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RESUME

Dans ce mémoire de maitrise, nous présentons une formulation lagrangienne de la
méthode de 'équation des sensibilités pour les équations de Navier-Stokes. Cette
méthode consiste a calculer les dérivées de I’écoulement par rapport a un vecteur
de parametres de design. Mais lorsque le parameétre définit la géométrie du do-
maine, il faut choisir entre évaluer les dérivées partielles (point de vue eulérien) ou
totales (point de vue lagrangien). Les conditions aux limites des sensibilités sont
données par les dérivées matérielles des variables aux frontiéres, c’est a dire les
sensibilités lagrangiennes. Le point de vue eulérien rencontre donc des problémes
de convergence car ses conditions aux limites nécessitent ’évaluation des dérivées
de la solution a la frontiere.

Nous développons dans un premier temps I'équation des sensibilités lagrangiennes
pour l'équation de la chaleur. Le point délicat est alors la dérivation des équations
puisqu’il faut dériver des intégrales dont le domaine dépend du parametre. Il
apparait alors une vitesse de déformation du domaine, connue uniquement aux
frontieres mais qui doit étre calculée partout dans le domaine. Pour ce faire, nous
choisissons ’approche pseudo-solide, qui représente la déformation du domaine par
des équations d’élasticité, pour ses propriétés de régularité et sa compatibilité avec
Padaptation de maillage.

Nous testons ensuite numériquement cette formulation grace a la méthode des
solutions manufacturées qui nous permet d’étre certains de l'exactitude de
Pimplémentation des équations dans le code. Les comparaisons avec la formulation
eulérienne montrent que cette approche permet bien de coutourner les problemes
de convergence de la formulation eulérienne.

Forts de ces conclusions positives, nous développons la formulation pour les
équations de Navier-Stokes. Nous étudions alors le post traitement des sensibi-

lités lagrangiennes qui est plus direct et plus simple que celui de la formulation
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eulérienne. Nous vérifions ensuite la convergence et I'implémentation avec une so-
lution manufacturée. Méme avec I'imposition de conditions de Neumann, la conver-
gence reste bonne et I’estimateur d’erreur est tres fiable. Nous pouvons donc utiliser
cette formulation pour le calcul de solutions voisines sur un profil d’aile NACA &
4 chiffres. La méthode s’avere alors tres efficace, les extrapolations sont bonnes

et il n’est pas nécessaire d’avoir des maillages aussi fins qu’avec la formulation

eulérienne pour arriver a ces résultats.
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ABSTRACT

This thesis presents a lagrangian sensitivity equation method for the Navier-Stokes
equations. This method aims at evaluating the derivatives of the flow variables
with respect to a vector of design parameters. When the geometry of the domain
depends on the design parameter, we have a choice between the partial derivatives
(eulerian point of view) and the total or material derivatives (lagrangian point of
view). The boundary conditions of the sensitivity problem are given by a material
derivative. For the eulerian sensitivity equation method, the boundary conditions
involve the derivatives of the flow variables at the boundary. This is precisely
where the FEM derivatives are least accurate. This introduces inaccuracies that
degrade the grid convergence of the solution with mesh refinement. The lagrangian
sensitivity approach is free of this problem.

We firstly develop the lagrangian sensitivity equation for the heat equation. The
main issue is the differentiation of the equations because we have to differentiate
integrals over parameter dependent domains. As a consequence, a deformation velo-
city appears. It is required on the whole domain but is known only on the portion
of the boundary that varies with the parameter. The boundary deformation is
propagated through the domain by solving elasticity equations. This pseudo-solid
approach is compatible with our mesh adaptation procedure.

We numerically test the formulation with the method of the manufactured solution
to ensure of proper the implementation of the equation. We compare convergence
results of our lagrangian approach with those of the eulerian formulation and we
conclude that our approach yield a better sensibility for shape parameters.

We then develop the lagrangian formulation for the Navier-Stokes equations and
study the post processing of the lagrangian sensitivity which is simpler and more
direct than that of the eulerian point of view. The code is again verified with a

manufactured solution. While the eulerian formulation experiences reduced conver-
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gence rate and accuracy with a Neumann boundary condition, the langrangian one
behaves according to theory because its boundary conditions are simple and exact.
We recover the theoretical convergence rate and the error estimator is accurate.

Finally we apply the lagrangian sensitivity equation method to a baseline to eva-
luation flow on nearby geometries. The method turns out to be very efficient : the
extrapolations are accurate more accurate than with the eulerian formulation and

obtained on coarser meshes.
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Re nombre de Reynolds

Sz sensibilité eulérienne de la variable x
Sy sensibilité lagrangienne de la variable x
T température

t abscisse curviligne

tr trace d’un tenseur

t = (ty, ty) vecteur unitaire tangent

ty tractions sur les frontieres

u = (u,v) vecteur vitesse

U vecteur des variables d’état (inconnues)
Vi = (Vata, Viay) vitesse de déformation

vitesse de maille

x = (z,y) coordonnées cartésiennes
x* = (z%y*) coordonnées sur le domaine déformé
Xy = (xy,yy5) coordonées d’un point de la frontiere

Lettres calligraphiques
L systeme d’équations différentielles
F fonction cout

c! ensemble des fonctions contintiment différentiables
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Lettres grecques

e parametre de forme
(o vecteur des parametres de design
Ié) épaisseur de la couche mince,

constante de la solution manufacturée

~y constante de la solution manufacturée

r frontiere du domaine

o frontiere du domaine de référence

Ie frontiere du domaine déformé

r, frontiere du domaine ou sont imposées des conditions

de Neumann en température

I'r frontiere du domaine ou sont imposées des conditions
de Dirichlet en température

Iy frontiere du domaine ol sont imposées des conditions
de Neumann en vitesse

I frontiere du domaine ol sont imposées des conditions

de Dirichlet en vitesse

) constante de la solution manufacturée

or _ partie infinitésimale de la frontiere

0Sp fonction test pour la sensibilité lagrangienne de la
pression

0S8, fonction test pour la sensibilité lagrangienne la
vitesse

oW fonction test

Aps coeflicient de Lamé du pseudo-solide
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A conductivité thermique, équation d’énergie

I viscosité dynamique du fluide

Hps coefficient de Lamé du pseudo-solide

£ vecteur de variables adjointes

P masse volumique

o tenseur des contraintes fluides

T tenseur des contraintes visqueuses

¢ transformation entre le domaine de référence et

le domaine déformé

Q domaine de calcul

Qo domaine de référence

Q. domaine déformé

o9} frontiere du domaine de calcul
d§2 partie infinitésimale du domaine

Indices et exposants

gou? qui se rapporte au domaine de référence
qui est exprimé en fonction de variables
du domaine de référence,
non déformé

o ou® qui se rapporte au domaine déformé

qui est exprimé en fonction de variables
du domaine déformé,
déformé

solution exacte ou enrichie
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associé a une valeur & U'infini (de référence)
sensibilité eulérienne (dérivée)

valeur imposée par les conditions aux frontieres,
tenseur d’ordre 2

inverse

eulérien
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opérateur gradient
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INTRODUCTION

Les écoulements de fluides sont souvent des phénomenes complexes. En effet, ils sont
modélisés par les équations de Navier Stokes qui n’ont malheureusement pas de so-
lution analytique dans la majorité des cas pratiques. Il est alors difficile de prévoir
le comportement de I’écoulement si on modifie certains parameétres. L’approche
expérimentale a longtemps été la seule possible pour quantifier leur influence. Mal-
heureusement, elle reste tres lourde, longue et cotiteuse. Depuis le début des années
80, avec les avancées technologiques, la simulation numérique s’est développée et
permet a présent, avec ’augmentation de la puissance informatique, de simuler une
grande variété d’écoulements. Différentes formulations ont été développées pour
calculer les sensibilités qui sont justement le taux de variation des variables de
I'écoulement (vitesse, température, etc...) ou de fonctions de ces variables par rap-

port au parametre.

Le design optimal s’ intéresse particulierement aux parametres définissant la forme
du domaine. Le calcul des sensibilités permet en effet d’identifier les parametres
les plus influents, de calculer le gradients de fonctions colit ou d’évaluer des so-
lutions voisines. Nous pourrons par exemple optimiser un profil d’aile pour maxi-
miser la portance et minimiser la trainée. Il faut donc étudier I'écoulement sur
un domaine variable. Plusieurs formulations sont alors possibles : nous pouvons
adopter un point de vue eulérien, c’est a dire se concentrer sur un point fixe du do-
maine, ou alors un point de vue lagrangien qui consiste a suivre le domaine dans sa
déformation. Pour chacun de ces points de vue, la sensibilité obtenue est différente

et doit étre interprétée de la fagon appropriée.

Le but de ce mémoire est d’étudier les sensibilités du point de vue lagrangien et

de comparer les performances de cette formulation avec celles de la formulation



eulérienne. Pour cela, nous utiliserons un code d’éléments finis adaptatif qui résout
déja les sensibilités d’un point de vue eulérien B et nous implémenterons les sen-

sibilités lagrangiennes.

Dans un premier temps, une revue bibliographique permettra de redéfinir plus
précisément les sensibilités dans le contexte de l'optimisation, d’insister sur la
différence entre le point de vue eulérien et le point de vue lagrangien tout en
replacant ces notions dans leur contexte et par rapport aux travaux déja effectués.
Au chapitre 2, nous nous intéresserons a l’équation de la chaleur et exposerons la
méthode des sensibilités continues d’un point de vue eulérien puis lagrangien avec
les outils mathématiques nécessaires a leur développement en soulignant les atouts
et les limites de ces formulations. Le chapitre 3 présente la vérification du code
pour la formulation lagrangienne et une comparaison des résultats obtenus pour
chacune des méthodes. Les conclusions étant positives pour le point de vue lagran-
gien, nous adopterons une démarche identique pour les équations de Navier Stokes.
Nous exposerons au chapitre 4 les formulations eulériennes et lagrangiennes dans le
cadre d’écoulements incompressibles laminaires en régime stationnaire. Le chapitre
5 comporte deux parties. Tout d’abord, il présente la vérification du code avec une
solution manufacturée. Elle permettra une premiere comparaison numérique de la
convergence pour chacune des formulations. Ensuite, nous simulerons I'écoulement
autour d’un profil d’aile NACA a 4 chiffres et nous utiliserons les sensibilités pour
calculer des solutions voisines. Ce calcul permettra d’évaluer la pertinence des sen-
sibilités lagrangiennes mais aussi leur précision et leur facilité d’utilisation. Nous
étudierons en particulier le nombre de noeuds nécessaire pour le calcul précis des
coefficients de trainée et de portance et les caractéristiques du maillage obtenus
apres quelques cycles d’adaptation. Nous conclurons enfin sur les atouts et les défis

de la formulation lagrangienne.



CHAPITRE 1

REVUE BIBLIOGRAPHIQUE

1.1 Imtroduction

Les sensibilités lagrangiennes ne sont qu’'une étape possible dans une démarche glo-
bale. Le but de ce chapitre est donc de replacer cette méthode dans son contexte
général et de présenter les autres possibilités. Pour ce faire, prenons I'exemple de
Poptimisation. Dans ce contexte, le but de la méthode des sensibilités lagrangiennes
est alors de calculer les sensibilités des états pour déterminer le gradient d’une fonc-
tion cout par rapport a un ensemble de parametres de design. La méthode adjointe
permet aussi ce calcul. Ces différentes méthodes sont exposées et comparées de

facon plus détaillée par Gunzburger 18,

1.2 Meéthode adjointe

La méthode adjointe est tres utilisée dans le cadre de I'optimisation. Soit F(U, «)
la fonction cotit & optimiser sous les contraintes G(U, &) = 0, avec U les états et
«a le vecteur de variables de design. La fonction cout dépend & la fois explicitement
du vecteur de design mais aussi implicitement par lintermédiaire des états. Nous
pouvons en effet définir la fonction F(a) = F(U(a), ). Nous introduisons alors

la variable adjointe £ et le lagrangien :

LU0, &) =FU,a)- <& GU,a) >



oll < -,- > désigne le produit scalaire. Dans le cas discret, il s’agit du produit de
2 vecteurs et dans le cas continu d’'une intégrale. Afin d’exposer généralement le

fonctionnement de cette méthode, nous garderons la notation symbolique suivante :
L=F-¢&G

Le probleme d’optimisation est maintenant équivalent a extrémiser L en fonction
de (U, a, €). La premiére variation du lagrangien par rapport a chacune de ces
variables doit étre nulle :

— La variation par rapport a U conduit aux équations adjointes

OF O0G
30 " Sar (1.1)

— La variation par rapport a a produit la condition d’optimalité

OF OG
— — - = 2
da O 0 (1.2)

— La variation par rapport a £ méne aux équations d’état

G =0 (1.3)

Nous pouvons récupérer le gradient de la fonction objectif de la facon suivante.
Pour un vecteur de design a donné, les états U sont obtenus par les équations
d’états (1.3) et les variables adjointes par les équations adjointes (1.1). Le gradient

de la fonction objectif s’exprime alors de la maniere suivante :

dF DF _OF _ OF DU

da =~ Da_tat oU Da (1.4)



En utilisant les équations adjointes, nous avons :

g_ 8F+ 0G DU
dae O oU D«

Or les équations d’états doivent étre respectées quelque soit le vecteur de design o

donc
DG_8G+8GDU_O (1.5)
Da  da U Da W
Ceci mene a Pexpression finale du gradient :
dF  oF oG
da o “oa (1.6)

Quelque soit le nombre de parametres, il n'y a qu'un seul probleme adjoint a

résoudre par fonctionnelle.

1.3 Meéthode des sensibilités

Pour le méme probleme que précédemment et en reprenant les mémes notations,

nous cherchons a calculer le gradient d’une fonction cott :

dF DF _OF OF DU

da " Da_9a 30 Da (1.7)

Dans cette expression, %g est inconnu car la dépendance des états par rapport
au design est implicite. La méthode des sensibilités (appelée aussi direct differen-
tiation method) consiste a différentier les équations d’états par rapport au pa-
rameotre de design afin d’obtenir les équations de sensibilité. Il y a pour cela deux
facons de procéder, discrétiser les équations d’états puis différentier, il s’agit de la
méthode des sensibilités discretes. Les sensibilités ainsi obtenues correspondent aux

dérivées exactes de la solution discréete du premier probleme. L’autre voie consiste



a différentier les équations d’état pour obtenir un nouveau systéme d’'équations
différentielles qu’il nous reste a discrétiser. Il s’agit alors des sensibilités continues
discrétisées. Nous obtenons ainsi une approximation de la sensibilité de la solution
exacte du premier probléme. Généralement, les deux méthodes tendent vers le gra-

dient exact (67 5]

. Ces différentes voies a explorer sont détaillées pour 1élasticité
linéaire par van Keulen 133, Par la méthode des sensibilités, il y a un systéme &
résoudre par parametre de sensibilité, peu importe 'application qui en suivra. En
effet, en plus de calculer le gradient de fonctions cofits, les sensibilités peuvent aussi
étre utilisées dans le cadre de calcul d’incertitude, de solutions voisines, ou pour

identifier les parametres déterminants d’un probleme 32

1.4 Problématique du parametre de forme

Les parametres considérés plus haut peuvent étre de deux natures. Les parametres
dits ”de valeur” n’ont pas d’influence sur la forme du domaine, il peut s’agir d'une
propriété physique du fluide, d’'une condition limite. Les parametres de forme
définissent la forme du domaine, ce qui est assez courant en design optimal. La
méthode générale est la méme pour chaque cas mais le traitement du parametre
de forme demande une attention toute particuliere pour chacune des méthodes

exposées plus haut.

1.4.1 Méthode adjointe

Pour cette méthode, le développement exposé ci-dessus est toujours valable, la

difficulté est de calculer les différents termes de la formule (1.6). En effet, la fonction



cout est souvent de la forme :

FlU,a) = /Qf(U,ac,a) dQ (1.8)

Or le domaine dépend du parametre, nous ne pouvons pas dériver simplement cette

intégrale. De méeme,

<& G >= / EG(U, z, ) d2 (1.9)
Q

Nous utilisons alors la méthode des dérivées matérielles qui est exposée dans 1% de
maniere générale et aussi dans 19, ¥ ou 23], Elle est fréquemment utilisée pour le
calcul de structures, des développements plus spécifiques se trouvent dans 9 avec
différents exemples, plusieurs formes sont aussi exposées dans ! dans le cadre de
31)

I’élasticité linéaire et dans Y, le probleme de Laplace est traité pour illustrer la

théorie.

1.4.2 Sensibilités eulériennes

Pour la méthode des sensibilités, il s’agit de dériver les équations d’états. Tout
comme dans la cadre de la mécanique des milieux continus #7), nous pouvons
prendre soit un point de vue eulérien, soit lagrangien. D’un point de vue eulérien,
il suffit de dériver formellement les équations d’états pour obtenir les dérivées
partielles des états par rapport au parametre. Par exemple pour la vitesse d’un
fluide u(x, ), nous calculons g—z. Cependant, les conditions aux limites en sensibi-
lités sont données par les dérivées matérielles des états. Il faut donc introduire les
termes dus a la transformation de la frontiere traduisant la variation du parametre
de forme. Ces termes dépendent des gradients en espace des états, qui, calculés

numériquement, ne sont pas toujours précis. Le défi pour cette méthode est donc de

calculer avec précision les gradients des états a la frontiére pour obtenir de bonnes



conditions aux limites pour les sensibilités. Malgré cela, le point de vue eulérien
reste intéressant par sa simplicité de mise en oeuvre numérique. En effet, contrai-
rement a la méthode adjointe ou au point de vue lagrangien, il n’est pas nécessaire
de dériver des intégrales dont le domaine dépend du parametre. De nombreuses
applications en mécanique des fluides ont été faites avec cette méthodel®?, en in-

[15]

teraction fluide-structure ', en régime turbulent ¥ ou en régime instationnaire

(20}

1.4.3 Sensibilités lagrangiennes

D’un point de vue lagrangien, nous nous intéresserons au calcul des dérivées totales
des états par rapport au parametre, elles se composent d’un terme lié a la variation
pure du parametre et un autre di a la modification du domaine. En effet, nous

avons u(x, a) = u(x(a), a) donc

. -+ V- — (1.10)

Pour ce faire, il faut dériver les équations d’état, sous leur forme forte ou sous
leur forme intégrale, en tenant compte des variations de géométrie du domaine.
Dans ces conditions, les opérateurs de dérivation par rapport au parametre et
le gradient d’espace ou l'intégration sur le domaine ne commutent pas puisque
les coordonnées d’espaces dépendent du parametre. Il apparait alors une vitesse
de déformation, connue uniquement sur les frontieres, mais qui doit étre calculée
dans tout le domaine. Il existe différentes techniques pour évaluer cette vitesse. La
méthode de la dérivée matérielle est beaucoup utilisée. Des formulations générales

101 Navarrina 23 et Tortorelli Y. Le point

ont été établies par Delfour et Zolésiol
de vue lagrangien a été plutot développé dans le cadre de la mécanique des struc-

tures, les problemes de transfert thermique font Pobjet des travaux de Dems!!! et



Kleiber 2!, Dans Arora M, nous trouverons une formulation pour les équations
d’élasticité linéaire. BobaruP! a effectué quelques simulations numériques avec une
méthode sans maillage pour la résolution (element-free Galerkin method). Les sen-
sibilités lagrangiennes ont été aussi développées dans le cadre de la mécanique de
la rupture par Taroco ! qui a abordé les sensibilités d’ordre 2 et pour I'optimi-
sation d’arcs plans par Choi ). Dans Lee 22 des équations intégro-différentielles
de bord (boundary integral equation formulation) sont utilisées pour traiter des
problemes de solides élastiques axisymétriques. En mécanique des fluides, nous no-
terons le travail de Smith®® qui traite de 'écoulement de polymeres gouverné par
les équations de Stokes, dans Wang 34, les équations de Navier Stokes sont traitées,
avec une technique de paramétrisation de domaine [ pour le calcul de la vitesse de
déformation. D’autres approches mathématiquement compliquées ont été abordées

1)

par Gaoll7 en utilisant les dérivées de Piola .

1.4.4 Comparaisons

Dans le domaine de la CFD, la formulation lagrangienne a été peu développée et ses
performances ont été peu évaluées, en particulier, nous ne savons pas si elle présente
un réel avantage par rapport a la formulation eulérienne. La difficulté principale
pour la formulation eulérienne est la définition de conditions aux limites, car il faut
tenir compte de la transformation de la frontiére due a la variation du parametre.
Pour la formulation lagrangienne, il faudra considérer la transformation dans tout
le domaine et la différentiation pour obtenir les résidus est aussi plus compliquée.
Les conditions aux limites restent simples. Cette formulation pourrait donc étre une
bonne alternative pour contourner les problémes de précision et de convergence de

la formulation eulérienne.
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1.5 But et objectifs

Le but de ce mémoire est d’étudier les sensibilités lagrangiennes et de comparer ses
performances a celle de la formulation eulérienne. Les objectifs sont les suivants :
— Développer les équations des sensibilités lagrangiennes pour ’équation de la cha-

leur

Vérifier I'implémentation et démontrer l'intérét de la méthode en terme de

convergence

Développer les équations des sensibilités lagrangiennes pour les équations de
Navier Stokes
— Vérifier la méthode sur une solution manufacturée

— Evaluer les atouts et les limites sur un cas concret de calcul de solutions voisines

pour un profil NACA & 4 chiffres
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CHAPITRE 2

METHODE DE L’EQUATION DES SENSIBILITES POUR UN
PARAMETRE DE FORME

Dans ce chapitre, nous nous intéresserons a |’équation des sensibilités pour
I’équation de la chaleur. Nous la développerons donc pour chacune des formu-
lations, eulérienne et lagrangienne en soulignant leurs caractéristiques, atouts et

inconvénients.

2.1 Meéthode de I’équation de sensibilité classique

Considérons ’équation de la chaleur dans un milieu de conductivité k£ sur un do-
maine 2, dont la forme dépend d’un parametre o dit de forme. La frontiere 02,
est subdivisée en deux parties disjointes, I'r et I'; sur lesquelles nous imposerons

des conditions de Dirichlet et de Neumann respectivement :

V- (kVT) = @ dans Q, (2.1)
T=T sur 'y (2.2)
kVT -n=7q surl, (2.3)

Dans ces équations, la conductivité k, la température T et les conditions aux limites

T et § dépendent & la fois des coordonnées spatiales et du parametre de forme «.



12

Cette dépendance peut s’exprimer de la facon suivante :

T=T(ya)

k=k(z,y;a) ete...

Le point virgule séparant les variables indépendantes = et y du parametre a. Le
but de la méthode des sensibilités est de quantifier la dépendance des variables du

probléme par rapport au parametre.

2.1.1 Equation des sensibilités eulériennes

Nous utilisons le terme ”sensibilités eulériennes” pour désigner les dérivées par-
tielles des variables du probleme par rapport au parametre «. Pour notre probléme,

la sensibilité eulérienne de la température sera notée de la maniere suivante :

or

S = % (24)

Elle est calculée en résolvant le probleme obtenu en dérivant formellement par
rapport & « les équations aux dérivées partielles du systeme initial ainsi que ses

conditions aux limites. Pour ’équation de la chaleur, nous obtenons :

v (Lor i 20) %0

oo da | Oa
) ok oQ
Soit V. <%VT + szT> =5 (2.5)

Comme nous le verrons au paragraphe suivant, le traitement des conditions aux
frontieres est un peu plus compliqué pour un parametre de forme car il faut

considérer la déformation de la frontiere engendrée par la variation du parametre.
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2.1.2 Conditions aux frontiéres : difficultés et limites

Les conditions aux limites nécessaires pour fermer le systeme sont obtenues en
dérivant celles du probleme initial. Comme a est un parametre de forme, les
frontieres du domaine se déforment quand o varie. Cette dépendance s’exprime

par la paramétrisation suivante :

To = {(z5 ()45 (t;0)) |t € [0,1]} (2.6)

Dans cette expression, (zf,ys) représentent les coordonnées d'un point de la
frontiere, o détermine la géométrie de la courbe sur laquelle les conditions aux
limites sont appliquées, alors que ¢ détermine la position d'un point le long de cette

courbe.

2.1.2.1 Conditions de Dirichlet

Les conditions de Dirichlet étaient les suivantes :
T=T sur [y (2.7)

Puisque la frontiére change de forme avec les variations de «, les conditions aux
limites s’expriment plus naturellement par une dérivée matérielle que partielle de

(2.7), ce qui permet de suivre le point de la frontiere dans son changement de
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position. Nous avons alors sur I'z

DT DT
el 2.8
Do D« (2.8)
I's I's - . D'—-
soit 0L 0T %y  OT 0y DT (2.9)

da ' Or da | By da  Da
DT JT oz f or 8y f

donc sp = — — ——— — —— sur [ 2.10

T Da oz oa Oy Oa T ( )

Ces formules sont valables également pour un parametre de valeur. Dans ce cas, la

frontiere est immobile et les termes Oz s/da et Oys/Oa sont nuls. La condition aux
o . ar
limites devient sp = —.

Oa
2.1.2.2 Conditions de Neumann

Pour les conditions de Neumann, nous cherchons & exprimer le flux de la sensibilité

eulérienne a la frontiere qui est défini de la maniere suivante :

qJ = (%VT + szT) ‘n

Pour cela, considérons les conditions de Neumann de ’équation de la chaleur :
EVT -mn=7q surl, (2.11)

Tout comme dans le cas des conditions de Dirichlet, nous devons calculer les
dérivées matérielles de chacun des termes de I’équation (2.11) pour tenir compte

de la déformation de la frontiere. Notons que 'opérateur V dépend également du

parametre. Ainsi, nous obtenons :

—VT~n+k—vT—-n+kVT~—:—— (2.12)
s Do /



Les dérivées matérielles apparaissant dans cette équation peuvent étre développées

de la facon suivante :

Dk _ 0k, Okdzy | ok

Da  Oda  Or da = 9y da

DVT (68T 82T 8:1:f (92T Oyf)
n = — + Ny

Da ox * 0x? da  Oxdy da
st N OPT dxy 0T Oy; n
Oy  O0xdy da  Oy? Oa ) ?

Si la normale & la frontiere m est définie telle que n = n(t, a), alors sa dérivée
matérielle se réduit a sa dérivée eulérienne car t et « sont des parametres
indépendants I'un de l'autre. Ainsi, nous pouvons isoler le flux des sensibilités

et nous obtenons la condition de Neumann suivante sur Iy :
, Dg ok 85L‘f ok E)yf
=_* | L 4 7 T.
= Da (8x8a+8y8a vI-n
2T ¢ 2T 2T 2T
—k|(2 ; vy OT %ypy, o (OT Oy 0T 0y n,|  (2.13)
0x? da  Oxdy O« 0xdy da  0y? O
on

— kYT . 2=
v O

Nous remarquons qu’elle fait intervenir les dérivées spatiales d’ordre 2 de la

température.

2.1.2.3 Difficultés et limites

Que ce soit pour les conditions de Dirichlet ou de Neumann, les conditions aux
limites des sensibilités font apparaitre les dérivées spatiales de la température a
la frontiere. Ces dernieres sont extraites de la résolution numérique par éléments
finis du probleme initial, or c’est justement & la frontiere que ces dérivées sont les

moins précises. Cette imprécision se propagera sur tout le domaine de calcul dans


file:///dxdy
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le probléme des sensibilités. 11 existe des techniques de reconstruction des gradients

a la frontiere 13- 1) pour pallier ce probléme mais leur cotit demeure relativement

élevé.

2.1.3 Formulation variationnelle

La forme faible du probléme s’obtient en multipliant I’équation (2.5) par une fonc-
tion test et en intégrant sur tout le domaine. La fonction test est de méme régularité
que la solution et s’annule sur la partie I'r de la frontiere, c¢’est & dire au niveau

des conditions de Dirichlet. Soit §W une telle fonction, nous avons alors :

/ V. (gfvmw + szTéVV) Q) = @M/V s}
Q

! q Oa

Intégrons ensuite par parties les termes d’ordre 2 :

_ / (%VT.WWMVST-V&W) 0
o \ Oa

+/ Ok G+ 1vsp ) 6w -ndr = | 29w a0
o2 804 Q dOé

Par définition, la fonction test s’annule sur 'y alors que les conditions de Neumann

apparaissent sur I';. Nous obtenons donc la forme faible suivante :
" [ Ok , oQR
—VT + kVsg |- VOW dQ — goWdl'+ | —W d2=0 (2.14)
Q 8(1 Ty Q (9&
2.2 Méthode de résolution - Eléments finis

Les problemes de 1’écoulement et des sensibilités sont mathématiquement fermés

et seront résolus par une méthode d’éléments finis 1. Afin de réduire les erreurs
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de discrétisation, nous utilisons un maillage adaptatif. Dans cette partie, nous

présentons ’algorithme de résolution et les méthodes numériques utilisées.

2.2.1 Algorithme de résolution

Le vecteur de design o est composé de n, parametres. Il faut donc résoudre le
probléme initial et n, systémes de sensibilités. La démarche suivie est décrite par
le schéma 2.1. A partir d’un maillage donné, nous résolvons d’abord le probleme
initial puis chacun des problemes de sensibilité. A I'issue, 'erreur est estimée pour
chacune des variables dépendantes et de leurs sensibilités. Nous pouvons ensuite en
déduire la distribution de taille optimale des éléments qui raffinera le maillage 1a ol
les erreurs sont les plus élevées. Le processus est répété jusqu’a ce que la précision

voulue de la solution soit atteinte.

Maillage du domaine

l

Résolution du probléme initial

=1.n, Résolution du probléme de sensibilité par rapport a o,

Estimation d’erreur

FiG. 2.1 Algorithme de résolution



18

2.2.2 Meéthodes numériques

Nous avons vu au paragraphe précédent que le probleme initial et le probleme

des sensibilités sont tout deux résolus avec une méthode d’éléments finis que nous

allons maintenant détailler.

— La formulation variationnelle est obtenue a partir du systeme d’équations
différentielles.

— Le domaine est décomposé en N, éléments comprenant chacun N, noeuds et

sur chaque élément,la solution est approchée de la manieére suivante :

Nep
ST =~ S7p = Z STiNiST (215)
i=1
ou st; est la solution numérique au noeud ¢ de I’élément considéré et les fonctions
N;™ sont les fonctions d’interpolation de 1'élément.

— La méthode de Galerkin consiste alors & choisir successivement chaque fonction
d’interpolation comme fonction test dans la forme faible, ce qui permet ensuite
de construire un systéme discret du type R(U) =0

— Pour les problemes de sensibilités ou pour la conduction si la conductivité est
constante, il s’agit d’un systeme linéaire, ce qui n’est pas le cas pour les équations
de Navier Stokes que nous verrons plus tard. Il faut alors utiliser une méthode
itérative de Newton-Raphson. Afin de gagner du temps de calcul, nous utiliserons
un jacobien numérique ou la matrice calculée a U'itération précédente. Avec cette
opération, la convergence est légerement affectée mais le temps de calcul est plus

faible.
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2.2.3 Adaptativité

Une fois le systeme résolu, 'erreur de discrétisation est estimée pour remailler
le domaine. Comme la solution exacte est inconnue, une approximation d’ordre
supérieur a la solution éléments finis est calculée par une méthode de projection

35,36] T.a norme de l'erreur est alors calculée

locale établie par Zhu et Zienkiewicz!
sur chaque élément pour identifier les zones qui <vivent étre raffinées. Les erreurs
du probleme en température et des sensibilités sont prises en compte, il est donc
important que la formulation des sensibilités soit compatible avec I’adaptation de

maillage.

2.3 Meéthode de ’équation des sensibilités lagrangiennes

Nous allons maintenant présenter la méthode qui permet d’obtenir la forme faible
correspondant a la formulation en terme de sensibilités dites lagrangiennes. Tout
d’abord, nous allons exposer quelques notions sur les transformations d’espace uti-

lisées dans le développement subséquent des équations.

2.3.1 Transformation d’espace

Considérons le domaine € dépendant du parametre de forme «. La configuration de
référence sera notée )y et le domaine déformé suite a une variation du parametre
de forme sera noté §2,. Supposons qu'il existe un difféomorphisme de classe C*(§))

liant ces deux domaines. Soit qAS cette transformation, elle est alors définie de la
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Q

Fi1G. 2.2 Déformation du domaine

maniére suivante :

o : 0 — Q,

x — ¢(x,a) = x" (2.16)

Nous noterons avec l'exposant « les variables exprimées sur la configuration
déformée, c’est a dire en fonction de x®. Ainsi, si g est un champ défini sur g, les

champs g et g” sont liés par la relation suivante :

9°(x*) = g*(¢(x, @) = g(x) (2.17)
Alors, pour g = ql;

~Q, A

¢ (x") = §"(d(x, @) = P(x,a) = x°
donc qﬂa = Id*

Prenons un exemple en une dimension. Considérons une barre de longueur L. La
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transformation correspond a un allongement de la barre a une longueur L + «. La

déformation est illustrée sur la figure 2.3 et a I'expression analytique suivante :

L+«

by =12

€T

\
\i

Domaine de référence Domaine déformé

Fi1a. 2.3 Domaine 1D

Supposons maintenant que la température sur la configuration déformée soit définie

de la maniere suivante :

Tz%) = 2%(z® — (L + a))

Donc en fonction de la variable sur le domaine non déformé, la température s’ex-

prime par




2.3.1.1 Taux de déformation et Jacobien
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Le tenseur des taux de déformation, noté F(x, «) s’exprime sur le domaine €y de

la maniere suivante :

5 oz 0
F(xa) =Vé(xa)=| jo Jh
Or dy

(2.18)

Son déterminant, le jacobien de la transformation J(x,a) a I'expression suivante :

J(x,a) = det[F(x, a)] = det[V(x, a)]
_ 0z*oy” 3 oy® dx*
Oz Oy ox Oy

Reprenons notre exemple précédent en y ajoutant une deuxiéme dimension,

o L+a
. % = 7 z
o(z,y) =
Yy =y
Ainsi,
L+« 0
F(x,a) = L et J(x,a):L+Q

(2.19)

(2.20)

(2.21)



2.3.1.2 Vitesse de déformation

La vitesse de déformation, appelée aussi vitesse de maille est la dérivée de la trans-

formation par rapport au parametre .

V]w(X,Oé) — ad)g;/ &) — a¢ [géx’o{)] — Vﬁ(xa,a)

Ces définitions nous permettent de déduire ’égalité tensorielle suivante :

avl\hc 8VMx
DF OF or Oy
2E_ gy, = 2.2
Da 9o VMT | oV, Vi, (2.22)
ox dy
Pour notre exemple,
z
_ | L
VM(JJ, y) = (223)
0
et nous pouvons vérifier que
1
F - 0
Z— =vvy=| L (2.24)
“ 0 0

2.3.1.3 Quelques formules utiles

Nous utiliserons dans la suite les formules suivantes, elles sont démontrées en annexe
et développées de manieére plus détaillée et rigoureuse dans I'ouvrage de Delfour et

Zolesio™® ou dans Tortorellil®.



24

— Dérivée du Jacobien

Sur la configuration de référence, la dérivée du Jacobien de la transformation par

rapport au parametre de forme est donnée par la formule suivante :

av] -1
BN ViV o J (2.25)

Pour la configuration déformée, nous avons :

DJ«
Do

— JOVe VS (2.26)

— Opérateurs gradient et divergence

Les opérateurs gradient et divergence font intervenir des dérivées d’espace, leur
expression dépend donc du domaine dans lequel ils sont exprimés. Soient un champ
de vecteurs f*(x®, ) défini sur €2, et son correspondant f(x, o) sur Qp, nous avons

les correspondances suivantes :

Ve f*=F"': Vf (2.27)
Vo = Vf- F! (2.28)

— Formule de Nanson!®

Le passage du domaine déformé au domaine de référence pour les intégrales de

bord est donné par la formule suivante, dite de Nanson :

/fa(xa,ya) nedle = [ f(x,y) JF™T . nodly (2.29)

o o

avec f un champ de vecteur ou une fonction scalaire
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Nous complétons ce paragraphe avec deux dernieres formules :

DF™!
F— =V} (2.30)

DJ
J“lm =V*.V (2.31)

2.3.2 Equation des sensibilités lagrangiennes

Nous allons maintenant présenter les équations permettant de calculer les sensibi-

lités lagrangiennes, notées Sp.

Il s’agit de la dérivée totale des variables par rapport au parametre o, ¢’est a dire,

e T(d(x,a + ba),a + da) — T(x, ) DT
S = al@iglo Je! - Da (2:32)

2.3.2.1 Développement des équations

Nous développons la forme faible des équations de sensibilités lagrangiennes en
dérivant directement la forme faible de ’équation de la chaleur. Soit §W une fonc-

tion test, la forme faible de '’équation de la chaleur (2.1) est :
/ (VAT - VAW + QW) dQy =0 (2.33)

Pour alléger le calcul, nous imposons des conditions de Dirichlet sur toute la
frontiere, ce qui permet d’annuler le terme de bord au complet. Nous devons alors

évaluer

D

— (VYT - VW + QW) dQ, =0 (2.34)
Da Jq,
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Cette opération doit tenir compte de la déformation du domaine engendrée par
une variation du parametre «, il n’est donc pas possible de dériver directement

I'équation (2.33). Nous adopterons la démarche suivante :

1. Expliciter les dépendances en o en ramenant l'intégrale sur le domaine de

référence par un changement de variable approprié.

2. Dériver par rapport a a. Le domaine de référence étant indépendant du pa-

rametre, il n'y a qu'a dériver 'intégrande.

3. Revenir au domaine déformé

Procédons donc étape par étape et considérons la forme faible (2.33) :

1. Nous explicitons les dépendances en « en revenant sur le domaine de
référence. Les formules (2.27) et (2.28) permettent d’exprimer les gradients

et les divergences en fonctions des coordonnées sur le domaine de référence.
/ (kVT - F~' - VoW - F~' + QW) Jd =0
Q0

2. Dérivons Vintégrand puisque le domaine est a présent indépendant du pa-
rametre. Notons au préalable que les fonctions test sont indépendantes du

parametre a. Leur dérivée est nulle.

~ DT
/ <9£VT CFVOW  F 4+ kV—— . F . VW . FT
Q0 DO& DOZ
-1 DF™!
+kVT-DF VoW - F '+ kVT - F . VW .
Do Do
+D—Q5W> 7 d%
Do

' D
+/ (kVT - F~'-VSW - F~ + QW) DT j0,
% Do

=0
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3. Nous faisons le changement de variable inverse pour retourner au domaine
déformé en utilisant les formules (2.27) et (2.28) en sens opposé pour trans-

former les dérivées d’espace :

" ( Dk D -1
/ < VT . VW + kV“—Z -VYSW + kVeT - F . DF - VSW
O Do Do o
-1
+kVET . VYW . F . DF + 2@—514/ dQ,
Da D«
1DJ
kAT - V% W) =— dQ2,
+/Q (k9T - VW + QW) = 2 d,

23

=0

Cette forme se simplifie en utilisant les formules (2.30) et (2.31) :

DF~! e
DJ

-1 — a o

J e =V Yy

Nous obtenons alors la forme finale suivante :

Dk
/ <——VaT + kvaST> VAW — kV°T - (VOV + (VoVi)T) - VW
Qq

Do
+ k (V- V) VeT - VYW + (gQ

(87

+QVe - v,g;) SW dQy = 0

(2.35)

2.3.2.2 Autres méthodes

Une autre possibilité consiste a dériver la forme forte par rapport & o en premier
et ensuite calculer la forme faible de 'expression obtenue dans un second temps.

Le résultat est le méme. Ce calcul est developpé en annexe.

Nous aurions aussi pu utiliser directement les formules de dérivation démontrées
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dans ' et 1 ou B, Cest la facon la plus utilisée en générallll car elle est plus
directe. Nous avons ici détaillé les calculs afin de mieux appréhender la notion de

domaine déformable. Les calculs plus directs sont présentés en annexe.

Quelle que soit la méthode, elle mene au méme résultat qui fait intervenir la vitesse
de déformation sur tout le domaine, il convient donc d’en étudier les principales
caractéristiques. C’est 'objet de la section suivante. Nous remarquons aussi que si
la vitesse de maille est nulle, la formulation lagrangienne se simplifie et prend la

forme exacte de la formulation eulérienne.

2.3.3 Calcul de la déformation

La forme faible de I'équation des sensibilités (2.35) fait intervenir les dérivées spa-
tiales de la vitesse de déformation. Cependant, la vitesse de maille est définie uni-
quement sur la frontiere du domaine. Il nous faut donc construire une extension au
domaine complet. Ce prolongement devra :

— correspondre aux conditions aux limites du probleme physique,

— étre continfiment différentiable en espace. En effet, c’est le gradient ou la di-
vergence de la vitesse, VVj,, qui apparait dans la forme faible. Les dérivées en
espaces doivent donc étre continues afin de garantir une bonne résolution du
probleme des sensibilités et éviter d’avoir a introduire des termes de saut aux
interfaces des éléments.

Toute fonction répondant a ces criteres peut étre utilisée, la vitesse de déformation

exprimée sur le domaine n’est donc pas unique.

11 existe plusieurs techniques pour déterminer une telle extension. Tout d’abord, elle
peut étre spécifiée analytiquement!!B!. Malheureusement, dans la plupart des cas,

le calcul analytique devient trop complexe et trop lourd pour rester une approche
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P

intéressante. Elle peut alors étre construite numériquement. Dans ce mémoire, nous
utiliserons I'approche psendo-solide*®l, qui suppose que la géométrie du domaine
se comporte comme un solide élastique. La transformation est alors gérée par les
équations d’élasticité linéaire. Le déplacement en lui-méme est nul et la vitesse de
maille sera donnée par sa sensibilité. Les équations de sensibilités sont les mémes
que celles du déplacement. La vitesse de maille est donc la solution du systéme

sulvant :

1 ;
V- <§Apstr (Vi + VIVir) + s (VVir + VTVM)> =0 dansQ  (2.36)

Vi =V sur 90 (2.37)

ol Aps et ups sont les coeflicients de Lamé de la pseudo-structure et Vi est
donnée. Ce probléme est résolu en méme temps que le probléme des sensibilités
de température (couplage total). Elle est donc compatible avec I'adaptation de

maillage.

D’autres techniques de calcul existent comme la paramétrisation du domaine (do-
main parametrization metlzod)[3o] qui repose sur une configuration de référence fixe
et utilise une transformation analogue a la transformation sur I’élément de référence
utilisée dans la résolution éléments finis du probleme. Elle est donc dépendante du
maillage puisqu’elle est définie par élément 2834, Dans Belegundul?, des forces
virtuelles sont prises comme parametres de forme pour déformer le maillage, la
vitesse de déformation est ensuite obtenue par différences finies. Ce calcul est un
préalable a I'analyse de sensibilité et les forces adéquates doivent étre appliquées
aux noeuds adaptés pour obtenir la déformation voulue. Ces 2 techniques ne sont

donc pas compatibles avec un maillage adaptatif.

Notons également que la transformation n’est utile que pour le calcul des dérivées.

Nous ne distonguerons pas dans la pratique pour le probléme initial un champ
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lagrangien et un champ eulérien. Autrement dit, les configurations de rétérence et

déformée sont confondues.

2.3.4 Conditions aux limites

Tout comme pour les sensibilités eulériennes, nous devons compléter 1'énoncé du
probleme avec les conditions aux limites. Les conditions limites du probleme original

étaient les suivantes :

kEVT -n=7q surIy (2.38)

T=T sur '} (2.39)

2.3.4.1 Conditions de Dirichlet

Sur la courbe 'y, il y a égalité des dérivées matérielles

DT DT

—=—— 2.40
Do Do ( )

Comme les dérivées matérielles correspondent aux sensibilités lagrangiennes, nous

avons

Sr=— sur ['T (2.41)
a
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2.3.4.2 Conditions de Neumann

Pour exprimer les conditions de Neumann, nous devons revenir a la forme faible.

J

Il faut donc calculer la dérivée totale du membre de droite par rapport a «. La

Ainsi,

kVOT® . n®0W dI* = / oW dre (2.42)
T

a q

démarche est la méme qu’a la section précédente :

— expliciter les dépendances en « en ramenant l'intégrale sur le domaine de
référence

— dériver par rapport a «

— revenir au domaine déformé

Pour passer au domaine de référence, nous utilisons la formule de Nanson

q

Ir =/ gow dl“a:/ gWJ||F~" . nO| 4r°
rg e

Nous pouvons a présent dériver :

dI Dg d
Lo =/ D8 s 7157 - n0) + qow L F-T .m0
Fg dO[

do Da
d F—T .0
cgew s ME -l o
do
Notons que
T Lt W W £ G
do |F~T - no da

Revenons sur le domaine déformé en utilisant (2.30) et la formule de Nanson.
Comme il a été mentionné plus haut a la section 2.3.3, la déformation n’est utile
que pour le calcul des dérivées. A cette étape, elle n’est plus utile et nous pouvons

confondre la configuration de référence et la configuration actuelle. Ainsi, nous
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FiG. 2.4 Cas analytique : déformation du domaine

pouvons simplifier notre expression en utilisant que n® = n® et F = Id.

dIr,
do

_ /F <@ (V- Vi) T—G(VVag - ) - n) SWdr (2.43)

Do

a=0

Le systeme est a présent mathématiquement fermé et nous avons directement une
forme faible que nous résolverons de la méme maniere que pour les sensibilités

eulériennes.

2.3.5 Calcul analytique

Pour nous assurer que la forme faible obtenue est correcte, nous choisissons
une solution analytique (transformation et température) et vérifions I’équation.
Considérons donc le domaine €, défini sur la figure 2.4. L’équation de la frontiere

du bas est

y(z) = asinz (2.44)

Le domaine de référence correspond a o = 0.
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Transformation

La transformation entre le domaine {0y et 2, peut étre étendue au domaine de la

maniére suivante :

é(z,y) = (2.45)

Calculons la dérivée par rapport a « pour obtenir la vitesse de déformation :

oxr® 0
VM(iE il/) = Oa = (2 46)
7 oy” (1 — _?i> sinx .
oo L

Nous nous intéressons a la vitesse de déformation en a = 0, donc le gradient de la

vitesse de déformation est le suivant :

0 0
VOV = VVy, = y . (2.47)
(1 - Z) cosE =TT
Ainsi,
V- Vi = —Slzx (2.48)

Remarque : La transformation n’est pas unique, il s’agit d'un artifice de calcul
sans signification physique. Il suffit donc qu’elle satisfasse les conditions aux limites
correspondant a la déformation des frontieres du domaine. Par exemple, pour notre

cas, nous aurions pu choisir la transformation suivante :

=z
o(z,y) = )2 (2.49)

y* = asinz + %—Q(L—asinm)
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Solution

Soit le champ de température suivant :
Tz, y* a) = (y* — L)(y* — asinz*) (2.50)

Nous cherchons la sensibilité en = 0 donc les champs de vecteurs sont les
mémes en configuration déformée et en configuration de référence. Le gradient

de la température est donc calculé en aa =0 :

VT (z®, y*) = (2.51)
2y — L

Pour calculer la sensibilité lagrangienne de la température, c’est a dire la dérivée

totale par rapport a a, nous avons deux possibilités équivalentes.

La premiére consiste a exprimer la température sur le domaine déformé en fonction

des coordonnées non déformées, en effet,
Tz, y%, a) = Ta(dg(x,y), a) (2.52)

Cette opération permet d’expliciter les dépendances en « et il ne reste plus qu’a

dériver I'expression obtenue. Dans notre cas, la température a l’expression suivante :

T(@(z,y),0) = (a sinzx + %(L —asinz) — L) %(L — asinz) (2.53)
Apres dérivation et simplifications, nous obtenous :
DT
Sr= g =% (1 . %) sin (2.54)
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La deuxieme méthode consiste a utiliser le théoreme des fonctions composées.

DT 9T 9Tdx 9T dy

—_ = — _— I

51 Da  Oa * oz da i Oy da (2:55)
oT

= 5=+ VT Vy (2.56)

Ceci méne au méme résultat.

Calculons le gradient de la sensibilité en a = 0, nous omettrons donc les exposants

[0

2y (1 - %) COST
VSr(z,y) = 2 (2.57)
2 (1 — f) sin x

Cette solution correspond, pour un milieu de conductivité £ = 1 au terme source
suivant

Q*(z*, y", ) = asinx (y* — L) + 2 (2.58)

Ena=0,Q=2.

Nous déterminons la sensibilité lagrangienne du terme source de la méme maniére

que pour la température :

Q*(@(x,y), @) = asinz (a sinz +y ({J%gmf) _ L)

Donc,

il =sinz (y — L) (2.59)
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Vérification

En développant la forme faible (2.35), sachant que k = 1 | nous obtenons

[OST OT OV, OT (OVage  OVigy oT] 96W
/Q En (81‘——&5 *@( ay T o ))W'VM%} I
[0St T (OVre OV oT IV, oT ] d6W
+ | Oy <81’( oy - oz +2_5y‘ dy TV VM@y Ay
‘DO
+ |=—+V - VyQ| oW dQ= 0
| Da

En remplacant la température, sa sensibilité lagrangienne et le terme source par

leur expressions respectives, le membre de gauche devient :

00W . <2y ) 0w
— smmx
Oy

) oW dQ

En intégrant par partie les deux premiers termes et en tenant compte du fait que la

fonction test s’annule sur le bord, nous vérifions bien que cette intégrale est nulle.

2.4 Formulation Eulérienne versus Formulation Lagrangienne

Comparons les caractéristiques des formulations eulérienne et lagrangienne.
Obtention de la forme faible de I’équation des sensibilités :
Pour la formulation eulérienne, ’équation d’état est différentiée formellement par

rapport au parametre. La forme faible est ensuite obtenue en multipliant les

équations ainsi obtenues par une fonction test puis en intégrant sur le domaine.
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Pour la formulation lagrangienne, la forme faible de I’équation d’état est différentiée
par rapport au parametre. Cette opération est délicate car le domaine d’intégration
dépend du parametre. La forme faible ainsi obtenue met en jeu les dérivées spatiales

d’une vitesse de déformation.

Conditions aux limites :

Les conditions aux limites sont données par les dérivées matérielles de celles du
probléme initial.

Dans le cas des sensibilités eulériennes, il est nécessaire de retrancher le terme de
transpiration afin d’obtenir la bonne valeur. Ce terme fait intervenir les dérivées
spatiales du champ qui seront issues du calcul numérique.

Pour les sensibilités lagrangiennes, comme la dérivée matérielle correspond & la

sensibilité lagrangienne, I’'obtention des conditions aux limites est directe et exacte.

Enjeu :

Pour les sensibilités eulériennes, le point crucial est le calcul des conditions aux li-
mites. Comme elles font intervenir les dérivées spatiales du champ de température,
il est indispensable que celles-ci soient calculées avec la plus grande précision pos-
sible a la frontiére pour ne pas introduire d’erreur dans tout le champ de sensibilité.
Cette opération demande en général des calculs supplémentaires qui peuvent étre
assez lourds.

Pour les sensibilités lagrangiennes, les conditions aux limites sont exactes mais la
forme faible fait intervenir une vitesse de déformation qui n’a de réalité physique
que sur les frontieres du domaine. Elle doit étre calculée partout, en méme temps
que les sensibilités. Il s’agit donc de deux variables inconnues supplémentaires &
prendre en compte dans le systeme global. Le temps de calcul sera donc un peu

plus long.



38

CHAPITRE 3

RESULTATS NUMERIQUES EN CONDUCTION

Nous avons établi au chapitre précédent une formulation de I’équation des sensi-
bilités lagrangiennes. Nous allons a présent faire quelques simulations numériques
pour tester le code et pour étudier la convergence, en particulier avec des conditions

de Neumann.

3.1 Méthode de la solution manufacturée

La méthode de la solution manufacturée (MMS)I®! sera utilisée pour vérifier

Pimplémentation et 1’ efficacité de la formulation lagrangienne.

La MMS consiste a choisir une expression algébrique T); de la solution. Celle-ci ne
satisfait généralement pas I’équation différentielle £(T") = 0. Il faut donc déterminer
I'expression du terme source Qar = L(Tyy). Ainsi, Thy est solution du probléme mo-
difié £L(Tyr) = Qar- Nous résoudrons cette équation sur une séquence de maillages
de plus en plus fins afin de vérifier que la solution numérique calculée avec ces

termes sources converge, avec le bon taux théorique vers la solution analytique 7T},.

3.2 Cas d’une ”couche mince”

Dans cette premiere partie, nous reprendrons la géométrie et la transformation
utilisées dans la section 2.3.5 mais la solution en température sera choisie avec un

fort gradient au niveau de la frontiere dépendant du parametre afin d’avoir une
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sensibilité forte dans son voisinage. La solution ressemblera a un profil de vitesse

dans une couche limite.

3.2.1 Solution exacte

Considérons donc le domaine 2, défini sur la figure 3.1. Il s’agit d'un carré unitaire.
Nous chercherons a calculer la sensibilité de la température par rapport a la forme

de la frontiere du bas. Celle-ci a pour équation :

y(z) = asinz (3.1)

Le parametre de forme est alors a.

y

0 I

Fi1a. 3.1 Cas de la ”couche mince” : Déformation du domaine

Nous commencerons par définir le champ de température choisi dans le cadre de la
méthode des solutions manufacturées. Pour ’écoulement, il n’y a pas de diftérence
de point de vue, puisque la transformation du domaine n’intervient que pour le
calcul des dérivées. Ainsi T%(z%, y*) = T'(x,y). Nous dériverons ensuite ce champ

pour obtenir tout d’abord la sensibilité eulérienne puis la sensibilité lagrangienne.
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3.2.1.1 Champ de température

Nous choisissons le champ de température suivant comme solution manufacturée :

—B(y—asinx) __
e 1
Ta ooy /2

(:E 7y ) T e._ﬁ _ 1

(3.2)

Dans cette expression, o est le parametre de forme et 3 controle ’épaisseur de la

couche mince. En a = 0, le gradient de T est le suivant :

e —1
VI@y)=| ° ~, (3.3)
, o €Y
~ e e=hf—1

Pour une conductivité constante égale a 1, le terme source correspondant a cette

solution est le suivant :

_ 0T N FT e P (24 5% + ay(z, ) — 2
o2 oy? e=f—1

Q

Avec la fonction y(z,a) = 4Bz cosx — Bz’ sinz + aB*2? cos® z

Ainsi, en o = 0, le terme source devient :

e P(2 + [22?) — 2
e #—1

Q=

Nous appliquons des conditions de Neumann sur la frontiere du bas qui dépend du
parameétre de forme a. Nous devons done calculer le flux thermique correspondant.

11 est définit de la fagon suivante :
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La normale a la frontiere est la suivante :

aCOoST

1+ a2cos?z
n(z,y) = 1 (3.4)

V14 a?cos?x

Sur cette frontiere y = 0. Le flux thermique en o = 0 est alors le suivant :

[

1= 55 1

3.2.1.2 Sensibilité eulérienne

La sensibilité eulérienne de ce champ de température se calcule aisément par une
dérivée partielle de T par rapport a a. Nous obtenons alors en oo = 0 :

oT e~ By

2 .
S = — =frrsihr———- 3.5
T~ ba e g e P —1 (3:5)

Le terme source correspondant s’obtient aussi par une dérivée partielle par rapport
a «a, ce qui mene a l'expression suivante pour o = 0.

oQ e~ Py

o (ﬁ sin x (2 + x252) + 4zf cosz — 2%Fsin :17)
o e P —

Pour les conditions de Neumann, nous devons calculer le flux des sensibilités

eulériennes qui s’exprime de la facon suivante pour une conductivité constante :
¢ =kVsr-n

Sur la frontieére du bas, y = 0 et en a = 0, nous obtenons I'expression suivante :

B?x?sinx

—i:
g e f—1
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3.2.1.3 Sensibilité lagrangienne

La sensibilité lagrangienne s’obtient avec la dérivée totale du champ de température
par rapport au paramétre de forme. En utilisant le théoreme des fonctions com-
posées, nous obtenons l'expression suivante :

Dr or

Da é)a+ M

St

Cette expression fait apparaitre la vitesse de déformation que nous devons cal-
culer au préalable avant de déterminer la sensibilité lagrangienne du champ de

température.

Transformation

Nous reprenons la transformation établie dans I'exemple analytique a la section

2.3.5. La transformation calculée précédemment était la suivante :

y

0 1

Fia. 3.2 Cas de la 7couche mince” : Déformation du domaine
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(64

R =z
P(x,y) = y (3.6)
y* = asinx + Z (L — asinz)
La vitesse de déformation :
0
sinx (1 - _I:)

donc en o = 0, le gradient de la vitesse de déformation a 'expression suivante :

0 0
VQVM = VV]W = ’U S?:?’I/.’E (38)
cos T (1 — —Z) ~ I
et
V . V]\/] — _Sllzx (39)

Nous pouvons a présent calculer la sensbilité lagrangienne du champ de

température, ainsi que celle des termes sources et des conditions aux limites.

Sensibilités lagrangiennes

Le champ de température était le suivant :

e—ﬁ(y-a sinzx) __ 1

e B -1

T*(z%,y*) = z* (3.10)

La sensibilité lagrangienne du champ de température est calculée par le théoreme

des fonctions composées

DT 9T 9T Dz 9T Dy

ST = Do = a t 32 Da T 9y Da
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Ce qui mene a l'expression suivante pour o = 0 :

9 . e_ﬁy
Sr=x"yPsinz

—— (3.11)

La sensibilité du terme source est calculée par le code avec le théoreme des fonctions
composées. Il faut donc lui fournir ses dérivées spatiales et sa dérivée eulérienne.

Pour a = 0, elles sont les suivantes :

Q) e : 2 52 24
o :9“5 7 (ﬁsmx (2 + -4 ) +4xFcosx — Bsma:)
oQ e Py

ZE 9432

ox zf e B —1

aQ -By

dy
Pour les conditions de Neumann, nous devons calculer la dérivée lagrangienne du
flux thermique. Son expression est la suivante :
Dy DvVT Dn

Il est imporant a cette étape de se rappeler que la sensibilité lagrangienne d’un

gradient n’est pas égale au gradient de la sensibilité lagrangienne, c’est a dire,

DVT
Do # V. Sr
Il faut plutot utiliser la formule suivante :
T 9T o*T
— + — Vi + ——Vuy,
DVT ) dadx + oz2 M * Oyox My (3.12)
Da | 0°T | 0T O°T '

gL o oy,
dady + ozoy " T oy? MY



Alors pour a = 0 nous obtenons :

Dg e Py —1 e Py

== =92rcosr——— + 22yfsing———
Da -8 1 +zyp e=B—-1

e
Ainsi, sur la frontiere en question, donc pour y = 0, la sensibilité lagrangienne du

flux thermique est nulle :

Nous avons a présent déterminé tous les champs nécessaires pour la méthode
des solutions manufacturées, pour chacune des formulations des sensibilités. Les
développements pour la formulation lagrangienne sont plus fastidueux a cause en
particulier de la vitesse de déformation, de plus, les dérivées sont un peu plus com-
plexes a calculer. Notons cependant que ces calculs sont spécifiques a la méthode et
a I'élaboratoin d’une solution analytique, ils ne sont pas nécessaires pour un calcul
"normal”. Récapitulons donc les différents champs calculés et leurs caractéristiques,

nous pourrons voir leurs isolignes sur la figure 3.3

Nous constatons en particulier que la sensibilité lagrangienne est bien nulle sur la
frontiere inférieure; il s’agit de la condition aux limite sur la dérivée matérielle.
La sensibilité eulérienne est comprise entre -8.41 et -0.337, ces valeurs sont plus
importantes que celles obtenues en formulation lagrangienne, celles-ci étant alors
comprises entre -0.310 et -0.012. Cela semble logique puisque la sensibilité lagran-
gienne est nulle a la frontiere alors que la sensibilité eulérienne est égale a 'opposé

du terme de transpiration :

srlp=—VT -Vy = ———sinz

oy
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Nous avons choisi une solution avec un fort gradient a la frontiere, ce qui explique

cette différence importante.

Passons a présent aux résultats numériques.
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(a) Isolignes de température

o

(b) Isolignes de sensibilité eulérienne (¢) Isolignes de sensibilité lagrangienne

F1G. 3.3 Maillage et isolignes de température pour le cas thermique ” couche mince”
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3.2.2 Résultats numériques

Le maillage utilisé pour la résolution numérique est non structuré et composé
d’éléments triangulaires de type quadratique. La température et les déplacements
sont approximés avec des polynomes d’ordre 2, il y a donc 6 noeuds de calculs par

élément comme le montre la figure 3.4.

R
noeuds pour la temperature
et le deplacement

Fic. 3.4 Elément quadratique

Le taux de convergence théorique en semi-norme énergie est de 2. C'est a dire, si
h est la longueur caractéristique des éléments et T,,, la solution exacte ou enrichie

et T}, la solution éléments finis, nous avons :

lell = \//Q (VTh = VTiza) - (VT — VTiopa) dQ = O(h?) (3.13)

Ceci est valable tant pour la température que pour sa sensibilité.

Nous avons fait plusieurs calculs :

1. en formulation eulérienne avec « traité comme parametre de valeur, ce qui

est possible car on connait la solution analytique de la sensibilité eulérienne
2. en formulation eulérienne avec « traité comme parametre de forme.

3. en formulation lagrangienne
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3.2.2.1 Formulation eulérienne - Parameétre de valeur

Formulation culericnne:parametre de valeur Formulation culcricnne:paramctre de valeur
10 SRS S 1.04 .
B I " Exreur exacte —— | 1.02 b I ) ,.‘I_Ih_cmuqm,:**— ]
N Erreur estimee -~ : : P
L ] L ]
. 0.98 ’ 1
E] 01 F - g 0%r i
Z 5 094l .
" 123
5 [ 1 £ ot 1
g 0.01 3} 0.9 | |
©
' 0.88 - b
0.001 ¢ E 0.86 L 4
0.84 - M/J .
0.0001 ! ! . : 0.82 . : : -
10 100 1000 10000 100000 lct06 10 100 1000 10000 100000  lct06
nombre de nocuds nombre de nocuds
{(a) Erreurs estimée et exacte (b} Efficacité de ’estimateur d’erreur

Fi1G. 3.5 Courbes de convergence en formulation eulérienne, parametre de valeur
pour le cas thermique ”couche mince”

Pour ce calcul, nous avons utilisé la formulation eulérienne mais le parametre a été
traité en parametre de valeur, c’est a dire que nous avons imposé la solution exacte
de la sensibilité eulérienne o pour les conditions de Dirichlet et la sensibilité
eulérienne exacte du flux poﬁr les conditions de Neumann. Ce type de calcul est

possible uniquement lorsque la solution analytique est connue. En effet dans le cas

courant, seule la sensibilité lagrangienne est connue a la frontiere.

Au bout de 4 cycles d’adaptation, le maillage compte 2283 noeuds et il a été raffiné
sur la frontiere inférieure et plutot sur la droite du domaine dans les zones ou les
gradients sont les plus importants. Pour ce qui est de la convergence, les résultats
obtenus sont conformes a nos attentes. Comme le montre la figure 3.5(a), la solution
numérique converge vers la solution analytique a l'ordre 2 avec le raffinement du
maillage. L’efficacité , c’est a dire le rapport entre la norme de 'erreur estimée
et celle de l'erreur exacte présentée sur la figure 3.5(b) est également trés bonne

puisqu’elle tend vers 1. Les conditions aux frontieres étant exactes, il est normal



les valeurs numériques du présent calcul.

d’obtenir le taux de convergence asymptotique théorique. Le tableau 3.1 récapitule

Cycle | Nombre | ||S7| Erreur | Efficacité
de noeuds exacte
0 25 7.629 | 2.701E+00 | 0.8329
1 521 7.801 | 2.599E-01 0.8374
2 714 7.796 | 4.926E-02 1.005
3 1243 7.796 | 1.907E-02 1.009
4 2283 7.796 | 9.365E-03 1.016
5 4158 7.796 | 4.646E-03 1.019
6 7837 7.796 | 2.501E-03 1.018
7 14865 7.796 | 1.285E-03 1.020
8 29078 7.796 | 6.489E-04 1.021
9 97215 7.796 | 3.244E-04 1.022
10 114175 | 7.796 | 1.628E-04 1.023

TaB. 3.1 Convergence de la sensibilité eulérienne en parametre de valeur pour le
cas thermique de couche mince

Des les premiers cycles, 'efficacité est tres bonne et atteint rapidement sa limite
de 1. L’estimation d’erreur fonctionne donc tres bien tout comme 'adaptation du
maillage. Nous constatons en effet sur les derniers cycles qu’a chaque itération,

Perreur est divisé par 2 alors que le nombre de noeud est multiplié par 2.
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3.2.2.2 Formulation eulérienne - Parameétre de forme

Ce calcul correspond au calcul classique de sensibilité. Nous avons fourni au code
les conditions aux limites des sensibilités lagrangiennes ainsi que le déplacement

des frontieres. En effet, la formulation impose

__ DT 0X ¢
=g~ Ve 55

5X ;5
(oo’
la paroi doit étre évaluée a partir de la solution éléments finis. Pour améliorer la

T
L’énoncé du probleme spécifie Do et alors que le gradient de température a
«
précision sur ce terme, nous utiliserons une technique de projection locale. Nous
imposerons des conditions de Dirichlet sur toutes les frontiéres, les imprécisions

seront moins grandes qu’avec des conditions de Neumann. Nous constatons sur la

Formulation culericnne:parametre de forme Formulation culericnne:parametre de forme
10 ; ‘ . 0.65 . . -
+ Errcur exacte —+— Thermigue ——
\\ Erreur estimee ===~ 06 4 /\ 1
| E 055 \/ \‘ i
o \
3 05 e A
e 01t - o
2 g 0451 3
3 N 8 4
=] S — 4 |
3 0.01 F NN 1 5 04 /
5 x\\\ 0.35 F 4
=2 /
A 03 + / .
0.001 | . .
T st 1
/.
0.0001 - . . 0.2 - . L L
10 100 1000 10000 100000 10 100 1000 10000 100000
nombre de nocuds norabre de nocuds
(a) Erreurs estimée et exacte (b) Efficacité de Iestimateur d’erreur

Fic. 3.6 Courbes de convergence en formulation eulérienne, parametre de forme
pour le cas thermique ”couche limite”

figure 3.6(a) que méme si l'erreur diminue, c’est a dire que la solution numérique
semble bien converger vers la solution analytique, I’ordre de convergence n’est plus

de 2. De plus, la figure 3.6(b) montre que 'estimateur d’erreur n’est plus asymp-
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totiquement exact, c’est & dire que
b
lime lime
b0 h # b0 era

avec h la taille caractéristique des éléments, e, l'erreur estimée et e, erreur
exacte. Cette tendance est confirmée par les valeurs numériques du tableau 3.2.
Aux premieres itérations, le comportement de cette solution est semblable au cal-
cul en parametre de valeur, c’est a dire qu’il y a un palier pour le cycle 1 puis
Perreur diminue et lefficacité augmente de maniere significative. Mais au lieu de
poursuivre cette tendance, pour les cycles suivants, 'efficacité plafonne a 0.6, la
différence entre les 2 estimations d’erreur n’est plus due au maillage trop grossier
mais a l'inexactitude des conditions aux limites des sensibilités. Le taux de conver-
gence est aussi affecté. La pente des courbe de la figure 3.6(a) devrait étre de -1 pour
des maillages suffsamment fins, mais elle n’est que de -0.8. Cet exemple montre que
les conditions aux limites inexactes affectent la convergence des sensibilités pour

cette formulation.

Cycle | Nombre | ||Sr]] Erreur | Efficacité
de noeuds exacte
0 25 4.204 | 4.888E+00 | 0.2023
1 521 7.458 | 7.539E-01 0.4289
2 709 7.763 | 1.014E-01 0.5565
3 1222 7.782 | 3.656E-02 0.5870
4 2239 7.790 | 1.778E-02 0.5895
) 4145 7.792 | 1.040E-02 0.5158
6 7721 7.795 | 4.554E-03 | 0.6153
7 14545 7.796 | 2.939E-03 0.5026
8 27416 7.796 | 1.606E-03 0.5035
9 01829 7.796 | 9.009E-04 0.4866
10 97896 7.796 | 5.451E-04 0.4597

TAB. 3.2 Convergence de la sensibilité eulérienne en parametre de forme pour le
cas thermique de couche mince



3.2.2.3 Formulation lagrangienne

Apres 4 cycles adaptatifs, nous obtenons un maillage de 2578 noeuds donc approxi-
mativement le méme nombre de noeuds qu’en formulation eulérienne, le raffinement

est semblable. La figure 3.7(a) présente ’évolution des normes de l'erreur estimée

Formulation lagrangienne Formulation lagrangicnne

1 T T T 1.1 T T
+ Errcur exacte —+— Thermique —+—

.
T~ Errcur estimee —------ 1r T

\; 7 0.9 7/ J

2 & , O8F |
E 001 | « 4 £ o7t i
«© S -
= = - Ve 4
2 0.001 + \\ 1 g 06 7
5 - 0.5t i
/
0.0001 ¢ \‘\\ 04 r . ]
03 b _
1c-05 : : : 0.2 : : :
i0 100 1000 10000 100000 10 100 1000 10000 100000
nombre de nocuds nombre de nocuds
(a) Erreurs estimée et exacte (b) Efficacité de Uestimateur d’erreur

FiG. 3.7 Courbes de convergence en formulation lagrangienne pour le cas thermique
”couche mince”

et de 'erreur exacte en fonction du raffinement du maillage, c’est & dire en fonc-
tion du nombre de noeuds. La solution numérique converge bien vers la solution
analytique avec le taux de convergence attendu, en O(h?) si h représente la taille
caractéristique des éléments. Les équations sont donc correctement résolues par le

code.

De plus, au bout de quelques cycles, erreur estimée se confond avec 'erreur exacte.
Ceci est mis en évidence par la figure 3.7(b). L’efficacité est tres proche de 1 dés que
le maillage dépasse les 1000 noeuds. De plus, nous pouvons voir sur le tableau 3.3
que la norme de la sensibilité atteint sa valeur asymptotique a 4 chiffres significatifs
des le cycle 3, alors qu’il fallait attendre le cycle 7 pour la formulation eulérienne

en parametre de forme, voir le taleau 3.2.
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Cycle | Nombre | ||Srl| Erreur | Efficacité
de noeuds exacte

25 0.3364 | 4.514E-01 | 0.2751
521 0.5492 | 6.001E-02 | 0.6847
706 0.5512 | 9.804E-03 | 0.8881
1304 0.5513 | 3.155E-03 | 0.9784
2578 0.5513 | 1.425E-03 | 0.9858
5119 0.5513 | 6.806E-04 1.004

10423 0.5513 | 3.263E-04 1.002
21716 0.5513 | 1.525E-04 1.013
45938 0.5513 | 7.189E-05 1.014
98390 0.5513 | 3.341E-05 1.017

© 0o ~1I O Tk W /O

TaAB. 3.3 Convergence de la sensibilité lagrangienne pour le cas thermique de couche
mince

Cette solution manufacturée nous a permis tout d’abord d’illustrer les problemes
de convergence en formulation eulérienne pour un parametre de forme. En effet,
si le parametre est traité comme parametre de forme, le taux de convergence se
trouve affecté et V'efficacité de 'estimateur d’erreur devient aussi beaucoup moins
bonne. Ces problémes n’apparaissent pas si le parametre est traité en parametre de
valeur, c¢’est a dire si les conditions aux frontieres sont imposées de maniere exacte.

Ces derniéres sont donc bien la cause des problemes de convergence.

Ensuite, les bons résultats de convergence de la formulation lagrangienne montrent
d’une part que 'implémentation de la formulation est correcte et d’autre part que
cette formulation est adaptée pour résoudre les sensibilités pour un parametre de

forme, méme avec des conditions de Neumann.
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3.3 Cas d’un écoulement potentiel prés d’un point de stagnation 2D

Sortie: T=T(x,y)

B(x0,1.0) (0.0,1.0)
Paroi:
T=T(x,y)
Intérieur:
q(x,y)
Q
A(—0.316,vy0)
Entrée
T=T(x,y)
(0.0,0.0)

(-0.316,0.0) Symétrie T=T(x,y)

FiG. 3.8 Domaine pour le cas du point de stagnation 2D

Dans cette seconde partie, nous allons comparer les résultats obtenus en formu-
lation lagrangienne, et en formulation eulérienne en parametre de forme avec une
technique avancée de reconstruction des gradients a la frontiere. Nous utiliserons la
solution manufacturée de Duvigneau™®. Le domaine utilisé est celui présenté sur la
figure 3.8. L’équation de la courbe "Intérieur” est 2az®y = 1. a sera le parametre

de forme et pour notre configuration, a = 50.



3.3.1 Solution exacte

Détaillons dans un premier temps la solution analytique utilisée. Comme pour la
section précédente, il n’y a pas de différence pour le champ de température entre
le point de vue eulérien et lagrangien. Nous dériverons ensuite cette solution d’un
point de vue eulérien puis d'un point de vue lagrangien, en détaillant a chaque fois

les termes sources et les conditions aux limites correspondants.

3.3.1.1 Champ de température

Nous choisissons le champ de température suivant comme solution manufacturée :

T%(z%, y*) = 2a (%)’ (3.14)
Son gradient est le suivant :
8axy?
VT(z,y) = (3.15)
4ax'y

Pour une conductivité constante égale a 1, le terme source correspondant a cette

solution est le suivant :

QZ—(+T:4GI2(.’L‘2+6’[J2>

Pour les conditions, aux limites, nous imposons des conditions de Neumann sur

la courbe étiquetée ”Intérieur” et des conditions de Dirichlet ailleurs. Ainsi, nous
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avons

I'r = sortie U paroi U symétrie U entrée

I'y = intérieur

Pour les conditions de Neumann, nous devons donc calculer le lux thermique cor-
respondant a notre solution sur la courbe étiquetée ”Intérieur”. Il est défini de la

fagon suivante :

— L T n
on

L]

La normale a la frontiere I'; est la suivante :

—1
a2z +1 ,
n(ry) = | VOO (3.16)

a?zb 4+ 1

Nous montrons alors facilement que le flux thermique correspondant a notre solu-

tion est donné par I'expression suivante :

daz’y (2y + az*)

= varzt +1

3.3.1.2 Sensibilité eulérienne

Nous allons a présent calculer la sensilité eulérienne de ce champ. Elle se calcule

aisément par une dérivée partielle de T par rapport a a.

or
S = %(I,y,(l) =2 (Z'Qy)Q (317)



Le terme source correspondant s’obtient aussi par une dérivée partielle par rapport
a a, ce qui mene a 'expression suivante.

Q)
— = 4g? (332 + 6y2)
Oa
Pour les conditions de Neumann, nous devons calculer le flux des sensibilités qui
s'exprime de la fagon suivante pour une conductivité constante :

—  0q

g =—=kVsr-n
da

Sur I'y, nous obtenons 'expression suivante :

B 8x3y? + 4ax’y

Py
1 Vazzb +1

Notons que comme nous ne ferons pas de simulation en formulation eulérienne en

parametre de valeur, nous nous ne servirons concretement pas de cette valeur.

3.3.1.3 Sensibilité lagrangienne

La sensibilité lagrangienne s’obtient avec la dérivée totale du champ de température
par rapport au parametre de forme. En utilisant le théoréeme des fonctions com-

posées, nous obtenons 'expression suivante :

DT 0T

Cette expression fait apparaitre la vitesse de déformation que nous devons cal-
culer au préalable avant de déterminer la sensibilité lagrangienne du champ de

température.



Transformation

Comme nous 'avons expliqué au paragraphe 2.3.3, la vitesse de déformation doit
étre contintiment différentiable (C!) et respecter les conditions aux frontieres. Nous
devons donc dans un premier temps établir ces conditions. Il faut commencer
par trouver une paramétrisation de la courbe étiquetée ”intérieur” qui explicite
sa dépendance par rapport a a, c’est a dire tel que Xy = Xy(a,t) avec a et
t indépendants I'un de l'autre. Nous n’avons pour linstant que ’équation de la
courbe et les points extrémes A et B. Ils sont définis de sorte que 'ordonnée de A
notée 1o et que 'abscisse de B notée zy dépendent de a. En effet, ils sont établis a

partir de I'équation de la courbe :

1 1

=0l = s~ Vaa
i) = L = ]
YAZ I = 9 T 2ax 0.1

Nous ne pouvons donc pas prendre comme parametre "t7 x ou y puisqu’ils ne

seraient pas indépendants de a.

Nous choisissons alors la paramétrisation suivante. x est défini de maniere linéaire
par rapport a t et y est calculé par I'intermédiaire de I’équation de la courbe. Nous

avons donc

-1
z(a,t) =za(l —t)+zpt = \/7(1—16) - V0.1t
1 @ avec t € [0,1]

yla,1) :2a(x(a, t))?
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La dérivation directe de ces expressions par rapport a a donne la vitesse de maille

sur Iy :

dx x++0.1
v da 2a(1 ~ v0.1v/2a)
M

I‘\ =
— =yv0.1v2a
da Y a(l —0.1v2a)

Les frontieres étiquetées ”symétrie” et ”paroi” ne sont pas affectées par la variation

du parametre donc la vitesse d maille y est nulle. Le prolongement sur le domaine

complet devra donc respecter ces conditions.

Pour le construire, nous procédons de la maniere suivante :

Pour la composante en z de la vitesse, considérons un point M (x,,, ym) du domaine

tel que ., < o = —0,1 voir la figure 3.9.

La vitesse en z, pour un point d’abscisse z,, est :

— nulle au point M., de coordonnées (z,,,0), situé sur la frontiere ”symétrie”

— maximale au point M,,,, de coordonnées (Z,, Ymaz(Tm)) avec 2022 Ymee = 1
situé sur la frontiere ”intérieur”.

Nous choisissons alors d’interpoler la vitesse de maille horizontale de maniere

linéaire entre ces 2 points. Ainsi pour z < xg = —0,1
Y o T+ V0.1
Viz(2,y) = Vielp, () = =0y ———F——=—=
url,9) = 2 Vaselr, (7) 1- 01V

Nous prolongeons cette solution avec une vitesse quadratique sur le reste du do-
maine pour pouvoir faire un raccordement continiiment différentiable (C'), ce qui
n’aurait pas été possible avec un prolongement linéaire. Nous cherchons alors une

vitesse de la forme suivante :

Vire = bla.y)2? + c(a,y)x + d(a,y) pour x > x4
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Comme la vitesse horizontale sur la paroi est nulle, d = 0. b et ¢ sont obtenus en
résolvant le systeme suivant qui traduit la continuité de la vitesse et la continuité

de sa dérivée suivant x en xg :

b:l"g -+ Cxg -+ d ZVAIm(-Il“Ou y)

Ve
2bxy + ¢ = M

(I07 y)

Nous obtenons alors pour z > xg :
Ty 9
Virales) = 2 (= (200+ V0TT) 2+ a3)
wly) = T e 0 0

Pour la composante en y de la vitesse, le raisonnement est similaire.
Pour y > yy = 0.1, la vitesse est interpolée linéairement entre les frontieres

"intérieur” et "paroi”.

z ﬁ—l
Vi la,y) = Vi ) = 2zy+/0.1y
My(lay) o My|p zy 1_\/—\/%

Nous prolongeons cette solution avec une vitesse quadratique sur le reste du do-

maine et un raccordement contintiment différentiable en yo. Nous obtenons alors

pour ¥ < Yo



Sortie

B(x0,1.0)

Intérieur

Mmax
(xm,ymax

V,

Mxmax
T

MM

AC0316y0) £

Entrée

(0.0,1.0)

Paroi

(—0.316,0.0) Mmin .
(xm,0)  Symétrie

F1a. 3.9 Construction de la vitesse de maille

(0.0,0.0)
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Sensibilités lagrangiennes

Nous pouvons a présent calculer la sensibilité lagrangienne de la température par

I'intermédiaire du théoréeme des fonctions composées.

pT _or or, T,
Da  da  ox M* oy Mz

Comme la vitesse de déformation est définie par morceaux, la sensibilité lagran-

gienne l'est aussi.

La sensibilité du terme source est calculée par le code avec le théoréme des fonctions

composées. Il faut donc lui fournir ses dérivées spatiales et sa dérivée eulérienne.

0Q _ , 9( 2, oo
S = 427 (2° + 6y°)
oQ ,

Pl 16az (z* + 3y*)
% = 48ax’y

Pour les conditions de Neumann, nous devons calculer la dérivée lagrangienne du
flux thermique. Avec une conductivité constante, son expression est la suivante :
Dy DT Dn

k . kKNT - —
Da Da n+kV Da

En utilisant les expressions (3.12) et la vitesse de déformation exprimée a la

frontiére, nous obtenons la sensibilité du gradient de température suivante :

s+ 0. V2 1
8z%y* — 12x2y2T—+—0—1— + 8yv0.1 rveat
DVT 1 - v0.1v2a a(1 — V0.1v/2a)
Da Y r+ 0.1 rv2a + 1
y—— " 42201
1 -+0.1v2a a(l — v0.1v/2a)

4oty — 8z




La dérivée de la normale a I'; est
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ax’ 3az® (z +/0.1)
&l—(r y) = (@225 + D)va2xb + 1 2(a?2% + 1)va2ab + 1(1 — v0.1v2a)
Da Y —3 32 (az—t—\/O.l)

(a2 + 1)v/a2a® + 1

+
2(a2z8 + 1)va2z® +1(1 — v/0.11/2a)

Nous pouvons a présent comparer les différentes solutions calculées. Tout d’abord,

la figure 3.10(a) montre comment le domaine est modifié par une variation de a et

la figure 3.10(b) montre les isolignes du champ de température.

(a) Déformation

(b) Isolignes de température

F1c. 3.10 Déformation et isolignes de température pour le cas thermique du point

de stagnation 2D


file:///fTi/f2a

(a) Sensibilité eulérienne (b) Sensibilité lagrangienne

Fi1G. 3.11 Isolignes de sensibilité eulérienne et lagrangienne de la température pour
le cas thermique du point de stagnation 2D

Sur la figure 3.11, nous pouvons comparer la sensibilite eulérienne avec la sensibilité
lagrangienne. Ici aussi, nous pouvons voir que ces sensibilités sont bien différentes,
elles sont de signe opposé et leur sens de variation est inversé. Nous sommes donc

dans un cas ou le terme de transpiration VT -V}, est particulierement élevé.

La déformation du domaine est plus complexe que pour la solution précédente. Cela
nous permet de vérifier la bonne implémentation de la formulation lagrangienne
puisque tous les termes spécifiques a cette formulation seront testés avec cette

solution. En effet, la vitesse de maille est bidimensionnelle, son gradient non trivial
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et sa divergence non nulle et nous avons imposé des conditions aux limites de

Neumann et de Dirichlet non nulles.


http://limit.es
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3.3.2 Résultats numériques

Nous allons donc comparer les résultats obtenus avec la formulation lagrangienne a

(14]

ceux de Duvigneau obtenus en formulation eulérienne avec une reconstruction

précise des gradients a la frontiere.

3.3.2.1 Formulation eulérienne

Formulation culcricnne:developpement a 1 ordre 4 Formulation culericnne:developpement a 1 ordre 4
0.001 A T T 0.3 ) e AR
s tt—+—_ Errcur exacte —— Thermique —+——
Equr cstimee - 025
0.0001 | o AN E ’

o % x‘x \k\
= - >
] .. ™ 8 02+ J
3B ES \*\ ]
s 1e-05 | * 9 3
£ . Ak S 415 . ]
£ N © T T \
s b N h

c- e 0.1 - 1

X
AN
16-07 : ' ' 0.05 : et
10 100 1000 10000 100000 10 100 1000 10000 100000
nombre de nocuds nombre de nocuds
(a) Erreurs estimée et exacte (b) Efficacité de Pestimateur d’erreur

Fic. 3.12 Courbes de convergence en formulation eulérienne, développement &
I’ordre 4 pour le cas thermique du point de stagnation 2D

Commencons par considérer la formulation eulérienne. Pour ces calculs, les gra-
dients ont été reconstruits grace a une méthode des moindres carrés contraints
combinée avec des développements de Taylor d’ordre élevé afin d’obtenir des condi-
tions aux limites en sensibilité les plus précises possibles. La qualité de la solution

ainsi obtenue dépend de 'ordre du développement.

Tout d’abord, un développement a l'ordre 4 donne les résultats montrés sur les
figures 3.12(a) et 3.12(b). Les valeurs numériques sont sur le tableau 3.4. Nous

constatons que l'erreur exacte converge a l'ordre 2 avec le raffinement du maillage.



Cycle | Nombre |S7]] Erreur | Efficacité
de noeuds exacte
0 37 6.116E-04 | 6.455E-04 | 0.1672
1 101 5.920E-04 | 4.880E-04 | 0.1391
2 126 5.952E-04 | 4914E-04 | 0.1355
3 189 6.099E-04 | 5.001E-04 | 0.1381
4 292 6.174E-04 | 4.997E-04 | 0.08876
) 534 6.211E-04 | 4.679E-04 | 0.06207
6 1020 6.783E-04 | 2.501E-04 | 0.06146
7 1862 7.359E-04 | 1.244E-04 | 0.05452
3 3394 7.683E-04 | 6.393E-05 | 0.05147
9 6218 7.848E-04 | 3.643E-05 | 0.05750
10 11043 7.958E-04 | 1.920E-05 | 0.2811
11 19575 8.006E-04 | 1.051E-05 | 0.1351
12 35947 8.036E-04 | 5.445E-06 | 0.1161
13 65649 8.052E-04 | 2.761E-06 | 0.1562
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TAB. 3.4 Convergence de la sensibilité eulérienne, développement a l’ordre 4 pour
le cas thermique du point de stagnation 2D

Cependant, la norme de la sensibilité méme au bout des 13 cycles ne compte que

2 chiffres significatifs. La convergence de l'erreur estimée est quant a elle tres

irréguliere et beaucoup plus basse que l'erreur exacte, ce qui explique que Deffi-

cacité reste voisine de 0.1. L’estimateur d’erreur n’est donc pas fiable. Cet exemple

illustre les difficultés évoquées précédemment a la section 2.1.2.3.
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Il est alors nécessaire de pousser les développements de Taylor a un ordre supérieur
afin d’avoir une précision suffisante sur les gradients de la température a la frontiere.
A lordre 7, les résultats sont bien meilleurs comme le montrent les figures 3.13(a)
et 3.13(b) et le tableau 3.5. En effet, nous pouvons vérifier que le taux de conver-
gence est de 2 et l'efficacité tend vers 1. De plus, nous obtenons pour le dernier
maillage 4 chiffres significatifs pour la norme de la sensibilité de la température.
Ici, le nombre de cycle nécessaires pour atteindre 69454 noeuds est inférieur au cas
précédent car la cible pour I'estimateur d’erreur était de 0.3 au lieu de 0.5. Cette
méthode permet donc de calculer les gradients avec suffisamment de précision pour
évaluer correctement les conditions aux frontieres du problemes des sensibilités.
Elle reste cependant lourde puisqu’elle demande la résolution de systemes linéaires

supplémentaires pour chaque points de la frontiere 14,

Formulation culcrienne:developpement a 1 ordre 7 Formulation culeriennc:developpement a 1 ordre 7
0.001 aaARM T . 1.1 T ; T
S Errcur exacte ~——+— Thermique ——

NN Erreur cstimee —>—— 1+ o ]

0.0001 £ X\\ b 0o | // ) .
1005 | . ] 08 |- |
0.7 1

erreur absolue
efficacite

1¢-06 \ E 06 F i
SREN -
1e-07 | e
04+ et 1
lc_og 1 I 1 0.3 i 1 L
10 100 1000 10000 100000 10 100 1000 10000 100000
nombre de nocuds ’ nombre de nocuds
(a) Erreurs estimée et exacte (b) Efficacité de 'estimateur d’erreur

Fic. 3.13 Courbes de convergence en formulation eulérienne, développement a
I'ordre 7 pour le cas thermique du point de stagnation 2D



Cycle | Nombre | STl Erreur | Efficacité
de noeuds exacte
0 37 1.359E-03 | 7.654E-04 | 0.3917
1 39 8.859E-04 | 2.638E-04 | 0.4041
2 176 8.183E-04 | 5.628E-05 | 0.8607
3 402 8.103E-04 | 1.892E-05 | 0.9458
4 1025 8.080E-04 | 6.871E-06 | 0.9983
) 2838 8.073E-04 | 2.492E-06 | 0.9946
6 7990 8.070E-04 | 8.564E-07 1.009
7 23175 8.069E-04 | 2.860E-07 1.007
8 69454 8.069E-04 | 9.563E-08 1.008
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TAB. 3.5 Convergence de la sensibilité eulérienne, développement a l'ordre 7 pour
le cas thermique du point de stagnation 2D
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3.3.2.2 Formulation lagrangienne

Considérons a présent la formulation lagrangienne. Les courbes de convergence sont
représentées sur les figures 3.14(a) et (b). Les valeurs numériques correspondantes
sont sur le tableau 3.6. Nous constatons que des que le maillage atteint 300 noeuds,
la partie asymptotique commence. En effet, l'efficacité est alors voisine de 90% et
Ierreur exacte converge a l'ordre 2 avec le raffinement du maillage. De plus, nous
obtenons rapidement 3 chiffres significatifs sur la norme de la sensibilité lagran-

gienne.

Nous avons donc bien vérifié 'implémentation du code, les équations des sensbilités

lagrangiennes sont correctement résolues.

De plus, nous constatons que pour un cout numérique moindre que la reconstruction

des gradients, nous obtenons des résultats de convergence équivalents.

Les performances de la méthode des sensibilités lagrangiennes sont donc tres
bonnes. Le traitement du parametre de forme se fait sans perte de précision ou
de convergence, nous pouvons donc a présent la développer pour les équations de

Navier-Stokes.


http://sensibilit.es
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Formulation lagrangicnne Formulation lagrangicnne

0.001 T T T T
P Errcur exacte —+—

1 T

T T I
A~ Theriflique. ————

x;\* Errcur cstimee - 09 F e
0.0001 F x\x\ﬁ\ -
g iy 0.8 |
— I N 8
—% 1c-05 \*\ g 0.7
= N 2
5 le-06 ' . 5 061
© 0.5
1c-07 E 04 !
4 ¢ g
{ 1 -
1e-08 i L 1 1 0.3 b 1 1 L
10 100 1000 10000 100000 1c+06 10 100 1000 10000 100000  lc+06

nombre de nocuds nombres de nocuds

(a) Erreurs estimée et exacte (b) Efficacité de lestimateur d’erreur
Fi1G. 3.14 Courbes de convergence en formulation lagrangienne pour le cas ther-
mique du point de stagnation 2D

Cycle | Nombre ISl Erreur | Efficacité
de noeuds exacte
0 34 8.712E-04 | 4.391E-04 | 0.3416
1 112 8.768E-04 | 2.495E-04 | 0.4065
2 166 8.881E-04 | 1.723E-04 | 0.5778
3 228 9.076E-04 | 7.171E-05 | 0.7992
4 359 9.076E-04 | 3.685E-05 | 0.9060
5 621 9.073E-04 | 2.152E-05 | 0.9189
6 1083 9.070E-04 | 1.051E-05 | 0.9341
7 2020 9.069E-04 | 5.537E-06 | 0.9658
8 3742 9.068E-04 | 2.957E-06 | 0.9466
9 7152 9.067E-04 | 1.516E-06 | 0.9559
10 13947 | 9.067E-04 | 7.657E-07 | 0.9616
11 27999 9.067E-04 | 3.869E-07 | 0.9740
12 56541 9.067E-04 | 1.914E-07 | 0.9814
13 115009 | 9.066E-04 | 9.497E-08 | 0.9819

TAB. 3.6 Convergence de la sensibilité lagrangienne pour le cas thermique du point
de stagnation 2D
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CHAPITRE 4

METHODE DE L’EQUATION DES SENSIBILITES APPLIQUEES
AUX EQUATIONS DE NAVIER STOKES

Nous allons dans ce chapitre adopter une démarche similaire au chapitre 2 pour
développer les équations de sensibilités en formulation eulérienne et en formulation

lagrangienne pour les équations de Navier Stokes.

Considérons donc les équations de Navier-Stokes pour 1'écoulement laminaire et
incompressible d'un fluide Newtonien en régime stationnaire dans le domaine {2,

dont la forme dépend du parametre de forme « :

Continuité : V-u=0 (4.1)
Mouvement : plu- Viu=-Vp+V-7(u)+ f (4.2)
Energie : pcps - VT =V - (AVT) + gg (4.3)

Avec les conditions a la frontieére suivantes :

u=1u sur T'¢ (4.4)

—pn® +7(u) - n® =ty sur IT'g (4.5)
T=T sur I'¢ (4.6)

AVT -n*=7 sur I'g (4.7)

ou 7(u) est le tenseur des contraintes visqueuses défini de la maniere suivante :

T(u) = p(Vu+ V'u)
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4.1 Meéthode de I’équation de sensibilité classique

Cette section est consacrée au développement de 1'équation des sensibilités
eulériennes. Nous nous attarderons sur les difficultés rencontrées lors du traitement

du parametre de forme.

4.1.1 Equations des sensibilités eulériennes

Comme nous l'avons vu plus tot, les variables de 1’écoulement peuvent étre
considérées comme dépendantes de l'espace et du parametre «, ainsi, u =
u(x,y,a). Les sensibilités eulériennes sont les dérivées partielles des variables de-

pendantes par rapport au parametre de forme «. Nous adoptons la notation sui-

vante :

ou
Sy = (Suasb) - E)E
. _op
P o
8 a_T
T~ da

Elles sont obtenues en dérivant formellement les équations de 1’écoulement par

rapport & «. Dérivons donc successivement chaque équation.
Equation de continuité

La dérivation formelle de ’équation (4.1) par rapport a o donne :

0

V- 8y=0 (4.8)



Equation du mouvement

Considérons & présent 1'équation du mouvement(4.2). En dérivant, nous obtenons :

pu-Vu+ psy - Vu+ pu-Vs,

(4.9)
= —Vs,+V - [ (Vu+ V) + u (Vsy +V7sy)] +
Equation de I’énergie
Par la méme opération, I’équation de ’énergie devient :
(Pep+ pcy)u - VT + pey (8y - VT + u - Vsy) (410)

=V - (NVT + \Vsr) + g5
4.1.2 Conditions aux limites
Les conditions aux limites pour les sensibilités sont obtenues a ’aide de la dérivée
totale par rapport au parametre des conditions aux frontieres de 1’écoulement. Tout

comme 4 la section 2.1.2, il faut tenir compte de la transformation de la frontiere

due a la variation du parametre.

4.1.2.1 Conditions de Dirichlet

Reprenons les notations de la section 2.1.2.1. Les conditions de Dirichlet étaient les

suivantes :

H
gl

[67
sur I,

N
I
N~

[e3
sur I'7
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Les conditions de Dirichlet pour les sensibilités sont obtenues en calculant la dérivée
totale de ces dernieres par rapport a a. En isolant ensuite les sensiblités eulériennes,

nous avomns :

Du DXy
- _ . S @ 4.11
Su= o Vu Do sur I'¢ (4.11)
DT DX
ST = Ho VT - Daf sur T'§ (4.12)
4.1.2.2 Conditions de Neumann
Reprenons les conditions de Neumann de 1’écoulement.
—pn® + 7(u) - n® =ty sur Iy
AVT -n® =73 sur I'g

Les conditions de Neumann pour le probleme des sensbilités sont données par une
dérivée matérielles des conditions de ’écoulement. Nous devrons donc extraire les
tractions de la sensibilité eulérienne de l'expression suivante.

Dty

D ‘

Il faut développer le terme de gauche en utilisant le théoréeme des fonctions com-
posées afin d’isoler les tractions des sensibilités qui s’expriment de la maniere sui-

vante :

th = [ (Vu+ Vi) + pu(Vsy + V'sy,)] -n—spn (4.13)
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Ainsi, sur T'y nous avons :

y _ Dt _[orlw)Dz; _or(u) Dy
£ Da or Da Oy Da
Op Dzxy  Op Dyy Dn Dn
_QnDa+&ﬁﬂ'"_Tmy__

(4.14)
Do TPDa

Pour la sensibilité de la température, nous reprenons l'expression calculée a la

section 2.1.2.2.

,_D1_ (9\Da; | 0ADys
" = Da Odxr Do 0y Da
O0*T D: 2T D 5°T Dx 2T Ds
A |(EEPu P vy, (DT D 9T Dusy | (4as)
0x?> Da  0x0y Do 0xdy Da  0y? Da
Dn

VT - 2=
AV Do

)VT-n

avec

oA
q/ = (%VT + /\VST) n

4.1.3 Réactions

Les réactions sont les variables secondaires du probleme éléments finis. Dans le cas
ol les données sont régulieres, les variables secondaires sont nulles partout sauf a

la frontiere.

Pour I'écoulement, la somme des variables secondaires des noeuds appartenant a

une courbe fermée est égale a la résultante des efforts exercés sur le fluide par cette

paroi.
/ (r —pId)-ndl’
a0

Pour I’équation de sensibilité eulérienne, la méme opération menera au résultat


file:///dxdy
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suivant :

t'.dl
I

ol t} est défini par la formule (4.1.2.2). Cependant, cette intégrale n’a pas de sens
physique direct. En effet, il s’agit de la sensibilité eulérienne des efforts intégrée
sur une courbe : pour un parametre de forme, il ne s’agit alors pas de la dérivée
matérielle de la résultante, il faut donc ajouter des termes de transpiration prove-

nant de la transformation de la frontiére.

4.1.4 Calcul de la sensibilité de champs scalaires

Il est souvent utile la sensibilité de champs scalaires traduisant le comportement
de I’écoulement, comme le coefficient de pression C, ou le coefficient de friction

visqueuse Cy. Il faut alors considérer leur dérivée matérielle.

4.1.4.1 Coefflicient de pression

Pour un écoulement incompressible, le coeflicient de pression est défini de la maniere

suivante :

D — P

Cp= 7

U
Pour obtenir la dérivée matérielle de C), a partir de la sensibilité eulérienne de la
pression, il faut utiliser le théoreme de dérivation des fonctions composées. L’ex-

pression de la sensibilité est alors la suivante :

DG, _ 1 (., . o DX
Da — 1puz \™” P "Da
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4.1.4.2 Coefficient de friction

Quant a lui, le coefficient de friction est défini comme suit :

T -n-t
Cr=——"—
Y}

ol n et ¢ sont respectivement les vecteurs normal et tangent a la courbe. La dérivée

matérielle du coefficient de friction s’exprime alors de la maniére suivante :

Da  1pU%

DCYy 1 DTt ntt [+ Dn t+(7' 'n) Dt
D« Do D«

Nous adoptons la méme démarche que pour le coefficient de pression en utilisant

le théoreme des fonctions composées :

P—T—-s + VT DX
Do 7 Da

Alinsi,

A s+ VT DX n-t+|r Dn t+ (t-n) Dt
Do —%pUOQO ” Do Da Da

Notons que cette expression fait intervenir des dérivées d’ordre 2 en espace pour la

vitesse avec le terme V7.

4.1.5 Difficultés et limites

Dans le cas d'un paramectre de forme, tout comme pour ’équation de la chaleur,
le probleme de la formulation eulérienne est que les conditions aux limites font
intervenir les dérivées spatiales de I’écoulement. Or, c¢’est justement a la frontiere

que leur évaluation numérique est la moins précise. Il faut donc utiliser des maillages
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trés fins pour avoir une bonne précision sur les sensibilités de forme. De plus, dans
bien des cas, il faut un post traitement additionnel pour évaluer les termes de
transpiration qui traduisent la déformation de la frontiére due a la perturbation du

parametre.

4.2 Méthode de I’équation des sensibilités lagrangiennes

Dans cette section, nous allons reprendre le méme formalisme et 1a méme démarche
que pour l'équation de la chaleur afin d’établir les équations de sensibilités la-
grangiennes pour les équations de Navier-Stokes. Rappelons que les variables de
I’écoulement sont considérées comme des fonctions de I'espace et de a. Comme «
est un parametre de forme, I'espace est lui-méme une fonction de a. Nous pouvons
alors écrire u = wu{z(a),y(®), ). Les sensibilités lagrangiennes sont les dérivées
totales des variables de 1’écoulement par rapport au parametre. Nous adoptons les

notations suivantes :

Du

Su - (Sm Sv) - "D“a_
Dp
% = Da
DT
5T = Do

Le point de départ est toujours la forme faible des équations de I’écoulement, avec
des termes de bord nuls pour alléger la description. Par un changement de variable,
I'intégration est ramenée au domaine de référence afin d’expliciter les dépendances
en «. Il est alors possible de dériver simplement l'intégrande puisque le domaine
ne dépend plus du parametre. Enfin, par le changement de variable inverse, nous

revenons au domaine déformé.
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$
/—>
Q

Qg

<

O > 5
F1G. 4.1 Déformation du domaine

4.2.1 Equation de continuité

La forme faible associée & (4.1) est

V488, dfl = 0

JQq

Sur le domaine de référence, elle s’exprime de la maniere suivante :

F':Vu S, Jd =0
Qo
Nous pouvons maintenant dériver formellement sous 'intégrale puisque le domaine
d’intégration est indépendant du parametre « :
DF™! D DJ
/ :Vu—{—F_l:V——u 8Sp J+F 1. VudSp ==|dQy = 0
J D D Da

67 o
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Rappelons que les fonctions test ne dépendent pas du parameétre. Finalement, nous

repassons au domaine déformé :

/ (V*- 8y = VOV : Vi + V- uV® - V1) 6Sp dQ = 0 (4.16)
JQy

4.2.2 Equations de mouvement

L’équation de mouvement est la suivante :
plu - Viu=-Vp+V- -7+ f (4.17)

Soit 4.5, une fonction test ayant la méme régularité que S, et s’annulant sur I'y.

La forme faible associée est

/ (u-V)u-08, dQ, — / pVe - 68, dQ, +/ 7 : VS, dQ,

(o4

:/ f-5Suan+/ (r —pI) - n™-08, dl,
U Iy
Nous pouvons identifier chaque terme de la maniere suivante :

Convection + Pression + Diffusion

= Force + Terme de bord

Pour obtenir les équations des sensibilités lagrangiennes, nous dérivons terme a
terme la forme faible par rapport au parametre en utilisant toujours la méme

démarche. La forme faible de I’équation des sensibilités aura la forme suivante :

D Convection n D Pression + D Diffusion _ D Force + D Terme de bord
Da Do Do " Da Do




33

Nous présentons ici le résultat final pour chaque terme, le détail des développements

et les projections sur les axes des équations se trouvent en annexe.

Dérivation du terme de convection

D f N

[23

A,
a0, \Oa

+/ pl(Su-V¥)u — ViU - VOV - u+ (u- V) 8,]- 88, dQ,
Qo

Dérivation du terme de pression

L[ _ve.ss,do,
DO[ Q
o (4.19)
= —/ [(Sp +pV* - V)V 88, — pVeV - VOS] dQ,
Dérivation du terme de diffusion
D
S : V4 S, dQ,
Dol Qa'r v Q
D'u ol «@
= — +uVe. Vv (V"‘u +V u) : VS, dQ,
a, \ Do
+ / 1 (VeS, + VoTS,) : VS, d, (4.20)
Qo

- /Q U (vauvav;z; + (vauvav];})T) . V958, da

—~ / w(VOVE - (Vou 4+ Vo u)) 1 V248, di,

o

Dérivation du terme de la force

D Df
- : = = VOVSF) 4.21
DO‘/Qaf 38, Q2 /Q <Da+v va> 58y d, (4.21)
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Il suffit de regrouper ces différents termes pour obtenir les équations de sensibilité
pour le mouvement. Nous allons a présent effectuer le méme travail avec I’équation

d’énergie.

4.2.3 Equation d’énergie

L’équation d’énergie était la suivante :
pcpu - VT =V - (AVT) + qs

Soit 657 une fonction test de méme régularité que la sensibilité de la température

et s’annulant sur 052, la forme faible associée est :

/ (pepu - VT 657 + AVeT - V4Sr) dQ)y = / qso St dSd,
Qa

[s4

Apres dérivation par rapport a «, nous obtenons I’équation suivante :

D
/ K PP pepVe - Vﬂf}) w - VOT + pepSy - VOT
Qo DO[

+ pcpu - VQST — pcpU - (VaT . VQV]@)] 6ST dﬂa

+ / Kgﬁ +AVe. v;;) VOT - V6Sp + AV Sy - VS (4.22)
Qa o
—AVeT - (VOVE + VOTV) - V26Sr] df,

DqS o a
Z/Qa (m— +qsV< - VM) oSt dfd,

4.2.4 Conditions aux limites

Comme pour ’équation de la chaleur, les conditions aux limites pour la formulation

lagrangienne s’obtiennent de maniere tres simple.



4.2.4.1 Conditions de Dirichlet

Sur I't et ', il y a égalité de dérivées matérielles de u et de T :

Du Du o
‘5& = —D—E SUr Fu (423)
DT DT .
m = D—a sur FT (424)

Il n’y a pas de calcul intermédiaire, les conditions aux limites sont exactes, contrai-

rement aux sensibilités eulériennes.

4.2.4.2 Conditions de Neumann

Pour les conditions naturelles, reprenons la forme faible des conditions de Neumann

de 'écoulement.

/ (—pn® + 7 -n%) - 68, dT', = / t-68S, dl,
v g

/ AVT . no‘éST dPa = / ﬁ(SST df‘a
JIg re

Pour obtenir les conditions de Neumann des sensibilités lagrangiennes, il faut cal-

culer la dérivée matérielle de ces expressions :

D D —

it —pn© .n®) . r =-— | ;. T,

Ta rg( m®+71-n%) 48, dl, Da Jrp §:08,d
D AVT - n%5Sp dl’, = Dﬂ qoSy dl',,

Do Jra o
g rg
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Reprenons la méme démarche qu’'a la section 2.3.4, pour o = 0, nous obtenons :

D « (o3
507 F?(—pn +T-n )-5Sud1’a .
DE; o
= —+V'VM tf~tf(VVM-n)-n 5Su dFa (4.25)
r, \ Da
D
— AVT -n*3Sy dl,
Da ra »
Dg _
= / —+ V- VM q — q(VVM . n) n (SST dFa (426)
re Do

Nous avons a présent fermé le systeme, nous avons une forme faible et les conditions
aux limites appropriées, il ne reste qu’a évaluer la vitesse de déformation et a

résoudre.

4.2.5 Reéactions

Les sensibilités lagrangiennes sont obtenues par dérivation de la forme faible par
rapport au parametre de forme. Ainsi, les réactions seront directement les sensibi-
lités lagrangiennes des réactions de ’écoulement. C’est a dire que nous obtiendrons

directement
D

il -ndly, 4.2
Do Iﬂacr nd (4.27)

avec o = T — pld. 1l s’agit de la sensibilité des efforts sur la frontiere.
4.2.6 Evaluation de champs scalaire

Considérons le cas du coefficient de pression C, et du coefficient de friction Cy. Ces

coefficients calculés a la frontiere font intervenir les variables de 'écoulement ou
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leur gradient. Pour les sensibilités lagrangiennes, ces quantités ne sont pas traitées

de la méme fagon.

4.2.6.1 Coefficient de pression

Pour un écoulement incompressible, le coefficient de pression est défini de la maniere

sulvante :

p—>r
Cp =7 goo
2P Us,
La dérivée matérielle sera obtenue directement a partir de la sensibilité lagrangienne
de la pression.

pc, S,

Da  1pU2

Il n’est pas nécessaire de calculer les termes de transpiration comme pour les sen-

sibilités eulériennes.

4.2.6.2 Coefficient de friction

Quant & lui, le coefficient de friction est défini de la maniere suivante :

T-n-t

3PU%

Cy =

ol n et t sont respectivement le vecteur normal et le vecteur tangent a la courbe.

Sa sensibilité lagrangienne s’exprime de la maniere suivante :

Do 1pU2

DCy LR A (i t+(r-n) i
Do n T Do Do
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Nous devons donc calculer la sensibilité lagrangienne du gradient de vitesse. Elle a 2
composantes, une provient de la sensibilité de la vitesse et autre de la sensibilité du
gradient, les coordonnées d’espace dépendent en effet du parametre. En adoptant

une démarche similaire & celle de la dérivation des équations, nous trouvons que

DV
D;L = VS, - Vu- VVy
Ainsi,
%(:;f — 1;]2 {u (vsu + VTS, — Vu - VVy - VTV, - VTu> n-t
2 o

+<T‘%)'t+(7-n)~%:|

Tout comme pour les sensibilités eulériennes, un post traitement est nécessaire
pour obtenir la sensibilité du coefficient de friction visqueuse. Cependant, les termes
supplémentaires a calculer ne font pas intervenir les dérivées secondes en espace. La
convergence de la sensibilité de ce coefficient sera donc problablement plus rapide

en utilisant les sensibilités lagrangiennes.

4.3 Formulation Eulérienne versus Formulation Lagrangienne

Les caractéristiques de chaque formulation évoquées a la section 2.4 se retrouvent

pour les équations de Navier-Stokes.

Pour la formulation eulérienne, les équations sont obtenues relativement facilement.
Cependant, pour un parametre de forme, des terimes de transpiration apparaissent
dans les conditions aux limites. Ils font intervenir les gradients de 1’écoulement a
la frontiére, 1a ou ils sont le moins précis. Les conditions aux limites ne sont alors

pas connues avec exactitude, ce qui cause une erreur dans tout le domaine.
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Pour la formulation lagrangienne, les conditions aux limites sont obtenues directe-
ment par dérivation des données a la frontiere, donc connues avec exactitude. La
difficulté est reportée tout comme pour 'équation de la chaleur sur le calcul de la
vitesse de déformation, exact ou numérique. Elle doit respecter les conditions aux

limites et étre contintiment différentiable.

Pour 'exploitation des résultats, il faut considérer la dérivée matérielle des champs
scalaires. Avec les sensibilités eulériennes, il faut ajouter un terme de transpiration
qui fait intervenir le gradient de la quantité considerée. Ainsi, pour la sensibilité des
contraintes, les dérivées secondes en espace de la vitesse sont introduites. Pour les
sensibilités lagrangiennes, il faut faire une correction seulement pour la sensibilité
d’un gradient, cette fois, il faut soustraire le produit du gradient considéré par le
gradient de la vitesse de maille. Pour les contraintes, seules les dérivées premieres
en espace sont introduites, la perte de précision est donc moindre qu’avec les sen-

sibilités eulériennes.
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CHAPITRE 5

RESULTATS NUMERIQUES POUR LES EQUATIONS DE
NAVIER-STOKES

L’objet de ce chapitre est d’évaluer les performances numériques de la formula-
tion lagrangienne établie au chapitre précédent. Tout d’abord, nous vérifierons
I'implémentation du code avec la méthode des solutions manufacturées®®. Cela
nous permettra aussi de tester la convergence de la formulation et de comparer
avec la formulation eulérienne. Dans un second temps, nous utiliserons les sensibi-
lités lagrangiennes pour calculer des solutions voisines sur un profil d’aile NACA a

4 chiffres.

5.1 Solution manufacturée, cas du jet plan

Dans cette partie, nous allons vérifier le bon fonctionnement du code avec la
méthode des solutions manufacturées. Rappelons qu’il s’agit de choisir une solu-
tion analytique et d’ajouter le terme source approprié afin d’équilibrer les équations.
Nous reprendrons donc le domaine utilisé pour I’équation de la chaleur, les coor-
données des points de la courbe vérifient 1'équation suivante 2ax’y = 1 et a sera
le parametre de forme. Le domaine est représenté sur la figure 5.1. Nous prenons

a =50, zg = —0.1, yo = 0.1.
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Sortie:u=u(x,y)

B(x0,1.0) (0.0,1.0)
Wall:
u=u(x,y)
Interieur:
t(x,y) 0

A(-0.316,y0

Entree:

u=u(x,y)

(0.0,0.0)

(—0.316,0.0) Symetrie: u=u(x,y)

F1G. 5.1 Domaine pour le cas de Duvigneau

5.1.1 Solution analytique

Nous allons maintenant définir la solution analytique choisie dans le cadre de la
méthode des solutions manufacturées puis en déduire les termes sources. Nous de-
vons donc définir les champs de vitesse, pression et température pour 1’écoulement,
calculer la force correspondante. Puis, il faut établir une vitesse de transformation
afin de calculer les sensibilités lagrangiennes de ces champs puis le terme source

correspondant.
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5.1.1.1 Ecoulement

La solution correspond a un jet plan :

u(z,y,a) = da’e " (1 — 2az2’y)
o.0) = 8 (1 = 200%)

%Y, 1+ C (22 +1?) M@y

X

T(z,y,a) = ' 50+50)

Les valeurs numériques sont les suivantes : p=1, u=1,¢, =1, A =0, C = 1000,

D=100,3=4,6=01,~=5.

Les termes source sont calculés a I'aide des expressions suivantes :

f=plu-Vu+Vp-V-1
qs = pcpu - VT — V- (AVT)

5.1.1.2 Transformation

Comme nous désirons calculer analytiquement la sensibilité lagrangienne par rap-
port & a, il faut déterminer au préalable une vitesse de déformation, contintiment
différentiable sur tout le domaine. Nous reprendrons celle de la section 3.3.1.3. Nous
noterons Vs la vitesse de maille ou de déformation, Vi, et Vi, ses composantes
sur les axes Ox et Oy.
Pour = < xq

Vara(z, y) = de _ _ppy m VL

x — e
da Y120 1vka
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Pour z > x4

VAM:¢—( (210—1-\/—)1—#—10)

Pour vy > yo

y—1
Vay(z,y) = == —Qxy\/() 1y —\/~O en

Pour y < yp

i = L (o ) )

5.1.1.3 Sensibilités

Nous pouvons a présent exprimer les sensibilités lagrangiennes des variables a l'aide

du théoreme des fonctions composées.

ou
Suz————l-Vu V]u

da

8

aT
Sr=—+VT -Vy

oa

De méme pour le terme source, nous devons calculer ses dérivées spatiales et sa
sensibilité eulérienne analytique, le calcul de la sensibilité lagrangienne est fait par

le code. Nous trouverons le détail de ces termes en annexe.
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5.1.1.4 Conditions aux limites

Afin de tester au mieux le code, que ce soit pour ’écoulement ou les sensibilités,
nous imposons des conditions de Neumann sur la courbe etiquetée ”Intérieur”.
C’est en effet 'endroit le plus délicat puisque c’est la courbe la plus déformée
par la variation du parametre. Ailleurs, nous fixons des conditions de Dirichlet
correspondant a la solution analytique. Pour les conditions de Neumann, nous

calculons la traction et le flux associés de la maniére suivante :

Leur sensibilité lagrangienne a ’expression suivante :

Da P Da b Da Da
Dg  DMVT Dn
R ) T.-—~
Da Da n+AV Da

Lors de cette opération, il faut garder en mémoire que

D (w), 0 (Du 5,
Da \ Oz Oz \Da) Oz

Le détail des termes se trouve en annexe. Dans le cas général, contrairement au

terme source, le calcul de la sensibilité lagrangienne des tractions et du flux ther-

mique a la frontiére est possible car la déformation est connue.



5.1.2 Estimation d’erreur

Pour vérifier le bon fonctionnement du code, nous allons étudier la convergence de
la solution calculée vers la solution analytique. Pour cela, nous nous intéresserons
a l'évolution de 3 normes d’erreur avec le maillage. Pour chaque norme, nous
pourrons comparer l'erreur exacte (puisque nous connaissons la solution analy-
tique) et lerreur estimée par la méthode de projection locale établie par Zhu et

35, 36]  Les solutions éléments finis seront notées avec un indice h et les

Zienkiewicz
solutions exactes ou reconstruites avec ’exposant *.
— La norme L2p

Cette norme quantifie erreur sur la pression.

le|? = / (on — p)? 2

L’erreur sur sa sensibilité Sp se calcule de la méme maniere.
- La norme énergie

Cette norme quantifie Uerreur sur le gradient de la vitesse (ou de sa sensibilité).

e|? :/Q ((Vuh - V) + (Vuy, — Vu*)T)

: ((wh — V) + (Vauy, — Vu*)T) dQ

— La norme thermique
Cette norme quantifie Uerreur sur le gradient de la température (ou de sa sensi-

bilité).

le"]* = /Q(VTh ~VT*) - (VTy — VT*) dQ
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5.1.3 Etude de convergence et resultats numeriques

Les calculs ont été faits avec des éléments de Taylor-Hood, a pression continue.
Les noeuds en vitesse et en pression sont placés comme illustré sur la figure 5.2

Pour chaque norme d’erreur, le taux de convergence en fonction de la taille ca-

/

/

/
S S

noeuds pour la vitesse, noeuds pour la pressiot
la temperature et le deplacement

FiG. 5.2 Elément de Taylor-Hood

ractéristique h des éléments devrait étre de 2, c’est & dire e = O(h?). De plus,
I'erreur estimée doit converger vers l'erreur exacte. L’adaptation du maillage est

basée sur les 3 normes définies précédemment pour I’écoulement et pour les sensi-

bilités.

5.1.3.1 Sensibilités lagrangiennes

La figure 5.3 montre le maillage obtenu apres 5 cycles d’adaptation. Il compte
3807 noeuds et est particulierement raffiné au niveau du point de stagnation, en
effet, le gradient de pression est tres élevé dans cette zone, voir la figure 5.3(b).
Nous pouvons aussi vérifier sur la figure 5.4 que les conditions aux limites sont
bien respectées pour les sensibilités de u le long des parois, c’est a dire Sy et Sy
sont bien nulles. La figure 5.5 montre I’évolution des erreurs en norme L2p, énergie

et thermique pour les sensibilités ainsi que efficacité en fonction du nombre de
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(a) Maillage (b) Isolignes de pression

F1G. 5.3 Maillage et isolignes de pression pour le cas du jet plan

noeuds du maillage (qui est inversement proportionnel au carré de la taille des
éléments, nous nous attendons & une pente de -1). Le comportement asymptotique
de la solution éléments finis est tres bon : le taux de convergence asymptotique
est de 2 et les erreurs estimées convergent bien vers les erreurs exactes puisque

Pefficacité tend vers 1.

Le code est donc verifié et nous allons a présent comparer ces résultats avec les

calculs effectués en formulation eulérienne.
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(a) Isolignes de Su (b) Isolignes de Sv

F1ac. 5.4 Sensibilité lagrangienne de la vitesse pour le cas du jet plan
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(f) Efficacité en norme thermique

F1G. 5.5 Courbes de convergence des sensibilités lagrangiennes pour le cas du jet

plan
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5.1.3.2 Sensibilités eulériennes

Le méme calcul avec les mémes conditions aux limites a été fait. Aucun traitement
particulier n’est appliqué pour améliorer la précision des gradients a la frontieére.
Le maillage obtenu est différent de celui obtenu avec la formulation lagrangienne,

voir la figure 5.6.

(a) Maillage apreés 5 cycle, 4262 noeuds (b) Isolignes de sensibilité eulérienne de u

F1a. 5.6 Maillage et sensibilité eulérienne de u pour le cas du jet plan

Comme pour la formulation lagrangienne, le maillage est particulierement raffiné au

niveau du point de stagnation mais également le long de la frontiere, ce qui n’était
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pas le cas en lagrangien. Cela signifie que Perreur sur les sensibilités eulériennes est
particulierement élevée a cet endroit. C’est une des conséquences de 'imprécision
des conditions limites des sensibilités eulériennes pour un parametre de forme.
La figure 5.6(b) montre les isolignes de la sensibilité eulérienne de la composante
horizontale de la vitesse. Leur allure est assez différente de celle des sensibilités
lagrangiennes. En effet, cette comparaison illustre bien le fait que les sensibilités
eulériennes ne sont pas nulles sur les parois mais qu’il a fallu calculer le terme de

transpiration.

Les figures 5.7 montrent l'évolution des erreurs en norme L2p, énergie et ther-
mique pour les sensibilités ainsi que 'efficacité en fonction du nombre de noeuds
du maillage. Le taux de convergence pour l'erreur exacte n’est plus de 2, pour la
norme energie, il chute a 1.14 et les erreurs estimées ne convergent pas vers l'erreur
exacte. L’imprécision ne se limite donc pas aux frontiéres mais affecte les sensibi-
lités dans tout le domaine. La formulation eulérienne n’est donc pas adaptée pour

résoudre les problemes avec parametre de forme et conditions de Neumann.
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FiG. 5.7 Courbes de convergence des sensibilités eulériennes pour le cas du jet plan



5.1.4 Réactions

Dans cette partie, nous allons vérifier si la valeur donnée par les réactions est

correcte.

5.1.4.1 Approche analytique

Il est impossible de faire ici une étude de convergence rigoureuse. En effet, il faut
tout d’abord calculer de maniere analytique les réactions, c’est a dire calculer des
intégrales relativement compliquées, notamment sur la courbe ”intérieure” ou la
normale n’a pas une expression simple. Choisissons donc un cas simple, sur I’entrée.
Le probleme est qu’il s’agit d’'une courbe ouverte, il y aura donc des contributions
parasites aux extrémités. Il est possible de les diminuer en imposant des petits
éléments a ces endroits et ainsi de voir qualitativement si la valeur numérique
converge vers la valeur calculée. Considérons la composante horizontale des efforts

et intégrons sur l'entrée.

| )
T —pld) ndl’ = — d;
~/€'(Lt7"€€ ( p ) /0 1 + C (01 + y2) y

Le calcul analytique donne les valeurs suivantes :

F, = —-0.09120
DF, 5  D(l-5/a)
Da a?1+C(0.1+4 (5/a)?)
= 0.0016216

La figure 5.8 montre l’évolution de l'erreur relative en pourcentage pour
I’écoulement et pour les sensibilités. L’erreur sur la sensibilité des réactions est

comparable & celle de I’écoulement. La valeur obtenue est donc correcte.
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FiG. 5.8 Solution manufacturée : Erreur relative pour les réactions

5.1.4.2 Vérification supplémentaire

La solution manufacturée nous offre une grande flexibilité, en effet, nous pouvons
calculer n’importe quelle solution. Nous allons donc 'utiliser pour illustrer la rela-
tion entre les réactions en formulation eulérienne (noteés R.,) et les réactions en

formulation lagrangienne (notées Ryg ). On a la relation suivante :

D
b—a/raa'-ndl“a:/a{sa-nJrVa'-VM-n (5.1)

+0 - (V- Vyn = V'Vy -n)]dl

avec o = T — pld. Ainsi, les réactions en lagrangien sont composées des réactions
eulériennes, d’'un terme de transpiration et d’un terme issu de la sensibilité de la

géométrie.

ngr = Reul + Vo - Vi - ndl’ +/ g - (V -Vun — VTV]M : n) dl’

r
N o 4

TV VT
Transpiration Sensibilité de la géométrie
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Nous allons utiliser une autre solution manufacturée pour calculer la somme de la
transpiration et de la sensibilité de la géométrie. Elle sera obtenue en gardant la
méme solution pour ’écoulement et en utilisant une formulation lagrangienne pour
les sensibilités. Toutefois, pour que le calcul des réactions conserve seulement les
termes désirés, nous imposerons une sensibilité eulérienne nulle. Ainsi, en notant

Umeq Cette nouvelle solution, nous aurons

Umod — U
aumod
ZEmod
Oa
Dumod
Zomod _ Gy -V
Do wrhu

Alors, la sensiblité eulérienne des contraintes s’annule dans l'expression (5.1) et la
sensibilité des réactions ainsi obtenue est réduite au terme de transpiration et au
terme issu de la sensibilité de la géométrie qui sera le méme qu’avec la solution
initiale. Elle sera notée Rr,. Cette manipulation nous permettra de vérifier la

cohérence entre les 2 formulations, en effet, Ry, = Rew + Rric -

Pour contourner les problémes de convergence de la formulation eulérienne, le pa-
rametre sera traité comme un parametre de valeur pour ce calcul, ce qui est possible
puisque la solution analytique est connue. La table 5.1 récapitule les caractéristiques
des différents calculs et les valeurs obtenues pour chacun d’eux sur un maillage d’en-
viron 150000 noeuds. L'erreur relative entre Ry et Rey + Ry est de 0.5%. Les 2
formulations semblent donc bien cohérentes. Les réactions en sensibilités peuvent

donc étre directement utilisées pour les sensibilités des efforts, sans post traitement.

Le code numérique est vérifié, nous pouvons & présent passer aux applications.
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Formulation | Sensibilité calculée Réaction obtenue Valeur
D s} D
lagrangien b% - % + V- Vi Rigr = 5 | 0l -0.011370
. Dupoq . ]

lagrangien Da Vu - Vy Rrig= Vo -Viy-n 0.046378

/ I
“+o - (V . VM’I’L - VTVM . n) dFQ
. ou

eulérien -— Rew = Sq - ndly, -0.057829

da r.

TAB. 5.1 Convergence des réactions avec différentes formulations
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5.2 Profil Naca, calcul de solutions voisines

Maintenant que le code a été vérifié, nous allons nous en servir pour calculer des
solutions voisines de profils NACA a 4 chiffres. Nous reprendrons le probleéme décrit
dans 24 afin de comparer les résultats.

(u,v)=libre
(Su,Sv)=libre

(u,v)=libre
(Su,Sv)=libre

(u,v)=(0,0)
(u,v)=(coso. , sind.) (Su,Sv)=(0,0)
(Su,Sv)=(0,0) f—

(u,v)=libre
(Su,Sv)=libre

F1G. 5.9 Domaine pour le profil NACA

5.2.1 Description du probleme

Considérons ’écoulement autour dun profil de corde unitaire a nombre de Reynolds
égal a 1000 avec une incidence de 5°. Le domaine de calcul est représenté sur la

figure 5.9. La vitesse est imposée en entrée et une vitesse est nulle sur le profil. Sur
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le reste des frontieres, nous imposons des conditions de Neumann nulles.

Le profil est paramétré de la facon suivante : la ligne médiane est définie par 2 arcs
de parabole tangents au maximum de la cambrure. L’expression analytique est la

suivante :

m )
ymlzﬁ(Qp-/L'—x) 0<z<x,

_ m 1—-9 I 2) < r <
yml_(l—p)Q( D+ 2pxr — & T, <x<c

Avec c la longueur de la corde, mc I'ordonnée maximale de la médiane, et z, =

pe Vabscisse de 'ordonnée maximale. L'épaisseur du profil est définie de la facon

sulvante :

Yy = £5e (0.2969+/z — 0.12602 — 0.3537z* + 0.2843z° — 0.1015z*)

Nous considérerons le profil 4512 comme profil de base et nous extrapolerons les
résultats grace aux sensibilités lagrangiennes pour d’autres profils définis au tableau

5.2 dont la géomeétrie est dessinée sur la figure 5.10

(a) NACA4512 (b) NACA4515 (¢) NACAS512

(d) NACA4412 (e) NACA9714 (f) NACAG314

F1G. 5.10 Géométries des profils utilisés
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| NACA [ 4512 [ 4515 | 5512 | 4412 [ 9714 | 6314 |
e [012]015]012]012]0.14 | 0.14
m | 0.04 | 0.04 | 0.05 | 0.04 | 0.09 | 0.06
p | 050|050 | 0.50 | 0.40 | 0.70 | 0.30

TAB. 5.2 Parametres des profils utilisés
5.2.2 Solutions voisines pour la vitesse et la pression
Intéressons-nous dans un premier temps aux variables de ’écoulement. Les champs
de vitesse et de pression des profils voisins sont approchés avec un développement

de Taylor a I’ordre 1. Pour plus de précision, le développement pourrait étre poussé

A Pordre 2 mais il faudrait alors calculer les sensibilités d’ordre 2.

@ Du Du

= UWUyre A A
U= Upes + De e+—Dm m -+ DpAp
DP DP DP
P=P, —Ae+ —Am+ —A
f+De €+Dm m+Dp p

De plus, pour reconstruire les solutions sur la configuration voisine, il faut déformer

le maillage avec la vitesse de maille.

Az = AeVyp, + AmVyg, + ApVy,

Ay = AeVip, + AmVyp + ApVi,

Les isolignes de la vitesse horizontale et de la pression pour les solutions extrapolées
ou recalculées sont illustrées figures 5.11 et 5.12. Il s’agit des résultats obtenus apres
6 cycles d’adaptation, le maillage comporte un peu moins de 10000 noeuds. La
figure 5.11(a) représente le profil de base et la (b) les sensibilités par rapport a e.
Les sensibilités nous indiquent qu’épaissir le profil augmente la taille de la zone de
recirculation en aval du profil. En combinant ces 2 champs de maniére appropriée

et en déformant le maillage, nous obtenons les isolignes de la figure (¢) qui sont a
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comparer avec la figure (d). La géométrie du profil est bien extrapolée, en effet, la
géométrie du profil est linéaire par rapport au parametre e. Les isolignes de vitegse

sont elles aussi bien reconstruites.

En utilisant les sensibilités par rapport a e, m, p, nous pouvons tracer les isolignes
de vitesse pour un profil plus différent du profil de base, comme le profil 9714 qui est
sur les figures 5.11(e) et 5.11(f) pour le profil recalculé. Cette fois, le profil obtenu
apres déformation du maillage d’origine n’est pas tout a fait le méme que le profil
réel. En effet, la géométrie du profil n’est pas linéaire par rapport au parametre
p. Nous sortons donc également de la zone linéaire pour les autres variables ce qui
explique que les différences entre I’extapolation et le calcul soient plus importantes
que pour le profil précédent. Cependant, I'extrapolation donne pour un cofit bien
moindre quun nouveau calcul une bonne idee de 1’écoulement pour un profil voisin,

meéme assez différent.

Nous pouvons faire le méme travail pour la pression. La sensibilité de la pression
par rapport & e (voir figure 5.12(b)) est négative au niveau de l'intrados, donc
si 'épaisseur du profil augmente, la pression sur P'intrados va diminuer donc la
portance sera plus faible. Nous pourrons vérifier ces résultats a la section suivante
sur le tableau 5.3. Les isolignes de pression extrapolées sont trés semblables aux
isolignes pour le profil recalculé. Si les 3 parametres varient, les résultats peuvent
aussi étre trés bons comme le montrent les figures 5.12(e) et 5.12(f) pour le profil
6314. Dans ce cas, le développement a l'ordre 1 semble suffisant pour retracer de

maniere assez fidele les isolignes de pression.
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SuE S
5000 YR T EC  HAE AeaTe Y a8

(a) Profil de base 4512 (b) Sensibilité par rapport a e

(¢) Extrapolation du profil 4515 (d) Calcul du profil 4515

(e) Extrapolation du profil 9714 (f) Calcul du profil 9714

Fic. 5.11 Isolignes de U extrapolées et recalculées
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R L) [REEL] LELH 24631

3.178

(a) Profil de base 4512

(b) Sensibilité par rapport a e

(¢) Extrapolation du profil 4515

(d) Calcul du profil 4515

(e) Extrapolation du profil 6314

(f) Calcul du profil 6314

Fi1G. 5.12 Isolignes de P extrapolées et recalculées
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5.2.3 Etude des coeflicients de portance et de trainée

La méme démarche peut étre utilisée sur d’autres fonctions que les variables de
I’écoulement. Nous présentons ici une approche plus quantitative avec les coeffi-

cients de portance et de trainée.

5.2.3.1 Etude de convergence

Nous allons commencer par une petite étude de convergence sur le profil de base afin
de déterminer le maillage nécessaire pour extrapoler les résultats aux autres profils.
Les sensibilités des coeflicients de trainée et de portance seront obtenues a partir des
réactions sur le profil (il n’y a donc pas de post-traitement a faire). Il suffira de les
projeter sur les axes du profil pour obtenir la portance et la trainée correspondantes.

La figure 5.13 montre I’évolution de la portance et de la trainée ainsi que leur

i - s b e m e — — e~

- Cd
— % - DCd/De
- DCA/Dm)|
DCd/Dp

107 cf
+ - DCl/De
==~ DCI/Dm
DCiDp

Portance et ses sensibilite en valeur absolue
3

Trainee et ses sensibilites en valeur absolue

10° 10° 10 e
Nombre de noeuds Nombre de noeuds

(a) Trainée et ses sensibilités (b) Portance et ses sensibilités

F1G. 5.13 Etude de convergence des coefficients de trainée et de portance

sensibilité par rapport aux 3 parametres définissant le profil en fonction du cycle

d’adaptation. A partir de 10000 noeuds, la portance et la trainée ainsi que leurs
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différentes sensibilités ont convergé. Afin d’avoir une bonne précision, nous ferons

les extrapolations avec des maillages de 40000 noeuds.

5.2.3.2 Résultats

Nous allons comparer les coefficients de trainée et de portance recalculés et les co-
efficients extrapolés. Ces extrapolations sont obtenues a partir d’un développement

de Taylor d’ordre 1 :

DCD DCD DCD
= : A
CD CDmf+ De e+ Dm Am+ Dp Ap
DCy, DCy, DCy,
= Crrer + —A Ay A
Cr = Chres + De e—{—Dm m Dp b

Nous utilisons ici les valeurs données par les réactions. Nous trouverons table 5.3

les coefficients recalculés et les coefficients extrapolés. Les erreurs obtenues sont

| NACA | Coefficient recalculé | Coefficient extrapolé | Erreur relative (%) |

4512 Cd 0.13479
Cl 0.28018

4515 Cd 0.14110 0.14067 0.30
Cl 0.19569 0.19694 0.64

5512  Cd 0.13766 0.13740 0.18
Cl 0.29250 0.29287 0.13

4412 Cd 0.13595 0.13588 0.05
Cl 0.27611 0.27550 0.22

9714 Cd 0.15197 0.14960 1.56
Cl 0.30895 0.29751 3.70

6314 Cd 0.14856 0.14609 1.66
Cl 0.22339 0.24071 7.74

TAB. 5.3 Calcul des coefficients de trainée et de portance

du méme ordre que celles obtenues dans ?4. Dans cet article, les sensibilités ont

été calculées en formulation eulérienne avec une méthode de reconstruction des
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gradients & la frontiere pour améliorer la précision!®. Notons que le maillage com-

prenait alors 60000 noeuds environ. Pour mieux illustrer le comportement de chaque
méthode, nous allons comparer a maillage égal les résultats obtenus en formulations
lagrangienne et eulérienne (sans reconstruction des gradients) et les résultats avec

reconstruction (nous utiliserons directement les résultats de 124l le maillage ne sera

donc pas strictement identique).

25 T : r 45 ; :
—+— Lagrangien + —— Lagrangien
© -+ - Eulerien 4+ - + - Eulerien 4
of -o-- Eulerien avec reconstruction \l -o- Eulerien avec reconstruction
i b o
B '\\ 35
—~ b — !
= [ £ 3 !
© 15 Vo Y i
2 ', \ £ 250 L
it | \ & VO
54 \ [ P
5 v‘ \ o 2 9 1
g ! | \ ] g o
w : \ 1.5 " \\
L \\ 1 s AY
- }
o5k . o \ |
~+ T~ "
f/,/-;}:’_"f S 0.5¢ e
Tt -0 70 e e
0 " . @, . 0Lt s L
4] 2 4 8 8 10 0 2 4 6 8 10
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(a) Trainée pour le profil NACA 5512 (b) Portance pour le profil NACA 5512

12 : r 14 ! ; >
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(c) Trainée pour le profil NACA 9714 (d) Portance pour le profil NACA 9714

F1G. 5.14 Evolution des erreurs avec le maillage pour les différentes formulations

La figure 5.14 représente les erreurs relatives sur les coeflicients extrapolés en fonc-

tion du nombre de points pour les 3 différentes techniques pour les profils NACA
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5512 et NACA 9714. Pour la formulation lagrangienne, dés 10000 noeuds, 1'erreur
est presque aussi petite qu’a 40000 noeuds. La convergence est plus lente pour
la formulation eulérienne simple qui est aussi moins précise. Si les gradients a la
frontiere sont reconstruits, le niveau de précision est équivalent a la formulation
lagrangienne mais il faut un nombre de noeuds beaucoup plus élevé. En effet, la
précision de conditions aux limites pour les sensibilités eulérienne est directement
reliée au nombre de noeuds sur le bord du domaine. Les erreurs ne tendent pas
vers zéro, il s'agit de U'erreur de troncature dans le développement de Taylor. Pour

améliorer les résultats, il faudrait considérer le terme d’ordre 2.

5.2.4 Etude des coefficients de pression et de friction

Nous allons maintenant nous servir des sensibilités pour extrapoler les coeflicients
de pression et de friction. Nous utiliserons les résultats de la section 4.2.6 pour le
calcul des sensibilités. Le profil de départ est toujours le profil NACA 4512.

Nous extrapolerons le coefficient de pression de la facon suivante :

P—-P DC, DC. DC,
Cp=——==Che PA LA PA
P Louz el T he 2T Dm m Dp P
pc, S o |
avec =15 » a=e,m,p et S5 la sensibilité lagrangienne de p par rapport
Da §ono

au parametre a.

Nous adoptons une démarche similaire pour le coefficient de friction :

T n-t
3PUZ,

DCfAm+—DCpr

Cr = Dm Dp

DC;
= re A
Cf f + De €+

Nous pouvons donc utiliser directement la sensbilité lagrangienne de la pression.

Nous avions déterminé a la section 4.2.6 I'expression de la sensibilité lagrangienne
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du coefficient de friction :

Doy 1
Da — 1pUZ

[y, (vsu +VT'S,—Vu -VVy - Vivy - v%) ‘n-t
+T @ t+n Bﬁ
Da Do

Il faut donc post traiter les données pour la calculer en utilisant la vitesse de
maille. Nous pouvons alors tracer les courbes de la figure 5.15. Les courbes pour

les coeflicients extrapolés se confondent avec celles des coefficients recalculés.

Ce calcul de solutions voisines nous montre que les sensibilités sont un outil per-
formant pour calculer des solutions voisines, avec un seul calcul, nous pouvons

extrapoler les resultats avec fidélité sur un grand nombre de profils.
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Fic. 5.15 Calcul de solution voisine pour les coefficients de pression et de friction
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5.2.5 Comparaison de maillage

Les études précédentes nous ont permis de comparer le comportement de la formu-
lation lagrangienne et de la formulation eulérienne. Nous avions alors constaté que
la formulation lagrangienne était moins exigeante en terme de nombre de noeuds.
Pour mieux comprendre ce qu’il se passe, nous avons effectué un calcul avec adap-
tation sur I’écoulement et sur les sensibilités par rapport & e, avec les formulations

lagrangiennes et eulériennes. La figure 5.16 montre les 2 maillages obtenus au 5eme

SR A [N o ol B

(a) Formulation lagrangienne (b) Formulation eulérienne

F1G. 5.16 Maillages autour du profil 4512

cycle d’adaptation, ils comptent environ 15000 noeuds, un peu plus pour la formu-
lation eulérienne, un peu moins pour la formulation lagrangienne. Les différences
principales apparaissent sur 'avant du profil. Pour la formulation lagrangienne, il
est moins raffiné que pour la formulation eulérienne, mais plus homogene.Ce raf-
finement s’explique au regard des isolignes de sensibilité eulérienne de la vitesse

horizontale sur la figure 5.17. Sur 'avant du profil, la sensibilité est tres négative,
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en effet, a la frontiére, la sensibilité eulérienne est égale a 'opposé du terme de
ou ou

profil = —%VMZ. — &JVMZ/. Les gradients sont donc

beaucoup plus importants dans cette région avec la formulation eulérienne qu’avec

transpiration, c’est a dire s
3 u

la solution lagrangienne, ce qui explique que l'erreur soit maximale dans cette zone
pour la norme énergie de la sensibilité. Ainsi, la précision est meilleure en lagrangien
a nombre de noeuds égal car le raffinement est moins concentré sur les frontieres,

ce qui permet de raffiner ailleurs.

SU_E
2138 TTESYT 25 BT S i 29844 i 1.6845

F1a. 5.17 Isolignes de sensibilités eulériennes de u pour le profil 4512

Ces applications nous ont permis de montrer d'une part la pertinence des sensibi-
lités lagrangiennes pour traiter un parametre de forme et d’autre part les différents
avantages qu’elle présente par rapport a la formulation eulérienne, c’est a dire une

meilleure précision, une convergence plus rapide et des maillages plus homogenes.
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CONCLUSION

Le but de ce mémoire était d’étudier les sensibilités lagrangiennes et de déterminer
si cette formulation était une technique efficace pour le traitement dun parametre
de forme, la formulation eulérienne classique rencontrant des problemes de conver-

gence a cause de conditions aux frontiéres inexactes.

Nous avons pour cela procédé en deux temps. Nous avons commencé par traiter
Péquation de la chaleur pour simplifier le probléme puis nous avons développé
la méthode pour les équations de Navier-Stokes. La démarche est la méme pour
les deux problemes : il faut dériver la forme faible du probléme par rapport au
parametre. Seulenient, le domaine d’intégration dépend du parametre. Nous avons
donc recours a un domaine de référence indépendant du parametre pour expliciter

les dépendances et pour pouvoir dériver simplement.

La formulation ainsi obtenue présente plusieurs avantages. Tout d’abord, les condi-
tions aux limites sont directement établies a partir des données du probleme, elle
sont donc exactes. Ensuite, cette formulation permet de calculer les dérivées totales
par rapport au parametre de forme et ce sont elles qui sont utilisées pour calculer
les sensibilités de fonctions cotit, le post traitement se trouve donc allégé puisqu'’il
n’est plus nécessaire comme avec la formulation eulérienne d’évaluer des termes de

transpiration. La formulation lagrangienne est donc plus facile a utiliser.

Elle se distingue aussi de la formulation eulérienne par la présence d’une vitesse
de déformation qui traduit la transformation du domaine de calcul due a une va-
riation du parametre de forme. Données aux frontieres, il s’agit de deux variables
supplémentaires a calculer dans tout le domaine avec les contraintes suivantes : la
vitesse de déformation doit étre contintiment différentiable et respecter les condi-

tions aux limites du probleme et son calcul doit étre compatible avec 'adaptation de
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maillage. L’approche pseudo-solide a été choisie car elle répond a tous ces criteres.
Ainsi, le domaine se déforme comme un solide élastique et la vitesse de déformation

est régie par les équations d’élasticité linéaire.

Pour chacun des problemes, équations de Navier-Stokes ou de la chaleur,
I'implémentation des équations a été vérifiée par la méthode des solutions manu-
facturées. Ceci nous a permis non seulement de vérifier la convergence de cette
formulation avec un parametre de forme et des conditions de Neumann, mais
aussi de comparer les résultats avec la formulation eulérienne. La ou la formu-
lation eulérienne nécessitait une reconstruction précise des gradients a la frontiere
pour pouvoir conserver une convergence a l'ordre 2 avec le raffinement du maillage,
la formulation lagrangienne converge sans probleme avec le bon taux sans calcul
complémentaire et 1'estimateur d’erreur fonctionne aussi tres bien. Il sera donc
fiable pour des utilisations ultérieures pour lesquelles nous ne disposerons pas de

la solution exacte.

Nous avons ensuite évaluer les performances de la formulation lagrangienne sur
un cas pratique. Nous avons calculé des états voisins pour des profils NACA, il
s'agit d’extrapoler sur un profil voisin la solution elle-méme, des valeurs locales
comme le coefficient de friction ou de pression ou des quantités intégrales comme
les coefficients de portance ou de trainée. Cette application nous a permis de mon-
trer la facilité d’utilisation des sensibilités lagrangiennes. Dans un premier temps,
nous avons pu reconstruire les isolignes de vitesse et de pression sur une géomeétrie
déformée. Celles-ci restent alors assez fideles aux isolignes des profils recalculés.
De maniere plus quantitative, nous avons extrapolé les coefficients de portance et
de trainée et comparer avec les résultats qui avaient été obtenus en formulation
eulérienne. Nous avons alors constaté que les résultats étaient semblables, ce qui
montre la pertinence des sensibilités lagrangiennes, mais en plus que ces résultats

étaient obtenus sur des maillages plus grossiers. La structure des maillages obtenus
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apres plusieurs cycles d’adaptation est différente, la répartition des noeuds est plus
homogene avec la formulation lagrangienne car les erreurs aux frontieres sont moins

importantes.

Le cout numérique de cette formulation, ce sont deux inconnues supplémentaires
dans le probleme mais ceci est compensé par une convergence plus rapide. Nous
pourrions encore gagner du temps de calcul en combinant les deux formulations. En
effet, dans beaucoup de cas, la déformation du domaine ne concerne qu’une zone
réduite du domaine de calcul. Par exemple, sur le cas du profil, seul le voisinage
du profil est affecté, loin du profil, la déformation est pratiquement nulle. Nous
pourrions donc utiliser la formulation lagrangienne dans les zones déformées et
la formulation eulérienne ailleurs, ce qui permettrait de tirer profit des atouts de

chaque formulation.
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ANNEXE I

TRANSFORMATIONS D’ESPACES ET DERIVEES MATERIELLES

Nous présentons brievement les démonstrations des formules exposées dans la
section 2.3.1 et les formules permettant une dérivation plus systématique des
équations. Le but étant de comprendre le raisonnement, nous ne nous attarde-
rons pas sur les considérations mathématiques et nous supposerons que toutes
les fonctions et espaces sont de regularité suffisante pour que toutes les fonc-
tions, les dérivées et intégrales soient bien définies. Pour plus de détails et de

rigueur mathématique, il est préférable de se référer aux travaux de J-P Zolésio et

M.C.Delfour.

I.1 Conventions de notation

Dans cette partie, nous allons définir quelques conventions de notation pour les
opérateurs.
Considérons A et B deux tenseurs d’ordre 2. La double contraction est définie de

la maniére suivante :

AZB:AiijiZBjiAij =B:A
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Si f est un champ vectoriel, nous définissons le gradient et la divergence de la facon

suivante :
_Ofy
o,

af;
V-f= Jz;

(V£

Ainsi, en deux dimensions nous avons :

Ofe 0fs
or Oy
afy 9fy
or Oy

_ Ofa Oy
Vo= 8x+8y

Vf =

I.2 Transformations d’espace
A
%

Q

Fic. 1.1 Déformation du domaine

Nous reprenons dans cette partie le formalisme introduit a la section 2.3.1

Considérons donc la transformation $ entre le domaine €1y et {2,, son gradient
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F et la vitesse de déformation Vis. Nous allons démontrer les relations de corres-
pondance entre les 2 domaines. Soient un champ de vecteurs f*(x®, ) défini sur
€2, et son correspondant f(x, a) sur Qy, démontrons les formules suivantes :

— Opérateur divergence (2.27)

Ve oft = Fl Ve

Les dérivées en espace s’exprime par le théreme des fonctions composées de la

maniere suivante.

Ofe (x>, y*)  Ofy (%, y%)
o fa T Y
\Y% Do + oy

_0fe Oz 0fs Oy  0Ofy Oz  Ofy 9y
Oz Or® Oy dz* Oz Oy Dy Oy°
= (Vf)ij (F_l)
=F':Vf

It

- Opérateur gradient (2.28)
VoY = Vi - F

La composante 77 du gradient peut se décomposer de la maniére suivante, en

utilisant la notation indicielle :

apa _ afia
Of; Oxy, -1

= —_— = AF ,
Oy, Ox§ (V8 ( )kJ

= (V- F™)

iJ

— Formule (2.30)
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Elle se démontre simplement de la fagon suivante :

DFF' DF DF!
= F '+ F = ,
Da Da -+ Do 0 donc
DF-! DF
F =_-——F!
Da Do
=-—VVy - F!
==V*Vy

1.3 Dérivées matérielles

Considérons a nouveau la transformation ¢ entre le domaine de référence () et le
domaine déformé €, son taux de déformation F' et la vitesse de transformation V.
Nous cherchons alors a évaluer les dérivées matérielles de champs ou d’intégrales
en o = 0, c’est a dire pour la température par exemple,

DT T(¢(X Oé), Cl’,) — T(X’ 0)

— = lim
Do a0 a

En adoptant une démarche analogue a celle de la section 2.3.2, nous pouvons
démontrer les formules générales de dérivation présentées ci-dessous. Considérons
un champ scalaire f dépendant du parameétre de forme a.

— Dérivée matérielle ou lagrangienne d'un volume élémentaire

DdS)
=V Vi df} 1.1
Do M (L.1)

— Dérivée matérielle d’une surface élémentaire

Ddr

Cette expression peut étre retravaillée pour faire apparaitre la courbure de la
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courbe ou de la surface mais nous ne retiendrons pas cette possibilité car la
courbure n’est pas calculée dans le code car la normale est exprimée en fonction
de 'abscisse curviligne.

— Dérivée matérielle d'une intégrale de volume

= ( /Q f dQ) - /Q (g—£+f'v-vﬂf) a9 (13)

— Dérivée matérielle d'une intégrale de surface

2 ([ra)= [(B+r@vi-vimm) oy

— Dérivée matérielle d'un gradient

DVf __Df ;
Da = Vm el Vf . VV]V[ (IO)

Ces formules sont présentées et démontrées avec différents formalismes. dans 19,

M gu B Les dérivées totales sont alors souvent exprimées en fonction des
dérivées partielles correspondantes, ce qui permet de faire des simplifications
supplémentaires, par exemple des intégrations par parties pour faire apparaitre
des intégrales de bord. Cependant, dans notre cas, nous cherchons justement une
forme faible en fonction des dérivées totales (les sensibilités lagrangiennes), c’est

pourquoi nous n'en parlons pas plus dans ce projet.
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ANNEXE II

AUTRES DEVELOPPEMENTS DE L’EQUATION DES
SENSIBILITES POUR L’EQUATION DE LA CHALEUR

Comme mentionné a la section 2.3.2.2, il y a plusieurs facons de dériver les équations
qui menent au méme résultat, nous en présentons ici 2. La premiere est obtenue
en dérivant la forme forte de 1'équation de la chaleur et en intégrant par partie
ensuite pour obtenir la forme faible des sensibilités lagrangiennes. Pour la seconde
fagon, nous utiliserons les formules de dérivation générales. Ces développements

complémentaires pourraient aussi eétre utilisés pour ’équation de Navier-Stokes.

II.1 Dérivation de la forme forte

Reprenons le probleme de ’équation de la chaleur 2.1 :

V- (kVT) = Q dans
EVT -n=7q surl,

T=T surT'p

Nous avions choisi de dériver la forme faible associée a ce probléme mais on peut

aussi choisir de dériver la forme forte (avec la méme démarche, passage au domaine

de référence, dérivation, retour au domaine déformé) et d’intégrer par partie en-
) ) g par i

suite. Nous utiliserons les mémes notations que précédemment. Nous supposons

que I'r = 09, Soit une fonction test 6W appartenant a l'ensemble des fonctions

admissibles. En multipliant par une fonction test et en intégrant sur le domaine,
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nous obtenons :
/ V° - (V) — Q]6W dQ — 0
Qo

Avec un changement de variable, nous passons I'intégrale au domaine de référence.

Nous obtenons alors :
/ [F1:V (kYT F) — Q] 6W JdS = 0
Qo

Nous pouvons donc dériver formellement par rapport a « puisque le domaine

d’intégration est indépendant du parametre, ce aui mene a ’expression suivante :

DF—I -1
/{D :V(kVT-F‘l)—kF’l:V(kVT-DF )
Qo

o Da
Dk DT DQ
-1, ).l 2%
9 [(Bor v 2D) p] - 220w
e -1 DJ
+ [ [F':V(VT-F') = Q| 6W —=dQ =0
Q0 Do

Nous avons utilisé le fait que les fonctions tests ne dépendent pas du parametre.

En revenant sur la configuration déformée, nous avons :

/ {— VeV v (kVOT) + VO - (kV°T) V2 - V5

@

D -
v ( D_’v VT + kVSy — kVT - vavg[ﬂ SWdQ,  (IL1)
(8%

D@
— — CLVELOW dQ, =0
/a|:DOé+QV VM}

Si fest un champ scalaire, U un vecteur et b un tenseur, nous avons les identités



suivantes :

?“H

<
= g
Il I
i

A(Z

Considérons la premiere de ces formules en posant b = VVZ et U = kV®T. Nous

avons alors :
VevE .V (EVOT) = VY. (VOVE - kVOT) — V* - (VoV )T - kVeT
Prenons & présent la deuxiéme avec U = kV°T et f = V. V%, nous obtenons
Ve (RVOT)V* - Vi =V (kVTV® - Vi) — kVOT - V¥V - Vi)
En remarquant que V< - (V°Vy, )1 = V*(V*. V3), nous avons

—VOVE  V* (kVOT) + V* - (kVT) V- V5
= VY (VOVE - kVOT) + VO - (kVOTVE - VE)

Ainsi, en remplacant dans (II.1) nous obtenons

/ {Va (=VVy - kVOT + kVOTV® - Vi)

(a3

+Ve. (D—kVT + kV Sy — kEVT - V"Vﬁ‘,ﬂ oW dQ,

Da
DQ

- - LV W A, =
/Qa[Da+Qv VM‘|W a=0

Nous pouvons a présent intégrer par partie la premiere intégrale et nous retrouvons

la forme faible obtenue a la section 2.3.2.
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I1.2  Utilisation des formules générales

Dans cette partie, nous allons reprendre la forme faible de ’équation de la chaleur
et utiliser les formules de dérivation de la section 1.3 pour établir la forme faible de
I'équation des sensibilités lagrangiennes. Ceci est équivalent a ce qui a été exposé a
la section 2.3.2 mais plus direct. Nous devons donc calculer la dérivée par rapport

a a de 'équation suivante :
/ (KVT - VW + QW) dQ2 =0
Q

Nous allons donc appliquer la formule (I.3)

D Df
E—&(/Qfdﬂ) :/ﬂ(mﬂfv.VM) Q)

avec f = kVT - VoW + Q6W

Nous obtenons alors directement :

L / (kYT - V6W + Q6W) dQ
Do Q

- / {D% (KVT - VW + QW) + (kVT - VoW + QOW) V- Viy| d2  (IL2)
Q

Nous devons maintenant évaluer la dérivée totale du gradient de la température et

du gradient de la fonction test. Nous appliquons donc la formule (1.5)

DVT
v =VSr —VIVVy
Do
DVow = —VIWVV,, (rappelons que VM =0)
Da Da
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Ainsi nous avons :

D
Do (VT -VéW)=VSy - VOW — VT -VVy - VOW — VT - VoW - VVy,

= VST . VCSI/V - VT . (VV]L[ + VTVA{) . V(ﬂ/V
En remplagant dans (I1.2), nous obtenons la méme forme qu’a la section 2.3.2, c’est
a dire,

" Dk
QDCV

VT - VW + kV Sy - VoW — kVT - (Vi + VIVy) - VOW

D
+ kV -V VT - VW + (D_g +QV - VM) W dQd= 0
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ANNEXE III

PROJECTION DES EQUATIONS DES SENSIBILITES
LAGRANGIENNES

Nous avons développé au chapitre 4 les formes faibles pour calculer les sensibilités

lagrangiennes du probleme. Nous allons maintenant détailler les différents termes

de ces formes faibles. Il s’agit des expressions qui ont été utilisée dans le code. Nous

utiliserons les notations complémentaires suivantes :

— (u,v) les composantes de la vitesse selon les axes (Ox, Oy)

— (Sy, Sy) les composantes de sensibilité lagrangienne de la vitesse

— (65, 05,) les composantes de la fonction test associée a la sensibilité du mouve-
ment

— Vi la vitesse de maille ou de déformation et Viy,, Vasy ses composantes

III.1 Continuité

Reprenons la forme faible des sensibilités issue de I’équation de continuité (4.16).

/ (V- Sy + V- uV® - V& — VOV : Vo) §Sp dQe = 0

o

En développant les différents termes et la contraction, nous obtenons :

) oS, oS, ou  Ov
Oy | Ooy o O\ Ga
/gza{(ax+ay>+(ax+ay)v M

ou 8VM$ ou aV]uy ov ava ov 8VMy
- = — — — 0Sp dQ,
(8:17 ox + dy Ox oxr Oy + Oy Jy F

=0
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I1I1.2 Mouvement

Nous développons a présent les différents termes de la forme faible des sensibilités

de mouvement. Rappelons qu’elle était de la forme suivante :

D Convection n D Pression N D Diffusion B D Force + D Terme de bord
Da Do Do " Da Do

Nous allons détailler chaque terme.
Terme de convection

Nous pouvons décomposer le terme de de convection 4.18 de la fagon suivante :

D

EE/QQp(u-V Yu - 85y, d,

[0
a. \Oa

+/ pl(Su- V) u+ (u- V%) S, — Vou - VoV - u - 58, dQ,

o3

= / Conv,45S, + Conv,46S, dfd,
Qo

Avec

Conv, = (% + pV*®. VM> <ug—% + vg—Z)
+p (S 8—u+5 —a—q-l—uasu _H)@Su)

“Or 'Oy ox Oy

OudVy,  OudVyy Ou Vi,  OudVyy,
_p[u(gfﬁ gr Oy oa )—i—v(% oy Oy Oy ﬂ
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et

P
Conv, = (d_g + pVe. VM> ( du 7)3—:

v v 85
Su_ v . -
—I—p< 0:E+de+ud1:+ )
ov aV]\[T ov dV]\/[y ) ov dVMT ov (‘)VMy
p[ (d:c or oy or ) T\ar oy "oy oy

Terme de pression

Considérons a présent le terme de pression 4.19 :

D o

/ (S, + pV? - V&)V - 68, — pVOVE : VO6S,] dQ%

N 06S, 068,
aV]WT aéSu + av]ﬂy 05511,
b ox Oz dr Oy
OViy 005, OV 005,
p( g or T oy oy )] o

Terme de diffusion

Reprenons le terme de diffusion 4.20. Nous pouvons décomposer la double contrac-

tion :



w (VeVyr - (Vou + VoTu)) - V248, dQ,

' 063, e 005, e 005, . 008,
= Di xx ’ Diff,, — yx
/Q Diffy, =5 + Diffy o+ Diff, = D, o

Ainsi, nous avons les expressions suivantes :

e Du N ou a8,
Diff,, =2 (m + puV* .- VM) e +2u e

(9“ 8VMI 6u aV]\/[U (911, (9'0 GVMm
— 4= g Mt »

6y+%

Oxr Ox + dy Ox

, Dyu a ou Ov os, 08,

_ (OudVie | OuOViy OOV, | Ov OV
# oxr oy oy Oy ox O Oy Ox

6’& 8’0 aV]Wm (% aV]yjm
# ((8—g * dr) Ox +2(’)y Oy )

) Du ou Ov 0S, 08,
lefyx=<l—)—l(;+uvo‘-VM) <8—y+a> +,u<ay + 8x>

B OudVyy  OudViy  OvdVy,  OvdVy,
a or Oy oy Oy ox Ov oy Ox

ou 8VMy ou ov aV]wy
H (201‘ Oz N (8y + 8:1:) Jy

141



ITII.3  Energie

oy " oy
v 8VMy ov aVM x ou ov é)VMy
_ g2 My - i -
K < Ay Oy dx Oy + Ay * Jdr ) Ox
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Pour ’équation de I’énergie, la forme faible de I'équation des sensibilités était la

suivante (4.22)

g

J.

"/ Doc
( 5;13 + pcpV* - Vﬁ) u- VT + pcpS,, - VT

+ pepu - VOSr — pepu - (VOT - VOVE)] 657 dQ.

Do

[/ DX
(—— + AV Vjﬁ’,) VT -V Sy + AV*Sy - V¥Sr

~AVOT - (VOVy + VTV - Vo6ST] dQa

Dqs
— V.V ) 8Sr dQy,
/Qa (Da + gqs M) St
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Le développement de ces termes donne ’équation suivante :

Dpcp o or ar or or
/a {( Da + pch . V]yj) <IL% + l@) + pcp (Sub—m -+ Sv@)

6T C{)VMT, ({)T 8VMy dT aVMm aT 8VMy
—pcp U\ = +v§ 5
or Oy oy 0Oy

— +
or Ox Oy Ox

S S
+ pcp w4 L 0ST dS),
ox oy

DA oT 06Syr  OT O6S5r
Z2 V.V il el
+/Qa {(Da AV M) (83: ox + dy Oy )

Y Kza_:r Wara | OT <ava N avMy>> 96y

or Ox oy \ dy ox ox
OT (Vi | OViy +9 OT Vg \ 965t
oz Oy ox oy Oy Oy

OSt 0685y OSr 96Sr
A )
+(8$ 8:17+8y ay)}d“
Dgs

=/ <— + qua . V]\y) 5ST an
.\ Da
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ANNEXE 1V

DETAILS DE LA SOLUTION MANUFACTUREE

La solution de I'’écoulement n’ayant pas une expression tres simple, il serait long de
calculer tous les termes entrant en jeu dans les équations de 1'écoulement et de ses
sensibilités. Nous allons donc les exprimer en fonction des variables de I’écoulement,

de leur gradient ou de leur sensibilité eulérienne et de la vitesse de déformation.

IV.1 Sensibilités de 1'écoulement et de la température

La vitesse de maille étant définie par morceaux, il en sera de méme pour la sensi-

bilité des différentes variables.

ou  Ou ou

w= 2 By 2y
Su= g5 T ag =t g, Vi
ov Ov ov
SU‘%+5;VMm+%VAIy
or oT oT
Sr=— + ——Vy + —V,
T 8a+8z M+3y My

IV.2 Terme source

Pour équilibrer les équations, nous devons calculer le terme source approprié pour
chacune des équations et les conditions aux limites. L’équation des sensibilités
s’équilibre en calculant la dérivée lagrangienne du terme source de I'équation de
I’écoulement. Comme pour les solutions manufacturées calculées pour ’équation de

la chaleur, le code calcule lui-méme la sensibilité lagrangienne a partir de la sensibi-
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lité eulérienne, des gradients du terme source et de la vitesse de maille numérique.En
supposant que la densité du fluide est constante; nous devons fournir au code les
termes suivants :

Projection sur Ox

Jo= e TPy T o M o T o

ofe _ au ou Pu Ovou 0%u

2r Poz0zr ™02 T Par oy TP ooy

N Pp  [(Pu N OPu
o2~ M\ 523 Oxdy?

Of Ou Ou u v Ou 0u

oy ——ﬂg;g;‘!‘ Oroy +p8y8y+p Hy?

82 Fu N 8_3u_
5’:68?; ks or?y  Oy?

Ofe _ _82@4_ y 0%u i Gudu+ d%u
Oa _paa oz " P Padx 8(1 Ay pY Oady

82 Pu N Pu
0a01' dadx? = Oady?

ou ou Op (82'11/ 82u>

Projection sur Oy

f — v + QE + _(‘3_]3 _ 92_?} + 223
v = Pl pua oy H\ 522 oy?
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or  Pozoz "oz TPz oy T Gzoy

N &p B & 4 Fv
dxdy H\ 022 Oxdy?

ofy _ dudv v v v v

oy Foyor Mooy Poyay T e

P (O o
T M\ Gy T e
ofy ou Ov J?v Ov Ov &%

da %5;—1_ 8a8$+p8a8y+p dady

n d%*p Pv n v
Jady P\ 9ada? dady?
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IV.3 Tractions et flux thermique

Pour le traitement de la solution manufacturée, nous avions a imposer les tractions
et flux thermique a la frontiere pour les conditions de Neumann. Nous présentons

ici leur expression en fonction des variables de 1’écoulement.

IV.3.1 Tractions

Les forces surfaciques et leur sensibilité lagrangienne sont développées ci-dessous.
Nous avons supposé que la viscosité du fluide était constante.

Projection sur Oz

Dty _ o Dny
Da ~ 7" g
ou ou 5 ou Dn,,
2 — Ve + =—=V; e+ 2U——
s (8a8x T oM * 0z0y My) M Hoz Da

N ou N OQuV +82uv - du Dn,
K\ Baoy ™ Baay M= T Gz My ) T R Da

+ o +§2—vv +—62vv n, + Gy Dry
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Projection sur Oy :

t, = N, + I au+@n+2%n
(A R R PRI R

Do = =S v
ou 0%u 0%u Ou Dn,
+ U (c‘h@y + éit_&yVMm + @VM@I> Ny + ,u% Da
+u< dv +QQ—UVM —'r-—Q?U—VM )n +;1@Dnm
dadx  O0x2 Y oxzoy V) " "0z Da

ov o O%v ov Dn
+2p ( + Ve + ?VM'y Ny + 2p——

dady  0x0y

IV.3.2 Flux thermique a la frontiere

Nous supposerons aussi la conductivité thermique constante.

Projection sur Ox

or
e Er
Dq, or  9*T 0T dT Dn,
- = A —Vie + —V) e+ AT——
Da <8a8x T oz T droy MY e ¥ 5z Da
Projection sur Oy
or
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