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RESUME

L’objectif de cette recherche est de contribuer a ’étude du comportement sismique
des murs de refends en examinant les effets de soulévement des fondations. La derniére
édition du Code National du batiment, CNB 2005, admet explicitement ce type de
comportement en reconnaissant les impacts positifs sur le plan économique. Dans le
cadre de présente étude, un nouvel outil d’analyse, simple et fiable, a été¢ développé pour
caractériser et reproduire le phénoméne du soulévement des fondations. L’outil est par la
suite utilisé pour réaliser les études paramétriques visant a étudier le soulévement des
murs de refends en béton armé pour des batiments congus dans 1’est et ’ouest du

Canada.

Dans le modéle simplifié proposé, les murs de refends sont représentés par des structures
linéaires qui répondent essentiellement comme des systémes & un degré de liberté. Ces
hypothéses de modélisation sont acceptables vis-a-vis des objectifs établis. Les’
structures sont attachées a des semelles infiniment rigides supportées sur un sol de
fondation élastique. Le modéle choisi pour représenter la fondation superficielle est le
modele de Winkler comportant le mécanisme de soulévement. Ces hypothéses
simplificatrices permettent de reproduire les principaux aspects du phénoméne de
soulévement des murs de refend. L’outil développé permet la mise en ceuvre des

analyses dynamiques efficaces incluant I’interaction sol structure.

Les valeurs limites du facteur de réduction des forces sismiques pour déterminer les
charges de conception pour les fondations, étaient adoptées dans le CNB 2005 en
considérant que le soulévement des semelles puisse avoir lieu. Ces valeurs refictent les
résultats d’une étude restreinte a la région de I’ouest de Canada sur des sols argileux et
sur des rocs avec des conditions tectoniques et géotechniques qui sont spécifiques a cette
région. Cependant, aucune information n’est disponible pour la région de I’Est Canadien

a ce jour, dont les conditions sismiques caractérisées par des secousses riches en hautes
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fréquences, sont trés différentes par rapport a I’ouest. La présente recherche visait d’une
part, & valider I’étude effectuée pour la région de 1’ouest en utilisant un modéle qui tient
compte des propriétés dynamiques du sol et d’autre part, & étendre cette étude vers la
région de I’Est. Trois murs de refends pour des batiments a cing, dix et vingt cing étages,
localisés a Vancouver et Montréal ont été dimensionnés selon les prescriptions du Code
National du Batiment du Canada (CNB 2005) et leur réponse sismique a ét¢ évaluée en

utilisant les analyses dynamiques élastiques pour les différents accélérogrammes choisis.

Cette étude a montré que le soulévement peut avoir un effet significatif sur la réponse
sismique des structures et cet effet, non seulement conduit a la réduction des
déformations, mais pourrait aussi augmenter ou diminuer, le déplacement latéral total
dépendamment des caractéristiques de la structure et de I’excitation. Pour la région de
I’Ouest du Canada le soulévement a plus d’effet sur les déplacements latéraux que pour
la région de I’Est. Le déplacement maximal augmente avec la diminution de la taille de
la semelle en région de 1’Ouest. Tandis qu’a la région de I’Est, on a constaté qu’avec des
semelles plus petites le déplacement latéral maximal pourrait étre relativement moins
significatif voire diminuer. Il sera donc possible a augmenter le facteur de réduction des
charges pour I’Est du Canada. Ceci réduira les charges de conception et conduira
davantage a des semelles plus petites sans aucun impact négatif sur le comportement

global des murs.

L’objectif ultérieur de nos développements et d’enrichir les normes de conception des
fondations superficielles pour les murs de refends en béton armé, avec une extension de
I’analyse vers un comportement inélastique des murs de refends en leur permettant de
développer des rotules plastiques a la base. Ultérieurement, des tests a échelle réelle sur
des murs de refends seront effectués pour valider les modéles numériques et confirmer le

choix des parameétres.
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ABSTRACT

The objective of this research is to contribute to the study on the seismic behaviour of
the concrete shears walls by examining of the foundation uplift. The current edition of
the National Building Code of Canada NBCC 2005, explicitly accepts this type of
behaviour in recognition of its possible economic impact on design. In the present study,
a simple analysis tool has been developed to study the rocking behaviour of shear walls
under seismic loads. This tool has been subsequently used to carry out parametric
studies on the buildings designed for eastern and western Canadian locations. In the
study, shear walls are represented as linear structures behaving as single degree of
freedom system. These modelling assumptions are justifiable in view of the objectives of
this research project. The structures are considered attached to an infinitely rigid footing
resting on an elastic Winkler foundation that includes the foundation uplift mechanism.
These assumptions permit to model the basic aspects of the foundation uplift
phenomenon. The developed tool can be used to carry out efficient dynamic analysis

including the soil-structure interaction.

Values of the reduction factor used to determine foundation design loads have been
adopted in the NBCC current version by considering the possibility of the foundation to
rock back and forth on the sol-foundation interface. Previous studies that provided basis
for the selecting of reduction factors values, have considered only the west region of
Canada on clayey and roc soils with the specific geotechnical characteristics. To date, no
information is available for the Canadian East region where the seismic conditions are
characterized by the earthquakes rich in high frequencies. The goal of the present
research is, on one hand, to validate, the previous studies using a model which takes
into account the dynamic characteristic of the soil, and on the other hand, to expand the
study to east region of Canada. The five, ten and twenty five-storey reinforced concrete
shear wall building located in Vancouver and Montreal, were designed according to the

2005 National Building Code of Canada, and their seismic response is studied using
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elastic time history for several earthquake records to evaluate the effect of foundation

uplift..

The results show that the foundation uplift could have a significant effect on the seismic
response of structures, and such effect non only lead to a reduction of the deformation,
but may also increase or decrease the lateral displacement, depending of the structure’s
and excitation’s characteristics. In the west of Canada, the foundation uplift has more
effect on the lateral displacement than in the east region. It was found that the maximum
displacement increases when decreasing the footing size. In the east of Canada,
however, it has been shown that the decrease in footing size may lead to the decrease of
the lateral displacement. Thus, it seems possible to increase the seismic load reduction
factor in the cast of Canada. This would reduce the load design and consequently lead to

smaller mat-foundation without any negative impact on the overall behaviour of walls.

The future studies are foreseen with objective to further develop the existing design
guidelines of concrete shear wall foundations by extending the analysis to include the
inelastic behaviour of the shears walls. The experimental program will also be developed
in the future in order to validate the numerical model and confirm the choice of

modelling parameters.
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CHAPITRE 1 Introduction

1.1 Problématique

Le phénomeéne de soulévement de la base d’une structure par rapport a sa fondation a
été observé lors des plusieurs séismes de forte intensité. Des structures élancées fondées
superficiellement se sont détachées du sol de fondation et ont basculé sur leurs
fondations : elles semblaient résister aux séismes en raison de leur capacité a se mouvoir
de fagon indépendante du sol de fondation (Psycharis & Jennings, 1983). Les analyses
de comportement des batiments durant les séismes indiquent qu’un soulévement partiel
pourrait y avoir lieu (Meek, 1975). Ceci est di au fait que le sol est incapable de
développer des contraintes de tension quand les déplacements verticaux des extrémités
des semelles dépassent une valeur critique. Cette valeur dépend de la dimension de la
semelle, de la rigidité du sol et des chargements statiques appliqués. Des analyses
théoriques (Meek, 1975; 1978), aussi bien que des essais effectués sur le comportement
dynamique non-linéaire des batiments en permettant le soulévement de leurs semelles
(Chopra & Yim, 1985; Psycharis, 1983, 1991) ont démontré qu’il n’est pas nécessaire
d’empécher le soulévement des fondations parce qu'un effet bénéfique sur la réponse de

la structure, telle que la réduction des déformations et des efforts, a été constaté.

Malgré les observations des effets bénéfiques du soulévement des fondations sur le
comportemlent global des structures sous les charges sismiques, les normes canadiennes
de conception parasismique, jusqu’a récemment, ne permettaient pas explicitement ce
type de comportement. Selon les prescriptions des Codes du bitiment CNB 1990
(NRCC, 1990) et CNB 1995 (NRCC, 1995), la procédure de conception sismique des
murs de refends supportés sur des semelles superficielles consistait & appliquer aux murs
les forces statiques. La méthode du code était basée sur I’hypotheése que les murs de

refends étaient supportés sur une base rigide se déplacant selon les mouvements



superficiels du sol. En fait, les fondations ont une flexibilité et une capacité
d’amortissement qui modifient la réponse de la structure. D un ¢6té, la flexibilité de la
fondation augmente la période fondamentale. De 1’autre c6té, I’amortissement provient
de la dissipation d’énergie par rayonnement et du comportement non linéaire du sol, ce
qui augmente I’amortissement effectif du systéme fondation-structure. Ces effets, que
I’on qualifie d’interaction sol-structure, n’étaient pas traités de fagon explicite dans les

codes CNB 1990 et CNB 1995.

Dans le CNB 1990 et le CNB 1995, on prescrivait également une méthode de conception
par capacité qui assurait que le mur soit moins résistant que la semelle, de fagon a
développer une rotule plastique en flexion dans le mur avant la rupture ou une
déformation excessive de la fondation. Selon les clauses de CSA A23.3, il n’était pas
nécessaire que la résistance des semelles superficielles non ancrées supportant les murs
de refend dépasse les chargements calculés avec un facteur de réduction des forces égal
a 1.3. Cette réduction des efforts de conception était déja introduite dans les normes de
CSA A23.3 pour tenir compte d’une éventuelle dissipation d’énergie dans la fondation.

Dans certains cas, les provisions de CNB aboutissaient a des semelles trés larges et la
conception sismiques de ces semelles devenait trés onéreuse surtout quand un mur
supportait une faible charge verticale qui donnait une grande excentricité sur la semelle,
ou quand le mur était surdimensionné et avait un moment capacitaire considérable qui

dépassait largement le moment de sollicitation induit par les forces sismique.

L’approche de conception par capacité¢ permettait d’éviter I’endommagement dans la
semelle ou il est difficile de le repérer (Anderson, 2003). Les chercheurs se sont donc
demandés s’il était possible de concevoir des murs de refends sur des fondations offrant
une résistance plus faible que le moment de renversement spécifié dans le code du

batiment, en permettant ainsi la semelle de se soulever.
Pour tenir compte du soulévement dans la conception, plusicurs procédures simplifiées

sont souvent intégrées dans les versions récentes des normes de conception



parasismiques sans qu’il soit nécessaire de modéliser tous les détails du comportement
structural. Ces procédures de conception consistent le plus souvent a 1’évaluation et la
comparaison des résultats de simulation en tenant compte du soulévement de la
fondation. Ces résultats sont généralement des déplacements horizontaux d’un systeme

équivalent comportant un seul degré de liberté,

Pour suivre les prescriptions des codes et guides pour la conception et la réhabilitation
sismique tels que le CNB 2005 (NRCC, 2005), FEMA 356 (FEMA, 2000) et ATC-40
(ATC, 1996), le seuil qui correspond au soulévement de la semelle est défini en utilisant

les valeurs spécifiques de facteurs de réduction des forces.

Chaque norme de conception préconise une approche spécifique pour résoudre le
probléme : Dans I’approche de FEMA 356 (FEMA, 2000) et ATC-40 (ATC, 1996), une
relation est établie entre le moment et la rotation de la semelle pour chaque condition de
contact et comportement de sol possible. Dans I’annexe D de I’Eurocode 7 (CEN, 2004),
Ieffet de soulévement de la base est considéré plutét dans le calcul de la capacité
portante du sol en fonction de la réduction de la surface de contact effective entre le sol

et la semelle de fondation (Psycharis, 2007).

Dans le code international du batiment IBC 2000 (ICC, 2000), la philosophie de la
conception sismique autorise des forces latérales sismiques de conception qui sont
inféricures a celles nécessaires pour maintenir la structure dans le domaine élastique.
Cela implique que la plupart des structures développeront des déformations inélastiques
pendant les séismes de forte intensité. Le facteur de réduction de la force sismique, R,
est exprimé comme coefficient de modification de la réponse. Les valeurs de R
prescrites dans le code IBC 2000 sont basées sur 1’observation de la performance des
systémes de structures. L’endommagement de la structure est alors relié de fagon
empirique et globale pour I’ensemble de la structure a la valeur plus ou moins élevée du
facteur R (Harden et al, 2006).



Plusieurs études menées sur la sélection du facteur de réduction des forces pour la
conception sismique des structures, ont été basées sur la réponse d’un systéme non
linéaire a un seul degré de liberté soumis a des signaux sismiques synthétiques. Les
résultats alors obtenus ont été extrapolés aux systémes a plusieurs degrés de liberté
(Verla et Tanner, 2006). Aujourd’hui une valeur unique du facteur R est toujours
spécifiée pour chaque type de systéme de résistance aux forces sismique. Pour la
conception des murs de refends en tenant compte de la possibilité de soulévement des
fondations, une procédure rigoureuse devrait étre développée pour sélectionner plus
précisément la valeur de facteur de réduction. Cette procédure devrait étudier la réponse
sismique des murs en utilisant un grand nombre de signaux sismiques réels ou

synthétiques pour différentes régions.

Filiatrault et al. (1992) ont étudié I'effet du soulévement des fondations sur le
comportement d’un mur en béton armé de type noyau central de batiment situ¢ dans la
région de Vancouver. Anderson (2003) a réalisé des analyses temporelles dynamiques
non linéaires sur des murs de refend de différentes hauteurs avec prise en compte du
soulévement. I1 a confirmé que la dimension des semelles de fondation pourrait étre
réduite si on permettait le soulévement. Il a démontré que les déplacements horizontaux
de structures de 7, 15 e t 30 étages demeuraient sensiblement inchangés lorsque les
fondations étaient congues avec un facteur de réduction des forces sismiques égal a 2.0,
lorsque comparés aux déplacements obtenus en empéchant le soulévement. Il indique
¢galement que [I’utilisation d’un facteur R plus élevé pouvait conduire & des
déformations plus importantes et a un comportement du mur qui ne soit pas compatible
avec les hypothéses de conception. Sur la base de cette ¢tude d’Anderson, on admet
maintenant le soulévement des semelles dans la version actuelle du CNB 2005, en
permettant de limiter les efforts de conception pour les fondations aux -efforts
correspondant a un facteur R,R; = 2.0. Cependant, 1’étude d’ Anderson était restreinte a
la région de I’ouest de Canada avec des conditions tectoniques et géotechniques

spécifiques a cette région. Elle n’offrait aucune information pour la région de I’Est



Canadien, dont les conditions sismiques, caractérisées par des secousses riches en hautes
fréquences, sont trés différentes. L’étude était aussi basée sur un modele simplifié d'une
structure lincaire et ¢lastique qui était supportée sur une fondation de type Winkler ou la
flexibilité du sol était représentée par quelques ressorts distribués sous la semelle. Aucun
amortissement visqueux ni radiant n’a ét¢ introduit dans la fondation, ce qui rendait
I’étude conservative. 11 y aurait licu de valider I’étude faite pour la région de 1’ouest avec
un modéle qui tienne compte des caractéristiques dynamiques du sol en appliquant la
procédure statique du CNB 2005 pour le dimensionnement du systéme sol-structure et,

d’autre part, d’étendre cette étude a la région de I’est du Canada.

1.2 Objectifs et portée

Les objectifs de la recherche sont de : 1) développer un modéle numérique simple et
fiable pour I’étude du phénoméne de soulévement des fondations sous sollicitations
sismiques et 2) réaliser avec ce modéle une étude paramétrique visant a étudier le
soulévement des murs de refends pour des batiments construits dans 1’est et 1’ouest du

Canada.

Comme il s’agit d’une premicre étude menée sur ce domaine par le groupe de recherche
en génie des structures de I’Ecole Polytechnique, on visait d’abord a bien comprendre et
bien documenter le phénoméne de soulévement plutdt que réaliser une étude prenant en
compte le comportement détaillé de la structure. On a donc jugé préférable de faire appel
a une procédure simple permettant de bien comprendre, caractériser et reproduire ce
phénomeéne fortement non linéaire. Dans cette étude, on a donc développé une procédure
dans laquelle les murs de refends sont représentés par des structures linéaires qui
répondent essentiellement comme des systtmes a un degré de liberté. Les murs sont
construits sur des semelles infiniment rigides qui sont supportées sur un sol de fondation
¢élastique. Le modele choisi pour représenter la fondation superficielle est celui de

Winkler qui inclut la flexibilité et ’amortissement de la fondation (Figure 1.1).



Ces hypothéses simplificatrices permettent tout de méme de reproduire les principaux
aspects du phénomeéne de soulevement des fondations, sachant que le soulévement est
produit par le moment de renversement qui est un phénomeéne associé au mode
fondamental de vibration des structures et que les semelles sont généralement plus

rigides que le sol porteur.

=

Figure 1.1 Mur de refend sur avec fondation élastique (Modéle Winkler)

1.3 Méthodologie

La méthodologie suivie dans notre étude a été établie pour atteindre les objectifs
visés. Tout d’abord, on étudie 1’évolution des recherches et des prescriptions des codes
du batiment concernant le soulévement et le dimensionnement des semelles de

fondations des murs des murs de refends. Par la suite, on analyse le comportement des



murs soumis aux séismes en faisant une étude paramétrique. Puisque le comportement
des structures avec soulévement est fortement non linéaire, on doit étre certain de la
justesse des modéles numériques utilisés pour prédire ce comportement afin de pouvoir
faire une étude paramétrique précise. Pour cela, on a procédé par validation et
comparaison de la réponse d’une structure en utilisant différents modéles et algorithmes
dans les deux logiciels Ruaumoko et Matlab. Par la suite, on a adopté le mod¢le
approprié pour nos analyses sismiques des murs de refends étudiés. Ces murs sont des
¢léments résistants pour les batiments a 5, 10 et 25 étages localisés dans la région de

I’est et I’ouest du Canada.

La validation des modéles numériques a comporté plusieurs étapes. Tout d’abord, on a
examiné, avec le logiciel Matlab, la réponse d’un mur modélis¢é comme une structure
élastique fondée sur un sol homogene élastique modélisé avec deux ressorts. On a
ensuite développé une application Matlab pour le modéle de fondation de Winkler et on
a comparé les réponses calculées avec Matlab a celles obtenues avec le logiciel
Ruaumoko pour se rassurer de la mise en équation des systémes dynamiques et de la
fiabilité de la modélisation du soulévement par Ruaumoko. En utilisant différents
algorithmes dans Matlab, on a examiné la convergence de la solution obtenue avec le
modeéle de Winkler, modeéle plus réaliste, puis on a choisi ’algorithme le plus efficace au
niveau du temps de calcul et de précision pour calculer la réponse sismique des trois
murs de refends localisés a I’est et 1’ouest canadiens et compléter 1’étude paramétrique

sur I’influence du soulévement des semelles.

1.4 Organisation du mémoire

Dans le premier chapitre, le phénoméne de soulévement des fondations a été
documenté et I’importance des effets sur le comportement des structures de batiment a
été¢ soulignée. Ce survol se poursuit dans le deuxiéme chapitre par une revue de

littérature sur les études antérieures qui ont ét¢ menées sur le soulévement de fondation.



Dans le troisieme chapitre, on procede a une premicre étude analytique qui porte sur le
comportement dynamique des murs modélisés par des blocs rigides. Apres la mise en

équation, la réponse sismique est étudiée pour les cas de fondation rigide et flexible.

Le quatriéme chapitre est consacré a 1’analyse de la réponse des murs modélisés par des
structures flexibles. Deux cas sont étudi¢s : fondation modélisée avec deux ressorts
seulement et fondation de type Winkler. Des modeles et des algorithmes de calcul
permettant de prendre en compte la nature de sol, I’amortissement et autres parametres
sont mis en ceuvre. On fait appel a différentes méthodes numériques fondées sur des
algorithmes de Newmark et Runge-Kutta. La résolution des équations a permis

d’accroitre sensiblement la stabilité numérique et la convergence de la solution.

Dans le cinquieme chapitre, on effectue une modélisation de la structure avec le logiciel
Ruaumoko. La réponse sismique est obtenue pour les modéles a deux ressorts et pour
celui de Winkler, ceci afin de comparer I’effet de type de modélisation de sol sur le
comportement sismique des murs de refend et choisir le modéle le plus approprié pour
ces calculs. Les murs de refend sont considérés comme des structures flexibles et
¢élastiques. Les fondations sont supposées trés rigides et élastiques, avec un
amortissement. Dans les deux mode¢les, on suppose que les ressorts ne peuvent résister a
la tension. Ainsi le soulévement se produit quand le déplacement d’une portion de la

base est plus grand que le déplacement statique représentant le tassement de la structure.

Le sixiéme chapitre porte sur les études paramétriques réalisées pour étudier les effets du
soulevement des fondations sur la réponse des trois murs localisés dans les régions de
I’est et de 1’ouest canadiens. Dans ce chapitre, on a effectué le dimensionnement des
murs et des fondations, et déterminé les propriétés dynamiques de sol. On a ensuite
procéder aux analyses sismiques et examiner les résultats obtenus dans un contexte de
proposer des méthodes de conception. Le septiéme chapitre regroupe les conclusions

générales des analyses et les recommandations.



CHAPITRE 2 Revue de littérature

2.1 Interaction Sol-Structure et les Codes de conception

Dans la majorité des codes de conception sismique des bitiments, la réponse sismique
des structures et les efforts de fondation sont calculés en négligeant 1’interaction sol-
structure. C’est ’analyse de la structure avec base fixe (Pecker, 2004). Cependant, le
chargement d’une structure induit par le séisme dépend de la réponse de la structure elle-
méme et cette réponse est en partie, la conséquence de 1'interaction sol-structure. Ce
phénomeéne devient plus important lorsque le sol est plus souple ou quand les fondations
sont massives ou profondes. L’augmentation de la période naturelle et 1’amortissement
du a la déformabilité du sol conduit a des accélérations et contraintes plus faibles dans la
structure et dans la fondation. Ainsi, dans certains codes, tenir compte des effets de
I’interaction sol-structure dans la conception des batiments, est bénéfique puisqu’elle
réduit les moments fléchissant et les efforts de cisaillement agissant sur les éléments de

la superstructure.

Dans I’approche conventionnelle pour la conception des fondations superficiclles, on
utilise des facteurs de conception pour éviter que les forces horizontales transmises et les
moments de renversement ne provoquent un glissement significatif ou une mobilisation
de la capacité portante. Cette approche se résume en deux étapes: la premiére étape
consiste en une analyse dynamique de la structure, effectuée avec un sol modélisé
comme un domaine élastique représenté par des ressorts et des amortisseurs; la
deuxiéme étape consiste a déterminer les forces et moments transmis vers la fondation
(Gazetas et al 2003). On admet un comportement inélastique de la structure, ce qui
permet de réduire les efforts dans la structurc par un facteur de réduction tenant compte
de la ductilité de la structure. La formation de rotules plastiques est permise seulement

dans la superstructure et non pas dans le sol, ce qui veut dire que le comportement
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inélastique de la semelle et la mobilisation de la capacité portante ne sont pas permis.

Seulement un soulévement a I’interface sol fondation est permis.

Les recherches sur I'interaction dynamique sol-structure €taient souvent basées sur un
comportement linéaire viscoélastique avec plein contact entre le sol et la semelle.
Cependant les séismes enregistrés ces derniéres années ont montré que les chargements
sismiques transmis a la fondation superficielle pourraient induire des déformations
inélastiques non linéaires a I’interface sol fondation (Gazetas & Apostolou, 2004). Ces
déformations pourraient provoquer a I'interface sol fondation une rupture par capacité
portante. Dans ce cas, ’analyse sismique autorise la mobilisation de la résistance
maximum du sol. Pendant le soulévement de la semelle, quand une extrémité est
soulevée, un mécanisme de rupture par capacité portante peut avoir lieu a |’autre
extrémité de la semelle. Cependant, en conception parasismique, les fondations
superficielles sont souvent congues par une approche statique équivalente. Des facteurs
de sécurité importants sont introduits pour éviter que les modes de rupture associés a la
capacité portante ne surviennent. Les fondations sont soumises a une charge verticale

excentrée avec un sol de capacité portante donnée.

Parmi les non linéarités, le glissement a I’interface sol-fondation, pourrait se produire
dés que la force horizontale transmise a la fondation dépasse la résistance au frottement.
La mise en pratique de I’hypothése du glissement dans la conception des fondations
superficielles reste limitée grice a des valeurs élevées du coefficient de frottement a
I’interface, et la résistance au frottement est souvent assurée par la résistance en butée
résultant de la profondeur de la semelle dans le sol. Dans notre étude, on néglige le
glissement a I’interface sol-fondation en supposant que la résistance contre ce mode de
rupture est suffisante. Par contre, le soulévement de la fondation pourrait avoir licu
quand le moment de renversement induit par le séisme tend a provoquer des contraintes

de tension aux extrémités de la semelle.



11

Une méthode pour estimer la déformation d’un systéme sol-fondation consiste a
remplacer le sol par unc séric de ressorts et amortisseurs produisant une réaction
équivalente a la déformation développée a 1’interface sol-fondation. Les amortisseurs
représentent deux sources d’amortissement : 1’amortissement hystérétique du matériau et
I’amortissement radiant. L’amortissement du matériau dépend du niveau de déformation
développé dans le matériau. Si les amplitudes de déformation sont grandes,
I’amortissement matériel devient significatif. Si ces déformations sont petites,
I’amortissement peut étre négligeable. L’amortissement radiant représente un effet
purement géométrique, qui existe a petites amplitudes aussi bien qu’a grandes
amplitudes de déformation. Généralement, 1’amortissement radiant est plus grand que

I’amortissement hystérétique.

Dans les directives de FEMA 356 (FEMA, 2000) et le document associé ATC-40 (ATC,
1996), on suggere des procédures de conception associées a la réponse des murs de
refends soumis aux basculements induits par la force sismique. Ces procédures incluent
les effets de la flexibilité de la fondation sur la structure, en tenant compte de la rigidité
de la fondation dans le modéle de structure (Kutter et al., 2002). L’amortissement de la
fondation provient des mouvements relatifs de la semelle par rapport au mouvement du
sol porteur. Il est associé¢ avec 1’énergie de radiation dissipée loin de la fondation et
I’énergie hystérétique dans le matériau sol. 1l faut noter que d’autres facteurs affectent
I’amortissement de la fondation, telles que la taille de la semelle et sa profondeur dans le
sol. Dans FEMA 356, I’amortissement effectif du systéme est déterminé sur la base de
I’amortissement radiant en considérant que les effets de I’amortissent hystérétique sont
négligés. Gazetas (1991) avait développé des formules pour déterminer les constantes de
rigidités et d’amortissements pour des semelles de fondations supportées sur un demi-
espace ¢lastique. Ces formules ont été largement utilisées en pratique et on pourrait les
utiliser dans notre étude pour déterminer les constantes de I’amortissement et de rigidité

du sol.
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2.2 Etudes antérieures sur le soulévement de fondations superficielles

Plusieurs publications dans la littérature décrivent le phénoméne de soulévement de
fondations superficielles soumises au séisme et posées sur des sols élastiques ou
inélastiques. Le phénoméne de soulévement est un comportement fortement non linéaire
qui doit étre pris en compte adéquatement dans les équations et méthodes d’intégration

dans le temps qui sont utilisées pour décrire le probléme.

Housner (1963) a ¢été le premier a étudier le comportement des structures soumises au
soulévement a leur base. Il a étudié le comportement sismique d’un bloc rigide basculant
sur un sol rigide. Ses travaux étaient motivés par le fait que des chateaux d’eau avaient
résisté aux fortes oscillations produites par le séisme chilien de mai 1960, alors que
d’autres structures en béton armé avaient été sévérement endommagées. En représentant
I’accélération du sol par une impulsion de forme rectangulaire, il a dérivé des équations
pour I’amplitude d’accélération requise pour renverser le bloc. Cependant, cette
approche n’était valide que pour une seule impulsion. Des accélérations plus faibles que
celles obtenues de ces équations peuvent faire soulever le bloc, mais sans pour autant le
renverser. Il est cependant possible de renverser la structure avec ces faibles
accélérations si elles sont appliquées sous la forme de plusieurs impulsions successives,

ce qui peut étre le cas d’une accélération du sol durant un séisme.

Meek (1975) a étudié les effets de soulévement de la fondation de structures flexibles
soumises aux sollicitations dynamiques. En modélisant la structure par un systéme a un
degré de liberté, il a identifi¢ analytiquement deux effets de soulévement sur la réponse
sismique des structures fondées sur des sols rigides. Premiérement, le soulévement
conduit a une réduction de la déflexion maximum de la structure. Deuxiémement, le
contact avec le sol, a la fin d’un épisode de soulévement, génére des forces impulsives
mtenses de forte intensité qui sont transmises vers la structure. Ultérieurement, Meek

(1978) a étudié la réponse dynamique d’un noyau central d’un batiment multi étagé. En
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négligeant la flexibilité du sol en supposant qu’un sol granulaire pouvait étre représenté
comme un matériau infiniment rigide dans le domaine élastique, il a montré que le
soulévement réduit significativement 1’effort de cisaillement et le moment a la base de la

structure.

Yim & Chopra (1983) ont analysé la réponse sismique des blocs rigides. Les résultats
ont montré que le comportement €tait trés sensible au moindre changement de taille du
bloc et des caractéristiques du mouvement sismique. Ils ont conclu que la stabilité d’un
bloc soumis a un mouvement sismique particulier n’augmente pas nécessairement d’une
fagcon monotone avec I’augmentation de la taille du bloc. De méme, le renversement
d’un bloc par un mouvement de sol d’une intensité donnée n’implique pas que le bloc va
nécessairement se renverser sous 1’action d’un mouvement de sol d’intensité supérieure.
La réponse a été calculée par intégration numérique des équations dynamiques en
utilisant le schéma d’intégration de Runge-Kutta d’ordre 4 avec un pas de temps de
1/400 s. Les résultats on été comparés avec ceux obtenus d’essais expérimentaux sur

table vibrante en utilisant des signaux sismiques.

Psycharis & Jenning (1983) ont examiné la réponse dynamique des blocs rigides
supportés par des fondations flexibles susceptibles au soulévement. Ils ont considéré
deux types de fondation: la fondation ¢lastique continue avec un amortissement
visqueux, modele qui est aussi connu sous le nom de modéle de Winkler, et la fondation
a deux ressorts-amortisseurs placés symétriquement sous la base. Ils ont démontré que
pendant le soulévement de la fondation, le systéme se comporte non linéairement, bien
que la réponse soit composée de séquences de réponses linéaires. On a aussi remarqué
que la période de basculement de la structure s’allonge, aprés le soulévement, lorsque
I’intensité du basculement augmente. Pour les grandes amplitudes du mouvement, cette
augmentation est essenticllement proportionnelle a ’amplitude de I’excitation. Ils ont
montr¢ aussi que la réponse du systeme en déplacement pourrait augmenter ou diminuer

a cause de soulévement, dépendamment de 1’excitation et des paramétres du systéme.
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Pour le calcul de la réponse, les équations de mouvements aprés soulévement ont été
intégrées numériquement en utilisant le schéma de Runge-Kutta avec un pas de temps
égal a 0.001s. Par la suite, Psycharis (1983) a étudié I’effet du soulévement sur la
réponse sismique des structures f{lexibles supportées sur des fondations élastiques en
utilisant le mémes modéles de fondation pour représenter la flexibilité du sol et la
dissipation d’énergie. Il a étudié une structure a un degré de liberté et une structure
multi-étagée. 11 a démontré que le soulévement augmente toujours la rotation de la
semelle de fondation, mais les effets de la flexibilité du sol sur la déflexion maximum ne
sont pas significatifs, a 1’exception des sols trés mous. Dans ce dermier cas, le
soulévement pouvait amener a une plus petite ou plus grande déflexion latérale de la
structure, dépendamment de rapport de la période fondamentale de la structure a celle de
I’excitation. Plus tard (Psycharis, 1991), il a observé, au moyen d’une <étude
paramétrique portant sur une structure flexible supportée par une fondation rigide et
sollicitée par une excitation harmonique, que la déflexion maximum est trés affectée par
le rapport de la période de la structure & celle de 1’excitation. Dans le cas ou le
soulévement est permis, ce rapport est le parametre principal qui détermine si le
soulévement conduit & une déflexion au sommet plus élevée ou plus faible, comparée a
celle obtenue avec une base fixe. Pour des rapports proches de 1'unité, le soulévement
est bénéfique pour la structure car la déflexion maximum est réduite. Pour des valeurs
éloignées de 'unité, le soulévement conduit & une déflexion plus grande. Il a aussi
montré que I'intensité du séisme et 1’élancement et ’amortissement de la structure ont

des effets moins significatifs.

Yim & Chopra (1984) ont étudié¢ les effets du soulevement de la fondation sur le
cisaillement & la base des structures flexibles en se basant sur I’analyse de la réponse
spectrale. La premiére étude a été réalisée sur une structure modélisée par un systéme a
un degré de liberté et fixée a une semelle rigide supportée a chaque extrémité sur un
ressort-amortisseur. Ils ont montré que le cisaillement a la base des structures a période

relativement longue reste en dessous de la valeur critique au-deld de laquelle le
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soulévement aurait cu licu. Par contre, pour les structures a courte période de vibration,
I’effort de cisaillement dépasse la valeur critique quand la semelle est empéchée de se
soulever. Pour ces derniéres structures, le fait de permettre le soulévement a comme
effet de réduire ’effort de cisaillement. Cependant, il a été aussi montré que la semelle
de fondation d’une structure élancée avait davantage tendance a se soulever et que le
soulévement donnait lieu 2 une réduction plus importante de 1’effort de cisaillement a la
base. Dans une la deuxi¢me étude, la méme structure flexible a été étudiée, mais en
modélisant le sol de fondation de maniere plus réaliste en incorporant la fondation
Winkler avec des éléments ressorts-amortisseurs distribués Ie long de la semelle. Ils ont
observés les mémes effets sur ’effort de cisaillement que ceux notés dans le cas d’une
fondation modélisée avec seulement deux ressorts. Pour les deux études, les valeurs de
I’amortissement critique de 5% et de 40% ont été respectivement introduites dans les
équations pour la superstructure et la fondation. Les équations des systémes ont été
mtégrées numériquement en utilisant le schéma implicite de Newmark avec une
variation linéaire de I’accélération dans chaque pas de temps. Le pas de temps utilisé

devait étre suffisamment court pour assurer la convergence.

Chopra et Yim (1985) ont présenté une procédure simplifiée pour I’analyse des effets de
soulevement des structures flexibles qui répondent essentiellement comme des systémes
a un degré de liberté. Ces structures sont fixées a des semelles rigides supportées par des
fondations rigides ou élastiques. Chacun des ressorts de fondation était considéré
élastique et linéaire. Dans cette analyse, les valeurs maximums de D’effort de
cisaillement a la base et la déformation sont calculées directement du spectre de réponse.
Ils ont par la suite étendu leur étude simplifiée (Yim et Chopra, 1985) pour le cas de
structures multi-étagées supportées par un systeme de fondation a deux ressorts—
amortisseurs. Ils ont démontré qu’une approximation raisonnable du cisaillement a la
. base maximum d’une structure multi-étagée pourrait étre obtenue en considérant que le
soulévement de la fondation influe la réponse avec seulement la contribution du mode

fondamental de vibration. La contribution des modes supérieurs pourrait étre calculée
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par une procédure standard, sans effet significatif du soulévement de la fondation. 1ls ont
aussi montré que la réponse totale pourrait étre estimée avec précision par la
combinaison des maxirmums modaux en accord avec la formule de la racine carrée de la
somme des carrés (SRSS). Les résultats ont été obtenus numériquement par intégration
des systémes d’équations en utilisant la méthode implicite de Newmark. La procédure
simplifiée qu’ils ont proposée pourrait étre utilisée en pratique pour analyser le
soulevement des structures supportées sur des fondations viscoélastiques. Cependant,
comme les paramétres de la fondation sont difficiles a évaluer en pratique, du fait qu’ils
dépendent des détails de la conception et de la déformabilité de la semelle, la réponse
devrait étre calculée pour une plage de paramétres de la fondation pour établir les

valeurs de conception.

Xu et Spyrakos (1996) ont développé une procédure analytique pour 1’étude de la
réponse sismique des structures élancées avec soulévement permis a leur base. La
structure ¢tudiée était modé¢lisée par une colonne homogeéne et isotrope, avec une masse
concentrée en téte. La superstructure était supportée par une semelle rigide circulaire et
le sol de fondation était représenté par deux ressorts et deux amortisseurs. Les
coefficients de rigidité et d’amortissement étaient considérés constants et indépendants

de la fréquence.

Le systéme d’équations a €té résolu par intégration numérique en utilisant la méthode de
Newmark implicite en supposant I’accélération moyenne sur chaque pas de temps de
0.0005 s. L’étude a montré que le soulévement peut avoir un effet significatif sur la
réponse sismique des structures. Cet effet pourrait conduire a la réduction de la
déflexion et des moments de flexion, comme cela a été observé dans les autres études,
mais aussi a une augmentation de I’effort de cisaillement et de la rotation de la semelle.
Ces observations suggérent que le soulévement pourrait ne pas étre bénéfique pour le
cisaillement. 11 a été prouvé aussi que la rigidité du sol et le rapport d’élancement de la

structure peuvent jouer un réle important dans la réponse sismique.
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En ce qui concerne les fondations flexibles sans soulévement, Nadjai et Johnson (1996)
ont réalisé une analyse ¢lastique linéaire de murs de refend avec une base flexible. Ils
ont examiné I'importance de la flexibilit¢ de la base pour des conditions des sols
réalistes. Une analyse a été présentée pour des murs de refends tridimensionnels, soumis
a différents types de chargement latéral. Les rigidités verticale et rotationnelle de la
fondation ont été prises en compte dans les analyses. Ils ont montré par différents
exemples que la flexibilit¢ de la fondation pourrait avoir un effet important sur le
comportement €lastique des murs et pourrait affecter principalement les contraintes dans
la portion inférieure des murs. En général, la flexibilit¢ de la fondation a un effet

négligeable sur les contraintes dans la portion supérieure de la structure.

Badie et Salmon (1997) ont développé une méthode d’analyse par éléments finis du
comportement des murs de refend supportés sur des fondations élastiques, sans
soulévement. Les murs ont été modélisés en contraintes planes et le sol comme un
espace €lastique semi-infini. Pour représenter la flexibilité du sol, le modéle de Winkler
a été adopté en tenant compte de la rigidité au cisaillement entre la fondation et le sol.
Cependant aucun amortissement du sol n’a €t¢ introduit dans le modele. Les analyses
ont montré que la déformation des murs de refend peut étre sous-estimée lorsque 1’on
considére la fondation rigide dans les analyses. On a aussi prouvé que 1’on surestime les
contraintes normales dans les murs en ignorant I’interaction sol structure : avec une
fondation flexible, les contraintes sont réduites dans les murs comparées a celles

obtenues avec une fondation rigide.

Filiatrault et al. (1992) ont examiné¢ le comportement sismique d’un mur en béton armé
de type noyau central des batiments, supporté sur une semelle dont le soulévement était
permis. La réponse du mur a été calculée en utilisant 1’analyse dynamique non linéaire
en intégrant le comportement inélastique de noyau. La procédure de conception a été
basée sur I’application des forces statiques du CNB 1990 et I’analyse dynamique a été

effectuée en utilisant le microprogramme Drain-2D (Prakash et al., 1993). Trois
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modéles ont été étudiés. Le premier modéle comprenait un noyau inélastique supporté
sur une fondation rigide. Le deuxiéme modéle était un noyau fondé sur un sol flexible
pouvant se plastifiecr en compression, avec unc semelle capable de soulever. Le
comportement non linéaire de la fondation était représenté par des éléments de treillis
incorporés dans le logiciel Drain2D. Ces éléments offrent un comportement plastique en
tension avec un flambage élastique en compression. Dans le modele, les ¢léments de
treillis sont disposés au-dessus de la semelle, de telle sorte que la résistance inélastique
du sol peut étre représentée par la plastification en tension de ces ¢léments, tandis que le
soulévement peut étre reproduit par leur flambage. Les propriétés de ces tirants ont été
établies sur la base de la ngidité d’une fondation circulaire équivalente. On a appliqué
un amortissement visqueux égal a 3% de l’amortissement critique dans les deux

premiers modes de I’ensemble sol-structure.

Le mur de refend reposait sur un stationnement souterrain dont la dimension en plan
correspondait a 1’empreinte au sol de tout le batiment. Ils ont observé une importante
réduction de la tendance au soulévement de la semelle lorsque 1’on considérait que le
mur de refend et la structure du stationnement agissaient de maniére monolithique. En
négligeant la structure du stationnement dans I’analyse, plus de la moiti¢ de la semelle
s’est soulevée dans chaque direction. Dans les deux cas, les contraintes dans le sol sont
demeurées inférieures a la capacité portante du sol. On a constaté que le stationnement et
les fondations soumises au soulévement ont provoqué une augmentation des forces de
cisaillement aux étages inférieurs. Les chercheurs ont aussi observé que le
comportement de la structure n’était pas en accord avec la philosophie du CNB 1990. La
réduction des efforts de cisaillement n’était pas proportionnelle a la réduction des
moments de flexion découlant de I’utilisation du facteur R dans le calcul des charges

sismiques et de la plastification du noyau en flexion. Ce constat a suggéré que des
facteurs différents de modification de forces (facteurs R) seraient probablement

nécessaires pour la flexion et le cisaillement.
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2.3 Evolution des spécifications sismiques au Canada dans le CNB

Plusieurs changements ont été apportés aux clauses sur la conception sismique dans la
version 2005 du Code National Canadien du Batiment (NRCC 2005). Parmi ceux-ci,
plusieurs ont affecté la détermination des forces sismiques de conception par la méthode
statique équivalente. Les prescriptions du CNB 1995 étaient basées sur I’approche
statique équivalente. On recommandait d’utiliser ’analyse dynamique dans le cas des
structures irrégulicres, ceci afin d’obtenir une meilleure distribution de la charge
sismique dans la structure. Lorsque 1’on utilisait analyse dynamique, il fallait augmenter
tous les résultats de cette analyse par le rapport des cisaillements a la base obtenus des
analyses statique et dynamique. On considérait en effet que les procédures d’analyse
dynamique du CNB 1995 étaient non sécuritaires pour fixer I’amplitude des charges
sismiques (Saatcioglu & Humar, 2003). Dans I’édition 2005 du CNB, on spécifie
I’analyse dynamique comme la méthode d’analyse préférée pour déterminer les forces
de conception. Toutefois, dans cette nouvelle édition, on permet toujours 1’utilisation de
la procédure de la charge statique équivalente pour les structures suivantes: (i)
structures localisées dans les zones a faible sismicité ou /,.F .S, (0.2) est inférieur a
0.35, I, étant le facteur d’importance, F, le facteur de fondation relié¢ a I’accélération,
et §,(0.2) I’accélération du spectre du risque uniforme correspondant a une période de
0.2 s; (ii) structures régulieres localisées dans n’importe quelle zone sismique lorsque
leur hauteur est inférieure a 60 m et la période latérale fondamentale est inférieure a 2.0

s ; (i) structures irrégulieres localisées dans toute zone sismique et dont la hauteur est

inférieure a 20 m avec une période fondamentale latérale inférieure 4 0.5 s.

En accord avec le CNB 1995, le cisaillement a la base est distribué le long de la hauteur
de la structure principalement selon le premier mode de la structure. Dans la version
actuelle du code (CNB 2005), la distribution de I’effort de cisaillement sur la hauteur

d’un bétiment uniforme avec la méme hauteur d’étages et mémes masses, est
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triangulaire. Cette variation linéaire est une bonne approximation de la réponse dans le
premier mode (Humar & Mahgoub, 2003). Pour ces batiments, le cisaillement a la base
est obtenu du spectre du risque sismique (UHS) spécifié pour le site et dont la
probabilit¢ d’étre dépassé en 50 ans est de 2% : soit une période de retour de 2500

années. A partir de ce spectre, on peut obtenir 1’accélération spectrale, S.(D),

correspondant a la période fondamentale de batiment, T,. Cette accélération spectrale
doit étre multipliée par le poids sismique du bitiment et ajustée pour les effets de modes
supéricurs pour déterminer le cisaillement a la base. Le résultat correspond aux effets
sismiques prévus si la structure demeurait élastique. La prise en compte de la ductilité et

du comportement inélastique est discutée plus bas.

La maniére selon laquelle le cisaillement a la base est distribué sur la hauteur de la
structure affecte le moment de renversement produit aux différents étages. Pour un
cisaillement a la base donné, les moments de renversements les plus élevés sont produits
quand le cisaillement & la base est distribué selon le premier mode de vibration. Puisque
la distribution de cisaillement dans le CNB 2005 est basée surtout sur le premier mode,
les moments de renversement calculés surestiment les vrais moments, et ils doivent étre
alors ajustés convenablement. Le CNB 1995 spécifiait un facteur de réduction, J, a
appliquer aux moments calculés pour obtenir une valeur plus réaliste. Dans le CNB
2005, ce facteur J décroit avec I’augmentation de la période et son taux de diminution
est plus élevé pour la région de 1’est Canadien que pour la région de I’ouest (Humar &
Mahgoub, 2003).

Le code reconnait qu’il faudrait tenir compte des effets des modes supérieurs, qui
tendent a augmenter le cisaillement, ¥, dans certaines structures de méme que 1’effort
tranchant qui s’exerce aux étages supérieurs de toutes les structures. Les effets des
modes supérieurs deviennent plus significatifs quand la période fondamentale, T,
augmente et deux corrections sont apportées qui sont fonction de la période. Un facteur

M, est appliqué au cisaillement a la base pour tenir compte de ’amplification par les
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modes supérieurs de ’effort 7 obtenu avec la valeur de S, correspondant a la période
fondamentale. Ce facteur dépend aussi de la région ou se situe la structure au Canada et
du type de structure. La deuxiéme correction consiste a appliquer une portion du
cisaillement a la base, F, au sommet de la structure. Cette force F; = 0.07T-V, mais il
n’est pas nécessaire qu’elle dépasse 0.257 et peut étre négligée si la période
fondamentale est inférieure a 0.7 s. Dans notre étude, nous ne tiendrons pas compte des
effets des modes supérieurs car il a été démontré dans la littérature qu’ils n’ont pas

d’effet significatif sur les soulévements.

La nouvelle version du CNB 2005 introduit un facteur de réduction des forces associé a

la ductilité, R,. Ce facteur refléte la capacité de la structure a dissiper de 1’énergie par

un comportement inélastique sous les sollicitations sismiques. Ce facteur R, correspond
essentiellement au facteur R utilisé dans la version précédente du CNB. Dans la nouvelle
version du CNB, ce facteur varie de 1.0 a 5.0, pour le systéme le plus fragile au systeme
le plus ductile. Le facteur R, prend la valeur de 3.5 pour les murs de refends en béton
armé qui sont ductiles et la valeur de 2.0 pour les murs de refend modérément ductiles.
D’autres codes de conception prescrivent des valeurs plus élevées pour le facteur de
réduction. Par exemple, dans les directives de FEMA-356, on préconise des valeurs de R

qui peuvent atteindre jusqu’a 8.0 pour les systémes les plus ductiles.

11 a été montré que les structures, surtout les plus ductiles, pourraient avoir une réserve
de sur-résistance considérable qui n’était pas considérée de fagon explicite dans le CNB
1995 (Mitchell et al., 2003). Les prescriptions du code CNB 2005 incluent maintenant
un facteur de modification de force, R,, qui tient compte de cette sur-résistance. Ce
facteur prend une valeur de 1.6 et 1.4, respectivement, pour les murs en béton armé
ductiles et modérément ductiles. Pour tenir compte de la sur-résistance dans la

conception, on inclut aussi le facteur R, au dénominateur de I’équation pour le calcul de
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la charge sismique, V. Ainsi un changement significatif a eu lieu dans la version 2005 du

CNB pour la détermination du cisaillement a la base. 1l est donné par la relation :

y_ ST)M W
R,R,

2.1
Dans cette équation, S(T,) est la valeur de I’accélération du spectre de conception
correspondant a la valeur de la période fondamentale de vibration de béatiment 7 ;
M est le facteur qui tient compte de I’amplification des efforts de cisaillement liée aux
effets des modes supérieurs ; /, est le facteur de I'importance de la structure; et ¥ est le

poids de la structure au moment du séisme (poids sismique). Le cisaillement élastique a
la base, V,, produit dans une structure a un degré de liberté et dont la période est égale a
T,, peut étre obtenu a partir du spectre de risque uniforme (UHS) correspondant au site
par utilisation de ’équation ¥, = S(T,)-W. Dans le CNB 2005, V doit aussi étre

supérieur & §(2.0).M,.J, W /R,.R, et, lorsque R, est supérieur ou égale a 1.5, il n’est
pas nécessaire que V dépasse2/3.5(0.2).7, W /R,.R, . Et déja mentionné avant, sclon le

CNB 2005, les semelles de fondations pour les murs de refend ne nécessitent plus d’étre

dimensionnées avec un facteur R,.R,<2.

La force sismique de conception pour un systéme élastique a un degré de liberté (SDOF)
ayant une période spécifiée et amortissement, peut étre déterminée a partir d’un spectre
d’accélération. Le spectre a utiliser pour la conception dépend de 1’aléa sismique au site.
11 dépend aussi des effets du sol sur lequel repose la structure. Les effets du sol de
fondation sont pris en compte par deux différents facteurs d’amplification, un facteur

reli€ a I’accélération F, et un facteur reli€ a la vitesse F, (Finn et Wightman, 2003). En

utilisant ces facteurs d’amplification, le spectre de conception, S(7), peut étre déduit du

spectre du risque uniforme S,(7) pour la condition du site comme suit :
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S(T) =F S,(0.2) T<02s
S(T)=F 5,(0.5) ou F,§,(0.2) (lepluspetity T =05.s

S(T)=F S, (2.0) T=2.0.s 2.2)
S(T)=F.,S,(2.0)/2 T240s
S(T) =F S, (1) T=10.s

Les valeurs des coefficients F, et F,, dépendent du type de sol (sol de classe A, B, C, D
ou E) et des valeurs de S,(0.2) et S, (1.0) au site. La Figure 2.1 présente des spectres
pour des sols de classes C (roc mou ou sol trés ferme) et D (sol ferme) pour Montréal et
Vancouver. Dans cette étude, on étudiera des structures fondées sur un sol de classe C et

localisées a ces deux sites.
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Figure 2.1 Accélérations spectrales pour les sites de classes C et D

des régions de Montréal et Vancouver
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CHAPITRE 3 Comportement dynamique des murs en

bloc rigides

3.1 Introduction

Dans ce chapitre, on étudiera le cas simple du basculement et du soulévement des
blocs rigides. Housner (1963) a été le premier qui a déterminé les caractéristiques de la
réponse sismique des blocs rigides rectangulaires. Dans plusieurs recherches, on a aussi
essayé d’estimer I’intensité des séismes historiques d’aprés les effets observés sur les
monuments, a savoir s’ils s’étaient ou non renversés. De plus, le renversement et le
basculement de plusieurs blocs rigides ont motivé d’autres chercheurs a étudier la

réponse sismique des blocs rigides.

La section 3.2 présente I’analyse d’un bloc rigide supporté par une fondation rigide.
Dans la section 3.3, on étudie le comportement des blocs rigides sur des fondations
flexibles modélisées par deux ressorts élastiques. Les ressorts ne peuvent résister aux
forces de tension, et la séparation de 1’'un des ressorts par rapport au sol est possible sous
une forte excitation. Le soulévement a lieu quand le déplacement vers le haut d’une
partie de la base devient supérieur au tassement statique dii & la gravité. Les coefficients
de rigidité et I’amortissement sont considérés constants et indépendant de la fréquence.
Cette simple mod¢lisation qui est basée sur une configuration bidimensionnelle, illustre
le comportement dynamique de plusieurs structures supportées élastiquement. Le
systeme considéré dans la section 3.3 posseéde deux degrés de liberté : un déplacement
vertical noté, y, du centre de la base du bloc et une rotation dans le plan, &, qui
correspond a I’angle que fait le bloc par rapport a la verticale. Les mouvements du sol
sont considérés appliqués dans la direction horizontale, et un amortissement visqueux
sera choisi comme mécanisme de dissipation d’énergie dans la fondation. Dans notre
étude, des ressorts dont le comportement est ¢lastique sont utilisés pour modéliser le

comportement du sol considéré comme un milieu élastique. Le mécanise de I’impact
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permet la dissipation d’énergie qui aurait lieu quand le bloc rétablit le contact avec la

fondation.

3.2 Bloc rigide avec fondation rigide

3.2.1 Description du systéme considéré et équations du mouvement

En considérant le bloc nigide de la Figure 3.1 de masse m, de moment d’inertie /, par
rapport 2 O ou O’ et de distance diagonale R. L’angle de bloc & est donné par
a = arctan(b/ /). Dépendamment de la valeur de 1’accélération et du coefficient de
frottement, £/, le bloc pourrait se déplacer solidairement avec le sol ou entrer en

mouvement de basculement ou de glissement. Une condition nécessaire pour que le bloc
entre en mouvement de basculement est que g > b/ h (Makris & Roussos, 2000).

Dans cette analyse, il est considéré que le coefficient de fortement entre le bloc et sa
base est suffisamment élevé pour prévenir le glissement a tout moment. Sous

P’accélération horizontale de sol, i, le bloc subit une rotation positive par rapport a

I’extrémité O (Figure 3.1).
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Figure 3.1. Soulévement libre d’un bloc rigide
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Soit @ I’angle de la rotation du bloc, Les équations de mouvement pour un bloc

supporté librement sont les suivantes (Makris & Zang, 1999) :

Ioé +mgRsin(—a — ) = —mii R.cos(-a—6) 6<0 G-

1,6 + mgRsin(a — 6) = —mii ,R.cos(a - 6) 620 (3-2)

Les équations (3.1) et (3.2) sont valables pour des valeurs arbitraires de 1’angler . Cet

angle décrit 1’élancement du bloc, un bloc élancé étant caractérisé par un angle a élevé.
Pour les blocs rectangulaires I, = (4/3)m.R*, et les équations (3.1) et (3.2) peuvent étre

exprimées sous la forme suivante :

o(f) = -i—i{ sin(asgnld(n)]- 6()) + i';— cos(asgn[0(n)]-0(1)) } (3.3)

A{/\

mgRsino, ‘“___\ngsig(a—B)

— o

g'.\
mgRsin(-a-9)

—mgRsina

Figure 3.2. Relation moment-rotation du bloc rigide ( Makris & Roussos 2000)

La Figure 3.2 montre la relation moment-rotation durant le mouvement de basculement
de bloc rigide. Le systéme a une rigidité infinie jusqu’a ce que le moment appliqué

atteigne I’amplitude M = mgRsin . Quand le bloc commence a se soulever d’un c6té,



27

sa rigidité diminue d’une fagon monotone jusqu’a la valeur zéro ou l’angle de
rotation & = ¢ . Durant les cycles de basculement, I’énergie se dissipe seulement pendant
I'impact quand I’angle de rotation est inversé.

Housner (1963) a décrit la dissipation d’énergie en utilisant un coefficient apparent, r,
connu par le coefficient de restitution et qui relie les vitesses angulaires du bloc avant et
apreés l'impact avec la fondation. Parmi les hypothéses principales de ce modéle :
I’impact se produit instantanément, c'est-a-dire aucun travail ne se produit lors de petits
déplacements qui pourraient se produire lors de I’impact. Aucun changement de volume
ne se produit durant 1’impact; ainsi le concept de conservation de la quantité de
mouvement ou de 1’énergie avant et aprés 1’impact pourrait €tre utilisé pour calculer la
réduction dans 1’énergie cinétique du bloc aprés chaque impact. Le rapport de cette

I’énergie avant et aprés 1’impact est donné par la relation ( Makris & Roussos 2000) :

1

_.]0922 -

[
r:% . =522_ (3.4)

510912 !

él et 92 sont  les vitesses angulaires immédiatement avant et aprés 1’impact

respectivement. La conservation du moment par rapport & O’ avant et aprés I’impact

avec la fondation donne :
1,6, —m6,2bRsin(ax) = 1,6, (3.5)

En substituant I’équation (3.5) dans I’équation (3.4), r peut étre exprimé par :

r= [1 _mR® (1-cos 20:)) (3.6)

0
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Immédiatement avant et aprés I'impact, ’angle de rotation & est nul et I’énergie
potentielle stockée dans le systéme est donc nulle aussi. A ces deux instants, 1’énergic
totale dans le systéme n’est donc qu'une énergie cinétique. Ainsi I’énergie dissipée due a

I'impact est égale a (I-r) fois I’énergic juste avant impact. En substituant

I, = (4/3)m.R* dans 1’équation (3.6), le coefficient de restitution d’énergic devient :

r= (l—%sinz aj (3.7)

La valeur du coefficient de restitution donné par 1’équation (3.7) est la valeur maximale
de r pour lequel un bloc d’élancementer, subit un mouvement de bercement. Par
conséquent, pour observer le mouvement de bercement du bloc, I’impact devrait étre
inélastique, c'est-a-dire le coefficient » doit étre strictement inférieur a 1.0. Les équations
(3.6) et (3.7) montrent que r peut varier de 1.0, pour I’impact parfaitement élastique pour
les blocs élancés (angle de bloc a nul), & zéro pour les blocs trés larges. Moins le bloc
est €lancé (avec un angle de bloc ¢ grand), plus I’impact sera plastique. Pour une valeur
de o =arcsiny/2/3 = 54.73° , ’'impact est parfaitement plastique. Durant le mouvement
de basculement, si une ¢nergic supplémentaire est dissipée due au mécanisme

d’interface, la valeur du vrai coefficient de restitution, r, serait inférieure a celle donnée

par la formule (3.7) (Makris & Zhang, 1999).

3.2.2 Vibration libre de mur représenté par un bloc rigide

Dans le cas de vibration libre, on considére que le bloc est soumis a une vitesse
initiale 6 = 6’0 avec une rotation initiale & = 6, au temps ¢ = 0.
Markis & Zhang (2001) ont montré que le régime de vibration libre qui ne provoque pas
le renversement d’un bloc soumis a des conditions initiales 6, <& et 6, =0 est plus

simple que le régime de vibration forcée, et les équations de mouvement de basculement

pour les blocs élancés avec o < 20, peuvent étre représentées par :



29

6(1)-p'6(1) = p’a 6<0 (3.8)
6(t)-p*o() =-p'a 620 (3.9)

ou p=,/3g/4R estun paramétre de fréquence, en rad/s, et sgn() est une fonction signe

(égale a +1). Plus le bloc est large (R grand), plus p est petit.
La solution des deux équations (3.8) et (3.9) peut étre donnée sous la forme suivante ;

6 = A, sinh(pt) + A, cosh(pt) —a 0<0 (3.10)
6 = A, sinh(pr) + A, cosh(pt) + o =90 3.11)

A, A,, A, et A, sont les constantes d’intégration qui peuvent étre déterminées a 1’ instant

de soulévement et de contact avec la fondation. La solution donnée par les équations
(3.10) et (3.11) montre que la réponse en vibration du bloc en basculement est décrite

par des fonctions hyperboliques.

Avec 6, =0 D’équation (3.11) décrit la rotation du bloc par rapport 3 O avec un

déplacement initial 6,. En tenant compte des conditions initiales, sa solution est:
6, .

6(t) = a — (o - 8, )cosh( p.t) + —sinh( p.r) (3.12)
p

Le bloc apres impact subit une rotation par rapport & O’ et s’il n’y a pas de perte
d’énergiec au moment de I’impact, le bloc subira une rotation d’un angle 8 =-6,. Le
temps nécessaire T’ pour compléter un cycle est une période de vibration libre. C’est le

temps pour le quel le bloc tombe de la position 8 =6, a 6 =0 multiplié par 4 :
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. — cosh™ : (3.13)
(3g/4R) 1-6, /o

Formulation numérique et procédure de résolution

La réponse du bloc est calculée numériquement par une formulation développée pour
tenir compte de la nature non linéaire du probléme.

Le vecteur d’état du systéme d’équations est représenté par :

¥ = {é(t)} (3.14)
o(t)

En utilisant ’équation (3.3), le vecteur dérivé de y(?) est représenté par :

é(1) (1)

D= y()=< .. = U, 3.15
J0=50 {em} -p*{ sin(asgn[e(z)]—e(t»+—£—cos(asgn[e(z>]— (1)) } 49
Pour les blocs élancés ( a petit), I’équation se réduit & :
7= 5(0) {9(’)} J o i, (1) (3.16)

== = . = s u, .
g 6() Ip“ {— asgnl[6()]+6() - “?J

Pour pouvoir utiliser 1’algorithme de Runge-Kutta, on transforme le systeme (3.15) en
un systéme du premier ordre. D’aprés (3.14) ona y, =8(1) ety, =8(t).

Le systéme du premier ordre a intégrer s’écrit alors sous la forme suivante:
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¥ =6(0)
. . : U, 3.17
¥, ==p*{ sin(asgn[y, |- ) +-§- cos(asgnly]-y,) }

Du méme le systéme (3.17) se réduit a :
»= H(I)
. i (1) (3.18)
, = pz[—wsgn[y.]+ vy ==t }

Les systémes d’équations différentielles (3.17), ou le systéme réduit (3.18), sont
intégrés en utilisant les fonctions Ode23 qui sont comprises dans le logiciel Matlab.
Puisqu’on doit imposer un coecfficient de restitution d’énergie, choisi selon les
dimensions du bloc, a chaque instant ot se produit un impact, on doit connaitre
précisément le moment ou survient chacun des impacts. Il vaut donc mieux intégrer le
systéme en utilisant un pas de temps variable qui sera choisi automatiquement en
fonction de la rapidité du systeéme et de la localisation de I’instant des discontinuités.
Pour ce faire, on adopte les méthodes de Runge-Kutta-Fehlberg qui comparent les
résultats obtenus par intégration pour différents ordres et estiment I'erreur de
convergence. Ces méthodes utilisent des pas de temps variables pour mieux controler les
erreurs. Ode23 est un “‘Solver™ des équations différentielles ordinaires qui est basé sur
la formule explicite de Runge-Kutta d’ordres 2 et 3. Ce schéma est explicite et requiert

seulement la solution & la fin du pas de temps immédiatement précédant.

Pour localiser les discontinuités correspondant a I’instant précis d’un impact avec le sol
dans la procédure d’intégration, les fonctions d’événements (contact ou soulévement)
sont évaluées sous forme de scalaires dans une seule fonction et les valeurs sont
retournées comme un vecteur. Le nom de cette fonction est passé dans le calcul comme

valeur de I’option dans la fonction des événements. La fonction doit aussi retourner
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I’information sur la nature des ¢vénements (contact ou soulévement). I1 y a deux
situations selon que I’on veut terminer I’intégration ou non aprés chaque événement, en
utilisant un vecteur nommeé "isterminal”. Si on veut terminer I’intégration quand
I’événement apparait, on met le vecteur "isterminal = 1". Sinon, on le pose a 0 pour
continuer I'intégration. Il est important de préciser dans quelle direction 1’événement
apparait. Cette information pourrait étre stockée dans le vecteur "direction" en mettant
"direction = 1" si I’événement apparait dans la direction positive ou -1 dans la direction

négative, et 0 dans les deux directions.

Vibration libre de mur de 5 étages comme bloc rigide;
o = 23.07 degres; 0g = 15 degrés; r=1

Rotation g(rad)
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Figure 3.3 Réponse en vibration libre de bloc avec impact parfaitement élastique

La Figure 3.3 montre la réponse en vibration libre d’un mur de hauteur 15 m, et de
largeur 6.52 m (& =23.5°) modélisé par un bloc rigide. Le coefficient de restitution
d’énergie est considéré égal a 1.0, c’est-a-dire la vitesse aprés et avant impact avec le sol
reste la méme. Ainsi, I’amplitude de la rotation et la période de vibration demeurent
constantes tout au long du basculement. Avec un pas de temps de calcul variable et avec
une tolérance del0™, la figure montre bien que la vitesse de rotation est de forme

hyperbolique, telle que décrite par la dérivée des équations (3.10) et (3.11). La période
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de vibration du bloc ne dépend pas dans ce cas de la modélisation de I’impact, elle est
égale a4 7.06 s pendant tout 1’épisode de basculement. En général, un mécanisme de

dissipation d’énergie s¢ produit pour les blocs larges (& grand). La vitesse de rotation

du bloc juste aprés I’impact est égale a Jr fois la vitesse juste avant I’'impact.

Vibration libre de mur de 5 étages comme bloc rigide;
a = 23.07 degrés; o, = 15 degrés; r = 0.95

0.4,

Rotation g(rad)

Vitesse g'(rad/s)

Temps(s)

Figure 3.4 Réponse en vibration libre de bloc avec impact inélastique, » = 0.95

Sur la Figure 3.4 ci-dessous, on présente la réponse d’un mur de 5 étages modélisé par
un bloc rigide élastique. L’impact avec le sol est considéré inélastique avec un
coefficient de restitution » = 0.95. De méme que pour I'impact élastique on voit bien
que la forme de vitesse de rotation est toujours une fonction hyperbolique.

La réponse d’un mur de 30 m de hauteur et de 8.72 m de large, soumis a une rotation
initiale de 20 degrés est présentée sur la Figure 3.5. L’impact est inélastique avec un
coefficient de restitution égal a 0.95. On voit sur la figure que ’énergie dissipée a

chaque impact réduit la période de bloc et I’amplitude de rotation. Apres que » impacts

se sont produits, la rotation 6, et le temps 7, /2 entre deux impacts successifs peuvent
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étre calculés par les relations suivantes, ou r est le coefficient de restitution d’énergie

donné par (3.7);

6, =a-a.\/1—r"(1—[1—ﬁn (3.19)
(24

L _2 o \/r"[l-[l-f’aj J (3.20)

2 p o

Vibration libre de mur de 10 étages en bloc rigide;
o = 16.2 degrés; o, = 15 degrés; r = 0.95

8,=0. - o *(14™(1{19,/0)?) 12

Rotation g(rad)

Vitesse ¢'(rad/s)

Temps (s)

Figure 3.5 Réponse de mur de 10 étages modélisé par un bloc rigide, r = 0.95

Les durées entre deux impacts successifs et la rotation maximale sont :

To/4=4.7920s;, 6,=0.2618 rad T1/2=6.1978 s; 6, = 0.2164 rad
72/2=52612s; 6, =0.1923 rad T3/2=4.6960s; 6, =0.1743 rad

T4/2=42902s; 6, =0.1596rad T5/2=3.9735s; 6, =0.1471 rad
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La comparaison entre les réponses représentées sur les Figures 3.4 et 3.6 permet de
constater I’effet de la valeur de coefficient de restitution d’énergie sur I'amplitude des
oscillations. Le basculement du bloc est sensible a la variation de la valeur de ». Avec
une variation de r entre 0.95 et 0.75, I’amplitude de la rotation est fortement réduite dés
apreés le premier impact, et le temps de vibration ne dure pas aussi longtemps. Le bloc se

stabilise aprés une durée d’environ 15 s.

Vibration libre de mur de 5 étages comme bloc rigide;
a = 23.5 degrés; 0, = 15 degrés; r=0.75
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Figure 3.6 Réponse en vibration libre de bloc avec impact inélastique, » = 0.75

La réponse de la structure dépend fortement de 1’élancement de la structure. Pour une
méme amplitude de la rotation initiale, un rapport d’élancement h/b plus élevé (a petit)
génere une période de basculement plus longue, et moins de dissipation d’énergie. Plus
I’angle a est petit et plus le coefficient r est grand et, par conséquent, plus 1’énergie

dissipée, qui est égale a /-r fois 1’énergie avant impact, sera petite.

3.2.3 Réponse sismique avec fondation rigide
L’accélération minimum du sol pour amorcer le basculement d’un bloc peut étre

calculée de I’analyse statique. Elle est donnée par la relation :
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i / g > tan(ex) (3.21)

L’élancement a un effet sur la restitution d’énergie et par conséquent sur le basculement.
Cela est illustré dans ce qui suit dans le cas de murs de refend sollicité par un historique
de mouvement du sol simulé pour un séisme de magnitude 7.0 a une distance
hypocentral de 70 km pour Montréal, dans 1’est de Canada. Le signal est présenté a la

Figure 3.7. Le pic d’accélération est égal a 0.269 g et la durée totale est de 24 secondes.

{9)
_O
(%]

Accélération

Temps s)

Figure 3.7 Signal temporel, région de Montréal. M7-70, PGA = 0.269¢g

La réponse sismique de deux murs rigides ayant des élancements différents (h = 15 m et
a=162°; h = 18 m et @=13.61") est présentée sur la Figure 3.8. On voit que
I’amplitude de la rotation pour le bloc de 15 m de hauteur continue & augmenter, méme
une fois passé les mouvements de sol de plus forte amplitude et que I’atténuation du
signal a débuté. Puisque I'impact est considéré comme complétement élastique et, donc,
sans dissipation d’énergie, la vitesse est la méme juste avant et juste apres chaque impact
Pour le bloc de 18 m de hauteur (Figure 3.8¢), I’amplitude de la rotation est réduite de

moitié et la période des oscillations est plus faible que celle du mur moins élancé.

Les graphiques de la rotation de la structure montrent que plus un bloc est élancé («
petit), plus la période de basculement et I’amplitude de rotation sont faibles. En d’autres

termes, un bloc élancé oscille avec une rotation plus faible et sa fréquence des
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oscillations est plus élevée que dans le cas d’un bloc moins élancé. Un bloc plus trapu

dissipe plus d’énergie et I’impact est d’autant plus inélastique que I’angle & est grand.

0 ol‘?éponse sismique du bloc. h=15m, b =4.36, alpha=16.2 degrés

0.005 |
0
-0.005 -
-0.01

Rotation (rad)

0 5 10 15 20
Temps (s)

 Réponse sismique du bloc. h = 15m, b = 4.36 m, alpha = 16.2 degrés

Vitesse (rad/s)

0 5 Temps (s) 10 15 20

Réponse sismique du bloc. h=18 m, b =4.36 m, alpha = 13.61 degrés
0.003
0.002
0.001

Rotation (rad)

0 5 Temps (s) 10 15 20

Réponse sismique du bloc.h=18 m, b =4.36 m, alpha = 13.61 degrés
0.04

0.02
0

Viteséé
(rad/s)

-0.02 -
-0.04

0 5 Temps (s) 10 15 20

Figure 3.8 Réponse sismique de bloc sur fondation rigide

(h=15met h=18 m) Séisme Mtl-7030-PGA = 0.952¢.
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11 été déja démontré par (Gazetas & Apostolou, 2004) que les blocs élancés et de
grandes tailles peuvent bien supporter une excitation sismique, tandis que les blocs
moins ¢lancés et plus petits peuvent se renverser sous cette méme excitation. Cela
explique pourquoi les structures de grande taille peuvent osciller, sans pour autant se

renverser, méme si elles sont soumises a des séismes de forte intensité.

Avec les ¢quations présentées précédemment, on peut prédire le soulévement sismique
des structures de grandes dimensions sur des fondations rigides, incluant I’amplitude de
basculement, en fonction des dimensions de la structure. Cependant la réponse sismique
des petites structures rigides est plus difficile a prévoir en raison de la nature et, surtout,
de la dissymétric de I’excitation qui a un grand effet sur la tendance a renverser les

blocs.

L’élancement de la structure a donc un effet sur la restitution d’énergie et, par
conséquent, sur le basculement. Cependant, ce n’est pas seulement 1’élancement qui
influe sur le basculement d’un bloc rigide, mais aussi sa taille. Pour les structures de

grande taille, telles que les barrages, I’effet de taille est significatif.
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3.3 Bloc rigide avec fondation élastique

3.3.1 Systéme considéré et procédure de résolution

On considére le systéme représenté par le modéle de la Figure 3.9. 1l s’agit d’un bloc
rigide supporté par deux ressorts montés en paralléle avec deux amortissements et qui
sont placés symétriquement sous la base. Seule la configuration bidimensionnelle sera
examinée dans cette étude. Le mouvement du systéme est décrit avec deux degrés de
liberté: un déplacement vertical du centre de masse et une rotation mesurée a partir de la

verticale. On notera que ¥, et , sont les accélérations horizontale et verticale du sol

respectivement. Mais dans cette détude, les mouvements du sol sont appliqués

uniquement dans la direction horizontale y, = 0).

Figure 3.9 Bloc rigide sur fondation a deux ressorts-amortisseurs
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Un amortissement visqueux est choisi comme mécanisme de dissipation d’énergie dans
la fondation. Le mécanisme d’impact donne lieu a de la dissipation d’énergie au moment
de chaque impact lorsque le contact avec la fondation est rétabli a chaque oscillation. Le
bloc est de masse m et de hauteur # mesurée depuis sa base vers son centre de gravité.
Chaque ressort est placé a une distance b du milicu de la base. Les constantes des
ressorts et amortisseurs sont notées par k et ¢ respectivement.

Les équations de mouvement sont décrites ci-dessous selon la condition de contact avec

les éléments de fondation:

Plein contact avec la fondation :

Si on considere que le bloc est initialement au repos, il commence a vibrer selon les
équations (3.22a) et (3.22b) (Psycharis & Jennings 1983). Sous une excitation
horizontale, ces équations impliquent que le mouvement vertical du systéme n’cst pas
activé initialement. Le mode de basculement et le mode de vibration vertical ne sont

donc pas couplés:

1,,6+2cb*0+(2kb> — mgh)9 = —mhi, (3.22a)

my +2cy +2ky =-mj, (3.22b)
Les équations de mouvements peuvent étre mises sous forme matricielle suivante :

1, 0[] [2¢b* of6] [(2kb* -mgh) o7[0] [-mh%,
+ + = (3.23)
0 mi|y 0 2c|y 0. 2k ||y -my, —mg

Si I’excitation est suffisamment forte, le soulévement se produira sur un des cotés et le
mouvement sera décrit par les équations (3.24) et (3.26) ci-dessous, ceci jusqu’a ce que

le contact avec la fondation se rétablisse 4 nouveau. Dans ce cas, puisque les équations
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(3.24) et (3.26) sont couplées, le mouvement vertical est excité apres le soulévement.
Quand le bloc rejoint 4 nouveau la fondation, il continue en général a osciller selon le
mode de basculement et le mode vertical. La rotation du bloc et le déplacement vertical
sont donc couplés et les deux équations permettent de déterminer les deux inconnues.
Pour la résolution numérique, ces deux ¢équations sont regroupées dans les systemes
(3.25) et (3.27).

Aprés soulévement du bord gauche

1,,6+cb*6 - chy +1{(2kb> — mgh) — kby = —mh3 ; — L mgh (3.24a)
m.j +cy—cb@ +ky— kb=~ mg —mj, (3.24b)
. 2 | L kb mgh) — kb _ mhE, -3 mgb
1, 01[8] [cv?.-cb][6] |3 mg: 6 s 758
+ + = (325)
0 ml||ly -ch c|y — kb k||ly —my, —mg
Apres soulévement du bord droit
1,6 +cb*6 +cby +L(2kb> — mgh)0 + kby = —mhi, + L mgh (3.262)
m.j+cy+chbO+ky + kb8 =—Lmg —m, (3.26b)
; | L (2kb? — mgh) kb _ mhE, + > mgb
I, o] [ ob|6] |2 g 6 ¢ TME
+ + = (3.27)
0 mily ch cl|y kb kily -my, —mg

1,, : estle moment d’inertie par rapport au milieu de la base, noté¢ M sur la Figure 3.9, et

donné par la relation suivante :
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2
1, =1, +mh?="%

om

+mh® (3.28)

1, :estle moment d’inertie par rapport au centre de gravité donné par la relation :

cm

n

I, =1,-mR*= % (3.29)

4 L .
Avec ], =—mR*, le moment d’inertie par rapport au point O ou O’ (emplacement du

ressort).
Les fréquences propres &, et @,et les rapports d’amortissement critique associé au
mode de bercement et au mode de mouvement vertical sont respectivement donnés par

les expressions suivantes :

2

w]z - 2kb"—mgh : 5722 22._}2 (3.30)
1, m
cb’ ) c

(3.31)

6 = > 6 =
b1, kb —mgh) 2km

L’angle de rotation critique pour lequel le soulévement a lieu en absence des oscillations

verticales est égal a: € =mg/2kb. Les déplacements des points O et O mesurés par

rapport a 1’équilibre sont donnés respectivement par les relations suivantes :

L=y+b0
LY (3.32)
yR=7y b8
Le soul¢vement des points O” ou O aura lieu quand 1’une des quantités yL ou yR devient

positive. Le basculement d’un bloc sur une fondation flexible modélisée par deux
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ressorts amortisseurs dans le cas des petits déplacements consiste donc en une séquence

de problémes linéaires.

Formulation numérique et solution

La réponse du bloc est calculée numériquement par Matlab avec le schéma de Runge-
Kutta. La simulation est faite avec Simulink dans Matlab pour permettre de détecter les
discontinuités lors des impacts avec le sol. Les systemes d’équations (3.23), (3.25) et
(3.27) utilisées pour la simulation sont transformés a des systémes du premier ordre par

les changements de variable suivants:

{y‘ - 0} = {y‘ =y..2} (3.33)
vy, =6 Yy =

{yﬁy}:{%:{“} (3.34)
Yo=Y Yo=Y

Les systéemes d’équations du premier ordre a introduire dans la procédure d’intégration
numérique sont classés dans les systémes linéaires (3.38) a (3.43) selon la condition du

contact : contact complet avec la fondation ou soulévement d’un bord.

Plein contact avec la fondation
00| _ {y', } _
6w

ZOIBNEA RS
= 3.36
{y(t)} {y} %(— my, ~mg —2cy, - 2ky, ) (336

(3.35)

|
Nl_ =

(- mhi, —2cb%y, - (2kb* — mgh)y,)



Aprés soulévement du ¢oté gauche

: v
00| _ {y,}z X | 1
ZOIINEN I (—mhﬁto — meb=cby +cby,— (2kb* —mghly, +kby3j

{y(t)}z {ys}z a
y(@) Vs ;(——mg—mj}g—-cy4+cby2—ky3+kby])

Apreés soulévement du coté droit

y
o) - {y 1 } _ 12 1 :
60} |7 *L— mh +5mgb—cb2yz —cby, - (2Kb? ~ mgh)y, -kbysj

{y(r)} ) {y} T
0] . ;(— mg —m, —cy, — chy, —ky, —kby,)
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(3.37)

(3.38)

(3.39)

(3.40)

On peut écrire les systémes linéaires ci-dessus pour chacune des trois conditions de

contact sous forme d’un scul systtme globalement non-linéaire par I’introduction des

constantes £, et £, qui prennent les valeurs de 0, 1, -1 ou 2 choisies conformément aux

équations et a la nature de contact, comme décrit ci-dessous :

g =0; &, =2 : Plein contact avec les éléments de la fondation
g =1€,=1 :Soulévement du bord gauche de la semelle.

£, =-1; & =1 : Soulévement du bord droit de la semelle

Le systéme non-linéaire a résoudre prend donc la forme suivante :


file:///2kb~
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: Y,
o) _ {y,}z : | |
6w | T[—mhic'c—-Eelmgb—ezcbzyz+£,cby4-—5£2(2kb2—m.gh)yl+£lkby3j (3.41)

M

. Yy
{fm}={yf}= 1 i} (3.42)
¥ Ya ;(‘mg_m)’g _'Ezc)’4+€1Cb)’2_£zky3+€1kb)’1)

Plein contact avec les éléments de la fondation

bO+y<0  bO—y0<0 (3.43)

Aprés souléevement du cdt€ gauche

bO+y=0 (3.44)

Aprés soulévement du c6té droit

b6y >0 (3.45)

Pour étre intégrés dans Matlab en utilisant Simulink, les systémes (3.41) et (3.42) sont
transformés sous la forme Y =AY +Bu et X =CY + Du dans les systémes (3.46) et
(3.47) respectivement. Dans ces €quations, # est le vecteur force d’excitation qui
représente 1’accélération du sol et I’accélération de la pesanteur. Un facteur F est
introduit comme facteur d’amplification de I’accélération du sol. Le vecteur X a

récupérer en sortie regroupe les grandeurs calculées a chaque pas de temps.


file:///-mg-

0 1 0 0
: ) kb ech X
.yl -& (ka“ —mgi} —icb2 Y &0 !
B%) - 21, M Iy, I g
h2A 0 0 1%
R bk i be & k & c )
Lm m m m
v ] 1 0 0 0
%1 |0 1 0 0. g
»i|o0 0 1 0 y‘
¥, |=]0 0 0 1 y2
. 3
O | |- & (i omgh) —Ecp R EE )
vL M M Ly 1y [
4 b 0 1 0
-b 0 1 0]

0 0T
—981Fmh —gmb
I, 2,
0 0
0 _ I_Lg
0 0
0 0
0 0
~Fmh981  gmb
1, 21,
0 0
0 0
0 0
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(3.46)

(3.47)

La réponse globale non-liénaire est obtenue par la résolution des systémes linéaires

successifs. Le changement d’un systéme a un autre dépend des signes des déplacements

des bords droit et gauche de la structure, VR ou vL, respectivement. Lors de

changements dans le systéme dynamique, les derniéres valeurs du déplacement, de la

vitesse et de 1’accélération sont stockées et utilisées comme conditions initiales pour le

systéme subséquent. Le pas de temps dans la procédure est variable.

3.3.2 Vibration libre du bloc avec fondation élastique

Systéme non- amortl

A titre d’exemple, on considére le cas d’un mur représenté par un bloc rigide ayant un

anglear = 4.58°. La réponse en vibration libre non-amortie & une vitesse initiale en

rotation est présentée sur les Figures 3.10 et 3.11 ci-dessus. Bien que la rotation du bloc

montrée sur la Figure 3.10a demeure sans fluctuations importantes, la base du bloc,
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quand a elle, subit des vibrations aprés le soulévement du bloc. Cela est di a la vitesse
verticale du centre de la base du bloc (Figure 3.10d). Le bloc oscille sous I’effet de la
vitesse angulaire initiale tout en demeurant en contact avec le sol. La période des

oscillations avant le soulévement est égale a 7, = 2x/@, . Si la vitesse initiale imposée

est suffisamment importante, le soulcvement du bloc se produit a ’instant to :
I . 41
t, =—sin" | —|. (3.48)

Dans cette expression, le paramétre # peut étre considéré comme une mesure de
I’excitation. C’est le rapport entre la rotation maximale que subirait le bloc sans étre

soulevé, donnée parf,, =6,/@, , et la rotation critique pour laquelle le soulévement a
lieu donnée paré, =mg/2kb. On sait que la fréquence des oscillations de bercement

sera plus courte (période plus longue) que celle des vibrations verticales. La réponse du
systétme aprés le soulévement est une fonction harmonique qui s’approche d’une
parabole, comme le montre la Figure 3.10a.

Le temps requis pour atteindre la rotation maximale aprés le soulévement est égal at;

donné par la relation suivante :
1, =—+p* -1 (3.49)

Si on combine les relations (3.48) et (3.49), on peut déduire approximativement la
période de basculement en fonction du facteur § par la relation ci-dessous, période qui

dépend de la rotation initiale appliquée au bloc (Psycharis & Jennings 1983) :

T =—;—[sin"‘[éj+\/‘ﬂz—lq (3.50)

i
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Sur la Figure (3.10e) on voit que les déplacements des deux bords sont en phase.
Lorsqu’un bord est soulevé, I’autre reste en contact avec le ressort en oscillant avec une
fréquence élevée autour d’un déplacement fixe. Cette fréquence est la méme que celle
qui affecte la vitesse de rotation et la vitesse verticale montrées sur les Figures 3.10b et
3.104d.

(a)

(b)

()

(d)

(e)

.......... Bord drolt | .~

. 4
L T RO LI NI &)
AR A T T

|

|

.

|

L
0 2 4

.....

10 12 14 16

Déplacement (mm) Vitesse (m/s) Déplacement {(mm) Vitesse (rad/s) Rotation (rad)

8
Temps (s)

Figure 3.10 Réponse en vibration libre non-amortie du mur modélisé par un

bloc rigide sur fondation a deux ressorts
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Systéme amorti

Dans le cas de systémes amortis, le rapport d’amortissement critique dans le mode de
bercement du bloc est nettement inférieur a celui associé au mode de vibrations
verticales, ce qui implique que 1’amortissement dans la fondation influe beaucoup moins
sur le bercement que sur les vibrations verticales. Sur la Figure 3.11a, on voit que la

période passe de 7, =1.4s a T =53 s apres le soulévement du bloc dans le premier

cycle de basculement. La période a donc triplé aprés le soulévement. Dans le cas non-
amorti, cette période de basculement était passée de 5.8 s 2 5.3 s aprés le premier
impact, et elle continue a diminuer jusqu'a ce que le bloc se stabilise. On remarque aussi
que sans soulévement, le bloc amorti cesse de bercer aprés une période de temps
relativement courte. Par contre aprés le soulévement, le bloc continue a osciller pendant

une période de temps deux fois plus longue.

Sur la Figure 3.11a, ’amplitude de la rotation est affectée par la vitesse de rotation
initiale. On remarque sur la Figure 3.11b, qu’apres chaque contact avec la fondation, la
vitesse chute rapidement, immédiatement aprés 1’impact, avant de reprendre une
variation plus graduclle. A cause de 1’amortissement dans la fondation, les oscillations
de la vitesse en rotation que 1’on voyait sur la Figure 3.10b sont aussi fortement

amorties.

Les déplacements des bords droit et gauche sont présentés sur la Figure 3.11d. Comme
dans le cas non amorti, le bord droit commence a vibrer autour d’une position fixe, égale
au tassement de la semelle, dés que le bord gauche se souléve. Les vibrations verticales
sont par contre affectées par I’amortissement introduit dans la semelle, et on ne peut plus

distinguer les petites vibrations qui étaient présentes dans le cas non-amorti.
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(a) Vibration libre du mur de 10 étages (bloc rigide)
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Figure 3.11 Vibration libre du mur en bloc rigide sur fondation élastique;
(a) rotation du mur; (b) vitesse de rotation; (c) vitesse verticale; (d) déplacements des

deux bords.
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3.3.3 Réponse sismique du bloc avec fondation élastique

On considére un mur représenté par un bloc rigide lorsque soumis au séisme de la
Figure 3.7. Le bloc est supporté par une fondation flexible a deux ressorts. La réponse
sismique est calculée en intégrant les systémes (3.44) et (3.45) en utilisant un pas de
temps de 0.005 s. On présente aux Figures 3.12 et 3.13 la réponse sismique pour deux
hauteurs différentes du mur, 15 m et 18 m. La rigidité du sol est choisie pour donner un

facteur d’amortissement associé au mode de vibration verticale égal a 2.1 %.

(a) 3 Réponse sismique du mur en bloc rigide;
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@ AR B N . L
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(3] N N .
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0.05- . z . _ eLnel
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e ‘ : xi : A EEE
:|: H H B33 E B
% 0 | :'- ; ¥ .. H S' H
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Figure 3.12 Réponse sismique du mur (bloc rigide, 4 = 15 m, R = 8.17 m),

(a) rotation ; (b) vitesse de rotation ; (¢) vitesse verticale
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Réponse sismique du mur en bloc rigide;
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Figure 3.13 Réponse sismique du mur (bloc rigide, # =18 m, R = 18.52 m).

(a) rotation ; (b) vitesse de rotation ; (c) vitesse verticale

On remarque que la période de basculement sans soulévement est plus longue pour le
bloc le plus élancé. De plus, avec la méme rigidité du sol, le mouvement vertical est
moins amorti. Par contre, contrairement au bloc supporté sur un sol rigide, I’amplitude
de la rotation et la période de basculement aprés le soulévement du bloc sont plus

grandes pour le mur le plus élancé.

Contrairement au cas de la fondation rigide, 1a flexibilité du sol a donc un effet sur le

basculement. Lorsque la rigidité du sol est grande, I’amplitude de la rotation converge
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vers celle d’un bloc sur une fondation rigide. En diminuant la rigidité du sol, on obtient
des valeurs plus grandes de la rotation maximum, valeurs qui peuvent étre le double de
celles observées pour le cas d’une fondation rigide. Dans 1’exemple traité ici, la rotation
maximale est passée de 4.9 a 8.9 radians, juste en augmentant la hauteur du bloc de 15 m

al8m.

3.4 Conclusion sur le chapitre 3

Dans le chapitre 3, on a étudi¢ la réponse de murs représentés comme des blocs
rigides. Pour les blocs sur une fondation rigide, la réponse en vibration libre induite par
une vitesse initiale dépend de 1’élancement et de la taille du bloc. Les structures de
grandes dimensions résistent mieux au basculement, méme lorsqu’elles sont soumises a
de forts séismes. Les petits blocs moins élancés sont plus susceptibles au renversement.
La réponse des blocs sur une fondation élastique est fortement influencée par la
flexibilité¢ du sol. Les blocs élancés subissent des rotations plus importantes et leur

période de basculement s’allonge davantage.

L’hypothése des blocs infiniment rigides est acceptable pour représenter les murs
¢lastiques rigides tels que les murs en magonnerie ou les barrages poids, ou encore les
pieces d’équipements €lectriques et industriels rigides. Par contre, les murs de refends en
béton armé €lancés que 1’on rencontre dans les batiments multi-étagés peuvent subir de
grandes déformations en flexion, surtout si une rotule plastique se développe a leur base
sous un séisme. Il est donc plus appropri¢ de modéliser ces murs de refend par des

structures flexibles au lieu des blocs rigides, ce qui sera fait dans le prochain chapitre.
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CHAPITRE 4 Murs de refends modélisés par des structures
flexibles

4.1 Introduction

Dans ce chapitre, on développe une meilleure compréhension des effets du
soul¢vement des fondations sur la réponse sismique des murs de refends supportés par
des fondations ¢élastiques. Les murs sont considérés comme des structures flexibles et les
modéles mathématiques choisis sont simples, mais tiennent compte tout de méme des
aspects les plus importants de la flexibilité de sol et des mécanismes de soulé¢vement et
d’impact avec le sol. Dans la condition fixe, la structure est modélisée comme un
systéme a un degré de liberté assemblé a une semelle rigide supportée par une fondation
flexible. La rigidité et ’amortissement du sol de fondation supportant la structure sont
représentés par deux modélisations : (1) deux éléments ressorts-amortisseurs, placés
chacun a une extrémité de la semelle, ou (2) la fondation Winkler avec des ¢éléments
ressorts-amortisseurs distribués sur la largeur de la semelle. La réponse de la structure
sous sollicitation sismique sera calculée pour deux conditions de contact entre la semelle
¢t les éléments de fondation ressorts-amortisseurs : (a) contact avec la semelle avec

soulévement empéché et (b) semelle non ancrée avec soulévement permis.

4.2 Fondation élastique a deux ressorts-amortisseurs

4.2.1 Systéme a trois degrés de liberté et équations du mouvement

Le mur de refend est représenté comme montré sur la Figure 4.1. 1l s’agit d’une
structure linéaire ayant une masse m concentrée au sommet, une rigidité latérale k et un
amortissement latéral ¢, qui est fixée a une semelle de fondation qui est supportée par
deux éléments ressorts-amortisseurs (Figure 4.2). La semelle est modélisée par une

plaque rectangulaire infiniment rigide dont la masse totale est égale a my. On néglige le
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poids de la semelle (faible par rapport a celui de la structure; si nécessaire, le poids de la
semelle peut étre inclus dans celui de la structure) de méme que son épaisseur (faible par

rapport a la hauteur de la structure).

| " ]

Mur de refend
k,c

s M/

Figure 4.1 Mur de refend supporté par un sol flexible

Accélération du sol
p———

La largeur de la semelle dans la direction du mouvement sismique est égale a 2b. Le

glissement entre le sol et la semelle est considéré nul. Les coefficients de rigidité k et
d’amortissement ¢, du modele de fondation sont des constantes déterminées pour un

demi-espace homogéne et dépendent du module de cisaillement de sol en trés petites

déformations.

La déformation du systéme est décrite par trois degrés de liberté (Figure 4.2): la rotation
de la semelle, 6 le déplacement vertical, v, du centre de la semelle et la déformation
horizontale au sommet de la structure, u. Cette derniére variable découle de la flexibilité
de la structure. On pourrait déduire de ces degrés de liberté les déplacements verticaux

etV

des bords gauche et droit de la semelle, V right

o respectivement.
Généralement, 1’impact entre la semelle de fondation d’une structure flexible ou celui
entre la base d’un bloc rigide avec un sol rigide est modélisée par une collision

parfaitement inélastique, c'est-a-dire la vitesse verticale et 1’énergie cinétique associée de
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la structure sont complétement dissipées instantanément. Cependant, dans la présente
modélisation, 1’énergie sera dissipée graduellement par le mécanisme de
I’amortissement visqueux. Le poids de la structure, P, est représenté par une force

verticale appliquée directement sur la semelle, a son centre de gravité.

Y S
—e., — L _Vrighr

Figure 4.2 Modéle de structure flexible sur fondation a 2 ressorts (Yim & Chopra, 1983)

La relation entre le moment statique par rapport au centre de gravité de la semelle et sa

rotation est montrée sur la Figure 4.3. La relation moment-rotation décrite par
M= 2k_,,b29, demeure linéaire jusqu'a ce que la semelle de fondation se souléve. Au-
dela de ce point, aucun moment additionnel ne se développe. Le soulévement a lieu

quand la rotation de la semelle atteint une valeur critique 6, = P/2k, b et le moment

correspondant au point de soulevement est M, = Pb.
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moment M=K .o

Rotation e

Figure 4.3 Relation moment-rotation pour la fondation a 2 ressorts

(Yim & Chopra, 1983)

Les équations de mouvements présentés ci-dessous pour le systéme de fondation a deux
ressorts-amortisseurs ont €té largement décrites dans la littérature (Yim & Chopra, 1983;

Psycharis, 1991). Elles ont été déterminées en considérant les équilibres des forces et

moments suivants :
1. équilibre des forces dans la direction horizontale.
2. équilibre des moments de la structure entiére par rapport au centre de la semelle
de fondations.
3. équilibre des forces dans la direction verticale.
On suppose que les déplacements sont petits (8<<h/b) et on néglige les effets
secondaires non-linéaires comme la contribution du moment induit par la réaction

horizontale du sol s’exercant a une distance verticale correspondant au soulévement de

la semelle.
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Equilibre des forces dans la direction horizontale

S F,=0 = mii+m(h)+ci+ku=—mii (1) (4.1)

Equilibre des forces de la structure dans la direction verticale

YF,=0= P=m@+g) 4.2)

= (m+myv—F, =~(m+my)g (4.3)

Equilibre des moments par rapport au centre la semelle

> M, =0= 1,6+mh(ii+h0)+M, =-mhii (t)+m(u+h6)i+g) (4.4)

Le deuxié¢me terme a droite de 1’égalité correspond aux effets P . Puisque 1’épaisseur de

la semelle est supposée petite comparée a sa largeur, le moment d’inertie de la semelle

. Coq s b* L
par rapport a son centre est égal a: [, = m0—3—. Dans le cas de la fondation a deux

¢léments ressorts-amortisseurs, la réaction du sol, F,, et le moment stabilisant par

rapport au centre de gravité de la semelle de fondation, M ,, sont la somme et le

I
moment des forces de réaction des deux éléments, F, et F, agissant sur les cotés gauche

et droit de la semelle respectivement:
F,=F +F, M, =b(F, - F) 4.5)

avee :

F = {—- k,(v+b&)~c,(v+ bé) si I'extrémité gauche est en contact (4.62)

0 si extrémité gauche est soulevée
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F =

»

{— k,(v=b8)—c,(v-b 0) sil'extrémité droite est en contact (4.6b)

0 sil'extrémité droite est soulevée

Par substitution des équations (4.5) et (4.6) dans les équations (4.3) et (4.4), et en
utilisant ’équation (4.1), les équations d’équilibre des moments par rapport au centre de
gravité de la semelle et 1’équilibre des forces dans la direction verticale deviennent (Yim

& Chopra, 1983) :

;”Tg(hé)—ca +ec, %;—(hé)+gch %\'z—-ku +ek, %;-(he) +ek, %v =0 (4.72)

(m+m,)i+&c,V+Ec, -hb—(hé) +ek,v+ek, %(he) =—(m+m,)g (4.7b)

Trois conditions de contact sont possibles selon les valeurs des coefficients €; :
g =2 et & =0 :semelle en contact avec les deux éléments de fondations.
g =let & =-1:cbdté gauche de la semelle est soulevé.

g =1letg, =1 :coOté droit de la semelle est soulevé.

Pour un systéme non-amorti (¢ = ¢; = 0) ¢t unc semelle sans masse (mg = 0), I’équation

(4.7b) est réduite a I’équation (4.8) qui relie les trois degrés de liberté, u, vet 6.

2

—ku+glk_,,%(ha)u-zk_,,%v:o (4.8)

On peut alors déduire ’angle de rotation 8 en fonction des autres inconnues u et v :

2
o -2%00)  avee a =2 (4.9)
&k h & h b

0=
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En substituant I’expression de & dans I’équation (4.1), les équations (4.1), (4.7a) et

(4.7b) peuvent ainsi étre exprimées en fonction de u et v seulement :

. kii — £,k a7V . .

mii + m| ——————— |+ cu + ku = —mii, (1) (4.10)
&k,
. | ki—gk 0y .. | ku-gk a7y ,
—QUHEC,O | [+ &0 V=hutEk, 0| ————— [+&k, 0V =0 (4.11)
‘ gk ' ' gk, o '

. . | ki—gk a7y N ku—gk oty

mi+Ec v+EC,A | ————F— |+Ek v+ EK X ————— |=-mg (4.12)
' ' ko ‘ ’ gk o

En mettant en facteur les accélérations, vitesses et déplacements, les trois équations ci-

dessus deviennent :

k g’? e . ..
. 1+—————_—2- mii——"-—’—n_—l-v+cu+ku=—mug (4.13)
&k, & O

. -cu+c‘,.7€k—u=o (4.14)
/

: £ £ £

s mi+ Ecr—i—o \'1+—zc-i i+~ dku+| ek, -2k, v=-mg  (4.15)

T e 'k £ T
1 1 f 1 1

L’équation (4.14) n’étant fonction que de la vitesse horizontale, le systéme d’équations a

deux inconnues u et v se réduit a :

kot ) oe, . y
L+ —— \mii ——=amV + cu + ku = —mii,,
&k, &
: (4.16)
) g | € k . € £
my+|gc, ——2c, p+—2c, —ou+—cku+t| ek, -2k, \v=—mg
ToE g "k, £ TE



61

Conditions de contact

Dans le cas ou la semelle est en plein contact avec le sol de fondation, la réaction du
sol, F; demeure positive. Pour ce cas, les deux ressorts sont comprimés et produisent
une force du rappel. Si les ressorts demeuraient fixés a la semelle apres soulévement, les
forces dans les ressorts deviendraient négatives. Selon le mod¢le de Kelvin, la force
¢lastique induite dans lc ressort ct la force viscoélastique dans 1’amortisseur
s’additionnent puisque le ressort et 1’amortisseur agissent en paralléle. Cela se traduit en
termes d’efforts par les équations suivantes pour chacun des ressorts placés a I’extrémité

de la semelle.

Semelle en contact avec les éléments

~k,(v+bO)—c,(¥+b6) 20

—k, (v=b8)~c,(v—b6)20 @17
C6té gauche soulevé
—k,(v+b6)—c,(V+b6)<0 (4.18)
Coté droit soulevé
—k,(v=b6)—c,(v=b6)<0 (4.19)

On désire découpler la premicre équation du systéme (4.16) en exprimant tous les termes
en fonction du mouvement horizontal relatif de la masse en téte, ». Pour ce faire, on
substitue 1’expression de mv déduite de la deuxiéme équation pour obtenir le systéme

d’équations a deux inconnues suivant :



62

kot ) ek € ) ¢ &
1+ |mii+{c+ 3¢, —a’ p+Loc, e —> p+—2 ok, | g -2 v
k 2 7 f k S 1
1K, 2 7 £, & & £,
2
& . &
+ l+—27.6(2 ku = —mii,——2omg (4.20)
g
£ £
2 2
. & |, € k . & £
mi+c, g -+ v+—2cf—au+——30ku+k, g ——>1v = —mg
’ & g "k & : £

Ce systéme peut aussi s’écrire sous la forme suivante, ou la premiére équation n’est

fonction que de la variable u :

>k el
{c+8‘2 C’k.az} [1+—27a2Jk — mii —g—‘amg
mii + ’ 2" u+ ! - ’7
14 ke 14k 145 4.21)
ek, ek, &k,
2 2
mi5+€—2c,‘£a‘f4+c,- £ _& \3-|-£z~aku+k,v g & V=-mg
£ "k, ' & g A 1

4.2.2 Procédure de résolution et algorithme de calcul

Dans I’analyse des systémes dynamiques, la procédure d’intégration pas a pas est
souvent utilisée pour évaluer la réponse du systéme a des intervalles de temps discrets
qui sont souvent équidistants (Krysl & Endres, 2005). Cette méthode d’intégration,
connue sous le nom d’intégration directe, est basée sur deux hypothéses. Premiérement,
on vise a satisfaire I’équilibre décrit pas les équations a des instants donnés séparés par
intervalle discret (ou un pas de temps). Deuxiémement, on doit supposer la maniere dont
les paramétres d’accélération, de vitesse et de déplacement varient dans un intervalle de
temps. La stabilité¢ de Ja méthode dépend du type de variation supposé, de méme que de
la taille du pas de temps choisi pour I’intégration. Plusieurs méthodes d’intégration sont

utilisées pour la résolution des équations dynamiques. Parmi ces méthodes, la plus
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répandue est celle de Newmark. Dans notre étude, la stabilité de cette méthode sera

discutée selon les résultats qui seront obtenus ultérieurement.

Méthode d’intégration de Newmark

On présente ici I’algorithme de Newmark (Newmark, 1959) pour le systéme a un seul
degré de liberté dynamique de la Figure 4.4. La méme procédure s’applique pour un

systéme a plusieurs degrés de liberté.

avant séisme durant seisme

Figure 4.4 Mouvement sismique d’un systéme a un degré de liberté

On considere 1’équilibre dynamique des forces horizontales s’exergant au niveau de la

masse du systéme:
M@GE+3%,)+Cx+Kx=0 (4.22)

Le sol se déplace pendant le séisme, alors le déplacement x de la masse M est un

déplacement relatif par rapport au sol. De méme x,X sont la vitesse relative et
’accélération relative de la masse M, et (¥+%,) représente ’accélération totale de la

masse M. En introduisant le rapport d’amortissement critique &=c/Q2mw)et la

fréquence naturelle, @=~'k/m, 1’équation (4.22) devient:
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jc'+2«fa15c+a)2x=—)‘c'g (4.23)

Par le développement en série de Taylor, on obtient le déplacement et la vitesse a chaque

pas de temps, &, par les relations suivantes:

L =1+
. }
X =X, +0X, +—%, +
2 3!
2

%,y =, + O, +%'x; +ola’}

i +0fat} (4.24)

Le déplacement et la vitesse (x,,,,X,,,,%,,) au pas suivant peuvent étre calculés avec les
valeurs connues (x,,%,,7,) du pas précédent. Le probléme ici est de déterminer combien
de termes seront retenus dans la sériec de Taylor et comment évaluer ces termes. Si on
ignore tous les termes d’ordre &*, seulement % devra étre évaluée. En utilisant une

expression standard de différence finie X; = (X,, — X,)/ & , ’équation (4.24) devient:

i+l

X, =X, + 0, +&2J[l—l}éi +l)'c',.+,
2 6 6

Xy = X; + 0t [1_'1_ X; +ljéi+1
2 2

On introduit les paramétres B et v de Newmark dans le systéme ci-dessus. Les équations

(4.25)

prennent la forme ci-dessous (Clough & Penzien, 1993) :

X =X+ 5[).6,. + &2{(%— ﬂjx, + ﬂxiﬂ}

Xipg =X, + 5’{(1 - 7)xi + 7&,41}

(4.26)
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Lorsque § = 1/6 et y = 1/2, I’équation (4.26) est identique a 1’équation (4.25). Newmark
a montré que B=1/4 assure la meilleure stabilité pour la formulation numérique tant que
le pas de I'intégration, &, ne dépassait pas 7/20 ou T est la plus petite période de la
structure. Poser B = 1/4 correspond a supposer une variation linéaire de la vitesse et, par

conséquent, une accélération moyenne constante entre #; et 7., . Le déplacement X,
est déterminé de la premiére équation (4.26) alors que la vitesse X,,, est obtenue de la

seconde équation. Ces deux équations peuvent étre intégrées dans 1’équation du

mouvement suivante :

mi+l + Cxi+1 + Kxi+1 = ‘Fi+l (427)

F

.. - représente la force externe au tempsz,, . L’expression suivante représente la

meilleure forme de I’intégration numérique de Newmark :

2
Xipp = Ao—1 Foa+4x +4,x% +M"x':i]; Xin :E(xm _xi)"xi
. 4 . 1. o,
1 Xim = 52 Xy = X; = X,0t _in& st =L+ (4.28)
A, =(K+i2M+--2—Cj;A1 =[ f M+lcla, =(iM+Cj
o o o’ ot RN

Le systeme d’équation (4.28) est utilis¢ pour obtenir la valeur de x,, et ses dérivées

i+l

(vitesse et accélération) au temps?,,, . Les conditions initiales au temps # = 0 (x,,x%,)

sont nécessaires et I’accélération X, doit étre calculée de 1’équation suivante :

i, =(F,—Ck, +Kx,)/ M (4.29)
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Les avantages de la méthode de Newmark est qu’elle peut étre rapidement et facilement
programmeée et qu’elle peut étre étendue aux problémes a multiples degrés de liberté.
Dans ce demier cas, M, C et K deviennent des matrices. Pour réduire le nombre de
calculs, les matrices 4,, 4, et A, peuvent étre évaluées pour chaque condition de
contact et conservées en mémoire. A chaque pas de temps, la matrice de rigidité et celle
de I’amortissement correspondant a la condition de contact au début de pas de temps

sont utilisées pour obtenirx,,, . Une fois x,,, connu, on peut déterminer la condition de

contact 4 la fin de pas de temps. Si la condition de contact est la méme que celle au
début du pas de temps, I’intégration est complétée et on passe au pas suivant. Si, au
contraire, la condition de contact a la fin du pas de temps n’est pas la méme que celle au
début du pas, dans le cas par exemple ou le soulévement se produit quelque part avant la
fin du pas de temps, une erreur de calcul est induite qui peut se propager avec le temps

de calcul.

Pour ¢éliminer une telle erreur, il faut s’assurer que la fin d’un pas de temps coincide
avec I’instant précis du soulévement ou du contact, c’est-a-dire lorsque le déplacement
vertical de I’extrémité de la semelle est nul. A cet instant, la matrice de rigidit¢ du
systeme doit étre modifiée avant de poursuivre ’intégration. On peut aussi tenter de

minimiser I’erreur induite en choisissant un pas de temps suffisamment petit.

4.2.3 Vibration libre de la structure

Systéme non-amorti

Dans le cas d’un systtme non-amorti en vibration libre, la réponse avant le
soulévement est linéaire et peut donc é&tre déterminée analytiquement par la
superposition des réponses dans les deux modes de vibration ¢, et ¢, présentés sur la
Figure 4.5. Le premier mode implique la rotation de la semelle et la déformation latérale
de la structure sans aucun déplacement vertical de centre de gravité de la semelle. Le

second mode est uniquement associ€¢ au déplacement vertical de la structure, sans
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rotation de la semelle ni déformation latérale de la structure. Les déformations axiales

dans la superstructure sont négligées.

(a) Contact avec la semelle i
Q

Mode 1

Mode 2

Figure 4.5 Modes de vibration libre : (a) Contact avec la semelle;

(b) Soulevement de la semelle (Yim & Chopra, 1983)

Expressions des fréquences propres

e (Cas de contact avec les deux éiéments (sans soulévement)

mii 4 b | ft = —mii ()= i W |y P = i (1) (4.30)
2k b 2k,6°

hzk . 2 . 2k/'b2 2
1+ i+ @4 = 0= ii +| ————— |@*u =0 4.31)
2k b 2k b +h'k
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0 =00 (4.32)

., 2k b
avec @ = m (433)
. +n-
/

De I’équation de mouvement de vibration verticale dans le cas non amorti, on peut

déduire la fréquence @, des vibrations verticales :

mv+ 2k, v=-—mg (4.34)
2k

=+ —Lyv=—mg (4.35)
m

- w_/ﬂ_wﬁ (4.36)
2T - .
m

ou £ estle rapport de la rigidité de la fondation & celle de la superstructure donné par :

B=—L 4.37)

Dans ce cas ou la semelle est en contact avec les ¢léments, le systéme vibre dans le

premier mode avec une fréquence naturelle @, définie dans (4.32). Le second mode est

un mouvement vertical non couplé vibrant avec une fréquence naturelle @, donnée par

la relation (4.36).

e Cas de soulévement de la fondation

Dans le cas du soulévement partiel de la semelle, les équations du mouvement non

amorti sont données ci-dessous :
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B kith £ k bV .
mif + mh k—bi_ +hku =-mi (1)
4 (4.38)
3 _ kuh + k by
mv+kfv+k,-b ————-T—— = —-mg

Les fréquences naturelles de systeme linéaire sont déterminées par la résolution de
I’équation (4.38) et sont données pour le premier et deuxiéme mode respectivement

par (Yim & Chopra, 1983):

A=0 A =wk (4.39)
2 2

avee L= /——-(“,” )ﬂj (4.40)
2 + f°

Le premier mode est un mouvement de rotation de corps rigide par rapport 4 un bord de
la semelle, tandis que le second mode de vibration implique la contribution de tous les
degrés de liberté: déformation latérale de la structure, déplacement vertical et la rotation
de la semelle de fondation. Si la semelle était pesante, la fréquence propre du deuxi¢me
mode dépendrait de la masse de la semelle et dans ce cas la masse de la semelle aurait
un effet sur la fréquence propre du deuxiéme mode. Par contre le premier mode qui est
un mode du corps rigide est indépendant de la masse de la semelle. La fondation
demeure en contact avec les deux éléments ressorts amortisseurs jusqu’a ce que les

déplacements atteignent les valeurs critiques suivantes:

og
u, = hé_ = 441
cr 2 cr ,62 2 ( )

Dans le cas ol le soulévement est permis (Figure 4.5b), la réponse du systéme en

vibration libre peut étre calculée numériquement en résolvant le systéme 4.21. Un
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exemple d’une structure flexible, avec les mémes rapports d’élancement et de rigidité
adoptés dans I’exemple de Yim & Chopra (1983), est présenté dans ce qui suit : soit &
= h/b = 10 et f = 8.0. La structure est soumise a une vitesse initiale en déplacement
égale 3 = 0.19 m/s. La réponse de la structure est présentée sur la Figure 4.6 pour deux
conditions de contact entre la semelle de fondation et les deux ¢léments ressorts-

amortisseurs : soulévement empéché et avec soulévement permis.

Si la semelle de fondation est ancrée aux ressorts-amortisseurs, la réponse de la structure
est représentée par la courbe en pointillés. La fréquence de vibration harmonique décrite

par le premier mode dans le cas du contact complet avec le sol est @, définie plus haut
par I’équation 4.32. Soit une période de vibration égale a7, =T/@,. Tandis que la

fréquence de la vibration verticale est @, donnée par 1’équation (4.36).

Soulévement permis

Déformation de la stn‘lcture. T, = 238 - Soulévement empéché L

B

e T I &

6 8
Temps (s)

Figure 4.6 Réponse en vibration libre non-amortie.

Déformation de la structure. @ =10, =38

Si la semelle de fondation est ancrée aux ressorts-amortisseurs, la réponse de la structure
est représentce par la courbe en pointillés. La fréquence de vibration harmonique décrite

par le premier mode dans le cas du contact complet avec le sol est @, définie plus haut
par 1’équation 4.32. Soit une période de vibration égale a 7, =7/@,. Tandis que la

fréquence de la vibration verticale est @, donnée par I’équation (4.36).
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Quand le soulévement est permis, la réponse de la structure est initialement décrite par la
ligne en pointillés. Si le déplacement atteint la valeur critique donnée par la relation
3.39, le coté gauche de la semelle se souléve et la structure oscille avec une fréquence
plus élevée autour du déplacement critique selon la courbe foncée jusqu’a ce que le
contact soit rétabli entre la semelle et le ressort. La réponse rejoint alors le mouvement
de bercement sur les éléments de fondation jusqu’au soulévement de 1I’extrémité droite
de la semelle. Le comportement se répéte a chaque cycle. Cependant, la réponse aprés le
soulévement n’est pas nettement périodique parce que les conditions initiales ne sont pas
exactement répétées au début de chaque cycle. En effet, au début, aucune vitesse
verticale n’est imposée. Par la suite, une faible vitesse verticale est produite a chaque
impact de la semelle avec les éléments de la fondation. Cette vitesse verticale peut aussi
influencer la durée de soulévement d’un cycle a I'autre. Lors du soulévement, le
déplacement horizontal relatif de la masse, u, est réduit. Cependant, la rotation de la
semelle (Figure 4.7), ainsi que le déplacement latéral total (Figure 4.8) et les
déplacements verticaux des bords droit et gauche augmentent, car la durée du
soulévement est liée a I’amplitude de la rotation de la semelle. Comme la rotation

augmente progressivement, la durée des épisodes de soulévement augmente également.

4. Rotation de la semelle. T =238s | Soulévement permis

| === Soulévement empéché

ofo_,

4 ! ... P T L N \ S
8 8
Temps (s)

Figure 4.7 Réponse en vibration libre non-amortie.

Rotation de la semelle. o =10; =8
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Déplacement latéral total. T =238 s r - - P
c Soulévement permis L

Soulévement empéché |

u+h*s (mm)

Temps (s)
Figure 4.8 Réponse en vibration libre non-amortie.

Déplacement latéral total. & =10; S =8.

On remarque sur la Figure 4.8 que la flexibilité de la fondation sans soulévement a pour

effet un allongement de la période vers la période7,. Le soulevement conduit a une

période T, encore plus longue. On ne peut cependant pas dériver une expression pour
déterminer la valeur de la période de soulévement 7, , car le systéme devient non
linéaire quand le soulévement est permis et cette période dépend du rapport

d’élancement, a, du rapport de rigidité, B, de la vitesse initiale et de la période
fondamentale de la structure (Yim et Chopra, 1985). Cependant le rapport 7, /T reste

indépendant de T.

Déplacements verticaux des bords de lasemelle. T_=2.38s

| Deerereees Bord droit |
"g 4] Bord gauche . o
.E_ .
>
F]
)
E
@
)
o
a.
@ :
0 2 4 6 8 10 12
Temps (s)

Figure 4.9 Réponse en vibration libre non-amortie.

Déplacements verticaux des deux bords de la semelle. & =10; §=8.
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La Figure 4.9 montre que le mouvement vertical des deux bords de la semelle lorsque le
soulévement est permis. Au début, la semelle s’est déplacée verticalement vers le bas
(-1) sous le poids de la structure (p). Dés que la position verticale d’une extrémité de la
semelle atteint la valeur zéro, le contact entre la semelle et le ressort est libéré et le
soulevement se produit. Dans ’exemple, le premier épisode de soulévement survient du
cdté gauche. Pendant ce soulévement, le déplacement vertical du c6té gauche augmente
pendant que le déplacement de l'autre c6té commence a osciller avec une haute
fréquence autour d’un déplacement ¢gal au tassement di aux charges de gravité Comme
le déplacement vertical du bord dépend de la valeur de la rotation on peut remarquer que

plus la rotation est importante plus le bord reste sans contact avec les éléments.

Systéme amorti

Le comportement d’un systéme amorti est similaire a celui d’un systéme non-amorti
sauf que I’amortissement présent dans la structure et la fondation a tendance a atténuer
les mouvements du systéme. Le comportement sismique d’un systéme amorti est décrit
dans la section suivante. Le coefficient d’amortissement dans la superstructure, ¢, est li¢
au rapport d’amortissement critique & par la relation suivante ¢ =2&mw, ou west la

fréquence propre de la structure supposée fondée sur une fondation rigide, donnée par

w=.k/m. Lamortissement dans chaque ressort, c,, est lié au rapport
d’amortissement critique £, par la relation ¢, =& mw,, ou w, est la fréquence des

vibrations verticales donnée par @, = \/2k, /m .

4.2.4 Réponse sismique de la structure
On ¢étudie le comportement la réponse de la méme structure sous le séisme de la
Figure 3.7. La réponse de la structure est calculée numériquement avec Matlab en

utilisant I’algorithme de Newmark. On choisit préalablement pour 1’analyse un taux
d’amortissement critique dans la structure de & = 5% et un taux dans le sol & = 23%. La

déformation de la structure est présentée sur la Figure 4.10. La réponse est représentée
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pour deux conditions de contact : soulévement empéché ou permis. Le soulévement
débute lorsque le déplacement relatif de la structure atteint le déplacement critique .
Dans le cas du contact complet avec les éléments de fondation, la structure répond
globalement selon le premier mode de vibration naturelle. Le mouvement de vibration
est constitué du déplacement horizontal de la superstructure et de la rotation de la
semelle de fondation. Par contre le mouvement selon le deuxiéme mode de vibration
(constitué uniquement du mouvement vertical sans déplacement horizontal ni rotation)

n’est pas excité. Lors du soulevement (#/z, =1), on remarque que la masse commence

a osciller autour du déplacement critique avec une fréquence beaucoup plus élevée.

Deéeformation de la structure Tc =238s

Soulévement permis

' ‘ 7 L= Souléevement empéché |

ulu

Temps (s)
Figure 4.10 Réponse sismique. Déformation de la structure.

a=10; B=8¢=5%; &, =23%

On peut examiner la dépendance des effets de I’amortissement sur la réponse de la
structure quand le soulévement est permis. A cause de I’amortissement, 1’amplitude des
vibrations a haute fréquence diminue progressivement pour éventucllement s’éteindre a
la fin de chaque phase de soulévement. La Figure 4.11 montre que la rotation de la
semelle augmente quand une valeur critique est atteinte dans la direction négative vers
un temps €gal a 12.5 s. Les hautes fréquences montrées sur la Figure 4.10 demeurent

aussi longtemps que le rapport 6/6,, est supérieur & 1. On remarque ici aussi nettement

que le soulévement allonge la période de vibration de la semelle.
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3 Rortgtion de la serpellgj T§= 72i378f - Soulévement permis

Soulévement empéché |

Temps (s)

Figure 4.11 Réponse sismique. Rotation de la semelle.

a=10; f=8¢=5%; &, =23%

Contrairement a la déformation, la rotation de la semelle, le déplacement latéral total
(Figure 4.12) et les déplacements verticaux des bords de la semelle (Figure 4.13)
augmentent apreés le soulévement. Lorsque le contact complet est rétabli, la rotation de la
semelle et le déplacement horizontal total sont supérieurs pendant un certain temps a
ceux qui correspondent au cas sans soulévement. Ceci est dii a la génération d’une
vitesse verticale et d’une accélération verticale représentée sur les Figure 4.14 b et ¢
aprés chaque impact avec les éléments ressorts-amortisseurs. Lorsque 1’on compare au
cas non-amorti, on voit aussi que les hautes fréquences observées pour le cas non-amorti

ont pratiquement disparues a cause de I’amortissement.

0.15 Soulévement permis {
e P Soulévement empéché |

5 10 15 20 5
Temps (s)
Figure 4.12 Réponse sismique. Déplacement latéral total.

a=10; f=8 £=5%; £, =23%
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Déplacements verticaux des bords de la semelle. Tc =238s

- Bord droit
Bord gauche

15,
10

Déplacement vertical (mm)

Temps (s)
Figure 4.13 Réponse sismique. Déplacements verticaux des bords de la semelle.

a=10; B=8; £=5%; £, =23%

(@ 5 Déplacement vertical du centre de la semelle
& 3 1
£ - | |
£ 1 el
ge® | |
& 5 '
a L —— D10 ‘
(b) Vitesse verticale | |
0.05F--rmmmm e -
D -
i
EEO
> | \
-0.05 v b b
2077 5 1'0
(c) = Accélération verticale:
S ‘ i
N | |
=290
s E |
(%) |
< 2 * : e i
0 5 10 Temps(s) 15 20 25

Figure 4.14 Réponse sismique, (a) déplacement vertical;

(b) vitesse verticale; (c) acc€lération verticale. @ =10; f=8; & =5%; £, =23%

4.2.5 Stabilité et convergence de la solution

La réponse sismique des structures comme celle présentée aux Figures 4.10 a 4.14

peut étre plus au moins

stable, principalement sclon le rapport de rigidité

(superstructure/fondation). Apres le soulévement, la période est allongée et la durée des
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phases de soul¢vement diminue avec le temps jusqu’a ce que la semelle cesse de se
soulever. Et puis la structure continue a vibrer en contact avec les ¢léments de la
fondation. Cependant, la Figure 4.6 montre bien 1’effet de la discontinuité sur la réponse
du systtme. Méme dans ce cas, les phases de soulévement ne sont pas vraiment
périodiques, étant parfois plus courtes ou plus longues, car les conditions aux limites ne
se répctent pas de la méme facon a chaque impact. Aprés soulévement, il y a génération
de vitesses et d’accélérations verticales qui influent sur la réponse de la structure. Sur la
Figure 4.7, la rotation augmente graduellement avec le temps et par conséquent, les
amplitudes des déplacements verticaux aux bords de la semelle aussi. Pour obtenir une
réponse précise, il faut utiliser un pas de temps suffisamment petit pour faire coincider
I’instant du soulévement et de I'impact avec la fin d’un pas de temps. Cependant, un pas
de temps trop petit nécessite un temps de calcul important et il faut souvent faire un
compromis qui ne compromette pas la qualité des résultats. Pour examiner la
convergence de la solution, on calcule la réponse sismique de la structure en faisant

varier le pas de temps de calcul.

La Figure 4.15 montre I’influence de la taille du pas de temps sur la convergence de la
solution du systéme a deux ressorts. On voit qu’une variation du pas de temps n’a pas
d’effet significatif sur la réponse durant les phases du soulévement ni durant les phases
de contact et la solution est la méme avec différents pas de temps. Un pas de temps aussi
grand (dr = 0.01s) est donc suffisant pendant les phases de soulévement, car dans le cas
de fondation a deux ressorts, le moment n’augmente plus avec la rotation de la semelle
aprés le soulevement de cette derniére. Le comportement est linéaire durant chaque
phase et les réponses calculées avec un pas de temps assez grand égal a 0.01 s ou dix
fois plus petit (df = 0.001) convergent vers la méme solution du systéme dans ce cas
exceptionnel. Cependant, ceci reste vrai seculement si I’instant de soulevement de la
semelle ou celui de son impact avec le sol coincide avec I’extrémité du pas de temps tel
qu’on voit ici. Un pas assez grand n’assure pas toujours la convergence dans le cas de la

fondation a 2 ressorts. Par exemple, sur la Figure 4.16 on montre la réponse pour le
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modele a deux ressorts pour deux valeurs différentes de taux d’amortissement dans la
superstructure soient: & =3% et £ =5%. On voit que pour le facteur £=5%, le
premier soulévement a lieu & environ 13 s, par contre pour un rapport de & =3% le
soulévement a lieu bien avant puisque un fort amortissement dans la superstructure a
tendance a retarder I’amorcage de soulévement. on remarque qu’avec le rapport & = 3%,
un changement brutal se produit aprés quelques impacts de la semelle et par conséquent,
la courbe rejoint celle qui décrit le comportement du contact continu. Ceci n’est pas le
cas avec un facteur de 5 % puisque le soulevement continue avec un allongement net
de la période. Un changement de la valeur d’amortissement dans la superstructure a pu

donc perturber la stabilité de la solution suite au changement brusque au niveau de la

discontinuité.
(a) Déformation de la structure avec différents pas dt=0.001s |
L T s A — dt=0.002s
| dt=0.005s
. I dt=0.01s
o |
205--—---f1-A-1---
0
05| -
4.
15 5 0. 15 20 25
Temps (s)
(b) Déplacement latéral total avec différents pas T dt=0.001s
AB0 - = = = = o e e e e dt=0.002 s
dt=0.005s
100 S 1 S W dt=0.01s

x = u+hg (mm)

Temps (s)

Figure 4.15 Réponse sismique sur fondation a deux ressorts avec différents pas de

temps : (a) Déformation de la structure; (b) Déplacement latéral. & =5%;¢&, =23%
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Figure 4.16 Réponse sismique sur fondation a deux ressorts :

(@) §=5%; (b)&=3%

Dans les graphiques ci-dessous, on examine la solution avec une variation de rapport
d’amortissement dans la fondation. Sur la Figure 4.17, on voit que la variation du
rapport d’amortissement dans une fondation a deux ressorts a un grand effet sur la

réponse sismique. En passant d’un rapport de &, =23% a un rapport deé, =13%, la

période de vibration subit un grand allongement brusque au niveau d’un certain impact

avec les éléments de la fondation.
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(a) Dép!gcement latéral total de la structure . dt = 0.001 s
180( ....e.. 'Soulévementempéché | ~
4 | ===-= Soulévement avec ¢, = 13%|
T 00’} —— Soulévement avec {, =23% i AN o i
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(b) , ___Déformation de la structure. dt=0.001s_ .
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Figure 4.17 Effet de la variation de 1’amortissement dans la fondation

a deux ressorts sur la stabilité de la solution

En utilisant le modéle a deux ressorts, il n’est pas garanti qu’il y aura stabilité et
convergence de la solution car on a des changements trés brusques de la rigidit¢ et de
I’amortissement a I’amorce et a la fin de chaque épisode de soulévement. Les valeurs de
I’amortissement pourraient donc perturber la stabilité du systéme dépendamment de
I'instant de la discontinuité de systéme. L’utilisation d’un mod¢le de fondation avec
ressorts distribués, comme le modéle de Winkler, permet de réduire le risque
d’instabilité et non-convergence de la solution. La modélisation de Winkler est traitée

dans la prochaine section.
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4.3 Modéle de Fondation Winkler

La méthode la plus connue et la plus réaliste pour la modélisation de I’interaction sol-
structure est de représenter le sol comme un lit de ressorts indépendants. Il est bien
établit selon FEMA 356 que cette approche produit un modéle valide pour les éléments
structuraux flexibles. Par contre, ce modele est moins approprié pour les éléments
structuraux rigides. La structure représentée par le modele de la Figure 4.18 est linéaire
avec une masse m, une rigidité latérale, k¥ et un amortissement c . La structure est fixée a

une semelle de masse m,, supposée négligeable supportée par une fondation Winkler,

avec des éléments ressorts-amortisseurs distribués le long de la largeur de la semelle.

Dans notre étude, la fondation est supposée & la surface de sol et la semelle est de

rectangulaire et infiniment rigide.

Figure 4.18. Mode¢le de structure flexible sur fondation Winkler
(Yim & Chopra, 1984)
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Dans le modele Winkler, la rigidité verticale sera notée par k, et le facteur
d’amortissement critique dans la fondation par &, . Les ressorts agissent en paralléle avec
les amortisseurs et les coefficients de rigidité &, et de I'amortissement ¢, par unité de

longueur de la fondation rectangulaire de type Winkler sont respectivement donnés par :
K C
ko =— c. ==t (4.43)

Ou b est la demi-longueur de la semelle. K et C, sont respectivement la rigidité et

I’amortissement verticaux du sol, ces propriétés seront ¢valuées ultéricurement sclon les

expressions développées par Gazetas (1991). La rigidit¢ K, et 1’amortissement
rotationnels C,, pourraient étre déduits en fonction de K, et C, en faisant égalité des

moments par rapport au centre de la semelle.

K,=K,b*/3 C,=C,b"/3 (4.44)

Si on note par @, la fréquence des vibrations verticales donnée par @, = /2bk,,/m , le

coefficient d’amortissement ¢, seralié a £ par larelationc, =& ma, /b.

4.3.1 Systéme considéré et équations du mouvement

La relation entre le moment et la rotation de la semelle est montrée sur la Figure 4.19.
Cette relation est linéaire pendant le contact entier avec les éléments ressorts-
amortisseurs de la fondation. Pendant cette phase, la relation moment-rotation de la

semelle est déduite des relations (4.44) :

2k b’
3

M=

6 (4.45)
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Cette expression implique une rigidité a la rotation constante de 2k b’ /3 jusqu’a ce que

le soulévement débute au droit d’un élément extréme de la fondation. Par la suite, la

rigidité décroit d’une fagon monotone avec I’augmentation de 8.

M

/
/S M=2kb0 3

0, =P/2kb’

-M

¢

Figure 4.19 Relation moment-rotation pour la fondation Winkler.

Le soulévement est initié quand le ressort au bout de la semelle est soumis a de la

tension, la rotation et le moment correspondant a ce point sont exprimés par
6, =P/2k, b’ et M, =Pb/3 respectivement. Pendant le soulévement, la relation

M — 8 devient non linéaire parce que le contact entre la semelle de fondation et le sol
diminue au fur et 4 mesure que la rotation augmente.

La relation non linéaire M —8 pendant le soulévement est donnée par la formule :

M=pp1-2 [ (4.46)
3V e

Selon cette équation, M approche la valeur Pb quand 6 tend vers 'infini. Ce qui

implique que la courbe de moment-rotation M —& approche une valeur asymptotique
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qui serait une valeur critique de moment égale & M, = Pb, situation qui correspond

physiquement a une condition, non réalisable, ou il y aurait soulevement complet de la

semelle, vis-a-vis tous les éléments ressorts-amortisseurs de la fondation.

Sous I’action d’une force horizontale statique, le cisaillement critique a la base, qui
correspond a la force horizontale maximum que peut reprendre la structure sans se
renverser. Cet effort de cisaillement dépend de la force de gravité et du rapport
d’élancement. Le soulévement de la fondation supportée sur deux ressorts amortisseurs
ne peut étre amorcé que si la valeur de cisaillement critique a la base est atteinte. Dans le
cas de la fondation Winkler, le soulévement de la fondation est amorcé quand le

cisaillement a la base atteint le tiers de la valeur du cisaillement critique.

Equations de mouvement

Les équations du mouvement d’un systétme a un degré de liberté dynamique
horizontal avec la fondation Winkler sont données dans la littérature (Yim & Chopra,
1984) :

o mii+m(h6)+cii+ku = -mii_(t) (4.47a)
meb® . W b ) b .
. hO)y—-cu+(+¢€)c, —hO)+(1-¢&)e,c, —Vv—k
3/12( ) ( l)u3h~( ) +( 1 )E; 2hv u
+(1+&Hk b (hO)+(1—e})e,k Zv-—o (4.47b)
1 w 3]12 1 2 w2h :

2
o (mtm)V+(1+g)c bv+(1-£ ), %—l hO(1+ &)k bv

2
+(1-&)H)esk, %.he =—(m+my)g (4.47¢)

Le coefficient £, est égal a 1 durant le contact entier avec les éléments, mais dépend de

la rotation de la semelle et du déplacement vertical pendant la phase de soulévement :
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Contact avec les éléments

g=1 e & =0 (4.48a)

Coté gauche soulevé

£ =£,v/bO=—v/bO et £ =-1 (4.48b)

Coté droit_soulevé

£ =£v/bB=v/bO et & =1 (4.48¢)

Les déplacements verticaux aux bords gauche et droit de la semelle sont calculés par les

formules suivantes respectivement:

Vigy =V+bO(t) (4.49)

Vi =V —bO(t) (4.50)

Puisque les ressorts ne résistent pas a tension, le soulévement d’un c6té de la semelle
q p )

aura lieu si le déplacement v,, ou v, devient positif. Pour un systéme non-amorti et

right

une fondation dont le poids est négligé, 1’équation (4.47b) du mouvement se simplifie a :

3 2
312 ~(h0)+(1-&})e,k, Z—h.v =0 (4.51)

—hu+(Q1+&)Hk,

De cette expression, on obtient 6 en fonction de u et de v. Par substitution dans les
équations (4.47a) et (4.47c) avec m, négligé, on obtient le systéme d’équations a deux

degrés de liberté u et v donné par les équations (4.53a) et (4.53b).

_ 3hku(n) - (3/2).0—¢).e, kb7 v(t)

9 3 3
kb (+¢&)

4.52)
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2 3.mh(l - 7).
. m£l+ 3"k };z_ MIAZEDE Gy it b= —mii (1) (4538)

kb (1+¢&)) 2b(1+&))

~ 72 o222 _ 2
. mﬂ((l“l)%_.s.b e, (1-€2) & jv,+3(1 £ )gz.cwh.ku

Al +£d) 2 k b(+&)

u=—mg (4.53b)

_p232 a2 2

4.(1+¢)) 2b(1+&)

Les équations différentielles peuvent étre représentées dans le systéme matriciel

suivant :

I L 3k 3mh(i-£)e, | |[i] |c 04
K P(+E) 26(1+E) + 3(1-2)e ek 3pc,(-pe)| |+
L s s |A+g) e
0 m|V]| |2 k.b(+€) 1+£) v
[k 0 u] [=mii ()
3.(1-&)).e,hk U+erk b_3.b.kw(1—£f)2.£§ = (4.54)
2b(1+&) e 4.0+£) v |-mg

Le systtme d’équations (4.54) est fortement non-linéaire et sera intégré en utilisant
’algorithme de Newmark et celui de Runge-Kutta dans les logiciels Matlab et Simulink.
On comparera les résultats et on choisira 1’algorithme qui offre la meilleure

convergence.

4.3.2 Formulation numérique et procédure de résolution

Contrairement au systéme de fondation a deux ressorts, on voit que les matrices de
rigidité et d’amortisscment ne peuvent étre stockées unc scule fois dans le processus car
elles varient en fonction des coefficients &£ et &, qui varient continuellement en
fonction de la rotation et du déplacement vertical & chaque instant pendant la phase du

soulevement. Il vaut donc mieux intégrer le systeme en utilisant un pas de temps
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variable qui sera choisi automatiquement en fonction de la rapidité du systéme et de la
localisation des instants ou se produisent les discontinuités. Pour ce faire, on adopte les
méthodes de Runge-Kutta en utilisant Simulink avec un pas de temps variable pour

micux contrdler ces erreurs.

Dans Simulink, on choisit la fonction Ode45 qui est basée sur la formule explicite de
Runge-Kutta d’ordre 4 et 5. Ce schéma nécessite seulement la solution au pas de temps
immédiatement précédant. Du fait que les discontinuités souvent indiquent un
changement significatif dans le systéme dynamique, il est important de répérer les points
de discontinuité avec précision. Autrement, une simulation pourrait amener a de fausses
conclusions sur le comportement dynamique du systeme. L’adoption de 1’utilitaire
Simulink a été aussi motivée du fait que le séisme est un signal qui est discrétisé avec un
pas d’échantillonnage relativement important de 0.01 s. Pour détecter exactement
Pinstant du soulévement ou de I’impact, il faut que cet instant coincide avec le pas de
temps de calcul. Sinon, des erreurs seront probablement induites et la réponse sera plus
au moins stable car elle est trés sensible en raison du comportement fortement non

linéaire induit par les changements continuels des coefficients & en fonction de la

rotation et du déplacement vertical. Pour contourner le probléme, I’utilisation d’un pas
de temps variable est plus efficace avec une détection des événements décrivant I’impact

avec le sol.

Pendant ’analyse, le logiciel Simulink vérifie & chaque pas de temps les discontinuités
dans I’état du systéme dynamique en utilisant la technique connue par détection des
zéros (Zero-Crossing Detection). Cette méthode permet de détecter une discontinuité a
Iintérieur du pas de temps courant et détermine l’instant précis ou la discontinuité
apparait. Un pas de temps additionnel avant et aprés la discontinuité sont alors créés. Les
deux équations (4.53a) et (4.53b) doivent étre transformées a des équations du premier

ordre pour pouvoir les incorporer dans le schéma de Runge-Kutta. Pour éviter de
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réécrire plusieurs fois tous les paramétres dans le programme montré en 1’annexe II,

pose les quantités suivantes en fonction de quelques parametres.

2 _p2
Ml=m 1+———~fh k . M2 = Smhl-g0)E, 813)'82 (4.552)
kb (1+¢€) 2.b(+¢))
3(1-¢e2) ¢ k(1-g? ).
C, =| (1+)c, p—0 -8 E26D c, =2k, (4.55b)
4.(1+¢) 2k b.(1+€))
- &5k, b. -&))e,
K, =| Q+g)k, b0 1 wb- KV=X’—]YQ—€‘—3€~. (4.55¢)
4.(1+¢) 2b6(+&)
Les équations (4.53) sont réécrites ci-dessous sous la forme (4.56) :
M1di+ M2V + cu + ku =—mii (1) (4.56a)
mi+C v+C u+K v+K u=-mg (4.56b)

De I’équation (4.56b) on déduit ’expression de v en (4.57) et par substitution de cette
demniére dans I’équation (4.56a) et en mettant en facteurs les vitesses et déplacements on

aboutit vers 1’équation (4.58).

V= i(_ mg—C,v~C, i~K,v—K, u) (4.57)
m

Ml +(c—ﬂCuju~%2cv.v+[k—£21<u}u—%2kv.v =-mil (1)+ M2g  (4.5%)
m m m m

Si on suppose le changement de variables suivant:

yvi=u ; y3=v ; yl=y2 ; y3=y4 (4.59)
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L’équation (3.58) s’écrit en fonction des variables y1, y2, y3 et y4 de la fagon suivante :

)‘12:i (—mii (H+M2.2)— c———C 2+—C YAk MzKu .yl+M2kV.y3 (4.60)
Ml # m m
De méme I’équation (3.56b) décrivant le mouvement de vibration verticale devient :
4= l(— mg—C, y4-C,y2-K, y3—-K, yl) (4.61)
m

Ce sont les équations (4.60) et (4.61) qui sont utilisées dans la méthode de Runge Kutta.

4.3.3 Réponse en vibration libre avec fondation Winkler

Systéme non-amorti

On impose une vitesse initiale a la structure. Le deuxiéme mode n’est pas excité au
début des vibrations car le centre de la semelle ne s¢ déplace pas verticalement : la
semelle subit une rotation mais autour de ce point et la réponse constitue enti¢rement le
premier mode de vibration. L’amplitude de la vitesse initiale est ajustée pour amorcer un
soulévement. Les valeurs critiques de déplacement et de la rotation a atteindre pour que

la semelle se souléve sont respectivement les suivantes :

6, =mg/2k b* ;  u, =mgb/(3hk) (4.62)

Quand le déplacement critique, u, donné par 1’équation (4.62) est atteint, le
soulévement de la semelle commence graduellement et la semelle de la fondation se
libére graduellement des éléments ressorts-amortisseurs, 1’un aprés 1’autre a partir de
I’extrémité en se déplacant vers I’intérieur jusqu’a une certaine portion de la semelle qui
dépend de la valeur de la vitesse initiale imposée. A la fin de 1’épisode soulévement, la

semelle rejoint graduellement les éléments ressorts-amortisseurs jusqu’au contact total.
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Dans le cas d’une modélisation avec seulement deux ressorts, la réponse pouvait étre
prédite par des équations linéaires parce que des le début du soulévement, il n’y avait
plus de moment additionnel pouvant se développer et la relation moment-rotation était
linéaire. Ici, par contre, durant le soul¢vement, la réponse en déplacement est non
linéaire et aucune expression analytique de la solution n’est possible. Il est donc
nécessaire d’utiliser le calcul numérique méme pour le cas non-amorti. Les coefficients
de contact £ et £, dans ce cas ne sont plus constants durant la phase de contact ou
soulévement mais dépendent continuellement du déplacement vertical et de la rotation
de la semelle. Il faut donc vérifier les conditions de contact et recalculer les nouvelles

valeurs de ces coefficients a chaque évaluation des quantités.

Comme exemple de calcul, on considére d’abord un mod¢le simple de mur, dont le
rapport d’¢lancement ¢ est égal a 10 et le rapport de rigidité entre la superstructure et le
sol# égal a 8. On s’intéresse d’abord a la réponse du systtme sans aucun
amortissement. Le systéme d’équations est intégré numériquement. Sur la Figure 4.18a,
on présente la déformation de la structure (u). La réponse n’est que la superposition des
modes propres de vibration tels que définis pour le cas de la fondation a deux ressorts.
La courbe en pointillés décrit le mouvement de vibration lorsque le soulévement est
empéché (ressorts travaillant en traction et contact complet sur toute la largeur de la
semelle) et 1a courbe pleine décrit la réponse de la structure lorsque le soulévement est
permis. Quand le systéme vibre dans le premier mode de vibration, le mouvement ne
comprend que le déplacement horizontal et la rotation de la semelle, tandis que la
vibration dans le second mode est exclusivement décrite par le mouvement vertical.
La Figure 4.20b donne le détail du premier ¢pisode de soulévement. Le soulévement
débute lorsque I’on atteint le déplacement critique. Cette fois, la masse ne vibre plus
autour d’un déplacement critique comme dans la modélisation avec deux ressorts. Elle
vibre plutét avec une fréquence élevée tout en continuant a se déplacer graduellement

Jusqu’a atteindre une valeur qui excéde 1égerement 2.0 fois le déplacement critique.
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(a) Déformation de la structure (Vibration libre)

I U TN Tye T

; Soulévement permis
‘

R e Soulévement empéché |-

cr

=
=1
Temps (s)
25— e - -
(b) |
5 [ soulevementsi: &  \
5 u = W.b/(3kh) i

Temps (s)

Figure 4.20 Réponse en vibration libre, & =10, =8, systeme non-amorti.

(a) déformation; (b) zoom sur la déformation en soulévement

Quand la semelle revient en contact complet avec les éléments ressorts-amortisseurs,
I’amplitude de I’accélération verticale est nettement supérieure a celle qui prévalait
pendant le soulévement, comme montré sur la Figure 4.21. Aprés le contact complet de

la semelle avec les ressorts, il y a en effet création d’une accélération verticale. A partir
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de ce moment, les deux modes de vibration contribuent & la réponse, contrairement au

cas ou le soulévement est empéché.

Accélération verticale de la structure flexible

Accélération (m/s 2)

Temps (s)
Figure 4.21 Réponse en vibration libre sur fondation Winkler

Accélération verticale: Systeme non-amorti & =10, #=8.

Systéme amorti

Tout d’abord on voudrait comparer la réponse en vibration libre obtenue par Yim et
Chopra (1983) avec la réponse obtenue avec Matlab. Le calcul est effectué pour une
structure de période fondamentale égale a ’unité. Le taux d’amortissement introduit
dans la fondation et dans la superstructure sont pris égaux a 5% et 40% respectivement.
Le rapport de I’élancement et le rapport de rigidité sont maintenus comme dans le cas
non amortie. La réponse de la structure est montrée sur la Figure 4.22. On observe que
les deux résultats sont identiques : le calcul avec Matlab donne exactement la réponse

obtenue par Yim et Chopra (1983).

Par la suite on examine ’effet de 1’amortissement sur le comportement de la méme
structure. On prend dans ce cas, un taux d’amortissement dans la superstructure €gal a
3% tandis que dans la fondation on choisit un taux de 13%. La réponse est présentée sur

les Figures 4.23 et 4.24.



93

------ Soulévement empéché
Soulévement permis Bove o S
2 - " e L1y

Ter?nps (s) Temps(s)
(@) (b)

Figure 4.22 Réponse en vibration libre d’une structure amortie a =10, f=8,T =1s,
& =5%, &, =40% : (a) résultas (Yim & Chopra, 1983); (b) Calcul Matlab

e Contact complet avec les éléments

Dans le cas du contact complet avec la semelle (courbe en pointillés) le premier mode
de vibration inclut le déplacement horizontal de la structure couplé avec la rotation de la
semelle de fondation par rapport a son centre de gravité. Le facteur d’amortissement est
une combinaison linéaire de £, et £. 1l est noté £,. Le rapport d’amortissement pour le
deuxieme mode de vibration qui implique le mouvement vertical, non couplé avec le

déplacement horizontal et la rotation de la base, est tout simplementé, =& =13%,
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c’est le rapport d’amortissement de la structure dans la vibration verticale. Les rapports

d’amortissements modaux sont donnés par les relations (Yim & Chopra, 1983) :

p— / £§+ 3a ;,J | (4.63)

$2 =6, (4.64)

Dans notre exemple, lorsque la semelle est empéchée de se soulever, le déplacement

latéral de la masse et la rotation de la semelle décroissent exponentiellement avec a un
taux défini uniquement par le facteur d’amortissement du premier mode £, ceci parce

que le second mode ne contribue pas a la réponse. Dans notre exemple £ =13% et

£=3% : on obtient £ =0.8% et &, =13%. Pendant que la semelle est en contact
continu avec les ¢léments de la fondation, les réponses u, ¢ décroissent donc d’une

mani¢re exponenticlle avec un taux contrdlé par &, = 0.8%.

e Soulévement permis
Aprés le soulévement, le premier mode de vibration est supposé non-amorti car il
s’agit d’un mode de corps rigide sans source d’amortissement. L’amortissement de
deuxiéme mode (hautes fréquences) serait similaire a celui du modéle comprenant deux

ressorts. C’est une combinaison linéaire de &, et ¢ donné par la relation suivante :

‘- ﬂ3(l+a'2)? (5_}_ 2.a° 5\) (4.65)
i (2c1/2+,32)/2

Dans le cas ou £, =13% et £ =3%, et on obtient, =9.7% . Durant le soulévement,

les vibrations verticales de la masse décroissent donc exponentiellement avec un taux
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défini par {, =9.7%, ce qui est assez élevé pour provoquer une décroissance rapide des
oscillations a haute fréquence. La courbe de la Figure 4.23a montre la déformation
amortie de la structure. Dans le cas ou le soulévement est permis, 1’amortissement réduit
la tendance de la fondation a se soulever. En méme temps, il réduit la durée du
soulévement aprés chaque cycle. Les hautes fréquences sont amorties avec un

amortissement de &

v

, =13% pendant le contact et {, =9.7% pendant le soulévement.
Ces hautes fréquences sont fortement amorties aprés la deuxiéme séquence. Si le
soulévement est empéché (contact avec tous les éléments - ressorts), la réponse est

amortie avec un taux d’amortissement de &, = 0.8%.

(@) Déformation de la structure en vibration libre amortie
T

3
3

N o ‘ Soulevement permis

0 o Soulévement empéché |

(b) Rotation de la semelle en vibration libre amortie

G
2
-~

()

u+hg (mm)

Temps (s)

Figure 4.23 Réponse en vibration libre amortie sur fondation Winkler :
(a) déformation de la structure ; (b) rotation de la semelle ; (c) déplacement latéral total.

E=3%, & =13%.
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Contrairement au déplacement horizontal, la rotation de la semelle présentée sur la
Figure 4.23b continue d’augmenter de fagon considérable dans ce cas particulier, aprés
le soulévement, mais son amplitude diminue graduellement chaque ¢épisode de
soulevement. On voit aussi que le soulevement allonge la période de vibration. La
contribution des hautes fréquences a la déformation horizontale, a la rotation et au
déplacement vertical des bords est dominante dans les premiers cycles de vibration. La
Figure 4.23¢ montre le déplacement latéral total du mur. On voit sur la courbe que le
soul¢vement allonge la période de vibration. L’effet de ’amortissement dans le second
mode, pendant le contact complet de la semelle et dans le mode a haute fréquence
pendant le soulévement, est tellement important que le déplacement vertical des bords

(Figure 4.24) est légerement réduit lorsque 1’on permet le soulévement.

(a) Déplacement vertical du bord gauche

v, (mm)

|
0 5 10 15
(b)

Soulévement permis 1

v_(mm)

Temps (s)

Figure 4.24 Réponse en vibration libre amortie sur fondation Winkler :

(a) déplacement vertical du bord gauche; (b) déplacement vertical du bord droit.

E=3%, £ =13%
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4.3.4 Réponse sismique de la structure

Pour examiner le comportement sismique, le calcul est fait sous un séisme artificiel
généré pour la région de Vancouver pour un scénario Magnitude 7.2 et distance
hypocentrale de 30 km. Le signal est montré sur la Figure 4.25. Sa durée est d’environ

20 s. Ce signal a un pic d’accélération de 0.149 g qui se produit a I’instant 1 = 7 s.

Séisme Ouest Canada M7.2-30 ‘i
S 0.1 B B e e eI N
§ 0.05
§F 0
3 -0.05
(%)
< 0.1
0 5 0 20 25
Temps (s)

Figure 4.25 Signal temporel artificiel de I’ouest Canadien. M7.2-30

On considere le mur de 10 étages situé dans la région de Vancouver. Sa hauteur est de
30 m et la largeur de la semelle est de 10.86 m. La hauteur effective dans notre modeéle
est prise égale a 20 m, puisque la résultante de la répartition triangulaire des efforts est
appliquée a 2/3 de la hauteur. Ce qui donne un rapport d’¢lancement ¢ égal a 3.68. Le
poids sismique est égal a 3000 kN par étage avec un rapport de masse égale 0.4 (poids
vertical = 1200 kN / étage). La période du mur reposant sur une base fixe est égale a 7=
1.282 s donnant une rigidité latérale du mur de 73473394 kN/m . La rigidité du sol est
établie de telle sorte que le rapport de rigidité entre la superstructure et le sol, S, est égal
a 24. On s’intéresse d’abord a la réponse du systéme sans aucun amortissement. Par la
suite, on fait I’analyse de la réponse du systéme amorti. L’amortissement choisi dans ce

cas est de 3% pour la superstructure et 13% pour la fondation.

Comme le systeme est fortement non linéaire. La réponse sismique est plus complexe

que celle obtenue en vibration libre et des erreurs sont inévitablement induites lors du
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calcul. La réponse est calculée donc par I'intégration des €quations (4.60) et (4.61). La
réponse sismique est présentée sur les Figures 4.26 et 4.27. Deux conditions de contact
sont considérées : contact avec les ¢éléments de fondation (soulévement empéché) et
soulévement permis. La réponse pour le premier cas est enticrement due au premier
mode de vibration naturel du systéme. Le comportement est similaire & la réponse d’un
systeme a un degré de liberté. Dans le cas ou le soulévement est permis, la semelle reste
en contact durant les premiers cycles d’oscillation, jusqu’a atteindre un déplacement et
une rotation critiques. A cet instant, la semelle commence  se séparer graduellement des
¢léments de la fondation. La durée de soulévement dépend de 1’amplitude de la rotation
présentée sur la Figure 4.26b. La masse subit des hautes fréquences au fur et 8 mesure
que la semelle se sépare des ressorts et lorsque le contact est graduellement rétabli par la
suite. Ces vibrations a haute fréquence sont rapidement atténuées par 1’amortissement
qui a ¢t¢ introduit dans la fondation. Le soulévement ne se produit pas forcément a
I’instant du pic accélération. Cela dépend du contenu du séisme, car 1’accélération du sol
pourrait contribuer a décélérer le mur en mouvement ou la force le basculement dans la
direction opposée. Dans cet exemple, le pic d’accélération du séisme se produita t=7s
alors que soulevement se produit bien avant, vers un temps ¢ = 2 s. De méme, on
remarque que la structure subit un soulévement plus long, vers ’instant 1 =10.5 s, au
moment ou 1’accélération du sol est relativement faible. A ce moment, on note que la
rotation atteint une valeur maximale aprés le temps ¢ = 11 s. Cela signifie que la durée
du soulevement dépend du sens de la rotation de la semelle vis-a-vis du sens des
impulsions induites par le mouvement sismique du sol. Au moment ou la rotation est
maximale, le déplacement vertical au centre de la semelle atteint aussi une valeur
maximale v = 18 mm (Figure 4.28a). Méme si I’amplitude de ’accélération du sol
diminue avec le temps, le déplacement de la masse continue a s’amplifier et la semelle

continue a se soulever jusqu’a un temps égal a 17.5 s.

La Figure 4.26¢ montre que le déplacement latéral total de la structure a la méme allure

que la rotation de la semelle, ceci parce qu’il est égal a la déformation de la structure
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additionné a au déplacement horizontal di a la rotation de la semelle. On observe aussi
la méme période d’oscillation que celle de la rotation mais avec une amplitude de
vibration supérieure qui est due a la déformation de la structure. Sur cette figure on
distingue bien I’allongement des périodes de vibration depuis le début du soulévement

de la semelle, quoiqu’il soit moins important que pour le systéme non amorti.

(a) 4 x 10° Réponse sismique du mur de 10 étages a Vancouver. MR = 0.4.

Déformation u/h

(b) 5 0.01 \ .
® ! Soulévement permis
;0'005 Seorososoosiosoooooooopeo ] e Soulévement empéché |
c
]
=
&
-0.01 ‘ ‘ ! - -
E 2000 5 an.. 15 200 __ 25
© g
s 100
8
= 0
Q
§ -100
(3]
] ‘
2 200! ! ! S B S
a 0 5 10 15 20 25
Temps (s)

Figure 4.26 Réponse sismique du mur de 10 étages sur fondation Winkler. Systéme
amorti : (a) déformation u/h ; (b) rotation de la semelle; (c) déplacement latéral total;
a=3.68; f=24; £=3%; ¢ =13%

La Figure 4.27 montre les déplacements verticaux des deux extrémités de la semelle, on
voit bien sur les courbes qu’on peut distinguer nettement le soulévement le plus

important a partir du temps ¢ = 12 s. L’amplitude des déplacements verticaux est



100

amplifiée par le soulévement et les déplacements des c6tés droit et gauche sont en
opposition de phase : I'un se souléve lorsque 1’autre se déplace légérement vers le bas
pour commencer a vibrer autour d’une valeur égale a 2 fois le produit de la rotation
critique et la largeur de la semelle. Les amplitudes des déplacements verticaux aux deux
extrémités ne sont pas exactement les mémes puisqu’elles dépendent du signal sismique
(amplitudes et durée des pulses) pendant le soulévement et des conditions initiales en
vitesse et en accélération a chaque impact avec la semelle. On peut constater que
I’amortissement réduit la durée du soulévement et, par conséquent, la tendance au
soulévement de la semelle. A la fin du séisme, I’amplitude de la réponse commence a
diminuer mais le mur continue a se soulever pendant un certain temps. A cause de
I’amortissent, les hautes fréquences sont fortement réduites, voire inexistantes pendant le

soulévement.

bord droit
bord gauche |

[

Déplacements aux
bords (mm)

5 10 15 20 25
Temps (s)
Figure 4.27 Réponse sismique du mur de 10 étages sur fondation Winkler. Systéme

amorti : déplacements verticaux aux bords. a=3.68; f=24; £=3%; ¢ =13%

La Figure 4.28a montre qu’il y a une faible contribution des vibrations verticales de la
masse avant le temps ¢ = 12 s. Méme avec de faibles et brefs épisodes de soulévement
vers 3 s et 7 s, le déplacement vertical du centre de la semelle demeure égal au tassement
sous la charge verticale et la vitesse verticale reste nulle jusqu’au soulévement. Cela n’a
pas vraiment affecté la réponse en déplacement car, pour la fondation Winkler,

contrairement au cas de deux ressorts, le soulévement se fait graduellement et le moment
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a la base continue 4 augmenter avec la rotation d’une fagon non linéaire, méme si la
semelle se sépare du ressort extréme, le centre de la semelle restant quasiment fixe. La
rotation et les déplacements verticaux des deux bords de la semelle augmentent avec le
soulevement. Cela est dii au mouvement de corps rigide décrit par le premier mode de

vibration. Ce dernier cesse de s’amortir pendant le soulévement.

(a) Réponse sismique du mur de 10 étages a Vancouver. MR = 0.4

Déplacement vertica!

(b)

Vitesse vertivale

()

Accélération verticale

0 5 10 Temps (5) 15 20 25

Figure 4.28 Réponse sismique amortie du mur de 10 étages sur fondation Winkler:
(a) déplacement vertical; (b) vitesse verticale; (c) accélération verticale.
a=368; =24, =3%; & =13%
La rotation et les déplacements verticaux ont une contribution dominante pendant le

soulévement. Puisque le sol est considéré comme un milieu homogéne ¢élastique, il ne
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devrait pas y avoir de déplacement total résiduel de la structure di au bercement apres la
fin de séisme. Ce déplacement est calculé par simple multiplication de la rotation de la
semelle par la hauteur du mur. De méme, on a supposé que la superstructure demeurait
¢élastique. Le déplacement total final doit donc rejoindre le déplacement initial et aucun

déplacement horizontal résiduel ne devrait étre noté aprés la fin du séisme

4.3.5 Stabilité et convergence de la solution

La réponse sismique de la structure calculée avec le modele de Winkler avec un pas
de temps assez grand (d7 = 0.01 s) montre une amplitude de soulévement et une période
de bercement assez importantes, car le comportement est non linéaire durant les phases

de soulévement (Figure 4.29).

(a) Déformation de la structure avec différents pas  ___ 9i=
PR

o s 10 ' 15 20 25

b
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Figure 4.29 Réponse sismique sur fondation Winkler avec différents pas de temps :

(a) déformation de la structure ; (b) déplacement latéral total, £ =3%; & =13%

v
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Plus on réduit la taille du pas de temps, plus 1’amplitude de déplacement latéral est
réduite jusqu’a ce qu’elle converge vers la méme solution avec des valeurs de pas de
temps inféricures a une certaine limite. La solution obtenue avec un pas de 0.001 ou
0.0001 s est la méme. Pour nos calculs ultéricurs on utilise alors un pas de temps
inférieur ou égal a 0.001 s. un pas aussi faible est nécessaire pour obtenir une précision
de la réponse et assurer la convergence des solutions des équations de mouvement a
I'intéricur de chaque pas de temps. La Figure 4.30 montre la réponse de la structure avec
une fondation Winkler. Le calcul est fait pour deux valeurs différentes du rapport
d’amortissement dans la superstructure. On voit que le choix de la valeur du rapport n’a
eu aucun effet significatif sur la réponse. La stabilité du systéme demeure maintenue
méme durant le soulévement de la semelle. De méme la réponse montrée sur la Figure
4.31, prouve la variation du rapport d’amortissement dans la fondation n’a provoqué
aucun changement dans le comportement global de la solution obtenue par le modéle de
Winkler. Par conséquent le modéle de fondation Winkler avec un pas de temps
suffisamment petit (df =0.001 s) offre une meilleur stabilité du systéme par rapport au

modele a deux ressorts et assure une bonne convergence vers la solution.

(a) 'Déplacement latéral total. dt = 0.005 s { Soulévement permis
1 | et ==+ Soulévement empéché

x = u+hg (M)
OA — -

0 5 BT 15 20 25

Soulévement pemis |
Soutévement empéché |

(b)

X = u+hg (m)

0 5 10 Temps(s) 15 20 25

Figure 4.30 Réponse sismique sur fondation Winkler pour & =23%:

(a)¢ =5% et (b) & =3% dans la superstructure.
p
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Déplacement latéral total. dt = 0.001 s
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Figure 4.31 Réponse sismique sur fondation Winkler pour & = 3% :

&, =13% et £, =23% dans la fondation

Comparaison des réponses avec Newmark et Runge-Kutta

Dans ce qui suit on examine la solution obtenue par 1’algorithme de Newmark et celui
de Runge-Kutta utilisant Simulink dans Matlab. On montre aux Figures 4.32 et 4.33 une
comparaison des solutions obtenues de 1’algorithme de Runge-Kutta et de 1’algorithme
de Newmark pour le mur de 10 étages soumis au séisme de I’Est (Figure 3.7). Pour cet
exemple, le soulévement débute a un temps 7 = 12 s et se produit a chaque cycle
d’oscillation jusqu’a un temps 7 = 23 s. Sur la Figure 4.32a, on remarque nettement que
les déformations de la structure (u} calculées par les deux méthodes sont identiques
avant, pendant et apres le soulévement. Cependant, la rotation calculée avec la méthode
de Newmark est 1égérement supérieure a celle calculée avec Ia méthode de Runge-Kutta
lorsqu’il y a soulévement : & chaque cycle d’oscillation aprés £ = 12 s, les valeurs de
pointe de rotation obtenues de la méthode de Newmark excédent celles prédites avec

I’algorithme de Runge-Kutta. Ailleurs, les deux solutions sont identiques. Cela est dii a

la valeur de ’amplitude de la rotation a I’instant du soulévement, car les constantes &, et

£, dépendent continuellement de la valeur de la rotation et du déplacement vertical,
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mais pas de la déflexion de la structure. Puisque la condition de contact avec les ressorts
dépend aussi de la valeur de la rotation, il faut employer un pas de temps trop petit
utilisant la méthode de Newmark et cela nécessite un temps de calcul trop important,
pour que la valeur des coefficients & et &, juste a4 l'instant du soulévement
correspondent bien a la condition réelle du contact. L’utilisation d’un pas de temps
variable pour la simulation avec Simulink utilisant le schéma de Runge-Kutta permet

d’obtenir une solution plus précise.
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Figure 4.32 Réponse sismique amortie & =3%;&, =13% (a) déformation w/h;

(b) rotation de la semelle; (c) déplacement latéral total de la structure
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Le déplacement latéral total au sommet est montré sur la Figure 4.32¢. Bien qu’on
remarque que les réponses obtenues par les deux calculs sont trés semblables, le
déplacement latéral maximal atteint avec la méthode de Newmark est supérieur a celui
obtenu par la méthode de Runge-Kutta, ceci étant di au fait que le déplacement latéral

total est en grande partie proportionnel a la rotation de la semelle.

Par ailleurs, la Figure 4.33 montre des légers écarts en déplacement vertical et vitesse
verticale entre les deux méthodes de calcul. Ces écarts entre les résultats obtenus des
deux méthodes (surtout au premier soulévement a t = 12 s) sont associés aux différences
sur la rotation. On note lors des deux premiers épisodes de soulévement que le
déplacement vertical du centre de la semelle est supérieur a zéro, ce qui signifie que le

centre de la semelle se sépare du sol et se souléve a ces moments en raison des rotations

importantes.
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Figure 4.33 Réponse sismique amortie £ =3%;&, =13%.

(a) déplacement vertical; (b) vitesse verticale
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4.4 Conclusion sur le chapitre 4

Les équations du mouvement aprés le soulévement sont complexes lorsque 1’on utilise
le modé¢le du Winkler du fait que le comportement global de la structure est fortement
non-linéaire a cause de la non-linéarité¢ de la relation moment-rotation pendant les
phases de soulévement. En dépit de cette complexité, on a montré que I'intégration
numérique des systemes dynamiques utilisant ce modele a permis des résultats plus
stables par rapport au mod¢le a deux ressorts et ces résultats convergent vers la méme

solution avec un pas de temps suffisamment petit.

Le choix des valeurs de paramétres tel que les coefficients d’amortissement dans le
systéme pourrait perturber la stabilité de la solution obtenue par le modele & deux
ressorts dépendamment de 1’instant de la discontinuité de systéme. On a vu qu’avec le
modéle de Winkler, le choix des paramétres ne provoque aucune perturbation de
comportement global du systéme et la stabilité de la solution demeure maintenue méme
durant le soulévement de la semelle. On a vu aussi que dans certains cas, la solution
obtenue par le modéle a deux ressorts a convergé vers une méme solution, mais cette
solution ¢tait trés sensible au choix de I’amortissement. En utilisant le modéle & deux
ressorts, il n’est pas garanti qu’il y aura stabilité et convergence de la solution car on a
des changements trés brusques de la rigidité et de I’amortissement a 1’amorce et a la fin
de chaque épisode de soulévement. Le modéle de fondation Winkler avec un pas de
temps suffisamment petit (df =0.001 s) permet de réduire le risque de non-convergence

et offre une meilleur stabilité de la solution par rapport au modéle a deux ressorts.

La période de vibration du systéme pendant le contact avec les éléments de fondation
exprimée par la relation 7, =T/@, avec @, la fréquence donnée par la relation (4.33)
Avec des valeurs de f = 8 et @ =10, on trouve une valeur théorique de 2.38 s. Cette

période est bien retrouvée sur la Figure 4.20. On a examiné ensuite la solution obtenue

pour le modéle de Winkler par deux méthodes de calcul : Newmark avec un pas de
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temps fixe et Runge-Kutta avec un pas de temps variable. On a montré que la réponse
sismique d’un mur de 10 étages, obtenue en utilisant la méthode de Runge-Kutta dans
Simulink de Matlab est quasiment la méme que celle obtenue par la méthode de
Newmark a part une 1égére amplification de la rotation a I’instant de soulévement en
utilisant Newmark. Puisque la condition de contact avec les ressorts dépend
continuellement de 1a valeur de la rotation, il faut employer un pas de temps trop petit si
on utilise la méthode de Newmark, pour que la valeur de la rotation juste a I’instant du
soulévement corresponde bien a la condition réelle du contact. Cela nécessite un temps
de calcul trop important ¢t 1’utilisation d’un pas de temps variable dans Simulink
utilisant le schéma de Runge-Kutta permet d’obtenir une solution plus précise. On
utilisera donc pour la suite de 1’étude le schéma d’intégration explicite de Runge-Kutta
dans Simulink pour 1’analyse sismique des murs, ceci pour pouvoir détecter les instants

de discontinuité.

En plus de la précision des résultats obtenue par le modéle Winkler, on sait qu’il est plus
réaliste pour modéliser le sol de fondation car la rigidité du sol est continue et le
soulevement de la semelle se produit progressivement. Pour ces raisons on choisit de
mener les analyses dans les prochains chapitres avec une fondation Winkler en utilisant

la méthode de Runge-Kutta avec un pas de temps automatiquement variable.
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CHAPITRE 5 Réponse sismique des murs avec Ruaumoko

Ruaumoko est un Logiciel de calcul de la réponse sismique non linéaire des
structures. Il serait trés pratique de 1’utiliser pour calculer la réponse des murs de refends
en béton armé qui se comporteraient dans le domaine inélastique, car des hystérésis de
comportement de béton sont déja incorporés dans le programme, notamment ["hystérésis
de Takeda utilisée dans la plus part des recherches. Cependant, pour notre étude
considérant les murs se comportant dans le domaine élastique et tenant compte du
soulevement des fondations, on voudrait étre sir de la modélisation choisie dans
Rumauoko, en I’occurrence de la fondation et de la réponse sismique correspondant. On
a juge alors utile de comparer les résultats obtenus dans Ruaumoko dans le cas élastique
avec ceux obtenus dans Matlab pour s’assurer d’une part, de la modélisation de la
fondation dans Ruaumoko tenant compte de soulévement de la fondation, cette
modélisation qu’on pourrait associer dans la recherche subséquente au comportement
inélastique des murs de refends en béton armé et d’autre part, de valider la mise en
équation du systéme dynamique qu’on a implémenté dans Matalb pour pouvoir I'utiliser

dans notre étude paramétrique des murs €élastiques.

5.1 Hypothéses considérées dans I’analyse

Dans cette section, la modélisation bi-dimensionnelle d’un mur de refend en béton
arm¢ de 10 ¢tages est effectuée avec le logiciel Ruaumoko (Carr, 2003). Le mur a une
hauteur de 30 m, il est fixé 4 unc semelle rectangulaire de 8.71 m de longueur et de 4.36
m de largeur. Les modéles numériques considérent une structure élastique sur une
fondation flexible sans possibilité de glissement de la semelle I’interface. La rigidité de
la fondation s’exerce dans la direction verticale et elle est représentée par des ressorts

dont le comportement est linéaire. Les valeurs des constantes de rigidités verticales sont
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calculées pour une semelle rigide rectangulaire sur un milieu homogeéne élastique semi

infini.

Les équations introduites dans le calcul numérique par Matlab portent sur un systéme
comprenant une seule et méme masse dans les deux directions (horizontale et verticale).
Avec le logiciel Ruaumoko, on introduit la masse horizontale correspondant au poids
sismique et une masse verticale correspondant a la charge verticale supportée par le mur.
La masse verticale est égale au produit du rapport de masse choisi et de la masse
horizontale totale du mur. Il faut veiller aussi a introduire dans les équations décrivant le
deuxi¢éme mode de vibration dans le modéle Matlab une masse verticale égale a la

charge supportée par le mur.

Plusieurs hypothéses sont considérées dans notre é€tude pour la simplification des
calculs, et les résultats obtenus avec le logiciel Ruaumoko sont comparés avec ceux
obtenus numériquement en utilisant Matlab. Les hypothéses simplificatrices se résument
comme suit :
1. la fondation est un demi espace €lastique dont les paramétres caractéristiques
sont indépendants de la fréquence du séisme.
2. le sol est homogéne isotrope et linéairement élastique.
3. la semelle de fondation est empéchée de se déplacer latéralement, le glissement
est donc négligé.
4. T’amortissement de systéme sol-structure est considéré proportionnel a la masse
et a la rigidité.
5. sculement la composante horizontale de 1’excitation sismique est considérée.
6. la semelle de fondation est rigide et de forme rectangulaire, avec une longueur
égale a deux fois la largeur.
7. la hauteur de la masse dans les modéles est de 20 m (soit 2/3 de la hauteur du

batiment) a cause de la répartition équivalente triangulaire des efforts sismiques.
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Pour introduire I’effet du sol sur le mouvement du bercement de la semelle, des ressorts
¢lastiques avec une rigidité constante sont introduits dans le modéle Ruaumoko. Pour le
cas de la fondation a deux éléments ressorts-amortisseurs, les deux ressorts sont placés a
chaque extrémité de la semelle et ils ont chacun une rigidité égale a la rigidité totale du
sol divisée par 2. Pour le modele de Winkler, des éléments ressorts-amortisseurs sont
repartis uniformément sur la longueur de la semelle. Dans le cas de la solution Matlab, le

sol est représenté par un support élastique continu sur la longueur de la fondation.

5.2 Amortissement de Rayleigh

L’amortissement utilisé dans Ruaumoko est un amortissement de Rayleigh appliqué
pour donner un niveau d’amortissement d’au moins 3%, correspondant au mode
fondamentale de vibration de la structure supposée supportée sur une fondation rigide.
L’amortissement effectif des murs pendant la conception provient en réalité de deux
sources : I’amortissement visqueux élastique et 1’amortissement hystérétique. Puisque
les murs dans notre cas restent dans le domaine élastique, I’amortissement effectif
provient exclusivement de 1’amortissement visqueux. De méme 1’amortissement de la
fondation doit étre modélisé par un amortissement visqueux qui constitue la contribution
de I’amortissement hystérétique du sol et I’amortissement de radiation. Plusieurs auteurs
avaient montré que I’amortissement hystérétique du sol est négligeable devant celui
provenant de la radiation (Gazetas et al, 2004). On ne considére dans nos calculs que
I’amortissement visqueux dans la superstructure et 1’amortissement radiant dans la
fondation. Enfin I’amortissement effectif visqueux du systéme global sol-structure est
calculé par la somme des amortissements dans chaque partie du systéme en utilisant
I’amortissement de Rayleigh qui peut étre modélisé proportionnel a la matrice de rigidité

et la matrice de masse. L’amortissement de Rayleigh est donné par la relation suivante :

C=aM+BK (5.1)



112

Les facteurs @ e [ sont calculés (5.2) pour obtenir le niveau d’amortissement visqueux

a deux fréquences différentes, généralement celles du premier et du second mode.

_ 2-(01 -wz~(w1 G, — W, 'gl) = 2-((01 G — W, ‘gz)
o= 2 2 ﬂ - 2 2
o -, o -,

(5.2)
Priestley et Grant (2005) ont montré que 1’amortissement visqueux élastique est mieux
modélisé par ’amortissement proportionnel a la rigidité tangente si la structure passe
dans le domaine inélastique. Dans ce cas, 1’amortissement hystérétique de la structure
dans le domaine inélastique serait modélisé par une loi d’hystérésis. Cependant, dans
notre cas, la structure reste dans le domaine élastique on aurait pu utiliser la rigidité
initiale si on avait fait une étude sans tenir compte de soulévement. Mais dans le cas de
soulévement de fondation, la rigidité et I’amortissement dans la semelle varient avec le
soulévement et il est préférable de considérer la rigidité tangente.

Pour le calcul de la réponse utilisant le logiciel Ruaumoko, il faut spécifier séparément

les valeurs des coefficients o et f qui déterminent le niveau de I’amortissement

proportionnel correspondant a chaque élément de systeme.
5.3 Comparaison des réponses de Ruaumoko et de Matlab

Dans cette section on compare la réponse sismique obtenue avec Matlab par
intégration des systémes d’équations d’équilibre dynamique a la réponse obtenue par
Ruaumoko, d’un mur de refend de 10 étages soumis a un séisme de I’Est de Canada
(Séisme artificiel E7-70). On effectue cette comparaison pour les modeles de fondation
avec deux ressorts et le modele de fondation Winkler. Les modeles numériques dans
Ruaumoko sont intégrés comme des structures ¢lastiques et sont développés en utilisant
les hypothéses citées au paragraphe 5.1. Le mur peut étre représenté par un poteau
modélis¢ en utilisant I’élément cadre poutre-poteau (type Frame) en béton armé, tandis

que la semelle peut étre représentée par une poutre modélisée en utilisant 1’élément
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poutre Giberson (Figure 5.1). Dans notre cas, on peut aussi représenter le mur avec des
¢léments Giberson. Ce type d’éléments comprend une membrure prismatique centrale

¢lastique et des rotules plastiques localisées aux extrémités de 1’é1ément.

Comme le mur est supposé rester dans le domaine ¢lastique, on n’utilise pas 1’option de
la rotule plastique. La masse totale (poids sismique) du mur est modélisée par une masse
concentrée localisée aux deux tiers de sa hauteur totale en supposant que la distribution
des forces d’inertie le Jong de la hauteur est un triangle inversé. La semelle de la
fondation est supposée infiniment rigide. Elle est posée sur des éléments ressorts
linéaires mais qui n’offrent aucune résistance a la traction : dés que la force dans le
ressort devient nulle, le ressort libére la semelle et le soulévement est permis. Dans le
logiciel, ce comportement est obtenu en utilisant un élément de type ressort (Spring)
avec hystérésis No 19 montrée sur la Figure 5.2. On doit choisir une connexion entre
le mur et la semelle rigide pour que le degré de liberté de basculement soit activé. En
d’autres termes, si la connexion entre le mur et la semelle était simple, alors la semelle
subirait seulement un mouvement vertical de translation. Un assemblage rigide est donc

spécifié entre ces deux éléments.

Noeud 1: sommmet
" de la structure

Noeud 2:
fixe
Ressort transversal
v Lien représentant
e mur
Encastrement fixe des
élémenis de la fondation connexion rigide enire le
mur et la semelle
Ressort longitudinal:
igidité verticale
e v Rigidité rotationnelle

Figure 5.1 Représentation des ¢iéments de fondation dans Ruaumoko



114

AF | PFP
F = k,MPP(d-Gap)

Gap

Gap® d

v PFN
F = k, MPN(d-Gap}
Figure 5.2 Hysteresis de ressort. Contact Hertzian (Davis 1992)

La masse horizontale totale m est égale 3058100 kg a et la rigidité k = 47022.972 kN/m,
ce qui donne une période de 7= 1.603 s pour la structure sur base fixe. On suppose un
sol de type C ayant un module de cisaillement G = 625 MPa et une semelle rectangulaire

(8.71 m x 4.36 m). Le poids supporté par le mur est de 12000 kN.

Pour le calcul et la comparaison des réponses, on utilise dans les deux logiciels (Matlab
et Ruaumoko) et pour les deux modéles une accélération moyenne et un pas de temps
constant égal a 0.001 s. Ce pas est déja validé au chapitre 4 : 1a réponse avec un pas de

temps de 0.0001 s ou de 0.001 s, converge vers la méme solution.

5.3.1 Modéle de la fondation a deux ressorts dans Ruaumoko

La fondation dans Ruaumoko est modélisée par deux ressorts linéaires placés aux
bords de la semelle. La rigidité initiale dans les deux ressorts est basée sur un
comportement élastique du sol en dessous de la semelle et donne licu a un tassement
sous I’effet de la charge verticale supportée par le mur. Pour déterminer la rigidité du
sol, on utilise les formules de Gazetas (1991) pour les semelles rigides rectangulaires
posées sur un sol élastique. On ne considére que la rigidité verticale du sol et chaque

ressort reprend donc la moitié de la rigidité verticale totale, soit k,= 6917307.692
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KN/m. Avec ces ressorts, la période de la structure dans les deux premiers modes sont

1.76 s (mode couplé déplacement et rotation) et 0.093 s dans le mode vertical.

Systéme non amorti

Pour examiner I'influence de ’amortissement, on considére d’abord que la structure
est non amortie, et on calcule la réponse du mur soumis au séisme de la Figure 3.7 pour
la région de Montréal. Le déplacement latéral total et les déplacements verticaux des
extrémités de la semelle en empéchant le soulévement de la semelle sont présentés sur la
Figure 5.3. On remarque d’abord, que la réponse calculée numériquement par Matlab est

exactement la méme que celle donnée par le logiciel Ruaumoko.

Puisque le soulévement est empéché, le sol résiste en tension et limite les déplacements
verticaux vers le haut de telle sorte que ces déplacements sur les Figures 5.3a et 5.3b
demeurent négatifs, la semelle restant en tout temps 1 mm sous la surface du sol. Le
déplacement latéral total de la structure obtenu par les deux logiciels est la somme de la
déformation de la structure et du déplacement horizontal de la structure di au bercement
de la semelle (Figure 5.3c). Les deux graphiques sont confondus et le déplacement

latéral maximal est égal 4 7.8 cm a I’instant 7= 16s.

Le séisme utilisé pour le calcul temporel dans le cas non amorti ne provoquait pas de
soulévement de la semelle de fondation. On a alors amplifié le séisme par un facteur
égal & 2.0 pour forcer la semelle a se soulever. Si le soulévement était encore empéché,
le comportement aurait été linéaire et les déplacements auraient ét¢ amplifiés du méme
facteur. La réponse sismique avec soulévement de la semelle est illustrée sur la Figure
5.4. Sous le séisme amplifié, le soulévement s’est produit donnant lieu & une réponse
globale non linéaire. Dans ce cas non amorti, on remarque que les déplacements des
bords de la semelle sont légérement plus importants avec Ruaumoko aprés le

soulévement.
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Figure 5.3 Réponse sismique (sans soulévement). (a) déplacement du bord gauche

(b) déplacement du bord droit; (c) déplacement latéral total. £=¢, =0%

(Séisme de I’est E7-70)
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Figure 5.4 Réponse sismique (avec soulévement). (a) déplacement du bord gauche;

(b) déplacement du bord droit; (c) déplacement latéral total. £=¢&, =0%

Les deux déplacements verticaux (Figure 5.4a et 5.4b), augmentent avec la rotation de la
semelle. Cependant, I’amplitude de déplacement latéral total pour les deux logicicls est
la méme (Figure 5.4c). Par contre la période est un peu plus allongée apres le
soulévement avec Ruaumoko. Ces écarts sont dus au changement brusque de la rigidité a
I'instant du soulévement. Dans ce cas, dés que le ressort libére la semelle 4 une
extrémité, la résistance en flexion ne peut plus augmenter et aucun moment ne puisse
s’ajouter. Ainsi, la rotation de la semelle peut s’effectuer sans restriction ni

amortissement autour de ’autre extrémité de la semelle.
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Systéme amorti

On introduit un taux d’amortissement de 3% dans la superstructure, ce qui donne un
coefficients d’amortissement ¢ = 2éma = 7059800 N.m/s. Dans la fondation on choisit
un taux de 13%. L’amortissement de Raleigh est introduit par les paramétres @ et f
dans chaque élément du systéme. Pour la superstructure ces valeurs de a et f
nécessaires pour obtenir un rapport de 3 % dans la superstructure sont déterminés en
considérant la fondation rigide. L’amortissement sera donc proportionnel seulement a la
masse. Pour ce qui concerne I’amortissement dans la fondation, il sera proportionnel

exclusivement & la rigidité, ainsi le paramétre £ qui détermine 1’amortissement

proportionnel a la rigidité est déterminé directement par la relation S =2&/ w.

La réponse sismique amortic du mur de 10 étages est présentée sur la Figure 5.5.
L’ensemble sol-structure, sans soulévement de la fondation, est amorti d’une fagon
exponentielle avec un taux ¢gal a 2.18 % (¢quation 4.63), ce demier est le taux
I’amortissement du premier mode de vibration. Cependant, dans ce cas (semelle en plein
contact avec le sol), l'amortissement du deuxiéme mode reste égal a 13 %.
L’amortissement dans la fondation n’a pas d’effet significatif sur le déplacement latéral
total de la structure. En réalité I’amortissement dans la fondation a plus d’effet sur le
deuxiéme mode de vibration, mais la contribution de ce mode est relativement faible.
Cet amortissement dans la fondation aura plutét un effet important sur les vibrations

verticales pendant les phases de soulévement.

La Figure 5.6 montre la réponse du systéme amorti (§ = 3% et &= 13%) sous le séisme
amplifié, avec soulévement de la fondation. On voit que I’effet de I’amortissement sur la
convergence est bénéfique en comparaison avec la réponse non amortie (Figure 5.4) car
les graphiques des déplacements obtenus par Matlab et par Ruaumoko sont maintenant
similaires en ce qui concerne le déplacement latéral total. Le déplacement de la structure
calculé avec Matlab semble plus amorti que celui obtenu avec Ruaumoko, et les

déplacements verticaux des bords sont légérement supérieurs avec Ruaumoko aprés



soulévement de la semelle. Le fait d’inclure I’amortissement dans le modele a permis

d’obtenir avec Ruaumoko une solution tres proche de celle obtenue avec Matlab.
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Figure 5.5 Réponse sismique amortie (sans soulévement) :

latéral total. £=3%; £, =13%
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(a) x 10°  Déplacement vertical du bord gauche
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(b) X 1()'3 Déplacement vertical du bord droit
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Figure 5.6 Réponse sismique amortie (avec souleévement).

Déplacement latéral total &=3%; &, =13 %

5.3.2 Modele de fondation Winkler dans Ruaumoko
La modélisation de la superstructure est la méme que dans le cas de la fondation a
deux ressorts. Par contre, pour représenter la flexibilité d’un sol continue sous la semelle

de fondation, un seul ressort représentant la rigidité a rotation, K, pourrait étre placé au

milieu de la base dans le cas du contact complet avec le sol. Mais en cas de soulévement,

la rigidité associée a la rotation devrait étre calculée en utilisant une valeur réduite de
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K, pour prendre en considération le fait que la longueur de contact est réduite entre le

sol et la semelle. Cela nécessite une procédure itérative puisque cette longueur de
contact dépend de la rotation maximale de la semelle. Dans la pratique, I’interaction sol-
structure est souvent examinée en utilisant la rigidité de la fondation qui correspond au
contact entier car le soulévement nécessite une analyse non linéaire. Dans ce cas, les
etfforts appliqués a la fondation sont calculés en considérant un contact complet. Cette
approximation ameéne donc a une sous-¢stimation de la rotation maximale, car la rigidité
ala rotation diminue avec le soulévement. Cette variation de la rigidité a la rotation
pourrait étre donc représentée par des rigidités verticales distribuées sur des ressorts
discrets qui libérent la semelle progressivement avec le soulévement. La constante
d’amortissement et de rigidité pour chaque ¢lément est déduite des coefficients de
rigidité et de I’amortissement du sol pour une semelle rectangulaire posée sur un sol
homogéne élastique. Les ressorts sont supposés sans résistance a la tension. Cependant,

lors des phases de soulévement, la rigidité rotationnelle K, de la fondation est couplée

avec sa rigidité verticale, et dépend de la longueur de la semelle qui reste en en contact
avec le sol pendant le soulevement. Cette rigidité¢ diminue au fur et a mesure que la
surface de contact entre le sol et la semelle diminue. Pour tenir compte de ce couplage
continu et de cette diminution, la rigidité rotationnelle pourrait étre remplacée par une
rigidité verticale additionnelle répartie sur des ressorts placée aux deux extrémités de la
semelle. Ainsi, la variation de 1’énergie rotationnelle se traduit par simple séparation

progressive des ressorts lors du soulévement.

Le guide ATC-40 (1996) présente une approche simplifiée basée sur une conversion de

la rigidité verticale globale K, et de la rigidit¢ rotationnelle globale K, a des rigidités

.=K_/LB et k, =K, /I_,respectivement, ou L et B sont la longueur et la largeur de

la semelle et I, est la moment d’inertie de la semelle (/, = BL’/12). Pour notre exemple,
B=436m,L=872metl = 2409 m".
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Si la différence entre k, et k_ est petite, alors on spécifie la rigidité la plus grande aux

ressorts verticaux du modele. Par contre, si cette différence est importante, cela indique
qu’une partie de la rigidité rotationnelle globale sera vraiment influencée par la rigidité
verticale. Pour bien représenter la semelle, le guide ATC-40 propose une distribution de
la rigidité ou on divise la semelle de fondation en trois régions (Figure 5.7): une région
médiane (centrale) pour reproduire principalement la rigidité verticale et une région a
chaque extrémité d’une longueur B/6 ou une rigidité verticale plus importante est

spécifiée pour reproduire les effets de la rigidité rotationnelle.

EA6

h_end = Ef.%.@ Pour l'axtrémité B/6
-

k_mid » 393 G Pourla zone médiane
wha leal 1-w
k_end h_»id k_end

=X
le

Figure 5.7 Distribution de la rigidité proposée dans ATC-40 (ATC 1996)

Une estimation plus raffinée de la rigidité verticale et rotationnelle (Harden et al, 2005),
pourrait &tre déduite en égalisant les intensités de la rigidité¢ verticale a la rigidité
rotationnelle Supposons que la largeur inconnue de la zone d’extrémité soitL,. Une
comparaison de cette longueur, calculée théoriquement par les formules de Gazetas,

avec celle prescrite par ATC-40 est présentée sur la Figure 5.8 en fonction des

dimensions de la semelle.
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Figure 5.8 Zone extréme définie par la rigidité additionnelle (Harden et al, 2005)

Une estimation plus raffinée de la rigidité verticale et rotationnelle (Harden et al, 2005),
pourrait étre déduite en égalisant les intensités de la rigidité verticale a la rigidité
rotationnelle. Supposons que la largeur inconnue de la zone d’extrémité soitL,. Une
comparaison de cette longueur, calculée théoriquement par les formules de Gazetas,
avec celle prescrite par ATC-40 est présentée sur la Figure 5.8 en fonction des

dimensions de la semelle.

Dans notre étude, les semelles sont rectangulaires avec un rapport de la largeur a la

longueur égal a 0.5. La Figure donne un rapport L,/ B de 0.22, ce qui correspond a une
longueur L, égale environ au dixiéme de la longueur de la semelle. Comme cette

dimension est faible, on néglige cette zone de rigidité additionnelle et on adopte une
répartition uniforme de la rigidité sous la semelle déterminée ultérieurement. On peut
alors prendre une répartition des ressorts uniforme équidistants sans tenir compte de la

rigidité additionnelle aux extrémités.

Dans notre étude on considére 21 ressorts €quidistants distribués sous la semelle de
longueur 8.72 m. L’espacement est égal alors & 0.436 m. Le choix des ressorts était de
telle que la distribution soit symétrique (10 sur chaque demi-longueur de la semelle et un

ressort au milieu). Le choix de nombre des ressorts était motivé par la réponse sismique
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qui convergeait vers la méme solution en utilisant 21 et 27 ressorts, mais donnait une

réponse légerement différente avec 9 ressorts.

La rigidité du chaque ressort est égale a la rigidité verticale totale du sol, divisée par la
longueur de la semelle puis multipliée par I’espacement entre deux ressorts successifs.

Elle est égale a 691730.769 kN/m. La rigidité verticale continue sous la semelle, &, est
alors égale a: k, =691730.769/0.436 =1.5865*10° kN /m. Et la rigidité rotationnelle
K, déterminée selon cette rigidité verticale continue est déduite par la relation suivante:

K, =2k,b’/3=2*%15865%10°*4.36° /3 =8.7664*10" kN.ms/rad .

Les deux modes de vibration de mur de 10 étages montrés sur la Figure 5.9 sont
déterminés avec le logiciel Ruaumoko. La période du premier mode de vibration qui
inclut la rotation de la semelle et la déformation latérale de la superstructure est égale a
1.745 s. Le deuxiéme mode représente uniquement le mouvement vertical de la semelle.

Sa période est égale 4 0.094 s.

M? m [

T -
(a) (b)

Figure 5.9 Modes de vibration pour la fondation Winkler : (a) model ; (b) mode 2
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Pour introduire les paramétres d’amortissement de Raleigh dans le modéle de Winkler
on procéde de la méme maniére que dans le modele a 2 ressorts. Pour la superstructure
on prend les mémes valeurs des paramétres que dans le modéle a deux ressorts (o =
0.2352 et B = 0). Tandis que pour la fondation Winkler, la valeur de & et £ pour
avoir un taux de 13%, sont déterminées en appliquant un amortissement nul au premier
mode de vibration, le taux d’amortissement sera pris exclusivement par le deuxicme
mode qui ne constitue que les vibrations verticales. On obtient (@ = 0 et S = 0.00379).
Les valeurs des paramétres d’amortissement de Raleigh et les périodes de vibrations

pour les deux modes sont classés dans le tableau ci-dessous :

Tableau 5.1 Paramétres d’amortissement et périodes de vibration

Mode de vibration o yij T (s)
Mode 1 0.2352 0.00 1.745
Mode 2 0.00 0.00397 0.094

On vise d’abord a faire une comparaison de la réponse amortie du mur de 10 étages

obtenue avec les deux logiciels Ruaumoko et Matlab, sans tenir compte du soulevement.

La Figure 5.10 montre la réponse de la structure amortie, lorsque soumise au séisme de
la région de Montréal déja montré sur la Figure 3.7. Pour les deux logiciels, I’algorithme
utilisé est celui de Newmark avec I’accélération moyenne et un pas de temps constant
¢gal a4 0.001 s. On remarque sur la figure que les quantités calculées avec Matlab sont
exactement les mémes que celles obtenues avec Ruaumoko. Dans ce cas de non
soulévement la réponse est linéaire et les périodes de basculement et du mouvement

vertical, calculées analytiquement (7, =7 /@, =1.74 s et T, =T/2bk [k =0.094 5),

sont retrouvées avec Ruaumoko (Figure 5.9).
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Figure 5.10 Réponse sismique amortie sans soulévement du mur de 10 étages avec
fondation Winkler : (a) déplacement latéral total; (b) déplacement du bord gauche;
(c) déplacement du bord droit. £ =3%; & =13%
Dans le cas ou le soulévement de la semelle est pris en compte, la réponse de la structure
présentée sur la Figure 5.11 n’est plus linéaire et devient plus compliquée. L’excitation
sismique est amplifiée par 2 pour provoquer le souléevement de la semelle et les
paramétres d’amortissement introduits dans Ruaumoko devaient donner exactement
I’amortissement voulu dans la fondation. On peut voir ici encore (Figure 5.11), que la
réponse obtenue avec Ruaumoko avec un pas de temps de 0.001 s, est quasiment la

méme que celle obtenue avec Matlab avec une léger écart en amplitude aprés atténuation
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du séisme. Une déduction suite aux deux méthodes de calculs, c’est que le systéme
dynamique utilisant le Modéle de Winkler introduit dans I’algorithme pour Matlab est

tout & fait conforme & la modélisation du systéme avec le logiciel Ruaumoko.

r( -~ Ruaumoko
| Matlab

{(a) 100 Déplacement latéral total

x = u+heg (mm)
o

N
=
S

{b) Déplacement vertical du bord gauche

V, (mm)

()

V, (mm})

Temps (s)

Figure 5.11 Réponse sismique amortie avec soulevement du mur de 10 étages avec
fondation Winkler : (a) déplacement latéral total; (b) déplacement du bord gauche;

(¢) déplacement du bord droit. £=3%; & =13%



128

5.4 Comparaison entre le Modéle 2 deux ressorts et le modéle Winkler

dans Ruaumoko

Pour examiner I’influence de la modélisation de la fondation sur la réponse sismique,
on compare les résultats obtenus avec le logiciel Ruauomko pour les deux modeles :
modéle & deux ressorts ct le modéle Winkler. Dans les deux cas, on utilise I’algorithme |
de Newmark avec accélération moyenne ¢t un pas de temps constant ¢gal a 0.001 s et

sans amplification du séisme.

Pour obtenir la méme relation moment rotation dans les deux modéles, dans le modéle a
deux €léments, chaque ressort doit étre distant de 1’extrémité de la semelle d’une valeur
de 1/ V3 fois la demi-longueur de la semelle, soit 2.51 m. La réponse non amortie est
donnée sur la Figure 5.12 pour le mur de 10 étages. On voit que le déplacement latéral
total est le méme pour les deux modeles, car ce déplacement est celui du corps rigide qui
inclut la rotation de la semelle et la déflexion. Par contre, le déplacement vertical des
bords de la semelle est plus important dans le cas de la fondation Winkler car ce
déplacement est influencé par la rotation. La valeur critique de cette derniére
(6, =P/2k,b* =1.98x10*rad est atteinte plus rapidement dans le modéle de Winkler
que dans le modéle a deux ressorts. Pour le modéle de Winkler, le moment qui induit
cette rotation est égal au tiers du moment qui provoque le soulévement dans le modele a
deux ressorts : soit M, = Pb/3 = (30000) x (4.36) = 43600 kN.m. Dans le modéle a
deux ressorts, la rotation critique correspondante est égale a 4.9736¢-04 radians et le

moment nécessaire pour atteindre cette rotation est égal a 130800 kN.m.
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Figure 5.12 Rdponse sismique non amortic calculée avee les deux mod¢les.
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(a) déplacement latéral; (b) déplacement du bord gauche; (c) déplacement du bord

droit. £ =0%; &, =0%
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Dans le modele de Winkler, la rotation critique (début du soulévement) est atteinte une
premiére fois du coté droit de la semelle a partir de £ = 12.5 s et on constate que la
semelle continue a se soulever puisque le systéme est non amorti. Le modéle a deux
ressorts prédit qu’il n’y aura pas de soulévement sur l'intervalle de temps étudié. On
remarque par contre que méme si le c6té droit de la semelle est soulevé dans le modele
de Winkler, le déplacement latéral dans les deux modéles sont confondus pour une

certaine durée.

Le fait qu’il n’y ait pas des différences aussi importantes dans le soulévement (ou trés
peu) de différence dans le déplacement latéral entre les deux modeles semble
incompatible. Ceci est i au fait que le déplacement latéral inclut I’effet de la rotation de
la semelle et de la déformation de la structure, c’est la somme de déplacement en téte de

la structure avant soulévement et le déplacement du 4 la rotation de la semelle.

Sur la Figure 5.13 on montre la réponse amortic de la méme structure (mur de 10
étages). L’amortissement appliqué dans la superstructure est égal a 3%, celui dans la
fondation est pris égal & 13%. On constate que 1’amortissement introduit dans le systéme
a réduit la réponse en déplacement. Dans ce cas, pour les deux modeles, le séisme utilisé
n’est pas si fort pour pouvoir provoquer un soulévement. La semelle reste alors en
contact continu avec les éléments de la fondation, malgré que D’amplitude des
déplacements verticaux de la semelle soit plus élevée par le modéle de Winkler que celle

obtenue dans le modéle a 2 ressorts.

Le déplacement latéral ne montre pas une nette différence entre les 2 modeles, car il est
influencé par la rotation de la semelle et la déformation de la structure. Ces deux degrés
de libertés sont couplés tandis que le déplacement vertical des bords ne dépend pas de la
déformation en téte de la structure mais seulement du mouvement vertical de la semelle

et de sa rotation.
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Figure 5.14 Réponse sismique amortie (avec soulévement) calculée avec les deux
modeles. (a) déplacement latéral; (b) déplacement du bord gauche;

(c) déplacement du bord droit. £ =3%;¢, =13%

Sur la Figure 5.14, on préscnte une comparaison des réponses sismiques de mur dc
refend de 10 étages soumis au séisme artificiel de Montréal, calculées avec Ruaumoko
pour deux types de modélisation de la fondation : le modele a deux ressorts et le modele

de Winkler. Le séisme a été¢ amplifié par un facteur de 2 pour provoquer le soulévement.
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On voit que le déplacement latéral maximal atteint une valeur de 15 cm. Le soulévement
est atteint avec le modele de Winkler avant celui obtenu avec le modele a 2 ressorts.
Avec le Modele de Winkler, le soulévement du bord gauche a eu lieu aprés 3 s. De
méme que dans le cas sans soulévement, le déplacement des bords avec le modele de
Winkler est plus important que le déplacement obtenu avec le modele a deux ressorts.
Ces deux déplacements dépendent du tassement de la semelle et de sa rotation. Le
moment nécessaire pour soulever la semelle dans le cas de Winkler n’est que le tiers de
celui nécessaire pour la soulever avec deux ressorts. Le déplacement critique est donc
atteint bien avant celui correspondant a deux ressorts. Cependant, on notifie pas une
différence significative de point de vue amplitude de déplacement latéral total, car ce

derier dépend aussi de la déformation au sommet de la structure.

5.5 Conclusion sur le chapitre 5

L’étude du comportement du mur de cet exemple avec le logiciel Ruaumoko confirme
ce que nous avions déja observé a la fin du chapitre 4, ¢’est-a-dire que 1’amortissement
joue un role trés important sur le comportement sismique de la structure et que les deux
modeles de fondation (deux ressorts et Winkler) peuvent donner des résultats trés
différents quant aux déplacements verticaux des bords des scmelles et de déformation de

la structure.

La modélisation du systtme sans amortissement avec une fondation représentée par
seulement deux ressorts conduit vers des erreurs de convergence aprés soulévement. Le
poids de la structure est transmis vers 1’élément de I’autre bout de la semelle lors de
soulévement, ce qui est une représentation irréaliste du sol de fondation. Il est difficile
donc avec ce type de modélisation de prédire avec précision la rotation de la semelle
avec soulévement lorsqu’on utilise le logiciel Ruaumoko. L’amortissement a eu un effet
bénéfique sur la convergence en comparaison avec la réponse non amortie et le fait de

I’introduire dans le modéle a deux ressorts a permis d’obtenir avec Ruaumoko une
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solution proche de celle obtenue avec Matlab. Cependant, avec le modele Winkler, le
systéme dynamique utilisé dans 1’algorithme pour Matlab était tout a fait conforme a la
modélisation avec le logiciel Ruaumoko. Ainsi, I'utilisation du logiciel Ruaumoko a
permis de valider le modé¢le Matlab et les comparaisons ont démontré que 1’utilisation du
mod¢le de Winkler dans Matlab avec un pas de temps variable donnaient des résultats

plus précis lorsqu’il y avait soulévement.

La comparaison entre le modéle & deux ressorts et celui de Winkler utilisés dans
Ruaumoko, a démontré que le modéle a deux ressorts produit des amplitudes du
déplacement vertical de la semelle plus faibles a ceux obtenues par le modéle de
Winkler. La différence entre les instants et amplitudes de soulévement, obtenus par les
deux modeéles de fondation, est due a la nature de la relation moment-rotation. Le
moment nécessaire pour provoquer un soulévement avec le modele de Winkler est

seulement le tiers de celui nécessaire utilisant le modéle a deux ressorts.

Méme si le modele de fondation a deux ressorts pouvait étre utilisé en conception
parasismique, il sous-estimerait la réponse de la structure en comparaison avec la
réponse obtenue par le modéle Winkler. Par conséquent il est recommandé car plus
réaliste d‘utiliser la fondation Winkler pour I’étude paramétrique de la réponse des murs

de refend. C’est ce qui sera fait au chapitre suivant.
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CHAPITRE 6 Résultats d’analyses et étude paramétrique

Ce chapitre présente une étude paramétrique visant a comparer le comportement des
murs de refend en permettant le soulévement des fondations, pour des batiments soumis
a des séismes de 1’est et de ’ouest du Canada. Trois murs de 5, 10 et 25 étages localisés
dans la région de Montréal et Vancouver et fondés sur des fondations superficielles sont
étudiés. Chaque mur est considéré élastique et uniforme avec un poids propre total
incluant la charge verticale supportée verticalement. Le poids sismique attribué pour
chaque étage de hauteur 3 m, est égal a 3000 kN. On considérera trois valeurs du
coefficient MR qui est le rapport entre la charge verticale supportée par le mur et le

poids total : MR =0.2,0.4 et 0.6.

6.1 Dimensionnement des murs de refend

Puisque la période fondamentale de vibration 7, est fonction de la rigidité latérale, £,

du systéme donnée par la formule (6.1) et de la masse du batiment, les dimensions des
murs sont déterminées en ajustant la rigidité horizontale correspondant a la période du
premier mode donnée par le code CNB 2005.

ax’w

k=" . (6.1)

Ou T est la période fondamentale du mur de refend et W son poids sismique total. Des
expressions empiriques sont proposées dans le CNB 2005 pour obtenir un estimé, 7, de
la période fondamentale. Cependant un modeéle numérique du batiment permet de micux
prédire cette période. Dans le CNB 2005, la formule empirique pour la période des murs

de refends en béton armé de hauteur 4 est:

T, =0.05h" (6.2)
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Dans le code CNB 2005, on permet de déterminer T, a I’aide de méthodes mécanique en

utilisant un modele structural et en incluant les effets des sections fissurées dans les
¢léments en béton armé (Panneton et al. 2006). Cette période peut cependant étre
considérablement plus élevée que la période de 1’équation (6.2) et on limite, dans le
CNB, la période a utiliser pour le calcul des charges sismiques a 2.0 fois la période
obtenue de la formule empirique. Dans notre étude, on supposera que la période réelle
des murs de refend est égale a 2.5 fois la période empirique pour la région de Montréal
et a 2.0 fois la période empirique pour la région de Vancouver. La différence vient du
fait que les charges sismiques pour Montréal sont plus faibles qu’a Vancouver, ce qui
conduit généralement a des structures plus souples, donc ayant une période plus longue.
En considérant le mur de refend comme une console de section rectangulaire ayant une
rigidité flexionnelle, £, constante sur toute sa hauteur, la rigidité latérale, k, peut étre

exprimée par la relation suivante :

(28 63
h.
eff
. b.I
ou: h,=2/3)h ; 1 :—“If (6.4)

et b, et [ sont I’épaisseur et la longueur du mur respectivement. On trouve alors :

3.E1 _4x’w o3 natw

_-————-:> = —
Gn’ T'g 81 T* g.E

(6.5)

On considere dans notre étude que le coefficient de Poisson pour le béton est v =0.3

avec un module de cisaillement G = 200.MPa . La résistance a la compression est égalc a
f'.=30.MPa avec un module de YoungE =4500,/ /', =25000MPa. En utilisant

I’équation (6.1), on peut obtenir les valeurs de la rigidité latérale des différents murs
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situés dans la région de Montréal et de Vancouver avec leurs périodes fondamentales.

Les résultats sont présentés dans le tableau 6.1.

Tableau 6.1 Caractéristiques des murs de refend

Catégoric | Hauteur 4 Poids W T Rigidité &

L

4 Mur (m) (kN) (s) (N/m)

~ 5 étages 15 15000 0.953 66500524.98
%" 10 étages 30 30000 1.602 47022972.17
T étages 75 75000 3.186 29739938.88
= 5 étages 15 15000 0.762 103907070.28
% 10 étages 30 30000 1.282 73473394.01
E 25 étages 75 75000 2.549 46468654.50

En écrivant I’égalité entre les expressions (6.1) et (6.3) de la rigidité latérale, on déduit

I’expression du moment d’inertie de la structure. On ajuste ensuite le moment d’inertie

exprimé en (6.4) avec celui déterminé par la formule (6.5) et on déduit les dimensions du

mur du refend regroupées pour chacune des deux régions dans le tableau 6.2.

Tableau 6.2 Dimensions des murs de refend

o Catégorie 1 by, Ly A=by.l,
Z Mur (m®) m) | (m) (m®)
= S étages 0.887 0.200 | 3.761 0.752
:g 10 étages 5.016 0.200 | 6.702 1.340
E 25 étages 49.567 0.300 | 12.563 3.769
5 5 étages 1.385 0.250 4.051 1.013
% 10 étages 7.837 0.250 | 7.219 1.805
E 25 étages 77.448 0.300 | 14.578 4373
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6.2 Dimensionnement des semelles de fondations

6.2.1 Cisaillement a la base du mur et moment de renversement
Le cisaillement a la base V est la somme algébrique des forces d’inertie agissant sur
les masses de la structure. Dans le cas des vibrations de translation, 1’addition des

réponses modales donne une répartition latérale des forces sismiques ayant la forme

d’un triangle inversé dont le sommet est a la base de la structure. Puisque les efforts F,
produits a un niveau quelconque /_ sont proportionnels au poids sismiquew,a ce

niveau, la répartition des charges sismiques s’obtient par la relation suivante :

A
J o (6.6)

Z w,.h,

Dans notre étude, le systéme est considéré comme un systéme a un degré de liberté avec
une masse globale (poids sismique) concentrée au centre de gravité de la répartition
triangulaire des efforts : soit a une distance de la base ¢gale au 2/3 de la hauteur totale.

L’effort F appliqué a ce niveau est donc égal a V. Dans le cas des structures €lancées,

des forces plus importantes peuvent se produire dans la partie supéricure et on devrait
tenir compte de la nouvelle répartition des charges en appliquant une partie du

cisaillement sous forme d’une charge concentrée F, au sommet de la structure. Cette
charge est égale a 0.07 TV, mais limitée a 0.25 V et le reste V — F, est distribué sur la

hauteur. Cette effet, di a la réponse de la structure dans ses modes supérieurs, est ignoré
ici car notre étude vise a examiner le basculement de la structure et que ce
comportement est contrdlé principalement par le premier mode de vibration..

Dans la méthode des forces statiques équivalentes du CNB, on considére aussi la
contribution des modes supérieurs par I’application d’un facteur d’amplification M, a la
force V et par I’application d’un facteur de réduction, J, au moment de renversement

calculés a partir des forces latérales associées a cette force V. Comme la réponse de la
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structure dans son mode fondamentale est celle qui domine pour le basculement de la
structure, on ignore la contribution des modes supéricurs (M, =1) et le moment de
renversement est posé égal a I’effort appliqué a la masse, multiplié par 2/3 de la hauteur

soit :

M=2/3Vh (6.7)

Avec V =S(T )M, I,W/R,R, est I'effort de cisaillement a la base explicité¢ au

chapitre 2.

6.2.2 Valeurs de R;, R; et d’accélération spectrale

Pour la région de Montréal, on considére que les murs sont modérément ductiles et les
valeurs des facteurs de réduction pour la force sismique sont: R, =2 et R, = 1.4. Pour
la région de Vancouver, on considére que les murs sont ductilesavecR, = 3.5 et
R,=1.6. Puisque la valeur de R, est supérieure a 1.5, le code permet que la force ¥ soit
limitée a 2/3 de la force calculée avec 7,= 0.2 s. On considére que le site étudié¢ dans les
deux villes choisies est de classe C. Les facteurs de sol, F, et F,, sont alors égaux a 1.0.
Les valeurs de S(7) sont donc égales a S,. Aprés interpolation selon la période, les
valeurs de S,(7), on obtient les valeurs des accélérations spectrales correspondant a

chaque mur. Le tableau 6.3 résume les valeurs de Ry, R, et de S(7T) pour tous les murs

étudiés.

Tableau 6.3 Valeurs des spectres et facteurs de réduction des forces sismiques

S(T) S(T) S(T) R, | R

0

5 étages. h =15m

10 étages. h =30m

25 étages. h = 75m

Montréal

0.16 g

0.09¢g

0.02g

2.0

1.4

Vancouver

0.52¢g

0.31g

0.12g

3.5

1.6
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6.2.3 Dimensions des semelles

Les semelles se comportent comme des dalles qui résistent a la pression du sol
découlant de la force vertical et du moment de renversement imposés a la semelle. La
distribution des contraintes sous les semelles sous ces efforts devrait étre prise en
compte dans les calculs. Le moment de renversement peut étre traité en déplagant la
charge verticale d’une distance e, l’excentricité, qui est égale au moment de
renversement divisé par la force verticale. La Figure 6.1 montre la répartition des
contraintes sous une semelle modélisée par une fondation Winkler. Cette répartition est a
priori trapézoidale avant le soulévement. Le sol est assumé ne pas pouvoir résister la
tension. Dés que I’excentricité dépasse un sixieme de la longueur, la contrainte devient

nulle et la répartition des contraintes prend une forme triangulaire du c6té comprimé.

Fondation sous charge excentrique _,: . I._
;€
i
1

e = AP

] Alre effective

. q_max=P/BL{1+0e/L)
q_nin=P/BL{1-6e/L}

7
.,4"(
g=0
(sans tension)

q_max= 4P3B(L-2e)

—

Figure 6.1 Répartition des contraintes sous la semelle de fondation filante
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Quand la fondation bascule, toute la charge verticale est transmise par la pointe de la
semelle qui est encore en contact avec le sol et la surface de contact diminue
progressivement avec le soulevement de la semelle. La contrainte dans la zone fortement
comprimée peut alors atteindre la capacité portante du sol et on peut considérer, pour
fins de calculs, une contrainte de résistance du sol uniforme et égale a la capacité
portante admissible de sol dans cette zone (Meyerhof 1963). Les dimensions de la
semelle peuvent étre obtenues a partir de cette hypothése. La largeur effective est réduite
de deux fois 1’excentricité et par conséquent la section qui reste en contact avec le sol
est égale a (L-2¢)B. La contrainte maximale est égale a 4/3 fois la contrainte de référence

sur cette section réduite (Figure 6.1) et ne doit pas dépasser la capacité portante

admissible g, . Et on peut écrire I’inégalité suivante :
4P
G oy 2= (6.8)
3B(L—-2e)
Avec

B :largeur de la semelle ; L : longueur de la semelle ; e : excentricité
P : charge verticale dépendant du rapport de masse MR.
On suppose des semelles rectangulaires avec L = 2B. En substituant cette relation dans

I’inéquation précédente, on obtient la relation suivante :

Capacité portante admissible de la fondation

Pour dimensionner les semelles de fondations on applique I’équation de la capacité
portante ultime la plus utilisée et développée par Terzaghi. Pour un chargement vertical

uniforme sur une fondation superficielle la capacité portante ultime est déterminée avec

la formule suivante (Das, 2004):

4 =¢N,.S,+DN,S, +LN,S /2 (6.9)
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ou g, est la capacité portante ultime de la fondation superficielle, y est le poids

volumique du sol en kN/m®, Dest la distance de la surface du sol  la base de la
semelle et ¢ est la cohésion du sol.

N,,N, et N, :sontles facteurs de portance, ne dépendant que de I’angle de frottement

interne du sol sous la base de la fondation.

S.,S,.et S, : sont les coefficients de forme de la semelle de fondation, ils sont égaux
selon Terzaghia: S, =1402B/L, S, =1-0.2B/L et S, =1.

L' : est la longueur effective de la semelle égale L-2e

Pour notre étude on considére le sol de type C, comme un sable dense avec une cohésion
nulle, un poids volumique de 21 kN /m’ et un angle de frottement interne ¢ égal 235°.
Les facteurs de portance prennent les valeurs suivantes : N, =46, N, =34 et N, =33.

En considérant que la semelle a une profondeur D égale a 1.8 m, la valeurs de la capacité

portante ultime en fonction de la longueur de la semelle est égale a :
q., = 0x(46)(D) + (2D(A.B)33)1D) + (21)(L — 2¢)(34)(0.9)/ 2=1247.4+321(L-2¢)  (6.10)

Puisque dans la pratique conventionnelle on mentionne les semelles avec la capacité
portante admissible. Généralement un coefficient de sécurité égale a 3 est applicable
entre la capacité portante admissible et la capacité ultime.

Dans le Code National du batiment, les effets des charges sont multipliés par des
coefficients pondérateurs des charges. L’analyse aux états limites est donc basée sur des
charges et résistances pondérées. Pour cette raison, la capacité portante admissible doit
étre pondérée par un coefficient pondérateur. Pour le cas des charges sismiques, le

manuel Canadien d’Ingénierie des Fondations préconise un coefficient de 1.5. On peut

écrire alors que :

_ l'Squh — M

= 6.11
qadm 3 9 ( )
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En substituant (6.10) dans (6.11) on aura I’ égalité suivante :

1247.4+321(L-2¢) = 2q,,,, (6.12)

Avec I'inéquation (6.8) et 1’équation (6.12) on obtient [’inégalité suivante :

1247.4+321(L-2¢) 2 —F (6.13)

3B(L-2e¢)

Dans notre étude on a des semelles rectangulaires avec L=2B. L’¢équation ci-dessus

pourrait alors s’écrire en fonction de L sous la forme suivante :
1871L(L —2e)+ 482L(L —2e)* ~8P >0 (6.14)

La semelle doit étre suffisamment épaisse pour reprendre, sans rupture, les efforts
tranchants et moments de flexion qui se développent dans les zones en porte-a-faux
excédant ’empreinte du mur. L’épaisseur doit aussi étre suffisante pour appuyer
l’hypothése faite dans nos modg¢les a I’effet que la semelle peut étre considérée €lastique
et infiniment rigide dans le but de réduire certains paramétres de calculs. La section de
vérification pour le moment fléchissant se situe a I’extrémité du mur au front de section
de mur (section AA sur la Figure 6.2). 1l faut donc vérifier que la résistance en flexion
de la semelle, M,, est supéricure au moment de flexion de la semelle au front du mur, M

donné par la formule suivante:
M, = g,(L-2.e)(e-1,/2).B (kN.m) (6.15)

Avec [ : longueur du mur.
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i,
B T -
|
P
e

L-2e

Figure 6.2 Front de section pour vérification du moment fléchissant

La résistance en flexion de la semelle est calculée selon CSA-A23.3-04 (CSA, 2004) par

la relation ci-dessous:

. . B
M, =¢f,.j, 4, =¢.f,.Jd.A,.

esp

kN.m. (6.16)

A, est la section des aciers d’armature dans la semelle, A4, est la Section d’une barre

(314mm?), f, est la limite d’élasticité des aciers égale 4 200 000 MPa, esp est
I’espacement entre les armatures égal a 15 cm et j, est le bras de levier interne entre la
force de compression dans le béton et la force de traction dans I’armature.

Si I’épaisseur de la semelle est considérée égale a 800 mm et j,= 707 mm, la condition

a respecter au niveau de la résistance en flexion s’écrit :

M, <M, = qa.(L——2.e).(e—lw/2).§ < ¢.fy.jd.A,,.—§— (6.17)
' esp
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On obtient par I’équation (6.14) en vérifiant I'inégalité (6.17), les longueurs et

excentricités des semelles, elles sont classées dans les tableaux 6.4 et 6.5 ci-dessous:

Tableau 6.4 Excentricités et longueurs des semelles pour la région de Montréal

h W P=MR-W M e=MP Bin Lin
m | & |MR| @) [@Nm| m | m | m
15 15000 0,2 3000 857143 2,857 3,674 7,347
15 15000 04 6000 8571,43 1,429 3,266 6,532
15 15000 0,6 9000 8571,43 0,952 3,514 7,027
30 30000 0,2 6000 19285,7 3,214 4,537 9,074
30 30000 0,4 12000 192857 1,607 4,360 8,719
30 30000 0,6 18000 19285,7 1,071 4,812 9,624
75 75000 0,2 15000 26785,7 1,786 4,867 9,735
75 75000 0.4 30000 26785,7 0,893 5,942 11,884
75 75000 0,6 45000 26785,7 0,595 7,012 14,025

Tableau 6.5 Excentricités et longueurs des semelles pour la région de Vancouver

h w P=MR-W M e=MP B, Loin
m | @ [MR]| &) [Nm| @ | @ |
15 15000 0,2 3000 13928.6 4,643 5,218 10,436
15 15000 0,4 6000 13928.6 2,321 3,871 7,743
15 15000 0,6 9000 13928,6 1,548 3,872 7,744
30 30000 0,2 6000 33214,3 5,536 6,464 | 12,928
30 30000 0,4 12000 332143 2,768 5,114 10,228
30 30000 0,6 18000 33214,3 1,845 5,264 10,529
75 75000 0,2 15000 80357,1 5,357 7,388 14,775
75 75000 0,4 30000 80357,1 2,679 6,978 13,956
75 75000 0,6 45000 80357,1 1,786 7,660 15,320
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6.3 Propriétés dynamiques de sol de fondation

Dans I’évaluation des déformations des fondations superficielles durant les excitations
sismiques, il est nécessaire de considérer les propriétés de rigidité et d’amortissement du
sol. Sous l’effet des accélérations horizontales, le sol adjacent & la fondation subit une
augmentation de la déformation de cisaillement. Par conséquent, la rigidité du sol va
diminuer alors que I’amortissement va augmenter. Le module de cisaillement moyen et
I’amortissement de sol adjacent varient selon 1’amplitude des accélérations de pointe du
sol. La détermination de ces deux paramétres est importante dans 1’analyse des
problémes de vibration ou de dynamique des sols, et il importe de bien les déterminer en
fonction de ’amplitude des de la plage de déformations qui est anticipée. Les analyses
ont montré qu’une seule valeur de module et amortissement ne peut étre utilisée pour
I’analyse compléte en raison de leur dépendance de I’amplitude de déformation, de 1’état
des contraintes et des conditions environnantes. Par exemple, Hardin et Drnevich (1972)
ont montré que le rapport d’amortissement des sols augmente avec ’amplitude de
déformation et il est nul pour une amplitude de déformation nulle. Cependant, dans
notre étude, on considérera un niveau de déformation de sol constant, donc un module
de cisaillement du sol, G, constant qui sera obtenu en petites déformations. La plupart

des tests dynamiques produisent une évaluation indirecte de G par des mesures de la
vitesse d’ondes de cisaillement 7, utilisant la relation suivante :G = pV,’ , ot p estla

densité du sol. Dans notre étude, p est considérée égale 4 2500 kg/m’. La vitesse d’ondes
de cisaillement pour un site de classe C est comprise entre 360 et 760 m/s. On assumera
ultérieurement trois valeurs différentes pour étudier Ieffet de la flexibilité du sol sur la
réponse de la structure : soient 350, 450 et 500 m/s.

Les parameétres nécessaires au calcul de la rigidité et le coefficient d’amortissement de
1

sol pour I’étude des fondations superficielles sont définis comme suit: A4, / . Dans

bxs " by
I’ordre, ces paramétres sont 1’aire et les moments d’inertie par rapport a x et y de la
p pp y

surface de contact sol-fondation. De plus, les parametres G,v,V , etV,, sont,
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respectivement, le module de cisaillement initial, le coefficient de Poisson, la vitesse
d’ondes de cisaillement et la vitesse de ’analogue de Lysmer définie comme la vitesse
de propagation apparente des ondes de compression-extension du sol sous une

fondation. La vitesse V,, nécessaire pour 1’évaluation des coefficients d’amortissement

radiant du systeme est associée a V, par la relation suivante (Gazetas, 1991):

Vie = Y, (6.18)

La rigidité dynamique du sol notée, K , est le produit de la rigidité statique K par le
coefficient de la rigidité dynamique k = k(%,v,ao). La rigidité statique d’une fondation

enterrée est égale a la rigidité statique d’une fondation supposée sur la surface du sol
multipliée par un facteur qui dépend de la profondeur de la semelie. Dans notre étude, la
semelle est considérée posée sur la surface du sol. Ce facteur est donc pris égal a 1.0.
Les rigidités statiques en surface sont estimées par les solutions théoriques pour une
fondation rectangulaire L=2B sur un demi-espace élastique homogeéne par les relations

présentées dans le tableau 6.6.

Tableau 6.6 Rigidité statique pour une semelle rectangulaire L=2B.

(Mylonakis et al, 2006)
Mode vibration | Rigidité statique K pour L/B=2
Vertical, z 3.G.
ertica K. = 33G.B
1-v

Longitudinal, x . = 49.(1-14v)
Y @2-v)0.75-Vv)

Basculement /y 2.46.G.B°
T
1-v)
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Par ailleurs le rapport de la rigidité dynamique a la rigidité statique du sol dépend de la
fréquence du chargement. Le chargement est ainsi caractérisé par la période effective de
la structure qui est, dans un premier temps, estimée comme la période effective d’un
systéme avec une fondation rigide. La semelle est supportée par un sol considéré comme
demi espace homogéne isotrope et élastique. Le matériau supposé€ étre un sable silteux
trés dense, avec du gravier. Le coefficient de Poisson est pris égal a 0.35, une valeur
moyenne acceptée pour le cas des sables (Gajan et al.,, 2005). En prenant comme
exemple le mur de 10 étages, la période propre de la structure sur fondation rigide est de
1.602 s. Pour un facteur MR = 0.4, les dimensions de la semelle sont calculées

précédemment (tableau 6.4) sont égalesa : L =8.71 mer B =4.36 m.

Calcul de rigidité statique

3.3.G.B 3.3x625000x4.36
1-v 1-0.35

K. = =13834.615x10°kN /m

1.5 13 T T

Figure 6.3 Coefficient de rigidité dynamique d’aprés (Gazetas, 1991)
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Calcul du coefficient de rigidité dynamique

Le coefficient de la rigidité dynamique dépend des dimensions de la semelle, du

coefficient du poisson v et du coefficient de I’amortisseur a,, .

a, estli€ & la fréquence de I’excitation par la relation: a, =@, B/V,.

Ou w, la fréquence d’excitation sismique. k_ = k_ (%,V,ao); L/B=2; V =500ms.

Si on considére une fréquence de séisme de 1’ordre de 8 a 10 Hz dans le cas de la région

de Montréal, le facteur a, = w,.B/V, sera proche de 0.27. Cette valeur sera encore plus

faible pour le cas des séismes de Vancouver qui ont des fréquences plus faibles. On

constate sur la Figure 6.3 que pour un coefficient de poissonv = 0.4, les valeurs de k,
sont proches de 'unité pour un facteur a,variant de 0 a 0.5. On prendra alors %, =1

dans toute notre 1’étude.

Calcu] de la rigidité dynamique

La rigidité dynamique est trés proche de la rigidité statique :

K. =K.k =13834.615x10° x1=13834.615x10° kN /m

Si la semelle de fondation est posée sur un substratum rocheux, la rigidité statique selon
tous les modes de vibration augmentera et elle sera particulicrement sensible dans le
mode vertical. Les rigidités horizontales seront ausst significativement affectées, tandis
que les rigidités associées au basculement et & la torsion seront trés peu affectées. De
méme, la variation des coefficients de rigidité¢ dynamique est aussi sensible a la présence

d’un roc.

La flexibilité du sol a tendance a diminuer la rigidité, mais a augmenter 1’amortissement
radiant. Cette augmentation est due au fait que les ondes réfléchies par ’interface sol-

fondation pénétrent vers le demi espace.
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Coefficient d’amortissement de sol

Comme on I’a mentionné précédemment, I’amortissement du sol est constitué de deux
types d’amortissement : ’amortissement du matériau, qui est de nature visqueux-
¢lastique et ’amortissement radiant. Pour des amplitudes relativement importantes et de
longues périodes de vibration, il est connu que I’amortissement matériel (hystérétique)
est le principal contributeur a I’absorption de 1’énergie par le sol. Si la fondation était
enterrée, ’amortissement radiant serait dii exclusivement a 1’énergie additionnelle
dissipée aux faces verticales de la fondation (Gazetas, 1984). Pour une fondation posée
en surface, I’amortissement radiant dans le mouvement de basculement avec de longues
périodes est relativement trés faible. De méme, 1’effet de la profondeur de la semelle sur
P’amortissement radiant associé au mouvement latéral de la semelle est moins

significatif. Par contre I’amortissement radiant, C = C(®,) dii aux oscillations verticales

pourrait étre significatif. Mais il n’inclut pas 1’amortissement hystérétique du sol, pour

tenir compte de ce dernier, il faut ajouter a I’amortissement C, la valeur correspondant
au coefficient de I’amortissement hystérétique S ¢égal a Z.Eﬂ/ @,. La valeur de f est

calculée en petites déformations et dépend de la contrainte de pré-consolidation et de

I'indice des vides. Pour la majorité des sols la valeur de # fluctue entre 2 et 6 %. Dans

notre étude on choisit pour un site de type C un facteur d’amortissement hystérétique
égale a 2 %.
C

Cosum +2.KB/ @, (6.19)

wtal = radiant
Le détail de ce calcul est fait dans ce qui suit. On produit des équations pour estimer
I’amortissement radiant di aux oscillations verticales, ainsi que la rigidit¢ dynamique

pour les fondations superficielles. Ces équations sont généralement acceptées en

pratique et seront utilisées dans notre analyse sismique des murs de refends.
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Coefficient d’amortissement radiant

_ - - L . , .
C i =(PV,,A))C, ; avec cC, :CZ(E’GO) est le coefficient d’amortisseur des

oscillations verticales donné par la courbe de Gazetas montrée sur la Figure 6.4, en

fonction des dimensions de la semelle et de la constantea, =w,.B/V,, oi.

a, =w,.B/V, =0.27. Avec cette valeur de ay, on obtient de la Figure 6.4, ¢, = 0.97.

V=22 Y V. =500m/s; V,, =832.92m/s
z(1-v)

C

radiant

= (pV,, 4,)z. =2500x832.92x8.71x4.36%0.97 = 7.91x10* kN.s/ m

Coefficient d’amortissement total

Avec un amortissement hystérétique § égal a 2% on obtient :

= 2x13834.615x10° x0.02
Coit = Crotim +2.K_B1w, =7.91x10* + =9.011x10*AN.s/m
tota radiant z 4 (2*3_14*8)
2
\ — im=1
1.8 X —_——-— i/B=2
— LB=4
AR - /B =6
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Figure 6.4 Coefficient d’amortisseur (Gazetas, 1991)
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Les coefficients de rigidité et amortissement pour les autres semelles de fondations sont

classés selon les dimensions de murs de refends dans le tableau 6.7.

Tableau 6.7 Coefficients de rigidité et d’amortissement de sol de fondation

Catégoric Mur K. C;
(kN/m) (kN-s/m)

Montréal -5 étages 10363269 45210

Montréal -10 étages 13834615 90112

Montréal -25 étages 22249615 195254
Vancouver -5 étages 12279807 48125
Vancouver -10 étages 16227115 95215
Vancouver -25 étages 24591346 201215
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6.4 Sélection des séismes pour I’Est et I’Ouest du Canada

Une meilleure compréhension de 1’aléa sismique au Canada, ainsi qu’une
connaissance des mouvements des sols, a mené a des changements significatifs dans
I’estimation de 1’aléa sismique pour le CNB 2005 par rapport aux données du CNB 1995
qui ont ét¢ introduites pour la premiére fois en 1985. Un nouveau modéle de [’aléa
sismique, le quatrieme modele national au Canada, a ét¢ mis au point dans le but de
mettre a jour les cartes sismiques de 1985. Le modéle incorpore de nouvelles
connaissances tirées des récents tremblements de terre, de nouvelles relations
d’atténuation de 1’amplitude des secousses avec la distance ainsi que des nouvelles

conditions du site (Adams & Atkinson, 2003).

Contrairement aux cartes de 1985 utilisées dans le CNB 1995, qui donnaient les valeurs
pour le PGA (accélération de pointe au sol) et le PGV (vitesse de pointe au sol), on
utilise dans le CNB 2005 des valeurs d’accélérations spectrales calculées a des périodes
de 0.2, 0.5, 1.0 et 2.0 secondes pour un amortissement de 5%. Ces accélérations

spectrales sont notées par S (7) ou T est la période fondamentale. Elles ont été établies

pour une probabilité de dépassement de 2% sur une période de 50 ans (souvent notée
comme 2%/50 ans), ce qui est équivalent & une probabilité annuelle de dépassement de
0.000404.

Pour la préparation des cartes nationales d’aléa, il ¢tait nécessaire de présenter 1’aléa
sismique pour une méme condition de sol. Ainsi, on a adopté le site de classe C comme
condition de référence pour I’Est et I’Ouest du pays. Dans le CNB 2005, un site de
Classe C est défini par une vitesse d’ondes de cisaillement moyenne de 360 a 760 m/s. Il
a été retenu comme condition de sol de référence pour tout le Canada parce qu’il
représente le plus grand nombre de séismes forts dans les licux les mieux instrumentés
comme la Californie. Il représente aussi une condition moyenne entre le sol le plus dur
et le plus mou (Adams & Halchuk, 2004).
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Un ensemble de trois historiques synthétiques de mouvements sismiques du sol a été
choisie pour représenter 1’excitation sismique dans les analyses. La magnitude, la
distance hypocentrale et I’amplitude d’accélération de pointe sont données pour chaque
signal aux tableaux 6.8 et 6.9 pour Montréal et Vancouver, respectivement. Ces séismes
synthétiques ont été normalisés par des facteurs de facon a ce que leur spectre
corresponde aux valeurs spectrales du CNB 2005 pour chaque site (Tremblay et
Atkinson 2001).

Tableau 6.8 Caractéristiques des séismes de Montréal

Magnitude Distance PGA Facteur de
normalisation
(km) (2
6.5 50 0.185 1.50
7.0 30 0.952 0.30
7.0 70 0.269 0.90

Tableau 6.9 Caractéristiques des séismes de Vancouver

Magnitude Distance PGA Facteur de
normalisation
(km) (2)
6.5 30 0.533 1.0
7.2 30 0.918 0.5
7.2 70 0.226 1.0
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6.5 Etude paramétrique et effets sur la réponse sismique

Dans cette section, on examine I’effet de quelques paramétres sur la réponse sismique
des murs de refends avec des semelles de fondation pour lesquelles on permet le
soul¢vement. Les paramétres étudiés sont le site (Montréal et Vancouver), la hauteur du
mur (5, 10 et 25 étages) et le rapport de poids (MR = 0.2, 0.4 et 0.6). L’¢élancement de la
structure (angle o varie avec la hauteur de la structure. Pour chaque site, on effectue
I’analyse sismique temporelle par intégration numérique dans Matlab avec les
algorithmes qui ont été présentés au chapitre 4. Dans 1’algorithme de Newmark, on
choisit I’accélération moyenne sur un pas de temps de 0.001 s. Pour étudier Ieffet de
chaque paramétre sur le soulévement de la structure, plusieurs paramétres de réponse ont
¢té obtenus des analyses, dont le déplacement au sommet de la structure et la rotation de
la semelle. Dans la plupart des cas, les calculs ont €té lancés pour les deux conditions de
contact avec le sol: fondation élastique avec soulévement empéché et fondation élastique

avec soulévement permis.

6.5.1 Effet de I’élancement des murs

Les réponses des murs de 5, 10 et 15 étages de la région de Montréal et soumis au
séisme de la Figure 3.7 (M7.0 a 70 km) sont présentées sur les Figures 6.5 a 6.7. Le
rapport MR pour ces murs est égal & 0.6. On voit sur la Figure 6.5 que la
déformation latérale de la structure est plus importante pour les structures moins
¢lancées. On remarque aussi que le soulévement réduit la déformation maximale de la
structure et que cette réduction est plus importante pour les structures moins élancées.
Par contre, on voit sur la Figure 6.6 que le déplacement latéral relatif (Drift) diminue
guand P’élancement diminue. Le mur de 25 étages a subi la plus faible déformation
relative. Cette derniére n’a pas été trop affectée par le soulévement qui y est moins
significatif malgré sa hauteur. Cela signifie que le déplacement critique n’a pas été
atteint malgré que la déformation absolue de mur de 25 étages est plus grande que dans

les autres murs a cause de la période propre de vibration qui est relativement plus
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importante que pour les deux autres murs du fait qu’elle ne dépend que de la hauteur et

pas de la largeur de la semelle. Il faut rappeler aussi que le déplacement critique diminue

., a2 _ 2
(ou augmente) linéairement avec le rapport d’élancement (u,, = ag/@").
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Figure 6.5 Déformation des murs de Montréal sous le séisme M7.0 4 70 km

(MR = 0.6): (a) h/b=4.59;(b) h/b=6.68;(c) h/b=12.6.



157

- - — — -
|
1
|

L !
Soulévement permis |
{ =re-e--- Soulévement empéché |

(a) Déplacement Iaté?al to{al dil milr a 5 étages. MR = 0.6. h/b = 4.59
0.01 - e L E L EEEEEEEEE
E I
i
<
E 3
+
2
g2
a]
(b)

Déplacement iatéral
(u/h+g)

—

(u/h+g)

Déplacement latéral &

Temps (s)

Figure 6.6 Déplacement latéral total des murs de Montréal sous le séisme M7.0 a 70 km
(MR=10.6):(a) W/b=4.59;(b) h/b=6.68; (c) h/b=12.6.

La Figure 6.7 montre les déplacements verticaux du mur, ou du centre de la semelle. On
remarque que le mur a 10 étages se souléve aprés 12 secondes, par contre le mur de 5
étages se souléve trés tot, environ aprés 3 s d’oscillations et le centre de la semelle sort
au dessus de la surface du sol et pourrait atteindre environ 5 mm. En d’autres termes,

plus de la moitié de la semelle sort au dessus du sol pour le mur a 5 étages. Cependant,
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le centre de la semelle des murs a 10 et 25 étages subit moins de déplacement vertical et

la semelle reste presque entiérement dans le sol avec un léger soulévement de

Iextrémité
{a) Déplacement vertical du mur a 5 étages. MR =0.6. h/b =4.59
s [ — ‘ ‘ S ——
5
>
E
(1]
£
[]
Q
m I
-5- _5 e
3 0 5 10 15 20 25
Temps (s)
(b) Déplacement vertical du mur a 10 étages. MR = 0.6. h/b = 6.88
-0.9 ‘ v ey D —y

Déplacement vertical

Temps (s)

(c) Déplacement vertical du mur a 25 étages. MR = 0.6. h/b = 12.6
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Figure 6.7 Déplacement vertical des murs de Montréal sous le séisme M7.0 a 70 km
(MR =0.6): (a) h/b=4.59; (b) h/b=6.68;(c) h/b=12.6.

Le déplacement latéral et la déformation au sommet sont relativement plus grands pour

les structures élancées. La déformation critique est d’autant plus grande qu’une
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structure est €lancée. Ceci réduit la tendance d’une telle structure a se soulever. Ce n’est
donc ni la hauteur seul ni la dimension seule de la semelle qui contréle le soulévement,

mais plutdt le rapport des deux.

Dans ce qui suit, on compare la réponse sismique des murs de dix étages soumis & un
séisme de Montréal et un séisme de Vancouver. Les deux séismes sont montrés sur la

Figure 6.8.
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Figure 6.8 Signaux sismiques pour 1’Est (Montréal) et 1’Ouest (Vancouver).

On varie le rapport d’élancement (rapport de la hauteur # a la demi-longueur de la
fondation B) en modifiant la longueur de la semelle. La hauteur du mur reste constante
et égale 4 20 m (= 2/3 de 30 m). On étudie le cas des murs supportant une charge
verticale égale a 0.4 fois la masse totale du mur (MR = 0.4). Les valeurs sélectionnées de
la demi-longueur de la semelle pour le mur situé dans la région de Montréal sont : 4.36,

5.10, 5.7, et 6.5 m, ce qui correspond a des rapports d’élancement de 4.58, 3.92, 3.5 et
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3.07, respectivement. Pour le mur de la région de Vancouver, on choisit les largeurs
5.10, 5.70, 7.50 et 8.0 m, qui correspondent & des rapports d’élancement de 3.92, 3.50,
2.66 et 2.5, respectivement. On notera que la longueur minimum & chaque site
correspond a la valeur obtenue du dimensionnement pour MR = 0.4 (Tableaux 6.4 et
6.5). La réponse sismique avec soulévement pour les différents élancements est

présentée sur la Figure 6.9.

Effet de I'élancement - Montréal ; " —a— Déformation de la structure ||
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E 150 |
c
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] »
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Figure 6.9 Effet de 1’élancement sur la réponse sismique maximale de

mur de 10 étages ; (a) Montréal ; (b) Vancouver
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On observe que les valeurs de pointe de la rotation de la semelle et du déplacement
latéral total augmentent graduellement lorsque 1’on diminue la longueur de la semelle
par rapport a la valeur de conception. Evidemment on remarque que les valeurs
maximales de la rotation de la semelle et du déplacement latéral total augmentent selon
la méme tendance, puisque ces parametres sont dépendants 1’un de 1’autre. Par contre on
voit que la déformation relative diminue lentement en diminuant la dimension de la
semelle. Pour le mur situé dans la région de Montréal, les déplacements sont moins

importants que ceux du mur situé dans la région de Vancouver.

6.5.2 Effet de ’intensité des séismes

Pour étudier I’effet de Dintensité des séismes sur le soulévement, il suffit de
considérer un mur de 10 étages soumis a des différents niveaux d’accélération. Tout
d’abord on examine 1’effet du séisme pour la région de Vancouver montré sur la Figure
6.8 ct amplifié par des facteurs de 1.0 et 1.5. La déformation de la structure et le
déplacement latéral total sont présentés sur la Figure 6.10. Les résultats avec
soulévement empéché et soulévement permis sont tous deux présentés. Comparé au cas
sans soulévement ol la déflexion de la structure angmente proportionnellement avec
I’amplitude du séisme, on voit que le soulévement de la semelle a un effet important sur
la déformation maximale car il limite de fagon significative la demande sur le mur :
I’intensification du séisme n’a pas d’effet sur la déformation maximale de la structure.
Le soulévement pourrait donc agir comme mesure de protection de la structure contre
des incertitudes sur 1’amplitude des mouvements sismiques. Le pic d’accélération du
signal sismique se situe & 6.5 s. Dans le cas du signal de plus faible intensité (1.0 x
signal), le déplacement total est moins prononcé a 'instant du pic que vers la fin du
séisme ou les accélérations sont relativement plus faibles. De plus, on voit que les
phases de soulévement (grands déplacements) durent longtemps a ’approche de la fin
du séisme. Lorsque ’on intensifie le séisme par un facteur 1.5, on remarque que les
déplacements latéraux sont moins prononcés sur une période de 10 a 15 secondes, mais

qu’ils demeurent sensiblement les mémes vers la fin du séisme. Dans le cas ou le
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soulévement est empéché, les déplacements augmentent dans la méme proportion que le
facteur d’amplification. Par contre, lorsqu’il y a soulévement, le comportement devient

fortement non linéaire et plus complexe, ce qui rend la prédiction beaucoup plus
difficile.

On considére maintenant le méme mur de 10 ¢tages, mais soumis a des séismes
différents choisis pour I’Est et 1’Ouest du Canada. Les déplacements latéraux du mur
sont présentés sur les Figures 6.11 et 6.12. Pour le mur situé & I’Est du Canada
(Montréal) soumis a des séismes de pic d’accélération de 0.185 g et 0.269 g le
soulevement n’a pas eu lieu. Par contre pour le séisme de pic égal 4 0.952 g, le
soulévement de la semelle se produit et donne lieu a un déplacement maximal latéral

noté x_ sur les figures, égal a 160.4 mm, ce qui est supérieur aux déplacements

maximaux correspondant aux deux séismes précédents (Figure 6.11).

Dans le cas des séismes pour la région de 1’Ouest (Vancouver), on voit sur la Figure
6.12 qu’il n’y a pas de soulévement et que le déplacement maximal atteint n’est que 20.6
mm sous le séisme ayant un pic d’accélération de 0.226 g. Pourtant, ce séisme a un pic
d’accélération supérieur au premier séisme qui a un pic de 0.149 g, ce dernier
provoquant le soulévement de la structure et un déplacement maximal de 100 mm. Ce
déplacement est 5 fois plus grand que celui subi par le mur soumis au sé¢isme PGA =
0.226 g et ce, malgré que les deux séismes aient la méme magnitude de 7.2. Pour le
séisme ayant un pic d’accélération de 0.533 g, la structure montre un soulévement
significatif avec un déplacement latéral maximal de 250 mm, qui est nettement supérieur
aux deux précédents, malgré qu’il soit de magnitude plus faible. Le mur localisé en
région de Montréal et soumis au séisme de PGA = 0.952 g montre un soulévement avec
un déplacement maximal de 160.4 mm, ce qui est inférieur a celul obtenu a I’ouest avec
un séisme de PGA plus faible. On conclut de ces observations qu’on ne peut prédire s’il

aura soulévement sur la seule base du pic d’accélération du séisme.
p
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Mur 10 étages. Séisme Est-Canada M6-50. PGA=0.185g
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Figure 6.11 Effet de I’intensité du séisme sur le déplacement horizontal total

de mur de 10 ¢tages dans la région de Montréal
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6.5.3 Effet de la flexibilité du sol

Pour étudier I’effet de la flexibilité de la fondation sur la réponse sismique, on
considére trois valeurs du module de cisaillement, 625, 506 et 324 MPa, valeurs qui
correspondent a des vitesses d’ondes de cisaillement de 500, 450 et 360 m/s,
respectivement. Ces vitesses sont comprises a l'intérieur des limites supérieure et
inféricure de la vitesse d’ondes de cisaillement prescrites dans le CNB 2005 pour un site
de type C : entre 360 et 760 m/s. Pour Montréal, ces trois valeurs de G donnent lieu a
des périodes de basculement de 1.66 s, 1.70 s et 1.73 s respectivement. Pour Vancouver,

les trois périodes sont égales ade 1.4s,1.43 set 1.52 s.

Pour les trois niveaux de flexibilité du sol, on examine la réponse du mur de 10 étages
avec MR = 0.4 a Montréal et Vancouver pour les signaux de la Figure 6.8. Pour I’Est du
Canada, si on diminue le module de cisaillement de 625 a 506 MPa, la Figure 6.13
montre que le maximum des déplacements diminue légérement. Par contre, pour un sol
ayant une vitesse d’ondes de cisaillement de 360 m/s, qui correspond a la limite
inférieure pour un sol de type C, on remarque que le déplacement latéral et le
déplacement vertical augmentent nettement par rapport aux sols plus rigides. En
particulier, on voit que la réaction du sol a une extrémité de la semelle est trés grande

pour un sol plus mou lorsque I’extrémité opposée se souleve.

Dans la région de I’Ouest (Vancouver), ’effet de la flexibilité du sol sur la réponse des
structures est montré sur la Figure 6.14. Pour les sols plus rigides de modules de
cisaillement de 500 MPa et 625 MPa, on remarque un faible soulévement comparable
pour les deux sols correspondants. Mais pour un sol plus mou, le soulévement est
significatif. Et plus le sol est mou plus la période de vibration est importante. Ce qui est
prévu puisque la flexibilité du sol a tendance a augmenter la période de basculement.

Donc, on a aussi un effet trés similaire de ce qui a ¢été observé pour Montréal.
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Pour les deux sites, le tassement le plus important est associ€ au sol dont la rigidité est la
plus faible. Pendant le soulévement sur un sol de faible rigidité, le bord de la semelle ou
le sol est comprimé s’enfonce plus profondément dans le sol, ce qui donne lieu a une
rotation plus grande et permet au bord opposé de se soulever davantage et, par

conséquent, de provoquer une réaction dans le sol plus grande.
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6.5.4 Effet de rapport de masse

Dans cette partie, on examine 1’effet du rapport de masse MR, qui a été défini
précédemment comme le rapport de la charge verticale supportée par le mur au poids
sismique total. Ce rapport a un effet important sur la taille de la semelle, comme le
montre les tableaux 6.4 et 6.5, au méme titre que le moment de renversement et la
capacit¢ portante du sol. L’effet du paramétre MR dans la conception de la semelle se
fait via I’excentricité, cette derniére étant égale au rapport du moment de renversement a
la charge verticale. Les valeurs de MR choisies étaient 0.2, 0.4 et 0.6. Pour étudier
I’influence du rapport MR sur le soulévement de la structure, on a soumis le mur de 10
étages dans les deux régions de Montréal et Vancouver aux séismes de la Figure 6.8. Les
réponses sont présentées sur les Figure 6.15 a 6.18 pour chacune des deux régions. On
voit sur les Figures 6.15 et 6.16 que l'importance du soulévement diminue
progressivement en augmentant le rapport MR (différences entre les réponses avec ct
sans soulévement s’amenuisent). Plus le soulévement est important (MR petit), plus la
déformation de la structure est réduite par rapport au cas sans soul¢vement (protection
accrue de la structure). On remarque que la structure devient plus élancée avec un
rapport MR €levé et le déplacement critique qui dépend linéairement de 1’élancement

devient grand. Par conséquent la déformation maximale u,_ /u, est réduite et ceci

retarde le soulévement.

Sur la Figure 6.16 on observe que le déplacement latéral maximal passe de 56.6 mm a
78.7 mm lorsque MR passe de 0.2 a 0.4 ¢t que les dimensions de la semelle diminue
(voir tableau 6.4). Lorsque ’on augmente MR de 0.4 a 0.6, le déplacement diminue, ce
qui semble coincider avec le fait que la semelle pour MR = 0.6 est de plus grandes
dimensions. Dans la région de Vancouver on remarque sur la Figure 6.17, que le rapport
MR a un effet trés limité sur la déformation maximale aprés le soulévement. Lorsque le
soulévement est empéché, 1’augmentation du rapport MR donne licu & une diminution

proportionnelle de la déformation maximale.
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Figure 6.18 Influence de MR sur le déplacement latéral total pour le mur

de 10 étages dans la région de Vancouver

Sur la Figure 6.18, on voit, comme a Montréal, qu’un facteur MR plus important donne
lien a un soulévement moins important (différences entre les réponses avec et sans

soulévement). On peut attribuer ce comportement a la contribution de la charge verticale
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supportée par le mur. Cette charge procure a I’ensemble une force de recentrage qui aide

a contréler le soulévement. Aussi, comme dans le cas de Montréal, on remarque sur les

Figures 6.18 et 6.19 que le déplacement latéral total augmente lorsque 1’on passe de

MR = 0.2 a 0.4 puis diminue par la suite (entre 0.4 et 0.6). Encore cette fois, il y a

corrélation entre cette tendance et la dimension de la semelle qui augmente de 0.2 4 0.4

et qui diminue entre 0.4 et 0.6.
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6.5.5 Effet de soulévement de fondation

La taille de la semelle a un effet déterminant sur le moment stabilisant. Donc, en
augmentant les dimensions de la semelle, on augmente évidemment sa rigidité a la
rotation de méme que la rigidité de tout le systéme sol-structure. Par conséquent, on
diminue la période de vibration du premier mode, ce qui peut contribuer a réduire le
déplacement horizontal latéral et la rotation de la semelle. Une augmentation de la
semelle contribue aussi a réduire la période de vibration du deuxiéme mode qui est
associé exclusivement au mouvement vertical. Dans cette section, on examine
I'influence de la taille de la semelle dimensionnée pour trois différentes valeurs du
facteur de réduction R,. On examine le cas du mur de 10 étages avec un rapport MR =
0.4. Les tableaux 6.10 et 6.11 donnent les dimensions de la semelle, la rigidité en
rotation, les périodes de vibration de ’ensemble sol-structure dans les deux premiers
modes, et les déplacements latéraux totaux de pointe moyens obtenus des analyses sous

les trois séismes {moyenne de trois résultats).

Tableau 6.10 Déplacements pour le mur de 10 étages & Montréal (MR=0.4)

R, Largeur B Ky T; T, Ah
{m) (kN-m/rad) (s) (s) (%)
2.0 4.360 195041725.00 1.669 | 0.059 0.508
3.0 4212 170147612.62 1.690 | 0.062 0.494
4.0 3.910 145471547.20 1.710 | 0.064 0.490

Tableau 6.11 Déplacements pour le mur de 10 étages a Vancouver (MR=0.4)

R, Largeur B Ks T, T Ah
(m) (kN-m/rad) (s) (s) (%)
2.5 5.907 483875669.40 1.316 | 0.05 0.486
3.5 5.114 313989440.97 1.33 | 0.0546 0.603
4.0 4.881 272997893.20 1.341 | 0.0558 0.71
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Sur la Figure 6.20, on présente les valeurs maximales moyennes du déplacement latéral
inter-étages pour le mur de 10 étages situé dans les régions de Montréal et de Vancouver

soumis aux trois séismes de chaque région classés dans les Tableaux 6.8 et 6.9.

iDépIacement latéral inter-étages. Mur de 10 étages. MR=0.4 \
0.740
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Figure 6.20 Déplacement latéral moyen inter-étages vs ductilité pour

Montréal et Vancouver

En ce qui concerne la région de I’Est, on remarque que le déplacement diminue lorsque

I’on augmente le facteur R,, donc lorsque I’on diminue les dimensions des fondations.

Ce qu explique que plus on diminue la taille de la semelle et plus le soulévement est
moins significatif du fait que la rotation de la semelle est moins significative voire
diminue en réduisant la dimension de la semelle. Par contre on observe I’inverse dans la
région de Vancouver ou le déplacement augmente significativement avec le facteur de
réduction des forces. Plus la taille de la semelle diminue, plus la rotation augmente et
induit & son tour un déplacement latéral en téte important. En d’autres termes, le
soulévement est plus significatif a 1’Ouest qu’a I’Est. Cela est attribué au fait que les
séismes de la région de I’Ouest ont une période dominante plus longue que ceux de ’est,
ce qui donne plus de temps a la semelle pour subir une grande rotation dans un sens
avant que ne survienne une pointe d’accélération dans la direction inverse qui vient

interrompre le bercement de la semelle et la mettre en mouvement opposé. Cela pourrait
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expliquer que les séismes de 1’Ouest sont plus séveres. Dans les deux régions, les
déplacements observés sont acceptables (inférieurs a la limite de 2.5% du CNB 2005).
Bien évidemment ces résultats sont partiels compte tenu du nombre des séismes utilisés,
mais on peut toutefois comprendre de ces résultats que le soulevement dans la région de
Montréal serait bénéfique et qu’il serait possible de diminuer davantage les dimensions
de la semelle, lorsque comparé a 1’Ouest, sans que ces soul¢vements ne conduisent a des

déplacements excessifs.

On a mentionné précédemment que la dimension de la semelle est influencée, entre
autres, par le rapport MR et le moment de renversement. On sait aussi que le moment de
renversement est calculé a partir de 1’effort de cisaillement a la base et que ce dernier est
influencé par le facteur de réduction des forces sismiques, R;. Les deux facteurs, MR et
Ry, influencent donc les dimensions de la semelle. Dans cette partie, on étudie I’effet de
la dimension de la semelle déterminé par ces deux parametres sur la réponse sismique
des murs de refends soumis aux trois séismes dans chaque région. On examine surtout le
déplacement latéral moyen en téte de la structure relativement a la hauteur. Les valeurs
Ak : moyennes obtenues par les trois séismes, sont calculées pour les trois murs de
refend (5, 10, 25 étages), pour les trois valeurs de MR (0.2, 0.4 et 0.6) et de R, sont
classées dans les tableaux 6.12 et 6.13. La Figure 6.21 montre les déplacements inter-

étages calculés en fonction du facteur de réduction R, et de rapport de masse MR. Dans

tous les cas, les déplacements demeurent sous la limite du CNB (2.5%). On voit que
pour les murs localisés dans la région de Vancouver et congus avec des rapports MR

importants (MR = 0.6) et avec des facteurs R, élevés, les semelles sont plus petites et

conduisent a des déplacements plus importants a cause de I’allongement de la période.
Avec un rapport MR de 0.2, les dimensions des semelles sont plus importantes et on voit
sur la figure que les déplacements sont plus petits que ceux obtenus avec des semelles
congues avec des rapports MR de 0.4 et de 0.6. Cela suggére qu’il serait envisageable de

proposer des réductions plus importantes de la dimension des semelles pour certaines
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combinaisons. Par exemple, la semelle calculée avec un facteur de R,~ 4.0 et MR = 0.2

donne un déplacement inférieur a celui calculé avecun R, = 3.5 et MR=0.4.

Tableau 6.12 Déplacements inter-étages (déplacement %) pour les murs 2 Montréal

a) Mur 5 étages-Montréal

MR=02 | MR=02 | MR=04 | MR=04 | MR=06 | MR=06

Ra B AR B Ah B Ah

(m) (%) (m) (%) (m) (%)

2.0 4.2 0.31 3.85 0.28 3.65 0.19

3.0 3N 0.26 3.56 0.23 3.33 0.13

35 3.64 0.25 3.51 0.21 3.28 0.12

b) Mur 10 étages-Montréal

MR=02 | MR=02 | MR=04 | MR=04 | MR=06 | MR=06

Ry B Ah B Alh B Alh

(m) (%) (m) (%) (m) (%)

2 5.75 0.52 53 0.508 4.81 0.45

3 4.95 0.512 4.82 0.499 4.61 0.38

35 4.85 0.5 4.72 0.492 4.56 0.34

¢) Mur 25 étages-Montréal

MR=02 | MR=02 | MR=04 | MR=04 | MR=06 | MR=06

R, B Ah B Nh B Aih

(m) (%) (m) (%) (m) (%)

2 8.02 0.164 7.64 0.155 7.012 0.145

3 7.63 0.162 7.31 0.154 6.91 0.142

3.5 7.3 0.157 7.13 0.153 6.88 0.139




Tableau 6.13 Déplacements inter-étages (déplacement %) pour les murs a

Vancouver

a) Mur S étages -Vancouver
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MR=02| MR=02 |MR=04| MR=04 |MR=06| MR=06
Ry B Ak B Ah B Alh
(m) (%) (m) (%) (m) (%)
3 7.123 0.32 6.34 0.51 5.45 0.67
3.5 6 0.5 5.45 0.73 4.63 0.79
4 4.5 0.72 4.13 1.08 3.92 1.43
b) Mur 10 étages -Vancouver
MR=02| MR=02 |MR=04| MR=04 |MR=06| MR=06
Ry B Ah B Ah B A/h
(m) (%) (m) (%) (m) (%)
3 8.23 0.47 6.97 0.486 6.23 0.521
35 7.76 0.57 6.4 0.603 5.5 0.7
4 6.22 0.64 5.92 0.71 5.01 1.32
¢) Mur 25 étages -Vancouver
MR=102 MR =02 MR =04 MR=04 | MR=06 |MR=06
Ry B Ah B Ah B ANh
(m) (%) (m) (%) (m) (%)
3 9.65 0.31 9.16 0.35 8.36 0.43
3.5 8.9 0.37 8.34 0.39 7.8 0.56
4 8.12 0.49 7.56 0.72 7.5 0.82
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.En examinant les résultats de la Figure 6.21, on constate aussi que le soulévement a plus
d’effet sur les déplacements pour les structures moins élancées. Le déplacement pour le
mur de 25 étages reste faible comparé a celui du mur de 5 étages. Pour le mur de 5
étages et un rapport MR de 0.4, le déplacement augmente plus rapidement en
augmentant la valeur de R, que pour les murs de 10 et 25 étages. Ce déplacement peut
atteindre la valeur de 1.1 % avec une valeur de R, égale a 4.0. Dans le cas des murs de
10 et 25 étages, le déplacement reste inférieur a 0.8%, méme avec un facteur R, de 4.0.
Les structures plus élancées avec un faible rapport MR montrent des déplacements
moindres que les autres structures; elles pourraient possiblement étre congues avec des

semelles plus petites sans pour autant donner lieu a des déplacements excessifs.

Pour la région de Montréal, on voit que les déplacements diminuent généralement

lorsque I’on augmente Je facteur de réduction R,. En augmentant Ry, on fait diminuer la

longueur de la semelle, ce qui a tendance a faire diminuer la rotation. Cette tendance,
déja observée pour le mur de 10 étages, va a contre-sens de I’intuition puisque que la
rigidité en rotation diminue en réduisant la taille des semelles. Ce comportement serait
attribué¢ a I’allongement des périodes des structures découlant de la réduction des
semelles combinées au fait que 1’énergie dans les‘séismes de la région de I’Est du
Canada est concentrée dans les hautes fréquences. On a donc a la fois un découplage
plus marqué entre les périodes des structures et les périodes de séismes et des séismes a

plus hautes fréquences qui sont moins critiques du point de vue du bercement.

On constate aussi que les murs dans la région de Montréal subissent des déplacements
inférieurs a ceux de la région de 1’Ouest. Les déplacements pour le mur de 5 étages et
MR = 0.2 localisé & Montréal diminuent plus rapidement avec le facteur R, que pour les
murs de 10 et de 25 étages. Pour un rapport R, ¢gal & 3.0 ct un rapport MR = 0.4, un

mur de 5 étages localisé a Vancouver subit un déplacement égal a environ deux fois

celui obtenu pour le méme mur localisé 2 Montréal. Pour une méme valeur de R,, une
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variation de MR a Montréal a une influence plus marquée sur les déplacements a

Montréal.

Pour un mur de 10 étages localis¢ a 1’ouest, le déplacement augmente lentement avec la

valeur de R, pour les valeurs de MR égales a 0.2 et 0.4. Par contre avec un rapport MR
de 0.6 (semelle plus petite et période plus longue), la valeur de R, a un effet significatif
sur le déplacement, surtout pour des valeurs de R, supérieures a 3.5. Les déplacements
calculés pour les murs de Montréal avec un facteur R,= 2.5 restent inférieurs a ceux
calculés pour les murs localisés a Vancouver avec la méme valeur de facteurR,. Il y

aurait donc possibilit¢ de diminuer davantage les semelles pour la région de Montéal

pour permettre davantage de soulévement.
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CHAPITRE 7 Conclusions et recommandations

La revue de littérature a montré que la majorité des travaux menés sur le phénomene
de soulévement des fondations consistait principalement & des ¢tudes analytiques de
modeles de structures, mais que peu d’études examinaient le comportement sismique des
structures. L’objectif de cette étude était de choisir un modéle analytique approprié pour
modéliser I’interaction sol-structure et de I’utiliser pour analyser I’effet du soulévement
de la fondation sur la réponse sismique des murs de refend en béton armé. L’étude visait
surtout A observer I’effet de certains paramétres sur le soulévement tels que 1’élancement
des murs, le rapport de masse, la flexibilité du sol de fondation, les caractéristiques de

I’excitation sismique et les dimensions de la semelle de fondation.

Afin de se familiariser avec le sujet, on a d’abord réalisé une étude préalable sur le
basculement sismique de corps rigides de forme rectangulaire. La réponse était calculée
dans deux cas : fondation rigide et fondation flexible comprenant deux ressorts situés
aux coins du bloc. Cette étude a permis de constater que ce n’est pas seulement
I’élancement qui influe sur le basculement d’un bloc rigide sur une fondation rigide,
mais aussi sa taille. Pour les structures de grande taille, tels que les barrages, I’effet de
taille est significatif et la réponse des blocs sur une fondation élastique est fortement
influencée par la flexibilité du sol. Enfin, I’hypothése des blocs infiniment rigides est
acceptable pour représenter des structures €lastiques rigides, mais les murs de refends en
béton armé élancés que 1’on rencontre dans les batiments multi-étagés peuvent subir de
grandes déformations en flexion sous I’effet ’action sismique, en développant une rotule

plastique a leur base.

Les équations décrivant le comportement sismique d’un mur de refend représenté par sa
rigidité, sa masse et son amortissement ont ensuite ¢t¢ développées et mises en forme
dans le logiciel Matlab. Le comportement du mur est posé¢ linéaire et élastique. Ces

modg¢les prennent aussi en compte la flexibilité et ’amortissement au niveau des
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fondations et permettent de traiter le phénoméne fortement non lindaire qu’est le
soulévement. Sauf pour le soulévement, le comportement du sol est toutefois posé
linéaire et €lastique. Deux modéles de fondation ont ¢té examinés : le modele a deux
ressorts-amortisseurs verticaux placés aux extrémités de la semelle et le modele de
fondation de Winkler avec ressorts-amortisseurs verticaux distribués sur la longueur de
la semelle. Le second permet une représentation plus fidele du comportement réel des
fondations. Les analyses effectuces ont aussi permis de constater que le modéle de
Winkler permettait une prédiction plus précise de la réponse sismique car la variation
des propriétés de rigidité¢ et d’amortissement lors du soulévement est plus graduelle.
Méme si le modele de fondation a deux ressorts pouvait étre utilisé en conception
parasismique, il sous-estimerait la réponse de la structure. Par conséquent il est plus
réaliste et, par conséquent, recommandé et d’utiliser la fondation Winkler pour 1’étude
paramétrique de la réponse des murs de refend. Cette recommandation a été suivie pour

I’analyse paramétrique.

Les solutions développées avec Matlab avec 1a méthode de Newmark ont été comparées
pour validation avec les résultats obtenus du logiciel Ruaumoko, un logiciel développé
spécifiquement pour I’analyse sismique non linéaire des structures. Une bonne
corrélation a €té obtenue entre les deux outils de prédiction. Par ailleurs, on a fait la
comparaison des réponses obtenues par la méthode de Newmark utilisant une
accélération moyenne et un pas de temps fixe, avec celles obtenues par la méthode de
Runge-Kutta utilisant Simulink avec un pas de temps variable. On a remarqué que les
résultats obtenus avec Runge-kutta sont probablement plus certains compte tenu de la
possibilité de pas de temps variables pour déterminer la solution aux instants précis ou

les propriétes de la structure sont modifiées.

Le logiciel Matlab a ensuite ¢té utilisé pour faire une étude paramétrique afin de tirer des
conclusions sur le soulevement sismique de murs de refend en béton armé. L’étude a

porté sur des murs de 5, 10 et 25 étages localisés dans les régions de Montréal et de
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Vancouver. Trois valeurs du rapport entre la charge verticale et le poids sismique

tributaires des murs ont été considérées : MR = 0.2, 0.4 et 0.6. Les structures ¢taient

fondées sur un sol flexible dont les propriétés correspondent a un site de Classe C. Les

dimensions des murs et des semelles ont €té¢ déterminées selon les régles du code

national du bitiment du Canada 2005. Dans la conception, plusieurs valeurs du facteur

de réduction des forces sismiques, Ry, ont ¢été considérées. Les analyses ont &té

effectuées pour trois mouvements sismiques du sol représentatifs pour chacun des deux

sites. Dans les analyses, on a aussi vari¢ la rigidité du sol a I’intéricur des limites fixces

pour les sols de Classe C. Cette étude paramétrique a permis d’observer les points

suivants :

En augmentant la taille de la semelle, on augmente le moment capacitaire dans la
semelle qui est fonction de la largeur et de la charge verticale, par conséquent cela
diminue la tendance au soulévement de la semelle. L’endommagement dans le mur
pourrait avoir lieu si la semelle était trés large avec un moment capacitaire supérieur
a celui du mur. Ainsi avec le soulévement de la semelle, ’endommagement dans le

mur sera réduit.

On observe que les valeurs de pointe de la rotation de la semelle et du déplacement
latéral total augmentent graduellement lorsque I’on diminue la longueur de la

semelle par rapport a la valeur de conception.

L’élancement de la structure affecte significativement la réponse sismique. Cet effet
est plus significatif pour les sols plus rigides ot le soulévement pourrait avoir un
effet significatif sur la réponse sismique des structures. Pour un facteur MR = 0.4,
Les valeurs de pointe de la rotation de la semelle et du déplacement latéral total
augmentent graduellement lorsque 1’on augmente 1’élancement du mur. Par contre

on voit que la déformation relative diminue lentement en augmentant 1’élancement.
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Pour le mur situé dans la région de Montréal, les déplacements sont moins
importants que ceux du mur situé dans la région de Vancouver. L’effet de
I’élancement non seulement conduit a la réduction des déformations mais pourrait
aussi augmenter ou diminuer la rotation de la semelle et, par conséquent, le
déplacement latéral total, dépendamment des caractéristiques des murs. Cependant,
ce n’est ni la hauteur seule ni la dimension de la semelle seule qui contrdle le

comportement d’un mur de refend, mais le rapport des deux.

L’augmentation de I’intensité du séisme pourrait aussi diminuer 1I’effet bénéfique du
soulévement sur le déplacement latéral. Pour un mur situé a I’Est du Canada
(Montréal) soumis a des séismes de faibles pics d’accélération, le soulévement n’a
pas cu lieu. Mais quand il était soumis a un séisme de pic d’accélération plus éleve,
le mur a montré un soulévement avec un déplacement maximal inféricur a celui
obtenu a4 Vancouver avec un séisme de PGA plus faible. On conclut de ces
observations qu’on ne peut prédire s’il y aura soulévement sur la seule base du pic
d’accélération du séisme. Le fait qu’une structure peut se soulever sous I’action d’un
séisme ne signifie pas que la structure se soulévera obligatoirement sous 1’action
d’'un séisme dont l’accélération de pointe est plus élevée. La signature des
mouvements sismiques (fréquence dominante, séquence et durée des pics) a

probablement aussi un effet important.

Un sol plus flexible a un effet bénéfique lors du soulévement de la semelle, car la
flexibilit¢ du sol prolonge la période de vibration et pourrait jouer un rdle trés
important dans la réponse des structures. Avec une fondation large, la réponse est
sol pourrait réduire la rotation de la semelle méme avec une fondation de faibles
dimensions, ce qui diminue la tendance au soulévement et augmente les effets
d’inertie dans la superstructure. On peut dire que les sols tres durs aménent a

I’utilisation de petites semelles et pourraient influencer davantage le basculement.
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Cependant, les structures sur des sols plus flexibles montrent un déplacement plus
important que celles sur des sols durs, parce que les périodes sont plus longues sur
un sol plus flexible. De telles structures se trouvent avec des semelles plus larges que
celle fondées sur des sols durs. Pour I’Est du Canada, si on diminue le module de
cisaillement, le déplacement latéral et le déplacement vertical augmentent nettement
par rapport aux sols plus rigides. En particulier, la réaction du sol a une extrémité de
la semelle est trés grande pour un sol plus mou lorsque I’extrémité opposée se
souléve. Dans la région de I’Ouest (Vancouver). Pour les sols plus rigides, plus le sol
est mou plus la période de vibration est importante. Puisque la flexibilité du sol a

tendance a augmenter la période de basculement.

Le soulevement de la semelle réduit la déformation de la structure. 11 s’agit donc
d’une approche qui permettrait de réduire I’endommagement de la structure. Le
soulévement peut aussi réduire ou augmenter les déplacements latéraux de la
structure, selon les caractéristiques du séisme et de la structure. Dans la région de
I’Ouest du Canada, le soulévement a plus d’effet sur les déplacements latéraux que
dans la région de I’Est. Dans 1’Ouest, le déplacement maximal augmente lorsque
I’on diminue la taille de la semelle en augmentant MR et/ou R, Dans I’Est, on a
constaté que des semelles plus petites donnent lieu & des déplacements latéraux
généralement plus faibles. On pourrait donc y réduire les semelles davantage et

dimensionner les semelles pour des valeurs de R, un peu plus €levées tout en restant

dans une marge de déplacement inférieure a celle calculée dans la région de I’Ouest.

Recommandations

Une extension de ’analyse du ecomportement inélastique des murs de refends en
béton armé est prévue en complément de cette étude en permettant les murs de
développer des rotules plastiques a la base méme si le moment capacitaire de la

semelle est le plus faible. Aussi, une analyse tridimensionnelle, en incorporant les
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effets de torsion, devrait étre effectuées afin de donner une meilleure vue sur le
probléme de soulévement de fondations, incluant I’interaction possible entre les

divers éléments de résistance aux charges sismiques de la structure.

On pourrait aussi incorporer par la suite la mobilisation de la capacité portante du sol
(comporiement inélastique du sol) et donc la réduction de la résistance du sol avec la

considération de la rupture du sol avec prise en compte de 1’interaction sol structure.

Des tests a échelle réelle sur le comportement des murs de refends avec soulévement
seraient nécessaires pour examiner les effets de soulévement et valider les modéles

numériques comme ceux utilisés dans cette étude.
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Annexes

Annexe I

Programme qui calcule la réponse sismique d’une structure flexible 3 un
degré de liberté avec fondation Winkler permettant le soulévement de la
semelle. {(Simulink. Sfunction)

function [sys,x0,str,ts] = uplift(t,x,u,flag)

fac=1; % facteur d'amplification du séisme

ml=30000000/9.81; h=20; T = 1.602; w = 2*pi/T;

k=4*pi”®2%ml/(T"2) ;g=9.81;m=ml;

MR 0.4; b = 4.36; m2=MR*ml; alpha=h/b; kw = 1586538461.5385;%N/m
cw = 4175017.9;%N.s/m

wv = sgrt (2*b*kw/m2); beta=wv/w%

ml=30000000/9.81; m=ml;h=20; g=9.81; T = 1.282; w = 2*pi/T;
k=4*pi”2*ml/ (T"2) ;

MR = 0.4; b = 5.92; m2=MR*ml; alpha=h/b; kw = 1586538461.538;
cw = 38612119.96;

wv = sqQrt (2*b*kw/m2) ; beta=wv/w

psi = 0.03;

c = 2*psi*ml*w;

psi_v = cw*b/ (m*beta*w)

m2=MR*m;

u_cr = m*g*b/(3*h*k); theta cr = m*g/(2*kw*b"2)
X_cr = u_cr+h*theta_cr;

epsl=1; eps2=0;
xpObar = 4;
Xp0 = XpObar*(g/w)*sqrt(3*alpha”2+beta”2)/(3*alpha*beta);

v0 = xXp0*wlb®2 ; dans le cas de vibration libre
thetap0 =xp0*(1-wlb”*2) /h;
v0 = 0; dans le cas de la réponse sismique

theta=0;



u_cr = m*g*b/(3*h*k); theta cr = m*g/{2*kw*b"2)};
X _cr = u_cr+h*theta_cr;

epsl = 1; eps2 = 0;

x0 = [0; 0; -9.81*m/ (2*kw*Db) ;0] ;

B=0;
C=0;
D=0;
switch flag

case 0
[sys,x0,str,tsl=mdlInitializeSizes (A,B,C,D,epsl,eps2,alpha,beta,ml,T, k,
kw,b,h,c,cw,v0); %
case 1
sys =
mdlDerivatives(t,x,u,A,B,C,D,epsl,eps2,alpha,beta, m, T,k, kw,b,h,c,cw,v0)
case 3
sys =
mdlOutputs(t,x,u,A,B,C,D,epsl,eps2,alpha,beta,m,T,k,kw,b,h,c,cw,v0);
case { 2, 4, 9 }
sys = [1;
otherwise
error ( ['Unhandled flag = ',num2str(flag)l);

end

function [sys,x0,str,ts] =
mdlInitializeSizes{(A,B,C,D,epsl,eps2,alpha,beta,m, T,k ,kw,b,h,c,cw,v0)
sizes = simsizes;

sizes.NumContStates = 4;

sizes.NumDiscStates

i

n

0
sizes.NumOutputs 8
sizes.NumInputs =1

0

sizes.DirFeedthrough
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sizes.NumSampleTimes = 1;
sys = simsizes(sizes);

x0 = [0; v0; -9.81*m/(2*¥kw*b); 0];

theta = 0;

str = [];

ts = [0 0]; %
P

function sys = mdlDerivatives(t,x,u,A,B,C,D,epsl,eps2,alpha,beta,ml, m2,
T,k,kw,b,h,c,cw,v0)
fact=1;g9=9.81;
epsl=1l; eps2=0;
if (x(3)+b* (3*h*k*x(1)-(3/2)*(1-
epsl”2) *kwreps2*b”2*x(3)) / (kw*b"3* (1+eps1”3) ) <0 && x(3)-
b* (3*h¥k*x (1) - (3/2) * (1-
epsl”2) *kw*eps2*b*2*x(3) )/ (kw*b*3* (1+eps1”3)) <0)
theta = (3*h*k*x(1)-(3/2)*(1-
epsl”2) *kw*eps2*b”*2*x (3) ) / (kw*b*3* (1+eps1”3) ) ;
epsl=1l; eps2=0;
elseif (x(3)+b* (3xh*k*x (1) - (3/2)*(1-
epsl”2) *kw*eps2*b*2*x(3) )/ (kw*b"3* (1+epsl”®3) ) >=0)
theta = (3*h*k*x(1)-(3/2)*(1-
epsl”2) *kw*eps2*b*2*x (3)) / (kw*b"3* (1+eps1”®3));
eps2=-1; epsl=eps2*x(3)/(b*theta);
elseif (x(3)-b*(3*h*k*x(1)-(3/2)*(1-
epsl”2) *kw*eps2*b*2*x(3)) / (kw*b"3* (1+epsl”™3)) >=0)
theta = (3*h*k*x(1)-(3/2)*(1-
epsl”2) *kw*eps2*b™2*x (3) ) / (kw*b™3* (1+epsl”™3));
eps2=1; epsl=eps2*x(3)/(b*theta);
end
Ml=ml* (1+3*h"2*k/ (kw*b"3* (1+epsl”3)));
M2=-3*ml*h* (1-epsl”2) *eps2/ (2*b* (1+epsl”®3)) ;
Cv=(l+epsl) *cw*b-3*br*cw* (1-epsl”™2) *2*eps2”2/ (4* (l+epsl™3)) ;
Cu=3*h*k* (1l-epsl”2) *eps2*cw/ (2*kw*b* (1+eps1”3)) ;
Kv=(1+epsl) *kw*b-3*b*kw* (1-epsl1”2) "2*eps2”2/ (4* (1+epsl1”™3)) ;
Ku=3* (1-epsl”™2) *eps2*h*k/ (2*b* (1+epsl”™3));
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gys=[x(2);1/M1* (-ml*fact*u*9.81l+M2*g~ (c-M2*Cu/ml) *x (2) +M2*Cv/m2*x (4) -

(k-M2*Ku/ml) *x (1) + (M2*Kv/m2*x (3) } ) ; x(4) ;1/m2* (-m2*g-Cv*x (4) -Cu*x(2) -

Kv*x (3) -Ku*x(1))];

function sys

mdlUpdate{(t,x,u,A,B,C,D,epsl,eps2,alpha,beta,mi,m2,T,k,kw,b,h,c,cw,v0)

sys = [];

function sys=mdlOutputs{t,x,u,A,B,C,D,epsl,eps2,alpha,beta, ml, m2,
T,k,kw,b,h,c,cw,v0) %

w = 2*pi/T;g=9.81;

u_cr = g/(3*alpha*w”2); theta_cr = g/(b*beta™2*w"2);

X_Cr = u_cr+h*theta_cr;

theta = (3*h¥k*x(1)-(3/2)*(1-

epsl”2)*kw*eps2*b*2*x(3) )/ (kw*b"3* (1+epsl”3));

vL x(3)+ b*theta;

VR = x(3)- b*theta;

ut = x(1)+h*theta;

sys =[x(1)/u_cr x(2) x(3) x(4) theta/theta_cr ut vL/(b*theta_cr)
vR/ (b*theta cr)];
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Annexe II
function [t,u]= Newmark(X,C,M,P,dt,u0,v0,bet,gam)

Programme qui calcule la réponse sismique d’une structure flexible & un

degré de liberté avec fondation Winkler permettant le soulévement de la

semelle. (Méthode de Newmark)

$ENTREE:

%

% M : Masse

% C : Amortissement

% K : Rigidité

%

% gama : "gamma" paramétre de Newmark

% beta : "beta" paramétre de Nwemark

% Méthode d'accélération linéaire. -> gamma=1/2, beta=1/6
% Méthode d'accélération constante-> gamma=1/2, beta=1/4
%

% dt : pas de temps

% uo,vo : déplacement, vitesse intiales

% SORTIE:

o

u,v,a : déplacements, vitesses et accélérations

clear; clc;

[

fac=1; % facteur d'amplification du séisme

m1=30000000/9.81; h=20; b=4.36; alpha=h/b; g=9.81;
T = 1.603; w = 2*pi/T; k=4*pi”2*ml/ (T"2);

kw = 1586538461.538; wv=sqrt(2*kw*b/m2); beta=wv/w;
Ccw=6274400;%N.s/m

wlb=sgrt (beta®2/ (beta”2+3*alpha”2)) ;

Tl =T/wlb % période de vibration sans soulévement du premier mode
T2 = T/beta % période de vibration sans soulé&vement du deuxiéme mode
wl = wlb*w;

xpObar = 4;
xp0 = xpObar*(g/w)*sqrt (3*alpha”2+beta”2)/(3*alpha*beta) ;

psi = 0.03; psi_v = 0.13;
c = 2*psi*ml*w;
cw = psi_v*m2*beta*w/b

m2=m;
u_cr = ml*g*b/(3*h*k); theta cr = m2*g/(2*kw*b"2)
x_cr = u_cr+h*theta_cr;

dt = 0.0001;
gam = 1/2; bet = 1/4;
epsl=1l; eps2=0;
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M = [ ml*(h+2*(l+epsl®3)*b*3*kw/(6*k*h)), 3*ml*eps2*(1l-
epsl”2) *Tw*b™2/ (6*k*h); 0,m2];

K = [2*k*(l+epsl”™3)*b"3*kw/ (6*k*h), 3*k*eps2* (l-epsl”™2)*Tw*b*2/ (6*k*h) ;
1/2* (1-eps1”2) *eps2*kw*b™2, (l+epsl)*kw*b] ;

C = [2*c*(l+epsl1”™3)*b"3*kw/(6*k*h), 3*c*eps2* (l-epsl”™2)*Tw*b”*2/ (6*k*h);
1/2* (1-epsl1”2) *eps2*cw*b™2, (1l+epsl) *cw*b];

%

A0 = (K+4*M/(dt”™2)+2*C/dt) ;

Al =4*M/(dt"2)+2*C/dt ;

A2 =4*M/dt+C ;

% %%

gamma = load{'E70701_M2.txt');

tu = gamma(:, [1,2]);

t_ech = tu(:,1);

u_ech = tu(:,2);

tfinal = t_ech{end);

Dt = 0.01;

t 0:Dt:tfinal;

ti 0:dt:tfinal;

uu = fac*interpl (tu(:,1),tu(:,2),ti);

plot(ti,uu, 'b',t,fac*u_ech','r');

grid on;

figure;

i=1;
epsl = 1;
eps2 = 0;

% N = length(K);

ntimes = length (uu);

Time = dt*[0: (ntimes-1)];
% tfinal=(ntimes-1)*dt

% u = zeros (N, ntimes);
% v = zeros (N, ntimes);
% a = zeros (N, ntimes);
% u(l:N,1) = u0(1:N);
% v(1:N,1) = vO(1:N);

vitesse initiale

% up(i) = xp0*wlb"2;
$ u(:,1) = [0 ; -9.81*m2/ (2*kw*b)];
$ v{:,1) = [(1/h)*xp0* (1-wlb™2) ; 0];

excitation sismique

u(:,1) = [0 ; -9.81*m2/(2*kw*b)];
v(:,i)= [0 ; 0];

up (1) =0;

ux{i) = (3*(1-

epsl”®2) *eps2*Tw*b"2*u(2,1i) +2* (1+eps1™3) *kw*b™3*u(1,1i)) / (6*k*h) ;
déplacements des bord gauche VL et bord droit VR



VL (1) = u(2,i)+ b*u(1i,1i);
VR (1) = u(2,1)- b*u(l,1);

Algorithme de Newmark

calcul des l'accélérations initiales
a(:,1) = inv(M)*([-ml*g*uu(i) ; -m2*g] - C*v(:,1) - K*u(:,1));
for i=2:ntimes
FULL CONTACT

u(:,i) = inv(20)*( [-ml*g*uu(i) ; -m2*gl+Al*u(:,1i-1)+A2*%v(:,i-
1)+M*a(:,1-1));

v(:,i) = 2/d4t*(u(:,1)- u(:,1i-1))- v(:,i-1);

al:,i) = 4/(@dt™2)*( u(:,i)- u(:,1i-1)- dt*v(:,i-1)-1/4*dt"2* a(:,1i-

ux (i) = (3*(1-
epsl”2) *eps2*Tw*b*2*u(2,1) +2* (1+epsl™3) *kw*b*3*u(1,1)) / (6*k*h) ;
VL (1) = u{2,1)+ b*u(l,i);
VR (i) = u(2,i)- b*u(l,i);
sauvgarder les deplacements, vitesses et accelerations:
déplacements

tabTHETAl(i-1) = u(l,i-1);
tabvil(i-1) = 1000*u(2,1i-1);

tabX1l(i-1) =1000* (ux(i-1)+h*u(1,i~1));
tabUXx1(i-1) = ux(i-1) /u_cr;
tabVLl (i-1) = 1000*VL{i-1);
tabVR1 (i-1) = 1000*VR(i-1);
vitesses
tabUP1(i-1) = v(1,1i-1);
tabvPl(i-1) = v(2,1i-1);

acceleration

tabUPP1(i-1) = a(l,i-1);
tabVPP1l (i-1) = a(2,i-1);
tabT1(i-1) = ti(i-1);

end
for i=2:ntimes

Contact entier avec les éléments de la semelle

if (VL(i-1)<= 0) & (VR(i-1l)<= 0)
epsl = 1;
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eps2 = 0;
M = [ ml*(h+2*(1+eps1”3)*b™3*kw/ (6*k*h)), 3*ml*eps2* (1-
eps1”2) *Tw*b™2/ (6*k*h); 0,m2];
K = [2*k*(1+eps1™3)*b™3*kw/(6*k*h), 3*k*eps2* (l-epsl”2)*Tw*b”2/ (6*k*h);
1/2*% (1-epsl1”2) *eps2*kw*b”2, (l+epsl) *kw*b];
C = [2*c*(l+epsl”™3)*b™3*kw/ (6*k*h), 3*c*eps2* (l-epsl”™2)*Tw*b*2/ (6*k*h);
1/2* (1-epsl”2) *eps2*cw*b”2, (l+epsl) *cw*b];

K

A0 =(K+4*M/ (dt"2)+2*C/dt) ;
Al =4*M/(dt™2)+2*C/dt ;
A2 =4*M/dt+C ;

u(:,i) = inv{a0)*( [-ml*g*uu(i) ; -m2*gl+Al*u(:,i-1)+A2*v(:,i-
1)+M*a(:,i-1));
v(:,i) = 2/dt*(u(:,1i u(:,1i-1))- v(:,1i-1);

£ o~
—

a(:,1) = 4/(at”2)~* t,i)- u(:,i-1)- dt*v(:,1i-1)-1/4*dt"2* a(:,1i-

ux (i) = (3*(l-epsl”2)*eps2*Tw*b"2+*u(2,1i)
+2* (1+epsl”3) *kw*b™3*u(1,1))/ (6*k*h);

Soulévement du bord gauche de la semelle

if (VL(i-1)> 0)

eps2 = -1;

epsl = eps2*u(2,i-1)/(b*u(l,i-1));

k3
M = [ ml*(h+2* (1+epsl1”3)*b"3*kw/(6*k*h)), 3*ml*eps2+*(1-
epsl1”2) *Tw*b*2/ (6*k*h); 0,m2];
K = [2*k* (1l+epsl”3)*b*3*kw/ (6*k*h), 3*k*eps2* (1-epsl”2)*Tw*b™2/(6*k*h) ;
1/2*(1-epsl”2) *eps2*kw*b”2, (l+epsl) *kw*b];
C = [2*c* (l+epsl”3)*b*3*kw/ (6*k*h), 3*c*eps2* (l-epsl”™2)*Tw*b"2/ (6*k*h);
1/2*% (1-epsl1”2) *eps2*cw*b™2, (l+epsl)*cw*b];
A0 =(K+4*M/(dt"2)+2*C/dt) ;
Al =4*M/(dt™2)+2*C/dt ;
A2 =4*M/dt+C ;

uf(:,i) = inv(a0)*( [-ml*g*uu(i) ; -m2*gl]+Al*u(:,i-1)+A2*v(:,1i-
1)+M*a(:,1i-1));

vi{:,1) = 2/dt*(u(:,1)- u(:,i-1))- v{(:,1i-1);

a(:,1) = 4/(@t"2)*{ u(:,1)- u(:,i-1)- de*v(:,i-1)-1/4*at™2* a(:,i-

ux (i) = (3*(1-

epsl”2) *eps2*Tw*b™2*u(2,1) +2* (1l+eps1”3) *kw*b™3+*u(1,1i) )/ (6*k*h) ;
end

Soulévement du bord droit de la semelle

1if (VR(i-1)> 0)
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eps2 = 1;
epsl = eps2*u(2,i-1)/(b*u(1,1i-1));
%
M = [ ml* (h+2* (l+epsl1™3)*b"3*kw/ (6*k*h)), 3*ml*eps2*(1-

epsl”2) *Tw*b™2/ (6*k*h); 0,m2];

K = [2*k*(l+epsl™3)*b"3*kw/ (6*k*h), 3*k*eps2* (l-epsl”™2)*Tw*b"2/(6*k*h) ;
1/2*(1-epsl”2) *eps2*kw*b”2, (l+epsl) *kw*b];

C = [2*c*(1l+epsl”™3)*b"3*kw/ (6*k*h), 3*c*eps2*(l-epsl”2)*Tw*b"2/ (6*k*h);
1/2*(1-epsl”2) *eps2*cw*b”™2, (l+epsl) *cw*b];

°

3

A0 = (K+4*M/(dt"2)+2*C/dt) ;
Al =4*M/ (dt™2)+2*C/dt ;

A2 =4*M/dt+C ;

inv(A0)*{ [-ml*g*uu(i) ; -m2*g]+Al*u(:,i-1)+A2*v(:,i-

2/dt* (u(:,i)- u(:,i-1))- v{(:,i-1);
4/(de”™2)* ( u(:,i)- u(:,i-1)- dt*v(:,i-1)-1/4*dt™2* a(:,1i-

ux (i) = (3*(1-

end

VL (1) = u(2,1)+ b*u(l,1i);
VR (1) = u(2,1)- b*u(1,1);
sauvgarder les déplacements, vitesses et accélérationsg:

déplacements

tabTHETA(i-1) = u(l,i-1);

abv(i-1) = 1000*u(2,1-1);
tabX (i-1) =1000* (ux(i-1)+h*u(1,i-1));
tabUX(i-1) = ux(i-1)/u_cr;
tabVL(i-1) = 1000*VL(i-1);
tabVR(i-1) = 1000*VR(i-1);
vitesses
tabUP(i-1) = v(1,i-1);
tabvP({i-1) = v(2,1i-1);
acceleration

tabUPP(i-1) = a(l,i-1);

tabVPP(i-1) = a(2,1i-1);

tabT1(i-1)= ti(i-1);
end



