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Résumé 

Ce travail présente une nouvelle approche pour la synthbe de nouvelles vues A partir 

d'images bidimensionnelles prises par des cam6ras stéréoscopiques non calibrées, et 

ce sans reconstruction tridimensionnelle explicite. Ainsi, seulement un petit nombre 

de points appariés sur deux images sources est utilise pour générer la nouvelle vue. 

Aussi, pour obtenir un rendu géomktriquement valide nous utilisons des outils de la 

géométrie projective qui permettent une description réaliste de la scène. 

Dans un premier temps, nous présentons les notions de géom6trie projective qui 

nous permettront de définir les relations entre les camkras dans la sche. Lm notions 

de géomktrie épipolaire sont mises à contribution pour introduire une nouvelle métho- 

de de calcul de la matrice fondamentale, et ce pour décrire les propriétés inhérentes 

à une configuration d'une paire de caméras stéréoscopiques. Elle a comme caractéris- 

tiques d'etre lin6aire, ce qui permet de réduire le temps de calcul de façon appréciable, 

et d'exploiter les informations présentes dans la scène, à savoir les surfaces planes, 

pour obtenir de meilleurs résultats comparativement aux t ethniques classiques de 

calcul de la matrice fondamentale. 



Dans un deiMème temps, les invariants projectifs sont nttudiés et deux techniqge~ 

pour les calculer à partir de l'appariement des points entre images sources sont présen- 

tées. Nous les utilisons ensuite pour décrire une représentation invariante de la scène 

en termes de birapports des points appariés dans deux images sources. Une étude 

comparative nous permet de montrer que le calcul de ces inmriants donne des résul- 

tats très satisfaisants. Ici aussi nous exploitons la présence de surfaces planes dans la 

scène pour calculer de facon robuste une structure invarivariante de celle-ci. 

E h y  nous utilisons la géorn6trie épipolaire et les invariants projectifs pour syn- 

thétiser des nouvelles vues. Nous utilisons un petit nombre de points appaxiés pour 

obtenir une grille de points de contrde sur chacune des images sources. Cette @e 

est alors reprojethe sur sa nouvelle position dans un troisième plan image en utilisant 

les t ethniques développées précédemment (matrice fondamentale et invariants pro jec- 

t&) . Le reste des points images est ensuite obtenu par interpolation des points de la 

grille a l'aide d'une technique de textumge bidimensionnel1 en perspective. Ceci nous 

permet de faire un rendu basé sur images qui a comme caractéristique dY&re rapide 

tout en préservant un bon realisme pour les nouvelles vues générées. Notre approche 

est finalement illustrée sur plusieurs exemp1es de scènes rêelles et synthétiques. 



Abstract 

Without the computational CO& of 3D reconstruction, this thesis presents an original 

approach for synthesis of a third view from two images captured by a non-calibrated 

stereo system. Only sparse correspondences between the source images are needed. 

The approach results in a realistic geornetricc~lly-uulid rendering of the scene. 

With the aid of projective geonietry, geometrical relations characterizhg a two 

cameras configuration are dehed. A new technique for fundamental ma* mm- 

putation is then presented. It exploits the available geornetrical information about 

the scene, in paxticular, the plannil'ty constraints in the epipolar equations. This 

technique is linear and computationally less expensive than classical methods. 

Next, projective invariants are presented with two techniques for their cornputa- 

tion. This fields an i n . a n t  representation of the scene in terms of cross-ratios of 

corresponding points in a pair of source images. Recognition of p h  surf'aces in the 

scene leads to a robust computation of the indant representation. 

The foregoing synthesis of a novel view depends on epipolar geometry and pro- 

jective indants. A d number of corresponding points is required to obtain a 



grid of anchor points in each image plane. This grid is repro jected on its position in 

the third view using fundamental matrix and projective invariants. The remaiPiag 

image points are rendered by perspective image wurping to achieve a photc~ealistic 

renderd view. The e£Eciency of the method is illustrated on images of synthetic and 

reaL scenes. 
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Chapitre 1 

Introduction 

Depuis le début de la vision par ordinateur, les chercheurs se sont intéressés B l'ana- 

lyse et l'înterpr6tation de la géom6trie de la scène, & partir des images prises par 

des cameras. L'objectif étant de représenter l'espace tridimensio~~nel par des entités 

géom6triques d'une manière efficace. Une représentation de ce type devrait tenir 

compte de l'aspect dynamique de l'environnement, pour permettre d'exploiter cette 

information pour l'exécution de diverses tgches (par un robot équipé de caméras par 

exemple). Il est donc important de pouvoir produire une interpr6tation aussi compl&te 

que possible de la sche  & partir seulement de l'information visuelle disponible. Un 

des domaines en vision qui vise & produire une représentation compl&te de la scène 

est la reconstmction de la structure tridimensionnelle d'une scène à partir seulement 

des images de celle-ci, et ce pour des applications diverses comme la planification, 

l'évitement d'obstacles, et plus récemment la réalité virtuelle entre autres. C'est 



ce dernier domaine qui connaît un grand engouement ces dernières années, qui s 

pouss6 les deux communautés de vision et graphisme par ordinateur (infographie) 

à joindre leurs efEorts pour trouver des solutions pratiques aux problémes p& en 

redit6 virtuelle. Des chercheurs de ces deux domaines traditionnellement séparés 

ont commencé récemment ii t r a d e r  sur le développement d'outils permettant de 

produire un rendu réaliste & partir d'un ensemble d'images d'une même scène prises 

par des caméras réelles. Ce domaine s'appelle rendu bas6 sur images (McMïllan et 

Bishop, 1995; Kang, 1997; Dyer, 1997; Lengyel, 1998). Ii consiste en des techniques de 

synthèse de nouvelles vues partir de vues connues et ce sans modae tridimensionnel 

de la scène* 

Dans les approches traditionnelles en vision par ordinateur la synth&se de vues 

était produite ii partir d'un modae tridimensionnel proprement reconstruit ii partir 

de l'appariement établit entre les images de la scène. Une fois le modèle obtenu, on 

lui applique une texture extraite des images sources pour ajouter du rhhme. On 

peut ensuite placer une source de lumière pour obtenir un rendu amélioré. Aprés 

cette reconstruction, la scène peut être manipuk et on peut choisir la position d'une 

caméra virtuelle qui va capturer la scène du point de vue désire. Cette cam6ra pourrait 

aussi bien &tre couplée la tete d'un opbrateur pour une visualisation interactive de 

diff6rents points de vues de la scène reconstruite. Cette approche est encore utilisée de 

nos jours dans dinérentes applications (Berger, Simon, Petitjean et Wrobel-Dautcourt, 

1996; Chang et Zakhor, 1995; Chang et Zakhor, 1997; Debevec et Malik' 1996). En 



infographie une approche similaire est utilisée. D'abord un modae de la scène est 

reconstruit partir de p h  de celle-ci ou B partir de d o m k  tridimensionnelles 

foumies par un senseur tridimensiomel. Puis l'ajout de la texture et des sources de 

lumi&re permet un rendu plus réaliste de la scène B partir d'un point de vue choisi 

en p l a p ~ t  une caméra virtuelle dans la scène (Foley, Vkn Dam, Feiner et Hughes, 

1990; Watt, 1993). Toutefois9 ces denx approches ont quelques inconvénients : 

1. La ~econstruction tridimensionnelle en vision est très coateuse en temps de 

calcul et est très sensible aux erreurs d'appariements. 

2. La modélisation en infographie a un coDt prohibitif en ressources homme-machine 

et dépend de la précision des résultats fournis par les senseurs tridimensionnels 

utilisés et/ou les plans disponibles de la scène. 

Pour remédier à ces problèmes, un nouveau domaine a été introduit récemment, 

c'est le rendu basé sur images. L'objectif est de permettre la synthése de nouvelles 

vues à partir seulement des images connues et ce sans recomtmction tridimensionnelle 

explicite. Ceci permet d'éviter le temps de calcul souvent prohibitif que nécessite la 

modélisation tridimensionnelle de la scène. Imaginons qu'il partir de quelques images 

prises sur un site historique nous puissions nous promener dans un environnement 

virtuel représentant ce site et ce sans avoir faVe un modue tridimensionnel de 

celui-ci. Nous pourrions avoir dS"rents points de vue en utilisant La synthèse de 

nouvelles vues B paxtir seulement de vues bidimensionnelles connues. Nous pourrions 

ainsi avoir accès un tel environnement sur un ordinateur personnel sans avoir besoin 



de mateiel sophistiqué. Cette approche pourrait etre intéressante pour la télérob* 

tique par exemple, ciî un opérateur assis devant son écran d'ordinateur et qui veut 

manipuler un objet distance dans une &ne non modélisée a priori (Cohen, Hervé 

et Akhloufi, 1998), les caméras foumissant l'information visuelle prise sur le site de 

travail. L'opérateur pourrait en bougeant la tete avoir différentes vues par simple 

synthk de nouvelles vues iî parür des images fournies par les caméras sans avoir i% 

deplacer ces dernières dans le site ou faire une reconstruction tridimensiomelle f8s- 

tidieuse de la scène. Ainsi, les techniques de rendu basé sur images fournissent an 

outil pratique et intéressant dans ce sens, d'os l9int&et croissant pour ce domaine ces 

dernières années. 

Dans le travail que nous présentons dans ce mémoire, nous proposons de d m  

la scène non pas par un modèle tridimensionnel, mais par des vues bidimensionnelles 

réelles de celle-ci. En supprimant ainsi l'étape de modélisation et en accêlérant l'étape 

de rendu nous pouvons produire de nouvelles vues dans un temps acceptable. En effet, 

les images disponibles contiennent les informations gèom6triques nécessaires, et les 

informations de texture sous forme déjh rendue. 

L'information géom6trique contenue dans les images nous permet dans le cadre de 

la geom6trie projective de mieux représenter la scène en vue de la ghération d'une 

nouvelle vue. Les outils de la géom6trie projective permettent la synthèse d'une 

nouvelle vue satisfaisant les contraintes gêomtitriques inherentes & une configuration 

des caméras et de la scène. La vue ainsi obtenue sera plus proche de la vue qui serait 



fournie par une caméra placée au m&ne endroit que la caméra Virt~elle- 

Tout cela nous améne dans le cadre de œ travail nous intéresser aux outils de 

geométne projective qui permettent un rendu géométriquement valide, c'est-&-dire la 

geomktne epipolaire et les inwu5anta projedifi En ce sens, notre contribution se 

situera au niveau du d6veloppement de nouvelles méthodes basées snr l'exploitation 

des propriétés de la scènet plus partidikement la présence de Surfaces planes dans 

celle-ci. Cette contrainte de planarith est caracteisée par me relation de transfor- 

mation homographique entre les projections sur les plans images d'une meme sudace 

plane. Cette transformation contient toute Pinformation nécessaire pour préservez la 

planarité d'une surface pro jetee. 

Dans le cadre de ce travail nous contribuons B l'estimation de la géom6trie 6pi- 

polaire par une approche originale de calcul de la matrice fondamentale. La méthode 

proposée est linéaire et nécessite u n  temps de calcul faible comparativement aux 

mbthodes &tantes (Luong et Faugeras, 19948; Deriche, h g ,  Luong et Faugeras, 

1994; Luong et Faugeras, 1996; Zhaog, 1996; Csurka, Zeller, Zhang et Faugeras, 

1997; Faugeras, Luong et Maybank, 1992; Hartley, 1997~; Hartley, 19974 Hartley, 

l997b). 

Au niveau des invariants projectifs, nous présenterons deux techniques de calcul 

de ces invariants B partir de deux images d'une paire stéréoscopique qui donnent des 

résultats très satisfaisants. 

Finalement, pour la syn thh  de nouvelles vues & partir d'images connues, nous 



décrivons une approche originale qai, contrairement aux techniques de synthèse de 

vues &tantes (Laveau et Faugeras, 1994; Seitz et Dyer, 1995b; Seitz et m, 
1996a; Avidan et Shashua, 1997; Kanade, 1996; Kanade, Narayanan et Rander, 1996), 

ne nécessite qu'un appazkment épars entre les points dyintêr& présents dans les im- 

ages sources pour générer une nouvelle vue de la scène. La methode développée 

s'inspire des techniqes d'infographie, plus particulièrement la Conception Assistée 

par Ordinateur (CAO) (Watt, 1993; Zhang, 1998~)) oil la scène est mod- par un 

ensemble de plans ou d a c e s  de base qui sont associés ensemble pour définir la scène 

et sur lesquels on colle une texture pour ajouter plus de r6alisme. Dans notre cas, les 

deux Mages stéréoscopiques sources sont décornpos& en morceaux de Surfaces planes 

à partir d'un petit nombre de points d9intér& appariés, décrivant ainsi un d a g e  

apparié sur les deux images. L'idée est de reprojeter les points appariés d4crivant ce 

maillage, c'&&-dire les points d'inter& qui jouent le r6le de points de contrôle, dans 

une nouvelle vue par des techniques de géom6trie projective que nous d6velopperons 

dans le cadre de ce travail (matrice fondamentale et invariants projectifs). Une fois 

les points de contrdle placés sur le nouveau plan image, nous trassf&ons ensuite le 

reste des points en utilisant une technique de teztumge bidimensionnel en perspective 

qui permet de présemer la plmarit6 des difkents morceaux de surfaces composant 

les images après projection (figure 1.1). Nous évitons ainsi de faire un appariement 

dense entre les images de la paire stéréoscopique, qni peut étre prohibitif en temps 

machine. 



Organisation du travail 

Le travail est organisé de la façon suivante: le chapitre 2 présente les relations géo- 

mbtriques fondamentales entre cam4ras. Nous dormons une breve introduction de Ia 

géométrie projective qui nous permet de déh i r  les relations épipolaires entre caméras. 

Ensuite, une revue bibliographique des principales techniques de calcul de la matrice 

fondamentale est présentée, puis une nouvelle méthode est introduite, Elle repose soir 

l'existence de Surfaces planes dans la scène pour faire le calcd de la matrice fonda- 

mentale. Le chapitre 3 donne un aperçu sur Ies invariants projectifs pour finir par une 

présentation de deux techniques pour calculer ces invariants à partir de l'appariement 

des primitives d'intérêt (points et lignes) sur une paire d'images stéréoscopiques. Au 

chapitre 4, les techniques de synthèse de vues sont introduites par une revue bibli- 

ographique qui décrit les principales méthodes &tantes dans la littérature. Ensuite, 

une approche originale pour générer de nouvelles vues à partir seulement d'un ap- 

pariement éparse entre les images est présentée. Le chapitre 5 présente les résultats 

exp8nnientaux illustrant la validitè des methodes proposées. Une brWe conclusion 

résume ce travail. Nous y décrivons les contributions apportées, discutons des mélio- 

rations possibles et soulevons des questions qui peuvent &re abordées dam de futurs 

travaux. 
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Figure 1.1 : Description globale de l'approche proposée pour la synthèse d'une nou- 
velle vue 



Chapitre 2 

Relations géométriques entre 

caméras 

Dans ce chapitre nous décrivons les relations qui lient les coordonnées tridimension- 

nelles d'un point de la scène & celles, bidimensionnelles, de son image. La géomhtrie 

projective nous o%e les outils pour représenter cette relation de rnanïere élégante, 

permettant ainsi une reprhntation b6aire projective. 

Le chapitre commence par une brève introduction A la géom6trie projective 

(Semple et Kneebone, 1979), oit nous allons décrire les r6sultats fondamentaux qui 

seront utiles par la suite. 

Dans la seconde partie nous dons  aborder l'aspect géom6triqpe de la formation 

d'image. Nous décrirons les rnodéles de projection que nous utiliserons et l'apport de 

la géom6trie projective dans ce sens. 



Enfin, nous présenterons les notions de géom6trie épipolaire et de matrice fonda- 

mentale. Nous commencerons par une revue des pllIlcipales méthodes pour estimer 

la matrice fondamentale. Nous présentero~~ ensuite une propn6tQ importante reliant 

l'homographie ii la matrice fondamentale, et finirons par proposer une nouvelle a p  

proche basée sur Pexploitation de cette propriét6 et la connaissance qye nous avons 

de la scène, 

2.1 Géometrie projective en vision 

2.1.1 Espaces projectifs 

Un point appartenant & un espace projectif de dimension n, Y, est représent6 par un 

vecteur de (n + 1) éléments dont au moins un éI6ment est non nul P = [zl, . . . zn+ilt. 

Les 61bents de P sont appelés coordonn&s homogènes du point. P est appel6 vecteur 

de coordonnées homogènes. Deux vecteurs de dimension (n + l), P = [X I ,  ... xn+,+lIt et 

Pf = [2;, ... xL+,lt représentent le meme point si et seulement s'il existe un scalaire X 

non nul tel que Pi = XP,' pour i = l...n + 1. C'est ce qu'on appelle Qalitk projective. 

Ainsi la correspondance entre les points et les vecteurs de coordonnées n'est pas 

unique, mais définie A un facteur multiplicatif près. 

Lorsque l'espace projectif est de dimension 1, 2 et (n - l), cet espace est appel6 

droite, plan et hyperplan. L'hyperplan d'équation z,+~ = O est appel6 hyperplan de 

l'infini. Les points et les ligne8 se trouvant sur ce plan sont appel& poinfg d l'hm 



et lignes b l'infini respectivement. 

Dèpendance linéaire 

Les points Pl, . . . , Pm de l'espace projectif Pn sont lin6airement dependants s'il existe 

un ensemble de scalaires Xi,. . . , A, non tous nuls tels que 

Base projective 

Une base projective de Pn est formée de n+2 points tel que tout sous-ensemble de n f  1 

points soit formé de points linbirement hdbpendants. La base projective canonique 

est formée par un ensemble de points ei = [O,. . . ,1, . . . , O]', i = 1,. . . , n + 1, avec 1 

pour le à' élément. Tout point P de l'espace projectif peut &tre représente comme 

une combinaison linéaire de n'importe quel souci-e~emb1e de n + 1 points de la base. 

Par exemple le point P peut s'écrire 

oïl les Ai sont des sdaires- 



2.1.2 Le plan projectif 

Le plan projectif peut B t r e  considhe comme une généralisation du plan euclidien 

en introduisant deux nouvelles propriéItés. Tout d'abord, la notion de distance est 

&mi.nee, a h  d'introduire m e  nouvelle structure appelée plan aEme qui est d e  en 

h t  l'hyperplan de l'infini qui est forme par les points dont la dernière coordonnée 

est nulle (voir plus haut). La propri6t6 la plus importante de ce p h  est que le 

parallélisme est un invariant pour une transformation affine qui est représentée par 

une matrice de transformation homogéne 3 x 3 caractérisée par une dernii?re colonne 

dont les élhents  sont de la forme [O, O, 11. C'est une transformation qui tient compte 

de la composition d'une translation, une rotation, une projection pi~fd&le et une mise 

A l'echelle. Une transformation afüne appliwe une mise en échelle non-isotropique 

des coordonnées des points de l'espace projectif, sinsi par exemple un carre peut étre 

transform6 en un paraJl41ogramme quelconque. En second lieu, ce modèle d e v e  le 

concept de lignes pardèles. Toute paire de lignes se croise en un point unique sous 

une projection perspective. Pour tenir compte de l'existence de lignes paralldes, c'est- 

&-due se croisant ii l'infini, la notion de point idéal ou point b l'infini est introduite 

(voir définition plus haut). Ainsi chaque ligne parallble définit un point i d h l  diffèrent. 

L'ensemble de ces points déftnit une ligne. 

Le plan afEne et la ligne formb par les points idéaux définissent le plan projectif 

(figure 2.1). 

Ceci amène B énoncer deux axiomes qui sont B la base de la géométrie projective : 



Figure 2.1 : Modde de plan projectif 

a Al  : Deux points quelconques d&eIILLinent me ligne unique. 

0 A2 : Deux lignes quelconques déterminent un point unique. 

Ces deux axiomes introduisent me notion importante que nous allons utiliser par 

la suite, c'est b notion de : dualit& Ce concept est très important en géometrie 

projective, puisque tout résultat obtenu pour les points est valables pour les lignes et 

vice versa. 

2.1.3 Coordonnées homoghes 

En se basant sur le modele projectif, un point m dans le plan projectif est reprht8 

par trois coordonnées cartésiennes, m = [zi, zg, z3lt. Tous les points sont définis A un 



factear mdtiplicatif près, ainsi TE = [zl, q, z3] et ni' = ME = [hl, A Z ~ ,  XZ# sont 

êquivaients . 

La relation avec les coordonn&s cartésiennes conventionnelles dans le plan, (z, y) 

peut &tre établie en construisant un plan T,, perpendiculaire ii l'axe des z3 et une 

distance unit6 dans la direction z3. L'intersection du rayon passant par m et par le 

centre de projection donne un point, iE = [z, y, lit, appelé repdsentdion canonique 

de m. La paire [z, Y]' représente les coordonnées cartésiennes de m. Tout point 

m = [zl, xa, x3It tel que x3 = 0 est appdé point idéal (voir figure 2.1) et l'ensemble 

de ces points définit une ligne appel& Zigne idhle. Les coordonnées cartéSiemm 

correspondantes au point projectif sont définies par 

n'est pas nécessaire que le p b  projectif soit perpendiculaire ii 5, m h e  si c'est 

la convention g4néralement utilisée. 

2.1.4 La ligne projective 

La représentation de la ligne dans le plan projectif est dbrivk de la représentation 

analytique d'un plan passant par l'origine. L'équation de ce plan est donnee par 
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Les coefficients L = [II, la, Z3It correspondent aux coordonnées homogènes de la ligne 

projective. L et AL représentent la même ligne. Ici le cas = O correspond aux lignes 

passant par l'origine. La ligne idhle est donnée par 1 = [O, O, 1It qui a pour équation 

xa = O. L'équation projective de la ligne peut s'écrire de plusieurs fa son^ : 

La dualite entre. les points et les lignes est indiquée par la forme sym6trique de 

cette équation. Le rBle de 1 et de m peut etre interchang6 sans pour autant changer 

la forme de l'équation. La forme projective homogéne d'une ligne peut &re reliée 

l'équation cartesienne standard de celle-ci. En coordonnées cartésiennes, l'équation 

d'une Ligne s 2 ~ t  

où n = (nz, n$ est la normale A la ligne et d la distance entre l'origine et la ligne 

en projection orthogonale B celle-ci. En comparant cette expression B l%quation ho- 

mogène de la ligne (4quation 24, on obtient la relation entre les parametres csrtésiens 

de la ligne et ses coefhients homogènes (figure 2.2). Les compasantes normales sont 

donn4es par 



Figure 2.2 : Modèle d'obtention d'une ligne B partir de deux points dans le plan 
projectif 

2.1.5 Transformations projectives 

Une transformation projective ou colinéation est déhie comme étant une tram for- 

mation linéaire entre deux hyperplans projeetiis. Une transformation projective de 

Pn dans Pm s'exprime sous la forme 

Une transformation projective de Pn dans lui-même est appelée homogmphie. L'erisem- 

ble des homographies forme un groupe appel6 groupe projectif. L'homographie H 

entre deux plans projectifs est représentée par une matrice 3 x 3 avec 8 param&tres 

essentiels (figue 2.3). L'ensemble des trdorxnations projectives est un sous-espe 



Figure 2.3 : Colinéation entre deux plans project* 

de 8 dimensions de l'espace de 9 dimensions fond par les éI6ments de la matrice Hm 

La transformation d'un plan projectif nl vers un autre plan projectif ~ 2 ,  est 

- représentée par 

m' = Hm. 



La représentation de la t d o r m a t i o n  en coordonnb cartésiennes fait apparaître 

la nature non lineaire de la transformation projective dans un espace euclidien ou 

f i e  : 

2.1.6 Transformation projective de lignes 

La dualité entre les points et les lignes dans un plan projecm implique que la tr- 

formation projective de lignes est linéaire aussi. Soit l'@uation d'un point incident ii 

une ligne, 

Etant donde la transformation m' = Hm pour un point, la tmnsfonnaton in- 

verse est dom& par m = N-lm'. En substituant cette transformation inverse dans 

l'équation de la ligne on obtient 

Les transformations projectives préservent la colinéarité des points. Donc I'équa- 

tion de la ligne transformée est dom& pas Pm'. Les coordonnbes de la ligne 1' sont 



données par 

1' = [H-L]tl. 

Si on pose Hl = IF , on obtient dors 

Ainsi, les Iiepes dans le p h  projectif se trdorment lineairement, comme les 

points, mais avec une matrice de trdomation qui est la transposée de l'inverse de 

la matrice qui définit la traggformation des points. 

2.1.7 Calcul de l'homographie 

La matrice de transformation projective H ,  necessite 8 parametres indbpendants pour 

définir une application unique. Comme chque paire de points a p p w  donne deux 

équations en coordomnées cartésiennes, il est donc nécessaire de trouver au moins 4 

correspondances entre deux plans transformés projectivement pour dénnir la matrice 

de transformation de fqon unique. 
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Solution linéaire non homoghe 

Le système étant dis0111 ii un facteur multiplicatifprè9, on peut donc choisir hm = 1. 

Ainsi, pour quatre paires de points correspondants on a 

[zi, g:' 1It = xR[~i' y<' 11'. 

Ici X represente le facteur d'échelle, puisque H est dd& B un facteur multiplicatif 

près. L e  système d'équations linhïres rbdtant assure 1'unicit6 de la solution pastir 

de quatre paires de points correspondants, ii condition qu'aucun des points ne soit 

coIin6aire ii deux autres. Si on a plus de quatre points correspondants on peut utiliser 

une procedure de minimisation pour résoudre le syst&me surd~termïnt5. 

La méthode décrite nous donne une solution linhaire non homogène. Son principal 

désavantage est qu'on obtient une mauvaise estimation des éléments de H si l'élément 

qu'on a fixi5 à 1 est nul en r6alïté. 

Solution homogbe 

Pour éviter le problème rencontré avec la solution non homog&ne, on utilise une 

approche basée sur la décomposition en valeurs singulières (SVD) (Golub et Van han ,  

1989). C'est la meilleure approche du point de vue algorithmique. Plus loin dans 

ce chapitre (voir section 2.4.1.4), nous venom comment nous pourrons résoudre un 

système linhaire en utilisant cette décomposition. 

En posant les élements de la matrice H sous la forme d'un vecteur 
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h = [hii, hn, hi3, hu, h, hp, h31, h 3 ~ ,  h331t et en utilisant les relations 2.4 et 2.5, 

l'équation homo@e 2.3 pour n points devient 

où A est la matrice 2n x 9 suivante : 

Ici on utilise une normalisation différente de celle mentionnée préc6demment. On 

fixe la norme du vecteur h égale & 1. La solution qui minimise la norme de Fobenius' 

II Ah II avec la contrainte II h II= 1, est donnée par le vecteur propre correspondant 

à la plus petite valem propre de AtA . Ce vecteur propre est obtenu directement B 

partir de la decomposition en valem singuI2res de A (voir section 2.4.1.4). 

'Ici II - 11 représente kt norme de Fobenius. Pour M vecteur donné a = [ai, -. - ,%), on a : 
11 a II= f i= \/O: +- - -+a i .  
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Solution géométrique non linéaire 

Dans ce cas la matrice H est obtenue en minimisant Ia somme des distances eucli- 

diennes, dènot6es par d, entre les points mesurés et les points reprojetés par H. Soit 

m. un point dans le p d e r  plan image et rn; son correspondant dans le deuxième 

plan image, la tmnsformaton H qni projete me dans le deuxième plan image doit 

minimiser la distance entre le point projeté Hme et le point correspondant m:. De 

même elle doit minimiser la distance de la projection inverse puisque H est inversible. 

Cette minimisation s'écrit 

Homographie B partir des lignes 

Comme la ligne est la dude du point, on peut utiliser les techniques décrites p h  

haut pour résoudre l'homographie partir d'une correspondance de Lignes. Il suait 

de remplacer les points par les lignes dans les équations précédentes et d'utiliser la 

dation d'homographie liant deux lignes appariées (mation 2.6). 



2.2.1 ModeLe projectif 

Comme la transformation projective contient les M6rents modèles de transformations 

utilisés en vision, elle représente donc le modèle le plus ghérd à partir duquel on 

peut retrouver les autres modèlesc 

Les propriétb géom6trÎques essentielles d'une projection pour former une image 

peuvent étre mod4Ws par une application d'un espace tridimensionnel projectif 

vers un plan projectif, qu'on peut représenter par une simple transformation Iin6aire 

homogéne (Faugeras, 1993). 

Un point de l'espace projectif 3D est représenté par un vecteur de coordonnées 

homogénes de dimension 4. Une transformation projective gbérale est alors définie 

par une matrice 4 x 4 : 

Une projection vers un espace de dimension inférieure est obtenue en éliminant 

un des coordonnées de l'espace projectif tradonnt!. Nous choisissom, par exemple, 

le plan dénni par x4 = O. Ainsi tous les points sur le plan peuvent etre représentés 



par un vecteur de coordonnées homoghes, Lxl, xz, z3It- Le choix de z4 = 0 est 

généraly puisqu'on peut toujours transformer tout plan en celui-ci par une simple 

transformation projective de l'espace 3D. La projection de l'image est donnée par 

ou bien 

La matrice de trardormation homogéne T est estimée A u n  facteur multiplicatif 

près ; elle a 11 param6tres indépendants. Six points au moies dans l'espace et leurs 

points images correspondants permettent le calcul de T. Les techniques utilisées sont 

les mêmes que pour l'estimation de l'homographie (voir section 2.1.7). 

2.2.2 Modèle de projection perspective 

L'application definie par l'équation 2.7 tient compte de plusieurs aspects dans la 

formation d'images, par exemple les d e t s  des distorsions introduites par les différentes 

sources de bruit (distorsions verticales et horizontdes causées par la lentille de la 

csm&a, erreur sur la position du centre optique, etc.). La matrice T peut &re mise 

sous une forme qui ne prend en compte que la projection d'un espace 3D dam un 



\ P 

Figure 2.4 : Modèle de projection perspective 

plan image B partir d'un point central (projection centrale). Ce modéle est le modae 

de projection perspective de la d a  (Faugeras, 1993). La geomhtrie de la caméra 

perspective est définie à la figure 2.4. 

Ainsi la transformation euclidienne d'un point P = [X, Y, Z] du repère de la scène 

au repère de la caméra est donnée par 

où la matrice 

d4ihit la rotation entre le repère de la scène et le rephre de la caméra, le vecteur 

= [rii, ril, ra], i = 1, 2,3 représente la ligne i de la matrice R, O = [q, q, qlt est 



le vecteur de translation entre l'origine du repère de la scène et l'origine du r e p h  de 

la caméra, P,, = [X-, Ymm, Zamlt est le point P représenté par rapport au repère 

de la caméra et P, = [X,, Y,, Z,It représente le point P dans le repère de Ia &e. 

L'origine de la caméra est confondue avec le centre de projection. La trdormation 

appliqu& est donc la composition d'une tradition O suivie d'une rotation R- 

Ces deux transformations sont représentées, en notation matriciellet par une ma- 

trice de tramformation homogi?ne : 

T& = 

Le point est projeté sur le plan image par la matrice 

ofi f est la distance focale de la caméra- La matrice de trandormation composée, 
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T = Te Te est donnée par 

Le cas le plus frkpent en vision est celui oiî le centre de projection est l'origine du 

repère de la sche et les axes de la caméra sont alignés avec les axes du même repère. 

Dans ce cas T = TH . Ce qui nous a d n e  aux huations de projection perspective 

utilisées en vision. Pour un point de l'espace 3D, noté [X, Y, 2, l]', on a 

Param&res intrinsèques et param8tres extrins&ques de la -&a 

L'équation 2.8 peut étre réécrite pour tenir compte des paramètres qui diifmisent 

la gkorn6trie interne de la carnika Le mod&e analytique de la caméra devient la 

composition d'une matrice de param&tres intrinsèques Gt et d'une matrice qui definit 

l'orientation et la position externe du repère de la camera par rapport au repère de 



la scène, T& : 

oii sz, s, représentent les tailles des pixels srrivant x et y respectivement, uo et u. 

dbignent la position du point principal, c'est-&-dire l'intersection du plan image et 

de l'axe des z. La matrice T définit la projection perspective. C'est une matrice 

3 x 4, appelée matrice de pmjedion perspective ; elle projette un point 3D de la scène, 

[X, Y, 2, II', dans le plan image : 

En général on choisit le centre de projection il l'origine du repère de la scène et 

les axes de la caméra alignés avec les axes de celui-ci. Ainsi dans un système de 



coordonnées norm- O& f = 1, L'éqyation 2.10 s'&rit 

Le modde stéréosCopique est représenté paz le d4placement entre deux rep&es reliés 

à chacune des deux camBras de la paire st&êoscopique, caméra gauche et caméra 

droite. En gQiéral on choisit le repère d'une des caméras, par exemple la caméra 

gauche, comme étant le repère de la scène. Ainsi le modae stérhscopique est défini 

par une transformation homogbe entre le repère de la caméra gauche et le repère de 

la caméra droite (F'augeras, 1993; Horn, 1986). La position et l'orientation de cette 

derni&re sont représentées par une matrice homogène 4 x 4, 

où R est la matrice de rotation et t est le vecteur translation. Ce sont les parametres 

extrins@ues du modèle stéréoscopique. 

La figure 2.5 décrit la @metrie entre deux vues perspectives représentant une 

paire stéréoscopique. La ligne qui relie les centres de projection des deux camerss, 



Figure 2.5 : Modde de cam&as st&d!oscopique~ 

t = QO,, intersecte chaque plan image en un point appel6 point Epipolaim ou épipole- 

Pour un point de la sche, M, le plan (OIO,M), coupe chaque plaa image en une 

ligne appelée ligne ép ipo la i~ .  Cette ligne représente la projection d'une Iigne 3D sur 

le plan image. On peut observer sur la figure 2.5 que la projection ml d'un point 

M de l'espace sur Pimage gauche et le centre de projection de la caméra gauche 

définissent un rayon Olmi. Le point M est situ6 sur ce rayon et l'image de ce rayon 

sur le plan image droit constitue la ligne épipolaire 1, ( voir figure 2.5 ) . 

Soit M, an point visible de la scène. Ses coordonnées par rapport aux deux 

vues sont respectivement Ml = [Xl, x, Z1lt pour le repke de la caméra gauche et 

Mr = [X,, Y,, Z'] pour le rephe de la caméra droite. Ces deux points sont relib par 

la transformation suivante : 

M, = R M I + t .  (2.11) 

On peut constater sur la figure 2.5 que deux rayons correspondants, passant par 
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deux centres de projections, ont pour intersection un même point de l'espace 3D. En 

gh&al on peut écrire cette relation sous Ia forme, 

oii le produit vectoriel @ par t correspond A une multiplication par une matrice 

antisym6trique du vecteur translation de la forme 

L'équation 2.12 devient dors 

oii E = O(t )  R est appelhe matrice essentielle (Longuet-Higgins, 1981; Hartley, 1992 b; 

Hartley, 19920). Une des propri6tés les plus importantes de cette matrice est qu'elle 

est de rang kgal B 2 (Faugeras, 1993). 

Les coordonn6es images sont proportionneIles aux coordonn&s cartksiennes de 



l'espace 3D : 

On a la contrainte suivante en coordonnées homogha entre les points appariés 

des deux plans images : 

La m&me équation peut &tre &endue au cas d'une transformation projective quel- 

conque. Une caméra projective peut &tre formée en appliquant une trandormation 

projective planaire B une image perspective. Appliquons B chaque image une tram- 

formation planaire projective, mi = zm;, m+ = Grni. L'Bquation 2.14 devient 

ort Q = ET, représente la matrice essentide pour une transformation projective 

quelconque. Cette gén8ralisation présente un intérêt particulier lorsqu'on introduit 

les panudtres intrinsèques des caméras dsns le cas oik des sont non calibrées. 

Gbmétiie épipolaire et pararnbtres intrins&ques 

Pour tenir compte des param&tres qui définissent la géometrie interne de la caméra, 

on introduit Ia matrice de para.m&tres iatrinseques daes l'quattion 2.14. On obtient 



33 

alors l'4quation2 de transformation 6pipohire de la même forme que P&pation 2.15 : 

En posant 

F = (A:)-'C2(t)RA~', 

l'équation 2.16 devient , 

mFFm, = O. 

F est appelée matrice fondamentale (Faugeras, 1993; Hartley, 1994~). Comme la 

matrice essentielle E (voir section M), F est de rang 2. 

Formulation lin6aire de la contrainte épipolaire 

Ainsi, pour une paire de points images appariés, mi = [zl, y1,1] et mr = [z,, y+, Ilt, 

l'équation epipolaire 2.17 s'écrit, 

Cette équation peut &tre écrite sous une forme lin4aire : 

*Ici on a gardé la même notation que l'équation 2.14 pour représenter les points, mi. 



avec 

oii les fij repr6sentent les 6léments de la matrice fondamentale F. 

Pour un ensemble de n points appariés, les n Qyations linhires de la forme de 

L'équation 2.19 donaent un système d'Bquations linéaires : 

oii un = [u~'.. .'ÿ,]t 

Ce systéme d'écptions épipolaires permet l'estimation de la géométrie épipolaire 

de la paire de cameras stér6oscopiques par le calcul de la matrice fondamentale F. La 

matrice F permet, ii partir d'un point sur la vue de gauche ml, de calculer sa ligne 

épipolaire sur la vue de droite 1,. Cette ligne epipolsire passe par le point image m, 

qui est le correspondant du point image ml su. l'image de droite. Toutes les Lignes 

épipolaires se joignent en un point ep appelé point épipolaire. Le plan II, qui passe 

par les deux points appariés mi et w, leurs lignes 4pipolaires respectives 1, et Il et le 

point M de l'espace 3D qui leur correspond est appel4 Ie plan 6pipokaim (figure 2.6). 



Figure 2.6 : Géorn6tne épipolaire 

2.4 Calcul de la matrice fondamentale 

Depuis que Longuet-Higgins (Longuet-Higgins, 1981) a introduit une méthode linkaire 

pour le calcul de la matrice essentielle E, appelée Palgorithme des huit points, a h  

d'estimer la structure de la scène, de nombreaux chercheurs se sont penches sur le 

probléme du calcul de la matrice essentieue dans le cas de caméras calibrées, cyest-& 

dire dont on connaît les parametres intrinsèques a priori. Par la suite, le problhme 

d'estimation de la matrice fondamentale F, dans le cas de caméras non calibrées, a 

attiré l'attention de plusieurs chercheurs (Faugeras et al., 1992; Hartley, 1993; De 

riche et al., 1994; Csurka et al., 1997; Torr, Zisserman et Maybank, 1998; Zhang, 

1997; Zhang, 1998c; Vieville, Faugeras et Luong, 1996). Vu l'importance de F dans 

la définition de la géometrie épipolaire d'une paire de caméras stéréoBcopiques non 
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calibrées, beaucoup d'efforts ont été déploy& pour trouver de nouvelles techniques 

pour la calculer- Les mêmes techniques pr&demment développées pour le calcul 

de la matrice essentielle E ont ét6 par la suite utilisées pour le calcul de la matrice 

fondamentale F. Toutefois, vu la sensibilité du calcul de cette derniee aux erreurs 

d'appariements, de plus en plus de méthodes dites robustes ont é t B  développées pour 

paiier cet inconvhient~ Comme la matrice essentielle Ey la matrice fondamentde F 

peut être utiüsee pour : la reconstruction de la scène (Hsrtley, 1994~; Zhang, Luong et 

Faugeras, 1996; Laveau et Faugeras, 1996; Hartley, 1995; Horaud et Cmka, 1998; Bo- 

ufama et Mohr, l995), & une transformation projective prés, & partir de deux vues non 

calibrées, la rectification de l'image (Faugeras, 1993; Seitz et Dyer, 1996 6)  , le calcul 

d'invariants pro jectits (Shashua, 19940; M~ndy, Zisserman et Forsyth, 1993; Hart- 

ley, 1994b), la détection de fausses mesures et la correspondance stéréo (Zhang, De- 

riche, Faugeras et Luong, 1995). Dans la gamme des techniques pour calculer F 

on distingue principalement deux classes, les méthodes linéaires et les méthodes non 

lineaires (Zhang, 1996; Torr et Murray, lgg'?). 

2.4.1.1 Algorithme des huit points 

L'équation de base d6fmissa.d la matrice fondamentale, équation 2.17, donne lien 

à une équation linBaire et homogbe en termes des ne& co&cients de la matrice 

fondamentale F, équation 2.19, comme nous avons vu plus haut. Comme la matrice 



fondamentale est d6terninée UR facteur d'échelle près, elle a donc huit parm&tres 

independants. Ainsi, si nous disposons de huit appariements, nous pouvons d6ter- 

miner une solution unique pour F, définie B un facteur d'échelle près, en rêmlvant 

un système Lin6aire compos6 de huit équations 2.19. Cette approche fut introduite 

par Longuet-Higgins (Longuet-Higgins, 1981) puis par Tsai et Huang (Tsai, 1987), 

et constitue ce qu'on a appelé l'algorithme des hait points. Elle a 4t6 largement 

6tudiée dans la littérature pour la d6termination de la matrice essentielle et du mou- 

vement relatif entre scène et caméras (Mitiche, 1994). Un grand nombre d'algorithmes 

développés par la suite en sont dbrivés. Plusieurs etudes sur la sensibilitb au bruit de 

cet algorithme ont bt6 menées et ont démontrées qu'il &ait en &et très sensible. Cet 

algorithme a 6th généralis6 pour calculer la g40métrie épipolaire B partir de caméras 

non calibrées- 

2.4.1.2 Danition du critère linéaire 

Pour résoudre le système d'équations épipolaires, nous avons besoin de huit points 

apparib. En pratique nous disposons d'un nombre n plus grand daappa,riements. 

Nous utilisons une méthode des moindres carrés pour résoudre par rapport à F : 



qui s'écrit aussi sous la forme 

Le vecteur f est defini un facteur d'échelle près. Une solution triviale d e  

pour le problème de minimisation 2.21 : c'est f = O, qui n'est pas la solution que 

nous recherchons. Pour résoudre ce problhe, ü faut imposer certaines contraintes 

sui: les coefficients de la matrice fondamentale. 

2.4.1.3 Technique des moindres carrés linéaire 

Cette méthode consiste à fixer un des co&cients de la matrice fondamentale F egde à 

1, puis à. résoudre, par rapport aux huit autres co&cients, l'équation 2.21 en utilisant 

une technique de moindres carrés linéaire. L'inconvénient de cette approche est que 

nous ne disposons pas d'information a prion sur la matrice fondamentale. Donc, si on 

choisit un des coe£ücients fixer A 1 qui en redit6 est 6gal zéro, la matrice obtenue 

sera tri% M ' e n t e  de la vraie matrice fondamentale. En gheral, le coefficient qui est 

choisi égal iî 1 est fsi. Toutefois, par exemple dans le cas d'une translation pure, la 

matrice fondamentale est antisymbtnque et en conséquence le dernier coefficient de 

la matrice est égal B 0. Il faut donc éviter alors de le normaliser B 1. Pour remédier 

B cet inconvénient, nous pourrons essayer toutes les neuf possibilit&, en normalisant 

& chaque fois un des coefficients B 1, puis de résoudre l'équation 2.21 et de choisir 

la meilleure estimation obtenue, c'est-A-dire celle pour laquelle Pêquation 2.21 est 



2.4.1.4 Minimisation sous contrainte 

La seconde méthode consiste B imposer une contrainte sur la norme de f. Nous 

pouvons fixer cette norme & 1, (1 f II= 1. Ainsi, tous les coefncients de f contribuent 

d'une mani&re équivalente au processus de minimisation. La dation 2.21 devient 

alors : 

f^= II Unf II2, avec II f II= 1. (2.22) 

C'est un probl6me de minimisation sous contraintes. Il peut Btre transformé en 

un problème de minimisation sans contraintes en introduisant les mdtiplicateurs de 

Lagrange (Golub et Van Loan, 1989). L'équation 2.22 s'écrit alors : 

avec 

oii A est le multiplicateur de Lagange. En posant la dérivée premihre de F(f ,  A) par 

rapport à f égale & zéro, nous obtenons la relation suivante : 
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La solution f est donc le vecteur propre de la matrice 9 x 9, Lf,CT,, et X est la 

valeur propre conespondant ce vecteur. Comme CU, est symCtriqye et Semi-déhie 

positive, toutes ses d e u s  propres sont réelles et positives ou bien nulles. Soient les 

va3eurs propres de GU, prises dans an ordre décroissant: 

Ii y a donc 9 so1ution.s possibles : X = Ai , i = 1, - ,9- En substituant la soIution 

dam 2.24 nous obtenons 

F(f ,  Ai) = A i  - 

Comme nous cherchons B minimiser F(fl A), la solution l'équation 2.22 est donc 

le vecteur propre de la matrice CU, correspondant B la plus petite valeur propre soit 

A9 - 

2.4.1.5 Contrainte de rang 2 

La formulation lingaire du problGme présente l'avantage de permettre une solution 

analytique simple. Toutefois, elle reste très sensible au bruit. Une des raisons est 

que la contrainte de rang 2 (voir section 2.3) n'est pas satisfaite. En &et, il est bien 

connu que la matrice fondamentale est une matrice 3 x 3, mais que son rang est tgd 

a 2 ( det F = O). Une des techniques utilisées consiste imposer la contrainte de 

rang 2 a posterion (Hartley, 1992b). La matrice fondamentale FI calcuiée par l'une 



des méthodes mentionnées plus haut, est rempIacée par la matrïce F qui miniminei la 

nonne de F o b e w  II F - II sous la contrainte det F = 0, 

Pour r4soudre 2.26, posons 

F = USVt, 

ce qui représente la d6cornposition en valem singulière51 de la matrice F, oil 

C valeur singuiii?re). U et V sont deux matrices orthogonales. Il &te donc une 

matrice F telle que 

qui minimiae la norme de Fobenius de F - P, avec 9 = diag(ol, 02, O). 

2.4.1.6 Minimisation d'un critère géometrique 

La forme de la relation 2.21 utilise un critére de minimisation qui n'exploite pas 

I'information contenue dans la géom6trie epipolaire de l'image. Un critére valide 

serait celui qui essaierait de minimiser une meme ayant une sigBificoion physique. 

La memire qui est proposée dans la littérature (Luong et Faugeras, 1992; Luong et 

Vieville, 1994; Zhang, 1998b) est la distance entre les points appariés et les lignes 



6pipolaires qui leur correspondent, 

où r ~ ,  est un point du plan image gauche, et 4 = Fm, est la ligne épipolaire qui 

lui correspond sur le plan image droit. Id&dement la ligne épipolaire de gauche, 

Il = Fm, = [ I l ,  22, bit , passe par un point ml se trouvant sur l'image gauche qui 

est le correspondant du point m. En pratique cette ligne épipolaire se trouve une 

distance d de ce point : 

avec c = Jm. 
La relation 2.27 peut &tre minimisée en F, en utilisant une procédure itérative de 

moindres carrés pondérés. 

Relation avec le crit&re linéaire 

En utilisant la distance entre les points et les lignes epipolaires 2.28, le critike héaire, 

Quation 2.20, devient 

Le critere linéaire tend à m;nimiser non seulement une mesure physique d(mi, l i) ,  

mais aussi ci, qui n'est pas une mesure physique par rapport B la géom&.rie épipolaire 



entre les deux vues. Ainsi, le critère lin8aire introduit un biais dans le calcul de La 

matrice fondamentale et tend & placer Pépipole au centre de l'image dam certains 

cas (les lignes épipolaires vont se croiser en un point qui se trouve proche du centre 

de l'image tel que oaservé par Luong (Luong et Faugeras, 19946; Luong et Faugeras, 

19940)). 

2.4.1.7 Normalisation des donnêes 

L'analyse, du point de vue numérique, de la grande instabilité de la methode lineaire 

lorsque les coordonnées, en pixels, sont directement utilisées dans la procédure de 

minimisation a amen6 la proposition de méthodes permettant le traitement des don- 

nées à l'entree avant de procéder B la minimilpation du critère linéaire pour le calcul 

de la matrice fondamentale. Si nous prenons la matrice de données utilisée en 2.25, 

EU,, sa décomposition en valeurs singulières s'écrit 

oit U est une matrice orthogonale, et D = diag(Xi, - - , Ag) avec les Ai en ordre 

décroissant. n = XI/& représente la condition de la matrice If,&,. La condition 

représente un très bon indice d'analyse de stabilité des problèmes linéaires. Si n &t 

grand, un peu de bruit en entrée peut entraîner une grande variation des résultats en 

sortie. Dans notre cas la matrice CU, est mal conditionnée, sa condition, n, est très 

grande (- 104). Ceci est da à la n~~hornogénété des coordonnées images utilisées. 



Plusieurs m6thodes ont été développées pour r-udre des systèmes mal conditionnég, 

la plupart utilisent une normalisation de la matrice de donnW qui tend à réduire la 

condition de cette denrike. Une technique de normalisation des coordonnées images 

Fut proposée par Hartley (Hartley, 19997) pour bien conditionner la matrice EU,. 

supposons qu'on r-ace les coordom&s des points mlg, de l'image gauche par 

h rnli = Tmli, et les coordonnées des points m, de l'image droite par = T'nr,, 

avec T et T deux matices 3 x 3. En rempMant dans m i i F m  = O ,  nous obtenons : 

Cette relation implique que F = T t F T ' - 1  reprbente la matrice fondamentale 

correspondant aux appariements ?& t, %. La nouvelle m6thode d'estimation de la 

matrice fondamentale est résumée ci-dessous : 

1. Transformer les coordonnées image par T et T', tels que ??ici = Tmfi et 

h m,.i = T ' m .  

2. Trouver la matrice fondamentaIe 3 qui correspond B & H par l'une des 

méthodes décrites plus haut. 

3. Retrouver la matrice fondamentale originale par F = T~*. 

Il faut donc chois'i deux tr8I1Sfomations T et T qui permettent une normalisation 

a c a c e  des données dans le sens de la rMuction de la condition de la matrice GU,. 
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L ' d y s e  montre qu'une nomdisation des données teiie que leur moyenne soit de 

l'ordre de l'unité peut améliorer eigxüficativement les résultats de la méthode linéaire. 

Deux techniques peuvent etre utilisées pour Caire cette normalisation. La premi&re 

consiste à centrer l'origine de Pimage, généralement prise en haut à gauche, puis nor- 

maliser les coordonnées, de mazüere A avoir des points iL une distance moyenne égaIe 

4 par rapport l'origine= Ces transformations sont men&s indepen-ent sur 

les deux images, cette techniqye est appelée normalisation isotropique. La demihe 

technique procMe de maniere @pivalente, d'abord en amenant le centrolide des points 

à l'origine, puis en eiktuant une normalisation sur l'ensemble des points pour que 

les deux moments soient Bgaux & 1. Ceci se fait d'une manière simple en une seule 

opération, en utilisant la décomposition de Cholesky. Les points mi sont utih& ponr 

former une matrice Ci mgn:. En la décomposant par la transformation de Cholesky, 

nous obtenons, 

où K est une matrice trizt~lguiaire supérieure. La transformation choisie est : 

h 

mi = K-'mi. Les points 6 sont tels que 

oti 1 est la matrice identité. Les points 6 ont donc leur centroide à l'origine et les 

deux moments principaux sont égaux ii 1. Comme K est une matrice trianguiaire 



supérieure, d e  représente une transformation f i e ,  c'est pourquoi on appelle cette 

technique, nonnalikation u@ae ou normalisation non-isotmpique. 

2.4.2 Methodes non linbaires 

Nous avons vu précédemment qu'un nouveau critère a 6t6 introduit dans la littérature 

(Luong et Faugeras, 19946). II est b& sur la minimisation de la distance entre les 

points et les lignes hpipolaires correspondantes (equation 2.27). L'eutension de ce 

critère de minimisation aux deux images formant la paire stérbscopicpe, nous donne 

la relation suivante : 

qui opére une minimisation simultanée sur les deux images. 

Soit Ili = F w -  = [111> ln, li3It et I* = PmIi = [Zri, ln, lr3] '. En utilisant l'équation 

2.28 et miFm, = m:Fmr, la relation 2.29 s'êcrit 

avec 



Methode itêrative 

L'estimation de 2.30 peut &re faite par une technique de moindres canés pondérés. 

Ainsi la multiplication du critère Linéaire par le coefficient de pond4ration revient 

a remplacer les coefficients ut dans l'équation 2.19 par wiui, pnis résoudre 2.21 par 

une methode de moindres carrés linéaires. Comme les coefficients wi dbpendent de 

la matrice fondamentale, une solution initiale pour F eat n6cessaire pour commencer 

le processus itératif, cette solution étant obtenue en choisissant au départ les wi = 1. 

Toutefois cette méthode donne des résultats equivalents iî la méthode linéaire clas- 

sique. La raison principale est que la contrainte de rang 2 de la matrice fondamentale 

n'est pas prise en compte. 

Param6trage non linéaiie 

Pour tenir compte du rang de la matrice fondamentale, il a &te propos4 (Luong 

et Faugeras, 1996; Zhang, 1996) d'utiliser des param6trages particuliers de celle-ci. 

L'objectit est de choisir la matrice 3 x 3, de rang 2, qui minimise 2.30. Une technique 

consiste i exprimer certains param&tres de la matrice fondamentale en fonction des 

autres. Le critere à minirni.?Pr en 2.30 devient non linéaire. Une solution initiale est 

nécessaire pour rboudre cette minimination non linéaire. Elle est obtenue par l'une 

des méthodes Lin4aires décrites plus haut. 



2.4.2.1 Méthode du gradient 

Les techniques de moindres carrés donnent de bons résultats lorsque la Vanance pour 

chaque terme est presque la même. Comme chaqne fi = mfiFm, a une variance 4i 
différente, nous cherchons donc à minimhr : 

Une approximation de la variance de fi au premier ordre donne, 

et 2.31 devient 

avec gi = 4q1 + + l:, + 1% reprbntant le gradient de fi (Luong et Faugeras, 

1996). 

2.4.2.2 Techniques robustes 

Etant donné que les mauvais appariements influencent de façon très negative les 

résultats du calcul de la matrice fondamentale, plusieurs auteurs (Zhaag, 1996; Luong 

et Faugeras, 1996; Torr et Murray, 1997; Torr et Ziaeermann, 1997; Hartley, 1997c) se 

sont penchés sur l'utilisation des techniques de statistiques robustes appelées mkthodes 



de digression robustes (Rousseeuw et Lemy, 1987). Ces méthodes ont et6 utib&s dsns 

le passé en vision par ordinateur dans la segmentation du mouvement (Mitide, 1994)' 

la reconstruction partir de données obtenues par les senseurs (Zhang et al., 1996) et 

pius récemment en l'estimation de la géorn6trie epipoiaire (Luong et Faugeras, 1996). 

L'attrait de ces techniques, est qu'ellea permettent d'éliminer les fausses mesures si 

leur nombre est faible. L'objectif est de retrouver les appariements qui dévient le plus 

du modèle épipolaire, et de les éliminer avant d'utiliser une procédure de minimilation 

sur l'un des critéres citée plus haut. Deux des méthodes robustes les plus utilisées 

sont présentées par la suite. 

M-est imateurs 

Les techniques standards de moindres carrés essaient de minimiser la diff&ence entre 

la valeur d'une observation et sa valeur estimêe par un modéle donn6, c'est-&-dire 

minimiser le carré des r&ïdus ri pour chaque observation i, r n i n ~ ~ r ? .  Cette tech- 

nique est instable lorsqu'il y a de fausses mesures dans l'ensemble des donnêes. Les 

M-eatimateurs permettent de rkluire les d e t s  des fausses mesures en remplapt le 

carré des résidus par une autre fonction des r&idus, 
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Cette fonction peut &tre écrite sous la forme d'une minimisation pond&&, 

oii w (z) = .t(t(z)/z représente le co&eient de pondération. et +(2) = dp(z)/dz est 

appdée fonction d'influence. L'indice k désigne l'itêration courante. Le choix de 

la fonction p est très important. Elle doit étre sym&tnque, d e e  positive avec 

un minimum unique en zéro, et elle doit diverger moins vite que la fonction carre. 

Plusieurs choix de fonction pour p sont présentés dans la littkature, la plus utilisée 

est la fonction de W e y  : 

oii o représente la déviation standard du bruit et c est une constante. 

Moindre médiane des carrés 

La méthode la moindre médiane des carrés est la methode la plus utilisée en detec- 

tion et &mination des fausses mesures dans plusieurs techniques de vision. Ici elle 

est utilisée pour estimer les paramtitres de la matrice fondamentale en résolvant le 

probléme d'optimisation non linéaire suivant : 



Cet esthateur permet d'obtenir la plus petite vaIeur pour la médiane des canés des 

résidus sur L'ensemble des données. Pour cela il faut chercher dans l'espace des points ; 

ceux qui donnent la meilleure estimation possible. Comme Pespace est très large, une 

mbthode basée sur une recherche ddar l'espace de manière aléatoire est utilisée- La 

procédure pour calculer cette estimation est décrite dans Palgorithme suivant : 

Pour un appariement de n points dom&. (mi*, m+) i = 1,. . . , n. 

1. Une technique de Montecar10 est utilisée pour choisir un nombre m de sous- 

ensembles formés chacun par 7 points. 

2. Pour chaque sous-ensemble J ,  on calcule la matrice fondamentale FI. 

3. Pour chaque Fj, on calcule la médiane des résidus carres, Mj,  par rapport A 

l'ensemble des points correspondants, 

4. Choisir Fj pour laquelle Mj est minimale. 

Remarque 

Dans la section préddente nous avons revu les principales méthodes de calcul de la 

matrice fondamentale utilisées dans difkents domaines reliés ii la vision par ordina- 

teur. Récemment, les chercheus se sont de plus en plus intéressés B 1'6duation des 

performances des techniques de calcul de la matrice fondamentale existantes (Tom et 
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Munay, 19997; Zhang, 1996; Csurka et al., 1997). Les dinérentes études montrent que 

ces techniques sont souvent très instables : l'existence de faux appariements infiuence 

d'une manière significative Ies résultats de ces algorithmes. Ainsi, on rdi?ve que les 

méthodes linéaires sont les moins pedormantea relativement aux critères de préci- 

sion, de stabilité et de robustesse aux erreurs induites par les faux appariements. Par 

contre, les m6thodes non lin-e donnent de meilleurs résultats. Toutefois, ils sont 

aussi très instables par rapport aux erreurs d'appariement. Les méthodes utilisant 

les statistiques robustes sont l a  plus performantes mais au d&rïment du temps ma- 

chine qui est souvent exorbitant. Tout cela nous a amen6 & d6velopper une nouvelie 

technique linéaire de calcul de la matrice fondamentale qui exploite l'information ex- 

istante dans la sche & savoir la présence de sudaces planes. Ces surfaces vont nous 

permettre d'ajouter plus de stabilitb au proceasus de calcul tout en gardant lY6l& 

gmce de l'utilisation d'une technique linéaire permettant un gain en temps de calcul 

appréciable. Dans la suite nous décrivons la méthode proposée. 

2.5 Approche proposee : Exploitation de la con- 

trainte de planaritg 

Nous avons développ6 une nouvelle méthode lineaire qui exploite des informations 

additionneIIes sur l'environnement, qui pourraient &tre disponibles dans certains cas, 

pour résoudre la contrainte hpipolaire et calculer la matrice fondamentale de fagon 



53 

robuste (Akhloufi, Tong, Polotski et Cohen, 1998). Ici nous d o n s  utüiser la contminte 

de planarit6 reliée 8 la présence de surfàces planes dôns la scène. 

La projection d'un plau II, de l'espace dans un plan image, est définie par une 

transformation projective T ,  appeI6e colin&tion Cette trassformation projette un 

plan physique de la scène II, en un plan s dans le plan image (figure 2.7). 

Si on prend un point M = [X, Y ,  21' du plan II, sa projection dans le plan image 

gauche est d6hie par, 

c'est-à-dire 

otl mi = [xI, 311, lIt est la représentation canonique du vecteur de coordonnées ho- 

mogènes qui résulte de la projection du point M dans le plan image gauche. 

De meme, si m, = [sr, y,, 11' est la représentation canonique du vecteur de coor- 

données hornog&xs résultant de la projection de M dans le plan image droit, il existe 

une colinéotion T' qui représente la trdormation projective 3D2D du plan II dans 

l'image de droite, 

m, = T'M, 



c'est-à-dire 

En combinant 2.32 et 2.33, on obtient la relation qui lie les deux points correspon- 

dants mi et m, (figure 2.7) : 

représente une transformation homogène qui applique 

l'image d'un plan, se trou- sur l'image de gauche notée q, en l'image d'un autre 

plan notée rr et qui se trouve sur le plan image droit. et ?r, sont les images d'un 

même plan physiqne II, de la &ne. II est appelée homogmphie. Nous avons vu 

dans la section 2.1.7 que H est déterminée un facteur multiplicatif près. Nous 

utiliserons l'homographie entre plans présents dans les deux vues pour calculer la 

matrice fondamentale. Dans ce qui suit, nous ailons décrire l'algorithme utilisé. 



Figure 2.7 : Homographie entre surfaces planes 

Description de la méthode proposee 

Soient deux images obtenues par une paire stéréo (image droite et image gauche). Si 

on prend deux plam dans la scgne, IIl et 4, leurs images pour la cam6ra gauche sont 

notées q et mz respectivement, et leurs images pour la caméra droite sont notées 

~r,l et -2. En utilisant la relation 2.34, on peut btablir la relation entre ml et et 

entre mz et .rr,z en résolvant les équations mi~ii~ltes : 

0 Pour le plan Ill : 

ori me et mri sont les coordonn6es des points images correspondants aux points Mi 

du plan IIl. Hl est calculée B psrtir de la correspondance entre les projections d'au 

moins 4 points du plan IIl, en utilisant l'une des techniques dêcrites dans la section 



2.1.7. 

Pour le plan II2 : 

où G- et ?ZE les coordonnées des points images cormsqondants aux points du 

plan IL H2 est estimée & partir &au moins 4 points appariés, appartenant au &me 

plan II*. 

Pour tout point j ) ,  i = 1,. . ., N : et : j = 1,. . . , M (O& (N, M) est la taille 

de l'image) dans le plan image gauche, on peut calculer la ligne épipolaire qui lui 

correspond dans l'image droite, en utilisant les homographies. Si on considère un 

rayon qui passe par le centre optique de la caméra gauche et par le point image 

ml (i, j), il  doit rencontrer le plan IIl en Pi et le plan & en P2 (figure 2.8). Puisque 

les points images de Pl et P2 corncident en un meme point image ml(i, j) dans le plan 

image gauche, leurs coordonnées homoghes sont les mêmes. Leurs points images 

dans le plan image droit sont obtenus de la manigre suivante : 

De l'équation 2.35 on a : 

De l'équation 2.36 on a : 



La ligne passant par ~ ( 1 )  et 7742) dans le plan image droit est la ligne épipolaire 

cornespondant B ml (i9 j )  . Son Bquation est donnée par 

oiî @ désigne le produit vectoriel. 

Le point épipolaire 

Pour chaque point ml@, j )  dans le plan image gauche, on a la ligne épipolaire &(i, j )  

qui lui correspond dam le plan image droit. Ces lignes épipolaires s'intersectent en un 

point du plan image droit, appelé point 6pipolaire ep' (figure 2.8). Ses coordonn&s 

homog&nes sont obtenues pour chaque paire de lignes par la relation suivante : 

En prenant la moyenne des valeurs obtenues pour l'ensemble {epr), on d6termine 

le point épipolaire ep'. Lorsque les lignes épipolaires sont pax.aIl&les, le point épi- 

polaire se trouve B l'infini dans le plan image droit. Néanmoins, on peut toujours le 

représenter en utilisant les coordonnées homogénes. 

De la même fqon on peut trouver le point épipolaire ep' sur le plaa image gauche. 



Figure 2.8 : Contrainte de planarit4 et géomhtrie hpipolaire 



2.5.2 Relation avec Ia matrice fondamentale 

Pour un point mi sur le plan image gauche7 la matrice fondamentale F d e t  la 

ligne 6pipolaire Ir sur le plan image droit qui lui correspond. Nous avons la relation 

suivante (voir section 2.4.1.6) : 

Soit le point épipolaire sur le plan image droit défini par le vecteur de coordonnees 

homogénes : 

où les fi représentent les lignes de la matrice F, et Posons F = 

Avec les contraintes épipolaires on peut expliciter la contrainte de rang 2 pour la ma- 

trice fondamentale. On distingue deux cas particuliers : lorsque les lignes 4pipolaïres 

se croisent en un point ii distance finie, ep'(3) # O, et lorsqu'des sont pardèles, 

c'est-&-dire qu'elles se croisent à. l'W, e#(3) = O. 

C t 

f 1 

fi _ f3 

2.5.2.1 Cas des épipoles B distance finie 

Ici nous considérons le cas oiî toutes les lignes 4pipolaues s'intersectent en un point 

ii distance finie sur le plan image. 



Proposition 1 

Soit ep'(3) # O. Posons : 

(ep',, ep',) sont les coordonnées cartésiennes du point épipolaire daus le plan image 

gauche. Nous avons alors la relation suivante : 

Cette expression nous permet de definir la contrainte de rang 2 en fonction des coor- 

données du point 6pipolaire. 

Preuve 

Nous allons montrer ici comment obtenir la relation 2.38 à partir des relations 

déhies par les contraintes de la géometrie epipolaire. Nous avons la relation suivante 

entre la matrice fondamentale et le point epipolaire : 

oa epl est le point épipolaire dsns le plan image gauche. Le vecteur de coordonnées 

du point épipolaire est orthogonal aux lignes de la matrice fondamentale : ep ' l f~ ,  



Figure 2.9 : Contrainte d e e  par la matrice fondamentale et le point épipolaire 

e p 1 l f 2  et e$lf3. fi, fa et f3 sont sur un m h e  p h  perpendiculaixe au vecteur 

représenté par le point épipolaire ep' (figure 2.9). 

Choisissons une représentation nomalisêe pour 4, fi, fi et f3. Nous avons : 

oti k, klet sont des constantes. Prenons le cas ou e# # O , fi # O et fi # O. Soit 

une matrice A telle que : 



En multipliant l'éqution 2.37 par A nous obtenons : 

c'est-à-dire 

A partir de h relation 2.40 nous obtenons 

L'équation 2.41 s'écrit 

Posons 



Nous obtenons alors 

Soit 

oiî (x, y) sont les coordonnées cartésiennes du point image ml dans le plan image 

gauche. Nous avons donc : 

Soit un point mo de l'image gauche. Tous les points se trouvant snr la ligne &pipolaire 

4 qui passe par mo et en, se trouvent sur la même ligne épipolaire dans le plan image 

droit. Pour rno se trouvant sur la ligne épipolaire Il,  nous avons alors : 

avec 

A partir des deux éqyati0n.s 2.42 et 2.43 nous obtenons 
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C'est 1'éQuation de la ligne &pipolaire Zl (qui passe par 7 r ~  et ep'). Soit nn point ml 

qui n'app&*ent pas B la ligne &pipolaire Il passant par % et ep', nous avons alors 

1'Quation de la ligne épipolaire qui passe par le point image ml et ep' : 

Ces deux lignes épipolaires s'intersectent en un point que nous notemns (-a, -6). 

Ce point correspond au point épipolaire dans le plan image gauche : 

De l'tiquation 2.40, nous obtenons alors la, relation définie dans la proposition 1 : 

ce qui compléte notre preuve. 

2.5.2.2 Calcul de la matrice fondamentale 

En remplaçant h dans l'équation 2.37 par son expression dans l'équation 2.38, nous 

obtenons : 



Dans Nquation 2.44 les inconnues sont fi = (fil? fia, fis) et fi = (fa1 y fa, fp). Pour 

chaque point ml du plSn image gauche, nous obtenons deux @uations de la forme : 

Posons : 

oii x et y sont les coordo~~ées cartésiennes du point image mi dans le plan image 

gauche. Les équations 2.45 et 2.46 deviennent: 

fil (z - 4) + f 2 d ~  - e$) =-  11 

f & - e p f ) + f ~ ( ~ - e p I y )  la' 

Les équations 2.47 et 2.48 peuvent s'écrire sous forme d'êquations linihires ea ter- 

un facteur d'échelle près en résoivant un système d'6qations lin&ires. Ici trois ap- 

pariements au moins sont nécesaires pour rbudre ce système d'6quations linéaires. 

f3 est obtenue en remplaçaxtt fi et fi dans l'équation 2.38. Comme une des lignes de 

la matrice fondamentale est une combinaison linéaire des deux autres, la contrainte 



de rang 2 est satisfaite. Ceci d & v e  lyétape d'apprarrimation a posteriori de la matrice 

F, en imposant le m g  2 (voir section 2.4.1.5), qpi est une source additionnelle de 

bruit, d'oit la robustese de la méthode proposéeosée 

2.5.2.3 Cas des épipoles B l'infini 

Ici nous conaidèrom le cas des épipoles ii l'infini. Dam ce cas, les lignes épipolaires 

sont toutes parallé1es, c'est-&-dire qu'elles s'intersectent B i'infini. Ceci correspond B 

une transformation purement translationnelle le long des deux plans images. 

Proposition 2 

Soit e&3) = O. Posons 

Nous avons les deux relations suivantes : 

Preuve 

La preuve de la proposition 2 s'obtient de la même &on que pour la proposition 

1. 



2.5.2.4 Matrice fondamentale pour des epipoles B 19iPfini 

En remplaçant dans 2.37 fr et fi par leurs expressions 2.49 et 2.50 nous obtenons, 

Pour chaque point [x, y]' reprkntant le vecteur de coordonnées cadisiennes du point 

image gauche ml, la relation 2.51 donne les deux équations suiva9tesY 

UI (e#(2)z - ep'(1)~) + fia = -  G 
u3 (.P'(~)x - el+@)~) + f ~ 3  13 y 

Ici les inconnues sont les variables: u = (ul, 242, u3) et f3 = (f31i fa, f33). 

Nous calculom u et f3 en résolvant un système d'équations lin6aires de la forme des 

équations 2.52 et 2.53. Trois appariements au moins sont nécessaires pour résoudre ce 

systeme d'équations linmes. fi et f2 sont d6teTminês par les équations 2.49 et 2.50. 

La matrice fondamentale F est déterminée & un facteur d'échelle près et respecte la 

contrainte de rang 2. 
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2.5.3 Cas d'un modéle de cameras stér60 calibrees 

Si nous considèrons que les parm&tEes internes de la caméra sont connus, on a alors 

la matrice essentielle B la place de la matrice fondamentale : 

oii R est la matrice de rotation et R(t) la matrice antisymfitrique du vecteur transla- 

tion. 

Proposition 3 

Posons 

Si ep' (1) # O, ep'(2) # 0, ep'(3) # O, dors le point 6pipolaire e$ sur le plan image 

gauche est donné par 

et lorsque t3 # O, nous avons la propri6t6 suivante : 
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Nous remarquerons que cette propn4tli est êquivalente 8 la relation 2.38 que nous 

avons obtenue pour la &ce fondamentale pour imposer la contrainte de rang 2. 

Preuve 

Soit 

t 

t=  [ t, t, t3 ] 

le vecteur de translation. La matrice essentielle E est d6hie par (voir section 2.3) : 

R =  

Si nous considérons une transformation entre les caméras telle que la composante 

translationnelle t3 # O , nous v ~ o n s  fadement que : 

la matrice 3 x 3 de rotation, et 

- f 

ru 7=21 r31 

7-12 rp r~a 

Tl3 7-23 7-33 - - 

3 



ce qui compMe notre preuve, 

Calcul de la matrice essentieue 

Nous pouvons donc utiliser la même approche développée en section 2.5.2 pour cal- 

culer la matrice essentielle. Ici la contrainte de rang 2 sera imposée par la relation 

2.54. 

2.6 Conclusion 

Aprb une br&ve introduction & la géométrie projective, nous avons abordé le probldime 

de calcul de la matrice fondamentale. Une revue des principales mbthodes a été 

présentée où avons vu que les comparaisons faites par les chercheurs montrent que les 

methodes classiques souffrent d'une très grande sensibilitb au bruit. Ceci est souvent 

da B une mauvaise fomulation de l'équation de contrainte hpipolaire B résoudre, qui 

ne tient pas compte des propriétés de la matrice fondamentale. La contrainte de rang 2 

represente la propriété la plus importante ii satjsfaire dans ce cas. Nous avons présenté 

une propri6td importante reliant la matrice fondamentale et l'homographie entre les 
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images de d a c e s  pl- présentes dans la scène. Cette propriM a été exploit& pour 

definir la géom6trie 6pipoIaire et calculer La matrice fondamentale. Ici l'homographie 

est utilisée pour d*, & partir des appariements, les lignes 4pipolaires sur chacpe 

image. Ces lignes permettent de calculer le point épipolaire sur chaque vue. Nous 

avons montre que le point epipolaire peut etre utiüsé pour 4tabl.k la contrainte de 

rang 2, en l'introduisant dans les coefEcients de la matrice fondamentale, avant de 

résoudre le systeme de contraintes épipolaks. Ensuite, noua avons utilisé les lignes 

épipolaires estimées par l'homographie pour contraindre le proceasus de minimisation 

à converger vers une solution stable. Ceci nous a permis de poser le problhe sous 

forme linéaire, permettant une r&olution rapide et robuste. Des résultats seront 

présentés plus loin. 



Chapitre 3 

Invariants projectifs 

Une des propriétés les plus importantes des transformations projectives est que cer- 

taines mesures g4om6triques sont invariantes par rapport B celles-ci. Ces mesures per- 

mettent de définir une propriétb invariante d'une coniiguration géométrique présente 

dans la scène. Dans ce chapitre nous allons nous intéresser plus particuli&rement aux 

invariants projectifs dans le plan projectif P2 et l'espace projectif p3 (Mundy et al., 

1993; M a y b d ,  1995; Csurka et Faugeras, 1998; Shashua et Navab, 1996). 

Nous allons tout d'abord introduire de manière génerale la definition d'un in-- 

ant. Puis nous allons définir l'invariant fondamental en géométrie projective : le 

bi~apport. Nous donnerons les dhfinitions de base du birapport et nous pr6senterom 

les clifErentes techniques pour le calculer & partir de points, de lignes et de plans. 

Nous montrerons qu'il est invariant par rapport & toute transformation projective. 

Nous définirons par la suite la notion de coordonnéecr projectives et Iem relations 



avec le birapport et les coordonnées homogbes. Puis nous allons étendre la notion 

d'invariance aux gbm6tries &es et euclidiennes. 

Dans la d-iire partie de ce chapitre nous d6fhirons deux nouveaux i n . a n t s  : 

le premier est basé sur deux homographies et un point de r~érence, et le deuxïènie 

sur m e  seule homographie et une ligne de rêf6rence. 

3.1 Introduction aux invariants projectifs 

3.1.1 Définition d'un invariant 

Soient deux ensembles El et E2 et un ensemble T de transformations de El dans &- 

Soit I une fonction des &ment~ de &. I est un invariant s'il prend la même valeur 

pour toutes les images d'un &ment p de EL par n'importe quel abment de L'ensemble 

des transformations T : 

Si les transformations sont appliquées dans un même ensemble, c'est-&-dire, 

El = E2, on a la d6finition suivante : 

Vp 'P El, Vt E T, I ( t (p ) )  = I@).  

Pour chaque point p de E on définit l'orbite O,, comme l'ensemble des points 



images de p par toutes les transformations de Tj 

On peut conclure que s i  1 est un invariant pour les transformations T de El dans 

E2, alors 1 est constant en tous les points d'une même orbite. 

Un indant  est dit complet s'il est m u e  pour m u e  orbite, c'&-&dire si et 

seulement si : 

r(f1) = I(f2) u 3p E El tel que fi E O,, et fi E O,. 

3.1.2 Le birapport 

Le birapport est l'invariant projectif fondamental ii partir duquel on peut exprimer 

d'autres invariants. Ainsi tout invariant projectif est d e  en termes de birapports. 

Par exemple, une conique est caractérisée par des invariants, s'exprimant en fonction 

du birapport, qui peuvent être calculés par de simples constructions géometriques sur 

les coniques. 

Birapport de quatre points alignés 

Soient A, B, C, D quatre points colin&ires, leur bimpport, noth [A, B, C, Dl, est 

défini comme 



- 
oiî AB est la mesure algébrique de AB ou la distance entre les points A et B. Cette 

formulation du brapport peut &re etendue pour les points situb A l'infini en utilisant 

les conventions suivantes : 

avec a un nombre réel qudconqye. 

L'invariance du birapport 

Théorème 

Toute trawfonnation projective conserue le bimpport. 

Preuve 

A travers la preuve que nous donnons du theorbe, nous montrons comment on 

peut definir l'invariance d'un birapport par rapport & une transformation projective 

donnke. Pour cela on va d'abord montrer l'effet d'une transformation projective sur 

les coordonn&s de points appartenant B une ligne. Tout point d'une ligne peut Bbe 

représent6 par deux coordonnées homog&nes. Les points d'une ligne seront représenttés 

par P = [XI' XZIt, O& XI et X2 sont les coordo~êes homogénes sur cette ligne. La 
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position cartésienne d'un point sur une ligne est donnée par X = Xi/&. Le modèle 

d'une ligne projective est donné par un ensemble de rayons passant par l'origine d'un 

plan. Les points sont donc Pintersection des rayons avec une ligne quelconque 1 dans 

cet espace bidimensionnel. 

La transformation projective entre le lignes est donnée par une matrice, 2 x 2, de 

transformation homogène T, telle que: Z = TX O& J = [sr, x2]l' sont les coordomées 

homogénes de la ligne transfom6e. On a besoin de trois param&tres essentiels pour 

dénnir T A un facteur multiplicatif près. La position cartésienne d'un point sui la 

ligne transformée est donnée par x = xL/x2. La transformation projective d'une ligne 

s'écrit comme 

La forme de l'équation 3.2 correspond tout simplement à la représentation en cc+ 

ordonnées cartésiennes d'une transformation homogène dans l'espace bidimensionnel. 

Soit Dn le déterminant de la matrice 2 x 2 formée par deux points, Pl = [X:, X;]' 

et  Pz = [XF, Xi]', se trouvant sur une même ligne 1 : 

qui s'écrit aussi sous l'une des formes suivantes : 



En posant Pl = Al [XI, ilt et P2 = & [X2, ilt, avec Al et A2 étant Ies fseteurs d'khelIe, 

l'équation 3.3 devient 

Diz = A1A2(X1 - x2). (3-4) 

Sous une transformation projective l%quatioa 3.4 devient dn = IT [Pl P2] 1, soit : 

avec Al, X2 étant les facteurs d'*elle pour la ligne transformée. Consid6rons par la 

suite le rapport des déterminants des paires de points : 

Pour la ligne transformée, ce rapport devient 



On peut voir que le d&pJminant de la mahice de transformation [TI a et6 tééliminé 

dans le rapport* Toutefois il reste à 6liminer 1- facteurs d'échelle; pour cela il est 

nécessaire d'introduire un quatrihme point. Ainsi, le rapport des déliminéterminants pour 

quatre paires de points permet d'obtenir un birapport invariant pour une tramforma- 

tion projective (un birapport est caractérisé par l'apparition d'un point au dénomi- 

nateur et an numérateur le m h e  nombre de fois), par exemple : 

ce qui complète notre preuve du théorème. 

La conservation du birapport est illustrée par la figure 3.2 , et peut s'exprimer 

par : 

[A, B, C, DI = [A' y Br, Cf, 

L'ordre de la Ligne projective et le j-invariant 

Le birapport est obtenu a partir de 4 points. Il découle de ce qui précMe que la 

permutation de ces points donne des invariants en terme du birapport k défini par 

la relation 3.5. Les quatre points donnent 4! (ou 24) différentes permutations. Ces 

vingt-quatre permutations donnent six invariants diE&ents d e t s  par l'ensemble 

suivant : 



Comme me transformation projective enkale peut amener un changement 

dans l'ordre des points (figure 3 4 ,  il est intéressant de trouver un invariant qqui ne 

dépend pas de cet ordre. Il existe un inhant  qui est iodépendant de l'ordre dans 

lequel 1 s  points sont pris, il est appel6 le j-inua~ant, et il est defint en terme du 

birapport E, par 

Figure 3.1 : L'ordre des points peut étre chmg4 par une trdormation projective 
génerale, il  est préservé par une projection centrale 



Birapport de quatre droites 

Soient quatre droites I l ,  h, 13, Ir concourantes en un point O et 1, une ligne qud- 

conque qui ne contient pas O et qyi moise chacune des lignes du faisceau formt! p ~ r  

les quatre droites en quatre points dinérents comme iIlustr6 par la figure 3.2. Le 

birapport du faisceau des quatre droites est défini par le birapport [A, By C, Dl des 

points d'intersection du faisceau avec la droite 1. 

On le note aussi [O;A, B, C, Dl (birapport des droites OA, OB, OC, OD). Le 

birapport de quatre droites peut s'exprimer sous diEi5rentes formes. Si on utilise la 

forme proposée par M~bius, on peut caIculer le birapport en fonction des coordonnb 

homog&nes des points O, A , B, Cl D sous la forme suivante: 

et (xi, yi, zi) sont les coordonnées homoghes de Pi. 

Le birapport d'un faisceau de quatre droites peut étre exprime en fonction des 

angles entre les droites et peut s'écrire 



Figure 3.2 : Birapport de quatre droites 

Birapport d'un taisceau de quatre pians 

Pour un faisceau de quatre plans IIl, II2, , II4 ayant une droite commune, le 

birapport est défini comme [II, la, 14] , qUi est le birapport de l em quatre droites 

d'intersection avec un plan quelconque II. Ceci est bien sQr independant du choix de 

n. (voir figure 3.3). 

La notion de birapport, ainsi que la formule de MUbius, peuvent &tre gênéral- 

isées dans Pn pour tout -eau de quatre hyperphs concourants en un espace de 



dimension n - 1. 

Figure 3.3 : Birapport d'un faisceau de quatre plans 

3.1.3 Invariants projectifs des transformations de p3 dans P2 

Les transformations projectives de 'P3 dans P2 sont généralement utilisées pour mod- 

f i e r  la projection efktuée par une camka. Bums (Mundy et al., 1993) a démontr6 

qu'il n'existe aucun invaxiant général des transformations projectives de 'PJ dans P2. 

Les invaziants projectif& qu'on peut utiliser dans le cadre des transformations de 

P3 dans P2 se limitent B des ensembles de points qui ne sont paa en position géneale, 

en particulier les ensembles de points alignés ou coplanaires. Par exemple, les n-uplets 



de points coplanaires présentent des invariants pour les transformations projectives 

de 'P3 dans Pa : en &et, ils subiosent une homographie de Pa . On peut donc utiliser 

les invariaats vus précédemment, en particulier le birapport entre les plans. 

3.1.4 Coordonn6es projectives 

La notion de coordonnées projectives est étroitement liée aux i n d a n t s  projectik 

Soient P, un point de Pn, et B, une base projective Pn. 011 peut caraett5riser P 

par rapport & B par des quantités d W e s  géom~triquement ik partir d'i.nvarriants 

projectifk : c'est ce qu'on appelle les eoordonnBes pmjectiues de P par rapport B la 

base projective B. Une propri&6 importante de ces coordonnées est qu'des sont 

invariantes par toute homographie (puisque le birapport est lui-même invariant par 

homographie). 

Dans la suite nous donnerons une d-tion des coordonnées projectives dam les 

cas de la droite projective PL et du plan projectif p2, cette notion ast facilement 

généralisable dans Pn . 

Coordonn6es projectives sur la droite 

Soient une droite Z et trois points distincts (condition nécessaire pour former une 

base) de cette droite A, B et C formant une base projective de 1. Soit P un point 

de 1. P et A, B, C dénnissent un  buapport, 4ventueiiement infini. X = [A, B, C, Pl. 

Inversement, etant donne un scalaire X de R U {oo), il existe un unique point P tel 
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que le birapport [A, By C, Pl soit égal B X . 

Tout couple de réeIs (zl, x2) tel que x1/x2 = X est appel6 wordonnéès pmjectiues 

du point P dans la base projective dénnie par (A, B, C). Le birapport permet de car- 

actériser P.  Il permet de d6terminer la position d'un point P dans la base projective 

definie par (A, B, C), par la relation suivante : 

Lorsque X = m, P est confondu avec A. 

Coordonnêes projectives dans le plan 

Dans le plan projectif PZ, quatre points quelconques A, B, C,  D non colin6aires trois 

A trois déhissent une base projective. (voir figure 3.4). 

Figure 3.4 : Coordonn&s projectives dans un plan 



Soit un point P de P2, alors tmk nombres r* (XI, 22.23) tek que 

zl= z3[A; By Gy Dy PI =  AB, AC, AD, AP], 

2 2  = x3[B; A, C, D, P] = x3[BA, BC, BD, BPI, 

sont les coordonnées projectives de P dam la base (A, B, C, D). 

Tout point P de Pz peut &tre déhi  de d & e  unique par ses coordonnées pro- 

jectives, mis ii part les points de la droite (AB) qui ont tous les memes coordonnées 

projectives. Les coordonnées projectives sont d e e s  B un facteur multiplicatif prés. 

Elles ne dépendent pas du système de référence des coordonnées homogènes dans 

lequel sont décrits les points. 

Les birapports ki = xi/x3 et k2 = x2/x3 suüknt pour déterminer un point 

quelconque en dehors de la droite (AB). 

Lien entre coordonnées projectives et coordonnées homogenes 

Les coordonnées projectives se dBfinissent par rapport iî une base projective, et à 

un facteur multiplicatif près. Les coordonnb homogènes présentent les mêmes pro- 

priétés. Pax la suite nous allons d&finir le lien entre ces deux systhes de coordon- 

nées. Etant donné un point P du plan projectif, déh i  par ses coordonnées projectives 

(xI, xz, x3) dans une base projective (A, B, C, D), soient (x,  y, z) les coordonnées ho- 

mogènes de P. On choisit m e  représentation du plan projectif oiî A, B, C, D ont les 



coordonnées s u i m t e s  : 

A = [O, &O]' B = [I,O,0]' C = [O, O, l l t D  = [l, 1,1]'- 

On veut exprimer les coordonn6es projectives en fonction des coordonnées h* 

mogènes. Les coordom4es (xly x2, q) sont détermïn&s par la valeur des deux birap- 

ports : 

kl = [A; B, C, D, Pl = l A . 4  W P l  
[ABP[ IACDI ' 

Comme 

les coordonn&s projectives sont donc, un tacteur multiplicatif près : 



On remarque que les coordonnées projectives d'un point P dans la base projective 



(A, B, C, D) sont aussi Ies coordonnées homoghes de ce point dans la représentation 

oil A, B, C et D définissent les coordonnées canoniques ou : respectivement [O, 1, O]', 

[l, O, Olt, [O, O , l ] t  et [l, 1, 1It. 

Les coordonnées projectives des points de la base projective ne sont pas d6bies. 

Mais on peut les défmir par exterision comme &nt [0,1,0]', [1,0,0]', [0,0,1]' et 

Ceci nous fournit une méthode pratique pour calculer les coordonoées projectives 

associées A un point. Etant données les coordonnk homogénes des cinq points A, B, 

C, D, P dans une représentation quelconque, les coordomêes projectives de P seront 

dors : 

Inversement, on peut calculer les coordonnées homoghes d'un point en connais- 

sant ses coordonn6es projectives. En reprenant les expressions ci-dessus, on obtient 

trois bquatiom linéaires en fonction des coordonnées homoghes de P. La résolution 

de ce systhme donne les coordonnées homog&nes de P en fonction de ses coordonnées 

projectives et des coordonnées homogèn~ de A, B, C, D. 

En geométrie projective le principe de dualité nous permet d9Qendre toute propri6t6 

des points en une propriété des hyperplans. Ainsi, comme nous l'avons vu au chapitre 



2, Ies points et les droites sont duaux dans le plan projectif p2. Cette d d t 6  s'exprime 

esentieUement par l'@,livalence suivante : deux points dénnissent une droite et deux 

droites définissent un  point. Un ensemble de points alignés est dual d'an faisceau de 

droites concourantes. On sait  que 5 points alignés Pl, Pz, P3, P4, &, définiasent un 

birapport, celui du &eau de droites de sommet Pl et passant par les points Pa, 4, 

P4, 4. Par le principe de dualité, on peut donc en déduire que 5 droites 11, Ca, 4, 4, 

l5 , définissent un birapport, celui des points appartenant B la droite I I ,  et qui sont 

les intersections de Ii avec Cay 13, ky ls (voir figure 3.5). 

Le principe de dualit6 permet de déduire directement le birapport k, qui s'écrit : 

avec l Z i Z j Z k l  représentant le dbterminant de la matrice 3 x 3 contenant les mordornées 

homogihes d a  droites li, I j l  I I .  

3.1.6 GBornhtries affine et euclidienne 

La geométrie projective englobe les géomi5tries f i e  et euclidienne. Les transforma- 

tions &es et les transformations euclidiennes sont des sous-groupes des homogra- 

phies. Ainsi, les invariants projeeti& sont aussi des invariants afEnes et euclidiens. 



Figare 3.5 : Birapport associé $i cinq droites 

La g&om&rie a i b e  est une restriction de la géom6trie projective, elle se deduit de 

cette derniike en fixant l'hyperplan de 19in.ûni. 

Les transformations projectives qui consentent globalement l'hyperplan de l'infini sont 

dites transformations &es. De ce fait, une trdormation est a f h e  si et seulement 

si elle conserve le parallélisme. EIL effet des droites sont pmalldes si et seulement si 

elles s'intersectent en un point du plan de l'W. Dans le cas de Pm, l'hyperplan de 

l'infini peut donc étre détermin6 par n paires ind@endantes de droites paralli9es. 

Si on fixe comme hyperplan de l'infini le plan zn+i = O, alors la matrice associb 

aux transformations afba a la forme suivante : 



A est une matrice n x n qui conespond B la partie Iinéaire de la transformation a h e  

et (tL, . . . , tn) est le vecteur de translation. 

Invariants &es 

Ici le paratl&sme, qni n'est pas une notion projective (voir chapitre 2), est un invariant 

afnne fondamental. A partir du parallelisme de droites, on peut définir la notion 

de plans pmallèles (sécants en une droite située dans le plan de l'infini) et droites 

parallaes (s6cantes en un point du plan de l'infini). 

L'invariant algebrique fondamental en géométrie afnne est le rapport des longueurs 

de 3 points alignés. On peut noter que cet indant  est en fait un birapport faisant 

intervenir un point 1'in.ün.i. Si A, B et C sont 3 points d'une droite 1, et si D est le 

point à. l'infini sur 1 alors, en utilisant les conventions du paragraphe 3.1.2, on a : 



Gbmétrie Euclidienne 

La géométrie euclidienne est déhie en introduisant une restriction suppl6mentsire 

de la géométrie a f b e  : Phyperplan de Pinfiai est globalement f%, ainsi que certains 

points de cet hyperplan. 

Transformations euclidiennes du plan 

Les trdormations euclidiennes du plan sont les transformations &es qui con- 

servent une paire de points de la droite de l'inhi. Ces deux points, notés I et Jy  

sont appeles points absolus et peuvent être choisis arbitrairement sur la droite de 

l'infini. Une transformation euclidienne qui conserve le couple (1, J )  est une tram+ 

formation directe. Inversement, si le couple (1, J )  a pour iniage le couple (4 1), la 

transformation est dite indirecte. 

Soient deux droites, et 12, et Al, A2, leurs intersections respectives avec la droite 

de l'infini (voir figure 3.6), le birapport 

est invariant par toute transformation euclidienne directe, et il est trsesform6 en son 

inverse par toute transformation euclidienne indirecte. 

Si on choisit z3 = O comme droite de l'infini et comme points absolus les points c y  

cliques (1, i, O) et (1,-i, O), les transformations euclidiennes sont alors des similitudes 

planes : rotations, translations, homothéties et sym6tries orthogonales. On d 6 E t  
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alors les cercles comme les ellipses intersectant la droite de l'infini en les points cy- 

cliques. L'angle entre deux droites Il et h est défini par la formule de Laguerre : 

droite 

Figure 3.6 : Birapport en g6om4trie euclidienne 

lkansformations euclidiennes de L'espace 

La geombtrie euclidienne de 19e24pace est obtenue partir de la geornetrie f i e  de 

l'espace en h t  une conique du plan de l'infini. Cette conique ne contient que 

des points imaginaires et elle est appelée conique absolue; on la note R. Aiesi, les 

transformations euclidiennes de l'espace sont les transformations nffines qui laissent 
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globalement i n d a n t e  la coniqne absolue- Les intersections d'un plan avec d4h.i~- 

sent les points absolus associés ih ce plan. 

Si on choisit comme p h  de l'infini le plan x.4 = O et si on choisit dans ce plan 

la conique d'équation 8 + 4 + 4 = O comme conique absolue, alors on retrouve 

ainsi, en géométrie euclidienne du plan, la notion d'angle. L'angle entre deux droites 

sécantes Il et 12 est déhi  par 

où I et J représentent Les intenieetions du plan contenaut IL et l2 avec f2 (points 

cycliques associés B ce plan), et Al et A2 sont les intersections de I l  et b avec le plan 

de l'infini. Ces quatre points sont alignés car ils appartiennent 8 la droite 112, qui 

est l'intersection du plan contenant El et et du plan de l'W. Ils d6fhhent un 

birapport (voir figure 3.7). 

La conique absolue est un objet important en vision. Connaître la projection de la 

conique absolue sur le plan image équivaut 8 l'taionnage des param&tres intrinsèques 

de la caméra. 



Figure 3.7 : Transformations euclidiennes de l'espace et la conique absolue 

3.2 Invariant bas6 sur un point de &ference et 

deux homographies 

Dans cette section nous allom définir un nouvel invariant projectif que nous déduirons 

de la contrainte de plasaxit6, c'est-à-dire de la présence de d a c e s  planes dans la 

scène (Tong, Akhloufi, Polotski et Cohen, 1998). Nous utiliserons deux structures 
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planes présentes dans l'environnement pour caiculer cet invariant en tennes de birap 

port. Nous dons utiliser la relation d'homogmphie ,ie d e  entre deux images d'un 

même plan. 

On sait (voir chapitre 2) ~u 'un  plan II de l'espace tridimensionnel est d i 6  B 

sa projection, r, dans un plan image par une transformation homome T, appel& 

colillédion. Notons par T la colin6ation déhie par la projection du plan II daris 

le plan image gauche, et par T' la colinéation définie par la projection du même 

plan II dans le plan image droit. Il existe une transfoxmation homoghe unique 

H = T'T-', qui définit la transformation entre les projectiom du plan II sur les deux 

plans images. La matrice H est appelée hornogmphie et peut 6tre déterminé& à un 

facteur multiplicatif pr& en identifiant au moins 4 paires de points images appariés 

correspondant au plan II, et se trouvant sur chacune des images, ?rl et ~r,, de celui-ci. 

Dans la suite nous allons décrire l'approche proposée. 

Soit P. un point de reférence choisi dans l'espace 3D (la sche). Traçons les deux 

lignes joignant ce point de réfikence aux centres optiques des deux cam&as, gauche 

et droite, de Ia paire st~réoscopique, (Po@) et (POOr). Ces deux droites croisent le9 

plans images gauche et droit en deux points, et po respectivement. Ces deux points 

représentent la projection du point de référence Po sur les deux plans images. 

Soient deux plans de références IIl et IIa choisis dsns la scène. L'homographie 

& entre les images du plan TC1 sur les deux caméras est d6teTLllinêe en identifiant 

au moins 4 paires de points appariés appartenant B ce plan. De la même façon nous 



déterminons l'homographie H2 qui caractérise la transformation entre les images du 

plan II2. 

Considkom u n  point P, de l'espace tridimensionnel, et ses projections IJ, et & sur 

les plans image droit et gauche. Le point P, peut &re comecti5 au point de rfférence 

Po pour former une ligne, (POP,) = L, . Cette ligne intersecte les de- plans de 

r6ference. Le long de cette ligne on identifie qpatre points: le point de référence 

choisi Po, le point de la scène Pz, le point PL qui est l'intersection de la ligne L, 

avec le plan IIi, et le point P2 correspondant l'intersection de la ligne Lo, avec le 

plan II2 (voir figure 3.8). Nous allons noter et f i  les projections du point physique 

PL sur l'image de gauche, respectivement de droite. De mhe ,  les projections de P2 

sur le plan image gauche, respectivement droit, seront net@ et f i .  On a alors 

un invariant projectif fonnb par les quatre points appartenant B la même ligne L,, 

c'est le birapport de quatre points coh6aires définit par l'équation 3.1 dans la section 

3.1.2, 

Le plan défini par la ligne L, et le centre optique Or de la caméra droite conti- 

ennent aussi la ligne formk par pl et p:. Cette ligne contient aussi deux points: pl 

et pi. Cette configuration permet d'utiliser le résultat du théorème fondamental sur 

l'invariance du birapport par rapport aux transformations projectives, comme illus- 

tr6 par la figure 3.2. Ce birapport peut être fgalement dhfini en utilisant les points 



images de la cam6ra de droite, nous avons alors 

Un raisonnement équivalent nom permet d'écrire ce birapport en fonction d e ~  

points images de la caméra gauche. Dans ce cas, la ligne L, et le centre optique de 

la caméra gauche, forment un plan qui contient les points images d ,  p',, & et p<,. 

Le birapport peut s'écrire comme suit : 

Dans la suite nous dons dkrire comment calculer ce birapport B partir des points 

images appari4s. Les points p: et pz sont connns puisqu'au dkpart nous choisisso~~ 

notre point de référence p. et le point pz, pour lequel on veut calculer l'invariant. Les 

points p; et sont des inconnus et doivent &tre retrouvés en utilisant les homographies 

Ur et Hz. 

Considérons l'homographie Hl caractérisant la transformation entre les deux im- 

ages du plan IIl. La projection de la ligne L, sur le plan 9 (voir figue 3.8), La,, 

a une image sur chaque vue de la paire stérécscopique. Soit &, l'image de LWI dans 

le plan image droit. La ligne CL est obtenue en utilisant l'homographie Hi. Nous 

avons alors la relation suivante : 



oiî 1; = pi @pi,' la ligne passant par les points p', et de l'image gauche, représente 

la projection de la ligne L, dans l'image gauche. 

Donc la projection du point Pl sur l'image droite, pr doit se trouver sur la ligne 

&, . De plus, f i  appartient ii la ligne L,, donc son point image droit &, se trouve 

sur la projection de cette Kgne dans l'image droite. La projection de L, sur l'image 

droite, notée 1&., est la ligne passant par p: et pz, C = & 8 po- La projection du 

point Pi sur la vue de droite est le point d'intersection entre la ligne l;, et la ligne 

(voir figure 3.8). Ses coordonnées homogénes sur l'image sont données par 

avec RI = [HC']~. 

Pour di5termïner la projection du point P2 dans l'image droite, on procMe de la 

même façon: pg est l'intersection de deux lignes, l& = &@& la projection sur l'image 

droite de la ligne Lm, et l& = [fia'ltlf, l'image droite de la projection de la ligne La 

sur le plan IIz. On obtient alors pour p; L'équation de méme type que 3.11 : 

'Ici @ repr-te le produit vectoriel. 
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avec E2 = [H;']~. 

Nous obtenons ainsi pour chaque point un invariant unicpe basé sur la sêl t ion 

d'un point de rbférence et deux surfaces planes : 

Les résultats du calcul de cet invariant & partir de l'appariement de points sur une 

paire d'images stéréoscopique sont illustrés dans le chapitre 5- 

3.3 Invariant base sur une ligne de reference et 

une seule homographie 

Dans cette section, nous nous intéressons caractériser une ligne de la scène par un 

invariant projectif. Nous allons présenter une nouvelle approche basée sur le choix 

d'une ligne de réfeence et un plan dans la scène (Tong et al., 1998). Tout d'abord 

nous commencerons par étendre la notion de birapport au cas oiî nous di~pos011s 

seulement de deux lignes et de deux points. 

Soient deux lignes, I I  et 12, et deux points, zlet q, n'appartennant pas P 4 et 

h (voir figure 3.9). Dans ce cas, un invafiant projectif peut 6tre défini en termes de 

birapports. 'hqons la ligne passant par xl et y, cette ligne coupe les lignes 11 et h 

en deux points ciments. L'indant correspond au birapport des distances entre les 



Figure 3.8 : InMnant basé sur un point et deux homographies 

lignes et les points, le long de la ligne (qq). Par exemple, la distance entre la ligne 

Il et le point x1 est donnée par lLzL. Le birapport s'&rit alors : 

Nous allons utiliser la relation 3.13 pour définir un nouveau birapport bas6 sur 

une seule homographie et une ligne de réfhnce, & partir d'une paire d'images. NOUS 

décrivons l'approche proposée dans ce qui suit. 
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Figure 3.9 : Birapport de deux points et deux lignes 

Soit une homographie H d~finissmt la transformation homogike entre les images 

d'un même plan de réfhrence, notée GCf. Soient deux lignes quelconques coplanaires, 

LI et L2, que nous pouvons choisir en utilisant l'homographie H. Lret est une ligne 

de référence choisie. 

Pour une ligne quelconque Lz, ses projectioes dans les deux plans images gauche 

et droit sont respectivement If et 1:. Les projections de la ligne de rhfhnce Lref, de 

LI et de lfef , IFef , 1: , 1; , et Z&(voir figure 3.10) 

La ligne de référence Lref, rencontre le plan de réference II,., en un point noté 

PL. De même, l'intersection de la ligne Lz avec le plan de référence se fait en un point 

noté 4. Pl et Pa définissent une droite L = (P1P2). Cette droite rencontre les lignes 

LI et L2 en deux points Mêrents notés respectivement XI et Xz. Les points Pl, xi, 



X2 et P2 définiasent tm birapport. Ce biipport peut être défini en termes de deux 

lignes et deux points comme nous avons vu en 3.13, en utilisant les points Pl, Pz et 

les lignes LI et &. Le birapport s'écrit sous la forme suivante : 

ce birapport peut gtre d6duït A partir des coordonnées images des points PL, P2 

et lignes Ll et L2. LI et 4 sont choisis sur les plans images, il suffit alors de calculer 

les projections sur les plans images de Pl et P2- 

Prenons les projections sur le plan image droit par exemple. PI est le point 

d'intersection de la ligne de réf6rence Lref avec le plan de refkence La projection 

de la ligne Lrcf sur le plan II,ef , notée =L,~ ,  passe aussi par le point f i .  Ceci signifie 

que Lrcf sur se croisent en Pl. Donc les projections de ses deux lignes sur le 

plan image doivent se croiser en la projection de Pl sur le meme plan image. 

La projection de Lref sur le plan image droit est lFef, et la projection de =L, .~ sur 

le plan image droit est donnée par 

avec I:ef ,  la projection sur le plan image gauche de la ligne de réfhnce Lref - 

La projection de Pl sur l'image de droite est alors donnée par : 



De la même mamière, on obtient la projection de Pz dans l'image droite, en utilisant 

la projection de la ligne Lz snr le plan de réfikence arf, notée =L,. La projection 

de P2 sur l'image de droite 6, est donnée par l'intersection entre la projection sur le 

p h  image droit de la lipe L*, notée 2: et Ia projection de la ligne =L= = [ H - ~ ] ~ I ;  

sur la caméra droite : 

oii 2; représente la projection de la ligne Ls sur le plan image gauche. 

Ainsi, le birapport donné par la relation 3.14, peut être réécrit en termes des 

coordonn6es des points sur l'image. Pour le plan image droit, nous avons 

et pour le pian image gauche, nous avons 

Nous obtenons d'une manière simple an invariant projectif en terme de birapport 

de deux points et deux droites. 



Figure 3.10 : Invariant basé sur m e  ligne de réf6rence et une seule homographie 

3.4 Conclusion 

Dans ce chapitre nous avons introduit une theone qui connaît une popdarith crois- 

sante en vision : 1'iBvonance pmjective (Forsyth, Mundy, Zisserman et Brown, 1990; 

Mundy et al., 1993; Carlsson, 1995; Hartley, 1994b; Shashua, 1993; Shashua, 1994a). 

Son importance vient du fait qu'elle nous procure des outils permettant de définir des 

invariants caractéristiques de la géom4trie de la scène. 

Alors que la géométrie épipo1aire nous permet de caract&isa les transformations 



géométriques entre les images, l'invariance projective joue un rble important dans h 

définition des relations géorn&riques mesurabIes qai caractérisent les propri4tés d'une 

&ne en particulier- Les invariants projectifk sont donc les invariants géornktnques 

associés aux transformations projectives. 

Apres avoir défini la notion du birapport, l'invariant fondamental en géornbtrie 

projective, MUS avons présenté deux nouvelles app~oches pour caleder l'invariant 

projectif dans chaque cas. Nous avons exp1oitk l'information présente dans la scène, 

plus particuli&rement Ia présence de d a c e 8  planes, pour dêhir cet invaxiiant en 

terme de birapports. 

Les applications de l'invariant projectif peuvent &re nombreuses, par exemple la 

reconnaissance d' ob jets (Mundy et aL, 1993; Shashua, l994a), la reconstmction tridi- 

mensionnelle de la structure de la scène (Hartley, 1994b), la correspondance (Shashua, 

1994a), etc. 

Dans le chapitre suivant nous allom nous intéresser plus particditirement B l'util- 

isstion de cet invarisnt pour le transfert de points sur une nouvelle vue. 



Chapitre 4 

Synt hèse vues 

Dans ce chapitre nous allons nous intéresser la synthése de vues B partir d'images 

de réfikence. Plus particulihement aux approches gbmétripuement valides. 

Dans Ir première partie de ce chapitre nous allons r6viser la bibliographie en 

synthhe de vaes en présentant les principales techniques utilis6es. Dans la deuxihe 

partie, nous allons nous intéresser de plus près à synthétiser les vues B partir d'une 

paire d'images. Nom présenterons une nouvelle approche qui permet d'evites un 

appariement dense entre les images lois de la synth&se de vues. Nous exploiterons 

les outils foumis par l'infographie pour r h h e r  un rendu basé sur images de bonne 

qualité, partir d'un appariement é p m  d m  par un petit nombre de primitives 

d'intérêt presentes dam les deux images. Dans notre approche nous tenons compte 

des contraintes gêombtriques inh4rentes la s&e par l'utilisation des approches 

géométriques d&es dans les chapitres précédents (géométrie épipolaire et invariance 
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projective). Nous finirons ce chapitre par une d d p t i o n  des Mérentes parties de 

lhIgorithme proposé. 

~ t a t  de l'art en synthese de vues 

4.1.1 Synthhe par reconstruction tridimensionnelle explicite 

La reconstruction tridimensionnelle de la scène est l'un des domaines les plus actifis en 

vision, on trouve plusieurs articles dans la littérature traitant le sujet de la récupé~a- 

tioii de la structure de la scène A partir des images de celle-ci (Adiv, 1985; Kanade, 

1995; Kanade, Yoshida, Oda, Kano et Tanaka, 1996; Kutulakos, 1995; Okutomi et 

Kanade, 1993; Faugeras, 1992; Huang et N e t r a d ,  1994; Faugeras, Robert, Laveau, 

Csurka, Zeller, Gaudin et Zoghlami, 1998; Bougnoux, 1998). Une fois le modde de la 

sc6ne obtenu, on peut facilement appliquer les techniques d'infographie pour produire 

u n  rendu réaliste. L'application de la texture, des effets de ri%Iexion, de transparence, 

de placement de source de lumiee, etc. permet d'obtenir un objet dont le réalisme 

approche celui du vrai objet daas la scène. La manipulation de cet objet devient 

très simple permettant de le visualiser sous diff6rents angles. Plusieurs équipes de 

recherche se sont int6ressées B cet aspect de modéliilation explicite de la scène pour 

la synthèse de vues. 

Par exemple, Koch (Koch, 1995) utilise la stéréoscopie poux la reconstruction 

tridimensionnelle de la scène, puis la ghération de nouvelles vues. L'algorithme qu'a 



propose se r h m e  en 6 &tapes : 

1. etdonnage des caméras stérbwopiques; 

2. rectification de la paire d'images stéréoscopiques; 

3. app-ent dense des points sur les deux images; 

4. triangulation des points appariés; 

5. reconstruction d'un modèle en facettes planes; 

6. calquage de texture sur le modèle. 

Pour l'appariement dense il utilise une technique itérative qni permet un raffinement 

des r4dtats à chaque itération. 

Un autre travail utilisant la mod&ation 3D explicite est celui de Debevec et al. 

(Debevec et Malik, 1996; Taylor, Debevec et Malik, 1996a; Taylor, Debevec et M m ,  

1996 b). Ce travail traite exclusivement de la reconstruction de bâtiments B partir 

de photographies. Il propose un système de "Conception Assistée par Ordinateur" 

(CAO), qui comme la plupart des syst&mes commerciaux de mod&ation 3D nécessite 

l'intervention de l'usager tout le long du processus de mod6lisation et de rendu. Une 

fois le modèle reconstruit, on lui applique la texture. Cette étape est très importante, 

puisque, contrairement aux systhxes de mod6hation 3D classiques qui considhent 

la texture comme étant statique, Debevec propose le choix de la texture parmi les 

images de réference les plus proches du point de vue courant. Une pondtkation des 
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textures est alors appliquée : plus l'image de réfhence est proche, plus le poids est 

grand. Un bon choix de la texhue permet un gain appréciable en qualit6 visuelle du 

rendu final. 

D'autres travaux, comme ceux de Niem et al. (Niem et Broszio, 1995), se basent 

sur la reconstruction 3D tl partir des contours d'occlusion. L'objet B reconstruire est 

placé sur une table tournante. Niem et aI. établissent un appaxiernent dense entre 

les images, puis dkomposent la scène en d i e s  trimgaiaires par Ia triangdation 

des points appariés. Ces suhces triangulaires sont ensuite texturées. Ils utilise un 

calquage de textures pond&6 parmi les images de réfbrence les plus proches du point 

de vue à générer. Les trous dus aux occlusions sont comblés par lissage avec les 

voisins. 

Kanade et al. (Kanade, Narayanan et Rander, 1995; Kanade, Rander et Narayanan, 

1997; Narayanan et Kanade, 1998; Narayanan, Rander et Kanade, 1998; Rander, 

Narayanan et Kanade, 1997; Rander, Narayanan et Kanade, 1998) utilisent un sys- 

tème formé par une cinquantaine de caméras fixées sur un dôme, ce qui permet 

d'établir un appariement dense entre les images. Les caméras sont 6talom6es per- 

mettant ainsi d'établir un appariement selon des directions de recherche connues. Le 

systeme est rigide, complexe et ne couvre qge la sc&ne se trouvant sous le dôme. 

Il existe aussi d'autres méthodes qui évitent l'étape de la trimgdation de la sche. 

Par exemple, Scharstein (Schamtein, 1996) fhit une reconstruction dense apr& l'étape 

d'appariement dense entre les images. Une fois que les coordonnées tridimensionnelles 



des points sont obtenues, il d t  de les reprojeter sur la nouvde position du plan 

image. 

Seitz et aI. (Seitz, 199R Seitz et Dyer, 1997h Seitz et Dyer, 1997~; Seitz et 

Kutulakos, 1998) proposent 17utiüsation de vmcels colorés pour décrire la scène. Ces 

voxels sont ensuite reprojetés sur la nouvelle vue pour générer la nouvelle image. 

McMïUan et al (Mc- et Bishop, 1995) utilisent un système de prises de vaes 

qui dectue juste une rotation selon l'axe vertical passant par le centre optique de la 

caméra. Ainsi, les images de référence se projettent sur u n  repère cylindrique. La 

nouvelle image synthétisée est produite par la compodtion des images de réikence 

utilisant une forme de reconstruction implicite des points 3D. 

Plusieurs auteurs utilisent des techniques similaires pour la synthbe de vues en 

faisant une reconstrction tridimensionnelle dense ou partielle de la scène (Adelson, 

1995; Baker, Szeliski et Anandan, 1998; Jain et Wakimoto, 1995; Moezzi, Katkere, 

Kurara et Jain, 19964 Katkere, Moezzi, Kurara, Kelly et Jain, 1997; Moezzi, Katkere, 

Kurara et Jain, 1996~; Moezzi, Katkere, Kurara et Jain, 19966; Moezzi, Li-Cheng et 

Gerard, 1997; Seitz et Dyer, 1995~; Zhang, 19980). 

4.1.2 Mosaïquage tridimensionnel 

La représentation etendue de la scène sous forme de mosa&.ues constitue une approche 

intéressante en synthèse de mes. La réslisation de modèles etendus tidimemionnels 

permet d'avoir une vue plus Iarge de la scène. 



Sawhney et al. (Sawhney et Kumar, 1997) proposent d'estimer le mouvement 

dominant de la -ence d'images A partir des équations 4.1 liant les coordonnb des 

points appariés dans deux images. Les points (zz, yr) de l'image 2 correspondant aux 

points (xl, yl) de Pimage 1 sont tels que 

Une fois les paramètres (a, b, c, d, e, f )  calcul&, il est possible de procMer iî un 

appariement dense. Les images sont ensuite reprojetées dans un m h e  repère pour 

constituer une seule grande image. 

Szeliski et al. (Szeliski, 1998; Ksng et Szeiiski, 1997; Shum, Han et Szeliski, 

1998; Szeliski et Shum, 1997) utilisent une technique équivalente en commençant 

d'abord par estimer le mouvement dominant, puis par établir un appariement dense 

b base de splines. 

Kumar et al. (Kumar, Anandan, Irani, Bergen et Hama, 1995) utilisent une 

modélisation différente pour le mouvement dominant qui est décrit par des &mtiom 

quadratiques : 



4.1.3 Rendu basé sur les images : Approches non gbomQ 

triques 

Les approches non géom6triques sont celles oh l'image synth6tisée n'est pas g b -  

metriquement correcte, c'&-&-dire qu'elle ne respecte pas les contraintes imposées 

par la géométrie de la scène. MaIgr6 que Ies images peuvent être assez r W e s ,  ce 

réalisme se Iimite B une zone géométri~ue ori 1s contraintes ont et6 tépeetées. Plus 

on s'éloigne de cette zone, plus Pimage se degracie et devient inacceptable en termes 

de geométrie. 

4.1.3.1 Interpolation de vues 

Les techniques d'interpolation d9images sont tri% populaires en infographie, elles per- 

mettent la production d'effets spéciaux souvent spectadaires (Heckbert, 1986; Wol- 

berg, 1990). La technique est simple. Sur une image source on place des points de 

contrôle fixes. La surface entre ces points est élastique et peut étre dt%olpl& par 

interpolation des pixels qui la forment. Ces points peuvent ensuite &tre déplac& 

pour étirer ou comprimer l'image dans certaines zones. Cela peut étre appliqué B la 

synthèse de nouvelles vues. 

A partir de deux images, source et deetination, sur lesquelles on place des points 

de contrôle apparSs, on peut genérer de nouvelles vues intermédiaires en interpolant 

les positions de ces points de contrele. 

A partir d'un petit nombre de points de contrble, on peut construire un mail- 



lage triangulaire, puis appliquer des déformations aifines des textures l'intérieur de 

chaque triangle. 

4.1.3.2 Combinaisons linéaires des images 

Dans la littérature (Ullmôn et Basri, 1991; Werner, Hersch et H l a w ,  1995; Hlavac, 

Leonardis et Werner' 1996), on trouve une autre méthode de syn thb  de vues proche 

des techniques d'interpolation. Il s'agit de b combinaison linéaire d'images. L'idée 

est que la position d'un point sur une nouvelle vue peut &tre estimée ii partir des 

points qui lui correspondent dam les vues sources. La projection d'un point dans une 

nouvelle image est une combinaison linthire des projections du même point dans les 

autres images. Cette mod&sation a été proposée par Ullman et al. (Ullman et Basri, 

1991), pour la reconnaissance des objets, puis utiliske par Wmer et al. (Wemer 

et al., 1995) pour la synthèse d'images. Si un point P de l'espace se projette dans n 

images en pi (i = 1. . . n), dors sa position dans la nouvelle vue n + 1, notée p,,+i, est 

donnée par l'équation suivante : 

Les coefficients sont dt5terniinés il partir d'un certain nombre de correspondanc?es 

etablies entre certains points de l'image de destination et des images sources. Dans 

le cas de caméras orthographiques, Werner et al. (Wemer et al., 1995) proposent une 

relation afnne, donnant h position d'un point pa dans une troisihe vue connaissant 
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ses positions p~ et pz dans deux vues de référence : 

4.1.4 Rendu bas6 sur les images: Approches géom6triques 

L'objectif de tout système de synthèse de vues est de produire une image qni serait 

semblable ii celle prise réellement par une caméra si elle etait placée au m h e  endroit 

que celui choisi pour placer la caméra virtuelle et générer la nouvelle vue, c'est-&-dire, 

obtenir des vues physiquement valides. Pour cela il faut avoir un système qui tient 

compte des contraintes géom&riques présentes dans la scène. Ici nous r6visom les 

approches qui utilisent d'une mani&re ou d'une autre cette information de la &ne. 

4.1.4.1 Interpolation de vues valide 

Seitz et al. (Seitz et Dyer, 1995b; Seitz, 1997) proposent d'utiliser l'interpolation 

d'images pour génhrer la nouvelle vue. La technique proposée respecte la contrainte 

d'ordre, ou monotonicit6. Ainsi les vues gbnérées sont géom&riquement valides. L'al- 

gorithme se divise en trois etapes (voir figure 4.1) : 

1. les deux images sont rectifiées; 

2. la vue intermédiaire est obtenue par interpolation linéaire entre les deux vues 

rectifiées; 
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3. la vue synthétique est dérectifiée en la reprojetant daas le plan image d e  par 

la nouvelle position de la caméra virtuelle. 

Figure 4.1 : Synthb de vues par interpolation 

La position de la caméra virtuelie est d w e  par la projection de quatre points de 

contrale sur le plan image de la vue synthetique. Ici la caméra est &donnée. 

L'appariement dense est nécessaire pour pouvoir tr&éIer dans l'image synth6- 

tique chaque couple appsrié dsns les images de référence. Ceci est rBalis6 de manière 

& respecter la contrainte de monotonicité. 



Dans la littérature (Faugeras et Robert, 1996; Laveau et Faugeras, 1994; Faugeras 

et ai., 1998), on trouve des méthodes qui utilisent explietement la géom&ïe épi- 

polaire. Le transfert se fait par intersection des lignes epipolaires. E h  &et, connais- 

sant une paire de points appariés, et ml cormpondant A u n  point P de l'espace 

dans les images 1 et 2, et les matrices fondamentales FIS et Fm liant les images 1 

et 3 (respectivement les images 2 et 3), alors le point sur l'image synth6- 3 se 

trouve sur l'intersection de la ligne 6pipolaire conespondant iî m dans l'image 3 et la 

ligne épipolaire correspondant î i  dans cette même image 3; il est donné par : 

La position de la caméra Wtuelle est obtenue en plaçant manuellement cinq points 

decrivant le plan de la caméra et son centre optique. Ainsi, on evite l96talonnage 

complet des cami5ras puisque les matrices fondamentales sufEsent. 

L'équation 4.2 ne peut pas etre utilisée si les lignes F13pL et Fppl sont paraIldes 

ou confondues. Donc, tous les points P appartenant au plan forme par les centres 

optiques des trois caméras, appel6 plan trifocal, ne peuvent pas &re reprojetb par 

cette technique (voir figure 4.2), et les équations deviennent numériquement instables 

pour des points proches du plan trifocal. L'image ne peut &tre s y n t h 4 t S  dans cette 

zone. 



Figure 4.2 : Intersection des lignes épipolaires prb du plan trifocal 

4.1.4.3 Utilisation de la trilinbarite 

Les relations tdin4aires (Torr et Ziaserman, 1997; Shashua, 19946; Avidan et Shashua, 

1997; Hartley, 1997c; Shashua et Werman, 1995) sont les relations qui lient les coor- 

donnees (zl, y,), (22, ya) et (x3 , y3) d'un triplet de points @I, m, p3) en comapondance 

dans trois images(v0i.r figure 4.3). Ces relations sont donnb par les équations suiv- 

antes : 



La géométrie relative des trois caméras est représentée par les vingtsept coefkients 

dhot6.s Ils forment un tenseur 3 x 3 x 3 appel6 tenseur trilinéaire qui est l'équiva- 

lent pour une configuration de 3 cambras ce qui est la matrice fondamentale pour une 

configuration de deux camhs.  Comme les coefficients de la matrice fondamentale, 

ils sont liés par une condition de rang. Le positionnement relatif de 3 cameras per- 

spectives peut &lze décrit par &-huit parambtres. Donc, les coefficients du tenseur 

ne sont pas indépendants. Le tenseur trilinhaire peut être calculé par les mêmes 

mèthodes que la matrice fondamentale. 

Nous pouvons utiliser seulement les deux premi&es Bquations pour d d e r  la PO- 

sition du point (x3, y3), connaissant le tenseur et les positions de ( X I ,  YI) et (22, y2) 

dans les deux premi&res images. Toutefois la position relative des images peut pra- 



120 

duire de mauvais rbultats. Il fsnt donc considthr les dinérentes 4quatio1m possibles 

(Shashua, 1997). 

Figure 4.3 : Contraintes de tnlin6aritt5 

4.1.5 Mosaïquage bidimensionnel 

Ces demi6res années an grand effort a B t B  investi dans le domaine de la constmction 

de mosaïques bidimensionnelles & partir d'images de réfkhence. Plusieurs chercheurs 

se sont penchés sur cet aspect de la représentation de la scène qpi permet de produire 

un large champ de vue 9, partir du cobge des images de référence (Irani, Anasdan 

et Hsu, 1995; Mase, 1996; SzeEski, 1996; Pdeg et Herman, 1997; Rousse, Peleg, Finci 
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et Rsv-Acha, 1998; Shum et Szeliski, 1998; Zoghhmi, Faugeras et Deriche, 1997). La 

représentation la plus utilisée est celle de la projection dans un repQe cylindrique. 

Cette représentation est trèa adéqyate lorsque les caméras dkrivent un monvernent 

panoramique. 

Chen et aL (Chen et Wüüams, 1993) proposent une représentation en mosaïque 

cylindrique dans Ie cas particulier oiî la caméra sabit une rotation selon an axe vertical 

passant par son centre optique. Dans ce cas aucune information sur la structure 3D 

ne peut être récupérée. Les images sont liées par une homographie planaire qui 

peut être calculée à partir d'un appariement entre quatre points sur deux images, 

puis les images sont reprojetées sur un même repere cylindrique. Il est important 

d'avoir une zone de recouvrement entre les images qui se suivent pour permettre leur 

colIage et Petablissement d'appariements entre au moins quatre points pour calculer 

l'homographie. 

La compagnie Apple Computer commercialise un produit qui permet de produire 

une telle représentation et de visualiser interactivement le panorama géneé de dif- 

férents points de vues : QuickTime VRL. Le principe de cette technique est iIlustr6 & 

la figure 4.4. 

lhttpr//www.appIacom/qnicktime/qtvr/ 



Figure 4.4 : Mosaïquage bidimensionnel cylindrique 

4.1.6 Approche utilisant une base de données d'images 

L'approche la plus connue dans ce contexte est celle de Levoy et al. (Levoy et Han- 

rahan, 1996) qui considhent la scène comme btant décrite par un champ lumineuz2 : 

l'ensemble des rayons lumineux traversant la sche. Il est représentb par une fonction 

f a quatre dimensions, donnant la radiance en fonction de la position et de la direction 

d'observation. Levoy et al. utilisent, par exemple, un système de prises de vues con- 

stitu6 par une table tournante sur laquelle on pose l'objet. La table est synchronide 

avec u n  systeme d'éclairage tournant et une cambra dont on contrde le mouvement. 

Avec ce systeme on capture un grand nombre d'images (jusqu'8 BO00 images). TOUS 

les rayons sont décrits par la fonction f. Les images sont des échantillons bidimen- 

sionneh de cette fonction. Un grand nombre d'images permet de bien décrire f. 

Synthbtiser une nouvelle vue revient alors b dkouper un échantillon bidimensionnel 

%ght field 



dam la fonction f - 

Etant donnée la quantitk d'images disponibles les résuItats obtenus sont de bonne 

quaIit6, toutefois la technique ne peut &tre utilisée que pour des objets de taille 

raisonnable. 

4.2 Approche proposée 

Nous proposons maintenant une nouvelle methode de synthése de vues intermêdï- 

aires à partir d'une paire d'images stêréQBK:opiques (Akhloufi, Cohen et Polotski, 

1999; Akhloufi, Polotski et Cohen, 1999). Elle consiste tout d'abord B transf6rer 

les primitives d'intéret dans la nouvelle vue. Pour cela, nous utiliserons la géom& 

trie épipolaire ou les invariants projectifs pour r6u8sir un transfert géomktriquemenf 

valide. Une fois les primitives dyint&.êt transfêrêes dans la nouvelle vue, nous ut* 

erons une technique de t&umge bidimensionnel (Heckbert, 1986; Wolberg, 1990) 

pour transfker les autres points d m  cette meme vue. Nous utiliserons une tech- 

nique de texhirage bidimemionnel perspective pour produire l'effet d'une projection 

centrale. Dans les sections suivantes nous allons présenter plus en détail les différents 

outils que nous avons utilises pour la synthbe de vues. Nous finirom par une des* 

tion de l'algorithme proposé. 
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4.3 Techniques de transfert de primitives d9int&r& 

Dans la litt&ature on trouve principaIement trois techniwes de transfert de prim- 

itives d'hi&& qui permettent une reprojection ghmétriqtrement volide des points 

images dans la nouvelle vue : la gêom&rie épipolaire (Laveau et Faugeras, 1994), les 

trilinéarités (Avidan, Evgeniou, Shashua et Poggio, 1997) et les invariants projectifk 

(Shashua, 1995). Ici nom allons nous intéresser plus partic1fièrement B la géomé- 

trie épipoIaire et aux invariants projectif& Nous dons  souligner en particulier les 

possibilit6s offertes par la comb'maison des deux méthodes pour transferer des points 

images dans une nouvelle vue. 

4.3.1 Transfert il l'aide de la géombttrie &pipolaire 

L'idée ici est de prédire la position d'une primitive d'intêrêt dans une troisibme vue 

B partir de ses correspondants dans deux images initiales (Faugeras et Robert, 1996). 

Pour cela nous allons utiliser les propriétés inhérentes & la &ornétrie entre paires de 

caméras ou géomi5trie épipolake (voir chapitre 2). La géomktrie de trois caméras est 

illustrée B la figure 4.5. 

4.3.1.1 Transfert de points 

Soient trois caméras (figure 4.5) dénotées par 1,2 et 3, nous avons donc trois matrices 

fondamentdes, 5, avec les indices i, j = 1,. . . ,3, i # j représentant les caméras. Si 

mi est un point image du plan image i, alors sa ligne 6pipolaire dans l'image j est 



Figure 4.5 : Géométrie de trois caméras dam l'espace 

représentée par ' 1  = &,m. On notera qu'on a la relation Ej = Fii. Le plan contenant 

les 3 centres optiques est le plan trifocal. Ce plaa intersecte chaque plan image en 

une ligne notée di qui contient les épipoles ~ , ï + l  et Q,~+z de la caméra i par rapport 

aux caméras i + 1 et i + 2. La géométrie épipolaire implique la relation suivante pour 

chaque image i: 

Nous allons consid6rer le cas de tr8I1Sfert de points et de lignes dans une nouvelle 

vue. 

Soient deux points appariés, ml et m, dans Ies images 1 et 2. Donc, ma qui 
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leur correspond dans la troisième image doit se trouver nécessairement sur la ligne 

épipolaire de ml dam l'image 3, donnée par Fcpml, et aussi sur Itr ligne épipolaire 

de dans cette troisième image, dom& par F B ~ .  Par conséquent m3 se trouve B 

l'intersection des deux lignes épipolaires engendrées par les deux points appanés dans 

les images sou~ces (voir figure 4.6) : 

Figure 4.6 : Transfert de points A l'aide de la géombfrie épipolaire 

4.3.1.2 Zkansfert de lignes 

La pr6diction des lignes est obtenue d'une manière équivalente. Soient deux lignes 

appariées 4 et dans les images 1 et 2 respectivement. Le but est de dbterminer 

la position de la ligne h, correspondant A lIi et la, daes l'image 3. Soient mi et mi, 

deux points de h. Ils d-nt deux points ma, 4 de l2 qui sont les intersections 
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des lignes épipolaires de ml représentées par Filmi et de nt; représentb par Fnm: 

avec la ligne b. Nous avons 

m = F12m1@ 12, 

Alors la ligne l3 est définie par deux points, m3 et 4, intersections des lignes 

épipolaires de ml et et de mi et 4 dans la troisième image (voir m e  4.7) : 

ou bien 

4.3.1.3 Zkansfert proche du plan tri(ocai 

On peut facilement constater que les méthodes dkrites plus haut ne sont plus applica- 

bles lorsque les droites épipolaires engendrées dans la troisième image sont confondues. 

En effet, sur le plan trifocal la droite épipotaire engendrée par ml est confondue avec 

celle engendrée par ml. Nous allons dkrire dans la suite une méthode permettant de 

résoudre ce problème (Laveau et Faugeras, 1994). 

Soient deux paires de lignes 6pipolaires choisies loin de L'intersection du plan tri- 



Figure 4.7 : Transfert de lignes ii l'aide de la gt50m&rie épipolaire 

focal avec les plans images. Nous les notons (c, 4) et (Il, q). Soient pl, un point 

choisi sur lf, et pl, un point choisi sur c, représentant na point P  de la scéne. Si 

M est un point de Pespace appartenant au plan trifocal correspondant ii mi et m2 

respectivement sur l'image 1 et 2, 1 ligne ( P M )  rencontre le plas défini par (11,4) 

en un point noté Q. Soient ql et les images de Q dans les images 1 et 2. Nous 

construisons les points p3 et q3 comme l'intersection des lignes 6pipolaires engendrées 

par plet p? respectivement ql et a. Comme P et Q sont lo i .  du plan trifocal alors 

et q3 sont bien définis (voir figure 4.8). 

Nous pouvons déduire m3 comme l'intersection de la ligne passant par les épipoles 

e 3 ~  et e32, definie par ql 8 e32, et de la ligne définie par p3 8 q3 (voir figure 4.9). 

Pour eviter les problhes liês B la reprojection des points images appartenant au 

plan trifocal dans la nouvelle vue, nous présentons une autre mbthode dans la section 



Figure 4.8 : Transfert proche du plan trifocal. choix des points P et Q loin du p h  
trifocal 

suivante. Cette méthode est basée sur l'invariance projective chapitre 3. 

4.3.2 Transfert B l'aide d'un invariant projectif 

Nous avons vu au chapitre précMent (chapitre 3) que la théorie d'invariance nous 

ofie des outils permettant de di%nir une propriét6 invariante d'une configuration 

g4om4trique présente dans la scke.  Nous allons montrer comment nous pouvons 

utiliser les invariants pour trdérer  les primitives d'intér6t dans la nouvde vue. 

Dans la section 3.2 nous avons dénni en termes de birapports un invariant projectif 

ii partir de deux homographies caractérisant deux plans de la scène et un point de 



Figure 4.9 : Transfert proche du plan trifocal B l'aide de la géométrie épipolaire 

référence : 

L'invariance pour toute transformation projective implique que reste le même 

pour les points correspondants sur toutes les images. Ainsi pour trois points corne 

spondants, pl,  pd et p3, se trouvant respectivement sur les plans images 1,2 et 3, nous 

avons le même i n d a n t  projectif dbfini par k. Nous utiliserons cette propriete pour 

le transfert des points images dans une troisième vue. Pour cela, nous avons besoin de 

reprojeter tout d'abord les deux plans de référence (IIL et II2) et le point de r é f h c e  

(P.) dans la troisième vue. A ce stade nous utilisons la gtkmktrie 6pipolaim pour y 

arriver. Quatre points (au moins) sont identifiés dans ChScun des pians de réfhence, 

puis trader& sur l'image 3 en utilisant l'intersection des lignes épipolaires défies  



par les matrices fondamentales FI3 et Fu entre les images 1 et 3 respectivement 2 

et 3, comme décrit dans la section plus haut sur le transfert & l'aide de la géomdtne 

épipolaire. Ceci nous permet de d é h k  l'homographie caractéristique de chaque plan. 

De la même façon, le point de réfézence sur la troisième vue est obtenu par l'inter- 

section des lignes épipolaires engendrées par ses correspondants dans les vues 1 et 2 

(tiquation 4.3) (voir figure 4.10). 

Figure 4.10 : Transfkrt A l'aide d'un invariant projectif 

Une fois que les positions des deux plans de référence et du point de référence sur 

la troisihe image sont calculées, on peut dêduire tous lea points dans cette nouvelle 

vue & partir de l e m  correspondants et des invariants projectifs qui les carmt6risent. 



Soit un point quelconque P,, caractérisé par un indant notb E, on a : 

- 1 1 1  2 2 2  3 3 3 3  k = [p,, PO, PZ, d l  = bu FOY PZ'P3 = b,' Pm %Y f i l -  

Donc pour calculer pl (le point image de P, sur la nouvelle vue dénotb par 3), il 

sutst d'avoir $, p: et pz (l'invariant k etant calcul6 & partir des deux images sources). 

pi est la reprojection du point de référence que nous obtenons B l'aide de la géometrie 

epipolaire. p! et 2 peuvent être obtenus B partir des homographies entre Ies plans 

de rdif6rence entre les images 1 et 3 ou bien les images 2 et 3 (section 3.2). 

4.4 Texturage bidimensionnel 

En infographie les techniques classiques de calquage de textures permettent l9adjonc- 

tion de motifs (images bidimensionnelles) B des objets tridimensionnels, pour arriver 

à. effectuer une synthbe d'images réahtes (Foley et al., 1990; Watt, 1993). Le rendu3 

réaliste a pour but de produire des images non disceniables de photographies d'ob 

jets rbels. Ces techniques sont tr& utilisées en infographie oii on dispose d'un modele 

tridimensionnel de la scène. Lorsque l'information sur la structure de la scene est 

absente nous pouvons utiliser des techniques de textumge bidimensionnel (Wolberg, 

1990) qui permettent la reprojection de textufes d'un espace bidimensionnel dans un 

autre espace bidimensionnel. Ainsi le texturage bidimensionnel est un ensemble de 



transformations spatiales, auxqyelIes on ajoute des techniques de filtrage de l'image 

pour éhnher les bruits induits par ces transformations. Pour produire un effet visuel 

acceptable et éliminer les bruits inhérents aux transformations gêom6triques nous util- 

isons les mêmes techniques qu'en rendu classique: r&chantillonnage, anti-crénelage4, 

etc. 

Toute transfomiaton géom6trique est repr6sentée par la projection d'un système 

de coordonnées vers un autre système de coordonnées. Elle est déhie par des trans- 

formations spatiales: une application qni &ablit la correspondance spatiale entre tous 

les points de l'image source et de L'image destination, L a  plupart des tramdonnations 

peuvent Btre décrites par des expressions analytiques simples, comme dans le cas des 

tmnsformations &es, projectives, bïilinéaires et polynomiales. D'autres transfome 

tions plus complexes peuvent étre d4terminées par un ensemble de points de contrSle 

éparses dont la correspondance sur les deux images est connue. Ceci permet de définir 

une reprkentation spatiaie dans laquelle on détermine Ies points inconnus par inter- 

polation entre les points de contr61e. Dans la suite, nous nous intéresserons plus 

particuliQement aux transformations perspectives. Nous dons introduire aussi les 

transformations affines et büinéaires qui présentent un intdi&t indéniable en texturage 

bidimensionnel. 

4L'acti-crénelage designe la technique qui porte le nom anglais de "antcaliosing" 



4.4.1 Transformation affine 

Une transformation projective g&nérale entre deux plans images est décrite par une 

matrice de trandormation 3 x 3 notée T : 

La t r ~ o r m a t i o n  afnne est caractérisée par une demière co1ome de la matrice 

T de la forme [O, 0, Ilt, qui correspond ii une projection plunuire paralléle ou or- 

thographique. La représentation gh6rde d'une transformation afnne est 

Ici, [x, y, 11 sont les coordonn6es homoghes d'un point de l'image destination et 

[u, v ,  1] les coordonnées homog&nes d'un point de l'image source. Nous utiliserons 

cette notation dans la suite. 

Les transformations &es prét3ervent les lignes parallé1es lors de la reprojection. 

Elles ont 6 degrés de liberté. Pour iPfeer une transformation m e ,  il sufEt d'établir 

la correspondance entre (au moins) trois points dsns l'image de destination et trois 

point dans l'image source. Les trdormations &es permettent un ensemble de 



trandormations planaires limitées, psr aample la  orm mat ion d'un triangle vers 

un triangle quelconque ou d'un rectangle vers un pdélogramme. Des distorsions 

plus complexes nécessitent des transformations plus &bor&s, comme les trandor- 

mations perspectives ou bilin4aires. 

4.4.2 Transformation perspective 

La transformation perspective est caractérisée par [al3> am]' non nul. La représenta- 

tion générale de cette trandormation est, 

[x, Y, 11 = [u, v, 11 

La transformation perspective est une trdormation projective liée B une projec- 

tion centrale. Elle préserve les lignes parall&les seulement lorsqu'elles sont parail&les 

au plan de projection, autrement d e s  convergent en un point de fuite. Cette tech- 

nique est très utile pour produire des rendus r&distes d'images. La transformation 

perspective est 4quivalente ih l'homographie en géom6trie projective, que nous avons 

défini dans le chapitre 2. Cette transformation a huit degrés de liberté puisque un  des 

paam&res de la matrice peut etre fixé égal 1. Pour la calculer nous avons besoin 

d'établir la co~espondance entre (au moins) quatre points dans l'image de destina- 

tion et l'image source. Lomp'i.1 s'agit de transfomer un quadrilatke dans un autre 
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quadrilatère communément appelée projection des qua* coins5, Ia tradormation 

perspective nous ofke une solution planaire ce problhe. Lorsque les quadrilath~ 

ne sont pas planaires, il faut des solutions plus générales. La transformation bilinéaire 

est la transformation la plus simple <Lui peut produire une projection des quatre coiris 

pour des quadrilat&es non planaires. 

4.4.3 Transformation bilinéaire 

La transformation bilinbire est donnée par 

Cette transformation permet de produire une projection entre quadrilat&res non 

plans. Elle préserve les lignes se trouvent sur la direction de balayage dans l'image 

source. Cette propriétk vient de la nature des interpolations bilinbaires utilisées pour 

faire cette transformation. Ainsi par exemple, les points le long des Lignes horizontales 

et verticales dans l'image source restent équidistants après transformation, comme en 

projection afnne. Toutefois les lignes qui ne sont pas alignées selon ces deux directions 

ne sont pas pr6servées. Par exemple, les lignes diagonales sont traTlSformées en des 

5Nons avons utiiisé la pmjectüm des quutrG pour désigner la technique connue sous le nom 
de four-corner mapping en infographie. 



courbes quadratiques. Cette technique est largement utilisée en calquage de textures 

en infographie- Ceci vient du fait que cette transformation peut être décomposée en 

deux transformations unidimensionnelles permettant un gain appr6ciable en temps 

de calcul. 

4.4.4 Décomposition de l'image 

Bien que les transformations biLn6aù.e~ permettent des transformations plus générales, 

entre quadrilat&es par exemple, elles introduisent des distorsions lonrqu'il s'agit de 

surfaces planes. Pour produire des effets plus réalistes, il est préSrable de décom- 

poser l'image source en des surfzes les plus proches possible de plans puis utiliser 

une transformation perspective pour projeter ces surfaces sur l'image de destina- 

tion. Nous avons besoin donc d'établir la correspondance entre quatre points dans 

les deux images. Ceci signifie que nous avons besoin de décomposer l'image source 

en une grille formée de quadrilaths, puis d&rminer la transformation perspective 

permettant la reprojection entre chaque paire de quadrilat&es appariés. Toutefois la 

méthode peut &ce étendue aux cas de surfaces triangulaires en utilisant la géoxnetne 

épipolaire. Soit l'image source d&ompo& en des surfaces triangulaires (en utilisant 

une triangulation de Delaunay par exemple (Le Bras-Mehlman, Schmitt, Boissonnat 

et Faugeras , 1988)). En établissant l'appariement entre surfaces triangulaires dans 

les images source et destination, nous obtenons une paire de trois points appariés 

pour chaque surface. Ceci caractérise une transformation afFme. Pour définir une 



transformation perspective il d t  d'identiiier une qwtrième paire de points qui sat- 

isfait la même trandormation perspective que les trois autres, et ceci pour chaque 

surface trianguiaire de Pimage. La géométrie épipolaire nous permet de dénnir toute 

transformation perspective ou homographique en terme des épipoles. Ainsi, quelque 

soit la transformation perspective permettant la reprojection d'une surface plane de 

l'image source en une sarface plane de l'image destination, elle transforme Pépipole 

dans I'image source vers lY6pipole dans l'image destination (Shashua, 1994a). Nous 

avons 

où i = 1,2,3 repr6sente les trois points de la d a c e  triangulaire, et 

où [epld, epw, 11 et [epia, epb, 1] d6fhissent les coordonnêes homoghes des épipoles 

dans les images de destination respectivement source. 

Donc, en résolvant le système denni par les équation 4.6 et 4.7, nous obtenons 

la matrice de transformation perspective. Ainsi, B partir de la trianguhtion de l'im- 

age source et l'appariement avec des triangles dans l'image de destination nous pou- 
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vons produire une transformation perspective entre chacune des Surfaces triangulaires. 

Dans la littérature on trouve p1usieurs tecbnïques de trirngulation, dont la plus util- 

isée est la trianguIation de Delaunôy- 

L'anti-crénelage wolberg, 1990; Foley et al., 1990) est un outil très important en 

infographie. Il permet de réduire l'effet de certains types de bruit introduits lors des 

transformations d'image. Des artefacts apparaissent dans l'image lorsque les trans- 

formations induisent des changements B grande &&elle. Lorsqu'on augmente l'êchelle 

d'une zone d'image chaque pixel source contribue A plusieurs pixels destinations. Ce 

type de trdormation n4ceûsite un échantillonnage dense du signal reconstruit. La 

qualit6 de l'image rsultante est li6e à la précision des fonctions d'interpolation util- 

isées lors de la reconstmction. Ainsi, des fonctions d'interpolation de degr6 supérieur 

peuvent produire de meilleures reconstructions d'un grand nombre de signaux, con- 

trairement à des fonctions d'interpolation de degr6 inf6riew. 

II y a deux méthodes principales d'anti-cr6nelage. La prerii&re consiste acmoftre 

le taux d'échantillonnage. Cela s'obtient en augmentant Ia résolution de la trame. 

Des dhtails plus fm sont ainsi incorporés. La seconde méthode consiste B traiter un 

pixel comme une zone finie et non pas comme un point. Ceci est &p.ident à un 

pr&ltrage de l'image. 



4.5 Algorithme de synthese de vues 

En résun6 l'algorithme propmé pour la synthk de vues se divise principalement en 

quatre étapes (voir figure 4.11) : 

1. Saection des primitives dYint&& appa,riées (points, lignes) sur les deux images 

sourceSc 

2. Décomposition de l'image (section 4.4.4) en utilisant les n plus proches voisins : 

n = 4 pour un maillage en quadrilatiires et n = 3 pour une triangdation 

(comme nous avons vu dans la section 4.4.4, plus Ies d a c e s  résultants de la 

décomposition sont proches de l'image de s t~c tu r e s  physiques planes, plus le 

texturage bidimensionnel perspective sera rMïste). 

3. R&ert des primitives d'inthet sur la nouvelle vue (par les techniques décrites 

dans la section 4.3). 

4. Texturage bidimensionnel (section 4.4) entre les surfaces correspondantes dans 

l'image source (la plus proche de la vue gh6rer) et la nouvelle image. 

4.6 Conclusion 

La synthbe de vues est un domaine récent et est en évulution constante. Ces derni4res 

années les techniques sont devenue51 plus matures, et de nombreuses publications ap- 

paraissent chaque année. Dams ce chapitre nous avons commenc6 par présenter Ntat  



de l'art en synthb de vues oiî nous avons passé en revue les principales techniques 

utilish que nous avons divisées en trois grandes ciasses: reconstruction tridimen- 

sionneIle explicite, rendu basé sur image, et mosaîquage ou représentation étendue. 

Dans la deuxï&me partie, nous avons proposé une nouvelle approche qui permet 

la génération de nouvelles vues B partir seulement d'un petit nombre d'appariements 

dans l'image. L'appariement épars est utiljsé pour générer un ensemble de poiats 

qui vont jouer le r81e de points de contrôle. Nous utilisons ces points p o u  définir 

un maillage sur l'image source, qui est reprojeté sur la nouvelle vue Iraide de la 

géom4trie Bpipolaire et de l'invariance projective. Ainsi, la vue générée est gbm6- 

triquement valide. Nous avons utilisé des techniques de texturage bidimensionnel 

pour reprojeter le reste des points de l'image. Nous avons choisi une technique de 

texturage perspective qui nécessite d'utiliser au moins un maillage en quadrilaths. 

Lorsque l'image est dkomposée en surfaces trianguiaires, nous avons introduit une 

technique permettant l'utilisation des contraintes définies par la géometrie &pipolaire 

pour produire un texhirage perspective valide. Nous avons fini ce chapitre avec une 

description globale de l'algorithme proposé. 

Contrairement aux approches existautes, nous n'avons besoin que d'un appariement 

épars pour générer la nouvelle vue, ce qui réduit la cornplexit6 associée aux techniques 

d'appariements. Ainsi le temps de calcul nécessaire l'appariement est largement r& 

duit. De même la synthh de vues & partir d'images connues permet d'éviter les 

étapes de modélisation et de rendu d'une scène tridimensionnelle qui impliquent sou- 
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vent des cofits aev& en temps machine. L'application des outils de la gêo1116trie 

projective nous permet de produire des vues assez réalistes, pukquyelIes satisfont les 

contraintes géométriques inhérentes B la scène. 

Dans le chapitre suivant nous montrerons les résultats obtenus par cette technique 

de synthèse de vues. 



Séiection des primitives d'intérêt 
appariées 

Décompdtion de l'image 

TramCert de points d'intérêt sur 
la nouveile vue 

* 
Texturage bidimensionnel 

I 

Figure 4.11 : Description de l'approche proposée 



Chapitre 5 

Résultats expériment aux 

Dans ce chapitre nous dons présenter les résultats obtenus par les différentes méth- 

odes decrites dans les chapitres précedents. Nous allons tout d'abord présenter les 

résultats de la géométrie t5pipolaire sur des paires d'images st&&oscopiquesl. Ensuite, 

nous allons présenter les r&ultats pour les invariants projectifs. Enfin nous mon- 

trerons une application particiùière des rêsultats precédents: la synthése de nouvelles 

vues. 

5.1 G&om& rie &pipolaire 

Dans cette section nous nous intéressons l'application de la mhthode basée sur l'ho- 

mographie que nous avons d&veloppée dans la section 2.5 pour calculer la matrice 

'Les images stéréosCopiques utilisées sont disponibles publiquement à l'adresse du groupe SYN- 
TIM à: http://~-syntim~&/syntim/mdyse/p8ires-eng.html, les autres images ont été 
générées au laboratoire du Groupe de Recherche en Perception et Robotique, b l e  Polytechnique 
de Montréal. 



fondamentale et sa comparaison avec difkentes méthodes &tantes dans la litthra- 

tue. Les méthodes que nous utilisons dans nos comparaisons ont été décrit dans 

la section 2.4. Toutes ces méthodes sont comparées à la technique de cslibration 

classique (Tsai, 1987; Zhang, 1996; Torr et Murray, 1997) qui est consid4rée comme 

étant le résultat qui représente le mieux la géométrie inhérente B une configuration 

de cameras dom& (en caiibration clapscpe l'information de profondeur est utilisée 

pour obtenir des résultats plus fidèles à la r6alit6). 

5.1.1 Matrice fondament ale 

Nous utilisons les principdes techniques décrites dans les sections 2.4 et 2.5 pour 

calculer la matrice fondamentale. Les résultats de la géom6trie épipolaire estimée 

sont montrés sur les figures 5.1, 5.2, 5.3, 5.4 et 5.5. 

On remarque que les lignes épipolaires obtenues par la matrice fondamentale cal- 

culée par l'approche que nous avons proposée et qui est basée sur l'homographie (Fh) 

sont très proches de celles obtenues par la methode de moindre mediane des carrés 

(Fi-) qui est connue pour &tre la plus efficace des méthodes de calcul de mat* fon- 

damentale (Torr et Murray, 19997; Zhang, 1996). Cette derniee, avec notre methode, 

donne les résultats les plus proches de ceux du résultat de calibration stéréoscopique 

classique (Fd) (voir figures 5.1, 5.2 , 5.3, 5.4 et 5.5). La méthode linêaire (&=) 

donne le plus mauvais rbultat. Mais après normalisation des dom- (&N) ~ O U S  

obtenons une nette am4J.ioration pour cette derni&e, les résultats sont proches des 



(a) Calibraion classique 

(c) Non linéaire 

id) Moindre médiane des carrés 

(e) Homographie 

Figure 5.1 : Rksultats des ditErentes techniques d'estimation de la géomktrie épi- 
polaire sur la paire stéréo "Mire'' 



(b) Linéaire 

(cl Non linéaire 

(d) Moindre médiane des camés 

œ (e) Homographie 
T 

Figure 5.2 : Résultats des diBrentes techniques d'estimation de la géometrie épi- 
polaire sur la paire stéréo "Bâstiment" 



(a) Calibration classique 

(b) Linéaire 

(dl Moindre médiane des carrés 

(e) Homographie 

Figure 5.3 : Etbultats des diErentes techniques d'estimation de la géom6trie &pi- 
polaire sur la paire atéréo ''Bureau" 



(a) Linéaire 

(b) Non IinéaUe 

(c) Moindre médiane des carréa 

(d) Homographie 

Figure 5.4 : Résaltats des différente techniques d'estimation de la géomhtrie épi- 
polaire sur la paire stéréo "Maison" 



(a) Calibration classique 

(b) Linbaire 

(cl Non linéaire 

(d) Moindre médiane des carrés 

(e) Homographie 

Figure 5.5 : Résultats des dX4rente8 techniques d'estimation de la géom6trie 4pi- 
polaire sur la paire stéréo 'Zab" 
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résultats de la méthode non linéaire (Fdjm) gui reste toutefois loin de la méthode de 

moindre médiane des carrés et de la méthode basée sur l'homographie que nous avons 

développée. 

Dans la suite nous allons présenter les résultats de comparaison entre différentes 

méthodes de calcul de la matrice fondmentale. 

5.1.2 Comparaisons 

Nous nous intéressons plus particulièrement B la comparaison de notre approche aux 

principales méthodes &tantes. 

Ces dernières années le problème de comparaison entre diffbrentes méthodes de 

calcul de Ia matrice fondamentale a suscite beaucoup d'intérêt au sein de la commu- 

nauté de vision par ordinateur. L'objectif est de trouver la meilleure mesure pour 

comparer entre deux matrices fondamentales. Par le pas6 la comparaison se faisait 

principaiement en comparant visuellement les lignes bpipolaires obtenues et super- 

posées sur l'image correspondante, on v&ifiait si les lignes passaient par les points 

correspondants et si elles etaient proches des lignes obtenues par les résultats de 

calibration stéréoscopique classique (Tsai, 1987). Une autre techaique pour com- 

parer entre les matrices consistait à calculer la norme de Fobenius de la différence 

entre deux matrices fondamentales normalisées, toutefois il a 6th démontré que cette 

derni&re mesure ne permettait pas de vbrifier l'efEcacit6 d'un algorithme par rapport 

aux autres (Torr et Murray, 1997; Zhang, 1996). Ainsi de nouvelles techniques de 



mesures furent introduites pour permettre de calculer des quafltités mesurables di- 

rectement sur l'image. Deux méthodes sont utikées dam ce sens. La premièIe est 

appelée mesure de différence entre matrices fondamentales notée FdifE (Cmka et al., 

1997). Elle permet de comparer entre les matrices fondamentales en terme de distance 

entre points et Iignes épipolaires correspondantes en utilisant simultanément les deux 

matrices fondamentaleses La deuxième appel& facteur de Qualit6 permet quand B elle 

la mesure de la distance moyenne entre les lignes épipolaires calcul6es et les points 

utilisés pour calculer la matrice fondamentale, dhnotée par QF (Boufama et Mohr, 

1995). 

5.1.2.1 Dinérence entre matrices fondamentales: FdifF 

Dans la suite nous décrivons comment obtenir la mesure de différence entre matrices 

fondamentales. Soient deux matrices fondamentales B comparer, Fi et F2. La mesure 

de compa.raison est donnée par la procédure suivante (figure 5.6) : 

Figure 5.6 : DiE&ence entre matices fondamentales 

1. Choisir de fqon aléatoire un point m dans la premi&e image. 
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2. Stacer la ligne épipolaire de m daas la deuxième image en utilisant FI. (ligne 

pointillée sur la figure 5.6 d e e  par Fm). 

3. Revenir à l'étape 1 si la ligne épipolaire ne croise pas la deiutiéme image. 

4. Choisir de fqon aléatoire un point mr sur la ligne épipolaire. 

5. Tracer la ligne epipoiaire de m dam la deuxi6me image en utiIisaat Fz, soit 

q m ,  et calculer la distance d; entre le point m' et la ligne q m .  

6. Tracer la ligne 4pipoIaire de m' dans la première image en utilisant F2, soit 

Fam', et ca lder  la distance dl entre le point m et la ligne F2mf. 

7. Refaire les étapes 2 & 6 en inversant les &les de FI et F2 et calculer t& et 4. 

8. R6peter N fois les étapes 1 B 7. 

9. Calculer la distance moyenne en pixels des 4 et di, qui représente la mesure de 

comparaison entre les deux matrices fondamentales. 

Les résultats pour les images des figures 5.1, 5.2 , 5.3, 5.4 et 5.5 sont donnés par 

les tableaux 5.1, les valeurs reprbentent les erreurs ou distances moyennes en pixels. 

Nous avons d'abord testé les différentes méthodes décrites dans les sections 2.4 et 

2.5 sur l'image de la paire stéréoscopique ''Mire", par la suite nous avons choisi les 

techniques les plus représentatives de chaque classe (classes des méthodes : lin&ires, 

non lin6aires, et robustes) pour poursuivre les tests de comparaison par rapport aux 

résultats de calibration classique sur les autres paires d'images. 



Tableau 5.1 : Résultats de comparaison entre diff'entes techniques de calcul de la 
matrice fondamentale par la technique FdifE 

(a) Paire stér60 I1Mire" 

-- 

(b) Paire stéréo "Bgtimentr' 

(c) Paire stéréo "Bureau1' 

Fcal 

(d) Paire stéréo "Lab" 

O 3.09 1.80 2.83 1.40 



Nous constatons que la méthode lin6aire (&) donne les plus mauvais résultats. 

La normalisation des données a priori (FM) permet dYam6liorer les résultats de la 

méthode Iineaire. La méthode non hgaire (Fdin) donne de meilleurs résultats que la 

méthode linéaire. Ces mesures sont &@valentes 9. celles obtenues par la méthode de 

gradient (FVd). La normalisation des données avant l'application des méthodes non 

bn4aires et de gradient ne permet pas par contre l'amélioration des résultats (Fd- 

pour méthode non lineaire normalisée et F, pour methode de gradient normaüsée). 

Toutefois, les meilleurs résultats sont ceux obtenus par les méthodes non lin4aïres 

utilisant les techniques de statistiques robustes (M-estimateurs (FWt) et moindre 

médiane des carrés (Pli,)). La méthode lin6aire basée sur l'homographie (Fh) que 

nous avons d6veloppêe donne de meilleurs résultats que les autres méthodes lidôires 

&tantes et s'approche des rbultats obtenus par les methodes non linéaires utilisant 

les statistiques robustes. 

En somme, la méthode que nous avons proposée dans la section 2.5 est plus 

performante que les méthodes li.6ai.resy non linéaires et de gradient. Elle donne 

des résultats proches des méthodes non linBaires utiüsant les statistiques robustes 

et les résultats de calibration classique (Fd). Ces dernières servent de résultats de 

comparaison pour les autres methodes, puisque la calibration classique est considérée 

comme représentant la réalité physique inhérente ii la scène. 



Bien que la méthode de comparaison présentée plus haut soit une très bonne methode, 

elle ne peut suf6.r B nous renseigner sur l'efficacité d'une méthode par rapport à 

d'autres. Il faut donc comparer les résultats obtenus par différentes techniques. Une 

des techniques utilisées est appelée facteur de qualité, noté Qp (BoUfma et Mohr, 

1995). Ici l'objectif est de mesurer la distance moyme entre les points apparies 

qui ont et4 utilisés pour calculer la matrice fondamentale et les lignes épipolaires 

correspondantes. La mesure est donnée par 

avec mi et mi, i = 1,. . . , n, les points appariés dans les deux images de la paire 

stéréoscopique, et F la matrice fondamentale calculée. 

Tableau 5.2 : Facteur de qualit6 pour différentes techniques de calcul de la matrice 
fondment ale 

Les résultats sont donnés par le tableau 5.2. Nous constatons que la méthode 

Qf 
FlinN 

r 

MVe 

1-70 

Lab 

1.13 

Bureau 

2-16 

Bat 

1.98 



que nous avons d6veloppée donne de meilleurs résaltats que les autres méthodes. 

Ceci vient du fait qdon a utilisé explicitement les points apparib pour retrouver les 

lignes épipolaires par homographie (voir chapitre 2). La méthode que nous proposons 

permet donc d'avoir des lignes 4pipolaires qui sont très proches des points d'intéret 

s6lectionnés, ce qui présente un intérêt particulier pour l'application en synthèse de 

vues: l'intersection des lignes épipolaires lors de la reprojection des points dans la 

troisi&me vue se fait d'une manière plus prkise (trés proche de la position réelle du 

point d'inter& qu'on veut repro jeter dans la nouvelle vue). 

5.1.2.3 Temps de calcul 

Un des principaux avantages des mbthodes linbaires est le temps de calcul qui est 

souvent tr&s faible comparativement au temps de calcul que nécessitent les meth- 

odes non lin6aires. Pour la paire d'images "Mire" (figure LI), nous avons btabli un  

appaxiement entre 102 points et nous avons mesur6 le temps de calcul pour les meth- 

odes : lineaire, héaire basée sur l'homographie et la méthode de moindre médiane 

des c m &  qui est une méthode non linéaire utilisant les techniques de statistiques 

robustes. Sur un SPARC 5, pour la méthode linéaire, le temps de calcul est d'environ 

0.26 ms, pour la méthode linéaire basée sur l'homographie, le temps est d'environ 

0.37 ms alors que pour la méthode de moindre rnikliane des canés il est d'environ 

2.56 S. On constate que le gain en temps de calcul est apprkiable pour le calcul de 

la matrice fondamentale lorsque nous utilisons la methode l i n m e  bas& sur l'home 



graphie présentée dans la section 2.5. Bien qpe le temps de calcul pour la méthode 

héaire sont inférieur B celui de la methode que nous avons développée, le résultat 

obtenu par cette dernière est meilleur que celui par la méthode lineaire (la matrice 

fondamentale est plus proche de la matrice fondamentale réelle). 

En conclusion la méthode que nous proposons prhnte  des avantages sur la plupart 

des mkthodes existantes, seule la methode de moindre m&iiane des carrés donne 

des résultats meilleurs mais très proches lonqdon les compare par la techni~ue de 

difference entre mafrices fondamentales Fdiff, Toutefois les résultats obtenus par 

comparaison du facteur de qualit6 QF sont meilleurs dans le cas de la methode lin4aire 

basée sur l'homographie et le gain en temps de calcul est important. 

5.2 Invariants projectifs 

Dans cette section nous présentons les résultats obtenus par les methodes de calcul 

des invariants projectif&. 

Les images des figures 5.7 et 5.8 représentent les plans, points et lignes utiljsés 

pour calculer les invariants projectits par les méthodes présentées dans les sections 

3.2 et 3.3. Les r6sdtats sont donnés par les courbes des figures 5.9 et 5.10. 

Pour cdculer les invariants projectifk nous avons utilisé les paires d'images s t é r b  

scopiques "Mire" et '?Bureau". Pour le calcul de l'invariant basé sur un point de 

référence et deux homographies, nous avons ~61ectionn6 deux p h  apparih sur les 

deux images d'une paire stér4mcopique (quadrilattèes en blanc sur les figures 5.7(a) 



(a) Plans et points séiectiomés pour 1'in-t bai& sur un point et deux h e  
mographies 

(b) Plan, points et lignes dectionn& pour l'invariant bas& sur une ligne et une 
homographie 

Figure 5.7 : Paire stêréoscopique "Mire" utilisée pour le calcul des invaTiants pro jectits 



Figure 
jectifs 

(a) Plans et points séiectio~més pour l'invariant basé sur un point et deux h e  
mographies 

(b) P h , points et lignes sélectionnés pour l'invariant baaê sur une ligne et une 
homographie 

: 5.8 : Paire st4réoseopique 'Bureau" utilisée pour le calcul des invariant 
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(a) Invariants basés snr un point de référence et deux homographies 

(b) Invariants basés sur une ligne de réibnce et une homographie 

Figure 5.9 : Résultats de calcul des invariants projectifk pour la paire c'Mire'' 
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(b) Invariants basés sur une Iigne de &&ence et une homographie 

Figure 5.10 : Rhdtats de calcul des invariants projectif& pour la paire "Bureau" 



et 5.8 (a)) et un point de ré5érence et son correspondant (le point dé~ot4  pat le ~ y m -  

bole "+" sur les images des deux figures. Nous avons aussi sé1ectionn6 un ensemble de 

points appariés sur Ies images de la paire stérbcopique, pou. lesquels nous avons cal- 

culé l'invariant projectif. Les résultats sont donnés par les courbes des figures 5.9(a) 

et 5.10(a). La premSre courbe représente les valeurs de calcul des invariants obtenus 

pour les points appariés: uo"o'> représente l'invariant pour les points de l'image gauche 

et 'Y' represente l'invariant pour les points de l'image droite. Nous constatons que 

les invariants obtenus pour les points appariés sont très proches, nous obtenons donc 

une même valeur invafiante pour une paire de points appariés. 

Une mesure qualitative de comparaison entre les invariants projectifs est la dif- 

&ence entre les valeurs obtenues pour chaque paire de points (ou lignes) apparib 

(Shashua, 1994~) : 

O& 4 c'est l'invariant calculé sur l'image gauche et Ir l'invariant c d d 4  sur l'image 

droite. 

Le résultat de compmaison par diff8rence entre invariants pour les paires de points 

appariés dans le cas de l'invariant base sur un point de réf&ence et une homographie 

est dom6 par la deuxihe courbe des figures 5.9(a) et 5.lO(a). Nous constatons que 

le résultat est satisfaisant et que la précision obtenue est de l'ordre de 10" pixels. 

Ceci signine que le processus d'appariement a été assez précis pour obtenir une &ès 
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bonne estimation des invariants projectik 

Pour l'invariant basé sar une ligne de réfërence et une seule homographie nous 

avons sêlectionnt5 un p h  apparié sur une paire d'images stéréoscopiques (quadrilatère 

en blanc sur les figures 5.7(b) et 5.8(b)), ce plan contient deux lignes (lignes pointillées 

sur les deux images des figures 5 .?(b) et 5.8(b)). Ces deux lignes seront utilisées pour 

le calcul de l ' i n . - a n t  projectif comme d-t dans Ia section 3.3- Nous avons choisi 

la ligne co~mectant les points notés 1 et 2 comme étant Ia ligne de réfikence (ligne 

pointillée sur la table daas les images de la figure 5.7(b) et sur le bureau dans les 

images de la figure 5.8(b)). Nous avons sélectionné un ensemble de lignes appariées sur 

la paire d'images st&608copiques, pour lesquelles nous avons calcule l'invariant bas6 

sur une ligne de r é f h c e  et une seule homographie. Les résultats sont donnés par la 

premiere courbe des figures 5.9(b) et 5.lO(b). Les valeurs obtenues pour les invariants 

projectifs sont très proches ("O" représente l'invaziant pour les lignes de l'image gauche 

et 'Y' représente l'invariiant pour les Lignes de l'image droite). Nous constatons que la 

comparaison par la différence entre invariants, pour les lignes appariées, estimés en se 

basant sur une ligne de référence et une seuie homographie, montre que les résultats 

obtenus sont satisfaisants (la deuxième courbe des figures 5.9(b) et 5.lO(b)). Ceci 

montre que l'estimation de lYinva,riaat projectif a donné un très bon résultat, ce qui 

montre que le processus d'appariement s été assez précis. 



5.3 Synthese de vues 

Dans cette section nous présentons Ies résultats de l'application des techniques précé- 

dentes pour la synthèse de vues. Nous utüisons les méthodes décrites au chapitre 4 

pour produire une nouvelle vue qui soit la plus proche possible de celle qui aurait été 

prise par une camént placée au point de vue choisi. Le point de vue correspondant A 

la c m 6 1 3  virtuelle est défini par Ie choix d'une matrice de rotation R et d'un vectenr 

de translation t par rapport b la d a  de r~éreoce de la paire stéréoscopique. Les 

parambtres intrinsèques définis par la matrice A sont ceux estimés préalablement par 

calibration (cas semi-calibré). Ceci permet de determiner les matrices fondamentales 

Fi,, i = 1,2, entre la caméra virtuelle et les caméras de la paire stérémcopique. Nous 

compaxons par la suite les vues obtenues avec les vues réelles prises par des caméras 

placées aux endroits s&ctionnés. 

Figure 5.11 : Images sou~cces pour la paire d'images "Bâtiment" 



Figure 5.12 : Images sources pour la paire d'images "Maison" 

Figure 5.13 : Images sources pour la paire d'images I'Labfl 



Les figures 5.11, 5.12 et 5.13 montrent les imagea sonrcea utilisées et les figures 

5.14, 5.15 et 5.16 mon- les images résultantes en utilisant l'algorithme de synthèse 

de vues et les images réelles correspondantes. On constate que les images synth6tisées 

sont visuellement proches des images réelles correspondantes. 

Figure 5.14 : Image synthétisée - rrBMiment" 

Pour comparer entre les vues synthétis&s et les vues réelles correspondantes d'une 

maniére qualitative nous avons utilisé la mesure suivante : 

avec le point d'intérêt sur l'image réelle, rn; le point d'intér&t sur l'image syn- 

thétisée et n le nombre de points SéIectionnés. La mesure Q représente l'erreur 

moyenne en pixels entre la position r u e  du point image et sa poeition obtenue par 

reprojection. Pour l'image ''Maison" (figure 5.15), cette erreur est apprmhative- 



Figure 5.15 : Iniages synth&iséeS:(a) les images réelles; (b) images synthétisW par 
géométrie &pipolaire; (c) images synth6tisées par invariants projectifs - "Maison" 



Figure 5.16 : Images synthétisées:(a) les images rêelles; (b) images synth4tisées par 
géométrie épipolaire; (c) images synth6tisées par invariants projectifb - "Lab" 
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ment égale B 1.8 pixels pour k reprojection par la gêornhtrie épipolaire et 2.0 pU& 

pour la reprojection par invariants projectifs. Pour Pimage %ab" (figure 5.16)' cette 

erreur est d'environ 2.0 pixels pour la reprojection par géometrie épipolaire et d'en- 

viron 2.4 pixels pour la reprojection par invariants projectifs. On constate ainsi que 

l'application de la géométrie épipolaire donne de meilleurs résultats pour le transfert 

de points d'inthêt appariés sur une troisième vue Toutefoist comme nom l'avons 

s0ulign.é au chapitre 4 la synthh de nouvelles mes dans la région proche du plan 

trZocd est tr&s complexe par les techniques de géomêtrie epipolaire, d'ail h t & &  

d'utiliser les invariants projectïfk pour la synthh de nouvelles vues. 

5.4 Conclusion 

Dans ce chapitre nous avons présenté les résultats expérimentaux obtenus par les 

mkthodes que nous avons développées dans les chapitres préc6dents. D'abord les 

différents résultats de cornpaxaison montrent que la méthode de calcul de la matrice 

fondamentale décrite dans le chapitre 2 représente une très bonne alternative aux 

méthodes &tantes de calcul de la matrice fondamentale surtout lorsque le temps 

de calcul est important. Nous avons présente aussi- les résultats pour les methodes 

de calcul des invariants project* O& nous montrons que les méthodes développées au 

chapitre 3 donnent une très bonne estirnation de ces invariants. Enfin, nous avons 

montré que l'application des methodes prêcêdentes avec les techniques de terctumge 

bidimensionnel en perspective permet de génbrer des nouvelles vues qui sont très 



proches des vues rédes correspondantes. 



Chapitre 6 

Conclusion 

Dans ce travail nous nous sommes intéressé ik un domaine très récent de la vision 

artificielle, le rendu base sur images. Il consiste en la synthae de nouvelles vues 

les plus réalistes pmibles B partir de vues Mantes.  Ici l'étude a porté s u .  le cas 

de génkation de vues à partir des images prises par une paire stéréoscopique non 

kdon.de. Pour cela il faut comprendre les relations géométriques caract&ant une 

configuration de caméras stéréoscopiques. 

La gkom4trie projective nous a permi d'avoir une description des relations entre 

caméras par le biais de la géom4trie 4pipolaire et des invariants projectits. Les outils 

de la g60mBtrÏe projective permettent une description valide de la géometrie de la 

sc&ne, et peuvent &tre utilisés pour une synthèse de nouvelles vues satisfaisant les 

contraintes géodtriques inhérentes la configuration des caméras et de la sche. La 

vue ainsi obtenue est plus proche de la vue qpï serait capturée par une caméra réelle 
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plade B l'endroit choisi pour placer la camera virtuelle. L'etude de ce sujet nous 

a amen6 & développer des outib permettant la génhration de nouvelles vues d'm 

réalisme satisfaisant. 

Dams ce sens, notre contribution se situe principalement & trois niveaux (la géo- 

métrie épipolaize, l'invariance projective et la synthh de nouvelles vues B p&b 

d'un appariement éparse entre les images d'une paire st&éoscopiqe) menant B la 

genération de nouvelles vues ii partir d'images sources pEses par une paire de caméras 

st6réoscopiques non calibrées en se basant plus particuli&rement sur l'exploitation d~ 

propriétés de la scène. Ce premier &tément consiste en l'utilisation de la contrainte 

de plananté associée ii la présence de surfaces planes dans la scène. Cette contrainte 

est caractéris4e par une relation homographique entre les projections sur les  ph^ 

images d'me même d a c e  plane. Cette transformation contient toute l'information 

nécessaire sur Ia perspectivité de la surface plane. 

Tout d'abord, comme contribution au niveau de la geornetne i5pipolaireY nous 

avons utilise la contrainte de plmarité pour d&nix la gbombtrie 6pipoIaire entre deux 

caméras d'une paire st&éoscopique caractérisée par la matrice fondamentale. La 

relation homographique entre les deux images d'un même plan présent dans deux 

plans images différents nous permet d'établir les relations &pipolaires qui nous sont 

nécessaires pour la rhlution de l'@uation de contrainte épipolaire. Les homogra- 

phies permettent de d6terminer les lignes 6pipolaires caractérisant une configuration 

de caméras donnée, ainsi que les points épipolaires correspondants. Ceci amène par 



la suite B la d6kition d'un param6trage pour la &ce fondamentale en termes 

de points épipolaires. Ce parametrage permet l'obtention d'une forme de la matrice 

fondamentale qui satisfait Ia contrainte de rang 2 caractWque d'une matrice fon- 

damentale (la forme de la matrice fondamentale fait en sorte que son rang soit égd & 

2, cette propriétk est la source la plus importante d'instabilité calculatoire). Une fois 

cette étape fÎancbie, une résolution d'un système d'écpations lin6aires d6nies par les 

contraintes 8pipolaires permet de retrouver les coefEcients de la matrice fondamentale 

d'une manière num&iquement stable. La methode proposée traite les difféIents types 

de configurations de caméras par l'exploitation des propri6tb de la gi5om6trie Pr* 

jective. Les résultats de comparaisons que nous avons présentés montrent bien que 

la methode développée dans ce travail donne des rêsdtats satisfaisants proches des 

résultats de dbra t ion  classique (consid&~s comme les valeurs réelles dans nos tests) 

et des techniques non linthires utilisant les statistiques robustes (moindre médiane 

des carrés). En plus, elle a l'avantage de permettre un gain appréciable en temps de 

calcul. 

Notre deuxième contribution se situe au niveau des invariants projectifs, oii nous 

avons présent8 deux techniques permettant le calcul des invariants & partir de l'ap 

pariement entre des primitives dYi.nt6r& (points et lignes) présentes sur deux images 

d'une paire stéréoscopique. Ici auagi nous avons srplicitement utiüsé la contrainte de 

planarite pour définir ces invariants projectifs. D'abord nous avons montre comment 

nous avons obtenu un invariant pour les points en se basant sur un point de référence 



et deux homographies caxactérisa31t deux p h  de la scène. Cet indant est défini en 

terme de birapports, l'invariant de base en géom&ie projective. Pour les lignes, nous 

avons développb une nouvelle méthode permettant de calculer un i n d a n t  projectif 

a partir d'un appariement entre lignes, en terme de birapports calculés en utilisant 

une ligne de r&rence et une seule homographie correspondant 8 un plan de la &ne. 

Les résultats de comparaison de la diffhence entre i n h a n t s  pour les primitives d'in- 

térét montrent que les techniques proposées donnent une très bonne estimation de 

ces invariants. Les résultats obtenus dans le chapitre 5 montrent que cette estimation 

est très précise. 

Finalement, comme troisihe contribution nous avons prhnté  une nouvelle a p  

proche pour la synthèse de nouvelles vues 8 partir de vues connues et ce sans mod- 

&le tridimensionnel. Cette approche est basée sur la décomposition de la scéne en 

morceaux de surfaces planes. Elle a l'avantage de n'utiliser qu'un appariement 6pars 

pour produire la nouvelle vue. Ici nous avons exploité les outils de géométrie projective 

d6veloppés plus haut, c'est-&-dire la matnce fondamentale et les invariants projectifs 

pour reprojeter les points appariés sur une nouvelIe vue. L'appariement éparse per- 

met de représenter l'image par un maillage dont les points appariés sont les points de 

contrôle. Ainsi, la reprojection des points apparib permet de definir un mnillage sur 

la nouvelle vue qui sera rempli en utilisant des techniques de texturage bidimensionnel 

en perspective. Nous évitons ainsi d'avoir fsize un appariement dense entre les im- 

ages de la paire stéréoscopique. La technique de texturage utilisée permet une bonne 



reprojection lorsque la surEace dYint6r& est planey d'os l'intérgt d'une décomposition 

de la scène en morceaux de surfaces de ce type. Cette hypothbe est souvent satisfsite 

(scènes urbainesy scènes industrielles, etc.). Notre méthode peut étre aussi utib& 

dans le cas de scènes cump1exes oil les zones d'inter& contiennent souvent des objets 

qu'on peut dêcomposer en surfaces planes. La fkïsabilité de l'approche d6veloppée 

a 6t6 démontrée sur plusieurs exemples qui montrent me nous obtenons une bonne 

précision sur la position des points daris l'image synthétisée. D'une mslnihe subjec- 

tive nous pouvons visuellement constater que les vues genérées sont très proches des 

vues réelles correspondantes. 

Le travail que nous avons prhenté sonléve des questions qui peuvent etre abordées 

dans de futures recherches, a& bien au niveau des outils de la géométrie projective 

que de la synthèse de vues. 

Au niveau de la géométrie épipolaire, l'intégration de techniques de statistiques 

robustes qui permettent la détection et ensuite le rejet de faux appariements amélior- 

erait les résultats que nous avons obtenu par la methode baaée sur I'homographie. 

D'un autre côt6 l'utilisation de la géomBtrie 6pipolaire détermin& B partir d'un petit 

nombre de points permettrait d9&ablir un appariement des autres points de manière 

automatique et serait intéressant de le considérer daas un schéma itératif global dans 

lequel le passage de l'appariement matrice fondamentale et de matrice fondamentale 

b l'appariement permettrait éventuellement une amaoration des résultats obtenus. 

Du c6té de la contrainte de planarité, il serait intéressant d'étu&er la possibilite 
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de reI$chement d'une telle contrainte pour traiter un cas plus gh6ral. Ceci est aussi 

valable pour les invariants projectifs qui exploitent cette même confxainte. 

Pour la synthae de vues un schêma d'interpolation plus géneral nous aiderait B 

traiter des scénes sans avoir & les décomposer en morceaux de SurEaces planes. L'idée 

est de développer m e  technique de texturage bidimensionnel capable de reprojeter 

en perspective non seulement de plans mais aussi des formes plus complexes. Enfin, 

une question importante considtker dans Ie futur est le développement d'un modèle 

de changement d'illiimiriation lors de la synth- de vues sans reconstruction fxidi- 

rnensiomelle explicite. Ainsi, la vue gbnérée sera plus proche de la vrai vue qui serait 

prise par une caméra p h &  l'endroit choisi: non seulement la position des points 

reprojetés sera précise, mais auasi Pinteraction de la source de lumière avec la scke 

sera mod6isee (couleur, ombres, etc.), et la vue obtenue sera plus réaliste. M a l g b  

que les modaes d'illumination ont 6t6 très étudiés en infographie, l'application de 

la géometrie projective pourrait éventuellement aider à définir un modde B partir 

seulement des images bidimensionnelles et ce sans reconstruction tridimensionnelle 

explkit e. 



Bibliographie 

ADELSON, E. (l995), Layered representations for vision and video, dans Pmceedings 

of the IEEE Workshop on Repmentation of VXswl Scenes, Cambridge, MA, 

USA. 

ADN, G. (l985), Determining threedimensional motion and structure £rom opti- 

cal flow generated by several moving objets, IEEE IFansuctions on Pattern 

Analysis and Machine Intelligence 7(4), 384-400- 

AKHLOUFI, M., COHEN, P. et POLOTSKI, V. (1999), Novel views from non- 

calibrated stereo, dans Proceedings of the Vision Interface, Trois Rivières, QC, 

Canada- Accepted for publication. 

AKHLOUFI, M., POLOTSKI, V. et COHEN, P. ( 1 ~ 9 ) ~  V i i a l  view synthesis from 

uncalibrated stereo cameras, dans PfOceedings of the IEEE International Con- 

ference on M u l t i d a ,  Computing and Systerns, Firenze, Italy. Accepted for 

pubkation. 



179 

AKHLOUF& M., TONG, W., POLOTSKI, V. et COHI3Ny P. (1998), Estimstingfun- 

damentd matM based on pl- ob jects in stereo, dans Pmceedings of the Joint 

Conference on Information Sciénees, First International Worbhop on Cornpufer 

Viiion, Pattern Recognition and Image Pmcessing, Durham, NC,  USA, pp. 398- 

400. 

AVIDAN, S., EVGENIOU, T., SHASWA, A. et POGGIO, T. (1997), hagebased 

view synthesis by combining trilinear temors and leamhg techniques, dans Pm- 

ceedings of the ACM Symposium on Virtual Reality Softwam and Teehnology, 

Lausanne, Switzerland, pp. 103-10. 

AVLDAN, S. et SHASHUA, A. (1997), Novel view synthesis in tensor space, dans Pm- 

ceedings of the IEEE Conference on Cornputer Vision and Pattern Recognition, 

San Juan, Puerto Rieo, pp. 1034-1040. 

BAKER, S., SZELISKI, R et ANANDAN, P. (1998), A layered approach to stereo 

reconstruction, dans Proceedings of the IEEE Con ference on Computer Vision 

and Pattern Recognition, Santa Barbara, CA, USA,  pp. 434-441. 

BERGER, M., SIMON, G., PETITJEAN, S. et WROBEL-DAUTCOURT, B. (1996), 

MUcing synthesis and vide0 images of outdoor environrnents: Application to the 

bridges of paris, dans Pmceedings of the International Conference on Pattern 

Recognition, Vienna, Austria, p. A7M.6. 



180 

BOUFAMA, B. et MOHR., R (1995), Epipole and fundamental matrix estimation 

using the Wtual padlax  property, daas Pmceedings of the B E  Intemationd 

Conference on Computer Vision, Boston, MA, USA, pp. 1030-1036. 

BOUGNOUX, S. (1998), Fkom projective to euclidean space under any practicd situ- 

ation, a criticism of self-csübration, dans Pmceedings of the IEEE Intemationd 

Conference on Computer Vision, Bombay, India, pp. 790-795. 

CARLSSON, S. (1995), Dualiw of reconstniction and positioning from projective 

views, dans Pmceedings of the LEEE Wo~krhop on Repfesentation of Visual 

Scenes, Cambridge, MA, USA. 

CHANG, N. et ZAKHOR, A. (l9Q5), Aroitrary view generation for three-dimensional 

scenes fiom uncalibrateci video cameras, dans Proceedings of the Internationd 

Conference on Acoustics, Speech, and Signal Pmcessing, Detroit, MI, USA, 

pp. 2455-2458. 

CHANG, N. et ZAKHOR, A. (1997), View generation for three-dimensional scenes 

£rom video sequemes, IEEE ïhnsactions on Image Processing 6 (4), 584-598. 

CHEN, S. et WILLIAMS, L. (l993), View interpolation for image synthesis, dans 

Computer Graphzcs Proceedings, Anaheim, CA, USA, pp. 279-288. 

COHEN, P., HERS&, J.-Y. et AKHLOUFI, M. (1998), Augmented reality concepts 

for mining vehicle operation, dans P d i n g s  of the CIM/CMmI/IMTGA Con- 

ference, Montreal, QC, Canada, p. N088. 



181 

CSURKA, G. et FAUGERAS, 0. (l998), Computing 3-dimensional pro ject invariants 

fkom a pair of images h g  the grassmarin-cayley dgebra, Image and Vkfon 

CSURKA, G., ZELLER, C., ZHANG, 2. et FAUGERAS, 0. (1997), Charact- 

the uncertainty of the fundamental matrix, Computer Vision and Image Uder- 

standing 68(1), 1û-36. 

DEBEVEC, P.E. TAYLOR., C. et MALIK, J. (1996), Modeling and rendering archi- 

tecture fiom photographs: a hybrid geometry- and image-based approach, dans 

Computer Graphfcs Pmceedings, New Orleans, LA, USA, pp. 11-20. 

DERICHE, R., ZHANG, Z., LUONG, Q. et FAUGERAS, 0. (1994), Robust recovery 

of the epipolar geometry for an uncalibrated stereo rig, dans Pmceedings of the 

European Conference on Computer Vision, Stockholm, Sweden, pp. A:567-576. 

DYER, C. (1997), Image-based scene rendering and manipulation research at the 

University of wisconsin, dans Pmceedings of the DARPA Image Understanding 

Worhhop, New Orleans, LA, USA, pp. 63-67. 

FAUGERAS, 0. (1992), What can be seen in thee dimensions with an uncaübrated 

stereo rig?, dans Pmceedings of the Eumpmn Conference on Computer Vision, 

Santa Maxgherita Ligure, Italy, pp- 563-578. 

FAUGERAS, 0. (1993), Thme-Dàrnensiond Cornputer Vkion, MIT Pr-, Cam- 

bridge, MA, USA. 



FAUGERAS, O., LUONG, Q. et MAYBANK, S. (1992), Camera self-calibration: 

Theory and experiments, dans Pmceedings of the Eurwpean Conference on Com- 

puter Vision, Santa Margherita Ligure, Italy, pp. 321-334. 

FAUGERAS, O. et ROBERT, L. (1996), What can two images tell us about a third 

one?, Intemationd Journal of Cornputer Vision l8(1), 5-19. 

FAUGERAS, O-, ROBERT, Lm, LAVEAU, S., CSURKA, G., ZELLER, C-Y GAU- 

CLIN, C. et ZOGHLAMI, 1. (1998), 3-d reconstruction of urbao scenes £iom 

image sequences, Computer Vison and Image Understanding 69(3), 292-309. 

FOLEY, J., VAN DAM, A-, FEINER, S. et HUGHES, J. (IWO), Computer Graphicsr 

Principles and Pmctice, 2nd edn, Addison-Wdey, Reading, MA, USA. 

FORSYTH, D., MUNDY, J., ZISSERMAN, A. et BROWN, C. (1990), Invariance: A 

new kamework for vision, dans Pmceedings of the IEEE International Conferna 

on Cornputer Vision, Osah, Japan, pp. 598-605. 

GOLUB, G. et VAN LOAN, C. (1989), Matriz Computations, Johns Hoplons Uni- 

versity Press, Baltimore, MD, USA. 

HMXTLEY, R. (1 992a), Calibration of camera using the essential matrix, dans Pm- 

ceedings of the DARPA Image Understanding Workshop, San Diego, CA, USA, 

pp. 911-915- 



HAEWLEX), R (1992 b) , Eetimation of relative camera po&ions for uncalibratecl aun- 

era, daas Pmceedings of the Eumpean Confemce on Cornputer Vwion, Santa 

Margherits Ligure, Italy, pp. 579-587. 

HARTLEY, R (l993), Camera calibration using line conespondences, dans Pmceed- 

ings of the DARPA Image Understanding Workshop, Washington, DC, USA, 

pp. 361-366- 

HARTLEY, R (1994a), Euclidean reconstruction fkom ancalibrated views, dans Pm- 

ceedings of the IEEE Conference on Cornputer Vision and Pattern Recognition, 

Seattle, WA, USA, pp. 908-912. 

HARTLEY, R. (l994b) ), Projective reconstruction and invariants fkom multiple 

images, LEEE %maetions on Pattern Analysis and Machine Intelligence 

l6(lO), 1036-1041. 

HARTLEY, R. (1994~)~ Projective reconstruction fiom line correspondences, dans 

Prod ings  of the LEEE Conference on Computer Vision and Pattern Recogni- 

tion, Seattle, WA, USA, pp. 903-907. 

HARTLEY, R. (1995), A linear method for reconstruction fiom hes and points, 

dans Pmceedings of the IEEE International Conference on Computer Vision, 

Cambridge, MA, USA, pp. 882-887. 

HARTLEY, R (1997a), In deiense of the eight-point algorithm, IEEE lhznsactions 

on Pattern Andysis and Machine Intelligence 19(6), 580-593. 



184 

HAEITLEYy RR. (1997b), h p p a ' s  equations derived from the fundamental matrix, 

IEEE Thansactions on Pattem Analgsis und Machine Intelligence 19(2), 133- 

135. 

HARTLEY, R ( 1 9 9 7 ~ ) ~  Lines and p o W  in three views and the trifocal tenaor, In- 

ternational Journal of Computer Vikion 22(2), 125-140. 

HARTLN, R (l99?d), Self-csübration of stationary carneras, Intemational Journal 

of Computer Vikioon 22(l), 5-23. 

HECI(BEFLT, P. (1986), Smey  of texture mapping, IEEE Cornputet Graphics and 

Applications 6(11), 56-67. 

HLAVAC, V., LEoNAR.DE, A. et WERNER, T. (1996), Automatic selection of 

reference views for image-based scene representatiom, dans Pmceediings of the 

European Confemce on Computer Vision, Cambridge, U K ,  pp. I:516-535. 

HORAUD, R. et CSURKA, G. (1998), Self-côlibration and euclidean reconstruction 

using motions of a stereo rig, dans Pmceedings of the IEEE International Con- 

ference on Computer Vision, Bombay, India, pp. 96-103. 

HORN, B.  (1986), Robot Vision, MIT Press, Cambridge, MA, USA. 

HUANG, T. et NETRAVACI, A. (1994), Motion and structure £rom feature corre 

spondences: A review, P d i n g s  of the IEEE 82,252-268. 



185 

IRANI, M., ANANDAN, P. et HSU, S. (1995), Mosaic based representations of video 

sequences and their applications, dans Pmceedings of the IEEE Intmutfonal 

Conference on Cornputer Vbion, Cambridge, MA, USA, pp. 605-611. 

JAIN, R et WAKIMOTOy K. (1995), Multiple perspective interactive video, dans 

Proceedings of the IEEE Conference on Multimedia Systems, Washington, DC, 

USA- 

KANA.DE, T. (1995), Development of a viderate  stereo machine, dans PfOceedings 

of the IEEE Conference on Intelligent Robots and Systems, Pittsburgh, PAy 

USA, pp. 95-100. 

KANA.DE, T. (1996)~ Immersion into visual media: new applications of image un- 

dersta,ndingy IEEE Ezpert 11(1), 73-80. 

KANADE, T., NARAYANAN, 1. et RANDER, P. (1996), Viiualized reaiity: being 

mobile in a visual scene, dans J. Ponce, A. Zisseman et M. Hebert, éditeurs, 

Object Representation in Computer Vision II. E u m p m  Conference on Computer 

Vision International Workshop Pmceedings, Cambridge, UK, pp. 273-85. 

KANA.DE, Te, NARAYANAN, P. et RANDER, P. (l995), Virtualized reality: con- 

&ts and early results, dans Prodeedings of the IEEE Workshop on Representa- 

tion of Vbual Scenes, Cambridge, MA, USA, pp. 69-76. 

KANA.DE, T., RANDER, P. et NARAYANAN, P. (1997), Virtualized resiity: con- 

&acting virtual worlds from red scenes, m E  Multimedia 4(l), 34-47. 



186 

KANA.DE, T-, YOSHIDA, A., ODA, K., KANO, H. et TANAKA, M. (1996)~ A 

stereo machine for video-rate dense depth mapping and its new applications, 

dans Proceedings of the IEEE Computer Vision and Pattern Recognition, San 

Fransisco, CA, USA, pp. 196-202. 

KANG, S. (1997), A survey of image-based rendering techniques, rapport technique 

CRL 97/4, Digital Eqyïpment Corporation, Cambridge Research Lab. 

KANG, S. et SZELISKI, R. (1997), 3-d scene data recovery usiag omnidirectiod 

multibaseline stereo, International Journal of Computer Vision as@), 167-183. 

KATKERE, A., MOEZZI, S., KURARA, Doy KELLY, P. et JAIN, R. (1997), Toward 

videebased immersive enviroments, Multimedia System 5(2), 69-85. 

KOCH, R. (l995), 3d surface reconstruction from stereoscopic image sequences, dans 

Proceedings of the IEEE International Conference on Computer Vision, Cam- 

bridge, MA, USA, pp. 109-114. 

KUMAR., R., ANANDAN, P., IRAM, M., BERGEN, J. et HANNA, K. (1995), R e p  

resentation of scenes from collections of images, dans Proceedings of the IEEE 

Wo~kshop on Repiesentution of Visual Scenes, Cambridge, MA, USA. 

KUTULAKOS, K. (1995), Afnne sudaee reconstmction by purposive viewpoint con- 

trol, dans Pmceedings of the IEEE International Conference on Computer Vi- 

sion, Cambridge, MA, USA, pp. 894-901. 



187 

LAVEAU, S. et FAUGERAS, O. (MM), 3-d scene representation as a collection of im- 

ages, dans Pmceedings of the International Confmnce on Pattern Recognition, 

Jemalemz Israel, pp. A:689-691. 

LAVEAU, S. et FAUGERAS, 0. (l996), Oriented projective geometry for computer 

vision, dans Proceedings of the European Conference on Computer Vkion, Cam- 

bridge, UK, pp. IA47-156. 

LE BRASMEHLMAN, E-, SCHMITT, M., BOISSONNAT, J. et FAUGERAS, O. 

(l988), How the delaunay trimgdation can be used for representing stereo data, 

dans Proceedings of the International Conference on Computer Vision, Tarpon 

Springs, FL, USA, pp. 54-63. 

LENGYEL, J. (1998), The convergence of graphies and vision, IEEE Computer 

SI(?), 46-53. 

LEVOY, M. et HANRAHAN, P. (1996), Light field rendering, dans Computer Gmph- 

ics Proceedings , pp. 3 1-42. 

LONGUET-HIGGINS, A. (1981), A computer algorithm for reconstnicting a scene 

fiom two projections, Nature 293, 133-135. 

LUONG, Q. et FAUGERAS, 0. (1992), Self-calibration of a camera using multiple 

images, dans Proceedings of the International Conference on Pattern Recogni- 

tion, The Hague, Netherlands, pp. 1:9-12. 



188 

LUONG, Q. et FAUGERAS, 0. (1994a), On the direct determination of epipo1a: A 

case study in dgebraic methods for geometric problems, dans Pmceedings of the 

International Conference on Pattern Recognition, Jerusalem, kael,  pp. A:243- 

247. 

LUONG, Q. et FAUGERAS, O. (1994b), A stability analysis of the fundamental ma- 

trix, dans PrOceedings of the Eumpenn Conference on Computer Visio~,  Stock- 

holm, Sweden, pp. A:577-588. 

LUONG, Q. et FAUGERAS, 0. (l996), The fundamental m a t e  Theory, algoritbms, 

and stabiliw analysis, International Journal of Computer Vision l7(l), 43-75. 

LUONG, Q. et VLE:Vn,LE, T. (1994), Canonic representations for the geometries 

of multiple projective views, dans Pmceedngs of the European Conference on 

Computer Vision, Stockholm, Sweden, pp. A:589-599. 

MASE, K. (1996), Computing field-of-view of stitched panorama to create fov sensi- 

tive virtual environments, dans Proceedings of the International Conference on 

Pattern Recognition, Vienna, Austria, p. A'ïZ.3. 

UYBANK,  S. (l995), Relation between 3d invariants and 2d in. .ants ,  dans Pm- 

ceedings of the IEEE Workshop on Repmentation of Vi&uaI Seenes, C-bndge, 

MA, USA. 



189 

MCMILLAN, L. et BISHOP, G. (1995), Plenoptic modeling: an image-based ren- 

dering system, dans Gomputer Grirphtcs P d i n g s ,  Lns Angeles, CA, USA, 

pp. 3946. 

MITICHE, M. (l994), Computational Analysis of Vbual Motion, Plenum Press, New 

York, NY, USA. 

MOEZZI, S., KATKERE, A., KURARA, D. et JAIN, R. (1996a), An emerging 

medium: interactive thr~dimensional digit al video, dans Pmceedings of the 

IEEE International Confemce on Multimedia, Cornputing and Systems, Ri- 

roshima, Japan, pp. 358-361. 

MOEZZI, S., KATKERE, A., KURARA, D. et JAIN, R. (1996b), Tmmersive video, 

dans Proceedings of the IEEE Virtual Reality Annual International Symgosium, 

Santa Clara, CA,  USA, pp. 17-24. 

MOEZZIj S., KATKERE, A., KURARA, D. et JAIN, R. (1996c), Rerrlity modeling 

and visualization fkom multiple video sequences, IEEE Computer Gmphics und 

Applicutions 16(10), 58-63. 

MOEZZI, S., LI-CHENG, T. et GE-, P. (1997), Virtual view generation for 3d 

digital video, IEEE Multimedia 4, 18-26. 

MUMIYj J., ZISSERMAN, A. et FORSYTH, D. (1993), Applicutions of Invariance 

in Computer Vision, Springer-Verlag, Berlin, G~ermany. 



190 

NARAYANAN, P. et KANA.DE, T. (1998), Vimial worlds using computer vision, 

dans Pmceedings of the ZEEE and ATR Workshop on Computer Vbion for Vir- 

tua1 Reality Bwed Humun Communidion, Cambridge, MA,  U S A ,  pp. 2-13. 

NARAYANAN, P., RANDER, P. et KANADE, T. (1998), Constructing Whial worlds 

using dense stereo, dans Proceedings of the IEEE International Conference on 

Computer Vision, Bombay, h&a, pp. 3-10. 

NIEM, W. et BROSZIO, H. (1995), Mapping texture ikom multiple camera vie- onto 

3d-object models for computer animation, dans Pmceedngs of the International 

Workshop on Stereuscopic and Three Dimensiond Imaging, Santorini, Grèce. 

OKUTOMI, M. et KANADE, T. (l993), A multiple-baseline stereo, IEEE Bawac- 

tions on Pattern Analysis and Machine Intelligence 15 (4), 353-363. 

PELEG, S. e t  HERMAN, J .  (1997), Panoramic mosaics by rnaaifoId projection, dans 

Proceedings of the IEEE Conference on Cornputer Vision and Pattern Recogni- 

tion, San Juan, Puerto Rico, pp. 33û-343. 

RANDER, P., NARAYANAN, P. et KANADE, T. (1997), Vialized reality: con- 

structing time-varying virtual worlds fkom real world events, dans R. Yagel et 

H. Hagen, éditeurs, Proceeding~ of the IEEE Visuolization, Phoenix, AZ, USA, 

pp. 277-84. 



191 

RANDER, P., NARAYANAN, P. et KANADE, T. (1998), Constructhg Whial worlds 

uaing dense stereo, dans Proceedings of the B E  International Conjmnce on 

Computer Vision, Bombay, Mis, pp. 3-10. 

ROUSSEEUW, P. et LEROY, A. (1987), Robwt Regression and Outliers Detection, 

John Wdey, New York, NY, USA- 

ROUSSO, B., PELEG, S., FINCI, I. et UV-ACHA, A. (1998), Universal mosaichg 

using pipe projection, dans Pmceedings of the IEEE bternational Conference 

on Computer Vision, Bombay, India, pp. 945-952. 

SAWHNEY, A. et KUMAR, R. (1997), True multi-image alignment and its applica- 

tion to mosaicing and lem distortion correction, dans Proceedings of the IEEE 

Conference on Computer Vision and Pattern Recognition, San Juan, Puerto 

Rico, pp. 450-456. 

SCHARSTEIN, D. (l996), Stereo vision for view syntheais, dans Proceedings of the 

IEEE Conjemnce on Cornputer Vision and Pattern Recognition, San Rmcisco, 

CA, USA, pp. 852-858- 

SEITZ, S. (1 997), Image-based transformation of viewpoint and scene appearance, 

Thèse de doctorat, Computer Science Dept, University of Wisconsin, Madison, 

WI, USA. http://www.cs.wisc.edu/computer-vision/pub.htd- 



192 

SEITZ, S. et DYER, C. (l995u), Complete sccene structure fonn four point mm+ 

spondences, dams Pmceedings of the LeEE Internationsl Conference on Computer 

Vision, Cambridge, MA, USA, pp. 330-337. 

SEITZ, S. et DYER, C. (1995b), PhgsicalIy-valid view synthesis by image interpo- 

lation, dans Pmceedings of the IEEE Workshop on Representation of Visual 

Scenes, Cambridge, MA, USA, pp. 18-25- 

SEITZ, S. et DYER, C. (i996a)y Toward image-based scene representation using 

view morphing, dans Pmceedings of the International Conference on Pattern 

Recognition, Vienna, Austna, pp- 1: A 84-89. 

SEITZ, S. et DYER, C. (1996 b), View morphing, dans Computer Graphics Pmceed- 

ings, New OrIeam, LA, USA, pp. 21-30. 

SEITZ, S. et DYER, C. (1997a), Photorealistic scene reconstmction by voxel color- 

ing, dans Proceedings of the IEEE Conference on Computer Vbion and Pattern 

Recognition, San Juan, Puerto Rico, pp. 1067-1073. 

SEITZ, S. et DYER, C. (1997b), View morphing: uniquely predicting scene appear- 

ance fiom basis images, dans Pmceedings of the DAWA Image Understonding 

Workshop, New Orleans, LA, USA, pp. 881-887. 

SEITZ, S. et KUTULAKOS, K. (1998), Plenoptic image editing, dans Proceedings of 

the IEEE International Conference on Computer Vision, Bombay, India, pp. 17- 

24. 



193 

SEMPLE, J. et KNEEBONE, G. (1979), AIge6mic Pmjdive Geometrg, Oxford 

CIarendon Press, Oxford, UK, 

SHASHUA, A. (19 93), Projective depth: A geometric invariant for 3d reconstruction 

fiom two perspective/orthographic views for visud recognition, dans Pmceedings 

of the LEEE International Conference on Computer Vision, Berlin, Germany, 

pp- 583-590. 

SHASHUA, A. (l994a), Projective structure fiom uncalibrated images: Structure- 

fiom-motion and recognition, LEEE Zhnsactions o n  Pattern Analysis and Mu- 

ehin e Intelligence 16 (a), 778-790. 

SHASHUA, A. (1994b), Trilineari@ in visual recognition by alignment, dans Pro- 

ceedings of the European Conference on Computer Vision, Stockholm, Sweden, 

pp. k479-484. 

SHASHUA, A. (1995), Algebraic functions for recognition, IEEEE firwactions on 

Pattern Analpsis and Machine Intelligence 17(8), 779-789. 

SHASHUA, A. (1997), Trilhear tensor: the fundamental constmct of multiple-view 

geometry and its applications, dans G. Sommer et J. Koenderink, éditeurs, Alge- 

b m i c  &mes for the Perception-Action Cycle. International Workshop Proceed- 

ings, Kiel, Germany, pp. 190-206. 



194 

SHASEKJA, A. et NAVAB, N. (1996), Relative afüne structure: Canonicd mode1 for 

3d from 2d geometry and applications, IEEE lhnsaetions on Pattern Analysis 

and Machine Intelligence 18(9), 873-4383. 

SHASHUA, A. et WERMAN, M. (1995), ltilinearity of three perspective views and 

its associated tensor, dans Pmceedings of the IEEE International Confemnce on 

Computer Vikion, Cambridge, MA, USA, pp- 920-925- 

SHUM, H*, HAN, M. et SZELISKI, R. (1998), Interactive co~truction of 3d models 

from panoramic mosaics, daas Pmceedings of the LEh'E Confemce on Cornputet 

Vision and Pattern Recognition, Santa Barbara, CA, USA, pp. 427-433. 

SHUM, H- et SZELISKI, R. (1998), Construction and refinement of pano~amic mo- 

saics with global and local alignment, dans Proceedings of the IEEE International 

Conference on Computer Vision, Bombay, India, pp. 953-958. 

SZELISKI, R. (1996), Video mosaics for virtual environments, IEEE Computer 

Graphies and Applications 16(2), 22-30. 

SZELISKI, R. (1998), Building shape and appearance models hom multiple images, 

dans Proceedings of the ACM Workshop on image-based modeling and rendering, 

Stanford University, CA, USA. 

SZELISKI, R. et SHUM, H.-Y. (1997), Creating full view panoranmic image mosaics 

and environment maps, dans Computer Gmphics Proceedings, LQS Angeles, CA, 

USA, pp- 251-8. 



195 

TAYLOR, C., DEBEVEC, P. et MALIK, J. (1996~)~ Modeling and rendering archi- 

tecture fiom photographs: A hybnd geometry- and image-based approach, dans 

Computer Gmphics Pmceedings, New Orleans, LA, USA. 

TAYLOR, C., DEBEVEC, P. et MALIK, J. (1996b), Reconstmcting polyhedral mod- 

els of architectural scenes from photographs, dans Pmceedings of the Eumpeun 

Conference on Cornputer Viiion, Cambridge, UK, pp. E.659-668. 

TONG, W., AKHLOUJ?Iy M., POLOTSKI, V. et COHEN, P. (1998), Two useful in- 

variants in computer vîsion and their appliatiom, dans P m d i n g s  of the Joint 

Conference on Information Sciences, Fnst International Workshop on Computer 

Vision, Pattern Recognition and Image Processing, Durhsm, NC,  USA, pp. 401- 

404. 

TORR, P. et MURRAY, D. (1997), The development and cornparison of robmt meth- 

ods for estimating the fundamental matrix, Internationd Journal of Cornputer 

Vision 24(3), 271-300. 

TORR, P. et ZISSERMAN, A. (1997), Robust parameterization and computation of 

the trifocal tensor, Image and Vidion Cornputing 15(8), 591-605. 

TORR, P., ZISSERMAN, A. et MAYBANK, S. (1998), Robust detection of degen- 

erate configurations while estimating the fundamental mat* Computer Vision 

and Image Understanding 71 (3), 312-333. 



TORR., P. et ZISSERMANN, A. (lW?), Performance characterization of fundamental 

matrix estimation under image degradation, Machine Vi ion  and Applications 

9(56), 321-333. 

TSAI, R. (1987), A versatile camera catibration technique for high-accmacy 3d ma- 

chine vision metroIogy using of-theshelf tv cameras and lemes, LEEE Journal 

of Robotics and Automation 3(4), 323-344- 

ULLMAN, S. et BASRI, R. (1991), Recognition by linear combination8 of models, 

IEEE If.crnsadions on Pattern Analysis and Machine Intelligence 13(10), 992- 

1006. 

VIEVILLE, Tey FAUGERAS, O. et LUONG, Q. (1996), Motion of points and lines 

in the uncalibrated case, International Journal O j Computer Vision 17(1), 7-41. 

WATT, A. (1993), 9D Cornpufer Gmphics, Addison-Wesley, &Reading, MA, USA. 

WERNE:R, T., HERSCH, R et HLAVAC, V .  (l995), Rendering real-world objects 

using view interpolation, dans Proceedings of the IEEE International Conference 

on Computer Veion, Cambridge, MA, USA, pp. 957-962. 

WOLBERG, G.  (1990), Digital Image Warping, IEEE Computer Society Press Mon* 

graph, Los Alamitos, TX, USA. 



ZHANG, 2. (1996), Determining the epipolar geometry and its uncer- 

tain@: A review, rapport technique, INRIA, Sophia Antipolis, France. 

Z W G ,  Z. (1997)~ A stereovision system for a planetary rover: Calibration, corne- 

lation, registration, and fusion, Machine Vbion und Applications 10(1), 27-34. 

ZHANG, 2. (1998~) , Image-bd geometricdy-correct photoreaüstic scene/ob ject 

modeling (ibphm): a review, dsns R Chin et T.-C. Pong, éditeurs, Pmceedings 

of the Asian Conference on Computer Vision, Vol. 2, Hong Kong, BK, pp. 340-9. 

ZHANG, 2. (l998b), On the optimization criteria used in 2-view motion analysis, 

IEEE Bansaetions on Pattern Analysis and Machine Intelligence 20(7), 717- 

729. 

ZHANG, 2. (1998~)~ Understanding the relatiomhip between the optimization cri- 

teria in two-view motion malysis, dans Proceedings of the IEEE International 

Conference on Computer Vision, Bombay, India, pp. 772-777. 

ZHANG, Z., DERICHE, Ra, FAUGERAS, O. et LUONG, Q. (1995), A robust tech- 

nique for m a t h g  two uncalibrated images through the recovery of the unknown 

epipolar geometry, Armcial Intelligence 78 (1-2), 87-1 19. 

ZHANG, Z., LUONG, Q. et FAUGERAS, 0. (1996), Motion of an uncalibrated stereo 

rig: Self-calibration and metric reconstruction, IEEE I).ansactions on Robotics 

and Automation 12(1), 103-113. 



198 

ZOGHLAMI, I., FAUGERAS, O. et DERICHE, R (lgW), Using geometric corners to 

build a 2d mosaic h m  a set of images, dans P m d i n g s  of the B E  Conference 

on Cornputer Vision and Pattern Recognition, San Juan, Puerto &O, pp- 420- 

425. 




