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RESUME

Les considérations environnementales et le manque d’espace dans les villes
surpeuplées peuvent imposer un rapprochement des lignes électriques, des ouvrages de
télécommunication, des rails de train et des pipelines de gaz ; ou imposer 'utilisation
d’un méme corridor de transport. Les ouvrages sont alors rapprochés tel qu’il peut
apparaitre des tensions et courants induits perturbateurs dus au couplage inductif et
capacitif entre les ouvrages. La problématique que ces perturbations posent entre
ouvrages, définie comme Compatibilité Electromagnétique (CEM), est un aspect
important de la conception des ouvrages depuis bien des années.

Pour analyser les effets de la CEM dans un réseau électrique, les partenaires associ€s au
développement de EMTP-RV (Electromagnetic Transients Program- Restructured
Version), ont initié le projet CRINOLINE qui sera composé d’une boite a outils
utilisable dans EMTP-RYV et dédiée a I’analyse de la CEM.

Ce nouveau projet exige des modifications dans les modules de calcul des parameétres
des cables et des lignes dans EMTP-RV. Une des principales modifications est la prise
en compte de I’'impédance mutuelle de retour par la terre entre deux ouvrages de types
différents, par exemple, une ligne aérienne et un cable souterrain, pour modéliser le

couplage inductif.

L’objectif principal de cette recherche est d’évaluer cette impédance mutuelle de
retour par la terre et analyser son incorporation dans les modeles des lignes et cébles
dans EMTP-RV pour le cas des ouvrages de différents types.

Cette impédance mutuelle est directement associée au champ électrique da a la présence
de la terre. En considérant les hypothéses quasi-TEM (Transverse Electromagnétique)
prises par Pollaczek pour résoudre les équations de Maxwell pour ce champ, nous avons
montré que pour les configurations usuellement rencontrées, ces hypotheses sont

respectées. Cependant, au-dela des distances de I’ordre de quelques centaines de métres,
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des profondeurs de quelques dizaines de meétres ou pour les fréquences de quelques
MHz, les hypothéses ne sont plus valides et les résultats de I’évaluation de I’intégrale de

Pollaczek sont discutables.

En corrigeant la localisation des zéros de la fonction intégrante de I’intégrale de
Pollaczek, dans une des plus récentes méthodes d’évaluation numérique, et en
introduisant une procédure pour borner ’erreur relative commise, nous avons proposé
une nouvelle méthode d’évaluation numérique de I’intégrale de Pollaczek. Celle-ci a été
validée en comparaison avec les résultats de la méthode Quasi-Monte Carlo sans
troncature de I’intégrale. Cette nouvelle méthode numérique proposée a des limites dans
son application. Celles-ci sont liées a celles de la quadrature Lobatto dans Matlab quand
les pas exigés pour la tolérance absolue sont trés petits, de 1’ordre de 107"

Par ailleurs, le temps d’exécution pour certaines configurations est relativement élevé.
L’estimation des bornes des erreurs est conservative et rallonge le temps d’exécution. La
nouvelle méthode numérique que nous proposons sera avant tout un outil pour établir les

limites de précision des formules et autres approximations analytiques.

Par analyse des développements en série des champs électriques introduits par
Pollaczek, nous avons introduit deux nouvelles formules approximatives : une pour le
couplage ligne-céble, et une autre pour le couplage entre cables souterrains. Par ailleurs,
cette derniére découle d’une observation plus générale que I’impédance entre les cables
peut étre déduite d’une évaluation de ’expression de 1'impédance entre un élément

aérien et souterrain avec ajout des deux fonctions de Bessel.

Les nouvelles formules approximatives ainsi que celles anciennement connues (Lucca,
CCITT et Saad) ont été, pour chacun de cas correspondants, comparées a la nouvelle
méthode numérique. Il ressort que pour le cas aérien —souterrain, la nouvelle formule
approximative est plus précise que celle de Lucca et celle du CCITT pour les fréquences

inférieures a environ 1 kHz et pour des distances courtes (hauteur < 10m et distance
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horizontale < 3m). Cependant, toutes ces formules approximatives pour I’'impédance
mutuelle entre ligne aérienne et cable souterrain sont inadéquates pour les fréquences de
plus 10kHz. Nous proposons une méthode hybride combinant les formules
approximatives que nous avons nouvellement introduites, celle de Lucca et une méthode
numérique utilisant la quadrature. Cette formule hybride donne des erreurs relatives de
moins de 1% par rapport a la méthode numérique compléte. Le temps requis pour un cas
type de 10000 évaluations de I’'impédance est de moins de 60 secondes alors qu’il est de
plus de 160 secondes pour les autres méthodes numériques. La méthode hybride peut
étre améliorée en optimisant 1'utilisation des formules approximatives et la quadrature
Lobatto dans Matlab. La nouvelle formule approximative pour le couplage entre cables
semble étre tout aussi performante que celle de Saad pour une fréquence inférieure a 100

kHz.

Comme principales recommandations et retombées de cette recherche, on peut
souligner que :

e La bonne performance de la nouvelle formule analytique introduite suggere son
utilisation pour I’étude de la CEM dans un méme corridor pour les ouvrages a moins
de 10m de hauteur et a moins de 3m de profondeur, par exemple, rail vs cables.

e L’augmentation de la gamme de fréquences pour la syntheése des matrices utilisées
dans les modéles de ligne et cables ouvrirait la possibilité de traiter formellement la
CEM entre portions des lignes dans 1’étude du régime transitoire.

¢ Enfin, la bonne connaissance de I’impédance mutuelle, et son incorporation dans les
modéles les plus performants, permettrait de fixer d’une maniére optimale les
distances entre les ouvrages suivant les seuils d’induction permis pour le bon
fonctionnement de chacun. Ou, a I’'inverse, évaluer le niveau d’induction voulue
quand on approche une structure sur la ligne de transmission. Par exemple, dans le

cas de la mesure des hautes tensions par couplage inductif ou capacitif.
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ABSTRACT

Environmental concerns and the lack of space in overpopulated cities can impose
a cluttering of powerlines, telecommunication facilities, railway systems and gas
pipelines, or the use of a common right-of-way. Equipments that are brought in close
proximity to each other can generate mutually induced currents and voltage. This
problem is well known as Electromagnetic Compatibility (EMC), an important aspect in

equipment design.

To perform EMC studies in the corridors of power networks, a group of partners
associated to the improvement of the EMTP-RV (Electromagnetic Transients Program-
Restructured Version), have launched the development of CRINOLINE, an EMTP-RV
software toolbox. This new project requires modifications in line and cable parameter
calculation modules in the EMTP-RV such as taking into account mutual earth return
impedance between two equipments of different types. Such a case is the inductive

coupling between an overhead line and an underground cable.

The principal objective of this research is to evaluate the mutual earth return
impedance and to analyze its incorporation in line and cable EMTP-RV models for

structures of different types.

The mutual earth return impedance derives from the electrical field due to the presence
of the ground. By considering the quasi-TEM assumptions (Transverse Electromagnetic)
taken by Pollaczek to solve Maxwell's equations for this field, we show that for the
configurations usually met, these assumptions are respected. However, for distances
beyond the order of a hundred meters, depth about a tens meters or for frequencies of a
few MHz, assumptions are not valid any more and the results of the evaluation of

Pollaczek’s integral are questionable.



By correcting the localization of the roots of Pollaczek’s integral function for one of the
most recent numerical evaluation methods and by bounding the relative error, we
propose a new numerical evaluation method of the Pollaczek’s integral. This is validated

in comparison with the results of the Quasi-Monte Carlo method without truncation.

The limits of the new numerical method are related to those of Lobatto quadrature in
Matlab when the steps required for the absolute tolerance needed are extremely small.

In addition, the CPU time for certain configurations is relatively high. The estimate of
error bounds is conservative and lengthens the execution time. The new numerical
method that we propose will be a whole tool to establish the limits of precision of
closed-form approximations.

By analysing series expansions of the electric field expressions introduced by Pollaczek,
we derive two new approximate formulas: one for overhead line and buried cable
coupling; and another for the buried cables. Moreover, the latter is deduced from a
general observation that impedance between buried cables can be deduced from the
expression of the impedance between an overhead and underground elements adding
two Bessel functions.

New approximate formulas as those of Lucca, CCITT, Saad and the Uribe method, were
compared with the new numerical method. It turns out that for the case overhead-
underground, the new approximate formula is more precise than others for frequencies
lower than approximately 1 kHz, and for short distances (height < 10m and horizontal
distance < 3m). However, all these approximate formulas for mutual earth return
impedance between overhead line and buried cable are inadequate for frequencies over
10kHz. We propose a hybrid method combining the approximate formulas we recently
introduced with Lucca’s formula and Lobatto quadrature. This hybrid formula gives
relative errors of less than 1% compared to the complete numerical method. Time costs
for a typical case of 10000 evaluations of impedance is less than 60 seconds. This hybrid

method may be improved by optimizing the use of the approximate formulas and
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Lobatto quadrature in Matlab. The new approximate formula we propose for cables

appears to be as precise as Saad’s for frequency lower than 100 kHz.

The principal applications of this research and future works can be summarized as

following:

Considering good results of the new analytical formula for overhead and

underground coupling, it can be used for EMC study in a common corridor for

“equipment located at 10m height or less and 3m depth or less, such as the case of

railway— cable coupling;

The increase of the frequency band for the synthesis of the matrices used in the
line and cable models would open the possibility of formally treating the EMC
between portions of the lines in the transient analysis;

Lastly, good knowledge of mutual earth return impedance would make it
possible to optimize distances between equipment according to the thresholds of
induction allowed for correct operation of each. Or, on the contrary, in evaluation
of desired induction intensity when one approaches a structure on the
transmission lines; as in the case of measuring of high voltages by inductive or

capacitive coupling.
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INTRODUCTION

Contexte de développement du projet et objectif principal

Les considérations environnementales et le manque d’espace dans les villes
surpeuplées peuvent imposer un rapprochement des lignes électriques, des ouvrages de
télécommunication, des rails de train et des pipelines de gaz, ou imposer 1’utilisation
d’un méme corridor de transport. Les ouvrages sont alors rapprochés tel qu’il peut
apparaitre des tensions et courants induits perturbateurs dus au couplage inductif et
capacitif entre les ouvrages. La problématique que ces perturbations posent entre
ouvrages, définie comme Compatibilité Electromagnétique (CEM), est un aspect

important de la conception des ouvrages depuis bien des années.

Pour analyser et étudier les effets de la CEM dans un réseau électrique, Electricité de
France (EDF), Hydro-Québec et d’autres partenaires associés au développement de
EMTP-RV (Electromagnetic Transients Program- Restructured Version) [1] [2], ont
initié¢ le projet CRINOLINE. Ce dernier vise a créer une boite a outils utilisable dans
EMTP-RV et dédiée a I’évaluation des courants et tensions induits sur les lignes
électriques, les lignes de télécommunication, les rails de train, les pipelines de gaz et

d’autres structures métalliques a proximité des lignes et cables sous tension [3].

Le choix d’analyser la CEM dans EMTP-RV, a travers CRINOLINE, est motivé par le
fait que les tensions et courants induits varient avec les conditions d’opération dues aux
perturbations sur la ligne qui en est la source. Les cas les plus sévéres de ces inductions
surgissent pendant les phénomenes transitoires : défaut de court-circuit, la foudre ou les
manceuvres des interrupteurs. Il faut donc en plus d’assurer des seuils acceptables
pendant le fonctionnement normal, s’assurer surtout d’étre en dega des seuils limites de

ces inductions pendant les phénomeénes transitoires. Comme ces derniers sont justement



adéquatement analysé€s dans les programmes de type EMTP [4], on prendrait en compte
les pires cas de la CEM dus aux transitoires €lectromagnétiques ainsi que les cas pour les

situations normales d’opération.

Comme finalité, ces nouveaux outils de CRINOLINE serviront aux concepteurs
d’ouvrages et aux analystes d’assurer les seuils requis des perturbations sur les ouvrages
en se conformant aux recommandations et directives de différents organismes tels la
CEl, IEEE, CIGRE et le CCITT de UIT (Union Internationale des
Télécommunications). Ce dernier donne plusteurs directives spécifiquement lides a la
CEM et fournit beaucoup de détails sur les mécanismes de ces inductions mutuelles

entre conducteurs [5].

Ce nouveau projet CRINOLINE exige des modifications dans les modules de calcul des
paramétres des cables et des lignes dans EMTP-RV. Une des principales modifications
est la prise en compte de I'impédance mutuelle entre une ligne acrienne et un céable
souterrain, ou entre ouvrages de types différents. Or, I’évaluation de cette impédance
mutuelle pose différents défis quant a sa précision, sa robustesse, son temps de calcul et,
de plus, sa validité doit étre garantie pour toutes les distances pratiquement rencontrées.

C’est dans ce contexte que ce travail de maitrise a ét¢ mené. Son objectif principal est
d’évaluer cette impédance mutuelle de retour par la terre et analyser son incorporation
dans les modéles des lignes et cables dans EMTP-RV pour le cas des ouvrages de

différents types.

Défis de ’évaluation de I’impédance mutuelle. objectifs et méthodologie

Les défis posés par la modification du module de calcul des paramétres des lignes et
cables pour accommoder EMTP-RV a CRINOLINE sont de deux ordres. Le premier est
au niveau informatique : passage de FORTRAN a4 MATLAB [6]. Et le deuxiéme est li¢

au calcul des parameétres des lignes et des cables, spécialement I’impédance mutuelle de



retour par la terre entre les éléments aériens et souterrains. C’est ce deuxiéme aspect qui
sera traité dans ce travail. Plus spécifiquement, il faudra :

- Analyser I’effet de I’ajout du couplage inductif entre lignes et cables (de type
«pipe» ou «single core») dans les matrices des parameétres modélisant la ligne de
transmission. Ceci en tenant compte de 1’analyse par boucle adoptée dans la version
antérieure de EMTP [4].

- Fixer approximativement les limites des distances, de la résistivité du sol et la
fréquence en degd desquelles les hypothéses de formulation des expressions
d’impédance mutuelle sont respectées. Ceci pour s’ assurer de la validité du modéle du
champ électromagnétique dans le sol en accord avec les hypotheses de Pollaczek [7] ou
d’autres formulations par le CCITT [5] ou Carson [8] [9].

- Enfin, la validité du modele du sol assuré, nous allons proposer une méthode
efficiente d’évaluation de I’impédance mutuelle de retour par la terre. En effet, pour les
configurations de deux éléments souterrains ou de type mixte, aérien—souterrain, et pour
les fréquences de plus de 100 kilohertz, les méthodes d’évaluation de 1’impédance
mutuelle de retour par la terre comportent des limites quant a leur précision [10]. Ce
n’est pas le cas pour les autres types de couplage, capacitif et conductif intervenant dans
la CEM. Car ces derniers sont adéquatement €valués [5] [11]. Nous nous concentrerons
sur I'impédance mutuelle de retour par la terre.

L’expression intégrale de cette derni¢re, découlant de 1’expression du champ électrique
établie par Pollaczek [7], est infinie et trés irréguliérement oscillatoire et, par ailleurs,
elle n’a pas, 4 ce jour, une forme analytique connue [12], [13]. Son évaluation
numérique pose des difficultés a minimiser I’erreur tout en assurant un temps de calcul
réduit et une bonne robustesse dans la méthode employée. 11 a ainsi été proposé certaines
approximations analytiques de cette impé€dance mutuelle pour différentes configurations.
Mais celles-ci comportent des limites quant au domaine d’applicabilité : la distance

horizontale inférieure a 5 m et la fréquence inférieure a environ 100 kHz [12].



Par ailleurs, trés récemment (2002 et 2005), un algorithme pour 1’évaluation numérique
de I'intégrale de Pollaczek pour les cables souterrains a été développé dans [10] et pour
une ligne et un céable dans [12]. Cette méthode a le mérite de quantifier
approximativement ’erreur des approximations faites précédemment dans [4], [14], [13]
et [5].

Cependant, certaines lacunes de cette récente méthode dans [12], [15] et [10], telles la
mauvaise localisation des zéros de la fonction intégrante de Pollaczek, la non
adaptabilité, le temps de calcul élevé et 1a non estimation des bornes des erreurs font non
seulement que 1’on ne peut 1'utiliser en simulation mais qu’en plus, il subsiste un doute
de son utilisation comme méthode de référence pour valider les approximations faites.
Pour faire progresser la connaissance sur le sujet, nous nous donnons 1’objectif d’établir
une méthode d’évaluation de I’'impédance mutuelle modélisant le couplage inductif pour
toutes les configurations pratiques avec contrdle de la borne de I’erreur (intervalle de
confiance). De plus nous allons identifier la meilleure méthode utilisable en simulation
par ordinateur a incorporer aux modéles des lignes et des cables dans le logiciel EMTP-
RV. A terme, on augmenterait la gamme des fréqﬁences pour la synthése des matrices

utilisées dans le modéle des lignes et des cébles.

Pour répondre a la problématique que ces défis posent et rencontrer les objectifs de la
recherche, nous avons analysé et étudié¢ la définition des impédances, qui sont les
paramétres pour la modélisation des lignes, en établissant le lien entre ceux-ci avec les
champs électromagnétiques. L’étude de 1’établissement des expressions des champs, et
donc de I'impédance mutuelle, a été menée pour identifier les termes impliqués, leurs
variations et les limitations qui s’y rattachent. Ce qui a permis, par ailleurs, de proposer
des nouvelles approximations de I’impédance mutuelle. Ensuite, 1’état de ’art a été
effectué pour identifier la meilleure méthode utilisable en simulation. Les lacunes dans
les méthodes existantes ont été identifiées et levées. De ceci, nous avons propos€ une
méthode numérique plus efficiente, et une méthode additionnelle, Quasi-Monte Carlo,

pour la validation. Finalement, la validation de la méthode numérique proposée a été



menée, suivie par I’analyse des performances a partir de laquelle nous avons proposé

une méthode hybride et des approximations utilisables pour la simulation.

Organisation du mémoire

Ce mémoire comporte outre la présente introduction et la conclusion finale, six chapitres

se terminant chacun par un bref résumé des éléments importants.

Dans le premier chapitre, nous rappelons les notions fondamentales de la modélisation
des lignes de transmission bifilaires et & multiconducteurs. Nous soulignons les défis a
surmonter pour les différents modéles des lignes dans EMTP-RV pour incorporer les

parametres du couplage inductif.

Dans le chapitre deux, nous analysons 1’impédance mutuelle de retour par la terre. Sa
dérivation de la résolution des équations de Maxwell pour le champ électrique. A partir
des hypothéses de cette formulation faite par Pollaczek, et identiques a celle du CCITT
[S], nous établissons les valeurs limites des parameétres respectant ses hypotheses. Nous
y analysons le développement en série des expressions des champs pour déduire des
nouvelles formules approximatives. Et nous terminons par comparer les formules de

Carson, Sunde et celles du CCITT par rapport a celle de Pollaczek.

Dans le chapitre trois, nous passons en revue les différentes techniques utilisées pour
I’évaluation de 1’impédance mutuelle de retour par la terre. Nous montrons les limites et
lacunes des méthodes existantes. Nous y établissons une méthode efficiente pour évaluer
I’intégrale de Pollaczek de 1I'impédance mutuelle de retour par la terre. Et en prévision
de sa validation nous appliquons une méthode d’intégration Quasi-Monte Carlo (QMC).
Nous y développons une procédure pour la détermination de I’intervalle de confiance en

fonction du nombre d’échantillons utilisé dans la méthode QMC.



Dans le chapitre quatre, nous validons la troncature et I’accroissement de la précision de
la nouvelle méthode en comparaison avec une méthode pour laquelle il n’y a pas de
troncature (avec changement de variable) et en comparaison avec la méthode Quasi-
Monte Carlo. Nous identifions aussi les limites de la nouvelle méthode et les contraintes

qui y sont imposées.

Dans le chapitre cing, nous comparons les différentes formules approximatives pour
I’impédance mutuelle de retour par la terre pour une ligne aérienne et un céble
souterrain. Une nouvelle formule approximative que nous proposons est comparée a la
formule de Lucca et a celle de CCITT. Sur base des performances de chacune des
méthodes nous y formulons une nouvelle méthode hybride dont la performance en
précision et en temps sont évaluées pour qu’elle soit incorporée dans un logiciel de

simulation.

Dans le dernier chapitre, le sixiéme, nous avons appliqué la méthode d’évaluation
numérique du couplage entre ligne aérienne et cable souterrain au cas du couplage entre
deux cables souterrains. Nous y montrons le lien, comme préconisé par Pollaczek avec
les champs électriques, entre I’impédance mutuelle de retour par la terre pour cébles
souterrains et celle entre une ligne a la surface du sol et un cable souterrain. Nous
analysons une nouvelle formule pour cable basée sur cette derniére. Nous indiquons une
possibilité¢ de déduire dorénavant les impédances entre cables de toutes les formules

efficientes pour cable aérien et souterrain.

Enfin, en conclusion, nous €voquons les contributions de cette recherche a I’avancement
des connaissances sur le sujet, nous notons les différentes limites et contraintes des
méthodes proposées. Et pour terminer, les retombées possibles et les travaux futurs sont

annonces



CHAPITRE 1 GENERALITES ET PRINCIPES DE LA MODELISATION
DES LIGNES DANS EMTP

1.1 Rappels sur la notion de ligne de transmission bifilaire simple

Une ligne de transmission peut étre représentée en considérant la chute de
tension dV et le courant shunt d/ a chaque unité incrémentale de longueur de la ligne
dz ; et en utilisant les concepts d’analyse de circuit : La résistance (R), 'inductance (L),

la capacité (C), et la conductance (G) ;

Iy I+dl
| | LR E
a_ . )
i |
| v | {7 +ar 53 N
l |
6 1 | )
l dz ' H dz §
> >

Figure 1. 1 Portion d’une ligne de transmission bifilaire.

En effet, de part la définition de I’impédance par unité de longueur, notée Z (a la place
de Z' usuellement rencontré), dans la théorie des circuits, liant la chute de tension et le

courant,on a :

dv = -1Zdz (1.1)

Et par ailleurs, avec I’admittance par unité de longueur Y , le courant shunt et la tension
sont lides :

dl = -YVdz (1.2)



Le signe négatif est introduit comme une anticipation de la diminution des quantités [/
et V.

Pour une ligne a deux conducteurs (aller et retour), tel que montré a la Figure 1.1, il faut
remarquer qu’il n’y a pas de couplage avec aucun autre élément. Considérant ce cas, et
en admettant que le courant circule dans les plans transversaux a I’axe z, le long de la
ligne ; on a, en divisant (1.1) et (1.2) par dz, les équations de la ligne de transmission

pour le courant alternatif (c.a) :

dv
—;]—— = —ZI
z
1.3
dl (1.3)
— ==YV
dz

Les manipulations de ces deux équations nous donnent une deuxieme formulation

compatible avec la théorie de propagation des ondes [16], page 61.

2

——ZYV =0
N (1.4)

-ZYI =0

2

dz

En (1.4) on a les équations d’Helmholtz a une dimension dont la solution générale est
une somme de deux ondes, une se propageant dans le sens positif (selon+ z) et une

autre dans le sens négatif (selon— z ), pour le courant et pour la tension.
La constante de propagation ¥, I’onde de propagation positive (¥ ou [") et
I'impédance caractéristique Z, de la ligne de transmission sont alors définies

respectivement comme :

y =ZV (1.5)

V=V, exp(— }z)

I" =1, exp(— ;z) (9

Z,=—=.|— (L.7)




L’impédance et I’admittance sont en fonction de R, L, C, G. Et ces derniers sont en

général des fonctions de la fréquence :

{Z=R+jLa>

1.8
Y=G+jCw (1.8)

Ou R =f(a)), L :f(a)), C=f(a)) et G:f(a)).

Avec les parametres ci haut définis, 1’analyse de la ligne dans les conditions de régime
permanent, du transfert de puissance, etc. peut étre menée. On se rappelle qu'on a
considéré une seule paire de conducteurs (aller et retour) ou encore un conducteur (une
phase) avec son retour par la terre.

S’il n’y a aucun couplage, un systéme multiconducteur peut aussi étre analysé par les
équations ci haut. Les impédances et admittances, etc., sont, dans ce cas, des matrices
diagonales, dont les éléments sont normalement dépendants de la fréquence.

Pour le systéme couplé, les matrices ne sont plus diagonales. La définition des

paramétres ¥, Z,, etc., est plus complexe. Dans le paragraphe qui suit nous

généralisons les équations de transmission pour deux systémes a celui @ multiconducteur

ou il y a des interactions mutuelles entre conducteurs.

1.2 Lignes 2 multiconducteur avec interactions mutuelles et/ou extérieures

Le cas de la ligne bifilaire traité ci haut n’est pas réaliste car pour un réseau
électrique en courant alternatif il y a naturellement au moins 3 conducteurs de phase et
parfois plus d’une ligne par corridor (et parfois d’autres ouvrages : pipelines en métal,
lignes de télécommunications, etc.). Du coup, il faut tenir compte des interactions entre
les conducteurs de chacune des phases (ou 1’ouvrage modélis€) et/ou entre ceux d’une
méme phase. Par ailleurs, un cas idéal est de considérer 1’exposition de la ligne a un

champ électromagnétique extérieur, par exemple, généré par la foudre.
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1 Vi I +dl.
> — i Ty,
| Ly o~ ~ l
] — 0 < :
l f’ = pr Zii I/ l
‘ V :f*i I
I i s N e 1V, +dv,
l Ji = Z:‘ Y,./. Ij i |
ly jai I
! |
I dz |
e T e >
z z+dz

Figure 1. 2 Mod¢le pour systéme a N conducteurs exposées a un champ extérieur

(E*,ii~), adapté de [5]

Pour ce cas idéal, chaque conducteur i du systéme peut étre représenté par le schéma

équivalent de la Figure 1.2. En considérant que le retour commun des tous les

conducteurs est la terre, les équations de transmission du courant et de la tension,

homologues a (1.3), sont alors, voir page 80, 69 et 72 dans [5] :

dlyl . ext x ext
_——ZZiiIi_'fi _ﬁ' :Ziili—zzi‘l"_fi(
dz = T
1 g . S : (1.9)
_'_i:YiiV;_Ji —Jim zxiVi—ZK/V/‘_JieX,
dz J=l1 T
J*i

Et ol on a défini :

Z.,7Y

ii

: impédance et admittance propres par unité de longueur pour le conducteur i.

i
z
f, :tension induite sur le conducteur i, somme de I’influence des courants des tous

les autres conducteurs j a travers Z,.

2
J, : courant shunt induit sur le conducteur i, somme de I’influence des tensions des

tous les autres conducteurs j a travers Y, .
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e Z,, Y, :impédance et admittance mutuelles par unité de longueur entre les

conducteurs i et /.

o [ : force électromotrice (tension) par unité de longueur induite sur le conducteur i

suite au couplage longitudinal avec le champ magnétique extérieur A .
e J™ : courant par I'unité de longueur induit sur le conducteur i suite au couplage

transversal avec le champ électromagnétique extérieur.

Les expressions de ces différents paramétres seront présentées dans la sous-section qui
suit.

Par ailleurs, on pourrait toujours modéliser le champ extérieur indépendamment des
lignes en considérant qu’ils sont localisés (sur les pylones par exemple). De plus, pour la
majorité¢ des cas, en fonctionnent normal, les champs extérieurs sont négligeables et
quasiment inexistants, a toute fin pratique. Par champ extérieur, on entend ici le champ
des autres systemes non liés aux lignes mais a proximité de celles-ci. Leur valeur est
faible par rapport au champ d’un des conducteurs du corridor porté a plusieurs milliers
de volts. En les omettant dans (1.9), on a les équations matricielles de la méme forme

que (1.3):

av
=4
z
, 1.10
dl (1.10)
— =YV
dz
Apres combinaison et transformation, comme pour (1.4), on a :
dv
R ZYV =0
N (1.11)
——ZYI =0
/z

Les différences d’approche dans le traitement des matrices ¥, Z et ZY , quant a leurs
transformations (modale, sous forme de séquence, etc.) et simplifications, ont mené a la

variété de modeles de lignes de transmissions dans EMTP : Modéle I1 nominal, ligne
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avec parametres constants (CP: Constants Parameters), ligne avec dépendance en
fréquence (FD : Frequency Dependent), ligne (valable pour cable) a large bande (Wide
Band : WB) et d’autres variantes.

Une des taches importantes de la modélisation des lignes de transmission sera donc,
avant tout, d’évaluer les paramétres des matrices ¥ et Z . Pour illustrer la maniére
générale des les évaluer, nous rappelons, dans la sous-section qui suit, leur dérivation a
partir du champ électromagnétique di a un conducteur seul, entre conducteurs et celui

extérieur aux conducteurs (foudre ou autre).

1.3 Hvypothéses de modélisation des impédances et liens avec les champs

Nous avons représenté un systeme multiconducteur sous forme de schéma
équivalent en modélisant les interactions mutuelles entre chacun des conducteurs. Ces
influences mutuelles se font par la propagation des champs électromagnétiques au
travers les différents milieux entre conducteurs (1’air, les isolants et la terre). Mais pour
rester cohérent avec le type modélisation EMTP, nous devons trouver un équivalent de
I’influence des champs électromagnétiques en terme d’impédances, admittances, et la
source des champs induits (courant et tension). Ci-dessous le lien entre les paramétres de
la matrice et les champs électromagnétiques des conducteurs Z (pour ¥ on peut
consulter [5]). Il faut noter que méme pour le cas d’un champ extérieur, une forme
€quivalente représentant la force ¢lectromotrice induite et courant shunt induit, dus aux
champs extérieurs, est possible, mais bien ardu [5]. Nous n’y ferons pas plus état dans le
cadre de ce travail. Mais mentionnons qu’il s’apparente aussi bien a la méthode de
RUSCK appliquée dans EMTP pour la simulation de la foudre et rapportée dans [17]
qu’a celui de AGRAWAL [138].

A ce stade, nous nous concentrons sur les lignes électriques et ouvrages habituellement
rencontrés en pratique. Ceci pour introduire certaines simplifications et hypotheses.

Ainsi, nous considérons dans cette sous-section et pour la suite, que :



i.

ii.

iii.

iv.

vi.

13

Le retour commun du courant de tous les conducteurs et ouvrages est la terre ;

Le conducteur exposé au champ induit des autres (la victime) n’influence pas la
source ;

Par hypothese, les lignes sont de longueur infinie et uniforme. Et donc, le modele
n’est pas précis quant aux influences réelles aux bouts de la ligne. Des analyses et
études de distribution de champ seraient donc requises pour des études spécifiques
aux bouts de ligne ;

Suite & ’hypothése iii, il n’y a pas de charge ou discontinuité sur la ligne. Ces
derniéres seront placées au début et en fin de ligne ;

Au niveau du conducteur de référence des tensions et au-dela de celle-ci, tous les
champs électromagnétiques sont négligeables (y compris celui dii aux sources
extérieures). Cette référence est considérée comme le retour lointain par la terre. Il se
trouve virtuellement a plusieurs profondeurs de peau & («skin depth», en anglais).
Cette derniére () est la largeur (profondeur) d’ou se concentrent les filaments de
courant dans le conducteur :

]
5= (1.12)

\ S o ’

Ou f, o et u sont respectivement la fréquence du signal, la conductivité et la
perméabilité du sol.

On considére que les champs transversaux sont statiques (ne varient pas dans le
temps dans le plan (x, y)). Ceci, grace aux hypothéses quasi statiques et 1’existence
du seul mode quasi-transverse électromagnétique (quasi-TEM) dans les milieux
diélectriques (air et isolant). Pour cela, on doit satisfaire pour les points de vecteurs

positions 7 et ¥':

7 -7l < (f\/;Tg)l, (1.13)

Une condition similaire donne pour les milieux conducteurs,

|[F -7 <275, (1.14)
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Le terme lF —F'I est la distance entre deux points source et victime ou deux

positions successives selon la propagation de ’onde du champ. Typiquement, on
suggere dans [5], page 33 et 34, de prendre ce terme en fonction des dimensions
transversales de la structure sous étude (rayon des conducteurs, épaisseur de
I’1solant, profondeur d’un conducteur ou distance entre deux conducteurs
enfouis).

vii. On admet que méme si la condition (1.14) n’est pas respectée dans certaines régions
¢loignées dans le sol on fait quand méme !’approximation que les autres modes
(autre que quasi-TEM) sont négligeables. Ceci introduit une limite du modele quand
les distances sont de méme ordre de grandeur que la profondeur de peau o. Et
enfin ;

viii. Tous les matériaux (ou milieux) ont des propriétés linéaires et homogenes, et que
nous pouvons appliquer le principe de la superposition en traitant les effets de

chaque source de champ séparément.

Tenant compte de ces hypothéses, la configuration d’un conducteur avec retour par la

terre est présentée dans la Figure 1.3 ci-dessous.
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Conducteur i o®
Isolant - ]
luisol > Gisol ’gixol’ -
Y 2
o L J
-
-
o®
™)
air 2 ui& - L
Sol

Conducteur - e
de référence e, -

(de retour)

Figure 1. 3 Illustration de la circulation du courant dans les différents milieux pour

les paramétres propres. Adapté de [5]

En appliquant sur cette portion de la ligne la premicre équation de Maxwell,

rot £=— jouH , (1.15)
On a pour la surface ABCDA :
| rotE-dS .= | —jouH-dS,., (1.16)
SAB('DA S ABCDA

En appliquant le théoréme de Stokes sur (1.16) et en considérant le flux total Q"”"’ (z)

produit par le champ H dans chacune des surfaces S

sol ?

S, etS ona [5]:

isolant ®
E 'dlABCDA =_jw[gsol (Z)+er (Z)+Qiso,am (Z)] (117)

ABCDA
Le terme de gauche dans (1.17) nous donne les potentiels sur la ligne ABCDA. On en
déduit aisément les différences de potentiel en considérant la référence comme retour

lointain par la terre (CD) et I'impédance de surface sur AB . En liant le terme de droite

aux différences de potentiels et en considérant la tension V, de la boucle, on exprime les
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champs électromagnétiques, créant les flux, en fonction des impédances qui sont les

parametres dans les matrices des équations de transmission en (1.9) (une dérivation

similaire est possible pour les admittances en considérant le courant). De [5] on a les

expressions suivantes :

A. Impédance propre d’un conducteur i, Z, en considérant une circulation du courant

I; le long d’une boucle fermée et une tension V entre les deux bouts de la boucle

(voir Figure 1.3) :

Ou:
Z

isolant *

surface "

Z,=Z,.tZ

surface isolant

+Z, +7Z

terre

(1.18)

Impédance découlant de la circulation du champ sur la surface du

conducteur. Il faut y distinguer les cas de la surface intérieure ou extérieure et
ceux du retour du courant par ’intérieur (ou par 1’extérieur) de la boucle. Le

premier indice, dans (1.19) ci-dessous, réfere a la position de la surface (ou

rayon) et le deuxiéme, référe au sens du courant. Par exemple, Z°"™ est

surface
I’'impédance sur la surface extérieure face au courant circulant plus a ’intérieur
que celui de la boucle impliquée (relativement au centre du céble pris comme

origine). Et son expression est :

Zexr—int . E(reﬂ )

surface

(1.19)

int
Les termes E (rex,) et [, sont respectivement le champ électrique en fonction

du rayon r et de sa position sur la surface extérieure et le courant du conducteur

dont le retour est situé plus a I’intérieur de la boucle que forme le conducteur. Il y

a une définition analogue pour Z""“' utilisant E(rim) et I, . Plus de détails

surface
sont disponibles dans la Figure 1.10 et ’explication subséquente.

Impédance découlant de 1’énergie électromagnétique emmagasinée dans

I’isolant.
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Z, i = JOU | II? 'zdv, (1.20)

Visolant

2

i

Notons que, pour un conducteur avec un isolant cylindrique (situation souvent

rencontrée), on a le champ magnétique H tangentiel (selon € ), dans le

diélectrique, a la surface de rayon r tel que :

H=H,(r)e, = L s (1.21)

“ 2ar?

: Impédance découlant de I’énergie emmagasinée dans 1’air.

air °

Z, = —J{{yf HH, (x, ,y,Z)dy}, (1.22)
i 0

Oou H, (xi, y,z) est le champ magnétique produit suite au courant du

conducteur dans I’espace. On 1’évalue entre la surface du sol et la surface

extérieure du conducteur i d’ordonnéey i. Dans la Figure 1.3, on aurait

y_i=4A4,.

: Impédance due au champ électromagnétique dans le sol :

I

i —0

Z’erre _ _‘]_.?)_l:JL’j‘m lUHx (xi ’y’z)dy} s (123)

Ou:
H, (xi, y,z): Le champ électromagnétique selon x (normal a la surface
élémentaire S, ).dans la Figure 1.3 ;

y_terre : L’ordonnée (la hauteur) de la surface en dessous du conducteur qui se
trouve dans le sol. Pour un conducteur aérien et un conducteur nu sur I’interface

sol-air,ona y terre=0.
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En considérant la circulation du champ électrique produit par le conducteur le

long de la ligne 4,B,CD dans la Figure 1.3 on peut faire 1’approximation

suivante pour avoir une forme usuelle de Z, __ (impédance due a la terre) :
[E"edl 20 et [E"edl =0,
D, B,C

y_fterre

;- i (xi , ); _ terre,z) ; (124)

1

Ou E" est la partie inductive du champ électrique (découlant du potentiel vecteur)

produit par le courant du conducteur et évalué a la position (xi ,y _terre, z).

Il faut noter que si le retour ne se fait pas par la terre, I’'impédance de surface du
conducteur de retour est a prendre en compte a la placede Z , .
Par ailleurs, la définition de I’impédance propre de retour par la terre usuellement

utilisée comporte aussi bien Z_ que Z,_ . Le champ impliqué est résultant de celui

ferre
dans le sol et dans ’air. C’est le propre champ produit par le conducteur, évalué a la
position qu’il occupe lui-méme, suite a la présence de la terre et de I'air. Cette
impédance sera dérivée par les expressions de Pollaczek dans le chapitre 2. Son

expression a une forme analogue a (1.24).

B. Impédance mutuelle Z,; entre conducteurs i et j, en considérant le courant I; et la

tension V relativement a un des conducteurs :

7 - Z f,j‘,’f;’c”;_ i X cas de non-couplage par la terre (1.25)
"z cas du couplage par la terre ’ '

terre _ij

Ou:
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zerm Impédance de surface du conducteur 7 (j) rencontrée par le courant venant

surface_ij *
du conducteur j (i) pour les configurations ou il y a chevauchement des courants
entre les deux boucles. Cette impédance dépend de la localisation du courant : A
I’intérieur ou a I’extérieur. Aucun des conducteurs n’étant le retour par la terre.

B Eexr (I’;m) _ B Einl (r(,x,)

surface _ij I T “surface _ji T 1
J i

(1.26)

JX; : Impédance due au flux entre I’isolant des conducteurs j et i. Pour un isolant

tubulaire, son expression est (1.39).

¥4 : Impédance mutuelle de retour par la terre. Elle est due au champ

terre _ij
électrique créé par le conducteur j, suite a la présence de la terre, dans la position

ou est localisé le conducteur i.

~ EM (x,. ,y__terre, z)

(1.27)

terre _if = I
J

Ou E;"d est la partie inductive du champ électrique (découlant du potentiel vecteur) due
a la présence du sol, produit par le courant du conducteur ; et évalué a la position

(x,. , y_terre,z) impliquant I’autre conducteur (i). Notez qu’elle est la forme mutuelle

de I’impédance propre dans (1.24) mais dans lequel le conducteur j remplace i.

C. Force électromotrice par unité de longueur f,*" et Courant shunt J™ dus au champ

extérieur E*' | H*' -
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Conducteur j — —
-— —

T — o

. ((\eﬁ
Conducteur < A
N
€. =¢ : %
é =
Surface

Conducteur \/ élémentaire

de référence
(de retour)

Figure 1. 4. Illustration de la surface élémentaire entre le conducteur de

référence et un des conducteurs exposé au champ externe (£, H")

[ =—jw I y(ﬁf”(x,y,z)'é'l)dr, (1.28)
el
J :_EN:); j(E;”(x,y,z)-al)dr, (1.29)
j=t prel=i

Ou on a défini :

e £ : force électromotrice par unité de longueur induite sur le conducteur i suite au
couplage longitudinal avec le champ électromagnétique extérieur.

e H o (x, y,z): champ magnétique extérieur créant le flux extérieur entre le
conducteur i et celui supposé étre la référence de tension (le retour lointain par la

terre). On considére H e (x, v, z) constant entre z et z + dz , voir [5], page 69.
e ¢ et ¢ :lesaxes, disponibles dans la Figure 1.4.

e (7" distance délimitant la surface &lémentaire rectangulaire ¢/ xdz entre
I’élément du conducteur i et la portion du conducteur de retour sur une longueur

dz (voir Figure 1.4). Pour le cas de retour par la terre,

097 =0y, ~a], (1.30)
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Ou:
a, : Rayon du conducteur i

X, ,y; . Abscisse et ordonnée de I’élément du conducteur i par unité de longueur
e J™ :Le courant par I’'unité de longueur induit sur le conducteur i suite au couplage

transversal avec le champ électromagnétique extérieur E“ On tient compte de la
composante de ce dernier qui perpendiculaire au conducteur et paralléle a la surface

¢lémentaire entre le conducteur i et la référence (figure 1.3 ) [5], Page 72.

. Efx’ (x, y,Z) : Champ électrique extérieur exposé sur chacun des conducteurs dans

le systeme considéré.
Ces champs extérieurs Ej”."’ (x, y,Z) et H™ (x, y,z) sont évalués au point (x, y,z) en

’absence des conducteurs. Ils ne sont pas a confondre avec les champs a I'intérieur des
conducteurs. Il en est de méme de la définition de I’'impédance mutuelle : on les évalue
en supposant qu’un des conducteurs induit un champ a la position occupée par un autre

conducteur, en I’absence de ce dernier.

Bien que les impédances soient exprimées en terme de champ magnétique et électrique
dans les relations (1.18) a (1.29), la tache n’est pas encore finie. Loin de 13, car la
détermination du champ est le plus ardue. Les méthodes pour les déterminer sont
multiples. Mais, en se conformant aux définitions de cette sous-section et les hypothéses
formulées, on arrive aux mémes expressions des impédances pour la plupart des
méthodes. Les méthodes les plus connues sont disponibles dans [7] pour I’impédance de
retour par la terre (mutuelle et propre). Pour les fils aériens et les cébles nous référons a
[8] et [S]. Rappelons que c’est dans [5] d’ou est tiré la quasi-majorité des relations (1.18)
a (1.29) applicables a la majorité des configurations et géométries. Pour souligner les
champs d’ou sont dérivées les impédances mutuelles nous reviendrons sur les résultats

du travail de Pollaczek [7] dans le chapitre 2.
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Enfin, il faut noter que le fait de considérer le trajet du courant vers le conducteur de
retour de la terre n’est pas toujours intuitif. Ceci dans les cables coaxiaux par exemple
ou les cébles dit de type pipe. Dans ces configurations, il devient difficile d’exprimer
directement tous les champs dans les régions ou passe le courant de la boucle jusque
dans le conducteur de retour. Car il arrive par exemple que le retour du courant des
conducteurs intérieurs se font par le truchement d’un conducteur commun (celui qui est
le plus extérieur : tube en métal, etc.). Il est alors pratique d’avoir des boucles pour
lequel on peut aisément définir les champs impliqués. Cette boucle pouvant ne pas
comporter le conducteur de retour par la terre. Par ailleurs, d’une part, il faut savoir
trouver I’équivalent de cette configuration des boucles (type coaxial) par rapport au type
standard (avec les grandeurs de Phase), et d’autre part, quand on a deux systémes
couplés a travers le sol, le moyen le plus pratique de définir I'impédance mutuelle de
retour par la terre est d’avoir des boucles qui se terminent dans le sol. On peut utiliser
I’analyse standard ou coaxiale en prenant en compte la référence de la terre comme un
conducteur additionnel. En pratique on utilise les deux types d’analyse. Mais avec la
possibilité de passer d’une configuration a I’autre. Dans la sous-section qui suit, nous
rappelons la représentation des systémes en boucle et le rapport d’équivalence entre les

deux.

1.4 Représentation du systéme des lisnes et cibles par les équations de boucles

La nécessité de varier la représentation du systéme a multiconducteur pour rendre
plus aisé la détermination des champs a été montrée précédemment. Dans cette sous-
section nous exposons deux variantes de représentation en boucle qui sont spécialement
d’un bon intérét pour 'impédance mutuelle avec retour par la terre et impliquant les
cébles coaxiaux : ’analyse par boucle dit de type—standard et celui dit de type—coaxial.
L’analyse type-standard est conforme a la définition des grandeurs de phase dans la
théorie classique des circuits. La Figure 1.5 suivante illustre le sens de circulation des
courants de phase (y compris leur retour par la terre) et les tensions Phase-Terre de

chaque élément.
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U

Anr\=Terre
Ar1—Terre

7

Am 1—Terre

UAr 2

—Terre

(&4

A 2=Terre

W

I

Am2~Terre

/ Ar 2=Terre

Figure 1. 5.Représentation en boucle de type—standard pour une portion dz de la

ligne

Le type—coaxial (voir [5], page 89, pour plus de détails) offre une bonne facilité pour les
cables coaxiaux et fait ressortir mieux les champs électromagnétiques entre conducteurs
cylindriques (Figure 1.6). Il est notamment utilisé pour ’analyse de cables coaxiaux

dans le livre de référence de EMTP [4].
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Am
IA r1-Aml
UAr I-Aml
U terre—Arl
Arl—terre
I terre
U -.L

Ar2—terre] - 1

. Ar2: £ Ar2-terre

Ar

i i

Am2 i L st

Figure 1. 6.Représentation en boucle de type—coaxial pour deux cibles (2

conducteurs)

Pour chacun des types d’analyse choisis, il faut exprimer 1’équation de transmission
(1.3) en considérant les impédances rencontrées le long de la boucle. On note que les
boucles impliquant les conducteurs a travers lesquels il y a couplage (Ar2 et Arl dans la
Figure 1.6) sont liées par le conducteur fictif de la terre.

Le nombre des conducteurs, la géométrie, etc., donneront ’indication sur le choix du
type d’analyse par boucle. Le passage de 1’un a I’autre étant possible. En effet, il existe

un lien entre les deux types d’analyse par boucle (le systeme représenté étant le méme

pour les deux). Ce lien peut étre représenté par deux matrices de transformations 77 et

TU: permettant de passer d’une variante a 1’autre pour respectivement les courants et

les tensions. On a :

U,=TUxU (1.31)

coax

I, =TI xI (1.32)

coax
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Par exemple, le passage de la configuration standard a coaxiale pour les Figures 1.5 et

1.6 donne :
Uam I-terre - 1 - 1 0 O Uam [-arl
Uar I—~terre — - 1 0 O Uar 1-terre
Uar2~1erre 1 0 Uur2~rerre
Uum 2—terre J g4 O 1 1 Uum 2-ar2 J coux
[aml —1 0 0 arl_aml
[ arl 1 - 1 O O Irerre_ar 1
= X
]ar 2 0 0 1 - 1 Iar 2 _terre
I“m 2/ sta 0 O O 1 Iar2__am2 coux
-1.0 0 0 -1 -1 0 O
-1 0 O
TIC = erue=| 0 1 0 0
o 0 1 -1 0O 0 1 0
0O 0 0 1 0 o0 1 1
Au niveau des impédances on aura :
il/;m = iTU:’/Cawf = _Zvlalsla = _Zs‘tu (TI;Icoux)
dz dz ‘ ‘
i Ista = —c{— TI_chcotL\‘ = _leul/sla = _‘I,Sm (TUSC Ucoa\‘ )
dz dz ‘ '

Et aprés substitution et regroupement, on a :

z,=TUZ,TI) (1.33)
Y, =TI, (TU)

Ou:

- Z_ et Z__sont les matrices d’impédances pour respectivement ’analyse type—

sta

standard et type—coaxial;

- Y et Y  sont les matrices d’admittance pour respectivement I’analyse type—

sta coax

standard et type—coaxial ;
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11 faut remarquer que :
v =[(mr) T
Tue =11 |

11 sC o= [T U s“ j!t"””sl’osé

Les relations en (1.33) deviennent :

Zsla =TU Sc xZ o X (TU Sc )transposé ( 4)
| 1.3
Ysra = TIS( X Ymux X (TI;: )”’”mpoxe

Avec (1.34), on peut définir les matrices d’impédance en utilisant le type—coaxial et par
aprés revenir au type-standard (avec les grandeurs de phase classique). Ceci est utile
quand on a & manipuler les impédances mutuelles et les coefficients de potentiel.

Comme exemple d’application nous appliquerons, dans la sous-section qui suit, ces
transformations des types d’analyse par boucle en faisant un lien avec les définitions des

parametres vues précédemment.

1.5 Applications pour un systéme avec lignes aériennes et cibles

Comme exemple d’application, nous allons exprimer les paramétres d’un systéme a
cables souterrains et une ligne aérienne. Pour raison de simplicité, et sans perte de la
généralité, nous considérons un des cables constitué de 3 conducteurs et un des
conducteurs de la ligne aérienne. Les courants dans les boucles et les tensions associces

sont illustrés dans la Figure 1.7.
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A Conducteur 5
S v, s
2 5
A 2 3
\d
6“0\600\' v g
00‘\ \X(Q. \d\“wﬂmm PEEPUTETETEreY AP
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\‘\'e’ ; o FE .o
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s !
SRR R
S 2
U, I
3
o YLIAIAIISSIIS
U Conducteur 3 I
2t 7
ll
Conducteur /

Figure 1. 7 Schéma en boucle type—coaxial pour le cible souterrain et une ligne

aérienne.

Nous traitons séparément le cable car, actuellement dans EMTP, les cables et lignes
aériennes sont modé€lisés séparément. Nous identifierons ainsi les transformations

nécessaires pour ajouter un ouvrage couplé au premier (initialement modélisé).

En général, il est mieux d’utiliser le type—coaxial quand il y a couplage entre les

éléments de P’ouvrage, comme pour la plupart des cibles (pipe, « single core », cébles
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coaxiaux, etc.). Considérons un cble de la configuration ci-dessus avec 3 conducteurs.
On aura la représentation en perspective comme & la Figure 1. 4 ou la terre est

représentée par le conducteur 4.

AN v
R R RS
R o SRS /
Petaleteteletele: ,
tatatetete s
KGO0

ST
TS,
- v-v%'o'&’?o’o’o’o’t’o‘o&‘ I
s L
R L O G ¢S oy

T SR e ,
V6 SR A

B

Conducteur 2
Conducteur 3

Conducteur 4

Figure 1. 8 Représentation en boucle : type—coaxial

L’étude détaillée de la coupe AA dans la Figure 1. 8 est présentée a la Figure 1. 9. 11

devient plus clair d’y identifier les termes nécessaires a I’expression de I'impédance

propre et mutuelle entre les boucles.
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Vers le Centre du céble
| |
I I

int

Vi
r
Ve
Ziin!fim lUi—l ],-1
Ziex —ext-” [’
mutucelle entre
\\\\\ Z'bmlc'lcs iet i+l

i+1
l Ui+1 > Ii+1

Figure 1. 9 Détails des tensions (coupe AA), courants et impédances dans le type—

coaxial, inspiré de [5]

Le principe général 4 appliquer est de trouver la somme des chutes des tensions dont la
somme est la tension l7i :

e Pour une boucle i comportant deux conducteurs centraux comme a la Figure 1.9,

on aura, sous forme générale :

dU T t—int T int—ext T
=gz o xI -Z""[  -Z"T, (1.35)

boucle i i
dz

o Pour une boucle j dont un de deux conducteurs n’intervient dans aucune autre
boucle et aucun n’est le retour par la terre :
dl—j.f _ Z j Zinl—exfj 1 36
oz xT —Z T (1.36)

dZ boucle j

e Pour une boucle & avec un conducteur a la fin (pouvant étre le retour par la

terre) :
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au,
=7

boucle k
dz

xI —Z~"T, (1.37)

Z et Z"™*" . Impédance mutuelle entre, respectivement, les boucles & et k-1; et

ketk+l.
Dans (1.35), (1.36) et (1.37), I'impédance propre de la boucle Z, . .est:

Z :anr-—inr +Ziexl—e,\‘r +_]X

boucle i i+l

(1.38)

ii+l]

La réactance X .du diélectrique entre les conducteurs tubulaires i et j, dont I’épaisseur
i J
est la différence entre les rayons qui la délimitent : 7™ —r" (our™ <r/"), est:

X, =al, (1.39)

int

Ho T

Lij A ln jexr
27

i

(1.40)

Pour le cable, on aura, sans représenter le conducteur fictif de la terre :

_il_jl = Zlext—cxl +jX‘2 +Z;’m-int il _Z;'m‘—exrjz +OX j}
dz

d 7 ext—int ext—ext . int—int \ T int~ext T

=70 =-2", w(zge 4 X+ 2 )L =20 (1.41)

3-prop

d 7 T ext—int J ext—ext retTerre \ T
—— U, =01 -2, S VAR Al I

Les impédances externe et interne sont définies suivant la position de la surface (sur
rayon extérieur ou intérieur pour un conducteur tubulaire ou solide cylindrique) et aussi
selon le sens de retour du courant (interne ou externe, en considérant le centre du cable

comme origine).



31

Figure 1. 10. Rayon interne et externe pour un conducteur : la référence au centre

du cible.

En considérant le conducteur 3 du céble de la Figure 1.10, les impédances de surface des

conducteurs tubulaires et solides cylindriques sont explicitées ci-dessous. On y

différencie le rayon impliqué :

ext

v

int

— <

Le courant / sur la surface externe du conducteur
retourne par l'interieur du cercle formé par ;™

du conducteur tubulaire = Z;*™"

Le courant / sur la surface externe du conducteur
retourne par l'extérieur du cercle formé par ;™

du conducteur tubulaire (ou une barre) = Z;*™

Le courant / sur la surface interne du conducteur
retourne par l'intérieur du cercle formé par ;"

du conducteur tubulaire = Z}" ™™

Le courant / sur la surface interne du conducteur
retourne par l'extérieur du cercle formé par 1"

du conducteur tubulaire = Z;"™*
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Les formules de ces impédances sont disponibles dans [5] pour divers cas. Pour un cas
spécifique des cables utilisés pour les réseaux électriques de distribution et de transport,
on réduit ces formules a celles équivalentes et disponibles dans EMTP Theory book [4]

et regroupés dans le systéme (1.42)

zimm = B4 [10 (2 VK, (e )+ 4 (e ) K (2 )]

Zeet = —————'0"2[" [1 (;(.r.‘“" )K (;{.r."” ) +1 (;(.ri”’ )K ()(.r.‘“" )}
i 27z_rmtE 0 it i it 1 i'i 0 it
int—ext __ e
12T = 22 E (1.42)

Zie‘xl—im‘ — Ziint~c’,\‘1
E=1 (™)K (1) =1 (1r" ) K ()

Lion
A=
| p;

Ou I, (x) et 1, (x) sont les fonctions de Bessel de premier espece respectivement

d’ordre zéro et d’ordre un, et K| (x) et Kl(x) sont les fonctions de Bessel de

deuxiéme espéce respectivement d’ordre zéro et d’ordre un.

Les paramétres pour I’impédance de ce céble sont alors :
zy -zt 0
cab cab cab cab
Zcocu' = _ZIZ ZZZ _Z32 (143)
cab cab
0 _Zzs Z33
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cab __ ext—ext . int—int
Z," =Z, + X, +Z,
anb _ Zexf—exr + X Zint-int
2 T2 J 32 + 3
cab __ rpext—ext retTerre
Z33 - ZB + Z3—prop : (1 44)

Zlczab — Zzexf~inr — Z;‘nl—exi — chi’b
cab __ rzint—ext __ rpext—int __ rzcab
Z32 - Z3 - Z3 - Z23

En ajoutant le conducteur aérien, on a une quatriéme équation de tension et certains
changements dans les impédances. Mais il faut remarquer que les changements sont
seulement pour les boucles couplées. C’est-a-dire celles pour lesquelles les liens se font
par la terre, entre deux éléments, de part et d’autre de I'interface Air —Terre. Soient le

conducteur en ’air et ’armure ou le pipe pour les cables.

Pour le cas du seul couplage par la terre comme le cas cable —fil aérien, le lien de
couplage est le conducteur fictif de retour par la Terre dit conducteur lointain (virtuel).
Pour rappel, il s’agit d’'un plan parallele a I'interface air —terre placé a plusieurs
profondeurs de peau &, définie en (1.12) en fonction de la distance normalisée
(caractéristiques du sol et fréquence). On y considére que le champ électromagnéetique
provenant des conducteurs est négligeable.

Le systéme d’équation devient alors, avec la quatriéme équation due au conducteur

aérien ajouté (conducteur 5 ) :

-

d T 7 ext—ext X 7 int~int 7 7 int—ext i 0 j T
_E 1 _( 1 T A, T4, ) 17 4 , HUL L+ 1
d T ext—int T ext—ext . int—int \ T int—ext T T
—— U =2 (Z5 + Xy + 20" ), =20 I + 0.
;e (1.45)
&7 T ext-int T ext—ex: retTerre \ T retTerre—mu
- U, =0] —Zg L+ (Zpe 2y ) = 2
d 7 T T retTerre—mut T solide - retTerre \ T
U =00 +0L, = Z7 ™ L, + (Z2 + X e + 22000 ),

\
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cab cab
Z" =7, 0 0
cab cab cab
ot —Z 12 4 22 —Z 32 0
ZC oax T cab cab aer—cab ( 1 46)
0 —Z5 Z 33 —Z 53
cab—aer aer
0 0 —Z5 Zg
0
anb O
Z:;iv: = - aer—cab (147)
ZS3
cab-aer aer
0 0 Z; Zg
Ou, en plus des éléments de la sous matrice Z :;'i définis en (1.44),0ona:
aer __ rzsolide . retTerre
ZSS - ZS + JAS Terre + 2571;;-01) (148)

cab—aer __ rzretTerre—mut __ ~grefTerre—mut __ ryaer—cab
Z35 - Z3~5 - ZSAB - ZS3

Dans le cas d’une ligne aérienne avec plus d’un conducteur, on traite chacune des paires
formées par le conducteur aérien et un cable souterrain ; et puis les paires des lignes
aériennes et enfin les paires de cables souterrains sont pris en compte. Car il faut tenir

compte pour chaque cas du couplage par la terre entre les paires.

Tous les paramétres ont été définis (voir (1.42)) sauf deux : L’impédance propre de

Z retTerre

Lo €t 'impédance mutuelle de retour par terre

-etTerre—
retour par la terre Z,-'_‘_"; erre=mut

pour le

conducteur i et j. Elles découlent, comme montré dans (1.27), du champ €lectrique
produit, par le conducteur lui-méme (propre) ou par celui qui lui est couplé (mutuelle),
suite a la présence de la terre. Ce champ étant évalué a la position ou est localisé le
conducteur perturbé (la victime).

La détermination des expressions de ces impédances sera rappelée au chapitre 2. Et leurs
évaluations avec précision constituent I’apport majeur du présent travail.

Les tensions et les courants obtenus avec les matrices d’impédances ci haut ne sont pas
utilisables en simulation car on doit exprimer les grandeurs de phase, il faut donc passer

a la formulation boucle type—standard.
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. . . 1 TR
La matrice d’équivalence et sa transposée, TU et TU:" pour les courants entre le

type—coaxial et standard seront :

1 1 1 0 1 0 0 O
o 1 1 O - 1 1 0 O
TU; = et TU, " =
0 0 1 1 1 1 0
0 0 0 -1 0 0 0 -1
En appliquant (1.34), nous avons :
z,=10,Z,,TU" (1.49)
Zy '2221+222 '2232 TZy e
7 - -Z,12,,-22,,1Z;, Z,,-2Z,,VZ,, SYMET.
: 23123 Zy3 T2 Z3;
Z Z Z Z

35 35 35 55

Ou on a laissé tomber les indices cab, aer-cab et aer. On peut identifier les

. . . N . . b
transformations a introduire & partir de deux matrices des ouvrages, Z_ et Z

sta

initialement sans couplage avec I’extérieur.

0
. 0
sta {gvant = O
[0 0 0] Z
U (1.50)

2]

z 2 |

alaprss = 2|

[235 Z,‘,S 235 ] ZSS
Pour introduire le couplage entre ouvrages, on ajoutera I'impédance mutuelle z,; entre

les conducteurs. Celle-ci est évaluée entre les conducteurs impliqués dans le couplage

(les plus extérieurs).



36

Le systéme est ainsi complétement défini avec la matrice d’impédance. Notons qu’'un

travail similaire peut se faire pour les admittances.

1.6. Changements dans les modéles EMTP-RV : ouvrages des tvpes différents

Les modules de calcul des paramétres des lignes et cables dans EMTP-RV (Line Data et
Cable Data) prennent en compte, dans leurs formes actuelles, les impédances mutuelles
de retour par la terre pour les structures de méme type quand on peut les regrouper en un
systétme équivalent. Pour deux lignes ou plus, par exemple, on peut faire un
regroupement adéquat en fixant une référence commune des distances. Le systéme
résultant peut alors étre aisément évalué par le module Line Data. Pour les cébles, la
méme procédure est possible. Les cables de type «single core» peuvent étre aisément
regroupés. Par contre, pour ceux de type «pipe» et/ou combinés aux «single core», il est
parfois impossible de les regrouper. Car il y a une difficult¢ a définir deux pipes
différents (résistivité, géométrie, etc. différentes) dans un méme module Cable data et/ou
y lier les céables «single core». En effet, ces derniers ne possédent pas de revétement sous

forme de pipe.

Pour ces derniers cas et pour les structures complétement indépendantes et/ou de natures
différentes, ligne aérienne vs cable souterrain, ligne aérienne vs pipeline enfouis, etc. ;
on ne pourra pas toujours faire le regroupement ci haut évoqué.

En général, il faudra modéliser les parametres propres (admittances et impédances) pour
chaque ouvrage et ajouter, comme identifié dans (1.50), les termes des impédances
mutuelles (et admittances) entre les ouvrages. On note que ’impédance mutuelle, entre
le dernier conducteur (le plus extérieur) et autres structures, se rajoute sur tous les
paramétres des conducteurs qui ont le méme chemin de retour par la terre. Ceci est
concordant avec le rapport sur la conversion en Matlab du module pour les calculs des

paramétres des lignes et cibles dans le cadre du projet CRINOLINE [6].
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Par ailleurs, cet ajout d’éléments non diagonaux, et dépendants de la fréquence, aura des
implications dans la modélisation des lignes. 1l influe, en effet, sur les matrices des

transformations modales T (T, et T,) a appliquer sur Y et Z, YZ et ZY de (1.11). Et
influe aussi sur 1’admittance et I’'impédance caractéristiques ¥ et Z , et la matrice des

fonctions de propagation H . En effet, plus il y a couplage entre structures, plus il y a

d’éléments non diagonaux dans les matrices ci haut.

Pour illustrer, seulement a titre introductif, les défis que cet ajout d’éléments non
diagonaux pose dans les matrices de parametres des lignes et des cébles, nous rappelons
les expressions fondamentales pour chacun des modeles de lignes disponibles dans

EMTP-RYV en soulignant la forme matricielle finale pour chacun.

A. Modé¢le a parametres constants (CP) :

Pour le modéle CP, les matrices diagonales modales 4, et A, des constantes de
propagation pour la tension et le courant respectivement ; et I’'impédance caractéristique

modale Z ¢ sont:

A, =T, ZYT,, (1.51)
A, =T, 'YZT,. (1.52)
7. = Z (1.53)
Y
Ou les matrices diagonales d’impédance et admittance modales sont respectivement :
Z=T,2T, (1.54)
Y=T,YT,, (1.55)

Pour ce modele, on néglige la dépendance en fréquence des paramétres pour éviter les
difficultés liées a la convolution [19]. Par ailleurs, on assume d’abord une ligne sans

perte puis on rajoute les parties résistives exprimant les pertes en bout des lignes. La
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matrice de transformation est réelle est constante. Ce modéle est donc pour une

fréquence donnée.
B. Modéle dépendant de la fréquence (FD et FDQ) :

Les mémes équations du modéle CP sont applicables mais on tient compte de la
dépendance en fréquence des parametres ¥ et Z et celle des matrices de transformation

(T ou I’autre variante Q) [20].

C. Modéle a large bande (WB) :

A T'aide des matrices de propagation H et I’admittance caractéristique Y., on exprime

le courant (ou la tension) aux bouts de la ligne par [21] :

YV -1, =2HI

lebut fin?

(1.56)

Ou toutes les quantités sont dans le domaine de fréquence :

Les grandeurs I,

eou €t 1, sont respectivement 1’onde de courant incidente et réfléchie.

H:exp(—l\/ﬁ), (1.57)
[ est 1a longueur de la ligne. L’impédance caractéristique est :

Y.=2"(JZY) (1.58)
Dans le domaine temporel, aprés convolution, on a pour un conducteur :

Y xV i, =2§":H; (t—7,)*i,,. (1.59)

P

Ou:
Les constantes de propagation H; (t -7, ) pour le mode £ et un délais 7, sont trouvees

aprés transformation modale de H(a)) et une approximation par lissage avec les

fonctions rationnelles, tout comme pour ¥, [22].
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De I’observation de ces relations exprimant les modeles des lignes de transmission, il en
découle que :

1. Les valeurs non nulles (et relativement grandes) des impédances mutuelles
rendront plus difficile les simplifications pour le calcul des modes de
propagation.

2. Compte tenu des couplages sur certaines portions de lignes, il faudra faire le
découpage et traiter ces portions séparément. 11 en découlera un nombre de
modes de propagation plus élevé car chacun des conducteurs peut
potentiellement occasionner un mode de plus. Le nombre des modes & prendre en
compte pour I’étude de la ligne devient théoriquement égal au nombre des

conducteurs.

3. Les autres simplifications ne sont plus admissibles. La transposition des lignes,
par exemple, n’est plus toujours possible car il n’y a aucun lien entre les

conducteurs des deux ouvrages différents (Pipeline et cables, par exemple).

4. Pour la méthode Wideband, Il faudra prévoir une méthode de lissage efficace
pour n’est pas augmenter le temps —espace mémoire en simulation. En effet, les
approximations des éléments de H requiérent plus de pdles pouvant entrainer des
instabilités numériques. Et compte tenu de D’astuce a évaluer H pour une
fréquence élevée, parfois IMHz [21], il faudra s’assurer que les calculs des
impédances mutuelles restent précis dans ’ordre de grandeurs de fréquence
exigée pour 1’étude transitoire du phénomene a étudier et cela pour toutes les

configurations.

Tous les points évoqués ci haut, et d’autres, doivent étre pris en compte en incorporant
les couplages pour une étude transitoire complete dans EMTP-RV pour n’importe quelle

combinaison des structures et ouvrages. Cependant, comme évoqué au point 4 ci haut,
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nous devons d’abord trouver une fagon efficiente d’évaluer les expressions

d’impédances mutuelles de retour par la terre.

Dans les deux chapitres qui suivent nous rappelons ces expressions puis nous donnons
’état des lieux (critique) quant a son évaluation et enfin nous formulons une méthode

pour I’évaluer efficacement dans les chapitres subséquents.
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CHAPITRE 2 IMPEDANCE DE RETOUR PAR LA TERRE

Dans le chapitre précédent, il a été montré, entre autre, que I’impédance mutuelle de
retour par la terre est utilisée dans les matrices modélisant les équations de la ligne de
transmission (1.11). Les difficultés a établir son expression ont motivé les recherches de
Sommerfeld, Pollaczek et Carson, et beaucoup d’autres.

Dans ce chapitre, nous revisitons les résultats du travail fait par Pollaczek en €tudiant le
champ électrique produit par un fil fin infiniment long traversé par le courant €électrique
supposé uniforme [7]. Afin d’en dériver I’expression de I'impédance mutuelle de retour
par la terre entre éléments, ainsi que les expressions analytiques approximatives. Pour
rappel, le lien entre le champ et 1"'impédance a été établi dans (1.24) et (1.27). On notera
que les hypothéses prises par Pollaczek sont aussi celles présentées dans le chapitre
précédent, tirées de [5]. Nous terminons en faisant le lien entre cette formulation de
Pollaczek et les formules de Carson [4], [8] et [9], celles établies par le CCITT [5]. Ceci
nous sera utile pour cerner les différentes approximations analytiques (et autres) et de les

comparer avec les méthodes d’évaluation que nous nous proposons d’établir.

2.1 Développement des intégrales de Pollaczek avec les équations de Maxwell.

2.1.1 Description du systéme et hypothéses

Considérons un cable, pouvant contenir 4me, enveloppes isolantes et écran, placé a une

distance y, <0, dans le sol, et un autre élément, une ligne non isolée ou un céble
coaxial de télécommunication, placé dans I’air a une hauteur y, = 0. Les deux €léments
étant respectivement a une distance horizontale x, et x, d’un axe pris comme origine.

Les caractéristiques du sol étant :

e Conductivité : o, =0,
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e Permittivité : £, = &,
e Perméabilité : p , = 1, ;

Et celles de I’air étant respectivemento,, & et f,. La configuration décrite ci haut est

simplifiée pour le calcul de I'impédance mutuelle de retour par la terre, voir les

hypotheses ci-dessous, et peut étre représentée par la Figure 2.1 ci-dessous

N

»1

Conduct, 1
o
At ) AIR
| T

I k-

: X, 0, =0,8 =&, 4, = 4

CiCuRduet 2N Ba
i N

Figure 2. 1 Configuration typique pour deux éléments couplés (2) : sol et (1) : Air

On note que dans la Figure 2.1 tout élément est réduit a 1’équivalent d’un conducteur
plein et que le sol y est présenté comme homogéne avec une seule couche. De plus, les
isolants sont ignorés car ils n’interviennent pas dans la formulation de 1’impédance
mutuelle de retour par la terre entre éléments aérien et souterrain. Les hypothéses prises
pour ces simplifications sont concordantes a celles de CCITT [5], montrées
précédemment. Nous n’y reviendrons pas en détail mais nous en soulignons deux qui ont

une implication sur les lignes et cables en réseau €lectrique.

A. On néglige la section droite du fil. C’est-a-dire on rend le fil infiniment fin en

maintenant I’intensité primitive du courant. Deux conséquences sont a retenir :
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o Pour le cable (coaxial ou de type pipe ou «single core»), on négligera
’influence de tous les autres conducteurs (et diélectriques) a I’intérieur du
conducteur le plus extérieur (le pipe ou I’armure). C’est au travers ce dernier
qu’il y a influence avec les autres éléments extérieurs, et, pour rappel, il
assure le retour par la terre.

o Pour les lignes aériennes, pour lesquelles on a fait une mise en paquet
(bundle en anglais), on considérera, pour le calcul de I'impédance mutuelle
par la formule de Pollaczek, le centre du conducteur équivalent. Par exemple,
dans le cas de 4 conducteurs pour lesquels on utilise un rayon géométrique
moyen (GMR).

La conséquence de ces simplifications et que la distance entre ouvrages, pour

lesquels on calcule I’impédance mutuelle, devra étre trés grande par rapport au

rayon géométrique moyen ou encore par rapport au diamétre du pipe des cables

(ou Parmure) ;

B. L’isolant de céble (ou ligne aérien) n’influence pas la valeur de I’impédance
mutuelle de retour par la terre. On considére que le champ électrique évalué a la
position du conducteur impliqué n’est pas modifié par la présence de ce dernier
(incluant son isolant). I faut cependant se rappeler que pour le cas des conducteurs
d’un méme céble, I’impédance due a ’isolant est pris en compte dans I'impédance
mutuelle entre deux boucles adjacentes dans I’analyse de type coaxial, voir dans

(1.41). Sa valeur a été évaluée dans (1.40) pour un isolant tubulaire entre conducteur,

int
< . /'10 isolant
1C1 0N aura : Xisolant - a)Lisolanl = a)——ln—g;)‘_—

T r

conducteur
Tenant compte de ces hypothéses, et d’autres exprimées précédemment, les résultats de

calcul de champ par Pollaczek est donné ci-dessous. Nous y avons résumé le fondement.
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2.1.2 Champ électromagnétique et expression de I’intégrale de Pollaczek

Pour évaluer le champ électrique, Pollaczek a résolu, pour le sol et ’air homogeénes, les

équations de Maxwell suivantes en systéme d’unité gaussien, CGS,

V.D=4np
V.B=0
4 10D
xH=Lg-Z 2.1)
c c ot
1 0B
VXE+——=0
c ot

Ou:
D : le courant de déplacement, B : induction magnétique, £ : champ électrique, H :

champ magnétique, J : courant de conduction, et C : vitesse de la lumiére (célérité).

En tenant compte des hypothéses longuement évoquées, on considére une propagation

dans la direction z pour les champs transversaux H et £ :
H = f(x,y)e " (22)
Le cas quasi TEM, avec une seule composante de E selon z (E.), nous donne les

relations suivantes entre les champs :

- i
rot E=-2__, 2.3)
c ot
OoF OH
Sca
X ¢ c
: 2.4
O0E. uoOH, o 24)
—__:J—H);

—67_c ot c

Par ailleurs, ce champ E peut étre décrite par I’équation de Helmholtz, dans chacune des

régions et a I’interface entre les deux. On a les indices pour les constantes physiques 1 et
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2 respectivement pour le sol et I’air. Comme on consideére uniquement le champ £_,

suite aux hypothéses quasi-TEM, on laissera ainsi tomber I’indice z :

Pour tout x,et y, >0:

AE+k’E=0, 2.5)

Pour tout x, et pour y, <0:

AE +k,'E =0, (2.6)
Ou:
2 2 2
a0 L0 @.7)
ox® oy oz
, Admoocu euw’
k> = (2.8)

c C

Ou k,, dans (2.8), est défini dans chaque région i.

A la limite entre les deux régions, & 'interface air-sol, on doit avoir, pour tout x,et

v, =0:
IimE =limE. (2.9)
y=07 y=0"
}vilz]r}HA Tungentielle = lil(pHx Tangenticlle (2 10)

Sur base de ces relations et de propriétés du champ (sur le conducteur et a I’infini, en
changeant le perturbateur et la victime, notamment), Pollaczek identifie que le champ
recherché est une fonction de Green et introduit la fonction de Hankel de premiére
espéce et d’ordre zéro. Cette derniere existe dans tout le plan x-y et posséde les mémes
singularités que la fonction £. Il a pu alors exprimer le champ pour 4 cas en tenant

compte des hypoth¢ses introduites.
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1. Champ créé par un conducteur dans Uair : Point d’observation dans I'air : E_ et

danslesol : E |

< 9

Nous adoptons la notation suivante : I'indice ‘-’ réfere au sol tandis que 'indice ‘+’
référe a I’air. Le premier indice étant le point d’ou I’on I’observe le champ et le second

étant d’ol est créé ce dernier. Par exemple, E_, dénote le champ créé par un conducteur

se trouvant dans I’air et mesuré (observé) dans le sol.

1.1 Champ dans Iair produit par un fil aérien : £,

E ~ 4 H(l) k, r) H () (k 2 )]
o« _ + 2—k72)
I, exp ]S ) (J’z yl) § s (2.11)
i —k s -k
2% >

Avec r défini par :

rz\/(xz—xl)2+(y2—yl)2 (2.12)

r'= \/(xz —x, ) +(y, +y ) (2.13)
et 4, Ho(l)(kzr) définis par :

3 orJ

(2.14)

1 ds
Ho(])(kzl")Z—JeXp(jS(xz y»_yll‘\lsz_kzz)'—* 2.15)
Jr Vst -k’
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Cette relation (2.15) est la fonction de Hankel de premiere espece et d’ordre 0. Elle peut
s’écrire comme étant une somme des fonctions J, et Y, de Bessel, respectivement de
typelet2:

Ho(l)(z):JO(z)+ jYO(Z), (2.16)
L’expression (2.11) est le champ électrique dans I’air créé par un conducteur dans I’air.
Donc on a: y;>0 et y,>0. Par ailleurs il faut se rappeler que les constantes sont en
systeme CGS comme spécifié en (2.1).

1.2 Champ dans le sol produit par un fil aérien: £

On note, comme montré par Pollaczek [7], que dans ce cas-ci, le champ secondaire créé
dans D’air par les filaments de courant du sol, ¢’est-a-dire le champ réfléchi, n’influence
pas le champ incident qui traverse I’interface sol-air. Ainsi les termes sous forme de

fonction de Hankel n’apparaitront pas.

v 24 exp(js(x2 —xl)+y2\/s2 —kl2 —yl\/s2 —kzz)
R \/SZ -k’ +\/s2 -k’

—o0

ds, y,£0,y,20 (2.17)

La relation (2.17) est I’expression du champ électrique dans le sol créé par un

conducteur dans I’air. Donc on a : y1>0 et > <O0.

2. Champ créé par un conducteur dans le sol : dans Uair E, ou dans le sol : E

L’analyse effectuée précédemment pour la source de champ dans 1’air, s’applique aussi
pour une source souterraine. En effet il suffit de regarder I’air comme le sol, et vice
versa, avec les changements qui s’imposent pour & et y. Ainsi, on effectue les
modifications quant aux variables x;j, y; et ki. Le systéme des coordonnées est alors tourné

de 180 degrés. Comme montré a la figure 2.2.



y
Conduct. 2
- AIR
Ll N
Vil |
[ Rl ]
: X, o, =06 =¢&,, 14, = l,
5
et
z P !
swmdz,z: {” Yol
: e
(__.__.._._._.__._7.,___'__'-'___.>|
Xy :
SOl

Figure 2. 2 Configuration pour perturbateur dans le sol
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On achéve en changeant la variable d’intégration de s a —s. les relations obtenues suite &

ces modifications sont ci dessous :

2.1 Champ dans Dair produit par un fil souterrain : £,

2Awexp ]s VyAlst =k’ + 48 )

yZZO,ylﬁO

2.2 Champ dans le sol produit par un fil souterrain: £

E = A[HO‘” (kr)-H," (klr')] 4o

T4 exp(js(xz—-xl)+(y2+yl) SZ_klz

r JSP =k s -k

—00

< \/s —k +\[s —k

ds ,y,<0,y <0

(2.18)

(2.19)
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On se rappelle, encore une fois, que toutes ces relations sont en systeme d’unité

gaussien. Nous passons au systéme international dans le paragraphe qui suit.

2.1.3 Expressions des champs dans le systéme international (S.1.)

Pollaczek ayant dérivé les expressions (2.11) a (2.19) en CGS, nous changeons en S.1
car il est le plus usuel en réseaux électriques. Ceci nous sera aussi utile pour la
comparaison de la formule d’impédance mutuelle dérivée du champ et celle utilisée dans
la littérature.

Les équations de Maxwell pour un milieu non dispersif et isotrope, pour les deux
systémes (CGS et SI) sont présentées dans le tableau 2.1 ci-dessous. Ce dernier est une
adaptation a partir du chapitre 3, section sur les unités dans [23].

Tableau 2. 1 Equations de Maxwell en CGS et MKSA

S C.GS
V-eE=p V-E=4np
V- uH =0 V. uH =0
Dérivé VXE:—IL[a—H VxE:_laﬂ
ot c Ot
VXH=1+8-@§— VxH:_4_'ﬂ:_I+la_E
A ot cA ¢ ot
4 Dds = [pdV § Eds = [4zpaV
K} vV K3 14
§Bds =0 dBds =0
Intégral d 1d
Ed| = —~— | Bd. Edl = ——— |Bd.
4 dt;[ * 4 carzsj *
d Hall = [ s+ [Das it =2Z [L s + 2L [pas
b °s dt : : c s cdt:

Dans ces relations S : La surface, V : le volume découlant de la surface fermée S,

c : la célérité.
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Le passage au systtme MKSA, implique le changement de la constante 4 défini en
(2.14) et une réévaluation des constantes k, et k;. Nous considérons, dés cet instant que
la perméabilité relative g dans les deux milieux est 1, selon I’'une des hypothéses.
En S.1, (2.3) change, selon le tableau ci-dessus. Il en découle des changements qui ont
comme effet de modifier la constante 4 dans (2.14). Le résultat est :
wp

., = 7 (2.20)
Avec J : le courant dans ’axe z dans le conducteur qui crée le champ.
En portant (2.20) en lieu et place de A dans (2.11) & (2.19), on trouve les champs pour le

systéme international d’unité. Pour les quatre cas sous analyse :

E, =%J[HO“’ (kyr)-H," (kr') |+ ..

ac . - _ z_kvz)
<a),uJJexp(jS(x_ xl) (y2+y1) s * ) e , (2.21)
0

T =k’ +s' =k}
\/ | \/ 2

_ ouJ exp(js(x2 -x1)+y2\/s2 _kl2 -V \[92 _kzz)

ds,

T j2xm \/Sz_klz +\/S2—k22 (2.22)
y, <0,y 20

ouJ exp(js(xz—xl)—yz\[gz—kzz +y1\/32_k12)
E = ds,

T j2x J5 -k 45 -k (2.23)

—C

y, 20, <0
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E _ =T[HO“> (kr)—H, (k') ]+

o ) - 2_k2)
w,uJJexp(js()~~ x1)+()’z +)’1) SR ds | (2.24)
0

\/sz -k} +\/s2 ~ k)

2.2 Expressions et paramétres pour Pimpédance mutuelle de retour par la terre

Le champ électrique et le potentiel scalaire sont en relation :

E =—gradV (2.25)
En définissant I’impédance par unité de longueur par :
Z
Z _ t;m/ , (226)

Avec, [, la longueur selon 1’axe des conducteurs, donc I’axe z. Et se rappelant par

ailleurs que £ et J sontsuivantz (E_,J,),ona:

=2y, (2.27)
0z
On a pour I'impédance par unité de longueur :
E
7-__ 2.28
7 (2.28)

En portant (2.21) a (2.24) dans (2.28) on a les expressions complétes des impédances
mutuelles de retour par la terre entre les éléments en jeu. Par exemple I’impédance entre

un fil aérien et souterrain est donné en portant (2.22) dans (2.28) :
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ds,

N (229)

]expjs +y2\/s kz—yl\/s— )
-0

Y2 <0,y 2
L’expression (2.29) est I'impédance mutuelle de retour par la terre entre un fil aérien et
souterrain. On note qu’en faisant les substitutions entre (2.23) et (2.28) on aboutit a la
méme expression. La position du conducteur source de champ (perturbateur) ou victime,
importe peu. Ce qui est conforme avec les propriétés de la fonction de Green.

Les autres impédances (air-air, sol-sol) peuvent étre aisément dérivées par analogie, on
introduit les indices du chapitre 1.

¢ Deux conducteurs dans le sol :

e mut _ %U[Hom (klr’) _ Hom (klr)} +

=7

—00

o exp(js(xz—xl)+(y2+yl),/s2—klz)
]272_ \/Sz_klz +\[S'2—k22

y, <0,y <0

ds | (2.30)

o Deux conducteurs dans 1’air :

(
Zl:;»rTerre-mut - _a%'l_l:HO(l) (kzr’) _HO(” (kzl"):l +

o [ X0 (0 =) = (3 +0 )fs —K

i ds | 2.31)

27 J5 =k + st -k,

YZZanl 20

¢ Un conducteur dans le sol et un autre dans 1’air :
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) I R Er e
Zf'et'Tel'l'evmul =+ ] H dS,
i—j 27 \/Sz _klz +\/S2 ——k22 (2.32)

—00

\{yz <0,y 20,k =k0,}0u{yl <0,y, 20,k :ksol}

S

Pour les impédances propres de retour par la terre, on remplace dans (2.31) et (2.30),

selon le cas :

X, =X, | =rayon

(2.33)
W=V
11 faut se rappeler que dans (2.30) a (2.32) :
¢ La fonction de Hankel est liée a celle de Bessel par :
2
H'"" (kr)=—j=K, (jkr); (2.34)
/4
e Le paramétre £ est:
%
k= -2, (2.35)
yo,
e Une relation entre ket y, évoqué dans (1.42) et parfois noté m, voir [4], est
telle que :
K =—y; (2.36)

e Pour I’air, on admet que le paramétre k est trés négligeable (trés mauvais

conducteur) [5]:

air

(2.37)
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o En fin, on peut appliquer les relations suivantes [7]:

Ns' k> =5 Pour s —
Js'—k*~—s  Pours-——owo. (2.38)
Vs —k* ~—jk Pours=0

En appliquant les relations (2.34) a (2.38), on retrouve les formules des impédances
dans les formes couramment connues dans la littérature comme étant les fameuses

intégrales de Pollaczek : [4], [15], [24], etc.

2.3 Nouvelles approximations de 'impédance mutuelle

Quelques résultats de Pollaczek, non encore suffisamment exploités, a ce jour, sont les
développements en série des champs €lectriques trouvés ci haut. En effet, beaucoup de
travaux pour trouver les formules analytiques ont été menés, aussi bien pour les
conducteurs dans 1’air que pour les conducteurs dans le sol [14], dans le sol et dans ’air
[13]. Mais il n’a pas €té exploité, a notre connaissance, les formules des développements
en série de Pollaczek. Le but de ce paragraphe est alors d’extraire les formules
analytiques des impédances mutuelles de retour par la terre a partir des développements
en série des champs ¢€lectriques par Pollaczek. Comme toute approximation, ces derniers
comprendront les limitations que nous allons cernées en évaluant leur performance par
rapport aux formules approximatives connues et par rapport a la valeur la plus précise
possible de ’impédance que nous trouverons par les méthodes numériques exposées

dans ce travail.

2.3.1 Développements en série des expressions des champs par Pollaczek en CGS

Les développements en série des expressions des champs é€lectriques dans toutes les

régions de 1’espace sont définis comme suit par Pollaczek [7] :



o  Champ dans [’air dit a un conducteur aérien :

En définissant les termes ;
a=k|x=j(y+y,)]

p=k[-x=j(y +»)]
X = ‘x, - X, ‘
Pour les trés grandes valeursde « et f,ona:

1] =e

b

Et le développement asymptotique introduit par Pollaczek est [7] :

-

2

X r(ntr) 1 Lo

5 2 2 2 2 2
E zi)é:y R ) I

++

J JC « L 27 (2p = 201281 1 |
Z(—l) ( ) (azm + ﬂzmj

oy r!(r ~1)!

3, 20,y, 2(),k2\/x2 +(y+2,) >1
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(2.39)

En ne retenant que le premier terme de la sommation dans (2.39), on a une

approximation du champ dans 1’air di 4 un conducteur acrien :

\

y 20y, 20,k2\/x2 +(y1 +y2)2 >1

In x2+(J’1+y2)2 _3_— xz_(y1+y2)2
2 2 52
o x2+(yl—J/z) k [x2+(yl—y2)_}
JE++zj72<
3x% - ’
(32— L 3 (y|+)’2)2
k [x +(» -»,) ] k [x'+(y1—y2)}

(2.40)



D’autres formules qu’on peut noter sont :

e Pour les petites valeurs de ' ,BI = ’a| <<< :

e Pour
YtV 0.05
x 2
x| < 3
L] 4 +4kei'(;kx])—jker'(|la|)
I e k*x? ’kx’ .
¥, 20,y, 20,‘/c(y1 +, )‘ <

En introduisant les fonctions de Bessel :
et (e () = - ()
ke (o) ker (i) =~ 5K, (7 )

(2.43) devient alors :

E++ ~ -

jct |k x 1kx‘

4a)J{ 1 ik (|kx|x/7)}

<1

% 20,5, 20,/k(y, +,)

56

(2.41)

(2.42)

(2.43)

(2.44)
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o Champ dans le sol (I'air) dii a un conducteur aérien (souterrain) :
Le développement en série du champ dans le sol di a un conducteur aérien en (2.17),
donne en deuxi¢me approximation [7] :

A
E,~—|F+F+F+F,+F}

—+

jr
B (x=j(h+n)) wre | (vk,
R P ) o 5 (e 0 -)|
kz(x+j(h +h))2 Kk Yk .
F2=— - 82 1 - 2~ 1n(7(——x+](h2—hl)))
L 4jk(h+h)
T
}ﬂz——s—kz)c2
16

1 2 2 2
Fi==gck (195 =2k h, —Sh')

h, <0, h 20,
Jrw
A=—
C

Y= exp()/Eu,w, ) = exp(0.577215664901532)=1.78107241799020 (2.45)

Ou Y est une constante liée au nombre d’Euler: 7, ,, =0.5772156649015328

Pour le champ dans I’air d a un conducteur souterrain, il suffit d’inter changer 4 et A,

dans (2.45).
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o Champ dans le sol dii a un conducteur souterrain

Une observation importante relevée par Pollaczek est que le champ secondaire produit

au point (O,hl ), dans le sol (I’air) par un fil conducteur situé dans le sol (I’air) au point
(x,hz) coincide avec le champ secondaire, provoqué au point ()c,h2 + hl) dans le sol

(I’air) par un conducteur situé en (x,()) dans le plan de la surface de la terre. Pour rappel

le champ secondaire est celui qui est da a la présence du sol.
E (xh,h)=E , (x:h +h,0)+ A[Hg” (kr)-HY (kr')] (2.46)

2.3.2 Expressions des champs et impédances mutuelles approximées en MKSA

Comme précédemment, nous passons en systéme MKSA, en changeant la constante

orJ oud
A= par A‘ -7

C2 MKSA 4

dans les expressions d’intérét de (2.39) a (2.46), puis en

utilisant les relations (2.34) a (2.38), on a des nouvelles formules approximatives des
impédances ci dessous. Leurs performances seront évaluées apres établissement d’une

méthode numérique performante qui sera établie dans le chapitre suivant :
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Nouvelle formule analvtique approximative de I'impédance mutuelle de retour par la

terre entres conducteurs aérien et souterrain,

Z, (x’hz’hl 7pso/’f)zj:-l—7az_){Gl +G, +G; +G, +G5}

2

2 (x=i(h+h)) R Yy, ..
G |1+ 82 /N 22 ln[—T(x+j(h2-—hl))}

G, =—1+

2 (A, ? 242
¥ (x+]§;h+h1)) +;(2h2 ln( Yy

. +4jz(1;2 +h)

G +5 ’x?
=+—7°x
4 167(

1 i ,
G, = JFE;(2 (19 -2k h, - 5K’

h,<0,h 20,
Y =exp( 7, )= 1.78107241799020
N (2.47)
pso/
. Of,
X =7
psol

\

Ou Y est une constante liée au nombre d’Euler définie dans (2.45). Pour le champ dans
I’air dii a un conducteur souterrain, il suffit encore une fois d’inter changer A et A,

comme dans (2.45).



60

Nouvelle formule approximative de I'impédance mutuelle de retour par la terre entres

conducteurs souterrains

Z . (x,h2 +h1,0,pw,,f)+---

Z;_ (X,h ah ’pso ’f):
Ui K (i) K, (i)

(2.48)

Dans lequel Z | ()c,h2 +h.,0,p.,.f ) est évaluée par une formule approprice

(analytique, (2.47), ou autre).

2.4 Liens entre la formule de Pollaczek, Carson et Formules de CCITT

2.4.1 Reformulation de I’intégrale de Pollaczek

La forme de I’intégrale de Pollaczek usuellement reconnue qui a ét€ obtenue en portant

(2.34) a (2.38) dans (2.32), exprime I'intégrale de I’impédance mutuelle Z__ par unité
de longueur entre ligne et cable :

,

Z. =+j 2’;“ [ f(s)ds (2.49)

Ou on a défini :

exp(—y1 |s‘+y2,/s2 + 7’ )

f(s)= exp( jsx)ds (2.50)
g )
En divisant en deux intervalles on a :
0 0
Z =+j al { jf' (s)ds + jf* (s)ds} (2.51)
27 | 3 b

Ou I’on a défini :



61

exp(+h,s—h2,/s2 +;(2)

Sy o) d

f(s) _S+m eXp(]sx) s
exp(-—hls—h2 s2+)(2)

f ()=

S+m exp(jsx)ds
Par ailleurs on a I’identité :
cos(sx) = %[exp( jsx)+exp(= jsx)] (2.52)
En posant, la partie imaginaire de y”:
m’ = Im( ;/) (2.53)
En portant (2.53) et (2.52) dans (2.51) puis en le combinant (en changeant le signe

d’intégration pour le premier terme f “(5)),on a:

exp hs h, s+]m)

cos  sx )ds
ay S48 +]m ( )d ( (2.54)

Z, =+]j

-+

h <0 (sol), i, =2 0(!"air)

En faisant le changement de variable

s=m-u
ds=m-du

Et considérant 1’1dentité suivante :

SHas T+ )= j2

=S tas + ]

Ona:
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_om [—s-h/sz +j]exp[—hlms]x---ds
d exp[—hzm,/s2 +j]cos(mxs)

4

Z

—+

~-

(2.55)

Avec:

X =

X, = x| (2.56)

_ fawo
m = /p (2.57)

Cette expression est approprié¢e pour une évaluation numérique. On note la similitude
avec celle de Nguyen [25] pour les cables souterrains et la parfaite concordance avec
celle de Uribe [12] pour le céble et la ligne. Elle est trés oscillante et cela d’une maniére

irréguliére suivant les valeurs m, x , 1a hauteur /4, et la profondeur 4,

2.4.2 Pollaczek vs CCITT

L’expression de I'impédance mutuelle de retour par la terre établie par le CCITT [5] est
identique a celle de Pollaczek transformée en (2.54). Notons que les transformations
menant a (2.54) n’ont nécessité aucune approximation. On considérera alors que les
hypotheéses prises par CCITT et Pollaczek s’appliquent pour cette expression de
I’impédance mutuelle. Ceci est vrai pour les conducteurs dans I’air, dans le sol ou les

deux.

2.4.3 Pollaczek vs Formule de Carson

Comme reconnu par Ametani [4], la formule de Carson pour I'impédance mutuelle entre

élément aérien et souterrain (4, < 0), est un cas particulier de celle de Pollaczek quand

on fait I’approximation :

\/sz +jm2 z’s

, (2.58)
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Ceci est valide pour :
5| > |m| (2.59)

Cette approximation limite ’expression de I’'impédance mutuelle de retour par la terre
aux cas de basse fréquence ou sol trés rocheux ou sec. (Voir tableau 2.2). En effet, la
formule n’est pas précise car les erreurs de cette approximation pour les cébles
souterrains évaluées dans [4] et [10] peuvent atteindre 25%.

Finalement, alors que Pollaczek considere le sol comme semi-conducteur, il faut noter
que dans la formule de Carson pour les lignes aériennes on considere le sol comme bon
conducteur [4], i.e. :

1
— > 0E

sol ? (260)
psol

La fréquence critique f,, qui découle de cette approximation dans la formule de Carson

serait :
1
Joa =7—, (2.61)
27[gsolpsol
Ou e, =¢, =8.8542x107"
fo (MHz) =1.7975x 0/ (Q '™ ) 10" MHz (2.62)

2.4.4 Pollaczek vs Sunde

Dans toutes les expressions présentées jusqu’ici, on considere que le courant de
déplacement dans le sol est négligeable. Pour certains types de sol, ayant une
permittivité relative élevée, ce courant ne devrait pas étre négligé.

Ceci impliquerait des modifications qui menent a la formule de Sunde rapporté dans [26]

et [27]:

\/sz +jm’ - \/sz + jm’ — @’ 1,6, (2.63)
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2.5 Limitations dues aux hypothéses dans les expressions des impédances

Les expressions des parametres étant bien connues et analysées, nous pouvons passer a
leurs évaluations. Mais auparavant nous devons rappeler les limitations et en tirer les
plages de variation de parametres pour mieux apprécier la performance des méthodes
d’évaluation.

Comme pour toute modélisation, il s’impose de définir les limites de son applicabilité.
Le premier type de limitation vient de la formulation des équations (Maxwell) décrivant
le phénoméne lui-méme; et elles sont dues aux hypothéses tant physiques
(électromagnétiques) que mathématiques (approximations diverses). Nous ne pouvons
rien y faire car les parametres des cables découlent directement de ces équations-la. Ces
hypothéses vont directement limiter la plage d utilisation du modele de ligne utilisant les
parametres de cébles sous étude.

Le second type de limitation découle des imperfections de calcul pour I’évaluation
numérique. Il sera donc rechercher la précision la meilleure, et raisonnable, pour
minimiser I’impact des ces imperfections. Cependant il faut se rappeler qu’un modele est
utilisé :

¢ Pour une application donnée (ici, une étude transitoire, transfert de puissance,
etc.). On aura, par exemple, un plafond des valeurs des fréquences ;

¢ Dans un contexte donné : avec d’autres modeles ayant déja certaines limites ; il
ne servirait en rien de pousser plus loin la précision d’un modele de ligne si
celles des transformateurs ou des disjoncteurs ne peuvent étre améliorées ;

o Etenfin, les géométries a considérer sont limitées pour des applications pratiques
et réalistes. Les distances entre conducteurs, par exemple, ne peuvent pas
s’étendre indéfiniment.

De ce qui précéde, on ne cherchera pas la précision de I’évaluation numérique au-dela de
ce qui peut pratiquement étre rencontré.
On rappelle d’abord la plage des paramétres due aux hypothéses et suivra aprés un

survol de limites supérieures et inférieurs des certains parametres.
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Nous considérons les distances transversales des structures sous étude. C’est-a-dire dans

le plan perpendiculaire a la longueur de la ligne. Dans la Figure 2.2, c’est le plan(x, y) .

La définition des distances impliquées n’est pas simple quand on considere I'interaction

entre plusieurs structures [5], ainsi 1’analyse faite ici sera approximative et qualitative.

Cependant, en considérant quelques ordres de grandeur de plus que la valeur des

hypotheses (10 a 100 fois et plus) nous pouvons évaluer qualitativement si les

hypotheses de modélisation sont respectées.

Les équations suivantes traduisent qualitativement les limitations dues aux hypothéses :

Hypotheses Quasi-statique et quasi-TEM :

Les distances dans le plan transversal entre les conducteurs doivent étre inférieures a
la longueur d’onde associé¢e a la fréquence sous considération [5] (Hypothese B,
page 65 dans [5]). On doit donc satisfaire (1.13) dans I’isolant et d’'une maniére

analogue, (1.14) dans e sol. Les expressions sont :

o Pour deux conducteurs dans ’air :

h-h) +(x,-x) < fJue (2.64)
Vi =h) +(r-x) < ffme,

o Pour deux conducteurs dans le sol :

En considérant le sol avec une conductibilité finie comme préconisé par

Pollaczek [7] on aura :

2 2 ﬂ\/g
\/(hz “‘hl) +()C2 —xl) <<\/_TILZ__I—;;—

o Cas de deux conducteurs dans le sol et dans 1’air :

(2.65)

Pour ce cas, la définition n’est pas simple. Pour une estimation qualitative du
respect des hypothéses, nous retenons comme suggéré dans [5] les distances
transversales impliquées : une premiere distance de la hauteur dans 1’air au
point d’impact sur le sol et une deuxieme dans le sol, du méme point

d’impact a la profondeur dans le sol :
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o , )
h+lh \/(hl+h2)2+(x2—xl)2 <<(f,/,uogo)l
1 2
< N (2.66)
i \/(h +h) +(x,-x) | < . V8
L hl - hZ l 2 ’ | B \/f Iusol O-xo/ \/a)ﬂsol O_sol

e Approximation consistant a négliger le champ électrique dans le sol a certaines
profondeurs :
De [5] on déduit que la fréquence maximale doit assurer tout de méme une
profondeur de pénétration minimale assez élevée pour qu’on puisse négliger le
champ méme si (2.65) ou (2.66) ne sont pas satisfaites pour des distances le plus

profondes dans le sol . On a donc :

1
omin=———>>h (2.67)

Ou h__ est la profondeur la plus grande dans le sol pour tous les éléments

max

des structures impliquées.

2.6 Valeurs des paramétres pour les géométries et conditions d’opération pratiques

2.6.1 Valeurs pratiques des paramétres / , o, ,h,h,,x

¢ Fréquence pour étude transitoire : f

La fréquence maximale a laquelle il faut calculer les paramétres dépend de la
composante fréquentielle la plus élevée dans I’étude transitoire. Cette derniere doit

étre augmentée dans le cas du modele a large bande (Wide band) pour une bonne

approximation des éléments des matrices H etY , comme souligné auparavant. Le

facteur d’augmentation pouvant étre environ de 1.5 :
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K=~1.5

f;va[ Param = K x ﬁnax —Transitoire
En considérant les transitoires dues aux courants induits de la foudre, classées

comme transitoires a montées rapides ( « Fast Front Transients» ) [28]
=1MHz

f;nax ~Transitoire

On aura, a assurer une évaluation des paramétres a une fréquence f, , p...

d’environ : f, =1.5MHz

val Param

¢ Résistivité dusol : p,_,

Selon le type de sol, la valeur de résistivité est représentée dans le tableau 2.2 formé a
partir de la norme CSA C22.1-98 [29] et du chapitre 4 de Glover et Sarma [30]. On note

que, pour le sol usuellement rencontré, la résistivité moyenne p,, ., est 100Qm . Une

plage a considérer pour des cas souvent rencontrés serait :

p ~[10,1000 |Qm

Tableau 2. 2 Valeurs des résistivités selon le type du sol. Adapté de [30] et [29].

T d | Résistivité : p
ype de so ( Qm)
Eau de mer 0.01-1.0
Sol organique mouillé 10
Sol marécageux 10-100
Sol humide 100
Sol usuel (moven) 100
Sol sec 1000
Sol en Pierre concassée 3000
Sol rocheux 10*
Sol gréseux 10°
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¢ Les hauteurs maximales de pylones et profondeur des cébles : A eth,

o Ligne aérienne :
Pour les hauteurs, on se base sur les données d’une configuration typique pour

une ligne de 880 kV. [31]: 4 =31m.

La hauteur maximale que nous retenons est alors /4, =70m. La hauteur

minimale dépend de la tension. En lien avec I’Art. 36-110 de la norme CSA

C22.1-98 [29], on peut noter pour moins de 15kV : 4 . =2.9m . La plage pour

1,min
la hauteur serait : s = [2,70:|m

o Cable souterrain :
Pour les cébles, il faut noter que la majorité des normes imposent une profondeur
minimale dépendant des conditions & la surface du sol et de la canalisation
utilisée : [29], [32] et [33], pour ne citer que ceux-la. De ces 3 normes, la

profondeur minimale retenue est de 4, = 0.45m.

Les valeurs limites que nous retenons sont celles en lien avec l’article Art. 12-
012 de la norme CSA C22.1-98 [29]. Une plage de valeur de profondeur qu’il

faut minimalement assurées est alors environ :
h,=[03,2.5]|m.

o Distance horizontale a considérer : x
La distance horizontale maximale dépend du niveau de la tension. 1l faut assurer un seuil
maximal de niveau de champ au bout de ’emprise de droit de passage (ROW : « Right-

Of-Way », qui inclut le corridor). Rusch suggere [31] pour une tension de 880kV :
x =138m pour un niveau de champ de O.Sk%. Et il considére que la ligne est au
centre du corridor. Un ouvrage a la limite de I’emprise de droit de passage sera donc a

une distance de x_, = 13% = T70m.

La valeur minimale de la distance horizontale dépend de la configuration et peut étre trés

petite ou nulle. La plage serait alors : x = [O,SO:I m.
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2.6.2 Variations des paramétres vs hypothéses de modélisation

Les variations des paramétres étant connus, il est pertinent de vérifier si les hypothéses
de modélisation (liées au mode quasi-TEM) dans (2.64) a (2.67) restent valides pour ces
derniéres. Nous utilisons pour cela la fonction « contour map » de MATLAB [34].

En récapitulant, les variations (approximativement) des parametres pour des cas

pratiques sont :

f\f;va/ Param 1.5 MH=
p =[10,1000 | Qm

$h =[2,70]m (2.68)
h, =[03,2.5]|m
x= [0,80:|m

Et les conditions impos€es par les limitations dues aux hypothéses sont
approximativement :

o Pour deux conducteurs, un dans le sol et un dans I’air, on doit avoir :

h, 2
h +h, : 1
\ Ay +h, ‘/( RESRE —(f\"”‘)g")< )
1 Z .
hZ 2 2 a)ll'l sol O-sol
\/(hl+h2) +x [ <
A +h, | 78
o Pour deux conducteurs dans le sol :
1/a)
ﬂ o \[ h~h) +x* <1 (2.70)

o Pour deux conducteurs dans ’air :

e, \/(hz ~h, )2 +x° <1 (2.71)

En combinant (2.68), et respectivement (2.69), (2.70) et (2.71), pour chaque cas, on a les

Figures 2.3 a 2.11 dans lesquelles on dénote le niveau d’observance des hypothéses par
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EXCELL : Excellent , ACCEPT : Acceptable et H.-LIM. : Hors limite (voir la barre a
droite de chaque figure). Sur chaque zone on associe un ton de gris particulier comme

montré dans la Figure 2.3. Chaque paire des points définie par 1’abscisse et I’ordonnée,

par exemple ( p(Qm),h, (m)) dans la Figure 2.3, est classée dans une zone dont le

degré d’observance d’hypothése est déterminé par le ton de gris associé a la zone. La

valeur limite est 1. Les valeurs acceptables sont < 1.

e Pour deux conducteurs dans le sol :

Limitation dans le sol: F(hy, p) <1, f=2 MHz, x = 7m, profondeur h; =0m

1

s H.-LIM.

P

s HAIM.

H.ALIM.

Zone en dehors de la limite: >>1

s HALIM.

D H-LIM.

s HALIM.

Profondeur: hy (m)

Zone acceptable < 0.5<1
s H.-LIM.

Zone frontiére de la limite

s HALIM.

: ACCEPT.

L L ; L | L

10 20 30 40 50 60 70 80 90
Résistivité: p (2 m)

Figure 2.3  Illustration de la limitation due a ’hypothése de propagation dans le

sol, pour les résistivités p , <10Qm avec: f =2MHz, p, =[1,100:|Qm,

x=Tm, h =0m et h, = [O,ﬂm (profondeurs). Avec EXCELL : Excellent,

ACCEPT : Acceptable et H.-LIM. : Hors limite



Limitation dans le sol: F(h P )<1
x 10° x=10m, "1 =25mef hz=0m ( Profondeurs )

e e T
: i i | /

z)

Fréquence: f{

Résistivité du sol ; Pt (2m)

|
I
) |
| |
1 |
1 |
: 1 ! 1 | ;
80 100 120 140 160 180 200

1.8 H.-LIM.

1.6 H.-LIM.

14 H-LIM.

1.2: H-LIM.

1 CH-LIM.

0.8 : ACCEPT.

0.6 : ACCEPT.

0.4 : ACCEPT.

0.2: ACCEPT.
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Figure 2. 4 Illustration de la limitation due a I’hypothese de propagation dans le

sol, pour les pairs avec : f = [0,2] MHz ,

sol

h,=[0,3]m

Limitation dans le sol: F( h2 ,p) <l

x 10° x=20m, h P =2.5m et h, =0m ( Profondeurs)
R — i o

Fréquence: f{ Hz )

e e e

Pt 0.2 62
| 6.4 0]2 . o4 bl o1

I T T
90 92 94 96 98 100 102 104 106 108 110
Résistivité: p (2 m)

D H.-LIM.

0.1 EXCELL.

: ACCEPT.

: ACCEPT.

: ACCEPT.

. ACCEPT.

: ACCEPT.

: ACCEPT.

: ACCEPT.

0.2: ACCEPT.

=[1,100]Qm,x =10m, b =0m et

Figure 2. 5 Illustration de la limitation due a ’hypothése de propagation dans le

sol, autour de la résistivité d’un sol usuel,

avec : f =[0,2.5|MHz, p,,, =[90,110 |Qm ,x =20m, h, =0m et h, =[0,3 |m
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e Pour deux conducteurs dans I’air :

Limitation dans U'air: F(h ) h R )<1
[=2.5 MH7 ,x =80m et p =100 Qm

v ¥ [

1.05 : H-LIM.

1 T H-LIM

> .95 ; ACCEPT.
=
S 4
Ny 60/ 0.9 : ACCEPT.
§
& /“A 0.85: ACCEPT.
§ a0
= / 0.8 : ACCEPT,
:EN
20} 0.75 : ACCEPT.
0.7 : ACCEPT.
0 L

2™ hauteur: h B (m)

Figure 2. 6 Illustration de la limitation due a I’hypothése de, propagation dans

Pair, avec [ =2.5MHz, p,, =100Qm, x=80m, b =[0,100 |m et

hy, =[0,100 |m

e Pour deux conducteurs, un dans le sol et un dans 1’air :

Limitation dans le sol: F(h i h 2 )y<1I
=2 MH; ,x =80m et p =100 2m

‘_r.‘.'—‘.h«r.a.f__“_
e

Hauteur: h 7 (m)

Profondeur: h 5 (m)

Figure 2.7 Illustration de la limitation due a ’hypothése de propagation dans le

sol, pour certaines pairs des distances verticales avec : f =2MHz, p , =100Qm,

h, =[0,100]m et b, =[ 0,10 |m



e Variation de la fréquence et de la résistivité du sol

73

Limitation dans le sol: F(hz, ) <1
hl =70m,x=80m, p=100m

Profondeur: h S (m)

0.5 1 1.5 2 2.5
Fréquence: f(Hz) x 10°
()

Limitation dans le sol: F(hz Jr<lI
h1= 70m,x=80m, p=1000 2m

Profondeur: h B (m)

Fréquence: f( Hz) x 10°

(b)

L H.-LIM.

T H.-LiM.

: ACCEPT.
: ACCEPT.
: ACCEPT.
: ACCEPT.
: ACCEPT.
: ACCEPT.
: ACCEPT.
: ACCEPT.
1 EXCELL.

: ACCEPT.
1 EXCELL.
: EXCELL.
: EXCELL.
: EXCELL.
: EXCELL.
: EXCELL.
: EXCELL.
: EXCELL.
: EXCELL.
: EXCELL.

Figure 2.8 Illustration de Ia limitation due de I’hypothése, propagation dans le
sol, pour: f = [O,Z.S:I]VII—IZ, h =70m (hauteur), /i, = [O,4]m (profondeur). ( a)

1o, =10Qm, (b) : p,, =1000Qm
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100 —

90

80

70

40

Hauteur: h ; (m)

60

50 - -

30

Limitation dans le sol: F(hI ,f <1
hz =2m,x=80met p =10 Qm

Fréquence: f(Hz ) x 10°
€Y

Limitation dans le sol: F( h Py fi<lI
h2 =2 m x =80m et p =100 Qm

Hauteur: h P (m)

Figure 2.9

Fréquence: f(Hz)

(b)

Illustration de la limitation due de I’hypothése, propagation dans le
sol, pour : f = [O,Z]MHZ , h, =2m (profondeur), 5 = [O,IOO]m (hauteur). ( a)

psol = 1OQm9 (b) p

sol

=100Qm

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

s H.-LIM.

T H.-LIM.

t H.-LIM.

s H.ALIM.

s H.-LIM.

T H.-LIM.

: ACCEPT.

: H.-LIM.

s H.-LiM.

: ACCEPT.
: ACCEPT.
: ACCEPT.
: ACCEPT.
: ACCEPT.
: ACCEPT.
: ACCEPT.
: ACCEPT.
: EXCELL.
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11 faut noter que pour la plupart des fréquences, il y a un niveau de profondeur en
dessous duquel ’hypothése de propagation dans le sol n’est pas satisfaite. C’est le cas

pour une profondeur de 3m et une résistivité de 10 Qm dans la Figure 2.10. Notez que

les valeurs des hauteurs et des fréquences a probléme sont approximativement [0, 10] m

et [0,2.5] MHz respectivement. Ces derniéres sont pourtant des valeurs pratiques, voir

(2.68).
Limitation dans le sol: F(h 1 fi<l1
h,=3 m,x =80m et p=10 Qm

100, e : - s 11 1 H.-LIM.
90 4 10 HAUM.
sol ... . , o 1 9 H.-UM.
| 3 H.-LIM.

-~ 70 ___________________________________ “‘ : ;‘
8 | 7 HAUM

< 0] e - .
= 16 H.-LIM.
5 5 H-LIM.

§ -
3 4 HLM

& o
3 1 H.-LIM.
12 : H.-LIM.
1 : H-LIM.

02 04 06 08 1 12 14 16 18 2
x 10°
Fréquence: f( Hz )
Figure 2. 10 [llustration de la limitation due a l’hypothése[ (=) }___V‘f" <,
7+/8

propagation dans le sol, pour la profondeur %, >3m dans le cas

de: f =[0,2|MHz, p,, =10Qm, h =[0,100 |m et h, =3m
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Limitation dans le sol: F(hz ,pl<lI
f=2.5MHz, x=80m et h =70m
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Résistivité: p (2m)
Figure 2. 11 Ilustration de la limitation due a ’hypothese pour propagation dans

le sol, pour : f =2.5MHz, p,, =[1,1000]Qm, h, =[ 0,14 |m et h, =80m

Limitation dans l'air: F(h M ) <1
hz =2m,x=80m et p=100 Qm

100 : ACCEPT.
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80
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3 : ACCEPT.
= sf
: ACCEPT.
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10l : EXCELL.

J ;
02 04 06 08 1 1.2 14 16 18 2
Fréquence: f(Hz ) x 10

Figure 2. 12 Illustration de la limitation due a I’hypothése pour la propagation
dans Pair, pour : f =1.5MHz, p_, =100Qm, h =[0,100 |m et h, =[0,2]m

(hauteurs).



Les tableaux récapitulatifs suivants résument les cas usuellement rencontrés :

Tableau 2. 3 Récapitulatif du respect des hypothéses pour deux éléments

souterrains.
Respect des
h; h; X p f hypothéeses :
(m) (m) (m) | (Qm) | (MHz) | deux cébles
souterrains
<5 0 0 <5 >3.5 NON
<5 0 10 <50 | >35 NON
<5 0 10 100 <8 Ooul
<5 0 30 <50 | >0.5 NON
<5 0 30 100 | <1.5 OUl
<5 0 20 <100 | >2.5 NON
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Tableau 2. 4 Récapitulatif du respect des hypothéses pour deux éléments aériens.

Respect des

hy h; X p f hypotheses :

(m) (m) (m) | (Qm) | (MHz) | deux lignes

aériennes

>100 | <20 0 100 | >3.5 NON
<50 <50 100 100 3.5 OUI
150 150 100 100 1.5 oul
- - 200 100 >1.5 OUI
- - 200 100 <1.8 NON
100 <10 80 100 <2.5 OUI
<60 <60 40 100 5.5 0]8)1

Tableau 2. 5 Récapitulatif du respect des hypothéses pour un élément aérien et

souterrain.
Respect des
hy ks x P ya hypothéses :
(m) (m) (m) | (Qm) | (MHz) ligne et
cable
70 - 80 <10 2.5 NON
70 <6 <40 - 4.5 OUl
10 5 120 | >500 | <3.5 OUl
80 5 120 >10 <2.5 OUI
120 5 120 >10 <1.8 OUI
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2.7 Conclusion

1.

L’expression de I'impédance mutuelle de retour par la terre a été dérivée de la
solution du champ électrique dans les équations de Maxwell. Ceci en considérant les
hypothéses du mode quasi-TEM de propagation. La premiére hypothése est celle lice
a la longueur d’onde dans le diélectrique (I’air, les divers isolants) et la seconde,

pour les conducteurs, est liée a la profondeur de pénétration.

Cette expression est valide pour un intervalle limité des paramétres. Pour la plupart
des situations géométriques et physiques pratiquement rencontrées, on vérifie que
ces hypothéses sont respectées mais il faut s’assurer qu’on reste bien en deca des
limites. Pour certaines configurations, il a été clairement montré¢ qu’on est proche
des limites des hypothéses du mode quasi-TEM. Il s’agit par exemple des
profondeurs dans le sol de plus de 3m et aussi pour les cas de résistivités du sol de
moins de 10 Qm. Comme mentionnait plus haut, cette analyse est qualitative. On
considére approximativement qu’en diminuant la résistivité (<1 Qm.) et en
augmentant la profondeur (> 10m) on sera probablement en dehors des limites
d’observance des hypothéses pour les hauteurs, les distances horizontales et les
fréquences usuellement rencontrées, respectivement 60 m, 80 m et 1.5MHz. les
Tableaux 2.3 a 2.5 récapitulent d’autres cas d’intérét. D’autres méthodes
d’établissement des expressions du champ électrique seraient nécessaires pour, par
exemple les impédances pour les fréquences de 3 a 10MHz. Il faut se rappeler
qu’une recommandation du CIGRE suggére plus qu'un MHz, soit environ 3MHz
pour les transitoires a fronts rapides [35]. 11 faut donc s’assurer de respecter les
limites des hypothéses dans ce cas. Ces observations ont été formulées, mais pas
d’une fagon formelle telle que présentée ici. Voir entre autre, Rachidi, F. [26] et
Theethayi, N. [27]. Ces derniers rappellent que les modeles des lignes basés sur les
équations de Pollaczek ou Sunde sont discutables au-dela des quelques MHz. Pour

les formules de Carson, le manuel de référence de EMTP [4], approxime la
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fréquence critique a environ 1.8MHz, pour les lignes aériennes avec un sol de 10000
Qm. Il faudra alors tenir compte de ses observations dans I’évaluation de
I'impédance: inclure des messages d’avertissement pour l’utilisateur non familier
avec ces limitations quand on calcule les impédances mutuelles de retour par la terre
dans les études semblables a celles annoncées pour Crinoline [3]. Par ailleurs, on
s’assurera d’une bonne précision pour les cas pratiques et ceux respectant les dites
hypothéses quand on évaluera les impédances. Pour d’autres types d’expressions
d’impédance moins contraignantes au niveau des hypothéses, les références 35 et 36

fournies dans [4] seraient utiles.

3. Les expressions approximatives du champ sous forme de séries, établies par
Pollaczek, ont donné une nouvelle possibilité de dériver des formules analytiques
approximatives pour l’impédance mutuelle entre éléments aérien et souterrain
comparable a la formule de Lucca, et entre cables souterrains comparables a la

formule de Saad et d’autres.

En outre, en se basant sur les observations de Pollaczek, nous avons établ le lien a
I’aide d’une fonction de Hankel entre I'impédance mutuelle pour deux cébles
souterrains et celle mixte aérien souterrain. Ce lien nous permettrait d’appliquer les

formules approximatives de 1’un des cas, selon la convenance, pour I’autre cas.

La validité des ces nouvelles approches analytiques sera établie en comparaison avec la
solution de 1la méthode numérique que nous nous proposons d’établir au chapitre suivant.
Mentionnons enfin qu’en transformant les intégrales de Pollaczek, on a montré qu’elles
sont équivalentes a celles trouvées par le CCITT. Et les deux sont équivalentes aux
formules de Carson avec certaines considérations montrées par Ametani. Et enfin la

formule de Sunde prend en compte les courants de déplacement dans le sol.
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CHAPITRE 3 EVALUATION DE L’IMPEDANCE MUTUELLE DE
RETOUR PAR LA TERRE

Dans les précédents chapitres, il a été largement examiné les expressions de
I’'impédance mutuelle de retour par la terre. Mais leurs évaluations ne sont pas aisées
pour les cdbles souterrains et entre conducteurs aérien et souterrain. Ceci, car d’une part,
elles ne possédent aucune forme analytique connue, et d’autre part, leur comportement

est trés oscillatoire et irréguliere, surtout pour les cables et entre céble et ligne aérienne.
[24],[12], [14], [13] et [11].

Récemment (Mai 2005), 11 a été développé un algorithme pour I’évaluation numérique
de I'intégrale de Pollaczek pour les cables souterrains [10] et entre une ligne et un cable
[12]. Cette méthode a le mérite de quantifier approximativement |’erreur des

approximations faites précédemment dans [14], [13], [5] et [11].

Cependant, une lacune de cette méthode d’intégration numérique est que ses propres
bornes de ’erreur relative ne sont pas établies. Une difficulté¢ supplémentaire s’ajoute
car une mauvaise localisation des zéros (de la fonction intégrante de l’intégrale de
Pollaczek) dans la formulation de cette méthode rend difficile la possibilité d’établir les

bornes de ’erreur relative ou absolue.

Dans ce chapitre, nous nous proposons de lever les lacunes de la méthode d’Uribe dans
[12], ensuite d’établir une méthode numérique, type quadrature, efficace pour évaluer
I’'impédance avec contréle de D’erreur relative maximale commise. Et pour valider la
méthode par une autre alternative, nous introduisons une méthode d’intégration quasi-

monte Carlo.
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3.1 Critiques des formules existantes -Revue de la littérature

A ce jour, les méthodes pour évaluer I'impédance mutuelle (ou directement les
tensions et courants induits) entre lignes et cables, entre cables souterrains et entre lignes
adriennes, peuvent é&tre classées en trois familles: Les formules analytiques
approximatives, applicables dans un domaine trés restreint; les méthodes numériques
d’intégration; et les méthodes numériques électromagnétiques (éléments finis et autres)
qui peuvent étre appliquées directement pour €valuer les tensions et courant induits.
Pour les lignes aériennes, les formules de Carson et d’autres sont jugées satisfaisantes a
ce jour [4]. Nous donnons ci-dessous quelques formules ou interviennent les cables en

insistant sur la combinaison céble souterrain et ligne aérienne.
3.1.1 Formules analytiques approximatives

Les formules analytiques approximatives de I'intégrale de Pollaczek (de Carson, ou de
Sommerfeld) sont recherchées par les développeurs de programme de simulation a cause
du temps de calcul réduit.

Toutes ces formules analytiques ne sont valides que pour un certain intervalle des
parameétres : hauteur, profondeur, distance latérale, résistivité du sol et, bien entendu, la
composante en fréquence la plus grande de 1’étude a effectuer. Leur utilisation impose

une bonne connaissance des limites d’applications.

Les tableaux suivant présentent deux types de formules. Dans le tableau 3.1 on a les
formules de I’impédance mutuelle de retour par la terre entre cables souterrains et lignes
aériennes tirées de [5] et dans le tableau 3.2, les formules pour les céables disponibles

dans [14] et dans [4].



82

e Formules analytiques de CCITT et de Lucca pour impédance mutuelle aérien-

souterrain

Tableau 3.1 Formules analytiques approximatives pour fil aérien et cible

souterrain

Formules approximées

Hypothéses d’approximation

faites et constantes utilisées

¢ m=. oo

0 =2 m(1- )

d) 2y|y -3x
|15 5 =6
d 36 d

(1851 ’
ou In v +
. r
CCITT 5] | Z. =+j~ ) / o h Juwo <05
—6@(h +h
J30(h+h) o (Jmwo )| <0.
¢ r=Jx+(h-h)
¢ ST+ jm =5 .
N.B : Cette simplification rend
similaire cette formule a celle
entre lignes afdriennes. Il
permet ainsi  d’utiliser les
. WK
Z, =+] 27; X.. transformations découlant de
Lucca [13] ’analyse faite dans [36] pour le

champ électrique au dessus du

sol.




Formules analvtiques de Saad, Ametani et Wedephol

Tableau 3.2 Formules analytiques approximatives pour cibles souterrains

Formules approximées

Hypothéses

d’approximation faites et

constantes utilisées

¢ Ju,woy, 0.5
Lo, 1.851
CCITT[S] | Z._=+]—~ {m( o ¢ Juwoly,|<0.1
¢ = x:+(hl—h2)2
. OH,
Z :+ . * 2 .
- - ]2ﬂ' ¢ 0 -—‘/—4m(1+])
6 r x
Wedephol [4] _h{yz ]+ o 67r|<025
) ¢ y=0.5772156649 :
0.5 _39 (hl + hl) La constante d’Euler
Utilisation des séries de
Carson
& Carson [4] ou d’autres types de
développement en série suivi
Ametani
de I’extrapolation de Romberg.
. O,
Z = .
-/ 2
K, (9"r)+ X
Saad [14] 5 ¢ ] <1
<
4+ jm’x’
exp[—(h2 —-h, )]
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3.1.2 Méthodes numériques pour évaluer 'impédance mutuelle de retour de la

terre

Les méthodes numériques aident a fixer les limites d’application des méthodes
analytiques évoquées ci haut [10]. Cependant avec I’avénement des outils informatiques
plus perfectionnés, on peut les utiliser pour certaines applications quand la précision
exigée est grande et le temps de calcul est acceptable pour I’application donnée. Ci-

dessous, quelques méthodes connues pour les cébles et pour le couplage cables—Ilignes.

3.1.2.1 Intégration numérigue par la méthode de trapéze—Formulation de Nguven, pour

les cables pouvant étre étendue au couplage entre lignes et cibles

Pour deux cébles C, et C, respectivement enfouis a /4, et A, métres de la surface du

sol, distante de x métres, la formule de I’impédance mutuelle Z _, exprimée par (2.30) :

[KO (mr\/;)—KO (mr'\/;)}+1 o
r=\/x2 +(h —h,)

r'=\/x2 +(h +h)

Z _=j

W,
27

Ou le dernier terme est I’intégrale de Pollaczek transformée pour les cables [25] :

[ = NOP

- h
7 3.1

fhmm[—u+,/u2 +j}exp[—2hmm u +j}cos(xmu)a’u

Dans laquelle :

h +h,
= —etm= ﬂ
pso/

h

m
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Pour évaluer / _ dans (3.1), il est utilisé dans [25] la méthode de trapéze avec un pas

d’intégration trés réduit, et une troncature de 1’intervalle de 0 a uy,,, (en lieu et place de 0

a + o0). Notez que Uy, est trouvé empriquement.

Pour deux cas de la valeur du facteur 4, m , on recommande :

e« hm=<0.5
Le pas d’intégration Au =107 et la troncature & u_, = 10 b m
e« hm=05

Au :IO%hmm etla troneature ., <10

Cette méthode pour les cables peut étre appliquée au couplage cable—Ilignes, il y a, en
effet, une similitude entre (3.1) et (2.55).
Les limites suivantes de cette méthode sont a considérer :

- Augmentation accrue du pas d’intégration avec la précision : pour augmenter la
précision, il faut diminuer le pas d’intégration de plus en plus, surtout pour le cas
ou la fonction intégrante est oscillatoire. Car, sinon, deux portions autour d’une
des racines de la fonction seraient mal évaluées.

- Temps de calcul trés élevé : cette augmentation du pas d’intégration entrainera
une augmentation du temps de calcul.

- Erreur inconnue et incontrélable : I’erreur introduite par la troncature a u

n’est ni connue, ni controlable.
Il n’est donc pas propice d’utiliser cette méthode, telle que formulée, pour la
détermination de I’'impédance mutuelle entre cables et pour cables—Ilignes.
Dans le paragraphe qui suit, il est présenté, les améliorations apportées a cette dernicre

méthode.
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3.1.2 2. Algorithme d’Uribe [10]

Pour, entre autre, améliorer la méthode de Nguyen présentée ci-dessus, Uribe a proposé
un algorithme pour 1’évaluation numérique de I'impédance mutuelle entre cables [10] et
I’a étendu au couplage entre une ligne et un céable [12]. Ce dernier consiste a évaluer les
zéros de la fonction intégrante et, par la suite, de calculer I’intégrale par portion entre
deux zéros contigués. La sommation des intégrales de toutes les portions donne
I’'impédance cherchée. Comme il est impossible d’intégrer de 0 & oo, il a introduit un
critere de troncature qui dépend des constantes physiques mais aussi d’un facteur
empirique. Cette formulation, bien qu’améliorée par rapport a celle de [25], possede

quelques limitations et une erreur dont nous donnons les détails ci-dessous.

Erreurs de simplification dans la localisation des z€ros de la fonction intégrante dans

’algorithme

Considérant le couplage entre ligne et cable, 1’équation de I’'impédance mutuelle cable—

ligne (2.55) peut étre réécrite comme [12] :

7 = O,y
LT (3.2)
I[F(u) -u+ jG(u)]exp[—f(g’u + F(u)):l exp[—ij(u)]cos(fnu)du

)

0

Ou les fonctions £ (u) et G(u , sont définies comme étant :

Vvut +1+u?
VVu' +1 -4

Et les paramétres £, et 17 sont :

h
E=mxh,, = %2 eti]zﬁz.

(3.3)



87

Pour trouver les zéros réels et imaginaires dans (3.2), nous développons le facteur

exp[— jéG(u)] sous forme complexe (sinus et cosinus) puis nous multiplions et
regroupons la partie imaginaire et réelle. La fonction a intégrer [ (u), tel que

_ a)ﬂo +20

Z I I (u)du , prend la forme suivante :
¢

-+

1 (u) = [A(u) + jB(u)][cos(énu)]exp[—f(g’ u+F (u)):| (3.4)

Ou les fonctions A(u) et B(u) sont définies comme étant :

st v T |t T
B(u)= {—sm(gc; {—wf—— u+l }}+{cos EG(u [T (u4+1)—u2}-

En se conformant & la notation adoptée dans [10],on a :

() ={[ -+ F () Jeos( 66 ()} +| G(u)sin( 6 (u)) | (3.5
B(u) = {—[-u +F(u)]sin(§G(u))} +[G(u)cos(§G(u))} (3.6)

Nous montrons que pour que (3.4) soit zéro a partir du premier facteur
A(u)+ jB(u) =C (u), il ne faut pas seulement que les termes sin(&-Glu)) et
cos(¢ - G(u)) soient nuls dans (3.5) et (3.6) comme préconisés dans [12], [15] et [10].

En effet, étant donné que les fonctions sinus et cosinus ne peuvent pas étre égales a zéro
au méme moment, on conclut que cette fonction intégrante (3.4) ne passe pas par z€ro
quand un de deux termes (sin(& - G(u)) ou cos(é - G(u))) est zéro dans A(u )+ jB(u).

Mais il faut noter que pour les grandes valeurs de u, les zéros de sin(§ G(u)) et de
cos(¢ - G(u)) et ceux effectifs (du facteur C(u)= A(u)+ jB(u)) sont de moins en moins

éloignés. Ceci s’explique comme montré dans [10] que la partie réelle F (u)—u du

premier facteur de (3.2) tend vers y(SuS) alors que la partie imaginaire G(u) tend vers
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cos(éG(u))
y . En faisant la simplification (non adéquate) de négliger ——— = et
(2u) (guz)
sin(ﬁG(u)
_(W dans (3.5) et (3.6) respectivement, on obtient :
u
A" () =| G(u)sin(G(u) (3.7)
B () =] G(u)cos(£G(w) (3.9)

Avec ces valeurs approximées des termes A“"°(u) et B*"(u), les zéros de

sin(&- G(u)) et cos(£ - G(u)) deviennent respectivement les zéros pour la partie réelle et

la partie imaginaire (en se rappelant que G (u) # 0 pour toute valeur de u).

Cette simplification introduit une grande erreur surtout pour les petites valeurs de «

(inférieures a 2). En utilisant les outils de calcul symbolique de Matlab, en occurrence la
fonction ezplot [34], on varie et u pour trouver les paires (u,f) pour lesquels la
fonction étudiée est zéro. On peut voir dans les Figures 3.1 et 3.2 que les droites donnant
les zéros pour C(u)= A(u)+ jB(u) et ceux pour sin(&:G(u)) et cos(& - G(u)) ne sont

pas concordants tel que préconisées dans [12], [15] et [10]. De plus, la représentation de

la fonction intégrante oscillatoire dans la Figure 3.3 montre clairement que pour les

petites valeurs (< 2) de la variable d’intégration u, les valeurs de A(u) et B(u) ne

sont pas zéros pour respectivement sin(f : G(u)) =0 et. cos(f - G(u)) =0.
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Figure 3. 2
par Uribe [10]
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Imag { | F(w)-u +j Gw]exp[j ¢ G(w) | } = B(w)
Pour f=500kHz , h,=15 m et p =1 Qm

B

B
B(u) pour zéros de cos(- *G(u))
>

- . 1 N
\ .B(u) pourzeros effectifs | : N V

a0 o ey B S

i
I
i}
0.5 1 1.5 2 2 5 3 3.5 4 4.5
Variable d'intégartion : u

[a]

Réel { [ F(u)-u +j G(u)]exp[- £ G(u) | } = A(w)
Pour f=500kHz, hz =15 m,et p =1 Qm

T T § % T g ‘ - A o

0.8 - - - - m -T2 A(U) pour zéros de sm(- *Gu) - - s
& %

&
s=isin(-£*G(w) ¢

Variable d'intégration u

[b]
Figure 3. 3 Non concordance entre les zéros de : [a]: B (u) et cos(¢ - G(u)) et

[b] :A(u) et sin(—ch(u))
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Comparaison {(erreur relative) entre zéros effectifs et zéros de Uribe
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Variable d'intégration :u

Figure 3.4  Erreurs relatives découlant de la mauvaise localisation des zéros pour

sin(&f . G(u)) et cos(§ . G(u)) en comparaison avec les zéros effectifs de A(u) + jB (u)

Dans la Figure 3.4, les erreurs relatives sont de plus de 30% en référence aux zéros

effectifs, avec : f =500kHz , h, =15m et Résistivité dusol p, =1Qm.

Ces erreurs de localisation des zéros sont des limitations dans 1’évaluation de la borne

d’erreur, en plus d’étre le fondement méme et 1’originalité¢ de la méthode introduite dans
[10]. Les autres limitations de la méthode sont les approximations des fonctions F (u) et
G(u), et les manques d’évaluation et de contréle de I’erreur relative commise. Ces

derni¢res doivent étre levées car d’une part, la troncature peut se faire pour des cas de

trés petites valeurs de u (combiné a des cas avec & élevés) pour lesquels les
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approximations (3.7) et (3.8) ne sont pas valides; et d’autre part, le manque de contréle

de la borne de I’erreur relative rend moins robuste cette méthode.

Pour lever ces limitations et améliorer 1’évaluation numeérique nous proposerons une
nouvelle méthode comportant notamment une méthode efficiente pour localiser les zéros
de la fonction intégrante de Pollaczek. Mais terminons en mentionnant brievement, ci-

dessous, d’autres types des méthodes numériques utilisées.
3.1.3 Autres méthodes — méthodes numériques électromagnétiques : FEM

Beaucoup d’autres types d’évaluation de I'impédance mutuelle de retour par la terre ont
été utilisés. On peut en citer la méthode avec les réseaux neuronaux par Nguyen [37],
dont les avantages sont largement dilués par sa complexité.

Dans le registre des méthodes numériques électromagnétiques, mentionnons celle des
éléments finis (FEM). Dans [38] et [39], il a été évalué le courant et la tension induits
puis les paramétres de I’impédance mutuelle des cibles souterrains par la méthode des
éléments finis. Celle-ci a été améliorée par une combinaison avec une technique basée
sur le concept de perturbation pour optimiser les mailles. Un avantage de cette méthode
est la prise en compte, a travers les mailles de FEM, de la géométrie des éléments. Les
auteurs concluent que I'intégrale de Pollaczek donne des bons résultats malgré les
hypothéses de négliger les formes de la section droite des cables. Mais ils soulignent
cependant la nécessité d’investiguer les effets de proximité a des fréquences élevées.
Bien que précise, cette métﬁode est lente : le temps d’exécution est trop grand, plusieurs
heures, rendant la méthode inutilisable pour un programme de simulation tel EMTP-RV.
Notons que pour I’impédance mutuelle entre élément aérien et souterrain il n’y a pas eu
a ce jour, a notre connaissance, une méthode électromagnétique pour la détermination
des paramétres mutuels entre cébles et lignes. Une bonne méthode numérique serait
alors nécessaire pour valider les méthodes approximatives. Nous en introduisons une

dans la section qui suit.
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3.2 Nouvelle méthode numérique : Améliorations a la méthode de [12]

Pour lever les limitations de la méthode de [15], présentées plus haut, nous
établissons une méthode efficiente de localisation des zéros et nous évaluons et
contrdlons la borne maximale de ’erreur absolue et relative commises a la troncature et
a D'intégration. Nous pouvons ainsi appliquer une méthode de quadrature (Lobatto,
Simpson ou la régle de Trapéze). Le critére de troncature, la localisation des zéros et la

détermination de la borne de I’erreur sont présentés dans les sous-sections qui suivent.
3.2.1 Critére de troncature

La forme exponentielle de I’intégrale de Pollaczek (3.4) assure une décroissance quand
la variable u tend vers . Ceci nous suggére de tronquer I’intégrale a u,,,, pour lequel les
valeurs supérieures contribuent trés peu a ’intégrale. Ceci a été appliqué dans [10] et est

recommandé pour les intégrales de ce type [40].

Le principe est de borner le plus exactement possible 1’intégrale par une autre dont la
primitive est connue ; et évaluer la borne de I’erreur absolue découlant de la troncature.

Pour notre cas, on cherche la fonction /b (u) qui borne la fonction intégrante / (u) ;

,I (u)l <Ib(u) (3.9)

Considérant (3.4) on a :

‘I(u)l = [A(u) +jB(u)][cos(§xu)} exp[—cf(é’u +F(u))]} (3.10)

On sait par ailleurs que la fonction cosinus atteint sa valeur maximum a 1 :

‘[cos(éxu)] _

=1
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Et sur les Figures 3.3 [a] et 3.3 [b], comme pour plusieurs cas non représentés, on peut
Voir que :
Au+Bu] =141,
[4(u)+B(u)] =1+

Les parties réelle et imaginaire peuvent donc étre bornées et la fonction exponentielle est

supérieure a 0 :
\I(u)i < .exp[~§(é’u +F(u))}‘ , 3.1D

On peut alors trouver une constante K et une fonction (p(u) facile a intégrer, tel que

[40] :
\I(u)’ < exp[—f(é’u + F(u))] < exp[—Kgo(u)] . (3.12)

Une observation extensive de la variation de F'(#) dans eXp[—f (cj u+F (u)):|

incluant une série d’interpolation par des polynomes de divers degrés n (n = 3, 4,5...),

coefficient P, et en variant les paramétres & et ¢, donne :
Fu)=>Y Pu’ (3.13)

exp :—§(§u+F(u)):| < exp[—Kgo(u)} (3.14)

exp —5[( u-+ Z Pu' ﬂ < exp[—K(z)(u)] (3.15)

é({wiﬁu’)ﬂ@@)

5(5’4”?“1 +i1?uij2K(0(u) (3.16)

i,il
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[£(¢ +R)u]+(§if?u"]21<¢(“) (3.17)

il
Pour permettre une évaluation aisée de la primitive, on choisit (o(u) =u. On peut

finalement identifier la partie de droite au premier terme de la partie de gauche a la
puissance #' pour avoir :
K=¢-(¢+PR) (3.18)

Ceci assure que I’inégalité (3.14) et (3.15) sont satisfaites en considérant que

(fif;u’)ZO. (3.19)

i,i#]

On a ainsi :

exp[—ﬁ(é’u +F(u))] < exp[—§(§+Pl)uJ (3.20)

La constante F, est trouvée aprés interpolation a 1’aide des nceuds de Tchebychev entre
0 et 10”. Le polynéme retenu est de degré n=>5

P, =9.998827832333113e-001
Notons qu’un polyndéme interpolant de degré plus élevé ne modifie que légérement le
parameétre P (la limite est a 2 =1.00000000). Les variations des écarts par rapport a la

fonction restent négligeables.
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Comparaison entre les fonctions
exp[-§ (Ju+ fw)] et exp[-§ ({+ P u)j:
Pour f=1000 kHz , hl =70 m,hz =3 m,x =100m et p =100 Qm
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Comparaison entre les fonctions |I(u)| et exp[-& ( £+ PI Ju)]
Pour f=1000 kHz, hI =70 m ,h2 =3 m,x=100m et p =100 Qm

= 7'7: N T ! [ t i | : 1 |

3 03r----- - e R T v
g 02K - Co B Rk imagi(u)]| |
S 01l N & 1 1 D expl-E(g+ Pyju)l |
B3 o g T g S T T e e )
S0 et il ‘ f ‘ :
i | | i

- 1 -

S O EU

Lo

R | ol S U S
0 005 01 015 02 025 03 035 04 045
Variable intégrat. u

I - I E i A o R S
| I

e R thRbL PEEEIEE R PP ST TT EANE

s 03’—- Reelfi(u)] _

[ | [ . | ! i

L ; expl[- +P.)u :

1 N S e ORLL(r Pl

0 1. 1 b i ' i | i i !
S t g 1 t
8 | ! [
£ 1 i j
i i I )
T e O L SO N S |
0 0.05 0.1 0.15 0.2 .

Variable intégrat. u

[b]

Figure 3.5 Illustration d’une fonction bornant ’I (u)l : [a]: les facteurs

exponentiels et [b]: les fonctions / (u) et [b(u) = exp[—é‘ (é’ +P )u]
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On peut remarquer la similitude avec le critére de troncature trouvé dans [12]. Les

Figure 3.5 [a] et [b] illustrent bien que 'inégalité (3.20) est satisfaite et que la fonction
‘I(u)l est bornée par Ib(u) = exp[——f(g’ +P )u] II faut noter qu’on considere

séparément la partie réelle et imaginaire.

Finalement, nous dérivons apres cette analyse la relation entre la borne supérieure
d’intégrale et la borne de I’erreur absolue due & la troncature :

Rappelant la fonction a intégrer / (u) :

I(u) = [A(u) +jB(u)][cos(unf):]exp[—é‘({u + F(u))}
On a, en laissant tomber le facteur devant ’intégrale / (u) ,

Z

z=2 (321)
a, 0
(%)
2= [1) du= | 1(u)-dut | 1(u)-d (3.22)

max

La troncature a u_, donne une erreur absolue Era entre I'impédance Z et son estimée

Z:
Era=|2-2|=|[1(u)-du | 1(u)-du|< [|1(u)-dus [ I(uu  3.23)
0 0 Ui Urnax
Era< T I(U)‘-du < T exp(—K -u)-du (3.24)
Era < Texp(— K- u) du = %exp(— K-umax) (3.25)

umnx

L’erreur découlant de la troncature est donc bornée par :

Era < %exp(— K-u_) (3.26)
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Pour une tolérance Era connue, la valeur u#__ correspondante est :

U =

- —Eln(K -Era) (3.27)

Se rappelant que K =¢&- (é’ + P, ), voir (3.18),on a:
u =—;ln(§-(é’+f{)-Em) (3.28)
™ ¢(¢+R)
Cette relation est appliquée pour tronquer 'intégrale de Pollaczek. On note la parfaite
concordance avec la formulation dans [12] exprimée en terme d’erreur relative et pour

laquelle B, = 1 (Valeur limite trouvée pour les polyndmes interpolant de degré tres

supérieur).
3.2.2 Localisation des zéros

Les zéros a localiser sont ceux des fonctions A(u) et B(u) exprimées

respectivement en (3.5) (pour la partie réelle) et (3.6) (pour la partie imaginaire) ;
auxquels on ajoute les zéros du troisieme facteur oscillatoire en cosinus. Les trois

équations donnant les zéros sont donc :
AGu) ={[-u+ F(u) Jcos(£G ()} +| G(u)sin(£G(u)) | =0.
B(u) ={~[~u+ F(u) Jsin( £G ()| +| G(u)cos(£G(u)) | =0, et
[ cos(&nu)]=0

Cette troisiéme équation, cos(é‘r]u) =0, est réguliérement oscillatoire et I’ensemble de

ses z€ros U est bien connu :

1 z(1+2k,)
U, =3u, :u, =—x———=,k =0,1,2...0 (3.29)
2 <n



100

Cependant, pour A(u)=0 et B(u)=0, il n’est pas facile d’avoir une forme explicite
u=f (f) Nous avons néanmoins les expressions des fréquences normalisées &, (u,.) et
&, (u/) pour lesquelles A(u,) =0 et B(u,;)=0 respectivement. Elles sont trouvées en
utilisant la boite a outils de calcul symbolique de MATLAB :
tan™' [u—F(u)} +hkm

G(u)

G(u) ’

{tan‘l [uz + (1 + u“) + u\/EF(u)} + kﬂ'}

G(u) ’

Sy = (3.30)

£ = (3.31)

k=0,1,2...0.
De plus, ils nous donne les variations de & (en fonction de u ) pour &, (u i) et &, (ul)
c’est-a-dire & pour avoir 4(u;) =0 et B(u;) =0 respectivement. La cartographie des
zéros est sur la Figure 3.6 qui suit.

De &, et &,, exprimées dans (3.30) et (3.31) ci dessus, on trouve I’ensemble
E, 6 = {k,- £, (umm =0,k ) <ELE, (umax .k, )} , Cc’est-a-dire  tous les  rangs
k=0,1,2...00 (dans le terme kz) pour lesquels la fréquence normalisée & est
comprise entre &, (u,, =0) et &,(u,, ), (idem pour E,,). Concrétement, pour une
fréquence normalisée donnée &, on évalue &, =&, (u=u,, =0,k ) et
& o (u = umax,kx), commengcant par k =0 dans (3.30) (idem pour (3.31)) ; on vérifie
que &, <&, <&, ., pour ce k . S’il en est ainsi alors il y a un zéro pour £ et on

max ? " max ) *

accumule ce k. On arréte dés que pour &k, ona & <&, . (u =u
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imag((-u + sqri(u?+i)) exp (i ¢ (sqrt((1/2) (sqrt(u*+1)-u?))))) = 0

I ¥
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L SO e ‘ e ‘ :
[0 | EEE S e e -
o 7 / | ; ' In
; o - ! e k augmentent avec £ L
U A R . e |
20 ’;:,_,/"'"/ - //' ,v// ‘\/,/" : .
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u
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P real((-u + sqrt(u®+i)) exp (-i ¢ (sqrt((1/2) (sqrt(u®+1)-u?))))) = 0
'max \A‘ i 7 T o 7 T 7 / :’,71 . T
15
geff.—><

10

5
émin/o .

Figure 3. 6 Cartographie des zéros en fonction de £ et des constantes k7 pour la
partie oscillatoire irréguliére de I’intégrale de Pollaczek

Sur la Figure 3.6 ci-dessus, pour une fréquence normalisée donnée &

. » ON peut voir que

&, est bornée comme : & (u =u_ =0,k ) SCp < (u = Uy oK ) On sait qu’il

‘max ?

y a donc, sans équivoque, une valeur # pour laquelle la fonction passe par zéro pour k=1

dans la relation &, (”,- ) Soit u, trés proche de 2. Sachant qu’il y a effectivement un zéro

et qu’il se trouve entre ¥ =0 et u il devient possible d’utiliser un algorithme

max ?
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efficace de recherche de zéro. Celui qui est disponible dans Matlab (utilisant la
combinaison de la bissection, la sécante et une interpolation quadratique inverse : voir
fonction fzero [34]) donne en quelques millisecondes tous les zéros. En effet la
recherche des zéros est toujours simplifiée quand on sait qu’il y a un zéro et qu’on sait

exactement dans quel intervalle il se trouve [41].

On résout alors les relations de £, et &, en fonction respectivement de u, et u,. Les

ensembles de zéros pour la partie réelle U, :{“;} et pour la partie imaginaire

U,={uj}sont:

tant| & ~F () +k
G(ui
U,=qu, :&— G(ui) =0,k €E, ¢ (3.32)
{tan'1 [u iy (1 +uf ) +u, \/EF(uj )} +kj7z}
— el =0
U ={%:¢ G(u,)) (3.33)
\kj €E,,

Les zéros qui nous intéressent sont ceux qui sont inférieurs a la valeur maximale u,_, de

troncature, on les classe on ordre croissant dans les ensembles U, et U, .
Uvise ={Ue WU, 10, <y, (u, €Uy ) <y, ) (3.34)
Uimug = {UC UU/ :uv S umux ’(uj € UI ) S umux } (335)

Cette procédure pour la détermination des zéros a été appliquée pour les Figures 3.3 et
3.4. Ayant trouvé les zéros, nous pouvons intégrer successivement la fonction entre les

sous intervalles formés par les zéros contigus auxquels on ajoute 0 au début et u la

\
max a

fin. Une bonne localisation de zéro nous permettra d’une part, d’augmenter la marge de
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manceuvre pour le choix de la méthode d’intégration, emploi direct de la méthode de
quadrature (par exemple quadrature Lobatto dans Matlab [34]) et, d’autre part, elle nous
permettra d’évaluer d’une maniére efficiente la borne de I’erreur. Les formules bien
connues des erreurs de la méthode d’intégration de trapéze ou la régle de Simpson sont
aussi applicables chaque sous-intervalle. Dans la section qui suit, il est présenté la

détermination des bornes de I’erreur d’intégration.

3.2.3 Borne de P’erreur relative et intégration par quadrature

L’évaluation numérique de Dintégrale, comme toute méthode numérique
d’ailleurs, ne peut pas étre justement appréciée sans considération de I’erreur absolue

commise et/ou le pourcentage de I’erreur relative.

Cependant, étant donné que ’on ne connait pas la valeur exacte de I’impédance
mutuelle, pour en extraire I’erreur ; on va estimer, au moins, I’intervalle de confiance qui
contient la valeur exacte. On doit, en pratique, s’assurer que la valeur trouvée est exacte,

a un nombre de décimales convenables prés.

Notons que, bien que cette nécessité¢ de 1’évaluation de Perreur soit trés évidente sur le
plan purement mathématique, la recherche des erreurs trop réduites peut étre d’un intérét
moindre en génie. En effet, les impacts de ces erreurs sur 'impédance mutuelle dans une

étude d’un phénomene transitoire peuvent étre négligeables.

Borne de I’erreur relative et méthode adaptive

Lors de la troncature a u on introduit une erreur absolue Era entre I’'impédance

max ?

normalisée Z et son estimée Z (découlant de la troncature), Era est bornée comme,

voir (3.26) :
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Era< —Ilgexp(— K-u,) (3.36)

Ou on a défini :

u_ . La valeur maximale de u, variable d’intégration, a partir de laquelle I’intégrale

est tronquée. Et K, pour rappel, est tel que :

K:K=¢(C+P),

En appliquant une méthode numérique d’intégration pour évaluer Z (=Z “tronquée”)

~

nous introduirons forcement une erreur absolue, écart entre Z et Z (= Z*“
numérique”).
On a deux types d’erreur que nous baptisons :

Ea : L’erreur de troncature

tronc

Ea,,, : L’erreur due a D'intégration par la quadrature, cumulée sur tous les sous

intervalles.
Les relations suivantes expriment les inégalités entre les erreurs, les valeurs approximées

et les valeurs exactes :

tronc quad

|z - Z| < ka,, (3.37)

IZ -7|<Ea,, (3.38)
La somme donne :

-2 +’Z~—Z:‘ <Ea_ +Ea (3.39)

11 faut noter que pour étre exact, I’erreur totale d’intégration numérique (par quadrature
dans ce cas) comporte aussi une erreur d’arrondies que nous négligeons en assumant que
I’outil de calcul est assez performant pour une valeur de tolérance et un pas de
quadrature raisonnables.

L’application de I’inégalité triangulaire donne :

7Z-7Z|<-Ea +Ea ,=Ea (3.40)

tronc quud tot

P—Z+Z—§

S‘Z—Zl+
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< Ea (3.41)

tot

'Z—Z

A partir de cette relation nous pouvons trouver un intervalle qui contient avec confiance
I'impédance cherchée, soit :

~
~

Z-Ea, <7Z<Z+Ea,, (3.42)

Avec Z et Ea,, positifs.

L’erreur relative totale est alors :

Er = < o (3.43)

En utilisant la borne minimale de I’'impédance, on a I’erreur relative maximale :
Ea
Ermax S ~ “ (344)
Z-Ea,

Il est intéressant de noter que, dans cette relation, on peut évaluer tous les parametres
avec une bonne précision. Cependant, en pratique, cette erreur trouvée sera relativement
plus grande que celle effectivement commise. Une étude d’«impacts» d’erreur peut étre
nécessaire pour optimiser 1’algorithme de calcul.

Pour un algorithme non adaptif, ou I’on évalue Er__ aprés I’intégration pour une erreur
& ma:

absolue donnée, la formule ci-dessus est suffisante. Elle peut étre appliquée quand on
connait approximativement I’ordre de grandeur de I'impédance et 1’on peut donc fixer

Ea,,, c’est-a-dire Ea (donnant u,, ) et Ea_,, (2 appliquer dans la méthode

tot ? tronc

d’intégration). Cependant pour des cas ou la valeur de I’'impédance peut varier de 10 a
0.0001 % en fonction de la fréquence, des distances et de la résistivité du sol, il est
indiqué d’évaluer automatiquement l’erreur absolue admissible suivant 1’ordre de

grandeur «pressentie» de I'impédance. Mais justement «pressentir» cette impédance a un

colit en temps de calcul et en ressources mémoires ; car cela implique un certain nombre
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d’évaluations de la fonction a intégrer. Une analyse doit étre faite entre I’augmentation
du temps de calcul requis versus ’ordre de grandeur de I’erreur relative quand on fixe

par défaut la tolérance Ea,, .

Dans le cas d’une méthode adaptive, on borne I’erreur par :

E}"m Eal()t S Ealut S Eamt ( 3 . 4 5)

<
" \;_Ea |Z,, —Ea ]Z ~|Ea

min tot min tot

Z .t Valeur minimale «appréhendée» pour I'impédance.
L’erreur absolue maximale qu’il faut avoir pour satisfaire une erreur relative Er,_

donnée est donc :

Ermax Zmin
Eq M = —m [Tmind (3.46)
1+Er,,

Si la fonction 1, (u) minimise la fonction / (u) a intégrer tel que :

max

[ |7 () duz | 1, ()i (3.47)
0 0
Et que Ime = uﬂT I (u) est estimée par Z i avec une erreur Ea_ ., alorsona:
0
~min _lZmin < Zlﬂin —Zmin < Eazmin (3.48)
Ona:
Z |~ B,y <|Z | € |Z | + B (3.49)

On trouve donc ’erreur absolue maximale qu’on ne doit pas dépasser dans I’évaluation

de I'impédance en fonction de I’erreur relative :

2 Ermax min Erm'dx ( Zmiﬂ - Eazmin )
Ea,™ = < (3.50)
1+ Er,,, 1+ Er,,,

Pour le cas de I’impédance mutuelle entre ligne aérienne et cables souterrains, on déduit
d’une maniére simplifiée, pouvant étre améliorée, quelques fonctions minimisant

I’intégrale :
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Ymax

Zol= [ 17 (u)=D-I" (u)]du, (3.51)

min

Avec la constante D>1; [” (u) et I~ (u), les fonctions [/ (u) positive et négative

respectivement.

Ou encore, en utilisant un rapport simple de / (u) :

um

Z . = j (%D)I(u)du < ‘me

ax
0

‘ (3.52)

L’évaluation de la fonction Z__ requiert en principe la méme procédure que celui pour

I’évaluation de [D'intégrale de 1’'impédance mutuelle. Cependant 1’effort est
considérablement diminué. Les zéros sont évalués une seule fois, il y a, en effet, les

mémes zéros pour I'intégrale de Z . et de Z dans (3.52). Et il y n’a pas de grande

contrainte pour la précision en évaluantZ , . Peu importe ’erreur absolue FEa_

min
commise, elle sera incluse dans la formule donnant la tolérance absolue de la troncature
et de I’intégration.

La figure suivante illustre le rapport entre Z . et Z en utilisant (3.51) avec D =1.2

min
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Comparaison entre les fonctions I(u) et I . = I (uw)-D.I (u)
Pour f =3000 kHz , h] =20m ’hz =3m,x =150m et p =100 O2m
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Figure 3. 7 Illustration de fonction qui minimise lintégrale: / (u)
Pour une tolérance Ea,  donnant la troncature fixée a la valeur la plus petite

acceptable, sans occasionner des erreurs d’arrondies élevées, soit de 1’ordre de la

précision machine pour MATLAB, eps =2.2204e-016 = Ea nous déduisons

tronc ?
I’erreur absolue de la quadrature qui sera équitablement repartie pour chaque sous

intervalle, entre deux zéros :

anuad
Easubin = N (353)

quad —subin

En remplagant Ea,_,, par sa valeur trouvée précédemment dans (3.50), on a
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Ermax |: Zmin - Ea:min :l
1 E - E atmnc
+
Easubin - = rmaxlq. ’ (3 . 54)

Ou N est le nombre des sous intervalles. Chacun de sous intervalles ne comporte aucun
passage a zéro de la fonction / (u), sauf aux bouts. Cela nous assure une bonne
performance de la méthode de quadrature utilisée, surtout le choix du pas.

Nous optons pour la méthode de quadrature adaptive Lobatto implémenté dans

MATLAB. Elle est bri¢vement présentée dans le paragraphe qui suit.

Quadrature adaptive pour I’intégration : Lobatto (quadl)

Cette méthode d’intégration développée par Gander, W. et W. Gautschi [42] est
une des les plus performantes pour 1’évaluation numérique des intégrales. Voir son

application pour I’évaluation de ’intégrale de Carson dans [24].

Elle évalue l'intégrale en utilisant la quadrature adaptative récursive d'ordre supérieur.
Le pas d’intégration change en fonction du comportement de la fonction, améliorant la

performance.

La forme oscillatoire de 1’intégrale de Pollaczek exige, pour certains parametres, des pas
de plus en plus petits, et un nombre excessif d’évaluations de la fonction qui dépasse
10000. En effet, la disparit¢ dans les amplitudes de la fonction entre deux points
successifs empéche la diminution de ’erreur. Ceci est une limite des méthodes de

quadrature pour les fonctions hautement oscillatoires; il constitue une limite a

I"utilisation de la fonction quad/ pour évaluer I’intégrale de Pollaczek. Cependant ces
types de configuration problématique sont souvent non conformes aux hypothéses quasi-
TEM de la formulation de I’intégrale Pollaczek et sont rarement rencontrés en pratique

(distances de quelques centaines de métres et des sols de moins 1 Qm de résistivité).
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3.2.4 Algorithme de la méthode proposée : synthe¢se récapitulative

1. Calculer la valeur de la variable maximale, u_, en s’assurant que I’erreur due a

la troncature est dans les limites fixées (moins que eps = 2.2204x10°'*), Voir

(3.28). Notez que cette ci-petite valeur de I’erreur due a la troncature assure que
les cas d’impédances mutuelles par unité de longueur trés petites sont calculables

avec la moindre erreur globale (troncature et intégration numérique).

2. Calculer les zéros des facteurs A(u) et B(u)par la procédure décrite au point

3.2.2 et cos(&nu) =0 par (3.29).

3. FEvaluer la valeur minimale de 1’impédance par la procédure au point 3.2.3

4. Evaluer ’erreur absolue maximale pour I’intégration par quadrature et distribuer

celle-ci sur tous les intervalles, voir (3.54).

5. Evaluer I'intégrale par la méthode quad! dans chaque intervalle entre deux zéros

avec ’erreur absolue évaluée ci-dessus.

6. Evaluer la borne de I’erreur absolue globale et de la borne de I’erreur relative

(3.44).
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3.3 Méthode d’intéoration Quasi-Monte Carlo (OMC)

La méthode de quadrature Lobatto a exigé la troncature de 1’intégrale (tout
comme I’exigerait celle de Simpson ou de trapeze). Ceci a introduit des erreurs dont les
bornes ont €té estimées. Pour apprécier I’effet de cette troncature et vérifier le degré de
précision de I’estimation des erreurs, nous allons comparer les valeurs trouvées a partir
de ces méthodes avec celle de 1a méthode QMC. En effet, pour la méthode QMC iln’y a
pas de troncature car nous transformerons !’intervalle d’intégration par le changement de
variable. Ceci n’a pu se faire pour la méthode de quadrature a cause de I’augmentation

du nombre de zéros et la difficulté de les localiser rapidement.

Dans les sous sections qui suivent nous présentons, sur base de travaux de Niederreiter
[43], une introduction au principe de la méthode QMC, les moyens pratiques pour
évaluer 'erreur commise et finalement nous ’appliquons au calcul de 'intégrale de

Pollaczek pour I'impédance mutuelle.

3.3.1. Introduction sur la méthode de Quasi-Monte Carlo
Principe

L’intégration numérique dans le cas d’une seule variable (s = 1), entre 0 et 1, peut étre

exprimée d’une fagcon générique par une quadrature comme suit :

[ () zf(;wf[%J (3.55)

Ouona:
m : un entier positif,
w, : le poids dont la valeur dépend du type de la quadrature. Dans le cas de la regle de

trapeze, par exemple, on a [43]:



112

1 1
y =W, =-—cetw =—pourl<n<m-1.
2m m
Pour le cas de plusieurs variables (s = 2), ’expression de I’intégrale se complexifie. On
a pour I’habituelle simple régle de trapéze un produit cartésien des régles trouvées pour

une seule variable :

'ff(ul 7 )du ~

Ot le domaine d’intégration est /; =[0...1]° appelé le cube unité (dimensions < 2).

m

m n ]
anl"'wnsf(;la"'yﬂ'}’ (356)

n=0  ns=0 m

Cette complexité a motivé [’application de la Méthode Monte Carlo (MC) pour résoudre
les intégrales de plus d’une dimension.

En effet, dans la méthode MC, cette intégrale est interprétée comme un modéle
stochastique et par conséquent il peut étre déterminé par un échantillon des nombres
aléatoires. Il faut noter que nous 1’utilisons dans ce travail comme outil de comparaison

et de premiére validation.

Sur un domaine B de dimension quelconque s(B < R®) qui satisfait la relation
OS&S(B)SOO, ou AS(B) est la mesure de Lebesgue de dimension s, on a
I’intégrale :

l_!f(ul Sl )duldu yoedug = Ag (B) If(ul 7 )d,u =], (B)E(f)

B

Ou on a exprimé B dans ’espace de probabilité et la variable dj est la mesure de

dy = du 1....d% (&) ;

Et pour lequel on a défini I’espérance E( f ) :valeur espérée de la variable aléatoire

probabilité :

f(u1 U ) définie sur I’espace L (u)
On a ainsi réduit I’ordre de complexité de I’intégrale a un calcul de probabilité.

L’estimation de Monte de Carlo de E( f ) est obtenue paf :
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E(f)ziif(an) | (3.57)
NS
Oou f (an) est la valeur de f pour une séquence aléatoire de nombres a,, -, a,
indépendants et distribués normalement. La fonction f est ainsi une variable aléatoire
d’un espace de probabilité noté (A,A, 7») .
La théorie des grands nombres assure que cette expression de E( f ) converge slrement

dans le sens que :
1
},ii?o‘;f(an) =E(f) (3.58)

L’analyse de I’erreur au sens de probabilité (intervalle de confiance) de cette espérance

est la variance o *:
2
o’ ()= [[/=E(1))
A
L’estimation de Monte Carlo de I'intégrale et I’erreur associée sont déduites de 1’analyse
ci hauteton a [43] :
A (B)
N

jf(ul,..,us)duldu2-~~dus = ZN:f(xn)+O(N%). (3.59)

Un avantage direct est que la forme de la fonction intégrante n’intervient pas dans le
calcul de I’intégrale. Mais une bonne précision exige, bien sur, un nombre d’échantillons
N élevé. Cependant, il n’y a aucune garantie (au sens déterministe) des bornes de

I’erreur et la détermination aléatoire de nombres x, est difficile [43].

Pour mitiger ces limitations, il a été introduit la méthode Quasi-Monte Carlo pour

laquelle les échantillons utilisés et les bornes d’erreurs sont déterministes.
En se limitant a une seule variable, pour laquelle la fonction a une variation totale V( f )

bornée (dont le calcul pratique est donné plus loin), on a la borne de I’erreur
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d’intégration exprimée par la différence entre la valeur exacte et celle estimée par la
méthode QMC :

1

LS 1) )] <7 (1), (s, G

0
Ou D'w (xo, ---xN) est la discrépance a ’origine de la suite déterministe utilisée pour

trouver les échantillons. Elle est la mesure de 1’écart par rapport a une distribution
uniforme. Ce qui est recherché sera donc une suite déterministe, dont on fixe
préalablement le rapport entre les nombres mais qui reste proche d’une distribution
uniforme. Le choix de cette suite est un élément important pour la méthode QMC.

Quelques types de suite a faible discrépance sont présentés dans la sous section qui suit.

Suites 4 faible discrépance : suite de Van der Corput et sa généralisation

Beaucoup de recherches ont été menées pour trouver les suites a discrépance faible. On
peut en citer: suite de Van der Corput, suite de Faure, suite de Sobol, suite de
Niederreiter, etc [44].

Nous nous limitons aux suites de Van der Corput et leurs généralisations pour illustrer la

réduction de la discrépance a I’origine.

Considérant un nombre b (base de nombre au sens d’arithmétique), on peut écrire tout

entier positif comme €tant une somme des produits de deux facteurs. Un premier facteur
en puissance de b et un deuxiéme, un entier pris dans I’ensemble Z, = {0,1,~ ~,b— l} .
On peut €crire le nombre n comme €tant: 7 = Z a, (n)x b',ou a, (n) €Z,.

i=0

Pour n =102 et b =8, par exemple, on a (102) =6x8" +4x8 +1x8° =(146)8 et

10

les coefficients a, (102) sont: {ao (102)=6,4,(102) =4,4,(102) =1,a = 0}
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La suite de Van der Corput en base b 2> 2 est défini comme étant la séquence de

nombres x, tel que:

x,=>a(n)xb™" n=012--,N (3.61)
i=0
Il faut noter que cette sommation est finie car pour tout nombre #, il existe un entier

k >21+log, n pour lequel les coefficients de rang supérieur sont nuls (.ak (n) =0).

L’ensemble de coefficients s’écrit donc comme: {ao (n),aI (n),a2 (n), . a (n) = 0} .

Pour une suite de Van der Corput S, = x,,---, x, de base b, il a été rapporté dans [43]

quelques relations, découlant de travaux de Béjian et Faure sur le comportement

asymptotiquement de la discrépance a ’origine :

b2
e , pour b pair
4(b+1)logh
ND" (S ND.(S.) { b-1 (3.62)
1im-—N(£)= lim vlSs)_ , pour b impair
Now logN N> logN 4logh

Enbase2ona :

log N

ND;, (8,)=ND, (8,)< +1 (3.63)
log8
La limite, pour N trés grand, donne :
log N
lim NDN(SZ)—i _4, 1083 97276527801816 (3.64)
N log8 ) 9 log8

, . . , . P * . P . .
Pour réduire la discrépance a ’origine D » (x X, ), il a été introduit la suite de Van

0>

der Corput généralisée. Elle se construit de la méme maniére mais en remplagant

I’ensemble Z, , composé des coefficientsa, (n), par un autre ensemble ¢ = {aip (n)} qui

est une permutation des élémentsa, (n) Cette permutation est choisie pour minimiser la
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discrépance a ’origine D n (x. ,--- x,, ). Une des meilleures permutations qui minimise la
[{4 N

discrépance a ’origine D"y est celle trouvée par Faure [43], elle est en base 12 [44]:

o =2z ={0,5,9,3,7,1,10,4,8,2,6,11} (3.65)
La suite S”'* construite sur base de cette permutation s’écrit donc :
§7 ={x, --x,} (3.66)
X, :Za(a,. (n))x b, n=0,12---,N (3.67)
i=0

Sa discrépance a I’origine, D’ v, a le comportement asymptotique :

limSupND*N(Sm)_ 1919

= ~0.22358494812066 (3.68)
N—oo log N 3454logl2

Ayant établi les bornes de la discrépance a 1’origine, indépendante de la fonction a

intégrer, il nous reste & évaluer la variation totale de la fonction V( f ) pour estimer

I’erreur commise dans I’intégration par la méthode de Quasi-Monte Carlo. Le moyen

pratique d’estimer V( f ), et donc I’erreur, est donné dans le paragraphe qui suit.

Estimation pratique de I’erreur pour la méthode de Quasi-Monte Carlo

L’erreur a été bornée grace a (3.60) que nous rappelons ci bas :
1

3 (5)- [ ()

n=1 0

SV (SF)Dy (%55 xy )

La discrépance a Porigine D, (xo st Xy ), mesurant la qualité de répartition de la
séquence, a été présentée plus haut. Pour la suite de Van der Corput en base 2, on a :

D;l(xoa"‘ax]v)s[L\][logN”*‘lJ 5 (3-69)

N ) log8

Et pour la suite de Van der Corput généralisée en base 12 avec la permutation
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6={0,5,9,3,7,1,10,4,8,2,6,11}, (3.70)
On peut bomer la discrépance a ’origine pour ce dernier par :
. log N 1919
D, (87 < A : (3.71)
N 34541logl2

Pour une intégration a une dimension, la variation totale de la fonction a intégrer peut
étre exprimée a 1’aide de sa dérivée, a condition que celle-ci soit continue sur tout

I’intervalle :
wd
()= e

L’expression de V( f ) ci-dessus a rarement une forme analytique. Son évaluation est

-du . (3.72)

donc trés difficile en pratique. Nous pouvons cependant y appliquer une méthode

numérique en bien identifiant I’erreur commise et sa borne supérieure. Si on y applique

encore la méthode Quasi-Monte Carlo (QMC) on aura 17( f ) approchée de V( f ) :

JURES

d
—é;f(xn)

n=l

} (3.73)

Et on peut exprimer sa variation totale par 7, ( f ) :

1

-du:J
0

La borne d’erreur d’estimation de V( f ) est donc, au premier ordre,

v (7)-7(r) < v, ()07 (x5 xy ). (3.75)

En appliquant la propriété de la valeur absolue d’une fonction et la propriété des

d d’

du

- du (3.74)

o r() ()

o]

0

inégalités [45] :
) - < ()-7 () < v (D" (3, 0x,)
()< v ()07 (5, xy )+ [P (1) (3.76)
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En portant cette inégalité dans I’estimation de I’erreur du premier ordre (3.60), on a :

1 W~

T2 ()= [ ()

<V(f)D"(S)< [V,, (/) D" (8)+]7( f)”- Dy ()

1

)T

< [VV (D (5)) +D7, (S)[V(f)” : (3.77)

Encore une fois, on a a évaluer V, ( f ), une estimation numérique de V, ( f ), avec la
méme procédure que I’estimée V( f ) On trouve alors une expression, sous forme de

somme, contenant a chaque fois les estimées V, ( f ), Viy ( f ), des variations

totales des fonctions pour lesquelles on applique la méthode Quasi-Monte Carlo.

L’erreur est donc exprimée par :

(D*N (S))j

Mk

. { _ Vu—l)V (f)‘}L
< limyt

%if(xn)—lj'f(u)du im L , (3.78)

(Fur ()27 ()

Ou les variations totales de rang j et leurs estimées par la méthode QMC sont données

par :
1 dj
Vi ()= | i (u)l-du (3.79)
~ 1 N dj
Vmw(f)=[]—\;; ~ f(xn)} (3.80)

Notons que ’erreur est plus précise quand ’ordre M est élevé. Ce qui implique une
évaluation des dérivées d’ordre élevé. La fonction doit donc étre continiment dérivable

pour réduire a souhait I’erreur dans I’estimation de la borne de I’erreur. La discrépance a
- , . ;. . . * M+1 , ,

I’origine étant inférieure a 1, les puissances (D N (S )) tendent vers zéro d’une part

et d’autre part les variations de la fonction au sens de Vitali V, ( f ) étant bornées, [43],

on aura a un rang M et une constante K pour lesquels :
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j=1

Erreur,, {jM (D () 17, ( f)|}+O(K-(D*N(S))MH), (3.81)

M

Erreur.. = {Z (D'~ (s))

o]
J=1

Finalement il faut se rappeler que ceci est un aspect classique lors de la détermination de
I’erreur d’intégration numérique. En comparaison avec les quadratures de Simpson et du
trapéze, on doit avoir respectivement les dérivées d’ordre 4 et d’ordre 2 de la fonction

pour déterminer la borne de ’erreur. Et cette estimation elle-méme est d’un certain ordre
de précision : O(h4 ) et O(h2 ) respectivement (/4 étant le pas d’intégration).
Ayant évalué la borne d’estimation de 1’erreur, nous pouvons maintenant appliquer la

méthode de Quasi-Monte Carlo a I’évaluation de !'intégrale de Pollaczek pour

I’'impédance mutuelle entre lignes aériennes et cables souterrains.
3.3.2. Application de la méthode QMC pour ’impédance mutuelle

Pour appliquer la méthode QMC avec estimation de la borne d’erreur telle que présentée

ci-dessus, on doit s’assurer :
- Que I’intégrale est définie sur Pintervalle I, =[0...17';
- Qu’elle est continiment dérivable, ou au moins a I’ordre M,

- Que la discrépance a ’origine soit la plus petite possible pour améliorer la convergence

de I’expression de ’estimation de I’erreur.

Pour rencontrer ces conditions, on présente dans les sous sections qui suivent: la
transformation de 1’intégrale de Pollaczek, le choix de la suite a faible discrépance a

’origine, et I’évaluation de I’estimation de la borne de I’erreur.
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3.3.2.1 Transformation des bornes d’intégration

La transformation de Dl’intégrale (3.2) se fait en deux étapes. Le partage en deux

intervalles [0,1] et [1,+oo] et le changement de variable pour I’intervalle [1,+w]

pour la transformer aussi en [0,1] ; (3.2) devient :

Z=1+1, (3.83)
Avec :
- e b ek bt
I,= il T[—u+\/;2+—j]exp[—é’-u]exp[— EqJu’ +j]005(577”)du (3.85)
T

Pour rappel, on a adopté la notation normalisée pour la fréquence et les distances :

hym=¢&
hm=¢

m = a),u/
\} P

Pour transformer I’intervalle de (3.85) de [1,+oo] a [0,1], on peut appliquer les

changements suivants :

<ds=——du (3.86)




121

11 est & noter que I’intégrale / (u) , définit en (3.10) prend globalement (au niveau de son

1
enveloppe) une allure décroissante : [ (u) oc K— (K étant un facteur de décroissance).
u

Ceci suggeére que les transformations définies ci haut seront efficientes, voir [40], page

201. En appliquant ce changement, (3.85) devient :

I, :%J’{+%——l,—"—17+j}exp[—£}xexp[—§,/-17+j}cos(—§—n—)du
T uw u \Nu u u u

Et finalement en changeant de [1, O:I a I:O,l] , on introduit un signe négatif pour avoir :

1
L=2% L LIl lexp & Jexp| £ |+ ) COS(’f—njdu (3.87)
T U u u u [Z} U
0

Ce changement est valide car la fonction est continue sur tout I’intervalle [0,1] et pour

u tendant vers 0, on vérifie que le deuxiéme terme /, (u) dans (3.87) a une valeur limite

de 0. Ceci a ’aide de la commande /imit de Matlab [34], et pour tous les parametres

£ (xi), & (zéta) et 77 (éta) couvrant les configurations pratiques :

Limit(((1/u"2)*sqrt((1/u)*2+))-(1/u)"3)*(exp(-zeta*(1/u)))*(exp(-xi*sqrt((1/u)*2+j)))*

(cos(xi*eta*1/u)),u,0)

llm{——%+—lz— iz+j}exp{—£}exp{—§ Lz+j}cos(§—njdu}=0 (3.88)
w0 w  u Nu u u u

En recombinant (3.87) et (3.84) dans (3.83), on trouve I’expression de 'intégrale a

évaluer par la méthode Quasi-monte Carlo:

1
Z, = a);‘ 0 0[1 e (11 ) (3.89)
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N

|:—u+\/;t7+—j}exp[—g“-u]x...
exp[—é\/m}cos(fnu)h..

I U)=- 1 1 /1
qmc( ) l:——3"+—2 -—2+]:|6Xp|:—£i|x...
u u u u

exp {—é‘ LZ +J il cos (5—77—)
u u

11 faut noter qu’on pourrait résoudre numériquement I’intégrale (3.89) par des méthodes

N~

(3.90)

de quadrature Lobatto, Simpson ou autre. La quadrature Lobatto est directement
utilisable pour certaines valeurs des paramétres &, ¢, et p, d’ou les méthodes notées
«NMquadl sans tronc» dans le chapitre 5. Cependant pour d’autres valeurs de ces
paramétres, elle n’est pas utilisable car le nombre maximal d’évaluation de la fonction,
soit 10000 est dépassé. Pour les autres méthodes nécessitant la localisation des zéros,
cette forme de I’intégrale est difficile & manipuler. En effet, les oscillations deviennent
trés grandes rendant la localisation des zéros trés difficile pour les valeurs de # tendant
vers 0.

Notons enfin qu’au niveau implémentation, en considérant la limite (3.88), le

programmeur doit spécifier comme suit la valeur de la fonction pour les valeurs # =0
dans [, (u) :
2 2 2 2
Iqmc(o)z[%+§j}exp{—§{%+—‘/2:jﬂ (3.91)

3.3.2.2 Calcul de I’'intégrale et borne d’erreur

La séquence de Van der Corput de base 2 est satisfaisante pour évaluer I’intégrale de
Pollaczek pour I'impédance mutuelle entre ligne et cable. Il y a une relative facilitée a la

calculer et a évaluer sa discrépance a ’origine a partir de (3.69). La suite généralisée de
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base 12 donne une discrépance a 1’origine faible par rapport a celle en base 2. Cependant
ses variations totales de la fonction V, ( f ) sont plus grandes atténuant 1’effet de la
diminution de la discrépance a ’origine D™ » (S ) dans la relation (3.60) et (3.82).

En récapitulant, la procédure suivante est retenue pour évaluer I’intégrale de Pollaczek

de I'impédance mutuelle de retour par la terre entre ligne et cables par la méthode
QMC:

e Calcul hors-ligne de la séquence de Van der Corput en base 2 pour

n=0,1,2---,2x10°par (3.61): x, = Zai (n)x 27" Avec la transformation
i=0

de labase 10 enbase 2de n : (n)m = (aoa1 ha, )2 ;

e Evaluation de la fonction (3.90) pour chaque point u, (u, =x,) de la suite en se
rappelant que pour le point # = 0 on utilise (3.91) ;

e Calcul de I’estimée de I’intégrale pour le cas d’une seule dimension sur [0,1:' :

N

1
Z~— Z; 1,.(u,) (3.92)

e FEvaluation par (3.73) et subséquente, pour la partie réelle (idem pour

imaginaire), des variations totales de la fonction d’ordre 1, 2, et 3.

V(f){{;i ’

2 El e (2,)

} (3.93)

] (3.94)

n=1

AOEED

d3
T Lo (u, )u (3.95)

¢ Calcul de la borne de I’erreur absolue par (3.82), pour la partie réelle (idem pour

imaginaire) :
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Erabs_, =~ {i(D*N (S))j

Jj=1

7o (f)l}

e (Calcul de I’erreur relative maximale pour chaque partie (réelle et imaginaire)

Erabs__
Errel . = (3.96)
’Im ( Z )‘ —Erabs__ .
Erabs_, ..
Errel , .. (3.97)

) ]Re(z)] — Erabs

max —Re

Pour illustrer 1’application de la méthode QMC pour I’évaluation de I'impédance
mutuelle nous présentons dans la Figure 3.8 les résultats d’intégration pour différents
nombres des points dans la suite de Van der Corput utilisée. On voit notamment que
pour réduire P’erreur relative entre la valeur par QMC et celle de P'intégration par la
méthode introduite plus haut, il faut augmenter le nombre des points au détriment du
temps d’exécution par le processeur (Temps CPU). Pour avoir une erreur de 0.02% il
faut dix fois plus de temps pour la méthode QMC par rapport a la nouvelle méthode

numérique (NM).
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Comparaison des Z : NM vs QMC (différents nombres des points ):
pour hI =32m, hz =LIm,x=15m, p=80 Qm et er. rel. NM <0.0001 %

Résistance par metre : R Err. relative max.(ref.=NM)
0.2 . -

|
|
015 -~ - - e R =

R(oim)

f (Hz)

Réctance par métre : X

z |
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Figure 3. 8 Résultats d’intégration par la méthode Quasi Monte Carlo (QMC) en
comparaison avec la nouvelle méthode numérique (NM) : différents nombres des

points dans la méthode QMC.
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3.4 Conclusion

Dans ce chapitre il a été pass€ en revue quelques techniques utilisées pour 1’évaluation
de ’'impédance mutuelle. La plus récente méthode d’évaluation numérique de 1’intégrale
de Pollaczek dans [12], a été analysée et une insuffisance a été décelée au niveau de la
localisation des zéros de la fonction intégrante. Cet algorithme ayant été basée sur cette
localisation des zéros devrait étre revue. L’utilisation des outils de calcul symbolique de
Matlab nous a permis d’établir une bonne maniére de borner les intervalles contenant les
zéros de la fonction I’intégrante rendant aisé la détermination des ces derniers par une
méthode disponible dans Matlab. Nous avons montré que la nouvelle méthode localise
mieux les zéros que I’algorithme proposé dans [12].

Sur base de cette correction de localisation de zéros, et avec une estimation des bornes
d’erreurs d’intégration, une nouvelle méthode a été introduite. Elle utilise les relations
des inégalités de valeur absolue pour borner I’erreur commise dans les limites voulues
par I'utilisateur.

Finalement, en prévision de la validation de cette nouvelle méthode numérique
proposée, nous avons appliqué la méthode Quasi-Monte Carlo (QMC) sur I’intégrale de
Pollaczek. Nous avons eu a établir une méthode de calcul pratique pour estimer la borne
de Ierreur due a la méthode QMC. Ceci nous permettra de valider certaines étapes de
I’algorithme que nous proposons, telle la vérification de la borne de I’erreur commise
dans I’intégration. Le chapitre suivant sera justement dédi¢ a la validation de la nouvelle
méthode. 11 faut enfin retenir que la méthode Quasi Monte Carlo est plus lente par

rapport a la nouvelle méthode.
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CHAPITRE 4 VALIDATION DE LA METHODE NUMERIQUE

Dans le présent chapitre, la méthode établie au chapitre précédent est validée
pour les étapes importantes. L’effet de 1’erreur due a la troncature sera analysé en
rapport avec la valeur de I'impédance découlant de 1’intégrale non transformée. La
précision dans la détermination des bornes de I’erreur sera analysée en comparant cette
nouvelle méthode numérique avec celle de 'intégration de type Quasi Monte Carlo
(QMC).

Enfin, les valeurs de I'impédance (parties réelle et imaginaire) seront comparées a celle
de la méthode proposée dans [12] (et d’autres méthodes analytiques approximatives)
dans le chapitre cing, traitant de 1’étude comparative entre les méthodes d’évaluation de

I’'impédance mutuelle.

4.1 Validation de la Troncature

Pour valider la troncature nous utilisons la comparaison entre les impédances obtenues
avec et sans troncature dans les relations (3.22) et (3.89) respectivement :

e Avec troncature :

”max

Z = fl(u)-duiEr

Tronc
]

Ou I(u) était défini par (3.10).

:ZTranc iEr

Tronc ?

e Sans troncature :

2 = [l (s
0

O on a défini 7, (u) dans (3.90).

Considérant les erreurs d’intégration numérique, Eabsn et Eabsn,,  pour la

Tronc

méthode avec et sans troncature respectivement ; la valeur exacte de 1’intégrale serait :
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Z=7"" +Er,

Tronc

= [Z o + Eabsn,, :| + Er,

Tronc

Ou: Z =Z"* + Eabsn,,

Nous devons alors vérifier si la valeur de ’impédance par la méthode avec troncature en

tenant compte des différentes erreurs, reste autour de la valeur exacte, c’est-a-dire :
Zmin < Z~Tronc < Zmax
min __ rzdirect
zZ =Z - I:EabsnTronc + Eabsndirect + ErTronc :|
Zmax = ZNdirec, + I:EabsnTmnc + Eabsndirect + ErTronc :I
Quelques cas illustrés dans les Figures 4.1 et 4.2 ci-dessous montrent bien que

I’impédance avec troncature est bornée par les valeurs minimale et maximale de

I’impédance numérique évaluée sans troncature : L impédance avec troncature est donc,

a une erreur absolue pres, égale a la valeur exacte de I’intégrale.
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Comparaison entre les cas avec et sans troncature
Pour hI =5m ,h2 =1.5m,x=50m, p=0.1 Qm et ErTmnc= 1le-007
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m SO | ' | | ! [ o \7 e . |7\
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Figure 4. 2 Validation de la troncature avec une erreur de troncature de 1x 1097 .

cas d’une estimation conservative des bornes des erreurs pour la méthode direct.

4.2 Validation de Peffet de la diminution de Perreur : NM vs OMC

Pour vérifier I’effectivité de I’accroissement de la précision quand on diminue la borne
de Derreur relative, nous comparons dans la Figure 4.3 la méthode Quasi-Monte Carlo a

la nouvelle méthode numérique. On constate que les valeurs d’impédance, pour la NM a
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droite et le QMC a gauche, sont plus rapprochées quand I’erreur relative de chacune des
méthodes diminue. En dega de 0.005% et 0.01%, pour la NM et le QMC respectivement,
les valeurs d’impédances sont quasiment identiques. Ceci indique par ailleurs que la
formulation de I’estimation des erreurs pour QMC établie précédemment est acceptable.
Notons qu’ayant considéré les bornes des erreurs, il est normal qu’il y ait différence
entre les valeurs des erreurs relatives donnant la méme impédance.

Enfin, mentionnons que la NM est plus rapide que le QMC car pour le méme ordre de
grandeur de D’erreur relative, son temps d’exécution CPU est de I’ordre de dix fois moins

que le temps CPU du QMC, Voir la Figure 4 4.
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Comparaison entre QMC et NM : différentes erreurs Relatives.
Pour h1 =30m, h2 =13m,x=5m, p=1002met f=10kHZ

T aras
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Figure 4. 3 Validation de I’effet du raffinement de I’erreur relative : Concordance

entre NM : Nouvelle méthode et QMC (Quasi-monte Carlo) pour petites erreurs

relatives
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Comparaison des temps d'éxecution CPU

entre QMC et NM : différentes erreurs relatives
Pour h ,=30m, h,=1.3m,x=5m p=100 Qmet f=10kHZ

; ] - ] :
0.05: ! ] N
> % | S |
~— ; , : | !
2 i i - : o :
g 0045 | ' | }
3 | | . ! |
2 0.04; ————— - Lo oo e T R -
0.5 1 1.5 2 2.5 3 3.5

cputime (s)

Erreur relative (%)

Figure 4. 4 Comparaison des temps d’exécution CPU entre NM (Nouvelle méthode)
et QMC (Quasi-monte Carlo) : NM est 10 fois plus rapide pour la méme erreur

relative.

4.3 Limites d’applicabilité de la nouvelle méthode.

La limite d’utilisation de la nouvelle méthode est liée aux limites de la fonction de
quadrature Lobatto (quadl) de Matlab. Pour la plupart des configurations, elle est
efficace. Mais pour certaines configurations, souvent non pratiquement rencontrées pour
un réseau électrique, on n’atteint pas les valeurs trés réduites de la borne de I’erreur
relative. 1l s’agit des cas de résistivités du sol trés basses, moins que 1 Qm, et des

distances tres élevées de l'ordre de quelques centaines de meétres. Pour ces cas,
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’évaluation des valeurs de la fonction intégrante exige des pas trés petits. Mais en se
rappelant que pour certains cas de ce type, les hypothéses de formulation de Pollaczek
ne sont plus valides, voir (2.69), on conclut de la bonne performance de la méthode pour
une utilisation pratique.

Par ailleurs, le temps d’exécution s’accroit rapidement pour un grand nombre des zéros
associés au cas moins amorti de l’intégrale. Ce dernier correspond & des distances
horizontales x élevées associées a des basses hauteurs dans I’air. En effet, moins le
conducteur est haut, plus grande sera la variable d’intégration maximale de troncature,

pour la méme borne de 1’erreur relative. Par ailleurs, plus la distance horizontale x est
grande, plus les zéros découlant du terme cos(f % u) =0 dans (3.4) seront

nombreux entre 0 et »__, la valeur maximale de la variable d’intégration.

Malgré le temps d’exécution CPU élevé pour les erreurs relatives trés faibles, cette
méthode reste un trés bon outil pour valider les autres méthodes approximatives ou
numériques. Elle est trés précise mais conservative dans ’estimation des bornes des

erreurs notamment.
4.4 Conclusion

La méthode numérique développée au chapitre trois a été validée dans les deux
principales étapes : la troncature et ’accroissement de la précision. Nous avons montré
que la valeur de I’intégrale avec troncature est bornée entre les valeurs minimale et
maximale de I’intégrale calculée sans troncature. Par ailleurs, pour s’assurer qu’en
diminuant I’erreur relative exigée on augmente la précision, nous avons montré que la
méthode de QMC et celle nouvellement introduite convergent vers la méme valeur de
I’impédance quand on diminue successivement la valeur des bornes de 1’erreur relative

de chacune des méthodes.
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Enfin, la limite d’application de cette méthode est liée a celle de la fonction quad! pour
des cas ou les pas exigés sont trés petits atteignant la limite de la précision de 1’outil de
calcul.

Cette méthode est précise mais est conservative pour la détermination de I’intervalle de
confiance et son temps d’exécution est allongé. Nous nous proposons de 1’utiliser pour
comparer, dans le chapitre suivant, les différentes approximations pour 1’évaluation de

I’'impédance mutuelle de retour par la terre.



136

CHAPITRE 5 ETUDE COMPARATIVE ENTRE LES METHODES

La méthode numérique que nous proposons, validée dans le chapitre précédent,
nous permet d’effectuer une étude comparative entre les méthodes et en dégager les
performances. Nous établirons une méthode hybride efficiente pour un programme de
simulation tel EMTP-RV. Son temps d’exécution est évalué par un cas type. Notons

NMquadl réfere a 1’utilisation directe de la fonction quadl de Matlab.

5.1 Les méthodes analytiques approximatives

5.1.1 Nouvelle formule approximative (NM-approx) vs Lucca et CCITT

La nouvelle formule approximative pour I'impédance mutuelle entre ligne aérienne et
cable souterrain, voir (2.47), performe mieux que la formule de Lucca [13] et celle
proposée par le CCITT [5], pour certaines configurations qui sont communément

utilisées. Il s’agit de : hauteur au dessus du sol inférieur a environ 4, =10m , profondeur
h, <2m dans le sol et distances horizontales x <5m. Ces types de configuration

correspondent au niveau de tension de Pordre de 245-362kV pour certains Etats
americains [31] et pour les quels il y aurait des pipe-lines dans les environs du tracé de la
ligne. Ou encore, en rapport avec la hauteur et la profondeur, une ligne de
télécommunication (souvent coaxiale) exposée au champ dil & un céble souterrain. Dans
la Figure 5.1, erreur relative maximale est inférieure a 2% pour la nouvelle méthode
approximative alors qu’elle atteint 10% pour la formule de Lucca et celle de CCITT. 11
faut souligner que quand x = 0m (conducteurs plus ou moins alignés horizontalement),
la formule de Lucca donne une erreur inacceptable de plus de 30% dans certains cas,
voir Figure 5.2.[a]. Enfin, la NM-approx devient, quant a elle, inutilisable quand la
distance horizontale croit. Sa limite de bonne performance se situe aux environs de

x<4m et h <11m, comme  montré dans la  figure 5.2.[b].



137

Comparaison (Imag) entre les erreurs relatives maximales :

NM-approx, Lucca et CCITT; par rapport a la NM dont err. rel. max. <1 e-6
Pour f=10kHZ, h2 =1.5m,et p=10 Qm
e - . 12%

10

NM-approx
8 _ 10%
. - 8 %
-
£
E 6%
< g4l
%
2 2%
{
0 '
0 1 2 3 4 5
x (m)
&
.:V‘
E
-

Figure 5. 1 Bonne performance de l1a nouvelle formule approximative (NM-
approx.) pour ligne et cible, pour les éléments proches, en comparaison aux
formules de Lucca et du CCITT : Comparaison des erreurs relatives maximales

(partie réelle et imaginaire) en rapport avec la nouvelle méthode numérique (NM)
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Comparaison de l'impédance Z, par rapport a la NM dont err. rel. max.< 0.1 e-6
avechl =8 m, h2=2m,x=0m p =100 2m
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avec h, =I5m,h,=2m,x=5m p=1002m
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Figure 5. 2 Mauvaises performances pour formules approximatives : /a/ : Lucca,
quand la distance horizontale entre éléments est négligeable; /b] : NM-approx :

x>4m et h1 >1lm.
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5.1.2 Formule approximative pour un des conducteurs sur la surface du sol

Deux aspects motivent 1’étude de ce cas :

e Il arrive souvent qu’un des conducteurs soit a la surface, alors que le deuxiéme
est enfui dans le sol. Il s’agirait du cas d’analyse de la compatibilité entre cables
et rails de trains ;

e Comme mentionné plus haut, une formule entre cables souterrains peut étre
déduite de celle entre une ligne et un cable en considérant que la ligne est a la
surface du sol. De cette formule nous dériverons une nouvelle formule
approximative pour I’impédance entre cables souterrains, voir (2.48), dont la
performance sera évaluée dans le chapitre suivant.

Pour ce type de configuration, on constate, dans la Figure 5.3, que la nouvelle formule

approximative donne les erreurs maximales d’environ 10% quand la hauteur /, est
proche de zéro et 4, = 2m, alors que les formules de Lucca [13] et CCITT [5] donnent

respectivement 25% et 35%.

Notons que pour le cas symétrique a ce dernier; celui d’un conducteur sur la surface et
I’autre dans I’air (ligne aérienne vs rail de train), I'impédance se déduit de la formule de
Carson qui est équivalente a celle de I'intégrale de Pollaczek (2.55) ou la profondeur

devient zéro. On a alors (2.55) modifiée :

U

7 = O T[_lH_ [ +J-]exp[_hlmu]xcos(mxu)du+EraT,W (5.1
0

V3

Avec, pour rappel :

X =

X, = x| (5.2)

" :W (5.3)

Une des méthodes efficientes pour I’évaluer serait la double approximation

logarithmique combinée a la quadrature Lobatto [24].



Comparaison entre les erreurs relatives maximales :
NM-approx, Lucca et CCITT, par rapport a la NM dont err. rel. max. < le-6
Pour f=100 kHZ ,x=10m, et p=100 Qm
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Figure S. 3 Illustration de la bonne performance pour la nouvelle formule
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approximative NM-approx dans le cas d’un conducteur sur la surface du sol et

I’autre enfui & moins de 2.5 m de profondeur. Pour la fréquence ; = 0.1z
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5.1.3 Limites des formules approximatives pour fréquences élevées.

Les formules approximatives sont inadéquates pour les fréquences élevées ou la

conductivité élevée. Sur la Figure 5.4, on note que pour la conductivité de o = 0.1%1 , les

erreurs sont exagérées a partir d’environ 100kHz. La formule de Lucca est celle dont les
erreurs sont moins élevées par rapport aux formules du CCITT et la nouvelle formule
approximative. Mais elle est aussi inadéquate. Pour ces cas, nous appliquerons les

méthodes numériques présentées ci-dessous.

Comparaison de l'impédance par rapport a la NM dont err. rel. max. <0.1e-6
avec hz =15m, 112 =2m,x=0m p=10.0m
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Figure 5. 4 Illustration de la limite des formules approximatives pour fréquences
élevées.
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5.2 Les méthodes numériques : Nouvelle méthode vs la méthode Uribe

La nouvelle méthode numérique NM-quadl, utilisant quadl, la fonction quadrature
Lobatto de Matlab, avec une troncature préalable, performe mieux que la méthode de

Uribe dans [12]. Pour les mémes ordres de grandeur des erreurs relatives, environ

107"°%, dans la Figure 5.5. Les valeurs de comparaison étant celles de la nouvelle
méthode numérique compléte NM-gen, c¢’est-a-dire pour laquelle on recherche d’abord
les zéros. On note que le temps d’exécution CPU est réduit pour la NM-quadl dans la
Figure 5.6. Ceci ouvre la possibilité de 1'utiliser pour un programme de simulation tel
EMTP-RV. Cependant il faut noter que pour les fréquences de moins de 10kHz, les
formules approximatives peuvent encore étre utilisées. Il y a donc lieu de combiner les
méthodes pour couvrir tous les niveaux des fréquences. Pour ¢a, nous introduisons une
méthode hybride dans la sous-section qui suit.
NM-avec quadl vs Uribe, Lucca, NM-approx: Er. rel. sur Z

par rapport d la NM dont er. rel. max. <10 e-6
PourhI =45m, hz =LIm,x=50m p=1002m
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Figure 5. S Performance de la nouvelle méthode numérique a base de quadl en
comparaison avec la méthode de Uribe : Méme ordre de grandeur des erreurs

relatives.
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Temps d exécution CPU
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Figure 5. 6 Temps CPU réduit pour la nouvelle méthode numérique NM quadl avec

troncature en comparaison avec le méthode de Uribe

5.3 Méthode hybride : Lucca, NM-approx et quadl combinés pour EMTP-RV

5.3.1 Principe et application de la nouvelle méthode hybride

11 vient d’étre montré que les formules approximatives ont des limitations pour certaines
fréquences pratiques, bien que leurs temps d’exécution soient trés petits. Alors que les
méthodes numériques consomment plus de temps d’exécution mais donnent des bons
résultats pour toutes les fréquences et parametres.

Pour tirer profit des avantages des toutes ces méthodes et en minimiser les

inconvénients, nous formons une méthode hybride combinant trois méthodes en
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s’assurant que I’erreur relative maximale commise est inférieure & 1%. Ainsi, on utilise

la méthode numérique ou une les formules approximatives selon cas :
e Formules approximatives : {f <5kHz,p 250Qm,h <60m,h, < 6m}

o Nouvelle formule approximative (NM-approx): pour petites valeurs de
x<3;
o Formule approximative de Lucca [13] pour les autres cas.
¢ Nouvelle méthode numérique utilisant la quadrature Lobatto, avec troncature (NM-

quadl) : pour tous les cas restants

Les erreurs maximales commises pour chaque méthode sont évaluées dans la Figure 5.7

suivante :
Méthode hybride vs Lucca, NM-approx, NM-quadl: Er. rel. sur Z
par rapport a la NM dont er. rel max. <10 e-6
1010 Pourhl =I0m,h2=3m,x=3m p =100 Qm
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Figure 5.7 Performance de la nouvelle méthode Hybride utilisant NM-approx,

Lucca et NM-quadl avec troncature.
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On note que quand les erreurs pour les formules de Lucca et la nouvelle formule
approximative (NM-approx) dépasse 1%, Figure 5.7, on passe par la méthode NM-quadl
qui performe le mieux pour les méthodes numériques. Si les paramétres sont non
propices pour une formule approximative, la méthode utilisée est automatiquement

numérique (NM-quadl), voir Figure 5.8

Méthode hybride vs Lucca, NM-approx,NM-quadl: Er. rel. sur Z
par rapport d la NM dont er. rel. max. <10 e-6

Pourhl =45m,h2=1.1 m,x=3m p=1002m
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Figure 5. 8. Utilisation de la méthode numérique dans la méthode hybride pour

Lucca et NM-approx défaillants.

5.3.2 Temps CPU pour un balayage en fréquence en évaluant ’'impédance.

Le temps d’exécution CPU élevé des méthodes numériques est un frein pour leur

utilisation en simulation. La méthode hybride que nous proposons requiert moins de 60
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secondes pour 10000 évaluations de I’'impédance sur un intervalle de fréquence de 10Hz
a IMHz. Alors que la méthode de Uribe requiert prés de trois fois plus de temps, voir
Figure 5.9. Ces calculs sont réalisés sur un ordinateur a processeur Pentium 4 (1300
MHz) et avec une mémoire RAM de 752 Mo.

L’utilisation de la méthode hybride a cette vitesse est a envisager par les développeurs

moyennant des méthodes d’optimisation si nécessaire.

Temps de balayage avec f= 10Hz ...IMHz, h 5 =1.1m
x=18m, p =10 2m : 1000 évaluations de Z
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Figure 5. 9 Comparaison des temps CPU consommé pour I’évaluation de
I’impédance avec toutes les méthodes pour un balayage en fréquence de 10Hz a
1MHz : 1K et 10K évaluations.

5.4 Conclusion

A Ulissu de I'analyse entre les formules faites dans ce chapitre, on a montré que la

nouvelle formule approximative issu des développements en série de 1’expression des
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champs électriques fait par Pollaczek, performe bien pour certaines configurations,
notamment quand le fil en ’air s’approche de plus du sol et que la distance horizontale
entre les conducteurs est petite.

Par contre, toutes les formules approximatives sont inutilisables pour les fréquences de
plus d’une dizaine de kHz. Nous avons proposé une méthode hybride combinant la
nouvelle formule approximative, celle de Lucca [13] et la méthode numérique la plus
efficiente 4 base de la quadrature Lobatto avec troncature de !’intégrale. Le temps
d’exécution de cette nouvelle méthode pour 10000 évaluations est moins de 60
secondes, donne une indication aux développeurs pour leur implantation dans un

programme de simulation.
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CHAPITRE 6 APPLICATION POUR DEUX CABLES SOUTERRAINS

Dans ce chapitre, nous appliquons la méthode étudiée pour le cas ligne aérienne
et cdble souterrains au cas des deux cébles souterrains. Une nouvelle méthode
approximative est proposée et analysée. Sa comparaison avec les autres formules
approximatives est aussi donnée. La méthode de référence étant la nouvelle méthode

numérique que nous avons proposée avec des bornes d’erreurs relatives tres petites.

6.1 Expression de ’impédance mutuelle avec retour par la terre pour cibles

A partir du champ produit dans le sol par un conducteur souterrain, défini en (2.24), on a

I’expression de I’impédance mutuelle :

Z _= —%[HO(I) (kr)-H," (klr')] +...

+j_a_).'£l_ exp{ij+(h2 +h1) st =k’ }ds 6.1)
2r |s|+ /s =k’ ’

¥, <0,y <0

En y appliquant les transformations faites pour le cas aérien —souterrain, on aboutit a une

forme semblable a (3.1), avec normalisation :
. [Ko (mr)—KO (mr')]+---
Zsout — ] /'l

% _QJT[_U + \/ﬁ} exp[—g\/uz_q—j} X cos(fnu)du

Ou on a défini :

(6.2)



E=(h+h)m

= /h +h)
m= ‘]a)’u/
psol

= —m) 42
=\/(hl +h, )2 +x°

149

K, est la fonction de Bessel d’ordre zéro et de type 2.

Z sout
2

Ou:

J O,
=27 " x4
-2 | exp| £ (F ()~ jéGw) |~

[KO (mr) -K, (mr')} +oe

([F @) -u+ jG@)]x- 63)

cos (énu) du

(6.4)

6.2 Nouvelle méthode numérique d’évaluation et formules approximatives

Il faut remarquer que 1’expression (6.3) pour les cébles souterrains est similaire a celui

entre cable souterrain et ligne aérienne en (3.2) hormis un terme expl:—f (é’ u)] qui est

un amortissement supplémentaire dans le premier cas.
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La détermination des zéros sera donc semblable. Le seul changement que nous
apporterons sera la troncature.

La relation semblable a (3.28), exprimant la troncature, en se basant sur [15], est :

ma.

u_ :——;—In(éEra) (6.5)

Ou on a défini :

Era : erreur absolue commise suite a la troncature a .

En appliquant ces changements, on forme comme au chapitre 3 une méthode numérique

pour les cables souterrains.

6.3 Lien entre formule pour cibles et celle entre ligne et cible

6.3.1 Lien entre la formule pour ligne-cible et la formule pour cibles

A partir de I’analyse faite précédemment, nous avons établi un lien entre 1’impédance de
retour des cables souterrains et celle entre un cable et un conducteur sur la surface de la
terre. Ce dernier étant le cas du cable souterrain vs ligne aérienne pour laquelle la

hauteur est nulle. On a eu ainsi, pour deux conducteurs enfouis a /4, et 4,, la formule

(2.48) comportant deux termes :
Z_ (x,h+h,0,p,, )+

Z (Xth N » Pso ?f):
l l ](;/:; [Ko (_jlr)_Ko (—j)(V,)]

Le premier terme Z | (x,h2 +h,0,p0.,,f ) est I'impédance mutuelle de retour par la
terre entre un conducteur a une profondeur /4, = h, +/, et un autre conducteur dans
Iair, & la surface du sol /2, =0, c’est un cas particulier de ’analyse qui a été largement

traitée jusqu’ici. Le deuxiéme terme comporte les fonctions de Bessel dont I’évaluation

est considérée précise pour les outils de calcul numérique.
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Nous pouvons donc dorénavant appliquer toute méthode efficiente et précise entre ligne

aérienne et cable pour évaluer I’impédance mutuelle de retour par la terre entre cables.

Erreur rel. max.(R et X ) entre lien aér.-sout. et NM-numérique
fvsh

0 0.5 1 15 2 25 3
f(Hy 6

pVvs x: f=1333.3389kHz

T T

x (m)
N

e s

50 100 150 200 250 300 350 400 450 500

p(2m)

Figure 6. 1 Concordance entre ’impédance entre cibles souterrains (NM) et celle
découlant de la relation impédance ligne aérienne et cible souterrain et les

fonctions de Bessel. ( « Lien aér.-sout. »).

Dans la Figure 6.1 ci-dessus, on note la nette concordance entre I'impédance calculée
par évaluation de I’intégrale traditionnelle de Pollaczek pour les cébles souterrains et
celle utilisant la formule de I’impédance entre ligne et cable pour une hauteur nulle. En

effet, dans la Figure 6.1, les erreurs relatives maximales entre les deux méthodes est
inférieure 8 2x10°%.
Les formules analytiques pour cables souterrains sont alors dérivées des formules

analytiques pour I’impédance mutuelle entre ligne aérienne et cable.
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Un intérét particulier est I'utilisation des formules approximatives de Lucca, CCITT et la
nouvelle formule approximative que nous avons présentée dans ce travail. Cette dernicre
a été la plus performante pour les petites distances, fréquentes dans le cas des cables
souterrains. Nous [’utilisons pour proposer une nouvelle formule approximative pour
I’impédance mutuelle entre cbles souterrains. Sa performance est analysée dans la

section suivante :

Z_(x.hy ks f) sz—w{G, +G,+G, +G, +G,} +...
a (6.6)

it Ko (=izr) =K, (-izr)]

Ou les constantes et les autres fonctions sont :

2

G =-|1+ v (x—j(ghz h )) +Zz(h22+h1)2 1n(—Y—2){(x+j(h2 +h‘1))j

;(2(>C+j(1’whl))2Jr;cz(hﬁ’a)2 1( Yy
2

G, =-|1+ n n —T(—x+j(h2+h1))j
B 4]1(h2+h1)
P 3
_ _5_’_ 2.2
|0 =t g2
19 )
G5=+—;(2(h2+h1)
h <0, h <0,
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6.3.2 Performance de la nouvelle formule approximative pour cable

Pour évaluer la performance de la nouvelle formule approximative, nous la comparons

avec la formule approximative établie par Saad et al. [14]. Une des configurations

Les résultats sont

ée.

, voir section 6 du chapitre 2, est utilis

r

€€ €n rescau

r

typiques rencontr:

disponibles dans les Figures 6.2 et 6.3

Comparaison entre les méthodes pour:

0.69184 m ,h2 =I1.1m,x =6met p=120 2m

hy =

& s
- -—-—-—-—-===-- ™
mwuuuuuuuuuuuuwuuuﬁ
S - - S
< ettt
I [
| ok
|
e
H\\\lllulwwlluuuun_.m m
mu‘uu “Hw“‘HMM
uhw--hww-llm;
o -
\VAU
o ©
o
w+y)y

3
Vi
A %
S b el K
ay\ ] - e
e e el T
R S S i
RT|4\P\\||,\\\\L,||||_,J
L ; |
. oot
i m - m ;
— 5 w ° M - =}
Eg o =
T A
| 28 4% D | i~
,,eo O © flll, o
i : i
3£ 4 mmmmwuum -
~-2¢z2528----F
i | rlllﬁ
Lo
| P W |
D | Peo-
| | ! |
_ L
| | ] ”
B ] | i ]
; 1 i 1 =
L SRR N Lo O ]
o~ 0 - n O«
o < o <
o S
(w+y)x

Impédance

Figure 6. 2 Performance de la nouvelle formule vs formule de Saad

par unité de longueur.



154

=réf.

Nouvelle méth.

0.69184 m, h,=1.1 m,x =6m et p =120 2m

Erreur relative (%)

h; =

10°

> _ ,
HHHHHHHHHHHWWWMWMWW
- R N
oo ! -
. ot Ty
= : ,_
(o) .
= - T -
o 3J |
Qo R F
D |
b
®g B .|
n.u c [ « T S R *
b
= 0 m % - ,
Z dc w7 *
: m o 1
I < !
i i
| |
L ”
1 | ¢
wm N - m
X 1S 9,

)
o
-~

10°

S(Hy)

erreurs

Figure 6. 3 Performance de la nouvelle formule vs formule de Saad

relatives en % en comparaison avec la méthode numérique (NM)



155

Err. Max. (Ret X ), en %, en rapport avec réf. a8 NM (err. = 10'6%)
__Er. pour NM-cab.-approx

Er. pour Saad et al.

(@@ Saad et al.

10' 10? 10 10°  fag 10°

Figure 6. 4 Comparaison de nouvelle formule approximative pour cible (NM-céb-
approx) et la formule de Saad : contourmap pour les erreurs relatives pour une
profondeur de 0 a 1.1m et la fréquence de 10 a 100kHz. Autre profondeur = 1.1m et

distance horizontale de 3m.

Par observation des Figures 6.2 4 6.4, on note une aussi bonne performance de la
nouvelle formule approximative pour cables souterrains (NM-cab-approx) que la
performance de la formule approximative de Saad. En effet, on y observe une erreur
relative maximale d’environ 2% pour les deux méthodes. La nouvelle méthode ayant
parfois des erreurs 1égérement inférieures a celles de la formule de Saad pour certaines
configurations. Il faut noter que la référence pour les deux est la méthode numérique

compléte (NM-gen) pour I'impédance mutuelle de retour par la terre entre cables

souterrains.
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6.4 Conclusion

Dans ce chapitre, nous avons appliqué la méthode d’évaluation numérique pour
le cas ligne aérienne et cdble souterrain au cas de deux cébles souterrains. Nous avons
montré, comme préconisé par Pollaczek avec les champs électriques, que I’impédance
mutuelle de retour par la terre pour cables souterrains peut étre déduite de celle entre une
ligne & Om et un cable souterrain a laquelle on ajoute deux termes de la fonction de
Bessel. Ceci a dorénavant donné une possibilité de déduire I’'impédance de retour par la
terre entre cables (ou structures enfouies) a partir des toutes les formules efficientes pour
cable aérien et souterrain. Nous avons ainsi proposé une nouvelle formule approximative
pour cébles souterrains qui découle de celle entre ligne aérienne et cable. Cette derniére
semble étre tout aussi performante que celle de Saad mais pour une fréquence inférieure
a 100kHz. Dans les autres cas, il faudra établir les limites de la formule de Saad pour
juger de son utilisation. La méthode numérique efficiente proposée dans ce travail peut

encore étre utilisée.
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CONCLUSION

Cette recherche avait pour principal objectif 1’évaluation de !’impédance
mutuelle de retour par la terre, un des parameétres du couplage inductif pour les modeles
des lignes de transmission dans EMTP-RYV. Les contributions, limites et contraintes ainsi
les recommandations et travaux futurs en rapport avec cet objectif sont présentés ci-

dessous.

A. Contributions du mémoire, limites et contraintes des méthodes proposées

Cette recherche a contribué a mieux cerner la marche a suivre pour la
détermination des parameétres des lignes et cables de transmission. Elle a ainsi mis en
lumiére les changements & apporter dans les modeles des lignes et cables dans EMTP-
RV quand deux structures différentes doivent étre modélisées. Par ailleurs, il ressort de
I’analyse de modeles des lignes, la nécessité d’évaluer efficacement et avec une bonne
précision I’impédance mutuelle de retour par la terre pour le modéle de type large bande

(WB) pour lequel les fréquences exigées dépassent le mégahertz.

Cette impédance est directement associée au champ électrique dii & la présence de la
terre. En considérant les hypothéses quasi-TEM prises par Pollaczek pour résoudre les
équations de Maxwell pour ce champ. Nous avons montré que, pour les configurations
usuellement rencontrées, ces hypotheéses sont respectées. Cependant au-dela des
distances de 1’ordre de quelques centaines de métres, quelques dizaines de métres sous
terre ou pour les fréquences des quelques MHz, les hypotheses ne sont plus valides et les

résultats de 1’évaluation de I’intégrale de Pollaczek sont discutables.

En corrigeant une des plus récentes méthodes d’évaluation numérique de I’intégrale de

Pollaczek pour I’impédance mutuelle de retour par la terre (2005) et en introduisant une
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procédure pour borner I’erreur relative commise, nous avons proposé une nouvelle
méthode d’évaluation numérique de I'intégrale de Pollaczek. Celle-ci a été validée en
comparaison avec les résultats de la méthode Quasi-Monte Carlo et une autre méthode
d’intégration sans troncature. Pour ces deux derniéres méthodes, nous avons introduit
une transformation de 1’intégrale de Pollaczek sur un intervalle 0 a 1. Ceci, a notre

connaissance n’a pu étre fait auparavant.

La nouvelle méthode numérique proposée a des limites dans son application. Celles-ci
sont lies a celles de la quadrature Lobatto dans Matlab, quand les pas exigés pour la
tolérance absolue sont de 1’ordre de la précision machine de Matlab.

Par ailleurs le temps d’exécution pour certaines configurations est relativement élevé.
L’estimation des bornes des erreurs est conservative et rallonge le temps d’exécution.
Car on répartit la tolérance, pour une erreur relative donnée, sur tous les sous intervalles
entre les zéros. La nouvelle méthode numérique que nous proposons sera avant tout un
outil pour établir les limites de précision des futures formules et approximations

analytiques.

Nous avons contribué a introduire deux nouvelles formules approximatives de
I’impédance mutuelle de retour par la terre. Ceci par analyse des développements en
série des champs électriques introduits par Pollaczek: une nouvelle formule
approximative pour I’impédance mutuelle de retour par la terre pour une ligne aérienne
et un cable souterrain, et une formule approximative pour les cables souterrains. Par
ailleurs, cette derniére découle d’une observation plus générale que 1'impédance entre
les cébles peut étre déduite d’une évaluation de ’expression de I’impédance entre un
élément arien et souterrain. Le lien entre ces deux est une somme des deux fonctions de
Hankel (ou de Bessel). Elle permet désormais d’appliquer les formules approximatives

pour les éléments aériens —souterrains au cas souterrain.
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Les nouvelles formules approximatives ainsi que celles de Lucca, CCITT et Saad et la
méthode de Uribe ont été, pour chacun de cas correspondant, comparées a la nouvelle
méthode numérique.

11 ressort que pour le cas aérien —souterrain, la nouvelle formule approximative est plus
précise que celle de Lucca et de CCITT pour les fréquences inférieures a environ 1kHz
et pour des distances courtes (hauteur < 10m et distance horizontale < 3m). Cependant,
toutes ces formules approximatives sont inadéquates pour les fréquences de plus 10kHz.
Nous avons proposé une méthode hybride combinant les formules approximatives que
nous avons nouvellement introduites, celle de Lucca et une méthode numérique utilisant
la quadrature. Cette formule hybride donne des erreurs relatives de moins de 1% par
rapport a la méthode numérique compléte. Le temps requis pour un cas type de 10000

évaluations de I’impédance est de moins de 60 secondes.

La nouvelle formule approximative que nous proposons pour les cables semble étre tout
aussi performante que celle de Saad mais pour une fréquence inférieure & 100kHz. Dans
les autres cas, il faudra déterminer les limites spécifiques selon 1’application sous

analyse.

B. Recommandations et travaux futurs

e En analysant la bonne performance de la nouvelle méthode, nous recommandons
I'utilisation de la nouvelle formule approximative pour I'impédance mutuelle de
retour par la terre (notée NM-approx.) pour les cas suivants d’étude de la
compatibilité électromagnétique dans un méme corridor :

o Rails de train vs cébles souterrains ;
o Cébles enfouis (ou a la surface) vs lignes de télécommunication & moins de
10m;

o Etrails de train vs lignes de télécommunication.
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Compte tenu des limites dans la précision de I’impédance due aux hypothéses quasi-
TEM, nous recommandons d’introduire une indication avisant du dépassement
exagéré des hypothéses de Pollaczek. Ceci aidera les utilisateurs des programmes de
simulation des réseaux de mieux faire 1’analyse de leurs résultats.

La méthode hybride que nous avons introduite peut étre améliorée en optimisant
'utilisation des formules approximatives pour plus des configurations possibles ol
ces derniéres sont adéquates. Et en incorporant les améliorations continuelles de la

méthode de quadrature Lobatto suivant le développement continu de Matlab.

C. Retombées possibles

L’évaluation efficiente de 1’intégrale de Pollaczek, ouvre la possibilité d’incorporer
dans tous les modeles de lignes de transmission, particuliérement celle a large bande,
les parametres de couplage inductif et autres, pour améliorer ces derniers.
L’augmentation de la gamme de fréquence pour la synthése des matrices utilisées
dans les mode¢les de ligne et cables ouvrirait la possibilité de traiter formellement la
compatibilité¢ électromagnétique entre portions des lignes, surtout en régime
transitoire aussi bien qu’en régime permanent. Par exemple I’induction due a la
propagation des ondes de courants de foudre peut étre idéalement pris en compte sur
les lignes environnantes de celle qui est directement frappée par la foudre. Et aussi
dans le cas des manceuvres ou de court-circuit sur une ligne.

Enfin, la bonne connaissance de 1’impédance mutuelle permettrait de fixer d’une
maniere optimale les distances entre les ouvrages suivant les seuils d’induction
permis pour le bon fonctionnement de chacun des ouvrages. Ou a I’inverse évaluer le
niveau d’induction voulue quand on approche une structure sur la ligne de
transmission ; comme c’est le cas de la mesure des hautes tensions par couplage

inductif ou capacitif, par exemple.
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