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RESUME

La modélisation d’un réacteur tubulaire isotherme & I'aide de bilans de matiére
permet d’obtenir un systéme d’équation aux dérivées partielles. Ce modéle a
paramétres répartis est toutefois peu utilisé pour la conception d’algorithme de
commande. Est-il possible d’améliorer la performance du procédé en utilisant une
loi de commande basée directement sur un modéle & paramétre répartis? Cette
problématique est abordée dans cette thése dans le cadre d'une application & un

réacteur de blanchiment.

La premiére partie du travail présente la modélisation d’un réacteur tubulaire et
les techniques de simulation. L’analyse des techniques de résolutions numeériques
classiques permet d’en identifier certaines limites dans le cas de la simulation de
systémes faiblement dispersifs en régime transitoire. Une méthode de résolution par
alternance est donc proposée afin d'éliminer les problémes de diffusion numérique
et d’oscillation. Cet algorithme résout & chaque pas de temps et de fagon succes-
sive les phénoménes de convection, dispersion et réaction. Cette approche simple
permet une simulation rapide et stable du procédé. Elle peut donc étre aisément

utilisée dans un algorithme de commande en temps réel.

La seconde partie de la thése présente trois différentes stratégies de commande ap-
pliquées au réacteur de blanchiment. Les stratégies utilisées différent par le niveau
de modélisation utilisé. Ainsi, la commande prédictive avec ajustement de 1’échelle
de temps utilise un modéle entrée-sortie, la commande par différence globale utilise
une pré-approximation des équations aux dérivées partielles alors que la commande
par post-approximation est construite directement a partir du modéle a paramétres
répartis. L’analyse des performances de ces trois approches montre que I'utilisation

d’un modéle & paramétres répartis permet de tenir compte efficacement des non-



linéarités du modéle cinétique. La commande par post-approximation proposée
dans cette thése permet de tenir compte efficacement des variations des paramétres
cinétiques tout en maintenant des performances adéquates dans le cas de variations

de la structure de la cinétique.



ABSTRACT

Dynamical isothermal tubular reactor modeling by mass balance leads to a set of
partial differential equations. This model is not often used for the design of control
laws. Is it possible to enhance process performance by using a control law based
on a distibuted parameter model? This problem is addressed here considering a

bleaching reactor application.

The first part of this work presents the modeling of a tubular reactor and simulation
algorithms. The analysis of classical numerical approaches identifies their limits in
the case of the simulation of dominant convection systems in transiant modes. A
sequencing method is proposed to solve numerical diffusion and oscillation prob-
lems. This algorithm solves at each time step and successively each phenomena in
the reactor, i.e. convection, diffusion and reaction. This simple approach reduces

the simulation time and is stable. It is well suited for on-line control application.

The second part of the thesis presents three different control algorithms applied
to the bleaching reactor. Those strategies differ by the complexity of the model
used for the design. Hence, the predictive control uses an input-output model,
the global differences algorithm uses an early lumping of the partial differential
equation system and finally, the late lumping approach uses directly the distributed
parameter model. The performance analysis of these three approaches shows that
using a distributed parameter model is more efficient by taking into account the
nonlinearities of the kinetic model. The late lumping control law proposed in this
thesis, shows good performance with regard to kinetic parameters variations while

maintaining good robustness properties to model mismatch.
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INTRODUCTION

Les progrés de I'informatique et de la micro-électronique ont révolutionné I'industrie.
La disponibilité de nouveaux capteurs performants, la cueillette de données en ligne
et la centralisation de cette information sur de véritables autoroutes de 'information
dans 'usine sont le reflet des investissements importants faits dans le domaine des
technologies de l'information. Ces développements technologiques ouvrent main-
tenant la porte a toute une gamme d’outils pour 'optimisation du fonctionnement
des procédés. Cette optimisation étant rendue essentielle dans un contexte de
marché global ou les marges de rentabilité des usines sont réduites a leur limite.
Le développement de stratégies de commande avancée s’avére aujourd’hui un outil

clé pour atteindre cet objectif.

Traditionnellement la commande de procédé est principalement basée sur une vue
entrée-sortie du procédé. Dans le cas d’un réacteur tubulaire, différentes boucles
de contréle sont mises en place pour commander chacune des variables du procédé
autour d’un point d’opération donné. Ainsi, l'ajustement de ces régulateurs est
souvent realisé a 'aide de modéles linéaires tels des fonctions de transfert avec re-
tard. Cette approche est justifiée et efficace lorsque le procédé reste trés prés de son
point de fonctionnement en tout temps. Par contre, les contraintes de productiv-
ité croissantes remettent en question l'utilisation de modéles valides sur une plage
de fonctionnement restreinte. En effet, I'usine moderne doit maintenant pouvoir
composer avec des stocks limités et des exigences de qualité accrue. Il en résulte
une plus grande variabilité des conditions d’opération du procédé qui doit pouvoir
s’ajuster rapidement a des débits de production variés et des spécifications vari-
ables. Les régulateurs traditionnels basés sur des modéles linéaires peuvent étre

inefficaces dans de telles circonstances car pour chaque changement important des



conditions opératoires, ils doivent étre ajustés de nouveau pour un fonctionnement
optimal. Dans le cas contraire, une variabilité accrue des produits, des oscillations
entre les boucles de controle et parfois méme l'instabilité menacent les réacteurs.
Heureusement, lutilisation de meilleurs modéles est une solution maintenant en-

visageable grace an progrés de I'informatique.

La modeélisation des réacteurs tubulaires n’est pas un sujet nouveau. Le modéle
piston dispersif pour ce type de réacteur est bien connu et largement couvert dans
les ouvrages de génie chimique. Son utilisation a des fins de commande est par con-
tre beaucoup moins fréquente compte tenu de la complexité de ce type de modéle.
En effet, le modéle d'un réacteur tubulaire en transitoire est composé d’équations
aux dérivées partielles qui sont généralement non-linéaires. Ce type de modéle
est appelé modéle & parameétres répartis car les variables du systéme ne sont plus
seulement fonction du temps mais aussi de l'espace. Ces équations permettent
donc de décrire le profil du réacteur dans le temps. Qutre la complexité du traite-
ment mathématique direct des équations aux dérivées partielles, la commande d’un

réacteur tubulaire est en soi difficile par la nature méme du systéme:

1. Les réacteurs tubulatres sont des systémes avec un grand retard. Le retard
d’un réacteur tubulaire correspond plus ou moins 4 son temps de résidence
moyen. La commande des systémes a retard est complexe car I'effet de 'entrée
sur la sortie apparait avec un délai. Il est donc impossible de réagir trop
rapidement ou trop fortement i une déviation non désirée de la sortie sans
risquer de rendre le systéme instable. Quel que soit le modéle ou le régulateur

utilisé, le délai limitera toujours la performance du systéme.

2. Les réacteurs tubulaires sont généralement des systémes non-linéaires. Lorsque
la cinétique de réaction est non linéaire, le modéle du réacteur est non linéaire

de facto. De plus, leffet de la température, et des divers autres facteurs



qui influencent la cinétique, sont aussi généralement fortement non linéaires.
Cette caractéristique des réacteurs limite I'utilisation de régulateurs linéaires
qui ne sont calibrés que pour un point de fonctionnement précis. En effet,
il est possible de considérer que dans une certaine zone autour du point de
[onctionnement, le comportement du réacteur est linéaire. Par contre, ce
modéle n’est plus valide lorsque le procédé change de point d’opération ou

simplement s’éloigne fortement de ce point.

Le modéle non linéaire & paramétre répartis d'un réacteur tubulaire a 'avantage
d’étre valide pour tous les points d’opérations de fonctionnement dans la mesure
ou ’ensemble des variables opératoires sont incluses dans le modéle. De plus, ce
type de modéle permet de tenir compte directement de |'information disponible sur
le procédé. En effet, les paramétres hydrodynamiques et la cinétique de réaction
apparaissent explicitement dans le modéle. Le modéle est donc non linéaire et
le délai est maintenant implicite dans la formulation des équations aux dérivées

partielles.
Travaux antérieurs

Différentes approches ont été considérées pour commander des systémes i parameétres
distribués. Ray (1981) propose de scinder ces approches en deux grandes catégories:
les stratégies de pré-approximation et les stratégies de post-approximation. Les
approches par pré-approximation utilisent une approximation préalable des équa-
tions aux dérivées partielles (EDPs) en équations différentielles ordinaires (EDOs).
L’algorithme de commande est donc congu en utilisant cette approximation. Dans
les stratégies de post-approximation la conception de la loi de commande est faite
directement a partir du modéle 4 paramétres répartis. Une approximation sera

utilisée au besoin lors de la mise en oeuvre du contréleur.



Les stratégies de pré-approximation se distinguent par le type d’approximation
utilisé. En effet, des techniques analytiques ou numériques doivent étre utilisées
pour permettre la transformation des EDPs en un nombre suffisamment restreint
d’EDOs pour que 'approximation du modéle permette la conception de loi de
commande. Parmi les techniques numériques, notons la technique de collocation
orthogonale (Villadsen et Michelsen, 1978) qui permet d’obtenir un nombre re-
streint d’équations. Le choix d’une technique analytique dépend fortement de la
nature des EDPs. Si les équations ne comportent pas de dérivé partielle du deux-
iéme ordre, le systéme est dit hyperbolique. Sinon les équations sont classifiés selon
la forme caractéristique de I’équation. Dans le cas des systéme de type convection-

diffusion-réaction, les équations sont dites de type parabolique.

Dans le cas de systémes hyperboliques, le systéme évolue selon un champ vectoriel
caractéristique. Il est alors possible d’utiliser un changement de variable pour
obtenir un systéme d’EDOs de dimension finie (Farlow, 1993). Cette technique a
été utilisée entre autre par Hanczyc et Palazogiu (1995) ainsi que par Shang et al
(2000) qui proposent des lois de commande a mode de glissement. Par contre, cette

technique ne peut étre appliquée aux équations paraboliques.

Dans le cas des systémes paraboliques, I'utilisation des modes principaux, i.e. des
valeurs propres les plus faibles, peut permettre de représenter adéquatement le
systéme. Les valeurs propres d'un systéme d’EDPs sont obtenues en résolvant le
probléme aux valeurs propres associées. Il est ainsi possible d’obtenir une décom-
position sous la forme d'un systéme d’EDO de dimension infinie. Cette approche
a été utilisée par Curtain (1982) qui propose une stratégie de retour d’état pour le
controle par la condition frontiére. Drakunov et Barbieri (19974; 1997b) proposent
de combiner I’approche modale au concept de variété d’équilibre auquel ils contraig-

nent le systéme par une stratégie 4 mode de glissement. Finalement, Chakravarti et



Ray (1997) critiquent I'utilisation des formes modales qui sont parfois impossibles
a calculer et proposent l'utilisation des fonctions singuliéres comme approximation
du systéme. Christofides et Daoutidis (1998; 1998) ont formalisé I'approche de

décomposition modale en utilisant le concept de systéme a deux échelles de temps.

Dochain (1994) a proposé I'approche par différence globale qui peut étre utilisée en
pré-approximation ou en post-approximation. Sil’action de commande est présente
dans 'EDP, un régulateur peut étre congu directement par linéarisation exacte. La
loi de commande inclut alors un terme de dérivée partielle qui sera approximé par
la suite 4 ’aide une différence globale. Tali-Maamar (1994) a utilisé cette approche
dans le cas d’un bioréacteur décrit par des équations hyperboliques ou paraboliques.
Si action de commande est a la frontiére, les différences globales sont utilisées au
préalable pour introduire I'action de commande dans les bilans. Cette technique
de pré-approximation a été utilisée par Bourrel (1996) sur un biofiltre décrit par
des équations hyperboliques. Cette approche a aussi été utilisée dans les travaux
de Babary et al (1998; 1995) en combinaison avec une formulation particuliére
des conditions frontiéres. Finalement, Christofides et Daoutitis (Christofides et
Daoutidis, 1997) utilisent eux aussi une approche de linéarisation exacte sur une

classe particuliére de systémes quasi-linéaires & deux échelles de temps.

Les techniques de post-approximation utilisent généralement un contenu mathé-
matique important qui est di a la définition des EDPs dans un espace de Hiibert
(Gustafson, 1980). Ainsi des notions d’analyse fonctionnelle sont essentielles a
la compréhension de ces concepts (Kreyszig, 1978). Certaines similarités entre
'automatique des systémes localisés et répartis ont toutefois é&té mises en évidence
par El Jai et Pritchard (1986) ainsi que El Jai et Amouroux (1990). Dans le cas par-
ticulier des systémes linéaires, la théorie des systémes de dimension infinie permet

a Curtain et Zwart (1995)de donner un cadre de travail complet pour le développe-



ment de loi de commande. Ce cadre a été utilisé par Dochain et Winkin (1995)
puis Winkin et al (2000) qui I'ont appliqué aux réacteurs a lit fixe en démontrant
I’existence d’une solution faible ainsi que les concepts de stabilité, observabilité et

accessibilité dans le cas des réacteurs piston et piston dispersif.

La commande optimale est une stratégie de prédilection dans ce cadre formel.
Cette stratégie est a la base de la majorité des travaux présentés dans les années
70 comme le rapporte la compilation de Ray et Lianiotis (1978). L’évolution des
outils informatiques a permis récemment un regain d’activité dans ce domaine
grace au développement de méthodes de résolution efficaces. Ainsi Glowinski et
He (1996) présentent une application a la commande d’un systéme de convection-
diffusion-réaction par la frontiére. Dans cet algorithme, la formulation du probléme
est faite directement sur les EDPs mais l'algorithme utilise les éléments finis lors

de la mise en oeuvre.

Récemment, plusieurs travaux présentent des solutions qui utilisent la commande
adaptative pour les systémes répartis. Ces travaux sont basés sur F'utilisation des
techniques de stabilité de Lyapunov. Ces techniques élaborées par Lyapunov i
la fin du 19e siécle ont été popularisées beaucoup plus tard vers le milieu du 20e
siécle. Les premiéres applications en génie chimique remontent aux travaux de
Berger et Lapidus (1968) ainsi que Gurel et Lapidus (1969) sur |'analyse de la
stabilité des réacteurs décrits en régime permanent par le modéle piston dispersif.
L’application de ces techniques de stabilité dans un espace de Hilbert a, par la suite,
été discutée formellement par Datko (1970) et Pazy (1972). Puis, des travaux sur
la stabilité des réacteurs tubulaires en transitoire ont été présentés par Liou et
al (1974) sur les réacteurs non adiabatiques avec recircuiation et par McGreavy
et Soliman (1973) sur les réacteurs catalytiques a lit fixe. Les applications des

techniques de Lyapunov aux systémes i parameétres localisés sont déja bien établies.



L’utilisation de cette théorie fait I'objet de plusieurs livres dont celui de Khalil
(1996) et certaines applications ont été présentées pour le contrdle des réacteurs
parfaitement agités (Viel et al., 1997). L’application & la commande adaptative
des systémes & parameétres répartis est toutefois beaucoup plus récente. Béhm et
al. (1998) utilisent des arguments similaires & ceux de Lyapunov pour présenter
une stratégie de commande par modéle de référence. Leur traitement exhaustif
inclut entre autres une preuve de convergence des paramétres identifiés en ligne
ainsi que les conditions d’excitation persistante qui s’y rattachent. Cette approche
s’applique aux systémes pour lequel le modéle de référence est fortement coercitif et
dont la commande apparait explicitement dans les EDPs. Hong et Bentsman (1994)
proposent aussi une stratégie de commande basée sur un modéle de référence. Leur
argumentation est principalement basée sur une analyse de Lyapunov mais elle se

limite & des systémes de diffusion-réaction oti la commande est explicite dans les

EPD.
Application au blanchiment de la pite

Pour illustrer les développements de cette thése dans un contexte plus pratique
que purement théorique, tous les développements seront appliqués 4 un réacteur de
blanchiment. Ce type de réacteur est utilisé dans I'industrie des pates et papiers
pour augmenter la blancheur de la pate avant la formation du papier. Ces réacteurs
sont tubulaires et se prétent bien i la modélisation par bilan de masse. De plus,
I'intérét industriel pour le développement de nouvelles stratégies de commande s’est
manifesté clairement récemment. En effet, Paprican a présentement un programme
de recherche dans cet axe (Gendron, 1996) et Nexfor a présenté divers travaux sur la
modeélisation et la commande des séquences de blanchiment (Savoie et Tessier, 1997;
Pudlas et al., 1999; Tessier et al., 2000). Les collaborations avec ces partenaires

justifient en partie le choix de cette application.



Différents travaux ont déja été présentés sur la commande des systémes des procédés
tel que le relate Kayihan (1990). Rankin et Bialkowski (1984) utilisent un algo-
rithme de blancheur compensée qu’ils combinent 3 un modéle dynamique du sys-
téme sur une tour de chlorination. Gough et Kay (1994) présentent une stratégie de
commande adaptative i effort minimal basée sur un modéle de fonction de trans-
fert. Finalement Barette et Perrier (1995) introduisent I'utilisation d’un modéle
plus complexe pour la commande d’une tour de blanchiment 4 I'hypochlorite. Ils
utilisent ainsi un modéle composé de multiples réacteurs parfaitement agités en

série pour représenter le comportement piston du réacteur.

Le réacteur de blanchiment servira donc de base aux analyses et discussions de cette
thése. L'utilisation d'une application [imite d’un certain point de vue la généralité
des contributions de la thése. Par contre, cette utilisation oriente clairement les
efforts de recherche vers des solutions potentiellement applicables en usine. Ainsi,
les contraintes d’une telle application seront au centre du développement des idées.
Cette orientation favorise donc le développement de solutions industriellement vi-
ables plutét qu’une formulation mathématique idéale mais manquant de repére

concret en terme d’application et de mise en oeuvre.
Objectifs de la thése

L’analyse des travaux antérieurs montre que beaucoup de développements ont été
accomplis dans la commande des systémes a paramétres répartis. Intuitivement, il
est possible de croire que I'utilisation d’un modéle plus raffiné permettra d’accroitre
les performances du systéme de commande. Par contre, il n’est pas évident que
cet accroissement de performance justifie l'effort qui doit étre mis dans la modéli-
sation et le développement de la loi de commande. Cette problématique permet de

formuler ’hypothése de recherche suivante:



L'utilisation d’un modéle & paramétres repartis
pour la conception d’un systétme de commande d’un réacteur tubulaire permet

d’accroitre les performances de ce procédé

La méthodologie adoptée pour étudier cette hypothése consiste & développer dif-
férentes stratégies de commande sur un exemple type: le réacteur de blanchiment.
Ceci permet par la suite de réaliser 'analyse comparative des performances. Les

objectifs spécifiques de la thése sont donc les suivants:

1. Elaborer des outils de simulation efficaces. Plusieurs outils de simulation ex-
istent pour les systémes i paramétres répartis. Par contre, leur utilisation
en ligne peut étre difficile voir méme impossible. Cette caractéristique est
essentielle pour I'application en usine de lois de commande qui utilisent le
modéle & paramétres répartis directement. [l faut donc analyser les outils

existants et, au besoin, en créer de nouveaux.

2. Adapter les stratégies de commande ezistantes ¢ la problématique de la com-
mande du blanchiment. Pour servir de base de comparaison, deux stratégies
existantes seront utilisées: la commande prédictive et 'approche par dif-
férence globale. Ces deux stratégies seront appliquées a la problématique
particuliére du réacteur de blanchiment soit: débit variable, perturbations
mesurées de la matiére premiére, contrdle par la frontiére, cinétique de réac-
tion mal connue. Dans le cas de la commande prédictive, une adaptation au
débit variable doit étre réalisée. Dans le cas de la commande par différence
globale, la commande de type "frontiére” dans le cas parabolique doit étre

abordée.
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3. Elaborer une stratégie de commande par post-approzimation pour les systémes
commandés par la condition frontiére. Les stratégies de post-approximation
adaptatives actuelles ne considérent pas la commande de type frontiére. Comme
le procédé de blanchiment a une cinétique de réaction mal connue, I'utilisation
de I'adaptation des constantes cinétiques est essentielle. Une nouvelle stratégie

doit donc étre élaborée.

4. Comparer les différentes stratégies sur une application. Une comparaison
générale des performances entre plusieurs algorithmes est un probléme dif-
ficile. En effet, les performances d’un régulateur sont toujours en fonction
du systéme & commander. Cette comparaison sera donc effectuée strictement
sur le procédé de blanchiment par simulation avec les limites inhérentes d’une

telle approche. Les possibilités de mise en oeuvre en usine seront considérées.

Organisation de la thése

Cette thése est organisée en deux parties distinctes afin de séparer les aspects de
modélisation et simulation de la portion commande. La premiére partie est com-
posée de deux chapitres sur la modélisation et la simulation des réacteurs tubulaires

décrits par des systémes a paramétres répartis.

Le chapitre 1 décrit la modélisation & parameétres répartis des réacteurs tubulaires.
De plus, il contient une présentation du procédé de blanchiment et les modéles du

réacteur au dioxyde de chlore qui seront utilisés dans cette thése.

Le chapitre 2 traite des différentes méthodes de résolution des systémes d’EDPs
paraboliques. Tout d’abord, la résolution analytique dans le cas linéaire sera

présentée. Puis la résolution du systéme en régime permanent par une méthode de
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relaxation sera abordé. Par la suite les techniques de différences finies, de collo-
cation orthogonale et d’éléments finis sont utilisées pour résoudre les équations du
procédé de blanchiment. Compte tenu des limites de ces méthodes, une nouvelle

approche sera proposée: la méthode par alternance.

La seconde partie de la thése présente les différents algorithmes de commande
utilisés pour la commande d'un systéme a paramétres répartis parabolique. Chaque
loi de commande sera appliquée aux divers modéles de blanchiment développés au

chapitre I afin d’en analyser comparativement la robustesse.

Le chapitre 3 présente les algorithmes déja connus qui ont été adaptés pour I'application
au réacteur de blanchiment. L’algorithme de commande prédictive DMC sera donc
présenté avec une variante qui permet de considérer la variation du débit. Par la
suite, un algorithme basé sur les différences globales sera présenté sous une forme
qui permet la commande par la condition frontiére d’entrée. De plus, un mécanisme

d’adaptation du rapport des constantes cinétiques sera ajouté.

Le chapitre 4 présente une nouvelle stratégie de commande adaptative par post-
approximation pour les systémes paraboliques avec commande frontiére & ’entrée.
Cette stratégie est composée de deux niveaux de régulateur. La premiére boucle
adaptative & modéle interne permet l'identification en ligne de constantes cinétiques

alors que la seconde permet le suivi du point de consigne par anticipation et rétro-

action.

Finalement, le dernier chapitre de cette thése présente 'analyse comparative de tous
les algorithmes de commande présentés dans les chapitres trois et quatre. L’analyse
est réalisée qualitativement par simulation sur différents modéles et quantitative-

ment par ['utilisation d’indice de performance.



Partie I

Modélisation et simulation

12
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CHAPITRE 1

MODELISATION DE REACTEURS A PARAMETRES REPARTIS

Pour un méme réacteur tubulaire, différents types de modéles peuvent &tre dérivés
selon les besoins. Dans le cadre de la commande de procédés, le modéle générale-
ment le plus utilisé est du type fonction de transfert avec délai. Ce type de modéle
a paramétres localisés ne tient toutefois pas compte de la nature répartie du réac-
teur tubulaire pour lequel I’hydrodynamique et la cinétique de réaction peuvent
étre caractérisées en tout point du réacteur. Cette caractéristique des réacteurs
tubulaires peut étre mise en évidence par 'utilisation d’un modéle 3 parameétres
répartis. En effet, 'utilisation de bilans de matiére et d’énergie méne directement
i des équations aux dérivées partielles. Cette modélisation est déja bien couverte
dans les livres de base de génie chimique (Fogler, 1992; Levenspiel, 1999). L’objectif
de ce chapitre n’est donc pas de présenter un nouveau modéle pour les réacteurs
tubulaires, ni d’argumenter sur la validité de ce type de modéle mais plutét de
poser précisément le type de modéle sur lequel sera basé le développement de la loi

de commande.

La premiére partie de ce chapitre présente donc le modéle piston dispersif d’un
réacteur tubulaire isotherme. Les bilans de masse, les conditions frontiéres ainsi que
certaines limites de ce modéle seront présentées. La seconde partie de ce chapitre
présente 'application de ce type de modélisation & un réacteur de blanchiment.
Le procédé de blanchiment sera décrit succinctement, suivi de I'identification des
paramétres hydrodynamiques et des divers modéles cinétiques utilisés dans cette

thése.
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1.1 Modéle général d'un réacteur tubulaire

La figure 1.1 présente le schéma d'un réacteur tubulaire. Si la géométrie de ce
réacteur est simple, il peut en étre tout autrement des modéles qui peuvent étre
développés pour le représenter. I1s’agit en fait d’un systéme dont ’hydrodynamique
complexe peut étre modélisée par les équations de Navier-Stokes (Bird et al., 1960).
Si le nombre de Reynolds est assez élevé, le régime d’écoulement est turbulent.
L’expression des termes turbulent dans les équations d’écoulement et leur identifi-

cation demeure un probléme ouvert et complexe.

Figure 1.1 Réacteur tubulaire

L’objectif de cette thése est d’évaluer I'utilisation de modéles & paramétres repartis
pour le développement de stratégies de commande. Un modéle simple et courant
qui tient compte de la nature répartie des dynamiques sera donc utilisé: le modéle
piston dispersif. L’hypothése de base du modéle est la suivante: le mélange est
causé par le mouvement brownien des éléments. Donc, le mouvement turbulent
causera une dispersion des éléments qui sera statistiquement assimilable 4 une loi
normale. La modélisation de ce phénoméne peut donc étre faite 4 |'aide de la loi
de Fick suivante, qui est utilisée pour modéliser la diffusion moléculaire.

— aCA —
Jy=-DZ2 (1.1)

Cette simplification permet d’obtenir un modéle & une seule dimension spatiale,
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dans lequel tous les phénoménes de mélange, tel le rétro-mélange y seront modélisés

par un seul coefficient: le taux de Dispersion D.

1.1.1 Bilan de matiére

Convesion FC(z.) 3 188 B > FCerazy

Dispersion AJ(z) P B F > A0y

Figure 1.2 Tranche infinitésimale d’un réacteur tubulaire

Le modéle piston dispersif est obtenu en effectuant un bilan de matiére sur une
tranche infinitésimale du réacteur pour chacun des composants. Soit le bilan de

matiére général suivant:

taux d’accumulation taux d’entrée taux de sortie

du composant du composant, du composant

taux de génération
+ (1.2)
du composant par la réaction
La figure 1.2 présente les flux entrants et sortants sur une tranche du réacteur.
Ainsi, en considérant les phénoménes de convection, de dispersion et de réaction
sur cette tranche du réacteur, le bilan suivant est obtenu:
0C4(z,t 0Ca(z,t
AAzw—M = FCu(z,t) — FCu(z + Az,t) — AD-M

5 0z
BCA(ZB-: Azt) + AAzr(Ca(z, t)) (1.3)

+ AD
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En divisant par le volume et en utilisant la définition de la dérivée partielle, le
modéle général suivant est obtenu:

BCA(z,t) _ GCA(Z,t) 826',;(2,15)
a Y 9z +D 9z2

+r(Ca(z,1)) (1.4)

Cette équation aux dérivées particlles (EDP) est donc obtenue pour chacun des
composants et elle tient compte de la nature répartie des variables du systéme. Ce
type d’équation de deuxiéme ordre peut étre classifié en trois catégories selon les
coefficients des termes des dérivées partielles d’ordre deux (Kreyszig, 1988). Dans le
cas d’un modéle piston, les équations sont de type hyperbolique alors que dans le cas
d’un modéle dispersif, les équation sont de type parabolique. Cette classification a
une incidence importante sur les techniques de résolution analytiques et numériques

qui peuvent étre utilisées.

1.1.2 Conditions frontiéres

Pour qu'un modéle composé d’équations aux dérivées partielles soit complet, il
faut déterminer de facon exacte ses conditions frontiéres. Dans le cas d’un réacteur
représenté par des équations hyperboliques, une seule condition frontiére est reg-
uise. La concentration a I’entrée du réacteur est généralement utilisée. Dans le cas
d’un réacteur représenté par des équations paraboliques, deux conditions frontiéres
doivent étre posées. Le premier & proposer des conditions frontiéres pour ce type de
réacteur est Danckwerts (1953). Il établit la condition frontiére 4 I'entrée a I'aide

d’un bilan de flux et pose un gradient de concentration nul a la sortie. Il obtient
ainsi :
BCA(O: t)

D £ = v(Ca(0,t) — Cain(t)) (1.5)
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aCa(L,t)

o 0 (1.6)

Danckwerts valide la condition 3 la sortie en analysant le gradient a ce niveau. Ce
gradient ne peut pas étre positif car la concentration passerait par un minimum
dans le réacteur ce qui est impossible. [} ne peut pas non plus étre négatif car un
bilan des flux i P'extrémité du réacteur moutrerait une concentration i la sortie
plus grande que celle dans le réacteur. Ces conditions frontiéres sont généralement
appelées conditions pour un réacteur fermé-fermé. Toutefois, la proposition de
Danckwerts a suscité de nombreuses critiques. Wehner et Wilhelm (1956) ainsi
que Bischoff (1961) critiquent les conditions en proposant de considérer I'impact
des sections avant et aprés le réacteur qui ont leur dispersion propre. Pearson (1959}
propose une solution intermédiaire en considérant une dispersion progressive dans
les extrémités. Van Cauwenberghe (1966) montre que les conditions de Danckwerts
sont fausses a la sortie dans le cas d’un réacteur piston. Cette analyse est poursuivie
par Salmi et Romanainen (1995) qui propose une solution empirique pour lier les
conditions de Danckwerts au modéle d'un réacteur piston en pondérant chacun des

modéles selon la dispersion.

Malgré I’ensemble de ces critiques, les conditions de Danckwerts sont les plus util-
isés pour le modéle piston dispersif car, somme toute, 'importance de l'erreur
commise pour les systémes faiblement dispersifs demeure relativement restreinte si
les méthodes de résolutions numériques sont choisies adéquatement. Ces conditions

frontiéres seront donc utilisées dans cette thése.

1.1.3 Limites du modéle piston dispersif

Le modéle précédent permet de représenter un réacteur tubulaire isotherme et iso-

bare. Le méme type d’approche de modélisation peut toutefois étre utilisé pour
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représenter des réacteurs plus complexes en utilisant un bilan d’énergie ou de pres-
sion. Le modéle dispersif doit toutefois étre utilisé avec précaution car il ne permet
pas de représenter adéquatement tous les réacteurs tubulaires. Levenspiel (1999)
met en garde contre son utilisation lorsque le taux de mélange devient trop élevé,

soit pour un nombre de Peclet inférieur a un.

vl

Nombre de Peclet Pe = D

(1.7)

Levenspiel et Fitzgerald (1983) montrent en effet 'importance de 'hypothése du
mouvement aléatoire pour 'utilisation du modéle dispersif par rapport 4 un mod-
¢le convectif gaussien. Si cette hypothése n’est pas respectée, divers modéles peu-
vent alors étre considérés selon la nature du mélange (Nauman et Buffham, 1983).
Toutefois, I'effort de modélisation doit étre adapté en fonction de I'utilisation du
modéle. Comme I'objectif de la modélisation dans cette thése est d’obtenir un mod-
éle permettant de représenter adéquatement la dynamique du réacteur. Ce modéle
peut donc étre adéquat dans ce sens sans étre la meilleure solution pour des ob-
jectifs de conception ou de mise & I'échelle du réacteur. De plus, 'utilisation d’un
modéle a paramétres répartis pour la conception d’une loi de commande représente
un net progrés dans le niveau de raffinement du modéle par rapport aux fonctions

de transfert avec délai généralement utilisées.

1.2 Application 4 un réacteur de blanchiment

Cette section présente donc tout d’abord un survol du procédé de blanchiment et
de I’état actuel des connaissances de la modélisation de ce procédé. Par la suite,
des modéles 2 paramétres répartis d’un réacteur de blanchiment par dioxyde de

chlore seront proposés.
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1.2.1 Procédé de blanchiment

Le blanchiment est I'une des derniéres étapes du processus de mise en pate dans
le procédé papetier (Biermann, 1996). Son objectif est de réduire la coloration
écrue de la pite afin d’obtenir un niveau de blancheur désiré. Cette coloration de
la pate est principalement causée par la lignine qui est un polymére naturel com-
plexe. Ce polymére est composé principalement de coniféraldéhyde et de composés
aromatiques similaires reliés par des liens aliphatiques. Ce composé se retrouve

principalement entre les fibres du bois et dans les couches extérieures des fibres.

Les techniques de blanchiment varient fortement selon la technique utilisée pour
obtenir la pate. Dans le cas d’une pate chimique, la pite est obtenue par dégra-
dation chimique de la lignine. Ainsi, le blanchiment de ce type de pate consistera
principalement a éliminer directement le contenu résiduel de lignine dans les fibres.
Dans le cas d’une pite mécanique, les fibres sont séparées mécaniquement i l’aide
d’un raffineur. Dans ce cas, la stratégie de blanchiment est plutot de modifier la

structure de la lignine pour la décolorer.

: !

i ' S
|

|

|

1

Figure 1.3 Séquence de blanchiment,

Le blanchiment de la pate n’est pas effectué dans une seule réaction. En fait, ce

procédé est constitué d’une alternance d’étapes de réaction et de lavage. La figure
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1.3 extraite de (Dence et Reeve, 1996) illustre I'aspect physique de ce procédé.
Dans le cadre de ce travail, un seul réacteur de blanchiment sera considéré soit une
tour de blanchiment au dioxyde de chlore. Ce choix a été effectué compte tenu de

la disponibilité de données dans la littérature.

Le dioxyde de chlore est un puissant oxydant utilisé pour délignifier les fibres. Ce
réactif permet de briser la structure de la lignine afin de former des molécules
suffisamment petites pour qu’elles soient extraites de la fibre. Compte tenu de la
complexité de la structure de la lignine, il est difficile d’établir un mécanisme réac-
tionnel précis mais différents principes d'action ont toutefois été identifiés. Ainsi
le chlore agit principalement par substitution et addition en milieu alcalin. Donc,
si ces réactions se produisent sur la chaine aliphatique, les macromolécules sont
brisées en cet endroit. Si la réaction se produit sur un noyau aromatique, l'étape
d’extraction en milieu alcalin qui suit permettra une solubilisation de la lignine
par le remplacement des atomes de chlore par des groupements hydrophiles. Ainsi,
I’action du dioxyje de chlore est double: éliminer immédiatement une portion de
la lignine et préparer la solubilisation de lignine de I'étape suivante. Malheureuse-
ment, |'utilisation de ce réactif doit étre faite de fagon prudente car le dioxyde de
chlore peut aussi attaquer les chaines cellulosiques des fibres entrainant ainsi une

dégradation des propriétés mécaniques des fibres (Gendron, 19975).

1.2.2 Modéle 4 paramétres répartis

Un des avantages de la modélisation & paramétres répartis est de permettre I'identi-
fication distincte des paramétres hydrodynamiques et des termes cinétiques. Ainsi,
une plus grande portabilité du modéle est assurée d’une mise en oeuvre a l’autre.
Différents efforts de modélisation ont été mis en oeuvre en collaboration avec Nex-

for. Compte tenu des ententes de confidentialité, ces résultats ne seront pas utilisés
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dans cette thése sauf dans le cas de I'hydrodynamique ot des résultats normalisés
sont présentés. Les paramétres du modéle présenté dans cette section sont donc

basés sur les données disponibles dans la littérature.

1.2.2.1 Caractérisation de I'hydrodynamique

Dans le modéle piston dispersif, deux paramétres suffisent pour caractériser 1'hydro-
dynamique du réacteur: le coefficient de Dispersion D et la vitesse superficielle v.
En usine, l'identification de ces deux paramétres peut étre réalisée a I’aide d’une
étude de traceur. En effet, suite a une injection de traceur a I'entrée du réacteur,
'analyse de la présence du traceur a la sortie du réacteur permet d’obtenir la courbe
de distribution des temps de séjours qui est en fait la réponse impulsionelle du
systéme. L’analyse de cette courbe une fois adimensionnalisée permet d’identifier
le nombre de Peclet qui caractérise complétement ['hydrodynamique du réacteur
dans le modéle piston dispersif. Cette approche permet de modéliser globalement
les phénoménes de mélange dans le réacteur. Ainsi les phénoménes aux extrémités

et aux parois sont négligées de méme que les variations entre les phases.

Les résultats de modélisation de Pudlas et al. (1999) ont été utilisés pour obtenir
une estimation du nombre de Peclet dans un réacteur de blanchiment au dioxyde
de chlore. Selon les auteurs, le réacteur peut étre adéquatement modélisé a 'aide
d’un modéle mixte composé d’un réacteur parfaitement mélangé et d’un réacteur
piston dans des proportions de 75% piston et 25% parfaitement mélangé. Une
analyse comparative des réponses impulsionelles de ce modéle mixte par rapport
au modeéle piston dispersif est effectuée pour déterminer le nombre de Peclet qui
minimise V’erreur entre les deux réponses. La figure 1.4 montre la valeur absolue
de V’erreur ainsi que 'erreur quadratique entre ces deux modéles pour différents

nombres de Peclet.
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Figure 1.4 Erreur entre le modéle mixte et le modéle piston dispersif selon le nombre
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Figure 1.5 Comparaison entre le modéle mixte et le modéle piston dispersif pour

Pe =0.003
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Un nombre de Peclet de 0.03 est donc choisi pour le modéle dispersif. La figure
1.5 montre 'adéquation entre le modéle mixte et le modéle piston dispersif pour
ce choix. L'analyse de ce graphique peut mettre en doute I'utilisation d'un modéle
piston dispersif pour le réacteur. En fait, I'absence de données brutes ne permet
pas la caractérisation exacte du modéle. La figure 1.6 permet de bien apprécier la
validité du modéle hydrodynamique par rapport a la réalité de 'usine. Cette figure
présente les résultats d’une étude de traceur réalisée chez Nexfor sur un réacteur

de blanchiment au dioxyde de chlore.
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Figure 1.6 Etude de traceur chez Nexfor

Finalement, pour finir la caractérisation de I'hydrodynamique une vitesse superfi-
cielle v = 1m/s et une longueur de réacteur de £ = 30m ont été choisies confor-
mément au données de 'article de Savoie et Tessier (1997). Cette modélisation de
P’hydrodynamique ne tient pas compte des variations de consistances, ainsi que du

phénomeéne de renardage.
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1.2.2.2 Caractérisation de la cinétique de réaction

L’étude des cinétiques de blanchiment a fait ’objet de plusieurs études en sciences
du papier (Dence et Reeve, 1996). Peu de cinétiques basées sur des mécanismes
réactionnels sont proposées compte tenu de la complexité et du nombre de réactions
impliquées dans le mécanisme de blanchiment. Ni et al. (1995) ont toutefois
proposé un modéle dynamique basé sur la deméthylation de la lignine. Par contre,
ce type de modéle n’a pas encore été validé i 1'échelle industrielle. Savoie et Tessier
(Savoie et Tessier, 1997) présentent un modéle pour le blanchiment au dioxyde
de chlore sous la forme d’équations algébriques. Leur modéle est basé sur des
expériences en cuvée de la réaction de blanchiment. Ces données seront utilisées
dans cette thése pour obtenir une cinétique de réaction globale sous une forme

standard soit de type:

LifA

kL(LC)® (1.8)
kc(LC)? (1.9)

e

Le choix de cette structure de cinétique est arbitraire et suit la méthodologie em-
ployée par Gendron (Gendron, 1997e) chez Paprican. Afin de déterminer 1'ordre

des réactions, I’équation d’un réacteur en cuvée suivante est utilisée:

dL .
= = ki(Lo) (1.10)
ic 5

- = kolLC) (1.11)

Les équations suivantes sont obtenues en prenant le logarithme de chaque équation:

log(k.} + alog((LC)) (1.12)

g
o]
—

&|

I

log(—-) = log(kc) + Blog((LC)) (1.13)
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Ainsi, en utilisant les données de article de Savoie et Tessier, il est possible de
tracer les nuages de point de log(%) en fonction de log((LC))} et de log(4S) en
fonction de log((LC)). Par régression linéaire, il est alors possible d’identifier les
ordres de réaction et les constantes cinétiques qui sont respectivement la pente et

Pordonnée a Porigine de Ia droite obtenue. Les parameétres suivants ont été obtenus:
gin

kp =0.002 ke =0.00054

(1.14)
a=220 A=204

Compte tenu du peu de données disponibles et afin de simplifier le modéle les
paramétres « et 3 obtenus sont modifiés pour obtenir des valeurs entiéres iden-
tiques. Par la suite, les constantes cinétiques seront ajustées par simulation afin
d’obtenir la meilleure adéquation possible du modéle avec les données de base.
La figure 1.9 présente les résultats de I'identification de la cinétique. Le modéle

cinétique final est donc:

r, = 0.0065(LC)* (1.15)

re 0.001(LC)? (1.16)

Afin d’analyser la robustesse des lois de commande présentées dans la seconde
partie de cette thése, deux autres modéles cinétiques ont été développés. Le premier
de ces modéles est dérivé par simulation en considérant une cinétique de type (LC)3.
Dans ce cas, les constantes cinétiques suivantes ont été identifiées pour maximiser

I’adéquation avec les données de base tel que présenté i la figure 1.8.

rp = 0.0004(LC)* (1.17)

re 0.00006(LC)* (1.18)

Finalement, un dernier modéle a été développé conformément aux observations
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de Tessier et Savoie (1997). IIs proposent en fait que la cinétique de réaction
soit séparée en deux: une premiére réaction instantanée i I’entrée du réacteur et
une deuxiéme plus lente par la suite. Pour mettre en oeuvre cette proposition, le
saut entre la concentration initiale et la premiére donnée des courbes de réaction
en cuvée sera modélisée comme une réaction instantanée. Le reste des données
est alors utilisé pour modéliser la réaction plus lente. Cette approche conduit
donc & des sauts instantanées L0 = 9Kappa et CO = 1.3/l qui sont intégrés aux

conditions frontiéres. La cinétique suivante forme donc un troisiéme modéle:

r. = 0.035(LC) (1.19)
re = 0.006(LC) (1.20)
L0 =9 (1.21)
co = 13 (1.22)

L’adéquation entre ce modéle et les données initiales est présenté 3 la figure 1.9.

1.2.2.3 Modéles utilisés

Les sections précédentes ont permis d’identifier tous les paramétres des modéles

qui seront utilisés dans cette étude. Le modéle de base du réacteur qui sera utilisé

est donc:
ac(z, 2C(z,
i"% I Ca(z Y 4 p? Caiz Y _ ke(LO)® (1.23)
L 2
9 g't) - _v___aLéz, Y , pPLizt) g(;’t) — ki (LC)® (1.24)
DBCE(,(:,t) = 9(C(0,t) — Canlt) - CO) (1.25)
p2LOY  _ 00,8) - Luntt) - Lo) (1.26)
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Figure 1.9 Terme cinétique de type LC

ac;i, JR (1.27)
aLg{’t) =0 (1.28)

Le tableau 1.1 donne les différents paramétres nominaux utilisés dans le cas de
chacune des variantes du modéle. Le modéle M1 sera utilisé pour la conception de
toutes les lois de commandes alors que les modéles M2 et M3 seront utilisés pour
des analyses de robustesse. Le modéle initialement proposé par Gendron {1997q)

sera utilisé pour 'analyse des méthodes numériques au chapitre 2.



Tableau 1.1 Paramétres de modéles

Paramétre | M1 M2 M3 Gendron
Q 2 3 1 3
ke 0.001 | 0.00006 | 0.006 | 0.000055
ke 0.0065 | 0.0004 | 0.035 | 0.00000057
Co 0 0 1.3 0
Lo 0 0 9 0

29
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CHAPITRE 2

RESOLUTION D’EQUATIONS AUX DERIVEES PARTIELLES

Les modéles présentés au chapitre précédent sont relativement simples i obtenir.
Il en va tout autrement de leur résolution. A ce jour, il n'existe pas de solution
analytique pour les modéles non linéaires du réacteur de blanchiment présentés
au chapitre 1. De plus, méme la solution en régime permanent de ces systémes
d’équations ne peut étre exprimée sous une forme analytique. Toutefois, dans le
cas d’un systéme linéaire, la théorie des systémes de dimension infinie fournit les
outils pour résoudre les équations de type parabolique (Curtain et Zwart, 1995).
Ainsi, la résolution analytique dans la cas d’un réacteur piston dispersif avec une

cinétique de premier ordre a été présenté par Winkin, Dochain et Ligarius (2000}.

La résolution numeérique des bilans décrivant la dynamique d'un réacteur chim-
ique n'est pas un sujet neuf, plusieurs ouvrages y sont consacrés tel (Varma et
Morbidelli, 1997) et (Hanna et Sandall, 1995). Ce sujet demeure tout de méme
d’actualité car aucune des méthodes actuelles ne permet de solutionner ’ensemble
des problémes efficacement. En fait, les méthodes classiques doivent souvent étre
ajustées ou méme modifiées pour tenir compte des particularités d’'un probléme
donné. Dans le cas d'un systéme d’équations paraboliques, trois méthodes de base
sont souvent utilisées : les différences finies (Gerald et Wheatley, 1990), la colloca-
tion orthogonale (Villadsen et Michelsen, 1978) et les éléments finis (Reddy, 1993).
Ces méthodes permettent généralement d'obtenir des résultats adéquats. Par con-
tre, elles sont peu adaptées pour une utilisation en ligne dans le cadre d’'une
stratégie de commande. Différentes heuristique sont aussi proposées dans la lit-

térature tel les travaux de Patenkar (1984)
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Ce chapitre présente donc les différentes méthodes utilisées pour résoudre des sys-
témes d'équations aux dérivées partielles non linéaires. La premiére partie présente
les éléments disponibles pour la résolution analytique d’équations aux dérivées
partielles paraboliques. La deuxiéme partie du chapitre présente les méthodes
numériques classiques qui ont été utilisées pour la résolution en régime transitoire.
Finalement, la derniére portion du chapitre présente une approche originale pour

la solution d’un systéme faiblement dispersif, adaptée pour une utilisation en ligne.

2.1 Solution analytique

La solution analytique des systémes a4 paramétres répartis peut étre abordée i I'aide
de la théorie des systémes de dimension infinie. Ce cadre de travail a été bien établi
pour les systémes linéaires comme le présentent Curtain et Zwart (1995). Cette
approche sera donc utilisée pour résoudre un exemple simple qui permettra de

valider les approches numériques. Le systéme linéaire suivant est utilisé a cette fin:

(2 z 0%z(z,
9 é{” ~ Hva”éz’tho 6(22 Y ka(z, 1) @2.1)
pZ2D — ya(0,1) ~zalt) (22)
dz(l,t)
=0 (2.3)

£(z,0) = zo(2) (2.4)



Les paramétres de ce systéme sont:

v=0.05 m/min D =0.05 m?/min®
k = 0.057 min~! Tin =1 g/l

Pour utiliser la théorie des systémes de dimension infinie, ce systéme doit étre
formulé dans un espace d’état de Hibert de dimension infinie. L’espace H = L?(0,1)
des fonctions réelles mesurables de carré intégrable , i.e. tel que [} ||f(2)[|2dz, est
donc choisi. Dans cet espace, le produit scalaire et la norme suivante sont définis

pour toute fonction f,g appartenant a H:

(fv 9)2
[1£1l2

[ #a)atz 25)
7.1y @)

Comme le systéme linéaire est commandé par la frontiére, il peut étre écrit sous la

forme du modéle de Fattorini (Fattorini, 1968) suivant:

i(t) = Az(t)+ BT (2.8)
2 9

A = Dos—va-k (2.9)

= vi(2) (2.10)

Le domaine de définition de A inclut alors les conditions frontiéres de I’équation

aux dérivées partielles initiale de la facon suivante:

D(A)= {zeL*(,1):z, i € L*(0,1) absolument continues,

d
‘ff L2(0,1), —-(1)_01) —~(0) —vz =0} (2.11)
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Winkin et al (2000) montrent, que A est un opérateur spectral de Riesz et le généra-
teur d'un semi-groupe Cy exponentiellement stable {T'(t});>¢ sur I'espace de Hilbert
H. De plus, 'opérateur B est en pratique appliqué sur une mince couche d’épaisseur
w ce qui permet de le considérer comme un opérateur borné. Ces deux propriétés
du systéme de dimension infinie permettent de mettre en évidence l'existence d’'une

solution faible du systéme au probléme de Cauchy qui est telle que:
L
2(t) = T(t)zq + [o T(t - 5)Bu(s)ds (2.12)

Comme A est un opérateur spectral de Riesz, le systéme admet une décompaosition
spectrale qui permet le calcul de la solution a partir des valeurs propres A, et des

vecteurs propres i,. Les équations suivantes permettent leurs calculs:

s +v?
o= -EEE ok (2.13)
2vs
avec 0 < s, < spy) solution de tan( ) (2.14)
da(2) = Kne®* [cos(ﬁz) +—sm( Dz)] (2.15)
Unlz) = Muda(L - 2) (2.16)

Les coefficients K, et M, sont choisis de sorte que ||@a[l2 = 1 et que J @nifdz = 1.
A partir de la décomposition spectrale, Papplication du semi-groupe (T'(t))>q peut

étre exprimeée sous la forme d’une suite infinie telle que:

(T(t)zo)(z) = Z[e"' (%0, Yn) Bn] (2.17)

La solution du systéme linéaire peut maintenant étre exprimée de la fagon suivante:

358 = Sl dalda + [ SNBuG) da)bads]  (218)

n=L
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L’avantage principal de la solution analytique est de fournir une solution rela-
tivement indépendante du maillage. En effet, aucune approximation fonction de
I’espace n’est utilisée; la solution analytique est simplement calculée aux différents
points choisis. La figure 2.1 présente la solution pour différents maillages pour
Pe = 1 et 20 termes de série. Pour un maillage aussi faible que 5 mailles, la so-
lution du profil du réacteur est adéquate 3 la sortie du réacteur mais présente de
faibles variations par rapport aux autres définitions de maillage. Cette erreur peut

étre imputée au calcul de 'intégrale de normalisation des fonctions propres t,.
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Figure 2.1 Méthode analytique: influence du maillage

La faisabilité de cette solution analytique par série dépend directement du nombre
de Peclet. En effet, pour qu'une solution par série soit applicable, il doit &tre pos-
sible d’effectuer une troncature entre des groupes relativement distants de valeurs
propres. Le tableau 2.1 présente les 15 premiéres valeurs propres pour différentes
valeurs du nombre de Peclet. Comme la distance entre les valeurs propres devient

plus ténue lorsque le nombre de Peclet augmente, il devient difficile de considérer
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qu’un ensemble de valeurs propres domine le reste du spectre.

Tableau 2.1 Valeurs propres du systéme selon la dispersion

[Pe=0.1] Pe=1]| Pe=10] Pe =100

-0.10783 | -0.11559 | -0.20809 | -1.31156
-5.09254 | -0.65809 | -0.29534 | -1.32525
-19.8973 | -2.14201 | -0.46053 | -1.34809
-44.5714 | -4.61018 | -0.71519 | -1.38010
-79.1150 | -8.06434 | -1.06462 | -1.42131
-123.528 | -12.5062 | -1.51096 | -1.47176
-177.811 | -17.9346 | -2.05511 | -1.53149
-241.963 | -24.3499 | -2.69748 | -1.60055
-315.985 | -31.7521 | -3.43827 | -1.67897
-399.877 | -40.1413 | -4.27759 | -1.76681
-493.638 | -49.5174 } -5.21549 [ -1.86411
-597.269 | -59.8805 | -6.25202 [ -1.97091
-710.769 | -71.2306 | -7.38719 | -2.08725
-834.139 | -83.5676 | -8.62103 | -2.21317
-967.379 | -96.8915 | -9.95353 | -2.34869
-1110.48 | -111.202 | -11.3847 | -2.49384
-1263.46 | -126.500 | -12.9145 | -2.64866
-1426.31 | -142.785 | -14.5431 | -2.81317
-1599.03 | -160.057 | -16.2703 | -2.98738
-1781.62 | -178.315 | -18.0962 | -3.17131

Les figures 2.2 4 2.4 montrent les résultats de simulation pour différents nombres de
Peclet. Pour Pe = 1, 10 termes seulement sont suffisants pour obtenir la solution
du systéme alors que pour Pe = 10, 100 termes sont nécessaires. Dans le cas de
Pe = 100 la solution diverge complétement méme pour 500 termes. En pratique, la
solution analytique est applicable seulement pour des systémes fortement dispersifs.

Elle sera donc utilisée pour valider les méthodes numériques pour Pe = 1.
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2.2 Résolutions numériques classiques

La résolution numérique d’équations aux dérivées partielles fait appel a la segmen-
tation spatiale et temporelle de la solution. Dans le cas des méthodes classiques
de résolution, P'objectif est d’obtenir une approximation des EDP en équations
différentielles ordinaires. Ces équations peuvent alors étre résolues par d’autres
méthodes numeériques bien connues. Dans le cas de systémes faiblement disper-
sifs, les systémes 'EDO obtenus sont souvent mal conditionnés. Une méthode
d’intégration de type estimation-correction sera donc utilisée dans tous les cas: la
fonction ODEL5s de Matlab. Cette fonction est basée sur 1'algorithme de NDF

(Numerical Differenciation Formula) et utilise un pas de temps variable.
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2.2.1 Résolution par différences finies

L’approche des différences finies est basée sur |’utilisation des séries de Taylor pour
obtenir des approximations par différences finies des dérivées partielles spatiales.
Ces approximations peuvent étre arriéres, centrées ou avants selon la position des
points utilisés pour réaliser I’approximation. Dans le cas d’un réacteur tubulaire,
des différences arriéres seront utilisées pour les termes de convection alors que
des différences centrées sont utilisées pour les termes de dispersion. Ce choix est
justifié par la nature méme des phénoménes. En effet, 'évolution d’une variable
lors de 1a convection est influencée par 'information qui précéde le point alors que
I'évolution causée par la dispersion dépend de l'information de chaque cété du point
(Gerald et Wheatley, 1990). Une différence finie arriére du premier ordre est denc
utilisée pour le terme convectif alors qu'une différence centrée du deuxiéme ordre
est utilisée pour le terme dispersif. Dans ce schéma implicite, les expressions de

ces approximations sont donc:

dz(z,t) _ z(z,t) — 2{zi-1,t)
o Az (2.19)
32.'13(2, t) ~ .'B(Zi lat) - 2.‘17(2,', t) + I(Z,'_[,t)
5~ + oF (2.20)

L'utilisation de différences d’ordre un et non d’ordre deux pour le terme de con-
vection est justifiée car la condition frontiére mixte a l'entrée permet difficilement

['utilisation d’une différence d’ordre deux.
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2.2.1.1 Mise en ceuvre

L’application des approximations au modéle de Gendron permet d’obtenir les EDOs

suivantes pour chaque point intérieur du maillage:

2t (L) o+ (3 - 22)

+ (‘i + 31?_.) L(zi-1,t) = ko{L(z)C (2, 1) (2.21)
d_%ﬁ = (Z\% Clzip1, t) + (f; - ;_%\%) C(z,t)

+ (-2 é) L(zi-v,t) — k(L(z,)C(2 t)®  (222)

Les points aux extrémités du maillage sont légérement différents puisqu’ils perme-
ttent d’intégrer les conditions frontiéres qui doivent aussi étre approximées par des
différences finies. Les approximations suivantes des conditions limites sont donc

utilisées:

p(Elast) = L(z,1)

= = v(L(z,t) — Lin(t)) (2.23)
L(ZN+I,té)k:L(zNat) =0 (224)
DC(Z"");f("’"t)) = v(C(z0,t) — Cin(t)) (2.25)
Clzner,t) = Clawt)

* s =0 (2.26)

Ce qui permet donc d’obtenir les équations suivantes pour les extrémités du mail-

liage:
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dWet) _ (D v _
dt (Azz) Lizit) + (Az Azz) L(zt)
v D\ [ L{z,t) —vLinAz
* (—A_z * Azz) ( 1-vAz )
— k(L(z,8)C(z1,1))® (2.27)
dC{(z,t) D v 2D
=& = (&) clt+ (37 - 13) Ot
v D C(z,t) —vCinAz
" ('E+Az2)( - vhz )
— kt(L(z1,)C (21, 1)) (2.28)
dL(zy,t) (v D LN A YT
dt B (Az Xz_z) Law,t) + ( Az T Az2) Law -1,2)
- ki(L{zn,t)C (2w, 1)) (2.29)
dClawt) _ (1 _ D v, D
dt B (/_\z Azz) Claw,t) + ( Az Azz) Lizv-1,t)
= ku(L(zn,t)C (2w, t))? (2.30)

2.2.1.2 Résultats

La méthode des différences finies a tout d’abord été appliquée au systéme linéaire
pour des fins de validation. La figure 2.5 présente donc une comparaison de la réso-

lution par la méthode analytique et des différences finies utilisées sur 100 mailles.

Comme les approximations sont basées sur des séries de Taylor, la définition du
maillage est trés importante dans la méthode des différences finies. Pour un Peclet
faible, I'importance du maillage est moins grande comme le montre la figure 2.6.
Par contre, pour un Peclet élevé, la figure 2.7 montre qu'un maillage trop faible
induit deux types d'erreurs . La premiére est visible en régime permanent sur les
courbes de profil dans le réacteur. En effet, un maillage réduit provoque un manque

de précision dans les zones ot la non-linéarité est trés forte. L’augmentation du
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raffinement du maillage permet par contre de converger vers la solution. L’autre

type d’erreur est visible en transitoire sur les courbes de sortie du réacteur. En

effet, un Peclet de 10° indique que le réacteur a un comportement piston. Toutefois,

les courbes de la concentration de sortie sont lisses comme si un certain niveau de

dispersion était présent. Ce phénoméne est appelé diffusion numérique. L’impact

de ce phénoméne peut étre réduit par l'utilisation d’un maillage plus fin, ce qui

entraine rapidement des temps de calcul énormes.
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2.2.2 Résolution par collocation orthogonale

La collocation orthogonale fait partie de la famille des méthodes de résidus pondérés.

Ces approches utilisent une approximation de la solution sous la forme suivante:

N+lL

Bz t) = 3 (t)Bi(2) (231)

=0

Dans cette équation, les §;(z) sont des fonctions de base prédéterminées alors que les
¢;(t) seront choisis pour obtenir la meilleure solution possible. Cette approximation
%(z,t) est introduite dans les EDP originales afin de calculer les résidus Rq. Ces
résidus seront utilisés comme mesure indirecte de |'erreur par rapport a la solution
réelle du systéme. Le choix des ¢;(t) est donc fait en minimisant une pondération
des résidus dans un espace fonctionnel déterminé par une base de fonction w; ce

qui correspond au probléme suivant:
/; Row:dQ = 0 (2.32)

Le choix des fonctions de pondération w; détermine le type de méthode des résidus
pondérés qui est utilisé. Dans le cas de la collocation orthogonale, des fonctions de
Dirac 4 sont utilisées. Cette approche permet de minimiser la valeur des résidus en
certains points du réacteur seulement. Elle a I’avantage de simplifier les calculs car
I'équation (2.32) se raméne alors simplement 3 'évaluation des résidus aux points
de collocation. De plus, en utilisant des polynémes de Lagrange comme fonctions
de base f;(z), il est possible de simplifier encore plus le probléme. En effet, les

polynémes orthogonaux ont la propriété suivante:

,6,'(2 = Zj) = 5,']' (233)



44

Ainsi, si les zéros de ces polynmes sont les points de collocations, la simplification

suivante est possible:

N+l
Eat) = 3. alt)i(z) = () (234)

i=0
Ce qui permet d’obtenir I'approximation suivante des variables aux points de col-

location:
N+1

E(zk,t) = ) Bilzk)E(zk, t) (2.35)
=0
Aux points de collocation, il est donc maintenant possible d’approximer les dérivées

partielles spatiales de la fagon suivante :

0% (z, t) & dBi(z)

5 = Zj e (2, t) (2.36)
R b N“dzﬁ,
_% - ;0 d(:") (2:1) (2.37)

2.2.2.1 Mise en oeuvre

Pour les N points de collocation, I'application des approximations au modéle de

Gendron permet d’obtenir les EDO suivantes :

dL ¢ N+1 d A N+1 42 A
%l = —y g ﬁ(ZkL(k, +D§ ﬁ(Zk)L(k,)

~ k(L(z, t)C (2, t))* (2.38)
dC ¢ N+1 d dBi(z) N+1 dz &*B:(2x)

- kL(L(zk, t)C(Zk, t))3 (2.39)
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Les conditions frontiéres du modéle sont approximées ainsi:

N+1
i=0
N+1

i=0

Z——-dﬂi(ff' +1)l(znr+1,t) =0 (2.42)
i=0 ~

& dBi(Crsa)
Z dz

dBilzo) o ) = w(Lizg,t) — Lin) (2.40)

0,t) = v(C(z,t) — Cin) (2.41)

Clzn1,t) = 0 (2.43)

=0

Ce systéme de deux équations & deux inconnues permet donc d’obtenir la solution
aux extrémités du réacteur. La formulation du systéme d’EDQ par collocation
orthogonale est donc formée de N équations différentielles et de 2 équations al-
gébriques pour chaque EDP. Pour pouvoir utiliser cette approximation, N points
de collocation doivent étre déterminés. Le choix de ces points est crucial pour
obtenir une solution de bonne qualité. Les zéros d’'un polynéme de Jacobi Py
sont généralement utilisés et ils représentent un choix optimal selon Villadsen et
Michelsen (1978). Ce polyndme peut étre calculé a partir des équations suivantes

ou « et (3 sont des paramétres d’ajustement:

Po=1 (2.44)

Py = (z2—gn)Py-1+hyPy_p (2.45)

no= gt (2.46)
_ 1 (o + B)(a ~ B)

w = ((a+ﬁ+2N)(a+ /3+2N—2)) (247)

by = 0 (2.48)

hy = (N-1)(N+a—-1)(N+B8-1)(N+a+p5-1) (2.49)

eN+a+B8-1)2N+a+B8-3)2N+a+p5—-2)?
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Finalement, a partir des zéros du polynéme de Jacobi, il est possible de construire

les polyndmes orthogonaux de Lagrange a partir du polynéme de départ suivant:
Pp = 2(z2 — )Py (2.50)

Les polynomes de Lagrange qui forment les fonctions de base §;(z) peuvent finale-

ment étre calculés a ’aide de la relation suivante:

Bilz) = —Fey (2.51)

2.2.2.2 Résultats

Les paramétres NV, a et 8 doivent étre choisis pour ajuster la méthode de colloca-
tion. Intuitivement, le nombre de points N devrait étre maximal pour obtenir une
meilleure précision. Ce n’est pourtant pas le cas ici: un nombre de points trop élevé
implique l'utilisation de polynémes de Lagrange de degré élevé ce qui peut causer
rapidement d’importantes erreurs numériques lors de ’application. L'utilisation de

moins de 20 points est donc impérative.

La position des points de collocation dans le réacteur est déterminée par les parameétres
a et [ qui doivent tous les deux étre supérieurs & —1. Il n’existe pas de régle an-
alytique claire dictant le choix de ces paramétres. Par contre, certaines régles
qualitatives peuvent &tre utilisées (Cho et Joseph, 1983). Ainsi, I'augmentation de
a permet de rapprocher les points de I’entrée du réacteur, alors que I’augmentation
de {3 les rapproche de la sortie. Bourrel (1996) et Tali-Maamar (1994) présentent
tous deux une étude exhaustive de I'ajustement de ces paramétres par simulation.
Récemment, Lefevre et al. (2000) ont présenté une analyse analytique & ce sujet.

Dans le cas du réacteur de blanchiment, le choix de @« = 1 et § = 1 donne des



47

résultats adéquats aux conditions d’opération nominales.

La méthode de collocation orthogonale a tout d’abord été appliquée sur le systéme
linéaire pour des fins de validation. La figure 2.8 présente donc une comparai-
son de la résolution par la méthode analytique et par la méthode de collocation

orthogonale avec 12 points.

é .
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Figure 2.8 Validation de la méthode de collocation orthogonale

La figure 2.9 permet d’apprécier 'impact du nombre de points de collocation sur la
résolution du modéle de Gendron. Ainst, pour un trop faible nombre de points la
solution présente des oscillations en amont et en aval de la transition dynamique.

Par contre, I'utilisation de 12 points permet d'avoir une solution stable.

Le désavantage principal de la méthode de collocation est la sensibilité de |'ajustement
des paramétres. La figure 2.10 présente une simulation pour laquelle le débit a été

doublé et la dispersion réduite d’un ordre de grandeur. Dans ce cas, toutes les solu-
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Figure 2.9 Influence du nombre de points de collocation

tions oscillent, ce qui indique clairement qu'un ajustement différent des paramétres

serait nécessaire.

2.2.3 Résolution par éléments finis

Tout comme dans le cas des méthodes de résidus pondérés la solution par la méth-
ode des éléments finis est construite & partir d'une approximation sous la forme
d’une sommation de fonctions de base. Par contre, au lieu de considérer ’ensemble
du domaine, la méthode des éléments finis utilise les approximations sur chacune
des portions d’un maillage. Dans le cas de la méthode de Galerkin qui sera utilisée

ici, les fonctions de pondération sont les mémes que les fonctions de base.

La méthode des éléments finis utilise une formulation variationnelle de systéme

d’EDP. Cette formulation est obtenue en multipliant les équations par une fonction
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Figure 2.10 Collocation orthogonale: Modéle de Gendron avec Pe = 100

de pondération puis en intégrant le tout sur la longueur du réacteur de la fagon

sutvante:

/ e (aL(z t) aL(z t) D62L(z,t)

0z d22
—ki(L(z,H)C(z,))*) dz =0 (2.52)
aC(z, t) aC(z t) 9*C(z,t)
/ #5(z ( 0z =D 922
—ke(L(z,t)C(z,t))*) dz =0 (2.53)

Le théoréme de Green est, par la suite, appliqué sur ces équations. Cette opération
permet d’obtenir une formulation faible du probléme dans laquelle les contraintes
de régularité sur les solutions sont amoindries. Cette approche permet aussi de

faire apparaitre explicitement les conditions frontiéres naturelles. La formulation
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faible est donc:

[ s (aL(z ) . 9L )+kL(L(z t)C(z,1)) )

0z
dg;(z) OL(z, 1) 0Lz Y ,
R - RCRC

[4», (6C(zt Cg,t) +kC(L(z,t)C(z,t))3) iz

aC(z,t)|°
0z

+ [pBEXAED ), pyey

=0 (2.55)
0

Sur chacune des mailles, cette formulation demeure valable. II est donc possible

d’obtenir;

e pdes(2) OL(zt) | OL(z,¢t)
+/zk Tdz 0z o, 7 Dol 9z N

/:4-1 45(2) (aC(z ,t) _HIBC;? t) + ke(L(z, t)C(z,t))3) dz

Tl

=0 (2.56)

et ddi(z) 9C(2,8) (19C(z,t) Rt o e
+ a D o e dz — D¢;(z) % =1{ (2.57)
Les approximations suivantes des variables sont donc utilisées:

N

L(z,t) = 3 Lz, t)gi(2) (258)
i=0
N

C(z,t) =) C(z, t)¢i(2) (2.59)
i=0

Ce qui permet d’obtenir les expressions suivantes:

/:# 8(2) (fj (¢i(z) %‘?t)) + Ué ( Lot dti)iz))

=20
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+k, (ﬁ 84(2) Lz t))s (i 820z, t))3) d

z:“—Dd‘ﬁ: f; ( L( ,,—t) d¢'(z)) dz — Dg;(3) aLc,(;’ 2l 0(2.60)
[0 (‘_u > (s%52) 4 vi (¢t y %)
s (s (Eowrtas) )
[ o2 5 (0t B dx - gy X2 o
(2.61)

La formulation compléte sur une maille est donc composée des équations précé-
dentes qui sont exprimées pour chacune des fonctions de pondération. En util-
isant les propriétés des polynomes orthonormaux aux frontiéres, la formulation

matricielle suivante est obtenue:

iy Ly(t) | ~Dg; 4
: : 0
P o || dsl L Q 0| v | _| kR Dg; 42|
0 p|]| fa 0 Q||a) | |kR ~Dg; %54}
5 ; 0
| 5 ) | Cw(®) | | g, |
(2:62)

Pour simplifier les calculs des différentes intégrales, un changement de variable est
appliqué. Ce changement permet de normaliser le calcul en considérant une maille
unitaire. En considérant k la longueur de la maille originale, les équations suivantes

permettent d’effectuer le changement de variable:

z = z+he (2.63)
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dz = hdz (2.64)
#(z2) = §(z) (2.65)
dg(z) _ 1dg(z)

&z - hdz (2.66)

Les éléments de 'équation matricielle sont donc maintenant:

PG = b [ ' 6:(2)du(z)dz (267)

Q) = [ (vhi B4 2 d"f;i)‘"f;f)) : (258)

R(j) = —h / $i(2) (Z ¢i(2) L(zi,t) ) (th )C (2t )de (2.69)

=0 i=0

La formulation compléte du probléme est obtenue en assemblant 'équation ma-
tricielle de chacune des mailles dans une équation matricielle générale. Par la suite,
il suffit d’intégrer directement les conditions frontiéres du probléme pour obtenir
un systéme d’équations différentielles ordinaires qui finalement est I'approximation

par éléments finis du modéle de Gendron.

2.2.3.1 Résultats

La méthode des éléments finis a tout d’abord é&té appliquée sur le systéme linéaire
pour des fins de validation. La figure 2.11 présente donc une comparaison de la

résolution par la méthode analytique et par la méthode des éléments finis pour 20

éléments.

La méthode des éléments finis de type Galerkin peut étre ajustée a 'aide de
deux paramétres: I'ordre de 'approximation N et le nombre d’éléments. L’ordre

d’approximation 1 & été utilisé car I'utilisation d'un ordre supérieur complique forte-
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Figure 2.13 Eléments finis: Résolution pour Pe = 2000

ment I'expression des ODE compte tenu de I'ordre élevé de la cinétique de réaction.
La figure 2.12 présente les résultats de simulations pour un Peclet de 20. Ainsi pour
un systéme suffisamment dispersif, la méthode des éléments finis est. suffisament
précise pour un nombre d’éléments inférieur 4 la méthode des différences finies.
Par contre, la méthode des éléments finis ne permet pas de résoudre des problémes
ol la convection est largement dominante. En effet, la figure 2.13, qui présente des
résultats de simulation pour le cas d’un nombre de Peclet égal & 2000, montre bien
que la réponse devient rapidement oscillatoire si la convection domine. De plus,

pour un maillage trop faible, des problémes de diffusion numeérique apparaissent.
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2.3 Meéthode de résolution numeérique par alternance

L'utilisation d’un modéle & paramétres répartis dans une stratégie de commande
peut faire appel a sa résolution en ligne. Malheureusement, les méthodes numériques
classiques sont peu adaptées i ce type d’utilisation. En effet, la priorité principale
de ces algorithmes est d’obtenir la solution la plus précise possible. Ainsi, la ro-
bustesse 4 I’ensemble des variations industrielles et la rapidité d'exécution sont des
objectifs secondaires. De plus, dans le cas de systémes faiblement dispersifs, la
résolution en transitoire est affectée par le probléme de diffusion numérique. Ces
observations motivent donc le développement d'un nouvel algorithme de simula-
tion mieux adapté pour une utilisation dans un contexte industriel sur des systémes

faiblement dispersifs.

Cette section présente donc une méthode de résolution numérique congue pour une
application en ligne. La précision n’est donc pas la seule préoccupation considérée
lors du développement de cet algorithme. En effet, la stabilité du schéma, la sim-
plicité, le temps de calcul et la réponse en fréquence du modéle numérique sont
aussi des facteurs importants. Cette nouvelle approche est basée sur P'organisation
en séquence des phénoménes dans le temps plutdt que sur une formulation vari-
ationnelle. Ainsi, chacun des phénoménes, soit la convection, la diffusion et la
réaction, est appliqué de facon successive a chaque pas de temps. Cette approche
relativement simple permet d’obtenir un schéma numérique stable et rapide. De
plus, la réponse en fréquence du modéle numérique est améliorée par le traitement

indépendant de la convection.
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2.3.1 Description de la méthode par alternance

Soit le systéme d’EDP général suivant qui décrit un réacteur tubulaire:

Bzgzt,t) _ _vaa:((azz,t) N Dazaé(zzz,t) — r{z(z) =0 (2.70)
Daxgi’t) = o(z(0,8) - zeu(t) (2.71)
ox(l,t)

=t =0 (2.72)

(2,0) = zp(2) (2.73)

Les méthodes numériques classiques approchent la résolution de cette équation en
utilisant des approximations dans I'espace ce qui permet d'obtenir des équations
différentielles qui seront, par la suite, résolues. La méthode de résolution par
alternance utilise plutdt le comportement dans le temps du systéme comme cadre de
travail. Dans un systéme décrit par des équations paraboliques, trois phénoménes
se produisent a chaque pas de temps: la convection, la dispersion et la réaction. Si
le pas de temps est suffisamment petit, il est possible de considérer que chacun des
phénoménes est indépendant et qu’ils se produisent successivement. De cette facon,
il est possible de formuler simplement les équations et les conditions frontiéres de
chacun des sous-systémes ainsi que de les résoudre. Cette vision est a la base
de l'algorithme de la méthode par alternance (MA) qui consiste donc a passer la
solution du pas de temps précédant & travers des sous-systémes de convection, de
diffusion et de réaction afin obtenir la réponse au pas de temps actuel, la solution
d’un sous-systéme devenant la condition initiale du prochain sous-systéme a chaque

transition. Mathématiquement, cet algorithme peut étre décrit de la facon suivante:

1. Soit z¢(2) le profil initial du réacteur

2. Le profil initial est utilisé comme condition initiale du sous-systéme de con-
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vection suivant:

dz*(z,t) 0z*(z,t)
5t = U (2.74)
T (01 t) = ZIin(t) (2.75)
" (z,t) = z4(2) (2.76)

Ce sous-systéme est résolu pour un pas de temps At.

3. Le profil obtenu aprés la résolution de I'étape de convection soit z},(z) =

z*(z, At) devient la condition initiale du sous-systéme de diffusion suivant:

dz**{z, ) Dazx“(z, t)

= = @.77)
ar*(0,8)
5 = 0 (2.78)
gamht) _ (2.79)
0z
*(2,0) = zh(2) (250)

Ce sous-systéme est résolu pour un pas de temps At.

4. Le profil obtenu apreés la résolution de I'étape de diffusion soit z, = z**(z, At)

devient la condition initiale du sous-systéme de réaction suivant:

or(z,t) _
5 = ~r(z(z,t)) (2.81)

#(z,0) = zx(2) (2.82)
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Ce sous-systéme est résolu pour un pas de temps At.

Cet algorithme permet donc d’obtenir la solution du probléme de base pour un pas
de temps At. Ce processus peut &tre répété pour toute la durée de la simulation.
Ainsi, A& chaque pas de temps, le contenu du réacteur est poussé vers la sortie
du réacteur selon la vitesse superficielle. La dispersion est ensuite appliquée sur
tout le réacteur et finalement, la réaction est réalisé sur chacun des points selon
les concentrations en présence. Cette approche peut étre utilisée aussi bien sur
les équations hyperboliques que paraboliques sans modification de la définition
des conditions frontiéres et sans modifier un paramétre de réglage quelconque en

fonction du nombre de Peclet.

2.3.2 Résolution des sous-problémes

Pour un pas de temps At, N éléments de dimension Az sont utilisés pour définir

le maillage. Les discrétisations suivantes sont donc utilisées:

Az=1[/N (2.83)
At = Azfv (2.84)

Selon ce choix, la précision du maillage détermine le raffinement de la solution dans
I’espace et le temps. Cette approche impose I'utilisation d’'un maillage régulier mais
I'utilisation d’un maillage asymétrique peut aussi ére envisagée. De plus, le pas

de temps peut étre modifié directement pour tenir compte d’un débit variable.

La résolution du sous-systéme de convection est la partie la plus simple de I’algorithme

car il s’agit d'un simple systéme avec délai. Donc, i chaque pas de temps, il suf-
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fit de faire progresser les concentrations d’un pas vers la sortie dans le maillage.
Ainsi, la concentration qui était & la sortie est éliminée et la concentration présente

i 'entrée du réacteur est ajoutée sur le premier noeud du maillage.

Le sous-systéme de dispersion peut &tre résolu de différentes facons. En effet, la
méthode des différences finies et celle des éléments finis sont toutes deux efficaces et
stables pour résoudre ce type d’équation. Les différences finies ont I’avantage d’une
formulation plus simple alors que les éléments finis traitent plus efficacement les
conditions frontiére de Neumann. Dans le cas de ces deux approches, le probléme

de dispersion se raméne a:

dx** (z,t)

= { . t 2‘
5 Mz™{z,t) (2.85)

*(2,0) = zi(2) (2.36)
Pour les résultats de cette thése, la méthode des différences finies est utilisée avec

la définition de différence centrée suivante:

821‘“ (Zr t) ~ I"‘(Zi+ly t) — 23:"(21'1 t) +z* (zi~17 t)

57 D A (2.87)
Le systéme matriciel suivant est donc obtenu:
[ i(az,t) ) (-1 1 0 ... o)(="(azt) )
i (2Az, 1) 1 -2 1 ... 0[] z"(2Az,&)
A2 — D tx
*(3Az,t) | = B7)? 60 1 -2 ... 0 z**(3Az, ¢;) (2.88)
\ 3™ (NAz,1) L0 0 -0 .. -1 )\ z"(NVazt)

Comme ce systéme est linéaire, il peut étre solutionné pour un At donné en utilisant
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la matrice de transition suivante (Rugh, 1993):

z**(z, At) = exp (—&M * At) * 27 (z,0) (2.89)

Le calcul de la matrice exponentielle peut étre fait au préalable. La résolution du
sous-systéme de dispersion se raméne donc a une simple multiplication entre une

matrice et un vecteur.

La résolution du sous-systéme de réaction est généralement la portion la plus lente
de algorithme de résolution par alternance. En effet, I'équation de réaction doit
étre résolue 4 chaque point du maillage ce qui génére un nombre important d’EDO
indépendantes. Ces équations peuvent étre résolues par séparation de variable de

la fagon suivante:

T 1 At
/;D m(ﬂm = 0 dt (290)

Cette approche permet d’obtenir la relation:
f(za Zy, At) =0 (291)

S'il est possible d’exprimer z comme une fonction de ¢ et de z,, la solution est alors
simple et rapide. Par contre, si la réaction implique plusieurs réactifs et des ciné-
tiques non linéaires, cette approche risque de mener a une relation transcendantale
insoluble analytiquement. Dans ce cas, deux approches sont possibles: résoudre

numériquement cette relatior ou résoudre directement les équations différentielles.

L’algorithme de résolution par alternance est donc simple 4 mettre en oeuvre et
plusieurs variations peuvent étre mises en place pour raffiner la solution selon le type
de probléme. La résolution ne nécessite pas une attention particuliére au nombre
de Peclet. Ainsi cette approche est bien adaptée aux procédés pour lesquels les

conditions d’opération sont variables. Par exemple, il est possible de simuler en
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utilisant cette approche un systéme dans lequel le terme dispersif est négligeable

ou non selon les conditions d’opération.

2.3.3 Analyse de la méthode par alternance

Pour valider la méthode par alternance, le systéme linéaire et sa solution analytique
seront encore une fois utilisés. De plus, la méthode des différences finis (MDF) sera
utilisée pour une validation & des nombres de Peclet élevés. Un maillage de 100
noeuds est utilisé pour toutes les simulations et des nombre de Peclets de 1, 10* et

108 seront considérés.

La simulation selon la méthode par alternance est réalisée selon I'algorithme présenté
précédemment et le code de simulation est présenté 4 la figure 2.14. Comme la ciné-
tique est de premier ordre, le sous-systéme de réaction peut étre solutionné a l'aide

de la solution analytique ci-dessous:

z(t, z) = exp(—k = At) * 3°(2) {(2.92)

Les figures 2.15-2.17 montrent la concentration i la sortie et le profil du réacteur
obtenus lors de la résolution du systéme linéaire pour différents nombres de Peclet
et difféerents maillages. Dans le cas de Pe = 1 la solution analytique est aussi
présentée. Une premiére analyse des résultats montre que toutes les méthodes
numériques permettent d’avoir une idée générale du comportement du réacteur.
Toutefois deux problémes subsistent: la méthode des différences finies représente
difficilement un réacteur piston et la méthode par alternance commet une erreur

sur le profil i 'entrée dans le cas de réacteur fortement dispersif.

Dans le cas d'un réacteur piston, la MA donne la réponse exacte tout comme la



% Initialisation

v = 0.05; % superficial velocity
k = 0.057; % kinetic parameter

D = 0.05; % Dispersion for Pe=1
N = 100; % Mesh definition

dz = 1/N; % Space step

dt = h/v; % Time step

t = 0:dt:50; % Time span
% Results initialisation

result = zeros(N,length(t));
% Input

x_in = ones(1,length(t));
% Diffusion matrix calculation

matexp = —2/dz"2xeye(N);

for i=1:N-1
matexp(i,i+l)=1/dz"2;
matexp(i+1,i)=1/dz"2;

end;

matexp(1l,1)= -1/dz"2;

matexp (N,N)= —-1/dz"2;

matexp = expm(matexp*Dxdt);

% Simulation loop

for i=2:length(t)
% Convection
result (:,i) = [Lin(i-1);result (1:N-1,i-1)]|;
% Reaction
result (:,i) = exp(—kl*dt).xresult (:,i);
% Diffusion
result (:,i) = matexpxresult (:,i);
end;

Figure 2.14 Programme Ma.tlab© dans le cas linéaire
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Figure 2.17 Solution du systéme linéaire pour Pe =1

méthode des caractéristiques car le probléme est dégénéré au cas hyperbolique.
Par contre, la MDF induit une diffusion numérique dans les cas de Pe = 102 et
Pe = 10* tel que le montrent les figures 2.15 and 2.16 . Par sa formulation, la
MDF ne peut tenir compte des variations abruptes des entrées car elle correspond
en fait au modéle bien connu des réacteurs parfaitement mélangés en série. La

MDF génére des équations du type suivant:

aA(tr Z,) ~ DA(tr zi+l) " 2A(t7 zl) + A(tr Zi—l)
a (Az)?
_ ,UA(tr Z,) - A(tv zi—l) _ kA(t, Z) (2’93]

Az

L’application de la transformée de Laplace & cette équation permet d’obtenir I’équation
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suivante:

D/(Az)? +u/Az
s+2D/(Az)? +v/Az+k
D/(Az)?
s+2D/(Az)2 +vf/Az+ k&

Als,z) = A(s, zi-1)

+

A(s, zi41) (2.94)

Cette équation permet de voir que chaque portion du maillage agit en fait comme un
filtre passe-bas dont la fréquence de coupure est fonction des éléments suivants: le
facteur de dispersion, la vitesse superficielle, la constante cinétique et la définition
du maillage. Pour mettre ce phénoméne en évidence, la figure 2.18 présente les
diagrammes de Bode des approximations par MA et MDF pour différents maillages.
Pour un nombre de Peclet faible, les réponses en fréquence sont similaires car le
facteur de dispersion est dominant et limite donc la largeur de bande. Par contre,
pour un nombre de Peclet élevé, c’est 'approximation numérique qui limite la
largeur de bande dans le cas de la MDF. Pour la MA, la définition du maillage

détermine directement la largeur de bande.

L’analyse fréquencielle permet aussi de voir que le temps de simulation peut étre
relié directement au contenu fréquenciel de I'entrée du réacteur comme le montre
la figure 2.19. Ainsi, le temps de simulation par la méthode MA ne varie pas
en fonction de la fréquence de 'entrée car il s’agit d’'une méthode a pas fixe. Par
contre, le temps de résolution par la MDF croit exponentiellement avec la fréquence
de I'entrée. Cette observation peut s’expliquer simplement par I'utilisation d’une
méthode i pas variable d’intégration des ODE. Cette utilisation est essentielle pour
assurer la stabilité du schéma numérique. Finalement, le temps de simulation pour

la méthode MA est aussi indépendant du nombre de Peclet.

Dans le cas d'un nombre de Peclet élevé, les figures 2.15-2.16 montrent que les

solutions obtenues par la MDF sont toujours légérement plus élevées que celles
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obtenues par la MA. En fait, l]a MDF conduit & une erreur en régime permanent.
11 est possible de le démontrer en analysant le cas d’un réacteur piston en régime

permanent comme suit:

dz(z) &
1 ——;z(z) (2.95)

La solution analytique de cette équation est:

k
z(z) = e*z(0), a= - (2.96)
En utilisant la MDF la solution est plutot:
z(z) = (1 — az/n)"z(0) (2.97)

il est possible d’obtenir 'expression analytique de I'erreur entre les deux solutions

en utilisant les développements en série suivant:

_ —-az -az! -aZ®
e = 1+ 1!-i- 51 + 3 +..
2
- 1
(1-az/n)* = 1+ l‘fz+ ;f ("n ) (2.98)
-az8(n-1)(n-2)
o (- 2
L’équation d’erreur est donc:
error =y ~——— + ——— (2.100})
LS ()

Cette équation d’erreur est une fonction monotone décroissante de n. Elle permet
donc d’expliquer la surestimation systématique de la valeur en régime permanent

de la MDF par rapport, 4 la MA pour des nombres de Peclet élevés.

Pour Pe = 1, les deux méthodes numériques peuvent étre comparées i la solution
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exacte. La figure 2.17 montre que la solution a la sortie du réacteur est calculée
adéquatement par les deux algorithmes. Par contre, la MA arrive difficilement
i obtenir la solution exacte du profil a I'entrée du réacteur. Cette lacune de la
méthode MA peut étre expliquée par les conditions frontiéres qui sont modifiées
par le découplage en sous-systémes. En effet, cette séparation cause la perte de
I'information sur le gradient 4 'entrée qui est apportée par les conditions originales
de Danckwerts. Pour retrouver ce gradient, le maillage doit étre fortement raffiné
a l'entrée du réacteur. Ainsi, dans ce cas, |'utilisation d’'un maillage non-uniforme
peut étre avantageux. La figure 2.20 présente la variation de l'intégrale de la
valeur absolue de I'erreur pour la MDF et la MA par rapport i la définition du
maillage. Ces courbes montrent que la MA cause une erreur plus importante que
la MDF. Toutefois, 'erreur est du méme ordre de grandeur pour les deux méthodes
et elle a des propriétés de consistance intéressante. Aprés la condition frontiére &
I'entrée du réacteur. la source principale d’erreur dans la méthode par alternance
est évidement la séparation en sous-systémes et leur ordre de résolution. Pour un
systéme linéaire, les phénomeénes de dispersion et de réaction sont commutatifs.
Leur ordre de résolution n'est donc pas important. La convection, par contre,
doit étre appliquée en premier lieu pour éviter une surestimation de la conversion.
Heureusement, la propriété apparente de consistance de la MA permet de bien

contrdler 'erreur en réduisant le maillage.

2.3.4 Application au modéle de Gendron

L’application de la méthode par alternance au modéle de Gendron est réalisée
en utilisant un maillage de 200 noeuds et les résultats de la MA sont comparés
a ceux de la MDF. La figure 2.21 présente les entrées qui sont utilisées pour les

simulations. Les figures 2.22 i 2.24 montrent les résuitats de simulation obtenus
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Figure 2.20 Analyse de I'erreur

pour différents nombres de Peclet. Elles montrent que les caractéristiques des
méthodes numériques observées dans le cas linéaire se retrouvent aussi dans le cas
non linéaire. Ainsi la MDF est limitée par sa faible bande passante et la MA ne

permet pas de solutionner adéquatement le profil i I'entrée du réacteur.

Comme le sous-systéme de réaction est non-linéaire, les sous-systéme de dispersion
et de réaction ne sont plus commutatifs. L’'influence de I'ordre de résolution doit
donc étre étudiée. Les figures 2.22-2.23 montrent que I'ordre de résolution n’est pas
important pour les systémes faiblement dispersifs. Par contre, la figure 2.24 mon-
tre que la solution avec l'ordre convection-réaction-dispersion (CRD) plut6t que
convection-dispersion-réaction (CRD) cause une erreur importante. L'amplitude
de cette erreur est en partie attribuable a 'ordre élevé de la cinétique de réaction.
La figure 2.25 montre l'intégrale de la valeur absolue de P'erreur entre les solutions

CRD et CDR pour différents nombres de Peclet et différentes définitions du mail-
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lage. Méme si I'erreur est consistante par rapport au maillage, le nombre de Peclet
est le facteur dominant pour la qualité de la solution. L’utilisation d’un maillage
de dimension variable qui serait fonction de la vitesse de réaction est probablement

une fagon efficace de réduire I’erreur si le nombre de Peclet est faible.
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Figure 2.25 Erreur entre la MA avec CDR et la MA avec CRD

2.4 Synthése des résultats

Ce chapitre a présenté différentes méthodes m'tmériques qui permettant de solu-
tionner un systéme i paramétres répartis de type convection-diffusion-réaction. Le

tableau 2.2 suivant résume les avantages et inconvénients de chaque méthode.



Tableau 2.2 Synthése des caractéristiques des méthodes numériques utilisées

73

Méthode

Avantages

Désavantages

Méthode des
différences finies

- Mise en oeuvre simple

- Nombre important d’EDO

- Diffusion numérique

- Simulation correcte d’un
réacteur piston impossible

- Traitement approximatif
des conditions frontiéres

Méthode de - Nombre réduit d’EDO | - Choix difficile des
collocation - Simulation rapide point de collocations
orthogonale - Peu robuste aux variations
des paramétres du modéle
Méthode des - Traitement exact des | - Mise en oeuvre complexe

éléments finis

conditions frontiéres

- Oscillation en transitoire
dans le cas de systémes
dominées par la convection

Méthode par
alternance

- Mise en oeuvre simple

- Méthode a pas fixe

- Pas de diffusion
numeérique

- Simulation exacte d’un
comportement, piston

- Robuste aux
perturbations
des paramétres

- Méthode heuristique
- Erreur plus importante dans
le cas de systémes dispersifs
- Conditions frontiéres
a |'entrée inexactes
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Commande d'un systéme a

parametres repartis
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CHAPITRE 3

PROBLEMATIQUE, COMMANDE PREDICTIVE ET COMMANDE
PAR PRE-APPROXIMATION

Les opérateurs des usines de pite peuvent assurer le fonctionnement des tours de
blanchiment sans I'aide d’algorithme de commande ou de modéles. Par contre,
'opération manuelle a ses limites: variabilité importante du produit, utilisation
excessive de réactif chimique, etc. Plusieurs algorithmes de commande ont donc
été mis en place pour optimiser le rendement du procédé de blanchiment. Indus-
triellement, 'algorithme de blancheur compensé {"compensated brigthness") peut
étre vu comme un standard. Depuis, I’application de la commande adaptative a
permis d’augmenter les performances du procédé. Par exemple, Gendron et al. ont
présenté un régulateur adaptatif 3 modéles pondérés qui est maintenant appliqué
dans plusieurs usines. Dans le cadre de {a problématique de cette thése, Hamelin
(1999) a présenté I'application de cet algorithme au modéle de Gendron et propose
d’y ajouter une composante anticipative pour réduire I'impact des perturbations.
De plus, Créte (2000) a présenté l'utilisation de la commande prédictive de type
DMC sur le méme modele. Les résultats de ces travaux ne seront pas présentés
directement dans cette thése quoi qu’il fassent partie intégrante du projet. Ainsi
seule une variante de I’algorithme DMC présenté par Renou et al (20005) sera util-
is€ afin de servir de base de comparaison avec les algorithmes basés sur le modéle

a paramétres répartis.

L’objectif de ce chapitre est de présenter I’application et I’adaptation d’algorithmes
connus au probléme de commande d’un réacteur de blanchiment. La premiére par-

tie du chapitre présente donc la problématique de la commande d’un réacteur de
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blanchiment ainsi que les principales hypothéses de simulation. La seconde présente
le comportement en boucle ouverte du réacteur en réponse aux diverses pertur-
bations et variations du point de fonctionnement. La troisiéme partie présente
une adaptation de I'algorithme de commande prédictive avec matrice dynamique
qm permet de tenir compte efficacement de la variation du débit. Finalement, la
derniére portion du chapitre présente I’utilisation des différences globales dans une

approche de pré-approximation pour la commande de la tour de blanchiment.

3.1 Problématique générale de commande

Le probléme de commande d’une tour de blanchiment est principalement carac-
térisé par le temps de résidence important du réacteur et la non-linéarité de la
cinétique. De plus, la compiexité du probléme est accentuée par la manvaise qual-
ité de I'identification des cinétiques, les nombreuses perturbations qui influencent le
procédé et le peu de capteurs disponibles sur le procédé. Cette section présente donc
les différentes hypothéses qui sont utilisées pour simuler le comportement du réac-
teur et étudier les performances des systémes de commande proposés. L’objectif
n’est donc pas de reproduire exactement le comportement du réacteur, mais bien
d'avoir une idée générale de son comportement sous l'influence de variations bien

controlées.

La configuration de l'instrumentation d’un réacteur de blanchiment n’est pas uni-
forme entre les différentes usines et ce, méme au sein d'une méme compagnie. La

figure 3.1 présente la configuration du réacteur qui a été choisie.

Ainsi, une mesure de la lignine en amont du procédé est réalisée ainsi qu’une
mesure en aval. Le dioxyde de chlore, qui est la variable manipulée du procédé, est

ausst mesuré a la sortie du réacteur. Les hypothéses suivantes sur 'utilisation des
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Figure 3.1 Schéma du réacteur de blanchiment

capteurs sont considérées:

1. La péte a des propriétés uniformes. La pate, lors du blanchiment, a générale-

ment une consistance élevée. Ainsi, le mélange avec les réactifs n'est prob-
ablement pas uniforme. De plus, la lignine n’est pas répartie uniformement
dans les fibres. Ces constatations peuvent, par contre, difficilement étre prises
en compte lors de I’élaboration de la stratégie de commande. Cette variabilité
causée par la mesure est probablement inférieure & la variabilité naturelle des

fibres. Elle sera donc négligée.

. Les mesures prises sont en conformité avec le modéle. La mesure de la lignine

est faite en Kappa. Cette mesure découle d'un test standard qui relie une
expérience de laboratoire au taux réel de lignine. Comme la réaction globale
est mal connue, ce test ne permet pas d’avoir une mesure précise de la lignine
effectivement extraite des fibres ou encore de celle qui sera extraite apres le
lavage. Pour simplifier 'analyse, cette étude assume donc que le modéle est
consistant i.e. que le taux de lignine est bien la variable contrélée et que les

mesures en Kappa reflétent bien ce taux de lignine.

3. Les mesures sont prises en ligne. Industriellement, peu de capteur de lignine
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sont disponibles en ligne pour le moment. Les taux de lignine sont donc
généralement calculés suite i des tests en laboratoires effectués a toutes les
heures. Par contre, certaines usines utilisent maintenant des capteurs de
lignine en ligne i I'entrée de la tour. Cette étude assume que les mesures
sont prises en ligne aux deux extrémités et que la fréquence d’échantillonage

est suffisante.

L'élaboration d’un systéme de commande, pour le procédé de blanchiment, doit
prendre en considération la présence de plusieurs perturbations causées tant par
I'opération du procédé que par la matiére premiére. Ainsi, la pite a des propriétés
physico-chimiques et une composition qui varie fortement au cours du temps. Cette
variation est issue de diverses sources telles que: I'espéce du bois, les conditions
d’entreposage, les étapes précédentes du procédé de mise en pite, etc. De plus, le
fonctionnement de I'unité de blanchiment est aussi une source de perturbation im-
portante. En effet la température, le pH et d’autres conditions de fonctionnement
peuvent varier. Tenir compte directement de toutes ces perturbations dans le mod-
¢le ménerait rapidement A un modéle de dimension importante difficile 4 identifier.
Donc, pour tenir compte de toutes ces perturbations, les modéles suivants de per-

turbation seront utilisés:

1. La lignine i 'entrée varie de fagon stochastique. Les différentes variations
de la matiére premiére ainsi que les procédés utilisés en amont causent une
variabilité importante de la lignine. Cette variation est observable dans les
données d’usines. Le modéle utilisé sera donc la valeur nominale de la lig-
nine auquel sera ajouté la somme cumulée d'une variable aléatoire de faible

amplitude.

2. Le débit et le point de consigne varient subitement. Ce modéle n'est pas

conforme A la réalité car généralement la variation du débit de production
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ainsi que les changements de point de consigne sont faits de facon progressive
en usine. Toutefois, cette approche est de type "pire cas" et permet d’assurer

et d’'imposer une certaine robustesse aux algorithmes de commande.

3. Les parameétres cinétigues varient subitement. Les paramétres physico-chimiques
de fonctionnement de la tour influencent directement la réaction chimique.
Ses variations seront donc modélisées par une approche pire cas qui consiste
A varier subitement les constantes cinétiques. Des perturbations échelons des
deux constantes cinétiques seront donc utilisées. De plus, ce modéle permet
de tenir compte de la réactivité variable de la matiére premiére sans consid-

érer toutefois un modéle réparti de ce type de perturbation.

4. Différentes cinétiques sont possibles. L’identification du modéle cinétique
pour ce type de réaction est difficile. De plus, cette cinétique peut varier en
fonction de la matiére premiére. Les différents modéles cinétiques identifiés

au chapitre 1 donnent donc une gamme de cinétiques possibles.

Sur la base de ces hypothése, le probléme de commande cousiste donc & maintenir
la lignine & la sortie du réacteur (la variable commandée) 4 son point de consigne
en variant la concentration de dioxyde de chlore a l'entrée du réacteur (la variable
manipulée). L'élaboration des stratégies de commande doit tenir compte des varia-
tions stochastiques de lignine 4 I'entrée et des perturbations de type échelon sur les
constantes cinétiques. De plus, I'algorithme doit étre robuste par rapport a divers

modeéles cinétiques.

3.2 Comportement en boucle ouverte

Avant de développer différents algorithmes de commande, il est important d’avoir

une idée de la sensibilité du procédé. En effet, la performance d'un régulateur
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est toujours relative a4 son comportement en boucle ouverte. Les figures 3.2 4 3.5

donnent une idée de la sensibilité du modéle M1 présenté au chapitre 1.
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Figure 3.2 Effet de la variation du débit en boucle ouverte

Ces figures permettent d’apprécier le comportement non linéaire du procédé. En
effet, la non-symétrie par rapport aux valeurs nominales est évidente dans le cas
d’une variation des constantes cinétiques. Cette caractéristique est aussi présente
plus faiblement dans le cas de la variation de la lignine a I'entrée et d’une variation
du débit. Ces observations déterminent donc le niveau des perturbations qui seront
appliquées lors des analyses subséquentes. Les perturbations sur les paramétres
cinétiques seront donc de I'ordre de 20% de leur valeur nominale alors que celles
sur le débit seront de 50% de la valeur nominale. Ces niveaux de perturbations
permettront donc de pousser le procédé hors de la zone linéaire autour du point de
fonctionnement. La variation du niveau de lignine i I’entrée est choisie en fonction
des données industrielles disponibles. Ainsi une distribution normale de moyenne

nulle et de variance (.05 sera cumulée a chaque pas de temps et ajouté a la valeur
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Figure 3.5 Effet de la lignine 4 ’entrée en boucle ouverte

nominale de |'entrée.

Les modéles M2 et M3 du chapitre seront utilisés pour ’étude de robustesse.
Comme les perturbations des constantes cinétiques seront aussi appliquées sur ces
modéles, leurs variations doivent étre ajustées pour tenir compte du changement
d’ordre de la cinétique. La figure 3.6 montre I'adéquation des variations en boucle
ouverte pour les variations équivalentes des constantes cinétiques présentées au

tableau 3.1

Tableau 3.1 Equivalence de la variation des constantes cinétiques

Paramétre || M1 M2 M3 |
kr +20% | +25.5% | +43%
ke +20% | +25.5% | +43%
kc -20% | —-22% | +42.5%
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Figure 3.6 Equivalence de la variation en boucle ouverte des variations des con-
stantes cinétiques

3.3 Commande prédictive

La commande prédictive apparait sous diverses formes dans la littérature compte
tenu que ses origines sont principalement industrielles. L'idée de base est générale-
ment attribuée a Cutler et Ramaker (1979) ou & Richalet et al. (1978). Le principe
de base de cet algorithme est d’utiliser un modéle pour batir une prédiction du
comportement futur du procédé dans le cas ou la commande n’est pas modifiée.
Cette prédiction est comparée au comportement désiré, ce qui permet de déter-
miner les modifications de la commande a effectuer sur un certain horizon pour
atteindre la référence. A chaque itération, seule la premiére action de commande
calculée est appliquée au procédé. De plus, la trajectoire prédite est adaptée en
fonction de 'évolution du procédé afin de tenir compte des perturbations. La figure

3.7 résume les éléments principaux de cette stratégie.
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Figure 3.7 Principe de la commande prédictive
3.3.1 Mise en oeuvre

L’algorithme DMC (Dynamic Matrix Control) présenté, par exemple, dans (Ogunnaike
et Ray, 1994) est utilisé ici. Cet algorithme utilise une formulation discréte de la

réponse 4 'échelon sous la forme d’une matrice. Soit le vecteur suivant:

B= [8(1) BR) ... BIN)] (3.1)

Les fB(7) représentent la valeur en variable de déviation de la sortie du procédé
en réponse & 'échelon jusqu’a () qui est la valeur en régime permanent. En
assumant un horizon de prédiction de dimension p et un horizon de commande m,

il est possible de construire la matrice suivante:

(g1) o ... 0

g B(2) B ... 0 (32)

| B®) Blp—1) ... Blp—m+1)
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Cette formulation matricielle permet de construire la prédiction de P'évolution de

la sortie aprés 'application de 1'horizon de commande de [a facon suivante:
F{k +1) = 3°(k) + BAu(k) + w(k) (3.3)

Dans cette équation, le vecteur ¥'(k) de dimension p représente la prédiction
du comportement sans action de commande , le vecteur Au(k) de dimension m
représente les variations de commande et finalement le vecteur w(k) de dimension
p représente la différence entre la prédiction et la sortie réelle du procédé i I'instant

k. Les paramétres p et m sont les paramétres d’ajustement de I'algorithme.

Si la trajectoire désirée sur I’horizon de prédiction est représentée par le vecteur
y*(k), le probléme de commande consiste donc & trouver Au(k) de sorte que

’équation suivante soit vérifiée:
¥ (k + 1) = $°(k) + BAu(k) + wi(k) (3.4)

Il n’existe évidemment pas de solution & cette équation sauf dans certains cas par-
ticuliers. Toutefois, il est possibie de reformuler ce probléme comme un probléme

d’optimisation en définissant 1'équation d’erreur suivante:
e(k+1) =¥ (k+1) - (k) — w(k) (3.5)
L’erreur en fonction de I’action de commande est donc:

e(k +1) = BAu(k) (3.6)
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Ce qui permet de formuler le probléme d’optimisation suivant:
Jmin (e(k+1) ~ BAu(k))” (elk + 1) - BAu(k)) (3.7)
La solution bien connue de ce probléme classique de moindre carré est donc:

Au(k) = Bte(k+1) (3.8)
gt = (6%6) 6" (3.9)

Cet algorithme peut étre aussi bien formulé dans le cas monovariable que dans le
cas multivariable. En utilisant la formulation multivariable dans le cas du réacteur
de blanchiment, il est possible d'obtenir une formulation qui inclut une composante
anticipative. Toutefois, cette composante ne modifie pas la loi de commande di-
rectement. En effet, 'effet anticipatif apparait dans la prédiction ce qui influencera
par la suite I'effort de commande. En utilisant Ia matrice dynamique B, qui
représente I'impact d’une variation de lignine a P'entrée sur la sortie, la prédiction

devient donc:
y(k + 1) = y°(k) + pAu(k) + B ALin(k) + w(k) (3.10)

La commande prédictive DMC est relativement sensible a une variation du débit.
En effet, I'utilisation d’un modéle fixe peut provoquer des oscillations si les délais
du modéle et du systéme sont trop différents car cette différence introduit un délai
dans I'application de I'action de commande. Afin de compenser cette lacune, une
mise i I'échelle temporelle est utilisée. Dans cette approche, I'intervalle de temps
At du modéle discret est considéré variable. Il peut donc étre ajusté pour tenir
compte des variations du débit, ce qui permet d’ajuster le délai du modéle au délai
du réacteur et d’éviter un comportement oscillatoire. Toutefois, 1'algorithme DMC

avec mise 3 I'échelle temporelle ne tient pas compte de la variation de la conversion
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dans le réacteur causée par une variation de débit.

Cette approche peut étre directement appliquée en simulation si la méthode par
alternance est utiliste. Comme le pas de temps de cette méthode de simulation
est modifié directement en fonction du débit, la programmation directe du DMC
permet la mise en oeuvre de cette approche. Par contre, I’application dans un
contexte industriel est plus complexe. En effet, pour s’insérer dans un systéme dis-
tribué ou le temps d'application des efforts de commande est fixe, des mécanismes

d’interpolation entre les points du modéle et de la prédiction doivent étre utilisés.

3.3.2 Résultats de simulation

Les matrices dynamiques 3 et S;; sont construites en effectuant des variations de
10% des entrées nominales sur le modéle M1 du chapitre 1. L'horizon de prédiction
p choisi est égal 4 la dimension des réponses a I’échelon soit p = 234 alors que
horizon de contréle est minimal avec m = 1. Ces choix permettent de maximiser
la robustesse de |’algorithme. Les simulations sont effectuées en utilisant la méthode

par alternance avec un maillage de 100 noeuds pour le modéle M1.

La figure 3.8 présente les performances de la commande prédictive avec mise &
Péchelle temporelle & des variations du débit. Cet algorithme permet un retour
adéquat & la référence sans oscillation ou dépassement. Le comportement, suite a
des variations de consigne, est présenté i la figure 3.9. Encore une fois, la commande
prédictive permet d'atteindre le point de consigne sans aucun dépassement dans
un temps similaire i celui du temps de résidence du réacteur. Ce comportement
est largement imputable au choix conservateur des paramétres d’ajustement. Les
figures 3.8 et 3.9 permettent d’apprécier la qualité de la composante d’anticipation.

En effet, les perturbations de la lignine 4 Pentrée du réacteur n’affectent aucune-
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ment la sortie du réacteur. La figure 3.10 montre la performance de I'algorithme
lors de perturbations échelon des constantes cinétiques. Une perturbation éche-
lon de +20% sur k. est appliquée 4 50 minutes puis une perturbation échelon de
-20% est appliqueé sur k¢ a 350 minutes. Suite a ces perturbations, I’algorithme de
commande n’arrive plus 4 compenser adéquatement, les variations de la lignine &

I'entrée.

Afin de tester la robustesse de la commande prédictive avec ajustement de I'échelle
de temps, le régulateur, congu 2 partir du modéle M1, est appliqué sur les modéles
M2 et M3 du chapitre 1 . Une série de perturbations qui éloigne progressivement le
systéme de son point de fonctionnement nominale est appliquée. Ces perturbations
sont présentées i la figure 3.11. Les résultats de simulation de la figure 3.12, perme-
ttent de constater que la commande prédictive est relativement robuste par rapport

au modéle du systéme. Toutefois, I’effet des perturbations de lignine devient de
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plus en plus important lorsque le systéme s’éloigne du point de fonctionnement

nominal.

3.4 Commande adaptative par différences globales

La section précédente a permis de voir que 'utilisation d'un modéle basé sur une
réponse a I'échelon présente certaines limites lorsque le procédé s’éloigne du point
de fonctionnement nominal. Cette observation motive 'utilisation d’'un modéle
global, valide sur 'ensemble de la plage de fonctionnement. L’utilisation d'un
modéle d’EDP du réacteur pour la conception de la loi de commande peut donc
étre une approche intéressante. Par contre, I'application des techniques de com-
mande classiques est rendue difficile par la complexité mathématique et par la
présence non-explicite de 'action de commande dans les EDPs. Pour aborder ce
probléme, Dochain (1994) a proposé une méthode de pré-approximation qui con-
siste & remplacer les dérivées partielles spatiales par des différences globales. Cette
approche, relativement simple 4 appliquer, permet de faire apparaitre explicitement
Paction de commande dans les équations du modéle. De plus, le modéle approxi-
matif obtenu permet, par la suite, |'utilisation des techniques de linéarisation exacte
pour la conception du régulateur. Cette approche a été utilisée par Bourrel (1996)
dans le cas d’un systéme hyperbolique de traitement biologique de ’eau potable.
Cette section présente donc I’application de cette technique de pré-approximation

au réacteur de blanchiment.

3.4.1 Mise en oceuvre

Pour appliquer la technique des différences globales, il faut tout d’abord exprimer

les bilans du modéle d’EDP i la sortie du réacteur. Ce qui permet donc d’obtenir
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les équations suivantes dans le cas du modéle M1 du chapitre 1:

aC(z,t)| _ aC|(z,t) FC(zt)| 2
%], T e [+ D—3— l kc(LC) |£ (3.11)
oL(z,t)] _  8L{z1) PL(z,t)| 2
| - o £+D 57|, k(LCYY, (3.12)

A la sortie du réacteur, les dérivées partielles spatiales peuvent &tre approximées

par les différences globales suivantes

ac;z,t)z N C(E,t);c(oft) (3.13)
az(éf_i’“, N C(2£,t)—26’e(2£,t)+0(0»t) (3.14)
6Lf()?t), o L(&t);L(U,t) (3.15)
%ﬂ | z'L(2L’,t)—Lg,t)+L(Ovt) (3.16)

En utilisant les conditions frontiéres de Danckwerts i la sortie du réacteur, la

simplification suivante des différences globales est obtenue:

ac;z,t)t o C(E,t);C(O,t) (3.17)
#ola ~ ~C6) + 00 (3.18)
aLé?t) E L(&t);L(U,t) (3.19)
azgg,t) = —L(t.¢) ;L(O,t) (3.20)

Ces différences globales sont par la suite introduites dans les bilans de matiére. Ce

qui permet d’obtenir les équations différentielles suivantes:

dC(¢,t) _vC(e, t) — C(0,¢) . D-C(e, t}) +C(0,t)

—

dt 7 5 — ke(LC)?, (3.21)
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dL(t) _ _ L&) —-LO)  -L(61)+L(0,1)

Gy e 2 ko), 32)

Pour obtenir une relation directe entre I'action de commande et la variable com-
mandée, les deux équations sont intégrées I’'une dans I'autre a I'aide du terme de

réaction. Cette approche permet d’obtenir I’équation suivante:

ALy _ _ LY - L0 | p-LE) + Lo,y
& - ; + 7
[} C Y - ) - y y
%(dcg ), 0 gcm ) _ ot t)e;}-C(O z))(3.23)

En utilisant une différence arriére pour la dérivée du dioxyde de chlore a la sortie
et en mettant en évidence l'action de commande C{0,t), 'expression suivante est

obtenue:

dL(e, ) L(&,t) = L(0,t) _—L(e,t) + L(0,¢)

@ - ¢ P e
ky [CUt) —C(etiy) (v D
_ E[ ety (24 2 et
(3+2)co.0] (3.24)

Ce résultat permet maintenant d’utiliser le principe de linéarisation exacte et de

proposer la boucle de commande interne suivante:

c,t) = veejD[C(“ —Clb ) | 7+ )C(et
. Z( o L(e, t)eL(O ,t) _p= L(e, t)e:L(O t))] (3.25)

L’application de cette boucle interne sur I'approximation par différence globale

permet d’obtenir le systéme linéaire suivant:

dL{t,t) _

- (3.26)
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Ce systéme peut ainsi étre commandé par n’importe quelle stratégie de commande
linéaire. Ici, un simple régulateur PI est utilisé. La boucle de commande externe

est done:

w= (L - L) +1 ‘(Lo — L(&, )i (3.27)

Les paramétres A et -y sont les seuls paramétres d’ajustement de la loi de com-

mande globale. L’application de cette stratégie de commande au systéme réel a ses

k& Adaptation
des paramétres
r VE'

lone | Contrdleur par LN . Mour(t)
différences globales Modéle A
1T et

Ladt) ] Systéme

rr Courll)

Figure 3.13 Structure de la commande par différences globales

limites car I'approximation par différence globale est grossiére. Afin d’augmenter
la robustesse de I'algorithme, un mécanisme d’adaptation de la constante cinétique
de la lignine est ajouté. La figure 3.13 présente la structure du systéme de com-
mande complet dans lequel un modéle du réacteur de blanchiment est simulé en
paralléle avec le systéme. L’erreur sur la concentration de lignine a la sortie entre
le modéle et le systéme est utilisée pour faire 'adaptation de la constante cinétique
k4 du bilan de lignine du modéle. Les équations suivantes permettent de mettre

en oeuvre cette stratégie d’adaptation.

% = —u(L{e,t) - M(4, 1)) (3.28)
OM(zt) _ _ OM(at) FM(zt)
ot = TV +D 022

— ka(t)M2N? (3.20)
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BNf():,t) _ _uaNa(:,t) . Da?z;g,t)
~ koM2N?) (3.30)
%a(jﬁgo = Z(M.9) ~ La(t) (331)
%‘) = ZN(0,0) - Calt) (332)
3_1‘46%22 - 0 (3.33)
3Na(§'t) - 0 (3.34)

3.4.2 Résultat de simulation

Les paramétres d’ajustement du contréleur ont été fixées aux valeurs suivantes:
A =1005,7=0.01et x =0.00002. Les paramétres ont été ajustés par simulation en
tentant de trouver le meilleur compromis entre la réponse a l'échelon et la réponse
aux variations des parameétres cinétiques. Toutes les simulations sont effectuées en

utilisant la méthode par alternance avec un maillage de 100 noeuds et le modéle
M1.

La figure 3.14 présente les performances de la commande par différence globale a
des variations du débit. Cet algorithme réagit moins bien que la commande pré-
dictive. En effet, le retour a la référence s’effectue rapidement mais avec quelques
oscillations. Ce comportement oscillatoire est aussi présent suite & des variations
de consigne comme le montre la figure 3.15. Le dépassement est important et il est
fonction de I'amplitude de P’échelon. Les figures 3.14 et 3.15 permettent d’apprécier
la réponse de la boucle interne aux perturbations de lignine a I’entrée du réacteur.
Comme cette loi de commande inclut directement la valeur de la lignine a ’entrée,
elle contient un effet anticipatif efficace. La figure 3.16 montre les performances de

P'algorithme lors de perturbations échelon des constantes cinétiques. Une pertur-



96

} 17 T T T T T T
g,u PN /\ — A 2 sarte
e Tt
L}
- L N N L L L R .
-'__'so 50 100 15 200 250 300 150 400 450
331 L] ¥ L4 T T T T L3
vm b
gzg - J
L ] h
: 27 L L L N — L 1 L L
=70 50 100 150 200 20 300 350 400 450
Ll ¥ L ¥ T T T T

-

»
—
s

Calentrée {p1)
g

2
1

Vit. super. (nvs)
[ <
2

o
8
i

o
g
8
g

200 250 300 50 400 450
Temps (min)

Figure 3.14 Commande par différences globales : variation du débit

-
[

L i la sortie (Kappa)

-
-

=3
-

8

L & lentrée (Kappa)

3 8 B8

Temps (min)

Figure 3.15 Commande par différences globales : variation du point de consigne



97

-
[
T

C
C
?

-
»

orT
g
B
"gr
g
g
8

-]
T
i

»

-
- in
;

r
3 n

Calentrée (07) | i 'entrée (Kappa) L & la sortie (Kappa)
2

8
g1
&
g
8

00
Tames (min}

Figure 3.16 Commande par différences globales : variation des constantes cinétiques

bation échelon de +20% sur k; est appliquée a4 50 minutes puis une perturbation
échelon de -20% est appliquée sur k¢ i 350 minutes. La boucle adaptative réagit
correctement en corrigeant le paramétre cinétique du modéle mais les déviations par
rapport a la référence sont importantes. Toutefois, la réponse aux perturbations

sur la lignine demeure adéquate.

Afin de tester la robustesse de la commande par différences globales, le régulateur
congu & partir du modéle M1, est appliqué sur les modéles M2 et M3 du chapitre
1. Une série de perturbations qui éloigne progressivement le systéme de son point
de fonctionnement nominale est appliquée. Ces perturbations sont présentées a la
figure 3.17. Les résultats de simulation de la figure 3.18, permettent de constater
que cet algorithme est robuste par rapport au modéle M2 mais pas par rapport au
modéle M3. En effet, pour un éloignement suffisant du point de fonctionnement,

la réponse aux perturbations des constantes cinétiques oscille fortement.



=006 LA T L T T T 14 v
io.o‘-. -
a. |
§ o‘&  — y S L L3 'y i L L
) 200 490 500 800 1000 1200 1400 1600
532 T T L L] L3 T LS T
X 30F
= -
22 4
“5 L L 1 el L e L L
b Q00 2 400 600 800 1000 1200 1400 1600
A-) L T L3 L] T T o L
>
;Br .
b3
37t 1
=
s . S 12 BV S Lo ) L L
Qg 200 400 600 800 1000 1200 1400 1600
.-." | p— ~—T T T T —T ™ ™
B0 ]
gl |
24
x 7 '3 L L 'l 1 j S 1 L
0 200 400 800 800 1000 1200 1400 1600
Temps {min)

Figure 3.17 Variation de paramétres pour [’analyse de robustesse

2]

— Rdttrence

-]

-
-

-
L]

L A 1a sortie (Kappa)

-
-
<

n
o W W

C & l'evtrde (g1}

9-
s s}
7 R T T
P e e S S S . :
0 200 400 600 800 1000 1200 1400 1600
Temps (min)

Figure 3.18 Commande par différences globales : analyse de robustesse

98



99

CHAPITRE 4

STRATEGIE DE COMMANDE BASEE SUR UNE
POST-APPROXIMATION

Les stratégies de commande présentées dans le chapitre 3 n'utilisent pas toute
I'information contenue dans le modéle i paramétres répartis. Ainsi, ces deux straté-
gies de commande peuvent présenter des limites dues 4 une mauvaise adéquation
entre le modéle utilisé par le régulateur et le procédé. En effet, dans le cas de la com-
mande prédictive, des oscillations sont observées lorsque le procédé s’éloigne trop
du point de fonctionnement tandis que dans le cas de la commande par différences
globales, des déviations importantes par rapport a la référence sont observées en
réponse 3 I’échelon. Afin d’utiliser toute l'information disponible sur le procédé,
'utilisation directe du modéle d’EDP dans le régulateur peut étre une approche in-
téressante. En plus d’étre plus précis, ce modéle permet d’indroduire, explicitement
dans la stratégie de commande, les paramétres hydrodynamiques et les cinétiques
de réaction. Ainsi, il est possible d’espérer un comportement adéquat sur une large
plage de fonctionnement. Toutefois, I'utilisation d’un modéle non linéaire peut in-
duire certains problémes de robustesse si la structure du modéle n’est pas identifiée

correctement.

Ce chapitre présente une structure originale de commande par post-approximation
qui utilise directement le modéle & paramétres répartis du procédé dans la loi de
commande. En effet, ce modéle est utilisé comme modéle interne dans une structure
de commande composée de deux niveaux de régulateur. Cette structure est présen-
tée dans la premiére partie du chapitre. Par la suite, la seconde partie présente

la boucle interne alors que la conception de la boucle externe est traitée dans la



100

troisiéme partie. L’application au modéle de blanchiment de cette stratégie de com-
mande par post-approximation est présentée dans la quatriéme partie. Finalement,
les principaux résultats de simulation sont présentés dans la cinquiéme partie du

chapitre.

4.1 Stratégie de commande

Le probléme de commande, identifié au chapitre 3, est de réguler la concentration
a la sortie d’un réacteur de blanchiment en variant la concentration du dioxyde de
chlore i I'entrée. La loi de commande choisie pour effectuer cette tiache doit, de
plus, tenir compte de la variation de la lignine a Pentrée ainsi que des perturbations
au niveau des paramétres cinétiques. Mathématiquement, le probléme générique
correspond donc a la régulation d’un systéme d’équations & parameétres répartis,
non linéaire, stochastique et non-stationnaire par une condition frontiére. Compte
tenu de I’état actuel des connaissances, aborder mathématiquement ce probléme de
front est utopique. Afin d’obtenir une formulation plus simple pour la conception
d’un régulateur par post-approximation, les simplifications suivantes sont donc

utilisées:

1. Les composants non-commeandés 6 {’entrée du réacteur sont constants. Cette
simplification permet d’obtenir un systéme déterministe. Les variations de
lignine & Pentrée du réacteur devront toutefois étre compensées par 1'ajout

d’une composante anticipative i la loi de commande.

2. Les constantes cinétiques constantes mats inconnues. Cette simplification
permet d’obtenir un systéme stationnaire. Cette hypothése est valide dans

la cas d’une stratégie de commande adaptative si les paramétres cinétiques
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varient trés lentement ou s'ils sont constants sur des périodes de temps suff-

isamment longues pour que 1'adaptation converge.

Le probléme se résume donc 4 la régulation par la condition frontiére d’entrée d'un
systéme d’équations non linéaires 4 paramétres répartis avec des coefficients incon-
nus. Par soucis de généralisation, le développement d’une stratégie de commande
est fait pour un réacteur tubulaire avec m réactions impliquant n composants. Le

systéme considéré est donc:

dA(z,t) 0A(z,t) 8 A(z,t)
ot = —U—a—z—*+D—b—zz-—-KR(A(Z,t)) (41)
DaAg:’t) = o(A(0,2) — As) (4.2)
p2Ld _ (4.3)
dz

Dans ce modéle, A(z,t) (mol/l) est un vecteur de dimension (n, 1) qui contient
les profils de concentration des composants du réacteur. L'hydrodynamique du
réacteur est caractérisée par deux matrices diagonales de dimension (n.n) soit v
{m/s) qui contient la vitesse superficielle v de chaque composant et D (m?/s)
qui contient le coefficient de dispersion D de chaque composant. Les cinétiques
sont décrites par le terme — K R(A(z,t)) ot K est une matrice (n, m) qui contient
les constantes cinétiques alors que R(A(z,t)) est un champ vectoriel de dimension
(m, 1) qui comporte le reste du terme cinétique. En accord avec les simplifications
proposées, les matrices v, D et R(A(z,t)) sont supposées étre connues contraire-
ment aux coefficients de la matrice X. Dans ce modéle, la variable manipulée est

notée A}, tandis que la variable commandée est notée A,

Les hypothéses simplificatrices utilisées pour obtenir ce modéle imposent I’utilisation
d’une stratégie de commande adaptative pouvant inclure une composante anticipa-

tive. La composante adaptative permettra de déterminer des valeurs admissibles
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pour les paramétres cinétiques inconnus alors que la composante anticipative est

utilisée pour compenser les variations des composants libres  ’entrée du réacteur.

La structure de commande proposée est composée de deux niveaux de régulateur.
Tout d’abord un régulateur adaptatif basé sur une structure 3 modéle interne per-
met d’assurer la convergence entre le modéle et le procédé. Cette loi de commande
a donc comme objectif d’identifier en ligne des paramétres cinétiques minimisant
'erreur entre le modéle et le procédé. Par contre, elle ne permet pas d’assurer
la convergence vers un point de consigne A la sortie car la référence a I'entrée de
la variable manipulée est utilisée comme point de consigne. Cette tache est alors
accomplie par un régulateur externe. Ce régulateur utilise les paramétres identifiés
par le régulateur adaptatif ainsi que les mesures a 'entrée et a la sortie du réacteur
pour déterminer l'effort de commande requis a l'entrée pour atteindre le point de
consigne i la sortie. Cet effort de commande est donc le point de consigne du
régulateur adaptatif tout comme dans le cas d'un régulateur de type cascade. Le
régulateur externe peut utiliser une stratégie basée sur la rétroaction, ’anticipation

ou une combinaison des deux approches.

4.2 Conception du régulateur adaptatif

La seconde méthode de Lyapunov, présentée entre autres dans Khalil (1996), est
utilisée pour faire la conception du régulateur adaptatif . Cette technique utilise une
fonction définie positive qui représente I'erreur que I'on désire minimiser. L’analyse
de la dérivée dans le temps de cette fonction permet la conception du régulateur.
En effet, le régulateur doit étre choisi de telle sorte que la dérivée dans le temps
de la fonction d’erreur soit strictement définie négative. Ainsi, au cours du temps,

la fonction ne peut que décroitre ce qui permet de tendre vers une erreur nulle.
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Cette convergence et la stabilité du systéme sont assurées par le théoréme de Lya-

punov. Le choix de la fonction d’erreur, qui est alors appelé fonction de Lyapunov,

représente la principale difficulté de cette technique.

Refu()

Ax(t)

M(zt

Figure 4.1 Structure du régulateur interne

K@ Lois d'sdaptation
des paramétres
. ()
As(t)
[p-erd Modéle
Systéme

A(zt)

Adn(t)

La stratégie de commande choisie avec modéle interne se préte bien a I'application

de cette méthode de conception. En effet, une fonction de Lyapunov peut étre

construite en utilisant I'erreur entre le modéle et le systéme ainsi que les erreurs

d’estimation des paramétres. Cette analyse permettra de concevoir la loi de com-

mande ainsi que les lois d’adaptation qui forment le régulateur adaptatif dont la

structure est présentée a la figure 4.1. La convergence du modéle vers le systéme

est alors assurée par la proposition suivante:

Proposition

Soit le systéme a parameétres répartis suivant:

9A(z,t)
ot

dA(0,t)
0z

D OA(¢,t)

o ”

D

I

_ A=Y |

p A Y

dz

0z*

v(A(0,t) — 4ip)

0

— KR(A(z,t)) (4.4)

(4.5)

(4.6)



et le modéle interne & paramétres répartis suivant:

91%2_**) - *vang:,t) +Dm;§’t) — ROR(M(z,8)]4.7)
p200 _ ou0,1) - 4 (48)
DaMa(f’t) -0 (4.9)

L'erreur entre la solution du modéle M(2,¢) et la solution du systéme

A(z,1) tend vers zéro lorsque ¢ tend vers l'infini lorsque la loi de com-

mande
(Ain(t) — Refin(t) A5 (t) = —e [i {ei(2, 1), —vs aeiéz’ t))
+ i {ei(z,t), i Ki(Q;(z,t)
i=1 i=l

4 L{An(t) = Refnlt)Refnl)}410)

et la loi d’adaptation

wzg(t) = _aij(ei(zr t)) Rj(A(zr t))) (4‘11)

sont utilisés.

La preuve de cette proposition est basée sur l'utilisation de la seconde mé
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thode

de Lyapunov. Afin de construire une fonction de Lyapunov, les équations d’erreur

suivantes sont considérées:

e(z,t) = A(z,t)~ M(z,t)
¥(t) = K(t)-K
Q(zrt) = R(A(Z,f))—R(M(Z,t))

(4.12)
(4.13)
(4.14)



105

En utilisant ces équations, il est possible de construire la fonction d’erreur définie
positive suivante:

1 n
Z (ex(z 1), ez, £)) + 5 (Am(t) Ref(t)n)*+5 ZZ —¥5t) (415)

l‘l i=1 ]—1

Cette fonction de Lyapunov inclut l'erreur entre les profils du modéle et ceux
du systéme, 'erreur sur l'estimation des paramétres ainsi que l’erreur entre la
variable manipulée et la référence interne. Ce dernier terme est ajouté afin de faire
apparaitre explicitement l'effort de commande dans la dérivée de la fonction de
Lyapunov et permettre ainsi la construction de la loi de commande. Le calcul de

la dérivée dans le temps de la fonction de Lyapunov permet d’obtenir:

Viz,t) = Z(ez(z £ &i(z,t) + - ( () — Ref (1)) Az (1)

+ ;(A:n() Refin(t))Refnlt +EZ—%(t bi(t)  (4.16)

i=] j=1

La dérivée dans le temps de l'erreur sur les profils est alors calculée de la fagon

suivante:
é(z,1) = _vaegi, by Dazea(zz, Y KR(A(z 1) + RRRM(z, ) (4.17)
det) = —vZE0y pZUED ypac) + K@ (@19

De plus, la dérivée temporelle de 'erreur sur les paramétres cinétiques est simple-

ment:

b(t) = K(t) (4.19)

En utilisant ces dérivées des erreurs, il est possible d’obtenir I'expression suivante:

V(Z, t) = 2 (ei(zy t)! —viiaeia(z, t)) + i[ (C;(Z, t)' D“ aaeatiz’ t) )
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+ 3 6t SR AL t)>+2<a(zt,§K=:(t 0z

+ i(A (t) — Ref(t)in)Cru(t) + (A (t) — Ref(t)in) Ref a(t)

+ Z":qubq(t "pu (420)
i=l1 j=1 Gij

L’intégration par parties des termes du deuxiéme ordre (e;(z,t), Diiig‘z("'r"’l) donne:

Vist) = il«e,(z 0, - ;#”e* 20 _p, el
+ ge, 28D, Z} ez, t)pnae'
+ g {ei(z, t),jz_:l i ()R (A(z, 1)) + ; (ei(z, t),g:x Ki;(1)Qj(z,1))
4 LA (0) — Refal) A3, (0) + ~ (A3n(0) ~ Refnlt) Refin(t)
+ ﬁ;i ;;t;% Wi (2) (4.21)

Pour simplifier cette expression, les conditions frontiéres du systéme et du modéle

définis dans la proposition sont introduites, ce qui permet d’obtenir:

V@t = 3 fels 0wl 5 Qall) _p ula),

1
:-l i=1 02

- Ze,(o t) Dse;(0, t)+2(e.(zt Zt/)u(t)Rg(A(z t)))

j=t

+ 3 (a0, 3 Ro)@s(a ) + %(A:,,(t) - Refa(t))diy(t)

i=1 j=1

n

+ (A a(t) — Refin(t)) Ref n(t) +XZ ¢.,(t)¢u(t) (4.22)

=l j=1 J

L’équation d’adaptation des paramétres est choisie de la facon suivante:

Y5(t) = —aylelz,t), Ri(Alz 1)) (4.23)
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Ce qui permet de simplifier 'équation 4.22 car:

Z Z '/)u (t)¢!3 (t) = Z E —% (t — i (8{(2’, t): Rj(A(zs t))) (424)

= —gg¢ij(t)(ei(31 t), Rj(A(z,1))) (4.25)
= —-Z(e,(z, t), Z¢,, (t)R;(A(z,1))) {4.26)

=1

(4.27)

La dérivée de la fonction de Lyapunov devient alors:

n Bei(z,t), & Bz t) ae,(z )
Viz,t) = g(e,(zt —Ui—p )+§( % Dy )
- Zn:e, 0,2)D;e:(0, ) +z(e, (z.t), 3. Kii(1)Q4(2,1)
i=l i=l

1

b A3 (8) = Refin(0) AR () + £ (AR(t) — Refin(t) Refin(t)(4.29)

Finalement en choisissant la loi de commande suivante:

(Ault) = ROV = —d3 (e 1)~

+ 2 {eilzt le,,(t Qi(z 1)
i=t ij=

+ %(A;n(t)—Ref.-n(t})Réfin(t)] (4.29)

L'expression de la fonction de Lyapunov devient:

n

Ve =-y (G p 2D, o0 npey 43

=i i=1

Cette expression est semi-définie négative. Toutefois, les concentrations des réactifs

ne sont jamais nulle i 'entrée du réacteur ce qui assure la condition d’excitation
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persistante et la stabilité asymptotique du systéme. De plus, la convergence du
modéle vers le systéme est assurée. En effet, au point d’équilibre, la fonction

de Lyapunov assure que pour chacun des composants, les relations suivantes sont

vérifiées:
ei(z,t) t)
% (4.31)
e;(0,t) =0 (4.32)

Or, par définition de I'intégrale, 1'erreur entre le modéle et le systéme pour chaque

composant vérifie:

z Qe(r, t)
e (4.33)

Q@Q=&mn+£

En utilisant I'inégalité du triangle sur cette équation et en majorant, il est possible

de montrer que le modéle converge bien vers le systéme de la fagon suivante:

letz 0l = llest0,6)+ [ 2 ar) (434
< fe i+ [ 20y (4.35
< et 0+ [ na‘””ud (4.36)
< 000+ [ ||3"§;" e (437
< loll+ [ foidr (439
<0 (4.39)

Ce qui permet de conclure la preuve de la proposition.

La loi de commande 4.29 construite par cette approche doit toutefois étre modifiée

afin d’éviter des divisions par zéro lors de la mise en oeuvre. La loi de commande
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suivante est donc obtenue:

e o
e
A, = A, (1)
f = g(ei(z,t),-vaaiéj’ﬂ>
+ g i:: i(8)Q5(2,t))
b L0000 - Refule)Refnl) (442

Dans cette expression, w est un paramétre d'ajustement de petite valeur positive.
e

Cette loi de commande est identique 4 la loi originale si A;, = 0. De plus, lorsque

erreur entre le modéle et le systéme est nulle, la loi de commande se résume a

I’expression de la référence interne soit:

Ap,(t) = Refinlt) (4.43)
4.3 Conception du régulateur externe

Le role du régulateur externe est de déterminer la référence interne qui permettra
d’atteindre le point de consigne i la sortie du réacteur tout en minimisant l'impact
des perturbations. L’utilisation d’un régulateur adaptatif interne modifie peu la
problématique de la conception du régulateur externe. En effet, ’action de ce régu-
lateur est présente seulement lorsque le modéle différe du systéme. Dans tous les
autres cas, le probléme de régulation reste entier. Toutefois, le régulateur externe

peut bénificier de I'identification en ligne des paramétres cinétiques.
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K() Lois d'adaptation |
des paramétres
A:m(t) i(t)
A:ur.' v Régulateur Refu(i] Régulateur A.'(l) ‘ M(zt )
O par ritroaction adaptatif Modéle =¥
Alr(t)
Ant) _ Systéme Alz)

Figure 4.2 Structure du régulateur avec rétroaction

La figure 4.2 présente la structure du régulateur avec une boucle externe par
rétroaction. Il est possible d'utiliser comme régulateur externe par rétroaction
tout type de compensateur qui peut étre formulé sous une forme différentielle. Par

exemple, le simple compensateur proportionnel-intégral suivant peut étre utilisé:
Refn(t) = 0(As, () — Ay sp) + 1 An(t) (4.44)

L’action de ce régulateur peut étre décomposée en deux. En effet, I’action propor-
tionnelle est instantanée et ne se produit que lorsqu’il y a des variations du point de
consigne tandis que 'action intégrale modifie en tout temps I'effort de commande
pour que le procédé atteigne le point de consigne. Toutefois, I'utilisation d'une
simple rétroaction n’est pas efficace si les composants i 'entrée du réacteur subis-
sent de fortes variations. En effet, si le réacteur a un temps de résidence important,
une compensation adéquate n’est pas possible car I'information sur la perturbation
est disponible seulement lorsque son effet est terminé. Ainsi, une stratégie avec

anticipation doit étre considérée.

La figure 4.3 présente la structure du régulateur avec une boucle externe par an-

ticipation. Ce régulateur détermine & partir du modéle & paramétres répartis la
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K() Lois d'adaptation
des paramétres
Ao i A
A o Reglstewr RSO Reguisiewr | . Mzt
pumst‘x!lciplﬁon adaptatif Mod¢éle = +?
Ar(t)
Asdl) | Systéme Az

Figure 4.3 Structure du régulateur avec anticipation

commande A}, requise pour atteindre la consigne en tenant compte des composants
non-manipulés i chaque pas de temps. Ce calcul est réalisé i I’aide d’une combi-
naison d'un algorithme de tir et d’un algorithme de relaxation. La méthode de
relaxation est utilisée pour solutionner le modéle & des conditions frontiéres don-
nées alors que la méthode de tir est utilisée pour déterminer progressivement la
valeur de A, permettant d’obtenir le point de consigne désiré a la sortie du réac-
teur. Cet algorithme est mis en oeuvre en utilisant la méthode des différences finies
sur un maillage de NV + 1 noeuds. Soit le systéme en régime permanent suivant

pour un composant A;:

vdf:;f) - Ddzj_:ﬁz) — R(H)R(A(2)) (4.45)
pP . ya0) - A (4.46)
dAi(f) _

p¥) =y (4.47)

La dérivée du second ordre de cette équation est approximée par une différence

finie centrée alors que la dérivée du premier ordre est approximée par une différence
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arriére. Ainsi, il est possible d'obtenir au noeud &, 'approximation suivante:

dAz)  Alz) — Az

dz (Az2) (4.48)
?Ai(z) ~ Ai(ze11) — 2Ai(z) + Ai(2-1) (4.49)
dz? (Az)?
Pour les conditions frontiéres, les approximations suivantes sont obtenues:
dAi(0) AN -A©O) _ - i
D—— = D= =(A(0) — Ayn .
= A v(A:(0) — Ain) (4.50)
dA(f) _ A(N)-A(N-1) _
D i D Az =0 (4.51)

De cette facon, il est possible de formuler I'approximation par différences finies avec

les conditions frontiéres pour un composant du réacteur tel que:
IWQ‘,’ + ﬁlflliiii + A’Ig,ifii + Wf:;‘i(/i) =0 (4.52)

Cette formulation est composée des éléments ci-dessous:

Ai = [/1{(0) A1) ... An(0) ]T (4.53)
v T

My; = K’;[Ain.i 0 ... 0] (4.54)
(-1 1 0 0 0 0]
1 =2 1 0 0 0
0 1 -2 0 0 0

M; = (TDz)—z S S SR O S S (4.55)
o 0 o0 ... -2 1 0
0 0 0. 1 -2 1
000 0... 0 1 -1
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(1 0 0 0 0 0]
1 -1 0 0 00
0 1 -1 0 00
My = ==| & 1 i i i (4.56)
0 0 0..-1 00
0 0 0.. 1-10
| 0 0 o0 0 00
i 0 .
Y Kii(t)RiA(z)
My; = : (4.57)
Ty Ki(t)RjA(zy_1)
0

Une équation matricielle avec des matrices bloc-diagonales peut alors étre constru-

ite pour I'ensemble des composants du réacteur: :
Mo+ MA+ M,A+ M;(A) =0 (4.58)

A partir de cette formulation du probléme en régime permanent, les profils de con-
centrations du réacteur peuvent étre calculés en utilisant I'algorithme de relaxation

suivant:

1. Estimation initiale A(k) des profils;

2. Calcul des résidus E(k). Ces résidus sont obtenus en introduisant la valeur

estimé de la solution A(k) dans le probléme en régime permanent initial;

3. Calcul de I'incrément A A selon la méthode de Newton a I’aide de I'équation

suivante: _ _ _
Mo+ M A+ M,A+ M;(A))
0A

AA = —E(k) (4.59)



114

4. Construction de la nouvelle valeur estimée de la réponse en régime permanent;

A(k+1)= A(k)+ AA (4.60)

5. Répétition de la procédure jusqu’a la vérification d’un critére d’arrét sur la

norme de I’incrément

Cet algorithme de calcul du régime permanent est alors utilisé dans 1'algorithme

de tir suivant qui forme la loi de commande par anticipation:

1. Choix d’un estimé initial de |'effort de commande A;,;
2. Résolution de I’algorithme de relaxation pour obtenir le A}, correspondant;

3. Calcul de P’erreur entre la valeur de la variable commandée obtenue A;,, et

le point de consigne A}, ,.;

4. Ajustement de A}, selon I’erreur obtenue tel que

A;n = A:n + 6( t‘mt - :mt,.sp) (461)

ou & doit étre choisi pour obtenir une convergence adéquate.

Cet algorithme permet d'obtenir des résultats adéquats si le modéle représente
bien le systéme. De plus, la combinaison avec le régulateur adaptatif permet
d’obtenir un comportement adéquat malgré une perturbation des paramétres ciné-
tiques. Toutefois, cet algorithme est sensible 4 une mauvaise identification de la

structure de la cinétique. En effet, il conduit inévitablement & une erreur en régime
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Figure 4.4 Structure du régulateur avec anticipation et rétroaction

permanent si la structure de la cinétique du procédé différe trop de celle du modéle

car aucune information sur la sortie du procédé n’est utilisée par P'algorithme.

La figure 4.4 présente la structure du régulateur avec une boucle externe qui com-
bine une action de rétroaction et une action d’anticipation. En fait, la base de la
boucle externe de cette structure est formée du régulateur par anticipation. Dans
le cas oil le procédé différe du modéle, il est possible d’assurer une bonne compen-
sation i I'aide d’une boucle de compensation par rétroaction. Tout d’abord, afin
d’éliminer 'impact du retard, le point de consigne A;,,, ., du régulateur par rétroac-
tion est modifié en fonction de I’hydrodynamique du modéle. En effet, le nouveau

point de consigne Ref,.sp pour le régulateur par rétroaction est la solution du

systéme d’équations suivant:

dRef(z, ORef(z, 0’ Ref(z,
____ef;tz Yo _ _, 8{3(; e | p egg L. (462)
ORef (0, :
p2REPO e o Ref(0,1) - Aiunsy) (4.63)
ORef(6,1)
pZ=me - g (4.64)
Refousp = Ref(t,t)s (4.65)

Ainsi, Refou:sp Teprésente le comportement attendu i la sortie du réacteur. Ce

signal est par la suite comparé a la véritable sortie du réacteur. L’erreur entre les
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deux signaux alimente le régulateur par rétroaction qui peut étre alors un simple

intégrateur car son role se limite & compenser la dérive du compensateur anticipatif.

Le régulateur par rétroaction est alors simplement:

Refio(t) = 8(Ane(t) — Al sp) (4.66)

4.4 Application au réacteur de blanchiment

Afin d’appliquer au réacteur de blanchiment le formalisme de la section précédente,

le modéle M1 du chapitre 1 peut étre exprimé de la fagon suivante:

alcen]  [vo]alcey D ol|a|cey
Ot | L{z,t) |0 v | 97| L(zt) 0 D |9 L(z,¢)
ke O
-1 L3(z,t)C%(z,t) (4.67)
0 Kk
Les conditions frontiéres sont alors:
D o]a[coy] ol ([ ct c
01 C0n e G0 (4.68)
0 D% Loy | 0 v L(0,¢) L
(D o]alcey]
L RSN (4.69)
|0 D |97 Lty |

La variable commandée est donc ici L, et 1a variable manipulée est C,,. Le modéle

interne suivant est utilisé:
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8 | N(z,%) _ a8 { N{z,1) D 01 8 | N(zt)
Ot | M(z,¢) [0 v 92| M(z1) 0 D |2 M(zt)
- 3
- _ | MP(z,t)N?(z,t) (4.70)
| 0 ki,
Les conditions frontiéres de ce modéle sont:
‘D o] alnNoy ] o] ([~ C;
i (0.2 = v 0.9 - (4.71)
|0 D | 92| M, | 0 v M0, t) Lin
: - v :
bo ai N& =0 (4.72)
| 0 | z LM(E,t)_
La loi de commande adaptative directe est alors:
= ) _ (Cin - Refin)2 ~ 4
Cm - w+ (Cin - Rﬂfin)zc’m ( .73)
(Cin — Refx‘n)
T o (Co—Refo )"
Cn = Ci, (4.74)
_ Be[,(z, t) BEc(Z,t)
fe = (eL(Z,t),—‘U—a;—-) +(8c(z,t), v 32 )
+ (eL(Z! t)! Eg(t)(L(Z, t)zc(z! t)z - bf(zy t)zN(Z, t)z»
+ {ec(z1), k() Lz, £)*C(z,8)* = M(2,8)*N(z,1)))
+ ~(Canlt) ~ Refin(t) Ref (1) (0.5
Les lois d’adaptation des paramétres cinétiques sont définies par:
ki) = —alen(zt), Lz, t7C(z 1)) (476)
ke(t) = —blec(z ), L(z £)2C(z, 1)) (4.77)
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Finalement, le régulateur par rétroaction est simplement:

Réf (t) = ‘O(Caut - C;ut,SP) (4-78)

La mise en oeuvre du régulateur interne adaptatif en accord avec les capteurs
disponibles implique des ajustements importants. En effet, ’application de ce
régulateur nécessite la mesure de tous les profils et le calcul de leur dérivées spa-
tiales. En simulation, la post-approximation se limite i l'utilisation du maillage
de la méthode numérique utilisée. Bien évidemment, cette information n’est pas
disponible en usine. L’hypothése sur les capteurs du chapitre 3 limite a deux le
nombre de capteurs disponibles: un a I’entrée du réacteur et 1'autre i la sortie du
réacteur. Pour tenir compte de cette contrainte, la loi de commande adaptative est
modifiée de la fagon suivante:
5 (Cin — Refin)2 A

in = Cin T
Cin w+ (Cin - Ref‘-n)2 (4 {9)

(Cin - Refin) f
w+ (Cm - Ref,—n)z €

Cw = C. (4.80)
fo = (ein(t), ku(t)(Lin(t)’Cin(t) — Min(t)* Nia(t)?))

(eL.aut (), kL (&) Lowt(8)?Cont (8)* — Meut (£) None (£)%))

(ecin(t), kc(t)(Lin()*Cin(t)? — Min()*Nin(t)*)

(ecout(t): ko (B)(Lout(t)*Cont(8)? — Mau(£)2 Nowe (£)))

2 (Cinlt) ~ Refnl) Ref (0 (481

d

+ o+ o+ o+

De la méme fagon, les lois d’adaptation des parameétres deviennent:

kit) = —a({erim(zt), Lin(z,£)*Cin(z,£)?)
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+ (e out(2,), Lot (2, £)*Conar(z, 1)) (4.82)
ko(t) = —bl{ecin(z:1), Lin(z,)*Cin(2, £)?)
+ (ec,m(z,t),L,,ug(z,t)zcm(z,t)z)) (4.83)

Le réglage des paramétres de ce régulateur implique le choix de cinq paramétres
soit €, 9, a, b et w. Le réglage d'un nombre si important de paramétres peut
s’avérer particuliérement lourd et délicat compte tenu de la durée importante des
simulations dans le cas des systémes a paramétres répartis. Toutefois, la structure
de commande proposée est relativement découplée, ce qui permet un ajustement
relativement facile des paramétres. Le réglage peut débuter par le choix de a et
b, qui déterminent la rapidité de l'adaptation des paramétres cinétiques. Si le sys-
téme admet une seule solution, il est possible d'obtenir une convergence lisse et
rapide. Dans le cas contraire, des oscillations entre les différentes solutions admis-
sibles peuvent apparaitre. Dans ce cas, les solutions possibles sont de limiter la
vitesse d’adaptation ou d’assurer une bonne initialisation. Une fois I’adaptation des
paramétres cinétiques ajustée, les paramétres ¢ and € peuvent étre considérés. Le
paramétre & ajuste D'effort de I'intégrateur, il doit donc étre réglé afin d’obtenir une
réponse adéquate en présence de perturbations non-modélisées. Son ajustement est
facilité en utilisant une perturbation exogéne 3 la sortie du réacteur. Le paramétre
¢ détermine 'impact de la commande adaptative directe. Il permet donc de doser
'effort de cette commande par rapport & la commande de la boucle externe. Plus
la structure du systéme est proche du modéle, plus la valeur de ce paramétre peut
étre élevée. Ce paramétre doit donc étre ajusté pour une performance adéquate
dans le pire cas possible de mauvaise adéquation entre le modéle et le systéme.
Finalement, le paramétre w est utilisé senlement afin d’éviter une division par zéro
lors de la mise en oeuvre. Il suffit donc de choisir la plus petite valeur qui assure
un effort de commande suffisament lisse. Le tableau 4.1 résume les fonctions de

chacun des paramétres de réglage.
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Tableau 4.1 Fonction des paramétres de réglage

Ordre de réglage | Paramétres | Objectif de réglage

1 a,b Rapidité de ’adaptation

2 (] Travail de |'intégrateur

3 € Impact de la commande adaptative directe
4 w Filtre de I’action de commande

4.5 Résultats de simulation

Toutes les simulations sont effectuées en utilisant la méthode par alternance avec
un maillage de 100 noeuds et le modéle M1. Les paramétres d’ajustement du

régulateur ont été fixés aux valeur suivantes:

¢ = 0.0001 8 = 0.002
a = 0.000005 b = 0.000005 (4.84)
w = 0.0000001

La figure 4.5 présente les performances de la commande par post-approximation a
des variations du débit. Le régulateur permet de compenser adéquatement ce type
de pertubation avec une faible déviation de la référence. La compensation semble
s’effectuer en deux temps: une compensation rapide grossiére puis un retour plus
lent vers la référence. Dans le cas des variations de consignes présentées a la
figure 4.6, le comportement du régulateur est optimal. La réponse est typique
d’une stratégie par anticipation qui utilise le bon modéle. Les figures 4.5 et 4.6
permettent d’apprécier la réponse de la boucle interne aux perturbations de lignine
a 'entrée du réacteur. Encore une fois, 1'effet anticipatif est efficace car aucune
perturbation de la lignine & 'entrée n’est transmise a la sortie du réacteur. La

figure 4.7 montre les performances de I'algorithme lors de perturbations échelon des
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Figure 4.6 Commande par post-approximation : variation du point de consigne
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Figure 4.7 Commande par post-approximation : variation des constantes cinétiques

constantes cinétiques. Une perturbation échelon de +20% sur &y, est appliquée & 50
minutes puis une perturbation échelon de -20% est appliquée sur k¢ 4 350 minutes.
Le régulateur par post-approximation réagit trés efficacement aux perturbations
de modéle en n’admettant qu'une trés faible déviation par rapport i la référence.
L’estimation des paramétres cinétiques est trés efficace malgré les simplifications

apportées au régulateur adaptatif.

Afin de tester la robustesse de la commande par post-approximation, le régulateur
congu a partir du modeéle M1, est appliqué sur les modéles M2 et M3 du chapitre 1.
Une série de perturbations qui éloignent progressivement le systéme de son point
de fonctionnement nominal est appliquée. Ces perturbations sont présentées a la
figure 4.8. Les résultats de simulation sont présentés aux figures 4.9 et 4.10. Ces
résultats permettent de constater que le régulateur est trés robuste par rapport au

modéle M2 mais un peu moins par rapport au modéle M3. En effet, I'ajustement
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des paramétres cinétiques dans ce dernier cas est beaucoup plus fastidieux et néces-
siterait un ajustement différent des lois d’adaptations. Dans le cas de la simulation

avec le modéle M2, ’ajustement des paramétres suit bien les différentes perturba-

tions.
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CHAPITRE 5

ANALYSE COMPARATIVE DES STRATEGIES DE COMMANDE

La comparaison entre différents algorithmes de commande est difficile car peu
d’outils théoriques permettent d’utiliser une approche systématique. La simulation
de cas types, malgré ses limites, demeure donc P'outil privilégié pour distinguer les
avantages et les limites de différentes structures de commande. Dans ce chapitre,
les algorithmes de commande présentés dans les chapitres 3 et 4 sont comparés
dans le cadre de I'application au réacteur de blanchiment. L’objectif de cette com-
paraison est de tenter de répondre a la question principale abordée au début de
ce travail: Y a-t-il un avantage a utiliser une stratégie de commande basée sur un

modéle & paramétres répartis dans le cas d’un réacteur tubulaire?

Le principal obstacle a la comparaison d’algorithmes de commande est probable-
ment P'utilisation de structures différentes. Par exemple, comparer un régulateur
proportionnel intégral  un régulateur adaptatif est un processus biaisé car les possi-
bilités des deux algorithmes sont différentes. Dans le cadre de cette thése, un effort
a été fait afin de comparer des structures qui ont des modes de fonctionnement sim-
ilaires. En effet les trois algorithmes présentés ont des mécanismes d’adaptation,
les trois utilisent un modéle du procédé afin d’évaluer si le procédé réagit de facon
adéquate par rapport au modeéle. De plus ['utilisation de capteurs est restreinte aux
extrémités dans les trois cas. Toutefois, le modéle utilisé pour faire une prédiction
différencie la commande prédictive des deux autres algorithmes. En effet, la com-
mande prédictive utilise seulement une réponse i ’échelon alors que les deux autres
algorithmes utilisent le modéle 4 paramétres repartis. Finalement, la commande

par différence globale utilise une approximation préalable pour faire la conception
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de la loi de commande alors que la commande par post-approximation utilise une

approximation aprés la conception de la loi de commande sur le modéle PDE.

Ce chapitre présente donc différentes simulations comparatives afin de mettre en
relief 'impact du modéle utilisé pour la conception des différentes stratégies de
commande. Les performances relatives des algorithmes seront évaluées i l'aide
d'indices de performance classiques permettant d'évaluer 'écart entre le comporte-
ment du systéme et une situation idéale. La premiére partie du chapitre présente
la méthodologie de simulation suivie ainsi que les indices de performance utilisés.
Les trois parties suivantes présentent les résultats des régulateurs sur différents
systémes. Finalement, la derniére partie du chapitre expose une synthése des ré-

sultats.

5.1 Meéthodologie et critéres de performance

Afin de comparer efficacement les algorithmes de commande, toutes les simulations
sont effectuées a partir du méme patron de séquence de perturbation. Les simu-
lations sont toutes effectuées avec la méthode par alternance décrite au chapitre 2
pour un maillage de 100 noeuds. Les lois de commande et leurs ajustements sont

identiques a ceux présentés aux chapitres 3 et 4. Les régulateurs utilisés sont donc:

¢ La commande prédictive avec ajustement de l'échelle de temps (PM);
e La commande par différences globales (DG);

o La commande par post-approximation (PA).

La conception de tous ces régulateurs est basée sur le modéle M1 du chapitre

1. Par contre, I'analyse comparative est effectuée en comparant leur performance
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respective sur les modéles M1, M2 et M3.

En premier lieu, I'analyse comparative est qualitative. Ainsi les résultats de sim-
ulation sont analysés pour les cas suivants qui ont déja été présentés au chapitre
3:

1. Variation du débit. Le débit du réacteur est diminué de 50% a t = 50 minutes,
puis passe i 150% de sa valeur nominale a ¢ = 150 minutes avant de revenir
a sa valeur de départ. Cette simulation permet d’assurer la robustesse de

I'algorithme & une variation du rythme de production de I'usine;

2. Variation du point de consigne. Le point de consigne passe de sa valeur
nominale de 1649 i 18 Kappa 4 t = 50 minutes. Par la suite, le point
de consigne est diminué a& 15 Kappa i t = 350 minutes avant de revenir a
sa valeur nominale i 650 minutes. Cette simulation permet d’analyser le

comportement en suivi de trajectoire des lois de commande;

3. Variation des constantes cinétiques Dans le cas du modéle M1, la constante
k. est augmentée de 20 % a ¢ = 50 minutes tandis que la constante k¢
est diminuée de 20% a ¢t = 350 minutes. Dans le cas des simulations sur
les modéles M2 et M3, les variations sont ajustées afin d’obtenir la méme
variation en boucle ouverte de la variable contrélée. Cette simulation permet

d’analyser le comportement en régulateur des lois de commande;

4. Séquence de perturbations. Lors de cette simulation, une séquence de pertur-
bation, présentée a la figure 5.1, est appliquée au modéle. Cette simulation
permet d’analyser le comportement des lois de commandes lorsque des per-
turbations successives éloignent de plus en plus le procédé de son point de

fonctionnement.
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Figure 5.1 Séquence de perturbations

Dans toutes ces simulations, la lignine est perturbée stochastiquement et varie donc
entre 31 et 27 Kappa. Cette variation est construite par la sommation cumulée

d’une distribution normale de variance 0.02 i partir de 31 Kappa.

La deuxiéme portion de I’analyse est quantitative. Les résultats de simulations sont
analysés a I'aide d’indices de performance classiques. Les livres d’automatique de
base tel celui de Kuo (1998) présentent souvent une série d’indices qui permettent
de quantifier la déviation d’un systéme par rapport au comportement désiré. Ces
calculs se raménent le plus souvent 4 quantifier I'erreur entre le point de consigne
et la variable commandée. En commande des procédés, I'objectif est générale-
ment d'obtenir la meilleure performance sans générer d’oscillations ou de dépasse-
ments ce qui correspond a une réponse en amortissement critique. Ainsi, cette
stratégie évite de propager une certaine variabilité d’une étape a I'autre du procédé.

Dans le cas d’un réacteur tubulaire, cette approche correspond a Vapplication de
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'hydrodynamique sur le point de consigne SP. Cette solution SP,, peut étre

obtenue en résolvant P'équation suivante:

SP*(z,t}y  ASP(z,t) [ G*SP*(zt)
g = v D (5.1)
Dgg-’y = o(SP'(0,6) - SP(Y)) (5.2)
aSP*(6,t)
D=5 = 0 (5.3)
SF(t) = SP(z,) (5.4)

L’erreur entre la dynamique de la variable commandée et la performance optimale

est donce:

e(t} = Loue(t) — SPout) (5.5)

Cette définition d’erreur est utilisée afin de calculer les indices de performance

suivants:

1. DM: Ce critére détermine la déviation maximale entre la solution optimale

et la variable optimale. Il est calculé de la fagon ci-dessous:

DM = mazle(t)| (5.6)

2. ISE: Ce critére permet d'évaluer I’erreur globale sur la solution en pénalisant

plus fortement les écarts importants. [l est calculé comme suit:
ISE = [ (e(t))? dt .7)

3. ITAE: Ce critére calcule la valeur absolue de I'erreur pondérée par le temps. 1i

permet donc d’évaluer si la convergence vers la consigne est rapide et pénalise
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fortement une erreur en régime permanent. Il est calculé ainsi:
ITAE = [ le(t)|t dt (5.8)

Finalement, afin d’évaluer la performance des régulateurs en fonction de I'éloignement
du point d’opération nominal, des simulations sont effectuées sur des variations du
point de consigne de -15% a +15% et sur des variations de k; de -20% a +20%.
Les différents critéres de performance seront appliqués sur chacune des variations
afin d’analyser 1'évolution de la performance en fonction de I’éloignement du point

d’opération.

5.2 Résultats avec le systéme M1

La simulation des lois de commande sur le modéle M1 représente le cas idéal. En
effet, le systéme a réguler correspond exactement au modéle qui a été utilisé pour

construire les régulateurs.

La figure 5.2 présente les performances des controleurs suite 4 une variation du
débit. Ce type de perturbation impose forcément une déviation de la référence. En
effet, lors de P’application du nouveau débit, le contenu du réacteur ne peut plus
étre modifié alors que le temps de résidence du réacteur est différent. Ainsi, sans
anticipation spécifique, il est impossible d’éliminer une partie de la déviation. La
réponse a ce type de perturbation différe selon la loi de commande utilisée. Dans
le cas de la commande PM, la déviation de la référence est symétrique et sans
oscillation. Ce comportement est assuré par le choix conservateur des horizons
de commande et de prédiction. La commande DG répond plus rapidement mais
provoque un dépassement dans le sens contraire 3 la déviation causée par la per-

turbation. Ce comportement peut étre attribué aux approximations utilisées mais
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Figure 5.2 Modéle M1 : Variation du débit

il est par contre difficile d’en faire une analyse précise. Dans le cas de la commande
PA, la réponse 4 la perturbation est en deux temps. La premiére déviation plus
forte est essentiellement due & la perte de controle sur le contenu du réacteur, tan-
dis que la deuxiéme déviation plus faible est simplement attribuable au travail de
I'intégrateur. En effet, lors de la portion de la réponse qui est non commandable,
I’intégrateur modifie la référence interne car il enregistre une erreur entre la sortie
et la référence. Cette modification est par la suite éliminée. Ainsi, plus la constante
de temps de l'intégrateur sera faible, plus les variations de débit perturberont le

systéme.

La figure 5.3 présente les performances des lois de commande suite 4 une variation
du point de consigne. Les commandes PM et PA présentent toutes deux une
dynamique proche de la réponse optimale. En effet, la déviation par rapport a

la consigne est attribuable principalement & I'hydrodynamique du réacteur. Ce
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Figure 5.3 Modéle M1 : Variation du point de consigne

comportement était tout i fait prévisible pour la commande PA qui fonctionne ici
de facon purement anticipative car le modéle correspond exactement au systéme.
Par contre, la commande PM n’est basée que sur une réponse a I'échelon et obtient
le méme niveau de performance qu’une commande anticipative basée sur le modéle
a paramétres répartis. Cette perfomance s'explique par I'ajustement a chaque
pas de temps de la prédiction ainsi que par le choix conservateur des horizons de
commande et de prédiction. Par ailleur, la commande DG a plus de difficulté en
réponse a ’échelon. En effet, un dépassement important est observé et il semble
proportionnel 4 I'amplitude de Y'échelon. Ce mauvais comportement peut étre

imputé aux approximations utilisées dans le développement de cet algorithme.

La figure 5.4 présente les performances des lois de commande suite i une variation
des constantes cinétiques. La commande PM réagit moins efficacement 4 ce type

de perturbations. En effet, pour la premiére variation, I’écart avec la référence est
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Figure 5.4 Modéle M1 : Variation des constantes cinétiques

important alors que, suite 4 la deuxiéme perturbation, la stabilisation au point
de consigne n’est plus possible. Ce comportement montre les limites du modéle
entrée-sortie utilisé. En effet, la variation de la constante cinétique ne peut étre
incorporée dans I’algorithme que par la compensation des perturbations effectuées
a la sortie du réacteur. Ainsi, avant d’agir, 1'algorithme doit attendre que la per-
turbation soit effective i la sortie, ce qui explique la large déviation observée. De
plus, ce type de compensation n’influence pas ici la compensation par anticipation
de 'algorithme. Ainsi, les oscillations apparentes aprés la seconde perturbation
des constantes cinétiques sont directement corrélées avec les perturbations de lig-
nine i l’entrée du réacteur. Il n'est donc pas possible de tirer avantage de I'aspect
structuré d’un tel type de perturbation. La commande DG présente toujours des
déviations importantes par rapport a la référence compte tenu des approximations
utilisées dans sa construction. Par contre, le mécanisme d’adaptation basé sur le

modéle & paramétres répartis permet de stabiliser le systéme sur la consigne. Le
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comportement de la commande PA 3 une variation des paramétres cinétigques est
similaire & son comportement lors d’une variation du débit. Cette fois, la pre-
miére déviation plus importante est imputable au temps pris par le mécanisme
d’adaptation des constantes d'adaptation pour réagir et modifier 1a commande an-
ticipative alors que la seconde plus faible est encore une fois due au régulateur par
rétroaction. La compensation rapide de la commande PA est attribuable princi-
palement a |’utilisation efficace de l'information provenant du capteur a 'entrée du
réacteur. Si ce capteur est situé au centre du réacteur; la performance est réduite
car le délai de mise en oeuvre du mécanisme d’adaptation augmente. De plus, la
sensibilité au paramétre cinétique est maximale a 'entrée du réacteur compte tenu

de la structure de la cinétique qui est une fonction monotone décroissante.
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Figure 5.5 Modéle M1 : Séquence de perturbations

La figure 5.5 présente les performances des contréleurs suite  une séquence de per-
turbation. L'éloignement progressif du point d’opération nominal permet d’observer

. une dégradation plus importante des caractéristiques déja observées de la com-
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mande DG. En effet, le temps de réponse augmente sensiblement. Toutefois, le

comportement des commandes PM et PA demeure sensiblement le méme.

S

Tableau 5.1 Performances des régulateurs sur le modéle M1

Type de Indice de | Commande | Commande | Commande
perturbation | performance PM DG PA
Variation DM 0.36 0.25 0.30
du ISE 3.72 3.78 2.21
débit ITAE 6.0x102 | 1.3+10° | 9.8+10°
Variation DM 0.12 1.83 0.01
du point ISE 0.37 1.4 %102 0.01
de consigne [TAE 4.3%10° 7.5 % 10 6.9 * 102
Variation DM 1.87 2.38 0.32
des const. ISE 1.6 * 10? 3.6 + 10? 3.39
cinétiques ITAE 5.2  10* 8.3 » 10¢ 6.4 % 103
Séquence DM 1.77 2.50 0.39
de ISE 1.1 %102 3.5 %10? 3.99
variations ITAE 1.9 x 10° 4.5 10° 2.9 x 10*

Les indices de performance pour I'ensemble des simulations sur le modéle M1 sont
présentés au tableau 5.1. Les variations du débit influencent de fagon similaire
les indices de performance dans le cas des trois algorithmes de commande. Dans
la cas des variations du point de consigne, tous les indices permettent d’identifier
les différences de performance entre les différents algorithmes. La commande PA
obtient de trés faibles valeurs de DM et ISE. Ces résultats sont obtenus grace a
I’algorithme par anticipation dont la référence est la réponse optimale du systéme.
Cet algorithme présente aussi une meilleure performance dans le cas d’une variation
des parameétres cinétiques. Toutefois, I'indice ITAE ne permet pas de distinguer
que la consigne n'est pas rejointe aussi rapidement que dans le cas des autres
algorithmes. Finalement, I’analyse de la séquence de variation par les critéres de
perfomances met clairement en évidence la meilleure performance de I’algorithme

PA. Cette performance est ici largement attribuable i I'adaptation efficace des
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paramétres cinétiques et a la contribution anticipative de cet algorithme.
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Figure 5.6 Modéle M1 : Performance selon la variation du point de consigne

Les figures 5.6 et 5.7 montrent les performances des algorithmes de commande
par rapport a I’éloignement du point d’opération. Dans le cas d’une variation du
point de consigne, la commande PM et la commande PA obtiennent des résultats
similaires. Ainsi, leur performance est peu influencée par I’amplitude de la variation
du point de consigne. Par contre, la perte de performance de la commande DG est
effectivement proportionnelle  I'amplitude de I'échelon. Dans le cas de variations
de kg, la performance des commandes PM et DG est fonction de 'importance de la
perturbation alors que la commande PA est influencée dans une moindre mesure.
11 faut, de plus, noter I'asymétrie de la performance qui révéle la non-linéarité

importante du modéle dans le cas d’une variation du point de consigne.
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5.3 Résultats avec le systéme M2

La simulation des lois de commande sur le modéle M2 permet d’étudier la robustesse
relative des algorithmes de commande sur un systéme dont la cinétique est différente
mais tout de méme semblable. En effet, le terme cinétique du modéle M2 est L3C3

plutdt que L2C2.

La figure 5.8 présente les performances des lois de commande suite i une variation
du débit. La commande PM agit de la méme fagon que sur le modéle M1 avec
des déviations de la consigne similaire. La commande DG cause aussi le méme
type de déviation que lors des simulations sur le modéle précédent. Toutefois,
I'amplitude des déviations est plus grande. Cette disparité s’explique par le fait que
le mécanisme d’adaptation de la commande prédictive agit de la méme fagon dans

les deux cas. Alors que dans le cas de la commande par différences globales, c’est
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Figure 5.8 Modéle M2 : Variation du débit

I’adaptation du paramétre k4 qui permet I'ajustement. La commande PA réagit
moins bien que lors des simulations précédentes sur le bon modéle. Le mécanisme de
rétroaction doit compenser pour la variation du gain causé par la perturbation sur
le débit. En effet, le mécanisme d’adaptation des constantes cinétiques est moins
efficace car les paramétres estimés varient constamment selon les perturbations de
lignine. De plus, il faut noter que le mécanisme d’adaptation assure I’'adéquation
entre le modéle et le systéme seulement, I'identification exacte des parameétres
cinétiques n'est pas assurée. Ainsi, comme seulement deux capteurs sont utilisés
par le mécanisme d’ajustement des parameétres cinétiques, ce mécanisme identifie
donc des constantes qui assurent I'adéquation du modéle et du systéme & ces deux
endroits seulement. Si tout le profil du réacteur est mesuré, cette déviation est

résorbée car des parameétres cinétiques adéquat peuvent étre identifiés.

La figure 5.9 présente les performances des lois de commande suite 4 une variation
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Figure 5.9 Modéle M2 : Variation du point de consigne

du point de consigne. Encore une fois, la commande PM réagit de la méme facon
que dans le cas des simulations sur le modéle M1. La commande DG présente
aussi un comportement similaire quoique un peu plus oscillatoire; ’'adaptation du
parameétre cinétique Kk, permet de rejoindre la consigne. Les performances de la
commande PA sont, cette fois, légérement inférieures a celles de la commande
PM. Cet éloignement de la performance idéale s’explique par une efficacité réduite
du mécanisme d’anticipation qui n'utilise plus le bon modéle. Le mécanisme de

rétroaction permet toutefois d’obtenir une performance globale adéquate.

La figure 5.10 présente les performances des lois de commande suite a une variation
des constantes cinétiques. Le comportement des trois algorithmes de commande
est similaire a celui observé lors des simulations avec le modéle M1. Toutefois la
commande DG a, cette fois, de la difficulté & compenser la variation de k¢ alors

que la commande PA laisse le systéme dévier légérement du point de consigne apreés
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Figure 5.10 Modéle M2 : Variation des constantes cinétiques

cette méme perturbation. La commande DG est naturellement plus sensible aux
perturbations sur k¢ étant donné que seule une adaptation de ky, est réalisée. Dans
le cas de la commande PA, cette légére variabilité montre simplement que le travail
réalisé par les lois d’adaptation des paramétres cinétiques est plus important car
leur valeur est en constant mouvement compte tenu de la différence entre le modéle

et le systéme.

La figure 5.11 présente les performances des contréleurs suite & une séquence de
perturbation. Cette simulation est débutée a partir des conditions initiales du
modéle M1, ce qui permet d’apprécier le comportement des lois de commande
4 un changement brusque de modéle. Les trois algorithmes répondent a cette
perturbation avec une dynamique similaire & celle observée lors de variations du
débit. L’analyse du reste de cette simulation est similaire d celle faite pour la

simulation avec le modéle M1.
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Figure 5.11 Modéle M2 : Séquence de perturbations

Tableau 5.2 Performance des régulateurs sur le modéle M2

Type de Indice de | Commande | Commande | Commande
perturbation | performance PM DG PA
Variation DM 0.40 0.63 0.32
du ISE 449 30.1 5.61
débit ITAE 7.6 * 10% 5.0 %103 2.1+10%
Variation DM 0.08 2.06 0.25
du point ISE 0.35 2.0 * 102 5.38
de consigne ITAE 2.1x10° 9.5 * 10* 2.1x10°
Variation DM 2.11 2.56 0.35
des const. ISE 2.0 * 102 5.0 * 10? 3.22
cinétiques ITAE 5.8 *10% 9.3 x 10* 8.1+10°
Séquence DM 2.11 2.84 0.42
de ISE 1.5 % 10? 5.7 x 10% 68.2
variations ITAE 23%10° | 5.1%10° | 8610
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Les indices de performances pour P'ensemble des simulations sur le modéle M2
sont présentés au tableau 5.2 qui permet de quantifier les observations précédentes.
Ainsi, la commande prédictive est plus robuste lors de changement de la consigne
que la commande PA. Par contre, la commande PA conserve ses bonnes propriétés

lors de perturbations des constantes cinétiques.
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Figure 5.12 Modéle M2 : Performance selon la variation du point de consigne

Les figures 5.12 et 5.13 montrent les performances des algorithmes de commandes
par rapport a ’éloignement du point d’opération. Dans le cas d’une variation du
point de consigne, la commande PM et la commande PA obtiennent des résultats
similaires pour les indices DM et ISE. Par contre, le critére ITAE qui pénalise
fortement une erreur en régime permanent favorise la commande PM par rapport
a la lente convergence de la boucle de rétro-action de l2 commande PA. Dans le cas
de la variation de k., des performances tout & fait similaires A celle des simulations

sur le modéle M1 sont observées.
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Figure 5.13 Modéle M2 : Performance selon la variation de k.

5.4 Résultats avec le systéme M3

La simulation des lois de commande sur le modéle M3 permet d’étudier la ro-
bustesse relative des algorithmes de commande sur un systéme dont la structure de
la cinétique est différente. En effet, la cinétique du modéle M3 est composée d'une
réaction instantanée i I'entrée du réacteur et par la suite d’'un terme cinétique

bilinéaire LC.

La figure 5.14 présente les performances des lois de commande suite & une varia-
tion du débit. L’ensemble de ces simulations présente une variabilité beaucoup plus
grande que dans les cas précédents. La commande PM assure le méme comporte-
ment que précédemment avec un peu plus de variabilité. Par contre, les simulations
avec les lois de commande DG et PA sont beaucoup plus variables et n’atteignent

que difficilement le point de consigne. Dans ce cas la commande PA, la boucle de
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Figure 5.14 Modéle M3 : Variation de débit

rétroaction semble incapable de compenser rapidement la déviation A la sortie du
réacteur. Toutefois, il est possible d’obtenir de meilleurs résultats en changeant

’ajustement des paramétres de cette loi de commande.

La figure 5.15 présente les performances des lois de commande suite 4 une variation
du point de consigne. Les résultats obtenus sont similaires & ceux obtenus dans le
cas du modéle M2. Toutefois, les perturbations de lignine affectent plus fortement ia
loi de commande PA. Ce comportement est causé par ’algorithme par anticipation
dont le modéle ne tient pas compte de la structure de la cinétique du modéle M3.
En effet, une partie de la réaction est fixe dans ce modéle alors que I'algorithme
anticipatif utilise un modéle dont la réaction dépend entiérement des concentrations
des composants. Ainsi, I'impact des variations sera toujours surestimé dans le cas
d’une baisse de lignine et sous-estimé dans le cas d’une augmentation. Cette analyse

permet aussi d’expliquer pourquoi la réponse du systéme avec un régulateur PA est
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Figure 5.15 Modéle M3 : Variation du point de consigne

généralement sous le point de consigne dans toutes les simulations sur ce modéle.

La figure 5.16 présente les performances des lois de commande suite & une variation
des parameétres cinétiques. Dans cette simulation, la commande DG ne permet
plus d’atteindre le point de consigne, alors que les propriétés intéressantes de la
commande PA sont fortement dégradées. Toutefois, la commande PM assure la
méme qualité de réponse similaire i celle observée dans des simulations sur le
modéle M2. Dans cette simulation, la dégradation apparente de la commande DG
s'explique simplement par le calcul d’'une concentration de dioxyde de chlore 3
l'entrée qui est inférieure & 1.3 g/ alors que la condition frontiére de ce modéle
retranche 1.3 g/l. L’'amplitude trop importante des déviations de la référence ainsi
que la différence de structure entre le modéle et le systéme provoque I’instabilité de
I'ensemble. Dans le cas de la commande PA, les importantes oscillations obtenues

apreés la variation de k¢ peuvent étre expliquées par le fait que ’adaptation des
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Figure 5.16 Modéle M3 : Variation des constantes cinétiques

paramétres cinétiques est faussée par la proximité de ce méme point limite de la

concentration de chlore A ’entrée.

La figure 5.17 présente les performances des contrdleurs suite & une séquence de
perturbation. Cette simulation permet de confirmer la tendance de la commande
PA & étre inférieure au point de consigne qui a été observé lors des simulations
précédentes. De plus, cette simulation permet d’apprécier les performances de la

commande PM qui sont ici encore similaire a celle observés lors des simulations sur
le modéle M1.

Les indices de performances pour ’ensemble des simulations sur le modéle M3 sont
présentés au tableau 5.3 qui permet de quantifier les observations précédentes. La
robustesse de la commande PM par rapport aux deux autres stratégies est ainsi
aisément observable car elle permet d’obtenir de meilleurs indices de performance

dans presque tous les cas. Seule la variation des constantes cinétiques donne un
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Figure 5.17 Modéle M3 : Séquence de perturbations

Tableau 5.3 Performances des régulateurs sur le modéle M3

Type de Indice de | Commande | Commande | Commande
perturbation | performance PM DG PA
Variation DM 0.23 0.33 0.26
du ISE 3.72 9.43 762
débit ITAE 1.4 % 10° 3.6+10° 2.7 x 10?
Variation DM 0.27 1.43 0.38
du point ISE 5.61 1.5 * 10% 17.7
de consigne ITAE 2.4 + 10 1.1 % 10° 4.1 «10*
Variation DM 0.97 4.98 0.88
des const. ISE 72.9 1.6+10% 78.4
cinétiques ITAE 5.6 * 10* 3.1+10° 5.2 « 104
Séquence DM 0.69 2.37 0.98
de ISE 41.5 4.1 « 10% 1.5+ 102
variations ITAE 1.8+10° | 6.1x10° | 3.9x10°
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Figure 5.18 Modéle M3 : Performance selon la variation du point de consigne

Les figures 5.18 et 5.19 montrent les performances des algorithmes de comman-
des par rapport a ’éloignement du point d’opération. Dans le cas d’une variation
du point de consigne, la commande PM et la commande DG montrent une per-
formance similaire aux simulations sur le modéle M2. Par contre, la commande
PA réagit de fagon tout a fait asymétrique. En effet, pour des variations néga-
tives du point de consigne le comportement est similaire au cas des simulations
sur le modéle M2 alors que pour des variations négatives, les différents critéres
se dégradent fortement. Cette dégradation est attribuée a l'effet combiné de la
sous-estimation de ’anticipation avec celui de la condition frontiére du modéle M3
qui fausse 'adaptation. Dans le cas de la variation de k;, les trois algorithmes de
commande ont une performance variant de fagon similaire. La commande PA n’a

donc plus cet avantage lorsque la structure du modéle est trop différente.
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Figure 5.19 Modéle M3 : Performance selon la variation de &,

5.5 Synthése des résultats

Les simulations et leurs analyses présentées dans ce chapitre permettent de tirer

les conclusions suivantes:

e La commande prédictive avec ajustement de I'échelle temporelle est plus ro-
buste que les deux autres algorithmes proposés par rapport a la structure
de la cinétique. En effet, elle permet d’obtenir des perfomances similaires
lors des simulations avec les trois modéles. Toutefois, elle est plus sensible
aux perturbations des constantes cinétiques et ne permet pas dans ce cas
une bonne compensation des perturbations sur la lignine a 'entrée du réac-

teur. Cette limitation est attribuable au modéle entrée-sortie utilisé dans

I'anticipation;

. e La commande par différence globale est facile & mettre en oeuvre. Toutefois,
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les approximations grossiéres utilisées ne permettent pas d’obtenir des per-
formances aussi intéressantes que les autres approches. De plus, 'ajustement

des paramétres de la boucle PI externe est ardu;

e La commande par post-approximation permet d’obtenir d’excellents résultats
lorsque le systéme est proche du modéle interne utilisé. Par contre, lorsque
la structure du systéme est trop différente, les performances sont moindres
que celle de la commande prédictive. La performance de ce régulateur est
directement reliée i la capacité d’adéquation du modéle interne avec le sys-

téme;

e La performance au changement de point de consigne ne justifie pas 'utilisation
d’'un modéle & paramétres répartis. Cette utilisation est toutefois justifiée

lorsque les constantes cinétiques sont perturbées;

e L’utilisation de la commande par post-approximation permet d’accroitre les
performances du systéme si I'éloignement du point d’opération est suffisant

pour que la non-linéarité de la cinétique ait un impact.
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CONCLUSION

La performance de la commande d’un réacteur tubulaire est limitée principalement
par deux facteurs: le comportement non linéaire du systéme causé par la ciné-
tique de réaction et un délai déterminé par I’hydrodynamique qui peut étre trés
important. Ces problématiques sont des contraintes importantes des stratégies
de commande traditionnelles qui sont généralement basées sur un modéle obtenu
par une réponse a I'échelon. En effet, ce type de modéle ne permet pas de tenir
compte des effets non linéaires lors d’une variation du point d’opération. De plus,
la présence du retard de fagon explicite dans le modéle force un ajustement con-
servateur des paramétres de la loi de commande afin d’éviter un comportement

oscillatoire.

Afin d’améliorer les performances du systéme de commande d’un tel systéme,
Putilisation d’'un modéle & paramétres répartis a été considérée dans cette thése.
Dans le cas d'un réacteur piston dispersif, ce modeéle correspond & un systéme
d’équations paraboliques tel que présenté dans le chapitre 1. L’hypothése de base
de ce travail est donc que 'utilisation de ce modéle pour la conception du régula-
teur permet d’accroitre les performances du procédé. Pour rester dans un contexte
de recherche appliquée et pour favoriser le développement de solutions viables in-
dustriellement, une application a un réacteur de blanchiment avec des contraintes
industrielles typiques a été considérée. Pour étudier la validité de I’hypothése de

recherche, les objectifs spécifiques suivants ont été considérés:

1. Elaborer des outils de simulation efficaces;

2. Adopter les stratégies de commande existantes i la problématique de la com-
mande de blanchiment;
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3. Elaborer une stratégie de commande par post-approximation pour les sys-

témes commandés par la condition frontiére;

4. Comparer les différentes stratégies sur une application.

Le chapitre 2 a présenté différentes stratégies de simulation applicables au systéme
d’équations paraboliques non linéaires. Ainsi, les méthodes classiques de résolu-
tion ont d’abord été présentée, soient: la méthode des différences finies, la méthode
de collocation orthogonale et la méthode des éléments finis. L’application de ces
méthodes au modéle du réacteur de blanchiment a mis en évidence les limites a teur
application en ligne dans un algorithme de commande. Une nouvelle approche de
résolution numérique a donc été proposée: la méthode par alternance. Cette tech-
nique est basée sur la résolution successive a chaque pas de temps des phénoménes
de convection, diffusion et réaction. Au prix d’une solution un peu moins précise
pour des Peclet plus faibles, cette approche permet une résolution beaucoup plus
stable et rapide qui n’est pas affectée par les problémes de diffusion numérique ou
d’oscillation. Elle est donc bien adaptée a la résolution en ligne du systéme de

blanchiment.

Le chapitre 3 a présenté 'adaptation de stratégies de commande existantes a la
problématique de la commande d’une tour de blanchiment. Tout d’abord, la com-
mande prédictive de type DMC a été modifiée pour tenir compte des variations
du débit en ligne. Ainsi, la commande prédictive avec ajustement de |’échelle
de temps ajuste l'echelle temporelle du modéle en fonction du temps et permet
d’éliminer les oscillations causées par une mauvaise compensation du retard. Par
la suite, l'utilisation des différences globales a été appliquée au cas d’un systéme
parabolique commandé par la frontiére. De plus, un modéle interne i été ajouté

afin de faire 'adaptation du rapport des paramétres cinétiques.
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Le chapitre 4 a présenté le développement d’une stratégie de commande origi-
nale par post-approximation. Cette approche est composée de deux boucles de
commande: une boucle adaptative avec modéle interne qui permet d’obienir une
estimation des paramétres cinétiques, et une boucle externe qui permet s’assurer
le suivi de la consigne a 1’aide de composantes par rétroaction et par anticipa-
tion. La convergence du modéle vers le systéme a été démontrée par une analyse
de Lyapunov tandis que la solution de I'algorithme anticipatif est assurée par le

croisement d’une technique de relaxation et de I'algorithme de tir.

Le chapitre 5 a présenté une analyse des perfomances des lois de commande dévelop-
pées aux chapitres 3 et 4. Elle est effectuée par simulation sur trois modéles dif-
férents, M1, M2, et M3 alors que tous les régulateurs sont construits a partir du
modeéle M1. Cette analyse montre que la commande prédicitive réagit avec des
performances similaires quelque soit le modéle sur lequel la commande est effec-
tuée. Par contre, cet algorithme laisse une variabilité importante a la sortie lorsque
les constantes cinétiques du systéme sont perturbées. L’algorithme par différences
globales permet de stabiliser le systéme mais des déviations importantes par rap-
port & la consigne sont observées dans le cas de toutes les variations analysées.
Finalement, les performances de la commande par post-approximation dépendent
de I'adéquation entre le modéle interne et le modéle du systéme utilisé pour la
simulation. En effet, si les simulations sont effectuées sur le bon modéle ou sur une
structure similaire, le régulateur permet d’obtenir une réponse proche du comporte-
ment optimal désiré. Toutefois, si la structure de la cinétique est trop différentes,
les performances peuvent étre dégradées au point d’étre inférieures i celle de la

commande prédictive.

Les résultats obtenus dans le chapitre 5 montre bien que I’accroissement des perfor-

mances du procédé par I'utilisation d'un modéle & paramétres répartis est fonction
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principalement de la qualité de I'identification de la cinétique du procédé. En effet,
c'est essentiellement I'utilisation directe des cinétiques dans le modéle qui permet
d’accroitre les performances. En fait, la problématique étudiée ici est relativement
la méme que I’étude des performances de lois de commande non linéaire par rap-
port au régulateur linéaire sur un réacteur parfaitement agité. Les conclusions a
en tirer sont d’ailleurs identiques: un accroissement de la performance est possi-
ble seulement si le procédé est suffisamment perturbé pour que ’éloignement du
point d’opération nominal entraine une dégradation des performances des lois de
commande linéaire. Dans le cas contraire, ’amélioration de la performance est nég-
ligeable. L'hypothése de recherche est donc vérifiée pour le réacteur de blanchiment
dans les conditions suivantes: l'identification du modéle est précise et le procédé
est sufisamment perturbé pour que la performance des lois de commande linéaires

soit dégradée.

Le travail effectué lors de cette thése a permis de réaliser deux contributions orig-
inales dans le domaine de la commande des procédés chimiques. Tout d’abord un
nouvel algorithme de simulation a été proposé. Cet algorithme n'est pas une contri-
bution au champ des mathématiques appliquées mais bien a celui de la commande
en temps réel. En effet, I'utilisation d’'un modéle & paramétres répartis dans un algo-
rithme de commande a ’aide des méthodes traditionnelles est difficile compte tenu
des temps de simulation importants requis et du manque de robustesse de ces algo-
rithmes aux variations des paramétres d’opérations. La simulation par alternance
proposée permet une simulation rapide et robuste au coit d’une certaine perte
de précision. Celle-ci demeure toutefois acceptable compte tenu de l'incertitude
des mesures industrielles. La seconde contribution originale de cette thése est le
développement d’une loi de commande par post-approximation. Les principes util-
isés dans cette loi ont déja été utilisés pour des systémes 4 paramétres localisés

mais leur transposition aux systémes & paramétres répartis est originale. Cette
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loi permet d’utiliser la structure du modéle & paramétres répartis afin d’identifier
en ligne les paramétres cinétiques d’un modéle interne. Cette information permet

d’utiliser efficacement le modéle du systéme dans une boucle d’anticipation.

Le travail effectué dans cette thése ne permet en fait que de répondre a certaines
facettes de ’hypothése de recherche de départ car l'application au réacteur de
blanchiment limite Pimpact de I'utilisation d’un modéle & paramétres répartis. En
effet, le peu de capteurs disponibles sur ce systéme, les perturbations importantes a
’entrée du réacteur et le point de consigne seulement sur la sortie limite fortement
les avantages de I'utilisation d'un tel modéle. Toutefois certains axes de recherche

sur la commande de ce procédé devraient encore étre explorés tel que:

o Plusieurs usines utilisent un capteur au quart de la hauteur de la tour de
blanchiment afin d’avoir une rétroaction rapide. Une loi de commande qui
utilise 'information de ce capteur pour la rétroaction en plus de I'information

sur la sortie serait intéressante;

e La cinétique du blanchiment est encore mal déterminée. L’analyse de dif-
férentes cinétiques avec une modification de la structure & modéle interne sur
des données d'usine pourrait étre une méthode intéressante pour contribuer

a la modélisation des cinétiques de blanchiment;

e Le blanchiment de la pate est réalisé i P'aide d’une séquence de réacteurs.
L'utilisation d’'un modéle & paramétres répartis représentant 'ensemble des
tours comme un seul réacteur avec différents points d’injection des réactifs
pourrait étre une approche intéressante pour 'optimisation de la séquence

compléte.

L’étude de la méthode de simulation par alternance proposée au chapitre 2 devrait

aussi étre poursuivie en explorant les aspect suivants:
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e L’analyse des performances de cet algorithme pourrait étre étendue i des
réacteurs i température et pression distribuées. Une approche par alternance
des phénoménes de transport ou par alternance des bilans pourrait donner

des résultats intéressants;

o Cet algorithme demeure heuristique pour le moment. Une analyse rigoureuse
de Perreur pourrait étre entreprise en considérant ['utilisation d’ordre de ré-
solution différents. En effet, il est possible de minorer et majorer la solution

par 'utilisation de séquences différentes.

Finalement, dans I’étude générale de la commande des réacteurs 4 paramétres

distribués, les axes de recherche suivants sont prometteurs:

e L’algorithme de post-approximation utilisé peut aussi étre utilisé avec une
structure 4 modéle de référence. Cette approche pourrait étre utile dans
le cas de réacteurs ou la commande d’une erreur minimale sur le profil est

désirée.

e L'avenir de la commande par post-approximation est somme toute dans
l'utilisation d’un maximum d’informations de ce modéle. Ainsi, la théorie
des systémes de dimension infinie doit &tre abordée en conjonction avec la
théorie des systémes non linéaires afin d’identifier une stratégie de linéarisa-
tion exacte applicable sur un systéme & paramétre répartis. Cette approche
est facilement envisageable dans le cas d’'une commande répartie mais elle

devrait aussi étre transposée au cas d’'une commande par la frontiére.
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Abstract :

A new approach for solving convection-diffusion-reaction equations is presented.
The method is based on the separation of the different phenomena. At each time
step, convection, diffusion and reaction are applied successively on the reactor mesh.
This sequencing method allows to solve both hyperbolic and parabolic equations
and to extend the frequency response of the numerical solution. Simulation results
are given for linear and nonlinear reaction kinetics. These are compared to the exact
solution for the high diffusion case and with up-wind finite difference methods for

all cases.
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[.1 Introduction

Tubular reactors have a distributed nature and their mathematical formulation
leads to a system of partial differential equations (PDEs). Modeling of an isother-
mal tubular reactor, using mass balances, leads to convection-dispersion-reaction
equations. The resulting well-known dispetsion model for a non-ideal reactor is
composed of second order parabolic equations. Several common numerical meth-
ods have been used to approximate PDEs by ordinary differential equations (ODEs)
for numerical simulation and control design: finite differences methods (FDM), fi-
nite elements methods (FEM) and orthogonal collocation methods (OCM) (Gerald
et Wheatley, 1990; Villadsen et Michelsen, 1978; Varma et Morbidelli, 1997; Reddy,
1993). [n the specific case of hyperbolic PDEs, the method of characteristics give
an exact transformation of the PDEs into ODEs (Farlow, 1993). Recently other de-
velopments occurred to address specific problems such as shock wave propagation:
moving finite element method (Sereno et al., 1991; Sereno et al., 1992), up-wind
finite element method (Park, 1995), wavelet transform approach (Kosanovich et

al., 1997) and many others.

Traditional numerical methods lead to satisfactory results in many cases, especially
when the system has a clear behavior such as plug-flow reactors (PFR) or contin-
uously stirred tank reactors (CSTR). Unfortunately, none of the above could be
applied for the whole range of behaviours. The accuracy of the solution depends on
the relative importance of the convection, dispersion and reaction terms. Moreover,
for low dispersion systems, many problems may arise such as numerical diffusion or
oscillation and even instability caused by the inappropriate use of the Danckwerts’

boundary conditions.

The proposed method bas been developed in the context of an on-line application,
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i.e. the numerical simulation of a PDE model within a control scheme for an
industrial application. Therefore, accuracy is not the only key issue of the problem:
stability, ease of use, CPU time demand, and adequate frequency response of the

numerical scheme are all other important issues.

This paper presents a novel approach for solving partial differential equations. The
solution is based on the time occurrence of phenomena instead of using a varia-
tional formulation. Here each phenomenon is solved successively at each time step.
This simple approach exhibits stability and rapidness properties. Moreover, the fre-
quency response of the scheme is enhanced by treating the convection phenomena

separately.

The next section of the paper describes the main concepts of this approach. It
is followed in the third section by a detailed description of the algorithm. In the
fourth section, the results from the novel approach is compared with the finite
difference method and the analytical solution for the linear case. The fifth section
shows an application to the nonlinear PDEs of a chlorine dioxide bleaching reactor

application.

1.2 Description of the sequencing method

The dynamics of a tubular reactor can be modeled by transient mass balance on a
thin transverse section. The resulting unsteady state convection-diffusion-reaction

equation may be written as follow:

dz(z,t) _vaz(z,t) + Dazz:(z,t)

at oz 32 r(z(z,t)) =0 (L1)
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with the following closed-closed Danckwerts’ boundary conditions and initial con-

centration profile in the reactor:

pZON — (a(0,0) - zialt) (12)
az(l,t)

A = 0 (L.3)

z{2,0) = x4(2) (1.4)

In those equations, z represents the concentration in the reactor, v the superficial

velocity, D the dispersion coefficient and r{z(z,t)) the reaction kinetics.

Traditional numerical methods approximates the solution of Equation (I.1) using
space and time approximations. In FDM, a finite approximation is used to trans-
form space partial derivatives to obtain a system of ordinary differential equations
(ODE). OCM and FEM use a summation of polynomials for approximating the
solution. Each term of the summation is composed of a function of time multiplied
by a function of space. The problem is then expressed in a variational formulation
in which test functions are used to measure the approximation error in a functional
space. The choice of this test function dictates the method to be used. For OCM,
Dirac functions are used as test functions. The method then focuses on obtaining
exact response at some specific points in the reactor. If approximation polyno-
mials are used as test functions, the Galerkin method is derived. Applying this
method over each portion of 2 mesh leads to the simplest form of FEM. For all of
these methods, the resulting ODE system is finally solved using backward finite

difference, Runge-Kutta or predictor-corrector algorithms.

The sequencing method proposed in this paper addresses the problem from a differ-
ent viewpoint. The behavior in time of the system is considered as the framework

. for the analysis. If one looks at a set of parabolic equations, three phenomena
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simultaneously occur at each time step: convection, reaction and dispersion. If the
time step is small enough, it is assumed that each phenomenon occurs separately
in a sequential fashion. In this way, the formulation of equations, boundary condi-
tions and simulation of each subsystem are easier to determine. This is the main
idea behind the sequential algorithm. The solution is passed through a convection,
a diffusion and finally a reaction sub-problem successively. For each subsystem,
the solution becomes the initial condition of the next subsystem. Mathematically,

it can be described by the following algorithm.

For a given reactor, let zo(z) be the initial profile of the reactor. This profile is
used as an initial condition for the following convective subsystem which is solved

for one time step At :

dz*(z,t) _ 0r°(z,t)

= U (L5)
z°(0,t) = zw(t) (1.6}
T'(z,t) = zo(2) (L.7)

Next, the result of the convection profile solution is passed through the following
diffusion subsystem where it is used as an initial condition such that z3,(z) =

z*(z, At) for a time step At:

dz*(z,t) _ Pz(z,t)

3 = D—_622 (L.8)
0z(0,t)

—, =0 (L9)
az(l,t)

— = 0 (1.10)

z(2,0) = zp(2) (L11)
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Finally, the profile solution of the diffusion subsystem is used as the initial condition

zhy = z°°(z, At) of the reaction subsystem for a time step At:

‘h(a"t’t) = —r(z(z,t)) (L12)
.’L‘(Z,O) = IX;(Z) (113)

The solution of this equation is the solution to the general Equation (I.1) for a
time step At. The process is repeated until the whole time span has been covered.
In fact, at each time step, (1) the whole content of the reactor is moved toward
the output according to superficial velocity, (2) dispersion occurs throughout the
reactor and (3) a reaction occurs according to the reaction rates at each iocation
in the mesh. This approach can be used equally well for hyperbolic and parabolic
equations without changing boundary condition or adapting some tuning parameter
based on the Peclet number Pe = vl/D which account for convection-dispersion

phenomena ratio.

.3 Sub-problems resolution

For a time step At, N elements of dimension Az are used to define the reactor

mesh. The following values are used:

Az=I/N (L.14)
At =Azfv (I.15)

So the choice of the mesh dimension determines time and space discretization. This

I approach implies an equally spaced mesh but extension to a variable mesh is also
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possible. For varying flow, the time step is adjusted according to the preceding

equations.

Resolution of the convection subsystem (1.5)-(1.7) is the simplest part of this algo-
rithm. It is a delay system from an input-output point of view. Thus, at each time
step the data are moved one step forward in the mesh, the outlet concentrations
are removed and the concentration at the reactor inlet is placed at position one in

the mesh.

The dispersion subsystem (I.8)-(1.11) can be solved in many ways. FDM and
FEM will lead to a similar formulation of the problem and they are both efficient
and stable for a pure dispersion system. FDM has the advantage of a simple
formulation but FEM deals more efficiently with Newman boundary conditions.

For both approaches, the dispersion sub-problem is transformed into the following

linear system:
%’ﬁ = Mz™(zt) (1.16)
z"%(2,0) = z},(2) (L17)

A simple FDM scheme was used for all results presented in this paper. The following

central finite difference spatial approximations were used:

P (z,t) Da:"(ziH,t) =22 (z;,t) + (21, t)
dz? (Az)?

(1.18)
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The following linear system is then obtained:

[ &+(Az,8) ) (1 1 0 ... o)(z(aze) )
£ (2Az, 1) 1 =2 1 ... o]z (azt)
D
(028 [=gp| 0 1 -2 .. 0| a"@ant) | (19)
\.’i:”(NAz,t)/ \ 0o 0 -0 ... —1) \:!:"(NAz,t,-))

Since this system is linear, it can be solved for a given At using a transition matrix

formulation such as (Rugh, 1993):

T (z, At) = exp (—(—[:\%FM * At) ***(z,0) (1.20)

The computation of the exponential matrix can be done in advance, so the resolu-

tion of the dispersion subsystem only implies a matrix-vector multiplication.

The resolution of the reaction sub-problem (I.12)-(1.13) may be the slowest part of
this algorithm. In fact, the reaction equation must be calculated at each point of
the mesh. This may lead to a large number of independent differential equations to

be solved. This problem has a solution using a variable separation approach such

as:

T 1 At
j:.. Seeme=) @ (L21)

which could then be solved to obtain the following relation:
fz,20,08) =0 (1.22)

If = can be expressed as a function of t and g, the solution is straightforward.
Unfortunately, if the reaction implies many species, the formulation of the reaction

. term may lead to a transcendental relationship and sometimes it could not be solved
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in x. Two choices are then available: to use a numeric ODE solver on Equations

(1.12)-(L.13) or to solve Equation (I.22) numerically.

Overall, this algorithm is easy to implement and many variations can be considered
to refine the approach. Its development does not require a specific attention to the
Peclet number. In fact, plug flow reactors to highly dispersive systems can be
solved in the same way with this algorithm. Thus, this approach is well suited
for a system in which some variations of operating conditions have an important
influence on the flow type. For instance, a important increase of the flow rate can
increase significantly the back-mixing in a tubular reactor. The flow type will then

pass from dominant convection to dominant dispersion.

1.4 Sequencing method analysis

A simple linear PDE equation is used as a first test for the sequencing method.
Solutions are compared to the solution by FDM and to an analytical solution in

the case of dispersive systems. The following system is considered:

z z 21(z
a—”f%’t) = -uaméz‘” +p? Z(z;t) — kz(z,t) (1.23)
pZD — ofa(0,1) ~ 2l (124
az(l,t)
—— = 0 (1.25)
z(z,0) = zo(2) (1.26)

where v = 0.05 m/min, { = 1 m, & = 0.057 méin™! and z;;, = 1 g/l. Three
different values are considered for the Peclet number: 1, 10*, 108. A Peclet number

of 10® represents a near plug-flow situation and a Peclet number of 1 is for a highly
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dispersive system that behaves almost like as a continuous stirred tank reactor.

Unless specified, all the simulations are performed for a 100-nodes mesh.

The simulation with the sequencing method is done according to the algorithm
presented in the preceding section. The simulation code for this system is shown
in Figure 1. Since the reaction subsystem is linear, it has the following simple
analytical solution:

z(t, z) = exp(—k * At) * 3" (2) (L.27)

Simulation by the FDM is done by using the first order backward difference Equa-
tion (I.28) for the first order space partial derivative and the second order central
difference Equation (1.29) for the second order space partial derivative. A backward
difference approach is used to avoid high Peclet number oscillations occurring with

central formulations. The following approximations have been used:

aI”(Z,t) N .'L'”(Z", t) - I.‘(Zi_[,t)

L = (1.28)
Pr(z,t)  27(z41t) = 227 (5t) + 27 (21, t) (1.29)

922 (Az)?
Matlab© FDM programs were developed using in-house software for automatic

simulation code generation. The time integration of ordinary differential equations

obtained is performed with ODE15s.

Since the reaction term is of first order, the model is linear and the equation has an
analytical solution (Winkin et al., 2000) using the framework of infinite dimensional
state space systems as shown in (Curtain et Zwart, 1995). Equation (I.1) can be

rewritten as a Fattorini model of boundary control (Fattorini, 1968) such as:

#(t) = Az(t) + Bz (1.30)

i )
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% Initialisation

v = 0.05; % superficial velocity
k = 0.057; % kinetic parameter

D = 0.05; % Dispersion for Pe=l
N = 100; % Mesh definition

dz = 1/N; % Space step

dt = h/v; % Time step

t = 0:dt:50; % Time span
% Results initialisation

result = zeros(N,length(t));
% Input

x_in = ones(1,length(t));
% Diffusion matrix calculation

matexp = —2/dz"2seye(N);

for i=1:N-1
matexp(i,i+1)=1/dz"2;
matexp(i+1,i)=1/dz"2;

end;

matexp(1,1)= —-1/dz"2;

matexp (N,N)= —1/dz "~ 2;

matexp = expm(matexp*Dxdt);

% Simulation loop

for i=2:length(t)
% Convection
result (:,i) = [Lin(i—-1);result (1:N-1,i -1)}];
% Reaction
result (:,i) = exp(—kl*dt).*result (:,i);
% Diffusion
result (:,i) = matexp*result (:,i);
end;

Figure 1.1 Matlab© code for linear case
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B = ui(z) (1.32)

in which (z) is the Dirac distribution and A is a Riesz spectral operator on an
Hilbert space. The following norm and inner product are used on the Hibert space
L(0,1)

Vig €01, (figh=[ fDeldds, and Iil=\[F T (33)

The mild solution of the abstract inhomogeneous problem (1.30) is:
= nt f ol
w5t) = Yl valda+ [ O NE(6) Yaltnds]  (L34)

n=1

This solution is obtained by considering the following definitions:

sﬁ +v?
A = - D k (L.35)
. . L 2us
with 0 < 5p < spy| solution of tan(ﬁs) = a3 (1.36)
Fofcos( ) 4 L sin(
du(z) = K,e5%[cos( 5 Dz) + - sin( 5 Dz)] (L37)
ta(z) = Mpoa(L-2) (1.38)

in which K, is chosen such that [[¢a]l2 = 1 and M, such that [} ¢,9dz = 1. This
spectral solution is applicable for dispersive systems in which the eigenvalues A,
are well spaced and a small n is enough to give a good representation of the system.

In practice, this solution can be used only when the Peclet number is less than 10.

Figures 1.2-1.4 show outlet concentration and reactor profile for different Peclet
numbers when solving by SM or FDM. The exact solution in also included for
Pe =1 and different mesh sizes are used for all approaches. A first examination of
results shows that overall, both numerical approaches capture the behavior of the

reactor but: (1) the FDM is unable to account for plug flow behavior and (2) SM



180

does not capture the inlet gradient for high dispersion reactors.

1 L 1 4 i
0.t 02 0.3 a4 113 08 0.7 08 09 1
Position

Figure 1.2 Linear system solution for Pe = 10®

For the plug flow case, the SM gives the exact response like the method of char-
acteristics since the system is degenerated to a hyperbolic case. Otherwise, FDM
induces numerical diffusion for Pe = 10® and Pe = 10* as shown in Figures [.2
and L.3 . By definition, FDM cannot account for sharp inputs since it corresponds
to the well-known tank in series model. For instance, taking one equation of this

model leads to:

aA(tv Z,) D A(ts zi+l) — 2A(t1 zi) + A(ts zi—l)
a (Az)?
Alt, zi) — A(t, zi-1)
— - —kA(, 2) (1.39)

Then, applying the Laplace transform on this equation leads to the following ex-
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pression:

_ D/(Az)? +uv/Az

T s+2D/(Az2 +ufAz+k
D/(Az)?

s+2Df{Az)?2 +vfAz+ k

A(s, ;) A(s, zi-1)

+

A(s,2zi +1) (I.40)

This equation shows that each element of the mesh is in fact a low pass filter with a
bandwidth which is a function of the dispersion factor, the superficial velocity, the
kinetic constant and the mesh definition. To emphasize this point, amplitude Bode
diagrams in Figure 1.5 shows the difference between the frequency responses of SM
and FDM. Thus, for low Peclet number, the frequency responses are similar because
the dispersion phenomenon is limiting the reactor bandwidth. Otherwise, for high
Peclet numbers, the numerical approximation effect dominates the bandwidth in
the case of FDM. The SM does not exhibit this behavior, since its bandwidth is
limited only by the mesh precision. Moreover, frequency analysis also shows that
the simulation time can be directly related to the frequency content of the input
as shown in Figure 1.6. The time to solve the SM simulation do not vary with the
frequency composition of the input since it is a fixed time step approach. On the
other hand, the FDM simulation time grows exponentially as the input frequency
grows. This can be explained by the time integration with ODE15s which uses
a variable time step to catch input variations and insure stability. Note that the

simulation time is independent of the Peclet number for the SM.

For high Peclet numbers, Figures 1.2-1.3 show that FDM curves are always slightly
higher than SM curves. In fact, FDM leads to a steady state error. This can be
demonstrated easily with the analysis of a plug-flow reactor. If the following steady
state problem is considered:

dz(z) k

2 = —2a(z) (L41)
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the solution at steady state is

z(z) = e*z(0), a= - (L.42)
With the FDM approximation, the solution is
z(z) = (1 - az/n)"z(0) (1.43)

An error function between two preceding solutions is obtained by considering the

following series expansion:

- -az  —az® -aZ®
e A T I
—az —az’(n-1
1-az/n)" = 1+ T 5 ( " ) ([.44)
—a2d (n—-1)(n - 2)
+ 2 (L.45)
The approximation error is then:
% (—az)? ( )
error=) ——|1- + — (L.46
:4::2 b! n"(n b)! b—%q b )

This error function is a monotonic decreasing function of n. With a finite dimension

mesh, a steady state error is expected which explains the systematic overestimation

of FDM compare to SM for high Peclet numbers.

For Pe = 1, comparison of SM and FDM can be made according to the exact
solution. Figure 1.4 shows that outlet time response of the reactor is adequately
calculated by both algorithms but the SM does not match the inlet of the reactor
profile. This can be explained by the modified boundary condition used. The
separation of convection and dispersion phenomena at the reactor inlet leads to a

loss in the inlet gradient information given by the Danckwerts’ boundary conditions.
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In order to obtain an adequate gradient, the mesh must be significantly reduced
at the beginning of the reactor. Thus, a non-uniform mesh size should be used to
improve the solution. Figure .7 shows the variation of the integral of absolute error
related to mesh dimension for the profile and the output concentration response. It
shows that SM methods exhibits a higher error than FDM but this error is of the
same order of magnitude and have interesting consistency properties. The main
source of error in the SM algorithm, after the inlet boundary conditions, is the
subsystems resolution sequence. For a linear system, application of dispersion and
reaction is commutative since they are both linear applications. Thus, the main
error source is due to the application of the convection in a separated manner from
the preceding phenomena. [t leads to an overestimation of the conversion in the
reactor. Fortunately, this error could be well controlled by increasing the mesh

definition as shown in figure (1.7).

x 10~ Qutput and prafile error

—_— Output eror SM

d B Pronle eror SM
3_‘\ - Protie eror MOF | |

ast

Integral Absciute Error

Figure 1.7 Error analysis
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L5 Nonlinear PDE: Application to a bleaching reactor

Consider the following system of PDE, describing a chlorine dioxide bleaching re-

actor (Gendron, 1997¢):

SRS

62
oC(1,t)
0z
L(z,0)

C(z,0)

BC &*C

= —v5=+ Dy~ keCL? (L.47)
= -UZ—L + D%z—ii — kC3L? (I.48)
= %(L(O,t)-Li,,(t)) (L.49)
= %(C(O, t) = Cin(t)) (1.50)
=0 (1.51)
=0 (1.52)
= Ly(2) (L53)
= Co(2) (1.54)

where the equations are space normalized to obtain a reactor length of 1 m. The

parameters values are equal to:

ke

kL =

v

55x107° ¢73B% 2min~! (L55)
57x 1077 ¢~ 2% 3min~! (1.56)
0.05 m/min (1.87)

Typical industrial influent concentrations of this process are shown in Figure 1.8.

Figures 1.9-1.11 show simulation results for different Peclet number and different

simulation approaches. These figures show almost the same characteristics observed
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in the linear case namely: (1) FDM has a poor frequency response and (2) SM does

not adequately solve the inlet profile for low Peclet numbers.
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Since the reaction subsystem is nonlinear, the sequence of subsystem resolution has
to be addressed. Figure [.9-1.10 show that the sequence is not important for systems
with slight dispersion. On the other hand, Figure I.11 shows that the solution in the
convection-reaction-diffusion (CRD) sequence instead of the convection-diffusion-
reaction sequence gives an important error. This error could be explained by the
high order of the reaction kinetics involved in Equation (1.47). Figure [.12 shows
the integral absolute error between CRD and CDR for different Peclet and mesh
definition. Even if both solutions seem to converge to the same solution, the effect
of Peclet number is dominant. A variable mesh size with a mesh precision defined
by the rate of the reaction could be an efficient way to reduce the error for low

Peclet number problems.
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1.6 Conclusion

A new algorithm for simulation of convection-dispersion-reaction PDE systems has
been presented. This algorithm is based on a time solution approach of the PDE
model and is validated by phenomenological arguments. It implies the successive
solution of a specific sub-problem describing each phenomenon. Its main character-
istics include: to solve of parabolic and hyperbolic problems, to enhance numerical
model frequency response, to give adequate transient responses to sharp and noisy
inputs and robustness to flow type variations. The SM methods can be improved by
using a non-uniform or adaptive mesh to compensate for inlet boundary condition

error and importance of reaction rate.
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Abstract :

Reactor engineering generally uses distributed parameter models for design pur-
pose. These models are not often used for process control design. May the use of
this kind of complex models improve control performance? This paper compares
different control strategies based on a distributed parameter model to a time-scaled

DMC that only uses a simple input-output model for the control of a bleaching re-

actor.

II.1 Introduction

The design of tubular reactors is usually performed by using mass and energy
balances on a thin slice of the reactor. This modelling approach leads to partial

differential equation models. However, process control practice for this type of
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reactor often uses lumped models such as first order plus delay transfer functions.
Could there be some advantage to use the distributed parameter model for control
purposes? On one hand, answering this question is easier when actuators and sen-
sors are also distributed like in furnace heat control. Using a distributed parameter
model then allows to use all the information in a structured manner. On the other
hand, when sensors and actuators are only present at boundaries, performance en-
hancement using a distributed parameter model is not obvious. This question will

be explore in this paper on a bleaching reactor application.

The bleaching process is the last step of pulp preparation. Its purpose is to improve
the brightness of the pulp to a specified level which fulfills customers needs. The
control objective for a bleaching reactor is then to obtain the desired brightness
with a minimum output brightness variance at the lowest chemical cost. Tradi-
tional approaches to this control problem include variations around compensated
brightness and scheduling, but the increase of computer power and the introduction
of on-line analyzers offer new possibilities for model-based control such as directly

using the PDE model.

Different models for the bleaching are presented in the literature for control pur-
poses. Traditionally transfer function or other input-output models are used. But
the need for more complex models is point out with the use of mixed model.
Barrette and Perrier (1995) use multiple CSTR and Wang et al. (1995) use a com-
bination of CSTR and PFR. Recently, a PDE model have been proposed by Renou
et al (20005).

Various approaches have been considered to use a PDE phenomenological model
directly. Ray (1981) proposed to divide control approaches on PDEs in two groups
. The first group is composed of early lumping methods where a preliminary dis-
cretization of the PDE model is used to obtain a set of ODEs. This lumping is often
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realized by numerical techniques such as finite difference, orthogonal collocation or
finite elements. Early lumping techniques includes the use of global differentiation
proposed by Dochain (1994) as an approximation of partial derivative. This ap-
proach have been applied to hyperbolic PDE on a bioreactor by Bourrel (1996) and
on a bleaching reactor model by the authors (20006). The second group of tech-
niques is based on late lumping methods where the controller design problem is
solved directly with the PDE model. When necessary, lumping may be applied for
controller implementation. The control of parabolic PDE has been previously ad-
dressed by Hong and Bentsman (1994). They provide a design solution for systems
in which the control action appears explicitly in the PDE system. For the bound-
ary control problem, the author have proposed a direct adaptive control strategy

in Renou et al (2000a) for the linear case.

The objective of this study is to present some results on the use of more complex
models to enhance control performance. For this purpose, an early lumping and
a late lumping strategy are compared to a simple time-scaled Dynamic Matrix
Control (DMC) algorithm. The first section of the paper presents the PDE model
development for a Cl0, bleaching reactor. The second section briefly show the
design ideas for each controller. The following section presents the main compara-
tive results in terms of response to flow variations, step point changes and kinetic

parameter mismatch.

I1.2  Bleaching reactor model

The bleaching process for chemical pulp consists of extracting lignin from wood
fibre. This brownish colored complex polymer is responsible for wood fiber col-
oration. It could be degraded by using a strong oxidant like Ci0,. A PDE model
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for this process reactor can be obtained by mass balances on lignin (L) and C!l0,
(C) on a thin section of the reactor. The following space axial dispersion model is

then obtained:

oL(zt) _ _ OL(zt) , 3Lz 1)
ot = v dz +D 922
~ r1(L(z,t),C(2,1)) (1)
aC(zt) _ 8C(zt) . &C(z1)
ot = v 0z +D 022
- re(L(z,t),C(z,t)) (I1.2)
., = L0, - La(t)
ac(z.4 = F(C(0,t) — Cift
) 2(C(0, t) (1) (IL.3)
IC (2.t = 9Coy 0
Bz |a=¢ 92
aL(z,t) = 9wt _
Bz ") dz

In this model, reaction kinetics explicitly appears and can be identified by labora-
tory batch experiments. Hydrodynamical parameters v and D can be determined
by tracer analysis. Here the kinetic data obtained by Savoie et Tessier (1997)
have been considered and hydrodynamical parameters were deduced from Pudlas
et al. (1999) as shown in (Renou et al., 2000b). The following kinetics model and

hydrodynamical parameters are used:

rpifL,C) = —k; C*L* = —0.0065 C2L? (IL.4)
reilL,C) = —k¢ C?L* = -0.0010 C*L? (IL.5)
v = lmfs, D=0.001m?/s (11.6)

for a 30 meter tower. Finally we consider the inlet concentration of ClQ,, Cj,, and
the lignine concentration at the outlet, Lo, as the manipulated variable and the

controlled variable, respectively. Lignine and CI0, measurement are assumed to be
. available at the both ends of the reactor.



196

1.3 Time-Scaled DMC

The DMC controller is designed using two dynamic matrices: S¢y for ClO, input
to lingin output response and Sy, for lignin input to lignin output response. At
each control step, the following criterion is applied:

ming = [elk+1)—for + K*Au(k)" Au(k)T]"

[e(k + 1) = Ber + K2 Au(k)T Au(k)T) (IL7)
The prediction error takes the input lignin disturbances into account such as:

elk+1) = y'(k+1)

— [#°k) + wlk + 1) + Br AL(K)] (11.8}

In the preceding equation, y* is the set point, 7° is the prediction if no further
control action is taken, w is the estimation of disturbance and AL is the variation
of lignin at the inlet. Traditional DMC is sensitive to flow rate variations since
they represent, in fact, a variation of dead-time from an input-output point of
view. To overcome this problem efficiently, information about the flow rate has
to be transmitted to the controller. To reach this goal, the prediction time span
is scaled by the variation of flow rate. Thus, the At between each calculation of
the control action is scaled by the ratio between the new flow rate and the old
flow rate. This approach can be practically implemented by using oversampling or

interpolating dynamic matrices and prediction.
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I1.4 Early lumping approach

One of the problem with the PDE model described by equations {II.1)-(IL.3} is
that the control action does not appear explicitly in the PDE equations. Dochain
(1994) have proposed to use global differences as an approximation for space partial
derivatives. This early lumping approach introduces ClO, input and lignin output
in an approximate model. An exact linearization approach of this model can then

be considered. The following approximation are used for both species:

0L(z,t) _L(1,t) - L(0,¢t)
9z |,_, B Az
= Lau(t) = Lin(t) (I1.9)
*L(z,t) L(2,t) — L(1,t) — L(0,t)
922 |, Az?
= Lin(t) — Lou(t) (11.10)

To obtain the approximate model, system mass balances are expressed at the re-
actor outlet, global differences are introduced and both equations are combined by

their kinetic term. These operations give the following result:

Lol) (L) = L)+ Dlllt) = L)
+ (Rt 4 () - Canl)
~ D(Cin(t) = Coue(t))) (1L11)

Using a backward finite difference to approximate the ClO, time derivative, an
input-output relation between C!O, input and lignin output can be obtained. Ex-

act linearization principle can be applied on this equation to obtain the following
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control law in which A and + are external loop tuning parameters:

Cin(t) = _1_

v+ D

Cout(t) — Coe(t — 1)

(vCout(t) + DCou

+ o+

u(t)

At

ki

+ 7/0‘(Lsp - Lout(t))dt]

k.
4 Ker

[

9(Lout(t) = Lin(t)) + D(Lin — Low)] ) (IL12)
A|(Lp — Loud(®))

(1.13)

To insure more robustness to this algorithm, an adaptation mechanism is added

for the reaction rate ratio as shown in figure II.1. A model is simulated in parallel

with a variable k7, noted k4, which is modified according to the error between the

adaptation model and the system model on lignin using a linear first order filter.

Lonx .} Giobal Differences

La(t) I_— Conm[“.i
i

a Parameter
Adaptation
2 Cadt) i-
Mon(t
Model )
+
Lond(t)
> System
Coun(t)

Figure I1.1 Global differences controller

I1.5 Late lumping approach

To use the whole information of the PDEs model an internal model approach is

considered. The error between the model and the system is then used in direct
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adaptive control scheme. To account for lignin inlet variation a feedforward com-

pensation is added to this controller. The feedforward controller action is divided

in two parts. The first part uses an internal model of the process to give an esti-

mation of the reference output to the controller. The second part directly gives a

correction of Cl0, needed to compensate for the deviation of lignin from the nomi-

nal operating point. Those calculation are based on a relaxation algorithm. Figure

I1.2 shows the proposed control structure. The controller design is performed us-

ik ik Lon(t) X3
Lans Reit [Resit) & | Reference  [Refodt
Lo ol ngfﬂ'lﬂl ﬂ“ﬂ r. Ad Y Controller A
. ACu{1)
Ladt)

o) T

Figure I1.2 Late lumping internal model controller

Pameter
Adaptation
ke, k.
M(z,Y
Model (2.
| Carlt)
[C{z.i
System Liz,t)

ing the Lyapunov second method following the approach presented in (Renou et

al., 2000a). The controller and adaptation laws are defined by:

éiﬂ

o+ A+l It

(Ct'n - REf in)2

red

w+ (Cin - Refin)2
(Cin — Refin)

“in

W+ (Cin — Refin)?
Ci

de
(EC, _UT‘:') + (el'n

(ec, kcQ) + (er, kr

fe

Be[,
-V

0z

Q)

2 (Cin — Refur)Ref,
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“a(e[n Q)
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(I1.14)
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using the following error functions:

ec(z,t) = L(z,t) — M(z,t) (I1.20)
ec(z,t) = C(z,t) — N(z,t) (IL.21)
Q(z,t) = L°C% - M3N? (11.22)

In those equations, M(z,t) and N(z,t) are the lignin and chlorine dioxide model
profiles, respectively. The controller law uses, or implementation purposes, only
information from sensors at both ends of the reactor. Overall this control structure
will behave as a feedforward controller if the model match the system. Otherwise

the feedback part will account for model mismatch.

11.6 Simulation results

Numerical simulation of the control algorithm applied to the system has been per-
formed using a sequencing algorithm with a 100 node mesh (Renou et al., 2000¢).
In this algorithm, convection, dispersion and reaction phenomena are successively
considered at each time step. The controller parameters have been chosen to min-

imize overshoot and oscillations.

Simulations are started at steady state with L, = 31 Kappa and C;, = 2.35 g/l.
A sequence of events is applied to deviate the process from its nominal operating

point as shown in in Figure I1.3.

Figure I1.4 shows the response of the system to flow rate variations. In each case
the response of the controller to the variation of the delay is adequate. This result
is guaranteed in the DMC case by the time-scaling of the model. In PDE based

models, the time delay is implicit, and therefore, including flow rate variation
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Figure I1.3 Operating conditions variations

directly in the control law accounts for time delay variation. The late lumping

controller gives the less important deviation from set point in transient.

Figure I1.5 shows the response of the system to set-point variations. In this sim-
ulation, time-scaled DMC and late lumping controller give similar results that
match open-loop dynamics of the reactor. The early lumping controller exhibits
an overshoot in case of set-point variation : this is due to the use of important
simplifications in the PDE model. This overshoot can be reduced at the cost of a

slower response time.

Figure I1.6 shows the response of the system to kinetic parameter disturbances
and parameter adaptations in PDE-based controller are shown in Figure IL7. In
this simulation time-scaled DMC exhibits oscillations. The linear model use in

this controller is showing its limits to the successive deviations from the nominal
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Figure 1.4 Flow rate variations

operating point. The early lumping controller induces a large deviation from the
set point as for the set-point variation, but the transient is still smooth. The late
lumping controller provides a fast response to kinetic parameter variation. This
fast adaptation is guaranteed by two factors in this case: the use of a sensor at
the inlet of the reactor and the kinetic structure . The sensitivity to a variation of

kinetic parameter is then at a maximum at the reactor inlet.

II.7 Conclusion

A comparison between three levels of modeling for control have been presented:
time-scaled DMC, a early lumping approach based on global differentiation of par-
tial derivatives and a late lumping approach based on Lyapurov second method

with feedforward action. The simulation results show the improvement by using a
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PDE model for tubular reactors. This improvement is particularly important when
the process moves away from its nominal operating point where the nonlinearities

in the kinetics cannot be followed adequately by a simple linear model.
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[T1.1 Introduction

Plusieurs systémes réels peuvent étre décrits par un modéle & paramétres répartis.
Une classe importante de ces modéles est formée par les systémes paraboliques de
type convection-diffusion-réaction. Par contre, ce type de modéle, formé d’équations
aux dérivées partielles (EDP), est peu utilisé pour la conception de contrdleurs.
Ainsi, les fonctions de transfert ou d’autres modéles linéaires sont privilégiés afin
d’utiliser la théorie des systémes linéaires. Ces approches utiliseront généralement
des composantes adaptatives ou prédictives afin de tenir compte des nonlinéarités
du systéme et des problémes d’adéquation de modéle (Ogunnaike et Ray, 1994).

L'utilisation directe de modéles répartis est toutefois prometteuse, car ces modéles
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sont beaucoup plus prés de la physique de certains systémes et donc plus riches en
informations. De plus, ils fournissent un cadre privilégié pour ’analyse de prob-

lemes appliqués tel que le positionnement des capteurs et des actionneurs.

Les efforts de recherche dans le domaine de la conception de contrdleur pour
un modéle & paramétre répartis sont divisés principalement entre les méthodes
de pré-approximation et les méthodes de post-approximation (Ray, 1981). La
pré-approximation consiste i utiliser une simplification préalable des EDPs sous
la forme d’un systéme d’équations différentielles ordinaires. Cette approxima-
tion est généralement réalisée a I'aide de techniques d’approximations numériques
telles que les différences finies, les éléments finis ou la colocation orthogonale.
Compte tenu du nombre d’équation différentielles important généré par ces méth-
odes, des techniques de réduction de modéles doivent généralement étre utilisées
(Christofides, 1996). Ainsi, la conception du contréleur peut étre réalisée en util-
isant cette approximation du modéle original. Finalement, des composantes ro-
bustes ou adaptatives peuvent étre incluses dans la loi de commande pour assurer
une bonne performance. A P'inverse, la post-approximation utilise directement le
modéle & paramétres répartis pour la conception du contréleur. Les approxima-
tions des dérivées partielles sont utilisées seulement lors de I'application de la loi

de controle.

Cet article présente une approche de post-approximation pour la commande d’un
systéme parabolique constitué de deux équations. Une approche adaptative est
proposée car les coefficients des termes de réaction sont inconnus et peuvent varier
dans le temps. Ce probléme a été étudié précédement par Hong and Bentsman

(1994) et plus récemment par Béhm et al (1998) dans un cadre plus théorique. Ces
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auteurs proposent une solution au probléme lorsque [’action de commande apparait
d’un systéme parabolique ot I’action de commande est située a la frontiére d’entrée
alors que le point de consigne est assigné i la sortie du systéme. II s’agit donc d'un
probléme de contréle par la frontiére. Bourrel {1996) a considérée ce probléme dans
une application sur un bioréacteur. Elle propose une loi de contréle basée sur les

méthodes de linéarisation exacte dans le cas d'un systéme hyperbolique.

Cet article propose donc une stratégie de contrdle adaptatif avec modéle de référence
pour un systéme d'EDP. La section suivante présente le développement du con-
tréleur basé sur la seconde méthode de Lyapunov. Par la suite, divers résultats de
simulation seront présentés pour des changement de consigne ainsi que des pertur-

bations des paramétres du terme de réaction.

I11.2  Design du contrdleur

Soit le systéme & paramétres répartis suivant, composé de deux équations différen-

tielles paraboliques et de leurs conditions frontiéres:

C(z,t) _  9C(z1) C(z,t)
ot = v dz +D 0z2
— kC(z,t) - kaL(z,1) (ITL.1)
OL(z,t) _ _vaL(z,t)+ DazL(z,t)

ot 0z 022
— k3C(z,t) — k4 L{z,t) (II1.2)
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Figure II1.1 Structure du contréleur.

3‘5;’” = SO0 - La(t) (1IL3)
2=0
acfgi") - %(C(O,t)—Cm(t)) (111.4)
z=0
BC(z,t) _ aCout -
| = e = (1IL5)
aL(z, 1) OLou
- =0 (I1L6)
az =1 aZ z2=i

Dans ces équations, les paramétres de transport v et D sont supposés connus alors
que les paramétres de réaction ki — k4 sont inconnus. Le point de consigne est
sur la variable L & z = 1 alors que ’effort de contréle C;, est situé 3 z = 0. Les
EDPs suivantes sont utilisées comme modéle de référence avec les mémes conditions

frontiéres que le systéme original:

OM(z,t) _  9M(z,1) 3?M(z,t)
& - VT TPz
— kuM(2,t) —koN(z,8) (IILT)
ON(z,t) _  3N(zt) &N(z,t)
& - "Ta TPz
— ksM(z,t) — kN(z, 1) (ITL.8)

La Figure 1 présente la structure du contrédleur proposé. L'entrée Cy, est manipulée

I afin que la sortie Ly, suive la référence. Les signaux L, et C,,, sont libres. La
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seconde méthode de Lyapunov est utilisé pour concevoir les lois de controle et

d’adaptation des paramétres. Soit les équations d'erreur suivantes:

ec(z,t) = Cl(z,t) — M(z,t)
er(z,t) = L(z,t) — N(z,1)

ainsi que les équations d’erreur d’estimation de paramétres suivantes:

() = ki) -k
bot) = kalt) —ky
Us(t) = ks(t) — ks
Va(t) = kilt) — ks

(IIL.9)
(I11.10)

HL.11)
HI.12)
111.13)

(
(
(
(I11.14)

La dérivée par rapport au temps des équations (II1.9)-(II1.14) permet d’obtenir:

. dec & ec
ec = -"UT +D—— 322

- kzeL +¢1M+'¢2N
. c'?e[, 6 Ef,
€L = —-v 3 +D 552

— kiep + s M + N
¢1 = EI
!52 = Ez
¥ = ks
va = ky

- k3€cM

(IIL15)

(IIL16)
(I1L.17)
(IIL.18)
(T11.19)
(I11.20)

La seconde méthode de Lyapunov utilise une fonction définie positive V (z,t) avec

des dérivées partielles de premier ordre par rapport au temps telle que V/(0,t) =
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Cette fonction doit étre choisie de sorte que la dérivée V(z,t) de cette fonction est
définie négative. Dans ce cas, le systéme est asymptotiquement stable. De plus,
si V(z,t) n’a pas de limite radiale, cette propriété est globale. Soit la fonction de

Lyapunov suivante:

Viad) = slec.e) + plewser)

1

+ 2e( in = Refin)’

+ é"‘y'(c'cmt_Refcmt)2
Lo, 1o
t oty

1, 1,
+ 5;‘1’4 + ‘Z-d% (IT1.21)
La dérivée par rapport au temps de cette fonction est:

l;' = (EC, éc) + (eLyéL)
1 -
+ ;’y‘(Cout - Refout)Cout
+ -E-(Cin - Refin)(éin - Réfm)

+ 111’1?/}1 + l"ﬁz?/}z
a b

1, . 1

+ 21/131113 + 31/141/}4 (I1.22)

En insérant (I11.15) dans (I11.22), on obtient:

8263

V = (e, -—vaec

) +{ec. D53)
+ {ec, -—klec) + (ec, —-kge[,)
+ (ecv¢1M)+(€c,¢2N)

+ len—v2E) + (e, DI
+

{eL, -kaec) + {eL, ’k43L)

-z



L'intégration par partie des termes de second ordre permet d’obtenir:

v

+ + + 4+ 4+ o+ o+ o+

+

+

+

(er, ¥sM) + (eL, ¥aN)

%(Cg,. ~ Ref:n)(Cin — Ref;n)
11/]111}1 + }'1!]21[}2
a b
ll/};;lf):; + 11,04'1,!'14
c d
%(Cout — Ref mt)éwl

ae(; Bec 660
o v+ (5 D%,
aec Bec
ecD'a—z . ECDE- -

(Ec, —k[EC) + (er —kZGL)

(eCr ¢l ﬂ/[) + (eC1 'lp?l\[)

ae;, 38[, aeL
{ec, _UE) + (E’ —DE)
38[, BeL
eLD—a? out - eLDE in

(e, —kzec) + {eL, —kieL)
(ec, YaM) + (er, s N)

~(Cin ~ Refu)(Cin ~ Ref,)
1 . i
- + 1'112'112
e b

1 . 1 .
~t3th3 + 21114!04
c

1 X
;(Cout - Refout)cmzt

En utilisant la loi de contrdle suivante:

Refin

Co =

= B(Louz - Refout)

€ 8ec
- (Cin _ Refin) ((eC7 —v-é_z_)

212

(I11.23)

(I11.24)

(IIL.25)
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aec BEC
+ ecD 57 wz— cD 37 N
Oey, Oey,
+ (e[,, 'U—a?) ELDE »
631,
— eLDE N
1 .
+ ;(Caut-Refaul)Caut

e(Ltmt - Refout)

ng(Ec, 8[,) - ’E;;(Ec, BL)) (11126)

La fonction de Lyapunov devient:

v

+ + + + +

+

Oec dec dey dey,
R AR S

{ec, ~kiec) + {er, —kser)
(e, ¥iM) + (ec, ¥ )
(ec, Yeer) + (er, ¥sec)
(eL, vsM) + (er, ulN)
i"liﬂ/}l + %Tﬁz‘ﬁz

1

.1 .
E’l’silis + ¥t (111.27)

Finalement, il suffit d’utiliser les lois d’adaptation suivantes:

W
2
153
¥

~a{ec, M)
~b((ec, N) + (ec. ec})
~c((ec, M) + {e¢, ec})
~d{er, N)

(I11.28)
(IT1.29)
(111.30)
(111.31)
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pour obtenir I’expression finale de la fonction de Lyapunov:

v Bec Bec
V = (E,—DE-)‘*'(GC,—MGC)
(de _per,
9z’ 0z
+ (EL,—k4EL) (11132)

Comme cette expression est définie négative, I’ensemble formé du systéme, de la loi
de controle et des lois d’adaptation est asymptotiquement stable. Pour éliminer les

discontinuités possibles de la loi de commande, 'expression suivante est utilisée:

(':,in - (Cin — Refin)2

r
(@ + Co — Refi )" (IIL33)

(Cin - Refiﬂ) f
(w + Cin - Refin)2 ‘
Cn = Cin (I11.34)

fo = ({ec—v52) + {ew, ~v57)

out

1 i
+ ;(Caul - Refout)cout
— {Lowt — Refou)
— kalec,er) — kslec,er))- (I1L.35)

Le paramétre w doit étre ajusté, autour d’une faible valeur positive, afin d’optimiser
la performance . Il est possible de vérifier que la loi de commande originale et la

loi modifiée sont en fait identiques pour C;, = 0.
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II1.3 Résultats et discussion

La simulation numérique du systéme et de I'algorithme de commande est réalisée
par la méthode séquentielle avec un maillage de 100 éléments pour un éléments
de 1 métre de long (Renou et al., 2000c). Dans cet algorithme les phénomeénes de
convection, dispersion et réaction sont considérés de fagon successive a chaque pas

de temps.

Les paramétres de départ du systéme sont:

v

0.05 m/min k, = 0.02 1/min
D = 0.05 m*/min ks 0.05 1/min
k) 0.031/min ky = 0.04 1/min

Les parameétres du controleur ont été choisis afin de minimiser le dépassement et
les réponses oscillatoires. L’objectif principal est de rejeter les perturbations et les
variation des paramétres du systéme plutot que d’optimiser le suivi de trajectoire.
Les simulations débutent en régime permanent pour des entrées de L et C égales

4 1. Les paramétres ajustables sont alors:

e =1 8
a = 2 b
c =2d =2
Ref .. = 0.1854 g/l

o
A
o

-2

il
a—
(=]
S

La Figure I11.2 montre la réponse du sytéme A une variation échelon du point de
consigne de L de 0.17 de 0.20 g/L. Les courbes i la sortie z = 1 sont lisses et avec

un faible dépassement tel que requis. Une adéquation parfaite entre les réponses
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du systéme et du modéle est observée. De plus, aucune adaptation des paramétres

de réaction n’est observée.
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Figure I11.2 Variation de la référence Re fou.
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Figure [I1.3 Perturbation du modéle.

La Figure II1.3 présente le réponse du systéme asservi 4 une variation d’un paramétre

de cinétique de réaction. Ces paramétres ont été modifiés de la fagon suivante:

ky 0.03 1/min k; = 0.02 1/min
ks = 0061/min k; = 0.051/min
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Figure [I1.4 Adaptation des paranétres.

La figure [I1.4 permet de voir que le mécanisme d’adaptation est oscillatoire mais
permet une convergence rapide aux véritables valeurs du systéme. Les réponses
dynamiques du systéme et du contrdleur sont relativement identiques, seule une
légére perturbation de la courbe du modéle est observable. Ceci suggére une cer-
taine oscillation entre les différentes solutions possibles pour la convergence des
paramétres. La sortie L admet une importante variation du point de consigne mais
retourne rapidement i ce point sans erreur en régime permanent. Ce comporte-
ment peut étre expliqué par la lenteur du mécanisme d’adaptation de la référence
utilisée. Par contre, le type de perturbation de modéle est agressif et peu réaliste

en pratique. Il peut donc étre considéré comme une analyse du pire cas.

La Figure II1.5 présente la réponse du systéme asservi i la combinaison d’une vari-
ation de point de consigne et de variation des paramétres. Comme les courbes
d’adaptation des parameétres sont similaires i celles présentées a la Figure II1.4,
elle ne sont pas reproduites ici. Cette similitude montre bien que le mécanisme

d’adaptation dépend essentiellement de I’erreur entre le modéle et le systéme plutét
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que des caractéristiques de 'entrée.
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Figure II1.5 Variation de la référence et des paramétres du systéme.

Finalement la Figure I11.6 montre I'effet de I’ajout d’un bruit sur I’entrée L sur les
mémes conditions de simulation que précédemment. La convergence vers le point de
consigne ainsi que le mécanisme d’adaptation présente les mémes caractéristiques
dynamiques que précédemment. Par contre, les perturbations sur L ne sont pas

rejetées efficacement.

[11.4 Conclusion

Un contrdleur adaptatif & modéle de référence a été présenté pour un systéme a
-~ » - ~ r 13 » . -
parameétres répartis avec contréle par la frontiére d’entrée de la frontiére de sortie.
Cet algorithme inclut un modéle de référence a4 paramétres répartis, une loi de
modification de la référence et une loi d’adaptation des paramétres des termes de
réaction. L’analyse par simulation a montré une bonne réponse i une variation du

point de cousigne ainsi qu’une estimation efficace des paramétres cinétiques. Par
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Figure [I1.6 Variation de la référence, des paramétres du systéme et de l'entrée Lin

contre, la réponse aux perturbations de I'entrée libre doit étre améliorée. Ceci pour-
rait probablement étre réalisé a I’aide d’une stratégie d’adaptation de la référence

qui inclut une composante anticipative.



Annexe IV

Direct Adaptive Control of a Linear Parabolic System

IFAC System Identification Symposium, Acte de conférence sur CD-ROM, article
ThMD1-1, Santa-Barbara, 2000, 5 pages.
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Abstract :

This paper presents an adaptive model reference algorithm for a linear distributed
parameter system with input boundary control and output boundary reference.
The control and adaptation laws are based a model reference adaptive control
approach. This controller is applied to a tubular reactor model with unknown
kinetic parameters. Simulation results are shown for set-point changes, variation

of kinetic parameters and input perturbation.

IV.1 Introduction

Several chemical reactors are essentially distributed processes and their dynamics
can be appropriately represented by partial differential equations (PDE). For in-
stance, a tubular reactor modeled by mass balances leads to parabolic PDE which

account for convection, dispersion and reaction phenomena occurring in the reac-
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tor. Traditional process control uses a transfer function representation obtained by
input/output identification for those systems. Feedback controllers designed with
these models often include adaptive or predictive strategies to account for process
nonlinearities and model mismatch (Ogunnaike et Ray, 1994). Using a PDE model
represents an interesting approach since it gives a more accurate representation of
reality and then more information for the process engineer. Moreover, it gives an

interesting framework for the analysis of sensor and actuator location.

Various approaches have been considered to use the PDE phenomenological model
directly. Ray (1981) proposed to divide control approaches on PDEs in two groups
. The first group is composed of early lumping methods where a preliminary dis-
cretization of the PDE model is used to obtain a set of ODEs. This lumping is
often realized by numerical techniques such as finite difference, orthogonal col-
location or finite elements. Regarding the numerous equations obtained, modei
reduction techniques may also be used (Christofides, 1996). Finally, lumped con-
trol design methods can be applied on the resulting ODE models. The other group
is based on late lumping methods where the controller design problem is solved di-
rectly with the PDE model. When necessary, lumping may be applied for controller

implementation.

The problem addressed here is the control of a tubular reactor by a late lumping
approach. The dynamics of the reactor are defined by two parabolic equations
representing mass balances on two reacting species. It is assumed that the reaction
kinetics are not well known and could vary with time, thus requiring an adaptive
approach. The control of parabolic PDE have been addressed previously by Hong
and Bentsman (1994) and more recently in a more theoretical framework by Bshm
et al (1998). They provide a design solution for systems in which the coutrol
action appears in explicitly in the PDE system. In this tubular reactor problem,
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the controller action is the concentration of one of the reactants at the inlet. The
problem to be solved is then a boundary control problem. Bourrel (1996) have
addressed this problem for bioreactor control and they have proposed a feedback

control law based on exact linearization in the case of hyperbolic systems of PDEs

We propose in this paper an adaptive controller using a reference model based on
a parabolic PDE system. The first part of this paper shows the development of
the model based adaptive controller using a Lyapunov approach. In the second
part, simulation results are shown for set-point changes and for perturbation in the

kinetic parameters.

IV.2 Model Reference Controller Design

A tubular isothermal chemical reactor can be modeled using mass balances on each
reactant. This leads to the well-known dispersive model. A reactor with two species
is modeled here with two mass balances. The first one is on reactant L for which
a set-point is specified at the end of the reactor. The concentration L is variable
at the inlet. The second reactant C, is used as the control variable at the inlet.
This leads to the following distributed parameter system (DPS) described by two

parabolic linear equations and their boundary conditions:

aC(z,t) 9C(z,1) 0*C(z,t)
ot = 77 0z +D 022
— kiC(z,t) — ko L(2,t) (IV.1)
OL(z,t) _ 8L(zt) [ 0°L(z1)
& - Ve TPz

— £sClz,t) — kiL(z, 1) (IV.2)
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(IV.3)
(IV.4)
(IV.5)

(IV.6)

In these equations, the parameters v and D can be determined from hydrody-

namic experiments on the process but parameters k; — k, are considered unknown.

The following PDEs are then used as a reference model with the same boundary

conditions:

OM(z,t)
at

ANz, 1)
at

_ _UBM (z,t) + DaZM (z,¢)

0z 022
k\M(2,t) — k3N (2, t)

IN(z,t) 3N (z,1)
"5, TP %
ksM (z,t) — k4N(z,1)

(IV.7)

(IV.8)

In this approach we consider that one input, C;,, in used as the control variable

and the other variable input, L;,, is free. The controlled output will be L, while
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Cout is free. The proposed controller structure is shown in Figure IV.1. A Lyapunov
approach is used to design the adaptation mechanism and the control law. Let us

first define the error equations of the system:

ec(z,t) = C(z,t) — M(z,t) (IV.9)
er(z,t) = L(zt) - N(zt) (IV.10)

and the parameter estimation errors:

() = k() -k (IV.11)
h(t) = k(t) -k (IV.12)
Us(t) = ka(t) — ks (IV.13)
() = ka(t) - ks (IV.14)

Time differentiation of equations (IV.9)-(IV.14) those errors leads to:

ae(; 32 ec

ec = —UE- + D—a;{ - kiecM

- kge;, + ‘({JlM + dlgN (IVIS)

. 68[, 328[,

e = —Ua—z + Da7 — kiecM

— kier + M + YN (IV.16)
B = k (IV.17)
= ky (IV.18)
¥ = ks (IV.19)
1[;4 = E.{ (IV.20)

The above equations can be used to design control and adaptation laws based on

. the Lyapunov second method. The objective is then to find a positive definite
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function with continuous first partial time derivative V'(z,t) such that V(0,¢} = 0.

If the derivative of this function V{(z,t) is definite negative then the system is

asymptotically stable. If V(z,¢) is radially unbounded, this property is global.

Consider the following Lyapunov function:

1 . 1
V(Z,t) = -(ereC)'l"'(eB’eL)

2 2
1 1
+ Q—E’(Cin - Refin)2 + 2_‘;(0'01:: - Refout)z

L , 1, 1, 1,
The time derivative of this function is equal to:

. 1 i
V = (ec.éc)+{ec.ér) + ;(Cou! — Re fout)Cout

+ %(C‘“ — Refn)(Cin - Refiy)

+ llﬁ'ﬂﬁl + '1'111211}2 + ld’alfls + ‘1'1/J41/}4
a b c d

Introducing equation (IV.15) into {IV.22) leads to:

d *
(e, ~v52) + (ec: DZ7) + (ec, —kuec)

(ec, —koer) + {ec, th M) + {ec, Yo N)

o 2
(ec, —u%) + (er, Da—}> + (ez, —ksee)
(er, —kier) + {er, s M) + (L, ¥aN)
= (Cin ~ Refu)(Cin ~ Ref )
1 - 1 . 1 . 1 .
Elbubl + 3%'1)2 + ‘E¢3¢3 + 31/141!14

1 )
+ ;(Cnut - Refaut)cout

Il

1%

+ o+ + o+

+

(IV.21)

(Iv.22)

(IV.23)
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Integration by part gives:

V =

Bec 6ec aec
62)+(3z’—D82)

Je, de

ECDa_.: ) - ecD—é-éC* . + (ec, —klec)
(ec, —kzer) + (ec, 1 M) + (ec, Y2 N)
aeL (‘Je;, Be[,
FPIRRY el

d
» - ELD—;?L o + (CL, —-kgec)
{er, —kser) + {er, W3 M) + (er, ¥4 N)

E(Ci,. ~ Refin)(Cin — Ref,,)
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Using the following control law:

Refin
Ci

= O(Lout ~ Refou) (IV.25)
= —————((ec, - a—e"l)
T T {(Cm = Refm) ¢ Va2
_eCDa_eC_

0z
aEL BeL
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— eLD%

1 .
9z - + :{(Cout - Refout)cout
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- Ez(ec, er) — ifa {ec,eL)) (Iv.26)
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the derivative of the Lyapunov function becomes:

+ {ec, —klec) + {er, —kser)

+ (€L, M) + (ec, o)

+ (ec,¥eer) + (e, ¥sec)

+ {ep, ¥sM) + {er, ¥uN)

+ b+ e + st + av.21)

Finally, the following adaptation laws are used:

¥ = —alec, M) (1V.28)
¥y = ~b({ec, V) + (ec,eL)) (1v.29)
¥s = —c({er, M) + (er,ec)) (Iv.30)
¥a = —de;, N) (1V.31)

The final expression for the derivative of the Lyapunov function is then:

dec aec

vV = (E, )+(€c» kiec)
a
+ (;L, D%ﬂ)ﬁ-(en, —ksep) (1V.32)

This expression is negative definite, ensuring the asymptotic stability of the adap-
tation and control laws. To avoid division by zero in equation ??, the following

modified control law is considered:

& = G- Refin)*
" (w+Cin — Refn)?
(Cin — Refin)

(w+Com — Ref)?°

(IV.33)

-+
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Cn = C; (IV.34)
ae L

_ 360
fe = (ec, —Ua—z) + (e, —.UE)

—eCD@E

0z

ae[,
—e; D=2
out eL 0z

1 .
+ ;(Cauz — Refout)Cout
- 0(Lout - Refout)
- E2(8C7 eL) - 1}3(66'7 CL)) (W'35)

Bec
+ ecD E’-
der

0z

out in

+ GLD

in

were w is a tuning parameter with a small positive value. Note that both version

of the control law are identical for C;, = 0.

IV.3 Results and Discussion

Numerical simulation of the control algorithm applied to the system has been
performed by using a sequencing algorithm with a 100 node mesh for a 1 meter
reactor (Renou et al., 2000c). In this algorithm, convection, dispersion and reaction
phenomena are considered successively for each time step. Initial parameters of the
system are:

v = 0.05 m/min k, = 0.031/min

D = 0.0005 m?*/min k3 = 0.04 1/min

ki, = 0.021/min ks = 0.031/min
Controller parameters have been chosen to minimize overshoot and oscillatory re-

sponse. The objective here is to reject disturbances and model parameters variation

rather then reference tracking. Simulations are started at steady state for an input
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(IV.36)

(IV.37)

Figure IV.2 shows the response of the system to a L set-point step from 0.17 to 0.20

g/L. The output curves of I and C are smooth and do not present any overshoot

as required. A perfect match between the model and system is obtained and no

variation of adaptation parameters is observed.
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Figure IV.2 Set point change on Refuy.

Figure IV.3 shows the response of the controlled system after a variation of kinetic
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Figure 1V.3 Model perturbation.

parameters. The rate constants have been modified to the following values:

k, = 0031/min k. = 002 1/min
k3 0.05 1/min ky = 0.04 1/min

The adaptation mechanism is oscillatory but rapidly converges to the system values
as shown in Figure [V.4. Model and system simulation curves show differences
for a shorter time than the adaptation mechanism. This situation suggests some
oscillations between multiple possible choices for parameter convergence. Output
L admits an important deviation but returns to set point without steady state
error. This behavior can be explained by the slow output reference adaptation
mechanism used. But in practice, rate constants are not changing so aggressively,

thus the simulated case can be considered as a worst case situation.

Figure IV.5 shows the response of the system to a set point step change combined
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to variation of kinetic parameters. The parameter adaptation curves are similar

to those observed in Figure IV.4 and are not reproduced here. This indicates that

the adaptation mechanism is a function or the error between the model and the

system instead of the characteristics of the input. Figure IV.6 shows the effect of

adding noise to the input L for the same conditions of previous simulation. The

convergence around the set point and adaptation mechanism are again similar to

the previous case but the variation of L affects directly the output and is not

rejected efficiently.

IV.4 Conclusion

An adaptive model reference controller has been presented for a distributed pa-

rameter system with input boundary control and output boundary reference. This
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algorithm includes a PDE model reference, an adaptation law and a reference mod-

ification law. Simulations have shown a good set-point step response and efficient

parameter tracking. Response to noisy input of the uncontrolled reactant L needs

to be improved. This could probably be done by using a feedforward strategy in

the reference modification law. Moreover, the nonlinear kinetics case has to be

studied to cover a wider class of applications in reactor control field.
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Abstract :

A ClO, bleaching reactor is modeled by mass balances leading to a partial dif-
ferential equations system. Using global differences, an approximate input-output
model is obtained and this model is used to design a nonlinear control taw. The
performance of this control law is compared by simulation to dynamic matrix con-
trol (DMC) and to a time-scaled DMC. Results show controllers abilities regarding

lignin disturbances, flow variations, model mismatch and set-point variations.

V.1 Introduction

The bleaching process is the last step of pulp preparation. Its purpose is to improve
the brightness of the pulp to a specified level which fulfills customers needs. The
control objective for a bleaching reactor is then to obtain the desired brightness

with a minimum output brightness variance for the lowest chemical cost. Tradi-
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tional approaches to this control problem include variations around compensated
brightness and scheduling, but increasing computer power and introduction of on-

line Kappa analyzer offer new possibilities for model-based control.

Different kinds of models and control approaches have been presented in the lit-
erature. Several adaptive control schemes have appeared to account for process
variability. Gough and Kay (1994), Rankin and Bialkowski (1984), Dumont et al.
(1989) and Gendron et al. (1993) propose different kinds of algorithms to make
on-line identification of simple models. Bleaching reactor modeling is discussed in
Barrette and Perrier (1995) where they used multiple CSTR and in Wang et al.
(1995) who used a combination of CSTR and PFR. Reaction kinetics have also
been studied extensively; for instance, Savoie and Tessier (1997) presents kinetics
for chlorine dioxide delignification. This approach led to a bleach plant control

design presented by Pudlas et al. (1999).

Dumont et al. (1989) reports that using an adaptive scheme instead of auto-
tuned PID is not necessarily an overall improvement. The same question can
be asked about modeling: Will the use of a more complex model significantly
enhance control performance? This paper addresses this problem on the specific
case of a Cl0, bleaching reactor. It considers the design of a controller based on a
partial differential equations (PDE) model. Simulation results will be compared to
a classical dynamic matrix control (DMC) predictive algorithm which uses input-
output knowledge of the system. Furthermore, a modified DMC will be proposed

to account for flow variations.

The first section of the reactor presents the PDE model development for a Cl0,.
The second section presents controller designs based on nonlinear approaches and
DMC approach. The following section shows main comparative results between pre-

dictive and nonlinear algorithms in response to flow variations, step point changes
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and model mismatch. Finally some conclusions will be drawn on controller perfor-

mance.

V.2 PDE modeling

A PDE model for the bleaching reactor can be obtained by mass balances on lignin
and C!0, over a thin section of the reactor. The following space normalized axial

dispersion model can then be obtained:

Gl - Z(L(0,6) - L) (V:3)
ac;z, t) - % (C(0,8) — Canlt) (V.4)
ac;z, t) - ag:.: -0 (V.5)
aLg:, t) - 61;:,.: —0 (V.6)

In this model, reaction kinetic appears explicitly and can be identified by laboratory
batch experiments. Hydrodynamic parameters v and D could be determined by
tracer analysis on the tower. For the purpose of this study, kinetic data obtain by
Savoie et Tessier (1997) where used and hydrodynamic parameters where deduced
from Pudlas et al. (1999).

Two models are identified using least squares optimization on the error between

data and batch reactor simulation. Identification is performed assuming the fol-
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lowing choice of kinetic structure, where exponents are integer:

r(L,C) = —k C°LF (V.7)
re(L,C) = —kcC°LP (V.8)

The first kinetic model (rp;,rc1) is obtained by using the whole set of data. The
second model (rr3,rco) is obtained by using Savoie et Tessier {1997) observations
on the initial reaction. They proposed a model based on two time scale reactions:
a fast reaction occurring at the beginning of the reactor or in static mixers at the
reactor inlet and a slow reaction in the tower. To account for those observations,
the first point of batch result is omitted for the least squares optimization. Initial
variations of concentration are introduced in the boundary conditions at the inlet:
-9 kappa for the lignin and -1.3 g/1 for ClO- . Figure V.1 shows simulations of the

batch reactor and corresponding data for the following identified kinetics:

ra(L,C) = —ki CL* = -0.0065 C2L? (V.9)
rai(L,C) = —kg CL? = -0.0010 C*L? (V.10)
re2(L,C) = —kia CL=-0.035CL (V.11)
rca(L,C) = —kga CL = —0.006 CL (V.12)

Hydrodynamic parameters are deduced from the CSTR-PFR model of Pudlas et
al. (1999). They use a CSTR-PFR model in which 25% of volume is a CSTR.
Performing tracer simulation with that model and with the axial dispersion model
leads to a superficial velocity of v = 1/30 and a dispersion coefficient D = 0.03/30

for a space-normalized reactor.
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Figure V.1 Model 1 and 2 kinetic analysis

V.3 Control Design

Three controller designs are described in this section. The first one is done using
directly the PDE model. The two others designs are based on predictive control
strategies using only input-output identification. All controllers are designed using

kinetic model 1. The other kinetic model will be used for the model mismatch

analysis.

V.3.0.1 Nonlinear Controller

One of the problem with the PDE model described by equations (V.1)-(V.6) is
that the control action and the controlled output do not appear explicitly in the
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equations. Dochain have proposed in (1994) to use global differences as an approx-
imation for space partial derivatives. This approach introduces ClO, input and
lignin output in an approximate model. An exact linearization approach can then

be considered. The following approximation are used for both species:

Azt L8 -L(0,1)
9 |, Az
= Lou(t) — Lan(t) (V.13)
8%L(z,1) L2,y - L(1,t) ~ L(0,1)
892 | _, Az?
= Lin(t) — Lou(t) (V.14)

To obtain the approximate model, system (V.1)-(V.2) is expressed at the reactor
outlet, approximations are introduced and both equations are combined by their

kinetic term. These operations give the following result:

BLg;(t) = —U(ng(t) — Lin(t)) + D(Lm(t) - Lout(t))
. %(BC#M + 0(Cout(t) — Cinlt))
~ D(Calt) — Cout(t)) (V.-15)

Using a backward finite difference to approximate the ClO; time derivative, an
input-output relation between Cl0, input and lignin output can be obtained. Ex-
act linearization principle can be applied on this equation to obtain the following

control law in which A and 7 are PI tuning parameters:

Cin(t) = ‘U—{-D va(t) +DCoug
Caut t) — Cm,g t~-1 k 1
4+ Coult) < (-1 é["
+ U(Laue(t) = Lin(t)) + D(Lin — L)) (V.16)
u(t) = Al(Lep — Loue(t))
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47 [ (L= L) (V.17)

To insure more robustness to this algorithm, an adaptation mechanism is added
for the reaction rate ratio. A model is simulated in parallel with a variable k;,,
noted k4, which is modified according to the error between the adaptation model

and the system model on lignin output. This approach is implemented with the

following equations:

P4 o lLoult) - Mout(t) (V.18)

6Mé(;,t) _ _angz,t)+Da2A;r§:,t)
— ka(t)M?N? (V.19)

aN&(;,t) - “”aNzgjt)J“Dazl\a[S’t)
— kaiM2N?) (V.20)
%—‘—’ = Z(M(0,1) - La(t) (v.21)
T = pW0.0-Cu) (v-22)
61;2‘”“ =0 (V.23)
ag:“ =0 (V.24)

V.3.0.2 DMC controller

This controller is designed using two dynamic matrices: B¢ for ClO» input to

lingin output respounse and f;, for lignin input to lignin output response. At each

control step, the following criterion is applied:

gg% ¢ = le(k+1) —fer + K2Au(k)T Au(k)T]"
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le(k + 1) = Ber + K*Au(k)T Au(k)T) (V.25)
The prediction error takes in account the input lignin perturbations such as:

e(k+1) = y'(k+1)
— [§°(k) + w(k +1) + BLLAL(K)) (V.26)

In the preceding equation, ¥* is the set point, 7° is the prediction if no further
control action is taken, w is the estimation of disturbance and AL is the variation

of lignin at the inlet.

V.3.0.3 Time-scaled DMC

Traditional DMC is sensitive to flow rate variations since they represent, in fact,
a variation of dead-time from an input-output point of view. To overcome this
problem efficiently, information about the flow rate have to be transmitted to the
controller. To fulfill this goal, the prediction time span is scaled by the variation of
flow rate. Thus, the At between each calculation of the control action is scaled by
the ratio between the new flow rate and the old flow rate. Practically this approach
can be implemented by using an over sampling or interpolating dynamic matrices

and prediction.
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V.4 Simulation Resuits

Simulations are performed using the sequencing algorithm (2000¢) using a 100
node mesh. Nonlinear controller design parameters are: A = —0.05, v = 0.02 and
p = 0.00002. DMC tuning parameter are conservative to limit oscillations. In
both cases, the prediction horizon is equal to the unit step response dimension,
and control horizon is set to 1. The penalty on the control action K is 600 in
the case of the DMC and 200 in the case of the time scaled DMC. All controllers
are designed using the kinetic model 1. All simulations are performed with kinetic
model 1 except for results presented in Figure 5, where kinetic model 2 have been

used.
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Figure V.2 Effect of flow rate variation

Figure V.2 shows the effect of a flow rate variation for each controller. It shows

. that the nonlinear controller and the time scaled DMC can maintain the set point.
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However the DMC has an oscillatory behavior. Those oscillations could be with-
drawn by increasing the penalty on the control action but this will be at the cost
of reducing the feedforward impact of Br;. The smoother inlet CiO, for DMC
shows the actual reduction of feedforward information for the chosen tuning. This

tradeoff can be reduced by using time scaled DMC as shown by the lower K value

used in this case.
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Figure V.3 Effect of set-point variation

Figure V.3 shows the response to set point changes for each controller when the
flow rate is maintained at 150% of its nominal value. Once again, DMC control
oscillates and is perturbed by variation of inlet lignin. The nonlinear controller
has an important overshoot which is dependent of the amplitude of the set-point
change. This overshoot can be reduced by using a less aggressive tuning but at the
cost, of reaching the set point more slowly. The time scaled DMC shows an ideal

response reaching directly the set point. A zoom around the set point reveals that
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this controller is more influenced by lignin variations than the nonlinear controller
when the set point is reached. This could be explain by the penalty factor on

control action, once again.
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Figure V.4 Effect of variation of kinetic rate

Figure V.4 shows response to rate constant variations keeping the operating con-
ditions prevailing at the end of the preceding simulation . At 900 minutes kg, is
increased to 120% of its nominal value and at 1200 minutes k¢, is decreased to
80% of its nominal value. These variations are applied uniformly on the whole
reactor. For all controllers, an important deviation toward lower kappa values is
notice. This behavior is caused by the dead-time of the reactor. Nonlinear control
causes an important overshoot toward high kappa before the set point is reached
again. This may be explained by the integral action inserted in the control law.
Both DMC-based controller do not exhibit this behavior but both oscillate after
. the second perturbation. In fact, DMC controllers will oscillate when successive
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events push the system far away from the model which have been used for identi-
fication. The nonlinear controller can be more accurate since the adaptation loop
adjust continuously the model.

Figure V.5 shows response to set point changes for each controller when the kinetic
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Figure V.5 Effect of kinetic structure

structure of the system mismatch the kinetic structure used for controllers design.
This simulation shows limitation for the nonlinear controller which deviates more
from the set-point compare to the time scaled DMC. This shows the importance of
a good identification of the structure of the reaction kinetics. If the rate constant
could be estimated by adaptive techniques, the structure of the reaction kinetic

can not be changed on-line easily.
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V.5 Conclusion

A comparative study between different control strategies has been made for a
bleaching tower. A nonlinear controller based on mass balance model has been
proposed and compared to DMC and time-scaled DMC. Results show better feed-
forward behavior of the nonlinear controller but DMC approaches show better per-
formances in the case of model mismatch. The time scaled DMC approach account
well for flow rate variation, but it can shows oscillatory behavior as traditional
DMC if the operating conditions deviate enough from model identification condi-
tions. The nonlinear controller shows better reduction of lignin input variability

since its feedforward capacities are not affected by a penalty on control action as
DMC.





