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RESUME 

II y a moins de deux decennies que les nanotubes de carbone (CNTs) ont ete 

inventes et mis au point. Les CNTs ont ete largement utilises pour ameliorer les 

proprietes electriques ou mecaniques de differents materiaux et, en particulier, les 

polymeres et les fibres polymeres. Le facteur de forme important et l'orientation des 

CNTs dans la direction principale des fibres polymeres se traduit par une amelioration 

considerable de la conductivity electrique. L'electrofilage est la methode la plus 

frequemment utilisee pour la production des nanofibers. Ce processus, d'abord connu 

sous le nom de pulverisation electrostatique (avant 1993), n'a fait l'objet que de quelques 

publications. Toutefois, il a ete recemment largement utilise dans differents domaines 

d'applications. Les fibres nanocomposites surtout les fibres fabriquees par r electrofilage 

ont fait l'objet de plusieurs investigation ont ete largement dans l'industrie textile. Mais 

l'utilisation des CNTs pour la fabrication des fibres et nanofibres conductrices, reste 

encore a developper. 

Dans ce travail, nous avons principalement etudie les nanofibres 

nanocomposites/CNTs produites par l'electrofilage. Une revue de la litterature pertinente 

a ete effectuee a la fois pour la production par electrofilage et pour le filage a l'etat fondu. 

Du point de vue experimental, deux types fibres nanocomposites ont ete produites : 

1. La fabrication et la caracterisation des nanofibers nanocomposites a base de CNT 

fabriquees par electrofilage. Dans cette section, nous nous sommes concentres 

principalement sur la caracterisation finale de la nappe de fibres produite par 

l'electrofilage en particulier aux fortes concentrations et selon divers types de CNTs. Les 

systemes polystyrene (PS)/CNT et polyethylene terephtalate (PET)/CNT ont ete 

considered avec des une seul mur (SWCNT), double mur (DWCNT) ou murs multiples 

(MWCNT). 
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2. Le filage a l'etat fondu et la caracterisation fondamentale finale des fibres 

nanocomposites polymeres/CNTs. Dans cette partie, nous avons principalement mis 

l'accent sur la fabrication des fibres nanocomposites PET/CNT, qui est la preoccupation 

principale de cette etude. 

La dispersion des CNTs dans les fibres PS/CNT obtenues par electrofilage a ete 

correlee a leur morphologie et proprietes physiques. Un copolymere de type SBS styrene-

butadiene-styrene (SBS) a ete utilise avec succes comme d'agent interfacial pour 

ameliorer la dispersion des CNTs dans solution de PS. Les mesures de la conductivite 

electrique sur des nappes nanocomposites ont montre un seuil de percolation electrique 

au-dessous de 4% MWNT. L'utilisation du SBS a permis d'obtenir des conductivites 

electriques superieures. Les resultats obtenus a partir de ce travail ont montre que l'etat de 

la dispersion a ete un facteur determinant de la morphologie finale des nanofibres et des 

proprietes des nappes produites par electrofilage. A des faibles concentrations de CNTs, 

une mauvaise dispersion produit des fibres de diametre plus grand; alors qu'elle genere 

des fibres en forme de perles pour des hautes concentrations. 

Pour les nanofibres PET/CNT, les mesures de la conductivite electrique sur des 

nappes nanocomposites ont montre un seuil de percolation electrique d'environ 2% en 

MWNT. Les resultats de cristallographie ont montre que l'augmentation de la 

concentration en CNTs augmente aussi le taux de cristallinite. Les mesures par 

spectroscopies infrarouge a transformed de Fourier (IRTF) et Raman ont etabli que 

1'orientation de tous les deux de chaines de PET aussi que de CNT sont augmentes par la 

production des nanofibers alignes ci-dessous de la percolation par rapport aux nanofibers 

produites en mode stationnaire. Les resultats des tests mecaniques sur des nanofibres 

orientees ont montre une amelioration importante des proprietes mecaniques pour les 

concentrations sous le seuil de percolation. Cet effet a ete moins considerable pour les 

fortes concentrations en CNTs. 
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La production et la caracterisation des microfibres nanocomposites PET/CNT 

produites par le filage a l'etat fondue ont ete egalement l'une des preoccupations 

principales de cette recherche. Nous avons etudie differentes conditions de mises en 

oeuvre afin d'ameliorer la qualite des fibres produites. L'augmentation de la concentration 

des CNTs facilite le precede de filage par rapport a la fibre PET pure. Nos resultats ont 

montre qu'il etait possible d'obtenir des fibres conductrices avec une concentration de 2% 

en MWNT. L'utilisation d'un rapport d'etirage eleve a favorise la dispersion des CNTs et 

l'obtention d'une meilleure conductivite electrique. L'etude de l'orientation de la phase 

cristalline dans la fibre PET a prouve que l'addition des nanoparticules diminue 

l'orientation des unites cristallines a l'interieur des fibres. Les proprietes mecaniques en 

tension mesurees aux fibres nanocomposites ont ete jusqu'a trois fois superieures a celles 

des fibres pures. 

Finalement, un essai de modelisation a ete effectue au dernier chapitre de cette 

these et a implique deux methodes distinctes. Dans la premiere, il etait question d'etudier 

la formation du cone au bout de la seringue et la deformation du jet. L'effet de l'ajout des 

CNTs sur le changement de forme du cone et 1'initiation du jet et son etirage a ete etudie 

en utilisant des methodes empiriques et la technique d'analyse d'images. 
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ABSTRACT 

Carbon nanotubes (CNTs) were invented and developed in less than two decades 

ago. CNTs have been widely used to enhance the electrical or mechanical properties of 

different materials especially polymers and polymer fibers. One-direction orientation of 

CNTs along fiber axis causes considerable enhancement of the electrical conductivity. 

Electrospinning is the most frequently used method for nanofiber production. This 

process was known as electrostatic spraying before 1993, and there were only a few 

studies employing this technique; however, it is widely used in different areas of 

applications nowadays. Nanocomposite fibers manufacturing, especially by 

electrospinning for nanocomposite nanofiber production, has been widely studied in 

textile industry. However, use of CNT in conductive fibers and nanofiber manufacturing 

and fundamental characterization of final properties is still in its developing stage. 

In this work, we studied mainly CNT nanocomposite nanofibers produced by 

electrospinning. Therefore, the works available in the field of nanofiber production 

especially CNT nanocomposite nanofibers will be presented. Thereafter, the previous 

studies available in CNT nanocomposite melt-spun fibers were reviewed. In the 

experimental section, CNT nanocomposite nanofibers were produced by electrospinning 

in addition to melt-spinning. In the process of conductive nanocomposite nanofibers 

production, two main studies were performed: 

1. Processing and characterization of CNT-based nanocomposite nanofibers by 

electrospinning process. In this section, we concentrated mainly on characterization of 

final electrospun mat especially at high range of CNT concentrations and various CNT 

types. 

2. Melt-spinning and final fundamental characterization of polymer/CNT 

nanocomposite fiber. In this part, we mainly focused on polyethylene terephthalate 

(PET)/CNT nanocomposite fibers manufacturing which is the main concern of this study. 

In electrospinning, polystyrene (PS)/CNT and PET/CNT were produced by using 

different types and concentrations of CNTs including single-wall carbon nanotube 
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(SWCNT), double-wall carbon nanotube (DWCNT), and multi-wall carbon nanotube 

(MWCNT). The effect of a wide range of CNT concentrations and types for 

electrospinning were studied here and combined with these two polymers. 

In PS/CNT electrospun nanofibers, dispersion of CNTs was correlated to 

morphologies and properties of nanocomposite fibers. A copolymer as an interfacial 

agent (SBS, Styrene-butadiene-styrene type) was used to improve the dispersion of CNTs 

in PS solution. The results showed that the presence of the copolymer significantly 

enhances CNT dispersion. Electrical conductivity measurements on nanocomposite mats 

showed an electrical percolation threshold below 4 wt% MWCNT; while the samples 

containing SBS included higher values of conductivities below percolation compared to 

the samples with no compatibilizer. The results obtained from this work showed that 

dispersion condition was an important controlling factor of final nanofiber morphology 

and properties of electrospun mat. Poor dispersion caused larger fiber diameter than 

expected at low CNTs concentrations; moreover poor dispersion caused bead formation 

at high CNT concentrations which was approved by detecting the localizations of CNTs 

in bead positions. 

In PET/CNT nanofibers, electrical conductivity measurements results on 

nanocomposite mats showed an electrical percolation threshold around 2 wt% MWCNT. 

Electrospun nanofiber mats were produced using both static and rotating drum collector. 

Crystallography test results showed increasing crystalline density by increasing CNT 

concentration to high CNT concentrations above electrical percolation. The spectroscopy 

(Fourier transform infra-red (FTIR) and Raman spectroscopy techniques) test results 

showed both PET chains and CNT orientation increased for aligned nanofiber below 

percolation compared to randomly oriented nanofibers. Mechanical test results of aligned 

nanofibers depicted considerable enhancement in mechanical properties especially 

modulus as much as at least 6 times more than random nanofibers below percolation; 

while the effect of alignment was less considerable above percolation and at high 

concentrations of CNTs. 
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PET/CNT nanocomposite microfiber production and characterization were also one 

of the main concerns of this research. PET/CNT single microfibers were produce by 

melt-spinning process. We studied different processing and mixing condition to obtain 

smooth, well dispersed nanocomposite fibers. Addition of CNTs considerably enhanced 

the drawability of fiber during spinning compared to pure PET. Our results showed that it 

was possible to achieve conductive fibers at 2 wt% MWCNT concentration and even 

more conductive fibers using higher draw ratio (DR) without increasing MWCNT 

concentration by modified dispersion condition. Study of the orientation of PET 

crystalline phase in drawn fibers proved that the addition of nanoparticles decreases the 

orientation of crystalline units inside the fibers. The orientation of MWCNT as well as 

that of PET chains was studied using Raman spectroscopy at different draw ratios and a 

high degree of CNT orientation with increasing DR was observed. Mechanical properties 

results showed interestingly high value of maximum tensile strain at break (smax) of 

nanocomposite fibers, up to 3 times more than pure PET fibers after adding MWCNT to 

nanocomposite fibers. Addition of CNTS caused interestingly enhancement in 

mechanical properties besides electrical conductivity in both electrospun and melt-spun 

fibers. 

In the last chapter, the empirical modeling of electrospinning process is given. In 

this chapter, the image analysis technique is used to estimate the jet formation in 

electrospinning of CNT containing solutions. The results show that EHD theory is not 

compatible with the system of our study. More over, we used dimensional analysis 

method to give a relation for estimation of final nanofiber diameter as s function as a 

function of measurable material and process parameters. 
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CONDENSE EN FRANgAIS 

La nanotechnologie est un champ technologique emergent ayant plusieurs 

applications dans plusieurs domaines tels que la production et la conception des 

materiaux nanocomposites. Les nanocomposites polymere sont obtenus par 

1'incorporation des diverses nanoparticules dans une matrice polymere. Les materiaux 

polymeres ont ete utilises abondamment dans l'industrie textile en raison de leurs 

proprietes exclusives telles leurs grandes flexibilite et etirabilite. Le concept de la science 

des nanocomposites polymeres dans l'industrie textile et la technologie des fibres permet 

le developpement d'une nouvelle generation de fibres appelees fibres nanocomposites. 

Particulierement, l'obtention de fibres polymere conductrices a toujours ete un point 

d'interet dans les textiles et l'industrie des fibres. Depuis la decouverte des nanotubes de 

carbones (CNT) par Iijima en 1991, cette nanoparticule a trouve une gamme 

d'applications tres large dans divers domaines et avec divers materiaux, particulierement 

les polymeres pour la modification de leur conductivite. L'amelioration de la conductivite 

des polymeres est realisee par l'addition diverse nanoparticules tels les CNT, reconnus 

specifiquement pour cette propriete d'augmentation de la conductivite. 

II y a differentes methodes de fabrication des fibres selon les proprietes du 

materiau initial ou le procede de production. Parmi ceux-ci, les procede les plus 

importants sont: le filage a l'etat fondu, l'etirage a sec des solutions, l'etirage humide des 

solutions et impliquent tous un etirage mecanique pour la formation des fibres. 

L'electrofilage est un nouveau procede de fabrication de nanofibres qui implique l'etirage 

par des forces electrostatiques et a ete introduit recemment. Les procedes conventionnels 

de fabrication des fibres incluant l'etirage a l'etat fondu, a sec, humide et de gels 

produisent tous des fibres ayant des diametres dans les microns. L'electrofilage, aussi 
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connu comme l'etirage electrostatique, est le principal procede de production de fibres de 

dimensions nanometriques. Dans le procede d'electrofilage, comme pour les autres 

procedes des fibres, 1'incorporation de nanoparticules peut jouer un role important dans la 

modification des proprietes des nanofibres. 

Dans ce projet, nous utiliseront les concepts de nanotechnologie dans les 

nanocomposites en plus de l'electrofilage pour fabriquer des fibres nanocomposites par 

1'incorporation de nanotubes de carbone. Un polymere devient electriquement conducteur 

au dela de la concentration de percolation. La plupart des nanofibres polymeres et 

composites ne sont pas encore produites a l'echelle industrielle et la sont encore dans 

l'etape de la recherche et du developpement. Les quatre principaux champs d'application 

des activites de recherche sur les nanofibres polymere et composite sont dans les 

applications biomedicales, la synthese de nanofils conducteurs, les materiaux composites 

structuraux et la filtration. 

Dans ce travail, du polystyrene (PS) et du polyethylene terephthalate (PET) 

electrofiles avec differents types et concentrations de CNT ont ete produits et 

caracterises. La revue des travaux precedents a montre qu'il y avait peu de travaux sur la 

production et la caracterisation de nanofibres de PS/CNT et PET/CNT. De plus, l'effet de 

differents types de CNT (une seul mur, double mur ou murs multiples) et leur 

concentration a ete etudie en profondeur pour la premiere fois. Egalement, la 

caracterisation des nanofibres et microfibres conductrices a base de CNT, 

particulierement a haute concentration, a ete effectue pour la premiere fois. 

A hautes concentrations de CNT, la dispersion est habituellement plus complexe et 

problematique dans la fabrication des nanofibres conductrices; alors que les CNT sont 

facilement disperses a faibles concentrations et la solution requise pour l'electrofilage est 

habituellement stable pour de longues periodes. Dans le PS/CNT, l'effet de la dispersion 

sur la morphologie finale des nanofibres, particulierement a hautes concentrations de 
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CNTs, a ete etudie de maniere exhaustive. Ce systeme a ete etudie de divers aspects, tant 

experimentalement que theoriquement. Pours les nanofibres electrofilees de PET/CNT, 

les proprietes finales ont ete etudiees par differentes techniques cristallographiques et 

spectroscopiques. En plus du procede d'electrofilage, le filage conventionnel a l'etat 

fondu a ete employe ici pour produire et etudier la structure et les proprietes finales des 

microfibres conductrices de PET/CNT. Considerant l'importance du PET dans la 

technologie des fibres et textiles et les travaux precedents rapportant une gamme 

acceptable de modification de conductivite avec les CNT, la production des fibres de 

PET/CNT est le principal point d'attention de ce travail. Les resultats principaux obtenus 

lors de cette these sont resumes comme suit: 

1) Des fibres nanocomposite ont ete obtenues a travers l'electrofilage de solutions 

du PS/Di-methyl formamide (DMF) contenant differentes concentrations et types de 

CNTs. L'etat de la dispersion des CNTs a ete correle aux morphologies et proprietes de 

fibres nanocomposites. Un copolymere (SBS, type styrene-butadiene-styrene) a ete utilise 

comme agent interfacial pour modifier la dispersion des CNTs dans la solution de PS 

avant electrofilage. Les resultats ont montre que la presence du copolymere ameliore 

significativement la dispersion des CNTs. Le diametre des fibres variait entre 200 nm et 

800 nm, dependamment du type de CNT, de la concentration en polymere et du 

copolymere. L'etude de la morphologie finale des fibres a montre l'ajout de CNT a cause 

une diminution dans la formation des fibres perlees avant la concentration de percolation. 

Cependant, l'ajout de CNT au-dela de la concentration de percolation a augmente 

l'occurrence de boules dans les fibres, dependamment de l'etat de la dispersion. La 

presence du SBS a modifie la dispersion, reduit le diametre des fibres et l'occurrence de 

boules dans les fibres. Les mesures de la conductivite electrique sur des mats de 

nanocomposite ayant des epaisseurs allant de 15 fim a 300 |im ont montre un seuil de 
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percolation electrique autour de 4% de MWCNT; alors que les echantillons contenant le 

SBS ont montre des valeurs de conductivity plus elevees au dessous de la percolation en 

comparaison avec ceux ne contenant pas de copolymere. Une amelioration dans les 

proprietes mecaniques a ete observee avec 1'addition de CNT a des concentrations au 

dessous du seuil de percolation. L'effet du copolymere sur la compatibilite amelioree a 

ete prouve par la comparaison des proprietes mecaniques obtenues pour le PS/MWCNT 

et le PS/copolymere/MWCNT. 

2) La morphologic la structure et les proprietes de mats non tisses de fibres 

conductrices electrofilees de PET/CNT ont ete etudiees dans une etape subsequente. Les 

fibres nanocomposites ont ete obtenues par l'electrofilage de solutions de PET dans le 

melange acide trifluoro-acetic (TFA)/dichloromethane (DCM) dans un rapport egal (1:1) 

et contenant differentes concentrations et types de CNT. Les mats de nanofibres 

electrofilees ont ete produite en utilisant tant le tambour collecteur stationnaire qu'en 

rotation. Les mesures de conductivity electrique sur les mats nanocomposites a montre 

seuil de percolation autour de 2% de MWCNT. Les resultats de l'analyse morphologique 

ont montre des nanofibres plus lisses avec moins de boules lors de l'utilisation du 

collecteur en rotation, particulierement a hautes concentration de CNTs. De plus, les 

nanofibres nanocomposites alignees ont montre des diametres plus eleves en comparaison 

a celles produites en mode stationnaire. A partir des tests de cristallographie, un degre de 

cristallinite plus eleve a ete observe avec 1'augmentation de la concentration de CNT 

jusqu'a des niveaux au-dela de ceux du seuil de percolation electrique. Tant la 

spectroscopie infra rouge a transforme de Fourier que Raman ont montre des 

comportements similaires pour V orientation des chaines de PET et des CNTs dans les 

nanofibres nanocomposites alignees. L'orientation tant du PET que des CNTs augmente 

avec l'alignement des nanofibres en dessous du seuil de percolation, alors que cette 
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orientation etait moindre au-dela du seuil de percolation dans les fibres alignees en 

comparaison avec les mats aleatoires de nanofibres. Les resultats mecaniques ont montre 

le meme comportement au dessous et au dessus du seuil de percolation electrique. Une 

amelioration considerable dans les proprietes mecaniques, particulierement le module en 

tension, a ete observee dans les nanofibres alignees; au moins six fois plus eleves que 

pour les mats aleatoires de nanofibres au dessous du seuil de percolation; alors que l'effet 

de l'alignement etait moins considerable au dessus du seuil de percolation et a hautes 

concentrations de CNTs. 

L'effet de l'ajout de differents types de CNT a ete etudie pour la premiere fois ici 

dans les echantillons electrofiles. Seules des methodes de dispersion physique ont ete 

utilise ; ainsi, nous pouvions faire une comparaison entre tous les types de CNT sans 

changer leur structure de surface. Les resultats obtenus ont montre qu'en depit du fait que 

les SWCNT montrent une amelioration considerable dans la conductivite electrique par 

sa structure unique ; il est plus difficile a disperser. La faible dispersion des SWCNTs et 

meme des DWCNTs, a cause de leurs plus petites dimensions en comparaison avec les 

MWCNTs, est un facteur qui a une grande influence, particulierement a hautes 

concentrations. Les resultats obtenus a partir du PS/CNT ont montre une valeur plus 

elevee de la conductivite electrique a 5% de SWCNT en comparaison avec les autres 

types de CNTs. Ceci etant, une bonne dispersion et compatibility des MWCNTs avec la 

matrice PET a cause plus d'amelioration tant dans les proprietes mecaniques 

qu'electriques. Ainsi, la comparaison des resultats obtenus des SWCNT, DWCNT et 

MWCNT, particulierement la caracterisation complete des proprietes finales des 

nanofibres electrofilees de PET/CNT, ont montre que les MWCNTs sont preferables a 

hautes concentrations. Meme si les SWCNT sont les meilleurs pour la modification de la 

conductivite, les resultats obtenus ici tant a partir des mesures des proprietes electriques 

que mecaniques prouvent que les MWCNT est un meilleur choix aux hautes 
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concentrations de CNT. Ainsi, de maniere generale, nous proposons d'utiliser des 

MWCNT pour les nanofibres nanocomposites a hautes concentrations de CNTs. 

3) Des fibres de PET filees a partir de l'etat fondu ont ete modifiees avec des 

MWCNT pour obtenir des microfibres conductrices ayant des diametres plus petits que 

90 jim. Les proprietes physiques telle que la cristallinite et 1'orientation des fibres telles 

que filees ont ete etudiees par les techniques de diffraction des rayons-X, la spectroscopic 

Raman et la microscopie pour different taux d'etirage (DR) et concentration de MWCNT. 

L'analyse de la morphologie et de 1'orientation des MWCNT apres le procede de filage a 

l'etat fondu a montre la formation d'agglomerats et des CNT hautement orientes. L'etude 

de l'orientation de la phase cristalline du PET dans les fibres etirees a prouve que l'ajout 

de nanoparticules diminue l'orientation des unites cristallines a l'interieur des fibres. 

L'orientation des MWCNTs aussi bien que celle des chatnes de PET a ete etudie en 

utilisant la spectroscopie Raman a different DR et un haut degre d'orientation des CNT a 

ete observe a haut DR. Les proprietes mecaniques et electriques des fibres telles que 

filees ont aussi ete etudiees. Nos resultats ont montre qu'il etait possible d'obtenir des 

fibres conductrices a une concentration de 2% de MWCNT et des fibres plus 

conductrices en utilisant un DR plus eleve ont aussi ete obtenues sans augmenter la 

concentration de MWCNT. Les resultats des proprietes mecaniques ont montre des 

valeurs elevees de la deformation maximale a la rupture en tension des fibres 

nanocomposites, jusqu'a trois fois plus que pour le PET seul. Les fibres nanocomposites 

de PET/CNT ont montre une augmentation phenomenale de l'etirabilite des fibres telles 

que filees et de 1'elongation a la rupture dans les tests mecaniques. Ceci a cause du role 

des MWCNTs dans la reduction de la formation de la phase cristalline et 1'augmentation 

de la dissipation de l'energie imposee par la phase amorphe. Ceci est obtenu parceque les 
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chaines polymere ont adhere raisonnablement aux nanoparticules de MWCNTs dans la 

dispersion modifiee. 

4) Finalement, un essai de modelisation a ete effectue au dernier chapitre de cette 

these et a implique deux modelisations distinctes. Dans la premiere, il etait question 

d'etudier la formation du cone au bout de la seringue et la deformation du jet. L'effet de 

l'ajout des CNTs sur le changement de forme du cone et 1'initiation du jet et son etirage a 

ete etudie en utilisant des methodes empiriques et la technique d'analyse d'images. Les 

resultats obtenus ont ete compare avec la theorie Electro-Hydro-Dynamique (EHD). 

Ensuite, le diametre final des nanofibres a ete etudie en fonction des parametres 

mesurables du materiau et du procede dans la seconde partie. Nous avons utilise la 

methode d'analyse adimensionnelle pour la prediction du diametre final des nanofibres a 

differentes concentrations de MWCNT. A travers cette modelisation empirique, nous 

avons: 1) analyse le changement dans la formation du jet et du profil de vitesse a 

differentes concentrations de MWCNT, 2) evalue 1'applicability de la theorie EHD et des 

hypotheses faites dans cette theorie ainsi que le role des hypotheses simplificatrices et 3) 

propose deux equations pour 1'estimation du diametre moyen des nanofibres par 

l'utilisation de la methode d'analyse adimensionnelle et compare aux resultats 

experimentaux. 
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Chapter 1 

Introduction 

Nanotechnology is an emerging field of technology with many applications in 

different areas such as production and design of nanocomposite material. Polymer 

nanocomposites are obtained by embedding various nanoparticles in polymer as the 

matrix. Polymer materials have found a great deal of interest and applications in textile 

industry because of their exclusive properties such as high flexibility and high 

drawability. The concept of polymer nanocomposite science in textile industry and fiber 

technology developed a new generation of fibers called nanocomposite fibers. Especially, 

obtaining conductive polymer fibers has always been one of the points of interest in 

textile and fiber industry. Since the discovery of CNTs by Iijima in 1991, this 

nanoparticle has found a great range of applications in different areas and with various 

materials especially polymers for conductivity modification. Enhancing the conductivity 

of polymer fibers is achieved by adding different types of nanoparticles such as CNT 

which is the best-known particle for conductivity enhancement. 

From another aspect, one of the most recently employed processes for nanofiber 

production is electrospinning. Conventional fiber processing techniques including wet, 

dry, melt, and gel spinning, are all related to polymer fibers with diameters down to the 

micrometer range. Electrospinning, also known as electrostatic spinning, is the main 

method to produce polymer fibers with nanoscale diameters. The ultra-fine electrospun 

solid nanofibers are notable for small diameters, large surface area to volume ratio, and 

small pore size. In electrospinning process, the same as other spinning methods, 

embedding nanoparticles can play an important role for the modification of properties. 

Even though there has been much progress in the area of electrospinning by different 

research groups, this process is still under development in different areas of applications. 
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In this project, we are to employ the concepts of nanotechnology in nanocomposite 

polymers besides electrospinning to fabricate nanocomposite fibers by embedding CNT 

in polymer fibers. Different polymer materials such as polyacrylonitrile (PAN), polyvinyl 

di-fluoride (PVDF) and polymethyl methacrylate (PMMA) combined with CNT have 

been deeply studied so far to fabricate conductive nanocomposite nanofibers by 

electrospinning (Ko, Gogotsi et al. 2003; Seoul, Kim et al. 2003; Chakrabarti, Nambissan 

et al. 2006; Sundaray, Subramanian et al. 2006). 

In this work, we are to produce and characterize electrospun PS and PET with 

different types and concentrations of carbon nanotubes. Review of the previous works 

shows that there are only a few works concerning the production and characterization of 

PS/CNT and PET/CNT nanofibers. Moreover, the effect of different types and 

concentrations of CNTs is extensively studied here. In addition, thorough 

characterizations of CNT-based conductive nanofibers and microfibers are not available 

in previous papers. In PS/CNT, we will mainly concentrate on the effect of dispersion on 

final morphology of nanofibers, especially at high concentrations of CNTs. In PET/CNT 

electrospun nanofibers, the final properties are investigated by different crystallography 

and spectroscopy techniques. In addition to electrospinning technique, conventional melt-

spinning is employed here to process and study the structure and final properties of 

conductive PET/CNT micro-fibers. Considering the importance of PET in fiber and 

textile technology and previous works reporting the acceptable range of conductivity 

modification with CNT, PET/CNT fiber production is the main point of attention in this 

work. This thesis is constituted of the following sections: 

1. Literature review which is mainly theoretical and experimental description of 

electrospinning process and CNT-based nanocomposite nanofibers especially PS and 

PET nanofibers. 

2. First paper: The study of structure and properties of PS/CNT nanofibers at 

different CNT types and concentrations; moreover, studying the role CNT dispersion 

condition plays on final structure and properties of nanofibers. 



3 

3. Second paper: Processing and thorough characterization of PET/CNT electrospun 

nanofibers at different CNT concentrations and types by various characterization 

methods. 

4. Third paper: inspecting and in-depth characterization of final structure and 

properties of PET/CNT melt-spun micros-fiber and the role of CNT on modification of 

final properties. 

5. Chapter 9: Empirical modeling of electrospinning of CNT-based solutions 

employing two methods of image analysis and dimensional analysis for jet and final 

nanofiber diameter predictions respectively. 

6. Finally, we will give a brief review of the final achievements and the summary of 

the results obtained in this project followed by conclusions and recommendations. 
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Chapter 2 

Literature Review 

2.1. Nanotechnology and Nanocomposites 

Nanotechnology is an emerging field of technology with different areas of 

applications such as material science, mechanics, electronics, optics, medicine, plastics, 

energy, textile and aerospace. The main unifying theme of this technology is the control 

of matter on a scale below 100 nm, in addition to the fabrication of devices on the same 

length scale, at least in one dimension. This value is the representative of this technology 

at manipulating atoms, molecules, and nanosized particles in a manner to manufacture 

materials with fundamentally new properties. Unlike traditional technologies which are 

called "top-down", nanotechnology is called "bottom-up". It means that in 

nanotechnology, the bulk material can be built precisely in tiny building blocks and in 

conclusion the nanomaterials have fewer defects and higher quality. The fantastic 

properties of nanomaterials lie in the fact that by reducing the size to nanometer range, 

the properties of substance dramatically change. As one or more parts of bulk material is 

in nanometer range or even smaller (<100 nm, criterion as the benchmark for the 

nanotechnology classification), it shows unexpected characteristics (Lei Qian 2004; 

Burger, Hsiao et al. 2006). Richard Feynman was the first one that articulated the matter 

of nano in 1959, with the basis of "atomic assembly". The term "nanotechnology" was 

introduced by K. Eric Drexler in his book "Engines of Creation", and since then the field 

of nanotechnology has been the hot topic of both the academic and industrial interests 

(Seeram Ramakrishna 2005). 

With the term "nanostructure", we mean any object or structure whereby at least 

one of its dimensions is within nano-scale. A "nanoparticle" is considered as a zero-

dimensional nano-element, which is the simplest form of nanostructures. A "nanotube" or 
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"nano-rod" is one-dimensional nano-element. Whilst "nano-platelet" or "nano-disk" are 

two-dimensional nano-elements which are useful to manufacture nano-devices along with 

one-dimensional nanoparticles (Seeram Ramakrishna 2005). From the industrial point of 

view, nanotechnology includes various areas of applications as predicted in Fig. 2-1. 

Figure 2-1: Different industrial focuses of nanotechnology by 2010-2015 

(www.nanocompositech.com/nanotechnology/nanotechnology-business.htm) 

As it is shown, electrical applications and material fields of nanotechnology include 

a great share of the industrial focus of nanotechnology. Fig. 2-2 shows the change in the 

trend of nanotechnology applications; this trend also approves that electronic field has 

been one of the main focus of industrial applications recently. 

Structure sze* \ 
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Figure 2-2: The change in trends of nanotechnology applications, past, present and future 

http://www.nanocompositech.com/nanotechnology/nanotechnology-business.htm
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2.1.1. Polymer Nanocomposites 
Polymers constitute a broad class of materials applicable for manufacturing of 

composite materials as matrix. Different types of fillers are employed to improve and 

modify the properties of polymers. The use of nanoscale fillers to enhance the polymer 

characteristics considering different applications is a well-known way of polymer 

modification and results in polymer nanocomposites (PNCs) manufacturing. The 

composition of layered silicates with different types of polyolefins, nylons and thermoset 

matrices are popular types of PNCs. The researches done in the field of PNCs during the 

previous 15 years prove the considerable enhancement of mechanical and physical 

properties of polymers by adding a few amounts of nanoparticles. Moreover, contrary to 

the conventional composites, nanocomposites are easily processed and properly molded 

to the finally desired shapes (Richard A. Vaia 2001). There are different types of 

nanoparticles used to manufacture polymer nanocomposites. Some of the nanoparticles 

are well known for nanocomposite polymeric fiber manufacturing such as carbon 

nanofiber and carbon nanoparticles, clay nanoparticles, metal oxide nanoparticles and 

specifically carbon nanotubes (CNT). In the following parts, some of the properties of 

nanoparticles employed in manufacturing nanocomposite polymeric fibers will be given. 

Carbon nanofiber and Carbon nanoparticle: Carbon nanofibers (CNFs) and carbon 

black nanoparticles are amongst the most commonly used fillers. CNF can effectively 

increase the tensile strength especially as they are employed for nanocomposite fibers, 

while carbon nanoparticles can improve the abrasion resistance and toughness. Both of 

these particles can enhance the chemical resistance and electrical conductivity (Lei Qian 

2004). 

Clay nanoparticle: Clay nanoparticles or nanoflakes are manufactured of several 

types of hydrous aluminosilicates which are different in chemical composition and crystal 

structure. Clay nanoparticles possess electrical, heat and chemical resistance and also the 

ability of blocking UV light. (Lei Qian 2004). 

Metal oxide nanoparticle: Nanosized particles of TiC»2, AI2O3, ZnO, and MgO 

include the group of metal oxide particles. These nanoparticles possess photocatalytic 
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ability, electrical conductivity, UV adsorption and photo-oxidizing capacity against 

chemical and biological species (Lei Qian 2004). 

Among different types of nanoparticles, we are working on CNT to develop the 

electrical conductivity; since carbon nanotubes are one type of the most promising 

building blocks existing in this field. The properties of different types of CNTs will be 

described in details in the following part. 

2.1.2. CNT/Polymer nanocomposite 

Carbon nanotube was first introduced by Iijima in 1991 (Iijima 1991) and among 

the earliest works on polymer nanocomposite complexion based on CNT was the work 

reported by Ajayan et. al. in 1994 (Ajayan, Stephan et al. 1994). CNTs could easily 

replace the other nanofillers such as carbon blacks, silicas, clays and carbon nanofiber 

(CNF). CNTs feature properties such as high flexibility, low mass density and large 

aspect ratio. Moreover, CNTs include the combined electrical, mechanical and thermal 

properties. These characteristics of make them suitable candidates to replace the 

conventional nanofillers and to manufacture multifunctional nanocomposites. CNTs are 

stronger than steel, lighter than aluminum including considerably high conductivity. 

Considering these exclusive properties, CNTs and their composites are of great 

importance in nanocomposite science. CNT production, purification, suspension, filling, 

functionalization, and application are various fields of study in this regard. 

CNTs are long cylinders of covalently bonded carbon atoms (Moniruzzaman and 

Winey 2006). There are two types of CNTs including single-wall carbon nanotube 

(SWCNT) and multi-wall nanotube (MWCNT). SWCNT has a shape of single graphene 

layer rolled up in a cylinder shape, while the graphene layer is a monolayer of sp2-bonded 

carbon atoms. The carbon atoms in the cylinder contain the sp3 character. MWCNT 

consists of a nested structure the same as SWCNT, but with different layers coaxially 

around a central hollow core, with the distance between the layers in the range of about 

0.34 nm. Double wall carbon nanotube (DWCNT) is a special type of MWCNT 

consisting of two concentric graphene cylinders. Based on different shapes of nanotubes, 
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various types of properties are expected from different types of this nanoparticle. For 

instance, DWCNT is expected to include higher flexural modulus compared to SWCNT, 

while it has higher toughness compared to MWCNT, because of its smaller size. The 

structure of different types of CNTs is depicted in Fig. 2-3. 

(b) 

Figure 2-3: Structure of different types of CNTs, (a) SWCNT; (b) MWCNT 

(http://mavimo.org/chimica/nanotubi) 

There are three different ways to produce CNT: Arc discharge, Laser ablation and 

Chemical vapor decomposition (CVD) (Moniruzzaman and Winey 2006). Recently, 

electrospinning has been also introduced as a new method of CNT production (Hou and 

Reneker 2004). All the production methods, mentioned above, result in CNT including a 

mixture of nanotube chiralities, diameters, and length along with different amount and 

types of impurities. Since the properties of final CNT/polymer composite are strongly 

dependent on the diameter and length of the nanotubes, purification is an important stage 

in CNT production. Moreover, the final characteristics of composite are directly related 

to the amount of CNT dispersion and its interaction with the matrix; therefore, 

functionalization and CNT dispersion in matrix are two important stages of CNT/polymer 

composite manufacturing. 

CNT functionalization 

There are mainly two methods of CNT dispersion in solution or polymer matrix: 

covalent and noncovalent methods. The covalent functionalization of the CNT improves 

the nanotubes dispersion in different solvents and polymers. It basically comes from the 

http://mavimo.org/chimica/nanotubi
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misalignment of the rc-orbital of the sp -hybridized carbon atoms. In this method, the 

nanotube surface is prepared to attach covalently to the chemical species. In 

nanotube/polymer composites, functionalization increases the amount of CNT and 

polymer interface and therefore it enhances the mechanical properties. For instance, the 

interfacial adhesion between the covalent or noncovalent functionalized groups of CNT 

and polymer matrix increases and it results in the improvement of load transfer. 

However, an important consequence of CNT covalent functionalization is the disruption 

of the extended n conjugation in nanotubes which has a notable effect on electrical 

properties. Therefore, noncovalent functionalization is proposed for the mixtures with 

electrical applications. In this method adsorption of polymer to CNT surface is performed 

by using an intermediate molecule as coupling agent (Moniruzzaman and Winey 2006). 

2.1.2.1. CNT/Polymer nanocomposite fabrication methods 

Enhancement of CNT dispersion in matrix causes improvement of final properties 

of CNT/polymer composite. Three different dispersion or blending methods are mostly 

used: solutions blending, melt blending and in-situ polymerization. There are other 

methods such as latex technology, solid-state shear pulverization, and coagulation 

spinning methods that have also been recently employed for dispersion modification 

(Moniruzzaman and Winey 2006) as follow: 

Solution blending 

Solution blending is the most used method to produce polymer nanocomposites. 

Solution blending involves the dispersion of CNT in a suitable solvent and then addition 

of the polymer at room temperature or elevated temperature to fabricate the 

polymer/nanocomposite solution. Manufacturing a metastable composition of CNT in 

polymers is dependent on employing different methods such as high-power 

ultrasonication. High-power ultrasonication is an effective method; however it may cause 

CNT degradation and an adverse effect on final properties. CNT degradation is 

dependent on the time and power of sonication and also the length of CNT particles. Use 
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of some additive such as surfactants may improve the dispersion modification, while it 

might have undesirable effect on some properties (Moniruzzaman and Winey 2006). 

There are different methods to modify CNT dispersion in the solution state without 

functionalization. Ausman and his colleagues proposed the use of DMF as the best 

solvent for CNT dispersion. They studied different types of solvents and they found DMF 

as the best solvent (Ausman, Piner et al. 2000). Addition of different types of copolymers 

has been suggested as a method to stabilize CNT in different polymer solutions. Dror et 

al. proposed using a copolymer of styrene and sodium maleate (PSSty) and Gum Arabic 

(GA) which is a highly branched natural polysaccharide to improve the dispersion and 

stability of SWNT in PEO/water solution (Dror, Salalha et al. 2005). In a most recent 

paper, Sluzarenko et al. could modify the amount of CNT-dispersion by adding only a 

small amount of PS-PI to the solution of PS in DMF (Sluzarenko, Heurtefeu et al. 2006). 

Melt blending 

In melt blending method, high shear and temperature are applied to disperse the 

nanotubes in a polymer matrix, and it is the most suitable method for industrial 

production of CNT nanocomposites. In this method, the matrix is highly viscous; 

moreover the dispersion of nanotubes is usually limited to low concentrations. This 

method has been employed so far for different types of polymer/nanoparticles systems 

including MWNT/nylon-6, SWNT/polypropylene, MWNT/polycarbonate, etc. 

(Moniruzzaman and Winey 2006). 

In-situ polymerization 

This method of fabricating polymer nanocomposite is performed by dispersing 

nanotubes in a monomer followed by polymerization. The same as solution blending, 

different types of surfactants are employed to improve the initial dispersion of nanotubes 

in the liquid medium (monomer and solvent). In-situ polymerization causes the covalent 

bonding between the functionalized nanotube and the polymer matrix using various 

condensation reactions. One of the most suitable methods in this area is infiltration 

method in which the reactive agents are embedded into a nanotube structure and then the 

monomers are subsequently polymerized (Moniruzzaman and Winey 2006). 
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Other methods 
In pulverization method, the main focus is to run the mixing process in solid state 

for high viscous mixing of nanotube/polymer. In the solid-state mechano-chemical 

pulverization process, CNT is mixed with polymer matrices employing pan milling or 

twin screw extruder which could be followed by melt mixing. Nanocomposites prepared 

in this way have the advantages of polymer chains grafting on the nanotube and this 

method decreases the amount of interfacial tension and tensile modulus (Moniruzzaman 

and Winey 2006). 

In latex fabrication method, CNT is dispersed in water and then a suspension of 

latex nanoparticles is added to polymer. The resulting product is a colloidal mixture 

which is changed into composites with uniform nanotubes dispersion in a high-viscous 

matrix. The final nanocomposite is obtained by methods such as freeze-drying and 

subsequent processing. This method is applicable for the polymers synthesized by 

emulsion polymerization method or the ones susceptible to change into artificial latexes 

under high-shear conditions (Moniruzzaman and Winey 2006). 

The final method, coagulation suspension, is the method to obtain 

nanotube/polymer composites at very high nanotube loadings. In this case, CNT is 

dispersed using a surfactant solution, the nanotubes are coagulated into a mesh by wet 

spinning and then the mesh is converted into solid fiber by slow draw process. This is an 

exclusive way of fabricating nanocomposites with CNT concentrations of more than 50% 

(Moniruzzaman and Winey 2006). 

2.1.2.2. CNT/Polymer nanocomposite properties 

The characteristics of nanotube/polymer composite arise from the polymer and 

nanotube properties along with the microstructure developed during the processing and 

manufacturing. Therefore, morphology control has been studied extensively as one of the 

most effective parameters on final nanocomposite properties. However, the 

microstructure and morphology control is not necessarily the improvements of all types 
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of properties; therefore, development in one area might value the loss of the other 

parameters and characteristics. 

CNT alignment 

CNTs present high aspect ratios that make them susceptible to orientation by 

different ways. For instance, methods like mechanical stretching, spin-casting, wet-

spinning, melt fiber spinning, and electrospinning are some effective ways of orientation; 

while the spinning methods are the most effective ones (Moniruzzaman and Winey 

2006). In various types of spinning processes, electrospinning is one of the best-known 

methods of orientation, since it gives the fibers with the least diameters and includes the 

highest extensional field and tension for CNT alignment. 

Electrical conductivity 

The capacity of CNT as electrically conducting fillers has been successfully proved. 

For instance, addition of only a small amount of CNT (0.1 wt% or even less) could 

increase the electrical properties by some orders of magnitude. This is the case while the 

other properties such as optical clarity, mechanical properties, or viscosity remains the 

same. A polymer becomes electrically conductive when it passes the percolation 

threshold concentration. Percolation threshold is a concentration above which the 

electrical properties increase considerably. The percolation threshold of CNT/polymer 

nanocomposite has a small value, because of the structure and high aspect ratio of CNT 

particles and it strongly depends on the alignment and dispersion of CNT particles in the 

matrix. Followed by better dispersion and lower alignment of CNT particles and also 

higher aspect ratio, the percolation threshold of the CNT/polymer nanocomposite will be 

lower. Increasing the alignment of CNTs in the matrix results in the reduction of 

nanotube contacts and in this case, the percolation threshold increases (Moniruzzaman 

and Winey 2006). 

The other important point in controlling the electrical properties is the CNT 

functionalization. It is known that the covalent functionalization by making some changes 

in the structure of CNTs might decrease the electrical conductivity improvement. 

However, from another point of view, this reduction in electrical conductivity could be 
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made up by the dispersion modification occurring in the matrix in the case of 

functionalization. 

Mechanical properties 

Some properties of CNTs such as fiber-like structure, low density, high aspect ratio, 

and extraordinary mechanical properties make them reasonable candidates for composite 

reinforcement and the mechanical properties modification of polymers. A low 

concentration of CNTs could result in considerable increase in mechanical properties, 

while by keeping the concentration of CNT at a low value; it is possible to maintain some 

polymer properties like toughness in a proper range. In fact, the preferred properties 

regarding mechanical characteristics could be obtained by making improvement on CNT 

loading, dispersion and alignment. Imperfection in the amount of load transfer in the 

matrix causes poor functionality of nanotube/polymer composite regarding the 

mechanical properties. The load transfer is strongly dependent on the amount of CNT 

loading and dispersion in the matrix, while agglomeration of the nanoparticles may result 

in a reduction in the mechanical properties improvement. 

Thermal conductivity 

The increase in the thermal conductivity is obtained by the atomic vibration. The 

CNTs show excellent potential for thermal conductivity improvement, and the same trend 

is expected for the CNT/polymer nanocomposites. While the results achieved for 

employing CNTs in thermal conductivity improvement does not fulfill the expectations; 

since the phonons entering the nanotube/polymer system move through the matrix instead 

of by moving the electrons. The low amount of thermal conductivity transfer in polymer 

nanocomposites comes from the high thermal resistance existing for heat transfer 

between the nanotubes in the matrix by the structure of CNTs. The introduction of 

covalent bonds between the nanotubes resulted in a reduction in the amount of high 

thermal interfacial resistance of the nanotubes and the thermal conductivity development 

of nanocomposite (Moniruzzaman and Winey 2006). There are other thermal properties 

such as decreasing the amount of flammability and increasing the thermal stability 

obtained by CNT addition. There are some works in the area of CNTs application for 
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thermal properties modification; however, no considerable results have been obtained in 

this matter compared to the CNTs use for the electrical properties improvements. 

Rheological properties 

Addition of nanotubes causes changes in the rheological properties of the 

nanocomposite system compared to the pure polymer. Rheology has recently been used 

as a method of studying the microstructure and change in the properties, especially the 

composite dynamics. The same as the electrical percolation, the rheological properties 

and percolation are dependent on the amount of CNT loading, dispersion, alignment and 

aspect ratio. Most of the researchers in this field have proposed that the superposition of 

the entangled polymer network and the combined nanotube/polymer network is more 

effective to change the rheological properties rather than the nanotube agglomeration and 

networking alone. The research results show that the amount of CNT concentration to 

obtain a reinforced nanotube/polymer network is much lower than the percolation 

threshold necessary for arranging a conductive network in the matrix (Moniruzzaman and 

Winey 2006). 

Followed by a brief introduction about CNT properties, fiber technology and 

especially electrospinning and the studies related to this thesis will be reviewed in next 

parts. 

2.2. Fiber Technology 

There are different methods of fiber formation in fiber and textile industries 

depending on type of material and final application; however, most of the methods 

include the following stages: 

1) Preparation of fiber-forming polymer, 

2) Preparation of the spinning fluid (polymer melt, solution, emulsion, etc.), 
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3) Spinning of the prepared fluid mostly by extrusion and deformation of the melt 

along the spinning line, 

4) Drawing; 

5) Heat treatment; 

6) Textile processing (twisting, oiling, dyeing, etc.) (Ziabicki 1976). 

The first stage might be a totally chemical step, while the other ones include several 

physical structure treatments. There are different methods of fiber manufacturing 

techniques which are different in initial material properties or the processing method. 

Among them, the most important processes include: Melt spinning, Solution dry-

spinning, and Solution wet-spinning. There are other methods which are not as well-

known as the ones mentioned above such as: Phase separation spinning, Emulsion 

spinning, Gel (semi-diluted) spinning, and reaction spinning. Moreover, electrospinning 

as a new method of nanofiber manufacturing process has been recently introduced and is 

totally different from the other conventional spinning methods. 

2.3. Nanofibers 

Nanofiber is a word constituted of two words namely "nano" and "fiber", both of 

which have been described in previous sections. From different categories of nano-

materials point of view, nanofibers would geometrically be placed in one-dimensional 

region. A nanofiber is a kind of nano-material depending on the size of fiber and might 

be considered as nanostructured material in the case of being filled with nanoparticles to 

form the composite nanofibers (Seeram Ramakrishna 2005). There are different ways of 

manufacturing and processing nanofibers and they will be described below, while 

electrospinning process seems the most important one, after which nanofiber technology 

has been developed considerably. 
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Figure 2-4: Electrospun nanofiber compared to conventional fiber (Burger, Hsiao et al. 

2006). 

2.3.1. Applications 

Four main categories of research activities underway for pure polymer and 

composite nanofibers are biomedical applications, semiconductor nanowire synthesis, 

structural composite materials, and filtration (Sawicka and Gouma 2006). 

The biomedical role of nanofibers has extended into various specific applications 

among which tissue engineering has been most widely studied. Scaffolds and synthetic 

matrices mimic the structure and biological activities of the natural extra cellular matrix 

(ECM). Electrospun biocompatible polymer nanofibers can be easily deposited as thin 

porous mats onto a hard tissue prosthetic device which is used as an implant in human 

body. Followed by the introduction of composite materials into the electrospun mats, 

their functionality could be amplified by strategic incorporation of specific species 

(Sawicka and Gouma 2006). 

The next category of electrospun nanofibers especially composite nanofibers and 

conductive properties improvements has also tremendously expanded possible 

applications for nanofibers. For instance, one-dimensional metal oxides have been 

extensively studied due to their modification characteristics on electro-optical, electro-

chromic, ferroelectric, catalytic, and gas sensing properties. Versatility of design, and 

features of electrospinning promise its implementation in multi-functional applications 



17 

such as multi-step fiber template technique described previously (Sawicka and Gouma 

2006). 

Filtration application was the initial purpose of manufacturing nanofiber 

membranes. Electrospinning is a wise solution for filtering out particles in the submicron 

range. Polymer nanofibers obtained are electrostatically charged to improve the ability of 

electrostatic attraction of particles without increasing pressure drop to further improve 

filtration efficiency (Sawicka and Gouma 2006). 

The last topic of nanofiber research is structural-strengthening composite synthesis. 

Majority of the work presented currently on nanofiber composites is concerned with 

carbon nanofiber or nanotube reinforcements which are generally manufactured by 

electrospinning (Sawicka and Gouma 2006). 

All the applications of nanofibers are categorized among the above four categories; 

however, Figure 2-5 shows a more detailed description of polymer and nanocomposite 

applications of nanofibers. 

Cosmetic skin masks 
• Skin cleansing 
• Skin healing 
• Skin therapy 

Life science applications 
• Drug delivery carrier 
• Haemostatic devices 
• Wound dressing 

Military protection clothing 
• Minimal impedance to air 
• Trapping aerosols 
« Anti-bio/-chemical gases 

Nanosensors 
• Thermal sensor 
• Piezoelectric sensor 
• Biochemical sensor 
• Florescence chemical sensor 

Tissue engineering scaffolds 
• Membranes for skin 
• Tubes for blood vessels 
• 3D scaffolds for bone and 

cartilage regeneration 

Filtration media 
• Liquid filtration 
• Gas filtration 
• Molecular filtration 

ndustrial applications (electronic/optical) 
• Micro/nano electronic devices 
• Electrostatic dissipation 
• Electromagnetic interference shielding 
• Photovoltaic devices (nano-solar cell) 
• LCD devices 
• Higher-efficiency catalyst carriers 

Figure 2-5: Different areas of nanofiber and composite nanofiber applications (Burger, 

Hsiao et si. 2006) 
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2.3.2. Production methods 

The manufacturing of nanostructured materials could happen in two ways of top-

down and bottom-up nano-processing methodologies. The first one is the action of 

cutting and removal of the bulk materials to change them into desirable sizes; however 

the second type is based on the idea of employing the building blocks to manufacture the 

nanostructured materials (Seeram Ramakrishna 2005). There are different methods 

known as the nanofiber manufacturing techniques including both top-down and bottom-

up methods. These methods include drawing, template synthesis, phase separation, self-

assembly and electrospinning, which are briefly described as follow: 

1. Drawing: In this method, the nanofiber is produced by using a micropipette and a 

drop of the liquid that is to be spun to nanofibers. A micropipette with the diameter in the 

range of micrometers is dipped into the droplet of liquid close to the contact line of the 

droplet and the surface. The pulling of the micropipette is then occurred with the speed of 

almost 10" m/s to obtain the fibre. During this procedure, somehow similar to dry-

spinning, the evaporation of the solvent causes solidification and molecular fibre 

formation (Seeram Ramakrishna 2005). 

3. Template synthesis: In this method, polymer solution is located neighbouring a 

kind of aluminium mould containing nano-pores, and is forced through the nozzles under 

water pressure. The solution is entered a water medium after exiting the pores that has the 

role of non-solvent and causes the fibre to be solidified. In this method, the fibre diameter 

is determined by the size of pores inserted in the mould (Seeram Ramakrishna 2005). 

4. Phase separation: In this method, the fibres are shaped based on the phase 

separation mechanism and it is only used for a specific type of systems. A gel of polymer 

is shaped at the beginning by adding solvent to the polymer system to shape nanofibers. 

The gel obtained, contains a connecting network of nanofibres shaped in the solvent. The 

nanofibers are obtained after removing the solvent from the network inside structure 

(Seeram Ramakrishna 2005). 

5. Self-assembly: In this method, smaller molecules are arranged in a concentric 

manner to manufacture nanofibers. For this type of nanofibers, molecules can be shaped 
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among the concentrically arranged shapes to form fibres and upon extension in the plane 

normal, the fibres are shaped (Seeram Ramakrishna 2005). Intermolecular forces bring 

the smaller molecules together and determine the final shape of macromolecular 

nanofiber. 

6. Electrospinning: "Electrostatic spinning" or "Electrospinning" is accounted as 

a method of spinning; while unlike conventional methods of fibre spinning including wet 

spinning, gel spinning, dry spinning and melt spinning which are capable of fibre 

production in micrometer range, electrospinning allows the production of fibres in 

nanometer range. In this way, it is possible to obtain fibres from several microns down to 

100 nm. This is the best commonly known method of nanofiber production by which it is 

possible to obtain a large number of polymer nanofibers with different properties for 

various applications. Compared to other methods described above, it is not an exclusive 

technique for only limited number of polymers. Moreover, it is possible to produce a 

larger quantity of nanofibers by electrospinning compared to the previous types. In 

electrospinning, a high voltage electric field is applied on the polymeric fluid stream 

(solution or melt) exiting through a millimetre- scale nozzle. Followed by the application 

of this electrical field, the ions produced inside fibre cause splash and nanofibers 

production (Frenot and Chronakis 2003). This process will be discussed in more details in 

the next section since it is the main concern of this work. 

2.4. Electrospinning 

Various types of materials such as polymers, biopolymers and polymer composites 

can be used in electrospinning to obtain nanofibers. In 1745, Bose could create an aerosol 

spray by applying a high potential to a liquid shaped at the end of a glass capillary tube. 

However, electrospinning method was first used by Rayleigh in 1897 (Reneker and Chun 

1996), thereafter it was studied in more details by Zeleny in 1917 (Burger, Hsiao et al. 

2006). Taylor was the first person who analyzed the electrospinning from physical point 



20 

of view and he analyzed more deeply the cone shaping and the other aspects (Reneker 

and Chun 1996). He investigated the conditions at the point of a droplet deformed by 

electrical force and described the state of stability. Thereafter, the new method of 

electrospraying was patented by Formhals in 1934 (Burger, Hsiao et al. 2006). The 

process has not been employed for large amount of nanofibers production in industrial 

scale except by the Donaldson Company Inc. mainly for the air filtration applications 

(Burger, Hsiao et al. 2006). 

Contrary to the conventional methods of fiber formation, in which the fibers are 

shaped under tension and during exiting the die, in electrospinning process, a high 

voltage is applied on polymer to stretch it and the charge is induced within fluid. 

Therefore, unlike the conventional methods of fiber-spinning techniques, in the 

electrospinning process, the fibers are produced in the nanometer range. Electrospinning 

process is basically similar to electrostatic spraying, both of which involve the use of 

high voltage to shape the jet. In electrospraying, small droplets of particles are formed 

because of the break-up of the liquid jet and the process is often applicable for low-

viscous solutions; however, in electrospinning, solid fiber is generated as the electrified 

jet is continuously stretched due to the splashing existing amongst the fibers and solvent 

evaporation (Li and Xia 2004). Construction of nanoscale composites fibers by 

electrospinning from a mixture is also possible. The electrospun nanofibers obtained from 

electrospinning could also be aligned to make a functional structure such as nanotubes 

and nanowires (Frenot and Chronakis 2003). 

2.4.1. Stages and parameters 

The electrospinning process is based on imposing the electrical forces on the free 

charges of the surface and inside the polymeric liquid. In conventional methods of 

spinning, the fiber is imposed to the tensile, rheological, gravitational, inertial and 

aerodynamic forces. In the electrospinning process, the tensile force for shaping the fiber 

is produced by the interaction of the applied electric field with the electric charges carried 

by the jet in polymer solution. The force is quickly transferred to polymer liquid by 
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applying the electrical forces on the free charges in polymer. The free charges are 

generally ions and they could move in response to the electric field (Reneker and Chun 

1996). The schematic shape of different stages in electrospinning process is shown 

below. 

Figure 2-6: The schematic of different electrospinning stages (Li and Xia 2004) 

Electrospinning consists of three major parts including a high-voltage power 

supply, a spinneret (a metallic needle), and a collector (a grounded conductor) (Li and 

Xia 2004). The power necessary is usually supplied by a direct current (DC). The 

spinneret is connected to a polymer solution or melt syringe which is supported by a 

syringe pump. By the use of the syringe pump, the solution is fed through the spinneret at 

a constant and controllable rate. With applying a high voltage, a pendent drop of polymer 

solution is shaped at the nozzle and the solution becomes highly electrified and the 

induced charges are distributed over the surface of the droplet (Li and Xia 2004). 

In this way, a jet of liquid is shaped after the exit from the pipette at the beginning, 

but different regions are known before the final nanofibers production. These stages are 

four steps including: the jet emerges from the charged surface in the first area of the 

liquid jet called base, then it travels through the jet region, and it is divided into many 
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fibers in the splaying zone, and finally the aimed nanofiber is stopped at the collection 

region (Li and Xia 2004). The first region is the base zone, in which a tapered cone is 

shaped. The axial velocity of the liquid is increased after this area and the polymer is 

accelerated along the axis of the jet. The base usually has a circular cross section or might 

have some other shapes if surface tension of the liquid causes the liquid jet to be attracted 

to the other stationary surface. The second area is the jet zone, in which the electrical 

forces continue to accelerate the polymer liquid and to stretch the jet. Through this 

region, the diameter of the jet decreases and the jet is driven by a high electric potential 

between the solution or melt and the collector. The resisting force in this section in front 

of filament stretching is the elongation viscosity of the jet. The third zone in which the 

splaying occurs, the radial forces from the electrical charges carried by the jet are larger 

than the cohesive energy within the jet, and therefore the single jet is divided into many 

jets with approximately the same diameter and charge density. The external forces 

accelerate and stretch the jet, and the stretching followed by the solvent evaporation 

causes the decrease in the fiber diameter. As the radius of the jet becomes smaller and 

smaller, the radial force from the charge can be large enough to overcome the cohesive 

forces and therefore it splits into two or more fibers. 

Figure 2-7: The schematic of the jet formation and splashing (Burger, Hsiao et al. 2006) 
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The collection region is where the jet is stopped and the polymer fiber remaining 

after solvent evaporation could be collected on the metal surface. 

Figure 2-8: Jet formation phenomena in electrospinning process (Burger, Hsiao et al. 

2006) 

There are different forces controlling the process stages including the jet formation 

and splashing which are two major electrostatic forces. The first type of the force acting 

on jet is the electrostatic repulsion between the surface charges; and it carries the charged 

jet from the spinneret to the target as the main driving force; and the other one is the 

coulombic force exerted by the external electric field. Coulombic force is imposed on the 

fiber to separate the adjacent charged carriers along the fiber from the spinneret to target 

(Wannatong, Sirivat et al. 2004). Under the interaction of these electrostatic forces, the 

liquid droplet at the tip of the needle is deformed into a commonly cone shape known as 

Taylor cone which has been described previously (Li and Xia 2004). Once the electric 

field overcomes a critical value, the electrical forces overcome the surface tension of the 

polymer solution and they cause the ejection of a liquid jet from the nozzle. The 

electrified jet then undergoes the stretching process and the long thread is shaped in this 

way (Li and Xia 2004). The other forces acting on the system include viscoelastic force 

which is a force in front of charged jet stretching, body or gravitational force and drag 

force from the friction between the jet and surrounding air (Wannatong, Sirivat et al. 
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2004). All the above mentioned phenomena and stages are concisely controlled with the 

following parameters in electrospinning which are the main factors to be studied in this 

process. 

Table 2-1: Different influential parameters of electrospinning process (Tan, Inai et al. 
2005) 

Properties 

Solution properties 

Processing properties 

Environmental parameters 

Parameters 

Viscosity 

Polymer Concentration 

Molecular weight of polymer 

Electrical conductivity 

Elasticity 

Surface tension 

Applied voltage 

Distance form needle to collector 

Volume flow rate 

Needle diameter 

Temperature 

Humidity 

Atmospheric pressure 

2.4.2. Process Background 

Although the electrospinning process has been known since 70 years ago, it has 

only been the topic of interest in the recent few years. Following Formhalsv patent in 

1934 (Burger, Hsiao et al. 2006), more than 50 other patents in the field of 

electrospinning were filed (Reneker and Chun 1996). Baumgarten described the 

electrostatic spinning of acrylic microfibers in 1971 (Reneker and Chun 1996). Reneker 

and Chun revived this technology in the 1990s and the possibility of employing this 
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process for different kinds of polymer solutions has been shown in 1996 (Reneker and 

Chun 1996). At this time and followed by the success of these publications, the name 

electrospinning was born and widely used in the papers published after Formhars work 

(Li and Xia 2004). In melt state, there are few studies employing this technique 

(Larrondo and Manley 1981). Chun also used electrospinning for the production of 

nanoscale fibers of polyethylene, polypropylene and polyester from the melt in vacuum 

condition (Reneker and Chun 1996). In the three following tables, the papers available in 

the field of electrospinning and the areas of interests in this process are given concisely. 

Table 2-2: Studies that appeared so far about electrospinning set-up innovations (Sawicka 

and Gouma 2006) 

Innovation 

Vacuum system 

Multi-jet System 

Wheel-like bobbin collector 

Two separated electrically 

conductive substrates 

Metal frame collector 

Insulated mandrel collector 

Copper wire framed drum 

collector 

Spinneret containing two 

co-axial capillaries 

Effect 

Increased electric field strength (Rangpukan and Reneker 

(2001)) 

Electrospinning various materials simultaneously 

including uniform thickness (Gupta and Wilkes (2003), 

Ding et al. (2004)) 

Aligned nanofibers with 1-2 urn gaps between individual 

threads (Theron et al. (2001)) 

Uniaxially aligned nanofibers stretched across the 

substrates (Li et al. (2003)) 

Oriented nanofibers (Dersch et al. (2003)) 

Aligned nanofibers (Sundaray et al. (2004)) 

Nanofibers oriented perpendicularly to the copper wires 

(Katta et al. (2004)) 

Hollow nanofibers, nanocomposites of 'unspinable' 

materials (Li and Xia (2004)) 
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Table 2-3: The papers about studying electrospinning process parameters (Sawicka and 

Gouma 2006) 

Parameter under study 

Needle to collector distance 

Row rate 

Voltage 

Results obtained 

Exponentially inverse to the volume charge density 

(Theron et al., 2004) 

Inversely proportional to bead formation density (Fong et 

al., 1999; Gupta & Wilkes, 2003) 

Inverse to the electric field strength (Fong et al., 1999; 

Theron et al., 2004) 

Inversely proportional to fiber diameter (Gupta & Wilkes, 

2003) 

Directly proportional to the electric current (Theron et al., 

2004) 

Directly proportional to the fiber diameter (Sawicka et al., 

2005) 

Inversely related to surface charge density (Theron et al., 

2004) 

Inversely related to volume charge density (Theron et al., 

2004) 

Inversely proportional to surface charge density (Theron et 

al., 2004) 

Direct effect on bead formation (Deitzel et al., 2001) 

AC potential improved fiber uniformity (Kessick et al., 

2004) 

Inversely related to fiber diameter (Gupta & Wilkes, 2003) 
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Table 2-4: The papers about studying electrospinning solution parameters (Sawicka and 

Gouma 2006) 

Parameter under study 

Concentration of 

polymer 

Ionic strength 

Solvent 

Temperature 

Viscosity 

Results obtained 

Directly proportional to the fiber diameter (Gupta & Wilkes, 

2003) 

Power law relation to the fiber diameter (Deitzel et al., 2001) 

Cube of polymer concentration proportional to diameter 

(Demir et al., 2002) 

Parabolic - upper and lower limit relation to diameter (Hsu & 

Shivkumar, 2004) 

Directly proportional to charge density (Zong et al., 2002) 

Inversely proportional to bead density (Zong et al., 2002) 

Effects of volume charge density (Theron et al., 2004) 

Directly related to the evaporation and solidification rate 

(Theron et al., 2004) 

Inversely proportional to viscosity (Demir et al., 2002) 

Uniform fibers with less beading (Demir et al., 2002) 

Parabolic relation to diameter, and spinning ability (Hsu & 

Shivkumar, 2004) 

2.4.3. Process Modeling 

Similar to all processes, modeling is quite important in studying the electrospinning 

and there are numerous papers describing the controlling phenomena in electrospinning 

theoretically for deeply understanding of this process. In electrospinning process, the 

negative or positive charges of the syringe cause an increase or a decrease in the amount 

of electrons in polymer solutions. The main source of charge build-up is correlated to the 
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magnitude of the applied voltage; however, parameters such as the density of free 

electrons in an aromatic structure have also important effects. In addition, the existence 

of the ions in the overall neutral polymer helps in the charge build-up. Followed by the 

charge build-up, the electric force effects the droplet exiting the syringe towards the 

collector. In addition, a source of similar ions is produced inside the cone and jet which 

results into build-up the repulsive forces inside jet. Surface tension and other hydrostatic 

forces are against the jet initiation and splashing. Therefore as the opposing forces such 

as columbic force and electric field overcome the hydrostatic forces, the second and third 

regions of the process start to develop. It is possible to describe the process 

mathematically by employing the concepts of some well known phenomena such as 

electro-hydrodynamic (EHD) theory and force balance. In most of the modeling works, 

the fluid is assumed viscoelastic (the importance of elastic forces is clear in polymer 

materials) and incompressible. Moreover, a cylindrical coordinate structure is assumed to 

obtain a logical force balance for the system; even though, the first part and the shaped 

cone structure are well-defined by the spherical coordinate (Seeram Ramakrishna 2005). 

Flow 

Figure 2-9: Splitting of a liquid jet in electrospinning 

In this process, a complex fluid jet is ejected from the end of a syringe and is 

stretched smoothly by electrostatic forces. In overall, there is a force balance among 
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various forces existing in the cone, while the gravity and electric polarization stress tend 

to elongate the droplet by the tangential electric stress on the surface; though viscous drag 

force slows down the formation of the cone. Moreover, there are two more forces active 

on the surface of the droplet and in forming cone. These are the surface tension trying to 

minimize the surface area pulling the surface vertically and an opposing force which is 

the normal electrical stress. This force tries to maximize the distance between electrical 

charges on the surface by enlarging the surface area. In the case where the electric field is 

large enough, the droplet is deformed into the Taylor cone. As soon as the electrostatic 

repulsive forces overcome the surface tension, a fine charged jet develops that is typically 

1/100 in diameter of the needle opening. After leaving the cone, this jet then moves 

toward the counter electrode. While moving to the collector, the jet becomes unstable and 

in this second stage, there are three possible instabilities. First: where droplets are formed 

which is referred to as Rayleigh instability; second: where varicose (zig-zag) structures 

are visible, which is referred to as axisymmetric instability; and third: where a non-

axisymmetric bending of the fiber occurs. This last bending instability is the most 

important one that needs to be achieved, as it is responsible for thinning the fibers from 

about a micron into the nanometer range. 

a (jet radius) 

V||(iii plane velocity) 

Figure 2-10: The element employed for the modeling 
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Aside from any additional information such as EHD, first the simplest equations 

available for the modeling of this process are given here. 

• Conservation relations: The basic consideration for the modeling of 

electrospinning process is the three most important conservation quantities including 

mass, momentum and the charge density. For the mass part, it is possible to write that no 

mass is produced nor is destroyed, but it is transported from one place to another. 

Therefore, in a specific control volume between the distances z and z+dz, it is possible to 

write that: 

m = pnR2dz (2-1) 

where p is the liquid density and R is the jet radius. Over the time interval dt the amount 

of mass entering and exiting the control volume are: 

m,„ = pxR2vdt | (2-2) 

mOM=p7lR\dt \z+dz (2-3) 

where v is the liquid velocity. 

Considering the mass balance: 

Atm = min-mom (2-4) 

then we have: 

^ + ^ = 0 (2-5) 

dt dz 

For the momentum part, all the processes involving motion should be considered. 

For the momentum balance of the fluid segment bounded by the sections z and z+dz, it is 

possible to write: 
M = pnR2vdz (2-6) 

while: 

dz = vdt (2-7) 

The flux of momentum into and out from the bounded volume for the time interval dt can 

be written as: 

Min=pnR2v2dt\ (2-8) 
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M0Ut=pnR2v2dt\ (2-9) 
'z+dz 

The liquid pressures (p) at the boundaries z and z+dz should be considered and therefore: 

M\z = pnR2dt \z (2-10) 

M\ J =p7iR2dt I A (2-11) 
I z+dz r i z+dz 

Concisely, for the momentum balance, it is possible to write: 

A,M=Min-Mout+M\z-M\z+dz (2-12) 

And then it results into: 

fM+A(v^)=-iiV) <2-I3) 
Combining this equation with conservation of mass gives: 

^ + v^ = —LTdpR2/ (2-14) 

dt dz pR2 /dz 

Equation (14) is the simplest form of the momentum balance equation and it has been 

extended and modified by different authors. For example, Reneker et al. could modify the 

equation by considering an electrical field imposed on a jet of viscoelastic fiber (Reneker, 

Yarin et al. 2000). In their modification, they proposed the following equation for the 

momentum balance: 

dv e2 eVn. __2 ,« 1Cx 
m— = --T—^ + nR2av (2-15) 

dt I h 

In this Equation, e is the charge, / is the length of ideal rectilinear jet, Vo applied voltage, 

h distance from pendant drop to ground collector, ov is the viscoelastic stress, and m is 

the total mass (Reneker, Yarin et al. 2000). 

In 2002, Feng considered the stretching of a non-Newtonian electrified jet of a 

liquid for modeling and simulation of electrospinning (Feng 2002). He divided the 

electrospinning to two main regions, one at the exit from capillary at the nozzle and 

during the stretching smoothly from the needle and the other one is the second part which 

is the bending instability and sufficiently thinning of the liquid. In his model, he focused 

on the first part which was the main part of the process (Feng 2002). In his modeling 
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procedure, he could obtain that the jet is elongated by the electrostatic forces while 

surface tension, viscosity and inertial forces also play an important role. They employed 

\dR(z) 
the concept of slender-body theory applicable for various spinning processes ( 

dz 
<1 ) 

and therefore he could ignore the radial velocity profile. Finally, he could achieve the 

following model for the momentum balance: 

—inR2pv2) = TiR2pg +—[^?2(-p + Tzz)]+-£• 2nRR'+2nR(ft -t
e
nR') (2-16) 

dz dz R 

-P + *z> 

Figure 2-11: Momentum balance element for Feng's model 

where rK is the axial viscous normal stress, p is the pressure, y is the surface tension, and 

ft and fn are the tangential and normal tractions on the surface of the jet due to the 

electrical field. Compared to the previous models, he could also consider the effect of 

electrical forces in the force balance equation quite well. The prime indicates derivative 

with respect to z and R' is the slope of the jet surface. In this model, he employed both 

the concept of Newtonian and non-Newtonian fluids. In another work, he focused on the 

determining role of the governing equation of the fluid and the effect of fluid 

viscoelasticity (Feng 2003). He used the Giesekus viscoelastic model and, employing the 

previous governing equations, repeated the modeling in this case (Feng 2003). 

In the case of conservation of charge, the third conservation rule, which is really 

important in this process and distinguishes electrospinning form the other spinning 

methods, it is possible to write: 

l=7rR2KE + 27iRv0 (2-17) 
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where: / is the constant total current in the jet, K is the liquid conductivity, E is the 

vertical component of the electric field and a is the surface charge density. The second 

and third terms in this formula refer to the current flow across the jet cross-section and its 

perimeter respectively along the jet axis (Seeram Ramakrishna 2005). 

• Force balance equation: The forces imposed on the system along with the 

Newton's second law of motion results in: 

d2P 
ni­

di2 Z/ (2-18> 

where m is the equivalent mass and the most important forces acting on the system in the 

simplest forms are: 

Zf = fc + fE+fv+fs + fA+fG (2-19) 

In the above Equation, different forces include: fc- columbic, /E- electric field, fy\ 

viscoelastic, /$: surface tension, fA: air drag, and/c: gravitation respectively. These are the 

most important controlling forces and we could describe them as follow (Seeram 

Ramakrishna 2005): 

fc=j (2-20) 

eV 
fE—~ (2-2D 

h 

^ L = 9.^. - 9_0 (T o calculate fv) (2-22) 
dt I dt (l 

fs = I . , \i\x\sign{x) + j\y\sign{y)] (2-23) 
fy + yf 

fA = 0.65nRPairv 
/ s-0.81 

V Vair J 

(2-24) 

fG=pgnR2 (2-25) 

In the above Equations, the parameters include: e the charge, / is the length of ideal 

rectilinear jet, Vb applied voltage, h distance from pendant drop to ground collector, crv is 

the viscoelastic stress, G is the elastic modulus, JU is the viscosity, a is the surface tension, 
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k is the jet curvature, p is the density and v is the cinematic viscosity (Seeram 

Ramakrishna 2005). The air drag force (/A) is produced by the movement of the liquid jet 

in resistance to air and this force along with gravitational force (fc) could be neglected 

(Reneker, Yarin et al. 2000). The index / means the i'h section of the fiber and i and j are 

the space unit vectors (Reneker, Yarin et al. 2000). 

The equations given above was obtained based on the simplest form of 

mathematical modeling of the electrospinning process which assumes a rectilinear 

electrified jet of liquid in an electric field parallel to its axis. In the most applicable and 

well-known approach for the modeling of electrospinning process, the concept of 

electrohydrodynamic (EHD) theory is employed. EHD deals with fluid motion induced 

by electric field. The scientists, who have focused so far on the EHD theory, assume three 

main parts for the process. These three parts include cone formation, the thinning of fiber 

and drying zone of the fiber (Sigmund, Yuh et al. 2006). The main portion of the process 

is the formation of the cone at the nozzle tip and fiber thinning which are the determining 

factors for the development of nanofibers (Sigmund, Yuh et al. 2006). 

Normal electrical stress 

Viscosity 

\ \ 
Tangential electric stress 

Electric polarization stress 

Figure 2-12: Different forces acting on the electrospun liquid jet (Sigmund, Yuh et al. 

2006) 

EHD description of the phenomena includes the identification of the processes with 

the presence of the electrical liquids and its movements. Most of the scientists have 

focused on electrohydrodynamic atomization in the cone-jet mode for many years. 

Following Zeleny (1914, 1915, 1917), who developed the first solid scientific description 
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of the process; many people have contributed to understand and model this process. In 

such a process described by EHD which is quite similar to electrospinning, a liquid is 

supplied to a nozzle at a low flow rate. Then a droplet is formed at the nozzle, a strong 

electric field is applied over the droplet and, as a result, the electric field induces free 

charge on the liquid surface. Consequently, electric stresses occur on the surface and 

these stresses change the droplet shape into a conical shape. At the cone apex, a liquid jet 

with a high charge density occurs. In certain circumstances, this jet will break up into 

highly charged main droplets with a narrow size distribution, and a number of smaller 

secondary and satellite droplets. The volume ratio of the secondary droplets and the 

satellites over the main droplets is relatively small, but the number ratio is often larger 

than one (Hartman, Brunner et al. 1999). 

Electrohydrodynamic atomization in the cone-jet mode has to be described by at 

least three different processes. The first process is the acceleration of the liquid in the 

liquid cone. This acceleration process and the shape of the liquid cone could be described 

by the force balance of surface tension, gravity, electric stresses in the liquid surface, 

inertia and viscous stresses. The second process in electrohydrodynamic atomization in 

the cone-jet mode is the breakup of the jet into droplets. The third process is the 

development of the spray after droplet production. Electrical interaction between highly 

charged droplets with different sizes and thus different inertia causes a size segregation 

select (Hartman, Brunner et al. 1999). 

Studying the EHD as the basis phenomena controlling the electrospinning began in 

17th century by William Gilbert. He described the formation of a conical shape upon 

bringing a charged jet above a droplet. Rayleigh in 1882 studied the droplet dynamics 

and how radially directed forces stemming from interfacial charge offset surface tension. 

Taylor (1964) was the first who calculated analytically a conical shape, which balanced 

the surface tension and the electrical normal stress for general material. However, in his 

assumptions, there was no liquid jet at the cone apex and therefore there was no electrical 

current and liquid flow through this liquid cone. Joffre (1986) approached the problem 

numerically, which allowed a more flexible cone shape. Since in Taylor's case, the cone 
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had to be solved mathematically, only the angle at the cone apex could be used as a 

parameter. However, also in Joffre's calculations there was no jet and the cone apex was 

just rounded off (Hartman, Brunner et al. 1999). 

Description of the EHD phenomena is obtained by the employment of the liquid 

motion coupled with the existence of electric field and the modified version of mass and 

momentum balance equations. In summary, one of the best models presented by Taylor 

and Melcher include five important equations as follow, and they used Maxwell type 

constitutive equation for the liquid (Saville 1997): 

^L^ + ReuVu = -Vp--EEV£ + V(£E)E + V2u&Vu = 0 (2-26) 
Tp dt ~ ~ 2 

V c r £ = 0 (2-27) 

—-^- + — \uVsq-qn-(n- V)w] = | - aE_\ • n (2-28) 

\\eE_l-n = q (2-29) 

aM •n]-n = -£(E-n)2-£(E-t,)2-e(E-t2)
2\\ 

2 
\g!L-r&-ti = qE-ti 

(2-30) 

T/j is the viscous relaxation time and is equal to l2p/fi, rp is the process scale time, u is the 

velocity vector p is the pressure, E_ is the electric field strength, e dielectric permittivity, a 

££ / 
is the conductivity, rc is the electric characteristic time and is equal to y , tf is the 

convective flow rate and it is equal to //«/, q is the free charge per unit area, </* is the 

Maxwell stress tensor, tt represents either of two orthogonal tangent vectors embedded 

in the surface, and n is the local outer normal (Saville 1997). 

Employing this concept, Fernandez de la Mora (1994) gave the following relations, 

which estimate the droplet radius and the current through the liquid cone: 

x l / 3 

1^(e,{^ + c, (2-31) 
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I = b2(er] 
}QK 

+ c. (2-32) 
-t J 

where, dd is the droplet diameter (m), Q is the liquid flow rate (m s" ), K is the 

conductivity (S m"1), y is the surface tension (N m"1), er is the relative permittivity of the 

liquid, eo is permittivity of a vacuum (C V"1 m"1), / is the current (A), bj and b2 are 

functions of the liquid permittivity, and cj and C2 are constants, which were equal to zero 

in the representation of Fernandez de la Mora. These relations are often called the scaling 

laws for electrohydrodynamic atomization in the cone-jet mode and are only valid for 

liquid cones with a flat radial profile of the axial liquid velocity in the jet. These relations 

were modified by Ganan-Calvo (1994, 1997). He gave new relations for bi and &2, and 

introduced the constants c\ and C2. He also presented a new scaling of current and droplet 

size, where they suggested a new parameter of the characteristics flow rate which is equal 

to Q0=pKs0' y1 (Hartman, Brunner et al. 1999). 

i/2i P£0 dd = 3.7&T' 
-2 /3 

0.60 
yK 

(2-33) 

/ = 4.25 (7QK ) 

In 
'Go 

1/2 A 
(2-34) 

J ) 

Following the primer works available in this area and modeling the electrical cone-

jet by the use of EHD concept, Hartman et al. made a complete analysis on the shaped 

cone-jet and forces acting on the system as depicted in Figure 2-13. 

The droplet size mainly depends on the liquid flow rate and liquid characteristics 

such as density, viscosity, conductivity, electrical permittivity and surface tension. 

Moreover, the electrode configuration and the applied potential have some influence on 

its shape. In the shaped liquid cone, the charge is transported in two ways. The first way 

is through conduction in the liquid due to the electric fields and the second way is by 

charge convection. The electric field induces free charge at the liquid surface and this 

free charge consists of ions. The electric field at the liquid surface accelerates the ions 
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towards the cone apex and the ions in their turn accelerate the surrounding liquid. It is 

assumed during the modeling procedure that the ion velocity can not be much larger than 

the liquid velocity, since the ions loose their velocity due to collisions with the liquid 

molecules. The liquid velocity and the ion velocity depends then on the local electric 

field strength, the amount of free charge, and on the flow properties of the liquid 

(Hartman, Brunner et al. 1999). The final structure of the liquid cone is determined by 

different forces acting on the system including surface tension, normal electric stress, and 

the velocity pressure in the cone. Employing the EHD theory, one-dimensional axial 

momentum equation of the jet may be written as: 

2r \Wr*j 
-\<r F 

fc0 

+ l/2pu 
(2-35) 

rs dz 

In the above equation, rs is the radius of the liquid cone and jet in the cylindrical 

coordinate system (z is the axial coordinate along the jet), uz is the liquid velocity, x is the 

tangential stress, and o is the surface charge density (Hartman, Brunner et al. 1999). 

The electric field of a ring of charges could be obtained as: 

£ , = - f r (2-36) 

q is the charge on the ring, Ez is the electrical field strength in axial direction, and 

therefore, it is possible to write: 

_ 2nA(rsa)Az _ odrs rsdo 

e0Az2 e0dz e0dz 

As the equation shows, since the amount of dr/dz is small and negligible, the 

strength of axial electrical field is strongly dependant on the tangential electrical field 

strength. From another point of view, the permittivity of the liquid affects only the axial 

electrical field and not the tangential one, therefore, the amount of electrical field strength 

is almost independent of the liquid permittivity (Hartman, Brunner et al. 1999). For 

simplicity, it is possible to assume that axial liquid velocity in the jet is equal to velocity 

in the jet center, and it is possible to write that: 

fi^^f^s^ + ̂ f (2-37) 
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" ; = - % (2-38) 

Combining the above equations, it is possible to write that: 

ys0 2pe0Q 2 ^ 

2r,<r* <?nlrl j 

dr. r.do ^drL+rsdc^ 2_3 9 

dz adz dz odz 

In this equation, two dimensionless numbers can be identified. The first number 

describes the relation between the surface tension and the normal electric stress. The 

second dimensionless number identifies the relation between the velocity pressure, and 

the normal electric stress. 

o-
f \ 

o'\ rs = r . r'; z = r . z (2-40) 

where a' is the dimensionless surface charge, rs' is the dimensionless radius of the liquid 

surface, z is the dimensionless axial coordinate of the jet, and rs* is a characteristic 

radius. In the cone shape part, the shape is obtained by the surface tension stress and in 

that of the jet; the shape is determined by the velocity pressure. At the position on the jet, 

where the first dimensionless number of equation (39) is equal to the value of the second 

dimensionless number, the velocity pressure becomes dominant over the surface tension, 

the radius is given by: 

r*.v = 

/ , \ l / 3 
rpQ2^ (2-41) 

7 

rStVis the cone radius, where the jet emerges from the liquid cone (Hartman, Brunner et al. 

1999). 

The same as the previous approach, the current depends on the charge transport in 

the liquid cone and the charge in the system is transported in two ways. In the base of the 

cone, the charge is mainly transported through conduction. On the other hand, in the jet, 

the charge is mainly transported by charge convection. The current through the cone 

equals the sum of these two contributions. Therefore: 

/ = 7a?E-K + 2nru7a (2-42) 
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This equation is the same as the one given in the simplest modeling approach. It should 

be pointed out that the sum of the charges of those in the charge conduction and 

convention should be equal to zero and consequently, 

d(rf{d{att)ldz))s Qe0d{a/rs) 

dz K dz 

This equation in the dimensionless form could be written as: 

Qe0 r. - (2-44) 
K ) 

This is the value representing the radius where the conduction is too low for 

supplying the current. Therefore, employing the above formula and assumptions and with 

flat radial profile of the axial velocity, this equation is: 

,.<&.»,!" * + K r , 
r s 

f N I / 2 

7 
y£or

s- j 

/2 

nrs Ez ={jKQ) ,1/2 2<r' ' V 
—r + nrs Ez 

v rs 

= ()KQ)v2(2-45) 

In this formula, E'z is the dimensionless electric field in axial direction (Hartman, 

Brunneretal. 1999). 

Hartman et al. modeled the electrospinning process employing the above mentioned 

EHD concepts. They estimated the amount of charge accumulated during the process and 

also the shape of the cone in electric field by assuming a Newtonian fluid. They gave a 

complete physical mathematical model and achieved the forces acting on the system 

analytically as follow (Hartman, Brunner et al. 1999). 

For the part related to the cone shape calculations, they used the Navier-Stokes 

equation. In their balance, the change in potential energy (pressure pijq, gravity pg) and the 

kinetic energy pEidn (velocity pressure) is in balance with input energy due to the 

tangential electrical stress XEI , the change in polarization stress aE , and the energy 

dissipation due to the viscous stresses in the liquid c^, x̂  and obtained: 

3foM. + ft.-»,-*.-pJ=2( } (2_46) 
dz rs 

Puq = Pout + &Pn,M + &PEn + &Ps (2-47) 
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where poyA is the air pressure, Apn:fi is the stress in the liquid surface due to viscous stress, 

ApEn is the normal electric stress in the liquid surface, and Aps is the surface tension stress 

in the liquid surface. 

The pressure inside the liquid cone depends on the pressure of the surrounding air 

and the stresses that occur in the liquid-air surface. The air pressure is independent of the 

axial coordinate z, and can be neglected. Therefore, only the stresses in the liquid surface 

are taken into account. The stresses that occur in this surface are the surface tension of 

the liquid, the normal electric stresses, and the viscous surface stress. 

a) Aps — + — 
V rsl rs2 J 

(2-48) 

Aps is the pressure difference due to the liquid and air, while rsi and rS2 are radii of 

curvature and for a cylindrical coordinate system, it is possible to write (Hartman, 

Brunneretal. 1999): 

*PS = 7 
( 1 d2r/dz2 ^ 

(2-49) 
(l + idrjdz)2)'2 (\ + {drs/dz)T 

b) Normal electric field induces a free electric charge and a polarization charge in the 

liquid surface and the electric field and these charges create a normal electric stress in the 

liquid surface. 

ApF =-l/2en(E
2 -2eE2. +E2. ) (2-50) 

r En 0 \ n . o u t r n.ins n,ms J V ' 

where £n,ins is the electric field strength normal to the liquid-air surface inside the liquid 

and .En.out is the electric field strength normal to the liquid-air surface outside the liquid 

(Hartman, Brunner et al. 1999). 

c) For the third one and viscous surface stress, the balance of normal stresses at the liquid 

surface as shown in Figure 2-13 results in: 
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Liquid Pressure + Viscous 
Normal Stress 

-Ph, + ZMdVaz/ 

Pressure 
Surrounding Air 

Figure 2-13: The viscous stress and normal stresses balance (Hartman, Brunner et al. 

1999) 

_2{drjdzf-l duz (2-51) 
(drs/dzf + l dz 

In this equation |j, is the absolute viscosity of the liquid. 

The kinetic energy is simply achieved concerning a factor (Cprofiie) for the 

assumption of flat profile. Since the velocity profile is assumed flat, while there is a 

radial velocity profile in reality. 

PEkin=Cprofllel/2p(uz)
2 (2-52) 

In addition, the tangential viscous surface stresses and also the bulk viscous stresses 

due to the normal axial stresses should be calculated. 

3ju(du,/dz)(drs/dz) 
TM = 

°u=2JU 

\ + {drsldzf 

duz 

~dz~ 

(2-53) 

(2-54) 

In the case of using a material capable of being polarized in an electric field during 

electrospinning process, a kind of normal stress is produced inside the material due to the 

polarization which could be calculated as: 

/ = V.e0erE +1 / 2{er - l)e0VE2 (2-55) 
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where f is the force per unit volume, and E is the electric field strength. It is assumed that 

all the charges are at the surface of the material and there is no charge at the bulk and 

therefore: 

V.e0erE = 0 (2-56) 

And consequently the polarization stress is: 

crE=l/2(er-l)£o(E
2
n.m + E?) (2-57) 

In this equation, E, is the tangential electric field strength at the liquid surface. 

pg = pgz is the gravitation contribution and tangential electric stress by assuming the 

accumulation of the charges on the surface is TEt - oE,. 

As shown in the above equations, there are three important parameters to be 

calculated including Electric field, Current balance at the liquid interface and Axial 

liquid velocity at the liquid surface. The electric fields inside and outside the liquid are 

numerically calculated using Gauss' law: 

J£0£rE dS = qc (2-58) 

where S is the surface and qc is the encapsulated charge. 

The current balance is written by assuming two kinds of charge transfer, one of 

which is the conduction and the other one is the convention as mentioned before and 

shown in the Fig. 2-14. 

Figure 2-14: Current balance at the liquid-air interface (Hartman, Brunner et al. 1999) 
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The term related to the conduction part of the current is: 

Ik=KEnMsS = KEn.ns2ws(l + (drs/dz)2)U2Az (2-59) 

and the conduction term is: 

/„ = 1nrsuzp (2-60) 

where uZyS is the liquid velocity at the liquid-air interface in the axial direction. 

The axial liquid velocity at the interface should be calculated for the current 

balance, either. The following equations should be employed to make the calculations 

completely: 

A + l A = £ f g +
3 M A)\A)

 (2.6i) 
or dz \^(drs 1 + W 

ur=uz^- (2-62) 
dz 

And finally the equation necessary to calculate the velocity at the interface is: 

^ = mSdrJdzf Ijdrjdzf-A d^ 

dr rs l + (drs/dz)2 z dz1 

By use of the above equations, it is possible to fully analyze the electrospinning 

process employing the concept of EHD theory. Hartman et al. could well predict the cone 

shapes assuming a Newtonian fluid by these equations besides a complete force balance 

analysis that they considered in their models (Hartman, Brunner et al. 1999). Spivak and 

his coworkers presented a model for the steady state jet in electrospinning process in 

2000 (Spivak, Dzenis et al. 2000). They considered an electrohydrodynamic model of 

steady state electrospinning of a single jet in which the liquid was modeled by a power-

law rheological model. They could predict some parameters such as final nanofibers 

radius in a good agreement with the experimental results obtained so far (Spivak, Dzenis 

et al. 2000). Reneker et al. modeled and analyzed the instability of the electrical charged 

jet by use of the above mentioned equations (Reneker, Yarin et al. 2000). They showed 

that the longitudinal stress caused by the external electric field acting on the charge 
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carried by the jet is the main factor to stabilize the straight jet for a part of distance. As a 

result, a lateral perturbation grew in response to the repulsive forces between adjacent 

elements of charges carried by the jet. They assumed a Maxwellian type of viscoelastic 

equation for the liquid part simulation. In their modeling they could show that the effect 

of gravitational force and aerodynamic forces are negligible (Reneker, Yarin et al. 2000). 

Yarin and his colleagues, in 2001, modeled the electrospinning process and showed that 

the stable shape is obtained as a result of balancing between two electrical and surface 

tension forces as the main controlling parameters (Yarin, Koombhongse et al. 2001). 

They also concluded that in highly viscoelastic liquids with non-relaxing elastic stresses, 

that force is also important in determining the final shape of the cone (Yarin, 

Koombhongse et al. 2001). In 2001, Yarin et al. studied the electrospinning of nanofibers 

and the bending instability of the process (Yarin, Koombhongse et al. 2001). They 

developed a localized approximation to calculate the bending electric force acting on an 

electrified polymer jet, which is the most important determining factor in electrospinning 

process for nanofibers manufacturing. Calculating this force, they obtained an analogy 

between the electrically driven bending instability and the aerodynamically driven 

instability. They also calculated the jet paths during the course of nonlinear bending 

instability leading to the formation of large loops which ends in nanofibers (Yarin, 

Koombhongse et al. 2001). Hohman and his colleagues studied the same subject and 

electrospinning jet stability both from the theoretical and experimental points of view 

(Hohman, Shin et al. 2001; Hohman, Shin et al. 2001). They focused mainly on studying 

the effect of electric field strength and they showed both theoretically and experimentally 

that the surface charge density and fiber diameter are the most important determining 

parameters. They mainly studied the effect of electric field strength on instability of the 

fiber jet and electrical instabilities. They performed a complete parameter analysis on the 

electrical instabilities by studying the effect of different parameters on the tangential 

component of electric field. In their analysis, they mainly aimed to propose a model for 

correlating the final fiber morphology as a function of different material and process 

parameters (Hohman, Shin et al. 2001; Hohman, Shin et al. 2001). He et al. focused on 
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modeling of electrospinning process and they could obtain the critical length of straight 

jet in electrospinning (He, Wu et al. 2005). They used the Chauchy's inequality and could 

obtain a critical relationship between the radius (r) of jet and axial distance from the 

nozzle for a stable condition of operation. They used the same concept of previously 

mentioned formula, and they obtained the critical radius and length of the jet for 

estimating initiation the instability of the electrospinning system, the same role that Re 

number plays in conventional spinning method (He, Wu et al. 2005). Kinematics of 

mechanics of a stable electrospun polymer jet has been recently studied by Helgeson et 

al. (Helgeson, Grammatikos et al. 2008). They used the concept of EHD theory to 

correlate the influence of mechanics in the straight portion of the jet to final fiber 

morphology. In their theoretical/empirical analysis, they could predict the final fiber 

morphology of solutions with a wide range of concentrations and conductivities. The 

final morphology could be obtained in terms of measurable fluid and process parameters 

in addition to jet variables. In this way, they could also predict elongation viscosity of 

liquid jet during electrospinning and its important role on determining the jet kinematics 

(Helgeson, Grammatikos et al. 2008). 

In next part, the main important works in the field of CNT/polymer electrospinning 

will be reviewed. We will mainly focus on PS/CNT and PET/CNT electrospinning as the 

main materials of study in this thesis. 

2.5. Nanocomposite Nanofibers 

Modification of nanofiber properties the same as other polymer materials can be 

obtained by adding various nanoparticles to achieve the desired properties. For instance, 

CNT is widely used recently to improve the electrical conductivity of polymer 

nanofibers. There are two techniques for composite nanofiber manufacturing. In the first 

method known as polymer template method, electrospun polymer fiber mat is immersed 
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in composite solution. Followed by soaking procedure, nanoparticles are adsorbed on the 

surface of polymer fibers. The adsorption procedure is done for a long time followed by 

the thermal or chemical treatment to improve the final properties of composite nanofibers 

(Sawicka and Gouma 2006). Another method which is widely applied in nanofiber 

technology and it is used in this research is the composite nanofibers production by 

electrospinning of composite solution mixture. This is the method that has been widely 

used for manufacturing composite nanofibers, since it is possible to control over the 

composition of the nanoparticles inside nanofibers and also reduce the preparation time. 

The final composite nanofiber can be treated by thermal or chemical methods to modify 

the final properties. 

2.5.1. CNT/ polymer nanocomposite nanofibers 

The use of CNT embedded in nanofibers started by polyacrylonitrile (PAN). This 

polymer has proper properties to be employed as precursor for manufacturing CNTs, 

moreover CNTs are easily dispersed and aligned inside PAN nanofibers. In 2003, Ko et 

al. studied co-electrospinning of polylactic acid (PLA) and PAN with SWNT dispersed in 

DMF which is the best known solvent for CNT dispersion (Ko, Gogotsi et al. 2003). 

They used CNT in PLA in concentration of 1-5% and with PAN in the range of 1-4%. 

They employed Raman microspectroscopy, TEM and AFM for characterizing the 

nanotubes inside fibers. One of the main interests in application of CNTs inside 

nanofibers is the uniform distribution and alignment of CNTs inside nanofibers which 

can be detected by TEM, XRD or Raman spectroscopy. In addition, the result of their 

experiments regarding the mechanical properties proved the important role of CNTs in 

significantly enhancement of mechanical properties (Ko, Gogotsi et al. 2003). Ye and his 

colleagues produced nanocomposite nanofibers by using SWCNT and MWCNT 

embedded in nanofibers (Ye, Lam et al. 2004). In their work, they investigated the 

mechanical properties and they analyzed two stage rupture behavior of composite fibers 

under tension and crazing of the polymer matrix. Carbon nanotubes are suitable 
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reinforcing agents with different mechanisms including hindering crazing extension, 

reducing stress concentration, and dissipation energy by pull out. The amount of CNTs 

efficiency in mechanical performance is dependant on particles dispersion and interfacial 

adhesion between the particles and matrix (Ye, Lam et al. 2004). In 2004, Ge and his 

colleagues studied the assembly of MWCNT alignment inside PAN nanofibers (Ge, Hou 

et al. 2004). They could successfully orient the CNT particles inside the fibers by the 

electrospinning technique and they characterized the orientation by TEM and WAXD 

methods. They could show that CNT orientation is not dependant only on surface tension 

and jet elongation but also the particles relaxation inside fibers. The interfacial tension 

between the oxidized CNT and polymer causes the matrix reinforcement. The production 

of PAN/CNT sheets by electrospinning has been the point of attention in recent few years 

because of the exclusive conductive properties of this type of composite material in 

conductive nanoelectrodes, supercapacitors, and nanosensors (Ge, Hou et al. 2004). Ra et 

al. prepared PAN/MWCNT nanofibers and found that there is an electrical anisotropy in 

final nanofibers structure. They showed that the amount of electrical conductivity after 

carbonization along fiber axis is three times larger than that normal to the nanofiber axis 

direction (Ra, An et al. 2005). This observation proves that CNTs are preferentially 

aligned along the nanofiber axis. They also found that the amount of nanofiber diameter 

is dependant on the CNT concentration. The increase in amount of CNT causes the 

enhanced conductivity of the polymer solution and large electrical current during the 

electrospinning. The addition of charge accumulation overcomes cohesive force and it 

intensifies the repulsive forces and smaller fiber diameter is shaped. They used Raman 

spectroscopy and TEM to justify their results (Ra, An et al. 2005). In 2005, Kedem and 

his colleagues started studying a new system of PAN nanocomposite of both MWCNT 

and TiC>2 nanoparticles (Kedem, Schmidt et al. 2005). These particles are applicable as 

photocatalytic elements with high surface ratio proper for contaminates degradation. The 

dispersion quality of the nanofibers was studied by cryo-TEM and HRSEM (High 

Resolution SEM). They found that the desired structure of nanocomposite which is the 

nanoparticles alignment is achieved at high concentrations (3% MWNT and 6% TiOa) of 
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particle loading (Kedem, Schmidt et al. 2005). In the most recent work available in the 

system of PAN/CNT, Chakrabarti and his colleagues studied the positron annihilation 

spectroscopy of this composite nanofiber (Chakrabarti, Nambissan et al. 2006). The 

annihilation parameters detected show the formation of distinct positron trapping sites 

because of vacancy type defects available in the interface of MWNT and matrix 

depending on the CNT concentration. By using this trend, they found that addition of 

CNT causes increasing the vacancy defects as it is expected for higher concentrations 

(Chakrabarti, Nambissan et al. 2006). 

In 2003, CNT composite nanofibers were produced employing PVDF as the matrix 

by Seoul and his coworkers (Seoul, Kim et al. 2003). They found that different values of 

percolation threshold were 0.003 wt % CNT for CNT/PVDF/DMF solution, 0.015 wt % 

for spin coated film of the same material and 0.04 wt% for the electrospun nanofiber mat. 

They investigated the effect of CNT concentration on viscosity of the solution along with 

surface tension and conductivity. They showed that the existence of CNTs inside fibers 

by measuring the electrical conductivity of the final mat at different concentrations of 

CNTs (Seoul, Kim et al. 2003). Polycarbonate as the basis for the manufacturing of 

MWCNT composite nanofibers was employed by Kim et. al (Kim, Michler et al. 2005). 

The solution was prepared by dilution of CNT masterbatch followed by solving it in 

chloroform as the solvent. They investigated in-situ tensile test for the mechanical 

deformation properties which was performed under TEM. They found that the strain at 

break of the composite fibers increase due to the slippage of individual nanotubes inside 

the matrix and therefore the resulting composite is strong and tough. The mechanical 

properties of the composite fiber are dependant on the alignment and embedding of CNTs 

inside the fiber and also the porous surface structure of the final nanofiber (Kim, Michler 

et al. 2005). 

PMMA was employed as the matrix for CNT composite nanofiber manufacturing, 

in 2004, by Sung et al. (Sung, Kim et al. 2004). They embedded different concentrations 

of CNTs from 1 to 5 wt% by the use of in-situ bulk polymerization. Employing this 

technique, they could obtain well aligned nanocomposite nanofibers but not with 
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acceptable range of electrical conductivity enhancement compared to the bulk composite 

film. They proved the existence of CNTs inside fiber by TGA and the chemical structure 

was analyzed by FTIR; moreover the final fiber structure and CNT alignment was studied 

by SEM and TEM. They also studied the solution rheological properties at different 

concentrations of CNT. They found that the existence of pore structures and wrapping of 

PMMA polymer chains around the CNTs are the main causes of electrical conductivity 

reduction (Sung, Kim et al. 2004). In 2005, Liu and his colleagues employed 

SWNT/PMMA and SWNT/PAN for the electrospinning and introduced it as a system of 

core-shell which is applicable as conductive nanowires (Liu, Wang et al. 2005). In 2006, 

Sundaray et al. studied the electrical conductivity of a single electrospun nanofiber from 

MWCNT/PMMA (Sundaray, Subramanian et al. 2006). They could produce fibers with 

enhanced electrical properties to ten times more depending on MWCNT concentrations. 

They surveyed the system by SEM, TEM and Raman spectroscopy and measured the 

electrical conductivity at different concentrations of CNTs (Sundaray, Subramanian et al. 

2006). In 2006, Kim and his coworkers studied the mechanical properties of various 

types of nanocomposite nanofibers with different morphologies (Kim, Lach et al. 2006). 

The system of their study included PC/MWCNT (4 wt%) as one-dimensional 

nanoparticle, PMMA/Na-MMT (5 wt%) as two-dimensional nanoparticle and 

PMMA/Si02 (10 wt%) as three-dimensional nanoparticle. They observed a kind of brittle 

to ductile transition by adding nanoparticle which is useful for providing stiffness, 

strength and toughness in composite materials; however, the final mechanical properties 

were strongly dependant on the morphology and structure of the nanocomposite 

nanofibers (Kim, Lach et al. 2006). 

In 2003, PEO as the matrix for manufacturing CNT nanocomposite nanofiber was 

studied by Dror et al. (Dror, Salalha et al. 2003). They used highly branched polymer 

(Gum Arabic) and sodium dodecyl sulfate (SDS) as dispersing agent of MWNT particles 

in water followed by solution electrospinning. They characterized the degree of 

orientation and CNT dispersion inside nanofiber by TEM and XRD, and presented a 

model for the orientation of CNT as rods inside the nanofiber. In nanofibers containing 
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CNTs, the degree of orientation and crystallization of PEO is reduced while most of the 

nanotubes are aligned in the fiber direction (Dror, Salalha et al. 2003). Salalha et al. 

studied the same system of PEO/SWNT in 2004. They used copolymer of styrene and 

sodium maleate as a dispersing agent and showed that the amount of CNT alignment 

inside the nanofiber is completely dependant on the amount of initial CNT dispersion 

during sonication. Contrary to previous work about MWCNT, they found that SWNT 

does not reduce the amount of crystallinity and molecular orientation of the PEO 

(Salalha, Dror et al. 2004). In 2006, Lim and his colleagues studied CNT alignment 

embedded in PEO nanofibers (Lim, Lee et al. 2006). They focused on studying the 

electrical conductivity of the initial solution and final nanofibers and obtained the 

percolation threshold around 0.5% of MWCNT. They used TEM technique to show the 

individual CNT alignment inside nanofiber (Lim, Lee et al. 2006). 

In 2005, Zhou et al. studied the elastic deformation of two systems of 

MWCNT/PEO and MWCNT/PVA in parallel (Fei, Weiping et al. 2005). Their results 

showed that the elastic deformation of MWCNT is completely dependant on the elastic 

modulus of the matrix. Increasing the matrix modulus causes enhancement the amount of 

composite nanofiber modulus. They achieved elastic modulus of the MWCNT composite 

nanofibers in range of 100 GPa which is the result of carbon nanoparticles and matrix 

proper interactions (Fei, Weiping et al. 2005). 

In the next two parts, the works available on electrospinning of PS and PS/CNT 

nanofibers in addition to PET and PET/CNT will be presented. 

2.5.2. PS-based electrospun nanofibers 

In the earliest works available related to PS based nanofibers production, Megelski 

et al. studied micro and nano-structured surface morphology of nanofibers in 2002 

(Megelski, Stephens et al. 2002). They used different kinds of solvents in their research 

and investigated the final porous pattern of the resulted nanofibers. They showed that 

both the evaporation rate and the electrical characteristics of the solvent are determining 

parameters of nanofibers structure (Megelski, Stephens et al. 2002). In 2003, PS solutions 
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were prepared in different compositions of Tetrahydrofuran (THF) and N,N-Dimethyl 

Formamide (DMF), and they were electrospun in different electrospinning conditions by 

Lee et al. (Lee, Kim et al. 2003). They showed that the most important properties of final 

nanofibers such as final fibers morphology are strongly dependant on the solvent type 

and process parameters. They concluded that surface tension and electrical conductivity 

of polymer solution were respectively correlated to the critical voltage and throughput 

(Lee, Kim et al. 2003). The effect of molecular weight and polymer concentration on 

electrospun polystyrene nanofiber was studied by Pai et al. in 2004 (Pai and Gunja 2004). 

Their results show that the controlling term of jet splitting, splaying and velocity is the 

amount of [r|]c which is correlated to both the viscosity and molecular weight. The higher 

value of [r|]c shows that the solution has higher viscosity and therefore can travel more 

easily compared to lower ranges of viscosity. Moreover, in equal values of concentration 

and molecular weight, the viscosity of the solution in 9 solvent is higher and therefore the 

jet travels less rapidly (Pai and Gunja 2004). Lin et al. studied the effect of cationic and 

non-ionic surfactants on bead morphology of the fibers surface (Lin, Wang et al. 2004). 

They concluded that the formation of bead structure on the fiber surface is correlated to 

the insufficient stretching of the fibers that is dependent on the solution properties. The 

cationic surfactants change the surface tension and solution conductivity while they have 

no effect on solution viscosity. Lin et al. concluded that the addition of cationic surfactant 

increases the net charge density and therefore the fiber is stretched under stronger charge 

repulsion and higher speed which results into decrease in final bead concentration (Lin, 

Wang et al. 2004). In 2005, Shenoy and his colleagues investigated the important effect 

of chain entanglements on electrospinning of different polymer solutions including 

polystyrene solutions (Shenoy, Bates et al. 2005). They proved the considerable effect of 

molecular weight and polymer concentration on electrospun fiber formation. They 

showed that depending on the concentration and chain entanglements, there are different 

regions in which the changes in morphology occur. These changes include the beads 

formation only at low concentrations, and then the bead plus to fiber formation and 

finally smooth fibers at higher concentrations and entanglements. In addition, they 
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proposed a semi-empirical model to predict the fiber morphology based on 

electrospinning parameters (Shenoy, Bates et al. 2005). In 2005, Jarusuwannapoom and 

his colleagues investigated the effect of eighteen different solvents on the spinnability 

and final fiber structure (Jarusuwannapoom, Hongrojjanawiwat et al. 2005). They 

employed solvents with varied properties and depicted that there are different 

determining parameters for the amount of spinnability. Among the various factors, high 

enough values of both the dipole moment of the solvent and the conductivity of both 

solvent and the resulting polymer solutions and high enough boiling point of the solvent 

are desirable parameters in favor of spinnability. Moreover the values of the viscosity and 

the surface tension of the solutions should not be so high to reduce the probability of 

nanofiber spinning (Jarusuwannapoom, Hongrojjanawiwat et al. 2005). In 2006, 

Pattamaprom et al. investigated the effect of solvent on electrospinnability of polystyrene 

nanofibers in a similar work. They mainly investigated the effect of solvent on the 

production rate of the nanofibers and they compared various types of solvents 

(Pattamaprom, Hongrojjanawiwat et al. 2006). They showed that the electromotive force 

passing in the solution depends on the dipole moments that cause the electrons transfer in 

the media, while the frictional forces are related to the viscosity. Therefore, the solvents 

with high dipole moment and low viscosity are the best solvents for electrospinning. The 

viscosity is the criteria for controlling the amount of production rate and lower viscosity 

decreases the required value of voltage for nanofiber production (Pattamaprom, 

Hongrojjanawiwat et al. 2006). In 2006, the change in bead and fiber morphology and 

also the fiber diameter during the electrospinning of polystyrene was studied by Eda et al. 

(2006). They showed that the transformation in the value of either the molecular weight 

or polymer concentration can affect final fiber morphology even though the parameter 

[njc is kept constant (Eda and Shivkumar 2006). 

The use of electrospun nanofibers for filtration has been the point of great 

importance and polystyrene is one of the most suitable materials in this field. In 2006, 

highly porous fibers of polystyrene were produced by McCann et al. They used 

electrospinning and controlling the phase separation simultaneously for porous structure 
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formation through the solvent removal. In addition, they could stabilize the final 

morphology of nano-webs by immersing the electrospun network on the plane collector 

in liquid nitrogen (McCann, Marquez et al. 2006). Zheng and his colleagues showed that 

both the surface structure and morphology in addition to the bead on string structure are 

determining parameters of the functionality of polystyrene nanofibers and their 

wettability (Zheng, He et al. 2006). The determining factors in their results were the 

electrospinning condition and solution properties and they showed that it is possible to 

control the final hydrophobicity by these two factors. They concluded that among the 

parameters, low surface tension and high viscosity is in favor of smooth fiber formation 

while low conductivity causes increase in bead structures and fiber sizes (Zheng, He et al. 

2006). In one of the latest works available in the field of PS nanofiber production, Wang 

et al. could obtain scaling laws between the final fibers structure and process variables 

(Wang, Hsu et al. 2006). They concluded that both the diameter of the jet and fiber are 

scaled with the processing variables such as flow rate, applied voltage and working 

distance through a power law model. Based on their results, it is possible to conclude 

about the most important determining parameters and predict the final fiber structure 

properly. They also showed that for a total scaling relation, a prefactor is required which 

is related to the material and solution properties such as conductivity, surface tension and 

viscosity (Wang, Hsu et al. 2006). 

PS/CNT nanocomposite nanofiber : 

Amongst the first works available for the system of PS/CNT, Sen et al. studied the 

effect of addition of SWCNT to PS besides adding SWCNT to Polyurethane (PU) (Sen, 

Bin et al. 2004). They could obtain oriented CNTs inside PS nanofiber by TEM method; 

moreover they studied the effect of functionalization on final mechanical properties of 

filled PU fibers (Sen, Bin et al. 2004). In 2006, Ji and his colleagues used carboxyl-

functionalized MWCNT inside PS and with use of a high speed rotator; they could align 

the particles along fiber axis (Yuan Ji 2006). They used a three-point bending test to 

measure the mechanical properties and they also detected increase in the value of Tg by 
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adding CNT (Yuan Ji 2006). Aussawasathien et al. showed that the blend of polyaniline 

(PANI)/polystyrene (PS) with different chemical composition can be used successfully as 

sensors (Aussawasathien, Dong et al. 2005). They also demonstrated that CNTs coated 

with appropriate conducting polymer such as the blends mentioned above can be used for 

manufacturing a new type of highly sensitive glucose sensors (Aussawasathien, Dong et 

al. 2005). In 2006, Yuan Ji and his colleagues used carboxyl-functionalized MWCNT 

inside PS and they showed that the particles arranged quite well and oriented along the 

fiber axis (Yuan Ji 2006). Pan et al. produced polyelectrolyte hollow nanofibers from 

PS/MWCNT solution mixture (Pan, Ge et al. 2007). In this work, PS/MWCNT 

electrospun nanofibers were used as templates for self-assembly of polyelectrolytes (Pan, 

Ge et al. 2007). In one of the most recent works in the field of electrospinning and CNT 

nanocomposite fiber manufacturing, Sundaray and his coworkers studied the properties 

of a single nanofiber of PS/MWCNT (Sundaray, Subramanian et al. 2007). They studied 

the morphology and electrical conductivity of a single nanofiber containing low amount 

of MWCNT. They obtained a low percolation threshold (0.05% w/w) for only a single 

electrospun fiber. In their work, they could improve conductivity to 10"6 S/cm after 

percolation (Sundaray, Subramanian et al. 2007). 

2.5.3. PET-based nanofibers 

Nowadays, polyester fibers are used in different areas of applications from textiles 

to automobiles industry. Polyester fibers are known for their high resiliency, resistance to 

wrinkling, high durability, dimensional stability, and resistance to chemical and 

environmental attack. In this work, we focus on PET/CNT electrospinning and fiber 

spinning to study their structure and properties from different points of view. Therefore, 

in this part a brief literature review of the papers available in electrospinning is given 

which will be followed by the works available in the field of PET/CNT fiber spinning 

(Part 2.6). 
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In 2000, in the earliest papers available concerning the subject of PET 

electrospinning, Kim and LEE studied the thermal properties of PET, PEN (Polyethylene 

Naphthalate), and blend of PET/PEN (Kim and Lee 2000). They managed the 

electrospinning process in the melt state for these materials and investigated the results 

before and after electrospinning. They used DSC and TGA for their analyses and 

concluded that electrospinning causes increase in crystallinity and decrease in Tg and Tc. 

Moreover, they showed that high temperature of electrospinning causes thermal 

degradation and therefore molecular weight reduction (Kim and Lee 2000). In their 

research, they did not consider the microstructures and fiber final properties and they 

only studied the thermal bulk properties of the final nanofibers. Kim and his colleagues 

continued to work on the electrospinning of PET in 2004 by studying the effect of 

molecular weight and linear velocity of the drum surface (Kim, Lee et al. 2004). They 

investigated the effect of viscosity regardless of molecular weight and they could obtain 

nanofibers of different diameters. They studied the effect of drum velocity and its effect 

on the fiber orientation and the resulting crystallinity by WAXD method (Kim, Lee et al. 

2004). They also prepared the electrospun poly(trimethylene terephthalate) (PTT) which 

is similar to PET in structure with different diameters in range of 200 to 600 nm. They 

found that the final structure is strongly dependant on the concentration and the circular 

smooth fibers are obtained by increasing the amount of concentration and viscosity 

(Myung Seob, Hak Yong et al. 2004). Kim and his colleagues studied the effect of blend 

ratio of two types of amorphous and crystalline PET and also the heat treatment on final 

fiber properties (Kim, Lee et al. 2005). They prepared different concentrations of these 

two types of PET and studied the effect of three parameters including solution viscosity, 

surface tension and electrical conductivity. Applying different ratios of PET influences 

on final parameters including morphology, pore size and gas permeability. They also 

studied the effect of heat treatment and they showed that the parameters such as 

morphology and pore sizes change before and after heat treatment that considerably 

affect the amount of gas permeability (Kim, Lee et al. 2005). 
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Frenot and Chronakis presented some results regarding the electrospinning of PET 

in 2003. They reviewed the electrospinning process and its features; however, they did 

not describe about the material and processing conditions in detailed (Frenot and 

Chronakis 2003). The result of this group for electrospinning of PET in solution state has 

been published in one of the most recent related papers (Chronakis, Milosevic et al. 

2006). They could develop a method for generation of molecular recognition sites in 

electrospun PET nanofibers. They obtained fibers binding sites capable of selectively 

binding the target molecules by removing the template by the use of a proper solvent 

(Frenot and Chronakis 2003). Considering the importance of polyester in textile and fiber 

industry, Baker and his colleagues started a series of papers concerning the reactive 

modification of electrospun PET fibers in 2003 (Baker and Brown 2003). They added 

appropriate acids to the solution and they crosslinked and modified the nanofiber 

structure under enough UV energy. They could also prove their experimental results by 

studying the changes in the Tg and crystallinity and thermal properties of the resulted 

crosslinked PET (Baker and Brown 2003). In 2005, they generally studied the properties 

of the fibers before and after treatment. They prepared a kind of electrospun web of PET 

with high surface to volume ratio and susceptible for biocompatibility modification 

(Baker and Brown 2005). In 2003, McKee and his colleagues started studying a series of 

papers regarding the subject of electrospinning of branched polyesters (McKee, Long et 

al. 2003). They synthesized a random copolymer of poly(ethylene terephthalate-co-

ethylene isophthalate) polyester combined with a kind of branching agent to study the 

effect of chain branches on PET final structure and performance. They achieved a defect 

free nanofiber from this new branched copolymer with the diameter ranging from 1 to 10 

u.m (McKee, Long et al. 2003). In 2004, they completely studied the rheological 

properties and final structure of electrospun linear and branched polyesters (McKee, 

Wilkes et al. 2004). They used the same copolymer of PET-co-PEI with different 

molecular weights and three regimes of semi-diluted entangled, semi-diluted unengaged 

and concentrated with both linear and branched structures. They found that the minimum 

concentration of two times more than the concentration required for chain entanglements 
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is necessary to obtain a bead-free structure for nanofibers. Followed by studying the 

effect of chain entanglements on viscosity, they could correlate the electrospun 

morphology (polymer droplets, beaded structure or nanofibers) to zero shear rate 

viscosity (McKee, Wilkes et al. 2004). In 2005, Ma et al. employed electrospinning 

process for the production of PET nanofiber mat besides surface modification and they 

produced a new kind of artificial blood vessel. They improved the protein compatibility; 

therefore, they introduced a new kind of material completely suitable for blood vessel 

applications because of the small diameter of fibers mat in the range of 200-600 nm (Ma, 

Kotaki et al. 2005). In 2006, Hong and Kang studied the hydraulic permeabilities of 

electrospun nanofiber webs of combined PET and nylon 6 (Hong and Kang 2006). They 

concluded that the amount of water vapor transport through the electrospun PET and 

nylon 6 was higher than the spunbonds composed of the same material. They concluded 

that because of small pore diameter of the electrospun web compared to the spunbond 

PET/nylon6, there are some deviations in the conventional permeability rules for the 

nanofibers obtained by electrospinning (Hong and Kang 2006). In one of the most recent 

works available in study and characterization of PET nanofiber solution electrospinning, 

Veleirinho and his colleagues studied the effect of initial solution concentration and 

solvent on final properties of PET electrospun nanofibers (Beatriz Veleirinho 2008; 

Veleirinho and Lopes-da-Silva 2009). They showed that, at least 10 wt% of PET is in 

initial solution is required to prepare nanofibers, while higher concentration favors 

headless structure nanofibers (Beatriz Veleirinho 2008). They also showed that 

TFA/DCM volume ratio could be an important determining factor on final nanofibers 

morphologies and properties (Beatriz Veleirinho 2008). 

PET/CNT nanocomposite nanofiber: 

Preparation and study the structure and properties of PET/CNT fibers are somehow 

a new field and there are only a few recent works available in this area. Xushan and his 

coworker applied MWCNTs in PET and PA 6 nanofibers in 2005 employing melt 

electrospinning technique (Gao, Tong et al. 2005). They functionalized CNTs by 
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dispersant and surfactant in ethanol and mixed the particles with PET and PA6 in twin 

mill extruder. They could obtain considerable change in electrical properties by the 

reduction of electrical resistance about eight orders of magnitude by only adding 0.1% 

MWCNT to the fibers (Gao, Tong et al. 2005). This is a point of interest for 

manufacturing conductive nanofibers out of PET/CNT composite, since a great 

consequence is achieved by adding only a small amount of CNT. In another work 

available PBT (Poly (butylene terephthalate)); a kind of polyester similar to PET; has 

been modified and electrospun combined with CNT (Nah, Mathew et al. 2005). They 

used electrospinning for production of 5% MWCNT in solution of PBT in 

hexafluoroisopropanol solvent and they could make considerable enhancement in thermal 

stability and mechanical modulus (Nah, Mathew et al. 2005). In 2008, Ann et al. 

investigated the properties and characterizations of PET/MWCNT nanocomposite 

nanofibers for the first time (Ahn, Chi et al. 2008; Beatriz Veleirinho 2008). They 

modified the dispersion by MWCNT functionalization up to 3 wt% MWCNT 

concentration. In this work, different morphological, physical and mechanical properties 

of nanofibers were studied; however, they could not obtain considerable modification on 

conductivity because of destruction of CNTs surface after functionalization (Ahn, Chi et 

al. 2008). In the most recent work available on PET/MWCNT nanocomposite nanofibers, 

the molecular properties and chain orientation of PET in nanocomposite nanofibers has 

been studied by Chen and his coworkers (Chen, Liu et al. 2009). They investigated the 

effect of MWCNT addition on chain confinement of PET at different MWCNT 

concentrations up to 2 wt% MWCNT concentration by differential scanning calorimetery 

(DSC) and FTIR methods. They mainly studied the crystalline behavior and PET chains 

morphologies after electrospinning with and without MWCNT in their work (Chen, Liu 

et al. 2009). However, their work did not give any additional data about the final 

electrical and mechanical properties of nanocomposite electrospun nanofibers. There are 

some interests on electrospinning of PET/CNT nanofiber; however, there is not still a 

deep characterization of electrospun PET/CNT nanofibers especially at different range of 

CNT types and concentrations. 
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2.6. Melt spinning 

Melt spinning is the most preferred method to produce different polymer fibers. In 

this technique, the polymer is melted and pumped through a spinneret (die) with 

numerous holes (one to thousands). Thereafter, the molten fibers are cooled, solidified, 

and collected on a take-up wheel. Stretching of the fibers in both the molten and solid 

states provides enough orientation of polymer chains along the fiber axis. A simple 

schematic of melt spinning is shown in Figure 2-15. 

Melt 

Spinneret 

Take-up 
Wheel 

Figure 2-15: Simplified schematic of melt spinning process 

(www.polymerprocessing.com/operations/mspin/index.html) 

There are numerous papers regarding the use of melt spinning process for 

production of microfibers as the most important method of fiber fabrication in textile 

industry. In this project, we use this technique for production of nanocomposite polymer 

microfibers modified with CNT; therefore, the papers available related to this subject and 

application of this technique in nanocomposite fiber production will be reviewed in the 

next parts. 

http://www.polymerprocessing.com/operations/mspin/index.html
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2.6.1. Polymer fibers 

The basic types of mass production of polymer fibers include polyolefin (mainly 

polypropylene), acrylic, polyvinyl alcohol, aliphatic polyamide (such as PA-6, PA-66, 

and PA-11), polyester (poly(ethylene terephthalate)), hydrated cellulose, triacetate and 

acetate fibers, during the 1960s-1980s (Perepelkin 2005). The production of these fibers 

was done based on final demanded properties, availability of the stock, technology and 

equipment and they constituted the traditional or first generation of polymer fibers. 

Manufacturing these fibers is increasing and they have considerable demand of 

household and industrial marketing. Nevertheless, saturation of the world market with the 

traditional type of first generation of polymer fibers and competition between the 

manufacturers to fulfill the market demand resulted in production of modified or the 

second generation of polymer fibers in the period of 1970s-1980s (Perepelkin 2005). The 

new generation of modified fibers could totally meet all the requirements for market 

demand with well-developed new functional properties. There are four different methods 

of fiber modification to make the fibers prepared for the required final goals including: 

Physical methods of modification, Methods of composite modification, Methods of 

chemical modification and moreover Methods of surface modification which will be 

described briefly as follow (Perepelkin 2005). 

• Physical methods of modification: During this type of modification, the 

supermolecular structure, cross section shape, or outer surface structure of the fiber is 

modified for the desirable application with no change in chemical structure of the fibers. 

Controlling the amount of shrinkage, degree of crystallinity, fiber orientation and 

porosity by process parameters are amongst these methods of modification (Perepelkin 

2005). 

• Methods of composite modification: This method includes addition of different 

types of particles to the base polymer to improve the fiber properties or blending of 

polymers. The addition of particles is done at the first stages of polymer preparation or 

before spinning and it is widely used to process the second generation of polymer fibers 
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(Perepelkin 2005). Since it is the method due to be employed in this project, it will be 

described in more detailed in next parts. 

• Methods of chemical modification: In this method, the chemical structure of the 

fiber is modified by addition of chemical groups to the fiber before spinning or by 

copolymerization. The chemical structure of the final fiber is totally changed by this 

procedure, and the final characteristics are controlled by the modified chemical structure 

(Perepelkin 2005). 

• Methods of surface modification: This method is only related to the final surface 

treatment by either physical or chemical methods followed by fiber manufacturing. This 

is a less expensive and less difficult method of modification for some types of 

applications in which surfaces with special characteristics are required (Perepelkin 2005). 

2.6.2. Nanocomposite fibers 

In previous sections, polymer nanocomposite structures and also fiber technology 

were basically described; in addition, considering the importance of CNT nanoparticle in 

this research, some of its exclusive properties were discussed. One of the most important 

applications of nanotechnology concept is the manufacturing nanocomposite fibers which 

has a bright view of future applications. So far, particles such as clay, metal oxides and 

carbon black, graphite nanofibers (GNF), and carbon nanotube (CNT) have been used 

(Lei Qian 2004). Besides, the method of foam-forming process can be employed in 

manufacturing nanocomposite fibers. The same as conventional polymer 

nanocomposites, the main role of nano-sized fillers is the improvement in mechanical 

strength of final fiber or enhancement of physical properties such as conductivity or 

antistatic behavior. Additional physical and chemical performances obtained using 

different methods for manufacturing nanocomposite fibers are achieved by different 

nanoparticles and they are dependant on the properties of nanoparticle type. Even though 

particles such as graphite, clay and metal oxides have been employed before, the 

reduction of their sizes to nanometer range has resulted into their higher performances 

and new marketing interests. One of the most important points to be considered in 
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improving the properties would be the distribution of nanoparticles and the amount of 

nanoparticles dispersion and interaction with the matrix (Lei Qian 2004). As mentioned 

before, the addition of nanoparticles to the polymer is a method of composite 

modification; however, the composite polymer should be well-prepared for the special 

application. Obtaining a stable and homogenous mixture depends on the type of base 

polymer (Solution or Melt) and also the type of particle. There are various types of 

particles added to the polymer to modify the final properties of fiber and are given briefly 

in Table 2-5 (Perepelkin 2005). 

Nanocomposite fibers of CNTs along with different polymers especially PMMA 

and PAN have been produced and studied in different papers (Lei Qian 2004). Carbon 

nanoparticles and nanofiber with polyester matrices in different concentrations have been 

also studied. 

In this work we focus on PET as the polymer matrix with CNT as filler. In the 

earliest works available in the application of polyester/Carbon nanoparticle system, Ma et 

al. surveyed polyester/CNF nanocomposite fiber produced by melt spinning. They 

completely studied processing, structure and properties of the system compared to pure 

PET (Ma, Zeng et al. 2003). They showed that the amount of tensile strength in good 

dispersion condition is considerably increased comparing to the pure PET. In recently 

published paper for the system of PET/CNT, Li et al. investigated the microstructure of 

CNT/PET conductive composite nanocomposite fibers in detailed (Li, Luo et al. 2006). 

They added 4 wt% of CNT to PET and they could detect considerable changes in the 

amount of electrical properties. They also investigated some other properties of 

PET/CNT system such as viscosity, crystallinity and CNT dispersion homogeneity along 

fiber axis by the use of techniques such as SEM and optical microscopy (Li, Luo et al. 

2006). This paper is one of the most related papers and maybe the only one in studying 

the structure of PET/CNT nanocomposite microfibers. Nevertheless, this system has not 

been fully investigated in this work. Poor CNT dispersion has resulted in employing high 

concentrations of CNTs, or it might be the effect of improper processing condition for 

fiber production. However, no thorough morphological study has been performed in the 
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previous studies on nanocomposite MWCNT/PET microfibers. Detailed morphological 

analysis and the effect of dispersion condition have not been deeply studied. Moreover, 

the effect of processing condition on final mechanical and electrical properties of the 

fibers has not been paid attention to. These parameters will be studied here through melt 

spinning of PET/MWCNT fibers. The results of experiments obtained in this study will 

be given in next chapters. 
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Table 2-5: Fibers achieved by composite modification method (Perepelkin 2005) 

Method and type of particle added 

Addition of TiC^ to spinning melt (solution) 

Addition of dyes or pigments to spinning melt 

(solution) 

Addition of light or thermal stabilizers to melt 

Addition of fireproofing compounds 

(phosphorus-,phosphorus-nitrogen-containing) 

to spinning melt (solution) 

Addition of carbon black, dispersed metal 

particles or other conducting particles to 

spinning melt (solution) 

Addition of disperse biologically active 

substances to spinning melt (solution) 

Addition of disperse heavy metal compounds 

(lead, vanadium, etc.) to melt 

Addition of microencapsulated spirooxazine 

compounds to melt 

Addition of microencapsulated spirooxazine 

compounds to melt 

Addition of microencapsulated thermotropic 

cholesteric liquid crystals or thermotropic dyes 

to melt 

Addition of microencapsulated essential oils to 

melt 

Final obtained properties 

Mat fibers 

Obtaining stable colors and bright 

hues in bulk dyeing 

Increase in light fastness or 

thermostability 

Flameproofing 

Giving stable conductivity 

Giving antimicrobial properties 

Protection from penetrating "soft" 

radiation 

Transformation of solar radiation into 

IR radiation (heat-producing fibers) 

Change in color as a function of 

intensity of solar radiation 

(photochromic fibers) 

Change in color as a function of 

temperature (Thermochromic fibers) 

Stable smell of scent, flowers, etc. 

(aromatic fibers) 
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2.7. Originality of the work 

The literature review showed that there were only a few works concerning the 

processing and characterization of PS/CNT and PET/CNT electrospun nanofibers the 

same as PET/CNT microfibers. Two polymers including PS as an amorphous polymer 

and PET as a semi-crystalline one were mixed with CNTs in electrospinning. We studied 

the effect of different types of CNTs and in a wide range of concentrations in 

electrospinning process. Through processing and characterization of CNT based 

nanocomposite nanofibers with different CNT types and concentrations were not 

available in the previous works and it was investigated for the first time here to show the 

important role of dispersion condition. In PS/CNT nanofibers, the effect of dispersion 

quality and dispersion modification through a new method of compatibilization was one 

of main concerns of this study. Nanocomposite fibers based on PET/CNT in different 

spinning methods especially electrospinning have been only studied in a few works so 

far. We have studied the final properties of PET/CNT electrospun and melt-spun 

conductive fibers from different aspects especially dispersion condition using two fiber 

spinning processes to the best of our knowledge for the first time here to modify the final 

electrical and mechanical properties. 

2.8. Objective 

The object of this project is to study the effect of CNT concentrations and types in 

various ranges (dispersion condition) in electrospinning process and final properties of 

PS/CNT and PET/CNT polymeric nanofibers; besides studying the effect of dispersion 

condition on final characteristics of PET/MWCNT microfibers in melt-spinning to 

modify the final electrical and mechanical properties. 
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Chapter 3 

Materials, Processing and Characterization 

3.1. Methodology 

The methodology to achieve the mentioned objectives through this work is briefly 

presented in the following chart as individual steps: 

e ^ 

Initial Material Preparation & 
Characterization 

Dispersion analysis and modification 

Morphological analysis (SEM, TEM 
and Optical microscopy) 

) 

Spectroscopy techniques (FTIR & Raman) 

Crystallography (DSC and XRD| | 

f 

^ 

Final characterization 
(Electrical conductivity & 
Mechanical properties) 
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3.2. Materials 

In this work, two different processes: electrospinning and melt-spinning are studied 

independently. Therefore, two groups of materials were used to perform the experiments. 

In both electrospinning and melt-spinning, the polymers should have proper molecular 

weight to obtain the fibers. We used extrusion grade of polymers with high enough 

molecular weight suitable for spinning process. 

The materials used to prepare the solution mixtures for electrospinning are: 

• Poly(ethylene terephthalate) (PET)- Extrusion grade (Mw=55000 (Duchesne et 

al. 2002)); purchased from DuPont Co.; IV=1. 

• Polystyrene (PS) - Extrusion grade (168 M); purchased from BASF Co. 

• Styrene-Butadiene-Styrene (SBS-Kraton; G-1647), copolymer; purchased from 

BASF Co. as dispersion modifier for PS/CNT electrospinning. 

• Di-Methyl Formamide (DMF) (PS solvent & CNT dispersion media); purchased 

from Aldrich Co. 

• Tri-fluoro acetic acid (TFA) and Di-chloro methane (DCM) (PET solvents); 

purchased from Aldrich Co. 

• Different types of carbon nanotube (CNT) powder; purchased from Helix Co. 

Carbon nanotubes used here were produced by chemical vapor deposition process 

(CVD) as given by Helix Co., USA. Single wall carbon nanotubes (SWCNT) and double 

wall carbon nanotubes (DWCNT) with purities of 90% and multi wall carbon nanotubes 

(MWCNT) with purity of 95% were used in electrospinning process as nanoparticles to 

improve the conductivity. The nominal diameter range of SWCNT, DWCNT and 

MWCNT were respectively of 1.3 nm, 4 nm and 10-100 nm. All three types of CNT had 

length in range of 0.5-40 urn. A brief description of two kinds (SWCNT and MWCNT) is 

given in the following Tables. 
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Table 3-1: Properties of high-purity SWCNT 

Specification 

External Diameter 

Length 

Purity 

Amorphous Carbon 

Ash 

Specific Surface Area 

Test Method 

-1 .3 nm 

0.5 ~ 40 urn 

>90% 

<5% 

< 2 wt% 

300 - 600 m2/g 

The materials required to prepare the polymer nanocomposite melt mixture for 

melt-spinning process include: 

• Poly(ethylene terephthalate) (PET)- Fiber grade; purchased from DuPont Co.; 

IV=1 (Mw-55000). 

• MWCNT masterbatch (15% MWCNT, PET); MB6815-00; purchased from 

Hyperion Co. 

Table 3-2: Properties of standard MWCNT 

Specification 

External Diameter 

Length 

Purity 

Amorphous Carbon 

Ash 

Specific Surface Area 

Test Method 

< 10 nm 
10 - 20 nm 
10-30nm 
20 - 40 nm 
40 - 60 nm 
60 - 100 nm 

Short (1 - 2 mm) 
Standard (0.5 - 40 mm 

>95% 

<2% 

< 0.2 wt% 

40 - 300 m2/g 
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Final properties characterization is the main concern of this project; therefore, we 

used MWCNT master-batch in melt state part to improve the dispersion as much as 

possible and to concentrate totally on final properties characterization rather than initial 

material preparation. 

3.3. Processing and mixing procedure 

Two different procedures for mixing and material preparation related to each of the 

fiber spinning processes (electrospinning and melt-spinning) are presented individually 

here. 

3.3.1. Electrospinning 

• Mixing procedure: Solution mixing was the method employed for initial 

material preparation containing different concentrations and types of CNTs. The method 

used for solution preparation in PS solution was different from that in PET solution. 

In PS solution, the solution containing polymer or copolymer was prepared using 

continuous mixing and then CNT was added to the solution. Followed by a short time 

mixing, the solutions were subjected to continuous sonication for 4 hours using a 

BRANSON 1510 (80 Watts) sonicator. The sonication was performed in a water bath and 

the temperature was kept constant all through the sonication by changing the water of 

bath. The solutions were under mechanical mixing and stirring after sonication; 

meanwhile, all the solutions containing high concentrations of CNTs were used promptly 

after sonication and final preparation to prevent from any instability of the solutions 

containing CNTs. 

In PET solution, different methods were used to optimize the initial dispersion 

condition. Various types of mixing procedure were investigated to obtain solutions as 

stable as possible and with the least amount of CNT aggregation, especially at high CNT 
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concentrations. The final procedure employed for solution mixing and at the best 

condition was as follow: CNT was solved in only TFA part of the solvent excluding 

DCM. CNT/TFA solutions were subjected to sonication using the instrument and 

procedure mentioned previously for 2 hours. Thereafter, PET and DCM were added to 

CNT/TFA solution and were mechanically stirred for complete dissolution of PET in the 

solvent. Then, the prepared solutions were subjected to sonication condition for more 2 

hours to obtain a quite homogenous solution with the least amount of aggregations. The 

solutions obtained in this method were the most stable CNT containing solutions with the 

least amount of CNT aggregates. 

• Electrospinning process: In both PS and PET solutions, we used a horizontal 

type of electrospinning set-up equipped with both static and rotating drum as collector as 

shown schematically below. The electrospinning set-up employed in this work consisted 

of a high voltage power supply (Gamma Inc.), a syringe pump to deliver the solution at 

specific flow rates (PHD 4400, Harvard Apparatus), a syringe connected to a stainless 

steel needle (22 gauge, Popper & Sons Inc.), and finally a stainless steel collecting drum 

(15 cm diameter). The amount of flow rate and voltage were dependent on polymer 

solution system and they will be given in more details in related experimental chapters. 

Automatic syringe pump 

r 
777777 

Translating and rotating substrate 

High voltage power source 

77777T 

Figure 3-1: Schematic configuration of the horizontal electrospinning set-up used in this 

project 
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3.3.2. Melt-spinning 

• Mixing procedure: We used CNT (PET/15% MWCNT) master-batch 

manufactured nanocomposite. Mixing with pure PET was conducted using a lab-scale 

twin-screw extruder (Leistritz Group Co.; with 1.78 mm diameter and length of 40D) at 

controlled temperature and shear rate. The MWCNT master-batch was diluted to the 

desired CNT concentration by adding various pure PET matrix amounts. Different 

temperature profiles and rotation speeds were investigated and the final dispersion at 

different condition was checked to obtain the optimum condition for CNT dispersion. We 

used this procedure to optimize CNT dispersion in the matrix and to obtain the best 

dispersion condition at different CNT concentrations. The best condition for CNT 

dispersion was obtained at 200 rpm screw speed using a reverse temperature profile 

(common for PET mixing) along extruder screw started from 300 °C (The first zone after 

hopper) to 270 °C (Die). The twin-screw included 8 thermal zones starting from hopper 

and ending at the die. The temperature profile used was: 

Zone 1 (Hopper): 150 °C; Zone 2: 300 °C; Zone 3: 295°C; Zone 4: 290 °C; 

Zone 5: 285 °C; Zone 6: 280 °C; Zone 7: 270 °C; Zone 8 (Die): 270 °C. 

• Melt-spinning process: We performed the melt-spinning to obtain single 

fibers in lab-scale for the aim of final characterization. All the materials were dried 

before and after mixing and before extruding in oven at the temperature of 120 °C for at 

least 6 hours. A capillary rheometer (Rosand) combined with a take-up device was used 

to produce single fibers under controlled pressure and temperature profiles. A schematic 

of the capillary that we used for fiber spinning is shown in Figure 3-2. The fibers were 

produced using a barrel temperature of 270 °C and ambient air cooling. All the three 

zones were set at 270 °C and we used a die of 1 mm diameter. The fibers were produced 

under constant pressure and with the piston linear velocity of 1 mm/min at ambient 

temperature. 
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die 
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Figure 3-2: Schematic of the capillary extruder for single fiber spinning 

3.4. Characterization 

Characterization is one of the main important concerns of this work before and after 

fiber formation. Different characterization methods and their applications and purposes 

are given in the following chart in more details. The parameters and procedures of each 

of these experiments are given in the following chapters, including the results related to 

each of the associated tests. In electrospun nanofibers, the samples were dried under 

vacuum at room temperature before characterization to evaporate the remaining solvents 

as much as possible. 



Characterization Methods 

v 9 

Optical microscopy & SEM 
• Nanofibers morphological analysis (Electrospinning, SEM) 
• CNT aggregates analysis and localization (Electrospinning, Optical) 
• Nanofibers surface roughness analysis (Electrospinning, HR-SEM) 
• CNT distribution analysis and modification (Melt-spinning, HR-SEM) 

r TEM 
* CNT dispersion localization inside nanofibers (Electrospinning) 
• CNT dispersion analysis and modification (Melt-spinning) 

DSC & XRD 
• Crystallinity measurement and orientation detection 

T 

FTIR & Raman Spectroscopy 
Polymer chains and CNT orientation detection 

Electrical conductivity measurement 

Mechanical properties characterization 
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Chapter 4 

Organization of Articles and Thesis Structure 

The main results of this thesis will be given in chapters 5 to 8. Each of these 

chapters includes the scientific findings in a scientific paper format. The organization of 

these chapters includes: 

• Chapter 5 explains the results obtained by the electrospinning of PS/CNT 

nanocomposite nanofibers. In this chapter CNT dispersion condition, its effect on 

final morphology and dispersion modification are mainly studied. This paper was 

accepted for publication and is in press in Polymer. 

• Chapter 6 covers the results of processing and characterization of PET/CNT 

nanocomposite nanofibers at different CNT types and concentrations. 

Investigating the final characteristics of nanocomposite non-woven mat is 

thoroughly given in this chapter. This paper has been submitted to Journal of 

Polymer Science, Part B; Polymer Physics. 

• Chapter 7 studies the final properties of PET/CNT nanocomposite melt-

spun fibers in detailed. Dispersion modification and CNT orientation detection 

and their effect on final properties are given in this paper. This paper has been 

submitted to Polymer Engineering and Science. 

• Chapter 8 includes the empirical modeling results of electrospinning of 

CNT-based solutions. The applicability of EHD theory in our system and the 

estimation of final nanofibers based on dimensional analysis are presented in this 

chapter. This chapter is in preparation as a paper in this group. 

Chapter 9 is a general discussion and it covers summary and comparison of the 

results obtained in this study. Finally, a brief conclusion of this thesis and the 

recommendations for future works will be given in chapter 10. 
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Chapter 5 

Morphology, Structure and Properties of Conductive 

PS/CNT Nanocomposite Electrospun Mat* 

5.1. Presentation of the article 

The objective of the first paper was to study the effect of different types and 

concentrations of CNTs on final morphology and properties of electrospun nanofibers. 

We used PS as an amorphous polymer to make the first step as simple as possible. PS is 

solvable in DMF which is also accounted as one of the best solvents for CNTs solving. 

Final morphology and properties of electrospun non-woven mat are deeply studied in this 

article. The results of morphological study show that dispersion condition is an important 

controlling parameter of final morphology of electrospun nanofibers. A new type of 

copolymer is introduce and successfully employed as coupling agent in this work for 

CNT dispersion modification. Final mechanical and electrical properties of electrospun 

PS/CNT mat with and without copolymer are also given. 

* Polymer (2009), In Press. doi:10.1016/j.polymer.2009.04.070, 2009. 
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Morphology, Structure and Properties of Conductive PS/CNT 

Nanocomposite Electrospun Mat 

1 ? 1 

Saeedeh Mazinani , Abdellah Ajji , Charles Dubois 

1) CREPEC, Department of Chemical Engineering, Ecole Polytechnique of Montreal, 

P.O. Box 6079, Station Centre-Ville, Montreal, Quebec, Canada H3C 3A7. 

2) CREPEC, Industrial Materials Institute, National Research Council Canada, 75, de 

Mortagne, Boucherville, Quebec, Canada J4B 6Y4. 

5.2. Abstract 

The morphologies and properties of Polystyrene (PS)/Carbon Nanotube (CNT) 

conductive electrospun mat were studied in this paper. Nanocomposite fibers were 

obtained through electrospinning of PS/Di-Methyl Formamide (DMF) solution 

containing different concentrations and types of CNTs. The dispersion condition of CNTs 

was correlated to morphologies and properties of nanocomposite fibers. A copolymer as 

an interfacial agent (SBS, Styrene-butadiene-styrene type) was used to modify the 

dispersion of CNTs in PS solution before electrospinning. The results showed that the 

presence of the copolymer significantly enhances CNT dispersion. The fibers diameters 

varied between 200 nm and 800 nm depending on CNT type, polymer concentration and 

copolymer. The final morphological study of the fibers showed that CNT addition caused 

a decrease in beads formation along fiber axis before percolation threshold. However, 

addition of CNTs above percolation increased the beads formation, depending on the 

dispersion condition. The presence of SBS modified the dispersion, reduced the fiber 

diameter and the number of bead structures. Electrical conductivity measurements on 

nanocomposite mats of 15 \ym to 300 \im in thickness showed an electrical percolation 

threshold around 4 wt% MWCNT; while the samples containing SBS showed higher 



78 

values of conductivities below percolation compared to the samples with no 

compatibilizer. Enhancement in mechanical properties was observed by the addition of 

CNTs at concentrations below percolation. 

5.3. Introduction 

The electrospraying process was discovered by Formhal and disclosed in patent 

literature in 1934. Since then, this process has found a great deal of interests in spite of its 

simplicity [1]. Electrospinning is the most frequently used method to produce fibers of 

nanometric size. This process was known as electrostatic spraying before 1993, and there 

were only a few publications employing this technique [2]. Reneker and Chun revived 

this technology in the 1990s and they showed the possibility of employing this process 

for different kinds of polymer solutions in 1996 [3]. In this process, a syringe pump 

moves the solution out of the spinneret at a constant and controllable rate. Application of 

a high voltage difference between the syringe tip and a target screen for collection 

induces electric charges that are distributed over the surface of droplet, which is finally 

attracted to the other side due to the high electric field and forms drops, fibers or beaded 

fibers. Various types of nanoparticles dispersed in polymer solutions have been 

embedded recently in nanofibers through this process to modify the final properties of 

electrospun fibers. Among them, carbon nanotubes have attracted a great attention. In 

fact, rapidly after CNT development [4], this nanoparticle has been widely used to 

enhance electrical or mechanical properties of electrospun polymer fibers to various 

extents [5-8]. 

Ra et al. electrospun PAN/MWCNT nanofibers and showed that there is an 

electrical anisotropy in final nanofibers along fiber axis compared to fiber cross section 

[6]. They showed that nanofibers diameter is strongly dependant on CNT concentration. 

An increase in the amount of CNT enhances the conductivity of the polymer solution and 
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produces a larger electrical current during electrospinning. The addition of charge 

accumulation overcomes cohesive force and intensifies repulsive forces and fibers of 

smaller diameter are formed [6]. CNT composite nanofibers were produced using PVDF 

as the matrix by Seoul et al. [7]. They found that there were different values of 

percolation threshold which were 0.003 wt % CNT for CNT/PVDF/DMF solution, 0.015 

wt % for spin coated film of the same material and 0.04 wt% for electrospun nanofiber 

mat. PMMA was employed as the matrix for CNT composite nanofiber manufacturing, in 

2004, by Sung et al. [8]. They embedded different concentrations of CNTs from 1 to 5 

wt% by the use of in-situ bulk polymerization. However, they detected a reduction in 

electrical conductivity by this method in comparison with a solution dispersion process. 

They showed that existence of pore structures and wrapping of PMMA polymer chains 

around the CNTs are the main causes of electrical conductivity reduction compared to 

solution mixing method [8]. Enhancement of CNT dispersion and its effect on 

electrospun fiber morphologies and properties is one of the main aims in this work. We 

intend to use compatibilization methods rather than chemical modification to improve 

CNT dispersion and maximize electrical properties. There are several papers related to 

the use of CNTs as fillers along with dispersion modification techniques employed in 

electrospinning process [9-11]. New types of block copolymers have recently been 

introduced for CNT-dispersion modification, especially above electrical percolation. The 

structures, properties and the method of functionalities of these specific copolymers have 

been proved both theoretically and experimentally [12-14]. 

Other studies investigated the structure and properties of PS electrospun nanofibers 

from different points of view. The earliest among them studied the effect of solvent on 

final fiber morphologies and fiber surface has been studied. In particular, there is a large 

number of papers about controlling bead morphology along fiber axis and final fiber 

morphologies [15-22]. Lin et al. studied the effect of cationic and non-ionic surfactants 

[23] on bead morphology and fiber surface. In 2005, Shenoy and his colleagues 

investigated the effect of chain entanglements on various polymer solutions for 

electrospinning, including polystyrene solutions [24]. They proved the considerable 
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effect of molecular weight and polymer concentration on electrospun fiber formation. 

They showed that, depending on polymer concentration and chain entanglements, there 

are different regions in which changes in morphology from beaded to smooth fiber occur 

[24]. In 2006, the change in bead and fiber morphology and also the fiber diameter during 

electrospinning of polystyrene was studied by Eda et al. [25, 26]. They showed that a 

change in molecular weight or concentration affects final morphology even though [n]c 

would be kept constant. In another work, they observed that solidification and instability 

of electrospun fibers could occur at different distances from the capillary, depending on 

the rheological condition of solution [27]. In one of the most recent works on PS 

nanofibers production, Wang et al. [28] could obtain scaling laws between the fiber final 

structure and process variables. 

There are only few studies focusing on PS/CNT electrospun nanofibers. Sen et al. 

studied the effect of SWCNT addition to PS as well as to polyurethane (PU). They 

obtained oriented CNT inside PS nanofiber and some other polymeric materials [29], as 

evidenced from TEM images. In 2006, Ji and his colleagues used carboxyl-functionalized 

MWCNT inside PS and showed that the particles arranged quite well along the fiber axis 

[30]. Pan et al. produced polyelectrolyte hollow nanofibers out of PS/MWCNT solution 

mixture [31]. In this work, PS/MWCNT electrospun nanofibers were used as templates 

for self-assembly of polyelectrolytes [31]. In one of the most recent works in the field of 

electrospinning and CNT nanocomposite fiber manufacturing, Sundaray and his 

coworkers studied the properties of a single nanofiber of PS/MWCNT [32]. They 

investigated the morphology and electrical conductivity of a single nanofiber containing 

low amount of MWCNT. They obtained a low percolation threshold (0.05% w/w) for 

only a single electrospun fiber. In their work, they could improve conductivity to 10"6 

S/cm after percolation [32]. 

The review of previous work on electrospun CNT filled polymeric fibers shows that 

several aspects of the materials/process used in their preparation required further study. 

The final properties of electrospun mat composed of nanocomposite nanofibers including 

different types of CNTs are one point of interest. In addition, dispersion modification 
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employing coupling agent and studying its effect on final electrical and mechanical 

properties is also of considerable interest. Different techniques such as rheometry and 

viscometry could be employed to perform the effect of adding CNT and studying the 

effect of dispersion on final morphology and properties. Electrospun polymer/CNT 

nanofibers and their properties as final conductive non-woven mat were not studied in 

details so far. Moreover, the properties of PS/CNT at different CNT concentrations are 

yet to be characterized. The final properties of electrospun PS/CNT as a conductive mat 

especially at more concentrated levels of CNTs were not shown in any previous works. 

In the present study, polystyrene solutions containing different types and 

concentrations of carbon nanotubes (single-wall, double-wall and multi-wall) are 

electrospun to produce nanocomposite fibers. The effect of CNT addition on final 

morphologies of fibers is studied both quantitatively and qualitatively. We mainly focus 

on final nanofibers and mats characteristics at a wide range of MWCNT concentration 

and especially at high concentrations of different types of CNTs. Electrical conductivity 

of electrospun mats composed of PS/CNT nanofibers are evaluated here for the first time. 

Dispersion of CNT in initial electrospinning solution is studied in detail using rheological 

and optical techniques. The use of an SBS type copolymer to improve the dispersion of 

MWCNT in PS solution is, to the best of our knowledge, reported for the first time in this 

work. In addition, electrical properties and mechanical characteristics of resulting 

electrospun mats at different CNT contents and types are obtained. 

5.4. Experimental 

5.4.1. Polymer solution Preparation 

The polymer used in this work was an extrusion grade polystyrene (168M, BASF 

Co.), dissolved at 20% w/w concentration in di-methyl formamide (DMF) (good solvent 

for PS as well as CNT dispersion); the solvent was purchased from Aldrich Co. Carbon 
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nanotubes employed in this work were produced by a chemical vapor deposition process 

(CVD) and purchased from Helix Co., USA. Single wall carbon nanotubes (SWCNT) 

and double wall carbon nanotubes (DWCNT) with purities of 90% and multi wall carbon 

nanotubes (MWCNT) with purity of 95% were used in this investigation as nanoparticles 

to improve the conductivity. The nominal diameter range of SWCNT, DWCNT and 

MWCNT were respectively of 1.3 nm, 4 nm and 10-100 nm. All three types of CNT had 

length in range of 0.5-40 um (Fig. 5-1). 

Figure 5-1: Transmission electron Microscopy (TEM) images of CNTs utilized in this 

work after sonication. a) Multi-wall Carbon Nanotube; b) Double-wall Carbon Nanotube; 

c) Single-wall Carbon Nanotube; TEM (JEOL, JEM-2100 F). 

CNTs at different concentrations were dispersed mechanically in the polymer 

solution by a 4-hour sonication treatment at room temperature followed by continuous 

mechanical mixing before electrospinning. No surface modification technique was 

employed in this work in order to prevent the detrimental effect that these treatments can 

have on the conductivity of the CNT. TEM results after 4 hours sonication in pure 

methanol at different positions along CNTs bundles shows no obvious change in CNT 

length (Fig. 5-1). Styrene-Butadiene-Styrene (SBS-Kraton; G-1647), copolymer was used 

to improve the dispersion of CNTs in the solutions and electrospun fibers and to study the 

effect of copolymer addition. Following the proposed method for CNT dispersion 

modification [14], the copolymer was used in equal amounts of CNT for enhancing their 

dispersion at different concentrations. 
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5.4.2. Electrospinning process 

The electrospinning set-up employed in this work consisted of a high voltage power 

supply (Gamma Inc.), a syringe pump to deliver the solution at specific flow rates (PHD 

4400, Harvard Apparatus), a syringe connected to a stainless steel needle (22 gauge, 

Popper & Sons Inc.), and finally a stainless steel collecting drum (15 cm diameter). 

Fibers mats were collected in both static and rotating drums, based on the requirements of 

specific samples for different experiments. An average electrical potential difference of 

25 kV was employed for all types of materials. The voltage was imposed on the needle, 

positioned at a 15 cm distance from the collector and a volumetric flow rate of 0.8 mL/hr 

was imposed. All experiments were conducted at ambient pressure, temperature and 

average relative humidity of 20%. A summary of different carbon nanotube 

concentrations and types studied here and the resulting fibers diameter and morphology is 

given in Table 5-1. 

Table 5-1: Summary of nanocomposite nanofibers obtained and the resulting fibers 
characteristics 

Polystyrene 
Concentration 

(%w/v) 

20 

20 

20 

20 

20 

CNT Type 

-

MWCNT 

MWCNT 
modified 

with 
Copolymer 

SWCNT 

DWCNT 

CNT 
concentration 

(%) 

0 

0.5 ; 1 ; 2 ; 3 ; 
4 ; 5 ;7 

1 ; 2 ; 3 ; 4 ; 5 

i ; 5 

l ;5 

Resulting Morphology 

High concentration of beads on fibers 

1 % : Smooth fibers 
Other concentrations : Bead/Fiber 
morphology; beads depend on CNT 

concentrations 
Less beads compared to pure PS 

electrospun fibers 
1 % & 2% : Smooth fibers 

Other concentrations: Bead/Fiber 
morphology; beads depend on 

CNT/Copolymer concentrations 
Less beads compared to the fibers 
obtained form pure MWCNT/PS 

nanofibers 
Bead/Fiber morphology ; More beads 

formation at higher concentration 
(5%) 

Bead/Fiber morphology ; More beads 
formation at higher concentration 

(5%) 

Range of 
nanofiber 
diameter 

(nm) 
400-
1500 

300-
1100 

200 - 700 

100-
1400 

150-
1200 
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5.4.3. Initial material characterization 

The effect of CNT on viscosity of the solutions was studied as it represents one of 

the key properties that may affect the electrospinning process. We used Cannon-Fenske-

Routine (CFR) viscometers to characterize the change in viscosity with CNT addition. In 

addition we used a Bohlin CVO 120 stress-controlled rheometer to evaluate the 

rheological properties of initial polymer solution. 

Optical microscopy observations of initial solutions containing CNTs at the same 

dispersion condition were used in parallel with viscometry to evaluate the dispersion 

condition of solutions containing carbon nanotubes at different concentrations. 

The conductivity of the solutions at different carbon nanotube concentrations was 

measured using an accumet AP85 conductivity meter by Fisher Scientific. All the 

measurements were performed after mixing and before electrospinning. 

5.4.4. Morphological characteristics and final properties 

Raman spectroscopy technique was used for CNT detection in final non-woven 

mat. Raman spectra were recorded on a Renishaw spectrometer equipped with an in Via 

Raman microscope. The samples were tested using a NIR laser (785 nm) with a grating 

of 1200 g/mm in the regular mode and the microscope magnification used was 20x. 

A Hitachi S-4700 scanning electron microscopy (SEM) was used on platinum 

coated samples to characterize the final morphologies of fibers at different processing 

conditions. An optical microscope, Dialux 20 (Leitz,WETZLAR), was employed to 

check and analyze the dispersion condition and position of CNTs inside fibers. This 

method was used to detect CNTs positions along with dispersion conditions and 

morphological characteristics. 

The electrical conductivity of final electrospun mats was measured to assess the 

effect of CNT on nanofibers. For this purpose, a two-probe technique was employed, 

using a combined set-up of KEITHLEY 6620 as a current source and Agilent 34401 A (6 

Vi Digit Multimeter) as voltage source. 
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The mechanical properties of selected samples produced at different processing 

conditions were obtained from a microtester 5548 (Instron Inc.) All the experiments were 

conducted on strips of 5 mm in width and 15mm in length cut from electrospun samples. 

The samples included different ranges of thicknesses from 50 to 300 |im. A load cell of 5 

N and stretch speed of 10 mm/min were the best testing conditions for mechanical 

characterization of the electrospun samples. 

5.5. Results and Discussions 

5.5.1. Initial material characterization 

Various characteristic parameters of the initial solution will determine the final 

fiber structure and diameter. Among them, surface tension, solution conductivity and 

viscosity are the most important determining factors. In this work, we mainly focused on 

the effect of dispersion of CNTs and the suspension viscosity and conductivity on the 

electrospinning process. 

The measurement of viscosity was conducted at different CNT concentrations for 

samples containing different types of CNTs, with and without copolymer. The results 

obtained show that the viscosity decreases considerably with addition of CNTs (Table 5-

2). The reduction of viscosity is observed in all samples containing CNTs. This could be 

because of polymer chains break-up during sonication. The reduction in molecular weight 

causes the viscosity of samples containing CNTs decrease compared to pure PS solution. 

Addition of MWCNTs, even at 5% concentrations, shows the decreasing viscosity of 

MWCNT/PS solutions compared to pure PS solution. A comparison of the results at 0.5, 

1 and 2% MWCNT shows that addition of MWCNT does not change viscosity with 

MWCNT concentrations but MWCNTs affect considerably the viscosity of the 

polystyrene solution above 3%. Below 3% MWCNTs, solutions with MWCNTs are 
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stable for long period of time, no large agglomerates are found (Table 5-2). Above 3% 

MWCNT, viscosity of initial solution considerably increases and MWCNTs suspension 

in solutions are mostly unstable. The results prove that there is a network formation and 

structure build-up between 2% and 3% for this system. We also studied samples 

containing a SBS copolymer and MWCNT and a similar result was obtained. In prepared 

solutions, addition of MWCNT decreases the viscosity of solution (Table 5-2). However, 

viscosity increases at 3% MWCNT/Co-polymer concentration which shows the region of 

percolation in this system. The viscosity measured for sample with 2% and 3% MWCNT 

and copolymer is higher than for samples containing 2% and 3% pure CNT, which could 

be an evidence of SBS existence along with the dispersed MWCNTs. Copolymer chains 

interactions with CNTs cause an increase in suspensions viscosity; but they still remain 

less viscous than original PS solutions. Addition of high molecular weight SBS causes 

gradual increasing of viscosity. This effect is even more obvious at high concentrations of 

MWCNT and copolymer (Table 5-2). Therefore, using viscosity as evidence can only be 

inconsistent with similar systems, since adding copolymer changes the properties of 

system and viscosity accordingly. The effect of CNT addition on viscosity at 1% 

concentration of SWCNT, DWCNT and MWCNT is also assessed. 

Table 5-2: Relative viscosity of solutions (t|/r|soivent) at different CNT types and 

concentrations 

CNT 
Type 

MWCNT 

MWCNT/ 
Copolymer 

SWCNT 

DWCNT 

CNT concentration (%) 

0 

160.5 
±1.0 

160.5 
±1.0 

160.5 
±1.0 

160.5 
±1.0 

0.5 

92±2.7 

93.2±1 

-

-

1 

95.25± 
1.7 

98±1.4 

112.2± 
4.3 

118.5± 
0.6 

2 

96.8 
±2.6 

114.5± 
2.4 

-

-

3 

121.8± 
4.6 

145.8± 
1.7 

-

-

4 

129± 
4.7 

274.5± 
1.7 

-

-

5 

130± 
1.4 

451.3 
±41.6 

-

-
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MWCNT is much easier to disperse, and therefore, sample containing 1% MWCNT 

shows the lowest viscosity in spite of larger size of MWCNTs. Therefore, samples with 

1% SWCNT and DWCNT show higher viscosities compared to 1% MWCNT and 1% 

MWCNT/copolymer samples. SWCNT and DWCNT are smaller in size; however, their 

poor dispersion increases the viscosity of their solutions compared to MWCNT [33, 34]. 

Viscosity in solutions with MWCNT/copolymer is not different from that with only 

MWCNT and is lower than that for those containing SWCNT and DWCNT. This could 

be due to the finer particle size (agglomerates) in solutions with both MWCNT and 

copolymer and better dispersion quality (Table 5-2). The results obtained show that 

viscometry could be an indirect mean of evaluating the quality of particles dispersion in 

the solution. The lower the viscosity, the more the compatibility is between particles and 

solution and better is the quality of the dispersion. Moreover, it could be used as a 

criterion for obtaining the system network formation concentration. Below 3% MWCNT, 

no network structure is formed to cause an increase in the viscosity of the solutions. Even 

though, despite of high shear rate flow fields in viscosimetry, no network structure could 

be observed coming from CNT particles, there is still considerable difference in 

viscosities before and after percolation. 

The viscosity of the system was studied at different concentrations of MWCNTs 

below percolation at low range of shear rate (Fig. 5-2). We used this technique to 

evaluate the reliability of the results obtained from viscometry technique. 

The tests were done at room temperature and constant stress of 20 Pa. The system 

shows totally Newtonian behavior; however, the reduction of viscosity by molecules 

break-up is not distinguishable at low frequencies. It shows that in high shear flow field, 

the difference in viscosities of pure sample with the ones containing CNT is more 

obvious (Table 5-2 & Fig. 5-2). This could be because of the sliding effect of CNTs in 

addition to molecular weight reduction in the samples containing CNT. The results in 

Fig. 5-2 could show that the samples containing 2% MWCNT have no network formation 

inside as obtained previously by viscometry technique (Table 5-2). 
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Figure 5-2: Viscosity vs. frequency at different MWCNT concentrations below 

rheological percolation threshold (CVO 120, Room temperature, at 20 Pa constant stress) 

Optical microcopy was also used to evaluate the dispersion condition of CNTs in 

the initial polymer solution. This technique had the advantage of no limitations in terms 

of CNT concentration compared to viscosimetry and was very useful in this work. Fig. 5-

3 shows the change of particle sizes both below rheological percolation (1% MWCNT) 

and above percolation (4% MWCNT). 

As shown, upon addition of more and more MWCNT, it becomes more difficult 

to disperse the nanoparticles and large agglomerates are formed. The effect of copolymer 

addition on the dispersion quality is shown in Fig. 5-3. At 1% concentration (Fig, 5-3a 

and 3b), addition of copolymer causes a reduction in agglomerated particles size and 

fewer particles can be observed by optical microscopy. Above percolation and at 4% 

(Fig. 5-3c and 5-3d), the copolymer presence reduced particles size and allowed 

formation of an interconnected network structure, and thus MWCNTs are better dispersed 

with much less agglomerates (Fig. 5-3c and 5-3d). 
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Figure 5-3: Optical microscopy on dispersion condition of initial solution below 

rheological percolation (1% MWCNT) and above percolation (4% MWCNT) with and 

without copolymer, a) 1% MWCNT; b) 1% MWCNT & copolymer; c) 4% MWCNT; d) 

4% MWCNT & copolymer 

The dispersion state of different PS/CNT solutions has been studied by optical 

microscopy at 5% concentration of different CNTs (Fig. 5-4). The optical images confirm 

the results from viscometry. SWCNT and DWCNT show the largest sizes of CNT 

agglomerates and therefore, they induce a higher viscosity below percolation (Fig. 5-4a 

and 5-4b). In contrast, MWCNT showed smaller and less agglomerates (Fig. 5-4c). 

Copolymer addition in the latter case even induced particle size reduction compared to 

MWCNT suspensions without copolymer (Fig. 5-4d). 
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Figure 5-4: Optical microscopy on dispersion condition of initial solution, a) 5% 

SWCNT; b) 5% DWCNT; c) 5% MWCNT; d) 5% MWCNT & Copolymer 

The results obtained from viscosimetry prove that at 1% concentrations of 

different carbon nanotubes (Table 5-2), the solutions are all below the concentration for 

network formation. Even though, there is a slight difference of suspension viscosity 

amongst different carbon nanotube types, it is not significant enough to be an evidence 

for structure build-up. The increase in the viscosity in the case of SWCNT and DWCNT 

is because of poor dispersion condition of carbon nanotubes. More over, the results from 

optical microscopy at 5% (Fig. 5-4) along with viscometry (Table 5-2) could be a proof 

that the system is above the concentration for network formation at 5% of different 

carbon nanotubes types. In this study, we mainly compare the results from 1% of 

different carbon nanotube types which is below network formation as described above 

(Table 5-2). In addition, 5% concentration of carbon nanotubes is chosen as a 

concentration above network formation. 
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The results obtained from electrical conductivity measurements of solutions 

containing various concentrations of MWCNT are given in Table 5-3. As expected, 

addition of MWCNT causes an increase of the initial solution conductivity. 

Table 5-3: PS/CNT solutions conductivity OS/cm) at different MWCNT concentrations 

Concentration (%) 

MWCNT 

0 

1.2 

1 

20.3 

3 

34.5 

5 

88.2 

Comparing the results obtained from different types of carbon nanotubes show 

that SWCNT containing solutions are more conductive; 54 fiS/cm at 1% SWCNT 

concentration compared to 20 fiS/cm at 1% MWCNT concentration. Moreover, addition 

of copolymer causes a decrease in the amount of conductivity; 79 ^iS/cm at 5% 

MWCNT/copolymer concentration compared to 88 nS/cm at 5% MWCNT 

concentration. The reduction in conductivity by adding copolymer might be due to partial 

coating of the carbon nanotubes by the copolymer coupling agent. The results show that 

addition of carbon nanotube enhances the conductivity of the system, which could be an 

important determining factor on final morphology. 

5.5.2. Raman spectroscopy 

Raman spectra of non-woven mats obtained from different types of carbon 

nanotubes/PS nanofibers are shown in Fig. 5-5. Among the characteristic peaks of multi-

wall carbon nanotubes detected by Raman spectroscopy, three peaks could be 

distinguished. Two string peaks are located at 1580 cm"1 (G), and 1350 cm"1 (D) and a 

weak peak are also detected at around 2700 cm"1 (GN) [35, 36]. 

The intensity and ratio of these peaks (D/G ratio) vary depending on carbon 

nanotube type and surface structure. The peaks related to SWCNT and DWCNT show 

more similar structure as expected; however SWCNT and DWCNT are fundamentally 

different from MWCNT characteristic peaks (D/G ratio). 
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Figure 5-5: Raman spectra of final non-woven mat containing different types of carbon 

nanotubes 

5.5.3. Morphology of electrospun fibers and mats 

In this work, two methods were chosen to characterize the final morphologies of 

fibers. First, the fibers morphologies were analyzed qualitatively through SEM, followed 

by some quantitative image analysis. Second, optical microscopy was used to detect CNT 

localizations inside the fibers. Moreover, this technique was also used to evaluate the 

effect of copolymer addition on final dispersion condition of CNTs inside the fibers. 

The final morphologies of the fibers are dependant on several characteristics of 

the initial solution such as viscosity, surface tension and conductivity in addition to some 

process and environmental conditions (temperature and humidity). The latter were not 

changed for this study and only the effect of material parameters was assessed, by 

changing the types and concentrations of CNTs. 

Fig. 5-6 shows the effect of MWCNT addition at different concentrations on final 

fibers morphologies. As it is depicted in the results, electrospun PS fibers without 

MWCNTs are mixtures of beads and fibers at 20% PS concentration (Fig. 5-6a). Addition 

of MWCNTs to the PS solution causes a gradual decrease in the relative number of bead 
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structures among the fibers. This effect is explained by our previous observation that the 

addition of MWCNTs increases the solution conductivity and decreases the solution 

viscosity under high shear rates flow conditions; which are also found in the 

electrospinning process while solution is moving through syringe before exit. The value 

of shear rate for the viscometer we have used is in the range of 1-80 s"1. In the 

electrospinning set-up we can estimate an average shear rate of about 4s"1, resulting from 

a 0.8 mL/hr volumetric flow rate through a PS22 gauge. . The best condition for smooth, 

headless fiber production is below a 2% concentration of MWCNT (at 1%, beads are 

even less) (Fig. 5-6c and 5-6d). At 3% and 4% MWCNT and after rheological percolation 

(Above 3% MWCNT), the amount of bead structures in samples containing different 

concentrations of MWCNTs is almost the same (Fig. 5-6e and 5-6f)- However, at two 

higher concentrations, 5% and 7% of MWCNT, there is again an increase in the amount 

of bead structures along fiber axis (Fig. 5-6g and 5-6h). The fibers at higher 

concentrations had smaller diameters and more beads in their structures compared to 

lower concentrations of MWCNTs. Followed by the decrease in fiber diameter, the sizes 

of beads along fiber axis is decreased correspondingly. Therefore, at higher 

concentrations smaller beads are shaped along fiber axis. The small beads are more 

obvious in the next optical microscopy test results by dark aggregate formation which 

will be discussed in more detailed. 

The quantitative analysis shows that the fiber diameter reduces as CNT content 

increases in initial solution up to 4%-5% (Fig. 5-7). At 4%-5% and 7% MWCNT 

concentration, the value of fiber diameter is optimized and has the least value. The 

histograms of fiber diameter distribution show that, for all concentrations, a wide 

distribution of fiber diameters is obtained. 
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Figure 5-6: SEM photos of PS (20%) / MWCNT at different CNT concentrations, a) Pure 

PS; b) 0.5% MWCNT; c) 1% MWCNT; d) 2% MWCNT; e) 3% MWCNT; f) 4% 

MWCNT; g) 5% MWCNT; h) 7% MWCNT. 
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Figure 5-7: Histograms of fiber diameter distribution, a) Pure PS (Average fiber diameter 

(Ravg): 766±288 nm); b) 1% MWCNT (Ravg: 676±186 nm); c) 3% MWCNT (Ravg: 

665±117 nm); d) 5% MWCNT (Ravg: 482±83 nm); e) 7% MWCNT (Ravg: 518±69 nm). 
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In the case of MWCNT addition combined with copolymer almost the same 

morphological trend as discussed above is observed (Fig. 5-8). The smoothest fibers are 

obtained at 1% and 2% concentrations of MWCNT/copolymer; while bead structures 

content increases by addition of CNTs to 5% MWCNT/copolymer. A comparison of the 

morphologies of systems with copolymer and without copolymer shows that addition of 

copolymer causes a decrease in the amount of bead structures compared to the system 

with pure MWCNT, for all concentrations. 

Figure 5-8: SEM photos of PS (20%) / Copolymer / MWCNT at different CNT 

concentrations, a) Pure PS; b) 1% MWCNT, 1% Copolymer; c) 2% MWCNT, 2% 

Copolymer; d) 3% MWCNT, 3% Copolymer; e) 4% MWCNT, 4% Copolymer; f) 5% 

MWCNT, 5% Copolymer. 

Histograms of MWCNT/copolymer electrospun fiber show similar trends as 

samples with pure MWCNT (Fig. 5-9). The addition of MWCNT causes fiber diameter 

reduction and 4% MWCNT/Copolymer concentration is the optimum value. Fiber 

diameters decrease considerably by the addition of 1% MWCNT/copolymer. Fibers 

obtained were more uniformed in fiber diameter in this case and the range of fiber 
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diameter does not change considerably by adding carbon nanotube concentration. (Fig. 5-

9). 

35 

30 

25 

I 
10 

5 

a) PS W„ • Copolymer 1% • HWCNTi'i 

04 OS 0 * 0.7 
Fiber Diameter (pm) 

3-20 

»15 

c~) PS 2<f, - Copolymer 5% - MWCHT 5% 

0.2 0.3 0.4 05 
Fiber Diameter (urn) 

02 0X1 0.4 0.5 
Fiber Diameter ftim) 

Figure 5-9: Histograms of fiber diameter distribution, a) 1% MWCNT, 1% Copolymer 

(Ravg: 486±108 nm); b) 3% MWCNT, 3% Copolymer (Ravg: 324±84 nm); c) 5% 

MWCNT, 5% Copolymer (Ravg: 298±105 nm). 

The average diameter of fibers at other concentrations is even lower in samples 

with copolymer compared to pure MWCNT samples (Fig. 5-7 & Fig. 5-9). This is an 

additional proof that homogenous dispersion and electrical conduction through fibers 

results in a larger fiber diameter reduction. At 5% MWCNT/copolymer, the finest fibers 

are obtained with quite narrow fibers diameter distribution compared to other 

concentrations. 

Optical microscopy was used in parallel with SEM to detect CNT localization 

inside the fibers. The samples for optical microscopy were electrospun at the processing 

conditions mentioned above; with the difference that a rotating drum with the speed of 

120 rpm was used as collector instead of static drum to produce a thinner electrospun mat 

in stable electrospinning condition. Fig. 5-10 shows the optical images of electrospun 

fibers containing different concentrations of MWCNT in suspensions with and without 

copolymer. The results obtained from this method show that in most cases, beads in 

MWCNT-containing sections are filled with MWCNT agglomerates (Fig. 5-10). It is also 

possible to detect some MWCNTs aggregates inside fibers; however, the large ones are 

located inside the beads along the fibers. At 5%, the number of bead structures increase 
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and they are filled with MWCNTs. Even though, the fiber diameter and beads sizes 

decrease, most of those small beads all contain MWCNTs (Fig. 5-10c). 

The same results were obtained from optical microscopy of the samples with both 

MWCNT and copolymer (Fig. 5-10d-f). At 1%, it was difficult to detect MWCNTs by 

optical microscopy. In samples containing copolymer, it shows that the sizes of MWCNT 

agglomerates have considerably reduced (Fig. 5-10d). At 3% and 5%, the fibers diameter 

decreased significantly; however, the bead structures are still MWCNT-aggregate 

locations. The compatibilizing effect of copolymer has decreased the size of the beads 

and MWCNT aggregates along fiber axis (Fig. 5-10e and f). 

Comparing the results of SEM and optical microscopy shows that there are two 

main parameters controlling the morphology of fibers for this system during 

electrospinning: solution conductivity and CNT dispersion condition. Increasing 

conductivity removes the bead structures, therefore at 1% and 2% (below carbon 

nanotube network formation), there are less bead structures compared to 0% and 0.5% 

MWCNT. Above percolation, the morphology of fibers is controlled not only by the 

conductivity but also by the CNT dispersion condition. At these higher concentration 

levels, there is no change in solution conductivity and dispersion of CNTs becomes more 

difficult. The dispersion condition is the controlling parameter of final fiber morphology 

and of bead formations. Hence, at 5% and 7% MWCNTs, the bead structure greatly 

increases along fiber axis which could be the result of CNTs poor dispersion. Even 

though, the solutions at 5% and 7% MWCNTs are in a suitable solution conductivity 

range to give smooth fibers (The conductivity of solution containing 5% or 7% MWCNT 

is more than 1% MWCNT concentration which gives quite smooth fibers), the aggregates 

of CNTs cause bead structures development. The same results were obtained for the 

samples containing copolymer, and only CNT aggregates and beads dimensions were 

smaller. Therefore, CNTs are better distributed with finer particles along fiber axis. 

The fibers' morphology at 1% of single wall, double wall (below percolation 

threshold) as well as at 5% (above percolation threshold) are shown on Figure 5-11. The 

systems containing SWCNT and DWCNT are mixtures of beads and fibers together. At 
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1% DWCNT or SWCNT (Fig. 5-1 la & 5-1 lb), the amount of beads increased compared 

to 1% MWCNT but they still have fewer beads compared to pure PS fibers. 

Quantitative analysis of SWCNT and DWCNT nanocomposite fibers shows that 

they both have average fiber diameters larger than those obtained for pure PS electrospun 

system below percolation (Fig. 5-12a & 5-12b). The expectations were to observe smaller 

diameters because of higher conductivity of SWCNT and DWCNT, but the result is 

opposite. This may be due to the poor dispersion condition of SWCNT and DWCNT 

proved by both viscometry and optical microscopy as discussed above. The fibers show a 

wide diameter distribution and they are mostly located at high range of diameters. Fig. 5-

11 also shows the morphologies of fibers at 5% of different CNTs. Fine fibers were 

obtained at this concentration, with few beads for DWCNT and many beads for SWCNT 

(Fig. 5-1 lc & 5-1 Id). Fibers have low diameters and they obey a normal distribution 

especially with SWCNT system (Fig. 5-12d). High conductivity of initial solution 
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decreases the average fiber diameter; however, the fibers are mixed with many beads 

along axis which is the result of poor dispersion of CNTs (Fig. 5-12d). 
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Figure 5-11: SEM photos of 20% PS electrospun fiber containing a) 1% DWCNT; b) 1% 

SWCNT; c) 5% DWCNT; d) 5% SWCNT 
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Figure 5-12: Histograms of fiber diameter distribution, a) 1% DWCNT; b) 1% SWCNT; 

c) 5% DWCNT; d) 5% SWCNT 
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Fig. 5-13 compares the average fiber diameter of different systems with CNTs at 

two concentrations. The behavior of the different systems is totally different below 

percolation (1% CNT) and above percolation (5% CNT). This again emphasizes the 

effect of the conductivity of the solution and dispersion of CNT as the parameters 

controlling the fiber diameter as well as morphology of electrospun fibers. 

1400 

^ 
ff 

{̂S** CNT Type & Concentration 

Figure 5-13: Comparison of average fiber diameter at different types of CNTs below 

percolation (1%) and after percolation (5%) 

Figure 5-14 briefly reviews the morphological observations obtained here at 

different concentrations of CNTs. As it was discussed so far, dispersion condition could 

be introduced as a controlling factor of final fiber morphology. In the case of good 

dispersion and very low concentrations of CNTs, finer fibers besides removing bead 

structure are expected because of increasing conductivity [6, 24]. Therefore, increasing 

CNT concentrations decreases both bead structures and fiber diameter in all 

concentrations resulting from high conductivity; however, two different areas are 

distinguished in the case of poor dispersion based on CNT concentration and percolation 

threshold (Fig. 5-14). 
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Figure 5-14: The schematic diagram of change in various properties as a function of CNT 

concentrations and the effect of poor dispersion condition as a controlling factor 

The results show that both fiber diameter and smoothness could be controlled by 

CNT dispersion condition depending on CNT concentration. As it is depicted, at low 

CNTs concentrations, fibers with larger diameters are the effect of poor dispersion; while 

the same factor translate by larger fraction of beaded fibers at high concentrations. At low 

CNT concentrations, an increase in fiber diameter is observed, which is unexpected in 

solutions with higher conductivity compared to pure PS system due to CNT addition. It is 

opposite to previous observations with MWCNT dispersions since the increase in 

conductivity results in fiber diameter reduction [6]. Moreover, the beads disappear from 

the fibers at low CNT concentrations while the results show the samples have lower 

viscosities in this range. This results is opposite to previous observations for the effect of 

viscosity on smooth fibers formation; since the increase in viscosity was accounted as a 

parameter for smoother fiber formation [24]. Beads removal could be due to the increase 

of conductivity compared to pure electrospun nanofibers in spite of the lower viscosities 

of initial solution. Higher conductivity of solution is expected by adding more CNT to the 

system; however, an increase in fiber diameter is observed here even in highly conductive 
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solutions especially when there is poor dispersion of CNTs (SWCNT and DWCNT). 

Therefore, dispersion condition is one of the controlling factors for fiber diameter besides 

fiber smoothness. Above percolation, the increase in conductivity and viscosity results in 

significant fiber diameter reduction compared to lower CNT concentrations. At higher 

CNT concentrations (above electrical percolation), dispersion affects final fiber 

morphology from another aspect. There are unexpected bead structures along fiber axis 

which contain CNT aggregated (Fig. 5-10). Poor dispersion above percolation and 

inhomogeneous electrical conduction along the fiber causes CNT agglomeration and bead 

formation. The poorer the dispersion, the more the beads are present along the fibers, 

while the opposite is expected at high values of viscosity and conductivity. 

In summary, reduction in molecular weight and viscosity after sonication is not 

consistent with bead removal from fiber axis [25]; therefore other parameters except of 

viscosity are controlling the bead morphology and fiber diameter. Here, we believe that 

CNT dispersion condition and conductivity of initial solution are the main determining 

factors. As the results of conductivity show, addition of CNT increases the conductivity 

and the solutions containing SWCNT are more conductive that the solutions with coated 

MWCNT. Therefore, followed by increasing the initial conductivity we expect two main 

changes in final morphology: reduction in fiber diameter [6] and bead removal from fiber 

axis [22] compared to pure electrospun nanofibers. While there is an increase in fiber 

diameter for the samples below network formation concentration opposite to expectation 

(SWCNT and DWCNT) and there is increase in bead morphology by increasing the CNT 

concentration above network formation concentration. Increasing the fiber diameter at 

1% CNT concentration in SWCNT and DWCNT which are poorly dispersed prove that 

dispersion condition is more important than solution conductivity in this case; while this 

effect is shown as bead formation at high CNT concentration. Comparing the sizes of 

beads obtained from optical microscopy and SEM in addition to optical microscopy 

results prove that all the beads are the locations of CNT aggregated and making 

modification on the dispersion in example by adding copolymer decreases the bead 

structures to a great extend. 
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Increasing the conductivity causes larger electric current during electrospinning 

and will induce large charge accumulations on fiber diameter, and as result, will intensify 

the electrical force and splashing and finer fibers are formed [37]. In this system, the 

solvent (DMF) is non-conductive compared to PS/CNT complex and the polymer 

(PS/CNT) is the charge carrier in these kinds of systems; since the polymer (PS/CNT) is 

more conductive and the conductivity of solution is dependent on CNT. Therefore, when 

the CNT is well dispersed, and before network formation, the charge accumulates 

uniformly on fiber surface and the reduction of fiber diameter along with smooth fiber 

formation is observed (1% MWCNT and 1% and 2% MWCNT/Copolymer). However, 

when CNT is not well dispersed, there is localized charge accumulation along fiber axis 

because of inhomogeneity of polymer solution conductivity. In this case the charge 

density is not dispersed uniformly along fiber and therefore electric field is not 

homogenous along fiber. The inhomogeneity of charges and electric field causes bead 

formation along fiber axis. It means that in some parts, the fiber diameter reduces and in 

the other parts there are bead structures and increase in fiber diameter (SWCNT and 

DWCNT solutions in all concentrations and MWCNT solutions above network formation 

concentration). In 1% SWCNT and 1% DWCNT solutions the quality of dispersion is not 

satisfactory; therefore beads are formed even at low concentration. However, because of 

lower conductivity compared to 5% CNT, the charge density and electric field is not 

strong enough for fiber diameter reduction. As a result, the presence of aggregated CNT 

causes an increase in the fiber diameter because there is not a strong electric field; 

moreover, the inhomogeneity of charge density induces the bead formation. 

5.5.4. Electrical conductivity results of fiber mats 

Electrical conductivity of final electrospun mat was measured as a function of 

CNT type and concentration. The samples included a wide range of thicknesses from 15 

to 300 urn and they were all positioned between two highly conductive layers besides 

electrodes before starting experiments. The conductivities of all samples were measured 

in a specific two-probe test fixture. Therefore, all the experiments were run in similar 
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conditions, constant force and with reliably enough repeatability within 80% of the 

average conductivity. 

Based on electrical percolation theory, the system becomes conductive when a 

critical concentration is reached which is called percolation threshold. Above electrical 

percolation, the system is quite conductive. Formation of CNT network causes the 

electron transport by tunneling or electron hopping which occurs along CNT 

interconnects [38]. The system studied was the 20% PS and was below percolation for 

CNTs content up to 2%. No network structure or CNT agglomerate is formed up to 2% 

MWCNT, which was shown before by viscometry and optical microscopy of initial 

solution. In MWCNT concentrations above 2%, an internal network structure is formed 

and the system is getting close to percolation. Below 3% our instrument and set-up was 

not showing any results which could depict considerable electrical conductivity in the 

system. At 3% MWCNT and above, sensible modification in conductivity of PS 

electrospun mat was observed from electrical conductivity measurements. However, 3% 

MWCNT is not enough to form complete network and to achieve the electrical 

percolation threshold and the samples are still in the transition region to percolation 

(1.90xlO"9S/cm). Therefore, the conductivity of non-woven mat at 1% and 2% MWCNT 

concentration is almost zero (Between 10"19 and 10"9 S/cm (PS/3%MWCNT)). At 3.5% 

concentration of MWCNT, samples are at electrical percolation threshold (1.02x10" 
5S/cm) and a considerable increase in electrical conductivity is observed after this 

concentration (Fig. 5-15). At 5% and 7% CNTs, the conductivity increased; however, the 

value of conductivity was almost constant after 5% MWCNT (Fig. 5-15). This confirms 

the results obtained from viscometry which indicates the start of network formation 

above 2% MWCNT. At 3% the sample is at the beginning of the construction of a 

complete network, and at 3.5% CNT concentration, the network is complete resulting in a 

totally conductive mat. Based on percolation theory [39]: 

<T = A{w-wJ (5-1) 

where a is the volume conductivity, A and t are constants, and wc is the critical 

concentration in which the conductivity is ignorable compared to higher concentration; 



105 

the critical concentration for network formation. Considering 3% as wc, we could obtain 

A=8.5xl0~5 and t=0.795 for this system. We have measured the conductivity through the 

thickness of non-woven mat. It means that at 3.5 % MWCNT, there are networks for 

electron transfer between the layers of non-woven mat based on percolation theory. 

Therefore, the random structures of fibers, which are making different layers of non-

woven mat, have enough CNT to make network between layers. As a result, it is possible 

to predict that the value of conductivity would be more and the percolation threshold 

would be less even if the conductivity is measured along fiber axis. 

For the samples containing both MWCNT and copolymer, a similar concentration 

effect on the electrical conductivity was found. The electrical percolation threshold 

(5x10~5 S/cm) was observed for 4% CNT concentration. The results obtained show that 

the electrical conductivity of mats containing compatibilizer is slightly higher than 

samples containing MWCNT without compatibilizer, below and around percolation 

threshold (Fig. 5-15). The higher values of conductivity originate probably from the good 

dispersion condition of MWCNTs in the samples, which reduces agglomeration and helps 

distribution of MWCNTs along fiber axis. Improving dispersion helps in conductivity 

modification below percolation. However, after percolation (5%), a decrease in 

conductivity of sample containing copolymer is observed compared to only MWCNTs 

containing samples (Fig. 5-15). Moreover, the conductivity reached a constant value 

more rapidly in samples with copolymer. This might be the result of a reasonable 

dispersion of CNTs around percolation. 

Good dispersion is expected to increase conductivity of mats compared to 

samples without copolymer. However, coating and compatibilization above percolation 

may have a reverse effect on conductivity. At 5% w/w concentration, the network of 

CNTs is organized in the sample with both copolymer and pure MWCNT. Addition of 

copolymer partially coats the MWCNTs and therefore in spite of forming networks; it 

could reduce the electrical conduction as has been previously observed [8]. 



106 

cm
) 

«S 

it
y(

 
uc

tiv
 

on
d

 

O 

le-2 -i 
le-3 
le-4 
1e-5 
le-6 
1e-7 
1e-8 
1e-9 
1e-10 
1e-11 
1e-12 
1e-13 
1e-14 
1e-15 
1e-16 
le-17 
1e-1S 
le-19 1 

MWCNT (Copolymer) Concentraton 

Figure 5-15: Conductivity of samples containing copolymer comparing to samples 

without copolymer 

The conductivities of samples with 5% SWCNT and 5% DWCNT were also 

measured. At this content, SWCNT shows the highest conductivity as expected (3.7xl0~4 

S/cm). The samples with MWCNT/Copolymer (5.3xl0~5 S/cm) and DWCNT (5.0xl0~5 

S/cm) show the lowest amount of electrical conductivity. It should be noted that, 

however, it is quite difficult to disperse the samples with SWCNT and DWCNT, and the 

fibers obtained show the presence of CNTs aggregates in the fibers in addition to the 

beads structure. However, the unique structure of SWCNT overcomes the poor dispersion 

of CNTs and the best conductivity is obtained. 

5.5.5. Mechanical characterization of fiber mats 

Electrospun PS/MWCNT fiber mats were studied in both cases of with and 

without compatibilizing copolymer. For the samples without copolymer, addition of 

MWCNT causes an increase in both modulus and tensile strength before percolation 

threshold (Fig. 5-16). A gradual increase is observed up to 2% CNT; then a jump in 

modulus and tensile strength is observed at 3% MWCNT. Above 3% MWCNT, modulus 

and tensile strength decrease and they are even less than pure PS at 5% MWCNT. At 4% 

pS/ Electrical Percolation 
jf Threshold 

/ 
—•— MWCNT 
—o— MWCNT + Copolymer 

0% 3% 4% 5% 7% 
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MWCNT, the internal network of CNT is formed and it is thought to be the main reason 

for weakening of nanocomposite mats. Since the formation of network is accompanied 

with weakening of CNT/matrix at high concentrations of CNTs. Increasing MWCNT 

content and network formation decreases the strength of final PS mat and a reduction in 

mechanical properties is obtained. The materials obtained above percolation are quite 

brittle and weak (Fig. 5-16). Almost the same behavior was observed for maximum 

tensile strain (£max) in the samples containing MWCNT (Fig. 5-16). The increase of 

modulus at all concentrations of MWCNT below percolation causes a change into brittle 

behavior and accordingly, causes a decrease in smax compared to pure PS. The value of 

Emaxin all concentrations is less than pure PS non-woven mat.. 

A comparison of the values of modulus and tensile strength with those of the 

samples containing only MWCNT shows a significant copolymer effect. The modulus 

and tensile strength are about twice for the samples containing copolymer (Fig. 5-16). 

Only at 3% MWCNT the value of tensile strength in both samples with and without 

copolymer are almost the same. Moreover, above percolation, improved mechanical 

properties for samples containing MWCNT and copolymer are still observed compared to 

pure PS. Therefore, not only quite conductive systems are obtained above electrical 

percolation, but also improved mechanical properties are achieved. The behavior of 

maximum tensile strain (smax) for the samples with MWCNT and copolymer is totally 

different from pure MWCNT nanocomposite fibers. Emax increases as a function of 

MWCNT concentration and it does not decrease even after percolation at 5% 

MWCNT/Copolymer concentration (Fig. 5-16). It is to be reminded here that any 

increase in MWCNT is accompanied with the same increase in copolymer concentration 

for compatibilized nanocomposites. Therefore, copolymer addition brings tough behavior 

to the electrospun mats even with addition of MWCNT and decreasing modulus after 

percolation. 
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Figure 5-16: Tensile modulus, maximum tensile stress and maximum tensile strain as a 

function of MWCNT concentrations with and without copolymer. 

The localization of the compatibilizer at the interface of CNT and polymer matrix 

improves the mechanical strength [40]. The results obtained from the mechanical tests 

and increasing in smax prove that the added copolymers are improving the interactions at 

the interface. The improved interface due to copolymer addition results in better 

mechanical strength of final nanocomposite electrospun mats. From another point of 

view, addition of copolymer might cause developing a kind of PS/SB S blend as the 

matrix. The formation of the blend by adding copolymer concentration causes tough 

behavior of the system and increase in £max. 

The effect of different types of CNTs on final mechanical properties was also 

studied (Table 5-4). As shown, in contrast with electrical conductivity results, DWCNT 
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shows the best mechanical properties results. The highest values of modulus, tensile 

strength and 8max were obtained for the samples with DWCNT. This might originate from 

the small size of DWCNT compared to MWCNT and more interface and connection with 

matrix. Compared to SWCNT, DWCNT is easier to disperse and therefore, the 

mechanical test results improve by adding DWCNT. In the case of SWCNT, in spite of 

the small sizes of nanotubes, poor dispersion causes the mechanical properties to 

deteriorate. Similar results have been obtained previously in literature on the effect of 

DWCNT in mechanical properties modification and obtaining better results compared to 

MWCNT and SWCNT [34]. 

Table 5-4: Mechanical properties of different CNT types 

CNT 
Type 

5 % MWCNT 

5 % MWCNT/ 
Copolymer 

5 % SWCNT 

5 % DWCNT 

Modulus (MPa) 

7.0 ±1.8 

16.3 ±0.1 

10.4 ±2.0 

23.4 ± 8.6 

Maximum Tensile 
Stress (MPa) 

0.18 ±0.07 

0.61 ±0.04 

0.22 ± 0. 05 

0.78 ±0.16 

Maximum 
Elongation (£max) 

10.8 ±2 

19.4 ±5 

8.6 ±5 

12.3 ± 1 

Samples containing both MWCNT and copolymer show best improvement in 

both mechanical and electrical properties (above percolation). Therefore, the 

compatibilised MWCNT samples could give the best results from different aspects of 

view and this is of great interests. 
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5.6. Conclusions 

PS nanocomposite nanofibers combined with different types of CNTs were 

electrospun in this work for the first time. The final structures and morphologies of 

electrospun nanocomposite nanofibers were studied along with electrical and mechanical 

properties of resulting mats. A copolymer was used to improve the dispersion condition 

of CNT and the resulting suspension was analyzed by means of optical microscopy and 

viscometry. Comparison of the final morphologies of samples with different dispersion 

conditions showed that CNT dispersion is an important controlling parameter for final 

fibers diameter and morphology. Below percolation, poorly dispersed samples showed an 

unexpected increase in fiber diameter while above percolation threshold, beads formation 

resulted from poor nanoparticles dispersion. Reasonable electrical conductivity was 

obtained at the percolation threshold of 4% MWCNT. Electrical conductivity results 

proved the positive effect of copolymer addition below percolation threshold. However, 

above percolation, the samples with copolymer showed a lower conductivity which might 

be because of CNTs coating with copolymer. Moreover, morphologies and final 

properties of electrospun fibers with different types CNTs (SWCNT, DWCNT, 

MWCNT, and compatibilised MWCNT) at different concentrations and percolation 

region were compared in this work. The results show the important effect of dispersion 

on final fiber morphologies and properties. The best conductivity obtained in SWCNT/PS 

mixture in spite of poor dispersion. While adding copolymer causes better conductivity 

results below percolation in MWCNT/PS mixture. The effect of copolymer on improved 

compatibility was proved through comparison of the mechanical properties test results 

between PS/MWCNT and PS/Copolymer/MWCNT systems. 
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Chapter 6 

Fundamental Study of Crystallization, Orientation 

and Final Properties of Electrospun 
sfc 

PET/Carbon nanotube Nanofibers 

6.1. Presentation of the article 

Final morphology and properties of PET/CNT are deeply characterized in this 

work. Study and characterization of PET/CNT conductive nanofibers are the main aim of 

this study. Final morphology of PET/CNT electrospun non-woven mat is studied at first 

step. Moreover, we could produce aligned nanocomposite nanofibers by using a high 

speed rotating drum. The effect of CNT addition on PET chains crystallization and 

orientation is studied by different techniques. We could obtain smooth conductive 

nanofibers with electrical percolation threshold below 2 wt% MWCNT. Crystallography 

test results show increasing crystalline density by increasing CNT concentration above 

electrical percolation. This result is opposite to decreasing crystallinity function below 

percolation by adding CNT. Raman spectroscopy test results show CNT orientation along 

fiber axis in oriented electrospun nanofibers. Aligned nanofiber production causes 

considerable enhancement in the amount of modulus even up to 6 times more compared 

to randomly oriented nanofibers in pure PET non-woven mat in direction of alignment. 

* Polymer Science, Part B; Polymer Physics. Submitted May 2009. 
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6.2. Abstract 

The morphology, structure and properties of Polyethylene terephthalate 

(PET)/Carbon Nanotube (CNT) conductive electrospun non-woven mat were studied in 

this paper. Nanocomposite fibers were obtained through electrospinning of PET solutions 

in trifluoroacetic acid (TFA)/dichloromethane (DCM) with equal volume ratio (1:1) 

containing different concentrations and types of CNTs. Electrospun nanofiber mats were 

produced using both static and rotating drum collector. Electrical conductivity 

measurements on nanocomposite mats showed an electrical percolation threshold around 

2 wt% MWCNT. The morphological analysis results showed smoother nanofibers with 

less bead structures development when using a rotating drum collector especially at high 

concentrations of CNTs. Moreover, aligned CNT nanocomposite nanofibers depicted 

larger diameters compared to the nanofibers produced in a static collection mode. From 

crystallographic measurements, a higher degree of crystallinity was observed with 
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increasing CNT concentrations up to levels above those needed for electrical percolation. 

Both Fourier transform infra-red (FTIR) and Raman spectroscopy techniques showed 

similar behaviors of PET chains and CNT orientation in the aligned nanocomposite 

nanofibers. Both PET and CNT orientation increased along with the alignment of the 

nanofibers for materials where the nanotube concentration was below the electrical 

percolation threshold, while the orientation factor was reduced for aligned nanofibers 

with higher content in CNT. A similar effect of the CNT concentration was observed for 

the mechanical properties. Considerable enhancement in mechanical properties, 

especially tensile modulus, was found in aligned nanofibers; at least six times higher than 

the modulus of random nanofibers at concentrations below percolation; while the effect 

of alignment was less important above percolation and at high concentrations of CNTs. 

6.2. Introduction 

The electrospraying process was discovered by Formhal 1934 and since then, this 

process has received a great deal of interest due to its apparent simplicity [1]. 

Electrospinning is the most practical technique to produce nanofibers. Until 1993, the 

electrospinning technology was often referred to as an electrostatic spraying process and 

only a few publications employing this technique can be found prior to that year [2]. 

Reneker and Chun revisited this technology in the 1990s and they showed the possibility 

of employing it for producing fibers from several types of polymer solutions [3]. More 

recently, various types of nanoparticles were dispersed in the polymer solutions and thus, 

were embedded in the nanofibers through this process as a means of modifying their final 

properties. Among them, carbon nanotubes (CNT) have attracted a great attention. In 

fact, rapidly after CNT development [4], this nanoparticle has been widely used to 

enhance electrical or mechanical properties of electrospun polymer fibers to various 

extents [5-8]. An increase in the amount of CNT enhances the conductivity of the 
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polymer solution and produces a larger electrical current during electrospinning. The 

addition of charge accumulation overcomes cohesive forces and intensifies repulsive 

forces among the charges accumulated inside nanofibers and fibers of smaller diameter 

are formed [6]. 

Other studies investigated the structures, properties and applications of PET 

electrospun nanofibers with and without CNT [9-24]. Considering the unique properties 

of PET, various applications of PET nanofibers have been developed [9-11, 13, 15, 16, 

18-23]. These include filtration [9, 16, 19, 20], phase change materials (PCM) [10, 13], 

charge storage [11], and biomedical applications [15, 18, 21, 22]. However, very few 

studies addressed with a satisfactorily level of details the structure and properties of PET 

nanofibers produced by solution electrospinning. The earliest of them was performed by 

Kim and his colleagues who investigated the electrospinning of PET with an emphasis of 

the effect of molecular weight and linear velocity of the collecting drum surface [24]. 

They used X-ray diffraction (XRD) to assess the effect of drum velocity on nanofibers 

orientation and the resulting crystallinity [24]. McKee et al. studied the correlation 

between solution rheology and final fiber morphologies of branched and linear polyester 

electrospun nanofibers [23]. They found that the concentration required for bead-free 

nanofiber production is two times more than c (the concentration required for chain 

entanglement initiation). The effect of chain entanglements on viscosity was also studied 

and a correlation of the electrospun morphology (polymer droplets, beaded structure or 

nanofibers) to zero shear rate viscosity was developed [23]. In one of the most recent 

studies available on PET nanofiber from solution electrospinning, Veleirinho and his 

colleagues evaluated the effect of initial solution concentration and solvent type on final 

properties of PET electrospun nanofibers [14]. They showed that at least 10 wt% of PET 

in initial solution is required to prepare nanofibers, while higher concentration favors 

headless structure nanofibers [14]. They also showed that TFA/DCM volume ratio could 

be an important determining factor on the final morphology and properties of nanofibers 

[14]. In one of the earliest works available, polybutylene terephthalate (PBT), a polyester 

similar to PET, was used in electrospinning combined with MWCNT [25]. A suspension 
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of 5% MWCNT dispersed in a solution of PBT/hexafluoro isopropanol (HIFP) was used 

for electrospinning and improvements in thermal stability and mechanical modulus were 

observed [25]. Additional recent studies on structure and properties of PET/CNT 

nanocomposite nanofibers were also found in literature [26, 27]. In 2008, Ahn et al. 

investigated the properties of PET/MWCNT nanocomposite nanofibers for the first time 

[26]. They improved the dispersion of 3% w/w or less MWCNT suspensions by an acid 

treatment on the nanotubes to increase the amount of chemical groups at their surface. 

Morphology, physical and mechanical properties of the resulting nanofibers were studied; 

however, the electrical conductivity did not improve significantly [26]. In the most recent 

work available on PET/MWCNT nanocomposite nanofibers, the molecular conformation 

structure and chain orientation of PET in nanocomposite nanofibers after electrospinning 

has been studied by Chen and his coworkers [27]. They investigated the effect of 

MWCNT addition on PET chain confinement at different concentrations, up to 2 wt% 

MWCNT, by differential scanning calorimetery (DSC) and FTIR techniques. They 

mainly studied the crystallinity and morphology after electrospinning PET with and 

without MWCNT [27]. However, they did not report any data about the final electrical 

and mechanical properties of their nanocomposite electrospun nanofibers. 

In the present study, PET solutions containing different types and concentrations of 

carbon nanotubes (single-wall, double-wall and multi-wall) are electrospun to produce 

nanocomposite fibers. The effect of CNT addition on fiber morphology is studied both 

quantitatively and qualitatively. We mainly focus on final nanofibers and mats 

characteristics at a wide range of MWCNT concentrations, and especially at high 

concentrations of different types of CNTs. Moreover, aligned nanofibers are produced by 

using a rotating drum. DSC, FTIR and Raman spectroscopy are used to characterize the 

properties of nanocomposite nanofibers obtained with a static collection mode compared 

with those obtained from a rotating receptor. In addition, electrical conductivity and 

mechanical properties of the resulting electrospun mats at different CNT contents and 

types are obtained. PET is an important polymer in fiber and textile industry, and 

PET/CNT nanofibers have found some points of interests in recent few works available 
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in this field. However, such extensive characterization of PET/CNT composites 

nanofibers produced for large variety of CNT concentrations and types and under several 

processing conditions is, to the best of our knowledge, reported for the first time. 

6.3. Experiments 

6.3.1. Polymer solution preparation and electrospinning process 

The polymer used in this work was a polyethylene terephthalate with IV=1 (Selar 

7086, DuPont Co.) with Mw=55000, dissolved at 10% w/w concentration in an equal 

volume mixture of trifluoroacetic acid (TFA) and dichloromethane (DCM); both solvents 

were purchased from Aldrich Co. Carbon nanotubes employed in this work were 

produced by a chemical vapor deposition process (CVD) and purchased from Helix Co., 

USA. Single wall carbon nanotubes (SWCNT) and double wall carbon nanotubes 

(DWCNT) with purities of 90% and multi wall carbon nanotubes (MWCNT) with purity 

of 95% were obtained. The nominal diameter range of SWCNT, DWCNT and MWCNT 

were respectively of 1.3 nm, 4 nm and 10-100 nm. All three types of CNT had lengths in 

the range of 0.5-40 urn. CNTs at different concentrations were dispersed mechanically in 

the polymer solution by a 2-hours sonication treatment at room temperature in pure TFA 

solvent followed by continuous mechanical mixing (by a stirrer in a container). The 

mixture was sonicated an additional two hours after addition of PET and DCM and 

complete dissolution of PET by continuous stirring. Final solutions were stirred 

continuously before electrospinning. No surface modification technique was employed in 

order to prevent its detrimental effect on the electrical conductivity of the CNTs. 

6.3.2. Electrospinning process 

The electrospinning set-up employed in this work consisted in a high voltage power 

supply (Gamma Inc.), a syringe pump to deliver the solution at specific flow rates (PHD 

4400, Harvard Apparatus), a syringe connected to a stainless steel needle (22 gauge, 
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Popper & Sons Inc.), and finally a stainless steel collecting drum (15 cm diameter). Fiber 

mats were collected in both static and rotating drum conditions (to obtain aligned 

nanofiber by rotating drum). An average electrical potential difference of 10 kV was used 

on all types of materials. The voltage was imposed on the needle, positioned at a 15 cm 

distance from the collector and a volumetric flow rate of 0.5 mL/hr was applied. All 

experiments were conducted at ambient pressure, temperature and average relative 

humidity of 20%. A summary of the different carbon nanotube concentrations and types 

studied here and the resulting fibers diameter and morphology is given in Table 6-1. In 

the case of aligned fiber production, we used a rotating drum (of 150 mm in diameter) 

speed of 600 rpm and the same electrospinning parameters as mentioned previously. 

6.3.3. Morphological analysis and evaluation of CNTs 

Two techniques of high-resolution scanning electron microscopy (HR-SEM) and 

transmission electron microscopy (TEM) were used to study final nanofibers 

morphologies and surface structure (by HR-SEM) and CNT localization in fibers (by 

TEM). A Hitachi S-4700 scanning electron microscopy (SEM) was used on platinum 

coated samples to characterize the final morphologies and surface structures of fibers at 

different processing conditions and CNT concentrations. Moreover, an optical 

microscope, Dialux 20 (Leitz,WETZLAR), was employed to assess the dispersion 

condition and position of CNTs inside fibers. 

6.3.4. Crystalline characteristics (DSC and XRD) 

Differential scanning calorimetry (DSC, Q1000; TA Instruments) and X-ray 

diffraction (XRD, Discover, D8, Bruker) were used to study the crystalline behavior of 

PET/CNT nanocomposite nanofibers. The effect of CNT addition on crystalline structure 

and behavior of nanofibers was first investigated by DSC. The tests were performed in 

non-isothermal condition and included a heating/cooling/heating cycle with the rate of 10 
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°C/min. XRD technique was used besides DSC to characterize the crystalline structure of 

the system. 

Table 6-1: Summary of the produced nanocomposite nanofibers and their resulting 

characteristics at 10 % w/v concentration of PET 

CNT Type and 
Concentration 

-

-

1% MWCNT 

1% MWCNT 

2% MWCNT 

3% MWCNT 

3% MWCNT 

4% MWCNT 

5% MWCNT 

5% MWCNT 

1% 
SWCNT 

5% 
SWCNT 

1% 
DWCNT 

5% 
DWCNT 

Collecting 
Method 

Static Drum 

Rotating 
Drum 

Static Drum 

Rotating 
Drum 

Static Drum 

Static Drum 

Rotating 
Drum 

Static Drum 

Static Drum 

Rotating 
Drum 

Static Drum 

Static Drum 

Static Drum 

Static Drum 

Resulting Morphology 

Random smooth headless fibers 

Aligned smooth headless fibers 

Random smooth headless fibers 

Partially aligned smooth headless fibers 

Random smooth headless fibers 

Random fibers; Including small beads 

Partially aligned smooth headless fibers 

Random fibers ; Including large beads 

Random fibers ; Including large beads 

Partially aligned smooth headless fibers 

Random smooth headless fibers 

Random fibers ; Including large beads 

Random fibers ; Including small beads 

Random fibers ; Including large beads 

Average Fiber 
Diameter (nm) 

1008 ±137 

827 ± 195 

495 ± 74 

966 ± 228 

-

481 ±78 

591±152 

-

388 ± 84 

447 ±135 

497 ±100 

445 ±137 

550 ±137 

463 ± 98 
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In XRD tests, we used an X-Ray goniometer accompanied with a Hi-STAR two-

dimensional area detector. The generator voltage and current were 40 kV and 40 mA 

respectively and the copper Cu Kcc radiation (k = 1.542 A) was selected by a graphite 

crystal monochromator. The fibers obtained were examined using wide angle x-ray 

diffraction (WAXD) method. 

6.3.5. Orientation measurements (Raman & FT-IR spectroscopy) 

Raman and Fourier transform infrared (FT-IR) spectroscopy techniques were used 

for CNT and PET/CNT nanofibers orientation measurements. A Nicolet Magna 860 

FTIR instrument from Thermo Electron Corp. (DTGS detector, resolution 4 cm-1, 

accumulation of 128 scans) was employed for a quantitative evaluation of orientation of 

PET chains in nanofibers at different MWCNT concentrations. Raman was used as the 

most specific method for CNT quantitative orientation measurements. Raman spectra 

were recorded on a Renishaw spectrometer equipped with an in Via Raman microscope. 

The samples were tested using a NIR laser (785 nm) with a grating of 1200 g/mm in a 

regular mode and use of 50x, short working distance (SWD) microscope. Orientation of 

MWCNTs was obtained by comparing the spectra in directions parallel and perpendicular 

to the laser beam in aligned nanofibers. 

6.3.6. Electrical conductivity 

Electrical conductivity of final non-woven electrospun mats was measured using 

various instruments. In the case of high resistance materials, a KEITLEY 6517, high 

resistance meter was used and in the conductive range a combined set-up of KEITHLEY 

6620 as a current source and Agilent 34401 A (6 Vi Digit Multimeter) as voltage source 

were used. 
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6.3.7. Mechanical properties 

The mechanical properties of electrospun non-woven mats produced with different 

CNT types and concentrations were obtained employing a micro-tester 5548 (Instron 

Inc.). The tensile test was performed using a 5 N load cell and a speed of 10 mm/min on 

non-woven mats of various thicknesses from 20 îm to 150 [xm; while the average 

thickness was almost constant for all types of samples. 

6.4. Results and Discussions 

6.4.1. Morphological analysis and dispersion evaluation 

Morphological study of electrospun fibers at different conditions (various CNT 

types and concentrations) was performed at the first step. PET/CNT nanocomposite fibers 

at different MWCNT concentrations were produced in a first step and collected as 

randomly shaped nanofibers on a static drum (Fig. 6-1 & Table 6-1). The results show 

that all the fibers have almost the same normal distribution of diameters with a narrow 

range of variation in diameter (Table 6-1). The average fiber diameter of pure electrospun 

fibers (~lfim) is greatly reduced by adding only 1 wt% MWCNT (Fig. 6-lb). This is 

attributed to the increase in the conductivity of the solution upon addition of MWCNT 

[6]. Addition of MWCNT in modified dispersion condition in the initial solution causes a 

large decrease in average fiber diameter even at 1 % MWCNT. The results show that the 

average fiber diameter decreases gradually to a final diameter of about 400 nm at 5% 

MWCNT concentration (Table 6-1); this reduction is interpreted as due to the increase in 

the conductivity of electrospinning solution. Below 3 wt% MWCNT, smooth and 

headless fiber structures are obtained. At 3 wt% MWCNT small beads start to develop in 

spite of the fact that there is still a reduction in final fiber diameter (Fig. 6-Id). The small 

beads at 3% MWCNT become larger at the higher MWCNT concentration of 4 and 5 



124 

wt% (Fig. 6-le and 6-lf). The bead structures formed along fiber axis will be studied in 

more detailed using TEM and optical microscopy techniques. 

Figure 6-1: SEM photos of PET (10%) / MWCNT at different CNT concentrations, a) 

Pure PET; b) 1% MWCNT; c) 2% MWCNT; d) 3% MWCNT; e) 4% MWCNT; f) 5% 

MWCNT. 

The effect of two other types of CNTs (SWCNT, DWCNT) at low (1 wt%) and 

high (5 wt%) concentrations were also studied and compared to the MWCNT. The 

resulting morphology of the nanocomposite electrospun samples is given in Fig. 6-2. 

A Similar nanofiber structure is obtained for all types of CNTs including almost the 

same range of fiber diameter. Some bead structures develop and the fibers are less 

smooth at 1 wt% DWCNT (Fig. 6-2b) compared to the other types of CNTs. Moreover, 

the average final fiber diameter also increased at 1% DWCNT (Table 6-1). At 5% CNT, 

the same range of fiber diameter is obtained for all types of CNTs (Table 6-1). Moreover, 

they all include bead structure formation along fiber axis (Fig. 6-2d, 6-2e and 6-2f). All 

these beads formed along fiber axis showed a rough surface structure. The morphology of 
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the bead structures formed along fiber axis at high CNT concentration is reported in Fig. 

6-3 using optical microscopy (Fig. 6-3a) and high resolution SEM (Fig. 6-3b). 

Figure 6-2: SEM photos of PET (10%) electrospun fiber containing a) 1% SWCNT; b) 

1% DWCNT; c) 1% MWCNT; d) 5% SWCNT; e) 5% DWCNT; f) 5% MWCNT. 

At high concentrations of carbon nanotubes (above 3 wt%), large aggregates are 

observed along fiber axis and especially at bead positions (Fig. 6-3a). HR-SEM (high 

resolution SEM) image of the beads and beads surface (Fig. 6-3b) shows the CNT 

position at bead surface. Therefore, there are aggregates both inside the beads and at bead 

surfaces of the nanocomposite nanofibers [28]. 
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Figure 6-3: CNT localization inside fibers and at fibers surface; 

PET(10%)/MWCNT(3%); a) Optical microscopy; b) SEM. 

Surface structure of the beads along fiber axis at 5% SWCNT and 5% DWCNT was 

also investigated using HR-SEM technique (Fig. 6-4). As it is shown, aggregates of 

carbon nanotubes at bead positions and close to the surfaces of the bead structures brings 

more roughness to the surface of the fibers at bead positions compared to other locations 

along fiber axis. The roughness at bead positions is probably due to aggregated CNTs 

close to the surface of the fibers; while the orientation and alignment of carbon nanotubes 

along fiber axis reduces the aggregates formation. Therefore, aggregate formation at high 

concentrations of carbon nanotubes changes both fibers morphologies (increasing bead 

formations, Fig. 6-3) and final surface topologies (increasing roughness, Fig. 6-4) of 

nanocomposite fibers. 
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Figure 6-4: HR-SEM photos of surface topology of bead structures at high CNT 

concentrations, a) PET(10%)/SWCNT(5%); PET(10%)/DWCNT(5%). 

TEM method was used to study the relative position of CNTs inside the 

nanocomposite nanofibers (Fig. 6-5). TEM images of fibers along fiber axis (Fig. 6-5a) 

and at fiber cross section (Fig. 6-5b) show formation of carbon nanotube small aggregates 

during fiber formation which confirm the observations mentioned above. In addition, it is 

possible to detect single oriented carbon nanotube along fiber axis (Fig. 6-5c) after 

electrospinning. 

Figure 6-5: TEM photos of CNT localization in PET/MWCNT(3%) electrospun fibers; a) 

CNT aggregates along fiber axis; a) CNT aggregates across fiber; c) Single CNT along 

fiber axis. 
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We used the same processing condition mentioned previously along with a rotating 

drum to obtain aligned nanofibers and to compare the results with nanofibers collected on 

static drum. The SEM pictures show that it is possible to obtain an oriented fiber structure 

in pure PET electrospun fibers (Fig. 6-6a) and partially aligned nanofibers after adding 

MWCNT (Fig. 6-6b, 6-6c and 6-6d). 

{&&&&; 
Mil, 

(I % " . > * 

V - \V * 

v V \ , , , 
X 

Figure 6-6: SEM photos of aligned PET (10%) / MWCNT at different CNT 

concentrations, a) Pure PET; b) 1% MWCNT; c) 3% MWCNT; d) 5% MWCNT. 

All electrospun samples were quite well aligned macroscopically; however, using 

SEM observations, it was found that pure PET electrospun nanofibers were more aligned, 

which is in agreement with the reduction in average fiber diameter of aligned PET 

nanofibers to about 800 nm (Table 6-1). This reduction in fiber diameter has also been 

previously reported by Fenessey and Farris [29]. As opposed to what could be expected 

in light of previously reported data on aligned nanofibers [30], the average fiber diameter 

is increased by adding carbon nanotubes in aligned nanocomposite nanofibers (see Table 
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6-1). The increase in average fiber diameter is maximum at 1 wt% MWCNT; however, 

this effect is also observed at 3% and 5% MWCNT, but to a lesser extent. In addition, the 

aligned nanocomposite nanofibers present a wider diameter distribution. The result of 

observation in aligned nanocomposite nanofibers show that there are less large beads 

along fiber axis after aligned fiber manufacturing compared to random nanofibers of 

equal amount of CNT concentration. Nanocomposite nanofibers include less bead 

structure and the sizes of beads are also decreased in aligned nanocomposite nanofibers 

(these results have not been reported here). We believe that at high concentrations of 

carbon nanotubes, the electrical forces are more imposed on carbon nanotubes rather that 

polymer matrix; therefore, more smooth fibers with larger diameters are obtained [6]. The 

effect of CNT on orientation and after alignment will be discussed in more detailed in the 

next sections of this paper. 

6.4.2. Crystalline characteristics (DSC and XRD) 

Final crystalline structure of nanocomposite electrospun fibers and the role of CNT 

addition are important parameters in controlling the final properties. The effect of CNT 

addition on PET/CNT electrospun nanocomposite nanofibers was studied in a first step 

by the DSC technique and then by X-Ray diffraction. 

6.4.2.1. DSC Results 

The values of A// used in different calculations and for DSC analysis reported here 

have been corrected for nanoparticles content by the following equation to have the data 

purely related to polymer weight: 

AH „ c „ , = A H ' . * ^ - / 1 _ , (6-1) 
VCNT> 

Then, the degree of crystallinity was calculated by the following equation [31]: 

If-AHrc)/AH°f X=(AHf-AHrc)/AH°f (6-2) 
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where A/// is the enthalpy of fusion, AHrc is the enthalpy of re-crystallization occurring 

during heating cycle and A/// is the enthalpy of fusion of perfectly crystalline structure 

of PET at equilibrium thermodynamic melt temperature Tm° and was taken as 140 J/g 

[32]. 

Thermal parameters and the data obtained after a heating/cooling/heating cycle for 

each sample are given in Table 6-2. The results show first a decrease then an increase in 

crystallinity as a function of CNT content. MWCNT content below 2 wt% causes a 

decrease in crystallinity as reported elsewhere [27]. Accordingly, similar trend is also 

observed for the glass transition temperature Tg. At MWCNT content of 3% or more, an 

increase in crystallinity and Tg is observed. At 5 wt% MWCNT concentration, maximum 

crystallinity is obtained. It will be shown thereafter (electrical conductivity) that 2 wt% 

MWCNT is the critical amount of MWCNT for network formation and electrical 

percolation threshold; therefore, a change in the trend of crystallinity vs. MWCNT 

concentration is also observed at 2 wt% MWCNT. Crystallinity is controlled by two 

factors: nucleation and growth. Addition of CNT increases the nucleation [33]; however, 

it decreases the rate of growth, and the chains are more inclined to be oriented rather than 

entering the crystalline cells [27]. Addition of CNT and nucleation accelerates the 

nucleation and the crystallinity starts earlier; therefore, there is not enough time for the 

polymer chains to enter the crystalline cells and the overall crystallinity is reduced. 

Above 2 wt%, the rate of nucleation and crystalline initiation is considerably increased 

and, as a result, the overall crystallinity is increased by rapid nucleation. The data shown 

at 1 wt% and 5 wt% SWCNT and DWCNT exhibit the same trend as obtained for 

MWCNT (Table 6-2). Tg is higher in SWCNT and DWCNT which might be because of 

the smaller size of SWCNT and DWCNT. The small size of SWCNT and DWCNT 

causes more interactions of CNT particles with polymer chain. As a result, the overall 

motion of PET chains is restricted when the sizes of nanoparticles are reduced and an 

increase in Tg is observed. 

The differences in AH for the first heating cycle (after electrospinning) and the 

second heating cycle (from the cooled melt) is a valuable parameter to be studied and is 
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reported in Table 6-2. The higher value of AH obtained after electrospinning is due to the 

effect of oriented chains in electrospun nanofibers [31]. Oriented chains produced after 

electrospinning make it easier for crystallization. The oriented chains enter the crystalline 

cells during cold crystallization and it increases the difference between the AH of these 

two cycles. The higher the oriented chains out of crystalline cells after electrospinning, 

the higher will be this difference. The confined oriented chain structure below 2 wt% 

CNT has been reported before [27]. 

Table 6-2: Thermal parameters of nanocomposite nanofiber mats at different CNT 

concentrations and types 

^ \ ^ 

Pure PET 

PET/1% MWCNT 

PET/2% MWCNT 

PET/3% MWCNT 

PET/4% MWCNT 

PET/5% MWCNT 

PET/1% SWCNT 

PET/5% SWCNT 

PET/1% DWCNT 

PET/5% DWCNT 

Tg(°C) 

76.7 

75.4 

75.5 

76.3 

77.8 

79.0 

81.6 

81.9 

79.9 

81.2 

Crystalline content of 
electrospun nanofibers 

(%) 
15.6 

14.3 

9.4 

13.6 

14.4 

15.1 

13.2 

14.1 

10.8 

13.0 

^"first-heating 

(J/g) 

42.6 

39.7 

38.7 

35.7 

35.6 

35.7 

33.0 

30.6 

33.1 

35.5 

^"second-heating 

(J/g) 

41.1 

38.6 

38.3 

33.9 

33.6 

33.9 

28.3 

28.5 

30.6 

29.6 

The effect of aligned fiber structure on crystalline behavior is given in Table 6-3. 

The trend in change of crystallinity is different from that of randomly collected 

nanofibers. In aligned nanofibers, the crystallinity is less than that for random ones for 

almost all CNT concentrations. Addition of MWCNT causes gradual increase in the 

amount of crystallinity. In the case of aligned nanofibers, chain alignment is increased 

and therefore, the chains are more inclined to be oriented rather than entering crystalline 
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cells. That is the main reason for the change in AH in the first and second heating cycles 

as mentioned previously. A more precise study of the CNT and PET chain orientations 

will be discussed in more detailed in the FTIR part. 

Table 6-3: Thermal parameters of aligned nanofiber mats at different MWCNT 

concentrations 

Aliened 
Pure PET 
Aligned 

PET/1% MWCNT 
Aliened 

PET/3% MWCNT 

Aliened 
PET/5% MWCNT 

Tg(°C) 

74 

76.5 

76.8 

75.0 

Crystalline content 
of electrospun 
nanofibers (%) 

11.9 

13.7 

14.1 

14.2 

^"first-heating 

(J/g) 

36.4 

34.8 

34.3 

32.6 

^^second-heating 

(J/g) 

31.3 

29.4 

28.7 

28.7 

6.4.2.2. X-Ray Diffraction Characteristics 

XRD diffraction results of electrospun mats at different CNT concentration and 

type showed an almost amorphous behavior for PET/CNT electrospun nanofibers (Fig. 6-

7a and 6-7b). This is in agreement with DSC results, since the crystalline content of 

nanocomposite electrospun fibers is low and therefore it is not possible to be detected in 

XRD. However, at 5 wt% MWCNT concentration, a weak crystalline pattern is observed 

(Fig. 6-7c). This halo observed for 5 wt% MWCNT electrospun fiber is due to the peak 

positioned at 28=18° of PET [34]. This shows that at 5 wt%, a crystalline structure begin 

to form in contrast with other concentrations and CNT types. 
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Figure 6-7: XRD pattern of PET/MWCNT electrospun nanofiber mat at different CNT 

concentrations; a) Pure PET; b) PET/3% MWCNT; c) PET/5% MWCNT. 

6.4.3. Orientation detection (FT-IR & Raman spectroscopy) 

For a better understanding of the polymer chains and CNT orientations, we used 

also FTIR and Raman spectroscopy techniques. We investigated samples at different 

CNT concentrations, types and alignment condition to compare the effect of each of these 

parameters. 

6.4.3.1. FT-IR spectroscopy 

Herman orientation equations are used for evaluation of the orientation function. 

For a uniaxially oriented sample, the dichroic ratio D is defined as: 

A, 
(6-3) 

where A is the absorbance of a specific band parallel or perpendicular to IR polarizer 

[35]. Then, the Herman orientation function is obtained according to [36, 37]: 

D - l 2 
/ = • (6-4) 

D + 2 3 c o s 2 a - l 

where a is the angle between dipole moment of a particular vibration and chain axis. 

Based on the vibration selected in IR test, it is possible to use Herman orientation 

function for the calculation of amorphous or crystalline phase orientations. Here, FTIR 
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measurements were used to assess the effect of CNT concentration and types, as well as 

the degree of alignment of the nanofiber structures on chain orientation [38]. There are 

some effective characteristic peaks related to PET in FTIR. The most important ones are: 

973 cm"1: CH2 vibration of trans conformation with a=32°; 1340 cm"1: CH2 wagging 

mode of glycol segment in trans conformation with a=21°; 1370 cm"1: the vibration 

related to gauche conformation; and 1020 cm"1: absorption band attributed to in-plane 

vibration of C-H group of benzene with oc=20° [35, 39]. 

In a first step, the ratio of trans to gauche conformers (A1340/A1370) was assessed as 

a parameter to study the effect of CNT concentration and type on PET chains 

conformation compared to pure PET electrospun nanofibers [27]. Addition of CNT 

increased the A1340/A1370 ratio because of an increase in trans conformation and decrease 

in gauche structure (Table 6-4). Addition of CNT causes more trans conformation 

formation, since nanocomposite nanofiber diameter is significantly decreased even by 

adding 1 wt% of each type of CNT. Fine nanocomposite nanofibers obtained after CNT 

addition are the main reason for PET chains orientation, due to the larger draw ratio. The 

increase in trans conformation content, which is detected here in FTIR test results, might 

be partially because of the simultaneous increase in crystalline structure formation as 

obtained from DSC results. This is the case in high MWCNT concentration in which the 

crystalline content increases; while at lower concentration of MWCNT, chain orientation 

is the main controlling factor as reported previously [27]. The trans to gauche 

conformation ratio in SWCNT and DWCNT at two concentrations was measured and 

almost the same results are obtained (Table 6-4). We believe that, since the final 

nanocomposite nanofibers include the same range of both crystallinity and diameter, it is 

expected that they show an almost similar trend in the amount of orientation in random 

nanofibers. 
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Table 6-4: Relative FTIR absorbance of trans (1340 cm'1) to gauche (1370 cm"') 

conformation (ratio of A1340/A1370) at different CNT concentrations and types of random 

non-woven mat. 

MWCNT 

SWCNT 

DWCNT 

0% 

0.41 

0.41 

0.41 

1 % 

0.54 

0.59 

0.59 

2% 

0.66 

-

-

3% 

0.57 

-

-

4% 

0.65 

-

-

5 % 

0.63 

0.57 

0.58 

The effect of nanofibers alignment on final physical and mechanical properties 

compared to random nanofibers was studied here. For that purposes, samples were 

prepared and cut out of the mat according to Fig 6-8. 

Figure 6-8: Schematic of different samples prepared and used in different experiments; a) 

Random nanofibers; b) Parallel to aligned nanofibers axis (0°); Perpendicular to aligned 

nanofiber axis (90°). 



136 

A comparison of the values of (A1340/A1370) in randomly oriented nanofibers with 

those aligned and in parallel to the light (0°) depicts an increase in the amount of trans 

conformation especially in pure PET nanofibers in aligned nanofibers in spite of lower 

crystalline density (Table 6-3). The results prove that the maximum difference is obtained 

at 0% and 1 % MWCNT concentration, where they are less crystalline. This could come 

as a proof for higher amount of PET chains orientation at these concentrations. Quite 

unexpectedly, at 5 wt% MWCNT, the amount of trans to gauche conformation 

(A1340/A1370) is even more in randomly oriented nanofibers compared to aligned 

nanofibers in spite of the fact that the SEM results (Fig. 6-6d) show aligned nanofiber 

structure formation at 5 wt% MWCNT. Randomly oriented nanofibers containing 5wt% 

MWCNT have the most amount of crystalline phase and the smallest fiber diameter; 

therefore, as expected the highest amount of trans conformation mostly because of the 

higher crystalline content not because of more orientation of the chains. Herman 

orientation function (fmo) measured for aligned nanofibers shows the same behavior 

(Fig. 6-9). Since the FTIR experiment is performed over final non-woven mat, it does not 

cause to obtain as high value of orientation of single nanofibers as expected; therefore, 

the value of orientation is quite low. Orientation function is reported here only to 

compare the amount of orientation amongst different aligned nanofibers containing 

different CNT concentrations. ^340 has maximum values at 0% and 1% MWCNT which 

includes maximum PET chains alignment and orientation compared to the others as 

reported previously in morphological study. 
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Figure 6-9: Different FTIR characteristic parameters vs. MWCNT concentrations in 

PET/MWCNT electrospun fibers. 

6.4.3.2. Raman spectroscopy 

Raman spectra of non-woven mats obtained for different types of carbon 

nanotubes/PET nanofibers are reported in Fig. 6-10 compared to pure PET electrospun 

non-woven mat. Among the characteristic peaks of multi-wall carbon nanotubes detected 

by Raman spectroscopy, three peaks could be distinguished. Two strong peaks are 

located at 1580 cm"1 (G), and 1350 cm"1 (D) and a weak peak is detected at around 2700 

cm"1 (Gv) [40, 41]. D/G ratio and different peak positions of these CNTs are different 

based on various types of CNTs (Fig. 6-10). 
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Figure 6-10: Raman spectra of final non-woven mat containing different types of carbon 

nanotubes 

In addition, we used the Raman spectroscopy technique for evaluating CNT 

orientation in aligned MWCNT/PET nanocomposite nanofibers (Fig. 6-11 & Fig. 6-12). 

As it is depicted, the spectrum reports quite different intensities in parallel and 

perpendicular directions (Fig. 6-11). The high intensities of CNT characteristic peaks 

found in aligned samples parallel to the beam direction proves a high degree of alignment 

of MWCNT along the nanofiber axis. The results also prove that at 1 wt% MWCNT, 

quite well aligned CNTs exist inside nanofibers (Fig. 6-11) and the beam intensity is 

significantly high in the direction parallel to the beam as compared to the perpendicular 

direction. At a concentration of 5 wt% in MWCNT, there is almost no effect of aligned 

fiber production on CNT orientation (Fig. 6-12). 
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Figure 6-11: Raman spectra of aligned non-woven mat (PET/1%MWCNT) parallel to 

polarized beam (0°) compared to perpendicular to light (90°). 

At 1 wt% MWCNT, the imposed alignment force mainly causes CNT orientation as 

described previously; and that is the main reason why aligned nanofiber diameter 

increases as compared to the static collection mode. Since the higher electric force is 

mainly imposed on CNT orientation, the retardation in splashing and diameter reduction 

might be expected. Thereafter, the effect of aligned nanofiber production at 1 wt% 

MWCNT concentration is mainly CNT orientation rather than enhancement in splashing 

and reduction in final nanofiber diameter. This high range of CNT orientation at 1 wt% 

MWCNT in aligned nanofiber manufacturing could be of considerable interests in 

enhancement of single nanofibers conductivity along nanofiber axis. This is also the case 

in higher CNT concentrations (3% and 5%); alignment might be the main reason for bead 

removal along fiber axis by using rotating drum. Alignment at high concentration mainly 

causes CNT bead removal along fiber axis rather CNT orientation and splashing or final 

nanofiber diameter reduction. In conclusion, aligned nanocomposite nanofibers include 

larger diameter in all CNT concentrations; however, the nanofibers show more CNT 
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orientation below percolation (1 wt% CNT) and less bead structure above percolation (3 

wt% and 5wt% MWCNT). From another aspect, higher crystallinity and lower diameter 

and free volume might be a reason for decrease in the amount of CNT orientation at 5 

wt% MWCNT concentration. At high concentration of CNTs, large aggregates are 

formed inside nanofibers as shown previously. The formation of aggregation prevents 

from high degree of individual CNT orientation and increasing the beam intensity in 

alignment direction; since it decreases the density of oriented CNTs in aligned direction. 

Hence, it might be another reason for decrease in the amount of CNT orientation at high 

CNT concentrations. 

parallel to polarized light 
perpendicular to polarized light 

1000 1200 1400 1600 1800 2000 

Raman Shift (cm1) 

Figure 6-12: Raman spectra of aligned non-woven mat (PET/5% MWCNT) parallel to 

polarized beam (0°) compared to perpendicular to light (90°). 

Raman spectroscopy results are in accordance with previously obtained results in 

SEM morphological analysis (Fig. 6-6) and FTIR (Fig. 6-7). In aligned pure PET 

nanofibers and at 1% MWCNT (below percolation), the crystalline content is low and the 

chains have more freedom and free volume to be oriented and therefore more aligned 

nanofibers are obtained below percolation based on FTIR results. Nevertheless, increase 
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in crystallinity above percolation reduces chain movements and free volumes and 

therefore only a marginal PET chains orientation effect is observed in aligned 

nanocomposite nanofibers. This is also the case for CNT orientation in aligned 

nanocomposite nanofibers. At 1% MWCNT, the maximum effect of aligned nanofiber 

processing is observed. Therefore, aligned nanocomposite nanofibers show more 

exclusive results in PET chains and CNT orientation below percolation as compared to 

high concentrations of CNTs. 

6.4.4. Electrical conductivity measurement 

Electrical conductivity of final electrospun mat was measured as a function of 

CNT types and concentrations. The samples included a wide range of thicknesses from 

40 to 150 um and they were all positioned between two highly conductive layers besides 

electrodes before starting experiments. Therefore, all the experiments were run in similar 

conditions, constant force and with reliably enough repeatability with a deviation less 

than 15% of the average conductivity. 

Based on electrical percolation theory, the system becomes conductive when a 

critical concentration is reached which is called the electrical percolation threshold. 

Above the electrical percolation, the system is quite conductive [42]. As the conductivity 

measurement test results show the nanofibers are quite conductive at 2 wt% concentration 

of MWCNT and a considerable increase in electrical conductivity is observed above this 

concentration (Fig. 6-13); based on percolation theory [43]: 

a = A{w-wJ (6-5) 

where a is the volume conductivity, A and t are constants, and wc is the critical 

concentration in which the conductivity is ignorable compared to higher concentration; 

the critical concentration for network formation (Fig. 6-13). 
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Figure 6-13: Electrical conductivity as a function of MWCNT concentrations. 

As the results show, at 2 wt% MWCNT concentration the system is quite 

conductive and reaches almost a plateau region above 3 wt% MWCNT concentration 

(Fig. 6-13). The electrical conductivity of different types of CNTs was measured using 

the same method and at the same condition (Table 6-5). At 1 wt% of different CNTs, all 

samples including different types of CNTs show the same conductivity. However, at 5 

wt% concentration, SWCNT nanofibers include the conductivity almost one order of 

magnitude lower, compared to DWCNT and MWCNT fibers. This might be because of 

poor dispersion of SWCNT and DWCNT compared to MWCNT [28]. MWCNTs are 

easier to disperse; therefore, we obtained better results using this type of CNT. The poor 

dispersion of SWCNT and DWCNT and aggregates formation as mentioned previously 

prevent from obtaining desirable conductivity results from these two types of CNTs. 
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Table 6-5: Electrical conductivity (S/cm) of final electrospun non-woven mat at different 

CNT concentrations and types 

SWCNT 

DWCNT 

MWCNT 

1 % 

8.2 x 1015 

1.5 x 10"14 

7.7 x 1015 

5 % 

7.7 x 10"4 

2.6 x 103 

5.4 x 10" 

6.4.5. Mechanical properties characteristics 

Mechanical properties of electrospun PET/CNT non-woven mats were measured at 

different CNT concentrations and types [44]. Stress/strain curves obtained from tensile 

tests at different concentrations of randomly oriented PET/MWCNT non-woven mats are 

given in Fig. 6-14. Considering the results obtained, the samples containing CNT show 

more strength and larger elongation at break. At 1 wt% MWCNT, the nanofibers are less 

crystalline (Table 6-2); however, the chain oriented structure causes a considerable 

increase in Sbreak- At 3% and 5%, where the samples are more crystalline (Table 6-2), the 

behavior is totally ductile in spite of higher CNT concentrations. Crystalline formation in 

nanocomposite nanofibers and orientation causes an increase in modulus and strength 

compared to pure PET electrospun mat; while Sbreak (maximum tensile strain at break) is 

reduced as compared to nanofibers containing 1 wt% MWCNT (Fig. 6-14). 
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Figure 6-14: Stress/Strain curve of randomly oriented PET/MWCNT electrospun non-

woven mat at different MWCNT concentrations. 

Mechanical properties of randomly oriented nanofibers (Fig. 6-8a) were compared 

with aligned nanofibers in both parallel (Fig. 6-8b) and perpendicular (Fig. 6-8c) 

directions to the alignment and nanofibers orientation (Fig. 6-15). As it is shown, the 

addition of MWCNT causes an increase in modulus with respect to random PET 

nanofibers (Fig. 6-15a). However, the effect of MWCNT addition on modulus in aligned 

nanofibers is totally opposite and it decreases in direction of the alignment (0°). The 

modulus for aligned mats compared to random ones increases 3 to 6 times depending on 

MWCNT concentration (Fig. 15a). In random nanofibers, addition of MWCNT causes an 

increase in chains orientation (below percolation) and crystallinity (above percolation); 

therefore, adding MWCNT causes increase in modulus. Aligned nanofibers in tensile test 

cause an increase in modulus in direction of alignment (0°); however, this effect is more 

important in pure PET nanofibers. By adding MWCNT, the system shifts from aligned 

nanofibers to partially aligned (Fig. 6-6) and therefore the modulus decreases because of 

a reduction in nanofibers orientation. The same trend is observed in the values of tensile 
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strength and pure electrospun samples show the least value in random nanofibers and the 

highest value in aligned nanofibers in direction of alignment (Fig. 6-15b). The difference 

in modulus enhancement in aligned nanofibers compared to random mats has the most 

value at 0% and 1% MWCNT. This result is consistent with FTIR and Raman 

spectroscopy. It has been shown in FTIR and Raman that the orientation factor of both 

PET chains and CNTs is maximum at low concentrations of CNTs. At high CNT 

concentrations, CNT aggregates and poor dispersion could cause stress concentration and 

week points in mechanical strength. 
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Figure 6-i5: Tensile modulus (a), tensile strength (b) and maximum tensile strain (c) as a 

function of MWCNT concentrations in randomly oriented nanofibers compared to 

aligned nanofibers in parallel to alignment (0°) and perpendicular to alignment (90°). 



146 

In random nanofibers, Ebreak has a maximum value at 1 wt% MWCNT (Fig. 6-14 

and 6-15c). In aligned nanofibers, pure PET shows the highest value of £break and it 

decreases by adding MWCNT. The amount of 8break for nanocomposite nanofibers is 

almost the same as random nanofibers and no considerable effect of alignment are 

observed in aligned nanocomposite nanofibers. Low modulus and strength in 

perpendicular direction (90°) causes considerable increase in the amount of 8break 

especially in pure PET non-woven mats (Fig. 6-15c). 

The mechanical properties of the different nanocomposites with varying types of CNT (at 

1 wt% and 5 wt%) are compared in Table 6-6. SWCNT and DWCNT are smaller in size 

and they show more compatibility with PET matrix and therefore they are more effective 

in mechanical properties enhancement at low concentration as compared to MWCNT. 

Nevertheless, the mechanical test results show opposite behavior at 5 wt% CNT 

concentration. 

Table 6-6: Mechanical properties of nanocomposite nanofibers non-woven mat at 

different CNT type and concentrations 

CNT Type and 
Concentration 

1% SWCNT 

5% SWCNT 

1% DWCNT 

5% DWCNT 

1% MWCNT 

5% MWCNT 

Modulus (MPa) 

69.0 ± 6.8 

44.9 ± 7.7 

60.0 ± 9.3 

46.5 ± 6.6 

58.3 ±5.2 

65.4 ± 15.3 

Tensile 
Strength (MPa) 

4.23 ±0.8 

2.1 ±0.4 

3.1 ±0.9 

2.4 ± 0.4 

3.3 ±0.7 

4.2 ±1.0 

Maximum 
Tensile Strain 

( % ) • 

315.6 ±70.5 

148.0 ±61.0 

256.5 ± 137.6 

264.8 ± 5.7 

408.3 ± 75.9 

264.3 ±110.9 

As demonstrated by the results, MWCNT gives better results at high concentration 

compared to SWCNT and DWCNT. We believe that poor dispersion of SWCNT and 

DWCNT at high CNT concentrations compared to MWCNT causes poor mechanical 

properties [28]. Dispersion has an important role on final mechanical properties and it is 
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quite difficult to disperse smaller sizes of nanotubes at higher concentrations [45, 46]. 

Therefore, better results are obtained using MWCNT at high CNT concentrations. 

6.5. Conclusions 

Random and aligned nanocomposite nanofibers of PET with different 

concentrations and types of CNTs were produced and their morphologies and properties 

studied by different methods. Electrical conductivity measurements established the 

percolation threshold at a concentration of 2 wt% in MWCNT. Morphological 

observations proved that aligned nanofibers containing MWCNT were of larger diameter 

but with less bead structures along the fiber axis. This proves that aligned nanofiber 

manufacturing is useful in agglomerate reduction and smooth nanofiber production 

especially at high CNT concentration. Crystalline content decreased by adding MWCNT 

below percolation concentration while the trend was opposite at high concentrations of 

CNTs. In aligned nanocomposite nanofibers, addition of CNTs caused a gradual increase 

in crystallinity. Therefore, it is possible to obtain nanofibers with higher crystallinity 

compared to random nanofibers through aligned nanofiber manufacturing at 

concentrations close to percolation threshold (2 wt%). It could be of considerable 

importance to produce conductive nanofibers with higher crystallinity through aligned 

nanofiber production. FTIR results showed that the amount of PET chain orientation in 

aligned nanofibers is maximum at low MWCNT concentration; while the addition of 

MWCNT and a higher crystalline content is consistent with a decrease in the PET chains 

orientation at high CNT concentrations. A similar conclusion on CNT orientation can be 

drawn from Raman spectroscopy results. The orientation of MWCNT in aligned 

nanocomposite nanofibers has its highest value at 1 wt% MWCNT. The maximum 

orientation factor obtained at 1 wt% MWCNT originates of a lesser crystalline content 

and more free volume available at this concentration as compared to others. Obtaining 
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higher orientation of CNTs at lower concentration could be an interesting factor to 

produce more conductive single nanofiber at lower CNT concentration. Considerable 

effect of alignment on mechanical properties was obtained at low MWCNT 

concentration; while this effect was less for high concentrations of CNTs which were 

consistent with FTIR and Raman spectroscopy test results. Significant improvement in 

mechanical properties especially modulus through adding MWCNT and aligned 

nanofiber production could be a remarkable factor in final functionality of non-woven 

mat. 
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Chapter 7 

Structure and Properties of Melt-Spun PET/MWCNT 

Nanocomposite Fibers 

7.1. Presentation of the article 

Final properties of PET/CNT melt-spun microfibers are studied in this article. CNT 

master-batch is diluted to desired CNT concentrations by using a twin-screw melt mixing 

method. Melt-spun nanofibers are prepared from compounds at different CNT 

concentrations and they are shaped to microfibers of different ranges of diameters. The 

samples containing CNTs show high degree of drawability compared to pure melt-spun 

fibers. We could obtain conductive fibers at 2 wt% MWCNT concentration by modifying 

the dispersion condition to a great extend. PET chains orientation and crystallization in 

microfibers was studied by different techniques. The results obtained show that both PET 

chains orientation and crystallinity is decreases by adding CNT to melt-spun fibers. CNT 

orientation was also studied at different draw ratios (DR) by Raman spectroscopy 

technique. Mechanical test results show considerable enhancement in elongation at break 

of the fibers containing CNTs compared to pure PET fibers. 

Polymer Engineering and Science. Submitted May 2009. 
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7.2. Abstract 

Polyethylene terephthalate (PET) melt-spun fibers were modified with multi-wall 

carbon nanotubes (MWCNT) to obtain conductive microfibers smaller than 90 u,m in 

diameter. Physical properties such as crystallinity and orientation of as-spun fibers were 

studied by X-ray diffraction, Raman spectroscopy and microscopy techniques at different 

draw ratio (DR) and MWCNT concentrations. Morphological and orientation analysis of 

MWCNT after melt-spinning process showed agglomerates formation and highly 

oriented CNTs. Study of the orientation of PET crystalline phase in drawn fibers proved 

that the addition of nanoparticles decreases the orientation of crystalline units inside the 

fibers. The orientation of MWCNT as well as that of PET chains was studied using 

Raman spectroscopy at different draw ratios and a high degree of CNT orientation was 
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observed at high DR conditions. Mechanical and electrical properties of as-spun fibers 

were also investigated. Our results showed that it was possible to achieve conductive 

fibers at 2 wt% MWCNT concentration and more conductive fibers using higher DR 

were also obtained without increasing MWCNT concentration. Mechanical properties 

results showed interestingly high value of maximum tensile strain at break (£max) of 

nanocomposite fibers, up to 3 times more than pure PET fibers. 

7.3. Introduction 

Specific properties of polyethylene terephthalate (PET) such as high drawability 

have made this polymer one of the most important polymers in textile industry, as 

demonstrated by the large body of literature devoted to PET fiber production and 

properties [1-3]. Among them, one can find reports of different techniques to modify PET 

fibers properties, and most particularly its electrical conductivity, using carbon nanotubes 

(CNTs) [4-11]. Maximizing the orientation of carbon nanotubes in CNT nanocomposites 

fibers is of considerable interest because it considerably enhances mechanical and 

electrical properties even for low concentration of CNTs. Among the latest studies 

available, only very few address the issue of improving drawability and conductivity of 

PET fibers and nanocomposite fibers by using nanoclay and carbon nanotubes 

respectively [12-14]. 

Physical and rheological properties of PET/CNT nanocomposites have been studied 

by different groups [7, 15-20]. Anand et al. studied the crystalline structure of single wall 

carbon nanotube (SWCNT)/PET nanocomposites [15]. Their analysis proved the role of 

SWCNT as a nucleating agent during crystallization in addition to inducing oriented 

crystalline formation through pre-orientation of SWCNT in PET matrix [15]. Dispersion 

of CNT in nanocomposite has been found as one of the main controlling parameters of 

their final properties [16]. Jin and his colleagues could modify the dispersion through 
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chemical surface modification of CNT such that they could considerably enhance the 

mechanical properties [16]. Hu et al. studied the rheological and electrical conductivity of 

PET/MWCNT systems [21]. They showed that dispersion and aspect ratio are the most 

important determining factors for rheological and electrical percolation. They obtained a 

low percolation threshold at 0.6 wt% of MWCNT for rheological properties and 0.9 wt% 

of MWCNT for electrical conductivity [21]. However, no detailed of the structure and 

morphology of the nanocomposite fibers was performed in terms of dispersion, 

orientation etc. of the matrix and nanoparticles. 

Conductive polymer fibers from polypropylene/carbon nanofiber (CNF) 

nanocomposites were studied by Kumar et al. for the first time [22]. Their results showed 

an enhancement of the mechanical and electrical properties by the addition of 5% CNF 

[22]. In the earliest studies available on polyester fibers conductivity modification, Ma et 

al. surveyed polyester/CNF nanocomposite fibers produced by melt spinning [23]. They 

studied the processing, structure and properties of the composite compared to pure PET 

[23]. They showed that tensile strength is considerably increased as compared to pure 

PET only if there is a good dispersion of the nanoparticles. In a recently published paper 

on PET/CNT, Li et al. investigated the microstructure of PET/CNT conductive 

nanocomposite fibers in more details [13]. They added 4 wt% of CNT to PET and they 

detected considerable changes in electrical properties above percolation (4 wt%). They 

also investigated some other properties of PET/CNT system such as viscosity, 

crystallinity and CNT dispersion homogeneity along fiber axis using techniques such as 

scanning electron and optical microscopy [13]. However, no precise and thorough 

morphological study has been performed in previous investigations on nanocomposite 

MWCNT/PET microfibers. Therefore, the effect of CNTs dispersion and processing 

conditions on the mechanical and electrical properties of the fibers remained to be 

assessed. 

In this work, we produce melt-spun PET/MWCNT nanocomposite fibers with a 

precise morphological characterization and control and dispersion modification through 

mixing procedure. We mainly focus on studying the effect of two important material and 
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process parameters: MWCNT concentration and draw ratio (DR). The crystalline 

structure and the effect of MWCNT on final crystallinity are studied by x-ray diffraction 

(XRD) and differential scanning calorimetry (DSC). Orientation of crystalline phase and 

polymer chains is also studied in details using XRD, Fourier Transform Infra-Red (FTIR) 

and Raman spectroscopies. The orientation and morphology of carbon nanotubes are 

studied by high resolution scanning electron microscopy (HR-SEM) and transmission 

electron microscopy (TEM) in addition to Raman spectroscopy. Finally, electrical and 

mechanical properties of the nanocomposite fibers are measured and the role of MWCNT 

on the drawability of the nanocomposite fibers is evaluated. 

7.3. Experiments 

7.3.1. Polymer mixing and melt-spinning process 

The extrusion grade polyethylene terephthalate (PET) used in this work was Selar 

7086 polymer obtained from DuPont Co. A commercial PET/CNT masterbatch, MB-

6815-00; composed of PET mixed with 15% Multi-wall Carbon Nanotube (MWCNT); 

was purchased from Hyperion Catalysis Co. We used a melt mixing method for 

masterbatch dilution and CNT dispersion. Mixing was conducted using a lab-scale twin-

screw extruder (Leistritz Group Co.; with 1.78 mm diameter and length of 40D) at 

controlled temperature and speed. The MWCNT masterbatch was first diluted to the 

desired CNT concentration and then dispersed in the PET matrix. We used this procedure 

to optimize CNT dispersion in the matrix and to obtain optimal dispersion at different 

CNT concentrations. The best condition for CNT dispersion were obtained at 200 rpm 

screw speed using a temperature profile along the extruder ranging from 300 °C at the 

first zone after hopper to 270 °C at the die end. 
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A capillary rheometer (Rosand) combined with a take-up device was used to 

produce single fibers under controlled pressure and temperature profiles. The fibers were 

produced using a barrel temperature of 270 °C and ambient air cooling. Various draw 

ratios were used. We employed diluted PET/CNT compounds to obtain fibers at different 

CNT concentrations (containing up to 3 wt% MWCNT) and draw ratios. Above 3 wt% of 

CNT, the brittle behavior of the nanocomposite decreased the drawability of the fibers. 

Therefore, only rods were extruded from the nanocomposites with more than 3% 

MWCNT. The dimensions of the fibers produced in this work at different processing 

conditions (different draw ratios (DR)) and MWCNT concentrations are given in Table 7-

1. The values of DRs are given in proportion to maximum DR (DRmax=470) of the 

nanocomposite fibers (DRmax of the fibers with 1% or 3% MWCNT) through the text 

and in the figures. 

Table 7-1: Average diameter of produced fibers at different processing conditions and 

MWCNT concentrations 

DR= 112 

(20% ofDRmax) 

DR=202 

(40%ofDRmax) 

DR=291 

(60% ofDRmax) 

DR=380 

(80% ofDRmax) 

DR=470 

(DRmax) 

Pure 

PET 

97 ±14 

(fj,m) 

66 ±14 

(|im) 

57 ±7 

(|xm) 

Impossible 

to produce 

Impossible 

to produce 

1% 

MWCNT 

97 ±14 

((Am) 

66 ±14 

(Urn) 

57 ±7 

(Urn) 

50 ±9 

(Hm) 

48 ±9 

(|im) 

3% 

MWCNT 

97 ±14 

(M-m) 

66 ±14 

(M-m) 

57 ±7 

(urn) 

50 ±9 

(|im) 

48 ±9 

(M.m) 

4% 

MWCNT 

Only 

Non-

drawn 

rod-like 

fibers 

200 ~ 800 

5% 

MWCNT 

Only 

Non-

drawn 

rod-like 

fibers 

200 ~ 800 

[im 

7% 

MWCNT 

Only 

Non-

drawn 

rod-like 

fibers 

200 ~ 800 

{im 
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7.3.2. Morphological analysis and dispersion evaluation of CNTs 

Two microscopy techniques were used here to study and evaluate the distribution 

and dispersion condition of CNTs in PET matrix: scanning electron microscopy (HR-

SEM) and transmission electron microscopy (TEM). A HR-SEM (Hitachi S-4700) on 

microtomed platinum coated samples was used to investigate the CNTs distribution in 

PET matrix. TEM (JEOL, JEM-2100 F) was the technique employed after HR-SEM 

observations to study and optimize the CNTs dispersion in PET matrix. A similar 

characterization was conducted on the resulting fibers after the processing step. 

7.3.3. Crystalline characteristics (DSC and XRD) 

Differential scanning calorimetry (DSC, Q1000; TA Instruments) and X-ray 

diffraction (XRD, Discover, D8, Bruker) were employed to study the crystalline behavior 

of PET/CNT nanocomposite. The effect of CNT addition on crystalline structure and 

behavior of drawn fibers compared to molded samples was first studied by DSC. The 

tests were performed in non-isothermal condition using a heating/cooling/heating cycle 

with the rate of 10 °C/min. XRD technique was used in addition to DSC to characterize 

the crystalline structure of the system and to evaluate the orientation in final melt-spun 

and drawn fibers. We used an X-Ray goniometer which was accompanied with a Hi-

STAR two-dimensional area detector. The generator voltage and current were 40 kV and 

40 mA respectively and a copper Cu Ka radiation (k = 1.542 A) was selected by a 

graphite crystal monochromator. The fibers obtained were examined using wide angle x-

ray diffraction (WAXD) method and the orientation was determined using a pole-figure 

accessory. The orientation is reported in terms of the Herman orientation function and is 

given by [24]: 

„ _ ( W 0 - l ) 
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where 6 is the angle between the unit crystalline cell axes {a, b, and c) and the reference 

axis that is machine direction (MD). Details about the calculations have been given 

elsewhere [25]. 

7.3.4. Orientation determination (Raman & FT-IR spectroscopy) 

Raman and Fourier transform infrared (FT-IR) spectroscopy techniques were used 

for CNT and PET orientation determination respectively. A Nicolet Magna 860 FTIR 

instrument from Thermo Electron Corp. (DTGS detector, resolution 4 cm-1, 

accumulation of 128 scans) was employed for FTIR experiment. Raman spectra were 

recorded on a Renishaw spectrometer equipped with an inVia Raman microscope. The 

samples were tested using a NIR laser (785 nm) with a grating of 1200 g/mm in a regular 

mode and use of 20x microscope. Orientation of MWCNTs and PET chains was obtained 

through comparing the spectra in parallel and perpendicular directions to the laser beam 

of Raman and FTIR spectroscopy respectively. 

7.3.5. Electrical conductivity 

Electrical conductivity of three types of samples was measured using various 

conductivity measurement instruments and test fixtures. The electrical conductivity of 

single rods and fibers at different draw ratios was measured and compared to the 

electrical conductivity of molded samples. Molded samples were shaped as a disk after 

compounding and before fiber formation. Below percolation and for materials with low 

conductivity (insulators), a KEITLEY 6517, high resistance meter was used and in the 

conductive range and above electrical percolation a combined set-up of KEITHLEY 6620 

as a current source and Agilent 34401 A (6 xh Digit Multimeter) as voltage source were 

used. We used a two-probe technique with various test fixtures, compatible with the three 

types of samples below the percolation threshold. Above percolation, the experiments 

were performed using a four-probe technique. 
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7.3.6. Mechanical properties 

The mechanical properties of samples produced at different processing conditions 

were obtained employing a micro tester 5548 (Instron Inc.). First, the mechanical 

properties of single rods were measured at different CNT concentrations to assess the 

effect of CNT addition on final single rods. For rod-like fibers, the tensile test was 

performed using a 2 kN load cell and speed of 50 mm/min. The mechanical properties of 

single fibers up to 3% MWCNT were evaluated at various CNT concentrations and 

drawing conditions. For the fibers below 100 \im, we used the tensile test load cell of 5N 

and a speed of 50 mm/min. 

7.4. Results and Discussions 

7.4.1. Morphological and dispersion analysis 

A proper initial dispersion of CNTs in polymer matrix is an important influential 

parameter on final electrical and mechanical properties. In this work, a CNT masterbatch 

was diluted to reach the desirable final concentration in the nanocomposite. Screw 

rotation speed, temperature profile along screw and volumetric flow rates (residence 

time) were changed during the experiments to obtain the best dispersion condition. The 

results showed that the screw speed was the most important determining parameter in 

dispersion modification. Fig. 7-1 shows the resulting dispersion state of the CNT in the 

diluted masterbatch for a poorly dispersed sample (Fig. 7-la) produced at 150 rpm screw 

rotation speed compared to the best dispersion condition (Fig. 7-lb). Comparing these 

two samples at different magnification allows the conclusion that CNT (3 wt %) is 

reasonably well distributed in the PET matrix (Fig. 7-lb). Even though, the crystalline 

structure of PET matrix is the main reason that prevents obtaining the ideal distribution of 
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CNT the nanocomposite morphology obtained here at best distribution conditions (Fig. 7-

lb) indicates a reasonable dispersed CNT morphology. 

Figure 7-1: HR-SEM images of PET/3 %MWCNT at different distribution condition, a) 

Poor distribution; b) Good distribution; the best distribution condition obtained at 200 

rpm using the twin-screw extruder. 

A similar dispersion analysis but this time using TEM is reported in Fig. 7-2, again 

showing a poorly dispersed (Fig 7-2a) at 150 rpm screw rotation speed, and an optimized 

sample (Fig. 7-2b). As it is shown in these images; in the optimized dispersion condition 

(Fig. 7-2b); CNTs have been mostly individually dispersed in PET matrix individually 

with no agglomeration. Therefore, it is expected that interactions of CNTs with PET 

matrix will help in the improvement of both mechanical properties and electrical 

conductivity. 
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Figure 7-2: TEM images of PET/3%MWCNT at different dispersion condition, a) Poor 

dispersion; b) good dispersion; the best dispersion condition obtained at 200 rpm using 

the twin screw. 

The best dispersion condition was chosen for CNT masterbatch dilution and 

PET/CNT composite preparation for fiber formation at different concentrations. TEM 

images of drawn fibers at 20% of DRmax (112) and DRmax (470) along fiber axis, and also 

at cross section of fiber at DRmax (Fig. 7-3 & 7-4) are shown at different magnifications. 

Comparing Fig. 7-3 and Fig. 7-4 shows that more aggregations are observed by 

increasing DR to DRmax during fiber formation. In addition, the TEM results at DRmax 

(Fig. 7-4) show agglomeration formation both along fiber axis and at fiber cross section. 
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Figure 7-3: TEM images of PET / 3% MWCNT and CNT orientation at 20% of DR, 

along fiber axis at two different magnifications. 

Figure 7-4: TEM images of PET / 3% MWCNT and CNT orientation at DRmax along 

fiber axis and at fiber cross section at two different magnifications. 

In the case of maximum draw ratio, the fiber diameter is small (-50 \im). Therefore, 

the nanotubes are brought closer to each other and they are subjected to a high 

deformation rate and confined in a small volume. This strongly oriented flow field favors 



163 

the formation of clusters. Therefore, as it is shown (Fig. 7-3 and Fig. 7-4), more CNTs 

aggregates are observed because of less volume and shorter time available for CNTs to be 

drawn under the high elongation flow rate of fiber spinning at higher values of draw ratio. 

7.4.2. Crystalline behavior 

Final crystalline structure of nanocomposite melt-spun fibers and the role of CNT 

addition is an important parameter in controlling the final properties. The effect of CNT 

addition on X-Ray pattern of PET/MWCNT nanocomposite was studied in a first step, 

followed by thermal analysis using DSC method. 

7.4.2.1. X-Ray Diffraction Characteristics 

XRD analysis was performed on compounded nanocomposites that all the samples 

were prepared under the same molding condition. X-ray pattern of PET/MWCNT at 

different concentrations after compounding is compared to pure PET in Fig. 7-5 [12]. 

CNT presence enhances the crystallinity as expected which could be due to the 

effect of CNT nanoparticles role as nucleating agents. Moreover, a sharp peak around 

20=26° (doo2) is obtained when CNT is added compared to pure PET. The intensity of this 

peak increases considerably with increasing CNT concentration as reported previously 

for polycarbonate and polyethylene carbon nanotube nanocomposite [26, 27]. Addition of 

CNT causes poor dispersion of nanoparticles in the matrix and agglomerate formation; 

therefore, XRD is more sensitive to CNT at high concentrations [27]. This peak is located 

at the same position as that for PET (100) reflection (Fig. 7-5). Therefore, it is difficult to 

prove if it is only due to CNT addition; however, PET-peak could be enhanced by 

addition of CNT. 
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10 20 30 40 50 

28 (degree) 

Figure 7-5: X-ray diffraction pattern of PET7MWCNT nanocomposite of molded samples 

prepared at the same condition at different MWCNT concentrations; pure PET, PET/3% 

MWCNT, PET/15% MWCNT. 

XRD analysis of nanocomposite melt-spun fibers showed totally amorphous 

structure for nanocomposite fibers at different processing conditions with CNT content 

up to 3 wt%. We prepared XRD samples of drawn melt-spun nanocomposite fibers by 24 

hours annealing at 160 °C. Annealing was mainly used to study the effect of carbon 

nanotube on crystallinity and orientation. The XRD patterns obtained from melt-spun 

annealed fibers at different DR and CNT concentrations are shown in Fig. 7-6. 
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Figure 7-6: XRD pattern of PET/MWCNT melt-spun annealed fiber CNT concentrations 

and DRs; a) Pure PET, 20% DRmax; b) PET/1% MWCNT, 20% DRmax; c) PET/3% 

MWCNT, 20% DRmax; d) Pure PET, 60% DRmax; e) PET/1% MWCNT, 60% DRmax; f) 

PET/3% MWCNT, 60% DRmax; g) PET/1% MWCNT, Max DRmax; h) PET/3% 

MWCNT, DRmax. 

As the results obtained from WAXD pattern show in Fig. 7-6, it is possible to detect 

the crystalline planes and their orientation in the melt-spun and annealed fibers [12]. 

Increasing the CNT concentration at different draw ratios causes a decrease of 

orientation. We used pole figure accessory to analyze the results obtained from XRD at 

different conditions after annealing (see Table 7-2). The details of calculations have been 
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given elsewhere [24]. The a and b axes orientation functions fa,MD and fb,MD were 

obtained by the pole-figure analysis of the (100) plane (20 = 17°), and (010) plane (28 = 

25°) respectively./C,MD was obtained by using the following orthogonality equation [25]: 

Ja,MD """ Jb,MD "*" Jc,MD ~ " ( ' ~A) 

These measurements and calculations were all performed in GADDS mode. The 

contribution of CNT peaks here is almost zero contrary to reflection mode of XRD, since 

the signals related to CNT are quite weak in GADDS mode. Therefore, the analyses are 

only made over the peaks under the effect of PET crystals and not CNT. It is shown that 

maximum orientation is obtained in the case of pure PET fibers at different draw ratios. 

Addition of carbon nanotube decreases the orientation and causes an increased 

drawability of the fibers. 

Table 7-2: Orientation function (JC,MD ) at different draw ratios and CNT concentrations 

Pure PET 

1% CNT 

3% CNT 

20% DRmax 

(112) 

0.14 

-0.08 

-0.07 

60% DRmax 

(291) 

0.12 

0.04 

-0.03 

(470) 

Not possible to be 

produced 

0 

-0.03 

Carbon nanotubes could act as a nucleating agent and they might accelerate the 

nucleation [15]. However, nucleation and quiescent crystallization are not the only 

determining factor. Kinetics of crystallization especially at high speed melt spinning 

process could be an important determining factor. To prove it, we studied XRD results of 

as-spun fibers at very low draw ratio and different MWCNT concentrations without post-

annealing step (Fig. 7-7). As it is shown, at lower range of DR, the crystalline behavior is 

just the opposite of previous observation (Fig. 7-6). Addition of CNT at this DR (10% of 

DRmax) enhances the crystallinity and at 3%, clear crystalline fiber is obtained. At low 
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rate of solidification and fiber formation, the nucleation and quiescent crystallization (and 

not the crystal growth) are the determining steps of the overall kinetics; therefore, more 

crystalline structures are obtained by increasing CNT concentrations because of CNTs 

nucleation effect. 

Pure PET 
1% MWCNT 
3% MWCNT 

Crystaltinity peaks 

i 

10 15 20 

26 (degree) 

25 30 

Figure 7-7: WAXD patterns of fibers at 10% DRmax and different CNT concentrations. 

7.4.2.2. DSC Results 

The values of AH used in different calculations and for DSC analysis reported here 

have been corrected for nanoparticles content by the following equation to have the data 

purely related to polymer weight: 

AM 
\JJ ^ ^ i,Exprimenty 

i, corrected 

(7-3) 
(1-Wovr) 

Then, the degree of crystallinity was calculated by the following equation [14]: 

Xc=(AHf-AHrc)/AH°f (7-4) 

where AHf is the enthalpy of fusion, AHrc is the enthalpy of re-crystallization occurring 

during heating cycle and A/// is the enthalpy of fusion of perfectly crystalline structure 
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of PET at equilibrium thermodynamic melt temperature Tm° and was taken as 140 J/g 

[28]. 

The results obtained from heating and cooling cycles of rod-like fibers at different 

carbon nanotube concentrations are summarized in Table 7-3. As expected, addition of 

carbon nanotubes causes an increase in the crystallization temperature, Tm and in A/// 

because of nucleation role of CNTs. In addition, carbon nanotube addition changes the 

cooling cycle and crystallization behavior of the system. The results show that 

crystallization starts at higher temperature in the samples containing carbon nanotubes as 

compared to pure PET rod-like fibers. This proves the role of carbon nanotubes as 

nucleating agent. Moreover, the overall crystallinity, peak of crystallinity and AHC are all 

higher in the samples containing carbon nanotubes. 

Table 7-3: Thermal parameters of rod-like fibers at different CNT concentrations 

Pure PET 

1% CNT 

3% CNT 

5% CNT 

7% CNT 

Tm 

(°C) 

252.7 

252.7 

252.6 

252.7 

252.3 

\Hf 

38.3 

38.0 

40.7 

42.7 

44.5 

Atfrc 

26.3 

5.2 

5.2 

2.0 

0 

Xc 

(%) 

8.6 

23.4 

25.4 

29.1 

31.8 

TC(°C) 

206.9 

219.8 

222.3 

225.4 

227.2 

T0 

(°C) 

218.3 

240.2 

243.9 

248.3 

247.6 

T . 

(°C) 

177.5 

188.1 

181.3 

186.9 

191.5 

AHC 

41.0 

41.5 

43.5 

45.9 

46.0 

Rate and kinetics of crystallization are important factors in final structure of PET 

and its CNT nanocomposites. The time required to reach 50% relative crystallinity (ty2) 

is usually reported to compare the rates of crystallization of different samples. It is 

calculated by using the following equation [14]: 

T , 

Xr = \qdT / (7-5) 
To / jqdT 



169 

where Xr is the relative crystallinity; q is the heat flow at temperature T; To and T^ are 

the initiation and termination crystallization temperature respectively. The time related to 

each temperature is obtained through the heating cycle. 

The crystallization curves as a function of time during cooling cycle are reported in 

Fig. 7-8. As the results show, the samples containing carbon nanotubes have higher 

values of tm (half-time of crystallization) compared to pure samples. This result is 

brought by the good dispersion of MWCNT in our polymer system, numerous individual 

small carbon nanotubes acting as nucleating agent. Therefore, the crystalline structure 

form more rapidly and earlier, but it can not grow fast because of spatial constraints and 

therefore the kinetics of growth slows down. From another aspect, as the temperature of 

crystallization increases by adding CNT, the internal entropy of the system increases. 

High entropy favors more polymer chains movement which is opposite to chains 

localization in crystal cells. Crystal formation from a thermodynamic stand-point is 

changed to more stable status with lower entropy. Accordingly, the system with higher 

entropy at higher temperature requires more time for crystalline cell formation. Initiation 

at higher temperature due to rapid nucleation causes delay in the system evaluation to 

stable condition because of higher entropy of the system. 

The crystalline content of the as-spun fibers at different carbon nanotube 

concentrations and DRs up to 3 wt% MWCNT concentrations is given in Table 7-4. The 

crystalline content is reduced when CNT content is increased. This might be the most 

important reason for the increase in drawability of the fibers. Addition of carbon 

nanotubes increases the amorphous phase of the nanocomposite in as-spun fibers. 

Amorphous phase has the most important role in energy dissipation during stretching. 

Addition of carbon nanotubes accelerates the initiation of crystallization; therefore the 

system of nanocomposite fibers is expected to contain many crystals of small sizes that 

connect the amorphous regions next to each other. This causes enhancement of 

mechanical properties as well as the drawability of nanocomposite fibers. 
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Figure 7-8: Relative crystallinity (%) as a function of time at different carbon nanotube 

loading during cooling cycle. 

Table 7-4: Crystallinity (%) as a function of DR and MWCNT concentration 

Pure PET 

1% CNT 

3% CNT 

20% DRmax 

(112) 

17.2 

16.2 

16.3 

60% 

DRmax(291) 

23.5 

15.8 

15.4 

(470) 

Not possible to 

be produced 

15.4 

14.7 
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7.4.3. CNT and molecular orientation 

7.4.3.1. Pure PET fibers orientation (FTIR and Raman Spectroscopy) 

Herman orientation equations were used for evaluation of the orientation function. 

For a uniaxially oriented sample, the dichroic ratio D is defined as: 

£> = - L (7-6) 

where A is the absorbance of a specific band parallel or perpendicular to IR polarizer 

[29]. Then, the Herman orientation function is obtained according to [25]: 

/ - •^ l 1— (7-7) 
D + 2 3cos2or-l 

where a is the angle between dipole moment of particular vibration and chain axis. Based 

on the vibration frequency selected in IR test, it is possible to use Herman orientation 

function for calculation of amorphous or crystalline phase orientation. There are some 

specific characteristic peaks related to PET in FTIR. The most important ones are: 973 

cm"1: CH2 vibration of trans conformation with oc=32°; 1340 cm"1: CH2 wagging mode of 

glycol segment in trans conformation with cc=21°; 1370 cm"1: the vibration related to 

gauche conformation; and 1020 cm"1: absorption band attributed to in-plane vibration of 

C-H group of benzene with o=20° [29, 30]. 

We selected the 1020 cm"1 band for calculations since it is not related to crystalline 

or amorphous structures [29]; and thus it provides an overall idea about the orientation. 

All the results were normalized related to the band located at 1410 cm"1 [29] (it is not 

sensitive to anisotropy). The FTIR analysis results show almost the same trend as XRD 

orientation for crystalline phase orientation (Fig. 7-9). At DRmax and 3% MWCNT 

concentration, a reduction in orientation function is observed. The polymer chains are 

trapped during crystal initiation at higher CNT concentrations. Therefore, at 3 wt% 

MWCNT, the chains are trapped by small crystal nuclei and they can not be stretched 

freely compared to 1% MWCNT. From another aspect, the amorphous chains can not be 
part of a crystalline cell and thus the amount of total orientation reduces at DRmax 

compared to lower DRs and CNT concentrations only at 3 wt% MWCNT. 
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Figure 7-9: Herman orientation function obtained from FTIR analysis at different CNT 

concentrations and DRs; fio2o normalized related to ^1410 cm"1. 

The Raman characteristics peaks of molded PET sample are compared with the 

ones obtained from oriented fiber structures at different draw ratios both parallel and 

perpendicular to oriented fibers (Fig. 7-10). As the results show, the peaks parallel (Fig. 

7-10 a) to the laser beam are more intense compared to the ones in perpendicular (Fig. 7-

10 b) direction which is indicative of orientation. 

The change in the intensity of other characteristic peaks at different draw ratios in 

the samples parallel compared to perpendicular are of great importance. These peaks 

include: 1310 cm"1 related to C-C stretching of the ring in the backbone, 1610 cm"1 

relative to the stretching of the C1-C4 and 1730 cm"1 related to stretching of C=0 band 

[14, 31, 32]. All the characteristic peaks of orientation signals are observed here. The 

most important one is the peak at 998 cm"1, which is related to the crystalline orientation 

and trans conformational change [32]. This peak is not observed in Raman spectra of 

molded samples; in addition, there is not such a peak in the Raman spectra of the fibers in 

perpendicular direction to the beam. This peak is related to the stretching of O-CH2 and 
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C-C of the trans conformation of ethylene glycol unit in PET backbone. Existence of this 

peak in parallel direction shows the orientation of crystalline structures and a part of the 

amorphous structure close to the crystalline phase since they are related to trans 

conformation structure [14, 31, 32]. The results of FTIR spectra prove both the existence 

of molecular orientation and conformational changes during drawing which is correlated 

to draw ratio. 

Molded Sample - Pure 
20% of Maximum DR 
60% of Maximum DR 

PET 

3 

8 

0 500 1000 1500 2000 2500 3000 

Raman Shift (cm1) 

500 1000 1500 2000 2500 3000 

Raman Shift (cm"1) 

Figure 7-10: Raman spectra of as-spun fibers of pure PET at different draw ratio; a) 

fibers parallel to polarized light, b) fibers perpendicular to polarized light. 

7.4.3.2. CNT orientation study (Raman Spectroscopy) 

The same conditions mentioned previously for pure PET fibers for Raman 

measurements were used for nanocomposite fibers with 1% (Fig. 7-11) and 3% MWCNT 

(Fig. 7-12) concentrations. The results are given both in parallel (a) and in perpendicular 

polarization direction (b). In all samples, the Raman spectra are compared to molded 

samples. Three different characteristic peaks related to carbon nanotubes can be easily 

observed in the Raman spectra. Two string peaks are located at 1580 cm"1 (G), and 1350 

cm"1 (D) [33-36]. A weak peak is also detected at around 2700 cm"1 (Gv) which is not 

sensitive to orientation. G and D peaks are two important peaks related to MWCNT 
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structure. The intensity of MWCNT in peaks in parallel direction is quite high and they 

could cover almost all the characteristic peaks of PET, especially in the samples 

containing 3% MWCNT. The intensity of D and G bands are dependant on draw ratio 

and the spectra obtained in parallel are quite different from those in perpendicular 

direction. This could prove the high CNT orientation in the samples as shown previously 

by morphological study. Especially in the fibers containing 3% MWCNT, the orientation 

is quite high at maximum draw ratio (Fig. 7-12a). 

i , , i i ' i i 1 i ' 

0 500 1000 1500 2000 2500 3000 ° 5 0 0 1 0 0 ° 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 

Raman Shift (cm"1) Raman Shift (cm1) 

Figure 7-11: Raman spectra of as-spun of PET/1% MWCNT nanocomposite fibers at 

different draw ratio; a) fibers parallel to polarized light, b) fibers perpendicular to 

polarized light. 

Another interesting point is the change in the orientation characteristic peaks of 

PET in PET/MWCNT nanocomposite fibers. At high draw ratios of 1% MWCNT 

nanocomposite fibers, the peaks related to PET orientation appear in parallel direction 

(Fig. 7-1 la). Particularly, the peak located at 1730 cm"1 is quite clear; however, no peak 

could be found in 3% MWCNT nanocomposite fiber (Fig. 7-12a). This could be an 

evidence of the effect of CNT on orientation and crystallinity. As mentioned previously, 

the results from Raman spectroscopy prove that addition of carbon nanotube decreases 

the amount of both orientation and crystallinity of melt-spun fibers. 
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Figure 7-12: Raman spectra of as-spun PET/3% MWCNT nanocomposite fibers at 

different draw ratio; a) fibers parallel to polarized light, b) fibers perpendicular to 

polarized light. 

Different test methods prove the role of carbon nanotubes in reducing both 

crystallinity and orientation of PET fibers. For PET/MWCNTs nanocomposite fibers, the 

morphological analysis test results and Raman spectroscopy techniques show high 

orientation of CNTs along fiber axis. Similar results and behavior have been repeated in a 

recent study on PET/clay system [14]. In addition to the reduction in crystallinity and 

increased drawability by adding carbon nanotube, we could detect a reduction in PET 

orientation. This has been previously observed in some fibers from polymer blends and 

PET/clay fibers [14, 37, 38]. When nanoparticles are added, modified shear fields 

develop around the nanoparticles and therefore the elongation viscosity of the system 

acting on pure part of fiber is reduced. This in turn will reduce the overall orientation [14, 

37, 38]. It is possible to consider the melt spinning system as an iso-strain system. The 

elongation force is converted into shear at the nanoparticle/polymer interface and 

therefore applied elongation field on pure polymer phase is reduced [14, 37, 38]. 

Therefore, followed by stress concentration at interface and nanoparticle phase dispersed 

in PET matrix, less oriented chains are obtained in nanocomposite fibers compared to 

pure PET. 
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7.4.4. Electrical conductivity measurement 

The conductivity of different types of samples was measured to study the effect of 

fiber formation and processing on their final properties. At the beginning, compounded 

samples were molded into disk-like shapes and their conductivity was measured. The 

results obtained from their conductivity measurement are compared to rod-like fibers in 

Fig. 7-13. Both types of samples show percolation threshold at 2 wt% MWCNT 

concentration. As it can be observed, forming the compound to rod-like fibers causes an 

increase in conductivity compared to molded sample at the same MWCNT concentration. 

Rod-like fibers show higher conductivity especially above percolation and after network 

formation (Fig. 7-13). Higher conductivity of rod-like fibers is the result of partial 

orientation of MWCNT along fiber axis. Moreover, rod-like fibers reach a plateau region 

almost at 3 wt% MWCNT concentration. High enough conductivity (0.01 S/cm) is 

obtained because of good dispersion of carbon nanotubes within PET matrix. 

Moreover, we measured the conductivity of fibers of 1% MWCNT (below 

percolation) and 3% MWCNT (above percolation) in the same way as the other 

experiments. The conductivity of fibers obtained at different draw ratios is compared to 

rod-like fibers and molded sample and is presented in Fig. 7-14. As expected, the 

conductivity of fibers increased by increasing the DR. This effect is clearer in 1% 

MWCNT and below percolation. The conductivity of fiber at 20% of DRmax has 

increased about one order of magnitude compared to rod-like fibers at the same 

concentration (1%). At 3%, there is a slight increase in conductivity by increasing DR; 

however, the effect is not as significant compared to 1% MWCNT concentration. At 3%, 

the nanocomposite is above percolation and reached a plateau with its ultimate 

conductivity; therefore, further increasing DR cannot affect considerably the final 

conductivity. 
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Figure 7-13: Electrical conductivity as a function of MWCNT concentrations. 
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Figure 7-14: Electrical conductivity of fibers at different draw ratio. 

The results show that it is possible to decrease the percolation and obtain 

conductive fibers at lower concentration only by changing processing parameters, 

particularly by enhancing CNT orientation in the nanocomposite. Finally, our results 
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show that CNT dispersion and orientation could be the most important determining factor 

on final conductivities of melt-spun fibers. 

7.4.5. Mechanical properties characteristics 

At first, mechanical properties of rod-like fibers at different MWCNT concentrations 

were measured. All the fibers were in the same range of diameter (200-400 \im). 

Addition of MWCNT decreased the strength, elongation at break and caused a brittle 

behavior development. In rod-like fibers, there was enough time for the fibers to develop 

the crystalline structure during their formation. Therefore, addition of MWCNT reduces 

the amorphous phase concentration. This is probably the reason for the brittle behavior 

development and reduction in elongation at break from 500% (pure PET) to about 4% 

(PET/7% MWCNT). The modulus of the fibers at different MWCNT concentrations is 

given in Table 7-5. As it is shown, addition of MWCNT does not considerably affect the 

modulus considering experimental uncertainties. A slight increase is observed in the 

modulus below percolation; while above percolation, modulus decreases. Aggregate 

formation above percolation and difficulty of MWCNT dispersion in PET matrix above 

percolation causes a decrease in sample homogeneity. Inhomogeneity could cause stress 

concentration and weaken the nanocomposite. 

Table 7-4: Tensile modulus of rod-like fibers as a function of CNT concentration 

Modulus 

(MPa) 

Pure 

PET 

2327±513 

1% 

MWCNT 

2150±409 

2% 

MWCNT 

2607±186 

3% 

MWCNT 

1859±111 

4% 

MWCNT 

1982±434 

5% 

MWCNT 

2008±567 

7% 

MWCNT 

2084±460 

Mechanical properties of as-spun fibers at different MWCNT concentrations were 

studied for 1 wt% and 3 wt% MWCNT concentrations. The mechanical test results 

obtained at different DRs are given in Fig. 7-15. As the results show, changing MWCNT 

concentration and DR does not considerably affect the modulus (Fig. 7-15a) and strength 
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(Fig. 7-15b). Addition of MWCNT up to 3 wt% slightly increases the modulus of the 

fibers obtained at different draw ratio, which might be due to the role of MWCNT as 

reinforcing particle in the melt-spun fibers. Mechanical test results show that addition of 

MWCNT does not cause a weakening of the mechanical properties at different draw 

ratios. All the fibers at different MWCNT concentrations and DR show a though behavior 

and stress hardening was observed in all the samples during the mechanical testing 

experiments. 
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Figure 7-15: Final mechanical properties of fibers at different draw ratios and MWCNT 

concentrations; a) Modulus; b) Tensile Strength; c) Tensile Elongation. 
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The results obtained here are in complete agreement with those obtained during 

fiber spinning. Increasing MWCNT concentration causes an increase in drawability. As 

the results show, addition of MWCNT to 1% and 3% concentration causes increased 

drawability up to 3 times compared to pure PET fibers. Fibers containing MWCNT have 

fewer crystals; however, they have more nucleation for crystal formation initiation. 

Therefore, the nanocomposite fibers have more amorphous phase. Hence, nanocomposite 

fiber is composed of polymer chains which are strongly connected to each other in some 

places; thus, they can better respond to an imposed external stresses. Also, polymer coils 

in the amorphous phase dissipate more easily the imposed energy. In this way, the fibers 

produced are in the conductive range; while they have better mechanical properties and 

significant drawability which is of considerable interest. 

7.5. Conclusions 

Various morphological and physical properties of PET melt-spun nanocomposite 

fibers at different MWCNT concentrations and DR were studied in this work. 

Characterization by microscopy and Raman spectroscopy showed a high degree of 

MWCNT orientation after fiber spinning. Moreover, it was shown that addition of 

MWCNT decreases both the crystalline content and polymer chain orientation. DSC 

results showed that MWCNT slowed crystalline growth which is the main reason for the 

reduction of crystalline phase formation during melt spinning upon increasing MWCNT 

concentration. More over, shearing field effect and stress concentration resulting from the 

MWCNT addition could be the main reason for weakening of the elongation field which 

caused a decrease in polymer chain orientation after MWCNT addition. Conductivity of 

single fibers showed that it was possible to reduce the percolation threshold by both 

dispersion modification and changes in processing conditions. Mechanical test results 

proved the weakening of properties after percolation because of poor dispersion and 
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stress concentration. However, addition of MWCNT could incredibly increase the 

drawability of as-spun fibers and the elongation at break in mechanical test. This was 

because of the role of MWCNT in the reduction of crystalline formation which favors the 

dissipation of energy by the amorphous phase; while adhesion of polymer chains to 

MWCNT nanoparticles is acceptable because of proper dispersion condition of CNT in 

PET matrix. 
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7.7. Nomenclature 

a The angle between dipole moment of particular vibration and chain axis 

(FTIR) 

AH Enthalpy (DSC) 

9 The angle between the unit crystalline cell axes (XRD) 

A Absorbance (FTIR) 

/ Herman orientation function (FTIR, XRD) 

q Heat flow (DSC) 

T Temperature 

w Weight fraction 

X Crystallinity fraction 
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Chapter 8 

Empirical Modeling of Electrospun CNT-Based 

Nanocomposite Nanofibers 

8.1. Introduction 

The experimental analysis of CNT based electrospun nanocomposite nanofibers 

could help in fundamental understanding of the effect of CNT addition on final structure 

and properties of nanofibers. In this part, we study the effect of CNT addition on final 

nanofibers structure through the preliminary modeling of the electrospinning process. 

Through this study, it is possible to recognize the effect of CNT on the main controlling 

parameters and decrease the number of future experiments in this area. The results 

presented in this section are only primary steps in modeling of polymer/CNT 

nanocomposite nanofibers. More fundamental study and complementary works are still in 

progress in our group to finalize and improve the results obtained through this chapter. 

The modeling procedure includes mainly two different areas. The first part is dealing 

with studying the cone shaped at the nozzle and deformation to the jet. In this part the 

effect of CNT addition on changing the shape of the cone and jet initiation and stretching 

is studied by use of empirical methods and image analysis. The details of various zones 

characteristics and modeling procedure have been given previously in introduction 

section. The results obtained in this part are compared with EHD theory to study the 

applicability of this model for our system. Thereafter, the final nanofiber diameter as a 

function of measurable material and process parameters is investigated in the second part. 

We used a dimensional analysis method for the prediction of final nanofiber diameter at 

different MWCNT concentrations. 

In preparation 
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8.2. Theories and Equations 

Similar to previous works in this field, the first modeling part for predicting the 

final shape of cone and jet is done by employing EHD theory. In this work, the effect of 

CNT addition is studied by this procedure for the samples containing different 

concentrations of MWCNTs. All these equations are written for a control volume as 

shown in Fig. 8-1. In summary, four governing equations of EHD theory for this part of 

modeling are simplified as follow (Feng 2002): 

Figure 8-1: Schematic of an element of a jet for EHD theory formulation (Helgeson, 

Grammatikos et al. 2008) 

1) Mass conservation for a fluid of constant density: 

7iR2v = Q (8-1) 

where R and v are the radius and velocity respectively and Q is a constant volume flow 

rate. 

2) Charge conservation 

7tit2KE + 27iRv0 = I (8-2) 

where E is the component of the electric field, K is the electrical conductivity of the 

liquid, / is the constant total current in the jet and c is the surface charge density. 

3) Momentum equation (details have been given in introduction part) 
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R dz R e R 

where p is density, y is surface tension and 8, e are the permittivity of the liquid and 

environment respectively. 

4) Internal electrical energy: 

£U> = ̂ )- lnz(4^-f^m (8-4) 
£ dz 2 dz 

£ L 
where /? = — - 1 and r = — . 

£ R0 

These equations in the dimensionless form are changed to (Helgeson, Grammatikos 

et al. 2008): 

7iR2v=\ (8-ir 

R2Ez+PeeRvz& = l (8-2)* 

1 r R' .do* „ ~ ~ , 25E, 
— + =T- + —==- + £( +BEE + ^ ^ - v 

Fr ReR2 WeR2 £ R 

vv = — +n ~2 + ^j + £(-^- + /3EE +—--) (8-3) 

E(z) = EM)-lnz(WY-£(ER)') (8-4)* 

where -x- is differentiation along z-direction. 

The dimensionless groups and characteristics are defined as (Feng 2002): 

Characteristic length: R0 

Characteristic velocity: v0 = /D2 (8-5) 
/ m0 

Characteristic electric field: E0 = V _ 2 „ (8-6) 

Characteristic surface charge density: <r0 = £~E0 (8-7) 

L 
Aspect ratio: % = — 

FF2 F 

e = ^ ; £ = •§ - ! (8-8) 
' 0 

pvl £ 
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Electrical Peclet number: Pe„ = 

Froude number: Fr = 

2£V„ 

Reynolds number: Re = 

gR0 

pv0R0 

% 

Weber number: We = pv2
0Ro 

r 

(8-9) 

(8-10) 

(8-11) 

(8-12) 

Most of the modeling procedure is from the point at which jet is developed and 

stretched. In this work, we are to study the role of CNT addition on jet initiation and 

stretching. Therefore, we used an empirical method for modeling the first part. A 

schematic of cone and jet formation is shown in Fig. 8-2. The modeling procedure starts 

from zone ii, from where the above mentioned governing equations (EHD theory) are 

valid. The characteristics of zones (ii), (iii) and (iv) have been described previously in 

Introduction. Zone ii has the largest amount of changes in jet diameter, velocity and strain 

rate; while these changes are almost zero in zone (iv). 

msam 

-.1 :h - M ' ' v , '*.'•• •• ' • • - -

t . ' • . ; , , ^ A . . >•:;.: K ta 
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Figure 8-2: Cone and jet obtained by high speed photography for image analysis and 

different typical zones for modeling. 



188 

In the second part of modeling procedure and final nanofiber diameter predictions, 

we used the newly employed dimensional analysis method. Most of the theories could not 

give fundamental analysis based on measurable parameters; however, it was possible to 

obtain the relation between final nanofiber diameter and measurable material and process 

parameters in this new method. Based on the works available using this theory, it is 

possible to correlate two important dimensionless numbers: Ohnesorage number (Oh) and 

electroviscous number (ri) as described below (Helgeson and Wagner 2007): 

Oh = ̂ /^ T (8-12) W/) 
2ezE, 2 r 2 

0 nx=—-^- (8-13) 

In this equation, K\ is a ratio of the electrostatic (£E0
2) to electroviscous (TJKle) 

stresses experienced by an electrostatically driven fluid jet. This number can be 

interpreted as a dimensionless stress which is the driving force for jet elongation. As it is 

shown both of these numbers include material and process parameters, all of which have 

been described previously. Oh number includes Rf which is final nanofiber wet diameter 

without considering the solvent evaporation that is correlated to final average fiber 

diameter through (Helgeson and Wagner 2007): 

Rf = Rfiber(™P)U2 (8-14) 

where wp is polymer mass fraction in electrospinning solution. Based on the theoretical 

and experimental analysis, it is possible to write down Oha(n)n. The only problem in 

employing TCI is that it is a small number of the order of 0(10~8). Therefore, it is possible 

to replace it with the following number (Helgeson, Grammatikos et al. 2008): 

^ = 2(£-£)E2X 

7i is obtained by similarity to EHD theory equation and permittivity in ii\ is 

replaced with dielectric constant in TC . Therefore, this equation is more applicable for 

final fiber diameter since it includes the rheological data of the solution and it is not a 

small number like it\\ while 7t includes the extensional rheology of the spinning solution. 
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Eo in these equations are defined as electric field strength (voltage/m). We use both of 

these parameters in this work to give an equation for final diameter of nanofibers with 

and without MWCNT. 

8.3. Experiment 

The procedure in this part for sample preparation and the materials is the same as 

the system described previously in Chapter 5. We used PS with different concentrations 

of MWCNT to perform the image analysis and measure of voltage and current. The 

details of sample preparation and electrospinning process have been given in Chapter 5. 

Electrospinning process was performed at two different flow rates of 0.5 and 0.8 mL/hr to 

measure current and voltage at different MWCNT concentrations (0%, 1%, 2%, 3%, 4%, 

and 5%). Material parameters including solution conductivity (K) and viscosity have 

been reported in Chapter 5. Among the different material parameters three of them, 

dielectric constant (EDMF=36.71), liquid surface tension (y=36.5 mN/m) and density 

(p=l.l g/cm3), were assumed constant during calculations. All other parameters were 

obtained and considered as a function of MWCNT concentrations. The results of a 

previous study on similar systems show that addition of MWCNT even above percolation 

only changes y as much as 30% (Seoul, Kim et al. 2003). Therefore, we have considered 

this parameter in addition to constant p through all the calculations below and above 

percolation, e changes with MWCNT concentration and considerably increases above 

percolation. However, we are only using this parameter for low concentrations of 

MWCNTs (below 2 wt%). At low range of CNT concentration, it is possible to ignore the 

small changes of e by MWCNT addition (Liang and Tjong 2008). The results obtained 

from final fiber morphological study and estimation of final nanofiber diameter has been 

given in Chapter 5. We use the results obtained from the experimental section here for 

our final analysis. In addition to precise measurement of voltage and current during the 

experiments, we used high speed photography. By this technique, we could obtain final 
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shape of the cone and jet at equilibrium condition. A typical image obtained during the 

photography is given in Fig. 8-2. 

8.4. Results and Discussion 

8.4.1. Image analysis results 

In this part, we use the results obtained from high speed photography to calculate 

the averaged fiber diameter along jet axis. The measurements were performed in three 

zones: zone (ii): jet initiation; zone (iii): jet stretching and zone (iv): jet thinning. Image 

analysis was done on ten images (similar to the image shown in Fig. 8-2.) that were 

selected in stable electrospinning conditions. The calculations were done at different 

CNT concentrations at 30 points over the entire jet length (Q=0.5 mL/hr). 

300 

~ 200 ] 

tXL 
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Pure PS 
PS -1% MWCNT 
PS - 2%MWCNT 
PS - 3%MWCNT 
PS • 4%MWCNT 
PS - 5%MWCNT 

200 400 600 800 

zfojm) 
1000 1200 

Figure 8-3: Jet radius profile along jet axis at different MWCNT concentrations 

As it is shown, CNT concentration influences the shape of the cone. Jet radius 

decreases sharply at the beginning of jet initiation which is known as zone (ii); however, 



191 

these changes are less considerable in zones (iii) and (iv). Addition of CNT causes more 

conductivity of the solution and therefore the voltages required to obtain the stable 

condition increases. As a result the size of cones increases. In the system containing 

MWCNT, jet initiation and zone (ii) is initiated later than in pure PS because of larger 

size of the cone shaped region during the electrospinning. The radius profile shows that 

followed by adding MWCNT concentration to lwt% and 2wt%, there is a shift in jet 

initiation (z(ii)) and the cone is larger for the first step. However, the cones containing 

lwt% and 2wt% MWCNT show quite similar functionality for the radius. As mentioned 

previously, the system of our study is below percolation for this range of concentration 

and the addition of MWCNT does not considerably change the stable condition of 

electrospinning, the shape of cone and the zone of jet initiation. By adding MWCNT to 

the concentration above percolation, another change occurred and the zone for jet 

initiation is shifted once more to higher values. It shows that when the system goes above 

percolation, another change in equilibrium condition of the cone occurs and the cone 

becomes larger. Therefore, the samples containing 3 wt%, 4wt% and 5wt% show almost 

similar trend and they include a larger cone size at higher z (ii). The analysis will be 

performed over pure PS, PS/1%MWCNT (after the first shift in equilibrium condition) 

and PS/3%; PS/5% MWCNT (after the second shift in radius profile and equilibrium 

condition). 

Table 8-1: Different zones characteristics and process parameter at different MWCNT 

concentrations (Q=0.5 mL/hr) 

Pure PS 

PS/1%MW 

PS/2%MW 

PS/3%MW 

PS/4%MW 

PS/5%MW 

Ro (fun) 

678 

687 

695 

698 

683 

700 

Z(ii) (fim) 

285 

430 

420 

650 

650 

680 

Z (iii) (fim) 

430 

590 

595 

850 

825 

880 

Z (iv) (fim) 

550 

780 

770 

1050 

1000 

1140 

Voltage 

(kV) 

17.5 

22.5 

21.5 

21 

23 

23 

Current 

(fiA) 

2 

3 

5 

4 

6 

7 
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The summary of different regions obtained through image analysis at Q=0.5 mL/hr 

along with process parameter are given in Table 8-1. These values, in addition to 

different material parameters are used in the following modeling procedure. The results 

of studying the radius profile show that jet radius has the following functionality along jet 

axis (Helgeson, Grammatikos et al. 2008): 

R^Az~" + Bz~U2 + Cz~U4 (8-16) 

The results of image analysis obtained here show the same trend and functionality 

of z for jet radius (Fig. 8-3). The power (n) in zone (ii) is accounted for as one of the 

system characteristics depending on material and process parameters. The result of n-

calculation at different MWCNT concentration is given in Fig. 8-4. 

300 400 500 600 700 800 

z(iim) 

Pure PS (exp.) 
Fitted Curve; n=6.71 
PS/1 %MW (exp.) 
Fitted Curve; n=9.4 
PS/3%MW (exp.) 
Fitted Curve; n-11.2 
PS/5%MW (exp.) 
Fitted Curve; n=11.3 

Figure 8-4: Empirical modeling of radius profile along jet axis to calculate the power (n) 
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As the results show, the power (n) increases by increasing the MWCNT 

concentration. It shows that in spite of the fact that MWCNT causes a delay in jet 

initiation; however it causes acceleration in jet radius decrease after jet initiation. This 

effect might be because of the charge accumulation inside the cone for conductive 

material. Followed by higher charge accumulation in conductive materials, they are 

inclined to increase the surface more rapidly to reduce the surface charge density and to 

obtain more stable condition. Therefore, the value of n is increased by increasing 

MWCNT concentration and the procedure of reduction in jet radius in zone (ii) is 

accelerated in more conductive materials. 

In addition it is possible to calculate the velocity profile along jet axis by the use of 

following equation: 

v(z) = Q, (8-17) 
7iR{zY 

We calculated velocity profile at different MWCNT concentration following image 

analysis results and calculating R(z) and equation 8.17. The velocity profiles along jet 

axis are shown in Fig. 8-5. 
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Figure 8-5: Velocity profile along jet axis at different MWCNT concentration 
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As it was shown previously, jet initiation and acceleration is delayed by adding 

MWCNT concentration. The velocity shows almost the same value for pure PS and 

PS/1%MWCNT. However, by increasing MWCNT concentration above percolation the 

velocity is reduced in jet stretching (z(iii)) and jet thinning (z(iv)) zones. The reduction in 

jet velocity above percolation could be mainly because of the electrospinning solution 

viscosity increase due to higher MWCNT content (viscosity is increase by adding CNT to 

concentrations above percolation as reported previously in Chapter 5). Increasing both 

MWCNT concentration and the probability of forming the agglomerations at high CNT 

content is the main reason for the reduction in the value of velocity during the jet 

formation process compared to the samples below percolation. 

From the velocity profiles obtained in the previous part, it is possible to calculate 

the elongation (extension) rate along jet axis during the electrospinning process at 

different MWCNT concentrations (Fig. 8-6.). 

e = v\z) (8-18) 
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Figure 8-6: Elongation strain rate (e) profile along jet axis at different MWCNT 

concentrations 
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The profile of e was obtained through numerical differentiation of v profile over z-

axis. As the results show, e passes a maximum for all the MWCNT concentrations. A 

sharp decrease in radius which causes an increase in the velocity is the main reason for 

the increase in e in z(ii). The peak is almost located close to the third region initiation 

(z(iii)). Following by this sharp increase, the change in velocity profile causes e to slow 

down and decreases to finally reach a constant value. As it is shown, the value of e is 

reduced by increasing MWCNT concentration which might be the effect of viscosity as 

mentioned previously. The higher viscosity in addition to MWCNT aggregates could 

cause decrease in the amount of e m concentrations above percolation where the 

viscosity increases- Therefore, in the samples containing MWCNT, the solutions are 

prepared for entering the splashing region a bit later in time compared to pure PS. From 

another aspect, the delay in jet thinning and reduction in the value of e in MWCNT 

containing electrospun fibers causes a broad e distribution function along jet axis. This 

might come from the change in electric field during electrospinning and of CNT-

containing conductive solutions. 

Elongation flow of electrospinning and its characteristics have always been one of 

the main points of interests in this process. Hencky strain as another important 

characteristic of electrospinning process is calculated here. The calculation of strain rate 

could be made with a good approximation by the following equation along jet axis (Fig. 

8-7): 

£(z) = Ln(Ry/
R{z)) (8-19) 
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Figure 8-7: Hencky strain profile along jet axis at different MWCNT concentration 

All the samples show almost the same trend in changing the amount of e along jet 

axis. The only difference among various samples is the delay in the region where the 

increase in Hencky strain becomes significant and the other trend is the same for all 

samples. The interesting point here is that the final value of Hencky strain in all samples 

is almost the same in all liquid solutions as shown above and it is does not depend on 

MWCNT concentration. The results of image analysis show that the final diameter of the 

jet in zone (iv) is almost the same and they include equal diameters at different MWCNT 

concentrations. Therefore, the final strain is almost the same but the initiation of the 

zones is different. 
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8.4.2. Comparison with EHD theory 

We used the simplified forms of EHD theory equations to compare the obtained 

results from image analysis with those equations from EHD theory. Regions (ii) and (iii) 

include the most important changes among the areas studied so far. The equations in 

these two regions are simplified to the following forms: 

REz = 1 (8-2-ii) 

— ^ - ^ + £j3ErE' = 0 (8-3-ii) 

R e * * 2 

where: 

f = R2(frr-fzz) (8-20) 

In these equations, the inertia, gravity and surface tension are neglected, the proof 
of these assumptions have been given previously. In all these simplifications and 
modeling, some important assumptions are to be considered: 1) a pseudo-steady 

elongation flow which results into:rfe =J]eoo; 2) a pseudo-Newtonian behavior which 

results into: Tr„ - — ^ = — - = 3 ; 3) Existence of stain hardening by the elongation flow 
1 % 

field during electrospinning. By considering the above mentioned assumptions, the 

equations in zone (iii) are simplified as follow: 

f =TrSR2v') (Newtonian behavior) (8-21) 

REz = 1 (8-2-iii) 

^ ^ - + JCJZE!=0 (8-3-iii) 
R2 

eBRc / (e-e)E2Ri / where n - 7C'Z, - ' ° ° / , .-; the parameters are the same as the ones 
/Tr„ /nrie,~Q 

described previously in EHD theory equations. Followed by solving equation (8-3-iii) 

simultaneously with other governing equations and assuming almost the velocity equal to 

zero at the point of jet initiation and rearranging the equations, it is possible to write: 

£ = k ( z - z 0 " ) ) ] " 1 / 2 (8-22) 
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v = k . ( z - z («/))] (8-23) 

We are to use these two equations to check the validity of EHD theory for this 

system. The results of image analysis prove almost the same behavior of R and v 

functionality along jet axis as described previously in empirical method of solution. 

However, we could not obtain a proper agreement between the image analysis results and 

the ones obtained for EHD theory (equations 8-22 and 8-23). For instance equation 8-23 

predicts constant value of e in zone (iii); while the results of experiments show some 

changes in the value of e in this region. We tried to use the predictions of EHD theory 

for pure PS system in a first step, but the predictions of this model with the above 

mentioned assumptions were far from the empirical results for both R and z- Because of 

the difference among the values obtained from the theoretical predictions and empirical 

method results, the results are not reported here. The assumption of Newtonian behavior 

to solve the above mentioned equations might be the main reason for the incompatibility 

between the theoretical and experimental data. Therefore, we thought of obtaining an 

assessment about the elongation viscosity to describe the difference between the 

empirical and theoretical results. As reported previously, by rearranging equations 8-22 

and 8-23, it is possible to define apparent the elongational viscosity in zone (iii) as 

follows: 

^PP=(£~TXv° (8-24) 
The results obtained from calculating 7je app as a function of strain rate and z are 

given in Fig. 8-8. As the results show the amount of viscosity and strain hardening is 

much more than expected. The value of 7]0 was almost 0.2 Pa.s in pure PS solution. Even 

though, an increase in the amount of elongation viscosity is expected; however, the 

values obtained from the modeling are far beyond the expectations. 
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Figure 8-8: Viscosity profile as a function of z and e in pure PS electrospinning liquid 

The results of viscosity profile obtained through theoretical modeling shows that 

assuming Newtonian behavior in this system could be an improper assumption in solving 

the EHD theory. We are using a high concentration of high molecular weight PS solution 

(20 wt/v%). Therefore, elastic behavior might be an important determining factor in this 

case. While the elastic characteristics of polymer solution has been totally ignored during 

these calculations. Neglecting the term related to viscoelasticity of polymer solutions 

causes fundamental error in solving the EHD theory, and this might be the main reason 

the empirical results do not show acceptable compatibility with the results of theoretical 

solution of EHD theory. It is suggested here that the momentum equation be solved by 

assuming viscoelastic model for polymer solution and then the results be compared with 

the results form experiment for pure PS system. While in the case of electrospinning of 

nanocomposite solutions, more fundamental changes on governing equations of EHD 

theory are required. 
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8.4.3. Dimensional Analysis 

We used dimensional analysis method here to estimate the final nanofiber diameter. 

We used both the scaling factors of OhccK" and Oh an*" here. To employ these relations 

for this system, the electrospinning was performed at different MWCNT concentrations 

and two different flow rates of 0.5 and 0.8 mL/hr. The final nanofiber diameter was 

estimated by image analysis on the final diameter of electrospun samples. The 

morphological analysis and the results obtained have been reported previously in Chapter 

5 and the results of morphological analysis are used here. 

In first step, we used three types of solutions of 0 wt%, 1 wt% and 2 wt% to study 

the validity of the relation of Ohcrn*'1 for this system. We could not use the solutions of 

higher MWCNT concentration here. At MWCNT concentration above percolation the 

assumption of constant dielectric constant mentioned before is not true. Above 

percolation, dielectric constant increases considerably and therefore the changes as a 

function of MWCNT concentration cannot be neglected. Therefore, we only use this 

relation for three low concentrations of MWCNT. Here, we neglect the addition of 

MWCNT and the role it plays on the characteristics of the solution. Therefore, it is 

possible to do the curve fitting on nanocomposite samples in a single line with pure PS. 

Otherwise, straight line only passes through the samples of quite similar materials. We 

also considered Tr=3 during these calculations. The results of our analysis on six 

different samples are shown in Fig. 8-9. As it is shown, it is possible to obtain a straight 

line in logarithmic scale with a scaling factor of n= -2/5. The straight line and the scaling 

factor are in the accepted range for this system. Therefore, it is possible to estimate the 

changes of nanofiber diameter as a function of measurable material and process 

parameters as follow: 

RfiberU Jw^X — X 
f{e-£)ElR^ 

Ve.-Q 

4/5 

(8-25) 
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The result of analysis shows that it is possible to predict average nanofiber diameter 

by equation 8-25. This equation is only applicable for the concentrations below 

percolation since the change of electrical properties after addition of MWCNT 

concentration has been neglected in this equation. 
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Figure 8-9: Ohf vs. n at different MWCNT concentration and flow rates below 

percolation 

We used the relation between Oh and 7ii in the second step here to predict the final 

nanofiber diameter for a wide range of MWCNT concentrations Ohccn". K\ includes K 

and we can consider the change in electrical properties of the solution followed by adding 

MWCNT concentration. Since the value of K as a function of MWCNT concentration has 

been obtained previously. In this way, the assumption of constant electrical properties is 

not considered anymore in the calculations. We employed this relation here only for 

MWCNT containing solutions. The same as previous step, the solutions were prepared at 
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different MWCNT concentrations. The voltage and final nanofiber diameter were 

measured in each concentration and the dimensionless numbers Oh and n\ were 

calculated in this way. The results obtained are given in Fig. 8-10. As it is depicted in this 

figure, it is possible to scale Oh and n\ in logarithmic scale with a good approximation 

and therefore it is possible to write: 
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Figure 8-10: Ohf vs. 7ii at different MWCNT concentration 
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W 

It is possible to estimate the average nanofiber diameter as a function of different 

parameters in different MWCNT concentrations by this method. 
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In conclusion, through this empirical modeling: 

1. The change in jet formation and velocity profile at different MWCNT 

concentrations were analyzed by the use of image analysis technique and high speed 

photography. 

2. The applicability of EHD theory and the assumptions made in this theory 

and the role of simplifications were investigated. The results show that with the imposed 

assumptions, this model is not applicable in our system. 

3. Two equations for estimation of final average nanofiber diameter were 

proposed by using dimensional analysis method. The results obtained were compared 

with the experimental data available. 

As discussed previously, the results obtained here are only the first steps in 

modeling the electrospinning of polymer/CNT nanocomposite nanofibers. These 

preliminary results are quite helpful in recognizing the most controlling parameters 

during the electrospinning of polymer/CNT nanofibers and reduce the number of 

experiments in future works. Meanwhile, more efforts on the modeling part are in process 

to complete, improve and clarify the results obtained in this chapter in our group. 
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Chapter 9 

General Discussion 

Dispersion of CNT in initial solution before electrospinning is one of the most 

important controlling factors of processing condition besides the final morphology and 

properties of nanofibers. Fiber formation causes high degree of CNT orientation along 

fiber axis and it is known as one of the best methods for CNT orientation. One 

dimensional structure and high degree of orientation reduces the percolation threshold to 

lower levels and small amount of CNT. In CNT-based conductive fibers especially 

nanocomposite nanofibers, high range of conductivity is obtained even at very low 

concentration of CNT. Therefore, the works concerning the study of a single nanofiber 

are not dealing with the subject of dispersion problem, since they are mostly dealing with 

CNT concentrations up to maximum 1 wt%. Studying CNT-containing nanofiber which 

shape conductive non-woven mat as final electrospinning product has some difficulties in 

the dispersion field. Investigating the final conductive mat means a non-woven made of 

nanofiber stacks in which the conductivity along fiber axis is less important than the 

conductivity between layers. In final non-woven mat, it is required to have high CNT 

concentrations to obtain conductive mat. Since we investigated final non-woven mat, we 

were to use high concentrations of CNTs for manufacturing conductive membrane. At 

this high level of CNT concentrations, dispersion is usually more complicated and more 

problem making in conductive nanofiber manufacturing. 

The effect of dispersion was studied in this work in PS/CNT nanofibers. The 

results obtained prove that dispersion is accounted as a controlling factor of final 

morphology and properties. It was shown that poor dispersion can be accounted as one of 

the most important factors in bead formation along fiber axis besides other instabilities 

during electrospinning. In addition, it was depicted that it is possible to control final 

electrical conductivity by modifying the dispersion condition. Well-dispersed CNTs with 

the aid of copolymer show higher conductivity compared to the fibers containing pure 
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CNTs. The dispersion condition was also shown as an important controlling factor in 

both PET/CNT electrospun and melt-spun fibers. Followed by modifying the dispersion 

condition in PET/CNT nanofibers, more smooth fibers were obtained and less bead 

structures were detected along fiber axis compared to PS/CNT at equal amount of CNT 

concentrations. Poor dispersion causes larger fiber diameter at low CNT concentration 

below percolation threshold of PS/CNT nanofibers; while this effect is not observed in 

PET/CNT electrospun nanofibers. Comparing the morphological observation results 

obtained from these two systems approve the important role of dispersion as a significant 

controlling factor at different CNT concentrations especially at high CNT levels (Figure 

9-1). The effect of dispersion was the same in all types of CNTs including SWCNT, 

DWCNT and MWCNT and similar observation was obtained by comparing these three 

systems. In PET/CNT melt-spun fibers, it was also found that the dispersion condition is 

an important determining factor. Comparing the results obtained of conductive fibers 

with those from the previous works prove that the amount of percolation is reduced to 2 

wt% by modifying the dispersion condition of CNTs in PET matrix. 

Figure 9-1: PS/CNT electrospun nanofibers (a) compared to PET/CNT (b) at 3 wt% 

MWCNT concentration 

The effect of adding different types of CNTs and sipersion condition was studied 

for the first time in electrospun samples in this work. We have only used physical method 
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of dispersion; therefore, we could make an overall comparison over all types of CNTs 

without changing their surface structure. The results obtained show that in spite of the 

fact that SWCNT show considerable enhancement in electrical conductivity by its unique 

structure; it is more difficult to be dispersed. Poor dispersion of SWCNT and even 

DWCNT because of their smaller sizes compared to MWCNT is an important influencing 

factor especially at high concentrations of CNTs. The results obtained from PS/CNT 

showed higher value of electrical conductivity at 5 wt% SWCNT compared to the other 

types of CNTs. Nevertheless, good dispersion and compatibility of MWCNT with PET 

matrix causes much more enhancement in both electrical and mechanical properties 

compared to SWCNT. Therefore, the results obtained from SWCNT, DWCNT and 

MWCNT and especially full characterization of final properties of PET/CNT electrospun 

nanofibers prove that MWCNT is more preferred at high CNT concentration. Even 

though, SWCNT is the best type of CNT for enhancement of conductivity; the results 

obtained here from both electrical and mechanical properties measurement demonstrate 

that MWCNT is a better choice at high CNT concentrations. Therefore, from a general 

view, we would propose MWCNT for high concentrated CNT nanocomposite nanofibers. 

PET/CNT electrospun nanofiber was studied in parallel to PET/CNT melt-spun 

micro-fibers as the main material to be considered in this thesis. Melt-spun fibers were 

produced at different MWCNT concentrations and draw ratios while nanofibers were 

produced at different CNT concentrations and types. In electrospun nanofibers, addition 

of CNTs causes increases in the conductivity and decrease in nanofiber diameter; 

therefore, increasing CNT concentration acts the same as increasing DR in melt-spinning 

since it causes decrease in nanofiber diameter. Increasing the draw ratio is obtained by 

increasing the electrical conductivity and electrical force acting on nanofibers in 

electrospinning; while it is obtained by increasing collection speed in melt-spun 

microfibers. Melt-spun fibers were more difficult to be produce because the complicated 

step of twin-screw dispersion and dispersion modification before spinning; while mixing 

stage is more straightforward in electrospinning process than melt-mixing. Electrical 
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conductivity as the main parameter of study shows the same value of around 2 wt% 

MWNT as electrical percolation threshold for both melt-spun and electrospun fibers. 

Similarities obtained from mechanical test results were quite interesting. CNT 

addition causes changes in the amount of crystallinity and PET chains orientation. The 

change in crystallinity and orientation do not show similar trends as a function of CNT 

concentration (The functionality is different below and above percolation as mentioned 

previously). However, addition of CNT in both electrospun and melt-spun fibers causes 

considerable increase in the amount of maximum elongation at break. In melt-spun fibers, 

addition of CNT causes increase in the amount of drawability during melt-spinning 

process and finer fiber production. This effect is also observed in both types of nanofibers 

and microfibers after processing and during mechanical experiments. In electrospun 

nanofibers, drawability is somehow increased by adding CNT; since increasing CNT 

concentration causes finer fiber production and it acts the same as increasing the draw 

ratio (Figure 9-2). As mentioned previously, it seems as if the addition of CNTs decreases 

the crystallinity and PET chains entering the crystalline cells. In molten state, it causes 

both decrease in crystallinity and orientation; however, in nanofibers, CNT causes the 

change of formation of crystalline to oriented chains more preferably. This is the main 

reason for increasing the maximum elongation at break besides drawability of final CNT-

based nanocomposite fibers obtained from both of these processes. This effect is not 

obtained in aligned PET/CNT nanocomposite nanofibers at different CNT concentrations. 

In aligned nanofibers, the degree of alignment changes by increasing CNT concentration; 

therefore, the degree of alignment is included as another parameter in calculations and it 

is not possible to make comparison in this case. 
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Figure 9-2: Comparison of maximum elongation at break in electrospun and melt-spun 

fibers at different CNT concentrations 

Followed by comparing the effect of CNT on PET chains crystallinity and 

orientation and comparing the role they play on mechanical properties; we studied CNT 

orientation in both electrospun and melt-spun fibers. As the results obtained from each 

observation show it is possible to detect CNT orientation inside fibers by Raman 

spectroscopy technique. Unfortunately, there is not a direct method to compare the 

amount of orientation of CNTs in a single fiber in melt spinning and electrospinning. 

Electrical conductivity can be an indirect judgment method for measuring the degree of 

CNT orientation. In both systems (Final non-woven electrospun mat and single melt-spun 

fiber); we obtained similar conductivity and electrical percolation threshold around 2 

wt% (Figure 9-3). As described previously, we expect to detect more conductivity along 

fiber axis of electrospun nanofibers; since we have reported the conductivity of a stack of 

nanofibers and final non-woven mat here. As a result, we expect to have higher 

conductivity at lower percolation threshold (less that 2 wt% MWCNT) in electrospun 

nanofibers. This could prove indirectly that, there is a much higher degree of CNT 

orientation in electrospun samples compared to melt state. Moreover, comparing the sizes 
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of fibers in melt-spun and electrospun samples can be an evidence for higher degree of 

CNT orientation in electrospun nanofibers. 
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Figure 9-3: Electrical conductivity of different types of samples of PET/CNT composite 

at different MWCNT concentrations; disk molded, rod-like melt-spun fiber and 

electrospun non-woven mat 
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Chapter 10 

Conclusions and Recommendations 

10.1. Conclusions 

In this thesis PS/CNT and PET/CNT were electrospun to nanofibers at different 

CNT concentrations and types especially at high concentrations of CNTs for the first time 

to study the effect of dispersion. In addition PET/CNT melt-spun fibers were produced 

successfully to obtain conductive microfibers. The following conclusions can be drawn 

from this work: 

1. Comparing the final morphologies of nanofibers with different dispersion 

conditions in PS/CNT electrospun system showed that CNT dispersion is an important 

controlling parameter for final fiber diameter and morphology. 

2. We used a kind of copolymer for dispersion modification of CNT in PS/CNT 

system. Final electrical conductivity measurement showed the positive effect of 

copolymer addition below percolation threshold. However, above percolation, nanofibers 

containing copolymer included a lower conductivity which might be because of CNTs 

coating with copolymer. 

3. The effect of copolymer on enhancement of PS and CNT compatibility was also 

proved through comparison of the mechanical properties test results. 

4. PET/CNT electrospun nanofiber mats were produced using both static and 

rotating drum (aligned nanofibers) collector. Electrical conductivity measurements on 

nanocomposite mats showed an electrical percolation threshold of around 2 wt% 

MWCNT. 

5. Crystallography test results proved increasing crystalline density by increasing 

CNT concentration above electrical percolation opposite to the behavior below 

percolation. This effect was also observed in mechanical test results. 
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6. Aligned nanofiber production could considerably enhance the mechanical 

properties especially modulus. We could obtain aligned nanofibers with the modulus at 

least 6 times more than random nanofibers below percolation concentration; while the 

effect of alignment was less considerable above percolation and at high concentrations of 

CNTs. 

7. In this work, we could reduce the percolation of microfibers to 2 wt% MWCNT 

concentration. Measuring the conductivity of a single melt-spun fiber showed that it was 

possible to reduce the percolation by both dispersion modification and change in 

processing condition (DR). 

8. DSC analysis results proved that MWCNT slowed down the crystalline growth. 

This effect is the main reason for the reduction of crystalline phase formation during melt 

spinning followed by increasing MWCNT concentration. 

9. MWCNT addition causes decrease in the amount of PET chain orientation 

obtained by FTIR measurement. Shearing field after MWCNT addition could be the main 

reason for weakening of the elongation field which caused a decrease in polymer chain 

orientation after MWCNT addition. 

10. PET/CNT nanocomposite fibers showed incredibly increase in draw ability of as-

spun fibers and the elongation at break in mechanical test. This was because of the role of 

MWCNT in the reduction of crystalline formation and the increased amorphous phase for 

dissipation of the imposed energy. This is obtained because polymer chains were 

acceptably adhered to MWCNT nanoparticles by modified dispersion. 

11. The change in jet formation and velocity profile at different MWCNT 

concentrations were analyzed by the use of image analysis technique and high speed 

photography. In addition, two equations for estimation of final average nanofiber 

diameter were proposed by using dimensional analysis method. The results obtained were 

compared with the experimental data available. 
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10.2. Recommendations 

For the future works, the following subjects are recommended: 

1. Developing and comparing different methods for CNT dispersion in 

polymer/CNT nanocomposite electrospun nanofibers at high CNT concentrations. These 

methods can include chemical modification, in-situ polymerization or other 

compatibilizing methods. These methods can be used along with different types of CNTs 

to compare their final properties. 

2. Polymer/CNT nanofibers were achieved for the characterization aim and in lab-

scale in this thesis. These products can be employed for some applications such as 

conductive membranes, sensors and biomedical applications followed by some required 

post-processing modifications. 

3. The results obtained here for the melt-spinning of PET/CNT fibers can be scaled 

up to the industrial scale. Moreover, the effect of some post processing steps such as 

drawing, annealing and surface modification for specific applications such as biomedical 

ones can be investigated. 

4. Electrohydrodynamic modeling of CNT-filled nanocomposite nanofibers and 

recognizing the most important controlling forces and phenomena during electrospinning; 

beside calculation of some parameter such as elongation viscosity and final morphology 

by modeling. 



213 

REFERENCES 

Ahn, B. W., Y. S. Chi, et al. (2008). "Preparation and characterization of multi-walled 

carbon nanotube/poly(ethylene terephthalate) nanoweb." Journal of Applied 

Polymer Science 110(6): 4055-4063. 

Ajayan, P. M., O. Stephan, et al. (1994). "Aligned carbon nanotube arrays formed by 

cutting a polymer resin-nanotube composite." Science 265(5176): 1212-14. 

Ausman, K. D., R. Piner, et al. (2000). "Organic solvent dispersions of single-walled 

carbon nanotubes: Toward solutions of pristine nanotubes." Journal of Physical 

Chemistry B 104(38): 8911-8915. 

Aussawasathien, D., J. H. Dong, et al. (2005). "Electrospun polymer nanofiber sensors." 

Synthetic Metals 154(1-3): 37-40. 

Baker, D. A. and P. J. Brown (2003). "Reactive routes to making modified nanofiber 

structures via electrospinning." Polymer Preprints (American Chemical Society, 

Division of Polymer Chemistry) 44(2): 118-119. 

Baker, D. A. and P. J. Brown (2005). "Crosslinked electrospun PET webs." AATCC 

Review 5(7): 28-33. 

Beatriz Veleirinho, M. F. Rei, et al. (2008). "Solvent and concentration effects on the 

properties of electrospun poly(ethylene terephthalate) nanofiber mats." Journal of 

Polymer Science Part B: Polymer Physics 46(5): 460-471. 

Burger, C , B. S. Hsiao, et al. (2006). "Nanofibrous materials and their applications." 

Annual Review of Materials Research 36: 333-368. 

Chakrabarti, K., P. M. G. Nambissan, et al. (2006). "Positron annihilation spectroscopy of 

polyacrylonitrile-based carbon fibers embedded with multi-wall carbon 

nanotubes." Carbon 44(5): 948-953. 

Chen, H., Z. Liu, et al. (2009). "Chain confinement in electrospun nanofibers of PET with 

carbon nanotubes." Polymer 50(3): 872-880. 



214 

Chronakis, I. S., B. Milosevic, et al. (2006). "Generation of molecular recognition sites in 

electrospun polymer nanofibers via molecular imprinting." Macromolecules 

39(1): 357-361. 

Dror, Y., W. Salalha, et al. (2003). "Carbon nanotubes embedded in oriented polymer 

nanofibers by electrospinning." Langmuir 19(17): 7012-7020. 

Dror, Y., W. Salalha, et al. (2005). "From carbon nanotube dispersion to composite 

nanofibers." Progress in Colloid & Polymer Science 130: 64-69. 

Duchesne, C , X. Kong, et al. (2002). "Molecular orientation and relaxation of 

poly(ethylene terephthalate) by polarization modulation infrared spectroscopy." 

Macromolecules 35(23): 8768-8773. 

Eda, G. and S. Shivkumar (2006). "Bead and fiber morphologies during electrospinning 

of polystyrene." Society of Plastics Engineers , Charlotte, NC, United States,. 

Fei, W., Z. Weiping, et al. (2005). "Elastic deformation of multiwalled carbon nanotubes 

in electrospun MWCNTs-PEO and MWCNTs-PVA nanofibers." Polymer 46(26): 

12689-95. 

Feng, J. J. (2002). "The stretching of an electrified non-Newtonian jet: A model for 

electrospinning." Physics of Fluids 14(11): 3912-3926. 

Feng, J. J. (2003). "Stretching of a straight electrically charged viscoelastic jet." Journal 

of Non-Newtonian Fluid Mechanics 116(1): 55-70. 

Frenot, A. and I. S. Chronakis (2003). "Polymer nanofibers assembled by 

electrospinning." Current Opinion in Colloid and Interface Science 8(1): 64-75. 

Gao, X., Y. Tong, et al. (2005). "Application of multi-wall carbon nanotubes in polymer 

fibres." Textile Asia 36(7): 35-6. 

Ge, J. J., H. Hou, et al. (2004). "Assembly of well-aligned multiwalled carbon nanotubes 

in confined polyacrylonitrile environments: Electrospun composite nanofiber 

sheets." Journal of the American Chemical Society 126(48): 15754-15761. 

Hartman, R. P. A., D. J. Brunner, et al. (1999). "Electroshydrodynamic atomization in the 

cone-jet mode physical modeling of the liquid cone and jet" Journal of Aerosol 

Science 30(7): 823-849. 



215 

He, J. H., Y. Wu, et al. (2005). "Critical length of straight jet in electrospinning." 

Polymer 46(26): 12637-12640. 

Helgeson, M. E., K. N. Grammatikos, et al. (2008). "Theory and kinematic measurements 

of the mechanics of stable electrospun polymer jets." Polymer 49(12): 2924-2936. 

Helgeson, M. E. and N. J. Wagner (2007). "A correlation for the diameter of electrospun 

polymer nanofibers." AIChE Journal 53(1): 51-55. 

Hohman, M. M., M. Shin, et al. (2001). "Electrospinning and electrically forced jets. I. 

Stability theory." Physics of Fluids 13(8): 2201-2220, 

Hohman, M. M., M. Shin, et al. (2001). "Electrospinning and electrically forced jets. II. 

Applications." Physics of Fluids 13(8): 2221-2236. 

Hong, K. H. and T. J. Kang (2006). "Hydraulic permeabilities of PET and nylon 6 

electrospun fiber webs." Journal of Applied Polymer Science 100(1): 167-177. 

Hou, H. and D. H. Reneker (2004). "Carbon nanotubes on carbon nanofibers: A novel 

structure based on electrospun polymer nanofibers." Advanced Materials 16(1): 

69-73. 

Iijima, S. (1991). "Helical microtubules of graphitic carbon." Nature 354(6348): 56. 

Jarusuwannapoom, T., W. Hongrojjanawiwat, et al. (2005). "Effect of solvents on 

electro-spinnability of polystyrene solutions and morphological appearance of 

resulting electrospun polystyrene fibers." European Polymer Journal 41(3): 409-

421. 

Kedem, S., J. Schmidt, et al. (2005). "Composite polymer nanofibers with carbon 

nanotubes and titanium dioxide particles." Langmuir 21(12): 5600-5604. 

Kim, G. M., R. Lach, et al. (2006). "Relationships between phase morphology and 

deformation mechanisms in polymer nanocomposite nanofibres prepared by an 

electrospinning process." Nanotechnology 17(4): 963-972. 

Kim, G. M., G. H. Michler, et al. (2005). "Deformation processes of ultrahigh porous 

multiwalled carbon nanotubes/polycarbonate composite fibers prepared by 

electrospinning." Polymer 46(18): 7346-7351. 



216 

Kim, J. S. and D. S. Lee (2000). "Thermal properties of electrospun polyesters." Polymer 

Journal (Tokyo) 32(7): 616-618. 

Kim, K. W., K. H. Lee, et al. (2004). "The effect of molecular weight and the linear 

velocity of drum surface on the properties of electrospun poly(ethylene 

terephthalate) nonwovens." Fibers and Polymers 5(2): 122-127. 

Kim, K. W., K. H. Lee, et al. (2005). "Effects of blend ratio and heat treatment on the 

properties of the electrospun poly(ethylene terephthalate) nonwovens." Fibers and 

Polymers 6(2): 121-126. 

Ko, F., Y. Gogotsi, et al. (2003). "Electrospinning of continuous carbon nanotube-filled 

nanofiber yarns." Advanced Materials (Weinheim, Germany) 15(14): 1161-1165. 

Larrondo, L. and R. S. J. Manley (1981). " Electrostatic fiber formation from polymer 

melts; 1 .Experimental observation on fiber formation and properties." Journal of 

Polymer Science, Polymer Physics Edition 19(6): 909-920. 

Lee, K. H., H. Y. Kim, et al. (2003). "The change of bead morphology formed on 

electrospun polystyrene fibers." Polymer 44(14): 4029-4034. 

Lei Qian, et al. (2004). "Application of nanotechnology for high performance textiles" 

Journal of textile and apparel, technology and management 4(1): 1-7. 

Li, D. and Y. Xia (2004). "Electrospinning of nanofibers: Reinventing the wheel?" 

Advanced Materials 16(14): 1151-1170. 

Li, Z., G. Luo, et al. (2006). "Microstructure of carbon nanotubes/PET conductive 

composites fibers and their properties." Composites Science and Technology 

66(7-8): 1022-1029. 

Liang, G. D. and S. C. Tjong (2008). "Electrical properties of percolative 

polystyrene/carbon nanofiber composites." IEEE Transactions on Dielectrics and 

Electrical Insulation 15(1): 214-220. 

Lim, J. Y., C. K. Lee, et al. (2006). "Controlled nanofiber composed of multi-wall carbon 

nanotube/poly(ethylene oxide)." Journal of Macromolecular Science - Pure and 

Applied Chemistry 43(4-5): 785-796. 



217 

Lin, T., H. Wang, et al. (2004). "The charge effect of cationic surfactants on the 

elimination of fibre beads in the electrospinning of polystyrene." Nanotechnology 

15(9): 1375-1381. 

Liu, J., T. Wang, et al. (2005). "Carbon nanotube core-polymer shell nanofibers." Journal 

of Applied Polymer Science 96(5): 1992-1995. 

Ma, H., J. Zeng, et al. (2003). "Processing, structure, and properties of fibers from 

polyester/carbon nanofiber composites." Composites Science and Technology 

63(11): 1617-1628. 

Ma, Z., M. Kotaki, et al. (2005). "Surface engineering of electrospun polyethylene 

terephthalate (PET) nanofibers towards development of a new material for blood 

vessel engineering." Biomaterials 26(15): 2527-36. 

McCann, J. T., M. Marquez, et al. (2006). "Highly porous fibers by electrospinning into a 

cryogenic liquid." Journal of the American Chemical Society 128(5): 1436-1437. 

McKee, M. G., T. E. Long, et al. (2003). "Synthesis and electrospinning of branched 

polyesters." Polymer Preprints (American Chemical Society, Division of Polymer 

Chemistry) 44(1): 792-793. 

McKee, M. G., G. L. Wilkes, et al. (2004). "Correlations of Solution Rheology with 

Electrospun Fiber Formation of Linear and Branched Polyesters." 

Macromolecules 37(5): 1760-1767. 

Megelski, S., J. S. Stephens, et al. (2002). "Micro and nanostructured surface morphology 

on electrospun polymer fibers." Macromolecules 35(22): 8456-8466. 

Moniruzzaman, M. and K. I. Winey (2006). "Polymer nanocomposites containing carbon 

nanotubes." Macromolecules 39(16): 5194-5205. 

Myung Seob, K., K. Hak Yong, et al. (2004). "Nanofibrous mats of poly(trimethylene 

terephthalate) via electrospinning." Polymer 45(1): 295-301. 

Nah, C , G. Mathew, et al. (2005). "Preparation and characterization of properties of 

electrospun poly(butylene terephthalate) nanofibers filled with carbon nanotubes." 

Polymer Testing 24(6): 712-17. 



218 

Pai, S. and N. J. Gunja (2004). "Effects of the molecular characteristics of polymers on 

the electrospinning of polystyrene." Society of Plastics Engineers, Chicago, IL, 

United States. 

Pan, C , L. Q. Ge, et al. (2007). "Fabrication of multi-walled carbon nanotube reinforced 

polyelectrolyte hollow nanofibers by electrospinning." Composites Science and 

Technology 67(15-16): 3271-3277. 

Pattamaprom, C , W. Hongrojjanawiwat, et al. (2006). "The influence of solvent 

properties and functionality on the electrospinnability of polystyrene nanofibers." 

Macromolecular Materials and Engineering 291(7): 840-847. 

Perepelkin, K. E. (2005). "Principles and Methods of Modification of Fibres and Fibre 

Materials. A Review." Fibre Chemistry 37(2): 37. 

Ra, E. J., K. H. An, et al. (2005). "Anisotropic electrical conductivity of MWCNT/PAN 

nanofiber paper." Chemical Physics Letters 413(1-3): 188-193. 

Reneker, D. H. and I. Chun (1996). "Nanometre diameter fibres of polymer, produced by 

electrospinning." Nanotechnology 7(3): 216-223. 

Reneker, D. H., A. L. Yarin, et al. (2000). "Bending instability of electrically charged 

liquid jets of polymer solutions in electrospinning." Journal of Applied Physics 

87(9): 4531-4547. 

Richard A. Vaia, R. K. (2001). "Polymer nanocomposites: synthesis, characterization, 

and modeling." American Chemical Society, Washington, DC, United States. 

Salalha, W., Y. Dror, et al. (2004). "Single-walled carbon nanotubes embedded in 

oriented polymeric nanofibers by electrospinning." Langmuir 20(22): 9852-9855. 

Saville, D. A. (1997). "Electrohydrodynamics: the Taylor-Melcher Leaky dielectric 

model." Annual Review of Fluid Mechanics 29: 27-64. 

Sawicka, K. M. and P. Gouma (2006). "Electrospun composite nanofibers for functional 

applications." Journal of Nanoparticle Research 8(6): 769-781. 

Seeram Ramakrishna, K. F., Wee-Eong Teo, Teik-Cheng Lim, Zuwei Ma (2005). "An 

introduction to electrospinning and nanofibers." World Scientific Publishing. 



219 

Sen, R., Z. Bin, et al. (2004). "Preparation of single-walled carbon nanotube reinforced 

polystyrene and polyurethane nanofibers and membranes by electrospinning." 

Nano Letters 4(3): 459-64. 

Seoul, C , Y. T. Kim, et al. (2003). "Electrospinning of poly(vinylidene 

fluoride)/dimethylformamide solutions with carbon nanotubes." Journal of 

Polymer Science, Part B: Polymer Physics 41(13): 1572-1577. 

Shenoy, S. L., W. D. Bates, et al. (2005). "Role of chain entanglements on fiber 

formation during electrospinning of polymer solutions: Good solvent, non­

specific polymer-polymer interaction limit." Polymer 46(10): 3372-3384. 

Sigmund, W., J. Yuh, et al. (2006). "Processing and structure relationships in 

electrospinning of ceramic fiber systems." Journal of the American Ceramic 

Society 89(2): 395-407. 

Sluzarenko, N., B. Heurtefeu, et al. (2006). "Diblock copolymer stabilization of multi-

wall carbon nanotubes in organic solvents and their use in composites." Carbon 

44(15): 3207-3212. 

Spivak, A. F., Y. A. Dzenis, et al. (2000). "A model of steady state jet in the 

electrospinning process." Mechanics Research Communications 27(1): 37-42. 

Sundaray, B., V. Subramanian, et al. (2007). "Preparation and characterization of 

polystyrene-multiwalled carbon nanotube composite fibers by electrospinning." 

Journal of Nanoscience and Nanotechnology 7: 1793-1795. 

Sundaray, B., V. Subramanian, et al. (2006). "Electrical conductivity of a single 

electrospun fiber of poly(methyl methacrylate) and multiwalled carbon nanotube 

nanocomposite." Applied Physics Letters 88(14): 143114. 

Sung, J. H., H. S. Kim, et al. (2004). "Nanofibrous membranes prepared by multiwalled 

carbon nanotube/poly(methyl methacrylate) composites." Macromolecules 

37(26): 9899-9902. 

Tan, S. H., R. Inai, et al. (2005). "Systematic parameter study for ultra-fine fiber 

fabrication via electrospinning process." Polymer 46(16): 6128-6134. 



220 

Veleirinho, B. and J. A. Lopes-da-Silva (2009). "Application of electrospun 

poly(ethylene terephthalate) nanofiber mat to apple juice clarification." Process 

Biochemistry 44(3): 353-356. 

Wang, C , C.-H. Hsu, et al. (2006). "Scaling laws in electrospinning of polystyrene 

solutions." Macromolecules 39(22): 7662-7672. 

Wannatong, L., A. Sirivat, et al. (2004). "Effects of solvents on electrospun polymeric 

fibers: Preliminary study on polystyrene." Polymer International 53(11): 1851-

1859. 

Yarin, A. L., S. Koombhongse, et al. (2001). "Bending instability in electrospinning of 

nanofibers." Journal of Applied Physics 89(5): 3018-3026. 

Yarin, A. L., S. Koombhongse, et al. (2001). "Taylor cone and jetting from liquid 

droplets in electrospinning of nanofibers." Journal of Applied Physics 90(9): 

4836-4846. 

Ye, H., H. Lam, et al. (2004). "Reinforcement and rupture behaviour of carbon 

nanotubes-polymer nanofibers." Applied Physics Letters 85(10): 1775-1777. 

Yuan Ji, S. G., Jaseung Koo, Bingquan Li (2006). "Structure and nanomechanical 

properties of well-aligned electrospun PS/MWCNT composite nanofibers." The 

American Physical Society, March 2006 Meeting. 

Zheng, J., A. He, et al. (2006). "Studies on the controlled morphology and wettability of 

polystyrene surfaces by electrospinning or electrospraying." Polymer 47(20): 

7095-7102. 

Ziabicki, A. (1976). "Fundamentals of Fibre Formation: The Science of Fibre Spinning 

and Drawing." Wiley. 


