
Titre:
Title:

Validation de circuits numériques utilisant le principe du test par
mutation

Auteur:
Author:

Patrice Vado

Date: 1999

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Vado, P. (1999). Validation de circuits numériques utilisant le principe du test par
mutation [Mémoire de maîtrise, École Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/8635/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/8635/

Directeurs de
recherche:

Advisors:
Yvon Savaria

Programme:
Program:

Non spécifié

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/8635/
https://publications.polymtl.ca/8635/

VALIDATION DE CIRCUITS NUMÉRIQUES UTILISANT LE PRINCIPE DU TEST

PAR MUTATION

PATRICE VADO

DÉPARTEMENT DE GÉNIE ÉLECTRIQCIE ET DE GENIE INFORMATIQUE

ÉCOLE POLYTECHNIQUE DE MONTRÉAL

MÉMOIRE PRÉSENTÉ EN VUE DE L'OBTENTION

DU DIPLÔME DE MAÎTRISE È s SCIENCES APPLIQUÉES

(GÉNJE ÉLECTMQUE)

20 AOÛT 1999

National Library
of Canada

Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services sewices bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa ON K1A O N 4 OctawaON K 1 A W
Canada Canada

The author has granted a non-
exclusive licence ailowing the
National Library of Canada to
reproduce, loan, distribute or sel1
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/nlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

Ce mémoire intitulé:

VALIDATION DE CIRCUITS NUMÉRIQUES UTILISANT LE PRINCIPE DE TEST

PAR MUTATION

présenté par: VADO PATRICE

en vue de l'obtention du diplôme de: Maîtrise ès sciences a ~ ~ l i a u é e s

a été dûment accepté par le jury d'examen constitué de:

M. BOTS Guy, Ph. D., président

M SAVARIA Yvon, Ph. D., membre et directeur de recherche

M. SAWAN Moharnad , Ph. D., membre

REMERCIEMENTS

Bien qu'il soit d'habitude établi de remercier en premier le directeur d'études, j'aimerais

remercier mon père, celle qui est à mes cotés et mes frères pour leurs constants

encouragements.

Je tiens à remercier Monsieur Savaria qui a guidé mes recherches et qui par ses nombreux

conseils éclairés m'a permis d'achever mon travail. Il a été d'un grand soutien aussi bien

professionnel que personnel. Je le remercie d'avoir trouvé le temps de suivre le

déroulement de mes travaux et de les avoir orientés dans le bon sens.

Je tiens à remercier Monsieur Yannick Zocarrato ainsi que I'équipe VALSYS de

Grenoble. Leur appui et Ieur compréhension tout au long de la collaboration m'a permis

d'explorer de nouvelles voies.

Jc remercie Monsieur Boukari Zahir avec qui j'ai travaillé sur le simulateur Pulse et qui

m'a permi de découvrir un autre aspect de la validation.

Je remercie Monsieur Paul Marriot. Ivan Kraljic. Nicolas Contandriopoulos et toute

I'équipe Pulse pour leur soutien constant durant mon séjour dans I'équipe.

Enfin. merci 2 toute I'équipe du GRM pour leur soutien ...

RESUME

Les systèmes numériques augmentent continuellement en taille et en complexité. La

performance des circuits intégrés double tous les deux ans. En raison d'une trop grande

complexité certaines fonctionnalitées ne sont pas vérifiées, réduisant alors la confiance

dans les circuits. La complexité actueile des circuits révèle les limitations des méthodes

traditionnelles de vérification par simulation. Afin de répondre à ces limitations. les

méthodes formelles de vérification tentent d'utiliser la rigueur mathématique afin de

prouver l'exactitude d'un circuit. Cependant. la rigueur du formalisme ainsi que le peu

d'outils performants réduisent une utilisation industrielle fréquente.

Ce mémoire propose une méthodologie de validation et d'enrichissement de vecteurs de

validation de circuits numériques basée sur le test par mutation consistant à insérer des

fautes specifiques dans un langage de description matériel tel que VHDL. Le programme

contenant la faute spécifique est alors appelé mutant. La validation de la méthode

proposée a été réalisée sur différents bancs d'essais décrits en langage VHDL et simulés à

l'aide de Synopsys. Un algorithme d'enrichissement des vecteurs de validation ainsi

qu'un générateur de mutants ont été écrits en langage C. L'utilisation de cette méthode a

montré qu'il était nécessaire de disposer d'un espace disque important, puisque le nombre

de mutants générés est grand. Un certain nombre de concepts, te; que la contrôlabilité et

I ' observabili té, provenant du domaine du test matériel ont été empruntés afin d'expliquer

la réduction de la couverture des mutants. Par ailleurs, une métrique appelée score de

mutation a été utilisée afin de quantifier la qualité d'un jeu de vecteurs de validation.

vi

ABSTRACT

Digital systems continuously grow in scaie and functionality. In addition, the performance

of integrated circuits (IC) doubles every two year. Due to the growing complexity,

fùnctionalities are not fully verified which reduce the confidence in designs. That growing

complexity unravels the limitations of traditional verification methoâs based on

functionnal simulation. To address these limitations, fornid methods and tools for

specifying and veriQing such systems have k e n proposed. However, the complexity of

forma1 notations and the practical limitations of available tools reduce their use in

industry.

This master proposes a methodology based on mutation testing for validating and

enriching a set of functional validation vectors for digital circuits. This methodology

injects specific faults in a hardware description language description such as VHDL. A

program which contains a fault is cailed a mutant. The validation of the proposed

methodology was realized on VHDL benchmarks that were simulated with Synopsys. A

mutant generator and a test suite enriching algorithm were written in the C programming

language. Existing mutation testing tools were shown to require a lot of memory to

analyze small functional descriptions. A metric called mutation score was used to quantify

the quality of a vector set. Justification and observability concepts were applied to

mutation testing to explain the reduction of the mutation score.

vii

TABLE DES MATIÈRES

ABSTRACT ..+..W........-..... ~ * . . ~ ~ ~ * ~ * . * ~ * * . ~ ~ . ~ t ~ e ~ ~ e ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ . . m m . ~ m-*---m-.-.m.....o..........o VI

TABLE DES MATIÈRES vn
LISTE DES TABLEAUX ... XII

LISTE DES FIGURES ... XII1

INTRODUCTION ... 1

CHAPITRE 1 : METHODES DE VALIDATIONe.. 8

1 . 1 Méthode Formelle ... 8

1 . 1 . 1 Introduction .. 8

1 . 1.2 Vérification du modèle .. 10

.. 1.1.3 Démonstration de théorème 14

.. 1.1.4 Conclusion 15

1 -2 Test par mutation 15

1.2.1 Test logiciel 16

1.2.2 Principe du test par mutation .. 17

.. 1.2.2.1 Méthodologie 1 8

.. 1.2.2.2 Génération des Mutants 19

1.2.2.3 Les mutants équivalents ... 2 1

.. 1 .2.2.4 Évaluation du test ,. 2 2

1 . 2.2.5 Le test par la mutation faible ... -23

viii

1 .2.2.6 mutation sélective ... 2 6

1 .2.2.7 La mutation N-sélective .. 27

1.2.2.8 La mutation E-sélective ... 29
r r f 1 .2.2.9 Generatron de test~.. 31

CHAPITRE 2 : APPLICATION DU TEST
PAR MUTATION AUX CIRCUITS VLSI .. 33

...*........................... Introduction 33

... Présentation de Mothra 34

... 2.2.1 Génération de vectzurs de vafidation 35

2.2.1.1 La représentation des contraintes .. 38

2.2.1 -2 L'analyseur de chemin .. 3 9

2.2.1.3 Le résolveur de contraintes .. 40

Opérateurs de mutation 42

... Chaine de validation 43

Validation de la méthode 45

2.5.1 Description des bancs d'essai 45

2.5.2 Processus de validation .. 46

.. Résultats 47

2.6.1 Le circuit sortie ... 47

2.6.2 Le circuit d'entrée de I'edh .. 50

2.6.3 Le circuit cla .. 52

2.6.4 Complexité algorithmique 5 3

...................*..*... 2.6.5 Conclusion ,.... -56

2.6.5.1 étude de la puissance des mutants .. 57

CHAPITRE 3 : MÉTHoDE SYSTÉMATIQUE D'ENRICHISSEMENT DE ... VECTEURS FONCTIONNELS 61

.. 3.1 Introduction 61

... 3.1.1 Limitations de Mothra pour la validation 61

... 3.1.2 Redéfinition de la méthode de validation 62

.. 3.2 Description du banc d'essai 63
. 3 2 . 1 Processeur ancillaire 6 3

.. 3.2.1.1 Module EDH 65

... 3.2.1.2 Implémentation du CRCCs 6 6

*....................... 3.2.1.3 Implémentation du module EDH ... 66

... 3 -3 Opérateurs de mutation 68

... 3.3.0.1 Programmes de mutation 70

.. 3.4 Implémentation des programmes de mutation 78

... 3.4.1 Algorithmes de mutation 8 2

... 3.5 Implémentation C 89

3.6 Algorithme final de mutation .. 93

3.7 Résultats 9 5

CONCLUSION .. 100

BIBLIOGRAPHIE .. 104

ANNEXE

ANNEXE

ANNEXE

... A 107

.. B : FONCTION MID 111

.. C 112

LISTE DES TABLEAUX

Tableau 1 - 1 :Mutation E selective .. 31

Tableau 2.1 :Opérateurs de mutation 42

. .
Tableau 2.2 :Circuit de sortie ... 50

Tableau 2.3 :Résultats de sortie pour le circuit d'entrée de I'EDH 52

.. Tableau 2.4 :Résultats de sortie pour le circuit cla 53

Tableau 2.5 :Résultats obtenus pour la fonction MID ... 54

... Tableau 2.6 Cascade de Multiplexeurs 56

Tableau 2.7 : Puissance des opérateurs .. 58

... Tableau 3.1 :Opérateurs de mutation 70

... Tableau 3.2 :Codage des états pour la mutation AOR 81

Tableau 3.3 Comparaison des algorithmes de validation par mutation 96

Figure 0.1 :

Figure 0.2:

Figure 0.3:

Figure 0.4:

Figure 1.1:

Figure 1.2:

Figure 2.1 :

Figure 2.2:

Figure 2.3:

Figure 2.4:

Figure 2.5:

Figure 3.1:

Figure 3.2:

Figure 3.3:

Figure 3.4:

Figure 3.5:

Figure 3.6:

Figure 3.7:

Figure 3.8:

Figure 3.9:

Figure 3.10:

Figure 3.1 1 :

Figure 3.12:

Figure 3.13:

Figure 3.14:

Figure 3.15:

Méthodologie de conception 1

Processus de validation par simulation ... 2

Architecture simplifiée de Pulse ... 3

Validation Fonctionnelle .. 4

Construction d'un CïL à partir d'un automate 12

La fonction Max avec quatre mutants superposés -21

Implémentation de Godzilla ... 37

.............. Méthode de validation de circuits numériques utilisant Mothra 44

..................*..... Consommation mémoire pour le circuit de sortie .. 48

Consommation mémoire pour le circuit d'entrée 51

Cascade de rnultiplexeurs .. 55

Architecture de 1'EDH 68

Design de type structurel .. 72

............................. Simulation du fichier originai à l'aide de Synopsys 73

Résultat de SUR .. 73

Simulation obtenue sans VSAR .. 74

Mutation avec VSAR ... 75

... Mutation avec SSR . 7 7

.. Diagramme d'état pour la mutation AOR 8 0

Pseudo code pour la mutation CLR .. 84

Pseudo code pour la mutation CNR 85

Pseudo code pour la mutation CSR 86

Pseudo code pour la mutation SUR .. 87

Pseudo code pour la mutation SSR 87

Pseudo code pour la mutation LCR .. 88

Pseudo code pour la mutation VSAR ... 89

xii

Figure 3.16: Test par mutation et génération de mutants 93

INTRODUCTION

La vérification par la simulation est la méthode la plus largement répandue afin de

vérifier qu'un design respecte bien les spécifications voulues. Elle fait partie intégrante de

la méthodologie de conception VLSI selon la figure 0.1. La validation devient de nos

jours un des goulots d'étranglement du processus de conception qui ralentit la mise en

marché de puces électroniques dans un monde extrèmement compétitif e t en perpétuel

changement. D'autre part, certains composants défectueux ne sont découverts que chez le

client, ce qui augmente considérablement les coûts de développement et entache la

crédibilité des fournisseurs à qui cela arrive. En tout étz: de cause, tous s'accordent à dire

que le processus de validation est primordial.

1 S i m u l a t i o n RTL 1
+

Placement-Routage n
Figure 0.1: Méthodologie de conception.

Cependant, en raison de la complexité sans cesse croissante des circuits numériques, le

processus de validation devient de plus en plus long et coûteux. Dans le processus

traditionnel de test par simulation, le concepteur cré un jeu de test complet représentant

toutes les entrées possibles du circuit et en compare les résultats avec ceux prédits. Selon

la figure 0.2, l'environnement de test est inscrit dans ce que l'on appelle un banc d'essai

ou un test bench dans la terminologie propre au VHDL.

Testbench

Générique
spécifique
au test

stimulus

drificatio

4 Circuit
S O U S

test -

omporiemental

p-' 1
Résultats

Figure 0.2: Processus de validation par simuhtion.

Dans le cadre de la validation de circuits industriels de plus en plus complexes, des

variantes basées sur la définition de modèles de référence sont couramment préconisées.

Une de ces variantes a été largement utilisée dans le cadre du projet PULSE[1] développé

à l'École polytechnique. Afin de valider une puce conçue selon une architecture

SIMD(sing1e instruction multiple data), un simulateur décrivant l'architecture

fonctionnelle du circuit a été développé. PULSE, dont l'architecture est présentée à la

figure 0.3, est optimisé pour le traitement d'images en temps e l . Cette puce, dont la

conception a été réalisée e n langage VHDL, contient environ un million de transistors et a

été validée à l'aide d'un simulateur écrit en langage C [2].

Figure 0.3: Architecture simplifiée de Pulse.

Dans le projet PULSE, le modèle C est une description fidèle de l'architecture qui

représente la fonctionnalité de la puce, ainsi que les unités opératives tel que 1' ALU, le

décaleur et le multiplieur additionneur. Le contrôleur avec ses différents compteurs, les

registres, ainsi que it;s canaux de communication ont eux aussi été modélisés. Un des

avantages d'une méthodogie utilisant un modèle de référence, c'est que ce modèle est

sensiblement moins complexe que le design en VHDL. Nous avons, dans le cas du modèle

C de Pulse, modélisé le jeu d'instruction de la puce. La méthodologie de validation

adoptée était la suivante. Partant d'une même séquence de vecteurs de validation, le

résultat de l'exécution du programme sur le modèle VHDL est comparé avec celui du

simulateur C. L'avantage de ce genre de méthode est que la description du simulateur est

indépendante de l'implantation du modèle VHDL. Elle dépend seulement d'un jeu

d'instructions défini lors de la spécification. La méthodologie de validation est

schématisée à la figure 0.4.

Figure 0.4: Validation Fonctionnelle.

Un des gros problèmes de la méthode par validation est que pour des circuits ayant un

grand nombre d'entrées, il est impossible de tester toutes les possibilitées. En effet, pour

être complète, la simulation doit étudier le comportement du circuit dans toutes les

configurations possibles et pour toutes les séquences.

Par opposition à la simulation, la vérification formelle tente de prouver qu'une

description structurelle possède un comportement équivalent à une description

fonctionnelle à un niveau d'abstraction supérieur. Il s'agit donc de comparer des

descriptions abstraites. Bien que cette méthode fasse de plus en plus d'émules, il ne faut

pas oublier les problèmes qui en ralentissent une utilisation industrielle fréquente. Les

principaux problèmes[3] sont au nombre de trois: d'une part l'extraction d'une description

du comportement, d'autre part la formulation d'une spécification de haut niveau et

finalement, la comparaison entre la description extraite et la spécification.

Le premier problème nécessite la définition d'un modèle temporel et d'une

description. Un circuit peut être décrit à différents niveaux d'abstraction, à savoir:

électrique, commutateur, porte logique, registre ... Le modèle temporel est continu au

niveau électrique et, discret aux niveaux supérieurs. Dans ce dernier cas, un modèle de

délai doit être défini: instantané pour l'étude des circuits combinatoires, unitaire

correspondant à une période d'horloge pour les circuits synchrones.

Le second problème nécessite d'exprimer le comportement souhaité. La spécification

correspond à la fois au but à atteindre et à la description abstraite du comportement en

termes d'entrées-sorties. Cette spécification est alors exprimée sous la forme d'un

automate de haut-niveau, Une spécification complète est parfois difficile à obtenir, en

conséquence, seules certaines propriétées sont vérifiées. Citons par exemple la preuve

qu'un système ne peut se bloquer, ou que certaines règles ou protocoles d'échange soient

respectés. Cependant, le problème de complétude de la validation, ou le fait que les

propriétés définies remplissent toutes les volontées du concepteur restent des questions

ouvertes.

Bien que de nombreuses études et avancements aient été réalisées dans le domaine de

la vérification formelle, l'utilisation de ces techniques lors de la validation amène un trop

lourd formalisme mathématique pour bien des concepteurs. Par contre, la validation par la

simulation traditionnelle ne permet souvent pas de valider pleinement de grands circuits.

Aussi diverses méthodes ont été proposées afin d'enrichir un jeu de vecteurs de vaiidation

amenant une meilleure confiance dans les circuits VLSI. Le test par mutation est une des

techniques dérivées de la vaiidation par simulation. Cette méthode permet d'enrichir la

suite de vecteurs de validation. Il est à noter que d'autres techniques ont été proposées afin

d'augmenter la confiance dans un design. Une manière valable de s'attaquer aujourd'hui

aux défis inhérents à la vérification, c'est d'utiliser les analyses de couverture du code. La

compagnie Summit Design inc propose un certain nombre d'outils permettant de chiffrer

la couverture d'un programme HDL et la couverture des machines à états par des données

de test. Ces outils permettent de montrer combien les vecteurs de validation ont pu exercer

une région du circuit et en révéler les régions non testées. Par ailleurs, ils identifient les

tests qui ont les plus grandes couvertures et permettent de réduire Ies tests redondants. Il

est intéressant de remarquer que pour calculer une couverture du code, ces outils comptent

combien de fois la suite de test exerce chaque ligne, chemin, expression, état et séquence.

La mutation par contre ne compte pas combien de fois un vecteur a exercé une région,

mais plutôt si toutes les régions ont été exercées au moins une fois.

Les diffkrents objectifs de ce mémoire sont de trois types. Le premier consiste à étudier

l'utilisation du test par mutation dans le cas de la validation de circuits numériques. Le

second permet de définir un ensemble d'opérateurs de mutation permettant d'identifier

d'éventuelles erreurs fonctionnelles survenant dans un langage de description matériel tel

que le VHDL. Enfin, le troisième abouti à la proposition d'une nouvelle méthodologie de

validation par mutation permettant l'enrichissement systématiquement d'un jeu de

vecteurs de tests.

Le premier chapitre de ce mémoire consiste en une présentation des méthodes formelles

ainsi que des difficultés rencontrées lors de l'utilisation de ces différentes techniques. Ce

chapitre se poursuit par une revue de littérature dans le domaine du test logiciel et

particulièrement sur le test par mutation.

Le second chapitre propose une adaptation du test par mutation à la validation des circuits

VU1 ainsi que les résultats obtenus sur différents bancs d'essais ainsi que les problèmes

inhérents au test par mutation. Aussi nous présenterons une méthodologie systématique de

test par mutation dans le cas de circuits VLSI.

Enfin, le troisième chapitre présente l'algorithme de génération de mutants et

d'enrichissement de vecteurs de validation, ainsi que le banc d'essai qui a permis la

définition des différents opérateurs de mutation. Ce chapitre commencera donc par une

redéfinition des opérateurs de mutation dans le cas de circuits VLSI et se continuera par la

proposition d'un algorithme systématique de validation d e circuits numériques utilisant

I'outil Synopsys.

CHAPITRE 1

METHODES DE VALIDATION

1 .l Méthode Formelle

1.1.1 Introduction

Bien que la vérification par la simulation soit la méthode la plus largement utilisée dans le

processus de validation de circuits VLSI, l'augmentation du niveau de complexité des

circuits, ainsi que la difficulté à procéder à des tests exhaustifs, augmente le risque que

certains aspects du design ne soient pas vérifiés. Une alternative basée sur des méthodes

mathématiques rigoureuses a été proposée : la vérification formelle,

Cette méthode est basée sur des langages, des techniques et des outils mathématiques- La

plupart de ces langages, techniques et outils, utilisent des représentations binaires plus

connues sous le nom de diagrammes binaires de décision (E3DD). Le BDD[4] est une

simple représentation canonique de la logique binaire énumérant toutes les valeurs

possibles pouvant se produire dans un circuit combinatoire. L'utilisation des méthodes

formelles ne garantit pas, a priori, l'exactitude du design mais, elle augmente de manière

significative la compréhension d'un système en y révélant les ambiguïtés et les

inconsistances. Cependant, un problème majeur des méthodes formelles est l'utilisation

abondante de la mémoire et du temps CPU, qui croissent parfois de manière exponentielle

en fonction de la taille du circuit.

Les méthodes f~nnel les s'appuient sur trois outils principaux afin de vérifier une

spécification. On retrouve des outils de vérification d'équivalence, de vérification de

modèle et des prouveurs de théorèmes. Les vérificateurs d'équivalence comparent la

spécification avec un design de référence. Les vérificateurs de modèles prouvent la

véracité des propriétés du design par rapport à la spécification. D'autre part, les prouveurs

de théorèmes permettent à l'usager de bâtir une preuve montrant que le design respecte

bien la fonction voulue.

Nous exposerons plus en détail dans la suite de ce paragraphe les vérificateurs du modèle

et les prouveurs de théorèmes, deux types de vérification couramment utilisées.

Deux exigences importantes doivent être respectées dans le processus de vérification. La

première est la définition d'un langage formel capable de décrire le comportement d'un

système et l'expression de propositions(propriétés) bâties à partir de celui-ci. La seconde

exigence est de disposer d'un calcul déductif capable de prouver toutes les propositions

exprimées dans le langage. Les méthodes de vérification formelle utilisent l'approche

générale suivante:

1. Écrire une spécification formelle S décrivant le comportement pour lequel le

système doit être vérifié et est supposé exempt de défauts.

2. Écrire une spécification pour chaque type de enmitive des composants utilisés dans

la construction du système. Ces spécifications sont supposées décrire les comportements

des composants réels du système.

3. Definir une expression D qui décrit le comportement du système que l'on désire

prouver. La définition de D est de la forme suivante : D = Pl + ... + Pn,

où P l , ..., Pn spécifient le comportement des parties constituantes du système et le + est

l'opérateur de composition qui représente l'effet de lier les composants ensemble. Les

expressions Pl, ..., Pn utilisées ici sont des instances des spécifications des composants

primitifs définis à l'étape 2.

4. Prouver alors que le circuit est décrit par l'expression D. Ceci se fait par une preuve

d'un théorème de la forme : D satisfait S

où satisfait est une relation de satisfaction des spécifications du comportement du

système.

1 .l.2 Vérification du modèle

La vérification du modèle est une technique qui consiste à construire un modèle fini d'un

système et, à démontrer que les propriétés spécifiées sont bien respectées. En pratique,

deux approches sont utilisées en vérification du modèle. La première, la vérification de

modèles temporels est une technique developpée dans les années 1980 par Clarke et

Emerson d'une part et par Queille et Sifakis d'autre part. Dans cette approche que nous

présenterons plus loin, les spécifications sont exprimées en logique temporelle (TL) et les

systèmes sont modélisés comme des systèmes à états finis qui effectuent des transitions.

Dans la seconde approche, la spécification est donnée sous la forme d'une machine à

états. Dans ce cas, le système est lui aussi représenté par une machine à états et, est

comparé à la spécification afin de déterminer si oui ou non ses comportements sont

conformes à ceux de la spécification.

Vérification de modèle temporel

Un système à états finis peut être représenté par un graphe de transition d'états étiquetés,

où les étiquettes d'un état sont les valeurs des propositions atomiques de cet état (par

exemple pour les valeurs des bascules). Les propriétés concernant le système sont

exprimées comme des formules en logique temporelle p u r lesquelles le système à

transitions d'états doit être un modèle. La vérification du modèle consiste à parcourir la

machine à états des transistions du système @SM) et à vérifier s'il satisfait les formules

représentant la propriété.

Arbre de calcul logique

La logique temporelle exprime l'ordre des événements dans le temps par une spécification

des propriétés des opérateurs tel que "p aura éventuellement lieu". Il y a plusieurs versions

de logique temporelle, dont une concernant le CTL[5] pour laquelle celui-ci découle de

l'arbre des transitions d'états.

Donnons à titre d'explication l'exemple classique des feux de circulation (Figure 1.1).

Figure 1.1: Construction d'un CTL à partir d'un automate.

Les chemins dans l'arbre de la figure 1.1 représentent toutes les possibilitées de calcul du

système. Les formules en CTL font référence à l'arbre de calcul dérivé du modèle. La

méthode CTL est classifiée comme une analyse des branchements logiques temporels, car

ses opérateurs décrivent la structure de branchement de l'arbre. Les états du système sont

des valeurs enregistrées dans des bascules. Chaque formule de la logique est soit vraie ou

fausse pour un état donné. L'exactitude est évaluée à paitir de l'exactitude de ces sous

formules de manière récursive, jusqu'à ce qu'une proposition atomique soit vraie (1) ou

fausse (O) pour un état donné. Une formule est satisfaite par un système si elle est vraie

pour tous les états initiaux du système. Contrairement à la démonstration de théorèmes, la

vérification du modèle est complètement automatique et relativement rapide. Cette

méthode peut être utilisée afin de vérifier des spécifications partielles. Ainsi, elle peut

donner une information déterminante sur la validité d'un système, même si ce dernier n'est

spécifié que partiellement. En tout état de cause, elle produit des contres exemples

représentant des erreurs subtiles du design et peut ainsi être utilisé pour le déverrninage.

Le problème le plus important du modèle d'équivalence est l'explosion des états. En 1987

McMillan utilise les BDD et son extention MDD (Muhi-valued Decision Diagram) afin

d e proposer une heuristique permettant de représenter les systèmes d'états de transition de

manière efficace. D'autre part, il propose la minimisation de la sémantique afin d'éliminer

les états non- nécessaires du modèle.

Les diagrammes de décision binaire

Les diagrammes de décision binaires (BDD) sont des graphes acycliques orientés

qui permettent de représenter des fonctions booléennes. Selon Bryant, les BDD sont une

représentation canonique des fonctions qui constituent une technique complémentaire à la

vérification de modèle. La taille des BDD est très sensible à l'ordonnancement des

variables et à la taille des BDD intermédiaires. La meilleure représentation des fonctions

booléennes représentant les équations des circuits numériques est dérivée du BDD. C'est

le "Ordered Binary Decision Diagram" (OBDD). Bien que les BDD ont été utilisés avec

succès dans la vérification des FSM, ils ne constituent pas une panacée dans le cas des

FSM de grandes tailles:

- les BDD demandent trop de mémoire,

- leur manipulation est très coûteuse en temps de calcul.

1.1.3 Démonstration de théorème

La démonstration de théorème est une technique dans laquelle le système et ses

propriétés sont exprimés comme des formules en logique mathématique. Cette logique est

donnée par un système formel, qui définit l'ensembie des axiomes e t des règles

d'inférence. La démonstration de théorème est le processus permettant de trouver une

preuve d'une propriété en partant des axiomes pour un système spécifié. Les étapes de la

preuve font appel aux axiomes, aux règles d'inférences et à Ia dérivation de définitions et

de lemmes intermédiaires. La démonstration de théorème comprend plusieurs techniques

regroupées en deux classes principales :

1 . La déduction automatique qui est utilisée comme procédure générale de recherche.

2. La déduction interactive qui est beaucoup plus intéressante pour des développements

formels systématiques en mathématique.

Les techniques sont :

- Boyer-Moore(6J (First-Order Logic).

- HOL (High-Oder Logic): HOL[7] utilise les notions standards de la logique

des prédicats.

En plus des notions standards de la logique des prédicats, HOL est caractérisée par le fait

que les variables peuvent êtres utilisées à des degrés plus élevés que ceux des fonctions et

des prédicats. Ce genre de variable est appélé HOV (Higher Order Variable) et peut être

quantifiée. Contrairement au modèle d'équivalence, la démonstration d e théorème peut

traiter les espaces à états infinis. Elle se base sur des techniques comme l'induction

structurale pour prouver ces domaines infinis. Cependant, comme elle requiert la

participation humaine, le temps nécessaire à la démonstration d'un théorème est

généralement beaucoup plus long que le temps de calcul dans le cas de l'équivalence du

modèle et les erreurs sont beaucoup plus fréquentes.

1.1.4 Conclusion

Bien que la vérification formelle s'avère être un outil très utile dans la spécification des

propriétés des systèmes numériques, elle ne peut être que complémentaire aux méthodes

traditionnelles de vérification par simulation. En effet, les outils de travail ne cachent

aucunement aux usagers leurs caractères formels. Par ailleurs les notations basées sur les

écritures mathématiques sont généralement très complexes. Les outils et les méthodes

développées aujourd'hui ne sont accessibles qu'aux spécialistes de la vérification

formelle.

1.2 Test par mutation

Le test par mutation est une technique de test logiciel originalement proposée par

Budd et al. 1978 [8]. Cette technique peut être décrite de la manière suivante: un grand

nombre de fautes simples sont introduites, une à la fois. dans un programme sous test. Les

versions modifiées, résultant de ces modifications, sont appelées mutants. Les données de

test sont alors construites afin de détecter ces mutants. Lorsqu'une différence de

comportement est détectée entre le mutant et la spécification de référence, le mutant est

considéré tué et n'est plus réutilisé dans le processus de test. La mutation permet donc

d'élaborer un ensemble de vecteurs capables de détecter un ensemble fini et bien spécifié

de fautes. Dans le but de faciliter la compréhension de cette méthode, il nous apparaît utile

d'exposer les différents concepts du test logiciel.

1.2.1 Test logiciel

Le test logiciel consiste à appliquer un jeu de vecteurs de test sur un programme

afin d'en révéler les défauts. Les stratégies de test se groupent en deux grandes

catégories:

- structurelle(dites aussi stratégies de test boite-blanche) qui utilisent explicitement la

structure du programme afin de générer les tests.

- fonctionnelle(dites aussi stratégies de test boite-noire) qui génèrent le test en n'ayant

aucune information sur la structure du programme Dans ce dernier cas, on a recours à la

spécification.

Le test fonctionnel examine les fonctions d u programme depuis les entréedsorties en

vérifiant que pour des entrées 1Bgales on obtient des sorties correctes. de quantifier

la quaiité du test, les stratégies structurelles cherchent à remplir certains critères relatifs à

la structure du programme [93:

- la couverture des énoncés : chacun des énoncés du programme doit être exécuté, au

moins une fois.

- Ia couverture des branches: chaque condition de branchement binaire (IF-THEN-ELSE)

doit être évaluée au moins une fois, aux valeurs booléennes VRAI et FAUX . Dans le cas

de branchement non-binaire (CASE) la condition doit être évaluée pour toutes les vaieurs

possibles.

- la couverture des conditions : si la condition est constituée de plusieurs conditions

simples, le test des conditions consiste à évaluer toute condition simple alternativement à

VRAI et FAUX.

- la couverture des chemins : tous les chemins possibles dans le programme doivent être

exécutés(sensibi1isés) au moins une fois.

Dans le test fonctionnel, le concepteur identifie les fonctions supposées être implémentées

par le programme et teste ensuite la conformité du code avec la(1es) spécification(s) de ces

fonctions f 101. Malheureusement, au contraire du test structurel dans lequel beaucoup de

méthodes basées en général sur la théorie des graphes ont été proposées , la majorité des

méthodes de test fonctionnel sont des méthodes ad hoc et souvent manuelles.

1.2.2 Principe du test par mutation

Comme il a été dit précédemment, le test par mutation pemet de quantifier la capacité

d'un jeu de vecteurs fonctionnels à tester différentes fonctions dans un programme.

Durant le test par mutation, des fautes simples introduites dans le programme original

génèrent une multitude de programmes défectueux. Chacun de ces programmes contient

une seule faute et est appelé mutant. Le test par mutation est fondé sur quatre hypothèses:

1. Le programmeur est compétent. Cette hypothèse présuppose que le programmeur

écrit des programmes presque "corrects". C'est-à-dire que bien qu'incorrects, les

programmes écrits différeront de la "bonne version" par des fautes relativement simples.

2. Les fautes sont couplées 1111: on suppose ici qu' un jeu de test capable de détecter

toutes les fautes simples est aussi capable de détecter les fautes plus complexes. Cette

hypothèse a été justifiée à la fois de manière théorique [121 et expérimentale [131.

3. On dispose d'un ensemble valide d'opérateurs de mutation. il s'agit d'un ensemble

prédéfini d'opérateurs qui modélise toutes les fautes simples d'un programme. Ces

opérateurs sont déterminés de manière tout à fait empirique et il n'existe toujours pas de

méthode systématique &in de déterminer l'ensemble minimal relatif à un langage de

programmation.

4. On possède un oracle : cette référence permet de vérifier systématiquement que le

résultat du programme est conforme, pour un jeu de test donné.

1.2.2.1 Méthodologie.

Etant donné un programme P et un jeu de vecteurs de test T, il s'agit d'exécuter T sur P.

Supposons, par ailleurs, que le résultat de T sur P soit correct; Le. P passe le test T.

Plusieurs programmes générés en appliquant de petites modifications sur P, appelées

mutants, sont exécutés avec T comme stimulation, Si le résultat d'un mutant est différent

de celui de P, on dit que le mutant est tué (détecté). Dans le cas contraire, il est dit vivant

(T est incapable de détecter le mutant). Si un mutant survit, le jeu de test T est insuffisant

et doit être augmenté. Nous allons maintenant nous intérresser à la génération des mutants.

1.2.2.2 Génération des Mutants.

Plusieurs techniques ont été proposées afin de déterminer un jeu de vecteurs de test

capable d'isoler des "fautes spécifiques". Une des plus difficiles et plus coûteuses tâches

dans l'application de ces techniques est la génération de données de test qui est en général

faite à la main. Une méthode [14] a été proposée afin de rendre la génération de ces tests,

purement automatiques. Cette méthode est applicable de manière structurelle. Ces

algorithmes utilisent le constraint based testing (CBT). Ces contraintes de test incluent

des conditions qui permettent de tuer les programmes mutants e t génèrent des données qui

satisfont les contraintes. Le test de grands systèmes est composé de tests de sous-systèmes

et de fonctions, si ces systèmes admettent la hiérarchie. Dans le cas d'énormes

programmes non hiérarchiques, le processus de génération de vecteurs peut s'avérer

intraitable.

Ces algorithmes sont assez performants s'ils sont applicables sur des "unités de

programme". Une unité de programme est une sous-routine ou un ensemble de sous-

routines ou de fonctions. La génération de jeu de test est en général une tâche laborieuse.

En effet, afin de produire les vecteurs de test adéquats, le responsable du test est

pratiquement obligé d'interagir avec le système de mutation en examinant de manière

exhaustive tes mutants survivants. Ce faisant, il doit ensuite construire manuellement un

jeu de vecteurs capables de les éliminer. Le processus de test par mutation commence par

la construction de tous les mutants du programme. Les mutants sont générés à partir d'un

jeu d'opérateurs de mutation. Les opérateurs utilisés représentent les fautes les plus

répétitives faites par les concepteurs. Ces opérateurs suggèrent que les données de test

couvrent tous les états, toutes les branches, les vaieurs extrèmes, les domaines de

perturbations et modélisent plusieurs types de fautes. Lorsque l'un de ces opérateurs est

appliqué a un état, il effectue un changement simple (tout en gardant une bonne syntaxe).

Le processus de test est le suivant: le programme original est testé par le jeu de test, il en

résulte des valeurs pour chacune des sorties. Un oracle (en général celui qui est en charge

de la vdidation) se charge de vérifier que les sorties sont exactes. Si les sorties sont

identiques, le programme doit être changé, puis le processus de test doit être réitéré. Dans

le cas contraire, ces derniers tests sont appliqués à chacun des mutants survivants.

Après que ces derniers aient exécuté ces vecteurs avec succès, deux informations

surgissent: la proportion des mutants tués, qui indique au concepteur dans quelle mesure

le programme a été testé, et le nombre de mutants survivants, qui renseigne quant au

nombre de fautes non testées, ou encore, quant à la faiblesse du jeu de test. A titre

d'exemple, Ia Figure 1.2 montre le processus de mutation sur la fonction Max, qui donne

le maximum de deux vdeurs entières. Afin d'alléger la figure 1.2, tous les mutants sont

portés sur la même figure. Autrement dit, chacune des instructions transformée par

mutation représente un mutant séparé, dans lequel I'instmction mutée remplace

l'instruction correspondante du programme initial. Dans le premier mutant, une valeur

absolue a été injectée dans la première instruction. Le deuxième et le troisième mutants

sont les résultats d'injection de fautes dans l'opérateur relationnel de la seconde

instruction. L,e dernier mutant résulte de l'injection de fautes sur la variable de la troisième

instniction .

Function Max(integer: m, n) :integer;
begin

1 Max:= m;

figure 1.2: la fonction Max avec quatre mutants superposés

II est en général impossible de tuer tous les mutants, car certains changements n'ont aucun

effet sur la fonctionnalité du programme original. En général, ces mutants équivalents

sont identifiés soit par celui qui est en tâche de la validation soit par des heuristiques.

1.2.23 Les mutants équivalents

Un mutant est dit équivalent au programme original [12, 13, 151 s'il n'existe aucun

vecteur de test permettant de révéler une différence de comportement entre les deux

programmes. 11 est en général très difficile de prouver qu'un mutant est équivalent. En

effet, les raisons pour lesquelles un mutant peut être fonctionellement identique sont:

1. Le mutant est fonctionneliement équivalent au programme original. Ce mutant

produira toujours la même sortie que le programme initial et ceci quelque soit le test.

2. Le mutant peut être tué, maïs le jeu de test est insuffisant.

Une manière de démontrer l'équivalence est de procéder à des tests exhaustifs,

évidemment, ceci n'est pas pratique pour de gros programmes. Dans la pratique, c'est au

programmeur qu'incombe la tâche de déclarer un mutant équivalent. Ce problème reste

toutefois une difficulté pratique et théorique devant l'automatisation du test par mutation.

1.2-2.4 Évaluation du test

Le test par mutation a été initialement proposé afin d'évaluer la capacité d'un jeu de test à

exercer un programme. Les vecteurs de test peuvent être générés manuellement,

aléatoirement, ou à l'aide d'un outil de génération de test. L'analyse de mutation associe

une métrique (score de mutation) au jeu de test dans le but d'évaluer son efficacité. Ce

score de mutation est le pourcentage de mutants non équivalents tués. Le score est donné

par la formule suivante:

MS(P,T)=Mk 1 (Mt -Mq).

où P est le programme de test

T le jeu de test

Mk le nombre de mutant tué par T

Mt le nombre total de mutants générés par le programme

Mg le nombre de mutants équivalents.

Plus le nombre de mutants détectés est grand, plus l'efficacité du jeu de test est

importante. Étant donné un jeu de test T, le programme P est d'abord exécuté et vérifié sur

chaque vecteur qui compose T. Si le résultat est incorrect, une faute est trouvée et le

programme doit être corrigé puis le processus est relancé. Si le résultat est correct (P passe

le test T), tous les vecteurs dans T sont exécutés pour tous les mutants vivants. Les

mutants tués sont retirés du processus de test. Une fois tous les vecteurs de T exécutés,

chacun des mutants encore vivant doit appartenir à une des deux catégories: le mutant est

fonctionnelIement équivalent au programme initial, ou il ne peut être tué par le jeu d e test.

Dans le premier cas, les deux programmes sont fonctionnellement équivalents et il

n'existe aucune entrée permettant de révéler des résultats différents. Dans le deuxième cas,

le jeu de test doit être renforcé par de nouveaux vecteurs. Notons que le coût du test par

mutation tend à croître de façon importante, parce que chaque mutant est simulé avec

l'ensemble de la suite de test et que le nombre de mutants peut devenir important. C'est

pourquoi diverses techniques ont été utilisées afin de réduire le nombre de mutants

générés tout en gardant un score de mutation satisfaisant- Les méthodes proposées ont été

appelées mutation faible et mutation sélective.

1.2.2.5 Le test par la mutation faible

La mutation forte est une méthode très efficace, cependant elle génère une grande

quantité de mutants. La méthode de test par mutation faible proposée par Howden[l6,17],

demande moins de tests. Elle ne considère ni l'hypothèse du programmeur compétent ni

l'hypothèse du couplage des fautes. Les différences intervenant entre mutation faible et

mutation forte sont que:

1. Les opérateurs de mutation dans la mutation forte sont dépendants du langage de

programmation, tandis que dans la mutation faible, ils sont génériques et ne dépendent pas

du langage.

2. Dans la mutation forte, il n'existe pas une méthode globale pour générer les tests qui

révèlent les fautes prédéfinies par les opérateurs de mutation. Il existe toutefois un

compromis dans lequel les tests peuvent être générés, si et seulement si, leur capacité de

détection des fautes a été affaiblie, d'où le terme mutation faible. Howden (dans la même

référence) a définit le composant comme la structure élémentaire de calcul dans le

programme. Les références aux variables, les expressions arithmétiques et logiques sont

des exemples de composants. Cette méthode de mutation peut être décrite de la manière

suivante: si P est un programme qui contient un composant C, il existe alors une mutation

C'de C et P' de P où P' correspond à P contenant C'. Dans la mutation faible, un test t est

construit de manière où C et C' ont au moins une valeur différente lors de l'exécution de t

par P et P', sans garantir toutefois que les résultats de P et P' soient différents. Les

changements (ou les mutations des composants) dans la mutation faible affectent les

composants suivants :

1. les références à une variable: il s'agit de remplacer une référence à une variable

par une autre. Pour détecter ce type de mutation, il faut exécuter le programme sur des

entrées pour lesquelles la variable en question se verra attribuée des valeurs différentes de

celles de toutes les autres variables compatibles dans le programme.

25

2. les affectations d'une variable : il s'agit ici d'affecter une valeur à la mauvaise

variable. Pour détecter cette mutation, il est nécessaire d'affecter une vaieur différente de

la valeur actuelle de la variable.

Les deux types précédents sont des mutations primitives qui contribuent dans les types de

mutation suivants:

3. transformations des expressions arithmétiques : I'expression est modifiée par

I'addition d'une constante, la multiplication par une constante ou bien en modifiant les

coefficients qu'elle contient. La détection de l'addition d'une constante ou de la

multiplication par une constante demande un seul vecteur de test, tandis que la détection

des coefficients modifiés est plus complexe et demande plus d'un vecteur(Howden82).

4. transformation des relations arithmétiques : l'expression est modifiée par un

opérateur relationnel incorrect ou l'addition d'une constante. La détection d'un opérateur

incorrect est effectuée par l'exécution de la relation sur des données qui distinguent

l'opérateur correct de tous les autres opérateurs, La détection de l'addition d'une constante

est effectuée par la sélection appropriée d'un point de test.

5. transformation des expressions booléennes: les expressions booléennes sont

modifiées en utilisant les opérateurs précédents sur les sous-expressions. Pour détecter la

mutation, l'expression doit être testée sur toutes les valeurs dans la table de vérité de

I'expression. Howden a proposé des méthodes pour contrôler la taille du jeu de test dans le

cas des expression booléennes. Le test par mutation faible a plusieurs avantages sur le test

par mutation (forte). Notamment, il n'est pas nécessaire d'effectuer une exécution des

mutants pour sélectionner les données de test. De plus, le nombre de vecteurs de test est

souvent petit (un seul) peut parfois suffire pour la plupart des mutations. Un autre

avantage majeur est la possibilité de spécifier a priori les données de test nécessaires pour

que la mutation donne une sortie incorrecte. Par contre, le test par mutation faible ne

garantit pas que les données choisies pour détecter une mutation donne une sortie

incorrecte pour le programme tout entier.

1.2.2.6 mutation sélective

Cette méthode a été proposée par Offutt et al. afin de réduire le coût de la mutation en

réduisant le nombre de mutants générés. Le coût du test par mutation est essentiellement

lié au nombre de mutants. Afin d'estimer la complexité du test par mutation, de

nombreuses techniques empiriques ont été proposées. La première l'a été par Acree [18].

Selon ce modèle, le nombre de mutants généré est proportionnel au nombre de lignes du

programme au carré. Budd [19] a affiné cette relation en estimant que le nombre de

mutants étant proportionnel à O(Vais*Refs), où Vals représente le nombre d'objets de

données du programme (ex : déclaration des variables et des constantes) et Refs

représente le nombre de références à ces objets. Une étude statistique récente effectuée par

Offutt et Lee, [20] a montré que la relation proposée par Budd est la plus représentative de

la complexité réelle du test par mutation. Afin de réduire la complexité du test, une

réduction des opérateurs de mutation a été proposée afin de réduire le nombre de mutants

du programme. Cette approche appelé la mutation sélective, s'effectue de deux manières.

Dans la première, au lieu de considérer tous les mutants pouvant être générés par un

opérateur de mutation, on sélectionne, de façon aléatoire, une portion de ces mutants. Une

étude réalisée par Wong et Mathur (1995) a montré qu'en appliquant seulement 10% des

mutants, on pouvait atteindre des scores de mutation très proches de ceux atteints par la

mutation originale. Dans la seconde, certains opérateurs de mutation sont éIiminés du

processus de génération de test.

1.2.2.7 La mutation N-sélective

Dans un premier temps, il a été proposé de supprimer Ica ûpérateurs responsables de la

génération du plus grand nombre de mutants [2 11- Mathur[22] a proposé d'appliquer une

méthode appelée la mutation 2-sélective, sur les deux opérateurs les plus coûteux (ASR et

SVR). ASR consiste à remplacer chaque signal par un tableau alors que SVR consiste à

remplacer chaque variable par un scalaire. L'expérience a débuté par une étape de

comptage des mutants générés (à partir de 28 programmes différents). Les résultats obtenu

sont présentés à la figure 1.2. Par la suite, une comparaison a été faite entre les deux

méthodes de tcst (sélective et non-sélective). Pour effectuer cette comparaison, un jeu de

vecteurs de test ayant un score de mutation de 1ûi9% (pour la mutation sélective) a été créé.

Puis, dans un deuxième temps, ce même jeu de vecteurs a été appliqué à la mutation non

sélective et son score a été de nouveau caiculé.

70 mutants

opérateurs de mutation

Afin d'éviter au maximum les aléas (dûs au fait que l'on génère les vecteurs

aléatoirement), 5 jeux de tests ont été générés pour chacun des dix programmes

considirés. Les valeurs ci-après sont en fait la moyenne de tout cela. Le but de cette

expérimentation est de montrer qu'un jeu de vecteurs capable d'obtenir un bon score de

mutation lors de la mutation sélective est aussi capable d'obtenir un bon score pour la

mutation forte.

mutation 2-sélective : 99.99% (score de mutation) et 23.98% (de mutants non

générés).

mutation 4-sélective: 99.84% (score de mutation) et 41.36% (de mutants non

générés).

mutation 6-sélective : 99.71% (score de mutation) et 60.56% (de mutants non

générés).

Le but de cette expérimentation n'est pas d e mettre à jour des mutants équivalents,

mais de comparer les scores de mutation obtenus pour la méthode sélective avec ceux

obtenus par la mutation forte.

1.2.2.8 La mutation E-sélective

Cette nouvelle technique vise encore à diminuer le nombre de mutants générés en

supprimant certains opérateurs. Les opérateurs sont classés en 3 grandes catégories:

- type R : remplacent chaque opérande du programme par toutes les autres opérandes

compatibles.

- type E: modifient les expressions en remplaçant les opérateurs par d'autres de

même nature (arithmétique, relationnelle ou booléenne).

- type S : modifient les tests conditionnels du programme.

L'objectif sous-jacent est de déterminer empiriquement un sous-ensemble suffisant

d'opérateurs de mutation permettant une réduction de la complexité de test, tout en

gardant une efficacité satisfaisante. Une étude empirique comparant les performances des

mutations suivantes: ES, RE, RS, et E a été menée. Dans une mutation sélective de type

XY ou de type X, on applique seulement les opérateurs de mutation compris dans le(s)

type(s) mentionnés lors de la génération de test. Il a été montré que le type R génère un

nombre de mutants de l'ordre de O(Vals * Refs), le type E de l'ordre de O(Refs), et le type

S de l'ordre de O(Lignes). Il est à noter que le type R est le plus coûteux, car 70% des

mutants générés sont en général de ce type. Une des premières préocupations lors de

l'utilisation de la mutation sélective est de déterminer la possibilité d'éliminer le type R

sans avoir à réduire l'efficacité du test généré. En d'autres mots, est-il possible de procéder

au processus de mutation en n'utilisant que des types -ES ou -E. Une étude empirique

effectuée par Offut et al. [21] a montré qu'un jeu de test LOO% adéquat par rapport à la

mutation sélective-ES est suffisamment adéquat (99.54% en moyenne) par rapport à une

mutation non-sélective.

Il a aussi été proposé de supprimer les opérateurs de type S dans le souci de définir un

ensemble minimal suffisant d'opérateurs de mutation. Le résultat de l'application de la

mutation sélective à montré que le test généré est là encore quasi-adéquat (99.5 1 % en

moyenne), Par conséquent, dans la pratique, on peut considérer que la mutation sélective

-E est suffisante pour générer des tests efficaces.

A titre d'exemple, les résultats d'une expérience réalisée par Irene koo [16] sont donnés

ci-dessous. Ces résultats ont été obtenus en appliquant un processus identique à celui

appliqué pour la mutation sélective précédente :

mutation ES-sélective : 99.54% (score de mutation) et 7 1 -52% (de mutants non

généres)

mutation RS-sélective : 97.31% (score de mutation) et 22.44% (de mutants non

générés).

3 1

mutation RE-sélective : 99.97% (score de mutation) et 6.04% (de mutants non

générés).

mutation E-sélective : 99.51% (score de mutation) et 77.56% (de mutants non

générés).

Pour la mutation E-sélective, le score de mutation va de 98.5% à 99.5% suivant le

programme, pour un pourcentage de mutants non générés ailant de 37.1 % à 92.12%.

Par la suite, une étude a été menée dans le but de réduire encore plus le nombre de

mutants générés, en supprimant un opérateur parmi les 5 (cf tableau 1.1).

1.2.2.9 Génération de test

Tableau 1.1 : mutation E selective

Dans le test par mutation, le but du concepteur est de trouver des vecteurs capables de

révéler une différence de comportement. Un test est considéré efficace s'il tue au moins

Sans
ABS

9 1-57

97.93

99.63

99.30

99.70

97.95

94.00

97.09

98.36

98.67

Programme

Banker

Bub

Cal

Euclid

Find

insert

Mid

Quad

Trytip

Wars hall

Avec les 5
opérateurs

99.57

99.93

99.63

99.00

99.30

99.75

99.90

100.00

99.36

99.67

Sans
UOI

98.57

98.93

95.63

97.30

98-70

98.95

98.00

99.09

98.36

97.67

Sans
ROR

99.57

99.93

99.63

99.30

99.70

99.95

10.0
O

99.09

98.36

98.67

Sans
LCR

99.57

99.93

99.63

99.30

99.70

99.95

100.0
O

99.09

99.36

98.67

Sans
AOR

91.57

99.93

99.63

99.30

99.70

99.95

100.0
O

99.09

99.36

98.67

un mutant. Un moyen largement utilisé dans le domaine du test par mutation afin de

genérer automatiquement des tests, c'est d'avoir recours à des contraintes mathématiques.

En fait ces contraintes permettent de générer des vecteurs de test à partir des propriétés que

les entrées du programme doivent avoir pour tuer les mutants. Ces contraintes permettent

de rejeter les vecteurs inefficaces. Les contraintes doivent amener le mutant à révéler un

comportement différent du programme origùiai. Puisque le mutant est représenté par un

seul changement dans le programme, I'état du mutant doit être différent de celui du

programme original tout de suite après I'état muté. Cette caractéristique est une condition

nécessaire afin de tuer le mutant. Cependant, cette condition n'est pas suffisante, car il peut

très bien anivei que le changement de comportement ne parvienne pas à l'une des sorties

du programme. Aussi, une condition suffisante est que le test cause une différence à l'une

des sorties. Il est cependant très difficile de satisfaire les deux conditions, car cela demande

de savoir à l'avance le chemin que va suivre le programme, ce qui est bien sûr un problème

très difficile à résoudre. Pour être certain que le test tue le mutant, le mutant doit être

exécuté en globalité et, sa réponse comparée avec la réponse du programme. En pratique,

il est admis qu'un test remplit la condition nécessaire s'il remplit la condition suffisante

sinon, le mutant produit le même résultat que le programme original et reste vivant.

CHAPITRE 2

APPLICATION DU TEST PAR MUTATION AUX CIRCUITS VLSI

2.1 Introduction

Ce chapitre fait état des investigations effectuées par l'equipe Valsys de Grenoble et

de Valence, ainsi que des résultats obtenus suite à une collaboration effectuée avec notre

groupe. Ces travaux sont à la base d'une proposition d'un premier algorithme de

validation par mutation de circuits numériques. Tout au long de ce chapitre, nous

présenterons les raisons qui ont guidé le choix d'un outil de mutation spécifique ainsi que

son architecture. Nous décrirons les différents bancs d'essai sur lesquels les mutations ont

été réalisées. Enfin, nous décrirons un algorithme de validation et les problèmes sous-

jacents à cette méthode de validation.

Bien que le test par mutation ait été originalement proposé afin de vérifier un

programme, il a par la suite été proposé d'utiliser cette méthode afin de valider une

description matérielle. En effet, tout comme pour le test des Iogiciels, cette méthode se

révèle intérressante si on travaille à partir de languages de description matériel tels que

VHDL(Very High speed integrated circuit Hardware Description Language) et VERTLOG.

Par ailleurs, les approches fonctionnelles sont indépendantes de l'implémentation

matérielle du circuit, ce qui permet d'avoir recours à un haut niveau d'abstraction capable

de traiter des circuits VLSI complexes. Il n'existe pas un ensemble de principes reconnus

pour la validation de circuits VLSI, qui est en général realisée de manière ad-hoc. Aussi.

en se tournant vers le test logiciel. on peut, si on considère chaque description VHDL

comme un programme, utiliser les rudiments du test logiciel (voir section 1.2.1). Par

ailleurs, le test par mutation se compare à bien des égards au test matériel, comme il sera

demontré dans la suite de ce chapitre.

Afin de valider et d'établir les fondations de la méthode de validation par mutation de

descriptions matérielles, nous avons eu recours 3 l'outil Mothra[23], qui est

I'environnement le plus complet pour le test par mutation dans le domaine logiciel. Cet

outil permet de tester des modules écrits en FORTRAN. Mothra génère automatiquement

tous les mutants d'un programme en utilisant un ensemble défini d'opérateurs de mutation.

L'architecture de Mothra ainsi que la définition de ces opérateurs sont présentés dans la

section suivante.

2.2 Présentation de Mothra

Mothra utilise une technique de test qui est basée sur des contraintes, ce qui permet

d'automatiser le processus de test par mutation en représentant sous la forme de con-

traintes mathématiques, les conditions pour lesquelles un mutant est tué. Mothra est con-

stitué d'un ensemble d'outils qui permet à la fois de créer les mutants et d e générer des

vecteurs de test. La génération de ces vecteurs est réalisée par Godzilla- Les outils

Mothra/Godzilla ont été implémentés en langage C.

2.2.1 Génération de vecteurs de validation.

Godzilla génère des vecteurs de test en tentant de trouver les propriétés que doivent

avoir les entrées du programme afin de tuer les mutants. Dans le chapitre 1, il a été montré

qu'il fallait que le comportement suite à la mutation soit différent de celui du programme

non muté. Aussi, dans la validation par mutation, il est nécessaire que les entrées du

programme engendrent un état erroné directement après l'exécution de I'état mutant. Par

analogie avec le test matériel, il faut au moins que le test stimule la panne à la source en

produisant une différence de comportement observable à cet endroit (condition

nécessaire). Ensuite, une fois la panne stimulée, cette différence doit se propager sur un

résultat observable de l'extérieur.

Godzilla décrit ces condi'ricns sous forme d'un système de contraintes

mathématiques. La condition d'accessibilité est décrite par un système de contraintes

appellé " expression de chemin ". Si on représente le lieu où une panne est susceptible

d'être introduite comme un état, chaque état du programme a une expression de chemin

permettant de décrire la manière d'atteindre I'état mutant à partir de n'importe quel état.

Une condition spécifique au type de faute modélisé par le mutant décrit à la fois la

condition qui engendre le comportement défectueux du programme et la nécessité d'une

exécution intermédiare incorrecte. Ces deux critères constituent une condition nécessaire,

car bien qu'un état intermédiaire incorrect soit nécessaire, il n'est pas suffisant pour tuer

un mutant- Afin de tuer un mutant, il faut que le programme génère des sorties incorrectes

de manière à ce que I'état final du programme soit différent de celui du programme

original. Cependant, bien qu'il soit nécessaire de satisfaire Io condition de suffisance, elle

est pratiquement irréalisable. En effet, déterminer complètement la condition de

suffisance implique de connaître à l'avance le chemin que va prendre le programme.

Grâce à ce système de contraintes, Godzilla intègre plusieurs techniques de test logiciel

dont le détail est donnée ci-dessous:

La couverture des états : Si on considère un état comme une combinaison des

valeurs de toutes les variables dans le programme à un insiant donné, chaque état du

programme est exécuté au moins une fois. La couverture est réalisée directement à partir

du système de contraintes appelé " l'expression de chemin ".

La couverture des branches : technique qui requière que toutes les branches du

programme soit parcourues. Cette technique est respectée par le test par mutation, en effet

les mutants ne peuvent être tués que si les prédicats prennent la valeur vraie puis fausse.

Domaine de perturbation : Cela consiste à partitionnet les entrées du programme en

domaines. Chaque vecteur compris dans un domaine suit le même chemin. La stratégie du

domaine de perturbation sélectionne les vecteurs de manière à prendre les valeurs

frontières du domaine. Les opérateurs de mutation forcent les vecteurs à satisfaire le

domaine de perturbation en modifiant légèrement chaque expression (en ajoutant 1, en

soustrayant 1 ou en prenant 10% de la valeur etc.) et en remplaçant chaque opérateur.

L'architecture de Godzilla est donnée à la figure 2.1

1 chemin 1
Réducteur Satisfaction
de contraintes des contraintes

Jeu de Tes a
Contraintes
de mutation

I i \de nécessité]

Figure 2.1: Implémentation de Godzilh

Les principales fonctions de Godzilla sont montrées ci-dessus. Cet outil intègre

différentes fonctions, chacune d'entre elles a été implémentée dans différents pro-

grammes, ceux-ci communiquent par l'intermédiaire de fichiers qui sont représentés par

des ellipses. Les flèches de la figure 2.1 indiquent les flots d'information du système

Godzilla. Les fichiers sont accessibles par des routines communes à tous les outils, ils sont

ainsi vus en faisant abstraction du type de données. Ce système permet une plus grande

modularité et une plus grande extensibilité en donnant à chaque outil un accès uniforme

aux routines qui créent, modifient, enregistrent et récupèrent les contraintes.

2.2.1-1 La représentation des contraintes.

Le système de contraintes de Godzilla a une structure hiérarchique composée de

contraintes, d'expressions et de clauses arrangées de manière " disjonctive normale ".

L'expression algébrique est l'élément de base du système de contrainte. Elle est composée

de variables, de parenthèses et d'opérateurs spécifiques au FORTRAN. Une contrainte est

une paire d'expression algébrique reliée par un des opérateurs suivants {>, <, =, 2, <).

Les contraintes sont évaluées soit à la valeur binaire VRAI, soit à la valeur FAUSSE et

elles peuvent être modifiées par l'opérateur de négation NOT (y). Une clause est une liste

de contraintes reliées par les opérateurs logiques ET (A) et OU (v). Une clause

corzjonctive utilise seulement le ET logique et une clause disjonctive seulement le OU

logique. Dans le système Godzilla, toutes les contraintes sont sous la forme normal

disjonctive @NF), qui est en fait une série de clauses conjonctives reliées par des

opérateurs OU. La forme DNF est utilisée par commodité durant la génération des

contraintes (en effet, i l suffit de satisfaire une seule conjonctive clause). GodziiIa

considère le système de contrainte comme étant un ensemble de contraintes, qui prises

collectivement forment un vecteur de test.

A titre d'exemple, considérons le système de contraintes de l'équation suivante:

X+Y est une expression et (X+Y 2 Z) est une contrainte. ((X+Y 2 2) A (X I Y)) est une

clause conjonctive, et l'expression entière est un système de contraintes. Des vecteurs de

test tels que (X=3, Y=4, &2), (X=3, Y=4, W) et (X=4, Y= 1, Z=3) satisfont les con-

traintes.

2.2.1.2 L'analyseur de chemin.

L'analyseur de chemins utilise la technique de couverture des chemins parcourant

ainsi tout le programme afin de construire des contraintes d'accessibilité. Pour chaque état

du programme original, l'analyseur de chemins crée une contrainte telle que si le vecteur

atteint cet état, la contrainte est vraie. Il faut noter qu'il vaudrait mieux avoir des

contraintes inverses (si la contrainte est satisfaite, l'état est exécuté). Cependant, créer des

contraintes qui garantissent l'accessibilité implique de trouver une réponse au problème

de connaître à l'avance le chemin que pourrait prendre Ie programme. L'algorithme

construisant les expressions de chemin partiel est présenté ci-dessous:

Générateur de contraintes

Variables: CPE est l'expression courante du chemin

PE [] contient l'expression courante de chaque état,
P est le programme.
S et S* sont des états du programme P.
p est l'cxprcssion d'un pddicût.

1 CPE = VRAI - initialisalion
2 pour chaque éwt S de P
3 PE[S]=FAUX -- initiaiisation (aucun état n'a €3 trouvé)
4 fin
5 pour chaque état dc S d e P
6 PE[S]=PE[S]VCPE - CPE(nouve1le maniere d'atteindre S) est ajouté à l'état précddent
7 CPE=PE[S] - Ic nouvel t ta t devient I'Ctat courant
8 Si S est un Ctat de contr6le dc flux alors - si plusieurs possibiliiées

(p est I t prédicat dc S. S' cst la cible d c la branche.) - condition pdalable à l'évaluation de S
9 mise à jour dc C P E selon le type de I'ktat.
10 PE [S'] = PE [S'] V (PE [S]A p) - ajout dc l'expression du chemin et de la conjonction de
1 1 end - CPE c i du controle de flux

L'expression du chemin courant CPE (Current Path Expression) est tout d'abord

initialisée à la valeur VRAI, et chaque état à la valeur FAUSSE indiquant qu'aucun

chemin menant à cet état n'a été trouvé. Pour atteindre I'état S, plusieurs actions sont

entreprises. Premièrement, Le CPE est ajouté à la liste des précédentes expressions de S.

En effet, le CPE représente une nouvelle voie possible pour atteindre S (ligne 6). Chaque

chemin susceptible d'atteindre S est enregistré comme une nouvelle clause disjonctive il

l'expression des chemins. Ensuite, le nouveau PE de l'état S devient le CPE (ligne 7).

Chaque clause disjonctive dans l'expression des chemins représente une exécution

différente du chemin menant à I'état S. Enfin, si S est un état de contrôle de flux

(représentant différentes possibilitées, branches...), le CPE est mis à jour par une règle de

modification qui dépend de S. La clause disjonctive et le prédicat de contrôle de

flux(condition du choix multiple) sont finalement ajoutés à I'expression du chemin de

l'état cible (ligne 9 et 10).

2.2.1.3 Le résolveur de contraintes

La dernière étape du processus de génération de vecteurs de tests est de trouver des

valeurs qui satisfont le système de contraintes. GodUlla travaille avec des heuristiques, et

produit rapidement des vecteurs de test quand les contraintes ont une forme simple et plus

lentement lorsque leur forme est plus compliquée. Tout d'abord, un domaine de valeurs

possible est assigné à chaque variable. Théoriquement, ce domaine de valeur dépend du

type de variable et de la machine sur laquelle le programme est utilisé. En pratique,

GodzilIa permet de réduire ce domaine. Par défaut, les domaines de variation des

variables sont initialisés arbitrairement aux valeurs (-100, 1 0) . Cependant, ces valeurs

peuvent être modifiées dans le cas ou le besoin s'en fait sentir. Chaque contrainte dans un

système de contrainte réduit le domaine de variation d'une ou d e plusieurs variables.

Quand le domaine de variation d'une variable est réduit à une valeur, cette valeur fait

partie du vecteur d e test. La variable est alors remplacée par sa valeur dans toutes les

autres contraintes. Si le domaine de variation est réduit à l'ensemble vide, la résolution de

ce système de contrainte est alors impossible. Lorsque toutes les simplifications ont été

faites, et qu'il reste un domaine de plusieurs valeurs, une valeur est choisie. Godzilla

utilise une heuristique qui affecte la variable qui utilise le plus petit domaine de variation,

en espérant que c'est cette variable qui a le moins de chance de rendre le système

infaisable. Ce processus est répété jusqu'à c e que toutes les variables se soient vues

assignées une valeur.

A chaque fois qu'une valeur est affectée à une variable, le domaine d e variation des

contraintes est réduit d'une dimension. Si la valeur est mal choisie, elle peut rendre le

système infaisable. Lorsqu'un système d e contraintes devient infaisable après une

affectation, le processus recommence à partir d u système de contraintes original. Les

expériences ont montrés qu'en moyenne, le processus de réduction de contrainte trouve

une solution e n 4 itérations (avec un maximum de 25). Dans le cas où l'objectif n'a pas été

atteint après 25 essais, on considère que le système d e contraintes ne possède pas de

solutions. Toutefois c e dernier cas ne s'est pas encore produit.

2.3 Opérateurs de mutation

Les opérateurs constituent le noyau du test par mutation. Ces opérateurs sont au

nombre de 22 et ils identifient les modifications syntaxiques responsables des

programmes mutants. Les opérateurs qui sont implémentés dans Mothra sont énumérés au

tableau 2.1.
Tableau 2.1 : Opérateurs de mutation

Opérateurs d e mutation t
ABS

ACR

AOR

ASR

CAR

CNR

CRP

CSR

DER

DSA

ROR

RSR

SAN

SAR

SCR

SDL

SVR

UOI

Description I
Array reference for Array reference Replacement

ABSolute value insertion

Array reference for Constant Replacement

Arithmetic Operator Replacement

Amay reference for Scalar variable Replacement
1

Constant for Array reference Replacement

Comparable array Name Replacement

Constant Replacement ,

Constant for Scalar variable Replacement ,

Do statement
- --

Data Statement Alteration

Goto Label Replacement

Logical Connector Replacement

Relational Operator Replacement

Retum S tatement Replacement

Statement Analysis

Scaiar variable for Array reference Replacement

Scalar for Constant Replacemen

Statement DeLetion

Scalar Variable Re~lacement

Unary Operator Insertion I

2.4 Chaine de validation

La description de la méthodologie de test originalement proposée par l'équipe d u

VALSYS et modifiée par notre groupe est donnée dans la suite de ce paragraphe et est

résumée à la figure 2.4.

Il faut tout d'abord réécrire la spécification VHDL en FORTRAN car MOTHRA ne

produit des mutations que sur ce langage. Cette description doit être comportementale car

il est très difficile d'écrire un code structurel en Fortran. Dans une seconde étape, une

génération de vecteurs de test est réalisée par Mothra. La troisième étape consiste en une

phase d'optimisation qui permet d'augmenter le nombre initial de vecteurs du jeu de tests,

jusqu'à ce que le score de mutation soit satisfaisant. L'étape suivante est une étape de

synthèse. Synopsys est utilisé pour générer une description structurelle du circuit. La

dernière étape consiste à calculer la couverture de faute du jeu de vecteurs généré par

MOTHRA. Pour cela, une simulation de fautes est réalisée avec I'ATPG (automatic test

pattern generator) =O. L'efficacité du jeu de vecteurs de validation produit par Mothra

mesurée à l'aide du score de mutation(voir chapitre I) est comparée à la couverture de

faute obtenue avec la suite de test appliquée à l'implémentation structurelle. L'objectif ici

est de corréler le score de mutation avec une mesure dont le sens est bien établi.

VHOL
Descrlptlon

Comportementalr

Dercrlptlon
Fortran

Cholr d r r mutant- u
Cas de test i

I Score do Mutatlon I

Rbutiiiiitlon du jeu de
vecteurs do tes1 pour

10 caicuf de lm
t o u v a t l ~ r ~ da tamt

Figure 2.2: Méthode de validation de circuits numériques utilisant Mothra

2.5 Validation de la méthode

L'objectif premier de cette section est d'élargir le champ d'expérimentation de la

méthode de test par mutation à des circuits de complexité plus importante que ceux

réalisés à Grenoble. Pour cela, il a été décidé d'utiliser des bancs d'essai de types

différents: petit séquentiel, gros séquentiel et gros combinatoire. Enfin, un circuit a

spécialement été conçu afin de metttre en évidence les atouts et/ou les faiblesses du test

par mutation. Les résultats de la collaboration entreprise entre Monsieur Zoccarato et

notre groupe ainsi qu'une brève description de ces bancs d'essai sont donnés dans la

section suivante.

2.5.1 Description des bancs d'essai.

d a : Le circuit cla est un processeur RISC 32 bits défin; par Hennessy et Patterson. Ce

processeur possède un jeu d'instruction simple, un seul mode d'adressage. un décodage

unique de son jeu d'instruction et une architecture très simple, qui met en évidence toutes

les fonctionnalités du principe RISC. Le jeu d'instruction du processeur RISC possède

avant tout des instructions arithmétiques pour nombres signés et flottants. Mais aussi des

caractéristiques telles que : les interruptions et exceptions, trois différents modes

d'utilisation (utilisateur, superviseur et défaut) et un mode d'adressage supplémentaire. Le

circuit cla permet d'effectuer des additions sur des nombres de 32 bits en calculant la

retenue de manière anticipée.

Edhii: Ce circuit fait parti d'un processeur ancillaire qui insère / extrait des données

dans un signal vidéo numérique exprimé selon diverses normes. Ce circuit sera présenté

de manière plus explicite dans le chapitre 3. Le circuit edhii permet la réécriture des

données provenant du module EDHin. dans les trames vidéo. Un explication plus détaillée

de ce circuit est donnée au chapitre 3.

Sortie: Ce module, comme le précédent, fait aussi partie du module EDH du

processeur ancillaire. Sa fonction est de générer les paquets de sortie.

Mux: Ce circuit a été conçu afin de mettre en évidence des lacunes possibles de

certains algorithmes implémentés dans le système de mutation et les problèmes sous-

jacents à la mutation. Une description plus détaillée de la fonctionnalité de ce circuit se

trouve au paragraphe (2.6.4).

2.5.2 Processus de validation

La démarche adoptée pour valider les 4 circuits mentionnés précédemment est la

suivante :

-Réécriture du programme VHDL en FORTRAN. Il est possible que lors de cette

opération, la structure du programme ou même la structure des données soit modifiée. En

effet, sachant que la définition du ET logique FORTRAN (il en est de même pour le OU

logique) ne correspond pas à la définition du ET logique VHDL, il est absolument

nécessaire de décomposer cet entier en autant de booléen qu'il est nécessaire, ce qui a

pour conséquence d'augmenter de façon non négligeable la complexité du programme.

-Réécriture du

rendre compatible

programme VHDL en un autre programme VHDL de manière à le

avec le programme FORTRAN qui a été généré lors de l'étape

précédente. Cette phase est nécessaire car la structure des données du programme

FORTRAN n'est plus compatible avec celle du programme VHDL, entrahant une

incompatibilité des vecteurs générés par MOTHRA avec la synthèse du circuit réalisé par

SYNOPSYS. Il faut noter qu'il existe une alternative à ce travail, elle consiste à modifier

tous les vecteurs générés par MOTHRA de manière à les rendre compatibles avec la

description structurelle faite par SYNOPSIS. Après que chacun des programmes sources

ait été généré, une mutation non sélective suivi d'une mutation sélective ont été utilisées.

Pour la mutation selective, le score de mutation a été produit à partir des mutants générés

par les opérateurs aor, ror, Icr, abs et uoi.

2.6 Résultats.

2.6.1 Le circuit sortie

Une des premières difficultés, inhérente au fait de traduire la spécification VHDL en

FORTRAN, c'est l'abscence d'utilisation de vecteurs binaires. En effet, il est possible de

définir dans l'entité VHDL des entrées binaires de longueurs différentes (2 bits, 25

bits.. .), chose qui n'existe pas en FORTRAN, puisque les seuls types disponibles sont les

types entiers, booléens,flottunts et double fTottants. Afin de contourner ce problème, nous

avons ajouté au début du programme FORTRAN une condition spécifiant que les vecteurs

binaires ne dépassent pas leurs valeurs entières équivalentes. Ce procédé introduit des

mutants supplémentaires, cependant, afin de ne pas influencer les résultats et le score de

mutation, nous ne chercherons pas à les tuer- Le deuxième problème rencontré a été un

problème d'espace mémoire. En effet, lors de la satisfaction des contraintes générées par

la mutation non sélective, Mothra consomme beaucoup d'espace mémoire et l'utilisation

d'une machine de type 1 (65 Mo de RAM et 118 Mo de swap space) n'est pas suffisante.

Nous avons donc relancé ce même processus sur une machine de type 2 (13 1 Mo de RAM

et 257 Mo de swap space). La figure 2.5 représente la consommation de swap pour la

machine de type 2 lors de la résolution des contraintes (il est clair que 118 Mo ne suffit

pas). Les résuItats du test par mutation sont représentés dans le tableau- Il est à noter que

3793 mutants ont été générés. Le nombre de vecteurs de validation est présenté dans le

tableau 2.2.

Figure 2.3: consommation mémoire pour le circuit de sortie

Bien que la couverture de test soit élevée, le score de mutation lui ne l'est pas, ce

qui tend à révéler que les vecteurs générés par MOTHRA ne sont pas tous adéquats, que

ce soit pour la mutation sélective ou non sélective. Il est cependant possible d'augmenter

ce score de mutation en augmentant le jeu de test de manière à tuer les mutants existant.

Cependant, cet e~chissement manuel s'avère être long et diminue l'automatisation du

test par mutation. Aussi, c'est à celui qui est en charge de la validation (l'oracle) d'estimer

le temps nécessaire à cet enrichissement. Par ailleurs, le circuit de sortie possède une cer-

taine redondance, ce qui réduit le score de mutation puisque le ou les types de mutants non

tués se répètent plusieurs fois. Comme il a été dit précédemment, la couverture de collage

est comparée au score de mutation afin de montrer que les vecteurs fonctionnels produits

peuvent aussi être utilisés pour le test matériel. A titre indicatif, nous pouvons comparer

cette couverture de fautes à celle obtenue par 20 vecteurs de tests générés de façon totale-

ment aléatoire. Le résultat obtenu par ces 20 vecteurs peut paraître très bon, mais il faut

savoir que pour ce genre de circuit, il est très facile d'avoir une couverture 70 à 80%. Il est

par contre beaucoup plus difficile d'obtenir les 20% restants. Concernant le score de

mutation, la différence est plus importante, on peut donc dire pour ce circuit qu'il est

beaucoup plus difficile de tuer un mutant que de détecter une faute de collage.

Tabkau 2.2 : circuit de sortie

Vecteurs générés par Mothra
pour la mutation non sélective
Vecteurs générés par Mothra

~ o u r la mutation sélective
Vecteurs générés

aléatoirement

Nombre de 1 score de 1 Couverture de 1
I vecteurs I mutation I fautes I

2.6.2 Le circuit d'entrée de l'edh

Pour ce circuit, nous avons également été confrontés au problème de la plage de

variation des variables d'entrées, ainsi qu'à celui de l'espace mémoire. Cependant, cette

fois-ci, le fait de changer de machine n'a pas été suffisant . En effet que ce soit pour la

mutation sélective ou non sélective, les machines de type 1 et 2 ne réussissent pas à satis-

faire Ies contraintes générées pour ce circuit. En effet, dans certains cas, le programme

avorte et dans d'autres cas, bien que des mutants aient été générés, aucun vecteur ne fut

construit. La consommation mémoire est donnée à la figure 2.6. Afin de pouvoir effectuer

le processus de mutation, il a fallu réécrire le programme edhii de manière à ce que les

contraintes générés par MOTHRA soient plus simples. La fonctionnalité du programme a

bien évidemment changé, cependant nous essayons par ce " stratagème " de générer des

vecteurs qui puissent tester un maximum de conditions, chemins, valeurs extrêmes et par-

ticulières, de manière à avoir une bonne couverture de fautes. Dans ce dernier cas

l'emphase a été mis sur une augmentation de la couverture de faute comparativement au

score de mutation.

Figure 24: consommation mémoire pour k circuit d'entrée

Le tableau présente un récapitulatif des résultats obtenus. On y trouve le score de

mutation et la couverture de fautes de collage pour des vecteurs générés par MOTHRA

pour la mutation sélective e t non sélective. Les résultats obtenus par le score de mutation,

que ce soit pour la mutation sélective ou pour la mutation non sélective, sont très faibles

(environ 20%). Cela s'explique par le fait que la moitié des mutants générés n'ont pas été

tués. En effet, ce circuit est séquentiel et possède un état interne. Toutes les transitions par-

tant de cet état interne ne peuvent donc pas être tuées. Les scores de mutation sont affectés

par le même phénomène. Une explication plus détaillée sera donnée dans la section 2.6.4.

Tableau 23 : Résultats de sortie pour k circuit d'entrée de I'EDH

Score de Couverture de
vecteurs I Nombre de I mutation I fautes I

Vecteurs générés par Mothra I m u r ia mutation sélective I

Nous avons encore une fois été confrontés à un problème de mémoire, cependant le

système de mutation n'a pas pu générer de vecteurs de test pour ce fichier, que ce soit pour

la mutation sélective ou non sélective. Afin d'obtenir des résultats concluants, 8 fichiers

différents ont été écrits. Chacun de ces fichiers correspond à un circuit de calcul anticipé

de retenu pour des données faisant 4, 8, 12, 16 ,20, 24, 28 et 32 bits. Le seul circuit sur

lequel nous pouvons apptiquer la mutation sélective et non sélective est le circuit traitant

des données de 4 bits. L'application du test par mutation sur ce circuit a donné les résultats

se trouvant dans le tableau 2.4. ïi est à noter que 4420 mutants ont été générés. Le nombre

de vecteurs générés pour la mutation non sélective est de 4046. Ce nombre est énorme,

puisque le nombre de vecteurs nécessaires à un test exhaustif est de 5 12 = z9. Même si la

mutation sélective réduit notablement le nombre de vecteurs générés, on peut dores et déjà

dire que ce type de circuit constitue un véritable problème pour Mothra. II apparaît à

première vue que le grand nombre de variables internes contenues dans la description

VHDL de ce circuit serait responsable des difficultés qu'éprouve Mothra à le tester. Afin

d'expliquer les problèmes rencontrés, une étude sur la complexité algorithmique du

générateur de vecteur est rapportée dans la sous section suivante.

Tableau 2.4 : Résultats de sortie pour le a m i t c h

Score de Couverture de I NzC21A I mutation I fautes I
Vecteurs générés par Mothra 1 4046

m u r la rnu<ation &n sélective I
Vecteurs générés ~ a r Mothra 1 270

2.6.4 Complexité algorithmique

Bien que Mothra soit l'outil de mutation le plus performant, il apparaît évident que ce

système éprouve certaines difficultés pour la validation de circuits VLSI. Afin de

proposer une amélioration à la méthode décrite dans ce chapitre, il a fallu identifier la

source des difficultés éprouvées par Mothra.

Afin d'expliquer les problèmes de consommation mémoire pour certains circuits,

un balayage des algorithmes de Godzilla a montré que les seuls susceptibles d'engendrer

un nombre important d' itérations sont: l'algorithme de réécriture des variables internes en

fonction des entrées primaires et l'algorithme de réduction du domaine de variation des

variables. Ces deux algorithmes ont une complexité proportionnelle au nombre total de

clauses contenues dans le système de contraintes. II n'est cependant pas possible d'éval-

uer précisément le nombre d'itérations nécessaires, car celui-ci dépend de la structure du

programme. On peut simplement dire qu'au maximum, on a une contrainte par état et au

moins une clause par contrainte. Le nombre de clauses peut facilement devenir très impor-

tant. Dans l'unique but de démontrer cette thèse, le nombre de contraintes du programme

MID(voir en annexe B) a été augmenté progressivement. Cette augmentation s'effectue en

augmentant la profondeur d'imbrication des if, tout en regardant l'évolution de la con-

sommation mémoire. Le résultat de cette étude est montré au tableau 2.5, il a suffit de

rajouter 4 if pour que la machine de type 1 n'arrive plus à générer les vecteurs de test.

Tableau 2.5 : Résultats obtenus pour la fonction MID

No* de mitarts
No~&vecteurs
T e p nécesaire à la gériération
des vecteurs de test
Norrkue & clarises du

Ia satisfixtion des GOntzainta I I I I

Mid3
1669
1285

3h 44m 44s

Taille & la swap utilisée lors &

Une deuxième difficulté provient du nombre important de mutants équivalents

augmentant ainsi la complexité du processus de validation et la tâche du concepteur. Ces

mutants équivalents sont par définition des spécifications qui ont le même comportement

que le programme original. Cependant. une hypothèse émise est que le nombre de

mutants équivalents produits par le système de mutation pourrait être dû au fait qu'il n'y

Mid4
2 146
X

incheminé

~ - -

M~i1 Mid2

249

830
454

Oh 43nn 3s

6184 KD

1219
898

1 h l7rm 46s

8 17

223aIK;o

3089 12177

ijfjXMjK0 htotalité

aurait pas de propagation de la faute à l'une des sorties primaires. Afin de corroborer

cette hypothèse, un programme a été construit afin de montrer que la propagation de la

faute vers les sorties primaires n'est pas effectuée. En effet, la justification de la faute est

faite, mais Mothra se contente " d'espérer " que les sorties primaires du circuit révèlent la

présence d'une faute en générant aléatoirement des valeurs sur les entrées qui n'apparais-

sent pas dans les contraintes. Par opposition aux algorithmes de test matériel qui per-

mettent de générer des vecteurs qui justifient et cherchent à propager les fautes. Pour

anaiyser plus en détail la pertinence des vecteurs générés par Mothra, nous avons créé 4

circuits qui représentent un empilement de plusieurs multiplexeurs (cf. figure 2.5).

in0 in1 i n2 inx

Figure 2.5: Casade de mulîiplexeurs

Comme pour le circuit précédent, le nombre de vecteurs générés par Mothra est très

important. Les vecteurs générés pour ce circuit ne propagent pas les fautes comme il est

montré dans le tableau 2.6. Ce phénomène va en s'accentuant si la profondeur du circuit

augmente. Aussi, c'est le grand nombre de vecteurs produits et non la qualité des vecteurs

qui tue les mutants.

Tableau 2.6 : Cascade de Mdtiplexeurs

1 Circu i t s 1 Type d e 1 Entrees 1 N b d e 1 M othra 1 Aléatoire

2.6.5 Conclusion

..
1 M u x

La mutation sélective est loin de donner le score de mutation qui a été obtenu pour

le test logiciel (57.38% contre 99.61% en moyenne), ou même celui obtenu sur les circuits

d'expérimentation sans processus d'enrichissement [2] (95.02% en moyenne). Nous pou-

vons dire la même chose pour le taux de couverture de fautes, dans de moindre proportion

cependant (74.98 % contre 95 96). La seule manière d'obtenir à la fois un bon score de

mutation et une bonne couverture de fautes est de compléter manuellement le jeu de test,

surtout si le circuit testé est une machine à états. En effet, Mothra est incapable de classer

M u tation

Full 3

V ectors

19
MS
100%

MS
96-8 %

les vecteurs de manière à positionner une machine à états sur un état précis, Pour une

FSM, nous avons à la fois des contraintes sur les variables du programme à l'instant

présent, mais aussi sur les variables du/des instant(s) précédent(s), chose qui n'est absolu-

ment pas prévue dans Mothra (cf. circuit edhii)

2.6.5.1 Étude de la puissance des mutants

Le nombre de vecteurs générés est vraiment très impottant (surtout pour la muta-

tion non sélective). Un bon moyen de diminuer ce nombre consiste à utiliser la mutation

sélective. De manière à ne retenir que les opérateurs les plus efficaces, une étude sur la

puissance des 5 opérateurs principaux a été faite. Une fois les opérateurs les plus efficaces

sélectionnés, il faut que mis les uns avec les autres, ils détectent le plus de fautes possi-

bles. Pour chacun des 7 fichiers (sortie, Mux2, Mux2, Mux4, Mux8, Edhii et C1a4) nous

avons appliqué chacun des 5 opérateurs de la mutation sélective. Tout d'abord, on effectue

le lancement du processus de génération des vecteurs de test. Le nombre de mutants

générés est inscrit dans la colonne 1, et le nombre de vecteurs dans la colonne 2. Le calcul

du score de mutation est porté dans la colonne 3. A partir de là, 2 cas sont possibles, soit

les vecteurs sont adéquats, auquel cas nous passons directement à l'étape 4, soit les vect-

eurs ne sont pas adéquats et nous passons à l'étape 3. Une augmentation manuelle du jeu

de vecteurs est réalisée de manière à avoir des vecteurs adéquats (score de mutation de

100% (cf. colonne 5)) afin de ne pas influencer les résultats de cette étude. La colonne 4

représente le nombre initial de vecteurs plus ceux générés manuellement. Le calcul de la

couverture de fautes de collage est porté dans la colonne 6.

Tableau 2 7 : Paissoince des opérateurs

I UOI I

I
-

ROR

Stuckat

96.6%

7 1.4%

83.3%

84.1 %

84.5%

80.8%

100%

1 LCR 1

Sortie

Mux 1

Mux2

Mux4

Mux8

Edhii

C1a4

M. S.

45.8%

1 W o

83.3%

85.7%

7 1.4%

24.1 %

80.4%

Nb vect-
eurs

80

2

4

IO

20

5 1

163

Nb

Sortie

Mux 1

Nb
mutants

420

7

14

28

56

259

O

Nb2
vect,

122

2

5

12

23

57

176

mutants

260

3

r

M . S . 2

100%

100%

100%

100%

100%

55.2%

100%

Nb vect-
eurs

19

1

2

4

8

34

X

Mux2

Mux4

Mux8

Edhii

Cl a4

6

14

28

116

163

M. S .

23.3%

0%

28.6%

35.7%

Nb2
vect.

112

3

5

9

M. S. 2

100%

100%

100%

100%

39.3%

6.2%

Stuck at

93.3%

57.1 %
4

58.3%

93.2%

100%

55.6%

X

14

45

83.3%

79.3%

X X 1 X

Bien que certains mutants permettent d'obtenir des scores de mutation intéres-

sants, on ne peut affirmer qu'un opérateur est plus important que les autres. En effet,

l'opérateur AOR donne de mauvais résultats car aucun des programmes testés ne contient

d'opérateurs arithmétiques. Un meilleur moyen d'étudier la puissance des opérateurs est

d'en montrer la capacité à découvrir des fautes de collages en fonction du nombre de fois

où on le trouve dans le programme ou, le nombre d e fois où les vecteurs couvrent une

région du design. Le test par mutation semble être une solution au problème de la valida-

tion. En effet, cette méthode fournit un modèle qui permet de mesurer à quel point le cir-

cuit a été validé . Il est également intéressant de noter que les mêmes vecteurs sont

Sortie

Mux 1

Mux2

Mux4

Mux8

Edhii

Cla4

100%

X

X

X

X

50%

100%

Sortie

Mux 1

Mux2

Mux4

Mux8

Edhii

Cla4

82.3%

X

X

X

X
q

5 1.4%
i

100%

0%

X

X

X
X

0%

75.5%

ABS

55

X

X

X

X

8

1 07

287

O

O

O

O

112

469

O

X

X

X

X

O

95

Stuck at

87.1%

X

X
X

X

78.3%

97.5%

Nb
mutants

150

O

O

O

O

48

12

M. S.

28.7%

X

X

X

X

16.7%

100%

N b vect-
eurs

42

X

X

X

X

2 0

12

Nb2
vec t.

110

X

X

X

X

28

12

M. S. 2

100%

X

X

X

X
66.7 %

100%

capables de très bien tester le circuit final si toutefois l'on s'est assuré de leur capacité à

tuer les mutants par le score de mutation. Afin de répondre à plusieurs des limitations

identifiées pour un test par mutation avec les outils existants, des opérateurs propres au

langage VHDL. un génerateur de mutants ainsi qu'une nouvelle méthodologie de test par

mutation sont exposés dans le chapitre suivant.

CHAPITRE 3

&THODE SYSTÉMA'MQUE D'ENRICHISSEMENT DE

VECTEURS FONCTIONNELS

3.1 Introduction

3.1.1 Limitations de Mothra pour la validation.

Dans le chapitre précédent, des expériences ont été menées afin de montrer les

différents pièges pouvant découler du test par mutation. Le banc d'essai concernant la

cascade de multiplexeurs (cf 2.6.7) a été choisi afin d'exposer les similaritées existant

entre la génération pseudo aléatoire du modèle de panne bloquée-à I ou O et la suite de

test produite par Mothra- L'outil semble présumer que les pannes se propagent

natureHement à l'une ou l'autre des sorties primaires. Cette hypothèse peut s'avérer

incorrecte avec des circuits ayant un problème potentiel d'observabilité. Par exemple,

dans le cas des multiplexeurs, ce phénomène a considérablement réduit la couverture de

pannes ainsi que le score de mutation. En effet si les entrées de commande de la cascade

sont stimulées avec des vecteurs aléatoires, la probabilité qu'une panne puisse être

observée décroi t exponientellement avec la distance mesurée en nombre de mu1 tiplexeurs

de la panne à la sortie. Cette expérience, dont les résultats sont rapportés au tableau 2.6, a

confirmé pour ce banc d'essai que les tests générés par Mothra pouvaient dans certains

cas n'être guère meilleurs que ceux produits par une génération exhaustive.

Soulignons que dans certains cas, le nombre de vecteurs de test produits par le système de

mutation exède le nombre de vecteurs requis pour une validation exhaustive. Ce problème

n'est pas dû à une limitation du test par mutation. mais à une limitation d e Mothra qui

utilise un procédé de génération de test limité- Afin de répondre à ces limitations, un

certain nombre d e solutions sont proposées dans la section suivante.

3.1.2 Redéfinition de la méthode de validation.

Nous avons identifié trois limites importantes avec la méthode proposée au chapitre 2.

La première découle des traductions du VHDL au FORTRAN imposées par MOTHRA.

La seconde provient de la difficulté à détecter les mutants équivalents. La troisième

découle de l'hypothèse implicite que les différences de comportements se propagent

naturellement à un noeud de sortie observable, sans avoir recours à des actions explicites.

La méthode proposée dans la suite de ce chapitre est d'utiliser le test par mutation comme

un moyen de mesurer l'efficacité d'une suite de tests définie lors de la validation. Avec

cette méthode, nous supposons que les suites de test proviennent de celui qui est en charge

de la validation. L'objectif est de détecter les parties de la fonctionnalité où une ou

plusieurs erreurs de spécification passeraient inaperçues à travers la suite de test- Les

mutants qui ne peuvent être détectés permettent alors d'identifier les imperfections de la

suite de vecteurs de validation. Cela guide le responsable de la validation vers les régions

du design insuffisamment testées. Considérant la difficulté à déterminer précisément les

mutants équivalents, nous avons mis l'emphase sur la possibilité d'éviter de produire des

mutants qui pourraient l'être. Finalement, afin d'empêcher le manque de fidélité dans la

description fonctionnelle associée à la traduction du VHDL au FORTRAN, nous avons

implémenté un outil qui réalise les mutations directement à partir de descriptions VHDL.

Par ailleurs, il a été montré dans le chapitre 1.2.2.8 qu'un ensemble bien défini

d'opérateurs de mutation (mutation sélective) était suffisant afin de déveloper une bonne

qualité de test. De plus, le choix de ce type de mutation réduit sensiblement le nombre de

mutants, ce qui réduit sensiblement la tâche du concepteur. Dans la suite de ce chapitre,

nous présenterons le banc d'essais qui nous a guidé dans le choix des opérateurs de

mutation et l'implémentation du générateur de mutants.

3.2 Description du banc d'essai

3.2.1 Processeur ancillaire.

La puce à données ancillaires possède deux modes de fonctionnement: MUX et

DEMJJX. A ces deux modes se rajoutent plusieurs sous mode de fonctionnement : nor-

mal, bypass, tones, cbar, tones et cbar. Brièvement, le sous mode bypass n'altère en rien le

signal vidéo d'entrée. Les sous modes cbar et tones sont des sous modes de test . Le pre-

mier modifie le domaine actif de l'image alors que le second insère ou extrait(tout

dépendant du mode MUXIDEMLJX) des échantillons audio de 1 KHz. En mode MUX, la

puce doit encoder plusieurs types de données reçues sériellement en paquets ancillaires et

les insérer dans l'espace HANC. Les types de données insérées ou extraites de la trame

64

vidéo sont: audio, time code, RS422 ou GPS. Les paquets ancillaires sont formés de Ia

manière suivante:

Toutes les cellules du tableau sont des mots de 10 bits. Les ancillary Data Flags servent à

identifier un paquet ancillaire. Le DID (Data Identrjication) renseigne quant à la nature

des données présentes dans le paquet. Le DBN (Data Block Number) sert à numéroter les

paquets de 1 à 255. Le DC (Data Count)précise le nombre de User Datu Words que con-

tient le paquet. Les User Data Words contiennent les données sérielles transformées en

DBN

mots de 1 O bits selon un standard défini pour chaque type de données. Le CS (chechm)

est un mot servant à la détection d'erreurs dans le paquet.

CS DC

-

DID Anc Data Fiag

Le signal vidéo entre dans fa puce par le module EDH. Ce dernier est responsable de

l'identification du standard vidéo en présence. Notons que la puce est faite pour traiter les

standards vidéos 4:2:2, 525 lignes, 27MHz; 4:2:2,625 lignes, 27 MHz; 4:2:2. 525 lignes,

36 MHz; 4:2:2,625 lignes, 36 MHz et HDTV. Le module d'entrée doit également recon-

naître les signaux de synchronisation qui permettent de se situer dans le standard vidéo. il

est enfin responsable de la détection des erreurs présentes dans ce même signal d'entrée.

User Data Words

En mode MUX, la puce est responsable du multiplexage des nouveaux paquets ancil-

laires présents dans le signal vidéo d'entrée.

Anc Data Flag Anc Data Flag

En mode DEMUX, le contrôleur reconnaît les paquets ancillaires pertinents et inscrit les

USERS DATA WORDS dans une RAM. Dans les deux modes de fonctionnement, le

module EDH est responsable de I'encodage des fanions révélant des erreurs dans le signal

vidéo d'entrée, ainsi que de I'encodage de certains mots dont il fait le calcul, mots qui

seront utiles aux modules qui recevront ce signal.

3.2.1.1 Module EDH

Le module EDH (ermr detecrion and handling) permet la génération de paquets

ancillaires. L'écriture de ces paquets se fait à des lignes définies par le standard video. Ces

standards sont au nombre de cinq. A savoir:

- 4:2:2 525 lignes à 27 MHz

- 4:2:2 525 lignes à 36 MHz

- 4:2:2 625 lignes à 27 MHz

- 4:2:2 625 lignes à 36 MHz

- HDTV

Le module EDH doit aussi être en mesure d'écrire dans tes trames vidéos les données

provenant du bus ou du module EDHin. Le choix d'une de ces deux entrées est effectué

par le contrôleur du système. Enfin, afin de détecter des erreurs de transmission, le

module EDH doit être capable de générer des codes de vérification (CRCC).

3.2.1.2 Implémentation du CRCCs

L'encodage redondant est une méthode de détection d'erreur qui étend t'information à un

nombre de bits supérieur à celui de la donnée initiale. En général, plus le nombre de bits

redondants utilisés est grand, plus les chances de détecter une erreur dans la transmission

seront grandes. Les normes de télévision numérique prévoient que le codage de cette

redondance est effectué grâce à un CRC (cyclic redundancy codes). Les CRCC(cyc1ic

redundancy code checkers) vérifient les différences entre les données transmises et les

données originales. Lorsqu'on utilise le CRCC afin de vérifier une trame vidéo, cette

trame est traitée comme un long mot binaire qui est alors divisé par un générateur. Cette

division produit un "reste" qui est transmis avec la donnée. A la reception, la donnée est

divisée par le même générateur et le reste est comparé à celui qui a été envoyé. La

comparaison permet ainsi de détecter une erreur qui se serait éventuellement produite

durant la transmission. En général les calculs du CRC sont réalisés à l'aide d'une LFSR

(linear feedback shift register)- Cependant, cette méthode demanderait dans notre cas

l'utilisation d'une horloge trop rapide. Par conséquent, l'utilisation d'un CRC permettant

le calcul parallèle a été préconisé. L'algorithme qui permet de synthétiser ce CRCC est

basé sur la même approche que la LFSR. Le générateur CRC-16 a ainsi été choisi et est

donné en annexe.

3.2.1.3 Implémentation du module EDH

Le module EDH a été réalisé de manière hiérarchique. Il est constitué de cinq sous-mod-

ules:

1. crc active picture: permet les caIculs du crc dans la région active picture.

2. crc fullfield piciure: permet les calcul du crc dans la region fullfield.

3. edhin: permet la réécriture des données provenant du module EDHin dans les trames

vidéo.

4. edhout: génère le paquet ancillaire

5. control: controleur qui commande les deux modules crc.

ENTITE DU M O D U W H OUT

L'entité correspond à la boite noire du sous-système EDH out.

Les signaux d'entrées sont les suivants:

1 . hdtv (pour le signal HDTV)

2. reset (permettant d'initialiser le module)

3. start

4. clk-video (horloge)

5. newpacker (permettant l'insertion de nouveaux paquets)

6. ues, ida, idh, eda, edh (flags d' erreurs)

7. video (signal exterieur codé sur 10 bits)

8. video-c(signa1 video provenant du bus)

9. stand-vidéo (standard vidéo)

1 0. linenumber

11. Le signal de sortie est qout qui est codé sur 20 bits .

Figure 3.1: Architecture de l 'WH

I

O N T R O L E U R
PAQUET
E D H l n

stand-vidco-

l ine-num ber-
I N S E R T I O N
D E S
D O N N E E S
D U B U S

E C R I T U R E
D U P A Q U E T
E D H

LOC D E
A L C U L C R C

La description de chacun des modules a été réalisée de manière comportementde à l'aide

du langage VHDL. La description VHDL est donnée en annexe. Chacun des modules sera

considéré comme un composant.

3.3 Opérateurs de mutation

Afin de pouvoir réaliser la mutation, nous avons adopté la mutation sélective. Nous

avons donc défini un ensemble d'opérateurs spécifiques que nous exposerons dans la suite

de cette section. En effet, le langage VHDL étant différent du Fortran, certaines

fonctionnalités n'ont plus à être prise en compte. On peut citer par exemple les opérateurs

agissant sur les tableaux qui sont :AAR, ACR, ASR, CAR, CNR et SAR , les instructions

do (DER) et goto (GLR), les instructions d'altération de données @SA), l'instruction

return (RSR), les instructions d'analyse des états (SAN) et enfin les instmctions de

remplacement des constantes (SRC). La génération des mutants est réalisée par un

ensemble de programmes de mutation. Ces programmes sont spécifiques au langage

VHDL et ils permettent de coumr tous les chemins, conditions, valeurs limites et régions

de perturbation d'un design. Un grand défi a été d'éviter la génération d'un nombre

important de mutants équivalents, qui augmentent le temps de test et réduisent le score de

mutation, tout en compliquant la tâche du concepteur. En effet, certains opérateurs utilisés

au chapitre 2 créent systématiquement des opérateurs équivalents. O n peut par exemple

citer l'opérateur ABS (insertion de valeurs absolues) qui remplace les expressions et sous-

expressions par leur valeurs absolues. Cependant, ces valeurs sont identiques aux valeurs

initiales dans le cas de vecteurs VHDL non signé (unsigned). Un autre exemple vient de la

traduction en Fortran de vecteurs binaires fixes. La modélisation de ces vecteurs,

inexistants en Fortran, produit quelquefois des entiers ou réels correspondant à la taille

maximale de ce vecteur, augmentant ainsi la limite désirée. Citons par exemple

l'opérateur UOI, qui augmente la valeur supérieure des valeurs entières. Quand

l'intervalle est changé, il est possible qu'aucun vecteur de validation ne détecte le mutant

correspondant, car la limite peut être trop haute.

Les opérateurs VHDL que nous proposons furent définis lors de la conception du

processeur ancillaire(cf 3.2.1.1). Ces opérateurs représentent les erreurs les plus

communes pouvant être faites par les concepteurs dans une spécification VHDL.

3.3.0.1 Programmes de mutation

Un résumé des opérateurs est donné au tableau 3.1. Une description de ces opérateurs

est effectuée ci-dessous,
Tableau 3.1 : Opérateurs de mutation

1 OPERATEUR 1 FONCTION 1
CNR: comparable array
name replacement

CSR: constant for scolar
variable replacement

G RP: generic replacement

Chaque tableau est remplacé par un tableau de même type et de
même dimension présent dans la description VHDL. 1
Chaque variable et signal présent dans le programme VHDL est 1
remplacé par une constante du même type. 1
Simule les mauvaises connexions des modèles- Cet opérateur est 1

SUR: signed unsigned

assez intéressant pour les designs de type structurels.

Teste les vecteurs binaires signés et non-signés.
replacement

VSAR: variable and signal
rep hcement

CLR: constant limit I Teste les limites supérieurs et inférieures des différents registres. Le
replacement même processus est effectué pour les variables. La région de 1

Teste les mauvaises assignations des variables et signaux. Modélise
aussi des erreurs de synchronisation et le mauvais séquencement des

SVIR: signal and variable
initialisation

SSR: state seguencement t

ac lions

modélise les mauvaises initialisations des registres et des variables

replacement

COR: conditional operator
replacement

LOR: loop operator
replacement

LCR: logical rephcemenr

perturbation est elle aussi simulée. 1
Teste la séquence des états dans une machine à états. 1

Substitution de toutes les conditions possibles.

Change la longeur des boucles I
Chaque opérateur logique est remplacé par les autres.

I
LOR: loup operator
replacemenr

Change la longeur des boucles 1

LER: level replacement
,

Teste le niveau & sensibilité des circuits (haut et bas)

CLR: une des méthodes les plus couramment utilisées lors de la validation d'un

circuit VLSI est le test des valeurs limites. En effet on définit des vecteurs qui testent les

bornes supérieures et inférieures et enfin une valeur intermédiaire pour chaque variable.

Afin de reproduire cette méthodologie, on simule le domaine de perturbation de test. Ce

programme teste aussi les conditions aux limites des différents registres présents dans le

design. Afin de réaliser cette modélisation, chacune des constantes déterminant les limites

est incrémentée puis décrémentée. Chaque modification correspond à un programme

unique.

CNR: afin de modéliser l'écriture de données incorrectes dans les registres, cet

opérateur assigne le contenu d'un registre aux autres registres de même type présent dans

la spécification. Chaque modification est unique et correspond à un programme. La

procédure est la suivante: chaque registre est remplacé par un scalaire du même type

présent dans la spécification. Chaque registre est remplacé par une constante du même

type présente dans la spécification. Afin de ne pas créer de mutant équivalent, on ne

replace jamais un registre par lui même.

CSR: chaque variable ou signal est remplacée par une constante du même type.

GRP: Il a été introduit afin de tester les connexions erronnées. Les valeurs des

génériques sont incrémentées. II est intéressant aussi bien pour les designs de type

structurel comme il est montré à la figure 3.4, que pour les descriptions fonctionnelles.

Module 1 Module 2

non connectée

Figure 3.2: Design de type structurel

SUR: teste les valeurs signées et nonsignées. Cet opérateur change la bibliothèque

signé à non signé et vice versa. L'utilité de cet opérateur est apparue lors de l'utilisation

d'un sous ensemble vectoriel par rapport à un vecteur plus grand. En effet, dans l a

validation du processeur ancillaire, nous avons utilisé des nombres signés. A titre

d'exemple, le port d'entrée contenait un vecteur de N bitstdata). Le N""' bit avait l a

valeur 0. Cependant, il n'était pas prévu qu'un sous ensemble de ce vecteur data soit lui

aussi signé. Pour mieux comprendre l'impact d'une telle erreur, considérons le code

suivant:

use iEEE.std-logic-signed.all;

avec:

data :in std-ïogic-vector(d7 downto O);-- bus de donnees

cru-tarnp: =con vJntegerfdata(3 down to O));

La fonction conv-integer permet de transformer en entier un vecteur binaire. Le résultat

de simulation donné par synopsys[20] est donné à la figure 3.5

- - -

FFF FFFF FFFFFFFFF D

- 3 3 3

Figure 3.3: Simulation du fichier original à l'aide de Synopsys.

La valeur desirée était 13 mais en raison du fait que le sous ensemble soit signé on a

obtenu la valeur -3. Suite à une mutation:

-use EEE-std-logic-signed-all;

use IEEE.std-logic-unsigned-an; --mutation

Figure 3.4: Résultat de SUR.

Cette mutation a permis d'identifier I'arnbiguité sur le signe d'un sous ensemble d'un vec-

teur et a permis d'apporter la correction: cur-tamp:=abs(conv-integer(data(3 downto

0)));

VSAR: Cet opérateur permet de mettre en évidence une erreur dans l'assignation des

variables et des signaux. Cet opérateur complémente les valeurs binaires des signaux. Il a

été introduit afin de modéliser les mauvaises initialisations. Cela peut se traduire par une

différence de séquencement dans la machine à état ou par une erreur de synchronisation

dans le design. En effet, supposons qu'une séquence d'actions attend l'arrivée d'un signai

de synchronisation. Si ce signal arrive trop tôt ou trop tard, on aura un mauvais fonction-

nement de la machine. Le programme de mutation a été réalisé en tenant compte des par-

ticularités suivantes:

cas des sianaux ou variables binaires :

On remplace un seul bit par le complément.

ex: a<='O' ; devient a<=' 1 ';

ex: cet opérateur a été utilisé sur le module EDH out du processeur ancillaire. Le pro-

gramme original était:

case pan'te is

when I=> P:='O ';
when 3 => P:='Ot;
when 5 =>P:='Ot;
when others =>P:='I ';

end case;

où le signal parité, suivant sa valeur, affectait une valeur binaire à une variable P. Les

resultats qact (qactû, qactl, qact2) et qouqà la sortie du module EDH sont donnés à la

figure 3.7.:

q a c t O (l 9 0)

gact l (1 n o)

q a c t 2 (1 9 0)

q o u t f (I 9 : O)

Figure 3.5: Sirnuhtion obtenue sans VSAR

Une mutation a été faite sur le programme initial:

case parüe is
when I=> P:='l '; --mutation
when 3 => P:='Of;
when 5 =>P:='O';
when others =>P:='l ';

end case;

La simulation de ce mutant a donné:

Figure 3.6: mutation avec VSAR

q a c t o (l 9 : O)

qecn(i9:o)

b qact2(19:0)

qoutl(l9:O)

Bien que les valeurs dans les divers registres soient différentes, il apparaît clair que la

r

00000 I 52000
1

ooom I mm0
O 0 0 0 0 1 A 2 0 0 0

3 0 0 0 i F F C O O 1 00600 1 38000

valeur à la sortie est la même. Une étude plus poussée a montré que l'erreur produite est

due à un module de sortie (multiplexeur) qui choisit une entrée indépendante des "qact".

Ce qui correspond à l'hypothèse de propagation implicite du test par mutation qui n'est

pas toujours vérifiée.

Dans le cas de valeurs entières

On incrémente puis décrémente la valeur de 1.

SAR: modélise l'assignation à des registres incorrects. Chacun des signaux est rem-

placé par tous les autres signaux de même type dans le programme. Cela se traduit, du

point de vue fonctionnel, à affecter le contenu de registres à d'autres.

ex: on veut a<= data (4 downto O) et on écrit a<= data2(4 downto O).

cet opérateur a été testé sur le programme edh:

for i in 17 do wnto 12 loop
qac t 0(i) <=r3(i- 12);

end loop;
qactO(I8) <= P;
qac f O(l9) <= not(P);
qactO(l1 downto 0)<="000000000000'~

Un exemple de mutation a consisté à changer le vecteur qactO en qact 1:

for i in 17 downto 12 Ioop

qactl (t')<=r3(i-12);
end loop;

qactZ(l8) <= P;
qactl(l9) <= not(P);
qactl(l1 downto 0)<="000000000000";

Le résultat a montré un comportement différent. Cependant, le résultat aurait été autre si

les données dans r3 avaient été toutes égales à O ou à 1. Le mutant aurait alors été un

mutant équivalent. On peut aussi provoquer une mauvaise synchronisation dans le cas ou

l'erreur se produit sur un signal de synchronisation.

SVIR: Cet opérateur modélise une mauvaise initialisation des registres ou variables

Dans le cas binaire

On complémente toutes les valeurs du vecteur binaire.

Dans le cas de valeurs entières

On incrémente puis décrémente de 1 afin de créer une légère perturbation.

SSR: Le but de ce mutant est d e changer l'ordre de séquencement dans une machine à

état. On remplace chacun des états présents par tous les autres états.

on ne rentre
plus dans

Figure 3.7: mutation avec SSR

Cependant, un problème d'espace disque peut se poser si le nombre d'états dans le pro-

gramme initial est important et si le nombre de lignes de code est lui aussi important.

ASR: cet opérateur identifie les effets d'un changement de séquencement des actions

dans un état et donc la dépendance des données.Cet opérateur est utilisé dans les descripti-

ions fonctionnelles de type comportementale où les actions dans chaque état de la

machine à états se réalisent de manière séquentielle. Pour ce faire, l'ordre des actions est

changé dans l'état.

LCR: Chaque opérateur logique and, or, equ, not equ, xor, xnor, nand est remplacé

par chacun des autres opérateurs.

COR: Change les conditions des ifet case par chacune des autres conditions.

Dans le cas d'un if

if cond 1 then action 1
else devient
action 2

if cond 1 then action 2
el se
action 1

si la condition est une valeur binaire on la remplace par son complément. Dans le cas de

valeures non binaires, on remplace chacun des opérateurs <, >, =, >=, <= par chacun des

autres.

Dans le cas d'un case

On remplace les valeurs des when par les autres. Cependant. afin d'éviter de donner 2

choix à l'outil de simulation on intervertit les actions. On échange donc le when ..- de

l'action 2 avec le when ... de l'action 1, ensuite le when ... de l'action 3 avec le when ... de

l'action 1, le when ... de l'action 3 avec le when ... de l'action 2 et ainsi de suite. Cepend-

ant, aucun échange n'est effectué avec le when others, car le langage VHDL spécifie que

cette condion doit être la dernière.

ex:

when "00" => action O when "00" => action 1

when "0 1" => action 1 devient when "O 1 " => action O

when " 10" => action 2 when " 10" => action 2

when "11" => action 3 when " 1 1" => action 3

3.4 Implémentation des programmes de mutation

Dans cette section, nous présentons l'implémentation des programmes typiques de

mutation. Ici' on appèle opérateur l'objet dans la spécification VHDL sur lequel est mené

le processus de mutation. Afin de pouvoir effectuer la mutation, chaque état dans lequel

peut se trouver l'opérateur est encodé. Dans le but de faciliter l'encodage, un diagramme

représentant les états de l'opérateur est déterminé. Une matrice représentant les états et les

transitions de ce diagramme est alors créée. A titre d'exemple la figure 3.10 montre les

transistions d'états pour l'opérateur AOR. qui remplace chacun des opérateurs +, -, * et \

par chacun des autres. La matrice décrivant le diagramme est aussi donnée dans le tableau

3.2. Donnons à titre d'exemple une mutation survenant sur l'opérateur "-". L'état de

départ étant I'état O du diagramme d'état, quand on rencontre l'opérateur "-" dans la

spécification VHDL, on se déplace de I'état O à I'état 1. Ensuite, si le caractère suivant est

différent de "-" alors on retourne à I'état O où I'on procède à la mutation. Dans le cas

contraire, on est en présence d'un commentaire. auquel cas on ne procède à aucune

mutation. Ce cas est codé au moyen de la matrice et est représenté à la première ligne. Si

I'on se trouve à l'état O et la transition est O (représenté entre parenthèse et qui correspond

à l'opérateur "-") on passe à l'état 1. Si I'on se trouve à l'état 1 et la transition est encore O,

on passe à I'état 2 où aucune mutation ne doit être efectuée. Dans le cas contraire le fait de

passer de l'état 1 à l'état O (quelque soit le caractère et autre que "-") permet de réaliser la

mutation.

Figure 3.8: Diagramme d'état pour la mutation AOR

Tableau 3.2 : Codage des états pour h mutation AOR

états
tram
(O) op="-"

Tous tes programmes de mutation ont été décrits en utilisant cette méthodologie.

Dépendant de l'opérateur rencontré dans la description comportementale, le programme

de mutation approprié sera invoqué. Dans la suite. nous expliquerons sous forme de

pseudo code la manière par laquelle chacun des types de mutation est effectuée.

3.4.1 Algorithmes de mutation

Cette section présente en détail les implantations des différents programmes de muta-

tion. Ces implantations ont 6té réalisées en langage C et sont présentés en annexe. La

première étape consiste à encoder chacun des états dans lequel peut se trouver l'opérateur

afin de pouvoir entamer le processus de mutation au bon endroit. Cette matrice permet de

passer de l'ancien état à l'état courant. En effet, afin que la mutation puisse s'effectuer, il

faut absolument que l'état précédent et l'état courant soient représentés dans l'un des états

du diagramme d'état et en accord avec le séquencement établi par ce diagramme. Prenons

l'exemple du programme de mutation AOR de la figure 3.8. La mutation ne s'effectuera

dans le cas de l'opérateur "-" que si l'état courant est O et l'ancien état est 1. La seconde

étape consiste à ouvrir le fichier sous test et à effectuer la mutation suivant l'opérateur

rencontré. Le détail de ces implantations est donné ci-dessous.

CLR: Le pseudo-code est donné à la figure 3.9. La première étape consiste à encoder

les états. Ensuite, si l'opérateur rencontré dans le fichier original est un entier, on crée le

mutant en incrémentant la valeur limite de 1 et en recopiant le reste du fichier. Aucune

autre modification n'est apportée pour ce mutant. En effet chaque mutant correspond à

une panne de conception unique. Un autre mutant. c'est-à-dire une autre spécification

VHDL, est créé en décrémentant la valeur limite inférieure de 1. Dans le cas de "range",

un mutant supplémentaire est créé en décrementant(si différent de O) la limite inférieure.

- - C o d e r les t t a t s
i n t d i a g r - t t r i s [T R A N S I T I O N] [S tace]= (

/ * n e x t - s t a t e * /
/ * t r a n s i t i o n s * 1 .0.0.0.0.0.0.0.0.9.1 1 .I 1 .O.

0.0.0.0.0.0.0.0,0.9.1 1 .I 1 .O, // m a r r i c e d e c o d a g e d e s i t a l s
0.0.0.0.0.0.0.0.9.9.1 1.1 1 .o.

0.0.0.0.0.0.0.0.0.0 .I 1.1 2 . 0) ;
i f ((M O = fopen (' bench .vhd1 ' . " r R)) ! = N U L L) / / o u v e r r u r c d u f i c h i e r s o u s r c s t
ncxc-s ta te= d i a g r - e t a t [t r a n s i t i o n] [s ta te] ;
s w i t c h (s t a t c)
case o p c r a t o r s ta te :
W h i l e (! = E O F (b e n c h)) / / o n p a r c o u r t l e f i c h i e r d a n s s u g l o b a l i r é

(
I f (o p = = (i n t e g e r l l b o o l c a n)) / / s e l o n q u e l a v a r i a b l e à m u r c r e s r u n e n t i e r

O p e n the m u t a n t i // o u v e r t u r e d u m u r a n r
A d d + 1 f o r t he m u t a n t i / / l a v a r i a b I e r s r i n c r é m e n t é e
C l o se t he m u t a n t i / / o n f e r m c l c F i c h i e r m u r a n r
S u b - 1 f o r t he m u t a n t i + + // u n a u t r e m u r a n r e s r c r i é e n d i c r i m e n r a n r l a

r ra r i a b l e
C l o s e t h e m u t a n t i + +

E I s e (o p = = ' r a n g e ') / / s i l a v a r i a b l e à m u r e r e s t u n i n r e r v a l l c
I n c r c a s e the l i m i t // o n a u g m e n t e I c s l i m i r e s i n / é r i c u r c s e t s u p é r i e u r e s
P u t i n n e x t m u i a n t i + + // m u r a n t s c o r r e s p o n d a n r ù c e s nouvelles l i m i r e s
C l o s e t h e n c x t m u t a n t i++
D c c r c a s e t h e l i r n i t / / o n d i m i n u e l e s l i r n i r e s i n f i r i e u r c s
P u t i n n e x t m u t a n t i++
C l o s e t h e n e x t m u t a n t i + + }

e r s u p i r i c u r e s

Figure 39: Pseudo code pour la mutation CLR

CNR:

Le pseudo-code est donné à la figure 3.10. La première étape consiste à encoder les

états. Ensuite, si l'opérateur rencontré dans le fichier original est un tableau on ajoute ce

tableau à ceux du même type. Ensuite on créé les mutants en remplaçant le tableau d'un

type par tous les autres du même type.

C N R : e a c h a r r a y i s r c p l a c e d b y a11
p r o g r a m .

C o d e r l e s t t a t s / / d i f i n i t i o n d e l a
O u v r i r la s p e c V H D L
W h i I e (b e n c h ! = E O F) / / p a r c o u r i r la
{
S i u n t a b l e a u e x i s t e

(
P o u r t o u t le f i c h i e r

A j o u t e r le t a b l e a u a c e u x d u m ê m e

s a m e t y p e a n d d i m e n s i o n a r r a y in t h e v h d l

m a t r i c e d ' i r a rs

s p é c i f i c a t i o n V H D L

t y p e e x i s t a n t ;
1
I f (d i m e n s i o n (a r r a y (i)) = d i m e n s i o n (a r r a y (i + 1))) // si 2 r e g i s t r e s d e m Z m t y p e

t
R e m p l a c e r a r r a y (i) p a r a r r a y (i + 1): / / r e m p l a c e r u n r e g i s t r e p a r u n

I + + ; / / a u t r e d u m i m e t y p e
1
1
1

Figure 3.10: Pseudo code pour b mutation CNR

CSR:

Le pseudo-code est donné à la figure 3.11. La première étape consiste à encoder les

états. Ensuite, si l'opérateur rencontré dans le fichier original est une variable, on l'ajoute

à la liste des variables du même type. Le même processus est réalisé pour toutes les con-

stantes présentes dans la spécification VHDL. Enfin, pour toutes les constantes de type

identique à ceux des variables, on crée des mutants en remplaçant les variables par des

constantes. Chaque remplacement cré un mutant unique.

Coder les états de I'opérateur
Pour fout le Fichier

IN variable)
Mettre dans buffer-variable
End ifi
I~constunt}
Mettre dans const-buPr;
End <%:
Pour toutes les constant (i)
iff type{buffer-variaMe(i}) =type(bufler-const(i+I)))
Replacer buffet-variabldi) by buffet-const(i+l);
End ifi
1

Figure 3.11: Pseudo code pour h mutation CSR

GRP

Chaque mutant est créé en incrémentant les valeurs génériques de un. Le processus

est réitéré mais en décrémentant cette fois la valeur de un.

SUR

Le pseudocode est donné à la figure 3.12. La première étape consiste là aussi à

encoder les états. Ensuite, un mutant est créé suivant la librairie signed ou unsigned. Si la

librairie est signed (ou unsigned) le mutant est créé en remplacant cette librairie par

unsigned (signed). Chaque remplacement crée un mutant unique.

If (library signed)
Modifier cette librairie par unsigned
Efse

Modifier par signed
End #

Figure 3.12: Pseudo code poor la mutation S U R

SSR:

Le pseudo-code est donné à la figure 3.13. Après que le codage des états ait été

effectué, chaque mutant est créé en effectuant une modification unique dans le sequence-

ment de la machine à état. La modification consiste à remplacer un des états de la machine

à états par un autre.

C o d e r l e r érars d e f ' o p é r a e u r

rn e t t r e les é r a t s d a n s t a m p - s r a t e :
w h i l e (t a m p - s t a t e - I ! = n u I I)
(

w h i l e (o r i g i n a i (nexr -srare) != n c w s t a r e)
r e p l a c e r n e r f - s t o r e p a r n e w s i a r e ;

end if;

Figure 3.13: Pseudo code pour la mutation SSR

LCR:

Le pseudo-code est donné à la figure 3.14. Après que le codage des états ait été effec-

tué chaque mutant est créé en remplacant les opérateurs logiques présents dans le pro-

gramme VHDL par tous les autres opérateurs logiques xor, and, or, nand et xnor. Chaque

remplacement constitue un mutant unique. Cependant afin de ne pas produire de mutants

équivalent on ne remplace jamais l'opérateur par lui même.

I f (o p = = a n d) // si I 'opkrateur e s t u n a n d

f o p e n f m u r a n t i); // crkat ion d'un m u t a n t
r e p l a c e r o p p a r x o r ;
f e r m e r m u t a n t i;
r e p l a c e r o p p a r o r
f e r m e r m u t a n t i + + ;
r e p l a c e r o p p a r xnor
f e r m e r m u t a n t i + + ;
r e p l a c e r o p p a r n a n d ;
f e r m e r m u t a n t i + +;
1
e l s i f (o p = = x n o r) // si l ' opéra teur e s t u n x n o r
..- .
E l s i f (o p = = o r) // si l ' opéra teur e s t u n o r
-. .
e l s e f n a n d) // si I 'opkrateur e s t u n nand
. - -
e n d ;

Figure 3.14: Pseudo code pour ia mutation LCR

VSAR:

Le pseudo-code est donné à la figure 3.15. Après que le codage des états ait été effec-

tué, chaque mutant est créé en remplaçant les opérateurs binaires présents dans le pro-

gramme VHDL par leur complément. Chaque remplacement constitue un mutant unique.

C o d e r les états d e s opérateurs
Iftop = = binary) // si c ' e s t un vec t eur
T r o u v e r la dimension
F o r al1 dimension
C r é e r mutant
Complernenrer un b i t

Me t r re le c o m p l e m e n i d a n s le murant
End fo r

E lse

Decrease the operator fo r mutan t i;
Increase fo r mutant i+ 1 ;
1
end if;

Figure 3.15: Pseudo code pour la muîation VSAR

35 Implémentation C

Cette mise en oeuvre traduit en langage C les différents programmes de mutation

donnés dans la section 3.4.1. L'ensemble des programmes est donné en appendice. Tout

d'abord, le fichier d'entrée qui est le programme sous test ou plus particulièrement le

programme VHDL est ouvert en écriture à partir de l'instruction MO = fopen('lfichier-

sous-test.vhdl", "r"). Ensuite une variable nommée C est définie afin de positionner un

pointeur sur les différents caractères constituants le programme W L . Suivant Les

caractères rencontrés, le pointeur C positionnera les transitions de la matrice de codage à

des valeurs définies par cette dernière. Prenons par exemple le cas de l'opérateur LCR, qui

selon que le caractère soit a, n, d, O, r et x mettra la transition respectivement aux valeurs

0, 1,2,3,4 et 5. Cependant, puisque le langage VHDL ne fait aucune différence entre les

majuscules et les minuscules, la valeur de la transition sera la même pour une minuscule

et une majuscule, Pour ce dernier cas les instructions seront de la forme:

switch(C)
{

case 'A':
case 'a': transition = 0;

break;
1

Le programme VHDL est parcouru dans sa globalité par l'instruction while

((C=fgetc(MO))!=EOF) qui permet au pointeur C de s'incrémenter tant que la fin du

fichier n'a pas été atteinte. Ensuite le couple d'instructions

ancien-etat=etat-courant;
etat-courant = diagr-etat-lcr[tmnsition][etattcourant];
switch(etatatcourant)

case ...:
switch(ancien-etat)

case:

permet dans le cas où on se trouve dans un des diagrammes d'états définis comme dans la

section 3.4 d'éffectuer la mutation. Chacun des mutants qui sont en fait d'autres

programmes VHDL sont alors construit au moyen des opérations suivantes:

MI = "w ");
compteur-lcr + +;
sprin fllcr-chaine 1, "Mut-lcr%d, compteur_lcr);

Le compteur permet de calculer le nombre de mutants créés. Puisque chaque mutant

correspond à une unique faute, il faut qu'un programme VHDL soit créé à chaque

présence d'un état suceptible d'étre muté dans la version originale. Cela est réalisé de la

manière suivante. On commence par pointer l'endroit dans le programme où la mutation

est réalisée au moyen de l'instruction pos =fielZ(MO);

On recopie dans un fichier tampon toute la fin du programme original VHDL et ceci

depuis la position du pointeur donnée par la variable pos. Ceci est réalisé par les

instructions suivantes

while ((c=fgetc (MO)) !=EOF)
(

f p u t c (c , M Z) ;
if (c=='\r8)
fputc('\nD.Ml);

1
f cl ose (Ml) ;

La même opération est effectuée pour la copie du début du fichier au moyen des

instructions données à la page suivante

fseek (MO, 0.0) ;
whiïe (((c=fgetc (MO)) !=EOF) && (ftell (MO) c=pos) l

(
for (i=O; i c = 4 ; i ++)

(
fputc (c, tamp-chaineLi]) ;

1
1

L'instruction fseek permet de replacer le pointeur au début du fichier original VHDL, alors

que les autres permettent d'écrire le début d u code VHDL dans les programmes mutants

identifiés par tamp-chaine. On procède ensuite à la mutation proprement dite. Citons par

exemple dans le cas de l'opérateur SWR où le remplacement de == par >. <, >= et /=

s'effectue au moyen des instructions

fputs (" c= " , tamp-chaine [O]) ;
£pute('>', tamp_chaine/l]);
fputs (">=", tamp-chaine [S]) ;
fputs ("/=", tamp_chaine[3]) ;
fputc ('-= ', tamp_chaine/4]) ;

Finalement la copie de la fin du fichier qui se trouve dans le tampon mentionné

précedemment est ajoutée à la suite de chacun des mutants au moyen des instructions

M1 = fopen ('mut- tampon-cor ', "r ') ;
w h i l e ((c=fgetc (Ml)) !=EOF)

{
for(i=O;i<=4;i++)
fputc (c, t-chaine [i 1) ;

1
/ / f in de l a reecri ture

MI correspond au pointeur du tampon. Finalement il ne faut pas oublier qu'une mutation

peut se réaliser à plusieurs endroits dans le programme sous test et que chacune de ces

mutations doit résulter en un programme unique. Aussi, cela est réalisé en remettant le

pointeur Cà la position courante (fseek(M0, pas , 0)). Le fait que le pointeur soit remis à la

position précédant la position dans chacun des ancien-etat permet, suite à la découverte

d'un nouvel état mutant, d'ouvrir un nouveau mutant et de procéder à une nouvelle

mutation. Chacun des programmes de mutation a été réalisé de la manière expliquée

précedemment. La production de mutants ne demande pas beaucoup de temps. Le temps

de calcul dépend de la taille du programme VHDL à tester et surtout du nombre de

mutations ou de variables sur lesquels doivent s'effectuer la mutation. Une grosse

contrainte vient aussi du fait que la mutation peut parfois fournir un nombre important de

mutants ce qui implique un espace disque très important. Ceci peut devenir probématique

si une description VHDL initiale contient 50000 lignes de code, comme c'est le cas pour

la puce multiprocesseurs PULSE ou le processeur à données ancillaires.

3.6 Algorithme final de mutation

L'algorithme de la figure 3.16 présente en détail le processus de génération des

mutants, ainsi que la méthodologie adoptée pour la validation de circuits numériques par

mutation.

1 oui

Figure 3.16: Test par mutation et génération de mutants

Tout d'abord. une définition des objectifs est effectuée. Cette définition est importante,

puisqu'elle détermine le nombre de fois ou le processus de mutation est réitéré afin de

faire échouer les mutants restants. La première étape consiste à simuler la version

originale du programme VHDL avec les vecteurs fonctionnels fournis par le concepteur et

à enregistrer la sortie dans une base de données. Cette simulation fonctionnelle est

réalisée à l'aide du simulateur VSS de Synopsys[20]. La seconde étape consiste à amorcer

le processsus de mutation. Un inventaire des différents opérateurs se trouvant dans la

spécification du programme permet de choisir parmi les différents programmes de

mutation. Après qu'un programme ait été choisi. le prcxessus de mutation est lancé. Le

pointeur de position est mis au début du programme VHDL. Dès qu'un opérateur est

trouvé, la position du pointeur est enregistrée. Le Mutant spécique à cet opérateur est alors

créé en transformant l'opérateur et en recopiant de manière identique le reste du

programme. Afin d'être exempt de fautes syntaxiques, le mutant est vérifié à l'aide de

Synopsis. Le mutant est à son tour exécuté avec le même jeu de vecteur de validation qu'à

la première étape. La sortie du mutant est enregistrée dans une base de donnée des sorties

mutantes. Une comparaison des bases de données de sorties mutantes et du fichier original

est entreprise. Si la comparaison révèle une différence de comportement entre les deux

bases, le mutant est considéré tué et est retiré du processus de validation. il faut remarquer

qu'il est aussi judicieux d'arrèter la simulation dès qu'une différence de comportement est

enregistrée. Cependant cet objectif nécessiterait de concevoir notre simulateur, ce qui ne

s'avérait pas nécessaire pour les petits circuits d'essai testés, Le pointeur de position est

alors incrémenté jusqu'à ce qu'un autre opérateur de mutation soit trouvé. Lorsqu'un

nouvel opérateur est trouvé, le processus de génération de mutants est réinitialisé. Ce

nouvel opérateur est alors muté suivant les programmes de mutation donnés dans la

section 3.4. Le nouveau mutant est alors simulé avec le même jeu de vecteurs de

validation et une comparaison des bases de données de sortie du nouveau fichier mutant

et du fichier original est réaiisée. Si la comparaison montre une différence de

comportement entre ces différentes bases de données de sorties, le mutant et ses résultats

de simulation sont encore effacés du processus de validation. Dans le cas contraire, le jeu

de vecteurs de validation doit être augmenté. Après enrichissement du jeu de vecteurs, le

fichier original est simulé à travers les nouveaux vecteurs et le résultat est gardé dans une

nouvelle base de données de sortie. Les mutants non tués sont eux aussi exécutés à travers

le nouveau jeu de vecteurs. Le processus de validation est alors réitéré jusqu'à ce que le

but fixé au début du processus soit atteint ou qu'il n'y ait aucun mutant vivant. II est à

noter que la génération des mutants est réalisée tant que toutes la description VHDL n'a

pas été couverte. Le score de mutation est alors calculé à partir de la formule donnée au

paragraphe 1.2.2.4.

3.7 Résultats

Les améliorations apportés par ce nouvel algorithme en comparaison de ceux

rapportés au chapitre 2 sont significatives. Une étude menée sur quatre opérateurs a

permis de montrer que certains aspects négatifs de la méthode originale ont pu être

96

résolus. L'étude a portée sur les opérateurs UOI. COR, LCR et ABS définis dans Mothra.

Les résultats de cette étude sont présentés aux tableaux 3.3.

L C R

N / A : nor a p p l i c a b l e

A B S

N / A : n u i a p p l i c a b l e

Tableau 3 3 : Comparaison des algorithmes de validation par mutation

Le nombre de mutants M U N , le nombre de vecteurs de validation ainsi que le score de

mutation produit par Mothra, MS, sont rapportés dans ces tableaux. Des résultats

similaires obtenus avec l'algorithme présenté à la figure 3.18 sont rapportés sous les

acronymes suivant Mut2Nb, VectîNb et MS2. Un premier résultat très important est une

réduction significative du nombre de mutants. Cette réduction se traduit par une

diminution de la tâche du concepteur dans le cas de mutants équivalents. Cette réduction

est due à la fois au fait que la mutation s'effectue directement sur le programme écrit en

VHDL et au fait qu'aucune mutation n'est entreprise sur ies valeurs de l'entité. Afin de

supporter ces observations, prenons l'exemple du multiplexeur de l'exemple 3.1 1 tiré du

processeur ancillaire.

exemple 3 -6.1

case sel1 is
when 'O4=>

qout <= inl;
when others =>

qout <= in2;
end case;

case sell is
when ' I '=> --mutation

qout <= inl;
when others =>

qout <= in2;
end case;

Dans cet exemple un seul mutant a été généré avec l'algorithme présenté dans ce chapitre,

comparativement à trois avec Mothra pour l'opérateur UOI. Cette différence est due au

fait que la seule mutation effectuée est réalisée sur la valeur binaire de sell. Aucune

mutation n'est réalisée sur les valeurs des signaux présents dans l'entité. En effet, le but de

la méthode est de valider un design aussi, nous ne touchons aucunement au contenu des

signaux présent dans l'entité. Il ne faut pas oublier que ce rôle est donné aux vecteurs de

validation. La complexité de Mothra est donnée par:

Mutnb = nb

est réduite à

Mutnb2 = nb - E + (C- 1)

où

nb est le nombre de signaux ou variables présents dans la spécification VHDL.

E représente tous les signaux ou variables présents dans l'entité.

C représente le nombre de conditions (case or if).

Remarquons que C est en général plus petit que nb car le nombre de signaux augmente

avec le nombre de conditions. Comme il a été mentionné au début de ce chapitre, la

réduction du nombre de mutants est aussi due au fait qu'on ne fait plus de traduction de

VHDL e n FORTRAN . Dans le but de montrer l'impact de la traduction, citons par

exemple le module de sortie de I'EDH qui est composé de plusieurs vecteurs binaires.

Chacun des vecteurs doit être décomposé en booléen. Prenons le cas de l'exemple donné

ci dessous.

exemple 3.4.2

case stand-video is
rvhen "000"

le vecteur est remplacé par

((stdl . eq. O)and(std2. eq. 0)and. (s t d . eq. O)).

Sachant que dans le cas de l'opérateur COR, Mothra remplace chacune des occurences

LT, LE. GT, GE, EQ, NE par toutes les autres, le nombre de mutants se trouve

considérablement augmenté. Les mutants survivants après tout le processus de validation

sont en grande partie dûs à une non propagation de la faute à l'une des sorties primaires.

Cela résulte en un regroupement de fonctionnalitées provenant d'un module qui semble

indépendant. Une grande difficulté qui a surgit a été le test du niveau de validité d'un

signal. En effet ce test produit souvent un mutant équivalent, car la fonctionnalité, si I'on

fait abstraction du moment de validité, est souvent la même. Le gain amené dans la

méthode d'enrichissement des vecteurs de validation est très important, car elle permet

d'identifier des parties de design incomplètement testées plutôt que d'avoir recours à un

générateur aléatoire de vecteurs comme il est fait dans Mothra. Le recours à ce générateur

aiéatoire ne nous permet pas de savoir ce que I'on a testé.

CONCLUSION

Dans ce mémoire, nous avons introduit le concept du test par vérification formelle ainsi

que les méthodes traditionnelles de vérification par simulation. Nous avons montré les

difficultés rencontrées lors de l'utilisation d e ces deux méthodes. Bien que

conceptuellement différentes. ces méthodes ont pour but commun de prouver qu'un

circuit donné respecte bien les spécifications du concepteur. Nous avons montré les

limitations des méthodes de simulations e t des méthodes formelles.

Le premier chapitre débutait par une présentation des méthodes formelles ainsi que des

outils utilisés afin d e prouver l'exactitude d'un circuit. Ce chapitre montrait à la fois

I'utilité de ces méthodes e t leurs limitations. Ce chapitre s'est poursuivi par une

présentation du test logiciel et plus particulièrement du test par mutation. Les principes du

test par mutation, la génération des mutants, ainsi que la classification de ces mutants ont

été exposés afin d e permettre à l'usager de comprendre la méthode de validation par

mutation. Finalement, une description des différents types de mutation a permis de

motiver le choix de l a méthode de mutation sélective.

Le deuxième chapitre a présenté une méthodologie de validation de circuits numériques

utilisant le principe du test par mutation. Ce chapitre a commencé par la définition du

système de mutation Mothra ainsi que la chaîne de validation. Nous avons fait ressortir

des similitudes importantes entre le test par mutation et le test matériel. En effet, il est

primordial qu'une justification suivie d'une propagation soit réalisée afin de détecter une

erreur de conception. Le test par mutation a tendance à produire un nombre important de

mutants aussi, l'utilisation de la mutation sélective a permi de réduire ce nombre de

mutant tout en gardant un score de mutation important. Il est également intéressant de

constater que les vecteurs produits par le système ont pu être utilisés afin de procéder à un

test matériel.

Le troisième chapitre présentait le banc d'essai qui a permis de déterminer les opérateurs

de mutation. Ces opérateurs sont loin d'être exhaustifs et peuvent être augmentés. La

première amélioration apportée dans ce chapiîre a été la définition d'opérateurs

spécifiques au VHDL et la définition d'un générateur de mutants travaillant directement

sur une spécification VKDL. En effet, il a été montré que la traduction de VHDL en

FORTRAN présentée dans le chapitre deux introduisait une augmentation du nombre de

mutants. Par ailleurs, cette traduction ne permet pas de dire que l'on a validé la

spécification initiale du concepteur, mais plutôt que l'on a validé une version en principe

équivalente et non exempte d'erreurs, Bien que le choix de la mutation sélective permette

de réduire de manière significative le nombre de mutants, diminuant ainsi la tâche du

concepteur lors de la validation, ce nombre demeure important. Le processus

d'enrichissement peut se révéler long et pénible si l'objectif est d'obtenir un score de

mutation de l'ordre de 100%. En effet, un grand nombre de mutants peuvent être des

mutants équivalents. Par ailleurs, il est très difficile de prouver qu'un mutant est

équivalent, car i l faudrait dans certains cas procéder à un test exhaustif ce qui n'est

généralement pas possible. Bien que cette méthode nous paraisse intéressante vis à vis du

problème de la validation, il est important de souligner les limitations qui lui interdisent

une utilisation immédiate et fréquente sur des circuits de taifles importantes. Le principale

problème est la systématisation du jeu de test devant être effectué afin de tuer les mutants

survivants. En effet, systématiser ce processus revient à réaliser un algorithme permettant

ta propagation d'erreurs à l'une des sorties. Cependant cela consisterait à connaître à

l'avance le chemin que devrait prendre les données de test ce qui n'est évidemment pas

faisable puisque dans le cas de la validation, on parle d'une fonctionnalité. On pourrait

aussi générer un nombre important de vecteurs dans le seul but de tuer les mutants

survivants. Malheureusement, le processus de test pourrait augmenter car il faudrait

ensuite identifier la fonctionnalité de chacun des vecteurs efficaces. Le second problème

vient de la génération du nombre de mutants. Bien que le choix des mutants soit effectué

avant de lancer la génération des mutants (voir chapitre 3) et que le nombre de mutants

soit considérablement réduit (tableau 3.3)' il est bien évident que ce nombre demeure

encore trop important. Il a été suggéré d'utiliser la mutation sélective afin d'éliminer les

opérateurs de mutation responsables de la génération du plus grand nombre de mutants.

Dans le chapitre 3 une alterenative a été utilisé. Plutôt que d'éliminer uniquement les

opérateurs de mutation responsables du plus grand nombre de mutants. il est aussi

intéressant de les choisir sélectivement en fonction de leur capacité à tester le circuit. Le

nombre de mutants demeure quand même très important. II serait donc interressant de

montrer une certaine redondance chez certains opérateurs e t donc de les éliminer du

processus du test par mutation. Le choix des opérateurs de mutation pourrait aussi être

réaliser en fonction du nombre de fois où l'état responsable de la mutation apparaît dans le

code VHDL. Enfin, il est très difficile de prouver qu'un mutant est équivalent. En effet

afin de réduire le processus de validation, un grand nombre de mutants survivants sont

déclarés équivalents alors qu'ils peuvent être tués manuellement. Pour conclure, il est à

souligner qu'en plus de tenter d'enrichir une suite de test e t donc, guarantir une meilleure

validation, le test par mutation tente non seulement de mettre à jour d'éventuelles erreurs

dans un circuit, mais aussi leurs abscences.

Il pourrait être intéressant dans des travaux futurs de tenter d'augmenter l'ensemble des

opérateurs d e mutation. En effet les opérateurs définis dans ce mémoire sont loin d'être

exhaustif* L'auteur pourrait alors constituer un véritable dictionnaire de bogues. Le

phénomène de redondance pourrait être aussi prouvé afin d e réduire le nombre de

mutants. Enfin une forme d'ATPG (automatic test pattern genentor) propre à la

vérification pourrait être réalisé afin de tuer les mutants survivants et réduire les "faux"

mutants équivalents. On pourrait dans ce dernier cas définir un générateur aléatoire dont

la plage de variation des valeurs d'entrées seraient donnée par l'utilisateur.

BIBLIOGRAPHIE

[l] P Marriot, 1. Kraljic and Y. Savaria ParaIlel Ultra Large Scale Engine, SIMD Archi-

tecture For Real-tirne Digital Signal Processing Applications. ICCD 98.

[2] 2. Boukari et P. Vado. Conception d'un simulateur C pour une puce multiprocesseurs.

[3] C. Berthet. Vérification Automatique de Circuits de Transistors VLSI. Thèse de

Philosophae Doctor. Informatique et recherche opérationnelle. 1987

[4] R. E. Bryant. Graph-Based Algorithms for Boolean Function Manipulation. IEEE

Transactions on Cornuuters. C-35(8):677-69 1, August 1986.

[SI E.M. Clark, E. A Emerson, and A.P. Sistla. Automatic verification of finite state con-

current systems using temporal logic specification. ACM transactions on P r o p m -

ming Lanmage and svstem, 8(2):244-263(April 1986).

[6] M. Fitting. First Order Logic and Automated Theorem Proving. S~in~er-Verlag,

1990.

[7] Gordon, M. & Melharn, T. F. (1993), Introduction to HOL: A Theorem proving envi-

ronment for higher order logic, Cambrid e University mess.

[8] Timothy A. Budd, Richard J. Lipton, Frederick G. Sayward, and Richard A. DeMillo.

The Design of a Prototype mutation System for Program Testing. In Proceedings of

the National Cornputer Conference, pages 623-627, Anaheim, CA. June 5-8 1978.

The Association for Com~uting Machinerv. AFIPS Press, Montvale, NJ. Vol. 47.

[9] Myers G J, The Art of Software Testing, Wiley, NY, 1979.

[IO] Howden W E îùnctional prograrn testing, IEEE Transactions Software Eng section

6(2) 162-169, 1980.

[Il] R. A DeMillo, R. J. Lipton, and F. G. Sayward. Hints on test data selection: Help for

the practicing programmer. IEEE Computer, 1 1 (4):34-4 1, April 1978.

[12] W. M Craft. Detectin~ eauivalent mutants usinn compiler o~timization techniaues.

Master's thesis. Departement of Computer Science, Clemson University, Clemson

SC, 1989. Technical Report 91-128.

[13] A. Jefferson Off& and William Michael Craft. Usinp Corn~iler O~timization Tech-

niaues to Detect Eauivaient Mutants. Technical Report 92-102, Departement of

Information and Software Sysrem Engineering, Goerge Mason University, Fairfax,

VA, November 1992.

[14] R. A. DeMillo, A, 1. Offut. Constraint-Based Automatic Test Data Generation. IEEE

Transactions on Software En~ineering, 17(9): 900-910, September 199 1.

1151 D. Baldwin and Frederick G. Sayward. Heuristics for Determining Eauivalence of

Pronram mutations. Research Report 276, Departement of Computer Science, Yale

University, New Haven, Cï, 1979.

[16] 1. Koo. mutation test in^ and Three Variation-November 29, 1996.

1171 W. E Howden- Weak mutation Testing and Completeness of Test sets. IEEE Transac-

tions of Software Engineering, vol. SE-8.NO. 4,73 1-379 July 1982.

[18] A. T. Acree. mutation Analysis. Technical report GIT- ICS-79/08, School of infor-

mation and Com~ute r Science. Geornia Institute of technolo~y, Atlanta GA, septem-

ber 1 979.

[19] T. A Budd. mutation Analvsis of Pro~ram Test Data. PhD thesis, Yale University,

New Haven CT, 1980.

[20] A. J. Ofîùt. Investigations of the software testing coupling effect. ACM Transactions

on Software Eneineerine: Methodoioey. l(l):3- 18, January 1992.

[21) A.J. Offut, G. Rothermel, and C. Zapf. An Experimental Evaluation of Selective

mutation. International Conference on Software Engineering, 1993. 100- 107. 1993,

[22] A. P. Mathur. Performance, Effectiveness, and Reliability Issues in Software Testing.

E E Proceedines of 15th Annual International Com~uter Software & A ~ ~ l i c a t i o n

Con ference. 6û4-605, 1 99 1 .

1231 R.A. DeMillo and E. H Spafford, "The Mothra Software Testing Environement", Pro-

ceedin~s of the I l th Nasa Software Engineering Laboratorv Workshop, Goddard

Space Center, Decernber 1986.

ANNEXE A

Processeur ancillaire . .

Descri~tion des états de la FSM,

Afin d'implanter ce système il a fallu construire une machine à étatscette machine

décrit le comportement du module EDH.

L'état initial permet I'initialisation des toutes les variables internes. Les états lec-vidéo

permettent de détecter un paquet ancillary suivant la séquence 3ff 000 000.

L'état eav-sav permet d'attribuer au compteur la valeur correspondante au standard vidéo.

L'état compter permet a la machine de positionner son compteur de mot à la bonne

adresse afin d'ecrire les information dans les trames vidéo.

Le module EDH commence ensuite à former le paquet ancillary. Les états adf écrient la

séquence 000 3ff 3ff. Bien entendu, ces valeurs se verront augmenter 2 20 bits en position-

nant les bits les moins significatifs à zéro.

L'état did permet d'écrire le mot If4 (+IO bits de O sur les bits les moins significatifs)

L'état dbn écrit 200(+10 bits de O sur les bits les moins significatifs)

L'état dc écrit 1 O(+ 10 bits de O sur les bits les moins significatifs)

108

Les états aedf doivent écrire les mots selon la séquence suivante: not(p) p ues ida idh eda

edh O O (+ 10 bits de O sur les bits les moins significatifs). Le bit p est un bit de parité alors

que les autres(ues, eda..) sont des flags qui proviennent du module EDH in.

Les états rw ecrivent une séquence de O.

Enfin, un checksurn des users data words est réalisé.

MA CHINE A ETATS (pour la génération du paquet ancillaire)

Im~lémentation du CRCCs

C'est une technique de compression qui effectue la division du polynome :

Le reste de la division se trouve alors dans les registres constituants la LFSR. Cette LFSR

(linear feedback shift register) un polynome d'entrée G(X) divise le polynome PO() censé

représenté la LFSR suivant le calcul: G o / P(X)= Q(X)+R(X)IP(X). Le reste R(X) est

alors contenu dans le registre et le quotient Q(X) est constitué par les données de sorties.

Le CRCC a été implanté à l'aide du générateur polynomial C m 16 où le shéema général

est donnée cidessous.

Les Cn sont des connexions quand ces coefficients sont égaux à 1. Dans le cas contraire

ils doivent être omis. Les + sont des portes xor.

ANNEXE B : FONCTION MID

1 lnteger Function Mid (X, Y, Z)

integer x, y, t
1 mid = z
2 if (y .LT. z) then
3 if (x .LT. y) then
4 mid = y
5 else if (x .LT. z) then
6 mid = x
7 end if
8 else
9 if (x .GT. y) then
A if (x .LT. y) then
10 mid=y
11 else if (x .GT. z) then
12 mid = x
A mid = y
13 end if
14 end if

retum

ANNEXE C.

//operateur de mutation pour le cas des if pour l'opérateur COR

#indude estdioh>
#indude <string.h>
#inchde <stdlib.h>
#define TRANSITION 15
Mefine ETAT-COLTRANT 23
void main()
I
unsigned long etat-courant;
unsigned long ancienetat;
char tata[5][20];
long c;

long i;
long transition;
long pos;
int compteur-cor;
int pos2;
int pos3;
int pos4;
int pos5;
FILE *MO=NULL; /*definition du pointeur file pour le fichier d'envie*/
FILE *M 1 =NULL;
FiLE * tarnp_chaine[5];
FILE *tamponO=NULL;
FILE *tampon 1 =NULL;
FILE *tampon2=NULL;
FILE *tampon3=NULL;
FILE *tampon4=NULL;

/* cette m a i c e represente les etats suivants du diagramme ifc/
in t di agr-e ta t-iF[TRr\NS ITiON] [ETAT-COURANTJ = {

/*etat-suivant */
/*tnnsitions*/ 1,0,2,5,0,2,2,9,0,2, 12.2.2, 15,2,2.2,2,2, 19.2.2.0.

0,2,2,5.0,2,2.9,0,2,12,2,2,15,2.2,2.2,2,19.2,2,0.
0,0,13.5,0,2, 2,9, O, 2, 12,2.2. 15. 2, 2.2, 2,2,0,2,2. O,
0,0,3,5,0,2,7,9,0,2,11.2,2.14,2,2,2,2,2,0.2,2.0.
0.0,2.4,0,2.2,8,0,2*12,2,2,15,2,2.22.2.0.2,2,0,
0,0,6,5,0,2,2,9.0,2,12,2,2,15,2,2,2.2,2,0.2,2,0.
0,0,10,5,0,2,2,9,0,2,12.2.2*15.2.2,2,2,2,0,2.2.0.
0.0,0.5,0,0.2.9.0.2.12.2,2,15,2,2.2.2.2,0,2,2.0,
0.0,2,3,0,2,2,9.0,2.12.2,2.13.2,2,2.2,19,0,2.2.0.
0,0.16.5,0,2,2,9,0,2,12,2,2, 15,2,2.2,2,2,0.2,22.0,
0,0,2,5,0,2.2,9,0,2,12,2,2,15.2,2,17,2,2,0,2.2,0,
0,0,2,5,0,2,2.9,0,2,12,2,2.15.2.2,2,18.2.0.2.2,0.
0.0,20.5,0,2.2.9,0.2,12,2.2,15,2.2.2.2,2.0,2.2,0.
0,0.2,5.0,2,2,9,0,2, 12,2*2.15.2.2,2,2,2,0,21.2.0.
0.0.2,5,0,2,2,9.0,2,12,2,2,15.2,2,2,2,2,0,2.2,0);

if((MO = fopen("edhii.vhdl","r"))=NULL)/* ouverture du fichier du premier mutant4/
printf("ERREUR:le fichier source ne peut etre ouvert in");

else
I

while ((c=fgetc(MO))!=EOF)
(
switch(c)

(
case '1':
case 'i':transi tion=O;

break;
case 'F:
case 'f :uansition=l ;

break;
case '>':tr;insition=2;

break;
case '=':transition=3;

break;
case T':transition=4;

break;
case 'f :transition=S;

break;
case 'c':transition= 6;

break;
case ';':transition= 7;
break;

case ' *:transition= 8;
break;

case 'E:
case 'e':transition=9;

break;
case 'N':
case 'n':tnnsition=l O;

break;
case 'D':

case *d':transition= 1 1 ;
break;

case T:

case 'te:transition=l 2;
break;

case 'H':
case 'h': transition=I 3;

break;
defaul t:transition= 14;

break;
1

ancienetat=etat-courant;
etatcourant= diagr-etat-IF[mnsition][etat-courant];

switch(etat-courant)
{
case 2:pos =ftell(MO);
break;
case 5:switch (ancieneiat)
{

case 3:
M 1 = fopen("rnut4tampon~cor'*~**~'*);
for(i=û;ic=s);i+t)

I
sprintf(tata[i],"Mut~c~~d~vhdl",compteur~cor);
compteur-cor++;
iamp-chaine[i] = fopen(tata[i]."wn); //ouverture des 5 mutants cor

1
fputc(c,M 1);
// ecriture de la fin du fichier
while((c=fgetc(MO)) !=EOF)

{
fpu tc(c.M I);
if(c='ù')
fputc(7d.M 1);

1
fclose(M 1);
//ajout du debut du fichier dans les fichiers mutants
fseek(M0,O.O);
while(((c=fgetc(MO)) !=EOF)&&(ftell(MO)<=pos))

{
for(i=O;i<=4;i++)

(
fpu tc(c,iamp-chaine[i]);

1
1

//fin d'ajout
fpuls("<=".tamp-chaine(0J);
fputc('>'.tamp-chaine[11);
fpui~("~=*~.tamp-chaine[2]);
fputs("/=",iamp-chaine[3]);
fputc(l4,tamp_chaine[4]);
//on reecnt la fin du fichier
M 1 = fopen("rnut-tampon-cor"."rn);

whiIe((c=fgetc(M l))!=EOF)
(
for(i=û;i<=4;i++)
fputc(c,tamp-chainefi]);

1
//fin de la reecriture
for(i=O;i<=4;i++)

fclose (tamp-chaine[i]);
fclose(M 1);
fseek(MO,pos,O); //on remet a la position courante
break;

defaul t:
break;

1
break;

case 7:pos2=ftelI(MO);
break;

case 9:switch (ancien-eut)

case 7:
M 1 = fopen("mut-tampon- cor"."^");
for(i=O;i<=4;i++)

(
sprind(tata[i]~"Mut~corO/od.vhdt",cornpteur~cor);
compteur-cor*;
tamp-chaine[i] = fopen(tata[i]."wW); //ouverture des 5 mutants cor

1
fputc(c,M 1);
// ecriture de la fin du fichier
whilc((c=fgetc(MO)) !=EOR

t
fputc(cM 1);
if(c==lr9)

fputc(ln'.M 1);
1

fclose(M 1);

//ajout du debut du fichier dans les fichiers mutants
fseek(M0,O.O);
while(((c=fgetc(MO)) !=EOF)&&(ftelI(MO)c=pos))

I
for(i=û;i<=4;it+)

{
fputc(c,tamp-chainef il);

1
1

//fin d'ajout
fputc('=',tamp-chainefol);
fputc('>',tmp-chaine[l]);

//on reecrit la fin du fichier
M 1 = fopen("mut-tampon-cor" ,"rm);
while((c=fgetc(M 1)) !=EOF)

{
for(i=O;i<=4;i+t)

{
fputc(c,tamp-chaine[i]);

1
1

//fin de la reecriture
fot(i=O;i<=4;i++)

fclose (tamp-chaine[i 1);
fclose(M 1);
fseek(MO.pos2,O); //on remet a la position courante
break;

default:
break;

1
break;

case 10: pos3=ftelt(MO);
break;

case 1 1 :switch (mcienetat)
{
case 10:
M 1 = fopen("mut~tmpon~cor","w");
for(i=O;i<A;i++)

(
sprintf(tata[i)."Mut~~or%d~vhdl",compteur~cor);
compteur-cor++;
hmp-chainefi] = fopen(tata[i],"wl*); //ouverture des 5 mutants cor

1
II fputc(c,M 1);

// ecriture de la fin du fichier
whil e((c=fgetc@fO))!=EOF)

{
fputc(c.M 1);
if(c=lr')
fpu tc(ln'.M 1);
1

fc f ose(M 1);

//ajout du debut d u fichier dans les fichiers mutants
fseek(MO,O,O);
while(((c=fgetc(M0))!=EOF)&&(f~eIl(MO)<=pos))
for(i=O:i<=Q;i++)

(
fpu tc(c,tampchaine[i]);

1

//fin d'ajout
fputc('=',tarnp-chaine[O]);
fputc('>'.tarnp-c haine[1));
fputs(">=",tmp-~haine[2]);
fputs("/=",tamp-chaine[3]);
fputs("<'*,tamp-chaine[4]);

//on rcecrit la fin du fichier
M 1 = fopen(ttmut-tampon-corn.'*r");
while((c=fgetc(M 1)) !=EOF)

{
for(i=O;k=4;i++)

fputc(c,tamp-chaine[i]);
1

//fin de la reecriture
for(i=û;i<=4;i++)
fclose (tamp-chaine[i]);

fclose(M 1);
fseek(MO.pos3,O); //on remet a la position courante
break;

default:
break;

1
break;

crise 1 2:switch (ancienetat)
(
case 10:

M 1 = fopen("mut-tampon-cor","w+");
for(i=û;ic=i;i++)

(
sprind(tata[i],"Mut~~or%od~vhdl".compteor);
compteur-cor*;
tamp-chaine[i] = fopen(tata[i],"w"); //ouverture des 5 mutants cor

1
fputc(c,M 1);

// ecriture de la fin du fichier
while((c=fgetc(MO))!=EOF)

{
fputc(c.M 1);
if(c==V)
fputc(ln',M 1);

1
fclosc(M 1);

//ajout du debut du fichier dans les fichiers mutants

fsce k(M0.0.0);
while(((c=fgetc(h.lO)) !=EOF)&&(ftell(MO)<=pos))

for(i=O;ic=rl;i++)
{
fputc(c,iamp-chaine[i));

1

//fin d'ajout
fputc('=@,tarnp-chaine[0));
fputc('>*,tamp-chaine[l]);
fput~(*'>=''.tamp,chaine[2]);
fputs("/=",t;imp,,chainej3]);
fputs("<=",tamp-chaine[4]);

//on reecrit la fin du fichier
M 1 = fopen("mut-tampon-cor"."rn);
while((c=fgetc(M 1))!=EOF)

1

for(i=û;ic=4;i++)
fputc(c.trimp,chaine[i]);

1
//fin de la reecriture
for(i=û;i<4;i++)

fclose (tamp-chaine[i]);
fcIose(M 1);
fseek(MO.pos3.0); //on remet a la position courante
break;

default:
break;

1
break;

case 14: pos4=ftell(MO); ;
switch (ancien-ctat)

(
case 13:
M 1 = fopen("mut-tampon- cor","^+^);

for(i=O;i<=4;i++)
{
sprind(tata[i],"Mut~cor%d.vhdi",compteur~cor);

tamp-chaine[i] = fopen(tata[iJ."wN); //ouverture des 5 mutants cor
1

fpu tc(c,M 1);

// ccriture dc la fin du fichier
whi le((c=fgetc(hlO))!=EOF)

{
fputc(c.M 1);

//ajout du debut du fichier dans les fichiers mutants
fseek(M0.0.0);
while(((c=fgetc(MO))!=EOF)&&(fte1I(MO)<=pos))

for(i=O;i<=4;i++)
(
fputc(c,tamp-chaine[i]);

1

//fin d'ajout
fputc('=',@mp-chainew]);
fputc('>',tamp-chaine[II):
fputs("<=",tamp-chaineE21);
fputs("/=",tamp-chaine[3]);
fputc('<',trimp-chaine[4]);

//on rcecrit la fin du fichier
M 1 = fopenrmut-tmpon_corn."r");
whi le((c=fgetc(M 1)) !=EOF)

(
for(i=O:i<d;i+-+)

fputc(c.tarnp-chine[i]);
1

//fin de la reecriture
for(i=O;i<=4;i++)

fclose (tamp-chaine[i]):
fclose(M 1);
fseek(MO,pos4,0); //on remet a la position courante
break;

default:
break;

1
break:

case 1 5:pos5=fteIi(MO);
switch (ancien-etat)

case 13:
M 1 = fopen("mut~tmpon~corn,"w+");

for(i=O;i<=4;i++)
(
sp~nd(~ta[i),"Mut~cor%d.vhdl",compteur~cor);
compteur-cor++;
tmp-chaine[i] = fopen(tata[i],"wW); //ouverturc des 5 mutants cor

1

// ccriture de la fin du fichier
whi le((c=fgetc(MO)) !=EOF)

{
fputc(c,M 1);
i f(c==îr7

fputc(ln',M 1);
1

fclose(M 1);

//ajout du debut du fichier dans les fichiers mutants
fseek(M0.0.0);
while(((c= fge tc(M0)) !=EOF)&&(fteII(MO)c=pos))

for(i=û;i<=4;i++)
I
fpu tc(c,tmp-chaine[i]);

1

//fin d'ajout
fpu tc('=',îamp-c hain@]);
fp~ts('*<=~.tamp-chaine[l]);
fputs(">=".tamp_chaine[2]);
fputs("/=",tamp-chaine(31);
fputc('c',tarnp-chaine[4]);

//on reecrit la fin du fichier
M 1 = fopen("mut~tampon~cof"."r");
while((c=fgetc(M 1)) !=EOF)

{
for(i=O;k=4;itt)
fputc(c,tamp-chaineli]);

1
//fin de la reecriture
for(i=û;i<=.l;it+)
fclose (tamp-chaine[i]);

fclose(M 1);
fseek(MO,pos5.0); //on remet 3 la position courante
break;

default:
break;

1
break;

default:
break;

1
1

1
1

#indude a t d i 0 . b
ttinclude <string.h>
#indude e t d 1 i b . b
#de fine TRANSITION 13
#de fine ETAT-COURANT 20

//opcrateur de mutation pour le cas des if

void main0
{
unsigned long etat-courant;
unsigned long ancien-eîat;
char tat;r[5][20] ;

long c;
long i;
long transition;
long pos;
int compteur-cor;

FILE *MO=NULL; /*definition du pointeur file pour le fichier d1entr5e*/
FILE *M l=NULL;
FTLE *iamp-chaine[5];

FILE *tamponO=NULL;
FILE *îampon l=NULL;
FILE *tamponZ-NULL;
FLE *tampon3=NULL;
FILE *tampon4=NULL;

int dirigr-eut-IF[TRANSmON][ETAT-CO-= (
/*eut-suivant */

/*tnnsitions*/l,0.2,5,0,0,0,9,0,2, 12,0.0, 15,0,0,2,2,2,0.
0,2.2,5,0.0,0,9.0.212,0,0,15,0,0,2.2,2,0,
0.0,13,5,0,0,0,9,0. 2. 12,0,0. 15.0,0.2.2,2,0/* cette marice represente les etats

suivants du diagramme if*/
0.0.3,5,0.0,7,9,0,2,11.0,0.14,0.0,2,2,2,0,
0,0.2,4,0,0,0,8,0,2,12,0.0,15,0,0,2,2,2,0,
0.0,6.5,0,0,0,9,0,2,12.0.0, 15.0.0,2,2,2,0.
0,0,10,5.0,0,0.9,0,2,12.0.0.15,0,0,2,2.2.0,
0,0 ,2 ,0 ,0 ,0 ,0 .0 ,0 ,2 ,0*0*0 , 0,0,0,2.0.2,0.
0 ,0 ,2 ,3 .0 ,0 ,0 ,7 ,0 ,2 , 0,0,0,13,0.0,2.2,19,0,
0,0,16,5,0,0,2.9,0,2, 12,0,0,15,0,0,2,2,2,0,
0,0,2,5,0,0,2,9,0.2,12,0,0,15,0,0,17,2,2,0,
0,0,2,5.0,0.2.9.0,2,12,0,0,15,0,0,2.18.2,0.
0,0.2,5,0.0,2,9,0,2,12,0,0,15.0,0,2,2,2,0};

Iloperateur de mutation pour le a s des if pour l'opérateur COR (si nombre non binaire)

##indude cs td i0 .b
#include <string-b
#inchCe cstd1ib.b
#define TRANSITION 13
#define =AT-COURANT 20
void maino
1
unsigned long etat-courant;
unsigned long ancien-etal;
char trita[S] [20];

long c;
long i;
long transition;
long pos:
in t compteur-cor,
FILE *MO=NULL; /*definition du pointeur file pour le fichier d'entrée*/
FILE *M 1 =NULL;
FILE *tampchaine[S];
FLE *tamponO=NULL;
FILE *tampon 1 =NULL;
FILE *tampon2=NULL;
FILE *tampon3=NULL;
FILE *tampon4=NULL;

int diagr-etat-IFITRANSInON] [ETAT-COURANT)= (
/*etat-suivant */

/*transitions*/ 1. 0. 2, 5 ,0 .0 ,0 , 9,0,S. 12.0,0, 15,0,0, 2, 2, 2-0,
0.2,2.5.0,0,0.9.0,2,12,0,0,15.0,0.2.2.2,0,
0,0.13,5,0,0,0,9.0,2,12,0,0,15,0,0,2.2,2,0.
0,0.3,5,0.0,7 .9 .0 ,2 .1f ,O,0,14.0,0,2,2,2 .0 ,
0 ,0 ,2 ,4 ,0 ,0 ,0 ,8 ,0 ,2 , 12,0.0,15.0,0,2,2,2,0.
0,0.6,5,0,0,0.9,0,2.12,0.0,15,0.0,2,2,2,0.
0,0,10,5,0,0,0.9.0,2.12,0,0,15,0,0,2,2,2,0,
0,0 ,2 ,0 ,0 ,0*0*0 ,0 ,2 .0 ,0 ,0 , 0 ,0 .0 ,2 .0*2 ,0 ,
0 ,0 ,2 ,3 ,0 .0 ,0 ,7 .0 ,2 , 0,0,0,13,0,0,2,2,19,0.
0.0,16,5.0,0,2,9,0,2.12,0.0,15,0.0,2.2,2,0.
0,0,2,5,0,0,2 ,9 .0 ,2 , 12,0,0,15,0,0,17,2,2,0,
0,0,2,5.0,0,2,9.0,2.12,0,0,15,0,0,218,2,0,
0,0.2,5.0.0,2,9.0,2,12,0.0,15,0,0,2.2,2,0);

if((MO = fopen("text.vhdl","r"))=NULL)/* ouverture du fichier du premier mutant*/
pnntf("ERREUR:le fichier source ne peut etrc ouvert in*);

el sc

{
while ((c=fgetc(MO))!=EOF)

(
switch(c)

{
case '1':
case 'i':transition=û;

break;
case 'F:
case 'f :transition=l ;

break;
case '>':transition=2;

break;
case '=':transition=3;

break;
case T':transition=4;

break:
case T:uansition=5;

break:
case '<*rtransition= 6;

break;
case ':':transition= 7:

break;
case ' ':transition= 8;

break;
casc 'E':
case 'e':uansition=9;

break;
case 'N':
case 'n':transition= 1 O:

break;
case 'D':

case 'd':transition=l 1;
break;

default:tnnsition=lS;
break;

1
ancien-etat=etat-courant;

etatcourant= diagr-etat-lF[transition][etat-coumt];

case 9:switch (ancien-ctat)
I

casc 7:
M 1 = fopen("mut-tampon-coC"."w+");
pos =ftell(MO);
for(i=O;k=4;ii+)

(printf("comp %d\n".compteur-cor);
sprintf(tata[ij."Mut~cor%d.vhdl".compteur~cor);

compteur-cor*;
tarnp-chaine[i] = fopen(tata[i],"ww); //ouverture des 5 mutants cor

1
fputc(c.M 1);

11 ecriture de la fin du fichier
while((c=fgetc(MO)) !=EOF)

{
fputc(c,M 1);
if(c==V)
fputc(ln',M 1);

1
fcfoseW 1);

//ajout du debut du fichier dans les fichiers mutants
fsee k(M0,O.O);
while(((c=fgetc(MO))!=EOF)&&(ftell(MO)<=pos-3)) 11-3 afin de ne pas reecrüe l e meme cmctere

for(i=û;i<=4;iu)
t
fputc(c,tmp-chineril);

1

//fin d'ajout
fputc('=',tamp-chaine[O 1);

fputc('>',tamp-chaine[1 1);
fputs(">=",tmp-chaine[2]);
fputs("<=",tamp-chinei3 1):
fputc(@~',tamp~chaine[4]);

//on reecrit la fin du fichier
M 1 = fopenrrnut-tampon,corU,"r");
while((c=fgetc(M l))!=EOF)

{
for(i=O;k=4;i++)

fputc(c.tamp,chaine[i]);
1

//fin de la reecriture
for(i=O;i<=4;i+-t)
fclose (tamp-c haine [il);

fclose(M 1);
fseek(M0,pos.O); //on remet a la position courante
break;

default:
break;
1
default:

break;
1

1

//operateur de mutation pwr le cas des case pour I'opératenr COR et SSR

void main0
(
unsigned char etat-courant;
unsigned char etat-courant1 ;
char cor-chaine[lO];
char Lribcase[l20][12];
unsigned pos[120);
unsigned i-max[120 1;
int c;
int flag;
int i;
int j-max;
int j;
int posf;
int i-tab;
int i t ab2 ;
int transition;
int transition 1 :
long compteur-cor:
long posMZY/position du pointeur
long postarnpon;
long i-pos;
long i-pos2;
long i-posmax;

FILE *MO=NULL; /*definition du pointeur file pour le fichier dVenuÈe*/
FTLE *M 1 =NULL;
FILE *tampon;
int diagr-etat-case[TRANS~ON]~TAT-COURANTJ=(

/*etat-suivant */
/* transi tiens*/ 1 ,0,0.0.5,5,0,0,0,0~0,0,0,0~0~

0,2,0,0,5,5,0.0.0,0,0.0,0,0,0,
6.0,3,0.5.5,0,0,0,0.0,0.13.0,00
0.0,0,4,5.5,7,0.0.0.0.0.0.0.0.
0.0,0,0,4,14.0,0.9~0.010.0,0,0,
0.0,0,0,5.5,0.8.0~0,0,0,0,0,0.
0.0,0.0,5,5,0,0,0, l ~ v ~ ~ ~ , O v O , O , O .
o,o,o,o,s$,o,o.o*o* 1 1 ,o*o,o,o,
0,0.0,0.5,5.0.0.0,0.0,12.0.0.0.
O,O,O,O,S, 14.0,0,0,0.0.0,0,0,0,
o.o,o*o.s,5.o*o*o,o*o,o,o,o,o) ;

int diagr-etat_pos[TRANS~ONl]~AT-COURANTl]={
Petat-suivant */

/* transitions*/ 1.0.0.0.5.5,0,0,
0,2,0.0,5,5,0,0,
0,0,3,0,5,5,0,0,
0,0,0,4,5,5,0,0,
0,0,0,0,5,6,0,0,
0,0,0,0.5,5,7,0,
0,0.0.0,5,5,0,0);

etatcourant=O;
etat-courantl =O;
i d ;
i-posmax=O;
j-rnax=O;
j=O;
i-pod:
i-tab=û;
i_tab2=O;
compteur-cor=O;
posM2=0;
postarnpon=O;
posf=O;
if((MO = fopen("mux2.vhdln ,"rW))=NULL)/* ouverture du fichier du premier mutant*/

printf("ERREUR:le fichier source ne peut etre ouvert \nl');
else {

printf("fichier mux2.vhdl ouvert \n");
while ((c=fgetc(MO))!=EOF){
switch(c)

(
case W':
case 'w':transition=O;
break;
case 'H':
case 'h':transition= 1 ;
break;
case E':
case 'e':transition=Z;
break;
case 'N':
case 'n':transition=3;
brcak;
case ' ':transition=4;
break;
case 'D':
case *d':transi tion=5;
brcak;
case Tg:
casc 'c':transition=6;
break;
case 'A':

case 'a': transition=7;
break;
case 'S':
case 's':transi t i o n S ;
break;
case *=':transition=9;
break;
defaulttransition=lO;
break;
1
etat-courant= diagr-etat-case(tnnsition][etat-counnt];
sw itc h(etat-courant)
{

case O:
i-dl;
break;

case I :
case 2:
case 3:
case 4:

break;
case 5:

tabcaseb][i]=c;
i-rnaxu]=i;
i++;
break;

case 6:
case 7:
case 8:
case 9:
case 10:
case 1 1 :
case 12:

break;
case 13:

for(i=O;kj-max- 1 ;i*)
I
flag=O;

i-tabtt;
spnntf(cor~chaine,Mut~mu~%d~vhdl",compteur~cor);
corn peur-cor++;
M 1 = fopen("mut-tamp~n",~~");
tampon = fopen(cor-chaine."wl*);
i f(i-ta k=j-max)

fputs(tabcase[i-tab],M 1);
fseek(MO,pos[i],O);
whiic((c=fgeic(M0))!=EOF)
(

switch(c)
(
case 'W':

case 'w':transitionl=O;
break;

case 'H':
case %':transition 1 =i ;

break;
case 'E:
case 'e9:transi tion 1 =2;

break;
case 'N':
case 'n':transition 1 =3;

break;
case '=':transition 1 =4;

break;
case >':transition 1 =5;
break;

default:transi ti0nl=6;
break;

1

etat-courant1 = diagr-etat_pos[uansition 1][etat-courant 1);
switch(etat-courant 1)

(
case O:
case 1:
case 2:
case 3:fputc(c,M 1);

break;
case 4:

fputc(c,M 1);
fputc(' 'M 1);
if (flag<= 1)

{
posf=ftell(MO);
itab2=i_tab- 1 ;
fputs(tabcase[i],M 1);
fputc(' ' M I);
flag*;

1
break;

case 5:
case 6:

break;
case 7:

fputs("=>",M 1);
// ajout de la suite de la fin du texte
while((c=fgetc(MO))!=EOF)

{
fputc(cM1);
if(c=V)
fputc(ln',M 1);

II fin ajout

1
fclose(n4 1);

break;
default:

break;
1

flag=O;

1
//ajout du debut du texte avant la mutation

fsee k(M0.0.0);
while(((c=fgetc(hl0))!=EOF)&&(ftell(MO)<=pos[i]-iim~[i]-2)) // -2 a cause de =>

fputc(c, tampon);
i f(c==V)

fputc(b',mpon);
1

fclose(tampon);
//fin d'ajout

//on reecrit la fin du fichier
tampon = fopen(cor-chaine,"aW);
M 1 = fopen("mut-tampon","r");
while((c=igetc(M l))!=EOF)

(
fputc(c,mpon);

1
// fin de la reecriture

fclose (tampon);
fclose(M 1);

1
iclose(M0);
iclose(M 1);
break;

case 14:
pos[i-pos]=ftell(MO);
i-POSU;
j-max=j;
j++;
break;

default:
break;

1
1

1
fclose(M0):
1

//operateur de mutation AOR

//fonction genenl permettant le changement des opÈrateurs arithmetiques +. 1. *. -. >, >= e t <

#inciude a t d i 0 . b
#define TRANSlTION 9
#de fine ETAT-COURANT 17
maino
{
unsigned char etat-courant;
unsigned char ancien-etat;
unsigned char tata[4][lO];
int c,cornpt;
int pos;
int compteur-aor;
int i;
int transition;
FILE *MO=NULL; /*definition du pointeur file pour le fichier deentrÈe*/
FILE *M 1 =NULL;
FILE *M2=NULL;
FILE *M3=NULL;
FiLE *M4=NULL;
FILE *tamp_chaine[4];

int diagr-etat[TRANSmON][ETAT-COURANT]={
/*etatsuivant */

/* transitions*/ 1,2,0.0,0,0,0,0.0,0,0.0,0.0,0.0,0,
5,0.0.0,0.0,0.0,0.0.0.0,0.0,0,0,0.
3.0.0,0,4,0,0,0,0,0,0,0,0,0,0.0,0,
6,0,0.0,0,0,0,0,0.0,0~0,0,0~0,0,0,
8,0,0.0,0,0,0,0,0.0,0*0*0,0*0*0,0*
10,0.0,0,0,0,0,0,0,0.0,0.0.0.0.0.0*
12.2.0,0,0,0,0,7,9,0.0,0,0.0,0,15,0~
14,0,0,0,0,0,0.0,0,0.0.0,0,0,0.0,0,
0,0,0.0.0.0.0,0.0.0.0,0,0,0,0*0.0);

if((MO = fopcn("testtxt" ,"rW)>==NULL)/* ouverture du fichier du premier mutant*/
printf("ERMUR:te fichier source ne peut erre ouvert in");

clsc (
pnntf(" fichier ouvert in");

whilc ((c=fgctc(MO)) !=EOF)(
switch(c)

(
case '-@:tnnsition=O;
break:

case '+':transition= 1;
break;

case '*':tnnsition=2;
break;

case 'Rtransition-3;
break;

case '<:uansition=4;
break;

case >':transition=5;
break;

case '=':transition=6;
break;

case ':':transition=7;
break;

case 10':
break;

default:transition=8;
break;

1
ancienetat=et;it-courant;
etat-courant= diagr-etat[transition][etat_courantJ ;

switch(etatcounnt)
{
case O: switch (ancienetat)

{
case 1:

M 1 = fopen('*rnu~tampon~aor","w'');
fputc(cJA 1);
pos =ftell(MO);
for(i=û;i<=2;i++)

(
sprintf(~ta(i],"Mut~a~r%d.~hdl".compteur~aor);
compteur-aor++;
tarnp-chaine[i] = fopen(tata[i] ," w"); //ouveriure des 5 mutants cor

1

// ccriture de la fin du fichier
while((c=fgetc(MO)) !=EOF)

{
fputc(c,M 1);
if(c==%')
fputc(ln',M 1);

1
fclose(M 1);

//ajout du debut du fichier dans les fichiers mutants
fsee k(M0.0.0);
whiie(((c=fgetc(M0))!=EOF)&&(f1ell(MO)~=pos-2))
for(i=O;i<=2;i++)

{
fputc(c,tamp-chai ne[i 1);

1
//fin d'ajout

//on reecnt la fin du fichier
M 1 = fopen(wmut~tampn~aornv"r'*);
while((c=fgetc(M 1))!=EOF)

(
for(i=O;i<=l;i++)
fputc(c,tamp-chaineri]);

1
//fin de la reeçriture

for(i=O;i<=2;i*)
fc lose (tamp,chaine[i]);

fclose(M 1);
fseek@fO.pos,O); //on remet a la position courante
break;

case 3:
M 1 = fopen("mut~tampon~aor'*~"wn);
fputc(cA4 1);
pos =ftell(MO);
for(i=O;ic=2;i++)

sp~nd(tata[i),"Muttao~ddvhdl",~ompteur~aor);
compteur-sort+;
tamp-chaine[i] = fopen(tata(i],"wu):

1

// ccriture de la fin du fichier
while((c=fgetc(MO))!=EOF)

(
fputc(c,M 1);
i f(c=--Ir')

fputc(ln'M 1):
1

fclose(M 1);

//ajout du debut du fichier dans les fichiers mutants
fsce k(MO,O,O);
while(((c=fgetc(M0))!=EOF)&&(ftell(MO)~=pos-2))
for(i=O;i<=2;it+)

{
fputc(c,tmp-chiûne[i]);

1
//fin d'ajout

//on reecrit la fin du fichier
M 1 = fopen("mut-t;unponpor","rn);
while((c=fgetc(M I))!=EOF)

{
for(i=O;i<=2;itt)
fputc(c,tamp-chaineri]);

1
//fin de la reecriture

for(i=O:i<=2;i++)
fclose (tamp-chaine[i]);

fclose(M 1);
fseek(MO.pos,O); //on remet a la position courante
break;

case 5:
M 1 = fopen("rnut-tampon-aor"."wW);
fputc(cA4 1);
pos =fteli(MO);
for(i=O;i<=2;it+)

spnntf(tata[i],"Mut~aor%ddvhdl".compteur~aor):

// ecriture de la fin du fichier
while((c=fgetc(MO))!=EOF)

(
fputc(c,M 1);
i f(c==lr')
fputc(W,Ml);

1
fclose(M 1);

//ajout du debut du fichier dans les fichiers mutants
fsee k(M0,O.O);
w hiie(((c=fge tc(M0)) !=EOF)&&(ftell(MO)<=pos-2))
for(i=O:i<=2:i++)

t
fputc(c,tarnp-ch;Une[i]);

1
//fin d'ajout

//on reecrit Ja fin du fichier
M 1 = fopen("mut-tamponaorn."r");

for(i=û;i<=2;i+t)
fclose (tamp-chaine[i]);

fclose(M 1);
fseek(hlO.pos.0); //on remet a la position courante
break;

case 6:
M 1 = fopen("mut-tmpon-aor"."ww);
fputc(c,M 1);
pos =ftelI(MO);
for(i=O;ic=2;i+.+)

(
sprintf(tata[i]."M~t~ao~d.vhdl",~~m~te~r~a~r);
compteur-aorte;
tamp-chaine[i] = fopen(tata[i],"wW);

1

// ecriture de la fin du fichier
while((c=fgetc(MO)) !=EOF)

(
fputc(c.M 1);
i f(c==lr7
fputc(ln',M 1);

1
fclose(M 1);

//ajout du debut du fichier dans les fichiers mutants
fsee k(M0.0.0);
w hi le(((c=fgetc(hlO))!=EOF)&&(ftell(MO)c=pos-2))
for(i=O;i<=2;ii+)

(
fpu tc(c,tamp-chaine[i));

1
//fin d'ajout

//on reecrit la fin d u fichier
M 1 = fopn('*rnut-tampon-aor'*,"rn);

while((c=fgetc(M I))!=EOF)
I
for(i=O;i<=2;ii+)

fputc(c,tamp-c haine [il);
1

//fin de la reecriture

for(i=û;i<=2;i+t)
fclose (tamp,chaine[i]);

fclose(M I);
fseek(MO.pos,O); //on remet a la position courante
break;

case 8:
M 1 = fopen("mut-tampon-aorW,"w");
fputc(c,M 1);
pos =ftell(MO);
sprintf(tata[O],"Mut-aofl~d,vhdl",comp~;
compteur-aoru;
tamp-chaine[O] = fopen(tata[O],"w");

// ecriture de la fin du fichier
whi le((c=fgeic(hlO))!=EOF)

{
fputc(c,M 1);
i f(c==%')

fputc(ln',M 1);
1

fclose(M 1);

//ajout du debut du fichier dans les fichiers mutants
fseek(M0,O.O);
while(((c=fgctc(MO))!=EOF)&&(ftell(MO)c=pos-2))
fputc(c.tarnp,chaine[O]);

Ilfin d'ajout

//on reecrit la fin du fichier
M 1 = fopen("mut-tampon,aor'*,"rn);
while((c=fgetc(M I))!=EOF)
fpu tc(c,famp,chaine[O));

//fin de la reecrïnire

fclose (tmp-chaine[O]);
fclose(M 1);
fseek(MO,pos,O); //on remet a la position courante
brcak;

case 10:
M 1 = fopen("mut-tmpon,mrn,"w");

fputc(c,M 1);
pos =fteIl(MO);
sprintf(tata[0]."Mut~aor%ddvhdl",compteur~~or);
compteur-aor*;
ump-chaine[O] = fopen(tata[O],"wn);

// eninire de la fin du fichier
while((c=fgetc(MO)) !=EOF)

I
fputc(c,M 1);
if(c=k')
fputc(ln'M 1);

1
fciose(M 1);

//ajout du debut du fichier dans les fichiers muîants
fseek(MO,O,O);
while(((c=fgetc(MO))!=EOF)&&(ftell(MO)<=pos-2))

fpu tc(c.mmp,chaine[O]);
//fin d'ajout

//on reecrit la fin du fichier
M 1 = fopen("mut-tampon-aor"."rW);
while((c-fgetc(M I))!=EOF)
fputc(c.tamp-chaine[Oj);

//fin de la reecriture

fciose (tamp-chaine[O]);
fclose(M 1);
fseek(MO,pos,O); //on remet a la position courante
break;

dcfault:
break;

1
default:

break;
1

1
1

1

loperateur de mutation CNR et CSR

#incIude cstdi0.b
#inchde cslring.b
#inchde estd1ib.b
#define TRANSITION 9
#define ETAT-COURANT 10
#define TRANSITION3 4
#define ETAT-COURANT3 2
#define TRANSITION4 3
#define ETAT-COURANT4 2
#de fine TRANSITIONS 5
#de fuie ETAT-COURANTS 6

/* inventaire des signaux du programme source */
void maino
(
unsigned char etat-courant;
unsigned char ancienetat;
unsigned char etat-counnt2;
unsigned char etatcounnt3;
unsigned char ancienetaL3;
unsigned char etat-counnt4;
unsigned char ancienetat4;
unsigned char etat-courant5;
unsigned char ancienetad;
char tabsig[120][120];
char tabname[120][120];
char tabtype[I 20][120];
long compteur-type;
char numberl [lO];
int c,cl .c2,i,i-nme,j_nme.i3 j3,i3-maxj J -type.mmp,flagname.i-m=.j - m ~ . f . c o m ~ t e ~ ~ i - i d e n t :
int transition.~ansition3,ttansition4;
int transition5:
int compt-mutant;
int flag-compare;
long compteur-type 1 ;
long flagwhite;
long pos;
long posf;
long posM2flposition du pointeur
long postampon;
char word[lJ[80];
char mta[lO];
FILE *MO=NULL; /*definition d u pointeur file pour le fichier d'entrée*/
FILE *M 1 =NULL;
FILE *M2=NULL;
FILE *M3=NULL;
FTLE *M4=NULL;
FILE *MS=NULL;

FILE *M6=NULL;
FILE *M7=NULL;
FILE *M8=NULL;
FILE *M9=NULL;
FILE *tampon;
int diagr-eut-name[TRANSITION3][ETATTCOURANT3]=(

/*etal-suivant */
/* tnnsitions*/ 1 ,O.

0,o.
O*l,
0.0 1 ;

int dia~-er;it-compteur(TRANSInON4][ETAT-C0~4]={
/*etat-suivant */

/* transitions*/ 1 . 1 .
o*o,
0 8 1 ;

int diagr-eut-word[TRANSITIONSJ[ETAT-COURANTS]=(

if((MO = fopen("gene.vhd1" ,"rw))=NUW-)/* ouverture du fichier du premier mutant*/
printf("ERREUR:le fichier source ne peut etre ouvert hW);

else (
pnntf("fic hier iNV-SIG-TAB ouvert W);
M 1 = fopen("INV-SIG-TAB"," w "); /*ouverture du fichier inventaire*/

while ((c=fgetc(MO)) !=EOR {
switch(c)

(
case 'Se:
case 's':transition=O;
break;
case '1':
case 'i':lnnsition=l ;
break;
case 'G':
case 'g1:uansition=2;
break;
case W':
case 'n1:uansition=3;
break;
case 'A':
case 'a1:transilion=4;
break;
case 1':
case 'I':tnnsition=5;
break;
case ' ':~ansition=6;
break;
case ';':transition=7;
break;
default:tnnsition=8;
break;
1
mcien,etat=ctat-couran(;
ctat-courant= diagr-etat[transition)[eiat-courant];
switch(cbt-courant)
(
case 7: switch (ancicnetat)
(
case 6:
fputc('sq,M 1);
fputc('i',M 1);
fputc('g'.M 1);

fputc('n',M 1);
fputc('a1.M 1);
fputc('I',M 1);
fputc(' ',M 1);
break;

1
break;

case 8: switch(ancien,et;it)
(
case 7:fputc(c,M 1);

break;
case 8:fputc(c,M 1);

break;
1

break;

case 9: switch(ancienetat)
(
case 8:

fputc(c,M 1);
fpu tc(hD,M 1);
break;

1
break;
default:

break:
1
1
fclosc(M 1);
fclose(M0);

1

if((M 1 = fopen("INV-SIG-TM" ."rn))=NULL)/* ouverture du fichier du premier mutant*/
printf("ERREUR:le fichier source ne peut etre ouvert hW);

else (

M2 = fopen("TAl3-NAME"."wn);I/nom et type des signaux
pnntf("fichier TAB-NAME ouvert \nu);
while ((c 1 =fgetc(M l))!=EOF)(
switch(c1)

I
case ':':transition3 =O;

transition4 =O;
break;

case ';':transition3 =1:
break;

case '=':transition4 =1;

transition3 =3;
break;

default: transition3 =2;
transition4 =2;
break;

1
ancien_el;it3=etat_couran13;
etat-couranO= diagr-etat-narne[tt;uisition3][etattcouranr3];
if (cl=2n')(

/* permet de controller les variables rentrees dans les hb*/

ancien-clat4=etat_courant4;
ctat_counnt4= diagr-eht-name[transition4]fehttcourant;
if(cl=':') (/* permet de mettre aussi le type */
compteur++;}

if(Cj>S)&&(cornpteur==û))(/* on a directement le nom des signaux*/
tabnamefi-namelu-name]= I ;
fputc(iabname[i-name]Ij_name].M2):
j-name++;

1

/* on a directement le type du signal dans tabtype */
if(~>S)&&(compteur==i)) (

swi tch(ctat-courani3)
{
case 1:

switch(ancienetat3)
(
case 1:
crrsc O:

if(c 1 !=':') //test
I

tabtype[i-name][j,type]=c 1 ; /*attention les car : et ' ' sont dedans*/
fputc(tabt ype [i-name] Lj-typelM2);
j-type++;
1

break;
default:

break;
1

break;
default:

break;
1

f

if(Cj>5)P:&(compteul-2))(/*pour l'affichage */
compteur*;

1

1
1

/ * + + + + ~ t + + - f + + + + + + + + d e m i e r signal m i s dans un tableau--*/

if((M 1 = fopen("TAI3-NAME" ,"rW))==NULL)/* ouverture du fichier du premier mutant*/
printf("ERREUR:le fichier source ne peut etre ouvert h");

clse(
M2 = fopen("TEST","w"); /* que les noms des variables*/
pnntf("fic hier TEST ouvert ln");
while ((c2=fgetc(M 1))!=EOF)(

if((c!=lng)&& (fla&name== 1)) (
fputs(tabname[i3].M2);

/*CONVERSION DU FICHIER TEXTE EN CHAINE DE CARACIERES*/
M 1 = fopen("gene-chaine_word.vhdl",w);
MO = fopen("gene.vhdlW ,"rb+");

switch(c){
case ' ':transitionS=û;
break:
case ';':transitionS=l;
break;
case '(':transition5=2;
break;
case ')':transition5=3;
break;
dcfault:transition5=4;
break;
1
ancieneta15=e~t_courant5;
ctatcourand= diagr,etat~word[transition5][et~cou~];

switch(etat-counnt5) {
case O:if(c!=lr') //doit peut etre enleve
fputc(c.M 1);
i f(c==V)
fputc(lnl,M I);

break;
case 1 :switch (ancienetatS){

case O:
default:if(c!=lr')
fputc(c,M 1);
clse
fputc(ln',M 1);
break;
1
break;
case 2:fputc(c,M 1);
break;
case 3:fputc(c.M 1) ;
fputc(lO',M 1);
break;
case 4:

case S:fputc(c,Ml); //test on doit peut etre intervertir l'ordre
fputc(lO',M 1);
break;
default:
break;
1

// fin de la generation du fichier chaine de carateres

/*CONVERSION DU FICHIER TEX772 EN CHAINE DE CARACIERES*/
M 1 = fopen("gene-chaine_word.vhdl","wl');
MO = fopen("gene.vhdlW ."rb+");
while((c=fgetc(MO))!=EOF){

switch(c)(
case ' ':transition5=0;
break;
case ':':transitionS=l;
break;
case '(':tnnsition5=2;
break;
case @)':tnnsition5=3;
break;
defauit:transition5=4;
break;
1
ancienetat5=etat-cownfi;
etrit-courand= diagr~ctat-word[transition5][etat-cou~~;

switch(etat_courant5)(
case O:if(c!=lr') //doit peut etre enleve
fputc(c,M 1);

break;
case 1 :switch (ancienetat5) (

case O:
default:if(c!=lr')
fputc(c.Ml);
break;
1
break;
case 2:fputc(c,M 1);
break;
case 3:fputc(c,M 1);
fputc(lO',M 1);

break:
case 4:
case 5:fputc(c.M 1); //test on doit peut etre intervertir l'ordre
fputc(\O1,M 1);
break;
default:
break;
1

// fin d e la generation du fichier chaine de cmteres

compteur-type=O;
trimp=l;
flag_white=O:
j=O;
M3 = fopen("TESn","w"); //fichier contenant les signaux de meme type
MO = fopen("gene-chaine-worddvhdl","rb+");
M 1 = fopen("W0RD-TAB","wn);

compt-mutant*;
compteur-type 1++;
sprintf(number1 ."Mut,sig%d",compteur-typel);
i_ident=j3;
fputs(tabname[i3].M3);
fputc(ln',M3);
j=O:

else
{
word[O]~]=lO';
fputs(word[O],M 1);
fputc(lO'J4 1);
j=O;
1
if ((suc mp("data(35 downto 4)",worcl[O])==O))
I
printf("comparaison \ri");
pos =ftell(MO); printf("la position du pointeur est %d inn,pos);

sprintf(tata,"Mut-sig%dW.compteur-type);
tampon = fopen(iata,"wW);
fputs("REMPLACEMENT'N2);
posM2=ftell(M2);
while((c=fgetc(MO))!=EOF)

fputc(cJ42);
if(c=l\r?
fputc(b'M2);
1
fclose(M2);

//ajout
fseek(M0.0,O);
while(((c=fgetc(M0))!=EOF)&&(ftell(MO)~=posf)) {
fputc(c,tampon);
if(c=l\r')
fputc('hb,tampon);
1
posiampon=ftelI(tampon);
fclose(tampon);
//fin d'ajout

//on reecrit la fin du fichier
tampon = fopen(tata,"a");
M2 = fopen("m~t-tampon",'~r~):
while((c=fgetc(h42))!=EOF)
(
fputc(c,tampon);
1
//fin de la rcccriturc

fclose (tampon);
fclose(hii2);
fseek(MO.pos,O); //on remet a la position courante

//operateur de mutation CLR (cas d'un range)

// constant limit replacement : test des valeurs limites dans le cas d'un range
#indude estdioh>
#inchde <string.h>
#indude <stdlib.h>
#define TRANSITION 7
#define ETAT-COURANT 7
void main0
(
unsigned char etat-courant;
unsigned char ancien-etat;
unsigned char tata[lO];
int c;
int transition;
int pos;
int compteur-ch;

FILE *MO=NULL; /*definition d u pointeur file pour le fichier d'entrÈe81
RLE *M 1 =NULL;
FILE *M2=NULL;
FILE *tampon=NULL;
int ~~~~~-~u~[TRANSITION][ETAT-COURANT]=(

/*eut-suivant */
/* transitions*/ 1,0,0,0,0,0,0,

0,2,0.0,0.0,0,
0.0.3,0,0.0.0.
0,0,0,4,0.0,0,
0,0,0,0,5,0.0.
0.0,0,0,0,6,0,
0,0,0.0,0.0.0 1 ;

if((MO = fopen("gene,test.vhdl" ,"r"))=NULLY* ouverture du fichier du premier muilint*/
printf("ERREUR:le fichier source ne peut etre ouvert \n");

eIsc
(
white ((c=fgetc(MO)) !=EOF)
(
switch(c)
(
case 'R':
case Y:tnnsition=O;
break;
case 'A':
case 's':transition= 1 ;
break;
case 'N':

case 'n':transition=2;
break;
case 'G':
case 'g':transition=3;
break;
case 'E:
case 'e': tram i t i o n 4 ;
break;
case ":transition=5:
break;
default:transition=6;
break;
I
ancien,etat==etat-courant;
etat_coumt= diagr-etat[transitionJ[etat-courant];
switch(etat-courant)
(
case O:
break;
case 1 :
case 2:
case 3:
case 4:
case 5:
break;
case 6:
M 1 = fopcn("rnut- tampon","^");
pos =ftell(MO);
compteur-ch++;
sprintf(tata,"Mutcwd".compteur-clr);
tampon = fopen(tataVnw");
fputc(c,Ml);
fputcr 1 '.M 1);
fputc(*+',M 1);

// ecriture de la fin du fichier
while((c=fgctc(MO)) !=EOF)
I
fputc(c,M 1);
i f(c =L')
fputc(ln1.M 1);
1
fclose(M 1);
// fin ecriture

//ajout du debut du fichier
fseek(M0.0.0);
while(((c=fgetc(MO))!=EOF)&&(ftell(MO)<~s))
fpu tc(c,tampon);
fclosc(tarnpon);
//fin d'ajout

//on reecrit la fin du fichier
tampon = fopen(tata,"aU);
M 1 = fopen("mut-tampon","rn);
while((c=fgetc(M 1))!=EOF)
{
fputc(c.tampon);
1
//fin de la reecriture

fclose (tampon);
fclose(M 1);
fseek(MO.pos.0); //on remet a la position courante
break;
default:
break;
1
1
fclose(M 1);
fclose(M0);
1

1

//operateur de mutation CLR (cas d'une consîante)

#include estdioh>
#include <string.h>
#include <stdlib.h>
Mefme TRANSITION 1 1
Mefine ETAT-COURANT 13
void maino
f
unsigned char etat-counnt;
unsigned char ancienetat;
unsigned char tata[IOJ;
unsigned char clr-rn-chaine[1 O];
int c;
int transition;
int pos;
in t pos-minus;
int compteur-ch;
int flag;

FILE *MO=NULL; /*definition du pointeur file pour le fichier deentrÈe*/
FILE *M 1 =NULL;
FEE *M2=NULL;
FILE *tarnpon=NULL;
FILE *tampon-rninus=NULL:
int diagr-etat(TRANS~0NIfETAT-COURANTj=(

/*eut-suivant */
/* transitions*! 1,0,0,0.0,0,0,0.0,9,11,11 ,O,

0,2,0,0,0.0,0,0,0,9,11 , I 1.0.
0.0.3.0,0,0.7,0,0.9,11,! 1.0.
0,0.0.4,0,0.0.0.0.9,11,I1.0.
0,0.0,0,5,0.0,8.0.9.1 i , 11 ,O.
0,0,0,0,0,6,0,0,0,9,11,11 .O,
0,0.0,0,0,0,0.0,0.10* 11 * 1 1 .O,
0.0.0.0.0.0,0,0,0.9.11,11 ,O,
0,0,0,0,0,0,0,0,9,9,1 f , I I ,O,
0,0,0.0,0.0,0,0*0,0*11~ 12*0} ;

if((MO = fopen("gene-test.vhdln ,"r"))=NULLy* ouverture du fichier du premier mutant*/
printf("ERREUR:le fichier source n e peut etre ouvert \n");

clsc

(
whiIe ((c=fgetc(MO))!=EOF)
(

switch(c)
I
case 'C:
case 'c':uansitïon=O;
break;
case '0':
case 'o':transition=l;
break;
case 'N':
case 'n1:transition=2;
break;
case 'S':
case 's':transition=3;
break;
case 'T:
case 't*:transitionA;
break:

case 'A':
case 'a':transition=5;
break;

case '=':transitjon=6;
break;

case ' ':uansition=8:
break;

case ';':transi tion=9;
break;

default:transition=7;
break;
1
ancien-eta:=eht-coumt;
etatcourant= diagr-etrit[transition][etat,courant];
switch(etat-courant)
{
case 0: flag=O;

break;
case 1 :
case 2:
case 3 :
case 4:
case 5:

case 6:
case 7:
case 8:
case 9:

break;
case 10:
M 1 = fopcn("tampon~~onsp~*,~w~*);
pos =ftell(MO);
CO mp te ur-c lr++;
sprintf(tata."Mut~clr_const%d".compteur~clr);
tampon = fopen(iata,"w");

// ecriture de la fin du fichier
while((c=fgetc(MO))!=EOF)
{
f p ~ t c (~ , M ! j;
if(c=W)
fputc(lnl.M 1);
1
fclose(M 1);
Il fin ecriture

//ajout du debut du fichier
fscek(M0.0.0);
whiie(((c=fgetc(MO))!=EOF)&&(ftell(Mû)<=pos))

(
fputc(c,tmpon);

1

//fin d'ajout

//on rcecrit la fin du fichier
tampon = fopen(tata,"am);
M 1 = fopen("tarnpon-consp'*,"rt'):
whilc((c=fgetc(M 1))!=EOF)

fpu tc(c.tampon);
1

//fin de la reecriture

fclose (tampon);
fclose(M 1);
fseek(MO.pos.0); //on remet a la position courante
break;

case 1 1 :pas-minus =ftell(MO):
if(c!='O')
hg++;

break;

case 1 S:if(flag!=O)
{pnntf("je rentre2 b");

{
// pos-minus =ftell(MO);
M2 = fopen(*'tarnpon~consmm."wt');
compteur-ch++;
sp~nd(clr_m~chaine,"Mut~clr~const%dm.compteur~clr);

// ecriture de la fin du fichier
w hile((c=fgetc(MO))!=EOF)
{
fputc(c,M2);
i f(c=k')
fputc(ln'J42);
1
fclose(M2);
// fin ecriture

//ajout du debut du fichier
fseek(M0.0.0);
while(((c=fgetc(M0))!=EOF)&&(ftell(MO)<=pos~minus))

fputc(c,tarnpon-minus);
fclose(tampn,minus);

Ilfin d'ajout

//on reecrit la fin du fichier
tampon-minus = fopcn(c1r-m-chainc,"an);
M2 = fopen("tarnpon-consm","rW);

while((c=fgetc(M2))!=EOF)
{
fputc(c.tampon~rninus);
1
//fin dc la rcecriture

fclose (tampon-minus);
fclose(M2);

fseek(M0,pos.O); //on remet a la position courante
1

break;
default:
break;
1
1

fclose(M2);
fclose(M 1);
fclose(M0);
1

1

//operateur de mutation S M R

#inchde <stdio.h>
#inc tude <string.h>
#inchde cstd1ib.b
#de fi ne TRANSITION 1 7
#de fine ETAT-COURANT 22
void main0
{
unsigned char etat-courant;
unsigned char ancien-etat;
unsigned char sMrchaine[101 ;
unsigned char clr-mchainef 101;
long binaire[3 11;
int c;
int i;
int i-max;
int transition;
int pos;
int pos-minus;
int compteur-clr;
int flag;
int flag-binaire;

FTLE *MO=NULL; /*definition du pointeur file pour le fichier d'enuÈe*/
FILE *M 1 =NULL;
m E *M2=NULL;
FlLE *tampon=NULL;
RLE *tampon-minus=NULL;

int diagr-eut-svir[TRANSITION][ETAT-COURANT]={
/*eiat,suivant */

/* transitions*/ 1,0.0,0,0.0,0,0,8,10,10,0,0,0,0,0,0,0,0,0,0,
0,2,0,0,0,0,0,0,8,10.10.0,0,0,0,0.0.0.0,0,0,
0,0,3,0,0,0,7,0,8,10,10,0.0,0,0,0.0,0,0.0,0,
0,0.0,4,0.0.0,0,8,10,10,0,0,0,0,0,0,0~0~0,0,
0,0,0,0,5,0,0,8,8,10, 10,0,0,0.0,0,0,0.19.0,0,
0.0,0,0,0,6,0,0.8,10.10.12,0,0,15,0,0.0,0,0.0.
0,0.0,0,0.0.0.0,8,10.10.0,0,14,0,0.0.0,0~0,0,
0,0,0,0,0,0,0,0,8,10,10.0.0,0.0,16,0.0.0,0,0,
0,0.0,0,0,0,0,0,8,10,10,0,0.0.0,0,17,0,0,0,0~
0,0,0,0,0,0,0,0,8,10,10,0,0.0,0.0.0,8,0,0,8,
0,0.0.0,0.0,0,0,8.10.10,0,0,0,0,0,0,0,19~0.0,
0,0.0,0,0.0.0.0,8.10.10,0.0,0,0,0,0.0.0,20.0,
0,0,0,0,0,0.0,0,9,10,10,0,0,0,0,0,0.0.0.0,0,
0,0,0,0,0,0,0,0,8,10,10,0,0,0~0,0.0,0,0,0,0,
0,0,0,0,0,0,0,0,8,10,101,0,0,0,0,0,0,0,0,0,0);

if((MO = fopen("gene-test-vhdl" ,"r"))=NULL)/* ouverture du fichier du premier mutant*/
printf("ERREüR:le fichier source ne peut etrc ouvert in");

else
I
while ((c=fgetcWO))!=EOF)
(
switch(c)
(
casc 'Cg:
case 'c':transition=O;
break;
case '0':
case 'o':transition= 1 ;
break;
casc 'N':
casc 'ng:transition=2;
break;
case 'S.:
case 's':transition=3;
break;
case T:
casc 't':t.ransition=.l;
break;

case 'A':
case 'a':transition=S;
break;

case 'R':
case 'r':transition=6;
break;

case 'I':
case 'i':transition=7;
break;

case '8':
case 'b9:transi tion=8;
break;

case Z':
case 'l':transi tien*;
breri k;

case 'E':
case 'ev:transition= 10;
brcak;

case 'Y':
case 'yD:transition=l 1 ;
break:

case 'P':
case 'pl:transi tion= 1 2;
break;

case ':':transition=13;
break;

case '=': transition=l4;
break;

case ';':transition= 15;
break;

default:transition=16;
break;
1
ancien-eiat=etat-courant;
etat-courant= diagr-eut-svir[tracsition][etat-counnt];
switch(etat-courant)
{
case O: //flag=O;

//break;
case 1 :
case 2:
case 3:
case 4:
case 5:

case 6:
case 7:
case 8:
case 9: break;
case lO:if(c="")

fiagbinaire= 1 ;
if(c!="")

(
binaire[i++]=c;

1
break;
case 101:
M 1 = fopen("mmpon-svul"w ");
pos =ftell(MO);
compteur-ch++;

sprintf(svü~chaine,"Mut~svi~od",compteur~clr);
tampon = fopen(svir-chaine,"w");

if(flag-binaire=+))
(
fputc('1 '.M 1);

// ecrïture de la fin du fichier
w hile((c=fgetc(MO)) !=EOF)
i
fputc(c,M 1);
if(c=lr')
fputc(lnl,M 1);
1
fclose(M 1);
// fin ecriture

//ajout du debut du fichier
fseek(M0.0.0);
while(((c=fgetc(M0))!=EOF)&&(ftelI(MO)<=pos))

(
fputc(c,tampon);

1

//fin d'ajout

//on rcccrit la fin du fichier
tampon = fopen(tata,"aN);
M 1 = fopen("tampon,conspn."r'*);
whilc((c=fgetc(M I))!=EOF)
(
fputc(c,tarnpon);
1

fclose (tampon);
fclose(M 1);
fseek(MO.pos.0); //on remet a la position courante
break;

case 1 1 :FOS-minus =ftell(MO);
if(c !='O?

flag*;
brcak;

case 12:if(flag!=û)
(

{
// pos-minus =ftelf(MO);
M2 = fopen("tmpon~consmn.'*w~);
compteur-clrt+;
sprhtf(clrLrmmchaine,Mut~clrm~~nst%dn,~ompteurf clr);
tampon-minus= fopen(clr-m-chaine,"wn);
fputc('-'M2);
fputc('1 ',M2);
fputc(c,M2);

1
// ecriture de la fm du fichier

while((c=fgetc(MO))!=EOF)

fputc(c,M2);
if(c=l\r')
fputc(ln'Jbi2);
1
fclose(M2);
// fin ecriturc

//ajout du debut du fichier
fseek(M0.0.0);
while(((c=fgetc(MO)) !=EOF)&&(ftelI(MO)<=pos-minus))

//fin d'ajout
//on reecnt la fin du fichier

tampon-minus = fopen(clr-m-chaine,"a");
M2 = fopen("tampon-consm","rW);

while((c=fgetc(M2))!=EOF)

fputc(c,tampon-minus);
1
//fin de Ia reecriture

fclose (tampon-minus);
fclose(M2);

fseek(MO,pos,O); //on remet a fa position courante
1

break;
dcfault:
break;
1
1

fclosc(M2);
fclosc(M 1);
fclose(M0);
1

1

//operateur de mutation LCR

#inchde es td i0 .b
#inchde <suing.h>
#inchde cstd1ib.b
#de fine TRANSITION 9
#de fine ETAT-COURANT 1 6
void maino
(
unsigned char etatcourant;
unsigned char Icr-chine1 [lO];
unsigned char Icr-chaine2[10];
unsigned char Icr_chaine3[10];
unsigned char lcr-chaine4[10];
int c;
int transition;
int pos;
int compteur-lcr,
FILE *MO=NULL; /*definition du pointeur file pour le fichier d'entrée*/
FILE *M 1 =NULL;
FILE *MZ=NULL;
FILE *M3=NULL;
FTLE *M4=NULL;
FILE *tampon 1 =NULL;
FILE *trimpon2=NULL;
FILE *tampon3=NULL;
FILE *tampon4=NULL;

int diagr-eut-lcr[TRANSITION][ETAT-COURANT]={
/*eut-suivant */

/* ir;insitions*l 1.0,0.0,5,0,0,0,0,0,0.0,0,0,0.0,
4.2,0,0,0,6,0,0,11 ,O,O,O,O,O,O,O,
0.0,3.0,0,0,7,0,0,0,0,0,0,0.0.
14,0,0,0,0,0,0,0,9,0.0,12,0.0.0,0,
0.0,0,0,0,0,0,0.0,10,0,0,13,0.15,0,
8.0.0,0.0,0*0.0.0,0,C.0,0,0,O.0,
0.0.0,0,0.0,0,0,0.0,0,0,0,0,0.0 1;

if((MO = fopen("gene.txt" ,"r"))=NULL)/* ouverture du fichier du premier mutant*/
printf("ERREUR:le fichier source ne peut e u e ouvert hW);

else
(
while ((c=fgetc(MO))!=EOF)

I
switch(c)

case 'A':

case 'a':transition=O;
break;

case 'N':
case 'n':transition=l;

break;
case 'Dg:
case 'dq:tr;insition=2;

break;
case '0':

case 'O':tnnsition=3;
break;

case 'R':
case 'r': transition=4;

break;
case 'X':
case 'x': transition=S;

break;
default:transition=6;

break;
1

eut-courant= diag-wt-lcr[~ansition][etat_co~f;int];
switch(etat-courant)

(
case O:
case 1:
case 2:

break;
case 3:

M 1 = fopen("tampon-or-lcr","wl');
M2 = fopen("tarnpon~xor~lcre',"w");
M3 = fopen(nt;impon~xnor~lcr",n~'*);
M4 = fopen("tâmpon-nand_Icrn,*w");
comptcur_lcr++;
sprintf(lcr-chaine 1 ."Mu t,lcfid".cornpteur-kr);
tampon 1 = fopen(lcr-chainel ,"wW);
compteur-la++;
spnntf(lcr~chaine2,"Mut~lcfidn,compteur~lcr);
tampon2 = fopen(1cr-chaine2,"w");
compteur-lcrtt;
sprintf(lcr~chaine3."Mut~lcfidn~compteur~Icr):
t m p o n 3 = fopen(1cr-chaine3,"wn);
compteur-lcr++;
sprintf(lcr~chaine4,"Mut~lcr%d".compteur~icr);
tampon4 = fopen(1cr-chaine4.w);
fputs("or",M 1);
fputs("xor",M2);
fputs("xnorw,M3);
fputs("nand",M4);
pos =ftell(MO);

// ccriturc dc la fin du fichier

while((c=fgetc(MO)) !=EOF)

fputc(c,M 1);
fpu tc(cM2);
fpu tc(cN3);
fpu tc(cN4);
if(c=V)

(
fputc(ln*,M 1);
fpu tc(ln'Jb42);
fputc(ln',M3):
fputC(lri'JM4);

1
1

fclose(M 1);
fclose(M2);
fcIose(M3);
fcIose(M4);

// fin ccriture

//ajout du debut du fichier
fsee k(M0.0,O);
while(((c=fgctc(MO))!=EOF)&&(ftell(MO)<=pos-3)) // pos -3 a cause de and

(
fputc(c,tampon 1);
fputc(c.tampon2):
fputc(c.tampon3):
fputc(c,tampon4);

t
fclose(tampon 1);
fclose(tampon2);
fclose(tampon3);
fclose(tampon4);

//fin d'ajout

//on reecrit la fin du fichier
tampon 1 = fopen(1cr-chainel ."a"):
tampon2 = fopen(1cr-chaine2,"a"):
tampon3 = fopen(Icr-chaine3,"a");
tampon4 = fopen(1cr-chaine4,"av*):
M 1 = fopcn("tampon-or,lccnI"r");
M2 = fopen("mmpon~xor,lcr'*~"r**):
M3 = fopcn("iampon~xnor~Icr"~"rn);
M4 = fopen("tampon-nand-1cr","rv);

1
while((c=fgetc(M3))!=EOF)

fpu tc(c.tampon3);

j
//fin de la rcecriture

fclose (tamponl);
fclose (fampon2);
fclose (tampon3);
fclose (îampon4);
fclose(h4 1);
fclose(M2);
fclose(M3);
fclose(M4);
fseek(MO.pos,O); //on remet a la position courant
break;

case 4:
case 5:
case 6:

break;
case 7:

M 1 = fopen("tampon-or-lcr","wN);
M2 = fopen("tampon-xor-lcrN,"w");
M3 = fopen("trimpon~xnor~lcr","w");
M4 = fopen("tiimpon-and_Icr","w"):
compteur-lm*;
sprintf(1cr-chaine 1 ,"Mut~lcr%d",compteur~lcr);
tampon 1 = fopen(1c-hainel ,"wu);
compteur-lm++;
sprintf(lcr~chaine2."Mut~Icr%odn,compteur~lcr);
tampon2 = fopen(1cr-chaine2."wn);
compteur-lm++;
s p r i n t f (l c r ~ c h a i n e 3 , " M u t ~ I c ~ 0 d ~ , c o r n p ~ :
tampon3 = fopen(lcr-chaine3,wW);
compteur-lcru;
sprintf(lcr~chaine4,"Mut~1cfid~,compteur~lcr);
tampon4 = fopen(lcr-chaine4,"wn);

pos =ftell(MO);

// txriture de la fin du fichier
while((c=fgetc(MO))!=EOF)

{
fputc(cM 1);
fputc(c,M2);
fputc(cM3);
fputc(c,M4);
if(c==lr')

I
fputc(W.M 1);
fputc(W,M2):
fpu tc(b'.M3);
fpu tc(h'M4);

1
1

fclose(M 1);
fclose(M2);
fclose(M3);
fclose(M4);
// fin ecriture

//ajout du debut du fichier
fseek(M0.0.0);
while(((c=fgetc(h.iO))!=EOF)&&(ftell(MO)<=pos-4)) Il pos 4 a cause de nand

(
fputc(c,tampon 1);
fputc(c.tampon2);
fputc(c.tampon3);
fputc(c.tampon4);

1

//fin d'ajout

//on reecrit la fin du fichier
tampon 1 = fopenflcr-chainel ,"aw);
tampon2 = fopen(lcr-chaine2,"an);
tampon3 = fopen(lcr-chaine3,"an);
tampon4 = fopen(1cr-chaine4,"aW);
M 1 = fopen("~ampon-or-lcr","r");
M2 = fopen("tampon-xor,lcr","r");
M3 = fopen("tampon~xnor~lcr","r");
M4 = fopen("tampon-and-lcr"."rn);

1
//fin de la reecriture

fclose (tampon 1);
fclose (tampon2);
fclose (tampon3);
fclose (tampon4);
fclose(M 1);
fclose(M2);
fclose(M3);
fclose(M4);
fseek(MO.pos.0); //on remet a la position courante
break;

case 8:
case 9:

break:
case 10:
M 1 = fopen("tampn-and-1cr1',"w");
M2 = fopen("1ampn-or-lcr"."~");
M3 = fopen('*tampon-xnor-l~r",~ wn);
M4 = fopen("tampon-~nd-lcr","wn);
compteur-/cr++;
sprïntf(1cr-chainel ,"Mut-lcP/cd".compteur-lcr);
tampon 1 = fopen(1cr-chainel ."wW);
compteur-lcru;
sprintf(lcr~chaine2,"Mut~Icfidn,compteur~lcr);
tampon2 = fopen(1cr-chaine2,"w");
compteur-lcrtt;
sprintf(lcr~chaine3."Mut~Icr%dn,comp~1cr);
tampon3 = fopen(1cr-chaine3.w);
compteur-lm++;
sprintf(lcr~chaine4,"Mut~lcr%d1',compteur~lcr);
tampon4 = fopen(lcr-chaine4,"wW);

fputs("andW,M 1);
fputs("orw,M2);
fputs("xnorn,M3);
fputs("nand"Jd4);
pos =ftell(MO);

// ecriture de la fin du fichier
while((c=fgetc(MO))!=EOF)

I
fputc(cJ4 1);
fputc(c,M2);
fputc(cM3);
fpu tc(cM4);
if(c=lr')

{
fputc(b'.M 1);
fputc(ln'M2);
fputc(lnW,M3);
fputc(ln8,M4);

1
1

fclose(M 1);
fclose(hl2);
fclose(M3);
fclose(M4);
// fin ecnture

//ajout du debut du fichier
fseek(M0,0,0);
while(((c=fgetc(M0))!=EOF)&&(ftell(MO)~=pos-3)) // pos -3 a cause de xor

(

fclose(tmpon 1);
fctose(tmpon2);
fclose(tampon3);
fclose(tampon4);
//fin d'ajout

//on reecrit la fin du fichier
tampon 1 = fopcn(1cr-chainel ,"aw);
tampon2 = fopen(1cr-c haine2,"aN);
tampon3 = fopcn(1cr,chaine3,"an);
tampon4 = fopen(lcr,chaine4,"a1');
M 1 = fopen(**tampon-and-lcr","rW);
M2 = fopen("tamp~n-or-l~"~~r'*);
M3 = fopen("tampon~mor~lcrn,'*rw);

fclose (tampon 1);
fclose (tampon2);
fclose (tampon3);
fclose (tampon4);
fclose(M 1);
fclose(M2);
fclose(M3);
fclose(M4);
fseek(MO.pos.0); //on remet a la position courante
break;

case 11:
case 12:

break;
case 13:
M 1 = fopen("tarnpon~or~l~r~,~w");
M 2 = fopen("tampon,xor-lcr","wn);
M3 = fopen("tampon-and-lcrn,w);
M4 = fopen('*tarnp~n-n~nd~I~~~, w");
compteur-lcrt+;
sprintf(1cr-chaine 1 ."Mut-lcr%dn,compteur-lcr);
tampon1 = fopen(1cr-chainel,"wW);
compteur-lm++;
sprintf(lcr~chaine2,"Muttlc~d",cornpteur~lcr);
tampon2 = fopen(1cr-chaine2,"wn);

fputs("or",M 1);
fputs("xorU,M2);
fputs("andW,M3);
fputs("nmdW.M4);
pos =ftell(MO);

// ecriture de la fin du fichier
whiIe((c=fgetc(MO))!=EOF)

{
fputc(c.M 1) ;
fputc(c,M2);
fputc(cM3);
fputc(c M4);
if(c=V)

(
fputc(ln'&ll);
fputc(b'.M2);
fputc(W,M3);
fpu tc(ln',M4);

1
1

fclose(h4 1);
fclose(M2);
fclose(M3);
fclose(M4);
// fin crriturc

//ajout du debut du fichier
fseek(M0,O.O);
w hile(((c=fgctc(MO)) !=EOF)&&(ftell(MO)<=pos-4)) // pos -4 a cause de xnor

{
fputc(c,iarnpon 1);
fputc(c.tarnpon2);
fputc(c,rampon3);
fputc(c.tampon4);

1

//fin d'ajout

//on reecrït la fin du fichier
tampon 1 = fopen(1cr-chainel ."an);
tampon2 = fopenflcr-chaine2,"a");
tampon3 = fopen(lcr-chaine3,"aW);
tampon4 = fopen(lcr-chaine4,"aU);
M 1 = fopen("tampon-or_l~f".~r");
M2 = fopen("tampon-~or-lcr",~r");
M3 = fopen("~pon,anddlcr"~"rn);
M4 = fopen("tampon-nand-ld,"rw);

fclose (tampon 1);
fclose (tampon2);
fclose (tampon3);
fclose (tampon4);
fclose(M 1);
fclose(M2);
fclose(M3);
fclose(M4);
fseek(M0,pos.O); //on remet a la position courante
break;

case 14:
break;

case 15:
M 1 = fopen("crimpon~xnor~!cr","w");
M2 = fopen("crimpon-xor_Icr","w");
M3 = fopcn("tampon-and-lcr"," w lu);

M4 = fopen("Umpon-nûnd-Ic~'*~"w");
compteur-lcr*;
sprintf(lcr-chaine1 ."Mut-lcfid",compteur-lcr);

tampon 1 = fopen(lcr,chaine 1 ,"wW);
compteur-lm++;
sprintf(lcr~chaine2,"Mut~lc~0d",compteur~lcr);
tampon2 = fopen(lcr-chaine2,"w*');
compteur-]cru;
spnntf(lcr~chaine3,"Mut~Ic~dn,compteur~1~);
tampon3 = fopen(1cr-c haine3,"w");
compteur-lcru;
spnntf(lcr~chaine4,"Mut~lcr%d",compteur_lcr);
tampon4 = fopen(1cr-chaine4,"wm);

fputs("xnorn,M 1);
fputs("xorn.M2);
fputs("andW,M3);
fputs("nand",M4);
pos =ftell(MO);

// ecriture de la fin du fichier
whiIe((c=fgetc(MO)) !=EOF)

I
fputc(c,M 1);
fpuic(c,M2);
fputc(cM3);
fpuic(cM4);
if(c==V)

{
fputc(ln'J4 1);
fpu tc(\n0M2);
fputc(lna.M3);
fpu tc(ln'N4):

1
1

fclose(M 1);
fclose(M2);
fclose(M3);
fclose(M4);
// fin ecriture

//ajout du debut du fichier
fsce k(M0,O.O);
while(((c=fgetc(MO))!=EOF)&&(ftell~O)<=pos-2 // pos -2 a cause de or

f
fputc(c.tampon 1);
fputc(c.tampon2);
fputc(c.tampon3);
fputc(c,tampon4);

1

//on reecrit la fin du fichier
tampon 1 = fopen(lcr-chainel ,"aw);
tampon2 = fopen(1cr-chaine2,"an);
tampon3 = fopen(lcrçhaine3,"a");
tampon4 = fopen(1cr-chaine4,"an):
M 1 = fopen("tampon,mor,Icrn."rw);
M2 = fopen("~pon,xor,lcrn."rU);
M3 = fopen("tampon,and,lcrn,"r");
M4 = fopen("tampon,nand-lan ."rn);

fclose (îampon 1);
fclose (tampon2);
fclose (tampon3);
fclose (îampon4);
fclose(M 1):
fclose(M2);
fclose(M3);
fclose(M4);
fseek(M0,pos.O); //on remet a la position courante
break;

default:
break;

1
1

fc1osc(M0):
1

1

