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Résumé

Cette these traite de ["utilisation de PULSE. un processeur a instruction unique et données
multiples (SIMD) pour le Traitement et la Compression d'Images en format MPEG-2. De
nos jours. les équipements de conférences vidéo. de téléphonie vidéo. de stockage
d'images vidéo numérique. de télévision haute-définition (HDTV) et les systémes de
télévision et de multémedia numériques utilisent ce genre de fonctionnalité. Le stockage
ou la transmission de données d'image numérique impliquent des bandes passantes et des

quantités de mémoire importantes.

L objectif principal de cette thése est d étudier les systémes de codage de compression
d’image. Elle traite notamment de la conception de systémes de haute performance et elle
dtudie les compromis entre la précision et la complexité afin de réaliser des systémes

efficaces.

1) Le mémoire propose un algorithme précis et efficace pour effectuer la détection du
mouvement dans un flot d'images. La méthode de recherche compléte est rapide et
précise. Elle est cependant trés cotteuse. Une méthode de recherche graduelle mais
compléte permet de trouver le meilleur appariement avec un eftfort moyen réduit pour

des tmages simples.
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Une architecture adaptée a I'algorithme proposé est analysée et sa réalisation est
décrite. Nos résultats démontrent qu'une puce PULSE permet de réaliser des
systemes de compression d’images efficaces et flexibles. qui exploitent un haut degré
de parallélisme. Combiné avec un processeur de traitement de signal
commercialement disponible, le C40 de la société Texas Instruments. on peut réaliser
efficacement des systémes de compression d'images de haute performance. Une telle
architecture hétérogene est efficace et flexible.

Nous proposons aussi une méthode efficace pour le calcul de la transformée cosinus
(DCT et IDCT) avec une puce PULSE. Cette méthode exploite une table de cosinus
chargée dans les mémoires internes de PULSE pour éviter des calculs qui exigent un

grand nombre d opérations.

Des développements additionnels permettraient d optimiser encore plus les algorithmes

proposé€s atin d’accélérer la compression d"image avec PULSE.
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Abstract

This thesis 1s concerned with applyving a Fixed-point SIMD Array Processor PULSE to
Image Compression with the MPEG-2 Standard. Video compressor is widely used in
today’s video conferences. videophone. digital video storage. Storage or transmission of
digital images requires large memories and transmission bandwidth. This motivated

research on this topic.

The main objective of this thesis is to study image compression coding systems. Several
aspects of design for high-speed and high accuracy processing are considered. In order to
rcalize a simple and effective image compression coding system, the following areas are

investigated.

1) A high-speed and high accuracy aigorithm for motion estimation is developed.
The Gradual Full search method (GFSM) algorithm reduces the time required to find
matches and no possible solution is neglected in the search area. Although the
program is slightly more complex than the Full Searching Method (FSM), it is three

times faster than FSM when processing a simple image.

2) Different system architectures for image compression coding are discussed and

designed.
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The results obtained during the research conducted for this thesis will prove that a
PULSE chip can be used to construct flexible multi DSP systems, to accelerate image
compression. Using PULSE chips with a C40 DSP and a FPGA control unit, we can
construct a hardware/software system for image compression. It will not only reduce

the cost of an image compression coding systems. but also improve its flexibility.

A simple and effective method to calculate DCT or IDCT with cosine functions
using the PULSE chip is developed.

A possible method to compute the cosine function uses exponential function.
Calculating cosine function is relatively expensive. Thus we propose using
precomputed tables stored in PULSE’s internal memory to accelerate computation of
DCT or IDCT.

Further developments could improve the throughput of image compression on the

PULSE chip.



Table of Contents

Dedication ... ... ... e il
Acknowledgements ......... .. ... iv
RESUME ... . e vi
ADStract ... viii
Tableof Contents ............. ... X
Listof Figures ............ ... . .. Y
List of Tables ...... PPN xvi
Listof Appendix ... ... . xvii
Chapter 1 Introduction ... e 1

Chapter 2 A Review of Image Compressing Algorithms and Their

Processor Architectures ... 5

2L MPEG standard ......coon e 5
2.1 Background .......ooooiiiiii 5

2.1.2 A briefoverview of MPEG-2 ......................iiiiiit. 6
2.1.3 Convolution .....ooe e e 15
2.2 Motion estimation algorithm ................. i 15

2.2.1 FSM (full search method) ............ e, 16



2.2.2 CDS (conjugate direction searching) ...........................0 16

2.2.3 Three-step searching ............cccoooiiiiiiiiiiiiiiiiiii, 18

2.2.4 CSA (cross-search algorithm) ...l 20

2.2.5 GFSM (gradual full search method) .......................... ... 21

2.2.6 Comparison of the different algorithms .................... ... 22

2.3 Processor architecture reVIew .. ... ... .. .o.cceuoiiiiiii i, 23
2.3.1 Custom chip set for MPEG-2 coding .....................o..... 23

2.3.2 VLSI implementation for motion estimation ..................... 26

2.3.3 APC based image compression System ..............ocoiiiienaen. 27

2.4 SIMD architecture of the PULSE chip ...l 29
241 Introduction ... ......oiiiii 29

2.42 Chiparchitecture ...........ccoiiiiiiiiiiiiiiiiiiiiiiiiieans 31

2.4.3 Processing element block diagram .....................o.oo 33

244 InStUCtON SEt ..o ooii it 35
245 PULSE Vlassembler ..o 37

2.4.6 PULSE applications ...... e 38
Chapter 3 Implementing a Convolution on PULSE ............._.... .. 40
3.1 The convolution algorithm versus PULSE architectural features ......... 40
3.2 Structure of the convolution software .............cocooooiiiiii 44
3.3 SUIMMATY ..ot et e e ettt 46

X1



Chapter 4 Motion Estimation Algorithms and

Implementations.. ... 47

4.1 Motion estimation algorithm ........ ... ... 47
4.1.1 General description ...l 48

4.1.2 Data structure for motion estimation in PULSE ............... 49

4.2 Gradual full search method and full search

algorithm withthe PULSE chip ... 32
4.2.1 Speed of GFSM and FSM algorithms in PULSE ................ 52
+4.2.2 Motion estimation program for PULSE ..................... ... 53

Chapter S DCT & IDCT Algorithms and

Implementations ... 60
SIDCT & IDCT algorithms .. ..ooeiieii e 60
S L DO e 60

S 2 DT Lo e 63

5.2 Implementation of DCT & IDCTon PULSE ...... ... 64
5.2.1 Data structure of DCTon PULSE .......... ... 64

5.2.2 Requirements and performance for DCT and

IDCTon PULSE ... e 67

Chapter 6 Image Processing with PULSE Chips and

aC40 Processor .................ccoiii... T 68

6.1 System architecture composed of one PULSE chip

xX11



and a C40

......................................................................... 69
6.2 Improvement of the C40/PULSE system .......c..ccoooviiiiiiniaianaa.... 73
Chapter 7 Conclusions ... 77
T HResults oo, 77
T2 Future Work ..o, 78

..................................................................................

X1it



X1V

List of Figures

Figure -1 MPEG system layer block diagram

Figure 1-2 System layer pack and packet structure

Figure 1-3 Picture types

Figure 1-4 Essential elements of coding system in MPEG standard
Figure 1-5 Motion compensation

Figure 1-6 Zigzag Scan

Figure 1-7 MPEG cording system data flow block diagram

Figure 1-8 PULSE chio VI logic symbol — subject to design review
Figure 1-9 PULSE chip version | architecture

Figure 1-10  Architecture of PEs and communication chains

Figure 1-11  PULSE V 1.3.f 16-bit processor architecture

Figure 1-12  Pipeline structure instruction in four cycles of clock
Figure 2-1 Function partitioning in MPEG-2 encoding

Figure 2-2 Chip sets feature of flexible pipeline architecture based on RISC CPUs
Figure 2-3 EST256 architecture

Figure 2-4 Structure diagram for a video image compression system
Figure 2-5 The current and previous frames in a search area (N=16,n=8)
Figure 2-6 CDS method

Figure 2-7 Three steps method

Figure 2-8 CSA method

Figure 2-9.  Gradually searching



Figure 3-1

Figure 34
Figure 3-5
Figure 4-1

Figure 4-2

Figure 4-3.
Figure 4-4.

Figure 4-3.

Figure 4-6
Figure 4-7
Figure 7-8
Figure 5-1
Figure 3-2

Figure 6-1

Figure 6-2.

Figure 6-3

Figure 6-4

Splitting of 1K x 1K original image into four parts for processing on a
PULSE chip

Distributed data structure for parallel computation of a convolution
Original picture data and resuit picture data (boundary effect)
Instruction pipelining in a convolution

Overlapping of calculation with exportation of output results

Position & relation between blocks & search areas in frameA & frameB
Data of blocks and data of search areas in current picture and previous
picturememA and memB

Data structure in PEs

FSM & GFSM program diagram and its instructions (one block)
Flowchart of a basic match unit

Data of block search in independent memory space

Program tl

Program t2

Cosine table and input data stores in PEs memories

DCT program diagram and instructions

The C40/PULSE system

Program flowchart for the C40/PULSE system

A C40/PULSE system implementation

The C40/4PULSE system

XV



List of Tables
Table 2-1 Comparison of different algorithms ..................................... 23
Table 6-1 Comparison searching results with different algorithms ............. 76

XV1



Listof Appendix ...... ... 85
Appendix A PULSE V] Competitive analysis ................ccccciviciiiiiann... 85
Appendix B PULSE V1 technical features .......................ccccoooiiiiiiiio... 89
Appendix C  PULSE V] logic symbol-subject to design review .................... 91
Appendix D The convolution program flowchart and program .................... 92

Appendix E

Appendix F
Appendix G
Appendix H
Appendix I
Appendix J
Appendix K
Appendix L
Appendix M
Appendix N

Appendix O

Convolution program. data of source image

and data of result image ........... ... ... iiiiiiiiiiiiiiiiiil 96

Program of Motion estimation ............................ ... 101

Resulr of motion estimation ..................... . iiiiiiiiiiieeeoi. 123

DCT program for PULSE ... . e 125
IDCT program jor PULSE ... . i, 128
Cosine Table ... .. il 131
DCT program in C~+ .l 132
IDCT program in C+ = i e eaeeas 134
Cosine table generation program in C++ ... .............ccoieiee... 139
Data transfer programs for c40 and PULSE ... .............cccc..ceee. 140

PULSE vs Competitors ..........oooiiiiiiii it aens 147



CHAPTER 1

INTRODUCTION

A General Presentation of the Problem

This thesis presents a Hardware Software Co-design with the PULSE(Parallel Ultra
Large Scale Engine) chip used for image processing. It reports or research carried as part
of the PULSE project that led to the development of the PULSE chip. Nowadays, moving
image coding systems have a very promising application field: Videoconferencing,
Videophone, Digital Video Storage, High-Definition Television (HDTV), Digital
Television and Multimedia Systems. In moving image coding systems, data compression
is needed for efficient management of large amounts of information. For example, a
color image with a resolution of 1000 by 1000 pixels (picture elements) occupies 3
megabytes of storage in an uncompressed form. Data compression is especially useful for
the transmission of such high data through transmission channels. For instance, bit-rate
ranges from 10 Mb/s for broadcast-quality video to more than 100 Mb/s for HDTV
signals.

In order to reduce the transmission rate, using prediction techniques based on motion
estimation. This scheme increases the compression ratio to 50~200:1. Motion Estimation
is the most demanding part in the coding algorithm. For example, in an image coding
system in MPEG2 standard (Figure 2-3), the computational power required is

approximately 1.2 GOPS; and around 50% of this effort is devoted to motion estimation.
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At the decoder, motion estimation is not necessary, therefore lower computational power

1s required.

Main Objective and Methodology

The main objective of this thesis is to study image compression coding systems and some
popular algorithms used for that purpose. Several aspects of design for high-speed and
high accuracy processing are considered. In order to realize a simple and effective image
compression coding system, the PULSE chip is considered as a potential platform.

The PULSE chip is a new ultra-high performance SIMD (Single Instruction Multiple
Data) architecture DSP (Digital Signal Processing) for high-end video and related
applications. It has one controller and four process elements with clock of 54MHZ and 4
ports, having an /O capability as high as 216 Mega words/sec. Its [/O ports are designed
to allow forming linearly connected chains of chips. With this system architecture and
using PULSE assembly language, a real time image processing system can be

implemented.

Originality

1) A high-speed and high accuracy algorithm for motion estimation is developed.
The Gradual Full search method (GFSM) algorithm reduces the time required to find

matches and no possible solution is neglected in the search area. Although the
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program is slightly more complex than the Full Searching Method (FSM), it is three

times faster than FSM when processing a simple image.

2) A simple and effective method to calculate DCT or IDCT with cosine functions
using the PULSE chip is developed.
A possible method to compute the cosine function uses the exponential function.
Calculating cosine function is relatively expensive. Thus we propose using pre-
compute tables, stored in PULSE’s internal memories, to accelerate computation of
DCT or IDCT.
Further developments could improve the throughput of image compression on the

PULSE chip.

3) Different system architectures for image compression coding are discussed and
designed.

The results obtained during the research conducted for this thesis will prove that a

PULSE chip can be used to construct flexible multi DSP systems, and to accelerate image

compression. Using PULSE chips with a C40 DSP and a FPGA control unit, we can

construct a hardware/software system for image compression. It will not only reduce the

cost of image compression coding systems, but also improve their flexibility.



Organization of the Thesis

Chapter 2 will introduce the MPEG2 standard, the PULSE chip, and review some
previous research work. I will also describe some proposed algorithms. Chapter 3
describes the implementation of the convolution algorithms on PULSE. Chapter 4, 5 and
6 are the main parts of this thesis. Chapter 4 and 5 include the processing of motion
estimation and DCT algorithms using the PULSE chip. A hardware and software co-
design system using a C40 chip & PULSE chips is discussed in chapter 6. Chapter 7

summarizes our conclusions.



CHAPTER 2
A REVIEW OF IMAGE COMPRESSING ALGORITHMS AND

THEIR PROCESSOR ARCHITECTURES

2.1 MPEG Standard

In today’s world. videoconferencing. videophone. digital video storage. high-definition
television (HDTV). digital television and multimedia systems are widespread. Storage or
transmission of these data requires large memories and high bit-rate. Therefore. data

compression has been a subject of intensive research and development for the past few

years.

2.1.1 Background
MPEG is a video compression technology formulated by the Moving Pictures Experts
Group. a joint committee of the International Standardization Organization (ISO). The

first MPEG standard. known as MPEG-1. was formalized by the MPEG committee in

January 1992.

MPEG-1 compression incorporates both audio and video. For NTSC video (United States
and Japan) MPEG-1 uses the Standard Image Format (SIF) of 352x240 at 30 frames per

second. Audio is 16-bit, stereo sampled at 44KHz. MPEG data rates are vanable,



although MPEG-1 was designed to provide VHS video quality. and CD-ROM audio
quality at a combined data rate of 1.2 megabits per second.

By resolution and data rate. MPEG-1 is targeted primarily at the computer and games
markets. By contrast. MPEG-2. adopted in the spring of 1994, is a broadcast standard
specifying 720x480 pixels resolution. playback at 60 fields per second and data rates
ranging from two to 10 megabits per second. MPEG-2 is the core compression
technology for DVD. the high-density CD-ROM standard that many fell will replace

VHS tapes as the standard for consumer video.

MPEG-3 was dropped. and MPEG-4 is a very low-bit-rate codec targeting

videoconterencing. Internet. and other low-bandwidth applications.

2.1.2 A Brief Overview of MPEG-2
I) What is MPEG-2
MPEG-2 is an audio/video compression/decompression standard. The audio/video inputs

are compressed by an encoder. and decompressed by a decoder for playback.

The MPEG-2 standard is actually composed of three standards formulated by the Moving
Pictures Experts Group, a working group of the International Organization for
Standardization (ISO). ISO standard 13818-1 covers the MPEG-2 system stream, [SO

standard 13818-2 addresses MPEG-2 video, and ISO standard 13818-3 descrtbes MPEG-



. 2 audio. Work on MPEG-2 started back in 1988. and all three standards were finally

approved in November 1994.

MPEG-2 video resolution can range from 720x480 to 1280x720. with the latter targeting
high-definition television (HDTV) applications (cable 15.1). The most common
resolution is 720x480. roughly the resolution of a full-screen NTSC (National Television
Standards Committee) image. This contrasts with MPEG-1's maximum resolution of
352x240. or quarter-screen TV. While MPEG-1 is limited to 30 frames per second.
MPEG-2 can operate at 60 fields. the scan rate of NTSC television. enhancing suitability

for broadcast applications like HDTV. cable television. and broadcast satellite.

2) Video Compression Technology
Since MPEG-2 includes both audio and video. all MPEG-2 codecs must address both

formats. The block diagram of an MPEG-2 encoder system is shown in Figure2-1.

Video Video
Source compressor

Audio Audio MUX | bitstreamm ______________ RF output
Source compressor > ______ » Modulater 5

Ancillary data

Figure2-1 The block diagram of MPEG-2 encoder system
This thesis is mainly focused on the implementation of the video compressor. MPEG

. video is specifically used in compression of video sequences which are simply a series of



pictures taken at closely spaced intervals in time. Except for the special case of a scene
change. these pictures tend to be quite similar from one to the next. Intuitively. a

compression system ought to be able to take advantage of this similarity.

The compression techniques (compression models) with MPEG take advantage of this
similarity or predictability from one picture to the next in a sequence. Compression
techniques that use information from other pictures in the sequence are usually called

interframe techniques.

When a scene change occurs. interframe compression does not work and the compression
model should be changed. In this case the compression model should be structured to
take advantage of the similarity of a given region of a picture to immediately adjacent
area in the same picture. Compression techniques that only use information from a single
picture are usually called intraframe techniques. These two compression techniques.
interframe and intraframe. are at the heart of the MPEG video compression algorithm.

Each video sequence is divided into one or more groups of pictures. and each group of
pictures is composed of one or more pictures of three different types, I. P. and B, as
illustrated in Figure 2-2. [-pictures (intra-coded pictures) are coded independently,
entirely without reference to other pictures. P and B-pictures are compressed by coding
the differences between the picture and reference I or P-pictures, thereby exploiting the

similarities from one picture to the next.



P-pictures (prediciive-coded pictures) obtain predictions from temporally preceding I or
P-pictures in the sequence. whereas B-pictures (bi-directionally predictive-coded
pictures) obtain predictions from the nearest preceding and / or upcoming I or P-pictures
in the sequence. Different regions of B-pictures may use different predictions. and may
predict from preceding pictures. upcoming pictures, both. or neither. Similarly, P-pictures
may also predict from preceding pictures or use no prediction. If no prediction is used,

that region cf the picture is coded by intraframe techniques.

In a closed group of pictures. P and B-pictures are predicted only from other pictures in
that group of pictures: in an open group of pictures. the prediction may be from pictures

outside of the group of pictures [MPG97].



MPEG display order

——— Forward prediction of B-frames
——> Backward prediction of B-frames
~————J3p Forward prediction of P-frames

Figure 2-2 Picture types

3) Video Encoder

Figure 2-3 is a diagram showing the essential elements of a video coding system for

MPEG -2 Standard. Temporal redundancy is reduced using the following process.
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¢ Video tnput

[Prc-proccssing ]

Buffer tullness

l Difference Picture v
. e
Buffer = DCT I——-b[Quanuzer l
(New picture) - ¥ y
I Predicted picture I [nverse quanlizer]
motion v
compensated {Inverse DCT |
predictor
+ h 4
picture memory Hufman filter
motion ¢stimation (old picture) \Zj -
motion vectors encoded coefficients
vy v
PES packets

» Entrops

Control data encoder —’I Bufter l—’lﬁckclizcr

Figure 2-3 Essential elements of video coding system in MPEG -2 standard

In the motion estimation scction. an input video frame. called a new picture. is compared
with a previously transmitted picture held in the picture memory. Pixel blocks (an area of
16-pixel wide and 16-pixel high) of the previous picture are examined to determine if a
close match can be found in the new picture. First. the new picture buffer is divided into
8x8 pixel blocks. each 8x8 pixel block is searched in the old picture area of 16x16 pixels.

The match algorithm of motion estimation is: {Eq.2.1]

M= 3| 4G )~ Bl (Eq2.1)

7=0 =0



Where M is the distortion value. Afij/ and B/i,j] are the new and old images’ pixel
values respectively. If the value of M is less than a threshola value. then the vector
coordinate of this block is called a close match. When a close match is found. a motion
vector is produced describing the direction and distance the pixel block moved. A
predicted picture is generated by the combination of all the close matches as shown in
Figure2-4. Finally. the new picture is compared with the predicted picture to produce a

difference picture [MPG97].

8 L2 Fe Sogy

The blocks of a new picture are searched The blocks of 0ld picture predict the
in on old picture new picture

Figure 24 Motion compensation

The process of reducing spatial redundancy begin with a DCT (Discrete Cosine
Transform) on the difference picture of an 8x8 pixel block. The first value in the DCT
matrix (top left comer) represents the DC value of the 64 pixels of the 8x8 block. The

other 63 values in the matrix represent the AC values of the DCT with higher horizontal



and vertical frequencies as one moves to the bottom right corner of the matrix. If there is
little detail in the picture. these higher frequency values become very small. The DCT
values are presented to a quantizer which, in an irreversible manner, can “round-off” the
values. Quantization noise arises because coefficients are rounded-offs. It is important
that the round off be done in a manner that maintains the highest possible picture quality.
When quantizing the coefficients, the perceptual importance of the various coefficients
can be exploited by allocating the bits to the perceptually more important areas. The
quantizer coarseness is adaptive. and is coarsest {fewest bits) when the quantization
errors are expected to be least noticeable. The DCT coefficients are transmitted in a
zigzag order as shown in Figure 2-5. After rounding, the higher frequency coefficients
often have a zero-value (See Chapter 5 The Algorithm of DCT and IDCT). This leads to

frequent occurrence of several zero-value coefficients in sequence.

|

v
JdVava
/ /

4
Yy
4

yd
/

/|
dvd
/
7

v N D

AN A 4

Figure 2-5 Zigzag Scan
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The quantizer output is presented to an entropy encoder, which increases the coding
efficiency. by assigning shorter codes to more frequently occurring code words. The
entropy encoder bit stream is placed in a buffer at a variable input rate, but taken from the
buffer at a constant output rate. This is done to match the capacity of the transmission
channel and to protect the decoder buffer from overflow or underflow. If the encoder
buffer is almost full. the quantizer is signaled to decrease the precision of coefficients to
reduce the instantancous bit rate. If the encoder buffer is almost empty, the quantizer is

allowed to increase the precision of coefticients. The output of the buffer is packetized as

a stream of PES packets. [DIG94]

In order to use the motion compensated picture for next prediction, the encoder requires
the reconstruction of the picture contained in the transmitted bitstream. The quantizer
output is presented to the inverse quantizer, then to the inverse DCT. IDCT output adds
the predicted picture, and then place the result in the picture memory [MPG97].

The data flow coding system in MPEG standard is shown in Figure 2-6.



15

Input new picture picture memory
(old picture)

y y

motion vectors
motion estimation (output)

+

. . =1
motion compensated predicto

+

mew picture - predicted picturg

+
encoded coefficients
DCT (output)

+

IDCT

v

new picture to old picture memory

Figure 2-6 Data flow of coding system in MPEG standard

2.1.3 Convolution

Most motion pictures need some pre-processing filter. This pre-processing enhances as
perceived by human visual sense. Convolution is one of the popular algorithms used. It

will be discussed in chapter 3.

2.2 Motion Estimation Algorithm

Several algorithms for motion estimation have been proposed. A number of popular

methods, as well as the one proposed in this thesis, are presented below.
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2.2.1 FSM (full search method)

The search of a block frame A (current picture) starts at the upper-left corner of the area
of frame B(previous picture). If the value of M in equation [Eq2.1] is less than the
threshold value (zero means exact match). stop searching and output motion vector.
Otherwise search from left to right and from top to bottom through frame B. The search
is stopped when the right bottom corner is reached or when M is smaller than a threshold

value. This search sequence is illustrated in figure 2-7. [MPG97]

. N=2w+n R
4 T
v
W (nxn) block
(X.v) ) " in the current
[ frame A
]
(X+i.y+)) I
N=2w+n
—_— ] —
«—\W —»f
\\ search area in
P the previous frame B
v A
—

(nxn)block under the search in the
area of previous frame B, shifted by ij

Figure 2-7 The current and previous frames in a search area (N=16,n=8)
2.2.2 CDS (conjugate direction searching)
The search progresses in the direction of the smaller distortion, until a minimum
distortion is found (see figure 2-8)[MPG97]. Descriptions of the algorithms refer to
points to express the shift between the reference positions in the two compared images.

The algorithm is listed below:
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M is the value in equation [Eq2.1]; threshold is a value selected by the designer according

the allowed error; the left, right, up and down mean the direction of next compared center

point from the current center point.
[A}horizontal: compare center point;
if (M<threshold) then stop search and output vector:
else compare left and right point;
if((right(2)<left(0)and(right>threshold))then let right be the new center point;
elsif((right(2)>left(0)and(left>threshold))then let left be the new center point;
endif:
endif:
repeat [ A]horizontal until boundary or minimum point is found in horizontal direction:
[B]vertical: compare center point (4)(produced by [A]horizontal);
if (M<threshold) then stop search and output vector;
else compare up and down point;
if((up(7)<down(6)and(up(7)>threshold))then let up(7) be the new center point:

elsif((up( 7)>down(6)and(down(6)>threshold))then let down be the new center

point:

endif:
endif;
repeat [B]vertical until boundary or minimum point is found in vertical direction;

end:
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Figure 2-8 CDS method
2.2.3 Three-step searching
The three-step searching method looks for motion displacements. As it progresses
through the steps. the search range is decreased. As shown in figure 2-9[MPG97]. The
algorithm is listed below:
The definition of M and threshold are the same as with the CDS method.
step(1): compare center point:
if(M<threshold)then stop search and output vector;
else compare four (a) point;
if ((minimum M(a)<threshold)then stop search and output vector;
else compare two M(aa)points(in minimum (a) direction);

if (minimum M(aa)<threshold)then stop search and output vector;
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else new center point = the position of minimum M((a) or (aa));
endif;
endif:
endif:
repeat step( 1) three times:(minimum M(aa) be the center for b search),(minimum M(b) be
the center for ¢ search).
end:
From figure 2-9. the aa point (minimum (M(a) or M(aa))) is as the new center point in
step(2) searching. Using a similar method. the b point (minimum (M(b) or M(bb))) is

used as the new center point in step(3) searching.

Figure 2-9 Three steps method



2.2.4 CSA (Cross-Search Algorithm)

This algorithm differs from other search methods in the final step. In reference to figure
2-10. the final searching can be either the (X) or (+) directions. This is determined by
minimum point. If it is in left up comer or right down corner. the next searching point

will choose (X) points. If it is in right up corner or left down comer. the next searching

point will choose (+) points {CRQ90].
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Figure 2-10  CSA method



2.2.5 GFSM(Gradual Full Search Method)

The gradual full search algorithm is a new method proposed here. It begins at the center
point and gradually increases the searching range around this point. The method is
illustrated in figure 2-11. This method was developed for two reasons.

We analysed the fast algorithms and we found similar problems with most of them. The
search direction is usually guided toward the minimum value of M (equation 1) by
comparing 4 points at each step. Thus many points inside the search region are skipped.
In some cases. moving by one pixel may give very different results. The search direction
is controlled by the minimum M. which may lead to incorrect decisions. Fast algorithm
are faster than FSM. but they may give incorrect resulits.

Also. when successive frames do not change much. the last motion sector is a short

distance from the center.

The gradual full search method typically takes a short time to find the best match. and
vet no point is ignored in the search area. Although the algorithm is slightly complex than

FSM. it is much faster for most applications.
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Figure 2-11. Gradual Full Search Method (GFSM)

2.2.6 Comparison of the different algorithms

Table 2-1 shows the maximum number of search points with the different algorithms.
The fast algorithms (CDS. CSA and 3STEPS) are faster than FSM and GFSM. When w
is large. this is more obvious. However, the fast algorithms sometimes produce incorrect

results.
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Algorithm Maximum number W

of search points 4 8 16
FSM (2w+1) 81 289 1089
CDS 3+2w 11 19 35
CSA 5+4 log w 13 17 21
3 step 25 25 - -
Gradually (2w+l1)? 81 289 1089

W=(size of search area — size of block)/2

Table 2-1 Comparison of difterent algorithms

2.3 Processor Architecture Review

In order to implement a MPEG coding system. a powerful calculation engine is required.
A huge number of calculations are required to perform motion estimation, DCT, etc.
Therefore. some special purpose chips are often used to implement these functions. Three

different MPEG-2 video encoders are discussed below.

2.3.1 Custom chip set for MPEG-2 coding

The paper “Two-chip MPEG-2 Video Encoding”[TWQ96], describes a system composed
of two chips that implements a MPEG-2 video encoder. The key features of these chips
set are:

® The Enc-M chip mainly executes motion estimation and compensation steps.



‘ ® The Enc-C chip is the main coding and control chip. It executes not only coding
operations like discrete cosine transformation (DCT). inverse discrete cosine
transformation (IDCT), quantization (Q). inverse quantization (IQ). and
variablelength coding (VLC). but also header generation. rate control. and output
buffer control. It has an external output buffer (FIFO-structured desired from a 2-

Mbit DRAM) to meet the requirements of the MPEG-2 algorithm.

dering Rate and !
Flgd,\,?ﬁf . Buffer | |€—
VRAM) control !
A 1290 Z
322 e fee .
= ] ' ‘hltpu‘[ 3
Vldeo: ) Buffer Bit
input'| Noise VLC E_’  Mbit stream
: filter ‘ FIFO —>
: ' | DRAM)
E Motion :
: estimator :
EneM_ ] S EncC____:
Frame memory
(16 Mbit SDRAM or .
two 4 Mbit SDRAMs) - . Control signal path
— Data path

Figure 2-12  Function partitioning in MPEG-2 encoding

Figure 2-12 shows the partitioning of the MPEG-2 encoder. It uses two encoder chips
(Enc-M and Enc-c), as well as three peripheral memories, a reordering field buffer. a

frame memory. and an output buffer.
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Since MPEG-2 is a complex algorithm that requires a flexible and efficient control
structure. the pipeline architecture based on RISC CPUs (Figure 2-13) is used. Both the
Enc-M and Enc-C have their own RISC CPU. For flexible pipeline operation. each
functional unit has a CPU I/O device controlled by the CPU via the /O port. Some units

communicate with neighbouring units in a request-acknowledge manner.

i I Host CPU

Enc-C interface Host interface

2 ;

RiSC CPU
RISC CPU
t With
Multiply/
I i divide
VRAM Motion :
—> : > Esti i
Video | interface S inna(;xon i i Fo
input Motion » DCT E)IRAM
compensation < interface ’ DCT/Q . VLC | >
VRAM
SDRAM I Enc-M Enc-C

Figure 2-13 Chip set feature of flexible pipeline architecture based on RISC

CPUs

The encoder chip set can easily be used to develop a compact encoder system. The
encoding algorithm is the MPEG-2 simple profile at main level with a variable frame size
from 64 to 720 pixels (column) and 64 to 576 pixels (row). The chip set thus supports the

conventional sizes of 720x480. 720x576 and 640x480 pixels required for NTSC, PAL
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and VGA standards. Using a 4:2:2 video input format. the maximum frame rate is 30
frames per second for a 720x480 frame size. That means the system processes up to
40.500 macroclocks(16 by 16 pixel) every second for a maximum output of 15 Mbits per

second.

2.3.2 VLSI implementation for Motion Estimation

The paper VLSl Architecture for Motion Estimation using the Block-Matching
Algonthm™[VLS96] introduces the EST2536 chip used for motion estimation. The
architecture. EST236. which consists of 256 processing elements. deals with a search
area(32x32 pixel) for block(16x16pixel) and performs [11GOPS at 44MHz clock
(subtraction. absolute value determination. accumulation and comparison). Considenng a

720x576 pixel image. the processing rate for motion estimation is 49 frames per second.

The number of PEs working concurrently is 256. and each single processor computes the
cost function for one of the 256 possible locations of the reference block within the
search area. The array outputs the motion vector corresponding to each reference block.
256 cycles after the last pixel of the block has been entered into the array. Figure 2-14
shows the structure of the 256 processors array. To reduce the required bandwidth,
EST256 has three 8-bit input ports. After initial latency, the comparator block inputs one
error computation in each cycle and compares it with the previous minimum, storing the

lowest. The boundary block disables the comparator when its input value is not valid, this

condition arises for some locations of the blocks located on the top, bottom, left and right
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boundaries of the image. The architecture provides the minimum error value, the

coordinates of the motion vector for this position and the error value for the (0,0) motion

vector (no movement).
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Figure 2-14  EST256 architecture

2.3.3 A PC based image compression system

The paper “A High-performance System for Real-time Video Image Compression
Applications”[HIG95] introduces a PC based image compression system. As shown in
Figure 2-15. the system consists of a PC-486, a motion estimation processor (MEP), a
DCT/IDCT processor (DCT/IDCTP), an image grabber, and a camera. Meanwhile, both
the MEP and DCT/IDCTP act as backend processors for PC-486 through its Vesa local-
bus interface. The PC-486 handles all the computations except motion estimation, DCT,

and Inverse DCT. Currently, by operating at 12.5MHz, the MEP takes around 100us to
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compute the motion vector with tracking range 32x32 for each 16x16 block. and. the
DCT/IDCT takes around 10us to compute the two dimensional DCT or inverse DCT for
each 8x8 block. Also. overlapping data loading and processing can achieve the optimal
performance. Therefore. for each 256x256 image frame. the system presented would take
around 25.6ms and 10ms for computing motion vectors and two dimensional DCT or

inverse DCT individually.

Vesa
Local Bus A
Motion
e Estimation
PC-486 € processor
PR Image DCT/IDCT
pplication gy, | Compression > ¢ > Processor
Program Control i
Program
Image
— # ¢ ’ Grabber
Quantization.
Dequantization, I
Run-Length Coding
Variable-Length Coding Camera

Figure 2-15  Structure Diagram for a Video Image Compression System

Conclusions

As described above, in order to implement real time image processing, special processor
or functional units are needed. As a general purpose DSP, single PULSE chip may not be

very powerful. However, it is easy to connect multiple PULSE chips to implement real
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time image processing. An array of PULSE chips can implement motion estimation.
DCT. etc. Each chip also implements a control unit. and these chips can easily be
interfaced with other processors. So. PULSE chips give us the ability to build different

syvstems to implement various algorithms and applications.

2.4 SIMD Architecture of PULSE Chip

2.4.1 Introduction

PULSE V1 is a 16 bit. fixed point SIMD array processor designed to operate at 34 MHz.
It contains (on a single chip) one controller and four PEs (Processing Elcinents). The
custom designed architecture and instruction set of the PULSE processor allow efficient
implementation of all linear (multiply add accumulate etc.). nonlinear (maximum.
minimum. medium. rank order. etc.) and hybrid operations, thus providing a complete

solution for any fixed point DSP related applications.

PULSE V1 employs heavy parallel operations to handle data I/O. inter-processor

communications. address generations. and computations. One parallel instruction could

simultaneously provide multiple computations (such as multiply add accumulate. and 3-
point rank order). multiple address generations and memory access. multiple data transfer
within the PE and between the neighbor PEs. All these operations can be done at the rate
of one per cycle however. PULSE data-path is a 4-stage pipeline. One PULSE instruction
could perform more than 10 conventional operations. Effectively, the PULSE V1 chip

can provide more than 2 Billion RISC like operations per second for linear processing.



Usually conditional execution on SIMD machines can become highly inefficient, since
each PE might get different conditions. but the controller can only supply a Single
Instruction based on a single condition. The usual way to solve this multi-condition
problem is to turn some PEs off. thus wasting computation power. The innovative design
of the PULSE V1 processor partly removes these conditional executions by supporting a
rich set of nonlinear instructions. For example. each PE can implement a 3 point rank
order (maximum. medium. and minimum) in a single cycle of PULSE VI1. The
implementation of this operation (rank order of 4 vectors. 3 data each) could require more
than 60 operations on conventional processors such as Tl TMS320C40. In that specified
case. the PULSE processor provides more than 4 Billion equivalent RISC like operations
per second for nonlinear processing.

To handle real-time image and video processing. PULSE V1 provides up to 864
Mbytes/sec. of bandwidth for data /O and 432 Mbytes/sec. for inter-processor
communications. An innovative communication mechanism provides efficient use of the
bandwidth and allows flexible algorithm mapping. Furthermore, the PULSE processor
provides a rich set of parallel and vector instructions, which can be used to improve the

application performance while reducing the program size.

PULSE V1 provides easy system integration for different classes of applications. It can
be used as a stand-alone processor to replace some ASIC chips; it can be used as a co-

processor or accelerator to other processors of computer systems; it can have external
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programs and data memory for large kernel applications. The cascade of multiple PULSE
chips is relatively straightforward, and it can be done without any additional glue-logic.
A wide variety of architectures and related system applications can be obtained with

suitably cascaded PULSE chips.

2.4.2 Chip Architecture

The PULSE chip version 1 is a PE armray. with four data communication ports (two of
them are compatible with C40). two address ports. global constant memory and internal
program memory. The chip architecture is shown in Figure 2-16. The PE array is the core

of the PULSE chip. Its architecture and communication chains are shown in Figure 2-17.
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Figure 2-17  Architecture of PEs and Communication Chains

2.4.3 Processing element block diagram

Each of the four PULSE processing elements contains the following elements:

@ D register files of 32. 16-bit words

I read port. 1 write port gives optimal storage density/access

¢ 2 memones of 256. 16-bit words

Single port 1 read/write with direct link to communication channels

Addressing is direct, register indirect or via two modulo counters per memory

for read and write addresses



- Memories are designed to store data with a longer lifetime than those stored in
the register files
e | signed multiplier-adder of 16x16+32 bits with 32-bit signed result

This 1s to implement MADD (multiply add)

Direct connection of neighbor processors data sources into addend input of the

multiplier-adder allows accumulation chain between processors to be built

e | accumulator of 32 bits

Internal resolution is 33-bit signed with overflow detection

Programmable saturation and clipping functions to 32-bit signed or 31-bit

unsigned ranges

Separate accumulator allows implementation of reduction algorithms it is
possible to perform MADDACC — multiply-add-accumulate

e | full barrel shifter of 32 bits in. 32 bits out

Supports full range of shift logical and anithmetic shift operations

e | multi-function 3-operand arithmetic-logic unit

Allows single cyvcle rank. max. med. min. chip and cor functions on three

operands

Usual arithmetic and logic functions available
The functional units of each processing element are designed to operate in parallel so that
a typical PULSE instruction will simultaneously perform a computation, data load and

data communication operations. Also, the instruction set is designed to be as orthogonal



as possible so that any operation can be performed on any piece of data, regardless of

where it resides. Figure 2-18 presents PULSE V 1.3.f 16-bit processor architecture.
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Figure 2-18  PULSE V 1.3.f 16-bit processor architecture

2.4.4 Instruction Set

PULSE employs highly parallel operations to handle data [/O. interprocessor
communications. address generations. and computations. Some parallel instructions can
simultaneously perform multiple computations. multiple address generations and memory
access, multiple data transfer within the PE and between the neighbor PEs. All its

operations can be executed at the rate of one per cycle.

PULSE instructions, due to a 4-stage pipeline. generally require four clock cycles, except

“stc”, “fwd” and “io” instructions (one cycle). The pipeline operation is illustrated in
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figure 2-19. At the first cycle. PULSE reads data from memory. register, or port. The
second and third cycles execute the operation. The fourth cycle write the results back to

memories. registers. or ports.

S N T (NN NN NN SN SNV SN SR B 1 .
Instructionl |read write
Instruction2 |read write
Instruction3 read write
Instruction4 read write

Figure 2-19  Pipeline Structure Instruction in Four Cycles of Clock

The PULSE instruction set is designed for both linear and non-linear digital signal
processing. with an emphasis on image/video processing. It provides a rich set of
instructions. including conventional instructions and extended non-conventional

instructions.

The 1nstruction set is organized into the following functional groups:
e PEs instruction set
e Miscellaneous
e Data movement

e Conventional arithmetic



e Special arithmetic

e Conventional logical

e Shift/rotate

e Transfer of control

e Shift register communication
e Controller instruction set

e Parallel instruction set

e Vector instruction set

Each of these groups is listed in the PULSE Technical Report Composite Document.

[PUL96)

2.4.5 PULSE V1 Assembler

The assembler translates assembly-language source files into object files. These files are
in common object file format (COFF). Source files can contain the following assembly
language elements:

e Assembler directives

e Assembly language instructions
The assembler does the following:

e Process the source statements in a text file to produce an object file.

e Produce a source listing (if requested) and provide the user with control over this

listing



e Define and reference global symbols and append a cross-reference listing to the
source listing (if requested)
Each time the user uses the assembler, it processes one source program. The source
program 1s composed of one or more files (The standard input is also a file.)

If no file name is provided. the assembler attempts to read one input file from the

standard input. which is normally the terminal.

2.4.6 PULSE Applications
As mentioned earlier. the PULSE processor supports both linear and non-linear
operations. and allows flexible algorithm mapping. These features make the PULSE
processor ideal for a very wide range of applications. Some of them are listed below for
reference:

e Filtering

e Transforms

e Image/video/graphics processing

e [mage analysis and Machine Vision

e Neural networks

e Speech Processing

e Communications

e [nstrumentation
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A brief comparison between PULSE V1 and other competitive devices from adaptive
solutions, Analog devices, Texas Instruments. and Oxford Computers is provided in
appendix A. As can be seen from appendix A, PULSE vl offers significant advantages in
various aspects over the competitive devices. such as strong support for inter-processor
communication. and strong support for linear, non-linear and hybrid processing.

The PULSE v1 technical features and the PULSE logic symbol are shown in appendix B

and appendix C.
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CHAPTER 3

IMPLEMENTING A CONVOLUTION ON PULSE

3.1 The Convolution Algorithm Versus PULSE Architectural Features

The convolution algorithm plays an important role in image processing. For instance. it is
used for noise reduction, edge sharpening and skeletonization. The generic convolution is
adapted to perform these various functions by appropriately selecting the weights of its

kernel. In general. odd size kernels are used.

For example. the 3 by 3 generic convolution algorithm is defined by equation [Eq.3.1].

R_\'.y: lZiPx+i.y+j.Si.j (Eq.3.1)

i=—1 j=-1

In this equation, Rxy is the convoluted pixel, value Pxy is the input image pixel value, and
S is the convolution kernel weight. Equation 3.1 indicates that the 3 by 3 convolution
P'm.n (m by n pixel image) of each pixel Pxy requires knowledge of the values of its 8
immediate neighbors. On the image boundary, a different algorithm is applied depending

on the application.
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The following discussion of a convolution applied to a 3 x 3 sample window on a 1K by
1K image will refer to a 2D FIR filter for brevity. These parameters are widely used for
preprocessing of images.

1) Each PE in a PULSE chip has two 256 words memory units. For processing 1K by 1K
images. they must be partitioned. One possibility is to split the images in vertical bands.
Thus we could calcuiate the 1024 lines of part one, then calculate part two, three and

four. as shown in Figure 3-1.

: A A
i :
IK x 1K image/ : i
Part1 {| Part2 | Part3j| Partd
i i i
. / ]
Figure 3-1 Splitting of 1K x 1K original image into four parts for processing

on a PULSE chip

2) The processing of the convolution algorithm with a PULSE chip can be executed in
parallel. because each chip has 4 PEs. The first data line (256 points) of part one is stored
in “memA”. the second line is stored in “memB”. Data is brought into 4PEs in parallel
through the “North Channel”(Figure 2-17). At the first instruction cycle, the data point
1.1 of the original image is stored in PEQ, the unspecified data ‘x’ is stored in PE1, PE2
and PE3 individually. At the second instruction cycle, the point data 1,2 of the original

image and the data point 1.1 are respectively stored in PEO and PE1, while an unspecified
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data *x” is stored in PE2 and PE3. This progresses until the pipeline is full and each
processor receives a pixel at each cycle. The resulting distributed data structure is shown
in figure 3-2. Respective positions in the rectangle correspond to data stored at the same
address of respective processor memories. The processing loop called “loopa™ shown in

figure 3-5. thus computes 4 pixels of the output image in parallel.
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Figure 3-2 Distributed data structure for parallel computation of a convolution

3) Only two lines of data can be stored in memory, because each PE has only two 256
words memory units. The data in “memA™ is first used while a third line of data is stored
in “memA”. When the processing of first data line is finished, the third line has replaced
it in memory. The data in “memB” is then used and replaced by a fourth line of data.
Thus, “memA” always holds data of odd numbered lines, and “memB™ stores even

numbered lines. Processing alternates from one to the other.



) . MemA
Line I3 0 MemB Odd

Line 2—3 MemA
MemB Even

Line 3~5 MemA

MemB

4) Convolution calculation results stored in external memory. Considering the erosion of
image boundaries induced by the algorithm. the output image starts from the second line
at the second point (2.2). Therefore. a result picture comprises 1022 by 1022 pixels and
edge points “B™ as shown in Figure 3-2. The edge points “B™ of result image can be filled
with the edge points of the original image at the same position. In this case. the edge
points are not the result of a convolution. In order to overcome boundary effects between
parts (see Figure 3-1). the edge parts are calculated by processing 257 columns. Vertical
bands expansion is illustrated in figure 3-3. For part L. columns 1 to 258 (original image)
are processed and columns 2 to 257 (result image) are produced. Part Il. columns 257 to
514 (original image) are produced and columns 258 to 513 (result image) are produced.
Part III, operates on pixels 512 to 770 (original image). and part [V operates on pixels
768 to 1024+2 (original image). Thus, only the edge of the 1K by 1K output picture
exhibits boundary effects. There are no boundary effects between part I and part II, part II

and part III, and part III and part IV.
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Figure 3-3 Original picture data and result picture data (boundary effect)

3.2 Structure of the Convolution Software

For a 3 x 3 convolution, nine multiplies are needed. The minimum theoretical processing
time is 9 multiply instructions and 1 loop control instruction. However each instruction
takes 4 cycles. Also, five additional instructions must be inserted with the 9 multiply
instructions (three “fwd||nsr|lio”, one “madd™ and one *1d”). Figure 3-4 shows the detail

of a loop that computes a convolution.
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More precisely. it shows that the result of the first multiply is available after the fifth
cycle. Two wait cycles are needed before the second multiply. Then, the “fwd||nsr]lio”
and “madd” instructions are inserted to avoid waiting time due to processing latency.
Using the same principle. two “*fwd||nsr|jio” and one *“ld™ instructions are inserted among
the remaining instructions. thus. five additional instructions are inserted to fill up various

waiting cycle. which reduces the loop execution time.
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.
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Figure 3-4 Instruction pipelining in a convolution
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To process the basic 3 by 3 convolution. the output is first computed and then the result is
sent out as shown in figure 3-5. The process of sending out the previously computed

output line is overlapped with the calculation of the next to avoid wasting time.

First | loops | last
loop loop
\'4
A A
yinitial calculation
A A
data nput loopa
v |y results output
Afinal loop
A 4 A4
tigure 3-3 Overlapping of calculation with exportation of output results

3.3 Summary

An ideal processor with one multiplier requires at least 10 cycles to compute a 3 by 3
convolution. PULSE takes 15 instructions due to pipeline latencies and data
dependencies. A PULSE chip computes 4 results at the same time. This corresponds to an
average of 3.75 instructions (75ns) per 3x3 convolution. The program flow chart and
listing are provided in appendix A. A sample image and the computed results are listed in

appendix B.
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CHAPTER 4
MOTION ESTIMATION ALGORITHMS AND

IMPLEMENTATIONS

The principle of Motion Estimation is to perform a search that maximize the correlation
or minimize error between a block in the new (current) picture and a corresponding area
in the old (previous) picture. The search process tries to find the coordinate values of a
block of already transmitted pixel values in the new picture and transmit them. Thus, if

the search succeeds. the block in the new picture s not transmitted.

Motion estimation is a key component of an image processing system such as the
MPEG?2 standard. because it consumes most of the processing time. For this system. the
data rate of 768x480x30x8bps can be reduced 100 times by motion estimation.
Obviously. choosing a suitable processor and a good algorithm for motion estimation is

key in an image processing system that supports the MPEG?2 standard.

4.1 Motion Estimation Algorithm

The motion estimation algorithm that was implemented is given in section 4.1.1. Section

4.1.2 describes the data structure used in PULSE to implement it.
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4.1.1 General Description

The mean Square Error (MSE) (Eq.4.1) and Mean Absolute Distortion (MAD) (Eq.4.2)

are popular criterions used to measure the fit between data blocks. MAD is the simplest.

M =SS 4y - B L)) (Eq.4.1)
r=0 =0

M =SS 4G )= BG (Eq.4.2)
=0 =0

The method for choosing the corresponding area in the reference (old) picture is based on
the estimation of the moving speed in the content of an image. If this speed is slow. a
small area in the reference picture is chosen for searching, otherwise, it is necessary to
choose a larger area. The larger the area in the reference picture is. the longer is the
search time. Generally. if 8x8 or 16x16 data block in the new picture is chosen, then,
16x16 or 32x32 search area in the reference picture is chosen. Considering the boundary,
according to Figure 4-1 and equation (Eq.4.2). there are nine cases of interest, where for
each case. the block size is not changed (8x8), but the size of the corresponding area is
changed (12 pixels x 12 lines, 16 pixels x 12 lines, 12 pixels x 16 lines and 16 pixels x 16

lines etc.). Thus, nine different programs have been created.
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Figure 4-1 Position & relation between blocks & search areas

in current picture and previous picture

4.1.2 Data Structure for Motion Estimation in PULSE

The blocks of data from the new picture search area and from the old picture are
respectively loaded into memory A and memory B of each PE in PULSE. Each time 128

pixels are loaded. Figure 4-2 illustrates these data structures.
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Figure 4-2 Data of blocks and data of search areas in memA and memB

The data is distributed in 4 PEs as shown in Figure 4-3. The results for positions 68. 69,
70 and 71 are calculated in parallel with 4PEs in one processing phase. The next step
computes elements 72 to 75. There is no new input data in memA and memB before
finishing the block search in the correspond area.

Furthermore. Figure 4-3 illustrates the proposed method to perform a Gradual Full Search
Method (GFSM). There are two address counters pointing memory A and B holding
respectively a block of new picture and a corresponding area of an old picture. For each
comparison. 4 pixel pointers are adjusted to point to the next 4 pixels. When the first
search over 64 pixels is completed, the counter indexing memory A is returned to the first
pixel unit of the new picture block and the counter indexing memory B is set to the next

start pointer of correspond area in the old picture according the gradual search algorithm.
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No matter whether a match is found or not. after 81 comparisons with these data sets. the
new data of next block and next corresponding area are loaded in MemA and MemB. The
next block searching then starts. The gradual search algorithm is somewhat more
complex than FSM with respect to the order in which pointers are adjusted. but it is 3

times faster on average.
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4.2 Gradual Full Search Method and Full Search Algorithm with the PULSE Chip

In section 4.2.1. the speed of the GFSM and FSM algorithms (see chapter 2.2) are

4.2.1 Speed of GFSM and FSM Algorithms in PULSE

The MAD algorithm needs 192 operations (64 subtractions + 64 absolute value
computations + 64 accumulate instructions). If this was spread ideally on 4 processors. a
minimum of 48 instructions would be required.

In order to complete 81 block comparisons over one region. 3888 instructions (48 x 81)
are needed. There are 5760 (768 x 480 / 64) blocks in one frame. In a real time system.
pictures must be processed at the rate of 30 per second. A total of (5760 x 30 = 172800)
blocks search must be done every second.

Assuming 54 MHz PULSE chips. (48 x 81 x 172800 / 54E6 = 12.4) 12.4 chips would be
required. However. in practice. more resources are needed due to the overhead associated
with data input. loop control. address counter setting and instructions that cannot be
parallelized.

Figure 4-4 shows the program flow chart and its instructions with GFSM or FSM
algorithms, for one block match. For a single search, it uses 768 input + 355 cal. = 1123
cycles or 17.7 cycles / pixel. For a full search, time is 768 input +28009 calculations =
28777 cycles or 449.6 cycles / pixels. Considering that: 1) one PULSE chip can run

54,000,000 instructions/second, 2) one 768x480 pixels image has 96x60=5760(8x8)
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blocks to be processed out. 3) 30 frame pictures/ second are used. then 28777instructions

x 30 x 5760 / 54E6 = 92 PULSE chips are needed tor GFSM.

input 128 /16bits data
to memA. B

4

input 128 /16bits data
to memA. B

l *07=> position (vector)

4

basic match unit

v

adjust address matched
position + 17

!

instructions
FSM GFSM
[
768
y
I ' T
3361
minimum | 355 355
maximum |[28791 28009
v
output position
(vector)
—_— x

Figure 4-4. FSM & GFSM program diagram and its instructions (one block)

4.2.2 Motion Estimation Program for PULSE

Figure 4-5 shows the instructions executed to perform one basic match program for the

full search method (FSM) or the gradual full search method (GFSM). (corresponds to

PULSE assembly language)
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[ 0—» ra3 |
i

ral6—s addra
rbl 6-—s addrb

_ &
r"’addra - *addrb—» raZJ

loop 2 fra2bem-ra2

v

loop 8 | rb2 + ra3—+=ra3)

ral6é + 4—wralé6

tbl6 + 4+ rbl6

-
A 4

ral6 + §—ralé6
rbl6 + 8—wrbl6

loop 4

[ra3 + sport—sra3 |

Figure 4-5. Flowchart of a basic match unit

As shown in figure 4-2. address pointer for memA and memB is 256. If the address
pointer is over 235. it will return to 0. For the second block search. some data remains
from the first block search. thus the start address in the new picture is 194 and the start
address of area in the old picture is 128. In other words. each block search only needs to
renew 128 pixels. In order to implement this behavior. mechanism to adjust address
pointers are needed. In the basic match program. 72 instructions are required for this
task. For one block search, 5832 instructions are needed, out of which a fifth are used to
check and adjust address pointers. These instructions are identified in basic match

program (Figures 4-7 and 4-8).
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For each block search. Figure 4-6, if 256 memory locations are reserved. starting at
address zero. then some instructions can be saved. In order to implement this idea. for
each block search. 256 pixels (one search area) must be transferred from external
memory. As shown in Figure 4-6. some instructions are added to adjust the start address
of the pointer that accesses the external memory. 80 PULSE chips would be required to

support real time processing of this algorithm.

pictures MemA.B

: 0 h

I
: 8x8 Block in MemA

- 1 /7(:? of current picture : ! >1

[
.’-i’ ‘_L,lsx area in MemB

i ] - I, of previous picture 2535

[ A - 1t

1 [ 0

o ! N

i i

t li 9

! tA 3 ___,:2 2 > -
3 - |

t 1 255

I : —83 =

[ 4 —_—

- 3
-~ 3

Figure 4-6 Data of block search in independent memory space

In figure 4-7. the basic match program called ‘t1°, contains some ‘nop’ instructions due to
PULSE" s pipeline architecture. In order to reduce the number of ‘nop’ instruction, some
instructions can be shifted without changing the result. In Figure 4-8, the program ‘t2’ is
an improved version exploiting this idea. It removes loop2 to save loop set instruction

cvcles. The marked instructions are moved into other places occupied by ‘nop’ in ‘tl’.



With this improved version 21300instructions x 172800/54E6 = 68 PULSE chips are

needed.
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add rb2, ra3, ras
dbr lcop3s
1d ra3, sport

push 3

sub ralé, 12%, rale; -1Z8 kback to srtart pcint
subk rkblé, 125, rbié€: -128 back tc start coint

"
n
or

Figure 4-8 Program 12

Sample programs and corresponding results are provided in appendix A. The simulation
uses Mentor Graphic QHSIM tool. The source file includes two 64x6+ pixel images. The
8x8 block FSM and Gradual Full Search Method (GFSM) are implemented with 16x16
matching area. The running time. matched pixels coordinate values in new picture and
the coordinate values of corresponding area in old picture for first block searching are

also provided in appendix A.
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CHAPTER S

DCT & IDCT ALGORITHMS AND IMPLEMENTATIONS

5.1 DCT & IDCT Algorithms

In this section. a data compression algorithm. the Discrete Cosine transform (DCT)
[FAS87] and its inverse algorithm. the Inverse Discrete Cosine Transform (IDCT)
{IEE90] are described. These algorithms are widely used in image compression

programs. They implement a transform from the time domain to the frequency domain.

5.1.1 DCT

DCT is an essential part of the MPEG data compression. There are two good reasons for
using DCT in data compression. First. DCT coefficients have been shown to be relatively
uncorrelated. and this makes it possible to construct relatively simple algorithms for
compressing the coefficient values. Second. the DCT is a process for (approximately)
decomposing the data into underlying spatial frequencies. This is very important in terms
of compression. as it allows the precision of the DCT coefficients to be reduced in a
manner consistent with the properties of the human visual system. [MPG97]

For data compression with the MPEG standard, two-dimensional array (2-D) of samples
are considered. Arrays of eight points by eight points (8x8) are usually considered.

Suppose that a 2-D array of sample. f(x.y). is to be transformed into a 2-D DCT. The

equation is as below (Eq.5.1):



Fu,v)= C(u)C(v)/-iZ Z f(x.y)ecos[(2x + Dux/16}ecos[(2y +1)vz/16]

C)y=1/2

C(u)=1

v=0 x=0

if u=0:

if u>0:

C)=1/2 if v=0

C(v)=1 if v>0

For example. the input value of matrix f(x.y) is:

120 108 90 75

127 115 97 81

134 122 105 89

137 12510792

131 119 101 86

117 105 87 72

100 88 70 35

89 77 59 54

Also. suppose ‘0" means black and

69 73 82

75

83

86

48 -

79

87

88

96

99

89

95

103

106

100

diagram is represented below.
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(Eq.5.1)

*255° means white. The corresponding 8x8 bar



Then. the DCT transform calculated with equation (Eq.5./), produces the following
result:
7009016000000
9 0 000000
-89 0 000000

0 0 000000

0 0 000000OC

0 0 000000

00 000000

00 000000
It is remarkable that almost all values are equal to zero. the non-zero values are
concentrated at the upper left corner of the matrix. These non-zero values are transferred
to the receiver in zigzag scan order (see Chapter 2, Figure 2-5), which is 700 90 90 -89 0
100 0 0 0 ... 0. The zero values are not transferred. They are replaced by an “end-of —

block’ symbol.
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. 5.1.2 IDCT

IDCT is a inverse algorithm of DCT. It is used to regenerate the data back to the time
domain from frequency domain representation. The IDCT algorithm is expressed in
equation (£q.5.2).

f(x.y)= Z Z C(u)C(v)/4F (u,vyecos[(2x+Dux/16]ecosf(2y +1)va /16]

v=0 u=0

Cluy=1/2 if u=0: CW=1/J2 if v=0 (Eq.5.2)

Cu)y=1 if u>0: Cv)y=1 if v>0

In equation (Eq.5.2). the F(u.v) of DCT result with (Eq.5.7/) will be transformed again,

the result of matrix f°(x.v) is as below:

120108 91 75 69 73 82 89
127 115 97 81 75 79 88 95
13412210590 83 87 96 103
137 125 107 92 86 90 99 106
151119101 88 80 83 93 100
117105 87 72 65 69 78 85
100 88 70 59 49 53 62 69

89 77 59 54 48 42 51 58



Comparing the original matrix f (X. y) and the inverse transfer matrix f°(x. y), there are
few small differences between them. It caused by the calculation accuracy. In other word.
it is limited by the word length of the processor. This error is generated by two times
transfer calculation (DCT and [DCT). It means that the error is produced at remote
decoder device. In order to limit error accumulation in the decoder, the IDCT can be used

in encoding system to generate an ‘old picture’ (See Chapter 2. Figure 2-3).

5.2 Implementation of DCT & IDCT on PULSE

This section deals with the storage of a cosine table and to the time required to compute

It.

5.2.1 Data Structure of DCT on PULSE

Parallel processing can be used to compute DCT and IDCT. With PULSE chips, a cosine
table is inserted in memA. The use of this cosine table can save a lot of calculation time.
For example. the value of (cos[(2x+1)un/16]) can be found in the cosine table according
the position of (x. u). For a 8x8 DCT or IDCT, a 64 elements cosine table can be
generated with a C++ program executed on a host and then loaded to PEs memories.
Here, a benefit of using a C++ program on a host rather than the 16bit PULSE chip is that
values are more exact. The cosine table size is related to the window size (8x8 pixel or

16x16 pixel). So, this method is very effective for processing fixed window sizes.
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Figure 5-1 shows the cosine table and elements stored in PEs memories continuously.
The data structure is the same in each PE. In order to calculate in parallel, the beginning

positions for “u’ in 4 PEs are 0. 8. 16 and 24 individually (See Figure 5-1 in shadow).

Matrix of cosine table PEO PE1 PE2 PE3

xlul x2uw2 ... x7u7 0 |x0u0 x0u0 |[x0u0 x0u0

juSe x1u9 x2ul0 ...... x7uls I {xlul xlul xlul xlui
Onkq x1ul7 x2ul8 ...... x7u23
4 x1u25 x2u26 ...... x7u3l

P xlu33 x2u34 ...... x7u39 .. . . .
40 xlud]l x2ud2 ...... x7ud7 8 | x0u8 XGng | [ xous x0u8
48 x1ud9 x2u350 ...... x7uS5 9 [x1u9 xlug |[[x1u9 x1u9
56 x1u37 x2u358 ...... x7u63

16{x0ul6 | | xOul6 | | XOGLG | | xOul6
17| x1ul? Xlul7 | [ x1ul? xlul?7

The shadowed elements are a corresponds to

the starting points of calculations in the 4 PEs. . . . .
24| x0u24 | | x0u24 || x0u24 | | XOH2R
25 xTu25 | | xTu25 || xlu25 | | x1u25

x0u32 [ x0u32 x0u32
xlu33 ||xlu33 xlu33

63| x7u63 | |xTu63 ||x7u63 | | x7u63

Figure 5-1 cosine table and input data stored in PEs memories

Figure 5-2 shows the program flowchart and the associated instruction count. From inside
to outside. there are four loops (loopx, loopy, loopu and loopv). The calculation “f(x,
y)*cos[(2x+1)*u*3.14/16]*cos[(2y+1)*v*3.14/16]" requires only two instructions ‘mult’

and ‘macc’ in loopx. Using cosine table and setting address pointer appropriately makes
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. the complex calculation very simple and parallel. The key idea is that the address pointer

points to different units in each PE. It is shown in Figure 5-2 (dark shaded block).

Input cosine table, constant & data(8x8)
Constant from memory -> register

v A A A A

[0.707->cu. 0->v |

focp 8

[0->acc, 0->y |
logp] —»Y

oop8] —pV
Ipog 8) | f(x.¥)* cos()*cos()+acc->acc 40 instruction

x+1->x

344 instructions*

— — V¥

acc*cv*cu->acc
output acc (4 results)

set f(x.y) to start point 750 instructions
I->cu, u+32->u —Yy
l1->cv, v+8->v 6032 instructions

I | v

]

Figure 5-2. DCT Program Diagram and Instructions

Appendix H and I. provide an implementation of DCT and IDCT assembly programs for

the PULSE machine, as well as the content of the cosine table, and compared C++

programs of DCT and IDCT.
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5.2.2 Requirements and performance for DCT and IDCT on PULSE

The flowchart of a DCT program is presented in Figure 5-2. For each DCT in an 8x8
block. 6032 instructions are needed. To support real time DCT 6032 instructions x

172800 / 54E6 = 19 PULSE chips are needed. Since the IDCT has the same complexity,

the DCT and IDCT for the MPEG codec requires 38 chips, which is half the number of
chips required for motion estimation (68 chips). Obviously, motion estimation, DCT and

[IDCT represent the whole complexity of a MPEG codec.
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CHAPTER 6

IMAGE PROCESSING WITH PULSE CHIPS AND A C40

PROCESSOR

A PULSE chip is a parallel SIMD processor. It is not very high efficient when executing
code with conditionals. For example. when an “if” instruction is encountered, the
operation is modulated by four conditionals on 4 PEs. It is generally very difficult to
predict which condition from each PE influences the result. In order to get a certain
condition from a PE. suppose the jump condition from PEO. which is set active “0”, the
PE3. PE2 and PE1 are set inactive 1™ with instruction (ldcr 1110b. acm). then PE3, PE2
and PEI1 are set active(ldcr 0000b. acm) after a jump instruction. The following program

illustrates this method:

ifeqra3. 0.0
#3 nop

bpa jumpl

VAT i i

jumpl: nop

[ UM oy
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Obviously. these “set” and “jump” instructions decrease performance, because some
processors are left idle. In order to improve performance efficiency of PULSE, a
codesign solution based on processor/coprocessor model [PRINC], composed of PULSE
chips (calculation engine as hardware) and a TMS320C40 processor from Texas
Instruments [TEX90] (for management and processing of segmental code). has been

experimented.

6.1 System Architecture Composed of one PULSE Chip and a C40

The TMS320CH40 is a 32 bit. floating-point processor. Its Central Processing Unit (CPU)
is configured for high-speed internal parallelism for the highest sustained performance. It
contains a 40/32-bit floating-point/integer unit that supports multiply. divide. square-root
and arithmetic logic operations. The C40 has six on-chip communication ports (20M-
byte/s bidirectional interface and separate 8-word-deep input/output FIFO for processor
to processor communication with no external hardware and simple communication

software).

As shown in Figure 6-1, the image processing C40/PULSE system is composed of seven
main functional blocks: a TMS320C40 (C40) as coprocessor. a PULSE chip as
processor. a glue logic unit realized with FPGA technology, three memories and one
oscillator (OSC). The C40 is a common DSP processor that can compensate the weakness
of the PULSE chip. The C40 has three main functions, (1) transfers data from global

memory to local memory; (2) output all calculation results from PULSE and itself to
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global memory: (3) run accumulation and “if” insrtuctions. PULSE gets data from local
memory to run parallel code with no or very little *if* instructions. The 32 bits DRAM is
used as a buffer to store input data, as well as partial and final results. The 66 bits DRAM
is a program memory or data memory. The glue logic unit (FPGA) makes the system

easier to modify.

Qobal IS
4*
Memory 40 pE— FPGA [¢

"o ’ ! )

Figure 6-1 The C40/PULSE system

The intermediate result of motion estimation (before accumulate) are sent to local
memory. The accumulation and “If” instructions are processed by the C40. Figure 6-2
shows a flowchart for a program split for the proposed heterogeneous architecture. It
suggests that the PULSE chip runs ‘“sub”and “abs” instruction and the C40 coprocessor
runs “accumulate” and “if” instructions. Here, the major problem is the synchronization

between the C40 and the PULSE chip, more precisely data communication. In order to
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transfer data promptly. a flag is set in local memory after the ‘abs’ finished. The C40
checks the flag unit and then start “accumulate™ while flag is not zero. An interrupt is
generated from PULSE to C40 when PULSE output resuits to local memory. Of course.
the C40’s processing time must be less than PULSE’s processing time in each search

period. In this case. C40 can process interrupts.

PULSE C40
input pixels for
one block search area
' I load memmory address J delay one step(one basic match)
! A
subtraction 4 pixels 5
absolute 4 results
]
result to north channel recenve data and
shift nght accurmulate at C40 ,
loop 2 i Y : 5 St(Tp
[ adjust rram:y@ after 64 pixels accurulated -
¥ if (result < T) STOP, outpunector&
| adjust memory address | - next block, else continue search in
loop 8 - the sane area :
< | no: Lf(ﬁjllsemdlmtl'usama)mdblod(
< elseoontmue :
¥&s
\/

Figure 6-2. Program flowchart for the C40/PULSE system



From the PULSE chip implementation (Figure 4-7). Figure 6-3 presents a possible

C40/PULSE system implementation. More precisely. bolded instructions represent

instructions executed on the c40 processor. There were about 530% instructions in this

part.

tl:

accumulater ra3

accumulate 64 pixels

(8 pixels)

push Z; accululate 1 line

nop

rale,

rble,

72
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add rblé6e, 4, rblé6; +4

dbr lcop2

add rale, 8, ralé; l6-4x2Z=€
add rblé, 8, rblé 16-4x2=8

sub rale, 128, ralé; -128 back to start point

sub rble, 128, rbl6; -128 back to start point

Figure 6-3 A C40/PULSE system implementation

The PULSE data input time is not included in the program of figure 6-3. Considering
GFSM or FSM algorithm. experimentation shows that the C40/PULSE system is about

0.4 umes faster than the use of only one PULSE chip.

Data transfer programs for C40 and PULSE are listed in appendix N. The C program and
PULSE assembly program listed in Appendix N were simultaneously run in Mentor

Graphics simulator (QuickHDL) [PUL96][TEX90].

6.2 Improvement of the C40/PULSE system

In order to increase performance, four PULSE chips are used in this system. This
improved system is named C40/4PULSE system and it is presented in Figure 6-4. The

four PULSE chips are connected directly into a chain. It is easier to transmit data from
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PEs of left PULSE chip to PEs of right PULSE chip on this chain. A common instruction
controls all PEs on the four PULSE chips.

Due to the increase of PE chain size. the loop limits are decreased and the time to inout
date is also increased. So. the speed increase is not linear. This system runs 3.5 times

faster than using only one PULSE chip and 2.2 times faster than the C40/PULSE system.

1
Global |« > «——» "
Memory C40 ‘—_—[t FPGA —
’ y
\A v } \J
g vy v vy vy
— Lo > =
Local oy MOy

Memory "| Puse |7 Pusse [ Puse [+ Pulse | ”|66Bit

Figure 6-4 The C40/4PULSE system

Table 6.1 compares the processing time of various motion detection algorithms for three
architectures: one PULSE chip, the C40/PULSE system (one C40 and one PULSE chip)
and the C40/4PULSE system (one C40 and four PULSE chips). The comparison is
assumes on image size of 760x480 pixels, The search block is 8x8 pixels and the search

area is 16x16 pixels.
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According to the different algorithms. the number of search steps varies from 11 to 81
(see table 6-1). In the C40/PULSE system. the processors are working in parallel and the
C40 processing time is always less than PULSE processing time. The maximum time is
obtained for the one PULSE chip system. So. the Block Match Time (BMT) with only
one PULSE chip is 335 instruction cvcles. While it 78 instruction cycles are required for

the C40/4PULSE system.

The FSM algorithm is slow but accurate. This explains its popularity. GFSM is a bit
faster than FSM based on table 6.1. Although GFSM is more complex. in practice. the
change between an old picture and new picture is often limited at rate of 30 frames per
second. Thus. with GFSM. the number of search steps is generally much lower than the

maximum value (81 in this case).



Maximum the C3(/PULSE system the C40/4PULSE system
Search step one PULSE chip (one C40 and one (one C40 and four
PULSE c¢hip) PULSE chips)

GFSM 81 355 inst. / BMU 256 inst. / BMU 78 inst. / BMU
449 inst. / pixel 323 inst. / pixel 98 inst. / pixel
3.4S/ frame 2.2S / frame 660msS / frame

FSM 81 3535 nst. / BMU 256 inst. / BMU 78 inst. / BMU
450 inst. / pixel 360 inst. / pixel 109 inst. / pixel
3.07S/ frame 2.4S / frame 74mS / frame

CDS I 335 inst. / BMU 256 inst. / BMU 78 inst. / BMU
66.5 inst. / pixel 42.8 inst. / pixel i4.2 inst. / pixel
333mS / frame 292mS / frame 97mS / frame

3 step 25 335 inst. / BMU 256 inst. / BMU 78 inst. / BMU
144 inst. / pixel 97 inst. ; pixel 32.5 inst. / pixel
982msS / frame 663mS / frame 221mS / frame

CSA 13 355 inst. : BMU 256 inst. - BMU 78 inst. / BMU
75 inst. / pixel S0 inst. / pixel 16.8 inst. / pixel
S11mS / frame 343mS / frame 114mS / frame

*BMU = Basic Match Unit S = Second inst. = instruction

Table 6-1 Comparison searching results with different algorithms
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CHAPTER 7

Conclusions

7.1 Results

This thesis highlights and explains the key features of how a fixed-point SIMD array
processor. PULSE. can be used to implement MPEG-2 standard codec that performs
video compression. In particular. this research showed effective methods of partitioning

algorithms to exploit the parallelism of the PULSE processors.

The main components of an MPEG-2 codec. the motion estimation that computes motion
vectors. was designed and simulated. Its performance was evaluated and the algorithms
were optimized for the PULSE architecture. It was found that low complexity motion
estimation algorithms are faster but often inaccurate (See 2.2). The GFSM algorithm is a
better method than the other algorithms., because it is accurate but nevertheless
significantly faster than the FSM. Finally. we here shown that 68 chips are required to

achieve the motion estimation under the MPEG standard.

Another time consuming operation of the MPEG-2 standard used to reduce the spatial
redundancy is the Discrete Cosine Transform (DCT) and its inverse (IDCT). An

implementation of the DCT exploiting the parallelism of the PULSE chip and requiring
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19 chips has been presented. An important point to underline in the implementation is the
use of a predefined cosine table to perform the DCT. The use of this cosine table, first
computed on a workstation and afterwards loaded on the PE memories, reduces the
processing time. and also increases the accuracy of calculation (due to the precision

offered by a language like C++ on a workstation. compared to the 16 bit PULSE

processor).

Finally. we have shown that the convolution program is a good application for the
PULSE chip applied to image processing. In particular. techniques that reduce the
running time of loops and increases the efficiency of performance have been presented
(Chapter 3). We should that only 3.75 instructions are required on average to process

each pixel with one PULSE chip.

7.2 Future work

Some issues are worth considering for further research. These issues are as follows:

Parallel Architecture: It was proved that the architecture of the PULSE chain affects the
performance of MPEG-2 codec. Using a PULSE chain of excessive length is not
effective. This could lead to propose a new architecture for the PULSE chain. The array

could be divided into several macro blocks, where short PULSE chains process a macro
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block. In order to support these parallel PULSE chains. multiple local memories or multi-
port memories needed. The data transfer from global memory to local memories are
expected to become a bottleneck. For this reason. several C40s could be used. One of
them for DMA control and others could be used to process data. In this system, a PULSE
chain could have different lengths for processing different algorithms. For example,
eight parallel PULSE chains. each comprising four PULSE chips, could support motion

estimation. and other chains with only two PULSE chips could support DCT and IDCT.

Management: For each macro block. its processing time could be different. For instance.
if all PULSE chains have only one control unit. then the system must wait the slowest
one done to continue processing. By contrast. if each chain has its own control unit, each
chain can process at its own pace. For implementing this kind of architecture. multiple

program memories are required to supply multiple instruction streams.

Program: In the view of appendix F “Program of motion estimation™ and appendix H
“DCT program of PULSE™. it is known that motion estimation and DCT programs are
not as efficient as the convolution program. due to some waiting instructions in the
program (see 5.2.1 and Appendix H). Generally speaking, these wait cycles appear after
set address instructions and calculation instructions. For the first situation, adjusted input

data sequence may reduce address change, thus fewer address setting instructions are



80

required. For the second situation. input instructions should be inserted as much possible

as in the waiting times.

Furthermore. as shown in figure 2-3. the MPEG-2 codec includes DCT and IDCT
algorithms. For an 8 by 8 DCT. only 64 PE memory units are used to store cosine table
and 64 PE memory units are used to store data. The other 128 PE memory units can be
used to store DCT result. This DCT result can be used as the input of IDCT. Using this

idea will reduce data input time for IDCT.

Others: Using FPGA technology for logic control can make PULSE chips easier to

connect with PCI or other standard interfaces for practical applications.
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Appendix

Appendix A PULSE VI Competitive analysis

Features CNAPS SHARC TIC80 Oxford PULSE vl

A236

Architecture | SIMD Single- MIMD SIMD SIMD
processor

Clock 20~25 MHz | 33~40MHz | 50MHz 40MHz 54MHz

Frequency

Number of | 64 PNs. | Single One One One

Processor on | Without floating floating- Controller 4 | Controller 4

the chip Controller point point fixed-point fixed-point
Processor Processor processors processors

Inter-PE Very Weak. | N/A Cross  Bar | No inter-PE | Strong.

Communicat | 5 Mbytes/s memory communicati | Multichanne

ion support access on 1 432

Mbytes/s

Parallel Very weak | Strong Strong Weak Very strong

Operations Multiply-acc | Two adders | 3-input Multiply-acc | 3-input,  3-

in the PE one ALU multiply-add | output ALU,
multiplier Multiply-acc Mult-add-

acc

add-acc
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med-add
Non-linear No Weak Weak No Very strong
processing Only max. Max, Min.
min and clip Med
of two data Rank-order
Index
ranking
Core
function
chip
Application | Veryv | ...... Very Very Flexible and
Mapping restricted flexible, restricted easy to
But very program
hard to
program
Scalability Scalable Scalable No Scalable Scalable
External No memory | 4 buses. 64- | Single 64-bit | 400 Two buses
Memory and | interface. bit datapath | Bus shared | Mbytes/s 32- | 432 Mb/s
[/O Interface | 8-bit /O to SRAM by all the | bit sync. | sync.
10 DMA | processors Memory Memory
Channels, for data and | 2 40 | 4 108 Mb/s
160 program Mbytes/s data ports
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Mbytes/s DMA ports
On-chip 4kbytes on | 2Mbits  or | 50Kbytes 1kbytes Ins. | 2kbytes Ins.
memory each Pn 4Mbits lkbytes data | 2.5kbvtes
data
Micro- 64-bit total 48-bit 64-bit for | 32-bit 64-bit
Instruction 32-bit parallel parallel
control proc.
32-bit PN 32-bit
master
Instruction- | Very limited | Rich. Rich, Very limited | Very  rich
set extended for | extended for extended for
non-linear logic both linear
processing processing and non-
linear proc.
Software Assembler Assembler Assembler Software Assembler
Tools C compiler | C compiler | C compiler | development | C compiler
Debugger Simulator Simulator kit Simulator
Debugger Debugger Debugger
Evaluation Evaluation Evaluation
board board board
Application

libraries
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Packaging 200-pin PN | 240-pin 305-pin 208-pin 240-pin
240-pin PQFP ceramic PQFP PQFP
CSC PGA
PGA

Availability | Yes Yes Yes Q2 1996 Q4 1996

Cost High High High Low Low




89

Appendix B PULSE V1 technical features

The following list is a summary of the features of PULSE V1:

4 processing elements (PEs) per chip

54 MHz operation (worst case)

216 Mega MACCs per second (16x16 MACC)

216 Mega 3-operand ALU ops per second

216 Mega 32-bit shift/rotate per second

4-stage execution pipeline

ES2 ECPDQ7 0.6 um process

Six modulo counters for easy modulo addressing

2 16-bit shifi-register chains for inter-processor communications and data I/O
32-bit accumulate chain for direct data link between neighbor PEs
Instruction set includes vector and parallel instructions

Specialized 3 operand arithmetic-logic unit

Single cycle rank. clip. cor. max, med and min operations on 3 course operands
Accumulator has 33-bit internal range

Programmable overflow saturation for both signed and unsigned values
Signed saturates to +2 —1 and -2

Unsigned saturates to 0 and +2 -1

Four 16-bit reconfigurable data ports 432Mb/s of data I/O
Synchronous, asynchronous pseudo-synchronous

Up to 108 Mbytes/second per port
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2 ports may be configured as C40 type COM ports
256 word internal program memory
64 bit external program data bus
May be used as 432 Mb/s data port
256 word internal constants memory
Used for coefficient storage for filter algorithms etc.
Two 24 bit flexible address ports
- Programmable modulo counters available for address generation
e Standard CPU interface for configuration and status
- Configuration can also be performed by program
e PULSE chips are cascadable to form larger arrays of processors
- Synchronous /O ports allow direct connection between chips to form large
linear arrays of processors

- Two dimensional arrays are possible since there are 4 1/O ports
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PULSE V1 logic symbol-subject to design review
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Ports

address
port 1

Address
Port 2

Modulo
Counter
Activity

External
Protram

Power
supply

|

PULSE V1

«——»| Port_1[15:0]

<+—» port_4[15:0]

<«—| address_1[23:0]
<4—| address_I_wen

€— address_| _oen

address_2[23:0]
<4—— address_2_wem

«— address_2 oen

«——| address_2 active

< | address_1 active
—® program{65:0]

——{ vdd[15:0]

gnd[15:0]

rstn
clk

halt
intr

branchio

alarm
ad[7:0]
csn
alen
cpuwen

cpuren

sync_out

tdo
tdi
telk
trstn

tmode

Global
} controls

[nterface

Sync.
output

} JTAG
interface




Appendix D

loopy

The convolution program flowchart and program

CInitiated

pud-64

loopx

4

[input first 2 line’s 256 points to PE’s memA and memB |

-

loopa

i
input first 7 points of third hne (odd lines) to memA in PE$
4 result was calculate and put it in each PE’s acc

push 63 to loop counter (256-4)/4=63

-

4

iInput next 4 point to memaA in each Pt and calculate convolution
the result is in each PE’s acc. put it to rO then load it to sport and
output to external memory

-

loopb

F =63
T

output the final result of 4 points, adjust the pointer of
mca. mcb, mcc and mced to next line

input first 7 points of third line (even lines) to memB in PEs
4 result was calculate and put it in each PE’s acc

push 63 to loop counter (256-4)/4=63

P
-

y

input next 4 point to memB in each PE and calculate convolution
the result is in each PE’s acc. put it to rO then load it to sport and
output to external memory

I3
T

/
\

output the final result of 4 points, adjust the pointer of
mca, mcb, mcc and mcd to next line

2

511

I

/

T

adjust the external memory counter to the start of next 256 column

3

>

Il
4+

e—’

92



loopy:

loopm:

loopn:

:THIRD LINE

loopx:
- EEEEXETKREKE
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..................................................

P A A A A A A A A A A A A A A A A N A A AN A AN A A A A AN AN AN A A AN A A A A A N N N AN AN AN AN AN O AN BN AN AN AN AN AN 4

PULSE CONVOLUTION.ASM (3x3 sample window, l1kxlk pixel ;
image) pu4-¢6 ;

assemble syntax passed ;
PP IIiiNiliiiiiiRiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiciiiiiiiiiiiiiii;
.init
aall LLLLLLL L]
text
Ideamc 0. 0. mc_min, mc_min
Ideamc 1048376, 1048576, mc_max. mc_max (1024*1024)

Ideamc 1. 1. mc_stride, mc_stride
ldeamnc 0. 1025, mc_start, mc_start ;start from second line and second point(1024+1)

Idiamc 3. 0, 255. mcar :read from 4® point

Idiamc 0. 0. 255, mcaw

Idiamc 3. 0. 255. mcbr :read from 4 point

Idiamc 0. 0. 255. mcbw

push 4 (col=4)

push 257

fwvd nport. *mcaw(1) || nsr || io *mccr% ;start input 256 point of first line
dbr loopm

ldeamc 766. 1. mc_stride. mc_stride (+1024-256-2)

fivd nport. *mcaw(1) || nsr || io *mccre :end input 256+2 point of first line

Ideamc 1. 1. mc_stride. mc_stride

push 257

fwd nport, *mcbw(1) || nsr || io *mcecr? :start input 256 point of second line
dbr loopn
Ideamc 766, 1. mc_stride, mc_stride 3(+1024-256-2)

fwd nport, *mcbw(1) || nsr || io *mccr%  end input 256+2 point of second line
ldeamc 1. 1. mc_stride, mc_stride

(mcarw=0, mcbrw=0, mccr=0 at 3rd line, mcdw=1 at 2™ line)

push 511 2((1024-2)12)
;(next line)

#3 fwd nport, *mcaw(1) || nsr || io *mccr% ;(input 1~3p and point to 4th)
mult *mcar(1), rall, acc

fwd nport, *mcaw(1) || nsr || io *mccre
mult *mcar(1), ral2, acc+

fwd nport, *mcaw(1) || nsr || io *mccr?o
mult *mcar(-2), ral3, acc+

mult *mcbr(1), ral4, acc+

fwd nport, *mcaw(2) || nsr || io *mccr%
mult *mcbr(1), ral$, acc+ || nsr || io *mccr%
mult *mcbr(2), ral6, acc+

mult *mcar(1), ral7, acc+

mult *mcar(1), ral8, acc+



mult *mcar(2). ral9, acc+
:already input 7 point. The result of first 4 point is at acc

push 63 2(256-4)/4=63
loopa: mult *mcar(l), rall. acc

fwd nport. *mcaw(1) || nsr || io *mccr%o

madd ral. 0. acc. 10

mult *mcar(1). ral2. acc+

fwd nport. *mcaw(1) {| nsr || io *mcer?e

mult *mcar(-2). ral 3, acc+

1d rb0. sport

mult *mcbr(1). ral4. acc+

fwd nport. *mcaw(2) || nsr || io *mccr

mult *mcbr(1), ral5. acc+ || nsr{| io *mccr?s

mult *mcbr(2). ral6, acc+ || ssr ]| io *mcdw?e

mult *mcar(1). ral 7. acc+ || ssr || to *mcdw%s

mult *mcar(1). ral 8. acc+ j| ssr i} io *mcdw®

mult *mcar(2). ral9. acc+ || ssr || io *mcdw%

dbr loopa

#2 nop

madd ral. 0. acc. r0

#3 nop

Id rb0. sport

%3 nop

#3 ssr|] 10 *mcdw?so

Ideamc 766. 766, mc_stride. mc_stride A1 (1024-(256+2))
ssr || io *mcdw®%. *mccrlo

Ideamc 1. 1. mc_stride. mc_stride
:(mccr=new line 1* point, mcdw=new line 2nd point)

Idiamc 0, 0. 235, mcaw

Idiamc 3. 0. 255. mcbr

ldiamc 3. 0, 255, mcar

Idiamc 0. 0. 255. mcbw :(mcaw., mebw=0. mcar. mcbr=3 the 4™ point)

:*tt kxkk k&
:‘#"“#‘####*‘*‘tt#ttttttttttt##t*#‘ EE £ 2 £ 8 3
#3 fivd nport. *mcbw(1) |i nsr|j io *mccr% :(input 1-3p and point to 4th)
mult *mcbr(1). ral 1, acc
fwd nport. *mcbw(1) || nsr [} io *mccr%
mult *mcbr(1). ral2, acc+
fwd nport, *mcbw(1) || nsr {| io *mccr%
mult *mcbr(-2), ral 3, acc+
mult *mcar(1), ral4, acc+
fwd nport. *mcbw(2) || nsr || io *mccr%
mult *mcar(1), ral5, acc+ || nsr || io *mccr%
mult *mcar(2), ralé, acc+
mult *mcbr(1), ral7. acc+
mult *mcbr(1), ral8, acc+
mult *mcbr(2), ral9, acc+

;already input 7 point. The result of first 4 point is at acc



push 63 (256-1)/4=63
loopb: mult *mcbr(1). ral l. acc

fivd nport, *mcbw(1) || nsr [} io *mccr%

madd ral, 0. acc, r0

mult *mcbr(1), ral 2, acc+

fwd nport, *mcbw(1) || nsr |} io *mccre

mult *mcbr(-2). ral3. acc+

Id rb0, sport

mult *mcar(1). ral4. acc+

fwd nport, *mcbw(2) || nsr || io *mccrs

mult *mcar(1), ral3. acc+ || nsr || io *mccr®o

mult *mcar(2), ral 6, acc+ {| ssr| 10 *mcdw?s

mult *mcbr(1), ral 7, acc+ || ssr | i0 *mcdw?%

mult *mcbr(1), ral 8, acc+ ] ssrij io *mecdwS%o

mult *mcbr(2). ral9. acc+ || ssr || io *mcdw®o

dbr loopb

#2 nop

madd ral. 0. acc. rO

#3 nop

Id rb0. sport

%3 nop

#3 ssr |} to *mcdw?o

ldeamc 766. 766. mc_stride. mc_stride A1 (1024-(256+2))
ssr || io *mecdw%, *mccrlo

Ideamc 1. 1. mc_stride. mc_stride
:(mccr=new line 1 point, mcdw=new line 2nd point)
Ildiamc 0, 0. 255
Idiamc 3. 0. 255. mcbr
Idiamc 3. 0. 255, mcar
Idiamc 0. 0. 255, mcbw (mcaw. mcbw=0, mcar, mcbr=3 the 4t point)
:t**‘tt#*#‘l**ﬁtt‘#"tttt*tt#‘*##

dbr loopx «(cye in line)
ldeamc 256, 2304, mc_stride. mc_stride;(-1024*1024+256,-1022*1024+256)
io *mccre, *mcdw?o

Ideamc 1, I, mc_stride. mc_stride

dbr loopy
end

.end
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Appendix E Convolution program (3x3 window with 32x32 pixel image), data of

source image and data of result image

D
A A N N A A N S R N A A A N I S S B A N A
; PULSE CONVOLUTION.ASM (33 sample window, 32x32 ;
H pixel image) pug27-1 ;
.init
all LLLE L L L]
.text
Ideamc 0. 0, mc_min, mc_min
Ideamc 1023. 1023, mc_max. mc_max 1(32*32)
Ideamc 1. 1, mc_stride. mc_stride
Ideamc 0. 32. mc_start. mc_start :start from second line and second point(31+1)
Idiamc 3. 0. 255. mcar :read from 4" point
Idiamc 0. 0, 255. mcaw
Idiamc 3. 0. 255, mcbr :read from 4™ point
ldiamc 0, 0. 255. mcbw
push 32
loopm: fwd nport, *mcaw(l) || nsr || io *mccrs :start input 32 points of first line
dbr loopm
push 32
loopn: fivd nport. *mcbw(1) || nsr |} io *mcecr% :start input 32 points of second line
dbr loopn
:THIRD LINE (mcarw=0. mcbrw=0. mccr=0 at 3rd line. medw=1 at 2™ line)
push 15 A32-2)2=15 ((1024-2)/2)
loopx: (next line)

EEE XSS EEE ]

#3 fivd nport. *mcaw(1) || nsr {| io *mccr® :(input {~3p and point to 4th)
mult *mcar(1). rall. acc
fwd nport, *mcaw(1) || nsr [} io *mccr%
mult *mcar(1), ral2, acc+
fivd nport, *mcaw(1) || nsr || io *mccre
mult *mcar(-2). ral 3, acc+
mult *mcbr(1), rald. acc+
fwd nport, *mcaw(2) || nsr || io *mccr%
mult *mcbr(1), ral3, acc+ {| nsr |} io *mccr
mult *mcbr(2), ral6, acc+
mult *mcar(1), ral7, acc+
mult *mcar(1), ral8, acc+
mult *mcar(2), ral9, acc+
:already input 7 point. The result of first 4 point is at acc

nopflio *mcdw% ;pro-set first result point=xx
push 7 (324)4=7 (256-4)/4=63

loopa: mult *mecar(1), rall, acc



fwd nport. *mcaw(1) || nsr || io *mccr?o
madd ral. 0, acc. r0

muit *mcar(1), ral2, acc+

fwd nport. *mcaw(1) || nsr || io *mccr%

mult *mcar(-2), ral 3, acc+

1d rb0, sport

mult *mcbr(l). rai4, acc+

fwd nport, *mcaw(2) || nsr || io *mccrés

mult *mcbr(1). ral5, acc+ || nsr || io *mccer?s
mult *mcbr(2). ral6. acc+ §| ssr || io *mcdw?%
mult *mcar(1). ral7, acc+ || ssr | io *mcdw?s
mult *mcar(1). ral8. acc+ || ssr || io *mcdw?s
mult *mcar(2), ral9, acc+ || ssr || io *mcdw%
dbr loopa

:ttl‘!ttt*
:lttltt‘!‘ttt*t't#t*‘t#tt*#*#*t#**#‘*‘#tttt
#5 fwd nport. *mcbw(1) {| nsr || io *mccr?s :(input 1~3p and point to 4th)
mult *mcbr(1l). rall. acc
fwd nport. *mcbw(1) || nsr || io *mccr%
mult *mcbr(1). ralZ2. acc+
fwd nport. *mcbw(1) || nsr |j io *mccro
mult *mcbr(-2). ral3. acc+
mult *mcar(1). ral4, acc+
fwd nport, *mcbw(2) || nsr {| io *mccr®e
mult *mcar(l). ral5. acc+ | nsr || i0 *mccr2
mult *mcar(2). ral6, acc+
mult *mcbr(1), ral7. acc+
mult *mcbr(l). ral8, acc+
mult *mcbr(2). ral9. acc+

:already input 7 point. The result of first 4 point is at acc

nop|iio *mcdwo

push 7 (32-4)/4=7
loopb: mult *mcbr(1). ral 1. acc

fivd nport, *mcbw(1) || nsr || i0 *mccr?%

madd ral, 0, acc, r0

mult *mcbr(1). ral2, acc+

fwd nport, *mcbw(1) || nsr || io *mccr

mult *mcbr(-2), ral3. acc+

Id rb0, sport

mult *mcar(1). ral4, acc+

fwd nport, *mcbw(2) || nsr || io *mccr

mult *mcar(1), ral5. acc+ || nsr|| io *mccr%

mult *mcar(2), ral 6. acc+ || ssr| io *mcdw%

mult *mcbr(l), ral7, acc+ || ssr || io *mcdw%

mult *mcbr(1), ral8, acc+ || ssr || io *mcdw%

mult *mcbr(2), ral9, acc+ || ssr|j io *mcdw%

dbr loopb
:‘ttt‘#t“.t**‘tt‘t‘*“‘tt“tt‘ﬁt

dbr loopx ;(cyc in line)

end

.end
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2) Data of source image (32 x 32 pixel)
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3) Data of result image (32 x 32 pixel)
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Appendix F Program of motion estimation

P A A A A A A A A A A A A A A A N A A A A A A A A A N A A A N A A A A N A A A A A A A A

moticon estimation.asm

SM(8x8block,

synchroneous mode

channe

channes

rameE 1s c¢ld picture
1 as input,

1 connect to neorth

2 as input

Z connect to south

col 1, row 1
18+96=141
48+96=144
48+96=144

48+96=144

S

er number

SS
sSS

1) FSM
H mcgcecd. asm
;mogcod PULSE assembler
;16xl6ar=a, é4xdiimage) cail
; framei is new ricture, f
Piiiiiiiiiig
text
cull:
idecr 2, portlceonfig;
(30 2) pecrt
ider 1, pecrtlincen;
(A0 1) per:z
lder 9, pertZceonfig:
(¢1 0) port
ldecr 2, portZincon;
(Al 2) pecrt
ider 1, porticeniig
idcr 1, port3outcon
idcr 3, portdicceniig
idcr 2, portdoutcon
ldecr 3, kcotcentrel;
ldeamc O, Z20%71
ldesamc 40695, 2
(€46
ideamc 0, 20¢715Z2, c_
ldeamc 1, 1, mc stride,
ERECECEECEECRRRRERIQRREERERRERkRstart
ldiamec 0, 0, 144, mcar:
ldiamc 0, 0O, 144, mcaw;
ldiamc 0, O, 144, mcbr;
idiamc 0, O, 144, mcbw;
;588585858588 input frame A, B
push 4; 4x12 4 line
call t2
l1d 0, ral; vector count
l1d 0, rbl: 16k,
;$5$5555$58S input frame A, B 128-32=96 pixels
push 8; 8+8
call t2
yitirttticel 1, row 1, calculate
1d 0, ralé6; memA's addre
1d 0, rbl6; memB's addre
push 5; 5line loop
call t4
ittt first col, first block end

;EEEREERERLRRRARARRRRRCERRCRRCACRERRERReNnd col I,

1 for mcdulc

2+*11=209

126-64-16=48 pixels

temporal vector address positicn

row 1

1

1

Jounter

7

1

(input)

c

ol
<

101



;BRERERCRARRAARIARLAALRREAALRRERRERRREAStart col 1, row 2-127

ldeamc 256, 2097153, mc_start, mc_start;
256 (64x4), 2097152+1(vector)
ldiamc 0, 0, 192, mcar; 96+96=192
ldiamc 0, 0, 192, mcaw; 96+96=192
ldiame 0, 0, 192, mcbr; 96+96=192
ldiamec 0, 0, 192, mcbw; 96+96=192
1d 48, rals; 4x12=486 frameld in memA start point
1d 0, rbls; frameB in memB start point
;$$$855858S5S input frame A, B 128-32=96 pixels
push 8; 8x12 8 lines
call t2
push ©; column 1 loops(128-2 for bcundry)
loopc:
;S58889838538¢ input frame A, B %6 pixels
push 2; g8x12
cail tZ
trrtriiteol 1, Z-127 block calculate
#2 nop
1d rails8, rale6; memA's address
1d rbls, rbl6; memB's address
push 9; 9line lcop
call t4
ittt One block calculate end
add ral8, 96, ral$§; gx12
add rbl8, 96, rblS8; 8x12

dbr loopo
;CERRAACREELERLRELRLLIGALELRRRARLRRAECEERERRGEeNd col 1, row 2-127
;RREPQRRRRELRLACREAERAEAARELRARRREGStart col 1, row 128

;55555555585 input frame 2, B 48 pixels
push 4; 4
call t2

rirrirtteol 1, 128 block calculate
#2 nop
ld ral8, ralé; memA's address
ld rbl8, rbleé; memB's address
push 5; 91line loop
call t4

prrrrrrtrl cglculate end

ldeamc -4092,

4092

;01d-4024=-64%x(64~-1)-8 or

(64x64)

#3 nop;!

io *meccrg

nop;!

ldeamc 1,

#2 nop;

push 6;
loopcol:

1,

mc_stride, mc_stride;-4096+(12-4)-3-1=-

+64-8 pointed to next col. Start point

1, mc_stride, mc_stride

now is pointed to next line begin
;QACRRARARALARARREARAALRRRRAGRERARARRRERERReNd c0ol 1, row 128
;end of col. 1 ttrrrtrrriirrrrrnrrrreryey
;REARREALRLARRARALRRLARARARLRRRGRRERSLtart €0l 2-127, row 1
126col.s

ldiamc 0, O,

192, mcar; 64+128=192
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ldiamc 0, 0, 192, mcaw; 64+128=192
ldiamc 0, 0, 192, mcbr; 64+128=192
ldiamc 0, 0, 192, mcbw; €4+128=192
;$$5555$5555S input frame A, B 16x4=64 pixels
push 4; 4x16 4 lines
call t3
;98558558 SSS input frame A, B 128 pixels
push 8; 3+8
call t3
srrrrirticol 2-127, row 1, calculate
ld 4, ralé6: (+4) memA's address
l1d 0, rblé6; memB's address
push S; Sline loop
call t5

;ARRCEREAEECALRERARRERELRARARLERRAGRRREGRReNd col 2-127, row 1
;@ERRALEARAREALERRLLRLRRALRERERRARRRERERstart col 2-127, row 2-127

ldeamc -512, 1, mc_stride, mc_stride; -64x8-3-1
#3 nop:;!
10 *mccrs
nop; !
ldeamc 1, 1, mc_stride, mc_stride
#2 nop; now is pointed to next line begin
ldiamc 0, 0, 255, mcar; 128+128=256
ldiamc 0, 0, 255, mcaw; 128+128=256
ldiamc 0, O, 255, mcbr; 128+128=256
ldiamec 0, 0, 255, mcbw; 128+128=256
l1d €8, rals; 4x16+1=68 framelA in memA start point
1d 0, rbls; frameB in memB start point
;8555555558 S input frame A, B 128 pixels
push 8; 8x16 8 lines
call c3
push 6&; column 1 loops(128-2 for boundry)
loopol:
;$5S5$355S$$SS 1nput frame A, B 128 pixels
push 8; 8x16
call t3
trrrrtttcol 2-127, 2-127 block calculate
#2 nop
1d ral8, ralé6; memA's address
1ld rbl8, rblé; memB's address
push 9; 9line loop
call t5
sttt calculate end
add ral8, 128, ral8: 8xl6
add rbl8, 128, rbl8; 8x16

dbr lcopol:
;QRRERCECLECERARCRRACLCLARCEARREARELRERRRREAReNnd col 2-127, row 2-127
;OCRRRALRLRARRERRARRARARARRAEERARStart col 2~-127, row 128
;55555555585 input frame A, B 64 pixels

push 4; 4
call t3

. prirtrttteol 2-127, 128 block calculate
#2 nop



vol

zixe ‘g ysnd
sToxTd 96 g ‘¥ dwexI 3Indur $3565555$83s ! ‘
:zodooTt
(Axpunog IoJ z-821)sdool 1 uumyioD ‘9 ysnd
Z3 118>
S8uTi 8 CZ1Ix8 :g ysnd
sToxTd 96=7£-877 € ‘¥ 2wex3y 3InduTl $§$55$$5$58s!
jutod 3IeB31S gWaW UT gdWeIJ ‘g1qx1 ‘0 PI
qutod 3IP3S YWaW UT YawexF ZG=F+2IX¥p ‘giex ‘zs pI
261=96+96 ‘Mgdow ‘zel ‘0 ‘0 OSweIpl
Z6T=96+96 ‘Iqdw ‘g6l ‘O ‘0 dDweIp]
Z61=96+96 medw ‘zgl ‘0 ‘0 DWRIF]
261=96+96 Iedw ‘zZgI ‘0 ‘0 SWRIPT
utbag auity 3Ix3u 03 pajutod sT mou (dou Z#
3pTI3S ow ‘9pTI3s ow ‘1 ‘I dwesp]
i :dou
sazduw, OT
; {dou c#
I-€-8XxXF9- !apTI3s ou ‘mvﬂnumlUE ‘T 'Z1IG- SweapT
LZT-7 MOI ‘8Z1 TOD 31e3S3ddaddddovddedddadedgedsdde’
T MOI ‘871 TOD PUSPIINNINE DI 9999I393pdyoa !
pu= 212T02TeS [ jiiiiiiil
F3 11®>
dooT 2UTTS fg ysnd
Ss3Ippe S,dusw !giax ‘g P1
£S3IPPP S ,Ywsw (b+) 91231 ‘'t PI
aieTnoTEDd ‘T MCI ‘gZT TCTiiiiiiiif
3 T1B°
g8+¢ ‘g ysnd
sTax1d 95 g ‘¥ SwexF andul $35555$585355 ¢
23 T1Eo
SZUTT % ZiXr ‘r ysnd
sToxTd gF=FXZ1 g ‘¥ 2wWeIj IndUT $§3558$3535358S!
Fr1=95+8F ‘m3ow ‘rr1 ‘0 ‘0 QwWRIPT
FE1=96+8F fIgow ‘fE1 ‘0 ‘0 oweRIpl
FP1=96+8F ‘mEPDW ‘FiI ‘0 ‘0 SwWEIPT
PFPI=96-€F 220w ‘Hr1 ‘0 ‘0 DJWRIPT
1 MO3 ‘BZT TOD 1IEP1ISPIPEPedasdvddodvdaadazdsdedde
Piididddddiiiidiiiiiiiai LZI-T TTI00 20 pusd
8§21 MOI ‘.1ZT1-Z7 ICO PUS2IFIIHIPDIIIIDIIIVLIIIILPIDAIDID°
T1oodooT Igp
utbag auTll 3IX3uU 01 paiutod sT MOu :dou z&
5pTI3S Qw ‘8pTI3s ow ‘T ‘1 DWPIPT
i tdou
$I00W,. OF
jidou c&
(yoxpa’
qutod 1ze3S " TOD 3IxX2u 03 paijurtod g-p9+ IO B-(I-§9)XFO-=pZOF-PTIC!
260b-=1-E-8+960%~ {SPTI3s dw ‘SpPTIIS oW ‘1 ‘ZE0F- DwespT
pus 23202122 jiiiiiiiil
G3 T1°®°
dcoT 2uTTS ‘g ysnd
SS3JIppP S, gusu fa1gqxr ‘gIiqgqI Pl
SS2IPPE S,y wdw !gi=1 ‘giex pil



call t2
srrtrrrtrool 128, 2-127 block calculate
#2 nop
1d rals, rale; memA's address
ld rbid, rble: memB's address
push 9; %line loop
call t3
prrrirtrtrt czizulate end
add rals, 2¢, ralg; Sx12
add rblg, %6, rblg; Ex12
der lzcpc2:
FEEREEEQCEARCEIEAILCECRREEEARQARRRRERERRRend col 128, row
;ERRRREEEERERCREERERAARARREAERRStart col 128, row 128
;353555888588 input frame A, B 48 pixels
cush 4 4
call ¢2
plbrirttt=ol 1, 128 block calculate
#Z nop
id raid, ralé; memﬁ's address
id r2ls, rblea; memE "’ address
cush I Elln locp
cell -4
prrrrrrrrt cgleovlate 2nd
JCREQRERERTERELREREQRCRECECERERRRRREEER.Nd col 128, row
;end I N
=nd
tl: 137, ral3; accumulater ra?l
.d rcé, rkil
cush & accumulate 64 pixels
iccps:
cush I accululate 1 line (8 pi
iroopl:
£l necp
14 rzi¢, &ddra
id rple, addrb
#3 necp
stk raddra, *addrk, ra2
83 ncp
zbs ralZ, raZz;
#3 necp
ld raZ, sport
82 nop
push 4; accumulate 4 pixels
icopl:
ld sport, rb2
#2 nop
Ssr

add
dbr
add
add
dbr
add

ra3, rb2, ral;
loopl
rale,
rble, 4,
loop2

ralé, 8,

4, ralé;
rblé6;

rale;

accumulater ra3

+4
+4

16-4x2=8

N

s
[\S]

128
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t3:
loopn01:
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dd rkle, &, rble; lo-4x2=8
dbr loocop3
vk ralé, 128, ralé6: -128 back to start point
sukb rblé, 128, rble; -128 back to start point
ret
d 0, ra3:; accumulater ra3l
i1d rbe¢, rbil
cush 37 accumulate 64 pixels
cush 27 accululate 1 line (8 pixels)
$#. nop
1d ral€e, addrsa
1¢ rkl6, addrb
#3 nop
stk raddra, *addrbk, ral
§3 ncp
abs raz, rac;
£: nop
13 ral, Sgoret
Z ncp )
5 E 1 gixels
crt, rc.
o
z2d raz, rbzZ, ra>; accumulater ras
dbr locool
z23d ralec, 4, rale; +4
zd< rble, 5, rblé; +4
der locoilz
add ralec, 4, ralo; 12-4%x2=4
add rble, &, rble; 12-4x2=3
cbr locpZ:
suk rzle, 26, ralée; ~56 back to start point
scb rblé, 24, rblé; ~96 kack to start point
ret
: £3 nsriissrliio *mccr:
gush 12 12
: nsr|lssriiio *mccrt
id nport, *mcaw(l})
id spcrt, *mcbw(l)
dbr locpmGC
ldeamc 49, 1, mc_stride, mc_stride; -3-12+64-1 read, (64x64)
#3 rop;! -
ic *mccri

nop; !

ldeamc 1, 1, mc_stride, mc_stride

#2 nop; now is pointed to next line begin
dbr locpnO

ret

$3 nsrilssrltio *mccrg;
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address+1)

#Z nop
#3 nop

U
D
3ot
Q.

#3 ncop

bpz jumpll

restore

ldcr 0000b, acm
add rbe, 1, rbé6:

nep
dbr lccpld

add rb€, 7, rbé6; 16 in block address

add rble, 7, rblcé; 3 memB+8
dbr locpl5
id 5598, rbil;
ifeq rbl, 99%9¢%, O
#3 ncp
bpa jumpl2
pop: loopd
cop; locp5
restore
ldcr OCCCh, zcom
ld rbl, nport
83 nop
i ‘mcdwk
add ral, 1, ral

p next begining point
add rkbl6, 1, rblé; next beginning cein

Q
t

of

frameB (address+1)
of frameB(memB's
frameB
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2) GFSM
A A N R A A A A A A N A N A A A A B A R B B S S B R
; mocentl.asm ;
; mccentl.asm parallel accumulate, (call) H
; H
; FULSE moticn estimation.asm GFSM(8x8block, i6xlbarea, 64x64image)
; frame” 1s new picture, frameB 1s old picture ;
i iRl iiiiiiiiiiiiiviiiiiiiiiiiiiiiiiiiiiiiiz
LTSNt
cull:
ldzr 2, portliceonficg;
30 Z) port 1 as input, synchrcneous mode
l3dcr 1, gortiincon:
(20 1) port 1 connect to north cheannel (input!
idcr 0, port2cceniig; (91 0) pecrt 2 as input
ldz-r 2, pecrtZincon;
(A1 Z) port Z connect to south channel (input;
lder I, porticonfig
ldzr 1, porticutcon
lder 3, pertdconfig
idcr Z, gportdoutcon
ldcr Z, boctcontrel; address purtl for medulo counter
ideamc 0, 2097152, mc_min, mc_min;
ldeamc 4085, 2101248, mc_max, mC_max;
{64x64+start=4096+2057152)
ldeamc Q, 2087152, mc_start, mc_start; 2**21=2097152
ldeamc 1, 1, mc_stride, mc_stride;
JREREACEREEERCERRRRRERRECREREERERStart col 1, rew 1
Idieamc O, 0, 143, mcar; 48+96=144
ldiamc 0, 9, 143, mcaw; 48+36=144
ldiamc O, 0, 143, mcbr; 48+956=144
ldiamc O, 0O, 143, mcbw; 48+56=144
;SS83E38888388 input frame A, B 128-€64-16=48 pixels
push 3 i4xiz 4 lines
call t2
ld 0, ral; vector counter number
id 0, rbil; 16k, temporal vector address position
;558558855558 input frame A, B 128-22=96 pixels
push §; 2+8
call t2
slirttittcol 1, row 1, calculate
1d 0, ralé; memA's address
1d 0, rblé; memB's address
push 5; loop
call t4
ltirrrvitfirst col, first block end

;CRELRRLRRREGRERERARRELARRRCARRRRRREARRRRReNd col 1, row 1
. ;CGRRREERRREREELRRACELRRRRRRERRRREAstart col 1, row 2-127



ldeamec 256, 2067153, mc_start, mC_start;
256 (€4x4), 209715Z2+1 (vector)
ldieme 0, C, 1%1, mcar; $6+3%6=192
ldizame 2, 2, 191, mcaw; %€+9€=1692
tdiamc 0, C, 191, mckbr; S6+26=192
ldiamc 0, C, 121, mcbow:; $6+96=192
id 43, ralg; 4x1Z=45 frameA in memA start
la 3, £big; frameB in memB start point
;SSSESS8SE8S Input frame A, B 128-32=%6 pixels
cush =; Sx12 3 lines
}all Tz
cush € column 1 ilocps(128-2 for boundry)
locpo:
;988888853885 input frame 2, B %€ pixels
cush 35; gxlz
call 2
slitterttocl 1, 2-127 bBlock calculate
#Z nop
1d raig, rale; memA's address
id rbil&, rbie; memB's address
cush 2; %line locop
==z11 4
Ittt Crne bleock calculate =nd
zdd rals, %96, rals; ExilZ
and ralS, 203fh, rals
add rbls, 22, rbif; 512
and rtlig, CQ0Zfh, rel:
dbor locrpo
H CERECERREEREREREEREEEEEEEEend ccl 1, row 2-127
; REREERARRAAAREERERLREstart c2l 1, row 127
; input frame &, B 48 pixels
push 4:;
call ©Z2
plitrlittecl 1, 125% plock calculats
#2 nco
1d ralg, ralé: memA's address
1d rple, rble; memB's address
oush S; Sline loop
call <4
vttt szlculilate end
ldeamc -40%22, 1, mc_stride, mc_stride;-4096+(12-4)-3-1

Y29

052
01d-4024=-64x(64-1)-8 or +64-3 pointed tc next col. Start point

~

(64x64)
#3 nop;!
io *mccr$
nop; !

ldeamec 1, 1, mc_stride, mc_stride

#2 nop; now is pointed to next line begin
;CRCERLRCECELREREARCARCREARERRERARRRRARReNd col 1, row 128
;end of col. 1 !ftrtrrttirtrrrrrrrtetny
;CERRLLEEELAEEEEERRRRRREARREEREGRSart cOl 2-127, row 1

push 6; 126col.s
loopcol:
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idiamc 0, 0O, 191, mcar:; 64+128=192
ldiamc 0, 0O, 191, mcaw; 64+126=162
ldiamec 0, Q, 191, mcbr; 64+125=192
idiamc 0, 0O, 121, mcbw:; c4+128=132

;$$S5S$5535855 input frame A, B 16x4=64 pixels

push 4; 4x16 4 lines
call t3
;889558885388 input frame A, B 128 pixels
push Z; g+&
call <3
siirititlecl 2-127, row 1, calculate
ld 4, reale:; (+1) memi's address
1d 0, rblé:; memB's address
cush 5; 5line loop
call ©
ittt it tealcoculate 2nd
JERRERRERARIRRRGELERREREERERAERREREARERRR=Nd col 2-127, row 1
;CRREEREERELRREREREERREREREERRARStart col 2-127, row 2-127
ldeamz -%12, 1, mc _stride, mc _stride; -510 -64x8-3-1
£3 ncp;!
10 “mccrt
nop;!
ldeamc 1, 1, mc_stride, mc_stride
#2 nop; now is pointed to next lins begin
ldiamec 0, 0, 255, mcar; 128+128=256
ldiamc G, 0O, 255, mcaw; 128+128=256
ldiamc 0, 0, 255, mcbr; +125=256
ldiamc 0, 0, 2tZ, mcbw; 128+128=256
ld 6§, rals; 4x216+4=68 framel in mem® start point
id 68, rblg; 0 IrameB in memB start point
;SSS5$558858S input frams A, B 128 pixels
push 2; Ex16 8 lines
call t3
push ©; column 1 locps{1i28-2 for boundry)
loopol:
;85885555888 input frame A, B 128 pixels
push €; 8x1¢€
call ©3
trrttttliecel 2-127, 2-127 bleock calculate
#Z nop
ld ralg, ralé; memA's address
1d rbl38, rblé6; memB's address
Ficiiiiiiiii:
;scush 25 2line Lccp
call té6; call t5
Piiiiiiiiiii
prrrrrittt calculate end
add ral8, 128, rals8; 8x16
and ral8, 00ffh, rals
add rbig, 128, rbl8:; 8x16

and rbl8, 00ffh, rbls
dbr loopol:
;CERRRLRRLCRLAAREERRRERRARRERERREARARRRReNd cOol 2-127,

row 2-127

;éQRRRERERLARERRRRRRRRRARRREEREStart col 2-127, row 128



;555$5585S5$ input frame A, B 64 pixels

push 4; 4

call ©3
sltvrtttreol 2Z-127, 128 block calculate

82 ncp

1d ralg, rale; memA's address

l1d rbl8, rbleé: memB's address

gush 5; Sline loop

call ts

trrrirrty calculate end

ldeamc -4088, 1, mc_stride, mc_stride; -4096+&- -3088
;0ld-4024=-€4x(64-1)-8 or +64-8 pointed to next col. Start poxnt
(€1x64)

#3 nop;!

io *mccrsi

nop; !

ideamc 1, 1, mc_stride, mc_stride
#2 nop: now is pointed to next line begin
dbr lcopcol

IQCRRRECELERERCRLREERARLRRLERREERGRReNd col 2-127, row 128

,_1’) (I T T LT T I A SO O R A A O

ERRRAICRRAECLRRERLERRARRRERERRSstart col 128, row 1

S ove s
™ D D
(I Al
[¢¥) l“l
[N
w0 r‘\
@™ orh @

0

F

.

~e o~
0 M

ldiamc 0, Q, 14
ldiamc 0, 0, 1
ldiamc 0, 0O, 1
ldiamec 0, 0, 14

’

input frame 2,
cush 4;
czll tZ

input frame A
push &;
call w2

128, row 1,
1d 4, ralé
1d 0, rbkle;
frush 5;
Call t

43, mcar;
13, mcaw;
43, mcbr;
13, mcbw;

48+56=144
48+96=144
48+96=144
48+86=144

B 12x4=48 pixels
4x12 4 lines

(D

6 pixels
+8

an

calculate

(+4) memA's address
memB's address

Sline loop

cha@m@@@@@@@@e RRERERERERERGRGend col 128, row 1
CECERUCRRERERARERAGRSstart col 128, row 2-127
ldeamc -S512, 1, mc_stride, mc_stride; -510
£3 nop;!

io "mccri

neop;:!

ldeamc 1, 1, m

ldiamc 0, 0O, 1
ldiamec 0, 0O, 1
ldiamec 0, 0O, 1

ldiamc 0, 0, 1
1d 52, rals;
1d 0, rbils;

c_stride, mc_stride
£2 nop; now is pointed to next line begin

81, mcar;
81, mcaw;
91, mcbr;
91, mcbw;

4x12+4=52 frameA in memA start point

36+96=192
96+26=192
96+96=192
96+96=192

frameB in memB start point

-64%8-3-1

;$9$9555588S input frame A, B 128-32=96 pixels
push 8; 8x12 8 lines



call t2
push 6;
loocco2:

;SSSS8SSSS38S8S input frame

cush §&;

call t2
ptrrrritteol 128, 2-127

82 nop

1d raig, ral

Id rkl€, rbl

cush &;

call td
rrtrrrrrt calculate end

add ral8, ¢%¢

and ral8, 00

zdd rkla, %e

arnd rkls, 00

dbr 1 oZ;
PRERCEC CRCRCHT SEEe
jlRiE@ee CYE
;3588¢ zme

cush 4;

call tZ
prrrrrrrr=ng 1Z2€ rlec

87 nor

i ralg, rai

i rbis, rol

Tush

é 1

end

column 1 locps(128-2 for boundry)

A, B 96 pixels
8x12
block calculate
6; memA's address
o; memB's address
S9line loop
, ral8; 8x12
3fh, rals
, rkelg; gx12
3fth, rblsd
QERREEEEEELEGend col
c@eriecicdeléstart col 128,
A, B 48 pixels
3
. Jaiculzate
a5 memA's address
c; memB’'s address

Sline locp

ti: 1d 0, ra3; accumulat=sr ral3
id rke, rbl
cush £; accumulate 64 pixels
lcopz:
cush Z; accululate 1 line
lcopl:
$2 nop
lc rale, addra
1d rklé, addrb
$#3 nop
sub *addra, =*addrb, rb2; raz
#3 nop
abs rb2, rb2;
#3 nop
add rb2, ra3, ra3
add ralé, 4, ralé; +4
and ralé, 00ffh,ralé6
add rblé, 4, rbleé; +4
and rbl6, 00ffh, rblé

128, row 2-127
row 128
128, row 128

(3 pixels)
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dbr lcop2
add ralé, 8, rzalé; 16-4x2=8
and ralé, 00ffh, ralé6
add rblé, 8, rbkleée; l16-4x2=8
and rble, 00ffh, rble
dbr locecp3
id ra3, sport
cush 3
loopl:
add ra3, sport, ral
sSsr; add before ssr
dbr lcopl
sub rzle, 128, ralé6; -128 back to start point
iflt rale, 0, O; {if ralé<0, +2586)
83 ncp
add rale, 256, rale
z1lse
nop
restora
sub rble, 128, rblé; -128 back to start point
iflt rbis6, 0, 0O; (if rbleée<Q, +256)
#3 nop
add rblé, 256, rkle
else
ncp
restorea
t12: 1d 0, raz; aczTumulater ra?l
id rpe, ril
push §; accumulate 64 pixels
loopZ3:
cush 2; accululate 1 line (8 pixels)
loep22:
#Z2 nop
1d rale, addra
1d rble, addrb
43 ncp
sub *addra, *‘addrbk, ra2
#3 nop
abs rb2, rb2;
#3 nop
add rb2, ral3, ra3
add ral€é, 4, ralé6; +4
and ralé, 003fh, rale
add rble, 4, rblé; +4
and rol6, 003fh, rblé6
dbr loop22
add ralé, 4, ralé6:; 12-4x2=4
and ralé, 003fh, ralé
add rble6, 4, rble; 12-4x2=4
and rbl6, 003fh, rblé
dbr loop23
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1d ra3, sport
push 3
loop21l:
add ra3, sport, ra3
Ssr
dbr loop?2l
sub ral6e, %6, ralé6; -86 back to
iflt raleé, 0, 0; {1f ralé<o,
43 necp
add ral6é, 132, ralé
else
nop
resctore
sub rbl6, 96, rble; -%6 back to
iflt rble, 0, 0O; tif rblex<a,
#3 nop
add rblée, 162, rblé
else
nop
restore
rec
t2:
locpnO: #3 nsrllssrl!llio *mccr?
push 12; 12
locpmO: nsrlissri{iio *mccri
ld nport, ~*mcaw(l)
ld sport, *mcbw(l)
dbr loopmO
ldeamc 49, 1, mc_stride, mc_stride;
#2 nop;!
1o *mccrs
nep;!
ldeamec 1, 1, mc_stride, mc_stride
#2 nop; now is pcinted to next line
dbr loopnC
ret
t3:
loopnOl: 83 nsrillssr|iio ~mccri;
push 16; 16
iloopm0l: nsrilssrilic *mccrs
ld nport, *mcaw(1l)
ld sport, *mcbw(1l)
dbr loopmO1l
ldeamc 45, 1, mc_stride, mc_stride;
#3 nop;!
io *mccrg
nop; !
ldeamc 1, 1, mc_stride, m¢_stride
#2 nop; now is pointed to next line
dbr loopnOl
ret
t4: 1d 0, rbeé
loop5:

push 5; Scolum loop

115

start point
+192)

start point
+192)

-3-12+64-1 read, (64x64)

begin

-3-16+64-1 read, (64x64)

begin



jumpl:

jump2:

loop4d:
call ti12
ldcr 1110b, acm
ifeq ra3, O, 0::::::0::0::0:0:000:000:3
#3 nop
bpa jumpl
restore;;;::iiiiiiiiiiiiiiiiiiiiii
ldcr 0000b, acm
add rbé6, 1, rbé; next begining point of frameB(address+l
add rblé, 1, rkle: next beginning point of
frameB(memB's address+1)
and rbls, 003fh, rblé
ncp
dbr locp4
#3 neop
add rbe6, 7, rbe; 12in block address of frameB
add rble, 7, rblé6; 8 memB+8
and rblé6, 003fh, rblé
dbr loopb5
#3 nop

1d 99685, rbl;
ifeg rbl, 59939, 0O
#3 nop

bpa

jump?2
pcp; loop4d
pop; lcop5s
restore
ldcr 0000b, acm

ld 0, sport
ld rbl, nport
#3 nop

io +
add
r=t
1d ©
locpl5:

mcdw?
ral, 1, ral

, rbé6

push 9; 9colum loop

locopld:
calil

add
add

£l

ldcr 1110b, acm

ifeq ra3, 0, Q:;:::::75:0::::3
#$3 nop

bpa jumpll

ldcr 0000b, acm
rb6, 1, rbé; next begining point of frameB(address+l)
rbl6é, 1, rblé; next beginning point of frameB(memB's
address+1)

and rblé, 00£ffh, rblé6

nop

dbr loopl4

#3 nop

add rbe6, 7, rbé6; 16 in block address of frameB
add rbleé, 7, rblé; 8 memB+8

116



and rblé, 00ffh, rblé
dbr loopl5

23 nop

ld 99%29, rbl;

ifeq rbl, 9999, 0

#3 nop
bpa jumpl2
jumpll: pop; loopld
pop; locpl5s
jumplZ: restore

ldcr 0000b, acm
1d 0, sport
ld rbl, nport
43 ncp
io *mcdw?
add ral, 1, ral

ret
t6: ;center
1d 68, rbé6
; 0 rblé already in center
call ti
ldecr 1110b, acm
ifeq ra3, 0, 0:;:::::0:0::::
#3 nogp
bpa jump22
TeSUOLe; ;;iiiiiiiiiiiiiziii
lder 0000b, acm
add rblée, -17, rblé6; next begining point of memB
iflt rkle, 0, O; {(if rblé<0, +256)
43 ncp
add rblé, 256, rble
else
nop
restore
add rb6, -17, rb6; next begining point of frameB
;00 3x3
push 3
loopZ1l:
push 3
loop20:
call t1l
ldecr 1110b, acm
ifeq ra3, 0, O;::::57::2::::
43 nop

bpa jumpZ2l
ldcr 0000b, acm
add rble, 1, rblé
and rblée, 00ffh, rblé
add rbe6e, 1, rbeé
dbr loop20
add rblé, 13, rble; 16-3
and rblé, 00ffh, rblé
add rb6, 13, rbeé
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9193 ‘1 ‘921G ppe
woe ‘gQO00 I2p1

fzdun( edgqg
dou ¢
rrrrrzrirrrtig ‘o ‘gex begrt
woe ‘gQIIT I9PI
13 1T1Bl
:igdooT
s usnd
9gqa ‘55 ‘931 ppe
I ‘u3z3Ipec ‘gI19a pue
6G=5-p*91 914923 ‘5¢ ‘9143 pp¥
ocdooT agp
Q1 ‘1 ‘993 pre
313100 ‘21ga pu®
‘1 ‘91gx DpE
woe

woe ‘qQ

(-

«)
o)
(9]
O
~l

9]
“
fal

gowex3 3jo 3jutod bututbag 1Ix2u ‘993 ‘59- ‘a3a ppe
210138531
dou
asT@
97191 ‘g6z ‘91493 PP®
dou ¢
(9gz+ “0>914x 3T) ‘0 ‘0 ‘91491 313T
gwaw jo jurtod Bututbag 3IX3U §9-=1~FX91~?9I1GT ‘59- ‘9191 ppe

11zdoo1 agp

811
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#3 nop
epa Jump23

ldcr 0000b, acm
add rble, 4, rblé
and rble, 00ffh, rblé
add rb6, 4, rbé

call tl
ldcr 111Cb, acm
ifeq ra3, 0, O;:;:::::::0::0::
$3 ncp
Epa jump23
restore;;;;iiiiiiiiiiiiiii;
ldcr 0000b, acm

add rblé, 12, rbleé; 16-4=12

and rbl6é, 00ffh, rblé
add rb6, 12, rbé
cdbr loop32

add rble, -97, rbl6;-16x6-1=-97 next begining point of
memB
1flc rkl€, 0, 0;(if rble<0, +256)
43 nop
add rblé, 256, rbile6
else
nop
restcre
add rb6, -%7, rbé; next begining peint of frameB
)
push 7
loop40:
call t1l
ldcr 1110b, acm
ifeq ra3, 0, Q:;:::::0:0::::
£3 nop
bpa jump23
restore;;iiiiiiiiiiiiiiii;
ldcr 0000b, acm
add rblé, 1, rblé
and rblé, 00ffh, rblé
add rbé, 1, rbé
dbr loop40
add rblé, 89, rblé
;16x6-7=89

and rblé, 00ffh, rblé
add rb6, 89, rbé

push 7
loop4l:
call t1l
ldcr 1110b, acm
ifeq ra3, 0, O::::::::::0:2:5
#3 nop

bpa jump23



dou ¢4

rrrrrrr2rrrilg ‘g ‘gexa bagr
wde ‘qQTIIT I2PT
T3 T1e2
:pgdooT
& uysnd
6Xp !
gowexzy Jo 3jutod bututbag axsu !ggx ‘¢€11- ‘9gax ppe
210153
dou
asT2
9T9x ‘96z ‘9191 ppe
dou ¢
(9Gz+ ‘0>91Gx 3IT) ‘0 ‘0 ‘919X 3737
gwsw
3o jutod buTuTbSq IXBU £IT-=T-,X9T- {9791 ‘€11- ‘9193 ppe
Zrdoo1 iagp

9gx ‘01 ‘991 ppe
9141 ‘Y3300 ‘91Qi pue

01=9-91 ‘9143 ‘01 ‘9192 ppe
woe  ‘qo000 IOPT
Prrrrrrrrrrrrdtr 133103591
gzdun( edg
dou g%
frrrrrrrrrrtin ‘g ‘gea bazt

woe ‘gqOIIT IOPT

~—
J
—
—~
[
(8]

991 ‘2 ‘gqi1 ppe
91921 ‘Y3300 ‘9193 pue
9141 ‘9 ‘91qx ppe

woe ‘goo00 IOPT

gzdunf edg

dou ¢#

rrrrrzrazirrrtg ‘0 ‘gea basil

woe ‘gQiil Iop1

13 11%2
:zrdoo

G ysnd

9qa ‘.8- ‘991 ppe
2101831
dou
asTe
9192 ‘957 ‘9191 pPP®
dou ¢#

(96z+ ‘0>9149x IT)?0 ‘0 ‘9792 273t

L8-=(-G%X9T1-/91Qq31 ’rLB8- ‘9192 ppr

1ydooT agp

9g1 ‘1 ‘99a ppe

91921 ‘Y3300 ‘919l pue

9193 ‘1 ‘9191 ppe
uwde ‘qe000 I95PT

-

0cl



call

[

)

v
QD0 (L
[ORNoNNe!

oot
(ORI

= Qb
ty

1,
ps

t

L
o}

1o JY)
[

n

jog

[SU

add
and
add

add
and
add

121

bpa jump23
YeStCre;;iiiiiiiciiiziiiiis
ldecr 0000b, acm

rble, 1, rkle

rble, 00ffth, rble

re6, 1, rbe

locpsS0

rble, 119, rblé6; 16x8-5=119

rbie, 00£ffh, rblé
rbe, 119, rbe

7
tl
ldcr 1110b, acm
ifeq ral3, 0, C:::::::::0::0:4
#3 nop
bra jump23
restore;;iiiiiiisiiiiiiiii:
ldcr QQ0Cb, acm
rble, 1, rbie
rble, 00ffh, rblé
roe, 1, rbe
locpSl
rbie, -121, rble; -1€6x7-9=-121
rble, 0, G (if rble<0, +256)
#3 ncp
add rkble, 2Z5%, rblée
=lse
noc
restore
rke, -121, rke
7
ldecr 1113b, acm
ifeq ral3, 0, G;:;s;::7:::0:00::0
83 nop
bpa jump23
TESTOYe;;iiiiiiiiiiiiiiiiii
ldcr 0000b, acm

rblé, 8, rblé
rbl6, 00ffh, rblé
rbs, &, rbé

lidcr 1110b, acm

ifeq ra3d, O, O0:;::i::7:7:::
#3 nop
bpa jump23
restore;;;iiiiiiiiiiiiiiiie
ldecr 0000Ob, acm

rblé, 8, rblé; 16-8=8

rbl6é, 00ffh, rbleé
rb6, 8, rbé



jump
jump
jump

[AS I SN IS

M L) =
e e

dbr loop52

1d 9999, rbl;
ifeg rbl, ©9%9, 0

#3 nop
bra jump22
pop;
cop;
restcre
ldcr 0000k,
14 O, sport
id rcl, npert
43 nop
io *mcedwd
add ral, 1, rail
ret

acm



Appendix G Result of motion estimation

1)

ghsim mogood.asm out .aaa---sun, house, plan & man
portgoodsun?

16hours 23,252,180ns bourassa

# 1162560 instructions ...

# ~ - - - - - Program ccmpleted with branchic halt at 22251970 ns

# using 1162565 instructions

§ Testbench completed with 0 srrors at 23252180 ns

§ ** Failure: Simulation Succesfully Completed

Ed Time: 23252180 ns Iteration: 2 Instance:/run

# Break at 2-model lchip 3mem.vhd line 950

CHSIM 2>

-2147483648

0 0O 48 48 c 48 26 48

o 34 32 0 0 0 0 0

2 18 <9S8 1 9 71 71 56

2 34 21 0 0 70 70 6696

o] 0 0 T 638 4 7 68

C 8] 7 7 68 68 2 66

0 68 68 4 67 68 4 68

36 999 52 52 51 52 52 52

-2147483648

-2147483648

2)

poertgocdidil

ghsim mogced3.asm cut.aza(sun hecuse plane & man two picture 1is

different)

4 1545750 instructions

# - - - - - - Prcgram completed with branchic halt at 30915870 ns
# using 1545760 instructions

4 Testbench cecmplieted with 0 errors at 30916080 ns
g *+* Failure: Simulation Succesfully Completed

g Time: 30916080 ns Iteration: 2 Instance:/run
# Break at Z2-model lchip_3mem.vhd line 350

QHSIM 3>

-2147483648

0 0 0 0 0 0 0 0]

2 66 66 0 0 0 0 o]

2 32 999 5 c 71 71 7

2 66 4 0 0 999 999 999

0 (0] 7 7 68 68 4 68

6 70 68 35 68 68 68 68

6 70 6 68 68 68 4 68

0 999 0 0 52 52 52 52

-2147483648

-2147483648

-2147483648



3)

pcrtgocdshpm

ghsim mogood.asm cut.aaaZ(sun house plane & man two picture 1is

same)

1078610 instructions ...

- Program completed with branchio halt at 21573050 ns
8619 instructions

completed with 0 errors at 21572260 ns

: Simulation Succesfully Completed

73260 ns Iteration: Z Instance:/run

-mcdel lchip_ 3mem.vhd line 950

-214748Z2645
¢ 0 48 48 0 48 =6 48
4 €2 1& 0 8] 0 0 C
< 12 ok Z s D 28 C
ER S C ¢ €z ©f 68
5] o C 7 &g 4 ©& €8
o] 0 7 T 68 €8 2 66
6 €g «¢8 4 67 68 1 68
¢ 52 &2 52 51 52 5z 52
-214174155048
-21473483642
4)
centersl Jan. 25, 1¢9¢
ghsim mocenter.asm cut.aaa2(sun house plane & man two
cicture is same)
instructions ...

W
N
[IYe)
(el
[
(=)

- - Program completed with branchio halt st 6599030 ns

#

# using 329918 instructions

§ Testbench completed with 0 errors at 6599240 ns
# v+ Failure: Simulation Succesfully Completed

# Time: ©59%240 ns Iteration: 2 Instance:/run
# Break at 2-model lchip 3mem.vhd line 950

QHSIM 2> B B

-2147483648

0 48 0 0 0 0 0 0

4 68 €8 68 €8 68 68 0

4 68 68 68 68 68 68 0

2 6B 68 68 68 68 68 0

0O 68 68 68 68 68 68 0

0O 68 6B 68 68 68 68 0]

4 68 68 68 68 68 68 0

0 52 0 0 52 52 52 52

-2147483648

-2147483648

-2147483648
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Appendix H DCT program for PULSE

-~

when u, v > 0; C(u), civ);=0,707,

r ’
: dct3.asm £x8 DCT at €4x64 frame ;
H parallel DCT (16 times faster than using cne PE) ;
; Flu,v'=C{u)C(r)/4{sigma x=0->7{sigma y=0->7 £{wx,y) ;
; e { 1ya- fl€lces[2y+1iv3.14/16] 1) ;

M S A S R M S R R R R R R R R R R R R R R R R R R R ]

I
]

[
th
ih
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[oY]
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n o
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o

]
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U s
[sd]
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]
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n
Y
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[ SIS B B e S o S BDY
(VY]

]
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[
O fo

P
t
il
)

Yoy
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Iy = 4= U

¥
.
o
[ B (]

NS

wn
M ®m

0

th
(M

h

t0
ot
[ e Y

o
[N

[OrR—

cull:
ldcr Z, pertliceonfiag: (80 2) port 1 as input,
synchroneous mode
ldcr I, portlincon; (A0 1) port 1 connect te north
channel (input)
rt2config; (51 0) port 2 as input
t2incon; (A1 2) port 2 connect to south
channel {(input)

ldcr O,
ldecr 2

lder 1, portiZconfig
ldcr i, port3ocutcon
lder 3, portdconfig
ldecr 2, portd4outcon

ldcr 3, bootcontrol; address purtl for modulo counter

ldeamc 0, 2097152, mc_min, mc_min;

ldeamc 4095, 2101248, mc_max, mc_max;
(64x64+start=4096+2097152)

ldeamc 0, 2097152, mc_start, mc_start; 2+**21=2C97152



ldeamc 1, 1, mc stride, mc stride;

ldiamc ©4, 0, Z25%, mcar;
ldiamc O, C, 2855, mcaw;
ldiamc 0, O, 255, mcbr;
ldiamc U, 0, 255, mcbhbw;
LR 2R 2R 2 2R 2 2K 28 2 IR IR R R LA R R R R 2R 2 I R ARl

A REE AL EEEEEEEE R E RS R R R
I3

;input table(start from 0 to 63) & input data(start from 64!'!'!1+4)
call si; load tabkle and constant
;load constant; ul=0(FEQ),ul=8(PE1l),ul=16(PE2),ul=24(PE3)
H v1=0(FEC), v1=8({(FEl}, +v1=16(FE2), +v1=24(PE3)
; cul=0.707(PED0)180, <cul=1(PEI1~PE3)255
H cv1=0.707(PEC) 180, cvl=1(PEl1~PE3)255
1d *mcar(l), ul
1d *mcar(l), +1
1d *mcar(l), cul
1d *mcaril;, cvl

max table value is 65535

SEETT e H; max table value is 65535

#3 nop

mult *addra, *addrb, tl; make the value arrive
high 16 bit in tl.

#3 nop
macc *mcar(l), tlh; mcar*tll+acc->acc(high
16 bit)
add =, 1, =
#2 nop
dbr loopx
add y, 1, vy
dbr loopy
madd 0, ra0, acc, t2; acc->t2(high 16 bit)
mult cv, cu, t3; make the value arrive low 16 bit in t3

#3 nop

mult t2h, t3l, t4; make the value arrive high 16 bit in t4
Fem out

#2 nop

id 0, sport



1d t4h, nport

#3 nop

io *mcdw$

$3 nsrillio *mcdw?

ldiamc €8, 0, 255, mcar;return to start point f{x,y),mean £(0, 0)

1d 1681, cu; tet
add u, 32, u; 4

PRI R 2R 2R R IR 2R R A R R R A 2 I B 2 S b b A b 2 A R A AL A A A S

enad
sl: ;lcad tzkle, constant and data
push 132;683;64 After table has 4 wvalues(ul, v1, cul, cvl)
locpl: #4 nsrilssrilic *mccr%;
1d nport, *mcaw(l)
l1d nport, ~mcbw(l)
;1d spert, *mcbwil)
dbr locpl
ret



Appendix T IDCT program for PULSE

A A A A A A N A A A A A I B
; idct.asm 8x8 DCT at 64x64 frame H
; parallel DCT (16 times faster than using one PE) :
; Fiu,v)=C(u)C(v)/d{sigma x=0->7{sigma y=0->7 f (x,y) ;
; cos[{(Z2x+1)u*3.14/16]cos[2y+1)v3.14/16]}} :
H £{x,yv)=sigma x=0->7{sigma yv=0->7 C(u)C(v)/4*F(u,v)* :
; Ses[(2x+1)u*3.14/16]cos[2y+1)v3.14/161]} :
; cendlition: c(u), c(v)=1, when u, v > 0; ;
; C(u), c(v)=0,707, when u, v = 0. H
; takle cos{(Z2x+1)u3.14/16] x:0->7, u:0->7 :
; 1=125: 0.707=90; 1=256: 0.707=181 ;

L A A A N e NN A R A

.Text

u .set ral

v .set ral

v .set rb3

" .set rbd

Su .s=t ratd

v .s=t rbkeo

tl .set r~

tlh .s=t rk~”

tZ .set ré;

tZh .set rbs

= zh red

31 rat

td . t rié

tih .set rbl0

ul .sst rall

vl .set rail2

cul .set rbkll

cvl .set rbl2

pull:

ldcr 2, portlicenfiig; (50 2) port 1 &as input,
synchroneous mode

ldcr 1, portlincon; (A0 1) port 1 connect te north
channel ({(input)

ldcr 0, portZconfig; (91 0) port 2 as input

ldcr 2, portZincon; (Al 2) port 2 connect to south
channel (input)

ldcr 1, port3config

ldcr 1, port3outcon

lder 3, portd4config

ldcr 2, portd4outcon

ldcr 32, beocotcontrol; address purtl for modulo counter

ldeamc 0, 2097152, mc_min, mc_min;



' ldeamc 4085, 2101248, mc_max, mc_max;
(64x€64+start=4096+2097152)

c_start, mc_start; 2*+*21=2097152

ide, mc_stride;

amc €4, 0, 255, mcar;
c O, 0, 255, mcaw;

= 3J, 0, 255, mcbr;
m> 0O, 0, 255, mcbw;

- -
R R 2 R I R A R R R R R R R R R

input data(start from 64!!1+4}
nd constant
), ul=8(PE1l), ul=16(PE2),

v1=16(PE2), v1=24(PE3)
1=1(PE1~PE3) 255
(FZ0) 180, cvi=1(PE1~PE3)255

13 *mcaril), ul
Id *mcarels, 1
id "mrar. 1., -cul
ld *mcar(l), <o+l
cush &; 258
id 0, 5 5
locry:
mult 9, rad, aczc; 0->acc
g cvl, o+
1¢ ¢, «
cush &
locpw:
1= =gl -u
13 7, ;
cush 3
lccpu:
max table value is 65535
max table value is 65535
#3
mult *addra, *addrb, tl; make the value arrive
high 16 bit in t1l.
#3 nop
1d tih, rbl5;
mult *mcar(l), tlh, t4;mcar*tlh->t4(high 16bit)
add u, 8, u;
#2 nop
mult cv, cu, t3; make the value arrive low 16 bit in t3
#3 nop

. 1d t4h, rblé;
14 t31, rbi7;



macc tih,

poe

-

< (I
€0 = Qg
ty

.

Y ’
dbr lccrv
;#w*"‘ -
end
sl: s 1z

pus

lcc

cbr
ret

(1t
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t3l;
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td4h~t3l+acc->acc(high 16 bit)

acc->t2(high 16 bit)

rt
i8]
~

Y
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-
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O
[#7]
re
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8
rt
Ty
0
R
5
ct

LR R I R R R R E

d data
tzble has 4 values(uli, +v1, cul,
mcCrio;

£ix,vy),mean

0



Appendix J cosine table

32767 327€7 32767 32767 32767 32767 32767 32767 32767 32767
327e7 32767 32767 32767 322767 32767 32767 32767 32767 32767
227e7 32767 32767 32767 32767 32767 32767 32767 32767 32767
327e7 22767

32138 32138 32138 32138 27250 2725C 2725C 27250 18217 18217
18217 18217 €414 6414 6414 €414 -63863 -63€3 -6363 -63€:Z
-18174 -18174 -18174 -18174 -27221 -27221 -27221 -27221 -32127 -32127
-22127 -Z2127

20275 30z7S  3027% 30275 12557 12587 12857 12557 -1250¢ -1250¢9
-12E80% -12850% 30285 -3025% -320255 -30285 -30Z65 -Z02%5 -202&%% -302935
-1260% -1260Q0% -126C5 -12605 12460 124€C 12460 12460 350235 3C23
20235 30238

2725C ZTZE0 27280 27250 -€Z62 -6363 -6363 -©363 -32127 -32127
-32127 ~-32127 -182€1 -18261 -18261 -18261 1€131 13121 181231 18131
32188 3Z1S58 22158 32158 6517 ©517 6517 €517 -271ez -271€2
-Z7lelZ -Z271el

I31TE 2317 3178 23178 -2Z3142Z2 -I314Z -ZZ142 12 -Z23215 -2Z221¢%
-2Z32Z153 -ZZ21& 22105 23105 23105 231085 32282 £ 22252 z2z252
-230e& -213068 -2 8 -Z230€8 -2328%9 -I328% -2328%9 ze ZZ0:ZC  ZZ303¢C
23630 Z2Z930

18217 1s2iT 18217 18217 -321Z27 -32127 -32127 -2z2127 6312 6312

6212 8312 27308 27308 27308 27308 -271€2 -2716Z2 -271€Z -27162
-65¢8 -gSés -¢€£68 -6568 32178 2217& 3217g 2178 -18C00 -18000
-18000 -1g00C0

12887 12887 12587 12557 -Z02%% -30265 -30295 -302325 0235 30235
20238 20238 -12412 -12412 -12412 -1241Z2 -12701 =-12701 -127C1 -12701
0354 20254 303%4 30354 -30174 -30174 -30174 -320174 1zzZe7 12267
12287 1ZZe7

0414 cd14 0414 6414 -182€l1 -18261 -18261 -18Zel 27308 27308
27208 27308 -32216€ -32168 -32168 -32168§ =20%6 220% € 20%6 32096
-27104 -27104 -27104 -27104 17956 17956 17956 17256 -€056 -60°%o
-6CS6  -€0%¢



Appendix K

DCT program in C++

LIS 770077077777 777770777777777777777777/777/77777777

’ )

7y

;of
v

/ //

HTOME e ot L S L o

”

DCT (each pixel = 1 or input from ocutside) (8x8) dcti3-l.cxx /
/
g++ -I /usr/local/cpt/FSFlibg++/lib/g++-include dct3-1.cxx /
F(u,v)=C{uiC(v]) /4{sigma x=0->T{sigma y=0->7 f£(x%,vy) /
cos[iZxm+liu~Z.14/16]cos[2y+1)v3.14/16] 1)} /
ccrnditicon: Z(uj, <tv)y=i, when u, v > 0;
Ctey, civYy=02,707, when u, v = 0. J
P A S A N S S NS E NN NN
incluce ~stdic.h>
include <fstream.h>
include <math.h>
inciude <icmanip.h>

include <stdlik.h>
maint}

{n] Zrom cut.b8*/
am ilnput ("cut.kE8");
ream Iinput("in.al"™);
(=R

b=0.0;
for(y=0; y<8; ++y)
for (x=0; x<8; ++x)
{
p=(PI*(2+x+1)*u)/16;
r=cos(p};
g=(PI*(2*y+1)*v/16);
s=cos (qg);

w
—
w
—_—
~
R
~
0
w
r—
o
-
~

*1&A, sizeof(R));



b=a(x] [y}l r*s+b;
//y[01[0]=0;
// yli+e] [J+£f]=x*100000000;
}
cful [v]=(cu*cv*b/4)/3.95;

cu=1.0;
}

cv=1.0;

ofstream out ("out.bl"):
for(j=0; j<8; ++3)
{
for(i=0; i<8; ++1i)
out<<setw(5)<<int(a([i][j])<<"
cut<< endl;

” .
r

}

/*ofstream cut ‘"cocut.pf"); </
for{(3=0; j<8; ++3
{
for(i=0Q; 1i<8; ++1)
ocout<<setw(5)<<(cfi]{j)i<<"” ;
out<<" #"<< endl;



Appendix L IDCT program in C++

1) IDCT program of C++
LITLITI L7707 0700777777777 7 07777000077 7770777777777777777777

//IDCT idect3-1.cxx /
//g++ -I /usr/lccal/opt/FSFlibg++/lib/g++-include idct3-1.cxx /
//DCT (each pixel = 1) (8x8) /
//E(%,y)={sigma u=0->7{sigma v=0->7 *C(u)C(v)/4*F(u,v)~ /
// ces[(2x+1)Yu*3.14/16] *cos[2v+1}v3.13/16]}} /
// conditicn: <¢(uj, c(v)=1, when u, v > 0; /
// C(u), c(v)=0,707, when u, v = 0. /
LI LL 2SI 2777777007770 70007207727 770772777070777077777777777777

# include <stdio.h>
include <fstream.h>
include <math.h>
include <iomanip.h>
include <stdlib.h>
main ()}

B 3K A= A

1 t PI = 3.1415%, MN=8.0;
int %, v, u, v, i, 3, m, n;
., 4, r, s, cu, cv, al(8]([(8] ,b, <[(8][8];

/*generate original matrix
for(m=0; m<8; ++m)
for(n=0; n<8; ++n)
afm] (n}=1;*/

/* read alm][n] from out.b%*/
ifstream input {"cut.bl");
//char A[8]:
//ifstream input{"out.cl"};
char A[(8];
for(j=0; 3<8; ++3)
for{i=0; 1i<8; ++1i)
{
input.read((char*) &A, sizeof(R));
ali][j] = atof(A);

for(y=0; y<8; ++y)

for(x=0; x<8; ++x)
{
b=0.0;
cv=0.707;
for (v=0; v<8; ++v)
{
cu=0.707;
for(u=0; u<8; ++u)
{
p=((2*x+1)*u*3.1416) /16;
r=cos (p);
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q=({2*y+1})*v~*3.1416/16);

s=ccs{qg):
b=(cu*cv/4)*afu]l [v]l*r*s+b;
//7y[0]1[0]=0;
/7 yli+e] [j+£]1=x*100000000;
cu=1.0;
i
cv=1.0;
}
clx]{v]l=b*2.85;

cfstream out ("cut.dl"):
fer (3=0; 3<8; ++3)

Q; 1<8; ++1i)
sout<<setw(d)<<int(a(i][J])<<"
tw(B)<<ali][j]<<" ";

e
2ndl;

‘rcistream cut ("ocut.gplo™); -,
for(3=0; 3<8; =+
{
for(i=0; i<8; ++i)
out<<setw{S)<<(c[i][j)r<<™ 7;
out<<" #"<< =ndl;

.



2)C++ IDCT program simulate PULSE assemble IDCT
FILT il L P TE P I TIPS I 7707777787770 70778777

/+IDCT idct3-1l.cxx
/ /‘;*"P -I
//DCT (=ach pixel = 1) (8x8)
/7i(x,y)={sigma u=0->7{sigma v=0->7
/ cos[(2x+1)u~3.14/16] cos[2y+1)v3.14/16]}}
it conditicn: c(u), c(v)=1,
v C{u), ci(v)y=0,707,
," : 4 Lo ; PV AV ,/ LS J / /S J
# in-iude <stdic.hs
$ include ~Istream.h>
# include <math.h>
# include <icmanip.h>
g Include <stdlib.h>
mein ol
const flcet PI o= 3.141%%9%, N=8.0;
int =, v, 4, , 1, 1, m, n;
ricat g, I, r, §, <u, <V, =,
* read ccs takle
tfstream input{"cut.pl")
thar ~[5];
Ior{i=0; 3<E€; ++3)
Icroi=0; i<8; ++1}
{
input.read((char*)&A, sizeof(R));
czsily{5] = atof(A);
} -
/v Jr=at ccs tnakle+’
;e for +1=0; i<3; ++1)
soris=0; 3<EB; ++3)
fz=(2=3+1)*1*3.14/16
cesins(zilij=cocs(z}~
}
- /
/* read al[m]([n] from out.b8*/
ifstream input ("idctinput")};
char A[8];
for(3)=0; j<B; ++3)
for(i=0; i<8;" ++i)
{
input.read({char*)&A,
ali]l[j] = atof(R);
}
for(j=8; j<l6; ++3)
for(i=0; 1<8; ++1i)

Jusr/iocal/opt/FSFlibg++/lib/g++~-include idct3-lasm.cxXX

{

input.read( (char*)&a,

when u,
when u,
SIS ST SIS

ccsina {9} (9],

sizeocf (A));

sizeof (A));

*C(u)C(v)/4*F(u,v)+*

> 0;

0.

a[8l[16]

Ibl

-

NN N NN N N

(811(8]



for(j=0; 3i<§; ++7)
for(i=0; :<8; ++1i)
{ cosine{il{il=a{i}l{j+8i;
}
/" -------------------------- 'l
for(y=0; yw<E&; ++v)
{

b=0.0;

flew=0.707;
cw=140;

for (v=0; wo8; +:v)

foriu=0; udE; ++uj

—
.
[
+
(a)
.
[

'y
I

b N
Cs

for(i=0C; 1<8; ++1i)
//cut<<setw(5)<<int(af[i]l []]

da
12
o8}
N
—
O
~a

L]

e

¥

Oy~
~J
8]
\\e]
[a)}

da 1y
N

0
da
W

s/

oC000C0;

,10C00000000;

)<<" lv;

out<<setw(8)<<cesine[i] [j]<<" ";

out<< endl;

for(j=0; j<8; ++3)
{
for(i=90; i<8; ++1)
//out<<setw(5)<<int(a[i] [J]
out<<setw(8)<<ali]l[jl<<™ ";

)<<" n'.



out<< endl;

ofstream cut ("cut.dl");
for(j=0; j<8; ++j)

{

for(i=0; i<§; ++1i)

//cut<<setw(S)<<int(a[i]]

cut<<setw(8)<<z[il({jj=<<"
our<< endl;

for(i=0; 1i<8; ++1i)
f/ocut<<setw(S)<<int(ali
out<<setw(8j<<a[i][jl<<"
out<< =ndl;

fer {(i=0; j<8:; ++3)
{

for(i=0; i<8; ++1i)

cut<<setw(5)<< (c[i][j] <<

sut<<" #"<< endl;

e v

y <"

<<t
;



Appendix M cosine table generate program in C++
L7177 77 7777007777 7777 7777777777777 777777707/77777777777
/rgreat-costb.cxx 64 table element + 4 constant~/ /
/ /
LSS TIPS AL AP S
4 include <stdio.h>
# include <fstream.h>
$ include <iomanip.h>
# include <iostream.h>
# include <math.h>
main ()
{
int i,3;
float 2[%)(3], =z:
cistream out ("cut.bl™);
for (1i=0; 1i<§&; ++1i)
for(3=0; 3<8; ++3)
{z=(2~j+1)*1*3.14/16;
Afi]f{dl=cos(z)*32767;

1]
{

for(j=0; j<8; =+3)
{
* 4 time cutput tc¢ file Icr FULSE 4 PE same*/
cut<<setw(4d)<<int {A[il[3]);
cut ndl;
curt 4
cut

AAAAD
I
M

(ol ot
AA
]

[ IS RS |

out<<setw(4)<<int (A[1][31):

cut<< endl;

cut<<setw(4)<<int (A[{il1(j1);

out<< endl;

J* cut<<"\n"<< endl;*/

}

/= cut<<setiosflags(ios::right)

<<setw{4)<<A[i][j)<<" ";

out<<setiosiflags{ios::right})
<<setw(4)<<a[1i]!I[8]:
out<<endl; */
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Appendix N Data transfer programs for C40 and PULSE

1) Read/write data from/to global memory with C40 (C language):
#include “tms320c40.cmd™
#define global processl
#define local process2
#define TRUE 1

#define FALSE O

int value:
main()

f

t

)
i1

global()
{
int mem_mal:
/* Initialize Part */
trace_on();
set_trace_level (GLOBAL,2):
idle (5):

load reg (GLOBAL_CTRL, 0x37843fa0);
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/* Read/write data from/to global memory */
mem_val = read (0x81080001):

load_pin (STAT. Ox1):

edle (20):

write (0x8108000b. 0x0f0f0f0f);

load_pin (STAT. Ox3);

idle (20):

mem_val = read (0x0007000r): /* Dummy read */
idle (10):

synch():

2) Read/write data from/to local memory with C40 (C language):
#include “tms320c40.cmd™
#define global processl
#define local process2
#define TRUE 1

#define FALSE O

int value;
main()

{



local()

trace_on():

set_trace level (LOCAL.2);
set_trace_level (PERIPH.2);

idle (20):

/* Read/write data from/to data memory*/
value = read (0x0500001):

load_pin (LSTAT, 0x1):

idle (20):

write (0x040000b. 0x0f0fO101);

load_pin (LSTAT, 0x5);

idle (20):

value = read (0x0007000F); /* Dummy read */

idle (10);

synch();
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3) Read/write data from/to local memory with PULSE (PULSE assembly language):------

text



Idcr 3, bootcontrol; Use internal program memory and Mcc for address_1

:Read local memory

Idcr 0. port2config: port2: input synchronous mode
Idcr O. port3config: port3: input synchronous mode
Idcr 2. port2incon: port2 => South Channel

lder 1. port3incon; port3 => North Channel

Ideamc 0. 50000bh. mc_start. mc_start:
ldeamc 0. 0, mc_min. mc_min
ldeamc 4096. S0FFFFh. mc_max. mc_max

ldeamc 1. 1. mc_stride. mc_stride

10 *mccr%
Id nport. ral
Id sport. rbl

#30 nop

:Write local memory
Idcr 1, port2config; port2: output synchronous mode
Idcr 1. port3config; port3: output synchronous mode

Idcr 1, port3outcon; port3 => North Channel



ldeamc 0. 40000ah. mc_start. mc_start;
Ideamc 0. 0. mc_min. mc_min
ldeamc 4096. 40fffth. m¢_max. mc_mas

Ideamc 1. 1. mc_stride. mc_stride

#4 nop
0 *mcdw®s

#32 mop

4) Read/write data trom/to program memory with C40 (C language):

Finclude “tms320c40.cmd™
#deftine global processl
#define local process2
#define TRUE 1

#¥define FALSE O

int value:

main()
{
}
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global()
{
int mem_mal:
/* Initialize Part */
trace_on():
set_trace_level (GLOBAL.2);
idle (5):

load_reg (GLOBAL CTRL. 0x37843fa0):

/* Read data from program memory */

idle (25):

mem_val = read (0x00600001): /* Read at address 1 of band0 */
load_pin (STAT. 0x9):

idle (35):

mem_val = read (0x00700001): /* Read at address 1 of bank] *:
load _pin (STAT. 0x9):

idle (35):

mem)_val = read (0x00800001); /* Read at address | of bank2 */
load_pin (STAT. 0x9):

/* Write data to program memory*/

idle (5);
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write (0x00300001. OxfTTTfftl); /* Write at address 1 of bankQ */
load_pin (STAT. Oxd):

idle (5):

write (0x00400001, 0xfOf0f0f0): /* Write at address 1 of bank1 */
load_pin (STAT. 0xd):

idle (3);

write (0x00500001. 0xOf0{0fOf); /* Write at address 1 of bank2 */
load_pin (STAT. 0xd):

synch():



Appendix O

PULSE vs Competitors
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Features CNAPS SHARC TIC80 Oxford PULSE vi
A236
Architecture SIMD Single- MIMD SIMD SIMD
processor
Clock 20~25 MHz 33~0MHz S0MHz 40MHz 54MHz
Frequency
Number of 64 PNs. Single floating | One floating- One Controller | One Controller
Processor on Without point Processor | point Processor | 4 fixed-point 4 fixed-point
the chip Controller processors processors
Inter-PE Very Weak, 5 N/A Cross Bar No inter-PE Strong,
Communicatio { Mbytes/s memory access | communication | Multichannel
n support 432 Mbytes/’s
Parallel Very weak Strong Strong Weak Very strong
Operations in Multiply-acc Two adders 5-input ALU Multiply-acc 3-input. 3-
the PE one multiplier | Multiply-acc multiply-add output ALU.
Mult-add-acc
add-acc
med-add
Non-linear No Weak Weak No Very strong
pracessing Only max, min Max, Min,
and clip of two Med
data Rank-order
Index ranking
Core function
chip
Application Very restricted | ...... Very flexible, Very restricted | Flexible and
Mapping But very hard easy to
to program program
Scalability Scalable Scalable No Scalable Scalable
External No memory 4 buses, 64-bit | Single 64-bit 400 Mbytes/s Two buses 432
Memory and interface, datapath to Bus shared by | 32-bit sync. Mb/s sync.
I/O Interface 8-bit /O SRAM all the Memory Memory
10 DMA processors for | 2 40 Mbytes/s | 4 108 Mb/s
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Channels. 160 | data and DMA ports data ports
Mbytes/s program
[ On-chip 4kbytes on 2Mbits or 50Kbytes Ikbytes Ins. 2kbytes Ins.
memory each Pn 4Mbits 1kbytes data 2.5kbytes data
Micro- 64-bit total 48-bit 64-bit for 32-biat 64-bit parallel
Instruction 32-bit control parallel proc.
32-bit PN 32-bit master
Instruction-set | Very limited Rich. extended | Rich. extended | Very limited Very rich
for non-linear for logic extended for
processing processing both linear and
non-linear
proc.
Software Tools | Assembler Assembler Assembler Software Assembler
C compiler C comptler C compiler development C compiler
Debugger Simulator Simulator kit Simulator
Debugger Debugger Debugger
Evaluation Evaluation Evaluation
board board board
Application
libraries
Packaging 200-pin PN 240-pin PQFP | 305-pin 208-pin PQFP | 240-pin PQFP
240-pin CSC ceramic PGA
PGA
Availability Yes Yes Yes Q2 1996 Q4 1996
Cost High High High Low Low






