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Résumé

Ce travail présente une nouvelle approche pour la synthése de nouvelles vues a partir
d’images bidimensionnelles prises par des caméras stéréoscopiques non calibrées, et
ce sans reconstruction tridimensionnelle explicite. Ainsi, seulement un petit nombre
de points appariés sur deux images sources est utilisé pour générer la nouvelle vue.
Aussi, pour obtenir un rendu géométriquement valide nous utilisons des outils de la
géomeétrie projective qui permettent une description réaliste de la scéne.

Dans un premier temps, nous présentons les notions de géomeétrie projective qui
nous permettront de définir les relations entre les caméras dans la scéne. Les notions
de géométrie épipolaire sont mises 4 contribution pour introduire une nouvelle métho-
de de calcul de la matrice fondamentale, et ce pour décrire les propriétés inhérentes
4 une configuration d’une paire de caméras stéréoscopiques. Elle a comme caractéris-
tiques d’étre linéaire, ce qui permet de réduire le temps de calcul de facon appréciable,
et d’exploiter les informations présentes dans la scéne, a savoir les surfaces planes,
pour obtenir de meilleurs résultats comparativement aux techniques classiques de

calcul de la matrice fondamentale.
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Dans un deuxiéme temps, les invariants projectifs sont étudiés et deux techniques
pour les calculer 4 partir de 'appariement des points entre images sources sont présen-
tées. Nous les utilisons ensuite pour décrire une représentation invariante de la scéne
en termes de birapports des points appariés dans deux images sources. Une étude
comparative nous permet de montrer que le calcul de ces invariants donne des résul-
tats trés satisfaisants. Ici aussi nous exploitons la présence de surfaces planes dans la
scéne pour calculer de fagon robuste une structure invariante de celle-ci.

Enfin, nous utilisons la géométrie épipolaire et les invariants projectifs pour syn-
thétiser des nouvelles vues. Nous utilisons un petit nombre de points appariés pour
obtenir une grille de points de contrdle sur chacune des images sources. Cette grille
est alors reprojetée sur sa nouvelle position dans un troisiéme plan image en utilisant
les techniques développées précédemment (matrice fondamentale et invariants projec-
tifs). Le reste des points images est ensuite obtenu par interpolation des points de la
grille 4 'aide d’une technique de tezturage bidimensionnel® en perspective. Ceci nous
permet de faire un rendu basé sur images qui a comme caractéristique d’étre rapide
tout en préservant un bon réalisme pour les nouvelles vues générées. Notre approche

est finalement illustrée sur plusieurs exemples de scénes réelles et synthétiques.

warping



Abstract

Without the computational cost of 3D reconstruction, this thesis presents an original
approach for synthesis of a third view from two images captured by a non-calibrated
stereo system. Only sparse correspondences between the source images are needed.
The approach results in a realistic geometrically-valid rendering of the scene.

With the aid of projective geometry, geometrical relations characterizing a two
cameras configuration are defined. A new technique for fundamental matriz com-
putation is then presented. It exploits the available geometrical information about
the scene, in particular, the planarity constraints in the epipolar equations. This
technique is linear and computationally less expensive than classical methods.

Next, projective invariants are presented with two techniques for their computa-
tion. This yields an invariant representation of the scene in terms of cross-ratios of
corresponding points in a pair of source images. Recognition of planar surfaces in the
scene leads to a robust computation of the invariant representation.

The foregoing synthesis of a novel view depends on epipolar geometry and pro-

jective invariants. A small number of corresponding points is required to obtain a



-
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grid of anchor points in each image plane. This grid is reprojected on its position in
the third view using fundamental matrix and projective invariants. The remaining
image points are rendered by perspective image warping to achieve a photo-realistic
rendered view. The efficiency of the method is illustrated on images of synthetic and

real scenes.
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Liste des notations

® P" : espace projectif de dimension n;

e P = [z1,...Tp41]t : un vecteur de (n + 1) éléments representant un point de

I'espace projectif de dimension n, et z; ses coordonnées homogénes;
® A\ : scalaire non nul;
® [ = [}, 1, 3]t : ligne projective, et [; ses coordonnées homogenes;
® 7 = [, T2, Z3)' : un point du plan projectif;
e H : matrice 3x3 de transformation homogene entre deux plans ou homographie;
e min : fonction de minimisation;
® P =[X,Y, Z] : point dans I'espace 3D;
® .m : indice représentant le repére de la caméra;
® ,, : indice représentant le repére monde ou repére de la scéne;

® f : la focale de la cameéra;



® ® : le produit vectoriel;

® R : matrice de rotation;

e t: vecteur de translation;

® (t) : matrice antisymétrique du vecteur 2;

e M : point de 'espace projectif 3D;

e . ou .l: representent le plan image de gauche;

e .. ou .": representent le plan image de droite;

e FE : matrice essentielle;

® F : matrice fondamentale;

® f;; : éléments de la matrice fondamentale F';

® ¢p : appelé point épipolaire;

® I1 : plan dans I’espace 3D;

® d(m;, my) : distance algébrique entre deux points m, et mo;
®k=[AB,C,D|= % : birapport de quatre points;

® AB : mesure algébrique de AB ou la distance entre les points A et B;

o
.j@:i%;(;—jgi : le J invariant;



® Loy, : projection de la ligne Lo, sur le plan IT;;

e [7 : image de Lo, dans le plan image de droite;
e [} : image de Ly, dans le plan image de gauche;
® (I1z,) : la distance entre la ligne /; et le point z;;
e UL, ¢ : projection de la ligne L,.; sur le plan IT,.;;

® ¢; ;11 : le point épipolaire sur le plan image 7 correspondant au centre optique

de la caméra 7 + 1;

e Fm =1 : la ligne epipolaire correspondant au point m.



Chapitre 1

Introduction

Depuis le début de la vision par ordinateur, les chercheurs se sont intéressés a 1’ana-
lyse et 'interprétation de la géométrie de la scéne, a partir des images prises par
des caméras. L’objectif étant de représenter ’espace tridimensionnel par des entités
géométriques d’une maniere efficace. Une représentation de ce type devrait tenir
compte de I’aspect dynamique de I’environnement, pour permettre d’exploiter cette
information pour ’exécution de diverses tdches (par un robot équipé de caméras par
exemple). Il est donc important de pouvoir produire une interprétation aussi compléte
que possible de la scéne 3 partir seulement de I'information visuelle disponible. Un
des domaines en vision qui vise 4 produire une représentation compléte de la scéne
est la reconstruction de la structure tridimensionnelle d'une scéne 3 partir seulement
des images de celle-ci, et ce pour des applications diverses comme la planification,

I’évitement d’obstacles, et plus récemment la réalité virtuelle entre autres. C'est



ce dernier domaine qui connait un grand engouement ces derniéres années, qui a
poussé les deux communautés de vision et graphisme par ordinateur (infographie)
3 joindre leurs efforts pour trouver des solutions pratiques aux problémes posés en
réalité virtuelle. Des chercheurs de ces deux domaines traditionnellement séparés
ont commencé récemment i travailler sur le développement d’outils permettant de
produire un rendu réaliste 3 partir d’'un ensemble d’images d’'une méme scéne prises
par des caméras réelles. Ce domaine s’appelle rendu basé sur images (McMillan et
Bishop, 1995; Kang, 1997; Dyer, 1997; Lengyel, 1998). Il consiste en des techniques de
syntheése de nouvelles vues a partir de vues connues et ce sans modeéle tridimensionnel
de la scéne.

Dans les approches traditionnelles en vision par ordinateur la synthése de vues
était produite A partir d'un modéle tridimensionnel proprement reconstruit a partir
de 'appariement établit entre les images de la scéne. Une fois le modéle obtenu, on
lui applique une texture extraite des images sources pour ajouter du réalisme. On
peut ensuite placer une source de lumiére pour obtenir un rendu amélioré. Aprés
cette reconstruction, la scéne peut étre manipulée et on peut choisir la position d'une
cameéra virtuelle qui va capturer la scéne du point de vue désiré. Cette caméra pourrait
aussi bien étre couplée a la téte d’un opérateur pour une visualisation interactive de
différents points de vues de la scéne reconstruite. Cette approche est encore utilisée de
nos jours dans différentes applications (Berger, Simon, Petitjean et Wrobel-Dautcourt,

1996; Chang et Zakhor, 1995; Chang et Zakhor, 1997; Debevec et Malik, 1996). En
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infographie une approche similaire est utilisée. D’abord un modéle de la scéne est
reconstruit 3 partir de plans de celleci ou 3 partir de données tridimensionnelles
fournies par un senseur tridimensionnel. Puis I'ajout de la texture et des sources de
lumiére permet un rendu plus réaliste de la scéne A partir d’un point de vue choisi
en placant une caméra virtuelle dans la scéne (Foley, Van Dam, Feiner et Hughes,

1990; Watt, 1993). Toutefois, ces deux approches ont quelques inconvénients :

1. La reconstruction tridimensionnelle en vision est trés cofiteuse en temps de

calcul et est trés sensible aux erreurs d’appariements.

2. La modélisation en infographie a un cott prohibitif en ressources homme-machine
et dépend de la précision des résultats fournis par les senseurs tridimensionnels

utilisés et/ou les plans disponibles de la scéne.

Pour remédier 4 ces problémes, un nouveau domaine a été introduit récemment,
c’est le rendu basé sur images. L’objectif est de permettre la synthése de nouvelles
vues 3 partir seulement des images connues et ce sans reconstruction tridimensionnelle
explicite. Ceci permet d’éviter le temps de calcul souvent prohibitif que nécessite la
modeélisation tridimensionnelle de la scéne. Imaginons qu’a partir de quelques images
prises sur un site historique nous puissions nous promener dans un environnement
virtuel représentant ce site et ce sans avoir 4 faire un modéle tridimensionnel de
celui-ci. Nous pourrions avoir différents points de vue en utilisant la synthése de
nouvelles vues 3 partir seulement de vues bidimensionnelles connues. Nous pourrions

ainsi avoir acces 4 un tel environnement sur un ordinateur personnel sans avoir besoin
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de matériel sophistiqué. Cette approche pourrait &tre intéressante pour la télérobo-
tique par exemple, cl un opérateur assis devant son écran d’ordinateur et qui veut
manipuler un objet A distance dans une scéne non modélisée a priori (Cohen, Hervé
et Akhloufi, 1998), les caméras fournissant 'information visuelle prise sur le site de
travail. L’opérateur pourrait en bougeant la téte avoir différentes vues par simple
synthése de nouvelles vues A partir des images fournies par les caméras sans aveir 4
déplacer ces derniéres dans le site ou faire une reconstruction tridimensionnelle fas-
tidieuse de la scéne. Ainsi, les techniques de rendu basé sur images fournissent un
outil pratique et intéressant dans ce sens, d’oul 'intérét croissant pour ce domaine ces
derniéres années.

Dans le travail que nous présentons dans ce mémoire, nous proposons de définir
la scéne non pas par un modeéle tridimensionnel, mais par des vues bidimensionnelles
réelles de celle-ci. En supprimant ainsi ’étape de modélisation et en accélérant 1’étape
de rendu nous pouvons produire de nouvelles vues dans un temps acceptable. En effet,
les images disponibles contiennent les informations géométriques nécessaires, et les
informations de texture sous forme déja rendue.

L'information géométrique contenue dans les imnages nous permet dans le cadre de
la géométrie projective de mieux représenter la scéne en vue de la génération d’une
nouvelle vue. Les outils de la géométrie projective permettent la synthése d’une
nouvelle vue satisfaisant les contraintes géoﬁlétriques inhérentes 4 une configuration

des caméras et de la scéne. La vue ainsi obtenue sera plus proche de la vue qui serait



fournie par une caméra placée an méme endroit que la caméra virtuelle.

Tout cela nous améne dans le cadre de ce travail A nous intéresser aux outils de
géomeétrie projective qui permettent un rendu géométriqguement valide, c’est-a-dire la
géométrie épipolaire et les invariants projectifs. En ce sens, notre contribution se
situera au niveau du développement de nouvelles méthodes basées sur I’exploitation
des propriétés de la scéne, plus particuliérement la présence de surfaces planes dans
celle-ci. Cette contrainte de planarité est caractérisée par une relation de transfor-
mation homographique entre les projections sur les plans images d’'une méme surface
plane. Cette transformation contient toute I'information nécessaire pour préserver la
planarité d’une surface projetée.

Dans le cadre de ce travail nous contribuons 4 l'estimation de la géométrie épi-
polaire par une approche originale de calcul de la matrice fondamentale. La méthode
proposée est linéaire et nécessite un temps de calcul faible comparativement aux
méthodes existantes (Luong et Faugeras, 19945; Deriche, Zhang, Luong et Faugeras,
1994; Luong et Faugeras, 1996; Zhang, 1996; Csurka, Zeller, Zhang et Faugeras,
1997; Faugeras, Luong et Maybank, 1992; Hartley, 1997a; Hartley, 1997d; Hartley,
1997b).

Au niveau des invariants projectifs, nous présenterons deux techniques de calcul
de ces invariants 4 partir de deux images d’une paire stéréoscopique qui donnent des
résultats trés satisfaisants.

Finalement, pour la synthése de nouvelles vues i partir d’images connues, nous
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décrivons une approche originale qui, contrairement aux techniques de synthése de
vues existantes (Laveau et Faugeras, 1994; Seitz et Dyer, 1995b; Seitz et Dyer,
19964; Avidan et Shashua, 1997; Kanade, 1996; Kanade, Narayanan et Rander, 1996),
ne nécessite qu'un appariement épars entre les points d’intérét présents dans les im-
ages sources pour générer une nouvelle vue de la scéne. La méthode développée
s’inspire des techniques d’infographie, plus particulierement la Conception Assistée
par Ordinateur (CAO) (Watt, 1993; Zhang, 1998a), ol la scéne est modélisée par un
ensemble de plans ou surfaces de base qui sont associés ensemble pour définir la scéne
et sur lesquels on colle une texture pour ajouter plus de réalisme. Dans notre cas, les
deux images stéréoscopiques sources sont décomposées en morceaux de surfaces planes
4 partir d’'un petit nombre de points d’intérét appariés, décrivant ainsi un maillage
apparié sur les deux images. L’idée est de reprojeter les points appariés décrivant ce
maillage, c’est-a-dire les points d’intérét qui jouent le réle de points de contrdle, dans
une nouvelle vue par des techniques de géomeétrie projective que nous développerons
dans le cadre de ce travail (matrice fondamentale et invariants projectifs). Une fois
les points de contréle placés sur le nouveau plan image, nous transférons ensuite le
reste des points en utilisant une technique de terturage bidimensionnel en perspective
qui permet de préserver la planarité des différents morceaux de surfaces composant
les images aprés projection (figure 1.1). Nous évitons ainsi de faire un appariement
dense entre les images de la paire stéréoscopique, qui peut étre prohibitif en temps

machine.



Organisation du travail

Le travail est organisé de la fagon suivante: le chapitre 2 présente les relations géo-
métriques fondamentales entre caméras. Nous donnons une bréve introduction de la
géomeétrie projective qui nous permet de définir les relations épipolaires entre caméras.
Ensuite, une revue bibliographique des principales techniques de calcul de la matrice
fondamentale est présentée, puis une nouvelle méthode est introduite. Elle repose sur
Pexistence de surfaces planes dans la scéne pour faire le calcul de la matrice fonda-
mentale. Le chapitre 3 donne un apergu sur les invariants projectifs pour finir par une
présentation de deux techniques pour calculer ces invariants & partir de 'appariement
des primitives d’intérét (points et lignes) sur une paire d’images stéréoscopiques. Au
chapitre 4, les techniques de synthése de vues sont introduites par une revue bibli-
ographique qui décrit les principales méthodes existantes dans la littérature. Ensuite,
une approche originale pour générer de nouvelles vues & partir seulement d’un ap-
pariement éparse entre les images est présentée. Le chapitre 5 présente les résultats
expérimentaux illustrant la validité des méthodes proposées. Une bréve conclusion
résume ce travail. Nous y décrivons les contributions apportées, discutons des amélio-
rations possibles et soulevons des questions qui peuvent étre abordées dans de futurs

travaux.



F N
m (& &

| J
I

Décomposition des images en morceaux

de surfaces planes
L ] K
l ] ~
$ Transfert des points
Reprojection géométriquement valide dintérét par géométrie
des points dintérét épipolaire (matrice
l fondamentale) ou
invariants projectifs

. A

T (Replojec!ion dela

texture sur chague
Texturage bidimensionnel perspective des morceaux morcean de surface
de surface plancs plane par texturage

bidimensionnel

¢

>4 C==)

Figure 1.1 : Description globale de Papproche proposée pour la synthése d’une nou-
velle vue




Chapitre 2

Relations géométriques entre

caméras

Dans ce chapitre nous décrivons les relations qui lient les coordonnées tridimension-
nelles d’un point de la scéne A celles, bidimensionnelles, de son image. La géométrie
projective nous offre les outils pour représenter cette relation de maniére élégante,
permettant ainsi une représentation linéaire projective.

Le chapitre commence par une bréve introduction 4 la géométrie projective
(Semple et Kneebone, 1979), ol nous allons décrire les résultats fondamentaux qui
seront utiles par la suite.

Dans la seconde partie nous allons aborder I’aspect géométrique de la formation
d’image. Nous décrirons les modeéles de projection que nous utiliserons et 1’apport de

la géométrie projective dans ce sens.
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Enfin, nous présenterons les notions de géométrie épipolaire et de matrice fonda-
mentale. Nous commencerons par une revue des principales méthodes pour estimer
la matrice fondamentale. Nous présenterons ensuite une propriété importante reliant
I’homographie & la matrice fondamentale, et finirons par proposer une nouvelle ap-
proche basée sur 'exploitation de cette propriété et la connaissance que nous avons

de la scéne.

2.1 Géométrie projective en vision

2.1.1 Espaces projectifs

Un point appartenant & un espace projectif de dimension n, P™, est représenté par un
vecteur de (n + 1) éléments dont au moins un élément est non nul P = [z1, ... Zp41 )
Les éléments de P sont appelés coordonnées homogenes du point. P est appelé vecteur
de coordonnées homogenes. Deux vecteurs de dimension (n+1), P = [Z1, ... Tn41]* €t
P'=[z,...z} ] représentent le méme point si et seulement s’il existe un scalaire A
non nul tel que P, = AP} pour i = 1..n + 1. C’est ce qu’on appelle égalité projective.
Ainsi la correspondance entre les points et les vecteurs de coordonnées n'est pas
unique, mais définie & un facteur multiplicatif pres.

Lorsque I'espace projectif est de dimension 1, 2 et (n — 1), cet espace est appelé
droite, plan et hyperplan. L’hyperplan d’équation z,; = 0 est appelé hyperplan de

Uinfini. Les points et les lignes se trouvant sur ce plan sont appelés points & l'infint
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et lignes & l'infini respectivement.

Dépendance linéaire

Les points P, ..., Pn de l'espace projectif P™ sont linéairement dépendants s’il existe

un ensemble de scalaires )\, ..., A\n non tous nuls tels que
m
Z AP =0.
i=1

Base projective

Une base projective de P™ est formée de n+2 points tel que tout sous-ensemble de n+1
points soit formé de points linéairement indépendants. La base projective canonique
est formée par un ensemble de points ¢; = [0,...,1,...,0]f, i=1,...,m+1, avec 1
pour le ¢ élément. Tout point P de l’espace projectif peut étre représenté comme
une combinaison linéaire de n’importe quel sous-ensemble de n + 1 points de la base.

Par exemple le point P peut s’écrire

ou les A; sont des scalaires.
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2.1.2 Le plan projectif

Le plan projectif peut &tre considéré comme une généralisation du plan euclidien
en introduisant deux nouvelles propriétés. Tout d’abord, la notion de distance est
éliminée, afin d’introduire une nouvelle structure appelée plan affine qui est défini en
fixant ’hyperplan de I'infini qui est formé par les points dont la derniére coordonnée
est nulle (voir plus haut). La propriété la plus importante de ce plan est que le
parallélisme est un invariant pour une transformation affine qui est représentée par
une matrice de transformation homogene 3 x 3 caractérisée par une dernidre colonne
dont les éléments sont de la forme [0, 0, 1]. C’est une transformation qui tient compte
de la composition d’une translation, une rotation, une projection parallele et une mise
4 l'échelle. Une transformation affine applique une mise en échelle non-isotropique
des coordonnées des points de I’espace projectif, ainsi par exemple un carré peut étre
transformé en un parallélogramme quelconque. En second lieu, ce modéle enléve le
concept de lignes paralléles. Toute paire de lignes se croise en un point unique sous
une projection perspective. Pour tenir compte de I’existence de lignes paralléles, c'est-
a-dire se croisant a l'infini, la notion de point idéal ou point & l'infini est introduite
(voir définition plus haut). Ainsi chaque ligne paralléle définit un point idéal différent.
L’ensemble de ces points définit une ligne.

Le plan affine et la ligne formée par les points idéaux définissent le plan projectif
(figure 2.1).

Ceci améne 3 énoncer deux axiomes qui sont & la base de la géométrie projective :
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point idéal

plan projectif
Xy
Figure 2.1 : Modele de plan projectif

e Al : Deux points quelconques déterminent une ligne unique.

e A2 : Deux lignes quelconques déterminent un point unique.

Ces deux axiomes introduisent une notion importante que nous allons utiliser par
la suite, c’est la notion de : dualité. Ce concept est trés important en géométrie
projective, puisque tout résultat obtenu pour les points est valables pour les lignes et

vice versa.

2.1.3 Coordonnées homogeénes

En se basant sur le modeéle projectif, un point m dans le plan projectif est représenté

par trois coordonnées cartésiennes, 7 = [z, T2, Z3]°. Tous les points sont définis & un
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facteur multiplicatif pres, ainsi = [z, Z2, z3]* et ' = AWM = [Az1, AZ2, Az3]* sont
équivaients.

La relation avec les coordonnées cartésiennes conventionnelles dans le plan, (z,y)
peut é&tre établie en construisant un plan 7., perpendiculaire & I’axe des z3 et 4 une
distance unité dans la direction z3. L’intersection du rayon passant par m et par le
centre de projection donne un point, M = [z,y, 1], appelé représentation canonique
de m. La paire [z,y]* représente les coordonnées cartésiennes de m. Tout point
m = [Ty, T2, Z3)* tel que z3 = 0 est appelé point idéal (voir figure 2.1) et I'ensemble
de ces points définit une ligne appelée ligne idéale. Les coordonnées cartésiennes

correspondantes au point projectif sont définies par
t
m= [_1 ) 1] = [.’B, Y, 1]"

Il n’est pas nécessaire que le plan projectif soit perpendiculaire & T3, méme si c’est

la convention généralement utilisée.

2.1.4 La ligne projective

La représentation de la ligne dans le plan projectif est dérivée de la représentation

analytique d'un plan passant par l'origine. L’équation de ce plan est donnée par

hzy + bz + 1323 = 0. (2.1)
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Les coefficients I = [l1, I3, 3]* correspondent aux coordonnées homogenes de la ligne
projective. [ et Al représentent la méme ligne. Ici le cas I3 = 0 correspond aux lignes
passant par Porigine. La ligne idéale est donnée par [ = [0, 0, 1]* qui a pour équation

z3 = 0. L’équation projective de la ligne peut s’écrire de plusieurs facons :
l-m=Im=ml=0.

La dualité entre.les points et les lignes est indiquée par la forme symétrique de
cette équation. Le réle de [/ et de m peut é&tre interchangé sans pour autant changer
la forme de I’équation. La forme projective homogéne d’une ligne peut é&tre reliée a
I’équation cartésienne standard de celle-ci. En coordonnées cartésiennes, I’équation
d’une ligne s’écrit

n.T +nyy—d=0,

ol n = (ng,ny,)t est la normale A la ligne et d la distance entre 1’origine et la ligne
en projection orthogonale A celle-ci. En comparant cette expression a I'équation ho-
moggéne de la ligne (équation 2.1), on obtient la relation entre les parameétres cartésiens
de la ligne et ses coefficients ho-mogénw (figure 2.2). Les composantes normales sont

données par

ny, =—d—. (2:2)
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point affine A%,

ug?e affine

point idéal

plan projectif

Xy

Figure 2.2 : Modeéle d’obtention d’une ligne i partir de deux points dans le plan
projectif

2.1.5 Transformations projectives

Une transformation projective ou colinéation est définie comme étant une transfor-
mation linéaire entre deux hyperplans projectifs. Une transformation projective de

P™ dans P™ s’exprime sous la forme

P — P™

P +~—» P =T'P

Une transformation projective de P™ dans lui-méme est appelée homographie. L’ensem-
ble des homographies forme un groupe appelé groupe projectif. L’homographie H
entre deux plans projectifs est représentée par une matrice 3 X 3 avec 8 paramétres

essentiels (figure 2.3). L’ensemble des transformations projectives est un sous-espace
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Colinéation
AX; H
X)
|X3= . ”’ 4
T
X

Figure 2.3 : Colinéation entre deux plans projectifs

de 8 dimensions de l'espace de 9 dimensions formé par les éléments de la matrice H.

La transformation d’un plan projectif =; vers un autre plan projectif m, est

représentée par

ou

hu

ha1

ha,

1ir

hia hia T

hay hos Z2 (2.3)

h32 h33 I3

Hm.



18

La représentation de la transformation en coordonnées cartésiennes fait apparaitre

la nature non linéaire de la transformation projective dans un espace euclidien ou

affine :
T hyz+ b2y + his
, 1 1L 12y + his
= — = ’ 24
* z3  haz + haoy + has (24)
'
y=22= h21z + hyy + has (2.5)

" 2% haiz+hsay + has

2.1.6 Transformation projective de lignes

La dualité entre les points et les lignes dans un plan projectif implique que la trans-
formation projective de lignes est linéaire aussi. Soit I'’équation d’un point incident a

une ligne,
0,

Lz + laze + l323

I'm = 0.
Etant donnée la transformation m’ = Hm pour un point, la transformation in-
verse est donnée par m = H~'m’. En substituant cette transformation inverse dans

Péquation de la ligne on obtient

FPH'm' =0.

Les transformations projectives préservent la colinéarité des points. Donc 1’équa-

tion de la ligne transformée est donnée par I*m'. Les coordonnées de la ligne !’ sont
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données par

v =[H.

Si on pose H; = H* , on obtient alors
U=HU. (2.6)

Ainsi, les lignes dans le plan projectif se transforment linéairement, comme les
points, mais avec une matrice de transformation qui est la transposée de I'inverse de

la matrice qui définit la transformation des points.

2.1.7 Calcul de I'homographie

La matrice de transformation projective H, nécessite 8 parameétres indépendants pour
définir une application unique. Corr;me chaque paire de points appariés donne deux
équations en coordonnées cartésiennes, il est donc nécessaire de trouver au moins 4
correspondances entre deux plans transformés projectivement pour définir la matrice

de transformation de fagon unique.



Solution linéaire non homogéne

Le systéme étant résolu a un facteur multiplicatif prés, on peut donc choisir k33 = 1.
Ainsi, pour quatre paires de points correspondants on a

[2’-, '!I;{, 1]‘ = AH[Zi, Ys,s 1]t‘

Ici X représente le facteur d’échelle, puisque H est calculé A un facteur multiplicatif
prés. Le systéme d’équations linéaires résultant assure I'unicité de la solution & partir
de quatre paires de points correspondants, & condition qu’aucun des points ne soit
colinéaire 4 deux autres. Si on a plus de quatre points correspondants on peut utiliser
une procédure de minimisation pour résoudre le systéme surdéterminé.

La méthode décrite nous donne une solution linéaire non homogéne. Son principal
désavantage est qu'on obtient une mauvaise estimation des éléments de H si I’élément

qu’on a fixé & 1 est nul en réalité.

Solution homogéne

Pour éviter le probléeme rencontré avec la solution non homogene, on utilise une
approche basée sur la décomposition en valeurs singuliéres (SVD) (Golub et Van Loan,
1989). C’est la meilleure approche du point de vue algorithmique. Plus loin dans
ce chapitre (voir section 2.4.1.4), nous verrons comment nous pourrons résoudre un
systéme linéaire en utilisant cette décomposition.

En posant les éléments de la matrice H sous la forme d'un vecteur
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h = [hu,hu, h13, hzl, hzz,hza,h;n, h32, hsa]t et en. utilisant les relations 2.4 et 2.5,

I'équation homogene 2.3 pour n points devient
Ah =0,

ot A est la matrice 2n x 9 suivante :

Ty ;1 1 0 0 0 —-zz] -yzy —-7)
0 0 0 z; 11 1 —zyy —-wyi -
g y2 1 0 0 0 —z2), -y —Z%

0 0 0 zp 4o 1 —Zo¥, —vh -1

-
.
-

Tn Yn 1 0 0 0 —z,z,, —ypz, -2z,

0 0 0 zn Yn 1 —Zn¥, —Un¥n —Vn

Ici on utilise une normalisation différente de celle mentionnée précédemment. On
fixe la norme du vecteur h égale 4 1. La solution qui minimise la norme de Fobenius!
|| Ak || avec la contrainte || h ||= 1, est donnée par le vecteur propre correspondant
a la plus petite valeur propre de A*A . Ce vecteur propre est obtenu directement a

partir de la décomposition en valeurs singuliéres de A (voir section 2.4.1.4).

Yci || - || représente la norme de Fobenius. Pour un vecteur donné a = (ay,...,85), OR & :
”G“=va-a= \/ali-{.....{.a?v



Solution géométrique non linéaire

Dans ce cas la matrice H est obtenue en minimisant la somme des distances eucli-
diennes, dénotées par d, entre les points mesurés et les points reprojetés par H. Soit
m, un point dans le premier plan image et m son correspondant dans le deuxiéme
plan image, 1a transformation H qui projéte m. dans le deuxiéme plan image doit
minimiser la distance entre le point projeté Hm. et le point correspondant m,. De
méme elle doit minimiser la distance de la projection inverse puisque H est inversible.

Cette minimisation s’écrit
mgnz.(da(m',, Hm,) + d*(m., H'm.)).

Homographie A partir des lignes

Comme la ligne est la duale du point, on peut utiliser les techniques décrites plus
haut pour résoudre ’homographie a partir d’'une correspondance de lignes. Il suffit
de remplacer les points par les lignes dans les équations précédentes et d’utiliser la

relation d’homographie liant deux lignes appariées (équation 2.6).



23

2.2 Modéle de la caméra

2.2.1 Modéle projectif

Comme la transformation projective contient les différents modéles de transformations
utilisés en vision, elle représente donc le modéle le plus général A partir duquel on
peut retrouver les autres modéles.

Les propriétés géométriques essentielles d'une projection pour former une image
peuvent étre modélisées par une application d’un espace tridimensionnel projectif
vers un plan projectif, qu’on peut représenter par une simple transformation linéaire
homogéene (Faugeras, 1993).

Un point de 'espace projectif 3D est représenté par un vecteur de coordonnées
homogenes de dimension 4. Une transformation projective générale est alors définie

par une matrice 4 X 4 :

Ty tu tiz tiz tig X1

2| |t tr laz t2 Xo

T3 t31 tsz faz ta X3
|z || tar faz tg3 Tas 11 X ]

Une projection vers un espace de dimension inférieure est obtenue en éliminant
un des coordonnées de 'espace projectif transformé. Nous choisissons, par exemple,

le plan défini par £, = 0. Ainsi tous les points sur le plan peuvent &tre représentés
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par un vecteur de coordonnées homogenes, [z;, T2, Z3]*. Le choix de =4 = 0 est
général, puisqu'on peut toujours transformer tout plan en celui-ci par une simple

transformation projective de ’espace 3D. La projection de I'image est donnée par

. _ 1| X

Ty tu ti2 tis tu4a
X2

T2 = t21 to lo3 T (2'7)
X3

T3 ta1 t32 13z ta3a

L . L ‘| x,

ou bien
m=TM.

La matrice de transformation homogéne T est estimée A un facteur multiplicatif
prés ; elle a 11 paramétres indépendants. Six points au moins dans l’espace et leurs
points images correspondants permettent le calcul de 7. Les techniques utilisées sont

les mémes que pour l'estimation de 'homographie (voir section 2.1.7).

2.2.2 Modeéle de projection perspective

L’application définie par I’équation 2.7 tient compte de plusieurs aspects dans la
formation d'images, par exemple les effets des distorsions introduites par les différentes
sources de bruit (distorsions verticales et horizontales causées par la lentille de la
caméra, erreur sur la position du centre optique, etc.). La matrice T peut &tre mise

sous une forme qui ne prend en compte que la projection d’un espace 3D dans un
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Yw

repére de ls acéne

Figure 2.4 : Modéle de projection perspective

plan image & partir d'un point central (projection centrale). Ce modele est le modéle
de projection perspective de la caméra (Faugeras, 1993). La géométrie de la caméra
perspective est définie A la figure 2.4.

Ainsi la transformation euclidienne d’un point P = [X, Y, Z] du repére de la scéne

au repére de la caméra est donnée par

Peym = R(P,, — O),

ol la matrice

Ry TiL Ti2 Ti3
R=| Ry | =71y T2 723
R; T31 T32 T33

définit 12 rotation entre le repére de la scéne et le repére de la caméra, le vecteur

R; = [ri1, Tia, r;;;], i =1, 2,3 représente la ligne i de la matrice R, O = [0, 02, 03]* est
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le vecteur de translation entre l'origine du repére de la scéne et 'origine du repére de
la caméra, Pegyn = [Xecam, Yeams Zeam)® €St le point P représenté par rapport au repére
de la caméra et P, = [Xy, Yy, Zy|t représente le point P dans le repére de la scéne.
L’origine de la caméra est confondue avec le centre de projection. La transformation
appliquée est donc la composition d’'une translation O suivie d’une rotation R.

Ces deux transformations sont représentées, en notation matricielle, par une ma-

trice de transformation homogene :

R, —(R,-0)
R, —(R;-0)
Tm =
Rs —(R3-0)
| 0 1]

Le point est projeté sur le plan image par la matrice

10 0 O

Torsji={0 1 0 0]

|0 0 1/f 0|

ou f est la distance focale de la caméra. La matrice de transformation composée,



T = Tproj Tezt est donnée par
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R —R-0)
T=| R, —(R-0) |- (2.8)
| Re/f —(Ra-O)/f |

Le cas le plus fréquent en vision est celui ou le centre de projection est a ’origine du

repére de la scéne et les axes de la caméra sont alignés avec les axes du méme repére.

Dans ce cas T = Tpro; - Ce qui nous ameéne aux équations de projection perspective

utilisées en vision. Pour un point de I'espace 3D, noté [X,Y, Z,1]t, on a

ll
&‘l‘-‘

<
[
«ﬂ’?

NI N

=f
=f

Parameétres intrinséques et paramétres extrinséques de la caméra

L’équation 2.8 peut &tre réécrite pour tenir compte des paramétres qui définissent

la géométrie interne de la caméra. Le modeéle analytique de la caméra devient la

composition d'une matrice de paramétres intrinséques Tj,; et d’une matrice qui définit

Porientation et la position externe du repére de la caméra par rapport au repére de



la scéne, Tppy ©

3 - -

3. T 0 uO Rl

T = Izﬂt Tat = 0 s" vo R2

-0 0 l/f- R

—(Ry,-0)

—(R;-0)

~(Ba-0) |
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; (2.9)

ou sz, s, représentent les tailles des pixels suivant z et y respectivement, %, et v,

désignent la position du point principal, c’est-a-dire l'intersection du plan image et

de I'axe des z. La matrice T' définit la projection perspective. C'est une matrice

3 x 4, appelée matrice de projection perspective ; elle projette un point 3D de la scéne,

(X, Y, Z,1]%, dans le plan image :

- X
z
Y
y|= int Teze =T
Z
1
- - 1

N N

(2.10)

En général on choisit le centre de projection 4 'origine du repére de la scéne et

les axes de la caméra alignés avec les axes de celui-ci. Ainsi dans un systéme de
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coordonnées normalisé ou f = 1, I'équation 2.10 s’écrit

R - 1ir 11 X
T sz 0 u, 1000
Y
y|=| 0 s, v 0100
Z
1 0 0 1 0010
ST i - 11

2.3 Cameéras stéréoscopiques

Le modele stéréoscopique est représenté par le déplacement entre deux repéres reliés
i chacune des deux caméras de la paire stéréoscopique, caméra gauche et caméra
droite. En général on choisit le repére d’une des caméras, par exemple la caméra
gauche, comme étant le repére de la scéne. Ainsi le modele stéréoscopique est défini
par une transformation homogéne entre le repére de la caméra gauche et le repére de
la caméra droite (Faugeras, 1993; Horn, 1986). La position et l'orientation de cette

derniére sont représentées par une matrice homogéne 4 x 4,

ou R est la matrice de rotation et ¢ est le vecteur translation. Ce sont les parameétres
extrinséques du modele stéréoscopique.
La figure 2.5 décrit la géométrie entre deux vues perspectives représentant une

paire stéréoscopique. La ligne qui relie les centres de projection des deux cameras,
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Figure 2.5 : Modéle de caméras stéréoscopiques

t = 0,0, intersecte chaque plan image en un point appelé point épipolaire ou épipole.
Pour un point de la scéne, M, le plan (0;0,M), coupe chaque plan image en une
ligne appelée ligne épipolaire. Cette ligne représente la projection d’une ligne 3D sur
le plan image. On peut observer sur la figure 2.5 que la projection m; d'un point
M de I’espace sur 'image gauche et le centre de projection de la caméra gauche O
définissent un rayon Oym;. Le point M est situé sur ce rayon et l'image de ce rayon
sur le plan image droit constitue la ligne épipolaire [, ( voir figure 2.5 ) .

Soit M, un point visible de la scéne. Ses coordonnées par rapport aux deux
vues sont respectivement M; = [X;, Y, Zi]* pour le repére de la caméra gauche et
M, =[X,,Y,;, Z,] pour le repére de la caméra droite. Ces deux points sont reliés par
la transformation suivante :

M, =RM;+t. (2.11)

On peut constater sur la figure 2.5 que deux rayons correspondants, passant par
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deux centres de projections, ont pour intersection un méme point de I’espace 3D. En

général on peut écrire cette relation sous la forme,

ME(t® M) =0 (212)

ou le produit vectoriel ® par ¢ correspond i une multiplication par une matrice

antisymétrique du vecteur translation de la forme

Qty=| ¢ 0 —t |-

L’équation 2.12 devient alors

M{Q@ERM, = 0,
(2.13)

M!EM, = 0,
oll E = Q)(t)R est appelée matrice essentielle (Longuet-Higgins, 1981; Hartley, 19925;
Hartley, 1992a). Une des propriétés les plus importantes de cette matrice est qu’elle
est de rang égal & 2 (Faugeras, 1993).

Les coordonnées images sont proportionnelles aux coordonnées cartésiennes de
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P’espace 3D :
[ h o h
z; X;
- i =1
u [Tz | Y t=4LT
L 1 J | % i

On a la contrainte suivante en coordonnées homogenes entre les points appariés
des deux plans images :

m{Em, = 0. (2.14)

La méme équation peut &tre étendue au cas d’'une transformation projective quel-
conque. Une caméra projective peut é&tre formée en appliquant une transformation
projective planaire & une image perspective. Appliquons & chaque image une trans-

formation planaire projective, my = Tym;, m, = T,m/. L’équation 2.14 devient

mi LT ET,m, = mfQm/, =0, (2.15)

o @ = TET, représente la matrice essentielle pour une transformation projective
quelconque. Cette généralisation présente un intérét particulier lorsqu’on introduit

les paramétres intrinséques des caméras dans le cas ou elles sont non calibrées.

Géomeét. ie épipolaire et paramétres intrinséques

Pour tenir compte des parameétres qui définissent la géométrie interne de la caméra,

on introduit la matrice de parameétres intrinsdques dans I’équation 2.14. On obtient
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alors ’équation? de transformation épipolaire de la méme forme que 'équation 2.15 :

mi(4) Q) RA  m, = 0. (2.16)

En posant

F = (A})'Q()RA,

I’équation 2.16 devient,

mi{Fm, =0. (2.17)

F est appelée matrice fondamentale (Faugeras, 1993; Hartley, 1994a). Comme la

matrice essentielle E (voir section 2.3), F est de rang 2.

Formulation linéaire de la contrainte épipolaire

Ainsi, pour une paire de points images appariés, m; = [z;, 1, 1] et m, = [\, ¥r, 1]},

I’équation épipolaire 2.17 s’écrit,

T Ty f11 + TeyiforL + Tr far + YrTi iz + Yi¥r fo2 + Yr a2 + T fra + Yifas + faz = 0. (2.18)

Cette équation peut &tre écrite sous une forme linéaire :

‘U,,Ef =0, (2.19)

2]ci on a gardé la méme notation que ’équation 2.14 pour représenter les points, m;.



avec

Ui = [:L'(IL’,-, TiYr; Tt Y1Trs NYrs Yt Trs Yr» 1]t1

f = [fu, fiz, fi3, fo1, fo2, fos, fav, Sz, fasl's

ou les f;; représentent les éléments de la matrice fondamentale F.
Pour un ensemble de n points appariés, les n équations linéaires de la forme de

I'équation 2.19 donnent un systéme d’équations linéaires :

Unf =0,

ot U, = [uy, -, ug)'-

Ce systéme d’équations épipolaires permet 'estimation de la géométrie épipolaire
de la paire de caméras stéréoscopiques par le calcul de la matrice fondamentale F'. La
matrice F permet, & partir d’un point sur la vue de gauche m;, de calculer sa ligne
épipolaire sur la vue de droite /.. Cette ligne épipolaire passe par le point image m,
qui est le correspondant du point image m; sur l'image de droite. Toutes les lignes
épipolaires se joignent en un point ep appelé point épipolaire. Le plan II, qui passe
par les deux points appariés m; et m,., leurs lignes épipolaires respectives I, et [; et le

point M de 'espace 3D qui leur correspond est appelé le plan épipolaire (figure 2.6).
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Figure 2.6 : Géométrie épipolaire

2.4 Calcul de la matrice fondamentale

Depuis que Longuet-Higgins (Longuet-Higgins, 1981) a introduit une méthode linéaire
pour le calcul de la matrice essentielle F, appelée 1'algorithme des huit points, afin
d’estimer la structure de la scéne, de nombreaux chercheurs se sont penchés sur le
probléme du calcul de la matrice essentielle dans le cas de caméras calibrées, c’est-a-
dire dont on connait les paramétres intrinséques a priori. Par la suite, le probléme
d’estimation de la matrice fondamentale F', dans le cas de caméras non calibrées, a
attiré I'attention de plusieurs chercheurs (Faugeras et al., 1992; Hartley, 1993; De-
riche et al., 1994; Csurka et al., 1997; Torr, Zisserman et Maybank, 1998; Zhang,
1997; Zhang, 1998c; Vieville, Faugeras et Luong, 1996). Vu I'importance de F' dans

la définition de la géométrie épipolaire d’une paire de caméras stéréoscopiques non
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calibrées, beaucoup d’efforts ont été déployés pour trouver de nouvelles techniques
pour la calculer. Les mémes techniques précédemment développées pour le calcul
de la matrice essentielle E ont été par la suite utilisées pour le calcul de la matrice
fondamentale F. Toutefois, vu la sensibilité du calcul de cette derniére aux erreurs
d’appariements, de plus en plus de méthodes dites robustes ont été développées pour
palier cet inconvénient. Comme la matrice essentielle F, la matrice fondamentale F'
peut &tre utilisée pour : la reconstruction de la scéne (Hartley, 1994¢; Zhang, Luong et
Faugeras, 1996; Laveau et Faugeras, 1996; Hartley, 1995; Horaud et Csurka, 1998; Bo-
ufama et Mohr, 1995), & une transformation projective prés, a partir de deux vues non
calibrées, la rectification de I'image (Faugeras, 1993; Seitz et Dyer, 1996b), le calcul
d’invariants projectifs (Shashua, 19944; Mundy, Zisserman et Forsyth, 1993; Hart-
ley, 19945), la détection de fausses mesures et la correspondance stéréo (Zhang, De-
riche, Faugeras et Luong, 1995). Dans la gamme des techniques pour calculer F'
on distingue principaleﬁlent deux classes, les méthodes linéaires et les méthodes non

linéaires (Zhang, 1996; Torr et Murray, 1997).

2.4.1 Méthodes Linéaires
2.4.1.1 Algorithme des huit points

L'équation de base définissant la matrice fondamentale, équation 2.17, donne lien
3 une équation linéaire et homogéne en termes des neufs coefficients de la matrice

fondamentale F', équation 2.19, comme nous avons vu plus haut. Comme la matrice
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fondamentale est déterminée 4 un facteur d’échelle prés, elle a donc huit parametres
indépendants. Ainsi, si nous disposons de huit appariements, nous pouvons déter-
miner une solution unique pour F, définie & un facteur d’échelle prés, en résolvant
un systéme linéaire composé de huit équations 2.19. Cette approche fut introduite
par Longuet-Higgins (Longuet-Higgins, 1981) puis par Tsai et Huang (Tsai, 1987),
et constitue ce qu’on a appelé I'algorithme des huit points. Elle a été largement
étudiée dans la littérature pour la détermination de la matrice essentielle et du mou-
vement relatif entre scéne et caméras (Mitiche, 1994). Un grand nombre d’algorithmes
développés par la suite en sont dérivés. Plusieurs études sur la sensibilité au bruit de
cet algorithme ont été menées et ont démontrées qu’il était en effet trés sensible. Cet
algorithme a été généralisé pour calculer la géométrie épipolaire 4 partir de caméras

non calibrées.

2.4.1.2 Définition du critére linéaire

Pour résoudre le systéme d’équations épipolaires, nous avons besoin de huit points
appariés. En pratique nous disposons d’'un nombre n plus grand d’appariements.

Nous utilisons une méthode des moindres carrés pour résoudre par rapport & F :

F = min S miFm, ), (2:20)



qui s’écrit aussi sous la forme
f=mn|Caf|*. (2:21)

Le vecteur f est défini & un facteur d’échelle prés. Une solution triviale existe
pour le probléme de minimisation 2.21 : c’est f = 0, qui n’est pas la solution que
nous recherchons. Pour résoudre ce probléme, il faut imposer certaines contraintes

sur les coefficients de la matrice fondamentale.

2.4.1.3 Technique des moindres carrés linéaire

Cette méthode consiste A fixer un des coefficients de la matrice fondamentale F égale &
1, puis & résoudre, par rapport aux huit autres coefficients, ’équation 2.21 en utilisant
une technique de moindres carrés linéaire. L’inconvénient de cette approche est que
nous ne disposons pas d’information a priori sur la matrice fondamentale. Donc, si on
choisit un des coefficients a fixer 4 1 qui en réalité est égal & zéro, la matrice obtenue
sera trés différente de la vraie matrice fondamentale. En général, le coefficient qui est
choisi égal & 1 est fs3. Toutefois, par exemple dans le cas d’une translation pure, la
matrice fondamentale est antisymétrique et en conséquence le dernier coefficient de
la matrice est égal & 0. Il faut donc éviter alors de le normaliser & 1. Pour remédier
a cet inconvénient, nous pourrons essayer toutes les neuf possibilités, en normalisant
a chaque fois un des coefficients & 1, puis de résoudre ’équation 2.21 et de choisir

la meilleure estimation obtenue, c’est-a-dire celle pour laquelle I'équation 2.21 est
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2.4.1.4 Minimisation sous contrainte

La seconde méthode consiste A imposer une contrainte sur la norme de f. Nous
pouvons fixer cette norme a 1, || f [[=1. Ainsi, tous les coefficients de f contribuent
d’'une maniére équivalente au processus de minimisation. La relation 2.21 devient
alors :

f=min||U.f | avec | fl=1 (2:22)

C’est un probléme de minimisation sous contraintes. Il peut é&tre transformé en
un probléme de minimisation sans contraintes en introduisant les multiplicateurs de

Lagrange (Golub et Van Loan, 1989). L’équation 2.22 s’écrit alors :
f=minF(f,%), (2.23)

avec

FXN) =1 Unf P +20~ |l £ 11, (2:24)

oll A est le multiplicateur de Lagrange. En posant la dérivée premiére de F(f,A) par

rapport & f égale & zéro, nous obtenons la relation suivante :

UtU.f = Af. (2.25)
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La solution f est donc le vecteur propre de la matrice 9 x 9, UiU,, et A est la
valeur propre correspondant 3 ce vecteur. Comme UEU,, est symétrique et semi-définie
positive, toutes ses valeurs propres sont réelles et positives ou bien nulles. Soient les

valeurs propres de UEU, prises dans un ordre décroissant:

Il y a donc 9 solutions possibles : A = X; , 2 =1,---,9. En substituant la solution
dans 2.24 nous obtenons

]:(f:'xi)=’\i-

Comme nous cherchons A minimiser F(f, A), la solution 4 I’équation 2.22 est donc

le vecteur propre de la matrice UtU, correspondant a la plus petite valeur propre soit

Ag.

2.4.1.5 Contrainte de rang 2

La formulation linéaire du probléme présente ’avantage de permettre une solution
analytique simple. Toutefois, elle reste trés sensible au bruit. Une des raisons est
que la contrainte de rang 2 (voir section 2.3) n’est pas satisfaite. En effet, il est bien
conmu que la matrice fondamentale est une matrice 3 x 3, mais que son rang est égal
a4 2 (det F = 0). Une des techniques utilisées consiste & imposer la contrainte de

rang 2 a posteriori (Hartley, 19925). La matrice fondamentale F, calculée par 'une
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des méthodes mentionnées plus haut, est remplacée par la matrice F qui minimise la

norme de Fobenius || F — F || sous la contrainte det F' = 0,
f= ml';n | F—F|, avec(det F=0). (2.26)

Pour résoudre 2.26, posons

F =USV,

ce qui représente la décomposition en valeurs singulidres de la matrice F, on
S = diag(01,02,03) est la matrice diagonale telle que oy > o2 > o3 (avec o; la
¢ valeur singuliére). U et V sont deux matrices orthogonales. Il existe donc une
matrice F* telle que

F=USv*
qui minimise la norme de Fobenius de F' — F’, avec S = diag(oy,02,0).

2.4.1.6 Minimisation d’un critére géométrique

La forme de la relation 2.21 utilise un critére de minimisation qui n’exploite pas
l'information contenue dans la géométrie épipolaire de I'image. Un critére valide
serait celui qui essaierait de minimiser une mesure ayant une signification physique.
La mesure qui est proposée dans la littérature (Luong et Faugeras, 1992; Luong et

Vieville, 1994; Zhang, 1998b) est la distance entre les points appariés et les lignes



épipolaires qui leur correspondent,
min 3" d*(my, Fmy) 2:27)
i

ol m, est un point du plan image gauche, et [; = F'm, est la ligne épipolaire qui
lui correspond sur le plan image droit. Idéalement la ligne épipolaire de gauche,
Ii = Fm, = [l},l, 3] , passe par un point m; se trouvant sur l'image gauche qui
est le correspondant du point m,. En pratique cette ligne épipolaire se trouve 4 une

distance d de ce point :
dm, ) = ——= 'lc:mfF my, (2.28)

avec c = /12 + 3.
La relation 2.27 peut étre minimisée en F', en utilisant une procédure itérative de

moindres carrés pondérés.

Relation avec le critére linéaire

En utilisant la distance entre les points et les lignes épipolaires 2.28, le critére linéaire,
équation 2.20, devient

min Y~ mi, ).

i=1
Le critére linéaire tend 4 minimiser non seulement une mesure physique d(m;, l;),

mais aussi ¢;, qui n’est pas une mesure physique par rapport a la géométrie épipolaire
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entre les deux vues. Ainsi, le critére linéaire introduit un biais dans le calcul de la
matrice fondamentale et tend a placer I’épipole au centre de l'image dans certains
cas (les lignes épipolaires vont se croiser en un point qui se trouve proche du centre
de I'image tel que observé par Luong (Luong et Faugeras, 19945; Luong et Faugeras,

1994a)).

2.4.1.7 Normalisation des données

L’analyse, du point de vue numérique, de la grande instabilité de la méthode linéaire
lorsque les coordonnées, en pixels, sont directement utilisées dans la procédure de
minimisation a amené la proposition de méthodes permettant le traitement des don-
nées A l'entrée avant de procéder a la minimisation du critére linéaire pour le calcul
de la matrice fondamentale. Si nous prenons la matrice de données utilisée en 2.25,

UtU,, sa décomposition en valeurs singulidres s’écrit

UtU, = UDUY,

ol U est une matrice orthogonale, e¢ D = diag(Ay,---,A9) avec les A; en ordre
décroissant. k = A;/)\g représente la condition de la matrice UiU,,. La condition
représente un trés bon indice d’analyse de stabilité des problémes linéaires. Si x est
grand, un peu de bruit en entrée peut entrainer une grande variation des résultats en
sortie. Dans notre cas la matrice UEU,, est mal conditionnée, sa condition, &, est trés

grande (~ 10%). Ceci est dft & la non-homogénéité des coordonnées images utilisées.
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Plusieurs méthodes ont été développées pour résoudre des systdmes mal conditionnés,
la plupart utilisent une normalisation de la matrice de données qui tend a réduire la
condition de cette derniére. Une technique de normalisation des coordonnées images
fut proposée par Hartley (Hartley, 1997a) pour bien conditionner la matrice ULU,.
Supposons qu’on remplace les coordonnées des points my;, de 'image gauche par
my; = Tmy;, et les coordonnées des points my;, de I'image droite par m,; = T'my;,
avec T et T' deux matrices 3 x 3. En remplacant dans m{;Fm,; = 0, nous obtenons :

LTt FT' ', = 0.

Cette relation implique que ' = T—tFT'~! représente la matrice fondamentale
correspondant aux appariements mi; <> T,;. La nouvelle méthode d’estimation de la

matrice fondamentale est résumée ci-dessous :

1. Transformer les coordonnées image par T et T', tels que my;; = Tmy et

Miri = T'Myy.

2. Trouver la matrice fondamentale F qui correspond A 77y; > Ty par l'une des

méthodes décrites plus haut.

3. Retrouver la matrice fondamentale originale par F = TtFT".

11 faut donc choisir deux transformations T et 7" qui permettent une normalisation

efficace des données dans le sens de la réduction de la condition de la matrice UtU,.
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L’analyse montre qu'une normalisation des données telle que leur moyenne soit de
I'ordre de 1'unité peut améliorer significativement les résultats de la méthode linéaire.
Deux techniques peuvent étre utilisées pour faire cette normalisation. La premiére
consiste & centrer I'origine de I'image, généralement prise en haut a gauche, puis nor-
maliser les coordonnées, de maniére 4 avoir des points 4 une distance moyenne égale
4 /2 par rapport 4 Porigine. Ces transformations sont menées indépendamment sur
les deux images, cette technique est appelée normalisation isotropique. La deuxiéme
technique procéde de maniére équivalente, d’abord en amenant le centroide des points
a l'origine, puis en effectuant une normalisation sur 'ensemble des points pour que
les deux moments soient égaux & 1. Ceci se fait d’'une maniere simple en une seule
opération, en utilisant la décomposition de Cholesky. Les points rn; sont utilisés pour
former une matrice 3°; mymé. En la décomposant par la transformation de Cholesky,
nous obtenons,

Y mm} = NKK®,

oi K est une matrice triangulaire supérieure. La transformation choisie est :

m; = K~'m;. Les points 73; sont tels que
Y mg =Y K 'mimiK* = NI,
i T

ot I est la matrice identité. Les points 7; ont donc leur centroide & I'origine et les

deux moments principaux sont égaux 3 1. Comme K est une matrice triangulaire
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supérieure, elle représente une transformation affine, c’est pourquoi on appelle cette

technique, normalisation affine ou normalisation non-isotropique.

2.4.2 Meéthodes non linéaires

Nous avons vu précédemment quun nouveau critére a été introduit dans la littérature
(Luong et Faugeras, 19945). Il est basé sur la minimisation de la distance entre les
points et les lignes épipolaires correspondantes (équation 2.27). L’extension de ce
critére de minimisation aux deux images formant la paire stéréoscopique, nous donne

la relation suivante :
f = m}nE‘(dz(mIi: Fmri) + dz(fnﬂ’: thﬁ))1 (2'29)

qui opére une minimisation simultanée sur les deux images.
Soit li; = Fmy; = [li1, b2, U3t et by = Frmy; = [lp1, L2, Ir3]®. En utilisant 'équation

2.28 et m{F'm, = m{F*my, la relation 2.29 s’écrit
f= m}nz‘: wZ(mf;Fmy)?, (2.30)

avec

w; = = + . :
T\R+R B+B)
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Meéthode itérative

L’estimation de 2.30 peut étre faite par une technique de moindres carrés pondérés.
Ainsi la multiplication du critére linéaire par le coefficient de pondération w; revient
a remplacer les coeflicients u; dans 'équation 2.19 par wj;u;, puis résoudre 2.21 par
une méthode de moindres carrés linéaires. Comme les coefficients w; dépendent de
la matrice fondamentale, une solution initiale pour F’ est nécessaire pour commencer
le processus itératif, cette solution étant obtenue en choisissant au départ les w; = 1.
Toutefois cette méthode donne des résultats équivalents & la méthode linéaire clas-
sique. La raison principale est que la contrainte de rang 2 de la matrice fondamentale

n’est pas prise en compte.

Paramétrage non linéaire

Pour tenir compte du rang de la matrice fondamentale, il a été proposé (Luong
et Faugeras, 1996; Zhang, 1996) d’utiliser des paramétrages particuliers de celle-ci.
L’objectif est de choisir la matrice 3 x 3, de rang 2, qui minimise 2.30. Une technique
consiste & exprimer certains parameétres de la matrice fondamentale en fonction des
autres. Le critére & minimiser en 2.30 devient non linéaire. Une solution initiale est
nécessaire pour résoudre cette minimisation non linéaire. Elle est obtenue par I'une

des méthodes linéaires décrites plus haut.



2.4.2.1 Meéthode du gradient

Les techniques de moindres carrés donnent de bons résultats lorsque la variance pour
chaque terme est presque la méme. Comme chaque f; = m§;F'm,; a une variance 0_2,,»

différente, nous cherchons donc A minimiser :
min 3 fi/og (2:31)
Une approximation de la variance de f; au premier ordre donne,
o=l + U+ 10 + 13

et 2.31 devient

m}nZ(mf,-Fm,;)z/g?,
%

avec g; = \/ 2 + & + 12 + 12, représentant le gradient de f; (Luong et Faugeras,

1996).

2.4.2.2 Techniques robustes

Etant donné que les mauvais appariements influencent de facon trés négative les
résultats du calcul de la matrice fondamentale, plusieurs auteurs (Zhang, 1996; Luong
et Faugeras, 1996; Torr et Murray, 1997; Torr et Zissermann, 1997; Hartley, 1997¢) se

sont penchés sur 'utilisation des techniques de statistiques robustes appelées méthodes
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de régression robustes (Rousseeuw et Leroy, 1987). Ces méthodes ont été utilisées dans
le passé en vision par ordinateur dans la segmentation du mouvement (Mitiche, 1994),
la reconstruction 3 partir de données obtenues par les senseurs (Zhang et al., 1996) et
plus récemment en P’estimation de la géométrie épipolaire (Luong et Faugeras, 1996).
L’attrait de ces techniques, est qu'elles permettent d’éliminer les fausses mesures si
leur nombre est faible. L'objectif est de retrouver les appariements qui dévient le plus
du modele épipolaire, et de les éliminer avant d’utiliser une procédure de minimisation
sur 'un des criteres cités plus haut. Deux des méthodes robustes les plus utilisées

sont présentées par la suite.

M-estimateurs

Les techniques standards de moindres carrés essaient de minimiser la différence entre
la valeur d’une observation et sa valeur estimée par un modéle donné, c’est-a-dire
minimiser le carré des résidus r; pour chaque observation i, min ;2. Cette tech-
nique est instable lorsqu’il y a de fausses mesures dans 1’ensemble des données. Les
M-estimateurs permettent de réduire les effets des fausses mesures en remplacant le

carré des résidus par une autre fonction des résidus,

min 3~ p(r:)-
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Cette fonction peut &tre écrite sous la forme d'une minimisation pondérée,
. k—
min ) w(r® 2,
i

ou w(z) = ¥(z)/z représente le coefficient de pondération, et ¥ (z) = dp(z)/dz est
appelée fonction d’influence. L’indice k£ désigne l'itération courante. Le choix de
la fonction p est trés important. Elle doit étre symétrique, définie positive avec
un minimum unique en zéro, et elle doit diverger moins vite que la fonction carré.
Plusieurs choix de fonction pour p sont présentés dans la littérature, la plus utilisée

est la fonction de Tukey :

(c2/6) (l - [1 - (ri/ca’)z]s) sir;j] <co
(2/6) sinon

Ty =

ol o représente la déviation standard du bruit et c est une constante.

Moindre médiane des carrés

La méthode la moindre médiane des carrés est la méthode la plus utilisée en détec-
tion et élimination des fausses mesures dans plusieurs techniques de vision. Ici elle
est utilisée pour estimer les parametres de la matrice fondamentale en résolvant le

probléme d'optimisation non linéaire suivant :

-~ - - . 2
f = min median; r;.
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Cet estimateur permet d’obtenir la plus petite valeur pour la médiane des carrés des
résidus sur Pensemble des données. Pour cela il faut chercher dans I’espace des points;
ceux qui donnent la meilleure estimation possible. Comme l’éspace est trés large, une
méthode basée sur une recherche dans I'espace de maniére aléatoire est utilisée. La
procédure pour calculer cette estimation est décrite dans I'algorithme suivant :

Pour un appariement de n points donnés: (mi,my) i=1,...,n.

1. Une technique de Monte-Carlo est utilisée pour choisir un nombre m de sous-

ensembles formés chacun par 7 points.
2. Pour chaque sous-ensemble J, on calcule la matrice fondamentale F;.

3. Pour chaque F;, on calcule la médiane des résidus carrés, M;, par rapport a

I’ensemble des points correspondants,

M; = median;_,..,[d*(my, Fymys) + d*(mys, Fimys)).

4. Choisir Fy pour laquelle M; est minimale.

Remarque

Dans la section précédente nous avons revu les principales méthodes de calcul de la
matrice fondamentale utilisées dans différents domaines reliés a la vision par ordina-
teur. Récemment, les chercheurs se sont de plus en plus intéressés & I'évaluation des

performances des techniques de calcul de la matrice fondamentale existantes (Torr et
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Murray, 1997; Zhang, 1996; Csurka et al., 1997). Les différentes études montrent que
ces techniques sont souvent trés instables : I'existence de faux appariements influence
d’une maniére significative les résultats de ces algorithmes. Ainsi, on reléve que les
méthodes linéaires sont les moins performantes relativement aux critéres de préci-
sion, de stabilité et de robustesse aux erreurs induites par les faux appariements. Par
contre, les méthodes non linéaire donnent de meilleurs résultats. Toutefois, ils sont
aussi trés instables par rapport aux erreurs d’appariement. Les méthodes utilisant
les statistiques robustes sont les plus performantes mais au détriment du temps ma-
chine qui est souvent exorbitant. Tout cela nous a amené A développer une nouvelle
technique linéaire de calcul de la matrice fondamentale qui exploite I'information ex-
istante dans la scéne A savoir la présence de surfaces planes. Ces surfaces vont nous
permettre d’ajouter plus de stabilité au processus de calcul tout en gardant I’élé-
gance de 'utilisation d’une technique linéaire permettant un gain en temps de calcul

appréciable. Dans la suite nous décrivons la méthode proposée.

2.5 Approche proposée : Exploitation de la con-

trainte de planarité

Nous avons développé une nouvelle méthode linéaire qui exploite des informations
additionnelles sur 'environnement, qui pourraient étre disponibles dans certains cas,

pour résoudre la contrainte épipolaire et calculer la matrice fondamentale de facon
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robuste (Akhloufi, Tong, Polotski et Cohen, 1998). Ici nous allons utiliser la contrainte
de planarité reliée 4 la présence de surfaces planes dans la scéne.

La projection d'un plan II, de I'espace dans un plan image, est définie par une
transformation projective T, appelée colinéation. Cette transformation projette un
plan physique de la scéne II, en un plan 7 dans le plan image (figure 2.7).

Si on prend un point M = [X, Y, Z]* du plan II, sa projection dans le plan image

gauche est définie par,

my =TM, ’
c’est-a-dire . N o
z; tin tiz i3
174 = t21 t22 t23 Y ’ (2'32)
1 t31 132 33

ol my = [z, 1, 1]° est la représentation canonique du vecteur de coordonnées ho-
mogénes qui résulte de la projection du point M dans le plan image gauche.

De méme, si m, = [z, yr, 1]® est la représentation canonique du vecteur de coor-
données homogenes résultant de la projection de M dans le plan image droit, il existe
une colinéation T’ qui représente la transformation projective 3D-2D du plan IT dans
I'image de droite,

m, =T'M,



c’est-a-dire

W

- _ < -
L1 th 2 Ys

=|th e te || Y| (2:33)
1] I ty 32 13 1L ]

En combinant 2.32 et 2.33, on obtient la relation qui lie les deux points correspon-

dants m; et m, (figure 2.7) :

ol H =

-

hu hiz s

hat haz has

hsi hsa has

my = T'T"lm;
(2.34)

représente une transformation homogéne qui applique

I'image d’un plan, se trouvant sur Pimage de gauche notée 7, en 'image d'un autre

plan notée 7, et qui se trouve sur le plan image droit. m et 7, sont les images d'un

méme plan physique II, de la scéne. H est appelée homographie. Nous avons vu

dans la section 2.1.7 que H est déterminée A un facteur multiplicatif prés. Nous

utiliserons ’homographie entre plans présents dans les deux vues pour calculer la

matrice fondamentale. Dans ce qui suit, nous allons décrire l'algorithme utilisé.
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I

1
H =TT Ir

Figure 2.7 : Homographie entre surfaces planes

2.5.1 Description de la méthode proposée

Soient deux images obtenues par une paire stéréo (image droite et image gauche). Si
on prend deux plans dans la scéne, II; et I, leurs images pour la caméra gauche sont
notées m; et s respectivement, et leurs images pour la caméra droite sont notées
Tr1 et 9. En utilisant la relation 2.34, on peut établir la relation entre m; et 7, et

entre m;; et m,2 en résolvant les équations suivantes :

e Pour le plan II, :

Mes = Hlmu, (2.35)

ol m,; et my; sont les coordonnées des points images correspondants aux points M;
du plan I1;. H,; est calculée 4 partir de la correspondance entre les projections d’au

moins 4 points du plan II;, en utilisant I'une des techniques décrites dans la section
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2.1.7.

e Pour le plan Il :

My = Hpmy;, (2.36)

ol ™,; et my; les coordonnées des points images correspondants aux points M; du
plan II,. H, est estimée i partir d’au moins 4 points appariés, appartenant au méme

plan IL,.

La ligne épipolaire

Pour tout point m;(¢,7),t =1,...,N:et : 5 =1,...,M (o0 (N, M) est la taille
de I'image) dans le plan image gauche, on peut calculer la ligne épipolaire qui lui
correspond dans P'image droite, en utilisant les homographies. Si on considére un
rayon qui passe par le centre optique de la caméra gauche et par le point image
my(%, ), il doit rencontrer le plan IT; en P; et le plan II; en P, (figure 2.8). Puisque
les points images de P et P, coincident en un méme point image m;(%, j) dans le plan
image gauche, leurs coordonnées homogenes sont les mémes. Leurs points images

dans le plan image droit sont obtenus de la maniére suivante :

e De l'équation 2.35 on a :

'm.,.(l) = lelm;.

e De ’éguation 2.36 on a :



11!,.(2) = kgHzﬂ'l(.

La ligne passant par m,(1) et m.(2) dans le plan image droit est la ligne épipolaire

correspondant & my(%, j). Son équation est donnée par

lr= 171,(1) ® ""1‘(2):

ol ® désigne le produit vectoriel.

Le point épipolaire

Pour chaque point m(3, j) dans le plan image gauche, on a la ligne épipolaire /.(z, j)
qui lui correspond dans le plan image droit. Ces lignes épipolaires s’intersectent en un
point du plan image droit, appelé point épipolaire ep” (figure 2.8). Ses coordonnées

homogénes sont obtenues pour chaque paire de lignes par la relation suivante :

ep” =1.(,7) ® I (k,l) i,k=1,...,N, jl=1,...,M; i#kj#L

En prenant la moyenne des valeurs obtenues pour I’ensemble {ep"}, on détermine
le point épipolaire ep”. Lorsque les lignes épipolaires sont paralléles, le point épi-
polaire se trouve a l'infini dans le plan image droit. Néanmoins, on peut toujours le
représenter en utilisant les coordonnées homqgénes.

De la méme fagon on peut trouver le point épipolaire ep' sur le plan image gauche.
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2.5.2 Relation avec la matrice fondamentale
Pour un point m; sur le plan image gauche, la matrice fondamentale F* définit la

ligne épipolaire {, sur le plan image droit qui lui correspond. Nous avons la relation

suivante (voir section 2.4.1.6) :

F'my=1,. (2.37)
h
Posons F = | f, |, ou les f; représentent les lignes de la matrice F, et
fs
-.t -
lr = [ I, I; I3 |»oulesl; représentent les coordonnées homogénes de la ligne I,.

Soit le point épipolaire sur le plan image droit défini par le vecteur de coordonnées

homogenes :

e = [ep'(1), e (2), ep'(3)] .

Avec les contraintes épipolaires on peut expliciter la contrainte de rang 2 pour la ma-
trice fondamentale. On distingue deux cas particuliers : lorsque les lignes épipolaires
se croisent en un point a distance finie, ep'(3) # 0, et lorsqu’elles sont paralleles,

c’est-a-dire qu’elles se croisent a I'infini, ep’(3) = 0.

2.5.2.1 Cas des épipoles A distance finie

Ici nous considérons le cas ou toutes les lignes épipolaires s'intersectent en un point

a distance finie sur le plan image.



Proposition 1

Soit ep’(3) # 0. Posons :

r_ ep'(1) eph = er'(2)

Pz = op(3)’ P (3)

(epl,epl) sont les coordonnées cartésiennes du point épipolaire dans le plan image
gauche. Nous avons alors la relation suivante :

fs = —epfr — ep fa- (2.38)

Cette expression nous permet de définir la contrainte de rang 2 en fonction des coor-
données du point épipolaire.

Preuve

Nous allons montrer ici comment obtenir la relation 2.38 4 partir des relations
définies par les contraintes de la géométrie épipolaire. Nous avons la relation suivante

entre la matrice fondamentale et le point épipolaire :
Fept =0, (2.39)

ou ep' est le point épipolaire dans le plan image gauche. Le vecteur de coordonnées

du point épipolaire est orthogonal aux lignes de la matrice fondamentale : ep’Lf,
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(Y

Figure 2.9 : Contrainte définie par la matrice fondamentale et le point épipolaire

ep'Lf, et ep'Lfs. fi, fo et f3 sont sur un méme plan perpendiculaire au vecteur
représenté par le point épipolaire ep’ (figure 2.9).

Choisissons une représentation normalisée pour ep’, fi, f2 et fi. Nous avons :

et = kep,
f 1 = klf—lv
f2 = kafo,

ol k, kiet kp sont des constantes. Prenons le cas ou ep # 0, fi # 0 et fo # 0. Soit

une matrice A telle que :
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et

Afs=afL +bfa. (2.40)

En multipliant I’équation 2.37 par A nous obtenons :
AF*my = Akl,,

c’est-a-dire

A [ fr R ] my = Akl,. (2.41)

A partir de la relation 2.40 nous obtenons

ak1

Afs=qafi+bfa=| pk,

L’équation 2.41 s’écrit
kl 0 ak1

0 ky bky | ™u=Akl .

Posons

ay

as
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Nous obtenons alors

aly _ kim(1) + akym(3)
@l kym(2) + bkpm(3)

Soit

_ml) _m(2)
m@3)’ Y~ m@3)’

ou (z,y) sont les coordonnées cartésiennes du point image m; dans le plan image

gauche. Nous avons donc :

Gllr _ k]ﬂ? +ak1 _ kl z4ao (2 42)
amly ky+bks kay+b
Soit un point mg de I’image gauche. Tous les points se trouvant sur la ligne épipolaire
l; qui passe par mg et ep;, se trouvent sur la méme ligne épipolaire dans le plan image
droit. Pour m, se trouvant sur la ligne épipolaire /;, nous avons alors :

al, kizo+a
_ 2.43
(lz[r kz Yo + b ’ ( )

avec

_m() _ m(2)

0= me(3) T me(3)

A partir des deux équations 2.42 et 2.43 nous obtenons

Zo+a z+a
Yo+b  y+b
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C’est I’équation de la ligne épipolaire /; (qui passe par my et ep’). Soit un point m,
qui n’appartient pas a la ligne épipolaire [; passant par mg et ep!, nous avons alors
’équation de la ligne épipolaire qui passe par le point image m, et ep :

TZi1+a _zTt+a
ynn+b  y+b

Ces deux lignes épipolaires s'intersectent en un point que nous noterons (—a, —b).

Ce point correspond au point épipolaire ep’ dans le plan image gauche :
a=—epl, b= —ep'y.

De P’équation 2.40, nous obtenons alors la relation définie dans la proposition 1 :
f3= —eptzf | Ry ep:,fz,

ce qui compléte notre preuve.

2.5.2.2 Calcul de la matrice fondamentale

En remplacant f; dans 'équation 2.37 par son expression dans I’équation 2.38, nous

obtenons :

[ff i —er.fi-enf} ] ™y = lr. (2.44)
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Dans 1'équation 2.44 les inconnues sont fi = (fu1, fiz, fis) et f2 = (fa1, fa2, f23). Pour

chaque point m; du plan image gauche, nous obtenons deux équations de la forme :

fu(my — epims) + fa(ma —eplms) 1

fis(my — ephms) + fa(ma —epms) 13’ (2.45)
fiz(my — epm3) + fra(ma — epims) _bk (2.46)
fis(my — epim3) + faz(ma —epims) Iz ]
Posons :
=m  _T2
= ma Y= ms ’

ol z et y sont les coordonnées cartésiennes du point image m; dans le plan image

gauche. Les équations 2.45 et 2.46 deviennent:

fu(z—ep) +fuly—ep) 4
fis(z —epl) + fs(y—ep)) ~ I’ (247)

fio(z —epl) + fo(y—ep) b

fua(z—ept) + faly—edd) I3 (248)

Les équations 2.47 et 2.48 peuvent s’écrire sous forme d’équations linéaires en ter-
mes de fy; et fa, i = 1,2,3. On peut calculer f; = (fu1, fi2, fia) et fo = (far, fa2, fs)
a4 un facteur d’échelle prés en résolvant un systéme d’équations linéaires. Ici trois ap-
pariements au moins sont nécessaires pour résoudre ce systéme d’équations linéaires.
fa est obtenue en remplacant f, et f, dans I'équation 2.38. Comme une des lignes de

la matrice fondamentale est une combinaison linéaire des deux autres, la contrainte
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de rang 2 est satisfaite. Ceci enléve ’étape d’approximation a posteriori de la matrice
F, en imposant le rang 2 (voir section 2.4.1.5), qui est une source additionnelle de

bruit, d’on la robustesse de la méthode proposée.

2.5.2.3 Cas des épipoles A ’infini

Ici nous considérons le cas des épipoles A l'infini. Dans ce cas, les lignes épipolaires
sont toutes paralleles, c’est-a-dire qu’elles s’intersectent a I'infini. Ceci correspond a

une transformation purement translationnelle le long des deux plans images.
Proposition 2

Soit ep'(3) = 0. Posons

"=[u1, uy, us]'

Nous avons les deux relations suivantes :
fi = et @, (2.49)

fo = —ep'(1)u. (2-50)
Preuve

La preuve de la proposition 2 s’obtient de la méme fagon que pour la proposition
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2.5.2.4 Matrice fondamentale pour des épipoles a l'infini

En remplagant dans 2.37 f; et f, par leurs expressions 2.49 et 2.50 nous obtenons,

[ ep' (2Qut —epf(V)ut fE ] my =l (2.51)

Pour chaque point [z, y]* représentant le vecteur de coordonnées cartésiennes du point

image gauche my, la relation 2.51 donne les deux équations suivantes,

u(ep' )z —epf(y)+fis _ 4L
us(ep'(2)z ~ep(V)y) + fas &’ (2.52)

wa(ep Dz = ep(y) + fn _ o 259
w(F @)z () + fos b '

Ici les inconnues sont les variables: u = (u;, uz, u3) et fz = (fa1, fa2, fa3)-

Nous calculons u et f; en résolvant un systéme d’équations linéaires de la forme des
équations 2.52 et 2.53. Trois appariements au moins sont nécessaires pour résoudre ce
systéme d’équations linéaires. f et fo sont déterminés par les équations 2.49 et 2.50.
La matrice fondamentale F° est déterminée A un facteur d’échelle prés et respecte la

contrainte de rang 2.



2.5.3 Cas d’un modéle de caméras stéréo calibrées

Si nous considérons que les paramétres internes de la caméra sont connus, on a alors

Ia matrice essentielle a la place de la matrice fondamentale :

E =Q(t)R,

oil R est la matrice de rotation et Q(f) la matrice antisymétrique du vecteur transla-

tion.

Proposition 3

Posons

€1

E = ez

€3

Si ep'(1) # 0,ep'(2) # 0, ep'(3) # 0, alors le point épipolaire ep sur le plan image
gauche est donné par
o=

t37 t3,

et lorsque t; # 0, nous avons la propriété suivante :

ey = — e — 2e,. (2.54)
t3 i3
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Nous remarquerons que cette propriété est équivalente a la relation 2.38 que nous

avons obtenue pour la matrice fondamentale pour imposer la contrainte de rang 2.

Preuve

Soit

Ty T21 T3
Tiz2 T2 T32

Ti3 T3 T33

la matrice 3 x 3 de rotation, et

t
t‘=[t1 ta t3] ;

le vecteur de translation. La matrice essentielle E est définie par (voir section 2.3) :

0 —t3 ¢, Ty T21 T3
E = ts3 0 =t | | T2 T2 T2 |°
—tz t1 0 T3 T2z T33

"’

—tari2 + tar13 —f3ree +tares —f3T3z + 12733

= tari — s fargr — 173 f3T3 — 11733

—tory + 4T —lora + T2 —foT3 + T3 ]

Si nous considérons une transformation entre les caméras telle que la composante

translationnelle ¢3 # 0 , nous vérifions facilement que :
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-~ - t =l - t
—t3ri2 + tari3 tari — T3
en = —Hf _a
3 = ts —t3To2 + taras ts tors; — 41723 y
—il3T32 + 2733 t3r3 — U133 ]

— _t ¢
—&eL — Jey,

ce qui compléte notre preuve.

Calcul de la matrice essentielle

Nous pouvons donc utiliser 1a méme approche développée en section 2.5.2 pour cal-
culer la matrice essentielle. Ici la contrainte de rang 2 sera imposée par la relation

2.54.

2.6 Conclusion

Apreés une bréve introduction  la géométrie projective, nous avons abordé le probléme
de calcul de la matrice fondamentale. Une revue des principales méthodes a été
présentée ot avons vu que les comparaisons faites par les chercheurs montrent que les
méthodes classiques souffrent d’une trés grande sensibilité au bruit. Ceci est souvent
dt & une mauvaise formulation de I’équation de contrainte épipolaire A résoudre, qui
ne tient pas compte des propriétés de la matrice fondamentale. La contrainte de rang 2
représente la propriété la plus importante a satisfaire dans ce cas. Nous avons présenté

une propriété importante reliant la matrice fondamentale et ’homographie entre les
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images de surfaces planes présentes dans la scéne. Cette propriété a été exploitée pour
définir la géomeétrie épipolaire et calculer la matrice fondamentale. Ici I'homographie
est utilisée pour définir, & partir des appariements, les lignes épipolaires sur chaque
image. Ces lignes permettent de calculer le point épipolaire sur chaque vue. Nous
avons montré que le point épipolaire peut &tre utilisé pour établir la contrainte de
rang 2, en Pintroduisant dans les coefficients de la mafrice fondamentale, avant de
résoudre le systéme de contraintes épipolaires. Ensuite, nous avons utilisé les lignes
épipolaires estimées par I’homographie pour contraindre le processus de minimisation
a converger vers une solution stable. Ceci nous a permis de poser le probléme sous
forme linéaire, permettant une résolution rapide et robuste. Des résultats seront

présentés plus loin.
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Chapitre 3

Invariants projectifs

Une des propriétés les plus importantes des transformations projectives est que cer-
taines mesures géométriques sont invariantes par rapport a celles-ci. Ces mesures per-
mettent de définir une propriété invariante d'une configuration géométrique présente
dans la scéne. Dans ce chapitre nous allons nous intéresser plus particuliérement aux
invariants projectifs dans le plan projectif P? et I’espace projectif 73 (Mundy et al.,
1993; Maybank, 1995; Csurka et Faugeras, 1998; Shashua et Navab, 1996).

Nous allons tout d’abord introduire de maniére générale la définition d’un invari-
ant. Puis nous allons définir l'invariant fondamental en géométrie projective : le
birapport. Nous donnerons les définitions de base du birapport et nous présenterons
les différentes techniques pour le calculer 4 partir de points, de lignes et de plans.
Nous montrerons qu’il est invariant par rapport 4 toute transformation projective.

Nous définirons par la suite la notion de coordonnées projectives et leurs relations
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avec le birapport et les coordonnées homogeénes. Puis nous allons étendre la notion
d’invariance aux géométries affines et euclidiennes.

Dans la derniére partie de ce chapitre nous définirons deux nouveaux invariants :
le premier est basé sur deux homographies et un point de référence, et le deuxidéme

sur une seule homographie et une ligne de référence.

3.1 Introduction aux invariants projectifs

3.1.1 Deéfinition d’un invariant

Soient deux ensembles E; et E, et un ensemble T" de transformations de F; dans E,.
Soit I une fonction des éléments de E,. I est un invariant s’il prend la méme valeur
pour toutes les images d’un élément p de E; par n’importe quel élément de I’ensemble

des transformations T :

Vpe E,, Y, €T, I(t'(p)) = I({(p))-
Si les transformations sont appliquées dans un méme ensemble, c’est-a-dire,
E, = E,, on a la définition suivante :
VpeE, VteT, I(t(p))=I(p).

Pour chaque point p de E on définit 'orbite Op comme 1’ensemble des points
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images de p par toutes les transformations de T,

0, = {tp) |t T}

On peut conclure que si I est un invariant pour les transformations T de F; dans
E,, alors I est constant en tous les points d'une méme orbite.
Un invariant est dit complet s’il est unique pour chaque orbite, c’est-a-dire si et

seulement si :

I(fi)=I(f:) < 3peE; telque f,€0,et fa €O,

3.1.2 Le birapport

Le birapport est 'invariant projectif fondamental & partir duquel on peut exprimer
d’autres invariants. Ainsi tout invariant projectif est défini en termes de birapports.
Par exemple, une conique est caractérisée par des invariants, s’exprimant en fonction
du birapport, qui peuvent étre calculés par de simples constructions géométriques sur

les coniques.

Birapport de quatre points alignés

Soient 4, B, C, D quatre points colinéaires, leur birapport, noté [A, B,C, D], est

défini comme
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AC x BD

E = [A, B,» C, D] = W’ (3.1)

ol AB est la mesure algébrique de AB ou la distance entre les points A et B. Cette
formulation du birapport peut 8tre é&tendue pour les points situés a 'infini en utilisant

les conventions suivantes :

818
[

avec a un nombre réel quelconque.

L’invariance du birapport
Théoréme

Toute transformation projective conserve le birapport.

Preuve

A travers la preuve que nous donnons du théordme, nous montrons comment on
peut définir 'invariance d’un birapport par rapport 3 une transformation projective
donnée. Pour cela on va d’abord montrer I'effet d’'une transformation projective sur
les coordonnées de points appartenant a une ligne. Tout point d'une ligne peut étre
représenté par deux coordonnées homogeénes. Les points d’une ligne seront représentés

par P = [X1, X,], ou X; et X; sont les coordonnées homogenes sur cette ligne. La
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position cartésienne d'un point sur une ligne est donnée par X = X;/X,. Le modeéle

d’une ligne projective est donné par un ensemble de rayons passant par l'origine d’'un
plan. Les points sont donc I'intersection des rayons avec une ligne quelconque [ dans
cet espace bidimensionnel.

La transformation projective entre les lignes est donnée par une matrice, 2 x 2, de
transformation homogene T, telle que: T =TX ou T = [z, Z2]* sont les coordonnées
homogenes de la ligne transformée. On a besoin de trois parameétres essentiels pour
définir T & un facteur multiplicatif prés. La position cartésienne d'un point sur la

ligne transformée est donnée par z = z;/z;. La transformation projective d’une ligne

s’écrit comme

_tuX +to

T X vt (32)

La forme de I’équation 3.2 correspond tout simplement & la représentation en co-
ordonnées cartésiennes d'une transformation homogéne dans I’espace bidimensionnel.
Soit Dy, le déterminant de la matrice 2 x2 formée par deux points, P, = [X], X]]*

et P, = [X2, X2]%, se trouvant sur une méme ligne [ :

D12 = IP]_le ’

qui s’écrit aussi sous 'une des formes suivantes :



X! X2

X; X3 (3.3)

XiX3 - X}1X; = X{X3(X1/X; — X}/X3) = Xi X3(X' — X?).
Enposant P, = A [X1, 1]t et P, = Ap[X? 1], avec A, et A, étant les facteurs d’échelle,
Iéquation 3.3 devient

Du = A]_Az (Xl - Xa). (3-4)

Sous une transformation projective I’équation 3.4 devient d;2 = [T [P, P]|, soit :

d12 = 1\1/\2(11 - .'1:2) = AlAz(Xl - Xz) lTI N

avec Ap, A2 étant les facteurs d’échelle pour la ligne transformée. Considérons par la

suite le rapport des déterminants des paires de points :

D3, - |P3P1| = AI(X3 “‘Xl)
Dz ~ |BP|  Ax(X3—X2)

K=K(P,P,B) =

Pour la ligne transformée, ce rapport devient

= _ sl _ (@ -3 A(X3-XY)
k= k(PLsP2:p3) = IPst] = /\2(2:3 _z-g) = Az(X3 —-X?) .
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On peut voir que le déterminant de la matrice de transformation |T'| a été éliminé
dans le rapport. Toutefois il reste & éliminer les facteurs d’échelle; pour cela il est
nécessaire d’introduire un quatridme point. Ainsi, le rapport des déterminants pour
quatre paires de points permet d’obtenir un birapport invariant pour une transforma-
tion projective (un birapport est caractérisé par I’apparition d'un point au dénomi-

nateur et au numérateur le méme nombre de fois), par exemple :

|

= D31D42 / D32D41 = d31d42/ d32d417
X3-_Xx1)x4—x2 23 —z')(z4 —z2
= @EIXXX) T (@3- )(:‘—z‘)’

ce qui compléte notre preuve du théoréme.

(3.5)

La conservation du birapport est illustrée par la figure 3.2 , et peut s’exprimer

par :

[4,B,C,D]|=[4',B,C', D] (3.6)

L’ordre de la ligne projective et le j-invariant

Le birapport est obtenu & partir de 4 points. I1 découle de ce qui précéde que la
permutation de ces points donne des invariants en terme du birapport k défini par
la relation 3.5. Les quatre points donnent 4! (ou 24) différentes permutations. Ces
vingt-quatre permutations donnent six invariants différents décrits par 1’ensemble

suivant :



(1. - 1 1-k %
{k,i,l—k,l—ﬁ, E T }'

Comme une transformation projective générale peut amener a3 un changement
dans l'ordre des points (figure 3.1), il est intéressant de trouver un invariant qui ne
dépend pas de cet ordre. Il existe un invariant qui est indépendant de 1’ordre dans
lequel les points sont pris, il est appelé le j-invariant, et il est défini en terme du

birapport k, par

(B —F+1)3
EE-1)

i(k) =

Figure 3.1 : L’ordre des points peut &tre changé par une transformation projective
générale, il est préservé par une projection centrale



Birapport de quatre droites

Soient quatre droites {;, I, I3, l4 concouranies en un point O et [, une ligne quel-
conque qui ne contient pas O et qui croise chacune des lignes du faisceau formé par
les quatre droites en quatre points différents comme illustré par la figure 3.2. Le
birapport du faisceau des quatre droites est défini par le birapport [A, B, C, D] des
points d'intersection du faisceau avec la droite I.

On le note aussi [0; A, B, C, D] (birapport des droites OA, OB, OC, OD). Le
birapport de quatre droites peut s’exprimer sous différentes formes. Si on utilise la
forme proposée par Mobius, on peut calculer le birapport en fonction des coordonnées

homogenes des points O, A , B, C, D sous la forme suivante:

£ = [0AC||0BD|
~ |OAD||OBC}’

3.7

ol

Ty T2 I3

|PPoPs| =]y 3 s

2L 22 23
et (z;, y;, 2:) sont les coordonnées homogenes de P;.
Le birapport d’un faisceau de quatre droites peut étre exprimé en fonction des

angles entre les droites et peut s’écrire
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Figure 3.2 : Birapport de quatre droites

sin(OA, OC) sin(OB, OD)
sin(O4, OD) sin(OB,0C)

k= (3.8)

Birapport d’un faisceau de quatre plans

Pour un faisceau de quatre plans II;, II;, II3, II; ayant une droite commune, le
birapport est défini comme [, l3,13,1s] , qui est le birapport de leurs quatre droites
d’intersection avec un plan quelconque II. Ceci est bien str indépendant du choix de
II. (voir figure 3.3).

La notion de birapport, ainsi que la formule de Mtbius, peuvent étre général-

isées dans P™ pour tout faisceau de quatre hyperplans concourants en un espace de
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dimension n — 1.

Figure 3.3 : Birapport d’un faisceau de quatre plans

3.1.3 Invariants projectifs des transformations de P3 dans P?

Les transformations projectives de P® dans P? sont généralement utilisées pour mod-
éliser la projection effectuée par une caméra. Burns (Mundy et al., 1993) a démontré
qu’il n’existe aucun invariant général des transformations projectives de P* dans P>.

Les invariants projectifs qu’on peut utiliser dans le cadre des transformations de
P2 dans P2 se limitent A des ensembles de points qui ne sont pas en position générale,

en particulier les ensembles de points alignés ou coplanaires. Par exemple, les n-uplets
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de points coplanaires présentent des invariants pour les transformations projectives
de P2 dans P? : en effet, ils subissent une homographie de P? . On peut donc utiliser

les invariants vus précédemment, en particulier le birapport entre les plans.

3.1.4 Coordonnées projectives

La notion de coordonnées projectives est étroitement liée aux invariants projectifs.
Soient P, un point de P®, et B, une base projective P". On peut caractériser P
par rapport 3 B par des quantités définies géométriquement & partir d’invariants
projectifs : c’est ce qu’on appelle les coordonnées projectives de P par rapport a la
base projective B. Une propriété importante de ces coordonnées est qu’elles sont
invariantes par toute homographie (puisque le birapport est lui-méme invariant par
homographie).

Dans la suite nous donnerons une définition des coordonnées projectives dans les
cas de la droite projective P! et du plan projectif P2, cette notion est facilement

généralisable dans P™ .

Coordonnées projectives sur la droite

Soient une droite ! et trois points distincts (condition nécessaire pour former une
base) de cette droite A, B et C formant une base projective de [. Soit P un point
de l. Pet A, B, C définissent un birapport, éventuellement infini. A = [A, B,C, P).

Inversement, étant donné un scalaire A de R U {oo}, il existe un unique point P tel



que le birapport [4, B, C, P] soit égal & ) .

Tout couple de réels (z,, z,) tel que z;/z, = A est appelé coordonnées projectives
du point P dans la base projective définie par (4, B, C). Le birapport permet de car-
actériser P. Il permet de déterminer la position d’un point P dans la base projective
définie par (A, B, C), par la relation suivante :

ACxBA

AP =xsc-70

Lorsque A = 0o, P est confondu avec A.

Coordonnées projectives dans le plan

Dans le plan projectif P?, quatre points quelconques A, B, C, D non colinéaires trois

a trois définissent une base projective. (voir figure 3.4).

Figure 3.4 : Coordonnées projectives dans un plan
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Soit un point P de P2, alors trois nombres réels (z, z2,z3) tels que

1) = 73[A; B, C, D, P] = 13|/AB, AC, AD, AP],

Ty = 33[3; A, C, D, P] = Z'3[BA, BC, BD, BP],

sont les coordonnées projectives de P dans la base (A, B,C, D).

Tout point P de P? peut &tre défini de maniére unique par ses coordonnées pro-
jectives, mis & part les points de la droite (AB) qui ont tous les mémes coordonnées
projectives. Les coordonnées projectives sont définies 4 un facteur multiplicatif pres.
Elles ne dépendent pas du systéme de référence des coordonnées homogénes dans
lequel sont décrits les points.

Les birapports k; = /T3 et k = z3/z; suffisent pour déterminer un point

quelconque en dehors de la droite (AB).

Lien entre coordonnées projectives et coordonnées homogénes

Les coordonnées projectives se définissent par rapport & une base projective, et a
un facteur multiplicatif preés. Les coordonnées homogénes présentent les mémes pro-
priétés. Par la suite nous allons définir le lien entre ces deux systémes de coordon-
nées. Etant donné un point P du plan projectif, défini par ses coordonnées projectives
(z1, T2, 73) dans une base projective (A, B, C, D), soient (z,y, z) les coordonnées ho-

mogénes de P. On choisit une représentation du plan projectif od A, B, C, D ont les
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coordonnées suivantes :

A=[0,1,0* B=[1,0,0C=[0,0,1]* D=1,1,1]".

On veut exprimer les coordonnées projectives en fonction des coordonnées ho-

mogenes. Les coordonnées (z,, T2, T3) sont déterminées par la valeur des deux birap-

ports :
. _ |ABD[ |ACP|
k.= [A,B,C,D,P] = IABPl |ACDI’
rin. _ IBADI lBCPI
k;=[B; 4,C, D, P| = |BAP||BCD|
Comme

Ty

—_ = kl ]
I3

T2 kg
T3 !

les coordonnées projectives sont donc, A un facteur multiplicatif pres :
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_IACPI_ 01 =2
~ |ACD| —

z_IBCPI_ 01 2 B
2=1BCD| = =¥

z_lABPI_ 0 0 2
37 1ABD| —

On remarque que les coordonnées projectives d’un point P dans la base projective
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(A, B,C, D) sont aussi les coordonnées homogenes de ce point dans la représentation
ol A, B, C et D définissent les coordonnées canoniques ou : respectivement [0, 1, 0]¢,
[1,0,0], [0,0, 1]t et [1,1, 1]%.

Les coordonnées projectives des points de la base projective ne sont pas définies.
Mais on peut les définir par extension comme étant {0,1,0]¢, [1,0,0]%, [0,0,1] et
(1,1,1}.

Ceci nous fournit une méthode pratique pour calculer les coordonnées projectives
associées 4 un point. Etant données les coordonnées homogeénes des cinq points 4, B,
C, D, P dans une représentation quelconque, les coordonnées projectives de P seront

alors :

|ACP| _ |BCP| |ABP|

L=1acp| % i|Bcp’ ™7 |4BD|

T

Inversement, on peuf calculer les coordonnées homogénes d'un point en connais-
sant ses coordonnées projectives. En reprenant les expressions ci-dessus, on obtient
trois équations linéaires en fonction des coordonnées homogenes de P. La résolution
de ce systéme donne les coordonnées homogénes de P en fonction de ses coordonnées

projectives et des coordonnées homogenes de A, B, C, D.

3.1.5 Dualité

En géométrie projective le principe de dualité nous permet d’étendre toute propriété

des points en une propriété des hyperplans. Ainsi, comme nous ’avons vu au chapitre
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2, les points et les droites sont duaux dans le plan projectif P2. Cette dualité s’exprime
essentiellement par I’équivalence suivante : deux points définissent une droite et deux
droites définissent un point. Un ensemble de points alignés est dual d’un faisceau de
droites concourantes. On sait que 5 points alignés Py, P, P3, P;, Ps, définissent un
birapport, celui du faisceau de droites de sommet P; et passant par les points Ps, P;,
P,, P;. Par le principe de dualité, on peut donc en déduire que 5 droites [y, Iy, I3, l4,
ls , définissent un birapport, celui des points appartenant a la droite [;, et qui sont
les intersections de I; avec l, I3, I3, Is (voir figure 3.5).

Le principe de dualité permet de déduire directement le birapport k, qui s’écrit :

[lals| [lisls]

F = Badalal Buoacsl
Illl215l |lll3l4[

avec |[;l;l;| représentant le déterminant de la matrice 3 x 3 contenant les coordonnées

homogenes des droites [;, I;, lg.

3.1.6 Géométries affine et euclidienne

La géomeétrie projective englobe les géométries affine et euclidienne. Les transforma-
tions affines et les transformations euclidiennes sont des sous-groupes des homogra-

phies. Ainsi, les invariants projectifs sont aussi des invariants affines et euclidiens.



Figure 3.5 : Birapport associé a cing droites

Géomeétrie affine

La géométrie affine est une restriction de la géométrie projective, elle se déduit de

cette derniére en fixant '’hyperplan de I'infini.

Transformations affines

Les transformations projectives qui conservent globalement I’hyperplan de I'infini sont
dites transformations affines. De ce fait, une transformation est affine si et seulement
si elle conserve le parallélisme. En effet des droites sont paralléles si et seulement si
elles s’intersectent en un point du plan de Vinfini. Dans le cas de P*, I'hyperplan de
I'infini peut donc éire déterminé par n paires indépendantes de droites paralléles.

Si on fixe comme hyperplan de I'infini le plan z,,; = 0, alors la matrice associée

aux transformations affines a la forme suivante :
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t

0...0 1

= -

A est une matrice n X n qui correspond i la partie linéaire de la transformation affine

et (t,...,t,) est le vecteur de translation.

Invariants affines

Ici le parallélisme, qui n’est pas une notion projective (voir chapitre 2), est un invariant
affine fondamental. A partir du parallélisme de droites, on peut définir la notion
de plans paralléles (sécants en une droite située dans le plan de 'infini) et droites
paralléles (sécantes en un point du plan de I'infini).

L’invariant algébrique fondamental en géométrie affine est le rapport des longueurs
de 3 points alignés. On peut noter que cet invariant est en fait un birapport faisant
intervenir un point a l'infini. Si A, B et C sont 3 points d’une droite [, et si D est le

point & I'infini sur [ alors, en utilisant les conventions du paragraphe 3.1.2,on a :

ACxBD _AC

[4,B,C, D=5 == =55
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Géomeétrie Euclidienne

La géométrie euclidienne est définie en introduisant une restriction supplémentaire
de la géométrie affine : I’hyperplan de I’infini est globalement fixé, ainsi que certains

points de cet hyperplan.

Transformations euclidiennes du plan

Les transformations euclidiennes du plan sont les transformations affines qui con-
servent une paire de points de la droite de l'infini. Ces deux points, notés I et J,
sont appelés points absolus et peuvent étre choisis arbitrairement sur la droite de
'infini. Une transformation euclidienne qui conserve le couple (I, J) est une trans-
formation directe. Inversement, si le couple {Z, J) a pour ifage le couple (J,I), la
transformation est dite indirecte.

Soient deux droites, [ et I, et A;, Ay, leurs intersections respectives avec la droite

de l'infini (voir figure 3.6), le birapport

k12 = [Alv A?: Ir ‘I]

est invariant par toute transformation euclidienne directe, et il est transformé en son
inverse par toute transformation euclidienne indirecte.

Si on choisit 3 = 0 comme droite de I'infini et comme points absolus les points cy-
cliques (1,1,0) et (1, —¢,0), les transformations euclidiennes sont alors des similitudes

planes : rotations, translations, homothéties et symétries orthogonales. On définit
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alors les cercles comme les ellipses intersectant la droite de 'infini en les points cy-

cliques. L’angle entre deux droites [; et [; est défini par la formule de Laguerre :

Iog[Als A21 I) J]-

21

droite de l'infini

Figure 3.6 : Birapport en géométrie euclidienne

Transformations euclidiennes de 1’espace

La géométrie euclidienne de l'espace est obtenue 4 partir de la géométrie affine de
I’espace en fixant une conique du plan de l'infini. Cette conique ne contient que
des points imaginaires et elle est appelée conigue absolue; on la note . Ainsi, les

transformations euclidiennes de I’espace sont les transformations affines qui laissent
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globalement invariante la conique absolue. Les intersections d’un plan avec Q définis-
sent les points absolus associés 3 ce plan.

Si on choisit comme plan de l'infini le plan z4 = 0 et si on choisit dans ce plan
la conique d’équation z? + z3 + 2 = 0 comme conique absolue, alors on retrouve
ainsi, en géométrie euclidienne du plan, la notion d’angle. L’angle entre deux droites

sécantes [, et [ est défini par

1
a=(0,5)= 57 108[A1, Aa, 1, T,

ou I et J représentent les intersections du plan contenant I; et I; avec Q (points
cycliques associés & ce plan), et A; et A, sont les intersections de [, et [, avec le plan
de I'infini. Ces quatre points sont alignés car ils appartiennent a la droite /2, qui
est l'intersection du plan contenant [, et I, et du plan de l'infini. Ils définissent un
birapport (voir figure 3.7).

La conique absolue est un objet important en vision. Connaitre la projection de la
conique absolue sur le plan image équivaut 4 ’étalonnage des paramétres intrinséques

de la caméra.



Figure 3.7 : Transformations euclidiennes de ’espace et la conique absolue

3.2 Invariant basé sur un point de référence et

deux homographies

Dans cette section nous allons définir un nouvel invariant projectif que nous déduirons
de la contrainte de planarité, c’est-a-dire de la présence de surfaces planes dans la

scéne (Tong, Akhloufi, Polotski et Cohen, 1998). Nous utiliserons deux structures



96

planes présentes dans I’environnement pour calculer cet invariant en termes de birap-
port. Nous allons utiliser la relation d’Aomographie qui existe entre deux images d'un
méme plan.

On sait (voir chapitre 2) qu'un plan II de 'espace tridimensionnel est relié a
sa projection, 7, dans un plan image par une transformation homogene T, appelée
colinéation. Notons par T la colinéation définie par la projection du plan IT dans
le plan image gauche, et par 7' la colinéation définie par la projection du méme
plan II dans le plan image droit. Il existe une fransformation homogéne unique
H =T'T!, qui définit la transformation entre les projections du plan II sur les deux
plans images. La matrice H est appelée homographie et peut étre déterminée 3 un
facteur multiplicatif prés en identifiant au moins 4 paires de points images appariés
correspondant au plan II, et se trouvant sur chacune des images, m et 7, de celui-ci.
Dans la suite nous allons décrire 'approche proposée.

Soit P, un point de référence choisi dans 'espace 3D (la scéne). Tracons les deux
lignes joignant ce point de référence aux centres optiques des deux caméras, gauche
et droite, de la paire stéréoscopique, (P,0;) et (P,0O,). Ces deux droites croisent les
plans images gauche et droit en deux points, p!, et p, respectivement. Ces deux points
représentent la projection du point de référence P, sur les deux plans images.

Soient deux plans de références II; et II; choisis dans la scéne. L’homographie
H, entre les images du plan II; sur les deux caméras est déterminée en identifiant

au moins 4 paires de points appariés appartenant i ce plan. De la méme facon nous
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| déterminons ’homographie H; qui caractérise la transformation entre les images du
plan II,.

Considérons un point P, de I'espace tridimensionnel, et ses projections pf. et g sur
les plans image droit et gauche. Le point P, peut étre connecté au point de référence
P, pour former une ligne, (P,P;) = L, . Cette ligne intersecte les deux plans de
référence. Le long de ceite ligne on identifie quatre points: le point de référence
choisi P,, le point de la scéne P;, le point P, qui est l'intersection de la ligne L,
avec le plan II,, et le point P, correspondant A I'intersection de la ligne Lo, avec le
plan II, (voir figure 3.8). Nous allons noter p! et p] les projections du point physique
P, sur I'image de gauche, respectivement de droite. De méme, les projections de P,
sur le plan image gauche, respectivement droit, seront notées p} et p5. On a alors
un invariant projectif formé par les quatre points appartenant i la méme ligne L,;,
c’est le birapport de quatre points colinéaires définit par ’équation 3.1 dans la section

3.1.2,

E=[P,P, P, P). (3.9)

Le plan défini par la ligne L, et le centre optique O, de la caméra droite conti-
ennent aussi la ligne formée par pf et pf. Cette ligne contient aussi deux points: p]
et pj. Cette configuration permet d’utiliser le résultat du théoréeme fondamental sur
Uinvariance du birapport par rapport aux transformations projectives, comme illus-

tré par la figure 3.2. Ce birapport peut étre également défini en utilisant les points
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images de la caméra de droite, nous avons alors

E = b{!p:i p;, p;l'

Un raisonnement équivalent nous permet d’écrire ce birapport en fonction des
points images de la caméra gauche. Dans ce cas, la ligne L, et le centre optique de
la caméra gauche, O; forment un plan qui contient les points images g, p}, b et ..

Le birapport peut s’écrire comme suit :

k=[pt, o, 0, phl-

Dans la suite nous allons décrire comment calculer ce birapport & partir des points
images appariés. Les points pf, et p, sont connus puisqu’au départ nous choisissons
notre point de référence p, et le point p,, pour lequel on veut calculer P'invariant. Les
points p{ et p5 sont des inconnus et doivent étre retrouvés en utilisant les homographies
H; et H,.

Considérons I’homographie H; caractérisant la transformation entre les deux im-
ages du plan II,. La projection de la ligne L, sur le plan IT; (voir figure 3.8), Lozy,
a une image sur chaque vue de la paire stéréoscopique. Soit [; I'image de Loz,, dans
le plan image droit. La ligne i} est obtenue en utilisant I'homographie H;. Nous

avons alors la relation suivante :
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I, = [H (3.10)

oul!, =p ®pL,! la ligne passant par les points p, et g} de 'image gauche, représente
la projection de la ligne L,, dans I'image gauche.

Donc la projection du point P, sur 1'image droite, p] doit se trouver sur la ligne
l;,- De plus, P, appartient 3 la ligne L., donc son point image droit pf, se trouve
sur la projection de cette ligne dans I'image droite. La projection de L, sur l'image
droite, notée If, est la ligne passant par p] et pl, Il = pf ® p]. La projection du
point P, sur la vue de droite est le point d'intersection entre la ligne I et la ligne

I7. (voir figure 3.8). Ses coordonnées homogenes sur I'image sont données par

P} = (p; ® p7) ® (Hip, @ Hipl), (3.11)

avec H; = [H[1]t.

Pour déterminer la projection du point P> dans 'image droite, on procéde de la
méme facon: pj est I'intersection de deux lignes, i = pf ®p] la projection sur I'image
droite de la ligne Loz, et I, = [Hy ']l I'image droite de la projection de la ligne L,

sur le plan IT,. On obtient alors pour p§ 1'équation de méme type que 3.11 :

75 = (p§ ® p7) ® (Happ @ Hapl), (3.12)

Ici @ représente le produit vectoriel.
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avec H, = [H7 ']t
Nous obtenons ainsi pour chaque point un invariant unique basé sur la sélection

d'un point de référence et deux surfaces planes :

k= [((7; ® 27) ® (H1p, ® Hiph)), 2}, oL, (05 ® pL) ® (Hapo ® Hapl))]-

Les résultats du calcul de cet invariant 4 partir de ’appariement de points sur une

paire d’'images stéréoscopique sont illustrés dans le chapitre 5.

3.3 Invariant basé sur une ligne de référence et

une seule homographie

Dans cette section, nous nous intéressons a caractériser une ligne de la scéne par un
invariant projectif. Nous allons présenter une nouvelle approche basée sur le choix
d'une ligne de référence et un plan dans la scéne (Tong et al., 1998). Tout d’abord
nous commencerons par étendre la notion de birapport au cas ol nous disposons
seulement de deux lignes et de deux points.

Soient deux lignes, I; et l,, et deux points, z,et o, n’appartennant pas a [; et
l (voir figure 3.9). Dans ce cas, un invariant projectif peut étre défini en termes de
birapports. Tracons la ligne passant par z; et z,, cette ligne coupe les lignes [; et [

en deux points différents. L'invariant correspond au birapport des distances entre les
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Figure 3.8 : Invariant basé sur un point et deux homographies

lignes et les points, le long de la ligne (z,z,). Par exemple, la distance entre la ligne

[, et le point z, est donnée par [,z;. Le birapport s’écrit alors :

= _ (hz)(laz2)
F= G o) (313)

Nous allons utiliser la relation 3.13 pour définir un nouveau birapport basé sur
une seule homographie et une ligne de référence, a partir d'une paire d’'images. Nous

décrivons 'approche proposée dans ce qui suit.
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Figure 3.9 : Birapport de deux points et deux lignes

Soit une homographie H définissant la transformation homogeéne entre les images
d'un méme plan de référence, notée II,.;. Soient deux lignes quelconques coplanaires,
L, et Ly, que nous pouvons choisir en utilisant ’homographie H. L,.s est une ligne
de référence choisie.

Pour une ligne quelconque L., ses projections dans les deux plans images gauche
et droit sont respectivement I et II. Les projections de la ligne de référence L.z, de
Lyetdell ;,Ir,, 8,17, et Ij.(voir figure 3.10)

La ligne de référence L,.s, rencontre le plan de référence Il;.; en un point noté
P,. De méme, l'intersection de la ligne L, avec le plan de référence se fait en un point
noté P;. P; et P, définissent une droite L = (P, P,). Cette droite rencontre les lignes

L, et L, en deux points différents notés respectivement X, et X,. Les points P}, X,
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X, et P, définissent un birapport. Ce birapport peut étre défini en termes de deux
lignes et deux points comme nous avons vu en 3.13, en utilisant les points P;, P; et

les lignes L; et L,. Le birapport s’écrit sous la forme suivante :

=_ (L) (L2Py)
k= P TPy (3.14)

Ce birapport peut étre déduit A partir des coordonnées images des points P;, P,
et lignes L, et Ly. L, et L, sont choisis sur les plans images, il suffit alors de calculer
les projections sur les plans images de P; et P;.

Prenons les projections sur le plan image droit par exemple. P; est le point
d’intersection de la ligne de référence L,y avec le plan de référence II,.s. La projection
de la ligne Ly sur le plan I, , notée "Lz, passe aussi par le point P,. Ceci signifie
que L..; sur HL,,f se croisent en P;. Donc les projections de ses deux lignes sur le
plan image doivent se croiser en la projection de P, sur le méme plan image.

La projection de Lys sur le plan image droit est I, et la projection de T es sur

le plan image droit *I7;, est donnée par

* :ef = [H -I]tl:-ef ’

avec I, la projection sur le plan image gauche de la ligne de référence Ly.;.

La projection de P, sur 'image de droite est alors donnée par :
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Pl @ [H .

De Ia méme maniére, on obtient la projection de P, dans I'image droite, en utilisant
la projection de la ligne L, sur le plan de référence Il,.g, notée TL,. La projection
de P, sur I'image de droite pj, est donnée par I'intersection entre la projection sur le
plan image droit de la ligne L., notée IT et la projection de la Ligne L, = [H ]I}

sur la caméra droite :

s [H',

ou ! représente la projection de la ligne L. sur le plan image gauche.
Ainsi, le birapport donné par la relation 3.14, peut étre réécrit en termes des

coordonnées des points sur I'image. Pour le plan image droit, nous avons
+ _ (pD) (15p5)
k= 1202 3.15
GACA (3:19)
et pour le plan image gauche, nous avons
= _ (i) (5sh)
k= sl 3.16
(25 (k) (310)
Nous obtenons d’une manidre simple un invariant projectif en terme de birapport

de deux points et deux droites.
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Figure 3.10 : Invariant basé sur une ligne de référence et une seule homographie

3.4 Conclusion

Dans ce chapitre nous avons introduit une théorie qui connait une popularité crois-
sante en vision : 1'invariance projective (Forsyth, Mundy, Zisserman et Brown, 1990;
Mundy et al., 1993; Carlsson, 1995; Hartley, 1994b; Shashua, 1993; Shashua, 1994a).
Son importance vient du fait qu’elle nous procure des outils permettant de définir des
invariants caractéristiques de la géométrie de la scéne.

Alors que la géométrie épipolaire nous permet de caractériser les transformations
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géométriques entre les images, 'invariance projective joue un rdle important dans la
définition des relations géométriques mesurables qui caractérisent les propriétés d’une
scéne en particulier. Les invariants projectifs sont donc les invariants géométriques
associés aux transformations projectives.

Apres avoir défini la notion du birapport, I'invariant fondamental en géométrie
projective, nous avons présenté deux nouvelles approches pour calculer I'invariant
projectif dans chaque cas. Nous avons exploité I'information présente dans la scéne,
plus particuliérement la présence de surfaces planes, pour définir cet invariant en
terme de birapports.

Les applications de 'invariant projectif peuvent &tre nombreuses, par exemple la
reconnaissance d’objets (Mundy et al., 1993; Shashua, 1994a), la reconstruction tridi-
mensionnelle de la structure de la scéne (Hartley, 1994b), la correspondance (Shashua,
1994 a), etc.

Dans le chapitre suivant nous allons nous intéresser plus particuliérement a I'util-

isation de cet invariant pour le transfert de points sur une nouvelle vue.
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Chapitre 4

Synthése de vues

Dans ce chapitre nous allons nous intéresser a la synthése de vues & partir d'images
de référence. Plus particuliérement aux approches géométriqguement valides.

Dans la premiére partie de ce chapitre nous allons réviser la bibliographie en
synthése de vues en présentant les principales techniques utilisées. Dans la deuxiéme
partie, nous allons nous intéresser de plus prés A synthétiser les vues & partir d’une
paire d’images. Nous présenterons une nouvelle approche qui permet d’éviter un
appariement dense entre les images lors de la synthése de vues. Nous exploiterons
les outils fournis par I'infographie pour réaliser un rendu basé sur images de bonne
qualité, 4 partir d’'un appariement épars défini par un petit nombre de primitives
d’intérét présentes dans les deux images. Dans notre approche nous tenons compte
des contraintes géométriques inhérentes i la scéne par l'utilisation des approches

géométriques définies dans les chapitres précédents (géométrie épipolaire et invariance
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projective). Nous finirons ce chapitre par une description des différentes parties de

Palgorithme proposé.

4.1 Etat de ’art en synthése de vues

4.1.1 Syntheése par reconstruction tridimensionnelle explicite

La reconstruction tridimensionnelle de la scéne est ’'un des domaines les plus actifs en
vision, on trouve plusieurs articles dans la littérature traitant le sujet de la récupéra-
tion de la structure de la scéne A partir des images de celle-ci (Adiv, 1985; Kanade,
1995; Kanade, Yoshida, Oda, Kano et Tanaka, 1996; Kutulakos, 1995; Okutomi et
Kanade, 1993; Faugeras, 1992; Huang et Netravali, 1994; Faugeras, Robert, Laveau,
Csurka, Zeller, Gauclin et Zoghlami, 1998; Bougnoux, 1998). Une fois le modéle de la
scéne obtenu, on peut facilement appliquer les techniques d’infographie pour produire
un rendu réaliste. L’application de la texture, des effets de réflexion, de transparence,
de placement de source de lumiére, etc. permet d’obtenir un objet dont le réalisme
approche celui du vrai objet dans la scéne. La manipulation de cet objet devient
trés simple permettant de le visualiser sous différents angles. Plusieurs équipes de
recherche se sont intéressées i cet aspect de modélisation explicite de la scéne pour
la syntheése de vues.

Par exemple, Koch (Koch, 1995) utilise la stéréoscopie pour la reconstruction

tridimensionnelle de la scéne, puis la génération de nouvelles vues. L’algorithme qu'il
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propose se résume en 6 étapes :

1. etalonnage des cameéras stéréoscopiques;

2. rectification de la paire d’'images stéréoscopiques;
3. appariement dense des points sur les deux images;
4. triangulation des points appariés;

5. reconstruction d'un modele en facettes planes;

6. calquage de texture sur le modeéle.

Pour ’appariement dense il utilise une technique itérative qui permet un raffinement
des résultats a chaque itération.

Un autre travail utilisant la modélisation 3D explicite est celui de Debevec et al.
(Debevec et Malik, 1996; Taylor, Debevec et Malik, 1996a; Taylor, Debevec et Malik,
19965). Ce travail traite exclusivement de la reconstruction de batiments i partir
de photographies. Il propose un systéme de “Conception Assistée par Ordinateur”
(CAO), qui comme la plupart des systémes commerciaux de modélisation 3D nécessite
I'intervention de 'usager tout le long du processus de modélisation et de rendu. Une
fois le modele reconstruit, on lui applique la texture. Cette étape est trés importante,
puisque, contrairement aux systémes de modélisation 3D classiques qui considérent
la texture comme étant statique, Debevec propose le choix de la texture parmi les

images de référence les plus proches du point de vue courant. Une pondération des
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textures est alors appliquée : plus I’image de référence est proche, plus le poids est
grand. Un bon choix de la texture permet un gain appréciable en qualité visuelle du
rendu final.

D’autres travaux, comme ceux de Niem et al. (Niem et Broszio, 1995), se basent
sur la reconstruction 3D & partir des contours d’occlusion. L'objet a reconstruire est
placé sur une table tournante. Niem et al. &tablissent un appariement dense entre
les images, puis décomposent la scéne en surfaces triangulaires par la triangulation
des points appariés. Ces surfaces triangulaires sont ensuite texturées. Ils utilise un
calquage de textures pondéré parmi les images de référence les plus proches du point
de vue & générer. Les trous dus aux occlusions sont comblés par lissage avec les
voisins.

Kanade et al. (Kanade, Narayanan et Rander, 1995; Kanade, Rander et Narayanan,
1997; Narayanan et Kanade, 1998; Narayanan, Rander et Kanade, 1998; Rander,
Narayanan et Kanade, 1997; Rander, Narayanan et Kanade, 1998) utilisent un sys-
téme formé par une cinquantaine de caméras fixées sur un déme, ce qui permet
d’établir un appariement dense entre les images. Les caméras sont étalonnées per-
mettant ainsi d’établir un appariement selon des directions de recherche connues. Le
systéme est rigide, complexe et ne couvre que la scéne se trouvant sous le dome.

Il existe aussi d’autres méthodes qui évitent I’6étape de la triangulation de la scéne.
Par exemple, Scharstein (Scharstein, 1996) fait une reconstruction dense aprés 1’étape

d’appariement dense entre les images. Une fois que les coordonnées tridimensionnelles
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des points sont obtenues, il suffit de les reprojeter sur la nouvelle position du plan
image.

Seitz et al. (Seitz, 1997; Seitz et Dyer, 1997b; Seitz et Dyer, 1997a; Seitz et
Kutulakos, 1998) proposent l'utilisation de voxels colorés pour décrire la scéne. Ces
voxels sont ensuite reprojetés sur la nouvelle vue pour générer la nouvelle image.

McMillan et al. (McMillan et Bishop, 1995) utilisent un systéme de prises de vues
qui effectue juste une rotation selon I’axe vertical passant par le centre optique de la
caméra. Ainsi, les images de référence se projettent sur un repére cylindrique. La
nouvelle image synthétisée est produite par la composition des images de référence
utilisant une forme de reconstruction implicite des points 3D.

Plusieurs auteurs utilisent des techniques similaires pour la synth@e de vues en
faisant une reconstrction tridimensionnelle dense ou partielle de la scéne (Adelson,
1995; Baker, Szeliski et Anandan, 1998; Jain et Wakimoto, 1995; Moezzi, Katkere,
Kurara et Jain, 1996a; Katkere, Moezzi, Kurara, Kelly et Jain, 1997; Moezzi, Katkere,
Kurara et Jain, 1996c; Moezzi, Katkere, Kurara et Jain, 19965; Moezzi, Li-Cheng et

Gerard, 1997; Seitz et Dyer, 1995a; Zhang, 1998a).

4.1.2 Mosaiquage tridimensionnel

La représentation étendue de la scéne sous forme de mosaiques constitue une approche
intéressante en syntheése de vues. La réalisation de modeles étendus tridimensionnels

permet d’avoir une vue plus large de la scéne.
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Sawhney et al. (Sawhney et Kumar, 1997) proposent d’estimer le mouvement
dominant de la séquence d’images a partir des équations 4.1 liant les coordonnées des
points appariés dans deux images. Les points (23, y2) de I'image 2 correspondant aux

points (z,,;) de I'image 1 sont tels que

Tp =az) + by +c,
(4.1)
Y2=dzi+ey1 + f.

Une fois les parameétres (a, b, c,d, e, f) calculés, il est possible de procéder & un
appariement dense. Les images sont ensuite reprojetées dans un méme repére pour
constituer une seule grande image.

Szeliski et al. (Szeliski, 1998; Kang et Szeliski, 1997; Shum, Han et Szeliski,
1998; Szeliski et Shum, 1997) utilisent une technique équivalente en commencgant
d’abord par estimer le mouvement dominant, puis par établir un appariement dense
4 base de splines.

Kumar et al. (Kumar, Anandan, Irani, Bergen et Hanna, 1995) utilisent une

modélisation différente pour le mouvement dominant qui est décrit par des équations

quadratiques :

T2 = azy + byy + c+ gz + hziy

Y2 = dz) +eyr + f + gy + byl
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4.1.3 Rendu basé sur les images : Approches non géomé-
triques

Les approches non géométriques sont celles ol 'image synthétisée n'est pas géo-
métriquement correcte, c'est-a-dire qu’elle ne respecte pas les contraintes imposées
par la géométrie de la scéne. Malgré que les images peuvent &tre assez réalistes, ce
réalisme se limite a une zone géométrique ou les contraintes ont &té respectées. Plus
on s’éloigne de cette zone, plus I’image se dégrade et devient inacceptable en termes

de géométrie.

4.1.3.1 Interpolation de vues

Les techniques d’interpolation d’images sont trés populaires en infographie, elles per-
mettent la production d’effets spéciaux souvent spectaculaires (Heckbert, 1986; Wol-
berg, 1990). La technique est simple. Sur une image source on place des points de
controle fixes. La surface entre ces points est élastique et peut étre déformée par
interpolation des pixels qui la forment. Ces points peuvent ensuite étre déplacés
pour étirer ou comprimer I'image dans certaines zones. Cela peut étre appliqué a la
synthése de nouvelles vues.

A partir de deux images, source et destination, sur lesquelles on place des points
de contréle appariés, on peut générer de nouvelles vues intermédiaires en interpolant
les positions de ces points de contréle.

A partir d’un petit nombre de points de contrdle, on peut construire un mail-
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lage triangulaire, puis appliquer des déformations affines des textures 4 I'intérieur de

chaque triangle.

4.1.3.2 Combinaisons linéaires des images

Dans la littérature (Ullman et Basri, 1991; Werner, Hersch et Hlavac, 1995; Hlavac,
Leonardis et Werner, 1996), on trouve une autre méthode de synthése de vues proche
des techniques d’interpolation. Il s’agit de la combinaison linéaire d’images. L’idée
est que la position d’un point sur une nouvelle vue peut &tre estimée & partir des
points qui lui correspondent dans les vues sources. La projection d’un point dans une
nouvelle image est une combinaison linéaire des projections du méme point dans les
autres images. Cette modélisation a été proposée par Ullman et al. (Ullman et Basri,
1991), pour la reconnaissance des objets, puis utilisée par Werner et al. (Werner
et al., 1995) pour la syntheése d’images. Si un point P de I'espace se projette dans n
images en p; (i = 1...n), alors sa position dans la nouvelle vue n + 1, notée py;, est

donnée par 1’équation suivante :

n
Pny1 = Z aip;i-

=1

Les coefficients a; sont déterminés a partir d'un certain nombre de correspondances
établies entre certains points de I'image de destination et des images sources. Dans
le cas de cameéras orthographiques, Werner et al. (Werner et al., 1995) proposent une

relation affine, donnant la position d’un point p3 dans une troisidme vue connaissant
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ses positions p; et p; dans deux vues de référence :

pg alpf+a2p§+a3a
P2 = asp! +asp¥ +ae.

4.1.4 Rendu basé sur les images: Approches géométriques

L’objectif de tout systéme de synthése de vues est de produire une image qui serait
semblable a celle prise réellement par une cameéra si elle était placée au méme endroit
que celui choisi pour placer la caméra virtuelle et générer la nouvelle vue, c’est-a-dire,
obtenir des vues physiquement valides. Pour cela il faut avoir un systéme qui tient
compte des contraintes géométriques présentes dans la scéne. Ici nous révisons les

approches qui utilisent d'une maniére ou d'une autre cette information de la scéne.

4.1.4.1 Interpolation de vues valide

Seitz et al. (Seitz et Dyer, 1995b; Seitz, 1997) proposent d’utiliser I'interpolation
d’images pour générer la nouvelle vue. La technique proposée respecte la contrainte
d’ordre, ou monotonicité. Ainsi les vues générées sont géométriquement valides. L’al-

gorithme se divise en trois &étapes (voir figure 4.1) :
1. les deux images sont rectifiées;

2. la vue intermédiaire est obtenue par interpolation linéaire entre les deux vues

rectifiées;
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3. la vue synthétique est dérectifiée en la reprojetant dans le plan image défini par

la nouvelle position de la caméra virtuelle.

Figure 4.1 : Synthese de vues par interpolation

La position de la caméra virtuelle est définie par la projection de quatre points de
contrdle sur le plan image de la vue synthétique. Ici la caméra est étalonnée.

L’appariement dense est nécessaire pour pouvoir transférer dans 'image synthé-
tique chaque couple apparié dans les images de référence. Ceci est réalisé de maniére

a respecter la contrainte de monotonicité.
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4.1.4.2 Utilisation de la géométrie épipolaire

Dans la littérature (Faugeras et Robert, 1996; Laveau et Faugeras, 1994; Faugeras
et al., 1998), on trouve des méthodes qui utilisent explicitement la géométrie épi-
polaire. Le transfert se fait par intersection des lignes épipolaires. En effet, connais-
sant une paire de points appariés, p; et p2, correspondant 4 un point P de ’espace
dans les images 1 et 2, et les matrices fondamentales Fi3 et F33 liant les images 1
et 3 (respectivement les images 2 et 3), alors le point ps sur I'image synthétisée 3 se
trouve sur l'intersection de la ligne épipolaire correspondant a p; dans 'image 3 et la

ligne épipolaire correspondant A p, dans cette méme image 3; il est donné par :

p3 = Fuap1 @ Faspa. (4.2)

La position de la caméra virtuelle est obtenue en plagant manuellement cinq points
décrivant le plan de la caméra et son centre optique. Ainsi, on évite 1’étalonnage
complet des caméras puisque les matrices fondamentales suffisent.

L’équation 4.2 ne peut pas &tre utilisée si les lignes Fi3p, et Fi3p, sont paralléles
ou confondues. Donc, tous les points P appartenant au plan formé par les centres
optiques des trois caméras, appelé plan trifocal, ne peuvent pas étre reprojetés par
cette technique (voir figure 4.2), et les équations deviennent numériquement instables
pour des points proches du plan trifocal. L'image ne peut &tre synthétisée dans cette

zZone.
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Figure 4.2 : Intersection des lignes épipolaires prés du plan trifocal

4.1.4.3 Utilisation de la trilinéarité

Les relations trilinéaires (Torr et Zisserman, 1997; Shashua, 1994b; Avidan et Shashua,
1997; Hartley, 1997¢; Shashua et Werman, 1995) sont les relations qui lient les coor-
données (z1, 1), (2, y2) et (z3, ys) d’un triplet de points (p1, p2, ps) en correspondance
dans trois images(voir figure 4.3). Ces relations sont données par les équations suiv-

antes :
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a1 + G271 + @3T3 + A4y1 + GsY2 + AeT1T3 + GTYLY2+
asT1Y2 + GoT3Y1 + G10T3Y2 + G11T3Y1Y2 + 212T1Z3Y2 =0,
a13 + G14Z1 + Q15% + Q16Y2 + G3Y3 + A17Y1Y2 + GeY1Y3+
aY2ys + G18T1Y2 + G6Z1Y3 + G12T1Y2Y3 + GuVileys =0,
G19 + G20Z1 + A5T2 + A T3 + Ax2¥1 + AsT1T2 + G3T1T3+
a10T2T3 + G7T2Y1 + G24TaY1 + G11T2T3Y1 + 12217223 =0,

Qg5 + Gr6T1 + A16T2 + G27Y1 + G21Y3 + Q18T1T2 + Q24Y1 Y3+

@17Z2Y1 + C23Z1Y3 + G1oT2Y3 + G12Z1T2Y3 + 611 T201Y3 = 0.

La géométrie relative des trois caméras est représentée par les vingt-sept coefficients
dénotés a;. Is forment un tenseur 3 x 3 x 3 appelé tenseur trilinéaire qui est 'équiva-
lent pour une configuration de 3 caméras ce qui est la matrice fondamentale pour une
configuration de deux caméras. Comme les coefficients de la matrice fondamentale,
ils sont liés par une condition de rang. Le positionnement relatif de 3 caméras per-
spectives peut &tre décrit par dix-huit parametres. Donc, les coefficients du tenseur
ne sont pas indépendants. Le tenseur trilinéaire peut &étre calculé par les mémes
méthodes que la matrice fondamentale.

Nous pouvons utiliser seulement les deux premiéres équations pour calculer la po-
sition du point (z3,%s), connaissant le tenseur et les positions de (z1,%1) et (T2, %)

dans les deux premiéres images. Toutefois la position relative des images peut pro-
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duire de mauvais résultats. Il faut donc considérer les différentes équations possibles

(Shashua, 1997).
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Figure 4.3 : Contraintes de trilinéarité

4.1.5 Mosaiquage bidimensionnel

Ces derniéres années un grand effort a été investi dans le domaine de la construction
de mosaiques bidimensionnelles 4 partir d’images de référence. Plusieurs chercheurs
se sont penchés sur cet aspect de la représentation de la scéne qui permet de produire
un large champ de vue 3 partir du collage des images de référence (Irani, Anandan

et Hsu, 1995; Mase, 1996; Szeliski, 1996; Peleg et Herman, 1997; Rousso, Peleg, Finci
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et Rav-Acha, 1998; Shum et Szeliski, 1998; Zoghlami, Faugeras et Deriche, 1997). La
représentation la plus utilisée est celle de la projection dans un repére cylindrique.
Cette représentation est trés adéquate lorsque les caméras décrivent un mouvement
panoramique.

Chen et al. (Chen et Williams, 1993) proposent une représentation en mosaique
cylindrique dans le cas particulier ol 1a caméra subit une rotation selon un axe vertical
passant par son centre optique. Dans ce cas aucune information sur la structure 3D
ne peut étre récupérée. Les images sont liées par une homographie planaire qui
peut é&tre calculée & partir d’'un appariement entre quatre points sur deux images,
puis les images sont reprojetées sur un méme repére cylindrique. Il est important
d’avoir une zone de recouvrement entre les images qui se suivent pour permettre leur
collage et ’établissement d’appariements entre au moins quatre points pour calculer
I’homographie.

La compagnie Apple Computer commercialise un produit qui permet de produire
une telle représentation et de visualiser interactivement le panorama généré de dif-
férents points de vues : QuickTime VR'. Le principe de cette technique est illustré a

la figure 4.4.

Thttp://www.apple.com/quicktime/qtve/
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Figure 4.4 : Mosaiquage bidimensionnel cylindrique

4.1.6 Approche utilisant une base de données d’images

L’approche la plus connue dans ce contexte est celle de Levoy et al. (Levoy et Han-
rahan, 1996) qui considérent la scéne comme étant décrite par un champ lumineuz? :
I’ensemble des rayons lumineux traversant la scéne. Il est représenté par une fonction
f A quatre dimensions, donnant la radiance en fonction de la position et de la direction
d’observation. Levoy et al. utilisent, par exemple, un systéme de prises de vues con-
stitué par une table tournante sur laquelle on pose I'objet. La table est synchronisée
avec un systéme d’éclairage tournant et une caméra dont on contrdle le mouvement.
Avec ce systéme on capture un grand nombre d’images (jusqu’a 8000 images). Tous
les rayons sont décrits par la fonction f. Les images sont des échantillons bidimen-
sionnels de cette fonction. Un grand nombre d’images permet de bien décrire f.

Synthétiser une nouvelle vue revient alors & découper un échantillon bidimensionnel

2)ight field
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dans la fonction f.
Etant donnée la quantité d’images disponibles les résultats obtenus sont de bonne
qualité, toutefois la technique ne peut &tre utilisée que pour des objets de taille

raisonnable.

4.2 Approche proposée

Nous proposons maintenant une nouvelle méthode de synthése de vues intermédi-
aires A partir d’une paire d'images stéréoscopiques (Akhloufi, Cohen et Polotski,
1999; Akhloufi, Polotski et Cohen, 1999). Elle consiste tout d’abord a transférer
les primitives d’intérét dans la nouvelle vue. Pour cela, nous utiliserons la géomé-
trie épipolaire ou les invariants projectifs pour réussir un transfert géométriquement
valide. Une fois les primitives d’intérét transférées dans la nouvelle vue, nous utilis-
erons une technique de tezturage bidimensionnel (Heckbert, 1986; Wolberg, 1990)
pour transférer les autres points dans cette méme vue. Nous utiliserons une tech-
nique de texturage bidimensionnel perspective pour produire I'effet d’une projection
centrale. Dans les sections suivantes nous allons présenter plus en détail les différents
outils que nous avons utilisés pour la synthése de vues. Nous finirons par une descrip-

tion de I’'algorithme proposé.
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4.3 Techniques de transfert de primitives d’intérét

Dans la littérature on trouve principalement trois techniques de transfert de prim-
itives d’intérét qui permettent une reprojection géométriguement valide des points
images dans la nouvelle vue : la géométrie épipolaire (Laveau et Faugeras, 1994), les
trilinéarités (Avidan, Evgeniou, Shashua et Poggio, 1997) et les invariants projectifs
(Shashua, 1995). Ici nous allons nous intéresser plus particuliérement 4 la géomé-
trie épipolaire et aux invariants projectifs. Nous allons souligner en particulier les
possibilités offertes par la combinaison des deux méthodes pour transférer des points

images dans une nouvelle vue.

4.3.1 Transfert A I’aide de la géométrie épipolaire

L’idée ici est de prédire la position d’une primitive d’intérét dans une troisiéme vue
a partir de ses correspondants dans deux images initiales (Faugeras et Robert, 1996).
Pour cela nous allons utiliser les propriétés inhérentes a la géométrie entre paires de
caméras ou géométrie épipolaire (voir chapitre 2). La géométrie de trois caméras est

illustrée 3 la figure 4.5.

4.3.1.1 Transfert de points

Soient trois caméras (figure 4.5) dénotées par 1, 2 et 3, nous avons donc trois matrices
fondamentales, F;;, avec les indices ¢,j =1,...,3,7 # j représentant les caméras. Si

m; est un point image du plan image %, alors sa ligne épipolaire dans I'image j est
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Figure 4.5 : Géométrie de trois caméras dans l'espace

représentée par ‘! = Fy;m;. On notera qu'on a la relation Fj; = F};. Le plan contenant
les 3 centres optiques est le plan trifocal. Ce plan intersecte chaque plan image en
une ligne notée d; qui contient les épipoles e; ;1 et €2 de la caméra ¢ par rapport
aux caméras i +1 et i+ 2. La géométrie épipolaire implique la relation suivante pour

chaque image i:

Fini€ii2 = diy1 = €i41i D €142 -

Nous allons considérer le cas de transfert de points et de lignes dans une nouvelle
vue.

Soient deux points appariés, m, et my, dans les images 1 et 2. Donc, m3 qui
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leur correspond dans la troisiéme image doit se trouver nécessairement sur la ligne
épipolaire de m; dans I'image 3, donnée par Flgml, et aussi sur la ligne épipolaire
de m. dans cette troisi¢éme image, donnée par Fz3ms. Par conséquent m3 se trouve a
Pintersection des deux lignes épipolaires engendrées par les deux points appariés dans

les images sources (voir figure 4.6) :

mz = Figm; @ Fozmsy. (4‘3)
ml [ m2 o
L L
E Fyym,
N >< &
m
131y 3 I
3

Figure 4.6 : Transfert de points 2 'aide de la géométrie épipolaire

4.3.1.2 Transfert de lignes

La prédiction des lignes est obtenue d’une maniére équivalente. Soient deux lignes
appariées [, et I, dans les images 1 et 2 respectivement. Le but est de déterminer
la position de la ligne I3, correspondant a [; et &, dans I'image 3. Soient m, et m;,

deux points de ;. IIs définissent deux points mg, m; de [ qui sont les intersections
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des lignes épipolaires de m, représentées par Fiom,; et de m} représentée par Fiom{
avec la ligne [;. Nous avons

my = F12m1 ® 1‘21

et

my = Flom; @ lp.

Alors la ligne [; est définie par deux points, m3 et mj, intersections des lignes

épipolaires de m; et m, et de m) et m), dans la troisiéme image (voir figure 4.7) :
1 €L My
li=m3® mf,

ou bien

Iz = (Fiamy @ Foame) @ (Fiam; ® Fogmy) . (4.9)

4.3.1.3 Transfert proche du plan trifocal

On peut facilement constater que les méthodes décrites plus haut ne sont plus applica-
bles lorsque les droites épipolaires engendrées dans la troisiéme image sont confondues.
En effet, sur le plan trifocal la droite épipolaire engendrée par m, est confondue avec
celle engendrée par ma. Nous allons décrire dans la suite une méthode permettant de
résoudre ce probléme (Laveau et Faugeras, 1994).

Soient deux paires de lignes épipolaires choisies loin de l'intersection du plan tri-
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Figure 4.7 : Transfert de lignes a I'aide de la géométrie épipolaire

focal avec les plans images. Nous les notons (i,18) et (I{,13). Soient p;, un point
choisi sur [, et p,, un point choisi sur &, représentant un point P de la scéne. Si
M est un point de 'espace appartenant au plan trifocal correspondant & m; et ms
respectivement sur I'image 1 et 2, 1 ligne (PM) rencontre le plan défini par (I, )
en un point noté Q. Soient ¢, et ¢; les images de @ dans les images 1 et 2. Nous
construisons les points p; et g3 comme l'intersection des lignes épipolaires engendrées
par p;et p, respectivement q; et ¢g;. Comme P et Q sont loin du plan trifocal alors
P3 et g3 sont bien définis (voir figure 4.8).

Nous pouvons déduire m3 comme 'intersection de la ligne passant par les épipoles
es, et ey, definie par e3; ® ez, et de la ligne définie par p; ® g3 (voir figure 4.9).

Pour éviter les problémes liés & la reprojection des points images appartenant au

plan trifocal dans la nouvelle vue, nous présentons une autre méthode dans la section
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Figure 4.8 : Transfert proche du plan trifocal: choix des points P et @ loin du plan
trifocal

suivante. Cette méthode est basée sur P’'invariance projective chapitre 3.

4.3.2 Transfert & ’aide d’un invariant projectif

Nous avons vu au chapitre précédent (chapitre 3) que la théorie d’invariance nous
offre des outils permettant de définir une propriété invariante d’une configuration
géométrique présente dans la scéne. Nous allons montrer comment nous pouvons
utiliser les invariants pour transférer les primitives d’intérét dans la nouvelle vue.
Dans la section 3.2 nous avons défini en termes de birapports un invariant projectif

a partir de deux homographies caractérisant deux plans de la scéne et un point de
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Figure 4.9 : Transfert proche du plan trifocal 4 I’aide de la géométrie épipolaire

référence :

E = [Pla Pm Pz: P2] = [‘Pi,Pal,Pi:Pﬂ = [Pf:PE,Pi:Pgl- (4'5)

L’invariance pour toute transformation projective implique que k reste le méme
pour les points correspondants sur toutes les images. Ainsi pour trois points corre-
spondants, p;, ps et p3, se trouvant respectivement sur les plans images 1, 2 et 3, nous
avons le méme invariant projectif défini par k. Nous utiliserons cette propriété pour
le transfert des points images dans une troisiéme vue. Pour cela, nous avons besoin de
reprojeter tout d’abord les deux plans de référence (II, et II,) et le point de référence
(P,) dans la troisidme vue. A ce stade nous utilisons la géométrie épipolaire pour y
arriver. Quatre points (au moins) sont identifiés dans chacun des plans de référence,

puis transférés sur I'image 3 en utilisant ’intersection des lignes épipolaires définies
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par les matrices fondamentales Fi; et Fo3 entre les images 1 et 3 respectivement 2
et 3, comme décrit dans la section plus haut sur le transfert 4 I'aide de la géométrie
épipolaire. Ceci nous permet de définir ’homographie caractéristique de chaque plan.
De la méme facon, le point de référence sur la troisidme vue est obtenu par l'inter-
section des lignes épipolaires engendrées par ses correspondants dans les vues 1 et 2

(équation 4.3) (voir figure 4.10).

Figure 4.10 : Transfert & I'aide d’un invariant projectif

Une fois que les positions des deux plans de référence et du point de référence sur
la troisidme image sont calculées, on peut déduire tous les points dans cette nouvelle

vue 3 partir de leurs correspondants et des invariants projectifs qui les caractérisent.
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Soit un point quelconque P, caractérisé par un invariant noté k, on a :

k= [piipi:p}-.:l’%] = [p%,pi,.p,z,,p%] = [P?: pg: P:,Pg]-

Donc pour calculer p2 (le point image de P; sur la nouvelle vue dénotée par 3), il
suffit d’avoir p2, p? et p3 ('invariant k étant calculé a partir des deux images sources).
p3 est la reprojection du point de référence que nous obtenons 3 I'aide de la géométrie
épipolaire. p} et p3 peuvent étre obtenus A partir des homographies entre les plans

de référence entre les images 1 et 3 ou bien les images 2 et 3 (section 3.2).

4.4 Texturage bidimensionnel

En infographie les techniques classiques de calquage de textures permettent I’adjonc-
tion de motifs (images bidimensionnelles) a des objets tridimensionnels, pour arriver
a effectuer une synthése d’images réalistes (Foley et al., 1990; Watt, 1993). Le rendu?®
réaliste a pour but de produire des images non discernables de photographies d’ob-
jets réels. Ces techniques sont trés utilisées en infographie o on dispose d’un modéle
tridimensionnel de la scéne. Lorsque l'information sur la structure de la scéne est
absente nous pouvons utiliser des techniques de tezturage bidimensionnel (Wolberg,
1990) qui permettent la reprojection de textures d'un espace bidimensionnel dans un

autre espace bidimensionnel. Ainsi le texturage bidimensionnel est un ensemble de

SRendering
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transformations spatiales, auxquelles on ajoute des techniques de filtrage de I'image
pour éliminer les bruits induits par ces transformations. Pour produire un effet visuel
acceptable et éliminer les bruits inhérents aux transformations géométriques nous util-
isons les mémes techniques qu’en rendu classique: rééchantillonnage, anti-crénelage?,
etc.

Toute transformation géométirique est représentée par la projection d’un systéme
de coordonnées vers un autre systéme de coordonnées. Elle est définie par des trans-
formations spatiales: une application qui établit la correspondance spatiale entre tous
les points de I'image source et de 'image destination. La plupart des transformations
peuvent étre décrites par des expressions analytiques simples, comme dans le cas des
transformations affines, projectives, bilinéaires et polynomiales. D’autres transforma-
tions plus complexes peuvent étre déterminées par un ensemble de points de contrdle
éparses dont la correspondance sur les deux images est connue. Ceci permet de définir
une représentation spatiale dans laquelle on détermine les points inconnus par inter-
polation entre les points de contréle. Dans la suite, nous nous intéresserons plus
particuliérement aux transformations perspectives. Nous allons introduire aussi les
transformations affines et bilinéaires qui présentent un intérét indéniable en texturage

bidimensionnel.

4L’acti-crénelage désigne la technique qui porte le nom anglais de “antialiasing”



134

4.4.1 Transformation affine

Une transformation projective générale entre deux plans images est décrite par une

matrice de transformation 3 X 3 notée T :

an Q2 a3

T=|gay apn ap

Q31 a32 Q33 ]

La transformation affine est caractérisée par une derniére colonne de la matrice
T de la forme [0,0,1]%, qui correspond A une projection planaire paralléle ou or-

thographique. La représentation générale d’une transformation affine est

- -

a;; az 0

[z,9,1] = [u,v,1] @21 Gz O

a; az 1

Ici, {z,y,1] sont les coordonnées homogenes d’un point de 'image destination et
{u,v,1] les coordonnées homogenes d’un point de I'image source. Nous utiliserons
cette notation dans la suite.

Les transformations affines préservent les lignes paralleles lors de la reprojection.
Elles ont 6 degrés de liberté. Pour inférer une transformation affine, il suffit d’établir
la correspondance entre (au moins) trois points dans I'image de destination et trois

point dans I'image source. Les transformations affines permettent un ensemble de
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transformations planaires limitées, par exemple la transformation d’un triangle vers
un triangle quelconque ou d’un rectangle vers un parallélogramme. Des distorsions
plus complexes nécessitent des transformations plus élaborées, comme les transfor-

mations perspectives ou bilinéaires.

4.4.2 Transformation perspective

La transformation perspective est caractérisée par [a;3, az3]® non nul. La représenta-

tion générale de cette transformation est,

- b

a1 a2 413
[:B, Y, 1] = [u: v, 1] dz; QG2 Q423

a3y azz 4ass

La transformation perspective est une transformation projective liée & une projec-
tion centrale. Elle préserve les lignes paralléles seulement lorsqu’elles sont paralléles
au plan de projection, autrement elles convergent en un point de fuite. Cette tech-
nique est trés utile pour produire des rendus réalistes d’images. La transformation
perspective est équivalente 4 ’homographie en géométrie projective, que nous avons
défini dans le chapitre 2. Cette transformation a huit degrés de liberté puisque un des
paramétres de la matrice peut étre fixé égal 3 1. Pour la calculer nous avons besoin
d’établir la correspondance entre (au moins) quatre points dans I'image de destina-

tion et I'image source. Lorsqu’il s’agit de transformer un quadrilatére dans un autre
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quadrilatére communément appelée projection des quatre coins®, la transformation
perspective nous offre une solution planaire 4 ce probléme. Lorsque les quadrilatéres
ne sont pas planaires, il faut des solutions plus générales. La transformation bilinéaire
est la transformation la plus simple qui peut produire une projection des quatre coins

pour des quadrilatéres non planaires.

4.4.3 Transformation bilinéaire

La transformation bilinéaire est donnée par

[z, y] = [uv,u,v, 1]

az bz

Cette transformation permet de produire une projection entre quadrilatéres non
plans. Elle préserve les lignes se trouvent sur la direction de balayage dans l'image
source. Cette propriété vient de la nature des interpolations bilinéaires utilisées pour
faire cette transformation. Ainsi par exemple, les points le long des lignes horizontales
et verticales dans 1'image source restent équidistants aprés transformation, comme en
projection affine. Toutefois les lignes qui ne sont pas alignées selon ces deux directions

ne sont pas préservées. Par exemple, les lignes diagonales sont transformées en des

5Nous avons utilisé la projection des quatre coins pour désigner la technique connue sous le nom
de four-corner mapping en infographie.
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courbes quadratiques. Cette technique est largement utilisée en calquage de textures
en infographie. Ceci vient du fait que cette transformation peut étre décomposée en
deux transformations unidimensionnelles permettant un gain appréciable en temps

de calcul.

4.4.4 Décomposition de ’image

Bien que les transformations bilinéaires permettent des transformations plus générales,
entre quadrilatéres par exemple, elles introduisent des distorsions lorsqu’il s’agit de
surfaces planes. Pour produire des effets plus réalistes, il est préférable de décom-
poser 1'image source en des surfaces les plus proches possible de plans puis utiliser
une transformation perspective pour projeter ces surfaces sur l'image de destina-
tion. Nous avons besoin donc d’établir la correspondance entre quatre points dans
les deux images. Ceci signifie que nous avons besoin de décomposer I'image source
en une grille formée de quadrilatéres, puis déterminer la transformation perspective
permettant la reprojection entre chaque paire de quadrilatéres appariés. Toutefois la
méthode peut étre étendue aux cas de surfaces triangulaires en utilisant la géométrie
épipolaire. Soit I'image source décomposée en des surfaces triangulaires (en utilisant
une triangulation de Delaunay par exemple (Le Bras-Mehlman, Schmitt, Boissonnat
et Faugeras, 1988)). En établissant 'appariement entre surfaces triangulaires dans
les images source et destination, nous obtenons une paire de trois points appariés

pour chaque surface. Ceci caractérise une transformation affine. Pour définir une
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transformation perspective il suffit d’identifier une quatriéme paire de points qui sat-

isfait la méme transformation perspective que les trois autres, et ceci pour chaque

surface triangulaire de I'image. La géométrie épipolaire nous permet de définir toute

transformation perspective ou homographique en terme des épipoles. Ainsi, quelque

soit la transformation perspective permettant la reprojection d’une surface plane de

I'image source en une surface plane de I'image destination, elle transforme 1’épipole

dans I'image source vers I’épipole dans I'image destination (Shashua, 1994a). Nous

avons

[To, i, 1] = [ui, v, 1] | gy agp ao3

a a2 a13

a31 Qasz2 Q33

(4.6)

ou ¢ = 1,2, 3 représente les trois points de la surface triangulaire, et

aj;y a2

[81114, €p2d, 1] = [eplu €P2s, 1] az a2

azy Qas2

b

as

Q23

Q33

.

; (4.7)

ou [epq4,epaq, 1] et [epis, €pas, 1] définissent les coordonnées homogenes des épipoles

dans les images de destination respectivement source.

Donc, en résolvant le systéme défini par les équation 4.6 et 4.7, nous obtenons

la matrice de transformation perspective. Ainsi, & partir de la triangulation de I'im-

age source et I'appariement avec des triangles dans l'image de destination nous pou-
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vons produire une transformation perspective entre chacune des surfaces triangulaires.
Dans la littérature on trouve plusieurs techniques de triangulation, dont la plus util-

isée est la triangulation de Delaunay.

4.4.4.1 Anti-crénelage

L’anti-crénelage (Wolberg, 1990; Foley et al., 1990) est un outil trés important en
infographie. Il1 permet de réduire 'effet de certains types de bruit introduits lors des
transformations d’image. Des artefacts apparaissent dans 1’image lorsque les trans-
formations induisent des changements a grande échelle. Lorsqu’on augmente 1’échelle
d'une zone d’image chaque pixel source contribue a plusieurs pixels destinations. Ce
type de transformation nécessite un échantillonnage dense du signal reconstruit. La
qualité de I'image résultante est liée A la précision des fonctions d’interpolation util-
isées lors de la reconstruction. Ainsi, des fonctions d’interpolation de degré supérieur
peuvent produire de meilleures reconstructions d’un grand nombre de signaux, con-
trairement & des fonctions d’interpolation de degré inférieur.

Il y a deux méthodes principales d’anti-crénelage. La premiére consiste 4 accroitre
le taux d’échantillonnage. Cela s’obtient en augmentant la résolution de la trame.
Des détails plus fins sont ainsi incorporés. La seconde méthode consiste a traiter un
pixel comme une zone finie et non pas comme un point. Ceci est équivalent & un

préfiltrage de I'image.
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4.5 Algorithme de synthése de vues

En résumé I'algorithme proposé pour la synthése de vues se divise principalement en

quatre étapes (voir figure 4.11) :

1. Sélection des primitives d’intérét appariées (points, lignes) sur les deux images

sources.

2. Décomposition de I'image (section 4.4.4) en utilisant les n plus proches voisins :
n = 4 pour un maillage en quadrilatéres et n = 3 pour une triangulation
(comme nous avons vu dans la section 4.4.4, plus les surfaces résultants de la
décomposition sont proches de 'image de structures physiques planes, plus le

texturage bidimensionnel perspective sera réaliste).

3. Transfert des primitives d’intérét sur la nouvelle vue (par les techniques décrites

dans la section 4.3).

4. Texturage bidimensionnel (section 4.4) entre les surfaces correspondantes dans

I'image source (la plus proche de la vue & générer) et la nouvelle image.

4.6 Conclusion

La synthése de vues est un domaine récent et est en évolution constante. Ces derniéres
années les techniques sont devenues plus matures, et de nombreuses publications ap-

paraissent chaque année. Dans ce chapitre nous avons commencé par présenter 1'état
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de I'art en synthése de vues o nous avons passé en revue les principales techniques
utilisées que nous avons divisées en trois grandes classes: reconstruction tridimen-
sionnelle explicite, rendu basé sur image, et mosaiquage ou représentation étendue.

Dans la deuxidme partie, nous avons proposé une nouvelle approche qui permet
la génération de nouvelles vues A partir seulement d’un petit nombre d’appariements
dans I'image. L’appariement épars est utilisé pour générer un ensemble de points
qui vont jouer le rdle de points de contréle. Nous utilisons ces points pour définir
un maillage sur I'image source, qui est reprojeté sur la nouvelle vue 3 l'aide de la
géométrie épipolaire et de I'invariance projective. Ainsi, la vue générée est géomé-
triquement valide. Nous avons utilisé des techniques de texturage bidimensionnel
pour reprojeter le reste des points de I'image. Nous avons choisi une technique de
texturage perspective qui nécessite d’utiliser au moins un maillage en quadrilatéres.
Lorsque l'image est décomposée en surfaces triangulaires, nous avons introduit une
technique permettant 1'utilisation des contraintes définies par la géométrie épipolaire
pour produire un texturage perspective valide. Nous avons fini ce chapitre avec une
description globale de 1’algorithme proposé.

Contrairement aux approches existantes, nous n’avons besoin que d’un appariement
épars pour générer la nouvelle vue, ce qui réduit la complexité associée aux techniques
d’appariements. Ainsi le temps de calcul nécessaire & 1’appariement est largement ré-
duit. De méme la synthése de vues & partir d’images connues permet d’éviter les

étapes de modélisation et de rendu d’une scéne tridimensionnelle qui impliquent sou-
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vent des cofits élevés en temps machine. L’application des outils de la géométrie
projective nous permet de produire des vues assez réalistes, puisqu’elles satisfont les
contraintes géométriques inhérentes a la scéne.

Dans le chapitre suivant nous montrerons les résultats obtenus par cette technique

de synthése de vues.



Image 1

Image 2

N /.

Sélection des primitives d'intérét
appariées

:

Décomposition de 1'image

4

Transfert de points d'intérét sur
la nouvelle vue

:

Texturage bidimensionnel

Vue
synthétisée

Figure 4.11 : Description de 'approche proposée

143



144

Chapitre 5

Résultats expérimentaux

Dans ce chapitre nous allons présenter les résultats obtenus par les différentes méth-
odes décrites dans les chapitres précédents. Nous allons tout d’abord présenter les
résultats de la géomeétrie épipolaire sur des paires d'images stéréoscopiques!. Ensuite,
nous allons présenter les résultats pour les invariants projectifs. Enfin nous mon-
trerons une application particuliere des résultats précédents: la synthése de nouvelles

vues.

5.1 Géomeétrie épipolaire

Dans cette section nous nous intéressons a I’application de 1a méthode basée sur I'ho-

mographie que nous avons développée dans la section 2.5 pour calculer la matrice

1Les images stéréoscopiques utilisées sont disponibles publiquement 3 1’adresse du groupe SYN-
TIM a: http://www-syntim.inria.fr/syntim/analyse/paires-eng.html, les autres images ont été
générées au laboratoire du Groupe de Recherche en Perception et Robotique, Ecole Polytechnique
de Montxéal.
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fondamentale et sa comparaison avec différentes méthodes existantes dans la littéra-
ture. Les méthodes que nous utilisons dans nos comparaisons ont été décrit dans
la section 2.4. Toutes ces méthodes sont comparées a la technique de calibration
classique (Tsai, 1987; Zhang, 1996; Torr et Murray, 1997) qui est considérée comme
étant le résultat qui représente le mieux la géométrie inhérente 4 une configuration
de caméras donnée (en calibration classique I'information de profondeur est utilisée

pour obtenir des résultats plus fideles 4 la réalité).

5.1.1 Matrice fondamentale

Nous utilisons les principales techniques décrites dans les sections 2.4 et 2.5 pour
calculer la matrice fondamentale. Les résultats de la géométrie épipolaire estimée
sont montrés sur les figures 5.1, 5.2, 5.3, 5.4 et 5.5.

On remarque que les lignes épipolaires obtenues par la matrice fondamentale cal-
culée par I’approche que nous avons proposée et qui est basée sur ’homographie (F})
sont trés proches de celles obtenues par la méthode de moindre médiane des carrés
(Fims) qui est connue pour &tre la plus efficace des méthodes de calcul de matrice fon-
damentale (Torr et Murray, 1997; Zhang, 1996). Cette derniére, avec notre méthode,
donne les résultats les plus proches de ceux du résultat de calibration stéréoscopique
classique (Fey) (voir figures 5.1, 5.2, 5.3, 5.4 et 5.5). La méthode linéaire (Fiin)
donne le plus mauvais résultat. Mais aprés normalisation des données (Fji,n) nous

obtenons une nette amélioration pour cette dernidre, les résultats sont proches des
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(c) Non linéaire

(e) Homographie

Figure 5.2 : Résultats des différentes techniques d’estimation de la géométrie épi-
polaire sur la paire stéréo “Bé&timent”
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(e) Homographie
Figure 5.3 : Résultats des différentes techniques d’estimation de la géométrie épi-
polaire sur la paire stéréo “Bureau”
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(d) Homographie

Figure 5.4 : Résultats des différentes techniques d’estimation de la géométrie épi-
polaire sur la paire stéréo “Maison”
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Figure 5.5 : Résultats des différentes techniques d’estimation de la géométrie épi-
polaire sur la paire stéréo “Lab”
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résultats de la méthode non linéaire (Fnin) qui reste toutefois loin de la méthode de
moindre médiane des carrés et de la méthode basée sur 'homographie que nous avons
développée.

Dans la suite nous allons présenter les résultats de comparaison entre différentes

méthodes de calcul de la matrice fondamentale.

5.1.2 Comparaisons

Nous nous intéressons plus particulidérement i la comparaison de notre approche aux
principales méthodes existantes.

Ces derniéres années le probléeme de comparaison entre différentes méthodes de
calcul de la matrice fondamentale a suscité beaucoup d’intérét au sein de la commu-
nauté de vision par ordinateur. L’objectif est de trouver la meilleure mesure pour
comparer entre deux matrices fondamentales. Par le passé la comparaison se faisait
principalement en comparant visuellement les lignes épipolaires obtenues et super-
posées sur 'image correspondante, on vérifiait si les lignes passaient par les points
correspondants et si elles étaient proches des lignes obtenues par les résultats de
calibration stéréoscopique classique (Tsai, 1987). Une autre technique pour com-
parer entre les matrices consistait & calculer la norme de Fobenius de la différence
entre deux matrices fondamentales normalisées, toutefois il a été démontré que cette
derniére mesure ne permettait pas de vérifier 1'efficacité d’un algorithme par rapport

aux autres (Torr et Murray, 1997; Zhang, 1996). Ainsi de nouvelles techniques de
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mesures furent introduites pour permettre de calculer des quantités mesurables di-
rectement sur I'image. Deux méthodes sont utilisées dans ce sens. La premiére est
appelée mesure de différence entre matrices fondamentales notée Fdiff (Csurka et al.,
1997). Elle permet de comparer entre les matrices fondamentales en terme de distance
entre points et lignes épipolaires correspondantes en utilisant simultanément les deux
matrices fondamentales. La deuxidéme appelée facteur de qualité permet quand 3 elle
la mesure de la distance moyenne entre les lignes épipolaires calculées et les points
utilisés pour calculer la matrice fondamentale, dénotée par Qr (Boufama et Mohr,

1995).

5.1.2.1 Différence entre matrices fondamentales: Fdiff

Dans la suite nous décrivons comment obtenir la mesure de différence entre matrices
fondamentales. Soient deux matrices fondamentales & comparer, F; et F;. La mesure

de comparaison est donnée par la procédure suivante (figure 5.6) :

L
-
-
-
-

L 'm L

Figure 5.6 : Différence entre matrices fondamentales

1. Choisir de facon aléatoire un point m dans la premiére image.
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2. Tracer la ligne épipolaire de m dans la denxiéme image en utilisant F;. (ligne

pointillée sur la figure 5.6 définie par F{m).
3. Revenir 3 'étape 1 si 1a ligne épipolaire ne croise pas la deuxiéme image.
4. Choisir de fagon aléatoire un point m' sur la ligne épipolaire.

5. Tracer la ligne épipolaire de m dans la deuxidéme image en utilisant F3, soit

FTm, et calculer la distance ¢, entre le point m’ et la ligne FX m.

6. Tracer la ligne épipolaire de m’ dans la premiére image en utilisant F5, soit

Fom/, et calculer la distance d; entre le point m et la ligne Fom'.
7. Refaire les étapes 2 4 6 en inversant les roles de F; et F; et calculer d; et df.
8. Répéter N fois les étapes 1 & 7.

9. Calculer la distance moyenne en pixels des d; et d}, qui représente la mesure de

comparaison entre les deux matrices fondamentales.

Les résultats pour les images des figures 5.1, 5.2, 5.3, 5.4 et 5.5 sont donnés par
les tableaux 5.1, les valeurs représentent les erreurs ou distances moyennes en pixels.
Nous avons d’abord testé les différentes méthodes décrites dans les sections 2.4 et
2.5 sur I'image de la paire stéréoscopique “Mire”, par la suite nous avons choisi les
techniques les plus représentatives de chaque classe (classes des méthodes : linéaires,
non linéaires, et robustes) pour poursuivre les tests de comparaison par rapport aux

résultats de calibration classique sur les autres paires d’images.
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Tableau 5.1 : Résultats de comparaison entre différentes techniques de calcul de la
matrice fondamentale par la technique Fdiff

(a) Paire stéréo "Mire"

Feal | Flin | FlinN | Fh | Fuolin | FolinN| Fgrad | Fng | Fmest | Flms
Faal 1 o 12416| 387 | 211 | 341 | 446 | 342 | 444 | 156 | 077
Flin 0 [124.06 | 124.72] 12370 | 124.67| 123.46| 124.96 | 123.63 | 124.03
FlinN 0 283 1 063 | 073 | 063 | 073 | 541 | 328
Fh 0 296 | 308 | 287 | 307 | 262 | 223
Falin 0 109 ]| o000 | 1.00 | 487 | 278
FulinN 0 108 | 001 | 600 | 383
Fgrad 0 109 | 489 | 276
Fng 0 590 | 3.8
Fmest 0 2.10
Flms [t]
(b) Paire stéréo "Batiment"
Fecal FlinN Fh Fnlin Flms
Fcal 0 3.09 1.80 2.83 1.40
(c) Paire stéréo "Bureau"
Fcal FlinN Fh Fnlin Fims
Fcal 0 4.76 271 4.13 1.50
(d) Paire stéréo "Lab"
Fcal FlinN Fh Fnlin Fims
Fcal 0 4.27 1.62 3.77 1.17
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Nous constatons que la méthode linéaire (Fj;,,) donne les plus mauvais résultats.
La normalisation des données a priori (Fyinx) permet d’améliorer les résultats de la
méthode linéaire. La méthode non linéaire (Fy;i,) donne de meilleurs résultats que la
méthode linéaire. Ces mesures sont équivalentes & celles obtenues par la méthode de
gradient (Fg,qq). La normalisation des données avant 'application des méthodes non
linéaires et de gradient ne permet pas par contre I’'amélioration des résultats (Fuiinn
pour méthode non linéaire normalisée et Fy,, pour méthode de gradient normalisée).
Toutefois, les meilleurs résultats sont ceux obtenus par les méthodes non linéaires
utilisant les techniques de statistiques robustes (M-estimateurs (Fy,.) et moindre
médiane des carrés (Fiy,,)). La méthode linéaire basée sur '’homographie (F3) que
nous avons développée donne de meilleurs résultats que les autres méthodes linéaires
existantes et s’approche des résultats obtenus par les méthodes non linéaires utilisant
les statistiques robustes.

En somme, la méthode que nous avons proposée dans la section 2.5 est plus
performante que les méthodes linéaires, non linéaires et de gradient. Elle donne
des résultats proches des méthodes non linéaires utilisant les statistiques robustes
et les résultats de calibration classique (Fey). Ces derniéres servent de résultats de
comparaison pour les autres méthodes, puisque la calibration classique est considérée

comme représentant la réalité physique inhérente a la scéne.
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5.1.2.2 Facteur de qualité

Bien que la méthode de comparaison présentée plus haut soit une trés bonne méthode,
elle ne peut suffir & nous renseigner sur l'efficacité d’'une méthode par rapport a
d’autres. Il faut donc comparer les résultats obtenus par différentes techniques. Une
des techniques utilisées est appelée facteur de qualité, noté Qp (Boufama et Mohr,
1995). Ici 'objectif est de mesurer la distance moyenne entre les points appariés
qui ont été utilisés pour calculer la matrice fondamentale et les lignes épipolaires

correspondantes. La mesure est donnée par

o, d(m, Fmy) +d (mq, FTm)
QF = " 3

avec m; et m;, 1 = 1,...,n, les points appariés dans les deux images de la paire

stéréoscopique, et F' la matrice fondamentale calculée.

Tableau 5.2 : Facteur de qualité pour différentes techniques de calcul de la matrice
fondamentale

O Mire Bureau Bat Lab
FlinN 1.70 2.16 198 113
Fh 099 L02 123 082
Fnlin 1.33 208 1L.90 0.96
Flms 111 156 L42 0.89

Les résultats sont donnés par le tableau 5.2. Nous constatons que la méthode



157

que nous avons développée donne de meilleurs résultats que les autres méthodes.
Ceci vient du fait qu’on a utilisé explicitement les points appariés pour retrouver les
lignes épipolaires par homographie (voir chapitre 2). La méthode que nous proposons
permet donc d’avoir des lignes épipolaires qui sont trés proches des points d’intérét
sélectionnés, ce qui présente un intérét particulier pour 'application en synthése de
vues: lintersection des lignes épipolaires lors de la reprojection des points dans la
troisiéme vue se fait d’une maniére plus précise (trés proche de la position réelle du

point d’intérét qu’on veut reprojeter dans la nouvelle vue).

5.1.2.3 Temps de calcul

Un des principaux avantages des méthodes linéaires est le temps de calcul qui est
souvent trés faible comparativement au temps de calcul que nécessitent les méth-
odes non linéaires. Pour la paire d’images “Mire” (figure 5.1), nous avons établi un
appariement entre 102 points et nous avons mesuré le temps de calcul pour les méth-
odes : linéaire, linéaire basée sur ’homographie et la méthode de moindre médiane
des carrés qui est une méthode non linéaire utilisant les techniques de statistiques
robustes. Sur un SPARC 5, pour la méthode linéaire, le temps de calcul est d’environ
0.26 ms, pour la méthode linéaire basée sur ’homographie, le temps est d’environ
0.37 ms alors que pour la méthode de moindre médiane des carrés il est d’environ
2.56 s. On constate que le gain en temps de calcul est appréciable pour le calcul de

la matrice fondamentale lorsque nous utilisons la méthode linéaire basée sur ’homo-
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graphie présentée dans la section 2.5. Bien que le temps de calcul pour la méthode
linéaire sont inférieur A celui de la méthode que nous avons développée, le résultat
obtenu par cette dernidre est meilleur que celui par la méthode linéaire (la matrice
fondamentale est plus proche de la matrice fondamentale réelle).

En conclusion la méthode que nous proposons présente des avantages sur la plupart
des méthodes existantes, seule la méthode de moindre médiane des carrés donne
des résultats meilleurs mais trés proches lorsqu’on les compare par la technique de
différence entre matrices fondamentales Fdiff. Toutefois les résultats obtenus par
comparaison du facteur de qualité QF sont meilleurs dans le cas de la méthode linéaire

basée sur '’homographie et le gain en temps de calcul est important.

5.2 Invariants projectifs

Dans cette section nous présentons les résultats obtenus par les méthodes de calcul
des invariants projectifs.

Les images des figures 5.7 et 5.8 représentent les plans, points et lignes utilisés
pour calculer les invariants projectifs par les méthodes présentées dans les sections
3.2 et 3.3. Les résultats sont donnés par les courbes des figures 5.9 et 5.10.

Pour calculer les invariants projectifs nous avons utilisé les paires d'images stéréo-
scopiques “Mire” et “Bureau”. Pour le calcul de l'invariant basé sur un point de
référence et deux homographies, nous avons sélectionné deux plans appariés sur les

deux images d’une paire stéréoscopique (quadrilatéres en blanc sur les figures 5.7(a)
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mographies

(b) Plan, points et lignes sélectionnés pour l'invariant basé sur une ligne et une
homographie

Figure 5.7 : Paire stéréoscopique “Mire” utilisée pour le calcul des invariants projectifs
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(a) Plaus et points sélectionnés pour linvariant basé sur un point et deux ho-
mographies

(b) Plan, points et lignes sélectionnés pour l'invariant basé sur une ligne et une
homographie

Figure 5.8 : Paire stéréoscopique “Bureau” utilisée pour le calcul des invariants pro-
jectifs
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(b) Invariants basés sur une ligne de référence et une homographie

Figure 5.9 : Résultats de calcul des invariants projectifs pour la paire “Mire”
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Figure 5.10 : Résultats de calcul des invariants projectifs pour la paire “Bureau”
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et 5.8 (a)) et un point de référence et son correspondant (le point dénoté par le sym-
bole “+” sur les images des deux figures. Nous avons aussi sélectionné un ensemble de
points appariés sur les images de la paire stéréoscopique, pour lesquels nous avons cal-
culé l'invariant projectif. Les résultats sont donnés par les courbes des figures 5.9(a)
et 5.10(a). La premiére courbe représente les valeurs de calcul des invarianis obtenus
pour les points appariés: “o” représente 'invariant pour les points de 1'image gauche
et “x” représente 'invariant pour les points de l'image droite. Nous constatons que
les invariants obtenus pour les points appariés sont trds proches, nous obtenons donc
une méme valeur invariante pour une paire de points appariés.

Une mesure qualitative de comparaison entre les invariants projectifs est la dif-
férence entre les valeurs obtenues pour chaque paire de points (ou lignes) appariés

(Shashua, 1994a) :

A=|L-1I|

ol I; c’est I'invariant calculé sur I'image gauche et I, 'invariant calculé sur 1'image
droite.

Le résultat de comparaison par différence entre invariants pour les paires de points
appariés dans le cas de Pinvariant basé sur un point de référence et une homographie
est donné par la deuxiéme courbe des figures 5.9(a) et 5.10(a). Nous constatons que
le résultat est satisfaisant et que la précision obtenue est de I'ordre de 10~* pixels.

Ceci signifie que le processus d’appariement a été assez précis pour obtenir une trés
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bonne estimation des invariants projectifs.

Pour l'invariant basé sur une ligne de référence et une seule homographie nous
avons sélectionné un plan apparié sur une paire d’images stéréoscopiques (quadrilatére
en blanc sur les figures 5.7(b) et 5.8(b)), ce plan contient deux lignes (lignes pointillées
sur les deux images des figures 5.7(b) et 5.8(b)). Ces deux lignes seront utilisées pour
le calcul de I'invariant projectif comme décrit dans la section 3.3. Nous avons choisi
la ligne connectant les points notés 1 et 2 comme étant la ligne de référence (ligne
pointillée sur la table dans les images de la figure 5.7(b) et sur le bureau dans les
images de la figure 5.8(b)). Nous avons sélectionné un ensemble de lignes appariées sur
la paire d’images stéréoscopiques, pour lesquelles nous avons calculé I'invariant basé
sur une ligne de référence et une seule homographie. Les résultats sont donnés par la
premiére courbe des figures 5.9(b) et 5.10(b). Les valeurs obtenues pour les invariants
projectifs sont trés proches (“o” représente 'invariant pour les lignes de 'image gauche
et “x” représente l'invariant pour les lignes de I'image droite). Nous constatons que la
comparaison par la différence entre invariants, pour les lignes appariées, estimés en se
basant sur une ligne de référence et une seule homographie, montre que les résultats
obtenus sont satisfaisants (la deuxiéme courbe des figures 5.9(b) et 5.10(b)). Ceci
montre que I'estimation de I'invariant projectif a donné un trés bon résultat, ce qui

montre que le processus d’appariement a été assez précis.
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5.3 Synthése de vues

Dans cette section nous présentons les résultats de I’application des techniques précé-
dentes pour la synthése de vues. Nous utilisons les méthodes décrites au chapitre 4
pour produire une nouvelle vue qui soit la plus proche possible de celle qui aurait été
prise par une caméra placée au point de vue choisi. Le point de vue correspondant 3
la caméra virtuelle est défini par le choix d’une matrice de rotation R et d’un vecteur
de translation t par rapport & la caméra de référence de la paire stéréoscopique. Les
paramétres intrinséques définis par la matrice A sont ceux estimés préalablement par
calibration (cas semi-calibré). Ceci permet de déterminer les matrices fondamentales
Fiv, i = 1,2, entre la caméra virtuelle et les caméras de la paire stéréoscopique. Nous
comparons par la suite les vues obtenues avec les vues réelles prises par des caméras

placées aux endroits sélectionnés.

Figure 5.11 : Images sources pour la paire d’images "Batiment"
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Figure 5.12 : Images sources pour la paire d’images "Maison"

Figure 5.13 : Images sources pour la paire d’images "Lab"
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Les figures 5.11, 5.12 et 5.13 montrent les images sources utilisées et les figures
5.14, 5.15 et 5.16 montrent les images résultantes en utilisant 1’algorithme de synthése
de vues et les images réelles correspondantes. On constate que les images synthétisées

sont visuellement proches des images réelles correspondantes.

Figure 5.14 : Image synthétisée - "Batiment"

Pour comparer entre les vues synthétisées et les vues réelles correspondantes d’une

maniére qualitative nous avons utilisé la mesure suivante :

?

" d (‘m, m'-)
— =1 17"

Q - n
avec m; le point d’intérét sur l'image réelle, m] le point d’intérét sur I'image syn-
thétisée et n le nombre de points sélectionnés. La mesure Q représente 'erreur
moyenne en pixels entre la position réelle du point image et sa position obtenue par

reprojection. Pour 'image “Maison” (figure 5.15), cette erreur est approximative-
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(0

Figure 5.15 : Images synthétisées:(a) les images réelles; (b) images synthétisées par
géométrie épipolaire; (c) images synthétisées par invariants projectifs - "Maison"
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(c)

Figure 5‘.16 : Ima.g&s synthétisées:(a) les images réelles; (b) images synthétisées par
géométrie épipolaire; (c) images synthétisées par invariants projectifs - "Lab"
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ment égale & 1.8 pixels pour la reprojection par la géométrie épipolaire et 2.0 pixels
pour la reprojection par invariants projectifs. Pour I'image “Lab” (figure 5.16), cette
erreur est d’environ 2.0 pixels pour la reprojection par géométrie épipolaire et d’en-
viron 2.4 pixels pour la reprojection par invariants projectifs. On constate ainsi que
I'application de 1a géométrie épipolaire donne de meilleurs résultats pour le transfert
de points d’intérét appariés sur une troisiéme vue. Toutefois, comme nous I’avons
souligné au chapitre 4 la synthése de nouvelles vues dans la région proche du plan
trifocal est trés complexe par les techniques de géométrie épipolaire, d'oi I'intérét

d’utiliser les invariants projectifs pour la synthése de nouvelles vues.

5.4 Conclusion

Dans ce chapitre nous avons présenté les résultats expérimentaux obtenus par les
méthodes que nous avons développées dans les chapitres précédents. D’abord les
différents résultats de comparaison montrent que la méthode de calcul de 1a matrice
fondamentale décrite dans le chapitre 2 représente une trés bonne alternative aux
méthodes existantes de calcul de la matrice fondamentale surtout lorsque le temps
de calcul est important. Nous avons présenté aussi les résultats pour les méthodes
de calcul des invariants projectifs ol nous montrons que les méthodes développées au
chapitre 3 donnent une trés bonne estimation de ces invariants. Enfin, nous avons
montré que 'application des méthodes précédentes avec les techniques de terturage

bidimensionnel en perspective permet de générer des nouvelles vues qui sont trés



proches des vues réelles correspondantes.
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Chapitre 6

Conclusion

Dans ce travail nous nous sommes intéressé 3 un domaine trés récent de la vision
artificielle, le rendu basé sur images. Il consiste en la synthése de nouvelles vues
les plus réalistes possibles & partir de vues existantes. Ici I'étude a porté sur le cas
de génération de vues 3 partir des images prises par une paire stéréoscopique non
talonnée. Pour cela il faut comprendre les relations géométriques caractérisant une
configuration de caméras stéréoscopiques.

La géométrie projective nous a permi d’avoir une description des relations entre
cameéras par le biais de la géomeétrie épipolaire et des invariants projectifs. Les outils
de la géométrie projective permettent une description valide de la géométrie de la
scéne, et peuvent é&tre utilisés pour une synthése de nouvelles vues satisfaisant les
contraintes géométriques inhérentes 4 la configuration des caméras et de la scéne. La

vue ainsi obtenue est plus proche de la vue qui serait capturée par une caméra réelle
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placée 4 Pendroit choisi pour placer la caméra virtuelle. L’étude de ce sujet nous
a amené A développer des outils permettant la génération de nouvelles vues d’'un
réalisme satisfaisant.

Dans ce sens, notre contribution se situe principalement 3 trois niveaux (la géo-
métrie épipolaire, I'invariance projective et la synthése de nouvelles vues & partir
d’un appariement éparse entre les images d’une paire stéréoscopique) menant 3 ia
génération de nouvelles vues a partir d’images sources prises par une paire de caméras
stéréoscopiques non calibrées en se basant plus particuliérement sur I'exploitation des
propriétés de la scane. Ce premier élément consiste en 'utilisation de la contrainte
de planarité associée a la présence de surfaces planes dans la scéne. Cette contrainte
est caractérisée par une relation homographique entre les projections sur les pla.hs
images d'une méme surface plane. Cette transformation contient toute I'information
nécessaire sur la perspectivité de la surface plane.

Tout d’abord, comme contribution au niveau de la géométrie épipolaire, nous
avons utilisé la contrainte de planarité pour définir la géométrie épipolaire entre deux
caméras d’une paire stéréoscopique caractérisée par la matrice fondamentale. La
relation homographique entre les deux images d’un méme plan présent dans deux
plans images différents nous permet d’établir les relations épipolaires qui nous sont
nécessaires pour la résolution de ’équation de contrainte épipolaire. Les homogra-
phies permettent de déterminer les lignes épipolaires caractérisant une configuration

de caméras donnée, ainsi que les points épipolaires correspondants. Ceci améne par
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la suite & la définition d’un paramétrage pour la matrice fondamentale en termes
de points épipolaires. Ce paramétrage permet 'obtention d'une forme de la matrice
fondamentale qui satisfait la contrainte de rang 2 caractéristique d'une matrice fon-
damentale (la forme de la matrice fondamentale fait en sorte que son rang soit égal a
2, cette propriété est la source la plus importante d’instabilité calculatoire). Une fois
cette étape franchie, une résolution d’un systéme d’équations linéaires définies par les
contraintes épipolaires permet de retrouver les coefficients de la matrice fondamentale
d’une maniére numériquement stable. La méthode proposée traite les différents types
de configurations de caméras par 'exploitation des propriétés de la géométrie pro-
jective. Les résultats de comparaisons que nous avons présentés montrent bien que
la méthode développée dans ce travail donne des résultats satisfaisants proches des
résultats de calibration classique (considérés comme les valeurs réelles dans nos tests)
et des techniques non linéaires utilisant les statistiques robustes (moindre médiane
des carrés). En plus, elle a I’avantage de permettre un gain appréciable en temps de
calcul.

Notre deuxiéme contribution se situe au niveau des invariants projectifs, o nous
avons présenté deux techniques permettant le calcul des invariants a partir de l'ap-
pariement entre des primitives d’intérét (points et lignes) présentes sur deux images
d’une paire stéréoscopique. Ici aussi nous avons explicitement utilisé la contrainte de
planarité pour définir ces invariants projectifs. D’abord nous avons montré comment

nous avons obtenu un invariant pour les points en se basant sur un point de référence
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et deux homographies caractérisant deux plans de la scéne. Cet invariant est défini en
terme de birapports, 'invariant de base en géométrie projective. Pour les lignes, nous
avons développé une nouvelle méthode permettant de calculer un invariant projectif
A partir d’'un appariement entre lignes, en terme de birapports calculés en utilisant
une ligne de référence et une seule homographie correspondant 2 un plan de la scéne.
Les résultats de comparaison de la différence entre invariants pour les primitives d’in-
térét montrent que les techniques proposées donnent une trés bonne estimation de
ces invariants. Les résultats obtenus dans le chapitre 5 montrent que cette estimation
est trés précise.

Finalement, comme troisiéme contribution nous avons présenté une nouvelle ap-
proche pour la synthése de nouvelles vues & partir de vues connues et ce sans mod-
éle tridimensionnel. Cette approche est basée sur la décomposition de la scéne en
morceaux de surfaces planes. Elle a avantage de n’utiliser qu'un appariement épars
pour produire la nouvelle vue. Ici nous avons exploité les outils de géométrie projective
développés plus haut, c’est-a-dire la matrice fondamentale et les invariants projectifs
pour reprojeter les points appariés sur une nouvelle vue. L’appariement éparse per-
met de représenter 1’image par un maillage dont les points appariés sont les points de
contrdle. Ainsi, la reprojection des points appariés permet de définir un maillage sur
la nouvelle vue qui sera rempli en utilisant des techniques de texturage bidimensionnel
en perspective. Nous évitons ainsi d’avoir 4 faire un appariement dense entre les im-

ages de la paire stéréoscopique. La technique de texturage utilisée permet une bonne
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reprojection lorsque la surface d’intérét est plane, d’ol l'intérét d’une décomposition
de la scéne en morceaux de surfaces de ce type. Cette hypothése est souvent satisfaite
(scénes urbaines, sc2nes industrielles, etc.). Notre méthode peut &tre aussi utilisée
dans le cas de scénes complexes ol les zones d’intérét contiennent souvent des objets
qu'on peut décomposer en surfaces planes. La faisabilité de 'approche développée
a été démontrée sur plusieurs exemples qui montrent que nous obtenons une bonne
précision sur la position des points dans 'image synthétisée. D'une maniére subjec-
tive nous pouvons visuellement constater que les vues générées sont trés proches des
vues réelles correspondantes.

Le travail que nous avons présenté souléve des questions qui peuvent étre abordées
dans de futures recherches, aussi bien au niveau des outils de la géométrie projective
que de la syntheése de vues.

Au niveau de la géomeétrie épipolaire, I'intégration de techniques de statistiques
robustes qui permettent la détection et ensuite le rejet de faux appariements amélior-
erait les résultats que nous avons obtenu par la méthode basée sur I’homographie.
D’un autre c6té I'utilisation de la géométrie épipolaire déterminée 4 partir d’un petit
nombre de points permettrait d’établir un appariement des autres points de maniére
automatique et serait intéressant de le considérer dans un schéma itératif global dans
lequel le passage de I’'appariement 4 matrice fondamentale et de matrice fondamentale
a 'appariement permettrait éventuellement une amélioration des résultats obtenus.

Du coté de la contrainte de planarité, il serait intéressant d’étudier la possibilité
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de relichement d’une telle contrainte pour traiter un cas plus général. Ceci est aussi
valable pour les invariants projectifs qui exploitent cette méme contrainte.

Pour la synthése de vues un schéma d’interpolation plus général nous aiderait &
traiter des scénes sans avoir A les décomposer en morceaux de surfaces planes. L'idée
est de développer une technique de texturage bidimensionnel capable de reprojefer
en perspective non seulement de plans mais aussi des formes plus complexes. Enfin,
ure question importante a considérer dans le futur est le développement d'un modele
de changement d’illumination lors de la synthése de vues sans reconstruction tridi-
mensionnelle explicite. Ainsi, la vue générée sera plus proche de la vrai vue qui serait
prise par une cameéra placée i I'endroit choisi: non seulement la position des points
reprojetés sera précise, mais aussi I'interaction de la source de lumiére avec la scéne
sera modélisée (couleur, ombres, etc.), et la vue obtenue sera plus réaliste. Malgré
que les modeles d’illumination ont été trés étudiés en infographie, ’application de
la géométrie projective pourrait éventuellement aider 4 définir un modele & partir
seulement des images bidimensionnelles et ce sans reconstruction tridimensionnelle

explicite.
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