that depend on whether switching is performed. When
switching is allowed in any station and switching time is not larger than thru-turn
and turn-around times, there is no need to define sequences containing more than
one leg. However, this is very rarely the case and the resulting model usually has
a large number of sequences. Solving it through a branch-and-bound method with
bounds computed using the simplex algorithm may thus require a significant amount
of computing time. However, the model has a nice block angular structure which is
well suited for mathematical decomposition. We now consider the use of a primal

decomposition method to solve this problem.
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3.3 Benders Decomposition

For any feasible solution to constraints (3.2) and (3.7) which involve only the y,,
variables, problem (3.1)-(3.7) decomposes into | K| network flow subproblems. Hence,
for given values of the (complicating) y,, variables which indicate the assignment
of consist types to train sequences, the resulting subproblems are relatively easy to
solve and involve only the flow variables z,. This observation points to a method
that would iteratively adjust the values of the y,, variables until optimality is reached
or a good solution is found. This is the motivation for using Benders decomposition
(BENDERS, 1962). We now proceed to reformulate model (3.1)-(3.7) into a model
with less variables but many more constraints. Fortunately, most of these constraints
are inactive at optimality and need not be considered explicitly. Hence, we will then

describe how an efficient algorithm can be derived from this reformulation.

3.3.1 Benders Reformulation

Let Y be the set of binary vectors for the y,, variables that satisfy constraints (3.2)
and (3.7). For any given vector § € Y, the resulting problem in the z, variables,

called the primal subproblem, is defined as follows:

v(§) = Minimize Y Y cozq (3.9)
kEK gqe Ak
subject to
Za 2 lalrs (reR;s€eST;aeT,,) (3.10)
Ta < Ualrs (reR;seSTaeT,) (3.11)
Zra—zza=0 (k € K;n € N¥) (3.12)
a€ln acQ0y

z, > 0 and integer (k € K;a € A¥). (3.13)
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Since the values of the y,, variables are fixed, constraints (3.10) and (3.11) become
simple lower and upper bounds on the z, variables: once the assignment of consist
types to sequences is made, there only remains to determine the exact number of
locomotives and cars used on the sequence arcs. These lower and upper bound
constraints can be treated implicitly, thus considerably reducing the size of the
problem. Also, since problem (3.9)-(3.13) decomposes into a set of pure network
flow problems, integrality constraints can be discarded with no effect on the optimal
solution. Hence, the optimal value of this problem is equal to the optimal value of

the dual of its LP relaxation.

Let B=(8a20re RseS,acTy),y= (1 <0r€R,s€S,acT,
and 7 = (m,|k € K;n € N*) be the dual variables associated with constraints (3.10),
(3.11) and (3.12), respectively. For every arc a € A% (k € K), define i, and j, as
the tail and head nodes, respectively. The dual of the LP relaxation of the primal

subproblem, called the dual subproblem, is written as follows:

Maximize D" > (bafrafa + tadrsta) (3.19)
rER s€ST a€T,,
subject to
Bat+Ya—mi, +7,<c; (k€ K;aeTH (3.15)
~Mi, +Tj, < Ca (k€ K;a e AF\ T (3.16)
Ba>0 (ke K;aeTk (3.17)
Ya <0 (ke K;a€ T"). (3.18)

Let D be the feasible region of the dual subproblem and let Pp and @p be the set
of extreme points and extreme rays of D respectively. Note that D does not depend

on ¥ and that D # @ whenever ¢, > 0 (k € K;a € A*) since the null vector 0 is a
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feasible solution. Hence, by strong duality, either the primal subproblem is infeasible
or it is feasible and bounded. The optimal value of the preceding pair of primal and

dual subproblems can thus be characterized as follows. If

Z Z Z (€aTrsBa + YaFrsYa) <0

réR s€S” a€Ty,

for every extreme ray (3,4, 7) € @Qp then the dual subproblem is bounded and the

primal subproblem is feasible. The optimal value of both problems is then given by

(,s,vrfl,%lépp Z Z Z (ea'grsﬁa + uaﬂra'}’a)-

reR seST aeTy,

If, however, there exists an extreme ray (3,4, w) € Qp such that

Z Z Z (eagrsﬁa + uaﬂr,-ya) > 0,

reR s€ST a€T),
then the dual subproblem is unbounded and the primal subproblem must be infeasible.
Since we are interested only in vectors § such that the resulting primal subproblem

in the z, variables is feasible, we wish to make sure that we select only § vectors that

give rise to a bounded dual subproblem.

The original problem (3.1)-(3.7) can thus be restated as

Minimize max Z Z Z (€aBa + UaYa)Yrs (3.19)
(B.1m)ePp rER s€S* aeT,,

subject to

DD D (faBa+uata)yrs <0 ((B,7,7) € Qp) (3.20)

rE€R s€S" a€Ty,
yeY. (3.21)
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Introducing the free variable z, we then obtain the Benders reformulation:
Minimize :z (3.22)

subject to

- (Z E Z (€aBa + ua'Ya)'!/rs) >0 (B,v.m) € Pp) (3'23)

réR s€S57 a€Tr,

Z Z Z (eaﬂa + ua'Ya)yn <0 ((ﬁ,“)’, 1!') € QD) (3,24)

r&R s€ST aeTy,
yeyY. (3.25)

Replacing set Y by its definition, one finally obtains the following reformulation,

called the master problem:
Minimize = (3.26)

subject to

z - (z Z z (Zaﬁa + U-a'}'a)yn) >0 ((B, ¥, ) € PD) (3'27)

réR s€ST acT,,

S5 N (b + tara)rs < O (8,7, %) €Qp)  (3.28)

rcR seST OETra
Y5 duyes =1 (leL) (3.29)

reR seST
yrs € {0,1} (reR,seS). (3.30)

We have thus reformulated problem (3.1)-(3.7) as an equivalent problem with
binary variables and one continuous variable. However, this model contains a huge
number of constraints, most of which being inactive at optimality. A natural approach

is then to solve a relaxation obtained by dropping the constraints associated with the
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extreme points and extreme rays of the dual subproblem and generating them as
needed by solving the subproblem itself. We first explain how model (3.1)-(3.7) can
be solved to optimality, and then explain how the algorithm may be adapted to deal

with equipment availability constraints (3.8).

3.3.2 Basic Algorithm

Let 7 represent the iteration number and let Pf, and QJ, represent, respectively, the
restricted sets of extreme points and extreme rays of D available at iteration 7. Let
the relaxed master problem be the problem obtained from the master problem (3.26)-
(3.30) by replacing Pp by Pp and @p by Q. The algorithm may be summarized

as follows.

1. Set 7:=1, P} :=@ and Q) := Q.
2. Solve the relaxed master problem.

(a) If the master problem is infeasible, then the original problem is infeasible,
stop.
(b) Otherwise, let §™ be an optimal solution of value 2™ (a lower bound on the

value of the original problem).
3. Solve the primal subproblem, taking 4™ as an input.

(a) If the subproblem is finite, let £7 be a primal optimal solution and let

(8,4, m)" be a dual optimal solution given as an extreme point.
o If y(§") = 27, then (2",%") is an optimal solution to the original
problem, stop.
® Otherwise, v(§") yields an upper bound on the value of the original
T+l

problem. Set Pp" := PLU{(8,~,®)"} to generate an optimality cut,

set Q5" := Q.



134

(b) If the subproblem is infeasible, let (8,~,®)” be a dual extreme ray such

that

Z Z Z (baFrsBa + UaFrsYa) > 0.

reR s&ST aeTy,

Set Q5 = QpU{(B, v, 7)7} to generate a feasibility cut; set Pg*' .= Pp,.

(c) Set T:=71+1 and return to step 2.

If problem (3.1)-(3.7) is feasible, the algorithm will stop with an optimal solution

(", §") in step 3 (a). In the worst case, all extreme points and extreme rays of D

will be enumerated.

3.3.3 Equipment Availability Constraints

If equipment availability constraints (3.8) must be enforced, the primal subproblem

for a given vector § € Y becomes

Minimize E E CaZq

kEK gcA*
subject to
Za 2 LaYrs (TER;SES;GET,,)
Ta < UgPrs (réeR;s€S;acT)
EI""Z%:O (ke K;ne NY
a€ly a€0n
Z T, < € (k € K)
aeCk

zo > 0 and integer (k € K;a € A").

(3.31)

(3.32)
(3.33)
(3.34)

(3.35)

(3.36)
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Given the LP relaxation of formulation (3.31)-(3.36), let § = (6* < 0|k € K) be
the dual variables associated with constraints (3.35). The dual of the LP relaxation

of the primal subproblem is a weak dual for the primal subproblem and is given by

Maximize z Z z (€aTrsBa + UaPrsVa) + Z ek " (3.37)

réR sES” a7y, kEK

subject to

Bat Vo=, +mj, +8 <c, (k€K;aeTNnCH) (3.38)
Ba+Ya—m, +7, < (k€ K;aeTH\CH (3.39)
M+ T, +0<c, (k€ K;aeCH\T*) (3.40)
M, + M, <ca (k€ K;a€ A\ (TFUCH)) (3.41)
Ba20 (k€ K;aeT* (3.42)
Y2 <0 (ke K;aeTH (3.43)
<0 (k € K). (3.44)

Since the primal subproblem does not possess the integrality property, a duality
gap may exist and it is then impossible to characterize the optimal value of these
problems in terms of the extreme points and extreme rays of the dual subproblem

polyhedron.

A situation where the optimal solution to the LP relaxation of the primal
subproblem fails to be integer is illustrated in Figure 3.2. The problem contains
a single equipment type and three mandatory train sequences (A, B and C) which
are represented by arcs with lower and upper bounds equal to 1 and a zero cost.
Qther arcs with no bounds but a cost of 10 correspond to optional train sequences.

Finally, horizontal waiting arcs have no bounds and a cost of zero. It is easy to
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check that if the number of units available is unbounded, then the optimal solution
to this cyclic problem has cost 0 and consists in using one unit of equipment to cover
each mandatory sequence. If however, we impose the constraint that at most 2 units
be used, then the optimal fractional solution has a cost of 15 and consists in using
0.5 units on each of the three cycles formed by the waiting arcs and one sequence
arc, plus 0.5 units on the cycle that uses the arcs with cost 10. The optimal integer

solutions (there are two) have a cost of 30. One of them is to use one unit to cover

/(“)\' Train C

all mandatory and optional sequences.

/“_”\ Truin B
/ [l.l)‘: Train A 10

Figure 3.2: Example of a problem with a fractional optimal solution

Hence, problem (3.31)-(3.36) does not have the integrality property. It has,

however, a nice property which is stated in the following proposition.

Proposition 1 Problem (3.31)-(3.36) is feasible if its LP relazation is feasible.

Proof: To verify this proposition, first observe that problem (3.31)-(3.36) decomposes
into | K| independent problems. For every type of equipment k, assign a cost of 1 to
the arcs in the cut C* and a cost of 0 to all other arcs. Dropping constraints (3.35) and
solving the resulting minimum cost circulation problems will determine the minimum
number of units of equipment of each type needed to satisfy all requirements. If, for
every equipment type k, this number is less than or equal to e, then the solution
obtained constitutes a feasible solution to the original problem. Since it is also the

solution of pure network flow problems, it must be integer. If, however, the minimum
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number of units of type k is greater than e*, then no feasible solution exists. Hence,
it is impossible that the LP relaxation of problem (3.31)-(3.36) admit a feasible

fractional solution but no integer feasible solution.

If the integrality requirements on the z, variables are relaxed in the primal
subproblem, the duality gap vanishes. An optimal solution to problem (3.1)-(3.8)
can then be computed by using a branch-and-bound procedure. At every node of the
branch-and-bound tree, a lower bound is computed by solving the relaxation obtained
by dropping the integrality requirements on the z, variables. This relaxation is solved
with the algorithm of section 3.3.2 in which the primal subproblem is replaced by the
LP relaxation of (3.31)-(3.36).

The enumeration tree can be pruned at a given node if the relaxation is infeasible
or if all variables assume integer values in the optimal solution. It can also be pruned
if the cost of the optimal solution is greater than the best upper bound identified so

far. Otherwise, child nodes are created by branching on a fractional z, variable.

At a child node, the algorithm can be accelerated drastically by initializing the
sets of extreme points and extreme rays with the elements available at the father
node. The validity of the cuts generated at a parent node is justified as follows.
When branching on a fractional z, variable, one is restricting the primal subproblem
and thus relaxing the dual subproblem. Hence, all extreme points and extreme rays
enumerated previously represent valid, although not necessarily extreme, points and
rays of the dual subproblem polyhedron. Therefore, all generated constraints must

still be satisfied by the relaxation at a child node.

For any node of the branch-and-bound tree where the relaxation is feasible, an
upper bound can also be computed. Since, by Proposition 1, the primal subproblem

has a feasible integer solution whenever it has a fractional feasible solution, a feasible
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solution to (3.1)-(3.8) is obtained by introducing the integrality requirements on the
z, variables and solving the primal subproblem to optimality. This observation also

proves the following proposition.

Proposition 2 If problem (3.1)-(3.8) is feasible, then a feasible solution can be

computed at the first node of the branch-and-bound tree.

A heuristic algorithm can thus be obtained by first solving the problem without the
integrality constraints on the z, variables, and solving the integer primal subproblem
once. The quality of the solution produced by this approach can be arbitrarily poor
since the difference between its value and the value of the optimal solution depends
on the duality gap in the subproblem. Nevertheless, this solution is optimal if there

is no integrality gap in the subproblem.

To avoid the burden of a branch-and-bound procedure, a different approach can
be adopted to obtain an optimal solution when imposing equipment availability
constraints. Instead of keeping only the y,, variables in the master problem, one
can also retain the z, variables for all ¢ € C* and & € K. This way, equipment
availability constraints will be satisfied directly in the master problem and the primal
subproblem will have the integrality property. However, this approach will likely
result in slow convergence umnless additional constraints are introduced to link the

two sets of variables.

3.4 Algorithmic Refinements

Returning to the basic algorithm of Section 3.3.2, we now discuss refinements that

help to improve its performance and stability. We first discuss theoretical aspects,
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followed by practical implementation considerations. All ideas apply directly to the

branch-and-bound adaptation of Section 3.3.3.

3.4.1 Improving Worst-Case Behaviour

Convergence of the basic algorithm follows from the fact that in the worst case, the
number of cuts generated will be equal to the number of extreme points and extreme
rays of the dual subproblem polyhedron. This number can be reduced considerably
using the fact that the primal subproblem can be decomposed into | K| subproblems,
one for each equipment type. Hence, instead of considering the large polyhedron of
(3.9)-(3.13), one can consider the individual dual polyhedra of the |K| subproblems
and generate cuts directly from these. Let T = T,, N T* be the set containing the
arc of graph G* associated with train sequence s and consist type 7, if any. Let also
Ppr and @ px be the sets of extreme points and extreme rays of the dual polyhedron

DF* for subproblem . The master problem is then written as

Minimize Z 2k

keK
subject to
= [ D0 )0 ) (CaBa+ taVa)trs | 20 (k € K;(B,v,7) € Ppx)
rER SE€ST a€TY,
DD D (€aBa + vaYa)yrs <0 (k € K;(8,v,7) € Qpr)
rE€R s€ST acTk
Z Z disYrs = 1 (le L)
rER seST

Yrs € {0: 1} (T' €ER;se Sr).
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At iteration 7 of the algorithm, | K| potential cuts are thus generated when solving
the subproblems. Each feasible subproblem proposes an optimality cut from an
extreme point and each infeasible one proposes a feasibility cut from an extreme
ray. While any feasibility cut generated is certainly violated by the current solution
4", this needs not be the case for an optimality cut. If the cut is generated from a
feasible solution that has been obtained previously, it is already satisfied and should
not be added to the master problem. It is a simple matter to verify whether the cut
should be added. This approach is much more efficient computationally because it

takes advantage of the separability of the subproblem.

3.4.2 Solving the Relaxed Master Problem

A major difficulty with this decomposition lies in the solution of the relaxed master
problem which is a large 0-1 programming problem with one continuous variable. In
fact, this problem needs not be solved to optimality at each iteration. It is possible
to generate new cuts from any integer solution. In this case, however, the cost of the
relaxed master problem does not necessarily provide a lower bound on the cost of the
optimal solution. Hence, it is not possible to stop the algorithm when the cost of the
optimal solution to the subproblem is equal to the value of the relaxed master problem.
A valid lower bound is nonetheless provided by the linear programming relaxation
of the master problem. The algorithm may then be stopped when UB — LBy p < €
where € > 0 is a chosen gap, UB is the cost of the best feasible solution identified so
far and LB p is the lower bound provided by the LP relaxation of the relaxed master

problem.

To accelerate the solution process of the master problem, MCDANIEL and DEVINE

(1977) suggested to relax the integrality constraints on the variables of the master
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problem and generate cuts from fractional solutions. On our problem, this approach
can be summarized as follows: (i) solve the LP relaxation of the problem using
the algorithm of Section 3.3.2; (i) add integrality constraints to the relaxed master
problem; (i) restart the algorithm to solve the integer programming problem to
optimality. Since the relaxation of integrality constraints does not affect the dual
subproblem polyhedron, all optimality and feasibility cuts generated in step (¢) can

be used to initialize the corresponding sets of cuts in step (#it).

3.4.3 Choosing an Initial Set of Cuts

Even though the algorithm may be initialized from empty sets of extreme points
and extreme rays, the choice of these initial sets may greatly affect its convergence.
We have found that a good strategy is to start with empty sets of extreme rays but
to generate K optimality cuts as follows. For equipment type k, set 3, = ¢, for
every sequence arc a € T* and set to O all other dual variables. Assuming that
cs > 0 for all @ € T*, this point is a feasible point (but not necessarily an extreme
point) of the dual subproblem polyhedron. It can thus be used to obtain the cut
2 2 YR Ooses 2oaeTy, laCalrs Which is certainly valid since the point is feasible.
This constraint can also be generated directly from formulation (3.1)-(3.7). From

this formulation, one obtains

=Y S 2Y Yz 2 Y Yl =) D Y Calatis

keK ac A keK aeT* k€K aeT* réR s€S* acT,,

Hence, the above cut is equivalent to adding the constraint that the cost of the optimal
solution to (3.1)-(3.7) must be greater than or equal to the cost of the optimal solution
when no dead-heading movement is needed (i.e., £, = la¥r,,, for all train sequence

arcs) and ¢, = 0 for all a € A*\ T* (k € K).
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3.4.4 Adding Valid Cuts to the Master Problem

Additional valid cuts can be added to the master problem to enforce part of the
constraints that appear in the subproblem and accelerate convergence to the optimal
solution. For example, by limiting the number of y,, variables that may be set to 1
among those associated with train sequences occurring at the same time and using a
common equipment type, it is possible to help satisfy the availability constraints for

the corresponding equipment type. Simple constraints of this nature are

Z eayr,,:,. S ek’

aect

where arc set Cf is composed of all arcs in A* that are associated with train sequences
that are active at time b. For any values of the y,, variables, this constraint guarantees
that the minimum number of units of equipment £ needed does not exceed the number

available.

Since time is continuous, there is a very large number of potential cuts of this
type. Knowing that the number of units needed can only increase when a new train
sequence begins, one can simply generate a cut for every moment at which there
exists a departure node. Let t; be the departure time corresponding to node d. For
every departure node d, we may then define C,’: C T* as the set of arcs associated
with train sequences that are active at the time of the departure. The subset C,’:
thus contains the arcs associated with train sequences that begin at node d plus all
arcs associated with train sequences that have a departure time smaller than ¢; but
an arrival time greater than t4. It should be emphasized that different cuts must be

generated for each type of equipment since the associated networks may differ.
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To help satisfy flow conservation constraints in the subproblems, one can proceed
in a similar way. The exact flows that will take place on the sequence arcs of the
subproblems are n;)t known in the master problem but bounds are however provided
by the ¢, and u, constants. Let V* be the set of stations represented in network k,
and let N* be the set of nodes associated with station v € V* in network k. For each

station v, one generates the constraints

Z Zuayrnaa > Z Z eayrasa

nGN‘f a€ln YIEN‘_’,‘ a€0,

and

Z Z lalYras, S Z Z UgYrgsq-

neNk a€ln nENk a€On

Again, these valid constraints must be added independently for each type of
equipment: even though they are defined on the y,, variables, they depend on each

particular type of equipment.

3.4.5 Implementation Considerations

To identify extreme points and extreme rays of the dual polyhedron, one may solve
either the primal or the dual subproblem. If the primal subproblem is solved with
a specialized network algorithm, the values of the dual variables 3, and 7, are
not directly available since constraints (3.10) and (3.11) are treated implicitly as
bounds on the variables. They can however be computed easily using the following
observations. For every arc a € T*, let ¢, represent the reduced-cost of variable z,
in an optimal solution produced by the network algorithm. If &, > 0, then z, must

be at its lower bound and one sets 8, = &; and v, = 0. On the other hand, if ¢, < 0,
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then z, must be at its upper bound and one sets 8, = 0 and vy, = &,. Finally, if

¢, =0, then 5, = v, =0.

A difficulty lies in the identification of an extreme ray of the dual polyhedron
D in the case where the primal subproblem is infeasible. To avoid generating cuts
associated with extreme rays of the dual polyhedron, a natural alternative is to make
the primal feasible for any choice of § € Y by introducing artificial variables. When
the primal is feasible, the dual must also be feasible and bounded since D # Q.
However, this approach presents an important drawback: the addition of artificial
variables with large costs introduces numerical instability in the solution of the master
program and slows convergence. Using CPLEX (1997), the values of an extreme ray
can be obtained directly by solving the primal subproblem with the primal simplex

algorithm and disabling the pre-processor.

3.5 Computational Experiments

To measure the performance of the solution method described in Section 3.3 and
evaluate the benefits of the refinements of Section 3.4, computational experiments
were performed on a set of instances obtained from VIA Rail Canada. The data
originate from the Québec-Windsor corridor, which accounts for the largest portion
of all passenger trains operated in Canada. We first describe the test instances
used. We then present an analysis of the improvements to the Benders decomposition
approach, followed by comparisons with alternative solution methods and a discussion

of subproblem integrality gaps.
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3.5.1 Description of Data Sets

VIA Rail is the single most important passenger railway in Canada. Rail transporta-
tion is not as popular in North America as it is in Europe but the company operates
more than 300 trains per week in the Québec-Windsor corridor which links the major
cities in central Canada. The company uses six equipment types: two types of engines
(LRC and F40) and two types of first-class and second-class cars (LRC and HEP),
which can be combined in three different ways to yield train consists with different
operating speeds. For example, combining an F40 locomotive with LRC cars yields
a consist with an operating speed of 95 mph. Speed is an important issue and some
train legs, such as those between Montréal and Québec, must be assigned the faster

equipment. The complete equipment fleet is composed of more than 130 units.

The physical network, which is illustrated in Figure 3.3, has nine major stations,
and every train leg originates and terminates in one of these stations. Secondary
stations, where trains may stop during a leg to let passengers get on or off, need not
be considered explicitly in the model. The minimum run-through, turn-around and
switching times vary from station to station, and these values typically range from
30 minutes to a few hours. In particular, switching is allowed only in two stations
(Montréal and Toronto). At this time, all trains operated by VIA Rail depart and

arrive in the same day.

Three data sets were constructed, each corresponding to the weekly schedule used
during a different season. Also, three variants of each instance were considered,
leading to a total of nine instances. In the first scenario (instances la to 3a), the
consist type used on each leg is set a priori to match the assignment used by the

company and compound equipment types are used in order to reduce the amount
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Figure 3.3: Physical network for VIA Rail

of switching performed. A compound equipment is a group of units of different
types (e.g., a locomotive and two second-class cars) which are treated as a single
module. Additional units of equipment are then assigned separately to train legs
that require more than what is provided by a basic module. In the second scenario
(instances 1b to 3b), the consist type used on each leg is still fixed but equipment
units are disaggregated. In the third scenario (instances lc to 3c), equipment is also
disaggregated and more than half the legs can be covered by any of the three consist
types. This is the most complex scenario since a choice must be made regarding the
equipment combination that will be used on some train sequences. The first scenario
is typically considered by VIA Rail in short-term planning, while the second and
third scenarios allow for a greater flexibility and can be used to evaluate additional

possibilities in long-term planning.

The objective considered in the experiments is to minimize the sum of operational
costs. For each sequence arc, the unit cost is equal to the distance between the origin
and the destination stations times the per-mile cost related to fuel, maintenance and

minor repairs. Waiting and repositioning arcs have a cost of zero and there are no fixed
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costs associated with equipment ownership. Since the consist type used on each leg
is fixed in the first two scenarios, the objective then translates into the minimization

of dead-heading costs.

Demand for each train leg is expressed as the number of first-class and second-class
cars required. The demand for first-class cars is either 0 or 1 while the demand for
second-class cars lies between 2 and 8 cars. Most trains require a single locomotive
but a few exceptions require two. For locomotives types, the £, value is thus either 1
or 2 while the u, value is 2. For car types, the ¢, values are determined so as to satisfy
demand while the u, values are set according to the pulling capacity of a locomotive.
For example, if the capacity of a locomotive is 8 cars and the demand is 1 first-class
car and 3 second-class cars, then the lower and upper bounds for the first-class cars
are 1 and 2 respectively, while the corresponding bounds for the second-class cars are
3 and 6. Hence, if an extra locomotive is added to a train that requires only one, its

power will not be available to pull additional cars.

In all instances solved, there is a limit on the number of units of each type of
equipment that can be used at any time. Hence, constraints (3.8) are present and the
approach of Section 3.3.3 must be used to solve the problem. For some equipment
types, availability also varies from day to day as some units must be made available
for trains outside the corridor while others must stay idle for major maintenance.
This is taken into consideration by introducing fictitious train legs with a demand

corresponding to the availability reduction.

The characteristics of the test instances are summarized in Table 1. For example,
instance VIAla has 326 train legs, leading to 18 027 possible sequences. The resulting

model has 18 027 sequence variables, 38 291 arc variables and 74964 constraints.
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3.5.2 Analysis of Computational Refinements

The goal of these experiments was to evaluate the effects of the refinements proposed
in the previous section. Since decomposing the subproblem into separate network flow
problems can only improve performance, the algorithm was implemented as explained

in Section 3.4.1

The first comparison involved solving the relaxed master problem directly with
the added integrality requirements, and solving its LP relaxation followed by the
reintroduction of the integrality constraints, as explained in Section 3.4.2. The results
of our tests showed that there is a very significant reduction in computation time
obtained by first solving the LP relaxation. CPU times were typically divided by a
factor of ten on most instances. We do not report comparative statistics for solving

the integer problem directly since the CPU time was simply prohibitive in most cases.

The first three columns of Table 3.2 report the number of Benders iterations,
number of cuts (optimality cuts (3.27) over total cuts (3.27) and (3.28)), and CPU
time needed to solve the LP relaxation. The additional effort needed to reach an

optimal integer solution is reported in the next three columns. The gap corresponds

Table 3.1: Characteristics of test instances

Sequence Arc
Instance Legs variables variables Constraints
VIAla 326 18 027 38 291 74 964
VIA2a 348 18 981 40 328 78 976
VIA3a 348 19 022 40 378 79 112
VIAlb 326 18 027 56 916 111 468
VIA2b 348 18 981 59 943 117 412
VIA3b 348 19 022 60 018 117 618
VIAlc 326 26 752 86 373 167 346
VIA2c 348 30 546 98 070 190 510

VIA3c 348 32 981 105 327 205 080
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to the relative difference between the value of the LP relaxation and the cost of the
optimal integer solution. The algorithm was coded in C, and all tests were run on a

Sun UltraSparc-1 computer (200 MHz).

Table 3.2: Computational results for two-phase method

LP relaxation solution Optimal integer solution
Instance Iter. Cuts CPU Iter. Cuts CPU Gap %

VIAla 15 9/57 2.48 1 0 055 0.2383
VIA2a 11 10/51 1.93 1 0 0.75 0.0985
VIA3a 10 8/48 217 1 0 0.86 0.0765
VIAlb 12 8/55 2.89 1 0 0.03 0.0000
VIA2b 16 16/58 3.23 1 0 0.09 0.0000
VIA3Db 10 6/49 3.94 1 0 193 0.1182
VIAlc 95 28/341 177.96 2 0/2 15.57 0.1245
VIA2c 107 34/357  159.74 1 0 218 0.0388
VIA3c 97 17/349  257.36 1 0 154 0.0112

These results indicate that the cuts generated when solving the LP relaxation
constitute a very good approximation of the set of cuts that determine an optimal
integer solution. Since the integrality gaps are also very small (less than 0.25%), one
or two iterations of the relaxed integer master problem are usually sufficient before
an optimal solution is reached. Also, only once were additional cuts generated. It
is interesting to point out that the last three instances, although similar in size, are
much harder to solve than the first six because of multiple possibilities with regard

to the consist type that can be used on certain legs.

As pointed out in Section 3.3, the network flow subproblems do not possess
the integrality property when equipment availability constraints are treated. In
Section 3.3.3, we proposed to relax integrality constraints on the z, variables and
to embed the Benders decomposition approach in a branch-and-bound procedure. In
fact, this has not been necessary in any of our experiments since there never was an

integrality gap in any of the subproblems.
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Our next experiments concerned the effect of using an initial set of cuts as
described in Section 3.4.3. Using the two-phase approach just described, we solved
each instance with and without these initial cuts. The results of these tests are
reported in the left and middle portion of Table 3.3. Here, the number of iterations,
number of cuts and CPU time refer to the total effort needed to find an optimal
integer solution (see Table 3.2). The results show that the initial cuts have a very
positive influence on convergence. In particular, computation times are reduced
considerably on the last three instances. Although the number of iterations and
number of generated cuts were not reduced for the first six instances, we observed
that solving the relaxed master problem was much faster when the initial cuts were
present. This is explained by the fact that the optimal solution to the master problem

is less affected from one iteration to the next when the initial cuts are added.

Table 3.3: Effect of using initial and valid cuts

Basic algorithm Initial cuts Initial and valid cuts
Instance Iter. Cuts CPU Iter. Cuts CPU Iter. Cuts CPU
VIAla 16 57 3.03 15 63 211 10 30 2.20
VIA2a 12 51 2.68 13 49 226 7 23 1.64
VIA3a 11 48 3.03 11 51 1.56 11 22 1.08
VIAlb 13 55 2.92 9 42 1.86 6 24 1.45
VIA2b 17 58 3.32 11 55  3.03 7 24 1.79
VIA3b 11 49 5.87 11 53 374 11 22 1.62

ViAlc 97 343 193.53 66 223 21.27 54 139 13.39
VIA2c 108 357 161.92 60 249 23.08 60 181 15.81
VIA3c 98 349 258.90 44 196 14.94 46 136 11.22

The final step of our analysis was to evaluate the benefits associated with the
valid cuts added to the relaxed master problem (Section 3.4.4). Since the first group
of (availability) constraints did not produce significant improvements but slowed the
solution of the master problem, we used only the second group of (fiow conservation)
constraints and added two cuts for each station and each equipment type. Using the

two-phase approach and the initial cuts, we solved each instance with and without
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these additional constraints. The results of these tests are reported in the right
portion of Table 3.3. While the number of iterations was not really affected by the
introduction of these constraints, the number of Benders cuts generated and CPU

time were reduced considerably for most instances.

3.5.3 Comparisons with Alternative Solution Methods

In the second part of our experiments, we compared the performance of the
proposed Benders decomposition approach to those of three other solution methods:
Lagrangian relaxation (GEOFFRION, 1974), Dantzig-Wolfe decomposition (DANTZIG

and WOLFE, 1960) and a simplex-based branch-and-bound algorithm.

By dualizing constraints (3.2), (3.3), (3.4) and (3.8) into the objective function,
one obtains an easy problem that separates into a set of network flow subproblems in
the z, variables and a problem in the y,, variables that can be solved by inspection.
We have thus implemented this Lagrangian relaxation with a simple subgradient
optimization process and a step-size that guarantees geometric convergence. Since the
relaxed problem has the integrality property, the largest bound that can be obtained
with this relaxation is equal to the value of the LP relaxation of (3.1)-(3.8). This
approach must however be embedded in a branch-and-bound algorithm to obtain a

feasible solution.

A similar solution method is obtained by applying the Dantzig-Wolfe decompo-
sition principle to (3.1)-(3.8) and keeping constraint sets (3.5) and (3.6) in the sub-
problem. Again, the subproblem separates into one network flow problem for each
type of equipment k£ € K. This decomposition was implemented with a column gen-

eration approach that generates several independent columns from each network at
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each iteration. To obtain an optimal integer solution, this approach must also be
embedded in a branch-and-bound algorithm to impose integrality constraints on all

variables.

The first step was to compare the time needed to compute the LP relaxation lower
bound with each of these methods. Since the optimal value of the LP relaxation was
known, both algorithms were stopped when the gap between the LP lower bound and
the best bound found was less than or equal to 0.1%. For both Lagrangian relaxation
and Dantzig-Wolfe decomposition, the CPU time required to solve the LP relaxation
was clearly excessive. Even for the first six instances, these approaches required
several hours of computation to only approximate the actual LP bound. The major
difficulty with the Dantzig-Wolfe decomposition approach is that the master problem,
which must be solved at each iteration, contains a very large number of lower and
upper bound constraints (3.3) and (3.4). These constraints represent approximately
90% of the numbers reported in Table 3.1, and make each iteration of the column
generation process very costly in terms of CPU time. For example, the master
problem for instance VIAla contained more than 70000 constraints. Lagrangian
relaxation was faster but the computing time still exceeded that required by Benders
decomposition by at least a factor of 10 on all instances. Since we used straight
implementations of Lagrangian relaxation and Dantzig-Wolfe decomposition, it is
more than likely that the performance of these methods could be improved at least
marginally by using more sophisticated techniques. However, we believe that these

methods are not well suited for solving the model proposed in this paper.

It is generally admitted that when an optimization problem is small enough to
be solved directly with an appropriate algorithm, using any kind of decomposition

will result in longer computing times. Hence, to measure the performance of our
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approach, we also compared it with the simplex algorithm. More specifically, we used
CPLEX (1997) and solved the problem by first extracting and solving the network
portion using the netopt module. The dual simplex algorithm was then used with
steepest-edge partial pricing to obtain an optimal solution. In the second step of
our experiments, we compared the Benders decomposition approach to the branch-
and-bound procedure of CPLEX. At each node of the tree, the relaxation was solved
with the dual simplex algorithm, except for node 0 where it was solved as explained
above. Branching was first performed on y,, variables and each variable was assigned
a branching priority proportional to the number of train legs in the associated train
sequence. Node selection was performed according to the best-bound criterion and
strong branching was used. This strategy consistently gave the best results on all

instances.

Table 3.4 summarizes the timing results obtained with Benders decomposition and
the simplex-based branch-and-bound method of CPLEX. We report the time needed
to solve the LP relaxation, and the total time to obtain an optimal integer solution.
For the branch-and-bound method, we also report the number of nodes explored in the
enumeration tree and the total number of simplex iterations performed. For Benders
decomposition, the results were obtained by using the two-phase approach with both
the initial and valid cuts. Surprisingly, the Benders decomposition algorithm was
always faster than the branch-and-bound method. This is explained by the fact that
constraints (3.3) and (3.4), which account for a large part of the total constraints,
become simple bounds on the arcs when using Benders decomposition. The relaxed
master problem solved at each iteration is thus reasonably small and the network flow

subproblems are solved very quickly.
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Table 3.4: CPU time needed to find an optimal solution

Simplex-based branch-and-bound Benders decomposition

BB Simplex CPU Time CPU Time
Instance Nodes iterations LP Integer LP Integer
VIAla 12 20 816 36.77 42.51 0.48 2.20
VIA2a 12 21 285 39.57 46.71 0.59 1.64
VIA3a 5 24 633 53.18 54.43 0.55 1.08
VIAlb 1 54101 136.98 137.00 0.64 1.45
VIA2b 3 47 847 116.35  118.04 0.85 1.79
VIA3b 6 54 235 145.19  148.79 0.74 1.62
VIAlc 30 128 429 378.60  769.61 12.04 13.39
VIA2c 18 114792 460.50  630.59 14.55 15.81
VIA3c 8 111975 567.03  608.71 10.63 11.22

3.5.4 A Discussion of Subproblem Integrality Gaps

In the last part of our experiments, we ran additional tests to evaluate the sensitivity
of our approach to the tightness of equipment availability constraints (3.8), and to

measure the effect of these constraints on subproblem integrality gaps.

We first solved each of the nine instances by using a modified objective function
involving only fixed costs. These costs were chosen so as to first minimize the number
of locomotives used, and then minimize the number of cars. The minimization of a
weighted fleet size is more appropriate than the minimization of total fleet size given
the large difference between the acquisition costs of locomotives and those of cars.
The results of these tests are reported in the left part of Table 3.5. The cost column
indicates the total fixed cost as a percentage of the fixed cost of the fleet used in
the previous experiments. For example, minimizing the fleet size for instance VIAla
produced savings of more than 11%. On the other hand, the savings were less than
2% on all three variants of the third instance. This difference is explained by the fact
that the same equipment availabilities were used in all experiments, while the three

instances correspond to seasons with a varying level of demand.
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We then returned to the original objective function of minimizing total operational
costs but set the equipment availabilities according to the equipment availabilities
determined in the preceding experiments. The corresponding results are reported in
the right part of Table 3.5. Here, the cost column expresses the cost of the solution
as a percentage of the cost of the solution obtained with actual availabilities in the
experiments of Section 3.5.2. For example, the operational cost for instance VIAla

increased by 0.71% with the reduced equipment availabilities.

Table 3.5: Computational results for fixed cost and variable cost minimization

Fixed cost minimization Variable cost minimization
Instance Iter. Cuts CPU Gap % Cost % Iter. Cuts CPU Gap% Cost %

VIAla 14 41 039 0.1346 88.67 9 35 0.24 0.0000 100.71
VIA2a 12 38 048 0.0232 91.86 10 33 0.73 0.0000 100.88
VIA3a 13 43 054 0.0225 99.34 9 32 0.78 0.0000 100.15

VIAlDb 10 42  0.85 0.1082 90.26 8 27 1.01 0.1558 100.81
VIA2b 9 32 061 0.0386 91.32 9 36 1.00 0.0000 101.50
VIA3b 13 43 0.76 0.0371 98.95 9 29 042 0.0000 100.15

VIAle 117 363 67.89 0.0009 8763 70 188 30.93 0.1516 100.76
VIA2c 9 306 16.06 0.0166 8947 61 210 9.69 0.0032 101.19
VIA3c 89 300 1945 0.0000 9895 36 128 6.98 0.0000 100.00

As in the previous experiments, the integrality gaps were very small for all
instances. In addition, no integrality gap was observed in any of the subproblem.
This surprising result is in large part explained by the fact that an integrality gap
can only appear if the marginal savings obtained by increasing equipment availability

by one unit are not monotonically decreasing.

First observe that the subproblem for a given type of equipment is a pure
network flow problem with one additional equipment availability constraint. Hence,
an integrality gap in this problem can only be caused by the presence of the additional
constraint. Consider Figure 3.4 that represents the optimal cost of the subproblem
for one equipment type as a function of equipment availability given a fixed solution

7. The actual equipment availability is represented by the value e on the horizontal
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axis. In this case, an integrality gap would be present since the (fractional) convex
combination of the best solutions with one more or one less unit has a smaller cost

than that of the best integer solution with e units available.

Cost

Integer solution

Fractional solution

| ! I

e-1 e ¢ + 1  Equipment availability

Figure 3.4: Subproblem with an integrality gap

This situation is however not very likely to appear in practice since the marginal
savings obtained by increasing fleet size are normally decreasing as the total fleet
size increases. In that case, the relation between the cost of the optimal integer
solution and equipment availability is a convex function, and all fractional convex
combinations have a cost that is greater than or equal to that of the optimal integer
solution. It is also worth mentioning that if the objective function includes only
fixed costs, then the subproblem cannot have an integrality gap since the availability

constraint can be removed with no effect.
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3.6 Conclusions

The aim of this paper was to present a basic modeling and solution approach for
the problem of simultaneously assigning locomotives and cars to passenger trains.
The proposed model captures the basic aspects of the problem and possesses a
flexible structure which should facilitate the introduction of additional constraints
and possibilities. The structure of the model also makes it well suited for a variable
decomposition, leading to an efficient algorithm. The computational experiments
performed show that even for instances of moderate size, the Benders decomposition
algorithm is faster than solving the problem using a classical simplex-based branch-
and-bound method. The superiority of the former method should be even greater
on larger instances. In particular, as the number of equipment types increases, one

should gain even more by decomposing the problem.

Despite the fact that these computational experiments were performed on real-life
data from a railway, some extensions must be considered before the model can be
used in practice. For example, maintenance constraints and substitution possibilities
should be incorporated to the formulation. Other extensions which will be the object
of subsequent research concern the introduction of switching costs or penalties to
minimize the number of train consist modifications during connections in stations of
the network. Considering the preliminary results obtained so far, we believe that the
potential for cost reduction is very significant given the fact that equipment utilization

planning is still performed manually by managers at most railways.
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Chapitre 4

Simultaneous Assignment of
Locomotives and Cars to Passenger

Trains

Article écrit par Jean-Francois Cordeau, Frangois Soumis et Jacques Desrosiers;

soumis pour publication & Operations Research.

Le chapitre précédent présentait un modéle simplifié ainsi qu'une méthode de
résolution tres efficace basée sur la décomposition de Benders. Bien qu'il tienne
compte des principales caractéristiques du probléme, ce modéle posséde un niveau
de détail insuffisant pour la plupart des applications pratiques du probléeme. Dans le
présent article, nous introduisons trois extensions importantes du modele du chapitre
précédent: les contraintes d'entretien, les pénalités pour la modification des trains
et les possibilités de substitution. Ce modeéle complet peut encore étre résolu tres
efficacement et représente donc une alternative intéressante i ’approche présentée au

second chapitre.

Apres avoir décrit brievement le modéle de base, nous présentons une formulation
qui introduit les contraintes d’entretien en remplagant le modéle de flot associé

a chaque type d'équipement par un modéle multi-flots. Cette approche est donc
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similaire & celle utilisée pour imposer les contraintes d'entretien dans le modele du
chapitre 2. Nous proposons ensuite une approche permettant d’imposer une pénalité
lorsqu’'un wagon ou une locomotive est ajouté ou séparé d'un train durant une
connexion dont la durée est inférieure & un certain seuil minimum. Contrairement
au modele du chapitre 2 qui pénalise tous les couplages et découplages de wagons, ce
nouveau modele ne pénalise donc que ceux qui risquent de causer le retard de certains
trains si la station de connexion est congestionnée ou que le personnel nécessaire
pour effectuer les opérations de couplage et de découplage n’est pas immédiatement
disponible. En augmentant la valeur du seuil minimum, il est néanmoins possible de
pénaliser toutes les modifications apportées aux trains. Nous expliquons finalement
comment les possibilités de substitution peuvent étre traitées en ajoutant des variables

supplémentaires au probléme maitre.

Ces trois extensions affectent légérement la structure du modéle mais une méthode
de résolution basée sur la décomposition de Benders peut encore étre utilisée. Dans
ce cas, le sous-probléme se décompose en un probléeme multi-flots pour chaque type
d’équipement. La taille du sous-probléme peut devenir considérable pour les grandes
instances. Ainsi, nous considérons la possibilité de résoudre le sous-probleme par une
décomposition de Dantzig-Wolfe. L’'algorithme de résolution consiste donc en une
méthode de séparation et d’évaluation progressive qui résout, par une décomposition
de Benders, un probléme en variables mixtes a chaque noeud de l’arbre d’énumération.
Dans ce probiéme en variables mixtes, le sous-probléme en variables continues est

résolu par I'algorithme du simplexe ou par une décomposition de Dantzig-Wolfe.

Deux améliorations sont proposées afin d’'accélérer l'algorithme. La premieére
consiste & résoudre une relaxation du probleme obtenue en retirant les contraintes
d’entretien. Tous les points et rayons extrémes identifiés pendant la résolution de
cette relaxation constituent des points et directions réalisables du sous-probléme dual

pour le modeéle avec les contraintes d’entretien. Ils peuvent donc étre utilisés pour



161

initialiser les ensembles de coupes correspondants. La seconde amélioration consiste
4 identifier une coupe non dominée dans le cas ou le sous-probléme dual possede
plusieurs solutions optimales. La génération de coupes dites Pareto-optimales peut
améliorer la convergence de facon trés nette lorsque le sous-probiéme est fortement

dégénéré comme c’est souvent le cas pour les problemes multi-flots.

Les test effectués montrent que l'approche peut fournir des solutions optimales a
des problémes réalistes en moins d’une heure de calcul sur ordinateur. Cette bonne
performance est en partie attribuable au fait que le saut d'intégrité est trés faible
pour ces instances. Dans tous les tests effectués, une méthode heuristique servant a
générer des solutions entiéres réalisables a identifié une solution optimaie du probleme
au premier noeud de l'arbre de branchement car le sous-probléme n’avait aucun saut

d'intégrité.

Cet article décrit donc un modéle général et complet pour I'affectation simultanée
de locomotives et de wagons. Tout en incorporant trois facettes importantes du
probléme, il conserve une structure qui se préte bien & une décomposition de Benders.
On obtient ainsi une approche permettant de résoudre a l'optimalité des probiémes
réels en des temps de calcul trés raisonnables. La méthode a par ailleurs été utilisée
dans le cadre d’un mandat réalisé pour le compte de VIA Rail. Ce mandat consistait a
déterminer la composition optimale de la flotte d’équipement nécessaire pour assurer

le service étant donné un horaire hebdomadaire comportant plus de 500 trains.
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Abstract

The problem of assigning locomotives and cars to trains is a complex task for
most railways. In this paper, we propose a multi-commodity network flow based
model for assigning locomotives and cars to trains in the context of passenger
transportation. The model has a convenient structure that facilitates the introduction
of maintenance constraints, car switching penalties, and substitutions possibilities.
The large integer programming formulation is solved by a branch-and-bound method
in which some of the integrality constraints are relaxed. At each node of the tree, a
mixed-integer problem is solved by a Benders decomposition approach in which the
LP relaxations of multi-commodity network flow problems are optimized either by
the simplex algorithm or by a Dantzig-Wolfe decomposition. Some computational
refinements, such as the generation of Pareto-optimal cuts, are proposed to improve
the performance of the algorithm. Computational experiments performed on two
sets of data from a railroad show that the approach can be used to produce optimal

solutions to complex problems.

Keywords: Rail transportation; integer programming; multi-commodity network

flow model; Benders decomposition; Dantzig-Wolfe decomposition.
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4.1 Introduction

Planning the assignment of locomotives and cars to trains is a complex task for most
railways. In freight transportation, the problem is very often separated into distinct
components: freight routing policies first determine the assignment of cars to trains
and a locomotive assignment problem is next solved to supply each scheduled train
with enough power to pull the assigned cars. The need to resort to a sequential
planning approach is a consequence of the large number of locomotives and cars that
make up each train and of demand variability. In passenger transportation, however,
both locomotives and cars can be assigned in parallel. Since the same set of trains is
normally operated every week with a similar number of cars, a cyclic solution can be
computed so0 as to optimize equipment utilization. In addition, the smaller number of

units to assign makes it possible to treat both locomotives and cars simultaneously.

The locomotive and car assignment problem consists in finding a set of equipment
cycles that cover a list of scheduled trains at minimum cost. Although the problem
appears to be reasonably easy at first sight, planners must often deal with a
large set of additional constraints that considerably complicate their work. For
example, most trains can be covered using different types of equipment among
which certain incompatibilities may exist. Also, the choice of equipment usually
affects the operating speed of the train which, in turn, determines the arrival time
and the set of possible connections. Finally, the assignhment of locomotives and
cars must satisfy a wide array of operational constraints such as those imposed
by maintenance requirements. Hence, even for railways of small size, preparing an
equipment assignment plan is a long and tedious task. Not only is it complicated
to find a feasible solution given limited equipment availability, but it is also very
difficult to evaluate its quality in terms of deviation from optimality. Furthermore,
the adaptation of an existing solution to minor changes may require a considerable

work.
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Given the difficulties associated with the assignment of locomotives and cars to
trains, the need to develop optimization tools is clearly apparent. However, while
several models have been presented for the assignment of engines to freight trains, a
recent survey of optimization models for train routing and scheduling (CORDEAU
et al., 1998c) indicates that very few have been developed for the simultaneous
assignment of locomotives and cars to passenger trains. One of the first efforts
in this direction belongs to RAMANI and MANDAL (1992) who developed decision
support systems to assist planners at Indian Railways. Their approach seeks to
minimize the required fleet size and is based on a simple exchange heuristic that
proceeds by analyzing train connections in the stations of the rail network. More
recently, BEN-KHEDER et al. (1997) described the development and implementation
of a system for the assignment of locomotives and cars to passenger trains at SNCF.
This system treats both types of equipment simultaneously but considers aggregated
modules which are then assigned as a whole, thus avoiding to deal explicitly with

compatibility constraints.

In previous papers, we proposed two modeling and solution approaches for the
assignment of locomotives and cars to passenger trains. The first approach (CORDEAU
et al., 1998a) was developed by focusing on the specific needs of a particular railway
and incorporates a wide range of possibilities and constraints such as substitutions
between equipment types and maintenance requirements. The resulting model is
based on a multi-commodity network flow structure with linking constraints and is
optimized with a heuristic branch-and-bound method in which the linear relaxations
are solved by column generation. This approach is the core of a system that has been
successfully tested and implemented at VIA Rail Canada. However, the computing
time needed to solve this model grows rapidly with the size of the problem and,
because heuristic branching is used, the quality of the computed solutions is somewhat

dependent upon problem characteristics.
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The second approach (CORDEAU et al, 1998b) is based on a more general
framework that can be readily adapted to the characteristics of several different
railways. For this framework, the authors proposed a basic model and a solution
approach based on Benders decomposition. The model, which is described in the
next section, captures the fundamental difficulties of the problem and has a structure
which leads to a very efficient variable decomposition approach. In this paper, we
describe some important extensions to this basic model that make it more appropriate

for a real-life application.

The paper is organized as follows. In the next section, we briefly describe
the problem and the basic mathematical formulation based on multi-commodity
network flows. Then, three extensions are given in Section 4.3. First, we show how
maintenance constraints expressed as a maximum number of days between successive
stops in a maintenance center can be introduced in the formulation. Next, we
propose a method to penalize car switchings so as to reduce the negative impact
of such operations on schedule compliance. Finally, we indicate how locomaotive
and car substitution possibilities can be incorporated to the model. In Section 4.4,
we present a branch-and-bound algorithm that solves, by Benders decomposition, a
mixed-integer problem at each node of the tree. Within this decomposition scheme,
the LP relaxations of multi-commodity network flow problems are solved either by the
simplex algorithm or by a Dantzig-Wolfe decomposition. Computational refinements
that improve the performance of the algorithm are then described in Section 4.5.
Finally, the results of two sets of computational experiments are summarized in

Section 4.6.

4.2 A Basic Model

Railways normally use locomotives and cars of different types which are combined in

several ways to form train consists. Let K be the set of all equipment types available
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to the railway. A different equipment type k¥ € K may be defined for each make
of locomotive or car operated by the railway. However, if two different makes have
identical capacity, speed and compatibility characteristics, they can be aggregated
and treated as a single type. Given the set K, let R denote the set of all consist types
that can be defined using these types of equipment. Each consist type r € R is a
subset {k],k7],...} C K of compatible equipment types that should contain at least
one locomotive type and one car type. The definition of the set R serves to impose
compatibility constraints: each train will be covered with a unique type of consist,
and only the associated equipment types will be allowed on that train. The operating

speed of a consist is determined by the slowest of its components.

Let L be the set of train legs. Each train leg! € L is defined by a pair of origin and
destination stations together with a set of compatible consist types {ri,r5,...} C R
that may be used to cover the leg. In addition, for each compatible consist type r!,
one must specify the departure and arrival times of the train and, for each equipment
type k € 71, the minimum and maximum number of units of that type to be used on

the train leg if it is covered with a consist of type r!.

An ordered set of train legs (I;,,{;,,...,l;,) is said to be feasible for a given consist
type if, for every pair of consecutive legs (l;;,l;,,, ), the destination station of the first
leg is the origin station of the second leg, and the connection time between the two
legs is sufficient to allow for passenger exchange and train consist repositioning. The
feasibility of a set of train legs depends on the consist type used since its operating

speed affects the arrival times.

In some cases, even though a pair of legs is feasible, it may be impossible to
modify the consist at the intermediate station, either because the connection time is
too short or because the necessary installations are not available. To take this into
consideration in our model, we define a train sequence as a feasible ordered set of train

legs such that if these legs are covered by the same physical train consist, then the
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consist may not be modified at any intermediate station. Let S™ (r € R) represent
the set of train sequences on which a consist of type r can be used. For notational
convenience, set S™ also contains sequences composed of a single train leg that can
be covered by a consist of type r. The purpose of defining train sequences becomes

more apparent when considering the network representation.

4.2.1 Network Representation

For each equipment type k € K, we define a space-time network G* = (N*, A¥) where
N¥* is the node set and A* is the arc set. A portion of such a network is illustrated in
Figure 4.1. Each station is represented by two lines corresponding to eastbound and

westbound trains.

O Departure node —_— Sequence arc
. Amivalpgode 00T -- - Repositioning arc
Repositiopingnode @ et - Waiting arc

Figure 4.1: Portion of network G* for equipment type k
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Set N* (k € K) contains three types of nodes: for each consist type and each train
leg on which equipment of type k can be used, departure, arrival and repositioning
nodes are defined. The time associated with a departure node corresponds to the exact
departure time of the corresponding train leg. However, the arrival node represents
the moment defined by the arrival time plus an additional duration needed for train
inspection and passenger exchange, called the run-thru time. Additional repositioning
nodes are also used to represent the movement of a unit within the same station after
its arrival. For example, if a station is located along an east-west track, then a train
consist arriving on a westbound leg will need an extra amount of time, called the
turn-around time, to reposition itself for an eastbound leg. When the train consist
can be modified at the end of a leg, the run-thru and turn-around times include
an additional duration, called the switching time, which is necessary to perform the
modifications. Switching is said to occur whenever a car is added to or separated from
a train consist during a connection in a station. If switching is always forbidden in a
certain station, that station needs not be represented in the space-time network since
no consist modifications will occur there: legs that have the corresponding station as
an origin or a destination will necessarily be covered as part of a sequence containing

two legs or more.

The arc set A* (k € K) contains a train sequence arc for every sequence on which
equipment of type k may be used. Define A% C A¥ as the subset of arcs in the graph
G* that are associated with train sequences. Each sequence arc links the origin node
of the first leg to the arrival node of the last leg in the sequence. The purpose of
sequences can now be made more explicit. Since car switching takes time, the true
arrival time of a train depends on whether switching must be performed after the
arrival. When switching does take place, then all units of equipment used on the
arriving train are delayed. But because each type of equipment has its individual
network, the model must ensure that whenever switching is performed, then all units
of equipment become available at the same moment. This is accomplished by using

train sequences as illustrated in the following example.
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Consider train legs A and B in Figure 4.1. Because the switching time is larger
than the run-thru time, these legs can be covered by the same consist only if it is
not modified at the intermediate station. This is represented in the figure by the fact
that the arrival node for leg A is located on the right of the departure node for leg
B. By imposing a constraint stating that each leg must be covered within exactly one
sequence, either legs A and B will both be covered using exactly the same equipment
in a sequence containing the two legs, or else they will be covered using completely
different units. Thus, the case where the same locomotive would cover both legs while
a car would cover leg A but not leg B is not allowed. This is precisely what we wish
to model since car switching implies that not only the switched car but also the rest

of the consist used on leg A will be delayed after its arrival.

Set A* also contains a repositioning arc for every possible movement within a
station. For example, if a station is divided between eastbound and westbound
trains, such arcs would be used to represent the change of orientation of a physical
train consist. Generally, one repositioning arc is needed for each train leg which can
occur last in a sequence. Finally, a waiting arc is defined for every pair of nodes that
represent consecutive events (departure, arrival or repositioning) involving trains with
the same orientation. Again, if a station is divided between eastbound and westbound
trains, then waiting arcs exist between departure, arrival or repositioning nodes that
involve the trains oriented accordingly. Since a periodic solution over a given horizon
is sought, waiting arcs are also defined between the nodes that represent the last event

and the first event of the period in each station.

4.2.2 A Multi-Commodity Network Flow Based Formulation

For every consist type r € R and for every sequence s € S", let y,, be a binary variable
equal to 1 if and only if train sequence s is covered using a consist of type r. For

every equipment type k € K and every arc a € A%, let z, be a non-negative integer
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variable representing the number of units of equipment & used on arc a, and let f,
represent the operational cost of using one unit of flow on that arc. For sequence
arcs, this cost usually depends on the distance traveled in the sequence and on the
type of equipment. For repositioning arcs, this cost can include a penalty to minimize
unnecessary movements within a station. Finally, waiting arcs normally have a cost

of zero.

For every equipment type & € K and every sequence arc a € A%, define r, € R and
Sq € 5™ as the consist type and the sequence associated with the arc q, respectively.
Since a given sequence and a given consist type usually have several arcs associated
with them (one for each type of equipment used in the consist), it is convenient to be
able to refer to the collection of all arcs associated with this sequence and this consist
type: define 4,, = (Jycx{a € A§|ra =7, 5, = s} as the set of all arcs associated with
consist type r € R and sequence s € S”. For any arc a, let also k, = {k € Kla € AF}

represent the equipment type associated with this arc.

For every train leg [ € L and every train sequence s (r € R;s € S}, define the
binary constant dj, equal to 1 if and only if train leg ! is part of sequence s. For
every equipment type k& € K and every arc a € A%, define ¢, as the minimum number
of units of equipment k needed to cover train sequence s,, and u, as the maximum
number of units of equipment k allowed on train sequence s,. These numbers are
used to impose demand constraints as well as locomotive pulling capacities. They
have a meaning only if the corresponding sequence is covered with a consist of type

rqe. Otherwise, no unit will be allowed on arc a.

Let A% C A be a set of pairwise incompatible arcs in G* such that the removal
of these arcs makes the network acyclic. For example, this cut can contain all arcs
that traverse a given moment in time. It is easy to verify that when flow conservation
equations are satisfied throughout the network, it suffices to impose an upper bound

on the sum of the flows on all arcs of the cut A% to ensure that equipment availability
E
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will be satisfied at any time. The number of available units of equipment k is denoted

by ex.

Finally, for every node n € N* (k € K), the sets I, C A* and O, C A* contain
all arcs that are directed in and out of node n, respectively. The basic model for the

periodic equipment assignment problem can be stated as follows:

Minimize Z Z faZa (4.1)

kEK gcA*

subject to

z Z disyrs = 1 (l € L) (42)

r&R seST

Zo — layrs > 0 (réR;s€S,a€ A,y) (4.3)
Tq — Uglprs < 0 (reR;seS;a€ A, (4.4)
> za<e (k € K) (4.5)

acAk
dza— Y za=0 (k€ K;n € N¥) (4.6)

a€ln a€0On
T, > 0, integer (k € K;a € AY) (4.7)
Yrs € {0,1} (re RyseS"). (4.8)

The objective function (4.1) minimizes the sum of operational costs. Constraints
(4.2) require that each train leg be part of exactly one sequence covered by an
appropriate consist. Constraints (4.3) and (4.4) impose lower and upper bounds
on sequence arcs of all networks depending on the choice of sequences and consist
types. Equipment availability is respected at any time via constraints (4.5). Flow
conservation at every node for each equipment type is imposed by constraints (4.6).
Finally, all z, variables must assume non-negative integers values, while y,, variables

are restricted to be binary.
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4.3 Extensions to the Basic Model

4.3.1 Maintenance Constraints

When performing the assignment of locomotives and cars to trains, planners usually
must take into consideration some form of maintenance requirements. These
requirements may be expressed in different ways but the most popular approach
is to specify, for each type of equipment, a maximum number of days between two
successive stops at a maintenance center for any unit of that type. Maintenance
centers are usually attached to stations of the physical network and are thus accessible
directly at the end of some legs. These regular stops at maintenance centers are
necessary to allow for minor repairs and to comply with safety regulations. Although
the solution to the basic model can sometimes satisfy these requirements, maintenance
constraints must normally be imposed explicitly if maintenance frequency is high or

if the set of stations where maintenance can be performed is limited.

Suppose that every unit of equipment must make a stop in one of a specified
set of stations at least once every m units of time. Our approach to impose these
constraints is to replace the single-commodity network G* associated with each
type of equipment £ with a multi-commodity network. Let D represent the set of
commodities. Commodity d € D will correspond to paths in the graph G* starting
at time d and finishing at most m units of time later. To reduce the cardinality
of D, one may discretize the planning period as follows. Let ¢ denote the length
of the planning period. Divide the planning period [0,¢ — 1] into p disjoint but
consecutive subperiods of equal length. For each subperiod j = 1,...,p, let a; and
b; denote the start and the end of this subperiod, respectively. One then obtains
a; = 0,b = (t/p) ~ 1,a; = t/p,by = 2(t/p) — 1,... Commodity d € D will then

correspond to paths starting from a maintenance center between a4 and by and
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returning to a maintenance center before ag+m mod t. Then, by making sure that
a unit of flow in graph G* can only switch commodities at special nodes representing
maintenance activities, it will not be possible to find a path in G* that lasts more
than m units of time without visiting a maintenance center. On the other hand, if
more frequent visits to a maintenance center can yield a solution with a smaller cost,

this will be allowed by the model.

Using a discretization of the planning period introduces a small error in enforcing
maintenance constraints since two units leaving the maintenance center at times g;
and b; must both return to a maintenance center before time a; + m mod ¢ even
though the second unit has left the maintenance center b; —a; units of time later than
the first. This error decreases as the cardinality of D increases. For example, using
7 commodities in a 7-day planning horizon gives a maximum error of 24 hours while
using 28 commodities decreases this maximum error to 6 hours. For most practical
applications, this approximation error can be tolerated since maintenance operations
are not synchronized with great precision. This approach is also conservative: no

path can exceed m units of time between two maintenance stops.

The network for each type of equipment is augmented as follows. For each train
leg whose destination station has an associated maintenance center and after which
maintenance is allowed, one introduces an additional maintenance node representing
a maintenance activity taking place after the arrival of the train. One also introduces
an arc from the arrival node of the leg to the maintenance node. Then, for each part
of the station, there is an arc from the maintenance node to the first node in that part
of the station corresponding to a time larger than or equal to the arrival time plus
the maintenance duration. Hence, if the station is divided between eastbound and
westbound trains, two such arcs are required. This is illustrated in Figure 4.2. Finally,

additional flow conservation constraints at maintenance nodes will link commodities



O Departure node ——* Sequence arc
. Arrivalnodke @ o= = Repositioning arc
O Repositioningnode e =  Waiting arc

D Maintenance node

Figure 4.2: Modified network to incorporate maintenance constraints

and allow units of flow to switch commodities when passing by these nodes which act

as sources and sinks for the different commodities.

For each equipment type k, variable z, associated with arc a € A* is now replaced
by a set of variables ¢ (d € D). However, ¢ is defined if and only if arc a could
belong to a path associated with commodity d. More precisely, variable z2 is defined
if and only if both the tail and head nodes of arc a are associated with events that
occur between a4 and ay + m mod ¢t. For each equipment type k, let M* c N*
be the subset of maintenance nodes in the graph G*. The time associated with a
maintenance node n € M* is taken as the arrival time of the train leg with which it is

associated. Hence, any unit of flow of commodity d € D has to enter a maintenance
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node at or before time ay + m mod t. Arcs linking the arrival node of a train leg

to the maintenance node can be given a positive cost so as to minimize maintenance

frequency while still satisfying the minimum requirements.

Given these definitions, the following model may then be used to appropriately

enforce maintenance constraints:

Minimize Z Z Z fazd

k€K acAk deD

subject to
Z Z dlsyrs =1
rER seST
Z Iz ~layrs 20
deD
z Ig — UglYrs < 0
deD
PO
aéA’é debn
BPIETDRp R
deDael, deD a€Oy
Z :r;‘ - Z =0
a€ln a€0,

z% > 0, integer

Yrs € {0,1}

(e L)
(re RiseS";a€ A,y

(re RiseS";a€ Ay)

(k € K)

(k€ K;n e M)

(k€ K;ne N¥\ M*;d € D)

(k€ K;a€ A¥;d e D)

(reR;sef").

(4.9)

(4.10)
(4.11)
(4.12)

(4.13)

(4.14)
(4.15)

(4.16)

(4.17)

Whereas constraints (4.10) are identical to their counterparts (4.2) of the basic

model, the objective function (4.1) as well as constraint sets (4.3), (4.4) and (4.5) are

modified by replacing each variable z, by the sum of z2 variables for d € D. Hence,

each train sequence can now be covered by units of equipment that were last inspected
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at different moments in time. In addition, flow conservation constraints are now
divided into two groups. For each equipment type, linking constraints (4.14) enforce
flow conservation between commodities at all maintenance nodes while constraints
(4.15) ensure that flow conservation is satisfied for each commodity at all departure,
arrival and repositioning nodes. Thus, decomposing the solution of the problem will
vield cycles that change commodities at least once every m units of time in one of

the available maintenance centers.

4.3.2 Equipment Switching Penalties

Equipment switching is said to occur after a given train leg [; if there are at least two
units of equipment used on leg /; such that one of them is next used on leg [; while
the other one is next used on leg [, # [;. While equipment switching enables the
railway to decrease its fuel and maintenance expenses by reducing the total number
of miles traveled by inactive units, it can also be a source of operating delays since
separating or assembling cars and locomotives requires a certain time that may vary
according to station congestion and resources availability. Hence, although switching
must be performed at least to some extent, it is sometimes desirable to limit such

consist modifications when they may have a negative impact on schedule compliance.

In the basic model, the time associated with an arrival node includes the minimum.
time needed for switching under ideal operating conditions. Thus, switching is
forbidden between two legs if the connection time between these legs is less than
the minimum switching time. We now explain how a penalty can be imposed to
switchings that are feasible but occur shortly after the arrival of a train. Because
they may cause some trains to be delayed in situations of high station congestion,

such switchings should be allowed but minimized.
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Consider a train leg [ € L covered in a sequence that terminates with leg I. After
the arrival of the train, the consist used on that leg can either be used unmodified on a
different leg or its equipment units can be separated and recombined with other units
to form new outbound trains. In the former case, the consist will perform a direct
connection whereas in the latter, it will perform a switching connection. Because a
penalty should be imposed when switching is performed shortly after the arrival, one
must also distinguish between short and long switching connections. These different
possibilities are illustrated in Figure 4.3. Each arrival node is the tail of a short
switching arc, a long switching arc and a certain number of direct connection arcs
that link the arrival node to departure nodes of other legs. By imposing the constraint
that exactly one possibility be chosen, either all units will perform a direct connection
to the same next train leg or they will all perform a short or long switching connection.
Similarly, a train consist leaving the station can either perform a direct connection
from a previous train or it can be formed by assembling units that were previously

switched and reassembled after the arrival of preceding trains.

For each consist type r € R, let C" denote the set of all possible direct and
switching connections for equipment units used in a consist of type r. The set of
connections may differ for each consist type since its operating speed affects the
arrival times of the trains. For each equipment type k, additional nodes and arcs
must be introduced in the sets N* and A* to represent these various possibilities.
Indeed, for each consist type r € R and each connection ¢ € C", one must introduce
a new arc if equipment k is required in a consist of type r. Let A% C AF denote the
set of all arcs associated with connections. Then, for every arc a € A%, let ¢, and r,

denote, respectively, the associated connection and consist type.

Additional variables and constraints are also needed to ensure that all units of
equipment used in the same train consist will perform the same connection. For each

consist type r € R and each connection ¢ € CT, define a binary variable w,. equal to
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1 if and only if the given connection is performed. For each consist type r € R, let

L™ denote the set of train legs on which a consist of type r can be used. Then, for

each consist type r € R and each train leg [ € L7, let ST(!) C S" and S7(I) C S"

designate, respectively, the subsets of train sequences that begin and terminate with

train leg {. Similarly, let C"(I) € C" and C%(I) C C™ represent the sets of feasible

connections before and after leg {. Then, the constraints

Z Yrs — Z Wre =0

s€ST (1) ceCr (i)
YDA SR
s€ST () ceCr ()
Z x‘: — UgWr,e, S0
deD

wre € {0,1}

(re RjlelL")
(reRilelLm)
(k € K;a € AL)

(reRyceC)

(4.18)

(4.19)

(4.20)

(4.21)
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must be added to model (4.9)-(4.17) to impose switching penalties. Given (4.10),
constraints (4.18) ensure that exactly one connection is chosen before the departure
of leg ! if this leg is covered by a consist of type r in a sequence that begins with leg
[. Constraints (4.19) serve the same purpose for sequences that terminate with leg [.
For every k € K and every a € A%, define u, as an upper bound on the number of
units of equipment k on arc a. Then, constraints (4.20) guarantee that a connection
arc is not used unless the corresponding connection is chosen. Finally, penalties are
imposed by adding the term Zre R Zcecr frewre to the objective function, where f,.

is the non-negative cost of connection c.

4.3.3 Equipment Substitutions

The last extension concerns the possibility of using a unit of equipment of a given type
i where a unit of type j is required. Consider the set J of substitution possibilities:
J ={(i,7) |4, € K and type ¢ can be substituted for type j}. For each consist type
r € R and each sequence s € S, let J;; C J be the set of allowed substitutions in
a consist of type r used on sequence s. Then, for each r € R, each s € S” and each
(i,7) € Jns, define a non-negative integer variable v¥ indicating the number of units
of type ¢ substituted for units of type j in a consist of type r on sequence s, and let

f denote the cost (or penalty) associated with the substitution of one such unit.
rs y

S5 N sl

rER S€ST (i,j)€Jrs

Then, the term

must be added to the objective function.

For every k € K and every a € A*, recall that k, is the equipment type associated

with arc a. Lower bound constraints (4.11) are then replaced with the following:



181

Y ozl - laye, - Y k4D vl >0 (reR;seSacd,) (422)
deD jEK ieK

v? >0, integer (r € R;s € S™;(i,5) € Jrs) (4.23)

These ensure that the flow on arc a € A% satisfies the minimum requirement I,
plus substitutions of equipment k, for other types j, minus substitutions of other

types ¢ for equipment k.

4.4 Solution Methodology

Even for small instances of the problem, model (4.9)-(4.17) contains a very large
number of variables and constraints. The approach that we propose to solve this
model consists of first relaxing the integrality requirements on the z, flow variables
and gradually imposing these constraints by a branch-and-bound method. At each
node of the tree, one thus obtains a mixed-integer problem (integrality is still required
on the y,, variables) that is solved by a Benders decomposition (BENDERS, 1962). The
subproblem in this decomposition is the LP relaxation of a set of multi-commodity
network flow problems that can be solved either by the simplex algorithm or by a
Dantzig-Wolfe decomposition. When the mixed-integer problem is feasible at a given
node of the tree, a feasible integer solution to (4.9)-(4.17) can also be computed by
solving the multi-commodity network flow subproblems with the added integrality
requirements. This feasible integer solution provides an upper bound that can be
used to prune branches of the search tree. We first present this approach on model
(4.9)-(4.17) and then describe the adaptations that are required to deal with switching

penalties and substitution possibilities.
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4.4.1 Benders Decomposition

Let Y be the set of binary vectors satisfying constraints (4.10) and (4.17). For a
given § € Y, model (4.9)-(4.17) reduces to the following problem:

v(#) = Minimize Z z Zfaa:g (4.24)

kEK qe Ak deD

subject to

Zzg > LaGrs (reRiseSa€ A,y (4.25)

deD
Z:cg < UgTrs (reRiseS;a€ Ay (4.26)

deD
YN < (k € K) (4.27)

a€ A d€D
o> d-> > =0 (k€ K;n e M) (4.28)

deD Oeln deD aeon
Sz zi=0 (ke K;ne N\ M*de D) (4.29)

a€ln a€0n
z% > 0, integer (ke K;a € A¥;d e D). (4.30)

Model (4.24)-(4.30) decomposes into a multi-commodity network flow problem
for each type of equipment k € K, where the commodities are the elements of the
set D. Hence, model (4.24)-(4.30) does not have the integrality property. It may
also fail to be feasible even when its linear relaxation is feasible. In any case, the
primal subproblem designates the linear relaxation obtained by dropping integrality

requirements in model (4.24)-(4.30).
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Let 8= (8, >0reRis€Sa€ Ay),vy= (1 <0reRseS;ac€A,),
6= (6 <Olk€K),n=nlke€K;necMF)and 7 = (m|k € K;n € N*\ M*) be
the dual variables associated with constraints (4.25)-(4.29), respectively. The dual of

the primal subproblem, called the dual subproblem, can be expresses as

rER s€S™ a€ Ay, kEK
subject to
(B,7.0,n,®) € A, (4.32)

where A denotes the polyhedron defined by the constraints of the problem.

Observe that the set A does not depend on  since this vector appears only in the
objective function of the dual subproblem. The dual subproblem has one constraint
for each z9 variable in the primal subproblem. But because each of these variables
is non-negative, all constraints of the dual are of the form < f,. Hence, A # @
whenever f, > 0 (k € K;a € A¥) since the null vector 0 is then a feasible solution to

the dual subproblem.

In these conditions, either the primal subproblem is infeasible or it is feasible and
bounded. Let P5 and Qa represent the sets of extreme points and extreme rays of

A, respectively.

If, for a given § € Y, one has

Z Z E (eagrsﬁa + uagrs'}’a) + Z e <0

rE€R $ES" a€Ar, keK
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for all extreme rays (3,4, 8,n, ) € Qa, then the dual subproblem (a maximization
problem) is bounded and the primal subproblem is feasible. The optimal value of

both problems is then equal to

(ﬂd.giff}éf’a Z Z Z (batirsBa + LaPrsVa) + Z ex0k.

rER s€ST a€Ar, keK

If, however, there exists an extreme ray (3,4,8,1n,7) € Q4 for which

Z Z z (fagrsﬁa + uagrs')’a) + Z ekék >0

reER s€ST™ a€A,, keK

then the dual subproblem is unbounded and the primal subproblem must be infeasible.
Model (4.9)-(4.17) can thus be restated as the following Benders master problem:
Minimize = (4.33)

subject to

z- (Z Y Y (laBa+vatalyes + Y ekék) >0  ((Bv.6,m,7)€Pa) (434)

r€ER sEST a€ A, kEK

Z Z Z (¢aBa + UgYa)Yrs + Z erdy <0 ((,6,‘7,5,1’,1!’) €Qa) (4.35)

rER 3E€ES” a€Ar, keK

2 ) dwyn=1  (lel) (436)

reR seSr
Yrs € {0,1} (reR;js€8). (4.37)

Formulation (4.33)-(4.37) contains an enormous number of constraints. However,

most of these constraints are inactive in any optimal solution. Hence, instead of
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enumerating all extreme points and extreme rays e priori, an iterative algorithm
can be used to generate only small subsets of optimality cuts (4.34) and feasibility
cuts (4.35). In the worst case, all extreme points and extreme rays of A will be
enumerated. See BENDERS (1962) and CORDEAU et al. (1998b) for more details on

this algorithm.

4.4.2 Computing Upper Bounds

Whenever the relaxation (mixed-integer problem) is feasible at a given node of the
branch-and-bound tree, a heuristic can be used to generate a feasible integer solution
to model (4.9)-(4.17). If the mixed-integer problem is feasible, one obtains a vector
7 € Y that yields a feasible primal subproblem. Integrality constraints can then be
imposed on all =, variables, and the resulting integer programming problem can be
solved. If this problem is feasible, any feasible integer solution & together with the
vector § constitute a feasible solution to model (4.9)-(4.17). The cost of this solution
provides an upper bound on the optimal value of the problem and it can be used to
prune branches of the enumeration tree. In particular, if model (4.9)-(4.17) is feasible
and there is no integrality gap in the subproblem, then an optimal solution to the
problem can be computed at the first node of the branch-and-bound tree. Otherwise,

branching must be performed on the z, flow variables.

4.4.3 Reintroducing Switching Penalties and Substitutions

We now discuss the modifications that must be made to the solution approach to deal

with switching penalties and substitution possibilities.



186

Let (W, Y') be the set of binary vectors satisfying constraints (4.10), (4.17)-(4.19)
and (4.21). For a given vector (1, §) € (W,Y), constraints (4.20) become

Y o <ugdy,, (k€ K;a€ Ag). (4.38)
deD
These constraints are added to the primal subproblem and also affect the dual
subproblem. Let ¢ = {¢, < 0|k € K;a € AL} be the dual variables associated

with constraints (4.38).

If, in addition, constraints (4.11) are replaced with constraints (4.22) to permit
substitutions, then a solution to the master problem becomes a triplet (¥, w, ¥).
Associating the dual variables 8 with (4.22), the objective function of the dual

subproblem becomes

Z Z Z (lag"’ + Z 61"‘:j - Z ﬁil:a)ﬁa + UgYrsVa| +
réR s€S” a€Tr* JEK icK
Y bt + 3

kEK ag Ak keK

For given r € R, s € S" and (i, j) € Jiy, let a; and a; denote the arcs associated
with the corresponding substitution. Temporarily redefining Pa and Qa according

to the new set of dual variables, one then replaces (4.34) and (4.35) with

Z (l“ﬂﬂ + u07a)yrs + Z (ﬂai - ﬂa,)'v:{) +

-

r€R s€ST “aeTT (i,7)EJrs
Y Y tatiatri, + Y ek6k] >0  ((B,7.8,m,7, )€ Pa)
keK ac Ak, keK
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and
3 ( D UaBa+ ta¥alyes + Y (Boi - ﬁa,.)vi’;) +
r€R s€S™ “aeT"? (3,7)EJrs
Y batlalre, + D b <0 ((B,7,8,1,7 ¢) €Qa)
k€K ag A% keK

The rest of the solution method is unaffected by these modifications. In addition,

upper bounds can still be computed as explained in Section 4.4.2.

4.5 Computational Considerations

In our previous article (CORDEAU et al., 1998b), we proposed several ways to
improve the performance of the Benders decomposition algorithm when solving
the mixed-integer problem in the context of the basic model. First, we suggested
that individual cuts should be generated from the subproblems associated with
the different equipment types instead of generating a single cut from the global
subproblem. To this purpose, z is replaced with |K| variables 2, (kK € K) in
(4.33)-(4.37). Next, we observed that, at each node of the branch-and-bound tree, a
significant speed improvement can be obtained by first solving the LP relaxation of the
master problem before reintroducing the integrality constraints on the y,, variables
(McDANIEL and DEVINE, 1977). Finally, we presented two approaches to generate
initial valid cuts for the master problem so as to reduce the number of iterations of

the Benders decomposition algorithm.

All these ideas apply here with very simple modifications. We now discuss

computational considerations which are more specific to the model obtained when
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considering the extensions discussed in Section 4.3. These refinements are presented
independently with regard to model (4.9)-(4.17). However, they can be combined with
little effort and are also valid when switching penalties and substitution possibilities

are considered.

4.5.1 Generating Cuts from a Relaxation of Maintenance

Constraints

Recall that in model (4.9)-(4.17), variable z¢ is defined only if arc a can belong
to a path for commodity d. A simple idea which has proven to be quite effective
in accelerating the solution of the problem consists of first solving the relaxation
obtained by defining z9 for all d € D. This is clearly a relaxation of the problem
because maintenance constraints are no longer imposed. However, all extreme points
and extreme rays generated when solving this relaxation can be used to initialize the

corresponding sets of cuts for solving (4.9)-(4.17).

Indeed, model (4.9)-(4.17) is obtained from this relaxation by setting 3 = 0 if arc
a cannot belong to a path for commodity d. Since restricting a problem corresponds
to relaxing the dual of this problem, the polyhedron of the dual subproblem associated
with the relaxation is thus contained in that of the dual subproblem of model (4.9)-
(4.17). Hence, every feasible point for the dual subproblem of the relaxation is a
feasible point for the dual subproblem of (4.9)-(4.17). Therefore, all cuts generated
from extreme points and extreme rays when solving the relaxation are still valid for
solving the model with the maintenance constraints imposed. These points and rays
may lie in the interior of the dual subproblem polyhedron for model (4.9)-(4.17) but
they nevertheless yield valid cuts.
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Furthermore, one can check that the relaxation described above is equivalent to
model (4.1)-(4.8). In fact, any solution to this relaxation can be transformed into a
solution to the latter model by setting o = Y _4cp z4. The advantage of first solving
model (4.1)-(4.8) is that a large number of cuts are then generated from subproblems

that are considerably smaller and easier to solve.

4.5.2 Identifying Pareto-optimal Cuts

Whenever the primal subproblem (4.24)-(4.30) is degenerate, there may exist more
than one optimal solution to the dual subproblem. Although any of these points
leads to a valid optimality cut, some can yield stronger cuts than others. The cut
generated from the extreme point (3',+',6' n', 7!) dominates the cut generated

from the extreme point (3%, 42, 82, n?, #?) if and only if

S5 N B vy + S et 230N N (B wa¥Dyes + ) sl

rcR $s€ST a€Ar, keK rER SEST a€ Ay, keK

for all y € Y with strict inequality for at least one point. A cut is Pareto-optimal if

no other cut dominates it (MAGNANTI and WONG, 1981).

Let Y.P be the polyhedron defined by (4.10) and the constraints 0 < yrs < 1
(r € R;s € R*), and let ri(Y*P) denote the relative interior of Y“*. For a
given vector § € Y% for which the primal subproblem is feasible, let v(§) denote
the optimal value of the subproblem. To identify an optimal solution to the dual
subproblem that yields a Pareto-optimal cut, one can solve the following problem,

where y® € ri(Y'LP):



Maximize Y Y S (€aydBa +uakisva) + ) exdi

rcR s€ST a€A,s kER

subject to

Z Z Z (baBrsBa + UaFrsYa) + Z exbr = v(¥)

rER s€8T a€A,, keK

(B,v,0,n,7) € A.
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(4.39)

(4.40)

(4.41)

The additional constraint (4.40) ensures that one will choose an extreme point

from the set of optimal solutions to the original dual subproblem. Let ¢ be the dual

variable associated with constraint (4.40). Instead of solving model (4.39)-(4.41), one

can solve the dual auxiliary problem:

Minimize Y Y Y fozl+v(¥)q

kEK ac Ak deD

subject to

Y+ lagng 2 lyl,  (rERis€Sia€ Ay

deD
sz + UaTreq < Ual’, (re Ris€ S";a € Ay)
deD
S Y Hrag<e (k € K)
aEA‘EdED
ZZxﬁ—ZZrﬂzO (k€ K;n e M¥)
deD a€l, deD acOn
zmz—z:z:=0 (k € K;n € N¥\ M*)
a€ly, a€0,

a

>0 (k€ K;a € A*;d € D).

(4.42)

(4.43)
(4.44)

(4.45)

(4.46)
(4.47)

(4.48)
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This model is also obtained by introducing the additional variable ¢ in the LP
relaxation of (4.24)-(4.30). Hence, solving the problem in this form is very convenient
in terms of ease of implementation and computational efficiency since the same
basic representation can be used to solve both the subproblem (4.24)-(4.30) and
the auxiliary problem (4.42)-(4.48). When the problem is large, significant memory

savings can be obtained by using this implementation.

For every consist type r € R and every sequence s € S, let {,, be a binary variable
equal to 1 if and only if 0 < y,, < 1. Let also € > 0 be a small positive value such

that € <1/> .. |S"|. A point of ri(YLP) can be identified by solving the problem

Maximize »_ Y G (4.49)

réR seST
subject to
YN duy =1t (le L) (4.50)
reR sesT
Yrs — ECra >0 (T € R; s € Sr) (451)
Yrs + ECI"S <1 (7' € R; s € Sr) (452)
Grs € {0, 1} (7' €ER;se Sr) (4.53)

Choosing an interior point in this way can possibly lead to the infeasibility of model
(4.42)-(4.48) since not all vectors y° € ri(Y %) yield feasible primal subproblems.
This can be avoided by iteratively adding feasibility cuts to problem (4.49)-(4.53) until
its optimal solution yields a feasible primal subproblem. Since the structure of model
(4.49)-(4.53) is similar to that of the master problem for Benders decomposition, the

same methodology can be used to generate feasibility cuts.
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When solving the integer master problem, one should ideally generate Pareto-
optimal cuts from a point y° € ri(Y*) where Y denotes the convex hull of Y.
However, identifying such a point is difficult since a description of the convex hull is
not available. Instead, one can use a point y° € ri(Y'~F) but the generated cuts may

then be dominated on Y° although they are not dominated on Y£%.

4.5.3 Solving the Primal Subproblem with a Dantzig-Wolfe

Decomposition

As explained in Section 4.4.1, the primal subproblem (4.24)-(4.30) decomposes into
one multi-commodity network flow problem for each equipment type & € K. Although
these problems can be solved directly by the simplex algorithm, a decomposition

approach may be more appropriate when the number of commodities | D] is large.

Consider an arbitrary equipment type & € K. If constraints (4.25)-(4.28) are
relaxed, the multi-commodity network flow problem for equipment & decomposes into
a set of | D| pure network flow problems. If the number of relaxed constraints is not too
large, this problem may be solved by a decomposition approach such as Lagrangian
relaxation (GEOFFRION, 1974) or Dantzig-Wolfe decomposition (DANTZIG and

WOLFE, 1960).

Let % be the set of feasible paths for commodity d € D. These paths must start
in the interval [aq,bs] and finish before ag + m mod ¢. The elements of Q% are in
one-to-one correspondence with the extreme rays of the polyhedron defined by (4.29)
and non-negativity constraints. For every w € QX let §, be the flow on path w and
let f, be the cost of sending one unit on this path. Define a binary constant b,

equal to 1 if and only if arc a € A* belongs to path w € Q*. The primal subproblem
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(4.24)-(4.30) can be restated as the following master problem:

Minimize Y Y Y fuba (4.54)

keK deD yenk
subject to
Z Z bawbu 2 laTrs (re R;seST;ac Ars) (4.55)
deDweﬂﬁ"
Y S b Suafrs  (re€Ris€Sia€Ay) (456)
dEDwen?

D2 D bab Se (k € K) (4.57)

a€ A% deD yenk

SN Y b= Y Y bauby =0 (k€ Kin € M¥) (4.58)

deDacly, ueﬂg de D a€0, uenﬁ

)" bauby 20, integer (k€ K;a€ A*;de D) (4.59)
w€ﬂ§

6, >0 (k€ K;de D;weQk). (4.60)

Columns for the master problem are generated by solving the subproblem (4.29)-
(4.30) with an objective that is updated at every iteration to reflect the new values
of the dual variables. For a given equipment type k € K and a given arc a € A*, the
reduced-cost of arc a is f, = fo—Ba—Ya—0l(a € A%)—m; I(jo € M*)+m;, I(is € MF¥)
where i, and j, represent, respectively, the tail and head nodes of arc a, and I(:) is

the indicator function.

If model (4.54)-(4.60) is feasible, then the optimal values of the dual variables
associated with the constraints of the Dantzig-Wolfe master problem are an extreme
point of the dual subproblem polyhedron A. Even though only a subset of all columns

has been generated, this point is an extreme point of the dual subproblem since
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all other constraints of the dual (which correspond to columns that have not been
generated) are automatically satisfied. If model (4.54)-(4.60) is infeasible, an extreme
ray can be computed by using the big M method. In this case, artificial variables
are present in the basis at optimality. However, one has generated all columns (all
constraints of the dual) necessary to identify an extreme ray. Generating additional
columns would only add already satisfied constraints to the dual problem. The
direction of the extreme ray can then be determined by identifying the constraints

for which the artificial variable is still basic.

4.6 Computational Experimentation

The development of the model and solution approach proposed in the present paper
was motivated by two real-life applications of the locomotive and car assignment
problem. The first of these applications concerns the passenger trains operated by
VIA Rail Canada in the Québec-Windsor corridor. The second application is a study
realized by VIA to evaluate the costs and benefits of a project to increase service
frequency and replace its current fleet of locomotives and cars with self-powered car
modules. We now describe the data used in the computational experiments and give a
summary of the results obtained for each application. All experiments were performed
on a Sun Ultra2 workstation (300 MHz). The algorithm is coded in C and uses the
CPLEX Callable Library (CPLEX, 1997) to solve linear and integer subproblems.

4.6.1 First Group of Experiments

Description of data sets. The context of the first group of computational

experiments is described in detail in our previous article (CORDEAU et al., 1998b)
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and we only briefly recall it here. VIA currently uses two types of locomotives
(F40 and LRC) and two types of first-class and second-class cars (LRC and HEP)
that yield three consist types with different operating speeds: F40 locomotives
combine with both LRC and HEP cars but LRC locomotives combine only with
LRC cars. Equipment availability is limited and the objective is to minimize the sum
of operational costs related to mileage. All train legs begin and terminate in one of
the nine major stations of the physical rail network, but switching is allowed only in
two of these stations (Montréal and Toronto). For each train leg, demand is expressed
as the number of first-class and second-class cars required. Most train legs require a

single locomotive but a few exceptions require two.

Three instances corresponding to the schedules of different seasons were used in
the experiments. In addition, two variants were considered for each instance. In the
first variant (instances la to 3a), the type of consist used on each leg is fixed and
matches the assignment used by VIA. In the second variant (instances 1b to 3b),
more than 50% of all train legs can be covered by either two or three consist types.

All these instances correspond to weekly problems.

For each variant of each instance, three scenarios were compared. In the first
scenario, maintenance constraints are imposed but switching is not penalized and
substitutions are forbidden. Every unit of equipment must be inspected at least once
every seven days at the unique maintenance center located in Montréal. Maintenance
can be performed after the arrival of any train in that station and the minimum
time required for maintenance is five hours. In the second scenario, maintenance
constraints are still imposed but switching is now penalized. For example, at the
station associated with the maintenance center, the minimum time required for
switching is two hours but switching is however penalized if less than five hours are
available for connection. Finally, the third scenario incorporates all three extensions

to the basic model and adds the possibility to substitute a first-class car for a second-
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class car on any train sequence. In all scenarios, a 7-subperiod discretization is used to

impose maintenance constraints; this approach is used by VIA for planning purposes.

Table 4.1 reports the size of the Benders master problem and subproblem for
each of the six instances when considering the different scenarios. For example, the
schedule for instance VIAla has 330 train legs, leading to a total of 16,368 sequences.
Under the first scenario, the master problem (4.33)-(4.37) contains one constraint
of the form (4.36) for each train leg, one y,, variable for each sequence, and one z;
cost variable for each of the six equipment types. The primal subproblem (4.24)-
(4.30) contains 109,056 constraints and 366,414 flow variables 2. Since the primal
subproblem decomposes into a set of six multi-commodity network flow problems,
each of them has on average more than 18,000 constraints and 60,000 variables.
Under the second scenario, the number of variables and constraints increases slightly
following the introduction of connection variables w,. and the associated constraints
(4.18)-(4.21). Finally, the number of variables in the master problem nearly doubles
in the third scenario since one substitution variable w]; is added for every sequence.
The size of the subproblem is however not affected by the introduction of substitution

possibilities.

Summary of results. To solve the mixed-integer problem at the first node of the
branch-and-bound tree, the algorithm actually proceeds in three phases. In phase I,
initial cuts are generated by solving the LP relaxation of (4.1)-(4.8) as explained in
Section 4.5.1. Then, phase II solves the LP relaxation of (4.9)-(4.17) to optimality.
In phase III, integrality is finally imposed on the variables of the master problem, and
the algorithm iteratively solves the integer master problem and generates additional

cuts until an optimal solution is found for the mixed-integer problem.

The first step in our experiments was to analyze the effects on computing time

and convergence of generating initial cuts by solving the LP relaxation of (4.1)-(4.8).
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Table 4.1: Model size for Benders decomposition of the first set of instances

Master problem Subproblem
Instance Legs Sequences Constraints Variables Constraints Variables
VIAla-1 330 16 368 330 16 374 109 056 366 414
VIAla-2 740 17 101 122 199 388 338
VIAla-3 740 33469 122 199 388 338
VIA2a-1 352 17 478 352 17 484 116 178 390 417
VIA2a-2 784 18 270 130 191 414 042
VIA2a-3 784 35 748 130 191 414 042
VIA3a-1 348 14 296 348 14 302 96 822 322 923
VIA3a-2 772 15 073 110 622 346 149
VIA3a-3 772 29 369 110 622 346 149
VIAlb-1 330 26 691 330 26 697 174 250 590 470
VIA1b-2 922 27 763 193 597 622 789
VIA1b-3 922 54 454 193 597 622 789
VIA2b-1 352 25139 352 25 145 165 491 558 767
VIA2b-2 976 26 301 186 116 593 648
VIA2b-3 976 51 440 186 116 593 648
VIA3b-1 348 22123 348 22129 147 131 494 759
VIA3b-2 964 23 287 167 594 529 598
VIA3b-3 964 45 410 167 594 529 598

We have determined that when these initial cuts are not generated, CPU times are
clearly excessive because of the large size of the subproblem. On the other hand, if
model (4.1)-(4.8) is solved first, then a few additional iterations of the algorithm with
subproblem (4.24)-(4.30) are sufficient to find an optimal solution to (4.9)-(4.17). In
this application, maintenance constraints are easily satisfied and the optimal solution
to (4.9)-(4.17) often differs only slightly from the optimal solution to the maintenance

relaxation.

To illustrate the benefits of generating these initial cuts, three smaller instances
were obtained by considering an hypothetical scenario in which switching would be
permitted in all nine stations of the network. This considerably reduces the number
of sequences and the size of the model without affecting the structure of the problem:
the number of constraints in the master problem remains the same but the number
of variables and the size of the subproblem are divided by a factor of ten. Each of
these instances was then solved with and without the initial cuts. Table 4.2 indicates

the number of iterations, number of cuts generated and the CPU time (in minutes)
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needed to find an optimal solution to the LP relaxation of model (4.9)-(4.17) by the

two methods.

Table 4.2: Effect of generating initial cuts from relaxation

Basic algorithm Two-phase algorithm
Phase I Phase II
Instance Iter. Cuts CPU Iter. Cuts CPU Iter. Cuts  CPU
VIAla-0 67 227 669 12 40 0.02 1 0 0.72
VIA2a-0 302 943 440.2 37 76  0.05 1 0 0.93
VIA3a-0 342 1025 413.3 21 63 0.04 1 0 0.90

With the two-phase algorithm, computing times are divided by more than one
hundred and the number of iterations performed also decreases very significantly.
This is explained by the fact that the feasibility cuts generated from the multi-
commodity subproblem are weaker than those generated from the single-commodity
subproblem of the relaxation. When first solving the maintenance relaxation, a single
extra iteration with subproblem (4.24)-(4.30) was sufficient to find an optimal solution
satisfying the maintenance constraints. On the large instances of Table 4.1, CPU
times exceeded 24 hours when the relaxation of maintenance constraints was not

solved first. Thus, initial cuts were generated in all further experiments.

Table 4.3 presents the results obtained when solving each of the six instances
under the three scenarios. The numbers indicate the total work for the three phases
just described. The CPU time also includes the time needed to compute an integer
solution with the upper bounding procedure explained in Section 4.4.2. In all these
experiments, this procedure found an optimal solution at the first node of the tree
since there was no integrality gap in any of the subproblems. Hence, branching was

not required.

When considering only maintenance constraints (scenario 1), all instances are
solved in less that 20 minutes and only a few iterations are required to determine

an optimal integer solution. When switching penalties (scenario 2) and substitution
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Table 4.3: Computational results for the first set of instances

Scenario 1 Scenario 2 Scenario 3 Maximum
Instance Iter. Cuts CPU Iter. Cuts CPU Iter. Cuts CPU IP Gap (%)
VIAla 5 20 9.9 25 104 6.8 47 138 15.5 0.2348
VIA2a 7 24 16.4 29 110 13.5 38 123 60.3 0.1506
VIA3a 6 22 9.3 33 106 16.8 28 87 63.8 0.2119
VIAlb 7 29 14.7 79 323 38.6 83 331 90.0 0.0625
VIA2b 9 41 18.9 74 294 43.1 85 327 87.7 0.0461
VIA3b 7 34 17.5 90 366 29.9 84 341 62.2 0.0376

possibilities (scenarios 3) are introduced, the total effort needed to solve a given
instance grows moderately. The CPU time remains reasonable considering that an
optimal solution is computed. This good performance is in part explained by the
fact that the integrality gap is very small in these instances. For every instance, the
largest integrality gap is observed for the third scenario and is always below 0.25%.
This gap is explored when solving the integer master problem which has relatively

few rows and is solved rather quickly despite its large number of variables.

In our previous article (CORDEAU et al., 1998b), we compared the performance of
the Benders decomposition algorithm to those of Lagrangian relaxation and Dantzig-
Wolfe decomposition for solving the LP relaxation of the basic model. We also
compared our complete algorithm to a simplex-based branch-and-bound method.
According to these results, the approach presented here can solve the extended model
in less time than what is required by the other approaches for simply solving the basic

model. Further comparisons with these methods would thus be pointless.

This performance is also superior to that of the Dantzig-Wolfe decomposition
method of CORDEAU et al. (1998a). On similar instances, the new method can find
an optimal solution in less CPU time than what is needed by the former one to identify
an approximate solution. A direct comparison of the two methods is however difficult
because they use different modeling approaches. The first one places the emphasis

on the minimization of train modifications by penalizing all switchings and using
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compound modules containing several units of equipment. The second one places the
emphasis on the minimization of mileage costs by penalizing only short switchings
and using disaggregated equipment units. In addition, some small features that are
necessary in a commercial implementation have been omitted here. These could

nevertheless be added to the model with little effect on algorithmic performance.

4.6.2 Second Group of Experiments

Description of data sets. In an alternative studied by VIA, train frequencies
would be increased significantly and the current fleet of locomotives and cars would
be replaced by a set of self-powered car modules containing two, three or four cars
each. Qur mandate was to determine the number of modules of each type that
should be acquired so as to minimize a weighted combination of capital costs and

future operating cots.

The input for these experiments is the expected demand in passengers on a set of
548 train legs from a weekly schedule. The demand on each train leg can be satisfied
with at most eight cars and a train consist contains at most two active modules.
A consist type is defined for each of the nine possible ways of choosing one or two
module types among the three types available. For example, a single three-car module
and two three-car modules represent distinct consist types. Then, for each train leg,
the set of possible consist types is determined according to the demand: all consist
types that provide enough seating capacity can be used to cover the given leg. As
in the first application, maintenance must be performed weekly on every module.
However, because all modules are self-powered, switching can now be performed in
very little time in all nine stations of the network and should not be penalized. Finally,

substitutions are not necessary since all cars provide the same type of service.
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Three instances were obtained from different evaluations of the demand ranging
from light to heavy. In addition, two variants were considered for each instance. In
the first variant (instances 4a to 6a), a unique maintenance center is used with a 7-
subperiod discretization. In the second variant (instances 4b to 6b), two maintenance
centers are available (Montréal and Toronto) and a 28-subperiod discretization is used.
Table 4.4 reports the size of each instance. Since switching is allowed in every station.
the number of sequences is considerably smaller in this application. On the other
hand, the subproblem becomes very large when a finer discretization is considered.
Given that there are three equipment types, each multi-commodity network flow
subproblem contains approximately 40,000 constraints and 120,000 variables in the

second variant.

Table 4.4: Model size for Benders decomposition of the second set of instances

Master problem Subproblem
Instance Legs Sequences Constraints Variables Constraints Variables
VIAda 548 1734 548 1737 29 801 65 894
VIAS5a 548 1743 548 1746 29 726 66 881
VIA6a 548 1757 548 1760 29 642 68 372
VIA4b 548 1734 548 1737 121 438 340 782
VIASb 548 1743 548 1746 120 675 348 077
VIA6b 548 1757 548 1 760 119 621 355 543

Summary of results. The instances in this group of experiments are more difficult
to solve that those of the previous group for several reasons. First, the average
number of possible consist types for each leg is higher in these problems and it seems
that the performance of the algorithm is more affected by the number of consist
types than by the number of sequences. Second, maintenance constraints are more
difficult to satisfy here and several iterations with the multi-commodity network flow
subproblem (4.24)-(4.30) are sometimes needed to find an optimal solution. Finally,
these instances include fixed costs that take equipment ownership into consideration.
The objective then contains two terms that are in contradiction since reducing fixed

costs leads to an increase in equipment utilization and operating costs.
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Table 4.5 summarizes the computational statistics obtained when solving each of
the first three instances. We report the number of iterations, number of cuts, and
CPU time (in minutes) for each of the three phases: solving the LP relaxation of
(4.1)-(4.8), solving the LP relaxation of (4.9)-(4.17), and solving the mixed-integer
problem. Here again, computing an integer solution at the first node of the search
tree provided an optimal solution to the problem. The time needed to compute this

solution is reported separately in Table 4.7.

Table 4.5: Computational results for second set of instances (first variant)

Phase 1 Phase 11 Phase II1
Instance Iter. Cuts CPU [ter. Cuts CPU [ter. Cuts CPU IP Gap (%)
VIA4a 179 463 3.5 85 223  509.3 3 4 82.7 0.0464
VIAS5a 216 569 5.2 30 77 199.7 6 10 488.3 0.0364
VIA6a 147 414 2.9 47 120 302.1 1 3 31.9 0.1042

The first phase is completed in a few minutes on all instances although most
of the cuts are generated during that phase. In phase II, each iteration of the
algorithm takes much longer because three large problems must be solved twice
with the simplex algorithm. The primal subproblem (4.24)-(4.30) (which decomposes
into three multi-commodity network flow problems) is solved first, followed by the
auxiliary problem (4.42)-(4.48) to identify Pareto-optimal cuts. At least 90% of the
total CPU time is spent in solving these problems with the largest portion used for the
primal subproblem. The third phase requires only a few iterations but each of them
takes even longer because the integer master problem must be solved by a branch-
and-bound algorithm. This is particularly time-consuming for instance VIA5a since
each iteration requires on average more than 45 minutes. The total computing times
are large but they are acceptable considering that optimal solutions are computed for
a strategic problem of resource acquisition. Again, integrality gaps are very small.
These small gaps are a result of the problem formulation: enumerating the set of
possible consist types and imposing constraints (4.10) requires that one consist be

supplied although a fraction of a consist could sometimes be sufficient if demand
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constraints were expressed as a seating capacity to be provided. The LP relaxation

of the problem is thus very strong.

Because several iterations are performed in phase II of the algorithm with

the multi-commodity subproblem, generating Pareto-optimal cuts as explained in

Section 4.5.2 is often necessary to obtain convergence in reasonable time. Indeed,

the primal subproblem (4.24)-(4.30) is normally highly degenerate since the bulk of

its constraints are flow conservation equations (4.28) and (4.29). As a result, the

optimality cuts may be extremely weak if they are generated from an arbitrary dual

optimal solution. Figure 4.4 plots the value of the lower bound provided by the master

problem and the value of the upper bound provided by the subproblem as a function

of CPU time when solving the LP relaxation in Phase II for instance VIA4a.

Standard Benders cuts ———
Pareto-optimal cuts «=-----
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Figure 4.4: Values of lower and upper bounds as a function of CPU time

As the figure indicates, generating Pareto-optimal cuts improves the performance

of the algorithm considerably. While the lower bound provided by the value of the

master problem increases very slowly when cuts are generated from an arbitrary
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optimal solution, this bound grows quickly in the first few iterations when Pareto-
optimal cuts are used. Also, while the upper bound provided by the value of the
subproblem is obviously not monotonically decreasing in any case, it exhibits a
more stable behavior when non-dominated cuts are generated. Using these cuts,
the algorithm converged to an optimal solution after 509.3 minutes, as indicated in
Table 4.5. Computing Pareto-optimal cuts requires a bit of extra work but allows a

very significant reduction of the total CPU time on all instances.

Because two maintenance centers are available in the last three instances, these
were slightly easier to solve than the first three. For every instance, a single iteration
with subproblem (4.24)-(4.30) was necessary to obtain an optimal solution to the LP
relaxation of (4.9)-(4.17). Then, solving the integer master problem only once yielded
an optimal solution to the mixed-integer problem at the first node of the branch-and-
bound tree. Again, an optimal integer solution was found by solving the subproblem
once with the integrality requirements. The corresponding statistics are summarized

in Table 4.6 below.

Table 4.6: Computational results for second set of instances (second variant)

Phase I Phase I1 Phase II1
Instance Iter. Cuts CPU Iter. Cuts CPU Iter. Cuts CPU IP Gap (%)
VIA4b 173 468 3.5 1 0 214 1 (] 38.7 0.1410
VIA5b 194 504 4.5 1 0 25.5 1 0 38.3 0.0612
VIA6b 153 426 3.3 1 0 25.2 1 0 51.1 0.3473

In this case, a different approach was necessary to solve the subproblem
(4.24)-(4.30) because of the 28-subperiod discretization. For these instances, the
subproblem was optimized with a Dantzig-Wolfe decomposition (see Section 4.5.3).
The decomposition approach becomes attractive here because the larger number of

subproblems used for column generation does not have a great impact on computing
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times. On the other hand, solving the subproblem with the simplex algorithm is very

time-consuming because of the large number of constraints.

Table 4.7 reports the CPU time needed to solve the primal subproblem (4.24)-
(4.30) once with the simplex algorithm and with Dantzig-Wolfe decomposition.
These timings were collected the first time the subproblem was solved in phase
II of the algorithm. For the 7-subperiod discretization used in the first three
instances, the simplex algorithm is approximately two times faster than Dantzig-Wolfe
decomposition. However, this conclusion reverses in the case of the 28-subperiod
discretization used in the last three instances. In both cases, the master problem
(4.54)-(4.60) of the Dantzig-Wolfe decomposition for each type of equipment contains
approximately 1000 constraints. Several independent paths are generated at each
iteration of the column generation process by solving a network flow problem with

upper bounds set to 1 on all arcs of the network.

Table 4.7: CPU time (in minutes) needed to solve subproblem (4.24)-(4.30)

LP relaxation solution Optimal integer solution

Instance Simplex D-W decomposition BB with simplex BB with D-W decomposition
VIAda 3.1 6.3 124.2 -

VIAS5a 2.9 7.3 97.8 -

VIA6a 3.1 6.1 85.2 -

VIA4b 73.7 214 - 320.6

VIAS5b 80.5 25.5 - 475.7

VIA6b 75.6 25.2 - 221.3

This table also indicates the CPU time required to solve the integer subproblem
by branch-and-bound. These were computed only for the faster of the two methods
in each case. When solving the subproblem with a simplex-based branch-and-
bound method, strong branching is used with a best-bound search. When the linear
relaxations are solved with Dantzig-Wolfe decomposition, a depth-first search is used
and branching is performed on the path variable whose value is closest to the next

integer. To obtain the total time required for solving a given instance, one must add
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the time from the last two columns of Table 4.7 to those of the three phases. For
example, instance VIA4b required a total of 384.2 minutes of which 320.6 were spent

solving the integer subproblem.

4.7 Conclusions

In this paper, we have presented a basic formulation and three extensions for the
simultaneous assignment of locomotives and cars to trains in the context of passenger
transportation. The resulting model is a robust and flexible starting point for the
development of optimization systems capable of handling large and complex problems
that occur in actual operations. The model is also very tractable and can be solved
to optimality in reasonable time for instances of realistic size. Our solution method
combines relaxation and decomposition principles in an efficient manner that takes
advantage of several problem characteristics. The approach was used in practice to
determine the best mix of equipment that a railway should acquire so as to minimize

a combination of capital and operating costs.

The model is particularly useful in tactical and strategic planning but does not
address the operational planning problem which deals with the daily operations of a
railway. Short-term planning requires that several factors such as train delays and
equipment position and orientation on the train be taken into account. In addition,
fast solution methods are necessary so that the model can be used in real-time to
analyze different scenarios or determine the changes to be made following a mechanical
failure or train delay. Given the separability of our formulation and the fact that

the subproblem for each equipment type can itself be decomposed, the approach
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introduced here can be adapted to deal with the operational problem. These further

extensions will be addressed in subsequent research.
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Conclusion

La premieére contribution de cette thése est de présenter un cadre de modélisation
a la fois général et détaillé pour l'affectation des locomotives et des wagons aux
trains de passagers. Ce cadre original s'inspire en partie des approches utilisées en
transport ferroviaire de marchandises et en transport aérien mais introduit également
de nombreux éléments de modélisation qui sont propres au transport ferroviaire de

passagers.

Tout d’abord, la prise en compte des incompatiblités et des interdépendances
de nature temporelle entre les différents types d'équipement requiert une approche
spécifique au probléme étudié. En fait, les modeles proposés jusqu'a maintenant pour
P'affectation des locomotives aux trains de marchandises ne permettent de traiter
que les incompatibilités entre les trains et les types de locomotives et ne considérent
pas les incompatiblités entre les types de locomotives eux-mémes. De plus, aucun
de ces modeles ne considéere l'effet des combinaisons d’éguipement sur la vitesse
d’opération des trains. Finalement, ces modéles ne considérent pas les temps de
connexion variables en fonction du type de connexion ou les effets du couplage et
du découplage. Ce type de difficultés n'est par ailleurs pas présent dans les problémes
d’affectation d’équipement en transport aérien puisqu'un seul appareil est utilisé sur

chaque vol.

Comme en témoignent les différents modeles présentés dans la these, le cadre
de modélisation permet aussi de traduire un tres large éventail de possibilités et
de contraintes qui peuvent étre communes ou spécifiques a différentes applications

pratiques. En particulier, les contraintes d’entretien, les possibilités de substitution
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et les pénalités pour le couplage et le découplage des wagons peuvent étre prises en

compte sans trop affecter la structure de base des modeles.

Une autre contribution importante de cette thése est le développement et la
comparaison de diverses approches de résolution pour les modéles proposés. Au
chapitre 2, nous avons d'abord utilisé une approche basée sur la génération de colonnes
pour résoudre un probléeme pratique avec un objectif et des contraintes complexes.
Cette approche permet de résoudre de maniére approximative, en quelques heures
de temps de calcul, des instances comportant six types d'équipement et plus de 300
trains par semaine. Les comparaisons avec les solutions produites manuellement par
les employés de VIA Rail montrent que cette approche permet habituellement de
réduire & la fois les coiits et le nombre de couplages et de découplages de wagons. De
plus, ces résultats indiquent que des économies considérables peuvent étre réalisées au
niveau des colits variables d’opération en augmentant trés légérement le nombre de fois
qu'un wagon change de locomotive & 'extérieur du centre d’entretien. Des économies
de 'ordre de 10% peuvent souvent étre réalisées en augmentant de quelques unités le

nombre de couplages ou de découplages effectuées durant une semaine d’opération.

La principale faiblesse de cette approche est que le temps de calcul augmente
trés rapidement lorsqu’on considére la possibilité de choisir de maniére endogene la
combinaison d’équipement & utiliser sur chaque train. Par exemple, en considérant
deux possiblités pour 30% des trains et une seule possibilité pour les autres, le
temps de calcul pour une des instances est passé d'environ 3 heures a plus de 14
heures. Au chapitre 3, nous avons donc présenté un second modele, plus simple, mais
mieux adapté a la possibilité de pouvoir choisir parmi plusieurs combinaisons celle
utilisée sur chaque train. En ayant recours & une formulation différente du probleme,
nous avons donc obtenu un modeéle pour lequel la méthode de décomposition de

Benders fournit une approche de résolution trés efficace. En combinant certaines
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améliorations 4 l'algorithme de base, cette approche permet par exemple de résoudre
4 l'optimalité en moins de 15 minutes des instances dans lesquelles deux ou trois
combinaisons d’équipement sont possibles pour plus de la moitié des trains. De plus,
les comparaisons avec une méthode de séparation et d’évaluation progressive basée
sur la résolution de programmes linéaires par !'algorithme du simplexe indiquent que
la méthode de décomposition est au moins dix fois plus rapide. Ce gain s’explique
en bonne partie par le fait que les contraintes de demande et de capacité deviennent
de simples bornes sur les arcs d’un réseau lorsque la décomposition de Benders est

utilisée.

Le modele simplifié incorpore cependant trop peu d'éléments pour étre utilisé
dans des applications pratiques. Dans le dernier chapitre, nous avons donc présenté
une généralisation du modele simplifié qui incorpore les contraintes d'entretien,
des pénalités de couplage et découplage des wagons ainsi que les possiblités de
substitution. Le modele résultant posséde donc un niveau de détail semblable au
premier modéle du chapitre 2 mais conserve une structure propice a l'utilisation de la
décomposition de Benders. Ce nouveau modéle vise par ailleurs a étre plus général que
le premier en permettant facilement la présence de plusieurs centres d’entretien et de
trains fonctionnant durant la nuit. En résolvant d’abord la relaxation correspondant
au modele du chapitre 3, cette nouvelle approche permet de résoudre, a I'optimalité
et avec toute la gamme des contraintes considérés au chapitre 2, des instances de

méme taille que précédemment en moins de 90 minutes de temps de calcul.

Une comparaison directe des deux approches est cependant difficile car elles
traitent des variantes légerement différentes du probleme. Par exemple, alors que le
premier modéle considéere des modules composés de plusieurs unités d'équipement
et pénalise tous les couplages et découplages de wagons, le second considére des

équipements désaggrégés et n'impose des pénalités qu'aux modifications apportées
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aux trains lors de connexions courtes. Les contraintes de capacité des locomotives sont
également traitées différemment: afin de conserver la séparabilité du sous-probléme, le
second modele répartit a priori la capacité des locomotives entre les différents types de
wagons. Finalement, la derniére approche néglige certaines fonctionalités nécessaires
dans un logiciel commercial telles que la possibilité de violer certaines contraintes

moyennant une pénalité de fagon a assurer la réalisabilité du probléme.

L’utilisation d’une approche basée sur la génération de colonnes dans la premiere
application s'explique entre autres par le fait que le projet a débuté avant que ne
s'effectue le développement du modele présenté au chapitre 3. En utilisant le concept
d’équipement de base, le premier modeéle permet par ailleurs de mieux contréler
la fréquence des couplages et découplages de wagons, ce qui constitue un objectif
important pour VIA Rail. Le modéle du chapitre 4 permet aussi 'utilisation de
modules mais ceux-ci doivent étre formés a priori et les unités d’équipement qu'ils
contiennent ne peuvent étre recombinées au cours de la période. Dans le cas ou la
disponibilité de l'équipement est trés contraignante, ceci constitue une restriction
importante. Finalement, le besoin de disposer d’un algorithme robuste pouvant étre
incorporé & un logiciel commercial a motivé le choix de la génération de colonnes pour

le développement du logiciel implanté chez VIA Rail.

Bien que cette thése contienne trés peu de développements théoriques concernant
les méthodes de décomposition utilisées, elle fournit néanmoins beaucoup d’informa-
tions utiles sur leur utilisation pratique. En particulier, les nombreuses idées proposées
pour accélérer l'algorithme de décomposition de Benders peuvent étre appliquées a
plusieurs autres problémes. L'expérimentation a d’'abord fait ressortir I'importance
de générer un bon ensemble de coupes initiales afin d’assurer une convergence rapide
de I'algorithme. Elle a également témoigné du fait qu'un gain important de rapidité

peut étre obtenu en résolvant d’abord la relaxation linéaire du probléeme. Dans le cas
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du modele étendu incluant les contraintes d’entretien, la méthode de décomposition
de Benders est accélérée encore davantage en résolvant d’abord une relaxation du
probléme. Finalement, I'importance de générer des coupes Pareto-optimales a été

clairement illustrée lors de la résolution de certains problémes.

Les résultats présentés dans les deux derniers chapitres de la thése confirment
que la décomposition de Benders peut étre une méthode de résolution tres efficace
lorsque le probléme posséde une structure appropriée. Dans le modeéle du chapitre 3,
les contraintes liantes deviennent de simples bornes sur les arcs d'un réseau lorsque
sont fixées les valeurs des variables du probleme maitre. Dans le modele du chapitre 4,
une telle simplification n'est plus possible car ces contraintes lient les arcs des modéles
multi-flots. En résolvant une relaxation du probléme, on peut cependant générer
rapidement un sous-ensemble des coupes nécessaires pour identifier une solution
optimale. Un nombre réduit d’itérations avec le modeéle complet est ensuite suffisant

pour atteindre l'optimalité.

Les approches présentés dans cette thése permettent de traiter le probleme de
planification tactique tout en incorporant un niveau de détail relativement élevé
quant a l'opération des trains. Ces approches peuvent également étre utilisées pour
résoudre des problémes de planification a plus long terme tels que celui de déterminer
la composition optimale de la flotte. Des approches similaires pourraient par ailleurs
étre utilisées pour traiter d’autres problémes dans lesquels doivent étre affectées des
unités de différentes natures. Par exemple, 1'affectation simultanée d’appareils et
d’équipages aux vols d'un transporteur aérien pourrait se faire en utilisation une

approche semblable a celles décrites dans cette these.

Dans leur forme actuelle, ces approches ne permettent cependant pas de résoudre

le probléme de gestion opérationnelle de I'équipement. Un développement subséquent
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consisterait & adapter les approches proposées de maniére a traiter ce probiéme qui
requiert que l'on tienne compte de la position et de 'orientation de chaque locomotive
et de chaque wagon dans le réseau. Au niveau opérationnel, des méthodes de résolution
trés rapides sont en général nécessaires afin d’obtenir rapidement une bonne solution

suite & un changement ou un retard se produisant dans le réseau.
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