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RESUME 

La combustion et l'efficacite des piles a combustible sont les principaux problemes 

auxquels plusieurs scientifiques se sont penches. L'efficacite des piles peut en partie 

etre amelioree en augmentant le transport de charges (electrons) du catalyseur a 

l'extremite de l'anode. 

Une premiere solution envisageable pour ameliorer le transport des electrons du 

support poreux a l'extremite de l'anode est de remplacer le noir de carbone par 

des nanotubes de carbone (CNTs). Etant donne que les CNTs ont une conduction 

electrique exceptionnelle, les electrons issue de la reaction pourront etre transporter 

directement vers l'extremite de l'anode en evitant plusieurs processus de marche 

aleatoire. Cet effet pourra d'autant plus etre amplifie si les CNTs sont connectes 

directement a l'extremite de l'anode par des liaisons chimiques. 

A fin d'etudier la fonctionalisation des CNTs avec des outils numeriques de chimie 

quantique, on doit faire un choix approprie des modeles a etudier. Etant donne que 

Ton s'interesse essentiellement qu'aux proprietes des liaisons chimiques (longueur 

des liens et energie de liaison) du groupe fonctionnel, on peut utiliser un plus petit 

modele mais fiable pour representer un CNT. 

Le resultat le plus important de notre etude sur les groupes fonctionnels est que 

les accepteurs (CN, Si(OH)3, COOH) ont un ordre et une energie de liaison plus 

grandes que les donneurs (OH, NH2, SiH3). Nos resultats numeriques montrent 

que les particules de platine sont fortement stabilisees par ces groupes fonctionnels 

aux energies de liaison qui s'elevent jusqu'a 3.14 eV et aux ordres de liaison allant 

jusqu'a 2. En comparant ces resultats avec le cas d'une particule de platine di­

rectement deposee au-dessus d'une molecule de pyrene, nos calculs montrent une 
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faible energie de liaison de 1.28 eV et une faible ordre liaison de 0.22. Consequem-

ment, la coalescence des particules metalliques peut etre significativement reduite 

a l'aide de groupes fonctionnels. Nous avons classe les groupes fonctionnels selon 

leur capacite a stabiliser une particule metallique. 

• Accepteurs: Si(OH)3 > COOH > CN 

• Donneurs: NH2 > SiH3 > OH 

Les resultats obtenus pour un petit modele (pyrene) de nanotube de carbone inet-

tent en evidence le benefice d'utiliser la fonctionalisation pour creer un site de 

germination pour les particules de platine. 
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A B S T R A C T 

The coalescence of the active phase of the catalyst used in fuel cells (Pt deposited 

over carbon black) represents a major drawback of this technology. Once the fuel 

cell starts working, the temperature raises, and the small platinum particles have 

enough energy to diffuse toward other particles in order to form larger particles, 

and consequently reduce both the active surface area and the reaction yield. 

A plausible solution to this problem is to use functionalized carbon nanotubes as 

a support for the platinum particles. Instead of bonding platinum directly to the 

carbon support, the particles can be anchored to carbon nanotube through func­

tional groups. The role of functional groups is to stabilize and fix platinum particles 

through the formation of stronger bonds between the Pt and the surface of the sup­

port. By changing from carbon black to carbon nanotubes, we also benefit from 

the high electrical conductivity of carbon nanotubes. They could facilitate the 

electron transport from the Pt particles to the back plane of the anode, creating an 

electron channel directly to the backplane. Therefore, limiting the random process 

of charge hopping in complex media. 

Due to the large size of carbon nanotubes, computational chemistry calculations 

become impractical on representative models. Pyrene molecule represents a very 

good, but minimal model of a carbon nanotube, since it contains carbon atoms that 

resemble those present in carbon nanotubes. The central carbon atoms in pyrene 

have the same hybridization and the same chemical environment than in carbon 

nanotube, which makes pyrene the ideal candidate to investigate a large number 

of functional groups. We have chosen to simulate six different functional groups, 

they can be classified depending upon their electronic configurations in electron 

attractors and electron donors. We have selected commonly used with very well 
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known characteristics organometallic ligands. Among the selected there are three 

electron attractors (CN, Si(OH)3, COOH) and three electron donors groups (NH2, 

SiH3, OH). We also explored the bonding of three different metal atoms (Platinum, 

Palladium and Nickel) to all functional groups, this allowed us to compare the sta­

bilities of metals of the same group of the periodic table. 

Our most important result for the investigated functional groups is that the attrac­

tors (CN, Si(OH)3, COOH) have greater bonding energies and higher bond orders 

than the donors (OH, NH2, SiH3). Our computational results show that platinum 

particles are strongly stabilized by the functional group where bonding energy val­

ues up to 3.14 eV and bond orders up 2 were obtained. If we compare these results 

with platinum particles deposited directly over pyrene, our calculations showed 

energy of 1.28 eV and low bond order of 0.22. Therefore, the coalescence can be 

dramatically reduced when the metallic particles are bonded to functional groups. 

We have classified the functional groups accordingly to their ability to stabilize the 

metal particles: 

• Attractors: Si(OH)3 > COOH > CN 

• Donors: NH2 > SiH3 > OH 

The results obtained on a small model (pyrene) of a carbon nanotube give clear 

evidence of the benefit of using functionalization to create nucleation sites where 

Pt particles can be grown. 
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CONDENSE EN FRANQAIS 

CI Pile a combustible 

C l . l Bref historique 

En 1839, William Grove decouvre comment generer de l'electricite a l'aide d'une 

reaction chimique impliquant uniquement de l'hydrogene et de l'oxygene dans un 

processus inverse de l'electrolyse de Feau (Grove, 1839). Cette experience disposait 

de deux tubes tests contenant chacune une electrode de platine a moitie plongees 

dans une solution aqueuse de H2SC>4. Ensuite, on remplissait l'un des tube avec un 

gaz de H2 et l'autre tube avec un gaz de 0 2 . Des le commencement de la reaction, 

un galvanometre detecta entre chaque electrode un courant electrique; c'est ainsi 

qu'est nee la premiere pile a combustible. 

CI.2 Problematique des piles a combustible actuelle 

La combustion et l'efficacite des piles a combustible sont les principaux problemes 

auxquels plusieurs scientifiques se sont penches. L'efficacite des piles peut en partie 

etre amelioree en augmentant le transport de charges (electrons) du catalyseur 

a l'extremite de l'anode. Habituellement, le catalyseur est constitue de petites 

agregats de platine deposes sur du noir de carbone (Peuckert et al., 1986; Uchida 

et al., 1996). Des qu'une molecule de H2 dissocie au contact du metal, les electrons 

produits suivent une trajectoire aleatoire au travers un support poreux de noir de 

carbone jusqu'a ce qu'ils atteignent l'extremite de l'anode (Figure 1.4). A cause 

de ce processus de marche aleatoire des electrons, une grande partie de la charge 

disponible ne contribue pas a la production de l'electricite. De plus, lorsque la pile a 

combustible est mise en fonction, la temperature augmente ce qui affaiblie les liens 

entre le platine et le noir de carbone et favorise la coalescence des petites agregats 

de platine. Les gros agregats de platine ainsi formes diminuent la surface efficace 
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du platine necessaire a la reaction et decroit l'emcacite de la pile a combustible 

(Figure 1.5). 

CI.3 Solutions proposees et methodologie 

Une premiere solution envisageable pour ameliorer le transport des electrons du 

support poreux a l'extremite de l'anode est de remplacer le noir de carbone par 

des nanotubes de carbone (CNTs). Etant donne que les CNTs ont une conduction 

electrique exceptionnelle, les electrons issue de la reaction pourront etre transportes 

directement vers l'extremite de l'anode en evitant plusieurs processus de marche 

aleatoire. Cet effet pourra d'autant plus etre amplifie si les CNTs sont connectes 

directement a l'extremite de l'anode par des liaisons chimiques. Deuxiemement, la 

presence de groupes fonctionnels sur le support pourrait stabiliser les agregats de 

platine et prevenir leur coalescence. Comme l'illustre la Figure 1.6, une solution 

optimale consisterait a combiner un support de CNTs avec des groupes fonctionnels 

stabilisateurs de platine. 

A fin d'etudier la fonctionalisation des CNTs avec des outils numeriques de chimie 

quantique, on doit faire un choix approprie des modeles a etudier. Etant donne que 

l'on s'interesse essentiellement qu'aux proprietes des liaisons chimiques (longueur 

des liens et energie de liaison) du groupe fonctionnel, on peut utiliser un plus petit 

modele mais fiable pour representer un CNT. Ceci permet d'etudier un plus grand 

nombre de cas de fonctionalisation en un temps de calcul plus court que si Ton 

utilisait un modele plus complet de CNT. Pour ce faire, le choix du modele s'est 

arrete a la fonctionalisation d'une molecule de pyrene qui est une molecule plane 

fortement conjuguee dont les electrons 7r sont delocalises de maniere similaire que le 

graphene et le CNT. Afin de minimiser les effets aux frontieres ou les carbones de la 

peripheric n'ont normalement pas les trois carbones voisins sp2, on se concentrera 

que sur les atomes de carbone du centre de la molecule. A l'aide de calculs ab — 

initio, plusieurs groupes fonctionnels seront etudies pour ensuite explorer leurs 
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capacites a stabiliser des atomes et de petits agregats metalliques. 

C2 Revue de litterature 

La recherche sur le developpement d'une nouvelle generation de piles a combustible 

n'a pu ignorer les avantageuses contributions de la nanoscience telles que l'utilisation 

de nanostructures comme les nanotubes de carbones aux proprietes de conduction 

electrique exceptionnelle. 

C2.1 Fonctionalisation des nanostructures de carbone 

La fonctionalisation est une reaction chimique realisee pour attache un atome (ou 

un agregat d'atomes) a une molecule ou a un systeme plus complexe. L'ajout de ce 

nouveau groupe permet de modifier quelques proprietes moleculaires bien precises, 

telles que la temperature de fusion, le moment dipolaire, et etc. 

C2.2 Fonctionalisation des nanotubes de carbone monoparois (SWCNT) 

La fonctionalisation des SWCNT est presentement classifie en cinq principaux 

groupes (Hirsch, 2002): 

• Defauts structuraux (Defect-group) 

• Parois covalente (Covalent sidewall) 

• Exohedral non-covalent avec tensioactifs (Non-covalent exohedral with sur­

factants) 

• Exohedral non-covalent avec polymeres (Non-covalent exohedral with poly­

mers) 

• Endohedral (Endohedral) 
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C2.2.1 Fonctionalisation d'une parois covalente 

On s'attend a ce que les parois d'un SWCNT soit inerte. La principale raison 

pour ceci est due a la haute coordination des carbones sp2 qui s'apparentent au 

graphene. Quand les nanotubes sont oxydes pour retirer les particules cataly-

tiques, quelques defauts sont crees sur la parois saturee par des groupements acides 

(COOH). De tels fonctionalisations ouvre la route a d'autres types de reaction telle 

que l'halogenation (Mickelson et al., 1998) (voir la Figure 2.2-B pour une represen­

tation). D'autres fonctionalisations de la parois peuvent etre realisees a l'aide de 

carbenes nucleophiles tres reactifs (Holzinger et al., 2001). Dans une autre etude 

(Bahr et a l , 2001), une electrode a ete construite a l'aide d'un film de SWCNT. 

Suite a une reduction d'un sel d'aryle-diozonium sur le film de nanotubes, des 

groupes aryles restent attaches aux parois du SWCNT (voir la Figure 2.3). 

C3 Methodologie numerique 

C3.1 Theorie de la fonctionnelle de la densite (DFT) 

L'equation de Schrodinger (3.1) peut servir a decrire la densite electronique d'un 

atome, d'une molecule ou d'un solide. Si \I/ est la function d'onde qui decrit entiere-

ment le systeme etudie, alors la valeur propre calculee de l'operateur Hamiltonien 

H represente son energie totale (Etot) (Szabo and Ostlund, 1996a). 

Parmi les nombreuses approches pour resoudre l'equation de Schrodinger, il y en 

a une largement utilisee qui utilise 1'approximation Hartree-Fock (HF) (Szabo and 

Ostlund, 1996b) basee sur une methode variationnelle. La methodologie de HF est 

fondee sur la supposition qu'un seul determinant de Slater peut decrire complete-

ment la fonction d'onde a N-corps du systeme etudie. Ensuite, le calcul variationnel 

produira un ensemble de N equations differentielles a resoudre. 
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C3.2 Logiciel 

Dans ce projet de recherche, on utilise le logiciel de chimie numerique Gaussian 

03 (Frisch et al., 2004) qui est la plus recente version commerciale du code orig-

inalement developpe par J. Pople. Les resultats produits par le logiciel Gaussian 

sont largement acceptes par la communaute scientifique etant donne ses multiples 

fonctions implementees et sa grande utilisation parmi les scientifiques en chimie-

physique numerique. 

Lorsque la fonction d'onde est connue, plusieurs proprietes moleculaires peuvent 

etre evaluees en performant diverses routines ab-initio (Foresman and Frisch, 1996a). 

Dans le cadre de cette maitrise, des calculs d'optimisation de geometrie, de transfert 

de charge et d'ordre de liaison ont ete realises. 

C3.3 Du pyrene au nanotube de carbone multiparois (MWCNT) 

Etant donne que les MWCNT sont des molecules pouvant facilement contenir 

plusieurs millions d'atomes (voir la Figure 3.2), realiser des calculs DFT sur de 

tels systemes est quasi impossible. Pour y remedier, on doit utiliser un plus pe­

tit modele qui imite les proprietes du CNT et qui permettra d'explorer plusieurs 

groupes fonctionnels dans un temps raisonnable. Meme un nanotube de carbone 

monoparois (SWCNT) est un systeme trop complexe pour etre traite par calculs 

DFT en un temps raisonnable. Done, une solution plus drastique mais realiste 

est de considerer une molecule de pyrene comme une sous-unite d'un nanotube 

de carbone (voir la Figure 3.3). Par ce choix, on doit poser quelques importantes 

hypotheses. Premierement, on considere que la parois interieure du SWCNT ne 

procure pas de sites de reaction. Deuxiemement, on ne considere pas les inter­

actions a longue portee dans la reaction et on se limite a une etude locale des 

proprietes chimiques. Toutefois, un modele de la taille du pyrene permet l'etude 

de plusieurs groupes fonctionnels en un temps raisonnable. Etant donne que les 
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atomes de carbone au centre de la molecule de pyrene out une coordination (3) 

similaire aux carbones d'un CNT, la reactivite de ces atomes de carbone devrait 

se rapprocher de ceux d'un CNT. 

C4 Resultats sur la fonctionalisation du pyrene 

Les groupes fonctionnels choisis pour cette recherche ainsi qu'un resume des resul­

tats sont presentes dans cette section. 

C4.1 Groupes fonctionnels 

C4.1.1 Accepteurs d'electron 

Les accepteurs d'electron sont definit comme des systemes moleculaires capables 

d'attirer une densite d'electron. Si un accepteur d'electron est utilise pour fonc-

tionaliser le pyrene, alors on peut s'attendre a un transfert de charge vers le groupe 

fonctionnel. Dans ce travail, ce sont les groupes suivant qui furent consideres: CN, 

Si(OH)3 et COOH (voir la Figure 4.4). 

C4.1.2 Donneurs d'electron 

A l'inverse, les donneurs d'electron sont des systemes moleculaires qui octroie une 

densite d'electron. Dans ce travail, ce sont les groupes suivant qui furent consideres: 

NH2, SiH3 et OH (voir la Figure 4.5). 

C4.2 Fonctionalisation du pyrene 

Deux types de cas de fonctionalisation du pyrene ont ete consideres: le cis oil les 

deux groupes fonctionnels se retrouvent du meme cote du pyrene et le trans ou 

chaque groupe fonctionel se retrouve de chaque cote du plan de la molecule. Apres 

des calculs d'optimisation de geometrie, on evalue les energies de liaison, les dis­

tributions de charges, les caracteres liants et les parametres structuraux. Chaque 
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cas d'isomere cis et trans a ete etudie a l'aide de deux groupes fonctionnels iden-

tiques (homofonctionnel) ou d'un groupe fonctionnel avec un atome d'hydrogene 

(heterofonctionnel). En guise d'illustration, la Figure 4.6 presente les cas d'isomeres 

homofonctionnels cis et trans avec des groupes CN. Tandis que la Figure 4.7 illus-

tre les cas des isomeres heterofonctionnels cis et trans avec un groupe fonctionnel 

NH2. La Figure 4.8 montre les deux sites de fonctionalisation portant l'etiquette 

4 et 8 caracterises par des atonies de carbone formant des liaisons sp2 avec ses 

voisins. Tout les angles diedraux presentes dans ce travail sont calcules a partir 

des 4 atonies de carbone etiquettes 4, 5, 8 et 9. 

C4.3 Resultats pour le cas homofonctionnel 

C4.3.1 Energie de liaison 

La Table 4.1 presente les energies de liaison calculees pour les isomeres cis et trans. 

On remarque que les complexes trans sont legerement plus stable que ceux cis, avec 

comme seule exception le groupe Si(OH)3. Le Tableau 4.2 montre les angles die­

draux calcules, le pourcentage et l'energie de deformation de la molecule de pyrene 

suite a sa fonctionalisation. Le pourcentage de deformation des complexes trans 

sont tres faibles etant donne leur nature symetrique qui procure des angles diedrals 

avoisinant les 180°. Neanmoins, l'energie de deformation pour les complexes trans 

sont du meme ordre de grandeur que ceux des complexes cis qui ont pourtant de 

forts pourcentages de deformation. 

C4.3.2 Transfert de charge 

Le Tableau 4.3 presente le transfert de charge net calcule; en haut, le transfert de 

charge pour les groupes donneurs: et en bas, pour les groupes accepteurs. Le signe 

negatif implique un gain de charges negatives (electrons) et un signe positif indique 

la perte de charges negatives par la molecule de pyrene. 
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C4.3.3 Ordre de liaison et proprietes structurales 

Une analyse de l'ordre de liaison du pyrene montre que chaque lien carbone-carbone 

a une valeur de 1.4, ce qui est consistant avec le nature aromatique de la molecule. 

Une fois le pyrene fonctionalise, les ordres de liaison peuvent changer (voir la Fig­

ure 4.11). En effet, les ordres de liaisons calculees montre des valeurs proches 

de 1.4 pour les liens entre les carbones de peripheric et des valeurs qui chutent 

pres de 1.0 pour les liens impliquant un carbone central. Cette tendance est ob-

servee a la fois pour les complexes cis et trans etudie, et tout les ordres de liaison 

calcules sont repertoriees dans le Tableau 4.4. A partir de la Figure 4.11, on 

note que l'aromaticite est brisee au centre du pyrene fonctionalise et que les liens 

carbone-carbone en peripheric conservent leur nature aromatique selon la theorie 

de Wiberg. On note un autre tendance dans le Tableau 4.4, les groupes fonctionnels 

plus volumineux comme Si(OH)3 montrent des ordres de liaison plus faibles que 

les plus petits groupes comme CN peu importe si on est dans un cas de donneur 

ou d'accepteur. Un derniere observation montre que plus le transfert de charge est 

important plus l'ordre de liaison est petite. 

C4.4 Resultats pour le cas heterofonctionnel 

C4.4.1 Energie de liaison 

Le Tableau 4.5 resume les energies de liaisons calculees pour le complexe pyreneH-R 

pour les cas cis et trans. Une premiere observation montre que les energies de liaison 

sont plus forte pour le cas heterofonctionnel que pour le cas homofonctionnel. Le 

Tableau 4.6 montre les angles diedraux calcules, le pourcentage et l'energie de de­

formation de la molecule de pyrene suite a sa fonctionalisation. On observe que les 

deformations des complexes trans sont plus elevees que les changements obtenues 

dans le cas homofonctionnel des complexes trans. Cette difference est simplement 

due au fait que la deformation exercee sur le pyrene soit non symetrique avec ses 
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groupes R 4- H, et done, la perturbation n'est pas aussi egalement distribute. 

C4.4.2 Transfert de charge 

Le Tableau 4.7 resume les transferts de charge calcules pour le complexe pyreneH-

R pour les cas cis et trans. Etant donne la difference d'electronegativite entre les 

atomes de carbone et d'hydrogene, on s'attendrait a observer un transfert de charge 

de l'hydrogene vers le carbone en position 8, mais cette tendance n'est observe que 

pour le cas impliquant des donneurs. 

C4.4.3 Ordre de liaison et proprietes structurales 

En comparant les ordres de liaisons du cas heterofonctionnel (Tableau 4.8) avec 

ceux du cas homofonctionnel (Tableau 4.4), on obtient des resultats similaires a la 

fois pour les complexes cis et trans. 

C5 Resultats sur la stabilisation des agregats metalliques 

Ann d'etudier la liaison entre des agregats metalliques (Pt, Ni et Pd) avec le pyrene 

via un groupe fonctionnel, on a tout d'abord choisi comme point de depart la 

molecule de pyrene fonctionalisee. Dans cette serie de calculs, on a permis aux 

agregats metalliques, aux groupes fonctionnels et aux atomes centraux du pyrene 

a relaxer tout en fixant les autres atomes du systeme. Dans ce travail, on definie la 

stabilisation du metal comme etant l'energie requise pour dissocier un seul atome 

(ou un agregat) de metal au complexe. En guise d'energie de reference, on compare 

la stabilisation avec l'energie de liaison entre un agregat metallique directement 

attache aux atomes de carbone centraux du pyrene. Cette energie de reference 

se rapproche de l'etat actuel des piles a combustible ou les agregats de platine 

sont directement deposes sur le noir de carbone. Dans ce travail, la stabilisation a 

ete evalue pour le cas homofonctionnel en considerant l'ajout soit d'un seul atome 
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metallique ou d'un seul dimere metallique. 

C5.1 Systemes a un atome metallique 

C5.1.1 Energie de reference 

Comme mentionne plus haut, l'energie de reference represente l'energie du lien 

ponte entre un atome metallique avec les atomes de carbone au centre du pyrene 

tel que schematise dans la Figure 5.1. A partir du Tableau 5.1, on remarque 

que les atomes metalliques sont faiblement lies au pyrene, ce qui suggere que les 

atomes metalliques peuvent se deplacer plus librement en surface de la molecule, 

devaluation de l'ordre de liaison entre l'atome metallique et les carbones en position 

4 et 8 sont faibles, ce qui supposent aussi de faibles liaisons. 

C5.1.2 Groupes fonctionnels 

Les ordres de liaison pour le metal-carbone (liens en position 4 et 8) sont petites ce 

qui implique que les liaisons formees soient faibles. De fagon generale, les energies 

de liaison calculees pour les groupes donneurs sont faibles et suggerent la formation 

de liens faibles. Par contre, les groupes accepteurs montre de fortes energies de 

liaison synonyme de liaisons fortes. Les principales variations de charge se limitent 

au niveau des groupes fonctionnels et de l'atome metallique, et non au reste de la 

molecule. 

C5.2 Systemes a un dimere metallique 

Un exemple de stabilisation d'un dimere metallique via un groupe fonctionnel est 

presente dans la Figure 5.3. Dans cette configuration, seulement un atome du 

dimere est lie aux groupes fonctionnels. Ce modele ressemble a celui d'un atome 

metallique mais avec l'ajout d'une liaison metal-metal. Le Tableau 5.4 resume 

les energies de liaison calculees pour les systemes impliquant le dimere metallique. 
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Comme precedemment, les groupes fonctionnels, les atomes de carbone en position 

4 et 8 et le dimere metallique ont ete relaxes dans un calcul d'optimisation de 

geometric La distance entre les deux atomes metalliques a ete fixee a la valeur 

obtenue pour le cas d'un dimere isole. 

C6 Conclusions 

D'apres le travail realise durant ce memoire, on arrive aux conclusions suivantes: 

• La molecule de pyrene est le plus petit modele possible pour representer un 

nanotube de carbone; les atomes de carbone en position 4 et 8 ont un envi-

ronnement chimique similaire a ceux retrouves dans un nanotube de carbone. 

• Les groupes accepteurs etudies (CN, Si(OH)3, COOH) ont de plus grandes 

valeurs d'energie et d'ordre de liaison que ceux des groupes donneurs (OH, 

NH2, SiH3). 

• A la fois l'homofonctionalisation et l'heterofonctionalistion ont montre la 

meme tendance en terme de "force" de liaison avec le pyrene. 

• Si un agregat metallique est adsorbe sur le pyrene via un groupe fonctionnel, 

les valeurs d'energie et d'ordre de liaison seront plus grandes que lorsqu'aucun 

groupe fonctionnel n'est en jeu. Done, les agregats metalliques sont mieux 

stabilises a l'aide d'un pyrene fonctionalise. 

• Lorsque les agregats metalliques sont stabilises sur le pyrene, la densite elec-

tronique tend a s'accumuler sur le pyrene. Ceci suggere que durant la reaction 

anodique d'une pile a combustible, les electrons issus de la dissociation de la 

molecule d'hydrogene pourront etre plus facilement conduits vers le support. 

• Parmi les metaux et groupes fonctionnels etudies, on obtient que le nickel 

possede les plus faibles valeurs d'energie et d'ordre de liaison, tandis que le 
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platine obtient les plus fortes valeurs. 

• Malgre une brisure d'aromaticite au centre du pyrene produite a la suite de 

la fonctionalisation, les liens conjuges TT — TT sont essentiellement conserves en 

peripheric de la molecule. 

Ann de poursuivre ce projet de recherche, plusieurs points pourront etre consideres. 

Entre autre, on pourrait modeliser la dissociation de la molecule d'hydrogene en 

contact avec l'agregat metallique. Ensuite, il faudrait etudier le transfert de charge 

du a la dissociation de l'hydrogene vers les anneaux du pyrene via les groupes 

fonctionnels. D'autre part, on pourrait considerer un modele plus gros que le pyrene 

tel que le coronene afin de confirmer les tendances observees dans cette recherche. 

Finalement, lorsqu'un modele complet de SWCNT sera utilise, il faudra evaluer 

l'influence de la fonctionalisation sur le caractere metallique et semi-conducteur du 

nanotube. 
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CHAPTER 1 

INTRODUCTION 

1.1 Fuel cells 

1.1.1 Short history 

In 1839, William Grove realized how to generate electricity from a chemical reaction 

involving only hydrogen and oxygen by reversing water electrolysis (Grove, 1839). 

Two test tubes containing Platinum electrodes were half immersed in an aqueous 

solution of H2SO4. The first tube was then filled with gaseous H2, and the second 

one with O2. As the reaction began, a connected galvanometer was able to detect 

the electron flow; the first fuel cell was born. This first experimental setup received 

the name "Gaseous Voltaic Battery" and was not, until 1922, called a fuel cell. 

(Rideal and Evans, 1922) 

In 1962, fuel cells (FC) provided power and drinkable water to the Apollo space 

mission service module. Then in 1965, they were used as the main source of power 

for a two persons electric car used during Gemini space mission to explore the 

surface of the moon. 

In 1966, General Motors (GM) was presenting the first electrical vehicle ever built 

(GeneralMotors, 2006), it was known as "The Electrovan". Although they never 

made the line of production, this has demonstrated the feasibility of building a 

propulsion system using only electrical power that is provided by an alkaline fuel 

cell. 
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Modern fuel cells such as those industrially developed by Ballard Power Systems, 

are now used in buses (Chen, 2003) in Berlin (Germany), as well as in some "exhibi­

tion" cars. This can be considered as a step towards alternative propulsion energy 

sources. 

1.1.2 Classification of fuel cells 

Fuel cells are electrochemical reactors that are able to convert chemical energy into 

electrical energy. They behave as batteries able to generate power from a chemical 

reaction, or as engines as long as the fuel is available. 

Certain kinds of fuel cells, such of those using H2 as fuel, will only produce water 

and energy. This may represent a suitable answer for "green" energy generation for 

the years to come. They could also be used to produce drinkable water in remote 

areas, where water pipelines would be very expensive to build and maintain, due 

to geographic difficulties. Fuel cells are convenient solutions for heat and power 

generation in regions where standard power grids are not easily available i.e. for 

boats, motor homes, remote scientific stations, etc. 

Among all kinds of fuel cells, there are five major groups (Hoogers, 2003a) which 

are based on the different type of electrolyte used. Some of their properties are 

summarized in Table 1.1. By inspecting Table 1.1, we notice that in combination 

with their generated power, a further classification can be done; low (<150 °C), 

medium (150 - 500 °C) and high (>500 °C) operation temperature. Among low and 

medium temperature groups, only H2 is used as fuel, while in the high temperature 

group H2, CH3OH, and CH4 can be used as fuels. The operation temperature plays 

an important role since it will determine the applications of the FC. 
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Table 1.1 Properties of the different kinds of fuel cells. 

Type 
Alkaline 
PEMFC 

H3PO4 FC 
Carbonate FC 
Solid Oxide FC 

Electrolyte 
KOH 

Solid Polymer 
H3PO4 

K2/Li2(CO)3 

Zr02, Y 2 0 3 

Charge 
Carrier 
OH-
H+ 
H+ 

(co)l-
o2-

Operation 
Temperature 

(60-120) °C 
(50-100) °C 

-220 °C 
~650 °C 
~1000 °C 

Fuel 

H2 

H2 

H2 

H2, CH3OH, CH4 
H2, CH3OH, CH4 

1.1.3 Applications of fuel cells 

Different areas of technology may profit from the use of FC, that differ from the 

amount of energy needed and produced. Table 1.2 shows some general applications1 

of fuel cells. 

Table 1.2 FC generated power and application range. 

Type 

Alkaline 
PEMFC 

H3PO4 FC 
Carbonate FC 
Solid Oxide FC 

Efficiency 

(35-55)% 
(35-45)% 

40% 
>50% 
>50% 

Power 

< 5kW 
(5-250) kW 

200 kW 
200 kW - 200 MW 

2 kW - 2 MW 

Application 

Military, Space 
Automotive, CHPG 

CHPG 
CHPG, Stand Alone 
CHPG, Stand Alone 

We can notice that higher operation temperatures, imply higher amounts of gener­

ated power. We can also see that due to engineering issues in FC, an average of 50% 

of the chemical energy is successfully transformed into electricity. This is specially 

true for the H2 fueled ones. The main problem of H2 FC lays on the fact that H2 

generally needs to be generated in a separate process. Moreover, a constant source 

of hydrogen needs to be attached nearby the FC. Hence, fueling becomes an impor-

Where CHPG stands for Combined Heat and Power Generation 
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tant drawback. In vehicles, hydrogen is stored in tanks in a gaseous state. The H2 

liquefaction requires cryogenic tanks (Hoogers, 2003b), and there is an extra energy 

consumption to perform the liquefaction. Despite the fueling problem, the main 

advantage is that low temperature FC are able to produce electricity immediately 

after its starts. They appear quite suitable for transportation applications where 

multiple "starts" and "stops" may occur. 

On the other hand, the main problem of the high temperature FC group is not 

related to the fuel, but rather to the operation mode since they can not be turned off 

easily. Therefore, they appear more suitable for generation of amounts of electricity 

large enough to provide small facilities or populations located in remote areas. 

Their high working temperature will necessitate a certain amount of time before 

being reached. 

1.1.4 Fuel cell components and chemical reactions 

Fuel cells are made of four main parts: the anode, the cathode, the catalyst and 

the exchange proton membrane. See figure l . l 2 

The anode It is the material on which the fuel (H2) gets oxidized into an electron 

(e~) and a proton (H+). An example of anodic reaction (if H2 is used as fuel) is 

shown below: 
H2CaUOyst2H++2e_ ^ 

The H2 molecule is oxidized into protons (H+) and generates electrons. For this 

reaction to take place, a catalyst is usually used. 

2taken from: http://www.cramscience.ca/es.php?a=52 

http://www.cramscience.ca/es.php?a=52
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e~* 
Hydrogen ^P • e" 

A i r 

Air 

+ 
Anode / j \ cathode W a t e r 

Proton Exchange Membrane 

H „ - * 2 H + + 2« 0.,+4H+ + 4e"—•- 2H„G 

Figure 1.1 Schematic representation of a fuel cell. 

The cathode It is the material where the oxygen is reduced. After protons arrive at 

the cathode, a chemical reaction known as the cathodic reaction occurs. A typical 

cathodic reaction is: 

02 + 4H+ + 4e~ m^st 2H20 (1.2) 

In general, oxygen in this reaction comes from air. A catalyst is also used to 

facilitate this reaction. 

Among the materials available for both anode and cathode (electrodes) we have: 

• Raney nickel, (mixtures of fine grains of nickel or silver and aluminum) 

• Palladium. 

• Carbon. 

The Catalyst It is located in both anode and cathode. The catalyst role is to 

provide an alternative path for the chemical reaction. In general, they decrease the 

reaction activation energy, therefore the chemical reactions can occur faster and 

more efficiently. 
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The Proton Exchange Membrane (PEM) It blocks the electron (e~) coming from 

the anode, and allows the proton (H+) to flow in the direction of the cathode. PEM 

are made from perfluorinated polymers trademarks of Dupont and Dow Chemical. 

In Figure 1.2 both structures are shown. 

[(CF2CF2)n(CF2CF)]x [(CF2CF2)n(CF2CF)]x 

OCF2CFCF3 OCF2CF2S03H 

OCFzCF2S03H 

(i) (ii) 

Figure 1.2 Structure of perfluorinated polymers (i) Nation™ (ii) Dow Chemical. 

Modern polymers like BAM3G (a trademark of Ballard System) are new materials 

that constitute alternative types of membrane. They cost less and have greater 

performance. The structure of this polymer is shown in Figure 1.3. 

T ~ ^ C F ? — f ~~T~ 

Figure 1.3 Structure of the BAM3G polymer. 

We may resume the FC device as follows. The flow of H2 gas is directed to the 

anode, once it is in contact with the catalyst, the H2 molecule splits, electrons are 

driven out of the reactor and are used to perform an electrical work. Meanwhile, 

the H+ flows through the proton exchange membrane until it reaches the cathode. 

Returning electrons flow into the cathode to meet with the flow of oxygen coming 

into it. At the cathode, the final chemical reaction takes place to produce H2O, 

which is taken out from the reactor. 
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The overall chemical reaction that occurs in a fuel cell: 

2H2(g) + 02(g) c ° - ^ 2H20(l) + Energy (1.3) 

1.2 Problems with actual fuel cells 

As mentioned above, the fueling and the overall efficiency of fuel cells are among the 

more serious problems that need to be addressed. The efficiency could be improved 

by increasing charge (electron) transport from the catalyst to the anode backplane. 

The catalyst is built of small Pt particles deposited over carbon black (Peuckert 

et al., 1986; Uchida et al., 1996) Once the H2 molecule is dissociated into atomic 

species, electrons produced follow a random trajectory through the porous carbon 

black support to reach the anode back plane (Figure 1.4). Because of this "random 

walk" charges need a certain amount of time to reach the cathode, due to multiple 

scattering events, trapped charges, etc. Therefore, overall process becomes very 

inefficient. In addition, once the FC starts working and the temperature raises, the 

platinum particles begin to coalesce due to the weak bonding between Pt and the 

carbon black support. The formation of larger Pt particles decreases the amount 

of surface Pt atoms available to catalyze the reaction, and decreases the efficiency 

of the fuel cell. (Figure 1.5) 

1.3 Proposed solution and methodology 

A plausible solution to improve the efficiency in electron transport into the porous 

materials through the anode is to use carbon nanotubes (CNTs) instead of carbon 

black. Since CNTs have exceptionally high electrical conductivity, the collected 

electrons may be transported more directly to the anode without going through 
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Anode 
Carbon black Membrane 

U' 

4 

H2 flow • Proton 

_/*- © pt (Catalyst) 
e Trajectory 

Figure 1.4 Charge random walk in the porous media. 

these random processes. This could be even amplified if the carbon nanotubes 

are directly connected to the anode backplane by chemical bonds. Secondly, the 

presence of functional group on the support may stabilize the Pt particles and 

prevent their coalescence. On Figure 1.6, we show a schematic representation of 

the proposed solution. 

This potential solution has been already investigated with Multi-wall carbon nan­

otubes (MWCNTs) by an experimental group at INRS. The first work shows that 

MWCNTs can be used as an electrode backplane, by growing MWCNTs on fibers 

from carbon black as support (Sun et al., 2004). A second publication (also from 

this group) gives an experimental procedure to deposit Pt nanoparticles over these 

grown MWCNT (Villers et al., 2006). Their electrodes are already more efficient 

for the oxidation reaction than the available commercial ones. We believe that FC 

overall efficiency can be further inverted, if the Pt nanoparticles are deposited on 

CNT via a functionalization group which could reduce the coalescence of Pt. In ad­

dition we could profit from the higher electrical conductivity of carbon nanotubes, 
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Anode 
Carbon black u Membrane 

w 

Tl 

w 

T2 

w 

T3 

H2 flow T3 > T2 > Tl 

.*• • Proton 

e- Trajectory • P t (catalyst) 

Figure 1.5 Representation of Pt coalescence. 

therefore reducing the multiple scattering of the carrier along the diffusion path to 

the electrode. 

In order to numerically study the functionalization of CNTs with quantum chemical 

tools, we have to make an appropriate choice for the models. In fact, since we are 

mostly interested by the bonding properties (bond length, bonding energy), we 

can use a small molecule that constitutes a fragment of a CNT model. This would 

allow us to investigate, several different functionalization scheme within a shorter 

computational time than if larger model was used. 

We have then chosen to study the functionalization of the pyrene molecule, which is 

a highly conjugated and flat molecule where n electrons are delocalized in a similar 

manner that in graphene and carbon nanotubes. In order to minimize side effects 

where carbon atoms do not have the standard three sp2 carbon neighbors, we will 
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Figure 1.6 Pt functionalized CNT as catalyst support. 

concentrate our study on the central carbon atoms. 

Using first principles calculations, different functionalization groups on pyrene will 

be investigated. Then, the stability of metal atoms and clusters on this function­

alized model will be explored. By comparing the different bonding energy and 

bond orders obtained from the calculations, we will be able to establish a tendency 

among the selected groups and metallic atoms. 
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1.4 Thesis structure 

The thesis is built in the following manner. In Chapter II, we describe the more 

recent theoretical and experimental works in the field of carbon nanotubes func-

tionalization. Also, we extend the discussion to the functionalization of carbon 

nanocomposites. 

In Chapter III, the reader will find the computational description of the models. 

Density Functional Theory (DFT) will be briefly presented. A graphical represen­

tations of the models used will be presented and discussed in detail. Descriptions 

and justifications about the basis sets and the pseudopotentials used will be also 

given. 

Chapters IV and V are devoted to the theoretical results obtained on pyrene func­

tionalization and on the stabilization of different metal (Pt, Ni and Pd) particles. 

A discussion of the results is carried out in Chapter VI, and is followed by some 

conclusions. 



12 

CHAPTER 2 

LITERATURE SURVEY 

Nanostructures are the target of intensive scientific research. They are present in 

many fields of research, we hear terms like "Nanoengineering", and it seems to be 

the engineering last frontier: The ability to build something by using one atom at 

a time. Fuel cells research, could not escape from this scientific revolution, and 

because of their excellent electronic conductivity, carbon nanotubes can now be 

explored as one of the answers in the quest of building better catalysts in future 

fuel cells. We must remember that the active area in a Proton Exchange Membrane 

Fuel Cell (PEMFC) is where Platinum particles are located, and where the H2 gets 

splitted to release electrons. 

2.1 Single wall carbon nanotube 

A Single-Wall Carbon Nanotube (SWCNT) is often pictured as a graphene sheet 

rolled on itself to form a cylinder, with a diameter around ~ 1-2 nm, and an aspect 

ratio (length/diameter) larger than 106. Because of this, carbon nanotubes (CNT) 

are considered as a perfect one dimensional system (Saito, 1998). By defining 

a chiral angle #0 o v e r the plane of an unrolled CNT (see Figure 2.1)1 a further 

classification of them can be given as: 

• Achiral: the specular image and the CNT itself are structurally identical. 

Among them, two possible types: 

1 Image taken from: http://spie.org/Images/Graphics/Newsroom/Imported/0806 

http://spie.org/Images/Graphics/Newsroom/Imported/0806
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1. Armchair (0O = 30°) 

2. Zigzag (d0 = 0°) 

• Chiral: its mirror image cannot be superposed (0° < | 9Q \ < 30°). 

Figure 2.1 Classification of carbon nanotubes 

The chiral vector (R) is defined as: 

R = aT + bC = (o,6), (2.1) 

where a and b are integers (0 < | a | < b), and satisfy 

2a + b = 3n (2.2) 

If n is an integer, the CNT is metallic, otherwise it is semiconductor. Armchair 

(a=b) nanotubes are always metallic since 7r* conduction and IT valence bands over­

lap at the Fermi level (White et al., 1993). Zigzag tubes (a, 0) are semiconductors, 

but if n is a multiple of 3 then the zigzag will have a semi-metallic character. 
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Carbon nanotubes have exceptional electronic transport properties (Dresselhaus 

et al., 1992; Hamada et al., 1992; Mintmire et al., 1992) as well as outstanding 

mechanical properties (Salvetat et al., 1999). It has been proposed that CNT 

could also be implemented as an element in Proton Exchange Membranes (Wang 

et al., 2004) within fuel cells, due to their excellent electron transport capabilities. 

One of the most interesting properties of carbon nanotubes is the high conductivity 

of metallic tubes. Ballistic transport can occur in carbon nanotubes (Li et al., 2005) 

if its length is comparable to the electronic mean free path. The conductance (G) 

is quantified by integer values of Go-

2e2 

Go = \ (2.3) 

where e is the electron charge and h is the Planck constant. 

Metallic carbon nanotubes have a conductance of 2G0 at Fermi energy (E/) where 

two conduction bands overlap (McEuen et al., 1999). 

2.2 Functionalization of carbon nanostructures 

A functionalization is a chemical reaction performed to attach or to anchor an atom 

(or group of atoms) to a molecule or a more complex system. This newly bonded 

group is responsible for changes in some specific molecular properties, such as the 

melting point, the dipole moment, etc. A simple example is the replacement of an 

hydrogen atom by a hydroxyl group in methane to form methanol. The melting 

point goes from -182.5 °C for methane to -97 °C for methanol, while the dipole 

moment goes respectively from 0 to 1.69 D. 
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2.2.1 Functionalization of SWCNT 

Functionalization of SWCNT is presently classified into five main groups (Hirsch, 

2002) 

• Defect-group 

• Covalent sidewall 

• Non-covalent exohedral with surfactants 

• Non-covalent exohedral with polymers 

• Endohedral 

2.2.1.1 Defect group functionalization 

This kind of functionalization can occur during chemical purification of nanotubes. 

Carbon nanotubes can be grown using metallic particles as catalyst like Fe, Ni or 

Co. (Rao et al., 2001) When the metallic particles are removed using oxydative 

methods, CNTs are attacked by acids, creating a series of small and very reactive 

tubes (Hamon et al., 2001). These small tubes have defects on their sidewalls where 

reactions will easily happened. In figure 2.2-A we see a representation of this kind 

of functionalization2. 

2.2.1.2 Covalent sidewall functionalization 

SWCNT sidewalls are expected to be inert. The main reason for this is due to 

the high coordination of sp2 carbon that is very similar to graphene sheet. When 

2Image 2.2 was taken from (Hirsch, 2002). 
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Figure 2.2 Schematic representation of carbon nanotubes functionalization. A) 
defect-group functionalization B) covalent sidewall functionalization, C) noncova-
lent exohedral functionalization with surfactants, D) noncovalent exohedral func­
tionalization with polymers, and E) endohedral or "storage" functionalization. 

the nanotubes are oxidized to remove the catalyst particles, some defects that are 

created on the walls can be saturated with acidic groups (COOH). Such func­

tionalization opens the route to some other reactions like fluorination (Mickelson 

et al., 1998) (see the figure 2.2-B for a representation) to be performed. Other 

sidewall functionalization can be achieved using highly reactive nucleophilic car-

benes (Holzinger et al., 2001). In a different study (Bahr et al., 2001), an electrode 

was built with SWCNT as a solid film called bucky paper. A reduction of aryl-

diazonium salt (see Figure 2.3) on this film was carried out, where the removal of 

the N2 leaves the aryl groups attached to the SWCNT sidewall. 
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Figure 2.3 Schematic representation of aryl-diazonium cation. 

2.2.1.3 Non-covalent exohedral functionalization 

A non-covalent functionalization occurs when molecules form bonds without shar­

ing a pair of electrons. The bond is formed trough other variety of interactions 

between them like TT-TT interactions. Experiments (Chen et al., 2001) have con­

firmed this kind of interaction between carbon nanotubes and the compound N-

succinimidyl-1-pyrenebutanoate represented in figure 2.4, during a non destructive 

purification of the carbon nanotubes. In a different work (Krstic et al., 1998), 

SWCNT were found in the aqueous phase of sodium dodecylsulfate (SDS), a 

surface-active molecule (a substance capable of reducing the surface tension of a 

liquid in which it is dissolved) that can established strong n-n interactions. Figure 

2.2-C shows a schematic representation of this kind of functionalization. 

Figure 2.4 Schematic representation of N-succinimidyl-1-pyrenebutanoate 

Polymers like poly m-phenylene-co-2,5-dioctoxy-p-phenylenevinylene (PmPV), (see 

figure 2.5) have also been used to functionalize SWCNT (Star et al., 2001). Atomic-
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force Microscopy (AFM) experiments have shown that such polymer wraps the 

nanotube uniformly (see figure 2.2-D for a representation), forming supramolecu-

lar complexes. It was concluded from this work that the wrapping by the poly­

mer changes dramatically the conductivity of the formed supramolecular complex, 

which becomes eight times higher after functionalization. 

Figure 2.5 Schematic representation of PmPV polymer. 

2.2.1.4 Endohedral functionalization 

Endohedral functionalization is also known as "storage" functionalization. It is the 

functionalization of the interior of a carbon nanotube. Taken the CNT as a long 

cylinder, its inner cavity offers an interesting storage media for chemical species 

such as ionic crystals (Wilson and Madden, 2001), C6o (Smith et al., 1999) also 

called "bucky peapods" and metallofullerenes Sm@C82 (Okazaki et al., 2001). 

2.3 Pyrene 

Pyrene is a polycyclic aromatic hydrocarbon (see Figure 2.6). It has four fused 

benzene rings that forms a planar aromatic system. Carbon atoms in pyrene are 

hybridized sp2, thus showing an electronic derealization on the p orbitals. It has a 

chemical formula of C^rlio and a molecular weight of 202.26 g/mol. Pure pyrene 

is a colorless crystalline solid at ambient temperature, and it is often commercially 

used to produce dyes, pesticides, and some plastics. Like most of polyaromatic 
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compounds, pyrene can be derived from coal tar. The structure of pyrene was first 

confirmed in 1945 (Robertson and White, 1945) using X-ray diffraction. By 1948, 

its electronic structure was studied theoretically (Moffitt and Coulson, 1948) in 

detail, using both molecular orbital as well as valence theory. 

Figure 2.6 Schematic representation of a pyrene molecule. 

2.3.1 Pyrene functionalization 

The pyrene molecule appears more often as a functionalization group due to its 

propensity for IT — TT stacking with carbon nanotubes (Chen et al., 2001). To 

our knowledge, there is no study that investigates both energetic and structural 

properties on the functionalization of pyrene. Some recent studies reveals specific 

features related to its electronic density (Hernandez et a l , 2004), also its structural 

properties using DFT (Park and Cheong, 2006). In another study that combines 

both theoretical and experimental approaches using configuration interaction (CI) 

and Raman spectroscopy respectively, authors have found an agreement, between 

theoretical and experimental frequencies and intensities of Raman measurements 

(Neugebauer et al., 2005). 
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2.3.2 Summary 

We have seen that carbon nanotubes are systems under a heavy scientific investi­

gation. Their functionalization have different trends, depending upon the answer 

they may offer; like endohedral functionalization used for "nanostorage" or sidewall 

functionalization to anchor chemical groups that change their properties. Since 

production of carbon nanotubes it is in its early stage of development, theoretical 

studies represents a feasible answer to study their properties in a less expensive 

way and much faster that rather conduct experiments directly on them. 

To functionalize carbon nanotubes using the current computational methods, also 

represents a huge challenge. Direct calculations on them becomes impractical due 

to their size. That is why, we have chosen a small molecule to represent them: 

pyrene, which is a molecule that resembles carbon nanotubes. All of its carbon 

atoms have sp'2 hybridization, and two of them (central carbons) are chemically 

equivalent to those found in carbon nanotubes. Using pyrene as a model allow us 

to explore more chemical functionalizations in a reasonable time frame. 

Our literature review shows that theoretical pyrene functionalization represents an 

innovative approach, since the subject has not been reported so far. This novel 

idea could offer fast and reliable answers about structural configurations, binding 

energies, bond orders among other molecular properties of functionalized carbon 

nanocomposites, since emerging trends could be probably extrapolated to the men­

tioned carbon nanocomposites of any size, including multiwalled carbon nanotubes. 
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CHAPTER 3 

COMPUTATIONAL METHODOLOGY 

In this chapter, we briefly introduce the Density Functional Theory (DFT). Then we 

describe the calculations that were performed during this research project. Finally, 

we give a short description of some capabilities of the computational chemistry 

software used. 

3.1 Density Functional Theory (DFT) 

The Schrodinger equation (3.1) can be used to describe the electronic density of 

an atom, a molecule or a solid. If \& is a wavefunction describing completely the 

system under study, then the computed eigenvalues of the Hamiltonian operator H 

represent all possible values of its total energy (Etot) (Szabo and Ostlund, 1996a). 

H^ = Etot^ (3.1) 

For a molecule having "N" electrons and "M" nuclei, the Hamiltonian operator is 

written (in atomic units): 

J V - i M -i N M 7 N N 1 M M y y 

•£ A — , •LlVlA ;_i /i_i VIA „_i „-̂  i Ti.; . _ , D ^ . H, "-E^-Ijs-^-ESr^Er + Si :^ (X2) 
i=l z A=l^IUA i=lA=l'iA i=lj>l'ij A=1B>A n A B 

where MA is ratio of the mass of nucleus A to the mass of an electron, and ZA is 

the atomic number of atom A, r^ is the distance between the electrons i and j , and 

RAB is the distance between nucleus A and B. In equation (3.2) the first two terms 
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are the kinetic energy of electrons and nuclei respectively, the third term accounts 

for the coulombic attraction between electrons and nuclei, the repulsion between 

electrons and nuclei are the fourth and fifth terms in the equation. 

For a system that is composed of two particles, equation 3.1, in conjunction with 

equation 3.2 can be solved exactly using a central force approach. For systems 

involving more than two particles the equation becomes analytically unsolvable 

due to mathematical complexity. We then need to use approximations that help to 

overcome this mathematical "barrier". In that sense, the cornerstone of quantum 

chemistry and solid state physics is perhaps the Born-Oppenheimer approximation. 

It states that, since nuclei are much more heavier than electrons, they can be 

considered to be fixed as compared to electrons (Born and Oppenheimer, 1927). 

If we use this approximation, the complexity of the Hamiltonian operator (H) is 

reduced dramatically since now it can be split into two different and independent 

Hamiltonians; the electronic Hamiltonian: 

N -1 N M y N N -I 

4, = -E v,'-EE^EEf (3-3) 

and the nuclear Hamiltonian: 

M -i M M 7 7 

HnuC = - E ^ A + E E ^ (3-4) X=x 2MA ' A ' j^x£A RAB 

where the index "i" and "j" are related to electrons, index "A" is used for the nuclei. 

The total energy Etot for fixed nucleus is defined by: 

M M 7 7 

Bkot = Eelec + E E % ^ (3-5) 
A=1B>A RAB 
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When these mentioned Hamiltonian operators (equations (3.3) and (3.4)), are ap­

plied to the correspondent "electronic" or "nuclei" wavefunctions, they will give 

eigenvalues as results. These are the electronic energy (Ee/ect) and the nuclei en­

ergy (Enuc), respectively. See equations (3.6) and (3.7). 

HQelec = Eeiec^eiec (3.6) 

tL^nuc = Enuc'$nuc (."•') 

There are different approaches to solve equations (3.6) and (3.7). A common ap­

proach is to use the Hartree-Fock (HF) approximation (Szabo and Ostlund, 1996b) 

that is based on the variational method. Starting with a trial wavefunction (x), let 

us write the energy functional (E[x]) as, 

E[X] = (X\H\X) (3.8) 

Since E[x] is a functional of x, introducing the following variation of x, 

X—>X + $X (3-9) 

will impact over the energy in such a way that it will become, 

E[x + SX} = E[x}+SE + ... (3.10) 

where SE is the first variation in E. The goal of this variational procedure is to 
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find Sx that gives SE — 0. This variation is carried out in a procedure called 

Self-Consistent-Field (SCF) calculation. Figure 3.1 shows an schematic flow chart 

of the procedure. 

V 
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Properties 
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% 
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Figure 3.1 Self-Consistent-Field (SCF) schematic flow chart. 

The nuclear coordinates used as input an be obtained using a molecular modeling 

software, that uses fast molecular dynamics algorithm and semi-empirical approach 

to create a starting point for the molecular geometry. The Fock matrix is an 

approximation of the real Hamiltonian operator of the molecular system under 

study. This matrix uses certain set of basis vectors called the "basis". SCF method 

method is a quite general approach to obtain eigenvectors that minimize the total 

energy of the system for a given molecular geometry (Levine, 1999a). 

The HF methodology is based on the assumption that a single Slater determinant 

can represent the whole N-body wavefunction of the system under study. Then, 

the variational calculus will produce a set of N differential equations to be solved. 
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Despite the good accuracy that HF methodology offers, an important drawback 

is present; since the Fock matrix is a one electron operator, the electron correla­

tion (dynamical electron-electron interactions) energy is not included, while the 

electron-electron repulsion is considered only as average. Therefore, the calculated 

total energy of the system is the so-called "Hartree-Fock limit" which is always 

greater (like in any variational method) than the real energy of the system. 

In trying to solve the electronic correlation issue, P. Hohenberg and W. Kohn pre­

sented to the scientific community their seminal paper on "Inhomogeneous electron 

gas" theory which contains a demonstration that an electron gas interacting with 

any external potential V(~r*)ext will have an universal density functional F[n("7^)] 

that is independent of V(l^)ext, and for which the its minimum corresponds to the 

ground state energy of V(~ff)ext (Hohenberg and Kohn, 1964). They also devel­

oped an exact formal variational for the ground state energy. Afterwards, in 1965, 

W. Kohn and J. Sham presented a set of one electron self-consistent equations 

(Kohn and Sham, 1965) that could be used to compute the ground state energy of 

inhomogeneous system of electrons that interact with an external potential. 

Kohn and Sham rewrite the Hamiltonian operator (equation 3.11) to give the fol­

lowing monoelectronic equation: 

(-^v2 + VeffC?)) M?) = KM?) (3-H) 

where v = 1, 2, 3 . . .N represents the N particles, and replacing the potential for an 

effective potential (Veff(~
1rf)) that is written as: 

T> f - h f~+\ • f n ^ -J ' • SKc[p{?)] , „ 1 0 x 
Veffir )=v(r ) + / 1 -dr + — (3.12) 

Jjy ' J \r — r'\ opi/i) 
where the first term is called the external potential, the second term describes 



26 

Coulomb repulsion between electrons, and the third term is exchange-correlation 

potential that includes all the particles interactions. p(~r*) is defined as: 

P(^) = E C ( ^ h M ^ ) (3.13) 
n = l 

3.2 Hybrid functional 

Hybrids functional are "mixtures" between exact HF exchange and the exchange 

and correlation of DFT. The first effort belongs to Lee C , Yang W., and Parr R. 

who developed a energy formula that is a functional of the electron density (Lee 

et al., 1988), followed by several contributions from Becke (Becke, 1988; Becke, 

1992a; Becke, 1992b; Becke, 1993; Becke, 1996; Becke, 1997). Various approaches 

exist to calculate the exchange and correlation energy terms in DFT methods. 

These approaches differ in using either only the electron density, which are called 

Local Density Approximation (LDA) or the electron density as well as its gradients 

called gradient corrected methods or Generalized Gradient Approximation (GGA). 

3.2.1 B3LYP functional 

The B3LYP is an hybrid approach to evaluate the exchange and the correlation 

energies, that involves an empirical mixture of energy evaluated from DFT: Local 

Density Approximation (LDA) and Generalized Gradient Approximation (GGA) 

with the exact exchange energy obtained from Hartree-Fock. The name B3LYP 

stands for Becke 3 (the number of empirical parameters used) Lee Yan Parr energy 

functional which is defined as (Becke, 1997), 



27 

Eg3LYP = E^A+a0(Er-E^A)+ax(E^A+E^A)+ac(E^-E^) (3.14) 

where the energies in the equations are: x=exchange, c=correlation, HF= Hartree-

Fock, LDA=Local Density Approximation, GGA=Generalized Gradient Approxi­

mation. a0, &x and ac are the three empirical parameters that have been obtained 

through fitting the parameters to a set of thermochemical data. 

3.3 Basis sets 

Basis sets are mathematical functions that can be used to represent atomic orbitals. 

There are different types of basis sets available but in this work, we only use the 

Gaussian type. One Gaussian function could be used to describe atomic orbitals, 

therefore by making linear combinations of some of them, one can represent a 

molecular orbital. Thus, by using linear combination of Gaussian functions will 

give another Gaussian function as a result, that is a representation of the molecular 

orbital. Basis sets are often tested on a diatomic molecules for which an appropriate 

electronic state will reproduce the diatomic molecular electronic structure, bond 

length, bonding energy of experimental data. 

3.3.1 The 6-311G** basis set 

The Gaussian basis set used (for non metallic atoms) in this work was the 6-311G** 

(Krishnan et al., 1980) which is often referred as "full basis set". It is constructed 

using 6 Gaussian functions to describe each orbital in the core of the atom. Valence 

orbitals are constructed using 3 basis functions each. The first is a linear combi-
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nation of 3 primitive Gaussian, the second and third use one Gaussian to describe 

the valence orbitals. The double star (**) refers to two different polarization func­

tions (Gaussian functions), the first one to add p orbital functions to the hydrogen 

atoms, and the second to add d orbital functions to carbon atoms and / functions 

to the metallic atoms. Polarization functions are used to add an extra flexibility to 

molecular orbitals. For example, atoms bonded to hydrogen should have a certain 

degree of deformation of its spherical symmetry naturally produced by the bond 

itself. 

3.4 The pseudopotential SDD 

Pseudopotentials are mathematical functions that can represent the potential pro­

duced by the core electrons and the nucleus of certain atom in a molecule. The 

external electrons also known as the "valence electrons" are "immersed" in this po­

tential created by the nucleus and the internal or core electrons. These valence 

electrons are explicitly treated during the computation, thus reducing the compu­

tational effort considerably. Pseudopotentials are specially useful when the system 

under study contains heavy atoms with a large number of electrons. For the metallic 

atoms (Pd, Pt and Ni) we have used the pseudopotential SDD (Stuttgart-Dresden) 

that have been developed since 1987 by different groups. (Fuentealba et al., 1983; 

Dolg et a l , 1987; Igel et al., 1988; Andrae et al., 1990; Bergner et a l , 1993; Figgen 

et al., 2005; Lim et al., 2005). We choose this pseudopotential because it contains 

the definition of a large number of atoms (from H trough Rn) including the selected 

metallic atoms. More importantly, calculations performed on a metallic diatomic 

molecule, give results that describes molecular properties with a good accuracy. 
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3.5 Software 

In this research project, we have used the software Gaussian 03 (Frisch et al., 2004) 

that is the last version of this commercial code that has been originally developed 

by J. Pople. Results produced with Gaussian software are widely accepted by the 

scientific community due to its multiple capabilities implemented, and its large 

use by scientist all around the world. Gaussian contains a "molecular constructor" 

which was used to create all the input files used in our computations. 

Once the wavefunction is known, many molecular properties can be evaluated us­

ing first principles procedures (Foresman and Frisch, 1996a). For example, the 

following properties of atoms and/or molecules can be obtained: 

• Total molecular energy 

• Geometry optimization 

• Vibrational analysis 

— Raman, IR, NMR spectra 

• Population analysis: Mulliken charge distribution 

• Bond order index. 

In our case, we have performed geometry optimizations, charge transfer and bond 

order computations. 
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3.5.1 Geometry optimization 

The purpose of geometry optimizations is to locate the minimal energy based on 

the molecular geometry. This is translated into "try to find a stationary point" or 

a point on the potential energy surface where the forces are zero. The potential 

energy surface is just a mathematical abstraction which correlates one particular 

molecular structure and its corresponding energy. The optimization steps can be 

summarized as follows: 

• Initial guess geometry. 

• Solve SCF equations (3.6) and (3.7). 

• Estimates the total energy gradient from the given geometry. 

• Compute the total energy equation (3.5). 

• Displace miclear coordinates into the direction that minimizes the total en­

ergy (negative gradient). 

This iterative process continues until the variation of the total energy from a step 

to another is lower than a convergence criterion. The algorithm used to achieve 

the optimized geometry is known as "Berny optimization algorithm" (Peng et al., 

1996) with a convergence criterion of 1 x 10~6. For the variation of energy, charge 

density and gradient from an iteration to the next. 

3.5.2 Charge transfer 

The charge transfer is the difference between the charge of a pyrene molecule before 

and after functionalization. The net charge are obtained from standard Mulliken 
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analysis. (Foresman and Frisch, 1996b) In this method, negative charges are as­

signed to the most electronegative atoms, and then is compensated by positives 

charges depending upon the electronegativity of each other atoms present in the 

molecule. 

3.5.3 Bond order 

According to Wiberg (Wiberg, 1968), a bond order index is a "measure" of the 

number of bonds between atoms in a molecular system. The bond order index (B) 

between atom "A" and atom "B" (BAB) can be written: 

BAB=Y,T,
 pl (3-15) 

XeAaeB 

where P%a is the density matrix of the basis function A and a centred on atom A 

and B, respectively. This matrix represents the total electron density in the region 

where the atomic orbitals overlap with each other (Atkins and Friedman, 1997). 

We use the Wiberg bond order index to verify the changes in bonding in the pyrene 

molecule. It is important to verify if the aromaticity is broken after the functional-

ization, since CNTs are highly aromatic systems, our model must represent as close 

as possible all the aspects. Therefore, if the functionalization of pyrene disrupt its 

aromatic character our model is not longer valid as a solid CNTs representation. 

Also, bond order analysis will allow us to verify how strong will be the bond be­

tween the metallic particle and the functionalization group (Levine, 1999b), once 

the stabilization computations are performed. 
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3.6 From pyrene to multi-walled carbon nanotubes 

Since multi-walled carbon nanotubes (MWCNT) are molecules that may easily con­

tain multi-millions of atoms, (see figure 3.2) performing DFT calculations on such 

systems are impractical. Hence, we need to use a simpler model that mimics the 

nanotube properties and that would allow us to investigate many functionalization 

schemes within a reasonable time. 

Figure 3.2 Schematic representation of a MWCNT. 

If wre consider a single concentric tube from the figure 3.2, then we have single-

walled carbon nanotube (SWCNT). This system is still too large to be treated 

with DFT calculations. A more drastic solution is to consider a pyrene molecule 

as a representative unit of a nanotube (See Figure 3.3). 

By this choice, we are making a few important assumptions. First we consider 

that internal walls of a SWCNT do not offer a suitable place for reactions to take 

place. Second, we do not consider long range interactions in the reactivity and we 

limit our chemical investigation to local properties. However, a model of the size of 

pyrene will allow us to investigate several functionalization scheme in a reasonable 

time. Since the central carbon atoms of the molecule have a similar coordination 

(3) to carbon in carbon nanotubes, the reactivity of those carbon atoms should be 
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Figure 3.3 Schematic representation of a SWCNT as a succession of pyrene molecule 
(dark). 

close to carbon atoms in carbon nanotubes. 
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CHAPTER 4 

RESULTS ON THE FUNCTIONALIZATION OF PYRENE 

In this chapter, we present our theoretical results on pyrene functionalization. The 

functional groups considered during the course of this research will be also pre­

sented. First, it is worth to mention and to describe, at least partially, some basic 

concepts often used in chemistry (Wade, 1999; Pine, 1980). This should help to 

understand different aspects of the results, like the direction of the charge flow due 

to formal charges, and the deformation of pyrene due to the steric effects induced 

by the presence of the functional groups. 

4.1 Structural effects 

Certain kinds of structural effects present during the evolution of a chemical re­

action could have a significant impact on the final molecular structure. They are 

classified in three major groups: 

• Inductive effect 

• Resonance effect 

• Steric effect 
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4.1.1 Inductive effect 

This effect refers to the polarization of bonds in a molecule induced by the pres­

ence of an adjacent group or atom with a distinct electronegativity. Because of 

this difference, electrons will be attracted to atoms that have higher electronega­

tivity, thus producing an electric dipole. This enables the transmission of charge 

through a chain of atoms by electrostatic induction, placing pseudo charges over 

the atoms that conforms the molecule. We see in Figure 4.1 the formal charges on 

the fluoromethane molecule as an illustrative example. 

F-

> H C+ 

/ " H 
H 

Figure 4.1 Fluoromethane as an example of formal charges example. 

4.1.2 Resonance effect 

The interaction among electrons in conjugated bonds is probably one of the most 

important structural effect. Figure 4.2 1 shows the resonance of TT electrons in 

benzene as an illustrative example. In order to "build" a benzene molecule, we may 

use cyclohexane as starting point. We then remove two hydrogen atoms and create 

a double bond between carbon atoms, a reaction known as dehydrogenation. This 

specie called cyclohexene has a formation energy of-120 kJ/mol. Afterward, we add 

1 taken from: http://people.uis.edu/gtraml/organic/aromatics/benzene.htm 

H||M C 

/ H 
H 

http://people.uis.edu/gtraml/organic/aromatics/benzene.htm
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a second double bond to form 1,3-cyclohexadiene. We expect an amount of energy 

around -240 kJ/mol, but a value of -231 kJ/mol is experimentally measured. It is 

then 9 kJ/mol more stable. After the third dehydrogenation, benzene turns out to 

be 152 kJ/mol more stable than the theoretical prediction. This energy stabiliza­

tion is known as resonance, and it is observed in molecules that have conjugated w 

systems, or molecules with sp2 hybrid atoms, and therefore allowing 7r electrons to 

flow between these orbitals. Such electron derealization among the carbon atoms 

of the molecule, makes benzene more stable than what is theoretically expected. 

Energy 

k)/mol 

o 
0 

-120 

theoretical 
(3 x 120) 

Or, 

-231 

i t i i— 

-240 

reserranee 
stabilization 
energy 

[152 kj/mol) 

-208 

Figure 4.2 Building up a benzene from a cyclohexane, an example of resonance 
effect. 

4.1.3 Steric effect 

This effect represents the influence of the spatial configuration of a reactant upon 

the rate, the nature, and the extent of a chemical reaction. We see in figure 4.3 a 

representation of a tri-tert-butyl-methane as an example of a molecule with very 

strong steric effects between voluminous tert-butyl groups (figure 4.3-B). In such 

molecular arrangement, these large groups tend to repeal each other to minimize 

repulsion energy associated to the proximity of the different nuclei. For illustration 
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purposes, we present also a bond representation (figure 4.3-A) of the molecule. We 

have also pointed in 4.3-B some of the zones where the groups are very close to 

each other. A detailed inspection of the model should reveal that, in fact, steric 

effects are present in the whole molecule. 

C(CH3)3 

C(CH3)3 I 

C C(CH3)3 

/ 

C(CH3)3 

(A) 

Figure 4.3 Schematic representation of tri-tert-butyl-methane (A) bond represen­
tation, (B) space filling representation. 

In summary, these structural effects should allow us to classify the functional groups 

that will be considered during the course of this research. We will split the six 

functional groups considered in two sub-groups that depend upon their abilities to 

donate or to withdraw charge. 

4.2 Functional groups 

4.2.1 Electron attractors 

Electron attractors can be defined as molecular systems, that due to their electronic 

properties, are able to attract or withdraw electron density from another molecule. 

If an electron attractor is used to functionalize pyrene, then we may expect that 

some electronic density towards the functionalization group will be transferred. 
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The selected molecules for their electron attracting properties are CN, COOH, and 

Si(OH)3. A ball and stick representation of these compounds is given on Figure 4.4. 

Figure 4.4 Selected electron attractors: (A) CN, (B) Si(OH)3, (C) COOH. 

We may see that a positive formal charge could be placed on C atom in CN molecule 

(A). Supported by an inductive effect a positive charge would also appear on C 

atom in the COOH molecule (C). Inductive effect could also be used to explain 

the positive charge on the Si atom (B). In addition, Si atom in Si(OH)3 molecule 

(B) presents steric effect due to the numerous OH groups. The presence of formal 

positive charge on atoms that are bonded to pyrene suggest a charge transfer from 

pyrene to the functional group. 

4.2.2 Electron donors 

In contrast, electron donors are molecular systems that are able to give or donate 

electron density. The following groups are used in the present study: NH2, SiH3, 

and OH. (See Figure 4.5). 

Due to a difference in electronegativities, a formal negative charge could be assigned 

to N atom in NH2 (A), to Si atom in SiH3 (B), and to O atom in OH (C). Since 

these functional groups establish bonds with pyrene through the negatively charged 

atom, we may then expect some electron density to be transferred to pyrene upon 
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Figure 4.5 Selected Electron Donors (A) NH2, (B) SiH3, (C) OH. 

its functionalization. We can also note that steric effect is also present to a certain 

degree in S1H3. 

4.3 Pyrene functionalization 

Two types of functionalization scheme of pyrene have been considered. The cis 

where functional groups are in the same side of pyrene and the trans where the 

groups are located in opposite sides of the molecular plane. All models are built 

and optimized as described in Chapter III. We have obtained the bonding energies, 

charge distributions, bonding characters, and the structural parameters. In order to 

avoid the presence of dangling bonds on pyrene, cis and trans isomers were studied 

using two identical functional groups (homofunctional), or using one group and one 

hydrogen atom (heterofunctional). In Figure 4.6, cis and trans homofunctional 

isomers with CN groups is used for illustration. We have decided to consider the 

trans isomer in order to establish a comparison between both isomers stability. 

Figure 4.7 shows the cis and trans isomers containing one functional group and one 

hydrogen atom (heterofunctional), and where the functional group used is NH2. 

Pyrene is a graphite-like molecule, hence is flat. We choose the set of four carbon 
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Figure 4.6 Homofunctional cis and trans isomers of CN on pyrene. 

Figure 4.7 Heterofunctional cis and trans isomers of NH2 on pyrene. 

atoms in the molecule that are labeled 4, 5, 8, 9 in Figure 4.8, form a 180° dihedral 

angle. Variation of this dihedral angle will be considered a measure of the molecular 

deformation after functionalization. 

The functionalization was only considered at the sites labeled 4 and 8 in figure 

4.8. They form sp2 bonds with their nearest neighbors just like carbon atoms in a 

graphene sheet or in a CNT. All the dihedral angles presented in this work were 

determined from these four selected carbon atoms labeled 4, 5, 8 and 9. 
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O 

Figure 4.8 Schematic representation of pyrene showing the central carbon atoms 
(4 and 8). 

As mentioned before, all carbon atoms are hybridized sp2. Thus, as soon as a 

functionalization is performed, carbon atoms involved in the bonding would change 

their hybridization from sp2 to sp3 in order to form a bond with the functional 

group. Therefore, pyrene structure will be disrupted and significant deformations 

should occur within the molecule.The magnitude of deformation (%Def) of each 

compound is evaluated using the following equation, 

%Def — 100 
dihedral * 100 

180 
(4.1) 

where dihedral is the calculated dihedral angle (°) between carbon atoms 4, 5, 8, 

9. The deformation energy (E^e/) of each compound is, 

Edef = E Def.py E, (flat) (4.2) 

where Eoef.py is the energy of the deformed pyrene but without the functional 

groups, preserving the current status of the bonds in the molecule, (see figure 
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4.9-B) and Efiat is the energy of the flat pyrene molecule (fig. 4.9-A). An example 

of deformed pyrene is shown in Figure 4.9. 

Figure 4.9 Side view of pyrene (A) before functionalization (B) after functionaliza-
tion (functional groups were removed). 

We will use the bonding energy of functional groups to pyrene to classify the bond 

strength of each functional groups. The homofunctional bonding energy (BE homo) 

is computed using: 

BEhomo — {Edef + 2 * Egr0Up) — Efunct (4 .3) 

The energy (BEhomo) is the amount of energy needed to break the bond between the 

two functional groups and pyrene. The heterofunctional bonding energy (BE hete.ro) 

which the energy required to break both functional group and hydrogen bond with 

pyrene, is calculated using: 

BEhetero — (Edef + Egroup + EH) — Efunct (4 .4) 

where E^ef is the total energy of the deformed pyrene, Egroup is the total energy 

http://hete.ro
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of the functional group, the Efunct is the total energy of the functionalized pyrene, 

and finally E# represents hydrogen atom total energy. Since we are considering 

the energy of deformed pyrene, this bonding energy should be considered as the 

minimal energy needed to break bonds between the functional groups and pyrene. 

To calculate the functional group total energy, a model of the functional group is 

constructed, afterwards an optimization is performed. For the hydrogen since is an 

atom the energy is estimated performing a single point energy calculation. 

Finally, the transferred charge (TC) is calculated with: 

1 C = Chpyrene — Chfunct (4-5) 

where ChTOrene is the Mulliken population on C4 and C8 of pyrene, and Chfunct is 

the population on C4 and C8 of pyrene after the functionalization. 

4.4 Results of the homofunctionalization 

Using the techniques described in Chapter III, the cis and trans complexes were 

built, and then fully optimized. Here, we present the electronic structure properties 

obtained, such as the bonding energy, the charge transfer and bond orders of the 

optimized complexes. We recall that the optimization algorithm have a convergence 

criterion of lxl0~6 which represents our level of uncertainty. 

4.4.1 Bonding energy 

In Table 4.1, the calculated bonding energy of cis and trans isomers are presented. 

We observe that all trans complexes are little more stable than the cis ones, with 

the only exception of Si(OH)3. 
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Table 4.1 Calculated bonding energies (eV) for cis and trans pyrene-R2 complexes. 

Character 

Donor 

Attractor 

Group (R) 

-OH 
-NH2 

-SiH3 

-CN 
-Si(OH)3 

-COOH 

cis pyrene-R2 

4.65 
4.05 
3.58 

6.63 
4.70 
3.73 

trans pyrene-R2 
4.73 
4.22 
3.69 

6.88 
4.21 
3.80 

Table 4.2 Calculated dihedral angles, percentage and deformation energies after 
functionalization. 

Character 

Donor 

Attractor 

Group 

-NH2 

-SiH3 

-OH 

-Si(OH)3 

-CN 
-COOH 

Dih. Angle (°) 
Cis 

131.7 
134.1 
134.6 

127.5 
130.5 
131.4 

Trans 
179.7 
180.0 
179.6 

180.0 
178.9 
180.0 

Def. % 
Cis 
26.8 
25.5 
25.2 

29.2 
27.5 
27.0 

Trans 
0.7 
0.0 
0.2 

0.0 
0.6 
0.0 

Def. energy (eV) 
Cis 
3.29 
3.21 
2.99 

3.64 
3.35 
3.29 

Trans 
2.97 
2.81 
2.72 

2.55 
2.90 
2.93 

Table 4.2 shows the calculated dihedral angles, percentage and energy deforma­

tion of pyrene molecule after functionalization. The % of deformation of trans 

complexes appears very weak because the deformation induced is symmetric with 

respect to central carbon atoms, thus calculated dihedral angles are close to 180°. 

Nevertheless, the deformation energy for trans complexes is in the same range than 

cis complexes. In contrast, deformations in cis complexes gives some curvature to 

the pyrene, since the presence of both functional groups in the plane, tends to be 

separate from each other producing a curvature on pyrene. See figure 4.10 for an 

illustrative example of both types of deformations. 
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Figure 4.10 Side view of czs-pyreneOH and trans-pyreneOH. 

4.4.2 Charge transfer 

The top of the table 4.3 gives the net charge transfer for donors groups, while 

the net charge transfer for attractor groups is given at the botton. Negative sign 

means a gain of negative charge (electrons) while a positive sign represents a loss 

of negative charge from pyrene. 

Table 4.3 Calculated net charge transfer (TC) of the homofunctionalized pyrene 
molecule. 

Character 

Donor 

Attractor 

Cis and Trans 

pyrene-NH 2 

pyrene-OH 
pyrene-SiH3 

pyrene-Si(OH)3 

pyrene-COOH 
pyrene-CN 

C4 
-0.14 
-0.27 
-0.40 
0.47 
0.14 
0.13 

C8 

-0.13 
-0.27 
-0.40 

0.47 
0.14 
0.13 

Table 4.3 clearly reveals a significant charge transfer from the donor groups to C4 

and C8 of pyrene molecule. In contrast, the attractor groups withdraw some charge 

from them since atoms 4 and 8 have now a positive value. 
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4.4.3 Bond order and structural data 

Although the absolute value of bond order remains only qualitative, its variation 

can be used to discuss the nature of the bonding. Bond order analysis of pyrene 

shows that every carbon-carbon bond has a value of 1.4, thus confirming the aro­

matic character of the molecule. After the functionalization some of these values 

change (shown on Figure 4.11). The calculated bond order is nearly 1.4 for ev­

ery carbon-carbon bond except on the central carbons where it decreases to 1.0, 

therefore having a single bond between C4 (or C8) and the functional group. This 

decrease is clearly due to the functionalization. This trend is similarly observed 

on cis and trans complexes considered. The calculated bond orders for the bond 

formed are reported in Table 4.4. 

sir ' J - • • - • -* .V '*"* * jx***--\r?9fr*" 
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Figure 4.11 Calculated bond order for cis and trans complexes, (using CN as 
functional group) 

We see in the Figure 4.11 that the aromaticity of pyrene is broken in the central 

region due to the functionalization. Other carbon-carbon bonds present invariably 

a value of 1.4, which is according to the Wiberg theory, a double bond in an 
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aromatic system. 

Table 4.4 Calculated bond order between carbon and functional group. 

Character 

Donor 

Attractor 

Group 

-NH2 

-OH 
-SiH3 

-CN 
-COOH 

-Si(OH)3 

Cis and Trans 
C4-Group 

0.97 
0.88 
0.69 

0.99 
0.89 
0.61 

LC8-Group 
0.97 
0.89 
0.68 

0.98 
0.90 
0.60 

We can also see in Table 4.4 that voluminous groups like Si(OH)3 present weaker 

bond orders than smaller groups like CN. This behavior is also observed in both 

donors and attractors. We can also observe a tendency of decreasing bond order 

when the magnitude of charge transfer is increased. 

4.5 Results of the heterofunctionalization 

In this section, we will present the results on heterofunctionalization (see Figure 

4.7). We want to explore the influence of a different group (hydrogen in this case) 

on the values of bonding energies, bond orders, or charge transfer of the selected 

functional group. 

4.5.1 Bonding energy 

In Table 4.5, the calculated cis and trans pyreneH-R complexes bonding energies 

are summarized. We observe that bonding energies are higher for the heterofunc­

tionalization than for homofunctionalization. As expected, trans complexes are 
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more stable than cis. This is because the trans isomers have the functional groups 

on opposite sides of the molecular plane of pyrene which leads to a decrease of the 

steric interactions between them. 

Table 4.5 Calculated bonding energy of heterofunctionalized pyrene. 

Character 

Donor 

Attractor 

Group (R) 

-OH 
-NH2 

-SiH3 

-CN 
-Si(OH)3 

-COOH 

cis pyreneH-R (eV) 

4.80 
4.54 
4.46 
6.04 
4.67 
4.63 

trans pyreneH-R (eV) 

5.19 
4.92 
4.69 

6.30 
4.95 
4.78 

Since we have considered only the case of homolytic bond breaking, meaning the 

breaking of the two bonds simultaneously, the bonding energy obtained is the en­

ergy needed to break individual C-R and C-H bonds combined. In Table 4.6 we 

see calculated dihedral angles, % and energy deformation of cis and trans com­

plexes. We observe that deformations of the cis heterofunctionalized complexes 

are in general lower than the observed in the cis homofunctionalized. This is sim­

ply due to the fact that deformation exerted on pyrene is not symmetric with R 

+ H groups, therefore the perturbation it is not equally distributed. Hydrogen 

will induce smaller deformations on its side if compared with the induced by the 

functional group. For the same reason trans heterofunctional complexes display 

higher deformations than their homofunctional counterparts. 

4.5.2 Charge transfer 

In Table 4.7, we summarized the different calculated charge transfer for cis and 

trans pyreneH-group complexes. The type of bonds formed in the cis and trans 

complexes are practically the same. 
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Table 4.6 Calculated dihedral angles, % and deformation energies of heterofunc-
tionalized pyrene. 

Character 

Donors 

Attractors 

Group 

-OH 
-SiH3 

-NH2 

-Si(OH)3 

-COOH 
-CN 

Dih. Angle (°) 
Cis 

134.1 
136.1 
135.3 

134.9 
134.4 
136.7 

Trans 
176.0 
178.6 
174.9 

175.7 
177.7 
176.3 

Def. % 
Cis 
25.5 
24.4 
24.8 

25.1 
25.4 
24.1 

Trans 
2.2 
0.8 
2.9 

2.4 
1.3 
2.1 

Def. energy (eV) 
Cis 
2.83 
2.80 
2.53 

2.73 
2.67 
2.35 

Trans 
2.53 
2.52 
2.66 

2.65 
2.67 
2.68 

Table 4.7 Charge transfer for the heterofunctionalized pyrene systems. 

Character 

Donors 

Attractors 

cis and trans 

-NH2 

-OH 
-SiH3 

-Si(OH)3 

-COOH 
-CN 

C4-R 

0.26 
0.27 
0.23 

0.48 
0.23 
0.15 

C8-H 

-0.15 
-0.30 
-0.41 

0.22 
0.15 
0.21 

Due to the difference in electronegativity between carbon and hydrogen atoms, we 

have expected to have some charge transfer from hydrogen to C8, but this trend 

was observed only for donors. C4 with donors does not gained any charge from the 

group. For the attractors, we clearly see a net charge being transferred from the 

pyrene to the functional group. 

4.5.3 Bond order and structural data 

If we compare the homofunctionalization (table 4.4), we observed similar results 

for both cis and trans complexes. Calculated bond order of carbon-group and 

carbon-hydrogen bonds are summarized in Table 4.8 
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Table 4.8 Calculated bond order for carbon to functional group bonding. 

Character 

Donors 

Attractors 

Group 
(R) 

-NH2 

-OH 
-SiH3 

-CN 
-COOH 
-Si(OH)3 

cis 
C4-R 
0.94 
0.85 
0.68 

0.99 
0.90 
0.60 

C8-H 
0.83 
0.81 
0.87 

0.85 
0.85 
0.87 

trans 
C4-R 
0.96 
0.88 
0.69 

0.98 
0.90 
0.61 

C8-H 
0.84 
0.83 
0.85 

0.84 
0.84 
0.85 

We see that bond orders of C-R do not show large differences between homo and het-

erofunctionalized complexes. We also see that voluminous groups such as Si(OH) 3 

have lower bond orders than smaller functional groups like CN. For hydrogen as 

functional group we observe a value that corresponds to a singe bond. 

4.6 Summary 

We have presented results on pyrene functionalization using two schemes defined 

as homo and heterofunctional where for both types of isomers cis and trans were 

studied. We have seen that the charge is transferred as a function of the nature of 

the functional group used, donors transfer some charge to the C4 and C8 of pyrene 

while attractor whitdrawn some charge. The results of Wiberg bond order indexes 

and the structural data of the functionalized molecules of pyrene were also pre­

sented. WTe observed that the bond order is directly related to the bonding energy 

of the groups, but is not strongly influenced by the type of functionalization (homo 

or heterofunctionalization). In the next chapter we will introduce the stabilization 

of metal particles over these functionalized pyrene compounds. 
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CHAPTER 5 

RESULTS ON THE STABILIZATION OF METAL PARTICLES 

In the previous chapter, we have explored the functionalization of the pyrene 

molecule using six different anchoring groups. In this chapter, we will present 

how these functional groups can stabilize metallic particles on pyrene. Using func-

tionalized pyrene molecules as a starting point, we have considered the bonding of 

metallic particles directly to the functional groups. In this serie of computations, 

we allowed the metallic particle, the functional groups, and the central carbon 

atoms to relax, while the rest of the system was kept frozen. Since most of the 

structural variations happens in the vicinity of the chemical perturbation, the struc­

tural changes in the surroundings of central carbon atoms will be minimized. We 

have performed the calculations on three different isoelectronic metals Pt, Ni and 

Pd. All the selected metals belong to the group 10 of the periodic table. They have 

ten valence electrons that are distributed among d and s orbitals. Their atomic 

ground state configurations are: 

1. Platinum (Pt) [Xe]4f145d96s1 

2. Palladium (Pd) [Kr]4d10 

3. Nickel (Ni) [Ar]3d84s2 

To evaluate the stabilization of the metal, we will use the energy required to disso­

ciate a single atom (or groups of atoms) from the complex. Results of the bonding 

energies are reported on complexes with a single metal atom and also with a metal 

dimer bonded to the functional groups. As a reference, we will consider the "bridge" 
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bonding where a metal atom is directly bonded to pyrene without functional groups. 

This will allow us to directly evaluate the effect of functional groups on the stabi­

lization of the metal particle. Bridge bonding represents the current state of a real 

catalyst in fuel cells, since platinum particles are deposited directly over carbon 

black. 

5.1 One metal atom systems 

5.1.1 Bridge bond 

As mentioned above, a bridge bond is made by bonding the metal atom directly to 

the pyrene molecule. A schematic representation of this type of bonding is shown 

in Figure 5.1. The metal atom is bonded directly to the central carbon atoms 

(labelled as C4 and C8) of pyrene. Results of the calculated bonding energies 

(BE), charge transfer (TC) and bond order (BO) are presented in the Table 5.1. 

Metal atom 

Figure 5.1 Schematic representation of a "bridge" bond on pyrene. 

We see that metal atoms are more weakly bonded to pyrene than to functional 

groups. Small values of bonding energies may suggest that metallic particles can 
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move more easily on the surface of pyrene at higher temperatures. This result is 

consistent with the significant coalescence observed experimentally, as described in 

Chapter 1. 

Table 5.1 Singlet state bonding energies, charge transfer, bond order and deforma­
tion for metallic bridge bond. 

M 
Ni 
Pt 
Pd 

B.E. 
(eV) 

1.29 
1.28 
0.56 

T.C. 
C4 

-0.11 
-0.09 
-0.07 

C8 
-0.11 
-0.09 
-0.07 

M 
0.37 
0.16 
0.20 

Bond Order 
C4-M 
0.29 
0.25 
0.12 

C8-M 
0.29 
0.25 
0.12 

Total 
0.98 
0.97 
0.53 

Deformation 
Dih (°) 
163.9 
169.3 
170.6 

% 

9.0 
6.0 
5.2 

E. (eV) 
0.31 
0.16 
0.11 

Bond orders for metal-carbon (C4 and C8) bonds are small which means that a 

weak bond is formed. The total bond order takes into account all the interactions 

present between pyrene and the metal atom, and we obtain for Pt and Ni values 

that are close to one. Thus, a single bond is formed, which is consistent with the 

calculated bonding energy of 1.3 eV of Pt and Ni to pyrene. In contrast, palladium 

bonds very weakly to pyrene since both bonding energies and total bond order have 

low values. We also observe a small charge being transferred to central carbon 

atoms of pyrene, leaving a positive charge over the metal atoms. 

Finally, we see also in the Table 5.1 that pyrene molecule is not importantly de­

formed with metal adsorption. Ni shows the highest degree of deformation and 

deformation energy, which are related to the higher bond order and bonding en­

ergy calculated. This is probably due to its electronic configuration ([Ar]3d84s2) it 

has 8 electrons located in d orbitals, that are more easily polarizable than Pd and 

Pt which shows a more closed "d" shell that mix less naturally with "sp" orbitals 

of pyrene. 
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5.1.2 Adsorption on functional groups 

We will now present how the influence of functional group on the bonding energy, 

or in other words on the stabilization of the metal particles. In Figure 5.2, we 

show (in two examples) a schematic representation of a metal atom bonded via 

the functional group to pyrene in the cis configuration. Only the cis configuration 

was considered, since it represents the real model of a sidewall functionalization of 

carbon nanotube. 

Functional 
group (fit) 

\ 

Metal parttelt p ) 

i 

t 
Functional 

/ group |R| 

Metal particle (M) 

A Functional 
i f t group CR) 

Pyrene 

Figure 5.2 Two examples of one metal atom (M) bonded to pyrene via functional 
group (R). (A) ds-pyreneNH2 (B) c«5-pyreneCN. 

We obtain higher values of bonding energies when functional groups are present 

than when the metal atom is directly bonded to pyrene. We also found signifi­

cant variations among the different functional groups that depend on the donor or 

attractor character of the groups. We report in Table 5.2 the calculated bonding 

energies, charge transfer and the bond order.1 

We observed that the calculated bonding energies with the selected donor molecules 

have low values, and suggest the formation of weak bonds. In contrast, the attractor 

groups display higher bonding energies which translate into stronger bonds. Table 

1 Where C stands for character, D for donor and A for attractor 
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Table 5.2 Bonding energies, charge transfer and bond orders for functionalized 
pyrene +. one metallic atom. 

c 

D 

A 

Group 

NH2 

SiH3 

OH 

Si(OH)3 

COOH 
CN 

B.E. (eV) 
Pt 

1.91 
1.11 
0.97 
3.14 
3.03 
2.06 

Pd 
1.19 
0.69 
0.53 

1.89 
1.70 
1.29 

Ni 
0.86 
0.12 
0.08 

0.85 
0.51 
1.54 

T.C. 
Pt 

0.05 
0.07 
0.00 

0.23 
0.49 
0.33 

Pd 
0.03 
0.11 
0.27 
0.02 
0.45 
0.27 

Ni 
0.34 
0.20 
0.46 

0.31 
0.67 
0.46 

B.O. 
Pt 

0.84 
0.80 
0.49 

1.85 
1.88 
1.40 

Pd 
0.54 
0.56 
0.26 

1.25 
1.29 
0.94 

Ni 
1.24 
0.97 
1.04 

1.71 
1.67 
1.48 

5.2 also shown that there is some charge being extracted from the metallic atom, all 

of them appear with a positive value. No significant changes occurred for carbon 

atoms of the functionalized pyrene. The fluctuation of charge mainly occurred 

between the functional group and the metallic atom. 

Total bond order values for metal-R bond are in the same range (for the donors) 

than the metal-pyrene bond previously showed in Table 5.1. High bond order 

values are more generally observed among the functional groups with attracting 

character, and they also have higher bonding energies values. The attractor groups 

for the specific case of platinum, we observe values close to 2. Such high bond order 

values are directly related to high bonding energy values, and suggest that metal 

particles are strongly stabilized by these functional groups. 

We see in Table 5.32 that Si(OH)3 group induces a stronger deformation of pyrene 

(32%), than any other functional group. It is also important to note that the 

deformation energies are larger for all the functional groups than the case of the 

metal atom directly bonded to pyrene (see table 5.1). 

2Where C stands for character, D for donor and A for attractor 
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Table 5.3 Calculated dihedral angles, degree of deformation (%) and deformation 
energies (eV) of functionalized pyrene + one metal atom systems. 

c 

D 

A 

Metal -» 
Group i 

SiH3 

NH2 

OH 

Si(OH)3 

COOH 
CN 

Pt 
Angle 
134.1 
130.4 
134.1 

122.4 
128.7 
128.8 

% 

25.5 
27.6 
25.5 

32.0 
28.5 
28.5 

D.E. 
3.26 
3.21 
2.68 

3.49 
3.45 
3.87 

Pd 
Angle 
134.1 
130.2 
129.8 
122.4 
130.5 
129.5 

% 

25.5 
27.7 
27.9 

31.8 
27.5 
28.1 

D.E. 
3.26 
3.22 
3.04 

3.47 
3.41 
3.70 

Ni 
Angle 
134.1 
131.7 
129.8 
122.4 
130.0 
128.1 

% 

25.5 
26.8 
27.9 

32.0 
27.8 
28.9 

L D . E . 

3.26 
3.33 
3.04 
3.49 
3.23 
4.09 

5.2 Two metal atoms systems 

In Figure 5.3, we give a representation of this type of complex. In this configuration 

the metal dimer is bonded through one atom directly on the functional group. This 

model resembles the one metal particle model previously used, with the difference 

that a metal-metal bond is also present. 

In Table 5.4, we summarized the calculated bonding energies for two metal atoms 

systems. As before, the functional groups, carbon atoms 8 and 4 and the metal 

dimer are allow to relax during geometry optimization. The distance between Ml 

and M2 was fixed to the values obtained for an isolated metal dimer. 
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Pyrene 

Figure 5.3 Schematic representation of two metallic atoms bonded to pyrene via 
functionalization groups, in cis configuration. 

Table 5.4 Calculated bonding energies (eV) for functionalized pyrene + two metal 
atom systems. 

Character 

Donor 

Attractor 

Group 
NH2 

SiH3 

OH 

Si(OH)3 

COOH 
CN 

Pt 
2.01 
1.16 
0.85 
3.37 
3.10 
1.97 

Pd 
1.11 
0.52 
0.51 
1.76 
1.72 
1.25 

Ni 
0.82 
0.15 
0.02 
0.73 
0.81 
1.49 

The bonding of metal to OH group gives weak bonding energies. NH2 complex 

shows the highest bonding energy for the donor group, while CN gives the highest 

bonding energy for the attractor group. 

On Table 5.5, we see some evidence of charge transfer between the functional group 

and the metal atoms. Nevertheless, while the pyrene molecule remains essentially 

uncharged after the metal particles adsorption. For SiH3 and NH2 complexes, some 
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charge transfer is observed from the functional group to the metal (Ml). For the 

CN and Si(OH)3 (attractor groups) a small amount of charge is transferred to Pt. 

Table 5.5 Calculated charge transfer (TC) of functionalized pyrene + two metal 
atom systems. 

Character 

Donor 

Attractor 

Group 

SiH3 

NH2 

OH 

Si(OH)3 

COOH 
CN 

Pt(l) 
-0.2 
-0.5 
0.0 

-0.1 
0.0 
-0.4 

Pt(2) 
0.0 
0.3 
0.0 

-0.1 
0.1 
0.4 

Pd(l) 
0.0 
-0.3 
0.0 

-0.1 
0.1 
0.1 

Pd(2) j 
0.1 
0.3 
0.0 

0.2 
0.1 
0.0 

Ni(l) 

-0.1 
-0.3 
0.0 

0.0 
0.2 
0.1 

Ni(2) 
0.1 
0.3 
0.0 

0.0 
0.2 
0.1 

In Table 5.6 we summarize the calculated total bond order for the Ml metal atom. 

As mentioned before Ml is the metal atom that interacts directly with the func­

tional group, while the distance M1-M2 remains fixed during the optimization. The 

OH and Si(OH)3 complexes showed small bond order values in relation to their low 

bonding energies. Nickel and palladium atoms have small bond order values with 

respect to the values calculated for platinum atoms. 

Table 5.6 Total calculated bond order for two metal atoms systems. 

Character 

Donor 

Attractor 

Group 
NH2 

SiH3 

OH 
CN 

COOH 
Si(OH)3 

Pt(l) 
2.28 
2.18 
0.56 

1.95 
1.37 
0.56 

Pd(l) 
1.90 
0.73 
0.19 

0.75 
0.70 
1.22 

Ni(l) 
0.42 
0.30 
0.57 

1.00 
0.81 
0.51 
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In Table 5.73, the calculated structure data is summarized. The degree of defor­

mation is between 24% and 30%, and the average deformation energy is around 3 

eV. As seen previously, Si(OH)3 functional groups deforms the pyrene more than 

any other functional groups. 

Table 5.7 Calculated dihedral angles, degree of deformation (%), and deformation 
energies (eV) of functionalized pyrene + two metal atoms systems. 

c 

D 

A 

Metal -» 
Group I 

SiH3 

NH2 

OH 

Si(OH)3 

COOH 
CN 

Pt2 

Angle 
134.1 
135.4 
128.8 

125.3 
135.5 
131.1 

% 

25.5 
24.8 
28.4 

30.4 
24.7 
27.2 

D.E. 
3.26 
2.77 
3.01 

3.52 
3.01 
3.30 

Pd2 

Angle 
134.1 
133.0 
129.8 
130.2 
136.2 
130.9 

% 

25.5 
26.1 
27.9 

27.7 
24.3 
27.3 

D.E. 
3.26 
2.65 
3.01 

3.67 
3.31 
3.33 

Ni2 

Angle 
134.1 
131.7 
129.8 
125.7 
131.4 
130.5 

% 

25.5 
26.9 
27.9 

30.2 
27.0 
27.5 

D.E. 
3.26 
3.33 
3.01 

3.55 
3.35 
3.26 

3Where C stands for character, D for donor and A for attractor 
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CHAPTER 6 

DISCUSSION OF RESULTS 

In this chapter, we will analyze and discuss the results of our calculations. We will 

first discuss how the selected functionalization groups are anchored on pyrene with 

the help of the calculated bonding energies and bond orders as a measure of the 

bond strength. Then, the impact of the functional groups on the deformation of 

the pyrene will be analyzed. Finally, we will address and discuss the variation of 

aromaticity of pyrene along the different functionalization paths. 

We have shown how metallic particles can be stabilized on functionalized pyrene, 

and how the metallic particles can induced deformation on the functionalized 

pyrene molecule. We will attempt to classify the functional groups according to 

their ability of stabilizing metal particles, supported by the calculated bond orders 

and bonding energies as criteria. 

6.1 Pyrene functionalization 

As shown in chapter IV, six different functionalization groups were selected. Three 

of them are electron donors, while the three other are able to withdraw electronic 

density. We have selected these functional groups because we wanted to under­

stand how the properties of pyrene (structure, bonding and charge transfer) will 

be affected by the presence of specific functional groups. 

Two kinds of functionalization were considered: homofunctionalization where both 

functional groups were identical, and heterofunctionalization, where one functional 
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group plus one hydrogen atom were used. 

6.1.1 Bonding energy 

We start by sorting the functional groups from the greater to the smaller bonding 

energy to pyrene: 

• Donors: OH > NH2 > SiH3 

• Attractors: CN > Si(OH)3 > COOH 

There are some important observations to address in those results. First, we want 

to recall that the bonding energies refer to what is called "homolytical breaking" 

in which both bonds between functional groups and pyrene are simultaneously 

broken. For heterofunctionalized pyrene, bonding energy represents the amount 

of energy needed to break the bonds formed between pyrene and the functional 

group, but also to break pyrene-H bond. A more intensive study of the reaction 

pathway should be performed to evaluate more accurate the dissociation energy on 

individual bonds. Nevertheless, as a first approximation, the calculated energies 

are good indicators of the relative stability of the complexes. 

We observed that smaller groups tend to better anchor to pyrene (see table 4.1), 

therefore they have greater bonding energies and larger bond orders. This could be 

explained by the fact that smaller functional groups have more localized electrons 

nearby the atom that is directly bonded to pyrene, therefore strong bonds can be 

formed. In contrast, electrons can be more delocalized over the whole component 

of the voluminous groups, and therefore they are forming weaker bonds. 
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Homo and heterofunctionalization show a similar trend in terms of bond strength, 

regardless that the second functional group is an hydrogen atom in the heterofunc-

tionalized scheme. This confirms the calculated bond strength trend of the selected 

groups, since only one group is present and yet the trend is identical. 

Donor groups in the heterofunctionalization have higher bonding energies than 

their counterparts on the heterofunctionalization. This difference in energy could 

be related to the fact that the carbon atom (C4) in pyrene where hydrogen is 

bonded is more negatively charged due to its higher electronegativity. Part of this 

improved electron density can be delocalized near carbon 8 (where the functional 

group is bonded) and makes the bond C8-functional group stronger. 

Finally, we want to mention that as expected, the calculated bonding energy of 

trans complex is higher than the chemical equivalent cis complexes. In trans com­

plexes, functional groups are at opposite sides of the molecular plane of pyrene, such 

arrangement decreases the steric effects between functional groups, and therefore 

compensate and decrease the structural deformation of pyrene. 

6.1.2 Bond order 

In terms of bond order, we can classify the functional groups from greater to smaller 

calculated value: 

• Donors: NH2 > OH > SiH3 

• Attractors: CN > COOH > Si(OH)3 

As seen in Chapter IV, bond order could be interpreted as the bond strength 

between atoms in a molecule. Let us first consider the bond order between C8 and 
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H in the heterofunctionalization. As expected, this value it is between 0.8 - 0.9 

(see table 4.8) which, according to the Wiberg theory, represents a single bond. We 

also want to emphasize on the fact that after the functionalization, every carbon-

carbon bonds in pyrene (except for bonds associated to C8 and C4) remained at a 

value of 1.4 (see Fig 4.11). This means that the aromatic character of the bonds 

is not totally altered by the functionalization. This is important since the electron 

derealization continues to be partly present out of the functionalized region. If 

some electron density is transferred to pyrene, then this density could be probably 

delocalized over the 7r orbitals of the carbon atoms of pyrene. 

Also, we have summarized our results of bond orders for homo and heterofunction-

alized in tables 4.4 and 4.8 respectively. We see that the smaller groups of every 

series (OH and CN) as well as the "medium" sized (NH2, COOH) show bond or­

ders that reflect a single bond with the pyrene molecule. For the Si(OH) 3 and SiH3 

groups, we observe bond orders of 0.6 and 0.7, respectively. This is interpreted as 

a weak bond between the functional group and pyrene, that could be explained by 

the inductive and steric effects present in these groups. 

Si atom in SiH3 will have a negative formal charge, this could make the bond 

between carbon and the whole functional group weaker. The opposite behavior 

is present in Si(OH)3 where oxygen atoms will polarize the bond in the opposite 

direction, creating a formal positive charge on Si that, in principle, will make the 

bond stronger, but (as we will see below) the presence of strong steric effects could 

make the bond weaker. 

The polarizability of the functional group may have a significant influence on the 

magnitude of the bond order obtained. Polarizability is the tendency of a charge 

distribution to get distorted from its normal shape by the presence of a nearby 

charge. This can certainly favor an electronic cloud to be displaced towards an 
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atom with a higher electronegativity, and therefore increasing the strength of the 

chemical bond. In our case, the NH2 and OH groups are highly polarizable (Pine, 

1980) due to the difference in electronegativity between their atomic components. 

In contrast, the steric effect could weaken bonds. As less physical area is available 

some atoms (or groups of atoms) are "forced" away from their bonding area. In 

our case, this behavior is present for the "bulkier" Si(OH)3 and SiH3 groups, and 

therefore they have smaller bond orders. 

6.1.3 Charge transfer 

The functionalization groups were finally classified by the magnitude of a net charge 

transfer: 

• Donors: NH2 > OH > SiH3 

• Attractors: Si(OH)3 > COOH > CN 

For the donors functional groups, we see that the order is the same as the one 

shown for bond order i.e. the higher the bond order index is, the higher is the 

amount of charge transferred from the functional group to C4 and C8 atoms of 

the pyrene molecule. In contrast, it is the reverse order for the attractor series 

as shown in Tables 4.3 and 4.7. This last trend is observed for both homo and 

heterofunctionalization. 

The functional group NH2 has a lone pair of electrons that can be transferred to 

carbon in pyrene that resulted from a difference of electronegativity between N 

and C. Bonds involving N and H are polarized for the same reason. An analogue 

analysis can be done for the OH group. Nevertheless, the flow of charges occurs 
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in the opposite direction, since the electronegativity of oxygen is higher than for 

carbon. 

The magnitude of the charge transfers can be observed using graphical molecular 

electrostatical potential surfaces. They correlate with a dipole moment, molecular 

electronegativity, and partial charges. This type of surface provide a visual method 

to understand the calculated relative polarity of a molecule. The scale for these 

graphical representation was chosen to clearly show the change in electrostatic po­

tential. The range of -0.01 to 0.01 is an arbitrary range that emphasizes the zone 

of variation. The molecular electrostatic potential can be viewed as the potential 

energy feels by a proton at a particular location near a molecule. Negative electro­

static potential corresponds to the concentrated electron density in the molecules 

(from lone pairs, pi-bonds, etc.) colored in shades of red. Positive electrostatic 

potential corresponds to regions where low electron density exists and the nuclear 

charge is incompletely shielded colored in shades of blue. (Elmhurst College, 2007) 

In Figure 6.1, we show a bottom view of functionalized pyrene while in Figure 6.2, 

a top view is shown. 

Figure 6.1 Bottom view of an electrostatical potential surface for c«s-pyrene + 
donor complexes. 
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In Figures 6.1 and 6.2, we see an accumulation of electronic density on carbon 

atoms surrounding the functional groups, while a depletion of it is present in the 

vicinity of functional groups. 

Figure 6.2 Top view of an electrostatical potential surface for cis-pyrene + donor 
complexes. 

In figures 6.3 and 6.4, we show the results obtained for the attractor functional 

groups. 

Figure 6.3 Bottom view of an electrostatical potential surface for cis-pyrene 
attractors complexes. 

In contrast to donors, the bonding of attractor groups to pyrene appears to increase 

the electron density on functional groups, and finally leave a net positive charge on 
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Figure 6.4 Top view of an electrostatical potential surface for ds-pyrene + attractor 
complexes. 

pyrene. In cis-pyreneCN, a significant electron density transfer occurs from pyrene 

to the functional group. For Si(OH)3, the electron density is mostly located on 

pyrene. A similar representation can be drawn for the trans complexes, and give 

similar behavior. 

For heterofunctionalization cases, we have noted from Table 4.7 that the carbon 

atom bonded to functional group (C8) in pyrene gained a net negative charge with 

donor groups. This result was expected because carbon is more electronegative 

than hydrogen. Nevertheless, the other carbon atom bonded to the functional 

group (C4) does not receive any extra negative charge from the donor groups. The 

presence of hydrogen as functional group reversed the accumulation of electron 

density to a point where positive charges are obtained on the C4 atom of pyrene. 

This can be understood since the H atom is a strong donor, a charge transfer occurs 

to the C8 atom that facilitates a derealization of the overall charge to the vicinal 

carbon atoms. Once C4 atom acquires a higher electronic density, the donation 

effect is reversed. 
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6.1.4 Structural data 

Finally, we analyze the impact of the functionalization on the structural properties 

of pyrene. We may classify the functional groups on the basis of ability to deform 

the pyrene molecule in the cis homofunctionalization scheme. 

• Donors: NH2 > SiH3 > OH 

• Attractors: Si(OH)3 > CN > COOH 

We have summarized the calculated structural data for both donor and attractor 

groups in table 4.2. We observe that cis complexes have the greater deformations. 

This is an expected result since trans complexes have the functional groups at oppo­

site sides of pyrene, so that, the deformation exerted by each one of the functional 

groups will compensate each other, resulting in lower values for the corresponding 

deformation energies. In contrast, cis complexes show deformation values between 

25 to 29%. Due to the steric effects, the functional groups tend to separate from 

each other in a cis configuration. As a result of this spatial arrangement, pyrene is 

strongly deformed, and bends. Another factor that contributes to the deformation 

of pyrene is the change of hybridization of the central carbon atoms. After the 

functionalization takes place, carbon atoms go from sp2 to sp3 hybridization in 

order to bond with the functional group. This change of hybridization also occurs 

in the trans complexes, but as it was mentioned this deformation is symmetrical. 

These effects contribute to the deformation of pyrene which are translated into 

important values of deformation energy. 

If we compare the magnitude of deformation between homo and heterofunction-

alization, we observe that most cis complexes give similar deformations, but the 

deformations for the trans heterofunctionalizations are greater than homofunction-
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alization. This difference for trans complexes is due to the fact that deformations 

exerted by hydrogen is not equally compensate with the functional group in the 

contrary plane of pyrene. 

6.2 Stabilization of metal particles 

As showed in chapter V, we have considered the bonding of one and two metal 

atoms to the functional groups anchored on pyrene. It is important to mention 

that only cis complexes are considered here, since they represent the real model 

for an external sidewall functionalization of carbon nanotube. 

6.2.1 One metal a tom particle 

First, we consider the bonding of a single metal atom directly to C4 and C8 carbon 

atoms of pyrene, a "bridge" configuration (see figure 5.1). The different calculated 

properties are summarized in Table 5.1. We may see that bonding energies for 

singlet states of the metals considered are low for a chemical adsorption. These 

low values, in addition to the small bond order calculated between the metal atom 

and the C4 and C8 carbon atoms, are indicative of a relatively weak bond of the 

metal to pyrene. 

We mentioned in Chapter I, that the coalescence of metal particles increases rapidly 

when the operation temperature in fuel cells raises. Since metal particles are weakly 

bonded to the support an increasing temperature will induce the migration and the 

attachment of this particle to other particles in the surroundings, on which metal-

metal bond is favored over metal-support bond. 

It is important to mention that the bond order close to 1 observed for Pt and Ni 
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to pyrene, is a consequence of the significant overlap between the metal orbitals 

and orbitals of carbon atoms. We also observed that the metal particle adsorption 

induces a very small deformation of pyrene, which remains almost flat. 

Second, we consider the bonding of a single atom metal particle to different cis 

functional groups. The results were summarized in Table 5.2. We immediately see 

that bonding energies of the metal atom on functional groups are higher than in 

the "bridge" configuration. A similar tendency is observed for the bond orders. We 

can summarize our results according to the following rank of bonding energies: 

• Attractors: Si(OH)3 > COOH > CN 

• Donors: NH2 > SiH3 > OH 

Attractor groups showed the higher bonding energies and also the higher bond 

order values. Therefore, they would stabilized the one metal atom particle better 

than the donors. Nevertheless, NH2 has 1.91 eV value for bonding energy and a 

bond order of almost one with respect to Pt. Among the selected functional groups, 

the three attractors and at least one donor (NH2) seem to be promising candidates 

to be considered as choices for an experimental functionalization. 

Regarding the charge transfer, we observed that attractors leave the metal atoms 

positively charged while for the donors, the transfer of the charge is negligible. 

With the type of charge analysis we have performed, it remains very difficult to 

say without doubts that the withdrawn charge from the metal atoms become delo-

calized over the entire pyrene. Further calculations on larger models are required 

to better answer this particular issue. 

If we compare the stabilization of the metal particle with and without the presence 

of a functional group, the result of our calculations strongly suggest that functional 
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groups may play an important role in the metallic stabilization. The fact of having 

greater bonding energies, and greater bond orders allow us to undeniably arrive to 

the conclusion that, metallic particles are more stable when bonded to pyrene that 

has been functionalized. Nevertheless, we can not say if the presence of functional 

group will affect the reactivity of Pt particles for fuel cell applications. 

6.2.2 Two metal a tom particles 

The stabilization of two metal atoms particles (see figure 5.3) gives the same ranking 

for the bonding energies and the calculated bond orders, than for the single atoms 

particles. 

• Attractors: Si(OH)3 > COOH > CN 

• Donors: NH2 > SiH3 > OH 

We have obtained the same tendency for the two metal atom particles as we ex­

pected, since we have the same bonding scheme of one atom interacting with the 

functional group. The values of bonding energies are of the same magnitude, com­

parable with the one metal particle results. 

Bond order analysis is summarized in table 5.6, where NH 2 and SiH3 groups display 

bond orders of two for Pt and Pd. The OH group has the weakest bond order of the 

whole series. A possible explanation is that OH forms a strong bond with carbon 

atom in pyrene, its donor character induces a depletion of the electron density 

towards pyrene, that ultimately weakens its bonding with the metal atom. 

For the attractors, the Si(OH)3 group has the highest value of bonding energy 

and bond order for Pt. Although CN is strongly bonded to pyrene, it has a weak 
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stabilizing effect on the metal particles. In contrast, the Si(OH)3 group forms 

strong bond with metal particles. This could be explained, by the high electron 

density that surrounds Si atom, and by the important overlapping between orbitals 

of Si and metal atoms. 

Structural data shows deformations of pyrene that are comparable with those ob­

tained for one metal atom stabilization. The presence of the metal particles does 

not change significantly the structure of pyrene. This is an important result since 

greater deformations or the breaking of vicinal bonds can alter the electron trans­

port within the TT — it conjugation systems. 



73 

CONCLUSIONS 

After analyzing our results, we arrive to the following conclusions: 

• For the chosen series of donor and attractor groups, the attractor groups (CN, 

Si(OH)3, COOH) have greater bonding energies and higher bond orders than 

the donor groups (OH, NH2, SiHs) for both homo and heterofunctionalization 

schemes. 

• Homofunctionalization and heterofunctionalization showed the same tendency 

in terms of bond "strength" to pyrene. 

• If a metal particle is adsorbed on pyrene with functional groups, the bonding 

energies and the bond orders are higher than when no functional groups are 

present. Therefore, the metal particles are more stabilized on functionalized 

pyrene. Although we believe this should decrease the magnitude of coales­

cence, we can not comment on the resulting reactivity of the metal particles. 

• Once the metal particles are stabilized on pyrene, the electron density tends 

to accumulate on pyrene. This suggest that once molecular hydrogen is split 

(during fuel cell anodic reaction) the resulting electrons could also be more 

easily transferred to the support. 

• We found that Nickel has the smallest calculated values of bonding energies 

and bond orders (among the selected functional groups), while Pt showed the 

highest values for the chosen metal particles. 

• The functionalizations deformed importantly the pyrene molecule. The pres­

ence of the functional groups makes pyrene to bend. Nevertheless, the TT — TT 

conjugation is mostly preserved among pyrene with more significant varia­

tions near the functionalization sites due to a change in hybridization (from 
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sp2 to sp3) of the carbon atoms involved in the bonding with the functional 

groups. 

• The new shape of the functionalized pyrene resembles the curvature of a 

(10,10) carbon nanotube. In principle, this shows that the functionalization 

of a carbon nanotube would not have to overcome the energetic barrier of 

deformation like for pyrene. Therefore, functionalization of CNT should be 

"easier" to accomplish than pyrene functionalization. 

In order to extend this research project, we would suggest to investigate the fol­

lowing points: 

• Analyze this results in terms of orbitals, to determine if there is overlapping 

between functional groups orbitals and orbitals of the carbon atoms in pyrene. 

• Study the reaction path of all the performed functionalizations. In order to 

establish the feasibility of performing these functionalizations experimentally. 

• Use a more realistic metallic particle model. 

• To model the splitting of H2 molecule at the surface of the metallic particle. 

Subsequently to analyze the charge transportation phenomena. This could 

help to analyze, if some electron density will flow from the metal-hydrogen 

site, through the functional group to be finally delocalized over the pyrene 

rings. 

• To model CNT, and try to reproduce the tendency that we obtained during 

the course of the present research. This can be done using SWCNT as a 

preliminary step to the study. Perform a whole model relaxation, and then 

the functionalization, using the same functional groups and allowing only the 

reaction site to be relaxed. 
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