POLYTECHNIQUE

POLYPUBLIE e |

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre: Validation de circuits numériques utilisant le principe du test par
Title: mutation

Auteur:
Author:

Date: 1999

Type: Mémoire ou thése / Dissertation or Thesis

Patrice Vado

Référence: Vado, P. (1999). Validation de circuits numériques utilisant le principe du test par
... . mutation [Mémoire de maitrise, Ecole Polytechnique de Montréal]. PolyPublie.
Citation: nttps://publications.polymtl.ca/8635/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) C
PolyPublie URL: https://publications.polymtl.ca/8635/

Directeurs de
recherche: Yvon Savaria
Advisors:

Programme:

Program: Non spécifié

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/8635/
https://publications.polymtl.ca/8635/

UNIVERSITE DE MONTREAL

VALIDATION DE CIRCUITS NUMERIQUES UTILISANT LE PRINCIPE DU TEST
PAR MUTATION

PATRICE VADO
DEPARTEMENT DE GENIE ELECTRIQUE ET DE GENIE INFORMATIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L'OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE ELECTRIQUE)

20 AOUT 1999

© PATRICE,VADO 1999.

vl

National Library 8ibliotheque nationale

Your fi@ Votre réference

Our file Notra reférence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de

of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-

exclusive licence allowing the

National Library of Canada to

reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése m des extraits substantiels
de celle-ci ne doivent étre imprmeés
ou autrement reproduits sans son
autonisation.

0-612-48874-8

Canada

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

VALIDATION DE CIRCUITS NUMERIQUES UTILISANT LE PRINCIPE DE TEST
PAR MUTATION

présenté par:_VADO PATRICE
en vue de I’obtention du diplome de: Maitrise és sciences appliquées

a été ddment accepté par le jury d’examen constitué de:

M. BOIS Guy, Ph. D., président
M SAVARIA Yvon, Ph. D., membre et directeur de recherche
M. SAWAN Mohamad , Ph. D., membre

REMERCIEMENTS

Bien qu’il soit d’habitude établi de remercier en premier le directeur d’études, j’aimerais
remercier mon pere, celle qui est 3 mes cotés et mes fréres pour leurs constants

encouragements.

Je tiens a remercier Monsieur Savaria qui a guidé mes recherches et qui par ses nombreux
conseils éclairés m’a permis d’achever mon travail. Il a été d’un grand soutien aussi bien
professionnel que personnel. Je le remercie d’avoir trouvé le temps de suivre le

déroulement de mes travaux et de les avoir orientés dans le bon sens.

Je tiens a remercier Monsieur Yannick Zocarrato ainsi que I’équipe VALSYS de
Grenoble. Leur appui et leur compréhension tout au long de la collaboration m’a permis

d’explorer de nouvelles voies.

Je remercie Monsieur Boukari Zahir avec qui j’ai travaillé sur le simulateur Pulse et qui

m’a permi de découvrir un autre aspect de la validation.

Je remercie Monsieur Paul Marriot, Ivan Kraljic. Nicolas Contandriopoulos et toute

I'équipe Pulse pour leur soutien constant durant mon séjour dans I’équipe.

Enfin. merci a toute I'équipe du GRM pour leur soutien...

RESUME

Les systémes numériques augmentent continuellement en taille et en complexité. La
performance des circuits intégrés double tous les deux ans. En raison d'une trop grande
complexité certaines fonctionnalitées ne sont pas vérifiées, réduisant alors la confiance
dans les circuits. La complexité actueile des circuits révele les limitations des méthodes
traditionnelles de vérification par simulation. Afin de répondre a ces limitations. les
méthodes formelles de vérification tentent d’utiliser la rigueur mathématique afin de
prouver I’exactitude d’un circuit. Cependant, la rigueur du formalisme ainsi que le peu

d’outils performants réduisent une utilisation industrielle fréquente.

Ce mémoire propose une méthodologie de validation et d’enrichissement de vecteurs de
validation de circuits numériques basée sur le test par mutation consistant a insérer des
fautes spécifiques dans un langage de description matériel tel que VHDL. Le programme
contenant la faute spécifique est alors appelé mutant. La validation de la méthode
proposée a été réalisée sur différents bancs d’essais décrits en langage VHDL et simulés a
I’aide de Synopsys. Un algorithme d’enrichissement des vecteurs de validation ainsi
qu’un générateur de mutants ont été écrits en langage C. L'utilisation de cette méthode a
montré qu’il était nécessaire de disposer d’un espace disque important, puisque le nombre
de mutants générés est grand. Un certain nombre de concepts, tei que la contr6labilité et
I"observabilité, provenant du domaine du test matériel ont ét€ empruniés afin d’expliquer
la réduction de la couverture des mutants. Par ailleurs, une métrique appelée score de

mutation a été utilisée afin de quantifier la qualité d’un jeu de vecteurs de validation.

vi

ABSTRACT

Digital systems continuously grow in scale and functionality. In addition, the performance
of integrated circuits (IC) doubles every two year. Due to the growing complexity,
functionalities are not fully verified which reduce the confidence in designs. That growing
complexity unravels the limitations of traditional verification methods based on
functionnal simulation. To address these limitations, formal methods and tools for
specifying and verifying such systems have been proposed. However, the complexity of
formal notations and the practical limitations of available tools reduce their use in

industry.

This master proposes a methodology based on mutation testing for validating and
enriching a set of functional validation vectors for digital circuits. This methodology
iniects specific faults in a hardware description language description such as VHDL. A
program which contains a fault is called a mutant. The validation of the proposed
methodology was realized on VHDL benchmarks that were simulated with Synopsys. A
mutant generator and a test suite enriching algorithm were written in the C programming
language. Existing mutation testing tools were shown to require a lot of memory to
analyze small functional descriptions. A metric called mutation score was used to quantify
the quality of a vector set. Justification and observability concepts were applied to

mutation testing to explain the reduction of the mutation score.

vii

TABLE DES MATIERES

REMERCIEMENTS IV
RESUME \ 7
ABSTRACT A\’ |
TABLE DES MATIERES vl
LISTE DES TABLEAUX X1
LISTE DES FIGURES X1
INTRODUCTION - 1
CHAPITRE 1 : METHODES DE VALIDATION 8
1.1 MO FOIMEIIC. .. e oot eeee e e reeseansasasseaaesarann s an s smaananemnaenemee 8
11T INETOQUCHION ..ottt rtieeerersscssansenssnsnessesnsnssssnssssessssssamsnasssssnnssennen 8

1.1.2 VErification dU MOAEIEe oo eeeeeeeeeeceeteeeeeesraseessacsnsnnssssaansnas 10

[.1.3 Démonstration de thEOTEME...........cvveureerrmmnremeerremeiecnnceerneneneerresessesssssssenss 14

L1.1.4 CONCIUSIONoueieeieieeeeieviet e eeeeseeveesesnsesesassnseesanaannnsssnsnnnsnssnssnnansennsssnsnn 15

12 TeSt PAr TNULALION ...ccooiiiiiiiiiiiniie e e ccee e se e sscs s s ss e e s e s e st e s e ssnn e e seseesennans 15
L2.1 TeStIOZICIELoonimiiiee ettt e et e 16

1.2.2 Principe du test par MUtationccceceeeeereemrnreieieeecree e eeaenes 17

1.2.2.1 MéEthodolOgie.oooneeeeieceeeeeeeee ettt s e ce s e 18

1.2.2.2 GENEration des MULANES. «oo.cooomeooreoieienieeeceeneereeeeeesseaeeomeeeennnees 19

1.2.2.3 Les mutants €quivalentscccocooeeiiiiiimiiiininccin e 21

1.2.2.4 EVAlUAtON QU LESE.....o.eeeoeeeeeceeeeeeeeeeeeseaeeeaneeeesessnemaaneeeeseaseeseeas 22

1.2.2.5 Le test par la mutation faible................... retreeetteireee e reneae e naaenes 23

1.2.2.6 mutation SEIECHVEcorneeiiiiiie et cecmec e ceee e ceeaee 26
1.2.2.7 La mutation N-S€lective ..ot e 27
1.2.2.8 La mutation E-SEIECtiVeccoviiiiiinioiiinececerececcecrencecn e 29
1.2.2.9 GEREration de LeSt.........ooeueeureeereereccrierereereesseseeeeseeessasennsesasnsas 31

CHAPITRE 2 : APPLICATION DU TEST

PAR MUTATION AUX CIRCUITS VLSI 33
2.1 TNrOAUCTION.c.n e tee et e e et cee e e e cerer so e nase e eesese e e en e eesemresesmnes 33
2.2 Présentation de MOthra..........c.cccoiiiiiiiiiire et 34
2.2.1 Génération de vectzurs de validation.ociiiiiiiiiiiniiciriniiiiceeneeens 35

2.2.1.1 La représentation des CONMraintes.cccccoeeereeccncrrrvenneccnreenenn. 38

2.2.1.2 L’analyseur de chemin.cooooooiiimiiiciniiceee e, 39

2.2.1.3 Le résolveur de CONMraintescccoccceeerinecrneineecenrneninennnennee 40

23 Opérateurs de MULALION...........cocueiiiririciirncnrne e sen e e mee e e ean e nn e e 42
2.4 Chaine de validationcoorviiiiiiiiiii e e e e 43
25 Validation de Iaméthodeo.ooeeciieiiiiiiiiiice ettt e 45
2.5.1 Description des bancs d’essai.cccceveeemirmiciiimeiiiecec e 45

2.5.2 Processus de validationcccoiiiiiiiinrimniiinr et nece e e 46

2.6 RESUIALS. ...ttt cs et e ce s e e r s e sb s s e s e s e s e eenenese e ennnan 47
2.6.1 Le CIrCUIt SOTtIE.cooiiieiiceeeeie e s e 47

2.6.2 Lecircuitd’entréede l’edhcccccoominiiiii e 50

2.63 LeCircuit Cla...... oottt ettt s e e e s 52

2.6.4 Complexité algorithmique...........ocoovmiimiiimoicceeeee e 53

2.6.5 ConCIUSION.....cccccirrireeieeee ettt et ettt e e e s e 56

2.6.5.1 étude de la puissance des MULANLS.............ccoceereieierinnnnenieennn. 57

CHAPITRE 3 : METHODE SYSTEMATIQUE D’ENRICHISSEMENT DE

VECTEURS FONCTIONNELS 61
3.1 INrOAUCHION. ..ottt ettt et ase s s sasmnn s e aesenas 61
3.1.1 Limitations de Mothra pour la validation.cc.ccc.coiimrninnn. 61

ix

3.1.2 Redéfinition de la méthode de validation.c..coeeeeeniiiicinnien s 62

3.2 Description du banc d’ eSSacemeueuereenimeenie e 63
3.2.1 Processeur anCillaire.ccccooiciiimiimieiennrecrseneeec e ee e 63

3.2.1.1 Module EDH.............eooeeeecreie e e seast st e e 65

3.2.1.2 Implémentation du CRCCsccooemmiiinicieiicne e 66

3.2.1.3 Implémentation du module EDHcccccooiiiiiiiiiiiiiiiiiines 66

33 Opérateurs de MULALHON.......cceerriiire e e 68
3.3.0.1 Programmes de mutationcccocciiiieceitinniintin e enees 70

34 Impiémentation des programmes de MUEALIoN..........ccomimimmieiiininiiee e 78
3.4.1 Algorithmes de MUtation............ooomiiiemimmiiiinrc e 82

3.5 IMPIEMENIALION €oeereeeeee et st 89
3.6 Algorithme final de MULAtON.........o.ooievirieieieneee e 93
3.7 RESUILALS ... e eeeeeeeeeeeeeeeeeeeeaeeeeeseessseeseaaseansnmnsscen somsbnsnssnbnsssesssssarnssssnnsanaesenssnneees 95
CONCLUSION ... 100
BIBLIOGRAPHIE ..104
ANNEXE A - 107
ANNEXE B : FONCTION MID 111

ANNEXE C. 112

Tableau 1.1 :

Tableau 2.1 :

Tableau 2.2 :

Tableau 2.3 :

Tableau 2.4 :

Tableau 2.5 :

Tableau 2.6 :

Tableau 2.7 :

Tableau 3.1 :

Tableau 3.2 :

Tableau 3.3 :

LISTE DES TABLEAUX

Mutation E selective.........o.ucoomiiiciiiiiiiiiieeeciitececct e 31
Opérateurs de MULAtION.......coouiiiiiiiiiiiitcecreee e cr e e e m e ceesassenaae 42
CIrcuit de SOTUE.cocoieeeieeeecceee et e e e e e 50
Résultats de sortie pour le circuitd’entréede PEDH.............c.cocoocl. 52
Résultats de sortie pour le circuit Cla.........coooooiiiiiiees 53
Résultats obtenus pour la fonction MID...............ccooovivnuiiiiimmiimiiiiiriee 54
Cascade de MultipleXxeurs.......... .o 56

Puissance des opérateurs..............ooouuuiiiiiiir e, 58
Opérateurs de MULALION..........ccoiiririririiirieieee e eeer e eree e e seeecnene 70
Codage des états pour la mutation AOR..............cooiiiee, 81

Comparaison des algorithmes de validation par mutation............ccc..c......... 96

Figure 0.1:
Figure 0.2:
Figure 0.3:
Figure 0.4:
Figure 1.1:
Figure 1.2:
Figure 2.1:
Figure 2.2:
Figure 2.3:
Figure 2.4:
Figure 2.5:
Figure 3.1:
Figure 3.2:
Figure 3.3:
Figure 3.4:
Figure 3.5:
Figure 3.6:
Figure 3.7:
Figure 3.8:
Figure 3.9:

Figure 3.10:
Figure 3.11:
Figure 3.12:
Figure 3.13:
Figure 3.14:
Figure 3.15:

xi

LISTE DES FIGURES
Méthodologie de CONCePLion.coeeeeeemieiieeeee et 1
Processus de validation par simulation.cccccoeviiiiniincncnnns 2
Architecture simplifi€e de Pulse.ccoueeeervmmriimree e 3
Validation Fonctionnelle. ... 4
Construction d’un CTL a partir d’un automate...............cccoeveeereecrereennen. 12
La fonction Max avec quatre mutants SUPETPOSEScccocvvreminiieseeeannces 21
Implémentation de Godzilla............covenmrimeii 37
Méthode de validation de circuits numériques utilisant Mothra.............. 44
Consommation mémoire pour le circuit de sortie............cccveeeeeenenn.e. 48
Consommation mémoire pour le circuitd’entréecccoooninneenne. 51
Cascade de multipleXeurscoooomiiiiiii e 55
Architecture de PEDH ..., 68
Design de type Structurelccoocovimiiiieiiecieeeecceere e 72
Simulation du fichier original a I'aide de Synopsys.ccccccoeen. 73
Résultat de SUR.vmiieeece et st seeceec e s ree s s anes 73
Simulation obtenue sans VSAR ... 74
Mutation avec VSAR ...t 75
Mutation avec SSRco.oiriererece et e 77
Diagramme d’état pour la mutation AOR........................... e ae 80
Pseudo code pour la mutation CLRocoovvvemiiinii, 84
Pseudo code pour la mutation CNR ... 85
Pseudo code pour la mutation CSR ... 86
Pseudo code pour la mutation SUR ..o, 87
Pseudo code pour la mutation SSR........cooii 87
Pseudo code pour la mutation LCR ..o 88
Pseudo code pour la mutation VSAR ..o 89

xii

Figure 3.16: Test par mutation et génération de mutantsccoccoeeiecerirennrnnnnncnennnn. 93

INTRODUCTION

La vérification par la simulation est la méthode la plus largement répandue afin de
vérifier qu’un design respecte bien les spécifications voulues. Elle fait partie intégrante de
la méthodologie de conception VLSI selon la figure 0.1. La validation devient de nos
jours un des goulots d’étranglement du processus de conception qui ralentit la mise en
marché de puces électroniques dans un monde extrémement compétitif et en perpétuel
changement. D’ autre part, certains composants défectueux ne sont découverts que chez le
client, ce qui augmente considérablement les coits de développement et entache la
crédibilité des fournisseurs a qui cela arrive. En tout étz: de cause, tous s’accordent a dire

que le processus de validation est primordial.

v
Iiim ulation RTH
v
| Synthése]
¥

Unsertion Scan]

[S imulation (porlei)]

[Placement-Routage|

lSimul:\tion Vcril@

Figure 0.1: Méthodologie de conception.

Cependant, en raison de la complexité sans cesse croissante des circuits numeériques, le
processus de validation devient de plus en plus long et coilteux. Dans le processus

traditionnel de test par simulation, le concepteur cré un jeu de test complet représentant

2

toutes les entrées possibles du circuit et en compare les résultats avec ceux prédits. Selon
la figure 0.2, I’environnement de test est inscrit dans ce que I’on appelle un banc d’essai

ou un test bench dans la terminologie propre au VHDL.

Testbench

omportemental

Circuit
sous
test

Générique

stimulus

[érificatior

spécifique
au test

Résultats
espérés

Rapport dg
Résultats

Figure 0.2: Processus de validation par simulation.

Dans le cadre de la validation de circuits industriels de plus en plus complexes, des
variantes basées sur la définition de modéles de référence sont couramment préconisées.
Une de ces variantes a ét€ largement utilisée dans le cadre du projet PULSE[1] développé
a I'Ecole polytechnique. Afin de valider une puce congue selon une architecture
SIMD(single instruction multiple data), un simulateur décrivant [’architecture
fonctionnelle du circuit a été développé. PULSE, dont I’architecture est présentée a la
figure 0.3, est optimisé pour le traitement d’images en temps réel. Cette puce, dont la
conception a été réalisée en langage VHDL, contient environ un million de transistors et a

été validée a I’aide d’un simulateur écrit en langage C [2].

» 4
mémoire des générateur [|génératenr controlear mémoire de
coastantes d'adresse I} |4 adresse 2| programme :

o nord J{ mord | nord H—»f merd |
VST Fl)

E b Processeur N Processeur p Processear Processeur :5:
> élémentaire élémentaire élémentaire | —P| élémentaire S M
bt bt
b €
£ 4 Ly 1 4
sud sud sﬁ*_}-—bl— sud
[interface }:

Figure 0.3: Architecture simplifiée de Pulse.

Dans le projet PULSE, le modéle C est une description fidéle de I’architecture qui
représente la fonctionnalité de la puce, ainsi que les unités opératives tel que I’ALU, le
décaleur et le multiplieur additionneur. Le contrdleur avec ses différents compteurs, les
registres, ainsi que ics canaux de communication ont eux aussi ét€¢ modélisés. Un des
avantages d'une méthodogie utilisant un modéle de référence, c’est que ce modéle est
sensiblement moins complexe que le design en VHDL. Nous avons, dans le cas du modéle
C de Pulse, modélisé le jeu d’instruction de la puce. La méthodologie de validation
adoptée était la suivante. Partant d’'une méme séquence de vecteurs de validation, le
résultat de exécution du programme sur le modeéle VHDL est comparé avec celui du
simulateur C. L’ avantage de ce genre de méthode est que la description du simulateur est

indépendante de I’'implantation du modéle VHDL. Elle dépend seulement d’un jeu

4

d’instructions défini lors de la spécification. La méthodologie de validation est

schématisée a la figure 0.4.

Fichier assemblcur
(teem S—
Simulatenr C pulse teur Vhdl
K 3 [2
résultat prédit résultat
Cqmn
résultat de test

Figure 0.4: Validation Fonctionnelle.

Un des gros probléemes de la méthode par validation est que pour des circuits ayant un
grand nombre d’entrées, il est impossible de tester toutes les possibilitées. En effet, pour
étre compléte, la simulation doit étudier le comportement du circuit dans toutes les

configurations possibles et pour toutes les séquences.

Par opposition a la simulation, la vérification formelle tente de prouver qu’une

~

description structurelle posséde un comportement équivalent a4 une description
fonctionnelle a2 un niveau d’abstraction supérieur. Il s’agit donc de comparer des
descriptions abstraites. Bien que cette méthode fasse de plus en plus d’émules, il ne faut

pas oublier les probléemes qui en ralentissent une utilisation industrielle fréquente. Les

principaux problémes[3] sont au nombre de trois: d’une part I’extraction d’une description

du comportement, d’autre part la formulation d’une spécification de haut niveau et

finalement, la comparaison entre la description extraite et la spécification.

Le premier probléme nécessite la définition d’'un modéle temporel et d’une
description. Un circuit peut étre décrit a différents niveaux d’abstraction, a savoir:
électrique, commutateur, porte logique, registre... Le modéle temporel est continu au
niveau électrique et, discret aux niveaux supérieurs. Dans ce demnier cas, un modéle de
délai doit étre défini: instantané pour I’étude des circuits combinatoires, unitaire

correspondant a une période d’horloge pour les circuits synchrones.

Le second probléme nécessite d’exprimer le comportement souhaité. La spécification
correspond a la fois au but a atteindre et a la description abstraite du comportement en
termes d’entrées-sorties. Cette spécification est alors exprimée sous la forme d’un
autornate de haut-niveau. Une spécification compléte est parfois difficile a obtenir, en
conséquence, seules certaines propriétées sont vérifi€es. Citons par exemple la preuve
qu’un systéme ne peut se bloquer, ou que certaines régles ou protocoles d’échange soient
respectés. Cependant, le probléme de complétude de la validation, ou le fait que les
propriétés définies remplissent toutes les volontées du concepteur restent des questions

ouvertes.

Bien que de nombreuses études et avancements aient €té réalisées dans le domaine de
la vérification formelle, I’utilisation de ces techniques lors de la validation améne un trop
lourd formalisme mathématique pour bien des concepteurs. Par contre, la validation par la

simulation traditionnelle ne permet souvent pas de valider pleinement de grands circuits.

Aussi diverses méthodes ont été proposées afin d’enrichir un jeu de vecteurs de validation
amenant une meilleure confiance dans les circuits VLSI. Le test par mutation est une des
techniques dérivées de la validation par simulation. Cette méthode permet d’enrichir la
suite de vecteurs de validation. Il est a noter que d’autres techniques ont été proposées afin
d’augmenter la confiance dans un design. Une maniére valable de s’attaquer aujourd’hui
aux défis inhérents a la vérification, c’est d’utiliser les analyses de couverture du code. La
compagnie Summit Design inc propose un certain nombre d’outils permettant de chiffrer
la couverture d’un programme HDL et la couverture des machines a états par des données
de test. Ces outils permettent de montrer combien les vecteurs de validation ont pu exercer
une région du circuit et en révéler les régions non testées. Par ailleurs, ils identifient les
tests qui ont les plus grandes couvertures et permettent de réduire les tests redondants. Il
est intéressant de remarquer que pour calculer une couverture du code, ces outils comptent
combien de fois la suite de test exerce chaque ligne, chemin, expression, état et séquence.
La mutation par contre ne compte pas combien de fois un vecteur a exercé une région,

mais plutét si toutes les régions ont été exercées au moins une fois.

Les différents objectifs de ce mémoire sont de trois types. Le premier consiste a étudier
I’utilisation du test par mutation dans le cas de la validation de circuits numériques. Le
second permet de définir un ensemble d’opérateurs de mutation permettant d’identifier
d’éventuelles erreurs fonctionnelles survenant dans un langage de description matériel tel
que le VHDL. Enfin, le troisi¢me abouti a la proposition d’une nouvelle méthodologie de
validation par mutation permettant 1’enrichissement systématiquement d'un jeu de

vecteurs de tests.

Le premier chapitre de ce mémoire consiste en une présentation des méthodes formelles
ainsi que des difficultés rencontrées lors de I’utilisation de ces différentes techniques. Ce
chapitre se poursuit par une revue de littérature dans le domaine du test logiciel et

particulierement sur le test par mutation.

Le second chapitre propose une adaptation du test par mutation a la validation des circuits
VLSI ainsi que les résultats obtenus sur différents bancs d’essais ainsi que les problémes
inhérents au test par mutation. Aussi nous présenterons une méthodologie systématique de

test par mutation dans le cas de circuits VLSL

Enfin, le troisi¢éme chapitre présente I’algorithme de génération de mutants et
d’enrichissement de vecteurs de validation, ainsi que le banc d’essai qui a permis la
définition des différents opérateurs de mutation. Ce chapitre commencera donc par une
redéfinition des opérateurs de mutation dans le cas de circuits VLSI et se continuera par la
proposition d’un algorithme systématique de validation de circuits numériques utilisant

I’ outil Synopsys.

CHAPITRE 1

METHODES DE VALIDATION

1.1 Méthode Formelle

1.1.1 Introduction

Bien que la vérification par la simulation soit la méthode la plus largement utilisée dans le
processus de validation de circuits VLSI, l'augmentation du niveau de complexité des
circuits, ainsi que la difficulté a procéder a des tests exhaustifs, augmente le risque que
certains aspects du design ne soient pas vérifiés. Une alternative basée sur des méthodes

mathématiques rigoureuses a été proposée : la vérification formelle.

Cette méthode est basée sur des langages, des techniques et des outils mathématiques. La
plupart de ces langages, techniques et outils, utilisent des représentations binaires plus
connues sous le nom de diagrammes binaires de décision (BDD). Le BDD[4] est une
simple représentation canonique de la logique binaire énumérant toutes les valeurs
possibles pouvant se produire dans un circuit combinatoire. L'utilisation des méthodes
formelles ne garantit pas, a priori, I'exactitude du design mais, elle augmente de maniére
significative la compréhension d’un systéme en y révélant les ambiguités et les
inconsistances. Cependant, un probléme majeur des méthodes formelles est l'utilisation
abondante de la mémoire et du temps CPU, qui croissent parfois de maniére exponentielle

en fonction de la taille du circuit.

9

Les méthodes formelles s’appuient sur trois outils principaux afin de vérifier une
spécification. On retrouve des outils de vérification d’équivalence, de vérification de
modele et des prouveurs de théorémes. Les vérificateurs d’équivalence comparent la
spécification avec un design de référence. Les vérificateurs de modéles prouvent la
véracité des propri€tés du design par rapport a la spécification. D’autre part, les prouveurs
de théorémes permettent a l'usager de batir une preuve montrant que le design respecte

bien la fonction voulue.

Nous exposerons plus en détail dans la suite de ce paragraphe les vérificateurs du modéle

et les prouveurs de théorémes, deux types de vérification couramment utilisées.

Deux exigences importantes doivent étre respectées dans le processus de vérification. La
premiére est la définition d’un langage formel capable de décrire le comportement d’un
systeme et I’expression de propositions(propriétés) baties a partir de celui-ci. La seconde
exigence est de disposer d’un calcul déductif capable de prouver toutes les propositions
exprimées dans le langage. Les méthodes de vérification formelle utilisent 1’approche

générale suivante:

1. Ecrire une spécification formelle S décrivant le comportement pour lequel le

systeme doit Etre vérifié et est supposé exempt de défauts.

2. Ecrire une spécification pour chaque type de primitive des composants utilisés dans
la construction du systéme. Ces spécifications sont supposées décrire les comportements

des composants réels du systéeme.

10

3. Définir une expression D qui décrit le comportement du systéme que I’on désire

prouver. La définition de D est de la forme suivante : D =P1 +... + Pn,

ou P1, ..., Pn spécifient le comportement des parties constituantes du systéme et le + est
I’opérateur de composition qui représente l'effet de lier les composants ensemble. Les
expressions P1, ..., Pn utilisées ici sont des instances des spécifications des composants
primitifs définis a I'étape 2.

4. Prouver alors que le circuit est décrit par l'expression D. Ceci se fait par une preuve

d’un théoréme de la forme : D satisfait S

ol satisfait est une relation de satisfaction des spécifications du comportement du

systéme.
1.1.2 Vérification du modéle

La vérification du modele est une technique qui consiste a construire un modele fini d'un
systéme et, a démontrer que les propriétés spécifi€es sont bien respectées. En pratique,
deux approches sont utilisées en vérification du modéle. La premiére, la vérification de
modéles temporels est une technique developpée dans les années 1980 par Clarke et
Emerson d'une part et par Queille et Sifakis d’autre part. Dans cette approche que nous
présenterons plus loin, les spécifications sont exprimées en logique temporelle (TL) et les
systémes sont modélisés comme des systémes 2 états finis qui effectuent des transitions.
Dans la seconde approche, la spécification est donnée sous la forme d’une machine a
états. Dans ce cas, le systéme est lui aussi représenté par une machine a états et, est
comparé a la spécification afin de déterminer si oui ou non ses comportements sont

conformes a ceux de la spécification.

11

Vérification de modéle temporel

Un systéme 2 états finis peut étre représenté par un graphe de transition d’états étiquetés,
ol les étiquettes d'un état sont les valeurs des propositions atomiques de cet état (par
exemple pour les valeurs des bascules). Les propriétés concemant le systéme sont
exprimées comme des formules en logique temporelle pour lesquelles le systéme a
transitions d’'états doit étre un modéle. La vérification du modéle consiste a parcourir la
machine 2 états des transistions du systéme (FSM) et a vérifier s'il satisfait les formules

représentant la propriété.

Arbre de calcul logique

La logique temporelle exprime I'ordre des événements dans le temps par une spécification
des propriétés des opérateurs tel que "p aura éventuellement lieu”. 11 y a plusieurs versions
de logique temporelle, dont une concernant le CTL[5] pour laquelle celui-ci découle de

I'arbre des transitions d'états.

Donnons a titre d'explication I'exemple classique des feux de circulation (Figure 1.1).

12

Figure 1.1: Construction d’un CTL a partir d’un automate.

Les chemins dans I’arbre de 1a figure 1.1 représentent toutes les possibilitées de calcul du
systteme. Les formules en CTL font référence a I'arbre de calcul dérivé du modéle. La
méthode CTL est classifi€ée comme une analyse des branchements logiques temporels, car
ses opérateurs décrivent la structure de branchement de I’arbre. Les états du systéme sont
des valeurs enregistrées dans des bascules. Chaque formule de la logique est soit vraie ou
fausse pour un €tat donné. L'exactitude est évaluée a paitir de I'exactitude de ces sous
formules de maniére récursive, jusqu'a ce qu'une proposition atomique soit vraie (1) ou
fausse (0) pour un état donné. Une formule est satisfaite par un systéme si elle est vraie
pour tous les états initiaux du syst¢me. Contrairement a la démonstration de théoremes, la
vérification du modéle est complétement automatique et relativement rapide. Cette

méthode peut étre utilisée afin de vérifier des spécifications partielles. Ainsi, elle peut

13

donner une information déterminante sur la validité d'un systéme, méme si ce dernier n'est
spécifié que partiellement. En tout état de cause, elle produit des contres exemples
représentant des erreurs subtiles du design et peut ainsi étre utilisé pour le déverminage.
Le probléme le plus important du modéele d’équivalence est I'explosion des états. En 1987
McMillan utilise les BDD et son extention MDD (Multi-valued Decision Diagram) afin
de proposer une heuristique permettant de représenter les systémes d'états de transition de
maniere efficace. D'autre part, il propose la minimisation de la sémantique afin d'éliminer

les états non- nécessaires du modéle.

Les diagrammes de décision binaire

Les diagrammes de décision binaires (BDD) sont des graphes acycliques orientés
qui permettent de représenter des fonctions booléennes. Selon Bryant, les BDD sont une
représentation canonique des fonctions qui constituent une technique complémentaire a la
vérification de modéle. La taille des BDD est trés sensible a l'ordonnancement des
variables et a la taille des BDD intermédiaires. La meilleure représentation des fonctions
booléennes représentant les équations des circuits numériques est dérivée du BDD. C’est
le "Ordered Binary Decision Diagram” (OBDD). Bien que les BDD ont été utilisés avec

succes dans la vérification des FSM, ils ne constituent pas une panacée dans le cas des

FSM de grandes tailles:

- les BDD demandent trop de mémoire,

- leur manipulation est trés coiiteuse en temps de calcul.

14

1.1.3 Démonstration de théoréme

La démonstration de théoréme est une technique dans laquelle le systtme et ses
propriétés sont exprimés comme des formules en logique mathématique. Cette logique est
donnée par un systtme formel, qui définit I'ensemble des axiomes et des régles
d'inférence. La démonstration de théoréme est le processus permettant de trouver une
preuve d'une propriété en partant des axiomes pour un systeme spécifié. Les étapes de la
preuve font appel aux axiomes, aux régles d'inférences et a la dérivation de définitions et
de lemmes intermédiaires. La démonstration de théoréme comprend plusieurs techniques

regroupées en deux classes principales :

1. La déduction automatique qui est utilisée comme procédure générale de recherche.

2. La déduction interactive qui est beaucoup plus intéressante pour des développements

formels systématiques en mathématique.
Les techniques sont :
- Boyer-Moore[6] (First-Order Logic).

- HOL (High-Oder Logic): HOL[7] utilise les notions standards de la logique

des prédicats.

En plus des notions standards de la logique des prédicats, HOL est caractérisée par le fait
que les variables peuvent étres utilisées a des degrés plus élevés que ceux des fonctions et
des prédicats. Ce genre de variable est appélé HOV (Higher Order Variable) et peut étre
quantifiée. Contrairement au modéle d’équivalence, la démonstration de théoréme peut

traiter les espaces a états infinis. Elle se base sur des techniques comme I’'induction

15

structurale pour prouver ces domaines infinis. Cependant, comme elle requiert la
participation humaine, le temps nécessaire a la démonstration d’un théoréme est
généralement beaucoup plus long que le temps de calcul dans le cas de I’équivalence du

modeéle et les erreurs sont beaucoup plus fréquentes.

1.1.4 Conclusion

Bien que la vérification formelle s’avére étre un outil trés utile dans la spécification des
propriétés des systémes numériques, elle ne peut étre que complémentaire aux méthodes
traditionnelles de vérification par simulation. En effet, les outils de travail ne cachent
aucunement aux usagers leurs caractéres formels. Par ailleurs les notations basées sur les
écritures mathématiques sont généralement trés complexes. Les outils et les méthodes
développées aujourd’hui ne sont accessibles qu’aux spécialistes de la vérification

formelle.

1.2 Test par mutation

Le test par mutation est une technique de test logiciel originalement proposée par
Budd et al. 1978 [8]. Cette technique peut étre décrite de la maniére suivante: un grand
nombre de fautes simples sont introduites, une a la fois, dans un programme sous test. Les
versions modifiées, résultant de ces modifications, sont appelées mutants. Les données de
test sont alors construites afin de détecter ces mutants. Lorsqu’une différence de
comportement est détectée entre le mutant et la spécification de référence, le mutant est

considéré tué et n'est plus réutilisé dans le processus de test. La mutation permet donc

16

d’élaborer un ensemble de vecteurs capables de détecter un ensemble fini et bien spécifié
de fautes. Dans le but de faciliter la compréhension de cette méthode, il nous apparait utile

d’exposer les différents concepts du test logiciel.

1.2.1 Test logiciel

Le test logiciel consiste a appliquer un jeu de vecteurs de test sur un programme
afin d’en révéler les défauts. Les stratégies de test se groupent en deux grandes

catégories:

- structurelle(dites aussi stratégies de test boite-blanche) qui utilisent explicitement la

structure du programme afin de générer les tests.

- fonctionnelle(dites aussi stratégies de test boite-noire) qui générent le test en n’ayant

aucune information sur la structure du programme Dans ce dernier cas, on a recours & la
spécification.
Le test fonctionnel examine les fonctions du programme depuis les entrées/sorties en
vérifiant que pour des entrées légales on obtient des sorties correctes. Afin de quantifier
la qualité du test, les stratégies structurelles cherchent a remplir certains criteres relatifs a
la structure du programme [9}]:

- la couverture des énoncés : chacun des énoncés du programme doit étre exécuté, au
moins une fois.

- la couverture des branches: chaque condition de branchement binaire (IF-THEN-ELSE)

doit étre évaluée au moins une fois, aux valeurs booléennes VRAI et FAUX . Dans le cas

17

de branchement non-binaire (CASE) la condition doit €tre évaluée pour toutes les valeurs
possibles.

- la couverture des conditions : si la condition est constituée de plusieurs conditions
simples, le test des conditions consiste a évaluer toute condition simple alternativement a
VRAI et FAUX.

- 1a couverture des chemins : tous les chemins possibles dans le programme doivent étre
exécutés(sensibilisés) au moins une fois.

Dans le test fonctionnel, le concepteur identifie les fonctions supposées étre implémentées
par le programme et teste ensuite la conformité du code avec la(les) spécification(s) de ces
fonctions {10]. Malheureusement, au contraire du test structurel dans lequel beaucoup de
méthodes basées en général sur la théorie des graphes ont ét€ proposées , la majorité des

méthodes de test fonctionnel sont des méthodes ad hoc et souvent manuelles.

1.2.2 Principe du test par mutation

Comme il a été dit précédemment, le test par mutation permet de quantifier la capacité
d’un jeu de vecteurs fonctionnels a tester différentes fonctions dans un programme.
Durant le test par mutation, des fautes simples introduites dans le programme original
générent une multitude de programmes défectueux. Chacun de ces programmes contient

une seule faute et est appelé€ mutant. Le test par mutation est fondé sur quatre hypothéses:

18

1. Le programmeur est compétent. Cette hypothése présuppose que le programmeur
écrit des programmes presque “corrects”. C'est-a-dire que bien qu'incorrects, les

programmes écrits différeront de la "bonne version" par des fautes relativernent simples.

2. Les fautes sont couplées [11]: on suppose ici qu' un jeu de test capable de détecter
toutes les fautes simples est aussi capable de détecter les fautes plus complexes. Cette

hypothése a été justifiée a la fois de maniére théorique [12] et expérimentale [13].

3. On dispose d’un ensemble valide d’opérateurs de mutation. Il s’agit d’un ensemble
prédéfini d’opérateurs qui modélise toutes les fautes simples d’un programme. Ces
opérateurs sont déterminés de maniére tout a fait empirique et il n'existe toujours pas de
méthode systématique afin de déterminer I'ensemble minimal relatif a un langage de

programmation.

4. On posséde un oracle : cette référence permet de vérifier systématiquement que le

résultat du programme est conforme, pour un jeu de test donné€.

1.2.2.1 Méthodologie.

Etant donné un programme P et un jeu de vecteurs de test T, il s’agit d’exécuter T sur P.
Supposons, par ailleurs, que le résultat de T sur P soit correct; i.e. P passe le test T.
Plusieurs programmes générés en appliquant de petites modifications sur P, appelées
mutants, sont exécutés avec T comme stimulation. Si le résultat d’un mutant est différent

de celui de P, on dit que le mutant est tué (détecté). Dans le cas contraire, il est dit vivant

19

(T est incapable de détecter le mutant). Si un mutant survit, le jeu de test T est insuffisant

et doit étre augmenté. Nous allons maintenant nous intérresser a la génération des mutants.
1.2.2.2 Génération des Mutants.

Plusieurs techniques ont ét€ proposées afin de déterminer un jeu de vecteurs de test
capable d'isoler des "fautes spécifiques”. Une des plus difficiles et plus coiiteuses tiches
dans l'application de ces techniques est la génération de données de test qui est en général
faite A la main. Une méthode [14] a ét€ proposée afin de rendre la génération de ces tests,
purement automatiques. Cette méthode est applicable de maniére structurelle. Ces
algorithmes utilisent le constraint based testing (CBT). Ces contraintes de test incluent
des conditions qui permettent de tuer les programmes mutants et génerent des données qui
satisfont les contraintes. Le test de grands systémes est composé de tests de sous-systemes
et de fonctions, si ces systéemes admettent la hiérarchie. Dans le cas d'énormes
programmes non hiérarchiques, le processus de génération de vecteurs peut s'avérer

intraitable.

Ces algorithmes sont assez performants s’ils sont applicables sur des "unités de
programme”. Une unité de programme est une sous-routine ou un ensemble de sous-
routines ou de fonctions. La génération de jeu de test est en général une tiche laborieuse.
En effet, afin de produire les vecteurs de test adéquats, le responsable du test est
pratiquement obligé d'interagir avec le systtme de mutation en examinant de maniére

exhaustive les mutants survivants. Ce faisant, il doit ensuite construire manuellement un

20

jeu de vecteurs capables de les éliminer. Le processus de test par mutation commence par
la construction de tous les mutants du programme. Les mutants sont générés a partir d’un
jeu d’opérateurs de mutation. Les opérateurs utilisés représentent les fautes les plus
répétitives faites par les concepteurs. Ces opérateurs suggérent que les données de test
couvrent tous les états, toutes les branches, les valeurs extrémes, les domaines de
perturbations et modélisent plusieurs types de fautes. Lorsque I'un de ces opérateurs est
appliqué a un état, il effectue un changement simple (tout en gardant une bonne syntaxe).
Le processus de test est le suivant: le programme original est test€ par le jeu de test. Il en
résulte des valeurs pour chacune des sorties. Un oracle (en général celui qui est en charge
de la validation) se charge de vérifier que les sorties sont exactes. Si les sorties sont
identiques, le programme doit étre changé, puis le processus de test doit €tre réitéré. Dans

le cas contraire, ces derniers tests sont appliqués a chacun des mutants survivants.

Aprés que ces derniers aient exécuté ces vecteurs avec succes, deux informations
surgissent: la proportion des mutants tués, qui indique au concepteur dans quelle mesure
le programme a été testé, et le nombre de mutants survivants, qui renseigne quant au
nombre de fautes non testées, ou encore, quant a la faiblesse du jeu de test. A titre
d’exemple, la Figure 1.2 montre le processus de mutation sur la fonction Max, qui donne
le maximum de deux valeurs entiéres. Afin d’alléger la figure 1.2, tous les mutants sont
portés sur la méme figure. Autrement dit, chacune des instructions transformée par
mutation représente un mutant séparé, dans lequel l'instruction mutée remplace
l'instruction correspondante du programme initial. Dans le premier mutant, une valeur

absolue a été injectée dans la premiére instruction. Le deuxi¢me et le troisi€¢me mutants

21

sont les résultats d'injection de fautes dans l'opérateur relationnel de la seconde
instruction. Le demier mutant résulte de l'injection de fautes sur la variable de la troisiéeme

instruction .

Function Max(integer: m, n):integer;
begin
1 Max:= m;

- Max := ABS(m);
2 if (n > m) then
- if (n < m) then
- if (n = m) then
3 Max:= n;

- Max:= m;

Figure 1.2: 1a fonction Max avec quatre mutants superposés
Il est en général impossible de tuer tous les mutants, car certains changements n'ont aucun
effet sur la fonctionnalité du programme original. En général, ces mutants équivalents

sont identifi€s soit par celui qui est en tiche de la validation soit par des heuristiques.

1.2.2.3 Les mutants équivalents

Un mutant est dit équivalent au programme original (12, 13, 15] s’il n'existe aucun
vecteur de test permettant de révéler une différence de comportement entre les deux
programmes. Il est en général trés difficile de prouver qu’un mutant est équivalent. En

effet, les raisons pour lesquelles un mutant peut étre fonctionellement identique sont:

1. Le mutant est fonctionnellement équivalent au programme original. Ce mutant

produira toujours la méme sortie que le programme initial et ceci quelque soit le test.

2. Le mutant peut étre tué, mais le jeu de test est insuffisant.

22

Une maniére de démontrer I’équivalence est de procéder a des tests exhaustifs,
évidemment, ceci n’est pas pratique pour de gros programmes. Dans la pratique, c’est au
programmeur qu’incombe la tiche de déclarer un mutant équivalent. Ce probléme reste

toutefois une difficulté pratique et théorique devant I'automatisation du test par mutation.

1.2.2.4 Evaluation du test

Le test par mutation a ét€ initialement proposé afin d’évaluer la capacité d’un jeu de test a
exercer un programme. Les vecteurs de test peuvent étre générés manuellement,
aléatoirement, ou a I’aide d’un outil de génération de test. L'analyse de mutation associe
une métrique (score de mutation) au jeu de test dans le but d’évaluer son efficacité¢. Ce
score de mutation est le pourcentage de mutants non €guivalents tués. Le score est donné

par la formule suivante:
MS(P,T) =Mk / (Mt -Mq).

oli P est le programme de test

T le jeu de test

Mk le nombre de mutant tué par T

Mt le nombre total de mutants générés par le programme

Mg le nombre de mutants équivalents.

Plus le nombre de mutants détectés est grand, plus I'efficacité du jeu de test est

importante. Etant donné un jeu de test T, le programme P est d'abord exécuté et vérifié sur

chaque vecteur qui compose T. Si le résultat est incorrect, une faute est trouvée et le

23

programme doit étre corrigé puis le processus est relancé. Si le résultat est correct (P passe
le test T), tous les vecteurs dans T sont exécutés pour tous les mutants vivants. Les
mutants tués sont retir€s du processus de test. Une fois tous les vecteurs de T exécutés,
chacun des mutants encore vivant doit appartenir a une des deux catégories: le mutant est
fonctionnellement équivalent au programme initial, ou il ne peut €tre tué par le jeu de test.
Dans le premier cas, les deux programmes sont fonctionnellement équivalents et il
n'existe aucune entrée permettant de révéler des résultats différents. Dans le deuxieme cas,
le jeu de test doit étre renforcé par de nouveaux vecteurs. Notons que le coit du test par
mutation tend a croitre de fagon importante, parce que chaque mutant est simulé€ avec
I’ensemble de la suite de test et que le nombre de mutants peut devenir important. C’est
pourquoi diverses techniques ont été utilisées afin de réduire le nombre de mutants
générés tout en gardant un score de mutation satisfaisant. Les méthodes proposées ont €té

appelées mutation faible et mutation sélective.

1.2.2.5 Le test par la mutation faible

La mutation forte est une méthode trés efficace, cependant elle génére une grande
quantité de mutants. La méthode de test par mutation faible proposée par Howden[16,17],
demande moins de tests. Elle ne considére ni 'hypothése du programmeur compétent ni
I'hypothése du couplage des fautes. Les différences intervenant entre mutation faible et

mutation forte sont que:

24

1. Les opérateurs de mutation dans la mutation forte sont dépendants du langage de
programmation, tandis que dans la mutation faible, ils sont génériques et ne dépendent pas

du langage.

2. Dans la mutation forte, il n'existe pas une méthode globale pour générer les tests qui
révelent les fautes prédéfinies par les opérateurs de mutation. Il existe toutefois un
compromis dans lequel les tests peuvent étre générés, si et seulement si, leur capacité de
détection des fautes a été affaiblie, d'ou le terme mutation faible. Howden (dans la méme
référence) a définit le composant comme la structure élémentaire de calcul dans le
programme. Les références aux variables, les expressions arithmétiques et logiques sont
des exemples de composants. Cette méthode de mutation peut €tre décrite de la maniere
suivante: si P est un programme qui contient un composant C, il existe alors une mutation
C'de C et P' de P ou P’ correspond a P contenant C'. Dans la mutation faible, un test t est
construit de maniére ou C et C' ont au moins une valeur différente lors de I'exécution de t
par P et P*, sans garantir toutefois que les résultats de P et P’ soient différents. Les
changements (ou les mutations des composants) dans la mutation faible affectent les

composants suivants :

1. les références a une variable: il s’agit de remplacer une référence a une variable
par une autre. Pour détecter ce type de mutation, il faut exécuter le programme sur des
entrées pour lesquelles la variable en question se verra attribuée des valeurs différentes de

celles de toutes les autres variables compatibles dans le programme.

25

2. les affectations d'une variable : il s’agit ici d’affecter une valeur 4 la mauvaise
variable. Pour détecter cette mutation, il est nécessaire d’ affecter une valeur différente de

la valeur actuelle de la variable.

Les deux types précédents sont des mutations primitives qui contribuent dans les types de

mutation suivants:

3. transformations des expressions arithmétiques : I'expression est modifiée par
I'addition d'une constante, la multiplication par une constante ou bien en modifiant les
coefficients qu’elle contient. La détection de l'addition d'une constante ou de la
multiplication par une constante demande un seul vecteur de test, tandis que la détection

des coefficients modifiés est plus complexe et demande plus d'un vecteur(Howden82).

4. transformation des relations arithmétiques : I'expression est modifi€ée par un
opérateur relationnel incorrect ou I'addition d'une constante. La détection d'un opérateur
incorrect est effectuée par I'exécution de la relation sur des données qui distinguent
I'opérateur correct de tous les autres opérateurs. La détection de I'addition d'une constante

est effectuée par la sélection appropriée d'un point de test.

5. transformation des expressions booléennes: les expressions booléennes sont
modifiées en utilisant les opérateurs précédents sur les sous-expressions. Pour détecter la
mutation, I'expression doit étre testée sur toutes les valeurs dans la table de vérité de
I'expression. Howden a proposé des méthodes pour contrdler la taille du jeu de test dans le

cas des expressiton booléennes. Le test par mutation faible a plusieurs avantages sur le test

26

par mutation (forte). Notamment, il n'est pas nécessaire d'effectuer une exécution des
mutants pour sélectionner les données de test. De plus, le nombre de vecteurs de test est
souvent petit (un seul) peut parfois suffire pour la plupart des mutations. Un autre
avantage majeur est la possibilité de spécifier a priori les données de test nécessaires pour
que la mutation donne une sortie incorrecte. Par contre, le test par mutation faible ne
garantit pas que les données choisies pour détecter une mutation donne une sortie

incorrecte pour le programme tout entier.

1.2.2.6 mutation sélective

Cette méthode a été proposée par Offutt et al. afin de réduire le coiit de la mutation en
réduisant le nombre de mutants générés. Le cofit du test par mutation est essentiellement
lié au nombre de mutants. Afin d’estimer la complexit¢ du test par mutation, de
nombreuses techniques empiriques ont été proposées. La premi¢re 1’a €té par Acree [18].
Selon ce modele, le nombre de mutants généré est proportionnel au nombre de lignes du
programme au carré. Budd [19] a affiné cette relation en estimant que le nombre de
mutants étant proportionnel a O(Vals*Refs), ou Vals représente le nombre d’objets de
données du programme (ex: déclaration des variables et des constantes) et Refs
représente le nombre de références a ces objets. Une étude statistique récente effectuée par
Offutt et Lee, [20] a montré que la relation proposée par Budd est la plus représentative de
la complexité réelle du test par mutation. Afin de réduire la complexité du test, une
réduction des opérateurs de mutation a €té proposée afin de réduire le nombre de mutants

du programme. Cette approche appelé la mutation sélective, s’effectue de deux maniéres.

27

Dans la premiére, au lieu de considérer tous les mutants pouvant étre géné€rés par un
opérateur de mutation, on sélectionne, de fagon aléatoire, une portion de ces mutants. Une
étude réalisée par Wong et Mathur (1995) a montré qu'en appliquant seulement 10% des
mutants, on pouvait atteindre des scores de mutation trés proches de ceux atteints par la
mutation originale. Dans la seconde, certains opérateurs de mutation sont éliminés du

processus de génération de test.

1.2.2.7 La mutation N-sélective

Dans un premier temps, il a été proposé€ de supprimer lcs opérateurs responsables de la
génération du plus grand nombre de mutants [21]. Mathur[22] a proposé d’appliquer une
méthode appelée la mutation 2-sélective, sur les deux opérateurs les plus coliteux (ASR et
SVR). ASR consiste a remplacer chaque signal par un tableau alors que SVR consiste a
remplacer chaque variable par un scalaire. L’expérience a débuté par une étape de
comptage des mutants générés (a partir de 28 programmes différents). Les résultats obtenu
sont présentés a la figure 1.2. Par la suite, une comparaison a été faite entre les deux
méthodes de test (sélective et non-sélective). Pour effectuer cette comparaison, un jeu de
vecteurs de test ayant un score de mutation de 100% (pour la mutation sélective) a été créé.
Puis, dans un deuxiéme temps, ce méme jeu de vecteurs a été appliqué a la mutation non

sélective et son score a €té de nouveau calculé.

28

% mutants 12 7

DSA LCR DER RSR SAN GLR SDL CNR ROR CRP AOR CAR AAR SAR UDI ABS SRC ACR CSR SCR ASR SWR
opérateurs de mutation

Afin d’éviter au maximum les aléas (dis au fait que I’on génére les vecteurs
aléatoirement), 5 jeux de tests ont été générés pour chacun des dix programmes
considérés. Les valeurs ci-aprés sont en fait la moyenne de tout cela. Le but de cette
expérimentation est de montrer qu’un jeu de vecteurs capable d’obtenir un bon score de
mutation lors de la mutation sélective est aussi capable d’obtenir un bon score pour la

mutation forte.

mutation 2-sélective : 99.99% (score de mutation) et 23.98% (de mutants non
2énérés).

mutation 4-sélective : 99.84% (score de mutation) et 41.36% (de mutants non
générés).

mutation 6-sélective : 99.71% (score de mutation) et 60.56% (de mutants non

générés).

29

Le but de cette expérimentation n’est pas de mettre a jour des mutants €quivalents,
mais de comparer les scores de mutation obtenus pour la méthode sélective avec ceux

obtenus par la mutation forte.

1.2.2.8 La mutation E-sélective

Cette nouvelle technique vise encore 3 diminuer le nombre de mutants générés en

supprimant certains opérateurs. Les opérateurs sont classés en 3 grandes catégories:

- type R : remplacent chaque opérande du programme par toutes les autres opérandes

compatibles.

- type E: modifient les expressions en remplagant les opérateurs par d’autres de

méme nature (arithmétique, relationnelle ou booléenne).

- type S : modifient les tests conditionnels du programme.

L'objectif sous-jacent est de déterminer empiriquement un sous-ensemble suffisant
d'opérateurs de mutation permettant une réduction de la complexité de test, tout en
gardant une efficacité satisfaisante. Une étude empirique comparant les performances des
mutations suivantes: ES, RE, RS, et E a ét€é menée. Dans une mutation sélective de type
XY ou de type X, on applique seulement les opérateurs de mutation compris dans le(s)
type(s) mentionnés lors de la génération de test. Il a ét€ montré que le type R génére un
nombre de mutants de I'ordre de O(Vals * Refs), le type E de I'ordre de O(Refs), et le type

S de l'ordre de O(Lignes). Il est a noter que le type R est le plus coliteux, car 70% des

30

mutants générés sont en général de ce type. Une des premiéres préocupations lors de
I'utilisation de la mutation sélective est de déterminer la possibilité d’éliminer le type R
sans avoir a réduire l'efficacité du test généré. En d’autres mots, est-il possible de procéder
au processus de mutation en n’utilisant que des types -ES ou -E. Une étude empirique
effectuée par Offut et al. [21] a montré qu'un jeu de test 100% adéquat par rapport a la
mutation sélective-ES est suffisamment adéquat (99.54% en moyenne) par rapport a une

mutation non-sélective.

I1 a aussi été proposé de supprimer les opérateurs de type S dans le souci de définir un
ensemble minimal suffisant d'opérateurs de mutation. Le résultat de l'application de la
mutation sélective a montré que le test généré est la encore quasi-adéquat (99.5 1 % en
moyenne). Par conséquent, dans la pratique, on peut considérer que la mutation sélective

-E est suffisante pour générer des tests efficaces.

A titre d’exemple, les résultats d’une expérience réalisée par Irene koo [16] sont donnés
ci-dessous. Ces résultats ont ét€ obtenus en appliquant un processus identique a celui

appliqué pour la mutation sélective précédente :

mutation ES-sélective : 99.54% (score de mutation) et 71.52% (de mutants non

générés)

mutation RS-sélective : 97.31% (score de mutation) et 22.44% (de mutants non

générés).

31

mutation RE-sélective : 99.97% (score de mutation) et 6.04% (de mutants non

gEnérés).

mutation E-sélective : 99.51% (score de mutation) et 77.56% (de mutants non

générés).

Pour la mutation E-sélective, le score de mutation va de 98.5% a 99.5% suivant le
programme, pour un pourcentage de mutants non générés allant de 37.1% a 92.12%.
Par la suite, une étude a été menée dans le but de réduire encore plus le nombre de

mutants générés, en supprimant un opérateur parmi les 5 (cf tableau 1.1).
Tableau 1.1 : mutation E selective

Programme | Avec les 5 Sans Sans | Sans | Sans | Sans
opérateurs UOI ROR | LCR | AOR | ABS
Banker 99.57 98.57 | 99.57 | 99.57 | 91.57 | 91.57
Bub 99.93 98.93 | 9993 | 9993 | 99.93 | 97.93
Cal 99.63 95.63 | 99.63 | 99.63 | 99.63 | 99.63
Euclid 99.00 97.30 | 99.30 | 99.30 | 99.30 | 99.30
Find 99.30 98.70 | 99.70 | 99.70 | 99.70 | 99.70
Insert 99.75 9895 | 99.95 | 99.95 | 9995 | 97.95
Mid 99.90 98.00 | 1000 | 100.0 | 100.0 | 94.00

0 0 0
Quad 100.00 99.09 | 99.09 | 99.09 | 99.09 | 97.09
Trytip 99.36 98.36 | 98.36 | 99.36 | 99.36 | 98.36
Warshall 99.67 97.67 | 98.67 | 98.67 | 98.67 | 98.67

1.2.2.9 Génération de test

Dans le test par mutation, le but du concepteur est de trouver des vecteurs capables de

révéler une différence de comportement. Un test est considéré efficace s’il tue au moins

32

un mutant. Un moyen largement utilis¢é dans le domaine du test par mutation afin de
genérer automatiquement des tests, c’est d’avoir recours a des contraintes mathématiques.
En fait ces contraintes permettent de générer des vecteurs de test a partir des propriétés que
les entrées du programme doivent avoir pour tuer les mutants. Ces contraintes permettent
de rejeter les vecteurs inefficaces. Les contraintes doivent amener le mutant a révéler un
comportement différent du programme original. Puisque le mutant est représenté par un
seul changement dans le programme, I’état du mutant doit étre différent de celui du
programme original tout de suite apres I’état muté. Cette caractéristique est une condition
nécessaire afin de tuer le mutant. Cependant, cette condition n’est pas suffisante, car il peut
trés bien arriver que le changement de comportement ne parvienne pas a 1’une des sorties
du programme. Aussi, une condition suffisante est que le test cause une différence a ’'une
des sorties. Il est cependant tres difficile de satisfaire les deux conditions, car cela demande
de savoir a I'avance le chemin que va suivre le programme, ce qui est bien siir un probleme
trés difficile a résoudre. Pour étre certain que le test tue le mutant, le mutant doit étre
exécuté en globalité et, sa réponse comparée avec la réponse du programme. En pratique,
il est admis qu’un test remplit la condition nécessaire s’il remplit la condition suffisante

sinon, le mutant produit le méme résultat que le programme original et reste vivant.

33
CHAPITRE 2
APPLICATION DU TEST PAR MUTATION AUX CIRCUITS VLSI

2.1 Introduction

Ce chapitre fait état des investigations effectuées par I’equipe Valsys de Grenoble et
de Valence, ainsi que des résultats obtenus suite a une collaboration effectuée avec notre
groupe. Ces travaux sont a la base d’une proposition d’un premier algorithme de
validation par mutation de circuits numériques. Tout au long de ce chapitre, nous
présenterons les raisons qui ont guidé le choix d’un outil de mutation spécifique ainsi que
son architecture. Nous décrirons les différents bancs d’essai sur lesquels les mutations ont
été réalis€es. Enfin, nous décrirons un algorithme de validation et les problémes sous-

jacents a cette méthode de validation.

Bien que le test par mutation ait été originalement proposé afin de vérifier un
programme, il a par la suite été proposé d’utiliser cette méthode afin de valider une
description matérielle. En effet, tout comme pour le test des logiciels, cette méthode se
révele intérressante si on travaille a partir de languages de description matériel tels que
VHDL (Very High speed integrated circuit Hardware Description Language) et VERILOG.
Par ailleurs, les approches fonctionnelles sont indépendantes de I'implémentation
matérielle du circuit, ce qui permet d’avoir recours 2 un haut niveau d’abstraction capable
de traiter des circuits VLSI complexes. Il n’existe pas un ensemble de principes reconnus
pour la validation de circuits VLSI, qui est en général realisée de maniére ad-hoc. Aussi.

en se tournant vers le test logiciel, on peut, si on considére chaque description VHDL

34

comme un programme, utiliser les rudiments du test logiciel (voir section 1.2.1). Par
ailleurs, le test par mutation se compare i bien des égards au test matériel, comme il sera
demontré dans la suite de ce chapitre.

Afin de valider et d’établir les fondations de la méthode de validation par mutation de
descriptions matérielles, nous avons eu recours a [Poutii Mothra[23], qui est
I’environnement le plus complet pour le test par mutation dans le domaine logiciel. Cet
outil permet de tester des modules écrits en FORTRAN. Mothra génére automatiquement
tous les mutants d’un programme en utilisant un ensemble défini d’opérateurs de mutation.
L architecture de Mothra ainsi que la définition de ces opérateurs sont présentés dans la

section suivante.

2.2 Présentation de Mothra

Mothra utilise une technique de test qui est basée sur des contraintes, ce qui permet
d’automatiser le processus de test par mutation en représentant sous la forme de con-
traintes mathématiques, les conditions pour lesquelles un mutant est tu€. Mothra est con-
stitué d’un ensemble d’outils qui permet a la fois de créer les mutants et de générer des
vecteurs de test. La génération de ces vecteurs est réalisée par Godzilla. Les outils

Mothra/Godzilla ont été implémentés en langage C.

35

2.2.1 Génération de vecteurs de validation.

Godzilla génere des vecteurs de test en tentant de trouver les propriétés que doivent
avoir les entrées du programme afin de tuer les mutants. Dans le chapitre 1, il a été montré
qu’il fallait que le comportement suite a la mutation soit différent de celui du programme
non muté. Aussi, dans la validation par mutation, il est nécessaire que les entrées du
programme engendrent un état erroné directement aprés I’exécution de I’état mutant. Par
analogie avec le test matériel, il faut au moins que le test stimule la panne a la source en
produisant une différence de comportement observable a cet endroit (condition
nécessaire). Ensuite, une fois la panne stimulée, cette différence doit se propager sur un

résultat observable de ’extérieur.

Godzilla décrit ces conditicns sous forme d’un systtme de contraintes
mathématiques. La condition d’accessibilité est décrite par un systtme de contraintes
appellé “ expression de chemin ”. Si on représente le lieu ou une panne est susceptible
d’étre introduite comme un état, chaque état du programme a une expression de chemin
permettant de décrire la maniére d’atteindre I’état mutant a partir de n’importe quel état.
Une condition spécifique au type de faute modélisé par le mutant décrit a la fois la
condition qui engendre le comportement défectueux du programme et la nécessité d’une
exécution intermédiare incorrecte. Ces deux critéres constituent une condition nécessaire,
car bien qu’un état intermédiaire incorrect soit nécessaire, il n’est pas suffisant pour tuer
un mutant. Afin de tuer un mutant, il faut que le programme génére des sorties incorrectes

de maniére a ce que I’état final du programme soit différent de celui du programme

36

original. Cependant, bien qu’il soit nécessaire de satisfaire la condition de suffisance, elle
est pratiquement irréalisable. En effet, déterminer complétement la condition de
suffisance implique de connaitre a I’avance le chemin que va prendre le programme.
Grice a ce systéme de contraintes, Godzilla intégre plusieurs techniques de test logiciel

dont le détail est donnée ci-dessous:

La couverture des états: Si on considére un état comme une combinaison des
valeurs de toutes les variables dans le programme a un ins.ant donné, chaque état du
programme est exécuté au moins une fois. La couverture est réalisée directement a partir

du systeme de contraintes appelé “ I’expression de chemin ”.

La couverture des branches : technique qui requiére que toutes les branches du
programme soit parcourues. Cette technique est respectée par le test par mutation, en effet

les mutants ne peuvent étre tués que si les prédicats prennent la valeur vraie puis fausse.

Domaine de perturbation : Cela consiste a partitionner les entrées du programme en
domaines. Chaque vecteur compris dans un domaine suit le méme chemin. La stratégie du
domaine de perturbation sélectionne les vecteurs de maniére a prendre les valeurs
frontieres du domaine. Les opérateurs de mutation forcent les vecteurs a satisfaire le
domaine de perturbation en modifiant légérement chaque expression (en ajoutant 1, en
soustrayant | ou en prenant 10% de la valeur etc.) et en remplagant chaque opérateur.

L’architecture de Godzilla est donnée a la figure 2.1

37

Expression
de chemin

Analyseur
de
chemin
Réducteur Satisfactio_n L (Jeu de Tes
de contraintes des contraintes
Contraintes

de mutation

Contraintes
de nécessité

Figure 2.1: Impiémentation de Godzilla

Les principales fonctions de Godzilla sont montrées ci-dessus. Cet outil intégre
différentes fonctions, chacune d’entre elles a ¢té implémentée dans différents pro-
grammes, ceux-ci communiquent par !’intermédiaire de fichiers qui sont représentés par
des ellipses. Les fleches de la figure 2.1 indiquent les flots d’information du systéme
Godzilla. Les fichiers sont accessibles par des routines communes a tous les outils, ils sont
ainsi vus en faisant abstraction du type de données. Ce systéeme permet une plus grande
modularité et une plus grande extensibilité en donnant & chaque outil un acceés uniforme

aux routines qui créent, modifient, enregistrent et récupérent les contraintes.

38

2.2.1.1 La représentation des contraintes.

Le systeme de contraintes de Godzilla a une structure hi€rarchique composée de
contraintes, d’expressions et de clauses arrangées de maniére “ disjonctive normale ™.
L’expression algébrique est I’élément de base du systeme de contrainte. Elle est composée
de variables, de parenthéses et d’opérateurs spécifiques au FORTRAN. Une contrainte est
une paire d’expression algébrique reli€e par un des opérateurs suivants {>, <, =, 2, <, £ }.
Les contraintes sont évaluées soit a Ia valeur binaire VRAI, soit a la valeur FAUSSE et
elles peuvent étre modifi€es par I’opérateur de négation NOT (—). Une clause est une liste
de contraintes reliées par les opérateurs logiques ET (A) et OU (v). Une cluuse
conjonctive utilise seulement le ET logique et une clause disjonctive seulement le OU
logique. Dans le systéme Godzilla, toutes les contraintes sont sous la forme nomal
disjonctive (DNF), qui est en fait une série de clauses conjonctives reli€es par des
opérateurs OU. La forme DNF est utilisée par commodité durant la génération des
contraintes (en effet, il suffit de satisfaire une seule conjonctive clause). Godiilla
considére le systéme de contrainte comme étant un ensemble de contraintes, qui prises

collectivement forment un vecteur de test.
A titre d’exemple, considérons le systeme de contraintes de I'équation suivante:

(X+Y2Z2Z2)A(XSY)V(X>2Z)

X+Y est une expression et (X+Y 2 Z) est une contrainte. (X+Y 2 Z) A (X <£Y)) estune
clause conjonctive, et I’expression entiére est un systéme de contraintes. Des vecteurs de

test tels que (X=3, Y=4, Z=2), (X=3, Y=4, Z=4) et (X=4, Y=1, Z=3) satisfont les con-

39

traintes.

2.2.1.2 L’analyseur de chemin.

L’analyseur de chemins utilise la technique de couverture des chemins parcourant
ainsi tout le programme afin de construire des contraintes d’accessibilité. Pour chaque €état
du programme original, I’analyseur de chemins crée une contrainte telle que si le vecteur
atteint cet état, la contrainte est vraie. Il faut noter qu’il vaudrait mieux avoir des
contraintes inverses (si la contrainte est satisfaite, I’état est exécuté). Cependant, créer des
contraintes qui garantissent I’accessibilité implique de trouver une réponse au probleme
de connaitre a I’avance le chemin que pourrait prendre le programme. L’algorithme

construisant les expressions de chemin partiel est présenté ci-dessous:

Générateur de contraintes

Variables: CPE est I’expression courante du chemin

PE [] contient I'expression courante de chaque état.
P est le programme.
S et S’ sont des états du programme P.

p est I’expression d’un prédicat.

1 CPE = VRAI -- initialisation
2 pour chaque €tat S de P
3 PE[S]=FAUX -- initialisation (aucun état n’'a €€ trouveé)
4 fin
S pour chaque état de S de P
6 PE[S]=PE[S]VCPE — CPE(nouvelle maniere d’attcindre S) est ajouté A 1'€tat précédent
7 CPE=PE([S] — lc nouvel é&at devient I’état courant
8 Si S est un état de controle de flux alors — si plusieurs possibilitées
{ p estlc prédicat de S, S’ est 1a cible de la branche. } - condition préalable a I'évaluation de S
9 misc 2 jour de CPE selon le type de I'état.
10 PE[{S']=PE[S']V(PE[S]A p) - ajoutde I'expression du chemin et de la conjonction de
11 end - CPE ct du controle de flux

L’expression du chemin courant CPE (Current Path Expression) est tout d’abord

initialisée a la valeur VRAI, et chaque état a la valeur FAUSSE indiquant qu’aucun

40

chemin menant a cet état n’a été trouvé. Pour atteindre I'état S, plusieurs actions sont
entreprises. Premi¢rement, Le CPE est ajouté€ a la liste des précédentes expressions de S.
En effet, le CPE représente une nouvelle voie possible pour atteindre S (ligne 6). Chaque
chemin susceptible d’atteindre S est enregistré comme une nouvelle clause disjonctive a
I’expression des chemins. Ensuite, le nouveau PE de I’état S devient le CPE (ligne 7).
Chaque clause disjonctive dans I’expression des chemins représente une exécution
différente du chemin menant & I’état S. Enfin, si S est un état de controle de flux
(représentant différentes possibilitées, branches...), le CPE est mis a jour par une régle de
modification qui dépend de S. La clause disjonctive et le prédicat de contrble de
flux(condition du choix multiple) sont finalement ajoutés a 'expression du chemin de

I’état cible (ligne 9 et 10).

2.2.1.3 Le résolveur de contraintes

La derniére étape du processus de génération de vecteurs de tests est de trouver des
valeurs qui satisfont le systéme de contraintes. Godzilla travaille avec des heuristiques, et
produit rapidement des vecteurs de test quand les contraintes ont une forme simple et plus
lentement lorsque leur forme est plus compliquée. Tout d’abord, un domaine de valeurs
possible est assigné & chaque variable. Théoriquement, ce domaine de valeur dépend du
type de vaniable et de la machine sur laquelle le programme est utilisé. En pratique,
Godzilla permet de réduire ce domaine. Par défaut, les domaines de variation des
variables sont initialisés arbitrairement aux valeurs (-100, 100). Cependant, ces valeurs

peuvent étre modifi€es dans le cas ou le besoin s’en fait sentir. Chaque contrainte dans un

41

systéme de contrainte réduit le domaine de variation d’une ou de plusieurs variables.
Quand le domaine de variation d’une variable est réduit a2 une valeur, cette valeur fait
partie du vecteur de test. La variable est alors remplacée par sa valeur dans toutes les
autres contraintes. St le domaine de variation est réduit a I’ensemble vide, la résolution de
ce systéme de contrainte est alors impossible. Lorsque toutes les simplifications ont été
faites, et qu’il reste un domaine de plusieurs valeurs, une valeur est choisie. Godzilla
utilise une heuristique qui affecte la variable qui utilise le plus petit domaine de variation,
en espérant que c’est cette variable qui a le moins de chance de rendre le systéme
infaisable. Ce processus est répété jusqu’a ce que toutes les variables se soient vues

assignées une valeur.

A chaque fois qu’une valeur est affectée a une variable, le domaine de variation des
contraintes est réduit d’une dimension. Si la valeur est mal choisie, elle peut rendre le
systeme infaisable. Lorsqu’un systtme de contraintes devient infaisable aprés une
affectation, le processus recommence a partir du systeme de contraintes original. Les
expériences ont montrés qu’en moyenne, le processus de réduction de contrainte trouve
une solution en 4 itérations (avec un maximum de 25). Dans le cas ot I’ objectif n’a pas été
atteint aprés 25 essais, on considére que le systéme de contraintes ne posséde pas de

solutions. Toutefois ce dernier cas ne s’est pas encore produit.

2.3 Opérateurs de mutation

Les opérateurs constituent le noyau du test par mutation. Ces opérateurs sont au
nombre de 22 et ils identifient les modifications syntaxiques responsables des

programmes mutants. Les opérateurs qui sont implémentés dans Mothra sont énumérés au

tableau 2.1.
Tableau 2.1 : Opérateurs de mutation
Opérateurs de mutation Description
AAR Array reference for Array reference Replacement
ABS ABSolute value insertion
ACR Array reference for Constant Replacement
AOR Arithmetic Operator Replacement
ASR Array reference for Scalar variable Replacement
CAR Constant for Array reference Replacement
CNR Comparable array Name Replacement
CRP Constant RePlacement
CSR Constant for Scalar variable Replacement
DER Do statement
DSA Data Statement Alteration
GLR Goto Label Replacement
LCR Logical Connector Replacement
ROR Relational Operator Replacement
RSR Return Statement Replacement
SAN Statement Analysis
SAR Scalar variable for Array reference Replacement
SCR Scalar for Constant Replacemen
SDL Statement DeLetion
SVR Scalar Variable Replacement
UOlIl Unary Operator Insertion

43

2.4 Chaine de validation

La description de la méthodologie de test originalement proposée par I’équipe du
VALSYS et modifi€e par notre groupe est donnée dans la suite de ce paragraphe et est

résumée a la figure 2.4.

I1 faut tout d’abord réécrire la spécification VHDL en FORTRAN car MOTHRA ne
produit des mutations que sur ce langage. Cette description doit étre comportementale car
il est tres difficile d’écrire un code structurel en Fortran. Dans une seconde étape, une
génération de vecteurs de test est réalisée par Mothra. La troisieéme étape consiste en une
phase d’optimisation qui permet d’augmenter le nombre initial de vecteurs du jeu de tests,
jusqu’a ce que le score de mutation soit satisfaisant. L'étape suivante est une étape de
synthése. Synopsys est utilis€ pour générer une description structurelle du circuit. La
derni¢re €tape consiste a calculer la couverture de faute du jeu de vecteurs généré par
MOTHRA. Pour cela, une simulation de fautes est réalisée avec I’ ATPG (automatic test
pattern generator) HILO. L’efficacité du jeu de vecteurs de validation produit par Mothra
mesurée a |’aide du score de mutation(voir chapitre I) est comparée a la couverture de
faute obtenue avec la suite de test appliquée a I'implémentation structurelle. L’ objectif ici

est de corréler le score de mutation avec une mesure dont le sens est bien établi.

VHOL
Description
Comportementale

Description
Fortran

Choix des mutanis

Cas de test

Score de Mutation

Synopsys

Réutilisation du jeu de
vecteurs de test pour
le calcul de ia
couverture de test

Figure 2.2: Méthode de validation de circuits numériques utilisant Mothra

45

2.5 Validation de la méthode

L’ objectif premier de cette section est d’élargir le champ d’expérimentation de la
méthode de test par mutation a des circuits de complexité plus importante que ceux
réalisés 3 Grenoble. Pour cela, il a ét€ décidé d’utiliser des bancs d’essai de types
différents: petit séquentiel, gros séquentiel et gros combinatoire. Enfin, un circuit a
spécialement été congu afin de metttre en évidence les atouts et/ou les faiblesses du test
par mutation. Les résultats de la collaboration entreprise entre Monsieur Zoccarato et
notre groupe ainsi qu’une bréve description de ces bancs d’essai sont donnés dans la

section suivante.

2.5.1 Description des bancs d’essai.

cla : Le circuit cla est un processeur RISC 32 bits défini par Hennessy et Patterson. Ce
processeur posséde un jeu d’instruction simple, un seul mode d’adressage, un décodage
unique de son jeu d’instruction et une architecture trés simple, qui met en évidence toutes
les fonctionnalités du principe RISC. Le jeu d’instruction du processeur RISC possede
avant tout des instructions arithmétiques pour nombres signés et flottants. Mais aussi des
caractéristiques telles que: les interruptions et exceptions, trois différents modes
d’utilisation (utilisateur, superviseur et défaut) et un mode d’adressage supplémentaire. Le
circuit cla permet d’effectuer des additions sur des nombres de 32 bits en calculant la

retenue de maniére anticipée.

46

Edhii: Ce circuit fait parti d’un processeur ancillaire qui insére / extrait des données
dans un signal vidéo numérique exprimé selon diverses normes. Ce circuit sera présenté
de maniére plus explicite dans le chapitre 3. Le circuit edhii permet la réécriture des
données provenant du module EDHin, dans les trames vidéo. Un explication plus détaillée

de ce circuit est donnée au chapitre 3.

Sortie: Ce module, comme le précédent, fait aussi partie du module EDH du

processeur ancillaire. Sa fonction est de générer les paquets de sortie.

Mux: Ce circuit a été congu afin de mettre en évidence des lacunes possibles de
certains algorithmes implémentés dans le syst¢tme de mutation et les problémes sous-
jacents a la mutation. Une description plus détaillée de la fonctionnalité de ce circuit se

trouve au paragraphe (2.6.4).

2.5.2 Processus de validation

La démarche adoptée pour valider les 4 circuits mentionnés précédemment est la

suivante :

-Réécriture du programme VHDL en FORTRAN. Il est possible que lors de cette
opération, la structure du programme ou méme la structure des données soit modifiée. En
effet, sachant que la définition du ET logique FORTRAN (il en est de méme pour le OU
logique) ne correspond pas a la définition du ET logique VHDL, il est absolument
nécessaire de décomposer cet entier en autant de booléen qu’il est nécessaire, ce qui a

pour conséquence d’augmenter de fagon non négligeable la complexité du programme.

47

-Réécriture du programme VHDL en un autre programme VHDL de maniére a le
rendre compatible avec le programme FORTRAN qui a été géné€ré lors de 1'étape
précédente. Cette phase est nécessaire car la structure des données du programme
FORTRAN n’est plus compatible avec celle du programme VHDL, entrainant une
incompatibilité des vecteurs générés par MOTHRA avec la synthése du circuit réalisé par
SYNOPSYS. Il faut noter qu’il existe une alternative a ce travail, elle consiste & modifier
tous les vecteurs générés par MOTHRA de maniére a les rendre compatibles avec la
description structurelle faite par SYNOPSIS. Aprés que chacun des programmes sources
ait été généré, une mutation non sélective suivi d’une mutation sélective ont été utilisées.
Pour la mutation selective, le score de mutation a été produit a partir des mutants générés

par les opérateurs aor, ror, Icr, abs et uoi.

2.6 Résultats.

2.6.1 Le circuit sortie

Une des premiéres difficultés, inhérente au fait de traduire la spécification VHDL en
FORTRAN, c’est I’abscence d’utilisation de vecteurs binaires. En effet, il est possible de
définir dans I’entit¢ VHDL des entrées binaires de longueurs différentes (2 bits, 25
bits...), chose qui n’existe pas en FORTRAN, puisque les seuls types disponibles sont les
types entiers, booléens, flottants et double flottants. Afin de contourner ce probléme, nous
avons ajouté au début du programme FORTRAN une condition spécifiant que les vecteurs

binaires ne dépassent pas leurs valeurs entiéres équivalentes. Te procédé introduit des

48

mutants supplémentaires, cependant, afin de ne pas influencer les résultats et le score de
mutation, nous ne chercherons pas a les tuer. Le deuxi¢me probléme rencontré a été un
probléeme d’espace mémoire. En effet, lors de la satisfaction des contraintes générées par
la mutation non sélective, Mothra consomme beaucoup d’espace mémoire et I’ utilisation
d’une machine de type 1 (65 Mo de RAM et 118 Mo de swap space) n’est pas suffisante.
Nous avons donc relancé ce méme processus sur une machine de type 2 (131 Mo de RAM
et 257 Mo de swap space). La figure 2.5 représente la consommation de swap pour la
machine de type 2 lors de la résolution des contraintes (il est clair que 118 Mo ne suffit
pas). Les résultats du test par mutation sont représentés dans le tableau. Il est a noter que

3793 mutants ont été générés. Le nombre de vecteurs de validation est présenté dans le

tableau 2.2.
Figure 2.3: consommation mémoire pour le circuit de sortie
£ 300000
o
§,; 200000
S 100000
§' 0
- N M ©O© OO N 1N O v <
@ EE-EEEEEEENE
t(s)

Bien que la couverture de test soit élevée, le score de mutation lui ne I’est pas, ce

49

qui tend a révéler que les vecteurs générés par MOTHRA ne sont pas tous adéquats, que
ce soit pour la mutation sélective ou non sélective. Il est cependant possible d’augmenter
ce score de mutation en augmentant le jeu de test de maniére a tuer les mutants existant.
Cependant, cet enrichissement manuel s’avére étre long et diminue I’automatisation du
test par mutation. Aussi, c’est a celui qui est en charge de la validation (I’oracle) d’estimer
le temps nécessaire a cet enrichissement. Par ailleurs, le circuit de sortie posséde une cer-
taine redondance, ce qui réduit le score de mutation puisque le ou les types de mutants non
tués se répétent plusieurs fois. Comme il a été dit précédemment, la couverture de collage
est comparée au score de mutation afin de montrer que les vecteurs fonctionnels produits
peuvent aussi étre utilisés pour le test matériel. A titre indicatif, nous pouvons comparer
cette couverture de fautes a celle obtenue par 20 vecteurs de tests générés de fagon totale-
ment aléatoire. Le résultat obtenu par ces 20 vecteurs peut paraitre trés bon, mais il faut
savoir que pour ce genre de circuit, il est trés facile d’avoir une couverture 70 a 80%. Il est
par contre beaucoup plus difficile d’obtenir les 20% restants. Concemant le score de
mutation, la différence est plus importante, on peut donc dire pour ce circuit qu’il est

beaucoup plus difficile de tuer un mutant que de détecter une faute de collage.

50

Tableau 2.2 : circuit de sortie

Nombre de Score de Couverture de
vecteurs mutation fautes
Vecteurs générés par Mothra 446
pour [a mutation non sélective
Vecteurs générés par Mothra 139
pour la mutation sélective
Vecteurs générés 20 0.3 % 80.3 %
aléatoirement

2.6.2 Le circuit d’entrée de Pedh

Pour ce circuit, nous avons également été confrontés au probleme de la plage de
variation des variables d’entrées, ainsi qu’a celui de I’espace mémoire. Cependant, cette
fois-ci, le fait de changer de machine n’a pas été suffisant . En effet que ce soit pour la
mutation s€lective ou non sélective, les machines de type 1 et 2 ne réussissent pas a satis-
faire les contraintes générées pour ce circuit. En effet, dans certains cas, le programme
avorte et dans d’autres cas, bien que des mutants aient été générés, aucun vecteur ne fut
construit. La consommation mémoire est donnée a la figure 2.6. Afin de pouvoir effectuer
le processus de mutation, il a fallu réécrire le programme edhii de maniére a ce que les
contraintes générés par MOTHRA soient plus simples. La fonctionnalité du programme a
bien évidemment changé, cependant nous essayons par ce “ stratagéme ’ de générer des
vecteurs qui puissent tester un maximum de conditions, chemins, valeurs extrémes et par-

~

ticuliéeres, de manieére a avoir une bonne couverture de fautes. Dans ce demnier cas

51

I’emphase a été mis sur une augmentation de la couverture de faute comparativement au

score de mutation.

Figure 2.4: consommation mémoire pour le circuit d’entrée

300000
200000
100000

0

swap (1073) octet

— Y Y v v v v v
M O© O N U O ™ < I~
v~ v N NN «

t(s)

Le tableau présente un récapitulatif des résultats obtenus. On y trouve le score de
mutation et la couverture de fautes de collage pour des vecteurs générés par MOTHRA
pour la mutation sélective et non sélective. Les résultats obtenus par le score de mutation,
que ce soit pour la mutation sélective ou pour la mutation non sélective, sont trés faibles
(environ 20%). Cela s’explique par le fait que la moitié des mutants générés n’ont pas été
tués. En effet, ce circuit est séquentiel et posséde un état interne. Toutes les transitions par-
tant de cet état interne ne peuvent donc pas étre tuées. Les scores de mutation sont affectés

par le méme phénoméne. Une explication plus détaillée sera donnée dans la section 2.6.4.

52

Tableau 2.3 : Résultats de sortie pour le circuit d’entrée de I’EDH

Nombre de Score de Couverture de
vecteurs mutation fautes
Vecteurs générés par Mothra 589
pour la mutation non sélective
Vecteurs générés par Mothra 114
pour la mutation sélective

2.6.3 Le circuit cla

Nous avons encore une fois été confrontés a un probléme de mémoire, cependant le
systeme de mutation n’a pas pu générer de vecteurs de test pour ce fichier, que ce soit pour
la mutation sélective ou non sélective. Afin d’obtenir des résultats concluants, 8 fichiers
différents ont été écrits. Chacun de ces fichiers correspond a un circuit de calcul anticipé
de retenu pour des données faisant 4, 8, 12, 16 ,20, 24, 28 et 32 bits. Le seul circuit sur
lequel nous pouvons appliquer la mutation sélective et non sélective est le circuit traitant
des données de 4 bits. L’application du test par mutation sur ce circuit a donné les résultats
se trouvant dans le tableau 2.4. Il est a noter que 4420 mutants ont été générés. Le nombre

de vecteurs générés pour la mutation non sélective est de 4046. Ce nombre est énorme,

puisque le nombre de vecteurs nécessaires a un test exhaustif est de 512 = 2%. Mémessi la
mutation sélective réduit notablement le nombre de vecteurs générés, on peut dores et déja
dire que ce type de circuit constitue un véritable probléme pour Mothra. Il apparait a

premiére vue que le grand nombre de variables internes contenues dans la description

53

VHDL de ce circuit serait responsable des difficultés qu’éprouve Mothra a le tester. Afin
d’expliquer les problémes rencontrés, une étude sur la complexité algorithmique du

générateur de vecteur est rapportée dans la sous section suivante.

Tableau 2.4 : Résultats de sortie pour le circuit cla

Nombre de Score de Couverture de
vecteurs mutation fautes

Vecteurs générés par Mothra 4046
pour la mutation non sélective
Vecteurs générés par Mothra 270

pour la mutation sélective

2.6.4 Complexité algorithmique

Bien que Mothra soit I’outil de mutation le plus performant, il apparait €vident que ce
systeme éprouve certaines difficultés pour la validation de circuits VLSI. Afin de
proposer une amélioration a la méthode décrite dans ce chapitre, il a fallu identifier la

source des difficultés éprouvées par Mothra.

Afin d’expliquer les probléemes de consommation mémoire pour certains circuits,
un balayage des algorithmes de Godzilla a montré que les seuls susceptibles d’engendrer
un nombre important d’itérations sont: I’algorithme de réécriture des variables internes en
fonction des entrées primaires et I’algorithme de réduction du domaine de variation des
variables. Ces deux algorithmes ont une complexité proportionnelle au nombre total de

clauses contenues dans le systéme de contraintes. Il n’est cependant pas possible d’éval-

54

uer précisément le nombre d’itérations nécessaires, car celui-ci dépend de la structure du
programme. On peut simplement dire qu’au maximum, on a une contrainte par é€tat et au
moins une clause par contrainte. Le nombre de clauses peut facilement devenir trés impor-
tant. Dans I’unique but de démontrer cette thése, le nombre de contraintes du programme
MID(voir en annexe B) a été augmenté progressivement. Cette augmentation s’effectue en
augmentant la profondeur d’imbrication des if, tout en regardant 1'évolution de la con-
sommation mémoire. Le résultat de cette étude est montré au tableau 2.5, il a suffit de

rajouter 4 if pour que la machine de t 1 n’arrive plus a générer les vecteurs de test.
3| P q ype P g

Tableau 2.5 : Résultats obtenus pour la fonction MID

Mid1 Mid2 Mid3 Mid4
Nombre de mutants 830 1219 1669 2146
Nombre de vecteurs 654 898 1285 X
Temps nécessaire a la génération| Oh43nn3s | 1h 17mn46s | 3h44mn 44s | indeterminé
des vecteurs de test
Nombre de clauses du 249 817 3089 12177
progransme
Taille de la swap utilisée lors de] 6184 Ko 22300 Ko 66208 Ko La totalité
la satisfaction des contraintes

Une deuxiéme difficulté provient du nombre important de mutants équivalents
augmentant ainsi la complexité du processus de validation et la tiche du concepteur. Ces
mutants équivalents sont par définition des spécifications qui ont le méme comportement
que le programme original. Cependant, une hypothése émise est que le nombre de

mutants équivalents produits par le syst¢tme de mutation pourrait étre dii au fait qu’il n’y

55

aurait pas de propagation de la faute a I’'une des sorties primaires. Afin de corroborer
cette hypothése, un programme a été construit afin de montrer que la propagation de la
faute vers les sorties primaires n’est pas effectuée. En effet, la justification de la faute est
faite, mais Mothra se contente “ d’espérer " que les sorties primaires du circuit révelent la
présence d’une faute en générant aléatoirement des valeurs sur les entrées qui n’apparais-
sent pas dans les contraintes. Par opposition aux algorithmes de test matériel qui per-
mettent de générer des vecteurs qui justifient et cherchent a propager les fautes. Pour
analyser plus en détail la pertinence des vecteurs générés par Mothra, nous avons créé 4

circuits qui représentent un empilement de plusieurs multiplexeurs (cf. figure 2.5).

in0O ir|\1 in2 irnx

sell MUX1T
sel2 MUIX2

]

' l - . ~

' ~ .

] =~ —

1 ~

, 1

[

selx MU ¢

Figure 2.5: Cascade de multiplexeurs

56

Comme pour le circuit précédent, le nombre de vecteurs générés par Mothra est trés
important. Les vecteurs générés pour ce circuit ne propagent pas les fautes comme il est
montré dans le tableau 2.6. Ce phénoméne va en s’accentuant si la profondeur du circuit

augmente. Aussi, c’est le grand nombre de vecteurs produits et non la qualité des vecteurs

qui tue les mutants.

Tableau 2.6 : Cascade de Multiplexeurs

Circuits | Type de | Entrées |Nb de | Mothra | Aléatoire
Mutation Vectors
MS MS
1 Mux Full 3 19 100% 96.8%
1 Mux Selective | 3 3 38.7% 83.9%
2 Mux Full 5 61 97.8% 97.8%
2Mux Selective | 5 6 86.8% 80.2%
4 Mux Full 7 189 82.1% 81.1%
4 Mux Selective | 7 17 75.5% 57.1%
8 Mux Full 9 670 75.3% 86.7%
8 Mux Selective |9 34 58.7% 52.7%

2.6.5 Conclusion

La mutation sélective est loin de donner le score de mutation qui a été obtenu pour
le test logiciel (57.38% contre 99.61% en moyenne), ou méme celui obtenu sur les circuits
d’expérimentation sans processus d’enrichissement [2] (95.02% en moyenne). Nous pou-
vons dire la méme chose pour le taux de couverture de fautes, dans de moindre proportion
cependant (74.98 % contre 95 %). La seule maniére d’obtenir a la fois un bon score de
mutation et une bonne couverture de fautes est de compléter manuellement le jeu de test,

surtout si le circuit testé est une machine a états. En effet, Mothra est incapable de classer

57

les vecteurs de maniére a positionner une machine a états sur un état précis. Pour une
FSM, nous avons a la fois des contraintes sur les variables du programme a I’instant
présent, mais aussi sur les variables du/des instant(s) précédent(s), chose qui n’est absolu-

ment pas prévue dans Mothra (cf. circuit edhii)

2.6.5.1 Etude de la puissance des mutants

Le nombre de vecteurs générés est vraiment trés important (surtout pour la muta-
tion non sélective). Un bon moyen de diminuer ce nombre consiste a utiliser la mutation
sélective. De maniére a ne retenir que les opérateurs les plus efficaces, une étude sur la
puissance des S opérateurs principaux a été faite. Une fois les opérateurs les plus efficaces
sélectionnés, il faut que mis les uns avec les autres, ils détectent le plus de fautes possi-
bles. Pour chacun des 7 fichiers (sortie, Mux2, Mux2, Mux4, Mux8, Edhii et Cla4) nous
avons appliqué chacun des 5 opérateurs de la mutation sélective. Tout d’abord, on effectue
le lancement du processus de génération des vecteurs de test. Le nombre de mutants
générés est inscrit dans la colonne 1, et le nombre de vecteurs dans la colonne 2. Le calcul
du score de mutation est porté dans la colonne 3. A partir de 1a, 2 cas sont possibles, soit
les vecteurs sont adéquats, auquel cas nous passons directement a 1’étape 4, soit les vect-
eurs ne sont pas adéquats et nous passons a I’étape 3. Une augmentation manuelle du jeu
de vecteurs est réalisée de maniére a avoir des vecteurs adéquats (score de mutation de
100% (cf. colonne 5)) afin de ne pas influencer les résultats de cette étude. La colonne 4

représente [e nombre initial de vecteurs plus ceux générés manuellement. Le calcul de la

couverture de fautes de collage est porté dans la colonne 6.

Tableau 2.7 : Puissance des opérateurs

Uol1
Nb Nb vect- M. S. Nb2 M.S.2 Stuck at
mutants eurs vect.
Sortie 260 80 45.8% 122 100% 96.6%
Mux| 3 2 100% 2 100% 71.4%
Mux2 6 4 83.3% 5 100% 83.3%
Mux4 14 10 85.7% 12 100% 84.1%
Mux8 28 20 71.4% 23 100% 84.5%
Edhii 116 51 24.1% 57 55.2% 80.8%
Cla4 163 163 80.4% 176 100% 100%
ROR
Nb Nb vect- M.S Nb2 M.S.2 Stuck at
mutants eurs vect.
Sortie 420 19 23.3% 112 100% 93.3%
Mux1 7 1 0% 3 100% 57.1%
Mux2 14 2 28.6% 5 100% 58.3%
Mux4 28 4 35.7% 9 100% 93.2%
Mux8 56 8 39.3% 14 100% 83.3%
Edhii 259 34 6.2% 45 55.6% 79.3%
Cla4 0 X X X X X
7 LCR
Nb | Nbvect- I M.S. l Nb2 ' M.S.2 | Stuck at
mutants eurs vect.

58

Sortie 287 0 0% 55 100% 82.3%
Mux1 0o X X X X X
Mux2 0o X X X X X
Mux4 0 X X X X X
Mux8 o X X X X X
Edhii 112 0 0% 8 50% 51.4%
Clag 469 95 75.5% 107 100% 100%
ABS
Nb Nb vect- M. S Nb2 M.S.2 Stuck at
mutants eurs vect
Sortie 150 42 28.7% 110 100% 87.1%
Mux1 0 X X X X X
Mux2 0 X X X X X
Mux4 0 X X X X X
Mux8 0 X X X X X
Edhii 48 20 16.7% 28 66.7% 78.3%
Clad 12 12 100% 12 100% 97.5%

59

Bien que certains mutants permettent d’obtenir des scores de mutation intéres-

sants, on ne peut affirmer qu’un opérateur est plus important que les autres. En effet,

I’opérateur AOR donne de mauvais résultats car aucun des programmes testés ne contient

d’opérateurs arithmétiques. Un meilleur moyen d’étudier la puissance des opé€rateurs est

d’en montrer la capacité a découvrir des fautes de collages en fonction du nombre de fois

oui on le trouve dans le programme ou, le nombre de fois ou les vecteurs couvrent une

région du design. Le test par mutation semble étre une solution au probleme de la valida-

tion. En effet, cette méthode fournit un modéle qui permet de mesurer a quel point le cir-

cuit a été validé .

Il est également intéressant de noter que les mémes vecteurs sont

60

capables de trés bien tester le circuit final si toutefois I’on s’est assuré de leur capacité a
tuer les mutants par le score de mutation. Afin de répondre a plusieurs des limitations
identifiées pour un test par mutation avec les outils existants, des opérateurs propres au
langage VHDL, un génerateur de mutants ainsi qu’une nouvelle méthodologie de test par

mutation sont exposés dans le chapitre suivant.

61
CHAPITRE 3

METHODE SYSTEMATIQUE D’ENRICHISSEMENT DE
VECTEURS FONCTIONNELS

3.1 Introduction

3.1.1 Limitations de Mothra pour la validation.

Dans le chapitre précédent, des expériences ont été menées afin de montrer les
différents piéges pouvant découler du test par mutation. Le banc d’essai concernant la
cascade de multiplexeurs (cf 2.6.7) a été choisi afin d’exposer les similaritées existant
entre la génération pseudo aléatoire du modéele de panne blogquée-a I ou O et la suite de
test produite par Mothra. L’outil semble présumer que les pannes se propagent
naturellement 2 I'une ou l'autre des sorties primaires. Cette hypothése peut s’avérer
incorrecte avec des circuits ayant un probléme potentiel d’observabilité. Par exemple,
dans le cas des multiplexeurs, ce phénomeéne a considérablement réduit la couverture de
pannes ainsi que le score de mutation. En effet si les entrées de commande de la cascade
sont stimulées avec des vecteurs aléatoires, la probabilité qu’une panne puisse étre
observée décroit exponientellement avec la distance mesurée en nombre de multiplexeurs
de la panne a la sortie. Cette expérience, dont les résultats sont rapporté€s au tableau 2.6, a
confirmé pour ce banc d’essai que les tests générés par Mothra pouvaient dans certains

cas n’étre guere meilleurs que ceux produits par une génération exhaustive.

62

Soulignons que dans certains cas, le nombre de vecteurs de test produits par le systéme de
mutation exéde le nombre de vecteurs requis pour une validation exhaustive. Ce probleme
n’est pas di a une limitation du test par mutation, mais a une limitation de Mothra qui
utilise un procédé de génération de test limité. Afin de répondre a ces limitations, un

certain nombre de solutions sont proposées dans la section suivante.

3.1.2 Redéfinition de la méthode de validation.

Nous avons identifi€ trois limites importantes avec la méthode proposée au chapitre 2.
La premiére découle des traductions du VHDL au FORTRAN imposées par MOTHRA.
La seconde provient de la difficulté a détecter les mutants équivalents. La troisieme
découle de I’hypotheése implicite que les différences de comportements se propagent

naturellement a un noeud de sortie observable, sans avoir recours a des actions explicites.

La méthode proposée dans la suite de ce chapitre est d’utiliser le test par mutation comme
un moyen de mesurer I’efficacité d’une suite de tests définie lors de la validation. Avec
cette méthode, nous supposons que les suites de test proviennent de celui qui est en charge
de la validation. L’'objectif est de détecter les parties de la fonctionnalité ou une ou
plusieurs erreurs de spécification passeraient inapergues a travers la suite de test. Les
mutants qui ne peuvent €tre détectés permettent alors d’identifier les imperfections de la
suite de vecteurs de validation. Cela guide le responsable de la validation vers les régions
du design insuffisamment testées. Considérant la difficult€é a déterminer précisément les

mutants équivalents, nous avons mis I’emphase sur la possibilité d’éviter de produire des

63

mutants qui pourraient 1’étre. Finalement, afin d’empécher le manque de fid€lité dans la
description fonctionnelle associée a la traduction du VHDL au FORTRAN, nous avons
implémenté un outil qui réalise les mutations directement 2 partir de descriptions VHDL.
Par ailleurs, il a été montré dans le chapitre 1.2.2.8 qu’un ensemble bien défini
d’opérateurs de mutation (mutation sélective) était suffisant afin de déveloper une bonne
qualité de test. De plus, le choix de ce type de mutation réduit sensiblement le nombre de
mutants, ce qui réduit sensiblement la tiche du concepteur. Dans la suite de ce chapitre,
nous présenterons le banc d’essais qui nous a guidé dans le choix des opérateurs de

mutation et I’implémentation du générateur de mutants.

3.2 Description du banc d’essai

3.2.1 Processeur ancillaire.

La puce a données ancillaires posséde deux modes de fonctionnement: MUX et
DEMUX. A ces deux modes se rajoutent plusieurs sous mode de fonctionnement : nor-
mal, bypass, tones, cbar, tones et cbar. Briévement, le sous mode bypass n’altére en rien le
signal vidéo d’entrée. Les sous modes cbar et tones sont des sous modes de test . Le pre-
mier modifie le domaine actif de I'image alors que le second insére ou extrait(tout
dépendant du mode MUX/DEMUX) des échantillons audio de | KHz. En mode MUX, la
puce doit encoder plusieurs types de données regues sériellement en paquets ancillaires et

les insérer dans I’espace HANC. Les types de données insérées ou extraites de la trame

64

vidéo sont: audio, time code, RS422 ou GPS. Les paquets ancillaires sont formés de la

maniére suivante:

AncDataFlag |Anc DataFlag | Anc Data Flag |DID| DBN| DC] User Data Words| CS

Toutes les cellules du tableau sont des mots de 10 bits. Les ancillary Data Flags servent a
identifier un paquet ancillaire. Le DID (Data Identification) renseigne quant a la nature
des données présentes dans le paquet. Le DBN (Data Block Number) sert 2 numéroter les
paquets de | a 255. Le DC (Data Count)précise le nombre de User Data Words que con-
tient le paquet. Les User Data Words contiennent les données sérielles transformées en
mots de 10 bits selon un standard défini pour chaque type de données. Le CS (checksum)

est un mot servant a la détection d’erreurs dans le paquet.

Le signal vidéo entre dans la puce par le module EDH. Ce dernier est responsable de
I’identification du standard vidéo en présence. Notons que la puce est faite pour traiter les
standards vidéos 4:2:2, 525 lignes, 27TMHz; 4:2:2, 625 lignes, 27 MHz; 4:2:2, 525 lignes,
36 MHz; 4:2:2, 625 lignes, 36 MHz et HDTV. Le module d’entrée doit €galement recon-
naitre les signaux de synchronisation qui permettent de se situer dans le standard vidéo. Il

est enfin responsable de la détection des erreurs présentes dans ce méme signal d’entrée.

En mode MUY, la puce est responsable du multiplexage des nouveaux paquets ancil-

laires présents dans le signal vidéo d’entrée.

65

En mode DEMUX, le contrdleur reconnait les paquets ancillaires pertinents et inscrit les
USERS DATA WORDS dans une RAM. Dans les deux modes de fonctionnement, le
module EDH est responsable de I’encodage des fanions révélant des erreurs dans le signal
vidéo d’entrée, ainsi que de I’encodage de certains mots dont il fait le calcul, mots qui

seront utiles aux modules qui recevront ce signal.

3.2.1.1 Module EDH

Le module EDH (error detection and handling) permet la génération de paquets
ancillaires. L’écriture de ces paquets se fait a des lignes définies par le standard video. Ces

standards sont au nombre de cinq. A savoir:

-4:2:2 525 lignes 2 27 MHz
-4:2:2 525 lignes a 36 MHz
-4:2:2 625 lignes a 27 MHz

-4:2:2 625 lignes a 36 MHz
- HDTV

Le module EDH doit aussi étre en mesure d’écrire dans les trames vidéos les données
provenant du bus ou du module EDHin. Le choix d’une de ces deux entrées est effectué
par le contrdleur du systéme. Enfin, afin de détecter des erreurs de transmission, le

module EDH doit Etre capable de générer des codes de vérification (CRCC).

66

3.2.1.2 Implémentation du CRCCs

L’encodage redondant est une méthode de détection d’erreur qui étend I’information a un
nombre de bits supérieur a celui de la donnée initiale. En général, plus le nombre de bits
redondants utilisés est grand, plus les chances de détecter une erreur dans la transmission
seront grandes. Les normes de télévision numérique prévoient que le codage de cette
redondance est effectué grace a un CRC (cyclic redundancy codes). Les CRCC(cyclic
redundancy code checkers) vérifient les différences entre les données transmises et les
données originales. Lorsqu’on utilise le CRCC afin de vérifier une trame vidéo, cette
trame est traitée comme un long mot binaire qui est alors divisé par un générateur. Cette
division produit un “reste” qui est transmis avec la donnée. A la reception, la donnée est
divisée par le méme générateur et le reste est comparé a celui qui a été envoyé. La
comparaison permet ainsi de détecter une erreur qui se serait éventuellement produite
durant la transmission. En général les calculs du CRC sont réalisés a I’aide d’'une LFSR
(linear feedback shift register). Cependant, cette méthode demanderait dans notre cas
I’utilisation d’une horloge trop rapide. Par conséquent, I’utilisation d’un CRC permettant
le calcul parallele a été préconisé. L’ algorithme qui permet de synthétiser ce CRCC est
basé sur la méme approche que la LFSR. Le générateur CRC-16 a ainsi €té choisi et est

donné en annexe.

3.2.1.3 Implémentation du module EDH

Le module EDH a été réalisé de maniére hiérarchique. Il est constitué de cinq sous-mod-

ules:

67

1. crc active picture: permet les calculs du crc dans la région active picture.

2. crc fullfield picture: permet les calcul du crc dans la region fullfield.

3. edhin: permet la réécriture des données provenant du module EDHin dans les trames
vidéo.

4. edhout: génére le paquet ancillaire

5. control: controleur qui commande les deux modules crc.

ENTI

L’entité correspond a la boite noire du sous-systeme EDH out.

Les signaux d’entrées sont les suivants:

L.

e A o R

hdtv (pour le signal HDTV)

reset (permettant d’initialiser le module)

start

clk_video (horloge)

newpacket (permettant I’insertion de nouveaux paquets)
ues, ida, idh, eda, edh (flags d’ erreurs)

video (signal exterieur codé sur 10 bits)

video_c(signal video provenant du bus)

stand_vidéo (standard vidéo)

10. line_number

11. Le signal de sortie est qout qui est codé sur 20 bits .

68

Figure 3.1: Architecture de ’EDH

hdiy — P ¥

rescr —— 9 INSERTION

CONTROLEUR

stare————{fin

clk_vidco— 10 bits

+

fla g s——n
10 bitsj

video
video_c

newpacket —
stand _vidco $»

line_number 9
INSERTION ECRITURE
DES DU PAQUET
DONNEES EDH

DU BUS

La description de chacun des modules a été réalisée de maniére comportementale a I’aide

du langage VHDL. La description VHDL est donnée en annexe. Chacun des modules sera

considéré comme un composant.

3.3 Opérateurs de mutation

Afin de pouvoir réaliser la mutation, nous avons adopté la mutation sélective. Nous
avons donc défini un ensemble d’opérateurs spécifiques que nous exposerons dans la suite

de cette section. En effet, le langage VHDL étant différent du Fortran, certaines

69

fonctionnalités n’ont plus a étre prise en compte. On peut citer par exemple les opérateurs
agissant sur les tableaux qui sont :AAR, ACR, ASR, CAR, CNR et SAR, les instructions
do (DER) et goto (GLR), les instructions d’altération de données (DSA), I’instruction
return (RSR), les instructions d’analyse des états (SAN) et enfin les instructions de
remplacement des constantes (SRC). La génération des mutants est réalisée par un
ensemble de programmes de mutation. Ces programmes sont spécifiques au langage
VHDL et ils permettent de couvrir tous les chemins, conditions, valeurs limites et régions
de perturbation d’un design. Un grand défi a ét€ d’éviter la génération d’un nombre
important de mutants équivalents, qui augmentent le temps de test et réduisent le score de
mutation, tout en compliquant la tiche du concepteur. En effet, certains opérateurs utilisés
au chapitre 2 créent systématiquement des opérateurs équivalents. On peut par exemple
citer I’opérateur ABS (insertion de valeurs absolues) qui remplace les expressions et sous-
expressions par leur valeurs absolues. Cependant, ces valeurs sont identiques aux valeurs
initiales dans le cas de vecteurs VHDL non signé (unsigned). Un autre exemple vient de la
traduction en Fortran de vecteurs binaires fixes. La modélisation de ces vecteurs,
inexistants en Fortran, produit quelquefois des entiers ou réels correspondant a la taille
maximale de ce vecteur, augmentant ainsi la limite désirée. Citons par exemple
I’opérateur UOI, qui augmente la valeur supérieure des valeurs entiéres. Quand
I'intervalle est changé, il est possible qu’aucun vecteur de validation ne détecte le mutant

correspondant, car la limite peut étre trop haute.

70

Les opérateurs VHDL que nous proposons furent définis lors de la conception du

processeur ancillaire(cf 3.2.1.1). Ces opérateurs représentent les erreurs les plus

communes pouvant étre faites par les concepteurs dans une spécification VHDL.

3.3.0.1 Programmes de mutation

Un résumé des opérateurs est donné au tableau 3.1. Une description de ces opérateurs

est effectuée ci-dessous.

Tableau 3.1 : Opérateurs de mutation

OPERATEUR

FONCTION

CNR: comparable array
name replacement

Chaque tableau est remplacé par un tableau de méme type et de
méme dimension présent dans la description VHDL.

CSR: constant for scalar
variable replacement

Chaque variable et signal présent dans le programme VHDL est
remplacé par une constante du méme type.

GRP: generic replacement

Simule les mauvaises connexions des modeles. Cet opérateur est
assez intéressant pour les designs de type structurels.

SUR: signed unsigned

Teste les vecteurs binaires signés et non-signés.

replacement
VSAR: variable and signal | Teste les mauvaises assignations des variables et signaux. Modélise
replacement aussi des erreurs de synchronisation et le mauvais séquencement des

actions

SVIR: signal and variable
tnitialisation

modélise les mauvaises initialisations des registres et des variables

CLR: constant limit
replacement

Teste les limites supérieurs et inféricures des différents registres. Le
méme processus est effectué pour les variables. La région de
perturbation est elle aussi simulée.

SSR: state sequencement
replacement

Teste la séquence des états dans une machine a états.

COR: conditional operator
replacement

Substitution de toutes les conditions possibles.

LOR: loop operator
replacement

Change la longeur des boucles

LCR: logical replacemen:

Chaque opérateur logique est remplacé par les autres.

LOR: loop operator
replacement

Change la longeur des boucles

LER: level replacement

Teste le niveau de sensibilité des circuits (haut et bas)

71

CLR: une des méthodes les plus couramment utilisées lors de la validation d’un
circuit VLSI est le test des valeurs limites. En effet on définit des vecteurs qui testent les
bormes supérieures et inférieures et enfin une valeur intermédiaire pour chaque variable.
Afin de reproduire cette méthodologie, on simule le domaine de perturbation de test. Ce
programme teste aussi les conditions aux limites des différents registres présents dans le
design. Afin de réaliser cette modélisation, chacune des constantes déterminant les limites
est incrémentée puis décrémentée. Chaque modification correspond a un programme

unique.

CNR: afin de modéliser I'écriture de données incorrectes dans les registres, cet
opérateur assigne le contenu d’un registre aux autres registres de méme type présent dans
la spécification. Chaque modification est unique et correspond a un programme. La
procédure est la suivante: chaque registre est remplacé par un scalaire du mé€me type
présent dans la spécification. Chaque registre est remplacé par une constante du méme
type présente dans la spécification. Afin de ne pas créer de mutant équivalent, on ne

replace jamais un registre par lui méme.

CSR: chaque variable ou signal est remplacée par une constante du méme type.

GRP: 11 a été introduit afin de tester les connexions erronnées. Les valeurs des
génériques sont incrémentées. Il est intéressant aussi bien pour les designs de type

structurel comme il est montré a la figure 3.4, que pour les descriptions fonctionnelles.

72

—_ »— I
—] —

non connectée

Figure 3.2: Design de type structurel

SUR: teste les valeurs signées et non-signées. Cet opérateur change la bibliothéque
signé a non sign€ et vice versa. L'utilité de cet opérateur est apparue lors de I’utilisation
d’un sous ensemble vectoriel par rapport a un vecteur plus grand. En effet, dans la

validation du processeur ancillaire, nous avons utilisé des nombres signés. A titre
d’exemple, le port d’entrée contenait un vecteur de N bits(data). Le »“™ bit avait la
valeur 0. Cependant, il n’était pas prévu qu’un sous ensemble de ce vecteur data soit lui
aussi signé. Pour mieux comprendre I’impact d’une telle erreur, considérons le code
suivant:

use IEEE.std_logic_signed.all;

avec:

data :in std_logic_vector(67 downto 0);-- bus de donnees

cur_tamp:=conv_integer(data(3 downto 0));

La fonction conv_integer permet de transformer en entier un vecteur binaire. Le résultat

de simulation donné par synopsys[20] est donné a la figure 3.5

73

> data(67:0) FFFFFFFFFFFFFFFFD
CUR_TAMP 3 3 3 3 3 I 3 3 -3 -3 -3 -3 3

Figure 3.3: Simulation du fichier original a I’aide de Synopsys.

La valeur desirée était 13 mais en raison du fait que le sous ensemble soit signé on a

obtenu la valeur -3. Suite 3 une mutation:

--use [EEE.std_logic_signed.all;

use IEEE.std_logic_unsigned.all; --mutation

N ’

CUR_TAMP

Figure 3.4: Résultat de SUR.

Cette mutation a permis d’identifier I’ambiguité sur le signe d’un sous ensemble d’un vec-

teur et a permis d’apporter la correction: cur_tamp:=abs(conv_integer(data(3 downto

0));

VSAR: Cet opérateur permet de mettre en évidence une erreur dans 1’ assignation des
variables et des signaux. Cet opérateur complémente les valeurs binaires des signaux. Il a
été introduit afin de modéliser les mauvaises initialisations. Cela peut se traduire par une
différence de séquencement dans la machine a état ou par une erreur de synchronisation
dans le design. En effet, supposons qu’une séquence d’actions attend I’arrivée d’un signal
de synchronisation. Si ce signal arrive trop tdt ou trop tard, on aura un mauvais fonction-
nement de la machine. Le programme de mutation a ét€ réalisé en tenant compte des par-

ticularités suivantes:

cas des signaux ou variables binaires :

On remplace un seul bit par le complément.

ex: a<='0’; devient a<="1";

74

ex: cet opérateur a été utilisé sur le module EDH out du processeur ancillaire. Le pro-

gramme original était:

case parite is

when 1=> P:='0";
when 3 => P:='0';
when 5 =>P:='0";
when others =>P:='l’;

end case;

ou le signal parité, suivant sa valeur, affectait une valeur binaire a une variable P. Les

resultats gact (qactO, qactl, qact2) et qoutf a la sortie du module EDH sont donnés a la

figure 3.7.:

qacto(19:0)
qacti(19:0)
Qact2(19:0)
qout!(19:0)

00000 852000
00000 44000
00000 A2000]
30000 FFC00 | ooooo | 38000 {ooo00]

Figure 3.5: Simulation obtenue sans VSAR

Une mutation a été faite sur le programme initial:

case parite is

when 1=> P:='l'; --mutation
when 3 => P:='0";
when 5 =>P:='0";
when others =>P:='1";

end case;

75

La simulation de ce mutant a donné:

» Gacto(19:0) 00000 52000
» Gact1(19:0) 00000 84000
» gqact2(19:0) 00000 A2000
> gouti(19:0) 30000 FFCO0 | oooco 1 38000

Figure 3.6: mutation avec VSAR

Bien que les valeurs dans les divers registres soient différentes, il apparait clair que la
valeur a la sortie est la méme. Une étude plus poussée a montré que I’erreur produite est
due a un module de sortie (multiplexeur) qui choisit une entrée indépendante des “qact”.
Ce qui correspond a I’hypothése de propagation implicite du test par mutation qui n’est

pas toujours vérifiée.

Dans le cas de valeurs entiéres
On incrémente puis décrémente la valeur de 1.

SAR: modélise I’assignation a des registres incorrects. Chacun des signaux est rem-
placé par tous les autres signaux de méme type dans le programme. Cela se traduit, du

point de vue fonctionnel, i affecter le contenu de registres i d’autres.

ex: on veut a<= data (4 downto 0) et on écrit a<= data2(4 downto 0).

cet opérateur a €té testé sur le programme edh:

Sforiin 17 downto 12 loop
qactO(i)<=r3(i-12);
end loop;
qact0(18) <= P;
qact0(19) <= no{(P);
qact0(11 downto 0)<=""000000000000'";

76

Un exemple de mutation a consisté a changer le vecteur qactO en qactl:
foriin 17 downto 12 loop

qactl(i)<=r3(i-12);
end loop;

qactl(18) <= P;

qacti(19) <= not(P);

qactl(11 downto 0)<=""'000000000000'";
Le résultat a montré un comportement différent. Cependant, le résultat aurait été autre si
les données dans r3 avaient été toutes égales a 0 ou a 1. Le mutant aurait alors été un
mutant équivalent. On peut aussi provoquer une mauvaise synchronisation dans le cas ou
I’erreur se produit sur un signal de synchronisation.

SVIR: Cet opérateur modélise une mauvaise initialisation des registres ou variables

Dans le cas binaire

On complémente toutes les valeurs du vecteur binaire.
Dans le cas de valeurs entiéres

On incrémente puis décrémente de 1 afin de créer une légere perturbation.

SSR: Le but de ce mutant est de changer I’ordre de séquencement dans une machine a

état. On remplace chacun des états présents par tous les autres états.

77

- on ne rentre
plus dans
B

si A=> etat_suivant<=C; --MUTANT
si B=> etat_suivant<=C;
si C=> etat_suivant<=A;

si A=> etat_suivant<=B;
si B=> etat_suivant<=C;
si C=> etat_suivant<=A;

Figure 3.7: mutation avec SSR

Cependant, un probléme d’espace disque peut se poser si le nombre d’états dans le pro-

gramme initial est important et si le nombre de lignes de code est lui aussi important.

ASR: cet opérateur identifie les effets d’un changement de séquencement des actions
dans un état et donc la dépendance des données.Cet opérateur est utilisé dans les descripti-
ions fonctionnelles de type comportementale ou les actions dans chaque état de la

machine a états se réalisent de maniére séquentielle. Pour ce faire, I’ordre des actions est

changé dans I’état.

LCR: Chaque opérateur logique and, or, equ, not equ, xor, xnor, nand est remplacé

par chacun des autres opérateurs.

COR: Change les conditions des if et case par chacune des autres conditions.

Dans le cas d ' un if
if condl then action 1 if cond1 then action 2
else devient else

action 2 action 1

78

si la condition est une valeur binaire on la remplace par son complément. Dans le cas de
valeures non binaires, on remplace chacun des opérateurs <, >, ==, >=, <= par chacun des

autres.
Dans le cas d’un case

On remplace les valeurs des when par les autres. Cependant, afin d’éviter de donner 2
choix a I'outil de simulation on intervertit les actions. On échange donc le when ... de
I’action 2 avec le when ... de I’action 1, ensuite le when ... de I'action 3 avec le when ... de
I’action 1, le when ... de I’action 3 avec le when ... de I’action 2 et ainsi de suite. Cepend-
ant, aucun échange n’est effectué avec le when others, car le langage VHDL spécifie que

cette condion doit étre la derniére.

ex:
when “00” => action 0 when “00” => action 1
when “01” => action 1 devient when “01” => action 0
when “10” => action 2 when “10” => action 2
when “11” => action 3 when “11” => action 3

3.4 Implémentation des programmes de mutation

Dans cette section, nous présentons |I’'implémentation des programmes typiques de
mutation. Ici, on appéle opérateur I’ objet dans la spécification VHDL sur lequel est mené
le processus de mutation. Afin de pouvoir effectuer la mutation, chaque état dans lequel
peut se trouver I’opérateur est encodé. Dans le but de faciliter 1’encodage, un diagramme

représentant les états de 1’opérateur est déterminé. Une matrice représentant les états et les

79

transitions de ce diagramme est alors créée. A titre d’exemple la figure 3.10 montre les
transistions d’états pour 1I’opérateur AOR, qui remplace chacun des opérateurs +, -, * et \
par chacun des autres. La matrice décrivant le diagramme est aussi donnée dans le tableau
3.2. Donnons a titre d’exemple une mutation survenant sur I’opérateur "-”. L’état de
départ étant I’état 0 du diagramme d’état, quand on rencontre I’opérateur "-" dans la
spécification VHDL, on se déplace de I’état 0 a I’état 1. Ensuite, si le caractére suivant est
différent de "-" alors on retourne a I’état O ou I’on procéde a la mutation. Dans le cas
contraire, on est en présence d’un commentaire, auquel cas on ne procéde a aucune
mutation. Ce cas est codé au moyen de la matrice et est représenté a la premiere ligne. Si
I’on se trouve a I’état O et la transition est O (représenté entre parenthése et qui correspond
a I’opérateur "-") on passe a I’état 1. Si I’on se trouve a |’état 1 et la transition est encore O,
on passe a 1’état 2 ol aucune mutation ne doit étre efectuée. Dans le cas contraire le fait de

passer de I’état 1 a I’état O (quelque soit le caractére et autre que "-") permet de réaliser la

mutation.

Figure 3.8: Diagramme d’état pour la mutation AOR

80

Tableau 3.2 : Codage des états pour la mutation AOR

états
trans 0 1 2 22 3 4 5
Q)op="- 1 2 0 0 0 0 0
(1) 5 0 0 0 0 0 0
0p="+"
2) 3 0 0 0 4 0 0
°p=“"‘
3) 6 0 0 0 0] 0
op=7‘,"
“4) 8 0 0 0 0 0 0
op="<"
(5) 10 0 0 0 0 0 0
op=">"
6) 12 2 0 0 0 0 0
op:":"
@) 14 0 0 0 0 0 0
op=!l:"r
t:)) 0 0 0 0 0] 0
0p="\n"

états
trans 6 7 8 9 10 11 12
O)op="- O 0 0 0 0 0 0
(1) 0 0 (] 0 0 0 (0]
0p=',+’9
) (] 0 0 0 0 0 0
op___n‘n
3) 0 0 0 0 0 0 0
op="r"
4) 0 0 0 0 0 0 0
op="<"
&) 0 0 0 0 0 0 13
0p='7>'l
(6) 7 0 9 0 11 0 0
op="="
@) 0 0 0 0 0 0 0
op=":"
8) 0 0 (1] 0 0 0 0

op=vv\nu

81

82

états
trans 12 13 14 15
0 op="-" 0 0 0 0
)] 0 0 0 0
0p="+l‘
) 0 0 0 0
0p=n‘n
@op=""" 0 0 0 0
@) 0 0 0 0
0p="<64
(&)) 13 0 0 0
0p=">'0
6) 0 0 IS 0
0p="=!’
(Dop="" 0) 1] 0
(8) 0 0 0 0
op="\n"

Tous les programmes de mutation ont été décrits en utilisant cette méthodologie.
Dépendant de I’opérateur rencontré dans la description comportementale, le programme
de mutation approprié sera invoqué. Dans la suite, nous expliquerons sous forme de

pseudo code la maniére par laquelle chacun des types de mutation est effectuée.

3.4.1 Algorithmes de mutation

Cette section présente en détail les implantations des différents programmes de muta-
tion. Ces implantations ont été réalisées en langage C et sont présentés en annexe. La
premiére étape consiste a encoder chacun des €tats dans lequel peut se trouver I’opérateur
afin de pouvoir entamer le processus de mutation au bon endroit. Cette matrice permet de
passer de I’ancien état a I’état courant. En effet, afin que la mutation puisse s’effectuer, il

faut absolument que 1’état précédent et I’état courant soient représentés dans I’un des états

83

du diagramme d’état et en accord avec le séquencement établi par ce diagramme. Prenons
I’exemple du programme de mutation AOR de la figure 3.8. La mutation ne s’effectuera
dans le cas de I’opérateur "-" que si I'état courant est O et I’ancien état est 1. La seconde
étape consiste a ouvrir le fichier sous test et a effectuer la mutation suivant I’opérateur

rencontré. Le détail de ces implantations est donné ci-dessous.

CLR: Le pseudo-code est donné a la figure 3.9. La premiére étape consiste a encoder
les états. Ensuite, si I’opérateur rencontré dans le fichier original est un entier, on crée le
mutant en incrémentant la valeur limite de 1 et en recopiant le reste du fichier. Aucune
autre modification n’est apportée pour ce mutant. En effet chaque mutant correspond a
une panne de conception unique. Un autre mutant, c’est-a-dire une autre spécification
VHDL, est créé en décrémentant la valeur limite inférieure de 1. Dans le cas de "range*,

un mutant supplémentaire est créé en décrementant(si différent de 0) la limite inférieure.

84

--Coder les €tats
int diagr_états[TRANSITION][State]={
/*next_state */

/®* transitions® 1,0,0,0,0,0,0.0,0.9.11,11.0
0,.0,0,0,0,0,0,0,0.9.11.,11,0, // matrice de codage des étais
0,0,0,0,0,0,0,0,9.9.11,11.0,
0.0.0,0,0,06,0,0,0.0,11.12,0});
if((MO = fopen{~"bench.vhdl® ,“r"))!=NULL) /f ouverture du fichier sous test
next_state= diagr_etat[transition][state];
switch (state)
casc opecrator state:
W hile(!=EO F(beach)) // on parcourt le fichier dans sa globalité
If (op==(integerll boolean}) 7/ selon que la variable @ muter est un encier
Open the mutant i /f ouverture du mutani
Add +1 for the mutantit //la variable est incrémentée
Close the mutant i // on ferme le Fichier mutant
Sub -1 for the mutant i++ // un auire mutant est créé en décrémentant la

variable
Close the mutant i+ +
Else(op=="range”) // sila variable a muter ¢st un intervalle
Increase the limit // on augmente les limites inférieures et supérieures
Put in next mutant i++ // murtants correspondant @ ces nouvelles limirtes
Close the next mutant i+ +
Deccrecase the limit //on diminue les limites inférieures et supérieures
Putl in next mutant i+ +
Close the next mutant i+ + }

Figure 3.9: Pseudo code pour la mutation CLR

CNR:

Le pseudo-code est donné a la figure 3.10. La premiére étape consiste a encoder les
états. Ensuite, si |’opérateur rencontré dans le fichier original est un tableau on ajoute ce
tableau a ceux du méme type. Ensuite on créé les mutants en remplagant le tableau d’un

type par tous les autres du méme type.

85

CNR: cach array is replaced by all same type and dimension array in the vhdl
program.

Coder les états //définition de la matrice d'états
Ouvrir la spec VHDL

W hile(bench!=EOF) // parcourir la spécification VHDL
{

Siun tableau existe
{
Pour tout le fichier
Ajouter le tableau a ceux du méme type existant:
}
If(dimension (array(i))=dimension(array(i+1))) // si 2 registres de mémeype
{
Remplacer array(i) par array(i+1): //remplacer un registre par un
I++; // autre du méme type

Figure 3.10: Pseudo code pour la mutation CNR

Le pseudo-code est donn€ 2 la figure 3.11. La premiére étape consiste a encoder les
états. Ensuite, si I’opérateur rencontré dans le fichier original est une variable, on I’ajoute
a la liste des variables du méme type. Le méme processus est réalisé pour toutes les con-
stantes présentes dans la spécification VHDL. Enfin, pour toutes les constantes de type
identique a ceux des variables, on crée des mutants en remplagant les variables par des

constantes. Chaque remplacement cré un mutant unique.

86

Coder les états de l'opérateur

Pourtout le Fichier

{

Ifvariable)

Mettre dans buffer_variable

End if

If constant)

Mettre dans const_buffer;

End if

Pour toutes les constant (i)

I eype(buffer_variable(i))=type(buffer_const(i+1)))
Replacer buffer_variable(i) by buffer_const(i+1);
End if

/

Figure 3.11: Pseudo code pour la mutation CSR

GRP

Chaque mutant est créé en incrémentant les valeurs génériques de un. Le processus

est réitéré mais en décrémentant cette fois la valeur de un.

SUR

Le pseudo-code est donné a la figure 3.12. La premicre étape consiste la aussi a
encoder les états. Ensuite, un mutant est cré€ suivant la librairie signed ou unsigned. Si la
librairie est signed (ou unsigned) le mutant est créé en remplacant cette librairie par

unsigned (signed). Chaque remplacement crée un mutant unique.

87

If (library signed)
Modifier cette librairie par unsigned
Else
Modifier par signed
End if;

Figure 3.12: Pseudo code pour la mutation SUR

SSR:

Le pseudo-code est donné a la figure 3.13. Aprés que le codage des états ait été
effectué, chaque mutant est créé en effectuant une modification unique dans le sequence-

ment de la machine a état. La modification consiste a remplacer un des €états de la machine

a états par un autre.

Coder ler étais de l'opétaeur
if (state machine= =true)

{

mettre les états dans tamp_state:
while(tamp _state-1!=null}

while(original(next_state)!=newstare)
replacer next_state par new state;

/
end if;

Figure 3.13: Pseudo code pour la mutation SSR

LCR:
Le pseudo-code est donné i la figure 3.14. Apres que le codage des états ait été effec-
tué chaque mutant est créé en remplacant les opérateurs logiques présents dans le pro-

gramme VHDL par tous les autres opérateurs logiques xor, and, or, nand et xnor. Chaque

88

remplacement constitue un mutant unique. Cependant afin de ne pas produire de mutants

équivalent on ne remplace jamais 1’opérateur par lui méme.
q]

Iftfop==and) // sil'opérateur est un and
{
fopen(mutanti); /!l création d’un mutant

replacer op par xor;
fermer mutant i;
replacer op par or
fermer mutant i+ +;
replacer op par xnor
fermer mutant i+ +;
replacer op par nand;
fermer mutant i+ +;

/

elsiffop ==xnor) /lsil’opérateur est un xnor
El:rif(op= =or) // si’'opérateur est un or
;}se(nand) /! si I'opérateur est un nand
end:

Figure 3.14: Pseudo code pour la mutation LCR

VSAR:

Le pseudo-code est donné i la figure 3.15. Aprés que le codage des états ait €t¢ effec-
tué, chaque mutant est créé en remplacant les opérateurs binaires présents dans le pro-

gramme VHDL par leur complément. Chaque remplacement constitue un mutant unique.

89

Coder les états des opérateurs
Iftfop==binary) // si c'est un vecteur
Trouver la dimension

For all dimension

Créer mutant

Complementer un bit

Metrre le complement dans le mutant
End for
Else
{

Decrease the operator for mutant i;
Increase for mutant i+ I ;

/
end if;

Figure 3.15: Pseudo code pour la mutation VSAR

3.5 Implémentation C

Cette mise en oeuvre traduit en langage C les différents programmes de mutation
donnés dans la section 3.4.1. L’ensemble des programmes est donné en appendice. Tout
d’abord, le fichier d’entrée qui est le programme sous test ou plus particulierement le
programme VHDL est ouvert en écriture a partir de I'instruction MO = fopen("fichier-
sous-test.vhdl”,"r"”). Ensuite une variable nommée C est définie afin de positionner un
pointeur sur les différents caractéres constituants le programme VHDL. Suivant les
caracteres rencontrés, le pointeur C positionnera les transitions de la matrice de codage a
des valeurs définies par cette derniére. Prenons par exemple le cas de I’opérateur LCR, qui
selon que le caractére soit a, n, d, o, r et x mettra la transition respectivement aux valeurs
0, 1, 2, 3, 4 et S. Cependant, puisque le langage VHDL ne fait aucune différence entre les
majuscules et les minuscules, la valeur de la transition sera la méme pour une minuscule

et une majuscule. Pour ce dernier cas les instructions seront de la forme:

switch(C)
{
case 'A’:
case 'a’: transition = 0;
break;
/

Le programme VHDL est parcouru dans sa globalité par [Iinstruction while
((C=fgetc(MO0))!=EOF) qui permet au pointeur C de s’incrémenter tant que la fin du
fichier n’a pas été atteinte. Ensuite le couple d’instructions
ancien_etat=etat_courant;
etat_courant= diagr_etat_Icr(transition][etat_courant];
switch(etat_courant)

case

switch(ancien_etat)

permet dans le cas ou on se trouve dans un des diagrammes d’états définis comme dans la
section 3.4 d’éffectuer la mutation. Chacun des mutants qui sont en fait d’autres
programmes VHDL sont alors construit au moyen des opérations suivantes:

w re

M1 =fopen("tampon_or_lcr"”, "w");

compteur_lcr ++;

sprintf(lcr_chainel, "Mut_lcr%d,compteur_Icr);
Le compteur permet de calculer le nombre de mutants créés. Puisque chaque mutant
correspond a une unique faute, il faut qu’un programme VHDL soit créé a chaque
présence d’un état suceptible d’étre muté dans la version originale. Cela est réalisé de la
maniére suivante. On commence par pointer I’endroit dans le programme ou la mutation
est réalisée au moyen de I’instruction pos = frell(MO0);
On recopie dans un fichier tampon toute la fin du programme original VHDL et ceci

depuis la position du pointeur donnée par la variable pos. Ceci est réalisé par les

instructions suivantes

91

while((c=fgetc (M0)) !=EOF)
{
fputc(c,M1);
if(c=='\r"}
fputc(‘\n',M1);
}
fclose(M1);

La méme opération est effectuée pour la copie du début du fichier au moyen des

instructions données a la page suivante

fseek (M0,0,0) ;
while(((c=fgetc (MO)) !=EOF)&& (ftell (M0) <=pos))
{
for(i=0;i<=4;i++)
{
fputc(c, tamp_chaine(il}};
}

L'instruction fseek permet de replacer le pointeur au début du fichier original VHDL, alors
que les autres permettent d’écrire le début du code VHDL dans les programmes mutants
identifiés par tamp_chaine. On procéde ensuite a la mutation proprement dite. Citons par
exemple dans le cas de I'opérateur SVIR ou le remplacement de == par >, <, >=et/=
s’effectue au moyen des instructions

fputs ("<=",tamp_chaine([0]}) ;

fputc('>"*, tamp_chainell]});

fputs (">=", tamp_chaine([2]) ;

fputs("/=",tamp_chaine(3]) ;
fputc('<"', tamp_chaine(4]);

Finalement la copie de la fin du fichier qui se trouve dans le tampon mentionné

précedemment est ajoutée a la suite de chacun des mutants au moyen des instructions

92

M1 = fopen("mut_tampon_cor®,"r”")};
while((c=fgetc (M1)) !=EOF)
{
for(i=0;1i<=4;i++)
fputc(c, tamp_chainefi]) ;

}
//fin de la reecriture

M| correspond au pointeur du tampon. Finalement il ne faut pas oublier qu’une mutation
peut se réaliser & plusieurs endroits dans le programme sous test et que chacune de ces
mutations doit résulter en un programme unique. Aussi, cela est réalisé en remettant le
pointeur C a la position courante (fseek(MO, pos , 0)). Le fait que le pointeur soit remis a la
position précédant la position dans chacun des ancien_etat permet, suite a la découverte
d’un nouvel état mutant, d’ouvrir un nouveau mutant et de procéder a une nouvelle
mutation. Chacun des programmes de mutation a €té réalisé de la maniére expliquée
précedemment. La production de mutants ne demande pas beaucoup de temps. Le temps
de calcul dépend de la taille du programme VHDL a tester et surtout du nombre de
mutations ou de variables sur lesquels doivent s’effectuer la mutation. Une grosse
contrainte vient aussi du fait que la mutation peut parfois fournir un nombre important de
mutants ce qui implique un espace disque trés important. Ceci peut devenir probématique
si une description VHDL initiale contient 50000 lignes de code, comme c’est le cas pour

la puce multiprocesseurs PULSE ou le processeur a données ancillaires.

93

3.6 Algorithme final de mutation

L’algorithme de la figure 3.16 présente en détail le processus de génération des

mutants, ainsi que la méthodologie adoptée pour la validation de circuits numériques par

mutation.
des objectifs
Samulation YMDL oui
effectule avec les vecteurs
de validation
oui
Changer s
programme de
Mutaton

=

oté comparéa?

onrichic ie jsu do
recows

Figure 3.16: Test par mutation et génération de mutants

94

Tout d’abord, une définition des objectifs est effectuée. Cette définition est importante,
puisqu’elle détermine le nombre de fois ou le processus de mutation est réitéré afin de
faire échouer les mutants restants. La premiére étape consiste a simuler la version
originale du programme VHDL avec les vecteurs fonctionnels fournis par le concepteur et
a enregistrer la sortie dans une base de données. Cette simulation fonctionnelle est
réalisée a I’aide du simulateur VSS de Synopsys[20]. La seconde étape consiste a amorcer
le processsus de mutation. Un inventaire des différents opérateurs se trouvant dans la
spécification du programme permet de choisir parmi les différents programmes de
mutation. Apreés qu’un programme ait été choisi, le processus de mutation est lancé. Le
pointeur de position est mis au début du programme VHDL. Dés qu’un opérateur est
trouvé, la position du pointeur est enregistrée. Le Mutant spécique a cet opérateur est alors
créé en transformant I’opérateur et en recopiant de maniére identique le reste du
programme. Afin d’étre exempt de fautes syntaxiques, le mutant est vérifi€ a I’aide de
Synopsis. Le mutant est a son tour exécuté avec le méme jeu de vecteur de validation qu’a
la premiére étape. La sortie du mutant est enregistrée dans une base de donnée des sorties
mutantes. Une comparaison des bases de données de sorties mutantes et du fichier original
est entreprise. Si la comparaison révéle une différence de comportement entre les deux
bases, le mutant est considéré tué et est retiré du processus de validation. Il faut remarquer
qu’il est aussi judicieux d’arréter la simulation dés qu’une différence de comportement est
enregistrée. Cependant cet objectif nécessiterait de concevoir notre simulateur, ce qui ne

s’avérait pas nécessaire pour les petits circuits d’essai testés. Le pointeur de position est

95

alors incrémenté jusqu’a ce qu’un autre opérateur de mutation soit trouvé. Lorsqu’un
nouvel opérateur est trouvé, le processus de génération de mutants est réinitialisé. Ce
nouvel opérateur est alors muté suivant les programmes de mutation donnés dans la
section 3.4. Le nouveau mutant est alors simulé avec le méme jeu de vecteurs de
validation et une comparaison des bases de données de sortie du nouveau fichier mutant
et du fichier original est réalisée. Si la comparaison montre une différence de
comportement entre ces différentes bases de données de sorties, le mutant et ses résultats
de simulation sont encore effacés du processus de validation. Dans le cas contraire, le jeu
de vecteurs de validation doit étre augmenté. Aprés enrichissement du jeu de vecteurs, le
fichier original est simul€ a travers les nouveaux vecteurs et le résultat est gardé dans une
nouvelle base de données de sortie. Les mutants non tués sont eux aussi exécutés a travers
le nouveau jeu de vecteurs. Le processus de validation est alors réité€ré jusqu’a ce que le
but fixé au début du processus soit atteint ou qu’il n’y ait aucun mutant vivant. Il est &
noter que la génération des mutants est réalisée tant que toutes la description VHDL n’a
pas été couverte. Le score de mutation est alors calculé a partir de la formule donnée au

paragraphe 1.2.2.4.

3.7 Résultats

Les améliorations apportés par ce nouvel algorithme en comparaison de ceux
rapportés au chapitre 2 sont significatives. Une étude menée sur quatre op€rateurs a

permis de montrer que certains aspects négatifs de la méthode originale ont pu étre

96

résolus. L’étude a portée sur les opérateurs UOI, COR, LCR et ABS définis dans Mothra.

Les résultats de cette étude sont présentés aux tableaux 3.3.

vol
out 260 80 45.8% 18 6 100%
Muxli }3 2 100% §2 1 100 %
Mux2 |6 4 83.3% 14 2 100%
Mux4 |14 10 85.7% 14 4 100%
Edh 116 51 24.1% 132 67 97 %

COR
out 420 19 23.3% |32 14 93 %
Muxl 17 i 0% N/A N/A N/A
Mux2 |14 2 28.6% |N/A N/A N/A
Mux4 |28 4 35.7% |N/A N/A N/A
Edh 259 34 6.2% 32 14 93%
N/A: not applicable

LCR

M out Moot NS Moutl MoS2
N h N b nbh

out 287 0 14 43%

Mux4 |0 N/A IN/A N/A 0 N/A

Edh 112 0 0% 32 14 43%

N/A: not applicable

ABS

Out 150 42 28.7% IN/A N/A N/A
Edh 48 20 16.7% |N/A N/A N/A

N/A: not applicable

Tableau 3.3 : Comparaison des algorithmes de validation par mutation

Le nombre de mutants MutNb, le nombre de vecteurs de validation ainsi que le score de

. mutation produit par Mothra, MS, sont rapportés dans ces tableaux. Des résultats

97

similaires obtenus avec I’algorithme présenté a la figure 3.18 sont rapportés sous les
acronymes suivant Mut2Nb, Vect2Nb et MS2. Un premier résultat trés important est une
réduction significative du nombre de mutants. Cette réduction se traduit par une
diminution de la tiche du concepteur dans le cas de mutants équivalents. Cette réduction
est due a la fois au fait que la mutation s’effectue directement sur le programme écrit en
VHDL et au fait qu’aucune mutation n’est entreprise sur les valeurs de I’entité. Afin de
supporter ces observations, prenons I’exemple du multiplexeur de I’exemple 3.11 tiré du

processeur ancillaire.

exemple 3.6.1

case sell is case sell is

when ‘0‘=> when ‘I ‘'=> --mutation
qgout <= inl; qout <= inl;

when others => when others =>
qout <= in2; qout <= in2;

end case; end case;

Dans cet exemple un seul mutant a été€ généré avec I’algorithme présenté dans ce chapitre,
comparativement a trois avec Mothra pour I’opérateur UOIL. Cette différence est due au
fait que la seule mutation effectuée est réalisée sur la valeur binaire de sell. Aucune
mutation n’est réalisée sur les valeurs des signaux présents dans I’entité. En effet, le but de
la méthode est de valider un design aussi, nous ne touchons aucunement au contenu des
signaux présent dans I’entité. Il ne faut pas oublier que ce role est donné aux vecteurs de

validation. La complexité de Mothra est donnée par:
Mutnb = nb

est réduite a

98
Mutnb2 =nb - E + (C-1)

ou
nb est le nombre de signaux ou variables présents dans la spécification VHDL.
E représente tous les signaux ou variables présents dans 1’entité.

C représente le nombre de conditions (case or if).

Remarquons que C est en général plus petit que nb car le nombre de signaux augmente
avec le nombre de conditions. Comme il a été mentionné au début de ce chapitre, la
réduction du nombre de mutants est aussi due au fait qu’on ne fait plus de traduction de
VHDL en FORTRAN . Dans le but de montrer I’impact de la traduction, citons par
exemple le module de sortie de I'EDH qui est composé de plusieurs vecteurs binaires.
Chacun des vecteurs doit étre décomposé en booléen. Prenons le cas de Pexemple donné

ci dessous.

exemple 3.4.2

case stand_video is
when "000"

le vecteur est remplacé par
((stdl.eq.0)and(std2.eq.0)and.(std3.eq.0)).

Sachant que dans le cas de I’opérateur COR, Mothra remplace chacune des occurences
LT, LE, GT, GE, EQ, NE par toutes les autres, le nombre de mutants se trouve
considérablement augmenté. Les mutants survivants aprés tout le processus de validation
sont en grande partie diis a une non propagation de la faute a I’une des sorties primaires.
Cela résulte en un regroupement de fonctionnalitées provenant d’un module qui semble

indépendant. Une grande difficulté qui a surgit a été€ le test du niveau de validité d’un

99

signal. En effet ce test produit souvent un mutant équivalent, car la fonctionnalité, si ’on
fait abstraction du moment de validité, est souvent la méme. Le gain amené dans la
méthode d’enrichissement des vecteurs de validation est trés important, car elle permet
d’identifier des parties de design incomplétement testées plutdt que d’avoir recours a un
générateur aléatoire de vecteurs comme il est fait dans Mothra. Le recours a ce générateur

aléatoire ne nous permet pas de savoir ce que ’on a testé.

100

CONCLUSION

Dans ce mémoire, nous avons introduit le concept du test par vérification formelle ainsi
que les méthodes traditionnelles de vérification par simulation. Nous avons montré les
difficultés rencontrées lors de ['utilisation de ces deux méthodes. Bien que
conceptuellement différentes, ces méthodes ont pour but commun de prouver qu’un
circuit donné respecte bien les spécifications du concepteur. Nous avons montré les

limitations des méthodes de simulations et des méthodes formelles.

Le premier chapitre débutait par une présentation des méthodes formelles ainsi que des
outils utilisés afin de prouver I’exactitude d’un circuit. Ce chapitre montrait a la fois
I'utilité de ces méthodes et leurs limitations. Ce chapitre s’est poursuivi par une
présentation du test fogiciel et plus particuliérement du test par mutation. Les principes du
test par mutation, la génération des mutants, ainsi que la classification de ces mutants ont
été exposés afin de permettre a I’'usager de comprendre la méthode de validation par

mutation. Finalement, une description des différents types de mutation a permis de

motiver le choix de la méthode de mutation sélective.

Le deuxieme chapitre a présenté une méthodologie de validation de circuits numériques
utilisant le principe du test par mutation. Ce chapitre a commencé par la définition du
systtme de mutation Mothra ainsi que la chaine de validation. Nous avons fait ressortir
des similitudes importantes entre le test par mutation et le test matériel. En effet, il est

primordial qu’une justification suivie d’une propagation soit réalisée afin de détecter une

101

erreur de conception. Le test par mutation a tendance a produire un nombre important de
mutants aussi, P’utilisation de la mutation sélective a permi de réduire ce nombre de
mutant tout en gardant un score de mutation important. Il est également intéressant de
constater que les vecteurs produits par le systéme ont pu étre utilisés afin de procéder aun

test matériel.

Le troisiéme chapitre présentait le banc d’essai qui a permis de déterminer les opérateurs
de mutation. Ces opérateurs sont loin d’étre exhaustifs et peuvent étre augmentés. La
premiére amélioration apportée dans ce chapitre a été la définition d’opérateurs
spécifiques au VHDL et la définition d’un générateur de mutants travaillant directement
sur une spécification VHDL. En effet, il a été montré que la traduction de VHDL en
FORTRAN présentée dans le chapitre deux introduisait une augmentation du nombre de
mutants. Par ailleurs, cette traduction ne permet pas de dire que I'on a validé la
spécification initiale du concepteur, mais plutdt que I’on a validé une version en principe
équivalente et non exempte d’erreurs. Bien que le choix de la mutation sélective permette
de réduire de maniére significative le nombre de mutants, diminuant ainsi la tiche du
concepteur lors de la validation, ce nombre demeure important. Le processus
d’enrichissement peut se révéler long et pénible si I’objectif est d’obtenir un score de
mutation de I’ordre de 100%. En effet, un grand nombre de mutants peuvent étre des
mutants équivalents. Par ailleurs, il est trés difficile de prouver qu’un mutant est
équivalent, car il faudrait dans certains cas procéder a un test exhaustif ce qui n’est
généralement pas possible. Bien que cette méthode nous paraisse intéressante vis a vis du

probléme de la validation, il est important de souligner les limitations qui lui interdisent

102

une utilisation immédiate et fréquente sur des circuits de tailles importantes. Le principale
probléme est la systématisation du jeu de test devant étre effectué afin de tuer les mutants
survivants. En effet, systématiser ce processus revient a réaliser un algorithme permettant
la propagation d’erreurs a I’une des sorties. Cependant cela consisterait a connaitre a
I’avance le chemin que devrait prendre les données de test ce qui n’est évidlemment pas
faisable puisque dans le cas de la validation, on parle d’une fonctionnalité. On pourrait
aussi générer un nombre important de vecteurs dans le seul but de tuer les mutants
survivants. Malheureusement, le processus de test pourrait augmenter car il faudrait
ensuite identifier la fonctionnalité de chacun des vecteurs efficaces. Le second probléme
vient de la génération du nombre de mutants. Bien que le choix des mutants soit effectué
avant de lancer la génération des mutants (voir chapitre 3) et que le nombre de mutants
soit considérablement réduit (tableau 3.3), il est bien évident que ce nombre demeure
encore trop important. I1 a été suggéré d’utiliser la mutation sélective afin d’éliminer les
opérateurs de mutation responsables de la génération du plus grand nombre de mutants.
Dans le chapitre 3 une alterenative a été utilisé. Plutdt que d’éliminer uniquement les
opérateurs de mutation responsables du plus grand nombre de mutants, il est aussi
intéressant de les choisir sélectivement en fonction de leur capacité a tester le circuit. Le
nombre de mutants demeure quand méme trés important. Il serait donc interressant de
montrer une certaine redondance chez certains opérateurs et donc de les éliminer du
processus du test par mutation. Le choix des opérateurs de mutation pourrait aussi étre
réaliser en fonction du nombre de fois ou I’état responsable de la mutation apparait dans le

code VHDL. Enfin, il est trés difficile de prouver qu'un mutant est équivalent. En effet

103

afin de réduire le processus de validation, un grand nombre de mutants survivants sont
déclarés équivalents alors qu’ils peuvent étre tués manuellement. Pour conclure, il est a
souligner qu’en plus de tenter d’enrichir une suite de test et donc, guarantir une meilleure
validation, le test par mutation tente non seulement de mettre a jour d’éventuelles erreurs

dans un circuit, mais aussi leurs abscences.

11 pourrait étre intéressant dans des travaux futurs de tenter d’augmenter 1’ensemble des
opérateurs de mutation. En effet les opérateurs définis dans ce mémoire sont loin d’étre
exhaustif. L’auteur pourrait alors constituer un véritable dictionnaire de bogues. Le
phénoméne de redondance pourrait étre aussi prouvé afin de réduire le nombre de
mutants. Enfin une forme d’ATPG (automatic test pattern generator) propre a la
vérification pourrait étre réalisé afin de tuer les mutants survivants et réduire les "faux”
mutants équivalents. On pourrait dans ce dernier cas définir un générateur aléatoire dont

la plage de variation des valeurs d’entrées seraient donnée par I’ utilisateur.

(1]

(2]

(3]

[4]

(5]

(6]

(7]

(8]

[9]

104
BIBLIOGRAPHIE

P Marriot, I. Kraljic and Y. Savaria. Parallel Ultra Large Scale Engine, SIMD Archi-
tecture For Real-time Digital Signal Processing Applications. ICCD 98.

Z. Boukari et P. Vado. Conception d’un simulateur C pour une puce multiprocesseurs.

C. Berthet. Vérification Automatique de Circuits de Transistors VESI. Theése de
Philosophae Doctor. Informatique et recherche opérationnelle. 1987

R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers, C-35(8):677-691, August 1986.

E.M. Clark, E. A Emerson, and A.P. Sistla. Automatic verification of finite state con-
current systems using temporal logic specification. ACM transactions on Program-
ming Language and system, 8(2):244-263(April 1986).

M. Fitting. First Order Logic and Automated Theorem Proving. Spinger-Verlag,
1990.

Gordon, M. & Melham, T. F. (1993), Introduction to HOL: A Theorem proving envi-
ronment for higher order logic, Cambridge University press.

Timothy A. Budd, Richard J. Lipton, Frederick G. Sayward, and Richard A. DeMillo.
The Design of a Prototype mutation System for Program Testing. In Proceedings of
the National Computer Conference, pages 623-627, Anaheim, CA, June 5-8 1978.

The Association for Computing Machinery, AFIPS Press, Montvale, NJ. Vol. 47.

Myers G J, The Art of Software Testing, Wiley, NY, 1979.

[10] Howden W E functional program testing, IEEE Transactions Software Eng section

6(2) 162-169, 1980.

105

[11] R. A DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for
the practicing programmer. [EEE Computer, 11(4):34-41, April 1978.

[12] W. M Craft. Detecting equivalent mutants using compiler optimization techniques.
Master’s thesis, Departement of Computer Science, Clemson University, Clemson

SC, 1989. Technical Report 91-128.

[13] A. Jefferson Offut and William Michael Craft. Using Compiler Optimization Tech-

niques to Detect Equivalent Mutants. Technical Report 92-102, Departement of
Information and Software Sysrem Engineering, Goerge Mason University, Fairfax,

VA, November 1992.

[14] R. A. DeMillo, A. J. Offut. Constraint-Based Automatic Test Data Generation. IEEE
Transactions on Software Engineering, 17(9): 900-910, September 1991.

[15] D. Baldwin and Frederick G. Sayward. Heuristics for Determining Equivalence of
Program mutations. Research Report 276, Departement of Computer Science, Yale

University, New Haven, CT, 1979.
[16] I Koo. mutation Testing and Three Variation.November 29, 1996.

[17] W. E Howden. Weak mutation Testing and Completeness of Test sets. IEEE Transac-
tions of Software Engineering, vol. SE-8.NO. 4, 731-379 July 1982.

[18] A.T. Acree. mutation Analysis. Technical report GIT- ICS-79/08, School of infor-

mation and Computer Science, Georgia Institute of technology, Atlanta GA, septem-
ber 1979.

[19] T. A Budd. mutation Analysis of Program Test Data. PhD thesis, Yale University,
New Haven CT, 1980.

[20] A. J. Offut. Investigations of the software testing coupling effect._ ACM Transactions
on Software Engineering Methodology, 1(1):3-18, January 1992.

106

[21] A.J. Offut, G. Rothermel, and C. Zapf. An Experimental Evaluation of Selective
mutation. International Conference on Software Engineering, 1993. 100-107. 1993.

[22] A. P. Mathur. Performance, Effectiveness, and Reliability Issues in Software Testing.

IEEE Proceedings of 15th Annual International Computer Software & Application
Conference. 604-605, 1991.

[23] R.A. DeMillo and E. H Spafford, "The Mothra Software Testing Environement”, Pro-
ceedings of the 11th Nasa Software Engineering Laboratory Workshop, Goddard

Space Center, December 1986.

107

ANNEXE A

p illai

Description des états de la FSM,

Afin d’implanter ce systéme il a fallu construire une machine a état.Cette machine

décrit le comportement du module EDH.

L’état initial permet I’initialisation des toutes les variables internes. Les états lec_vidéo

permettent de détecter un paquet ancillary suivant la séquence 3ff 000 000.

L’état eav_sav permet d’attribuer au compteur la valeur correspondante au standard vidéo.

L’état compter permet a la machine de positionner son compteur de mot a la bonne

adresse afin d’ecrire les information dans Ies trames vidéo.

Le module EDH commence ensuite a former le paquet ancillary. Les états adf écrient la
séquence 000 3ff 3ff. Bien entendu, ces valeurs se verront augmenter a 20 bits en position-

nant les bits les moins significatifs a zéro.

L’état did permet d’écrire le mot 1f4 (+10 bits de O sur les bits les moins significatifs)

L’état dbn écrit 200(+10 bits de O sur les bits les moins significatifs)

L’ état dc écrit 100(+10 bits de O sur les bits les moins significatifs)

108

Les états aedf doivent écrire les mots selon la séquence suivante: not(p) p ues ida idh eda
edh 0 O (+ 10 bits de O sur les bits les motns significatifs). Le bit p est un bit de parité alors

que les autres(ues, eda...) sont des flags qui proviennent du module EDH in.

Les états rw ecrivent une séquence de 0.

Enfin, un checksum des users data words est réalisé.

MACHINE A ETATS (pour la génération du paquet ancillaire)

goui=0(20 duts

goRisG(20 bats

109

Implémentation du CRCCs

C’est une technique de compression qui effectue la division du polynome :

P(x)=1+ Z c'.x"'i
=1
Le reste de la division se trouve alors dans les registres constituants la LFSR. Cette LFSR
(linear feedback shift register) un polynome d’entrée G(X) divise le polynome P(X) censé
représenté la LFSR suivant le calcul: G(X)/ P(X)= QX)+R(X)/P(X). Le reste R(X) est
alors contenu dans le registre et le quotient Q(X) est constitué par les données de sorties.

Le CRCC a été implanté a I’aide du générateur polynomial CITT 16 o le shéema général

W o e o

> Q o b > Q

est donnée ci-dessous.

v

Y

Les Cn sont des connexions quand ces coefficients sont égaux a 1. Dans le cas contraire

ils doivent étre omis. Les + sont des portes xor.

ANNEXE B : FONCTION MID

DOONOTNLWN =

Integer Function Mid (X, Y, 2)

integerx, y, 2
mid=2
if (y .LT. 2) then
if (x.LT. y) then
mid=y
else if (x .LT. z) then
mid = x
end if
else
if (x .GT.y) then
if (x .LT. y) then

mid=y
else it (x .GT. z) then
mid = x

mid = Yy
end if
end if

return

110

111

ANNEXE C.

el

/*etat_suivant */

.

long c;
long i;

{

unsigned long etat_courant;
unsigned long ancien_etat

char tata[5]{20]
FILE *MO=NULL; /*definition du pointeur file pour le fichier d’entrie*/

{//operateur de mutation pour le cas des if pour I’opérateur COR
FILE *M1=NULL;

/* cette marice represente les etats suivants du diagramme if*/

int diagr_etat_[F[TRANSITION][ETAT_COURANT]={

#define ETAT_COURANT 23
void main()

FILE *tamp_chaine[5];

FILE *tampon0=NULL;

FILE *tamponi=NULL;

FILE *tampon2=NULL;

FILE *tampon3=NULL;

FILE *tampon4=NULL;

#define TRANSITION 15

#include <stdio.h>
#include <string.h>

#inciude <stdlib.h>
long transition;
long pos:

int compteur_cor;
int pos2;

int pos3;

int posd4;

int posS;

0

> 000000000000
o o
O
M22,2.2.2222222ﬂ2
120000000,000000
NCdaNaNgqINAaANNgGN

22222222228222
.2221.22.2272222

o—
22,222222222222

NN YN NN
5'2455H53H55U55
lSlll

2.122222222 NGRS
22222222222222
22122222222222

— Ll e e
2

~ 222222222222
02000000000000
90989999999999
2972222222 222
22222202222222
02000000000000
555.54555355555.5
22B326002622022

020000000000000
~cgodocododoosdsSg

,0,2,2,9,0,2,12,2,2,15,2,2, 2. 2,2,192,2,0,

/* transitions*/

etat_courant=0;
ancien_etat=0;
pos=0;

pos2=0;

pos3=0;

pos4=0;

pos5=0;
compteur_cor=0;

if((MO = fopen("edhii.vhdl","c"))==NULL)/* ouverture du fichier du premier mutant*/
printf("ERREUR:le fichier source ne peut etre ouvert \n");

else

{

while ((c=fgetc(MO0))!=EOF)

switch(c)

{

case T

case 'i":transition=0;
break;

case 'F:

case ‘f:transition=1;
break;

case ">':transition=2;
break;

case '=":transition=3;
break;

case \":transition=4;
break;

case '/:transition=S$;
break;

case '<transition= 6;
break;

case ';:transition= 7;
break;

case ' ":transition= 8;
break;

case 'E:

case 'e":transition=9;
break;

case 'N":

case 'n":transition=10;
break;

case 'D':

case 'd":transition=11;
break;

case T":

112

case ‘t":transition=12;
break;
case 'H"
case ‘h':transition=13;
break;
default:transition=14;
break;
}
ancien_etat=etat_courant;
etat_courant= diagr_etat_[F[transition]{etat_courant};

switch(etat_courant)

{
case 2:pos =ftell(M0);
break;
case 5:switch (ancien_etat)
{
case 3:
M1 = fopen("mut_tampon_cor”,"w");
for(i=0;i<=4;i++)
{
sprintf(tata(i],"Mut_cor%d.vhdl" ,compteur_cor);
compteur_cor++;
tamp_chaine([i] = fopen(tata(i]."w"); //ouverture des S mutants cor
}
fputc(c,M1);

// ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{
fputc(c,M1);
if(c=="r")
fputc(\n’’M1);
}
fclose(M1);
//ajout du debut du fichier dans les fichiers mutants
fseek(M0,0,0);
while(((c=fgetc(MO0))!=EOF) & &(ftell(M0)<=pos))
{
for(i=0;i<=4;i++)
(
fputc(c,tamp_chaine[i]);
)
}
//fin d’ajout
fputs("<=",tamp_chaine(0]);
fputc(’>',tamp_chaine[1]);
fputs(">=",tamp_chaine[2]);
fputs("/=",tamp_chaine{3]);
fputz('<',tamp_chaine[4]);
//on reecrit la fin du fichier
M1 = fopen("mut_tampon_cor”,"r");

113

while((c=fgetc(M1))!=EOF)
{
for(i=0;i<=4;1++)
fputc(c,tamp_chaine{i]);
l
//fin de la reecriture
for(i=0;i<=4;i++)
fclose (tamp_chaine(i]);
fclose(M1);
fseek(MO,pos,0); /fon remet a la position courante
break;
default:
break;
}
break;
case 7:pos2=ftell(MO);
break:

case 9:switch (ancien_etat)
{
case 7:
M1 = fopen("mut_tampon_cor","w");
for(i=0;i<=4;i++)
{
sprintf(tatafi],”"Mut_cor%d.vhdl" compteur_cor);
compteur_cor++;

tamp_chaine[i] = fopen(tata[i],”w"); //ouverture des 5 mutants cor

)
fputc(c M1);
// ecriture de la fin du fichier
while((c=fgetc(MO0))!=EOF)
{
fputc(c,.M1);
if(c==\r")
fputc(\n',M1);
}
fclose(M1);

//ajout du debut du fichier dans les fichiers mutants
fseek(MO0,0,0);
while(((c=fgetc(M0))!=EOF)& &(ftel[((MO)<=pos))
{
for(i=0;1<=4;i++)
{
fputc(c,tamp_chainef{i]);
}
}

//fin d'ajout
fputc('=',tamp_chaine[0]);
fputc(>'",tamp_chaine[1]);

114

fputs(">=",tamp_chaine[2]);
fputs(“<=",tamp_chaine[3]);
fputc('< tamp_chaine[4]);

//on reecrit l1a fin du fichier
M1 = fopen("mut_tampon_cor”,"r");
while({c=fgetc(M1))!=EOF)
{
for(i=0;i<=4;i++)
{
fputc(c.tamp_chaine{i]);
}
)

//fin de la reecriture
for(i=0;i<=4;i++)

fclose (tamp_chaine(i]);
fclose(M1);

fseek(MO0,pos2,0); //on remet a la position courante

break;

default:

}

break;

break;
case 10: pos3=fiell(MO0);
break;

case 11

{

o

:switch (ancien_etat)

ase 10:
M1 = fopen("mut_tampon_cor”,"w");
for(i=0;i<=4;i++)

{

sprintf(tatafi},"Mut_cor%d.vhdl” ,compteur_cor);

compteur_cor++;

tamp_chainefi] = fopen(tata[i],"w"); //ouverture des 5 mutants cor

)
/! fputc(c, M1);

// ecriture de la fin du fichier
while((c=fgetc(MO0))!=EOF)
{
fputc(c,M1);
if(c=="\r")
fputc(\n’ . M1);
)
fclose(M1);

//ajout du debut du fichier dans les fichiers mutants

fseek(MO0,0,0);

while(((c=fgetc(M0))!=EOF)& &(ftell(MQ)<=pos))

for(i=0:i<=4;i++)

115

{

fputc(c.,tamp_chaine{i]);

/ffin d'ajout
fputc('=",tamp_chaine{0]);
fputc('>',tamp_chaine([1]);
fputs(">="tamp_chaine(2]);
fputs(“/=",tamp_chaine{3]);
fputs("<",tamp_chaine[4]);

flon reecrit 1a fin du fichier
M1 = fopen("mut_tampon_cor”","r");
while((c=fgetc(M1))!=EOF)
{
for(i=0;i<=4;i++)
fputc(c.tamp_chainel[i]);
}
/ffin de la reecriture
for(i=0;i<=4;i++)
fclose (tamp_chaine(i]):
fclose(M1);
fseek(MO,pos3,0); //on remet a la position courante
break;
default:
break;
J
break;
case 12:switch (ancien_etat)
{
case 10:
M1 = fopen("mut_tampon_cor
for(i=0;i<=4;i++)
{
sprintf(tata[i],"Mut_cor%d.vhdl" ,compteur_cor);
compteur_cor++;

JWET),

tamp_chaine(i] = fopen(tata[i],"w"); /fouverture des 5 mutants cor

}
fputc(c,M1);

// ecriture de la fin du fichier
while((c=fgetc(MO0))!=EOF)
{
fputc(c.M1);
if(c=="r")
fputc(\n'\M1);
)
fclose(M1);

//ajout du debut du fichicr dans les fichiers mutants

116

fseek(MO0,0,0);
while(((c=fgetc(M0))'=EOF) & &(ftell(M0)<=pos))
for(i=0;i<=4;i++)
{
fputc(c,tamp_chaine(il});
}

//fin d'ajout
fputc(C=".tamp_chaine[0]);
fputc(>',tamp_chaine(1]);
fputs(">="tamp_chaine[2]);
fputs("/=",tamp_chaine{3]);
fputs("<=",tamp_chaine[4]);

//on reecrit la fin du fichier
M1 = fopen(“mut_tampon_cor”,"r");
while((c=fgetc(M1))!=EOF)

{

1}
for(i=0;i<=4;i++)
fputc(c.tamp_chainefi]):
}
//fin de la reecriture
for(i=0;i<=4;i++)
fclose (tamp_chaine[i]);
fclose(M1);
fseek(MO,pos3,0); //on remet a la position courante
break;
default:
break;

}
break;

case 14: posd=ftell(MO); ;
switch (ancien_etat)
{
case 13:
M1 = fopen("mut_tampon_cor","w+");
for(i=0;i<=4;i4++)
{
sprintf(tata[i],"Mut_cor%d.vhdl” ,compteur_cor);
compleur_cor++;
tamp_chaine[i] = fopen(tata(i},"w"); //ouverture des S mutants cor

}
fputc(c,M1);

/1 ecriture de la fin du fichier
while((c=fgetc(M0))!'=EOF)
{
fputc(c,M1);

117

if(c=="\r"
fputc(\n’,M1);
}
fclose(M1);

//ajout du debut du fichier dans les fichiers mutants
fseek(M0,0,0);
while(((c=fgetc(M0))!=EOF)& &(fteli(M0)<=pos))
for(i=0;i<=4;14++)
{
fputc(c,tamp_chaine[i]);

}

//fin d"ajout
fputc('=".tamp_chaine{0]);
fputc(>",tamp_chaine[1]);
fputs("<="tamp_chaine{2]);
fputs("/=",tamp_chaine[3]);
fputc('<' tamp_chaine{4]);

//on reecrit la fin du fichier
M1 = fopen("mut_tampon_cor","t");
while((c=fgetc(M1))!=EOF)
{
for(i=0;i<=4;i++)
fputc(c.,tamp_chaine(i]);
}
//fin de la reecriture
for(i=0:i<=4;i++)
fclose (tamp_chaine(i]);
fclose(M1);
fseek(MO,pos4,0); //on remet a la position courante
break;
default:
break;

}
break;

case 15:posS=fteli(MO0);
switch (ancien_etat)

{

case 13:
M1 = fopen("mut_tampon_cor","w+");

for(i=0;i<=4;i++)
{
sprintf(tatafi},"Mut_cor%d.vhdl" ,compteur_cor);
compteur_cor++;

tamp_chainel[i] = fopen(tata[i],"w"); //ouverture des 5 mutants cor

}

118

}

}

}

fputc(c,M1);

/1 ecriture de la fin du fichier
while((c=fgetc(M0))!=EQOF)
{
fputc(c,M1);
if(c=="\r")
fputc(\n'M1);
)
fclose(M1);

/fajout du debut du fichier dans les fichiers mutants
fseek(MO0,0,0);
while(((c=fgetc(MO0))!=EOF)& &(ftell(M0)<=pos))
for(i=0;i<=4;i++)
{
fputc(c,tamp_chaineli]);

}

//fin d'ajout
fputc(’'=".tamp_chaine(0]);
fputs("<="tamp_chaine[1]);
fputs(">="tamp_chaine[2]):
fputs("/="tamp_chaine{3]);
fputc('<’.tamp_chaine[4]);

//on reecrit la fin du fichier
M1 = fopen("mut_tampon_cor","r");
while((c=fgetc(M 1))}!=EOF)
{
for(i=0:i<=4:i++)
fputc(c,tamp_chaine(i]);
)
//fin de la reecriture
for(i=0;1<=4;i++)
fclose (tamp_chaineli]);
fclose(M1);
fseek(MO,posS,0); //on remet a la position courante
break;

default:

)

break;

break;

default:

}

break;

119

120

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define TRANSITION 13
#define ETAT_COURANT 20

/loperateur de mutation pour le cas des if

void main(}

{

unsigned long etat_courant;
unsigned long ancien_etat;
char tata[5][20];

long c;

long i;

long transition;
long pos;

int compteur_cor;

FILE *MO=NULL; /*definition du pointeur file pour le fichier d'entrie*/
FILE *MI1=NULL;
FILE *tamp_chaine{5];

FILE *tampon0=NULL;
FILE *tamponl=NULL,;
FILE *tampon2=NULL,;
FILE *tampon3=NULL;
FILE *tampon4=NULL,;

int diagr_ctat_IF[TRANSITION]J[ETAT_COURANT]=({
/*etat_suivant */
/* transitions*/1,0,2,5,0,0,0,9.0,2,12,0,0, 15,0,0,2,2,2,0,
0,22500090,212,00,15,0,0,2,2,2,0,
0,0,13,5,0,0,0,9,0,2,12,0,0,15,0,0, 2, 2, 2,0/* cette marice represente les etats
suivants du diagramme if*/

0,0,3,5,0,0,7,9,0,2,11,0,0,14,0,0,2,2, 2,0,
0,0,2,4,0,0,0,8,0,2,12,0,0,15,0,0,2,2,2,0,
0.0,6,5,0,0,0,9,0,2,12,0,0,15,0,0,2,2,2,0,
0,0,10,5,0,0,0,9,0,2,12,0,0,15,0,0, 2, 2,2,0,
0,0,2000000,2,000 ¢,0,0,2,0,2,0,
0,0,2,3,0,0,0,7,0,2, 0,0,0,13,0,0, 2,2, 19,0,
0,0,16,5,0,0,2,9,0,2,12 ,0,0,15,0,0, 2, 2,2,0,
0,0,2,5,0,0,2,9,0,2,12,0,0, 15,0,0,17, 2, 2, 0,
0,0,2,5.0,0,2,9,0,2,12,0,0,15,0,0,2,18,2,0,
0.0,2,5,0,0,2,9,0,2,12,0,0,15,0,0, 2, 2, 2, 0};

121

/loperateur de mutation pour le cas des if pour Popérateur COR (si nombre non binaire)

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define TRANSITION 13
#define ETAT_COURANT 20
void main()

{

unsigned long etat_courant;
unsigned long ancien_etat;
char tata[5]7{20];

long c;

long i;

long transition;

long pos;

int compteur_cor;

FILE *MO=NULL; /*definition du pointeur file pour le fichier d'entrée*/
FILE *M1=NULL;
FILE *tamp_chaine{5];
FILE *tampon0=NULL;
FILE *tampon1=NULL;
FILE *tampon2=NULL;
FILE *tampon3=NULL;
FILE *tampon4=NULL;

int diagr_etat_IF[TRANSITION][ETAT_COURANT]={
/*etat_suivant */

/* transitions*/ 1,0,2,5,0,0,0,9,0,2,12,0,0,15,0,0,2,2,2,0,
0,2,2500,0090,21200,15.0,0,2,2,2,0,
0,0.13,5,0,0,0,9,0,2,12,0,0,15,0,0, 2, 2,2,0,
0,0,3500,7,9,0,2,11,0,0,14,0,0,2,2,2,0,
0,0,24,0,0,0,8,0,2,12,0,0,15,0,0,2,2,2,0,
0,0,6,50,0,0,9,02,12,0,0,15,0,0,2,2,2,0,
0,0,10,5,0,0,0,9,0,2,12,0,0,15,0,0,2,2,2,0,
0,0,2,00,0,00,02,00,0, 0,0,0,2,0,2,0,
0,0,23,0,0070,2 00,0,13,0,0, 2, 2, 19,0,
0,0,16,5,0,0,2,9,0,2,12,0,0,15,0,0, 2, 2,2,0,
0,0,250,0.,2,9,0,2,12,0,0,15,0,0,17,2,2,0,
0,02500,290,2120,0,15,0,0,2,18,2,0,
0,0,25.00,29021200,15,0,0,2, 2,2,0};

etat_courant=0;
ancien_etat=0;
pos=0;
compteur_cor=0;

if((MO = fopen("text.vhdl","r"))==NULL)/* ouverture du fichier du premier mutant*/
‘ printf("ERREUR:le fichier source ne peut etre ouvert \n");
clse

while ((c=fgetc(M0))!=EOF)
{
switch(c)

{

case 'I":

case 'i":transition=0;
break;

case 'F:

case ‘f:transition=1;
break;

case '>":transition=2;
break;

case '=":transition=3;
break;

case \":transition=4,
break;

case '/:transition=5;
break:

case '<':transition=6;
break;

case ';":transition= 7,
break;

case ' "‘transition= §;
break;

casc 'E’:

case 'e:transition=9;
break;

case ‘N":

case 'n":transition=10;
break;

case 'D":

case 'd:transition=11;
break:

default:transition=12;
break;

} -

ancien_etat=etat_courant;
etat_courant= diagr_etat_[F[transition][etat_courant];

switch(etat_courant)

{

case 9:switch (ancien_ctat)
{
case 7:
M1 = fopen("mut_tampon_cor
pos =ftell(M0);
for(i=0;i<=4;i++)
{ prindf("comp %d \n",compteur_cor);

. W)

sprintf(tata(i],"Mut_cor%d.vhdl" .compteur_cor);

122

123

compteur_cor++;
tamp_chaine[i] = fopen(tata[i],"w"). //ouverture des 5 mutants cor

}
fputc(c.M1);

// ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{
fputc(c,M1);
if(c="¢")
fputc(\n’ . M1);
}
fclose(M1);

//ajout du debut du fichier dans les fichiers mutants
fseek(M0,0,0);
while(((c=fgetc(M0))!=EOF)& &(ftell(M0)<=pos-3)) //-3 afin de ne pas reecrire le meme caractere
for(i=0;i<=4;i++)
{
fputc(c.tamp_chaine[i});

}

//fin d'ajout
fputc('="tamp_chaine[0]);
fputc(’>',tamp_chaine[1]);
fputs(">="tamp_chaine[2]);
fputs("<="tamp_chaine{3]);
fputc('<'.tamp_chaine[4]);

{/on reecrit la fin du fichier
M1 = fopen("mut_tampon_cor”,"r");
while((c=fgetc(M1))!=EOF)
{
for(i=0;i<=4;i++)
fputc(c.tamp_chaine(i]);
)
//fin de la reecriture
for(i=0;i<=4;i++)
fclose (tamp_chaineli]);

fclose(M1);
fseek(MO,pos,0); //on remet a la position courante
break;
default:
break;
)
default:
break;

}
}

//operateur de mutation pour le cas des case pour I’opérateur COR et SSR
#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define TRANSITION 11
#define ETAT_COURANT 15
#idefine TRANSITION1 7
#define ETAT_COURANT!I 8
void main()

{

unsigned char etat_courant;
unsigned char etat_courantl;
char cor_chaine{10];

char tabcase[120][12];
unsigned pos([120];

unsigned i_max[120];

intc;

int flag;

inti;

int j_max;

int j;

int posf;

int i_tab;

inti_tab2:

int transition;

int transitionl;

long compteur_cor;

long posM2;//position du pointeur
long postampon;

long i_pos;

long i_pos2;

long i_posmax;

FILE *MO=NULL; /*definition du pointeur file pour le fichier d'entrEe*/

FILE *M1=NULL,;

FILE *tampon;

int diagr_etat_case[TRANSITION][ETAT_COURANT]=({

/*etat_suivant */

/* transitions*/ 1,0,0,0,5,5,0,0,0,0,0,0,0,0,0,
0,2,0,0,5,5,0.0,0,0,0,0,0,0,0,
6.0,3,0.5.5,0,0,0,0,0,0,13,0,0,
0,0,0,4,5,5,7,0.0,0,0.0,0.0,0,
0.0,0,0,4,14,0,0,9,0,0,0,0,0,0,
0.0,0,0,5,5,0,8,0,0,0,0,0,0,0,
0,0,0,0,5,5,0,0,0,10,0,0,0,0,0,
0,0,0,0,5,5,0,0,0,0,11,0,0,0,0,
0,0,0,0,5.5.0,0,0,0.0,12,0,0,0,
0,0,0,0,5,14,0,0,0,0,0,0,0,0,0,
0,0,0,0,5,5,0,0,0,0,0,0,0,0,0};

124

125

int diagr_etat_pos{TRANSITIONI1][ETAT_COURANTI1]={
/*etat_suivant */
/* transitions*/ 1,0,0,0,5,5,0,0,
0.2,0,0,5.5,0,0,
0,0,3,0,5,5,0,0,
0,0,0,4,5,5,0,0,
0,0,0,0,5,6,0,0,
0,0,0,0,5,5,7,0,
0,0.0.0,5,5,0,0};

etat_courant=0;

etat_courantl=0;

i=0;

i_posmax=0;

j_max=0;

=0

i_pos=0;

i_tab=0;

i_tab2=0;

compteur_cor=0;

posM2=0;

postampon=0;

posf=0;

if((MO = fopen("mux2.vhdl” ,"r"))==NULL)/* ouverture du fichier du premicr mutant*/
printf("ERREUR:le fichier source ne peut etre ouvert \n");

clse{
printf(“fichier mux2.vhdl ouvert \n");
while ((c=fgetc(M0))!=EOF){

switch(c)

{

case 'W':

case 'w':transition=0;

break;

case 'H":

case 'h":transition=1;

break;

case 'E":

case 'e".transition=2;

break;

case 'N':

case 'n':transition=3;

break;

case ' ":transition=4;

break;

case 'D":

case ‘'d":transition=35;

break;

case 'C":

casc ‘c’:transition=6;

break;

case'A";

126

case ‘a":transition=7;
break;
case 'S”:
case 's':transition=8;
break;
case '=":transition=9;
break;
default:transition=10;
break;
}
etat_courant= diagr_etat_case{transition}{etat_courant];
switch(etat_courant)
{
case O:
i=0;
break;
case i:
case 2:
case 3:
case 4:
break;
case 5:
tabcase{j][i]=c;
i_max[jl=i;
14++;
break;
casc 6:
case 7:
case 8:
case 9:
case 10:
case 11:
case 12:
break;
case 13:
for(i=0;i<j_max-1;i++)
{
flag=0;
i_tab++;
sprintf(cor_chaine,"Mut_mux%d.vhdl",compteur_cor);
compteur_cor++;
M1 = fopen("mut_tampon~,"w");
tampon = fopen(cor_chaine,”"w");
if(i_tab<=j_max)
fputs(tabcase(i_tabj,M1);
fseek(MO,pos(i],0);
while((c=fgetc(M0))!'=EOF)
{
switch(c)

{

case 'W':

case 'w':transition1=0;
break;
case 'H":
case 'h":transitionl=1;
break;
case 'E"
case ‘e":transition1=2;
break;
case 'N":
case ‘n":.transitionl=3;
break;
case '=":transitionl=4;
break;
case >'":transition]=5;
break:
default:transitionl=6;
break;
}

etat_courantl= diagr_etat_pos([transitionl J[etat_courant1]

switch(etat_courantl)

{

case O:

case I:

case 2:

case 3:fputc(c,M1);
break;

case 4:
fputc(c,M1);
fputc(’ " M1);
if (flag<=1)

{
posf=ftell(MO0);
i_tab2=i_tab-1;
fputs(tabcase[i],M1);
fputc('.M1);
flag++;

}

break;

case §:

case 6:
break;

case 7:
fputs("=>",M1);

// ajout de la suite de la fin du texte
while((c=fgetc(M0))!=EQF)

{
fputc(c,M1);
if(c=\r")
fputc(\n' ' M1);
/1 fin ajout

127

128

}
fclose(M1);
break;
default:
break;
}
flag=0;

//ajout du debut du texte avant la mutation
fseek(M0,0,0);
while(((c=fgetc(M0))!=EOF)&&(ftell(M0)<=pos[ij-i_max[i]-2)) // -2 a cause de =>
{
fputc(c,lampon);
if(c=="\r")
fputc(\n',tampon);
}
fclose(tampon);
//fin d'ajout

//on reecrit la fin du fichier
tampon = fopen(cor_chaine,"a");
M! = fopen("mut_tampon”,"r");
while((c=fgetc(M 1))!=EOF)

{
fputc(c,tampon);
}

// fin de la reecriture

fclose (tampon);
fclose(M1);
)
fclose(MO);
fclose(M1);
break;
case 14:
pos(i_pos]=ftell(MO0);
i_pos++;
Jj_max=j;
J++
break;
default:
break;
}
}
}
fclose(MO0);
}

//operateur de mutation AOR

/Ifonction general permettant le changement des opErateurs arithmetiques +, /, *, -, >, >=et <

#include <stdio.h>

#define TRANSITION 9
#define ETAT_COURANT 17
main()

{

unsigned char etat_courant;
unsigned char ancien_etat;
unsigned char 1ata[4]{ 10];

int c,compt;

int pos;

int compteur_aor;

int i;

int transition;

FILE *MO=NULL; /*definition du pointeur file pour le fichier d'entrEe*/
FILE *M1=NULL;

FILE *M2=NULL;

FILE *M3=NULL;

FILE *M4=NULL;

FILE *tamp_chaine{4];

int diagr_etat[TRANSITION][ETAT_COURANT]={
/*etat_suivant */

/* transitions*/ 1,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
5.0,0,0,0.0,0,0.0,0.0,0,0,0,0,0,0,
3.0,0,0,4,0,0,0,0,0,0,0,0,0,0,0,0,
6,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
8,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
10,0,0,0,0,0,0,0,0,0,0,0,0.0,0,0.0,
12,2,0,0,0,0,0,7,9,0,0,0,0,0,0,15,0,
14,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

etat_courant=0;
compt=0;

pos=0;
compteur_aor=0;

if((MO = fopen(“test.ixt™ ,"r")}==NULL)/* ouverture du fichier du premier mutant*/
printf("ERREUR:le fichier source ne peut etre ouvert \n");

else{
printf("fichier ouvert\n");

while ((c=fgetc(M0))!=EOF){
switch(c)

{
case "-":transition=0;
break;

129

case '+":transition=1;
break;

case '*":transition=2;
break;

case '/:transition=3;
break;

case '<':transition=4;
break;

case ">":transition=S5;
break;

case '=":transition=6;
break;

case "":transition=7;
break;

case \0':
break;

default:transition=8;
break;

}

ancien_etat=etat_courant;
etat_courant= diagr_ctat[transition]{etat_courant];

switch(etat_courant)
{
case 0: switch (ancien_etat)
{
case 1:
M1 = fopen("mut_tampon_aor","
fputc(c,M1);
pos =ftell(MO0);
for(i=0;i<=2;i++)
{
sprintf(tata(i], "Mut_aor%d.vhdl" .compteur_aor);
compleur_aor++;
tamp_chaine[i] = fopen(tatafi],"w"); /fouverture des S mutants cor

}

w');

/! ecriture de ia fin du fichier
while((c=fgetc(MO0))!=EOF)
{
fputc(c,M1);
if(c=="\r")
fputc(\n',M1);
J
fclose(M1);

//ajout du debut du fichier dans les fichiers mutants

fseek(MO0,0,0);

while(((c=fgetc(MO0))!=EOF)& &(ftell(M0)<=pos-2))
for(i=0;i<=2;i++)

130

{
fputc(c,tamp_chaine[i]);

}
/ffin d’ajout

fputc(+' tamp_chaine[0}]);
fputc('/ tamp_chaine([]);
fputc('*' tamp_chaine[2]);

//on reecrit la fin du fichier
M1 = fopen("mut_tampon_aor™,"r");
while((c=fgetc(M1))!=EOF)
{
for(i=0;i<=2;i++)
fputc(c,tamp_chaine[i}]);
}

//fin de la reecriture

for(i=0;i<=2;i++)
fclose (tamp_chaine[i]);
fclose(M1);
fseek(MO.pos,0); //on remet a la position courante
break;
case 3:
M1 = fopen("mut_tampon_aor”,"w");
fputc(c.M1);
pos =ftell(MO);
for(i=0;i<=2;i++)
{
sprintf(tata(i],"Mut_aor%d.vhdl" ,compteur_aor);
compleur_aor++;
tamp_chaine[i] = fopen(tata[i],"w");

}

/I ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{
fputc(c,M1);
if(c=="\")
fputc(\n',M1);
}
fclose(M1);

/lajout du debut du fichier dans les fichiers mutants
fseek(MO0,0,0);

while(((c=fgetc(M0))!'=EOF)& &(ftell(M0)<=pos-2))

for(i=0;i<=2;i++)
{
fputc(c,tamp_chaine(i]);
}
{/Ifin d'ajout

131

fputc(’-'.tamp_chaine[0]);
fputc('/ tamp_chaine(1]);
fputc("+',tamp_chaine[2]);

//on reecrit la fin du fichier
M1 = fopen("mut_tampon_aor”,"r");
while((c=fgetc(M1))!=EOF)
{
for(i=0;1<=2;i++)
fputc(c,tamp_chaine[i});
}

//fin de la reecriture

for(i=0:i<=2;i++)
fclose (tamp_chainefi]);
fclose(M1);
fseek(MO,pos,0); //on remet a la position courante
break;
case 5:
M1 = fopen("mut_tampon_aor"”,"w");
fputc(c,M1);
pos =ftell(MO);
for(i=0;i<=2;i++)

{

sprintf(tatafi],"Mut_aor%d.vhdl" .compteur_aor);

compteur_aor++;
tamp_chaine[i] = fopen(tata[i],"w"):
}

/! ecriture de la fin du fichier
while((c=fgetc(M0))'=EOF)
{
fputc(c,M1);
if(c=="r")
fputc(\n' M1);
)
fclose(M1);

//ajout du debut du fichier dans les fichiers mutants
fseek(M0,0,0);

while(((c=fgetc(M0))!=EOF) & &(ftell(M0)<=pos-2))

for(i=0;i<=2;i++)
{
fputc(c.,tamp_chaine(i));

}
//fin d'ajout

fputc(’-',tamp_chaine[0]);
fputc(’/ .tamp_chaine[1]);
fputc('*',tamp_chaine{2]);

132

//on reecrit 1a fin du fichier
M1 = fopen("mut_tampon_aor","r");
while((c=fgetc(M1))!=EOF)
{
for(i=0;i<=2;i++)
fputc(c,tamp_chaine[i]);
}

//fin de 1a reecriture

for(i=0;i<=2;i++)
fclose (tamp_chainefi]);
fclose(M1);
fseek(MO,pos,0); //on remet a la position courante
break;

case 6:
M1 = fopen("mut_tampon_aor”,"w");
fputc(c,M1);
pos =fteli(MO0);
for(i=0;1<=2;i++)

{

sprintf(tata[i],"Mut_aor%d.vhdl",compteur_aor);

compteur_aor++;
tamp_chaine[i} = fopen(tatafi},"w");

}

/! ecriture de la fin du fichier
while((c=fgetc(MO0))!'=EOF)
{
fputc(c.M1);
if(c=="\wr")
fputc(\n' ,M1};
!
fclose(M1);

//ajout du debut du fichier dans les fichiers mutants
fseek(M0,0,0);

while(((c=fgetc(MO0))!=EOF)& & (ftell(M0)<=pos-2))

for(i=0;i<=2;i++)
{
fputc(c,tamp_chainefi});

}
//fin d'ajout

fputc('-'.lamp_chaine[()]);'
fputc('+ tamp_chaine[1]);
fputc("*'.tamp_chaine[2]);

//on reecrit 1a fin du fichier
M1 = fopen("mut_tampon_aor”","r");

133

while((c=fgetc(M1))!=EOF)
{
for(i=0;i<=2;1++)
fputc(c,tamp_chainefi]):
J
//fin de 1a reecriture

for(i=0;i<=2;1++)
fclose (tamp_chaine[i});
fclose(M1);
fseek(MO,pos,0); //on remet a la position courante
break;

case 8:
M1 = fopen("mut_tampon_aor","w");
fputc(c,M1);
pos =ftell(M0);
sprintf(tata[0],"Mut_aor%d.vhdl",compteur_aor);
compteur_aor++;
tamp_chaine[0] = fopen(tata[0],"w");

/! ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{
fputc(c,M1);
if(c=="r")
fputc(\n’ M1);
)
fclose(M1);

/fajout du debut du fichier dans les fichiers mutants

fseek(MO0,0,0);

while(((c=fgetc(M0))!=EOF) & &(ftell(M0)<=pos-2))

fputc(c.,tamp_chaine[0]):
//fin d’ajout

fputc(">'.tamp_chaine{0]);

//on reecrit la fin du fichier
M1 = fopen("mut_tampon_aor”,"r");
while((c=fgetc(M1))!=EOF)
fputc(c,tamp_chaine{0});
//fin de la reecriture

fclose (tamp_chaine[0]);

fclose(M1):

fseek(MO,pos,0); //on remet a la position courante
break;

case 10:
M1 = fopen("mut_tampon_aor”,"w");

134

135

fputc(c,M1);

pos =fteti(MO0);
sprintf(tata[0],"Mut_aor%d.vhdl" ,compteur_aor);
compteur_aor++;

tamp_chaine[0] = fopen(tata[0],"w™);

/! ecriture de la fin du fichier
while((c=fgetc(MO0))!=EOF)
{
fputc(c.M1);
if(c="\r")
fputc(\n' . M1);
}
fclose(M1);

//ajout du debut du fichier dans les fichiers mutants

fseek(M0,0,0);

while(((c=fgetc(MO0))!=EOF)& &(ftell(M0O)<=pos-2))
fputc(c,tamp_chaine{0]);

//fin d’'ajout

fputc('<'tamp_chaine(0]);

//on reecrit la fin du fichier
M1 = fopen("mut_tampon_aor","r");
while((c=fgetc(M1))'=EOF)
fputc{c.tamp_chaine{0});
//fin de la reecriture

fclose (tamp_chaine[0]):
fclose(M1);
fseek(MO0,pos,0); //on remet a la position courante
break;
dcfault:
break;

}
default:
break;
)
}
}
}

/loperateur de mutation CNR et CSR

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define TRANSITION 9
#define ETAT_COURANT 10
#define TRANSITIONS 4
#define ETAT_COURANT3 2
#define TRANSITION4 3
#define ETAT_COURANT4 2
#define TRANSITIONS 5
#define ETAT_COURANTS 6

/* inventaire des signaux du programme source */

void main()

{

unsigned char etat_courant;
unsigned char ancien_etat;
unsigned char etat_courant2;
unsigned char etat_courant3.
unsigned char ancien_etat3;
unsigned char etat_courant4;
unsigned char ancien_etat4;
unsigned char etat_courant$;
unsigned char ancien_etats;
char tabsig[120][120];

char tabname(120][1201];
char tabtype[120][120];

long compteur_type;

char numberI[10];

int c,cl,¢2,i,i_name,j_name,i3,j3,i3_maxj j_type.tamp,flag_name,i_max.j_max,f.compteur.i_ident;
int transition,transition3,transitiond4;

int transitionS;

int compt_mutant;

int flag_compare;
long compteur_typel;
long flag_white;

long pos;

long posf;

long posM2//position du pointeur

long postampon;
char word[1][80];
char tataf10};

FILE *MO=NULL; /*definition du pointeur file pour le fichier d'entrée*/

FILE *MI=NULL;
FILE *M2=NULL;
FILE *M3=NULL;
FILE *M4=NULL;
FILE *M5=NULL;

136

137

FILE *M6=NULL;
FILE *M7=NULL;
FILE *M8=NULL;
FILE *M9=NULL;
FILE *tampon;
int diagr_etat_name[TRANSITION3][ETAT_COURANT3]=({
/*etat_suivant */
/* transitions*/ 1,0,
0,0.
0,1,
0,0};
int diagr_etat_compteur{ TRANSITION4]J[ETAT_COURANT4]={
/*ctat_suivant */
/* transitions*/ 1,1,
0,0,
0.0};

int diagr_etat[TRANSITION][ETAT_COURANT]}=(
/*etat_suivant */

/* transitions*/ 1,0,0,0,0,0,0.8,8,0,
0.2,0,0,0,0,0,8,8,0,
0,0,3,0,0,0,0,8,8,0,
0,0,0,4,0,0,0,8,8,0,
0.0,0,0,5,0,0.8,8,0,
0,0,0,0,0,6,0,8,8,0,
0.0,0,0,0,0,7.8.,8,0,
0.0,0,0,0,0,0,8,9,0,
0,0,0,0,0,0.0,8,8,0});

int diagr_etat_word[TRANSITIONS}[ETAT_COURANTS]=(

/*etat_suivant */

/* transitions®/ 1,4,2,0,0,0,
1.5.2,0,0,0,
1,2,2,0,0,0,
1.1,3,0,0,0,
1.1,2,0,0,0};

ctat_courant=0;
etat_courant2=0;
ctat_courant3=0;
ctat_courantd=0;
etat_courantS=0;
i=0;

i_name=0;
j_name =0;

=0

i_max=0;

f=0;

tamp=0;

138

compteur=0;
j_max=0;
i_ident=0;
flag_compare=0;
pos=0;
posM2=0;
postampon=0;

if((MO = fopen("gene.vhdl" ,"r"))==NULL)/* ouverture du fichier du premier mutant®/
printf("ERREUR:le fichier source ne peut etre ouvert \n");
else{
printf(“fichier INV_SIG_TAB ouvert \n");
M1 = fopen("INV_SIG_TAB","w"); /*ouverture du fichier inventaire*/
while ((c=fgetc(M0))!=EOF){
switch(c)
{
case 'S":
case 's:transition=0;
break;
case T":
case 'i:transition=1;
break;
case ‘G':
case ‘g"transition=2;
break;
case N":
case ‘n":transition=3;
break;
case ‘A"
case ‘a"transition=4;
break;
case L
case 'I":transition=35;
break;
case ' transition=6;
break;
case ';:transition=7;
break;
default:transition=8;
break;
}
ancien_etat=ctat_courant;
ctat_courant= diagr_etat[transition][etat_courant};
switch(ctat_courant)

{

case 7: switch (ancien_etat)

{

case 6:
fputc(s' ' M1);

fputc(i’,M1);
. fputc('g' M1);

139

fputc('n' M1);
fputc(a’' M1);
fputc('I'M1);
fputc(" M1);
break:

)

break;

case 8: switch(ancien_etat)
{
case 7:fputc(c,M1);
break;
case 8:fputc(c,M1);
break;

}
break;

case 9: switch(ancien_etat)
{
case 8:
fputc(c M1);
fputc(\n'M1);
break;
)
break;
default:
break;
}

}
fclose(M1);

fclose(MO0);
}

/***#**ttt‘*“tt#"les Signaux sont mis dans un mbleau‘$““$#“t‘t‘l‘tt‘ttt*t.‘/

if((M1 = fopen("INV_SIG_TAB" ."r"))==NULL)/* ouverture du fichier du premier mutant*/
printf("ERREUR :le fichier source ne peut etre ouvert \n");
elsef

M2 = fopen("TAB_NAME","w");//nom et type des signaux
printf("fichier TAB_NAME ouvert \n");
while ((c1=fgetc(M 1))!=EOF){
switch(cl)
{
case ":":transition3 =0;
transitiond =0;
break;
case ';":transition3 =1;
break;
case '=":transition4 =1;

transition3 =3;
break;
default: transition3 =2;
transition4 =2;
break;
}
ancien_etat3=etat_courant3;
etat_courant3= diagr_etat_name[transition3]{etat_courant3];
if (c1=="\n"){

i++;

=0;
i_name++;
j_name=0;
j_type=0;
compteur=0;
i_max=i;
tabsig[i][jl=cl;

}

else {
/* permet de controller les variables rentrees dans les tab*/

ancicn_ctat4=etat_courant4;

etat_courantd= diagr_etat_name{transition4]{etat_courant4];

if(c1==""") {/* permet dec mettre aussi le type */
compteur++;}

if(cl=="")
compteur++;
fputc(\n’.M2);
}

if((j>5)& &(compteur==0)){ /* on a directement le nom des signaux*/

tabnamefi_name][j_name]=cl;
fputc(tabname(i_name]{j_name],M2);
j_name++;

}

/* on a directement le type du signal dans tabtype */

if((>5)& &(compteur==1)){
switch(etat_courant3)
{
case 1:
switch(ancien_etat3)

(
case 1:
case 0O:

if(cl!="") /hest

{

140

tabtype{i_name][j_type}=cl; /*attention les car : et ' * sont dedans*/
fputc(tabtype[i_name][j_type].M2);

J_type++;

)

break;
default:
break;
}
break;
default:
break;
H
}

if((>5)& &(compteur==2)){ /*pour l'affichage */
compteur++;

}

i+
j_max=j;)

}
}

*+4++4++++++++++++++++demier signal mis dans un tableau++++++++4++++++++H+H+++%/

M3 = fopen("TAB_FINAL","w");
fputs(tabtype[i_max-1],M3);

fclose(M3);
fclose(M?2);
fclose(M1);

* reconpaissance du meme type */

13=0;
flag_name=1;

if((M1 = fopen("TAB_NAME" ,"r"))==NULL)/* ouverture du fichier du premier mutant*/
printf("ERREUR:le fichier source ne peut etre ouvert \n");
clsef
M2 = fopen("TEST","w"); /* que les noms des variables*/
printf("fichier TEST ouvert \n");
while ((c2=fgetc(M1))!=EOF){
if((c!'="\n")& & (flag_name=<1)){
fputs(tabname([i3].M2);
flag_name=0;
}
if (c2=="\n"){

141

142

134+;
fputc(\n’,M2);
flag_name=1;)
i3_max=i3;

}

}
fclose(M1);
fclose(M2);

/*CONVERSION DU FICHIER TEXTE EN CHAINE DE CARACTERES*/
M1 = fopen("gene_chaine_word.vhdl","w");
MO = fopen("gene.vhdl" ,"rb+");

while((c=fgetc(M0))!=EOF){

switch(c){

case ' ":transition5=0;

break;

case ';":transition5=1;

break;

case '(":transition5=2;

break;

case ')":transition5=3;

break;

default:transition5=4;

break:

}
ancien_etatS=etat_courantS;
ctat_courantS= diagr_etat_word[transition5][etat_courantS}]:

switch(etat_courantS){
case 0:if(c!="r") //doit peut etre enleve
fputc(c,M1);

if(c=="\r")

fputc(\n’ \M1);
break;

case l:switch (ancien_etatS){
case O:
default:if(c!="\r")
fputc(c,M1);
clse

fputc(\n’ ' M1);

break;

}

break;

case 2:fputc(c,M1);
break;

case 3:fputc(c,M1);
fputc("\O'M1);
break;

casc 4:

case 5:fputc(c,M1); //test on doit peut etre intervertir |'ordre
fputc(\0O',M1);

break;

default:

break;

}

/I fin de la generation du fichier chaine de carateres

}

fclose(M1);
fclose(MO);

/*CONVERSION DU FICHIER TEXTE EN CHAINE DE CARACTERES*/
M1 = fopen("gene_chaine_word.vhdI","w");

MO = fopen(“gene.vhdl” ,"rb+");

while((c=fgetc(M0))!=EOF){

switch(c){

case ' ":transition5=0;

break;

case ";:transitionS=1;

break;

case '(:transition5=2;

break;

case '):transition5=3;

break;

defauit:transition5=4;

break;

}
ancien_etatS=etat_courant5;
ctat_courant5= diagr_etat_word[transition5}[etat_courantS];

switch(etat_courantS){
case Q:if(c!="r") //doit peut etre enleve
fputc(c,M1);
break;
case |:switch (ancien_etatS){
case 0:
default:if(c!="r")
fputc(c M1);
break;
}
break;
case 2:fputc(c.M1);
break;
case 3:fputc(c,M1);
fputc(\O'M1);

143

break:

case 4:

case S:fputc(c.M1); //test on doit peut etre intervertir I'ordre
fputc(NO"\M1);

break;

default:

break;

)

// fin de la generation du fichier chaine de carateres

}

fclose(M1);
fclose(MO);

/*

compteur_type=0;

tamp=l;

flag_white=0;

=0

M3 = fopen("TEST2","w"); //fichier contenant les signaux de meme type
MQ = fopen("gene_chaine_word.vhdl”,"rb+");

M1 = fopen("WORD_TAB","w");

for(i3=0;13<=i3_max-1;i3++)
{ compt_mutant=1;
for(j3=0;j3<=i3_max-1;j3++)

if(j3'=i3)
{
if ((strcmp(tabtype[i3],tabtype{j3])==0)& &(compt_mutant==1))
{
compt_mutant++;
compteur_typel++;
sprintf(number1,"Mut_sig%d",compteur_typel);
i_ident=j3;
fputs(tabname[i3},M3);

fputc(\n',M3);

j=0:

while((c=fgetc(MQ0))!=EOF)
{

if(c!=10"){

word[O0]{jl=c;

++

if(c="\r")

*/

fputc(\n' M1);

}

else

{

if(c="\r")

fputc(\n" M1);

else

{

word[0](j]=\0";

fputs(word[0],M1);

fputc(\O'M1);

=0;

}

if ((strcmp(”data(35 downto 4)",word[0])==0))
{

printf("comparaison \n");

pos =ftell(M0); printf("la position du pointeur est %d \n" pos);
compteur_type++;

M2 = fopen("mut_tampon”,"w");
sprintf(tata,"Mut_sigZ%d",compteur_type);
tampon = fopen(tata,”w");
fputs('REMPLACEMENT" M2);
posM2=ftell(M2);
while((c=fgetc(MO0))!=EOF)

{

fputc(c,M2);

if(c="\r")

fputc(\n’ M2);

}

fclose(M?2);

/fajout

fseek(M0,0,0);
while(((c=fgetc(M0))!=EOF)& & (ftell(MO)<=posf)){
fputc(c,tampon);

if(c="r")

fputc(\n' tampon);

)

postampon=ftell(tampon);

fclose(tampon);

/Mfin d'ajout

//on reecrit la fin du fichier
tampon = fopen(tata,”a");

M2 = fopen("mut_tampon","r");
while((c=fgetc(M2))!=EOF)

{

fputc(c,tampon);

}

//fin de la reecriture

145

146

fclose (tampon);
fclose(M2);
fseek(MO,pos.0); //on remet a la position courante

}

else
posf=ftell(MO);
}

}

}

}
}
fclose(M1);
fclose(MO0);

}

//operateur de mutation CLR (cas d’un range)

// constant limit replacement : test des valeurs limites dans le cas d'un range
#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define TRANSITION 7
#define ETAT_COURANT 7
void main()

{

unsigned char etat_courant;
unsigned char ancien_etat;
unsigned char tata[10];

intc;

int transition;

int pos;

int compteur_clr;

FILE *M0=NULL; /*definition du pointeur file pour le fichier d'entrEe*/
FILE *M1=NULL;
FILE *M2=NULL;
FILE *tampon=NULL;
int diagr_etat[TRANSITION]{ETAT_COURANT]={
/*etat_suivant */

/* transitions*/ 1,0,0,0,0,0,0,
0,2,0.0,0.0,0,
0,0.3,0,0,0.0,
0,0,0,4,0,0,0,
0,0.0.0,5,0,0,
0,0,0,0,0,6,0,
0,0,0,0,0.0.0};

etat_courant=0;
pos=0;
compteur_clr=0;

if((MO = fopen("gene_test.vhdl" ,"r"))==NULL)/* ouverture du fichier du premier mutant*/
printf("ERREUR:le fichier source ne peut etre ouvert \n");

else

{

while ((c=fgetc(M0))!=EOF)

{

switch(c)

{

case 'R":

case r:transition=0;

break;

casc ‘A"

case 'a":transition=1;

break;

case ‘N

147

148

case 'n':transition=2;
break;

case 'G":

case 'g’:transition=3;
break;

case 'E":

case 'e":transition=4;
break;

case ' ":transition=5:
break;
default:transition=6;
break:

}
ancien_etat=etat_courant;
etat_courant= diagr_etat[transition][etat_courant];
switch(etat_courant)

{

case O:

break;

case 1:

case 2:

case 3:

casc 4:

case 5:

break;

case 6:

M1 = fopen("mut_tampon”,"w™);
pos =ftell(MO0);
compteur_clr++;
sprintf(tata,”"Mut_clr%d" ,compteur_clir);
tampon = fopen(tata,"w");
fputc(c,M1);
fputcC1'MI);

fputc('+' M1);

// ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{

fputc(c,M1);

iflc="r")

fputc("\n’’M1);

}

fclose(M1);

// fin ecriture

//ajout du debut du fichier

fseek(M0,0,0);
while(((c=fgetc(M0))!=EOF)& & (ftell(MO0)<=pos))
fputc(c,tampon);

fclose(tampon);

//fin d'ajout

149

//on reecrit la fin du fichier
tampon = fopen(tata,“a");

M1 = fopen("mut_tampon”,"t");
while((c=fgetc(M1))!=EOF)

{

fputc(c.,tampon);

}

//fin de la reecriture

fclose (tampon);
fclose(M1);
fseek(MO,pos,0); //on remet 2 la position courante
break;

default:

break;

}

}

fclose(M1);
fclose(MO);

)

)

/loperateur de mutation CLR (cas d’une constante)

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define TRANSITION 11
#define ETAT_COURANT 13
void main()

{

unsigned char elat_courant;
unsigned char ancien_etat;
unsigned char tata[10];
unsigned char clr_m_chaine{10];
int c;

int transition;

int pos;

int pos_minus;

int compteur_clr;

int flag;

FILE *MO=NULL; /*definition du pointeur file pour l¢ fichier d'entrEe*/
FILE *MI=NULL;
FILE *M2=NULL;
FILE *tampon=NULL;
FILE *tampon_minus=NULL:
int diagr_etat[TRANSITIONHETAT_COURANT]=({
/*etat_suivant */

/* transitions*/ 1,0,0,0,0,0,0,0,0,9,11,11,0,
0,2,0,0,0,0,0,0,0,9,11,11,0,
0.0,3,0,0,0,7,0,0,9,11,11,0,
0,0,0.4,0,0,0,0,0,9,11,11,0,
0,0,0,0,5,0,0,8.0,9,11,11,0,
0.0,0,0,0,6,0,0.0,9,11,11,0,
0,0.0,0.0,0,0,0,0,10,11,11,0,
0.0,0.0,0,0,0,0,0,9,11,11,0,
0,0,0,0,0,0,0,0,9,9,11,11,0,
0.0,0.0,0,0,0,0,0,0,11,12,0};

etat_courant=0;
pos=0;
pos_minus=0;
compteur_clr=0;
flag=0;

if((MO = fopen("gene_test.vhdl" ,"r"))==NULLY* ouverture du fichier du premier mutant*/
printf{ "ERREUR:le fichier source ne peut etre ouvert \n");
clse

{
while ((c=fgetc(MO0))!=EOF)

{

150

151

switch(c)
{
case 'C':
case 'c’:transition=0;
break;
case 'O'":
case 'o":transition=1;
break;
case 'N":
case 'n":transition=2;
break;
case 'S":
case 's":transition=3;
break;
case 'T:
case ‘t:transition=4;
break;
case ‘A’:
case ‘a":transition=S5;
break;
case '=":transition=6;
break;
case ' "transition=8;
break;
case ';":transition=9;
break;
default:transition=7;

break;

}

ancien_ctat=etat_courant;

etat_courant= diagr_etat[transition][etat_courant];
switch(etat_courant)

{

case O: flag=0;

break;
case I:
case 2:
case 3:
case 4:
case S:
case 6:
case 7:
case 8:
case 9:
break;
case 10:

MI = fopen("tampon_consp”,"w");

pos =ftell(MO);

compteur_clr++;
sprintf(tata,"Mut_clr_const%d" .compteur_clr);
tampon = fopen(tata,"w™);

fputc(1',M1);
fputc('+' ,M1);

/! ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{

fputc(c.M!};

iflc="r")

fputc(\n' M1);

}

fclose(M1);

// fin ecriture

/{ajout du debut du fichier

fscek(MO0,0,0);

while(((c=fgetc(MO0))'=EOF)& & (ftell(M0O)<=pos))
{

fputc(c.tampon);

)
fclose(tampon);
//fin d'ajout

//on reecrit la fin du fichier
tampon = fopen(tata,”a");

M1 = fopen("tampon_consp”,"r");
while((c=fgetc(M1))!=EOF)

{

fputc(c.tampon);

}

//fin de la reecriture

fclose (tampon);

fclose(M1);

fseek(MO,pos.0); //on remet a la position courante
break;

case 11:pos_minus =ftell(MO0);
if(c!="0)
flag++;
break;

case 12:if(flag!=0)
{ printf("je rentre2 \n");
{
/I pos_minus =ftell(MO0);
M2 = fopen(“tampon_consm","w");
compteur_clr++;

sprintf(clr_m_chaine,"Mut_clr_const%d",compteur_clr);

152

153

tampon_minus= fopen(clr_m_chaine,"w");
fputc(-',M2);

fputc('l' ,M2);

fputc(c,M2);

}

// ecriture de l1a fin du fichier
while((c=fgetc(M0))!=EOF)
{
fputc(c,M2);
if(c="r")
fputc(\n’ . M2);
}
fclose(M2);
// fin ecriture

/fajout du debut du fichier
fseek(MO0.0,0);
while(((c=fgetc(MO0))!=EOF)&& (ftell(M0)<=pos_minus))
fputc(c tampon_minus);
fclose(tampon_minus);

//fin d'ajout

//on reecrit 1a fin du fichier
tampon_minus = fopen(clr_m_chaine."a");
M2 = fopen(“tampon_consm”,"r");

while((c=fgeic(M2))!=EOF)
{

fputc(c.tampon_minus);

}

//fin de la reecriture

fclose (tampon_minus);

fclose(M2);
fseek(MO0,pos,0); //on remet a la position courante
}
break;
default:
break;
}
}
fclose(M2);
fclose(M1);

fclose(MO);

}
}

//operateur de mutation SVIR

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define TRANSITION 17
#define ETAT_COURANT 22
void main()

{

unsigned char etat_courant;
unsigned char ancien_etat;
unsigned char svir_chaine{10];
unsigned char clr_m_chainef10};
long binaire[31];

int c;

inti;

int i_max;

int transition;

int pos;

int pos_minus;

int compteur_clr;

int flag;

int flag_binaire;

FILE *M0=NULL; /*definition du pointeur file pour le fichier d’entrEc*/
FILE *M1=NULL;

FILE *M2=NULL;

FILE *tampon=NULL;

FILE *tampon_minus=NULL;

int diagr_etat_svirl TRANSITION][ETAT_COURANT]={
/*etat_suivant */

/* transitions*/ 1,0,0,0,0,0,0,0,8,10,10,0,0,0,0,0,0,0,0,0,0,
0,2,0,0,0,0,0,0,8,10,10,0,0,0,0,0,0,0,0,0,0,
0,0,3,0,0,0,7,0,8,10,10,0,0,0,0,0,0,0,0.0,0,
0,0,0,4,0,0,0,0,8,10,10,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,5,0,0,8,8,10,10,0,0,0.0,0,0,0,19,0,0,
0,0,0,0,0,6,0,0,8,10,10,12,0,0,15,0,0,0,0,0,0,
0,0.0,0,0,0,0.0,8,10,10,0,0,14,0,0,0.0,0,0,0,
0,0,0,0,0,0,0,0,8,10,10,0,0.0,0,16,0,0,0,0,0,
0,0,0,0,0,0,0,0,8,10,10,0,0.0,0,0,17,0,0,0,0,
0,0.0,0,0,0,0,0,8,10,10,0,0,0,0,0,0,8,0,0,8,
0,0,0,0,0,0,0,0,8,10,10,0,0,0,0,0,0,0,19,0.0,
0,0.,0,0,0,0,0.0,8,10,10,0,0,0,0,0,0,0,0,20.0,
0,0,0,0,0,0,0,0,9,10,10,0,0,0,0,0,0,0,0,0,0,
0,0,0,0,0,0,0,0,8,10,10,0,0,0,0,0.0,0,0,0,0,
0,0,0,0,0,0,0,0.,8,10,101,0,0,0,0,0,0,0,0,0,0};

154

155

etat_courant=0;
pos=0;
pos_minus=0;
compteur_clr=0;
flag_binaire=0;
flag=0;

i=0;

i_max=0;

if((MO = fopen(“gene_test.vhdl” ,"r"))==NULLY* ouverture du fichier du premier mutant*/
printf("ERREUR:le fichier source ne peut etre ouvert \n");

else

{

while ((c=fgetc(M0))!'=EOF)

{

switch(c)
{
case 'C":
case 'c":transition=0;
break;
case 'O’
case 'o’:transition=I;
break;
case ‘N
case ‘n":transition=2;
break;
case 'S":
case 's:transition=3;
break;
case T
case 'l':transition=4;
break;

case 'A’:
case 'a‘:transition=5;
break;

case 'R";
case 'r':transition=6;
break;

case T:
case 'i":transition=7;
break;

case 'B"
case 'b":transition=8;
break;

case L":
case 'l":transition=9;
break;

case 'E':

case 'e":transition=10;
break;

156

case 'Y':
case 'y'":transition=11;
break:
case 'P'":
case ‘p":transition=12;
break;
case ":":transition=13;
break;
case '=":transition=14;
break;
case ";":transition=185;
break;
default:transition=16;
break;
}

ancien_etat=ctat_courant;
etat_courant= diagr_etat_svir{trarsition][etat_courant];
switch(etat_courant)

{
case 0: //flag=0;
/ibreak;
case 1:
case 2:
case 3:
case 4:
case 5:
case 6:
case 7:
case 8:
case 9:break;
case 10:if(c="")
{
flag_binaire=1;
if(c!="")

{
binaire[i++]=c;
i_max=i;

}

H
break;
case 101:

M1 = fopen("tampon_svir","w");
pos =ftell(MO0);
compteur_clr++;

sprintf(svir_chaine,”Mut_svir%d" compteur_clr);
tampon = fopen(svir_chaine,"w");
if(flag_binaire==0)
{
fputc('l'M1);

fputc('+' ., M1);
}

else

{

if(binaire{i}==0)
fputc('1',M1);

else
fputc('O',M1);

for(i=0;i++;i<=i_max)

}

// ecriture de Ia fin du fichier
while((c=fgetc(M0))!'=EOF)
{

fputc(c,M1);

if(c=="r")

fputc(\n’ M1);

}

fclose(M1);

// fin ecriture

//ajout du debut du fichier
fscek(M0,0,0);

while(((c=fgeic(MO))'=EOF)& & (ftell(M0)<=pos))

{
fputc(c,tampon);

}
fclose(tampon);
//fin d'ajout

/fon reccrit la fin du fichier
tampon = fopen(tata,"a”);

M1 = fopen("tampon_consp”,"r");
while((c=fgetc(M 1))!=EOF)

(

fputc(c,tampon);

)
//fin de la reecriture

fclose (tampon);
fclose(M1);

fseek(MO0,pos,0); //on remet a la position courante

break;

case 11:pos_minus =ftell(M0);

if(c!='0"
flag++;
brcak;

157

158

case 12:if(flag!=0)
(
{
// pos_minus =fteli(M0);
M2 = fopen("tampon_consm”,"w");
compteur_clr++;
sprintf(clr_m_chaine,”"Mut_clr_const%d" ,compteur_clr);
tampon_minus= fopen(clr_m_chaine,”w");
fputc(-' . M2);
fputc('1' . M2);
fputc(c,M2);
}
// ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{
fputc(c,M2);
if(c="\r")
fputc(\n’ . M2);
}
fclose(M2);
/I fin ecriture
//ajout du debut du fichier
fseek(M0,0,0);
while(((c=fgetc(MO0))!=EOF)& &(ftell(M0)<=pos_minus))
fputc(c.,tampon_minus);
fclose(tampon_minus);

/ffin d'ajout
f/on reecrit 1a fin du fichier
tampon_minus = fopen(clr_m_chaine,"a");
M2 = fopen("tampon_consm”,"r");
while((c=fgetc(M2))!=EQOF)
{

fputc(c tampon_minus);

]

//fin de la reecriture

fclose (tampon_minus);
fclose(M2);

fseek(MO,pos,0); //on remet a la position courante

}

break;

default:

break;

}

}
fclose(M2);

fclose(M1);
fclose(MO);
)

}

//operateur de mutation LCR

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#define TRANSITION 9
#define ETAT_COURANT 16
void main()

{

unsigned char etat_courant;
unsigned char lcr_chaine1[10];
unsigned char lcr_chaine2[10];
unsigned char lcr_chaine3(10};
unsigned char Icr_chaine4[10];
int c;

int transition;

int pos;

int compteur_lcr;

FILE *MO=NULL; /*definition du pointeur file pour le fichier d'entrée*/
FILE *M1=NULL;

FILE *M2=NULL;

FILE *M3=NULL;

FILE *M4=NULL;

FILE *tampon1=NULL;

FILE *tampon2=NULL;

FILE *tampon3=NULL;

FILE *tampon4=NULL;

int diagr_etat_lcr[TRANSITION][ETAT_COURANT]={
/*etat_suivant */

/* transitions®/ 1,0,0,0,5,0,0,0,0,0,0,0,0,0,0,0,
4,2,0,0,0,6,0,0,11,0,0,0,0,0,00,
0,0,3,0,0,0,7,0,0,0,0.0,0,0,0,0,
14,0,0,0,0,0,0,0,9,0,0,12,0,0.0,0,
0.0.0,0,0,0,0,0,0,10,0,0,13,0,15,0,
8,0,0,0,0,0,0,0,0,0,C,0,0,0,0,0,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};

etat_courant=0;
pos=0;
compteur_lcr=0;

if((MO = fopen("gene.txt" ,"r"))==NULL)/* ouverture du fichier du premier mutant*/
printf"ERREUR:le fichier source ne peut etre ouvert \n");
else
{
while ((c=fgetc(MO0))!=EOF)
{
switch(c)

{

case ‘A"

159

case ‘'a’:transition=0;
break;
case 'N™:
case 'n":transition=1;
break;
case 'D":
case 'd":transition=2;
break;
case 'o":
case 'O':transition=3;
break;
case 'R":
case 'r":transition=4;
break;
case ‘X"
case 'x':transition=S§;
break;
default:transition=6;
break;
}
etat_courant= diagr_ctat_lcr{transition][etat_courant];
switch(etat_courant)
{
case O:
case I:
case 2:
break;
case 3:
M1 = fopen("tampon_or_lcr","w");
M2 = fopen("tampon_xor_lcr","w");
M3 = fopen("tampon_xnor_lcr","w");
M4 = fopen("tampon_nand_lcr","w");
compteur_lcr++;
sprintf(lcr_chainel,"Mut_lcr%d”,compteur_lcr);
tamponl = fopen(lcr_chainel,"w");
compteur_lcr++;
sprintf(lcr_chaine2,"Mut_lcr%d” ,compteur_lcr);
tampon2 = fopen(lcr_chaine2,"w");
compteur_lcr++;
sprintf(lcr_chaine3,"Mut_lcr%d" compteur_lcr);
tampon3 = fopen(lcr_chaine3,"w");
compteur_lcr++;
sprintf(lcr_chaine4,"Mut_lcr%d”,compteur_fcr);
tampon4 = fopen(lcr_chaine4,"w");
fputs("or” M1);
fputs("xor",M2);
fputs(“xnor”,M3);
fputs("nand”,M4);
pos =ftell(MO0);

// ecriture de 1a fin du fichier

160

while((c=fgetc(MO0))!=EOF)

{
fputc(c,M1);
fputc(c,M2);
fputc(c,M3);
fputc(c,M4);
if(c=="r")
{
fputc(\n'M1);
fputc(\n’'M2);
fputc(\n’ M3);
fputc(\n’ . M4);
}
}
fclose(M1);
fclose(M2);
fclose(M3);
fclose(M4);
// fin ecriture

//ajout du debut du fichier
fseek(M0,0,0);

while(((c=fgetc(MO0))!=EOF)& & (ftell(M0)<=pos-3)) // pos -3 a cause de and

{
fputc(c,tamponl);
fputc(c.tampon2);
fputc(c.tampon3);
fputc(c.,tampon4);

}

fclose(tamponl);
fclose(tampon2);
fclose(tampon3):
fclose(tampond);

//fin d'ajout

//on reecrit la fin du fichier

tamponl = fopen(lcr_chainel,"a");
tampon2 = fopen(icr_chaine2,"a");
tampon3 = fopen(lcr_chaine3,"a");
tampon4 = fopen(lcr_chaine4,"a");
M1 = fopen("tampon_or_lcr”,"r");

M2 = fopen("tampon_xor_lcr","r");

M3 = fopen("tampon_xnor_lcr
M4 = fopen("tampon_nand_lcr","r");

while((c=fgetc(M1))!=EOF)

{
fputc(c,tamponl);
}

while((c=fgetc(M2))!=EOF)

s

161

162

{
fputc(c,tampon2);

]
while((c=fgetc(M3))!=EOF)

{
fputc(c,tampon3);

}
while((c=fgetc(M4))!=EQF)

{
fputc(c,tampon4);

}
//fin de 1a reecriture

fclose (tamponl);
fclose (tampon2);
fclose (tampon3);
fclose (tampond);
fclose(M1);
fclose(M?2);
fclose(M3);
fclose(M4);
fseek(MO,pos,0); //on remet a la position courant
break;

case 4:

case 5:

case 6:
break;

case 7:
M1 = fopen("tampon_or_lcr","w");
M2 = fopen("tampon_xor_lcr","w");
M3 = fopen("tampon_xnor_Icr*,"w");
M4 = fopen("tampon_and_lcr”,"w");
compteur_lcr++;
sprintf(lcr_chainel,"Mut_lcr%d"”,compteur_lcr);
tamponl = fopen(lcr_chainel,"w");
compteur_lcr++;
sprintf(lcr_chaine2,"Mut_Icr%d",compteur_lcr);
tampon2 = fopen(lcr_chaine2,"w");
compteur_lcr++;
sprintf(lcr_chaine3,"Mut_lcr%d" .compteur_[cr);
tampon3 = fopen(icr_chaine3,"w");
compteur_lcr++;
sprintf(lcr_chaine4,"Mut_lcr%d" compteur_lcr);
tampon4 = fopen(lcr_chaine4,"w");

fputs("or” . M1);
fputs("xor"“.M2);
fputs("xnor",M3);
fouts("and” M4);

pos =ftell(MO0);

1/ ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{
fputc(c,M1);
fputc(c,M2);
fputc(c,M3);
fputc(c,M4);
if(c=="\")
{
fputc(\n’ M1);
fputc(\n’' M2);
fputc(\n' M3);
fputc(\n’ . M4);
}
)
fclose(M1);
fclose(M2);
fclose(M3);
fclose(M4);
/1 fin ecriture

//ajout du debut du fichier
fseek(MO0,0,0);

while(((c=fgetc(M0))!=EOF)& &(ftcll(M0)<=pos-4)) // pos -4 a cause de nand

{
fputc(c,tamponl);
fputc(c,tampon2);
fputc(c,tampon3);
fputc(c,tampon4);

}

fclose(tamponl);
fclose(tampon2);
fclose(tampon3);
fclose(tampond);

//fin d'ajout

//on reecrit la fin du fichier

tamponl = fopen(lcr_chainel,"a");
tampon2 = fopen(lcr_chaine2,”a");
tampon3 = fopen(lcr_chaine3,"a");
tampon4 = fopen(lcr_chained4,”a");
M1 = fopen("tampon_or_lcr","r");
M2 = fopen("tampon_xor_lcr”,"r");
M3 = fopen("tampon_xnor_lcr","r");
M4 = fopen("tampon_and_lcr","r");

while((c=fgetc(M1))!=EOF)

163

{
fputc(c,tamponl);
}
while({(c=fgetc(M2}))!=EOF)

{
fputc(c,tampon2);

}
while((c=fgetc(M3))!=EOF)

{
fputc(c,tampon3);

)
while((c=fgetc(M4))!=EOF)

{
fputc(c.,tampond);

}

//fin de la reecriture

fclose (tamponl);

fclose (tampon2);

fclose (tampon3);

fclose (tampon4);

fclose(M1);

fclose(M2);

fclose(M3);

fclose(M4);

fseek(MO,pos,0); //on remet a la position courante

break;
case 8:
case 9:

break;

case 10:

M1 = fopen("tampon_and_lcr","w");

M2 = fopen("tampon_or_lcr","w");
M3 = fopen("“tampon_xnor_lcr","w");
M4 = fopen("tampon_nand_lcr","w");
compteur_lcr++;
sprintf(lcr_chainel,"Mut_lcr%d",compteur_Icr);
tamponl = fopen(lcr_chainel,"w");
compteur_lcr++;
sprintf(lcr_chaine2,"Mut_lcr%d",compteur_Icr);
tampon2 = fopen(lcr_chaine2,"w");
compteur_lcr++;
sprintf(lcr_chaine3,"Mut_lcr%d",compteur_lcr);
tampon3 = fopen(lcr_chaine3,"w");
compteur_lcr++;
sprintf(lcr_chained4,"Mut_lcr%d",compteur_lcr);

"o

tampon4 = fopen(lcr_chaine4,"w");

fputs("and”" M1);
fputs("or” M2);
fputs("xnot” ,M3);
fputs("nand” ,M4);
pos =ftell(MO);

// ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{
fputc(c,M1);
fputc(c,.M2);
fputc(c.M3);
fputc(c.M4);
if(c==\r")
{
fputc(\n'M1);
fputc(\n'.M2);
fputc(\n' M3);
fputc(\n’'M4);
}
}
fclose(M1);
fclose(M2);
fclose(M3);
fclose(M4);
// fin ecriture

/fajout du debut du fichier
fseek(M0,0,0);

while(((c=fgetc(M0))!=EOF)& &(ftell(M0)<=pos-3)) // pos -3 a cause de xor

{
fputc(c.tampont);
fputc(c.kampon2);
fputc(c.,tampon3);
fputc(c.tampond);

}

fclose(tamponl);
fclose(tampon?2);
fclose(tampon3);
fclose(tampon4);
//fin d'ajout

//on reecrit la fin du fichier

tampon| = fopen(lcr_chainel,”a");
tampon2 = fopen(lcr_chaine2,"a");
tampon3 = fopen(lcr_chaine3,"a");
tampon4 = fopen(lcr_chaine4,"a");
M1 = fopen("tampon_and_lcr","r");
M2 = fopen("tampon_or_lcr","r");
M3 = fopen("tampon_xnor_lcr","r");

165

166

M4 = fopen("tampon_nand_lcr","r");

while((c=fgetc(M1))!=EOF)

{
fputc(c.tamponl);

}
while((c=fgetc(M2))!=EOF)

(
fputc(c.tampon2);

}
while((c=fgetc(M3))!=EOF)

(
fputc(c tampon3);

}
while((c=fgetc(M4))!=EOF)

(
fputc(c.,tampond);

//fin de la reecriture

fclose (tamponl);

fclose (tampon2);

fclose (tampon3);

fclose (tampon4);

fclose(M1);

fclose(M2);

fclose(M3);

fclose(M4);

fseek(MO,pos,0); //fon remet a la position courante
break;

case 11:

case 12:
break;

case 13:
M1 = fopen("tampon_or_lcr","w");
M2 = fopen("tampon_xor_lcr","w");
M3 = fopen("tampon_and_lcr","w");
M4 = fopen("tampon_nand_lcr","w");
compteur_lcr++;
sprintf(lcr_chainel,"Mut_lcr%d” compteur_lcr);
tamponl = fopen(lcr_chainel,"w");
compteur_lcr++;
sprintf(lcr_chaine2,"Mut_lcr%d” ,compteur_lcr);

tampon2 = fopen(lcr_chaine2,"w");

167

compteur_lcr++;
sprintf(lcr_chaine3,"Mut_lcr%d",compteur_lcr);
tampon3 = fopen(lcr_chaine3,"w");
compteur_lcr++;
sprintf(lcr_chaine4,"Mut_lcr%d",compteur_lcr);
tampon4 = fopen(lcr_chaine4,”"w");

fputs("or" M1):;
fputs("xor" . M2);
fputs("and”,M3).
fputs("nand”,M4);
pos =ftell(MO0);

/l ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{
fputc(c,M1);
fputc(c,M2);
fputc(c,M3);
fputc(c M4);
if(c=="\r")
{
fputc(\n’’ M1);
fputc(\n’ M2);
fputc(\n’ M3);
fputc(\n’',M4);
}
)
fclose(M1);
fclose(M2);
fclose(M3);
fclose(M4);
// fin ccriture

/fajout du debut du fichier
fseek(M0,0,0);
while(((c=fgetc(M0))!=EOF)& &(ftell(M0)<=pos-4)) // pos -4 a cause de xnor
{
fputc(c,tamponl);
fputc(c.tampon2);
fputc(c,tampon3);
fputc(c,tampond);
)

fclose(tamponl);
fclose(tampon2);
fclose(tampon3);
fclose(tampon4);

/lfin d'ajout

//on reecrit la fin du fichier

tamponl = fopen(lcr_chainel,”a");
tampon2 = fopen(lcr_chaine2,"a");
tampon3 = fopen(lcr_chaine3,"a");
tampon4 = fopen(lcr_chaine4,"a");
M1 = fopen("tampon_or_lcr","r"):
M2 = fopen("tampon_xor_lcr","r");
M3 = fopen("tampon_and_lcr”,"r");
M4 = fopen("tampon_nand_lcr”,"t");

while((c=fgetc(M1))!=EOF)

{
fputc(c.tamponl);

}
while((c=fgetc(M2))!'=EOF)

(
fputc(c.tampon2);

}
while((c=fgetc(M3))!=EOF)

{
fputc(c,tampon3);

}
while({c=fgetc(M4))!=EOF)

{
fputc(c.tampond);

}

//fin de 1a reecriture

fclose (tamponl);
fclose (tampon?2);
fclose (tampon3);
fclose (tampon4);
fclose(M1);
fclose(M2);
fclose(M3);
fclose(M4);
fseek(MO,pos.0); //on remet a Ja position courante
break;
case 14:
break;
casc 15:
M1 = fopen(“tampon_xnor_lcr","w");
M2 = fopen("tampon_xor_lcr","w");
M3 = fopen("tampon_and_lcr","w");
M4 = fopen("tampon_nand_Icr","w");
compteur_lcr++;
sprintf(Ilcr_chainel,"Mut_lcr%d” ,compteur_Icr);

168

169

L]

tamponl = fopen(lcr_chainel,"w");
compteur_lcr++;
sprimf(lcr_chaincz."Mul__lcr%d",comp(eur__lcr);
tampon2 = fopen(lcr_chaine2,"w");
compteur_lcr++;
sprintf(lcr.chaine3."Mu(_lcr%d",compteur_lcr);
tampon3 = fopen(lcr_chaine3,"w");
compteur_lcr++;
sprintf(lcr_chaine4.“Mut_lcr%d",compleur_lcr);
tampon4 = fopen(lcr_chained,"w"):

fputs(“xnor",M1);
fputs("xor" ,M2);
fputs("and” ,M3);
fputs("nand” ,M4);
pos =ftell(M0);

// ecriture de la fin du fichier
while((c=fgetc(M0))!=EOF)
{
fputc(c,M1);
fputc(c,M2);
fputc(c,M3);
fputc(c,M4);
if(c=="r")
{
fputc(\n'M1);
fputc(\n’,M2);
fputc(\n' M 3);
fputc(\n' M4);
}
}
fclose(M1);
fclose(M2);
fclose(M3);
fclose(M4);
// fin ecriture

/fajout du debut du fichier
fseek(M0,0,0);
while(((c:fgetc(MO))!=EOF)&&(hell(MO)<=pos-2)) /! pos -2 a cause de or
{
fputc(c.tamponl);
fputc(c.,tampon2);
fputc(c,tampon3);
fputc(c,tampond);
)

fclose(tamponl);
fclose(tampon2);
fclose(tampon3);

170

fclose(tampon4);
//fin d'ajout

f/on reecrit la fin du fichier

tamponl = fopen(lcr_chainel,”a");
tampon2 = fopen(lcr_chaine2,"a");
tampon3 = fopen(lcr_chaine3,"a");
tampon4 = fopen(lcr_chaine4,”a"):
M1 = fopen(“tampon_xnor_lcr","r");
M2 = fopen(“tampon_xor_lcr","r");
M3 = fopen(“tampon_and_lcr","t");
M4 = fopen("tampon_nand_lcr","c");

while((c=fgetc(M1))!=EQOF)
(fputc(c,tamponl);

w}hile((c=fgelc(M2)) 1=EOF)
[fputc(c,tampon?);

}
while((c=fgetc(M3))!=EOF)

(
fputc(c.,tampon3);

}
while((c=fgetc(M4))!=EQOF)

(

fputc(c.tampond);

}

//fin de la reecriture

fclose (tamponl);
fclose (tampon2);
fclose (tampon3);
fclose (tampon4);
fclose(M1);
fclose(M2);
fclose(M3);
fclose(M4);
fseck(MO,pos,0); //on remet a la position courante
break;

default:
break;

}

)
fclose(MO);

)
® |

