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Résumé

Le cadre du projet se situe dans le milieu chirurgical. Lorsque le chirurgien désire opérer
un patient, il peut le faire soit par une chirurgie invasive, soit par une chirurgie
minimalement invasive. La chirurgie minimalement invasive se fait par endoscopie.
Cela consiste a insérer les instruments chirurgicaux dans le corps du patient & I’aide
d’incisions. Une petite caméra, I’endoscope, est aussi insérée afin de guider le chirurgien
tout au long de I’opération.

La chirurgie par endoscopie a de nombreux avantages pour le patient. Elle entraine
moins de douleur, réduit la durée de [I’hospitalisation et permet un prompt
rétablissement. Cependant, elle rend la tache difficile pour le chirurgien. Il est par
exemple privé de la vision en trois dimensions puisque 1’endoscope ne restitue qu’une
vision en deux dimensions. Pour atténuer cette contrainte, des recherches ont été faites
afin de créer un environnement de réalit€ augmentée, environnement dans lequel un

N

modele virtuel 3D de l'organe a opérer est superpos€ au model réel. Les étapes
nécessaires a cette superposition requicrent une bonne segmentation des objets.
Cependant la source lumineuse de 1’endoscope, étant trop pres des organes et des outils,
réfléchit en provocant des artéfacts lumineux détruisant I’information utile et empéchant
une bonne segmentation.

Le but de ce projet est de détecter les réflexions spéculaires présentes dans une séquence

vidéo et les corriger. Ces deux étapes doivent étre effectuées en temps réel afin de rendre
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le traitement des séquences vidéos transparent au chirurgien. Afin d’atteindre les
objectifs de temps réel, nous utilisons une architecture matérielle, Le FPGA.

Deux méthodes de détection sont utilisées pour localiser la position des réflexions
spéculaires. La premiére utilise un histogramme de couleur afin de détecter I’intensité
minimale des pixels spéculaires. La deuxieme méthode se sert simultanément de deux
plans (saturation et intensité) d’une trame. Elle consiste a effectuer un seuillage a la fois
sur la trame de saturation et la trame en nuance de gris afin d’isoler la zone de réflexion
spéculaire. La méthode de correction utilis€e se sert du principe de restauration d’image.
Il s’agit de prélever I'information provenant du contour de la zone a corriger et la
propager a I’intérieur de cette zone. Afin de limiter I’utilisation des ressources du FPGA,
plusieurs optimisations sont proposées pour I’'implémentation de ces différentes
méthodes.

Les objectifs de temps réel sont atteints. Le systeme implémenté détecte et corrige les

réflexions avec un délai de 0.8 ms en utilisant 91% des LUTS disponibles
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Abstract

The framework of the project is surgery. When operating a patient, the surgeon can
either proceed by an invasive surgery or a minimally invasive surgery. The latter is made
by endoscopy. It consists in inserting surgical instruments through cuts inside the
patient’s body. A small camera, the endoscope, is also inserted to guide the surgeon
throughout the operation.

The endoscopic surgery has many advantages. In fact, it causes less pain, reduces the
length of hospitalization, and allows for a quick recovery. However, it has some
disadvantages for the surgeon. The endoscopic surgery enables solely a two-dimensional
vision. Though, a three dimensions vision is more appropriate. To alleviate this
constraint, research has been done to create an augmented reality surgical environment,
an environment in which a virtual 3D model of the organ is superimposed on the real
model. Therefore, this overlay requires an accurate segmentation of the objects. Note
that, the light source of the endoscope, being too close to the organs and tools, reflects
some luminous artefacts that damage useful information and prevent an accurate
segmentation.

The aim of the project is to find out the specular reflections in a video sequence and to
correct them. These two steps must occur in real time in order to transmit the video
footage in a clear and a transparent way to the surgeon. The FPGA, a hardware

architecture, is used to achieve these real time objectives.
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Two detection methods are used to locate the position of the specular reflections. The
first method consists in using a color histogram to detect the minimal intensity pixel of
these reflections. The second method uses simultaneously two plans (saturation and
intensity) of a frame. This method consists in making a threshold on both the saturation
and intensity plans in order to isolate the specular area. The principle of image
inpainting is used as the correction method. Indeed, it collects information around the
area to correct, and spreads it inside that same area. To cope of with limited resources of
the FPGA, several enhancements are proposed to implement these methods.

The real-time objectives are achieved. The system detects and corrects specularities

within 0.8 ms and uses 91% of the available LUTs
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Introduction

Les avancées dans 1’imagerie médicale ont joué un grand réle dans le développement de
chirurgies minimalement invasives dans une variété de procédures telles que la
cardiologie, la neurochirurgie, I’orthopédie, I'urologie et 1’oncologie. Cependant les
difficultés inhérentes aux techniques minimalement invasives ont imposé des limites a
leur applicabilité : contréle d’instruments réduit, coordination mains-yeux inusuelle, vue
réduite du champ d’opération, procurent des restrictions supplémentaires au chirurgien
et requicrent une dextérité et une habileté considérables. D’un autre coté, ces procédures
apportent beaucoup d’avantages au patient et au systéme de santé : incisions plus petites
par rapport aux techniques d’opération usuelles, préservation du tissu, période de
convalescence réduite.

L’utilisation de I’assistance vidéo a permis de faciliter ’opération et donc d’aider le
chirurgien dans sa tdche. Elle consiste en une petite caméra appelée endoscope qui est
insérée dans l'organisme a l’aide d’une petite fissure. L’endoscope est relié a un
moniteur vidéo qui présente le site chirurgical. Cela permet au chirurgien de mieux
orienter et de contréler la position de ses instruments qui sont aussi insérés a I’aide de
petites incisions. Pour une bonne marche de I’opération, la vidéo se doit d’étre la plus
nette possible. Cependant la source lumineuse, placée a proximité de la caméra, et donc
tres pres des organes et des instruments, provoque un éblouissement lorsqu’elle réfléchit

et conduit par la méme occasion a une dégradation des conditions d’opération.



Augmenter la qualité vidéo semble donc nécessaire pour la bonne marche de 1’opération,
surtout dans la mesure ou on aimerait constituer un environnement de réalité augmentée.
Cela consisterait a détecter et atténuer les zones trés éblouissantes a partir des
informations provenant de I’endoscope, puis les retransmettre au moniteur vidéo. Ce
processus devrait s’effectuer de maniére discréte et rapide, de telle sorte que le
chirurgien ne se rende pas compte qu’un traitement supplémentaire est effectué. En
d’autres termes il devrait se faire en temps réel et utiliser le moins de mémoire possible
pour augmenter sa portabilité afin d’étre utilisable dans une salle d’opération et de
s’intégrer au systéme d’opération. C’est sur cette base que nous avons décide d’effectuer
une implémentation matérielle d’un systéme de traitement d’image capable de détecter
les zones de réflexion et les corriger. Nous étudions donc la faisabilité d’un tel systéme a
I’aide d’un FPGA (Field Programmable Gate Array), un systéme numérique
programmable permettant d’effectuer des conceptions matérielles de maniére flexible.
La suite du mémoire sera organisée de la manicre suivante :

Le chapitre 1 présentera la mise en contexte et les objectifs : mise en contexte sur
I’endoscopie et la réalité augmentée et présentation du probléme 1ié aux réflexions, mise
en contexte sur les systémes de traitement d’image et objectifs du projet

Le chapitre 2 traitera des algorithmes utilisés dans le cadre de la détection et de la
correction des réflexions spéculaires; deux algorithmes de détection sont principalement
décrits : un ayant une approche unidimensionnelle et l'autre ayant une approche
bidimensionnelle; la correction quant a elle est faite 4 I’aide d’une méthode utilisant le

principe de restauration d’image



Le chapitre 3 traitera de P’architecture du systéme a implémenter. A partir des différentes
propositions énoncées dans le chapitre 2, des algorithmes qui en ressortent sont
optimisés afin de permettre une implémentation matérielle efficace.

Le chapitre 4 présentera les résultats des algorithmes, et fera une comparaison des deux

méthodes de détection implémentées.



Chapitre1 Mise en contexte

1.1 Contexte chirurgical

1.1.1 Endoscopie

L'endoscopie peut étre utilisée soit pour le diagnostic, soit pour traiter une maladie. Au
départ (il y a un demi-siécle), elle était utilisée par les chirurgiens gynécologues a des
fins diagnostiques pour explorer notamment des douleurs pelviennes [1].

Dans les années 80, quelques chirurgiens ont enlevé l'appendice (appendicectomie), la
vésicule (cholécystectomie), puis progressivement pratiquement toutes les interventions
de la coéliochirurgie (opération qui consiste a intervenir au niveau du pelvis ou de
I’abdomen) ont été effectuées. D'autres spécialités l'ont ensuite adopté : la chirurgie
thoracique (par thoracoscopie), l'urologie et plus récemment la chirurgie
cardiovasculaire.

Dépendamment du type de chirurgie, un gaz inerte est inséré dans la paroi abdominale
afin de créer un espace gazeux éloignant la paroi des visceéres et facilitant la
manipulation des instruments; ensuite, des instruments creux appelés trocarts sont mis
en place a I'aide d’incisions de 5 a 10 mm; ces instruments permettent le passage de
I’endoscope et d’autres instruments tels que la pince tractrice, le matériel de suture,
I’aspiration et I'irrigateur. La figure 1.1 montre I’insertion de différents instruments et

de I’endoscope dans I’organisme.



Figure 1-1 Insertion d'instruments chirurgicaux et de 1'endoscope(http://www.lasfce.com)

L’endoscopie est qualifiée de minimalement invasive car elle a de multiples avantages

par rapport a la chirurgie traditionnelle qui se fait par une grande incision (laparotomte) :

elle donne moins de douleur, elle a moins de conséquences respiratoires, elle permet un
rétablissement précoce ce qui réduit les complications du décubitus, elle réduit la durée
d'hospitalisation permettant trés souvent la chirurgie en ambulatoire, elle permet une

récupération plus rapide [1].

Ce type de chirurgie nécessite cependant une formation adéquate, car elle entraine de

nouvelles difficultés pour le chirurgien :

e ]l est privé de la vision en trois dimensions, puisque 1’endoscope ne restitue qu’une
vision en deux dimensions : il n’a donc pas la notion de relief, et est obligé de le
déduire mentalement.

e Il est également privé de la possibilité de toucher les organes avec les mains : il n’a
donc pas I’information tactile naturelle, mais seulement un retour de force qu’il

pergoit a travers les instruments.


http://www.lasfce.com

e Il doit introduire ses instruments seulement par quelques orifices, perdant ainsi la

mobilité naturelle des instruments qu’il aurait en chirurgie classique.

1.1.2 Laréalité augmentée

Pour réduire les complications liées a I’utilisation de I’endoscope, des recherches ont été
faites afin de créer un environnement de réalité augmentée [2,3]. Il s’agit d’un
environnement dans lequel un modéle virtuel 3D est superposé a la perception que nous
avons naturellement, le tout en temps réel. En d’autres termes, il s’agit de la
superposition d’images virtuelles aux images réelles, dans le cadre de la vision. Les
principales étapes nécessaires a une superposition précise sont [4] :

e La création d’un modéle 3D de la structure anatomique interne de la partie ou se
déroulera I’intervention; cette structure est extraite grace a des scans effectués avant
I’opération (tomodensitométrie ou CT-scan); au cours de cette procédure, des
marqueurs sont placés sur la peau du patient et sont visibles sur les scans.

e [’alignement du modele 3D sur le patient : pour permettre un bon alignement, des
marqueurs retro-réflectifs sont aussi placés sur le patient dans la salle d’opération.
Des caméras infrarouges placées sur le plafond permettent de détecter ces marqueurs
et de les faire correspondre a ceux placés sur le modéle 3D.

e Le suivi des instruments chirurgicaux : pour permettre la visualisation de la position
des instruments par rapport au modeéle 3D, les instruments doivent étre détectés et

suivi en temps réels.
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Figure 1-2 Etapes de la reconstitution dans le cadre de la réalité augmentée

1.2 Problémes liés aux réflexions

Le chirurgien peut se retrouver facilement ébloui lorsqu’il pratique son opération a
’aide de I’endoscope car la source lumineuse peut se retrouver trop prés des organes. De
plus, la bonne marche des principales étapes résumées dans la figure 1.2 passe par une
bonne segmentation des images endoscopiques pendant 1’opération, donc en temps réel.
Cependant la source lumineuse de ’endoscope, étant trop prés des organes et des outils,
est réfléchie en provoquant des artéfacts lumineux détruisant l'information utile et
empéchant une segmentation adéquate. En effet, il sera facile pour un algorithme de
segmentation de considérer une zone éblouissante comme €tant une région a part entiere

alors qu’elle appartient & la méme région que les pixels voisins.



La réflexion est le changement d’orientation d’une onde au contact d’une surface
séparant deux milieux; elle peut étre spéculaire ou diffuse (figure 1.3) en fonction du
type de surface sur laquelle elle est réfléchie et de son angle d’incidence.

Une réflexion diffuse se produit lorsque la lumiere se réfléchit dans une multitude de
directions au contact d’une surface en général granuleuse ; dans ce cas, |’énergie
incidente est répartie dans toutes les directions de réflexion. C’est ce type de réflexion
qui permet de voir la couleur et la forme des objets.

Une réflexion spéculaire se produit lorsque ’onde incidente réfléchit dans une seule
direction. Toute I’énergie incidente est donc réfléchie dans une seule direction, ce qui
provoque un éblouissement lorsque la source lumineuse est proche de la surface de

réflexion. Ce type de réflexion se produit au contact d’une surface lisse et/ou luisante.

[}
5
[
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Figure 1-3 Manifestations d'une réflexion diffuse (2 gauche) et spéculaire (a droite)

Il est donc utile de supprimer la composante spéculaire de la réflexion présente dans la
vidéo provenant d’un systéme endoscopique afin d’améliorer son rendu. La figure 1.4

présente des endroits trés éblouissants qui dégradent la qualité de I’image.



Figure 1-4 Exemple de réflexions dans une image provenant d'une sonde endoscopique: on
remarque bien la présence d'endroits trés éblouissants (encerclés)

1.3 Le FPGA par rapport au traitement d’'images

Les systemes de traitement de signaux peuvent €tre implémentés de deux maniéres
différentes.

Le traitement peut se faire par microprocesseur. En général le concepteur d’un
processeur construit un élément programmable utilisable pour une variété d’applications
afin de maximiser la quantité d’éléments vendus. Etant donné que le concepteur ne sait
pas quel programme sera implémenté, il crée une mémoire de programmes qui n’est pas

fixe et un chemin de données assez général pour pouvoir supporter différents types
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d’applications. Cela permet d’alléger grandement les contraintes d’implémentation.
Utiliser un microprocesseur pour construire son programme se révele donc assez facile
car 1l n’est pas nécessaire de s’inquiéter de son implémentation matérielle. Il aura en
plus une trés grande flexibilité, car changer une fonctionnalité reviendrait juste a changer
de programme et le recompiler; le prix unitaire sera aussi de faible cofit pour de petites
quantités. Cependant les performances pour des applications spécifiques, en 1’occurrence
le traitement de signal, ne seront pas optimales [5].

Pour augmenter le niveau de performance, il existe des microprocesseurs spécialement
dédiés au traitement numérique de signal appelés DSP (Digital Signal Processors). Ils
possédent un chemin de données spécialisé, comportant des unités MAC (Multiply-
Accumulate) accélérant les opérations de convolution et aussi du matériel spécial
permettant de lire des données séquentiellement en mémoire tout en exécutant certaines
opérations. Les DSPs procurent donc une certaine flexibilité tout en offrant une
meilleure performance que les microprocesseurs généraux.

Mis a part 'implémentation par processeur général, il est possible d’utiliser des
processeurs spécialisés pour le traitement de signaux. Les processeurs spécialisés sont
des circuits numériques implémentés pour exécuter uniquement un programme
spécifique. Ils ont donc une mémoire de programme fixe et un chemin de données
spécialisé. Cela leur procure une trés bonne performance, une faible taille mais le temps
de design devient long et la flexibilité nulle. Ces processeurs peuvent étre concus sur des
ASICs (Application-Specific Integrated Circuits) : une fois le schéma électrique du

circuit achevé, il est converti en éléments logiques puis envoyé en fonderie; la
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conception sur ASICs entraine cependant un coit de developpement tres élevé. lls
peuvent aussi étre concus sur des FPGAs (Field Programmable Gate Arrays).

Les FPGAs sont des matrices de blocs logiques connectés par un réseau
d’interconnexion. Les blocs logiques et le réseau sont reprogrammables, ce qui permet
d’implémenter de maniere matérielle une application tout en préservant la capacité de
changer différentes fonctionnalités de maniére aisée. Les FPGAs offrent donc un
compromis entre la flexibilité des microprocesseurs et la performance en vitesse des
ASICs. Les gains en performance sont obtenus en éliminant I’étape « fetch-decode-
execute » des microprocesseurs et en exploitant le parallélisme imnhérent aux
architectures matérielles. De plus, il est beaucoup plus facile d’effectuer des tests et
simulations sur une architecture matérielle car on n’est pas en permanence confronté a
des routines d’interruptions permettant d’accéder a des fonctions indépendantes du
programme implémenté, ce qui est le cas sur les microprocesseurs. La figure 1.5 résume
ces différentes architectures.

D’une maniere générale, le traitement d’images en temps réel est difficile a atteindre sur
un microprocesseur a cause de différents facteurs tels que la grande quantité de données
que représente une image : pour une vidéo NTSC, les trames sont regues a une fréquence
de 30 trames par seconde, avec une résolution de 858x525 pixels. Pour exécuter des
opérations sur chaque pixel en temps réel, le processeur doit effectuer 40.5 millions
d’opérations a la seconde, sans tenir compte des étapes nécessaires au stockage et a la

récupération des données provenant de I’extérieur. D’autre part, plusieurs applications
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nécessitent que différents calculs soient effectués sur le méme pixel, ce qui accroit

encore plus le nombre d’opérations par seconde.

flexibilité

performance

Figure 1-5 Différentes implémentations possibles pour un systéme de traitement d'images

Un bon compromis entre les différentes architectures présentées ci-dessus est donc le
FPGA, malgré les contraintes liées a son utilisation : en général les programmes sont
d’abord congus de maniére sérielle, sur un microprocesseur, puis transcrits pour une
implémentation matérielle; la principale difficulté sera donc de transformer une
application sérielle en une application mat€rielle en tenant compte des contraintes de

bande passante, de temps, li€s a la parallélisation des algorithmes.

1.4 Objectifs

L’objectif du projet est donc I’'implémentation d’un systéme de traitement vidéo sur
FPGA permettant la détection et la correction de réflexions spéculaires sur des images

endoscopiques. Ce systeme doit &tre capable de fonctionner en temps réel afin d’aider le
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chirurgien lors de 'opération d’un patient et d’étre implémenté dans une salle a réalité
augmentée. Plus en détails, nous devons donc :
e Trouver des algorithmes de détection et correction de réflexions spéculaires dans
les images endoscopiques.
e Rendre ces algorithmes implémentables sur un FPGA a faible capacité, c'est-a-
dire minimiser le colit de ces algorithmes en termes de ressources matérielles.
e Implémenter ces algorithmes en essayant d’atteindre le temps réel tout en

conservant d’excellentes qualités visuelles.
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Chapitre 2 Algorithmes pour la détection et la

correction des réflexions spéculaires

Dans ce chapitre nous présentons deux types d’algorithmes de traitement, les
algorithmes de détection et les algorithmes de correction. Aprés une revue de littérature
des algorithmes existants, nous nous concentrons sur ceux que nous avons choisis pour
effectuer notre implémentation. Nous présentons donc deux approches dans le cadre de
la détection et différentes méthodes de correction que nous combinerons afin d’obtenir

ceux que nous implémenterons.

2.1 Algorithmes de détection

Selon le modéle de réflexion dichromatique [6], une image est une combinaison linéaire
de sa composante diffuse C}, et de sa composante spéculaire C;:

Clx,y) = miC;(x,y) + my Gy (x,y) 2.1)
ou m; et m, sont des facteurs dépendant de la géométrie de la sceéne, de I’angle
d’incidence de la source lumineuse, et de I’angle de vision de I'image. Il est donc
possible de dissocier les deux composantes, et par la méme occasion de ne retenir que la
composante diffuse. Plusieurs techniques ont donc été proposées afin de retirer la
composante spéculaire de I'image.

Certaines de ces méthodes se servent de plusieurs angles de vision de la méme image.
Par exemple, Lee et Bajcsy se servent d’une technique appelée « spectral

differencing » [7]. Celle-ci se base sur le fait que I’irradiance (flux de radiation arrivant
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sur une surface par unité d'aire) de ’image provenant d’une réflexion lambertienne
(réflexion diffuse) ne change pas en fonction de I’angle de vision, contrairement a
I’irradiance provenant d’une réflexion spéculaire. Il suffit donc, aprés analyse, de
détecter les points inconsistants au travers des différents points de visions de I’image.
Cette méthode n’est pas applicable dans le cas de ’endoscope car la source lumineuse
est solidaire de la lentille. En plus de cela, elle serait difficile a utiliser en temps réel a
cause de la complexité de ses calculs et la quantité de données a stocker pour une seule
image.

Certaines méthodes adoptent une approche statistique, mais ne prennent pas en compte
le processus de formation de 1’image [8]. D’autres méthodes ayant plutét une approche
physique prennent bien en compte le processus de formation. C’est le cas de Schliins et
Koschan qui utilisent le cube RGB afin de déterminer le nombre de matériaux dans la
scene, les segmentent, et ensuite les séparent respectivement entre leurs composantes
diffuse et spéculaire [9]. Bien qu’efficace, cette approche ne fonctionne correctement
que pour des images ayant peu de textures et un arriére-plan uniforme; en plus elle est
cofiteuse a cause du traitement en 3D de I’image. Elle serait donc difficile & implémenter
pour une application temps réel.

Par contre, St-Pierre part du principe que le plan RGB est le mieux adapté pour détecter
des réflexions et construit trois histogrammes pour chacune des composantes rouge, vert
et bleu [10]. Il détermine ensuite la position commune aux trois histogrammes ou il y a

réflexion spéculaire.
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En se basant sur les précédentes méthodes, nous étudions deux approches qui permettent
de détecter les pixels spéculaires de manieére dynamique (en se servant des informations
provenant de 1’image) : une approche a histogramme unidimensionnel et une approche

bidimensionnelle.
2.1.1 Approche unidimensionnelle

2.1.1.1 Décomposition en histogrammes

Les histogrammes d’une trame de couleur représentent le nombre de pixels en fonction
des intensités de cette couleur. Ils sont construits en divisant I’espace RGB en un certain
nombre de cases ou plages d’intensité, puis en comptant le nombre de pixels de I’'image
dans chaque case. Ils permettent donc de diviser la trame en différentes
régions d’intensité. On peut décomposer une trame en trois histogrammes, un pour
chacune des couleurs du plan RGB. En plus, nous travaillons avec des séquences
provenant de I’intérieur du corps humain, dominé par la couleur rouge. On peut donc
supposer que la détection d’une couleur blanche revient a détecter une réflexion
spéculaire. La couleur blanche étant formée des couleurs rouge, verte et bleue, la
détection simultanée de ces trois couleurs dans une plage d’intensités élevées des
histogrammes indique que tous les pixels faisant partie de cette région d’intensités sont
des réflexions spéculaires [10].

Par ailleurs, on constate que la composante S du plan HSV permet de faire ressortir les
réflexions spéculaires (figure 2.1).

Cette composante se calcule assez aisément a partir des composantes R, G, B :
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_ maxR,G,B)-minR,G, B)
maxR,G, B)

S (2.2)

Bien que la réflexion soit bien visible a 1’ceil nu, ’histogramme de cette composante ne
permet pas de délimiter la région des réflexions spéculaires. Il est quand méme possible
d’utiliser la composante S afin de rehausser I’image dans le plan RGB et d’y mettre plus

en €vidence les réflexions spéculaires. Cela se fait en multipliant les canaux RGB par (1-

S). La figure 2.2 permet d’observer les effets du rehaussement.

Figure 2-1 Image dans le plan RGB (a gauche) et sa composante S correspondante (a droite)

Le rehaussement permet de mieux délimiter les régions de réflexions spéculaires dans
les histogrammes car il accentue la différence de valeur entre les zones d’intensité
moyenne par rapport a la trame (en d’autre terme les zones de réflexion diffuse) et les
zones de forte intensité. Cela entraine une bonne démarcation dans 1’histogramme, les
pixels provenant de la réflexion diffuse étant tous regroupés vers la gauche.

Groger et al. observent que pour une image en niveaux de gris, une détection de

réflexions spéculaires est largement possible par un simple seuillage car celles-ci ont des
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intensités indépendantes des autres pixels de ’image [11]. L’image en niveaux de gris
est calculée en combinant les composantes RGB. 1l s’agit en fait de la composante Y du
plan YUV, donnée par I’équation 2.3:

Y =0.299R +0.587G+0.114B (2.3)

La figure 2.2 présente I’image rehaussée transformée en nuance de gris.

Figure 2-2 Multiplication de I’image en figure 1 par la composante (1-S) (a gauche) et son plan Y
(a droite); on constate que les réflexions se distinguent mieux dans I'image rehaussée

2.1.1.2 Débruitage et détection du pic spéculaire

Comme décrit plus haut, I’histogramme est normalement divis€ en deux grandes
régions : une région ou sont localisés la plupart des pixels, et une autre délimitant le pic
spéculaire. Détecter la région spéculaire reviendrait donc a déterminer le début de la
seconde région. Ce processus n’est pas ais€é a cause de la nature bruitée de
I’histogramme. En effet, la présence de plusieurs autres régions empécherait
’algorithme de détection de délimiter la véritable région spéculaire. On peut constater

en observant la figure 2.3 que notre algorithme de détection prendra le bruit comme
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¢tant la véritable région spéculaire si un débruitage n’est pas effectué sur I’histogramme.
Il convient donc de débruiter I’histogramme avant d’effectuer la détection. Pour
effectuer le débruitage, St-Pierre constate que I’approche par transformation en
ondelettes donne de meilleurs résultats qu’une approche fréquentielle ou une approche

par approximation de fonctions continues {10].

Début bosse spéculaire réelle

Début bosse spéculaire
détectée

Debut bosse speculaire
détectée

Y

Figure 2-3 histogramme avant débruitage (en haut) et aprés débruitage (en bas)
La transformation en ondelettes permet de représenter le signal avec plus ou moins de
détails. Elle transforme le signal en deux groupes de coefficients : les coefficients
d’approximation conservant la forme méme du signal, et les coefficients de détails,

permettant de donner plus de détails au signal. Le bruit étant généralement stocké dans
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les coefficients de détail, faire un débruitage du signal revient ainsi a effectuer une
transformation en ondelettes, puis effectuer un seuillage des coefficients de détail.
Ensuite il suffit d’effectuer la transformée inverse.

I1 faudrait donc étre capable de déterminer un seuil en dessous du quel on ne consideére
pas les petits coefficients ; Sudha et Al présentent plusieurs méthodes de seuillages dont
les principales sont le seuillage doux et le seuillage dur [22]. Le seuillage dur veut que
les coefficients soient retenus uniquement s’ils dépassent une certaine valeur seuil; le
seuillage doux réduit les coefficients au lieu de les mettre directement a 0 s’ils sont
inférieurs a un certain seuil. La technique de seuillage que nous utilisons est celle du
VisuShrink de Donoho et Johnstone [23]. C’est un seuillage dur qui utilise le seuil

universel défini par I’équation 2.4 :

T=0,2log, M (2.4

Ou O est la variance des coefficients de détail et M le nombre de données.

La détection du pic spéculaire consiste a déterminer le début de la derni¢re région de
I’histogramme ; tous les pixels ayant des intensités supéricures a cette valeur feront
partie du pic spéculaire. La détection se fait en deux €tapes.

L’histogramme est dérivé une premiére fois. Si la valeur de la dérivée est supérieure a 0
on lui attribue la valeur maximale (255 si les données sont représentées sur 8 bits), sinon

on lui attribue la valeur 0.
Il est ensuite dérivé une seconde fois, et le méme procédé de seuillage est appliqué. Le

résultat est une suite de pics dont le dernier correspond au début de la région spéculaire.
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La figure 2.4, prise a titre d’exemple, représente les deux étapes de détection effectuées

sur un signal sinusoidal.

Signal débruité

Signal apreés la premiere dérivation

Signal apres la deuxiéme dérivation

Figure 2-4 Etapes de la détection du pic spéculaire
Pour déterminer les zones de réflexion spéculaire dans 1’image, 1l suffit donc de chercher
tous les pixels de ’image dont I’intensité est supérieure ou égale a la valeur du début de
la région spéculaire déterminée lors de la seconde dérivation. Les pixels faisant partie de

la région spéculaire seront donc mis en blanc, et les autres en noir. A la fin on obtient un
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masque spéculaire. Ce masque spéculaire indique la position exacte des régions

spéculaires dans 1’image (figure 2.5).

Figure 2-5 Masque spéculaire de ’image en figure 1

2.1.3 Approche bidimensionnelle

I1 est possible de détecter la présence des réflexions spéculaires en adoptant une méthode
bidimensionnelle. Cette méthode se base sur le fait que les réflexions spéculaires sont
facilement visibles dans le plan S, ainsi que dans les images en nuances de gris. Il est
donc possible de mettre en relation ces deux plans afin d’effectuer une bonne
segmentation de I’image.

Ortiz et Torres construisent un diagramme appelé¢ diagramme MS et recherchent les
réflexions spéculaires dans une zone précise de ce diagramme [12]. Ce diagramme a
pour abscisse M et pour ordonnée S ; la premiére étape consiste & déterminer le plan M
(figure 2.6). La formule est la méme que celle employée dans [12]. Elle correspond tout

simplement & la moyenne des composantes RGB (équation 2.5):
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M=%(R+G+B) (2.5)

A partir de M, on détermine S (figure 2.6). Contrairement au plan S défini lors de
I’approche précédente, celui-ci est normalisé par la norme L1 définie dans [13]. En effet
Angulo et Serra constatent que cela permet de mieux délimiter les différentes régions de

I’image (équation 2.6) :

[l(2R—G—B)=§(R—M),si(B+R)z 2G
5= i (2.6)

—(R+G—2B)=5(M—B),si(B+R)<2G

Figure 2-6 Plan M (a gauche) et plan S (a droite) de I’image en figure 1

Une fois le diagramme MS défini, Ortiz et Torres délimitent une zone précise et
conside€rent tous les pixels appartenant a cette zone comme é&tant des réflexions

spéculaires ; étant donné qu’une réflexion spéculaire est naturellement caractérisée par

une tres grande intensité et une saturation trés basse, cette zone située dans la partie
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inférieure droite (figure 2.7) du diagramme est délimitée par les équations ¢, ,c, et s, .

La constante s, correspond a la zone de saturation des couleurs primaires G et B, ¢, et

c, sont définis par I’équation 2.7

¢ = ——;—(m—255),\/m & [y, ]
¢y ==3(m—255),Yme[m,,my,]

2.7)
2 5
avec M; = Emm , My = gmm et 772, la valeur maximale dans le plan M.
‘S

PRI T TV LTI YT

Figure 2-7 Zone siége des réflexions spéculaires dans le diagramme MS selon [12]

2.1.4 Détection du lobe spéculaire

La bosse spéculaire présente uniquement les zones de forte intensité, a savoir les pics

spéculaires. Autour de ces pics, il existe des zones de transition allant jusqu’aux zones

de réflexion diffuse, les lobes spéculaires. Par endroit on peut aussi détecter autour de
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ces pics des artéfacts, de couleur noire ou jaune foncé. La figure 2.8 permet de mettre
en €vidence des artefacts de couleur jaune entourant une région spéculaire que nous
avons colorée en couleur turquoise. Ces art€facts sont souvent causés par la source
lumineuse située trop pres de la surface et par une saturation de la caméra.

Ces artéfacts ayant des couleurs qui ne peuvent étre considérés ni comme diffuses, ni
comme spéculaires devraient étre retirés afin de faciliter la correction. En résumé il
faudrait trouver un moyen d’inclure dans le masque spéculaire le lobe spéculaire et les
artéfacts ; nous considérons dans la suite que les artéfacts font partie du lobe.
Bhattacharyya [14], puis Saint-Pierre [10] ont proposé dans leurs mémoires respectifs

une approche commune dite descente en intensite.

Figure 2-8 Artéfact (en jaune) entourant une zone de pic spéculaire

Pour détecter le lobe, ils partent du pic spéculaire et font une descente dans les
dimensions horizontale et verticale jusqu’a ce qu’ils détectent la zone de réflexion

diffuse. Les réflexions spéculaires, étant par définition plus brillantes que leur voisinage,
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peuvent étre représentées comme des montagnes avec pour sommet le pic spéculaire et
pour base la zone de réflexion diffuse. Dans la figure 2.9, une représentation en 3D
d’une réflexion prise sur le plan M de la figure 2.1 illustre ce phénomeéne ; la base est
caractérisée par une variation d’intensité tres légere, contrairement a la « montagne »

proprement dite dont la variation est beaucoup plus abrupte.

Figure 2-9 Vue en 3D d’une réflexion. Observation du phénomeéne de montagne. En haut: Plan M a
gauche, vue sur I’axe XY a droite. En bas: vue 3D.

Pour déterminer le lobe spéculaire il faut partir de la zone d’intensité forte (le pic

spéculaire), et inclure tous les pixels voisins de celle-ci jusqu’a ce que la variation
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d’intensité entre deux pixels voisins soit faible. Cela revient & comparer les pixels
voisins dans les deux directions horizontale et verticale, et descendre jusqu’a ce qu’on
trouve une variation d’intensité faible. Saint-Pierre propose de comparer deux pixels
voisins a un seuil (équation 2.8), seuil qui représente 1% de la variation de I’intensité
dans I’image [10]. La valeur du seuil est donnée par I’équation 2.9, ou le canal
représente une trame (R, G, B, M, ou S); si la différence est inférieure a ce seuil alors on
poursuit la descente.

Pixelactue[' pixelgulvant>seull (2.8)

max( canal) — min(canal)
100

seuil =

2.9)

Bhattacharyya va plus loin et propose une deuxi¢me approche [14]. Il propose un moyen
de stopper la descente en intensité lorsqu’on a atteint les limites de I’objet. En procédant
ainsi, il sera possible de limiter les dégats dans la mesure ou le pic détecté n’en est pas
vraiment un. En effet, I’algorithme de détection peut confondre une zone naturellement
blanche ou brillante & un pic. Stopper la descente en intensité lorsqu’on atteint les limites
d’un objet évitera de considérer la région entourant cet objet naturellement blanc comme
étant un lobe spéculaire. En plus, cela évitera de joindre involontairement deux régions
voisines et donc de propager des erreurs de correction de I’'une dans ’autre.

Malheureusement, ces méthodes ne peuvent pas facilement étre appliquées pour un
traitement en temps réel. La descente proposée par Bhattacharyya utilise une méthode

appelée retinex afin de détecter les contours des régions dans I’image. Cette méthode
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nécessite des calculs supplémentaires. Par contre le temps d’exécution nécessaire a la
descente en intensité classique [10] variera en fonction de la taille du lobe spéculaire, et
sera difficile & déterminer. Dans une architecture matérielle ou les ressources a utiliser
sont connues d’avance, il faudra déterminer de maniere arbitraire une largeur maximale
du lobe. De plus, cette descente demandera énormément de ressources matérielles. En
effet, il faudra disposer de beaucoup de mémoire et ressources pour effectuer la boucle
nécessaire a la descente dans les directions horizontale et verticale simultanément,

surtout si le lobe est trés large.

2.2 Correction des réflexions spéculaires

2.2.1 Description générale

Une fois le masque spéculaire créé, la prochaine étape est la correction des réflexions
spéculaires. Plusieurs recherches ont été faites dans ce domaine, chacune utilisant des
approches variées.

Kokaram et al. utilisent I’estimation du mouvement et des modéles autorégressifs afin
d’interpoler les endroits a corriger a partir de trames adjacentes [15]. L’idée ici est de
remplacer les pixels spéculaires par des pixels non spéculaires prélevés a la méme
position mais sur une trame voisine. L.’avantage de cette méthode est sa simplicité. Il
suffit de stocker en mémoire plusieurs trames, marquer les régions spéculaires, puis
comparer leur contenu les unes avec les autres. Mais pour que cela fonctionne, il faudrait
que les mouvements de la caméra soient assez lents afin que les pixels restent

approximativement a la méme position. Il faudrait aussi que la source lumineuse soit
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indépendante de la caméra. De plus, cette méthode nécessite beaucoup de mémoire pour
le stockage des trames.

Hirani et T. Totsuka proposent une méthode qui exploite le contenu fréquentiel et spatial
de I'image [16]. Grice au domaine fréquentiel les auteurs sont capables de traiter
I’image dans sa globalité. En alliant le domaine spatial ils évitent I'inconvénient du
traitement fréquentiel qui est la perte de certains détails tels que les contours. Leur
méthode trouve sa limite dans la nécessité de connaissances a priori. En effet,
I’utilisateur doit spécifier une sous-image ayant la méme texture que la zone a corriger,
ce qui pose déja un frein pour une implémentation en temps réel. En plus de cela, la
tache deviendra trés ardue s’il y a différentes textures dans la méme image.

Lin propose une correction a partir de différentes vues de la méme scéne [17]. Cela
consiste 4 remplacer les pixels spéculaires d’une vue par les pixels sains de ’autre.
L’avantage par rapport a [15] est qu’on n’a pas besoin d’utiliser beaucoup de mémoire.
Cependant, la méthode est efficace si la méme scéne est prise avec différents points de
vue. Cela signifie avoir deux caméras, ce qui n’est pas usuel lors d’une chirurgie

endoscopique.

2.2.2 Larestauration d’'image ou image inpainting

Les méthodes qui se prétent bien aux vidéos endoscopiques et au traitement temps réel
sont basées sur le principe de la restauration d’image. Ce sont des méthodes qui
consistent & prélever des informations provenant des contours d’une zone a corriger et a

les propager a I'intérieur de cette zone.
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Il est possible d'exploiter le contexte de l'application pour améliorer et simplifier le
processus de restauration d'image. Par exemple, St-Pierre a proposé des hypotheses
spécifiques pour le cas d'images endoscopiques prises dans le corps humain [10]. Par
exemple, on observe que pour un objet rond, les réflexions sont situées sur la partie
centrale, donc a I'intérieur de celui-ci. Cela permet d’émettre I’hypothése que la majorité
des réflexions ont une bordure a partir de laquelle on peut extrapoler I’intérieur.
Cependant, les méthodes basées sur la restauration d’image atteignent leurs limites
lorsqu’elles sont confrontées a des objets plats, dont les réflexions spéculaires sont
réparties sur la totalité de I’objet.

On observe que certains tissus dans le corps sont pales : les os, quand ils ne sont pas
recouverts de sang; et la compresse utilisée par le chirurgien. Ces tissus réfléchissent
presque parfaitement la lumicre, et peuvent donc étre confondus a des réflexions
spéculaires. On émet cependant I’hypothése que la considération de certains tissus
comme réflexion spéculaire ne nuit pas trop car la bordure de ces tissus est elle aussi
pale. Méme en cas de correction, la couleur blanche sera propagée a I'intérieur des
tissus, ce qui ne devrait pas trop dégrader le rendu.

Bertalmio propose une méthode qui consiste a reconstruire la zone a corriger sans
modification des arétes [18]. Les isophotes (lignes dont les pixels ont une intensité
constante) arrivant a la bordure de la zone sont propagés a 'intérieur de celle-ci. La
propagation est effectuée tout en préservant I’angle d’arrivée des isophotes au niveau
des bordures. Considérons une image ou €) représente la zone a corriger, &Q sa bordure,

et N la normale a cette bordure (figure 2.10).
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Figure 2-10 Zone a corriger ([18])

L’image corrigée [ "1 est trouvée a partir de I'image précédente /" & laquelle on
applique des informations globales ;» obtenues a partir de celle-ci ; cela est résumé par
I’équation 2.10, ou le couple (i, j) représente la position des pixels dans I’'image

I"' G, p=1"U, )+ Al (G, ), V3, j) e Q (2.10)
L’information Z,” correspond 4 la variation de I’intensité projetée sur la normale a la

borduredQ. Le facteur Atindique que la propagation est faite de maniére périodique.
Afin de conserver les contours des objets, une diffusion anisotropique est aussi effectuée
périodiquement.

Cette méthode, bien que tres efficace, peut se révéler instable a cause du nombre de

paramétres arbitraires. Il faut en effet définir trois paramétres pour trouver 1™ : le
nombre d’itérations de restauration d’image k et de diffusions anisotropiques / a
effectuer sur une période 7. En plus deux critéres d’arrét de 1’algorithme sont utilisés : la

correction peut étre effectuée un nombre » fois défini arbitrairement, ou encore jusqu’a

LAY +1 o . ;. . . , . . .
ce que la différence entre 7" et I"” soit inférieur a un seuil défini arbitrairement en

: 1 n s e \ . .
autant que le nombre de comparaison entre /""" et " est inférieur 4 n. Saint-Pierre a
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montré que cette méthode peut étre implémentée en temps réel [10]. Mais pour cela il ne
faudrait pas étre limité en mémoire.

Saint-Pierre propose une méthode assez simple a réaliser qui consiste a propager les
arétes sans tenir compte de I’information en termes d’intensité en bordure de la zone a
corriger [10]. Cette méthode différente de [18] consiste a pondérer les pixels voisins du
pixel a corriger de maniére a déterminer leur influence dans la correction. La
pondération est faite de telle sorte que la propagation soit perpendiculaire aux arétes. Les
avantages de cette méthode sont sa rapidité et sa stabilité. Mais ses résultats présentent
des arétes déformées et une non-continuité¢ de I’image. Cela s’explique en partie par |
I’absence de diffusion anisotropique.

Une méthode encore plus simple a été proposée par Battacharya [14]. Elle consiste a
remplacer la valeur du pixel spéculaire par la moyenne des pixels voisins non
spéculaires. La correction est effectuée jusqu’a ce que la zone a corriger £ disparaisse.
Cette méthode qui pourrait trés bien se porter a une implémentation en temps réel
montre cependant une limite dans la détermination du critére d’arrét. Celui-ci devrait
tenir compte de la plus grande largeur a corriger dans I’image. Or nous n’avons pas cette
connaissance a priori. Pour effectuer une bonne correction il faudrait considérer le pire
cas, c'est-a-dire celui pour lequel la zone a corriger est répartie sur toute la trame. Une
vidéo NTSC ayant 858 pixels sur une ligne, il faudrait passer a travers la méme ligne
858 fois. En d’autre termes il faudrait passer a travers la méme ligne une fois pour
chaque pixel contenu dans une ligne. Cela signifierait un stockage de 858 lignes

multipliées par les ressources utilisées pour le calcul de la moyenne des pixels. On aurait
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donc 858x858x3 = 2.1Monécessaires pour traiter une trame d’une couleur si on

considere qu’on a besoin de stocker 3 lignes pour effectuer la moyenne d’un pixel.

2.3 Conclusion

Les différentes approches présentées dans ce chapitre nous permettent d’avoir un apergu
de celles pouvant étre implémentées dans notre systéme. Chacune ayant des avantages et
des inconvénients, nous les combinons dans le chapitre suivant afin de créer des
algorithmes efficaces pour une application temps réel tout en consommant peu de

ressources.



34

Chapitre3 Implémentation matérielle

Ce chapitre présente en détail les algorithmes choisis a partir des différentes méthodes
énoncées dans le chapitre précédent. Il présente aussi la méthodologie utilisée pour
effectuer I’implémentation de ces algorithmes sur un FPGA. La premiére partie est une
présentation générale de I’environnement de prototypage et des caractéristiques de
I’architecture d’'un FPGA. La deuxi¢me partie présente les détails de I’'implémentation
des deux algorithmes de détection. La derniére partie présente les détails de

I’implémentation de 1’algorithme de correction.

3.1 Présentation générale du systéeme

3.1.1 Description de I'environnement de prototypage

Afin d’effectuer I’'implémentation de notre processeur, nous essayons de simuler le plus
possible les conditions réelles d’opération. Notre systéme de prototypage présenté en
figure 3.1 comprend :

e La planchette de développement XUV2P de Digilent inc.

e Un écran VGA relié a la planchette de développement

e Un lecteur DVD standard

e Un DVD contenant des séquences vidéos endoscopiques

e Un décodeur vidéo
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Ecran VGA

Lecteur DVD

Planchette de
développement

Décodeur vidéo

Figure 3-1 Environnement de prototypage

La planchette de développement présentée en figure 3.2 est batie autour du FPGA

XC2VP30. Le tableau 3.1 présente les principales caractéristiques de ce FPGA.

Tableau 3-1 Ressources disponibles du FPGA XC2VP30

Composants Ressources disponibles

Slices 13969
Ram distribuée 428 Kb
Blocs multiplicateurs 136
Blocs RAMs 2448 Kb

La planchette est aussi munie d’un port d’expansion auquel est connecté le décodeur

vidéo ADV7183B de la compagnie Analog Devices. Ce décodeur détecte et convertit
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automatiquement un signal analogique vidéo standard de type NTSC, PAL ou SECAM

en signal numérique.

Thiee High utmint powver guppliss
et oniniat i Swsanivey

revincitinh s Piniiart oo PRy “respeiriatiblas with Thaltans hegists

Figure 3-2 Planchette de développement XUV2P (www.digilentinc.com)

I1 est muni pour cela de trois types d’entrées : composite, S-vidéo et component. Une de
ces entrées est reliée au lecteur DVD afin d’acquérir les séquences vidéo endoscopiques
du DVD. Ces séquences vidéos ont ét¢ préalablement prises lors d’une séance
d’opération. Elles sont gravées sur le DVD afin de simuler le plus possible unc situation
réelle d’opération par endoscopie. Elles permettent dont d’effectuer un prototypage sans
avoir besoin de se rendre dans une salle d’opération. Cependant les séquences vidéos

ayant une résolution d’origine de 352x240 sont compressées afin d’étre stockées sur le


http://www.digilentinc.com
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DVD ; le lecteur DVD fait ensuite une mise a I’échelle afin de les afficher au format
NTSC 720x480. Ces deux opérations sont susceptibles de dégrader le rendu, et nous
¢loigne des conditions réelles d’opération.

Le décodeur vidéo ADV7183B transforme les signaux analogiques en signal numérique
de type YCrCb 4:2:2 entrelacé. Une fois acquis par le FPGA, ce signal passe par un bloc
de désentrelacement qui fournit a notre systéme de traitement un signal NTSC progressif

ayant une résolution de 720x480 a une fréquence de 27 MHz.

3.1.2 Sighaux d’entrée du systéme de traitement

Commengons d’abord par préciser les principaux signaux en entrée : il s’agit des
signaux R,G,B pour la valeur de chaque pixel, et des signaux de synchronisation.
Chaque signal de couleur est donné sur 8 bits, ce qui donne un total de 24 bits de
données. Les signaux de synchronisation permettent de guider les électrodes
responsables du balayage vertical et horizontal présentes dans un écran a tube
cathodique. Ces signaux indiquent quel type de balayage est en train d’étre exécuté et la
position du pixel actuel. Ils sont regus en entrée du systéme puis retransmis apres
traitement au port VGA en vue d’un affichage sur un écran VGA. Globalement ces
signaux permettent de diriger les électrodes de I’écran pour pouvoir effectuer un
balayage horizontal de gauche a droite (Hsync pour Horizontal synchronization) et un
balayage vertical de haut en bas (Vsync pour Vertical synchronization). Hsync permet
de revenir a la ligne tandis que Vsync permet de remonter au début de ’écran. La figure

3.3 présente 1’évolution temporelle de Hsync et Vsync pour un signal NTSC présentant
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858 pixels par ligne, pour un total de 525 lignes. FrontPorch et BackPorch représentent
respectivement les parties droite et gauche de Il'affichage dans le cas de la
synchronisation horizontale, et les parties inférieure et supérieure de ’affichage dans le

cas de la synchronisation verticale.

BackPorch
\/ \/ ligne suivante
858
BackPorch

\/ \/ trame suivante

487 491 495 525 " lignes

FrontPorch

Hsync

pixels

FrontPorch

Figure 3-3 Evolution temporelle de Hsync et Vsync

On observe un temps pendant lequel rien n’est affiché sur ’écran. Celui ci correspond au
temps nécessaire a la remise a la ligne ou au temps nécessaire a la remise au début de
I’écran ; durant ce temps le systéme est en mode « video inactive ». C’est pendant cette
période que la plupart des opérations peuvent étre effectuées de maniére transparente. La
durée de ce mode est de 38 lignes soit 32604 coups d’horloge ou pixels pour une

résolution de 720x480 (plus précisément, 720x487) a une fréquence de 27 MHz.
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3.2 Contraintes liées a l'utilisation d’'un FPGA

3.2.1 Parallélismes au sein d’'un FPGA

L’utilisation d’un FPGA pour le traitement vidéo a la place d’un processeur d’usage
général se justifie par la possibilité d’exploiter deux types de parallélisme au sein d’un
FPGA, contrairement au traitement séquentiel du processeur d’usage général {20].

Le premier parallélisme possible est le parallélisme spatial. Il consiste a diviser la trame
en sous-trames traitées de maniere concﬁrrente chacune par un processeur (les
processeurs sont donc tous identiques et répliqués), puis recomposées en sortie. Ceci
nécessite d’avoir au préalable stocké la trame initiale en mémoire avant de faire le
traitement. Bien que I’augmentation du nombre de processeurs augmente la vitesse de
traitement, cela provoque aussi un effet de recouvrement aux bordures des divisions.

I1 est aussi possible d’effectuer un parallélisme temporel. En effet, puisque différentes
opérations doivent généralement étre effectuces sur une trame, il est possible de les
répartir par processeur et de les exécuter de maniére concurrente, c'est-a-dire les
effectuer en méme temps mais sur des trames différentes. Par exemple, une fois que le
premier processeur a fini de traiter la trame 1, il la passe au processeur 2. Pendant que le
processeur 2 traite la trame 1, le processeur | traite la trame 2. Le probléme a ce niveau
est que la vitesse globale d’exécution est déterminée par le processeur le plus lent. Dans
le cas d’un systéme NTSC fonctionnant en temps réel, le processeur le plus lent devrait

fonctionner & un minimum de 27 MHz.
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Ces deux parallélismes peuvent étre utilisés simultanément en divisant d’abord la trame
regue en sous-trames puis en effectuant du parallélisme temporel sur chacune d’elles.
L’architecture que nous utilisons ressemble plus a du parallélisme temporel car chaque
trame est traitée entiérement par un processeur et non divisée en sous-trames. Toutefois,
nous avons deux processeurs qui traitent la méme trame, le deuxiéme se servant de

I’information du premier lors du traitement de la trame précédente.

3.2.2 Modes de traitements de données dans un FPGA

Programmer sur FPGA différe grandement d’une programmation sur un
microprocesseur. Non seulement on implémente 1’algorithme, mais aussi son
architecture. Notre systéme comprend plusieurs processeurs qui travailleront tous en
parallele, certains devant accéder aux mémes ressources simultanément. Il est donc par
exemple nécessaire de tenir compte de la bande passante limitée, surtout lors des acces
en mémoire. Il existe trois modes de traitements de données, chacun ayant son lot de
contraintes, que nous présentons ci-dessous [21].

Le mode « flux » : ici les données sont présentées en entrée du systéme comme un flux
de données recues a une fréquence d’horloge fixe. Pour une vidéo NTSC elles sont
recues a une fréquence de 27 MHz, et doivent aussi €tre émises a la méme fréquence.
Cette restriction entraine des contraintes temporelles rigides surtout dans le cas d’un
traitement en temps réel. En effet, le mode flux contraint le systéme a effectuer toutes les
opérations requises pour chaque pixel & une fréquence de 27 MHz. Si le processeur

implémenté a une fréquence de 100 MHz, il ne pourra donc effectuer que 3 opérations
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par pixels. Sicela n’est pas possible, certains pixels dans le flux seront manqués et ne
seront pas calculés. Dans le cas ou des opérations complexes doivent étre effectuées sur
les pixels, il est impossible de respecter les contraintes de temps sans effectuer du «
pipelinage ». Cela consiste a créer un délai en entrée afin de mettre en place les
différents calculs. En d’autres termes, cela revient a créer un parallélisme temporel.
Etant donné qu’on obtiendra la méme latence en sortie, il faudrait s’assurer que celle-ci
n’est pas génante pour l'utilisateur. De plus les contraintes liées aux ressources
disponibles apparaissent ici, car effectuer du pipelinage reviendrait a utiliser des
registres afin de stocker temporairement les données avant leur traitement.

Un mode trés souple est le mode « hors-ligne ». Dans ce cas les données traitées
proviennent d’une image au préalable stockée dans une RAM. La vitesse d’exécution est
alors limitée par la vitesse d’accés aux données stockées dans la mémoire. Ici il n’y a
donc pas de contrainte de bande passantes, mais le temps de calcul est trés grand. En
plus les ressources utilisées sur le FPGA en lui-méme sont minimes car il n’est pas
nécessaire d’effectuer du pipelinage ou des stockages de trames ou partie de trame sur la
mémoire disponible sur puce. Pour se préter au temps réel ce mode devrait avoir une
vitesse de traitement assez grande pour avoir le temps d’effectuer le traitement sur une
trame avant de charger la suivante. Le mode hors ligne convient trés bien pour un
parallélisme spatial pur.

Le troisiéme mode est un mixage entre les deux méthodes ci-dessus. Il s’agit du mode «

hybride ». Il permet d’alléger les contraintes de temps liées au mode « flux » tout en

s’appliquant en temps réel. En effet il est possible, si les ressources disponibles le
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permettent, de stocker les différents pixels arrivant dans une RAM, de les traiter ensuite
en mode hors-ligne, puis de les ressortir en mode flux aprés un délai constant. En plus
des contraintes de temps, il s’ajoute des contraintes liées aux ressources du systéme.
Pour une trame couleur de 720x480 pixels, il faudrait pres de 720x480x3x8 bits, soit
environ 1Mo, si on désire stocker les trames rouge, verte et bleue ayant chacune des
pixels pouvant avoir 255 valeurs différentes.

Les ressources en mémoire interne du FPGA étant tres limitées, on fait généralement
appel a une mémoire externe. Celle-ci entraine une contrainte liée a son temps d’accés
qui doit €tre inférieur au temps de réception d’un nouveau pixel. De plus les mémoires
externes gén€ralement utilisées ne permettent pas un accés multiport, c'est-a-dire un
acces a différentes adresses au méme moment. Il faudrait donc aussi tenir compte de
cette contrainte de bande passante.

Malgré ses contraintes temporelles, nous utilisons le mode flux dans le cadre de la
détection de réflexions spéculaires ; nous le préférons au mode hybride pour éviter des
problémes de synchronisation avec la RAM externe, et pour pouvoir diminuer le temps
de latence entre la réception d’un pixel et la sortie de celui-ci une fois traité. Les détails

de I'implémentation seront donnés plus bas.

3.3 Architecture globale du systéme

Deux méthodes de détection ressortent du chapitre deux, la méthode
monodimensionnelle et la méthode bidimensionnelle. Chacune nécessitant une

implémentation particuliére, nous obtenons deux architectures globales.
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D’un point de vue général, les deux architectures utilisées pour la détection et la
correction des réflexions spéculaires sont similaires. Afin d’exploiter le parallélisme
inhérent aux FPGAs, nous créons deux tiches qui s’exécutent en parallele. Comme
spécifié dans la section 3.2, le parallélisme utilisé ici ressemble a du parallélisme
temporel, deux tiches s’exécutant de maniere concurrente et traitant la méme trame en
entrée. Cependant, 1’une se sert de I’information de 1’autre pour effectuer son traitement.
En effet la tiche 2 se sert de la valeur du seuil déterminée dans la tiche 1 afin
d’effectuer la correction.

Les signaux de synchronisation et les signaux de couleur RGB provenant du décodeur

vidéo sont tout d’abord désentrelacés avant d’entrer dans le systéme (figure 3.4).

endoscope Systeme de traitement{FPGA)
AN P Def_SOdeufg/—» désen’treylape_\ | ‘  - f  Port

Figure 3-4 Schéma global du systéeme

Pour le systeme utilisant une détection monodimensionnelle (figure 3.5, blocs chemin en
traits verts), les signaux passent d’abord par le bloc de décomposition en histogramme.
L’histogramme cré€ est stocké dans une RAM. Une fois que le syst¢me passe en mode
de vidé€o inactive, le bloc de débruitage est activé (grace au signal fini) afin de débruiter
I’histogramme stocké. L’histogramme débruité passe ensuite dans le bloc de dérivation,

afin de déterminer le début de la bosse spéculaire.
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Figure 3-5 Schéma bloc du systéme ; en vert : détection monodimensionnelle ; en turquoise : chemin
détection bidimensionnelle

Pour le systtme utilisant une détection bidimensionnelle (figure 3.5, chemin en trait
turquois), les signaux passent par un bloc de décomposition en histogramme ;
contrairement a 1’autre systéme, aucun stockage n’est effectué. La décomposition en
histogramme et la mise a jour du seuil sont effectuées simultanément. En sortie de ce
bloc, nous obtenons donc le seuil.

Dans les deux systémes, la valeur du seuil est utilisée conjointement avec les signaux de
couleur et de synchronisation afin de créer le masque spéculaire. Celui-ci est ensuite

élargi afin de tenir compte du lobe spéculaire. Les pixels d’origine (les signaux de
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couleur présents a 1’entrée du systéme) et les pixels du masque spéculaires sont transmis
au bloc de correction linéaire puis de lissage afin que I’image soit corrigée. Les pixels
corrigés, ainsi que les signaux de synchronisation ayant un délai égal au délai du
traitement de la tache 2, sont mis en sortie et transmis au port VGA afin d’€étre affichés
sur un écran (figure 3.5).

Les deux architectures utilisent des données enticres a 8 bits pour stocker les différentes

valeurs liées aux pixels et relier les différents blocs de traitement.

3.4 Détection des réflexions spéculaires

3.4.1 Méthode unidimensionnelle

L’algorithme implémenté se sert des principes énoncés dans le chapitre 2. Afin de
garantir une implémentation matérielle, nous modifions les équations théoriques tout en
conservant une erreur minimale entre les résultats théoriques et les résultats obtenus
aprés implémentation.

La méthode unidimensionnelle se sert d’'une RAM pour stocker I’histogramme. Celui-ci
est ensuite traité lorsque I’écran entre en mode vidéo inactive afin d’en déduire le début

de bosse spéculaire

3.4.1.1 Décomposition en histogramme

Nous proposons une approche basée sur des méthodes existantes présentées en section
2.1.1.1: nous rehaussons I'image grace a la composante S, puis transformons 1’image

rehaussée en niveaux de gris avant de la décomposer en histogramme. La décomposition
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en niveau de gris permet de stocker toute I’information importante dans un seul canal, et
donc de travailler sur un seul histogramme, comme celui présenté en figure 3.6. On peut
remarquer que le rehaussement permet de mieux regrouper tous les pixels appartenant a
la région diffuse ; cela a pour effet de mettre plus en évidence la zone spéculaire.
L’utilisation d’un seul histogramme permet de limiter grandement ’utilisation des
ressources du FPGA car nous créons et traitons une seule RAM au lieu de 3.
La décomposition en histogramme s’effectue en plusieurs étapes. A chaque fois qu’un
pixel est regu :

e [l est rehaussé

e [l est transformé en niveau de gris

o [l est utilisé pour mettre a jour I’histogramme
Le rehaussement est effectué grace a 1’équation 3.1, ou R’G’B’ représentent les valeurs
rehaussées de RGB.
Cette équation devant étre appliquée sur un systéme qui n’utilise que des données
entiéres, il convient d’effectuer des modifications afin d’avoir une bonne approximation

des valeurs réelles. Nous la transformons pour cela en 1’équation 3.2.

& o (R.G, B) K
min

G| 1=01-S1G =T G

M ( 5 max(R,G,B) B D

- 256 :

Rl (o r.p) < mn(R.G.B) [E

G| = ,G, B) e (3.2)
256

LB 5
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Figure 3-6 Histogrammes de I’image en figure 2.1 : histogrammes du plan Y sans rehaussement(en
haut) et avec rehaussement (en bas). En bleu : histogramme non débruité ; en noir : histogramme
débruité

min (R, G, B)

, processus qui n’est
max (R, G,B

L’équation 3.2 permet d’éviter le processus de division

~

pas directement synthétisable, 2 moins d’implémenter un module spécial pour la

e e N . .y 256
division. A la place, nous créons et stockons un tableau de valeurs entieres —. Le
l

rehaussement s’effectuera donc en déterminant premi¢rement la plus grande valeur entre
les différentes intensités RGB d’un pixel donné. Cette valeur servira d’indice pour

accéder au tableau stocké présenté dans le tableau 3.2. Afin d’éviter un cas de division
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par 0, nous attribuons la valeur nulle au résultat zjé lorsque i=0. Le résultat attribué n’a
1

pas une grande importance car si i=0, alors max(R,G,B)=min(R,G,B)=0.

Tableau 3-2 Tableau des valeurs

1 0 1 2 3 5 255

256/i 0 256 128 85 64 \

Une fois tout le processus de multiplication effectué, la valeur sera décalée a droite de 8
bits afin d’effectuer la division par 256.

Deux approximations sont effectuées ici. Premiérement, la création d’un tableau
nécessite un arrondi des valeurs décimales en valeurs entiéres. Cela crée une erreur

maximale ¢ dex0.5, erreur calculée en effectuant la différence entre les valeurs

arrondies et les valeurs réelles du tableau. Cela est montré par 1’équation 3.3 ou

int(g_G) représente la partic entiére de la division. Deuxi¢mement, la division par 256
1

nécessite elle aussi un arrondi en valeurs enticres. L’erreur maximale e, est aussi de

+0.5, et provient du calcul de I’équation 3.4, ou i varie de 0 & 255%, valeur maximale du

numérateur de 3.2.
e = max[abs((zié) - int(2i,6))}' e [0;:255] (3.3)
i i

i

= max| ab
e, [a s((256

. i N PR
)—mt(gg))} e [0:255°] (3.4)
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Ces deux approximations créent une erreur maximale de 1 lorsque le rehaussement est
effectué.

La transformation en niveaux de gris s’effectue juste apres le rehaussement. Elle est faite
a 'aide de I’équation 2.3 mise en une forme synthétisable. La forme synthétisable
permet aussi ici d’arrondir les valeurs décimales en valeurs entieres. Elle est donnée par
’équation 3.5

[0.299%512]x R+[0.587x512]x G +[0.114x512]x B
512

Y=

_153R+301G+58B
B 512

Y (3.5)

En appliquant le méme processus de vérification que dans le cas du rehaussement, on
obtient une erreur maximale de+1.

Le rehaussement et la transformation en niveaux de gris sont des calculs purement
combinatoires qui s’effectuent a I’intérieur d’un seul cycle d’horloge. Les valeurs
obtenues permettent la construction d’un histogramme. La construction et la mise a jour
de la RAM contenant I’histogramme n’est pas aisée car elle nécessite de tenir compte de
certaines considérations.

Premiérement, nous devons tenir compte de sa taille. Le nombre maximum de pixels
pouvant étre compris dans une plage d’intensité est 720x487=350640 pixels dans le cas
ou toute la trame a la méme couleur. Ce nombre étant représentable avec 19 bits, la
RAM devrait avoir pour taille 256x19bits. Cela signifierait travailler continuellement
avec des données de 19 bits lors du traitement de la RAM. Pour éviter cela, nous

supposons que la partie utile (partie ol se situe la région spéculaire) de I’histogramme se
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situe aprés la premi¢re région de I’histogramme, région dans laquelle est située la
majorité des pixels. Nous supposons aussi que dans la seconde région, les différentes
plages d’intensité n’ont pas plus de 256 pixels. Nous utilisons une RAM de 256x8 bits
ou les valeurs supérieures a 255 seront seuillées a 255, ce qui nous permet de travailler
de maniére uniforme avec des données de 8 bits tout au long du processus de détection
des réflexions spéculaires.

Puisque nous travaillons en mode «flux » nous devons continuellement accéder a la
RAM, a chaque pixel recu. La mise a jour se fait en trois étapes : la lecture de la RAM a
partir d’'une adresse correspondant a la valeur en nuances de gris, la réception de la
donnée provenant de la RAM, et la mise a jour de cette valeur dans I’histogramme. Afin
de garantir une mise a jour constante de la RAM, nous utilisons une horloge qui
fonctionne 4 fois plus vite que I’horloge de réception des pixels, c'est-a-dire 108 MHz.
Cela permet de mettre a jour I’histogramme avant que le prochain pixel ne soit regu. Le

module permettant la mise a jour de I’histogramme est présenté en figure 3.7.

Adresse_lecture

N0 6] Adgesecre TN remasos
CLR Q‘|7

an @ 8

Data_in

Figure 3-7 Processus de mise 2 jour de la Ram contenant I’histogramme
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Figure 3-8 Diagramme temporel présentant la décomposition en histogramme

Tout se passe comme s’il y avait en sortie de la RAM une bascule D dont la sortie est
relide a un additionneur. Chaque valeur sortie par la RAM est donc registrée,
incrémentée de 1, puis remise en entrée de la RAM afin d’étre sauvegardée. Le
fonctionnement global de la décomposition en histogramme est donné par le diagramme
temporel présenté en figure 3.8 :
e Aupremier coup d’horloge de 27MHz (clk), un pixel p, est regu.
e Ausecond coup d’horloge de 27 MHz (clk), la valeur en Y de p, est obtenue. Le
pixel sutvant p, est regu.
e Au 6° coup d’horloge de 108 MHz (clk*4), la valeur en Y de p, est mise en
adresse de lecture de la RAM. Cette valeur en Y est encore appelée adry.
e Au 7° coup d’horloge de clk*4, la donnée stockée a I’adresse adr, est regue.

Cette donnée est nommeée datay.
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e Au 8° coup d’horloge de clk/4, la donnée datay est incrémentée de 1 et écrite a
I’adresse adry.
Le délai total permettant la décomposition en histogramme est au final de un cycle

d’horloge, temps nécessaire au calcul la valeur Y d’un pixel.

3.4.1.2 Débruitage de I'histogramme

Le débruitage s’effectue a la suite de la décomposition en histogramme. Il s’active
lorsque le systéme entre en mode vidéo inactive. Cela permet d’accomplir le traitement
de I’histogramme sans perte de données, la RAM ne pouvant pas étre mise a jour en
méme temps.

Le débruitage s’effectue grace ’ondelette de Haar, la plus simple des ondelettes [24].
Afin de décomposer le signal en coefficients d’approximation et de détail, on se sert des
éléments voisins du signal deux a deux. Les coefficients d’approximation a et de détail d
d’un signal s sont obtenus grace aux €quations 3.6 et 3.7 respectivement :

_ s(2i)+s(2i+1)

5 (3.6)

a(i)

_s(2D)—sQ2i+ 1)

: (3.7)

2{0))

En d’autres termes, pour deux pixels du signal d’origine, un coefficient d’approximation
et un coefficient de détail sont calculés (figure 3.9).

Deux tableaux sont créés, 'un pour stocker les coefficients d’approximation, 1’autre
pour les coefficients de détail. Lors du premier niveau de la transformation, les

coefficients sont stockés dans la premiére moitié du tableau, premiére moitié qui
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permettra d’effectuer la transformation de niveau 2. Les coefficients de niveau 2 seront a
leur tour stockés a la suite des coefficients de niveau 1 et permettront le calcul des

coefficients de niveau 3 (figure 3.10).

clk '

LR ED € € D & & &
Qg R4 |

Coefficients R
d'approximation o
n =

Coefficients
d’approximation

Figure 3-9 Décomposition du signal par ’ondelette de Haar

= [C R —

B I

L]

Figure 3-10 Stockage des coefficients de la transformation en ondelettes

La recomposition est implémentée en utilisant I’équation 3.8.

[ 5(2i) = approx(i) + détail (i) -
is(2i +1) = approx(i) — détail(i) (3-8)

Elle devrait s’effectuer a la suite d’un seuillage des coefficients des détails. Apres
plusieurs tests sur Matlab nous nous sommes rendu compte qu’une décomposition en

ondelettes de niveau 3, puis recomposition sans tenir compte des coefficients de détails,
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donnait des résultats satisfaisants. La figure 3.6 présente 1’histogramme débruité de notre
image test. On se rend compte que seules les grandes variations de la courbe sont
conservées apres débruitage.

Nous ne considérons pas les coefficients de détail pour notre recomposition, ce qui
revient a répliquer 4 fois chacun des coefficients d’approximation de niveau 3 afin

d’obtenir le signal débruité (figure 3.11).

N
B

Figure 3-11 Recomposition du signal apres débruitage

Le temps de calcul pour le débruitage d’un signal est de 676 coups d’horloge car chaque
coefficient est déterminé en un cycle d’horloge. Ce temps de calcul provient de la
décomposition (256+128+64) suivi de la reconstruction (32+64+128). En effet il faut
256, 128 et 64 cycles d’horloges pour les décompositions de niveau 1, 2 et 3
respectivement. I faut ensuite 32, 64 et 128 cycles d’horloges pour les reconstructions
de niveau 3, 2 et 1 respectivement. A ce temps de calcul on ajoute le délai correspondant
al’acces a la RAM (la RAM ¢étant registrée en entrée et en sortie, ce délai est de 3 cycles

d’horloge) et le temps de calcul de la premiere valeur (1 cycle d’horloge).

3.4.1.3 Calcul de la dérivée

Deux dérivées s’effectuent 1’une a la suite de 1’autre. Elles se font en utilisant la formule

de la différence centrée (équation 3.9) afin de déterminer la dérivée, ou s'(;) représente
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la dérivée du pixel s(i) . Lorsque h=1, on obtient la formule finale 3.10. Cette formule

revient a convoluer le signal a dériver par le noyau défini a la figure 3.12. La figure 3.13
quant a elle présente un exemple de convolution.

s+ h)y—s@i—h)

)= 2

(3.9

_s(i+D—sGi-1)

5'(i) : =s()®(B(i—1)+ > +1)) (3.10)

-1/21 0 | 1/2

Figure 3-12 Noyau de convolution pour la dérivation

B - E—
F F
B R

Figure 3-13 Deux étapes de dérivation

Toutes les valeurs positives sont mises a 1 et les résultats négatifs sont mis a 0. Le temps

de traitement est de 261 cycles d’horloge, dont 256 correspondent au nombre de valeurs

de I’histogramme et 5 cycles le délai entre la demande d’acceés a la premiere valeur de
I’histogramme et la sortie de la premiere valeur de la dérivée. 1l tient donc en compte le

temps d’accés a la RAM en lecture (3 cycles d’horloge) et en écriture (1 cycle
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d’horloge), puis le temps de calcul (1 cycle d’horloge). Deux dérivées étant effectuées
I'une a la suite de I’autre, nous avons un temps de traitement de 522 cycles d’horloge.
Lors du calcul de la seconde dérivée, la derniére valeur positive est mise en sortie. Elle
correspondra & lintensit¢é minimale d’un pic spéculaire, soit le début de bosse

spéculaire.
3.4.1.4 Affichage du masque

Le module d’affichage du masque permet la création du masque binaire qui indique la
position des pics spéculaires. Pour ce faire, il se sert du début de bosse spéculaire trouvé
apres la seconde dérivée. Idéalement, ce module devrait se situer a la suite de la seconde
dérivation. Cela nécessiterait un stockage de la trame de départ (trame représentant
I’image dans le plan RGB), puis une comparaison des valeurs au début de bosse afin de
déterminer les zones de réflexion spéculaire. Pour éviter un stockage de la trame initiale,
nous exécutons la décomposition en histogramme et ’affichage du masque en parall¢le
tel que représenté par la figure 3.5. En d’autres termes, nous utilisons les résultats de la
trame- i pour déterminer le masque de la trame i+1. Pour utiliser cette méthode, nous
¢mettons I’hypothése que les zones de réflexion spéculaire ont une variation négligeable
entre deux trames successives. Cette hypothese est vraie uniquement lorsqu’il n’y a pas
de changement soudain de direction de la caméra. Dans tous les cas, I’erreur sera limitée
a une seule trame d’une durée inféricure a 17 ms.

Hormis la phase de mise a jour de I’histogramme, ce module fonctionne de la méme

maniére que celui de la décomposition en histogramme. Il effectue un rehaussement,
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puis une transformation en niveaux de gris. Ensuite chaque valeur transformée est
comparée au début de bosse spéculaire trouvé lors de la seconde dérivation de

I’histogramme de la trame précédente.
3.4.2 Méthode bidimensionnelle

3.4.2.1 Décomposition en diagramme

Comme expliqué dans le chapitre 2, la décomposition en diagramme MS consiste a
trouver le plan S en fonction du plan M. Il faudrait pour cela trouver le plan S, le stocker
dans une RAM, puis y effectuer les calculs nécessaires a la détection de la zone
spéculaire, calculs qui passent par la recherche de myug €t Smax. Afin de limiter
|'utilisation des ressources, nous procédons de la maniére suivante : pour chaque pixel
recu,

e Sa valeur dans le plan M est calculée

e A partir de sa valeur dans le plan M, sa valeur dans le plan S est calculée

o Les valeurs i,y et Synq. de la trame sont mises a jour
L’équation utilisée pour calculer le plan M provient de ’équation 2.5. Elle est cependant
modifiée afin d’étre synthétisable tout en utilisant peu de ressources. I.’équation utilisée
est donc I’équation 3.11.

?gﬁx(R+G+B)

_85x(R+G +B)

3.11
256 256 ( )

La division par 3 qui n’est pas directement synthétisable, a moins d’implémenter un

module spécial pour la division, est remplacée par une multiplication suivie d’un
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décalage a droite de 8§ bits. L’erreur maximale créée par cette modification est calculée

grace a ’équation 3.12. Elle a une valeur de +2 .

85 %
256

e = max[abs(é int 2! ))],i €[0:767] (3.12)

L’équation utilisée pour calculer la valeur du pixel dans le plan S demeure 1’équation 2.6
car une division par 2 est parfaitement synthétisable (elle correspond a un décalage a
droite d’un bit). L’erreur maximale due a la considération de la partie entiére du résultat
estdetl .

Mettre a jour my,, et Sy, réguliérement permet d’obtenir au terme du parcours de la
trame les valeurs nécessaires a la détection du masque. Ces valeurs sont envoyées au
module responsable de 1’affichage du masque.

Le délai total de la décomposition est de un cycle d’horloge, les calculs étant tous

purement combinatoires.

3.4.2.2 Affichage du masque

Une fois le diagramme MS établit, nous devrions y effectuer un seuillage basé sur les
équations 2.7. Malheureusement, ces équations ne donnent pas de bons résultats dans le
cas d’images endoscopiques car elles ont tendance a détecter uniquement les pixels
extrémement brillants. Pour obtenir une zone adaptée a notre cas, nous avons fait
plusieurs tests et avons trouvé nos propres équations. Le pixel p sera considéré comme

spéculaire s’il respecte les conditions suivantes :
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]

Lsp < g S max

1
[ My 2= M
1 (3.13)

La figure 3.14 présente le diagramme MS correspondant a I’image de la figure 2.1 ; on
constate que le choix de ¢, et ¢, tels que définis par (2.7) comme seuils ne permettrait

pas de retrouver toutes les réflexions spéculaires de I’image ; en effet, trés peu de pixels

sont compris entre ces deux droites.

160 F

100 _ - |

Sseuil

Figure 3-14 Diagramme MS de I’image en figure 2.1
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Cela signifie que peu de pixels seront considérés comme spéculaires. Cette remarque est

appuyée par la figure 3.15, ou le masque spéculaire est peu représentatif des réflexions

présentes dans 1’image lorsque le seuil défini par I’équation 2.7 est choisie.

Figure 3-15 Réflexions spéculaires détectées (en bleu) en appliquant les conditions 2.7 (a gauche)
et 3.13 (a droite)

L’affichage du masque dans le cas bidimensionnel obéit au méme principe que
I’affichage du masque dans le cas monodimensionnel. En d’aufres termes, les valeurs
Smax €1 Mgy trouvées pour la trame i permettront de créer le masque de la trame i+1. Pour
chaque pixel, les valeurs dans le plan M m, et dans le plan S s, seront calculées grace
aux équations 3.11 et 2.5. Les comparaisons de 1’équation 3.13 seront ensuite évaluées

afin de déterminer si le pixel p fait partie de la région spéculaire.

3.4.3 Elargissement du masque
L’élargissement du masque permet de tenir compte du lobe spéculaire. Nous proposons
de définir un €largissement statique afin d’alléger les calculs : a chaque fois qu’un pixel

faisant partie du masque sera détecté, tous ses voisins directs seront automatiquement
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inclus dans le masque. Le processus suivant est effectué afin d’accélérer les calculs.
Pour un élargissement de h pixels, le masque spéculaire est inspecté a 1’aide d’une
fenétre coulissante de dimension HxH, H étant déterminé par 1’équation 3.14 :

H =2h+1 (3.14)
Chaque fois qu’un pixel spéculaire est situé au centre de la fenétre coulissante, tous les
pixels de la fenétre sont inclus dans le masque spéculaire. La figure 3.16 donne un

exemple d’élargissement lorsque h=1

Figure 3-16 Résultat de I’élargissement du masque pour h=1

La partie la plus délicate consiste a trouver la taille idéale de 1’élargissement permettant
de tenir compte du lobe spéculaire pour toutes les images. La délicatesse vient aussi du
fait qu’€élargir un masque pourrait causer la fusion involontaire de deux régions voisines.
Du point de vue implémentation, I’élargissement utilise le principe de la fenétre
coulissante présentée par Johnston et al afin de garantir un traitement en mode « flux »
[21].

Conceptuellement, chaque pixel de la trame de sortie est produit en faisant coulisser une
fenétre de taille NxM par-dessus la trame d’entrée, puis en effectuant une convolution en
fonction des pixels de la trame d’entrée situés sous la fenétre et de I’opérateur de la
fenétre. Le résultat est un pixel assigné au centre de la fenétre dans la trame de sortie, tel

que montré dans la figure 3.17.
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Figure 3-17 Principe de la fenétre coulissante

Fenétre NxM
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|

Opérateur fenétre J

Figure 3-18 Diagramme bloc de la fenétre coulissante

NxM pixels sont donc nécessaires pour effectuer les calculs chaque fois que la fenétre
est déplacée. Chaque pixel est lu NxM fois. Les contraintes de bande passante rendent
I’acces a tous ces pixels en un cycle d’horloge impossible 2 moins que certaines valeurs

soient mises en mémoire. Les pixels d’entrée des N-1 lignes précédentes sont stockés en
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utilisant des registres & décalage. Cela permet d’obtenir le diagramme bloc de la figure
3.18.

En utilisant ce principe, le masque spéculaire est inspecté par une fenétre coulissante de
dimension HxH. La taille H nécessaire pour un €largissement de / pixel est donnée par
I’équation 3.14. L’opération effectuée est un OU logique des pixels contenus dans la
fenétre. Nous avons trouvé qu’une valeur h=3 était adéquate pour la majorité¢ des
images. Cela signifie un délai de traitement de 7 lignes entre le masque d’origine et le
masque €largi. La figure 3.19 montre un exemple détaillé d’élargissement en plusieurs
itérations lorsque h=1. Le pixel blanc représente le pixel spéculaire, les lignes en gras la
fenétre coulissante, et les pixels de couleur grise claire les nouveaux pixels spéculaires

apres plusieurs itérations successives. Le pixel bleu est le pixel en train d’€tre évalué.

Figure 3-19 Exemple d’élargissement du masque de h=1 pixel

3.5 Correction linéaire

Pour diminuer la quantité€ de ressources a utiliser au strict minimum, nous effectuons une
interpolation linéaire des endroits manquant dans 1’image. En d’autres termes, nous
opérons ligne par ligne. Il s’agit pour chaque région a corriger dans une ligne de

sauvegarder sa largeur w, le pixel précédent la réflexion p; et le pixel suivant la réflexion
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p.(figure 3.20). Ensuite la propagation sera faite de la gauche vers la droite ou de la

droite vers la gauche en fonction de la pente a (équation 3.15):

pe pb
a—"___._——
R— (3.15)

Le pixel p;+; est trouvé a partir du pixel p; en appliquant la formule 3.16 :

P,y =p;+a (3.16)

Le premier pixel a corriger p, obtient la valeur p, + 4.

A
v
A
Y

Figure 3-20 Exemple d’interpolation linéaire

Le bloc de correction linéaire d’une trame R, G ou B présenté en figures 3.5 est présenté
plus en détail en figure 3.21 ; il passe par deux étapes présentées de maniere globale en
figure 3.22. La premiére est le stockage des coefficients p;, p. et w. Pour ce faire, le
masque élargi est lu en paralléle avec la trame d’origine (bloc calcul coefficients de la
figure 3.21). Pour une trame R,G ou B, deux groupes de RAMs sont disponibles afin de
stocker les coefficients des lignes paires et des lignes impaires (bloc Rams Coefficients
de la figure 3.21). Chaque groupe comporte 3 RAMs de 256x8 bits pour stocker
respectivement les coefficients de type ps, p. ef w. Les coefficients sont insérés les uns a
la suite des autres chaque fois qu’une région spéculaire est détectée. La ligne en train
d’étre traitée est insérée, parallélement au processus de stockage, pixel par pixel dans

une FIFO (bloc Fifos de la figure 3.21).
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La deuxiéme étape est 'interpolation linéaire( bloc Correction linéaire de la figure
3.21). La FIFO est lue en paralléle avec un des deux groupes de RAMs. En effet, lorsque
le stockage des coefficients de la ligne i se fait sur le premier groupe, la FIFO (contenant
la ligne 1-1) est lue parallélement au deuxiéme groupe contenant ses coefficients.
Lorsque la ligne est parcourue, nous corrigeons une région spéculaire comme suit :

e Une fois le premier pixel spéculaire d’une région spéculaire est détecté, les
RAMs sont lues afin de déterminer les coefficients correspondant a la région
spéculaire.

e Une fois les valeurs des coefficients regues, le calcul de la pente a est effectué
grace a I’équation 3.15. Ce calcul est effectué grace a un module de division qui
ne renvoie que la partie entiére du résultat. Ce module de division a un délai de
deux cycles d’horloge. Pour une division de x par y, ’équation x :=x-y est
éffectuée jusqu’a ce que x soit inférieur a y. Le nombre de fois que ’opération
est effectuée sera la valeur du quotient, et la derniére valeur de x sera la valeur du
reste.

e Le premier pixel spéculaire p, est remplacé par p, + a. Les autres pixels sont
corrigés en utilisant I’équation 3.16.

A la fin du processus nous obtenons un délai d’une ligne (nécessaire au stockage des
coefficients) et 6 cycles d’horloges (nécessaire a I'interpolation) entre le masque élargi

et la trame corrigée.
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Figure 3-21 Schéma bloc de la correction linéaire d’une trame R,G ou B
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Figure 3-22 Etapes de la correction linéaire
La figure 3.23 présente un diagramme temporel de I’interpolation, aprés stockage des

coefficients :

e Lorsque clk=2, le premier pixel spéculaire py est recu.
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e Lorsque clk=3, la premiere valeur de la ram est demandée grice a adr;.
e Lorsque clk=4, les coefficients stockés a adr; sont regus.
e Lorsque clk=5, le diviseur et le quotient sont transmis au bloc de division
e Lorsque clk=7, le résultat de la division a est regu.
e A partir de clk=8, tous les pixels spéculaires sont corrigés grice 4 a. La
correction s’arréte lorsqu’on détecte la fin de la région spéculaire.
Le processus de correction linéaire est répliqué 3 fois afin de traiter en parallele les trois

trames RGB.
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. — L S TN TN N e N ..
pixel 7 }ﬁ e 4 7 v o 7 N
entrant L AL N N L NI L DN
Van TN TN N T
mswe P
lecture SN\
RAM S
" Y
récepluon e >
coefiicients ~__ .~
//77* ~
diviseur L rm /
quotient <fw /\/
VoS
résultat T V4
4 NS — T
signal corrigé </ Po X Puta X . Ps
~ S S

masque -/i\/:i A _
Figure 3-23 Diagramme temporel d’une interpolation linéaire
3.6 Lissage

La correction n’intervenant que dans la dimension horizontale, il est nécessaire d’y

ajouter une composante verticale. Cela s’effectue en remplagant la valeur actuelle de
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chaque pixel spéculaire par la moyenne de ses voisins a 1’aide d’une fenétre coulissante
de taille 3x3. Il faut donc stocker 2 lignes pour effectuer la moyenne des pixels en mode
« flux ». Cette procédure de lissage est effectuée un nombre limité de fois pour éviter

une grande consommation en ressources. Nous ’effectuons 5 fois, ce qui équivaut a un

délai de 15 lignes.

Figure 3-24 Correction par interpolation linéaire (en haut a droite), puis lissage (en bas) de ’image
en haut A gauche

La figure 3.24 montre les résultats d’une correction apres interpolation linéaire, puis
apres lissage. Ici, on part de réflexions spéculaires précorrigées contrairement a la

méthode définie dans [14]. Cela assouplit les conditions d’arrét de la correction. On peut
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remarquer sur cette figure que les corrections effectuées par I’interpolation linéaire
donnent des lignes, lignes atténuées et rendues homogeénes au reste de 1’image apres le

lissage.

3.7 Conclusion

Les algorithmes choisis pour implémenter notre systéme ont été optimisés dans ce
chapitre, optimisation qui conduit a une implémentation matérielle qui limite I’utilisation
des ressources. Le chapitre suivant permet de vérifier que les résultats obtenus

correspondent a nos attentes.
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Chapitre4 Résultats et Discussion

Ce chapitre présente les résultats obtenus aprés implémentation des algorithmes de
détection et de correction. Aprés avoir donné un apercu de l’environnement de
vérification, nous effectuons la vérification des systemes de détection et du systéme de
correction. Nous présentons ensuite les performances matérielles des différents systemes
suivi d’une comparaison des deux systémes de détection. Cette comparaison conduit a

un choix d’implémentation final.

4.1 Environnement de vérification

La figure 4.1 permet d’avoir un apergu des étapes nécessaire a I’implémentation et la

Analyse du FPGA
(Chipscope)

vérification du systéme.

imuiation du desig

. %Odelsim)

érification logicielle L)
(Matlab)

A
\ 4 vy

-

Implémentation
> matérielle >
(VHDL) (Xilinx 1SE)

Description logicielle | Description matérielle
(Matlab)

Programmation sur
FPGA

\

Figure 4-1 Flot de conception

Les différents algorithmes sont premierement testés de maniére logicielle avant leur
implémentation matérielle. Cela permet de profiter de la flexibilité logicielle afin de

diminuer la phase de vérification matérielle. Nous utilisons Matlab pour la vérification
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logicielle car c’est le candidat idéal pour I'implémentation et la simulation rapide
d’algorithmes de traitement d’image. Afin de simuler le plus les conditions matérielles,
nous utilisons uniquement des données enticres définies sur une plage de bits
déterminée, généralement 8 bits. Nous utilisons aussi le moins possible les fonctions
pré-existantes dans Matlab afin de faciliter I’importation des algorithmes dans I’outil de
synthése matériel. Nous évitons aussi I'utilisation de méthode non implémentables
directement telles que des méthodes récursives.

Aprés avoir validé 1’implémentation logicielle, le systéme est décrit de maniére
matérielle grice au langage VHDL, synthetisé avec Xilinx ISE, et simulé grace a
Modelsim. Pour ce faire, nous simulons chaque boc indépendamment et comparons son
résultat & son équivalent sur Matlab. Une fois la procédure de vérification par bloc
approuvée, nous simulons le systéme dans son ensemble. Pour cela, nous inscrivons
premic¢rement une image RGB dans 3 fichiers, un fichier par trame de couleur. Ensuite,
nous créons un banc de test qui lit a une fréquence fixe le contenu des fichiers et
transmet les données RGB et les signaux de synchronisation au systéme testé. L’image
est parcourue deux fois, une premiére fois pour la détection, une seconde fois pour la
correction. Les pixels sortant du bloc de correction sont inscrits dans un fichier texte
puis retransformés en une image RGB grace a Matlab.

Il est ensuite possible de vérifier le systéme une fois implémenté sur FPGA. Cela se fait
grace a I’outil de Xilinx Chipscope. Il s’agit d’un outil qui insére un analyseur logique et
un analyseur de bus directement dans le design afin de capturer }es signaux désirés apres

la programmation du FPGA. Les signaux sont capturés aprés le déclenchement d’un
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événement spécifié (front montant d’un signal donné par exemple), ou manuellement,
sur commande de I’utilisateur. Les signaux capturés peuvent ensuite étre analysés grace

a ’analyseur logique.
4.2 Vérification du systéme de détection

4.2.1 Détection monodimensionelle

4.2.1.1 Exemples bloc par bloc

Afin de valider nos résultats nous prenons premi¢rement une image aléatoire présentée
en figure 4.2 sur laquelle nous appliquons les différentes fonctions de notre systeéme. Il

s’agit d’une image 10x10 générée grice a Matlab.

Figure 4-2 Image aléatoire servant pour les tests

Figure 4-3 Résultats de la transformée en niveaux de gris sur matlab ( & gauche) et sur modelsim (a
droite)
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Nous pouvons donc confirmer en comparant les résultats sur matlab a ceux obtenus
grice a la simulation modelsim que notre systéme présente une erreur de précision lors
du passage du domaine RGB au domaine Y, en effectuant un rehaussement préalable. La
figure 4.3 permet de comparer I’image en niveau de gris générée par Matlab et celle
obtenue grace a Modelsim.

On obtient une erreur maximale de 2 entre les deux images ; cette erreur est une erreur
cumulée du rehaussement, puis de la transformation en niveaux de gris. Il n’est
malheureusement pas possible d’observer cette différence visuellement, celle-ci étant
minime.

Nous déduisons des histogrammes des transformées en niveaux de gris obtenus. Les
deux histogrammes théorique et réel présentés en figure 4.4 sont similaires. Afin de
mieux comparer les deux transformations en niveaux de gris, nous présentons un
histogramme issu de la différence en valeur absolue entre les deux images. Celui-ci
montre que I’erreur maximale est de 2.

Nous effectuons ensuite une dérivation des histogrammes obtenus sans débruitage
préalable. Malgré I’erreur engendrée par la transformation en histogramme, les résultats
théoriques et réels de la dérivée de celui-ci sont similaires.

Le bloc de débruitage appliqué sur un histogramme généré aléatoirement donne des
résultats similaires 4 ceux obtenus théoriquement.

Nous pouvons donc conclure que les blocs testés indépendamment fonctionnement

comme prévu.
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4.2.1.2 Exemples sur des images réelles

Bien que fonctionnant correctement lorsqu’ils sont simulés indépendamment, les
résultats obtenus lorsqu’une image passe par l’algorithme de détection au complet
présentent des différences avec les résultats théoriques. En observant les histogrammes
obtenus a partir des images présentées en figure 4.5, on se rend compte que ’allure de la

courbe, et par la méme occasion la répartition générale des pixels, est conservée (figures

4.6 et 4.7).

Figure 4-5 images utilisés pour tester la détection monodimensionnelle

Cependant, les quantités de pixel par plage d’intensité varient. Cette variation est due a
I’erreur faite lors du rehaussement et de la transformation du pixel en niveau de gris. En
effet, un pixel qui devrait normalement se retrouver dans une zone d’intensité se
retrouvera facilement dans une autre, voisine. Cette 1égere variation est atténuée par le
débruitage qui ne conserve que 1’allure générale de la courbe, ce qui devrait permettre

d’obtenir le méme début de bosse spéculaire (figure 4.6).
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Figure 4-6 Histogrammes obtenus a partir de Modelsim (en haut) et Matlab (en bas) pour I’'image
de droite de la figure 4.5

Malheureusement, Il existe certaines images pour lesquelles il n’y a pas une bonne
répartition des pixels dans 1’histogramme. En d’autres termes, on n’observe pas toujours
une zone ou sont localisés les pixels de la région diffuse bien démarquée de la zone
spéculaire. Cela entraine une mauvaise détection du début de la région spéculaire
comme dans le cas de 1’image de gauche de la figure 4.5 dont les histogrammes sont

présentés en figure 4.7.
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Figure 4-7 Histogrammes obtenus a partir de Modelsim (en haut) et Matlab (en bas) pour ’image
de gauche de la figure 4.5

En observant les résultats obtenus par Chipscope (figure 4.8), on se rend compte que
I’histogramme varie, pour la méme image. Cette variation est observée a I’entrée du
systeme. En effet on peut constater que les pixels envoyés par le décodeur vidéo varient
légerement d’une trame a 1’autre, pour la méme image affichée a I’écran. Cette variation
est due aux différentes conversions analogiques numériques qui surviennent dans le

lecteur DVD, dans le décodeur vidéo et le passage YCrCB a RGB. Cela entraine pour la
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méme image différents débuts de région spéculaire. Bien qu’il détecte les régions

spéculaires, le masque obtenu est donc souvent instable.
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Figure 4-8 Histogrammes de I’image de gauche de la figure 4.5 obtenus a partir de Chiscope. Les
débuts de bosse spéculaires sont calculés sur matlab

4.2.2 Détection bidimensionnelle

Les seuls calculs effectués lors de la détection bidimensionnelle sont les calculs du plan
M et du plan S afin de déterminer leurs valeurs maximales respectives. Les valeurs
maximales de S et M sont similaires, que ce soit dans matlab ou modelsim. En effet on

observe les données présentées dans le tableau 4.1.
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Les erreurs de précision dues a la transformation en M et en S des pixels de I’image en
figure 4.9 sont telles que prévues dans le chapitre 3. Nous obtenons donc des plans S et
M visuellement identiques a leur résultat théorique comme on peut le constater en

observant les figures 4.10 et 4.11

Figure 4-9 Image utilisée pour les tests du plan S et du plan M

Tableau 4-1 Valeurs maximale des plans S et M de I’image en figure 4.8

modelsim matlab

smax 214 215

mmax 238 238
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Figure 4-10 Implémentation matlab( a gauche) et modelsim (a droite) du plan M de I’image en
figure 4.9

Figure 4-11 Implémentation matlab( & gauche) et modelsim (2 droite) du plan S I’image en figure

Comme attendu, les masques sur modelsim et matlab sont légérement différents. Les

deux réussissent cependant & capturer les principales régions spéculaires (figure 4.12).
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Figure 4-12 Implémentation matlab( & gauche) et modelsim (a droite) du masque spéculaire de I’image
en figure 4.9

Comme énoncé précédemment lors de la simulation de la détection

monodimensionnelle, on constate que le masque résultant scintille. Cependant dans ce

cas, les scintillements sont moins fréquents car ici la détection de la région spéculaire ne

tient pas compte de toutes les variations possibles dans ’image. Cet algorithme est donc

plus robuste face aux bruits sur des pixels isol€s.

4.3 Vérification du systéme de correction

L’algorithme de correction présente des résultats trés satisfaisants dans ’ensemble. Les
régions détectées sont corrigées linéairement puis lissées. Il est clair que des étapes
supplémentaires de lissage permettraient d’améliorer les résultats obtenus.

Par exemple, 11 est difficile pour I’algorithme de corriger efficacement des zones trés

larges. Cela peut s’observer sur la figure 4.13 ou méme apres la procédure de lissage,
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I’aspect ligne de la correction est toujours présent. On distingue donc des variations de

couleurs brusques dans le sens vertical.

Figure 4-13 Manque d’efficacité du lissage pour de larges régions spéculaires; a gauche: image
d’origine; a droite: image corrigée aprés implémentation matérielle

Augmenter les étapes de lissage permettrait d’annuler complétement 1’effet ligne encore
observable. La région corrigée présenterait la méme texture que la région I’entourant. La
figure 4.14 présente une correction effectuée avec 100 étapes de lissage sur Matlab. 1l
est possible d’observer que I’effet ligne a disparu et que la texture de I’objet métallique
est plus uniforme. Compte tenu des resssources disponible il est malheureusement

impossible d’effectuer cette correction sur FPGA.

Figure 4-14 Correction améliorée avec des étapes de lissage supplémentaire; a gauche: image d’origine;
a droite: image corrigée avec 100 étapes de lissage
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L’algorithme de correction fonctionne bien lorsque la région spéculaire est située a
I’intérieur d’un objet. Lorsqu’elle est situ€e a 1’intersection de deux objets différents,
I’information provenant d’un objet peuvent étre propagées dans I’autre. Ce phénomene
peut exister naturellement, ou encore étre provoqué lors de I’élargissement du masque
qui ne tient pas compte des bordures des objets. Le masque pourra donc des fois étre

prolongé dans 1’objet voisin.

Figure 4-15 Correction de la réflexion spéculaire par 1a mauvaise couleur : la réflexion présente sur
I’outil métallique est corrigé par I’information contenu dans la zone rouge a gauche de I’objet

La figure 4.15 montre un exemple de ce défaut. On constate que la réflexion spéculaire
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présente sur 1’objet métallique est corrigée par la couleur rouge a cause du masque qui
s’élargit vers la gauche et englobe la zone rouge.
On observe aussi sur I’écran vidéo un scintillement prévisible des zones corrigées. Elles

sont en effet dues a I’imperfection du masque spéculaire utilisé pour la détection.

4.4 Performances matérielles

Pour évaluer les performances matériclles nous effectuons le processus de synthese des
algorithmes de détection monodimensionnelle, détection bidimensionnelle, puis de
détection bidimensionnelle suivi de la correction. Nous obtenons le tableau 4.2 qui
présente les ressources matérielles utilisées obtenues aprés la phase de synthese de
I’implémentation matérielle [25]. Les ressources utilisées par 1’algorithme de correction
sont obtenues en soustrayant les ressources utilisées pour la détection bidimensionnelle a
celles utilisées pour la détection bidimensionnelle suivie de la correction.

Afin d’obtenir des ressources indépendante de la structure du FPGA, les ressources
présentées ne tiennent pas compte des ressources nécessaires au routage. Il s’agit
uniquement de la logique du circuit. Pour la méme raison nous préférons nous baser sur
le nombre de flip-flops et de LUTs utilisées plutdt que sur le nombre de slices.

On peut constater que I’algorithme de détection monodimensionnelle utilise 10 fois plus
de ressources que ’algorithme de détection bidimensionnelle. Cela est di a la phase de
traitement de 1’histogramme qui s’effectue lorsque le systéme entre en mode « vidéo

inactive ».
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Tableau 4-2 Ressources utilisées pour chaque implémentation matérielle sur un FPGA Xilinx
Virtex 2 pro XC2VP30

algorithme Flip-flops LUTs Slices Brams
(27,392 (27,392 (13696 (2,448 Kb
disponibles) | disponibles) | disponibles) | disponible
s)
Détection 6,002 10,531 6,844 162Kb
monodimensionnelle (21%) (38%) (49%) (6%)
Detection 571 1,032 586 108Kb
bidimensionnelle (2%) (3%) (4%) (4%)
Correction 3,641 24,044 12,775 1,018Kb
(13%) (88%) (93%) (42%)
Detection 4,212 25,076 13,361 1,126Kb
bidimensionnelle et (15%) (91%) (97%) (46%)
correction

Le délai de traitement du systeme est provoqué par la phase de correction. En
additionnant les différents délais établis dans le chapitre 3, nous obtenons un délai de 25
lignes de 858 pixels (avec 720 pixels actifs). En termes de temps, nous avons donc un
délai de 0.8ms entre la trame d’entrée non corrigée et la trame de sortie corrigée. Apres
optimisation du placement et routage, notre systéme utilise 91% des LUTs disponibles et
a une fréquence maximale d’opération de 32 MHz, ce qui excede le minimﬁfn requis de

27 MHz pour des opérations en temps réel.

4.5 Algorithme de traitement choisi

L’algorithme de détection monodimensionnelle est celui devant présenter les résultats
les plus précis grice a sa procédure de traitement de I’histogramme. En effet le

débruitage de I’histogramme suivi de sa segmentation permet théoriquement d’obtenir
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la position exacte des régions spéculaires. Malheureusement, cela est uniquement
possible si plusieurs conditions sont respectées :
e La région de I'histogramme ou se situent les pixels spéculaires doit étre bien
délimitée de la région diffuse.
e Le débruitage doit étre précis afin de ne pas éliminer accidentellement les
régions importantes de ’histogramme
e Les valeurs nécessaires a la création de I’histogramme doivent étre précises
(utilisation si possible de données décimales, bonne conversion analogie-
numérique a I’entrée du systéme)
Ces conditions ne sont pas facilement respectables lorsqu’on veut limiter I’utilisation des
ressources du FPGA. De plus, nous devons aussi tenir compte des ressources nécessaires
a 'implémentation de 1’algorithme de correction. En effet, nous constatons que les
ressources nécessaires a 'implémentation d’un  systtme de détection
monodimensionnelle, tel qu’il est congu actuellement, suivi d’un algorithme de
correction sont supérieures aux ressources disponibles dans le FPGA. Nous nous
tournons donc vers I’algorithme bidimensionnel qui offre une meilleure robustesse tout
en utilisant moins de ressources. Cela permet de faire tenir tout notre systéme a

'intérieur du FPGA tout en donnant des résultats en temps réel.
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Conclusion

Ce mémoire a proposé un algorithme permettant de détecter puis de corriger des zones
de réflexions spéculaires présentes dans des séquences d’images endoscopiques. Le défi
est d’implémenter cet algorithme sur un FPGA de petite taille et de le faire fonctionner
en temps réel afin qu’il puisse servir dans une salle d’opération, particulierement dans la
constitution d’un environnement a réalité¢ augmentde.

Deux méthodes de détection ont ¢été proposées. La méthode a histogramme
monodimensionnelle se base sur le fait que le pic spéculaire est observable dans les
histogrammes RGB d’une trame. Il suffit alors de détecter la zone de début de ce pic
grace a un seuillage des trois histogrammes, puis faire une descente en intensité afin de
tenir compte du lobe spéculaire. Cette méthode a déja été testée de manicre logicielle.
Quelques modifications ont été effectuées afin de réduire la consommation en mémoire
et de la rendre plus rapide. Il s’agit de I’utilisation d’une seule trame de couleur au lieu
de trois, et de la modification de I’algorithme de descente en intensité. Une particularité
de cette méthode est ’utilisation de la zone de vidéo inactive afin d’effectuer les calculs
les plus complexes. La deuxiéme méthode utilisée pour la détection est la méthode
bidimensionnelle. Elle consiste a utiliser conjointement le plan saturation et intensité
(nuances de gris) d’une trame afin de détecter les zones de réflexions spéculaires. En
effet un seuillage a la fois sur la trame de saturation et la trame en nuance de gris permet
d’isoler la zone de réflexions spéculaires. Pour I’adapter & une implémentation

matérielle et au type d’images sur lesquelles nous travaillons, 1’algorithme permettant le
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calcul des seuils est modifié. Ici nous n’attendons pas d’obtenir entierement de calculer
un plan avant de calculer I'autre. Les deux méthodes de détection fonctionnent en temps
réel.

Une méthode de correction a été proposée. Celle-ci se base sur le principe de
restauration d’image déja utilisé dans d’autres algorithmes qui consiste a utiliser
I'information provenant du contour d’une zone spéculaire et prolonger cette information
a I'intérieur de la zone, ceci dans les deux directions verticale et horizontale. Afin de
tenir compte des ressources limitées, la méthode implémentée ne travaille pas
simultanément dans les deux directions. Elle effectue premiérment une interpolation
linéaire dans la direction horizontale. Ensuite un lissage permet de tenir compte de la
direction verticale. Cette méthode fonctionne en temps réel.

La méthode monodimensionnelle étant gourmande en ressources, le systéme implémenté
est constitué de la méthode de détection bidimensionnelle suivie de la correction. La
particularité de ce systéme est que les deux algorithmes fonctionnent en paralléle, sur la
méme trame. En effet, les informations provenant de ’algorithme de détection appliquée
sur la trame i permettent d’appliquer la correction sur la trame it+1. Le systéme au
complet utilise 91% des ressources du FPGA.

Bien que le systéme fonctionne, plusieurs points peuvent étre améliorés. Premi€rement,
I’amélioration du processus de capture vidéo. En effet on observe un effet de
scintillement lors de la création du masque. Ensuite, [’utilisation d’une méthode de
descente en intensité plus efficace permettrait d’obtenir un meilleur masque spéculaire.

Cela permettrait d’éviter que lors de la correction, 1’information provenant d’une zone
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soit propagée dans la zone voisine. Concernant la correction, on pourrait tester
I’implémentation d’un algorithme de correction encore plus efficace, telle que la
méthode Navier-Stokes. Cela serait cependant difficile a obtenir avec le présent FPGA,

trés limité en terme de ressources.
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Abstract— This paper presents the architecture and FPGA imple-
mentation of a video processor for detection and correction of spe-
cular reflections in endoscopic images by using an inpainting algo-
rithm. Stream processing and parallelism are used to exceed real-
time performance on NTSC format video without the need for an
external memory. The system was implemented in a XC2VP30
FPGA and uses 91% of available slices. Image quality is significant-
ly enhanced.

I.  INTRODUCTION

Advances in video imaging have played a key role in bring-
ing forth the widespread use of Minimally Invasive Surgery
(MIS) in a variety of procedures such as cardiology, neurosur-
gery, orthopaedics, urology and oncology. However, the inhe-
rent difficulties of MIS techniques have traditionally imposed
limitations on their applicability. Reduced instrumental control
and freedom, combined with unusual hand-to-eye coordination
and a limited view of the operating field, enforce restrictions on
the surgeon and require considerable dexterity and skill. On the
other hand, these procedures entail several benefits for the pa-
tient and the healthcare system: smaller incisions, minimal
blood loss, preservation of normal tissue, reduced pain, and
shortened recovery and rehabilitation times.

The use of video-assistance to facilitate MIS has been the
focus of increasing attention since the early 1980s. In typical
video-assisted MIS, a small camera called an endoscope is in-
serted into the surgical site via a small incision on the surface of
the patient's body. The surgeon will exclusively use the endos-
cope video displayed on a monitor to view the surgical site and
control the position of his instruments, which are also inserted
through small incisions. Several sophisticated 3D navigation
systems are under development in cardiology and neurosurgery.
However, most of the current systems devised for spinal sur-
gery still rely on rigidly fixed dynamic reference (or fiducial)
markers on the instrumented vertebrae for the registration of
preoperative patient data with the intra-operative data. This
allows the surgeon to localize precisely the anatomical struc-
tures of interest while minimizing damage to adjacent critical
structures.

Our team is working on the development of an augmented
reality surgical environment using an image-based approach --
instead of using visible markers in the pre- and intra-operative
images -- to achieve a non-contact, automated method for elas-
tic 2D-3D registration. Unfortunately, the reflection of the light
on specular surfaces such as metallic tools and moist tissues, as
shown in Fig.1, produces artifacts in the images that render the
task of automatic segmentation of endoscopic images very chal-

lenging. Improving the quality of endoscopic video is an impor-
tant goal in itself, especially for augmented reality applications
[8]. Any kind of processing must operate in real-time on regular
sized video to be usable in a hospital, in an operating room.
Previous work has shown that endoscopic images can be signif-
icantly improved, but with significant memory and processing
requirements [1].

Figure 1.

An endoscopic image with specular reflections [1]

In this paper, we present particularized algorithms for auto-
mated detection and correction of specular reflections in an en-
doscopic context, together with their real-time implementation in
hardware. The paper is organized as follows. Section II presents
the system architecture and some implementation considerations
that affect algorithm development. Section III deals with the
problem of detecting the specular reflections, and section IV is
concerned with their correction. Section V presents results and a
discussion.

II.  SYSTEM ARCHITECTURE
AND IMPLEMENTATION CONSIDERATIONS

Fig. 2 shows the block diagram of our system. The input is a
stream of pixels and synchronization signals from a video de-
coder connected to an endoscope. The video format is deinter-
laced NTSC with an effective resolution of 720 x 480 pixels and
a frame refresh rate of 60 Hz. The output includes pixel values
and synchronization signals of the same format and refresh rate,
transmitted to a VGA port for real-time display.



We require real-time video processing, which is difficult to
achieve on a serial processor because of the great amount of data
involved. In order to perform an operation on every pixel in real-
time, the processor must execute 40 million operations per
second. If we take into account the time to store and load data,
the corresponding number of instructions rapidly increases. This
is not outside the capabilities of FPGA implementations, howev-
er, where massive parallelism can be exploited. However, this
choice implies special constraints related to the mode of
processing data: streaming, offline and hybrid [2].

Human body

endoscops Video processor
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Figure 2. System block diagram

Storing one video frame requires approximately 1 MB. The
limited amount of memory resources in a FPGA would normally
require that an external memory be used, especially if several
frames must be accessed for processing. However, this implies
timing constraints related to the access time to the external
memory. It must be shorter than the incoming rate of the pixels.
Generally speaking, external memory doesn’t allow multiple
port access. The resultant memory bandwidth limitations make it
desirable to avoid all external memories. Consequently, we favor
the use of a streaming mode with as little memory storage as
possible. We have to take the challenge to use a small amount of
memory. In fact by using the internal memory of an FPGA we
can avoid all the constraints due to the use of an external one.

There are two kinds of parallelism: data and pipeline [3].
Generally both of them are used at the same time: first we divide
the frame into different sections (data parallelism), then each
section passes through a processor which executes different
tasks sequentially (pipeline parallelism). The algorithm de-
scribed in this paper uses pipeline parallelism because each
frame is entirely computed by one processor; but it’s quite par-
ticular because two processors run on the same frame at the
same time, and the results of one processor are used by the next
one, as shown in fig. 2.

III. DETECTION OF SPECULAR REFLECTIONS

A diffuse reflection occurs when the incident ray is reflected
in a multitude of angles. In this case, the incident energy is dis-
tributed in all the directions of the reflection. It generally occurs
at the contact of a granular surface. That is the kind of reflection
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that permits us to see objects and their shape. A specular reflec-
tion, also called specularity, occurs when the incident light is
reflected in only one direction. In this case, both the incident and
reflected lights have the same energy, in principle without any
loss. This energy can glow, especially when the light source is
near the surface. This kind of reflection occurs when the surface
is smooth. A reflection generally has both specular and diffuse
components.

A. Histogram decomposition and criteria for detection

Specularities are by definition regions of an image where
pixel intensity is very high and where the color matches the
illumination source. Building an image histogram therefore has
the potential to assist us in identifying these regions. Three sepa-
rate histograms can be generated for each of the three colors in
the image. For endoscopic images taken inside the body, the
dominant color is red and the light source is white. Consequent-
ly, intensely white regions generally correspond to specular
reflections. Analyzing the red, green and blue histograms for
matching high intensity zones has the potential to point to specu-
lar regions [1].

It has also been shown that it is possible to use a grey-level
image to detect specularities [4]. With a simple thresholding on
this image we can detect specularities, because their pixel inten-
sity is independent from other regions. Specularitics are more
visible in the S (saturation) component of the HSV plan. Conse-
quently, two images are important to achieve good detection: the
grey-level image and the saturation image.

The methods described in [1] and [4] use one-dimension his-
tograms. They divide the image into two distinct regions: one
where most of the pixels are located and the other where specu-
larities are located. Generally however, these histograms tend to
be noisy, which complicates the distinction between the two
regions. In other terms, to perform a good thresholding on these
histograms they must first be de-noised. Detecting a mass of
pixels corresponding to specular reflections can be accomplished
by double derivation of the histogram to extract the beginning
and end of the specular region (in intensity) [1]. However, this
involves many computations and it requires that a complete
histogram of an image be stored.

It has also been suggested to use bi-dimensional histograms
to perform detection. Specular reflection regions tend to be lo-
cated in a static region of this histogram [5]. The bi-dimensional
histogram is built as follows [6]:

m=§(r+g+b) 1)

1 _ 3 .
S@r-g=b)=2(r-m)ir(b+r)z2¢ 2

%(r+g—2b):%(m—b),if(b+r)< 2g

where m is the intensity, s is the saturation, and », g and b
respectively represent the red, green and blue components of
the image. Specularities can be identified from the bi-
dimensional histogram based on the maximum values of m and
s for the image [6]. They correspond to the region located in the
lower right part of the M-S diagram. The relations proposed in



[6] tended to produce poor results in the context of endoscopic
images. After careful investigation of the parameters with a
large quantity of endoscopic images, we found that the follow-
ing relations reliably identify pixels that are part of a specular
reflection. A pixel p will be a part of the specular region if it
meets the following conditions:

>1
mp_Em

max

3)

where m2,  and § are the maximum intensity of M

max
and S for all pixels in an image, respectively.

Histogram decomposition corresponds to task 1 of our sys-
tem (fig. 2). Once a pixel is received,

1. its M value is computed by (1);
2. having its M value, its S value is computed(2); and,
3. the Sy and m,, values are updated for each frame.

From a computation point of view, the approach using the
bi-dimensional histogram is superior to the one with the one-
dimension histogram. No de-noising or histogram post-
processing is necessary. This eliminates a further cause of error
in the form of rounding in fixed-point calculations. In fact, it is
not required to store the bi- dimensional histogram at all, only
to compute and track the maximum values of its two compo-
nents for each frame. Simple thresholding is sufficient to detect
specular regions.

B.  Composition of the specular mask

The composition of the specular mask is part of task 2 in fig.
2; it works as follows. For each pixel p, the values of i, and s,
are computed with (1) and (2). The relations of (3) are then eva-
luated to determine whether the pixel is part of the specular
mask or not.

In theory, one would have to inspect all pixels from a frame
fin order to calculate the sy, and my,,, values, then apply (3) to
that frame. However, we found that the sm. and my,, values
vary little from frame to frame, and hence the values found for
frame f allow to find the specular mask of the f+/ frame. The
specularities tend to be more or less identical between two suc-
cessive frames. This is true when there is no sudden change of
direction of the camera or of the light source. In the worst case
the error is limited to a single frame with duration under 17 ms.
The obtained mask is a black and white frame, with the white
parts indicating the presence of specularities.

C. Mask enlargement

The specular mask received from the detection includes on-
ly the specular spikes of the frame. It doesn’t take into account
the specular lobe or camera artifacts at the boundaries of specu-
lar regions and the diffuse regions, caused by the direction of
the camera. If these components are not included in the specular
mask, the correction will be severely compromised. Conse-
quently, mask enlargement is necessary. One approach consists
of using an intensity descent [1,5]. However, this algorithm
requires a significant amount of memory access and is compu-
tationally intensive.
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In order to accelerate computations, we propose the follow-
ing process. The specular mask is inspected with the help of a
sliding window [2]. We define a mask enlargement width of n
pixels. When a specular pixel is encountered, all pixels within a
n x n window centered on the specular pixel are included in the
mask. The number N of buffered lines in the sliding window is
given by:

N=2n+l @

The width n of the enlargement depends on the width of the
different artifacts we want to include into the mask. We have
found that a value of n = 3 was adequate for most images. This
means that there is a processing delay of 7 lines between the
original mask and the enlarged one. Fig. 3 gives an example of
a mask enlargement with » = 1. The white pixel represents the
specular pixel, the bold lines represent the sliding window, and
the light grey pixels represent the new specular pixels after suc-
cessive iterations. The blue pixel is the actual pixel being com-
puted.

'.'.' >-

Mask enlargement with n=1, up. input frame, down:output frame
IV.  CORRECTION OF SPECULAR REFLECTIONS

Correcting a frame consists of removing all the speculari-
ties previously detected and replacing them with information
obtained from their neighborhood. One of the best ways to per-
form a good correction is to use an image in-painting algorithm,
such as the Navier-Stokes algorithm [7]. However this kind of
algorithm uses several loops to pass through a given frame.
This requires large amounts of memory and computational ef-
fort. We aim to achieve a single frame memory architecture.
We therefore propose the following approach, which operates
line by line:

e An entire line of the frame is stored.

Figure 3.

e For each specular region detected in this line, three data are
stored: the value of the pixel before the specular region py
the value of the pixel after the specular region p. and the
width of the specular region w.

e For each specular region, the linear skew a is calculated:
a= p e p b
w

e The leftmost pixel in a specular region is given index zero.
Pixel p, is given the value py, + a. The corrected value of all

other pixels is given by

P =p;+a )

At the end of the process there will be a delay of 1 line be-
tween the enlarged mask and the corrected frame.

Since linear correction operates only in the horizontal di-

mension, it is necessary to add correction along the vertical

dimension. This is achieved by passing the corrected frame

&)



through a smoothing window which replaces corrected pixels
with the average of its neighbors. This is done by using a 3x3
sliding window with 5 passes. Each pass creates a delay of 3
lines, for a total of 15 lines delay.

The total delay of the system is 25 lines of 858 pixels each
(with 720 active pixels); this delay of 0.8 ms between the non
corrected input frame and the corrected output frame uses 64
KB of the internal memory. The delay is acceptable for real-
time operation.

V. RESULTS AND DISCUSSION

The system was first developed and implemented with Mat-
lab to adjust parameters and processes and to build a baseline
reference. This Matlab implementation included fixed point
data types from the start, The system was then described at the
register-transfer level with VHDL. Simulation and verification
were performed with the help of Modelsim and an automated
test bench.

Two systems were in fact implemented with different de-
tection algorithms: the single [1] and bi-dimensional approach-
es. Table 1 presents resource usage for the implementation of
each algorithm after the synthesis process. Bi-dimensional his-
togram detection uses 10 times fewer resources than the mono-
dimensional version and it achieves better results.

TABLE 1. RESOURCES USED FOR EACH HARDWARE IMPLEMENTATION ON A

XILINX VIRTEX 2 PRO XC2VP30 FPGA

algorithm Flip-flops LUTs Brams
(27,392 availa- (27,392 (2,448Kb
ble) available) availabl
Mono-dimensional 6,002 10,531 162Kb
histogram detection (21%) (38%) (6%)
Bi-dimensional 571 1,032 108Kb
histogram detection (2%) (3%) (4%)
Correction 3,641 24,044 1,018Kb
(13%) (88%) (42%)
Detection and 4212 25,076 1,126Kb
correction (15%) (91%) (46%)

Fig. 4 demonstrates the detection and correction of specular
reflections. Hardware implementation of mono-histogram de-
composition gives an unstable mask because of the computa-
tions needed to extract the beginning of the specular region.

The best results come from [7] because the correction is
done on two dimensions, instead of one dimension. The specu-
lar regions are filled until there is no information to propagate
from the boundaries. In other terms, the widths of the bounda-
ries tend to zero. This needs a lot of memory to store multiple
frames of the same picture.
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The correction algorithm proposed in this paper works well
when the specular region is entirely enclosed inside an object
(Fig. 4). When it’s located at the boundary of two different
objects, the information coming from one object can be propa-
gated to the other one.

After the optimization of placing and routing process, the
system uses 91% of the available slices of a XC2VP30 FPGA.
The maximum operating frequency is 32 MHz, which exceeds
the minimum required of 27 MHz for real-time operation.

VI.  ConcrLusioNn

This paper has presented a method and architecture to im-
plement a processor able to detect and correct specularities in
NTSC endoscopic videos. This is done with two parallel tasks
in a streaming processing mode. Bi-dimensional histogram
decomposition is computed to detect the specularities. It has the
advantage of using few memory and computation resources
without compromising the quality of the resulting image. The
correction is done in two steps, a linear correction and a
smoothing process. The system functions in real time and
doesn’t require an external memory.

REFERENCES

C. A. Saint Pierre, J, Boisvert, G. Grimard and F. Cheriet, “Dectection and
Cormrection of Specular Reflections for Automatic Surgical Tool
Segmentation in Thoracoscopic Images,” Machine Vision and Applications
Journal 2007, in press.

(1]

[2] C. T. Johnston, K. T. Gribbon and D. G. Bailey, “Implementing Image
Processing Algorithms on FPGAs,” Proc. of the 11" Electronics New

Zealand Conference, pp.118-123, November 2004
[3] A. Downton and D. Crookes, “Parallel architectures for image processing,”
Electronics & Communication Engineering Journal, vol.10, no.3, pp.139-
151, Jun 1998.
M. Gréger, W. Sepp, T. Ortmaier, G. Hirzinger “Reconstruction of Image
Structure in Presence of Specular Reflections,” Mustererkennung 2001:
DAGM2001, Munich, Germany, Sept 2001.
J. Bhattacharyya, “Detecting and Removing Specularities and Shadows in
Images”, Master’s thesis, McGill University, June 2004,

[4]

[5]
(6]

F. Ortiz and F. Torres, "Automatic detection and elimination of specular
reflectance in color images by means of MS diagram and vector connected
filters," IEEE Transactions on Systems, Man and Cybernetics, Part C:

Applications and Reviews, vol.36, no.5, pp. 681-687, Sept. 2006.

[7]1 M. Bertalmio, A.L. Bertozzi and G. Sapiro, “Navier-stokes, fluid dynamics,
and image and video inpainting”, Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition, vol.1, pp 1-355- [-362, 2001.

[8] Jing, Chen; Yongtian, Wang; Yue, Liu; Dongdong, Weng, ‘Navigating
System for Endoscopic Sinus Surgery Based on Augmented Reality,”
IEEE/ICME International Conference on Complex Medical Engineering,

pp.185-188, May 2007.

Figure. 4 Hardware implementation of the specular mask (middle) and the correction (right) of the left image



