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RESUME 

Les systèmes numériques augmentent continuellement en taille et en complexité. La 

performance des circuits intégrés double tous les deux ans. En raison d'une trop grande 

complexité certaines fonctionnalitées ne sont pas vérifiées, réduisant alors la confiance 

dans les circuits. La complexité actueile des circuits révèle les limitations des méthodes 

traditionnelles de vérification par simulation. Afin de répondre à ces limitations. les 

méthodes formelles de vérification tentent d'utiliser la rigueur mathématique afin de 

prouver l'exactitude d'un circuit. Cependant. la rigueur du formalisme ainsi que le peu 

d'outils performants réduisent une utilisation industrielle fréquente. 

Ce mémoire propose une méthodologie de validation et d'enrichissement de vecteurs de 

validation de circuits numériques basée sur le test par mutation consistant à insérer des 

fautes specifiques dans un langage de description matériel tel que VHDL. Le programme 

contenant la faute spécifique est alors appelé mutant. La validation de la méthode 

proposée a été réalisée sur différents bancs d'essais décrits en langage VHDL et simulés à 

l'aide de Synopsys. Un algorithme d'enrichissement des vecteurs de validation ainsi 

qu'un générateur de mutants ont été écrits en langage C. L'utilisation de cette méthode a 

montré qu'il était nécessaire de disposer d'un espace disque important, puisque le nombre 

de mutants générés est grand. Un certain nombre de concepts, te; que la contrôlabilité et 

I ' observabili té, provenant du domaine du test matériel ont été empruntés afin d'expliquer 

la réduction de la couverture des mutants. Par ailleurs, une métrique appelée score de 

mutation a été utilisée afin de quantifier la qualité d'un jeu de vecteurs de validation. 
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ABSTRACT 

Digital systems continuously grow in scaie and functionality. In addition, the performance 

of integrated circuits (IC) doubles every two year. Due to the growing complexity, 

fùnctionalities are not fully verified which reduce the confidence in designs. That growing 

complexity unravels the limitations of traditional verification methoâs based on 

functionnal simulation. To address these limitations, fornid methods and tools for 

specifying and veriQing such systems have k e n  proposed. However, the complexity of 

forma1 notations and the practical limitations of available tools reduce their use in 

industry. 

This master proposes a methodology based on mutation testing for validating and 

enriching a set of functional validation vectors for digital circuits. This methodology 

injects specific faults in a hardware description language description such as VHDL. A 

program which contains a fault is cailed a mutant. The validation of the proposed 

methodology was realized on VHDL benchmarks that were simulated with Synopsys. A 

mutant generator and a test suite enriching algorithm were written in the C programming 

language. Existing mutation testing tools were shown to require a lot of memory to 

analyze small functional descriptions. A metric called mutation score was used to quantify 

the quality of a vector set. Justification and observability concepts were applied to 

mutation testing to explain the reduction of the mutation score. 
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INTRODUCTION 

La vérification par la simulation est la méthode la plus largement répandue afin de 

vérifier qu'un design respecte bien les spécifications voulues. Elle fait partie intégrante de 

la méthodologie de conception VLSI selon la figure 0.1. La validation devient de  nos 

jours un des goulots d'étranglement du processus de conception qui ralentit la mise en 

marché de puces électroniques dans un monde extrèmement compétitif e t  en perpétuel 

changement. D'autre part, certains composants défectueux ne sont découverts que chez le 

client, ce qui augmente considérablement les coûts de développement et entache la 

crédibilité des fournisseurs à qui cela arrive. En tout étz: de cause, tous s'accordent à dire 

que le processus de validation est primordial. 

1 S i m u l a t i o n  RTL 1 
+ 

Placement-Routage n 
Figure 0.1: Méthodologie de conception. 

Cependant, en raison de la complexité sans cesse croissante des circuits numériques, le 

processus de validation devient de  plus en plus long et coûteux. Dans le processus 

traditionnel de  test par simulation, le concepteur cré un jeu de test complet représentant 



toutes les entrées possibles du circuit et en compare les résultats avec ceux prédits. Selon 

la figure 0.2, l'environnement de test est inscrit dans ce que l'on appelle un banc d'essai 

ou un test bench dans la terminologie propre au VHDL. 

Testbench 

Générique 
spécifique 
au test 

stimulus 

drificatio 

4 Circuit 
S O U S  

test - 

omporiemental 

p-' 1 
Résultats 

Figure 0.2: Processus de validation par simuhtion. 

Dans le cadre de la validation de circuits industriels de plus en plus complexes, des 

variantes basées sur la définition de modèles de référence sont couramment préconisées. 

Une de ces variantes a été largement utilisée dans le cadre du projet PULSE[1] développé 

à l'École polytechnique. Afin de valider une puce conçue selon une architecture 

SIMD(sing1e instruction multiple data), un simulateur décrivant l'architecture 

fonctionnelle du circuit a été développé. PULSE, dont l'architecture est présentée à la 

figure 0.3, est optimisé pour le traitement d'images en temps e l .  Cette puce, dont la 

conception a été réalisée e n  langage VHDL, contient environ un million de transistors et a 

été validée à l'aide d'un simulateur écrit en langage C [2]. 



Figure 0.3: Architecture simplifiée de Pulse. 

Dans le projet PULSE, le modèle C est une description fidèle de l'architecture qui 

représente la fonctionnalité de la puce, ainsi que les unités opératives tel que 1' ALU, le 

décaleur et le multiplieur additionneur. Le contrôleur avec ses différents compteurs, les 

registres, ainsi que it;s canaux de communication ont eux aussi été modélisés. Un des 

avantages d'une méthodogie utilisant un modèle de référence, c'est que ce modèle est 

sensiblement moins complexe que le design en VHDL. Nous avons, dans le cas du modèle 

C de Pulse, modélisé le jeu d'instruction de la puce. La méthodologie de validation 

adoptée était la suivante. Partant d'une même séquence de vecteurs de validation, le 

résultat de l'exécution du programme sur le modèle VHDL est comparé avec celui du 

simulateur C. L'avantage de ce genre de méthode est que la description du simulateur est 

indépendante de l'implantation du modèle VHDL. Elle dépend seulement d'un jeu 



d'instructions défini lors de la spécification. La méthodologie de validation est 

schématisée à la figure 0.4. 

Figure 0.4: Validation Fonctionnelle. 

Un des gros problèmes de la méthode par validation est que pour des circuits ayant un 

grand nombre d'entrées, il est impossible de tester toutes les possibilitées. En effet, pour 

être complète, la simulation doit étudier le comportement du circuit dans toutes les 

configurations possibles et pour toutes les séquences. 

Par opposition à la simulation, la vérification formelle tente de prouver qu'une 

description structurelle possède un comportement équivalent à une description 

fonctionnelle à un niveau d'abstraction supérieur. Il s'agit donc de comparer des 

descriptions abstraites. Bien que cette méthode fasse de plus en plus d'émules, il ne faut 

pas oublier les problèmes qui en ralentissent une utilisation industrielle fréquente. Les 

principaux problèmes[3] sont au nombre de trois: d'une part l'extraction d'une description 



du comportement, d'autre part la formulation d'une spécification de haut niveau et 

finalement, la comparaison entre la description extraite et la spécification. 

Le premier problème nécessite la définition d'un modèle temporel et d'une 

description. Un circuit peut être décrit à différents niveaux d'abstraction, à savoir: 

électrique, commutateur, porte logique, registre ... Le modèle temporel est continu au 

niveau électrique et, discret aux niveaux supérieurs. Dans ce dernier cas, un modèle de 

délai doit être défini: instantané pour l'étude des circuits combinatoires, unitaire 

correspondant à une période d'horloge pour les circuits synchrones. 

Le second problème nécessite d'exprimer le comportement souhaité. La spécification 

correspond à la fois au but à atteindre et à la description abstraite du comportement en 

termes d'entrées-sorties. Cette spécification est alors exprimée sous la forme d'un 

automate de haut-niveau, Une spécification complète est parfois difficile à obtenir, en 

conséquence, seules certaines propriétées sont vérifiées. Citons par exemple la preuve 

qu'un système ne peut se bloquer, ou que certaines règles ou protocoles d'échange soient 

respectés. Cependant, le problème de complétude de la validation, ou le fait que les 

propriétés définies remplissent toutes les volontées du concepteur restent des questions 

ouvertes. 

Bien que de nombreuses études et avancements aient été réalisées dans le domaine de 

la vérification formelle, l'utilisation de ces techniques lors de la validation amène un trop 

lourd formalisme mathématique pour bien des concepteurs. Par contre, la validation par la 

simulation traditionnelle ne permet souvent pas de valider pleinement de grands circuits. 



Aussi diverses méthodes ont été proposées afin d'enrichir un jeu de vecteurs de vaiidation 

amenant une meilleure confiance dans les circuits VLSI. Le test par mutation est une des 

techniques dérivées de la vaiidation par simulation. Cette méthode permet d'enrichir la 

suite de vecteurs de validation. Il est à noter que d'autres techniques ont été proposées afin 

d'augmenter la confiance dans un design. Une manière valable de s'attaquer aujourd'hui 

aux défis inhérents à la vérification, c'est d'utiliser les analyses de couverture du code. La 

compagnie Summit Design inc propose un certain nombre d'outils permettant de chiffrer 

la couverture d'un programme HDL et la couverture des machines à états par des données 

de test. Ces outils permettent de montrer combien les vecteurs de validation ont pu exercer 

une région du circuit et en révéler les régions non testées. Par ailleurs, ils identifient les 

tests qui ont les plus grandes couvertures et permettent de réduire Ies tests redondants. Il 

est intéressant de remarquer que pour calculer une couverture du code, ces outils comptent 

combien de fois la suite de test exerce chaque ligne, chemin, expression, état et séquence. 

La mutation par contre ne compte pas combien de fois un vecteur a exercé une région, 

mais plutôt si toutes les régions ont été exercées au moins une fois. 

Les diffkrents objectifs de ce mémoire sont de trois types. Le premier consiste à étudier 

l'utilisation du test par mutation dans le cas de la validation de circuits numériques. Le 

second permet de définir un ensemble d'opérateurs de mutation permettant d'identifier 

d'éventuelles erreurs fonctionnelles survenant dans un langage de description matériel tel 

que le VHDL. Enfin, le troisième abouti à la proposition d'une nouvelle méthodologie de 

validation par mutation permettant l'enrichissement systématiquement d'un jeu de 

vecteurs de tests. 



Le premier chapitre de ce mémoire consiste en une présentation des méthodes formelles 

ainsi que des difficultés rencontrées lors de l'utilisation de ces différentes techniques. Ce 

chapitre se poursuit par une revue de littérature dans le domaine du test logiciel et 

particulièrement sur le test par mutation. 

Le second chapitre propose une adaptation du test par mutation à la validation des circuits 

VU1 ainsi que les résultats obtenus sur différents bancs d'essais ainsi que les problèmes 

inhérents au test par mutation. Aussi nous présenterons une méthodologie systématique de 

test par mutation dans le cas de circuits VLSI. 

Enfin, le troisième chapitre présente l'algorithme de génération de mutants et 

d'enrichissement de vecteurs de validation, ainsi que le banc d'essai qui a permis la 

définition des différents opérateurs de mutation. Ce chapitre commencera donc par une 

redéfinition des opérateurs de mutation dans le cas de circuits VLSI et se continuera par la 

proposition d'un algorithme systématique de validation d e  circuits numériques utilisant 

I'outil Synopsys. 



CHAPITRE 1 

METHODES DE VALIDATION 

1 .l Méthode Formelle 

1.1.1 Introduction 

Bien que la vérification par la simulation soit la méthode la plus largement utilisée dans le 

processus de validation de circuits VLSI, l'augmentation du niveau de complexité des 

circuits, ainsi que la difficulté à procéder à des tests exhaustifs, augmente le risque que 

certains aspects du design ne soient pas vérifiés. Une alternative basée sur des méthodes 

mathématiques rigoureuses a été proposée : la vérification formelle, 

Cette méthode est basée sur des langages, des techniques et des outils mathématiques- La 

plupart de ces langages, techniques et outils, utilisent des représentations binaires plus 

connues sous le nom de diagrammes binaires de décision (E3DD). Le BDD[4] est une 

simple représentation canonique de la logique binaire énumérant toutes les valeurs 

possibles pouvant se produire dans un circuit combinatoire. L'utilisation des méthodes 

formelles ne garantit pas, a priori, l'exactitude du design mais, elle augmente de manière 

significative la compréhension d'un système en y révélant les ambiguïtés et les 

inconsistances. Cependant, un problème majeur des méthodes formelles est l'utilisation 

abondante de la mémoire et du temps CPU, qui croissent parfois de manière exponentielle 

en  fonction de la taille du  circuit. 



Les méthodes f~nnel les  s'appuient sur trois outils principaux afin de vérifier une 

spécification. On retrouve des outils de vérification d'équivalence, de vérification de 

modèle et des prouveurs de théorèmes. Les vérificateurs d'équivalence comparent la 

spécification avec un design de référence. Les vérificateurs de modèles prouvent la 

véracité des propriétés du design par rapport à la spécification. D'autre part, les prouveurs 

de théorèmes permettent à l'usager de bâtir une preuve montrant que le design respecte 

bien la fonction voulue. 

Nous exposerons plus en détail dans la suite de ce paragraphe les vérificateurs du modèle 

et les prouveurs de théorèmes, deux types de vérification couramment utilisées. 

Deux exigences importantes doivent être respectées dans le processus de vérification. La 

première est la définition d'un langage formel capable de décrire le comportement d'un 

système et l'expression de propositions(propriétés) bâties à partir de celui-ci. La seconde 

exigence est de disposer d'un calcul déductif capable de prouver toutes les propositions 

exprimées dans le langage. Les méthodes de vérification formelle utilisent l'approche 

générale suivante: 

1. Écrire une spécification formelle S décrivant le comportement pour lequel le 

système doit être vérifié et est supposé exempt de défauts. 

2. Écrire une spécification pour chaque type de enmitive des composants utilisés dans 

la construction du système. Ces spécifications sont supposées décrire les comportements 

des composants réels du système. 



3. Definir une expression D qui décrit le comportement du système que l'on désire 

prouver. La définition de D est de la forme suivante : D = Pl + ... + Pn, 

où P l ,  ..., Pn spécifient le comportement des parties constituantes du système et le + est 

l'opérateur de composition qui représente l'effet de lier les composants ensemble. Les 

expressions Pl,  ..., Pn utilisées ici sont des instances des spécifications des composants 

primitifs définis à l'étape 2. 

4. Prouver alors que le circuit est décrit par l'expression D. Ceci se fait par une preuve 

d'un théorème de la forme : D satisfait S 

où satisfait est une relation de satisfaction des spécifications du comportement du 

système. 

1 .l.2 Vérification du modèle 

La vérification du modèle est une technique qui consiste à construire un modèle fini d'un 

système et, à démontrer que les propriétés spécifiées sont bien respectées. En pratique, 

deux approches sont utilisées en vérification du modèle. La première, la vérification de 

modèles temporels est une technique developpée dans les années 1980 par Clarke et 

Emerson d'une part et par Queille et Sifakis d'autre part. Dans cette approche que nous 

présenterons plus loin, les spécifications sont exprimées en logique temporelle (TL) et les 

systèmes sont modélisés comme des systèmes à états finis qui effectuent des transitions. 

Dans la seconde approche, la spécification est donnée sous la forme d'une machine à 

états. Dans ce cas, le système est lui aussi représenté par une machine à états et, est 

comparé à la spécification afin de déterminer si oui ou non ses comportements sont 

conformes à ceux de la spécification. 



Vérification de modèle temporel 

Un système à états finis peut être représenté par un graphe de transition d'états étiquetés, 

où les étiquettes d'un état sont les valeurs des propositions atomiques de cet état (par 

exemple pour les valeurs des bascules). Les propriétés concernant le système sont 

exprimées comme des formules en logique temporelle p u r  lesquelles le système à 

transitions d'états doit être un modèle. La vérification du modèle consiste à parcourir la 

machine à états des transistions du système @SM) et à vérifier s'il satisfait les formules 

représentant la propriété. 

Arbre de calcul logique 

La logique temporelle exprime l'ordre des événements dans le temps par une spécification 

des propriétés des opérateurs tel que "p aura éventuellement lieu". Il y a plusieurs versions 

de logique temporelle, dont une concernant le CTL[5] pour laquelle celui-ci découle de 

l'arbre des transitions d'états. 

Donnons à titre d'explication l'exemple classique des feux de circulation (Figure 1.1). 



Figure 1.1: Construction d'un CTL à partir d'un automate. 

Les chemins dans l'arbre de la figure 1.1 représentent toutes les possibilitées de  calcul du 

système. Les formules en CTL font référence à l'arbre de calcul dérivé du modèle. La 

méthode CTL est classifiée comme une analyse des branchements logiques temporels, car 

ses opérateurs décrivent la structure de branchement de  l'arbre. Les états du système sont 

des valeurs enregistrées dans des bascules. Chaque formule de la logique est soit vraie ou 

fausse pour un état donné. L'exactitude est évaluée à paitir de l'exactitude de ces sous 

formules de manière récursive, jusqu'à ce qu'une proposition atomique soit vraie (1) ou 

fausse (O) pour un état donné. Une formule est satisfaite par un système si elle est vraie 

pour tous les états initiaux du système. Contrairement à la démonstration de théorèmes, la 

vérification du modèle est complètement automatique et relativement rapide. Cette 

méthode peut être utilisée afin de vérifier des spécifications partielles. Ainsi, elle peut 



donner une information déterminante sur la validité d'un système, même si ce dernier n'est 

spécifié que partiellement. En tout état de cause, elle produit des contres exemples 

représentant des erreurs subtiles du design et peut ainsi être utilisé pour le déverrninage. 

Le problème le plus important du modèle d'équivalence est l'explosion des états. En 1987 

McMillan utilise les BDD et son extention MDD (Muhi-valued Decision Diagram) afin 

d e  proposer une heuristique permettant de représenter les systèmes d'états de transition de 

manière efficace. D'autre part, il propose la minimisation de la sémantique afin d'éliminer 

les états non- nécessaires du modèle. 

Les diagrammes de décision binaire 

Les diagrammes de décision binaires (BDD) sont des graphes acycliques orientés 

qui permettent de représenter des fonctions booléennes. Selon Bryant, les BDD sont une 

représentation canonique des fonctions qui constituent une technique complémentaire à la 

vérification de modèle. La taille des BDD est très sensible à l'ordonnancement des 

variables et à la taille des BDD intermédiaires. La meilleure représentation des fonctions 

booléennes représentant les équations des circuits numériques est dérivée du BDD. C'est 

le "Ordered Binary Decision Diagram" (OBDD). Bien que les BDD ont été utilisés avec 

succès dans la vérification des FSM, ils ne constituent pas une panacée dans le cas des 

FSM de grandes tailles: 

- les BDD demandent trop de mémoire, 

- leur manipulation est très coûteuse en temps de calcul. 



1.1.3 Démonstration de théorème 

La démonstration de théorème est une technique dans laquelle le système et ses 

propriétés sont exprimés comme des formules en logique mathématique. Cette logique est 

donnée par un système formel, qui définit l'ensembie des axiomes e t  des règles 

d'inférence. La démonstration de théorème est le processus permettant de  trouver une 

preuve d'une propriété en partant des axiomes pour un système spécifié. Les étapes de la 

preuve font appel aux axiomes, aux règles d'inférences et à Ia dérivation de  définitions et 

de lemmes intermédiaires. La démonstration de théorème comprend plusieurs techniques 

regroupées en deux classes principales : 

1 . La déduction automatique qui est utilisée comme procédure générale de recherche. 

2. La déduction interactive qui est beaucoup plus intéressante pour des développements 

formels systématiques en mathématique. 

Les techniques sont : 

- Boyer-Moore(6J (First-Order Logic). 

- HOL (High-Oder Logic): HOL[7] utilise les notions standards de la logique 

des prédicats. 

En plus des notions standards de la logique des prédicats, HOL est caractérisée par le fait 

que les variables peuvent êtres utilisées à des degrés plus élevés que ceux des fonctions et 

des prédicats. Ce genre de variable est appélé HOV (Higher Order Variable) et peut être 

quantifiée. Contrairement au modèle d'équivalence, la démonstration d e  théorème peut 

traiter les espaces à états infinis. Elle se base sur des techniques comme l'induction 



structurale pour prouver ces domaines infinis. Cependant, comme elle requiert la 

participation humaine, le temps nécessaire à la démonstration d'un théorème est 

généralement beaucoup plus long que le temps de calcul dans le cas de l'équivalence du 

modèle et les erreurs sont beaucoup plus fréquentes. 

1.1.4 Conclusion 

Bien que la vérification formelle s'avère être un outil très utile dans la spécification des 

propriétés des systèmes numériques, elle ne peut être que complémentaire aux méthodes 

traditionnelles de vérification par simulation. En effet, les outils de travail ne cachent 

aucunement aux usagers leurs caractères formels. Par ailleurs les notations basées sur les 

écritures mathématiques sont généralement très complexes. Les outils et les méthodes 

développées aujourd'hui ne sont accessibles qu'aux spécialistes de la vérification 

formelle. 

1.2 Test par mutation 

Le test par mutation est une technique de test logiciel originalement proposée par 

Budd et al. 1978 [8]. Cette technique peut être décrite de  la manière suivante: un grand 

nombre de fautes simples sont introduites, une à la fois. dans un programme sous test. Les 

versions modifiées, résultant de ces modifications, sont appelées mutants. Les données de 

test sont alors construites afin de détecter ces mutants. Lorsqu'une différence de 

comportement est détectée entre le mutant et la spécification de référence, le mutant est 

considéré tué et n'est plus réutilisé dans le processus de test. La mutation permet donc 



d'élaborer un ensemble de vecteurs capables de détecter un ensemble fini et bien spécifié 

de fautes. Dans le but de faciliter la compréhension de cette méthode, il nous apparaît utile 

d'exposer les différents concepts du test logiciel. 

1.2.1 Test logiciel 

Le test logiciel consiste à appliquer un jeu de vecteurs de test sur un programme 

afin d'en révéler les défauts. Les stratégies de test se groupent en  deux grandes 

catégories: 

- structurelle(dites aussi stratégies de test boite-blanche) qui utilisent explicitement la 

structure du programme afin de générer les tests. 

- fonctionnelle(dites aussi stratégies de test boite-noire) qui génèrent le test en n'ayant 

aucune information sur la structure du programme Dans ce dernier cas, on a recours à la 

spécification. 

Le test fonctionnel examine les fonctions d u  programme depuis les entréedsorties en 

vérifiant que pour des entrées 1Bgales on obtient des sorties correctes. de quantifier 

la quaiité du test, les stratégies structurelles cherchent à remplir certains critères relatifs à 

la structure du programme [93: 

- la couverture des énoncés : chacun des énoncés du programme doit être exécuté, au 

moins une fois. 

- Ia couverture des branches: chaque condition de branchement binaire (IF-THEN-ELSE) 

doit être évaluée au moins une fois, aux valeurs booléennes VRAI et FAUX . Dans le cas 



de branchement non-binaire (CASE) la condition doit être évaluée pour toutes les vaieurs 

possibles. 

- la couverture des conditions : si la condition est constituée de plusieurs conditions 

simples, le test des conditions consiste à évaluer toute condition simple alternativement à 

VRAI et FAUX. 

- la couverture des chemins : tous les chemins possibles dans le programme doivent être 

exécutés(sensibi1isés) au moins une fois. 

Dans le test fonctionnel, le concepteur identifie les fonctions supposées être implémentées 

par le programme et teste ensuite la conformité du code avec la(1es) spécification(s) de ces 

fonctions f 101. Malheureusement, au contraire du test structurel dans lequel beaucoup de 

méthodes basées en général sur la théorie des graphes ont été proposées , la majorité des 

méthodes de test fonctionnel sont des méthodes ad hoc et souvent manuelles. 

1.2.2 Principe du test par mutation 

Comme il a été dit précédemment, le test par mutation pemet de quantifier la capacité 

d'un jeu de vecteurs fonctionnels à tester différentes fonctions dans un programme. 

Durant le test par mutation, des fautes simples introduites dans le programme original 

génèrent une multitude de programmes défectueux. Chacun de ces programmes contient 

une seule faute et est appelé mutant. Le test par mutation est fondé sur quatre hypothèses: 



1. Le programmeur est compétent. Cette hypothèse présuppose que le programmeur 

écrit des programmes presque "corrects". C'est-à-dire que bien qu'incorrects, les 

programmes écrits différeront de la "bonne version" par des fautes relativement simples. 

2. Les fautes sont couplées 1111: on suppose ici qu' un jeu de test capable de détecter 

toutes les fautes simples est aussi capable de détecter les fautes plus complexes. Cette 

hypothèse a été justifiée à la fois de manière théorique [ 121 et expérimentale [ 131. 

3. On dispose d'un ensemble valide d'opérateurs de mutation. il s'agit d'un ensemble 

prédéfini d'opérateurs qui modélise toutes les fautes simples d'un programme. Ces 

opérateurs sont déterminés de manière tout à fait empirique et il n'existe toujours pas de 

méthode systématique &in de déterminer l'ensemble minimal relatif à un langage de 

programmation. 

4. On possède un oracle : cette référence permet de vérifier systématiquement que le 

résultat du programme est conforme, pour un jeu de test donné. 

1.2.2.1 Méthodologie. 

Etant donné un programme P et un jeu de vecteurs de test T, il s'agit d'exécuter T sur P. 

Supposons, par ailleurs, que le résultat de T sur P soit correct; Le. P passe le test T. 

Plusieurs programmes générés en appliquant de petites modifications sur P, appelées 

mutants, sont exécutés avec T comme stimulation, Si le résultat d'un mutant est différent 

de celui de P, on dit que le mutant est tué (détecté). Dans le cas contraire, il est dit vivant 



(T est incapable de  détecter le mutant). Si  un mutant survit, le  jeu de test T est insuffisant 

et doit être augmenté. Nous allons maintenant nous intérresser à la génération des mutants. 

1.2.2.2 Génération des Mutants. 

Plusieurs techniques ont été proposées afin de déterminer un jeu de vecteurs de test 

capable d'isoler des "fautes spécifiques". Une des plus difficiles et plus coûteuses tâches 

dans l'application de ces techniques est la génération de données de test qui est en général 

faite à la main. Une méthode [14] a été proposée afin de rendre la génération de ces tests, 

purement automatiques. Cette méthode est applicable de  manière structurelle. Ces 

algorithmes utilisent le constraint based testing (CBT). Ces contraintes de test incluent 

des conditions qui permettent de tuer les programmes mutants e t  génèrent des données qui 

satisfont les contraintes. Le test de grands systèmes est composé de tests de  sous-systèmes 

et de fonctions, si  ces systèmes admettent la hiérarchie. Dans le cas d'énormes 

programmes non hiérarchiques, le processus de génération de vecteurs peut s'avérer 

intraitable. 

Ces algorithmes sont assez performants s'ils sont applicables sur des "unités de  

programme". Une unité de  programme est une sous-routine ou un ensemble de sous- 

routines ou de fonctions. La génération de jeu de test est en général une tâche laborieuse. 

En effet, afin de produire les vecteurs de test adéquats, le responsable du test est 

pratiquement obligé d'interagir avec le système de mutation en examinant de manière 

exhaustive tes mutants survivants. Ce  faisant, il doit ensuite construire manuellement un 



jeu de vecteurs capables de les éliminer. Le processus de test par mutation commence par 

la construction de tous les mutants du programme. Les mutants sont générés à partir d'un 

jeu d'opérateurs de mutation. Les opérateurs utilisés représentent les fautes les plus 

répétitives faites par les concepteurs. Ces opérateurs suggèrent que les données de test 

couvrent tous les états, toutes les branches, les vaieurs extrèmes, les domaines de 

perturbations et modélisent plusieurs types de fautes. Lorsque l'un de ces opérateurs est 

appliqué a un état, il effectue un changement simple (tout en gardant une bonne syntaxe). 

Le processus de test est le suivant: le programme original est testé par le jeu de test, il en 

résulte des valeurs pour chacune des sorties. Un oracle (en général celui qui est en charge 

de la vdidation) se charge de vérifier que les sorties sont exactes. Si les sorties sont 

identiques, le programme doit être changé, puis le processus de test doit être réitéré. Dans 

le cas contraire, ces derniers tests sont appliqués à chacun des mutants survivants. 

Après que ces derniers aient exécuté ces vecteurs avec succès, deux informations 

surgissent: la proportion des mutants tués, qui indique au concepteur dans quelle mesure 

le programme a été testé, et le nombre de mutants survivants, qui renseigne quant au 

nombre de fautes non testées, ou encore, quant à la faiblesse du jeu de test. A titre 

d'exemple, Ia Figure 1.2 montre le processus de mutation sur la fonction Max, qui donne 

le maximum de deux vdeurs entières. Afin d'alléger la figure 1.2, tous les mutants sont 

portés sur la même figure. Autrement dit, chacune des instructions transformée par 

mutation représente un mutant séparé, dans lequel I'instmction mutée remplace 

l'instruction correspondante du programme initial. Dans le premier mutant, une valeur 

absolue a été injectée dans la première instruction. Le deuxième et le troisième mutants 



sont les résultats d'injection de fautes dans l'opérateur relationnel de la seconde 

instruction. L,e dernier mutant résulte de l'injection de fautes sur la variable de la troisième 

instniction . 

Function Max(integer: m, n) :integer; 
begin 

1 Max:= m; 

figure 1.2: la fonction Max avec quatre mutants superposés 

II est en général impossible de tuer tous les mutants, car certains changements n'ont aucun 

effet sur la fonctionnalité du programme original. En général, ces mutants équivalents 

sont identifiés soit par celui qui est en tâche de la validation soit par des heuristiques. 

1.2.23 Les mutants équivalents 

Un mutant est dit équivalent au programme original [12, 13, 151 s'il n'existe aucun 

vecteur de test permettant de  révéler une différence de comportement entre les deux 

programmes. 11 est en général très difficile de prouver qu'un mutant est équivalent. En 

effet, les raisons pour lesquelles un mutant peut être fonctionellement identique sont: 

1. Le mutant est fonctionneliement équivalent au programme original. Ce mutant 

produira toujours la même sortie que le programme initial et ceci quelque soit le test. 

2. Le mutant peut être tué, maïs le jeu de test est insuffisant. 



Une manière de démontrer l'équivalence est de procéder à des tests exhaustifs, 

évidemment, ceci n'est pas pratique pour de gros programmes. Dans la pratique, c'est au 

programmeur qu'incombe la tâche de déclarer un mutant équivalent. Ce problème reste 

toutefois une difficulté pratique et théorique devant l'automatisation du test par mutation. 

1.2-2.4 Évaluation du test 

Le test par mutation a été initialement proposé afin d'évaluer la capacité d'un jeu de test à 

exercer un programme. Les vecteurs de test peuvent être générés manuellement, 

aléatoirement, ou à l'aide d'un outil de génération de test. L'analyse de mutation associe 

une métrique (score de mutation) au jeu de test dans le but d'évaluer son efficacité. Ce 

score de mutation est le pourcentage de mutants non équivalents tués. Le score est donné 

par la formule suivante: 

MS(P,T)=Mk 1 (Mt -Mq ). 

où P est le programme de test 

T le jeu de test 

Mk le nombre de mutant tué par T 

Mt le nombre total de mutants générés par le programme 

Mg le nombre de mutants équivalents. 

Plus le nombre de mutants détectés est grand, plus l'efficacité du jeu de test est 

importante. Étant donné un jeu de test T, le programme P est d'abord exécuté et vérifié sur 

chaque vecteur qui compose T. Si le résultat est incorrect, une faute est trouvée et le 



programme doit être corrigé puis le processus est relancé. Si le résultat est correct (P passe 

le test T), tous les vecteurs dans T sont exécutés pour tous les mutants vivants. Les 

mutants tués sont retirés du processus de test. Une fois tous les vecteurs de T exécutés, 

chacun des mutants encore vivant doit appartenir à une des deux catégories: le mutant est 

fonctionnelIement équivalent au programme initial, ou il ne peut être tué par le jeu d e  test. 

Dans le premier cas, les deux programmes sont fonctionnellement équivalents et  il 

n'existe aucune entrée permettant de révéler des résultats différents. Dans le deuxième cas, 

le jeu de test doit être renforcé par de nouveaux vecteurs. Notons que le coût du test par 

mutation tend à croître de façon importante, parce que chaque mutant est simulé avec 

l'ensemble de la suite de test et que le nombre de mutants peut devenir important. C'est 

pourquoi diverses techniques ont été utilisées afin de réduire le nombre de mutants 

générés tout en gardant un score de mutation satisfaisant- Les méthodes proposées ont été 

appelées mutation faible et  mutation sélective. 

1.2.2.5 Le test par la mutation faible 

La mutation forte est une méthode très efficace, cependant elle génère une grande 

quantité de mutants. La méthode de test par mutation faible proposée par Howden[l6,17], 

demande moins de tests. Elle ne considère ni l'hypothèse du programmeur compétent ni 

l'hypothèse du couplage des fautes. Les différences intervenant entre mutation faible et 

mutation forte sont que: 



1. Les opérateurs de mutation dans la mutation forte sont dépendants du langage de 

programmation, tandis que dans la mutation faible, ils sont génériques et ne dépendent pas 

du langage. 

2. Dans la mutation forte, il n'existe pas une méthode globale pour générer les tests qui 

révèlent les fautes prédéfinies par les opérateurs de mutation. Il existe toutefois un 

compromis dans lequel les tests peuvent être générés, si et seulement si, leur capacité de 

détection des fautes a été affaiblie, d'où le terme mutation faible. Howden (dans la même 

référence) a définit le composant comme la structure élémentaire de calcul dans le 

programme. Les références aux variables, les expressions arithmétiques et logiques sont 

des exemples de composants. Cette méthode de mutation peut être décrite de la manière 

suivante: si P est un programme qui contient un composant C, il existe alors une mutation 

C'de C et P' de P où P' correspond à P contenant C'. Dans la mutation faible, un test t est 

construit de manière où C et C' ont au moins une valeur différente lors de l'exécution de t 

par P et P', sans garantir toutefois que les résultats de P et P' soient différents. Les 

changements (ou les mutations des composants) dans la mutation faible affectent les 

composants suivants : 

1. les références à une variable: il s'agit de remplacer une référence à une variable 

par une autre. Pour détecter ce type de mutation, il faut exécuter le programme sur des 

entrées pour lesquelles la variable en question se verra attribuée des valeurs différentes de 

celles de toutes les autres variables compatibles dans le programme. 
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2. les affectations d'une variable : il s'agit ici d'affecter une valeur à la mauvaise 

variable. Pour détecter cette mutation, il est nécessaire d'affecter une vaieur différente de 

la valeur actuelle de la variable. 

Les deux types précédents sont des mutations primitives qui contribuent dans les types de 

mutation suivants: 

3. transformations des expressions arithmétiques : I'expression est modifiée par 

I'addition d'une constante, la multiplication par une constante ou bien en modifiant les 

coefficients qu'elle contient. La détection de l'addition d'une constante ou de la 

multiplication par une constante demande un seul vecteur de test, tandis que la détection 

des coefficients modifiés est plus complexe et demande plus d'un vecteur(Howden82). 

4. transformation des relations arithmétiques : l'expression est modifiée par un 

opérateur relationnel incorrect ou l'addition d'une constante. La détection d'un opérateur 

incorrect est effectuée par l'exécution de la relation sur des données qui distinguent 

l'opérateur correct de tous les autres opérateurs, La détection de l'addition d'une constante 

est effectuée par la sélection appropriée d'un point de test. 

5. transformation des expressions booléennes: les expressions booléennes sont 

modifiées en utilisant les opérateurs précédents sur les sous-expressions. Pour détecter la 

mutation, l'expression doit être testée sur toutes les valeurs dans la table de  vérité de 

I'expression. Howden a proposé des méthodes pour contrôler la taille du jeu de test dans le 

cas des expression booléennes. Le test par mutation faible a plusieurs avantages sur le test 



par mutation (forte). Notamment, il n'est pas nécessaire d'effectuer une exécution des 

mutants pour sélectionner les données de test. De plus, le nombre de vecteurs de test est 

souvent petit (un seul) peut parfois suffire pour la plupart des mutations. Un autre 

avantage majeur est la possibilité de spécifier a priori les données de test nécessaires pour 

que la mutation donne une sortie incorrecte. Par contre, le test par mutation faible ne  

garantit pas que les données choisies pour détecter une mutation donne une sortie 

incorrecte pour le programme tout entier. 

1.2.2.6 mutation sélective 

Cette méthode a été proposée par Offutt et al. afin de réduire le coût de la mutation en 

réduisant le nombre de mutants générés. Le coût du test par mutation est essentiellement 

lié au nombre de mutants. Afin d'estimer la complexité du test par mutation, de 

nombreuses techniques empiriques ont été proposées. La première l'a été par Acree [18]. 

Selon ce modèle, le nombre de mutants généré est proportionnel au nombre de lignes du 

programme au carré. Budd [19] a affiné cette relation en estimant que le nombre de 

mutants étant proportionnel à O(Vais*Refs), où Vals représente le nombre d'objets de 

données du programme (ex : déclaration des variables et des constantes) et Refs 

représente le nombre de références à ces objets. Une étude statistique récente effectuée par 

Offutt et Lee, [20] a montré que la relation proposée par Budd est la plus représentative de 

la complexité réelle du test par mutation. Afin de réduire la complexité du test, une 

réduction des opérateurs de mutation a été proposée afin de réduire le nombre de mutants 

du programme. Cette approche appelé la mutation sélective, s'effectue de deux manières. 



Dans la première, au lieu de considérer tous les mutants pouvant être générés par un 

opérateur de mutation, on sélectionne, de façon aléatoire, une portion de ces mutants. Une 

étude réalisée par Wong et Mathur (1995) a montré qu'en appliquant seulement 10% des 

mutants, on pouvait atteindre des scores de mutation très proches de ceux atteints par la 

mutation originale. Dans la seconde, certains opérateurs de mutation sont éIiminés du 

processus de génération de test. 

1.2.2.7 La mutation N-sélective 

Dans un premier temps, il a été proposé de supprimer Ica ûpérateurs responsables de la 

génération du plus grand nombre de mutants [ 2 11- Mathur[22] a proposé d'appliquer une 

méthode appelée la mutation 2-sélective, sur les deux opérateurs les plus coûteux (ASR et 

SVR). ASR consiste à remplacer chaque signal par un tableau alors que SVR consiste à 

remplacer chaque variable par un scalaire. L'expérience a débuté par une étape de 

comptage des mutants générés (à partir de 28 programmes différents). Les résultats obtenu 

sont présentés à la figure 1.2. Par la suite, une comparaison a été faite entre les deux 

méthodes de tcst (sélective et non-sélective). Pour effectuer cette comparaison, un jeu de 

vecteurs de test ayant un score de mutation de 1ûi9% (pour la mutation sélective) a été créé. 

Puis, dans un deuxième temps, ce même jeu de vecteurs a été appliqué à la mutation non 

sélective et son score a été de nouveau caiculé. 



70 mutants 

opérateurs de mutation 

Afin d'éviter au maximum les aléas (dûs au fait que l'on génère les vecteurs 

aléatoirement), 5 jeux de tests ont été générés pour chacun des dix programmes 

considirés. Les valeurs ci-après sont en fait la moyenne de tout cela. Le but de cette 

expérimentation est de montrer qu'un jeu de vecteurs capable d'obtenir un bon score de 

mutation lors de la mutation sélective est aussi capable d'obtenir un bon score pour la 

mutation forte. 

mutation 2-sélective : 99.99% (score de mutation) et 23.98% (de mutants non 

générés). 

mutation 4-sélective: 99.84% (score de mutation) et 41.36% (de mutants non 

générés). 

mutation 6-sélective : 99.71% (score de mutation) et 60.56% (de mutants non 

générés). 



Le but de  cette expérimentation n'est pas d e  mettre à jour des mutants équivalents, 

mais de comparer les scores de mutation obtenus pour la méthode sélective avec ceux 

obtenus par la mutation forte. 

1.2.2.8 La mutation E-sélective 

Cette nouvelle technique vise encore à diminuer le nombre de mutants générés en 

supprimant certains opérateurs. Les opérateurs sont classés en 3 grandes catégories: 

- type R : remplacent chaque opérande du programme par toutes les autres opérandes 

compatibles. 

- type E: modifient les expressions en remplaçant les opérateurs par d'autres de 

même nature (arithmétique, relationnelle ou booléenne). 

- type S : modifient les tests conditionnels du programme. 

L'objectif sous-jacent est de déterminer empiriquement un sous-ensemble suffisant 

d'opérateurs de mutation permettant une réduction de la complexité de test, tout en 

gardant une efficacité satisfaisante. Une étude empirique comparant les performances des 

mutations suivantes: ES, RE, RS, et E a été menée. Dans une mutation sélective de type 

XY ou de type X, on applique seulement les opérateurs de mutation compris dans le(s) 

type(s) mentionnés lors de la génération de test. Il a été montré que le type R génère un 

nombre de mutants de l'ordre de O(Vals * Refs), le type E de l'ordre de O(Refs), et le type 

S de l'ordre de  O(Lignes). Il est à noter que le type R est le plus coûteux, car 70% des 



mutants générés sont en général de ce type. Une des premières préocupations lors de 

l'utilisation de la mutation sélective est de déterminer la possibilité d'éliminer le type R 

sans avoir à réduire l'efficacité du test généré. En d'autres mots, est-il possible de procéder 

au processus de mutation en n'utilisant que des types -ES ou -E. Une étude empirique 

effectuée par Offut et al. [21] a montré qu'un jeu de test LOO% adéquat par rapport à la 

mutation sélective-ES est suffisamment adéquat (99.54% en moyenne) par rapport à une 

mutation non-sélective. 

Il a aussi été proposé de  supprimer les opérateurs de type S dans le souci de définir un 

ensemble minimal suffisant d'opérateurs de mutation. Le résultat de l'application de la 

mutation sélective à montré que le test généré est là encore quasi-adéquat (99.5 1 % en 

moyenne), Par conséquent, dans la pratique, on peut considérer que la mutation sélective 

-E est suffisante pour générer des tests efficaces. 

A titre d'exemple, les résultats d'une expérience réalisée par Irene koo [16] sont donnés 

ci-dessous. Ces résultats ont été obtenus en appliquant un processus identique à celui 

appliqué pour la mutation sélective précédente : 

mutation ES-sélective : 99.54% (score de mutation) et 7 1 -52% (de mutants non 

généres) 

mutation RS-sélective : 97.31% (score de mutation) et 22.44% (de mutants non 

générés). 
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mutation RE-sélective : 99.97% (score de mutation) et 6.04% (de mutants non 

générés). 

mutation E-sélective : 99.51% (score de mutation) et 77.56% (de mutants non 

générés). 

Pour la mutation E-sélective, le score de mutation va de 98.5% à 99.5% suivant le 

programme, pour un pourcentage de mutants non générés ailant de 37.1 % à 92.12%. 

Par la suite, une étude a été menée dans le but de réduire encore plus le nombre de 

mutants générés, en supprimant un opérateur parmi les 5 (cf tableau 1.1). 

1.2.2.9 Génération de test 

Tableau 1.1 : mutation E selective 

Dans le test par mutation, le but du concepteur est de trouver des vecteurs capables de 

révéler une différence de comportement. Un test est considéré efficace s'il tue au moins 

Sans 
ABS 

9 1-57 

97.93 

99.63 

99.30 

99.70 

97.95 

94.00 

97.09 

98.36 

98.67 

Programme 

Banker 

Bub 

Cal 

Euclid 

Find 

insert 

Mid 

Quad 

Trytip 

Wars hall 

Avec les 5 
opérateurs 

99.57 

99.93 

99.63 

99.00 

99.30 

99.75 

99.90 

100.00 

99.36 

99.67 

Sans 
UOI 

98.57 

98.93 

95.63 

97.30 

98-70 

98.95 

98.00 

99.09 

98.36 

97.67 

Sans 
ROR 

99.57 

99.93 

99.63 

99.30 

99.70 

99.95 

10.0 
O 

99.09 

98.36 

98.67 

Sans 
LCR 

99.57 

99.93 

99.63 

99.30 

99.70 

99.95 

100.0 
O 

99.09 

99.36 

98.67 

Sans 
AOR 

91.57 

99.93 

99.63 

99.30 

99.70 

99.95 

100.0 
O 

99.09 

99.36 

98.67 



un mutant. Un moyen largement utilisé dans le domaine du test par mutation afin de 

genérer automatiquement des tests, c'est d'avoir recours à des contraintes mathématiques. 

En fait ces contraintes permettent de générer des vecteurs de test à partir des propriétés que 

les entrées du programme doivent avoir pour tuer les mutants. Ces contraintes permettent 

de rejeter les vecteurs inefficaces. Les contraintes doivent amener le mutant à révéler un 

comportement différent du programme origùiai. Puisque le mutant est représenté par un 

seul changement dans le programme, I'état du mutant doit être différent de celui du 

programme original tout de suite après I'état muté. Cette caractéristique est une condition 

nécessaire afin de tuer le mutant. Cependant, cette condition n'est pas suffisante, car il peut 

très bien anivei que le changement de comportement ne parvienne pas à l'une des sorties 

du programme. Aussi, une condition suffisante est que le test cause une différence à l'une 

des sorties. Il est cependant très difficile de satisfaire les deux conditions, car cela demande 

de savoir à l'avance le chemin que va suivre le programme, ce qui est bien sûr un problème 

très difficile à résoudre. Pour être certain que le test tue le mutant, le mutant doit être 

exécuté en globalité et, sa réponse comparée avec la réponse du programme. En pratique, 

il est admis qu'un test remplit la condition nécessaire s'il remplit la condition suffisante 

sinon, le mutant produit le même résultat que le programme original et reste vivant. 



CHAPITRE 2 

APPLICATION DU TEST PAR MUTATION AUX CIRCUITS VLSI 

2.1 Introduction 

Ce chapitre fait état des investigations effectuées par l'equipe Valsys de Grenoble et 

de Valence, ainsi que des résultats obtenus suite à une collaboration effectuée avec notre 

groupe. Ces travaux sont à la base d'une proposition d'un premier algorithme de 

validation par mutation de circuits numériques. Tout au long de ce chapitre, nous 

présenterons les raisons qui ont guidé le choix d'un outil de mutation spécifique ainsi que 

son architecture. Nous décrirons les différents bancs d'essai sur lesquels les mutations ont 

été réalisées. Enfin, nous décrirons un algorithme de validation et les problèmes sous- 

jacents à cette méthode de validation. 

Bien que le test par mutation ait été originalement proposé afin de vérifier un 

programme, il a par la suite été proposé d'utiliser cette méthode afin de valider une 

description matérielle. En effet, tout comme pour le test des Iogiciels, cette méthode se 

révèle intérressante si on travaille à partir de languages de description matériel tels que 

VHDL(Very High speed integrated circuit Hardware Description Language) et VERTLOG. 

Par ailleurs, les approches fonctionnelles sont indépendantes de l'implémentation 

matérielle du circuit, ce qui permet d'avoir recours à un haut niveau d'abstraction capable 

de traiter des circuits VLSI complexes. Il n'existe pas un ensemble de principes reconnus 

pour la validation de circuits VLSI, qui est en général realisée de manière ad-hoc. Aussi. 

en se tournant vers le test logiciel. on peut, si on considère chaque description VHDL 



comme un programme, utiliser les rudiments du test logiciel (voir section 1.2.1). Par 

ailleurs, le test par mutation se compare à bien des égards au test matériel, comme il sera 

demontré dans la suite de ce chapitre. 

Afin de valider et d'établir les fondations de la méthode de validation par mutation de 

descriptions matérielles, nous avons eu recours 3 l'outil Mothra[23], qui est 

I'environnement le plus complet pour le test par mutation dans le domaine logiciel. Cet 

outil permet de tester des modules écrits en FORTRAN. Mothra génère automatiquement 

tous les mutants d'un programme en utilisant un ensemble défini d'opérateurs de mutation. 

L'architecture de Mothra ainsi que la définition de ces opérateurs sont présentés dans la 

section suivante. 

2.2 Présentation de Mothra 

Mothra utilise une technique de test qui est basée sur des contraintes, ce qui permet 

d'automatiser le processus de test par mutation en représentant sous la forme de con- 

traintes mathématiques, les conditions pour lesquelles un mutant est tué. Mothra est con- 

stitué d'un ensemble d'outils qui permet à la fois de créer les mutants et d e  générer des 

vecteurs de test. La génération de ces vecteurs est réalisée par Godzilla- Les outils 

Mothra/Godzilla ont été implémentés en langage C. 



2.2.1 Génération de vecteurs de validation. 

Godzilla génère des vecteurs de test en tentant de trouver les propriétés que doivent 

avoir les entrées du programme afin de tuer les mutants. Dans le chapitre 1, il a été montré 

qu'il fallait que le comportement suite à la mutation soit différent de celui du programme 

non muté. Aussi, dans la validation par mutation, il est nécessaire que les entrées du 

programme engendrent un état erroné directement après l'exécution de I'état mutant. Par 

analogie avec le test matériel, il faut au moins que le test stimule la panne à la source en 

produisant une différence de comportement observable à cet endroit (condition 

nécessaire). Ensuite, une fois la panne stimulée, cette différence doit se propager sur un 

résultat observable de l'extérieur. 

Godzilla décrit ces condi'ricns sous forme d'un système de contraintes 

mathématiques. La condition d'accessibilité est décrite par un système de contraintes 

appellé " expression de chemin ". Si on représente le lieu où une panne est susceptible 

d'être introduite comme un état, chaque état du programme a une expression de chemin 

permettant de décrire la manière d'atteindre I'état mutant à partir de n'importe quel état. 

Une condition spécifique au type de faute modélisé par le mutant décrit à la fois la 

condition qui engendre le comportement défectueux du programme et la nécessité d'une 

exécution intermédiare incorrecte. Ces deux critères constituent une condition nécessaire, 

car bien qu'un état intermédiaire incorrect soit nécessaire, il n'est pas suffisant pour tuer 

un mutant- Afin de tuer un mutant, il faut que le programme génère des sorties incorrectes 

de manière à ce que I'état final du programme soit différent de celui du programme 



original. Cependant, bien qu'il soit nécessaire de satisfaire Io condition de suffisance, elle 

est pratiquement irréalisable. En effet, déterminer complètement la condition de 

suffisance implique de connaître à l'avance le chemin que va prendre le programme. 

Grâce à ce système de contraintes, Godzilla intègre plusieurs techniques de test logiciel 

dont le détail est donnée ci-dessous: 

La couverture des états : Si on considère un état comme une combinaison des 

valeurs de toutes les variables dans le programme à un insiant donné, chaque état du 

programme est exécuté au moins une fois. La couverture est réalisée directement à partir 

du  système de contraintes appelé " l'expression de chemin ". 

La couverture des branches : technique qui requière que toutes les branches du 

programme soit parcourues. Cette technique est respectée par le test par mutation, en effet 

les mutants ne peuvent être tués que si les prédicats prennent la valeur vraie puis fausse. 

Domaine de perturbation : Cela consiste à partitionnet les entrées du programme en 

domaines. Chaque vecteur compris dans un domaine suit le même chemin. La stratégie du 

domaine de perturbation sélectionne les vecteurs de manière à prendre les valeurs 

frontières du domaine. Les opérateurs de mutation forcent les vecteurs à satisfaire le 

domaine de perturbation en modifiant légèrement chaque expression (en ajoutant 1, en 

soustrayant 1 ou en prenant 10% de la valeur etc.) et en remplaçant chaque opérateur. 

L'architecture de Godzilla est donnée à la figure 2.1 



1 chemin 1 
Réducteur Satisfaction 
de contraintes des contraintes 

Jeu de Tes a 
Contraintes 
de mutation 

I i \de nécessité] 

Figure 2.1: Implémentation de Godzilh 

Les principales fonctions de Godzilla sont montrées ci-dessus. Cet outil intègre 

différentes fonctions, chacune d'entre elles a été implémentée dans différents pro- 

grammes, ceux-ci communiquent par l'intermédiaire de fichiers qui sont représentés par 

des ellipses. Les flèches de la figure 2.1 indiquent les flots d'information du système 

Godzilla. Les fichiers sont accessibles par des routines communes à tous les outils, ils sont 

ainsi vus en faisant abstraction du type de données. Ce système permet une plus grande 

modularité et une plus grande extensibilité en donnant à chaque outil un accès uniforme 

aux routines qui créent, modifient, enregistrent et récupèrent les contraintes. 



2.2.1-1 La représentation des contraintes. 

Le système de contraintes de Godzilla a une structure hiérarchique composée de 

contraintes, d'expressions et de clauses arrangées de manière " disjonctive normale ". 

L'expression algébrique est l'élément de base du système de contrainte. Elle est composée 

de variables, de parenthèses et d'opérateurs spécifiques au FORTRAN. Une contrainte est 

une paire d'expression algébrique reliée par un des opérateurs suivants {>, <, =, 2, < ). 

Les contraintes sont évaluées soit à la valeur binaire VRAI, soit à la valeur FAUSSE et 

elles peuvent être modifiées par l'opérateur de négation NOT (y). Une clause est une liste 

de contraintes reliées par les opérateurs logiques ET (A) et OU (v). Une clause 

corzjonctive utilise seulement le ET logique et une clause disjonctive seulement le OU 

logique. Dans le système Godzilla, toutes les contraintes sont sous la forme normal 

disjonctive @NF), qui est en fait une série de clauses conjonctives reliées par des 

opérateurs OU. La forme DNF est utilisée par commodité durant la génération des 

contraintes (en effet, i l  suffit de satisfaire une seule conjonctive clause). GodziiIa 

considère le système de contrainte comme étant un ensemble de  contraintes, qui prises 

collectivement forment un vecteur de test. 

A titre d'exemple, considérons le système de contraintes de l'équation suivante: 

X+Y est une expression et (X+Y 2 Z) est une contrainte. ((X+Y 2 2) A (X I Y)) est une 

clause conjonctive, et l'expression entière est un système de contraintes. Des vecteurs de 

test tels que (X=3, Y=4, &2), (X=3, Y=4, W) et (X=4, Y= 1, Z=3) satisfont les con- 



traintes. 

2.2.1.2 L'analyseur de chemin. 

L'analyseur de chemins utilise la technique de couverture des chemins parcourant 

ainsi tout le programme afin de construire des contraintes d'accessibilité. Pour chaque état 

du programme original, l'analyseur de chemins crée une contrainte telle que si le vecteur 

atteint cet état, la contrainte est vraie. Il faut noter qu'il vaudrait mieux avoir des 

contraintes inverses (si la contrainte est satisfaite, l'état est exécuté). Cependant, créer des 

contraintes qui garantissent l'accessibilité implique de trouver une réponse au problème 

de connaître à l'avance le chemin que pourrait prendre Ie programme. L'algorithme 

construisant les expressions de chemin partiel est présenté ci-dessous: 

Générateur de contraintes 

Variables: CPE est l'expression courante du chemin 

PE [ ] contient l'expression courante de  chaque état, 
P est le programme. 
S et S* sont des états du programme P. 
p est l'cxprcssion d'un pddicût. 

1 CPE = VRAI - initialisalion 
2 pour chaque éwt S de P 
3 PE[S]=FAUX -- initiaiisation (aucun état n'a €3 trouvé) 
4 fin 
5 pour chaque état dc S d e  P 
6 PE[S]=PE[S]VCPE - CPE(nouve1le maniere d'atteindre S) est ajouté à l'état précddent 
7 CPE=PE[S] - Ic nouvel t ta t  devient I'Ctat courant 
8 Si S est un Ctat de contr6le dc  flux alors - si plusieurs possibiliiées 

( p est I t  prédicat dc S. S' cst la cible d c  la branche. ) - condition pdalable à l'évaluation de  S 
9 mise à jour dc  C P E  selon le type de I'ktat. 
10 PE [ S' ] = PE [ S' ] V ( PE [ S ]A p ) - ajout dc  l'expression du chemin et de la conjonction de 
1 1  end - CPE c i  du controle de flux 

L'expression du chemin courant CPE (Current Path Expression) est tout d'abord 

initialisée à la valeur VRAI, et chaque état à la valeur FAUSSE indiquant qu'aucun 



chemin menant à cet état n'a été trouvé. Pour atteindre I'état S, plusieurs actions sont 

entreprises. Premièrement, Le CPE est ajouté à la liste des précédentes expressions de S. 

En effet, le CPE représente une nouvelle voie possible pour atteindre S (ligne 6). Chaque 

chemin susceptible d'atteindre S est enregistré comme une nouvelle clause disjonctive il 

l'expression des chemins. Ensuite, le nouveau PE de l'état S devient le CPE (ligne 7). 

Chaque clause disjonctive dans l'expression des chemins représente une exécution 

différente du chemin menant à I'état S. Enfin, si S est un état de contrôle de flux 

(représentant différentes possibilitées, branches...), le CPE est mis à jour par une règle de 

modification qui dépend de S. La clause disjonctive et le prédicat de contrôle de 

flux(condition du choix multiple) sont finalement ajoutés à I'expression du chemin de 

l'état cible (ligne 9 et 10). 

2.2.1.3 Le résolveur de contraintes 

La dernière étape du processus de génération de vecteurs de tests est de trouver des 

valeurs qui satisfont le système de contraintes. GodUlla travaille avec des heuristiques, et 

produit rapidement des vecteurs de test quand les contraintes ont une forme simple et plus 

lentement lorsque leur forme est plus compliquée. Tout d'abord, un domaine de valeurs 

possible est assigné à chaque variable. Théoriquement, ce domaine de valeur dépend du 

type de variable et de la machine sur laquelle le programme est utilisé. En pratique, 

GodzilIa permet de réduire ce domaine. Par défaut, les domaines de variation des 

variables sont initialisés arbitrairement aux valeurs (-100, 1 0 ) .  Cependant, ces valeurs 

peuvent être modifiées dans le cas ou le besoin s'en fait sentir. Chaque contrainte dans un 



système de  contrainte réduit le domaine de  variation d'une ou d e  plusieurs variables. 

Quand le domaine de  variation d'une variable est réduit à une valeur, cette valeur fait 

partie du vecteur d e  test. La  variable est alors remplacée par sa valeur dans toutes les 

autres contraintes. Si le domaine de variation est réduit à l'ensemble vide, la résolution de  

ce système de contrainte est alors impossible. Lorsque toutes les simplifications ont été 

faites, et qu'il reste un domaine de plusieurs valeurs, une valeur est choisie. Godzilla 

utilise une heuristique qui affecte la variable qui utilise le plus petit domaine de variation, 

en espérant que c'est cette variable qui a le moins de chance de  rendre le système 

infaisable. Ce processus est répété jusqu'à c e  que  toutes les variables se soient vues 

assignées une valeur. 

A chaque fois qu'une valeur est affectée à une variable, le domaine d e  variation des 

contraintes est réduit d'une dimension. Si la valeur est mal choisie, elle peut rendre le 

système infaisable. Lorsqu'un système d e  contraintes devient infaisable après une 

affectation, le processus recommence à partir d u  système de contraintes original. Les 

expériences ont montrés qu'en moyenne, le processus de  réduction de  contrainte trouve 

une solution e n  4 itérations (avec un maximum de 25). Dans le cas où l'objectif n'a pas été 

atteint après 25 essais, on considère que le système d e  contraintes ne possède pas de 

solutions. Toutefois c e  dernier cas ne s'est pas encore produit. 



2.3 Opérateurs de mutation 

Les opérateurs constituent le noyau du test par mutation. Ces opérateurs sont au 

nombre de 22 et ils identifient les modifications syntaxiques responsables des 

programmes mutants. Les opérateurs qui sont implémentés dans Mothra sont énumérés au 

tableau 2.1. 
Tableau 2.1 : Opérateurs de mutation 

Opérateurs d e  mutation t 
ABS 

ACR 

AOR 

ASR 

CAR 

CNR 

CRP 

CSR 

DER 

DSA 

ROR 

RSR 

SAN 

SAR 

SCR 

SDL 

SVR 

UOI 

Description I 
Array reference for Array reference Replacement 

ABSolute value insertion 

Array reference for Constant Replacement 

Arithmetic Operator Replacement 

Amay reference for Scalar variable Replacement 
1 

Constant for Array reference Replacement 

Comparable array Name Replacement 

Constant Replacement , 

Constant for Scalar variable Replacement , 

Do statement 
- --  

Data Statement Alteration 

Goto Label Replacement 

Logical Connector Replacement 

Relational Operator Replacement 

Retum S tatement Replacement 

Statement Analysis 

Scaiar variable for Array reference Replacement 

Scalar for Constant Replacemen 

Statement DeLetion 

Scalar Variable Re~lacement 

Unary Operator Insertion I 



2.4 Chaine de validation 

La description de la méthodologie de test originalement proposée par l'équipe d u  

VALSYS et modifiée par notre groupe est donnée dans la suite de ce paragraphe et est 

résumée à la figure 2.4. 

Il faut tout d'abord réécrire la spécification VHDL en FORTRAN car MOTHRA ne 

produit des mutations que sur ce langage. Cette description doit être comportementale car 

il est très difficile d'écrire un code structurel en Fortran. Dans une seconde étape, une 

génération de vecteurs de test est réalisée par Mothra. La troisième étape consiste en une 

phase d'optimisation qui permet d'augmenter le nombre initial de vecteurs du jeu de tests, 

jusqu'à ce que le score de mutation soit satisfaisant. L'étape suivante est une étape de 

synthèse. Synopsys est utilisé pour générer une description structurelle du circuit. La 

dernière étape consiste à calculer la couverture de faute du jeu de vecteurs généré par 

MOTHRA. Pour cela, une simulation de fautes est réalisée avec I'ATPG (automatic test 

pattern generator) =O. L'efficacité du jeu de vecteurs de validation produit par Mothra 

mesurée à l'aide du score de mutation(voir chapitre I) est comparée à la couverture de 

faute obtenue avec la suite de test appliquée à l'implémentation structurelle. L'objectif ici 

est de corréler le score de mutation avec une mesure dont le sens est bien établi. 
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Figure 2.2: Méthode de validation de circuits numériques utilisant Mothra 



2.5 Validation de la méthode 

L'objectif premier de cette section est d'élargir le champ d'expérimentation de la 

méthode de test par mutation à des circuits de complexité plus importante que ceux 

réalisés à Grenoble. Pour cela, il a été décidé d'utiliser des bancs d'essai de types 

différents: petit séquentiel, gros séquentiel et gros combinatoire. Enfin, un circuit a 

spécialement été conçu afin de metttre en évidence les atouts et/ou les faiblesses du test 

par mutation. Les résultats de la collaboration entreprise entre Monsieur Zoccarato et 

notre groupe ainsi qu'une brève description de ces bancs d'essai sont donnés dans la 

section suivante. 

2.5.1 Description des bancs d'essai. 

d a  : Le circuit cla est un processeur RISC 32 bits défin; par Hennessy et Patterson. Ce 

processeur possède un jeu d'instruction simple, un seul mode d'adressage. un décodage 

unique de son jeu d'instruction et une architecture très simple, qui met en évidence toutes 

les fonctionnalités du principe RISC. Le jeu d'instruction du processeur RISC possède 

avant tout des instructions arithmétiques pour nombres signés et flottants. Mais aussi des 

caractéristiques telles que : les interruptions et exceptions, trois différents modes 

d'utilisation (utilisateur, superviseur et défaut) et un mode d'adressage supplémentaire. Le 

circuit cla permet d'effectuer des additions sur des nombres de 32 bits en calculant la 

retenue de manière anticipée. 



Edhii: Ce circuit fait parti d'un processeur ancillaire qui insère / extrait des données 

dans un signal vidéo numérique exprimé selon diverses normes. Ce circuit sera présenté 

de manière plus explicite dans le chapitre 3. Le circuit edhii permet la réécriture des 

données provenant du module EDHin. dans les trames vidéo. Un explication plus détaillée 

de ce circuit est donnée au chapitre 3. 

Sortie: Ce module, comme le précédent, fait aussi partie du module EDH du 

processeur ancillaire. Sa fonction est de générer les paquets de sortie. 

Mux: Ce circuit a été conçu afin de mettre en évidence des lacunes possibles de 

certains algorithmes implémentés dans le système de mutation et les problèmes sous- 

jacents à la mutation. Une description plus détaillée de la fonctionnalité de ce circuit se 

trouve au paragraphe (2.6.4). 

2.5.2 Processus de validation 

La démarche adoptée pour valider les 4 circuits mentionnés précédemment est la 

suivante : 

-Réécriture du programme VHDL en FORTRAN. Il est possible que lors de cette 

opération, la structure du programme ou même la structure des données soit modifiée. En 

effet, sachant que la définition du ET logique FORTRAN (il en est de même pour le OU 

logique) ne  correspond pas à la définition du ET logique VHDL, il est absolument 

nécessaire de décomposer cet entier en autant de booléen qu'il est nécessaire, ce qui a 

pour conséquence d'augmenter de façon non négligeable la complexité du programme. 



-Réécriture du 

rendre compatible 

programme VHDL en un autre programme VHDL de manière à le 

avec le programme FORTRAN qui a été généré lors de l'étape 

précédente. Cette phase est nécessaire car la structure des données du programme 

FORTRAN n'est plus compatible avec celle du programme VHDL, entrahant une 

incompatibilité des vecteurs générés par MOTHRA avec la synthèse du circuit réalisé par 

SYNOPSYS. Il faut noter qu'il existe une alternative à ce travail, elle consiste à modifier 

tous les vecteurs générés par MOTHRA de manière à les rendre compatibles avec la 

description structurelle faite par SYNOPSIS. Après que chacun des programmes sources 

ait été généré, une mutation non sélective suivi d'une mutation sélective ont été utilisées. 

Pour la mutation selective, le score de mutation a été produit à partir des mutants générés 

par les opérateurs aor, ror, Icr, abs et uoi. 

2.6 Résultats. 

2.6.1 Le circuit sortie 

Une des premières difficultés, inhérente au fait de traduire la spécification VHDL en 

FORTRAN, c'est l'abscence d'utilisation de vecteurs binaires. En effet, il est possible de 

définir dans l'entité VHDL des entrées binaires de longueurs différentes (2 bits, 25 

bits.. .), chose qui n'existe pas en FORTRAN, puisque les seuls types disponibles sont les 

types entiers, booléens,flottunts et double fTottants. Afin de contourner ce problème, nous 

avons ajouté au début du programme FORTRAN une condition spécifiant que les vecteurs 

binaires ne dépassent pas leurs valeurs entières équivalentes. Ce procédé introduit des 



mutants supplémentaires, cependant, afin de ne pas influencer les résultats et le score de 

mutation, nous ne chercherons pas à les tuer- Le deuxième problème rencontré a été un 

problème d'espace mémoire. En effet, lors de la satisfaction des contraintes générées par 

la mutation non sélective, Mothra consomme beaucoup d'espace mémoire et l'utilisation 

d'une machine de type 1 (65 Mo de RAM et 118 Mo de swap space) n'est pas suffisante. 

Nous avons donc relancé ce même processus sur une machine de type 2 (13 1 Mo de RAM 

et 257 Mo de swap space). La figure 2.5 représente la consommation de swap pour la 

machine de type 2 lors de la résolution des contraintes (il est clair que 118 Mo ne suffit 

pas ). Les résuItats du test par mutation sont représentés dans le tableau- Il est à noter que 

3793 mutants ont été générés. Le nombre de vecteurs de validation est présenté dans le 

tableau 2.2. 

Figure 2.3: consommation mémoire pour le circuit de sortie 

Bien que la couverture de test soit élevée, le score de mutation lui ne l'est pas, ce 



qui tend à révéler que les vecteurs générés par MOTHRA ne sont pas tous adéquats, que 

ce soit pour la mutation sélective ou non sélective. Il est cependant possible d'augmenter 

ce score de mutation en augmentant le jeu de test de manière à tuer les mutants existant. 

Cependant, cet e~chissement  manuel s'avère être long et diminue l'automatisation du 

test par mutation. Aussi, c'est à celui qui est en charge de la validation (l'oracle) d'estimer 

le temps nécessaire à cet enrichissement. Par ailleurs, le circuit de sortie possède une cer- 

taine redondance, ce qui réduit le score de mutation puisque le ou les types de mutants non 

tués se répètent plusieurs fois. Comme il a été dit précédemment, la couverture de collage 

est comparée au score de mutation afin de montrer que les vecteurs fonctionnels produits 

peuvent aussi être utilisés pour le test matériel. A titre indicatif, nous pouvons comparer 

cette couverture de fautes à celle obtenue par 20 vecteurs de tests générés de façon totale- 

ment aléatoire. Le résultat obtenu par ces 20 vecteurs peut paraître très bon, mais il faut 

savoir que pour ce genre de circuit, il est très facile d'avoir une couverture 70 à 80%. Il est 

par contre beaucoup plus difficile d'obtenir les 20% restants. Concernant le score de 

mutation, la différence est plus importante, on peut donc dire pour ce circuit qu'il est 

beaucoup plus difficile de tuer un mutant que de détecter une faute de collage. 



Tabkau 2.2 : circuit de sortie 

Vecteurs générés par Mothra 
pour la mutation non sélective 
Vecteurs générés par Mothra 

~ o u r  la mutation sélective 
Vecteurs générés 

aléatoirement 

Nombre de 1 score de 1 Couverture de 1 
I vecteurs I mutation I fautes I 

2.6.2 Le circuit d'entrée de l'edh 

Pour ce circuit, nous avons également été confrontés au problème de la plage de 

variation des variables d'entrées, ainsi qu'à celui de l'espace mémoire. Cependant, cette 

fois-ci, le fait de changer de machine n'a pas été suffisant . En effet que ce soit pour la 

mutation sélective ou non sélective, les machines de type 1 et 2 ne réussissent pas à satis- 

faire Ies contraintes générées pour ce circuit. En effet, dans certains cas, le programme 

avorte et dans d'autres cas, bien que des mutants aient été générés, aucun vecteur ne fut  

construit. La consommation mémoire est donnée à la figure 2.6. Afin de pouvoir effectuer 

le processus de mutation, il a fallu réécrire le programme edhii de manière à ce que les 

contraintes générés par MOTHRA soient plus simples. La fonctionnalité du programme a 

bien évidemment changé, cependant nous essayons par ce " stratagème " de générer des 

vecteurs qui puissent tester un maximum de conditions, chemins, valeurs extrêmes et par- 

ticulières, de manière à avoir une bonne couverture de fautes. Dans ce dernier cas 



l'emphase a été mis sur une augmentation de la couverture de faute comparativement au 

score de mutation. 

Figure 24: consommation mémoire pour k circuit d'entrée 

Le tableau présente un récapitulatif des résultats obtenus. On y trouve le score de 

mutation et la couverture de fautes de collage pour des vecteurs générés par MOTHRA 

pour la mutation sélective e t  non sélective. Les résultats obtenus par le score de mutation, 

que ce soit pour la mutation sélective ou pour la mutation non sélective, sont très faibles 

(environ 20%). Cela s'explique par le fait que la moitié des mutants générés n'ont pas été 

tués. En effet, ce circuit est séquentiel et  possède un état interne. Toutes les transitions par- 

tant de cet état interne ne peuvent donc pas être tuées. Les scores de mutation sont affectés 

par le même phénomène. Une explication plus détaillée sera donnée dans la section 2.6.4. 



Tableau 23 : Résultats de sortie pour k circuit d'entrée de I'EDH 

Score de Couverture de 
vecteurs I Nombre de I mutation I fautes I 

Vecteurs générés par Mothra I m u r  ia mutation sélective I 

Nous avons encore une fois été confrontés à un problème de mémoire, cependant le 

système de mutation n'a pas pu générer de vecteurs de test pour ce fichier, que ce soit pour 

la mutation sélective ou non sélective. Afin d'obtenir des résultats concluants, 8 fichiers 

différents ont été écrits. Chacun de ces fichiers correspond à un circuit de calcul anticipé 

de retenu pour des données faisant 4, 8, 12, 16 ,20, 24, 28 et 32 bits. Le seul circuit sur 

lequel nous pouvons apptiquer la mutation sélective et non sélective est le circuit traitant 

des données de 4 bits. L'application du test par mutation sur ce circuit a donné les résultats 

se trouvant dans le tableau 2.4. ïi est à noter que 4420 mutants ont été générés. Le nombre 

de vecteurs générés pour la mutation non sélective est de 4046. Ce nombre est énorme, 

puisque le nombre de vecteurs nécessaires à un test exhaustif est de 5 12 = z9. Même si la 

mutation sélective réduit notablement le nombre de vecteurs générés, on peut dores et déjà 

dire que ce type de circuit constitue un véritable problème pour Mothra. II apparaît à 

première vue que le grand nombre de variables internes contenues dans la description 



VHDL de ce circuit serait responsable des difficultés qu'éprouve Mothra à le tester. Afin 

d'expliquer les problèmes rencontrés, une étude sur la complexité algorithmique du 

générateur de vecteur est rapportée dans la sous section suivante. 

Tableau 2.4 : Résultats de sortie pour le a m i t  c h  

Score de Couverture de  I NzC21A I mutation I fautes I 
Vecteurs générés par Mothra 1 4046 

m u r  la rnu<ation &n sélective I 
Vecteurs générés ~ a r  Mothra 1 270 

2.6.4 Complexité algorithmique 

Bien que Mothra soit l'outil de mutation le plus performant, il apparaît évident que ce 

système éprouve certaines difficultés pour la validation de circuits VLSI. Afin de 

proposer une amélioration à la méthode décrite dans ce chapitre, il a fallu identifier la 

source des difficultés éprouvées par Mothra. 

Afin d'expliquer les problèmes de consommation mémoire pour certains circuits, 

un balayage des algorithmes de Godzilla a montré que les seuls susceptibles d'engendrer 

un nombre important d' itérations sont: l'algorithme de réécriture des variables internes en 

fonction des entrées primaires et l'algorithme de réduction du domaine de variation des 

variables. Ces deux algorithmes ont une complexité proportionnelle au nombre total de 

clauses contenues dans le système de contraintes. II n'est cependant pas possible d'éval- 



uer précisément le nombre d'itérations nécessaires, car celui-ci dépend de la structure du 

programme. On peut simplement dire qu'au maximum, on a une contrainte par état et au 

moins une clause par contrainte. Le nombre de clauses peut facilement devenir très impor- 

tant. Dans l'unique but de démontrer cette thèse, le nombre de contraintes du programme 

MID(voir en annexe B) a été augmenté progressivement. Cette augmentation s'effectue en 

augmentant la profondeur d'imbrication des if, tout en regardant l'évolution de la con- 

sommation mémoire. Le résultat de cette étude est montré au tableau 2.5, il a suffit de  

rajouter 4 if pour que la machine de type 1 n'arrive plus à générer les vecteurs de test. 

Tableau 2.5 : Résultats obtenus pour la fonction MID 

No* de mitarts 
No~&vecteurs 
T e p  nécesaire à la gériération 
des vecteurs de test 
Norrkue & clarises du 

Ia satisfixtion des GOntzainta I I I I 

Mid3 
1669 
1285 

3h 44m 44s 

Taille & la swap utilisée lors & 

Une deuxième difficulté provient du nombre important de mutants équivalents 

augmentant ainsi la complexité du processus de  validation et la tâche du concepteur. Ces 

mutants équivalents sont par définition des spécifications qui ont le même comportement 

que le programme original. Cependant. une hypothèse émise est que le nombre de  

mutants équivalents produits par le système de mutation pourrait être dû au fait qu'il n'y 
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2 146 
X 

incheminé 
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M~i1 Mid2 

249 

830 
454 
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6184 KD 

1219 
898 
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223aIK;o 
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aurait pas de propagation de la faute à l'une des sorties primaires. Afin de corroborer 

cette hypothèse, un programme a été construit afin de montrer que la propagation de la 

faute vers les sorties primaires n'est pas effectuée. En effet, la justification de la faute est 

faite, mais Mothra se contente " d'espérer " que les sorties primaires du circuit révèlent la 

présence d'une faute en générant aléatoirement des valeurs sur les entrées qui n'apparais- 

sent pas dans les contraintes. Par opposition aux algorithmes de test matériel qui per- 

mettent de générer des vecteurs qui justifient et cherchent à propager les fautes. Pour 

anaiyser plus en détail la pertinence des vecteurs générés par Mothra, nous avons créé 4 

circuits qui représentent un empilement de plusieurs multiplexeurs (cf. figure 2.5). 

in0 in1 i n2 inx 

Figure 2.5: Casade de mulîiplexeurs 



Comme pour le circuit précédent, le nombre de vecteurs générés par Mothra est très 

important. Les vecteurs générés pour ce circuit ne propagent pas les fautes comme il est 

montré dans le tableau 2.6. Ce phénomène va en s'accentuant si la profondeur du circuit 

augmente. Aussi, c'est le grand nombre de vecteurs produits et  non la qualité des vecteurs 

qui tue les mutants. 

Tableau 2.6 : Cascade de Mdtiplexeurs 

1 Circu i t s  1 Type d e  1 Entrees  1 N b  d e  1 M othra 1 Aléatoire  

2.6.5 Conclusion 

.. 
1 M u x  

La mutation sélective est loin de donner le score de mutation qui a été obtenu pour 

le test logiciel (57.38% contre 99.61% en moyenne), ou même celui obtenu sur les circuits 

d'expérimentation sans processus d'enrichissement [2] (95.02% en moyenne). Nous pou- 

vons dire la même chose pour le taux de couverture de fautes, dans de moindre proportion 

cependant (74.98 % contre 95 96). La seule manière d'obtenir à la fois un bon score de 

mutation et une bonne couverture de fautes est de compléter manuellement le jeu de test, 

surtout si le circuit testé est une machine à états. En effet, Mothra est incapable de classer 

M u tation 

Full  3 

V ectors  

19 
MS 
100% 

MS 
96-8  % 



les vecteurs de manière à positionner une machine à états sur un état précis, Pour une 

FSM, nous avons à la fois des contraintes sur les variables du programme à l'instant 

présent, mais aussi sur les variables du/des instant(s) précédent(s), chose qui n'est absolu- 

ment pas prévue dans Mothra (cf. circuit edhii) 

2.6.5.1 Étude de la puissance des mutants 

Le nombre de vecteurs générés est vraiment très impottant (surtout pour la muta- 

tion non sélective). Un bon moyen de diminuer ce nombre consiste à utiliser la mutation 

sélective. De manière à ne retenir que les opérateurs les plus efficaces, une étude sur la 

puissance des 5 opérateurs principaux a été faite. Une fois les opérateurs les plus efficaces 

sélectionnés, il faut que mis les uns avec les autres, ils détectent le plus de fautes possi- 

bles. Pour chacun des 7 fichiers (sortie, Mux2, Mux2, Mux4, Mux8, Edhii et C1a4) nous 

avons appliqué chacun des 5 opérateurs de la mutation sélective. Tout d'abord, on effectue 

le lancement du processus de génération des vecteurs de test. Le nombre de mutants 

générés est inscrit dans la colonne 1, et le nombre de vecteurs dans la colonne 2. Le calcul 

du score de mutation est porté dans la colonne 3. A partir de là, 2 cas sont possibles, soit 

les vecteurs sont adéquats, auquel cas nous passons directement à l'étape 4, soit les vect- 

eurs ne sont pas adéquats et nous passons à l'étape 3. Une augmentation manuelle du jeu 

de vecteurs est réalisée de manière à avoir des vecteurs adéquats (score de mutation de 

100% (cf. colonne 5)) afin de ne pas influencer les résultats de cette étude. La colonne 4 

représente le nombre initial de vecteurs plus ceux générés manuellement. Le calcul de la 



couverture de fautes de collage est porté dans la colonne 6. 

Tableau 2 7  : Paissoince des opérateurs 
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Bien que certains mutants permettent d'obtenir des scores de mutation intéres- 

sants, on ne peut affirmer qu'un opérateur est plus important que les autres. En effet, 

l'opérateur AOR donne de mauvais résultats car aucun des programmes testés ne contient 

d'opérateurs arithmétiques. Un meilleur moyen d'étudier la puissance des opérateurs est 

d'en montrer la capacité à découvrir des fautes de collages en fonction du nombre de fois 

où on le trouve dans le programme ou, le nombre d e  fois où les vecteurs couvrent une 

région du design. Le test par mutation semble être une solution au problème de la valida- 

tion. En effet, cette méthode fournit un modèle qui permet de mesurer à quel point le cir- 

cuit a été validé . Il est également intéressant de noter que les mêmes vecteurs sont 
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capables de très bien tester le circuit final si toutefois l'on s'est assuré de leur capacité à 

tuer les mutants par le score de mutation. Afin de répondre à plusieurs des limitations 

identifiées pour un test par mutation avec les outils existants, des opérateurs propres au 

langage VHDL. un génerateur de mutants ainsi qu'une nouvelle méthodologie de test par 

mutation sont exposés dans le chapitre suivant. 



CHAPITRE 3 

&THODE SYSTÉMA'MQUE D'ENRICHISSEMENT DE 

VECTEURS FONCTIONNELS 

3.1 Introduction 

3.1.1 Limitations de Mothra pour la validation. 

Dans le chapitre précédent, des expériences ont été menées afin de montrer les 

différents pièges pouvant découler du test par mutation. Le banc d'essai concernant la 

cascade de multiplexeurs (cf 2.6.7) a été choisi afin d'exposer les similaritées existant 

entre la génération pseudo aléatoire du modèle de panne bloquée-à I ou O et la suite de 

test produite par Mothra- L'outil semble présumer que les pannes se propagent 

natureHement à l'une ou l'autre des sorties primaires. Cette hypothèse peut s'avérer 

incorrecte avec des circuits ayant un problème potentiel d'observabilité. Par exemple, 

dans le cas des multiplexeurs, ce phénomène a considérablement réduit la couverture de 

pannes ainsi que le score de mutation. En effet si les entrées de commande de la cascade 

sont stimulées avec des vecteurs aléatoires, la probabilité qu'une panne puisse être 

observée décroi t exponientellement avec la distance mesurée en nombre de mu1 tiplexeurs 

de la panne à la sortie. Cette expérience, dont les résultats sont rapportés au tableau 2.6, a 

confirmé pour ce banc d'essai que les tests générés par Mothra pouvaient dans certains 

cas n'être guère meilleurs que ceux produits par une génération exhaustive. 



Soulignons que dans certains cas, le nombre de vecteurs de test produits par le système de 

mutation exède le nombre de vecteurs requis pour une validation exhaustive. Ce problème 

n'est pas dû à une limitation du test par mutation. mais à une limitation d e  Mothra qui 

utilise un procédé de génération de test limité- Afin de répondre à ces limitations, un 

certain nombre d e  solutions sont proposées dans la section suivante. 

3.1.2 Redéfinition de la méthode de validation. 

Nous avons identifié trois limites importantes avec la méthode proposée au chapitre 2. 

La première découle des traductions du VHDL au FORTRAN imposées par MOTHRA. 

La seconde provient de la difficulté à détecter les mutants équivalents. La troisième 

découle de l'hypothèse implicite que les différences de comportements se propagent 

naturellement à un noeud de sortie observable, sans avoir recours à des actions explicites. 

La méthode proposée dans la suite de ce chapitre est d'utiliser le test par mutation comme 

un moyen de mesurer l'efficacité d'une suite de  tests définie lors de  la validation. Avec 

cette méthode, nous supposons que les suites de  test proviennent de  celui qui est en charge 

de la validation. L'objectif est de détecter les parties de la fonctionnalité où une ou 

plusieurs erreurs de  spécification passeraient inaperçues à travers la suite de  test- Les 

mutants qui ne peuvent être détectés permettent alors d'identifier les imperfections de la 

suite de vecteurs de  validation. Cela guide le responsable de la validation vers les régions 

du design insuffisamment testées. Considérant la difficulté à déterminer précisément les 

mutants équivalents, nous avons mis l'emphase sur la possibilité d'éviter de  produire des 



mutants qui pourraient l'être. Finalement, afin d'empêcher le manque de fidélité dans la 

description fonctionnelle associée à la traduction du VHDL au FORTRAN, nous avons 

implémenté un outil qui réalise les mutations directement à partir de descriptions VHDL. 

Par ailleurs, il a été montré dans le chapitre 1.2.2.8 qu'un ensemble bien défini 

d'opérateurs de mutation (mutation sélective) était suffisant afin de déveloper une bonne 

qualité de test. De plus, le choix de ce type de mutation réduit sensiblement le nombre de 

mutants, ce qui réduit sensiblement la tâche du concepteur. Dans la suite de ce chapitre, 

nous présenterons le banc d'essais qui nous a guidé dans le choix des opérateurs de 

mutation et l'implémentation du générateur de mutants. 

3.2 Description du banc d'essai 

3.2.1 Processeur ancillaire. 

La puce à données ancillaires possède deux modes de fonctionnement: MUX et 

DEMJJX. A ces deux modes se rajoutent plusieurs sous mode de fonctionnement : nor- 

mal, bypass, tones, cbar, tones et cbar. Brièvement, le sous mode bypass n'altère en rien le 

signal vidéo d'entrée. Les sous modes cbar et tones sont des sous modes de test . Le pre- 

mier modifie le domaine actif de l'image alors que le second insère ou extrait(tout 

dépendant du mode MUXIDEMLJX) des échantillons audio de 1 KHz. En mode MUX, la 

puce doit encoder plusieurs types de données reçues sériellement en paquets ancillaires et 

les insérer dans l'espace HANC. Les types de données insérées ou extraites de la trame 
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vidéo sont: audio, time code, RS422 ou GPS. Les paquets ancillaires sont formés de Ia 

manière suivante: 

Toutes les cellules du tableau sont des mots de 10 bits. Les ancillary Data Flags servent à 

identifier un paquet ancillaire. Le DID (Data Identrjication) renseigne quant à la nature 

des données présentes dans le paquet. Le DBN (Data Block Number) sert à numéroter les 

paquets de 1 à 255. Le DC (Data Count)précise le nombre de User Datu Words que con- 

tient le paquet. Les User Data Words contiennent les données sérielles transformées en 

DBN 

mots de 1 O bits selon un standard défini pour chaque type de données. Le CS (chechm) 

est un mot servant à la détection d'erreurs dans le paquet. 

CS DC 

- 

DID Anc Data Fiag 

Le signal vidéo entre dans fa puce par le module EDH. Ce dernier est responsable de 

l'identification du standard vidéo en présence. Notons que la puce est faite pour traiter les 

standards vidéos 4:2:2, 525 lignes, 27MHz; 4:2:2,625 lignes, 27 MHz; 4:2:2. 525 lignes, 

36 MHz; 4:2:2,625 lignes, 36 MHz et HDTV. Le module d'entrée doit également recon- 

naître les signaux de synchronisation qui permettent de se situer dans le standard vidéo. il 

est enfin responsable de la détection des erreurs présentes dans ce même signal d'entrée. 

User Data Words 

En mode MUX, la puce est responsable du multiplexage des nouveaux paquets ancil- 

laires présents dans le signal vidéo d'entrée. 

Anc Data Flag Anc Data Flag 



En mode DEMUX, le contrôleur reconnaît les paquets ancillaires pertinents et inscrit les 

USERS DATA WORDS dans une RAM. Dans les deux modes de fonctionnement, le 

module EDH est responsable de I'encodage des fanions révélant des erreurs dans le signal 

vidéo d'entrée, ainsi que de I'encodage de certains mots dont il fait le calcul, mots qui 

seront utiles aux modules qui recevront ce signal. 

3.2.1.1 Module EDH 

Le module EDH (ermr detecrion and handling) permet la génération de paquets 

ancillaires. L'écriture de ces paquets se fait à des lignes définies par le standard video. Ces 

standards sont au nombre de cinq. A savoir: 

- 4:2:2 525 lignes à 27 MHz 

- 4:2:2 525 lignes à 36 MHz 

- 4:2:2 625 lignes à 27 MHz 

- 4:2:2 625 lignes à 36 MHz 

- HDTV 

Le module EDH doit aussi être en mesure d'écrire dans tes trames vidéos les données 

provenant du bus ou du module EDHin. Le choix d'une de ces deux entrées est effectué 

par le contrôleur du système. Enfin, afin de détecter des erreurs de transmission, le 

module EDH doit être capable de générer des codes de vérification (CRCC). 



3.2.1.2 Implémentation du CRCCs 

L'encodage redondant est une méthode de détection d'erreur qui étend t'information à un 

nombre de bits supérieur à celui de la donnée initiale. En général, plus le nombre de bits 

redondants utilisés est grand, plus les chances de détecter une erreur dans la transmission 

seront grandes. Les normes de télévision numérique prévoient que le codage de cette 

redondance est effectué grâce à un CRC (cyclic redundancy codes). Les CRCC(cyc1ic 

redundancy code checkers) vérifient les différences entre les données transmises et les 

données originales. Lorsqu'on utilise le CRCC afin de vérifier une trame vidéo, cette 

trame est traitée comme un long mot binaire qui est alors divisé par un générateur. Cette 

division produit un "reste" qui est transmis avec la donnée. A la reception, la donnée est 

divisée par le même générateur et le reste est comparé à celui qui a été envoyé. La 

comparaison permet ainsi de détecter une erreur qui se serait éventuellement produite 

durant la transmission. En général les calculs du CRC sont réalisés à l'aide d'une LFSR 

(linear feedback shift register)- Cependant, cette méthode demanderait dans notre cas 

l'utilisation d'une horloge trop rapide. Par conséquent, l'utilisation d'un CRC permettant 

le calcul parallèle a été préconisé. L'algorithme qui permet de synthétiser ce CRCC est 

basé sur la même approche que la LFSR. Le générateur CRC-16 a ainsi été choisi et est 

donné en annexe. 

3.2.1.3 Implémentation du module EDH 

Le module EDH a été réalisé de manière hiérarchique. Il est constitué de cinq sous-mod- 

ules: 



1. crc active picture: permet les caIculs du crc dans la région active picture. 

2. crc fullfield piciure: permet les calcul du crc dans la region fullfield. 

3. edhin: permet la réécriture des données provenant du module EDHin dans les trames 

vidéo. 

4. edhout: génère le paquet ancillaire 

5. control: controleur qui commande les deux modules crc. 

ENTITE DU M O D U W H  OUT 

L'entité correspond à la boite noire du sous-système EDH out. 

Les signaux d'entrées sont les suivants: 

1 . hdtv (pour le signal HDTV) 

2. reset (permettant d'initialiser le module) 

3. start 

4. clk-video (horloge) 

5. newpacker (permettant l'insertion de nouveaux paquets) 

6. ues, ida, idh, eda, edh (flags d' erreurs ) 

7. video (signal exterieur codé sur 10 bits) 

8. video-c(signa1 video provenant du bus) 

9. stand-vidéo (standard vidéo) 

1 0. linenumber 

11. Le signal de sortie est qout qui est codé sur 20 bits . 



Figure 3.1: Architecture de l 'WH 
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La description de chacun des modules a été réalisée de manière comportementde à l'aide 

du langage VHDL. La description VHDL est donnée en annexe. Chacun des modules sera 

considéré comme un composant. 

3.3 Opérateurs de mutation 

Afin de pouvoir réaliser la mutation, nous avons adopté la mutation sélective. Nous 

avons donc défini un ensemble d'opérateurs spécifiques que nous exposerons dans la suite 

de cette section. En effet, le langage VHDL étant différent du Fortran, certaines 



fonctionnalités n'ont plus à être prise en compte. On peut citer par exemple les opérateurs 

agissant sur les tableaux qui sont :AAR, ACR, ASR, CAR, CNR et SAR , les instructions 

do (DER) et goto (GLR), les instructions d'altération de données @SA), l'instruction 

return (RSR), les instructions d'analyse des états (SAN) et enfin les instmctions de 

remplacement des constantes (SRC). La génération des mutants est réalisée par un 

ensemble de programmes de mutation. Ces programmes sont spécifiques au langage 

VHDL et ils permettent de coumr tous les chemins, conditions, valeurs limites et régions 

de perturbation d'un design. Un grand défi a été d'éviter la génération d'un nombre 

important de mutants équivalents, qui augmentent le temps de test et réduisent le score de 

mutation, tout en compliquant la tâche du concepteur. En effet, certains opérateurs utilisés 

au chapitre 2 créent systématiquement des opérateurs équivalents. O n  peut par exemple 

citer l'opérateur ABS (insertion de valeurs absolues) qui remplace les expressions et sous- 

expressions par leur valeurs absolues. Cependant, ces valeurs sont identiques aux valeurs 

initiales dans le cas de vecteurs VHDL non signé (unsigned). Un autre exemple vient de la 

traduction en Fortran de vecteurs binaires fixes. La modélisation de ces vecteurs, 

inexistants en Fortran, produit quelquefois des entiers ou réels correspondant à la taille 

maximale de ce vecteur, augmentant ainsi la limite désirée. Citons par exemple 

l'opérateur UOI, qui augmente la valeur supérieure des valeurs entières. Quand 

l'intervalle est changé, il est possible qu'aucun vecteur de validation ne détecte le mutant 

correspondant, car la limite peut être trop haute. 



Les opérateurs VHDL que nous proposons furent définis lors de la conception du 

processeur ancillaire(cf 3.2.1.1). Ces opérateurs représentent les erreurs les plus 

communes pouvant être faites par les concepteurs dans une spécification VHDL. 

3.3.0.1 Programmes de mutation 

Un résumé des opérateurs est donné au tableau 3.1. Une description de ces opérateurs 

est effectuée ci-dessous, 
Tableau 3.1 : Opérateurs de mutation 

1 OPERATEUR 1 FONCTION 1 
CNR: comparable array 
name replacement 

CSR: constant for scolar 
variable replacement 

G RP: generic replacement 

Chaque tableau est remplacé par un tableau de même type et de 
même dimension présent dans la description VHDL. 1 
Chaque variable et signal présent dans le programme VHDL est 1 
remplacé par une constante du même type. 1 
Simule les mauvaises connexions des modèles- Cet opérateur est 1 

SUR: signed unsigned 

assez intéressant pour les designs de type structurels. 

Teste les vecteurs binaires signés et non-signés. 
replacement 

VSAR: variable and signal 
rep hcement 

CLR: constant limit I Teste les limites supérieurs et inférieures des différents registres. Le 
replacement même processus est effectué pour les variables. La région de 1 

Teste les mauvaises assignations des variables et signaux. Modélise 
aussi des erreurs de synchronisation et le mauvais séquencement des 

SVIR: signal and variable 
initialisation 

SSR: state seguencement t 

ac lions 

modélise les mauvaises initialisations des registres et des variables 

replacement 

COR: conditional operator 
replacement 

LOR: loop operator 
replacement 

LCR: logical rephcemenr 

perturbation est elle aussi simulée. 1 
Teste la séquence des états dans une machine à états. 1 

Substitution de toutes les conditions possibles. 

Change la longeur des boucles I 
Chaque opérateur logique est remplacé par les autres. 

I 
LOR: loup operator 
replacemenr 

Change la longeur des boucles 1 

LER: level replacement 
, 

Teste le niveau & sensibilité des circuits (haut et bas) 



CLR: une des méthodes les plus couramment utilisées lors de la validation d'un 

circuit VLSI est le test des valeurs limites. En effet on définit des vecteurs qui testent les 

bornes supérieures et inférieures et enfin une valeur intermédiaire pour chaque variable. 

Afin de reproduire cette méthodologie, on simule le domaine de perturbation de test. Ce 

programme teste aussi les conditions aux limites des différents registres présents dans le 

design. Afin de réaliser cette modélisation, chacune des constantes déterminant les limites 

est incrémentée puis décrémentée. Chaque modification correspond à un programme 

unique. 

CNR: afin de modéliser l'écriture de données incorrectes dans les registres, cet 

opérateur assigne le contenu d'un registre aux autres registres de même type présent dans 

la spécification. Chaque modification est unique et correspond à un programme. La 

procédure est la suivante: chaque registre est remplacé par un scalaire du même type 

présent dans la spécification. Chaque registre est remplacé par une constante du même 

type présente dans la spécification. Afin de ne  pas créer de mutant équivalent, on ne 

replace jamais un registre par lui même. 

CSR: chaque variable ou signal est remplacée par une constante du même type. 

GRP: Il a été introduit afin de tester les connexions erronnées. Les valeurs des 

génériques sont incrémentées. II est intéressant aussi bien pour les designs de type 

structurel comme il est montré à la figure 3.4, que pour les descriptions fonctionnelles. 



Module 1 Module 2 

non connectée 

Figure 3.2: Design de type structurel 

SUR: teste les valeurs signées et nonsignées. Cet opérateur change la bibliothèque 

signé à non signé et vice versa. L'utilité de cet opérateur est apparue lors de l'utilisation 

d'un sous ensemble vectoriel par rapport à un vecteur plus grand. En effet, dans l a  

validation du processeur ancillaire, nous avons utilisé des nombres signés. A titre 

d'exemple, le port d'entrée contenait un vecteur de N bitstdata). Le N""' bit avait l a  

valeur 0. Cependant, il n'était pas prévu qu'un sous ensemble de ce vecteur data soit lui 

aussi signé. Pour mieux comprendre l'impact d'une telle erreur, considérons le code 

suivant: 

use iEEE.std-logic-signed.all; 

avec: 

data :in std-ïogic-vector(d7 downto O);-- bus de donnees 

cru-tarnp: =con vJntegerfdata(3 down to O)); 

La fonction conv-integer permet de transformer en entier un vecteur binaire. Le résultat 

de simulation donné par synopsys[20] est donné à la figure 3.5 
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Figure 3.3: Simulation du fichier original à l'aide de Synopsys. 

La valeur desirée était 13 mais en raison du fait que le sous ensemble soit signé on a 

obtenu la valeur -3. Suite à une mutation: 

-use EEE-std-logic-signed-all; 

use IEEE.std-logic-unsigned-an; --mutation 

Figure 3.4: Résultat de SUR. 

Cette mutation a permis d'identifier I'arnbiguité sur le signe d'un sous ensemble d'un vec- 

teur et a permis d'apporter la correction: cur-tamp:=abs(conv-integer(data(3 downto 

0))); 

VSAR: Cet opérateur permet de mettre en évidence une erreur dans l'assignation des 

variables et des signaux. Cet opérateur complémente les valeurs binaires des signaux. Il a 

été introduit afin de  modéliser les mauvaises initialisations. Cela peut se traduire par une 

différence de séquencement dans la machine à état ou par une erreur de synchronisation 

dans le design. En effet, supposons qu'une séquence d'actions attend l'arrivée d'un signai 

de synchronisation. Si ce signal arrive trop tôt ou trop tard, on aura un mauvais fonction- 

nement de la machine. Le programme de mutation a été réalisé en tenant compte des par- 

ticularités suivantes: 



cas des sianaux ou variables binaires : 

On remplace un seul bit par le complément. 

ex: a<='O' ; devient a<=' 1 '; 

ex: cet opérateur a été utilisé sur le module EDH out du processeur ancillaire. Le pro- 

gramme original était: 

case pan'te is 

when I=> P:='O '; 
when 3 => P:='Ot; 
when 5 =>P:='Ot; 
when others =>P:='I '; 

end case; 

où le signal parité, suivant sa valeur, affectait une valeur binaire à une variable P. Les 

resultats qact (qactû, qactl, qact2) et qouqà la sortie du module EDH sont donnés à la 

figure 3.7.: 

q a c t O ( l 9 0 )  

gact l (1  n o )  

q a c t 2 ( 1 9 0 )  

q o u t f ( I 9 : O )  

Figure 3.5: Sirnuhtion obtenue sans VSAR 

Une mutation a été faite sur le programme initial: 

case parüe is 
when I=> P:='l '; --mutation 
when 3 => P:='Of; 
when 5 =>P:='O'; 
when others =>P:='l '; 

end case; 



La simulation de ce mutant a donné: 

Figure 3.6: mutation avec VSAR 

q a c t o ( l 9 : O )  

qecn(i9:o) 

b qact2(19:0)  

qoutl( l9:O) 

Bien que les valeurs dans les divers registres soient différentes, il apparaît clair que la 
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valeur à la sortie est la même. Une étude plus poussée a montré que l'erreur produite est 

due à un module de sortie (multiplexeur) qui choisit une entrée indépendante des "qact". 

Ce qui correspond à l'hypothèse de propagation implicite du test par mutation qui n'est 

pas toujours vérifiée. 

Dans le cas de valeurs entières 

On incrémente puis décrémente la valeur de 1. 

SAR: modélise l'assignation à des registres incorrects. Chacun des signaux est rem- 

placé par tous les autres signaux de même type dans le programme. Cela se traduit, du 

point de vue fonctionnel, à affecter le contenu de registres à d'autres. 

ex: on veut a<= data (4 downto O) et on écrit a<= data2(4 downto O). 

cet opérateur a été testé sur le programme edh: 

for i in 17 do wnto 12 loop 
qac t 0(i) <=r3(i- 12); 

end loop; 
qactO(I8) <= P; 
qac f O(l9) <= not(P); 
qactO(l1 downto 0)<="000000000000'~ 



Un exemple de mutation a consisté à changer le vecteur qactO en qact 1: 

for i in 17 downto 12 Ioop 

qactl (t')<=r3(i-12); 
end loop; 

qactZ(l8) <= P; 
qactl(l9) <= not(P); 
qactl(l1 downto 0)<="000000000000"; 

Le résultat a montré un comportement différent. Cependant, le résultat aurait été autre si 

les données dans r3 avaient été toutes égales à O ou à 1. Le mutant aurait alors été un 

mutant équivalent. On peut aussi provoquer une mauvaise synchronisation dans le cas ou 

l'erreur se produit sur un signal de synchronisation. 

SVIR: Cet opérateur modélise une mauvaise initialisation des registres ou variables 

Dans le cas binaire 

On complémente toutes les valeurs du  vecteur binaire. 

Dans le cas de valeurs entières 

On incrémente puis décrémente de 1 afin de créer une légère perturbation. 

SSR: Le but de ce mutant est d e  changer l'ordre de séquencement dans une machine à 

état. On remplace chacun des états présents par tous les autres états. 



on ne rentre 
plus dans 

Figure 3.7: mutation avec SSR 

Cependant, un problème d'espace disque peut se poser si le nombre d'états dans le pro- 

gramme initial est important et si le nombre de lignes de code est lui aussi important. 

ASR: cet opérateur identifie les effets d'un changement de séquencement des actions 

dans un état et donc la dépendance des données.Cet opérateur est utilisé dans les descripti- 

ions fonctionnelles de type comportementale où les actions dans chaque état de la 

machine à états se réalisent de manière séquentielle. Pour ce faire, l'ordre des actions est 

changé dans l'état. 

LCR: Chaque opérateur logique and, or, equ, not equ, xor, xnor, nand est remplacé 

par chacun des autres opérateurs. 

COR: Change les conditions des ifet case par chacune des autres conditions. 

Dans le cas d'un if 

if cond 1 then action 1 
else devient 
action 2 

if cond 1 then action 2 
el se 
action 1 



si la condition est une valeur binaire on la remplace par son complément. Dans le cas de 

valeures non binaires, on remplace chacun des opérateurs <, >, =, >=, <= par chacun des 

autres. 

Dans le cas d'un case 

On remplace les valeurs des when par les autres. Cependant. afin d'éviter de donner 2 

choix à l'outil de simulation on intervertit les actions. On échange donc le when ..- de 

l'action 2 avec le when ... de l'action 1, ensuite le when ... de l'action 3 avec le when ... de 

l'action 1, le when ... de l'action 3 avec le when ... de l'action 2 et ainsi de suite. Cepend- 

ant, aucun échange n'est effectué avec le when others, car le langage VHDL spécifie que 

cette condion doit être la dernière. 

ex: 

when "00" => action O when "00" => action 1 

when "0 1" => action 1 devient when "O 1 " => action O 

when " 10" => action 2 when " 10" => action 2 

when "11" => action 3 when " 1 1" => action 3 

3.4 Implémentation des programmes de mutation 

Dans cette section, nous présentons l'implémentation des programmes typiques de 

mutation. Ici' on appèle opérateur l'objet dans la spécification VHDL sur lequel est mené 

le processus de mutation. Afin de pouvoir effectuer la mutation, chaque état dans lequel 

peut se trouver l'opérateur est encodé. Dans le but de faciliter l'encodage, un diagramme 

représentant les états de l'opérateur est déterminé. Une matrice représentant les états et les 



transitions de ce diagramme est alors créée. A titre d'exemple la figure 3.10 montre les 

transistions d'états pour l'opérateur AOR. qui remplace chacun des opérateurs +, -, * et \ 

par chacun des autres. La matrice décrivant le diagramme est aussi donnée dans le tableau 

3.2. Donnons à titre d'exemple une mutation survenant sur l'opérateur "-". L'état de 

départ étant I'état O du diagramme d'état, quand on rencontre l'opérateur "-" dans la 

spécification VHDL, on se déplace de I'état O à I'état 1. Ensuite, si le caractère suivant est 

différent de "-" alors on retourne à I'état O où I'on procède à la mutation. Dans le cas 

contraire, on est en présence d'un commentaire. auquel cas on ne procède à aucune 

mutation. Ce cas est codé au moyen de la matrice et est représenté à la première ligne. Si 

I'on se trouve à l'état O et la transition est O (représenté entre parenthèse et qui correspond 

à l'opérateur "-") on passe à l'état 1. Si I'on se trouve à l'état 1 et la transition est encore O, 

on passe à I'état 2 où aucune mutation ne doit être efectuée. Dans le cas contraire le fait de 

passer de l'état 1 à l'état O ( quelque soit le caractère et autre que "-") permet de réaliser la 

mutation. 



Figure 3.8: Diagramme d'état pour la mutation AOR 



Tableau 3.2 : Codage des états pour h mutation AOR 



états 
tram 
(O) op="-" 

Tous tes programmes de  mutation ont été décrits en utilisant cette méthodologie. 

Dépendant de l'opérateur rencontré dans la description comportementale, le programme 

de  mutation approprié sera invoqué. Dans la suite. nous expliquerons sous forme de 

pseudo code la manière par laquelle chacun des types de mutation est effectuée. 

3.4.1 Algorithmes de mutation 

Cette section présente en détail les implantations des différents programmes de muta- 

tion. Ces implantations ont 6té réalisées en langage C et sont présentés en annexe. La 

première étape consiste à encoder chacun des états dans lequel peut se trouver l'opérateur 

afin de pouvoir entamer le processus de mutation au bon endroit. Cette matrice permet de 

passer de l'ancien état à l'état courant. En effet, afin que la mutation puisse s'effectuer, il 

faut absolument que l'état précédent et l'état courant soient représentés dans l'un des états 



du diagramme d'état et en accord avec le séquencement établi par ce diagramme. Prenons 

l'exemple du programme de mutation AOR de la figure 3.8. La mutation ne s'effectuera 

dans le cas de l'opérateur "-" que si l'état courant est O et l'ancien état est 1. La  seconde 

étape consiste à ouvrir le fichier sous test et à effectuer la mutation suivant l'opérateur 

rencontré. Le détail de ces implantations est donné ci-dessous. 

CLR: Le pseudo-code est donné à la figure 3.9. La première étape consiste à encoder 

les états. Ensuite, si l'opérateur rencontré dans le fichier original est un entier, on crée le 

mutant en incrémentant la valeur limite de 1 et en  recopiant le reste du fichier. Aucune 

autre modification n'est apportée pour ce mutant. En effet chaque mutant correspond à 

une panne de conception unique. Un autre mutant. c'est-à-dire une autre spécification 

VHDL, est créé en décrémentant la valeur limite inférieure de 1. Dans le cas de "range", 

un mutant supplémentaire est créé en décrementant(si différent de O) la limite inférieure. 



- - C o d e r  les  t t a t s  
i n t  d i a g r - t t r i s [ T R A  N S I T I O  N ] [S tace]=  ( 

/ * n e x t - s t a t e  * /  
/ *  t r a n s i t i o n s *  1  .0.0.0.0.0.0.0.0.9.1 1  .I 1  .O. 

0.0.0.0.0.0.0.0,0.9.1 1  .I 1  .O, // m a r r i c e  d e  c o d a g e  d e s  i t a l s  
0.0.0.0.0.0.0.0.9.9.1 1.1 1  .o. 

0.0.0.0.0.0.0.0.0.0 .I 1.1 2 . 0 )  ; 
i f ( (  M O = fopen ( ' bench .vhd1 '  . " r R ) ) ! = N  U L L )  / / o u v e r r u r c  d u  f i c h i e r  s o u s  r c s t  
ncxc-s ta te= d i a g r - e t a t [ t r a n s i t i o  n ] [ s ta te ] ;  
s w  i t c h  ( s t a t c )  
case o p c r a t o r  s ta te :  
W h i l e ( ! = E O  F ( b e n c h ) )  / / o n  p a r c o u r t  l e  f i c h i e r  d a n s  s u  g l o b a l i r é  

( 
I f  ( o p = = ( i n t e g e r l l  b o o l c a n ) )  / / s e l o n  q u e  l a  v a r i a b l e  à m u r c r  e s r  u n  e n t i e r  

O p e n  the  m u t a n t  i // o u v e r t u r e  d u  m u r a n r  
A d d  + 1  f o r  t he  m u t a n t  i / / l a  v a r i a b I e  r s r  i n c r é m e n t é e  
C l o se  t he  m  u t a n t  i / / o n  f e r m  c  l c  F i c h i e r  m u r a n r  
S u b  - 1  f o r  t he  m u t a n t  i + +  // u n  a u t r e  m  u r a n r  e s r  c r i é  e n  d i c r i m e n r a n r  l a  

r ra  r i a  b l e  
C l o s e  t h e  m u t a n t  i + +  

E I s e ( o p = = ' r a n g e ' )  / / s i  l a  v a r i a b l e  à m u r e r  e s t  u n  i n r e r v a l l c  
I n c r c a s e  the  l i m  i t  // o n  a u g m  e n t e  I c s  l i m  i r e s  i n / é r i c u r c s  e t  s u p é r i e u r e s  
P u t  i n  n e x t  m u i a n t  i + +  // m u r a n t s  c o r r e s p o n d a n r  ù c e s  nouvelles l i m  i r e s  
C l o s e  t h e  n c x t  m u t a n t  i++ 
D c c r c a s e  t h e  l i r n  i t  / / o n  d i m i n u e  l e s  l i r n  i r e s  i n f i r i e u r c s  
P u t  i n  n e x t  m u t a n t  i++ 
C l o s e  t h e  n e x t  m u t a n t  i + +  } 

e r  s u p i r i c u r e s  

Figure 39: Pseudo code pour la mutation CLR 

CNR: 

Le pseudo-code est donné à la figure 3.10. La première étape consiste à encoder les 

états. Ensuite, si l'opérateur rencontré dans le fichier original est un tableau on ajoute ce 

tableau à ceux du même type. Ensuite on créé les mutants en remplaçant le tableau d'un 

type par tous les autres du même type. 



C N R :  e a c h  a r r a y  i s  r c p l a c e d  b y  a11 
p r o g r a m .  

C o d e r  l e s  t t a t s  / / d i f i n i t i o n  d e  l a  
O u v r i r  la  s p e c  V H D L 
W h i I e ( b e n c h ! = E O F )  / / p a r c o u r i r  la 
{ 
S i  u n  t a b l e a u  e x i s t e  

( 
P o u r  t o u t  le f i c h i e r  

A j o u t e r  le t a b l e a u  a c e u x  d u  m ê m e  

s a m e  t y p e  a n d  d i m e n s i o n  a r r a y  in t h e  v h d l  

m a t r i c e  d ' i r a  rs 

s p é c i f i c a t i o n  V H  D L 

t y p e  e x i s t a n t ;  
1 
I f ( d i m  e n s i o n  ( a r r a y ( i ) ) = d i m e n s i o n ( a r r a y ( i +  1) ) )  // si  2 r e g i s t r e s  d e  m Z m  t y p e  

t 
R e m  p l a c e r  a r r a y ( i )  p a r  a r r a y ( i +  1 ): / / r e m p l a c e r  u n  r e g i s t r e  p a r  u n  

I +  + ; / / a u t r e  d u  m i m e  t y p e  
1 
1 
1 

Figure 3.10: Pseudo code pour b mutation CNR 

CSR: 

Le pseudo-code est donné à la figure 3.11. La première étape consiste à encoder les 

états. Ensuite, si l'opérateur rencontré dans le fichier original est une variable, on l'ajoute 

à la liste des variables du même type. Le même processus est réalisé pour toutes les con- 

stantes présentes dans la spécification VHDL. Enfin, pour toutes les constantes de type 

identique à ceux des variables, on crée des mutants en remplaçant les variables par des 

constantes. Chaque remplacement cré un mutant unique. 



Coder les états de I'opérateur 
Pour fout le Fichier 

IN variable) 
Mettre dans buffer-variable 
End ifi 
I~constunt} 
Mettre dans const-buPr; 
End <%: 
Pour toutes les constant (i) 
iff type{buffer-variaMe(i}) =type(bufler-const(i+I))) 
Replacer buffet-variabldi) by buffet-const(i+l); 
End ifi 
1 

Figure 3.11: Pseudo code pour h mutation CSR 

GRP 

Chaque mutant est créé en  incrémentant les valeurs génériques de un. Le processus 

est réitéré mais en décrémentant cette fois la valeur de un. 

SUR 

Le pseudocode est donné à la figure 3.12. La première étape consiste là aussi à 

encoder les états. Ensuite, un mutant est créé suivant la librairie signed ou unsigned. Si la 

librairie est signed (ou unsigned) le mutant est créé en remplacant cette librairie par 

unsigned (signed). Chaque remplacement crée un mutant unique. 



If (library signed) 
Modifier cette librairie par unsigned 
Efse 

Modifier par signed 
End # 

Figure 3.12: Pseudo code poor la mutation S U R  

SSR: 

Le pseudo-code est donné à la figure 3.13. Après que le codage des états ait été 

effectué, chaque mutant est créé en effectuant une modification unique dans le sequence- 

ment de la machine à état. La modification consiste à remplacer un des états de la machine 

à états par un autre. 

C o d e r  l e r  érars d e  f ' o p é r a e u r  

rn e t t r e  les  é r a t s  d a n s  t a m p - s r a t e :  
w h i l e ( t a m p - s t a t e - I ! =  n u I I )  
( 

w h i l e ( o r i g i n a i (  nexr -srare ) !=  n c w s t a r e )  
r e p l a c e r  n e r f - s t o r e  p a r  n e w  s i a r e ;  

end if; 

Figure 3.13: Pseudo code pour la mutation SSR 

LCR: 

Le pseudo-code est donné à la figure 3.14. Après que le codage des états ait été effec- 

tué chaque mutant est créé en remplacant les opérateurs logiques présents dans le pro- 

gramme VHDL par tous les autres opérateurs logiques xor, and, or, nand et xnor. Chaque 



remplacement constitue un mutant unique. Cependant afin de ne pas produire de mutants 

équivalent on ne remplace jamais l'opérateur par lui même. 

I f ( o p =  = a n d )  // si I 'opkrateur e s t  u n  a n d  

f o p e n f m u r a n t  i); // crkat ion d'un m u t a n t  
r e p l a c e r  o p  p a r  x o r ;  
f e r m e r  m u t a n t  i; 
r e p l a c e r  o p  p a r  o r  
f e r m e r  m u t a n t  i + + ;  
r e p l a c e r  o p  p a r  xnor  
f e r m e r  m u t a n t  i + + ;  
r e p l a c e r  o p  p a r  n a n d ;  
f e r m e r  m u t a n t  i +  +; 
1 
e l s i f ( o p  = = x n o r )  // si l ' opéra teur  e s t  u n  x n o r  
..- . 
E l s i f ( o p =  = o r )  // si l ' opéra teur  e s t  u n  o r  
-. . 
e l s e f n a n d )  // si I 'opkrateur e s t  u n  nand  
. - - 
e n d ;  

Figure 3.14: Pseudo code pour ia mutation LCR 

VSAR: 

Le pseudo-code est donné à la figure 3.15. Après que le codage des états ait été effec- 

tué, chaque mutant est créé en remplaçant les opérateurs binaires présents dans le pro- 

gramme VHDL par leur complément. Chaque remplacement constitue un mutant unique. 



C o d e r  les  états  d e s  opérateurs  
Iftop = = binary)  // si c ' e s t  un vec t eur  
T r o u v e r  la dimension 
F o r  al1 dimension 
C r é e r  mutant 
Complernenrer un b i t  

Me t r re  le c o m p l e m e n i  d a n s  le  murant 
End fo r  

E lse 

Decrease  the operator  fo r  mutan t  i; 
Increase fo r  mutant i+ 1 ;  
1 
end  if; 

Figure 3.15: Pseudo code pour la muîation VSAR 

35 Implémentation C 

Cette mise en oeuvre traduit en langage C les différents programmes de mutation 

donnés dans la section 3.4.1. L'ensemble des programmes est donné en appendice. Tout 

d'abord, le fichier d'entrée qui est le programme sous test ou plus particulièrement le 

programme VHDL est ouvert en écriture à partir de l'instruction MO = fopen('lfichier- 

sous-test.vhdl", "r"). Ensuite une variable nommée C est définie afin de positionner un 

pointeur sur les différents caractères constituants le programme W L .  Suivant Les 

caractères rencontrés, le pointeur C positionnera les transitions de la matrice de codage à 

des valeurs définies par cette dernière. Prenons par exemple le cas de l'opérateur LCR, qui 

selon que le caractère soit a, n, d, O, r et x mettra la transition respectivement aux valeurs 

0, 1,2,3,4 et 5. Cependant, puisque le langage VHDL ne fait aucune différence entre les 

majuscules et les minuscules, la valeur de la transition sera la même pour une minuscule 

et une majuscule, Pour ce dernier cas les instructions seront de la forme: 



switch(C) 
{ 

case 'A': 
case 'a': transition = 0; 

break; 
1 

Le programme VHDL est parcouru dans sa globalité par l'instruction while 

((C=fgetc(MO))!=EOF) qui permet au pointeur C de s'incrémenter tant que la fin du 

fichier n'a pas été atteinte. Ensuite le couple d'instructions 

ancien-etat=etat-courant; 
etat-courant = diagr-etat-lcr[tmnsition][etattcourant]; 
switch(etatatcourant) 

case ...: 
switch(ancien-etat) 

case ....: 

permet dans le cas où on se trouve dans un des diagrammes d'états définis comme dans la 

section 3.4 d'éffectuer la mutation. Chacun des mutants qui sont en fait d'autres 

programmes VHDL sont alors construit au moyen des opérations suivantes: 

MI = "w "); 
compteur-lcr + +; 
sprin fllcr-chaine 1, "Mut-lcr%d, compteur_lcr); 

Le compteur permet de calculer le nombre de mutants créés. Puisque chaque mutant 

correspond à une unique faute, il faut qu'un programme VHDL soit créé à chaque 

présence d'un état suceptible d'étre muté dans la version originale. Cela est réalisé de la 

manière suivante. On commence par pointer l'endroit dans le programme où la mutation 

est réalisée au moyen de l'instruction pos =fielZ(MO); 

On recopie dans un fichier tampon toute la fin du programme original VHDL et ceci 

depuis la position du pointeur donnée par la variable pos. Ceci est réalisé par les 

instructions suivantes 



while ( (c=fgetc (MO) ) !=EOF) 
( 

f p u t c ( c , M Z )  ; 
if (c=='\r8) 
fputc('\nD.Ml); 

1 
f cl ose (Ml ) ; 

La même opération est effectuée pour la copie du début du fichier au moyen des 

instructions données à la page suivante 

fseek (MO, 0.0) ; 
whiïe ( ( (c=fgetc (MO) ) !=EOF) && (ftell (MO) c=pos) l 

( 
for (i=O; i c = 4 ;  i ++) 

( 
fputc (c, tamp-chaineLi] ) ; 

1 
1 

L'instruction fseek permet de replacer le pointeur au début du fichier original VHDL, alors 

que les autres permettent d'écrire le début d u  code VHDL dans les programmes mutants 

identifiés par tamp-chaine. On procède ensuite à la mutation proprement dite. Citons par 

exemple dans le cas de l'opérateur SWR où le remplacement de == par >. <, >= et /= 

s'effectue au moyen des instructions 

fputs ( " c= " , tamp-chaine [O] ) ; 
£pute( '>', tamp_chaine/l]); 
fputs ( ">=", tamp-chaine [ S ]  ) ; 
fputs ("/=", tamp_chaine[3]) ; 
fputc ( '-= ', tamp_chaine/4]) ; 

Finalement la copie de la fin du fichier qui se  trouve dans le tampon mentionné 

précedemment est ajoutée à la suite de chacun des mutants au moyen des instructions 



M1 = fopen ( 'mut- tampon-cor ', "r ') ; 
w h i l e  ( (c=fgetc (Ml) ) !=EOF) 

{ 
for(i=O;i<=4;i++) 
fputc (c, t-chaine [i 1 )  ; 

1 
/ / f in  de l a  reecri ture 

MI correspond au pointeur du tampon. Finalement il ne faut pas oublier qu'une mutation 

peut se réaliser à plusieurs endroits dans le programme sous test et que chacune de ces 

mutations doit résulter en un programme unique. Aussi, cela est réalisé en  remettant le 

pointeur Cà  la position courante (fseek(M0, pas ,  0)). Le fait que le pointeur soit remis à la 

position précédant la position dans chacun des ancien-etat permet, suite à la découverte 

d'un nouvel état mutant, d'ouvrir un nouveau mutant et de procéder à une nouvelle 

mutation. Chacun des programmes de mutation a été réalisé de la manière expliquée 

précedemment. La production de mutants ne demande pas beaucoup de temps. Le temps 

de calcul dépend de la taille du programme VHDL à tester et surtout du nombre de 

mutations ou de variables sur lesquels doivent s'effectuer la mutation. Une grosse 

contrainte vient aussi du fait que la mutation peut parfois fournir un nombre important de 

mutants ce qui implique un espace disque très important. Ceci peut devenir probématique 

si une description VHDL initiale contient 50000 lignes de code, comme c'est le cas pour 

la puce multiprocesseurs PULSE ou le processeur à données ancillaires. 



3.6 Algorithme final de mutation 

L'algorithme de la figure 3.16 présente en détail le processus de génération des 

mutants, ainsi que la méthodologie adoptée pour la validation de circuits numériques par 

mutation. 

1 oui 

Figure 3.16: Test par mutation et génération de mutants 



Tout d'abord. une définition des objectifs est effectuée. Cette définition est importante, 

puisqu'elle détermine le nombre de fois ou le processus de mutation est réitéré afin de 

faire échouer les mutants restants. La première étape consiste à simuler la version 

originale du programme VHDL avec les vecteurs fonctionnels fournis par le concepteur et 

à enregistrer la sortie dans une base de données. Cette simulation fonctionnelle est 

réalisée à l'aide du simulateur VSS de Synopsys[20]. La seconde étape consiste à amorcer 

le processsus de mutation. Un inventaire des différents opérateurs se trouvant dans la 

spécification du programme permet de choisir parmi les différents programmes de 

mutation. Après qu'un programme ait été choisi. le prcxessus de mutation est lancé. Le 

pointeur de position est mis au début du programme VHDL. Dès qu'un opérateur est 

trouvé, la position du pointeur est enregistrée. Le Mutant spécique à cet opérateur est alors 

créé en transformant l'opérateur et en recopiant de manière identique le reste du 

programme. Afin d'être exempt de fautes syntaxiques, le mutant est vérifié à l'aide de 

Synopsis. Le mutant est à son tour exécuté avec le même jeu de vecteur de validation qu'à 

la première étape. La sortie du mutant est enregistrée dans une base de donnée des sorties 

mutantes. Une comparaison des bases de données de sorties mutantes et du fichier original 

est entreprise. Si la comparaison révèle une différence de comportement entre les deux 

bases, le mutant est considéré tué et est retiré du processus de validation. il faut remarquer 

qu'il est aussi judicieux d'arrèter la simulation dès qu'une différence de comportement est 

enregistrée. Cependant cet objectif nécessiterait de concevoir notre simulateur, ce qui ne 

s'avérait pas nécessaire pour les petits circuits d'essai testés, Le pointeur de position est 



alors incrémenté jusqu'à ce qu'un autre opérateur de mutation soit trouvé. Lorsqu'un 

nouvel opérateur est trouvé, le processus de génération de mutants est réinitialisé. Ce 

nouvel opérateur est alors muté suivant les programmes de mutation donnés dans la 

section 3.4. Le nouveau mutant est alors simulé avec le même jeu de vecteurs de 

validation et une comparaison des bases de données de sortie du nouveau fichier mutant 

et du fichier original est réaiisée. Si la comparaison montre une différence de 

comportement entre ces différentes bases de données de sorties, le mutant et ses résultats 

de simulation sont encore effacés du processus de validation. Dans le cas contraire, le jeu 

de vecteurs de validation doit être augmenté. Après enrichissement du jeu de vecteurs, le 

fichier original est simulé à travers les nouveaux vecteurs et le résultat est gardé dans une 

nouvelle base de données de sortie. Les mutants non tués sont eux aussi exécutés à travers 

le nouveau jeu de vecteurs. Le processus de validation est alors réitéré jusqu'à ce que le 

but fixé au début du processus soit atteint ou qu'il n'y ait aucun mutant vivant. II est à 

noter que la génération des mutants est réalisée tant que toutes la description VHDL n'a 

pas été couverte. Le score de mutation est alors calculé à partir de la formule donnée au 

paragraphe 1.2.2.4. 

3.7 Résultats 

Les améliorations apportés par ce nouvel algorithme en comparaison de ceux 

rapportés au chapitre 2 sont significatives. Une étude menée sur quatre opérateurs a 

permis de montrer que certains aspects négatifs de la méthode originale ont pu être 
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résolus. L'étude a portée sur les opérateurs UOI. COR, LCR et ABS définis dans Mothra. 

Les résultats de cette étude sont présentés aux tableaux 3.3. 

L C R  

N / A :  nor  a p p l i c a b l e  

A B S  

N / A :  n u i  a p p l i c a b l e  

Tableau 3 3  : Comparaison des algorithmes de validation par mutation 

Le nombre de mutants M U N ,  le nombre de vecteurs de validation ainsi que le score de 

mutation produit par Mothra, MS, sont rapportés dans ces tableaux. Des résultats 



similaires obtenus avec l'algorithme présenté à la figure 3.18 sont rapportés sous les 

acronymes suivant Mut2Nb, VectîNb et MS2. Un premier résultat très important est une 

réduction significative du nombre de mutants. Cette réduction se traduit par une 

diminution de la tâche du concepteur dans le cas de mutants équivalents. Cette réduction 

est due à la fois au fait que la mutation s'effectue directement sur le programme écrit en 

VHDL et au fait qu'aucune mutation n'est entreprise sur ies valeurs de l'entité. Afin de 

supporter ces observations, prenons l'exemple du multiplexeur de l'exemple 3.1 1 tiré du 

processeur ancillaire. 

exemple 3 -6.1 

case sel1 is 
when 'O4=> 

qout <= inl;  
when others => 

qout <= in2; 
end case; 

case sell is 
when ' I '=> --mutation 

qout <= inl; 
when others => 

qout <= in2; 
end case; 

Dans cet exemple un seul mutant a été généré avec l'algorithme présenté dans ce chapitre, 

comparativement à trois avec Mothra pour l'opérateur UOI. Cette différence est due au 

fait que la seule mutation effectuée est réalisée sur la valeur binaire de sell. Aucune 

mutation n'est réalisée sur les valeurs des signaux présents dans l'entité. En effet, le but de 

la méthode est de valider un design aussi, nous ne touchons aucunement au contenu des 

signaux présent dans l'entité. Il ne faut pas oublier que ce rôle est donné aux vecteurs de 

validation. La complexité de Mothra est donnée par: 

Mutnb = nb 

est réduite à 



Mutnb2 = nb - E + (C- 1) 

où 

nb est le nombre de signaux ou variables présents dans la spécification VHDL. 

E représente tous les signaux ou variables présents dans l'entité. 

C représente le nombre de conditions (case or if). 

Remarquons que C est en général plus petit que nb car le nombre de signaux augmente 

avec le nombre de conditions. Comme il a été mentionné au début de ce chapitre, la 

réduction du nombre de mutants est aussi due au fait qu'on ne fait plus de traduction de 

VHDL e n  FORTRAN . Dans le but de montrer l'impact de la traduction, citons par 

exemple le module de sortie de I'EDH qui est composé de plusieurs vecteurs binaires. 

Chacun des vecteurs doit être décomposé en booléen. Prenons le cas de l'exemple donné 

ci dessous. 

exemple 3.4.2 

case stand-video is 
rvhen "000" 

le vecteur est remplacé par 

((stdl .  eq. O)and(std2. eq. 0)and. ( s t d .  eq. O)). 

Sachant que dans le cas de l'opérateur COR, Mothra remplace chacune des occurences 

LT, LE. GT, GE, EQ, NE par toutes les autres, le nombre de mutants se trouve 

considérablement augmenté. Les mutants survivants après tout le processus de validation 

sont en grande partie dûs à une non propagation de la faute à l'une des sorties primaires. 

Cela résulte en un regroupement de fonctionnalitées provenant d'un module qui semble 

indépendant. Une grande difficulté qui a surgit a été le test du niveau de validité d'un 



signal. En effet ce test produit souvent un mutant équivalent, car la fonctionnalité, si I'on 

fait abstraction du moment de validité, est souvent la même. Le gain amené dans la 

méthode d'enrichissement des vecteurs de validation est très important, car elle permet 

d'identifier des parties de design incomplètement testées plutôt que d'avoir recours à un 

générateur aléatoire de vecteurs comme il est fait dans Mothra. Le recours à ce générateur 

aiéatoire ne nous permet pas de savoir ce que I'on a testé. 



CONCLUSION 

Dans ce mémoire, nous avons introduit le concept du test par vérification formelle ainsi 

que les méthodes traditionnelles de vérification par simulation. Nous avons montré les 

difficultés rencontrées lors de l'utilisation d e  ces deux méthodes. Bien que 

conceptuellement différentes. ces méthodes ont pour but commun de  prouver qu'un 

circuit donné respecte bien les spécifications du concepteur. Nous avons montré les 

limitations des méthodes de simulations e t  des méthodes formelles. 

Le premier chapitre débutait par une présentation des méthodes formelles ainsi que des 

outils utilisés afin d e  prouver l'exactitude d'un circuit. Ce chapitre montrait à la fois 

I'utilité de  ces méthodes e t  leurs limitations. Ce chapitre s'est poursuivi par une 

présentation du test logiciel et plus particulièrement du test par mutation. Les principes du 

test par mutation, la génération des mutants, ainsi que la classification de ces mutants ont 

été exposés afin d e  permettre à l'usager de  comprendre la méthode de  validation par 

mutation. Finalement, une description des différents types de mutation a permis de  

motiver le choix de  l a  méthode de  mutation sélective. 

Le deuxième chapitre a présenté une méthodologie de validation de circuits numériques 

utilisant le principe du test par mutation. Ce chapitre a commencé par la définition du 

système de mutation Mothra ainsi que la chaîne de  validation. Nous avons fait ressortir 

des similitudes importantes entre le test par mutation et le test matériel. En effet, il est 

primordial qu'une justification suivie d'une propagation soit réalisée afin de détecter une 



erreur de conception. Le test par mutation a tendance à produire un nombre important de 

mutants aussi, l'utilisation de la mutation sélective a permi de réduire ce nombre de 

mutant tout en gardant un score de mutation important. Il est également intéressant de 

constater que les vecteurs produits par le système ont pu être utilisés afin de procéder à un 

test matériel. 

Le troisième chapitre présentait le banc d'essai qui a permis de déterminer les opérateurs 

de mutation. Ces opérateurs sont loin d'être exhaustifs et peuvent être augmentés. La 

première amélioration apportée dans ce chapiîre a été la définition d'opérateurs 

spécifiques au VHDL et la définition d'un générateur de mutants travaillant directement 

sur une spécification VKDL. En effet, il a été montré que la traduction de VHDL en 

FORTRAN présentée dans le chapitre deux introduisait une augmentation du nombre de 

mutants. Par ailleurs, cette traduction ne permet pas de dire que l'on a validé la 

spécification initiale du concepteur, mais plutôt que l'on a validé une version en principe 

équivalente et non exempte d'erreurs, Bien que le choix de la mutation sélective permette 

de réduire de manière significative le nombre de mutants, diminuant ainsi la tâche du 

concepteur lors de la validation, ce nombre demeure important. Le processus 

d'enrichissement peut se révéler long et pénible si l'objectif est d'obtenir un score de 

mutation de l'ordre de 100%. En effet, un grand nombre de mutants peuvent être des 

mutants équivalents. Par ailleurs, il est très difficile de prouver qu'un mutant est 

équivalent, car i l  faudrait dans certains cas procéder à un test exhaustif ce qui n'est 

généralement pas possible. Bien que cette méthode nous paraisse intéressante vis à vis du 

problème de la validation, il est important de  souligner les limitations qui lui interdisent 



une utilisation immédiate et fréquente sur des circuits de taifles importantes. Le principale 

problème est la systématisation du jeu de test devant être effectué afin de tuer les mutants 

survivants. En effet, systématiser ce processus revient à réaliser un algorithme permettant 

ta propagation d'erreurs à l'une des sorties. Cependant cela consisterait à connaître à 

l'avance le chemin que devrait prendre les données de test ce qui n'est évidemment pas 

faisable puisque dans le cas de la validation, on parle d'une fonctionnalité. On pourrait 

aussi générer un nombre important de vecteurs dans le seul but de tuer les mutants 

survivants. Malheureusement, le processus de test pourrait augmenter car il faudrait 

ensuite identifier la fonctionnalité de chacun des vecteurs efficaces. Le second problème 

vient de la génération du nombre de mutants. Bien que le choix des mutants soit effectué 

avant de lancer la génération des mutants (voir chapitre 3) et que le nombre de mutants 

soit considérablement réduit (tableau 3.3)' il est bien évident que ce nombre demeure 

encore trop important. Il a été suggéré d'utiliser la mutation sélective afin d'éliminer les 

opérateurs de mutation responsables de la génération du plus grand nombre de mutants. 

Dans le chapitre 3 une alterenative a été utilisé. Plutôt que d'éliminer uniquement les 

opérateurs de mutation responsables du plus grand nombre de mutants. il est aussi 

intéressant de les choisir sélectivement en fonction de leur capacité à tester le circuit. Le 

nombre de mutants demeure quand même très important. II serait donc interressant de 

montrer une certaine redondance chez certains opérateurs e t  donc de les éliminer du 

processus du test par mutation. Le choix des opérateurs de mutation pourrait aussi être 

réaliser en fonction du nombre de fois où l'état responsable de  la mutation apparaît dans le 

code VHDL. Enfin, il est très difficile de prouver qu'un mutant est équivalent. En effet 



afin de réduire le processus de  validation, un grand nombre de mutants survivants sont 

déclarés équivalents alors qu'ils peuvent être tués manuellement. Pour conclure, il est à 

souligner qu'en plus de tenter d'enrichir une suite de test e t  donc, guarantir une meilleure 

validation, le  test par mutation tente non seulement de mettre à jour d'éventuelles erreurs 

dans un circuit, mais aussi leurs abscences. 

Il pourrait être intéressant dans des travaux futurs de tenter d'augmenter l'ensemble des 

opérateurs d e  mutation. En effet les opérateurs définis dans ce mémoire sont loin d'être 

exhaustif* L'auteur pourrait alors constituer un véritable dictionnaire de bogues. Le 

phénomène de redondance pourrait être aussi prouvé afin d e  réduire le nombre de  

mutants. Enfin une forme d'ATPG (automatic test pattern genentor) propre à la 

vérification pourrait être réalisé afin de tuer les mutants survivants et réduire les "faux" 

mutants équivalents. On pourrait dans ce  dernier cas définir un générateur aléatoire dont 

la plage de variation des valeurs d'entrées seraient donnée par l'utilisateur. 
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ANNEXE A 

Processeur ancillaire . . 

Descri~tion des états de la FSM, 

Afin d'implanter ce système il a fallu construire une machine à étatscette machine 

décrit le comportement du module EDH. 

L'état initial permet I'initialisation des toutes les variables internes. Les états lec-vidéo 

permettent de détecter un paquet ancillary suivant la séquence 3ff 000 000. 

L'état eav-sav permet d'attribuer au compteur la valeur correspondante au standard vidéo. 

L'état compter permet a la machine de positionner son compteur de mot à la bonne 

adresse afin d'ecrire les information dans les trames vidéo. 

Le module EDH commence ensuite à former le paquet ancillary. Les états adf écrient la 

séquence 000 3ff 3ff. Bien entendu, ces valeurs se verront augmenter 2 20 bits en position- 

nant les bits les moins significatifs à zéro. 

L'état did permet d'écrire le mot If4 (+IO bits de O sur les bits les moins significatifs) 

L'état dbn écrit 200(+10 bits de O sur les bits les moins significatifs) 

L'état dc écrit 1 O(+ 10 bits de O sur les bits les moins significatifs) 
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Les états aedf doivent écrire les mots selon la séquence suivante: not(p) p ues ida idh eda 

edh O O (+ 10 bits de O sur les bits les moins significatifs). Le bit p est un bit de parité alors 

que les autres(ues, eda..) sont des flags qui proviennent du module EDH in. 

Les états rw ecrivent une séquence de O. 

Enfin, un checksurn des users data words est réalisé. 

MA CHINE A ETATS (pour la génération du paquet ancillaire) 



Im~lémentation du CRCCs 

C'est une technique de compression qui effectue la division du polynome : 

Le reste de la division se trouve alors dans les registres constituants la LFSR. Cette LFSR 

(linear feedback shift register) un polynome d'entrée G(X) divise le polynome PO() censé 

représenté la LFSR suivant le calcul: G o /  P(X)= Q(X)+R(X)IP(X). Le reste R(X) est 

alors contenu dans le registre et le quotient Q(X) est constitué par les données de sorties. 

Le CRCC a été implanté à l'aide du générateur polynomial C m  16 où le shéema général 

est donnée cidessous. 

Les Cn sont des connexions quand ces coefficients sont égaux à 1. Dans le cas contraire 

ils doivent être omis. Les + sont des portes xor. 



ANNEXE B : FONCTION MID 

1 lnteger Function Mid (X, Y, Z) 

integer x, y, t 
1 mid = z 
2 if (y .LT. z) then 
3 if (x .LT. y) then 
4 mid = y 
5 else if (x .LT. z) then 
6 mid = x 
7 end if 
8 else 
9 if (x .GT. y) then 
A if (x .LT. y) then 
10 mid=y 
11 else if (x .GT. z) then 
12 mid = x 
A mid = y 
13 end if 
14 end if 

retum 



ANNEXE C.  

//operateur de mutation pour le cas des if pour l'opérateur COR 

#indude estdioh> 
#indude <string.h> 
#inchde <stdlib.h> 
#define TRANSITION 15 
Mefine ETAT-COLTRANT 23 
void main() 
I 
unsigned long etat-courant; 
unsigned long ancienetat;  
char tata[5][20]; 
long c; 

long i; 
long transition; 
long pos; 
int compteur-cor; 
int pos2; 
int pos3; 
int pos4; 
int pos5; 
FILE *MO=NULL; /*definition du pointeur file pour le fichier d'envie*/ 
FILE *M 1 =NULL; 
FiLE * tarnp_chaine[5]; 
FILE *tamponO=NULL; 
FILE *tampon 1 =NULL; 
FILE *tampon2=NULL; 
FILE *tampon3=NULL; 
FILE *tampon4=NULL; 

/* cette m a i c e  represente les etats suivants du diagramme ifc/ 
in t di agr-e ta t-iF[TRr\NS ITiON] [ETAT-COURANTJ = { 

/*etat-suivant */ 
/*tnnsitions*/ 1,0,2,5,0,2,2,9,0,2, 12.2.2, 15,2,2.2,2,2, 19.2.2.0. 

0,2,2,5.0,2,2.9,0,2,12,2,2,15,2.2,2.2,2,19.2,2,0. 
0,0,13.5,0,2, 2,9, O, 2, 12,2.2. 15. 2, 2.2, 2,2,0,2,2. O, 
0,0,3,5,0,2,7,9,0,2,11.2,2.14,2,2,2,2,2,0.2,2.0. 
0.0,2.4,0,2.2,8,0,2*12,2,2,15,2,2.22.2.0.2,2,0, 
0,0,6,5,0,2,2,9.0,2,12,2,2,15,2,2,2.2,2,0.2,2,0. 
0,0,10,5,0,2,2,9,0,2,12.2.2*15.2.2,2,2,2,0,2.2.0. 
0.0,0.5,0,0.2.9.0.2.12.2,2,15,2,2.2.2.2,0,2,2.0, 
0.0,2,3,0,2,2,9.0,2.12.2,2.13.2,2,2.2,19,0,2.2.0. 
0,0.16.5,0,2,2,9,0,2,12,2,2, 15,2,2.2,2,2,0.2,22.0, 
0,0,2,5,0,2.2,9,0,2,12,2,2,15.2,2,17,2,2,0,2.2,0, 
0,0,2,5,0,2,2.9,0,2,12,2,2.15.2.2,2,18.2.0.2.2,0. 
0.0,20.5,0,2.2.9,0.2,12,2.2,15,2.2.2.2,2.0,2.2,0. 
0,0.2,5.0,2,2,9,0,2, 12,2*2.15.2.2,2,2,2,0,21.2.0. 
0.0.2,5,0,2,2,9.0,2,12,2,2,15.2,2,2,2,2,0,2.2,0); 



if(( MO = fopen("edhii.vhdl","r"))=NULL)/* ouverture du fichier du premier mutant4/ 
printf("ERREUR:le fichier source ne peut etre ouvert in"); 

else 
I 

while ((c=fgetc(MO))!=EOF) 
( 
switch(c) 

( 
case '1': 
case 'i':transi tion=O; 

break; 
case 'F: 
case 'f :uansition=l ; 

break; 
case '>':tr;insition=2; 

break; 
case '=':transition=3; 

break; 
case T':transition=4; 

break; 
case 'f :transition=S; 

break; 
case 'c':transition= 6; 

break; 
case ';':transition= 7; 
break; 

case ' *:transition= 8; 
break; 

case 'E: 
case 'e':transition=9; 

break; 
case 'N': 
case 'n':tnnsition=l O; 

break; 
case 'D': 

case *d':transition= 1 1 ; 
break; 

case T: 



case 'te:transition=l 2; 
break; 

case 'H': 
case 'h': transition=I 3; 

break; 
defaul t:transition= 14; 

break; 
1 

ancienetat=etat-courant; 
etatcourant= diagr-etat-IF[mnsition][etat-courant]; 

switch(etat-courant) 
{ 
case 2:pos =ftell(MO); 
break; 
case 5:switch (ancieneiat) 
{ 

case 3: 
M 1 = fopen("rnut4tampon~cor'*~**~'*); 
for(i=û;ic=s);i+t) 

I 
sprintf(tata[i],"Mut~c~~d~vhdl",compteur~cor); 
compteur-cor++; 
iamp-chaine[i] = fopen(tata[i]."wn); //ouverture des 5 mutants cor 

1 
fputc(c,M 1 ); 
// ecriture de la fin du fichier 
while((c=fgetc(MO)) !=EOF) 

{ 
fpu tc(c.M I ); 
if(c='ù') 
fputc(7d.M 1 ); 

1 
fclose(M 1); 
//ajout du debut du fichier dans les fichiers mutants 
fseek(M0,O.O); 
while(((c=fgetc(MO)) !=EOF)&&(ftell(MO)<=pos)) 

{ 
for(i=O;i<=4;i++) 

( 
fpu tc(c,iamp-chaine[i]); 

1 
1 

//fin d'ajout 
fpuls("<=".tamp-chaine(0J); 
fputc('>'.tamp-chaine[ 11); 
fpui~("~=*~.tamp-chaine[2]); 
fputs("/=",iamp-chaine[3]); 
fputc(l4,tamp_chaine[4]); 
//on reecnt la fin du fichier 
M 1 = fopen("rnut-tampon-cor"."rn); 



whiIe((c=fgetc(M l))!=EOF) 
( 
for(i=û;i<=4;i++) 
fputc(c,tamp-chainefi]); 

1 
//fin de la reecriture 
for(i=O;i<=4;i++) 

fclose (tamp-chaine[i]); 
fclose(M 1 ); 
fseek(MO,pos,O); //on remet a la position courante 
break; 

defaul t: 
break; 

1 
break; 

case 7:pos2=ftelI(MO); 
break; 

case 9:switch (ancien-eut) 

case 7: 
M 1 = fopen("mut-tampon- cor"."^"); 
for(i=O;i<=4;i++) 

( 
sprind(tata[i]~"Mut~corO/od.vhdt",cornpteur~cor); 
compteur-cor*; 
tamp-chaine[i] = fopen(tata[i]."wW); //ouverture des 5 mutants cor 

1 
fputc(c,M 1 ); 
// ecriture de la fin du fichier 
whilc((c=fgetc(MO)) !=EOR 

t 
fputc(cM 1); 
if(c==lr9) 

fputc(ln'.M 1 ); 
1 

fclose(M 1 ); 

//ajout du debut du fichier dans les fichiers mutants 
fseek(M0,O.O); 
while(((c=fgetc(MO)) !=EOF)&&(ftelI(MO)c=pos)) 

I 
for(i=û;i<=4;it+) 

{ 
fputc(c,tamp-chainef il); 

1 
1 

//fin d'ajout 
fputc('=',tamp-chainefol); 
fputc('>',tmp-chaine[l ]); 



//on reecrit la fin du fichier 
M 1 = fopen("mut-tampon-cor" ,"rm); 
while((c=fgetc(M 1 )) !=EOF) 

{ 
for(i=O;i<=4;i+t) 

{ 
fputc(c,tamp-chaine[i]); 

1 
1 

//fin de la reecriture 
fot(i=O;i<=4;i++) 

fclose (tamp-chaine[i 1); 
fclose(M 1); 
fseek(MO.pos2,O); //on remet a la position courante 
break; 

default: 
break; 

1 
break; 

case 10: pos3=ftelt(MO); 
break; 

case 1 1 :switch (mcienetat) 
{ 
case 10: 
M 1 = fopen("mut~tmpon~cor","w"); 
for(i=O;i<A;i++) 

( 
sprintf(tata[i)."Mut~~or%d~vhdl",compteur~cor); 
compteur-cor++; 
hmp-chainefi] = fopen(tata[i],"wl*); //ouverture des 5 mutants cor 

1 
II fputc(c,M 1 ); 

// ecriture de la fin du fichier 
whil e((c=fgetc@fO))!=EOF) 

{ 
fputc(c.M 1); 
if(c=lr') 
fpu tc(ln'.M 1); 
1 

fc f ose(M 1); 

//ajout du debut d u  fichier dans les fichiers mutants 
fseek(MO,O,O); 
while(((c=fgetc(M0))!=EOF)&&(f~eIl(MO)<=pos)) 
for(i=O:i<=Q;i++) 



( 
fpu tc(c,tampchaine[i]); 

1 

//fin d'ajout 
fputc('=',tarnp-chaine[O]); 
fputc('>'.tarnp-c haine[ 1)); 
fputs(">=",tmp-~haine[2]); 
fputs("/=",tamp-chaine[3]); 
fputs("<'*,tamp-chaine[4]); 

//on rcecrit la fin du fichier 
M 1 = fopen(ttmut-tampon-corn.'*r"); 
while((c=fgetc(M 1 )) !=EOF) 

{ 
for(i=O;k=4;i++) 

fputc(c,tamp-chaine[i]); 
1 

//fin de la reecriture 
for(i=û;i<=4;i++) 
fclose (tamp-chaine[i]); 

fclose(M 1 ); 
fseek(MO.pos3,O); //on remet a la position courante 
break; 

default: 
break; 

1 
break; 

crise 1 2:switch (ancienetat) 
( 
case 10: 

M 1 = fopen("mut-tampon-cor","w+"); 
for(i=û;ic=i;i++) 

( 
sprind(tata[i],"Mut~~or%od~vhdl".compteor); 
compteur-cor*; 
tamp-chaine[i] = fopen(tata[i],"w"); //ouverture des 5 mutants cor 

1 
fputc(c,M 1 ); 

// ecriture de la fin du fichier 
while((c=fgetc(MO))!=EOF) 

{ 
fputc(c.M 1); 
if(c==V) 
fputc(ln',M 1); 

1 
fclosc(M 1); 

//ajout du debut du fichier dans les fichiers mutants 



fsce k(M0.0.0); 
while(((c=fgetc(h.lO)) !=EOF)&&(ftell(MO)<=pos)) 

for(i=O;ic=rl;i++) 
{ 
fputc(c,iamp-chaine[i)); 

1 

//fin d'ajout 
fputc('=@,tarnp-chaine[0)); 
fputc('>*,tamp-chaine[l]); 
fput~(*'>=''.tamp,chaine[2]); 
fputs("/=",t;imp,,chainej3]); 
fputs("<=",tamp-chaine[4]); 

//on reecrit la fin du fichier 
M 1 = fopen("mut-tampon-cor"."rn); 
while((c=fgetc(M 1 ))!=EOF) 

1 

for(i=û;ic=4;i++) 
fputc(c.trimp,chaine[i]); 

1 
//fin de la reecriture 
for(i=û;i<4;i++) 

fclose (tamp-chaine[i]); 
fcIose(M 1 ); 
fseek(MO.pos3.0); //on remet a la position courante 
break; 

default: 
break; 

1 
break; 

case 14: pos4=ftell(MO); ; 
switch (ancien-ctat) 

( 
case 13: 
M 1 = fopen("mut-tampon- cor","^+^); 

for(i=O;i<=4;i++) 
{ 
sprind(tata[i],"Mut~cor%d.vhdi",compteur~cor); 

tamp-chaine[i] = fopen(tata[iJ."wN); //ouverture des 5 mutants cor 
1 

fpu tc(c,M 1); 

// ccriture dc la fin du fichier 
whi le((c=fgetc(hlO))!=EOF) 

{ 
fputc(c.M 1); 



//ajout du debut du fichier dans les fichiers mutants 
fseek(M0.0.0); 
while(((c=fgetc(MO))!=EOF)&&(fte1I(MO)<=pos)) 

for(i=O;i<=4;i++) 
( 
fputc(c,tamp-chaine[i]); 

1 

//fin d'ajout 
fputc('=',@mp-chainew]); 
fputc('>',tamp-chaine[ II): 
fputs("<=",tamp-chaineE21); 
fputs("/=",tamp-chaine[3]); 
fputc('<',trimp-chaine[4]); 

//on rcecrit la fin du fichier 
M 1 = fopenrmut-tmpon_corn."r"); 
whi le((c=fgetc(M 1 )) !=EOF) 

( 
for(i=O:i<d;i+-+) 

fputc(c.tarnp-chine[i]); 
1 

//fin de la reecriture 
for(i=O;i<=4;i++) 

fclose (tamp-chaine[i]): 
fclose(M 1); 
fseek(MO,pos4,0); //on remet a la position courante 
break; 

default: 
break; 

1 
break: 

case 1 5:pos5=fteIi(MO); 
switch (ancien-etat) 

case 13: 
M 1 = fopen("mut~tmpon~corn,"w+"); 

for(i=O;i<=4;i++) 
( 
sp~nd(~ta[i),"Mut~cor%d.vhdl",compteur~cor); 
compteur-cor++; 
tmp-chaine[i] = fopen(tata[i],"wW); //ouverturc des 5 mutants cor 

1 



// ccriture de la fin du fichier 
whi le((c=fgetc(MO)) !=EOF) 

{ 
fputc(c,M 1); 
i f(c==îr7 

fputc(ln',M 1 ); 
1 

fclose(M 1); 

//ajout du debut du fichier dans les fichiers mutants 
fseek(M0.0.0); 
while(((c= fge tc(M0)) !=EOF)&&(fteII(MO)c=pos)) 

for(i=û;i<=4;i++) 
I 
fpu tc(c,tmp-chaine[i]); 

1 

//fin d'ajout 
fpu tc('=',îamp-c hain@]); 
fp~ts('*<=~.tamp-chaine[l ]); 
fputs(">=".tamp_chaine[2]); 
fputs("/=",tamp-chaine(31); 
fputc('c',tarnp-chaine[4]); 

//on reecrit la fin du fichier 
M 1 = fopen("mut~tampon~cof"."r"); 
while((c=fgetc(M 1 )) !=EOF) 

{ 
for(i=O;k=4;itt) 
fputc(c,tamp-chaineli]); 

1 
//fin de la reecriture 
for(i=û;i<=.l;it+) 
fclose (tamp-chaine[i]); 

fclose(M 1); 
fseek(MO,pos5.0); //on remet 3 la position courante 
break; 

default: 
break; 

1 
break; 

default: 
break; 

1 
1 

1 
1 



#indude a t d i 0 . b  
ttinclude <string.h> 
#indude e t d 1 i b . b  
#de fine TRANSITION 13 
#de fine ETAT-COURANT 20 

//opcrateur de mutation pour le cas des if 

void main0 
{ 
unsigned long etat-courant; 
unsigned long ancien-eîat; 
char tat;r[5][20] ; 

long c; 
long i; 
long transition; 
long pos; 
int compteur-cor; 

FILE *MO=NULL; /*definition du pointeur file pour le fichier d1entr5e*/ 
FILE *M l=NULL; 
FTLE *iamp-chaine[5]; 

FILE *tamponO=NULL; 
FILE *îampon l=NULL; 
FILE *tamponZ-NULL; 
FLE *tampon3=NULL; 
FILE *tampon4=NULL; 

int dirigr-eut-IF[TRANSmON][ETAT-CO-= ( 
/*eut-suivant */ 

/*tnnsitions*/l,0.2,5,0,0,0,9,0,2, 12,0.0, 15,0,0,2,2,2,0. 
0,2.2,5,0.0,0,9.0.212,0,0,15,0,0,2.2,2,0, 
0.0,13,5,0,0,0,9,0. 2. 12,0,0. 15.0,0.2.2,2,0/* cette marice represente les etats 

suivants du diagramme if*/ 
0.0.3,5,0.0,7,9,0,2,11.0,0.14,0.0,2,2,2,0, 
0,0.2,4,0,0,0,8,0,2,12,0.0,15,0,0,2,2,2,0, 
0.0,6.5,0,0,0,9,0,2,12.0.0, 15.0.0,2,2,2,0. 
0,0,10,5.0,0,0.9,0,2,12.0.0.15,0,0,2,2.2.0, 
0,0 ,2 ,0 ,0 ,0 ,0 .0 ,0 ,2 ,0*0*0 ,  0,0,0,2.0.2,0. 
0 ,0 ,2 ,3 .0 ,0 ,0 ,7 ,0 ,2 ,  0,0,0,13,0.0,2.2,19,0, 
0,0,16,5,0,0,2.9,0,2, 12,0,0,15,0,0,2,2,2,0,  
0,0,2,5,0,0,2,9,0.2,12,0,0,15,0,0,17,2,2,0, 
0,0,2,5.0,0.2.9.0,2,12,0,0,15,0,0,2.18.2,0. 
0,0.2,5,0.0,2,9,0,2,12,0,0,15.0,0,2,2,2,0}; 



Iloperateur de mutation pour le a s  des if pour l'opérateur COR (si nombre non binaire) 

##indude cs td i0 .b  
#include <string-b 
#inchCe cstd1ib.b 
#define TRANSITION 13 
#define =AT-COURANT 20 
void maino 
1 
unsigned long etat-courant; 
unsigned long ancien-etal; 
char trita[S] [20]; 

long c; 
long i; 
long transition; 
long pos: 
in t  compteur-cor, 
FILE *MO=NULL; /*definition du pointeur file pour le fichier d'entrée*/ 
FILE *M 1 =NULL; 
FILE *tampchaine[S]; 
FLE  *tamponO=NULL; 
FILE *tampon 1 =NULL; 
FILE *tampon2=NULL; 
FILE *tampon3=NULL; 
FILE *tampon4=NULL; 

int diagr-etat-IFITRANSInON] [ETAT-COURANT)= ( 
/*etat-suivant */ 

/*transitions*/ 1. 0. 2, 5 ,0 .0 ,0 ,  9,0,S. 12.0,0, 15,0,0, 2, 2, 2-0, 
0.2,2.5.0,0,0.9.0,2,12,0,0,15.0,0.2.2.2,0, 
0,0.13,5,0,0,0,9.0,2,12,0,0,15,0,0,2.2,2,0. 
0,0.3,5,0.0,7 .9 .0 ,2 .1f ,O,0,14.0,0,2,2,2 .0 ,  
0 ,0 ,2 ,4 ,0 ,0 ,0 ,8 ,0 ,2 ,  12,0.0,15.0,0,2,2,2,0.  
0,0.6,5,0,0,0.9,0,2.12,0.0,15,0.0,2,2,2,0. 
0,0,10,5,0,0,0.9.0,2.12,0,0,15,0,0,2,2,2,0, 
0,0 ,2 ,0 ,0 ,0*0*0 ,0 ,2 .0 ,0 ,0 ,  0 ,0 .0 ,2 .0*2 ,0 ,  
0 ,0 ,2 ,3 ,0 .0 ,0 ,7 .0 ,2 ,  0,0,0,13,0,0,2,2,19,0.  
0.0,16,5.0,0,2,9,0,2.12,0.0,15,0.0,2.2,2,0. 
0,0,2,5,0,0,2 ,9 .0 ,2 ,  12,0,0,15,0,0,17,2,2,0, 
0,0,2,5.0,0,2,9.0,2.12,0,0,15,0,0,218,2,0, 
0,0.2,5.0.0,2,9.0,2,12,0.0,15,0,0,2.2,2,0); 

if(( MO = fopen("text.vhdl","r"))=NULL)/* ouverture du fichier du premier mutant*/ 
pnntf("ERREUR:le fichier source ne peut etrc ouvert in*); 

el sc 



{ 
while ((c=fgetc(MO))!=EOF) 

( 
switch(c) 

{ 
case '1': 
case 'i':transition=û; 

break; 
case 'F: 
case 'f :transition=l ; 

break; 
case '>':transition=2; 

break; 
case '=':transition=3; 

break; 
case T':transition=4; 

break: 
case T:uansition=5; 

break: 
case '<*rtransition= 6; 

break; 
case ':':transition= 7: 

break; 
case ' ':transition= 8; 

break; 
casc 'E': 
case 'e':uansition=9; 

break; 
case 'N': 
case 'n':transition= 1 O: 

break; 
case 'D': 

case 'd':transition=l 1; 
break; 

default:tnnsition=lS; 
break; 

1 
ancien-etat=etat-courant; 

etatcourant= diagr-etat-lF[transition][etat-coumt]; 

case 9:switch (ancien-ctat) 
I 

casc 7: 
M 1 = fopen("mut-tampon-coC"."w+"); 
pos =ftell(MO); 
for(i=O;k=4;ii+) 

( printf("comp %d\n".compteur-cor); 
sprintf(tata[ij."Mut~cor%d.vhdl".compteur~cor); 



compteur-cor*; 
tarnp-chaine[i] = fopen(tata[i],"ww); //ouverture des 5 mutants cor 

1 
fputc(c.M 1); 

11 ecriture de la fin du fichier 
while((c=fgetc(MO)) !=EOF) 

{ 
fputc(c,M 1); 
if(c==V) 
fputc(ln',M 1); 

1 
fcfoseW 1); 

//ajout du debut du fichier dans les fichiers mutants 
fsee k(M0,O.O); 
while(((c=fgetc(MO))!=EOF)&&(ftell(MO)<=pos-3)) 11-3 afin de ne pas reecrüe l e  meme cmctere 

for(i=û;i<=4;iu) 
t 
fputc(c,tmp-chineril); 

1 

//fin d'ajout 
fputc('=',tamp-chaine[O 1); 

fputc('>',tamp-chaine[ 1 1); 
fputs(">=",tmp-chaine[2]); 
fputs("<=",tamp-chinei3 1): 
fputc(@~',tamp~chaine[4]); 

//on reecrit la fin du fichier 
M 1 = fopenrrnut-tampon,corU,"r"); 
while((c=fgetc(M l))!=EOF) 

{ 
for(i=O;k=4;i++) 

fputc(c.tamp,chaine[i]); 
1 

//fin de la reecriture 
for(i=O;i<=4;i+-t) 
fclose (tamp-c haine [il); 

fclose(M 1 ); 
fseek(M0,pos.O); //on remet a la position courante 
break; 

default: 
break; 
1 
default: 

break; 
1 

1 



//operateur de mutation pwr le cas des case pour I'opératenr COR et SSR 

void main0 
( 
unsigned char etat-courant; 
unsigned char etat-courant1 ; 
char cor-chaine[lO]; 
char Lribcase[l20][12]; 
unsigned pos[ 120); 
unsigned i-max[ 120 1; 
int c; 
int flag; 
int i; 
int j-max; 
int j; 
int posf; 
int i-tab; 
int i t ab2 ;  
int transition; 
int transition 1 : 
long compteur-cor: 
long posMZY/position du pointeur 
long postarnpon; 
long i-pos; 
long i-pos2; 
long i-posmax; 

FILE *MO=NULL; /*definition du pointeur file pour le fichier dVenuÈe*/ 
FTLE *M 1 =NULL; 
FILE *tampon; 
int diagr-etat-case[TRANS~ON]~TAT-COURANTJ=( 

/*etat-suivant */ 
/* transi tiens*/ 1 ,0,0.0.5,5,0,0,0,0~0,0,0,0~0~ 

0,2,0,0,5,5,0.0.0,0,0.0,0,0,0, 
6.0,3,0.5.5,0,0,0,0.0,0.13.0,00 
0.0,0,4,5.5,7,0.0.0.0.0.0.0.0. 
0.0,0,0,4,14.0,0.9~0.010.0,0,0, 
0.0,0,0,5.5,0.8.0~0,0,0,0,0,0. 
0.0,0.0,5,5,0,0,0, l ~ v ~ ~ ~ , O v O , O , O .  
o,o,o,o,s$,o,o.o*o* 1 1 ,o*o,o,o, 
0,0.0,0.5,5.0.0.0,0.0,12.0.0.0. 
O,O,O,O,S, 14.0,0,0,0.0.0,0,0,0, 
o.o,o*o.s,5.o*o*o,o*o,o,o,o,o) ; 



int diagr-etat_pos[TRANS~ONl]~AT-COURANTl]={ 
Petat-suivant */ 

/* transitions*/ 1.0.0.0.5.5,0,0, 
0,2,0.0,5,5,0,0, 
0,0,3,0,5,5,0,0, 
0,0,0,4,5,5,0,0, 
0,0,0,0,5,6,0,0, 
0,0,0,0.5,5,7,0, 
0,0.0.0,5,5,0,0); 

etatcourant=O; 
etat-courantl =O; 
i d ;  
i-posmax=O; 
j-rnax=O; 
j=O; 
i-pod: 
i-tab=û; 
i_tab2=O; 
compteur-cor=O; 
posM2=0; 
postarnpon=O; 
posf=O; 
if(( MO = fopen("mux2.vhdln ,"rW))=NULL)/* ouverture du fichier du premier mutant*/ 

printf("ERREUR:le fichier source ne peut etre ouvert \nl'); 
else { 

printf("fichier mux2.vhdl ouvert \n"); 
while ((c=fgetc(MO))!=EOF){ 
switch(c) 

( 
case W': 
case 'w':transition=O; 
break; 
case 'H': 
case 'h':transition= 1 ; 
break; 
case E': 
case 'e':transition=Z; 
break; 
case 'N': 
case 'n':transition=3; 
brcak; 
case ' ':transition=4; 
break; 
case 'D': 
case *d':transi tion=5; 
brcak; 
case Tg: 
casc 'c':transition=6; 
break; 
case 'A': 



case 'a': transition=7; 
break; 
case 'S': 
case 's':transi t i o n S ;  
break; 
case *=':transition=9; 
break; 
defaulttransition=lO; 
break; 
1 
etat-courant= diagr-etat-case(tnnsition][etat-counnt]; 
sw itc h(etat-courant) 
{ 

case O: 
i-dl; 
break; 

case I : 
case 2: 
case 3: 
case 4: 

break; 
case 5: 

tabcaseb][i]=c; 
i-rnaxu]=i; 
i++; 
break; 

case 6: 
case 7: 
case 8: 
case 9: 
case 10: 
case 1 1 : 
case 12: 

break; 
case 13: 

for(i=O;kj-max- 1 ;i*) 
I 
flag=O; 

i-tabtt; 
spnntf(cor~chaine,Mut~mu~%d~vhdl",compteur~cor); 
corn peur-cor++; 
M 1 = fopen("mut-tamp~n",~~"); 
tampon = fopen(cor-chaine."wl*); 
i f(i-ta k=j-max) 

fputs(tabcase[i-tab],M 1 ); 
fseek(MO,pos[i],O); 
whiic((c=fgeic(M0))!=EOF) 
( 

switch(c) 
( 
case 'W': 



case 'w':transitionl=O; 
break; 

case 'H': 
case %':transition 1 =i ; 

break; 
case 'E: 
case 'e9:transi tion 1 =2; 

break; 
case 'N': 
case 'n':transition 1 =3; 

break; 
case '=':transition 1 =4; 

break; 
case >':transition 1 =5; 
break; 

default:transi ti0nl=6; 
break; 

1 

etat-courant1 = diagr-etat_pos[uansition 1 ][etat-courant 1); 
switch(etat-courant 1) 

( 
case O: 
case 1: 
case 2: 
case 3:fputc(c,M 1); 

break; 
case 4: 

fputc(c,M 1 ); 
fputc(' 'M 1 ); 
if (flag<= 1) 

{ 
posf=ftell(MO); 
itab2=i_tab- 1 ; 
fputs(tabcase[i],M 1 ); 
fputc(' ' M I  ); 
flag*; 

1 
break; 

case 5: 
case 6: 

break; 
case 7: 

fputs("=>",M 1); 
// ajout de la suite de la fin du texte 
while((c=fgetc(MO))!=EOF) 

{ 
fputc(cM1); 
if(c=V) 
fputc(ln',M 1 ); 

II fin ajout 



1 
fclose(n4 1 ); 

break; 
default: 

break; 
1 

flag=O; 

1 
//ajout du debut du texte avant la mutation 

fsee k(M0.0.0); 
while(((c=fgetc(hl0))!=EOF)&&(ftell(MO)<=pos[i]-iim~[i]-2)) // -2 a cause de => 

fputc(c, tampon); 
i f(c==V) 

fputc(b',mpon); 
1 

fclose(tampon); 
//fin d'ajout 

//on reecrit la fin du fichier 
tampon = fopen(cor-chaine,"aW); 
M 1 = fopen("mut-tampon","r"); 
while((c=igetc(M l))!=EOF) 

( 
fputc(c,mpon); 

1 
// fin de la reecriture 

fclose (tampon); 
fclose(M 1); 

1 
iclose(M0); 
iclose(M 1 ); 
break; 

case 14: 
pos[i-pos]=ftell(MO); 
i-POSU; 
j-max=j; 
j++; 
break; 

default: 
break; 

1 
1 

1 
fclose(M0): 
1 



//operateur de mutation AOR 

//fonction genenl permettant le changement des opÈrateurs arithmetiques +. 1. *. -. >, >= e t  < 

#inciude a t d i 0 . b  
#define TRANSlTION 9 
#de fine ETAT-COURANT 17 
maino 
{ 
unsigned char etat-courant; 
unsigned char ancien-etat; 
unsigned char tata[4][lO]; 
int c,cornpt; 
int pos; 
int compteur-aor; 
int i; 
int transition; 
FILE *MO=NULL; /*definition du pointeur file pour le fichier deentrÈe*/ 
FILE *M 1 =NULL; 
FILE *M2=NULL; 
FILE *M3=NULL; 
FiLE *M4=NULL; 
FILE *tamp_chaine[4]; 

int diagr-etat[TRANSmON][ETAT-COURANT]={ 
/*etatsuivant */ 

/* transitions*/ 1,2,0.0,0,0,0,0.0,0,0.0,0.0,0.0,0, 
5,0.0.0,0.0,0.0,0.0.0.0,0.0,0,0,0. 
3.0.0,0,4,0,0,0,0,0,0,0,0,0,0.0,0, 
6,0,0.0,0,0,0,0,0.0,0~0,0,0~0,0,0, 
8,0,0.0,0,0,0,0,0.0,0*0*0,0*0*0,0* 
10,0.0,0,0,0,0,0,0,0.0,0.0.0.0.0.0* 
12.2.0,0,0,0,0,7,9,0.0,0,0.0,0,15,0~ 
14,0,0,0,0,0,0.0,0,0.0.0,0,0,0.0,0, 
0,0,0.0.0.0.0,0.0.0.0,0,0,0,0*0.0); 

if(( MO = fopcn("testtxt" ,"rW)>==NULL)/* ouverture du fichier du premier mutant*/ 
printf("ERMUR:te fichier source ne peut erre ouvert in"); 

clsc ( 
pnntf(" fichier ouvert in"); 

whilc ((c=fgctc(MO)) !=EOF)( 
switch(c) 

( 
case '-@:tnnsition=O; 
break: 



case '+':transition= 1; 
break; 

case '*':tnnsition=2; 
break; 

case 'Rtransition-3; 
break; 

case '<:uansition=4; 
break; 

case >':transition=5; 
break; 

case '=':transition=6; 
break; 

case ':':transition=7; 
break; 

case 10': 
break; 

default:transition=8; 
break; 

1 
ancienetat=et;it-courant; 
etat-courant= diagr-etat[transition][etat_courantJ ; 

switch(etatcounnt) 
{ 
case O: switch (ancienetat) 

{ 
case 1: 

M 1 = fopen('*rnu~tampon~aor","w''); 
fputc(cJA 1); 
pos =ftell(MO); 
for(i=û;i<=2;i++) 

( 
sprintf(~ta(i],"Mut~a~r%d.~hdl".compteur~aor); 
compteur-aor++; 
tarnp-chaine[i] = fopen(tata[i] ," w"); //ouveriure des 5 mutants cor 

1 

// ccriture de la fin du fichier 
while((c=fgetc(MO)) !=EOF) 

{ 
fputc(c,M 1); 
if(c==%') 
fputc(ln',M 1); 

1 
fclose(M 1); 

//ajout du debut du fichier dans les fichiers mutants 
fsee k(M0.0.0); 
whiie(((c=fgetc(M0))!=EOF)&&(f1ell(MO)~=pos-2)) 
for(i=O;i<=2;i++) 



{ 
fputc(c,tamp-chai ne[i 1); 

1 
//fin d'ajout 

//on reecnt la fin du fichier 
M 1 = fopen(wmut~tampn~aornv"r'*); 
while((c=fgetc(M 1 ))!=EOF) 

( 
for(i=O;i<=l;i++) 
fputc(c,tamp-chaineri]); 

1 
//fin de la reeçriture 

for(i=O;i<=2;i*) 
fc lose (tamp,chaine[i]); 

fclose(M 1); 
fseek@fO.pos,O); //on remet a la position courante 
break; 

case 3: 
M 1 = fopen("mut~tampon~aor'*~"wn); 
fputc(cA4 1); 
pos =ftell(MO); 
for(i=O;ic=2;i++) 

sp~nd(tata[i),"Muttao~ddvhdl",~ompteur~aor); 
compteur-sort+; 
tamp-chaine[i] = fopen(tata(i],"wu): 

1 

// ccriture de la fin du fichier 
while((c=fgetc(MO))!=EOF) 

( 
fputc(c,M 1); 
i f(c=--Ir') 

fputc(ln'M 1 ): 
1 

fclose(M 1); 

//ajout du debut du fichier dans les fichiers mutants 
fsce k(MO,O,O); 
while(((c=fgetc(M0))!=EOF)&&(ftell(MO)~=pos-2)) 
for(i=O;i<=2;it+) 

{ 
fputc(c,tmp-chiûne[i]); 

1 
//fin d'ajout 



//on reecrit la fin du fichier 
M 1 = fopen("mut-t;unponpor","rn); 
while((c=fgetc(M I ))!=EOF) 

{ 
for(i=O;i<=2;itt) 
fputc(c,tamp-chaineri]); 

1 
//fin de la reecriture 

for(i=O:i<=2;i++) 
fclose (tamp-chaine[i]); 

fclose(M 1); 
fseek(MO.pos,O); //on remet a la position courante 
break; 

case 5: 
M 1 = fopen("rnut-tampon-aor"."wW); 
fputc(cA4 1); 
pos =fteli(MO); 
for(i=O;i<=2;it+) 

spnntf(tata[i],"Mut~aor%ddvhdl".compteur~aor): 

// ecriture de la fin du fichier 
while((c=fgetc(MO))!=EOF) 

( 
fputc(c,M 1); 
i f(c==lr') 
fputc(W,Ml); 

1 
fclose(M 1 ); 

//ajout du debut du fichier dans les fichiers mutants 
fsee k(M0,O.O); 
w hiie(((c=fge tc(M0)) !=EOF)&&(ftell(MO)<=pos-2)) 
for(i=O:i<=2:i++) 

t 
fputc(c,tarnp-ch;Une[i]); 

1 
//fin d'ajout 



//on reecrit Ja fin du fichier 
M 1 = fopen("mut-tamponaorn."r"); 

for(i=û;i<=2;i+t) 
fclose (tamp-chaine[i]); 

fclose(M 1); 
fseek(hlO.pos.0); //on remet a la position courante 
break; 

case 6: 
M 1 = fopen("mut-tmpon-aor"."ww); 
fputc(c,M 1); 
pos =ftelI(MO); 
for(i=O;ic=2;i+.+) 

( 
sprintf(tata[i]."M~t~ao~d.vhdl",~~m~te~r~a~r); 
compteur-aorte; 
tamp-chaine[i] = fopen(tata[i],"wW); 

1 

// ecriture de la fin du fichier 
while((c=fgetc(MO)) !=EOF) 

( 
fputc(c.M 1); 
i f(c==lr7 
fputc(ln',M 1); 

1 
fclose(M 1); 

//ajout du debut du fichier dans les fichiers mutants 
fsee k(M0.0.0); 
w hi le(((c=fgetc(hlO))!=EOF)&&(ftell(MO)c=pos-2)) 
for(i=O;i<=2;ii+) 

( 
fpu tc(c,tamp-chaine[i)); 

1 
//fin d'ajout 

//on reecrit la fin d u  fichier 
M 1 = fopn('*rnut-tampon-aor'*,"rn); 



while((c=fgetc(M I ))!=EOF) 
I 
for(i=O;i<=2;ii+) 

fputc(c,tamp-c haine [il); 
1 

//fin de la reecriture 

for(i=û;i<=2;i+t) 
fclose (tamp,chaine[i]); 

fclose(M I ); 
fseek(MO.pos,O); //on remet a la position courante 
break; 

case 8: 
M 1 = fopen("mut-tampon-aorW,"w"); 
fputc(c,M 1); 
pos =ftell(MO); 
sprintf(tata[O],"Mut-aofl~d,vhdl",comp~; 
compteur-aoru; 
tamp-chaine[O] = fopen(tata[O],"w"); 

// ecriture de la fin du fichier 
whi le((c=fgeic(hlO))!=EOF) 

{ 
fputc(c,M 1); 
i f(c==%') 

fputc(ln',M 1 ); 
1 

fclose(M 1 ); 

//ajout du debut du fichier dans les fichiers mutants 
fseek(M0,O.O); 
while(((c=fgctc(MO))!=EOF)&&(ftell(MO)c=pos-2)) 
fputc(c.tarnp,chaine[O]); 

Ilfin d'ajout 

//on reecrit la fin du fichier 
M 1 = fopen("mut-tampon,aor'*,"rn); 
while((c=fgetc(M I))!=EOF) 
fpu tc(c,famp,chaine[O)); 

//fin de la reecrïnire 

fclose (tmp-chaine[O]); 
fclose(M 1); 
fseek(MO,pos,O); //on remet a la position courante 
brcak; 

case 10: 
M 1 = fopen("mut-tmpon,mrn,"w"); 



fputc(c,M 1); 
pos =fteIl(MO); 
sprintf(tata[0]."Mut~aor%ddvhdl",compteur~~or); 
compteur-aor*; 
ump-chaine[O] = fopen(tata[O],"wn); 

// eninire de la fin du fichier 
while((c=fgetc(MO)) !=EOF) 

I 
fputc(c,M 1); 
if(c=k') 
fputc(ln'M 1); 

1 
fciose(M 1); 

//ajout du debut du fichier dans les fichiers muîants 
fseek(MO,O,O); 
while(((c=fgetc(MO))!=EOF)&&(ftell(MO)<=pos-2)) 

fpu tc(c.mmp,chaine[O]); 
//fin d'ajout 

//on reecrit la fin du fichier 
M 1 = fopen("mut-tampon-aor"."rW); 
while((c-fgetc(M I))!=EOF) 
fputc(c.tamp-chaine[Oj); 

//fin de la reecriture 

fciose (tamp-chaine[O]); 
fclose(M 1 ); 
fseek(MO,pos,O); //on remet a la position courante 
break; 

dcfault: 
break; 

1 
default: 

break; 
1 

1 
1 

1 



loperateur de mutation CNR et  CSR 

#incIude cstdi0.b 
#inchde cslring.b 
#inchde estd1ib.b 
#define TRANSITION 9 
#define ETAT-COURANT 10 
#define TRANSITION3 4 
#define ETAT-COURANT3 2 
#define TRANSITION4 3 
#define ETAT-COURANT4 2 
#de fine TRANSITIONS 5 
#de fuie ETAT-COURANTS 6 

/* inventaire des signaux du programme source */ 
void maino 
( 
unsigned char etat-courant; 
unsigned char ancienetat; 
unsigned char etat-counnt2; 
unsigned char etatcounnt3; 
unsigned char ancienetaL3; 
unsigned char etat-counnt4; 
unsigned char ancienetat4; 
unsigned char etat-courant5; 
unsigned char ancienetad; 
char tabsig[120][120]; 
char tabname[120][120]; 
char tabtype[I 20][120]; 
long compteur-type; 
char numberl [lO]; 
int c,cl .c2,i,i-nme,j_nme.i3 j3,i3-maxj J -type.mmp,flagname.i-m=.j - m ~ . f . c o m ~ t e ~ ~ i - i d e n t :  
int transition.~ansition3,ttansition4; 
int transition5: 
int compt-mutant; 
int flag-compare; 
long compteur-type 1 ; 
long flagwhite; 
long pos; 
long posf; 
long posM2flposition du pointeur 
long postampon; 
char word[lJ[80]; 
char mta[lO]; 
FILE *MO=NULL; /*definition d u  pointeur file pour le fichier d'entrée*/ 
FILE *M 1 =NULL; 
FILE *M2=NULL; 
FILE *M3=NULL; 
FTLE *M4=NULL; 
FILE *MS=NULL; 



FILE *M6=NULL; 
FILE *M7=NULL; 
FILE *M8=NULL; 
FILE *M9=NULL; 
FILE *tampon; 
int diagr-eut-name[TRANSITION3][ETATTCOURANT3]=( 

/*etal-suivant */ 
/* tnnsitions*/ 1 ,O. 

0,o. 
O*l, 
0.0 1 ; 

int dia~-er;it-compteur(TRANSInON4][ETAT-C0~4 ]={ 
/*etat-suivant */ 

/* transitions*/ 1 . 1 .  
o*o, 
0 8  1 ; 

int diagr-eut-word[TRANSITIONSJ[ETAT-COURANTS]=( 



if(( MO = fopen("gene.vhd1" ,"rw))=NUW-)/* ouverture du fichier du premier mutant*/ 
printf("ERREUR:le fichier source ne peut etre ouvert hW); 

else ( 
pnntf("fic hier iNV-SIG-TAB ouvert W); 
M 1 = fopen("INV-SIG-TAB"," w "); /*ouverture du fichier inventaire*/ 

while ((c=fgetc(MO)) !=EOR { 
switch(c) 

( 
case 'Se: 
case 's':transition=O; 
break; 
case '1': 
case 'i':lnnsition=l ; 
break; 
case 'G': 
case 'g1:uansition=2; 
break; 
case W': 
case 'n1:uansition=3; 
break; 
case 'A': 
case 'a1:transilion=4; 
break; 
case 1': 
case 'I':tnnsition=5; 
break; 
case ' ':~ansition=6; 
break; 
case ';':transition=7; 
break; 
default:tnnsition=8; 
break; 
1 
mcien,etat=ctat-couran(; 
ctat-courant= diagr-etat[transition)[eiat-courant]; 
switch(cbt-courant) 
( 
case 7: switch (ancicnetat) 
( 
case 6: 
fputc('sq,M 1 ); 
fputc('i',M 1 ); 
fputc('g'.M 1 ); 



fputc('n',M 1); 
fputc('a1.M 1); 
fputc('I',M 1); 
fputc(' ',M 1); 
break; 

1 
break; 

case 8: switch(ancien,et;it) 
( 
case 7:fputc(c,M 1); 

break; 
case 8:fputc(c,M 1); 

break; 
1 

break; 

case 9: switch(ancienetat) 
( 
case 8: 

fputc(c,M 1); 
fpu tc(hD,M 1); 
break; 

1 
break; 
default: 

break: 
1 
1 
fclosc(M 1 ); 
fclose(M0); 

1 

if(( M 1 = fopen("INV-SIG-TM" ."rn))=NULL)/* ouverture du fichier du premier mutant*/ 
printf("ERREUR:le fichier source ne peut etre ouvert hW); 

else ( 

M2 = fopen("TAl3-NAME"."wn);I/nom et type des signaux 
pnntf("fichier TAB-NAME ouvert \nu); 
while ((c 1 =fgetc(M l))!=EOF)( 
switch(c1) 

I 
case ':':transition3 =O; 

transition4 =O; 
break; 

case ';':transition3 =1: 
break; 

case '=':transition4 =1; 



transition3 =3; 
break; 

default: transition3 =2; 
transition4 =2; 
break; 

1 
ancien_el;it3=etat_couran13; 
etat-couranO= diagr-etat-narne[tt;uisition3][etattcouranr3]; 
if (cl=2n')( 

/* permet de controller les variables rentrees dans les hb*/ 

ancien-clat4=etat_courant4; 
ctat_counnt4= diagr-eht-name[transition4]fehttcourant; 
if(cl=':') (/* permet de mettre aussi le type */ 
compteur++;} 

if(Cj>S)&&(cornpteur==û))( /* on a directement le nom des signaux*/ 
tabnamefi-namelu-name]= I ; 
fputc(iabname[i-name]Ij_name].M2): 
j-name++; 

1 

/* on a directement le type du signal dans tabtype */ 
if(~>S)&&(compteur==i )) ( 

swi tch(ctat-courani3) 
{ 
case 1: 

switch(ancienetat3) 
( 
case 1: 
crrsc O: 

if(c 1 !=':') //test 
I 



tabtype[i-name][j,type]=c 1 ; /*attention les car : et ' ' sont dedans*/ 
fputc(tabt ype [i-name] Lj-typelM2); 
j-type++; 
1 

break; 
default: 

break; 
1 

break; 
default: 

break; 
1 

f 

if(Cj>5)P:&(compteul-2))( /*pour l'affichage */ 
compteur*; 

1 

1 
1 

/ * + + + + ~ t + + - f + + + + + + + + d e m i e r  signal m i s  dans un tableau--*/ 

if(( M 1 = fopen("TAI3-NAME" ,"rW))==NULL)/* ouverture du fichier du premier mutant*/ 
printf("ERREUR:le fichier source ne peut etre ouvert h"); 

clse( 
M2 = fopen("TEST","w"); /* que les noms des variables*/ 
pnntf("fic hier TEST ouvert ln"); 
while ((c2=fgetc(M 1 ))!=EOF)( 

if((c!=lng)&& (fla&name== 1)) ( 
fputs(tabname[i3].M2); 



/*CONVERSION DU FICHIER TEXTE EN CHAINE DE CARACIERES*/ 
M 1 = fopen("gene-chaine_word.vhdl",w); 
MO = fopen("gene.vhdlW ,"rb+"); 

switch(c){ 
case ' ':transitionS=û; 
break: 
case ';':transitionS=l; 
break; 
case '(':transition5=2; 
break; 
case ')':transition5=3; 
break; 
dcfault:transition5=4; 
break; 
1 
ancieneta15=e~t_courant5; 
ctatcourand= diagr,etat~word[transition5][et~cou~]; 

switch(etat-counnt5) { 
case O:if(c!=lr') //doit peut etre enleve 
fputc(c.M 1 ); 
i f(c==V) 
fputc(lnl,M I ); 

break; 
case 1 :switch (ancienetatS){ 

case O: 
default:if(c!=lr') 
fputc(c,M 1); 
clse 
fputc(ln',M 1); 
break; 
1 
break; 
case 2:fputc(c,M 1); 
break; 
case 3:fputc(c.M 1 ) ;  
fputc(lO',M 1 ); 
break; 
case 4: 



case S:fputc(c,Ml); //test on doit peut etre intervertir l'ordre 
fputc(lO',M 1); 
break; 
default: 
break; 
1 

// fin de la generation du fichier chaine de carateres 

/*CONVERSION DU FICHIER TEX772 EN CHAINE DE CARACIERES*/ 
M 1 = fopen("gene-chaine_word.vhdl","wl'); 
MO = fopen("gene.vhdlW ."rb+"); 
while((c=fgetc(MO))!=EOF){ 

switch(c)( 
case ' ':transition5=0; 
break; 
case ':':transitionS=l; 
break; 
case '(':tnnsition5=2; 
break; 
case @)':tnnsition5=3; 
break; 
defauit:transition5=4; 
break; 
1 
ancienetat5=etat-cownfi; 
etrit-courand= diagr~ctat-word[transition5][etat-cou~~; 

switch(etat_courant5)( 
case O:if(c!=lr') //doit peut etre enleve 
fputc(c,M 1 ); 

break; 
case 1 :switch (ancienetat5) ( 

case O: 
default:if(c!=lr') 
fputc(c.Ml); 
break; 
1 
break; 
case 2:fputc(c,M 1); 
break; 
case 3:fputc(c,M 1); 
fputc(lO',M 1 ); 



break: 
case 4: 
case 5:fputc(c.M 1); //test on doit peut etre intervertir l'ordre 
fputc(\O1,M 1 ); 
break; 
default: 
break; 
1 

// fin d e  la generation du fichier chaine de cmteres  

compteur-type=O; 
trimp=l; 
flag_white=O: 
j=O; 
M3 = fopen("TESn","w"); //fichier contenant les signaux de meme type 
MO = fopen("gene-chaine-worddvhdl","rb+"); 
M 1 = fopen("W0RD-TAB","wn); 

compt-mutant*; 
compteur-type 1++; 
sprintf(number1 ."Mut,sig%d",compteur-typel ); 
i_ident=j3; 
fputs(tabname[i3].M3); 
fputc(ln',M3); 
j=O: 



else 
{ 
word[O]~]=lO'; 
fputs(word[O],M 1); 
fputc(lO'J4 1); 
j=O; 
1 
if ((suc mp("data(35 downto 4)",worcl[O])==O)) 
I 
printf("comparaison \ri"); 
pos =ftell(MO); printf("la position du pointeur est %d inn,pos); 

sprintf(tata,"Mut-sig%dW.compteur-type); 
tampon = fopen(iata,"wW); 
fputs("REMPLACEMENT'N2); 
posM2=ftell(M2); 
while((c=fgetc(MO))!=EOF) 

fputc(cJ42); 
if(c=l\r? 
fputc(b'M2); 
1 
fclose(M2); 

//ajout 
fseek(M0.0,O); 
while(((c=fgetc(M0))!=EOF)&&(ftell(MO)~=posf)) { 
fputc(c,tampon); 
if(c=l\r') 
fputc('hb,tampon); 
1 
posiampon=ftelI(tampon); 
fclose(tampon); 
//fin d'ajout 

//on reecrit la fin du fichier 
tampon = fopen(tata,"a"); 
M2 = fopen("m~t-tampon",'~r~): 
while((c=fgetc(h42))!=EOF) 
( 
fputc(c,tampon); 
1 
//fin de la rcccriturc 



fclose (tampon); 
fclose(hii2); 
fseek(MO.pos,O); //on remet a la position courante 



//operateur de mutation CLR (cas d'un range) 

// constant limit replacement : test des valeurs limites dans le cas d'un range 
#indude estdioh> 
#inchde <string.h> 
#indude <stdlib.h> 
#define TRANSITION 7 
#define ETAT-COURANT 7 
void main0 
( 
unsigned char etat-courant; 
unsigned char ancien-etat; 
unsigned char tata[lO]; 
int c; 
int transition; 
int pos; 
int compteur-ch; 

FILE *MO=NULL; /*definition d u  pointeur file pour le fichier d'entrÈe81 
RLE *M 1 =NULL; 
FILE *M2=NULL; 
FILE *tampon=NULL; 
int ~~~~~-~u~[TRANSITION][ETAT-COURANT]=( 

/*eut-suivant */ 
/* transitions*/ 1,0,0,0,0,0,0, 

0,2,0.0,0.0,0, 
0.0.3,0,0.0.0. 
0,0,0,4,0.0,0, 
0,0,0,0,5,0.0. 
0.0,0,0,0,6,0, 
0,0,0.0,0.0.0 1 ; 

if(( MO = fopen("gene,test.vhdl" ,"r"))=NULLY* ouverture du fichier du premier muilint*/ 
printf("ERREUR:le fichier source ne peut etre ouvert \n"); 

eIsc 
( 
white ((c=fgetc(MO)) !=EOF) 
( 
switch(c) 
( 
case 'R': 
case Y:tnnsition=O; 
break; 
case 'A': 
case 's':transition= 1 ; 
break; 
case 'N': 



case 'n':transition=2; 
break; 
case 'G': 
case 'g':transition=3; 
break; 
case 'E: 
case 'e': tram i t i o n 4 ;  
break; 
case ":transition=5: 
break; 
default:transition=6; 
break; 
I 
ancien,etat==etat-courant; 
etat_coumt= diagr-etat[transitionJ[etat-courant]; 
switch(etat-courant) 
( 
case O: 
break; 
case 1 : 
case 2: 
case 3: 
case 4: 
case 5: 
break; 
case 6: 
M 1 = fopcn("rnut- tampon","^"); 
pos =ftell(MO); 
compteur-ch++; 
sprintf(tata,"Mutcwd".compteur-clr); 
tampon = fopen(tataVnw"); 
fputc(c,Ml); 
fputcr 1 '.M 1); 
fputc(*+',M 1 ); 

// ecriture de  la fin du fichier 
while((c=fgctc(MO)) !=EOF) 
I 
fputc(c,M 1); 
i f(c =L') 
fputc(ln1.M 1); 
1 
fclose(M 1); 
// fin ecriture 

//ajout du debut du fichier 
fseek(M0.0.0); 
while(((c=fgetc(MO))!=EOF)&&(ftell(MO)<~s)) 
fpu tc(c,tampon); 
fclosc(tarnpon); 
//fin d'ajout 



//on reecrit la fin du fichier 
tampon = fopen(tata,"aU); 
M 1 = fopen("mut-tampon","rn); 
while((c=fgetc(M 1 ))!=EOF) 
{ 
fputc(c.tampon); 
1 
//fin de la reecriture 

fclose (tampon); 
fclose(M 1); 
fseek(MO.pos.0); //on remet a la position courante 
break; 
default: 
break; 
1 
1 
fclose(M 1); 
fclose(M0); 
1 

1 



//operateur de mutation CLR (cas d'une consîante) 

#include estdioh> 
#include <string.h> 
#include <stdlib.h> 
Mefme TRANSITION 1 1 
Mefine ETAT-COURANT 13 
void maino 
f 
unsigned char etat-counnt; 
unsigned char ancienetat; 
unsigned char tata[IOJ; 
unsigned char clr-rn-chaine[ 1 O]; 
int c; 
int transition; 
int pos; 
in t pos-minus; 
int compteur-ch; 
int flag; 

FILE *MO=NULL; /*definition du pointeur file pour le fichier deentrÈe*/ 
FILE *M 1 =NULL; 
FEE *M2=NULL; 
FILE *tarnpon=NULL; 
FILE *tampon-rninus=NULL: 
int diagr-etat(TRANS~0NIfETAT-COURANTj=( 

/*eut-suivant */ 
/* transitions*! 1,0,0,0.0,0,0,0.0,9,11,11 ,O, 

0,2,0,0,0.0,0,0,0,9,11 , I  1.0. 
0.0.3.0,0,0.7,0,0.9,11,! 1.0. 
0,0.0.4,0,0.0.0.0.9,11,I1.0. 
0,0.0,0,5,0.0,8.0.9.1 i ,  11 ,O. 
0,0,0,0,0,6,0,0,0,9,11,11 .O, 
0,0.0,0,0,0,0.0,0.10* 11 * 1 1 .O, 
0.0.0.0.0.0,0,0,0.9.11,11 ,O, 
0,0,0,0,0,0,0,0,9,9,1 f , I I  ,O, 
0,0,0.0,0.0,0,0*0,0*11~ 12*0} ; 

if(( MO = fopen("gene-test.vhdln ,"r"))=NULLy* ouverture du fichier du premier mutant*/ 
printf("ERREUR:le fichier source n e  peut etre ouvert \n"); 

clsc 

( 
whiIe ((c=fgetc(MO))!=EOF) 
( 



switch(c) 
I 
case 'C: 
case 'c':uansitïon=O; 
break; 
case '0': 
case 'o':transition=l; 
break; 
case 'N': 
case 'n1:transition=2; 
break; 
case 'S': 
case 's':transition=3; 
break; 
case 'T: 
case 't*:transitionA; 
break: 

case 'A': 
case 'a':transition=5; 
break; 

case '=':transitjon=6; 
break; 

case ' ':uansition=8: 
break; 

case ';':transi tion=9; 
break; 

default:transition=7; 
break; 
1 
ancien-eta:=eht-coumt; 
etatcourant= diagr-etrit[transition][etat,courant]; 
switch(etat-courant) 
{ 
case 0: flag=O; 

break; 
case 1 : 
case 2: 
case 3 : 
case 4: 
case 5: 

case 6: 
case 7: 
case 8: 
case 9: 

break; 
case 10: 
M 1 = fopcn("tampon~~onsp~*,~w~*); 
pos =ftell(MO); 
CO mp te ur-c lr++; 
sprintf(tata."Mut~clr_const%d".compteur~clr); 
tampon = fopen(iata,"w"); 



// ecriture de la fin du fichier 
while((c=fgetc(MO))!=EOF) 
{ 
f p ~ t c ( ~ , M  ! j; 
if(c=W) 
fputc(lnl.M 1 ); 
1 
fclose(M 1); 
Il fin ecriture 

//ajout du debut du fichier 
fscek(M0.0.0); 
whiie(((c=fgetc(MO))!=EOF)&&(ftell(Mû)<=pos)) 

( 
fputc(c,tmpon); 

1 

//fin d'ajout 

//on rcecrit la fin du fichier 
tampon = fopen(tata,"am); 
M 1 = fopen("tarnpon-consp'*,"rt'): 
whilc((c=fgetc(M 1 ))!=EOF) 

fpu tc(c.tampon); 
1 

//fin de la reecriture 

fclose (tampon); 
fclose(M 1); 
fseek(MO.pos.0); //on remet a la position courante 
break; 

case 1 1 :pas-minus =ftell(MO): 
if(c!='O') 
hg++;  

break; 

case 1 S:if(flag!=O) 
{pnntf("je rentre2 b"); 

{ 
// pos-minus =ftell(MO); 
M2 = fopen(*'tarnpon~consmm."wt'); 
compteur-ch++; 
sp~nd(clr_m~chaine,"Mut~clr~const%dm.compteur~clr); 



// ecriture de la fin du fichier 
w hile((c=fgetc(MO))!=EOF) 
{ 
fputc(c,M2); 
i f(c=k') 
fputc(ln'J42); 
1 
fclose(M2); 
// fin ecriture 

//ajout du debut du fichier 
fseek(M0.0.0); 
while(((c=fgetc(M0))!=EOF)&&(ftell(MO)<=pos~minus)) 

fputc(c,tarnpon-minus); 
fclose(tampn,minus); 

Ilfin d'ajout 

//on reecrit la fin du fichier 
tampon-minus = fopcn(c1r-m-chainc,"an); 
M2 = fopen("tarnpon-consm","rW); 

while((c=fgetc(M2))!=EOF) 
{ 
fputc(c.tampon~rninus); 
1 
//fin dc la rcecriture 

fclose (tampon-minus); 
fclose(M2); 

fseek(M0,pos.O); //on remet a la position courante 
1 

break; 
default: 
break; 
1 
1 

fclose(M2); 
fclose(M 1);  
fclose(M0); 
1 

1 



//operateur de mutation S M R  

#inchde <stdio.h> 
#inc tude <string.h> 
#inchde cstd1ib.b 
#de fi ne TRANSITION 1 7 
#de fine ETAT-COURANT 22 
void main0 
{ 
unsigned char etat-courant; 
unsigned char ancien-etat; 
unsigned char sMrchaine[ 101 ; 
unsigned char clr-mchainef 101; 
long binaire[3 11; 
int c; 
int i; 
int i-max; 
int transition; 
int pos; 
int pos-minus; 
int compteur-clr; 
int flag; 
int flag-binaire; 

FTLE *MO=NULL; /*definition du pointeur file pour le fichier d'enuÈe*/ 
FILE *M 1 =NULL; 
m E  *M2=NULL; 
FlLE *tampon=NULL; 
RLE *tampon-minus=NULL; 

int diagr-eut-svir[TRANSITION][ETAT-COURANT]={ 
/*eiat,suivant */ 

/* transitions*/ 1,0.0,0,0.0,0,0,8,10,10,0,0,0,0,0,0,0,0,0,0, 
0,2,0,0,0,0,0,0,8,10.10.0,0,0,0,0.0.0.0,0,0, 
0,0,3,0,0,0,7,0,8,10,10,0.0,0,0,0.0,0,0.0,0, 
0,0.0,4,0.0.0,0,8,10,10,0,0,0,0,0,0,0~0~0,0, 
0,0,0,0,5,0,0,8,8,10, 10,0,0,0.0,0,0,0.19.0,0, 
0.0,0,0,0,6,0,0.8,10.10.12,0,0,15,0,0.0,0,0.0. 
0,0.0,0,0.0.0.0,8,10.10.0,0,14,0,0.0.0,0~0,0, 
0,0,0,0,0,0,0,0,8,10,10.0.0,0.0,16,0.0.0,0,0, 
0,0.0,0,0,0,0,0,8,10,10,0,0.0.0,0,17,0,0,0,0~ 
0,0,0,0,0,0,0,0,8,10,10,0,0.0,0.0.0,8,0,0,8, 
0,0.0.0,0.0,0,0,8.10.10,0,0,0,0,0,0,0,19~0.0, 
0,0.0,0,0.0.0.0,8.10.10,0.0,0,0,0,0.0.0,20.0, 
0,0,0,0,0,0.0,0,9,10,10,0,0,0,0,0,0.0.0.0,0, 
0,0,0,0,0,0,0,0,8,10,10,0,0,0~0,0.0,0,0,0,0, 
0,0,0,0,0,0,0,0,8,10,101,0,0,0,0,0,0,0,0,0,0); 



if(( MO = fopen("gene-test-vhdl" ,"r"))=NULL)/* ouverture du fichier du premier mutant*/ 
printf("ERREüR:le fichier source ne peut etrc ouvert in"); 

else 
I 
while ((c=fgetcWO))!=EOF) 
( 
switch(c) 
( 
casc 'Cg: 
case 'c':transition=O; 
break; 
case '0': 
case 'o':transition= 1 ; 
break; 
casc 'N': 
casc 'ng:transition=2; 
break; 
case 'S.: 
case 's':transition=3; 
break; 
case T: 
casc 't':t.ransition=.l; 
break; 

case 'A': 
case 'a':transition=S; 
break; 

case 'R': 
case 'r':transition=6; 
break; 

case 'I': 
case 'i':transition=7; 
break; 

case '8': 
case 'b9:transi tion=8; 
break; 

case Z': 
case 'l':transi tien*; 
breri k; 

case 'E': 
case 'ev:transition= 10; 
brcak; 



case 'Y': 
case 'yD:transition=l 1 ; 
break: 

case 'P': 
case 'pl:transi tion= 1 2; 
break; 

case ':':transition=13; 
break; 

case '=': transition=l4; 
break; 

case ';':transition= 15; 
break; 

default:transition=16; 
break; 
1 
ancien-eiat=etat-courant; 
etat-courant= diagr-eut-svir[tracsition][etat-counnt]; 
switch(etat-courant) 
{ 
case O: //flag=O; 

//break; 
case 1 : 
case 2: 
case 3: 
case 4: 
case 5: 

case 6: 
case 7: 
case 8: 
case 9: break; 
case lO:if(c="") 

fiagbinaire= 1 ; 
if(c!="") 

( 
binaire[i++]=c; 

1 
break; 
case 101: 
M 1 = fopen("mmpon-svul"w "); 
pos =ftell(MO); 
compteur-ch++; 

sprintf(svü~chaine,"Mut~svi~od",compteur~clr); 
tampon = fopen(svir-chaine,"w"); 

if(flag-binaire=+)) 
( 
fputc('1 '.M 1); 



// ecrïture de la fin du fichier 
w hile((c=fgetc(MO)) !=EOF) 
i 
fputc(c,M 1 ); 
if(c=lr') 
fputc(lnl,M 1 ); 
1 
fclose(M 1); 
// fin ecriture 

//ajout du debut du fichier 
fseek(M0.0.0); 
while(((c=fgetc(M0))!=EOF)&&(ftelI(MO)<=pos)) 

( 
fputc(c,tampon); 

1 

//fin d'ajout 

//on rcccrit la fin du fichier 
tampon = fopen(tata,"aN); 
M 1 = fopen("tampon,conspn."r'*); 
whilc((c=fgetc(M I))!=EOF) 
( 
fputc(c,tarnpon); 
1 

fclose (tampon); 
fclose(M 1); 
fseek(MO.pos.0); //on remet a la position courante 
break; 

case 1 1 :FOS-minus =ftell(MO); 
if(c !='O? 

flag*; 
brcak; 



case 12:if(flag!=û) 
( 

{ 
// pos-minus =ftelf(MO); 
M2 = fopen("tmpon~consmn.'*w~); 
compteur-clrt+; 
sprhtf(clrLrmmchaine,Mut~clrm~~nst%dn,~ompteurf clr); 
tampon-minus= fopen(clr-m-chaine,"wn); 
fputc('-'M2); 
fputc('1 ',M2); 
fputc(c,M2); 

1 
// ecriture de la fm du fichier 

while((c=fgetc(MO))!=EOF) 

fputc(c,M2); 
if(c=l\r') 
fputc(ln'Jbi2); 
1 
fclose(M2); 
// fin ecriturc 

//ajout du debut du fichier 
fseek(M0.0.0); 
while(((c=fgetc(MO)) !=EOF)&&(ftelI(MO)<=pos-minus)) 

//fin d'ajout 
//on reecnt la fin du fichier 

tampon-minus = fopen(clr-m-chaine,"a"); 
M2 = fopen("tampon-consm","rW); 

while((c=fgetc(M2))!=EOF) 

fputc(c,tampon-minus); 
1 
//fin de Ia reecriture 

fclose (tampon-minus); 
fclose(M2); 

fseek(MO,pos,O); //on remet a fa position courante 
1 

break; 
dcfault: 
break; 
1 
1 

fclosc(M2); 
fclosc(M 1); 
fclose(M0); 
1 

1 



//operateur de mutation LCR 

#inchde es td i0 .b  
#inchde <suing.h> 
#inchde cstd1ib.b 
#de fine TRANSITION 9 
#de fine ETAT-COURANT 1 6 
void maino 
( 
unsigned char etatcourant; 
unsigned char Icr-chine1 [lO]; 
unsigned char Icr-chaine2[10]; 
unsigned char Icr_chaine3[10]; 
unsigned char lcr-chaine4[10]; 
int c; 
int transition; 
int pos; 
int compteur-lcr, 
FILE *MO=NULL; /*definition du pointeur file pour le fichier d'entrée*/ 
FILE *M 1 =NULL; 
FILE *MZ=NULL; 
FILE *M3=NULL; 
FTLE *M4=NULL; 
FILE *tampon 1 =NULL; 
FILE *trimpon2=NULL; 
FILE *tampon3=NULL; 
FILE *tampon4=NULL; 

int diagr-eut-lcr[TRANSITION][ETAT-COURANT]={ 
/*eut-suivant */ 

/* ir;insitions*l 1.0,0.0,5,0,0,0,0,0,0.0,0,0,0.0, 
4.2,0,0,0,6,0,0,11 ,O,O,O,O,O,O,O, 
0.0,3.0,0,0,7,0,0,0,0,0,0,0.0. 
14,0,0,0,0,0,0,0,9,0.0,12,0.0.0,0, 
0.0,0,0,0,0,0,0.0,10,0,0,13,0.15,0, 
8.0.0,0.0,0*0.0.0,0,C.0,0,0,O.0, 
0.0.0,0,0.0,0,0,0.0,0,0,0,0,0.0 1; 

if(( MO = fopen("gene.txt" ,"r"))=NULL)/* ouverture du fichier du premier mutant*/ 
printf("ERREUR:le fichier source ne peut e u e  ouvert hW); 

else 
( 
while ((c=fgetc(MO))!=EOF) 

I 
switch(c) 

case 'A': 



case 'a':transition=O; 
break; 

case 'N': 
case 'n':transition=l; 

break; 
case 'Dg: 
case 'dq:tr;insition=2; 

break; 
case '0': 

case 'O':tnnsition=3; 
break; 

case 'R': 
case 'r': transition=4; 

break; 
case 'X': 
case 'x': transition=S; 

break; 
default:transition=6; 

break; 
1 

eut-courant= diag-wt-lcr[~ansition][etat_co~f;int]; 
switch(etat-courant) 

( 
case O: 
case 1: 
case 2: 

break; 
case 3: 

M 1 = fopen("tampon-or-lcr","wl'); 
M2 = fopen("tarnpon~xor~lcre',"w"); 
M3 = fopen(nt;impon~xnor~lcr",n~'*); 
M4 = fopen("tâmpon-nand_Icrn,*w"); 
comptcur_lcr++; 
sprintf(lcr-chaine 1 ."Mu t,lcfid".cornpteur-kr); 
tampon 1 = fopen(lcr-chainel ,"wW); 
compteur-la++; 
spnntf(lcr~chaine2,"Mut~lcfidn,compteur~lcr); 
tampon2 = fopen(1cr-chaine2,"w"); 
compteur-lcrtt; 
sprintf(lcr~chaine3."Mut~lcfidn~compteur~Icr): 
t m p o n 3  = fopen(1cr-chaine3,"wn); 
compteur-lcr++; 
sprintf(lcr~chaine4,"Mut~lcr%d".compteur~icr); 
tampon4 = fopen(1cr-chaine4.w); 
fputs("or",M 1 ); 
fputs("xor",M2); 
fputs("xnorw,M3); 
fputs("nand",M4); 
pos =ftell(MO); 

// ccriturc dc la fin du fichier 



while((c=fgetc(MO)) !=EOF) 

fputc(c,M 1 ); 
fpu tc(cM2); 
fpu tc(cN3); 
fpu tc(cN4); 
if(c=V) 

( 
fputc(ln*,M 1); 
fpu tc(ln'Jb42); 
fputc(ln',M3): 
fputC(lri'JM4); 

1 
1 

fclose(M 1); 
fclose(M2); 
fcIose(M3); 
fcIose(M4); 

// fin ccriture 

//ajout du debut du fichier 
fsee k(M0.0,O); 
while(((c=fgctc(MO))!=EOF)&&(ftell(MO)<=pos-3)) // pos -3 a cause de and 

( 
fputc(c,tampon 1); 
fputc(c.tampon2): 
fputc(c.tampon3): 
fputc(c,tampon4); 

t 
fclose(tampon 1); 
fclose(tampon2); 
fclose(tampon3); 
fclose(tampon4); 

//fin d'ajout 

//on reecrit la fin du fichier 
tampon 1 = fopen(1cr-chainel ."a"): 
tampon2 = fopen(1cr-chaine2,"a"): 
tampon3 = fopen(Icr-chaine3,"a"); 
tampon4 = fopen(1cr-chaine4,"av*): 
M 1 = fopcn("tampon-or,lccnI"r"); 
M2 = fopen("mmpon~xor,lcr'*~"r**): 
M3 = fopcn("iampon~xnor~Icr"~"rn); 
M4 = fopen("tampon-nand-1cr","rv); 



1 
while((c=fgetc(M3))!=EOF) 

fpu tc(c.tampon3); 

j 
//fin de la rcecriture 

fclose (tamponl); 
fclose (fampon2); 
fclose (tampon3); 
fclose (îampon4); 
fclose(h4 1 ); 
fclose(M2); 
fclose(M3); 
fclose(M4); 
fseek(MO.pos,O); //on remet a la position courant 
break; 

case 4: 
case 5: 
case 6: 

break; 
case 7: 

M 1 = fopen("tampon-or-lcr","wN); 
M2 = fopen("tampon-xor-lcrN,"w"); 
M3 = fopen("trimpon~xnor~lcr","w"); 
M4 = fopen("tiimpon-and_Icr","w"): 
compteur-lm*; 
sprintf(1cr-chaine 1 ,"Mut~lcr%d",compteur~lcr); 
tampon 1 = fopen(1c-hainel ,"wu); 
compteur-lm++; 
sprintf(lcr~chaine2."Mut~Icr%odn,compteur~lcr); 
tampon2 = fopen(1cr-chaine2."wn); 
compteur-lm++; 
s p r i n t f ( l c r ~ c h a i n e 3 , " M u t ~ I c ~ 0 d ~ , c o r n p ~ :  
tampon3 = fopen(lcr-chaine3,wW); 
compteur-lcru; 
sprintf(lcr~chaine4,"Mut~1cfid~,compteur~lcr); 
tampon4 = fopen(lcr-chaine4,"wn); 



pos =ftell(MO); 

// txriture de la fin du fichier 
while((c=fgetc(MO))!=EOF) 

{ 
fputc(cM 1 ); 
fputc(c,M2); 
fputc(cM3); 
fputc(c,M4); 
if(c==lr') 

I 
fputc(W.M 1); 
fputc(W,M2): 
fpu tc(b'.M3); 
fpu tc(h'M4); 

1 
1 

fclose(M 1 ); 
fclose(M2); 
fclose(M3); 
fclose(M4); 
// fin ecriture 

//ajout du debut du fichier 
fseek(M0.0.0); 
while(((c=fgetc(h.iO))!=EOF)&&(ftell(MO)<=pos-4)) Il pos 4 a cause de nand 

( 
fputc(c,tampon 1 ); 
fputc(c.tampon2); 
fputc(c.tampon3); 
fputc(c.tampon4); 

1 

//fin d'ajout 

//on reecrit la fin du fichier 
tampon 1 = fopenflcr-chainel ,"aw); 
tampon2 = fopen(lcr-chaine2,"an); 
tampon3 = fopen(lcr-chaine3,"an); 
tampon4 = fopen(1cr-chaine4,"aW); 
M 1 = fopen("~ampon-or-lcr","r"); 
M2 = fopen("tampon-xor,lcr","r"); 
M3 = fopen("tampon~xnor~lcr","r"); 
M4 = fopen("tampon-and-lcr"."rn); 



1 
//fin de la reecriture 

fclose (tampon 1); 
fclose (tampon2); 
fclose (tampon3); 
fclose (tampon4); 
fclose(M 1); 
fclose(M2); 
fclose(M3); 
fclose(M4); 
fseek(MO.pos.0); //on remet a la position courante 
break; 

case 8: 
case 9: 

break: 
case 10: 
M 1 = fopen("tampn-and-1cr1',"w"); 
M2 = fopen("1ampn-or-lcr"."~"); 
M3 = fopen('*tampon-xnor-l~r",~ wn); 
M4 = fopen("tampon-~nd-lcr","wn); 
compteur-/cr++; 
sprïntf(1cr-chainel ,"Mut-lcP/cd".compteur-lcr); 
tampon 1 = fopen(1cr-chainel ."wW); 
compteur-lcru; 
sprintf(lcr~chaine2,"Mut~Icfidn,compteur~lcr); 
tampon2 = fopen(1cr-chaine2,"w"); 
compteur-lcrtt; 
sprintf(lcr~chaine3."Mut~Icr%dn,comp~1cr); 
tampon3 = fopen(1cr-chaine3.w); 
compteur-lm++; 
sprintf(lcr~chaine4,"Mut~lcr%d1',compteur~lcr); 
tampon4 = fopen(lcr-chaine4,"wW); 



fputs("andW,M 1); 
fputs("orw,M2); 
fputs("xnorn,M3); 
fputs("nand"Jd4); 
pos =ftell(MO); 

// ecriture de la fin du fichier 
while((c=fgetc(MO))!=EOF) 

I 
fputc(cJ4 1); 
fputc(c,M2); 
fputc(cM3); 
fpu tc(cM4); 
if(c=lr') 

{ 
fputc(b'.M 1); 
fputc(ln'M2); 
fputc(lnW,M3); 
fputc(ln8,M4); 

1 
1 

fclose(M 1 ); 
fclose(hl2); 
fclose(M3); 
fclose(M4); 
// fin ecnture 

//ajout du debut du fichier 
fseek(M0,0,0); 
while(((c=fgetc(M0))!=EOF)&&(ftell(MO)~=pos-3)) // pos -3 a cause de xor 

( 

fclose(tmpon 1); 
fctose(tmpon2); 
fclose(tampon3); 
fclose(tampon4); 
//fin d'ajout 

//on reecrit la fin du fichier 
tampon 1 = fopcn(1cr-chainel ,"aw); 
tampon2 = fopen(1cr-c haine2,"aN); 
tampon3 = fopcn(1cr,chaine3,"an); 
tampon4 = fopen(lcr,chaine4,"a1'); 
M 1 = fopen(**tampon-and-lcr","rW); 
M2 = fopen("tamp~n-or-l~"~~r'*); 
M3 = fopen("tampon~mor~lcrn,'*rw); 



fclose (tampon 1); 
fclose (tampon2); 
fclose (tampon3); 
fclose (tampon4); 
fclose(M 1); 
fclose(M2); 
fclose(M3); 
fclose(M4); 
fseek(MO.pos.0); //on remet a la position courante 
break; 

case 11: 
case 12: 

break; 
case 13: 
M 1 = fopen("tarnpon~or~l~r~,~w"); 
M 2 = fopen("tampon,xor-lcr","wn); 
M3 = fopen("tampon-and-lcrn,w); 
M4 = fopen('*tarnp~n-n~nd~I~~~, w"); 
compteur-lcrt+; 
sprintf(1cr-chaine 1 ."Mut-lcr%dn,compteur-lcr); 
tampon1 = fopen(1cr-chainel,"wW); 
compteur-lm++; 
sprintf(lcr~chaine2,"Muttlc~d",cornpteur~lcr); 
tampon2 = fopen(1cr-chaine2,"wn); 



fputs("or",M 1); 
fputs("xorU,M2); 
fputs("andW,M3); 
fputs("nmdW.M4); 
pos =ftell(MO); 

// ecriture de la fin du fichier 
whiIe((c=fgetc(MO))!=EOF) 

{ 
fputc(c.M 1) ;  
fputc(c,M2); 
fputc(cM3); 
fputc(c M4); 
if(c=V) 

( 
fputc(ln'&ll); 
fputc(b'.M2); 
fputc(W,M3); 
fpu tc(ln',M4); 

1 
1 

fclose(h4 1); 
fclose(M2); 
fclose(M3); 
fclose(M4); 
// fin crriturc 

//ajout du debut du fichier 
fseek(M0,O.O); 
w hile(((c=fgctc(MO)) !=EOF)&&(ftell(MO)<=pos-4)) // pos -4 a cause de xnor 

{ 
fputc(c,iarnpon 1); 
fputc(c.tarnpon2); 
fputc(c,rampon3); 
fputc(c.tampon4); 

1 

//fin d'ajout 



//on reecrït la fin du fichier 
tampon 1 = fopen(1cr-chainel ."an); 
tampon2 = fopenflcr-chaine2,"a"); 
tampon3 = fopen(lcr-chaine3,"aW); 
tampon4 = fopen(lcr-chaine4,"aU); 
M 1 = fopen("tampon-or_l~f".~r"); 
M2 = fopen("tampon-~or-lcr",~r"); 
M3 = fopen("~pon,anddlcr"~"rn); 
M4 = fopen("tampon-nand-ld,"rw); 

fclose (tampon 1); 
fclose (tampon2); 
fclose (tampon3); 
fclose (tampon4); 
fclose(M 1); 
fclose(M2); 
fclose(M3); 
fclose(M4); 
fseek(M0,pos.O); //on remet a la position courante 
break; 

case 14: 
break; 

case 15: 
M 1 = fopen("crimpon~xnor~!cr","w"); 
M2 = fopen("crimpon-xor_Icr","w"); 
M3 = fopcn("tampon-and-lcr"," w lu); 

M4 = fopen("Umpon-nûnd-Ic~'*~"w"); 
compteur-lcr*; 
sprintf(lcr-chaine1 ."Mut-lcfid",compteur-lcr); 



tampon 1 = fopen(lcr,chaine 1 ,"wW); 
compteur-lm++; 
sprintf(lcr~chaine2,"Mut~lc~0d",compteur~lcr); 
tampon2 = fopen(lcr-chaine2,"w*'); 
compteur-]cru; 
spnntf(lcr~chaine3,"Mut~Ic~dn,compteur~1~); 
tampon3 = fopen(1cr-c haine3,"w"); 
compteur-lcru; 
spnntf(lcr~chaine4,"Mut~lcr%d",compteur_lcr); 
tampon4 = fopen(1cr-chaine4,"wm); 

fputs("xnorn,M 1 ); 
fputs("xorn.M2); 
fputs("andW,M3); 
fputs("nand",M4); 
pos =ftell(MO); 

// ecriture de  la fin du fichier 
whiIe((c=fgetc(MO)) !=EOF) 

I 
fputc(c,M 1); 
fpuic(c,M2); 
fputc(cM3); 
fpuic(cM4); 
if(c==V) 

{ 
fputc(ln'J4 1); 
fpu tc(\n0M2); 
fputc(lna.M3); 
fpu tc(ln'N4): 

1 
1 

fclose(M 1 ); 
fclose(M2); 
fclose(M3); 
fclose(M4); 
// fin ecriture 

//ajout du debut du fichier 
fsce k(M0,O.O); 
while(((c=fgetc(MO))!=EOF)&&(ftell~O)<=pos-2 // pos -2 a cause de or 

f 
fputc(c.tampon 1); 
fputc(c.tampon2); 
fputc(c.tampon3); 
fputc(c,tampon4); 

1 



//on reecrit la fin du fichier 
tampon 1 = fopen(lcr-chainel ,"aw); 
tampon2 = fopen(1cr-chaine2,"an); 
tampon3 = fopen(lcrçhaine3,"a"); 
tampon4 = fopen(1cr-chaine4,"an): 
M 1 = fopen("tampon,mor,Icrn."rw); 
M2 = fopen("~pon,xor,lcrn."rU); 
M3 = fopen("tampon,and,lcrn,"r"); 
M4 = fopen("tampon,nand-lan ."rn); 

fclose (îampon 1); 
fclose (tampon2); 
fclose (tampon3); 
fclose (îampon4); 
fclose(M 1): 
fclose(M2); 
fclose(M3); 
fclose(M4); 
fseek(M0,pos.O); //on remet a la position courante 
break; 

default: 
break; 

1 
1 

fc1osc(M0): 
1 

1 




