POLYPUBLIE

PO'YtGChnique Montréal D'INGENIERIE

Titre:
Title:

Auteur:
Author:

Date:
Type:

Référence:
Citation:

POLYTECHNIQUE

A [
UNIVERSITE o

Conception d'une architecture logicielle pour le positionnement au
niveau atomique d'instruments scientifigues sous forme de robots
miniatures pour des applications en nanotechnologies

Dominic St-Jacques

2004

Mémoire ou these / Dissertation or Thesis

St-Jacques, D. (2004). Conception d'une architecture logicielle pour le
positionnement au niveau atomique d'instruments scientifiques sous forme de
robots miniatures pour des applications en nanotechnologies [Mémoire de
maitrise, Ecole Polytechnique de Montréal]. PolyPublie.
https://publications.polymtl.ca/8404/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie: . S
PolyPublie URL: https://publications.polymtl.ca/8404/

Directeurs de
recherche: Sylvain Martel

Programme:

Advisors:

Program: Non spécifié

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/8404/
https://publications.polymtl.ca/8404/

UNIVERSITE DE MONTREAL

CONCEPTION D’UNE ARCHITECTURE LOGICIELLE POUR LE
POSITIONNEMENT AU NIVEAU ATOMIQUE D’INSTRUMENTS
SCIENTIFIQUES SOUS FORME DE ROBOTS MINIATURES POUR DES
APPLICATIONS EN NANOTECHNOLOGIES.

DOMINIC ST-JACQUES
DEPARTEMENT DE GENIE INFORMATIQUE
ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE ELECTRIQUE)

AOUT 2004

(© Dominic St-Jacques, 2004.

3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-47687-1
Qur file Notre référence
ISBN: 978-0-494-47687-1

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

CONCEPTION D’UNE ARCHITECTURE LOGICIELLE POUR LE
POSITIONNEMENT AU NIVEAU ATOMIQUE D’INSTRUMENTS
SCIENTIFIQUES SOUS FORME DE ROBOTS MINIATURES POUR DES
APPLICATIONS EN NANOTECHNOLOGIES.

présenté par: ST-JACQUES Dominic

en vue de l'obtention du dipléme de: Maitrise és sciences appliquées

a été diiment accepté par le jury d’examen constitué de:

M. GUIBAULT Frangois, Ph.D, président
M. MARTEL Sylvain, Ph.D, membre et directeur de recherche
M. BOIS Guy, Ph.D, membre

N

A T'aube d’un jour nouveau...

v

REMERCIEMENTS

Ce mémoire et tout le travail y étant associé n’aurait pas été possible sans I'apport
et le soutien d’un grand nombre d’individus, je tiens a les remercier. (Sans ordre

précis, vous ne pouviez pas tous étre en haut...;))

Les incontournables

Sylvain Martel : Directeur de “mon” Lab. Visionnaire et strateége sans précédent, le

projet NanoWalker ne serait pas sans sa profonde motivation.

Francois Guibault et Guy Bois : Respectivement président et membre du jury

d’examen du présent ouvrage.

Merci & mes parents, sans qui je n’aurais jamais pu me rendre si loin et étre ici

aujourd’hui.

NATEQ et CRSNG : pour le financement bien apprécié.

Ceux du Lab

«Dr.» Thomas Boitani : Mon Italien! Je lui ai fait découvrir la cabane & sucre,
descendre une montagne en crazy carpet...la nuit ! Il m’a donné espoir quand je n’en
avais plus... A lasting friendship that knows no bounds. Far too many things to

thank you for in a single thesis...Grazie mille... Excusez-le, il est italien!;-)

Jean-Baptiste Mathieu : mon «F» préféré, jeune Padawan Photoshop! Complice

depuis le tout début. Il y aurait trop de choses & dire! T’as raison JBunny, ca

vl
-aurait- pu étre pire! Allez, on se revoit a Tahiti... ;) Merci JB!

Maurice Jacques-André Kakou Delafosse : entre SysAdmin, on se comprend! Pré-
sent depuis le jour 1, toujours 14 pour un coup de main et éteindre les feux...

Certainement un des plus grands hommes que je connaisse, sans jeu de mots! :)

Merci Kakou!

Marc-Antoine Fortin : Le gars d’électronique tant attendu! Bon, ok, il vient de
Sherbrooke!;) Ensemble, on en a vu des vertes et des pas mures! L’optimisme
légendaire de MAF a su tenir téte a mon «réaliste» tout aussi légendaire! Oui, je

sais que c’était pas ton idée a St-Tite! :) Merci MAF'!

Marc-Antoine Ducas : Un des parcours académique les plus étranges que j’ai pu
voir, mais il est partout a sa place! Un collegue, un associé, un ami! Si jamais je

lui arrive a la cheville, je serai fier! Merci Marco!

Stefan Riebel & Andreas Schindler : mes premiers Allemands! Avec qui toute
cette histoire a débuté... Sans eux, on ne serait sirement pas au méme endroit

aujourd’hui. Danke Schéen! Qui aurait cru que des Allemands pouvaient devenir

accrocs d'UT 7 :)

Marc Rawji : Présent au tout début, alors qu’on se demandait encore si ¢’était un
réve ou juste une mauvaise joke!;) Pionnier de la grille atomique, maitre Jedi & ses

heures! Faut encore qu’on aille grimper ensemble !

Eric L’Heureux : Mon freak personnel, rarement aies-je vu quelqu’un d’aussi com-

pétent. J’ai tellement appris de lui en un simple été!

Guido Baumann : C’est peut-étre Stefan et Andy qui ont introduit la tradition des
beignes au Lab, mais c’est Guido qui ’a perfectionnée! Toujours calme, toujours

poli, toujours de qualité, ce fut un honneur...

vil

Guillaume Langlois & Martin Mankiewicz : Deux autres des braves présents depuis
le début. Parmis les personnalités les plus fortes du Lab. Franc tireur, tant & UT que
dans la vie! Un peu rogues sur les bords, partout en méme temps, mais s’investissent

toujours a fond...

Oliver-Don Truong : Oltru! Le dernier venu du Lab, directement de P'UQAM! Oui

oui, il m’a battu au Babyfoot! Mais j’ai pas dit mon dernier mot...

Charles C. Tremblay : Est-ce que c’est ¢a qu’on appelle Alternative lifestyle ? ;-)
Avec lui, on ne s’ennuie jamais, il a su égayer nos journées les plus sombres avec

ses histoires tordues! Merci Charles.

Arnaud Chanu : SysAdmin, nouvelle génération! Eh oui, je sais, j’avais raison...

J’espére que je te laisse plus de solutions que de problémes.

Ouajdi Felfoul : Il a su tenir téte a I'infAme “DansTaFace”, on a créé un monstre

en lui montrant & jouer a UT!;)

Walder André : Ou André Walder ? Lui-méme se trompe! Guitariste hors pair et
un des plus acharné travailleur que la Terre ne connaisse, ¢a ne fait aucun doute!

Il n’y a pas que la CMC qui soit impressionné par ton travail Walder... moi aussi.

Simon McDougall, Pascal Hannoyer, Serge-Olivier Chimi-Ngakeng, Pierre-Alain
Dumas, Na-Mi Bae, Eric “Abou” Aboussouan, Micheline Lafreniére, Albert Nsami-
rizi, Constantin Fortier, Frédérick Jubinville, Sylvain Boissé, Frédéric Nguyenphat-
Therrien, José Pascual, Siaka Baro, Moufid Eyitayo, Wael Sabra, Marc Léger, David

Salamanca, Neila Kaou, Kwang Soo Kim et tous les autres que j’oublie.

viii

L’aide extérieure

Suzie Poulin (Poly), Héléne Bourque (Poly), Patricia Moraille (LCM UdeM), Eric
Duchesne (CM? Poly), Peter Griitter (McGill), Geoffrey Bastien, Jeff Bengston
(LPKF) pour les nombreuses heures passées au téléphone & réparer cette scheiss-
machine, Termium Plus pour m’avoir enseigné le Francais technique, Zophia Me-
langon pour nous avoir sauvé la vie plus d’une fois avec les boards électroniques,

Julien Lardy pour avoir donné vie & notre imagination.

Les Impoly

La gang du lundi : amis depuis toujours et pour toujours! Votre aide est bien plus

grande que vous ne le savez...

Merci, encore merci...

1X

RESUME

Dans le cadre du projet NanoWalker du Laboratoire de NanoRobotique de ’Ecole
Polytechnique de Montréal, I'infrastructure informatique de la plate-forme de sup-
port est développée. Son objectif est de mettre en place les mécanismes qui per-

mettront au robot NanoWalker d’atteindre un positionnement atomique répétable.

Trois principaux aspects sont abordés. Une architecture distribuée en six niveaux
contrdle et coordonne une flotte de robots ainsi que leur environnement. Elle s’enra-
cine dans les patrons de conceptions et les principes orientés-objets pour accroitre

sa modularité, sa robustesse et sa maintenabilité.

Le contréle du microscope a effet tunnel (STM) monté &4 méme le robot est im-
plémenté sur une carte de développement pour DSP. L’intégration de la communi-
cation infrarouge est également tentée. Des tests révelent cependant un probléeme
lorsque la transmission infrarouge fonctionne simultanément avec le balayage du

tube piézoélectrique du STM : le DSP semble incapable de garder le rythme.

L’élaboration d’une «grille atomique» basée sur la microscopie & effet tunnel est
finalement étudiée. Ce positionnement de précision se divise en deux phases : la
Coarse Positioning Grid et 1'algorithme IAPA convergent de fagon itérative vers
le centre ot une Fine Positioning Grid dépose les bases du positionnement fin du

microscope.

ABSTRACT

This Master’s thesis is inscribed within the framework of the NanoWalker project
of the NanoRobotics Laboratory of the Ecole Polytechnique de Montréal (EPM).
The software infrastructure of the supporting platform is developed. Its goal is to
put in place the software mechanisms that will enable the NanoWalker robot to

repeatedly position itself above a single atom.

Three main aspects are approached. A six-levels distributed architecture controls
and coordinates a fleet of robots and their environment. It find its basis in the
design patterns and object-oriented principles to increase its modularity, stability

and maintainability.

The control of the robot’s built-in scanning tunneling microscope (STM) is imple-
mented on a DSP development board. The infrared communication’s integration is
also attempted. Although, tests revealed a problem when IR transmission is simul-
taneous to the scanning of the piezoelectric tube of the STM : the NanoWalker’s
DSP seem unable to keep up the rhythm.

The elaboration of an “atomic grid” based on scanning tunneling microscopy is
finally studied. This precise positioning is divised into two phases : the Coarse Po-
sitioning Grid and the IAPA algorithm iteratively converge toward the center where

a Fine Positioning Grid lays down the basis for the microscope fine positioning.

X1

TABLE DES MATIERES

DEDICACE iv
REMERCIEMENTS it v
RESUME ix
ABSTRACT X
TABLE DES MATIERES i xi
LISTEDES FIGURES o it e, xv
LISTE DES TABLEAUX it xxi
LISTEDES ANNEXESo, xxii
LISTE DES NOTATIONS ET DES SYMBOLES xxiii
INTRODUCTION e, 1
CHAPITRE 1 SYSTEMES DU PROJET NANOWALKER 8

1.1 Lerobot NanoWalker 8

x11

1.2 Environnement 11
CHAPITRE 2 = PLATE-FORME LOGICIELLE - ARCHITECTURE . . . 15
2.1 Evaluation des alternatives 16
2.2 Hiérarchisation des niveaux logiciels 18
2.3 Communication inter-niveaux 21
24 Gestiondesrequétes 24
2.4.1 Thread par connexion L 25
242 Thread parrequétes 26
2.4.3 Threadpool 26
244 Patrons de conception 27
2.4.5 Evolution des requétes L. 32
246 Diagrammesdeclasses 35
2.4.7 Diagrammes de séquence 41

2.5 Synchronisation des requétes 43
2.6 Controledesrobots 44
2.6.1 Jeud’instructions 46

26.1.1 Etat 47

2.7

2.8

xiil

26.1.2 Déplacemento 48
2.6.1.3 Balayagedu STM 52
2614 TipEngage 54
26.1.5 Retrieve STMdata 54
Format des messages réseaux 56
Conclusion 58

CHAPITRE 3 CONTROLE DU MICROSCOPE A EFFET TUNNEL . . 60

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

Arithmétique en virgule fixe 60
3.1.1 Logarithme naturel 67
Electronique 69
Design logiciel du DSP 75
Stratégiede tests 80
PiezoScan 83
Z-Feedback 89
Résultatso 91
eZdsp 93

3.8.1 Communication infrarouge 95

X1v

CHAPITRE 4 POSITIONNEMENT ATOMIQUE 101
4.1 Etapes de positionnement 104
411 Codebinaire 106

4.1.2 Patrondelignes 111

4.2 TIterative Approach Positioning Algorithm 115
43 Conclusion 121
CONCLUSION 125
REFERENCES 131

ANNEXES o 139

Figure 1

Figure 2

Figure 3

Figure 4

Figure 1.1

Figure 1.2

Figure 1.3

Figure 1.4

Figure 1.5

Figure 2.1

Figure 2.2

Figure 2.3

Figure 2.4

Figure 2.5

Figure 2.6

XV

LISTE DES FIGURES

NanoRunner : U'ancétre du NanoWalker 2

Modele 3D du robot NanoWalker 3

Logo d’IBM formé d’atomes de Xenon assemblés sur du Ni-

ckel (110) 4
Prototype du Powerfloor avec ses porte-échantillons 5
Circuit Flex du NanoWalker 9
Position des convertisseurs DC-DC a Uintérieur du NW . . . 10
Modele de la chambre de refroidissement 12

Table optique sur laquelle repose la chambre de refroidissement 13

Position Sensing Device PSM-10 de la compagnie On-Trak . 13

Représentation schématique du systeme logiciel 15
Format d'un paquet UDP 22
Format d'un paquet TCP 22
Format d'un paquet IP 23

Evolution d’une requéte de déplacement d’'un NanoWalker

dupoint Aaupoint B. 34

Diagramme de paquetages du systéme de contréle 36

Figure 2.7
Figure 2.8

Figure 2.9

Figure 2.10

Figure 2.11

Figure 2.12

Figure 2.13

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4

Figure 3.5

Figure 3.6

Figure 3.7

xvi

Entéte des messages échangés avec les NanoWalkers 46

Format d’un message d’état d'un NanoWalker 48
Disposition des pattes piézoélectriques et de leurs électrodes
sur le NanoWalker L. 49
Exemple de série d’'impulsions & envoyer a une électrode d’'une
patte. L 50
Format d’un message de déplacement 52
Format d’un message de configuration du balayage du piézo
duSTM 54
Format d’un message de configuration du contréleur PID du
STM . . 55
Nombre selon une représentation virgule fixe 61
Parcours du courant tunnel dansun STM 70
Amplificateur opérationnel en feedback négatif 71

Disposition des électrodes sur le tube piézoélectrique du STM 73

Plage dynamique du tube piézoélectrique du STM selon dif-

férentes valeursde V, 75
Chronogramme d’une écriture au DAC (tempsenns) . .. 76

Chronogramme d’une lecture de ’ADC (tempsenns) . . . 76

Figure 3.8

Figure 3.9

Figure 3.10

Figure 3.11

Figure 3.12

Figure 3.13

Figure 3.14

Figure 3.15

Figure 3.16

Figure 3.17

Figure 3.18

Figure 4.1

Figure 4.2

Figure 4.3
Figure 4.4

Figure 4.5

Xvil

Décomposition du prototype logiciel pour le contréle du STM 78

Montage du test d’assemblage mécanique du STM 82
Balayage X-Y du piézodu STM 85
Phénomene de aliasing 87
Coordonnées du début d'un scan STM 87
Montage utilisé lors des tests STM a McGill 92

Carte de développement eZdspF2812 de Spectrum Digital . 94

Différence dans les chronogrammes pour le TIR2000 et le

DAC/ADC 94
Révision du circuit STM 95
Prototype du circuit infrarouge 96
Trame I'DA 1.1 L. 96
Apergu du systeme de positionnement global. Le PSD ne

fonctionne pas dans le plan des NanoWalkers 102
Structure atomique du HOPG 104
Image STM atomique du HOPG 105
Section d'un code binaire 107

Fenétre identifiée par son code binaire (en noir est le matériau

Bravé) . ..o 107

Figure 4.6
Figure 4.7

Figure 4.8

Figure 4.9

Figure 4.10

Figure 4.11

Figure 4.12

Figure 4.13

Figure 4.14

Figure 4.15

Figure 4.16

Matrice de 8 x 8 fenétres binaires 107
Vue de coupe d’un code binaire 110

STM de la compagnie Digital Instruments (maintenant Veeco

Instruments) 110

Dimension de la Fine Positioning Grid. La ligne la plus mince

& une largeur de 60nm, la plus large est de 720nm. Chaque

zone de travail est de 1, 14um. 112
FPG imagée au SEM 112
Vue de coupe d’une ligne de la FPG imagée avec un AFM

(la largeur théorique de la ligne est 360nm) 113
Boursouflures sur deux des quatre c¢otés de la FPG 114
Dimension de la Coarse Positioning Grid 116

Exemple d’évolution de l'algorithme IAPA. Le carré repré-

sente la surface que le STM peut imager apres chaque itération.118

Simulation de l'algorithme IAPA pour différentes taille de
CPG. La taille de la FPG est fixe & 9,18um. La ligne poin-
tillée représente le nombre d’itérations théorique avant le pla-
fond, le cercle représente la moyenne de 1000 essais et le x

représente le nombre maximal d’itérations. 119

Incertitude reliée au déplacement du robot lors de I’algo-
rithme IAPA. Sur un déplacement d’'une distance d a un angle

@, Uerreur est de ey et +o.

Figure 4.17

Figure 4.18

Figure 4.19

Figure 4.20

Figure 4.21

Figure IV.1

Figure IV.2

Figure IV.3

Figure IV .4

Figure IV.5

Figure IV.6

Figure IV.7

Figure V.1

XIx

Variation de l'algorithme IAPA selon différentes erreurs sur

les déplacements. 120
Sous-routine d’erreur de ’algorithme IAPA. j est le nombre
d’erreurs d’idenfication successives, € est une constante égale
a deux fois I'erreur d’alignement. 121
Algorithme IAPA avec une erreur d’alignement des quadrants
de 1um en plus des erreurs sur le déplacement (eg = £1, 5um,
e, =£1,08") 122
Evolution du processus d’extraction des lignes d’une image
delaFPG 123
Cone d’erreur sur le déplacement d’un robot, o est l’erreur
angulaire maximale, d est la distance maximale possible pour
le déplacement rectiligne. L. 130
Structure du patron de conception Prozy 152

Classes de bases abstraites et communes aux autres paquetages152

Classes de bases abstraites et communes aux autres paquetages153

Classes de la couche NanOS 154
Diagramme de classes du RobotAgent 155
Diagramme de classes du EnvAgent 156
Classes de la couche application. 156

Séquence d’initialisation d’une application client 158

Figure V.2

Figure V.3

Figure VI.1

Figure VI.2

Figure VI.3

Figure V1.4

Figure VI.5

Figure VI.6

XX
Diagramme de séquence d’une requéte de déplacement de robot159

Diagramme de séquence d’une requéte de déplacement de

robot (mise a jour) 160

Apercu global des signaux de contréle du DAC par le eZd-

Apercu global des signaux de réception de données IR avec

unseuilde 56 octets 163
Zoom sur la fin de réception d’une trame IR 164
Zoom sur Varrivée du bit EOF et sur le CRC 165

Effet de la transmission de données IR avec un seuil de 48

octets sur le PiezoScan 166

Effet de la transmission de données IR avec un seuil de 8

octets sur le PiezoScan 167

Tableau 2.1

Tableau 2.2

Tableau 2.3

Tableau 2.4

Tableau 2.5

Tableau 2.6

Tableau 2.7

Tableau 3.1

Tableau 3.2

Tableau 3.3

Tableau 3.4

Tableau 3.5

Tableau 4.1

XX1

LISTE DES TABLEAUX

Liste des responsabilités du systeme logiciel de la plate-forme

du projet NanoWalker 16
Comparaison entre une architecture monolithique et distribuée 18
Caractéristiques générales des requétes 25
Patrons de conception utilisés dans le design de 'architecture 28
Evolution d’une requéte a travers les modules logiciels . . . 32
Description de la librairienSys 37

Séquence de bits & appliquer aux électrodes des pattes pour

obtenir un mouvement rectiligne 51
Intervalle des valeurs selon la représentation point fixe utili-

sée, a) non signé b) signée L. 62
Précision résultante des opérations a virgule fixe 64
Signaux de contrdle du circuit STM 77

Description des taches du DSP nécessaires au controle du STM 78
Parameétres nécessaires au balayage du piézo

Résultats d’analyse des profils d’une rangée de la FPG . . . 113

xxil

LISTE DES ANNEXES

ANNEXE 1 LISTE DES ETUDIANTS SUPERVISES 139

ANNEXE II LISTE DES PUBLICATIONS 143

ANNEXE III DESCRIPTION DES ELEMENTS DE L’ARCHITECTURE144

IILT Drivers o i oo 144
III.2 Managers 146
I3 Agents 149
II.4 NanOSo 150

ANNEXE IV DIAGRAMMES DE CLASSES

ANNEXE V DIAGRAMMES DE SEQUENCES

ANNEXE VI OBSERVATIONS A I’ANALYSEUR LOGIQUE 161

Xx111

LISTE DES NOTATIONS ET DES SYMBOLES

ADC Convertisseur analogique-numérique (Analog-to-Digital converter)
AFM Microscope a force atomique (Atomic Force Microscope)
API Interface de programmation d’application (Application Program-

ming Interface)
CPLD Complex Programmable Logic Device
CRC Cyclic Redundancy Check

DAC Convertisseur numérique-analogique (Digital-to-Analog converter)
DC Courant continu (Direct current)

DSP Processeur de signal numérique (Digital Signal Processor)

FIB Faisceau d’ions focalisé (Focused Ion Beam)

FIFO File (First In, First Out)

FIR Fast-Speed Infrared

GPIB General Purpose Interface Bus (IEEE-488)
GPIO General Purpose Input/Output

HOPG Highly Oriented Pyrolytic Graphite

IR Infrarouge

IP Internet Protocol

IrDA Infrared Data Association

IRQ Interruption Request

ISA Industry Standard Architecture

ISR Sous-routine d’interruption (interrupt service routine)

LED Light emitting diode (DEL en francais)
LSB Bit de poids faible (Least significant bit)
MIT Massachusetts Institute of Technology
MSB Bit de poids fort (Most significant bit)

NI Compagnie National Instruments

NwW
010

OS

PID
PMMA
PLC
PSD
RAM
RPM
SCI

SEM
SPM
STM
TCP
UDP

Xx1v

NanoWalker

Orienté objet (Object-oriented)

Systeme d’exploitation (Operating System)

Controleur proportionnel, dérivé et intégral

Poly(méthacrylate de méthyle)

Programmable Logic Controller

Position Sensing Device

Mémoire vive (Random Access Memory)

Rotations par minute

Interface de communication sérielle (Serial Communication Inter-
face)

Microscope a balayage électronique (Scanning Electron Microscope)
Microscope-sonde & balayage (Scanning Probe Microscopy)
Microscope & effet tunnel (Scanning Tunneling Microscope)
Transmission Control Protocol

User Datagram Protocol

INTRODUCTION

Les nanotechnologies ont comme objectif I’étude et la manipulation de l'infiniment
petit. Molécule par molécule ou atome par atome, elles visent & agencer la matiere
afin de batir des structures aux propriétés jusqu’ici inatteignables. Des matériaux
de construction 50 fois plus résistants que l’acier et des puces électroniques plus
petites et plus rapides ne sont qu’un apercu des prouesses rendues possibles avec

I'’émergence des nanotechnologies.[46]

Cependant, cette science demeure bien jeune, elle est encore principalement confi-
née aux centres de recherches universitaires et des grandes entreprises ceuvrant
en haute-technologie. Ces centres se font compétition afin d’étre les premiers &
conquérir ce nouveau domaine ou chaque découverte et chaque réalisation repousse

les limites du savoir.

La nanorobotique n’a pas pour objectif de créer des robots aux dimensions nano-
métriques, la science moderne n’en est pas encore capable. Elle cherche plutét a
appliquer les principes de la robotique au controle des atomes et molécules. Autre-
ment dit, la nanorobotique est I’application de la robotique aux nanotechnologies,

et non 'application des nanotechnologies a la robotique.

Le projet NanoWalker a initialement vu le jour au Biolnstrumentation Laboratory
du Massachusetts Institute of Technology (MIT) sous la direction des professeurs
Ian Hunter et Sylvain Martel. Le NanoRunner, présenté & la figure 1, est une
de leur réalisation ayant mené au NanoWalker. Le 6 mai 2002, le Laboratoire de
NanoRobotique de I’Ecole Polytechnique de Montréal, sous la direction de Sylvain
Martel, accueille ses premiers étudiants aux cycles supérieurs. Sans chaise et sans

ordinateur, cinq ou six étudiants gradués et une poignée de stagiaires s’affairent au

Figure 1 NanoRunner : I'ancétre du NanoWalker

cours de I’été a batir le laboratoire qui doit maintenant poursuivre le projet et en

entamer des nouveaux. (i.e. MR-Sub[40], WalkingDie[5])

Toujours en collaboration avec le MIT, le projet NanoWalker vise la mise sur pieds
d’une flotte de robots miniatures, autonomes et sans fil capables d’effectuer des
opérations aux niveaux atomique et moléculaire. Il s’agit d’une approche brisant
avec la tradition établie voulant que I’échantillon manipulé soit promené d’appareils
en appareils a I'instar d’une chaine de montage automobile jusqu’a ce que toutes les
opérations désirées soient complétées. Le déplacement de I’échantillon, souvent ma-
nuel, devient rapidement fastidieux et prompt a lerreur lorsqu’une longue séquence
d’opérations, requérant plusieurs appareils différents, est nécessaire. Ici, chaque ro-
bot constitue un instrument scientifique mobile qui peut se positionner au-dessus de
I’échantillon et y pratiquer des opérations. Avec une flotte d’une centaine de robots,
le traitement paralléle de plusieurs échantillons, et ce, sans intervention humaine,
est envisageable. Dans une telle nano-usine, le débit (throughput) se voit considéra-
blement augmenté. La vision a long terme du professeur Martel veut qu’a méme la
flotte de robots, on retrouve plusieurs types d’instruments scientifiques différents.
Les robots se relayeraient, les uns apres les autres, sur un méme échantillon jusqu’a

ce que ’ensemble des opérations soient complétées.

Figure 2 Modéle 3D du robot NanoWalker

L’existence d’une telle flotte de robots pourrait révolutionner plusieurs domaines
scientifiques actuels tels que la nanofabrication, la médecine, 1’étude des surfaces,
etc. La plate-forme NanoWalker se veut d’abord et avant tout un outil & la dispo-
sition de la communauté scientifique, ses applications viendront avec 'usage. Mais,

son développement reste encore a achever.

Chaque robot, nommé NanoWalker[43], est en fait un complexe circuit électronique
replié autour d’un squelette fait de Super Invar[17], un métal doté d’un coefficient
de dilatation thermique tres faible (0.630 x 10‘6@%@). Le cube ainsi formé mesure
approximativement 30mm d’arréte. (voir Figure 2) La version actuelle du Nano-
Walker est équipée d’un microscope & effet tunnel ou scanning tunneling microscope
(STM). Cette technologie, inventée par Binnig et Rohrer en 1981 au centre de re-
cherche IBM & Zurich[28], permet non seulement l'imagerie d'une surface avec une
résolution atomique, mais également la manipulation atomique. Un exemple célebre
fut publié en 1990 par Eigler et Schweizer[21] dans la revue scientifique Nature. On
y voit le logo de la compagnie ou ils travaillent assemblé un atome & la fois sur un

substrat de Nickel. (voir Figure 3)

Figure 3 Logo d’IBM formé d’atomes de Xenon assemblés sur du Nickel (110)

La mobilité du circuit flexible, baptisé Flez, est assurée par trois pattes piézoélec-
triques sur lesquels le squelette est monté. En faisant littéralement vibrer ses pattes,
le NanoWalker est capable de se mouvoir avec une précision de pas sous le micro-
metre. Le NanoWalker évolue sur un plancher spécial appelé Powerfloor d’ou il
tire son alimentation électrique; les batteries conventionnelles capables de fournir
les 15 & 25W nécessaires au robot étant trop grosses pour les lui fixer. Le champ
d’action des NanoWalkers est donc limité a ce plancher de 0,8m x 0, 8m sur lequel
sont intégrés plusieurs porte-échantillons circulaires, typiquement au nombre d’un
par robot ou plus. Ceux-ci servent a recevoir les échantillons sur lesquels les robots

travaillent. Un prototype du Powerfloor est présenté & la figure 4.

Cent robots dissipant de 15 & 251W chacun nécessite un environnement controlé.
Le rayonnement seul n’est pas assez efficace pour maintenir la température d’opé-
ration des robots entre 0 et +70°C. En dehors de cet intervalle, les composants
électroniques du robot sont sujets aux défaillances. Le STM monté sur les robot
étant tres sensible aux vibrations, il est impensable de les refroidir en leur fixant
un ventilateur comme on le fait pour les microprocesseurs d’ordinateurs. L’ap-
proche préconisée lors de ’été 2002 est donc de refroidir ’environnement méme des
robots. Une chambre de refroidissement[53] refroidit une atmosphere d’hélium &

l'aide d’azote liquide afin d’assurer la survie des robots. Cette chambre, fabriquée

Figure 4 Prototype du Powerfloor avec ses porte-échantillons

par la compagnie montréalaise Cryotronix, permet d’atteindre des températures

avoisinants les —100°C.

Bien qu’ils soient sans fil, les difficultés de miniaturisation limitent les fonctionnali-
tés pouvant étre prises en charge par les robots mémes. Conséquemment, le contrdle
et la coordination de la flotte sont relégués a un systeme externe communiquant

avec les robots grace a un lien infrarouge bidirectionnel & 4Mbps.

L’objectif du présent mémoire est la conception de 'infrastructure informatique du
systeme de contrdle permettant le positionnement atomique des robots. Bien que
le premier robot NanoWalker ne soit pas encore opérationnel et que ses spécifica-
tions continuent d’évoluer, le développement de la plate-forme doit progresser en

parallele.

L’héritage requ du MIT en mai 2002 ne présente aucune ébauche de systéme logiciel.
On n’y retrouve que quelques tests fonctionnels de certains composants du robot

sans pouvoir parler d’intégration ou de vue d’ensemble. C’est précisément ce que

cette maitrise cherche & corriger.

Le premier jalon a atteindre pour le projet NanoWalker est de se positionner de
facon répétable au-dessus d’un atome unique. C’est I'objectif qui motive chaque dé-
cision et qui indique la direction générale du projet. Pour y arriver, plusieurs aspects
sont & aborder et la décomposition du présent travail est comme suit. Le chapitre
premier présente le projet NanoWalker dans son ensemble, les différents systémes
sont expliqués afin d’aider le lecteur novice au projet & bien saisir le contexte in-
formatique et les enjeux. Le chapitre second élabore 'infrastructure informatique
de la plate-forme de support. Une architecture client-serveur, qui n’est pas sans
rappeler I’architecture CORBA[16], est développée. Le présent mémoire élabore les
fondements de l'architecture en se basant sur une étude des caractéristiques des

robots et des taches qu’ils auront & effectuer.

En troisieme partie, le développement du microscope & effet tunnel et de son
controle est traité. Une étude des STM commerciaux permet de développer les
algorithmes & embarquer sur le robot pour procéder & un scan adéqua‘t. Puisque
la transmission des données repose sur la fiabilité du lien infrarouge, celui-ci est

également abordé.

Finalement, le projet de la «grille atomique» ainsi que les articles qu’il a engen-
drés est présenté. L’analyse des méthodes actuelles de positionnement de précision,
comme l'interférométrie au laser, nous porte a développer une nouvelle approche.
Ce chapitre dépose les bases de ce nouveau systéme de positionnement en vu d’at-

teindre un positionnement atomique répétable.

La méthodologie est similaire pour l’ensemble des projets et découle directement
du principal handicap affligeant le projet NanoWalker & son arrivée & Montréal : de

par la nouveauté du projet et du Laboratoire, personne ne connaissait réellement

I’étendue des choses a faire, ni la technologie pour y arriver. Lorsqu’on ne connait
pas une technologie, il est quasi-impossible de prévoir comment 'utiliser sciemment
pour solutionner les problemes rencontrés. Il est donc nécessaire de prototyper avec
deux objectifs en téte : premiérement, maitriser la technologie disponible, mais plus

important encore, comprendre le probleme auquel on est confronté.[20, 60, 51, 3]

Ces prototypes ne sont pas sensés faire parties du systéme final. Ils n’agissent qu’a
titre de guides, une étape de design suit donc celle de prototypage. Le développe-
ment proprement dit (le code lui-méme) vient & la toute fin. Cependant, comme
dans tout projet évolutif, les requis ne sont pas immuables et le processus de dé-
veloppement logiciel est itératif plutot que linéaire pour permettre une révision
constante des modules afin d’incorporer les derniers requis et de modifier I’archi-

tecture pour refléter la meilleure compréhension du systeme global.

La programmation devrait normalement étre effectuée par des étudiants stagiaires
ou en projet de fin d’études (PFE). Mais, lorsqu’on parle d’ajout de personnel, on
doit également parler de supervision. Ainsi, une partie non négligeable du temps
de cette maitrise fut passée & assurer la supervision des divers étudiants amenés 3

mettre la main & la pate pour faire avancer le projet. (voir annexe I)

Plusieurs projets de construction de STM «maisons» existent sur Internet, le plus
sérieux étant probablement celui de Jiirgen Miiller débuté en 1999[33]. Aucun de
ces projets personnels ne tente cependant d’intégrer un STM & une unité mobile et

sans fil comme le fait le NanoWalker.

L’institut de microtechnique de I’'Université de Neuchatel en Suisse, en collaboration
avec la NASA, geére un projet qui s’inscrit dans la méme lignée que le NanoWalker.
Son but est I'implémentation d’un microscope & force atomique (AFM) sur le robot

Phoenix Lander prévu pour étre envoyé sur Mars en 2007[26, 27].

CHAPITRE 1

SYSTEMES DU PROJET NANOWALKER

Le projet NanoWalker fait intervenir un ensemble de systémes, tant dans le do-
maine de 'informatique que de l'électronique, de la physique et de la mécanique.
L’interaction entre eux doit étre précise et efficace. Le présent chapitre a pour but
de faire un survol des différents composants du projet NanoWalker et d’expliquer

les liens qu’ils ont avec I'informatique.

1.1 Le robot NanoWalker

Le circuit Flex de la figure 1.1 posséde un total de 12 couches et plus de 300 com-
posants. Dire qu'il est trés dense est une litote. A son centre se trouve un DSP de la
compagnie Texas Instruments qui lui sert de cerveau. Ce DSP, un TMS320C25-50,
roule & une fréquence de 48M H 2. Sa responsabilité est le controle de tous les sys-
temes électroniques du circuit. Le choix d’un DSP 16-bits plutét qu'un de 32 bits
vient du MIT. Celui-ci s’explique par les difficultés de routage supplémentaires que
présenterait un bus de données 32-bits et par le fait qu'une version en dé (die) est
disponible pour le TMS320C25-50; c’est-a-dire que seul le circuit électronique, sans
son boitier, est apposé sur le Flez. Des microfils assurent la connexion des plots vers
les traces du circuit imprimé. Cette approche permet une économie d’espace si im-
portante pour la miniaturisation. Un CPLD de la compagnie Xilinx (XC95144XL)
assiste le DSP et agit & titre de moelle épiniére en lui procurant des raccourcis vers
diverses fonctions telles que 1’adressage des composantes, la communication sérielle

I?C avec les capteurs de température, etc.

(a) Vue du dessus (b) Vue du dessous

Figure 1.1 Circuit Flex du NanoWalker

La présente version du robot NanoWalker est équipée d’un microscope & effet tunnel
(STM) dont les détails de fonctionnement sont donnés au chapitre 3. Le contrdle
de ce microscope passe par I'interface avec un convertisseur analogique-numérique
et un convertisseur numérique-analogique. (un ADC976A de la compagnie Analog

Devices et un DAC7644 de la compagnie Burr-Brown respectivement)

Trois piézos font office de pattes et permettent au robot de se mouvoir. Une boule
d’acier est fixée au bout de chaque patte et crée le contact électrique avec le Power-
floor. Les bandes du Powerfloor (voir Figure 4 de l'introduction) sont alternative-
ment alimentées & une tension de 0V et 12V pour fournir la puissance électrique
nécessaire au robot. Une bande non conductrice est insérée entre chacune d’elle
afin d’éviter tout court-circuit. Le design mécanique du Powerfloor est tel qu'il est
impossible pour une méme patte de toucher simultanément deux bandes de poten-
tiels différents. De plus, le triangle que forme les pattes garantit au robot d’avoir
en tout temps au moins une patte sur I'alimentation positive et une patte sur le
neutre. Un circuit de redressement permet d’inverser les potentiels appliqués aux

pattes sans causer de probléme.

10

Figure 1.2 Position des convertisseurs DC-DC & Vintérieur du NW

En comptant le piézo du STM, un total de quatre tubes piézoélectriques sont ins-
tallés sur le NanoWalker. Leur déformation mécanique est due a I’application de
tensions électriques élevées sur leur électrodes. Pour atteindre ces niveaux de ten-
sions, trois convertisseurs DC-DC sont placés au centre du squelette, & I'intérieur
méme du cube formé par le circuit Flex replié. (voir Figure 1.2) Une plaque de
refroidissement (heat-sink) en cuivre est déposée sur les trois convertisseurs et un
«manteau» de cuivre vient recouvrir la totalité du circuit pour tenter de garder la
température du robot entre 0 et +70°C. Trois senseurs de température (des LM75
de National Semiconductors) sont fixés au circuit pour surveiller I’évolution de la
température : un sur la face intérieure pres des DC-DC, les deux autres sur la face

extérieure, dont un sous le régulateur 5V.

Un controéleur infrarouge TIR2000 de Texas Instruments, couplé & un émetteur-
récepteur combiné (transceiver) HSDL-3600 de Agilent (en remplacement du HSDL-
1100) regoit & 4Mbits semi-duplex les ordres du systéme de contréle et transmet
les réponses du NanoWalker. Le format physique des messages suit le protocole

Fast-InfraRed (FIR) de la norme IrDA 1.1[64].

Le robot ne connait pas sa propre position dans le référentiel du Powerfloor. Son

11

positionnement repose sur deux LEDs infrarouges situées sur le dessus du cube. Ces
LEDs, des LNA2WO01L (LN57) de Panasonic en remplacement du modele HSDL-
4420 de Agilent, émettent une lumieére & une longueur d’onde de 950nm. Celle-ci
est recueillie par un capteur de la chambre. En faisant clignoter alternativement les
LEDs a une certaine fréquence, la position du centre du robot et son orientation

peuvent étre déterminées.

La programmation du DSP est faite en langage C puisqu’un compilateur est dispo-
nible directement de la compagnie TI. Quelques tests fonctionnels ont été réalisés
par le MIT, mais la plupart du code est & refaire car celui-ci n’est pas concu avec
une optique d’intégration des modules du robot. Le CPLD, quant a lui, est pro-
grammé en VHDL. Il assiste le DSP en contrélant I'accés au divers périphériques,
dont les deux mémoires présentes sur le circuit : une mémoire Flash non volatile
de 2Mbits qui contient le programme du NanoWalker et une SRAM volatile de 1
Mbit (64k x 16bits) ou sont stockées les données de communication IR et celles
provenant du STM en plus des données temporaires nécessaires & ’exécution du
programme. Le DSP compléte la mémoire totale disponible avec une RAM interne
de 544 mots de 16 bits. Plusieurs intervenants, tant au MIT qu’a Polytechnique ont
travaillé sur le code du CPLD. Nommons notamment Albert Nsamirizi, Felix Pou-
lin, Marc-André Prud’Homme et Philippe Ouimet[48], & qui I’on doit la majeure
partie du travail d’intégration du code du CPLD.

1.2 Environnement

L’environnement du NanoWalker consiste en une chambre de refroidissement (voir
Figure 1.3) ayant pour principal objectif de refroidir son atmosphére d’hélium afin
d’augmenter ’évacuation de la chaleur des robots. L’écoulement du gaz y est la-

minaire de gauche a droite et sa vitesse controlée par un ventilateur tournant &

12

Figure 1.3 Modele de la chambre de refroidissement

une vitesse de 0 & 1200RPM. Un PLC (modeéle T1I00MD1616+ de la compagnie
Triangle Research International) implémente un PID régissant louverture de la
valve d’azote servant & refroidir 'hélium de la chambre. Deux thermocouples si-
tués a 'entrée et a la sortie d’air fournissent les mesures utilisées par le contrdleur
pour calculer la rétroaction a appliquer. Des tests réalisés par Haritz Macicior[38],
étudiant au laboratoire, ont cependant démontrés que ce PID est plutét mal congu
et qu’il y aurait avantage a le transférer a 'extérieur du PLC dans le systéme de
controle. De cette maniére, plusieurs autres thermocouples placés ca et 1a dans la
chambre pourraient étre utilisés par le contréleur. Le PLC est donc relégué & un
role passif d’exécution des ordres qui lui sont communiqués & travers un lien série

RS232 par le systeme de controle.

Du matériel d’acquisition de données fabriqué par la compagnie National Instru-
ments est apposé dans la chambre. Ainsi, une carte PCI-6036E communique avec un
chassis SCXI-1000 pour recueillir les données des modules qu’il contient. La carte
SCXI-1112 possede huit canaux auxquels sont branchés des thermocouples (type T)
distribués dans la chambre. (leur emplacement final n’est pas encore déterminé) La

carte SCXI-1530, quant & elle, permet 'acquisition de données de vibrations pro-

13

Figure 1.4 Table optique sur laquelle Figure 1.5 Position Sensing Device
repose la chambre de refroidissement PSM-10 de la compagnie On-Trak

venant de deux accélérometres. Ces données sont importantes car de trop grandes
vibrations sont extrémement nuisibles au fonctionnement du STM. Visant a réduire
au maximum les perturbations mécaniques, la chambre de refroidissement est dé-
posée sur une table optique de la compagnie TMC. (voir figure 1.4) Cette table,
d’une masse approximative de 513kg, «flotte» sur un coussin d’air et amortit les

vibrations mécaniques de hautes fréquences (> 100H z)[62].

Comme deuxieme dispositif anti-vibrations, le Powerfloor lui-méme est déposé sur
un systeme de ressorts. Ancré & ce support se trouve une charpente de métal 3
laquelle est fixée un Position Sensing Device (PSD) (voir Figure 1.5) chargé de
capter la lumiere infrarouge émise par les LEDs de positionnement des NanoWalkers
ainsi qu’un transmetteur infrarouge pour la communication. Il est primordial que
cette structure soit aussi rigide que possible afin d’atténuer au maximum les facteurs

d’erreurs sur I'acquisition de la position.

Sous l'effet d'un faisceau lumineux, la photodiode du PSD compléte un circuit de
sorte que, une fois amplifiées, deux tensions fonctions du point d’incidence en XY
sur la matrice du PSD sont émises en sortie. Cette matrice de 10mm x 10mm
n’est pas assez grande pour couvrir toute la surface du Powerfloor, une lentille

Componon-S 2,8/50 (en remplacement d’une Apo Componon 4/45) de Schnei-

14

der Optics y est fixée afin d’augmenter son champ de vision. Un filtre optique
HQO950/60m de la compagnie Zeiss complete le montage. Quatre PSD sont né-
cessaires pour couvrir la totalité de la superficie. Guido Baumann[g], Guillaume
Langlois[35] et Eric Aboussouan(l] se sont affairés & obtenir la meilleure précision
possible avec un systeme composé d’un seul PSD. En avril 2004, Eric Aboussouan
indique qu’une précision de £75um est atteignable avec une bonne répétabilité des

mesures.

L’intérieur de la chambre est isolé du monde extérieur, quatre orifices (cable ports)
sont prévus pour passer les cables d’alimentation et de données : deux sur le dessus
et deux a I'arriere. Pour permettre une communication IR efficace, la longueur des
cables doit étre limitée &, au plus, un metre. Un ordinateur de contrdle doit donc

étre installé sur le dessus de la chambre, prés du PSD et du transmetteur IR.

Le bloc d’alimentation électrique capable de fournir les quelques deux cents amperes
nécessaires au fonctionnement continue d’une flotte de cent NanoWalkers est bran-
ché a un ordinateur par une interface GPIB. Ceci permet de surveiller la puissance
totale des robots et d’implémenter un mécanisme d’arrét d’urgence automatique si

jamais un probleme survenait.

L’architecture logicielle a batir doit tenir compte de tous ces systemes hétérogénes

dans sa conception.

CHAPITRE 2

PLATE-FORME LOGICIELLE - ARCHITECTURE

L’informatique dans le projet NanoWalker peut étre segmenté en deux aspects dis-
tincts : le logiciel embarqué sur le DSP du robot et le logiciel de contrdle de la
plate-forme de support. Ce dernier interagit de fagon directe et indirecte avec les
NanoWalkers. Chaque systeme de la plate-forme fait intervenir des composantes
matérielles ainsi que des composantes logicielles qui régissent leur utilisation. La
figure 2.1 illustre d’une fagon schématique les trois mécanismes d’interactions ac-
tuels avec les robots, soient le systéeme de communication infrarouge, le systéme
de positionnement global (PSD) et les sous-systémes de la chambre de refroidisse-
ment. Pris individuellement, chaque mécanisme posseéde une raison d’étre qui lui
est propre et ne dépend en aucune fagon des autres composants du systeéme global.
Chacun posséde un pilote (driver) qui contréle 1’acces au matériel selon une ap-
proche de type «boite-noires, c’est-a-dire que les détails internes de fonctionnement
sont dissimulés a l'utilisateur. L’intégration, la synchronisation et I'utilisation des
différents pilotes pour contréler sciemment les robots sont régies par un systéme

supérieur et spécifique au projet NanoWalker.

Ce systeme logiciel de haut niveau se voit imposer les diverses responsabilités pré-

" aa [6¥ oo I Platform
; _'[H_fr_dsw?re Jl‘_’{DLer!< > ContrOI

\“
Robots NI | software

\’f CHAMBER l‘_’[Driver
\

| Hardware |

Figure 2.1 Représentation schématique du systeéme logiciel

16

Tableau 2.1 Liste des responsabilités du systeme logiciel de la plate-forme du projet

NanoWalker

Responsabilités

— Gestion de la communication entre les robots et la plate-forme

— Surveillance de I'environnement de travail des robots (température, vibra-
tion, alimentation électrique, etc.)

— Coordination des déplacements des robots (éviter les collisions, etc.)

— Interprétation des communications provenant du robot (données STM, état,
température, etc.)

— Maintient des données de calibration spécifiques a chaque robot

— Mémorisation de la position des zones de travail sur le Powerfloor

— Fournir une interface simple pour le développement d’applications spéci-
fiques faisant usage de la plate-forme NanoWalker

— Gestion des requétes des applications clients.

sentées dans le tableau 2.1. Sans étre exhaustif, les principales sont la gestion

de

la communication, la coordination des déplacements et la régularisation de l’en-

vironnement. Pour accomplir chacune de ces responsabilités, le logiciel doit faire

intervenir un ou plusieurs des composants de bas niveaux. L’architecture déve-

loppée pour cette plate-forme doit étre souple afin de permettre une adaptation

rapide a tout changement de configuration ou de technologie qui pourrait survenir

au cours de ’évolution du projet. L’objectif a long terme de cette architecture est

de permettre le fonctionnement ininterrompu des NanoWalkers pendant de longues

périodes, et ce, en nécessitant un minimum d’intervention humaine.

2.1 Evaluation des alternatives

Deux approches sont envisageables d’un point de vue informatique pour implé-

menter le controle des systemes de la plate-forme. Les deux options étudiées sont

le développement d’une architecture logicielle distribuée dans laquelle le contréle

17

des systemes est fragmenté en plusieurs entités logicielles distinctes communiquant
entre elles via divers mécanismes de communication, l'autre est une architecture

monolithique ou tout le contréle est effectué par une machine-maitresse unique.

Ces deux options présentent des avantages et des désavantages qui leur sont propres.
Le tableau 2.2 en fait un court résumé. Le principal probléme avec 1’approche
monolithique est que tout le systeme repose sur l'intégrité d’une seule machine.
Dans le cas d’un systeme critique comme celui de la présente plate-forme, une panne
incontrolée peut avoir des répercussions séveres, tant sur le point de vue financier
que sur l'intégrité physique du systéme lui-méme. Aucun systéme informatique
ne peut étre totalement a 1’abri des pannes puisque les sources potentielles sont
multiples, allant d’une erreur de conception jusqu’a un simple bris matériel. Avec
une architecture monolithique ol la totalité du systéme est basée sur un méme
processeur, 'impact d’une panne se fait d’autant plus ressentir car celle-ci peut

engendrer l'effondrement complet du systéme.

De plus, puisque le systeme logiciel & concevoir se veut lui-méme une plate-forme de
développement pour des applications futures, il n’existe aucun moyen de connaitre
a priori la puissance de calcul nécessaire pour ces applications. Dans une approche
monolithique, tous les programmes se partagent la méme puissance de calcul fi-
nie. L’arrivée d’une nouvelle tache ajoute forcément des délais dans I'exécution des
programmes déja présents. Une surcharge pourrait paralyser le systéme et compro-

mettre la survie méme des robots.

L’approche monolithique est donc éliminée au profit de ’approche distribuée ou le
systéme est composé d’un ensemble plus ou moins imposant de processus logiciels
qu’on appellera «nceuds». Chaque nceud réside possiblement sur une machine dis-
tincte et échange de I'information par divers mécanismes de communications, par

exemple réseaux tels que les protocoles UDP et TCP/IP. Cette approche présente

18

Tableau 2.2 Comparaison entre une architecture monolithique et distribuée

Architecture monolithique | Architecture distribuée
Avantages
- Simplicité d’implantation — Charge de traitement répartie a
- Rapidité des communications travers plusieurs nceuds
inter-modules. — Modularité facilitée

— Fiabilité accrue en cas de panne
- Expansion future facilitée

Désavantages
— Machine-maitresse devient un | — Latence accrue par les méca-
goulot d’étranglement nismes de communication
— Si la machine-maitresse tombe | — Evénements totalement asyn-
en panne, tout le systéme est chrones, synchronisation diffi-
compromis cile entre les modules
— Difficulté de mise & jour et d’ex- | — Complexité de design accrue

pansion

I'avantage indéniable de permettre I’ajout de nouveaux modules logiciels simple-
ment en ajoutant des nouveaux nceuds a 'architecture déja en place. La puissance
de calcul associée a ces nouveaux noeuds est indépendante des noeuds existants et
peut étre adaptée selon les besoins particuliers du module ajouté. L’envers de la
médaille est bien str la complexité accrue du systéme nécessaire pour gérer les
communications et interactions entre les noeuds. Le temps requis pour former et
transmettre un message vers un nceud distant est également plus long que celui

requis pour un simple appel de fonction dans un méme espace mémoire.

2.2 Hiérarchisation des niveaux logiciels

A partir des responsabilités définies dans le tableau 2.1 et du désir de modularité

du systeme final, six niveaux logiciels sont identifiés. Chacun d’eux écope d’un

19

certain nombre de responsabilités. A mesure que l'on progresse a travers les couches,
le niveau d’abstraction augmente. De plus, chaque niveau connait les détails de
I'interface de programmation (API) du niveau inférieur immédiat, mais pas celui

du niveau supérieur. Les six niveaux sont comme suit :

1. Hardware : Le niveau matériel (ou hardware) regroupe toutes les composantes

physiques du systeme. Il sert a réaliser le transfert et ’acquisition des données.

Ex. : Un capteur mesure un phénomeéne physique sous la forme d’'une tension.

2. Driver : Le niveau pilote (ou driver) contréle I’accés au niveau hardware en
fonction des ordres recus du niveau supérieur. Il ne connait d’aucune fagon
le but du matériel et ne peut faire aucun traitement ou interprétation sur les

valeurs lues.

Ex. : Un driver est I’ensemble des fonctions permettant de lire les valeurs

de tension recueillies par le capteur matériel.

3. Manager : Le niveau manager traduit en information intelligible les valeurs
recueillies par les fonctions des drivers. Le traitement fait dans un manager
particulier se limite a un conditionnement partiel des valeurs dans le but d’en
fournir une interprétation cohérente au niveau supérieur. Il ne peut jamais
faire intervenir de I'information qui reléve d’un autre manager ou d’un niveau
supérieur. Un manager ne connait que le driver qu’il utilise et ne peut en
aucune circonstance présumer du traitement qui sera fait aux niveaux supé-
rieurs.

Ex. : Un manager utilise un driver pour recueillir la tension du capteur puis
il la transforme dans les unités correspondant au phénomene physique me-

suré, par exemple, des degrés Celsius.

20

4. Agent : Le niveau agent sert a fournir une interface vers les différents aspects
conceptuels du systeme physique. Autrement dit, un agent est responsable
d’un aspect particulier du systeme global et fourni I'interface nécessaire pour
agir sur celui-ci. Un agent coordonne 'activité d’un ou plusieurs managers
afin d’exécuter le plus efficacement possible les commandes qui lui sont trans-
férées par le niveau supérieur.

Ex. : Un agent recoit la demande d’obtenir la valeur d’un parameétre phy-
sique. L’agent demande au manager correspondant la valeur numérique du
phénomeéne physique mesuré par le capteur associé. Il majore ensuite cette
valeur en fonction de variables extérieures telles que la pression, la tempéra-
ture, la configuration actuelle du systeme, etc. et retourne la valeur corrigée

au requérant.

5. NanOS : Le niveau Nan0OS sert a contrdler l'interaction entre les différents
agents ainsi qu’a fournir une interface simple et unique pour les applications
clients désirant utiliser la plate-forme NanoWalker. On y retrouve également
des modules de surveillance (monitoring) faisant intervenir de I'information
provenant des différents agents. Son but est d’assurer 'intégrité du systéme
et d’agir en cas de probleme majeur en plus de gérer I'exécution des requétes
des applications clients.

Ex. : Un module surveille la valeur du paramétre physique mesuré et lors
que celle-ci dépasse une certaine valeur, une alarme est activée et propagée &

travers I’ensemble du systeme.

6. Application : Le niveau application englobe tout logiciel client qui cherche
a utiliser la plate-forme et les fonctionnalités qu’elle offre afin d’effectuer un
travail spécifique & un domaine d’application donné. Celle-ci ne contrdle pas

directement les robots mais envoie des requétes au systéme qui les traitera de

21

fagon transparente et retournera le résultat une fois celui-ci obtenu.

Ex. : Faire le logo d’'IBM un atome a la fois.

Les données recueillies par les différents capteurs de la plate-forme traversent suc-
cessivement les niveaux ol elles sont traitées et transformées en données utilisables
par les couches subséquentes. Chacun des mécanismes d’intéraction de la figure
2.1 possede au minimum driver et un manager. Un agent utilise un ou plusieurs
managers pour arriver a fournir 'information nécessaire aux applications qui en

font la demande via des requétes envoyées au Nan0S.

2.3 Communication inter-niveaux

Dans cette architecture distribuée, les niveaux logiciels driver, manager et agent
sont appelés a travailler en étroite collaboration les uns avec les autres. Ces trois
niveaux sont solidaires et les éléments logiciels traitant d’'un méme aspect physique
peuvent étre implantés sur un méme nceud. Par contre, les niveaux agent, Nan0S
et application sont conceptuellement séparés par le fait qu’ils ont des responsa-
bilités beaucoup plus larges et font I'intégration de plusieurs modules des niveaux
inférieurs. Ils peuvent étre implantés dans des processus distincts s’exécutant pos-
siblement sur des machines séparées. Tout échange d’information entre ces niveaux
doit étre réalisé par envoi et réception de messages & travers un canal de commu-
nication quelconque. Le canal choisi pour les échanges entre les différents niveaux
«internes», c’est-a-dire les niveaux inférieurs au niveau application, est le ré-
seau Ethernet sous la forme d’échange de paquets TCP. Chaque message est un
paquet TCP[32] envoyé sur le réseau d’une source & une destination. Le choix du
protocole TCP plutét que UDP[50] repose sur plusieurs facteurs. TCP établit une
connexion permanente entre ’émetteur et le récepteur. Tant qu’elle reste active,

elle s’approprie un socket de fagon exclusive. Le protocole UDP, quant & lui, ne

22

0 1516 31
Source Port Destination Port
Sequence Number
Acknowledgement Number
0 1516 31
inati bata | g RERREN Window
Source Port Destination Port Offset | REserved |RICIS|S | ¥ |
Length Checksum Checksum Urgent pointer
. 0-
Data ... Options... Padding

Figure 2.2 Format d’un paquet UDP Figure 2.3 Format d’un paquet TCP

fonctionne pas en mode connecté, toutes les transmissions peuvent s’effectuer sur
un meéme socket. Mais contrairement a TCP, il n’offre pas de garantie de service,
c’est-a-dire qu’il n’existe aucun mécanisme a méme le protocole pour garantir la
livraison d’un paquet, ni la correspondance temporelle d’une série de paquets entre
son émission et sa livraison. Un paquet A envoyé avant un paquet B peut se retrou-
ver & la destination apres celui-ci, s’il se rend. Ce type de communication n’est donc
pas approprié pour l'envoi de longs messages a caractére temporel critique, mais il
trouve sa force dans la faible surcharge systéme (overhead) qu'’il ajoute lors de son
traitement. Ceci rend UDP beaucoup plus déterministe que TCP mais, & la base,
le réseau Ethernet demeure non déterministe. Certains auteurs, comme Kerkes[34],
propose des modifications aux protocoles TCP/IP et UDP pour rendre Ethernet
déterministe. Un survol des différents protocoles de communication temps-réel est

également fait par Hassen[4].

Une autre caractéristique intéressante du protocole UDP est la possibilité de faire
du broadcasting, c’est-a-dire qu’un méme message est envoyé & tous les processus
écoutant sur un socket particulier, chose impossible avec TCP. Une combinaison des
deux protocoles peut alors étre souhaitable dans certaines situations. Cependant,

TCP demeure le choix de la premiére implémentation.

Les applications clients qui se connectent & l'interface de services du Nan0S ne sont

23

0 34 78 15 16 31
Version | IHL | Type of service Total Length
Identification Flags | Fragmentation offset
Time to live Protocol Header Checksum

Source address

Destination address

Options (+ padding)

Data...

Figure 2.4 Format d’un paquet IP

pas forcément dans un lieu physique rapproché du reste de la plate-forme. Une
connection a travers le réseau Internet est méme envisageable, il est donc nécessaire
d’assurer un lien de qualité entre les deux applications logicielles. Lorsqu’un client
se connecte au systeme, un lien sécurisé TCP/IP est établi entre celui-ci et le serveur
de la plate-forme afin de protéger et d’assurer la livraison des paquets, et ce, méme
si une grande distance physique les sépare. Il serait, par exemple, envisageable qu’un
client & New York utilise une plate-forme NanoWalker située a Montréal & travers

une application utilisant I'Internet commercial comme médium de communication.

Lorsque de I'information nouvelle doit étre propagée vers les différents modules du
systeme informatique, deux mécanismes de bases sont disponibles et supportés a

différents niveaux. Il s’agit des mécanismes communément appelés push et pull[67].

Le mécanisme dit pull est le plus simple. Lorsqu’une application logicielle a besoin
d’une information particuliére, elle envoie une requéte au détenteur de cette infor-
mation. Ce dernier traite la requéte et renvoie sa réponse contenant I'information
désirée. On dit alors que I’application «tire» 'information vers elle. L’avantage de
cette technique est sa simplicité, tant au point de vue de sa compréhension que
des principes d’implantation. Par contre, elle présente le désavantage de nécessi-

ter plusieurs messages & chaque fois qu’une information est demandée. En effet,

24

une séquence de deux messages est nécessaire pour obtenir toute information (la
requéte et la réponse). Lorsqu’une application a besoin d’étre constamment tenue
au courant de la valeur d'un parametre, elle doit fait du polling, c’est-a-dire qu’elle
demande périodiquement la valeur de ce parameétre. Lorsque la valeur du parametre
étudié ne varie que trés rarement, une quantité impressionnante de messages peut
alors étre échangée inutilement, ce qui a pour effet d’engorger le réseau et de réduire

efficacité globale des communications.

Pour éviter ceci, on peut utiliser le mécanisme dit push qui consiste a ce que I'infor-
mation désirée par une application lui soit automatiquement transmise dés quun
changement pertinent se produit. L'application doit d’abord signaler au détenteur
de l'information son intérét envers celle-ci. Cette étape se nomme «inscription.
Par la suite, le détenteur de I'information a la responsabilité d’avertir tous ses ins-
crits lorsque 'information qu’il possede se voit modifiée. Cette facon de procéder
permet d’éviter les messages inutiles associés au polling, mais a le désavantage de
ne pas distinguer entre ’absence de messages due & une absence de variation de la
valeur observée et celle due & une panne empéchant les messages de mise & jour

d’étre livrés & leurs destinataires.

Une astuce consiste alors a combiner les deux mécanismes en utilisant le pull seule-
ment lorsqu’un long délai sans mise & jour survient. Ceci permet de s’assurer qu’au-
cune panne empéchant la livraison des mises & jour n’est survenue et que le systeme

fonctionne toujours adéquatement.

2.4 Gestion des requétes

Le terme «gestion des requétes» indique la fagcon dont les requétes arrivant & un

serveur d’information en provenance de ses différents clients sont traitées. Avant

Tableau 2.3 Caractéristiques générales des requétes

Caractéristiques

— Temps de traitement par requéte est inconnu a priori

Certaines requétes pourraient étre plus prioritaires que d’autres
Nombre de requétes simultanées inconnu mais proportionnel au
nombre de clients

Plusieurs requétes simultanées peuvent tenter d’accéder aux
meémes ressources

Un méme client peut faire plus qu’une requéte a la fois

i

|

d’étudier les différentes possibilités disponibles, il est utile d’établir quelques ca-
ractéristiques sur les requétes & traiter. Le tableau 2.3 présentent quelques carac-
téristiques des requétes que les applications pourront faire & la plate-forme. On
remarque qu'une stratégie multithread est nécessaire pour accommoder plusieurs
requétes simultanées dont on ne connait pas le temps d’exécution. Trois stratégies
bien documentées dans la littérature sont envisageables pour répondre aux besoins

spécifiques du systéme.

2.4.1 Thread par connexion

L’idée de base du mécanisme de traitement des requétes «thread par connexion»[54]
est que pour chaque client se connectant au serveur, un thread est créé. Toutes les
requétes provenant de ce client sont prises en charge par ce dernier. Le désavantage
principal est que si jamais une requéte particuliere se voit bloquée pour un temps
indéterminé, aucune autre requéte provenant du méme client ne pourra étre traitée
par le serveur, et ce, méme si les deux requétes ne sont pas interdépendantes. De
plus, dans un tel mécanisme, il est impossible d’implanter une priorité des requétes

provenant d’un méme client.

26

2.4.2 Thread par requétes

Dans le mécanisme «thread par requétes»[54], chaque requéte donne lieu & la nais-
sance d’un nouveau thread. L’avantage évident est que le probleme affligeant le
mécanisme «thread par connexion» est corrigé. Une requéte bloquée ne nuira pas
aux requétes futures d’'une méme application, sauf si elles tentent toutes les deux
d’accéder a la méme ressource. Par contre, selon le nombre de requétes simultanées
arrivant au serveur, celui-ci peut se retrouver avec un nombre de threads concurren-
tiels si grand que ses ressources disponibles se voient sérieusement diminuées & un
point tel qu’il n’est plus capable de répondre a la demande. Lorsque le nombre de
threads concurrentiels dans un systeme devient trop important, le temps de chan-
gement de contexte entre chacun d’entre eux devient un facteur important dans la
détérioration de la qualité du service. De plus, la création d’un thread induit un
délai dans le traitement de la requéte. Ce délai supplémentaire peut méme devenir

dominant pour des requétes dont le temps de traitement est trés court.

2.4.3 Threadpool

Le concept du threadpool[54] est qu'un nombre fini de threads est disponible pour
traiter I’ensemble des requétes provenant des clients connectés au serveur. Celles-ci
sont placées dans une queue & mesure qu’elle sont livrées au serveur. Quand un
threads termine ’exécution d’une requéte, il passe & la prochaine requéte d’impor-
tance dans la file, et ce, indépendamment du client ’ayant initiée. Puisque toutes
les requétes se retrouvent dans une méme queue, il est facile de modifier I’ordre
d’enfilage en fonction d’une valeur de priorité attribuée selon divers critéres tels
le type de message, le temps déja passé dans la file d’attente, etc. Ce mécanisme
possede les avantages des deux autres sans pour autant souffrir des mémes désa-

vantages. La difficulté se situe dans le choix du nombre de threads & inclure dans le

27

threadpool. Ce nombre peut cependant étre dynamiquement modifié en fonction du
nombre de clients connectés ou du volume de requétes recues pour mieux s’adapter
a la charge de travail actuel, faisant ainsi du threadpool le meilleur mécanisme pour

I’architecture distribuée de la plate-forme NanoWalker.

2.4.4 Patrons de conception

Pour faciliter la modularité du systéme, les divers éléments logiciels sont implantés
selon une approche orientée-objet. On cherche ainsi & découpler les couches du
systeme en créant des «boites noires» pour chaque élément et en définissant une
interface de communication entre ceux-ci. Procéder de la sorte favorise et facilite la
maintenance et la réutilisabilité des éléments logiciels. Les patrons de conception
fournissent des solutions de design renforgant ces concepts. Ils sont tout indiqué
pour le design d’un tel systéme complexe. Le tableau 2.4 résume ’ensemble des

patrons utilisés dans le design de ’architecture du systeéme de controle.

Le patron Fagade[25] présent entre les diverses applications et le NanOS fournit une
interface pour I’ensemble des applications cherchant & utiliser la plate-forme. Toutes
les applications étant & prime abord équivalentes et ’ensemble des fonctionnalités
de la plate-forme leur étant présentées étant le méme, une interface unique va
de soit. Toute I'implémentation technique de 'exécution de leurs requétes et du

controle des NanoWalkers leur est cachée, seul le résultat leur est transmis.

Une utilisation du patron Remote Prozy se retrouve également entre les applications
et le NanOS. Chaque application instancie un proxy vers le NanOS. Ce proxy sert
a masquer 'utilisation du réseau et les mécanismes de synchronisation nécessaires
pour gérer les requétes. De la méme fagon, le NanOS instancie un proxy vers cha-

cune des applications s’y étant connectée. On retrouve également des proxies entre

Tableau 2.4 Patrons de conception utilisés dans le design de ’architecture

28

Patrons

Raéle

Facade

Procure un point d’entrée unique vers un ensemble de
fonctionnalités prises en charge par des sous-systémes.
Facilite I'utilisation des sous-systémes par un tiers.

Remote Proxy

Fournit un figurant pour un objet particulier afin d’en
masquer les détails d’utilisation.

Observer

Définit une relation I-a-n entre divers objets permettant
a un sujet d’avertir tous ses observateurs d’un change-
ment survenu a son état.

Mediator

Définit un objet gérant I'interaction d’un ensemble d’ob-
jets entre eux. Fait la promotion d'un couplage faible
entre les objets en les empéchant de se faire référence
directement.

Command

Encapsule une requéte en un objet pour la transmettre
vers un autre objet capable de 'exécuter et effectuer des
opérations sur celle-ci.

Factory Method

Définit 'interface de création d’objets tout en laissant
aux classes dérivées le soin de choisir quelle classe doit
étre réellement instanciée.

Singleton

Assure qu’une classe n’a qu’une seule instance et fournit
un point d’acces global et unique vers celle-ci.

Wrapper Facade

Encapsule les fonctions et données fournies par un API
non orienté-objet & 'intérieur d’une classe plus concise,

robuste et portable respectant les principes de design
00.

Acceptor-Connector

Dissocie 'étape de connexion et d’initialisation d’une
application client & un serveur dans un systéme distri-
bué du traitement exécuté par les deux modules une fois
ceux-ci connectés.

Reactor Permet a une application de réagir aux événements gé-
nérés par I'arrivée de requétes de services effectuées par
un ou plusieurs clients.

Leader/Follower Modele d’architecture parallele ou plusieurs threads

prennent tour a tour un réle actif dans la détection et
I’exécution de requétes de service dans un systeéme basé
sur larrivée d’événements. Une fois le traitement ter-
miné, le thread actif cede la place au suivant.

Active Object

Dissocie I'exécution d’une méthode de son appel afin
d’améliorer le parallélisme et de simplifier la synchroni-
sation d’acces a des objets se trouvant dans leur propre
thread de control.

29

les niveaux NanOS et Agent de 'architecture. La localisation physique et logique
des modules est ainsi cachée et un appel & une fonctionnalité éloignée s’apparente
a un simple appel de fonction. Les proxies écopent également de la responsabilité
d’assurer la conversion des messages transmis entre les différents participants du
systeme en un langage commun si jamais il s’avérait qu’ils ne parlaient pas le méme

langage. Cette étape est communément appelée marshalling.

L’état des NanoWalkers physiques est amené a changer de fagon totalement asyn-
chrone et plusieurs modules sont intéressés & connaitre leur état ou une partie de
leur état. Plutot que désigner le polling comme maniére d’obtenir I'information dé-
sirée, on fait appel au patron Observer ou chaque NanoWalker logique posséde une
liste d’observateurs intéressés a obtenir de I'information sur leur état. Lorsque 1’état
de celui-ci se voit modifié, il se charge d’avertir ses observateurs de ce changement.
Ces derniers sont, par la suite, libres de prendre action s'’ils le jugent nécessaire.

C’est 'implémentation directe du mécanisme push discuté plus tot.

Chaque agent contréle un aspect complet du systéme, mais ne connait pas en
profondeur les autres aspects de la plate-forme dont il n’est pas responsable. La
tache de corréler I'information provenant de divers agents et de la propager vers
les autres agents qui pourraient en avoir besoin tombe sous la responsabilité d’un

médiateur. C’est le NanOS qui joue ce role.

Les applications effectuent des requétes & la plate-forme par ’entremise du NanOS.
Celles-ci sont ensuite transformées et propagées vers les agents capables d’y ré-
pondre. Ultimement, elles peuvent étre acheminées jusqu'aux NanoWalkers phy-
siques. Tout au long de cette chaine, la requéte subit des transformations afin de
s’adapter aux divers intervenants. L’utilisation d’un patron Command facilite cette

encapsulation des requétes et leur manipulation.

30

On sait d’ores et déja que différentes requétes sont possibles. Sans pour autant en
connaitre les détails d’implémentation, on peut prendre pour acquis que la facon
de les traiter différera considérablement. Pis encore, I’éventail de commandes exis-
tantes est amené a évoluer a mesure que les robots s’améliorent et que de nouvelles
générations différemment équipées font leur apparition. L’architecture logicielle doit
donc prévoir une technique pour permettre I’ajout de nouvelles commandes sans
pour autant avoir a adapter tout le fonctionnement des classes existantes. C’est le
but du patron Factory Method. 11 permet de définir une interface pour la création
d’objets dont on ne connait pas le type avant leur utilisation. Dans le cas présent,
a mesure que de nouvelles commandes sont supportées, une classe implémentant
leur traitement est ajoutée a l’architecture. Seul un objet créateur de commandes
doit étre modifié afin de créer les commandes spécifiques en fonction des demandes
des instances supérieures. Chaque commande a la responsabilité de créer les objets

nécessaires a son exécution.

Plusieurs entités du systeme sont uniques, tant dans leur réle que dans leurs pro-
priétés. Le patron Singleton s’assure que ces classes ne puissent étre instanciées
qu’une seule fois dans un méme processus logiciel et que chaque utilisation fasse
toujours appel au méme objet logique. On empéche ainsi le dédoublement de classes

vitales qui se feraient concurrence et rendraient ainsi le systéme instable.

Les fonctions de bas niveau, par exemple de synchronisation de processus et threads,
et les pilotes de périphériques sont habituellement implémentés dans un langage
structural comme le C ou méme 'assembleur. Ils sont aussi fortement liés au sys-
teme d’exploitation utilisé, au matériel et & la technologie qu’ils controlent. La
conséquence directe est qu’ils ne sont pas portables et parfois difficiles & utiliser. Le
patron Wrapper Facade encapsule un ensemble de fonctions et de données concep-
tuellement liées dans un environnement orienté-objet qui agit & titre d’interface

simple et portable. Il devient ainsi simple de modifier 'implémentation sans pour

31
autant modifier l'interface externe.

Dans un environnement distribué, I’établissement des connexions entre les modules
clients et les serveurs d’information ne doit pas étre couplé & leur mode de fonction-
nement. Le patron Acceptor-Connector sert a dissocier ces deux étapes. Le Nan0S
implémente un «accepteur» qui attend simplement que des applications clients
(possédant un «connecteur») le contactent. Par la suite, le patron Reactor réagit

a cet événement en créant un proxy de I’application client du coté serveur.

Le traitement des requétes se fait par un ensemble de threads réunis dans un thread-
pool. Chaque requéte reque d’'une application client est placée dans une file. Un
thread actif la retire et ’exécute. Une fois 'exécution terminée, il laisse & un autre
thread le soin de traiter la prochaine requéte. Ceci revient a implanter le patron
de conception Leader/Follower ou plusieurs threads joue 3 tour de rdle le réle de
meneur (celul qui exécute l'action) et de successeur (celui qui attend son tour).
Lorsque le meneur termine son travail, il cede la place au premier successeur et

reprend rang a la fin de la liste.

Le client et le serveur ne s’exécutent pas dans le méme espace mémoire, ni dans le
méme processus logiciel. L’appel d’'une méthode du proxy donne lieu & une requéte
envoyée sur le réseau et traitée par un thread du threadpool. Cette requéte devient
ainsi un «objet actifs selon I'implémentation du patron Active Object. Le client
initiateur de la requéte obtient le résultat par I’entremise d'un objet Future retourné
par le proxy lors de 'appel de la méthode. Ce Future est mis & jour par la requéte,

une fois celle-ci complétée.

Tableau 2.5 Evolution d’une requéte a travers les modules logiciels

Nom

Niveau

Description

Requéte

NanOS

Regue d’une application client ou d’une appli-
cation de monitoring du NanOS méme, une re-
quéte correspond a une demande de travail plus
ou moins complexe qui utilise I’architecture lo-
gicielle.

Commande

Agent

Obtenue de analyse d’une requéte, une com-
mande décrit 'ensemble des actions & entre-
prendre par un agent pour mener & terme une
partie de la requéte l'ayant engendrée. Une
meéme requéte peut donner lieu a plusieurs com-
mandes.

Instruction

Manager

Opération élémentaire & envoyer au matériel.
Dans le cas des NanoWalkers, une instruc-
tion est transmise sous la forme d’un message
(NWMsg) & un ou plusieurs NanoWalkers. Dans
le cas du contréle de ’environnement, une ins-
truction se résout a un appel de fonction du pi-
lote. Une méme commande peut donner lieu &
une ou plusieurs instructions. Chacune d’entre
elles servant a faire progresser la commande vers
sa complétion.

2.4.5 Evolution des requétes

32

Le cheminement d'une requéte a travers les modules logiciels de la plate-forme de sa

création jusqu’a sa complétion dépend de sa nature et de sa complexité. Une requéte

nécessitant I’action d'un ou plusieurs NanoWalkers subit plusieurs transformations

avant d’étre complétée. A chacune des étapes de son évolution, un nom différent

I'identifie. Le tableau 2.5 explique les distinctions.

Une requéte parvient au Nan0S soit d’une application client ou d’un module interne

du Nan0S méme. Tres générale, elle correspond & une demande de travail plus ou

moins complexe qui devra étre exécutée par la plate-forme. Sa durée de vie est

33

indéterminée, c’est pourquoi plusieurs requétes doivent étre capables de s’exécuter
de fagon paralléle sans se nuire. A ce niveau, le Nan0S n’est responsable que de co-
ordonner le travail des agents et de retourner une réponse au requérant. La requéte
est analysée et fragmentée en une série de commandes que le Nan0S achemine aux

agents capables de les exécuter.

Une commande est donc une étape nécessaire a la complétion d’une requéte donnée.
Lorsqu’une commande est amenée a agir directement sur les robots, elle est recue
par le RobotAgent. Elle est, & son tour, analysée et fragmentée en une série d’opé-

rations élémentaires capable d’étre interprétées et exécutées par un NanoWalker.

C’est & partir de ce jeu d’instructions simples compris par les robots que les com-
mandes sont définies. Une approche bottom-up est utilisée pour leur élaboration.
En premier lieu, les instructions sont définies. De I’étude de ces instructions, des
commandes plus générales sont formées. Le méme exercice est effectué pour la sec-
tion «controle de 'environnement» de l’architecture logiciel. Une fois un ensemble
de commandes possibles défini, 'agencement des commandes des différents agents

permet de définir des requétes que les applications clients pourront effectuer.

Il est & noter que le niveau d’abstraction diminue & mesure que 'on s’approche des
systemes physiques. Lorsque le résultat d’une instruction est retourné par un Nano-
Walker, il doit étre vérifié et la commande de plus haut niveau I'ayant initiée doit
étre révisée afin de palier & toute erreur qui aurait pu survenir lors de ’exécution

et qui introduirait un écart notable entre le résultat obtenu et celui espéré.

La figure 2.5 illustre 1’évolution d’une requéte de déplacement et d’une commande
en fonction du résultat de la premiére instruction transférée au NanoWalker. Une
application demande le déplacement d’'un NanoWalker (représenté ici par un tri-

angle) du point A au point B. Puisque des obstacles infranchissables (représentés

34

A. A.

a Requéte de ’application (b) Commande initiale tra- ¢) Commande révisée
PP
jectoire)

Figure 2.5 Evolution d’une requéte de déplacement d’'un NanoWalker du point A
au point B.

par des cercles noirs) tels les porte-échantillons ou d’autres robots empéchent la
ligne droite entre les deux points, une trajectoire est calculée par le RobotAgent
et représentée par une commande. De cette commande, une série d’instructions &
envoyer au robot est générée. La premiére instruction lui ordonne de se déplacer
du point A au point pl. Cependant, celui-ci dévie lors de ’exécution et se retrouve
a la position pl’. Lorsque le robot rapporte la complétion de I'opération de dépla-
cement, la commande doit étre mise & jour pour palier & toute erreur survenue. Le
RobotAgent vérifie la position réelle du NanoWalker et révise la commande afin de
tirer profit de l’erreur de position plutét que de chercher a la corriger inutilement.
Une nouvelle trajectoire vers le point B est calculée & partir du point pl’. La pro-
chaine instruction envoyée au robot lui ordonne donc de se déplacer du point pl’
vers p2'. L’étape de vérification et modification est reprise jusqu’a la complétion de

la requéte, soit ’atteinte du point B.

35

2.4.6 Diagrammes de classes

Une fois ’étude des besoins et des mécanismes disponibles pour les combler avan-
cée, une conception détaillée du systeme logiciel est nécessaire. Celle-ci a comme
principal objectif de clarifier les idées de conception avant d’entamer la program-
mation. Elle revét d’autant plus d’importance lorsqu’on sait qu’une modification
au code d’une application engendre des cotits de 10 & 100 fois plus élevés que des

modifications lors de sa conception[9].

Dans une conception orientée-objet, les diagrammes de classes permettent de vi-
sualiser facilement et rapidement l’ensemble du design. Ils présentent d’une facon
schématique les classes appelées & travailler de concert pour solutionner un pro-
bleme précis. Chaque couche architecturale du systéme présentée & la section 2.2
peut étre représentée a I’aide de ces diagrammes. Les diagrammes traités dans cette

section sont présentés a ’annexe IV.

La figure 2.6 illustre les liens entre les différents paquetages de I'architecture. Un
paquetage est le regroupement d’un ensemble de classes reliées par un point en
commun, par exemple, un objectif similaire ou un domaine d’application semblable.
Il donne souvent lieu, par la suite, & un ou plusieurs diagrammes de classes plus

détaillés.

Le paquetage nSys définit plusieurs wrappers C+-+ vers des fonctionnalités de base
d'un systeme d’exploitation, telles que les threads, les mutex et sémaphores. Le
tableau 2.6 résume son contenu. Ces classes permettent de définir une interface
de programmation unique peu importe le systéme d’exploitation utilisé. La por-
tabilité du code est ainsi accrue. Il faut souligner que de telles librairies existent
déja, notamment la librairie gratuite ACE[56] de Douglas C. Schmidt, mais que

le développement de la librairie nSys a débuté avant de connaitre leur existence.

36

nSys | - Base 9
Z} VAVAN
NanOS —C Network
e ————————— =N = Applications
I Network O—
' n
—1 | ! — |
|
RobotAgent EnvAgent
Z0S % AN
S | l_ —— | el |
| | 4 N
I i i
- | — !
CommManager PosManager RoomManager DAQManager

Figure 2.6 Diagramme de paquetages du systéme de controle

Apres avoir tenté de migrer vers ACE, des problémes d’utilisation dans un DLL de
Windows nous ont porté a continuer avec la librairie nSys et, par le fait méme, de

parfaire notre connaissance de ’API Windows et Linux.

Les figures IV.2 et IV.3 illustrent le contenu du paquetage Base. Comme son nom
'indique, les classes qu'il contient sont des composants de base de ’architecture uti-
lisés par les autres paquetages. On y retrouve notamment la définition des proxies
utilisés. L’architecture du patron d’un Prozy suit la figure IV.1. La classe abstraite
AbsService fournit l'interface du service. Les méthodes qu’elle définies sont sur-
chargées différemment dans les deux classes dérivées Proxy et Service. Le Client

instancie un Proxy et l'utilise comme ¢’il s’agissait du vrai objet Service.

Regardons en premier la couche application dont la structure est présentée &
la figure IV.7. A ce jour, cette couche n’est que trés peu définie puisque les ap-

plications clients amenées & utiliser la plate-forme ne sont pas encore connues. 11

Tableau 2.6 Description de la librairie nSys

Classe

Description

nException

Classe générale d’exception C++ pour la gestion des er-
reurs. Elle comprend une string de la librairie STL et
un niveau de sévérité (Fatal, Critical, Error, War-
ning)

nMutex

Wrapper C++ autour d’un mutex du systeme d’exploi-
tation.

nReadGuard

Implémentation du patron de conception Scoped Lo-
cking[55]. Classe générique encapsulant un mécanisme
de synchronisation (mutex, sémaphore, etc.), la res-
source est libérée automatiquement une fois la portée
de la fonction quittée.

nSemaphore

Wrapper C++ autour d’un sémaphore du systeme d’ex-
ploitation.

nStreamOwner

Classe abstraite propriétaire d'un objet nTCPStream.
Force la surcharge de la méthode ProcessMsg().

nTCPAcceptor

Implémentation du patron de conception Acceptor-
Connector pour les flux (stream) TCP/IP. Classe gé-
nérique recevant en parametre le type d’objet & créer
lorsqu’une nouvelle connexion survient.

nTCPStream

Wrapper C++ autour d’un flux TCP/IP. Un thread
écoute continuellement sur le réseau et réagit a ’arri-
vée d'un nouveau message en appelant la méthode Pro-
cessMsg() de son objet propriétaire (nStreamOwner)

nThread

Wrapper C++ autour d’un thread du systéme d’exploi-
tation. A sa création, la fonction d’entrée du thread est
spécifiée. Des méthodes pour gérer I’exécution du thread
sont fournies. (Start(), Suspend(), Kil1(), Join())

nThreadPool

Implémentation dun threadpool de taille dynamique-
ment ajustable a partir d’objets nThread. Un point d’en-
trée pour un thread est enfilé et les différents threads

défile un a un et exécute la fonction spécifiée dans la
file.

nThreadSafeQ

Wrapper C++ autour d’une file avec intégration de mé-
canismes d’acces exclusif dans un environnement multi-
threads.

38

est néanmoins possible d’établir certains parametres communs. Toutes les applica-
tions accedent au méme systeme, les fonctionnalités accessibles sont les mémes et
le traitement interne qu’effectue la plate-forme doit étre invisible du point de vue
des applications. La classe ClientAppInterfaceProxy fournit cette encapsulation
des méthodes de la plate-forme accessible par les applications clients. Les applica-
tions concretes héritent de la classe abstraite AbsConcreteClientApp qui possede
le proxy. Ce dernier maintient un lien avec la plate-forme réelle par I’entremise
d’un canal de communication nTCPStream duquel il hérite. La classe AbsConcre-
teClientApp dérive de la classe AbsClientApp définie dans le paquetage Base.
Celui-ci sert & définir I'interface commune avec les proxies instanciés par le Nan0S
lorsqu’une nouvelle application se connecte au systéme : ClientAppProxy. Elle dé-
rive également de la classe nStreamOwner. Cette classe abstraite a pour unique but
de forcer I'implémentation d’une méthode ProcessMsg() dans toute classe qui pos-
sédera un proxy. Cette méthode est appelée par le proxy lorsqu’il recoit un message
réseau. ProcessMsg() est donc responsable d’analyser le message recu et d’agir en

fonction de son contenu.

Chaque application concrete peut posséder une interface graphique de type AbsUI.
Celle-ci force la surcharge de méthodes simples pour rapporter des erreurs ou la

mise a jour de I’état de 'application a n’'importe quelle classe qui en dérive.

La couche Nan0S cumule deux fonctions : U'interaction avec les applications et la
surveillance de la plate-forme. La classe ClientAppInterface recoit et traite toute
demande de connection a la plate-forme par I'entremise de I'objet nTCPAcceptor
qu’elle posséde. Lorsquune connection d’un client est acceptée, I’accepteur crée
un ClientAppProxy. Lors de sa création, le nouveau proxy s’enregistre aupres du
ClientAppRegistry ayant pour mission de maintenir la liste des applications client
présentement connectées au systeéme et de les associer avec un numéro d’identifica-

tion unique utilisé a travers le reste de ’architecture.

39

Le propriétaire des proxies demeure le ClientAppInterface et c’est lui qui ana-
lyse le contenu des messages requs. Lorsqu’une requéte est recue, il la transfére
au RequestCreator qui instancie le bon objet de requéte dérivé de AbsRequest.
La requéte concrete ainsi créée est enfilée dans une file du RequestHandler. C’est
ce dernier qui a la charge de gérer 'exécution parallele d’'un certain nombre de
requétes. Pour ce faire, il implémente un threadpool avec un objet de la classe
nThreadPool. Chaque requéte encapsulée selon le patron commande surcharge 3
sa maniere la méthode virtuelle Execute() de la classe mere. Le threadpool ap-
pelle cette méthode et «actives ainsi I'objet requéte jusqu’a sa complétion ou son

avortement.

Les requétes concrétes communiquent avec les agents du systéme par I'entremise
d’un aiguilleur de commandes appelé AgentInterface. Il est responsable de di-
riger vers le bon agent une commande ordonnée par une requéte. Bien que le
nombre d’agents présents dans le systéme n’est & ce jour que de deux, cette ap-
proche a I'avantage de permettre la modification facile des responsabilités des
différents agents sans avoir & modifier outre mesure la structure des requétes.
L’AgentInterface communique avec les agents par I'entremise de proxies et de
canaux de communication de la méme fagon que les applications client avec le

systeme.

Le deuxieéme role du Nan0S est assuré par le NWMonitor. Ce module de surveillance
a la responsabilité de corréler I'information d’environnement avec ’état actuel des
robots afin d’assurer leur survie. Lorsque l'intégrité d’un robot ou de son travail
est compromise, le NWMonitor signale la situation au NanOS qui prend action. Les
actions entreprisent par le Nan0S ont priorité sur I’ensemble des requétes des clients
afin d’assurer une intervention rapide & toute situation dangereuse. Ainsi, & part
Iapplication client elle-méme, seul le Nan0S a le droit d’interrompre, d’annuler ou

de retarder une requéte.

40

Le RobotAgent (voir Figure IV.5) recoit les ordres du Nan0S par son proxy sous la
forme de commandes. Elles sont transférées au CmdCreator & qui revient la tache
d’instancier des commandes concretes dérivant de la classe abstraite AbsNWCmd. La
commande créée est ajoutée a la file de commandes que contient I'objet Nano-
Walker adressé. Cette classe NanoWalker se veut un cliché snapshot virtuel de
I’état présent d’'un NanoWalker physique. Lorsqu'une commande est ajoutée 3 la
file du NanoWalker, il la modifie de fagon & tenir compte de sa calibration et des

caractéristiques physiques qui influence son comportement.

Il y a autant de classes «Commande» dérivées qu'il y a de types de commandes
supportées. Puisque chaque type de commande est fondamentalement différent, la
facon de les traiter I’est également. Ainsi, & chaque type de commande est associé
un analyseur (parser) qui la décompose en instructions. Le AbsCmdParser ainsi
que ses classes dérivées connaissent donc de facon exhaustive ’ensemble des ins-
tructions supportées par les robots (voir section 2.6.1). Chacune des instructions
engendrées donne lieu & un message qui peut étre envoyé tel quel au robot. Puisque
la commande doit étre révisée de fagon systématique aprés chaque instruction, il
ne sert a rien de prévoir d’avance toutes les instructions potentielles & envoyer &
un robot. Le CmdParser concret devra donc permettre de convertir les commandes

par fragments.

Tour a tour, le CommManager parcourt les différents NanoWalker et retire la pro-
chaine instruction a leur étre envoyée. Il transmet le message associé via le IRDri-
ver. Le PosManager utilise le PSD pour recueillir I'information sur I’emplacement
des deux LEDs de positionnement IR des robots et transfere cette information au

RobotAgent qui met a jour I'objet NanoWalker correspondant & la position acquise.

Le second agent contrdle les systémes relatifs & ’environnement des NanoWalkers.

Sa structure est présentée & la figure IV.6; le EnvAgent en est I’entité principale. La

41

classe TemperatureMap cartographie la température dans la chambre de refroidis-
sement. Les valeurs de température proviennent principalement de thermocouples
dans la chambre, mais également de l'information des senseurs des robots aprés
avoir transitée par le Nan0S jusqu’au EnvAgent. Ces données sont simplement trai-
tées comme des couples température-coordonnées supplémentaires, ainsi, le En-
vAgent demeure indépendant des robots. Un controleur PID se base sur cette carte
thermique et tache de régulariser la température dans la chambre en ordonnant
au RoomManager le pourcentage d’ouverture de la valve d’azote[23]. Le DAQMa-

nager se charge d’acquérir les données de vibrations et de température du module

NI-SCXI][6].

Le EnvAgent utilise également le PurManager pour contrdler le bloc d’alimentation
du Powerfloor a travers une interface GPIB. L’étendu du contréle qu’il applique
se limite cependant a une surveillance de la tension, du courant et & implanter un

mécanisme d’arrét d’urgence.

2.4.7 Diagrammes de séquence

Les diagrammes de classes présentent la structure logicielle d'un systéme informa-
tique, mais ils ne procurent aucune information temporelle sur la séquence d’opéra-
tions a effectuer pour accomplir un travail particulier. C’est le role des diagrammes
de séquence d’illustrer I’échange de messages entre les différentes entités de D’ar-

chitecture. Les diagrammes relatifs & la présente section sont présentés a I’annexe

V.

L’interaction d’une application client avec la plate-forme est présentée & la figure
V.1. Le processus d’initialisation commence par une demande de connexion du

client. Cette demande, regue par 'accepteur du patron Acceptor-Connector, résulte

42

en la création d’un proxy encapsulant le canal de communication. Le proxy créé
a la responsabilité de signaler au ClientAppInterface son existence. Le Client-
AppRegistry lui assigne un numéro d’identification unique qui devra étre transmis
avec toute communication future. Le thread de réception des messages réseau du
nTCPStream sous-jacent au proxy est alors démarré. L’initialisation de la connexion
est ainsi complétée. Le ClientAppInterface demande de 'information supplémen-
taire sur la nouvelle application telle que son nom, sa description, etc. Apres avoir
répondu, ’application client peut commencer & envoyer des requétes au systéme. Le
proxy recoit le message et le transfére au ClientAppInterface pour analyse. L’ins-
tanciation du bon objet «requéte» est délégué au RequestCreator. Elle est ensuite
transférée au RequestHandler pour traitement. Avant d’obtenir la réponse, un ob-
jet Future est envoyé a ’application client & titre d’accusé de réception. Lorsque la
réponse a la requéte est disponible, elle est transmise & I’application client. Cette

série d’événements est répétée jusqu’a la déconnexion de I’application.

Si I'on reprend ’exemple d’'un déplacement de NanoWalker commandé par une ap-
plication, la figure V.2 montre 1’évolution des messages échangés par chacun des
modules de I'architecture. On y voit qu’une fois la requéte rendue au Request-
Handler, celui-ci lance son exécution. Dans le cas d’une requéte de déplacement,
seul le RobotAgent est concerné, la requéte lui communique ainsi la commande
de déplacement. Il fait appel au CmdCreator pour instancier le bon objet «com-
mande», c’est-a-dire une trajectoire contournant les différents obstacles fixes et
mobiles se trouvant sur le Powerfloor. Une fois la commande obtenue, elle s’ajoute
dans la file du NanoWalker adressé. Il I’ajuste alors en fonction de sa calibration
et la décompose en instructions élémentaires par 1’entremise du MoveCmdParser.
Le CommManager s’affaire parallelement & interroger chaque robot tour & tour pour
mettre a jour leur état. Quand un robot est prét a recevoir une instruction, il

demande au RobotAgent 'acces & ’objet NanoWalker dans le but de retirer la pro-

43

chaine instruction devant lui étre transmise. L'instruction est traduite en message
NWMsg et envoyée au NanoWalker qui accuse immédiatement sa réception. Le robot
exécute et termine l'instruction. Ce nouvel état sera détecté au prochain passage
du CommManager. Une série de mise & jour subséquentes suit cet événement et est
présentée a la figure V.3. On remarque qu’une fois le RobotAgent informé de la
complétion de I'instruction, il vérifie le résultat en demandant la position réelle
du NanoWalker au PosManager et met a jour la commande. Les prochaines ins-
tructions envoyées au NanoWalker proviendront donc de cette commande révisée.
Les mises & jour sur la progression de la requéte sont ensuite propagées a travers

I'architecture jusqu’a 'application client I’ayant initiée.

Plusieurs autres diagrammes de séquence pourraient étre présentés, mais ils suivent

tous I’évolution générale de la requéte de déplacement.

2.5 Synchronisation des requétes

L’architecture distribuée du logiciel rend problématique la synchronisation des dif-
férents threads d’exécution. Ces threads peuvent se retrouver sur différentes ma-
chines composants le systeme et une requéte effectuée par un certain thread d’un
processus demandeur vers un processus distant doit étre envoyée sur le réseaun. La
réponse a cette requéte est regue aprés un temps indéterminé et par un thread du
processus demandeur différent de celui qui I’a effectuée. Dans le cas ol la réponse
serait essentielle & la suite de I’exécution, c’est-a-dire que ’on souhaite avoir des
requétes «bloquantes», il est nécessaire d’établir un mécanisme de synchronisation
permettant de suspendre I’exécution d’un thread tant que la réponse & une requéte

particuliére n’est pas obtenue ou qu’un certain temps de timeout ne soit atteint.

Ceci requiert un usage judicieux de sémaphores de controle. La stratégie envisagée

44

se base sur le principe du threadpool. Une banque de sémaphores est créée. A chaque
fois qu'un thread demandeur désire qu'un requéte qu’il effectue soit bloquante,
il demande un sémaphore libre a cette banque et le bloque. L’identificateur du
sémaphore bloqué est associé a la requéte envoyée. Ce méme identificateur doit étre
inclus dans la réponse de sorte qu’une fois celle-ci obtenue par le thread du proxy,
le bon sémaphore puisse étre débloqué. Si un timeout survient, c’est que la réponse
n’est pas arrivée a temps, le sémaphore est alors automatiquement débloqué. Par
contre, cela ne signifie pas nécessairement que la réponse n’arrivera jamais. Si le
sémaphore a été réassigné a une autre requéte bloquante, il ne faut pas le débloquer.
Le thread receveur doit donc préalablement s’assurer que la requéte est encore en
attente avant de procéder au déblocage du sémaphore, sans quoi, une incohérence

dans le systeme serait introduite.

2.6 Contrédle des robots

La communication avec un robot est toujours initiée par le systéme de contrdle.
Sauf exception, il ne communique qu’avec un seul robot & la fois et, tour a tour, il
parcourt séquentiellement (en round-robin) I’ensemble des robots. Un quantum de
temps pour la communication avec un robot donné est alloué et celle-ci continue
tant qu’il n’est pas écoulé. Apres quoi, le systéme passe au robot suivant. La valeur
de ce quantum est fonction du nombre de robot & controler. On souhaite s’assurer
que chaque robot sera interrogé & une fréquence minimale, par exemple, une fois
par seconde. Plus le nombre de robots est grand, plus le quantum de temps alloué
par robot doit étre petit pour maintenir la contrainte fixée. La valeur pratique de
la fréquence d’interrogation minimale devra étre trouvée expérimentalement. Les
parametres qui l'influencent sont notamment la vitesse du changement de tempé-

rature des robots et la quantité de données STM que le robot peut emmagasiner

45
avant de devoir les transmettre par infrarouge.

Pour chaque message envoyé par le systeme de controle & un NanoWalker particu-
lier, le robot a l'obligation d’émettre une réponse a I'intérieur d’un délai préétabli,
sans quoi, il sera considéré comme inopérationnel. Un robot ne prend jamais la
décision d’envoyer de l'information au systéme de controle, ordre explicite de
transmettre un message doit lui étre donné. La réponse qu’il émet varie selon le
type de message qu’il recoit du systéme de controle, mais on distingue trois sortes

de réponses :
1. Retour de I'information demandée;
2. Accusé de réception avec promesse d’exécution de 'instruction recue (ACK);
3. Erreur sur la communication (NACK).

L’initiation de la communication s’effectue toujours de la méme facon, selon 1’al-

gorithme suivant :

Tant que le quantum de temps alloué n’est pas dépassé
Demander 1’état du NW
Si 1’état == 0K et READY
Envoyer la prochaine instruction de la liste d’instruction
Attendre la réponse
Si timeout
Propager 1’erreur de communication
Sinon
Si 1’état != 0K
Propager 1’erreur aux couches supérieures

La premiere étape consiste toujours & interroger le robot sur son état. La réponse
est analysée afin de s’assurer que le robot est apte & recevoir une instruction. Dans
le cas ol ce test s’avere vérifié, la prochaine instruction est envoyée et on attend

'accusé de réception. On boucle ensuite jusqu’a ’écoulement du quantum de temps.

46

0 7|8 1516 23124 3
NW ID Packet Length Packet ID (Ref. ID)

Packet ID MsgType

Figure 2.7 Entéte des messages échangés avec les NanoWalkers

Le traitement des messages et I’analyse de leur contenu induit inévitablement des
délais qu’il faut minimiser. L’analyse de 1’état se résume & un simple branchement
sur la valeur d’un champ du message requ. Le nombre d’instructions comprises par
un robot est amené & changer a mesure que les efforts de développement progres-
seront et que de nouveaux algorithmes seront développés. Pour 'instant, la section

2.6.1 présente les instructions prévues en plus amples détails.

2.6.1 Jeu d’instructions

La figure 2.7 schématise le format de ’entéte commune a tous les messages échangés

entre le systéme de controle et un robot.

Ces 56 bits sont structurés de la fagon suivante :

47

NWID : 8 bits. Numéro d’identification unique associé & un Nano-
Walker.
Lors de lenvoi d'un message par le systéme de controle, ce
champ spécifie le robot destinataire.
Lors de ’envoi d’un message par un robot, ce champ spécifie
le robot émetteur.
Note : I'identificateur 255 est réservé pour un message de type
broadcast destiné a tous les robots.

Packet Length : 8 bits. Taille totale du message (en octets) incluant ’entéte.

Packet ID : 32 bits. Numéro d’identification du message envoyé & un
NanoWalker.
Ce champ est utilisé comme numéro de référence lors de la
réponse du NanoWalker.

Msg Type : 8 bits. Type de message.
Ce champ permet d’identifier la nature du message transmis
et, par conséquent, de connaitre la nature des données qu’il
contient.

L’analyse des messages dépend de leur nature. Certains n’ont aucun parametre et
le champ Msg Type a lui seul dicte la marche a suivre, d’autres possedent un ou
plusieurs parametres devant étre traités. La longueur des messages est donc variable

et dépend du nombre et de la nature des parameétres.

2.6.1.1 Etat

Le tout premier message envoyé lors de 1’établissement de la communication avec un
NanoWalker est une interrogation sur son état. Le NanoWalker interrogé retourne
immeédiatement son état sous la forme d’un message de 112 bits illustré a la figure

2.8. Mis a part les bits de I'entéte, on retrouve les champs suivants :

48

0] 7|8 1516 23124 3
NW ID |Packetlength | Packet ID (Ref. ID)
R[STS
Packet ID MsgType oo State
Temperature | . | Temperature |
1 2
Temperature |

Figure 2.8 Format d’un message d’état d’un NanoWalker

RDY :

STM :

SDR :

State :
Temperature X :

Ready. 1 bit. Indique si le robot est prét a recevoir une nouvelle
instruction.

0 si le robot est présentement occupé

1 s’1] est prét.

1 bit. Indique si le STM du robot est présentement en cours
d’utilisation.

1 signifie que le robot utilise son STM

0 signifie que le robot utilise ses pattes piézoélectriques.
STM Data Ready. 1 bit. Indique qu’un bloc de données prove-
nant du STM est prét a étre transféré au systéme de controle
et que ce dernier devrait en demander la transmission.

5 bits. Etat actuel du robot parmi les 2° états possibles.

9 bits. Valeur du capteur de température no. X du Nano-
Walker en complément & 2 entre —55°C' et +125°C' avec une
résolution au demi-degré pres.

Les valeurs de température des capteurs sont sur neuf bits. Mais puisque la SRAM

sur le circuit Flex est configurée en mots de 16-bits, sept bits par valeurs sont donc

inutilisés.

2.6.1.2 Déplacement

Pour controler le déplacement des robots et définir un bon format d’instruction,

il importe de comprendre la méthode par laquelle les déplacements leurs sont in-

49

Figure 2.9 Disposition des pattes piézoélectriques et de leurs électrodes sur le Nano-
Walker

culqués. Chaque NanoWalker repose sur trois pattes piézoélectriques, chacune pos-
sédant quatre électrodes selon la configuration présentée a la figure 2.9. En ap-
pliquant une forte tension électrique, une déformation du tube piézoélectrique est
induite. Cette réponse mécanique est directement proportionnelle aux valeurs de
tensions appliquées sur les électrodes.[42] L’obtention d’un déplacement est rendue
possible grace & ’application d’une série d’impulsions électriques sur les électrodes
des pattes selon une séquence prédéterminée. Bien que théoriquement la tension
pouvant étre appliquée a une électrode se situe dans un intervalle continu, le cir-
cuit actuel du NanoWalker ne permet que I'application de deux tensions discrétes :
soient +150V et —150V. Ces deux valeurs discrétes peuvent étre représentées par
un 1 et un 0 respectivement. La figure 2.10 présente un exemple d’impulsions en-
voyées a une électrode d’une patte et sa représentation binaire. Un mouvement
général du NanoWalker est obtenu en bouclant un certain nombre de fois, et & une

certaine fréquence, sur une série d’impulsions précise.

Les déformations rapides des pattes piézoélectriques ainsi produites font vibrer

le robot et celui-ci se déplace en sautant littéralement d’un endroit & un autre.

50

I S
!

+150V — -

-g-m—au P B

Pt Pt
i it
| I I
E— 13 T o
Pt i
Pl |
OV o= ool oo For oo s won o oy e flon o i R s oo cun s sn e B u v s s
£ i | I
[§ I
- e el P T—_ : o fo s e e e
150V N T A T A A D D D T T T
E | T T A § LI E g Pt E
tq4intq843 inltqi iqf
1E0§1§031E1£1§O§OI1§0&131§1I1E

Figure 2.10 Exemple de série d’impulsions a envoyer a une électrode d’une patte

Chacune des électrodes des pattes peut recevoir une série d’impulsions différente

et chacune peut étre excitée a une fréquence différente.

Trois types de déplacements sont possibles pour le NanoWalker : 1) rectilignes,
2) rotations et 3) une combinaison des deux. Seules les séquences d’impulsions
appliquées aux pattes, la fréquence d’application par pattes ainsi que le nombre
de répétitions varient. On peut envisager qu’une seule instruction puisse combler
tous les besoins. A I'aide d’une matrice 2 x 3, il est possible de définir n’importe
quelle rotation et translation 2D. En ajoutant des parametres supplémentaires pour
la vitesse de déplacement et la vitesse de rotation, une seule instruction définie

I’ensemble des mouvements possibles.

ot — sin(f) cos(f) Az 2.1)
cos(f) —sin(f) Ay

Avec I'aide de Na-Mi Bae, stagiaire au Laboratoire, certaines séquences de dépla-
cements €lémentaires basées sur la méthode push-slip[42] ont été identifiées. Le
tableau 2.7 présente la séquence théorique & appliquer aux électrodes pour obtenir

un déplacement en ligne droite.

o1

Tableau 2.7 Séquence de bits a appliquer aux électrodes des pattes pour obtenir un
mouvement rectiligne

] Mouvement rectiligne vers la patte A |
Patte A B C

Electrode | A1 [A2 [A3]A4|B1[B2[B3[B4|[C1[C2]C3]C4
Bit 0 1y 1 (11001101 1
Bit 1 oyojojojy1}j1|y0j0}1]04}{0]1

La principale décision a prendre est celle de I’emplacement o s’effectue la conver-
sion de la matrice de déplacement en série d'impulsions électriques. Deux options
sont envisageables : soit qu’elle s’effectue & méme le DSP du robot ou soit qu’elle
est faite dans le systeme de contréle avant méme ’envoi de I'instruction proprement
dite au NanoWalker. Dans les deux cas, la conversion & effectuer est la méme et
I'implémentation est similaire. Comme premiére approche, la conversion avant ’en-
vol au robot est effectuée. Les valeurs de 12 bits sont stockées dans le SRAM et le
role du DSP se limite & un simple transfert de données. Ceci permet de soulager le
processeur embarqué du robot en minimisant sa charge de traitement. Par contre,
cela a pour effet de limiter I’autonomie des robots. Dans le futur, si la capacité de
traitement du DSP et la mémoire disponible le permet, la responsabilité de cette

conversion pourra étre transférée au robot.

Le format du message de déplacement (voir Figure 2.11) choisi est le suivant :

SeqLength : 8 bits. Longueur de la séquence de bits

Freq : 8 bits. Fréquence d’application de la série d’impulsions

NbRep : 16 bits. Nombre de répétitions a effectuer sur la séquence de bits.

SeqBitsX : 16 bits. Valeur des bits & appliquer & chacune des 12 électrodes
des pattes.

La longueur totale du message dépend de la longueur de la séquence de bits. Son

minimum est de 104 bits alors que sa longueur maximale est de 525 octets. Méme

52

0 ' 7(8 1516 2324 3
NW ID Packet Length Packet ID (Ref. ID)

Packet ID Msg Type

SeqglLength Freq NbRep

SeqBits0 SeqBits1

SegBits2 SegBits...

Figure 2.11 Format d’un message de déplacement

si la fréquence d’application sur chacune des pattes peut différer en théorie, en
pratique, une seule est utilisée. La plus petite fréquence pour laquelle les autres
sont toutes un facteur est celle a prendre. Ceci permet de stocker le méme nombre
de bits pour chacune des pattes dans la mémoire SRAM du robot configurée en
mots de 16 bits. Ainsi, une séquence deux fois plus lente que la fréquence utilisée
verra chacun de ses bits répétés deux fois afin d’obtenir le méme effet que si elle

était réellement deux fois plus lente.

2.6.1.3 Balayage du STM

Un scan du microscope & effet tunnel est commandé par plusieurs messages. Pre-
mierement, tous les parametres du balayage sont envoyés d'un bloc. Par la suite,
une instruction ordonne au robot de démarrer ou d’interrompre le scan. Cette facon
de faire permet de modifier les parametres sans pour autant devoir arréter le scan
en cours. La configuration des paramétres se fait d'un seul coup plutét qu’avec

plusieurs messages tres courts qui gaspilleraient davantage de bande passante.

La figure 2.12 illustre le message de modification des parametres du PiezoScan.

Une explication sommaire des différents champs est donnée ici, le lecteur est prié

33

de lire le chapitre 3 afin d’obtenir une meilleure compréhension du fonctionnement

du microscope et de l'origine des différents parameétres.

Gain :

ScanRes :

Fast Vx Increment :

Fast Vy Increment :

Slow Vx Increment :

Slow Vy Increment :

Fast Vx Update Period :
Fast Vy Update Period :

Nb Fast Axis Updates :

Vx Offset :

Vy Offset :

1 bit. Gain de amplificateur opérateur du circuit du
PiezoScan du Flex.

2 bits. Résolution de I'image.

00 => Résolution de 128 x 128 pixels

01 => Résolution de 256 x 256 pixels

10 => Résolution de 512 x 512 pixels

11 => Résolution de 1024 x 1024 pixels

16 bits. Incrément de la tension V, & ajouter & chaque
déplacement du piézo sur I'axe rapide. (valeur déja
convertie pour le DAC)

16 bits. Incrément de la tension V;, & ajouter & chaque
déplacement du piézo sur l’axe rapide. (valeur déja
convertie pour le DAC)

16 bits. Incrément de la tension V, & ajouter & chaque
déplacement du piézo sur laxe lent. (valeur déja
convertie pour le DAC)

16 bits. Incrément de la tension Vj, & ajouter a chaque
déplacement du piézo sur l'axe lent. (valeur déja
convertie pour le DAC)

16 bits. Nombre de période de mise & jour & sauter
avant d’ajouter 'incrément V, a I’axe rapide.

16 bits. Nombre de période de mise & jour & sauter
avant d’ajouter I'incrément V,, & ’axe rapide.

16 bits. Nombre total de mises & jour sur ’axe rapide
afin de balayer la taille totale du scan.

16 bits. Décalage du centre en X du balayage par
rapport a la position de repos. (valeur convertie pour
le DAC)

16 bits. Décalage du centre en Y du balayage par

rapport a la position de repos. (valeur convertie pour
le DAC)

7|8 15

16 2324 3

NW ID Packet Length

Packet ID (Ref. ID)

r—

Packet ID

MsgType | reserved

Fast Vx Increment

Fast Vy Increment

Slow Vx Increment

Slow Vy Increment

Fast Vx Update Period

Fast Vy Update Period

54

Nb Fast Axis Updates

Figure 2.12 Format d’un message de configuration du balayage du piézo du STM

2.6.1.4 Tip Engage

Comme pour le balayage, un premier message de configuration est envoyé contenant
les parametres du contrdleur PID. Ensuite, la commande d’approche de la pointe
STM jusqu’a I'obtention d’un courant tunnel est donnée. Encore une fois, le lecteur

est référé au chapitre 3 pour les détails du STM.

16 bits. Termes invariables précalculés de I’équation 3.34
16 bits. Valeur du logarithme naturel du courant tunnel &
maintenir. (la référence du PID)

PID Termn :
In(SetPoint) :

2.6.1.5 Retrieve STM data

Le DSP du robot ne posséde pas assez de puissance pour analyser les résultats
d’un scan STM. Et, la mémoire dont il dispose n’est pas suffisante pour stocker
une image complete. Les résultats doivent donc étre transmis bout par bout au

systeme de contrdle. Un mécanisme de double tampons (double buffering) permet

55

0 7|8 1516 2324 3
NW ID Packet Length Packet ID (Ref. ID)

Packet ID Msg Type :resew? e
PID Term1 PID Term2
PID Term3 PID Term4
PID Terms In(SetPoint)

Figure 2.13 Format d’un message de configuration du controleur PID du STM

de remplir une section de mémoire pendant que ’autre attend d’étre vidée. Lors-
qu’une zone tampon de données est pleine, le message d’état du robot indique au
CommManager de demander une transmission des données accumulées. Cette de-
mande devrait venir avant ’envoi de toute nouvelle instruction afin d’éviter de
trop retarder la transmission et que les deux tampons se retrouvent simultanément

pleins, les données contenues se verraient alors écrasées.

Plusieurs autres messages sont & définir, par exemple des messages pour reprogram-
mer la mémoire FLASH via I'IR, pour gérer ’algorithme d’approche IAPA décrit
au chapitre 4 et pour des algorithme futurs tels que la recherche d’atomes précis

ou 'assemblage moléculaire.

Certains algorithmes doivent obligatoirement étre implémentés & méme le DSP,
notamment les fonctionnalités de comptage d’atomes et de suivi d'un atome parti-
culier. En effet, la latence inhérente & la communication infrarouge rend impossible
la compensation en temps réel des effets de dérive thermique thermal drift qui dé-
placent la pointe STM & la fois verticalement et horizontalement. L’amplitude de
cette dérive est fonction des matériaux utilisés dans 1’assemblage du microscope et

de la vitesse de variation de température, mais une dérive d’un diameétre atomique

56

par seconde n’est pas rare pour un STM opéré a température de la piece[41]. Dans
le cas présent ou les NanoWalkers chauffent dans un environnement froid, le PID

devra étre particulierement efficace pour minimiser la dérive thermique.

2.7 Format des messages réseaux

La section 2.3 énonce que les niveaux agent, Nan0S et application communiquent
par échange de messages sur le réseaux. Peu importe le type de protocole réseau
utilisé, le format interne des données reste identique. Chaque message est constitué
de deux sections : la premiere, de longueur fixe, est commune & chaque type de
messages alors que la deuxieme, de longueur variable, est fonction de la nature du

message. La structure des messages est la suivante :

struct netMsgStruct

{

unsigned short msgType; // 2 bytes

unsigned short srcld; // 2 bytes

unsigned short timestamp; // 2 bytes

unsigned short reserved; // 2 bytes

voidx* pParameters; // 4 bytes (start of variable nb. of bytes)
I

Le champ msgType indique la nature et la fonction du message envoyé. Le champ
srcld spécifie I'identificateur d’application, tel qu’assigné par le Nan0S au moment
de la connection, ayant émis le message. Le champ timestamp se veut une marque
temporelle du moment ou I'information fut originalement émise. Dans le cas d'un
retour d’information du NanoWalker, ce champ devrait contenir une valeur de
temps qui soit le plus preés possible du temps ol l'information était valide dans

le robot physique. Ainsi, elle devrait étre générée dés la premiére interprétation du

57

message infrarouge re¢gu du NanoWalker. Le champ pParameters sert a indiquer le
début d’une région de longueur variable ou sont stockés les paramétres particuliers

au message transmis.

La présence du pointeur void* pParameters est trompeuse puisque celui-ci ne
doit pas étre utilisé comme un réel pointeur. En effet, un message & transmettre
par réseau (ou tout autre médium de communication) est traité comme une série
d’octets dans un espace mémoire continu. Lors de la création du message réseau, il
est donc important de prévoir d’avance la taille des données variables afin de créer
une zone mémoire continue suffisamment grande pour les contenir. Ainsi, le code

suivant ne peut étre utilisé pour créer cette zone.

netMsgStruct msg;
msg.pParameters = (void*) new unsigned char[50];

Il faut plutét privilégier le code ci-dessous.

netMsgStruct* pMsg;

// Calculate the total length (-4 because of the size of voidx)
unsigned short msgTotallen = sizeof (netMsgStruct) - 4;
totallen += SizeOfVariableZone;

pMsg = (netMsgStruct*) new unsigned char[msgTotallen];

Sur réception d’une message, la méthode virtuelle ProcessMsg() du nStreamOwner
possédant le canal de communication est appelée. En C++4, cette méthode a ’allure

générale suivante :

void ProcessMsg(const unsigned char* pData, const unsigned short& length)

o8

{
// Cast pData into communication structure format to be able
// to get known parameters
const netMsgStruct* const pMsg =
reinterpret_cast<const netMsgStruct* const>(pData);
// Position a pointer on the first parameter
// use ’const’ to make sure that the data will not be modified
const unsigned char* pParam =
reinterpret_cast<const unsigned char*>(&(pMsg->pParameters));

unsigned short datalength = length - (sizeof (netMsgStruct)-4);
switch(pMsg->msgType)
{
case SOME_MSG_TYPE:

// Retrieve parameters from pParam

HandleMsgType (pMsg->srcld, parameters...);

break;
default:

break;
}

}

2.8 Conclusion

Le robot NanoWalker se fait attendre et évolue constamment, mais le développe-
ment logiciel de la plate-forme doit progresser. Plusieurs modules sont codés et
I'intégration est entamée. La taille et la complexité de cette architecture distribuée
augmente rapidement a mesure que de nouvelles fonctionnalités sont & supporter.
Une vision d’ensemble est primordiale dans sa conception, sans quoi plusieurs des
modules développés nécessiteront des efforts titanesques pour procéder & leur inté-
gration. L utilisation des patrons de conception facilite son maintient et favorise sa

robustesse.

L’architecture établie permet le développement d’une solution unifiée pour un sys-

59

teme de controle d’une flotte de NanoWalkers. Les deux principaux aspects & contro-
ler sont tous deux personnifiés par un agent. L’EnvAgent permet un controle précis
sur I’environnement afin de garantir la survie des robots, tandis que le RobotAgent
a le role d’assurer une communication efficace et la coordination de la flotte de

robots.

Il est impensable d’attendre une flotte compléte avant de tester son controle. L’idée
d’un simulateur fonctionnel de NanoWalker est donc apparue. Le but de ce simula-
teur est de tester la plate-forme de support d’une fagon purement virtuelle sans né-
cessiter la présence de NanoWalkers physiques. L’architecture ne devrait cependant
pas étre «consciente» de ’absence de NanoWalkers. Sylvain Boissé[10] fut mandaté
a I’automne 2002 et hiver 2003 pour développer une simulation fonctionnelle de la
communication des NanoWalkers. Ceci fournit un outil facilement modifiable pour
valider le protocole de communication et tester la réaction du systéme & certains
stimuli, tels qu’une erreur de transmission ou la «mort» d’un robot. Implanté sur
une machine indépendante, le simulateur communique avec la plate-forme via un

lien infrarouge exactement comme dans le systéme réel.

Le développement paralléle de ce simulateur permettrait de tester la coordination
d’une flotte entiere de robots sans risquer de faire une erreur fatale aux répercus-
sions financieres et temporelles énormes. Une simulation physique réaliste est méme

envisageable.

60

CHAPITRE 3

CONTROLE DU MICROSCOPE A EFFET TUNNEL

D’un point de vue informatique, les STM sont traditionnellement contrdlés par un
processeur 32-bits capables d’opérations a points flottants. Celles-ci sont particulie-
rement importantes lors des calculs sur le courant tunnel. Le DSP TMS320C25-50
ne possede cependant qu’'un bus de données 16-bits et n’est capable d’effectuer que

des opérations «entiéress.

L’approche préconisée pour le contréle du STM consiste a réduire au maximum
le traitement numérique a bord du processeur embarqué et de le transférer au
systéme de controle externe présenté au chapitre 2. Les calculs inévitables dans le
DSP devront étre effectués en arithmétique a virgule fixe (fized-point arithmetic).

Les notions théoriques nécessaires sont brievement introduites & la section 3.1.

Le reste du chapitre est consacré au développement du contréle du STM, la des-

cription des prototypes, les tests effectués et les résultats obtenus.

3.1 Arithmétique en virgule fixe

L’arithmétique en virgule fixe n’utilise que des nombres entiers pour représenter
des valeurs réelles. Elle est particulierement utile lorsque 1’on doit faire des calculs
mathématiques sur des valeurs réelles a ’aide de microprocesseurs ne supportant

que des types entiers tels que int ou short.

Connaissant la représentation binaire d’un nombre, on peut décider arbitrairement

61

Point imaginaire<—|

(25)10 = (11001), => (11.001),

Partie de gauche (entiére) 4:[_

Partie de droite (fractionnaire)

Figure 3.1 Nombre selon une représentation virgule fixe

de le considérer comme deux parties de part et d’autre d’une virgule imaginaire
comme & la figure 3.1. La valeur réelle des bits doit donc étre pondérées en fonction
de leur position par rapport & cette virgule imaginaire. Ainsi, dans I'exemple de
la figure 3.1, (11.001), se traduit par deux bits indiquant la partie entiére et les
trois bits de droite indiquant la partie décimale. On note cette représentation &
virgule fixe par «FP2.3». La valeur réelle codée est 3,125 bien que d’un point de
vue strictement logiciel, la valeur stockée ne posséde pas de virgule imaginaire et

est donc 3,125 x 2% = 25.

D’une facon plus formelle, un nombre virgule fixe se représente selon I’équation
3.1[14]. Seule la valeur @ est gardée dans la mémoire de I'ordinateur, les autres
étant purement conceptuelles. Les valeurs de F et de B sont habituellement fixées
a 1,0 et 0 respectivement, de sorte que la valeur réelle puisse étre retrouvée par la

simple multiplication d’'une puissance de deux avec la valeur Q.

VaV=SQ+B (3.1)

62

Tableau 3.1 Intervalle des valeurs selon la représentation point fixe utilisée, a) non

signé b) signée

Représentation Intervalle Résolution
a) p.
) pq o 1
) - '2—(1 29
b) sp.
) sp-q o)
[—2 ,+2P — 5 24

ou

V = valeur réelle

V = valeur réelle représentée par le nombre virgule fixe

) = valeur entiére codant Vstockée en mémoire
S = facteur d’échelle (S = F x 2F)

E = position de la virgule imaginaire & partir du LSB

F = pente du facteur d’échelle

B = décalage (offset)

Tant les nombres signés que non signés peuvent étre représentés. Dans le deuxieme

cas, la valeur stockée en mémoire suit la norme «complément & 2». La notation

est alors p.q dans le cas d’un nombre non signée et sp.q dans le cas d’un nombre

signé, ou p est le nombre de bits représentant la partie entiere, q est le nombre de

bits représentant la partie fractionnaire et s est le bit de signe.

L’intervalle des valeurs pouvant étre représentées dépend directement du nombre

de bits disponibles pour encoder les valeurs réelles. Selon le tableau 3.1, un nombre

de 16 bits avec une représentation FPs9.6 se situe dans l'intervalle discret [-512,

511,984375]. La résolution & l'intérieur de cet intervalle est 0,015625.

63

La difficulté de I’arithmétique virgule fixe ne se situe pas au niveau de la représenta-
tion, mais bien au niveau des opérations. En effet, 1'utilisateur de cette arithmétique
doit toujours avoir en téte la précision résultante d’une opération afin d’éviter les
erreurs telles que les débordements (overflow) ou de wrap-around dues 4 un nombre
de bits insuffisant pour contenir le résultat de I'opération effectuée. 1l est facile de
s’y perdre si on ne fait pas attention. Le tableau 3.2 résume les précisions résultantes

des différentes opérations mathématiques de base.

L’addition de deux nombres & virgule fixe n’est possible que si les deux ont le méme
nombre de décimales. Puisque les valeurs stockées dans la mémoire de ’ordinateur
ne sont en réalité que des nombres entiers, il revient au programmeur de s’assurer,
par des décalages de bits si nécessaire, qu’il n’additionne que des valeurs présentant
la virgule virtuelle au méme endroit. Sans quoi, 'opération, bien que possible d’un

point de vue logiciel, ne produit pas un résultat cohérent.

Le résultat de ’addition de deux nombres est de méme précision mais nécessite un
bit de plus dans la partie réelle pour contenir la retenue sil y a lieu. La soustraction
fonctionne selon le méme principe, excepté que dans le cas de deux nombres non
signés, le bit supplémentaire de la retenue ne sera jamais présent. Cependant, une
erreur de wrap-around peut survenir lorsque le résultat de I'opération devrait étre
négatif. C’est-a-dire qu'un résultat négatif ne pouvant étre représenté, le passage
a zéro boucle a la valeur maximale. Le quantité obtenue sera donc supérieure a la

quantité originale, ce qui est, bien évidemment, insensé.

Lors d’une multiplication, le résultat posséde un format composé par I’addition des
nombres de bits des deux opérandes pour la partie réelle et fractionnaire respecti-

vement.

Une division s’accompagne d’une perte de précision au niveau des décimales, le

Tableau 3.2 Précision résultante des opérations a virgule fixe

Opération Résultat
. g = 1). 3.2
Addition P1-9 + p2.q = (max (p1,p2) + 1) .q (3.2)
sp1.q + spa.q = s (max (p1,p2) +1).¢ (3.3)
g . P19 — p2.q = max (p1,p2) .q (3.4)

oustraction

sp1-q — $p2.q = s (max (p1, p2) + 1) .q (3.5)
) gy = i 3.6
Multiplication P1q1 X pa.ge = (P + p2) . (@1 + @o) (3.6)
8p1-q1 X 8p2.ga = 5 (p1 + p2) . (q1 + q2) (3.7
Division P1-q1 + Pa-ga = (p1+ @2) - (1 — @2) (3.8
Sp1-q1 =+ 8p2.g2 = 5 (p1+ q2) - (@1 — g2) (3.9)

64

65

nombre de bits pour la partie fractionnaire du résultat se retrouve en fait a étre
la soustraction entre le nombre de bits du numérateur et du dénominateur. Une
astuce mathématique permet cependant de contourner ce probléme. 1l est possible
de convertir une division %;:’Z‘; en multiplication en inversant le deuxiéme terme de

fagon a obtenir

P1-q1 X
D292
La valeur 1 étant une constante, il est possible de la représenter avec autant de
) P P
précision que nécessaire. La perte de précision inhérente & la division se trouve
ainsi atténuée et le résultat total de l'opération est plus précis. Illustrons ceci a

l’aide d’un exemple.

On cherche a calculer le résultat du quotient

18,5 _
T2 1,647

et comparer le résultat obtenu avec et sans I'utilisation de I'inversion intermédiaire.
Nous nous limitons & des termes ne dépassant pas 16 bits, mais aucune limite n’est

fixée pour les calculs intermédiaires.

Commencons par calculer les différentes représentations virgules fixes pour chacun

des termes utilisés.

18.5 = (10010.1)5 = FP5.1
(100101), = 37 (3.10)

11.25 = (1011.01), = FP4.2
(101101), = 45 (3.11)

66

Sans 1'utilisation de 'inversion intermédiaire, on obtient directement

-
45
FP=(5+2).(1-2)=FP7.-1
= (00), =0 (3.12)

La valeur obtenue est complétement erronée! La perte de précision de la division
est fatale. Avec I'utilisation de 'inversion intermédiaire, on calcule d’abord l'inverse
du dénominateur. Pour cela, on utilise la constante 1 avec une précision arbitraire,

prenons une précision de FP1.15, soit 16 bits.

1 en FP1.15 = 0x8000 = 32768

[@J = 728 = (1011011000),
45
FP = (14 2).(15 — 2) = FP3.13
= (000.0001011011000)5 = 0, 0888671875 (3.13)

La vraie valeur de I'inversion est 0,088. L’erreur ici est d’environ 0,2%. La multi-

plication subséquente donne alors

37 x 728 = 26936 = 0x6938
FP = (5+3+1).(1+13) = FP9.14
= (000000001.10100100111000), = 1, 64404296875 (3.14)

L’erreur sur la vraie valeur est de 0,0004014756944, soit presque 0,025%. On re-

marque que cette astuce mathématique a permis de grandement accroitre la pré-

67

cision finale. Dans certains cas, le gain de précision est marginal mais on ne peut
pas prendre le risque de reproduire I'exemple précédent, c’est pourquoi la division

est toujours codée de la sorte dans le code du DSP.

3.1.1 Logarithme naturel

Le traitement du courant tunnel nécessite le calcul d'un logarithme naturel (ou
népérien). Or, cette fonction mathématique continue n’est généralement pas implé-
mentée dans un DSP a virgule fixe. Certains compilateurs permettent son utilisation
et prennent en charge le passage en calcul en arithmétique a virgule fixe. Quoi-
qu’il en soit, I’évaluation d’un logarithme dans un DSP & virgule fixe n’est jamais
exacte. Certaines approximations sont nécessaires, mais la précision atteignable
peut néanmoins s’avérer suffisante pour les besoins de la situation. Plusieurs tech-
niques d’approximation existent. L’algorithme de Borchardt propose notamment

I’équation suivante[19) :

In(z) ~ 6(z—1)

N Tt avE (3.15)

La série de Mercator[66], qui est en fait qu'une décomposition en série de Taylor

autour de 1, donne :
s (_1)k+1 . x z
In(l+2z) = —r=r - =+ =+ .. 3.16
n(l +z) E =z + 3 + (3.16)

pour —1 < z < 1. L’utilisation de cette série mene forcément & un compromis entre
la précision et la rapidité de calcul. Plus le nombre de termes utilisés est grand,

plus la précision résultante sera bonne, mais plus long sera le calcul.

Le logarithme est une fonction mathématique qui croit lentement, de cours seg-

ments peuvent méme étre approximés par une droite. Une tactique couramment

63

utilisée met & profit cette observation. Elle consiste & précalculer plusieurs valeurs
de logarithmes, les mémoriser dans une table de recherche (lookup table) et procé-
der & une interpolation linéaire lors du calcul d’une valeur particuliere. Considérant
les valeurs a et b, ol a < b, pour lesquelles les valeurs de In(a) et In(b) sont connues,
Iéquation d’interpolation devient alors :

In(b) — In(a)
b—a

In(z) ~ (z — a) () +1In(a) (3.17)

Le nombre de valeurs mémorisées dépend de la plage possible pour les valeurs
dont il faut calculer le logarithme, ainsi que du degré de précision nécessaire. Par
exemple?, si 'on désire calculer In(0x3456) et qu’on ne dispose que d’un tableau

possédant les valeurs de In(0x1000 x ¢) ol ¢ = 0...15. De ’équation 3.17, on obtient

In(0x4000) — In(0x3000)
0x4000 — 0x3000

In(0x3456) =~ (0x3456 — 0x3000) X <) + In(0x3000)

(3.18)
9,70406 — 9, 41638

= 1110 x 1096

+9,41638

9,50286 ~ 9,49434

L’intégration a P’arithmétique virgule fixe repose la propriété du logarithme stipu-

lant que
In (%) = In(a) — In(b) (3.19)

Ainsi, en reprenant '’exemple précédant avec une représentation FP5.11,

0x3456 => 20 = 6,65199

1Cette exemple est adapté de celui trouvé dans [19]

69
donne naissance au calcul suivant :

(Ox3456
In [———

o) = In(0x3456) — In(2") (3.20)

= In(0x3456) — 11 x In(2) = 1, 87824 (3.21)

La valeur de In(2) est une constante qu’on est capable de précalculer avec autant

de précision que disponible dans le DSP.

3.2 Electronique

La figure 3.2 illustre de fagon schématique le contréle d’'un STM. Le courant tunnel
provient du saut des électrons de valence d'un matériau conducteur chargé vers une
pointe effilée de Platinum/Iridium lorsque la distance entre ceux-ci atteint 'ordre
du nanometre. Pour ce faire, une différence de potentiel (Bias Voltage) de quelques
millivolts & une dizaine de volts doit étre appliquée entre ces deux éléments. Ceci
induit un courant extrémement faible (typiquement entre 0,01 nA et 50nA [13])
circulant & travers la tige conductrice. Bien que le phénomene exact nécessite la
résolution de I'équation de Schréedinger, la relation 3.22 permet d’approximer le

lien entre la distance et la valeur du courant tunnel induit.[65]

]tunnel X e_A\/ad (322)

ou ¢ est le travail d’extraction (work function) résultant des deux électrodes (pointe

et matériau), A est une constante d’environ \/ﬁ z ©t d est la distance séparant la

pointe de la surface.

Ce courant, fortement sensible aux diverses sources de bruit électronique présentes

dans lenvironnement et sur le reste du circuit Flez (transmission IR, bus de don-

70

rommsesteertrr e,

bsp oL

\ J

L

Vx V vz
vy

J [High
voltage
amplifier

(Adder/
Substracter)

\ J

B ViV [V V3

ADC
(16 bits)

AN

Bias Voltage

<
P

Figure 3.2 Parcours du courant tunnel dans un STM

nées, etc.), doit étre rapidement converti en une quantité plus robuste, sans quoi le

bruit devient vite dominant et noie le signal recherché.

La premiere étape est une conversion courant/tension réalisée & ’aide d'un ampli-
ficateur opérationnel branché en feedback négatif.(voir Figure 3.3(a)) En pratique
cependant, la présence de capacité parasite vient réduire la réponse en fréquence de
ce circuit, c’est pourquoi un réseau RC est souvent ajouté apres la résistance Rrg
de fagon & obtenir une meilleure réponse fréquentielle sans pour autant ajouter de
bruit thermique (aussi appelé bruit de Johnson).[13] (voir Figure 3.3(b)) L’équation

3.23 présente la valeur de tension obtenue en fonction du courant tunnel en entrée.

1+ inQCQ

Vout = Ttunnel (R1 + Rp) 1T iR C.
107

(3.23)

71

(a) Idéal (b) Large bande passante

Figure 3.3 Amplificateur opérationnel en feedback négatif

Un facteur de gain de 10® est typiquement utilisé dans les STM commerciaux,
le NanoWalker ne fait pas exception. Le courant tunnel est ainsi converti en une

tension de ’ordre du Volt.

La tension obtenue est acheminée & un convertisseur analogique-numérique (ADC)
de 16 bits dont la plage dynamique de conversion est —10V & 10V. Ceci offre un
pas de quantification avoisinant 300uV par division. L’équation 3.24 présente la

relation entre la valeur du courant tunnel et la tension correspondante regue par le

DSP.

Vmam - Vmin 1
Itunnel = VADC X T X 1_08

20V
K r— e
65536 x 1057

(3.24)

- VADC (325)
On sait que la valeur du courant tunnel varie de facon exponentielle & mesure que
la distance entre la pointe et la surface diminue. Une relation linéaire entre les deux
est déduite en calculant le logarithme naturel des deux expressions. L’équation 3.26

présente le résultat de I’opération.

72

20
In (Ttunnet) = In (VADC X m) (3.26)
20
- 11’1 (VADC) -+ h’l m (327)
=In (Vape) — 26,515303359... (3.28)

En étudiant la valeur du courant tunnel, il est possible d’obtenir une image réaliste
de la densité d’électrons d’une surface.[49]. De 14, de l'information sur la topogra-
phie de la surface imagée peut étre tirée. En effet, le DSP implémente un controleur
PID qui s’affaire & maintenir un courant tunnel constant. Si ce dernier augmente,
le DSP sait que la pointe s’est rapprochée de la surface et réagit en rétractant
le tube piézoélectrique la supportant. Inversement, si le courant diminue, le DSP
commande l'allongement du piézo. Le DSP controle également les déplacements de
la pointe dans le plan du matériau en agissant sur ce méme piézo. En balayant
la surface, le courant tunnel varie selon la topographie, les variations d’élongation
appliquées au piézo sont sauvegardées et, par la suite, transférées au systéme de
controle qui reconstitue une image de la surface. Il faut noter que 'image obtenue
est celle de la réponse du PID aux variations du courant tunnel, une bonne cali-
bration du contréleur est donc une condition essentielle a ’obtention d’une image

fidele a la réalité.

Les commandes acheminées au piézo prennent la forme de trois valeurs de tensions
sur 16 bits (V;, Vj, et V;) transmises & un convertisseur numérique-analogique (DAC)
qui les transforment en valeurs entre —2,5V et 2,5V. Elles traversent ensuite un
étage d’additions/soustractions ol elles sont également amplifiées et donnent lieu &

quatre tensions appliquées sur chacune des quatre électrodes du piézo (voir Figure

73

Electrodes

Figure 3.4 Disposition des électrodes sur le tube piézoélectrique du STM

3.4). Les équations 3.29 régissent cette derniére étape.

Vi=-(Va+V,)xG (3.29)
Vo=—(V,+ Vi) x G (3.29D)
Va=+(Vo=V.)xG (3.29¢)
Vi=+(V,—V,)x G (3.29d)

ou G est le gain associé a 1’étage d’amplification. Celui-ci peut prendre deux valeurs
dans I'implémentation actuelle du NanoWalker : 56 lors du balayage d’une grande

surface (£2pm) ou 2,5 pour une petite surface (< 150nm).

La tension maximale pouvant étre sortie par I'étage d’amplification est de 138V .
Dans certaines situations, les valeurs de Vi, V5, V3 et V} se verront donc écrétées
par les caractéristiques physiques du circuit. L'impact concret est qu’a mesure que

le piézo se déplace sur un axe, sa liberté de mouvements dans les deux autres axes

se voit réduite.

La déformation réelle du piézo dépend des tensions appliquées sur ses électrodes.

Les spécifications du manufacturier du tube piézoélectrique utilisé (un PZT-5A de

74

Staveley Sensors) stipule que la contribution de chaque électrode en XY est calculée

par I’équation 3.30

17,34 x (5,08mm)?
1,27mm x 254um

A= -0,45 x (3.30)

De cette équation, la position en X et Y du piézo revient a :

X=Ax(V, =-Va)
Y =Ax (V- Vi)

Avec Thomas Boitani FitzGerald et Marc-Antoine Fortin, des simulations MATLab
ont permis de calculer que les déformations élastiques maximum du tube piézoélec-
trique sont de +1, 7438 um dans les axes X et Y et de +484, 40nm dans ’axe Z. Par
contre, & cause des contraintes sur les valeurs maximales pouvant étre appliquées
sur les électrodes, on se retrouve dans une situation ot lorsque V, et V}, sont maxi-
misées, il n’y a plus aucune marge de manoeuvre sur V. Les surfaces présentées &
la figure 3.5 illustrent la plage dynamique du piézo et la relation avec les tensions
Ve, Vy et V, applicables. On y voit que la déflexion maximale n’est atteignable que
lorsque V, = 0. Des qu’une tension V, est appliquée, ceci & pour effet d’écréter la
valeur maximal applicable & deux des quatre électrodes (une par axe) et réduire la

portée horizontale.

Si I'on désire garantir & tout moment un débattement en Z de £100nm, on doit

assurer une marge de manoeuvre sur V, de 35V au minimum. Les tensions V, et

V, doivent donc étre limitées & 105V pour éviter toute possibilité d’écrétage.

75

X %10 X

(a) Vue du dessus {(b) Vue en plongée

Figure 3.5 Plage dynamique du tube piézoélectrique du STM selon différentes va-
leurs de V.

3.3 Design logiciel du DSP

D’un point de vue logiciel, l'interaction avec les composantes du circuit électro-
nique se fait par 'entremise du DAC et de PADC. Le DAC7644 est un conver-
tisseur numeérique-analogique 16-bits a quatre sorties & bascules contrdlées par un
signal nommé LOADDACS. L’écriture doit respecter le chronogramme de la figure 3.6.
Puisque le temps de stabilisation de la sortie est de 10us, sa fréquence maximale

d’utilisation est de 100k H z. La linéarité est garantie sur 15 bits.

Le convertisseur analogique-numérique ADC976A recoit en entrée une tension entre
—10V et +10V et la convertit sur 16 bits. La conversion et la lecture de la valeur doit
respecter le chronogramme de la figure 3.7. Une conversion nécessite 4us environ,

sa fréquence maximale d’utilisation est de 200k H z.

Le tableau 3.3 résume les signaux nécessaires au controle du STM par le DSP. Les
bus de données et d’adresses sont partagés entre le DAC, 'ADC et la mémoire de

stockage. Ceux-ci ne peuvent donc pas étre utilisés simultanément.

76

-4 40 -
s T T ST ss
() 10
RIW (R I A {
-} » (e
o EERTETETD 20909090 @)
.« 100 g 00
LOADDACS : ,J S,*
»10
Dot N T R)

- 100600

N
Vout -

Figure 3.6 Chronogramme d’une écriture au DAC (temps en ns)

-« 50 » - 50 »
10 = w4 W4 () - > 1{} =
~-cs N/ BY) -7

= BUU00 . :
,“ . 83 . -

~BUSY _SS
e s e 76000 -

MODE [ACQUIRE X___CONVERT wz ACQUIRE |

»[10,63]
DATABUS {{ '

Figure 3.7 Chronogramme d’une lecture de 'ADC (temps en ns)

77

Tableau 3.3 Signaux de contréle du circuit STM

Nom Taille | Dir. | Description

DATA 16 bits | I/O | Bus de données partagé entre le DAC et 'ADC.

DACADDR 2 bits O | Adressage d’un des quatre registres de conversion
du DAC.

DACSel 1 bit O | Chip Select (CS) du DAC. Actif bas.

DACRST 1 bit O | Reset du DAC. Initialise les valeurs de sorties du
DAC & une valeur prédéterminée par DACRSTSEL.
Actif sur un front montant.

DACRSTSEL | 1 bit O | Sélectionne la valeur de sortie du DAC lors du pro-
chain reset.
1 => 0x8000
0 => 0x0000

LOADDACS 1 bit O | Contréle la sortie des valeurs converties par le
DAC. Sur réception de ce signal, les tensions ana-
logiques deviennent «actives». Actif sur un front
montant.

ADC_CS 1 bit O | Chip Select (CS) de 'ADC. Actif bas.

RW 1 bit O | Read/Write. Sélectionne le mode (lecture ou écri-
ture) pour le DAC ou ’'ADC.
1 => Lecture (Read)
0 => Ecriture (Write)

ScanGain 1 bit O | Sélectionne le gain d’amplification de ’étage d’ad-

ditions/soustractions.
1 => Small scan
0 => Big scan

Tableau 3.4 Description des taches du DSP nécessaires au controle du STM

78

Tache

Description

PiezoScan

Gere le déplacement horizontal (en X-Y) du tube pié-
zoélectrique supportant la pointe STM. Aucun retour
d’information sur la position réelle du piézo n’est récolté.
Une calibration précise du piézo est nécessaire pour dé-
terminer sa déflexion maximum et son comportement.

Z-Feedback

Gere le déplacement vertical (en Z) du piézo pour
répondre aux variations dans le courant tunnel afin
d’épouser la topographie du matériau imagé. Cette

boucle de controle fermée est implémentée & 'aide d’un
PID dans le DSP.

Communication IR

Gere la réception des instructions du systéme de controle
et le transfert de I'information sur le courant tunnel sau-
vegardée. Cette partie n’est pas spécifique a 'opération
du microscope et est partagée avec ’ensemble des taches

du NanoWalker.

_

GUI

! PC to DSP data conversion \ o

IO

lvo | DA;:lgO%C | STM Electronics

Figure 3.8 Décomposition du prototype logiciel pour le contrdle du STM

Une analyse de surface par le STM peut se diviser en trois grandes parties :

le

balayage du tube piézoélectrique (PiezoScan), la boucle de contrdle sur le courant

tunnel menant & une rétroaction sur le piézo (Z-Feedback) et la sauvegarde et

communication des données (via l'infrarouge). Le tableau 3.4 résume ces trois taches

paralleles. Chacune de ces parties est d’abord élaborée et développée d’une facon

indépendante et, par la suite, intégrée les unes aux autres. Le prototype logiciel

est en deux parties :

I'interface utilisateur sur PC et la partie destinée au DSP.

La figure 3.8 schématise cette décomposition. En plus de Iinterface, le c6té PC

comprend le traitement des données avant ’envoi au DSP.

79

Un DSP n’est pas un environnement «multiprocessuss, c¢’est-a-dire que les taches
qu’il exécute sont traitées séquentiellement et qu’il n’y a aucune préemption pos-
sible par une tache plus prioritaire. Les mécanismes d’interruptions contournent
cependant cette limitation. Le TMS320C25-50 possede un total de sept interrup-
tions. Trois interruptions sont dédiés aux périphériques externes et quatre sont
internes : deux pour l'interface de communication série, une pour 'unique timer et
la derniére pour I'instruction logicielle TRAP.[63] Il est également possible qu’une in-
terruption interrompe une autre interruption moins prioritaire, mais ceci ne devrait
pas étre confondu avec de la préemption. Le traitement d’une interruption devrait
étre aussi rapide que possible, le nombre d’opérations qu’elle devrait exécuter est
donc limité. Typiquement, le traitement d’une sous-routine d’interruption (ISR)
se limite & activer un indicateur (flag) sur lequel réagira le programme principal.
Ainsi, un programme de DSP a généralement 1’allure d’une boucle principale infinie
qui appelle différentes fonctions selon la valeur de registres d’état modifiés par des

événements internes ou externes.

L’ordonnancement et la décomposition des taches est primordiale. 11 ne faut pas
que l'exécution d’une longue tache vienne bloquer une courte tache plus critique.
Chaque tiche est donc fragmentée en plusieurs sections de code relativement courtes.
Entre chaque fragment, le retour & la boucle principale vérifie si une autre tache
plus prioritaire doit venir interrompre la continuité de la premiere. Il fut décidé que
la tache la plus prioritaire serait la communication infrarouge car si I’on perd la
possibilité de communiquer avec le robot, le résultat de toute autre tache que celui-
ci exécuterait serait également perdu. Ensuite vient le Z-Feedback et finalement, le

PiezoScan.

80

3.4 Stratégie de tests

L’électronique du NanoWalker est un héritage signé MIT. Une fois le projet trans-
féré a Polytechnique, un prototype du circuit Fler était déja en cours de produc-
tion. Des retards dans sa fabrication, ainsi que certaines erreurs décelées dans le
design original, nous ont cependant poussé & envisager d’autres approches pour le
développement et la validation des modules électroniques et logiciels du STM. En
collaboration avec Marc-Antoine Fortin, étudiant & la maitrise au Laboratoire, un
prototype pour chacune des parties électroniques du STM fut fabriqué & ’aide des

machines de prototypage rapide de circuits de la compagnie LPKF.

Ne disposant pas du premier prototype du circuit (une version grande-échelle que
nous avons baptisé «MacroWalker») réalisé au MIT lors de la premiere itération
de design, il fut décidé de d’abord tester la fonctionnalité & I’aide d’une carte
d’entrées/sorties numériques contrdlée par un ordinateur. Plusieurs modeles de ces
cartes existent actuellement sur le marché, National Instruments étant siirement
parmi les plus gros fabricants. Les vitesses atteignables par les plus performantes
sont de I'ordre des MHz. Par contre, ceci implique de fonctionner en mode Pattern
I/0, c’est-a-dire qu’un certain patron de bits est préalablement stocké dans une
mémoire interne de la carte et, lorsque le signal de départ est donné, la carte boucle
sur ce patron a une fréquence élevée. Aucune modification au patron n’est possible
sans arréter la sortie et charger un nouveau patron en mémoire. Dans un tel mode,
il est impossible d’implémenter une boucle de controle ou la valeur de la sortie
est fonction d’une valeur lue en entrée. Dans le mode Single line, chaque bit de
sortie est controlé directement par un appel de fonction du pilote de la carte. Ceci
permet une plus grande flexibilité, mais c’est au détriment de la fréquence. En effet,
la fréquence maximale atteignable dans ce mode diminue d’une facon drastique a

cause des acces répétés au bus PCI et au processeur.

81

Vue la nature du probleme, le mode Single line doit étre utilisé. La carte d’en-
trées/sorties 8505 de la compagnie Sealevel ne posséde que ce mode, ce qui en fait
une carte tres bon marché, quoique plutot lente. Des tests maisons effectués sur un
Pentium IV 1,7 GHz ont trouvés une période minimale d’environ 30us. Avec six
groupes de huit bits, pour un total de 48 bits, pouvant étre controlés individuelle-

ment, elle possede assez de lignes pour contrdler le circuit STM.

Conscient que I'utilisation d’une carte I/O n’est pas une solution viable & long
terme, une attention particuliere fut portée a la portabilité du code. Le code spé-
cifique au matériel utilisé est encapsulé dans un ensemble de fonctions facilement
modifiables. Le reste du code est ainsi plus générique et réutilisable. Un thread

indépendant, baptisé EmuDSP, «émule» les fonctionnalités du DSP.

Ne disposant pas d'un STM commercial avec lequel valider notre propre STM, nous
nous sommes rendus au département de Physique de I'université McGill. En consul-
tant le professeur Peter Gritter, une stratégie de tests en trois temps fut adoptée.
L’assemblage mécanique réalisé par Thomas Boitani FitzGerald doit d’abord étre
validé. Pour ce faire, on utilise un vieux STM de la compagnie NanoScope. La
téte et I'électronique de ce STM sont d’abord utilisés avec notre base. La figure
3.9 illustre le montage. En plagant 1’échantillon sur notre piézo et en capturant
une image complete avec leur logiciel et électronique, on s’assure que 1’échantillon
est bel et bien en contact avec notre base de sorte que la tension (Bias Voltage)
commandée par leur controleur est bien appliquée. En utilisant leur piézo pour ba-
layer la surface et lire les valeurs du courant tunnel, on ne peut obtenir une image

que si 'assemblage mécanique est fonctionnel, sans pour autant faire appel & notre

électronique de controle.

Dans un deuxieme temps, avec le méme montage mécanique, on maintient leur piézo

immobile en XY et on utilise le nétre pour effectuer le balayage. On utilise tou-

82

STM~
Head , -Scanning
Piezo
STM
Tip ~ < 1~ Sample
. Control
Piezo —¢ electronics

Figure 3.9 Montage du test d’assemblage mécanique du STM

jours leur électronique pour la lecture du courant tunnel et le Z-Feedback, mais on
déplace I’échantillon par rapport a la pointe plutét que ’inverse. Ceci ne constitue
cependant pas un réel probleme puisque plusieurs STM commerciaux fonctionnent
de cette facon. L’image obtenue par un tel test n’a aucune signification réelle, autre
que de nous apprendre que notre logique de balayage est bonne et que I’assemblage

des microfils sur les électrodes du tube piézoélectrique est fonctionnel.

Comme dernier test, on inverse le tout premier. C’est-a-dire qu’on inverse la position
de I’échantillon pour le fixer & leur piézo & la place de la pointe STM et on fixe une
pointe a notre piézo. On utilise notre propre logique de balayage et de lecture du
courant tunnel pour capturer une image. En utilisant le méme type d’échantillon
a travers tous les tests (typiquement de l’or sur du mica), on peut comparer les
images obtenues entre elles pour le premier et dernier test. Le résultat, quoique

différent, devrait présenter de grandes similarités.

33

3.5 PiezoScan

Le type de balayage du tube piézoélectrique utilisé est couramment appelé «ba-
layage TV», ou raster scan en anglais, c’est-a-dire que le balayage s’effectue selon
deux axes : un axe rapide (fastAzis) et un axe lent (slowAzis). La position sur I’axe
rapide est mise a jour a la fréquence de balayage tandis que la position sur I'axe
lent n’est modifiée qu’a la fin d’une ligne de ’axe rapide. La figure 3.10(a) illustre
ce type de balayage dans sa forme la plus simple. D’une facon plus générale, la
direction principale du scan peut faire un angle 8 avec ’orientation XY du piézo
comme a la figure 3.10(b). La zone scannée est habituellement carrée. Le nombre de
lignes sur I’axe lent est égal a la résolution désirée en pixels pour I'image résultante.
Les valeurs de 128, 256 ou 512 sont courantes dans 'industrie. Sur I’axe rapide, la
moyenne de plusieurs lectures est utilisée pour chaque pixel. Ce nombre dépend de
la fréquence de balayage, mais avoisine habituellement 40[52]. Afin d’obtenir une
plus grande précision sur les données, il est commun d’effectuer un aller-retour sur
une méme ligne avant de poursuivre le long de ’axe lent. Ce mode porte le nom
de mode Retrace, par opposition au mode Trace ot chaque ligne n’est parcourue
qu’une seule fois. Le mode Retrace permet de comparer la topographie & ’aller et
au retour d’'une méme ligne. Elles devraient théoriquement étre identiques mais
Phystérésis et le fluage (creep) du piézo, sans compter le bruit dans le systéme,

peuvent altérer les résultats.

Le tableau 3.5 présente une liste des différents parametres régissant un scan du
STM. En fonction des parametres fournis tels que la taille de la surface & imager,
Pangle et la fréquence du scan ainsi que le décalage du centre de I'image, une
décomposition en incréments sur I’axe des X et Y de I’axe rapide et lent doit étre
calculée. Les équations 3.31 et 3.32 présentent le calcul des incréments en mode

Retrace.

84

Tableau 3.5 Parametres nécessaires au balayage du piézo

| Type | Nom | Description
scanSize Taille de la surface imagée.
scanFreq Fréquence du scan.
. scanAngle Angle de ’axe rapide par rapport a I’horizon-
Fournis s .
tale. (considéré par rapport aux électrodes 1
et 3 du piézo)
X0ffset Décalage du centre du scan selon ’axe des X.
YOffset Décalage du centre du scan selon 'axe des Y.
scanRes Résolution en pixels de I'image de la surface.
Correspond directement au nombre d’incré-
ments sur 1’axe lent.
scanGain Gain a appliquer aux tensions sortant du
DAC. Gere la taille maximale du scan.
FastXIncr Composante sur I’axe des X du piézo de I'in-
crément a appliquer a ’axe rapide.
, FastYIncr Composante sur I'axe des Y du piézo de I'in-
Calculés . X . R .
crément a appliquer a 'axe rapide.
SlowXIncr Composante sur I’axe des X du piézo de I'in-
crément a appliquer & 'axe lent.
SlowYIncr Composante sur I’axe des Y du piézo de l'in-
crément a appliquer a l’axe lent.
NbFastAxisUpdates | Nombre de fois qu’il faut ajouter I'incrément
rapide pour atteindre la taille du scan spéci-
fiée.

85

slowAXxis

—

| JastAxis _ |

i
F

(a) Balayage TV (b) Balayage avec un angle

Figure 3.10 Balayage X-Y du piézo du STM

2 x scanSize x scanFreq

tAzisIner = 3.31

fastAzisner Fréquence du DAC (3:31a)

fastXIncr = fastAzisIner x cos(6) (3.31b)

fastYIncr = fastAzisIncr x sin(6) (3.31c¢)

scanSize

bFastAzrisUpdates = ————— 3.31d

nhbastAmsLpaates fastAzisIner ()
. scanSize

slowAzisIner = ———— (3.32a)
scanRes

slowX Incr = slowAzisIner x cos(6) (3.32b)

slowY Incr = slowAzisIner x sin(f) (3.32¢)

Ces valeurs sont de natures réelles (points flottants), elles ne peuvent donc pas étre

mémorisées telles quelles par le DSP. Mais puisque ces valeurs sont constantes &

86

I'intérieur d’un méme scan, il est possible de les précalculer dans I'ordinateur de
controle et de n’envoyer que le résultat des calculs, déja converti en virgule fixe, au
robot. Ceci permet une plus grande précision de calcul et libere de précieux cycles
de traitement du DSP embarqué. Mieux encore, il ne sert & rien de mémoriser la
mesure de I'incrément puisque celle-ci devra étre convertie entre 0x0000 et OxFFFF
pour interfacer avec le DAC. On peut donc immédiatement convertir les incréments
en valeurs a virgule fixe sur 16 bits du DAC avec I’équation 3.33. Il faut noter
qu’une tension de OV équivaut a une sortie 0x8000 du DAC, ce qui correspondant
a la position de repos du piézo. Lors du calcul d’une position par rapport & cette
position de repos, il ne faut pas oublier d’ajouter le décalage de 0x8000 & la valeur

obtenue par ’équation 3.33.

v _ dpc o Sortie maximale du DAC
PSP = | Déflexion maximale du piézo Résolution du DAC
dpc 2,5V
N [1 7438um X 25V —(-25V) (3:33)
’ 276 dzv.

Il se peut que I'une des valeurs d’incréments obtenue pour V, et V, soit égale &
zéro a cause du manque de précision avec 16 bits. Ceci se produit généralement
lorsqu’un angle de scan trés proche d’un axe principal est demandé. Pour régler
le probleme, il suffit de garder un plus grand nombre de décimales binaires en
multipliant successivement par deux la valeur réelle jusqu’a 'obtention d’une partie
entiere non nulle et de mémoriser le nombre de décimales gardées. Chaque décimale
de plus correspond & une mise & jour qu’il faudra sauter avant d’incrémenter la
position. Ce nombre de sauts de périodes est mémorisée dans une variable nommée
NbFastVxUpdatePeriod (idem pour V;). Un phénomeéne de crénelage (aliasing)
apparalt alors comme a la figure 3.11. La trajectoire voulue a une forme en dents
de scie puisque la fréquence de mise & jour sur les deux axes n’est pas la méme. A

cause de la non linéarité du LSB du DAC, la plus petite valeur d’incrément non

87

Figure 3.11 Phénomene de aliasing

slowAXxis

| maxScanSize >

Figure 3.12 Coordonnées du début d’un scan STM

nul acceptable devrait étre de deux.

Il est facile de se perdre & travers les multiples systémes de coordonnées utilisés.
L’origine d’'une image (le point P sur la figure 3.12) est son coin supérieur-gauche et

correspond également & la position du début du scan STM. Ses coordonnées sont :

nbFastAzisUpdate scanRes
X0 t— F Incr - ————
Jfse 2 x NbFastVzUpdatePeriod x FastVzIner SlowVziIncr’
FastAzisUpdat
YOFfset nbFast AzisUpdate « FastVylner — scanRes

2 x NbFastVyUpdatePeriod SlowVylIncr

Une fois les valeurs transférées au DSP, I'algorithme de balayage est assez direct.
L’important est de maintenir un balayage aussi fluide que possible. Pour se faire,

on privilégie les mises & jour petites et rapides du DAC. Un timer déclenche pé-

88

riodiquement une routine d’interruption se chargeant d’activer le signal LOADDACS.
Sa période est fixée par la fréquence d’utilisation du DAC, soit & chaque 10us.
Le calcul et I’écriture des nouvelles valeurs de V,, et V,, doivent donc étre terminés
avant la prochaine interruption du timer. Il est également important de noter qu’on
ne doit écrire une valeur dans le DAC que si elle doit étre «activées» au prochain

LOADDACS puisque celui-ci est commun au quatre sorties du DAC7644.

L’algorithme de balayage continu en mode Retrace est le suivant :

Si un changement de ligne sur 1’axe lent est signalé
Si la direction verticale est présentement vers le bas
Ajouter les incréments lents & Vx et Vy
Incrémenter le compte des mises & jour sur 1l’axe lent
Si le compte est égal & la résolution de 1l’image & prendre
Changer de direction vers le haut.
Sinon
Soustraire les incréments lents a Vx et Vy
Décrémenter le compte des mises & jour sur 1’axe lent
Si le compte est égal a zéro
Changer de direction vers le bas.
Ecrire les valeurs Vx et Vy sur le DAC
Sinon
Incrémenter le compte de période sautées depuis la derniére mise
a jour pour Vx et Vy
Si dans la direction «tracey
Si le nombre de périodes & sauter == nombre de périodes sautées
pour Vx
Ajouter 1’incrément rapide a Vx
Réinitialiser le compte de périodes sautées a zéro.
Ecrire Vx sur le DAC

Si le nombre de périodes & sauter == nombre de périodes sautées
pour Vy

Ajouter 1’incrément rapide a Vy
Réinitialiser le compte de périodes sautées a zéro.
Ecrire Vy sur le DAC
Si Vx ou Vy a été modifié
Incrémenter le compte de mises & jour sur 1’axe rapide

89

Si la ligne est complétée
Changer de direction vers la direction «retrace»
Sinon
Si le nombre de périodes a sauter == nombre de périodes sautées
pour Vx
Soustraire 1’incrément rapide a Vx
Réinitialiser le compte de périodes sautées a zéro.
Ecrire Vx sur le DAC
Si le nombre de périodes a sauter == nombre de périodes sautées
pour Vy
Soustraire 1’incrément rapide a Vy
Réinitialiser le compte de périodes sautées & zéro.
Ecrire Vy sur le DAC
Si Vx ou Vy a été modifié
Décrémenter le compte de mises & jour sur 1l’axe rapide
Si le compte des mises & jour sur l’axe rapide == zéro
Changer de direction vers «tracey
Si le changement de ligne sur 1’axe lent est activé
Signaler un changement de ligne sur 1l’axe lent.

3.6 Z-Feedback

Le Z-Feedback du microscope se décompose lui-méme en deux : 'approche initiale
et le contrdle PID. Tout microscope & effet tunnel doit dans un premier temps s’ap-
procher de I’échantillon & observer et établir un courant tunnel avant de commencer
a scanner. L’approche initiale ou coarse approach en anglais a comme objectif de
trouver ce premier courant prét de la référence du PID en approchant graduel-
lement la pointe STM vers la surface du matériau. Une fois un courant tunnel
adéquat observé, le DSP bascule en mode Z-Feedback proprement dit et le PID

régularise la distance de sorte & garder le courant tunnel constant.

Lorsque le NanoWalker est en mouvement, la pointe du STM est relevée & une
distance sécuritaire de plusieurs dizaines de microns. Vue la faible portée du tube

piézoélectrique supportant la pointe, un deuxiéme systéme d’approche est néces-

90

saire pour combler cette distance initiale. Le design initial prévu par le MIT avait
la forme d’un inchworm actuator, un systéme de pinces capable de descendre ou
monter le piézo. Par contre, ce design fut par la suite éliminé & cause d’une trop
grande complexité mécanique. A ce jour, le systéme de remplacement n’est pas

encore connu. L’algorithme d’approche peut néanmoins étre élaboré.

Centrer piézo en X-Y (Appliquer Vx=Vy=0x8000)
Appliquer Bias Voltage
Centrer piézo en Z (Appliquer Vz=0x8000)
Lire courant tunnel
Tant que Coarse Approach n’est pas au
max de son allongement ET mode == Tip Engage
Centrer piézo en Z
Allonger Coarse Approach d’un cran
Lire courant tunnel
Tant que tunnelC == 0 QU piézo pas rendu au max de 1l’allongement
Incrémenter Vz d’un cran
Lire courant tunnel
Si tunnelC != 0
Si allongement du piézo < seuil d’élongation tolérée
Passer en mode ZFeedback

Le seuil d’élongation tolérée est arbitraire. Il sert & garantir que le piézo ne soit pas
completement allongé avant de passer en mode de Z-Feedback ot il ne pourrait alors
aucunement compenser pour les variations topographiques. Soixante-dix pourcents

semble une valeur acceptable pour la premiere implémentation.

L’équation du contrdleur PID telle que fournie par Thomas Boitani FitzGerald[11]

a la forme suivante :

91

Vigr = Vo +err (K + KT) + erriy (—Kp)

~-K
+ In (Itunneli) ('Td)

9k (3.34)
+In (]tunneli_l) <"T—d)

-K
-+ In (Itunneli_z) < T d)

ou lerreur err; = In(Lypner,) — In(Isetpoint), Kp, Ki et K, sont fixés par 1'utili-
sateur et T est la période d’échantillonnage propre au systeme. Les termes entre
parentheses sont entierement déterminés par des valeurs connues avant d’envoyer
au robot la commande de scanner. Il est donc possible de procéder de la méme
fagon que pour les parameétres du PiezoScan, c¢’est-a-dire de tout précalculer dans
le PC et de convertir le résultat en virgule fixe pour utilisation directe par le DSP.
La précision finale doit étre celle de V, a cause des propriétés d’addition de termes

a virgule fixe.

3.7 Résultats

La premiere série de tests réalisée & 1’Université McGill au courant du printemps
2003 a permis d’établir que le montage STM reliait correctement 1’échantillon &
la base de sorte que le Bias Voltage pouvait étre appliqué. Par contre, de graves
problemes de bruit électroniques, vraisemblablement dus & des boucles de mise a la

terre (ground loops) sont venus mettre un terme aux deuxiéme et troisieme étapes

de tests.

Ces problemes de boucles surviennent lorsque les trois sources d’alimentation né-

cessaires sont branchées simultanément. En effet, trois sources d’alimentation dis-

92

Figure 3.13 Montage utilisé lors des tests STM & McGill

tinctes étaient utilisées : le contréleur NanoScope, I'ordinateur avec la carte I/O et
le bloc d’alimention des DC-DC du circuit STM. Le fort bruit électronique engendré
rend impossible I'obtention d'un courant tunnel. En forcant des tensions manuel-
lement sur les électrodes du piézo, sans passer par la carte I/O, un mouvement en
Z a pu étre obtenu. Mais, il ne fut pas possible de valider de facon expérimentale
I'ensemble du STM. Les tests de I’algorithme de balayage ont donc dii se limiter a

des tests avec un analyseur logique.

Comme prévu, la carte d’entrées/sorties s’est révélée étre beaucoup trop lente pour
controler adéquatement le STM. Des délais non négligeables entre la sortie des
différents groupes de huit bits viennent méme introduire des glitchs sur les lignes
de données. Ces délais peuvent atteindre 3us, ce qui est bien au-dessus du temps
de maintien (hold time) de 100ns du DAC et de PADC. Par exemple, lors d’un
changement de ligne du balayage, ’adressage du DAC survient 3us apres le chan-
gement de données sur le bus et 1'adresse demeure 3us de plus & la fin, causant

ainsi I'affectation d’une valeur erronée au DAC.

Pis encore, on remarque qu’a chaque 15, 6ms environ, un délai plus long qu’a ’ha-

93

bitude (jusqu’a plusieurs centaines de millisecondes) se produit. Cette périodicité
semble due au quantum de temps que Windows alloue au processus avant de forcer
I'appel de 'ordonnanceur. L’augmentation de la priorité du processus et du thread
du EmuDSP ne change en rien ce délai. Il est donc totalement impossible de penser

avoir un bon controle sur le STM avec une telle carte d’entrée/sorties.

3.8 eZdsp

Le Laboratoire s’est donc doté d’une carte de développement pour DSP : un module
eZdspF2812 de la compagnie Spectrum Digital. Ce DSP, le F2812 de TI, bien plus
récent que le TMS320C25-50 possede certaines similarités avec lui, notamment le
fait d’étre 16-bits sans instruction & virgule flottante. La carte de développement
I'opere a une fréquence de 30M H z, bien qu’il puisse fonctionner jusqu’a 150M hz. 11
possede un port d’interface externe respectant la temporisation ISA, ce qui en fait
une interface parfaite pour communiquer avec le TIR2000 qui fonctionne également
selon cette norme. Divers parametres permettent de configurer le nombre de cycles
de délai entre les différents signaux de contréle ISA : CS, R/W, I'adresse et les
données. Ce port ne peut cependant pas étre utilisé pour adresser le DAC et I’ADC.
La figure 3.15 montre la différence entre les signaux d'un bus ISA et les signaux du
DAC et de ’ADC. L’arrivée du CS par rapport & R/W y est inversée. Dans le circuit
du NanoWalker, le CPLD a la responsabilité de convertir les signaux d’adressage
du DSP en un format respectant les chronogrammes de chacune des composantes.
Ne disposant pas d’un tel mécanisme, des ports GPIO sont donc utilisés pour
interfacer avec le DAC et PADC. Aucune RAM externe n’est nécessaire puisque le

F2812 possede une mémoire incorporée (on-chip memory) de 18K mots de 16 bits.

La communication avec le DSP est completement différente de celle avec le EmuDSP

puisqu’il ne situe pas dans le méme espace mémoire. Le F2812 supporte une inter-

94

~Cs cs L T
e SR I e - >

RPW S RR~W /
(a) TIR2000 (b) DAC/ADC

Figure 3.15 Différence dans les chronogrammes pour le TIR2000 et le DAC/ADC

face de communication sérielle (SCI) & 3, 3V selon le standard RS232. En attendant
le fonctionnement du pilote infrarouge, cette communication lente & 19200 bps est
utilisée. Tout ordinateur personnel est équipé d’un tel port série, mais fonctionne
avec une différence de potentielle de 12V. Un petit circuit de conversion de niveaux

électriques basé sur un MAX232 de la compagnie Maxim est donc nécessaire.

Les circuits d’alimentation et de contréle du STM sont refaits et les modules de
PiezoScan et de Z-Feedback sont portés sur le DSP. La fréquence d’utilisation du
DAC est accélérée a sa fréquence maximale, soit 100K Hz. Un timer génére une
interruption périodique a chaque 10us. Sur cette interruption, le signal LOADDACS
est activé. A 30M Hz, une période de 10us ne représente que 300 cycles. Dans ce
cours lapse de temps entre deux interruptions successives, on doit étre en mesure de

calculer la position future du piézo et d’écrire les valeurs Vx et Vi dans le DAC. La

95

Figure 3.16 Révision du circuit STM

figure VL.1 de 'annexe VI démontre que c’est possible, mais que le temps restant
est plutdt mince. Compilé en mode release, il reste 5,4us entre la fin de Vécriture

sur le DAC et le prochain LOADDACS.

3.8.1 Communication infrarouge

Vue le peu de temps disponible pour un traitement autre que le balayage du piézo,
une crainte pour I'intégration de la communication infrarouge est soulevée. Avec
I'aide d’Eric L'Heureux, stagiaire au Laboratoire, un prototype du circuit de trans-
mission IR du robot est construit pour implémenter la communication sur la carte
de développement eZdspF2812. Parallélement, Serge Ngakeng est mandaté pour
développer un pilote Linux pour la carte infrarouge Actisys IR2000B/L.

L’allure général d’une trame IrDA 1.1 est reproduite & la figure 3.18. Le TIR2000 se
charge «d’épurer» la trame regue afin de ne placer que les données utiles dans son
FIFO de réception. La taille maximale d’une trame est de 2048 octets. La réception

et la transmission fonctionnement entiérement sur des interruptions. En réception,

96

Figure 3.17 Prototype du circuit infrarouge

Preambule Start Flag Frame Data CRC-32 Stop Flag

Figure 3.18 Trame IrDA 1.1

le TIR2000 possede un FIFO interne de 64 octets pour contenir des données recues
en attendant que le processeur maitre viennent les récupérer. Lorsque ce FIFO
dépasse un certain seuil préconfiguré, une ligne d’interruption est activée. Le seuil

utilisé lors de ces premiers tests est de 56 octets.

Lorsqu’une interruption survient, le DSP sait que le FIFO contient au minimum 56
octets qu’il peut lire sans craindre de créer une erreur de perte de données (buffer
underrun). A I'inverse, le DSP doit réagir rapidement & cet événement afin d’éviter
que le FIFO ne déborde et lance une erreur de buffer overrun. Dans un cas comme
dans l'autre, le TIR devrait étre réinitialisé avant d’étre & nouveau apte a recevoir

ou envoyer des données.

Le TIR2000 n’active qu’une seule ligne d’interruption pour ’ensemble des événe-
ments. L’identification de la cause se fait par ’analyse du registre IIR (Interrupt

Identification Register) a I’adresse 0x2. Les 16 adresses de registres du TIR se par-

97

tagent d’ailleurs diverses fonctions selon le mode dans lequel il est configuré ou s'il

s’agit d’une lecture ou d’une écriture.

Le DSP retire donc du FIFO le nombre d’octets correspondant au seuil & chaque
fois que l'interruption IIR[0] arrive, plagant les octets nouvellement recus & la
suite des octets déja lus. Par contre, la fin d'une trame n’arrive pas forcément sur
le seuil du FIFO. Lorsque le EOF (End of Frame) est détecté par le TIR, il active
Vinterruption IIR[7] et le bit LSR[5]. Le DSP passe alors dans le mode de lecture
octet par octet. Un octet est lu a la fois jusqu’a ce que I'indicateur LastByte (bit
2 du registre IIR et bit 2 du registre LSR) se leve. La réception est alors terminée,
les quatre derniers octets sont la valeur du CRC de la trame et ne font donc pas

partie intégrale du message.

Pour tester le mécanisme de réception avant méme que ne soit achevé le méca-
nisme de transmission du c6té PC, un ordinateur portable doté d’un port IR et un
émetteur USB furent utilisée. Les paquets échangés lors d’un transfert de fichier
entre I'ordinateur et le portable suivent le protocole FIR. En placant le récepteur
HSDL-3602 du circuit prototype entre les deux stations, la communication peut
étre interceptée. Un analyseur logique déclenché par Parrivée de l'interruption du
FIFO affiche les signaux de contréle échangés entre le DSP et le TIR. En trans-
férant un fichier dont le contenu est connu d’avance, il est possible de valider la
réception non corrompue des données. Un long fichier ASCII ne contenant que des

0 (valeur hexadécimale 0x30) est utilisé.

La figure VI.2 présente l'allure des signaux de contréle du TIR lors de la récep-
tion continue des données IR. On y voit que sur 'activation du IRQ, de multiples
lectures du FIFO d’entrée sont effectuées. S’ensuit une pause jusqu’a larrivée du
prochain IRQ. La présence de cette pause assure que la lecture du FIFO est plus

rapide que son remplissage, condition essentielle pour une communication efficace.

98

La durée totale pour lire les 56 octets est de 56,5us. Le code utilisé durant ces
tests était, cependant, compilé en mode debug, c’est-a-dire qu’aucune optimisa-
tion n’était effectuée. L’optimisation du code meéne généralement & des gains de

performances significatifs.

La figure VI.3 présente la réception d’une fin de trame. On y voit clairement le
passage du mode de lecture par seuil du FIFO au mode octet par octet sur le bus
d’adresse. En effet, en mode octet par octet, chaque lecture du FIFO (I’adresse
0x0) est séparée d’une interrogation du bit 5 du registre LSR (& I'adresse 0x5). Si
I'on effectue un zoom sur la fin d’une trame (voir Figure VI.4, on peut voir que
les lectures arrétent lorsque la valeur du registre LSR est de 0xE, c’est-a-dire que le
bit LastByte est & 1. Les quatre derniers octets lus du FIFO (0x89, 0x10, 0x8F et

0xEE) sont la valeur du CRC et doivent étre retirés du message final.

En mode de transmission, le fonctionnement du TIR est similaire. A mesure que
les données sont transmises, le FIFO de sortie se vide. Lorsqu’il franchit un certain
seuil, 'IRQ TX FIFO below threshold (IIR[1]) est activé. Un remplissage en rafale
(burst) du FIFO est effectué pour s’assurer qu'une erreur de buffer underrun ne
survienne pas. Cette suite d’actions continue jusqu’a ce que la fin de la trame soit
envoyée. L'indication de la fin de la trame se fait soit automatiquement en fonction
de la longueur des données transmises, soit en spécifiant explicitement la fin par

I’écriture du bit EOT (ACREG[0]) juste avant d’écrire le dernier octet de la trame.

La majorité des messages envoyés par le NanoWalker seront courts, & I’exception
des messages de données STM qui pourraient atteindre quelques centaines d’octets.

Le mode de terminaison Set-EOT bit semble le plus flexible et est celui choisi.

Comme pour la réception, deux avenues sont possibles pour gérer les IRQ. Soit

qu'un haut seuil du TX FIFO cause 'arrivée peu fréquente d’interruptions, mais

99

qu’a chaque fois, le nombre d’octets a lire soit grand ou, & l'inverse, qu’un petit seuil
cause plusieurs interruptions plus rapides & traiter. L’influence sur le PiezoScan et

les autres fonctionnalité du DSP est particulierement d’intérét.

La figure VI.5 montre clairement que le remplissage en rafale du TX FIFO lors de
I'utilisation d’un seuil de 48 octets monopolise le bus de données pendant environ
39us. Pendant ce temps, les mises & jour du PiezoScan sont retardées et un total
de quatre périodes sont manquées. Les LOADDACS sont quand méme émis puisqu’ils

sont synchronisés sur une interruption du timer.

L’effet d’'une diminution du seuil & 8 octets (voir Figure VI.6) est notable, le temps
nécessaire pour remplir le FIFO passe & environ 10us, mais revient a toutes les
15us a peu pres, soit beaucoup plus rapidement que les 120us lorsqu’un seuil de
48 octets est utilisé. Par contre, on remarque toujours que les mises & jour du
PiezoScan souffrent de la transmission infrarouge, I'écriture de V;, et V, n’étant pas

capable d’étre effectuée & tout coup avant l’arrivée du prochains LOADDACS.

Plus amples tests devront étre faits sur I'intégration de la communication IR et du
contréle du STM puisqu’il s’agit ici des deux taches aux contraintes temporelles les
plus strictes. Diminuer la fréquence de balayage du piézo & 5K H z ou moins est ’op-
tion la plus simple pour respecter ces contraintes, mais une meilleure segmentation

et optimisation du code est a étudier.

Il ne faut pas non plus oublier que le DSP du NanoWalker fonctionne & une fré-
quence de 18MHz supérieur a la fréquence du F2812 sur la carte eZdspF2812. La
présence du CPLD comme intermédiaire entre les composants, le partage du méme
bus de données et d’adresses modifieront également 1’allure des chronogrammes ob-
tenus de I'analyseur logique. S’attarder sur l'intégration du F2812 pourrait s’avérer

inutile pour I'atteinte de I'objectif du projet.

100

Au printemps 2004, le «MacroWalkers, le circuit prototype du NanoWalker fabri-
qué par le MIT, est arrivé au Laboratoire. Les tests des algorithmes et code du
STM et IR ont délaissé le F2812 pour migrer vers ce circuit qui présente, lui aussi,
des différences majeures par rapport au design final du NanoWalker, mais qui lui

est néanmoins beaucoup plus fidele.

101

CHAPITRE 4

POSITIONNEMENT ATOMIQUE

Le but du projet NanoWalker est d’effectuer des opérations au niveau atomique
mais, pour y arriver, il faut d’abord étre capable de se positionner & cette échelle.
Ce chapitre présente les efforts mis en ceuvre pour relever ce défi de taille. Le fruit

de ce travail fut d’ailleurs le sujet de deux articles de conférences (voir annexe II).

Diverses technologies existantes permettent d’obtenir un positionnement de préci-
sion. L’interférométrie au laser est 'une des plus connue et des plus couramment
utilisée. Elle fait appel aux patrons d’interférences produits par un laser réfléchi sur
un objet distant lorsque recombiné avec le laser d’origine. L’analyse du patron d’in-
terférence permet de déterminer le changement de phase subi par la lumieére et ainsi
de calculer la distance qu’elle a parcourue. La précision atteignable est de 'ordre
du nanometre[15], mais diverses raisons rendent cette technologie inapplicable dans
le cadre du projet NanoWalker. En effet, pour positionner un objet, celui-ci doit
réfléchir le laser incident vers I’émetteur. Un miroir parfaitement perpendiculaire
doit donc y étre fixé. Etant un robot mobile, le NanoWalker ne peut garantir la
perpendicularité a tout moment. Pis encore, une ligne visuelle directe doit étre
maintenue avec I’émetteur. Dans une flotte d’une centaine de robots, des obstruc-
tions visuelles momentanées sont une quasi-certitude. Certains robots se verraient
donc, par moments, impossible & positionner. Cette situation est inacceptable. Le
systéme de positionnement basé sur le PSD ne souffre pas de ces limitations puis-
qu’il ne fonctionne pas dans le plan des robots comme 'interférométrie au laser (voir
Figure 4.1). Par contre, le PSD n’a qu’une précision de £75um. A cette échelle,

le positionnement atomique est encore bien loin. A titre d’exemple, un atome de

102

Figure 4.1 Apercu du systeme de positionnement global. Le PSD ne fonctionne pas
dans le plan des NanoWalkers

carbone possede un rayon atomique de 77,2pm, soit prés de 1 000 000 fois plus
petit. D’autres systemes de meilleure résolution doivent donc étre jumelés au PSD
pour espérer obtenir un positionnement atomique. La principale contrainte pour ce
nouveau systeme est simple : aucune modification physique ne peut étre apporté au
NanoWalker. Il doit donc étre basé sur la microscopie & effet tunnel. Le STM ana-
lyse des surfaces, le systeme de positionnement multi-stades développé doit donc
reposer sur un principe d’analyse de caractéristiques topographiques préalablement

gravées dans un matériau.

Au centre de ce systeme se trouve un matériau bien particulier sur lequel les atomes
seront littéralement comptés. Le Highly Oriented Pyrolytic Graphite (HOPG)[29,
61, 31] est un matériau artificiel entiérement fait de carbone. L’agencement hexa-
gonal dans le plan XY de ses atomes lui donne une surface plane trés résistante

a la traction. Par contre, son empilement en feuilles dans I’axe des Z fait de lui

103

un matériau tres facile a «peler». Son principal intérét se situe dans la régularité
de sa structure atomique qui présente tres peu de défauts. Lorsque clivé adéquate-
ment, des zones peuvent se retrouver atomiquement planes sur plusieurs microns.
La figure 4.2 illustre la structure atomique du HOPG. La distance entre deux
atomes consécutifs est de 142pm tandis que la distance entre deux couches est de
334,8pm. Toutes ces caractéristiques font du HOPG un matériau de prédilection

pour les microscopes-sondes a balayage (SPM) en général.

Plusieurs ont suggéré 1'utilisation du Si7x7 comme substrat au lieu du HOPG. Tout
comme le HOPG, le silicium est conducteur et peut étre imagé au STM, mais le
silicium s’oxyde rapidement & I’air libre. Cet oxyde isolant perturbe la régularité
de sa structure atomique et rend impossible ’obtention d’un courant tunnel. Le
NanoWalker évolue dans une atmosphére d’hélium, mais des traces d’oxygene sont
toujours présentes. Le HOPG s’oxyde aussi, mais trés lentement et & une tempéra-
ture tres élevée[18], ceci ne constitue donc pas un réel probléme dans les conditions
d’utilisation actuelles. Un autre inconvénient du silicium est la grande quantité de

défauts présents sur la surface de ses cristaux.

La figure 4.3 présente une image STM de la structure atomique du HOPG. Les
atomes individuels sont clairement visibles. En fait, seulement la moitié des atomes
réels sont observables. Comme 1'a expliqué Hembacher[31], le STM ne permet de
«voir» que les atomes de carbones possédant un voisin directement sous eux (les
atomes en gris sur la figure 4.2). La densité de charge des autres atomes ne semble
pas suffisante pour étre imagée correctement. Ce n’est qu’avec un microscope &
force atomique (AFM) qu'’il a réussi & observer la présence de ces atomes cachés.
Ce n’est cependant pas un probléme puisqu’il y fut démontré qu’on peut utiliser
la structure «partielle», mais réguliere, du HOPG pour compter des atomes et
ainsi référencer une position.[39] Deux axes peuvent étre superposés & la structure

atomique et utilisé comme référentiel afin d’établir un systéme de coordonnées. Le

104

!/

\\; /
246p /

Figure 4.2 Structure atomique du HOPG

travail a faire est clair : décomposer progressivement une zone carrée de 150um en
plus petites surfaces de travail ot le STM pourra compter des atomes. Plusieurs
stratégies furent envisagées pour accomplir ceci. Deux ont été testées et une a été

retenue.

4.1 Etapes de positionnement

Un positionnement en quatre étapes est élaboré. La premiére est celle du PSD.
Durant I'été 2002, la précision espérée pour le PSD était de =15um, mais les tests
de Eric Aboussouan[1] ont plus tard démontré que ce n’était pas réalisable. La pré-
cision réelle permet de positionner adéquatement un NanoWalker au-dessus d’un
porte-échantillon du Powerfloor. La pointe de son STM se trouve alors dans une
zone carrée de 150um d’aréte, ’atome recherché se situe quelque part & 'intérieur
de ce carré. Mais comme expliqué au chapitre 3, la plage dynamique du piézo du

STM du NanoWalker n’est cependant que de +1,7438um en XY si 'on souhaite

106

B

Figure 4.3 Image STM atomique du HOPG

préserver une certaine marge de manoeuvre sur ’axe des Z. L’algorithme IAPA[58],
développé conjointement avec Pierre-Alain Dumas et Marc-Antoine Ducas et pré-
senté en Nouvelle Orléans lors de la conférence IEFE International Conference on
Robotics & Automation 2004, vise & palier aux lacunes du PSD et & placer la pointe
du microscope a 'intérieur d’une grille d’une trentaine de microns de c¢6té conte-
nant 'atome cherché. Cette grille, dont les premieres ébauches furent présentées &
la conférence canadienne sur le Génie Electrique et Informatique 2003[59], constitue
la troisitme étape de positionnement. Son but est de fragmenter le HOPG en plu-
sieurs zones de travail uniquement identifiables oli le STM du robot peut travailler.
La dimension des zones de travail est contrainte par la réalité du NanoWalker. La
zone de travail et son code d’identification doivent étre compris & I'intérieur de
n’importe quel scan aléatoire du STM. Il faut cependant noter que les principes
développés ici demeurent conceptuellement indépendants du projet NanoWalker.

Celui-ci ne joue le réle que de premier contexte d’implémentation. La généralisa-

106

tion du travail réalisé & tout appareil muni d’'un STM, et méme d’'un SPM, est

possible.

4.1.1 Code binaire

En partant de I'hypothese que le STM est, principalement & cause des non linéarités
de son piézo dans le plan XY, mieux adapté pour des mesures de profondeur que
des mesures de largeur, les premiers essais de décomposition tentent de mettre ceci
a profit. La surface de HOPG est fragmentée en une matrice de fenétres de travail
identifiées & 1’aide de codes binaires. Un code est formé de bits rectangulaires gravés
a différentes profondeurs dans le matériau. Quatre profondeurs sont nécessaires.
Un bit de début, trés profond, identifie le sens de lecture du code. Chaque bit est
séparé par un «espace» gravé a une profondeur moyenne. Les «zéros» sont gravés
a une profondeur se situant entre les espaces et le bit de début, tandis que les
«uns» sont représentés par une zone non gravée du matériau (voir Figure 4.4).
La figure 4.5 présente un exemple de fenétre avec le code associé. Chaque fenétre
mesure au total 4, 0um et son code binaire est gravé sur chacune des faces de sorte
que n'importe quel scan du STM puisse imager au minimum un code complet.
L’analyse de I'image résultante permet de connaitre la position du STM au dessus

de la matrice de fenétres totalisant 32um (voir Figure 4.6).

La gravure de cette grille sur le HOPG, dont la largeur des lignes atteint parfois
quelques dizaines de nanometres seulement, nécessite une technologie de pointe.
Le faisceau d’ions focalisés (FIB)[2, 45, 36| est choisi pour sa facilité et sa rapidité
de prototypage a faible coit. En effet, bien connu du monde de I’électronique, le
FIB permet de graver directement un échantillon sans avoir recours & un masque
maitre comme en lithographie conventionnelle. Son fonctionnement est relativement

simple : des ions de gallium bombardent une surface, ce bombardement pulvérise

107

S

i -

ong,

Figure 4.4 Section d’un code binaire Figure 4.5 Fenétre identifiée par son code
binaire (en noir est le matériau gravé)

i
Rt

b
e T R
T

Figure 4.6 Matrice de 8 x 8 fenétres binaires

108

littéralement le matériau frappé. Des ions secondaires, des atomes et des électrons
secondaires sont délogés, captés et analysés résultant en une image du matériau.
Cette technique d’imagerie est destructive puisqu’elle altére 1’état de la surface. En
jouant avec l'intensité du courant d’accélération des ions de Ga+ et avec la durée
d’exposition, la quantité de matériau retiré, donc la profondeur de gravure, peut

étre controlée.

D’autres techniques de gravure, tel I'ultraviolet extréme (Extreme UV)[57] ou la
gravure au plasma d’oxygene (Ozygen Plasma Etching)[37] permettent de graver
du HOPG, mais aucune ne semble avoir été essayée pour des patrons possédant de
longs segments droits. Une autre technique tres prometteuse, la nanoimprint litho-
graphy (NIL)[30], permet de graver de treés fines lignes sous les 10nm. Pour ce faire,
un moule précis est estampillé sur un polymere chauffé & haute température. En
refroidissant, le polymere durcit et garde la forme négative du moule. Le polymere
le plus couramment utilisé est le PMMA. N’étant pas conducteur, il ne pourrait pas
étre utilisée directement avec un STM. Une variante, le step-and-flash imprint li-
thography (S-FIL), utilise un photopolymeére organosilicié durcissant lorsque éclairé
a la lumiere UV, ce qui permet un estampillage & température de la piece. Cette
nouvelle technologie a fait une montée rapide dans le domaine de la nanofabrication
et plusieurs groupes de recherche s’y intéressent. A la connaissance des membres
du laboratoire, aucun test sur le HOPG n’existe dans la communauté scientifique.
Par contre, des tests ont démontré que le NIL est applicable sur du silicium. L’ef-
fort pour la création du masque initial est important, mais la production en série
subséquente est faite & moindre cofit que les autres techniques de lithographie. Ce
facteur financier devra étre considéré lorsque viendra le temps de graver plusieurs

grilles sur chacun des cents échantillons de HOPG intégrés au Powerfloor.

Les gravures initiales du code binaire furent effectuées au centre de caractérisation

microscopique des matériaux (CM?) de I’Ecole Polytechnique de Montréal a ’aide

109

d’un FIB Hitachi 2000A. Trois passes sont nécessaires pour graver une telle grille,
une pour chaque profondeur. Pour tenter d’obtenir le meilleur rapport d’aspect
possible, une technique de superposition des masques est utilisées. En premier, les
bits de début sont gravés a un tiers de leur profondeur finale. Ensuite, la superpo-
sition des bits de début et des bits 0 sont gravés avec les mémes parametres. Ceci
porte a deux tiers la profondeur des bits de début. Tous les masques sont gravés
en méme temps pour terminer la gravure. Dans le mode vector scan controller, un
simple fichier bitmap de 512 x 512 pixels spécifie le patron & graver. La corres-
pondance entre ce fichier et la zone gravée du matériau est fonction d’un facteur
de grossissement de la machine. Trente-deux microns est la taille de fenétre choi-
sie pour englober completement la grille. Chaque pixel de I'image représente donc
62,5nm. L’utilisation d’une plus petite fenétre améliorerait la résolution de la gra-
vure, mais des erreurs supplémentaires d’alignement seraient induites, le Hitachi
2000A ne permettant pas de programmer une séquence de gravure complexe avec

déplacements.

Les résultats obtenus de cette gravure sont décevants. A l'université de Montréal,
au laboratoire de caractérisation de matériaux (LCM) du département de Chimie,
la grille fut d’abord observée & 'aide d’un STM commercial, un Autoprobe CP de
la compagnie Digital Instruments. Mais, des problémes de bruits électroniques nous
ont poussé a utiliser un autre STM de meilleure qualité, un Multimode de la méme
compagnie (voir Figure 4.8). Le profil des codes binaires n’est tout simplement pas
visible (voir Figure 4.7). L’explication probable est que lors des trois étapes de
gravure, malgré les précautions prises, les particules délogées se déposent dans les

trous creusés précédemment et le profil se retrouve ainsi lissé.

110

5 Section Analysis

' “'“WWW»%

‘G 25 .0
1

~i
i

.

Figure 4.7 Vue de coupe d’un code binaire

S
(a) Autoprobe CP (b) Multimode

Figure 4.8 STM de la compagnie Digital Instruments (maintenant Veeco Instru-
ments)

111

4.1.2 Patron de lignes

L’idée du code binaire est donc abandonnée au profit d'une technique d’encodage
plus simple et plus robuste a 1’étape de gravure. Un patron de lignes de largeurs
variables a été congu (voir Figure 4.9). Chaque ligne d’'un ensemble horizontal ou
vertical posséde une largeur unique. Toute la grille est gravée a la méme profon-
deur, éliminant ainsi le principal probleme du code binaire. Chaque intersection
est ainsi identifiable uniquement & partir de la largeur de ses deux lignes constitu-
trices. Les parties non gravées définissent les zones de travail du STM. La gravure
de cette grille, surnommée Fine Positioning Grid (FPG), fut sous-traitée a FIB
International Inc., une compagnie californienne. Cette compagnie prétend étre ca-
pable d’obtenir une résolution de 7nm & l'intérieur d’une fenétre de gravure de
30um x 30um. La profondeur de la gravure est fixée & 100nm. Le fruit de leur
travail, imagé a 1’aide d’'un microscope a balayage électronique (SEM), est présenté
a la figure 4.10. 11 faut noter que le fait d’avoir imagé au SEM la grille constitue
une erreur. Quoique totalement non destructive, cette technique d’imagerie dépose
une couche de quelques angstréms de carbone sur le matériau imagé. Cette couche
ne suit pas la structure atomique réguliere du HOPG et rend ainsi impossible la
derniére étape de positionnement, celle du comptage d’atomes. On est présente-
ment encore & valider les algorithmes d’approche, cette mince couche de carbone
ne pose donc aucun probléme pour les tests en cours, mais cette erreur ne doit pas

se répéter dans le futur.

Lorsqu’observé avec le Multimode en mode AFM, les résultats obtenus de cette
deuxieme version de la grille sont trés prometteurs. 1’étude du profil des images
AFM avec Pierre-Alain Dumas[22] a permis d’établir que la mesure de la largeur
des lignes est suffisamment précise pour identifier de facon unique une ligne de

la grille. La figure 4.11 présente la section d’une ligne d’une largeur théorique de

112

Figure 4.9 Dimension de la Fine Posi- Figure 4.10 FPG imagée au SEM
tioning Grid. La ligne la plus mince a

une largeur de 60nm, la plus large est

de 720nm. Chaque zone de travail est de

1, 14pum.

360nm. La largeur expérimentale obtenue est de 358, 55nm. L’analyse manuelle de
toutes les largeurs d’une rangée du quadrillage semble indiquer que le processus de
détection de la position peut étre automatisé et que les résultats seront fideles aux
attentes. Le tableau 4.1 présente les résultats de 'analyse des profils. Les largeurs

ont été mesurées a partir du milieu des arrétes plutét que crétes & crétes.

On note cependant encore un probléme de fabrication. En effet, la présence de
boursouflures sur deux des quatre faces de la surface de travail (voir Figure 4.12)
semble due & un probleme de calibration du FIB Micrion 9500 utilis¢ par FIB
International. Afin de s’assurer qu'’il ne s’agissait pas d’un artéfact de pointe, trois
pointes AFM différentes ont été utilisées et angle de I’échantillon a été varié afin
de vérifier que les boursouflures perduraient. Le fait qu’elles se situent toujours du
méme c6té de I’échantillon laisse croire qu’il ne s’agit pas d’un probléme d’imagerie

AFM, mais bien d’un de fabrication. FIB International est d’accord pour dire qu’un

113

rm Section Analysis

Figure 4.11 Vue de coupe d’une ligne de la FPG imagée avec un AFM (la largeur
théorique de la ligne est 360nm)

Tableau 4.1 Résultats d’analyse des profils d’une rangée de la FPG

Ligne | Mesure 1 | Mesure 2 [Mesure 3 | Mesure 4 | Moyenne | Erreur |

60 nm | 53,37 47,20 53,18 64,88 54,66 5,34
120 nm | 125,32 | 118,79 | 118,62 | 124,48 | 121,80 1,80
180 nm | 104,72 | 19438 | 194,69 | 201,82 | 196,40 16,40
240 nm | 232,72 | 212,01 | 220,84 | 232,00 | 224,42 | -1559
300 mm | 277,11 | 272,46 | 283,52 | 255,29 | 272,10 | -27,91
360 nm | 319,91 | 317,28 | 326,64 | 326,37 | 322,55 | -37,45
420 nm | 450,17 | 46543 | 449,52 | 477,06 | 460,54 40,54
480 nm | 464,50 | 445,16 | 451,46 | 453,78 | 453,73 | -26,28
540 nm | 491,80 | 511,47 | 500,30 | 514,63 | 504,57 | -35,43
600 nm | 560,27 | 558,16 | 569,80 | 543,561 | 557,96 | -42,04
660 nm | 697,70 | 711,00 | 706,23 | 696,30 | 702,81 42,81
720 nm | 734,31 | 760,52 | 767,58 | 769.34 | 757,94 37,04

114

(a) Vue 2D (b) Vue 3D

Figure 4.12 Boursouflures sur deux des quatre cotés de la FPG

mauvais alignement du faisceau d’ions pourrait expliquer de telles boursouflures.

Le département de Physique de I’Ecole Polytechnique de Montréal a, par la suite,
procédé a l'installation d’un FIB de haute qualité (un Strata DB235M) dans leur
salles blanches. Aurélien Masseboeuf[44], stagiaire frangais au Laboratoire, s’est
penché sur 'amélioration de la gravure au FIB et sur la formation de points de
référence atomique & lintérieur méme de la zone de travail. En effet, la zone de
travail de 1,14um contient a peu pres 4000 structures hexagonales de HOPG.
Pour référencer un atome unique, il faut savoir d’ot commencer a compter. Les
intersections elles-mémes sont trop chaotiques au niveau atomique pour penser en
utiliser le coin comme origine d’'un systeme d’axes. La disposition d’atomes de bore

est étudiée. Ces «gros» atomes, faciles a repérer, feraient ainsi office de balises pour

diriger le STM.

4.2 Tterative Approach Positioning Algorithm

Parallelement, un systéme d’appoint pour palier aux lacunes du PSD a di étre
développé. Ceci a donné lieu a la Coarse Positioning Grid (CPG) et a I’ Iterative
Approach Positioning Algorithm (IAPA). La FPG est placée au centre de la CPG,
une surface divisée en quatre quadrants. Chaque quadrant comporte des lignes de
largeurs différentes. Toutes les lignes d’'un méme quadrant sont de méme largeur
comme présentée a la figure 4.13. L’idée derriere IAPA est de converger progres-
sivement vers le centre de la CPG en se basant uniquement sur une mesure de
la largeur des lignes d'un quadrant et le nombre d’itérations effectuées depuis le

lancement de l’algorithme. On note trois objectifs :
1. Minimiser le nombre d’itérations nécessaires pour atteindre la FPG ;

2. Tolérer les erreurs de calibration, sur le déplacement ou sur la lecture de la

largeur d’une ligne;

3. Minimiser la complexité de l’algorithme afin de ’embarquer sur le DSP du

robot.

La taille de la CPG est régie par 'incertitude du PSD. Dans le cas présent, elle est
de 150um. Apres la premiere étape de positionnement, le STM du robot se trouve
quelque part a l'intérieur de la CPG, mais on ne peut dire o exactement. En

effectuant un scan, le robot caractérise sa situation comme 'une des trois suivantes :

1. Le STM est au dessus de la FPG, l'algorithme IAPA se termine puisque
Vobjectif est atteint et le stade de positionnement fin prend le dessus;
2. L’analyse du profil retourne le quadrant dans lequel se trouve le STM. Ce

dernier doit étre déplacé dans la direction du quadrant opposé d’une distance

d; fonction de I'itération courante;

3. L’analyse du profil est incapable de déterminer le quadrant dans lequel se

trouve le STM. Une sous-routine de gestion d’erreurs est lancée.

116

‘ 2L

2h

Figure 4.13 Dimension de la Coarse Positioning Grid

Si I'on considere pour la CPG un c6té de longueur 2L, une FPG avec un coté
de longueur 2\ et un déplacement sans erreur, le nombre d’itérations maximal

théorique pour atteindre la FPG est de

oo ()]

Ce résultat est fondé sur le méme principe qu’une recherche dichotomique. A Iité-
ration 0, le STM peut se trouver n’importe ou sur la surface 42 de la CPG. Dans le
cas moyen, la distance a parcourir pour atteindre le centre de la CPG est la moitié

de la diagonale d’un quadrant, soit —*/% Apres une itération, le STM est certain de

412

se trouver dans une surface de -3~ = L? centrée sur la CPG. Apres deux itérations,

2 . . . s 2 N cuz .
la surface est de LT, et ainsi de suite. D’une forme générale, aprés n itérations, on

veut obtenir
412

52(n-1)

22 (4.2)

117

soit la superficie de la FPG. La distance & parcourir a chaque itération est donc

di = \/5 (4.3)

ol i=1,2... est le numéro de l'itération. Un exemple d’évolution de I’algorithme est
présenté a la figure 4.14. Trois itérations sont nécessaires pour atteindre la FPG,
ce qui correspond au maximum théorique pour une grille avec un rapport de lon-
gueurs % = 5. Des simulations MATLab ont permis d’étudier I’évolution du nombre
d’itérations en fonction de la taille de la CPG. La figure 4.15 présente le résultat de
1000 essais de I’algorithme IAPA & partir de positions initiales aléatoires. On y voit
que le nombre moyen d’itérations (représenté par un cercle) se situe sous la valeur
théorique représentée ici avant ’application du plafond par une ligne pointillée. La
valeur maximale du nombre d’itérations pour les 1000 essais est illustrée par un x.

La largeur de la FPG utilisée pour l’ensemble des simulations est de 9, 18um, soit

la dimension actuelle de la FPG.

Les résultats présentés sont idéaux mais, en se déplagant, le robot peut dévier. En
considérant une erreur de ¢4 sur la distance et une erreur angulaire de e, sur 'angle
lors du déplacement, la position finale du STM peut étre n’importe ol & I'intérieur
d’un arc de cercle comme illustré a la figure 4.16. L’effet de ces erreurs sur le nombre
d’itérations est présenté a la figure 4.17. Bien que le nombre moyen d’itérations

nécessaires demeure sous la valeur théorique, la valeur maximale augmente.

Des erreurs d’identification de la position peuvent également se produire. Les causes
les plus probables sont une erreur de lecture STM ou un mauvais alignement lors
de la gravure des quadrants de la CPG. En effet, une surface de la taille du CPG ne
peut étre gravée en une seule passe de FIB tout en maintenant une résolution adé-
quate. Elle doit étre fragmentée en plusieurs petites fenétres de gravure. L’erreur

d’alignement peut parfois atteindre jusqu’a 2um. Lorsque confronté & I'impossibi-

—
QO
+
t.l
.1e
\ 8 =
20 &

A 2]
~ 8

[}
d\m

=
9 &
dt
o B
& g,

g
o=
H
ES
2o
T8
mq
&0 &
= &

119

-
-
-
-
-
-

Nb iterations
n

80 100 120 140 1(‘30
Size of CPG (um)

Figure 4.15 Simulation de I'algorithme IAPA pour différentes taille de CPG. La
taille de la FPG est fixe & 9,18 um. La ligne pointillée représente le nombre d’ité-
rations théorique avant le plafond, le cercle représente la moyenne de 1000 essais
et le x représente le nombre maximal d’itérations.

Figure 4.16 Incertitude reliée au déplacement du robot lors de I’algorithme IAPA.
Sur un déplacement d’une distance d & un angle ¢, 'erreur est de +ey et £.

120

45

Nb iterations
N
o
\

1.5¢ .

20 40 60 00 120 140 160

80 1
Size of CPG (um)
(a) eq = £1,5um, e, = x1,08"

Nb iterations
g

'
'
'
[
v
[
e

n
T
AN
\
.
\
A
P

oo @

80 100 120 140 760
Size of CPG (um)

(b) eq = £3um, e, = +1,08"

n
o
o
=]
o

Figure 4.17 Variation de l'algorithme IAPA selon différentes erreurs sur les dépla-
cements.

121

Figure 4.18 Sous-routine d’erreur de 'algorithme IAPA. j est le nombre d’erreurs
d’idenfication successives, € est une constante égale a deux fois l'erreur d’aligne-
ment.

lité d’identifier sa position, IAPA se lance dans une routine visant & déplacer le
STM selon une spirale grandissante (voir Figure 4.18). La longueur du déplace-
ment augmente progressivement a mesure que le nombre d’erreurs consécutives se
répetent. Cette spirale a pour objectif de déplacer le STM légérement et de re-
prendre un scan afin de lever 'indétermination. L’effet sur 1’algorithme peut étre
important. Dans les pires cas, celui-ci peut diverger et ne jamais atteindre la FPG.
Cette situation se caractérise par un nombre d’erfeurs d’identification successives
élevé. Lorsque détectée, on doit mettre fin & l'algorithme, se repositionner avec
le PSD et espérer avoir une meilleure situation initiale. La figure 4.19 présente le
résultat obtenu par IAPA lorsqu’une erreur d’alignement des quadrants de 1um

vient s’ajouter a l’erreur sur les déplacements.

4.3 Conclusion

Lrutilisation efficace de ’algorithme IAPA et de la FPG passe par un contrdle accru

des fonctionnalités d'un STM, ou méme d’un SPM. En effet, 'utilisation d'un AFM

122

8r x
7 X X x
[x X x
0
c
2 st x
©
hd
L]
= 4t -
a* e e
z{ L e=mT ™ ® 4
L ey L4 T
- | |
& i !] !
i i i
i i |
i i
i | i i
[1
1F i i ’
{
l P
[! i L y
20 40 80 00 120 140 160

80 1
Size of CPG (um)

Figure 4.19 Algorithme IAPA avec une erreur d’alignement des quadrants de 1um
en plus des erreurs sur le déplacement (eq = +1,5um, e, = £1,08")

est tout a fait acceptable lorsque I’on cherche & atteindre une précision de position-
nement de quelques dizaines de nanometres, ce n’est que lorsque l'on recherche
une précision atomique que le STM devient réellement nécessaire. Par contre, peu
importe I'instrument utilisé, capturer une image compléte de 512 x 512 pixels et
en effectuer 'analyse par traitement d’images n’est pas optimal, ni méme désiré.
Frédéric Nguyenphat-Therrien, & I’hiver 2003, fut mandaté d’étudier les techniques
de traitement d’images pour extraire la largeur des lignes de la FPG & partir d’'un
scan STM réel. En combinant les techniques de seuillage binaire (thresholding), de
détection d’arrétes selon 'algorithme de Canny[12] et d’extraction de lignes selon la
transformée de Hough[47, 7], des résultats encourageant on été obtenus, mais & un
cout de calcul trop élevé pour penser embarquer ce traitement dans le robot. Dans
quelques années, un changement du processeur du robot pourrait permettre un tel
traitement, mais il faudrait toujours capturer une image compléte de la surface

avant de I’analyser. Cette longue étape aurait avantage & étre évitée. Un exemple

123

(a) Image originale (b) Apres seuillage binaire (c) Aprés détection d’arrétes
(Canny)

(d) Aprés extraction des lignes (e) Superposition sur image originale
(Hough)

Figure 4.20 Evolution du processus d’extraction des lignes d’une image de la FPG

d’évolution de l'algorithme d’extraction est présenté a la figure 4.20.

Comme alternative, il est envisagé de se baser que sur I’analyse de quelques profils
horizontaux et verticaux de la surface plutét qu’une image complete. Afin de maxi-
miser la lisibilité d’une brusque transition verticale au SPM, il est recommandé
d’effectuer un balayage & un angle de 90° de la transition. Dans le cas de la FPG,
un balayage a un angle de 45 degrés maximise la lisibilité des deux séries de lignes
constitutrices. Puisqu’on connait la position du robot avec une incertitude angu-

laire de 1,08 selon les calculs de Eric Aboussouan, on peut indiquer au robot son

124

orientation initiale par rapport a la grille sur laquelle il se trouve et ainsi tacher
de maximiser la qualité des profils obtenus. L’analyse des profils avec des outils
comme la transformée de Fourier sans passer par la capture et ’envoi via IR d’une

image compléte permettrait d’accélérer grandement 1’exécution de 1’algorithme.

Pierre-Alain Dumas, Marc-Antoine Ducas et Aurélien Masseboeuf étudient actuel-
lement une variante au patron de lignes afin de se baser sur une variation de la
fréquence des lignes plutét qu'une variation de largeur. Selon les premiers tests
effectués, cette approche semble plus robuste et le niveau de confiance dans I'iden-

tification des quadrants d’autant plus élevé.

125

CONCLUSION

La nanorobotique est en pleine expansion. L’intégration des disciplines scientifiques
est & la base de son succes et, par le fait, de sa complexité. L’impact d’une décision
peut se ressentir dans une foule de domaines qui semblent, a priori, indépendants.
L’informatique qui vise a controler I'électronique, la mécanique et la physique d un
projet doit étre consciente de cette réalité. Une vision d’ensemble est primordiale.

Le projet NanoWalker ne fait pas exception.

Dans le présent mémoire, 1’établissement des bases du systeme informatique né-
cessite des incursions dans plusieurs autres domaines du génie. En cherchant a
positionner la pointe d'un STM monté sur un robot miniature, une architecture
distribuée est développée. Son but est d’assurer la survie des robots, de contrdler
et de coordonner leurs actions. A l'aide d’un premier systeme de positionnement

infrarouge, une précision de =75um est atteignable.

Basé sur la microscopie & effet tunnel, un second systéme de positionnement plus
précis est nécessaire. La «grille atomique» présentée au chapitre 4 utilise un patron
de lignes pour décomposer une large surface en une multitude de zones de travail
de 1,14pm. L’algorithme IAPA permet de converger vers le centre de la Coarse
Positioning Grid jusqu’a une Fine Positioning Grid en un nombre d’itérations

proportionnel au logarithme du rapport de longueur des grilles.

Le contréle du microscope a effet tunnel dans le DSP est abordé au chapitre 3. On
y développe l'algorithme de balayage du piézo et la boucle de contréle sur la valeur
du courant tunnel. L'intégration de la communication infrarouge est également
débutée. L’étude des signaux a I’analyseur logique identifie cependant un probléme :

le traitement des taches associées & la communication est trop long et nuit au

126

balayage du piézo. Ceci porte a croire que le travail d’intégration et d’optimisation

dans le DSP réel sera critique si le NanoWalker est pour fonctionner un jour.

Certains aspects du robot sont toujours flous et incertains, ce qui a comme consé-
quences de retarder I'implémentation et la validation d’autres modules. Par exemple,
tant qu’une solution mécanique au probleme d’approche grossiére (coarse approach)
du STM n’est pas trouvée, le circuit électronique du NanoWalker ne peut étre fi-
nalisé. Ceci a une incidence directe sur le contréle logiciel et sur les tests du STM
lui-méme. Les problemes de boucles de mises & la terre empéchent d’obtenir un

courant tunnel et sont venus mettre un terme aux tests & I'université McGill.

D’un point de vue logiciel, 'avancement est satisfaisant. Certains problémes fu-
turs pourraient néanmoins survenir. Ceux-ci nécessiteront une étude approfondie.
Par exemple, le débit de la communication infrarouge de 4Mbps entre les robots
et le systéme de controle pourrait s’avérer insuffisant lorsqu’un grand nombre de
robots est présent. Considérons une image «standard» provenant d’un SPM. La
taille de I'information utile pour une image de 512 x 512 pixels avec une profon-
deur de 8 bits/pixel est de 2097152 bits, et ce, sans compter les bits utilisés dans
Ientéte du fichier image. On peut s’attendre & une fréquence de balayage STM
avoisinant les 5H 2. On obtient donc un volume de données utiles de 20480 bits par
seconde. Lorsque l'on considere une flotte de 100 robots a priori équivalents, la
bande passante totale devrait étre divisée de fagon égale entre eux. La bande pas-
sante disponible par robot est donc de 40kbps. A elles seules, les données provenant

du STM occuperait plus de 50% de la bande passante totale théorique disponible

127

par robot.
(512 x 512) P o g 05 ong7150 088 (4.4)
img pixels img
512lignes s
— =102,4— 4.
5Hz 02 mg (45)
2097152bits
—_— = b 4.
105 4s 0480bps (4.6)
20480bps
1 4.
10kpbs 0,512 (4.7)

Plusieurs facteurs viennent réduire la performance réelle du médium de commu-
nication. Les messages de synchronisation échangés avec les différents robots, les
entétes présentes dans chacun de ces messages, ainsi que les latences inévitables
associées a la lecture et a I’envoi de messages viennent tous diminuer ’efficacité de

la communication.

Une solution potentielle consisterait a adapter dynamiquement les temps de trans-
mission alloués a chaque robot pour transmettre les données recueillies. Les robots
effectuant des opérations générant un volume de données plus imposant se verraient
allouer un plus grand temps pour transférer leur données. Lorsqu’un certain seuil
critique de robots effectuant des «opérations gourmandess serait dépassé, les nou-
velles opérations gourmandes seraient retardées & cause du manque de ressources.
On pourrait également compresser les données avant de les transmettre via I'IR.
Ceci imposerait cependant une surcharge supplémentaire au DSP. Prévoyant déja
un DSP trés sollicité, il serait important de s’assurer que cela ne nuira pas aux

autres taches déja prises en charge.

Un autre probléme potentiel concerne le déplacement des robots. Chaque dépla-
cement induira inévitablement des vibrations sur le reste du Powerfloor. Il faudra

caractériser ces vibrations et prévoir leurs effets sur les mesures STM prises & proxi-

128

mité. Une solution simple pour éviter tout probleme serait d’interdire le déplace-
ment d'un NanoWalker lorsqu’un autre NanoWalker utilise son STM. Ceci aurait
cependant l'inconvénient de réduire le parallélisme des opérations. L’optimisation
des séquences de déplacement et de scans STM deviendrait par le fait méme un

véritable casse-téte.

Mais avant méme de penser & I’optimisation d'une flotte de robots, il faut s’attarder
sur leurs déplacements. Le Powerfloor est parsemé de zones interdites. Aucune
patte du NanoWalker ne doit entrer en contact avec les porte-échantillons présents
un peu partout sur le Powerfloor. Ceux-ci constitue des obstacles fixes qu’il est
possible de cartographier. A cela s’ajoute les obstacles mobiles que constituent les
autres robots. La coordination des déplacements pour s’assurer qu’aucune collision
n’aura lieu s’avérera un probleme complexe qui nécessitera une étude poussée des

principes d’optimisation de trajectoire dans un environnement dynamique[24].

Une simplification du probléme est néanmoins possible, mais le colit attaché est
important. On pourrait ne permettre que le déplacement d’un seul robot & la fois
et ainsi considérer le reste des robots comme étant eux aussi des obstacles fixes.
Mais puisqu’on sait que la communication avec un robot ne se produit que pendant
un quantum de temps fonction du nombre de robot, la fenétre de temps disponible
pour déplacer les robots raccourcirait & mesure que le nombre de robots, et, par
conséquent, la complexité du chemin & faire, augmenterait. Le parallélisme des

opérations serait ainsi grandement affecté.

Pour permettre le déplacement de plusieurs unités simultanément, il faut avoir
confiance en leur aptitude & réaliser le déplacement ordonné conformément aux
parametres prescrits. Ceci est d’autant plus vrai qu’on ne peut qu’estimer la po-
sition d’un robot mobile & partir de la derniére commande transmise et du temps

depuis son dernier positionnement avec le PSD. S’il s’avérait que le robot dévie

129

Figure 4.21 Cone d’erreur sur le déplacement d’un robot, a est l'erreur angulaire
maximale, d est la distance maximale possible pour le déplacement rectiligne.

de sa trajectoire, le systéme ne détectera pas cette incohérence avant la prochaine
séquence de positionnement. Durant tout ce temps, le risque de collision augmente.
Plus le nombre de robots est grand, plus la tolérance aux erreurs diminue et les

déplacements possibles avant de repositionner les robots doivent étre petits.

A ce jour, le déplacement est encore erratique, un sérieux effort de développement
doit étre mis de 'avant pour dégager les séquences de bits optimales pour chaque
forme de déplacement. Une fois cette information connue, celle-ci devra s’adaptée

a chaque robot.

Chaque robot doit étre calibré individuellement car les tolérances d’assemblage mé-
canique sur les pattes et les LEDs de positionnement sont de ’ordre du millimétre
sont plus grandes que la précision nanométrique que 'on tente d’atteindre. Une
série d’exercices de calibration doit donc étre réalisée pour obtenir des données
statistiques sur le comportement propre & chaque robot. De ces expériences, un
cone représentant I’angle maximal du dispersement possible pour chaque déplace-
ment doit étre déduit. Lors de la fragmentation de la commande de déplacement en

multiples déplacements unitaires rectilignes, le cone d’erreur devra étre superposé

130

a la configuration actuelle du Powerfloor et la distance maximale possible pour
le déplacement unitaire sera directement obtenue par lidentification du premier
obstacle contenu dans le cone. La figure 4.21 présente une illustration du principe

d’erreur de mouvement.

Ce ne sont pas les défis qui manquent dans le projet NanoWalker. Les risques sont

grands, mais les bénéfices potentiels le sont tout autant...

[1]

3]

[4]

8]

[9]

131

REFERENCES

Eric Aboussouan. Systeme de positionnement a 1’échelle globale d'une flotte
de nanorobots : Application du filtre de Kalman et d’autres techniques a l’es-
timation des positions retournées par un «Position Sensing Devices (PSD).

Projet de fins d’études, Ecole Polytechnique de Montréal, Avril 2004.

I. Adesida, E. Kratschmer, E. D. Wolf, A. Muray, and M. Isaacson. Ion-
beam lithography at nanometer dimensions. Journal of Vacuum Science &

Technology, 3 :45-49, 1985.

Stephen T. Albin. The Art of Software Architecture : Design Methods and
Techniques. John Wiley & Sons, 2003.

Ferdy Hanssen And. Real-time communication protocols : An overview, Oc-

tober 2003.

Walder André, Jacques-A. Delafosse, and Sylvain Martel. Walking-Die : Using
MEMS and SOC for a miniature robot designed for nanoscale operations. In
Proceedings of the Canadian Conference on Electrical and Computer Enginee-

ring (CCECE) 2003, pages 1827-1830. IEEE, May 2003.

Siaka Baro. DAQ Manager sans controles ActiveX. Projet de fins d’études,
Ecole Polytechnique de Montréal, Avril 2004.

Luc Baron. Genetic algorithm for line extraction. Rapport technique, Ecole

Polytechnique de Montréal, Département de mécanique, aout 1998.

Guido Baumann. Development and testing of a positioning system for a mi-
niature robot called nanowalker. Master’s thesis, Universitat Karlsruhe (TH),

Germany, 2003.

Barry W. Boehm and PPhilip N. Papaccio. Understanding and controlling
software costs. JEEE Trans. Softw. Eng., 14(10) :1462-1477, 1988.

132

[10] Sylvain Boissé. Réalisation d’un simulateur de NanoWalker. Projet de fins

d’études, Ecole Polytechnique de Montréal, Avril 2003.

[11] Thomas FitzGerald Boitani. Design and control of a scanning tunnelling mi-
croscope for an autonomous micro-robot called “nanowalker”. Master’s thesis,

Universita “La Sapienza” di Roma, 2003.

[12] John F. Canny. A computational approach to edge detection. IEEE Transac-
ttons on Pattern Analysis and Machine Intelligence, 8(6) :679-698, November
1986.

[13] C. Julian Chen. Introduction to Scanning Tunneling Microscopy. Oxford Uni-
versity Press, 1993.

[14] John E. Ciolfi. Fixed-Point Blockset for Use with Simulink : User’s Guide
Version 3, June 2001.

[15] Ondrej Cip and Frantisek Petru. A scale-linearization method for precise laser

interferometry. Measurement Science and Technology, 11(2) :133-141, 2000.

[16] George Coulouris, Jean Dollimore, and Tim Kindberg. Distributed Systems :
Concepts and Design. Addison-Wesley, 2001.

[17] CRS Holdings Inc. Alloy data - carpenter super invar 32-5. http ://carpen-
ter.idesinc.com/datasheet.asp 7i=3&e=179&c=TechArt& VIEW=PRINTER,
2004.

[18] N J Curson, R J Wilson, L A Silva, W Allison, and G A C Jones. Studying the
kinetics of graphite oxidation using a scanning tunnelling microscope - an un-
dergraduate laboratory experiment. European Journal of Physics, 20(6) :453—
460, 1999.

[19] Scott Dattalo. Logarithms. http ://www.dattalo.com/technical/theory/logs.html,
1999.

[20] Diane Wilson and Thyra Rauch and Joeann Paige. Prototyping and the soft-
ware development cycle. http ://www.firelily.com/opinions/cycle.html, 1992.

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

133

E.K. Schweizer D.M. Eigler. Positioning single atoms with a scanning tunne-

ling microscope. Nature, 344 :524-526, 1990.

Pierre-Alain Dumas. Validation et réalisation d'une grille de référence et
conception d’algorithmes de traitement de signal en vue d’obtenir un posi-
tionnement de précision nanométrique. Projet d’études supérieures, Ecole Po-

lytechnique de Montréal, Décembre 2003.

Moufid Eyitayo. Room Manager : Systéme de contrdle de la chambre de
refroidissement pour le projet NanoWalker. Projet de fins d’études, Ecole

Polytechnique de Montréal, Avril 2004.

Thierry Fraichard. Trajectory Planning in Dynamic Workspace : a ‘State-Time
Space’ Approach. Rapport de recherche 3545, Institut national de recherche
en information et automatique, 655, avenue de I’Europe, 38330 Montbonnot

St-Martin (France), Octobre 1998.

Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design pat-
terns : elements of reusable object-oriented software. Addison-Wesley Longman

Publishing Co., Inc., 1995.

S. Gautsch, T. Akiyama, N.F. de Rooij, U. Staufer, Ph. Niedermann, L. Ho-
wald, D. Miiller, A. Tonin, H.-R. Hidber, W.T. Pike, and M.H. Hecht. Atomic
force microscope for planetary applications. In Solid-State Sensor and Actua-

tor Workshop, pages 267-270, June 2000.

S. Gautsch, T. Akiyama, R. Imer, N.F. de Rooij, U. Staufer, Ph. Niedermann,
L. Howald, D. Bréandlin, A. Tonin, H.-R. Hidber, and W.T. Pike. Measure-
ment of quartz particles by means of an atomic force microscope for planetary

exploration. Surface and Interface Analysis, 163(33), 2002.

G.Binning and H.Rohrer. Scanning tunneling microscopy. IBM Journal of

Research and Development, 30(4) :355-369, 1986.

[29]

[30]

[31]

[36]

[37]

134

B Gopalakrishnan and SV Subramanyam. Many phases of carbon. Resonance,

pages 10-19, December 2002.

L Jay Guo. Recent progress in nanoimprint technology and its applications.
Journal of Physics D : Applied Physics, 37(11) :R123-R141, 2004.

Stefan Hembacher, Franz J. Giessibl, Jochen Mannhart, and Calvin F. Quate.
Revealing the hidden atom in graphite by low-temperature atomic force mi-

croscopy. PNAS, 100(22) :12539-12542, 2003.

Information Sciences Institute. Rfc793 : Transmission control protocol.

WWW, September 1980.
Jirgen Miiller. STM Project. http ://www.e-basteln.de/index.htm.
Joe Kerkes. Real-time ethernet, February 2001.

Guillaume Langlois. Systéme de positionnement mésométrique par détection
d’impulsions lumineuses pour le robot Nanowalker. Projet de fins d’études,

Ecole Polytechnique de Montréal, Avril 2003.

Jiali Li, Derek Stein, Ciaran McMullan, Daniel Branton, Michael J. Aziz, and
Jene Golovchenko. Ion-beam sculpting at nanometre length scales. Nature,

412 :166-169, 2001.

Xuekun Lu, Hui Huang, Nikolay Nemchuk, and Rodney S. Ruoff. Patterning of
highly oriented pyrolytic graphite by oxygen plasma etching. Applied Physics
Letters, 75(2) :193-195, July 1999.

Haritz Macicior. Contrdle de systémes nanorobotiques. Master’s thesis, Ecole

Polytechnique de Montréal, 2004.
M.Aketagawa, K.Takada, Y.Minao, Y.Oka, and J.Lee. Tracking and stepping
control of the tip position of a scanning tunnelling microscope by referring to

atomic points and arrays on a regular crystalline surface. Review of Scientific

Instruments, 70(4) :2053-2059, April 1999.

[40]

[41]

[42]

[43]

[44]

[45]

[46]

135

S. Martel, J-B Mathieu, O. Felfoul, H. Macicior, G. Beaudoin, G. Soulez, and
al. Adapting MRI Systems to Propel and Guide Microdevices in the Human
Blood Circulatory System. In 26th Conference of the IEEE Engineering in
Medicine and Biology Society. IEEE, 2004.

Sylvain Martel, Stefan Riebel, Torsten Koker, Mark Sherwood, and Ian Hun-
ter. Large-scale nanorobotic factory automation based on the nanowalker tech-
nology. In Proceedings of the §th IEEE International conference on Emerging
Technologies and Factory Automation, volume 2, pages 591-597, October 2001.

Sylvain Martel, Anant Saraswat, Arthur Michel, and Ian Hunter. Preliminary
evaluation and experimentation of the push-slip method for achieving micro-
meter and sub-micrometer step sizes with a miniature piezo-actuated three-
legged robot operating under high normal forces. In Proceedings of SPIE : Mi-
crorobotics and Microassembly, volume 4194, pages 141-148, November 2000.

Sylvain Martel, Mark Sherwood, Chad Helm, William Garcia de Quevedo,
Timothy Fofonoff, Robert Dyer, John Bevilacqua, Joshua Kaufman, Omar
Roushdy, and Tan Hunter. Three-legged wireless miniature robots for mass-
scale operations at the sub-atomic scale. In Proceedings of the 2001 IEEE
International Conference on Robotics and Automation, volume 4, pages 3423—

3428, 2001.

Aurélien Masseboeuf. Validation et réalisation d’une grille de référence et
conception d’algorithmes de traitement de signal en vue d’obtenir un position-
nement de précision nanométrique. Projet de fin d’études, Institut National

des Sciences Appliquées de Rennes, 2004.

Shinji Matsui and Yukinori Ochiai. Focused ion beam applications to solid

state devices. Nanotechnology, 7 :247-258, 1996.

Ralph C. Merkle. It’s a small, small, small, small world. MIT Technology
Review, page 25, February/March 1997.

[47]

[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

136

N.Kiryati, H.Kalviainen, and S.Aloutinen. Randomized or probabilistic hough
transform : unified performance evaluation. Pattern Recognition Letters, 21(13-

14) :1157-1164, 2000.

Philippe Ouimet. Design VHDL du CPLD et d’une solution de program-
mation dans le cadre du projet NsanoWalker. Projet de fins d’études, Ecole

Polytechnique de Montréal, Avril 2004,

PageWise, Inc. A basic introduction to the analytical tech-
nique of Scanning Tunneling Microscopy. = The mathemati-
cal and quantum mechanical concepts behind its inception.

http ://mdmd.essortment.com/scanningtunneli_rsnc.htm, 2002.
J. Postel. Rfc768 : User datagram protocol. WWW, August 1980.

Roger S. Pressman. Software Engineering : A Practitioner’s Approach.

McGraw-Hill, fifth edition, 2000.

S. M. Clark and D. R. Baselt and C. F. Spence and M. G. Youngquist and
and J. D. Baldeschwieler. Hardware for digitally controlled scanned probe
microscopes. Review of Scientific Instruments, 63(10) :4296-4307, October
1992.

Andreas Schindler. Development of a cooling system for miniature robots

(nanowalker). Master’s thesis, Universitat Karlsruhe (TH), Germany, 2002.

D. Schmidt and S. Vinoski. Object interconnections : Comparing alternative

programming techniques for multi-threaded servers, 1996.

Douglas Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann.

Pattern-Oriented Software Architecture, Patterns for Concurrent and Networ-

ked Objects, Volume 2. John Wiley & Sons, 2000.

Douglas C. Schmidt. An architectural overview of the ace framework : A
case-study of successful cross-platform systems software reuse. USENIX Login

Magazine, Tools special issue, November 1998.

137

[57] H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and
P. F. Nealey. Sub-50 nm period patterns with euv interference lithography.
Microelectron. Eng., 67-68(1) :56-62, 2003.

[58] Dominic St-Jacques, Thomas Boitani, Pierre-Alain Dumas, Marc-Antoine Du-
cas, Marc-Antoine Fortin, and Sylvain Martel. Atomic-Scale Positioning Refe-
rence Grid System for Miniature Robots with Embedded Scanning Tunnelling
Capability. In Proceedings of the 2004 IEEE International Conference on Ro-
botics & Automation, pages 1339-1344. IEEE, April 2004.

[59] Dominic St-Jacques, Sylvain Martel, and Thomas Boitani. Nanoscale grid
based positioning system for miniature instrumented robots. In Proceedings of

the Canadian Conference on Electrical and Computer Engineering (CCECE)
2003, pages 1831-1834. IEEE, May 2003.

[60] Matt Stephens and Doug Rosenberg. Extreme Programming Refactored : The
Case Against XP. Apress, 2003.

[61) Structure Probe, Inc. Highly ordered pyrolytic graphite - spi supplies.
http ://www.2spi.com/catalog/new/hopgsub.shtml, 2003.

[62] Technical Manufacturing Corporation. CleanTop™ II Optical Tops - 780
Series. http ://www.techmfg.com/products/opticaltops/780series.htm, 2004.
[63] Texas Instruments Inc. TMS320C2X User’s Guide Rev. C, January 1993.

[64] Texas Instruments Inc. TIR2000 Data Manual : High-Speed Serial Infrared
Controller With 64-Byte FIFO, June 1998.

[65] University of Leeds, School of Physics and Astronomy. Scan-
ning Tunnelling Microscopy : Surface Topography Imaging.
http ://www.stoner.leeds.ac.uk/techniques/stm.htm.

[66] Eric W. Weisstein. Mercator Series. From MathWorld-A Wolfram Web Re-

source. http ://mathworld.wolfram.com/MercatorSeries.html.

138

[67] Kwan-Po Wong and Cho-Li Wang. Push-pull messaging : A high-performance
communication mechanism for commodity SMP clusters. In International

Conference on Parallel Processing, pages 12—, 1999.

Nom :
Session :
Projet :

Description :

ANNEXE I

LISTE DES ETUDIANTS SUPERVISES

Constantin Fortier

E2002

Projet de fin d’études (3 crédits)

Communication Infra Rouge : projet NANOWALKER
Travail préliminaire en vue du développement d'un proto-
cole de communication infrarouge avec l'optique d’obtenir
la température des robots.

Supervision conjointe avec Simon McDougall

Nom :
Session :
Projet :

Description :

Nom :
Session :
Projet :

Description :

Nom :
Session :
Projet :

Description :

Frédérick Jubinville

A2002

Projet de fin d’études (3 crédits)

Calibration du Powerfloor et de la lentille du PSD
Caractérisation du PSD par 'exécution de tests de po-
sitionnement en utilisant le Protomat 95s/I1 de LPKF
comme XY stage

Sylvain Boissé

A2002 & H2003

Projet de fin d’études (6 crédits)

Reéalisation d’un simulateur de NanoWalker
Développement d’un simulateur fonctionnel des aspects
de communication des robots NanoWalkers avec scénarios
configurable.

Frédéric Nguyenphat-Therrien

H2003

Projet de fin d’études (3 crédits)

Positionnement microscopique d’un nanorobot a ’aide de
traitement et d’analyse d’images

Analyse d’images STM de la grille atomique afin d’en ex-
traire la largeur des sillons gravés. Utilisation de 1’algo-
rithme de Canny pour la détection des contours.

139

Nom :
Session :
Projet :

Description :

Nom :
Session :
Projet :

Description :

Nom :
Session :
Projet :

Description :

Serge-Olivier Chimi-Ngakeng
E2003
Projet de fin d’études (6 crédits)

Développement d’un pilote Linux pour la carte IR Actisys
IR2000B/L

Eric L’'Heureux

E2003

Stage

Conception et validation d’un circuit prototype pour la
communication IR et implémentation avec le eZdspF2812.

Marc-Antoine Ducas

E2003 & A2003 & H2004 & E2004

Projet de fin d’études (6 crédits) & stages

Systéme intermédiaire de positionnement du NanoWalker
par algorithme itératif et grille d’approche
Développement et perfectionnement de I’algorithme IAPA,
participation a ’élaboration de I’architecture logicielle, aide
a la supervision et la structure des travaux logiciels, etc.

Supervision conjointe avec Marc-Antoine Ducas

Nom :
Session :
Projet :

Description :

Nom :
Session :
Projet :

Description :

Pierre-Alain Dumas

A2003

Projet d’études supérieures

Validation et réalisation d’une grille de référence et concep-
tion d’algorithmes de traitement de signal en vue d’obtenir
un positionnement de précision nanométrique

Aurélien Masseboeuf

H2004

Stage de fin de diplome francais

Projet Nanowalker : Etude du systeme de positionnement
du robot a I’échelle micrométrique et atomique
Amélioration des procédés de fabrication de la grille ato-
mique au FIB. Tests sur du Silicium 7 x 7

Supervision conjointe avec Marc-Antoine Ducas et Pierre-Alain Dumas

140

Nom :
Session :
Projet :

Description :

Philippe Ouimet

H2003 & H2004

Projet de fin d’études (6 crédits)

Design VHDL du CPLD et d’une solution de programma-
tion dans le cadre du projet NanoWalker

Etude et implémentation des responsabilité du CPLD du
NanoWalker

Supervision conjointe avec Marc-Antoine Fortin

Nom :
Session :
Projet :

Description :

Moufid Eyitayo

H2004

Projet de fin d’études (3 crédits)

RoomManager - Systéeme de controle de la chambre de re-
froidissement pour le projet NanoWalker

Développement du module d’interface logicielle avec le

controleur PLC de la chambre de refroidissement via un
lien RS232.

Supervision conjointe avec Haritz Macicior

Nom :
Session :
Projet :

Description :

Siaka Baro

H2004

Projet de fin d’études (3 crédits)

DAQ Manager sans contréles ActiveX

Interface d’acquisition des données des modules SCXI Na-
tional Instruments dissociée des interfaces graphiques Ac-
tiveX dans le but d’augmenter la modularité.

Supervision conjointe avec Marc-Antoine Ducas

Nom :
Session :
Projet :

Description :

José Pascual

H2004

Projet de fin d’études (3 crédits)

Traduction de commandes en instructions de déplacement
pour exécution par un NanoWalker

A partir d’une instruction de déplacement, traduire en mes-
sage compris par le NanoWalker selon le format de message
prédéfinit.

Supervision conjointe avec Marc-Antoine Ducas

141

142

Nom : David Salamanca
Session : E2004
Projet : Stage

Description : Programmation du circuit prototype MacroWalker
Supervision conjointe avec Marc-Antoine Fortin

Nom : Marc Léger
Session : E2004
Projet : Stage de fin de diplome francais

Description : Programmation du circuit prototype MacroWalker
Supervision conjointe avec Marc-Antoine Fortin

Nom : Wael Sabra
Session : E2004
Projet : Projet de fin d’études

Description : Etude des algorithmes de déplacement pour un robot dans
un environnement dynamique.

143

ANNEXE II

LISTE DES PUBLICATIONS

1. Présentation lors de la Conférence canadienne de Génie Electrique et Infor-
matique (CCGEI 2003)

St.-Jacques D., Martel S., and Boitani T. “Nanoscale grid based positio-
ning system for miniature instrumented robots,” Proceedings of the Canadian
Conference on Electrical and Computer Engineering (CCECE) 2003, Mont-
réal, Canada, May 4-7, 2003

2. Présentation lors de la conférence IEEE International Conference on Robotics
and Automation (ICRA2004)

St-Jacques D., Boitani T., Dumas P-A., Ducas M-A., Fortin M-A., and Mar-
tel S., “Atomic-Scale Positioning Reference Grid System for Miniature Robots
with Embedded Scanning Tunnelling Capability,” Proceedings of the 2004

IEEE International Conference on Robotics & Automation, New Orleans,
LA, pp. 1339-1344, April 2004

144

ANNEXE III

DESCRIPTION DES ELEMENTS DE L’ARCHITECTURE

A partir des criteres de design établis dans les sections 2.2 et 2.3, il est possible

d’identifier certains des éléments constituant le noyau de ’architecture. Les élé-

ments pergus comme essentiels pour chacun des niveaux logiciels sont détaillés

dans la présente section.

III.1 Drivers

IRDriver

Niveau :

OS :

Matériel :
Responsabilités :

Driver
Linux

Carte ISA ACTISYS IR2000B/L

— Fournir des fonctionnalités d’envoi et de réception de
paquets infrarouge selon le standard FIR 1.1

— Aucun traitement autre que la validation de la récep-
tion ne doit étre effectué sur les paquets regus

145

PSDDriver
Niveau : Driver
OS : Windows
Matériel : National Instruments NI-4472
On-Trac Photonics PSM2-20
Responsabilités : . o, .

— Lire la tension émise par le PSD apres un stade d’am-
plification analogique la menant entre £10V

— Aucun traitement sur la tension obtenue n’est effectué

DAQDriver
Niveau : Driver
OS : Windows
Matériel : NI : SCXI-1000, SCXI-1112, SCXI-1530

Accélérometres : Endevco 752A13, 7724
Thermocouples : Omega Type-T

Utilise : Librairie NI-DAQ

Responsabilités : o i .. .

— Recueillir les tensions générées par les différents sen-
seurs apposés sur la chambre de refroidissement. Ces
tensions sont acheminées vers un méme module d’ac-
quisition de NI.

— Aucun traitement sur les tensions recueillies ne doit
étre effectué.

RS232Driver
Niveau : Driver
OS : Windows
Matériel : Chambre de refroidissement de Cryotronix
Utilise : Fonctions de communication RS232

Responsabilités :

— Fournir les fonctionnalités d’envoi et de réception de
messages selon le protocole RS232.

— Aucun traitement sur les communications de la
chambre ne doit étre effectué.

146

GPIBDriver

Niveau : Driver
OS : Windows
Matériel : Bloc d’alimentation : Sorensen DCS12-250E
NI PCI-GPIB+
Utilise : Fonctions de communication GPIB

Responsabilités :
p — Fournir les fonctionnalités d’envoi et de réception de

message selon le protocole GPIB
— Aucun traitement sur les communications du bloc
d’alimentation ne doit étre effectué.

III.2 Managers

CommManager
Niveau : Manager
OS : Linux
Utilise : IRDriver
Responsabilités :

— Fournir une interface indépendante du medium de
communication utilisé pour échanger des paquets de
données avec les NWs.

— Gérer la validation des transmissions, la retransmis-
sion des paquets perdus et la réception des réponses
des NWs.

147

PosManager
Niveau : Manager
OS : Linux
Utilise : PSDDriver
Responsabilités :

— Fournir une interface indépendante de la technologie
pour 'acquisition de la position globale des NWs

— Convertir les données obtenues du driver en données
de positionnement pour un NW nominal. Le PosMa-
nager connalit les caractéristiques générales d’'un NW
lui permettant de transformer adéquatement les don-
nées du driver en données de positionnement. (e.g. Le
NW possede deux LEDs IR théoriquement distante de

21,082mm)
RoomManager
Niveau : Manager
OS: Windows
Utilise : RS232Driver

Responsabilités : . . Lo .
— Fournir une interface indépendante du matériel pour

controler la chambre de refroidissement.

— Convertir en messages compréhensibles par le contro-
leur de la chambre de refroidissement les ordres recus
des niveaux supérieurs y étant adressé.

— Convertir les messages recus du controleur de la
chambre de refroidissement en information sur son
état.

148

DAQManager
Niveau : Manager
OS : Windows
Utilise : DAQDriver
Responsabilités :

- Convertir les tensions lues par le DAQDriver en
information de température, de vibration, etc. Le
DAQManager connait la configuration du module d’ac-
quisition NI afin de savoir la correspondance des ten-
sions avec les parametres physiques mesurés.

— Fournir une interface simple pour transmettre I'infor-
mation lue aux niveaux supérieurs.

PwrManager
Niveau : Manager
OS : Windows
Utilise : GPIBDriver

Responsabilités :
p — Convertir en messages compréhensibles par le bloc

d’alimentation les ordres recus des niveaux supérieurs
y étant adressé.

— Convertir les messages regus du bloc d’alimentation
en information sur son état.

149

III.3 Agents

RobotAgent
Niveau : Agent
OS: Linux
Utilise : CommManager
PosManager

Responsabilités :
p — Fournir une interface pour le contréle des NWs sous la

forme d'une liste de commandes acceptées. Certaines
commandes complexes pourront se traduire en plu-
sieurs instructions individuelles pour les NWs.

— Fournir une interface pour obtenir de I'information sur
I'état des NWs (Température des différents senseurs
d’'un NW, données STM, position globale et atomique,
ordres courants, etc.)

~ Maintenir un instantané (snapshot) de I'état actuel
des NWs physiques.

— Maintenir la liste des commandes a effectuer et en
cours de traitement pour chacun des NWs.

— Maintenir linformation de calibration relative &
chaque NW.

~ Effectuer le pré-traitement des instructions a envoyer
aux NW afin de tenir compte des caractéristiques phy-
siques réelles propres a chaque NW.

— Effectuer le post-traitement sur les données de posi-
tionnement obtenues du PosManager en fonction des
données de calibration propres a chaque NW.

— Calculer les trajectoires pour les déplacements des
NWs afin d’éviter les collisions avec les autres NWs
et les zones de travails du PowerFloor.

— Convertir les instructions & envoyer aux NWs en mes-
sages compréhensibles par ceux-ci.

150

EnvAgent
Niveau : Agent
OS : Windows
Utilise : RoomManager
DAQManager
PwrManager
Responsabilités : — Fournir une interface pour le contrdle de I'environne-
ment des NWs (i.e. la chambre de refroidissement)
- Fournir une interface pour obtenir de 'information sur
I'état de 'environnement.
— Maintenir I’état actuel de 'environnement.
— Connaitre la configuration physique des différents sen-
seurs.
~ Régulariser la température de I’environnement.
[11.4 NanOS

NWDMonitor
Niveau : NanOS
OS : Linux
Utilise : RobotAgent
EnvAgent

Responsabilités :
P — Corréler I'état des NWs et les données provenant des

deux agents d’assurer l'intégrité des systemes de la
plate-forme.

— Propager 'information relatives aux erreurs & tous les
éléments du systeme.

151

ClientApplnterface
Niveau : NanOS
OS : Linux
Utilise : RobotAgent
EnvAgent

Responsabilités :

~ Faire le pont entre les agents contrélant les divers sys-
temes et les requétes des applications clients.

— Assurer l'intégrité et la sécurité du lien entre ’appli-
cation client et la plate-forme.

— Maintenir une liste des applications utilisant la plate-
forme.

152

ANNEXE IV

DIAGRAMMES DE CLASSES

AbsService

4&

Client Proxy Service

-3

Figure IV.1 Structure du patron de conception Prozy

AbsClientApp AbsClientAppinterface|
AbsConcreteClientAp) - NanQOS::ClientAppProxy NanOS::ClientAppinterface| ClientAppinterfaceProxy
K——- K-
T
]
|
|
S \vakvs AV
AbsUl nSys:nTCPStream nSys:nStreamOwner

Figure IV.2 Classes de bases abstraites et communes aux autres paquetages

153

sogejonbed serne xne seunumwwiod 1o sajIRIISqR SASB(AP SIsse]) ¢ A 9Indig

Jaumpuuealigu:sAgu

N

wiealjgdo L uiisAgu

¢ ¢

1

=l

Axoigeoeiajujjuaby

AxoigyuaByauz:igouen

V4

aJepajupuabysqy

ﬁ juabyloqoy:jusbyjogoy Axoiqiuabyioqoy :souenN

V4

husByloqoysqy
I

_H jJuabyaug:jusbyaug

Vi

Jusbyauzgsqy

AV

Juabysqy

NanOS

—_—

LXK

NWMonitor

Mg [

154

ClientAppRegistry

RequestCreator

ClientApplinterface

nSys::nTCPAcceptor

>

¢

N
RequestHandler AbsRequest,

nSys::nThreadPool| nSys:nStreamOwner ClientAppProxy
*>——
AN]
| - — I
' | — <
| A4
I Agentinterface nSys::inTCPStream

(=]

EnvAgentProxy

RobotAgentProxy

Figure IV.4 Classes de la couche Nan0S

155

qus8y30q0oY NP SISSe[d 9P swWweISeI(] ' AT 9IS

1aAuQyj:1abeuepywiwiod
«Ann»

T
I
|

«SasSN»
'

1aALQQasd:tebeuepsod

oje[sueljusuisqy
_] N
|————— < |
4 |
o ~ — —
BSIWMN uonamsu) assiedpwosqy
I

_H Jojearppw)

19)lepmoueN

I Jabeuepwo:uabeuepLILLOD "
- —) & B— _
PUWOMNSqY _

‘ m ———,—— e e — .- — -

246

_H 1abeuepsoy::1ebeuepysod

Kxoidaosepajupuaby:oseg ﬁ juabyjoqoy

wealsdo Lu::sAgu JsumQuIBang U SASU

nSys::nStreamOwner nSys::nTCPStream
TemperatureMap|
| EnvAgent Base::AgentinterfaceProxy
PIDCtrl
e

e

PwrManager DAQManager::DAQManager RoomManager:RoomManager|

T
«uses»
*

1 I
«uses» «uses»

| | |
! | |
| | |
I J J
«utility» GPIB «utility» «utility»
DAQManager::Ni-DAQ RoomManager:RS232

Figure IV.6 Diagramme de classes du EnvAgent

nSys:nTCPStream Base::AbsClientApp nSys::nStreamOwner

o ZAN

Base::ClientApplinterfaceProxy Base::AbsConcreteClientApp

_ZISTL

ConcreteAppt || ConcreteAp2 || ConcreteAppn

Figure IV.7 Classes de la couche application

156

157

ANNEXE V

DIAGRAMMES DE SEQUENCES

158

juat(d uorjeoridde sun p uonesIRIIUL P 90uanbag T°A 9InJ1 g

I

ajepd

i

n jnsaJjsenbay
1

1senbay s|pueH

———— e

et ts Rt

jsenbay s0U0D

palgo auning

——————— ———— e

ejepdn ynsai jsanbay
1

Psiqo aimn 4

1
[}
]
|
]
1
|“| Jsanbay “ “
“ =RV “ “
“ | 1senbasu sedouid ajeal) “
" " 1 " abessaus ssao0iy “
| | | ™ +
i 1 | obesssw ._wms_oom
“ “ " uondisaq ddy jog “
“ “ “ uonduoss(q ddy jeg “
| ! | !
i I | abessalw ssa001y N
| | | = == ~daidpseg ddv~ T "]
“ “ “ uondioseq ddy 189 “
| | | P —————— e
1 | | 919dwoo uoiesyenuj =
| | | I pes Iy BUAET eIS Y |
1 [} | o)
] i } ———————)
} | 4} |
] |]]
| | | Qi ddy jeg
“ “ “ ddy Jo)s1bay
| [} 1 [aSTSUMo Te[y
|] |))
!]]
} | | pauuojddyiusyoup
| | | e
| | 1 1 EIEEYS)
I | | |
) 1 ' | { psuuo)
1 !] |] =
1] t | 1] [}
. M N » N M
ISpUeHISaNbaY 1sanbey oS IDsenneyg SOEIS| US| 0ld CE] ERs = oY) aauers

159

100 ap juewede[dop op 9jgnbar oun p sousnbgs op swwreiSey[g A 0INSI]

I 1]
M -]
[}
Ko—=ss - i
A0V 1
|] |
| 1) ofessaw aropy
| | | = ——— — = i e e
| | | BsmN
1 -] |4
1 | UOONJISY Sjejsued |
i e e e tomm———— -
1 UOIONSISUI BAO | '
s
" UOIDNIISUE IXau Jo0) “
T} e ——— — H
1 JBpuI0d MN \
|
i N 199 H
|
| alels ajepdn “
! 1
| alels MN alepdn h
[Tl tetetey]
i uononisul 1oj Apeay 1
ajels 199 "
NN BN |
t i |
llllll -
suonanJsu|

oBeuE NI AN IESY JOTESUBI] PUi7y SAOR

PUBLLLLCD 8S.Bg
uope.qied o) Isnipy A
!

.ucmEEcu PPY

BLILWOD Eoﬁm_@ 1

Jsenbai asieqd

b ————

S D

MN SA0N
noaxy

jsanbay ajpueH

“Senbon Ao

Jsenbay s)esas)

.1_4mmwwmvs. $890014
MN SA0N

1)
l
|
|
. |
|
.————_———-———_ﬁ k————_—_{

A

-
[}
1

] [

emporonms | | g | | smomgson || aparowos|

v [| (e | ([|

160

(ol ¢ astur) joqou1 op Jueweoe]dep op jenbor sun p eousnbys op owrwreier] ¢ A oInsL]

]
|
|
|
|
1
]
|
|
I
A

ajepdn

b ———

aepdn

1senbal aepdn

abessew jsenbai elepdn

| PUBWIWOO pasinay
H

puewwoo sjepdn

"domsed sipn |

uoipsod

uosod AN 199

ajejs sjepdn

ejels MN diepdn

L ke

3uop uononsuy

Qjes 1o

aNDSE SAON | | TPUBHISSNDSY | | SOSJOUNUSDY (| BSIEJPWOSAON | | TODEUBNSOd | | JUSOVIoqoy | | BSIEMOUEN | | PEUERWIOS | | MNTedd

161

ANNEXE VI

OBSERVATIONS A I’ANALYSEUR LOGIQUE

: Wavefofﬁ 1>

W
E£
W0
0 6%
ool vt
e
N
**ae
e
S
1
]
{00

b

~5,400. us

=.G1%
tir=clk @G1$ 1

G2

Figure VL.1 Apercu global des signaux de contréle du DAC par le eZdspF2812

163

$79900 QG op [INBS UN JoA® Y[Seguuop op uor}desal op xneudrs sop [eqo[3 ndiady Z'TA 2In3i

sN.T78°96~
SN LOE'ETT .
SN 96°9G 143 = TO|

164

Y1 dwe} aun,p uorydeoal sp Uy e[INS Wo07, & JA 2Indi

T |
O [06140 DEAECIRLIOEAAR RN U0 RRRRURE 00 RURAE R H 0000000 000000000 00000000000
I

< | >UUOJBABH,

165

DD 9 08 30 40T 91q NP 9PALLIE,[INS WOOZ, 'TA 0B

< | > UWUDJBARH

166

UeDGOZATJ 9 INS §19100 §F 9P [MOS UN ddAR Y[SSYUUOP Op UOISSTSURI) B[9P 10PH G'TA °InS1]

e 2

3T09 AT9-d1Y}

SN p26*8E- 379, =23
SwW 988'T 343 ~129
W 262°T 343 = T9

< | > L0JBARY

167

UBOGOZAI] 9] INS S19990 § 9P [INSS UN JoAR Y] SOIUUOP 9P UOISSTWSURI) B[P 1P 9'TA oIndi]

{11 110 11111 . | 1L

~T
T 3798 A19-413
M 666°GT~ 119 -
SW00212 14y =
SW pBTZ 43 -

