POLYTECHNIQUE

POLYPUBLIE

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre:

Title: Services sur réseaux mobiles : architecture d'agent et maintenance

Auteur:
Author:
Date: 2000

Type: Mémoire ou thése / Dissertation or Thesis

Bertrand Emako Lenou

Référence: Emako Lenou, B. (2000). Services sur réseaux mobiles : architecture d'agent et
" 'maintenance [Master's thesis, Ecole Polytechnique de Montréal]. PolyPublie.

Citation: https://publications.polymtl.ca/8628/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: ) C
PolyPublie URL: https://publications.polymtl.ca/8628/

Directeurs de
recherche: Samuel Pierre, & Roch Glitho
Advisors:

Programme

| Génie électrique
Program:

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal


https://publications.polymtl.ca/
https://publications.polymtl.ca/8628/
https://publications.polymtl.ca/8628/

UNIVERSITE DE MONTREAL

SERVICES SUR RESEAUX MOBILES :

ARCHITECTURE D'AGENT ET MAINTENANCE

EMAKO LENOU
DEPARTEMENT DE GENIE ELECTRIQUE ET DE GENIE INFORMATIQUE

ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES

(GENIE ELECTRIQUE)

(OCTOBRE 2000)

©Emako Lenou, 2000



i+l

el Lib X
Caaca ™" GCaeds e
uisitions and Acquisitions et
Bibliographic Services  sarvices bibliographiques
Canada Canada
Your Nle Voire réldrence
Our Sia Notre réldrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant i la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.
The author retains ownership of the ~ L’auteur conserve la propriété du

copyright in this thesis. Neither the  droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it  Ni la thése ni des extraits substantiels
may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-60897-2

Canadi



UNIVERSITE DE_MONTREAL
ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé :

SERVICES SUR RESEAUX MOBILES :

ARCHITECTURE D’AGENT ET MAINTENANCE

Présenté par : EMAKO LENOU
En vue de |’obtention du dipldme de : Maitrise &s sciences appliquées

A été dument accepté par le jury d’examen composé de :

Michel Dagenais, Ph.D.
Samuel Pierre, Ph. D.
Roch Glitho, M. Sc. A.,

Alejandro Quintero, Ph. D.

Président
Directeur
Co-Directeur

Membre



REMERCIEMENTS

Pour réaliser ce mémoire, j’ai bénéficié de 1’aide de plusieurs personnes. Mes sincéres

remerciements a tous ceux qui directement ou indirectement ont contribué a ce mémoire.

Mes parents qui m’ont toujours supporté et ont enduré beaucoup de privations pour me
permettre de réussir.

Mes encadreurs Roch et Samuel.

Roch est I'initiateur et directeur du projet. C’est sous son tutelage que j’ai compris la
téléphonie Internet, les agents mobiles, le processus et la rigueur de la recherche
scientifique. II est exceptionnel d’avoir un encadreur éminemment qualifié, disponible,
qui évalue sans complaisance et expose ses étudiants aux meilleures avancées

technologiques.

Rien n’aurait été possible sans Samuel. En mettant ses étudiants en contact avec le milieu
industriel, il leur rend un service inestimable. Certains écueils ne sont pas reliés a la

recherche elle-méme, Ia médiation de Samuel m’a €té précieuse pour les surmonter.

Tous les deux, ils m’ont aidé & démarrer ma carriére, plut6t qu’a simplement achever ma

maitrise.



iv

RESUME

La téléphonie Internet offre beaucoup d’opportunités. Les coiits sont réduits et des
services novateurs peuvent étre offerts sur le marché. Des critéres ont été formulés pour
évaluer les architectures de services pour la téléphonie Internet. Ces critéres incluent
entre autres 1’accés universel, la possibilité€ de personnaliser les services et la création et
le déploiement rapide des services. L’acces universel implique que les services doivent
étre disponibles quelque soit les différentes machines que I'usager utilise et leur position
par rapport aux zones de couverture du réseau. La personnalisation signifie que I'abonné
peut configurer le comportement de ses services et, ou imbriquer I’exécution de services
différents pour en créer de nouveaux qui correspondraient 2 ses préférences. Les autres
critéres sont |’indépendance des services et du réseau, une gestion simple des services,
I’interopérabilité avec les autres architectures de services et le support pour une large
palette de services.

Les architectures de services pour la téléphonie Internet basées sur les agents ont
été proposées récemment. Elles préconisent 'utilisation d’agents mobiles qui sont
semblables a des conteneurs en cela qu’ils transportent les exécutables des services (ou
les pointeurs aux exécutables). Transporter des exécutables (ou des pointeurs) amene de
nouveaux défis. Le traitement des souscriptions est un d’entre-eux. Ce mémoire traite de
ces architectures a base d’agents puis propose et évalue des alternatives de traitement des
abonnements.

Le cycle de vie d’un service est composé de sa création, son déploiement, son
utilisation et son retrait. La souscription est la principale difficult¢ du déploiement et du
retrait des services. L’agent mobile qui transporte des services doit &tre mis 2 jour quand
un abonné souscrit A un ou plusieurs nouveaux services (ou nouvelles versions de
services existants). Il y a deux approches possibles : la permutation d’agent et la mise a
jour dynamique de I’agent. Dans la premiére approche, 1’agent qui transporte les services
est remplacé par un nouvel agent qui contient les anciens (nouvelles versions au besoin)

et les nouveaux services. Selon la seconde approche, les nouveaux services sont insérés



v
dynamiquement dans I’agent et les anciennes versions des services sont dynamiquement

changées pour refléter les nouvelles versions. La permutation d’agents a deux variantes,
la permutation progressive et la permutation abrupte. La mise 2 jour dynamique est
radicalement différente des techniques traditionnelles de mise a jour. D’ordinaire,
I’application est arrétée, désinstallée, puis la nouvelle version installée et dans certains
cas la machine est réinitialisée. Ceci occasionne un temps mort inacceptable en
téléphonie. La mise 2 jour dynamique insére la nouvelle version d’un service dans ledit
service pendant qu’il est en cours d’exécution, sans qu’il n’y ait d’interruption de service.

Les requis pour les mises & jour incluent la minimisation de la durée
d’interruption des services, la validité des changements et I’extensibilité & un nombre
élevé de services. Toutes les approches proposées sont extensibles comme le prouvent les
résultats de mise en oeuvre des prototypes implémentés. Par contre, la permutation
abrupte provoque une trés bréve interruption de service au contraire de la permutation
progressive et la mise i jour dynamique n'en causent pas.

Notre implémentation est la preuve du concept d’architecture d’agent pour
services sur réseaux mobiles. Nous présentons la premiére spécification technique et la
premiére implémentation de 1'architecture. Ensuite, nous abordons la gestion du cycle de
vie des services. Les solutions possibles (permutation, mise 2 jour dynamique) sont
nouvelles. Le paradigme de mise a jour dynamique que nous avons développé est plus
efficient que les syst¢mes de mise & jour dynamique proposé jusqu’'a présent. En ce
regard, il se revéle étre une contribution importante dans le domaine de 1'évolution
dynamique des systémes. Son implémentation résulte en une librairie compacte de 9
KiloOctets. 11 est le premier systéme de mise a jour dynamique qui soit applicable sur les
moniteurs d’information portables, i.e. PalmTop, Laptop, Wap Phone, etc.

Notre contribution suivante consiste en une évaluation de performance du
paradigme agents mobiles. Cette évaluation détaillée prend en compte les divers facteurs
influant sur la performance du code mobile et permet de recueillir des données
pertinentes qui font souvent défaut quand on veut procéder a une évaluation rigoureuse

des agents mobiles. Elle valide aussi le concept, car les résultats démontrent que la



performance du systéme reste bonne tout en préservant les avantages inhérents aux agent‘:
(accés universel, personnalisation, intelligence, etc.). Nous procédons aussi & une
évaluation de performance de nos schémas de mise a jour. Cette évaluation constate que
la dégradation de performance di au mise & jour est négligeable. Plus important encore,
dans le cas des mises a jour dynamique, I'utilisation des classes dynamiques n’inflige pas

de délai qui puisse &tre remarqué interactivement.



ABSTRACT

Internet telephony brings a host of opportunities. Cost can be reduced and new,
unforeseen services can be engineered. Internet telephony service architectures should
provide universal access, support for a wide range of services, tailored services, service
and network independence, multi-player environment, rapid service creation and
deployment, service manageability and interwork with other service architectures. Mobile
agent based service architectures for Internet telephony, have emerged in the recent past.
They stipulate the use of mobile agents that act as folders and carry the executables of
services (or pointers to the executables). Carrying executables (or pointers) in a mobile
agent brings new challenges. Subscription handling is among them. This thesis dissects
the architecture, then proposes and evaluates subscription handling alternatives.

Service life-cycle is made of creation, deployment, utilization and withdrawal.
Subscription is the core difficulty of service deployment and withdrawal. When the user
subscribes to new services (or new versions of existing services), mobile agents that
carries services must be upgraded. There are two approaches : agent swapping and on-
the-fly updating. In the first approach, the agent that carries the services is swapped with
a new agent that carries both the old and the new services. In the second approach, the
new services are inserted in the agent on the fly and the old versions of existing services
are dynamically changed to reflect the new version. Swapping has two variants smooth
swapping and abrupt swapping. Upgrade requirements include minimal service
interruption, scalability, validity of changes. The solutions proposed, scale and there is
either no service interruption (smooth swapping, dynamic update) or an insignificant one
(abrupt swapping) as shown by the prototyping results. The dynamic update solution is
novel and is applicable to any software program written in Java. It enables the selection
of the instances to update and the specification of an adaptable update policy between
class versions. Changes are introduced through dynamic Java Classes (gramiarity). This
thesis provides the first experimental, hard evidence of the viability of the architecture.



TABLE DES MATIERES

REMERCIEMENTS iii
RESUME iv
ABSTRACT vii
TABLE DES MATIERES viii
LISTE DES TABLEAUX | xii
LISTE DES FIGURES xii
LISTE DES SIGLES ET ABBREVIATIONS xvi

CHAPITRE 1 INTRODUCTION

1.1  Définitions et concepts de base l
1.2 Eléments de la problématique 3
1.3 Objectifs de recherche 6
1.4  Plan du mémoire 6

CHAPITRE I CONCEPTS D’AGENTS ET APPLICATIONS

2.1  Agents intelligents et systémes muiti-agents 7
2.1.1 Définitions et principes de base 8
2.1.2 Architectures et ontologies 9
2.1.3 Application des agents intelligents 10
2.2 Agents mobiles 13
2.3 Avantages et limitations 14
2.3.1 Avantages des agents mobiles 14

2.3.2 Limitations des agents mobiles 17



24

2.5

2.6

2.7

CHAPITRE Il MODELISATION D’UNE ARCHITECTURE

Systémes d’agents mobiles

Applications des agents mobiles

2.5.1 Télécommunications

2.5.2 Commerce électronique

2.5.3 Administration de syst¢mes

Systémes de mise a jour dynamique

2.6.1 Erlang

2.6.2 Langages de programmation fonctionnels

2.6.3 Systéme d’évolution dynamique de bas niveaux
2.64 Systéme d’évolution dynamique de haut-niveau

Syntheése des problémes

D’AGENTS MOBILES POUR SERVICES

3.1

32

33

Caractéristiques de I’architecture de service et de I’AMS
3.1.1 Architecture de I’AMS

Architecture des unités du systémes

3.2.1 Interface UCS - UGS

3.2.2 Interface UGS - UPS

3.23 Architecture de I'UGS

3.24 Architecture de I'UCS

Architecture de I’ Agent Mobile pour Services

3.3.1 Evolution de I'’AMS

18
21
22
23

24

25
26
26
27

28

31
33
34
35
37
38
41
22

43



3.3.2 Langage, ontologie, mobilité, sécurité et fiabilité

3.3.3 Chargement et démarrage des services

3.3.4 Encapsulation des connaissances — Gestion des services
34  Implémentation préliminaire

3.4.1 Analyse des interactions avec I’'usager

34.2 Analysedel’'UGS

3.4.3 Analyse de I'UCS

3.44 Analyse de ' AMS

34.5 Services Tests
3.5  Synthése et problémes ouverts
CHAPITRE IV MISE EN OEUVRE DES SOUSCRIPTIONS
4.1  Analyses des Problémes

4.1.2 Problémes et requis

4.1.3 Remplacement d’agent et mise a jour dynamique
42  Permutations d’agents

4.2.1 Permutation graduelle et permutation abrupte

4.2.2 Implémentation des permutations
43  Mise a jour dynamique de I’ AMS

4.3.1 Concepts de base et préalables

4.3.2 Approches de mise a jour

4.3.3 Implémentation de 1'évolution dynamique

434 Gestion des classes et acheminement des invocations

49
52
53
53
56
57

37

61

63
63
66
67
68
69
71
72
76
80

85



44  Evaluation sommaire des schémas de mise i jour
CHAPITRE V EVALUATION DE PERFORMANCE
5.1  Analyse de performance du paradigme
5.1.1 Analyse du paradigme agent
5.1.2 Conditions environnantes et modéle d’échantillonage
5.1.3 Résultats d’expérimentation
5.2 Evaluation de la permutation d’agents
53  Mise i jour dynamique de I’AMS
5.3.1 Evaluation de performance
5.3.2 Evaluation des requis
5.3.3 Synthése des performances
CHAPITRE VI CONCLUSION
6.1  Synthése des travaux et contributions particuliéres
6.2  Limitations des travaux et recherches futures

BIBLIOGRAPHIE

88

91
91
93
95
100
104
104
108

111

112
114

116



2.1

5.1

5.2

5.3

54

LISTE DES TABLEAUX

Caractéristiques des systémes pour agents mobiles
Conditions du réseau

Impact sur I'exécution d’un programme par I’ AMS
Evaluation des stratégies de permutation

Evaluation de I’implémentation par rapport aux requis

21

100
103

110



31
32
33
34
335
3.6
37
38
39
3.10
3.11
3.12
3.13
314
3.15
3.16
3.17
3.18
3.19
3.20

321

LISTE DES FIGURES
Architecture de service par agent
Entéte HTTP
Format de description de I’ajout d’un nouveau service
Interaction UCS-1"UGS pour I’ajout d’un nouveau service
Addition d’un nouveau service
Interface UPS-UGS
Information transmise lors d’un abonnement
Interaction pour la création de I' AMS
Réplication d’UGS pour un sous-groupe d’usagers
Diagramme d’état de I'AMS
Envoi de message KQML
Format du message envoyé selon le protocole KQML
Exemple d’une formulation simple en KIF
Echange de renseignement sur un service
ClassLoader JDK 1.2.2
ClassLoader AMS
Lancement d’un service par I’AMS
Agent Mobile pour Services
Interface d’abonnement
Diagramme de contexte

Diagramme de cas d'utilisation (Use Cases)

35
36
36
36
37
37
38
39

41

45
46
47
47
49
50
51
52
53
54

54



322
3.23
324
4.1
4.2
4.3
44
45
4.6
4.7

4.8

49

4.10

4.11

5.1

5.2

5.3

Scénario d’abonnement

Diagramme de classes de I'UGS

Diagramme de I'UCS

Protocole d’échange de données lors de la permutation
Echange de données sur les services durant la permutation
Module et code objet Java

Violation de type causée par un changement dynamique
Modele de mise a jour dynamique de I'AMS

Classe java.lang.Reflect.Proxy de JDK 1.3

La classe MSAFactory implémente I’interface des classes dynamiques
Exemple de redirection des invocations pour la version i.i
d’une classe quelconque

Exemple d’utilisation des librairies de I’ AMS pour une
mise 2 jour dynamique

Gestion des classes dynamiques

Acheminement des invocations aux classes dynamiques
Délai de construction pour un AMS contenant un nombre
grandissant de services

Temps nécessaire pour effectuer I’aller-retour dans

notre réseau local pour un AMS de plus en plus grand

Courbe des délais de transmission sur le résean aux moments des tests

55
56
57
69
70
74
76
80
81

82

83

85

87

88

96

98

101

xiv



54

5.5

Pénalité de performance avec une redirection simple
sur les objets dynamiques

Pénalité avec une stratégie élaborée de redirection
sur les objets dynamiques

106

108

Xv



LISTE DES SIGLES ET ABBREVIATIONS

Sigle ou abbréviation
ACL

ACP
AEE
AMS
APD
CNRC
EDI
ITI
JDK
JKP

JKQML

KQML
UGS
UPS
UCs
SIP
SSL

SBC

Signification

Agent Communication Language

Agent Communicateur Personnel

Agent Execution Environment

Agent mobile pour Services

Appel de procédures a distance

Conseil National de Recherche du Canada
Electronic Data Interchange

Institut pour les Technologies de I’ Information
Java Development Kit

Java KIF Parser

Java KQML

Knowledge Interchange Format

Knowledge Query and Manipulation Language
Unité de Gestion des Services

Unité de Publication des Services

Unité de Création des Services

Session Initiation Protocol

Secure Socket Layer

Systéme 4 Base de Connaissances

xvi



Extended Markup Language

Xvii



CHAPITRE I

INTRODUCTION

Les architectures distribuées sont devenues récemment le centre d'intérét de la
recherche sur les infrastructures logicielles, notamment a cause de I’'Internet. Le slogan
“le réseau c’est I’'ordinateur” se matérialise et la réseautique influence maintenant le
design et I'implémentation de toutes les infrastructures logicielles, des systémes
d’exploitation aux langages de programmation en passant par les applications. De plus,
les services sont maintenant disponibles en location a travers |’ Intemet et cette approche
s'illustre comme la voie de I’avenir. On paye pour une certaine durée et pendant cette
période on peut accéder le site Web de la compagnie et exécuter les services pour
lesquels on a un abonnement. Pas besoin d’installation et les mises a jour sont
automatiques (voir site MSNBC). La majorité des produits informatiques devrait évoluer
pour devenir de tels services. Toutefois, ces fonctionnalités demandent des connexions
réseaux & haute vitesse. Or, la prolifération des moniteurs d’information portables
(ordinateur personnel, “palmtop”, etc.) qui disposent seulement d’une faible bande
passante, impose la recherche d’une nouvelle ingénierie des services. Une des approches
proposées par I'informatique mobile est la mobilité du code. L’exemple le plus courant
de code mobile est les “applets” Java exploités dans les fureteurs (Mosaic, Netscape,
etc.). Ce mémoire propose d’utiliser une entité plus effective de code mobile, i.e. les
agents mobiles pour trouver une solution aux problémes de la mobilité du couple service-
usager et de la maintenance des services. Les agents mobiles pourront éventuellement

&tre disponibles pour “location”.

1.1  Définitions et concepts de base
La mobilité du code peut étre définie de fagon non formelle comme la capacité de

changer dynamiquement le lieu d’exécution, ou la source de provenance de fragments de



2
code durant 1'exécution d’une application. Le code peut étre arrété, déplacé puis

redémarré A4 une machine distante (i.e. les agents mobiles), ou une application peut
utiliser du code situé sur une autre machine qui est transféré a I’exécution (code sur
demande : applets). La technologie (code mobile) devrait permettre la création de

nombreux services innovateurs. La triste réalit€ demeure que les applets sont

actuellement la seule implémentation de code mobile déployée a grande échelle.

La convergence de la téléphonie et de la réseautique est illustrée par la téléphonie
Internet. Les services avancés de téléphonie par I’Internet et le commerce électronique
sont deux applications existantes qui devraient bénéficier des agents mobiles. La
téléphonie Internet est le transport en temps réel de la voix et des applications multimédia
sur |’Internet. Les services avancés de téléphonie sont ceux qui ne traitent pas du contréle
(établissement) des appels. Ces services peuvent étre des services téléphoniques purs tels
que la diversion des appels ou des services hybrides qui interfacent par exemple avec le
courrier électronique (un courriel est envoyé pour avertir des appels manqués). Les
services avancés peuvent étre implémentés ou transportés par des agents mobiles,
facilitant I’ajout et le retrait desdits services, en découplant totalement la gestion des
services du contrble des appels. Pour se servir des agents mobiles, tout noeud du réseau
ou toute machine ol 1’agent pourrait se déplacer doit avoir un environnement d’exécution
(plate-forme) d’agents mobiles. Ceci est similaire a 1’architecture des réseaux actifs.

Les réseaux actifs (Wetherall, 1999) permettent I'injection de paquets appelés
capsules qui contiennent des programmes dans le réseau. Le format d’une capsuie est une
extension du format d’un paquet IP. Une capsule ressemble 2 un agent mobile en ceci
qu'elle se déplace & travers les nceuds actifs en respectant sa propre politique de
migration. Si la capsule passe par un commutateur ordinaire, il fait suivre le paquet tout
simplement selon la valeur de 1’entéte IP du paquet. Un noeud actif est un commutateur
programmable (logiciel) qui implémente une interface que les capsules manipulent pour
s’informer sur I'environnement et profiter des services disponibles dans le réseau.
L’interface est unique pour tous les neends actifs du réseau. Chaque fois qu’une capsule
invoque une méthode de I'interface, la méthode est traitée par le service indiqué dans le



3
champ d’entéte de la capsule. Les seuls services offerts par les implémentations actuelles

sont ceux de migration des capsules (multicast, point & point, etc.). Les réseaux actifs
standardisent le traitement 3 chaque noeud (quelles méthodes invoquer) au lieu de
standardiser le traitement effectué sur chaque paquet.

L’alternative au code mobile est le modele client-serveur avec ses appels de
procédure a distance (RPC), implémenté par les technologies comme CORBA ou
Microsoft COM. Dans un programme, les appels de procédure a distance (APD) sont
identiques aux appels 2 des procédures locales. Cette similarité est toutefois superficielle.
Pour implémenter les APD, un “stub” est généré au client et au serveur. Les APD
transitent par ces “stubs” qui ouvrent une connexion entre les hétes clients et serveurs et
transmettent la procédure invoquée et ses parametres dans un message. Les connexions
“pipe” permettent de retourner les résultats intermédiaires ainsi que de grandes quantités
de données. Les “stubs” doivent étre regénérés chaque fois que le programme change. Le
support systéme est limité au formatage et 2 la transmission des données.

Le support systéme des agents mobiles ou des réseaux actifs inclue souvent un
interpréteur, une couche qui traduit le code exécutable (généré selon un format unique) et
invoque les primitives appropriées du systtme d’exploitation. Dans les langages non-
interprétés, l’exécutable d’'un programme varie selon le systéme d’exploitation,
principalement parce que les programmes font des appels directs aux primitives desdits
systémes. Ce sont les interpréteurs qui permettent le code mobile.

1.2  Eléments de la problématique

Les services avancés de téléphonie Internet doivent étre implémentés suivant une
architecture qui sépare totalement la gestion des services de 1'établissement des appels.
Cette division permet 2 |'architecture d’offrir, en plus des services avancés de téléphonie,
des services hybrides et des services non reliés a la téléphonie. Glitho (2001) évalue
|’alternative qui consiste 3 modifier les réseaux intelligents (Intelligent Networks) pour
insérer la gestion des services dans le réseau. Il démontre que cette option est limitée et,
tout comme les deux standards utilisés en ce moment (H.323 et SIP), ne remplit pas les



4
critéres exigés pour que les services en téléphonie Internet soient compétitifs. H.323 de

ITU-T (1999) est un standard qui rappelle la téléphonie & commutation de circuit. L.’ autre
standard (Handley er al., 1999) est le Session Initiation Protocol (SIP) de 1'Internet
Engineering Task Force (IETF).

Dans la vie courante, les utilisateurs peuvent personnaliser les services Internet
(comme le courriel) auxquels ils accédent A partir d’un ordinateur personnel. 11 leur est
facile d’ajouter des services a leur ligne résidenticlle et la dérégulation leur permet
maintenant de changer de fournisseur avec aisance. La téléphonie Internet doit relever ces
défis si elle veut étre compétitive. Glitho (2000) indexe les critéres que !'architecture
pour les services avancés en téléphonie doit remplir ;il évalue H.323 et SIP par rapport 2
ces critéres. Nous estimons que ces critéres sont raisonnables et les reprenons 3 notre
compte :
® le support doit étre pour une large palette de services ;

* lacréation et le déploiement des services doivent pouvoir se faire rapidement ;

® |'usager doit avoir la possibilité de personnaliser ses services ;

» [’évolution du réseau (IN) et de I’infrastructure des services doit étre indépendante ;

* de nombreux et différents fournisseurs de services doivent pouvoir entrer facilement

sur le marché ;

» |a gestion (insertion, retrait, mise a jour) des services doit étre simple ;

® [’accés aux services doit étre universel, i.e. indépendant de la position de I’usager et

du moniteur qu’il utilise ;

s |'architecture doit permettre la collaboration avec les autres services déja existants.

Les standards H.323 et SIP ont des résultats piteux par rapport a ces requis tels
que le démontre Glitho (2000). Modifier les réseaux intelligents n’est pas plus porteur
selon Glitho (2001). La solution pourrait donc étre d’implémenter les services de
téléphonie comme des capsules et développer des naeuds actifs pour avoir un réseau actif.
Plus simplement, les services peuvent aussi étre transportés dans des agents mobiles.
Bien que les réseaux actifs permettent I’introduction rapide de nouveaux services, ils sont

limités aux services de téléphonie et méme pour ces cas 12 ne sont appropriés que pour les



5
applications de routage “multicast”, notification de congestion et surveillance du réseau.

Les réseaux actifs n’offrent pas I’accés universel et ne permettent pas de
personnalisation. En bref, ils ne sont envisageables que si on est uniquement
concerné pas I’insertion et le retrait rapide de services reliés a la gestion du réseau et

qui n’interagissent pas avec les usagers.

L’accés universel et la personnalisation (préservation des données) sont deux
motifs pour lesquels les agents mobiles sont préférables. Toutefois, 1'informatique mobile
propose des solutions a ces requis la. Pourquoi ne pas limiter les agents mobiles aux
services 4 I'intérieur du réseau et utiliser les systémes d’informatique mobile pour
I’approvisionnement en service des moniteurs d’information portables ? Les moniteurs
disposent en général d’une faible bande passante et sont méme déconnectés du réseau
s’ils sortent de la zone de couverture.

Les paradigmes de 1’informatique mobile sont pour la plupart basés sur le modele
client-serveur avec ses APD. Ces paradigmes peuvent étre classifiés en trois
catégories (Jing et. al., 1999): adaptation mobile, modele client-serveur étendu et acces
des données par des clients mobiles. L'adaptation mobile permet I’allocation dynamique
de ressources aux applications et systémes en fonction des changements dds i la mobilité.
En général, les applications sont obligées de sacrifier des fonctionnalités et de la
performance. Le fonctionnement en mode déconnecté est compliqué et limité. Le systeme
Rover en est le plus connu (Joseph et al., 1997).

Le modele client-serveur étendu requiert que les applications dans le serveur
soient partitionnées (découpées) et optimisées pour la mobilité. Ceci permet de transférer
certaines fonctionnalités du serveur au client ou vice-versa avant la déconnexion.
L’approche nécessite le support d’un systéme tel que: InfoPad, CITRIX (voir site
CITRIX) ou CODA pour son fonctionnement. Ici encore, les applications possibles sont
limitées. Les paradigmes pour |’accés au données par des clients mobiles reposent sur la
réplication des données contenues au serveur et la consistance des données en cache du
client. [Is ne traitent pas la survivabilité des applications mobiles ou leur fonctionnement.
Cette bréve analyse montre les faiblesses intrinséques des paradigmes de I'informatique



6
mobile qui les disqualifient pour notre architecture. Les agents mobiles se révelent étre la

meilleure et unique approche qui permette de remplir tous les critéres énoncés pius haut.

1.3  Objectifs de la recherche

Ce mémoire a pour objectif principal la spécification et 1’évaluation du cycle
de vie d’une architecture d’agents mobiles qui satisfait toutes les exigences énoncées
dans les éléments de la problématique. Les services pourront étre personnalisés A travers
’agent mobile et seront accessibles en tout temps et sur tout moniteur (I’agent peut
résider sur le moniteur et se déplacer sur un autre au besoin). Plus spécifiquement, ce
mémoire vise :

- la spécification détaillée et I'implémentation de l'architecture qui précisera le
mécanisme d’approvisionnement en service, I’intelligence des agents (en opérations
possibles), ainsi que les mécanismes de communication employés ;

~ I’évaluation de performance de 1’architecture ;

— la description, I'implémentation et I'évaluation de mécanismes de mise a jour de
I’architecture et de ses services.

La mise A jour dynamique doit éire traitée et une solution performante et
efficiente sera proposée, car elle est primordiale pour les services de téléphonie. En effet,
les services de téléphonie ne peuvent étre arrétés, ils doivent rouler continuellement et

étre mis a jour alors qu’ils sont en cours d’exécution.

14  Plan du mémoire

Ce mémoire comprend six chapitres. Au chapitre 2, nous présentons une revue,
une évaluation critique et les applications des agents mobiles, des agents intelligents, des
systémes multi-agents et des systémes de mise A jour dynamique. Ensuite, au chapitre 3,
nous abordons I’implémentation de notre architecture. Au chapitre 4, nous expliquons les
mécanismes de mise a jour des agents et des services. Au chapitre 5, nous procédons a
une évaluation de performance de I’architecture, des mécanismes de mise 2 jour et 2 une

évaluation d’intégrité de nos mises a jour.



CHAPITRE IT

CONCEPTS D’AGENT ET APPLICATIONS

On distingue deux communautés qui ceuvrent dans le domaine des agents : celle
des agents intelligents et celle des agents mobiles. Les agents intelligents sont
essentiellement des systémes A base de connaissances ou des syst¢émes experts. De
nombreuses applications commerciales basées sur ces systémes sont actuellement
disponibles dans les services d’information, de recherche d’emploi, de divertissement,
d'assistance personnalisée sur I'Internet et de commerce électronique. Les agents
mobiles, quant 2 eux, sont des agents qui se déplacent dans le réseau durant leur
existence. Dans ce chapitre, nous passons en revue les concepts et applications des
technologies agents. Dans un premier temps, nous examinons la technologie des agents
intelligents et des systémes multi-agents (SMA). Ensuite, nous retragons I’évolution
technologique des agents mobiles dont nous évaluons les avantages et les actuelles
limitations. Ensuite, nous décrivons quelques-unes des applications d’agents mobiles
développées jusqu’a présent. Enfin, nous traitons des mises A jour dynamiques et des
techniques qu’elles utilisent.

2.1  Agents intelligents et systémes multi-agents

Les agents, particulidrement les agents intelligents, sont I'objet de recherche
depuis le début des années 80, principalement par les chercheurs en intelligence
artificielle distribuée. Récemment, le Web a relancé I'intérét pour le paradigme et
d’importantes ressources sont investies dans la recherche, le développement et le
déploiement des agents. Dans cette section, nous présentons les principes de base des
agents intelligents. Nous abordons ensuite les architectures des systémes d’agents. Pour

finir, nous nous attardons sur plusieurs applications commerciales des agents intelligents.



2.1.1 Définitions et principes de base

Un systeme multi-agent est un ensemble d’agents qui coopérent

intelligemment pour réaliser une tiche. L’intelligence est distribuée entre les agents

du systtme. Les systémes & base de connaissances (SBC) sont des programmes qui

inférent des décisions étant donnés certains faits, en utilisant un ensemble de régles. Un

SBC est un systéme expert quand le programme est congu pour agir comme un expert
dans un domaine précis.

Un systéme expert est principalement composé d'une base de connaissances et
d’un moteur d’inférences qui implante un ou plusieurs mécanismes d’inférence. Ces
systémes sont aussi dotés d’un utilitaire qui explique comment une décision a €té obtenue
ou pourquoi une donnée est nécessaire. L’intelligence est couramment représentée par la
logique des prédicats, des régles de production ou des résecaux sémantiques, etc. Les
mécanismes d’inférence sont des stratégies de contrble ou des techniques de recherche
qui parcourent ja base de connaissances pour arriver a des décisions (Rajeev ef al., 1996).
Certains systémes a base de connaissances sont capables d’apprentissage. La plupart
d’entre eux apprennent par induction, d’autres par déduction.

Une ontologie est une spécification explicite d’'une conceptualisation. Pour
illustrer, considérons deux politiciens qui parlent d’un «systéme », puis deux ingénieurs
logiciels qui parlent d’un «systéme ». Les deux groupes parlent de «systéme », toutefois,
le «systéme » des ingénieurs est différent du systéme des politiciens. Dans ce cas-ci, les
politiciens partagent la méme ontologie, tout comme les ingénieurs. Seulement, les deux
groupes utilisent des ontologies différentes. Pour simplifier, on peut dire qu’une
ontologie est un langage commun et un vocabulaire qui sert de cadre de référence pour
interpréter les messages échangés.



2.1.2 Architecture et ontologies

La recherche d'une architecture adéquate pour un SMA a mené i plusieurs
spécifications différentes. La plus connue est celle de Shoham (1993). Les
propriétés désirables d’un systéme multi-agents peuvent s’énoncer comme suit :

o offrir des mécanismes pour ajouter et retirer des agents de la société d’agents ;

¢ permettre la construction de société d’agents, c’est a dire de groupes d’agents qui
collaborent pour atteindre un objectif précis. Les agents ne sont pas supposés avoir
une connaissance au préalable des uns et des autres ;

o offrir des mécanismes pour la résolution de conflits.

A un degré moindre, un SMA devrait prévoir des mécanismes pour intégrer des
agents héiérogénes (qui ne sont pas supposés collaborer) et réutilisables. Cette propriété
est en fait primordiale pour les applications Intemet. Toutefois, pour des solutions
propriétaires, il est risqué d’interagir avec des agents inconnus.

L'architecture d’'un SMA peut étre décomposé en trois couches : typologie et
structure, communication, coopération (Pelletier et al., 2000). La premiére couche définit
les agents et analyse leurs possibles activités. La couche communication détermine
I’échange d’information entre les agents. La couche coopération établit le modéle de
négociation (commerce €lectronique) entre agents.

Une ontologie commune permet aux agents intelligents de partager et de réutiliser
leurs connaissances. Le terme ontologie est emprunté de la philosophie ol il désigne une
occurrence systématique d’existence. Nous utilisons des ontologies courantes pour
décrire le langage d’un groupe d’agents de sorte qu'ils puissent communiquer sans
nécessairement opérer selon une théorie commune. On dit qu’un agent souscrit & une
ontologie quand ses actions observables sont consistantes avec les définitions de cette
ontologie (Tom Gruber, 1994).

Pour communiquer, les agents ont besoin d’un langage commun. Les standards
KQML (Knowledge Query and Manipulation Language) et ACL (Agent Communication
Language) sont les langages de communication inter-agents les plus connus. Leur
spécification est semblable 3 un protocole de passage de messages.



Les agents qui partagent la méme ontologie peuvent utiliser KQM L pour
communiquer. Les deux langages sont basés sur des performatives ol I'intention du
message sur le receveur est spécifiée dans le message (dire, demander, etc.).

Dans le commerce électronique, XML-EDI est utilisé pour les transactions
électroniques entre agents. EDI est une extension de XML qui spécifie le contenu des
documents d’affaires pour les transactions Web (Glushko et al., 1999 ; site disa.org).
KQML et XML ajoutent de la flexibilité et de 1’adaptabilité aux systémes d’agent, ce qui
leur permet d’effectuer du “shopping” et de réaliser des transactions sur le Web.

2.1.3 Applications des agents intelligents

Les agents intelligents sont utilisés dans les applications d’entreprise virtuelle, de
réseautique scientifique (qui permettront de traiter les ordinateurs en réseau comme un
unique méta-ordinateur), de manufacture intelligente et de gestion de distribution de
I’énergie. IDs sont déja commercialement utilisés dans des services et applications de
nouvelles et d’information, de shopping, de ventes aux enchéres, de navigation

personnalisée et de recherche d’information.

Nouvelles et informations

Les premiéres applications d’agent disponibles commercialement concernaient les
agents moniteurs. Ces systémes parcouraient les données et avertissaient I’usager quand
un événement d'importance se produisait. E-Watch (Site ewatch.com), ZDNet (Site
zdnet.com) et Excite (Site excite.com) offrent ce service de nouvelles et d’information.
Les agents de ce type sont nombreux sur les sites boursiers et les sites de commerce
électronique.

Shopping

10



Frictionless (Site frictionless.com) permet aux usagers de comparer les prix et les
caractéristiques des produits lorsqu’ils font des emplettes par I’Internet. L’usager peut
remplir une fiche décrivant son profil, puis choisir un produit et ses caractéristiques.

Son agent demandera alors ce produit aux différents marchands. Les produits
satisfaisants sont ensuite présentés 2 I'usager et ordonnés selon leur correspondance au
profil de I’usager, leur prix, les politiques du vendeur (livraison, retour, échange, etc.).

D’autres sites de shopping (jango.com) utilisent des agents.

Enchéres

AuctionBot (Site auction.ececs.umich.edu) est un serveur Intemet qui permet de
tenir des enchéres sur n’importe quel produit. Il est situé a I’université de Michigan. Une
interface sur le site permet aux usagers de créer et de spécifier les caractéristiques de leur
agent. Cet agent peut alors prendre part aux enchéres sur le site. Les usagers créent une
nouvelle enchére en spécifiant le type de I’enchére, un prix de départ et une méthode de
résolution en cas d’égalité. Plusieurs sites d’enchéres traitant de produits spécialisés sont
disponibles sur Internet (Voir Sites Encheres).

Navigation Personnalisée

Alexa (Site alexa.com) est un utilitaire gratuit qui est compatible avec n’importe
quel fureteur et qui fournit de I’information a propos de chaque site visité. 11 affiche les
statistiques de chaque page visitée dans sa propre fenétre. Il est aussi utile pour le
commerce électronique car il vérifie I'information sur les propriétaires de chaque site
avant que l'usager n’utilise sa carte de crédit. Le produit WBI (Voir Site
almaden.ibm.com/cs/wbi) de IBM, qui est un proxy programmable de Web serveur, est

un autre exemple de cette catégorie.

Recherche d’information

11



La technologie “Push” et les “Bots” (ro”Bots” Internet) sont deux champs de la

recherche d’information qui utilisent des agents. Les moteurs de recherche sur le Web

envoient des “Bots” qui parcourent les serveurs et collectionnent des listes d’URLs.

En bref;, les “Bots” fouillent au travers des données. IlIs ont un grand potentiel pour

la dissémination d’information, car ils peuvent détecter des patrons dans de grandes
quantités de données.

Les “Bots” sont des agents statiques qui ont acces seulement aux données
publiques disponibles par I'intermédiaire des serveurs Web. Les problémes rencontrés
par les agents mobiles proviennent de ces différences. Un agent mobile effectuera des
transactions locales qui ralentiront le serveur et devra éventuellement accéder a des
données privées, ce qui pose des problémes de sécurité. Les “Bots” ne coopérent pas
entre eux et ne transportent pas leur état quand il se déplace.

La technologie “Push” est en fait un ensemble de technologies utilisées pour
envoyer de l'information a4 un usager sans qu’'il n’en fasse la demande (Site
jm.acs.virginia.edu). Les médias publics tel la radio et la télévision sont basés sur cetie
technologie. Le Web est basé sur du “Pull” (I’'usager doit cliquer). La technologie
“Push” sur le Web permet a I’ utilisateur de choisir 1’information qui lui sera envoyée, le
moment et le format de I’envoi.

La technologie “Push” permet aux entreprises d’envoyer de I’information 2 des
audiences ciblées. Elle permet notamment de naviguer sur le Web sans utiliser de
fureteur et facilite la distribution des nouvelles versions des logiciels. Les agents
conviennent naturellement 2 cette technologie puisqu’un agent peut étre envoyé sur un
serveur et filtré |'information localement. Seule I'information pertinente est retournée a
I’expéditeur.

Le réseau Poincast (Site www.”Pointcast”.com) est le produit le plus avancé de la
technologie “Push” qui utilise des agents. Il permet aux usagers de personnaliser leurs
nouvelles sur le sporf, la météo et les valeurs boursidres. C’est un utilitaire gratuit qui
dispose d’une interface graphique et qui délivre les nouvelles sur I’ordinateur personnel

de ’usager.

12



22  Agents mobiles
Les agents mobiles empruntent beaucoup de la migration de processus qui

fait référence au transfert de processus entre deux ordinateurs. Un processus est une
abstraction des systémes d’exploitation qui comprend le code, les données et I’état
d’exécution d’une application. Initialement, la migration de processus était typiquement
implantée au niveau du systéme d’exploitation. Le principal défi €tait de transférer I’état
interne du processus contenu dans le noyau du systéme d'exploitation. [ était aussi
difficile de transférer les ressources systdmes, i.e. les pointeurs de fichiers, les pilotes
d’interface et de périphériques, etc. C’est pourquoi la migration de processus a d’abord
été implanté avec les systémes basés sur les messages od I'interaction du processus avec
le monde se fait au travers de canaux précis (Powell et al., 1998). La migration de
processus basée sur les appels au noyaun du systéme d’exploitation a suivi (Douglis ef al.,
1998). Ces systémes ont connu un certain succés, méme si aucun d’eux n’a pu s’imposer
en environnement réel, A cause de leur complexité.

La migration de processus a introduit les notions de code mobile et d'objet mobile
(un graphe de I’objet est créé et transféré). Les agents mobiles ont enrichi ces notions et
sont maintenant implantés en langage interprété qui supporte du code mobile. IIs sont
indépendants des systémes d’exploitation.

Selon leurs promoteurs (White, 1998), les agents mobiles permettent de dépasser
les limites du modéle client-serveur. Cependant, jusqu’a présent, les expériences ne sont
pas parvenues 3 démontrer une réduction significative du trafic réseau, sauf pour certains
cas particuliers d’application & petite échelle. Les mécanismes pour augmenter la
tolérance aux fautes des agents demeurent inadéquats sur [’ensembie des systémes; la
tiche repose donc sur les épanles du programmeur. De pertinentes réserves sont

soulevées sur la sécurité des agents, leur contréle et leur communication.

13



2.3  Avantages et limitations

Dans cette section, nous présentons les principaux avantages et limitations des
agents mobiles. Cela nous permettra de mettre en évidence les défis qui sont 2
relever pour populariser leur utilisation.

2.3.1 Avantages

L'un des avantages souvent évoqués est que les agents mobiles permettent de
dépasser les limitations du modele client-serveur. En effet, les limitations de la machine
cliente telles que la puissance des processeurs, son débit, la taille de son espace mémoire
peuvent &tre atténuées si I’agent s’exécute prés des données. Par exemple, envoyer un
agent vers une base de données qui doit étre examinée selon un algorithme particulier
peut augmenter la performance, compar€ au cas od les requéles seraient envoyées a partir
d’une machine distante. Toutefois, les résultats d’expériences (Johansen et al., 1999)
contredisent ces affirmations. En effet, on observe des gains de performance dans
certaines circonstances particulidres (Ranganathan et al., 1998; Outtagarts et al., 1999).
La plupart du temps, il n’y a pas de gain ou alors ils sont fractionnaires. Les meilleurs
résultats sont obtenus avec une combinaison de client-serveur et de code mobile. Les
gains dépendent toujours du réseau: plus son débit est faible, plus grands seront les
gains.

Un autre avantage proclamé des agents mobiles est qu’ils permettent une
interaction asynchrone. En effet, les agents mobiles implantent la programmation a
distance au lieu des appels de fonction  distance. L’ordinateur doit donc étre connecté
assez longtemps pour déplacer 1’agent sur le réseau et plus tard 1’accueillir. Ceci est
particuliérement utile pour les “palmtops” et ordinateurs mobiles qui ne sont
généralement connectés que de fagon intermitiente. De plus, on peut s’assurer que les
agents survivent aux fautes matérielles. Si une machine tombe en panne, I’agent peut &tre
enregistré sur le disque dur de la machine ou il peut se déplacer vers un autre héte pour
revenir plus tard. Une fois que la machine est remise en marche, 1'agent continue sa
tiche et retourne vers I'hGte qui {’a envoyé quand il a obtenu des résultats. Une

14



interaction continue ne nécessite donc pas de communication continuelle. Cette propriété
permet de concevoir des applications d’intégration des médias de communication. Une
telle application est dite messagerie sans interruption ol I’agent peut chercher a
joindre I’abonné sur plusieurs terminaux, de sorte qu’il peut lui livrer un message
urgent, peu importe le média d’origine. Cette commutation de média est grandement
compliquée avec le modele client-serveur.

Presque toutes les plates-formes d’agents mobiles actuelles permettent une
interaction asynchrone. Cependant, les agents qu’on peut développer avec leurs outils
ont une autonomie et une intelligence timitées. Par conséquent, ils n’exploitent pas les
possibilités d’interaction asynchrone.

Par ailleurs, les agents seraient plus faciles & personnaliser et ajouteraient de la
flexibilité aux systémes. En effet, un agent mobile peut étre développé comme un
«bean » (Java Beans). La technologie «Java Beans » permet I'interopérabilité entre
composants provenant d’applications différentes. Un «bean » est développé et testé
indépendamment; par conséquent il est plus facilement réutilisé. En effet, le code source
qui définit un composant « Java Beans », ne fait référence 3 aucun autre composant. Les
références sont établies A I'exécution. Ces références peuvent étre établies par le
contenant qui tient le composant « Java Beans » ou par le composant lui-méme. Cette
propriété permet de raccourcir le temps de développement d’une application utilisant des
« Java Beans », donc éventuellement d’une application basée sur des agents. Les « Java
Beans » offrent les mémes avantages que ActiveX et VBX pour les applications
d’interface usager.

Une place est un environnement d’exécution pour agents. Typiquement, c’est une
plate-forme pour agents en exécution sur une machine. Les agents se rencontrent dans
des places. Un serveur peut donc étre configuré comme une place. Ainsi, quand une
nouvelle application doit étre installée sur le serveur, un agent mobile qui implémente
cette application est envoyé au serveur. L’agent s’agrége donc au serveur et le serveur
offre cette nouvelle application. Les applications simples peuvent donc étre rajoutées
facilement, ie. chaque usager peut rajouter les applications qui ['intéressent.

15



Comparativement, les applications statiques qui utilisent des appels de procédure a
distance impose que le serveur soit arrété, puis mis a jour. De plus, comme la nouvelle
interface sera disponible a tout le monde, pour un serveur public ceci implique qu'il
faut une décision d’affaires avant d’ajouter une nouvelle application, peu importe sa
simplicité ou le nombre de ses utilisateurs.

Les implications de ce concept de serveurs extensibles sont impressionnantes :

¢ les applications sur les communicateurs personnels (““palmtop™’, ordinateur mobile)
pourront étre configurées comme une collection d’agents;
o les réseaux et serveurs publics deviennent des plates-formes pour agents mobiles
(James, 1998).

Ces concepts sont déja utilisés avec les plugiciels (plug-ins) des fureteurs
(Netscape, Internet Explorer) et constituent des avantages bien réels. Ainsi, plusieurs
usagers accédant 3 un méme serveur peuvent en avoir des vues totalement différentes, car
chacun utilisera des agents personnalisés offrant des services différents. La question qui
se pose alors est de savoir comment maintenir et coordonner un tel systéme.

Un autre des supposés avantages des agents mobiles est qu’ils sont plus faciles a
programmer et augmenter. Cela provient de 1’observation que les agents offrent souvent
une meilleure représentation du monde réel. Par exemple, pour les utilisateurs
d’ordinateur qui sont mobiles, les travaux qu’ils commencent au bureau doivent souvent
étre poursuivis méme s’ils quittent leur ordinateur. Une fagon de faire serait de déléguer
ces tiches 2 un ordinateur qui continuera le travail pendant que I’usager sera absent.

En attendant que les difficultés avec les ontologies soient surmontées, les agents
pourraient implémenter des technologies comme Jini (Site www.sun.com/jini) qui permet
A des applications différentes provenant de différents vendeurs de s’entre-identifier et de
s’entre-utiliser. Notons enfin que les mécanismes de communication utilisés actuellement

sur toutes les plates-formes d’agents mobiles sont précaires.

16



2.3.2 Limitations des agents mobiles

Les agents mobiles seraient dangereux & utiliser. En toute rigueur, accepter des
agents mobiles n’est pas nécessairement différent d’accepter du code mobile comme
on le fait avec les applets de Java. Le risque peut étre comparé i celui lié au fait

d’accepter des courriels avec des entités actives, tels les documents Word qui contieanent
des macros (Miloji¢i¢ et al.,1998). Si les agents sont restreints 2 communiquer au travers
d’interfaces bien définies et sont limités dans leurs actions (comme le modéle sandbox de
Java le permet), alors les risques sont considérablement réduits.

Malheureusement, les interfaces sont peu ou pas définies sur la plupart des plates-
formes. De plus, les problémes de sécurité ne sont pas limités a un usage abusif de I’hote
par I’agent, ils incluent aussi 1'usage abusif de 1’agent par I’h6te ou par d’autres agents.
Greenberg et al. (1998) ont cité les attaques les plus probables sur un agent ou un héte :
refus de service, accds aux données personnelles, harcélement, ou une combinaison de
celles-ci. La plus dangereuse est celle de I’accés aux données personnelles ou un agent
peut utiliser un canal pour retransmettre des données tout en respectant les interfaces qui
lui sont imposées. Les attaques qui sont une combinaison des techniques sont les plus
difficiles a retracer.

Les solutions de sécurité envisagées jusqu’a présent pour les agents mobiles sont
inadéquates parce qu’elles sont calquées sur celles qui étaient employées sur les vieux
systémes qui n'acceptaient pas de programmes extérieurs. Des mesures de protection
adéquates n’ont pas encore €té congues pour les systtmes ouverts (Internet). Ainsi, la
sécurité des agents est un domaine en pleine évolution od beaucoup reste i faire.
N’empéche, des solutions sont disponibles pour la plupart des problémes, excepté I'usage
abusif de I’agent par I’hdte.

Faire communiquer des agents nécessite le recours a des mécanismes
d’interopérabilité de haut niveau entre des programmes (Finn et al., 1998). Ceci est
difficile a réaliser étant donné que :

e différents langages sont utilisés pour programmer les agents ;

® les plates-formes et les systémes d’exploitation sont souvent différents ;

17



@ peu d’hypothéses peuvent étre faites sur 1’état interne des agents.

Puisque les langages KQML et ACL ne spécifient pas la syntaxe ni le contenu
sémantique des messages, deux langages généraux pour spécifier le contenu des
messages ont été créés. 11 s’agit de KIF (Knowledge Interchange Format) et FIPA

SL. Malgré cela, d’autres questions se posent :

e comment traduire d’un langage de programmation a un autre ?

e comment le sens des concepts et des relations peut-il étre préservé entre plates-

formes ?

e Comment partager la connaissance ?

Les agents sont actuellement limités parce que les ontologies ne permettent pas un
partage de connaissances. Pire, sur la plupart des plates-formes, les mécanismes internes
de communication inter-agents sont inadéquats. Ceci devrait s’améliorer au fur et a
mesure que des applications d’agent seront développées. De plus, une plate-forme
d’agent mobile pourrait s’établir comme choix consensuel et ainsi annuler certains des
problémes actuels.

Bien que plusieurs systémes pour agents mobiles aient été développés, aucun
d’entre eux n’a réussi A populariser les applications d’agents mobiles. Le nombre de
serveurs capables d’accepter des agents mobiles est réduit, et il n’existe pas de systémes
ou d’applications répandues qui acceptent des agents. Si I'on foumit des plugiciels pour
des environnements répandus comme les fureteurs Web, ce probiéme de serveur pourrait
étre résolu. Enfin, il convient de mentionner qu'il n’existe pas de standard relatif au nom,
a la localisation et au contrdle des agents, encore moins de directive ou de normes sur la
fagon de gérer un serveur qui accepte des agents, la variété de I’activité a ce serveur étant

beaucoup plus grande que celle d'un serveur Web.

24  Systémes d’agents mobiles

On distingue trois approches pour concevoir et implanter une plate-forme
d’agents mobiles (Karmouch et al.,1998). La premiére consiste a recourir A un langage
de programmation qui comprend des instructions pour les agents mobiles. Compagq*® a

18



essayé sans succes cette approche avec le projet Obliq (Voir Site research.compaq.com).
La deuxiéme approche consiste & implanter le systtme d’agents mobiles comme des

extensions du systéme d’exploitation (Site cs.uit.no). Enfin, la derniére approche

construit la plate-forme comme une application spécialisée qui tourne au-dessus
d’un systéme d’exploitation. La plupart des systémes utilisent cette approche qui résulte
souvent en une collection de librairies Java (Voyager, Aglet, Concordia, Mole, Odyssey).
Sinon, ils sont écrits en langage de scripts avec un interpréteur et des utilitaires
d’exécution pour leur utilisation (D’ Agent, Ara).

Tous ces systémes ont une architecture de serveur. Plusieurs d’entre eux utilisent
I’approche «sandbox » ol les permissions de 1’agent mobile sont limitées et controlées.
Ces systémes classifient les agents en deux catégories : les agents s(rs et les agents non
slrs. Nous présentons ici quatre plates-formes représentatives des systémes pour agents
mobiles : Aglets, Mole, Sumatra et Voyager.

Aglets

Aglets est une plate-forme d’agents mobiles developée par IBM Japon (Site
trl.ibm.com/aglets). Un Aglet est un objet Java mobile qui visite des environnements
d’exécution (serveur) Aglets. L’architecture des Aglets est similaire A celle des applets

Java. Le systéme Aglets a son propre protocole pour le transfert des Aglets entre hotes :
Aglet Transfer Protocol.

Mole

Mole est une plate-forme d’agents mobiles construite i 1’université de Sttutgart en
Allemagne. Elle implémente la migration particlle, ol seuls les données et I'état de
I’agent sont transférés. La migration partielle a ét€ développée aprés que les batisseurs
du systéme se soient rendus compte que la migration totale (déplacement du processus
d’exécution de I’agent) était trop couteuse quand il s’agissait d’agents « multi-threads »
(Baumann et al., 1998). Un agent est traité comme une grappe d’objets Java, un

ensemble fermé sans aucune référence avec I’extérieur, excepté avec le systéme hdte.

19



20
Sumatra

Sumatra a éié développé pour mesurer la performance des agents dans la gestion des
réseaux. Il implante une application Komodo qui surveille I'état (les délais) du
réseau. L’application test est Adaptalk, une application de «chat» Internet. Les

textes entrés par les usagers sont acheminés aux destinataires par des agents mobiles qui

déterminent dynamiquement leur trajectoire en tenant compte des délais du réseau. Des
améliorations de performance significatives ont été observées dans certains cas. Dans ce
contexte, une place est appelée un interpréteur exécutant sur une machine, et un agent est

un groupe d’objets (Ranganathan et al., 1998).

Voyager

Voyager (Site www.objectspace.com) est un Object Request Broker (ORB) écrit
en Java qui offre des services pour agents. Il intégre en conséquence les technologies
ORB, CORBA, RMI. De plus, Voyager supporte les « Java Beans ». Ainsi, tout objet -
peut étre traité comme un agent pourvu qu’il soit sérialisable. Sérialiser un objet consiste
a créer récursivement le graphe de I'objet et des objets qu’il référence avant de les
transférer entre machines.

Voyager permet d’envoyer des messages asynchrones (sans réponse) et
synchrones (comme pour les appels de fonctions a distance). On peut aussi envoyer des
messages qui seront livrés & une date ultérieure sous certaines conditions. Les messages
envoyés & un agent qui s’est déplacé sont redirigés a son nouvel emplacement. Si |’agent
est en cours de déplacement, les messages sont bloqués jusqu’a ce qu’ils soient restitués a
la destination. Voyager supporte aussi le « multicasting », ol un message peut étre
envoyé a plusieurs hotes en paralléle. Chaque agent doit alors s’enregistrer 2 un espace
sur son héte. Un message multicast est envoyé a tous les hotes qui sont connectés entre
eux.

Voyager contient un service de noms qui permet d’associer un nom a un objet. 11

est possible de se connecter par la suite 3 cet objet en utilisant ce nom. Pour localiser un



21
objet, on utilise le service de nom et ’alias de I'objet. Le nom d’un objet est toujours

composé de son URL suivi de son alias.
Pour déplacer un objet, il suffit d’invoquer la méthode moveTo() sur I’objet,
en spécifiant la destination oll I’objet doit se déplacer. Les références aux objets
locaux deviennent des mandataires (proxys). Le Tableau 2.1 résume les caractéristiques

des systémes d’agents mobiles.

Tableau 2.1 Caractéristiques des systémes pour agents mobiles

Sécurité Mobflité Communication

Sandbox Aglet Transfer Evénement,
Protocol message obijet

Java Modile Java Evénement
amélioré avec code
server

Sandbox, Java serialization, | Evénements
canaux prolégés reflection Distribués

Java Java serialization Signaux

2.5  Applications des agents mobiles

Bien que plusieurs applications centrées surles agents mobiles aient &té
développées, peu sont allées au-deld de I'état expérimental et peu sont déployées
commercialement. Les mesures collectées de ces applications sont non concluantes. Par
contre, grice 2 la flexibilité du paradigme agent, des applications pionniéres peuvent étre
développées beaucoup plus facilement qu’avec le modele client-serveur. Ces résultats
couplés aux efforts de recherche actuels des universités et de I'industrie indiquent que
plusieurs autres applications sont & venir. Dans cette section, nous passons en revue les
applications des agents mobiles en télécommunications, au commerce électronique et 2

I’administration de systéme.



22
2.5.1 Télécommunications

Un Agent Communicateur Personnel (ACP) est un agent mobile qui doit livrer un
message au destinataire, peu importe le média d’origine et le média de destination —
avertisseur, téléphone, téléphone cellulaire, ordinateur personnel, ordinateur mobile.

Par exemple, la seule fagon de délivrer un courriel urgent & un usager pourrait étre au
travers d’un téléphone mobile. L’agent doit donc utiliser un convertisseur de texte a voix
et délivrer un message vocal a I’'usager (Abu-Hakima et al., 1998).

L’Institut pour les Technologies de I'Information (IIT) du Conseil National de
Recherche du Canada (CNRC) a développé un environnement de test pour évaluer deux
applications d’intégration des médias (SPIN). Nous avons déja présenté brieévement la
premiére “Seamless Messaging” (SM); la seconde concerne la gestion intelligente des
réseaux. Pour évaluer ces applications, ils ont mis en place un réseau local hétérogéne.
Ce réseau est composé de 30 ordinateurs personnels, un routeur SS7, un serveur CTI, une
station de base mobile, une antenne mobile pour I’accés au réseau LAN, une passerelle
ATM, une passerelle pour avertisseur, plusieurs téléphones (fixes, mobiles et cellulaires)
et ordinateurs mobiles. Un agent diagnostic réside sur chacun des médias et permet de
savoir si le média est en fonctionnement ou non.

Les agents sont appropriés pour le “Seamless Messaging”, parce que ce sont des
entités logicielles qui peuvent représenter I’usager, filtrer son information et, si quelque
chose d’important se produit, ils peuvent utiliser le réseau pour contacter I’usager et
’avertir. Avoir un agent qui représente I'usager est un paradigme plus pratique que
d’avoir un serveur centralisé qui fera plusieurs appels d’interfaces aux différents médias
présents dans le résean.

Le ACP de I'usager réside sur son ordinateur personnel. Il peut étre configuré par
téléphone ou en démarrant I’application de “Seamless Messaging” sur I’ordinateur. Il y a
cinq agents dans I’application de SM. Le premier surveille les messages qui arrivent et
les formate selon un standard. Le second est ACP; il suit un ensemble de régles que
I'usager spécifie quand il démarre I’application. Le troisiéme est I’agent secrétaire, il

collabore avec ’ACP quand le message est «contactez-moi». Sinon, il envoie



23
directement le message 4 1’agent chargé de la gestion du média concerné. L’agent

fournisseur de service remplit des services spécialisés (conversion de texte 3 voix, de
voix a texte). Quand I'usager ne peut étre joint, I’agent secrétaire envoie le message

a I'agent diagnostic qui I'enregistre dans une boite de messages universelle.

25.2 Commerce électronique

Tabican est une place de commerce €lectronique ol se négocie 1’achat et la vente
de billets d’avion et de chambres d’hotel. Batie sur la plate-forme Aglet, elle a été
congue pour accueillir des milliers d’agents. Les ressources systémes telles que les bases
de données sont accédées exclusivement par le serveur Tabican qui fonctionne comme
toutes les places de commerce électronique. Les vendeurs envoient leurs agents qui
rencontrent les agents des consommateurs et discutent des prix. Les agents des
promoteurs de voyage décrivent les voyages. Ceux des consommateurs contiennent
I’ensemble des spécifications de leurs propriétaires. Tabican gére une base de données
de types, appelée AMPM (Aglet Meeting Place Middleware) qui conserve 1’information
sur le type des messages échangés entre agents. Quand un agent arrive dans le systéme, il
obtient un protocole d’interaction de la base de données AMPM. 1l se sert ensuite de ce
protocole pour communiquer avec les autres agents. Ceci permet 2 des agents non
familiers développés indépendamment d’interagir. Le syst®me contient plusieurs places
d’échange. Les agents des consommateurs se proménent de place en place pour les
meilleures réductions. Le systéme contient des agents de publicité qui vont de place en
place signaler quand un nouveau produit est ajouté.

Mysimon.com [34] permet aux usagers de comparer les prix des marchands avant
de faire un achat sur I'Internet. 1I est considéré comme une application d’agents mobiles
parce qu’il envoie plusieurs agents mabiles (qui effectuent un seul déplacement) qui font
des recherches en parallele et reviennent avec les meilleures opportunités sur le produit.
Les agents peuvent étre entrainés a rechercher selon les habitudes de I'utilisateur, a la
maniére d’un agent virtuel d’apprentissage (Virtual Learning Agent).



24
Guideware™ permet de développer des applications d’affaires, d’automatisation

des ventes et de support 2 la clientéle. 1l est cit€é comme une application d’agents mobiles
dans plusieurs revues et sa page Web proclame qu'il utilise le paradigme d’agent
mobile. Toutefois, la documentation technique sur son implantation est introuvable.
Ceci peut étre d au fait que c’est une application pionniére dans le domaine des agents
mobiles.

2.5.3 Administration de systémes

Installer et maintenir des logiciels est ardu lorsque les machines sont
géographiquement éloignées et que leur nombre croit. Vu qu’il est souvent nécessaire
d’avoir une vue locale du systme afin de pouvoir résoudre le probléme, I’administrateur
doit se déplacer sur de grandes distances (ville, province, pays, continent). Les agents
mobiles simplifient cette tiche puisqu’ils peuvent se déplacer a ces nceuds et procéder a
des mises 2 jour périodiques.

Jumping Beans*” de Ad Astra Engineering permet 2 un administrateur de systéme
de gérer son réseau a distance. Leur produit permet de construire des agents mobiles qui
installeront et maintiendront les logiciels a distance. L’administrateur doit simplement
indiquer les logiciels a surveiller et 2 modifier.

Utiliser des agents mobiles pour la maintenance est principalement une question
de convenance dans le cas ol il s’agirait d’un Intranet. Toutefois, ceci est un avantage
important pour un vendeur de service par I’Internet qui doit distribuer et maintenir sans
interruption des services sur la machine de chaque usager pouvant étre en assez grand

nombre.

2.6  Systémes de mise & jour dynamique

Effectuer une mise a jour dynamique consiste 3 modifier tout ou partic d’une
application pendant que cette application est en cours d’exécution. Beaucoup de travail a

été fait sur les mises a jour dynamiques. Nous révisons les contributions les plus récentes



25
et examinons leurs propriétés. Les systémes logiciels de mises a jour dynamiques peuvent

étre classifiés en trois catégories : ceux qui demandent du support systéme, les langages

de programmation qui ont des capacités de remplacement dynamique et les

architectures logicieiles qui permettent 1’évolution dynamique du code. Les systémes
matériels de mise 2 jour dynamique sont basés sur des matériels redondants qui
fonctionnent en parallele durant un certain temps avant que le nouveau produit ne prenne
la charge exclusive. Nous commencons par réviser Erlang (Armstrong et al., 1996)
puisque c’est a partir du travail effectué sur ce langage que nous avons dérivé notre

solution Java.

2.6.1 Erlang

Erlang est un langage de programmation concurrent, symbolique et déclaratif
développé aux laboratoires Ericsson et Ellemtel 2 Alvsjé en Sudde. Son modéle de
concurrence est similaire au langage de spécification et description pour le comportement
des commutateurs de télécommunications nommé SDL (CCITT, 1999). Sa syntaxe
ressemble a celle de ML non typé (Wikstrom, 1987). Des inter-compilateurs Erlang 2
ASN.1 (ITU-T 1997) sont disponibles, ainsi que des interfaces pour le systéme X-
Windows. ASN.1 est un langage de description des types, standard pour décrire les
formats des données utilisés pour la spécification des protocoles de communication.

Erlang est utilisé pour implémenter des commutateurs de communication de
grandes tailles et les systémes temps réel de contrble tels gue les systémes de contrdle de
trafic aérien. I permet & un systéme d’opérer continuellement a travers des routines de
chargement dynamiques de code qui permettent de changer du code dans une application
en cours d’exécution. 11 est aussi possible d’avoir plusieurs versions du méme code qui
exécutent concurremment dans I’application. Les programmeurs désignent explicitement
quelles activités doivent étre représentées dans des processus paralleles. Toutes les
interactions entre processus se font par messages asynchrones puisque Erlang n’a pas de
mémoire partagée. Il est apparent qu’Erlang implémente un mini systéme d’exploitation
(un serveur de fichiers et une console sont disponibles).



26
Ces fonctionnalités de systdme d’exploitation limitent sa portabilité, le

programmeur doit assumer le fardeau d’écrire des ports pour les autres langages de

programmation. Erlang utilise des ports pour communiquer avec le monde extérieur.

De plus, les variables en Erlang ne peuvent &tre assignées qu’une seule fois, i.e. une
variable ne peut étre changée méme quand une nouvelle version du code est
dynamiquement chargée. Ces faiblesses couplées A la taille de distribution d’Erlang (12
Méga-Octets), joue contre son adoption comme piate-forme de choix dans le cadre d’une
architecture pour la mobilit€ des services indépendante du systéme et adaptable aux petits

moniteurs d’information (“palmtop”, t€léphone cellulaire, etc.).

2.6.2 Langages de programmations fonctionnels

Les langages de programmation fonctionnels modernes permettent des fonctions
de haut-ordre. Une fonction de haut-ordre est une fonction qui peut étre traitée comme
toute valeur courante dans un programme. Elle peut donc &tre conservée dans des
structures de données, passée en argument et retournée comme résultats. Les fonctions
peuvent donc étre appliquées a des portions de code différentes et étre baties a partir de la
composition d’autres fonctions. ML (fortement typé, premier langage a offrir les
fonctions polymorphiques), Lisp (Graham 1995) et Haskell sont trois exemples dans cette
catégorie. Malheureusement, les langages fonctionnels sont encore restreints a une niche.

2.6.3 Systéme d’évolution dynamique bas niveaux

Par bas-niveaux, nous indiguons les systémes qui demandent du support du
systéme d’exploitation, de la machine virtuelle ou du compilateur. Le statut de la plupart
des projets documentés est inconnu (Conic, Podus, Argus, etc.). La contribution active la
plus significative est celle de Malabarba et al. (2000) qui ont développé une machine
virtuelle Java qui permet des classes dynamiques. L’unité de changement est la classe.
Les objets sont changés de fagon assez transparente durant I’exécution. L’implantation
inclut une infrastructure pour la sécurité.



27
Une premiere limitation est que le programmeur ne peut choisir quel objet de la

classe doit étre mis 2 jour. Conséquemment, 1’état interne de tous les objets dynamiques
est perdu aprés chaque modification. Les auteurs ont aussi choisi délibérément de
permettre seulement une seule version active d’une classe par programme. Ce choix
est surprenant puisque 1’ajout de complexité due a la gestion de plusieurs versions est
largement compensée par le fait que la coexistence assure la continuité du programme.

Bien entendu, la solution souffre aussi du fait qu’elle n’est pas facilement portable.

2.6.4 Systémes d’évolution dynamique de haut niveau
Hjalmtysson et Gray (1997) ont développé des classes C++ dynamiques. L'unité

de changement ici aussi est la classe. IIs utilisent les templates C++ pour créer des
proxies de classes dynamiques qui servent de liens avec les classes réelles. Les proxies
dynamiques sont des classes abstraites pures. Pour permettre I’édition des liens 2
I'exécution, les méthodes sont appelées 2 travers une “jump” table qui est chargée au
démarrage du systéme. Aucun support systéme n'est nécessaire et plusieurs versions de la
méme classe peuvent étre actives au méme moment.

Toutefois, les developeurs ne peuvent choisir quels objets mettre a jour et
plusieurs versions de la méme classe peuvent &tre actives seulement parce que les
nouveaux objets refléterons toujours la derni¢re version de la classe. Les usagers ont le
choix entre garder tous les anciens objets ou les détruire tous (restriction non nécessaire).
La solution péche aussi par le fait qu’elle détruit 1'expressivité de I’héritage dans les
langages de programmation par objets. Plus concrétement, les sous-classes d’une classe
dynamique ne peuvent &tre utilisées 12 ol la classe dynamique devrait I’étre. Ceci annuie
une des raisons d’étre de la programmation orientée objet. Une solution médiocre est de
traiter toutes les classes dynamiques comme des classes finales. Ceci limite leur utilité.
De plus, les auteurs admettent que le comportement des méthodes statiques est inconnu.
Ceci est une inquiétude Iégitime puisque ce sont les auteurs qui ont développé les
mécanismes d’édition de liens tardifs.



28
Oreizy et al. (1998) présente une architecture d’évolution dynamique od les

programmes sont divisés en composants et communiquent a travers des connecteurs. Pour
supporter les changements dynamiques, les connecteurs peuvent diverger toutes les
communications destinées aux anciens composants vers les nouveaux. L'unité de
changement le composant est généralement grande puisque chaque composant est obligé
d’avoir une partie haute et une partie basse pour les communications (ports) dans les deux
sens. L’architecture est prometteuse pour les applications distribuées car elle permet des
changements dynamiques que ni CORBA, ni Microsoft COM n’offte.

Toutefois, la complexité des connecteurs est trop grande. En effet, les connecteurs
doivent garder les messages en file lors d’un changement et étre capable de défiler ces
messages lorsque deux composants sont reconnectés. Si les connecteurs ont un type, alors
changer le type du connecteur affecte tout le systéme. Par contre, s’ils n’ont pas de type
on doit reconstituer leur représentation  partir d’une base abstraite sur laquelle tous les
composants sont d’accord, augmentant ainsi les dépendances inter-composants. Drastic
de Evans et Dickman (1999) utilise des mécanismes similaires

2.7  Synthése des problémes

Les applications mobiles complétent les autres techniques de programmation en
ajoutant beaucoup de flexibilité aux systémes. Elles simplifient des architectures comme
celles des serveurs extensibles, oll un agent peut représenter un service et étre ajoutés au
serveur sans qu’on ait besoin d’interrompre le serveur. Il est ainsi possible de contrdler la
visibilité de ce service; différents usagers peuvent donc se créer des ensembles
quelconques de service sans interrelation.

Les autres arguments en faveur du paradigme agent n’ont pas encore pu étre
indiscutablement établis. Les mesures provenant des expérimentations sont non
concluantes, a cause de différents facteurs : durée de I’expérience, taille de 1'expérience,
etc. Pour assombrir encore plus le tableau, les réseaux sont maintenant dotés de bandes
passantes de plus en plus grandes ; les arguments de performance sont donc repoussés a
Pextréme du spectre. De nombreux autres problemes empéchent le paradigme agent de



29
se populariser, notamment les problémes de communication entre agents et la

maintenance des agents.
Les difficultés spécifiques des agents intelligents sont similaires a celles de
I'Intelligence Artificielle : partage des connaissances, ontologies et communications,
entre autres. Plusieurs applications sont développées et qualifies applications multi-
agents. Cependant, aprés un examen approfondi, on s’apergoit que ces systémes utilisent
plusieurs agents uniquement pour augmenter la rapidité, la fiabilité (redondance), la
vitesse et \'efficacité de I'application. Un systéme est accepté comme un systéme multi-
agent si l'utilisation séquentielle d’un seul agent ne permet pas d’obtenir les mémes
résultats. La raison d’étre d’un systéme multi-agent est que I'interaction des agents
augmente globalement I’efficacité du systéme et lui permet d’accomplir des tiches non
réalisables autrement. Autrement dit, I’ensemble doit étre plus grand que la somme de
ses parties. Objectivement, peu d’applications multi-agents ont déja été€ développées et a
notre connaissance aucune application multi-agent ouverte n’a encore vu le jour.

Les difficultés spécifiques des agents mobiles sont liées en général au manque de
normalisation. Le déploiement des applications mobiles a souffert du manque
d’environnement d’exécution et d’hébergement pour agents. Heureusement, la présence
de ORBs et d'une machine virtuelle Java dans chaque fureteur (Mosaic, Netscape, LE.),
pourrait combler ce vide pourvu que des interfaces ou plugiciels pour code mobile soient
développés.

Malgré ces difficultés, de plus en plus d’applications mobiles sont développées.
Ceci méne 2 un développement en spirale ol les standards, les systémes et les
applications sont tour 2 tour développés et améliorés. Dans la mesure qu’ils permettent
de résoudre plusieurs problémes différents de fagon uniforme, les agents devraient
s’imposer comme un modele incontournable.

Des applications ambitieuses comme “Seamless Messaging” et Téléphone
Intelligent (qui sera constitué d’un ensemble d’agents préprogrammés) sont congus pour
fonctionner avec des agents. 11 est certain que ces applications seront en fonctionnement
dans un futur proche. La grande emeur de la communauté des agents mobiles a ét€ de



30
trop se concentrer sur des questions techniques comme la migration partielle ou le

transfert des processus. Il aurait été bénéfique de consacrer plus de temps & batir des
applications utiles qui auraient servi a populariser le paradigme.

Les agents mobiles sont actuellement utilisés pour accomplir des tiches
répétitives et limitées. 11 est quelques fois nécessaire d’augmenter les capacités de I’agent
pour qu’il puisse réaliser plus de tiches. Les techniques de programmation orienté-objet
imposent que I’agent implante ou modifie une interface particulitre. Les agents
intelligents peuvent apprendre de nouvelles situations ou leur base de connaissances peut
étre enrichie. En effet, les agents mobiles peuvent obtenir plus d’autonomie en
s’inspirant des systémes a base de connaissances. Cette synergie potentielle justifie une
nouvelle méthodologie de développement des agents mobiles : commencer avec un
prototype qui démontre les avantages de la mobilité et progressivement ajouter de
Iintelligence dans ce prototype.

L’avenir est donc prometteur. Des technologies comme CORBA, XML et Java
servlets s’intégrent bien avec les agents. CORBA mobile est déja une réalité
(www.jumpingbeans.com). Les agents mobiles gagneraient a intégrer les méthodes
utilisées pour développer les agents intelligents. Les capacités d’un agent mobile peuvent
notamment étre améliorées s’il est capable d’apprentissage. Les agents mobiles peuvent
ainsi étre congus pour avoir beaucoup plus d’autonomie.

Les techniques de mise a jour dynamique présentes dans la littérature ne sont pas
satisfaisantes dans la perpective de la mise & jour dynamique d’un agent. Les problémes
proviennent notamment des dépendances avec une plate-forme particuliére et du manque
de flexibilité et de contrble des systémes repertoriés. Il sera donc nécessaire de trouver
une solution aussi générique que possible (on devra servir plusieurs types différents de
services), qui ne nécessite aucun support du systéme (en clair, une librairie), et qui
occupe aussi peu d’espace mémoire que possible, ceci dans la perspective de la mise a
jour sur les moniteurs PDA. Puisqu’elle sera congue indépendamment des services, cette
solution sera alors applicable A n’importe quel logiciel informatique, peu importe son
modele (distribué, statique, agent mobiles, etc.).



31



32

CHAPITRE III

MODELISATION D’UNE ARCHITECTURE
D’AGENT MOBILE POUR SERVICES

Un agent mobile pour services (AMS) est un médiateur qui coordonne et
transporte des services auxquels 1'usager s’est abonné. L’agent peut transporter les codes
exécutables des services ou seulement des pointeurs aux codes. Une architecture
générique et extensible est essentielle pour un tel agent puisqu’il peut contenir un grand
nombre de services divers. De plus, cet agent doit tre congu pour supporter un ensemble
augmentable d’opérations. Ce chapitre traite de la modélisation d’une architecture
d’agent mobile pour service. Pour commencer, nous examinons les propriétés que doit
avoir notre architecture et énumérons les caractéristiques des AMS que cette architecture
devrait permettre de créer. Nous présentons ensuite notre architecture, ses composantes et
leurs interfaces. Par la suite, nous détaillons un AMS générique en précisant ses
opérations de base, ses patrons de design, son modele architectural, son encapsulation des
connaissances qui lui permet de coordonner ses services. Pour finir, nous présentons une
implantation de notre architecture et indiquons des directions a explorer pour améliorer

notre implantation.

3.1 Caractéristiques de ’architecture de service et de ’AMS

L’architecture de service que nous proposons est une version modifiée de celles
proposées par Glitho et al. (2000), spécifiant un AMS par service ou un AMS unique
pour tous les services. Notre architecture propose un AMS par classe de services. L’AMS
peut alors étre congu spécialement pour des services de téléphonie ou pour des services
non reliés a la téléphonie. Dans ces groupes, il peut méme cibler des classes de services
particuliéres (outgoing call screening, incoming call screening). De plus, nous

introduisons ici une analyse pour la communication inter-agent dans un tel contexte. Pour



finir, I’effort décrit ici est la premiére implémentation connue d’'un AMS. Glitho et al.

(Infocom 2000) détaillent le concept et ses possibilités. La pratique nous a permis de
compléter la description du concept, d’y apporter certaines corrections et de le
valider.

Une architecture adéquate pour la mobilité des services doit prendre en compte
I'ensemble des contraintes inhérentes a la provision de services dans un environnement
distribué. En plus de la mobilité des services, le systéme doit notamment permettre :

® 2 ['usager de souscrire ou d’annuler des abonnements & un nombre extensible de

services ;

o de configurer des AMS dédiés pour des classes de services précises ;

e d’assurer un délai minimal entre 1’abonnement et la provision du service sur le

terminal de 1’usager ou au nceud du réseau ;

o de gérer le profil de chaque usager (abonnements, AMSs associés a cet usager) ;

e la création et I’ajout dynamique de services dans le systéme ;

e d’assurer la maintenance a distance des services coordonnés par un AMS donné.

Généralement, les usagers souscrivent 2 des services ou les annulent de fagon trés
dynamique. Il est donc nécessaire de répartir les fonctionnalités du systéme entre divers
blocs qui accomplissent leur tiche particuliére de fagon optimale. Ces blocs sont intégrés
lors de la réalisation de chaque transaction. Cette approche augmente la performance du
systéme et sa fiabilité. En effet, puisque les blocs ne forment des liens que lors du
traitement d’une requéte, chaque bloc continuera a opérer indépendamment des autres si
un ou plusieurs blocs ne sont pas disponibles (panne, faute matérietle, etc.).

Les principales fonctionnalités du systéme sont : I’ajout et la création de services,
la publication de ces services, la gestion des abonnements (profil usager, etc.), la création
et la maintenance des AMS. Ces fonctionnalités peuvent donc étre reparties comme suit

® une unité de création de services (UCS) ;

o une unité de gestion du systéme (UGS) qui se chargera de la gestion des usagers,

de la création des AMS et de leur maintenance ;

o upe unité de publication des services (UPS).

33



M
L’unité de création des services intégre un environnement pour la création des

services, un serveur de fichiers et une base de données de services. L'unité de gestion des

usagers se charge de la création des AMS car ceux-ci sont assemblés différemment

selon les préférences de I'usager. Théoriquement, la création des AMS aurait pu étre
assurée dans une autre unité. Toutefois, pour tirer profit de la localité des données sur
I’'usager qui est indispensable pour modeliser I’intelligence qui sera fournie au AMS,
nous avons préféré regrouper ces fonctionnalités dans le méme bloc. L’unité de
publication des services utilise une interface usager par laquelle les abonnés souscrivent

aux services. Elle transmet les requétes & 1’unité de gestion des usagers.

3.1.1 Architecture de I'’AMS

L’AMS doit permettre 2 I’usager de démarrer localement tout service auquel il a
souscrit. Il doit aussi lui permettre d’arréter et de déplacer ces services. Pour accomplir
ces tiches, il doit offrir une interface usager par laquelle I'usager interagira avec les
services. En fait, I’AMS doit étre congu de sorte que I'usager ne percoive aucune
différence entre ses services et des programmes locaux. L’usager n’est donc pas supposé
savoir que les services sont coordonnés par un AMS. De plus, I’AMS doit prévoir des
mécanismes pour la mise & jour dynamique du code. Il doit donc implanter des interfaces
ou supporter un langage et une ontologie définis pour le transfert et la sauvegarde de
données personnalisées (éventuellement modifiées par 1'usager) relatives a chaque
service. Il doit étre congu de maniére a pouvoir transférer et exécuter du code distant.

La mise a jour dynamique du code est basée sur I'héritage de classes abstraites.
L’AMS se constituera en libraire pour cette opération. Les primitives du systéme
d’exploitation ne pourront pas étre utilisées.

L’architecture de I’AMS doit aussi prévoir la seconde stratégie de maintenance
des services, celles de I’échange d’agent (un agent contenant les anciens et nouveaux
services vient remplacer 1’ancien agent qui contenait seulement les anciens services). Il
doit opérer indépendamment de la plate-forme pour agents mobiles qu’il utilise. Ceci
assure sa portabilité.



35
L’AMS utilisera un langage de communication inter-agent (KQML) et implante

Pontologie (Ontologie-AMS) définie pour cette application. L'AMS définira une
politique d’accés aux ressources pour chaque service afin d’offrir une sécurité
minimale durant |’exécution desdits services.

De fagon générale, I'AMS sera composé des codes des services (ou pointeurs au
code) et de I'intelligence (logique d’invocation) pour démarrer et coordonner ses services
(données personnalisées). Les problémes sur lesquels cette maitrise s’attarde sont: la
définition de I'architecture et la maintenance des services. Des exigences pour des
stratégies €laborées sur 1’authentification de I' AMS et sa sécurité seront formulées dans
le cadre de recherches futures. Comme pour toute application distribuée, la sécurité est

une question cruciale qui doit étre aussi prise en compte.

3.2  Architecture des unités du systéme

Les unités du systéme que nous examinons ici sont : I'UGS, I'UPS (dans notre
implémentation, un serveur Web) et I’'UCS. Ces serveurs interagissent pour la provision
de services a I’usager. Une implémentation typique du systéme est présentée a la Figure
3.l

Chaque usager est attaché 2 une seule et unique UGS. Les UPS savent quel UGS
correspond a chaque usager et lui transmettent I’information relative a cet usager
(abonnements, etc.). A la Figure 3.1, 'usager se connecte 3 une UPS. Celle-ci propage
I’information relative a I’'usager A son UGS (abonnements, identification, adresse de la
machine). L’'UGS envoie un AMS 2 la machine cible ol A un noeud du résean dans le cas
de service de téléphonie. Chaque UCS informe un UGS quand un nouveau service est
ajouté dans sa base. Les unités UGS, UPS et UCS contiennent des serveurs qui sont

répliqués. Cependant, aucune paire de ces unités (deux UPS, UGS, UCS) n’est identique.



Noeud du

Figure 3.1 Architecture de service par agent

3.2.1 Interface UCS-UGS

Quand un nouveaun service est ajouté au systéme, ’'UCS concernée ouvre une
connexion TCP/IP (protocole HTTP) avec une UGS et I'informe de 1’ajout du service.
Durant la connexion, I'UCS transmet son identification (localisation), le nom du service
qui a ét€ ajouté, la liste des fichiers du service, le point d’entrée du service (parmi tous les
fichiers) et le nombre de parametres obligatoires a I’invocation. Les paramétres de départ
sont des chaines de caractéres. Cette information est alors répliquée atomiquement dans
les autres UGS.

Le protocole HTTP version 1.1 est utilisé pour démarrer, arréter la connexion et
spécifier la taille de I'information transmise. L’entéte d’une connexion ressemble

typiquement 2 I’entéte présentée i la Figure 3.2.

36



37

HTTP/1.1 200 OK

Date: Fri, 30 Oct 1998 13:19:41 GMT

Server: Apache/1.3.3 (Unix)

Last-Modified: Mon, 29 Jun 1998 02:28:12 GMT
Content-Length: 1040

Content-Type: text/AMS

Figure 3.2 Entéte HTTP

Le champ “content-length” donne la longueur de la chaine de caractére qui décrit
le service. Cette chaine est formatée comme suit : la premiére ligne contient I’adresse de
I'UCS; la seconde ligne conserve le nom du service; la troisiéme ligne donne la liste des
fichiers du service; la quatrieme ligne indique le point d’entrée du service; la cinquieéme

ligne donne le nombre de paramétres de démarrage. La figure 3.3 en est une illustration.

Location: 142.133.XX.XXX \n

Service: Meeting Planner \n

Files: MobileAgent.Secretary.Assistant.class Filel.txt etc. \n
Entry Point: MobileAgent.Secretary.Assistant.class \n
Starting_Parameters: 2 \n \n

Figure 3.3 Format de description de I’ajout d’un nouveau service

L’interaction entre I'UCS et I'UGS pour I’ajout d’un service est décrite a la Figure 3.4.

UscC uGs
i ownrmcncw
serveurs
Connecter Socket client >
Envel Entete
c d
Envoi descrigtion sarvice >
Envoi confumation
-
lF«m.rSocm

Figure 3.4 Interaction UCS-UGS pour I’ajout d’un nouveau service



38
L'UGS accepte des connexions avec I’'UCS au port 5000. A I’ajout d’un nouveaun

service, I'UCS ouvre une connexion HTTP avec le premier UGS disponible. Cette UGS
propage !'information aux UGS miroirs comme |’illustre la Figure 3.5.

Figure 3.5 Ajout d’un nouveau service

3.22 Interface UGS-UPS
Chaque UPS posséde I'adresse de toutes les UGS et chaque UGS a aussi |’adresse

de toutes les UPS. Quand une UPS veut informer une UGS d’une nouvelle souscription,
il contacte I'UGS 2 laquelle I'usager est attaché. Des schémas alternatifs seraient que les
usagers soient assignés aux UGS en ordre alphabétique ou par localisation géographique.
Dans le premier cas, les abonnés dont le nom commence par une lettre comprise entre A
et D sont assignés a 1'UGS, ; ceux entre E et H sont confiés 4 I'UGS,, et ainsi de suite. La
Figure 3.6 illustre I'interface UPS-UGS.

Liste des services disponibles
™ ups
UGS {Serveur
< Web)
Selections de f'usager

Figure 3.6 Interface UPS-UGS



39
L'UPS se sert de I'identification de 1'abonné pour déterminer son UGS. Les deux

unités communiquent 2 I’aide du protocole HTTP. Pour I'instant, ils utilisent les mémes
champs d'en-téte que I'interface UGS-UCS. L’information échangée est aussi
formatée de la méme fagon. Le contenu est toutefois différent. Il suit le format
présenté 2 la Figure 3.7.

Location: 142.133.XX.XXX \n

User_ID: Identification_de_l'usager \n
Requested_Services: Servicel Servicez \n
Target_Location: Ou_Envoyer AMS \n\n

Figure 3.7 Information transmise lors d’un abonnement

Le champ Target_Location est optionnel. Lorsqu’il est omis, le défaut est la
machine actuelle de I'usager ou, pour certains AMS, le neeud du réseau ol les services de

téléphonie de cet usager doivent résider.

3.2.3 Architecturede I’'UGS

L'UGS est un serveur “multithread” qui supporte plusieurs connexions HTTP
concurrentes. C’est un serveur orienté objet qui implémente le modéle de la composition
des classes. L’UGS
e maintient des bases de données d’abonnés et leurs services, gére un sous-ensemble
des abonnés ;

e propage I’'information sur I’ajout d’un service aux autres UGS ;

o crée des AMS et construit I'intelligence qui leur est nécessaire pour transférer et
exécuter les services ;

¢ informe les UPS de [’ajout de nouveaux services.

Nous présentons d’abord le protocole de communication que le SMU utilise.
Nous regardons ensuite la création d’un AMS. Finalement, nous présentons les

mécanismes en place pour assurer la sécurité et Ia fiabilité de I'UGS.



40
Protocole de communication

L'UGS communique par connexions sockets et implante le protocole HTTP. Les
ports 5000 et 7000 sont respectivement réservés pour les communications avec
I'UCS et I'UPS. Dans le cas oll ces ports seraient utilisés, on peut communiquer

avec I'UGS par le port 5000. Il ouvrira alors une connexion avec le client au port

convenu.

Création de ’'AMS

Dans le cas le plus simple, le systéme est composé d’une UGS, d’une UPS, d’une
UCS, d’une machine cible et d’'une machine client. L’ AMS est envoyé a la machine cible
ou i un nceud du réseau selon les paramétres de configuration de I'UGS. La machine
cible ou le nceud du réseau doit avoir un environnement d’exécution pour agents mobiles.
L’interaction la plus simple pour la création d’un AMS est montrée a la Figure 3.8.
1. L’usager se connecte a I'UPS et s’abonne a des services;
2. L'UPS contacte I’'UGS appropriée et lui passe la liste des services et I'adresse de

destination de I'AMS;

3. L'AMS est envoyé a la machine cible qui peut étre la méme que la machine client.

uGs T —— UPS

@

Machine Machine
Citie Client

Figure 3.8 Interaction pour la création de PAMS



41
La classe principale de 1'AMS est une des composantes de I’'UGS. Cette classe est

un réservoir de connaissances et contient I'intelligence de I'AMS. L’AMS est créé en
assemblant son intelligence et la liste des pointeurs aux services. L’UGS crée une
instance de I'AMS et lui passe I'intelligence pour la gestion des services. Cette
intelligence permet & I’ AMS de charger, démarrer et arréter chacun de ses services.
A ce stade de I'implantation, les actions intelligentes de I’ AMS sont :
e mettre & jour les services lorsque I’abonné change ses souscriptions ;
o offrir un menu personnalisé pour le démarrage de chaque service ;
e sauvegarder les données personnalisées de I’'usager, relatives a chaque service et les
maintenir 2 travers les versions.
L’AMS peut prendre le code des services avant de se rendre sur la machine cible,
ou il peut les charger sélectivement & son arrivée. La stratégie adoptée dépendra de
I’espace disponible sur cette machine cible. Ceci est critique pour les moniteurs tels les

“palmtop” et autres appareils dont les processeurs et I’espace de stockage sont limités.

Fiabilité et sécurité
La liste des services disponibles est la méme dans toutes les UGS. Les UGS sont

toutefois différentes car I’information relative & un abonné est conservée a une seule et
unique UGS. Une UGS qui gére un sous-ensemble d’usagers peut &tre répliquée. Cette
redondance augmente la fiabilité du systtme. Ces unités répliquées peuvent étre
dispersées géographiquement pour réaliser une couverture efficace. Les autres données
disponibles 2 une UGS sont répliquées 2 tous les autres UGS. Les mises a jour entre
USGs doivent étre atomiques. Comme [’illustre la Figure 3.9, la liste des services
disponibles est échangée entre groupes repliqués d’UGS.

Les communications avec 1'UGS sont encodées. Une voie intéressante serait
d’utiliser SHTTP (Secure-HTPP). Malheureusement, les développements du protocole et
son adoption comme standard sont actuellement arrétés. Toutefois, 1’objectif demeure
d’implanter une solution semblable a SSL (Secure Socket Layer).



42

Liste des servicas disponibles
« >
: i i
? ugs ugs UgS
e Il K
y t i y
UGS Le- -»ues;| <q{Y8S
J 3 : J Y 4
(7 Y A 4 Y
2 ey <[ UGS utfs -
i3 x
3 3 3 . :
uGs uGgs’
f : > P € N W
a
9
% A.C L.O P..R w.2Z2
/5]
Différentes UGSs

Figure 3.9 Réplication d’UGS pour un sous-groupe d’usagers

3.2.4 Architecture de I’'UCS

L'UCS offre un environnement de développement des services (EDS). Cet
environnement doit étre utilisé pour simuler 1'exécution des services avant qu'ils ne
soient transportés par un AMS. L’UCS est aussi constitué d’une base de services qui
conserve le code exécutable des services développés dans I'EDS. Le dernier composant
de "UCS est un serveur de fichiers basé sur ie protocole HTTP, qui transmet les fichiers
disponibles dans la base de service, & travers le réseau aux AMSs. Les fichiers dans la
base de services sont divisés selon les services auxquels ils appartiennent.

L’EDS est essentiellement constitué d’une collection de librairies Java (pour
tester les services) et d’un guide de programmation pour la construction des services. En
effet, les services qui seront transportés par un AMS doivent &tre autosuffisants, c'est a
dire nn service pe peut en invoquer un autre et les interactions inter-services sont

interdites. L’ AMS constitue le lien qui permet d’assembler les services en un ensemble



43
cohérent. Cette exigence permet d’éliminer les dépendances inter-services et inter-

fonctionnalités. Les usagers sont donc libres de souscrire & un ensemble arbitraire de
services, sans que la présence de I’'un n’impose celle de 1'autre.

Ces restrictions favorisent un meilleur modele de programmation, avec une
séparation effective des tiches entre services. Elles contraignent aussi une certaine
spécialisation : a chaque fonctionnalité précise doit correspondre un service indépendant.
Ceci est particuliérement vrai dans le contexte des réseaux intelligents, ol les faiblesses
du systéme proviennent des dépendances qui se créent entre services (Yin et al., 1993).
Qui plus est, le nombre de services qu’on ajoute au réseau (transfert d’appel, etc.) va
grandissant complexifiant toujours plus la gestion des services et de leurs interactions
(Jackson et al., 1998). Le remodelage des anciennes fonctionnalités pour accommoder les
nouvelles n’est pas une bonne option en pratique.

Les restrictions imposées sur les services sont destinées a faciliter leur
maintenance et 3 augmenter la productivité de leur interaction. La complexité des

décisions relatives a leur fonctionnement est localisée dans I' AMS.

3.3  Architecture de I’Agent Mobile pour Services
L’AMS est caractérisé par I’ensemble des opérations qu'il supporte. I doit
notamment :
e charger le code des services ;
e démarrer ses services 2 la demande ;
o se déplacer sur demande de 1’usager ;
e permettre la mise a jour dynamique (sans interruption) de ses services ;
e étre remplagable ;
e prévoir des mécanismes de recouvrement de fautes et de sécurité pour ses services.
En plus des opérations spécifiques listées plus haut, I’AMS doit disposer de
fonctions de base nécessaires pour évoluer dans une société d’agents, A savoir langage et

ontologie, sécurité et tolérance aux fautes. Nous traiterons donc des fonctions de base de



4
I'’AMS dans la section 3.3.2. Dans la section 3.3.3, nous donnons les directives pour le

chargement et le démarrage des services. Finalement, dans la section 3.3.4, nous
définissons le cadre logiciel nécessaire pour la gestion des services. Nous
n’aborderons pas ici les questions de remplacement de 1’AMS et de sa mise a jour
dynamique. Ces sujets sont putdt traités aux chapitre quatre et cinq. Pour commencer,

examinons I'évolution de I’AMS dans le temps.

3.3.1 Evolution de 'AMS

Le diagramme d’état permet de retracer I'évolution temporelle de I’AMS ainsi
que ses réactions aux influx externes (choix de I’usager, appel de procédure a distance,
dialogue inter-agent). La Figure 3.10 présente le diagramme d’état de I’AMS. On y
retrace ses possibles interactions et son évolution depuis sa création a I'UGS, la provision
de services au nceud de destination, ses futurs déplacements, son remplacement et sa mise
a jour éventuelle.

L’analyse du diagramme d’état permet de remarquer les interactions de I’AMS
avec I'extérieur. Il enregistre les données personnalisées de I'usager sur disque. I
converse avec le nouvel AMS pour s’entendre sur les stratégies de remplacement dans le
cas d’une mise 2 jour. I converse avec un agent de mise a jour dans le cas ol le
renouvellement doit étre dynamique. Celui-ci lui passe alors |'information pour charger
les nouvelles versions ou classes des services ciblés. Alternativement, il peut aussi étre
invoqué par appel de méthode 2 distance.

L’AMS offre un menu qui permet 3 l'usager de sélectionner les services a
démarrer. L’ AMS n’exerce aucun contrile subséquent sur ces services. Sa seule action
possible est d’arréter leur exécution. Le méme menu permet a Iutilisateur de décider s’il
veut relocaliser ses services. Il entre alors la machine de destination et I’AMS déplace

son clone.



45

]
Echec
o)
oK

Gérer
Sécurité

[ Menu Principal AMS A 6

Déplacer
nalisées,
' Pour chaque Lancer un thread 'enregistrer pou
L setvice d'execution activation future

— J

Figure 3.10 Diagramme d’état de ’AMS

3.3.2 Langage, ontologie, mobilité, sécurité et fiabilité

L’implantation des cinq fonctionnalités subira des petites variations selon la plate-
forme pour agents mobiles utilisée. Leurs spécifications ici prennent donc soin de limiter
les dépendances 2 la plate-forme de maniére 2 augmenter la portabilité et la réutilisabilité
de toute implémentation. Les spécifications indiquent aussi qu’il ne devrait pas exister
d’interdépendance entre ces fonctionnalités. Elles sont donc réparties sur cinq couches

(une couche par propriét€) indépendantes les unes des autres.



46
Langage

L’AMS communique en KQML de UMBC (University of Maryland at Baltimore
County) et utilise la librairic Java KQML (JKQOML) développée par IBM
AlphaWorks (voir site JXOML). JKOML a été choisie parce que I’implantation

FIPA-ACL de Nortel Networks demande plus de support machine. De plus, nous ne
disposions pas de référence d’implantation réussie en FIPA-ACL qui n’est disponible que
pour les machines Unix. Son installation nécessite des priviléges d’administrateur.

Les primitives du langage (performatives) supportées par JKOML sont facilement
compréhensibles (stop, tell, move, etc.). De plus le format des messages est basé sur la
logique des prédicats. La proposition de Labrou et al. (1996) pour le nouveau format des
messages permet d’étendre le format KQML pour les besoins d’une application précise.
- JKOML permet d’adresser des messages synchrones et asynchrones. Une requéte pour le
transfert des données personnalisées par 1’usager s’écrit par exemple comme indiqué a la
Figure 3.11.

try{
msg.setPerformative(KQML.TELL) ;
msg.setSender(this.getAddress()) ;
msg.setReceiver(adresse_de_agent_a_contacter) ;
msg.setOntology(MSA_Service_Ontology) ;
msg.setLanguage(« KQML ») ;
msg.setContent(«Passer donnees personnelles sous format
Service : nom_service
Donnees : options modifiees
dans la reponse ») ;
msg.setIiRT(none) / IRT =In Reply To
}catch (Exception e) {

!

Figure 3.11 Envoi de messages KQML



47
Il suffit d’installer un gestionnaire KQML a chacun des hdtes pour qu'il

transmette les messages a 1’agent. Concrétement, un message a le format présenté a la
Figure 3.12.

( achieve // pourrait étre tell, send, find, etc.
:sender demandeur
‘receiver destination
:reply —with id_personnelle
:language LISP // pourrait étre Java ou Scheme
:ontology MSA_Service
:content chaine_de_caractére_décrivant_le_contenu_spécifique_du_message )

Figure 3.12 Format du message envoyé selon le protocole KQML

Ontologie

Modéliser une ontologie, c’est essayer d’établir une base formelle et concise pour
la communication, le partage de connaissances et I’interprétation de messages dans un
domaine précis. La premiére exigence est de s’assurer de la cohérence (non-ambiguité)
du formalisme. On doit donc prouver cette cohérence en utilisant une logique précise
(prédicats du premier ordre le plus souvent) et en se basant sur des axiomes connus
(axiomes de la logique cartésienne généralement). 11 faut aussi définir le format du
langage et fournir un premier dictionnaire de termes pour le domaine d’application ciblé.

Nous avons survolé les considérations théoriques pour définir une ontologie
restreinte, limitée a la communication inter-AMSs et AMS-agent de mise a jour. Cette
ontologie est un sous-ensemble de KIF (voir site KIF Specification) qui est une ontologie
générale jouant le rile de médium entre deux ontologies traitant de sujets différents. KIF
a été choisi & cause de I'existence d’un analyseur de texte KIF a Java : Java KIF Parser
(JKP), disponible gratuitement (voir site JKP). Une fois que la chaine KIF a €&té
transformée en objet Java, on utilise Xerces (anciennement XML To Java de IBM
AlphaWorks) de Apache.org pour obtenir une représentation XML du contenu du



48
message. L’AMS peut donc communiquer avec des agents provenant de vendeurs

quelconques. Ceci est possible parce que KIF est indépendant du langage naturel utilisé
(frangais, anglais, bamiléké, etc.). Une bonne référence sur la modélisation
d’ontologie est le document de Gruber (1993).
Un dialogue KIF référant & une quantité physique quelconque est encodé comme
illustré 2 la Figure 3.13. 11 y manque notamment {'unit¢ de mesure de la quantité
physique ainsi que d’autres paramétres.

(defrelation QUANTITE-PHYSIQUE
( © (QUANTITE-PHYSIQUE 1q)
( et (définie (magnitude de I'unité 7q) )
(magnitude(magnitude de I'unité ?q) )
.... {/ plusieurs autres lignes pour s’assurer de la cohérence de |'énoncé

Figure 3.13 Exemple d’une formulation simple en KIF

Dans le contexte de I'AMS, les agents communiquent par exemple pour
s’échanger des données modifiées par I'usager comme illustré a la Figure 3.14.

ler agent (interested service ‘(service , ?servicel, 7service2, service3))
2e agent (servicel modif1 paramaters)

>(service2 x) > 8

etc.

Figure 3.14 Echange de renseignements sur un service

Le nouvel AMS demande de I’information sur les services 1, 2 et 3. L’ancien lui
dit que le servicel doit étre invoqué avec les paramétres modifiés (parameters). Le
service 2 doit étre invoqué avec des valeurs supérieures & huit. Ce sont ici des exemples
simples. Nous nous sommes limités & ces messages simples pour notre premiére
implémentation. Bien que 1’apprentissage soit pénible, il est préférable d’implanter des

agents qui peuvent converser dans une ontologie précise. Il n’est pas toujours facile



49
d’exprimer toutes les relations (combien de fonctions faudrait-il prévoir pour les cas ol

les valeurs sont supérieures, inférieures et modifiées). De plus, des logiciels gratuits pour
I’analyse de texte sont disponibles (voir site XML-JAVA et JKP).

Mobilité, sécurité et fiabilité

La mobilité est pourvue par la plate-forme pour agents mobiles. Toutefois, dans le
cadre de notre application, nous avons modifié la couche Transport de Voyager pour
accélérer le transfert de données et du code objet de certains fichiers quand I'AMS se
déplagait. Ceci n’est théoriquement pas nécessaire et n’a été fait que parce que nous
avons remarqué des fautes dont nous ne pouvions retracer 1’origine.

L’AMS implante les mécanismes d’authentification disponibles par I’interface
Java.Security.* de JDK1.2.2. Malheureusement, nous n’avons pas pu les tester
extensivement, manquant de temps et €tant limité a notre laboratoire pour I’implantation.
Des outils existent aussi en Java pour le codage et le décodage de données (MDS, SHA).
Le design de I’AMS a été fait pour utiliser ces classes suivant I'usage qui en a été fait
pour les communications UCS-UGS. Toutefois, ces classes n’ont pas été utilisées; I'UCS
et UGS les utilisent de fagon simpliste sur de faibles quantités de données. Des erreurs
surprenantes ont émergé lors de I’encodage et du décodage des fichiers objets.

En effet, le premier design prévoyait qu'on chargeait les fichiers objets des
services, les encryptait, puis on les enregistrait sur le disque. Ceci avait trois bénéfices :
robustesse, rapidité et sécurité. L’usager ne pouvait utiliser directement les services
puisqu’ils étaient codés et seul I’AMS avait la clé (sécurité). En cas de panne de la
machine, I'AMS n’avait pas a recharger les fichiers des services (robustesse). Quand un
nouvel agent venait remplacer 1’ancien, il n’avait pas a recharger les services 2 son tour.
1l suffisait que I’ancien lui passe la clé de codage (rapidit€). Nous avons abandonné cette
voie quand nous nous sommes rendus compte qu’aprés avoir codé et décodé des services,
il se produisait des erreurs au moment de 1'édition de liens dynamiques par I'interface
ClassLoader de Java.



50
La fiabilité est basée sur I'interface Activation de Voyager. Cette interface permet

de rendre un objet persistant. L’état de !'objet (variables et constantes) est enregistré dans

un fichier. Plus tard dans le programme, on invoque cet objet et indique la

localisation pour I’activer. L’objet correspondant est reconstitué. On n’a donc pas 4
renvoyer I’AMS 2 la machine de I'usager aprés chaque redémarrage de I’ordinateur. Une
fois envoyé, 1'objet s’enregistre pour activation. Le probléme est qu'il faut écrire une
routine pour réactiver 1'objet. Nous avons contourné cette difficulté en faisant en sorte
que I'’AMS enregistre Voyager comme un service avec I'’AMS comme extension sur
chaque machine. On s’est servi de 1'utilitaire srvany.exe (disponible sur toute machine
Windows NT 4.0) pour y parvenir. Cet utilitaire met  jour les registres de Windows pour
opérer. Cette solution n’est donc pas pratique pour un contexte d’utilisation réel. Lors du
déplacement de I’agent, un clone est d’abord envoyé. Lorsqu’il arrive 2 destination, il en
informe 1’AMS original. Celui-ci s’auto-détruit alors. 11 est donc rare qu’on perde un

agent au cours d’un déplacement.

3.3.3 Chargement et démarrage des services

L’AMS transfere les services des UCS en ouvrant une connexion socket avec
I'UCS. 11 utilise le protocole HTTP pour le transfert des fichiers. N’ importe quel langage
qui permet une édition des liens dynamiques (Oberon, LISP, Smalltalk, etc.) au moment
de I’exécution du code peut étre utilisé pour alors charger et exécuter les services. Notre
implémentation s’est faite en Java. Les exemples sont des extraits simplifiés de notre
code. L'interface ClassLoader (Figure 3.15) de Java permet de charger et d’exécuter
n’importe lequel des fichiers objets i distance.

public abstract class ClassLoader {
public Class loadClass(String name);
protected Class findClass(String name);

Figure 3.15 ClassLoader JDK 1.2.2



51

On se sert donc de cette interface pour charger et procéder a la résolution
dynamique des liens des services comme illustré a la Figure 3.16.

class MSAClassLoader extends ClassLoader{

String scu_location;

public MSAClassLoader (String location) {
scu_location = location;

}

protected Class findClass(String name){
byte[] classbytes = getClassCode(name);
return(defineClass(name,classbytes,0,classbytes.length));

}

public Class loadClass(String name) {...}

byte[] getClassCode(String name) {...}

byte[] getClassFromArchive(String name) {...}

Figure 3.16 ClassLoader AMS

Une fois 1’édition de lien terminé, on se sert de !'interface Reflection de JDK
1.2.2 pour obtenir des instances de la classe et pour démarrer le service. Ceci est illustré a
la Figure 3.17.

Java est le langage de choix, car Voyager (la plate-forme de développement du
prototype) I’utilise. Comme mentionné plus haut, 1’édition dynamique de liens permet de
résoudre les références aux modules externes au moment de I’exécution. Nous nous
étendrons plus longuement sur les éditeurs de liens dynamiques dans le chapitre 5 od
nous traitons de la mise a jour dynamique de I’AMS. Le chargement dynamique de code

est une partie importante de la solution pour la mise jour dynamique.



class MSAServiceProcess extends Thread
{
String service;
Object Data; String protocol;
public MSAServiceProcess (ThreadGroup th, String service, Object
sdata) {
super(th,service);
Data = sdata;
}
void addServiceClasses(String className}{...}
Object getServiceParam(...X...}
void run {
getServiceRules();
if(condition 1}
launchService(msa, servicel)
}
else{
}
}
void launchService(MSA msa, String mainclass){
MSAClassLoader ms = new MSAClassLoader(loc);
Class ¢ = ms.loadClass{mainclass);
Classf] carray = c.getinterfaces();
If (carrayfll.getName != “IMSAService'\...}
Object serv = c.newlinstance();
Method m = serv.getClass{).getMethod(‘main”, new Class(] {...D
Object 01 = getServiceParam(...);
m.invoke(null, new Objectf] {o1});
try{
sleep();
lcatch{interruptedException e}

}

1

Figure 3.17 Lancement d’un service par ’AMS

52



53
3.34 Encapsulation des connaissances — Gestion des services

L'AMS permet & I'usager de personnaliser les services qu’il transporte. En effet,
I'usager peut se servir de I’interface principale de I'AMS pour entrer des paramétres
comme les dates d’exécution régulidres pour des services. A cette date précise,

I’AMS démarrera le service.

Il est aussi possible de changer les paramétres d'invocation d’un service de
maniére 2 modifier le comportement du service. L’AMS démarrera alors toujours le
service avec ces paramétres-id qui, dépendemment du service, peuvent changer
totalement son exécution.

Toutefois, I’AMS ne maintient aucune référence aux objets internes des services.
Sa fonction est de les démarrer avec les données personnalisées et les arréter
éventuellement plus tard. Il n’exerce donc aucun contrle sur I’exécution des services. De
la méme facon, les services qu'il contient ne font pas référence a I’AMS et n’ont aucune
référence entre eux. Une vue de I'AMS est présentée i la Figure 3.18. od AEE (Agent

Exécution Environment) désigne la plate-forme pour exécution des agents.

(tSode Fmarprataiion de JKGWL |/
e

Figure 3.18 Agent Mobile pour Services



54
34 Implémentation préliminaire

Nous présentons ici une analyse structurée basée sur le standard Unified
Modeling Language (UML) de I'implémentation. Nous présentons ensuite les
applications tests intéressantes qui ont validé notre prototype.

3.4.1 Analyse des interactions avec ’usager

La premiére interface au systéme est celle de I’'UPS ol on peut souscrire a un

abonnement. Cette interface est présentée a la Figure 3.19.

PR —

DeviceURL [ |
Yes

Service 1 ®

Service 2

Service N ®

Figure 3.19 Interface d’abonnement

Comme Pillustre la Figure 3.20, le diagramme de contexte du syst¢éme offre une
vue en boite noire du systéme. Les abonnés ne savent pas que leurs services seront
transportés par un AMS. Méme lorsque I’ AMS est présent sur leur machine, ils ne sont
pas tenus de savoir que les services sont offerts et relocalisés par un AMS. Ce qu’ils
savent se limite a : je m’abonne 2 des services. Ces services peuvent étre déplacés quand
on en fait la demande. On dispose d’une interface pour démarrer les services et changer
leurs paramétres d’exécution. En bref, les détails relatifs 4 ’AMS doivent étre
transparents 2 I’'usager.



55

Interface
aux uPsS AMS

Création de

Usager Interiaces
™ uesues

Figure 3.20 Diagramme de contexte

Les cas d'utilisation du systtme (Use cases) décrivent les possibilités
d’utilisations d’un systéme pour [’usager. Ceux de notre application sont présentés a la
Figure 3.21.

Application AMS

% / Démarrer los
u;ager\

Figure 3.21 Diagramme de cas d’utilisation (Use Cases)

S’abonner aux services

L'utilisateur choisit certains services a partir de I'interface de 'UPS. L’AMS est

alors créé et envoyé pour la premiere fois s’il s’agit d’un premier abonnement. Sinon les



56
services sont mis a jour selon les stratégies de remplacement de 1’agent ou de mise 2 jour

dynamique. Un scénario d’abonnement est illustré 2 la Figure 3.22.

Démarrer les services

L’AMS sur la machine offre un menu que I’abonné€ utilise pour lancer un nombre

quelconque de services.

Supprimer des services

L’abonné choisit les services a supprimer 2 partir de I’interface de I'UPS. Un
agent portant les messages de suppression de services est envoyé et cet agent fait le tour
des AMS pour leur dire lesquels de leurs services ils doivent arréter.

Les scénarios décrivent les interactions entre les différents acteurs. Méme si le
role de ceux-ci est clair, il est pénible de décrire toutes les interactions possibles. Nous
illustrerons ici I'interaction de création de services, car nous pensons qu’elle est

essentielle A la compréhension du systéme.

1: Choisir Services
2: Lista des 1
Services
3: Créar AMS
Location et logique
pour services
‘ 4: Envoyer AMS

Figure 3.22 Scénario d’abonnement



3.4.2 Analyse de ’'UGS

57

L’AMS est I'unité principale pour la provision de services. L'UGS est 1'unité

centrale de souscription et de maintenance. Nous présentons ici une partie restreinte

mais importante de son diagramme de classe. La Figure 3.23 refléte notre

implémentation de I’'UGS. De nombreuses classes ont é1€ omises. N’empéche cette vue

de haut niveau permet d’entrevoir les interfaces de 'UGS et la création de I' AMS.

v

SmuSty

E::fycunmo
ncrypt()
[Moecnmo |

MakeMSA MSA
lCroateMSA() Bl aunch()
SMU
l— BlstantSenice() _l
v Vi
SmuDB SmuToWeb SmuToScu SmuToSmu
MSavwULiD) BunSenice( ErunSenice() ElrunSenice()
/ / SmuComm \
nactionClient(} wCom
SmuComm() Ij nactionSaner() §$unao'“°

Figure 3.23 Diagramme de classes de I'UGS

Les fonctionnalités de 1'UGS sont découplées les unes des autres comme indiqué

sur la Figure 3.24. L’UGS est constituée d’une classe principale qui démarre tous ses

services : interface avec 'UPS, I'UCS et les autres UGS. Ces services démarrent leur

propre Thread de communication. Tous ces Threads de communication utilisent le

protocole HTTP et implémente les mémes mécanismes de sécurité (authentification des

partenaires, cryptage des données). Cette sécurité est basée sur I'interface Security de

JDK 1.2.2.



58
343 Analyse de I’'UCS

La Figure 3.24 permet d’avoir une représentation visuelle de I'UCS. Elle est
composée d’un environnement de création de services et de différents répertoires od
ces services sont stockés. L'UCS établit des connexions avec le SMU pour

transmettre les nouveaux services et avec I’AMS pour lui servir les fichiers qu'il réclame.

Environnamant
de création
de sstvicas
Sarvice 1
Hapertoire 1
Connaxion ———] ucs ’
uGgs . .
Gestionnalre %7
Conn: Repertoire i
Connexicn —
AMS Gestionnaire :
Sarvices hemin|d. "
Repertoire n Vs
Bases de données
Liste des SMU

Figure 3.24 Diagramme de I'UCS

344 Analysede ’AMS
L’ AMS est constitué de :

¢ une liste extensible de services, et pour chaque service, une liste de ses fichiers ;

¢ un menu interface graphique qui liste les services et offre I'option de les démarrer
arréter ou déplacer tous ensemble ;

¢ une classe interne “Thread” (processus poids léger). C’est cette sous-classe qui se
charge de lancer les services. L’ensemble des processus poids légers est coordonné
par un “ThreadGroup™. On peut donc se servir de ce “ThreadGroup” pour avoir des
références au contexte d’exécution des services. Chaque Thread (sous-processus du



59
programme principal qu’est I’AMS) fournit les ressources systémes nécessaires au

service. L'AMS peut donc démarrer un service, l'interrompre temporairement ou
définitivement. Un nombre arbitraire de services peut donc étre entretenu en méme
temps.
une classe interne gestionnaire de sécurité. Cette sous-classe hérite de la classe
SecurityManager de JDK 1.2. Son modele de sécurité est donc basé sur celui de Java
oil on sélectionne les actions possibles du programme selon ses permissions (certificat
et authentification). La sous-classe modifie les fonctions du SecurityManager et
accorde des permissions pour ouvrir et lire des fichiers selon les paramétres qui lui
sont passés au moment de la création du service. Une politique de sécurité différente
est donc appliquée a chaque service.
une classe interne qui ouvre une connexion client ou serveur avec I’hdte qui lui est
désigné (URL de I’hte). Cette classe utilise exclusivement le protocole HTTP pour
le transfert de fichier. La classe permet de récupérer les “bytecodes” d’une classe -
d’'une UCS distante et tout fichier quelconque qui est nécessaire & I’exécution du
service. Toutefois, les fichiers qui ne sont pas du code objet doivent ére chargés
préalablement a I'exécution et enregistrés sur le disque dur de I’'hte. Les fichiers
objets sont transférés au moment de I’exécution, car le ClassLoader de I' AMS permet
de les identifier.
une classe interne (MSAClassLoader) qui, 2 partir du code objet (bytecodes), opére
I’édition de liens et retoume une instance de la classe. La classe interne
MSACIassLoader est automatiquement invoquée par la machine virtuelle Java. En
effet, quand un programme implémente un ClassLoader, la “Yava Virtual Machine”
(JVM) invoquera ce ClassLoader quand elle rencontre une référence a un objet ou
classe dans le programme. C’est de cette fonctionnalité que nous nous servons
d’ailleurs pour tenir compte des versions des services dans notre solution de mise a
jour dynamique de I’agent. Vu que c’est notre ClassLoader qui gére le
fonctionnement de toutes classes utilisées par I’AMS, il procéde en trois étapes.
D’abord, elle vérifie que la classe invoquée n’est pas une classe librairie de JDK.



60

Sinon, elle vérifie si la classe peut étre retrouvée en suivant les chemins d’acces
indiqués par la variable environnement CLASSPATH. En demier ressort, elle se sert
de son intelligence sur la localisation des fichiers de chaque service pour transférer
les “bytecodes” de ce fichier d’un hote distant en utilisant la classe vue plus haut. I
faut noter que JVM ne charge une classe que lors de sa premiére référence (I' AMS est
invoquée une fois pour chaque classe). En effet, dés qu’une classe est chargée, la
JVM la garde en cache. Cette version de la classe sera utilisée durant toute
I’exécution du programme. JVM assure ainsi I’intégrité du type de la classe. I faut
donc avoir une connaissance profonde de la JVM et des patrons de design pour
contourner ces restrictions et installer des classes dynamiques (comme nous 1’avons
fait pour la mise a jour dynamique).
une classe interne qui formate, €émet et regoit les messages KQML de [’agent. Cette
sous-classe n’est pas difficile 3 implémenter car elle ne définit pas et n’interpréte pas
le contenu des messages. Elle spécifie le protocole des messages, varie les paramétres
de ces messages selon I’action que I’envoyeur veut que le receveur prenne, et
transmet les messages qui sont écrits par la classe MSAOntology. Elle utilise le
standard KQML.
une classe interne MSAOntology qui utilise la logique des prédicats du premier ordre
pour spécifier le contenu des messages. Elle utilise le standard KIF. Pour |’instant,
elle ne peut coder que trois messages qui indiquent comment les parameétres d’un
service ont été modifiés par I’'usager, et comment ce service devrait étre cré€. Nous
nous sommes donc servis d’une série de booléens pour indiquer 2 la classe comment
formater le message. La classe ne décode pas les messages (pas de machine
d’inférence, il aurait été trés pénible de le faire dans le programme). Elle passe ceux-
ci 2 lutilitaire JKP qui lui retourne un objet (chaine de caractéres) Java plus
facilement interprétable. L’ utilitaire est installé sur chaque hote od I’ AMS se déplace.

Bien entendu, I’ensemble de ces classes est géré par la logique interne de I’AMS

qui associe des fichiers aux services et définit ses actions selon les choix de ’usager.



61
Plusieurs patrons de design ont été utilisés dans la construction du systéme.

L’UGS implémente notamment les patrons de design Médiateur, singleton et Proxy. 1l
utilise la composition de classes et programme aux interfaces, et non a
I’'implémentation de la classe elle-méme. Nous reviendrons plus longuement sur ces

patrons aux chapitres 4 et 5, car ils sont une composante importante de la solution de

mise 3 jour dynamique.

3.4.5 Services Tests

Deux services d’agents mobiles ont été implémentés pour tester ’AMS. Le
premier est un organisateur de réunion. Organiser des réunions entre des dirigeants trés
occupés signifie souvent que leurs secrétaires doivent passer un temps considérable a
essayer de coordonner les calendriers de leurs patrons de maniére a aboutir a une date de
réunion consensuelle. Méme dans le cas simple d’une invitation entre amis, il est souvent
difficile de planifier de telles activités.

L’organisateur de réunion envoie un agent avec une sélection des dates
disponibles pour la réunion. Cet agent mobile se déplace de participant en participant et
recueille chez chacun d’eux sa plage horaire de convenance. Il fait ainsi le tour et revient
présenter les dates de rencontre possibles 2 I’initiateur de la réunion. Si aucune date n’est
trouvée, I’agent mobile I’indiquera aussi. En fait, il court-circuitera son trajet dés qu’il se
rendra compte qu’il n’y a pas de dates consensuelles aprés avoir visité quelques
participants. Planifier une réunion se fait donc avec un minimum de difficulté.

Le second service cherche le chemin le plus court pour aller d’un point i un autre
dans un réseau. 1l crée donc plusieurs agents collaboratifs qui disposent tous d’une carte
du réseau. Ces agents se répartissent le réseau entre eux et chacun se charge d’en explorer
une partie. Le premier qui arrive a destination informe les autres qui rentrent au neeud
d’origine. L’agent qui a trouvé la destination revient ensuite. Ce service a une application
en téléphonie, car nous avons ainsi simulé le plus court chemin pour traiter un appel.
Lors d'un appel, les agents se déplacent sur des nceuds disjoints, invoquent des fonctions

de la passerelle pour savoir si elle peut acheminer I’appel. Pour nos simulations, les



62
agents ouvrent une fenétre et I'usager répond manuellement s’il permet que 1’appel

transite par sa machine.

3.5  Synthése et problémes ouverts

A ce point-ci, I'implémentation consiste en une UGS, une UPS, une UCS et
quelques AMS. Tous les problemes relatifs & la multiplicité (consistance des données,
synchronisation des transactions) des différentes unités n'ont pas encore été traités.
Toutefois, les solutions couramment employées pour les systémes répartis pourraient &tre
appliquées ici: mécanismes de recouvrement de fautes, serveurs redondants pour
rediriger les transactions quand le serveur principal n’est pas disponible, etc.

Cette implantation limitée est toutefois suffisante car I’étude concerne la mobilité
des services et non les systémes répartis. Matériellement, I'UGS est située sur une station
Solaris 2.5.6 qui a un processeur 400 MHz Pentium 2. L’UCS est située sur une station
Windows NT 4.0 avec un processeur Pentium Pro 366 MHz. L'UPS est située sur une
machine ayant les mémes caractéristiques que celle de I'UCS.

Dans I’'implémentation, I'UPS est en fait un serveur Web Apache 2.0. Les pages
d’abonnement utilisent des Serviets (au lien de scripts CGI) qui ouvrent des connexions
sockets pour transmettre les parameétres de I’abonnement a I'UGS.

L’ontologie implémentée dans le contexte de I’AMS a été définie exclusivement
pour son coté pratique . définir la logique et le contenu des messages pouvant étre
échangés avec I’AMS. Elle n’a pas de fondements théoriques et aucune preuve formelle
n’a été effectuée sur sa cohérence. Les primitives du langage utilisabies en JKQML sont
limitées. L’interprétation des performatives est souvent ambigué. Toutefois, utiliser un
langage présente le grand avantage qu’on n’a pas a changer I'agent si celui-ci doit faire
des opérations nouvelles. Si la logique est bonne, un nouveau message devrait susciter les
réactions appropriées de la part de I’AMS, ceci méme sans machine d’inférence.

La sécurité est faible: de simples algorithmes de codage sont utilisés. Ceci
pourrait étre rapidement amélioré en utilisant les interfaces que nous avons indiquées plus
haut (Voir sites Cryptographie et Sécurité). Les limites de temps ne nous ont pas permis
d’installer les mécanismes de sécurit€ appropriés.



63
Peu de fonctionnalités dépendent de la plate-forme Voyager. Les seules

fonctionnalités de Voyager que nous utilisons sont le serveur de nom et la possibilité de
madifier la couche Transport. Toutefois, le serveur de nom n’est qu’une alternative
parmi d’autres pour obtenir une référence a un objet sur une plate-forme Java. Nous
I'utilisons an moment du remplacement de I’agent et de sa mise & jour dynamique
(chapitre 5). D’autres alternatives sont d’ailleurs présentées au chapitre 5. La
modification de la couche est due a des efreurs provoquées par Voyager. Nous n’aurions
pas besoin de le faire si un autre systéme était utilisé.



CHAPITRE IV

MISE EN OEUVRE DES SOUSCRIPTIONS

Une architecture novatrice pour la mobilité des services a été présentée et son
implémentation spécifiée au chapitre 3. L’agent mobile pour services (AMS) qui
transporte les codes exécutables (ou des pointeurs au code) des services est ’entité
principale de cette architecture. Transporter des services pose de nouveaux défis relatifs a
la gestion de ces services. Ce chapitre examine la mise & jour (ajout, retrait et
modification) des services contenus dans un AMS. Intuitivement, il y a deux approches
possibles pour la mise a jour d’'un AMS : le remplacement de 1’agent et sa mise & jour
dynamique. Nous analysons d’abord les problémes posés par la mise a jour d’'un AMS,
puis nous dérivons un ensemble de requis pour évaluer les solutions possibles. Ensuite,
nous présentons I’implémentation de la permutation d’agents. Finalement, nous exposons

I’'implémentation de la mise a jour dynamique d’'un AMS.

4.1  Analyse des probléemes

Tout service pour lequel I'usager a une souscription est transporté par un seul et
unique AMS. Pour chaque configuration de I’architecture, le nombre d’AMS par usager
est fixé. Nous examinons d’abord le probléme de la mise a jour des services et dérivons
des requis. Ensuite, nous explicitons les différences entre le remplacement d’agents et la

mise 3 jour dynamique d’un agent.

4.1.1 Probléme et requis

Supposons qu’un AMS a été créé pour un usager donné, et que I’ AMS contienne
les services A, B et C auxquels cet usager s’est abonné. Pour étre plus spécifique, I'AMS
contient la logique (code exécutable ou pointeurs aux codes), plus les données (ou
pointeurs aux données) de chacun de ces trois services. L’ AMS gére toujours ses états de

fagon autonome; il sait donc qu’il contient ces trois services et seulement ces trois



65
services 1a. Il est important de noter que les données contenues dans (ou pointées par)

I’ AMS peuvent étre personnalisées par I’ utilisateur.

Supposons maintenant que l'usager décide de souscrire 2 un service

additionnel D ou qu’une nouvelle version du service A devienne la norme. La
question est de savoir comment I’AMS est mis a jour pour inclure D et la nouvelle
version de A en plus de B et C. Deux approches sont possibles : le remplacement d’agent
et la mise a jour dynamique de I’agent. Dans la premiére approche, I’AMS est remplacé
par un AMS qui contient les nouveaux et anciens (nouvelles versions au besoin) services.

Avec la seconde approche, les nouveaux services sont insérés dans I’AMS. Les nouvelles

versions des services existants sont généralement insérés lorsque ces services-la

n’exécutent pas ou aprés que leur exécution a été arrétée. Cependant, plusieurs services

(ceux de téléphonie notamment) fonctionnent en continu et ne peuvent étre interrompus.

Par conséquent, ils doivent étre mis a jour pendant qu’ils sont en cours d’exécution.

Les deux approches ont des avantages et inconvénients. Quelques requis simples
peuvent étre dérivés pour analyser ces deux alternatives, dans le but de trouver une
solution optimale par rapport & ces mémes requis. Les requis sont les suivants :

1. L’interruption de service due a la mise a jour de I’agent devrait étre minimal ;

2. Le délai entre une requéte d’abonnement et la disponibilité pour I’utilisation d’un
service devrait étre minimale ;

3. La mise 2 jour ne devrait pas affecter le comportement des services. Plus clairement
les modifications (personnalisations) effectuées par 1'usager sur les services ne
devraient pas étre perdues ;

4. La solution devrait &tre adaptable & un nombre élevé de services. Autrement dit, la
performance de la solution devrait &re bonne méme si ’usager s’abonne a 1000
services au lieu de 10 ;

5. Lasolution devrait étre indépendante de la plate-forme d’agents mobiles utilisée pour
son impiémentation. 11 y a plusieurs plates-formes disponibles sur le marché. La

solution ne devrait exploiter les spécifités d’aucune plate-forme ;



66
6. La solution devrait &tre aussi simple que possible et ne devrait pas imposer de

contraintes sur les architectures utilisées pour programmer les services. Plus
spécifiquement, les developeurs ne devrait pas étre obligés de développer leurs
services suivant une méthodologie particulire pour que ceux-ci puissent é&tre
transportés et mis a jour dans un AMS.

Les requis 1, 3 et 4 sont les plus difficiles 2 combler avec une stratégie de
remplacement de 1’agent. Les services seront probablement interrompus durant la
permutation de 1'ancien AMS avec un nouvel AMS. Par ailleurs, la solution pourrait ne
pas s’étendre 2 un nombre total (anciens + nouveaux) €levé de services puisqu’un nouvel
AMS doit étre reconstruit A partir de rien. Le délai pour la disponibilité des services
pourrait devenir prohibitif si le nouvel AMS doit recharger aussi le code des anciens
services (B et C dans ce cas ci). Finalement, les connaissances glanées par le vieil AMS
sur les habitudes d'utilisation de 1’usager, ainsi que les données ou régles relatives aux
services que |'usager auraient explicitement modifi¢es dans le vieil AMS doivent étre
conservées.

Dans |’optique d’une stratégie de mise & jour dynamique de 1’agent, I’insertion de
nouveaux services est relativement facile 3 implémenter. C’est aussi le cas pour le
remplacement d’un service quand ce service n'est pas en cours d’utilisation. Cette
affirmation peut paraitre surprenante car, malgré tout, I'insertion des services revient &
fournir 4 I'AMS une intelligence qui lui permette de :

o charger les nouveaux services et leurs données quand il est informé qu'il doit
transporter ces services pour 1'usager ;

e &tre conscient en tout temps des services qu'il contient, de manidre 4 mettre A jour son
interface graphique quand il charge de nouveaux services ;

o utiliser les données pour manipuler les services et permettre la personnalisation de ces
données.

Toutefois, les deux dernidres exigences sont déja implémentées et remplies pour
tout AMS de notre architecture. Le supplément consiste donc simplement a transférer



67
(ouvrir des connexions “sockets”) les codes exécutables et données des services, ce qu'un

AMS qui transporte des pointeurs fait “routinement”.
La solution semble donc évidente jusqu’a ce qu’on considére le cas ol
certains services sont mis i jour pendant qu’ils sont en cours d’exécution. A ce
moment 13, les requis 5 et 6 deviennent ardus 2 satisfaire. En effet, comment changer
instantanément une application si on ne dispose pas d’'information sur sa sémantique
interne ? Pour assurer la continuité du programme, il faudrait peut étre effectuer un
transfert d’état des processus de I’ancienne version du service & la nouvelle version. Ceci
implique I'utilisation de primitives du systéme d’exploitation, et par conséquent une
certaine dépendance vis-a-vis de la plate-forme. Sinon, il faut probablement imposer un
modele architectural aux services qui permettrait de modifier certaines parties d’un

service en cours d’utilisation.

4.1.2 Remplacement d’agent et mise & jour dynamique

D’un premier abord, la permutation de deux agents et la mise a jour dynamique
d’un agent semblent similaires. En effet, remplacer un agent revient essentiellement a
recharger les classes de cet agent et créer une nouvelle version. La plate-forme s’occupe
ici du chargement et de I'initialisation. Toutefois, la plate-forme d’agents mobiles peut
seulement charger un nouvel agent, pas insérer les classes d’un nouvel agent dans
I’ancien agent, qui est plus sans interrompre I’exécution de cet agent.

La mise a jour dynamique ajoute du code od de I'intelligence A une application
qui est en cours d’exécution sans interrompre ladite application. Plus clairement, les
modifications dynamiques changent des parties de 1’application. La difficulté principale
avec ces changements “a chaud” est d’assurer I'intégrité du programme aprés le
changement. Quels que soient les mécanismes utilisés, il faut préserver le programme des
erreurs de définitions de type et ne pas briser les sémantiques du langage tels que
Passociation nom-objet. De nombreuses autres contraintes entrent aussi en ligne de

compte selon les applications qu'on désire mettre 2 jour.



68
Avec le changement d’agent, nous essayons de permuter 1’agent et les services

qu’il contient avec un nouvel agent qui contient les anciens (éventuellement nouvelles
versions) et les nouveaux services. Le probléme est d’effectuer la permutation tout
en remplissant les requis.

Les techniques de mise a jour dynamique introduisent des changements sur des
éléments spécifiques d'un systéme. Par exemple, si une nouvelle version d’une classe ou
d’un module est disponible, le systtéme de mise & jour doit s’assurer que les appels de
méthode sur les objets qui implémentent la vieille version sont plut6t redirigés vers des
objets qui implémentent la nouvelle version. Bien entendu, ceci a le potentiel d’introduire
des erreurs dans le programme. On peut considérer le cas simple ol la nouvelle version
de la classe ne supporte plus une méthode présente dans les versions antérieures de la
méme classe. Si cette méthode est invoquée vers la fin du programme alors que les objets
ou classes ont été dynamiquement changés plus t6t dans le programme, ceci donnera lieu
a I'invocation d’une méthode invalide (inexistante) dans un programme préalablement
compilé. Conséquemment, les changements ne peuvent étre introduits que sous certaines
conditions.

La granularité des changements varie avec chaque systtme de mise a jour.
Certains systémes permettent des changements sur des entités aussi petites que des
variables ou des fonctions (appeler la fonction provoquera I’appel automatique d’une
autre). D’autres limitent les changements aux modules ou 3 des applications entigres. Ces
systémes sont typiquement dépendants de la plate-forme car ils utilisent des primitives du
systéme d’exploitation. On doit aussi recourir au systéme environnant (interpréteur ou
systéme d’exploitation) pour transférer I'état entre applications. Les techniques de mise 2
jour qui ne nécessitent pas de support du systéme environnant imposent un modele

architectural aux applications pour qu’elles puissent étre mises 2 jour.
pp pour g P J

4.2 Permutation d’agents

La permutation d’agents peut s’effectuer de deux maniéres : graduellement ou

abruptement. Nous présentons ces deux approches. Le principal défi lors d’une



69
permutation d’agents est de s'assurer que les données des services sont comectement

transmises. Ces données sont disponibles uniquement dans le vieil agent, car elles
peuvent avoir été modifiées par I'usager ou par I'agent lui-méme suite 2 1'éude des
habitudes d’exécution de I’'usager.

En effet, I' AMS offre une interface graphique ol les services peuvent démarrer ou
arréter, mais aussi od 1’usager peut entrer des régles d’exécution, i.e. tel service doit étre
démarré dés que tel autre est lancé, démarrer le service X avec les parametres y, démarrer
le service Z a telle heure, le service A utilise uniquement le service B, etc. Nous avons
présenté uniquement les personnalisations que nous avons implémentées, il est bien str
possible d’avoir des fonctionnalités beaucoup plus sophistiquées avec un produit
commercial.

La permutation de deux agents peut se faire de deux fagons : de maniere abrupte
ou de facon graduelle. Nous explicitons ces deux possibilités, Par la suite, nous
présentons leur implémentation et la maniére dont les problemes tels que la

synchronisation des données et les erreurs de transmission sont résolus.

4.2.1 Permutation graduelle et permutation abrupte

Que ce soit une permutation graduelle ou abrupte, I'UGS assembie d’abord un
AMS qui contient des pointeurs aux exécutables des nouveaux et anciens services.
L’AMS transfeére ensuite les exécutables des UCS.

Dans le cas de la permutation graduelle, le nouvel AMS se déplace alors sur le
site de I'ancien. Il recueille les données personnalisées au besoin et devient actif.
L'ancien AMS devient inactif aprés avoir passé les données au nouvel AMS. Tout service
ne pourra étre maintenant démarré que par le nouvel AMS. Toutefois, les services qui
étaient en cours d’exécution dans ’ancien AMS ne sont pas interrompus ; ils terminent
avant que I’ancien AMS devienne totalement inactif.

Dans le cas de la permutation abrupte, le nouvel AMS ne se déplace pas sur le site
ol I'ancien AMS réside, aprés avoir copié les exécutables. Il transfere d’abord les
données personnalisées (s’il y en a) du vieil AMS. Deux alternatives se présentent alors.



70
Dans la premiére, 'ancien AMS arméte les services qui €taient en cours d’exécution (au

besoin), puis devient inactif. Dans la seconde, les services achévent leur exécution avant
que I’ancien AMS devienne inactif. Le nouvel AMS se déplace sur le site du vieil
AMS aussitdt que celui-ci devient inactif. Il redémarre alors au besoin les services
qui avaient été interrompues.

La permutation graduelle demande que deux AMS coexistent sur le méme site
durant la permutation. Ceci n’est pas toujours possible avec les petits moniteurs
d’information (Palm Top, etc.). De la vient la principale motivation qui sous-tend la
permutation abrupte. Bien qu’il soit théoriquement possible d’attendre que les services
achévent avant de réaliser la permutation, ceci n’est pas possible tout le temps. Un
exemple est un service de valeurs boursiéres démarré par I’'usager tdt dans la journée et
qui doit rapporter 1'évolution des actions sélectionnées toutes les heures.

Ces deux approches soulévent les questions suivantes:
¢ Comment transférer les données et continuer & imposer des contraintes minimales sur

I’ AMS et ses services (interfaces, architecture des services, etc.) ?

o Avec la permutation graduelle, deux versions du méme service peuvent s’exécuter
concurremment durant la permutation. Comment maintenir la consistance entre les
paramétres d’exécution de services qui exécutent concurremment ?

e Désactiver I'ancien AMS avant que le nouvel AMS se déplace sur le site expose la
permutation abrupte aux pannes du réseau. Quels mécanismes de recouvrement sont

prévus dans le cas ot le déplacement du nouvel AMS échouerait ?

4.2.2 Implémentation des permutations

Les agents communiquent par le langage KQML que nous avons implémenté en
utilisant la librairie JKQML de IBM alphaWorks. Ceci évite d’avoir 2 imposer des
interfaces que les AMS implémenteraient pour communiquer par appel de méthodes.

Les AMS sont tenus d’implémenter le protocole d’échange des données illustré a
la Figure 4.1. Nous n’avons pas utilisé d’ontologie et les utilitaires (tels JKP) présentés au
chapitre 4 pour la permutation d’agent car ils introduisaient des erreurs difficilement



. 71

“tragables”. L’expérience nous a aussi appris que, pour supporter |’ontologie, une
machine d’inférence est quasiment indispensable. C’est un surplus de traitement trés
élevé que de demander a I’AMS de procéder a I'analyse de texte. Supporter un
protocole est faisable s'il est trés limité comme celui de la Figure 4.1. Sinon, il

devrait étre traité A I’extérieur de I’agent (librairies, utilitaires, etc.).

Service : Valeur_boursidre

Parameters : Douala Wall street Toronto
Start_Time : 9AM 8AM B_30AM

Bnd_Time : SAM 9PM 6PM

Figure 4.1 : protocole d’échanges de données lors de la permutation
La figure 4.2 illustre la maniére dont ’échange de données est implémenté dans
les AMS.

. Class MSA |
Private void sendCustomization(...){
String data = new String(“Service : Valeur_boursiére \n” +
*Parameters : Dovala Wall_street Toronto \n” +
“Start_Time : 9AM 8AM 8_30AM \n” +
“End_Time : SAM 9PM 6PM \n\n"):
KQML request = new KQML();
request.setPerformative(KQML.RECEIVE); //set KQML performatives
Ttequest.setOntology(null);
request.setContent(data); // subsequently send data
/transmettre par socket
}
}

Figure 4.2 : Echange de données sur les services durant la permutation

Permutation graduelle

Pour assurer la consistance des données dans les deux agents, I’ utilisateur ne peut
apporter de changements aux données relatives aux services aprés que la permutation et

été initiée. L'AMS n’offre donc plus aucune fonctionnalité dés que la permutation



72

graduelle commence. 11 laisse tout simplement les services qui roulaient achever. Aucune

modification ne peut étre effectuée par I'usager.

Permutation abrupte

L’ancien AMS devient inactif avant que le nouvel AMS se déplace sur le site,
mais il n’est pas détruit. I s’enregistre tout simplement pour activation sur le disque dur.
Il ne consomme ainsi plus de ressources systtmes. Un objet ou programme actif
consomme des ressources. En effet, le processus d’activation (dans les architectures
distribuées) permet d’enregistrer sur disque un objet qui est inactif pour une longue durée
et qui utilise des ressources systémes. L’objet (champs et méthodes) est alors enregistré
pour le reste de sa période d’inactivité et ne consomme plus de ressources systémes. Il est
réactivé et chargé en mémoire i sa prochaine invocation. En bref, I’activation permet de
préserver des ressources. Notre implémentation de I’activation est basée sur le modele de
I’objet réseau de Modula-3 NetObj.T.

Si le déplacement se déroule sans probleme, le nouvel agent effacera I’ancien
agent du disque dur a son arrivée. Si par contre un probléeme se produit lors du
déplacement du nouvel agent, 'usager pourra toujours démarrer 1’ancien agent car il est

enregistré sur disque pour activation.

4.3  Mise i jour dynamique de PAMS

Nous avons vu que I’investigation de I’ajout dynamique de services non en cours
d’exécution était d’un intérét mitigé. En effet, Il n’est méme pas nécessaire de recueillir
des données relatives 2 la performance de I’architecture dans ce cas la. Dans cette section,
nous nous concentrons sur le cas ol le service 4 mettre a jour est en cours d’exécution.

Tout d’abord, il faut clarifier ce que la mise a jour dynamique veut dire pour
I’AMS. Mettre I’AMS a jour dynamiquement signifie changer 1'implémentation d'un on
de plusieurs services pendant que ces services s’exécutent. Les services sont modifiés

sans que |’application (I'AMS) ou le systéme ne soit interrompu et sans intervention



73
bumaine. Les défis sont importants; toutefois, il existe déja quelques implémentations et

architectures de mise a jour dynamique. Notre solution par contre dépasse et améliore
toutes les réalisations précédentes par sa modularité et sa facilit€ d’utilisation, ainsi
que la précision et le contrile qui peut étre exercé sur les changements. Elle est
facilement utilisable et n’occupe que 9 Kilo-octets d’espace mémoire. Les fournisseurs de
services peuvent activement sélectionner les parties (objets) du systéme qui devraient étre
modifiées et spécifier une politique de changement pour chaque version antérieure.
Plusieurs versions de tout module dynamique peuvent s’exécuter concurremment dans le
programme. Les mises A jour dynamiques sont transparentes 2 la programmation et a
Pexécution des services. L' AMS contrdle la version de chaque partie du programme.

Les différentes architectures et implémentations de mise a jour dynamique varient
grandement selon les paramétres suivants: granularité des changements, support du
systeme d’exploitation ou de la machine virtuelle, intervention humaine et modéle de
programmation des applications dynamiques. L'unité de changement peut &re aussi
petite qu’une fonction ou variable, ou aussi grande qu’une librairie ou programme entier.
Dans notre implémentation, les changements peuvent étre introduits uniquement sur des
classes. Plus clairement, toute nouvelle version d’une classe dynamique peut étre chargée
en mémoire et utilisée pour les créations subséquentes d’objets dynamiques. L'usager
sélectionne aussi les instances existantes qu’il désire remplacer par des instances de la
plus récente version de la classe. Cette unité de changement est consistante avec le
paradigme orienté-objet et est implémentable en Java grice A ses mécanismes d’édition
dynamique de liens. Les appels sur chacune des instances remplacées seront redirigés
selon la politique de conversion de la version de cette instance, si elle existe.

L’implémentation utilise I'interface Java Core Reflection de JDK 1.3 (Java
Development Kit). Elle est basée sur la redirection des appels grice a un proxy et requiert
I'utilisation de librairies du MSA qui permettent les changements dynamiques. Les
évaluations expérimentales indiquent que cette approche est meilleure par rapport aux
requis concernant I’interruption des services, le délai pour la disponibilité€ des services et
I’adaptabilité pour un grand nombre de services.



74

4.3.1 Concepts de base et préalables

La premiére notion qu’il faut saisir est celle de la résolution des liens inter-
modules d’un programme par un éditeur dynamique de liens. Une application est
composée de modules, chaque module est une collection de procédures, variables et
constantes. Un module peut exporter certaines de ces caractéristiques dans une interface
et peut importer d’autres modules. Durant la compilation, le compilateur s’assure que
toute invocation d'un élément imponé coincide avec la déclaration de cet élément dans
son fichier source. A la différence des éditeurs de liens statiques, les éditeurs de liens
dynamiques ne résolvent pas les références établis par importation/exportation a la
compilation. IIs le font plut6t plus tard 3 un moment dédi€ que nous appellerons le temps
d’éditions des liens (Franz, 1997). Toutefois, dans la plupart des implémentations
d’édition dynamique, le temps d’édition des liens coincide souvent avec le moment ol le
code exécutable du module est chargé en mémoire. Ceci est le cas avec Java qui est un
“lazy linker”, i.e. résolution des liens seulement quand le module importé est invoqué
pour la premiére fois durant I’exécution du code. Il existe plusieurs variations d’édition
de liens dynamiques. Nous illustrons le cas de Java a la Figure 4.3.

Au moment de I'édition des liens, la machine virtuelle Java (Java Virtual
Machine JVM) parcourt le fichier objet (.class) de la classe A et son réservoir de
références (“constant pool™), et résout les références aux classes externes. Cette édition
des liens se fait la premiére fois que les classes externes (importées) sont rencontrées
dans le programme. Ainsi, [’édition des liens et le chargement des fichiers se fait une
classe  la fois.

A la Figure 4.3, la premigre fois que la JVM traite I'instruction “B b = new B()",
il examine le réservoir de référence de la classe A, trouve la structure appropriée et se
déplace a I’index indiqué (38 sur la figure) pour récupérer de 1'information sur la classe
B. Dans I’exemple, I'information est le nom absolu de la classe en représentation

unicode.



75

mﬁmﬂ"? Package Example;
8 b =new B(); C'::":g C(H
M;"&")D( X Il statements ...
e } "
} } :
CONSTANT_Class_info {
Clu:“m:i;‘\ { ultag=7,
2 4 _count; u2 name_index = 38;
cp_info constant_pooi{constant_pool_count-1]; }
u2 intfacesiinterfaces_count];
““—'“'fimmml "I - 38. CONSTANT__UN8_info {
attribute._info atiributes{atiributes_count]; ﬂ',:ggm
. 11 Other fields omitted for brevity T byteslength] = "Example 8"

Figure 4.3 Modules et code objet Java

Ce processus est réalisé une seule fois par classe par programme. Ceci est dii au
fait qu’une fois qu’une classe comme la classe B est résolue, la JVM maintient un lien
inamovible a cette représentation de la classe. Conséquemment toutes les invocations
futures de la classe utiliseront ce lien sans la pénalité d’avoir a fouiller le code objet. Ceci
veut aussi dire qu’une classe ne peut pas étre changée dynamiquement une fois qu’elle a
été résolue, & moins que le systéme de mise a jour n’accéde le monceau (heap) de la JVM
et change ce lien pour qu’il pointe 2 une autre version de la classe. Pour cela, il faut
carrément changer la JVM, ce qui implique que la solution n’est plus portable et introduit
d’autres difficultés que nous aborderons plus tard. Toutefois, différentes versions de la
méme classe peuvent étre chargées tant que la classe n’est pas résolue. La classe peut
toujours étre manipulée 2 travers la superclasse “Object” qui est la superclasse de toutes
les classes écrites en Java.

La question qui se pose maintenant est la suivante : comment garantir I’intégrité

du programme aprés le changement puisque I’ AMS n’a pas acces a la pile du processus ?



76
Les mises 2 jour “a chaud” peuvent potentiellement causer des erreurs de violation de

type. Bien que 1'intégrité des types en Java n’ait pas encore été formellement prouvée

(Drossopoulou et al., 2000), en pratique le vérificateur de bytecodes de Java prévient

les erreurs de violation de type, excepté dans certains cas pathologiques (Freund et
al., 1998). Dans le but d’éviter des erreurs de violation de type, les systémes de mise a
jour dynamiques introduisent généralement des changements aprés s’étre assurer
(mécanismes de verrouillage et synchronisation, vérification de la pile du programme)
que la cible (classe, procédure) n’est en utilisation nulle part ailleurs dans le programme
au moment du changement. Ces techniques sont généralement dépendantes de la machine
puisqu’elles utilisent des primitives du syst¢éme d’exploitation et effectuent des appels a
son noyau (kernel).

Qui plus est, la plupart de ces implémentations exige I’assistance humaine
pendant la mise a jour et demande que le developeur soit ré-entrainé de maniére a
pouvoir programmer en fonction du systéme de mise a jour. Une erreur de violation de
type est illustrée a la Figure 4.4.

La classe Service_i crée une instance de Dependent_i (“di”) correspondant a la
premidre version située & gauche sur la figure. Toutefois, avant une des invocations de
I’objet “di”, il est dynamiquement changé 2 la nouvelle version qui n’implémente plus la
méthode Z(). Lorsque Service_i essaie d’appeler Z, une violation de type se produit.

Les violations de type se produisent aussi quand un objet est invoqué par
I’intermédiaire d’une interface incompatible. Imaginez le cas ol la premiére version de
Dependent_i implémente une interface quelconque que nous appellerons Interface_i. Une
instance de Dependent_i peut ére “castée” et manipuler a travers cette interface.
Toutefois, dans le cas ol la seconde version ne supporterait plus ’interface, il y aura une
erreur de violation de type la prochaine fois que I'instance “castée” sera manipulée si

I’objet auquel elle réfere a été dynamiquement changé pour refléter la nouvelle version.



class Dependent_i{
public void F(){
// statements ..

}
public void 2()}{

// statements ..
}

}

first version

class Dependent_i{
public void F{){
// statements ..

}
public void M{){
// statements ..
}
)

new version

class Service_i{
Dependent_i di;
Searvice_i(){
di = new Dependent_i();

int runService()

/1 Before this function is called Dependent_i is changed
/1 to the new version
di.2(); <---- type violation error
}
}

Figure 4.4 Violation de type causée par un changement dynamique

4.3.2 Approches de mise & jour

L’AMS offre les mises a jour dynamiques & travers les classes dynamiques dont
I’'implémentation peut étre changée pendant I’'exécution du service. Les mises 2 jour de
classes dynamiques peuvent étre appliquées selon différents modeles.

Les changements peuvent affecter toutes, quelques-unes unes ou aucune des
instances de la classe qui a é1é modifiée. Selon la méthodologie de mise a jour,
différentes questions se posent sur le traitement des classes dépendantes, la coexistence
de plusieurs versions de la méme classe dans le méme programme, etc. Nous décrivons
les alternatives et présentons la méthodologie de mise i jour que nous avons
implémentée. Tout le long du texte un objet dynamique réfere & une instance d’une classe
dynamique.

17



78
Sémantiques de mise a jour

Les sémantiques de changements de version sont documentées (Gray et al. 1997,
Malabarba et al. 2000). Nous les analysons brievement. Une premiére approche pour
mettre 2 jour les objets existants d’une classe qui a été modifiée est de bloquer la

création de nouveaux objets de la classe jusqu’a ce que toutes les vieilles instances
expirent. Des cbjets de la classe pourront de nouveau étre créés 2 la fin de ce délai. Ceci
peut prendre un temps arbitrairement long.

Une autre approche est de changer toutes les instances existantes de la classe au
moment du changement pour qu’elles reflétent la nouvelle version. Ici, des mécanismes
de verrouillage permettent de s’assurer qu’aucune instance de la classe n’est utilisée au
moment du changement. Les codes objets des autres classes sont parcourus pour s’assurer
qu’ils ne contiennent pas de références A des méthodes ou champs obsolétes de la classe
modifiée. Les instances des sous-classes sont aussi modifiées (débarrassées de champs et
méthodes obsolétes). A moins que des mécanismes de transfert d'état soient en place,
I’état interne des anciens objets ne peut étre copié dans les objets nouvellement créés. Les
éventuels mécanismes de transfert d’états sont rigides et sont possibles uniquement pour
des architectures spécifiques et bien définies qui obligent les classes a supporter certaines
interfaces non modifiables. Conséquemment, le transfert de contexte est limité a des
applications restreintes. Une autre conséquence est que les programmes doivent étre
écrits en fonction des mises & jour dynamiques.

Face a ces difficultés, la plupart des systémes qui implémentent cette approche
créent tout simplement de nouveaux objets vides qui remplacent les anciens objets. Bien
entendu, il y a I’effet néfaste que toutes les valeurs (souvent importantes) contenues dans
les champs de ces anciens objets sont perdues. Cette perte d’information se propage selon
une réaction en chaine, i.e. les données et traitements contenus dans tout objet dont les
uniques références sont ainsi purgées, sont aussi perdues. En définitive, bien que les
changements puissent étre configurés de sorte qu’il puisse étre prouvé que le programme
sera toujours syntaxiquement correct et I'intégrité des types préservée, il y a une

discontinuité de fonctionnement dans le comportement et 1’exécution du programme. Le



79
fardeau retombe sur les épaules du programmeur qui doit alors parvenir & s’assurer d’une

fagon quelconque que le programme continuera a produire des résultats valides. Pas des
résultats corrects tout simplement parce que le programme retourne un entier comme
il était supposé, mais que la valeur de cet entier soit celle que le programme était
supposé produire s'il disposait de I'information perdue. Cette pénalité réduit
considérablement le coté pratique de la méthode.

Une troisidme alternative est de laisser les anciennes instances des classes
dynamiques inchangées au moment de la mise 2 jour. Toutefois, tous les objets créés a
partir de ce moment la refléteront la nouvelle version. Ce schéma est basé sur I'idée
qu’une fois que les vieilles instances seront éliminées par le ramasse-miettes, seule la
nouvelle version sera en fonctionnement. N’empéche, plusieurs versions de la méme
classe coexistent dans le méme programme sans que le developpeur n’ait de contrdle sur
1a version d’un objet particulier. Par conséquent, une ambiguité nuisible régne toujours a
propos de quelle version de la classe est utilisée lors d’une invocation. Le résultat final
est que le comportement du systéme est imprévisible. Cette approche viole donc les
sémantiques d’association nom-classe. Ici aussi, la solution a court terme est de concevoir
son architecture de maniére & pouvoir se repérer dans son programme et profiter des
mises 2 jour dynamiques.

Avec toutes ces approches, le systéme de mise a jour impose des contraintes sur le
design des applications et ainsi influence ou pire décide du comportement de
I’application. Normalement, les applications devraient décider de leur politique de mise 3
jour et utiliser les mises a jour dynamiques 2 leur guise dans le but de fonctionner sur une
longue durée sans interruption. Autrement dit, I'utilisation du systéme de mise A jour
devrait &tre adaptable a |’application et cela ne devrait pas étre 1’application qui s’adapte

au systéme de mise a jour.

Modeéle de mise a jour de 'AMS

L’AMS permet aux developeurs de choisir précisément quels objets dynamiques

doivent étre mis 2 jour. Il leur permet aussi de décider de la politique de mise & jour qui



80
doit étre appliquée d’une version d’une classe a une autre. Clairement, chaque application

décide de sa politique de mise a jour et de I’étendue des mises a jour. Les parties du

programme qui ne sont pas modifiées sont laissées & leurs versions respectives. Les

programmeurs peuvent ainsi modifier des régions de I’application sans qu'il n’y ait
d’impact sur les autres parties. Ils peuvent s’assurer de la continuité de fonctionnement
du programme en ciblant les portions de code qui contiennent des défauts ou qui
nécessitent des améliorations pour modification et en laissant les objets qui contiennent
des données critiques pour I’application inchangée. Le systéme (AMS) fournit des
méthodes qui permettent de connaitre la version de tout objet. Une clé unique permet
d’identifier chaque objet. Cette clé est composée de la classe de 1'objet dynamique, sa
version, son chargeur de classes, et une clé fournie par I'usager. Les classes sont
effectivernent redéfinies a la granularité d’objets.

Les objets dynamiques sont manipulés uniquement a travers des “proxies”
dynamiques de classes. Un proxy dynamique d’une classe défini par I’AMS supporte les
interfaces de la version de la classe qui était active (la plus récente a ce moment-13) au
moment ol ce “proxy” a été créé. Toutefois, les objets dynamiques peuvent étre changés
pour refléter la plus récente version sans que cette version (la plus récente) ne soit tenue
d’implémenter aucune des interfaces des versions antérieures. Les appels aux méthodes
obsolétes sont interceptés au proxy et traités selon les instructions (spécifiées dans la
politique de mise a jour) du developpeur du service. Les classes dynamiques sont
manipulées uniquement 2 travers les interfaces de leurs proxies. Cette légére restriction
assure que I’intégrité des types est préservée.

Dans notre implémentation, les classes dynamiques ne sont jamais résolues,
toutefois leurs interfaces le sont. Chaque nouvelle version d’une classe dynamique est
chargée a travers un autre chargeur de classes. L’ AMS coordonne I'utilisation des classes

dynamiques. La Figure 4.5 illustre le modele de mise a jour de I' AMS.



— oo _ o
Valsionil o ._'..-—-V"

ersion k1

v~

Figure 4.5 Modéle de mise & jour dynamique de I’AMS

Les objets sont d’abord créés en utilisant la version i et sont manipulés a travers
I'interface il. A partir de I'instant de la mise 2 jour (f,paze), les objets dynamiques sont
créés en utilisant la version i+1. Certains objets de la version i sont remplacés par des
objets de la version i+l. Il est toujours possible de manipuler ces objets qui ont été
changés a travers I'interface i1, méme si la nouvelle version (i+1) n’implémente pas cette
interface. L’AMS se charge du transfert d’appel des méthodes qui ont les mémes
paramétres. Toutefois, les objets nouvellement créés (version i+l) ne peuvent étre

accédés que par I'interface i2.

4.3.3 Implémentation de I’évolution dynamique

Cette solution classifie les objets dynamiques selon la version de leur classe et
leur clé unique fournie 2 I'initialisation. Bien entendu, les méthodes statiques de la classe
opérent sur les objets qui sont de la méme version de cette classe uniquement.
L’implémentation est basée sur les proxies dynamiques de JDK1.3. L’interface proxy (de
I’ensemble Reflection) permet au developeurs de créer des proxies de classes consistant
en un ensemble quelconque d’interfaces. Chaque objet proxy a un objet associé
(“Invocation handler”) ol toutes les invocations de méthodes seront envoyées. La Figure
4.6 lance un bref coup d’ceil sur la classe Proxy de Java 1.3

81



82

Public class Proxy {
static object newProxyInstance(ClassLoader loader, classf] interfaces, invocationHandler h);
static InvocationHandler getinvocationHandler(Object proxy);
/I ... other methods omitied

1

Figure 4.6 Classe java.lang.reflect.Proxy de JDK 1.3

La classe “MSAFactory” est I’interface par laquelle les objets dynamiques sont
créés et mis a jour. I y a un MSAFactory par AMS. Une clé doit étre fournie pour la
création de tout objet dynamique. La cl€ est une chaine de caractéres quelconque et doit
étre unique pour la classe de I’objet dynamique. Le descripteur de type d’un objet
dynamique est composé de sa classe, sa version, son chargeur de classes et de la clé
fournie 4 la création. II est important de conserver les clés utilisées pour créer les abjets
dynamiques. Les programmeurs les utiliseront plus tard pour indiquer quels objets
dynamiques doivent étre mis 2 jour pour refléter la demiére version. La classe
MSAFactory maintient un lien entre chaque classe et son gestionnaire des mises a jour
“MSAClassManager”. L'AMS charge la classe MSAFactory sur tout hote od il se
déplace. La Figure 4.7 présente des extraits de la classe MSAFactory.

Une classe est mise a jour en appelant “setClassVersion” de MSAFactory. Cette
nouvelle version sera utilisée pour la création de toutes les prochaines instances. Le
dernier paramétre de createlnstance est un tableau contenant les arguments pour invoquer
le constructeur de *“ClassName”. Celui de “updatelnstance” est un tableau bi-
dimensionnel d’arguments pour les constructeurs des objets qui doivent remplacer les
objets mis 2 jour. Le second argument “keys” contient la liste des clés indiquant les objets
qui doivent étre modifiés. Les éléments situés aux mémes positions d’index dans “keys”
et “arguments” sont utilisés lors du remplacement des objets dynamiques. Omettre
d’appeler “updatelnstance” implique qu’aucun objet existant ne doit étre changé. Seules

les prochaines instantiations refléteront la nouvelle version.



83

public final class MSAFactory{
static Object createlnstance(String CiassName, String instance_key_id,
Object[]) arguments) throws InvocationTargetException {

m = addClassManager (ClassName);
// instantiates a class manager for the class ClassName if it is
#/ its first instance that is being created maps ClassName and its classManager and retums it
return {m.getProxyObject (instance_key_id. arguments) );

1

static void updatelnstance(String ClassName, String[) keys,Object[](] arguments) [
m = getClassManager(ClassName);
m.updateObjects(keys, arguments);

]

static void setClassVersion(String classname, String version, URL classLocation,){
m = getClassManager(classname);
r.setVersionLocation(version, classLocation);

}

static void setUpdatePolicy (String classname, String(] policy}(
m.setRedirectPolicy (policy);

)

H other protected or private coordination fields and methods omitted for brevity

Figure 4.7 La classe MSAFactory implémente Pinterface des classes dynamiques

Les clés fournies pour une mise a jour doivent étre choisies parmi celies qui ont
été utilisées dans des appels i “createInstance”. Un objet dynamique est créé uniquement
a travers “createInstance”. Cet objet dynamique est un proxy qui supporte les interfaces
de la dernitre version de la classe nommée “ClassName” (premier paramétre de
createInstance). La fonction “setUpdatePolicy” permet de définir la politique de
redirection des invocations de méthodes de certaines versions précises a la version
actuelle de la classe “classname”.

Une politique de redirection des appels peut étre spécifiée une seule et unique fois
d’une version a une autre. Les mises & jour se font uniquement dans un sens : d’une

version antérieure 2 la plus récente version de la classe. L’on ne peut pas modifier, mettre



84
3 jour un objet qui reflete déja la dernitre version de la classe. Les politiques de

redirection des appels d’une version 3 une autre sont trés simples a écrire. La premiére

ligne indique la version antérieure concernée, chacune des lignes suivantes contient

deux noms. Le premier est celui de la méthode dans I’ancienne version suivie du
nom de celle qu’il faut appeler i la place dans la nouvelle version. Un appel ne peut &tre
redirigé d’une fonction & une autre que si les deux fonctions acceptent les mémes
arguments. La politique concemant une version est conservée dans une chaine de
caractéres. Un vecteur de chaine de caractéres permet de spécifier des politiques de
redirection pour plusieurs versions 4 la fois. Une politique de redirection simple
ressemble a celle sur la Figure 4.8.

i.i // Class Version
A Al // Invocation Redirection From A To Al
B Bl // Invocation Redirection From A To Al

Figure 4.8 Exemple de redirection des invocations pour

la version i.i d’une classe quelconque

La premiére ligne indique la version de la classe a laquelle cette politique de
redirection s’applique. Les lignes suivantes indiquent les redirections : la méthode Al de
la nouvelle version doit étre appelée en lieu et place de la méthode A, la méme chose
pour Bl et B. Une méthode peut étre redirigée uniquement vers une autre méthode qui
accepte les mémes paramétres (arguments). Les invocations subséquentes sur n’importe
quel objet dynamiquement modifi€ seront traitées selon la politique de mise a jour que le
fournisseur de service ou developpeur a ordonnée. Si aucune politique n’a été indiquée et
que des objets dynamiques sont mis a jour, les invocations seront redirigées vers la
méthode du méme nom acceptant les mémes paramétres qui sera trouvée dans la nouvelle

version. L’AMS ne tient pas compte de la valeur de retour (void, int, etc.) ou du



85
modificateur (static, public, etc.) de la méthode trouvée. Bref, il ne vérifie pas sa

signature.

Exemple d’utilisation
Un exemple de mise 2 jour dynamique utilisant I'AMS est présenté 2 la
Figure 4.9. Les services utilisent MSAFactory (createInstance) pour créer leurs objets
dynamiques. La librairie de mise a jour dynamique sera mise a4 la disposition des
developpeurs de services. Ils peuvent donc simuler le comportement de leur service
avant, pendant et aprés une modification dynamique. La méthode updatelnstance est
utilisée pour changer des objets précis.

La figure présente trois exemples de création d’objets dynamiques, deux mises a
jour de deux des objets, I’entrée d’une politique de redirection et les manipulations qui
peuvent étre faites sur les objets 3 la suite de ces changements. Elle illustre le
comportement par défaut qui stipule que : quand aucune politique de redirection n’est
spécifiée, les invocations sur les instances dynamiques changées sont redirigées vers une
fonction du méme nom ayant les mémes arguments dans la nouvelle version. Bien
entendu, si aucune fonction du méme nom n’est trouvée, une exception est levée.

1l est facile de constater que fournir des méthodes pour identifier et modifier (au
cas par cas au besoin) des parties d’un service est la fagon la plus flexible et la plus
pratique de supporter des mises A jour dynamiques. C’est aussi 1’approche qui donne le

plus de contrble sur I’application et les mises a jour dynamiques au programmeur.

4.3.4 Gestion des classes et acheminement des invocations

Les interfaces retournées par MS AFactory sont des proxies dynamiques créés par
I'intermédiaire de la classe Proxy de Reflection. Les objets “MSAClassManager”
coordonnent les proxies. Il y a un objet MSAClassManager par classe dynamique. Une
vue de la classe “MSAClassManager” est présentée 2 la figure 4.10. Deux instances de
classes dynamiques différentes peuvent avoir la méme clé. Toutefois deux instances de la

méme classe doivent avoir des clés différentes. I1 y a un objet “InvocationHandler” par



86
objet dynamique. Chaque objet *“MSAClassManager” coordonne tous les

“InvocationHandler” de toutes les instances de sa classe.

interface Mylnterface{ | interface kthisinterface{ | Interface IThirdinterface{
void AQ; void CO: Void B();
void B(); void D(); Void E();

} } }

Class ActualClass implements IMylntesface(... } //first version
Class ActuaiClass implements IThisInterface{ ... }/second version
Class ActualClass implements IThirdinterface( ... }//third version (1)




87

void doSowmething(...){
MSA stantFactory(;
MSAFaciory.setClassVersion(“ActualClass”, “1.0", “142.133.xx.xxx");
Mylnterface im! = (IMylnterface) MSAFactory.createnstance(
ActualClass.class.getName(), “keyString1 " new Object{]{ ... });
Myinterface im2 = (IMyinterface) MSAFactory.createinstance(
ActualClass.class.getName(), “keyString2”.new Object{](...}); (2)
/) method code ...
MSAPFactory.setClassVersion(“ActualClass”, “2.0", “Arbitrary location™);
{// Method A is redirected and method B is not supported anymore
MSAFactory.setUpdatePolicy(*ActualClass”,
new String(}{*1.0\n A C\n"}) 3
{/ imt is explicitly upgraded.
MSAFactory.updatelnstance(ActualClass.class.forName(),
new String[){“keyString1”}, new  Object{I{}{ ...}
// this will invoke method C on the new internally created ActualClass object see (3)
imbLAQ;
/1 a NoSuchMethodException will be thrown since the policy ignored this method
iml.B();
{1 No changes with both of these instructions. the object created at (2) wasn’t changed
im2.AQ:
im2.B();
1/ Of course it also possible to execute the line below
IThisInterface itl = (IThisinterface) MSAFactory.createinstance(
ActualClass.class.forName(), "keyString3”, new Object{]{ ...} %:
1/ later on
MSAFaciory.setClassVersion(“ActualClass”, *3.0", “Wherever™);
I/ update im2
MSAFactory.updateinstance(ActualClass.class.forName().
new String(}{ “keyString2”}, new Object0{...1%
{I No update policy specified.
{1 This will invoke A on ActualClass Version 3 at (1) if ActualClass version 3 implements A
{/ even though A is not declared in any interface of Actual Class version 3.
{1 If ActualClass does not implements A, a NoSuchMethodException is thrown
im2.AQ;
// This will work calling method B declared in IthirdInterface
im2.BQ;

Figure 4.9 Exemple d’utilisation des librairies de ’AMS
pour une mise & jour dynamique
Les méthodes siatiques ne s’appliquent qu’aux objets qui sont de la méme version
de la classe. Cette approche est la fagon la plus pratique d’implémenter les classes
dynamiques. Sinon, il faudrait imposer que les différentes versions d’'une méme classe

supporte une fonction de transfert, ou encore exiger que les méthodes statiques soient



88
supportées par toutes les versions de la méme classe. Il n’est pas nécessaire d’interdire les

méthodes statiques.

1l serait possible d’avoir plus de généralité et permettre le transfert des
invocations d’une méthode a n’importe quelle autre peu, importe ces arguments.
Toutefois, ceci devrait allonger considérablement le temps d’exécution a cause des
vérifications et allocations de mémoire supplémentaires (réallouer un nouveau tableau

d’objets pour contenir les arguments de la fonction “invoke” de Reflection).
Avec une édition des liens dynamiques, il est impossible de changer une référence
2 une classe ou interface déja résolue. C’est pourquoi les interfaces qui sont utilisées dans
le programme avant la mise a jour ne peuvent étre changées. Toutefois, tant et aussi
longtemps que la référence n’est pas résolue, la méme classe ou interface peut étre
rechargée autant de fois que nécessaire. Un nouveau chargeur de classes (“Classloader”)

est instancié chaque fois qu’une classe doit étre rechargée.



89

Class MSAClassManager(

String sClassName, sClassLocation, sCumentVersion;
1/ Onher fields ommitied
public Object getProxyObject( String key, Object(] args){
MSAClassLoader ms = new MSAClassLoader(sClassl ocation, sClassName);
Class ¢ = ms.findClass(); Class caf] = new Class[args lengh];
for(int i=0; i<args.lengih:i++) cali] = args(i].getClass();
Object o = c.getConstructor(ca).newnstance(args);
/1 add the method invocation forwarder to the list of objects of this update manager and
1] create a intemal map with a unique key
MSAlnvocationForwarding mif = new MSAlnvocationForwarding(o);
setTypeDescriptor(ms.c, mif, sCurrentVersion, key);
setVersion(mif, sCurrentVersion);
return(MSAProxy.newProxylnsiance(ms, o.getinterfaces().mif);
}
public void setRedirectPolicy(String(] policy) {
11 Parse the update policy array. Each index in the array refers to a different version
}
public String getRedirectPolicy(String version){
/I Returns the reditect policy from the version “version™ (o the current version
)
public void updateObjecis(String(] key, Object{] args){
1/ For each key
MSAInvocationForwarding mif = getinstanceHandler(key[i]);
MSACIassLoader ms = new MSAClassLoader(sClassLocation, sClassName};
Class ¢ = ms.findClass();
Object 0 = c.getConstructor(new Class{]{c}).newInstance(args);
mif.setRedirect(getRedirectPolicy(get Version(mif)));
mif.replaceObject(o);
}
private void setTypeDescriptor(ClassLoader cl, Class c,
MSAIlnvocationForwarding m, String version, String key) {
1/ uniquely identifies each instances of this class
}
/! returns the version of the object currently handled by the MSAlnvocationForwasding object
private String getVersion(MSAlnvocationForwarding mif){...}
i1 set the version of the object handled by the “mif” object
private void setVersion(MSAlnvocationForwarding mif, String sVersion);
i returns an array of the interfaces supported by the ten previous versions of the class
I ...others method omitted for brevity

Figure 4.10 Gestion des classes dynamigues



Public class MSAInvocationForwarding implements invocationHandler{
Object actual_object; RedirectTable redirectTable;
public MSAlnvacationForwarding(Object 0)(
actual_object = 0;
]
public Object invoke(Object proxy, Method method, Object[] args) throws InvocationTargetException,
NoSuchMethodException, SecurityException, llegalAccessException, Nllegal ArgumentException {
Object 0 = null;
Tey {
o =bRedirect ? {(Method)RedirectTable.get(method)).invoke(actual_object, args) :
method.invoke(actual_object,args);
Jcatch (Exception ex){
o = getLookup{method,args).invoke(actual_cbject, args);
}
retum o;
)
public synchronized void setRedirect(String redirectPolicy){
redirectTable.setTable(redirectPollicy) // set the redirection table “redirectTable”
]
public synchronized void replaceObject(Object o)(
{1 Scans o] and 02 methods through ceflection
redirectTable.mapMethodRedirection{ actualObject, 0);
{/and saves every method pair (redirection) in its table following the redirectPolicy
actual_object =o;
}
Method getLookup(Method m, Objec{] args)}{
1 look up the method and return it when it is first accessed on actual object
i/ algorithm enables log(n) order performance N being the number of redirected methods for this class.
)
1 other coordination methods
)

Figure 4.11 Acheminement des invocations aux classes dynamiques

44  Evaluation sommaire des schémas de mise & jour

L’ajout, le retrait et la maintenance des services sont les premiéres préoccupations
a satisfaire pour toute architecture de services réaliste. En effet, le déploiement rapide de
nouveaux services innovateurs est primordial pour le succes des fournisseurs de services.
La performance de leurs applications est un autre important facteur de démarcation. Or,
nous n’avons pas abordé la performance ni méme évalué les solutions par rapport aux
requis dans ce chapitre. Pour remédier & ce manque, le prochain chapitre traitera de la
performance de I’architecture. Il procédera aussi a I'évaluation des stratégies de mise a



91
jour présentées ici. Nous aurons alors assemblé les deux €éléments fondamentaux qui sont

indispensables pour le développement futur de I’abstraction pour la mobilité des services
qu’est I’AMS.

Pour un programmeur habile de systémes d’agents, la permutation de deux
agents ol la mise 2 jour dynamique d’un agent avec des services qui ne sont pas en cours
d’exécution est relativement simple 2 réaliser. A I'opposé, la mise  jour dynamique d’un
service en cours d’exécution est plus difficile.

La stratégie de la permutation d’agent 3 deux variantes. La premiére, la
permutation graduelle, ne cause pas d'interruption de service mais est difficilement
applicable pour les services qui s’exécutent continuellement ou prennent un temps trés
élevé avant de terminer. La seconde, la permutation abrupte, cause une (bréve)
interruption de service.

La mise a jour dynamique de I’agent est excitante parce qu’elle dépasse et étend
les limites de notre recherche car elle est applicable & n’importe quel programme
informatique écrit en Java. Si on se confine au probléme de la mise 3 jour de I' AMS, elle
est toujours plus intéressante que la permutation, car il n'est pas nécessaire de créer un
nouvel agent et le délai pour la disponibilité des services est réduit (par rapport a la
permutation des agents).

L’ambition de meftre a jour les services qui s’exécutent continuellement sans les
interrompre nous a amené a développer une solution générique pour la mise a jour sans
interruption des logiciels Notre principale exigence lorsque nous implémentions le
mécanisme était que les changements dynamiques soient aussi simples que possibles.
L’objectif de généricité a été atteint, au point ol (presque par inadvertance) notre librairie
se révele étre une contribution majeure dans le domaine de 1’évolution dynamique des
programmes informatiques. C'est la premitre approche documentée qui combine la
sélectivité des changements, la possibilit¢ d’adapter ces changements pour chaque
version, la réduction de la taille et la non nécessité de support systéme. Le mécanisme de
base pour I'évolution des versions est I’ajout d’interfaces. L'usager ajoute ou change les

interfaces des classes qu’il veut modifier dynamiquement. Ces nouvelles interfaces seront



92
utilisées pour les nouvelles instances et une politique de redirection peut étre spécifiée

pour rediriger les appels effectués sur les anciennes interfaces sur les nouveaux objets.
L’évolution dynamique des programmes est un domaine actif de recherche.
Toutefois, c’est dans le souci de trouver une solution 2 un probléme qui affecte les
services téléphoniques que nous avons (les premiers) utilisés Java pour montrer que

I’évolution dynamique était possible 4 un haut niveau avec une petite librairie de 9 Kilo-

octets.



93
CHAPITRE V

EVALUATION DE PERFORMANCE

Nous avons présenté une nouvelle architecture pour la mobilité des services au
chapitre 3. Le chapitre 4 a exposé le probléme de la mise a jour de I’agent mobile pour
services (AMS) dans cette architecture, lors de nouvelles souscriptions. Il a aussi exposé
I'implémentation de deux stratégies possibles pour effectuer cette mise a jour: la
permutation d’agents et la mise A jour dynamique d’un AMS. Nous commengons ce
chapitre en procédant 2 une analyse de performance de I’architecture. Cette analyse
permettra de décider si I’architecture est viable. Nous continuons avec une évaluation des
requis énoncés au chapitre 4 pour la technique de permutation d’agents. Finalement, nous
examinons la performance de la mise & jour dynamique et son comportement en regard

des requis du chapitre 3.

5.1  Analyse de performance du paradigme

Notre évaluation de performance déterminera le temps nécessaire pour assembler
et lancer un AMS ainsi que la performance d’une application exécutée par I’intermédiaire
de I' AMS. Pour débuter, nous séparons les diverses sources de délais du paradigme AMS
et procédons a une bréve revue des analyses de performance trouvées dans la littérature.
Nous continuons en présentant notre modeéle d’échantillonnage et les conditions sous

lesquelles nous avons prélevé nos mesures. Finalement, nous exposons nos résultats.

5.1.1 Analyse du paradigme agent

11 y a deux points d’intérét 2 mesurer pour notre architecture : le temps écoulé
entre une souscription et la disponibilité (pour exécution) des services sur la machine de
'usager (1) ainsi que I'impact de performance causé par I’AMS sur I’exécution d'un
service donné (2).



94
1. Notre architecture impose un délai parce que les services sont déplacés pour étre

exécutés sur la machine de 'usager. Par contre, avec une architecture client-serveur,
il serait possible d’utiliser les services immédiatement aprés I’abonnement. 1l est
donc primordial que le délai pour la disponibilité des services ne soit pas trop grand

dans I’éventualité ol les usagers désireraient profiter des services immédiatement.

2. L'AMS a un impact sur I'exécution des services qu’il contient parce qu'il (I’ AMS)
implémente un chargeur de classe (“class loader”) qui se substitue au chargeur de
classes de la machine virtuelle Java.

Il est important de disséquer les éléments qui entrent en compte lors de la
provision d’un abonnement et durant 1'exécution d’un service. On pourra ainsi cibler et
mesurer effectivement les impacts des choix architecturaux. Le temps écoulé entre une
souscription et la présence effective des services est composé :

1. du temps de traitement de la suscription a I'UGS ;

2. du temps requis pour créer et assembler (insérer l'intelligence relative aux
applications ciblées) dans les AMS (les AMS sont partitionnés par catégorie de
services) ;

3. du temps requis par la plate-forme d’agents mobiles pour déplacer I'agent de I'UGS a
la machine de 1'usager ;

4. du temps requis pour transférer les fichiers des services 2 partir de I'UCS a la
machine de |'usager ou & I'UGS.

Le délai 1 est le délai encouru par le traitement de I’information des usagers sur
un serveur public quelconque. Ce délai n’est pas déterminé ni influencé par notre
architecture. 1l ne nous intéresse donc pas. Le délai 2 est enti¢rement attribuable a notre
application. Le délai 3 est déterminé par la plate-forme pour agent mobile et son
implémentation de la migration des agents. Toutefois, notre architecture influe sur ce
délai car c’est I'UGS qui crée et décide de la taille des agents. Il est évident qu’il est plus
rapide de déplacer un “petit” agent pluttt que d’en déplacer un “gros”. Nous devons donc
trouver les tailles admissibles de I’AMS pour qu'il puisse étre déplacé en degd d’un
certain temps. Le délai 4 est enti¢rement déterminé par le débit du réseau.



95
Des évaluations de performance des agents mobiles ont déja été réalisées,

notamment par Ranganathan et al. (1998), Gray (1997), Picco (1998), Kotz et al. (2000),
etc. Ces études essaient en général de déterminer quand il est bénéfique d’utiliser des
agents mobiles a la place des autres paradigmes, tels client-serveur, évaluation a

distance et code sur demande. Toutefois, ces études sont trop générales et ne servent qu’a

présenter une vue d’ensemble des considérations a prendre en compte pour déterminer si

’agent mobile permet un gain de performance. Une analyse adéquate de la performance

des agents mobiles doit se faire par application et, pour chaque application, tenir compte

de son interaction avec la plate-forme d’agents mobiles.

R. Gray (1997) effectue une analyse de performance détaillée de Agent-TCL, le
systéme pour agents mobiles développé a Dartmouth College. Il prend en compte
notamment ’effet de I’algorithme de Nagle sur la latence des connexions TCP. Cette
latence influe significativement sur la taille des opérations a effectuer avant que
I’approche agent mobile soit préférable a client-serveur. Ranganathan et al. (1998)
étudient les gains de performance d’un serveur de “chat” sur Internet, qui peut se
déplacer. Des outils réseaux sont utilisés pour estimer les délais sur les différents liens.
Les données collectées servent a déplacer le serveur et le repositionner de maniére a
minimiser le délai de transmission des messages. G. Picco (1998) compare les
performances de I'évaluation & distance, code sur demande et des agents mobiles dans le
cadre de la gestion des réseaux. Il utilise une logique non monotone pour formaliser ces
notions.

5.1.2 Conditions environnantes et modéle d’échantillonnage

Le but de nos mesures n’est pas de démontrer un hypothétique gain de
performance. Nous voulons déterminer si la performance de I’architecture est acceptable.
La latence sur la plupart des implémentations TCP est de 400 millisecondes (200
millisecondes sous Linux). Ceci est dil au fait que les machines attendent que la taille du
paquet & transmettre (message véritable on simplement confirmation de réception) a
Iinterlocuteur ait dépassé la taille de la fenétre, ou qu’un paquer allant dans la méme



96
direction transite par la machine. Si aucun de ces événements ne se produit, elle transmet

le paquet ou la confirmation de la réception aprés 200 millisecondes. La latence pour un
aller-retour est donc de 400 millisecondes. Toutefois, nous ne souffrons pas de cette
latence car la taille des paquets que nous transmettons est toujours supérieure au
segment TCP sur Ethernet (1472 octets). De plus, nous utilisons HTTP comme protocole
pour la couche application. Nous envoyons donc des données sans attendre de
confirmation.

Le Tableau 5.1 résume 1’état du réseau au moment des tests. Nous avons utilisé le
logiciel PACMon (Site www.abraxis.com) pour mesurer le débit du réseau lors des tests.
Le débit du réseau est resté pratiquement inchangé pour tous les tests (variation
maximum de 0.5 Mégabits/s). Les machines sont connectées par un réseau Fast Ethernet
(100 Mégabits/s).

Tableau 5.1 Conditions du réseau

Latence des connexions TCP 0.4 ms
Débit du réseau 56.35 Mbits/s
Capacité du réseau local (LAN) 100 Mbits/s

Tous les résultats présentés aux Figures 5.1 4 5.3 sont la moyenne de 200 mesures
réalisées sur une période de 2 semaines. Les tests ont été effectués de 9 heures du soira 9
heures du matin durant la semaine et 2 n’importe quelle heure durant les “weck-ends”.
On bénéficiait ainsi de 1’exclusivité des machines et peu d’applications encombrent le
réseau aux périodes choisies.

En réalité, nous avons effectué 400 mesures pour chaque point de chaque figure.
Toutefois, nous avons ensuite éliminé les résultats situés dans le premier et dernier
quartile. Le résultat final est que la variance maximale est de 6.7%. C’est la variance du
point 7 (5212-6) de la Figure 5.1. La Figure 5.2 a une variance maximale de 3.7%, la
Figure 5.3 une variance maximale de 2.2%.



97
L’UGS est située sur une machine Solaris 2.6 avec un processeur de 333 MHz.

L’UCS est située sur une machine Windows NT 4.0 avec un processeur Intel Pentium II
de 400/100 MHz. Quatre autres machines ont ét¢ utilisées pour accueillir les AMS.
Ce sont toutes des stations Windows NT 4.0 avec des processeurs Intel Pentium II
de 266 MHz.

5.1.3 Résultats d’expérimentation
Pour notre implémentation, la taille minimale d’un AMS 2 vide est de 21097

octets. Il serait ardu (nous n’avons pas réussi a le faire) de réduire la taille d’un AMS
programmé en Java en dega de ce niveau. La grandeur totale d’un AMS est constituée de
sa taille a vide, plus la taille des services ou pointeurs aux services qu’il transporte, plus
la taille des données des services qu’il transporte également. Donc, avec le chiffre de
21097 comme taille a vide en téte, pour tous nos résultats, nous indiquons uniquement la
taille des données a laquelle nous ajoutons celle des pointeurs ou des services. Nous
indiquons aussi le nombre de services. Dans chaque cas donc, la taille véritable de I’AMS
est 21097 octets, plus la taille des données des services, plus la taille des pointeurs ou
services, selon le schéma choisi.

Nous déterminons d’abord le temps nécessaire pour créer un agent. Nous
mesurons ensuite le délai de transmission en fonction de la taille de 1’agent. Finalement,

nous mesurons 1’impact de performance di 4 I’AMS lors de I'exécution d’un service.

Assemblage de ’AMS

Le temps nécessaire pour assembler les AMS est influencé par :
* lalogique qu’il faut configurer pour chaque service ;
* le nombre de services auxquels I’'usager a souscrit ;
® le nombre d’AMS a créer.
La Figure 5.1 présente le temps de construction d’'un AMS en fonction de la taille
des pointeurs et du nombre de services que cet AMS contient.



3288

M

/
/

e

8 8

c &

0-0 503- 1044 2606 3109 3623 5212 5715 6229 7818
1 .2 -3 -4 -5 -6 -7 -8 -9
Donnédes des services + tailles des pointeurs en octets -
Nombre de services

Délal de construction de I'AMS en
millisecondes (ms)

s, s i e

8321- 16190 26060 34381 42740 52120 60441 68800 78180 86501
o -2 - -4 -5 -60 -70 -80 -9 -100

Donnédes des services + taille des pointeurs en octets - Nombre
de services

Délai de construction de I'AMS en
millisecondes (ms)
8 8 888 8

Figure 5.1 Délai de construction pour un AMS contenant un
nombre grandissant de services

98



99
Comme le montre la Figure 5.1, créer et configurer (insérer de I'intelligence

formelle, encoder les données relatives aux services) un AMS prend typiquement entre
250 et 500 millisecondes, méme dans le cas ol I' AMS devrait contenir des pointeurs
a 100 services. Ce délai est faible quand on se rappelle qu’en réalité I' AMS est un
proxy dynamique généré a travers I'interface Factory de Voyager. Voyager utilise le
package Reflection de Java pour créer des proxies dynamiques (maléables) de classes.
Voyager a ainsi un accés direct aux champs internes de I’objet et profite de cet avantage
pour accélérer la sérialisation lors de la migration de I’agent.

Délai de transmission de ’AMS en fonction de sa taille

La Figure 5.2 mesure le temps nécessaire pour un agent pour faire un aller-retour
sur la plate-forme Voyager, en fonction de la taille de cet agent. Quand I’agent arrive sur
la machine distante, il exécute une seule instruction, celle pour retourner sur sa plate-
forme de départ. Nous avons préféré mesurer I’aller-retour parce que mesurer un délai sur
deux ordinateurs différents peut donner des résultats erronés si les deux machines ne sont
pas synchronisées.

Le délai pour envoyer et recevoir un agent qui transporte 86500 octets (taille
totale = 21097 + 86500) d’information est inférieur 3 2.1 secondes. Cette bonne
performance est probablement due au fait que Voyager implémente la migration faible
des agents. Il n’est pas possible d’offrir la migration forte simplement par I'intermédiaire
d’une librairie de classes Java, sans modifier Java Runtime. En effet, on ne peut capturer
I'état du processus qu’au niveau de I’interpréteur JDK. La migration partielle ne transfere
pas I'état du processus de 1’agent. Les classes que 1'agent implémente sont transférées
enire machines et les objets sont recréés sur la machine distante avec les valeurs d’avant
le transfert.



P e s -

-

1870

Délai en millisecondes (ms)
EEE283

8

—r

i

&

L -

0-0 503- 1044 2606 3109 3623 5212 5715 6229 7818

i -2 -3 -4 -5 -6 -7 -8 -9

Taille des donnédes + taille des pointeurs en octets - Nombre
de services

il

ondes (ms)
NN
g 8 8

Délai en millisec
3

e

-y

10 2 0 40 50 a0 QY 0 Q0 100

Tallle des donndes + Tallle des poiniurs en oclets - Nombre de
sorvices

8321 16180- 26080 34381~ 42740- S120- 60441- 68800 - 78180- 86501 -

Figure 5.2 Temps nécessaire pour effectuer I’aller-retour dans notre réseau local

pour un AMS de plus en plus grand

100



Les valeurs des champs de tout objet Java sont obtenues par introspection de
I’objet en utilisant le package Reflection. Java est I'un des rares langages impératifs qui
permette 1'introspection, ceci est plus courant pour les langages fonctionnels (LISP,
etc.). Bien entendu, avec la migration forte, pas besoin de recréer les objets, le
processus en cours d'exécution est lui-méme transféré et continue son exécution 2 ce
nceud distant. La migration forte dégrade toujours la performance du systéme en général
(Milojigié, 1999). Les résultats présentés ici suggérent que la migration faible est une
bonne alternative du point de la vitesse.

Exécution des services

Lorsqu’un programme est démarré, I'interpréteur Java charge uniquement la
classe contenant le point d’entrée du programme (fonction public static main(String
args[])). Durant I’exécution, & chaque fois qu’il rencontre une référence a une classe, si
cette classe n’a pas encore été résolue, il va la charger en utilisant son chargeur de
classes. Le chargeur de classes fouille les répertoires contenus sous la variable
environnement (“CLASSPATH”). Toute classe est chargée une et une seule fois dans un
programme. Java permet d’écrire des sous-classes de son chargeur de fichier qui seront
appelées quand il rencontrera une classe qu’il ne pourra trouver par la variable
“CLASSPATH". Ce chargeur de classes personnel peut &tre écrit pour charger des
classes de n’importe quelle source (machine lointaine sur le réseau, serveur HTTP, etc.).
Ceci est possible parce que Java est un langage interprété. Ses classes sont compilées
séparément, ont une représentation unique en bytecodes et sont portables sur tous les
systémes d’exploitation.

Toutefois, ceci impose un délai puisque I'interpréteur ne peut résoudre
directement la classe, et doit recourir &4 un chargeur de classes développé par le
programmeur. La premiére invocation de classes, qui ne sont pas situées sur le disque dur
sous la variable environnement “CLASSPATH”, causera un délai variable selon la
performance du chargeur de classes implémenté a l'intérieur du programme. Bien
entendu, le délai est plus grand si ce chargeur de classes doit transférer les classes a partir

101



102
d'une machine distante. Toutefois, nous ne mesurerons pas le délai pour transférer un

fichier car celui-ci varie avec le réseau.
La dégradation de performance attribuable au chargeur de fichier de I'AMS
est résumée au Tableau 5.2.

Tableau 5.2 Impact sur I’exécution d’un programme par I’AMS

Temps de résolution (chargement) d’une classe contenue dans | 0.40 ms
I’'AMS

Ajout au temps d’exécution d’un service qui utilisent N classes | N * 0.40 ms

contenues dans I'AMS

Temps pour transférer un fichier de taille S sur un réseau avec | S/D
débit D (pas d’attente)

Ajout au temps d’exécution d’un service quand I'AMS contient | N * (S/D + 0.40) ms

. juste des pointeurs et doit transférer les fichiers sur le réseau

Un service exécuté a travers |'AMS prendra donc N*0.40, ou N*(S/D +0.40)
millisecondes (selon les stratégies employées) de plus pour terminer, comparé au cas ol
ce service était sur le disque dur local. Quand on transporte les services eux-mémes, il
faut 2500 classes pour qu’il s’ajoute 1 seconde A la durée d’exécution d’un service
transporté par |'AMS. La dégradation de performance est pratiquement imperceptible car,
elle n’est pas groupée a un endroit particulier du programme et s’étale sur toute la durée
d’exécution de I'application. Si les fichiers doivent étre chargés A distance, le délai varie
avec |'état du réseau.

5.2  Evaluation de la permutation d’agents

Le temps requis pour achever la permutation graduelle est principalement
composé du :

. e temps nécessaire pour créer le nouvel AMS ;



103
o temps de transfert des codes exécutables a partir des UCS jusqu’a I’AMS ;

o temps de transfert des données de I’ancien AMS au nouveau ;
o temps de déplacement du nouvel AMS de I’UGS jusqu’au site de I’ancien AMS.

Dans le cas de la permutation abrupte, il faut rajouter en plus des délais de la

permutation graduelle, le temps requis pour redémarrer tout service qui aurait été

interrompu. Le temps de transfert des données entre les AMS est négligeable,

typiquement moins de 20 millisecondes. Ceci est dG au fait que la taille des données a

transférer n’est pas importante. La Figure 5.3 présente la courbe de transfert des données

sur le réseau dans les mémes conditions expérimentales que celles de I’analyse de

performance.

S0 WD 50 0 0 D B0 40 40 S0 SO G0 60 WD 70 A0 D X0 WD W0
Tailletchsle ces fichiers Yaruliisda endilicCcie ()

Délai de transmission en secondes (s)
O -~ N W a0y D

Figure 5.3 Courbe des délais de transmission sur le réseau aux moments des tests

Délai pour la disponibilité
Posons 7; comme le temps de création de ’AMS, T le temps de transfert des
données, et T), le Temps de déplacement de I’ AMS. Alors, le temps de complétion de la



permutation graduelle pour un AMS contenant 10 services totalisant 1000 Kilo-octets est
approximativement de:
Tc+Tr+Tp=300ms +2032 ms + 1150 ms <3.5s.

Nous avons volontairement majoré les valeurs et considéré des grandes
tailles pour les services. N’empéche, on se retrouve & moins de 3.5 secondes. Mille Kilo-
octets est une ftaille trés importante, principalement pour les “palmtops” qui sont limités &
quelques Mega-octets. Méme dans les autres cas, en allant aux extrémes des courbes avec
10000 K et 100 services, nous nous retrouvons avec un délai de 500 + 7200 + 1300 < 9.1
secondes. La performance reste acceptable pour ce cas pourtant non réaliste.

Dans le cas de la permutation abrupte, il faut ajouter le temps de démarrage des
services qui ont €té interrompus au besoin. Toutefois, parce que les services sont
démarrés en paralléles dans des “threads”, le délai de démarrage d’un nombre N de
services est égal au délai de démarrage d’un service. Le temps nécessaire pour arréter les
services est négligeable, i.e. moins de 1 milliseconde par service. Si on considére que n
services ont été interrompus et que redémarrer chaque service provoque !’initialisation de
10 classes par service, en se rappelant que le temps de résolution d’une classe par I’ AMS
est de 75=0.40 ms, le délai estde :

Tc+ Tr + Tp + 10*T, = 300 ms + 2032 ms + 1150 ms + 10%0.40 < 3.5 s.

Le temps de redémarrage de tous les services inflige une pénalité égale au nombre
de classes de ce service qui doivent &tre chargées au début de son exécution. La durée de
I'interruption des services est inférieure a :

Tp + 10*Tx = 1150 ms + 10*040< 1.5 s.

Evaluation des requis

Le Tableau 5.3 résume I’évaluation de la permutation graduelle et de la
permutation abrupte par rapport aux requis ¢énoncés dans la section 5.1.

104



Tableau 5.3 Evaluation des stratégies de permutation

105

Permutation graduetle

Permutation abrupte
Interruption de Aucune Faible, varie avec le nombre de
service classes a transférer < 3.5 s. sur
Fast Ethernet
Délai pour la Courte durée. Temps de Faible, méme comportement que
disponibilité déplacer I’agent et démarrer | I’approche graduelle. Ajouter le
(résoudre) les classes des temps de résoudre les classes
services
Dépendances Aucune Aucune
systémes
Simplicité Faible Faible
Performance & grande | Bonne. Les seuls facteurs Méme observation que
échelle variables, les temps de permutation graduelle. Le temps
déplacement de 1’agent et de | de démarrage des services est
transfert des services uniforme et négligeable
progressent selon des
courbes 15/8000 ms/octets
et 1/1800 s/Kilo-octets
respectivement
Impact sur les anciens | Faible, pas de Aucun
services personnalisations possibles

durant la permutation




53  Mise i jour dynamique de PAMS

Nous avons vu au chapitre 4 que l'investigation de I’ajout dynamique de

services qui ne sont pas en cours d’exécution est d’un intérét mitigé. Les données
d’une analyse de performance dans ces cas 1a seront certainement similaires a celle
obtenues lors de I’évaluation de la permutation d’agent. Nous procédons ici a I’analyse de
performance d’un programme qui est mis a4 jour dynamiquement. Nous comparons

ensuite cette performance aux requis énoncés au chapitre 4.

53.1 KEvaluation de performance

Parce que I’'implémentation est basée sur des proxies, chaque appel de méthode
sur un objet dynamique résulte en une vérification et une invocation de méthode
supplémentaire, si la nouvelle version de la classe implémente une méthode qui a les
mémes noms et arguments que celle appel€e. Par contre, si I’appel doit étre redirigé vers
une méthode différente, chaque appel implique une vérification, un appel et le retrait de
la méthode appropriée d’une table. Dans les deux cas, I’appel supplémentaire utilise
I’interface Reflection qui est plus lente que les invocations directes.

Nous mesurons le temps supplémentaire qu’un programme prend pour achever
quand il modifie des objets dynamiques et invoque leurs méthodes. Nous étudions les
deux cas : le cas od I’ “InvocationHandler” du proxy appelle tout simplement la méme
méthode dans la nouvelle version, et le cas o I’appel doit étre redirigé selon une autre
politique spécifiée par 1’usager. Il est plus approprié de mesurer I'impact de performance
de la mise 2 jour dynamique pour chaque application. Nous expliquons plus loin
pourquoi.

Chaque point dans les Figures 5.4 et 5.5 est la moyenne de 100 essais. Dans la
Figure 5.4, I'écart-type maximal est de 6.1% et il est de 5.7% dans la Figure 5.5.
L’ordinateur des tests était une Sun UltraSparc roulant Solaris 2.6 avec un processeur 333
MHz.

106



Pour tous les tests, nous avons utilisé 100 classes, chacune implémentant 10
méthodes. Chaque test manipulait 100 objets dynamiques et avait une séquence d’appel
différente de celle des autres. La méme méthode était invoquée sur un objet
dynamique seulement aprds que toutes les autres méthodes de cet objet aient été
appelées. Ces permutations nous ont permis de tempérer les possibles gains de
performance dus aux mécanismes de cachage. L’application test était un programme de
tri rapide des octets d’'un fichier binaire de 73.8 Kilo-octets. L’ application prend 5.11
secondes pour achever. Nous avons inséré 100, puis 200, puis 300 et ainsi de suite
instructions manipulant les objets dynamiques. Les résultats donnent une idée de la
dégradation de performance pour un programme de calcul intense.

La Figure 5.3 montre les effets des redirections des appels quand il s’agit tout
simplement d’appeler la méme méthode par Reflection sur un nouvel objet de la classe.
jusqu'a 1000 appels, la pénalité est inférieure A 0.1 seconde et & 10000 appels est d’un
peu plus de 0.5 seconde. Par contre, avec 100000 appels, la pénalité est de 4.7 secondes,
doublant effectivement le temps d’exécution du programme. Ces observations renforcent
le fait que les mesures doivent étre évaluées en fonction de I’application. En effet, 4.7
secondes dans le cas d’un tri rapide double le temps d’exécution. Par contre, pour un
programme qui dure 7 minutes ou plus, 4.7 secondes correspondent & une baisse de
performance de moins de 0.1% (au lieu de 100% comme dans ce cas ci).

Encore plus important, les applications multimédia (vidéo MPEG, audio MP3,
etc.) sur les petites machines d’information portables (Palm Top) exécutent en continu
(longue durée de temps) et sont caractérisées par des pointes discrétes de calcul. Ceci est
totalement 2 I"opposé du cas d’un nombre important de calcul continu effectué dans une
courte période de temps comme dans le cas des tris ou des multiplications de matrices.
Ces brefs calculs impliquent généralement peu d’objets (les applications sont de petites
tailles) et le nombre d’appels de méthodes est faible (cent ou moins) par rapport au cas

considéré ici.

107



108

-y

Novire total dappels aur 100 chjels darvicues

-

1000 200 0 400 5000 €00 700 800 9000 10000

=

EEEEER

(sw) sepuosesyjw ue ginoles
uonnoexe,p |81o) sdwe)

Y

000 200 J00 400 SO0 a0 A0 &0 00 10000

-

B 8 8/ 8 °

(sw) sapuodes|jjju ue gnoles
uopnagxe,p (ejo) sdue)

Nnbetcd dypdsar

Figure 5.4 Pénalité de performance avec une redirection simple

sur les objets dynamiques



La pénalité pour 10 redirections est inférieure 2 une milliseconde et celle de 100
redirections est de 7.3 millisecondes. La conclusion est évidente ; on ne remarque pas de
pénalité interactive en utilisant les objets dynamiques. Les exemples de petites
applications qui doivent rouler continuellement sur des PalmPilot sont nombreux.
Un service de reports de valeurs boursiéres qui surveille plusieurs marchés dans
différents pays (et fuseaux horaires) et qui doit intégrer une nouvelle interface graphique,
service de surveillance météo qui rapportent les conditions météorologiques, etc. La mise
a jour dynamique évaluée ici est donc tout indiquée pour ces applications la.

La performance dans le cas d’une redirection simple est bonne. La Figure 5.4
présente la pénalité pour une stratégie de redirection plus élaborée, i.e. l]a méthode od
I’appel doit étre dévié n’est pas tenu d’avoir le méme nom. Toutefois, il doit accepter les
mémes arguments. La pénalité est plus élevée. Avec 10000 invocations, le programme
prend prés de 2 secondes de plus. Comme pour les autres figures, 1'évolution est linéaire.
On peut projeter et déduire que, pour 100000 invocations, la pénalité sera de 20 secondes.
La baisse de performance est plus notable ici. Toutefois, I'approche offre plus de
flexibilité pour la gestion des méthodes. Si la performance est une préoccupation
majeure, I’option précédente est préférable; il faut alors réutiliser les mémes noms de
méthodes.

La seconde option devrait étre utilisée lorsque le nombre d’invocations prévues
est moins €levé. Sa performance est acceptable et elle devrait trouver une niche avec les
applications qui roulent pour une longue durée, qui ont des exigences de performance
moins élevées et qui tirent profit de sa plus grande flexibilité. Ici en effet, seuls les
arguments doivent &tre identiques d’une fonction a I'autre. L’appel peut donc étre dévié
vers une méthode quelconque pourvu qu’elle prenne les mémes arguments.

La performance de la librairie dynamique lorsqu’elle applique une politique de
redirection est convenable. Toutefois, elle devrait se dégrader rapidement si
I’'implémentation permettait des redirections quelconques indépendantes des arguments
des méthodes. Il faudrait alors vérifier quels parameétres devrait étre éventuellement
éliminés, et comment replacer les parameétres dans le bon ordre. Ceci se traduit

109



110
concrétement par plusieurs autres vérifications et manipulations, dépendamment des

redirections permises.

B

4/,4:

Temps total d'exécution
outé en millilsecondes {ms)

N EEEEEEEL:

T L F ¥ k]

00 20 IM 400 TN a0 A a0 00 1000
Notxe d’gpels ar 100 dojets dramiqes

raj

Figure 5.5 Pénalité avec une stratégie élaborée de redirection
sur les objets dynamiques

53.2 Evaluation des requis

Les mises 2 jour dynamiques satisfont les requis relatifs & une solution au
probleme. Il o’y a pas d’interruption de service a cause de la mise 2 jour. Les données
personnalisées par les usagers sont conservées puisque I’AMS n’est pas changé ; ce sont
ces services qui sont modifiés. La mise a jour est transparente aux applications. La
politique de mise 4 jour est volontairement minimaliste, et le défaut (redirection 3 une
fonction du méme nom) est suffisant dans la plupart des cas. La solution est indépendante
de la plate-forme : c’est une librairie, toute machine virtuelle Java standard peut I'utiliser.



Lorsqu’un abonné fait de nouvelles suscriptions, la liste de ces suscriptions est
envoyée a I’'UGS. Un message de notification contenant la politique de mise a jour des
services, la liste des nouveaux services ainsi que la localisation des fichiers et des
données est envoyé a I'’AMS. Sur réception du message, I’AMS transfere les codes
exécutables et les données des nouveaux services. Il inclut les données de ces services
dans sa base de connaissance, les indexe et se rappelle qu'il contient des nouveaux
services et leurs caractéristiques. Ensuite, il modifie son interface graphique de sorte que
I’'usager puisse maintenant démarrer, arréter et personnaliser ces services. Les services
existants sont mis a jour selon la politique du developpeur de service qui était contenue
dans la notification. Sinon, la mise 3 jour se fait selon les défauts présentés au chapitre 4.

Plusieurs facteurs influencent le délai entre un abonnement et la disponibilité des
services. L’architecture joue un role dans le temps nécessaire pour informer I'AMS de la
nouvelle souscription et ses caractéristiques (nouvelles versions et nouveaux services). Si
Sy est la taille du message a envoyer a I’AMS, S5 la taille totale de tous les nouveaux
services plus la taille totale des classes dynamiques des services existants, alors le délai
avant qu’un service soit disponible est :

Doeay=Suu [ T+855/T+T,50,

T est le débit du réseau, et Ty, le délai infligé par le chargement dynamique des
classes 2 travers le chargeur de classes de I’AMS. L’ AMS démarre autant de “threads”
que nécessaires pour transférer les fichiers en paralitle. Les nombres varient avec
1’application. Toutefois, par souci de comparaison, Sy €tait de 633 octets pour un service
avec 5 classes (totalisant 23 Kilo-octets) & mettre & jour et une politique de mise 2 jour
pour trois d’entre elles. Ty, est de 104 millisecondes dans ces circonstances avec un Fast
Ethernet (capacité de 100 Mbits/s) et un débit réel de 52 Mbits/s. L’AMS regoit les
messages et transferent les fichiers 2 travers des sockets Unix. HTTP 1.1 était utilisé pour
le transfert des messages tout comme pour le chargement des fichiers.

La solution s’adapte bien 2 un nombre élevé de services, i.e. le délai pour N
services est le délai pour 1 service grice au parallélisme. Plus encore, dans I’architecture,

111



les services opérent et sont modifiés indépendamment les uns des autres. L’évaluation

des requis est résumée au Tableau 5.4.

Tableau 5.4 Evaluation de I’implémentation par rapport aux requis

112

Objets dynamiques

Impact sur les services existant

Faible, les objets inchangés préservent I’information

Interruption des services Non

Adaptable a grande échelle Oui

Simplicité Les mises 2 jour sont transparentes a |’ application
Délai pour la disponibilité Bas, les services sont transférés en parallele

Dépendance vis-a-vis du systéme

Aucune

Chargement de nouveaux services et leurs données

Impact sur les services existants

Aucun

Interruption des services

Non, chargement dans des processus poids-légers

Adaptable a grande échelle Oui

Simplicité Oui

Délai pour la disponibilité Faible, parallélisme
Dépendance sur le systéme Aucune

Il est aussi possible d’envoyer des agents de mise 4 jour qui se proméneront
d’hdtes en hotes au lieu d’envoyer des messages. Il faudrait vérifier d'abord si ce schéma

permet un gain de performance.



54  Synthése des performances

L'analyse de performance a permis de valider I'implémentation de notre
architecture pour la mobilité des services. Les délais encourus avant la disponibilité
des services sont faibles. L'impact de performance de I'AMS sur les applications

(qu’il contient) est infinitésimal. 1 devrait dorénavant étre considéré comme négligeable.

La permutation d’agent remplit les exigences énumérées au chapitre 4. Seule la
permutation abrupte cause une interruption de service. Les performances des
permutations graduelle et abrupte sont comparables, pratiquement égales. Le délai pour la
disponibilité des services est faible dans les deux cas. La permutation abrupte expose
I’ AMS aux pannes du réseau. A titre d’exemple, la permutation d’un agent contenant 10
services totalisant 1000 Kilo-octets prend moins de 3.5 secondes. L’interruption de
service lors de transition abrupte est inférieure a 1.5 seconde.

La mise 2 jour dynamique de |'agent est encore plus rapide a cause des
traitements en paralléle et du fait qu'il n'est pas nécessaire de créer un nouvel agent. Le
délai pour mettre A jour 5 classes totalisant 23 Kilo-octets est de 104 millisecondes. La
dégradation de performance attribuable 2 la redirection des appels sur les classes
dynamiques est fatble, notamment dans le cas d’une redirection simple. Dix mille
(10000) appels causent une dégradation de moins de 550 millisecondes avec des
redirections simples. La perte est de prés de 2 secondes avec une politique élaborée dans
le cas de 10000 appels.

113



CHAPITRE VI

CONCLUSION

La téléphonie Internet en combinaison avec la vulgarisation des moniteurs
d’information portables offre un nombre spectaculaire d’opportunités. Les coiits sont
réduits et des services inconcevables il y a quelque temps peuvent étre produits. Les
exemples actuels de tels services associent souvent plusieurs technologies (t€léphonie,
courrie] et facturation sur carte de crédit). Des architectures de services permettant la
libre concurrence et basées sur une implémentation technique performante et
augmentable sont nécessaires afin que la précipitation n’améne a produire des solutions
limitées, élaborées pour un rapide et court gain commercial. L’utilisation d’agents
mobiles a été proposée dans la littérature. Toutefois, ces propositions étaient limitées aux
réseaux téléphoniques et aucune implémentation ne validait les proclamations. Ce
mémoire a modifi€ et étendu les concepts pour proposer des agents mobiles qui
regroupent et transportent les services ayant des affinités. De plus, tout service peut étre
inséré dans |’ architecture, qu’il soit de téléphonie ou non.

6.1  Synthése des travaux et contributions principales

Nous avons spécifié et implémenté une architecture de service qui remplit les
exigences de I'introduction et qui est applicable a tout service (de téléphonie ou non) et &
toute machine munie d’un interpréteur. La solution a ainsi dépassé le cadre des services
avancés de téléphonie. Les éléments principaux de I'architecture sont une unité de
gestion des services, une unité de création des services et un agent mobile pbur service.
Les services sont conservés dans 1'UCS. Lors d’un abonnement, ’'UGS assemble autant
d’agents qu’il y a de classes de services concernées par la souscription. Ces agents se
déplacent sur la machine de 1'usager (ou son commutateur d’attache dans le cas des

services de téléphonie) avec des pointeurs aux codes, ou chargent les codes exécutables

114



des services avant de se déplacer. Sur la machine de I’usager, ils offrent une interface

graphique par laquelle celui-ci peut démarrer, améter et personnaliser ses services.
L’agent se déplace sur toute machine de 1'usager quand celui-ci le désire. L’acces
universel est garanti car I’agent continue & fonctionner méme coupé du réseau.

Les autres exigences de I’introduction sont satisfaites. Créer un service revient a
le programmer et 1’entreposer dans I'UCS. L’AMS se charge de la gestion des services.
Tout fournisseur de service accrédité pourrait créer son AMS, ou en partager avec
d’autres. L’évolution est indépendante du réseau et les services peuvent étre
personnalisés. Tout type de service peut étre cré€: il n’y a aucune restriction i part la
nécessité d’utiliser notre librairie si on veut des mises a jour dynamiques. Nous avons
résolu ensuite la question de la mise a jour de I’agent et des services. Nous avons d’abord
analysé les implications théoriques de deux méthodes de mise 2 jour, puis explicité leurs

implémentations. Les mises 2 jour se produisent lors d’une nouvelle souscription par un

115

usager qui posséde déja un AMS. Les deux méthodes sont la permutation d’agent et la-

mise & jour dynamique de 1’agent. Dans le premier cas, un agent contenant les nouveaux
et anciens (nouvelles versions au besoin) remplace I’ancien AMS. Dans le second cas, les
nouveaux services et versions sont dynamiquement insérés dans I’AMS. La permutation
d’agents a deux variantes : la permutation abrupte et la permutation progressive. Les
mises 2 jour dynamiques sont les plus délicates car I’intégrité du code peut étre violée par
ces changements.

L’approche de mise A jour dynamique implémentée et décrite au chapitre 4 est
une contribution majeure au domaine de I’évolution dynamique des systémes. En effet, la
technique implémentée par notre librairie permet de sélectionner quelles instances mettre
A jour et de définir une politique de mise a jour adaptée a chaque application. Une
méthodologie de mise A jour peut éwre définie pour chaque version d’ume classe
dynamique. En accord avec le paradigme orienté objet, I'unité (granularité) de mise a
jour est la classe. Par sa précision (choix des objets 2 modifier) et sa flexibilité (politique
différente pour chaque version d’une classe), notre librairie offre une librairie de mise a

jour compacte (9 KiloOctets) et plus efficiente que les approches documentées.



Finalement, nous avons évalué toutes nos implémentations. Il y a une pénalité
négligeable (en dessous de la milliseconde par classe) & exécuter les services 2 travers
I’AMS. Le délai pour la disponibilité d’un service est faible et la solution s’adapte
bien dans le cas de I’abonnement A un nombre élevé de services. La permutation
d’agents a des délais semblables A un premier abonnement. Le délai requis pour arréter
les services est négligzable et I’ajout de temps est dii au temps de déplacement de I'AMS
dans le cas de la permutation brusque. Avec la permutation progressive, les deux agents
coexistent pour une certaine durée, ce qui n’est pas le cas avec la permutation abrupte.
Les délais pour la disponibilité des services sont encore plus faibles dans le cas de la mise
a jour dynamique parce qu’il n’est pas nécessaire de créer un nouvel agent ou de charger
les anciens services. Dans les deux approches de mise a jour, les données personnalisées
sont préservées. Les classes dynamiques imposent une faible pénalité lors de I'exécution
du programme. Cette pénalité augmente linéairement avec le nombre d’appels effectués
aux classes dynamiques. La pénalité est plus importante quand une politique de
redirection autre que celle de défaut est utilisé. La performance du systéme est trés bonne.

6.2 Limitations des travaux et recherches futures

Des implémentations résussies ont guidé, dominé et décidé les divers choix
architecturaux et de mise 2 jour que nous avons adopté. A chacune des étapes, notre
méthodologie était donc d’identifier les fonctionnalités requises, puis produire un
prototype performant (trés rapide) et valide, et enfin d’énumérer les spécifications
techniques de I’approche que I'impiémentation avait prouvé comme étant la meilleure.
Ce faisant, nous avons survol€ ia théorie et n’avons pas fourni de formalisme pour nos
réalisations. Une des voies de recherche future est d’élaborer un formalisme qui prouvera
et permettra éventuellement de découvrir des erreurs (généralement indécélables par
I’expérimentation) dans les concepts d’ AMS et mises a jour dynamiques tels que nous les
avons développés. Les méthodes formelles sont embryonnaires dans le domaine de
I’informatique mobile. UNITY (McCann et Roman, 1999) est le seul systtme de

raisonnement sur la mobilité du code que nous connaissons. Il est basé sur la logique “r-

116



calculus” proposé par Milner et al. (1992). Le domaine de la formalisation de la validité
des mises a jour dynamiques est plus dévelopé et utilise la logique des prédicats courante.
Notre implémentation utilise des mesures de sécurité (codage notamment)
uniquement lorsque les oublier invaliderait la solution. La prochaine étape serait
d’intégrer les mécanismes de sécurité existants dans 1’industrie dans I’architecture. Nous
pensons notamment a des mesures spécifiques pour protéger le code objet des services
transporté par I’ AMS. Ceci est essentiel pour un environnement industriel, sinon |’héte
pourrait capturer I’agent et récuperer les services, ou recupérer les données enregistrées
sur disque dur. A ce moment 13, il peut alors se dispenser de I' AMS. Bien entendu, toutes
les questions de sécurité relatives aux agents sont aussi applicables a I’AMS.

Pour les petites machines tels que les “palmtops” qui ne disposent que de
quelques MégaOctets de mémoire, la taille de I’AMS et ses services pourrait devenir trop
importante dans certaines criconstances. Ces machines réservent quelques kiloOctets a
I’AMS, car elles doivent aussi accommoder les autres applications. Il faut alors envisager
des mécanismes de partitionnement de !'intelligence et des services transportés par
I’AMS. Plus spécifiquement, les techniques du modele client-serveur étendu, ol les
fonctionnalités du serveur sont déplacés au client et vice-versa selon le cas, pourraient
étre appliqués ici. Il faut donc trouver des moyens de partionner I’intelligence et les
fonctionnalités de I’AMS. Face a des limitations de mémoire, puissance du processeur ou
méme connectivité, I’AMS pourrait s’importer partiellement sur la machine cible et
garder ses autres fonctionnalités & une machine (celle du SMU par exemple) et les utiliser
ensuite en client-serveur. Les interpréteurs et systémes d’exploitation permettent
d’évaluer les limitations mémoires. Seuls les él€éments indispensables sont déplacés sur la
machine cible. Le reste suivra si les conditions s’améliorent. L’AMS devrait étre assez
intelligent pour gérer lui-méme son partitionnement.

L’implémentation et la validation de I’architecture présentées dans ce mémoire
constituent les fondements indispensables pour la réalisation effective du paradigme que
nous avons modifié : celui de !utilisation d’agents pour I’approvisionnement en services.

A partir de cette base éprouvée, les travaux de recherche se multiplieront certainement.

117



BIBLIOGRAPHIE

Abu-Hakima S., Liscano R. et Impey R., “A Common Multi-Agent Testbed for
Diverse Seamless Personal Information Networking Applications”, IEEE
Communications, Mars 1998, pp. 68-74.

Armstrong J., R. Virding, C. Wikstrom et M. Williams, “Concurrent Programming in
Erlang”, Second Edition, Prentice Hall, 1996.

Baumannn J., Kohl F., Rothermel K. et Strasser M., “Mole - Concepts of a Mobile Agent
System”, Mobility Processes, Computer and Agents, ACM Press, Addison Wesley,
1998, pp. 536-556.

CCITT Recommandation Z.100, “Specification and Description Language (SDL)",
Novembre 1999, Genéve, Suisse.

Claypool M., Coates T., Hooley S., Shea E. et Spellacy C., “Video Performance in Java”,
In Proceedings of the Information Resources Management Association Conference,
Anchorage Mai 2000, pp. 1-6.

Douglis F. et Ousterhout J., “Transparent Process Migration: Design Alternatives and the
Sprite Implementation”, Mobility Processes, Computer and Agents ACM Press,
Addison Wesley, 1998, pp. 57 - 86.

Drossopoulou S., Valkevych T., Eisenbach S., “Java Type-Soundness Revisited”,
Technical Report Imperial College of Science, Technology and Medicine, Avril 2000.

Evans H. et Dickman P., “Zones, Contracts And Absorbing Change: An Approach To
Software Evolution”, In Proceedings of Object Oriented Programming Systems and
Languages Conference, 1999, pp. 415-434.

Finin T., Labrou Y. et Peng Y., “Mobile Agents Can Benefit From Standard Efforts on
Interagent Communication”, IEEE Communications, Mars 1998, pp. 50-55.

Franz M., “Dynamic Linking of Software Components”, IEEE Computer, Mars 1997, pp.
74-81.

118



Freund S. et Mitchell J. C., “A Type System For Object Initialization In The Java
Bytecode Language”, In Proceedings of Object Oriented Programming Systems and
Languages Conference, 1998, pp. 310-327.
Gamma E., Helm R., Johnson R. et Vlissides J., “Design Patterns: Elements of
Reusable Object-Oriented Software”, Addison-Wesley, 1995.

Glitho R., “Emerging Alternatives to Today's Advanced Service Architectures for
Internet Telephony: IN and Beyond”, Computer Networks Journal, A paraitre en
Février 2001.

Glitho R., “Advanced Services for Internet Telephony: a Critical Overview”, IEEE
Network, Juillet-Adut 2000.

Glitho R., Pagurek B., Tang J., White T., “Management of Advanced Services in H.323
Internet Protoco! Telephony”, IEEE Infocom Conference, March 2000.

Glitho R., Wang A., “A Mobile Agent-Based Service Architecture for Internet
Telephony”, International Switching Symposium, Birmingham May 2000

Glushko R., Tencbaum J. et Melizer B,, “An XML Framework for Agent-Based E-
Commerce”, Communications of the ACM, Vol 42, No 3, Mars 1999, pp. 106-114.

Graham P., “Ansi Common LISP”, Prentice Hall, 1995.

Gray R., “Agent Tcl: A Flexible And Secure Mobile-Agent System”, Ph. D. Thesis,
Dartmouth College, 1997.

Greenberg M., Byington J., Holding T. et Harper D., “Mobile Agents and Security”,
IEEE Communications, Mars 1998, pp. 74-85

Griffeth N. D. et Lin Y-J.,, “Extending Telecommunications Systems: the Feature
Interaction Problem™, Computer, Vol. 26, No. 8, pp 14-18, August 1993.

Gruber T. R., “Toward Principles for the Design of Ontologies Used for Knowledge
Sharing”, Technical Report KSL 93-04, Knowledge Systems Laboratory, Stanford
University, Voir Site Ontologies.

Handley D., “SIP: Session Initiation Protocol”, RFC 2543, Internet Engineering Task
Force, Mars 1999.

119



Hjdlmtysson G. et Gray R., “Dynamic C++ Classes, A Lightweight Mechanism to
Update Code in a Running Program”. In Proceedings of the Usenix Annual Technical
Conference, New Orleans, Louisiana, Juin 1997.
ITU-T, “Recommendation H.323, Packet-Based Multimédia Communications
Systems”, Genéve, Septembre 1999.

ITU-T, “Recommandations X.680-X.683, Specification Of Abstract Syntax Notation
Number One (ASN.1) ", 1997.

Jackson M. et Zave P., “Distributed Feature Composition: A Virtual Architecture For
Telecommunications Services”, IEEE Transactions on Software Engineering, Vol 24,
No 10, Octobre 1998.

Jing J., Helal A. et Elmagarmid A., “Client-Server Computing in Mobile Environments”,
ACM Computing Surveys, Vol. 31, No 2, 1999, pp. 117-157.

Johansen D., Fred Schneider And Robbert V. Renesse, Tacoma Project Pages,
2000, http://www .cs.uit.no/dos/tacoma/index.html.

Joseph A., Tauber D. et Kaashoek M., “Mobile Computing with the Rover Toolkit”,
IEEE Transactions on Computer Systems, 1997.

Joshi A. et Singh M. P., “Multiagent Sytems on the Net”, Communications Of The ACM
March 1999/Vol 42, No 3, pp. 38-40.

Karmouch A. et Pham V. A., “Mobile Software Agents: An Overview”, IEEE
Communications, July 1998, pp. 26-37.

Khrishnamoorthy C. S. et Rajeev S., “Antificial Intelligence and Expert Systems for
Engineers”, CRC Press, 1996.

Kotz D., Jiang G., Gray R., Cybenko G., Peterson R., “Performance Analysis of Mobile
Agents for Filtering Data Streams on Wireless Networks”, Technical Report TR2000-
366, Dartmouth College, Mai 2000.

Labrou Y. et Finin T., “A Proposal for a new KQML Specification”, Technical Report
CS 97-03, University of Maryland Baltimore County.

Maes P., Guttman R. H. et Moukas A. G., “Agents That Buy And Sell”, Communications
of the ACM, March 1999/Vol 42, No 3, pp. 81-91.

120



Malabarba S., Pandey R., Gragg J., Barr E. et Barnes J.F., “Runtime Support for Type-
Safe Dynamic Java Classes”, In Proceedings of the ACM OOPSLA Conference,

Antibes, France, 2000.

McCann P. J., Roman G.-C., Modeling Mobile IP in Mobile UNITY, A paraitre
dans ACM Transactions on Software Engineering and Methodology, disponible
comme rapport technique 2 http://swarm.cs.wustl.edu/cgi-bin/pubs/papers

Milner R., Parrow J. et Walker D., A Calculus for Mobile Processes I., Information and
Computation 100, Vol. I Sept. 1992, pp. 1-40.

Milojigié¢ D., Mobility Processes, Computer and Agents, ACM Press, Addison Wesley,
1998, pp. 451-456.

Oreizy P., Medvidovic N. et Taylor R., “Architecture-Based Runtime Software
Evolution”, In Proceedings of the International Conference on Software Engineering,
1998, pp.177-186.

Outtagarts A., Kadoch M. et Soulhi S., “Client-Server and Mobile Agent: Performance
Comparative Study In The Management of MIBS”, First International Workshop on
Mobile Agents for Telecommunication Applications, World Scientific, 1999.

Pelletier S.-J., Pierre S. et Hoang H. H., “ISAME : Une Architecture Multi-Agent de
Recherche d’Information”, INFOR, Vol. 38, No 2, Mai 2000, pp. 65-91.

Picco G. P., “Understanding, Evaluating, Formalizing and Exploiting Code Mobility”,
Ph.D. Thesis, Politecnico Di Torino, 1998.

Powell M. et Miller B., “Process Migration In Demos/MP”, Mobility, Processes,
Computer and Agents, ACM Press, Addison Wesley, 1998, pp. 29 - 38.

Ranganathan M., Acharya A., Sharma S. et Saltz J., “Network-Aware Mobile Programs”,
Mobility Processes, Computer and Agents, ACM Press, Addison Wesley, 1998, pp.
568-581.

Segal M., Frieder O., “On-The-Fly Program Modification: “Systems for Dynamic
Updating”, IEEE Software, Mars 1993, pp. 53-65.

Shoham Y., “Agent-Oriented Programming”, Journal of Artificial Intelligence, 60(1), pp.
51-92, 1993

121



122
Wetherall D. J., “Service Introduction in an Active Network”, Ph.D. Thesis,

Massachussets Institute of Technology, 1999.
White J., Mobility Processes, Computer And Agents, ACM Press, Addison Wesley,
1998, pp. 461-492.
Wikstr5m A., “Functional Programming Using Standard ML”, Prentice Hall, 1987.

Web Sites
CITRIX http://www.citrix.com
MOA http://www.camb.opengroup.o java/moa/index.html
MSNBC http://www.msnbc.com/news/457651.asp

Ad Astra http://www.JumpingBeans.com

Aglets http://www.trl.ibm.com/aglets

Alexa http://www.alexa.com

Disa http://www.disa.org

Encheres http://auction.eecs.umich.edu
http://www.ebay. w

http://www.onsale.com

http://www.auctionet.com
Excite http://live.excite.com/
E-Watch http://www.ewatch.com/

Frictionless  http://www frictionless.com

Jango http://www jango.com

Jini http://www.sun.com/jini

Mole http://mole.informatik.uni-stuttgart.de

MySimon  http://www.mysimon.com

Obliq http://research.compaq.com/SRC/publications/cartoons/src-rr-122.html

Personalogic http://www.personalogic.com
“Push” http://jm.acs.virginia.edu/department/org/atg/techtalk/ Push”
http://www.”Pointcast”.com



123
Sumatra http://www.cs.umd.edu/~acha

Tacoma http://www.cs.uit.no/forskning/DOS/Tacoma
Voyager http://www.objectspace.com

WBI http://www.almaden.ibm.com/cs/wbi/
ZdNet http://www.zdnet.com/zdi/pview/pview.cgi

KIF Spécification  http:/logic.stanford.edu/kif/specification.html

JKQML http://www.alphaworks.ibm.com/aw.nsf/techmain/jkqmi

FIPA-ACL http://www.nortelnetworks.com/products/announcements/fipa

JKP http://www.csee.umbc.edw/kif/jkp

Xerces, XML-Java  http://xml.apache.org

Ontologies http://agents.umbc.edu/aw/Topics/Communicative_Agents/
Ontologies/index.shtml

Cryptographie http://java.sun.com/jce/index.html

Securité http://java.sun.com/docs/books/tutorial/securityl.2/
summary/apicore.html

PACMon www.abraxis.com

Voyager www.objectspace.com

Grasshopper www.grasshopper.de





