
Titre:
Title:

Services sur réseaux mobiles : architecture d'agent et maintenance

Auteur:
Author:

Bertrand Emako Lenou

Date: 2000

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Emako Lenou, B. (2000). Services sur réseaux mobiles : architecture d'agent et
maintenance [Master's thesis, École Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/8628/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/8628/

Directeurs de
recherche:

Advisors:
Samuel Pierre, & Roch Glitho

Programme:
Program:

Génie électrique

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/8628/
https://publications.polymtl.ca/8628/

SERVICES SUR &SEAUX MOBILES :

ARCHlTECTüRE D'AGENT ET MAINTENANCE

EMAKO LENOU

DÉPARTEMENT DE G ~ U E ~~LECTRIQUE ET DE GÉNIE INFORMATIQUE

-LE POLYTECHNIQUE DE MONTRÉAL

hlÉM0IR.E PRÉsENTÉ EN VüE DE L'OBTENTION

DU DIPLÔME DE M ~ E fis SCIENCES APPLIQ&S

(GÉNIE S L E ~ Q U E)

uisiaons and Acquisitions et
B' iographii Services ssmims bibliographiques 3-

The author has granted a non-
exclusive licence aiiowhg the
National h i of Canada to
reproâuce, 10- distribute or sel
copies of this thesis in microform,
papa or electronic formats.

The author retains ownership of the
copy@t in this thesis. Neither the
thesis nor substantial extracts fiom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothéque naîionale du Canada de
reproâuire, prêter, disüi'buer ou
vendre des copies de cette thése sous
la forme de microfichelfilm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propridté du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celie4 ne doivent être imprimes
ou autrement reproduits sans son
autorisation.

Ce mémoire intitule! :

SERVICES SUR &SEAUX MOBILES :

ARCHlTECTURE D'AGENT ET MAiNTENANCE

Présenté par : EMAKO LENOU

En vue de l'obtention du diplôme de : Maîtrise ès sciences appliquées

A été dument accepté par le jury d'examen composé de :

Michel Dagenais, PhD.

Samuel Pierre, Ph. D.

Roch Glitho, M. Sc. A.,

Alejandro Quintem, Ph, D.

Président

Directeur

Co-Directeur

Membre

Pour réaliser ce mémoire, j'ai béndficié de i'aide de plusieurs personnes. Mes sindies

remerciements à tous ceux qui directement ou indirectement ont contribu6 à ce mémoire.

Mes parents qui m'ont toujours supporte et ont enduré beaucoup de privations pour me

permettre de réussir.

Mes encadreurs Roch et Samuel.

Roch est l'initiateur et directeur du projet. C'est sous son tutelage que j'ai compris la

téléphonie bternet, les agents mobiles, le processus et la rigueur de la recherche

scientifique. ii est exceptionnel d'avoir un encadreur éminemment qualitld, disponible,

qui évalue sans complaisance et expose ses dtudiants aux meilleures avancées

technologiques.

Rien n'aurait été possible sans Samuel. En mettant ses étudiants en contact avec le milieu

industriel, il leur rend un service inestimable. Certains écueils ne sont pas reliés h la

recherche elle-même, la médiation de Samuel m'a dtd précieuse pour les surmonter.

Tous les deux, ils m'ont aidé A démarrer ma carrihre, plutôt qu'à simplement achever ma

maîtrise.

La téléphonie Internet offre beaucoup d'opportunités, Les coDis sont réduits et des

services novateurs peuvent être offerts sur le marché. Des critères ont été formulés pour

dvaluer les architectures de services pour la téléphonie internet. Ces critères incluent

entre autres l'acciis universel, la possibilité de personnaliser les services et la création et

le déploiement rapide des services. L'accès universel implique que les services doivent

être disponibles quelque soit les différentes machines que l'usager utilise et leur position

par rapport aux zones de couverture du réseau. La personnalisation signifie que l'abonné

peut configurer le comportement de ses services et, ou imbriquer l'exécution de services

différents pour en créer de nouveaux qui correspondraient à ses préférences. Les autres

critères sont l'indépendance des services et du réseau, une gestion simple des services,

I'intempérabilité avec les autres architectures de services et le support pour une large

palette de semices.

Les architectures de services pour la téléphonie Internet b&es sur les agents ont

été proposées récemment. Elles préconisent l'utilisation d'agents mobiles qui sont

semblables à des conteneurs en cela qu'ils transportent les exécutables des services (ou

les pointeurs aux exdcutables). Transporter des exécutables (ou des pointeurs) amène de

nouveaux défis. Le traitement des souscriptions est un d'entre!-eux. Ce mémoire traite de

ces architectures ii base d'agents puis propose et évalue des alternatives de traitement des

abonnements.

Le cycle de vie d'un service est composé de sa création, son déploiement, son

utilisation et son retrait. La souscription est la principale difficulté du déploiement et du

retrait des services. L'agent mobile qui transporte des services doit êtip mis à jour quand

un abonné souscrit à un ou plusieurs nouveaux services (ou nouvelles versions de

services existants). il y a deux approches possibles : la permutation d'agent et Ia mise à

jour dynamique de l'agent. Dans la premiere approche, l'agent qui transporte les seNices

est remplacé par un nouvel agent qui contient les anciens (nouvelles versions au besoin)

et les nouveaux services. Selon la seconde approche, les nouveaux senrices sont insérés

v
dynamiquement dans l'agent et les anciennes versions des services sont dynamiquement

changées pour refléter les nouvelles versions. La permutation d'agents a deux variantes,

la permutation progressive et la permutation abnipte. La mise à jour dynamique est

radicalement différente des techniques traditio~eks de mise à jour. D'ordinaire,

L'application est arrêtée, désinstallée, puis la nouvelle version installée et dans certains

cas la machine est réinitialisée. Ceci occasionne un temps mort inacceptable en

téléphonie. La mise à jour dynamique insère la nouvelle version d'un service dans ledit

service pendant qu'il est en corn d'exécution, sans qu'il n'y ait d'interruption de service.

Les requis pour les mises à jour incluent la minimisation de la durée

d'interruption des services, la validité des changements et l'extensibilite à un nombre

élev6 de services. Toutes les approches proposées sont extensibles comme le prouvent les

résultats de mise en oeuvre des prototypes impl6mentés. Par contre, la permutation

abrupte provoque une trés bréve interruption de service au contraire de la permutation

progressive et la mise A jour dynamique n'en causent pas.

Notre impl&mentation est la preuve du concept d'architecture d'agent pour

services sur réseaux mobiles. Nous présentons la premihe spécification technique et la

première implémentation de l'architecture. Ensuite, nous abordons la gestion du cycle de

vie des services. Les solutions possibles (permutation, mise à jour dynamique) sont

nouvelles. Le paradigme de mise à jour dynamique que nous avons développé est plus

efficient que les systhes de mise à jour dynamique proposé jusqu'à présent. En ce

regard, il se reviile être une contribution importante dans le domaine de 1'6volution

dynamique des systèmes. Son impl6mentation résulte en une librairie compacte de 9

KiloOctets. I1 est le premier systeme de mise i3 jour dynamique qui soit applicable sur les

moniteurs d'information portables, Le. PalmTop, Laptop, Wap Phone, etc.

Notre contribution suivante consiste en une évaluation de performance du

paradigme agents mobiles. Cette 6vaiuation d6taillée prend en compte les divers facteurs

influant sur la performance du code mobile et permet de recueillir des d o ~ é e s

pertinentes qui font souvent défaut quand on veut procéder à une dvaluation rigoureuse

des agents mobiles. Elle valide aussi le concept, car les résultats démontrent que la

vi
performance du systhme reste b 0 ~ e tout en préservant les avantages inhérents aux agents

(accès universel, personnalisation, inteiligence, etc.). Nous procédons aussi il une

Cvaiuation de performance de nos schémas de mise à jour. Cette évaluation constate que

la ddgradation de performance di3 au mise à jour est negligeable. Plus Unportant encore,

dans le cas des mises à jour dynamique, l'utilisation des classes dynamiques n'inflige pas

de délai qui puisse être remarqué interactivement,

ABSTRACT

Intemet telephony brings a host of opportunities. Cost can be reduced and new,

unforeseen services can be engineered. Intemet telephony service architectures should

provide universai access, support for a wide range of services, tailored services, service

and network independence, multi-player environment, rapid service creation and

deployment, service manageability and interwork with other service architectures. Mobiie

agent based service architectures for Intemet telephony, have emerged in the recent pst.

They stipulate the use of mobile agents that act as folders and carry the executables of

services (or pointers to the executahles). Carrying executables (or pointers) in a mobile

agent bnngs new challenges. Subscnption handling is arnong them. This thesis dissects

the architecture, then proposes and evaluates subscription handling alternatives.

Service iife-cycle is made of creation, deployment, utilization and withdrawal.

Subscription is the core difficulty of service deployment and withdrawai. When the user

subscribes to new services (or new versions of existing services), mobile agents that

carries services must be upgraded. There are two approaches : agent swapping and on-

the-fly updating. In the fmt approach, the agent that canies the services is swapped with

a new agent that canies both the old and the new services. in the second approach, the

new services are inserted in the agent on the fly and the old versions of existing services

are dynamically changed to reflect the new version. Swapping has two variants smwrh

swapping a d abrupt swapping. Uppde requirements include minimal service

interruption, scaiabiiity, validity of changes. The solutions proposed, scale and there is

either no service interruption (smwth swapping, dynamic update) or an insignificant one

(abrupi swapping) as shown by the prototyping results. The dynamic update solution is

novel and is applicable to any software program written in Java. It enables the selection

of the instances to update and the specification of an adaptable update policy between

class versions. Changes are intraduced through dynamic Java Classes (granulatity). This

thesis provides the first expetimental, hard evidence of the viability of the architecture.

viii

REMERCIEMENTS

R É s m

ABSTRACT

TABLE DES MATI~RES

LISTE DES TABLEAUX

LISTE DES FiGURES

LISTE DES SIGLES ET ABBRÉVIATIONS

CHAPlTRE 1 INTRODUCTION

1.1 Définitions et concepts de base

1.2 B~éments de la problématique

1.3 Objectifs de recherche

1.4 Plan du mémoire

CHAPITRE II CONCEPTS D'AGENTS ET APPLICATIONS

Agents intelligents et systèmes muiti-agents

2.1.1 Définitions et principes & base

2.1.2 Architectures et ontologies

2.1.3 Application des agents intelligents

Agents mobiles

Avantages et limitations

2.3.1 Avantages des agents mobiles

2.3.2 Limitations des agents mobiles

iii

iv

vii

vüi

xii

xiii

xvi

2.4 Syst8mes d'agents mobiles

2.5 Applications des agents mobiles

2.5.1 Télécommunications

2.5.2 Commerce électronique

2.5.3 Administration de systèmes

2.6 Systèmes de mise à jour dynamique

2.6.1 Erlang

2.6.2 Langages de programmation fonctionnels

2.6.3 Systéme d'6volution dynamique de bas niveaux

2.6.4 Système d'évolution dynamique de haut-niveau

2.7 Synthèse des problèmes

CHAPlTRE III MODÉLISATION D'UNE ARCiiKECTURE

D'AGENTS MOBILES POUR SERVICES

3.1 Caractéristiques de l'architecture de service et de L'AMS

3.1.1 Architecture de I'AMS

3.2 Architecture des unités du systèmes

3.2.1 interface UCS - UGS

3.2.2 Interface UGS - UPS

3.2.3 Architecture de 1'UGS

3.2.4 Architecture de L'UCS

3.3 Architecture de L'Agent Mobile pour Services

3.3.1 Évolution de L'AMS

3.3.2 Langage, ontologie, mobilitb, sécurité et fiabilitd

3.3.3 Chargement et demarrage des services

3.3.4 Encapsulation des connaissances - Gestion des services

3.4 Implémentation préhinaire

3.4.1 Analyse des interactions avec l'usager

3.4.2 Analyse de I'UGS

3.4.3 Analyse de 1'UCS

3.4.4 Analyse de 1' AMS

3.4.5 Services Tests

3.5 Synthèse et problbnes ouverts

CHAPlTRFi IV MISE EN OEUVRE DES SOUSCFUPTIONS

Analyses des Ektbl6mes

4.1.2 Problémes et requis

4.1.3 Remplacement d'agent et mise à jour dynamique

Permutations d'agents

4.2.1 Permutation graduelle et permutation abrupte

4.2.2 Implémentation des permutations

Mise à jour dynamique de l' AMS

4.3.1 Concepts de base et préalables

4.3.2 Approches de mise jour

4.3.3 Implémentation de l'€volution dynamique

4.3.4 Gestion des classes et acheminement des invocations

4.4 Évaluation sommaire des schémas de mise B jour

CHAPlTRE V I%AL,UATION DE PERFORMANCE

5.1 Analyse de performance du paradigme

S. 1.1 Analyse du paradigme agent

5.1.2 Conditions enviro~antes et modèle d'échantiiionage

5.1.3 Résultats d'expérimentation

5.2 Évaluation de la permutation d'agents

5.3 Mise à jour dynamique de I'AMS

5.3.1 Évaluation de performance

5.3.2 Évaluation des requis

5.3.3 Synthèse des performances

CHAPlTRE VI CONCLUSION

6.1 Synthbse des travaux et contributions particuliéres

6.2 Limitations des travaux et recherches futures

BIBLIOGRAPHIE

LISTE DES TABLEAUX

2.1 Caractéristiques des systèmes pouf agents mobiles

5.1 Conditions du réseau

5.2 Impact sur l'exécution d'un programme par i' AMS

5.3 Évaluation des stratégies de permutation

5.4 Évaluation de i'implémentation par rapport aux requis

LISTE DES FIGURES

Architecture de service par agent

Entête H ï T P

Format de description de rajout d'un nouveau service

Interaction UCS-I'UGS pour l'ajout d'un nouveau service

Addition d'un nouveau service

Interface üPS-UGS

Information transmise lors d'un abonnement

Interaction pour la création de L'AMS

Réplication d'UGS pour un sous-groupe d'usagers

Diagramme d'dtat de 1'A.S

Envoi de message KQML

Format du message envoyd selon le protocole KQML

Exemple d'une formulation simple en KIF

Échange de renseignement sur un service

ClassLoader JDK 1.2.2

ClassLoader AMS

Lancement d'un service par I'AMS

Agent Mobile pour Services

Interface d'abonnement

Diagramme de COnkXte

Dia- de cas d'utilisation (Use Cases)

Scénario d'abonnement

Diagramme de classes de I'UGS

Diagramme de 1'UCS

Protocole d'échange de données lors de la permutation

hhange de données sur les services durant la permutation

Module et code objet Java

Violation de type causée par un changement dynamique

Modèle de mise à jour dynamique de 1' AMS

Classe java.lang.Reflect.Proxy de JDK 1.3

La classe MSAFactory implémente l'interface des classes dynamiques

Exemple de redirection des invocations pour la version i.i

d'une classe quelconque

Exemple d'utilisation des librairies de I'AMS pour une

mise à jour dynamique

Gestion des classes dynamiques

Acheminement des invocations aux classes dynamiques

Mai de construction pour un AMS contenant un nombre

grandissant de services

Temps adcessaire pour effectuer l'aller-retour dans

notre réseau local pour un AMS de plus en plus grand

Courbe des délais de transmission sur le réseau aux moments des tests

xiv
55

5.4 Pihalit6 de performance avec une teditection simple

sur les objets dynamiques

5.5 Pénalité avec une strat6gie élaborée de redirection

sur les objets dynamiques

LISTE DES SIGLES ET ABB&IATIONS

Siele ou abbréviation

A U

ACP

AEE

AMS

APD

CNRC

EDI

KI

JDK

JKE'

KQML

KIF

KQML

UGS

UPS

UCS

SIP

SSL

SBC

Sinnification

Agent Communication Language

Agent Communicateur Personnel

Agent Execution Environment

Agent mobile pour Services

Appel de procddures iî distance

Conseil National de Recherche du Canada

Electronic Data Interchange

Institut pour les Technologies de l'information

Java Development Kit

Java KIF Parser

Java KQML

Knowledge Interchange Format

Knowledge Query and Manipulation Language

Unit€ de Gestion des Services

Unit€ de Publication des Services

Unit€ de Création des Services

Session Initiation Protocol

Secure Socket Layer

Systéme à Base de Connaissances

XML

CHAPITRE 1

INTRODUmON

Les architectures distribuées sont devenues récemment le centre d'intérêt de la

recherche sur les infrastructures logicielles, notamment à cause de Unternet. Le slogan

"le réseau c'est l'ordinateur" se matérialise et la réseautique influence maintenant le

design et l'implémentation de toutes les infrastructures logicielles,des systèmes

d'exploitation aux langages de programmation en passant par les applications. De plus,

les services sont maintenant disponibles en location à travers 1'Internet et cette approche

s'illustre comme la voie de l'avenir. On paye pour une certaine durée et pendant cette

période on peut accéder le site Web de la compagnie et exécuter les services pour

lesquels on a un abonnement. Pas besoin d'installation et les mises à jour sont

automatiques (voir site MSNBC). La majorité des produits informatiques devrait dvoluer

pour devenir de tels services. Toutefois, ces fonctionnalitks demandent des connexions

réseaux A haute vitesse. Or, la prolifération des moniteurs d'information portables

(ordinateur personnel, "palmtop", etc,) qui disposent seulement d'une faible bande

passante, impose la recherche d'une nouvelle ingénierie des services. Une des approches

proposées par l'informatique mobile est la mobilité du code. L'exemple le plus courant

de code mobile est les "applets" Java exploités dans les fureteurs (Mosaic, Netscape,

etc.). Ce m€moire propose d'utiüser une entité plus effective de code mobile, Le. les

agents mobiles pour trouver une solution aux probkmes de la mobilité du couple service-

usager et de la maintenance des services. Les agents mobiles pourront éventuellement

être disponibles pour "location".

1.1 Définitions et concepts de base

La mobilité du code peut être définie de façon non formelle comme la capacité de

changer dynamiquement le lieu d'exthtion, ou la source de provenance de hgments de

2
code durant i'ex6cution d'une application. Le code peut être arrêté, déplacé puis

r e d é d B une machine distante (i.e. les agents mobiles), ou une application peut

utiliser du code situé sur une autre machine qui est transféré à l'exécution (code sur

demande : applets). La technologie (code mobile) devrait permettre la création de

nombreux services innovateurs. La triste réaiité demeure que les applets sont

actuellement la seule implémentation de code mobile déployée à grande échelle.

La convergence de la téléphonie et de la réseautique est illustrée par la tt?ldphonie

Interner. Les services avances de télbphonie par l'ïnternet et le commerce électronique

sont deux applications existantes qui devraient bénéficier des agents mobiles. La

téléphonie bternet est le transport en temps réel de la voix et des applications multiméàia

sur 1'Intemet. Les services avancés de téléphonie sont ceux qui ne traitent pas du contrôle

(dtabiissement) des appels. Ces services peuvent être des services téléphoniques purs tels

que la diversion des appels ou des services hybrides qui interfacent par exemple avec le

courrier électronique (un courriel est envoyé pour avertir des appels manques). Les

services avancés peuvent être implémentés ou transportés par des agents mobiles,

facilitant l'ajout et le retrait desdits services, en découplant totalement la gestion des

services du contrôle des appels. Pour se servir des agents mobiles, tout noeud du réseau

ou toute machine oir l'agent pourrait se déplacer doit avoir un environnement d'exécution

(plate-forme) d'agents mobiles. Ceci est similaire à l'architecture des rdseaux actifi.

b s r6seau.x acti$s (Wetherall, 1999) permettent l'injection de paquets appelés

capsules qui contiennent des programmes dans le réseau. Le format d'une capsule est une

extension du format d'un paquet IP. Une capsule ressemble à un agent mobile en ceci

qu'elle se déplace à travers les nœuds actifs en respectant sa propre politique de

migration. Si la capsule passe par un commutateur ordinaire, il fait suivre le paquet tout

simplement selon la valeur de l'entête IP du paquet. Un noeud actif est un commutateur

programmable (logiciel) qui implémente une interface que les capsules manipulent pour

s'informer sur l'environnement et prdter des services disponibles dans le dieau.

L'interface est unique pour tous les nœuds actifs du réseau. Chaque fois qu'une capsule

invoque une méthode de l'interface, la méthode est traitée par le service indiqué dans le

3
champ d'entête de la capsule. Les seuls services offerts par les impI6mentafioas actueila

sont ceux de migration des capsules (multicast, point à point, etc.). Les réseaux actifs

standardisent le traitement à chaque noeud (quelles méthodes invoquer) au lieu de

standardiser le traitement effectué sur chaque paquet.

L'alternative au code mobile est le mod&le client-serveur avec ses appels de

pmédure à distance (RPC), implémenté par les technologies comme CORBA ou

Microsoft COM. Dans un programme, les appels de procédure à distance (MD) sont

identiques aux appels à des procédures locales. Cette similarité est toutefois superficielie.

Pour implémenter les APD, un "stub" est g6ndré au client et au serveur. Les APD

transitent par ces "stubs" qui ouvrent une connexion entre les hôtes clients et serveurs et

transmettent la procédure invoquée et ses param&tres dans un message. Les connexions

"pipe" permettent de retourner les résultats intermédiaires ainsi que de grandes quantités

de données. Les "stubs" doivent être regéndrés chaque fois que le programme change. Le

support système est limité au formatage et à la transmission des donées.

Le support système des agents mobiles ou des réseaux actifs inclue souvent un

interpréteur, une couche qui traduit le code exécutable (généré selon un format unique) et

invoque les primitives appropriées du système d'exploitation. Dans les langages non-

interprétés, l'exécutable d'un programme varie selon le systbe d'exploitation,

principalement parce que les programmes font des appels directs aux primitives desdits

syst&mes. Ce sont les interpréteurs qui permettent le code mobile.

13 E14menîs de la problématique

Les services avancds de td€phonie Internet doivent &tre implémentés suivant une

architecture qui sépare totalement la gestion des services de i'établissement des appels.

Cette division permet à l'architecture d'offrir, en plus des services avancés de téiéphonie,

des services hybrides et des services non reliés à la téléphonie. Glitho (2001) évalue

l'alternative qui consiste à modiner les réseaux intelligents (Intelligent Networks) pour

insérer la gestion des services dans le réseau. 11 démontre que cette option est limitée et,

tout comme les deux standards utilisés en ce moment (H.323 et SIP), ne remplit pas les

4
critères exigés pour que les seMces en téléphonie Internet soient compétitifs. H.323 de

iTü-T (1999) est un standard qui rappeiie la tdléphonie à commutation de circuit. L'autre

standard (Handley et al., 1999) est le Session Initiation Protoc01 (SP) de I'Intemet

Engineering Task Force (lETF).

Dans la vie courante, les utilisateurs peuvent personnaliser les services Intemet

(corne le courriel) auxquels ils addent à partir d'un ordinateur personnel. li leur est

facile d'ajouter des services à leur Ligne résidentielle et la Mgularion leur permet

maintenant de changer de fournisseur avec aisance. La téléphonie btemet doit relever ces

défis si eiie veut être compétitive. GLitho (2000) indexe les critéres que l'architecture

pour les services avancés en téldphonie doit remplir ;il évalue H.323 et SIP par rapport à

ces critères. Nous estimons que ces critères sont raisonnables et les reprenons à notre

compte :

le support doit être pour une large palette de services ;

la création et le ddploiement des services doivent pouvoir se faire rapidement ;

l'usager doit avoir la possibilité de personnaliser ses services ;

l'€voIution du réseau (IN) et de l'infrastructure des services doit être indépendante ;

de nombreux et différents foumisseurs de services doivent pouvoir entrer facilement

sur le marché ;

la gestion (insertion, retrait, mise à jour) des services doit être simple ;

l'accts aux services doit être universel, Le. indépendant de la position de L'usager et

du moniteur qu'il utilise ;

l'architecture doit permettre la collaboration avec les autres services ddjà existauts.

Les standards H.323 et SIP ont des résultats piteux par rapport à ces requis tels

que le ddmontre Glitho (2000). Modifier les réseaux intelligents n'est pas plus porteur

selon Glitho (2001). La solution pourrait donc être d'implémenter les services de

téléphonie comme des capsules et dkvelopper des nœuds actifs pour avoir un réseau actif.

Plus simplement, les services peuvent aussi être transport& dans des agents mobiles.

Bien que les réseaux actifs permettent l'introduction rapide de nouveaux senrices, ils sont

limités aux services de téi6phonie et même pour ces cas là ne sont appropriés que pour les

5
applications de routage "multicast", notification de congestion et surveillance du réseau.

Les réseaux actifs n'offrent pas l'accès universel et ne permettent pas de

personnalisation. En bref, ils ne sont envisageables que si on est uniquement

concerné pas l'insertion et le retrait rapide de services reliés à la gestion du réseau et

qui n'interagissent pas avec les usagers.

L'accès universel et la personnalisation (préservation des données) sont deux

motifs pour lesquels les agents mobiles sont préférables. Toutefois, l'informatique mobile

propose des solutions à ces requis là. Pourquoi ne pas limiter les agents mobiles aux

services à l'intérieur du réseau et utiliser les systèmes d'informatique mobile pour

l'approvisionnement en service des moniteurs d'information portables ? Les moniteurs

disposent en général d'une faible bande passante et sont même déconnectés du réseau

s'ils sortent de la zone de couverture.

Les paradigmes de l'informatique mobile sont pour la plupart b d s sur le modèle

client-semeur avec ses APD. Ces paradigmes peuvent être classifiés en trois

catégories (Jing et. al., 1999): adaptation mobile, modhle client-serveur étendu et accès

des données par des clients mobiles. L'adaptation mobile permet l'allocation dynamique

de ressources aux applications et systemes en fonction des changements dos à la mobilitd.

En général, les applications sont obligées de sacrifier des fonctionnalités et de la

performance. Le fonctionnement en mode ddconnecté est compliqué et limité. Le ~)6tème

Rover en est le plus connu (Joseph et al., 1997).

Le mod&le client-senteur étendu requiert que les applications dans le serveur

soient partitionn&s (découpées) et optimisées pour la mobilité. Ceci permet de transfdcer

certaines fonctionnalités du semeur au client ou vice-versa avant la déconnexion.

L'approche nécessite le support d'un système tel que : InfoPad, C m (voir site

ClTRIX) ou CODA pour son fonctionnement. Ici encore, les applications possibles sont

limitées. Les paradigmes pour l'accès au donndes par des clients mobiles reposent sur la

dplication des données contenues au serveur et la consistance des données en cache du

client. lis ne traitent pas la survivabilité des applications mobiles ou leur fonctionnement.

Cette brève analyse montre les faiblesses intrinsèques des paradigmes de I'informatique

6
mobile qui les disqualifient pour notre architecture. Les agents mobiles se révèlent être la

meilleure et unique approche qui permette de remplir tous les critères énoncés plus haut.

13 Objectifs de la recherche

Ce mémoire a pour objectif principal la spécification et l'évaluation du cycle

de vie d'une architecture d'agents mobiles qui satisfait toutes les exigences énoncées

dans les éléments de la problématique. ïes services pourront être personnalisés à travers

l'agent mobile et seront accessibles en tout temps et sur tout moniteur (l'agent peut

résider sur le moniteur et se déplacer sur un autre au besoin). Plus spécifiquement, ce

mdmoire vise :

- la spécification détaillée et I'impldrnentation de l'architecture qui précisera le

mécanisme d'approvisionnement en service, l'intelligence des agents (en opérations

possibles), ainsi que les mécanismes de communication employés ;

- l'évaluation de performance de l'architecture ;

- la description, l'implémentation et l'évaluation de mécanismes de mise à jour de

l'architecture et de ses services.

La mise à jour dynamique doit être traitée et une solution performante et

efficiente sera proposée, car elle est primordiale pour les services de téléphonie, En effet,

les services de téléphonie ne peuvent &re arrêtés, ils doivent rouler continuellement et

être mis &jour alors qu'ils sont en cous d'exécution.

1.4 Pian du mémoire

Ce mémoire comprend six chapitres. Au chapitre 2, nous présentons une revue,

une évaluation critique et les applications des agents mobiles, des agents intelligents, des

systèmes multi-agents et des systèmes & mise h jour dynamique. Ensuite, au chapitre 3,

nous abordons l'implémentation de notre architecture. Au chapitre 4, nous expliquons les

mécanismes de mise à jour des agents et des sewices. Au chapitre 5, nous procédons à

une dvaluation de performance de l'architecture, des mécanismes de mise à jour et ii une

évaluation d'int6grit6 de nos mises &jour.

CHAPITRE II

CONCEPTS D'AGENT ET APPLICATIONS

On distingue deux communautés qui ueuvrent dans le domaine des agents : celle

des agents intelligents et celle des agents mobiles. Les agents intelligents sont

essentiellement des systhes & base de connaissances ou des syst&mes experts. De

nombreuses applications commerciales basées sur ces systkmes sont actuellement

disponibles dans les services d'information, de recherche d'emploi, de divertissement,

d'assistance personnalisée sur I'hternet et de commerce 4ectronique. Les agents

mobiles, quant à eux, sont des agents qui se déplacent dans le dseau durant leur

existence. Dans ce chapiue, nous passons en revue les concepts et applications des

technologies agents. Dans un premier temps, nous examinons la technologie des agents

intelligents et des systèmes multi-agents (SMA). Ensuite, nous retraçons l'évolution

technologique des agents mobiIes dont nous dvaluons les avantages et les actuelles

limitations. Ensuite, nous décrivons quelques-unes des applications d'agents mobiles

d6veloppées jusqu'à pdsent. Enfin, nous traitons des mises à jour dynamiques et des

techniques qu'elles utilisent.

2.1 Agents intelligents et systèmes multi-agents

Les agents, particuliérement les agents intelligents. sont l'objet de recherche

depuis le début des années 80, principalement par les chercheurs en intelligence

artificielle dismiude. Récemment, b Web a relancé l'intérêt pour le paradigme et

d'importantes ressources sont investies dans la recherche, le développement et le

d6pIoiement des agents, Dans cette section, nous présentons les principes de base des

agents intelligents. Nous abordons ensuite les architectures des systémes d'agents. Pour

finir, nous nous attardons sur plusieurs applications commerciales des agents intelligents.

2.1.1 Définitions et principes de baie

Un systhe multi-agent est un ensemble d'agents qui coopèrent

intelligemment pour réaliser une tâcbe. L'intelligence est distribuée entre les agents

du système. Les systèmes h base de connaissances (SBC) sont des programmes qui

infèrent des décisions dtant donnés certains faits, en utilisant un ensemble de kgles. Un

SBC est un sysieme expert quand le programme est conçu pour agir comme un expert

dans un domaine précis.

Un système expert est principalement composé d'une base de connaissances et

d'un moteur d'inférences qui implante un ou plusieurs mdcanismes d'infdrence. Ces

systémes sont aussi dot& d'un utiiitaire qui explique comment une &cision a été obtenue

ou pourquoi une donnée est nécessaire. L'intelligence est couramment représenttk par la

logique des prédicats, des règles de productionou des réseaux sémantiques, etc. Les

mécanismes d'infdrence sont des stratdgies de conuôle ou des techniques de recherche

qui parcourent la base de connaissances pour amiver B des décisions (Rajeev et al., 1996).

Certains systèmes base de connaissances sont capables d'apprentissage. La plupart

d'entre eux apprennent par induction, d'autres par ddduction,

Une ontologie est une spécification explicite d'une conceptuaîisation. Pour

iüusüer, considérons deux politiciens qui parlent d'un usyst8me N, puis deux ingénieurs

logiciels qui parient d'un arsystème B. Les deux groupes parlent de aisysiéme W , toutefois,

le asystbe i~ des ingdnieurs est différent du système des politiciens. Dans ce cas-ci, les

politiciens partagent la même ontologie, tout comme les ingénieurs. Seulement, les deux

groupes utilisent des ontologies diErentes. Pour simplifier, on peut dire qu'une

ontologie est un langage commun et un vocabulaire qui sert de cadte de référewe pour

interpdkr les messages échangés.

9
2.13 Architecture et onîol@

La recherche d'une architecture adéquate pour un SMA a mené h plusieurs

sp8cifications diffhntes. La plus connue est celle de Shoham (1993). Les

propridtés désirables d'un systeme multi-agents peuvent s'énoncer comme suit :

offiir des dcanismes pour ajouter et retirer des agents de la société d'agenis ;

r permettre la construction de socidté d'agents, c'est iî dire de groupes d'agents qui

coilabotent pour atteink un objectif précis. Les agents ne sont pas supposés avoir

une connaissance au préalable des uns et des autres ;

O offrir des mécanismes pour la résolution de conflits.

A un degré moindre, un SMA devrait pkvok des mécanismes pour intégrer des

agents Mt6mgènes [qui ne sont pas supposés collaborer) et réuiilisables. Cette propriété

est en fait primordiale pour les applications Intemet. Toutefois, pour des solutions

propriétahs, il est risqué d'interagir avec des agents inconnus.

L'architecture d'un SMA peut etre décomposé en trois couches : typologie et

structure, communication, coopération (Pelletier et al., 2000). La première couche &finit

les agents et anaiyse leurs possMes activit6s. La couche communication ddtermine

l'échange d'infomtion entre les agents. ia couche coopération établit le modèle de

négociation (commerce électronique) entre agents*

Une ontologie commune permet aux agents intelligents de partager et de réutiliser

leurs connaissances. Le terme ontologie est emprunte de la philosophie oii il désigne une

occurrence systdmatique d'existence. Nous utilisons des ontologies courantes pour

décrire le langage d'un groupe d'agents de sorte qu'ils puissent communiquer sans

nécessairement opém selon une théorie commune. On dit qu'un agent souscrit B une

ontologie quand ses actions observables sont consistantes avec les définitions de cette

ontologie (Tom Gruber, 1994).

Pour communiquer, !es agents ont besoin d'un langage commun. ies staadards

KQML (Knowledge Query and Manipulation Language) et ACL (Agent Communication

Language) sont les langages de communicatioa inter-agents les plus connus. kur

spédcation est semblable h un protocole de passage de messages.

10
Les agents qui partagent la même ontologie peuvent utiliser KQML pou

communiquer. Les deux langages sont basés sur des performatives où l'intention du

message sur le receveur est spécifiée dans le message (dire, demander, etc.).

Dans le commerce électronique, XML-EDI est utilisé pour les transactions

électroniques entre agents. EDI est une extension de XML qui spécifie le contenu des

documents d'affhim pour les transactions Web (Glusbko et al., 1999 ; site disa.org).

KQML et XML ajoutent de la flexibilité et de L'adaptabilitd aux syst5mes d'agent, ce qui

leur permet d'effectuer du "shopping" et de réaliser des transactions sur le Web.

2.13 Applications des agents intelligents

Les agents intelligents sont utilisés dans les applications d'entreprise virtuelle, de

réseautique scientifique (qui permettront de traiter les ordinateurs en réseau comme un

unique métasrdinateur), de manufacture intelligente et de gestion de distribution de

l'énergie. Jis sont déjà commercialement utilisés dans des services et applications de

nouvelles et d'information, de shopping, de ventes aux enchkres, de navigation

personnalisde et & recherche d'information.

Nouvelles et infornt0hrntOhons

Les premières applications d'agent disponibles commercialement concernaient les

agents moniteurs. Ces systemes parcouraient les d o ~ é e s et avertissaient l'usager quand

un dvdnement d'importance se produisait. E-Watch (Site ewatch.com), WNet (Site

zdnet.com) et ficite (Site excite.com) offtent ce service de nouvelles et d'information.

LRS agents de ce type sont nombreux sur les sites boursiers et les sites de commerce

électronique.

Shopping

11
Frictionless (Site frictionless.com) permet aux usagers de comparer les prix et les

caractéristiques des produits lorsqu'ils font des emplettes par 1'Intemet. L'usager peut

remplir une fiche décrivant son profil, puis choisir un produit et ses caractéristiques.

Son agent demandera alors ce produit aux différents marchands. Les produits

satisfaisants sont ensuite présentés il l'usager et ordonn6s selon leur correspondance au

profil de L'usager, leur prix, les politiques du vendeur (livraison, retour, échange, etc.).

D'autres sites de shopping ($mgo.corn) utilisent des agents.

Enchères

AuctionSot (Site auction,eecs.umich.edu) est un serveur lnternet qui permet de

tenir des encheres sur n'importe quel produit. il est situé A I'universitt5 de Michigan. Une

interface sur le site permet aux usagers de créer et de #cifier les caract6ristiques de leur

agent. Cet agent peut alors prendre part aux enchéres sur le site. Les usagers créent une

nouvelle enchèxe en spécifiant le type de l'enchère, un prix de départ et une méthode de

résolution en cas d'égalité. Plusieurs sites d'enchères traitant de produits spécialisés sont

disponibles sur intemet (Voir Sites Eachéres).

Navigaîton Personnalis&

Alexu (Site alexa.com) est un utilitaire gratuit qui est compatible avec n'importe

quel fureteur et qui foumit de l'information à propos de chaque site visité. il a c h e les

statistiques de chaque page visitée dans sa propre fenêtre. JI est aussi utile pour le

commerce électronique car il vérifie L'information sur les propriétaires de chaque site

avant que l'usager n'utilise sa carte de d d i t , Le produit WB1 (Voir Site

almaden.ibm.com/cs/wbi) de IBM, qui est un pmxy programmable de Web serveur, est

un autre exemple de cette catégorie.

12
La technologie ''Push" et les "Bots" (ro"Bots" Internet) sont deux champs de la

recherche d'information qui utilisent des agents. Les moteurs de recherche sur le Web

envoient des "Bots" qui parcourent les serveurs et collectionnent des listes d'URLs.

En bref, les "Bots" fouillent au travers des donndes. ils ont un grand potentiel pour

la dissémination d'information, car ils peuvent détecter des patrons dans de grandes

quantités de données.

Les "Bots" sont des agents statiques qui ont accès seulement aux données

publiques disponibles par l'intermédiaire des serveurs Web. Les problemes rencontrés

par les agents mobiles proviennent & ces différences. Un agent mobile effectuera des

transactions locales qui ralentiront le serveur et devra &entuellement accéder à des

données privées, ce qui pose des problèmes de sécurité, Les "Bots" ne coopèrent pas

entre eux et ne transportent pas leur état quand il se ddplace.

La technologie "Push" est en fait un ensemble de technologies utilisées pour

envoyer de l'information à un usager sans qu'il n'en fasse la demande (Site

jm.acs.virginia.edu). Les m6dias publics tel la radio et la télévision sont basés sur cette

technologie. Le Web est basé sur du ''Pull" (i9usager doit cliquer). La technologie

"Push" sur le Web permet à i'utilisateur de choisir l'information qui lui sera envoyée, le

moment et le format de l'envoi.

La technologie "Push" permet aux entreprises d'envoyer de l'information des

audiences ciblées. Elle permet notamment de naviguer sur le Web sans utiliser de

fureteur et facilite la dismiution des nouvelles versions des logiciels. Les agents

conviennent naturellement li cette technologie puisqu'un agent peut être envoyé sur ua

serveur et filtré l'information localement. Seule l'information pertinente est retournée à

l'expéditeur.

Le réseau Poincast (Site www."Pointcast".com) est le produit le plus avancé de la

technologie "Push" qui utilise des agents. Il permet aux usagers de personnaliser leurs

nouvelles sur le sport, la météo et les valeurs boursieres. C'est un utilitaire gratuit qui

dispose d'une interface graphique et qui délivre les nouvelles sur L'ordinateur personnel

de i'usager.

Les agents mobiles empruntent beaucoup de la migration de processus qui

fait référence au transfert de processus entre deux ordinateurs. Un processus est une

abstraction des systémes d'exploitation qui comprend le code, les données et l'dtat

d'exécution d'une application. Initialement, la migration de processus était typiquement

implantée au niveau du systérne d'exploitation. Le principal défi était de transfdrer l'état

interne du processus contenu dans le noyau du systhne d'exploitation. ii &ait aussi

M~cile de transferer les ressources systèmes, i.e. les pointeurs de fichiers, les pidotes

d'interface et de périphériques, etc. C'est pourquoi la migration de processus a d'abord

6t4 implanté avec les systèmes basés sur les messages oh l'interaction du processus avec

le monde se fait au travers & canaux précis (Powell et al., 1998). La migration de

processus bade sur les appels au noyau du systhe d'exploitation a suivi (Douglis et al.,

1998). Ces systèmes ont connu un certain succès, même si aucun d'eux n'a pu s'imposer

en environnement réel, cause de leur complexitd.

La migration de processus a invoduit les notions de code mobile et d'objet d i l e

(un graphe de i'objet est créé et transf€ré). Les agents mobiles ont enrichi ces notions et

sont maintenant implantés en langage interprété qui supporte du code mobile. Iis sont

indépendants des systèmes d'exploitation.

Selon burs promoteurs (White, 1998)' les agents mobiles permettent de W s e r

les limites du modèle client-serveur. Cependant, jusqu'i pdsent, les exgriences ne sont

pas parvenues démontrer une réduction significative du trafic réseau, sauf pour certains

cas particuliers d'application à petite échelle. Les mécanismes pour augmenter la

tolérance aux fautes des agents demurent inadéquats sur i'ensemble des systémes; la

tâiche repose donc sur les épaules du programmeur. De pertinentes réserves sont

sodevées sur la s8curii.é des agents, leur contrôle et leur communication.

14
23 Avantages et limitations

Dans cette section, nous présentons les principaux avantages et limitations des

agents mobiles. Cela nous permettra de mettre en évidence les défis qui sont iî

relever pour populariser leur utilisation.

2.3.1 Avantages

L'un des avantages souvent tvoqués est que les agents mobiles permettent de

ddpasser les limitations du modèle client-serveur. En effet, les limitations de la machine

cliente telles que la puissance des processeurs, son débit, la taille de son espace mémoire

peuvent être attdnuées si l'agent s'exdcute près des domdes. Par exemple, envoyer un

agent vers une base de données qui doit être examinée selon un algorithme particulier

peut augmenter la performance, comparé au cas où les requêtes seraient envoyées Zi partir

d'une machine distante. Toutefois, les résultats d'expériences (Johansen et ai., 1999)

contredisent ces affumations. En effet, on observe des gains & performance dans

certaines circonstances particulihes (Ranganathan et al., 1998; Outtagarts et al., 1999).

La plupart du temps, il n'y a pas de gain ou alors ils sont fiactionnaim. Les meilleurs

résultats sont obtenus avec une combinaison de client-serveur et de code mobile. Les

gains dkpendent toujours du réseau : plus son débit est faible, plus grands seront les

gains.

Un autre avantage proclamé des agents mobiles est qu'ils permettent une

interaction asynchrone. En effet, les agents mobiles implantent la programmation à

distance au Lieu des appels de fonction à distance. L'ordinateur doit donc être connecté

assez longtemps pour déplacer I'agent sur le réseau et plus tard l'accueillir. Ceci est

particuiihnent utile pour les "paImtopsn et ordinateurs mobiles qui ne sont

g6néraIement connectés que de façon inteditente. De plus, on peut s'assurer que les

agents survivent aux fautes matérielles. Si une machine tombe en panne, ragent peut €ire

enregistré sur le disque dur de la machine ou il peut se déplacer vers un autre hôte pour

revenir plus tard. Une fois que la machine est remise en marche, I'agent continue sa

tâche et retourne vers l'hôte qui l'a envoy6 quand il a obtenu des résultats, Une

15
interaction continue ne ndcessite donc pas de communication continuelle. Cette propriéte

permet de concevoir des applications dtint6gration des mddias de communication. Une

telle application est dite messagerie sans interruption où l'agent peut chercher à

joindre l ' ab0~d sur plusieurs terminaux, de sorte qu'il peut lui livrer un message

urgent, peu importe le média d'origine. Cette commutation de média est grandement

compliquée avec le modèle client-serveur.

Presque toutes les plates-formes d'agents mobiles actuelles permettent une

interaction asynchrone. Cependant, les agents qu'on peut développer avec leurs outils

ont une autonomie et une intelligence tirnitées. Par conséquent, ils n'exploitent pas les

possibiiitds d'interaction asynchrone.

Par ailleurs, les agents seraient plus faciles h personnaliser et ajouteraient de la

flexibilité aux systèmes. En effet, un agent mobile peut être ddveloppé comme un

ubean » (Java Beans). La technologie u Java Beans » permet I'interopérabilitd entre

composants provenant d'applications différentes. Un bean » est développé et testé

inddpendamment; par conséquent il est plus facilement réutilisé. En effet, le code source

qui définit un composant u Java Beans ip, ne fait référence à aucun autre composant. Les

réfdrences sont dtablies à l'exécution. Ces réfdrences peuvent être dtablies par le

contenant qui tient le composant u Java Beans n ou par le composant lui-même. Cette

propridt6 permet de raccourcir le temps de développement d'une application utilisant des

u Java Beans », donc éventuellement d'une application basée sur des agents. Les u Java

Beans * offrent les mêmes avantages que ActiveX et VBX pour les applications

d'interface usager.

Une place est un environnement d'exécution pour agents. Typiquement, c'est une

plate-forme pour agents en exht ion sut une machine. Les agents se rencontrent dans

des places. Un serveur peut donc être configuré comme une place. Ainsi, quand une

nouvelle application doit être installée sur le serveur, un agent mobile qui impl6mente

cette application est envoyd au serveur. L'agent s'agrège donc au serveur et le serveur

offk cette nouvelle application. Les applications simples peuvent donc être rajoutées

facilement, i.e. chaque usager peut rajouter les applications qui l'intéressent.

16
Comparativement, les applications statiques qui utilisent des appels de procédure h

distance impose que le serveur soit arrêté, puis mis iî jour. De plus, comme la nouvelle

interface sera disponible à tout le monde, pour un serveur public ceci implique qu'il

faut une ddcision d'affaires avant d'ajouter une nouvelle application, peu importe sa

simplicitd ou le nombre de ses utilisateurs.

Les implications de ce concept de serveurs extensibles sont imptessio~antes :

0 les appiications sur les communicateurs personnels ('"4palmtop'"', ordinateur mobile)

pourront être configurées comme une collection d'agents;

les réseaux et serveurs publics deviennent des plates-formes pour agents mobiles

(James, 1998).

Ces concepts sont déjà utilisés avec les plugiciels (plug-ins) des furetews

(Netscape, Intemet Explorer) et constituent des avantages bien réels. Ainsi, plusieurs

usagers accddant à un même serveur peuvent en avoir des vues totalement différentes, car

chacun utilisera des agents personnalisés offrant des services difftrents. La question qui

se pose alors est de savoir comment maintenir et coordonner un tel système.

Un autre des supposés avantages des agents mobiles est qu'ils sont plus faciles à

programmer et augmenter. Cela provient de l'observation que les agents offrent souvent

une meilleure représentation du monde réel. Par exemple, pour les utilisateurs

d'ordinateur qui sont mobiles, les travaux qu'ils commencent au bureau doivent souvent

être poursuivis même s'ils quittent leur ordinateur. Une façon de faire serait de déiéguer

ces tâches à un ordinateur qui continuera le travail pendant que l'usager sera absent.

En attendant que les dificultés avec les ontologies soient surmontées, les agents

pourraient impl6menter des technologies comme Jini (Site www.sun.com/jiai) qui permet

à des applications difftrentes provenant de di£ft?rents vendeus de s'entre-identifier et de

s'entre-utiliser. Notons en& que les m6canismes de communication utilisés actuellement

sur toutes les plates-formes d'agents mobiles sont précaires.

17
233 Limitations des agents moWes

Les agents mobiles seraient dangereux à utiliser. En toute rigueur, accepter des

agents mobiles n'est pas nkessairement diff€rent d'accepter du code mobile comme

on le fait avec les applets de Java. Le risque peut être comparé à celui lié au fait

d'accepter des couniels avec des entités actives, tels les documents Word qui contiennent

des macros (Milojiti(Z et a1.,1998). Si les agents sont restreints à communiquer au travers

d'interfaces bien definies et sont limités dans leurs actions (comme le modèle sandbox de

Java le permet), alors les risques sont considérablement réduits.

Malheureusement, les interfaces sont peu ou pas definies sur la plupart des plates-

formes. De plus, les problèmes de sécurité ne sont pas limités à un usage abusif de L'hôte

par l'agent, ils incluent aussi l'usage abusif de l'agent par l'hôte ou par d'autres agents.

Greenberg et al. (1998) ont cité les attaques les plus probables sur un agent ou un hôte :

refus de service, accès aux données personnelles, harcèlement, ou une combinaison de

celles-ci. La plus dangereuse est celle de l'accés aux données personnelles ou un agent

peut utiliser un canal pour retransmettre des données tout en respectant les interfaces qui

lui sont imposées. Les attaques qui sont une combinaison des techniques sont les plus

difficiles B retracer.

Les solutions de sécurité envisagées jusqu'à présent pour les agents mobiles sont

hadequates parce qu'elles sont calquées sur celles qui étaient employées sur les vieux

systèmes qui n'acceptaient pas de programmes extdrieurs. Des mesures de protection

adéquates n'ont pas encore ét6 conçues pour les systèmes ouverts (Internet). Ainsi, la

sécurité des agents est un domaine en pleine &olution où beaucoup reste à faire.

N'empêche, des solutions sont disponibles pour la plupart des problèmes, excepté l'usage

abusif de l'agent par l'hôte.

Faire communiquer des agents necessite le recours à des mécanismes

d'intempérabilité de haut niveau entre des programmes (Finn et al., 1998). Ceci est

difficile à réaliser étant donné que :

diffbrents langages sont utiliséi pour programmer les agents ;

les plates-formes et les systèmes d'exploitation sont souvent diffdmts ;

18
peu d'hypoth8ses peuvent être faites sw L'état interne des agents.

Puisque les langages KQML et ACL ne spécifient pas la syntaxe ni le contenu

sémantique des messages, deux langages géakraux pour spécifier le contenu des

messages ont été cd&. ii s'agit & KIF (Knowledge Interchange Format) et FIPA

SL. Malgré cela, d'autres questions se posent :

comment traduire d'un langage de programmation & un autre ?

comment le sens des concepts et des relations peut-il être préservé entre plates-

formes ?

a Comment partager la connaissance ?

Les agents sont actuellement limitds parce que les ontologies ne permettent pas un

partage de connaissances. Pire, sur la plupart des plates-formes, les mdcanismes internes

de communication inter-agents sont inadéquats, Ceci devrait s'améiiorer au fur et à

mesure que des applications d'agent seront développées. De plus, une plate-forme

d'agent mobile pourrait s'établir comme choix consensuel et ainsi annuler certains des

probl8mes actuels.

Bien que plusieurs systèmes pour agents mobiles aient été développés, aucun

d'entre eux n'a réussi à populariser les applications d'agents mobiles. Le nombre de

serveurs capables d'accepter des agents mobiles est réduit, et il n'existe pas de systémes

ou d'applications répandues qui acceptent des agents. Si l'on fournit des plugiciels pour

des environnements répandus comme les h t e u r s Web, ce probDme de serveur pourrait

être résolu. Enfin, il convient de mentionner qu'il n'existe pas de standard relatif au nom,

à la localisation et au contrôle des agents, encore moins de directive ou de normes sur la

façon de gérer un serveur qui accepte des agents, la varidtd de l'activité à ce semeur étant

beaucoup plus grande que celle d'un serveur Web.

2.4 Systèmes d'agents mobiles

On distingue trois approches pour concevoir et implanter une plate-forme

d'agents mobiles (Karmouch et ai.,1998). La premiere consiste à recourir à un langage

de programmation qui comprend des instnictions pour les agents mobiles. Compaqm a

19
essayé sans succès cette approche avec le projet OMiq (Voir Site nsearch.compaq.com).

La deuxième approche consiste ii implanter le système d'agents mobiles comme des

extensions du système d'exploitation (Site cs.uit.no). Enfin, la dernière approche

construit la plate-forme comme une application spécialisée qui tourne au-dessus

d'un système d'exploitation. La plupart des systèmes utilisent cette approche qui résulte

souvent en une collection & librairies Java (Voyager, Aglet, Concordia, Mole, Odyssey).

Sinon, ils sont écrits en langage de scripts avec un interpréteur et des utilitaires

d'exécution pour leur utilisation (D'Agent, Ara).

Tous ces systèmes ont une architecture de serveur. Plusiews d'entre eux utilisent

l'approche ~sandbox » où les permissions de l'agent mobile sont Limitées et contrôlées.

Ces systèmes classifient les agents en deux catégories : les agents sûrs et les agents non

sors. Nous présentons ici quatre plates-formes représentatives des systèmes pour agents

mobiles : Aglets, Mole, Sumatra et Voyager.

Ag1et.s

Aglets est une plate-forme d'agents mabiles developée par IBM Japon (Site

trl.ibm.com/aglets). Un Aglet est un objet Java mobile qui visite des environnements

d'exécution (serveur) Agiets. L'architecture des Aglets est similaire à celle des applcts

Java. Le système Aglets a son propre protocole pour le transfert des Aglets entre hôtes :

Aglet Transfer Rotocol.

Mole

Mole est une plate-forme d'agents mobiles construite à l'universitt5 de Sttutgart en

Allemagne. Elie impldmente la migration partielle, où seuls les données et l'état de

l'agent sont transfetés. La migration partielle a été développée après que les bâtisseurs

du système se soient rendus compte que la migration totale (déplacement du processus

d'exécution de l'agent) était trop coùteuse quand il s'agissait d'agents « multi-threads w

(Baumann et al., 1998). Un agent est traité comme une grappe d'objets lava, un

ensemble fermt? sans aucune référence avec l'extt?rieur, excepté avec le système hôte.

Sumatra a étd développé pour mesurex la performance des agents dans la gestion des

réseaux. il implante une application Komodo qui surveille l'état (les déiais) du

réseau. L'application test est Adaptalk, une application de &atm Internet. Les

textes entrés par les usagers sont acheminés aux destinataires par des agents mobiles qui

déterminent dynamiquement leur trajectoire en tenant compte des ddlais du réseau. Des

amdiiorations de performance significatives ont étd observées dans certains cas. Dans ce

contexte, une place est appelde un interprêteur exécutant sur une machine, et un agent est

un groupe d'objets (Ranganathan et al., 1998).

Voyager

Voyager (Site www.objectspace.com) est un Object Request Broker (ORB) écrit

en Java qui o f ' des services pour agents. II intègre en conséquence les technologies

ORB, CORBA, RMI. De plus, Voyager supporte les a< Java Beans N. Ainsi, tout objet

peut être traité comme un agent pourvu qu'a soit sétialisable. Sérialiser un objet consiste

à créer récursivement le graphe de l'objet et des objets qu'il réfèrence avant de les

transfkr entre machines.

Voyager permet d'envoyer des messages asynchrones (sans réponse) et

synchrones (comme pour les appels de fonctions B distance). On peut aussi envoyer des

messages qui seront livrés B une date ult6rieure mus certaines conditions. Les messages

envoyds ii un agent qui s'est dèplacé sont redirigés B son nouvel emplacement, Si l'agent

est en cours de déplacement, les messages sont bloqués jusqu'à ce qu'ils soient restitués h

la destination. Voyager supporte aussi le u muiticasting m, ooù un message peut être

envoyé à plusieurs hôtes en paraiide. Chaque agent doit alors s'enregistrer à un espace

sur son hôte. Un message muiticast est envoyé à tous les hôtes qui sont connectés entre

eux.

Voyager contient un service de noms qui permet d'associer un nom à un objet. Ji

est possible de se connecter par Ia suite à cet objet en utilisant ce nom. Pour localiser un

2 f
objet, on utilise le service de nom et l'alias de l'objet. Le nom d'un objet est toujours

composé de son URL suivi de son alias.

Pour déplacer un objet, il s&t d'invoquer la m6thode moveTo() sur i'objet,

en spécifiant la destination où l'objet doit se déplacer. Les références aux objets

locaux deviennent des mandataires (proxys). Le Tableau 2.1 résume les caractéristiques

des systémes d'agents mobiles.

Tableau 2.1 Caractéristiques des systèmes pour agents mobiles

2.5 Applications des agents mobiles

Bien que plusieurs applications cenwks surles agents mobiles aient dté

développées, peu sont allées au-delà de Mat expérimental et peu sont déployees

commercialement. Les mesuxs collectées de ces applications sont non concluantes. Par

contre, grâce h la flexibilité du paradigme agent, des applications pionniéres peuvent dtre

développées beaucoup plus facilement qu'avec le mod&le client-senreur. Ces résultats

couplés aux efforts de recherche actuels des universités et de l'industrie indiquent que

plusieurs autres applications sont B venir. Dans cette section, nous passons en m e les

applications des agents mobiles en téiécommunications, au commerce t?iectronique et à

l'administration de systéme.

SY- Pour
weniir miMlrr

Aplct

M d e

Vopger

Sumetra

Gaitfondt
Raiourea
Java

Java

ContrBk

ûui

Oui

SCEuriY

Sandbox

Java

Sandbox.
canaux protégés
lava

PorioWiY

Java

Java

Java

Java

MoMIItd

Agiet Transler
Protocol
Mdlc Java
améiioré avec d e
Servet
Java scriaiizaiion.
nRection
Java serializwion

Communkaüon

Evénement,
message objet
Evdnement

Evénements
Distribués
Signaux

Java

Oui

Oui

Oui

Un Agent Communicateur Persorne1 (ACP) est un agent mobile qui doit livrer un

message au destinataire, peu importe le &a d'origine et le média de destination -
avertisseur, téiéphone, téidphone cellulaire, ordinateur personnel, ordinateur mobile.

Par exemple, la seule façon de Wvrer un courriel urgent à un usager pourrait être au

travers d'un téidphone mobile. L'agent doit donc utiliser un convertisseur de texte à voix

et délivrer un message vocal <I l'usager (Abu-Hakima et al., 1998).

L'Institut pour les Technologies de l'Information (IIT) du Conseil National de

Recherche du Canada (CNRC) a ddveloppé un environnement de test pour évaluer deux

applications d'intégration des médias (SPiN). Nous avons ddjii présenté briévement la

premiére "Searnless Messaging" (SM) ; la seconde concerne la gestion intelligente des

réseaux. Pour évaluer ces applications, ils ont mis en place un réseau local hétérogéne.

Ce réseau est composé de 30 ordinateurs personnels, un routeur SS7, un serveur CTI, une

station de base mobile, une antenne mobile pour L'accès au réseau LAN, une passerelle

ATM, une passerelle pour avertisseur, plusieurs téléphones (fmes, mobiles et cellulaires)

et ordinateurs mobiles. Un agent diagnostic réside sur chacun des médias et permet de

savoir si le média est en fonctionnement ou non.

ies agents sont appropriés pour le "Seamless Messaging", parce que ce sont des

entités logicielles qui peuvent représenter l'usager, filtrer son information et, si quelque

chose d'important se produit, ils peuvent utiliser le dseau pour contacter l'usager et

l'avertir. Avoir un agent qui teprésente L'usager est un paradigme plus pratique que

d'avoir un serveur centralisé qui fera plusieurs appels d'interfaces aux diff6rents médias

présents dans le réseau.

Le ACP de l'usager réside sur son ordinateur personnel. il peut être configuré par

téiéphone ou en ddmarrant L'application de "Seamless Messaging" sur l'ordinateur. ii y a

cinq agents dans l'application de SM, Le premier mei l le les messages qui arrivent et

les formate selon un standard. Le second est ACP ; il suit un ensemble de règles que

L'usager spécifie quand il ddmarre l'application. Le troisième est l'agent secrétaire, il

collabore avec L'ACP quand le message est mntactez-moi B. Sinon, il envoie

23
directement le message à l'agent chargé de la gestion du média concerné. L'agent

fournisseur de service remplit des services spécialisés (conversion de texte à voix, de

voix à texte). Quand L'usager ne peut être joint, l'agent secrétaire envoie le message

à L'agent diagnostic qui l'enregistre dans une boite de messages universelle.

253 Commerce Qlectionique

Tabican est une place de commerce électronique où se négocie L'achat et la vente

de billets d'avion et de chambres d'hotel. Bâtie sur la plate-forme Aglet, elle a dté

conçue pour accueillir des milliers d'agents. Les ressources systèmes telles que les bases

de données sont accédées exclusivement par Le serveur Tabican qui fonctionne comme

toutes les places de commerce électronique. Les vendeurs envoient leurs agents qui

rencontrent les agents des consommateurs et discutent des prix. Les agents des

promoteurs de voyage décrivent les voyages. Ceux des consommateurs contiennent

L'ensemble des spécifications & l em propriétaires. Tabican gère une base de données

de types, appelée AMPM (Agiet Meeting Place Middleware) qui conserve l'information

sur le type des messages échangés entre agents. Quand un agent arrive dans le sysdme, il

obtient un protocole d'interaction de la base de données AMPM. ïi se sert ensuite de ce

protocole pour communiquer avec les autres agents. Ceci permet à des agents non

familiers développés inddpendamment d'inter@. Le système contient plusieurs places

d'dchange. Les agents des consommateurs se promenent de place en place pour les

meilleures réductions. Le système contient des agents de publicité qui vont de place en

place signaler quand un nouveau produit est ajouté.

Mysimon.com [34] permet aux usagers de comparer les prix des marchands avant

de faire un achat sur i'internet. II est consiâéré comme une application d'agents mobiles

parce qu'il envoie plusieurs agents mobiles (qui effectuent un seul déplacement) qui f a t

des recherches en paralide et reviennent avec les meiileures opportunités sur le produit

Les agents peuvent être entrain& à rechercher selon les habitudes de L'utilisateur, à la

manière d'un agent virtuel d'apprentissage (VimiaI Learning Agent).

24
Guidewurem permet de développer des applications d'affaires, d'automatisation

des ventes et de support à la clientUe. Il est cité comme une application d'agents mobiles

dans plusiews revues et sa page Web proclame qu'il utilise le paradigme d'agent

mobile. Toutefois, la documentation technique sur son implantation est introuvable.

Ceci peut être dO au fait que c'est une application pionniére dans le domaine des agents

mobiles.

253 Administration de systèmes

installer et maintenir des logiciels est ardu lorsque les machines sont

géographiquement éloignées et que leur nombre croît. Vu qu'il est souvent nécessaire

d'avoir une vue locale du systeme afin de pouvoir résoudre le probltme, l'administrateur

doit se dépIacer sur de grandes distances (ville, province, pays, continent). Les agents

mobiles simplifient cette tâche puisqu'ils peuvent se déplacer à ces nœuds et procéder à

des mises à jour périodiques.

Jumping BeanP de Ad Astra Engineering permet à un administrateur de systeme

& gdrer son réseau à distance. Leur produit permet de construire des agents mobiles qui

installeront et maintiendront les logiciels à distance. L'administrateur doit simplement

indiquer les logiciels à surveiller et à modifier.

Utiliser des agents mobiles pour la maintenance est principalement une question

de convenance dans le cas où il s'agirait d'un intranet. Toutefois, ceci est un avantage

important pour un vendeur de service par I'internet qui doit distribuer et maintenir sans

intemption des services sur la machine de chaque usager pouvant être en assez grand

nombre.

2.6 Systèmes de mise h jour dynamique

Effectuer une mise à jour dynamique consiste à modifier tout ou partie d'une

application pendant que cette application est en cours d'exécution. Beaucoup de travail a

et6 fait sur les mises à jour dynamiques. Nous révisons les contniutions les plus récentes

25
et examinons leurs propridtés. Les systèmes logiciels de mises à jour dynamiques peuvent

être classifiés en trois caiégories : ceux qui demandent du support syst&me, les langages

de programmation qui ont des capacités de remplacement dynamique et les

architectures logicieiles qui permettent l'dvolution dynamique du code. Les systhmes

matériels de mise h jour dynamique sont bas& sur des materiels redondants qui

fonctionnent en paralléle durant un certain temps avant que le nouveau produit ne prenne

la charge exclusive. Nous commençons par dviser Erlang (Armstrong et al., 19%)

puisque c'est 11 partir du travail effectue sur ce langage que nous avons dérivé notre

solution Java,

2.6.1 Erlang

Erlang est un langage de programmation concurrent, symbolique et déclaratif

ddveloppé aux laboratoires Ericsson et Ellemtel à h s j 6 en Suède. Son modèle de

concurrence est similaire au langage de spécification et description pour le comportement

des commutateurs de tél6communications nommé SDL (CCiTï, 1999). Sa syntaxe

ressemble à celie de ML non typé (Wistrom, 1987). Des inter-compilateurs Erlang à

ASN.1 (ITU-T 1997) sont disponibles, ainsi que des interfaces pour le système X-

Windows. ASN.1 est un langage de description des types, standard pour décrire les

formats des données utilisés pour la spécification des protocoles de communication.

Erfang est utilisé pour impldmenter des commutateurs de communication de

grandes tailles et les systhmes temps réel de cont.le tels que les systèmes de contrôle de

katic aérien. il permet à un systéme d'op6rer continuellement à travers des routines de

chargement dynamiques de code qui permettent de changer du code dans une application

en cours d'exécution. Il est aussi possible d'avoir plusieurs versions du même code qui

exécutent concurremment dans l'application. Les programmeurs désignent explicitement

queues activités doivent être représentées dans des processus parallèles. Toutes les

interactions entre processus se font par messages asynchrones puisque Erlang n'a pas de

memoire partagée. 11 est apparent qu9Er1ang impl6mente un mini système d'exploitation

(un serveur de fichiers et une console sont disponibles).

26
Ces fonctionnalités de système d'exploitation limitent sa portabilité, le

programmeur doit assumer le fardeau d'6crim des ports pour les autres langages de

programmation. E r h g utilise des ports pour communiquer avec le monde extérieur.

De plus, les variables en Mang ne peuvent 8tre assignées qu'une seule fois, Le. une

variable ne peut êae changée même quand une nouvelle version du d e est

dynamiquement chargée. Ces faiblesses couplées la taille de distribution d'hiang (12

Méga-Octets), joue contre son adoption comme plate-forme de choix dms le cadre d'me

architecture pu r Ia rnobiütd des services indépendante du syst&me et adaptable aux petits

moniteurs d'information ("palmtop", téléphone cellulaire, etc.).

2.6.2 Lsngagcs de programmatians fonctionnels

Les langages de programmation fonctionnels modernes permettent des fonctions

de haut-ordre. Une fonction de haut-ordre est une fonction qui peut être traitée comme

toute valeur coumie dans un programme. Elle peut donc être conservée dans des

structures de données, passée en argument et retournée comme résultats. Les fonctions

peuvent donc &tre appliquées ii des portions de code diffdrentes et êm baties à panir de la

composition d'autres fonctions. ML (fortement typé, premier langage ii offrir les

fonctions polymorphiques), Lisp (Graham 1995) et HaskeU sont trois exemples dans cette

catégorie. Malheureusement, les langages fonctionnels sont encore restreints 2t une niche.

263 Syst&me d'6voiution dynamique bas niveaux

Par bas-niveaux, nous indiquons les systhes qui demandent du support du

système d'exploitation, de la machine virtuelle ou du compilateur. Le statut de la plupart

&s projets documentés est inconnu (Conic, Podus, Argus, etc.). La contribution active la

plus significative est celle de Malabarba et al. (2000) qui ont d6veloppé une machine

virtuelle Java qui permet des dasses dynamiques. L'unité de changement est la classe.

Les objets sont changks de façon assez transparente durant i'exécutioa L'implantation

inclut une infrastructure pour la sécurité-

Une première limitation est que le programmeur ne peut choisir quel objet de la

classe doit être mis à jour. Conséquemment, i'etat interne de tous les objets dyaamiques

est perdu après chaque modification. Les auteurs ont aussi choisi délibérément de

permettre seulement une seule version active d'une classe par programme. Ce choix

est surprenant puisque l'ajout de complexité due à la gestion de plusieurs versions est

largement compensée par le fait que la coexistence assure la continuitd du programme.

Bien entendu, la solution souffre aussi du fait qu'elle n'est pas facilement portable,

2.6.4 Systèmes d'évolution dynamique de haut niveau

Hjalmtysson et Gray (1997) ont développé des classes C++ dynamiques. L'unité

de changement ici aussi est la classe. Ils utilisent les templates C++ pour créer des

proxies de classes dynamiques qui servent de liens avec les classes réelles. Les proxies

dynamiques sont des classes abstraites puries. Pour permettre l'édition des liens à

l'exécution, les mdthodes sont appelées travers une "jump" table qui est chargée au

démarrage du système. Aucun support système n'est nécessaire et plusieurs versions de la

même classe peuvent être actives au même moment.

Toutefois, les developeurs ne peuvent choisir quels objets mettre à jour et

plusieurs versions de la même classe peuvent être actives seulement parce que les

nouveaux objets refldterons toujours la dernière version de la classe. Les usagers ont le

choix entre garder tous les anciens objets ou les détruire tous (restriction non nécessaire).

La solution pêche aussi par le fait qu'eue détruit l'expressivité de l'héritage daas les

langages de programmation par objets. Plus concrètement, les sous-classes d'une classe

dynamique ne peuvent être utilisées 18 où la classe dynamique devrait i'être. Ceci annule

une des raisons d'être de la programmation orientée objet. Une solution médiocre est de

traiter toutes les classes dynamiques comme des classes finales. Ceci limite leur utilité.

De plus, les auteurs admettent que le comportement des méthodes statiques est inconnu.

Ceci est une inquietude légitime puisque ce sont les auteurs qui ont développé les

mécanismes d'édition de Liens tardifs.

28
Oreizy et al. (1998) présente une architecture d'évolution dynamique où les

programmes sont divisés en composants et communiquent à travers des connecteurs. Pour

supporter les changements dynamiques, les connecteurs peuvent diverger toutes les

communications destinées aux anciens composants vers les nouveaux. L'unité de

changement le composant est généralement grande puisque chaque composant est obligé

d'avoir une partie haute et une partie basse pour les communications (ports) dans les deux

sens. L'architecture est prometteuse pour les applications distribuées car elle permet des

changements dynamiques que ni COMA, ni Microsoft COM n'offre.

Toutefois, la complexité des connecteurs est trop grande. En effet, les connecteurs

doivent garder les messages en file lors d'un cbangement et être capable de defiler ces

messages lorsque deux composants sont reco~ectés. Si les connecteurs ont un type, alors

changer le type du connecteur affecte tout le système. Par contre, s'ils n'ont pas de type

on doit reconstituer leur représentation à partir d'une base abstraite sur laquelle tous les

composants sont d'accord, augmentant ainsi les ddpendances inter-composants. Drasric

de Evans et Dickman (1999) utilise des mécanismes similaires

2.7 Synthèse des problèmes

Les applications mobiles comp12tent les autres techniques de programmation en

ajoutant beaucoup de flexibilité aux systémes. Eues simplifient des architectures comme

celles des serveurs extensibles, oh un agent peut représenter un service et etre ajoutés au

serveur sans qu'on ait besoin d'interrompre le serveur. Ii est ainsi possible de contrôler la

visibilité de ce service ; diffdrents usagers peuvent donc se créet des ensembles

quelconques de service sans interrelation.

Les autres arguments en faveur du paradigme agent n'ont pas encore pu être

indiscutablement établis. Les mesures provenant des expérimentations sont non

concluantes, à cause de diffdrents facteurs : durée de I'expérience, taille de l'expérience,

etc. Pour assombrir encore plus le tableau, les réseaux sont maintenant dotés de bandes

passantes de plus en plus grandes ; les arguments de pe~onnance sont donc repoussés à

l'extrême du spectre. De nombreux autres probl*mes empêchent le paradigme agent de

29
se populariser, notamment les pmbl&mes de communication entre agents et la

mainteaance des agents.

Les difficultés spécifiques des agents intelligents sont similaires B celles de

l'Intelligence ArtificieUe : partage des co~aissances, ontologies et communications,

entre autres. Plusieurs applications sont développées et qualifiées applications multi-

agents. Cependant, apks un examen appmfondi, on s'aperçoit que ces systèmes utilisent

plusieurs agents uniquement pour augmenter la rapiditd, la fiabilité (redondance), la

vitesse et l'efficacité de l'application. Un système est accepte comme un syst$me multi-

agent si l'utilisation séquentielle d'un seul agent ne permet pas d'obtenir les mêmes

dsultats. La raison d'être d'un systeme multi-agent est que l'interaction des agents

augmente globalement l'efficacité du systéme et lui permet d'accomplir des tâches non

réalisables autrement. Autrement dit, l'ensemble doit être plus grand que la somme de

ses parties, Objectivement, peu d'applications multi-agents ont déjà ét6 d4veloppées et h

notre connaissance aucune application multi-agent ouverte n'a encore w le jour.

Les difficultés spécifiques des agents mobiles sont liées en gdnétal au manque de

normalisation. Le déploiement des applications mobiles a souffert du manque

d'environnement d'exécution et d'hébergement pour agents. Heureusement, la présence

de OR& et d'une machine vimeiie Java dans chaque fu~teuc (Mosaic, Netscape, LE.),

pourrait combler ce vide p o m que des interfaces ou plugiciels pour code mobile soient

développés.

Malgré ces difficultés, de plus en plus d'applications mobiles sont ~ v e i o p ~ s .

Ceci mène à un développement en spirale où les standards, les systèmes et les

applications sont tour à tour développés et améliorés. Dans la mesure qu'ils permettent

de résoudre plusieurs problèmes diffërents de façon uniforme, les agents devraient

s'imposer comme un modèle incontournable.

Des applications ambitieuses comme "Seamless Messaging" et Téiéphone

Intelligent (qui sera constitué d'un ensemble d'agents préprogrammés) sont conçus pour

fonctionner avec des agents. Il est certain que ces applications smn t en fonctionnement

dans un futur proche. La grande erreur de la communauté des agents mobiles a &é de

30
trop se concentrer sur des questions techniques comme la migration partielle ou le

transfert des processus. il aurait été bénéfique de consacrer plus de temps à bâtir des

applications utiles qui auraient servi à populariser le paradigme.

Les agents mobiles sont actuellement utilisés pour accomplir des tâches

répétitives et limitées. ii est quelques fois nécessaire d'augmenter les capacités de l'agent

pour qu'il puisse réaliser plus de tâches. Les techniques de programmation onentésbjet

imposent que l'agent implante ou m&e une interface particulière. Les agents

intelligents peuvent apprendre de nouvelles situations ou leur base de connaissances peut

être enrichie. En effet, les agents mobiles peuvent obtenir plus d'autonomie en

s'inspirant des systèmes à base de connaissances. Cette synergie potentielle justifie une

nouvelle méthodologie de développement des agents mobiles : commencer avec un

prototype qui démontre les avantages de la mobilitt? et progressivement ajouter de

l'intelligence dans ce prototype.

L'avenir est donc prometteur. Des technologies comme CORBA, XML, et Java

servlets s'intègrent bien avec les agents. CORBA mobile est ddjà une réaiid

(www.jumpingbeans.com). Les agents mobiles gagneraient à intégrer les mdtbodes

utilisées pour développer les agents intelligents. ies capacités d'un agent mobile peuvent

notamment être améliorées s'il est capable d'apprentissage, Les agents mobiles peuvent

ainsi être conçus pour avoir beaucoup plus d'autonomie.

Les techniques de mise à jour dynamique présentes dans la littérature ne sont pas

satisfaisantes dans la perpective de la mise à jour dynamique d'un agent. Les problèmes

proviennent notamment des dépendances avec une plate-forme particulière et du manque

& flexibilité et de contrôle des systèmes repertoriés. il sera donc nécessaire de trouver

une solution aussi générique que possible (on devra servir plusieurs types différents de

services), qui ne nécessite aucun support du système (en clair, une librairie), et qui

occupe aussi peu d'espace mémoire que possible, ceci dans la perspective de la mise à

jour sur les moniteurs PDA. Puisqu'elie sera conçue indépendamment des services, cette

solution sera alors applicable à n'importe quel logiciel Mormatique, peu Unporte son

modèle (distdbué, statique, agent mobiles, etc.).

MODELISATION D'UNE ARCHITECTURE

D'AGENT MOBILE POUR SERVICES

Un agent mobile pour services (AMS) est un médiateur qui coordonne et

transporte des services auxquels l'usager s'est abonné. L'agent peut transporter les codes

exc?cutables des services ou seulement des pointeurs aux codes. Une architecture

générique et extensible est essentielle pour un tel agent puisqu'il peut contenir un grand

nombre de services divers. De plus, cet agent doit être conçu pour supporter un ensemble

augmentable d'opérations. Ce chapitre traite de la modélisation d'une architecture

d'agent mobile pour service. Pour commencer, nous examinons les propridtds que doit

avoir notre architecture et énumérons tes caractéristiques des AMS que cette architecture

devrait permettre de créer. Nous présentons ensuite n w e architecture, ses composantes et

leurs interfaces. Par la suite, nous détaillons un AMS gdnkriqueen précisant ses

opérations de base, ses patrons de design, son modéle architectural, son encapsulation des

connaissances qui lui permet de coordonner ses services. Pour finir, nous présentons une

implantation de notre architecture et indiquons des directions il explorer pour améliorer

notre implantation.

3.1 Caracttiristiques de l'architecture de service et de I'AMS

L'architecture de service que nous proposons est une version modifiée de celles

proposées par Glitho et al. (2000), sNcifiant un AMS par service ou un AMS unique

pour tous les services. Notre architechue propose un AMS par classe de services. L'AMS

peut aiors être conçu spécialement pour des services de téléphonie ou pour des services

non relies à la téldphonie. Dans ces groupes, ii peut même ciôler des classes de services

particuli2res (outgoing call screening, incoming cail screening). De plus, nous

introduisons ici une analyse pour la communication inter-agent dans un tel contexte. Pour

33
finir, L'effort décrit ici est la premi8re implémentation connue d'un AMS. Giiiho et al,

(Infocorn 2000) détaillent le concept et ses possibilités. La pratique nous a permis de

compléter la description du concept, d'y apporter certaines corrections et de le

valider.

Une architecture adéquate pour la mobilité des services doit prendre en comw

l'ensemble des contraintes inhérentes à la provision de services dans un environnement

distriIbu6. En plus de la mobilité des services, le système doit notamment permettre :

à Igusager de souscrire ou d'annuler des abonnements à un nombre extensible de

services ;

de configurer des AMS dddiés pour des classes de services précises ;

d'assurer un délai minimai entre l'abonnement et la provision du service sur le

terminai de l'usager ou au nœud du réseau ;

de gérer le profil de chaque usager (abonnements, AMSs associgs à cet usager) ;

la création et l'ajout dynamique de services dans le systéme ;

d'assurer la maintenance à distance des services coordonnds par un AMS donné.

Géndralement, les usagers souscrivent à des services ou les annulent de façon très

dynamique. ii est donc nécessaire de répartir les fonctionnalitds du systéme entre divers

blocs qui accomplissent leur tâche particulihe de façon optimale. Ces blocs sont inté@

lors de la réaIisation de chaque transaction. Cette approche augmente la performance du

système et sa fiabilitd. En effet, puisque les blocs ne forment des liens que lors du

traitement d'une requête, chaque bloc continuera à opérer independamment des autres si

un ou plusieurs blocs ne sont pas disponibles (panne, faute matdrielle, etc.).

Les principales fonctionnalités du système sont : l'ajout et la création de services,

la publication de ces services, la gestion des abonnements (profil usager, etc.), la créaiion

et la maintenance des AMS. Ces fonctionnalités peuvent donc être reparties comme suit :

une unité de création de services (UCS) ;

une unité de gestion du système (UGS) qui se chargera de la gestion des usagers,

de la création des AMS et de leur maintenance ;

une unité de publication des services (UPS).

34
L'unité de création des services intègre un enviro~ement pour la création des

services, un serveur de fichiers et une base de données de services. L'unité de gestion des

usagers se charge de la création des AMS car ceux-ci sont assemblés différemment

selon les préférences de l'usager. ThBoriquement, la création des AMS aurait pu être

assurée dans une autre unité. Toutefois, pour tirer profit de la localité des données sur

l'usager qui est indispensable pour modeliser l'intelligence qui sera fournie au AMS,

nous avons préféré regrouper ces fonctionnalités dans le même bloc. L'unité de

publication des services utilise une interface usager par laquelle les abonnés souscrivent

aux services. Elle transmet les requêtes à l'unité de gestion des usagers.

3.1.1 Architecture de I'AMS

L ' A M doit permettre à l'usager de démarrer localement tout service auquel il a

souscrit. 11 doit aussi lui permettre d'arrêter et de déplacer ces services. Pour accomplir

ces tâches, il doit offrir une interface usager par laquelle l'usager interagira avec les

services. En fait, I'AMS doit être conçu de sorte que l'usager ne perçoive aucune

différence entre ses services et des programmes locaux. L'usager n'est donc pas s u p w

savoir que les services sont coocdomés par un AMS. De plus, I'AMS doit prévoir des

mécanismes pour la mise à jour dynamique du cade. Ji doit donc implanter des interfaces

ou supporter un langage et une ontologie définis pour le transfert et la sauvegarde de

données personnalisées (éventuellement modifih par l'usager) relatives ii chaque

service. Il doit être conçu de manière ii pouvoir transférer et exécuter du code distant.

La mise à jour dynamique du code est basée sur l'héritage de classes abstraites.

L ' A M se constituera en libraire pour cette opération. Les primitives du systeme

d'exploitation ne pourront pas être utilisées.

L'architecture de I'AMS doit aussi prévoir la seconde stratégie de maintenance

des services, celles & t'échange d'agent (un agent contenant les anciens et nouveaux

services vient remplacer l'ancien agent qui contenait seulement les anciens services). Ii

doit opérer indépendamment de la plate-forme pour agents mobiles qu'il utilise. Ceci

assure sa portabilité.

35
L'AMS utiiisera un langage de communication inter-agent (KQML) et implante

l'ontologie (Ontologie-AMS) définie pour cette application. L'AMS ddfinira une

politique d'accès aux ressources pour chaque service afin d'offrir une sécurité

minimale durant L'exécution desdits services.

De façon gdndrale, 1'AMS sera composé des codes des services (ou pointeurs au

code) et de l'intelligence (logique d'invocation) pour démarrer et coordonner ses services

(données personnalisées). Les probl2mes sur lesquels cette maîtrise s'attarde sont : la

ddfrnition de l'architecture et la maintenance des services. Des exigences pour des

stratdgies élaborées sur l'authentification de I'AMS et sa sécuritd seront formulées dans

le cadre de recherches futures. Comme pour toute application distribuée, la sécuritd est

une question cruciale qui doit être aussi prise en compte.

3.2 Architecture des unités du @me

Les unitds du système que nous examinons ici sont : l'UGS, I'UPS (dans notre

impldmentation, un serveur Web) et 1'UCS. Ces serveurs interagissent pour la provision

de services à l'usager. Une impldmentation typique du systéme est présentée à la Figure

3.1.

Chaque usager est attaché à une seule et unique UGS. Les UPS savent quel UGS

correspond ?i chaque usager et lui transmettent L'information relative à cet usager

(abonnements, etc.). A la Figure 3.1, L'usager se connecte à une UPS. Celle-ci propage

I'infonnation relative à l'usager à son UGS (ab~~ements , identification, adresse de la

machine). L'UGS envoie un AMS ?i la machine cible oh à un noeud du réseau dans le cas

de service de téldphonie. Cbaque UCS informe un UGS quand un nouveau sewice est

ajout6 dans sa base. Les unit& UGS, UPS et UCS contiennent des serveurs qui sont

répliqués. Cependant, aucune paire de ces unites (deux UPS, UGS, UCS) n'est identique.

PDA

Figure 3.1 ArcbItechire de service par agent

3.2.1 Interface UCS-UGS

Quand un nouveau service est ajouté au système, I'UCS concernée ouvre une

connexion TCPllP (protocole HTTP) avec une UGS et i'informe de l'ajout du service.

Durant la connexion, I'UCS transmet son identification (localisation), le nom du service

qui a Bt€ ajouté, la liste des fichiers du service, le point d'entrée du service (parmi tous les

fichiers) et le nombre de paramètres obligatoires Zl l'invocation. Les param&res de départ

sont des chaînes de caractères. Cette information est alors répliqude atomiquement dans

les autres UGS.

Le protocole HTTP version 1.1 est utilisé pour démarrer, arrêter la connexion et

spécifier la taille de l'information uaasmise. L'entête d'une connexion ressemble

typiquement à l'entête présent& à la Figure 3.2,

HTTP/1.1 200 OK
Date: Pri, 30 Oct 1998 13:19:41 GMT
Semer: Apache/l.3.3 (üniacf
Last-Modified: Mon, 29 Jun 1998 02:28:12 GMT
Content-Length: 1040
Content-Type: text/AMS

Figure 3.2 Entête HlTP

LR champ "content-length" donne la longueur de la chaîne de caract&re qui décrit

le service. Cette chaîne est format& comme suit : la première ligne contient l'adresse de

I'UCS; la seconde ligne conserve le nom du service; la troisikme ligne donne la liste des

Fichiers du service; la quatrième ligne indique le point d'entrée du service; la cinquieme

ligne donne le nombre de paramètres de démarrage. La figure 3.3 en est une illustration.

Location: 142.133.XX.XXX \n
Service: Meeting Planner \n
Files: Mobile~gent.~ecretary.Assistant.class Filel.txt etc. \n
Entwoint: MobileAgent.Secretary.Assistant.class \n
Starting-Parameters: 2 \n \n

Figure 3.3 Format de description de 19qjout d'un nouveau service

L'interaction entre I'UCS et I'UGS pour L'ajout d'un service est décrite h la Figure 3.4.

!.!sç !ms

Figure 3.4 interaction UCS-UGS pour l'ajout d'un nouveau service

38
L'UGS accepte des comxions avec I'UCS au port 5000. A l'ajout d'un nouveau

service, L'UCS ouvre une connexion HTl'P avec le premier UGS disponible. Cette UGS

propage l'information aux UGS miroirs comme l'illustre la Figure 3.5.

Figure 35 Ajout d'un nouveau service

3.23 Interface UGS-UPS

Chaque UPS possède l'adresse & toutes les UGS et chaque UGS a aussi l'adresse

de toutes les UPS. Quand une UPS veut informer une UGS d'une nouvelle souscription,

il contacte I'UGS à laquelle l'usager est attaché. Des schémas alternatifs seraient que les

usagers soient assignés aux UGS en ordre alphabétique ou par localisation gdographique.

Dans le premier cas, les abonnds dont le nom commence par une lettre comprise entre A

et D sont assignés iî I'UGS, ; ceux entre E et H sont confiés à i'UGS2, et ainsi de suite. La

Figure 3.6 illustre l'interface UPS-UGS.

UGS

Liste des services disponibles
UPS

(Setveut

39
L'UPS se sert de l'identification de l ' abo~é pour déterminer son UGS. Les deux

unités communiquent à L'aide du protocole HlTP, Pour l'instant, ils uüisent les mêmes

champs d'en-tête que l'interface UGS-UCS. L'information échangée est aussi

formatée de la même façon. Le contenu est toutefois diffgrent. il suit le format

présenté h la Figure 3.7.

Location: 142.133.XX.XXX \n
UseyID: Identification-de-l'usager \n
Requeeted-Services: Service1 Service2 \n

l Target-Location: Ou-Envoyer-AMS \n\n
1

Figure 3.7 Information transmise lors d'un abonnement

Le champ Target-Location est optionnel. Lorsqu'ii est omis, le défaut est la

machine actuelle de l'usager ou, pour certains AMS, le nœud du réseau où les services de

téléphonie de cet usager doivent résider.

3 3 3 Architecture de I'UGS

L'UGS est un serveur "multithread" qui supporte plusieurs connexions HTTP

concurrentes. C'est un serveur orienté objet qui implémente le modèle de la composition

des classes. L'UGS

a maintient des bases de données d'abonnés et leurs services, gère un sous-ensemble

des abonnés ;

a propage l'information sur l'ajout d'un service aux autres UGS ;

a crée des AMS et constniit l'intelligence qui leur est nécessaire pour transférer et

exhter les services ;

a informe les üPS de l'ajout de nouveaux s e ~ k e s .

Nous présentons d'abord le protocole de communication que le SMU utilise.

Nous regardons ensuite la création d'un AMS. Finalement, nous présentons les

mécanismes en place pour assurer la sécurité et la fiabilité de L'UGS.

L'UGS communique par connexions sockets et implante le protocole HTTP. Les

ports 5000 et 7000 sont respectivement réservés pour les communications avec

L'UCS et L'UPS. Dans le cas oùi ces ports seraient utilisés, on peut communiquer

avec I'UGS par k port 5000. il ouvrira alors une connexion avec le client au port

convenu.

Crdatrin de L'AMS

Dans le cas le plus simple, le systhe est composé d'une UGS, d'une UPS, d'une

UCS, d'une machine cible et d'une machine client. L'AMS est envoyt! à la machine cible

ou à un naud du réseau selon les param2ms de configuration de I'UGS. La machine

cible ou le nœud du réseau doit avoir un environnement d'exécution pour agents mobiles.

L'interaction la plus simple pour la création d'un AMS est montrée à la Figure 3.8.

1. L'usager se connecte à I'UPS et s'abonne à des services;

2. L'UPS contacte I'UGS appropriée et lui passe la liste des services et l'adresse de

destination de I'AMS;

3. L'AMS est envoyé à la machine cible qui peut être la même que la machine client.

Figure 3.8 Intemctim pour la création de I'AMS

41
La classe principale de 1'AMS est une des composantes de I'UGS. Cette classe est

un réservoir de co~aissances et contient l'intelligence de I'AMS. L'AMS est créé en

assemblant son intelligence et la liste des pointeurs aux services. L'UGS crée une

instance de 1'AMS et lui passe L'inteUigence pour la gestion des services. Cette

intelligence permet à I'AMS de charger, démarrer et arrêter chacun de ses services.

A ce stade de l'implantation, les actions intelligentes de I'AMS sont :

mettre jour les services lorsque l'abonné change ses souscriptioiis ;

r offnr un menu personnalisé pour le démarrage de chaque service ;

a sauvegarder les données personnalisées de l'usager, relatives à chaque senrice et les

maintenir à travers les versions.

L'AMS peut prendre le code des services avant de se rendre sur la machine cible,

ou il peut les charger sélectivement à son arrivée. La stratégie adoptee dépendra de

l'espace disponible sur cette machine cible. Ceci est critique pour les moniteurs tels les

"palmtop" et autres appareils dont les processeus et l'espace de stockage sont limités.

Fhbilltd et s&unU

La liste des services disponibles est la même dans toutes les UGS. Les UGS sont

toutefois diff4renres car l'information relative A un abonné est conservée à une seule et

unique UGS. Une UGS qui gere un sous-ensemble d'usagers peut être répliquée. Cette

redondance augmente la fiabilité du systeme. Ces unités répliquées peuvent être

dispersées géographiquement pour réaliser une couverture efficace. Les autres données

disponibles à une UGS sont répliquées à tous les autres UGS. Les mises à jour entre

USGs doivent être atomiques. Comme l'illustre la Figure 3.9, la liste des services

disponibles est échangde entre groupes npliqués d9UGS.

Les communications avec L'UGS sont encodées. Une voie intéressante serait

d'utiliser SIFITP (Secure-HTPP). Malheureusement, les d6veloppements du pmtoeole et

son adoption comme siandard sont actuellement arrêt&. Toutefois, l'objectif demeure

d'implanter une solution semblabIe à SSL (Secure Socket Layer).

Différentes UGSs
b

Figure 3.9 Réplication d'UGS pour un sous-groupe d'usagers

3.2.4 Architecture de 1'UCS

L'UCS offre un envimnnement de développement des services (EDS). Cet

environnement doit être utilisé pour simuler l'extkution des services avant qu'ils ne

soient transport& par un AMS. L'UCS est aussi constitud d'une base de services qui

conserve le code exécutable des services développés dans I'EDS. Le dernier composant

de 1'UCS est un serveur de fichiers basé sur ie protocole HTIP, qui transmet les fichiers

disponibles dans la base de service, à travers le réseau aux AMSs. L s fichiers dans la

base de services sont divisés selon les services auxquels ils appartiennent.

L'WS est essentiellement constitué d'une collection de librairies Java (pour

tester les services) et d'un guide de programmation pour la consmction des services. En

effet, les sentices qui seront transport& par un AMS doivent être autosrifHsants, c'est B

 di^ un seNice ne peut en invoquer un autre et les interactions inter-services sont

interdites. L'AMS constitue le lien qui permet d'assembler les services en un ensemble

43
cohérent. Cette exigence permet d'éliminer les dépendances inter-services et inter-

fonctionnalités. Les usagers sont donc libres de souscrire à un ensemble arbitraire de

services, sans que la présence de l'un n'impose celle de l'autre.

Ces restrictions favorisent un meilleur modèle & p r o g r d o n , avec une

séparation effective des tâches entre services. EUes contraignent aussi une certaine

spécialisation : ii chaque fonctionnalité précise doit correspondre un service indépendant.

Ceci est particuliérement vrai dans le contexte des réseaux intebgents, où les faiblesses

du systhe proviennent des dépendances qui se créent entre services (Yin et al., 1993).

Qui plus est, le nombre de services qu'on ajoute au réseau (transfert d'appel, etc.) va

grandissant complexifiant toujours plus la gestion des services et de lem interactions

(Jackson et al., 1998). Le remodelage des anciennes fonctionnalités pour accommoder les

nouvelles n'est pas une bonne option en pratique.

Les restrictions imposées sur les services sont destinées il faciliter leur

maintenance et à augmenter la productivité de leur interaction. La complexité des

décisions relatives à leur fonctionnement est localisée dans I'AMS.

33 Architecture de l'Agent Mobile pour Services

L'AMS est caractérisé par l'ensemble des opérations qu'il supporte. Il doit

notamment :

a charger le code des services ;

O démarrer ses services à la demande ;

0 se déplacer sur demande de l'usager ;

permettre la mise à jour dynamique (sans interruption) de ses services ;

être remplaçable ;

prévoir des mdcanismes de recouvrement de fautes et de seCurit6 pour ses services.

En plus des opérations spécifiques listées plus haut, L'AMS doit disposer de

fonctions de base n~cessaVes pour évoluer dans une société d'agents, à savoir Iangage et

ontologie, sécurité et tolérance aux fautes. Nous traiterons donc des fwctions de base de

44
I'AMS dans la section 3.3.2. Dans !a section 3,3.3, nous donnons les directives pour le

chargement et le démarrage des services. Finalement, dans la section 3.3.4, nous

ddfinissons le cadre logiciel nécessaire pour la gestion des services. Nous

n'aborderons pas ici les questions de remplacement de l'AMS et de sa mise à jour

dynamique. Ces sujets sont putôt traités aux chapitre quatre et cinq. Pour commencer,

examinons l'évolution de I'AMS dans le temps.

Le diagramme d'état permet de retracer l'évolution temporelle de L'AMS ainsi

que ses réactions aux influx externes (choix de I'usager, appel de procédure à distance,

dialogue inter-agent). La Figure 3.10 présente le diagramme d'état de I'AMS. On y

retrace ses possibles interactions et son 6volution depuis sa création à I'UGS, la provision

de services au nœud de destination, ses futurs déplacements, son remplacement et sa mise

à jour dventuelle.

L'analyse du diagramme d'état permet de remarquer les interactions de L'AMS

avec l'extérieur. Ii enregistre les données personnalisées de l'usager sur disque. 11

converse avec le nouvel AMS pour s'entendre sur les strat6gies de remplacement dans le

cas d'une mise à jour. il converse avec un agent de mise à jour dans le cas oh le

renouvellement doit être dynamique. CeIuici lui passe alors l'information pour charger

les nouvelles versions ou classes des services ciblés. Alternativement, il peut aussi être

invoqué par appel de mdthode à distance.

L'AMS offte un menu qui permet à l'usager de sélectionner les services à

ddmarrer. L'AMS n'exerce aucun contrôle subséquent sur ces services. Sa seule action

possible est d'arrêter leur exécution. Le même menu permet à l'utilisateur de décider s'il

veut relocaliser ses services. Il entre alors la machine de destination et I'AMS déplace

son clone.

AMS au noeud

Menu Principal AMS L.

Figure 3.10 Diagramme d'état de I'AMS

3.3.2 Langage, ontologie, mobiliîé, sécurité et fiabiiité

L'implantation des cinq fonctionnalités s u b i des petites variations selon la plate-

forme pour agents mobiles utilisée. Leurs spécifcations ici prennent donc soin de limiter

les ddpendances à la plate-forme de rnaniere à augmenter la portabilid et la dutilisabit6

de toute implémentation. Les spécifications indiquent aussi qu'il ne devrait pas exister

d'interdépendance entre ces fonctio~aiitds. Mes sont donc réparties sur cinq couches

(une couche par propriété) indépendantes les unes des autres.

46
Langage

L'AMS communique en KQML de UMBC (University of Maryland at Baltimore

County) et utilise la librairie Java KQML (JKQML) dévelopNe par IBM

AlphaWorks (voir site JKQML). JKQML a été choisie parce que l'implantation

FIPA-ACL de Norte1 Neworks demande plus de support machine. De plus, nous ne

disposions pas de référence d'implantation réussie en FIPA-ACL qui n'est disponible que

pour les machines Unix. Son installation nécessite des privil&ges d'administrateur.

Les primitives du langage (performatives) supportées par JKQML sont facilement

compréhensibles (stop, te& move, etc.). De plus le format des messages est basé sur la

logique des prédicats. La proposition de Labrou et al. (1996) pour le nouveau format des

messages permet d'étendre le format KQML pour les besoins d'une application précise.

JKQML pennet d'adresser des messages synchrones et asynchrones. Une requête pour le

transfert des données personnalisées par l'usager s'&rit par exemple comme indiqud ai la

Figure 3.1 1.

try(
msg.serPerfomative(KQML.TEU) ;
msg.setSender(this.getAdhs~) ;
msg.setReceiver(adresse~de~agent~a~contacr) ;
msg.setOntology(MSA-SeNice-ûntology) ;
msg.setlanguage(u KQML ») ;
msg.setContent(uPasser donnees personnelles sous fonnat

Service : nom-service
Donnees : options modifiees
dans la repoase D) ;

msg.setïRT(none) II IRT = in Reply To
]catch (Exception e) (
m..

1

Figure 3.11 Envoi de messages KQML

47
Il suffit d'installer un gestionnaire KQML à chacun des hôtes pour qu'il

transmette les messages à l'agent. Concrétement, un message a le format pdsenté ta

Figure 3.12.

(achieve // pourrait être tell, send, find, etc.
:sender demandeur
:receiver destination
:reply -with id-personnelle
:language LISP // pourrait être Java ou Scheme
:ontology MSA-Service
:content chaine,de,caractè~~dé~rivant~le~contenu~~cifique~du~message)

-- -- - -- - - - -

Figure 3.12 Format du message envoy4 selon le protocde KQML

Modéliser une ontologie, c'est essayer d'établir une base formelle et concise pour

!a communication, le partage de connaissances et l'interprétation de messages dans un

domaine précis. La première exigence est de s'assurer de la cohérence (non-ambiguïté)

du formalisme. On doit donc prouver cette cohérence en utilisant une logique pdcise

(prédicats du premier ordre le plus souvent) et en se basant sur des axiomes connus

(axiomes de la logique cartésienne généralement). il faut aussi définir le format du

langage et fournir un premier dictionnaire de termes pour le domaine d'application ciblé.

Nous avons survolé les considérations théoriques pour définir une ontologie

restreinte, limitée à la communication inter-AMSs et AMS-agent de mise à jour. Cette

ontologie est un sous-ensemble de KIF (voir site KIF Specification) qui est une ontologie

géndrale jouant le rôle de médium entre deux ontologies traitant de sujets différents. KIF

a été choisi iî cause de l'existence d'un analyseur de texte KIF à Java : Java KIF Parser

(JKP), disponibie gratuitement (voir site JKP). Une fois que la chaine KIF a dté

transformée en objet Java, on utilise Xerces (anciennement XML To Java de IBM

AlpbaWmks) de Apache.org pour obtenir une représentation XML du contenu du

48
message. L'AMS peut donc communiquer avec des agents provenant & vendeurs

quelconques. Ceci est possible parce que KIF est indépendant du langage naturel utilisé

(français, anglais, bamiléké, etc.). Une bonne référence sur la modélisation

d'ontologie est le document âe Gruber (1993).

Un dialogue KIF réfCrant 1C une quantité physique quelconque est encodé comme

illustré il la Figure 3.13. il y manque notamment l'unit6 de mesure de la quantité

physique ainsi que d'autres paramhres.

(defrelation QUANT^-PHYSIQUE
(e (QUANTITE-PHYSIQUE ?q)

(et (definie (magniiude & l'unit4 ?q))
(magnitude(magnitu& de l'unité ?q))

. . . . // plusieurs autres Lignes pour s'assurer de la cohérence de l'dnoncé

Figure 3.13 Exemple d'une formulation simpk en KIF

Dans Ie contexte de L'AMS, les agents communiquent par exemple pour

s'échanger des donnks modifièes par l'usager comme illustré à la Figure 3.14,

ler agent (interested service '(service , ?servicel, ?service2, service3))
2e agent (service l r n d paramaters)

*service2 ?x) > 8

Figure 3.14 $change de reaselgnemeats sur un service

Le nouvel AMS demaude de l'information sur les services 1,2 et 3. L'ancien lui

dit que le semice1 doit e t r ~ invoqué avec les paramhes modifiQ (parameters). Le

service 2 doit être invoqué avec des valeurs supérieures B huit. Ce sont ici des exemples

simples, Nous nous sommes limités à ces mesages simples pour notre ptemi&re

implémentation. Bien que i'apprentissage soit pénible, il est p&férable d'implanter des

agents qui peuvent converser dans une ontologie précise. Il n'est pas toujours facile

49
d'exprimer toutes les relations (combien de fonctions faudrait4 prévoir pour les cas où

les valeurs sont supérieures, inférieures et modifiées). De plus, des logiciels gratuits pour

l'analyse de texte sont disponibles (voir site XML-JAVA et JKP),

La mobilitc! est pourvue par la plate-forme pour agents mobiles. Toutefois, dans le

cadre de notre application, nous avons modific! la couche Transport de Voyager pour

accélérer le transfert de données et du code objet de certains fichiers quand I'AMS se

déplaçait. Ceci n'est théoriquement pas nécessaire et n'a été fait que parce que nous

avons remarqué des fautes dont nous ne pouvions retracer l'origine.

L'AMS implante les mécanismes d'authentification disponibles par l'interface

Java.Security.* de JDK1.2.2. Malheureusement, nous n'avons pas pu les tester

extensivement, manquant de temps et étant limité à notre laboratoire pour l'implantation.

Des outils existent aussi en Java pour le codage et le décodage de d o d e s (MD5, SHA).

Le design de I'AMS a été fait pour utiiiser ces classes suivant I'usage qui en a été fait

pour les communications UCS-UGS. Toutefois, ces classes n'ont pas dté utilisées; I'UCS

et 1'UGS les utilisent de façon simpliste sur de faibles quantités de données. Des erreurs

surprenantes ont émergé lors de l'encodage et du décodage des fichiers objets.

En effet, le premier design prévoyait qu'on chargeait les fichiers objets des

services, les encryptait, puis on les enregistrait sur le disque. Ceci avait trois bénéfices :

robustesse, rapidité et sécurité. L'usager ne pouvait utiliser directement les services

puisqu'ils étaient codés et seul l'AMS avait la clé (sécurité). En cas de panne de la

machine, 1'AMS n'avait pas à recharger les fichiers des services (robustesse). Quand un

nouvel agent venait remplacer l'ancien, il n'avait pas à recharger les services à son tour.

ii suffisait que I'ancien lui passe la clé de codage (rapidité). Nous avons abandonné cette

voie quand nous nous sommes rendus compte qu'après avoir codé et décodé des services,

il se produisait des erreurs au moment de L'édition de tiens dynamiques par l'interface

CIassLoader de Java.

50
La fiabilité est basée sur L'interface Activation de Voyager. Cette interface permet

de rendre un objet persistant. L'état de l'objet (variables et constantes) est enregistré dans

un fichier. Plus tard dans le programme, on invoque cet objet et indique la

localisation pour l'activer. L'objet correspondant est reconstitué. On n'a donc pas à

renvoyer 1'AMS à la machine de l'usager après chaque redémarrage de l'ordinateur. Une

fois eavoye, l'objet s'enregistre pour activation. Le problhne est qu'il faut écrire une

routine pour réactiver l'objet. Nous avons contourné cette difficulté en faisant en sorte

que L'AMS enregistre Voyuger comme un service avec I'AMS comme extension sur

chaque machine. On s'est servi de l'utilitaire srvany.exe (disponible sur toute machine

Windows NT 4.0) pour y parvenir. Cet utilitaire met iî jour les registres de Windows pour

opérer. Cette solution n'est donc pas pratique pour un contexte d'utilisation réel. Lors du

déplacement de l'agent, un clone est d'abord envoyt. Lorsqu'il arrive à destination, il en

informe I'AMS original. Celui-ci s'auto-détruit alors. il est donc rare qu'on perde un

agent au cours d'un ddplacement.

3 3 3 Chargement et dbmarrage des services

L'AMS transfère les services des UCS en ouvrant une connexion socket avec

I'UCS. Il utiiise le protocole H T ï P pour le transfert des fichiers. N'importe quel langage

qui permet une édition des liens dynamiques (Oberon, LISP, Smalltalk, etc.) au moment

de l'exécution du code peut être utilisé pour alors charger et exécuter les services. Notre

implémentation s'est faite en Java. Les exemples sont des extraits simplifiés de notre

code. L'interface ClassLoader (Figure 3.15) de Java permet de charger et d'exécuter

n'importe lequel des fichiers objets à distance.

public abstract ctass ClassloaderI
public Class IoadCIassQtring name);
protected Clair finâClass(String name);
*.-

Figure 3.15 Chdoadet JDK 13.2

5 1

On se sert donc de cette interface pour charger et procéder à la résolution

dynamique des liens des s e ~ k e s comme illustré à la Figure 3.16.

class MSAClassloader extends ClassloaderI
String scu-location;
public MSAClassloader (String location) (

scu,location = location;
1

protected Class findClass(String nameH
byte0 classbytes = getClassCode(name);
retum(defineClass(name,classbytes,O,classbytes.length));

1
l ~ public Class loadClass(String name) I...)

byte0 getClassCode(String name) (...)
bytefl getClassFromArchive(String name) (...)
...

Figure 3.16 ClassLoader AMS

Une fois l'édition de lien termind, on se sert de l'interface Reflection de JDK

1.2.2 pour obtenir des instances de la classe et pour démarrer le senrice. Ceci est illustré à

la Figure 3.17.

Java est le langage de choix, car Voyager (la plate-forme de ddveloppement du

prototype) l'utilise. Comme mentionnt5 plus haut, l'édition dynamique de liens permet de

résoudre les réfdrences aux modules externes au moment de l'exécution. Nous nous

6tendrons plus longuement sur les &diteun de lieas dynamiques dans le chapitre 5 oh

nous traitons de la mise jour dynamique de I'AMS. Le chargement dynamique de code

est une partie importante de la solution pour la mise jour dynamique.

class MSAkrviceProcess extends Thread
{

String service;
Object Data; String protocol;
public MSASeNiceProcess CïhreadCroup th, String service, Objea

sdata) {
super(th,servlce);
Data = sdata;

1
void addSewiceClasses(String ctassNameH ... 1

Objea getServiceParam d.. H...)
void run0 (

getSewiœRules0;
if(condition 1 H

launc)ikrvicetmsa, service1
1
elsd
...
1

1
void launchService(MSA msa, String mainclassH

MSAClassloader rns = new MSAClassLoader(loc);
Class c = ms.loadClasslma(nclass);
Clas50 carray = c.getlnterfaces0;
If (carrayfl].getName != "IMSASewice Y...)
Objea serv = cnewlnstance0;
Method m = serv.geKlassO.getMethodCmainn, new ClassO (...Il
Objen 01 =. geCServiceQaram(,..);
m.invoke(null, new Objecta (01 D;

sleep0;
tcatch(lnterruptedException e#

1 ...*
t

1
.*.

Figure 3.17 Lancement d'un service par 1'-

53
33.4 EncapsuIatian des connaissances - Gestion dm services

L'AMS permet ii l'usager de personnaliser les services qu'il transporte. En effet,

I'usager peut se servir de l'interface principale de 1'AMS pour entrer des paramètres

comme les dates d'exécution réguLi&es pour des services. A cette date précise.

L'AMS démarrera le service.

ïî est aussi possible de changer les paramètres d'invocation d'un service de

maniere ii modifier le comportement du service. L'AMS démarrera d m toujours le

service avec ces paramtm-1% qui, dépendemment du service, peuvent changer

lotaiement son exécution.

Toutefois, L'AMS ne maintient aucune réference aux objets internes des services.

Sa fonction est de les &marrer avec les données personnalisdes et les arrêter

dventuellement plus tard. ï i n'exerce donc aucun contrôle sur l'exécution des services. De

la même façon, les services qu'il contient ne font pas rdférence à I'AMS et n'ont aucune

référence entre eux. Une vue de L' AMS est pdsentde à la Figure 3.18. oh AEE (Agent

Exécution Environment) désigne la plate-forme pour exécution des agents.

AMS
~ ~ S e i v l c e a

Lq#quedecwrdirwtbndes

Figiue 3.18 Agent Mobile pour Services

54
M Implémentation préliminaire

Nous présentons ici une analyse stnicnuée basée sur le standard Unified

Modeling Language (W) de i'impl&nentation. Nous présentons ensuite les

applications tests intéressantes qui ont validé notre prototype.

3.4.1 Analyse des interactions avec l'usager

La première interface au système est celle de I'UPS où on peut souscrire à un

abonnement. Cette interface est présentée! à la Figure 3.19.

Device URL -1
Yes

Figure 3.19 Interface d'abonnement

Comme l'illustre la Figure 3.20, le diagramme de contexte du sysièrne offre une

vue en boite noire du système. Les abonnés ne savent pas que leurs services seront

iransportds par un AMS. Même lorsque L'AMS est présent sur leur machine, ils ne sont

pas tenus de savoir que les services sont offerts et relocaiisés par un AMS. Ce qu'ils

savent se limite à : je m 'ab0~e à des services. Ces services peuvent être déplacés quand

on en fait la demande. On dispose d'une intedace pour démarrer les services et changer

leurs param&tres d'exécution. En bref, les détails relatifs à I'AMS doivent être

transparents à I'usager.

Figure 3.20 Magramme de contexte

Les cas d'utilisation du système (Use cases) ddcnvent les possibilités

d'utilisations d'un systbme pour l'usager. Ceux de notre application sont présentés à la

Figure 3.21.

Figure 3.21 Diagramme de cas d'utilisation (üse Cases)

S'abonner aux services

L'utilisateur choisit certains services à partir de l'interface de 1'UPS. L'AMS est

alors créé et envoy6 pour la premiiire fois s'il s'agit d'un premier abonnement. Sinon les

56
services sont mis B jour selon les stratégies de remplacement de l'agent ou de mise à jour

dynamique. Un scénario d'abonnement est illustré & la Figure 3.22.

D6marrer les services

L'AMS sur la machine offre un menu que l'abonné utilise pour lancer un nombre

quelconque de services.

Supprimer des services

L'abonné choisit les services à supprimer à partir de l'interface de I'UPS. Un

agent portant les messages de suppression de services est envoyé et cet agent fait le tour

des AMS pour leur dire lesquels de leurs services ils doivent arrêter.

Les scénarios décrivent les interactions entre les différents acteurs. Même si le

rôle de ceux-ci est clair, il est pénible & décrire toutes les interactions possibles. Nous

illustrerons ici l'interaction de création de services, car nous pensons qu'elle est

essentielle à la compréhension du système.

Figure 3.22 Scénario d'abonnement

57
3.4.2 Analyse de 19UGS

L'AMS est L'unité principale pour la provision de services. L'UGS est l'unité

centrale de souscription et de maintenance. Nous présentons ici une partie restreinte

mais importante de son diagramme de classe. La Figure 3.23 refl&e notre

implémentation de i'UGS. De nombreuses classes ont ét€ omises. N'empêche cette vue

de haut niveau pemet d'entrevoir les interfaces de 1'UGS et la création de 1'AMS.

Figure 3.23 Diagramme de classes de I'UGS

Les fonctionnalit6s de l'UGS sont découplées les unes des autres comme indiqué

sur la Figure 3,24. L'UGS est constitué& d'une classe principale qui démarre tous ses

services : interface avec l'UPS, I'UCS et les autres UGS. Ces services d6marrent leur

propre Thread de communication. Tous ces Threads de communication utilisent le

protocole H'i'TP et implémente les mêmes mécanismes de sécurité (authentification des

partenaires, cryptage des données). Cette sécurité est basée sur l'interface Securiry de

JDK 1.2.2.

58
3.43 Aaalyse de I'UCS

La Figure 3.24 permet d'avoir une représentation visuelle de I'UCS. Elle est

composée d'un environnement de cdaiion de services et de difftrents répertoires oli

ces services sont stockds. L'UCS dti-tblit des connexions avec le SMU pour

transmem les nouveaux services et avec 1'AMS pour lui servir les fichiers qu'il réclame.

Figure 3.24 Diagramme de PUCS

3.4.4 Analyse de I'AMS

L ' A M est constitué & :

une Liste extensible de services, et pour chaque service, une Liste de ses ficbiers ;

un menu interface graphique qui liste les services et offre i'option de les démarrer

arrêter ou d é p h r tous ensemble ;

une classe interne '"Thread" (processus poids Ikger). C'est cette sous-classe qui se

cbarge de lancer les services. L'ensemble des processus poids ldgers est coordond

par un "ThadGmup". On peut donc se servir de ce "Thre!adGtoup" pour avoir des

références au contexte d'exécution des services. Chaque Thread (sous-processus du

59
programme principal qu'est i'AMS) fournit les ressources systkmes nécessaires au

service. L'AMS peut donc démarrer un service, l'interrompre temporairement ou

définitivement. Un nombre arbitraire de services put donc &tre entretenu en &nie

temps.

une classe interne gestionnaire de sécurité. Cette sous-classe hérite de la classe

SecurityMmager de JDK 1.2. Son mod&le de sécurité est donc bas6 sur celui de Java

où on sélectionne les actions possibles du programme selon ses permissions (certificat

et authentification). La sous-classe modifie les fonctions du SecuriryManager et

accorde des permissions pour ouvrir et lire des fichiers selon les paramètres qui lui

sont passés au moment de la création du service. Une politique de sécurité diffdrenîe

est donc appLiqu4e à chaque service.

une classe interne qui ouvre une connexion client ou serveur avec l'hôte qui lui est

désignd (URL de l'hôte). Cette classe utilise exciusivement ie protocole p

le transfert de fichier. La classe permet de nkupérer les "bytecodes" d'une classe -

d'une UCS distante et tout fichier quelconque qui est nécessaire à l'exécution du

service. Toutefois, les fichiers qui ne sont pas du code objet doivent être cbargés

pdalablement ii I'exécution et enregistrés sur le disque dur de l'hôte. Les fichiers

objets sont trarisf&ds au moment de l'exdcution, car le ClassLoader de 1' AMS permet

de les identifier.

a une classe interne (MSAClassLoader) qui, ZI partir du code objet (bytedes), opère

L'édition de Liens et retourne une instance de la classe. La classe interne

MS AClassLoader est automatiquement invoquee par la machine virtuelle Java. En

effet, quand un programme implémente un ClassLoader, la "Java Virtual Machine"

(JVM) invoquera ce ClassLoader quand d e rencontre une réfërence ii un objet ou

classe dans le programme. C'est de cette fonctionnalit6 que nous nous servons

d'ailleurs pour tenir compte des versions des services dans notre solution de mise &

jour dynamique de l'agent Vu que c'est notre CIassLoader qui gère le

fonctionnement de toutes dasses utilisées par L'AMS, il procède en trois €tapes.

D'abord, elle vé& que la classe invoquée n'est pas une classe librairie & 3DK.

60
Sinon, elle vérifie si la classe peut être tetrouvée en suivant les chemins d'actes

indiqués par la variable environnement CLASSPATH. En dernier ressort, elle se sert

de son intelligence sur la localisation des fichiers de chaque service pour iransfém

les "bytecode$'de ce fichier d'un hôte distant en utilisant la classe vue plus haut. il

faut noter que JVM ne charge une classe que lors de sa première référence (I'AMS est

invoquée une fois pour chaque classe). En effet, dès qu'une classe est chargée, la

JVM la garde en cache. Cette version de la classe sera utilisée durant toute

l'exécution du programme. JVM assure ainsi l'intégrité du type de la classe. il faut

donc avoir une connaissance profonde de la JVM et des patrons de design pour

contourner ces restrictions et installer des classes dynamiques (comme nous l'avons

fait pour la mise à jour dynamique).

une classe interne qui formate, émet et reçoit les messages KQML de l'agent. Cette

sous-classe n'est pas difficile à implémenter car elle ne définit pas et n'interprète pas

le contenu des messages. Elle spécifie le protocole des messages, varie les paramttres

de ces messages selon l'action que l'envoyeur veut que le receveur prenne, et

transmet les messages qui sont écrits par la classe MSAOntology. Elle utilise le

standard KQML.

une classe interne MSAOntology qui utilise la logique des prédicats du premier ordre

pour spécifier le contenu des messages. Eile utilise le standard KIF. Pour l'instant,

elle ne peut coder que trois messages qui indiquent comment les paramètres d'un

service ont été rn0din.é~ par l'usager, et comment ce service devrait être créé. Nous

nous sommes donc servis d'une série de booléens pour indiquer à la classe comment

formater Ie message. La classe ne décode pas les messages (pas de machine

d'inférence, il aurait été très pénible de le faire dans le programme). Eiie passe ceux-

ci à l'utilitaire JKP qui lui retoume un objet (chaîne de caracthes) Java plus

facilement interprétable. L'utilitaire est install6 sur chaque hôte où 1' AMS se déplace.

Bien entendu, l'ensemble de ces classes est g6d par la logique interne de I'AMS

qui associe des fichiers aux services et d6Wt ses actions selon les choix de l'usager.

6 1
Plusieurs patrons de design ont été utilisés dans la construction du sysîème.

L'UGS implémente notamment les patrons de design Médiateur, singleton et Proxy. ii

utilise la composition de classes et programme aux interfaces, et non

l'implémentation de la classe elle-même. Nous reviendrons plus longuement sur ces

patrons aux chapitres 4 et 5, car ils sont une composante importante de la solution de

mise à jour dynamique.

Deux services d'agents mobiles ont été implémentés pour tester I'AMS. Le

premier est un organisateur de réunion. Organiser des réunions entre des dirigeants très

occupés signifie souvent que lem secrétaires doivent passer un temps considérable

essayer de coordonner les calendriers de leurs patrons de manière à aboutir une date de

réunion consensuelle. Même dans le cas simple d'une invitation entre amis, il est souvent

difficile de planifier de telles activités.

L'organisateur de réunion envoie un agent avec une sélection des dates

disponibles pour la réunion. Cet agent mobile se déplace de participant en participant et

recueille chez chacun d'eux sa plage horaire de convenance. il fait ainsi le tour et revient

présenter les dates de rencontre possibles à l'initiateur de la réunion. Si aucune &te n'est

trouvée, l'agent mobile l'indiquera aussi. En fait, il court-circuitera son trajet dès qu'il se

rendra compte qu'il n'y a pas de dates consensuelles après avoir visité quelques

participants. Planifier une réunion se fait donc avec un minimum de difficulté.

Le second service cherche le chemin le plus court p u r d e r d'un point à un autre

dans un réseau. crée donc plusieurs agents collaboratifs qui disposent tous d'une carte

du &seau. Ces agents se répartissent le réseau entre eux et chacun se charge d'en explorer

une partie. Le premier qui arrive destination informe les autres qui rentrent au nœud

d'origine. L'agent qui a trouvé la destination revient ensuite. Ce senrice a une application

en téi@honie, car nous avons ainsi simulé le plus court chemin pour traiter un appel.

Lors d'un appel, les agents se déplacent sur des nœuds disjoints, invoquent des fonctions

de la passerelle pour savoir si elle peut acheminer l'appel. Pour nos simdations, les

62
agents ouvrent une fenêtre et l'usager dpond manuellement s'il permet que l'appel

transite par sa machine.

3.5 Synthèse et problémes ouverts

A ce point-ci, I'impldmentation consiste en une UGS, une UPS, une UCS et

quelques AMS. Tous les probkmes relatifs ii la multiplicité (ccnsistance des donndes,

synchronisation des transactions) des diffdrentes unités n'ont pas encore €té traies.

Toutefois, les solutions couramment employées pour les syst&mes répartis pourraient être

appliquées ici : mécanismes de recouvrement de fautes, serveurs redondants pour

rediriger Ies transactions quand le serveur principal n'est pas disponible, etc.

Cette implantation limitée est toutefois suffisante car l'étude concerne la mobilité

des services et non les systèmes répartis. Matdrieiiement, I'UGS est située sur une station

Solaris 2.5.6 qui a un processeur 400 MHz Pentium 2. L'UCS est siniée sur une station

Windows NT 4.0 avec un processeur Pentium Pro 366 MHz. L'WS est située sur une

machine ayant les mêmes caractéristiques que celle de I'UCS.

Dans I'implémentation, I'UPS est en fait un serveur Web Apache 2.0, Les pages

d'abonnement utilisent des Servlets (au Lieu de scripts CGI) qui ouvrent des connexions

sockets pow transmettre les paramètres de I'abonnement à 1'UGS.

L'ontologie implémentée dans le contexte de L'AMS a été définie exchsivement

pour son cote pratique : d € f ~ la logique et le contenu des messages pouvant être

échangés avec I'AMS. Eik n'a pas de fondements théoriques et aucune preuve formelle

n'a éîé effectuh sur sa cohérence. Les primitives du langage utilisables en JKQML sont

limitées. L'interprétation des performatives est souvent ambiguë. Toutefois, utiliser un
langage pdsente le grand avantage qu'on n'a pas à changer l'agent si celui-ci doit faire

des opérations nouvelies. Si la logique est bonne, un nouveau message devrait susciter les

&actions appropriées de la part de I'AMS, ceci même sans machine d'inf6rence.

La sécucitd est faible : de simples algorithmes de codage sont utilisés. Ceci

pourrait être rapidement amdiod en utilisant les interfaces que nous avons indiquées plus

haut (Voir sites Cryptographie et SBcurité). Les b i t e s de temps ne nous ont pas permis

d'installer les dcanisrnes de shr i té appropriEs.

63
Peu de fonctionnalitds dépendent de la plate-forme Voyager. ies seules

fonctionnalités de Voyager que nous utilisons sont le serveur de nom et la possibilitd de

modifier la couche Transport. Toutefois, le serveur de nom n'est qu'une alternative

parmi d'autres pour obtenir une référence h un objet sur une plate-forme Java Nous

I'utilisons au moment du remplacement de l'agent et de sa mise i jour dynamique

(chapitre 5). D'autres alternatives sont d'ailleurs présentées au chapitre 5. La

modification de la couche est due i des erreurs provoqubes par Voyager. Nous n'aurions

pas besoin de le faire si un autre système était utilisé.

CHAPITRE IV

MISE EN OEtJVRE DFS SOUSCRmZTONS

Une architecture novatrice pour la mobilité des services a été présentée et son

implémentation spécifiée au chapitre 3. L'agent mobile pour seNices (AMS) qui

transporte les codes exécutables (ou des pointeurs au code) des services est l'entité

principale de cette architecture. Transporter des services pose de nouveaux défis relatifs à

la gestion de ces services. Ce chapitre examine la mise à jour (ajout, retrait et

modification) des services contenus dans un AMS. Intuitivement, il y a deux approches

possibles pour la mise à jour d'un AMS : le remplacement de l'agent et sa mise à jour

dynamique. Nous analysons d'abord les problèmes posés par la mise à jour d'un AMS,

puis nous ddrivons un ensemble de requis pour 6valuer les solutions possibles. Ensuite,

nous présentons l'impldmentation de la permutation d'agents. Finalement, nous exposons

l'impl6mentation de la mise à jour dynamique d'un AMS.

dl Analyse des problPmes

Tout service pour lequel l'usager a une souscription est transport6 par un seul et

unique AMS. Pour chaque configuration de l'architecture, le nombre d' AMS par usager

est fixé. Nous examinons d'abord le probkme de la mise à jour des services et ddrivons

des requis. Ensuite, nous explicitons les diBrences entre le remplacement d'agents et la

mise à jour dynamique d'un agent.

4.1.1 Probléme et requis

Suppons qu'un AMS a dté créé pour un usager dom€, et que I'AMS contienne

les services A, B et C auxquels cet usager s'est Cib0~6. Pour être plus spkifique, I'AMS

contient la logique (code exécutable ou pointeurs aux codes), plus les données (ou

pointeurs aux données) de chacun de ces trois services, L'AMS gere toujous ses €bits de

façon autonome; fi sait donc qu'il contient ces trois services et seulement ces trois

65
services 1k ii est important de noter que les données contenues dans (ou pointées par)

I'AMS peuvent être personnalisées par l'utilisateur.

Supposons maintenant que l'usager décide de sous& Zt un service

additionnel D ou qu'une nouvelle version du service A devienne la nonne. La

question est de savoir comment I'AMS est mis à jour pour inclure D et la nouveiie

version de A en plus de B et C. Deux approches sont possibles : le remplacement d'agent

et la mise à jour dynamique de l'agent. Dans la première approche, I'AMS est remplacé

par un AMS qui contient les nouveaux et anciens (nouvelles versions au besoin) services.

Avec la seconde approche, les nouveaux services sont insérés dans I'AMS. Les nouvelles

versions des services existants sont généralement insérés lorsque ces services-là

n'exécutent pas ou après que leur exécution a été arrêtée, Cependant, plusieurs services

(ceux de téléphonie notamment) fonctionnent en continu et ne peuvent être interrompus.

Par conséquent, ils doivent être mis à jour pendant qu'ils sont en cours d'exécution.

Les deux approches ont des avantages et inconvénients. Quelques requis simples

peuvent être ddnvés pour analyser ces deux alternatives, dans le but de trouver une

solution optimale par rapport à ces mêmes requis. Les requis sont les suivants :

L'interruption de service due à la mise à jour de l'agent devrait être minimal ;

Le délai entre une requête d'abonnement et la disponibilité pour l'utilisation d'un

service devrait être minimale ;

La mise B jour ne devrait pas affecter le comportement des services, Plus clahment

les modifications (personnalisations) effectuées par l'usager sur les seMces ne

devraient pas être perdues ;

La solution devrait être adaptable à un nombre élev6 de services. Autrement dit, la

performance de la solution devrait être bonne même si l'usager s'abonne à LOO0

services au lieu de 10 ;

La solution devrait être independante de la plate-forme d'agents mobiles uiilide pour

son implémentation, Il y a plusieurs plates-formes disponibles sur le marchd. La

solution ne devrait exploiter les spécintés d'aucune plate-forme ;

66
6. La solution devrait être aussi simple que possible et ne devrait pas imposer de

contraintes sur les atchitecms utilis&s pour programmer les services. Plus

s@ifiquement, les developeurs ne devrait pas être obligds de développer l em

services suivant une mdthodologie particuli8re pour que ceux-ci puissent être

transportés et mis h jour dans un AMS.

Les requis 1, 3 et 4 sont les plus difficiles à combler avec une stratdgie de

remplacement de l'agent. Les services seront probablement intemmpus durant la

permutation de l'ancien AMS avec un nouvel AMS. Par aillem, la solution pourrait ne

pas s'étendre à un nombre total (anciens + nouveaux) élev6 de services puisqu'un nouvel

AMS doit etre reconsûuit h partir de rien, Le délai pour la disponibilitk des services

pourmit devenir prohibitif si le nouvel AMS doit recharger aussi le code des anciens

services (B et C dans ce cas ci). Finalement, les connaissances glandes par le vieil AMS

sur les habitudes d'utilisation de l'usager, ainsi que les données ou règles relatives aux

services que l'usager auraient explicitement modifiées dans le vieil AMS doivent Btre

conservées,

Dans l'optique d'une stratégie de mise B jour dynamique de l'agent, l'insertion de

nouveaux services est relativement facile ii implémenter. C'est aussi le cas pour le

remplacement d'un service quand ce service n'est pas en cours d'utilisation. Cette

a f f i t i o n peut paraître surprenante car, malgré tout, l'insertion des services revient ii

foumir & I'AMS une intelligence qui lui permette de :

charger les nouveaux semices et leurs données quand il est iaformé qu'il doit

transporter ces services pour l'usager ;

êm conscient en tout temps des services qu'il contient, de manitre h mettre B jour son

interfie graphique quand il charge de nouveaux services ;

utiliser les dwnées pour manipuler les services et permettre la persoanalisation de ces

données.

Toutefois, les deux demi* exigences sont d6jh implémenîées et remplies pour

tout AMS de notre architecture. Le supplément consiste donc simplement à aansférer

67
(ouvrir des connexions "sockets")es codes exdcutables et données des services, ce qu'un

AMS qui transporte des pointeurs fait "routinetaent".

La solution semble donc évidente jusqu'à ce qu'on considère le cas où

certains services sont mis à jour pendant qu'ils sont en cours d'exécution. A ce

moment 18, les requis 5 et 6 deviennent ardus ?i satisfaire. En effet, comment changer

instantanément une application si on ne dispose pas d'icûomation sur sa sémantique

interne ? Pour assurer la continuité du programme, il faudrait peut être effectuer un

transfert d'état des processus de l'ancienne version du service iî la nouvelle version. Ceci

implique l'utilisation de primitives du système d'exploitation, et par conséquent une

certaine d6pendance vis-à-vis de la plate-forme. Sinon, il faut probablement imposer un

modiile architectural aux services qui permettrait de modifier certaines parties d'un

service en cours d'utilisation.

4.1.2 Remplacement d'agent et mise ii jour dynamique

D'un premier abord, la permutation de deux agents et la mise à jour dynamique

d'un agent semblent similaires. En effet, remplacer un agent revient essentiellement à

recharger les classes de cet agent et c&r une nouvelle version. La plate-forme s'occupe

ici du chargement et de l'initialisation. Toutefois, la plate-forme d'agents mobiles peut

seulement charger un nouvel agent, pas insérer les classes d'un nouvel agent dans

l'ancien agent, qui est plus sans interrompre I'exr5cution de cet agent.

La mise h jour dynamique ajoute du code où de l'intelligence h une application

qui est en cours d'exécution sans interrompre ladite application. Plus clairement, les

modifications dynamiques changent des parties de l'application. La difficulté principale

avec ces changements "à chaud" est d'assurer I'intégrité du programme après le

changement. Quels que soient les mécanismes utilisés, il faut préserver le programme des

erreurs de d66nitions de type et ne pas briser les sémantiques du langage tels que

l'association nomsbjet. De nombreuses autres contraintes entrent aussi en ligne de

compte selon les applications qu'on d é k h mettre à jour,

68
Avec le changement d'agent, nous essayons de permuter l'agent et les services

qu'il contient avec un nouvel agent qui contient les anciens (éventuellement nouvelles

versions) et les nouveaux services. Le problème est d'effectuer la permutation tout

en remplissant les requis.

Les techniques de mise à jour dynamique introduisent des changements sur des

déments spécifiques d'un systeme. Par exemple, si une nouvelle version d'une classe ou

d'un module est disponible, le système de mise à jour doit s'assurer que les appels de

méthode sur les objets qui impl6mentent la vieille version sont plutôt redirigds vers des

objets qui implémentent la nouvelle version. Bien entendu, ceci a le potentiel d'introduire

des erreurs dans le programme. On peut considdrer le cas simple 05 la nouvelle version

de la classe ne supporte plus une mdthode présente dans les versions antérieures de la

même classe. Si cette méthode est invoquée vers la fin du programme alors que les objets

ou classes ont étd dynamiquement changés plus tôt dans le programme, ceci donnera Lieu

à l'invocation d'une méthode invalide (inexistante) dans un programme préalablement

compilé. Conséquemment, les changements ne peuvent être introduits que sous certaines

conditions.

La granula& des changements varie avec chaque systéme de mise à jour.

Certains systemes permettent des changements sur des entités aussi petites que des

variables ou des fonctions (appeier la fonction provoquera l'appel automatique d'une

autre). D'autres limitent les changements aux modules ou B des applications entières. Ces

systemes sont typiquement dépendants de la plate-forme car ils utilisent des primitives du

système d'exploitation. On doit aussi recourir au système environnant (intexprêteur ou

système d'exploitation) pour mnsfërer I'dtat entre applications. Les techniques de mise ii

jour qui ne nécessitent pas de support du systeme environnant imposent un modèle

architectura1 aux applications pour qu'elles puissent être mises à jour.

4.2 Permutation d'agents

La permutation d'agents peut s'effectuer de deux manières : graduellement ou

abruptement. Nous présentons ces deux appcoches. Le principal défi lors d'une

69
permutation d'agents est de s'assurer que les données des services sont correctement

transmises. Ces donnk sont disponibles uniquement dans le vieil agent, car elles

peuvent avoir 6té modifiées par i'usager ou par l'agent lui-même suite à l'dtude des

habitudes d'exécution de L'usager.

En effet, I'AMS offre une interface graphique oh les services peuvent démarrer ou

adter, mais aussi où l'usager peut entrer des kgles d'exécution, Le. tel servicc doit être

demarré dès que tel aum est lancé, démarrer le service X avec les paramètres y, démarrer

le service Z h telle heure, le service A utilise uniquement le service B, etc. Nous avons

pdsenté uniquement les personnalisations que nous avons impKmentées, il est bien sfb

possible d'avoir des fonctionndités beaucoup plus sophistiquées avec un produit

commercial.

La permutation de deux agents peut se faire de deux façons : de rnanihe abrupte

ou de façon graduelle. Nous explicitons ces deux possibilités. Par la suite, nous

présentons leur impldmentation et la manihre dont les problémes tels que la

synchronisation des donndes et les erreurs de transmission sont résolus.

4.11 Permutation graduelte et permutation abrupte

Quc ce soit une permutation graduelie ou abrupte, I'UGS assemble d'abord un

AMS qui contient des pointeurs aux ex6cutables des nouveaux et anciens services.

L'AMS transfère ensuite les exécutables des UCS.

Dans le cas de la permutation graduelle, le nouvel AMS se déplace alors sur le

site de l'ancien. ïi recueille les doondes personnalisdes au besoin et devient actif.

L'ancien AMS devient inactif après avoir passé les données au nouvel AMS. Tout service

ne pourra être maintenant démarré que par le nouvel AMS. Toutefois, les services qui

&aient en cours d'exécution daas l'ancien AMS ne sont pas interrompus ; ils terminent

avant que l'ancien AMS devienne totalement -
Dans le cas de la permutation abrupte, le nouvel A M S ne se déplace pas sur le site

oh L'ancien AMS réside, après avoir copié Ies exécutables. li transfère d'abord les

données personnalisées (s'il y en a) du vieil AMS, Deux alternatives se présentent alors.

70
Dans la premitre, I'ancien AMS arrête les senices qui étaient en cours d'exécution (au

besoin), puis devient inactif. Dans la seconde, les services achèvent leur exdcution avant

que l'ancien AMS devienne inactif. Le nouvel AMS se déplace sur le site du vieil

AMS aussitôt que celui-ci devient inactif. il redémarre alors au besoin les services

qui avaient été interrompues.

La permutation graduelle demande que deux AMS coexistent sur le même site

durant la permutation. Ceci n'est pas toujours possible avec les petits moniteurs

d'information (Palm Top, etc.). De là vient la principale motivation qui sous-tend ta

permutation abrupte. Bien qu'il soit théoriquement possible d'attendre que les services

achèvent avant de réaliser la permutation, ceci n'est pas possible tout le temps. Un

exemple est un service de valeurs boursieres d d m d par l'usager tdt dans la joumde et

qui doit rapporter I'dvolution des actions sélectionnées toutes les heures.

Ces deux approches soulèvent les questions suivantes:

Comment transfdrer les données et continuer à imposer des contraintes minimales sur

I'AMS et ses services (interfaces, architecture des services, etc.) ?

Avec la permutation graduelle, deux versions du même service peuvent s'exdcuter

concurremment durant la permutation. Comment maintenir la consistance entre les

paramètres d'exdcution de services qui exécutent concurremment ?

Désactiver l'ancien AMS avant que le nouvel AMS se déplace sur le site expose la

permutation abrupte aux pannes du dseau. Quels mdcanismes de recouvrement sont

prévus dans le cas ob le déplacement du nouvel AMS 6chouerait ?

4.2.2 Impl6mentation des permutations

Les agents communiquent par le langage KQML que nous avons implémenté en

utilisant la Librairie JKQML de IBM alphaWotks. Ceci évite d'avoir à imposer des

interfaces que les AMS implémenteraient pour communiquer par appel de méthodes.

Les AMS sont tenus d'implémenter le protocole d'dchange des données illustré à

la Figure 4.1. Nous n'avons pas utilisé d'ontologie et les utilitaires (tels JKP} présentés au

chapitre 4 pour la permutation d'agent car ils introduisaient des erreurs difficilement

71
"traçables". L'expérience nous a aussi appris que, pour supporter l'ontologie, une

machine d'inférence est quasiment indispensable. C'est un surplus de traitement îrès

élevé que de demander à I'AMS de procéder à l'analyse de texte. Supporter un

protocole est faisable s'il est très limité comme celui de la Figure 4.1. Sinon, il

devrait être trait6 à l'extdrieur de l'agent (librairies, utilitaires, etc.).

Service : Vale~r~bourei&re
Parameters : Douala Wall-street Toronto
Start-Tirne : 9AM 8AM B 30AM
Bnd-Timc : SAM 9PM $PM-

Figure 4.1 : protocole d'échanges de données lors de la permutation

La figure 4.2 illustre la maniere dont 1'6change de données est implémenté dans

les AMS.
-- --

Clau MSA (
Private void sendCustomiMon(...)(

String data = new String("Smice : Valeur-hi& \n" +
"Paramm : Douala Wall-street Toronto ùI" +
"StartanTime : 9AM 8AM 830AM hW +
"EndJime : SAM 9PM 6PM hh?:

KQML rquest = new KQMLO;
reques~setPerfonnative(KQMLRECElVE): Ilset KQML performatives
r#lues~setOntoIogy(null):
request.setContent(data); Il subwquentiy send data
Ilmsmeme par socket

1
1

Figure 4 3 : ficbange de données sur les senices durant la permutation

Pemuîation grrrdueile

Pour assurer la consistance des données dans les deux agents, i'utilisateur ne peut

apporter de changements aux donn&s relatives aux services après que la permutation eQt

été initiée. L'AMS n'offre donc plus aucune fonctio~alité dès que la permutation

72
graduelle commence. Il laisse tout simplement les services qui roulaient achever. Aucune

modification ne peut être effectuée par l'usager.

Permutation abrupte

L'ancien AMS &vient inactif avant que le nouvel AMS se déplace sur le site,

mais il n'est pas déüuit. Il s'enregistre tout simplement pour activation sur le disque dur.

Il ne consomme ainsi plus de ressources systèmes. Un objet ou programme actif

consomme des ressources. En effet, le processus d'activation (dans les architectures

disîribuées) permet d'enregistrer sur disque un objet qui est inactif pour une longue durée

et qui utilise des ressources systèmes. L'objet (champs et méthodes) est alors enregistré

pour le reste de sa période d'inactivité et IR consomme plus de ressources systémes, il est

réactivé et chargé en mémoire h sa prochaine invocation. En bref, l'activation permet de

préserver des ressources. Notre impl&nentation de l'activation est basée sur le modèle de

l'objet réseau de Modula-3 Net0bj.T.

Si le déplacement se déroule sans probléme, le nouvel agent effacera l'ancien

agent du disque dur à son arrivée. Si par contre un problème se produit lors du

déplacement du nouvel agent, i'usager pourra toujours ddmarrer l'ancien agent car il est

enregistré sur disque pour activation.

4 3 Mise h jour dynamique de I'AMS

Nous avons vu que l'investigation de l'ajout dynamique de services non en cours

d'exécution était d'un intérêt mitigé. En effet, I1 n'est même pas nécessaire de recueiiiir

des données relatives à la performance de l'architecture dans ce cas là. Dans cette section,

nous nous concentrons sur le cas où le service à mettre A jour est en cours d'exécution.

Tout d'abord, il faut clarifier ce que la mise à jour dynamique veut dire pour

i'AMS. Mettre i'AMS A jour dynamiquement signine changer l'implémentation d'un ou

de plusieurs s e ~ c e s pendant que ces services s'exécutent. Les services sont rnodin6s

sans que l'application (I'AMS) ou le système ne soit interrompu et sans intervention

73
humaine. Les défis sont importants; toutefois, il existe déjà quelques implémentations et

architectures de mise à jour dynamique. Notre solution par contre dépasse et d o r e

toutes les réalisations précédentes par sa modularité et sa facilité d'utilisation, ainsi

que la précision et le contrôle qui peut être exercé sur les changements. Elle est

facilement utilisable et n'occupe que 9 Kilo-octets d'espace mémoire. Les fournisseurs de

services peuvent activement dlectionner les parties (objets) du système qui devraient etre

modifiées et spécifier une politique de changement pour chaque version antdrieure.

Plusieurs versions de tout module dynamique peuvent s'ex6cuter concurremment dans le

programme. Les mises à jour dynamiques sont transparentes à la programmation et à

I'exécution des services. t' AMS contrôle la version de chaque partie du programme.

Les différentes architectures et impl&nentations de mise à jour dynamique varient

grandement selon les param8tm suivants : granularité des changements, support du

système d'exploitation ou de la machine virtuelle, intervention humaine et &le de

programmation des applications dynamiques. L'unité de changement peut être aussi

petite qu'une fonction ou variable, ou aussi grande qu'une librairie ou programme entier.

Dans notre implémentation, les changements peuvent être introduits uniquement sur des

classes. Plus clairement, toute nouvelle version d'une classe dynamique peut être chargée

en mémoire et utilisée pour les cdatims subséquentes d'objets dynamiques. L'usager

sélectionne aussi les instances existantes qu'il ddsire remplacer par des instances de la

plus récente version de la classe. Cette unité de changement est consistante avec le

paradigme orientd-objet et est implémentable en Java grâce à ses mécanismes d'édition

dynamique de liens. Les appels sur chacune des instances remplacées seront redirigés

selon la politique de conversion de la version de cette instance, si elle existe.

L'implémentation utilise I'interfitce Java Core Rejiection de JDK 1.3 (Java

Development Kit). Elle est bas& sur la redirection des appels grâce à un proxy et requiert

l'utilisation de librairies du MSA qui permettent les changements dynamiques. Les

évaluations expérimentales indiquent que cette approche est meilleure par rapport aux

requis Concernant l'interruption des services, le délai pour la disponibilité des services et

l'adaptabitt pour un grand nombre de services.

4 . 1 Concepts de base et préaiables

La premikre notion qu'il faut saisir est celle de la résolution des liens inter-

modules d'un programme par un Bditew dynamique de liens. Une application est

composée de modules, chaque module est une collection de procédures, variables et

constantes. Un module peut exporter certaines de ces caractéristiques dans une interface

et peut importer d'autres modules. Durant la compilation, le compilateur s'assure que

toute invocation d'un élément importé cobcide avec la déclaration de cet élément dans

son fichier source. À la différence des éditeurs de liens statiques, les éditeurs de liens

dynamiques ne résolvent pas les références 6tablis par importationlexportation à la

compilation. Us le font plutôt plus tard à un moment d6dié que nous appellerons le temps

d'éditions des liens (Franz, 1997). Toutefois, dans la plupart des impldmentations

d'édition dynamique, le temps d'tidition des liens coïncide souvent avec le moment où le

code exécutable du module est chargé en mdmoire. Ceci est le cas avec Java qui est un

"lazy Linker", i.e. résolution àes liens seulement quand le module importé est invoqué

pour la première fois durant l'exécution du code. il existe plusieurs variations d'édition

de liens dynamiques. Nous illustrons le cas de Java à la Figure 4.3.

Au moment de l'édition des liens, la machine virtuelle Java (Java Via1

Machine JVM) parcourt le fichier objet (.class) de la classe A et son réservoir de

références ("constant pool"), et résout les références aux classes externes. Cette édition

des liens se fait la premibre fois que les ciasses externes (importées) sont rencontrées

dans le programme. Ainsi, t'édition des Liens et le chargement des fichiers se fait une

classe à la fois.

À la Figure 4.3, la premi&re fois que la JVM traite l'instruction "B b = new BO'',

il examine le réservoir de réference de la classe A, trouve la structure appropriée et se

ddplace ii l'index indiqué (38 sur la figure) pour récupérer de l'information sur la classe

B. Dans i'exemple, l'information est Ie nom absolu de la classe en représentation

unicode.

methodjnfo methods[methodsmethodscauit]; 3é. C O N S T A H T ~ ~ ~ ~ jnfo (

attfiôule-inlo atiriùute~anribulesBSCOUI(]: ul W;
... II Olher (lelds uninecl for breviîy u2 leneth;

1 ul byles[lqlh] = 'Ejremple.B';

1

Figure 4 3 Modules et code objet Java

Ce processus est réalisé une seule fois par classe par programme. Ceci est dO au

fait qu'une fois qu'une classe comme la classe B est résolue, la JVM maintient un lien

inamovible à cette représentation de la classe. Conséquemment toutes les invocations

futures de la classe utiliseront ce lien sans la pénalitë d'avoir à fouiller le code objet. Ceci

veut aussi dite qu'une classe ne peut pas être changée dynamiquement une fois qu'elle a

été résolue, à moins que le système de mise à jour n'accède le monceau (heap) de la JVM

et change ce lien pour qu'il pointe à une autre version de la classe. Pour cela, il faut

carrément changer la JVM, ce qui implique que la solution n'est plus portable et introduit

d'autres difficultés que nous aborderons plus tard. Toutefois, diffërentes versions de la

même classe peuvent être chargées tant que la classe n'est pas résolue. La classe peut

toujours être manipulée à travers Ia superclasse "Object" qui est la superclasse de toutes

les classes écrites en Java.

La question qui se pose maintenant est la suivante : comment garantir i'intëgritë

du programme après le changement puisque L'AMS n'a pas acc8s A la pile du processus ?

76
Les mises à jour "à chaud" peuvent potentiellement causer des erreurs de violation de

type. Bien que l'intégrité des types en Java n'ait pas encore été formellement prouvée

(Drossopoulou et al., 2000), en pratique le vérificateur de bytecodes de Java prévient

les erreurs de violation de type, excepté dans certains cas pathologiques (Freund et

al., 1998). Dans le but d'bviter des erreurs de violation de type, les systèmes de mise

jour dynamiques introduisent généralement des changements après s'être assurer

(mécanismes de verrouillage et syncbnisation, vérification de la pile du programme)

que la cible (classe, procédure) n'est en utilisation nuile part ailleurs dans le programme

au moment du changement. Ces techniques sont gbnéralement dépendantes de la machine

puisqu'elles utilisent des primitives du système d'exploitation et effectuent des appels à

son noyau (kemel).

Qui plus est, la plupart de ces implémentations exige l'assistance humaine

pendant la mise à jour et demande que le developeur soit ré-entrahé de manière à

pouvoir programmer en fonction du systeme de mise à jour. Une erreur de violation de

type est illustrée à la Figure 4.4.

La classe Service-i crée une instance de Dependent-i ("di") correspondant à la

prem.i&e version située à gauche sur la figure. Toutefois, avant une des invocations &

l'objet "di", il est dynamiquement changé à la nouvelle version qui n'implémente plus la

mdthode 20. Lorsque Service-i essaie d'appeler Z une violation de type se produit.

Les violations de type se produisent aussi quand un objet est invoqué par

l'intermédiaire d'une interface incompatible. Imaginez le cas où la première version de

Dependent-i implémente une interface quelconque que nous appellerons Interfacci. Une

instance de Dependent-i peut être "castée*' et manipuler à travers cette interface.

Toutefois, dans le cas où la seconde version ne supporterait plus l'interface, il y aura une

erreur de violation de type la prochaine fois que L'instance "castée" sera manipulée si

l'objet auquel elle réfere a 6té dynamiquement change pour refléter la nouvelle version,

clarrs DependenLi{
public void F(){

// statementa ..
1
public void Z(){

// statements ..
?

public void F(){
// statements ..

public void MO{
// staternents ..

first version new version

class Service-i{
Dependenci di:
Servioe,i(){

dl = new DependenLi():
1
int runServiceO I <

// Before this functlon is called DependenLi is changed
// to the new version
di.Z(); c- type vioîation error

1
1

Figure 4.4 Violation de type causée par un changement dynamique

4.33 Approches de mise h jour

L'AMS offre les mises à jour dynamiques à travers les classes dynamiques dont

I'impldmentation peut être changée pendant l'exécution du service. Les mises 21 jour de

classes dynamiques peuvent être appliquées selon différents mod&les.

Les changements peuvent affecter toutes, quelques-unes unes ou aucune des

instances de la classe qui a &6 modifiée. Selon la mdthodologie de mise A jour,

diffétentes questions se posent sur le traitement des classes dépendantes, la coexistence

de plusieurs versions de la même classe dans le même programme, etc. Nous décrivons

les alternatives et présentons la méthodologie de mise à jour que nous avons

implémentée. Tout le long du texte un objet dynamique &re à une instance d'une classe

dynamique.

78
S&manriques de mise à jour

Les sémantiques de changements de version sont documnt8es (Gray et al. 1997,

Malabarba et al. 2000). Nous les analysons brièvement. Une première approche pour

mettre à jour les objets existants d'une classe qui a été modifiée est de bloquer la

création de nouveaux objets de la classe jusqu'à ce que toutes les vieilles instances

expirent. Des objets de la classe pourront de nouveau être créés à la fin de ce délai. Ceci

peut prendre un temps arbitrairement long.

Une autre approche est de changer toutes les instances existantes de la classe au

moment du changement pour qu'elles reflètent la nouvelle version. Ici, des mécanismes

de verrouillage permettent de s'assurer qu'aucune instance de la classe n'est utilisée au

moment du changement. Les codes objets des autres classes sont parcourus pour s'assurer

qu'ils ne contiennent pas de références à des méthodes ou champs obsolètes de la classe

modifi8e. Les instances des sous-classes sont aussi modifides (débarrassées de champs et

méthodes obsolètes). À moins que des mécanismes de transfert d'état soient en place,

Mat interne des anciens objets ne peut être copid dans les objets nouveUement créés. Les

dventuels mdcanismes de transfert d'états sont rigides et sont possibles uniquement pour

des architectures spécifiques et bien définies qui obligent les classes à supporter certaines

interfaces non modifiables. Conséquemment, le transfert de contexte est lirnitd à des

applications restreintes. Une autre consdquence est que les programmes doivent être

écrits en fonction des mises à jour dynamiques.

Face à ces difficultés, la plupart des syst2mes qui implémentent cette approche

créent tout simplement de nouveaux objets vides qui remplacent les anciens objets. Bien

entendu, il y a l'effet néfaste que toutes les valeurs (souvent importantes) contenues dans

les champs de ces anciens objets sont perdues. Cette perte d'information se propage selon

une réaction en chaîne, Le. les données et traitements contenus dans tout objet dont les

uniques réfdrences sont ainsi purgées, sont aussi perdues. En définitive, bien que Ies

changements puissent être configurés de sorte qu'il puisse &ûe pmv6 que le programme

sera toujours syntaxiquement correct et l'int6grit6 des types pdserv&e, il y a me

discontinuité & fonctionnement dans le comportement et l'exécution du pmgmame. Le

79
fardeau retombe sur les dpaules du programmeur qui doit alors parvenir B s'assurer d'une

fapn quelconque que le programme continuera à produire des résultats valides. Pas des

résultats corrects tout simplement parce que le programme retourne un entier comme

il était supposé, mais que la valeur de cet entier soit celle que le progamme €tait

supposé produire s'il disposait de l'information perdue. Cette pénalité &duit

considérablement le coté pratique de la m6thode.

Une troisième alternative est de laisser les anciennes instances des classes

dynamiques inchangdes au moment de la mise à jour. Toutefois, tous les objets créés à

partir de ce moment là refléteront la nouvelle version. Ce schéma est basé sur l'idée

qu'une fois que les vieilles instances seront dliminées par le ramasse-miettes, seule la

nouvelle version sera en fonctionnement. N'empêche, plusieurs versions de la même

classe coexistent dans le même programme sans que le developpeur n'ait de contrôle sur

la version d'un objet particulier. Par conséquent, une ambiguïté nuisible règne toujours à

propos de quelle version de la classe est utilisée lors d'une invocation. Le résultat final

est que le comportement du système est imprévisible. Cette approche viole donc les

sémantiques d'association nom-classe. Ici aussi, la solution t~ court terme est de concevoir

son architecture de maniere à pouvoir se repérer dans son programme et profiter des

mises à jour dynamiques.

Avec toutes ces approches, le système de mise à jour impose des contraintes sur le

design des applications et ainsi influence ou pire décide du comportement &

l'application. Nonnalement, les applications devraient décider de leur politique de mise B

jour et utiliser les mises A jour dynamiques à leur guise dans le but de fonctionner sur une

longue durée sans interruption. Autrement dit, l'utilisation du système de mise à jour

devrait être adaptable à l'application et cela ne devrait pas être l'application qui s'adapte

au système & mise à jour.

Md31e de mise d jour de I'AMS

L'AMS permet aux developeurs de choisir précisément quels objets dynamiques

doivent être mis à jour. Ii leur permet aussi de décider de la politique de mise à jour qui

80
doit être appliquée d'une version d'une classe à une autre. Clairement, chaque application

ddcide de sa politique de mise à jour et de L'étendue des mises à jour. Les parties du

programme qui ne sont pas modinées sont laissées à leurs versions respectives. Les

programmeurs peuvent ainsi modifier des régions de L'application sans qu'il n'y ait

d'impact sur les autres parties. ils peuvent s'assurer de la continuité de fonctionnement

du programme en ciblant les portions de code qui contiennent des défauts ou qui

nécessitent des améliorations pour modification et en laissant les objets qui contiennent

des données critiques pour l'application inchangée. Le système (AMS) fournit des

méthodes qui permettent de connaître la version de tout objet. Une cl6 unique permet

d'identifier chaque objet. Cette clé est cornpode de la classe de l'objet dynamique, sa

version, son chargeur de classes, et une clé fournie par l'usager. Les classes sont

effectivement cedéfinies à la granularité d'objets.

Les objets dynamiques sont manipul6s uniquement à travers des "pmxies"

dynamiques de classes. Un proxy dynamique d'une classe défini par I'AMS supporte les

interfaes de la version de la classe qui était active (la plus récente à ce moment-la} au

moment oh ce "proxy" a été créé. Toutefois, les objets dynamiques peuvent être changds

pour refldter la plus récente version sans que cette version (la plus récente) ne soit tenue

d'implémenter aucune des interfaces des versions antérieures. Les appels aux méthodes

obsolétes sont interceptés au proxy et traités selon les instructions (spécifiées dans la

politique de mise à jour) du developpeur du service. Les classes dynamiques sont

manipulées uniquement à travers les interfaces de leurs pmxies. Cette légère restriction

assure que I'intégrit6 des types est préservée.

Dans notre impldmentation, les classes dynamiques ne sont jamais rt?solues,

toutefois leurs interfaces le sont. Chaque nouvelle version d'une classe dynamique est

chargée à travers un autre chargeur de classes. L'AMS C O O ~ O M ~ l'utilisation des classes

dynamiques. La Figure 4.5 illustre le mod&le de mise à jour de 1' AMS.

Figure 4.5 Modèle de mise B jour dynamique de 1'-

Les objets sont d'abord créés en utilisant la version i et sont manipulés à travers

l'interface il. A partir de I'instant de la mise ii jour (t,,@J. les objets dynamiques sont

en utilisant la version i+l, Certains objets de la version i sont remplacés par des

objets de la version i+l. ii est toujours possible de manipuler ces objets qui ont dté

changés à travers l'interface il, même si la nouvelle version (i+l) n'imp1émente pas cette

interface. L'AMS se charge du transfert d'appel des méthodes qui ont les meimes

paramims. Toutefois, les objets nouvellement créés (version i+l) ne peuvent être

accédds que par l'interface i2.

433 Implémentation de I'bvolution dynamique

Cette solution classifie les objets dynamiques selon la version de leur classe et

leur clé unique fournie à l'initialisation. Bien entendu, les mdthodes statiques de la classe

o@mt sur les objets qui sont de la même version de cette classe uniquement.

L'impldmentation est basée sur les proxies dynamiques de JDK1.3. L'interface proxy (de

l'ensemble Reflection) permet au developeurs de créer des proxies de classes consistant

en un ensemble quelconque d'interfaces. Chaque objet proxy a un objet associé

 invocation hander") où toutes les invocations de mdthodes seront envoyées. La Figure

4.6 lance un bref coup d'œil sur la ciasse Roxy de Java 1.3

Figure 4.6 Clssse javaJang.reflecî.hxy de JDK 1.3

La classe "MSAFactory" est L'interface par laquelle les objets dynamiques sont

créés et mis à jour. Il y a un MSAFactory par AMS. Une clé doit être fournie pour la

création de tout objet dynamique. La cl4 est une chaîne de caractères quelconque et doit

être unique pour la classe de l'objet dynamique. Le descripteur de type d'un objet

dynamique est composé de sa classe. sa version, son chargeur de classes et de la clé

fournie à la création. Il est important de conserver les clés utilisées pour créer les objets

dynamiques. Les programmetus les utiliseront plus tard pour indiquer quels objets

dynamiques doivent être mis B jour pour refléter la dernière version. La classe

MSAFactory maintient un lien entre chaque classe et son gestionnaire des mises à jour

"MSAClassManager". L'AMS charge la dasse MSAFactory sur tout hôte oa il se

déplace. La Figure 4.7 présente des extraits de la classe MSAFactory.

Une classe est mise à jour en appelant "setClassVersion" de MSAFactory, Cette

nouvelle version sera utilisée pour la création de toutes les prochaines instances. Le

dernier paramiitre de createinstance est un tableau contenant les arguments pour invoquer

le constructeur de "ClassName". Celui de 'ZipdateInstmce" est un tableau bi-

dimensionnel d'arguments pour les constructeurs des objets qui doivent remplacer les

objets mis à jour. Le second argument "keys" contient la liste des clés indiquant les objets

qui doivent être modifiés. Les éIéments situés aux mêmes positions d'index dans "keys"

et "arguments" sont utilisés lors du remplacement des objets dynamiques. Omettre

d'appeler 'iipdateInstance" implique qu'aucun objet existant ne doit être chang6. Seules

les prochaines instantiations refléteront la nouvelle version.

public final dass MSMactoly{

swic ûbject ~ t a n ~ S t r i n g Cidame, Siring insianœJeyYid.
ûbject[] arguments) ihmws In~~~~tl*onTargetException {

m = addClassManager (ClassName);
II hstantia~es a class manager for iht class CtassName if it is
// i# fint ilutmœ duU is beiig cnated maQS i h s N a m t and its classManager and renimJ it

renim (mg#RoxyObjeci (htancc-key id. arguments) 1;
1
static void updaklnstance(String CtassName, String0 kcy,Object~[1 arguments) [

m = gdlasaManapet(ClassName):
mupdard3bjects(ltys. arguments):

1
staiic void setClarsVenion(Suing clasname. String version. URL classLmation,)(

m = g*ClassManager(classn~mt):
m.sctVersionlncaiion(version, classtocation):

t
void setUpdatePolicy (String clessname, StRnga poIicy)(

moetl ledi~oi icy (policy);

1
II cher pmtated or private coordination fietds and tnethoâs omiiied forbmity

1

-

Figure 4.7 La classe MSAFactory implémente l'interface des classes dynamiques

Les cl& fournies pour une mise à jour doivent tire choisies parmi celes qui ont

6té uiihsées dans des appels à "create1nstance". Un objet dynamique est créé uniquement

à travers "createhtance". Cet objet dynamique est un proxy qui supporte les interfaces

de la dernihe version de la classe nommée "ClassName" (premier pararn&tre de

createhtance). La fonction "setUpdatePolicy" permet de définir la politique de

redirection des invocations de méthodes de certaines versions précises à la version

actuelle de la classe ''classname".

Une politique de redirection des appeIs peut être Specifi6e une seule et unique fois

d'une version à une autre. Les mises à jour se font uniquement dans un sens : d'une

version antérieure à la plus récente version de la classe. L'on ne peut pas modifier, mettre

84
à jour un objet qui refléte déjà la demibe version de la classe. Les politiques de

redirection des appels d'une version à une autre sont très simples à &rire. La premiére

ligne indique la version antérieure concernée, chacune des lignes suivantes contient

deux noms. Le premier est celui de la &thode dans L'ancienne version suivie du

nom de celle qu'il faut appeler à la place dans la nouvelle version. Un appel ne peut etre

cedirigé d'une fonction à une autre que si les deux fonctions acceptent les mêmes

arguments. La politique concernant une version est conservée dans une chaîne de

camctéres. Un vecteur de chaîne de caractéres permet de spécifier des politiques de

redirection pour plusieurs versions B la fois. Une politique de redirection simple

ressemble h celle sur la Figure 4.8.

i.i / / Claes Version
A Al // Invocation Redirection From A To A l
B B1 / / Invocation Redirection From A To Al

Figure 4.8 Exemple de diredion des invocations pour

la version i.l d'une classe quelconque

La premiére ligne indique la version de la classe à laquelle cette politique de

redirection s'applique. Les lignes suivantes indiquent les redirections : la mdthode A l de

la nouvelle version doit être appelée en lieu et place de la méthode A, la même chose

pour B1 et B. Une méthode peut etre redirigde uniquement vers une autre mdthode qui

accepte les mêmes paramttres (arguments). Les invocations subséquentes sur n'importe

quel objet dynamiquement modifid seront traitées selon la politique de mise à jour que le

fournisseur de service ou developpeur a ordonnée. Si aucune politique n'a et6 indiquée et

que des objets dynamiques sont mis à jour, les invocations seront redirigées vers la

mdthode du même nom acceptant les mêmes paramètres qui sera trouvée dans la nouvelle

version. L'AMS ne tient pas compte de la valeur de retour (void, int, etc.) ou du

85
modificateur (static, public, etc.) de la mdthode trouvée. Bref, il ne vérifie pas sa

signature.

Exemple d'utüisah'on

Un exemple de mise à jour dynamique utilisant I'AMS est présenté à la

Figure 4.9. Les services utilisent MSAFactory (createinsbnce) pour créer leurs objets

dynamiques. La librairie de mise à jour dynamique sera mise à la disposition des

developpeurs de services. iis peuvent donc simuler le comportement de leur service

avant, pendant et après une m-cation dynamique. La mithode updateInstance est

utilisée pour changer des objets précis.

La figure présente trois exemples de création d'objets dynamiques, &ux mises à

jour & deux des objets, L'entrée d'une politique de redirection et les manipulations qui

peuvent être faites sur les objets à la suite de ces changements. Elle illusîre le

comportement par ddfaut qui stipule que : quand aucune politique de redirection n'est

spécifiée, les invocations sur les instances dynamiques changées sont redirigées vers une

fonction du même nom ayant les mêmes arguments dans la nouvelle version. Bien

entendu, si aucune fonction du même nom n'est trouvée, une exception est levée.

ii est facile de constater que foumir des méthodes pour identifier et modifier (au

cas par cas au besoin) des parties d'un service est la façon la plus flexible et la plus

pratique de supporter des mises à jour dynamiques. C'est aussi l'approche qui donne le

plus de contrôle sur l'appliçation et les mises à jour dynamiques au programmeur.

4.3.4 Gestion des classes et acheminement des invocatioas

Les interfaces retournées par MSAFactory sont des proKies dynamiques cd& par

l'intermédiaire de la classe Proxy de Reflection. Les objets "MSAClassManager"

coordonnent les proxies. Il y a un objet MSAClassManager par classe dynamique. Une

vue de la classe "MSAClassManager" est présentde à la figure 4.10. Deux instances de

classes dynamiques diffirentes peuvent avoir la même clé. Toutefois deux instances de la

même classe doivent avoir des clés diffirentes. Il y a un objet "hvocatidandlei' par

86
objet dynamique. Chaque objet "MSAClassManager" coordonne tous les

"InvocationHandler" de toutes les instances de sa classe.

void AO; Il void BO;
void CO:

I I
void il();

Void BO;

I I
Void EQ;

~

Figure 4.9 Exemple d'utilisation des iibrairiss de I'AMS

pour une mise B jour dynamique

Les m6thoâes statiques ne s'appliquent qu'aux objets qui sont de la même version

& la classe. Cette approche est la façon la plus pratique d'implémenter les classes

dynamiques. Sinon, il faudrait imposer que les différentes versions d'une même classe

supporte une fonction de transfert, ou encore exiger que les m6thodes statiques soient

88
supportées par toutes les versions de la même classe. il n'est pas nécessaire d'interdire les

méthodes statiques.

ï i serait possible d'avoir plus de généralité et permettre le transfert des

invocations d'une méthode à n'importe quelle autre peu, importe ces arguments.

Toutefois, ceci devrait allonger considérablement le temps d'exécution cause des

vérifications et aflocations de mémoire supplémentaires (réallouer un nouveau tableau

d'objets pour contenir les arguments de la fonction "invoke" de Reflection).

Avec une édition des liens dynamiques, il est impossible de changer une référence

à une classe ou interface déjà résolue. C'est pourquoi les interfaces qui sont utilisées dans

le programme avant la mise à jour ne peuvent être changées. Toutefois, tant et aussi

longtemps que la référence n'est pas résolue, la même classe ou interface peut être

rechargée autant de fois que nécessaire. Un nouveau chargeur de classes ("Classloader")

est instancié chaque fois qu'une classe doit être rechargée.

mum(MSAPmnyncwRoxyi~~$tMCd:m, o.g*lnmfAcWmif));

t
public void setRediifftPolicyIStringu policy) (

II Psftc the updut policy m y . Euch inda in the a m y fers io adi- +usion

t
public Suing gctRedimtPoliey(Sûing vasion)(

II Rmm the n d i poiicy h m the vusion "venion" to the curmn m i o n
1
public void updatcûbjccls(String~ kqt Objecta args)(

II For aich k q

mif.-ie*(o);

1
 priva^ void SeCTyp~poiIQurLodcr cl, CLss s

MSAinvo~tiOnhwading m String vasion, String kq) {

Il ...oihas mcdiod omiacd for brcvity

1

Figure 4.10 Gesîion des classes dynamiques

Il algorihm d h logIn) &@OC~MLT N king ihc numkr of direcicd mahodr for diis clins.

I l

Figure 4.11 Acheminement des invocations aux classes dynamiques

4.4 $valuation sommaire des schCmas de mise P jour

L'ajout, le retrait et la maintenance des services sont les premiéres pdoccupations

à satisfaire pour toute architecture de services &liste. En effet, le ddploiement rapide de

nouveaux services innovateurs est primordial pour le succès des fournisseurs de seNices.

La performance de leurs applications est un autre important facteur de démarcation. ûr,

nous n'avons pas abordé la performance ni même € v M les solutions par rapport aux

requis dans ce chapitre. Pour remédier à ce manque, le prochain chapitre traitera de la

performance de l'architecture. li procédera aussi à L'évaluation des strat6gies de mise à

9 1
jour présentées ici. Nous aurons alors assemblé les deux éléments fondamentaux qui sont

indispensables pour le développement futur de l'abstraction pour la mobilité des services

qu'est L'AMS.

Pour un programmeur habile de systèmes d'agents, la permutation de deux

agents où la mise à jour dynamique d'un agent avec des services qui ne sont pas en cours

d'exécution est relativement simple 1 réaliser. À l'opposé, la mise 1 jour dynamique d'un

service en cours d'exécution est plus difficiie.

La stratégie de la permutation d'agent 1 deux variantes. La premihe, la

permutation graduelle, ne cause pas d'interruption de service mais est difficilement

applicable pour les services qui s'exécutent continuellement ou prennent un temps trés

élevé avant de terminer, La seconde, la permutation abrupte, cause une (brève)

interruption de service.

La mise à jour dynamique de l'agent est excitante parce qu'elle dépasse et étend

les limites de notre recherche car elle est applicable à n'importe quel programme

informatique écrit en Java. Si on se confine au probkme de la mise à jour de I'AMS, elle

est toujours plus intéressante que la permutation, car il n'est pas nécessaire de créer un

nouvel agent et le délai pour la disponibilitd des services est réduit (par rapport à la

permutation des agents).

L'ambition de menre à jour les services qui s'exécutent continuellement sans les

interrompre nous a amené développer une solution générique pour la mise à jour sans

interruption des logiciels Notre principale exigence lorsque nous implémentions le

mécanisme était que les changements dynamiques soient aussi simples que possibles.

L'objectif de généricité a été atteint, au point où (presque par inadvertance) notre librairie

se révele être une contribution majeure dans le domaine de l'&olution dynamique des

programmes informatiques. C'est la premiére approche documentée qui combine la

sélectivité des changements, la possibilité d'adapter ces changements pour cbaque

version, la réduction de la taille et la non nécessité de support systi?me. Le mécanisme de

base pour l'évolution des versions est l'ajout d'interfaces. L'usager ajoute ou change les

interfaces des classes qu'il veut modifier dynamiquement. Ces nouvelles interfaces seront

92
utilisées pour les nouvelles instaaces et une politique de redirection peut être spécifiée

pour rediriger les appels effectués sur les anciennes interfaces sur les nouveaux objets.

L'évolution dynamique des progtammes est un domaine actif de recherche.

Toutefois, c'est dans le souci de trouver une solution à un problème qui affecte les

services téléphoniques que nous avons (les premiers) utiiisés Java pour montrer que

i'évolution dynamique était possible à un haut niveau avec une petite librairie de 9 Kilo-

octets.

~VALUATION DE PERFORMANCE

Nous avons présenté une nouvelle architectwe pour la mobilité des services au

chapitre 3. Le chapitre 4 a exposé le probDme de la mise à jour de l'agent mobile pour

services (AMS) dans cette architecture, Iors de nouvelles souscriptions. a aussi exposé

l'implémentation de deux stratégies possibles pour effectuer cette mise à jour: la

permutation d'agents et la mise à jour dynamique d'un AMS. Nous commençons ce

chapitre en procédant à une analyse de performance de l'architecture. Cette analyse

permettra de décider si l'architecture est viable. Nous continuons avec une évaluation des

requis énoncés au chapitre 4 pour la technique de permutation d'agents. Finalement, nous

examinons la performance de la mise à jour dynamique et son comportement en regard

des requis du chapitre 3.

5.1 Analyse de performance du paradigme

Notre évaluation de performance détermhera le temps nécessaire pour assembler

et lancer un AMS ainsi que la performance d'une application exécutée par l'intermédiaire

de I'AMS. Pour débuter, nous séparons les diverses sources de délais du paradigme AMS

et procédons à une brève revue des analyses de performance trouvées dans la liitéranire.

Nous continuons en présentant notre modèle d'échantillonnage et les conditions sous

lesquelles nous avons préievd nos meswes. Finalement, nous exposons nos résultats.

5.1.1 Analyse du paradigme agent

ï i y a deux points d'intérêt B mesurer pour notre architecture : le temps Bcoulé

entre une souscription et la disponiiilité (pour exécution) des services sur la machine de

l'usager (1) ainsi que l'impact de performance causé par L'AMS sur l'exécution d'un

service d o ~ é (2).

94
1. Notre architectm impose un délai parce que les services sont déplacés pour être

exécutés sur la machine de l'usager. Par contre, avec une architecture client-serveur,

il serait possible d'utiliser les services immédiatement après l'abonnement. il est

donc primordial que le délai pour la disponibilité des services ne soit pas trop grand

dans l'éveniualité oii les usagers désireraient profiter des services immddiatement.

2. L'AMS a un impact sur i'exhtion des services qu'il contient parce qu'il (1'AMS)

implémente un chargeur de classe ("class loader") qui se substitue au chargeur de

classes de la machine virtuelle Java.

R est important de disséquer les ddments qui entrent en compte lors de la

provision d'un abonnement et durant I'exdcution d'un service. On pourra ainsi cibler et

mesurer effectivement les impacts des choix architecturaux. Le temps Ccoulé entre une

souscription et la présence effective des services est composé :

1. du temps de traitement de la suscription à L'UGS ;

2, du temps requis pour créer et assembler (inséter l'intelligence relative aux

applications ciblèes) dans les AMS (les AMS sont partitionnés par categorie de

services) ;

3. du temps requis p u la plate-forme d'agents mobiles pour #placer l'agent de I'UGS à

la machine de l'usager ;

4. du temps q u i s pour transférer les fichiers des services B partir de 1'UCS h la

machine & l'usager ou h I'UGS.

Le ddlai 1 est le ddlai encouru par Le traitement de l'information des usagers sur

un serveur public quelconque. Ce délai n'est pas d6termind ni influencé par notre

architecture. Il ne nous intbresse donc pas. Le délai 2 est enthment attribuable à notre

application. Le délai 3 est détermin6 par la plate-forme pour agent mobile et son

irnpl6mentation de la migration des agents. Toutefois, notre architecm influe sur ce

Mai car c'est 1'UGS qui crée et décide & la taille des agents. R est &vicient qu'il est plus

rapide de déplacer un "petit" agent plut& que d'en ddplacer un "gros". Nous devons donc

trouver les tailles admissibles de I'AMS pour qu'il puisse être déplace en deçh d'un

certain temps. Le délai 4 est entierernent détermin€ par le débit du réseau.

95
Des évaluations de performance des agents mobiles ont déjà été réalisées,

notamment par Ranganathan et al. (1998), Gray (1997), Picco (1998). Kotz et al. (2000).

etc. Ces études essaient en général de déterminer quand il est bénéfique d'utiliser des

agents mobiles à la place des autres paradigmes, tels client-serveur, Cvaluation à

distance et code sur demande. Toutefois, ces études sont trop gén6rales et ne servent qu'à

présenter une vue d'ensemble des consid6rations à prendre en compte pour déterminer si

l'agent mobile permet un gain de performance. Une analyse adéquate de la performance

des agents mobiles doit se faire par application et, pour chaque application, tenir compte

de son interaction avec la plate-forme d'agents mobiles.

R. Gray (1997) effectue une malyse de performance détaillée de Agent-TCL, le

système pour agents mobiles d&elop@ à Dartmouth College. il prend en compte

notamment l'effet de l'algorithme de Nagle sur la latence des connexions TCP. Cette

latence influe significativement sur la taille des opérations à effectuer avant que

l'approche agent mobile soit préférable à client-serveur. Ranganathan et al. (1998)

étudient les gains de performance d'un serveur de "chat" sur Intemet, qui peut se

déplacer. Des outils réseaux sont utilisés pour estimer les déiais sur les différents liens.

Les données collectées servent à déplacer le serveur et le repositionner de manière à

minimiser le délai de transmission des messages. G. Picco (1998) compare les

performances de l'évaluation à distance, code sur demande et des agents mobiles dans le

cadre de la gestion des réseaux. II utilise une logique non monotone pour formaliser ces

notions.

5.12 Conditions environnantes et d e l e d'échantillonnage

Le but de nos mesures n'est pas de démontrer un hypothétique gain de

performance. Nous voulons déterminer si la perfoanance de l'architecture est acceptable.

La latence sur la plupart des imp16mentations TCP est de 400 millisecondes (200

millisecondes sous Linux), Ceci est dQ au fait que les machines attendent que la taille du

paquet à transmettre (message véritabIe ou simplement confirmation de dception) A

l'interlocuteur ait dépassé la taille de la fenêtre, ou qu'un paquet anant dans la même

96
direction transite par la machine. Si aucun de ces événements ne se produit, elle transmet

le paquet ou la confirmation de la nkeption après 200 millisecondes. La latence pour un

aller-retour est donc de 400 millisecondes. Toutefois, nous ne souffrons pas de cette

latence car la taille des paquets que nous transmettons est toujours supérieure au

segment TCP sur Ethemet (1472 octets). De plus, nous utiiisons H ï T P comme protocole

pour la couche application. Nous envoyons donc des données sans attendre de

confirmation.

Le Tableau 5.1 résume l'état du téseau au moment des tests. Nous avons uulisé le

logiciel PACMon (Site www.abraxis.com) pour mesurer le débit du réseau lors des tests.

Le débit du dseau est restd pratiquement inchangé pour tous les tests (variation

maximum de 0.5 Mdgabitsis). Les machines sont connectées par un réseau Fast Ethernet

(100 Mégabitds).

Tableau 5.1 Cornditions du réseau

1 Latence des connexions TCP 1 0.4 ms
I

Débit du réseau 1 56.35 MbiWs

Capacité du réseau local (LM) 1 100 MbiWs I
Tous les résultats présentés aux Figures 5.1 h 5.3 sont la moyenne de 200 mesures

réalisées sur une période de 2 semaines. Les tests ont dtd effectués de 9 heures du soir 9

heures du matin durant la semaine et h n'importe quelle heure durant les "week-ends".

On bénéficiait ainsi de YexcIusivité des machines et peu d'applications encombrent le

réseau aux périodes choisies.

En réalité, nous avons effectué 400 mesPres pour chaque point de chaque figure.

Toutefois, nous avons ensuite élimin6 les résultats situés dans le premier et dernier

quartile. Le r6sultat h a 1 est que la variance maximale est de 6.7%. C'est la variance du

point 7 (5212-6) de la Figure 5.1. La Figure 5.2 a une variance maximale de 3.7% la

Figure 5.3 une variance maximale de 2.2%.

97
L'UGS est située sur une machine Solaris 2.6 avec un processeur de 333 MHz.

L'UCS est situ& sur une machine Windows NT 4.0 avec un processeur intel Pentium iï

de 400/100 MHz. Quatre autres machines ont été utilisées pour accueillir les AMS.

Ce sont toutes des stations Windows NT 4.0 avec des processeurs intel Pentium II

de 266 MHz.

5.1.3 Résultats d'expérimentation

Pour notre implémentation, la taille minimale d'un AMS à vide est de 21097

octets. il serait ardu (nous n'avons pas réussi à le faire) de dduire la taille d'un AMS

programmé en Java en deçà de ce niveau. La grandeur totale d'un AMS est constituée de

sa taille à vide, plus la taille des services ou pointeurs aux services qu'il transporte, plus

la taille des donndes des services qu'il transporte kgalement. Donc, avec le chiffre de

21097 comme taille B vide en tête, pour tous nos dsultats, nous indiquons uniquement la

taille des données iî laquelle nous ajoutons celle des pointeurs ou des services. Nous

indiquons aussi le nombre de services. Dans chaque cas donc, la taille véritable de I'AMS

est 21097 octets, plus la taille des données des services, plus la taille des pointeurs ou

services, selon le schdma choisi.

Nous déterminons d'abord le temps nécessaire pour créer un agent. Nous

mesurons ensuite le Mai de transmission en fonction de la taille de l'agent. Finalement,

nous mesurons l'impact de performance da à I'AMS lors & l'exécution d'un service.

Assemblage de f 'AMS

Le temps nécessaire pour assembler les AMS est influencé par :

8 la logique qu'il faut configurer pour chaque service ;

8 le nombre de services auxquels l'usager a souscrit ;

8 le nombre ÇI'AMS à créer.

La Figure 5.1 présente le temps de construction d'un AMS en fonction de la taille

des pointeurs et du nombre de services que cet AMS contient.

Figure 5.1 Mai de consttuctio~~ pour un AMS contenant un

nombre gradsant de services

99
Comme le montre la Figure 5.1, créer et configurer (inséer de l'intelligence

focmelie, encoder les données relatives aux services) un AMS prend typiquement entre

250 et 500 millisecondes, msme dans le cas oh I'AMS devrait contenir des pointeurs

à 100 services. Ce délai est faiile quand on se rappelle qu'en réalité i'AMS est un

proxy dynamique généré à travers i'interface Factory de Voyager. Voyager utilise le

package Reflection de Java pour créer des proxies dynamiques (maléables) de classes.

Voyager a ainsi un accès direct aux champs internes de L'objet et profite de cet avantage

pour accélérer la sérialisation lors de la migration de l'agent.

Ddliii de transmission de PAMS en fonction de sa taille

La Figure 5.2 mesure le temps nécessaire pour un agent pour faire un aller-retour

sur la plate-forme Voyager, en fonction de la taille de cet agent. Quand l'agent arrive sur

la machine distante, il exécute une seule instruction, . .~ celle pour retourner sur sa plate-

forme & ddpart. Nous avons préféré mesurer l'der-retour parce que mesurer un délai sur

deux ordinateurs différents peut donner des résultats erronés si les deux machines ne sont

pas synchronisées.

Le délai pour envoyer et recevoir un agent qui transporte 86500 octets (taüle

totale = 21097 + 86500) d'information est inferieur 2.1 secondes. Cette bonne

performance est probablement due au fait que Voyager implémente la migration faible

des agents. Ii n'est pas possible d'offrir la migration forte simplement par l'intermédiaire

d'une Librairie de classes Java, sans modifier Java Runtime. En effet, on ne peut capcurer

l'état du processus qu'au niveau de i'interpréteur JDK. La migratian partielle ne transfère

pas l'état du processus de l'agent. Les classes que l'agent implémente sont transférées

entre machines et les objets sont recréés s u la machine distante avec les valeurs d'avant

le transfert.

Figure 5 2 Temps nécessaire pour effwîuer l'der-retour dam ndre r&au Id

pour un AMS de plus en plus granâ

101
Les valeurs des champs de tout objet Java sont obtenues par introspection de

l'objet en utilisant le package Refiection. Java est l'un des rares langages impdatifs qui

permette l'introspection, ceci est plus courant pour les langages fonctionnels (LISP,

etc.). Bien entendu, avec la migration forte, pas besoin de recréer les objets, le

processus en cours d'exécution est lui-miime transfdrd et continue son exécution Zt ce

naeud distant. La migration forte dégrade toujours la performance du système en général

(Miloji~id, 1999). Les résultats présentés ici suggèrent que la migration faible est une

bonne alternative du poirir de la viteme.

ExZcuhon des services

Lonqu'un programme est démad, l'interpréteur Java charge uniquement la

classe contenant le point d'entrée du programme (fonction public static main(String

args[])). Durant l'exécution, A cbaque fois qu'il rencontre une réfdrence h une classe, si

cette classe n'a pas encore été résolue, il va la cbarger en utilisant son chargeur de

classes, LR chargeur de classes fouille les dpen.oires contenus sous la variable

envhnnement ("CLASSPATH"). Toute classe est chargde une et une seule fois daas un

programme. Java permet d'dcrire des sous-classes de son chargeur de fichier qui seront

appelées quand il rencontrera une classe qu'il ne pourra trouver par la variable

"CLASSPATH". Ce chargeur de ciasses personnel peut etre écrit pour charger des

classes de n'importe quelle source (machine lointaine sur le &eau, serveur H'ITP, etc.).

Ceci est possible parce que Java est un langage intetprét6. Ses classes sont compilées

séparément, ont une représentation unique en bytecoda et sont porîables sur tous les

systèmes d'exploitation.

Toutefois, ceci impose un délai puisque l'interpdteur ne peut résoudre

directement la classe, et doit recourir ik un chargeur de classes développd par le

programmeur. La pcemikre invocation de classes, qui ne sont pas situées sur le disque dur

sous la variable environnement "CLASSPATH?, causera un délai variable selon la

perfomance du chargeur de classes implhenté à I'inc&neur du programme. Bien

entendu, Ic délai est plus grand si ce chargeur de classes doit transfdrer les classes partir

102
d'une machine distante. Toutefois, nous ne mesurerons pas le délai pour transférer un

fichier car celui-ci varie avec le réseau.

La dégradation de performance attribuable au chargeur de fichier de I'AMS

est résumée au Tableau 5.2.

Tableau 5.2 Impact sur l'exécution d'un programme par I'AMS

1 Temps pour msfdrer un fichier de taille S sur un réseau avec S/D I I

Temps de résotution (chargement) d'une classe contenue dans

1' AMS

Ajout au temps d'exécution d'un service qui utilisent N classes

contenues dans L'AMS

0.40 ms

N * 0.40 ms

1 juste da pointeurs et doit m s f k les fichiers sur le réseau 1 1

débit D (pas d'attente)

Ajout au temps d'exécution d'un service quand I'AMS contient

Un service ex&uté it travers 1'AMS prendra donc N*0.40, ou N*(S/D +0.40)

millisecondes (selon les strat4gies employées) de plus pour terminer, comparé au cas où

ce service &ait sur le disque dur local. Quand on transporte les services eux-mêmes, il

faut 2500 classes pour qu'il s'ajoute 1 seconde à la durée d'exécution d'un service

transport& par I'AMS. La dégradation de performance est pratiquement imperceptible car,

d e n'est pas groupée h un endroit particulier du programme et s'&le sur toute la durBe

d'exécution de l'application. Si les fichiers doivent €tre cbacgds B distance, le Mai varie

avec l'dtat du réseau.

N * (Sm + 0.40) ms

5.2 $ v a l u a h de la permutadon d'agents

Le temps requis pour achever la permutation gradueUe est principalement

compost! du :

temps nécessaire pour créer le nouvel AMS ;

temps de transfert des codes exécutables à partir des UCS jusqu'h L'AM ;

temps de transfert des données de l'ancien AMS au nouveau ;

temps de déplacement du nouvel AMS de L'UGS jusqu'au site de l'ancien AMS.

Dans le cas de la permutation abmpte, il faut rajouter en plus des délais de la

permutation graduelie, le temps requis pour redémarrer tout service qui aurait étd

interrompu. Le temps de transfert des données entre les AMS est négligeable,

typiquement moins de 20 millisecondes. Ceci est dQ au fait que la taille des données h

transférer n'est pas importante. La Figure 5.3 présente la courbe de transfert des données

sur le réseau dans les mêmes conditions expérimentales que celles de l'analyse de

performance.

Figure 5 3 Courbe des déiais de transmission sur k &au aux moments des tesîs

Délai pour kr dhpnibiiitb

Posons Tc comme le temps de création de L'AMS, TT Ie temps de transfert des

donuBeS. et TD le Temps de déplacement de I'AMS. Alors, le temps de compl&ion de la

104
permutation graduelle pour un AMS contenant IO services totalisant 1000 Kilooctets est

approximativement de:

Tc + Tt+ TD = 300 ms + 2032 ms + 1 150 ms c 3.5 S.

Nous avons volontairement majoré les valeurs et considéré des grandes

cailles pour les services. N'empêche, on se retrouve iî moins de 3.5 secondes. Mille Kilo-

octets est une taille très importante, principaiement pour les "palmtops" qui sont limités à

quelques Megasctets. Meme dans les autres cas, en allant aux extrêmes des courbes avec

10000 K et 100 services, nous nous retrouvons avec un délai de 500 + 7200 + 1300 c 9.1

secondes. La performance reste acceptable pour ce cas pourtant non réaliste.

Dans le cas de la permutation abrupte, il faut ajouter le temps de démarrage des

services qui ont été interrompus au besoin. Toutefois, parce que les services sont

démarrés en parallbles dans des "threads", le délai de démarrage d'un nombre N de

services est égal au délai de démarrage d'un service. Le temps nécessaire pour anêter les

services est négligeable, i.e. moins de 1 miiliseconde par service. Si on considbre que n . -

services ont été interrompus et que redémarrer chaque service provoque l'initialisation de

10 classes par service, en se rappelant que le temps de résolutibn d'une classe par I'AMS

est de T&40 ms, le délai est de :

Tc + Tr + TD + 10*TR = 300 rns + 2032 ms + 1150 rns + 10*0.40 < 3.5 S.

Le temps de redémarrage de tous les services f i g e une pénalitd égale au nombre

de classes de ce service qui doivent être chargées au début de son exécution. La durée de

l'interruption des services est inf'rieure 8 :

TD + 10*TI = 1150 m~ + 10*0.40 < 1.5 S.

&valuation des requis

Le Tableau 5.3 Aume I'dvaluation de la permutation graduelie et de la

permutation abrupte par rapport aux requis énoncés dans la section 5.1.

Tableau 5.3 fivahiatloa des straiégh de pmnutaîion

Interruption de

service

Délai pour la

disponibilité

Wpendances

systèmes

Simplicité

Performance h grande

écheiie

- - - - -

Impact sur les anciens

services

Permutation graduelle

Aucune

Courte du&. Temps de

déplacer l'agent et d6marrer

(résoudre) les classes des

services

Aucune

Faible

Bonne. Les seuls facteurs

variables, Ies temps de

déplacement de l'agent et de

vansfen des services

progressent selon des

courbes ISi8000 ms/octets

et 1/1800 s/Kilobctets

respectivement

Faible, pas de

personnalisatioas possibles

durant la permutation

Permutation abrupte

Faible, varie avec le nombre de

classes h transférer c 3.5 S. sur

Fast Ethernet

Faible, meme comportement que

l'approche graduelle. Ajouter le

temps de résoudre les classes

Aucune

. -

Faible

Même observation que

permutation graduelle. Le temps

de ddmarrage des services est

uniforme et négligeable

Aucun

5 3 Mise à jour dynamique de I'AMS

Nous avons vu au chapitre 4 que L'investigation de l'ajout dynamique de

services qui ne sont pas en cours d'exécution est d'un intérêt mitigé. Les données

d'une analyse de performance dans ces cas là seront certainement similaires à cele

obtenues lors de l'évaluation de la permutation d'agent. Nous procédons ici à l'analyse de

performance d'un programme qui est mis à jour dynamiquement. Nous comparons

ensuite cette performance aux requis énoncés au chapitre 4.

53.1 $vaiuation de performance

Parce que l'implémentation est basée sur des proxies, chaque appel de méthode

sur un objet dynamique résulte en une vérification et une invocation de méthode

supplémentaire, si la nouvelle version de la classe implémente une méthode qui a les

mêmes noms et arguments que ceiie appelée. Par contre, si L'appel doit être redirigé vers

une méthode différente, chaque appel implique une vérification, un appel et le retrait de

la méthode appropriée d'une table. Dans les deux cas, l'appel supplémentaire utilise

l'interface Reflection qui est plus lente que les invocations directes.

Nous mesurons le temps supplémentaire qu'un programme prend pour achever

quand il modifie des objets dynamiques et invoque leurs méthodes. Nous étudions les

deux cas : le cas où 1' "InvocationHandler" du proxy appelle tout simplement la même

méthode dans la nouvelle version, et le cas où l'appel doit être redirigé selon une autre

politique spécifiée par l'usager. ï i est plus approprk? de mesurer l'impact de performance

de la mise à jour dynamique pour chaque application. Nous expliquons plus loin

pourquoi.

Chaque point dans les Figures 5.4 et 5.5 est la moyenne de 100 essais. Dans la

Figure 5.4, l'écart-type maximai est de 6.1% et il est de 5.7% dans la Figure 5.5.

L'ordinateur des tests était une Sun UltraSparc roulant Solaris 2.6 avec un processeur 333

MHz.

107
Pour tous les tests, nous avons utilisé 100 classes, chacune implémentant 10

méthodes. Chaque test manipulait 100 objets dynamiques et avait une séquence d'appel

Wdrente & celle des autres. La même méthode était invoquée sur un objet

dynamique seulement après que toutes les autres méthodes de cet objet aient été

appelées, Ces permutations nous ont permis de tempérer les possibles gains de

perfonnance dus aux mdcanismes de cachage. L'application test était un programme de

tn rapide des octets d'un fichier binaire de 73.8 Kilo-octets. L'application prend 5.1 1

secondes pour achever. Nous avons inséré 100, puis 200, puis 300 et ainsi de suite

instructions manipulant les objets dynamiques. Les dsuitats donnent une idée de la

ddgradation & perfonnance pour un programme de calcul intense.

La Figure 5.3 montre les effets des redirections des appels quand il s'agit tout

simplement d'appeler la même méthode par Reflection sur un nouvel objet de la classe.

iusqu'à 1ûûû appels, la pénalité est Uiféneure à 0.1 seconde et à 1OOOO appels est d'un

peu plus de 0.5 seconde. Par contre, avec 1OOOOO appels, la pénalité est de 4.7 secondes,

doublant effectivement le temps d'exécution du programme. Ces observations renforcent

le fait que les mesures doivent être évalutks en fonction de l'application. En effet, 4.7

secondes dans le cas d'un tri rapide double le temps d'exécution. Par contre, pour un

programme qui dute 7 minutes ou plus, 4.7 secondes correspondent à une baisse de

performance de moins de 0.1% (au lieu de 10% comme dans ce cas ci).

Encore plus important, les applications multimddia (viddo MPEG, audio MP3,

etc.) sur les petites machines d'information portables Paim Top) exécutent en continu

(longue durée de temps) et sont caractérisées par des pointes discrètes de calcul. Ceci est

totalement à l'opposé du cas d'un nombre important de calcul continu effectué dans une

courte période de temps comme dans le cas des tris ou des multiplications de matrices.

Ces brefs calculs impliquent g6néralement peu d'objets (les applications sont de petites

tailles) et le nombre d'appels de méthodes est faible (cent ou moins) par rapport au cas

considéd ici.

Figure 5.4 Pénalité de performance avec une dimtioa simple

sur les objets dynamiques

109
La pénalitd pour 10 redirections est inférieure à une milliseconde et celle de 1 0

redirections est de 7.3 millisecondes. La conclusion est évidente ; on ne remarque pas de

pénalittf interactive en utilisant les objets dynamiques. Les exemples de petites

applications qui doivent rouler continuellement sur des PalmPilot sont nombreux.

Un service de reports de valeurs boursiéres qui surveille plusieurs marchés dans

différents pays (et fuseaux horaires) et qui doit intégrer une nouvelle interface graphique,

seMce de surveillance météo qui rapportent les conditions météorologiques, etc. La mise

à jour dynamique évaluée ici est donc tout indiquée pour ces applications 18.

La performance dans le cas d'une redirection simple est bonne. La Figure 5.4

présente la pénalité pour une stratégie de redirection plus dlabode, i.e. la méthode oh

l'appel doit être dévié n'est pas tenu d'avoir le même nom. Toutefois, il doit accepter les

mêmes arguments. La pénalité est plus élevée. Avec 10000 invocations, le programme

prend près de 2 secondes de plus. Comme pour les autres figures, l'évolution est linéaire.

On peut projeter et déduire que, pour 100000 invocations, la pénalité sera de 20 secondes.

La baisse de performance est plus notable ici. Toutefois, l'approche offre plus de

flexibilité pour la gestion des mBthodes. Si la performance est une préoccupation

majeure, l'option précédente est préférable; il faut alors réutiliser les memes noms de

méthodes.

La seconde option devrait être utilisée lorsque le nombre d'invocations prévues

est moins élevé. Sa performance est acceptable et elle devrait trouver une niche avec les

applications qui roulent pour une longue durée, qui ont des exigences de performance

moins élevées et qui tirent profit de sa plus grande flexiiiiitd. Ici en effet, seuls les

arguments doivent être identiques d'une fonction it l'autre. L'appel peut donc ê k dévié

vers une méthode quelconque pourvu qu'elle prenne les mêmes arguments.

La performance de la librairie dynamique lorsqu'elle applique une politique de

redirection est convenable. Toutefois, elle devrait se dégrader rapidement si

I'implémentation permettait des redllections quelconques indépndantes des arguments

des méthodes. ii faudrait alors vérifier quels param&tres devrait être éventueiiement

élimin6, et comment replacer les param&tres dans le bon ordre. Ceci se traduit

110
concrètement par plusieurs autres v4rifications et manipulations, dépendamment cies

directions permises.

Figure 5.5 Phalité avec une stratégie élaborée de redirection

sur les objets dynamiques

5.3.2 Evaluatio~t des requis

Les mises à jour dynamiques satisfont les requis relatifs à une solution au

problème. Il n'y a pas d'interruption de service à cause de la mise Il jour. Les dondes

personnalisées par les usagers sont conservées puisque I'AMS n'est pas changé ; ce sont

ces senrices qui sont m ~ 6 . La mise à jour est transparente aux applications. La

politique de mise à jour est volontairement minimaliste, et k défaut (direction à une

fonction du meme nom) est sufisant dans la plupart des cas. La solution est indépendante

de la plate-forme : c'est une librairie, toute machine Wtuelie Java standard peut I'utiliser.

111
Lorsqu'un abonné fait de nouvelles suscriptions, la liste de ces suscriptions est

envoyée à L'UGS. Un message de notification contenant la politique de mise à jour des

services, la liste des nouveaux services ainsi que la localisation des fichiers et des

données est envoyé à L'AMS. Sur réception du message, L'AMS transere les codes

exécutables et les données des nouveaux services. ii inclut les données de ces services

dans sa base de connaissance, les indexe et se rappelle qu'il contient des nouveaux

services et leurs caractéristiques. Ensuite, il modifie son interface graphique de sorte que

l'usager puisse maintenant démarrer, arrêter et personnaliser ces services. Les services

existants sont mis à jour selon la politique du developpeur de service qui était contenue

dans la notification. Sinon, la raise h jour se fait selon les ddfauts prdsentds au chapitre 4.

Plusieurs facteurs influencent le délai entre un abonnement et la dispoaibilité des

services. L'architecture joue un rôle dans le temps nécessaire pour informer I'AMS de la

nouvelle souscription et ses caractéristiques (nouvelles versions et nouveaux services). Si

SM est la taille du message B envoyer à L'AMS, Sn la taille totale de tous les nouveaux

services plus la taille totale des classes dynamiques des services existants, alors le délai

avant qu'un service soit disponible est :

T-=S,/T+S.&+T,,

Test le débit du réseau, et TM le délai infligé par le chargement dynamique des

classes à travers le chargeur de classes de I'AMS. L'AMS ddmarre autant de "threads"

que nécessaires pour transfdrer les fichiers en parall5le. Les nombres varient avec

l'application. Toutefois, par souci de comparaison, Sm etait de 633 octets pour un service

avec 5 classes (totalisant 23 Kilo-octets) à mettre B jour et une politique de mise h jour

pour trois d'entre elles. T,, est de 104 millisecondes dans ces circonstances avec un Fast

Ethernet (capacité de 100 Mbitsfs) et un débit réel de 52 Mbitds. L'AMS reçoit les

messages et transfêrent les fichiers &travers des sockets Unix. HTTP 1.1 &ait utilisé pour

le transfert des messages tout comme pour le chargement des fichiers.

La solution s'adapte bien B un nombre éïevè de services, Le. le délai pour N

services est le déïai pour 1 senrice grâce au parailélisme. Plus encore, dans l'architecture,

112
les services opèrent et sont modifiés indépendamment les uns des autres. L'dvaluation

des requis est résumée au Tableau 5.4.

Tableau 5.4 haluation de l'implimentation pr rapport aux requis

Objets dynamiques

1 impact sur les services existant Faiôle, les objets inchangds préservent l'information
1

interruption des services 1 Non

1

Simplicité Les mises & jour sont transparentes à l'application

Adaptable Zt grande échelle

I

Délai pour la disponibilité 1 Bas. les Juvices sont transfdrb en parallèle

Oui

impact sur les services existants

Dépendance vis-&-vis du syst&me

I a m p t i o n des services

Aucune

Adaptable à grande échelle

Simplicité

Mai pour la disponibilité

Dépendance sur le système

Chargement de nouveaux services et leurs données
-- -

Aucun

Non, chargement dans des processus poids-légers

Oui

Aucune

Il est aussi possible d'envoyer des agents de mise à jour qui se promèneront

d'hôtes en hôtes au lieu d'envoyer des messages, ii faudrait vérifier d'abord si ce schéma

permet un gain de performance.

113
5.4 Synthèse des p e r f o ~ ~ ~ 8

L'analyse de performance a permis de valider l'impl&nentation de notre

architecture pour la mobilité des services. Les Mais encounis avant la disponibilité

des -ces sont faibles. L'impact de performance de I'AMS sur les applications

(qu'il contient) est infinitésimal. Il devrait darénavant être considéré comme ndgligeable.

i a permutation d'agent remplit les exigences dnumérées au chapitre 4. Seule la

permutation abrupte cause une interruption de service. Les performances des

permutations graduelle et abrupte sont comparables, pratiquement égdes. Le Mai pour la

disponibilitd des services est faible dans les deux cas. La permutation abrupte expose

I'AMS aux pannes du téseau. A titre d'exemple, la permutation d'un agent contenant 10

services totalisant 1000 Kiio-octets prend moins de 3.5 secondes. L'interruption de

service lors de transition abrupte est inféteure tt 1.5 seconde.

La mise ii jour dynamique de L'agent est encore plus rapide à cause des

traitements en parallèle et du fait qu'il n'est pas nécessaire & créer un nouvel agent. Le

délai pour mettre à jour 5 classes totalisant 23 Kilooctets est de 104 millisecondes. La

ddgradation de performance attri'buable à la redhtion des appels sur les classes

dynamiques est faible, notamment dans le cas d'une redirection simple. Dix mille

(10000) appels causent une degradation de moins de 550 millisecondes avec des

redirections siniples. La perte est de près de 2 secondes avec une politique élaborée dans

le cas de lûûûû appels.

CHAPITRE VI

CONCLUSION

La téléphonie Intemet en combinaison avec la vulgarisation des monitem

d'information portables offre un nombre spectaculaire d'opportunités. Les coOts sont

réduits et des services inconcevables il y a quelque temps peuvent être produits. Les

exemples actuels de tels services associent souvent plusieurs technologies (téléphonie,

courriel et facturation sur carte de crédit). Des architectures de services permettant la

libre concurrence et basées sur une implémentation technique performante et

augmentable sont nécessaires afin que la précipitation n'arnene à produire des solutions

limitées, élaborées pour un rapide et court gain commercial. L'utilisation d'agents

mobiles a dté proposée dans la littérature. Toutefois, ces propositions étaient limitées aux

réseaux téléphoniques et aucune implémentation ne validait les proclamations. Ce

mémoire a modifié et étendu les concepts pour proposer des agents mobiles qui

regroupent et transportent les services ayant des affinités. De plus, tout service peut être

inséré dans l'architecture, qu'il soit de téléphonie ou non.

6.1 Synthèse des travaux et contributions principaies

Nous avons spécifié et implémenté une architecture de service qui remplit les

exigences de l'introduction et qui est applicable à tout service (de téléphonie ou non) et il

toute machine munie d'un interpréteur. La solution a ainsi dépassé le cadre des services

avancés de téléphonie. Les éi6rnents principaux de l'architecture sont une unité de

gestion des services, une unité de création des services et un agent mobile pour service.

Les services sont conservés dans 1'UCS. Lors d'un abonnement, l'UGS assemble autant

d'agents qu'il y a de classes de services concernées par la souscription. Ces agents se

déplacent sur la machine de I'usager (ou son commutateur d'attache daas le cas des

senrices de téléphonie) avec des pointeurs aux codes, ou chargent les codes exécutables

115
des services avant de se déplacer. Sur la machine de L'usager, ils offtent une interface

gcapbique par laquelle celui-ci peut démarrer. arrêter et personnaliser ses services.

L'agent se déplace sur toute machine de L'usager quand celui-ci le désire. L'accès

universel est garanti car l'agent continue à fonctionner même coupé du réseau.

Les autres exigences de l'introduction sont satisfaites. Créer un service revient à

le programmer et I'entreposer dans L'UCS. L'AMS se charge de la gestion des services.

Tout fournisseur de service accrédité pourrait créer son AMS, ou en partager avec

d'autres. L'évolution est indépendante du réseau et les services peuvent être

personnalisés. Tout type de service peut être créé : il n'y a aucune restriction à part la

nécessité d'utiliser notre librairie si on veut des mises à jour dynamiques. Nous avons

résolu ensuite la question de la mise à jour de l'agent et des services. Nous avons d'abord

analysé les implications théoriques de deux mt?thodes de mise à jour, puis explicité leurs

implémentations. Les mises à jour se produisent lors d'une nouvelle souscription par un

usager qui possède déja un AMS. Les deux méthodes sont la permutation d'agent et la --

mise à jour dynamique de l'agent. Dans le premier cas, un agent contenant les nouveaux

et anciens (nouvelles versions au besoin) remplace l'ancien AMS. Dans le second cas, les

nouveaux services et versions sont dynamiquement insérés dans L'AMS. La permutation

d'agents a deux variantes : la permutation abrupte et la permutation progressive. Les

mises à jour dynamiques sont les plus délicates car l'intégrité du code peut être violée par

ces changements.

L'approche de mise à jour dynamique implémentée et décrite au chapitre 4 est

une contribution majeure au domaine de l'évolution dynamique des systhmes. En effet, la

technique implémentée par notre Librairie permet & sélectionner quelles instances mettre

à jour et de définir une politique de mise à jour adaptée à chaque application. Une

m~thodologie de mise à jour peut être définie pour chaque version d'une classe

dynamique. En accord avec le paradigme orient6 objet, l'unité (granularité) de mise à

jour est la classe. Par sa précision (choix des objets à modifier) et sa flexibilité (poiitique

différente pour chaque version d'une classe), notre librairie offre une librairie de mise Zt

jour compacte (9 KilaOctets) et plus efficiente que les approches documentées.

116
Finalement, nous avons évalué toutes nos implémentations. Il y a une pénalité

négligeable (en dessous de la milliseconde par classe) à exécuter les services à travers

I'AMS. Le délai pour la disponibilité d'un service est faible et la solution s'adapte

bien dans le cas de l'abonnement à un nombre élevé de services. La permutation

d'agents a des délais semblables à un premier abonnement. Le délai requis pour arrêter

les services est négligeable et l'ajout de temps est dQ au temps de déplacement de I'AMS

dans le cas de la permutation brusque. Avec la permutation progressive, les deux agents

coexistent pour une certaine durée, ce qui n'est pas le cas avec la permutation abrupte.

Les délais pour la disponibilité des services sont encore plus faibles dans le cas de la mise

à jour dynamique parce qu'il n'est pas nécessaire de créer un nouvel agent ou de charger

les anciens services. Dans les deux approches de mise à jour, les données personnalisées

sont préservées. Les classes dynamiques imposent une faible pénalité lors de l'exécution

du programme. Cette pénalité augmente lindairement avec le nombre d'appels effectués

aux classes dynamiques. La phalité est plus importante quand une politique de

redirection autre que celle de ddfaut est utilisé. La performance du systeme est très bonne.

6.2 Limitations des travaux et recherches futures

Des implémentations résussies ont guidé, dominé et décidé les divers choix

architecturaux et de mise à jour que nous avons adopte. A chacune des étapes. notre

méthodologie était donc d'identifier les fonctionnaütts requises, puis produire un

prototype performant (très rapide) et valide, et enfin d'énumérer les spécifications

techniques de l'approche que i'impl6mentation avait prouvé comme étant la meiüeure.

Ce faisant, nous avons survolé ia théorie et n'avons pas foumi de formalisme pour nos

dalisations. Une des voies de recherche htwe est d'élaborer un formalisme qui prouvera

et permettra éventuellement de découvrir des erreurs (g6néralement indécélables par

l'expérimentation) dans les concepts d'AMS et mises à jour dynamiques tels que nous les

avons développés. Les mtthodes formelles sont embryonnaires dans le domaine de

l'informatique mobile. UNiTY (McCann et Roman, 1999) est le seul système de

raisonnement sur la mobilité du code que nous connaissons. il est basé sur la logique "K-

117
calculus" proposé par Milner et al. (1992). Le domaine de la formalisation de la validité

des mises à jour dynamiques est plus dévelopé et utilise la logique des prédicats courante.

Notre implémentation utilise des mesures de sécurité (codage notamment)

uniquement lorsque les oubiier invaliderait la solution. La prochaine étape serait

d'intégrer les mécanismes de sécuritb existants dans l'industrie dans l'architecture. Nous

pensons notamment à des mesures spécifiques pour protéger le code objet des services

transporté par l'AMS. Ceci est essentiel pour un environnement industriel, sinon l'hôte

pourrait capturer l'agent et récuperer les services, ou recupérer les données enregistrées

sur disque dur. À ce moment là, il peut alors se dispenser de L'AMS. Bien entendu, toutes

les questions de sécurité relatives aux agents sont aussi applicables ii L'AMS.

Pour les petites machines tels que les "paimtops" qui ne disposent que de

quelques MégaOctets de mémoire, la taille de L'AMS et ses services pourrait devenir trop

importante dans certaines criconstances. Ces machines réservent quelques kiloûctets il

l'AMS, car eles doivent aussi accommoder les autres applications. ii faut alors envisager -

des mécanismes de partitionnement de l'intelligence et des services transportés par

l'AMS. Plus spécifiquement, les techniques du modele client-serveur étendu, où les

fonctionnalités du serveur sont déplads au client et vice-versa selon le cas, pourraient

être appliquds ici, il faut donc trouver des moyens de partionner l'intelligence et les

fonctionnalités de I'AMS. Face à des limitations de mémoire, puissance du processeur ou

même connectivité, L'AMS pourrait s'importer partiellement sur la machine cible et

garder ses autres fonctionnalités ii une machine (celle du SMU par exemple) et les utiliser

ensuite en client-serveur. Les interpréteurs et systémes d'exploitation permettent

d'évaluer les Limitations mémoires. Seuls les déments indispensables sont déplacés SLU la

machine cible. Le reste suivra si les conditions s'améliorent. L'AMS devrait être assez

intelligent pour gérer lui-même son partitiornement.

L'implémentation et la validatiun de I'architecture présentées dans ce mdmoire

constituent les fondements indispensables pour la réalisation effective du paradigme que

nous avons modifié : celui de l'utüisation d'agents pour l'approvisionnement en services.

À partir de cette base éprouvée, les travaux de recherche se multiplieront certainement.

Abu-Hakirna S., Liscano R. et Impey R., "A Common Multi-Agent Testbed for

Diverse Seamless Personal Information Networking Applications", lEEE

Communications, Mars 1998, pp. 68-74.

Armstrong J., R. Virding, C. Wikstr6m et M. Williams, "Concurrent Programming in

Erlang", Second Edition, hn t ice Hall, 1996.

Baumannn J., Kohl F., Rothermel K. et Strasser M., "Mole - Concepts of a Mobile Agent

System", Mobility Processes, Cornputer and Agents, ACM Press, Addison Wesley,

1998, pp. 536-556.

CCKT Recommandation 2.100, "Specification and Description Language (SDL)",

Novembre 1999, Genève, Suisse.

Claypool M., Coates T., Hooley S., Shea E. et Speiiacy C., "Video Performance in Java",

In Proceedings of the Information Resources Management Association Conference,

Anchorage Mai 2000, pp. 1-6.

Douglis F. et Ousterhout J,, 'Transparent M e s s Migration: Design Alternatives and the

Sprite Implementation", Mobility Processes, Computer and Agents ACM Press,

Addison Wesley, 1998, pp. 57 - 86.

Drossopoulou S., Valkevych T., Eisenbach S., "Java Type-Soundness Revisited",

Technical Report imperial ColIege of Science, Tecbnology and Medicine, Avril 2000.

Evans H. et Dickman P., "Zones, Contracts And Absorbing Change: An Approach To

Software Evolution", In Proceedings of Object Oriented Programming Systems and

Laquages Conference, 1999, pp. 415-434.

Finin T., Labrou Y. et Peng Y., %obile Agents Can Benefit From Standard Efforts on

Interagent Communication", IEEE Communications, M m 1998, pp. 50-55.

Franz M., "Dynamic Linking of Software Components'*, EEE Computer, Mars 1997, pp.

74-8 1.

I l9
Freund S. et Mitchell J. C., "A Type System For Object Initialization Xn The Java

Bytecode Language", In Proceedings of Object ûriented Progtammiag Systems and

Languages Conference, 1998, pp. 3 10-327.

Gamma E., Helm R., Johnson R. et Vlissides J., "Design Patterns: Elements of

Reusable Object-ûriented Software", Addison-Wesley, 1995.

Glitho R., "Emerging Aiternatives to Today's Advancd Service Architectures for

Intemet Telephony: M and Beyond", Computer Networks Journal, À pan% en

Fdwier 200 1.

Glitho R., "Advanced Services for internet Telephony: a Cntical Overview", IEEE

Network, Juillet-Aôut 2000,

Glitho R., Pagurek B., Tang J., White T., "Management of Advanced Services in H.323

internet h toco l Telephony", IEEE hfocom Conference, March 2000.

Glitho R., Wang A., "A Mobile Agent-Ba& Secvice Architecture for Internet

Telepbony", International Switching Symposium, Birmingham May 2000

Glushko R., Tenebaum J, et Meltzer B., "An XML Framework for Agent-Basecl E-

Commerce", Communications of the ACM, Vol 42, No 3, Mars 1999, pp. 106-1 14.

Graham P., "Ansi Cornmon LISI', Prentice Hall, 1995.

Gray R., "Agent Tcl: A Flexible And Secure Mobile-Agent System", Ph. D. Thesis,

Dartmouth Coliege, 1997.

Greenberg M., Byington J., Holding T. et Harper D., "Mobile Agents and Security",

IEEE Communications, M m 1998, pp. 74-85

Griffeth N. D. et Lin Y-J., "Extending Telecommunications Systems: the Feature

Tnteraction Roblem", Computer, Vol. 26, No. 8, pp 14-18, August 1993.

Gniber T- R., 'Toward Principles for the Design of Ontologies Used for Knowledge

S W g 9 ' , Technicd Report KSL 93-04, KnowIedge Systems Laboratory, Stadord

University, Voir Site Ontologies.

Handley D., "SE Session Initiation Rotocoi", RFC 2543, Inme t Engineering Task

Force, Mars 1999.

120
HjaIm@son G, et Gray R., "Dyuamic C u Classes, A Lightweight Mechanism to

Update Code in a Running Program'*. In Proceedings of the Usenix Annual Technicd

Conference, New Orleans, Louisiana, Juin 1997.

ITU-T, "Recommendation H.323, Packet-Based Multim6dia Communications

Systems", Genève, Septembre 1999.

ITU-T, "Recommandations X.680-X.683, Specification Of Abstract Syntan Notation

Number One (ASN. 1) ", 1997.

Jackson M. et Zave P., "Distributed Feature Composition: A Virhial Architecture For

Telecommunications Services", iEEE Transactions on Software Engineering, Vol 24,

No 10, Octobre 1998.

Jing I., Helai A. et Elrnagarmid A., "Client-Server Computing in Mobile Environments",

ACM Computing Surveys, Vol. 31, No 2,1999, pp. 117-157.

Johansen D., Fred Schneider And Robbert V. Renesse, Tacoma Project Pages,

2000, http:llwww.cs.uit.no/dosltacomalindex.html.

Joseph A., Tauber D. et Kaashoek M., "Mobile Computing with the Rover Toolkit",

IEEE Transactions on Computer Systems, 1997.

Joshi A, et Singh M. P., "Multiagent Sytems on the Net*', Communications Of The ACM

March 1999Nol42, No 3, pp. 38-40.

Karmouch A. et Pham V. A., "Mobile Software Agents: An Overviewn, lEEE

Communications, July 1998, pp. 26-37.

Kîuishnamoorrhy C. S. et Rajeev S., "Artificiai Intelligence and Expert Systerns for

Engineers", CRC Press, 1996.

Kotz D., Jiang G., Gray R., Cybenko G., Peterson R., "Performauce Analysis of Mobile

Agents for Filtering Data Stteams on Wireless Networks", Technicai Report TR20ûû-

366, Dartmouth College, Mai 2000.

Labrou Y. et Finin T., "A Proposai for a new KQML, Specifcation", Technical Report

CS 97-03, University of Maryland Baltimore County.

Maes P., Guttman R. H. et Moukas A. G., "Agents That Buy And Seli", Communications

of the ACM, March 1999NoI 42, No 3, pp. 81-9 1.

12 1
Malabarba S., Pandey R., Gragg J., Barr E. et Banies JP., "Runtime Support for Typc-

Safe Dyaarnic Java Classes", In Raceedings of the ACM OOPSLA Conference,

Antiis, France, 2000.

McCann P. J., Roman G.-C., Modeling Mobile IP in Mobile WïN, A paraître

dans ACM Transactions on Software Engineering and Methodology, disponible

comme rapport technique h http:/lswarm.cs.wustl.edu/cgi-binlpubs/pap

Milner R., Parrow J. et Walker D., A Calculus for Mobiie Processes L, Information and

Computation LOO, Vol. 1 Sept. 1992, pp. 1-40,

MilojiCid D., Mobility Processes, Computer and Agents, ACM Press, Addison Wesley,

1998, pp. 45 1-456.

Oreizy P., Medvidovic N. et Taylor R., "Architecture-Based Runtime Software

Evolution", In Proceedings of the International Conference on Software Engineering,

1998, pp.177-186.

Outtagarts A., Kadoch M. et Soulhi S., Tlient-Server and Mobile Agent: Perfomance

Comparative Study In The Management of MIBS", First international Workshop on

Mobile Agents for Telecommunication Applications, World Scientific, 1999.

Pelletier S.& Pierre S. et Hoang H. H., "ISAME : Une Architecture Multi-Agent de

Recherche d'idonnation", iNFOR, Vol. 38, No 2, Mai 2000, pp. 65-9 1.

Picco G. P., "Understanding, Evaluating, Formaking and Exploiting Code Mobiity",

Ph.D. Thesis, Politecnico Di Torino, 1998.

Powell M. et Miller B., "Process Migration In Demos/MP'*, Mobility, Processes,

Computer and Agents, ACM Press, Addison Wesley, 1998, pp. 29 - 38.

Ranganathan M., Acharya A., Sharma S. et Saltz J., "Network-Aware Mobile Prograras",

Mobility Rocesses, Computer and Agents, ACM Press, Addison Wesley, 1998, pp.

568-58 1.

Segal M., Frieder O., "On-The-Fly Rogram Modification: "Systems for Dynamic

Updating", IEEE Software, Mars 1993, pp. 53-65.

Shoham Y., "Agent-ûriented Programming", Journal of Artincial Intelligence, ml), pp.

51-92,1993

122
Wetheraii D. J., "Service Introduction in an Active Network", Ph.D. Thesis,

Massachussets institute of Technology, 1999.

White J., Mobility Processes, Computer And Agents, ACM Press, Addison Wesley,

L998, pp. 46 L-492.

Wikstr6m A., b'Functional Programrning Using Standard ML", Prentice Haii, 1987.

c m
MOA

MSNBC

Ad Astra

Aglets

Alexa

Disa

Enchères

Excite

E-Watch

Frictioniess

Jango

Jini

Mole

My Simon

Obliq

Web Sites

http://www.citrix.com

http://www.camb.o~enmoub.ore/RYiava/moa/i

http://www.msnbc.com/news/45765 1 .asp

htt~://www.Jum~in~eans.com

http://www.trl.ibm.com/a~lets

htt~://www.alexa.com

htm://www.disa.arri;

htt~://auction.eecs.urnich.edu

-&
http://www .onsale.com

htt~://www.auctionet.com

htt~:l/live.excite.com(

htm://www.ewatch.coml

htt~://www.fnctionless.com

htt~://www.ianno.com

htta://www.sun.com/iini

htt~://mole.infomatik.uni-stuttpart.de

htt~://www .mvsimon.com

htta://research.com~m.com/SRC/~ublicationdcartmnds~-m- 122. htmi

Sumatra htt~:llwww.cs.umd.edu/-acha

Tacoma htto:l/www,cs.uit.no/forsknin~S/Tacoma

Voyager htt~://www.obiectsuace.corn

WB1 h~://www.almaden~bm.com~cs/wbi/

m e t httu://www.zdnet.comizdi/~view/~view.c~i

KIF Spécification

JKQML

FPA-ACL

JKP

Xerces, XML-Java

Ontologies

Cryptographie

Secucité

PACMon

Voyager

Grasshopper

