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Resume 

Le cadre du projet se situe dans le milieu chirurgical. Lorsque le chirurgien desire operer 

un patient, il peut le faire soit par une chirurgie invasive, soit par une chirurgie 

minimalement invasive. La chirurgie minimalement invasive se fait par endoscopic 

Cela consiste a inserer les instruments chirurgicaux dans le corps du patient a l'aide 

d'incisions. Une petite camera, l'endoscope, est aussi inseree afin de guider le chirurgien 

tout au long de 1'operation. 

La chirurgie par endoscopic a de nombreux avantages pour le patient. Elle entraine 

moins de douleur, reduit la duree de 1'hospitalisation et permet un prompt 

retablissement. Cependant, elle rend la tache difficile pour le chirurgien. II est par 

exemple prive de la vision en trois dimensions puisque l'endoscope ne restitue qu'une 

vision en deux dimensions. Pour attenuer cette contrainte, des recherches ont ete faites 

afin de creer un environnement de realite augmentee, environnement dans lequel un 

modele virtuel 3D de l'organe a operer est superpose au model reel. Les etapes 

necessaires a cette superposition requierent une bonne segmentation des objets. 

Cependant la source lumineuse de l'endoscope, etant trop pres des organes et des outils, 

reflechit en provocant des artefacts lumineux detruisant 1'information utile et empechant 

une bonne segmentation. 

Le but de ce projet est de detecter les reflexions speculates presentes dans une sequence 

video et les corriger. Ces deux etapes doivent etre effectuees en temps reel afin de rendre 
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le traitement des sequences videos transparent au chirurgien. Afin d'atteindre les 

objectifs de temps reel, nous utilisons une architecture materielle, Le FPGA. 

Deux methodes de detection sont utilisees pour localiser la position des reflexions 

speculates. La premiere utilise un histogramme de couleur afin de detecter l'intensite 

minimale des pixels speculates. La deuxieme methode se sert simultanement de deux 

plans (saturation et intensite) d'une trame. Elle consiste a effectuer un seuillage a la fois 

sur la trame de saturation et la trame en nuance de gris afin d'isoler la zone de reflexion 

speculaire. La methode de correction utilisee se sert du principe de restauration d'image. 

II s'agit de prelever 1'information provenant du contour de la zone a corriger et la 

propager a l'interieur de cette zone. Afin de limiter l'utilisation des ressources du FPGA, 

plusieurs optimisations sont proposees pour 1'implementation de ces differentes 

methodes. 

Les objectifs de temps reel sont atteints. Le systeme implemente detecte et corrige les 

reflexions avec un delai de 0.8 ms en utilisant 91% des LUTS disponibles 
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Abstract 

The framework of the project is surgery. When operating a patient, the surgeon can 

either proceed by an invasive surgery or a minimally invasive surgery. The latter is made 

by endoscopy. It consists in inserting surgical instruments through cuts inside the 

patient's body. A small camera, the endoscope, is also inserted to guide the surgeon 

throughout the operation. 

The endoscopic surgery has many advantages. In fact, it causes less pain, reduces the 

length of hospitalization, and allows for a quick recovery. However, it has some 

disadvantages for the surgeon. The endoscopic surgery enables solely a two-dimensional 

vision. Though, a three dimensions vision is more appropriate. To alleviate this 

constraint, research has been done to create an augmented reality surgical environment, 

an environment in which a virtual 3D model of the organ is superimposed on the real 

model. Therefore, this overlay requires an accurate segmentation of the objects. Note 

that, the light source of the endoscope, being too close to the organs and tools, reflects 

some luminous artefacts that damage useful information and prevent an accurate 

segmentation. 

The aim of the project is to find out the specular reflections in a video sequence and to 

correct them. These two steps must occur in real time in order to transmit the video 

footage in a clear and a transparent way to the surgeon. The FPGA, a hardware 

architecture, is used to achieve these real time objectives. 
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Two detection methods are used to locate the position of the specular reflections. The 

first method consists in using a color histogram to detect the minimal intensity pixel of 

these reflections. The second method uses simultaneously two plans (saturation and 

intensity) of a frame. This method consists in making a threshold on both the saturation 

and intensity plans in order to isolate the specular area. The principle of image 

inpainting is used as the correction method. Indeed, it collects information around the 

area to correct, and spreads it inside that same area. To cope of with limited resources of 

the FPGA, several enhancements are proposed to implement these methods. 

The real-time objectives are achieved. The system detects and corrects specularities 

within 0.8 ms and uses 91% of the available LUTs 
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Introduction 

Les avancees dans l'imagerie medicale ont joue un grand role dans le developpement de 

chirurgies minimalement invasives dans une variete de procedures telles que la 

cardiologie, la neurochirurgie, l'orthopedie, l'urologie et l'oncologie. Cependant les 

difficultes inherentes aux techniques minimalement invasives ont impose des limites a 

leur applicabilite : controle d'instruments reduit, coordination mains-yeux inusuelle, vue 

reduite du champ d'operation, procurent des restrictions supplementaires au chirurgien 

et requierent une dexterite et une habilete considerables. D'un autre cote, ces procedures 

apportent beaucoup d'avantages au patient et au systeme de sante : incisions plus petites 

par rapport aux techniques d'operation usuelles, preservation du tissu, periode de 

convalescence reduite. 

L'utilisation de l'assistance video a permis de faciliter l'operation et done d'aider le 

chirurgien dans sa tache. Elle consiste en une petite camera appelee endoscope qui est 

inseree dans l'organisme a l'aide d'une petite fissure. L'endoscope est relie a un 

moniteur video qui presente le site chirurgical. Cela permet au chirurgien de mieux 

orienter et de controler la position de ses instruments qui sont aussi inseres a l'aide de 

petites incisions. Pour une bonne marche de l'operation, la video se doit d'etre la plus 

nette possible. Cependant la source lumineuse, placee a proximite de la camera, et done 

tres pres des organes et des instruments, provoque un eblouissement lorsqu'elle reflechit 

et conduit par la meme occasion a une degradation des conditions d'operation. 
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Augmenter la qualite video semble done necessaire pour la bonne marche de l'operation, 

surtout dans la mesure ou on aimerait constituer un environnement de realite augmentee. 

Cela consisterait a detecter et attenuer les zones tres eblouissantes a partir des 

informations provenant de Pendoscope, puis les retransmettre au moniteur video. Ce 

processus devrait s'effectuer de maniere discrete et rapide, de telle sorte que le 

chirurgien ne se rende pas compte qu'un traitement supplemental est effectue. En 

d'autres termes il devrait se faire en temps reel et utiliser le moins de memoire possible 

pour augmenter sa portability afin d'etre utilisable dans une salle d'operation et de 

s'integrer au systeme d'operation. C'est sur cette base que nous avons decide d'effectuer 

une implementation materielle d'un systeme de traitement d'image capable de detecter 

les zones de reflexion et les corriger. Nous etudions done la faisabilite d'un tel systeme a 

l'aide d'un FPGA (Field Programmable Gate Array), un systeme numerique 

programmable permettant d'effectuer des conceptions materielles de maniere flexible. 

La suite du memoire sera organisee de la maniere suivante : 

Le chapitre 1 presentera la mise en contexte et les objectifs : mise en contexte sur 

1'endoscopic et la realite augmentee et presentation du probleme lie aux reflexions, mise 

en contexte sur les systemes de traitement d'image et objectifs du projet 

Le chapitre 2 traitera des algorithmes utilises dans le cadre de la detection et de la 

correction des reflexions speculates; deux algorithmes de detection sont principalement 

decrits : un ayant une approche unidimensionnelle et l'autre ayant une approche 

bidimensionnelle; la correction quant a elle est faite a l'aide d'une methode utilisant le 

principe de restauration d'image 



3 

Le chapitre 3 traitera de 1'architecture du systeme a implemented A partir des differentes 

propositions enoncees dans le chapitre 2, des algorithmes qui en ressortent sont 

optimises afin de permettre une implementation materielle efficace. 

Le chapitre 4 presentera les resultats des algorithmes, et fera une comparaison des deux 

methodes de detection implementees. 
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Chapitre 1 Mise en contexte 

1.1 Contexte chirurgical 

1.1.1 Endoscopic 

L'endoscopie peut etre utilisee soit pour le diagnostic, soit pour traiter une maladie. Au 

depart (il y a un demi-siecle), elle etait utilisee par les chirurgiens gynecologues a des 

fins diagnostiques pour explorer notamment des douleurs pelviennes [1]. 

Dans les annees 80, quelques chirurgiens ont enleve l'appendice (appendicectomie), la 

vesicule (cholecystectomies puis progressivement pratiquement toutes les interventions 

de la coeliochirurgie (operation qui consiste a intervenir au niveau du pelvis ou de 

l'abdomen) ont ete effectuees. D'autres specialties l'ont ensuite adopte : la chirurgie 

thoracique (par thoracoscopie), l'urologie et plus recemment la chirurgie 

cardiovasculaire. 

Dependamment du type de chirurgie, un gaz inerte est insere dans la paroi abdominale 

afin de creer un espace gazeux eloignant la paroi des visceres et facilitant la 

manipulation des instruments; ensuite, des instruments creux anpeles trocarts sont mis 

en place a l'aide d'incisions de 5 a 10 mm; ces instruments permettent le passage de 

1'endoscope et d'autres instruments tels que la pince tractrice, le materiel de suture, 

l'aspiration et l'irrigateur. La figure 1.1 montre l'insertion de differents instruments et 

de l'endoscope dans 1'organisme. 
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Figure 1-1 Insertion ({'instruments chirurgicaux et de 1'endoscope! http://www.lasfce.com) 

L'endoscopic est qualifiee de minimalement invasive car elle a de multiples avantages 

par rapport a la chirurgie traditionnelle qui se fait par une grande incision (laparotomie) : 

elle donne moins de douleur, elle a moins de consequences respiratoires, elle permet un 

retablissement precoce ce qui reduit les complications du decubitus, elle reduit la duree 

d'hospitalisation permettant tres souvent la chirurgie en ambulatoire, elle permet une 

recuperation plus rapide [1]. 

Ce type de chirurgie necessite cependant une formation adequate, car elle entraine de 

nouvelles difficultes pour le chirurgien : 

• II est prive de la vision en trois dimensions, puisque l'endoscope ne restitue qu'une 

vision en deux dimensions : il n'a done pas la notion de relief, et est oblige de le 

deduire mentalement. 

• II est egalement prive de la possibility de toucher les organes avec les mains : il n'a 

done pas l'information tactile naturelle, mais seulement un retour de force qu'il 

pergoit a travers les instruments. 

http://www.lasfce.com
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• II doit introduire ses instruments settlement par quelques orifices, perdant ainsi la 

mobilite nature lie des instruments qu'il aurait en chirurgie classique. 

1.1.2 La realite augmentee 

Pour reduire les complications liees a l'utilisation de 1' endoscope, des recherches ont ete 

faites afin de creer un environnement de realite augmentee [2,3]. II s'agit d'un 

environnement dans lequel un modele virtuel 3D est superpose a la perception que nous 

avons naturellement, le tout en temps reel. En d'autres termes, il s'agit de la 

superposition d'images virtuelles aux images reelles, dans le cadre de la vision. Les 

principals etapes necessaires a une superposition precise sont [4] : 

• La creation d'un modele 3D de la structure anatomique interne de la partie ou se 

deroulera V intervention; cette structure est extraite grace a des scans effectues avant 

l'operation (tomodensitometrie ou CT-scan); au cours de cette procedure, des 

marqueurs sont places sur la peau du patient et sont visibles sur les scans. 

• L'alignement du modele 3D sur le patient: pour permettre un bon alignement, des 

marqueurs retro-reflectifs sont aussi places sur le patient dans la salle d'operation. 

Des cameras infrarouges placees sur le plafond permettent de detecter ces marqueurs 

et de les faire correspondre a ceux places sur le modele 3D. 

• Le suivi des instruments chirurgicaux : pour permettre la visualisation de la position 

des instruments par rapport au modele 3D, les instruments doivent etre detectes et 

suivi en temps reels. 
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Figure 1-2 Etapes de la reconstitution dans le cadre de la realite augmentee 

1.2 Problemes lies aux reflexions 

Le chirurgien peut se retrouver facilement ebloui lorsqu'il pratique son operation a 

l'aide de 1'endoscope car la source lumineuse peut se retrouver trop pres des organes. De 

plus, la bonne marche des principales etapes resumees dans la figure 1.2 passe par une 

bonne segmentation des images endoscopiques pendant l'operation, done en temps reel. 

Cependant la source lumineuse de l'endoscope, etant trop pres des organes et des outils, 

est reflechie en provoquant des artefacts lumineux detruisant 1'information utile et 

empechant une segmentation adequate. En effet, il sera facile pour un algorithme de 

segmentation de considerer une zone eblouissante comme etant une region a part entiere 

alors qu'elle appartient a la meme region que les pixels voisins. 



8 

La reflexion est le changement d'orientation d'une onde au contact d'une surface 

separant deux milieux; elle peut etre speculaire ou diffuse (figure 1.3) en fonction du 

type de surface sur laquelle elle est reflechie et de son angle d'incidence. 

Une reflexion diffuse se produit lorsque la lumiere se reflechit dans une multitude de 

directions au contact d'une surface en general granuleuse ; dans ce cas, l'energie 

incidente est repartie dans toutes les directions de reflexion. C'est ce type de reflexion 

qui permet de voir la couleur et la forme des objets. 

Une reflexion speculaire se produit lorsque l'onde incidente reflechit dans une seule 

direction. Toute l'energie incidente est done reflechie dans une seule direction, ce qui 

provoque un eblouissement lorsque la source lumineuse est proche de la surface de 

reflexion. Ce type de reflexion se produit au contact d'une surface lisse et/ou luisante. 

surface surface 

normale 

Figure 1-3 Manifestations d'une reflexion diffuse (a gauche) et speculaire (a droite) 

II est done utile de supprimer la composante speculaire de la reflexion presente dans la 

video provenant d'un systeme endoscopique afin d'ameliorer son rendu. La figure 1.4 

presente des endroits tres eblouissants qui degradent la qualite de l'image. 
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Figure 1-4 Exemple de reflexions dans une image provenant d'une sonde endoscopique: on 
remarque bien la presence d'endroits tres eblouissants (encercles) 

1.3 Le FPGA par rapport au traitement d'images 

Les systemes de traitement de signaux peuvent etre implemented de deux manieres 

differentes. 

Le traitement peut se faire par microprocesseur. En general le concepteur d'un 

processeur construit un element programmable utilisable pour une variete d'applications 

afin de maximiser la quantite d'elements vendus. Etant donne que le concepteur ne sait 

pas quel programme sera implements, il cree une memoire de programmes qui n'est pas 

fixe et un chemin de donnees assez general pour pouvoir supporter differents types 
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d'applications. Cela permet d'alleger grandement les contraintes d'implementation. 

Utiliser un microprocesseur pour construire son programme se revele done assez facile 

car il n'est pas necessaire de s'inquieter de son implementation materielle. II aura en 

plus une tres grande flexibilite, car changer une fonctionnalite reviendrait juste a changer 

de programme et le recompiler; le prix unitaire sera aussi de faible cout pour de petites 

quantites. Cependant les performances pour des applications specifiques, en l'occurrence 

le traitement de signal, ne seront pas optimales [5]. 

Pour augmenter le niveau de performance, il existe des microprocesseurs specialement 

dedies au traitement numerique de signal appeles DSP (Digital Signal Processors). lis 

possedent un chemin de donnees specialise, comportant des unites MAC (Multiply-

Accumulate) accelerant les operations de convolution et aussi du materiel special 

permettant de lire des donnees sequentiellement en memoire tout en executant certaines 

operations. Les DSPs procurent done une certaine flexibilite tout en offrant une 

meilleure performance que les microprocesseurs generaux. 

Mis a part 1'implementation par processeur general, il est possible d'utiliser des 

processeurs specialises pour le traitement de signaux. Les processeurs specialises sont 

des circuits numeriques implemented pour executer uniquement un programme 

specifique. lis ont done une memoire de programme fixe et un chemin de donnees 

specialise. Cela leur procure une tres bonne performance, une faible taille mais le temps 

de design devient long et la flexibilite nulle. Ces processeurs peuvent etre concus sur des 

ASICs (Application-Specific Integrated Circuits): une fois le schema electrique du 

circuit acheve, il est converti en elements logiques puis envoye en fonderie; la 



11 

conception sur ASICs entraine cependant un cout de developpement tres eleve. lis 

peuvent aussi etre concus sur des FPGAs (Field Programmable Gate Arrays). 

Les FPGAs sont des matrices de blocs logiques connectes par un reseau 

d'interconnexion. Les blocs logiques et le reseau sont reprogrammables, ce qui permet 

d'implementer de maniere materielle une application tout en preservant la capacite de 

changer differentes fonctionnalites de maniere aisee. Les FPGAs offrent done un 

compromis entre la flexibilite des microprocesseurs et la performance en vitesse des 

ASICs. Les gains en performance sont obtenus en eliminant l'etape « fetch-decode-

execute» des microprocesseurs et en exploitant le parallelisme inherent aux 

architectures materielles. De plus, il est beaucoup plus facile d'effectuer des tests et 

simulations sur une architecture materielle car on n'est pas en permanence confronte a 

des routines d'interruptions permettant d'acceder a des fonctions independantes du 

programme implements, ce qui est le cas sur les microprocesseurs. La figure 1.5 resume 

ces differentes architectures. 

D'une maniere generate, le traitement d'images en temps reel est difficile a atteindre sur 

un microprocesseur a cause de differents facteurs tels que la grande quantite de donnees 

que represente une image : pour une video NTSC, les trames sont recues a une frequence 

de 30 trames par seconde, avec une resolution de 858x525 pixels. Pour executer des 

operations sur chaque pixel en temps reel, le processeur doit effectuer 40.5 millions 

d'operations a la seconde, sans tenir compte des etapes necessaires au stockage et a la 

recuperation des donnees provenant de l'exterieur. D'autre part, plusieurs applications 
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necessitent que differents calculs soient effectues sur le meme pixel, ce qui accroit 

encore plus le nombre d'operations par seconde. 

performance 

Figure 1-5 Differentes implementations possibles pour un systeme de traitement d'images 

Un bon compromis entre les differentes architectures presentees ci-dessus est done le 

FPGA, malgre les contraintes liees a son utilisation : en general les programmes sont 

d'abord congus de maniere serielle, sur un microprocesseur, puis transcrits pour une 

implementation materielle; la principale difficulte sera done de transformer une 

application serielle en une application materielle en tenant compte des contraintes de 

bande passante, de temps, lies a la parallelisation des algorithmes. 

1.4 Objectifs 

L'objectif du projet est done 1'implementation d'un systeme de traitement video sur 

FPGA permettant la detection et la correction de reflexions speculates sur des images 

endoscopiques. Ce systeme doit etre capable de fonctionner en temps reel afin d'aider le 
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chirurgien lors de l'operation d'un patient et d'etre implements dans une salle a realite 

augmentee. Plus en details, nous devons done : 

• Trouver des algorithmes de detection et correction de reflexions speculates dans 

les images endoscopiques. 

• Rendre ces algorithmes implementables sur un FPGA a faible capacite, e'est-a-

dire minimiser le cout de ces algorithmes en termes de ressources materielles. 

• Implementer ces algorithmes en essayant d'atteindre le temps reel tout en 

conservant d'excellentes qualites visuelles. 
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Chapitre 2 Algorithmes pour la detection et la 

correction des reflexions speculaires 

Dans ce chapitre nous presentons deux types d'algorithmes de traitement, les 

algorithmes de detection et les algorithmes de correction. Apres une revue de litterature 

des algorithmes existants, nous nous concentrons sur ceux que nous avons choisis pour 

effectuer notre implementation. Nous presentons done deux approches dans ie cadre de 

la detection et differentes methodes de correction que nous combinerons afin d'obtenir 

ceux que nous implementerons. 

2.1 Algorithmes de detection 

Selon le modele de reflexion dichromatique [6], une image est une combinaison lineaire 

de sa composante diffuse Cb et de sa composante speculaire Ct: 

C(x, y) = mt Ct (x, y) + mb Cb (x, y) (2.1) 

ou rrij et mb sont des facteurs dependant de la geometrie de la scene, de Tangle 

d'incidence de la source lumineuse, et de Tangle de vision de Timage. II est done 

possible de dissocier les deux composantes, et par la meme occasion de ne retenir que la 

composante diffuse. Plusieurs techniques ont done ete proposees afin de retirer la 

composante speculaire de Timage. 

Certaines de ces methodes se servent de plusieurs angles de vision de la meme image. 

Par exemple, Lee et Bajcsy se servent d'une technique appelee «spectral 

differencing » [7]. Celle-ci se base sur le fait que Tirradiance (flux de radiation arrivant 
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sur une surface par unite d'aire) de l'image provenant d'une reflexion lambertienne 

(reflexion diffuse) ne change pas en fonction de Tangle de vision, contrairement a 

l'irradiance provenant d'une reflexion speculaire. II suffit done, apres analyse, de 

detecter les points inconsistants au travers des differents points de visions de l'image. 

Cette methode n'est pas applicable dans le cas de 1'endoscope car la source lumineuse 

est solidaire de la lentille. En plus de cela, elle serait difficile a utiliser en temps reel a 

cause de la complexity de ses calculs et la quantite de donnees a stocker pour une seule 

image. 

Certaines methodes adoptent une approche statistique, mais ne prennent pas en compte 

le processus de formation de l'image [8]. D'autres methodes ayant plutot une approche 

physique prennent bien en compte le processus de formation. C'est le cas de Schltins et 

Koschan qui utilisent le cube RGB afin de determiner le nombre de materiaux dans la 

scene, les segmentent, et ensuite les separent respectivement entre leurs composantes 

diffuse et speculaire [9]. Bien qu'efficace, cette approche ne fonctionne correctement 

que pour des images ayant peu de textures et un arriere-plan uniforme; en plus elle est 

couteuse a cause du traitement en 3D de l'image. Elle serait done difficile a implementer 

pour une application temps reel. 

Par contre, St-Pierre part du principe que le plan RGB est le mieux adapte pour detecter 

des reflexions et construit trois histogrammes pour chacune des composantes rouge, vert 

et bleu [10]. II determine ensuite la position commune aux trois histogrammes ou il y a 

reflexion speculaire. 
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En se basant sur les precedentes methodes, nous etudions deux approches qui permettent 

de detecter les pixels speculates de maniere dynamique (en se servant des informations 

provenant de 1'image): une approche a histogramme unidimensionnel et une approche 

bidimensionnelle. 

2.1.1 Approche unidimensionnelle 

2.1.1.1 Decomposition en histogrammes 

Les histogrammes d'une trame de couleur representent le nombre de pixels en fonction 

des intensites de cette couleur. lis sont construits en divisant l'espace RGB en un certain 

nombre de cases ou plages d'intensite, puis en comptant le nombre de pixels de l'image 

dans chaque case. lis permettent done de diviser la trame en differentes 

regions d'intensite. On peut decomposer une trame en trois histogrammes, un pour 

chacune des couleurs du plan RGB. En plus, nous travaillons avec des sequences 

provenant de l'interieur du corps humain, do mine par la couleur rouge. On peut done 

supposer que la detection d'une couleur blanche revient a detecter une reflexion 

speculaire. La couleur blanche etant formee des couleurs rouge, verte et bleue, la 

detection simultanee de ces trois couleurs dans une plage d'intensites e levees des 

histogrammes indique que tous les pixels faisant partie de cette region d'intensites sont 

des reflexions speculaires [10]. 

Par ailleurs, on constate que la composante S du plan HSV permet de faire ressortir les 

reflexions speculaires (figure 2.1). 

Cette composante se calcule assez aisement a partir des composantes R, G, B : 
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„ max(K,G,£)-min(R,G,£) 
o = (2.2) 

max(R,G,fl) 

Bien que la reflexion soit bien visible a l'oeil nu, 1'histogramme de cette composante ne 

permet pas de delimiter la region des reflexions speculates. II est quand meme possible 

d'utiliser la composante S afin de rehausser l'image dans le plan RGB et d'y mettre plus 

en evidence les reflexions speculates. Cela se fait en multipliant les canaux RGB par (1-

S). La figure 2.2 permet d'observer les effets du rehaussement. 

Figure 2-1 Image dans le plan RGB (a gauche) et sa composante S correspondante (a droite) 

Le rehaussement permet de mieux delimiter les regions de reflexions speculates dans 

les histogrammes car il accentue la difference de valeur entre les zones d'intensite 

moyenne par rapport a la trame (en d'autre terme les zones de reflexion diffuse) et les 

zones de forte intensite. Cela entraine une bonne demarcation dans 1'histogramme, les 

pixels provenant de la reflexion diffuse etant tous regroupes vers la gauche. 

Grbger et al. observent que pour une image en niveaux de gris, une detection de 

reflexions speculates est largement possible par un simple seuillage car celles-ci ont des 
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intensites independantes des autres pixels de l'image [11]. L'image en niveaux de gris 

est calculee en combinant les composantes RGB. II s'agit en fait de la composante Y du 

plan YUV, donnee par l'equation 2.3: 

Y = 0.299/? + 0.587G + 0.1 UB (2.3) 

La figure 2.2 presence l'image rehaussee transformee en nuance de gris. 

Figure 2-2 Multiplication de l'image en figure 1 par la composante (1-S) (a gauche) et son plan Y 
(a droite); on constate que les reflexions se distinguent mieux dans l'image rehaussee 

2.1.1.2 Debruitage et detection du pic speculaire 

Comme decrit plus haut, l'histogramme est normalement divise en deux grandes 

regions : une region ou sont localises la plupart des pixels, et une autre delimitant le pic 

speculaire. Detecter la region speculaire reviendrait done a determiner le debut de la 

seconde region. Ce processus n'est pas aise a cause de la nature bruitee de 

l'histogramme. En effet, la presence de plusieurs autres regions empecherait 

l'algorithme de detection de delimiter la veritable region speculaire. On peut constater 

en observant la figure 2.3 que notre algorithme de detection prendra le bruit comme 
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etant la veritable region speculate si un debruitage n'est pas effectue sur rhistogramme. 

II convient done de debruiter rhistogramme avant d'effectuer la detection. Pour 

effectuer le debruitage, St-Pierre constate que l'approche par transformation en 

ondelettes donne de meilleurs resultats qu'une approche frequentielle ou une approche 

par approximation de fonctions continues [10]. 

Debut bosse specula ire reelle 

Debut bosse speculaire 
detectee 

Debut bosse speculaire 
detectee 

Figure 2-3 histogramme avant debruitage (en haut) et apres debruitage (en bas) 

La transformation en ondelettes permet de representer le signal avec plus ou moins de 

details. Elle transforme le signal en deux groupes de coefficients : les coefficients 

d'approximation conservant la forme meme du signal, et les coefficients de details, 

permettant de dormer plus de details au signal. Le bruit etant generalement stocke dans 
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les coefficients de detail, faire un debruitage du signal revient ainsi a effectuer une 

transformation en ondelettes, puis effectuer un seuillage des coefficients de detail. 

Ensuite il suffit d'effectuer la transformee inverse. 

II faudrait done etre capable de determiner un seuil en dessous du quel on ne considere 

pas les petits coefficients ; Sudha et Al. presentent plusieurs methodes de seuillages dont 

les principales sont le seuillage doux et le seuillage dur [22]. Le seuillage dur veut que 

les coefficients soient retenus uniquement s'ils depassent une certaine valeur seuil; le 

seuillage doux reduit les coefficients au lieu de les mettre directement a 0 s'ils sont 

inferieurs a un certain seuil. La technique de seuillage que nous utilisons est celle du 

VisuShrink de Donoho et Johnstone [23]. C'est un seuillage dur qui utilise le seuil 

universel defini par l'equation 2.4 : 

T = aplogeM (2.4) 

Ou <J est la variance des coefficients de detail et M le nombre de donnees. 

La detection du pic speculaire consiste a determiner le debut de la derniere region de 

rhistogramme ; tous les pixels ayant des intensites superieures a cette valeur feront 

partie du pic speculaire. La detection se fait en deux etapes. 

L'histogramme est derive une premiere fois. Si la valeur de la derivee est superieure a 0 

on lui attribue la valeur maximale (255 si les donnees sont representees sur 8 bits), sinon 

on lui attribue la valeur 0. 

II est ensuite derive une seconde fois, et le meme procede de seuillage est applique. Le 

resultat est une suite de pics dont le dernier correspond au debut de la region speculaire. 
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La figure 2.4, prise a titre d'exemple, represente les deux etapes de detection effectuees 

sur un signal sinusoidal. 
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Signal debruite 

Signal apres la premiere derivation 

Signal apres la deuxieme derivation 

Figure 2-4 Etapes de la detection du pic speculaire 

Pour determiner les zones de reflexion speculaire dans 1'image, il suffit done de chercher 

tous les pixels de 1'image dont l'intensite est superieure ou egale a la valeur du debut de 

la region speculaire determinee lors de la seconde derivation. Les pixels faisant partie de 

la region speculaire seront done mis en blanc, et les autres en noir. A la fin on obtient un 
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masque speculaire. Ce masque speculate indique la position exacte des regions 

speculates dans l'image (figure 2.5). 

Figure 2-5 Masque speculaire de l'image en figure 1 

2.1.3 Approche bidimensionnelle 

II est possible de detecter la presence des reflexions speculates en adoptant une methode 

bidimensionnelle. Cette methode se base sur le fait que les reflexions speculates sont 

facilement visibles dans le plan S, ainsi que dans les images en nuances de gris. II est 

done possible de mettre en relation ces deux plans afin d'effectuer une bonne 

segmentation de l'image. 

Ortiz et Torres construisent un diagramme appele diagramme MS et recherchent les 

reflexions speculates dans une zone precise de ce diagramme [12]. Ce diagramme a 

pour abscisse M et pour ordonnee S ; la premiere etape consiste a determiner le plan M 

(figure 2.6). La formule est la meme que celle employee dans [12]. Elle correspond tout 

simplement a la moyenne des composantes RGB (equation 2.5): 
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M=-(R+G+B) 
3 

(2.5) 

A partir de M, on determine S (figure 2.6). Contrairement au plan S defini lors de 

l'approche precedente, celui-ci est normalise par la norme LI definie dans [13]. En effet 

Angulo et Serra constatent que cela permet de mieux delimiter les differentes regions de 

l'image (equation 2.6): 

5 = 
-{2R-G-B) = -{R-M\si{B+R)>2G 

. -(R + G-2B) = -{M-B\si{B + R)<2G 

(2.6) 

\tff i 

* v . « , 

Figure 2-6 Plan M (a gauche) et plan S (a droite) de l'image en figure 1 

Une fois le diagramme MS defini, Ortiz et Torres delimitent une zone precise et 

considerent tous les pixels appartenant a cette zone comme etant des reflexions 

speculates ; etant donne qu'une reflexion speculaire est naturellement caracterisee par 

une tres grande intensite et une saturation tres basse, cette zone situee dans la partie 
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inferieure droite (figure 2.7) du diagramme est delimitee par les equations c3, c4 et S{ • 

La constante sl correspond a la zone de saturation des couleurs primaires G et B, c3 et 

c4 sont definis par l'equation 2.7 

3 
c3 = ~ - ( m - 255), Vm e [m^m^ ] 

2 

c4 = -3(ra - 255), Vm € [ m 4 , m ^ ] 
(2.7) 

_ 2 _5 
avec ^3 - "^max , W4 ~ T^max et W , ^ la valeur maximale dans le plan M. 

Figure 2-7 Zone siege des reflexions speculaires dans le diagramme MS selon [12] 

2.1.4 Detection du lobe speculaire 

La bosse speculaire presente uniquement les zones de forte intensite, a savoir les pics 

speculaires. Autour de ces pics, il existe des zones de transition allant jusqu'aux zones 

de reflexion diffuse, les lobes speculaires. Par endroit on peut aussi detecter autour de 
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ces pics des artefacts, de couleur noire ou jaune fonce. La figure 2.8 permet de mettre 

en evidence des artefacts de couleur jaune entourant une region speculaire que nous 

avons coloree en couleur turquoise. Ces artefacts sont souvent causes par la source 

lumineuse situee trop pres de la surface et par une saturation de la camera. 

Ces artefacts ayant des couleurs qui ne peuvent etre consideres ni comme diffuses, ni 

comme speculates devraient etre retires afin de faciliter la correction. En resume il 

faudrait trouver un moyen d'inclure dans le masque speculaire le lobe speculaire et les 

artefacts ; nous considerons dans la suite que les artefacts font partie du lobe. 

Bhattacharyya [14], puis Saint-Pierre [10] ont propose dans leurs memoires respectifs 

une approche commune dite descente en intensite. 

Figure 2-8 Artefact (en jaune) entourant une zone de pic speculaire 

Pour detecter le lobe, ils partent du pic speculaire et font une descente dans les 

dimensions horizontale et verticale jusqu'a ce qu'ils detectent la zone de reflexion 

diffuse. Les reflexions speculates, etant par definition plus brillantes que leur voisinage, 
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peuvent etre representees comme des montagnes avec pour sommet le pic speculaire et 

pour base la zone de reflexion diffuse. Dans la figure 2.9, une representation en 3D 

d'une reflexion prise sur le plan M de la figure 2.1 illustre ce phenomene ; la base est 

caracterisee par une variation d'intensite tres legere, contrairement a la « montagne » 

proprement dite dont la variation est beaucoup plus abrupte. 

Figure 2-9 Vue en 3D d'une reflexion. Observation du phenomene de montagne. En haut: Plan M a 
gauche, vue sur l'axe XY a droite. En bas: vue 3D. 

Pour determiner le lobe speculaire il faut partir de la zone d'intensite forte (le pic 

speculaire), et inclure tous les pixels voisins de celle-ci jusqu'a ce que la variation 
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d'intensite entre deux pixels voisins soit faible. Cela revient a comparer les pixels 

voisins dans les deux directions horizontale et verticale, et descendre jusqu'a ce qu'on 

trouve une variation d'intensite faible. Saint-Pierre propose de comparer deux pixels 

voisins a un seuil (equation 2.8), seuil qui represente 1% de la variation de l'intensite 

dans l'image [10]. La valeur du seuil est donnee par l'equation 2.9, ou le canal 

represente une trame (R, G, B, M, ou S); si la difference est inferieure a ce seuil alors on 

poursuit la descente. 

Pixel'actuei - pixelSuiv<mt> seuil (2.8) 

max( canal) — min( canal) 
seuil = (7 9) 

100 ^ ' } 

Bhattacharyya va plus loin et propose une deuxieme approche [14]. II propose un moyen 

de stopper la descente en intensite lorsqu'on a atteint les limites de l'objet. En procedant 

ainsi, il sera possible de limiter les degats dans la mesure ou le pic detecte n'en est pas 

vraiment un. En effet, l'algorithme de detection peut confondre une zone naturellement 

blanche ou brillante a un pic. Stopper la descente en intensite lorsqu'on atteint les limites 

d'un objet evitera de considerer la region entourant cet objet naturellement blanc comme 

etant un lobe speculaire. En plus, cela evitera de joindre involontairement deux regions 

voisines et done de propager des erreurs de correction de l'une dans l'autre. 

Malheureusement, ces methodes ne peuvent pas facilement etre appliquees pour un 

traitement en temps reel. La descente proposee par Bhattacharyya utilise une methode 

appelee retinex afin de detecter les contours des regions dans l'image. Cette methode 
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necessite des calculs supplemental s. Par contre le temps d'execution necessaire a la 

descente en intensite classique [10] variera en fonotion de la taille du lobe speculaire, et 

sera difficile a determiner. Dans une architecture materielle ou les ressources a utiliser 

sont connues d'avance, il faudra determiner de maniere arbitraire une largeur maximale 

du lobe. De plus, cette descente demandera enormement de ressources materielles. En 

effet, il faudra disposer de beaucoup de memoire et ressources pour effectuer la boucle 

necessaire a la descente dans les directions horizontal et verticale simultanement, 

surtout si le lobe est tres large. 

2.2 Correction des reflexions speculaires 

2.2.1 Description generate 

Une fois le masque speculaire cree, la prochaine etape est la correction des reflexions 

speculaires. Plusieurs recherches ont ete faites dans ce domaine, chacune utilisant des 

approches variees. 

Kokaram et al. utilisent 1'estimation du mouvement et des mode les autoregressifs afin 

d'interpoler les endroits a corriger a partir de trames adjacentes [15]. L'idee ici est de 

remplacer les pixels speculaires par des pixels non speculaires preleves a la meme 

position mais sur une trame voisine. L'avantage de cette methode est sa simplicity. II 

suffit de stocker en memoire plusieurs trames, marquer les regions speculaires, puis 

comparer leur contenu les unes avec les autres. Mais pour que cela fonctionne, il faudrait 

que les mouvements de la camera soient assez lents afin que les pixels restent 

approximativement a la meme position. II faudrait aussi que la source lumineuse soit 
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independante de la camera. De plus, cette methode necessite beaucoup de memoire pour 

le stockage des trames. 

Hirani et T. Totsuka proposent une methode qui exploite le contenu frequentiel et spatial 

de 1'image [16]. Grace au domaine frequentiel les auteurs sont capables de traiter 

l'image dans sa globalite. En alliant le domaine spatial ils evitent 1'inconvenient du 

traitement frequentiel qui est la perte de certains details tels que les contours. Leur 

methode trouve sa limite dans la necessite de connaissances a priori. En effet, 

l'utilisateur doit specifier une sous-image ayant la merae texture que la zone a corriger, 

ce qui pose deja un frein pour une implementation en temps reel. En plus de cela, la 

tache deviendra tres ardue s'il y a differentes textures dans la meme image. 

Lin propose une correction a partir de differentes vues de la meme scene [17]. Cela 

consiste a remplacer les pixels speculates d'une vue par les pixels sains de l'autre. 

L'avantage par rapport a [15] est qu'on n'a pas besoin d'utiliser beaucoup de memoire. 

Cependant, la methode est efficace si la meme scene est prise avec differents points de 

vue. Cela signifie avoir deux cameras, ce qui n'est pas usuel lors d'une chirurgie 

endoscopique. 

2.2.2 La restauration d'image ou image inpainting 

Les methodes qui se pretent bien aux videos endoscopiques et au traitement temps reel 

sont basees sur le principe de la restauration d'image. Ce sont des methodes qui 

consistent a prelever des informations provenant des contours d'une zone a corriger et a 

les propager a l'interieur de cette zone. 
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II est possible d'exploiter le contexte de l'application pour ameliorer et simplifier le 

processus de restauration d'image. Par exemple, St-Pierre a propose des hypotheses 

specifiques pour le cas d'images endoscopiques prises dans le corps humain [10]. Par 

exemple, on observe que pour un objet rond, les reflexions sont situees sur la partie 

centrale, done a l'interieur de celui-ci. Cela permet d'emettre l'hypothese que la majorite 

des reflexions ont une bordure a partir de laquelle on peut extrapoler l'interieur. 

Cependant, les methodes basees sur la restauration d'image atteignent leurs limites 

lorsqu'elles sont confrontees a des objets plats, dont les reflexions speculates sont 

reparties sur la totalite de l'objet. 

On observe que certains tissus dans le corps sont pales : les os, quand ils ne sont pas 

recouverts de sang, et la compresse utilisee par le chirurgien. Ces tissus reflechissent 

presque parfaitement la lumiere, et peuvent done etre confondus a des reflexions 

speculates. On emet cependant l'hypothese que la consideration de certains tissus 

comme reflexion speculaire ne nuit pas trop car la bordure de ces tissus est elle aussi 

pale. Meme en cas de correction, la couleur blanche sera propagee a l'interieur des 

tissus, ce qui ne devrait pas trop degrader le rendu. 

Bertalmio propose une methode qui consiste a reconstruire la zone a corriger sans 

modification des aretes [18]. Les isophotes (lignes dont les pixels ont une intensite 

constante) arrivant a la bordure de la zone sont propages a l'interieur de celle-ci. La 

propagation est effectuee tout en preservant Tangle d'arrivee des isophotes au niveau 

des bordures. Considerons une image ou Q represente la zone a corriger, 5Q sa bordure, 

et N la normale a cette bordure (figure 2.10). 
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Figure 2-10 Zone a corriger ([18]) 

L'image corrigee I"+ est trouvee a partir de l'image precedente / " a laquelle on 

applique des informations globales /» obtenues a partir de celle-ci; cela est resume par 

1'equation 2.10, ou le couple (i,j) represente la position des pixels dans l'image 

In+l 0, f)=In («, 7) + At.I" (i, j \ V(i,y) e O (2.10) 

L'information I" correspond a la variation de l'intensite projetee sur la normale a la 

borduredQ. Le facteur A/indique que la propagation est faite de maniere periodique. 

Afin de conserver les contours des objets, une diffusion anisotropique est aussi effectuee 

periodiquement. 

Cette methode, bien que tres efficace, peut se reveler instable a cause du nombre de 

parametres arbitraires. II faut en effet definir trois parametres pour trouver I"+ : le 

nombre d'iterations de restauration d'image k et de diffusions anisotropiques / a 

effectuer sur une periode T. En plus deux criteres d'arret de l'algorithme sont utilises : la 

correction peut etre effectuee un nombre n fois defini arbitrairement, ou encore jusqu' a 

ce que la difference entre / " et / " soit inferieur a un seuil defini arbitrairement en 

autant que le nombre de comparaison entre In+ et / est inferieur a n. Saint-Pierre a 
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montre que cette methode peut etre implemented en temps reel [10]. Mais pour cela il ne 

faudrait pas etre limite en memo ire. 

Saint-Pierre propose une methode assez simple a realiser qui consiste a propager les 

aretes sans tenir compte de 1'information en termes d'intensite en bordure de la zone a 

corriger [10]. Cette methode differente de [18] consiste a ponderer les pixels voisins du 

pixel a corriger de maniere a determiner leur influence dans la correction. La 

ponderation est faite de telle sorte que la propagation soit perpendiculaire aux aretes. Les 

avantages de cette methode sont sa rapidite et sa stabilite. Mais ses resultats presentent 

des aretes deformees et une non-continuite de 1'image. Cela s'explique en partie par 

1'absence de diffusion anisotropique. 

Une methode encore plus simple a ete proposee par Battacharya [14]. Elle consiste a 

remplacer la valeur du pixel speculaire par la moyenne des pixels voisins non 

speculates. La correction est effectuee jusqu'a ce que la zone a corriger Q disparaisse. 

Cette methode qui pourrait tres bien se porter a une implementation en temps reel 

montre cependant une limite dans la determination du critere d'arret. Celui-ci devrait 

tenir compte de la plus grande largeur a corriger dans 1'image. Or nous n'avons pas cette 

connaissance a priori. Pour effectuer une bonne correction il faudrait considerer le pire 

cas, c'est-a-dire celui pour lequel la zone a corriger est repartie sur toute la trame. Une 

video NTSC ayant 858 pixels sur une ligne, il faudrait passer a travers la meme ligne 

858 fois. En d'autre termes il faudrait passer a travers la meme ligne une fois pour 

chaque pixel contenu dans une ligne. Cela signifierait un stockage de 858 lignes 

multiplies par les ressources utilisees pour le calcul de la moyenne des pixels. On aurait 
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done 858x858x3 = 2. IMonecessaires pour traiter une trame d'une couleur si on 

considere qu'on a besoin de stocker 3 lignes pour effectuer la moyenne d'un pixel. 

2.3 Conclusion 

Les differentes approches presentees dans ce chapitre nous permettent d'avoir un apercu 

de celles pouvant etre implementees dans notre systeme. Chacune ayant des avantages et 

des inconvenients, nous les combinons dans le chapitre suivant afin de creer des 

algorithmes efficaces pour une application temps reel tout en consommant peu de 

ressources. 
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Chapitre 3 Implementation materielle 

Ce chapitre presente en detail les algorithmes choisis a partir des differentes methodes 

enoncees dans le chapitre precedent. II presente aussi la methodologie utilisee pour 

effectuer 1'implementation de ces algorithmes sur un FPGA. La premiere partie est une 

presentation generale de l'environnement de prototypage et des caracteristiques de 

1' architecture d'un FPGA. La deuxieme partie presente les details de 1'implementation 

des deux algorithmes de detection. La derniere partie presente les details de 

1'implementation de l'algorithme de correction. 

3.1 Presentation generale du systeme 

3.1.1 Description de l'environnement de prototypage 

Afin d'effectuer 1'implementation de notre processeur, nous essayons de simuler le plus 

possible les conditions reelles d'operation. Notre systeme de prototypage presente en 

figure 3.1 comprend : 

• La planchette de developpement XUV2P de Digilent inc. 

• Un ecran VGA relie a la planchette de developpement 

• Un lecteur DVD standard 

• Un D V D contenant des sequences videos endoscopiques 

• Un decodeur video 
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Figure 3-1 Environnement de prototypage 

La planchette de developpement presentee en figure 3.2 est batie autour du FPGA 

XC2VP30. Le tableau 3.1 presente les principales caracteristiques de ce FPGA. 

Tableau 3-1 Ressources disponibles du FPGA XC2VP30 

Composants 

Slices 

Ram distribute 

Blocs multiplicateurs 

Blocs RAMs 

Ressources disponibles 

13969 

428 Kb 

136 

2448 Kb 

La planchette est aussi munie d'un port d'expansion auquel est connecte le decodeur 

video ADV7183B de la compagnie Analog Devices. Ce decodeur detecte et convertit 
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automatiquement un signal analogique video standard de type NTSC, PAL ou SECAM 

en signal numerique. 

Thn?® *wg|h BUfnaatf pswer %®pftss 

M^i-^sB#ii M*p®tv&syi cmmtmx gutssns, switesws^ • L&w-<&$$&&sJ mjmmm ixm^dm-

Figure 3-2 Planchette de developpement XUV2P (www.digilentinc.com) 

II est muni pour cela de trois types d'entrees : composite, S-video et component. Une de 

ces entrees est reliee au lecteur DVD afin d'acquerir les sequences video endoscopiques 

du DVD. Ces sequences videos ont ete prealablement prises lors d'une seance 

d'operation. Elles sont gravees sur le DVD afin de simuler le plus possible une situation 

reelle d'operation par endoscopie. Elles permettent dont d'effectuer un prototypage sans 

avoir besoin de se rendre dans une salle d'operation. Cependant les sequences videos 

ayant une resolution d'origine de 352x240 sont compressees afin d'etre stockees sur le 

http://www.digilentinc.com
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DVD ; le lecteur DVD fait ensuite une mise a Pechelle afin de les afficher au format 

NTSC 720x480. Ces deux operations sont susceptibles de degrader le rendu, et nous 

eloigne des conditions reelles d'operation. 

Le decodeur video ADV7183B transforme les signaux analogiques en signal numerique 

de type YCrCb 4:2:2 entrelace. Une fois acquis par le FPGA, ce signal passe par un bloc 

de desentrelacement qui fournit a notre systeme de traitement un signal NTSC progressif 

ayant une resolution de 720x480 a une frequence de 27 MHz. 

3.1.2 Signaux d'entree du systeme de traitement 

Commencons d'abord par preciser les principaux signaux en entree : il s'agit des 

signaux R,G,B pour la valeur de chaque pixel, et des signaux de synchronisation. 

Chaque signal de couleur est donne sur 8 bits, ce qui donne un total de 24 bits de 

donnees. Les signaux de synchronisation permettent de guider les electrodes 

responsables du balayage vertical et horizontal presentes dans un ecran a tube 

cathodique. Ces signaux indiquent quel type de balayage est en train d'etre execute et la 

position du pixel actuel. lis sont recus en entree du systeme puis retransmis apres 

traitement au port VGA en vue d'un affichage sur un ecran VGA. Globalement ces 

signaux permettent de diriger les electrodes de l'ecran pour pouvoir effectuer un 

balayage horizontal de gauche a droite (Hsync pour Horizontal synchronization) et un 

balayage vertical de haut en bas (Vsync pour Vertical synchronization). Hsync permet 

de revenir a la ligne tandis que Vsync permet de remonter au debut de l'ecran. La figure 

3.3 presente revolution temporelle de Hsync et Vsync pour un signal NTSC presentant 
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858 pixels par ligne, pour un total de 525 lignes. FrontPorch et BackPorch represented 

respectivement les parties droite et gauche de l'affichage dans le cas de la 

synchronisation horizontale, et les parties inferieure et superieure de l'affichage dans le 

cas de la synchronisation verticale. 

FrontPorch 

Hsync video active 

FrontPorch 

Vsync video active _J 

BackPorch 

720 727 789 858 

BackPorch 

487 491 495 525 

ligne suivante 

pixels 

trame suivante 

—'-> 
l ignes 

Figure 3-3 Evolution temporelle de Hsync et Vsync 

On observe un temps pendant lequel rien n'est affiche sur l'ecran. Celui ci correspond au 

temps necessaire a la remise a la ligne ou au temps necessaire a la remise au debut de 

l'ecran ; durant ce temps le systeme est en mode « video inactive ». C'est pendant cette 

periode que la plupart des operations peuvent etre effectuees de maniere transparente. La 

duree de ce mode est de 38 lignes soit 32604 coups d'horloge ou pixels pour une 

resolution de 720x480 (plus precisement, 720x487) a une frequence de 27 MHz. 
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3.2 Contraintes liees a l'utilisation d'un FPGA 

3.2.1 Parallelismes au sein d'un FPGA 

L'utilisation d'un FPGA pour le traitement video a la place d'un processeur d'usage 

general se justifie par la possibilite d'exploiter deux types de parallelisme au sein d'un 

FPGA, contrairement au traitement sequentiel du processeur d'usage general [20]. 

Le premier parallelisme possible est le parallelisme spatial. II consiste a diviser la trame 

en sous-trames traitees de maniere concurrente chacune par un processeur (les 

processeurs sont done tous identiques et repliques), puis recomposees en sortie. Ceci 

necessite d'avoir au prealable stocke la trame initiale en memoire avant de faire le 

traitement. Bien que 1'augmentation du nombre de processeurs augmente la vitesse de 

traitement, cela provoque aussi un effet de recouvrement aux bordures des divisions. 

II est aussi possible d'effectuer un parallelisme temporel. En effet, puisque differentes 

operations doivent generalement etre effectuees sur une trame, il est possible de les 

repartir par processeur et de les executer de maniere concurrente, e'est-a-dire les 

effectuer en meme temps mais sur des trames differentes. Par exemple, une fois que le 

premier processeur a fini de traiter la trame 1, il la passe au processeur 2. Pendant que le 

processeur 2 traite la trame 1, le processeur 1 traite la trame 2. Le probleme a ce niveau 

est que la vitesse globale d'execution est determinee par le processeur le plus lent. Dans 

le cas d'un systeme NTSC fonctionnant en temps reel, le processeur le plus lent devrait 

fonctionner a un minimum de 27 MHz. 
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Ces deux parallelismes peuvent etre utilises simultanement en divisant d'abord la trame 

recue en sous-trames puis en effectuant du parallelisme temporel sur chacune d'elles. 

L'architecture que nous utilisons ressemble plus a du parallelisme temporel car chaque 

trame est traitee entierement par un processeur et non divisee en sous-trames. Toutefois, 

nous avons deux processeurs qui traitent la meme trame, le deuxieme se servant de 

F information du premier lors du traitement de la trame precedente. 

3.2.2 Modes de traitements de donnees dans un FPGA 

Programmer sur FPGA differe grandement d'une programmation sur un 

microprocesseur. Non seulement on implemente l'algorithme, mais aussi son 

architecture. Notre systeme comprend plusieurs processeurs qui travailleront tous en 

parallele, certains devant acceder aux memes ressources simultanement. II est done par 

exemple necessaire de tenir compte de la bande passante limitee, surtout lors des acces 

en memoire. II existe trois modes de traitements de donnees, chacun ayant son lot de 

contraintes, que nous presentons ci-dessous [21]. 

Le mode « flux » : ici les donnees sont presentees en entree du systeme comme un flux 

de donnees recues a une frequence d'horloge fixe. Pour une video NTSC elles sont 

recues a une frequence de 27 MHz, et doivent aussi etre emises a la meme frequence. 

Cette restriction entraine des contraintes tempore lies rigides surtout dans le cas d'un 

traitement en temps reel. En effet, le mode flux contraint le systeme a effectuer toutes les 

operations requises pour chaque pixel a une frequence de 27 MHz. Si le processeur 

implemente a une frequence de 100 MHz, il ne pourra done effectuer que 3 operations 
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par pixels. Si cela n'est pas possible, certains pixels dans le flux seront manques et ne 

seront pas calcules. Dans le cas ou des operations complexes doivent etre effectuees sur 

les pixels, il est impossible de respecter les contraintes de temps sans effectuer du « 

pipelinage ». Cela consiste a creer un delai en entree afin de mettre en place les 

differents calculs. En d'autres termes, cela revient a creer un parallelisme tempore 1. 

Etant donne qu'on obtiendra la meme latence en sortie, il faudrait s'assurer que celle-ci 

n'est pas genante pour l'utilisateur. De plus les contraintes liees aux ressources 

disponibles apparaissent ici, car effectuer du pipelinage reviendrait a utiliser des 

registres afin de stocker temporairement les donnees avant leur traitement. 

Un mode tres souple est le mode « hors-ligne ». Dans ce cas les donnees traitees 

proviennent d'une image au prealable stockee dans une RAM. La vitesse d'execution est 

alors limitee par la vitesse d'acces aux donnees stockees dans la memoire. Ici il n'y a 

done pas de contrainte de bande passantes, mais le temps de calcul est tres grand. En 

plus les ressources utilisees sur le FPGA en lui-meme sont minimes car il n'est pas 

necessaire d'effectuer du pipelinage ou des stockages de trames ou partie de trame sur la 

memoire disponible sur puce. Pour se preter au temps reel ce mode devrait avoir une 

vitesse de traitement assez grande pour avoir le temps d'effectuer le traitement sur une 

trame avant de charger la suivante. Le mode hors ligne convient tres bien pour un 

parallelisme spatial pur. 

Le troisieme mode est un mixage entre les deux methodes ci-dessus. II s'agit du mode « 

hybride ». II permet d'alleger les contraintes de temps liees au mode « flux » tout en 

s'appliquant en temps reel. En effet il est possible, si les ressources disponibles le 
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permettent, de stocker les differents pixels arrivant dans une RAM, de les traiter ensuite 

en mode hors-ligne, puis de les ressortir en mode flux apres un delai constant. En plus 

des contraintes de temps, il s'ajoute des contraintes liees aux ressources du systeme. 

Pour une trame couleur de 720x480 pixels, il faudrait pres de 720x480x3x8 bits, soit 

environ IMo, si on desire stocker les trames rouge, verte et bleue ayant chacune des 

pixels pouvant avoir 255 valeurs differentes. 

Les ressources en memoire interne du FPGA etant tres limitees, on fait generalement 

appel a une memoire externe. Celle-ci entraine une contrainte liee a son temps d'acces 

qui doit etre inferieur au temps de reception d'un nouveau pixel. De plus les memoires 

externes generalement utilisees ne permettent pas un acces multiport, c'est-a-dire un 

acces a differentes adresses au meme moment. II faudrait done aussi tenir compte de 

cette contrainte de bande passante. 

Malgre ses contraintes temporelles, nous utilisons le mode flux dans le cadre de la 

detection de reflexions speculates ; nous le preferons au mode hybride pour eviter des 

problemes de synchronisation avec la RAM externe, et pour pouvoir diminuer le temps 

de latence entre la reception d'un pixel et la sortie de celui-ci une fois traite. Les details 

de 1'implementation seront donnes plus bas. 

3.3 Architecture globale du systeme 

Deux methodes de detection ressortent du chapitre deux, la methode 

monodimensionnelle et la methode bidimensionnelle. Chacune necessitant une 

implementation particuliere, nous obtenons deux architectures globales. 
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D'un point de vue general, les deux architectures utilisees pour la detection et la 

correction des reflexions speculates sont similaires. Afin d'exploiter le parallelisme 

inherent aux FPGAs, nous creons deux taches qui s'executent en parallele. Comme 

specifie dans la section 3.2, le parallelisme utilise ici ressemble a du parallelisme 

temporel, deux taches s'executant de maniere concurrente et traitant la meme trame en 

entree. Cependant, l'une se sert de l'information de l'autre pour effectuer son traitement. 

En effet la tache 2 se sert de la valeur du seuil determinee dans la tache 1 afin 

d'effectuer la correction. 

Les signaux de synchronisation et les signaux de couleur RGB provenant du decodeur 

video sont tout d'abord desentrelaces avant d'entrer dans le systeme (figure 3.4). 

endoscope 

Decodeur 
video 

oy 

desentrelace 
merit 

siei ne ue uaiieine iii\rrva«; 

r~- Port 
VGA 

—̂_ j^I 
r^' ^ 

Figure 3-4 Schema global du systeme 

Pour le systeme utilisant une detection monodimensionnelle (figure 3.5, blocs chemin en 

traits verts), les signaux passent d'abord par le bloc de decomposition en histogramme. 

L'histogramme cree est stocke dans une RAM. Une fois que le systeme passe en mode 

de video inactive, le bloc de debruitage est active (grace au signal fini) afin de debruiter 

l'histogramme stocke. L'histogramme debruite passe ensuite dans le bloc de derivation, 

afin de determiner le debut de la bosse speculaire. 
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Figure 3-5 Schema bloc du systeme ; en vert: detection monodimensionnelle ; en turquoise : chemin 
detection bidimensionnelle 

Pour le systeme utilisant une detection bidimensionnelle (figure 3.5, chemin en trait 

turquois), les signaux passent par un bloc de decomposition en histogramme; 

contrairement a l'autre systeme, aucun stockage n'est effectue. La decomposition en 

histogramme et la mise a jour du seuil sont effectuees simultanement. En sortie de ce 

bloc, nous obtenons done le seuil. 

Dans les deux systemes, la valeur du seuil est utilisee conjointement avec les signaux de 

couleur et de synchronisation afin de creer le masque speculaire. Celui-ci est ensuite 

elargi afin de tenir compte du lobe speculaire. Les pixels d'origine (les signaux de 
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couleur presents a l'entree du systeme) et les pixels du masque speculates sont transmis 

au bloc de correction lineaire puis de lissage afin que 1'image soit corrigee. Les pixels 

corriges, ainsi que les signaux de synchronisation ayant un delai egal au delai du 

traitement de la tache 2, sont mis en sortie et transmis au port VGA afin d'etre affiches 

sur un ecran (figure 3.5). 

Les deux architectures utilisent des donnees entieres a 8 bits pour stocker les differentes 

valeurs liees aux pixels et relier les differents blocs de traitement. 

3.4 Detection des reflexions speculaires 

3.4.1 Methode unidimensionnelle 

L'algorithme implements se sert des principes enonces dans le chapitre 2. Afin de 

garantir une implementation materielle, nous modifions les equations theoriques tout en 

conservant une erreur minimale entre les resultats theoriques et les resultats obtenus 

apres implementation. 

La methode unidimensionnelle se sert d'une RAM pour stocker l'histogramme. Celui-ci 

est ensuite traite lorsque l'ecran entre en mode video inactive afin d'en deduire le debut 

de bosse speculaire 

3.4.1.1 Decomposition en histogramme 

Nous proposons une approche basee sur des methodes existantes presentees en section 

2.1.1.1: nous rehaussons l'image grace a la composante S, puis transformons l'image 

rehaussee en niveaux de gris avant de la decomposer en histogramme. La decomposition 



46 

en niveau de gris permet de stacker toute 1'information importante dans un seul canal, et 

done de travailler sur un seul histogramme, comme celui presente en figure 3.6. On peut 

remarquer que le rehaussement permet de mieux regrouper tous les pixels appartenant a 

la region diffuse ; cela a pour effet de mettre plus en evidence la zone speculaire. 

L'utilisation d'un seul histogramme permet de limiter grandement l'utilisation des 

ressources du FPGA car nous creons et traitons une seule RAM au lieu de 3. 

La decomposition en histogramme s'effectue en plusieurs etapes. A chaque fois qu'un 

pixel est recu : 

• II est rehausse 

• II est transforme en niveau de gris 

• II est utilise pour mettre a jour l'histogramme 

Le rehaussement est effectue grace a 1'equation 3.1, ou R'G'B' represented les valeurs 

rehaussees de RGB. 

Cette equation devant etre appliquee sur un systeme qui n'utilise que des donnees 

entieres, il convient d'effectuer des modifications afin d'avoir une bonne approximation 

des valeurs reelles. Nous la transformons pour cela en l'equation 3.2. 

~R'~ 

G' 
B' 

= (M 
~R~ 

G 
B 

mm(R,G,B) 

max (R,G,B) 
(3.1) 

R' 

G 

( 2 5 6 ) x min(i?, G, B) 
Kvms(R,G,By , 

256 
(3.2) 
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Figure 3-6 Histogrammes de l'image en figure 2 . 1 : histogrammes du plan Y sans rehaussement(en 
haut) et avec rehaussement (en bas). En bleu : histogramme non debruite ; en noir : histogramme 

debruite 

L'equation 3.2 permet d'eviter le processus de division Tmn\K'(j'B) ? processus qui n'est 
max(R,G,B) 

pas directement synthetisable, a moins d'implementer un module special pour la 

division. A la place, nous creons et stockons un tableau de valeurs entieres — . Le 
i 

rehaussement s'effectuera done en determinant premierement la plus grande valeur entre 

les differentes intensites RGB d'un pixel donne. Cette valeur servira d'indice pour 

acceder au tableau stocke presente dans le tableau 3.2. Afin d'eviter un cas de division 
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par 0, nous attribuons la valeur nulle au resultat lorsque i=0. Le resultat attribue n'a 
i 

pas une grande importance car si i=0, alors max(R,G,B)=min(R,G,B)=0. 

Tableau 3-2 Tableau des valeurs 

i 

256/i 

0 

0 

1 

256 

2 

128 

3 

85 

5 

64 

255 

1 

Une fois tout le processus de multiplication effectue, la valeur sera decalee a droite de 8 

bits afin d'effectuer la division par 256. 

Deux approximations sont effectuees ici. Premierement, la creation d'un tableau 

necessite un arrondi des valeurs decimales en valeurs entieres. Cela cree une erreur 

maximale e, de±0.5, erreur calculee en effectuant la difference entre les valeurs 

arrondies et les valeurs reelles du tableau. Cela est montre par l'equation 3.3 ou 

int( ) represente la partie entiere de la division. Deuxiemement, la division par 256 
i 

necessite elle aussi un arrondi en valeurs entieres. L'erreur maximale e2 est aussi de 

±0.5, et provient du calcul de l'equation 3.4, ou / varie de 0 a 2552, valeur maximale du 

numerateur de 3.2. 

ex = max 
, ,,256, . ,256,, 

abs(i—)-int(—)) 
/ i 

i e [0;255] (3.3) 

e2 =max abs((—)-int(—)) 
256 256 

/e[0;2552] (3.4) 
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Ces deux approximations creent une erreur maximale de ± 1 lorsque le rehaussement est 

effectue. 

La transformation en niveaux de gris s'effectue juste apres le rehaussement. Elle est faite 

a l'aide de l'equation 2.3 mise en une forme synthetisable. La forme synthetisable 

permet aussi ici d'arrondir les valeurs decimales en valeurs entieres. Elle est donnee par 

l'equation 3.5 

[0.299x512]x.R + [0.587x512]xG + [0.114x512]xJg 
512 

153i? + 301G + 58fi (3 5, 
512 

En appliquant le meme processus de verification que dans le cas du rehaussement, on 

obtient une erreur maximale de ± 1. 

Le rehaussement et la transformation en niveaux de gris sont des calculs purement 

combinatoires qui s'effectuent a l'interieur d'un seul cycle d'horloge. Les valeurs 

obtenues permettent la construction d'un histogramme. La construction et la mise a jour 

de la RAM contenant l'histogramme n'est pas aisee car elle necessite de tenir compte de 

certaines considerations. 

Premierement, nous devons tenir compte de sa taille. Le nombre maximum de pixels 

pouvant etre compris dans une plage d'intensite est 720x487=350640 pixels dans le cas 

ou toute la trame a la meme couleur. Ce nombre etant representable avec 19 bits, la 

RAM devrait avoir pour taille 256x19bits. Cela signifierait travailler continuellement 

avec des donnees de 19 bits lors du traitement de la RAM. Pour eviter cela, nous 

supposons que la partie utile (partie ou se situe la region speculaire) de rhistogramme se 
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situe apres la premiere region de rhistogramme, region dans laquelle est situee la 

majorite des pixels. Nous supposons aussi que dans la seconde region, les differentes 

plages d'intensite n'ont pas plus de 256 pixels. Nous utilisons une RAM de 256x8 bits 

ou les valeurs superieures a 255 seront seuillees a 255, ce qui nous permet de travailler 

de maniere uniforme avec des donnees de 8 bits tout au long du processus de detection 

des reflexions speculates. 

Puisque nous travaillons en mode «flux » nous devons continuellement acceder a la 

RAM, a chaque pixel recu. La mise a jour se fait en trois etapes : la lecture de la RAM a 

partir d'une adresse correspondant a la valeur en nuances de gris, la reception de la 

donnee provenant de la RAM, et la mise a jour de cette valeur dans l'histogramme. Afin 

de garantir une mise a jour constante de la RAM, nous utilisons une horloge qui 

fonctionne 4 fois plus vite que l'horloge de reception des pixels, c'est-a-dire 108 MHz. 

Cela permet de mettre a jour rhistogramme avant que le prochain pixel ne soit recu. Le 

module permettant la mise a jour de rhistogramme est presente en figure 3.7. 

Adresse jec ture 

D Q 

> 
CIR Q 

0 a j Adr£sse„ecriture 

> 

Data in 

Data/Out 

Ram 256x8 

D b" O 

> 
« a 

O D 

<] 
Q CLR 

Figure 3-7 Processus de mise a jour de la Ram contenant l'histogramme 
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Pixel 

entrant 
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Adressejeelure 

histogramme 

Donnee luede 
I'histogramme 

Adresse_eeriture 
histogramme 

Donnee ecrite 

dans 
('histogramme 

datao+1 

Figure 3-8 Diagramme temporel presentant la decomposition en histogramme 

Tout se passe comme s'il y avait en sortie de la RAM une bascule D dont la sortie est 

reliee a un additionneur. Chaque valeur sortie par la RAM est done registree, 

incremented de 1, puis remise en entree de la RAM afin d'etre sauvegardee. Le 

fonctionnement global de la decomposition en histogramme est donne par le diagramme 

temporel presente en figure 3.8 : 

• Au premier coup d'horloge de 27MHz (elk), un pixel p0 est recu. 

• Au second coup d'horloge de 27 MHz (elk), la valeur en Y de p0 est obtenue. Le 

pixel suivant pa est recu. 

• Au 6e coup d'horloge de 108 MHz (clk*4), la valeur en Y de p0 est mise en 

adresse de lecture de la RAM. Cette valeur en Y est encore appelee adro. 

• Au T coup d'horloge de clk*4, la donnee stockee a 1'adresse adro est recue. 

Cette donnee est nommee datao-
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• Au 8e coup d'horloge de clk/4, la donnee datao est incremented de 1 et ecrite a 

l'adresse adro. 

Le delai total permettant la decomposition en histogramme est au final de un cycle 

d'horloge, temps necessaire au calcul la valeur Y d'un pixel. 

3.4.1.2 Debruitage de I'histogramme 

Le debruitage s'effectue a la suite de la decomposition en histogramme. II s'active 

lorsque le systeme entre en mode video inactive. Cela permet d'accomplir le traitement 

de I'histogramme sans perte de donnees, la RAM ne pouvant pas etre mise a jour en 

meme temps. 

Le debruitage s'effectue grace l'ondelette de Haar, la plus simple des ondelettes [24]. 

Afin de decomposer le signal en coefficients d'approximation et de detail, on se sert des 

elements voisins du signal deux a deux. Les coefficients d'approximation a et de detail d 

d'un signal s sont obtenus grace aux equations 3.6 et 3.7 respectivement: 

a ( f ) = 5 (2Q+ 5(21 + 1) ( 3 6 ) 

d(f)= 5(20-5(21 + 1) ( 3 ? ) 

En d'autres termes, pour deux pixels du signal d'origine, un coefficient d'approximation 

et un coefficient de detail sont calcules (figure 3.9). 

Deux tableaux sont crees, l'un pour stocker les coefficients d'approximation, l'autre 

pour les coefficients de detail. Lors du premier niveau de la transformation, les 

coefficients sont stockes dans la premiere moitie du tableau, premiere moitie qui 
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permettra d'effectuer la transformation de niveau 2. Les coefficients de niveau 2 seront a 

leur tour stockes a la suite des coefficients de niveau 1 et permettront le calcul des 

coefficients de niveau 3 (figure 3.10). 

elk 

signal 
entrant 

Coefficients 
d'approximation 

Coefficients 
d'approximation 

Figure 3-9 Decomposition du signal par l'ondelette de Haar 

S255 aO am ami 

Figure 3-10 Stockage des coefficients de la transformation en ondelettes 

La recomposition est implemented en utilisant 1'equation 3.8. 

{ s(2i) - approx(i) + detail{i) 

s(2i +1) = approx{i) - detailii) 
(3.8) 

Elle devrait s'effectuer a la suite d'un seuillage des coefficients des details. Apres 

plusieurs tests sur Matlab nous nous sommes rendu compte qu'une decomposition en 

ondelettes de niveau 3, puis recomposition sans tenir compte des coefficients de details, 
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donnait des resultats satisfaisants. La figure 3.6 presente l'histogramme debruite de notre 

image test. On se rend compte que seules les grandes variations de la courbe sont 

conservees apres debruitage. 

Nous ne considerons pas les coefficients de detail pour notre recomposition, ce qui 

revient a repliquer 4 fois chacun des coefficients d'approximation de niveau 3 afin 

d'obtenir le signal debruite (figure 3.11). 

Figure 3-11 Recomposition du signal apres debruitage 

Le temps de calcul pour le debruitage d'un signal est de 676 coups d'horloge car chaque 

coefficient est determine en un cycle d'horloge. Ce temps de calcul provient de la 

decomposition (256+128+64) suivi de la reconstruction (32+64+128). En effet il faut 

256, 128 et 64 cycles d'horloges pour les decompositions de niveau 1, 2 et 3 

respectivement. H faut ensuite 32, 64 et 128 cycles d'horloges pour les reconstructions 

de niveau 3, 2 et 1 respectivement. A ce temps de calcul on ajoute le delai correspondant 

a l'acces a la RAM (la RAM etant registree en entree et en sortie, ce delai est de 3 cycles 

d'horloge) et le temps de calcul de la premiere valeur (1 cycle d'horloge). 

3.4.1.3 Calcul de la derivee 

Deux derivees s'effectuent l'une a la suite de l'autre. Elles se font en utilisant la formule 

de la difference centree (equation 3.9) afin de determiner la derivee, ou s'(i) represente 
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la derivee du pixels(i). Lorsque h=l, on obtient la formule finale 3.10. Cette formule 

revient a convoluer le signal a deriver par le noyau defini a la figure 3.12. La figure 3.13 

quant a elle presente un exemple de convolution. 

s(i + h) — s{i — h) 
s'd) = 

2h 

s'(i) = s(l + 1) s(l l) = 5(0 ® (S(i -1) + S(i +1)) 

(3.9) 

(3.10) 

-1/2 0 1/2 

Figure 3-12 Noyau de convolution pour la derivation 

0 

I 

Figure 3-13 Deux etapes de derivation 

Toutes les valeurs positives sont mises a 1 et les resultats negatifs sont mis a 0. Le temps 

de traitement est de 261 cycles d'horloge, dont 256 correspondent au nombre de valeurs 

de 1'histogramme et 5 cycles le delai entre la demande d'acces a la premiere valeur de 

l'histogramme et la sortie de la premiere valeur de la derivee. II tient done en compte le 

temps d'acces a la RAM en lecture (3 cycles d'horloge) et en ecriture (1 cycle 
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d'horloge), puis le temps de calcul (1 cycle d'horloge). Deux derivees etant effectuees 

l'une a la suite de l'autre, nous avons un temps de traitement de 522 cycles d'horloge. 

Lors du calcul de la seconde derivee, la derniere valeur positive est mise en sortie. Elle 

correspondra a l'intensite minimale d'un pic speculaire, soit le debut de bosse 

speculaire. 

3.4.1.4 Affichage du masque 

Le module d'affichage du masque permet la creation du masque binaire qui indique la 

position des pics speculates. Pour ce faire, il se sert du debut de bosse speculaire trouve 

apres la seconde derivee. Idealement, ce module devrait se situer a la suite de la seconde 

derivation. Cela necessiterait un stockage de la trame de depart (trame representant 

1'image dans le plan RGB), puis une comparaison des valeurs au debut de bosse afin de 

determiner les zones de reflexion speculaire. Pour eviter un stockage de la trame initiale, 

nous executons la decomposition en histogramme et l'affichage du masque en parallele 

tel que represents par la figure 3.5. En d'autres termes, nous utilisons les resultats de la 

trame i pour determiner le masque de la trame i+1. Pour utiliser cette methode, nous 

emettons l'hypothese que les zones de reflexion speculaire ont une variation negligeable 

entre deux trames successives. Cette hypothese est vraie uniquement lorsqu'il n'y a pas 

de changement soudain de direction de la camera. Dans tous les cas, l'erreur sera limitee 

a une seule trame d'une duree inferieure a 17 ms. 

Hormis la phase de mise a jour de rhistogramme, ce module fonctionne de la meme 

maniere que celui de la decomposition en histogramme. II effectue un rehaussement, 
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puis une transformation en niveaux de gris. Ensuite chaque valeur transformee est 

comparee au debut de bosse speculaire trouve lors de la seconde derivation de 

rhistogramme de la trame precedente. 

3.4.2 Methode bidimensionnelle 

3.4.2.1 Decomposition en diagramme 

Comme explique dans le chapitre 2, la decomposition en diagramme MS consiste a 

trouver le plan S en fonction du plan M. II faudrait pour cela trouver le plan S, le stocker 

dans une RAM, puis y effectuer les calculs necessaires a la detection de la zone 

speculaire, calculs qui passent par la recherche de mmax et smax. Afin de limiter 

1'utilisation des ressources, nous procedons de la maniere suivante : pour chaque pixel 

recu, 

• Sa valeur dans le plan M est calculee 

• A partir de sa valeur dans le plan M, sa valeur dans le plan S est calculee 

• Les valeurs mmax et smax de la trame sont mises a jour 

L'equation utilisee pour calculer le plan M provient de l'equation 2.5. Elle est cependant 

modifiee afin d'etre synthetisable tout en utilisant peu de ressources. L'equation utilisee 

est done l'equation 3.11. 

M = - 2 ^85x(R + G + B) 

256 256 

La division par 3 qui n'est pas directement synthetisable, a moins d'implementer un 

module special pour la division, est remplacee par une multiplication suivie d'un 



58 

decalage a droite de 8 bits. L'erreur maximale creee par cette modification est calculee 

grace a l'equation 3.12. Elle a une valeur de ± 2 . 

e3 =max <*»{-**—)) , i e [0:767] (3.12) 

L'equation utilisee pour calculer la valeur du pixel dans le plan S demeure l'equation 2.6 

car une division par 2 est parfaitement synthetisable (elle correspond a un decalage a 

droite d'un bit). L'erreur maximale due a la consideration de la partie entiere du resultat 

est de ± 1. 

Mettre a jour mmax et smax regulierement permet d'obtenir au terme du parcours de la 

trame les valeurs necessaires a la detection du masque. Ces valeurs sont envoyees au 

module responsable de l'affichage du masque. 

Le delai total de la decomposition est de un cycle d'horloge, les calculs etant tous 

purement combinatoires. 

3.4.2.2 Affichage du masque 

Une fois le diagramme MS etablit, nous devrions y effectuer un seuillage base sur les 

equations 2.7. Malheureusement, ces equations ne donnent pas de bons resultats dans le 

cas d'images endoscopiques car elles ont tendance a detecter uniquement les pixels 

extremement brillants. Pour obtenir une zone adaptee a notre cas, nous avons fait 

plusieurs tests et avons trouve nos propres equations. Le pixel p sera considere comme 

speculaire s'il respecte les conditions suivantes : 
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™p>-mmax 

s < — s 
p — o max 

(3.13) 

La figure 3.14 presente le diagramme MS correspondant a l'image de la figure 2.1 ; on 

constate que le choix de Cj et c4 tels que definis par (2.7) comme seuils ne permettrait 

pas de retrouver toutes les reflexions speculates de l'image ; en effet, tres peu de pixels 

sont compris entre ces deux droites. 

Sseuil 

FTlseuil 

Figure 3-14 Diagramme MS de l'image en figure 2.1 
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Cela signifie que peu de pixels seront considered comme speculates. Cette remarque est 

appuyee par la figure 3.15, ou le masque speculaire est peu representatif des reflexions 

presentes dans l'image lorsque le seuil defini par l'equation 2.7 est choisie. 

Figure 3-15 Reflexions speculaires detectees (en bleu) en appliquant les conditions 2.7 (a gauche) 
et 3.13 (a droite) 

L'affichage du masque dans le cas bidimensionnel obeit au meme principe que 

l'affichage du masque dans le cas monodimensionnel. En d'autres termes, les valeurs 

Smax et ntmax trouvees pour la trame i permettront de creer le masque de la trame i+1. Pour 

chaque pixel, les valeurs dans le plan M mp et dans le plan S sp seront calculees grace 

aux equations 3.11 et 2.5. Les comparaisons de l'equation 3.13 seront ensuite evaluees 

afin de determiner si le pixel p fait partie de la region speculaire. 

3.4.3 Elai gissement du masque 

L'elargissement du masque permet de tenir compte du lobe speculaire. Nous proposons 

de definir un elargissement statique afin d'alleger les calculs : a chaque fois qu'un pixel 

faisant partie du masque sera detecte, tous ses voisins directs seront automatiquement 
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inclus dans le masque. Le processus suivant est effectue afin d'accelerer les calculs. 

Pour un elargissement de h pixels, le masque speculaire est inspecte a l'aide d'une 

fenetre coulissante de dimension HxH, H etant determine par l'equation 3.14 : 

H=2h + l (3.14) 

Chaque fois qu'un pixel speculaire est situe au centre de la fenetre coulissante, tous les 

pixels de la fenetre sont inclus dans le masque speculaire. La figure 3.16 donne un 

exemple d'elargissement lorsque h=l 

Figure 3-16 Resultat de l'elargissement du masque pour h=l 

La partie la plus delicate consiste a trouver la taille ideale de l'elargissement permettant 

de tenir compte du lobe speculaire pour toutes les images. La delicatesse vient aussi du 

fait qu'elargir un masque pourrait causer la fusion involontaire de deux regions voisines. 

Du point de vue implementation, l'elargissement utilise le principe de la fenetre 

coulissante presentee par Johnston et al afin de garantir un traitement en mode « flux » 

[21]. 

Conceptuellement, chaque pixel de la trame de sortie est produit en faisant coulisser une 

fen6tre de taille NxM par-dessus la trame d'entree, puis en effectuant une convolution en 

fonction des pixels de la trame d'entree situes sous la fenetre et de l'operateur de la 

fenetre. Le resultat est un pixel assigne au centre de la fenetre dans la trame de sortie, tel 

que montre dans la figure 3.17. 
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Figure 3-17 Principe de la fenetre coulissante 

source de 
capture 
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Figure 3-18 Diagramme bloc de la fenetre coulissante 

NxM pixels sont done necessaires pour effectuer les calculs chaque fois que la fenetre 

est deplacee. Chaque pixel est lu N x M fois. Les contraintes de bande passante rendent 

Faeces a tous ces pixels en un cycle d'horloge impossible a moins que certaines valeurs 

soient mises en memoire. Les pixels d'entree des N-l lignes precedentes sont stockes en 
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utilisant des registres a decalage. Cela permet d'obtenir le diagramme bloc de la figure 

3.18. 

En utilisant ce principe, le masque speculaire est inspecte par une fendtre coulissante de 

dimension HxH. La taille H necessaire pour un elargissement de h pixel est donnee par 

l'equation 3.14. L'operation effectuee est un OU logique des pixels contenus dans la 

fenetre. Nous avons trouve qu'une valeur h=3 etait adequate pour la majorite des 

images. Cela signifie un delai de traitement de 7 lignes entre le masque d'origine et le 

masque elargi. La figure 3.19 montre un exemple detaille d'elargissement en plusieurs 

iterations lorsque h=l. Le pixel blanc represente le pixel speculaire, les lignes en gras la 

fenetre coulissante, et les pixels de couleur grise claire les nouveaux pixels speculates 

apres plusieurs iterations successives. Le pixel bleu est le pixel en train d'etre evalue. 

Figure 3-19 Exemple d'elargissement du masque de h=l pixel 

3.5 Correction lineaire 

Pour diminuer la quantite de ressources a utiliser au strict minimum, nous effectuons une 

interpolation lineaire des endroits manquant dans l'image. En d'autres termes, nous 

operons ligne par ligne. 11 s'agit pour chaque region a corriger dans une ligne de 

sauvegarder sa largeur w, le pixel precedent la reflexion pb et le pixel suivant la reflexion 



64 

pe(figure 3.20). Ensuite la propagation sera faite de la gauche vers la droite ou de la 

droite vers la gauche en fonction de la pente a (equation 3.15): 

a-
Pe~P 

w 

Le pixel/?,+/ est trouve a partir du pixel/?/ en appliquant la formule 3.16 

PM =Pi+a 

Le premier pixel a corrigerp0 obtient la v a l e u r P h + a . 

Pb w 

(3.15) 

(3.16) 

Figure 3-20 Exemple d'interpolation lineaire 

Le bloc de correction lineaire d'une trame R, G ou B presente en figures 3.5 est presente 

plus en detail en figure 3.21 ; il passe par deux etapes presentees de maniere globale en 

figure 3.22. La premiere est le stockage des coefficients pb, pe et w. Pour ce faire, le 

masque elargi est lu en parallele avec la trame d'origine (bloc calcul coefficients de la 

figure 3.21). Pour une trame R,G ou B, deux groupes de RAMs sont disponibles afin de 

stocker les coefficients des lignes paires et des lignes impaires (bloc Rams Coefficients 

de la figure 3.21). Chaque groupe comporte 3 RAMs de 256x8 bits pour stocker 

respectivement les coefficients de type pb, pe et w. Les coefficients sont inseres les uns a 

la suite des autres chaque fois qu'une region speculaire est detectee. La ligne en train 

d'etre traitee est inseree, parallelement au processus de stockage, pixel par pixel dans 

une FIFO (bloc Fifos de la figure 3.21). 
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La deuxieme etape est 1'interpolation lineaire( bloc Correction lineaire de la figure 

3.21). La FIFO est lue en parallele avec un des deux groupes de RAMs. En effet, lorsque 

le stockage des coefficients de la ligne i se fait sur le premier groupe, la FIFO (contenant 

la ligne i-1) est lue parallelement au deuxieme groupe contenant ses coefficients. 

Lorsque la ligne est parcourue, nous corrigeons une region speculaire comme suit: 

• Une fois le premier pixel speculaire d'une region speculaire est detecte, les 

RAMs sont lues afin de determiner les coefficients correspondant a la region 

speculaire. 

• Une fois les valeurs des coefficients recues, le calcul de la pente a est effectue 

grace a l'equation 3.15. Ce calcul est effectue grace a un module de division qui 

ne renvoie que la partie entiere du resultat. Ce module de division a un delai de 

deux cycles d'horloge. Pour une division de x par y, l'equation x :=x-y est 

effectuee jusqu'a ce que x soit inferieur a y. Le nombre de fois que l'operation 

est effectuee sera la valeur du quotient, et la derniere valeur de x sera la valeur du 

reste. 

• Le premier pixel speculaire p0 est remplace par pi, + a. Les autres pixels sont 

corriges en utilisant l'equation 3.16. 

A la fin du processus nous obtenons un delai d'une ligne (necessaire au stockage des 

coefficients) et 6 cycles d'horloges (necessaire a Vinterpolation) entre le masque elargi 

et la trame corrigee. 
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Figure 3-21 Schema bloc de la correction lineaire d'une trame R,G ou B 

Stockage 
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RAMs 

r . 

interpolat ion 

Figure 3-22 Etapes de la correction lineaire 

La figure 3.23 presente un diagramme temporel de 1'interpolation, apres stockage des 

coefficients : 

Lorsque clk=2, le premier pixel speculaire po est re5u. 
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• Lorsque clk=3, la premiere valeur de la ram est demandee grace a adrj. 

• Lorsque clk=4, les coefficients stockes a adr\ sont regus. 

• Lorsque clk=5, le diviseur et le quotient sont transmis au bloc de division 

• Lorsque clk=7, le resultat de la division a est regu. 

• A partir de clk=8, tous les pixels speculates sont corriges grace a a. La 

correction s'arrete lorsqu'on detecte la fin de la region speculaire. 

Le processus de correction lineaire est replique 3 fois afin de traiter en parallele les trois 

trames RGB. 

O 0 © 0 © © © © ® ® 

Figure 3-23 Diagramme temporel d'une interpolation lineaire 

3.6 Lissage 

La correction n'intervenant que dans la dimension horizontale, il est necessaire d'y 

ajouter une composante verticale. Cela s'effectue en remplagant la valeur actuelle de 
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chaque pixel speculaire par la moyenne de ses voisins a l'aide d'une fenetre coulissante 

de taille 3x3. II faut done stocker 2 lignes pour effectuer la moyenne des pixels en mode 

« flux ». Cette procedure de lissage est effectuee un nombre limite de fois pour eviter 

une grande consommation en ressources. Nous l'effectuons 5 fois, ce qui equivaut a un 

delaide 15 lignes. 

Figure 3-24 Correction par interpolation lineaire (en haut a droite), puis lissage (en bas) de l'image 
en haut a gauche 

La figure 3.24 montre les resultats d'une correction apres interpolation lineaire, puis 

apres lissage. Ici, on part de reflexions speculates precorrigees contrairement a la 

methode definie dans [14]. Cela assouplit les conditions d'arret de la correction. On peut 
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remarquer sur cette figure que les corrections effectuees par 1' interpolation lineaire 

donnent des lignes, lignes attenuees et rendues homogenes au reste de 1'image apres le 

lissage. 

3.7 Conclusion 

Les algorithmes choisis pour implementer notre systeme ont ete optimises dans ce 

chapitre, optimisation qui conduit a une implementation materielle qui limite l'utilisation 

des ressources. Le chapitre suivant permet de verifier que les resultats obtenus 

correspondent a nos attentes. 
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Chapitre 4 Resultats et Discussion 

Ce chapitre presente les resultats obtenus apres implementation des algorithmes de 

detection et de correction. Apres avoir donne un apercu de l'environnement de 

verification, nous effectuons la verification des systemes de detection et du systeme de 

correction. Nous presentons ensuite les performances materielles des differents systemes 

suivi d'une comparaison des deux systemes de detection. Cette comparaison conduit a 

un choix d'implementation final. 

4.1 Environnement de verification 

La figure 4.1 permet d'avoir un apercu des etapes necessaire a 1'implementation et la 

verification du systeme. 

Figure 4-1 Flot de conception 

Les differents algorithmes sont premierement testes de maniere logicielle avant leur 

implementation materielle. Cela permet de profiter de la flexibilite logicielle afin de 

diminuer la phase de verification materielle. Nous utilisons Matlab pour la verification 
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logicielle car c'est le candidat ideal pour 1'implementation et la simulation rapide 

d'algorithmes de traitement d'image. Afin de simuler le plus les conditions materielles, 

nous utilisons uniquement des donnees entieres definies sur une plage de bits 

determinee, generalement 8 bits. Nous utilisons aussi le moins possible les fonctions 

pre-existantes dans Matlab afin de faciliter 1'importation des algorithmes dans l'outil de 

synthese materiel. Nous evitons aussi l'utilisation de methode non implementables 

directement telles que des methodes recursives. 

Apres avoir valide 1' implementation logicielle, le systeme est decrit de maniere 

materielle grace au langage VHDL, synthetise avec Xilinx ISE, et simule grace a 

Modelsim. Pour ce faire, nous simulons chaque boc independamment et comparons son 

resultat a son equivalent sur Matlab. Une fois la procedure de verification par bloc 

approuvee, nous simulons le systeme dans son ensemble. Pour cela, nous inscrivons 

premierement une image RGB dans 3 fichiers, un fichier par trame de couleur. Ensuite, 

nous creons un banc de test qui lit a une frequence fixe le contenu des fichiers et 

transmet les donnees RGB et les signaux de synchronisation au systeme teste. L'image 

est parcourue deux fois, une premiere fois pour la detection, une seconde fois pour la 

correction. Les pixels sortant du bloc de correction sont inscrits dans un fichier texte 

puis retransformes en une image RGB grace a Matlab. 

II est ensuite possible de verifier le systeme une fois implements sur FPGA. Cela se fait 

grace a l'outil de Xilinx Chipscope. II s'agit d'un outil qui insere un analyseur logique et 

un analyseur de bus directement dans le design afin de capturer les signaux desires apres 

la programmation du FPGA. Les signaux sont captures apres le declenchement d'un 
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evenement specifie (front montant d'un signal donne par exemple), ou manuellement, 

sur commande de l'utilisateur. Les signaux captures peuvent ensuite etre analyses grace 

a l'analyseur logique. 

4.2 Verification du systeme de detection 

4.2.1 Detection monodimensionelle 

4.2.1.1 Exemples bloc par bloc 

Afin de valider nos resultats nous prenons premierement une image aleatoire presentee 

en figure 4.2 sur laquelle nous appliquons les differentes fonctions de notre systeme. II 

s'agit d'une image 10x10 generee grace a Matlab. 

Figure 4-2 Image aleatoire servant pour les tests 

Figure 4-3 Resultats de la transformed en niveaux de gris sur matlab ( a gauche) et sur modelsim (a 
droite) 
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Figure 4-4 Histogrammes resultant de la transformation en niveau de gris ; en haut: issu de niatlab ; 
au milieu: issu de modelsim ; en bas: issu de la difference entre la transformation en niveau de gris 

et de modelsim et matlab 
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Nous pouvons done confirmer en comparant les resultats sur matlab a ceux obtenus 

grace a la simulation modelsim que notre systeme presente une erreur de precision lors 

du passage du domaine RGB au domaine Y, en effectuant un rehaussement prealable. La 

figure 4.3 permet de comparer l'image en niveau de gris generee par Matlab et celle 

obtenue grace a Modelsim. 

On obtient une erreur maximale de 2 entre les deux images; cette erreur est une erreur 

cumulee du rehaussement, puis de la transformation en niveaux de gris. II n'est 

malheureusement pas possible d'observer cette difference visuellement, celle-ci etant 

minime. 

Nous deduisons des histogrammes des transformers en niveaux de gris obtenus. Les 

deux histogrammes theorique et reel presented en figure 4.4 sont similaires. Afin de 

mieux comparer les deux transformations en niveaux de gris, nous presentons un 

histogramme issu de la difference en valeur absolue entre les deux images. Celui-ci 

montre que 1'erreur maximale est de 2. 

Nous effectuons ensuite une derivation des histogrammes obtenus sans debruitage 

prealable. Malgre 1'erreur engendree par la transformation en histogramme, les resultats 

theoriques et reels de la derivee de celui-ci sont similaires. 

Le bloc de debruitage applique sur un histogramme genere aleatoirement donne des 

resultats similaires a ceux obtenus theoriquement. 

Nous pouvons done conclure que les blocs testes independamment fonctionnement 

comme prevu. 
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4.2.1.2 Exemples sur des images reelles 

Bien que fonctionnant correctement lorsqu'ils sont simules independamment, les 

resultats obtenus lorsqu'une image passe par 1'algorithme de detection au complet 

presenters des differences avec les resultats theoriques. En observant les histogrammes 

obtenus a partir des images presentees en figure 4.5, on se rend compte que Failure de la 

courbe, et par la meme occasion la repartition generale des pixels, est conservee (figures 

4.6 et 4.7). 

Figure 4-5 images utilises pour tester la detection monodimensionnelle 

Cependant, les quantites de pixel par plage d'intensite varient. Cette variation est due a 

l'erreur faite lors du rehaussement et de la transformation du pixel en niveau de gris. En 

effet, un pixel qui devrait normalement se retrouver dans une zone d'intensite se 

retrouvera facilement dans une autre, voisine. Cette legere variation est attenuee par le 

debruitage qui ne conserve que Failure generale de la courbe, ce qui devrait permettre 

d'obtenir le meme debut de bosse speculaire (figure 4.6). 
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Figure 4-6 Histogrammes obtenus a partir de Modelsim (en haut) et Matlab (en bas) pour l'image 
de droite de la figure 4.5 

Malheureusement, II existe certaines images pour lesquelles il n'y a pas une bonne 

repartition des pixels dans l'histogramme. En d'autres termes, on n'observe pas toujours 

une zone ou sont localises les pixels de la region diffuse bien demarquee de la zone 

speculaire. Cela entraine une mauvaise detection du debut de la region speculaire 

comme dans le cas de l'image de gauche de la figure 4.5 dont les histogrammes sont 

presented en figure 4.7. 
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+ : I- + 



77 

Debut bosse=0 

1000 

800 

600 

400 

200 

0 
i 

1000 

800 

600 

400 

200 

0 

50 100 150 200 250 

Debutbosse=168 

300 

50 100 150 200 250 300 

Figure 4-7 Histogrammes obtenus a partir de Modelsim (en haut) et Matlab (en bas) pour I'image 
de gauche de la figure 4.5 

En observant les resultats obtenus par Chipscope (figure 4.8), on se rend compte que 

l'histogramme varie, pour la meme image. Cette variation est observee a l'entree du 

systeme. En effet on peut constater que les pixels envoyes par le decodeur video varient 

legerement d'une trame a l'autre, pour la meme image affichee a l'ecran. Cette variation 

est due aux differentes conversions analogiques numeriques qui surviennent dans le 

lecteur DVD, dans le decodeur video et le passage YCrCB a RGB. Cela entraine pour la 
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meme image differents debuts de region speculaire. Bien qu'il detecte les regions 

speculates, le masque obtenu est done souvent instable. 
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Figure 4-8 Histogrammes de 1'image de gauche de la figure 4.5 obtenus a partir de Chiscope. Les 
debuts de bosse speculaires sont calcules sur matlab 

4.2.2 Detection bidimensionnelle 

Les seuls calculs effectues lors de la detection bidimensionnelle sont les calculs du plan 

M et du plan S afin de determiner leurs valeurs maximales respectives. Les valeurs 

maximales de S et M sont similaires, que ce soit dans matlab ou modelsim. En effet on 

observe les donnees presentees dans le tableau 4.1. 
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Les erreurs de precision dues a la transformation en M et en S des pixels de l'image en 

figure 4.9 sont telles que prevues dans le chapitre 3. Nous obtenons done des plans S et 

M visuellement identiques a leur resultat theorique comme on peut le constater en 

observant les figures 4.10 et 4.11 

Figure 4-9 Image utilisee pour les tests du plan S et du plan M 

Tableau 4-1 Valeurs maximale des plans S et M de l'image en figure 4.8 

smax 

mmax 

modelsim 

214 

238 

matlab 

215 

238 
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Figure 4-10 Implementation matlab( a gauche) et modelsim (a droite) du plan M de l'image en 
figure 4.9 

Figure 4-11 Implementation matlab( a gauche) et modelsim (a droite) du plan S l'image en figure 
4.9 

Comme attendu, les masques sur modelsim et matlab sont legerement differents. Les 

deux rdussissent cependant a capturer les principales regions speculaires (figure 4.12). 
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Figure 4-12 Implementation matlab( a gauche) et modelsim (a droite) du masque speculaire de l'image 
en figure 4.9 

Comme enonce precedemment lors de la simulation de la detection 

monodimensionnelle, on constate que le masque resultant scintille. Cependant dans ce 

cas, les scintillements sont moins frequents car ici la detection de la region speculaire ne 

tient pas compte de toutes les variations possibles dans l'image. Cet algorithme est done 

plus robuste face aux bruits sur des pixels isoles. 

4.3 Verification du systeme de correction 

L'algorithme de correction presente des resultats tres satisfaisants dans Pensemble. Les 

regions detectees sont corrigees lineairement puis lissees. II est clair que des etapes 

supplementaires de lissage permettraient d'ameliorer les resultats obtenus. 

Par exemple, II est difficile pour 1'algorithme de corriger efficacement des zones tres 

larges. Cela peut s'observer sur la figure 4.13 ou meme apres la procedure de lissage, 
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1'aspect ligne de la correction est toujours present. On distingue done des variations de 

couleurs brusques dans le sens vertical. 

Figure 4-13 Manque d'efficacite du lissage pour de larges regions speculaires; a gauche: image 
d'origine; a droite: image corrigee apres implementation materielle 

Augmenter les etapes de lissage permettrait d'annuler completement l'effet ligne encore 

observable. La region corrigee presenterait la meme texture que la region l'entourant. La 

figure 4.14 presente une correction effectuee avec 100 etapes de lissage sur Matlab. II 

est possible d'observer que l'effet ligne a disparu et que la texture de l'objet metallique 

est plus uniforme. Compte tenu des resssources disponible il est malheureusement 

impossible d'effectuer cette correction sur FPGA. 

Figure 4-14 Correction ameliorate avec des etapes de lissage supplementaire; a gauche: image d'origine; 
a droite: image corrigee avec 100 etapes de lissage 
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L'algorithme de correction fonctionne bien lorsque la region speculaire est situee a 

l'interieur d'un objet. Lorsqu'elle est situee a l'intersection de deux objets differents, 

rinformation provenant d'un objet peuvent etre propagees dans l'autre. Ce phenomene 

peut exister naturellement, ou encore etre provoque lors de l'elargissement du masque 

qui ne tient pas compte des bordures des objets. Le masque pourra done des fois etre 

prolonge dans l'objet voisin. 

Figure 4-15 Correction de la reflexion speculaire par la mauvaise couleur : la reflexion presente sur 
l'outil metallique est corrige par l'information contenu dans la zone rouge a gauche de l'objet 

La figure 4.15 montre un exemple de ce defaut. On constate que la reflexion speculaire 
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presente sur l'objet metallique est corrigee par la couleur rouge a cause du masque qui 

s'elargit vers la gauche et englobe la zone rouge. 

On observe aussi sur l'ecran video un scintillement previsible des zones corrigees. Elles 

sont en effet dues a 1'imperfection du masque speculaire utilise pour la detection. 

4.4 Performances materielles 

Pour evaluer les performances materielles nous effectuons le processus de synthese des 

algorithmes de detection monodimensionnelle, detection bidimensionnelle, puis de 

detection bidimensionnelle suivi de la correction. Nous obtenons le tableau 4.2 qui 

presente les ressources materielles utilisees obtenues apres la phase de synthese de 

1'implementation materielle [25]. Les ressources utilisees par 1'algorithme de correction 

sont obtenues en soustrayant les ressources utilisees pour la detection bidimensionnelle a 

celles utilisees pour la detection bidimensionnelle suivie de la correction. 

Afin d'obtenir des ressources independante de la structure du FPGA, les ressources 

presentees ne tiennent pas compte des ressources necessaires au routage. II s'agit 

uniquement de la logique du circuit. Pour la meme raison nous preferons nous baser sur 

le nombre de flip-flops et de LUTs utilisees plutot que sur le nombre de slices. 

On peut constater que 1'algorithme de detection monodimensionnelle utilise 10 fois plus 

de ressources que 1'algorithme de detection bidimensionnelle. Cela est du a la phase de 

traitement de l'histogramme qui s'effectue lorsque le systeme entre en mode « video 

inactive ». 
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Tableau 4-2 Ressources utilisees pour chaque implementation materielle sur un FPGA Xilinx 
Virtex 2 pro XC2VP30 

algorithme 

Detection 
monodimensionnelle 

Detection 
bidimensionnelle 

Correction 

Detection 
bidimensionnelle et 

correction 

Flip-flops 
(27,392 

disponibles) 

6,002 
(21%) 

571 
(2%) 
3,641 
(13%) 
4,212 
(15%) 

LUTs 
(27,392 

disponibles) 

10,531 
(38%) 
1,032 
(3%) 

24,044 
(88%) 
25,076 
(91%) 

Slices 
(13696 

disponibles) 

6,844 
(49%) 

586 
(4%) 

12,775 
(93%) 
13,361 
(97%) 

Brams 
(2,448 Kb 
disponible 

s) 
162Kb 
(6%) 
108Kb 
(4%) 

1,018Kb 
(42%) 

1,126Kb 
(46%) 

Le delai de traitement du systeme est provoque par la phase de correction. En 

additionnant les differents delais etablis dans le chapitre 3, nous obtenons un delai de 25 

lignes de 858 pixels (avec 720 pixels actifs). En termes de temps, nous avons done un 

delai de 0.8ms entre la trame d'entree non corrigee et la trame de sortie corrigee. Apres 

optimisation du placement et routage, notre systeme utilise 91% des LUTs disponibles et 

a une frequence maximale d'operation de 32 MHz, ce qui excede le minimum requis de 

27 MHz pour des operations en temps reel. 

4.5 Algorithme de traitement choisi 

L'algorithme de detection monodimensionnelle est celui devant presenter les resultats 

les plus precis grace a sa procedure de traitement de l'histogramme. En effet le 

debruitage de l'histogramme suivi de sa segmentation permet theoriquement d'obtenir 
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la position exacte des regions speculates. Malheureusement, cela est uniquement 

possible si plusieurs conditions sont respectees : 

• La region de l'histogramme ou se situent les pixels speculates doit etre bien 

delimitee de la region diffuse. 

• Le debruitage doit etre precis afin de ne pas eliminer accidentellement les 

regions importantes de l'histogramme 

• Les valeurs necessaires a la creation de rhistogramme doivent etre precises 

(utilisation si possible de donnees decimales, bonne conversion analogie-

numerique a l'entree du systeme) 

Ces conditions ne sont pas facilement respectables lorsqu'on veut limiter l'utilisation des 

ressources du FPGA. De plus, nous devons aussi tenir compte des ressources necessaires 

a l'implementation de l'algorithme de correction. En effet, nous constatons que les 

ressources necessaires a l'implementation d'un systeme de detection 

monodimensionnelle, tel qu'il est concu actuellement, suivi d'un algorithme de 

correction sont superieures aux ressources disponibles dans le FPGA. Nous nous 

touraons done vers l'algorithme bidimensionnel qui offre une meilleure robustesse tout 

en utilisant moins de ressources. Cela permet de faire tenir tout notre systeme a 

l'interieur du FPGA tout en dormant des resultats en temps reel. 
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Conclusion 

Ce memoire a propose un algorithme permettant de detecter puis de corriger des zones 

de reflexions speculates presentes dans des sequences d'images endoscopiques. Le defi 

est d'implementer cet algorithme sur un FPGA de petite taille et de le faire fonctionner 

en temps reel aim qu'il puisse servir dans une salle d'operation, particulierement dans la 

constitution d'un environnement a realite augmentee. 

Deux methodes de detection ont ete proposees. La methode a histogramme 

monodimensionnelle se base sur le fait que le pic speculaire est observable dans les 

histogrammes RGB d'une trame. II suffit alors de detecter la zone de debut de ce pic 

grace a un seuillage des trois histogrammes, puis faire une descente en intensite afin de 

tenir compte du lobe speculaire. Cette methode a deja ete testee de maniere logicielle. 

Quelques modifications ont ete effectuees afin de reduire la consommation en memoire 

et de la rendre plus rapide. II s'agit de l'utilisation d'une seule trame de couleur au lieu 

de trois, et de la modification de Palgorithme de descente en intensite. Une particularite 

de cette methode est l'utilisation de la zone de video inactive afin d'effectuer les calculs 

les plus complexes. La deuxieme methode utilisee pour la detection est la methode 

bidimensionnelle. Elle consiste a utiliser conjointement le plan saturation et intensite 

(nuances de gris) d'une trame afin de detecter les zones de reflexions speculates. En 

effet un seuillage a la fois sur la trame de saturation et la trame en nuance de gris permet 

d'isoler la zone de reflexions speculates. Pour l'adapter a une implementation 

materielle et au type d'images sur lesquelles nous travaillons, l'algorithme permettant le 
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calcul des seuils est modifie. Ici nous n'attendons pas d'obtenir entierement de calculer 

un plan avant de calculer l'autre. Les deux methodes de detection fonctionnent en temps 

reel. 

Une methode de correction a ete proposee. Celle-ci se base sur le principe de 

restauration d'image deja utilise dans d'autres algorithmes qui consiste a utiliser 

1'information provenant du contour d'une zone speculaire et prolonger cette information 

a l'interieur de la zone, ceci dans les deux directions verticale et horizontale. Afin de 

tenir compte des ressources limitees, la methode implemented ne travaille pas 

simultanement dans les deux directions. Elle effectue premierment une interpolation 

lineaire dans la direction horizontale. Ensuite un lissage permet de tenir compte de la 

direction verticale. Cette methode fonctionne en temps reel. 

La methode monodimensionnelle etant gourmande en ressources, le systeme implements 

est constitue de la methode de detection bidimensionnelle suivie de la correction. La 

particularite de ce systeme est que les deux algorithmes fonctionnent en parallele, sur la 

meme trame. En effet, les informations provenant de l'algorithme de detection appliquee 

sur la trame i permettent d'appliquer la correction sur la trame i+1. Le systeme au 

complet utilise 91% des ressources du FPGA. 

Bien que le systeme fonctionne, plusieurs points peuvent etre ameliores. Premierement, 

1'amelioration du processus de capture video. En effet on observe un effet de 

scintillement lors de la creation du masque. Ensuite, l'utilisation d'une methode de 

descente en intensite plus efficace permettrait d'obtenir un meilleur masque speculaire. 

Cela permettrait d'eviter que lors de la correction, 1'information provenant d'une zone 
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soit propagee dans la zone voisine. Concemant la correction, on pourrait tester 

1'implementation d'un algorithme de correction encore plus efficace, telle que la 

methode Navier-Stokes. Cela serait cependant difficile a obtenir avec le present FPGA, 

tres limite en terme de ressources. 
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Abstract— This paper presents the architecture and FPGA imple­
mentation of a video processor for detection and correction of spe­
cular reflections in endoscopic images by using an inpainting algo­
rithm. Stream processing and parallelism are used to exceed real­
time performance on NTSC format video without the need for an 
external memory. The system was implemented in a XC2VP30 
FPGA and uses 91% of available slices. Image quality is significant­
ly enhanced. 

I. INTRODUCTION 

Advances in video imaging have played a key role in bring­
ing forth the widespread use of Minimally Invasive Surgery 
(MIS) in a variety of procedures such as cardiology, neurosur­
gery, orthopaedics, urology and oncology. However, the inhe­
rent difficulties of MIS techniques have traditionally imposed 
limitations on their applicability. Reduced instrumental control 
and freedom, combined with unusual hand-to-eye coordination 
and a limited view of the operating field, enforce restrictions on 
the surgeon and require considerable dexterity and skill. On the 
other hand, these procedures entail several benefits for the pa­
tient and the healthcare system: smaller incisions, minimal 
blood loss, preservation of normal tissue, reduced pain, and 
shortened recovery and rehabilitation times. 

The use of video-assistance to facilitate MIS has been the 
focus of increasing attention since the early 1980s. In typical 
video-assisted MIS, a small camera called an endoscope is in­
serted into the surgical site via a small incision on the surface of 
the patient's body. The surgeon will exclusively use the endos­
cope video displayed on a monitor to view the surgical site and 
control the position of his instruments, which are also inserted 
through small incisions. Several sophisticated 3D navigation 
systems are under development in cardiology and neurosurgery. 
However, most of the current systems devised for spinal sur­
gery still rely on rigidly fixed dynamic reference (or fiducial) 
markers on the instrumented vertebrae for the registration of 
preoperative patient data with the intra-operative data. This 
allows the surgeon to localize precisely the anatomical struc­
tures of interest while minimizing damage to adjacent critical 
structures. 

Our team is working on the development of an augmented 
reality surgical environment using an image-based approach — 
instead of using visible markers in the pre- and intra-operative 
images — to achieve a non-contact, automated method for elas­
tic 2D-3D registration. Unfortunately, the reflection of the light 
on specular surfaces such as metallic tools and moist tissues, as 
shown in Fig.l, produces artifacts in the images that render the 
task of automatic segmentation of endoscopic images very chal­

lenging. Improving the quality of endoscopic video is an impor­
tant goal in itself, especially for augmented reality applications 
[8]. Any kind of processing must operate in real-time on regular 
sized video to be usable in a hospital, in an operating room. 
Previous work has shown that endoscopic images can be signif­
icantly improved, but with significant memory and processing 
requirements [1]. 

Figure 1. An endoscopic image with specular reflections [1] 

In this paper, we present particularized algorithms for auto­
mated detection and correction of specular reflections in an en­
doscopic context, together with their real-time implementation in 
hardware. The paper is organized as follows. Section II presents 
the system architecture and some implementation considerations 
that affect algorithm development. Section III deals with the 
problem of detecting the specular reflections, and section IV is 
concerned with their correction. Section V presents results and a 
discussion. 

II. SYSTEM ARCHITECTURE 
AND IMPLEMENTATION CONSIDERATIONS 

Fig. 1 shows the block diagram of our system. The input is a 
stream of pixels and synchronization signals from a video de­
coder connected to an endoscope. The video format is deinter-
laced NTSC with an effective resolution of 720 * 480 pixels and 
a frame refresh rate of 60 Hz. The output includes pixel values 
and synchronization signals of the same format and refresh rate, 
transmitted to a VGA port for real-time display. 
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We require real-time video processing, which is difficult to 
achieve on a serial processor because of the great amount of data 
involved. In order to perform an operation on every pixel in real­
time, the processor must execute 40 million operations per 
second. If we take into account the time to store and load data, 
the corresponding number of instructions rapidly increases. This 
is not outside the capabilities of FPGA implementations, howev­
er, where massive parallelism can be exploited. However, this 
choice implies special constraints related to the mode of 
processing data: streaming, offline and hybrid [2]. 

Human body 

endoscope Video processor 

Video 
decoder 

— deinterlacing •^ ~. 1 VGA U 
x \ port 1 

Video 
monitor 

I blue 
II 

Sync signals 

Histogram decomposition 

Task 2 

Specular 
mask 

Mask 
enlargement 

Linear 
correction 

—red— 
•areen' 

4—^lue—»• 
•Sync signals-

Figure 2. System block diagram 

Storing one video frame requires approximately 1 MB. The 
limited amount of memory resources in a FPGA would normally 
require that an external memory be used, especially if several 
frames must be accessed for processing. However, this implies 
timing constraints related to the access time to the external 
memory. It must be shorter than the incoming rate of the pixels. 
Generally speaking, external memory doesn't allow multiple 
port access. The resultant memory bandwidth limitations make it 
desirable to avoid all external memories. Consequently, we favor 
the use of a streaming mode with as little memory storage as 
possible. We have to take the challenge to use a small amount of 
memory. In fact by using the internal memory of an FPGA we 
can avoid all the constraints due to the use of an external one. 

There are two kinds of parallelism: data and pipeline [3]. 
Generally both of them are used at the same time: first we divide 
the frame into different sections (data parallelism), then each 
section passes through a processor which executes different 
tasks sequentially (pipeline parallelism). The algorithm de­
scribed in this paper uses pipeline parallelism because each 
frame is entirely computed by one processor; but it's quite par­
ticular because two processors run on the same frame at the 
same time, and the results of one processor are used by the next 
one, as shown in fig. 2. 

III. DETECTION OF SPECULAR REFLECTIONS 

A diffuse reflection occurs when the incident ray is reflected 
in a multitude of angles. In this case, the incident energy is dis­
tributed in all the directions of the reflection. It generally occurs 
at the contact of a granular surface. That is the kind of reflection 

that permits us to see objects and their shape. A specular reflec­
tion, also called specularity, occurs when the incident light is 
reflected in only one direction. In this case, both the incident and 
reflected lights have the same energy, in principle without any 
loss. This energy can glow, especially when the light source is 
near the surface. This kind of reflection occurs when the surface 
is smooth. A reflection generally has both specular and diffuse 
components. 

A. Histogram decomposition and criteria for detection 

Specularities are by definition regions of an image where 
pixel intensity is very high and where the color matches the 
illumination source. Building an image histogram therefore has 
the potential to assist us in identifying these regions. Three sepa­
rate histograms can be generated for each of the three colors in 
the image. For endoscopic images taken inside the body, the 
dominant color is red and the light source is white. Consequent­
ly, intensely white regions generally correspond to specular 
reflections. Analyzing the red, green and blue histograms for 
matching high intensity zones has the potential to point to specu­
lar regions [1]. 

It has also been shown that it is possible to use a grey-level 
image to detect specularities [4]. With a simple thresholding on 
this image we can detect specularities, because their pixel inten­
sity is independent from other regions. Specularities are more 
visible in the S (saturation) component of the HSV plan. Conse­
quently, two images are important to achieve good detection: the 
grey-level image and the saturation image. 

The methods described in [1] and [4] use one-dimension his­
tograms. They divide the image into two distinct regions: one 
where most of the pixels are located and the other where specu­
larities are located. Generally however, these histograms tend to 
be noisy, which complicates the distinction between the two 
regions. In other terms, to perform a good thresholding on these 
histograms they must first be de-noised. Detecting a mass of 
pixels corresponding to specular reflections can be accomplished 
by double derivation of the histogram to extract the beginning 
and end of the specular region (in intensity) [1], However, this 
involves many computations and it requires that a complete 
histogram of an image be stored. 

It has also been suggested to use bi-dimensional histograms 
to perform detection. Specular reflection regions tend to be lo­
cated in a static region of this histogram [5]. The bi-dimensional 
histogram is built as follows [6]: 

m = ~{r + g + b) (1) 

\{2r-g-b)=^(r-m),if(b + r)>2g ^ 

LI(r + g -26)= | ( /» -Hi / ( i + r)<2g 

where m is the intensity, s is the saturation, and r, g and b 
respectively represent the red, green and blue components of 
the image. Specularities can be identified from the bi-
dimensional histogram based on the maximum values of m and 
s for the image [6]. They correspond to the region located in the 
lower right part of the M-S diagram. The relations proposed in 
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[6] tended to produce poor results in the context of endoscopic 
images. After careful investigation of the parameters with a 
large quantity of endoscopic images, we found that the follow­
ing relations reliably identify pixels that are part of a specular 
reflection. A pixel p will be a part of the specular region if it 
meets the following conditions: 

m > —m 
p — « max 

\Sp - ~ 5max 

where m^^ and 5 are the maximum intensity of M 

and S for all pixels in an image, respectively. 

Histogram decomposition corresponds to task 1 of our sys­
tem (fig. 2). Once a pixel is received, 

1. itsM value is computed by (1); 

2. having its M value, its S value is computed(2); and, 

3. the smax and m^ values are updated for each frame. 

From a computation point of view, the approach using the 
bi-dimensional histogram is superior to the one with the one-
dimension histogram. No de-noising or histogram post­
processing is necessary. This eliminates a further cause of error 
in the form of rounding in fixed-point calculations. In fact, it is 
not required to store the bi- dimensional histogram at all, only 
to compute and track the maximum values of its two compo­
nents for each frame. Simple thresholding is sufficient to detect 
specular regions. 

B. Composition of the specular mask 

The composition of the specular mask is part of task 2 in fig. 
2; it works as follows. For each pixel p, the values of ip and sp 

are computed with (1) and (2). The relations of (3) are then eva­
luated to determine whether the pixel is part of the specular 
mask or not. 

In theory, one would have to inspect all pixels from a frame 
/ i n order to calculate the smm and m ^ values, then apply (3) to 
that frame. However, we found that the smax and mmWi values 
vary little from frame to frame, and hence the values found for 
frame/allow to find the specular mask of the /+/ frame. The 
specularities tend to be more or less identical between two suc­
cessive frames. This is true when there is no sudden change of 
direction of the camera or of the light source. In the worst case 
the error is limited to a single frame with duration under 17 ms. 
The obtained mask is a black and white frame, with the white 
parts indicating the presence of specularities. 

C. Mask enlargement 

The specular mask received from the detection includes on­
ly the specular spikes of the frame. It doesn't take into account 
the specular lobe or camera artifacts at the boundaries of specu­
lar regions and the diffuse regions, caused by the direction of 
the camera. If these components are not included in the specular 
mask, the correction will be severely compromised. Conse­
quently, mask enlargement is necessary. One approach consists 
of using an intensity descent [1,5]. However, this algorithm 
requires a significant amount of memory access and is compu­
tationally intensive. 

In order to accelerate computations, we propose the follow­
ing process. The specular mask is inspected with the help of a 
sliding window [2]. We define a mask enlargement width of n 
pixels. When a specular pixel is encountered, all pixels within a 
n x n window centered on the specular pixel are included in the 
mask. The number N of buffered lines in the sliding window is 
given by: 

N = 2n + l (4) 
The width n of the enlargement depends on the width of the 

different artifacts we want to include into the mask. We have 
found that a value of n = 3 was adequate for most images. This 
means that there is a processing delay of 7 lines between the 
original mask and the enlarged one. Fig. 3 gives an example of 
a mask enlargement with n = 1. The white pixel represents the 
specular pixel, the bold lines represent the sliding window, and 
the light grey pixels represent the new specular pixels after suc­
cessive iterations. The blue pixel is the actual pixel being com­
puted. 

IP V IP IP 
iPEP EP 

Figure 3. Mask enlargement with n-1, up: input frame; down: output frame 
IV. CORRECTION OF SPECULAR REFLECTIONS 

Correcting a frame consists of removing all the speculari­
ties previously detected and replacing them with information 
obtained from their neighborhood. One of the best ways to per­
form a good correction is to use an image in-painting algorithm, 
such as the Navier-Stokes algorithm [7]. However this kind of 
algorithm uses several loops to pass through a given frame. 
This requires large amounts of memory and computational ef­
fort. We aim to achieve a single frame memory architecture. 
We therefore propose the following approach, which operates 
line by line: 

• An entire line of the frame is stored. 

• For each specular region detected in this line, three data are 
stored: the value of the pixel before the specular region PQ 
the value of the pixel after the specular region pe and the 
width of the specular region w. 

• For each specular region, the linear skew a is calculated: 

a = ? ^ - (5) 
w 

• The leftmost pixel in a specular region is given index zero. 
Pixel p0 is given the value p\, + a. The corrected value of all 
other pixels is given by 

PM=Pi+a (6) 

At the end of the process there will be a delay of 1 line be­
tween the enlarged mask and the corrected frame. 

Since linear correction operates only in the horizontal di­
mension, it is necessary to add correction along the vertical 
dimension. This is achieved by passing the corrected frame 
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through a smoothing window which replaces corrected pixels 
with the average of its neighbors. This is done by using a 3x3 
sliding window with 5 passes. Each pass creates a delay of 3 
lines, for a total of 15 lines delay. 

The total delay of the system is 25 lines of 858 pixels each 
(with 720 active pixels); this delay of 0.8 ms between the non 
corrected input frame and the corrected output frame uses 64 
KB of the internal memory. The delay is acceptable for real­
time operation. 

V. RESULTS AND DISCUSSION 

The system was first developed and implemented with Mat-
lab to adjust parameters and processes and to build a baseline 
reference. This Matlab implementation included fixed point 
data types from the start. The system was then described at the 
register-transfer level with VHDL. Simulation and verification 
were performed with the help of Modelsim and an automated 
test bench. 

Two systems were in fact implemented with different de­
tection algorithms: the single [1] and bi-dimensional approach­
es. Table 1 presents resource usage for the implementation of 
each algorithm after the synthesis process. Bi-dimensional his­
togram detection uses 10 times fewer resources than the mono-
dimensional version and it achieves better results. 
TABLE I. RESOURCES USED FOR EACH HARDWARE IMPLEMENTATION ON A 

XILINX VIRTEX 2 PRO XC2VP30 FPGA 

algorithm 

Mono-dimensional 
histogram detection 

Bi-dimensional 
histogram detection 

Correction 

Detection and 
correction 

Flip-flops 
(27,392 availa­

ble) 
6,002 
(21%) 

571 
(2%) 

3,641 
(13%) 

4,212 
(15%) 

LUTs 
(27,392 

available) 
10,531 
(38%) 

1,032 
(3%) 

24,044 
(88%) 

25,076 
(91%) 

Brams 
(2,448 Kb 
available) 

162Kb 
(6%) 

108Kb 
(4%) 

1,018Kb 
(42%) 

1,126Kb 
(46%) 

Fig. 4 demonstrates the detection and correction of specular 
reflections. Hardware implementation of mono-histogram de­
composition gives an unstable mask because of the computa­
tions needed to extract the beginning of the specular region. 

The best results come from [7] because the correction is 
done on two dimensions, instead of one dimension. The specu­
lar regions are filled until there is no information to propagate 
from the boundaries. In other terms, the widths of the bounda­
ries tend to zero. This needs a lot of memory to store multiple 
frames of the same picture. 

The correction algorithm proposed in this paper works well 
when the specular region is entirely enclosed inside an object 
(Fig. 4). When it's located at the boundary of two different 
objects, the information coming from one object can be propa­
gated to the other one. 

After the optimization of placing and routing process, the 
system uses 91% of the available slices of a XC2VP30 FPGA. 
The maximum operating frequency is 32 MHz, which exceeds 
the minimum required of 27 MHz for real-time operation. 

VI. CONCLUSION 

This paper has presented a method and architecture to im­
plement a processor able to detect and correct specularities in 
NTSC endoscopic videos. This is done with two parallel tasks 
in a streaming processing mode. Bi-dimensional histogram 
decomposition is computed to detect the specularities. It has the 
advantage of using few memory and computation resources 
without compromising the quality of the resulting image. The 
correction is done in two steps, a linear correction and a 
smoothing process. The system functions in real time and 
doesn't require an external memory. 
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Figure. 4 Hardware implementation of the specular mask (middle) and the correction (right) of the left image 


