
Titre:
Title:

Une méthode de l'équation des sensibilités lagrangiennes pour les 
écoulements

Auteur:
Author:

Lise Charlot 

Date: 2008

Type: Mémoire ou thèse / Dissertation or Thesis

Référence:
Citation:

Charlot, L. (2008). Une méthode de l'équation des sensibilités lagrangiennes pour
les écoulements [Mémoire de maîtrise, École Polytechnique de Montréal]. 
PolyPublie. https://publications.polymtl.ca/8326/

Document en libre accès dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:
PolyPublie URL:

https://publications.polymtl.ca/8326/

Directeurs de
recherche:

Advisors:
Dominique Pelletier, & Stéphane Étienne 

Programme:
Program:

Non spécifié

Ce fichier a été téléchargé à partir de PolyPublie, le dépôt institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca

https://publications.polymtl.ca/
https://publications.polymtl.ca/8326/
https://publications.polymtl.ca/8326/


UNIVERSITE DE MONTREAL 

UNE METHODE DE L'EQUATION DES SENSIBILITES LAGRANGIENNES 

POUR LES ECOULEMENTS 

LISE CHARLOT 

DEPARTEMENT DE GENIE MECANIQUE 

ECOLE POLYTECHNIQUE DE MONTREAL 

MEMOIRE PRESENTE EN VUE DE L'OBTENTION 

DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES 

(GENIE MECANIQUE) 

JUILLET 2008 

© Use Chariot, 2008. 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-46041-2 
Our file Notre reference 
ISBN: 978-0-494-46041-2 

NOTICE: 
The author has granted a non­
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non­
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



UNIVERSITE DE MONTREAL 

ECOLE POLYTECHNIQUE DE MONTREAL 

Ce memoire intitule: 

UNE METHODE DE L'EQUATION DES SENSIBILITES LAGRANGIENNES 

POUR LES ECOULEMENTS 

presente par: CHARLOT Lise 

en vue de l'obtention du diplome de: Maitrise es sciences appliquees 

a ete dument accepte par le jury d'examen constitue de: 

M. GARON Andre, Ph.D., president 

M. PELLETIER Dominique, Ph.D., membre et directeur de recherche 

M. ETIENNE Stephane, Doct., membre et codirecteur de recherche 

M. PERRIER Michel Ph.D., membre 



IV 

R E M E R C I E M E N T S 

Je tiens a remercier tout particulierement mon directeur de recherche, Dominique 

Pelletier pour la qualite de son encadrement et la confiance qu'il m'a temoignee. 

J'ai beaucoup appris grace a ses conseils, il a veille a ce que cette maitrise se passe 

le mieux possible de tout point de vue et je lui en suis tres reconnaissante. 

J'aimerais aussi remercier mon codirecteur, Stephane Etienne pour sa disponibilite 

et ses conseils. Les discussions avec lui m'ont permis d'eclaircir mes pensees et 

d'avancer efncacement. 

Je remercie Alexander Hay pour son aide precieuse, meme a distance il a toujours 

repondu a mes questions. 

Je voudrais remercier aussi tous les etudiants que j ' a i cotoyes dans le labo, deja 

pour avoir repondu a mes questions mais surtout pour la tres bonne ambiance 

qui a regne au quotidien, c'etait un plaisir de venir travailler. Je remercie done 

Jean-Serge pour les pauses et son excellent enseignement de la culture quebecoise, 

Jerome pour m'avoir supportee en tant que voisine, Eric pour ses conseils sport 

et sante, Farshad pour les parties de babyfoot, Jean-Francois pour avoir apprecie 

mes petits dessins, Romain pour l'animation intermittente, Fernando, Richard, 

Thomas, Esperancia, Marianne et Simon. 

Enfin, je remercie mes parents pour leur soutien, leurs petits colis bien apprecies 

et pour etre venus me voir. 



V 

R E S U M E 

Dans ce memoire de maitrise, nous presentons une formulation lagrangienne de la 

methode de l'equation des sensibilites pour les equations de Navier-Stokes. Cette 

methode consiste a calculer les derivees de l'ecoulement par rapport a un vecteur 

de parametres de design. Mais lorsque le parametre definit la geometrie du do-

maine, il faut choisir entre evaluer les derivees partielles (point de vue eulerien) ou 

totales (point de vue lagrangien). Les conditions aux limites des sensibilites sont 

donnees par les derivees materielles des variables aux frontieres, c'est a dire les 

sensibilites lagrangiennes. Le point de vue eulerien rencontre done des problemes 

de convergence car ses conditions aux limites necessitent 1'evaluation des derivees 

de la solution a la frontiere. 

Nous developpons dans un premier temps l'equation des sensibilites lagrangiennes 

pour l'equation de la chaleur. Le point delicat est alors la derivation des equations 

puisqu'il faut deriver des integrates dont le domaine depend du parametre. II 

apparait alors une vitesse de deformation du domaine, connue uniquement aux 

frontieres mais qui doit etre calculee partout dans le domaine. Pour ce faire, nous 

choisissons l'approche pseudo-solide, qui represente la deformation du domaine par 

des equations d'elasticite, pour ses proprietes de regularity et sa compatibility avec 

l 'adaptation de maillage. 

Nous testons ensuite numeriquement cette formulation grace a la methode des 

solutions manufacturees qui nous permet d'etre certains de l'exactitude de 

l'implementation des equations dans le code. Les comparaisons avec la formulation 

eulerienne montrent que cette approche permet bien de coutourner les problemes 

de convergence de la formulation eulerienne. 

Forts de ces conclusions positives, nous developpons la formulation pour les 

equations de Navier-Stokes. Nous etudions alors le post traitement des sensibi­

lites lagrangiennes qui est plus direct et plus simple que celui de la formulation 
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eulerienne. Nous verifions ensuite la convergence et l'implementation avec une so­

lution manufactured. Meme avec l'imposition de conditions de Neumann, la conver­

gence reste bonne et l'estimateur d'erreur est tres fiable. Nous pouvons done utiliser 

cette formulation pour le calcul de solutions voisines sur un profil d'aile NACA a 

4 chiffres. La methode s'avere alors tres efficace, les extrapolations sont bonnes 

et il n'est pas necessaire d'avoir des maillages aussi fins qu'avec la formulation 

eulerienne pour arriver a ces resultats. 
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A B S T R A C T 

This thesis presents a lagrangian sensitivity equation method for the Navier-Stokes 

equations. This method aims at evaluating the derivatives of the flow variables 

with respect to a vector of design parameters. When the geometry of the domain 

depends on the design parameter, we have a choice between the partial derivatives 

(eulerian point of view) and the total or material derivatives (lagrangian point of 

view). The boundary conditions of the sensitivity problem are given by a material 

derivative. For the eulerian sensitivity equation method, the boundary conditions 

involve the derivatives of the flow variables at the boundary. This is precisely 

where the FEM derivatives are least accurate. This introduces inaccuracies that 

degrade the grid convergence of the solution with mesh refinement. The lagrangian 

sensitivity approach is free of this problem. 

We firstly develop the lagrangian sensitivity equation for the heat equation. The 

main issue is the differentiation of the equations because we have to differentiate 

integrals over parameter dependent domains. As a consequence, a deformation velo­

city appears. It is required on the whole domain but is known only on the portion 

of the boundary that varies with the parameter. The boundary deformation is 

propagated through the domain by solving elasticity equations. This pseudo-solid 

approach is compatible with our mesh adaptation procedure. 

We numerically test the formulation with the method of the manufactured solution 

to ensure of proper the implementation of the equation. We compare convergence 

results of our lagrangian approach with those of the eulerian formulation and we 

conclude that our approach yield a better sensibility for shape parameters. 

We then develop the lagrangian formulation for the Navier-Stokes equations and 

study the post processing of the lagrangian sensitivity which is simpler and more 

direct than that of the eulerian point of view. The code is again verified with a 

manufactured solution. While the eulerian formulation experiences reduced conver-
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gence rate and accuracy with a Neumann boundary condition, the langrangian one 

behaves according to theory because its boundary conditions are simple and exact. 

We recover the theoretical convergence rate and the error estimator is accurate. 

Finally we apply the lagrangian sensitivity equation method to a baseline to eva­

luation flow on nearby geometries. The method turns out to be very efficient : the 

extrapolations are accurate more accurate than with the eulerian formulation and 

obtained on coarser meshes. 
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1 

I N T R O D U C T I O N 

Les ecoulements de fluides sont souvent des phenomenes complexes. En effet, ils sont 

modelises par les equations de Navier Stokes qui n'ont malheureusement pas de so­

lution analytique dans la majorite des cas pratiques. II est alors difficile de prevoir 

le comportement de l'ecoulement si on modifie certains parametres. L'approche 

experiment ale a longtemps ete la seule possible pour quantifier leur influence. Mal­

heureusement, elle reste tres lourde, longue et coilteuse. Depuis le debut des annees 

80, avec les avancees technologiques, la simulation numerique s'est developpee et 

permet a present, avec l'augmentation de la puissance informatique, de simuler une 

grande variete d'ecoulements. Differentes formulations ont ete developpees pour 

calculer les sensibilites qui sont justement le taux de variation des variables de 

l'ecoulement (vitesse, temperature, etc..) ou de fonctions de ces variables par rap­

port au parametre. 

Le design optimal s' interesse particulierement aux parametres definissant la forme 

du domaine. Le calcul des sensibilites permet en effet d'identifier les parametres 

les plus influents, de calculer le gradients de fonctions cout ou d'evaluer des so­

lutions voisines. Nous pourrons par exemple optimiser un profil d'aile pour maxi-

miser la portance et minimiser la trainee. II faut done etudier l'ecoulement sur 

un domaine variable. Plusieurs formulations sont alors possibles : nous pouvons 

adopter un point de vue eulerien, e'est a dire se concentrer sur un point fixe du do­

maine, ou alors un point de vue lagrangien qui consiste a suivre le domaine dans sa 

deformation. Pour chacun de ces points de vue, la sensibilite obtenue est differente 

et doit etre interpretee de la fagon appropriee. 

Le but de ce memoire est d'etudier les sensibilites du point de vue lagrangien et 

de comparer les performances de cette formulation avec celles de la formulation 
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eulerienne. Pour cela, nous utiliserons un code d'elements finis adaptatif qui resout 

deja les sensibilites d'un point de vue eulerien '32' et nous implementerons les sen­

sibilities lagrangiennes. 

Dans un premier temps, une revue bibliographique permettra de redefinir plus 

precisement les sensibilites dans le contexte de l'optimisation, d'insister sur la 

difference entre le point de vue eulerien et le point de vue lagrangien tout en 

replacant ces notions dans leur contexte et par rapport aux travaux deja effectues. 

Au chapitre 2, nous nous interesserons a l'equation de la chaleur et exposerons la 

methode des sensibilites continues d'un point de vue eulerien puis lagrangien avec 

les outils mathematiques necessaires a leur developpement en soulignant les atouts 

et les limites de ces formulations. Le chapitre 3 presente la verification du code 

pour la formulation lagrangienne et une comparaison des resultats obtenus pour 

chacune des methodes. Les conclusions etant positives pour le point de vue lagran­

gien, nous adopterons une demarche identique pour les equations de Navier Stokes. 

Nous exposerons au chapitre 4 les formulations euleriennes et lagrangiennes dans le 

cadre d'ecoulements incompressibles laminaires en regime stationnaire. Le chapitre 

5 comporte deux parties. Tout d'abord, il presente la verification du code avec une 

solution manufactured. Elle permettra une premiere comparaison numerique de la 

convergence pour chacune des formulations. Ensuite, nous simulerons l'ecoulement 

autour d'un profil d'aile NACA a 4 chiffres et nous utiliserons les sensibilites pour 

calculer des solutions voisines. Ce calcul permettra d'evaluer la pertinence des sen­

sibilites lagrangiennes mais aussi leur precision et leur facilite d'utilisation. Nous 

etudierons en particulier le nombre de noeuds necessaire pour le calcul precis des 

coefficients de trainee et de portance et les caracteristiques du maillage obtenus 

apres quelques cycles d'adaptation. Nous conclurons enfin sur les atouts et les defis 

de la formulation lagrangienne. 
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C H A P I T R E 1 

R E V U E B I B L I O G R A P H I Q U E 

1.1 Introduct ion 

Les sensibilites lagrangiennes ne sont qu'une etape possible dans une demarche glo-

bale. Le but de ce chapitre est done de replacer cette methode dans son contexte 

general et de presenter les autres possibility. Pour ce faire, prenons l'exemple de 

l'optimisation. Dans ce contexte, le but de la methode des sensibilites lagrangiennes 

est alors de calculer les sensibilites des etats pour determiner le gradient d'une fonc-

tion cout par rapport a un ensemble de parametres de design. La methode adjointe 

permet aussi ce calcul. Ces differentes methodes sont exposees et comparees de 

fagon plus detaillee par Gunzburger t18'. 

1.2 M e t h o d e adjointe 

La methode adjointe est tres utilisee dans le cadre de l'optimisation. Soit F(C7, a ) 

la fonction cout a optimiser sous les contraintes G(U, a) = 0, avec U les etats et 

a. le vecteur de variables de design. La fonction cout depend a la fois explicitement 

du vecteur de design mais aussi implicitement par l'intermediaire des etats. Nous 

pouvons en effet definir la fonction J-'(ct) = F ( t / ( a ) , a ) . Nous introduisons alors 

la variable adjointe £ et le lagrangien : 

L(U, a, £) = F(U, a)- < ^ G(U, a ) > 
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ou < •, • > designe le produit scalaire. Dans le cas discret, il s'agit du produit de 

2 vecteurs et dans le cas continu d'une integrate. Afin d'exposer generalement le 

fonctionnement de cette methode, nous garderons la notation symbolique suivante : 

L = F - £G 

Le probleme d'optimisation est maintenant equivalent a extremiser L en fonction 

de (U, a , £ ) . La premiere variation du lagrangien par rapport a chacune de ces 

variables doit etre nulle : 

- La variation par rapport a U conduit aux equations adjointes 

dF ,dG 

m=Sdu (L1) 

- La variation par rapport a a produit la condition d'optimalite 

£-«^ = 0 (1.2) 
OCX. OCX 

- La variation par rapport a £ mene aux equations d'etat 

G = 0 (1.3) 

Nous pouvons recuperer le gradient de la fonction objectif de la fagon suivante. 

Pour un vecteur de design a donne, les etats U sont obtenus par les equations 

d'etats (1.3) et les variables adjointes par les equations adjointes (1.1). Le gradient 

de la fonction objectif s'exprime alors de la maniere suivante : 

da. ~ Dcx ~ dot + dU Da ( ' ' 
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En utilisant les equations adjointes, nous avons : 

dT OF 8GDU 
— = H£ 
da da dU Da 

Or les equations d'etats doivent etre respectees quelque soit le vecteur de design a 

done 
DG dG dGDU 

Da da dU Da 

Ceci mene a l'expression finale du gradient : 

^ = ̂ £ _ ^ (1.6) 
da da da 

Quelque soit le nombre de parametres, il n'y a qu'un seul probleme adjoint a 

resoudre par fonctionnelle. 

1.3 Methode des sensibilites 

Pour le meme probleme que precedemment et en reprenant les memes notations, 

nous cherchons a calculer le gradient d'une fonction cout : 

rf^_:DF_aF dF DU 

Dans cette expression, ^ ^ est inconnu car la dependance des etats par rapport 

au design est implicate. La methode des sensibilites (appelee aussi direct differen­

tiation method) consiste a differentier les equations d'etats par rapport au pa-

ramctrc dc design afin d'obtenir les equations de sensibilite. II y a pour cela deux 

fagons de proceder, discretiser les equations d'etats puis differentier, il s'agit de la 

methode des sensibilites discretes. Les sensibilites ainsi obtenues correspondent aux 

derivees exactes de la solution discrete du premier probleme. L'autre voie consiste 
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a differentier les equations d'etat pour obtenir un nouveau systeme d'equations 

differentielles qu'il nous reste a discretiser. II s'agit alors des sensibilites continues 

discretisees. Nous obtenons ainsi une approximation de la sensibilite de la solution 

exacte du premier probleme. Generalement, les deux methodes tendent vers le gra­

dient exact I6' 7' 51. Ces differentes voies a explorer sont detaillees pour l'elasticite 

lineaire par van Keulen ^K Par la methode des sensibilites, il y a un systeme a 

resoudre par parametre de sensibilite, peu importe l'application qui en suivra. En 

effet, en plus de calculer le gradient de fonctions couts, les sensibilites peuvent aussi 

etre utilisees dans le cadre de calcul d'incertitude, de solutions voisines, ou pour 

identifier les parametres determinants d'un probleme '321 

1.4 Problematique du parametre de forme 

Les parametres considered plus haut peuvent etre de deux natures. Les parametres 

dits "de valeur" n'ont pas d'influence sur la forme du domaine, il peut s'agir d'une 

propriete physique du fluide, d'une condition limite. Les parametres de forme 

definissent la forme du domaine, ce qui est assez courant en design optimal. La 

methode generale est la meme pour chaque cas mais le traitement du parametre 

de forme demande une attention toute particuliere pour chacune des methodes 

exposees plus haut. 

1.4.1 M e t h o d e adjointe 

Pour cette methode, le developpement expose ci-dessus est toujours valable, la 

difficulte est de calculer les differents termes de la formule (1.6). En effet, la fonction 
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cout est souvent de la forme : 

F(U, oc)= I f(U, x, a) dQ (1.8) 
Jn 

Or le domaine depend du parametre, nous ne pouvons pas deriver simplement cette 

integrate. De meme, 

<£,G>= [ £G(U,x,a) dtt (1.9) 
Jo. 

Nous utilisons alors la methode des derivees materielles qui est exposee dans t10l de 

maniere generate et aussi dans l19', I81 ou '231. Elle est frequemment utilisee pour le 

calcul de structures, des developpements plus specifiques se trouvent dans t19^ avec 

differents exemples, plusieurs formes sont aussi exposees dans ^ dans le cadre de 

l'elasticite lineaire et dans f31', le probleme de Laplace est traite pour illustrer la 

theorie. 

1.4.2 Sensibil ites euleriennes 

Pour la methode des sensibilites, il s'agit de deriver les equations d'etats. Tout 

comme dans la cadre de la mecanique des milieux continus ^27\ nous pouvons 

prendre soit un point de vue eulerien, soit lagrangien. D'un point de vue eulerien, 

il suffit de deriver formellement les equations d'etats pour obtenir les derivees 

partielles des etats par rapport au parametre. Par exemple pour la vitesse d'un 

fluide u(x, a), nous calculons | ^ . Cependant, les conditions aux limites en sensibi­

lites sont donnees par les derivees materielles des etats. II faut done introduire les 

termes dus a la transformation de la frontiere traduisant la variation du parametre 

de forme. Ces termes dependent des gradients en espace des etats, qui, calcules 

numeriquement, ne sont pas toujours precis. Le defl pour cette methode est done de 

calculer avec precision les gradients des etats a la frontiere pour obtenir de bonnes 
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conditions aux limites pour les sensibilites. Malgre cela, le point de vue eulerien 

reste interessant par sa simplicite de mise en oeuvre numerique. En effet, contrai-

rement a la methode adjointe ou au point de vue lagrangien, il n'est pas necessaire 

de deriver des integrates dont le domaine depend du parametre. De nombreuses 

applications en mecanique des fluides ont ete faites avec cette methode'32', en in­

teraction fluide-structure ^1B\ en regime turbulent '12' ou en regime instationnaire 

[20] 

1.4.3 Sensibilites lagrangiennes 

D'un point de vue lagrangien, nous nous interesserons au calcul des derivees tot ales 

des etats par rapport au parametre, elles se composent d'un terme lie a la variation 

pure du parametre et un autre du a la modification du domaine. En effet, nous 

avons u(x,a) — u(x(a.),a) done 

Du du _ Dx ,_ „„. 
— = — + V M - — - (1.10) 
Da da Da K ' 

Pour ce faire, il faut deriver les equations d'etat, sous leur forme forte ou sous 

leur forme integrale, en tenant compte des variations de geometrie du domaine. 

Dans ces conditions, les operateurs de derivation par rapport au parametre et 

le gradient d'espace ou l'integration sur le domaine ne commutent pas puisque 

les coordonnees d'espaces dependent du parametre. II apparait alors une vitesse 

de deformation, connue uniquement sur les frontieres, mais qui doit etre calculee 

dans tout le domaine. II existe differentes techniques pour evaluer cette vitesse. La 

methode de la derivee materielle est beaucoup utilisee. Des formulations generales 

ont ete etablies par Delfour et Zolesiot10!, Navarrina ^ et Tortorelli l31'. Le point 

de vue lagrangien a ete plutot developpe dans le cadre de la mecanique des struc­

tures, les problemes de transfert thermique font l'objet des travaux de Denis'11] et 
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Kleiber '21\ Dans Arora W, nous trouverons une formulation pour les equations 

d'elasticite lineaire. Bobaruf3' a effectue quelques simulations numeriques avec une 

methode sans maillage pour la resolution (element-free Galerkin method). Les sen-

sibilites lagrangiennes ont ete aussi developpees dans le cadre de la mecanique de 

la rupture par Taroco I29' qui a aborde les sensibilites d'ordre 2 et pour l'optimi-

sation d'arcs plans par Choi t9l. Dans Lee l22', des equations integro-differentielles 

de bord (boundary integral equation formulation) sont utilisees pour traiter des 

problemes de solides elastiques axisymetriques. En mecanique des fluides, nous no-

terons le travail de Smith^28' qui traite de l'ecoulement de polymeres gouverne par 

les equations de Stokes, dans Wang t34 ,̂ les equations de Navier Stokes sont traitees, 

avec une technique de parametrisation de domaine t30l pour le calcul de la vitesse de 

deformation. D'autres approches mathematiquement compliquees ont ete abordees 

par Gao'17J en utilisant les derivees de Piola " . 

1.4.4 Comparaisons 

Dans le domaine de la CFD, la formulation lagrangienne a ete peu developpee et ses 

performances ont ete peu evaluees, en particulier, nous ne savons pas si elle presente 

un reel avantage par rapport a la formulation eulerienne. La difficulte principale 

pour la formulation eulerienne est la definition de conditions aux limites, car il faut 

tenir compte de la transformation de la frontiere due a la variation du parametre. 

Pour la formulation lagrangienne, il faudra considerer la transformation dans tout 

le domaine et la differentiation pour obtenir les residus est aussi plus compliquee. 

Les conditions aux limites restent simples. Cette formulation pourrait done etre une 

bonne alternative pour contourner les problemes de precision et de convergence de 

la formulation eulerienne. 
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1.5 But et object ifs 

Le but de ce memoire est d'etudier les sensibilites lagrangiennes et de comparer ses 

performances a celle de la formulation eulerienne. Les objectifs sont les suivants : 

- Developper les equations des sensibilites lagrangiennes pour 1'equation de la cha-

leur 

- Verifier ^implementation et demontrer l'interet de la metliode en terme de 

convergence 

- Developper les equations des sensibilites lagrangiennes pour les equations de 

Navier Stokes 

- Verifier la metliode sur une solution manufactured 

- Evaluer les atouts et les limites sur un cas concret de calcul de solutions voisines 

pour un profil NACA a 4 chiffres 
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CHAPITRE 2 

METHODE DE L'EQUATION DES SENSIBILITES POUR UN 

PARAMETRE DE FORME 

Dans ce chapitre, nous nous interesserons a l'equation des sensibilites pour 

l'equation de la chaleur. Nous la developperons done pour chacune des formu­

lations, eulerienne et lagrangienne en soulignant leurs caracteristiques, atouts et 

inconvenients. 

2.1 Methode de l'equation de sensibilite classique 

Considerons l'equation de la chaleur dans un milieu de conductivite k sur un do-

maine Vta dont la forme depend d'un parametre a dit de forme. La frontiere dQ,a 

est subdivisee en deux parties disjointes, TT et Tq sur lesquelles nous imposerons 

des conditions de Dirichlet et de Neumann respectivement : 

V-(fcVT) = Q dansfiQ (2.1) 

T = T sur TT (2.2) 

kVT-n = q surrg (2.3) 

Dans ces equations, la conductivite k, la temperature T et les conditions aux limites 

T et ~q dependent a la fois des coordonnees spatiales et du parametre de forme a. 
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Cette dependance peut s'exprimer de la fagon suivante : 

T = T(x, y; a) 

k = k(x,y; a) ,etc... 

Le point virgule separant les variables independantes x et y du parametre a. Le 

but de la methode des sensibilites est de quantifier la dependance des variables du 

probleme par rapport au parametre. 

2.1.1 Equation des sensibilites euleriennes 

Nous utilisons le terme "sensibilites euleriennes" pour designer les derivees par-

tielles des variables du probleme par rapport au parametre a. Pour notre probleme, 

la sensibilite eulerienne de la temperature sera notee de la maniere suivante : 

dT 
ST . ^ (2.4) 

Elle est calculee en resolvant le probleme obtenu en derivant formellement par 

rapport a a les equations aux derivees partielles du systeme initial ainsi que ses 

conditions aux limites. Pour l'equation de la chaleur, nous obtenons : 

\oa oa J aa 

Soit V • (^-VT + kVsT) = ^ (2.5) 
\oa J oa 

Comme nous le verrons au paragraphe suivant, le traitement des conditions aux 

frontieres est un peu plus complique pour un parametre de forme car il faut 

considerer la deformation de la frontiere engendree par la variation du parametre. 
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2.1.2 Condit ions aux frontieres : difficultes et l imites 

Les conditions aux limites necessaires pour fermer le systeme sont obtenues en 

derivant celles du probleme initial. Comme a est un parametre de forme, les 

frontieres du domaine se deforment quand a varie. Cette dependance s'exprime 

par la parametrisation suivante : 

Ta = {(xf (t; a), yf (t; a)) \t e [0,1]} (2.6) 

Dans cette expression, (xf,yf) representent les coordonnees d'un point de la 

frontiere, a determine la geometrie de la courbe sur laquelle les conditions aux 

limites sont appliquees, alors que t determine la position d'un point le long de cette 

courbe. 

2.1.2.1 Condit ions de Dirichlet 

Les conditions de Dirichlet etaient les suivantes : 

T = T s u r l Y (2.7) 

Puisque la frontiere change de forme avec les variations de a, les conditions aux 

limites s'expriment plus naturellement par une derivee materielle que partielle de 

(2.7), ce qui permet de suivre le point de la frontiere dans son changement de 
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position. Nous avons alors sur Ty 

DT DT 

Da Da 
(2.8) 

. dT_ dT&r/ dT_dyl_DT_ 

da dx da dy da Da 

DT dTdxf dTdyf ^ / o n n N done sT = — - -^—^- - ^ - ^ sur TT (2.10) 
Da ox da dy da 

Ces formules sont valables egalement pour un parametre de valeur. Dans ce cas, la 

frontiere est immobile et les termes dxf/da et dyf/da sont nuls. La condition aux 

,. • , • 9T 
limites devient ST — TT~-

da 

2.1.2.2 Conditions de Neumann 

Pour les conditions de Neumann, nous cherchons a exprimer le flux de la sensibilite 

eulerienne a la frontiere qui est defini de la maniere suivante : 

q' = f^.VT + kVST) • n 

Pour cela, considerons les conditions de Neumann de l'equation de la chaleur : 

kVT-n = q s u r r 9 (2.11) 

Tout comme dans le cas des conditions de Dirichlet, nous devons calculer les 

derivees materielles de chacun des termes de l'equation (2.11) pour tenir compte 

de la deformation de la frontiere. Notons que l'operateur V depend egalement du 

parametre. Ainsi, nous obtenons : 
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Les derivees materielles apparaissant dans cette equation peuvent etre developpees 

de la fagon suivante : 

Dk dk dk dxj dk dijf 

Da da. dx da dy da 

DVT 

Da n dx 

8ST 

+ 
OST d2T dx,f d2T dyf 

dxdy da 

^ + d^dyl 

dy dxdy da dy'1 da 

dx2 da 

d2T dxf 

n-r 

n„ 

Si la normale a la frontiere n est definie telle que n = n(t,a), alors sa derivee 

materielle se reduit a sa derivee eulerienne car t et a sont des parametres 

independants l'un de l'autre. Ainsi, nous pouvons isoler le flux des sensibilites 

et nous obtenons la condition de Neumann suivante sur Fn Q • 

Dq _ 

Da \dx da 

" (d2Tdxf 

dk dxf dk dyf 

-k + 

dy da 

d2T dyf 

VTn 

\ dx2 da dxdy da n, 
/ d2T dxf d2Tdyf 

\dxdy da dy2 da ' y 
(2.13) 

- W T . p 
da 

Nous remarquons qu'elle fait intervenir les derivees spatiales d'ordre 2 de la 

temperature. 

2.1.2.3 Difficulties et l imites 

Que ce soit pour les conditions de Dirichlet ou de Neumann, les conditions aux 

limites des sensibilites font apparaitre les derivees spatiales de la temperature a 

la frontiere. Ces dernieres sont extraites de la resolution numerique par elements 

finis du probleme initial, or c'est justement a la frontiere que ces derivees sont les 

moins precises. Cette imprecision se propagera sur tout le domaine de calcul dans 

file:///dxdy
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le probleme des sensibilites. II existe des techniques de reconstruction des gradients 

a la frontiere t13' 14^ pour pallier ce probleme mais leur cout demeure relativement 

eleve. 

2.1.3 Formulation variationnelle 

La forme faible du probleme s'obtient en multipliant l'equation (2.5) par une fonc-

tion test et en integrant sur tout le domaine. La fonction test est de meme regularity 

que la solution et s'annule sur la partie FT de la frontiere, c'est a dire au niveau 

des conditions de Dirichlet. Soit SW une telle fonction, nous avons alors : 

/ V • f^VTSW + kVsT6W) dQ= f ^-5W dn 
JQ \oa J Jn da 

Integrons ensuite par parties les termes d'ordre 2 : 

-VT • V5W + kVsT • V8W ) dfi / 
fdk. 

+ I \ ^ ^ T + kVsT) 8W • n dT = I ~5W dO 
J an \d® J Jn eta 

Par definition, la fonction test s'annule sur TT alors que les conditions de Neumann 

apparaissent sur Tq. Nous obtenons done la forme faible suivante : 

/ ( ^ V T + kVsT) • V8W dn- [ q'SW dT + I '-^-8W d!Cl = 0 (2.14) 
Ju\da J Jr Jn da 

2.2 Methode de resolution - Elements finis 

Les problemes de l'ecoulement et des sensibilites sont mathematiquement fermes 

et seront resolus par une methode d'elements finis I16l Ann de reduire les erreurs 
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de discretisation, nous utilisons un maillage adaptatif. Dans cette partie, nous 

presentons l'algorithme de resolution et les methodes numeriques utilisees. 

2.2.1 Algorithme de resolution 

Le vecteur de design a est compose de np parametres. II faut done resoudre le 

probleme initial et np systemes de sensibilites. La demarche suivie est decrite par 

le schema 2.1. A partir d'un maillage donne, nous resolvons d'abord le probleme 

initial puis chacun des problemes de sensibilite. A Tissue, l'erreur est estimee pour 

chacune des variables dependantes et de leurs sensibilites. Nous pouvons ensuite en 

deduire la distribution de taille optimale des elements qui raffinera le maillage la oil 

les erreurs sont les plus elevees. Le processus est repete jusqu'a ce que la precision 

voulue de la solution soit atteinte. 

i=l>l\, 

• i i 

Maillage du aomaine 
• 

Resolution du probleme initial 

• 

Resolution du probleme de sensibilite par rapport a a, 

1 

Estimation d'erreur 

FIG. 2.1 Algorithme de resolution 
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2.2.2 Methodes numeriques 

Nous avons vu au paragraphe precedent que le probleme initial et le probleme 

des sensibilites sont tout deux resolus avec une methode d'elements finis que nous 

allons maintenant detailler. 

- La formulation variationnelle est obtenue a partir du systeme d'equations 

differentielles. 

- Le domaine est decompose en iVe elements comprenant chacun NST noeuds et 

sur chaque element,la solution est approchee de la maniere suivante : 

ST~sTh = ^2sTtN°T (2.15) 
i=i 

ou sn est la solution numerique au noeud i de l'element considere et les fonctions 

N?T sont les fonctions d'interpolation de l'element. 

- La methode de Galerkin consiste alors a choisir successivement chaque fonction 

d'interpolation comme fonction test dans la forme faible, ce qui permet ensuite 

de construire un systeme discret du type R(U) = 0 

- Pour les problemes de sensibilites ou pour la conduction si la conductivite est 

constante, il s'agit d'un systeme lineaire, ce qui n'est pas le cas pour les equations 

de Navier Stokes que nous verrons plus tard. II faut alors utiliser une methode 

iterative de Newton-Raphson. Ann de gagner du temps de calcul, nous utiliserons 

un jacobien numerique ou la matrice calculee a Fiteration precedente. Avec cette 

operation, la convergence est legerement affectee mais le temps de calcul est plus 

faible. 
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2.2.3 Adapta t iv i t e 

Une fois le systeme resolu, l'erreur de discretisation est estimee pour remailler 

le domaine. Comme la solution exacte est inconnue, une approximation d'ordre 

superieur a la solution elements finis est calculee par une methode de projection 

locale etablie par Zlm et Zienkiewicz'35, 36J. La norme de l'erreur est alors calculee 

sur chaque element pour identifier les zones qui doivent etre raffinees. Les erreurs 

du probleme en temperature et des sensibilites sont prises en compte, il est done 

important que la formulation des sensibilites soit compatible avec l 'adaptation de 

maillage. 

2.3 M e t h o d e de l 'equation des sensibil ites lagrangiennes 

Nous allons maintenant presenter la methode qui permet d'obtenir la forme faible 

correspondant a la formulation en terme de sensibilites dites lagrangiennes. Tout 

d'abord, nous allons exposer quelques notions sur les transformations d'espace uti-

lisees dans le developpement subsequent des equations. 

2.3.1 Transformation d'espace 

Considerons le domaine fi dependant du parametre de forme a. La configuration de 

reference sera notee f2o et le domaine deforme suite a une variation du parametre 

de forme sera note O a . Supposons qu'il existe un diffeomorphisme de classe C1(Qo) 

liant ces deux domaines. Soit <j> cette transformation, elle est alors definie de la 
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F I G . 2.2 Deformation du domaine 

maniere suivante : 

4> : fi0 -> Ma 

x - > 0 ( x , a ) = x a (2.16) 

Nous noterons avec l'exposant a les variables exprimees sur la configuration 

deformee, c'est a dire en fonction de x". Ainsi, si g est un champ defini sur Q0, les 

champs g et ga sont lies par la relation suivante : 

<7a(xa) = sa(<£(x,a)) = 0(x) (2.17) 

Alors, pour g = (/> 

0a(xQ) = 0 a (0 (x ,a ) ) = 0(x ,a) = xQ 

done (/> = Ida 

Prenons un exemple en une dimension. Considerons une barre de longueur L. La 
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transformation correspond a un allongement de la barre a une longueur L + a. La 

deformation est illustree sur la figure 2.3 et a 1'expression analytique suivante : 

4>ix) = —f^x 

a a 

0 0 L L+a 

Domaine de reference Domaine deforme 

F I G . 2.3 Domaine ID 

Supposons maintenant que la temperature sur la configuration deformee soit definie 

de la maniere suivante : 

Ta(xa) = xa(xa -(L + a)) 

Done en fonction de la variable sur le domaine non deforme, la temperature s'ex-

prime par 

T(x) = Ta{4>{x)) = ^-^x (^-^x ~{L + a) 
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2.3.1.1 Taux de deformation et Jacobien 

Le tenseur des taux de deformation, note -F(x, a) s'exprime sur le domaine flo de 

la maniere suivante : 

F (x , a ) = V 0 ( x , a ) = 

dxa dxa 

dx dy 
QyOL QyO 

dx dy 

(2.18) 

Son determinant, le jacobien de la transformation J(x, a) a l'expression suivante : 

J(x, a) = det[F(x, a)] = det[V</>(x, a)} 

dxa dya dya dxa 

dx dy dx dy 
(2.19) 

Reprenons notre exemple precedent en y ajoutant une deuxieme dimension, 

4>(x, y) = 
xa = 

L + a 
L (2.20) 

y =y 

Ainsi, 

F(x,a) 

L + a 

L 

0 
et J(x, a) = L + a (2.21) 
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2.3.1.2 Vitesse de deformation 

La vitesse de deformation, appelee aussi vitesse de maille est la derivee de la trans­

formation par rapport au parametre a. 

T/ (^ n\ d^a) d4>a[<t>(x,a)] 
VM x , a) = = = VA/TIX , Q ) da da ' M l A )' 

Ces definitions nous permettent de deduire l'egalite tensorielle suivante : 

DF dF 

Da da 
= VVM = 

dVMx dV, Mx UVMx 

dx dy 
dVjrfy dVMy 

dx dy 

Pour notre exemple, 

(2.22) 

VM(x,y) = L 

0 
(2.23) 

et nous pouvons verifier que 

dF 
da 

= W , M 

r i 
Z 
0 

~ 
0 

0 
(2.24) 

2.3.1.3 Quelques formules utiles 

Nous utiliserons dans la suite les formules suivantes, elles sont demontrees en annexe 

et developpees de maniere plus detainee et rigoureuse dans l'ouvrage de Delfour et 

Zolesiof10] ou dans Tortorelli'31'. 
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- Derivee du Jacobien 

Sur la configuration de reference, la derivee du Jacobien de la transformation par 

rapport au parametre de forme est donnee par la formule suivante : 

| ^ = VVM : JF~l (2.25) 

Pour la configuration deformee, nous avons : 

DJa 

Da 

Operateurs gradient et divergence 

= JQVQ • V& (2.26) 

Les operateurs gradient et divergence font intervenir des derivees d'espace, leur 

expression depend done du domaine dans lequel ils sont exprimes. Soient un champ 

de vecteurs f a(x a , a) defini sur ila et son correspondant f (x, a) sur fi0) nous avons 

les correspondances suivantes : 

V a • P = F'1 : Vf (2.27) 

Vafa = Vf • F-1 (2.28) 

- Formule de Nanson^ 

Le passage du domaine deforme au domaine de reference pour les integrales de 

bord est donne par la formule suivante, dite de Nanson : 

/ fa(xa,ya) nndrQ = / f(x,y) JF~T • n0dT0 (2.29) 
Jra J To 

avec f un champ de vecteur ou une fonction scalaire 
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Nous completions ce paragraphe avec deux dernieres formules 

DF~l 

5a~ 
DJ 

F • - ^ - = - V a V £ (2.30) 

J - 1 ^ = V a - V ^ (2.31) 

2.3.2 Equation des sensibilites lagrangiennes 

Nous allons maintenant presenter les equations permettant de calculer les sensibi­

lites lagrangiennes, notees ST-

II s'agit de la derivee totale des variables par rapport au parametre a, c'est a dire, 

T(^ (x ,a + fo),a + fo)-r(x,a) DT 
ST = lim = —— (2.32) 

da-^o da Da 

2.3.2.1 Deve loppement des equations 

Nous developpons la forme faible des equations de sensibilites lagrangiennes en 

derivant directement la forme faible de l'equation de la chaleur. Soit SW une fonc-

tion test, la forme faible de l'equation de la chaleur (2.1) est : 

f {kVaT • Va5W + QSW) dQa = 0 (2.33) 

Pour alleger le calcul, nous imposons des conditions de Dirichlet sur toute la 

frontiere, ce qui permet d'annuler le terme de bord au complet. Nous devons alors 

evaluer 

D 

D~a 
[ (fcVQT • Va8W + QSW) dVta = 0 (2.34) 

•J l i o 
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Cette operation doit tenir compte de la deformation du domaine engendree par 

une variation du parametre a, il n'est done pas possible de deriver directement 

l'equation (2.33). Nous adopterons la demarche suivante : 

1. Expliciter les dependances en a en ramenant l'integrale sur le domaine de 

reference par un changement de variable approprie. 

2. Deriver par rapport a a. Le domaine de reference etant independant du pa­

rametre, il n'y a qu'a deriver l'integrande. 

3. Revenir au domaine deforme 

Procedons done etape par etape et considerons la forme faible (2.33) : 

1. Nous explicitons les dependances en a en revenant sur le domaine de 

reference. Les formules (2.27) et (2.28) permettent d'exprimer les gradients 

et les divergences en fonctions des coordonnees sur le domaine de reference. 

I (kVT-F-1-V5W-F-1 + Q6W) Jdft0 = 0 

2. Derivons l'integrand puisque le domaine est a present independant du pa­

rametre. Notons au prealable que les fonctions test sont independantes du 

parametre a. Leur derivee est nulle. 

/ ( 
VT • F~l • VSW • F " 1 + fcV—- • F " 1 • V5W • F'1 

Da Da 
n p - l n r - 1 

+kVT • — V<W • F " 1 + kVT • F~l • V8W • —— 
Da Da 

+ ^5W ) J dn0 Da J 

+ I (WT • F~l • V5W • F'1 + QSW) ^ dtt0 

' f io 

= 0 
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3. Nous faisons le changement de variable inverse pour retourner au domaine 

deforme en utilisant les formules (2.27) et (2.28) en sens oppose pour trans­

former les derivees d'espace : 

f Dk DT DF~l 

_ V a T • VaSW + kVa—- VaSW + kVaT • F • —-— • Va5W 
Qa \Da Da Da 

n r - l DO \ 
+kVaT • VaSW • F • — — + -f^-SW dQa 

Da Da ) 
+ / {kVaT-Va5W + QSW)\^dttQ 

Jna J Da 

= 0 

Cette forme se simplifie en utilisant les formules (2.30) et (2.31) : 

DF~l 

Da 
F • ^ — = -V Q V£ 

rl— - vQ -va 

J Da~W VM 

Nous obtenons alors la forme finale suivante : 

/ \TTvaT + kvaST)'v°sw~kvaT' (V<*VM + (vav^)T) • vasw 

+ k(Va- VZ) VQT • VaSW + ( ^ + QVQ -VZ)6W dCla = 0 
Da 

(2.35) 

2.3.2.2 Autres methodes 

Une autre possibilite consiste a deriver la forme forte par rapport a a en premier 

et ensuite calculer la forme faible de l'expression obtenue dans un second temps. 

Le resultat est le meme. Ce calcul est developpe en annexe. 

Nous aurions aussi pu utiliser directement les formules de derivation demontrees 
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dans 1101 et '19' ou '3 1l C'est la fagon la plus utilisee en general'1' car elle est plus 

directe. Nous avons ici detaille les calculs afin de mieux apprehender la notion de 

domaine deformable. Les calculs plus directs sont presentes en annexe. 

Quelle que soit la methode, elle mene au meme result at qui fait intervenir la vitesse 

de deformation sur tout le domaine, il convient done d'en etudier les principales 

caracteristiques. C'est l'objet de la section suivante. Nous remarquons aussi que si 

la vitesse de maille est nulle, la formulation lagrangienne se simplifie et prend la 

forme exacte de la formulation eulerienne. 

2.3.3 Calcul de la deformation 

La forme faible de l'equation des sensibilites (2.35) fait intervenir les derivees spa-

tiales de la vitesse de deformation. Cependant, la vitesse de maille est definie uni-

quement sur la frontiere du domaine. II nous faut done construire une extension au 

domaine complet. Ce prolongement devra : 

- correspondre aux conditions aux limites du probleme physique, 

- etre continument differentiable en espace. En effet, c'est le gradient ou la di­

vergence de la vitesse, VVjw, qui apparait dans la forme faible. Les derivees en 

espaces doivent done etre continues afin de garantir une bonne resolution du 

probleme des sensibilites et eviter d'avoir a introduire des termes de saut aux 

interfaces des elements. 

Toute fonction repondant a ces criteres peut etre utilisee, la vitesse de deformation 

exprimee sur le domaine n'est done pas unique. 

II existe plusieurs techniques pour determiner une telle extension. Tout d'abord, elle 

peut etre specifiee analytiquementl1 1^. Malheureusement, dans la plupart des cas, 

le calcul analytique devient trop complexe et trop lourd pour rester une approche 
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interessante. Elle peut alors etre construite numeriquement. Dans ce memoire, nous 

utiliserons l'approche pseudo-solide'26', qui suppose que la geometrie du domaine 

se comporte comme un solide elastique. La transformation est alors geree par les 

equations d'elasticite lineaire. Le deplacement en lui-meme est nul et la vitesse de 

maille sera donnee par sa sensibilite. Les equations de sensibilites sont les memes 

que celles du deplacement. La vitesse de maille est done la solution du systeme 

suivant : 

V • ( 2XPstr ( W M + VTVM) + fhs ( W M + VTVM) J = 0 dans Q (2.36) 

VM = VM sur dVL (2.37) 

ou Xpg et /j,ps sont les coefficients de Lame de la pseudo-structure et VM est 

donnee. Ce probleme est resolu en meme temps que le probleme des sensibilites 

de temperature (couplage total). Elle est done compatible avec l 'adaptation de 

maillage. 

D'autres techniques de calcul existent comme la parametrisation du domaine (do-

main parametrization method)^ qui repose sur une configuration de reference fixe 

et utilise une transformation analogue a la transformation sur 1'element de reference 

utilisee dans la resolution elements finis du probleme. Elle est done dependante du 

maillage puisqu'elle est definie par element [28H34]. Dans Belegundu^, des forces 

virtuelles sont prises comme parametres de forme pour deformer le maillage, la 

vitesse de deformation est ensuite obtenue par differences finies. Ce calcul est un 

prealable a 1'analyse de sensibilite et les forces adequates doivent etre appliquees 

aux noeuds adaptes pour obtenir la deformation voulue. Ces 2 techniques ne sont 

done pas compatibles avec un maillage adaptatif. 

Notons egalement que la transformation n'est utile que pour le calcul des derivees. 

Nous ne distonguerons pas dans la pratique pour le probleme initial un champ 
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lagrangien et un champ eulerien. Autrement dit, les configurations de reference et 

deformee sont confondues. 

2.3.4 Conditions aux limites 

Tout comme pour les sensibilites euleriennes, nous devons completer l'enonce du 

probleme avec les conditions aux limites. Les conditions limites du probleme original 

etaient les suivantes : 

kVT-n = q surT" (2.38) 

T = T surT£ (2.39) 

2.3.4.1 Conditions de Dirichlet 

Sur la courbe TT, il y a egalite des derivees materielles 

(2.40) 
Da Da 

Comme les derivees materielles correspondent aux sensibilites lagrangiennes, nous 

avons 

DT 
ST = — sur r £ (2.41) 

Da 
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2.3.4.2 Conditions de Neumann 

Pour exprimer les conditions de Neumann, nous devons revenir a la forme faible. 

Ainsi, 

/ kVaTa-naSW dFa = [ q8W d,Fa (2.42) 

II faut done calculer la derivee totale du membre de droite par rapport a a. La 

demarche est la meme qu'a la section precedente : 

- expliciter les dependances en a en ramenant l'integrale sur le domaine de 

reference 

- deriver par rapport a a 

- revenir au domaine deforme 

Pour passer au domaine de reference, nous utilisons la formule de Nanson 

ITq= f qSW dTa = ! ^ i y j | | F - T - n ° | | rfr° 

Nous pouvons a present deriver : 

- ^ J | | F ~ r • n°| | + q5W^-\\F-T • n°\\ 
da /ro Da da 

da 

Notons que 

dWF'1 -n^l 1 fdF 
da \\F~T n° V da ) y > 

Revenons sur le domaine deforme en utilisant (2.30) et la formule de Nanson. 

Comme il a ete mentionne plus haut a la section 2.3.3, la deformation n'est utile 

que pour le calcul des derivees. A cette etape, elle n'est plus utile et nous pouvons 

confondre la configuration de reference et la configuration actuelle. Ainsi, nous 
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FIG. 2.4 Cas analytique : deformation du domaine 

pouvons simplifier notre expression en utilisant que na = n et F = Id. 

dh 

da a = 0 
^T + ( V • VM) q ~ ^ ( W M -n)-n) SWdF (2.43) 

r0 \Da 

Le systeme est a present mathematiquement ferme et nous avons directement une 

forme faible que nous resolverons de la meme maniere que poiir les sensibilites 

euleriennes. 

2.3.5 Calcul analytique 

Pour nous assurer que la forme faible obtenue est correcte, nous choisissons 

une solution analytique (transformation et temperature) et verifions l'equation. 

Considerons done le domaine fla defini sur la figure 2.4. L'equation de la frontiere 

du bas est 

y(x) = as inx (2.44) 

Le domaine de reference correspond a a = 0. 
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Transformation 

La transformation entre le domaine QQ et Qa peut etre etendue au domaine de la 

maniere suivante : 

4>{x, V) = { V ya = a sin x + — (L — a sin x) 
LJ 

(2.45) 

Calculons la derivee par rapport a a pour obtenir la vitesse de deformation : 

VM(x,y) = 

' dxa' 
da 
dya 

- da -

= 

L 
1 sinx 

(2.46) 

Nous nous interessons a la vitesse de deformation en a = 0, done le gradient de la 

vitesse de deformation est le suivant : 

VaV^ = VVM = 
0 

y 
cosx 

0 

sin a: (2.47) 

Ainsi, 

V • T/A, s i n i 
M 

L 
(2.48) 

Remarque : La transformation n'est pas unique, il s'agit d'un artifice de calcul 

sans signification physique. II suffit done qu'elle satisfasse les conditions aux limites 

correspondant a la deformation des frontieres du domaine. Par exemple, pour notre 

cas, nous aurions pu choisir la transformation suivante : 

xa = x 
4>(x,y) = y2 (2.49) 

ya — a sin x + -— (L — a sin x) 
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Solution 

Soit le champ de temperature suivant 

Ta(xa, ya, a) = (y° - L){ya - a s i n x 0 (2.50) 

Nous cherchons la sensibilite en a — 0 done les champs de vecteurs sont les 

memes en configuration deformee et en configuration de reference. Le gradient 

de la temperature est done calcule en a = 0 : 

VTa(xa,ya) = 
0 

2y-L 
(2.5i; 

Pour calculer la sensibilite lagrangienne de la temperature, e'est a dire la derivee 

totale par rapport a a, nous avons deux possibilites equivalentes. 

La premiere consiste a exprimer la temperature sur le domaine deforme en fonction 

des coordonnees non deformees, en effet, 

Ta(xa,ya,a) = Ta(4>(x,y),a) (2.52) 

Cette operation permet d'expliciter les dependances en a et il ne reste plus qu'a 

deriver l'expression obtenue. Dans notre cas, la temperature a l'expression suivante : 

Ta(cf)(x,y),a) = ( a sin a; + — (L — a s i n x ) — Lj — (L — asmx) (2.53) 

Apres derivation et simplifications, nous obtenons : 

£>T — 
DT 

a = 0 
= 2,(1-1), sinx (2.54) 
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La deuxieme methode consiste a utiliser le theoreme des fonctions composees. 

O T — 
DT _ 8T 3T dx 8T dy 

Da da dx da dy da 

= i r + VT-VM 
da 

(2.55) 

(2.56) 

Ceci mene au meme result at. 

Calculons le gradient de la sensibilite en a = 0, nous omettrons done les exposants 

a : 

VST{x,y) = 
cosx *0-D 

o n 2'^^ • 
2 ( 1 — J SIM 

(2.57) 

Cette solution correspond, pour un milieu de conductivite k — 1 au terme source 

suivant 

Qa(xa, ya, a) = a sin x (ya -L) + 2 (2.58) 

En a = 0, Q = 2. 

Nous determinons la sensibilite lagrangienne du terme source de la meme maniere 

que pour la temperature : 

- . . L — a sin x 
Q (<p{x,y), a) = asmx lasmx + y \ ; I — L 

Done, 
DQ 

Da 
sin x (y — L) (2.59) 

a=0 
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Verification 

En developpant la forme faible (2.35), sachant que k — 1 , nous obtenons 

/ 
dST _ (2&TdVM^ + dT_ (dV^ + dVMy 

+ 

+ 

dx 

dST 

dy 
D<Q 

Da 

dx dx dy \ dy dx 
+ V-V, M 

3T_ 
dx 
dT dT fdVM^ + dVMy\ + 2&TdVMy\ + v _ _ 

dx \ dy dx J dy dy J dy 

dSW 
dx 

dSW 
dy 

+ v • VMQ SW dfi= 0 

En remplagant la temperature, sa sensibilite lagrangienne et le terme source par 

leur expressions respectives, le membre de gauche devient : 

dSW (2y \ d6W 

+ (smx(y -L)- 2 ^ ) 5W dtt 

En integrant par partie les deux premiers termes et en tenant compte du fait que la 

fonction test s'annule sur le bord, nous verifions bien que cette integrale est nulle. 

2.4 Formulation Eulerienne versus Formulation Lagrangienne 

Comparons les caracteristiques des formulations eulerienne et lagrangienne. 

Obtention de la forme faible de l'equation des sensibilites : 

Pour la formulation eulerienne, l'equation d'etat est differentiee formellement par 

rapport au parametre. La forme faible est ensuite obtenue en multipliant les 

equations ainsi obtenues par une fonction test puis en integrant sur le domaine. 
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Pour la formulation lagrangienne, la forme faible de 1'equation d'etat est differentiee 

par rapport au parametre. Cette operation est delicate car le domaine d'integration 

depend du parametre. La forme faible ainsi obtenue met en jeu les derivees spatiales 

d'une vitesse de deformation. 

Conditions aux limites : 

Les conditions aux limites sont donnees par les derivees materielles de celles du 

probleme initial. 

Dans le cas des sensibilites euleriennes, il est necessaire de retrancher le terme de 

transpiration afin d'obtenir la bonne valeur. Ce terme fait intervenir les derivees 

spatiales du champ qui seront issues du calcul numerique. 

Pour les sensibilites lagrangiennes, comme la derivee materielle correspond a la 

sensibilite lagrangienne, l'obtention des conditions aux limites est directe et exacte. 

Enjeu : 

Pour les sensibilites euleriennes, le point crucial est le calcul des conditions aux li­

mites. Comme elles font intervenir les derivees spatiales du champ de temperature, 

il est indispensable que celles-ci soient calculees avec la plus grande precision pos­

sible a la frontiere pour ne pas introduire d'erreur dans tout le champ de sensibilite. 

Cette operation demande en general des calculs supplement aires qui peuvent etre 

assez lourds. 

Pour les sensibilites lagrangiennes, les conditions aux limites sont exactes mais la 

forme faible fait intervenir une vitesse de deformation qui n'a de realite physique 

que sur les frontieres du domaine. Elle doit etre calculee partout, en meme temps 

que les sensibilites. II s'agit done de deux variables inconnues supplement aires a 

prendre en compte dans le systeme global. Le temps de calcul sera done un peu 

plus long. 
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C H A P I T R E 3 

RESULTATS N U M E R I Q U E S E N C O N D U C T I O N 

Nous avons etabli au chapitre precedent une formulation de l'equation des sensi-

bilites lagrangiennes. Nous allons a present faire quelques simulations numeriques 

pour tester le code et pour etudier la convergence, en particulier avec des conditions 

de Neumann. 

3.1 M e t h o d e de la solut ion manufacturee 

La methode de la solution manufacturee (MMS)'25] sera utilisee pour verifier 

l'implementation et 1' efficacite de la formulation lagrangienne. 

La MMS consiste a choisir une expression algebrique TM de la solution. Celle-ci ne 

satisfait generalement pas l'equation differentielle C(T) = 0. II faut done determiner 

l'expression du terme source QM = C{TM)- Ainsi, TM est solution du probleme mo-

difie C{TM) = QM- NOUS resoudrons cette equation sur une sequence de maillages 

de plus en plus fins arm de verifier que la solution numerique calculee avec ces 

termes sources converge, avec le bon taux theorique vers la solution analytique TM-

3.2 Cas d'une "couche mince" 

Dans cette premiere partie, nous reprendrons la geometrie et la transformation 

utilisees dans la section 2.3.5 mais la solution en temperature sera choisie avec un 

fort gradient au niveau de la frontiere dependant du parametre arm d'avoir une 
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sensibilite forte dans son voisinage. La solution ressemblera a un profil de vitesse 

dans une couche limite. 

3.2.1 Solut ion exacte 

Considerons done le domaine Qa defini sur la figure 3.1. II s'agit d'un carre unit aire. 

Nous chercherons a calculer la sensibilite de la temperature par rapport a la forme 

de la frontiere du bas. Celle-ci a pour equation : 

y(x) = a sin a; (3-1) 

Le parametre de forme est alors a 

y , 

1 

0 

, . ' ' ' l 

y' 

,' 
/ 

, 

y(x) 

1 

j 

X 

1 

F I G . 3.1 Cas de la "couche mince" : Deformation du domaine 

Nous commencerons par definir le champ de temperature choisi dans le cadre de la 

methode des solutions manufacturees. Pour l'ecoulement, il n'y a pas de difference 

de point de vue, puisque la transformation du domaine n'intervient que pour le 

calcul des derivees. Ainsi Ta(xa,ya) = T(x,y). Nous deriverons ensuite ce champ 

pour obtenir tout d'abord la sensibilite eulerienne puis la sensibilite lagrangienne. 
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3.2.1.1 C h a m p de temperature 

Nous choisissons le champ de temperature suivant comme solution manufacturee : 

Ta(xa,ya) = x' 
e-f3(y-a sin x) _ ^ 

(3.2) 

Dans cette expression, a est le parametre de forme et (5 controle l'epaisseur de la 

couche mince. En a = 0, le gradient de T est le suivant : 

VT{x,y) 
2.x-

e -0V 

-P -

^2 

- 1 
- 1 
e-to 

l-p - 1 . 

(3.3) 

Pour une conductivity constante egale a 1, le terme source correspondant a cette 

solution est le suivant : 

n_&T_ d2T _e-Py(2 + j32x2 + a~f{x,a))-2 

dx2 dy'2 
• P - l 

Avec la fonction 7(2;, a) = A[3x cos x — fix2 sin x + a(32x2 cos2 x 

Ainsi, en a = 0, le terme source devient 

Q = 
e-?y(2 + f32x2)-2 

e~P -I 

Nous appliquons des conditions de Neumann sur la frontiere du bas qui depend du 

parametre de forme a. Nous devons done calculcr le flux thermique correspondant. 

II est definit de la fagon suivante : 

q = kVT • n 
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La normale a la frontiere est la suivante 

n{x, y) 

a cos x 

vTT a2cos2 x 

y/1 + a2 cos2 :r. 

(3.4) 

Sur cette frontiere y = 0. Le flux thermique en a = 0 est alors le suivant : 

x2f3 

-0-1 

3.2.1.2 Sensibil ite eulerienne 

La sensibilite eulerienne de ce champ de temperature se calcule aisement par une 

derivee partielle de T par rapport a a. Nous obtenons alors en a = 0 : 

ST = da 
Px2 sh\x-

-Pv 

a=0 
-P-l 

(3.5) 

Le terme source correspondant s'obtient aussi par une derivee partielle par rapport 

a a, ce qui mene a l'expression suivante pour a = 0. 

—— =—T, ((3 sin x (2 + x2f32) + Axj3 cos x — x2fl sin x) 
da e~P — 1 v ' 

Pour les conditions de Neumann, nous devons calculer le flux des sensibilites 

euleriennes qui s'exprime de la fagon suivante pour une conductivite constante : 

q' = kVsx • n 

Sur la frontiere du bas, y = 0 et en a = 0, nous obtenons l'expression suivante : 

— fix s inx 
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3.2.1.3 Sensibilite lagrangienne 

La sensibilite lagrangienne s'obtient avec la derivee totale du champ de temperature 

par rapport au parametre de forme. En utilisant le theoreme des fonctions com-

posees, nous obtenons l'expression suivante : 

OT — 
DT dT 

Da da 
+ VT-V, M 

Cette expression fait apparaitre la vitesse de deformation que nous devons eal-

culer au prealable avant de determiner la sensibilite lagrangienne du champ de 

temperature. 

Tr ansfor mat ion 

Nous reprenons la transformation etablie dans l'exemple analytique a la section 

2.3.5. La transformation calculee precedemment etait la suivante : 

y 
, 

/ 
l 

0 

\ 

,''', 

/ ' 
/ 

/ 
>' 

\ 

y(x) 

i 

j 

X 

1 

FIG. 3.2 Cas de la "couche mince" : Deformation du domaine 
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4>(x, y) = 

La vitesse de deformation : 

xQ; = x 

ya = a sin x + — (L — a sin x) 
(3.6) 

VM(x,y) = 
s i n x ( l - | ) 

(3.7) 

done en a = 0, le gradient de la vitesse de deformation a l'expression suivante : 

vavM = vvM 
cos x 11 

y 

o 
sinx 

LJ L J 

(3.8) 

et. 

V • VM = 
S I M 

L 
(3.9) 

Nous pouvons a present calculer la sensbilite lagrangienne du champ de 

temperature, ainsi que celle des termes sources et des conditions aux limites. 

Sensibilites lagrangiennes 

Le champ de temperature etait le suivant : 

Ta(xa,ya) = x' 
e-(3(y-asinx) _ -y 

(3.10) 

La sensibilite lagrangienne du champ de temperature est calculee par le theoreme 

des fonctions composees 

DT dT dTDx dT Dy 
ST = = 1 1 -

Da da dx Da dy Da 
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Ce qui mene a l'expression suivante pour a = 0 : 

e-to 
ST = x2y(3sinx— (3-H) 

La sensibilite du terme source est calculee par le code avec le theoreme des fonctions 

composees. II faut done lui fournir ses derivees spatiales et sa derivee eulerienne. 

Pour a = 0, elles sont les suivantes : 

—— ——-„ (f3 sin x (2 + x202) + 4x/3cosa; — x2Psmx) 
da e"P — 1 v v / ' 

dx e~P — 1 

^ = _ ^ (2 + ^ 2 ) e " ^ 
dy e P — 1 

Pour les conditions de Neumann, nous devons calculer la derivee lagrangienne du 

flux thermique. Son expression est la suivante : 

Dq DVT Dn 
—— = k——— • n + kvl • -=— 
Da Da Da 

II est imporant a cette etape de se rappeler que la sensibilite lagrangienne d'un 

gradient n'est pas egale au gradient de la sensibilite lagrangienne, e'est a dire, 

DVT 

II faut plutot utiliser la formule suivante : 

DVT _ 

Da ~ 

d2T d2T d2T 

aaox oxz ay ox cx-\o\ 

d2T &T „ a2r, [ } 
cri cri cri 

T T ^ ; — \ - 0 „ VMX + ~E~9 VMV K. oaoy oxoy oyz 
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Alors pour a — 0 nous obtenons 

Dq n erfo - 1 _ 2 2 . e~Py 

= 2x cos x—— h x yfj sin a; 
Da ' e^3 - 1 Jr e-P - 1 

Ainsi, sur la frontiere en question, done pour y = 0, la sensibilite lagrangienne du 

flux thermique est nulle : 

Da 

Nous avons a present determine tous les champs necessaires pour la methode 

des solutions manufacturees, pour chacune des formulations des sensibilites. Les 

developpements pour la formulation lagrangienne sont plus fastidueux a cause en 

particulier de la vitesse de deformation, de plus, les derivees sont un peu plus com­

plexes a calculer. Notons cependant que ces calculs sont specifiques a la methode et 

a l'elaboratoin d'une solution analytique, ils ne sont pas necessaires pour un calcul 

"normal". Recapitulons done les differents champs calcules et leurs caracteristiques, 

nous pourrons voir leurs isolignes sur la figure 3.3 

Nous constatons en particulier que la sensibilite lagrangienne est bien nulle sur la 

frontiere inferieure; il s'agit de la condition aux limite sur la derivee materielle. 

La sensibilite eulerienne est comprise entre -8.41 et -0.337, ces valeurs sont plus 

importantes que celles obtenues en formulation lagrangienne, celles-ci etant alors 

comprises entre -0.310 et -0.012. Cela semble logique puisque la sensibilite lagran­

gienne est nulle a la frontiere alors que la sensibilite eulerienne est egale a l'oppose 

du terme de transpiration : 

dT 
STW — — VT • VM — — TT~

 s m x 

dy 
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Nous avons choisi une solution avec un fort gradient a la frontiere, ce qui explique 

cette difference importante. 

Passons a present aux result at s numeriques. 
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(a) Isolignes de temperature 

(b) Isolignes de sensibilite eulerierme (c) Isolignes de sensibilite lagrangienne 

FIG. 3.3 Maillage et isolignes de temperature pour le cas thermique "couche mince" 
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Le maillage utilise pour la resolution numerique est non structure et compose 

d'elements tr iangulares de type quadratique. La temperature et les deplacements 

sont approximes avec des polynomes d'ordre 2, il y a done 6 noeuds de calculs par 

element comme le montre la figure 3.4. 

noeuds pour la temperature 
et le deplacement 

F I G . 3.4 Element quadratique 

Le taux de convergence theorique en semi-norme energie est de 2. C'est a dire, si 

h est la longueur caracteristique des elements et Texa la solution exacte ou enrichie 

et T/j la solution elements finis, nous avons : 

J J (VTh - VTexa) • (VTh - VTexa) dtt = 0(h2) (3.13) 

Ceci est valable tant pour la temperature que pour sa sensibilite. 

Nous avons fait plusieurs calculs : 

1. en formulation eulerienne avec a traite comme parametre de valeur, ce qui 

est possible car on connait la solution analytique de la sensibilite eulerienne 

2. en formulation eulerienne avec a traite comme parametre de forme. 

3. en formulation lagrangienne 
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3.2.2.1 Formulation eulerienne - Parametre de valeur 

Formulation culcricnnc:paramctrc dc vaicur 

_ ! , , , -
100 1000 10000 100000 le+06 

nombrc dc nocuds 

(a) Erreurs estimee et exacte (b) Efficacite de l'estimateur d'erreur 

F I G . 3.5 Courbes de convergence en formulation eulerienne, parametre de valeur 
pour le cas thermique "couche mince" 

Pour ce calcul, noiis avons utilise la formulation eulerienne mais le parametre a ete 

traite en parametre de valeur, c'est a dire que nous avons impose la solution exacte 
Of 

de la sensibilite eulerienne —— pour les conditions de Dirichlet et la sensibilite 
da 

eulerienne exacte du flux q' pour les conditions de Neumann. Ce type de calcul est 

possible uniquement lorsque la solution analytique est connue. En effet dans le cas 

courant, seule la sensibilite lagrangienne est connue a la frontiere. 

Au bout de 4 cycles d'adaptation, le maillage compte 2283 noeuds et il a ete raffine 

sur la frontiere inferieure et plutot sur la droite du domaine dans les zones ou les 

gradients sont les plus importants. Pour ce qui est de la convergence, les resultats 

obtenus sont conformes a nos attentes. Comme le montre la figure 3.5(a), la solution 

numerique converge vers la solution analytique a l'ordre 2 avec le ramnement du 

maillage. L'efficacite , c'est a dire le rapport entre la norme de l'erreur estimee 

et celle de l'erreur exacte presentee sur la figure 3.5(b) est egalement tres bonne 

puisqu'elle tend vers 1. Les conditions aux frontieres etant exactes, il est normal 

Formulation culcncnnc:paramctre dc vaicur 

0.0001 
100 1000 10000 100000 lc+06 

nombre dc nocuds 

1.04 
1.02 

1 
0.98 
0.96 
0.94 
0.92 

0.9 
0.88 
0.86 
0.84 
0.82 

10 
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d'obtenir le taux de convergence asymptotique theorique. Le tableau 3.1 recapitule 

les valeurs numeriques du present calcul. 

Cycle 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Nombre 
de noeuds 

25 
521 
714 
1243 
2283 
4158 
7837 
14865 
29078 
57215 
114175 

I I S T I I 

7.629 
7.801 
7.796 
7.796 
7.796 
7.796 
7.796 
7.796 
7.796 
7.796 
7.796 

Erreur 
exacte 

2.701E+00 
2.599E-01 
4.926E-02 
1.907E-02 
9.365E-03 
4.646E-03 
2.501E-03 
1.285E-03 
6.489E-04 
3.244E-04 
1.628E-04 

Efficacite 

0.8329 
0.8374 
1.005 
1.009 
1.016 
1.019 
1.018 
1.020 
1.021 
1.022 
1.023 

T A B . 3.1 Convergence de la sensibilite eulerienne en parametre de valeur pour le 
cas thermique de couche mince 

Des les premiers cycles, l'emcacite est tres bonne et atteint rapidement sa limite 

de 1. L'estimation d'erreur fonctionne done tres bien tout comme l'adaptation du 

maillage. Nous constatons en effet sur les derniers cycles qu'a cliaque iteration, 

l'erreur est divise par 2 alors que le nombre de noeud est multiplie par 2. 



51 

3.2.2.2 Formulation eulerienne - Parametre de forme 

Ce calcul correspond au calcul classique de sensibilite. Nous avons fourni au code 

les conditions aux limites des sensibilites lagrangiennes ainsi que le deplacement 

des frontieres. En effet, la formulation impose 

DT 
sT D 

- VTI 
a 

dX, 

da 

L'enonce du probleme specifie —— et —— alors que le gradient de temperature a 
Da da 

la paroi doit etre evaluee a partir de la solution elements finis. Pour ameliorer la 

precision sur ce terme, nous utiliserons une technique de projection locale. Nous 

imposerons des conditions de Dirichlet sur toutes les frontieres, les imprecisions 

seront moins grandes qu'avec des conditions de Neumann. Nous constatons sur la 

Formulation culcricnne:parametre dc forme Formulation culcricnnc:paramctre dc forme 

10 

1 

0.1 

0.01 

0.001 

0.0001 

Erreur cxactc 
Errcur estimcc 

10 100 1000 10000 

nombrc dc nocuds 

100000 100 1000 10000 100000 

nombre dc nocuds 

(a) Erreurs estiraee et exacte (b) Efficacite de l 'estimateur d'erreur 

F I G . 3.6 Courbes de convergence en formulation eulerienne, parametre de forme 
pour le cas thermique "couche limite" 

figure 3.6(a) que meme si l'erreur diminue, e'est a dire que la solution numerique 

semble bien converger vers la solution analytique, l'ordre de convergence n'est plus 

de 2. De plus, la figure 3.6(b) montre que l'estimateur d'erreur n'est plus asymp-
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totiquement exact, c'est a dire que 

lim eh ^ lim eexa 

avec h la taille caracteristique des elements, et, l'erreur estimee et eex l'erreur 

exacte. Cette tendance est confirmee par les valeurs numeriques du tableau 3.2. 

Aux premieres iterations, le comportement de cette solution est semblable au cal-

cul en parametre de valeur, c'est a dire qu'il y a un palier pour le cycle 1 puis 

l'erreur diminue et l'efficacite augmente de maniere significative. Mais au lieu de 

poursuivre cette tendance, pour les cycles suivants, l'efficacite plafonne a 0.6, la 

difference entre les 2 estimations d'erreur n'est plus due au maillage trop grossier 

mais a l'inexactitude des conditions aux limites des sensibilites. Le taux de conver­

gence est aussi affecte. La pente des courbe de la figure 3.6(a) devrait etre de -1 pour 

des maillages suffsamment fins, mais elle n'est que de -0.8. Cet exemple montre que 

les conditions aux limites inexactes affectent la convergence des sensibilites pour 

cette formulation. 

Cycle 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

Nombre 
de noeuds 

25 
521 
709 
1222 
2239 
4145 
7721 
14545 
27416 
51829 
97896 

I I S T I I 

4.204 
7.458 
7.763 
7.782 
7.790 
7.792 
7.795 
7.796 
7.796 
7.796 
7.796 

Erreur 
exacte 

4.888E+00 
7.539E-01 
1.014E-01 
3.656E-02 
1.778E-02 
1.040E-02 
4.554E-03 
2.939E-03 
1.606E-03 
9.059E-04 
5.451E-04 

Efficacite 

0.2023 
0.4289 
0.5565 
0.5870 
0.5895 
0.5158 
0.6153 
0.5026 
0.5035 
0.4866 
0.4597 

T A B . 3.2 Convergence de la sensibilite eulerienne en parametre de forme pour le 
cas thermique de couche mince 
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3.2.2.3 Formulation lagrangienne 

Apres 4 cycles adaptatifs, nous obtenons un maillage de 2578 noeuds done approxi-

mativement le meme nombre de noeuds qu'en formulation eulerienne, le raffinement 

est semblable. La figure 3.7(a) presente revolution des normes de l'erreur estimee 

Formulation lagrangienne Formulation lagrangienne 

1 

0.1 

0.01 

0.001 

0.0001 

lc-05 

F.rrcur exactc 
Errcur estimcc 

10 100 1000 10000 

nombre de noeuds 

100000 100 1000 10000 

nombre de noeuds 

100000 

(a) Erreurs estimee et exacte (b) Efficacite de l'estiraateur d'erreur 

FIG. 3.7 Courbes de convergence en formulation lagrangienne pour le cas thermique 
"couche mince" 

et de l'erreur exacte en fonction du raffinement du maillage, e'est a dire en fonc-

tion du nombre de noeuds. La solution numerique converge bien vers la solution 

analytique avec le taux de convergence attendu, en 0(h2) si h represente la taille 

caracteristique des elements. Les equations sont done correctement resolues par le 

code. 

De plus, au bout de quelques cycles, l'erreur estimee se confond avec l'erreur exacte. 

Ceci est mis en evidence par la figure 3.7(b). L'efficacite est tres proclie de 1 des que 

le maillage depasse les 1000 noeuds. De plus, nous pouvons voir sur le tableau 3.3 

que la norme de la sensibilite atteint sa valeur asymptotique a 4 chiffres significatifs 

des le cycle 3, alors qu'il fallait attendre le cycle 7 pour la formulation eulerienne 

en parametre de forme, voir le taleau 3.2. 
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Cycle 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Nombre 
de noeuds 

25 
521 
706 
1304 
2578 
5119 
10423 
21716 
45938 
98390 

llSrll 

0.3364 
0.5492 
0.5512 
0.5513 
0.5513 
0.5513 
0.5513 
0.5513 
0.5513 
0.5513 

Erreur 
exacte 

4.514E-01 
6.001E-02 
9.804E-03 
3.155E-03 
1.425E-03 
6.806E-04 
3.263E-04 
1.525E-04 
7.189E-05 
3.341E-05 

Efficacite 

0.2751 
0.6847 
0.8881 
0.9784 
0.9858 
1.004 
1.002 
1.013 
1.014 
1.017 

TAB. 3.3 Convergence de la sensibilite lagrangienne pour le cas thermique de couclie 
mince 

Cette solution manufactured nous a permis tout d'abord d'illustrer les problemes 

de convergence en formulation eulerienne pour un parametre de forme. En effet, 

si le parametre est traite comme parametre de forme, le taux de convergence se 

trouve affecte et l'emcacite de l'estimateur d'erreur devient aussi beaucoup moins 

bonne. Ces problemes n'apparaissent pas si le parametre est traite en parametre de 

valeur, c'est a dire si les conditions aux frontieres sont imposees de maniere exacte. 

Ces dernieres sont done bien la cause des problemes de convergence. 

Ensuite, les bons resultats de convergence de la formulation lagrangienne montrent 

d'une part que l'implementation de la formulation est correcte et d'autre part que 

cette formulation est adaptee pour resoudre les sensibilites pour un parametre de 

forme, meme avec des conditions de Neumann. 
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3.3 Cas d'un ecoulement potent ie l pres d'un point de s tagnat ion 2D 

Sortie: T=T(x,y) 
B(x0,1.0) | 1 (0.0,1.0) 

Interieur: 

q(x,y) 

Paroi: 

T=T(x,y) 

A(-0.316,y0) 

Entree 
T=T(x,y) 

(-0.316,0.0) 0 ,t- T TY \ (°-0'0-°) v 'Symetne T=T(x,y) 

FlG. 3.8 Domaine pour le cas du point de stagnation 2D 

Dans cette seconde partie, nous allons comparer les resultats obtenus en formu­

lation lagrangienne, et en formulation eulerienne en parametre de forme avec une 

technique avancee de reconstruction des gradients a la frontiere. Nous utiliserons la 

solution manufacturee de Duvigneaut14^. Le domaine utilise est celui presente sur la 

figure 3.8. L'equation de la courbe "Interieur" est 2ax2y = 1. a sera le parametre 

de forme et pour notre configuration, a = 50. 
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3.3.1 Solution exacte 

Detaillons dans un premier temps la solution analytique utilisee. Comme pour la-

section precedents, il n'y a pas de difference pour le champ de temperature entre 

le point de vue eulerien et lagrangien. Nous deriverons ensuite cette solution d'un 

point de vue eulerien puis d'un point de vue lagrangien, en detaillant a cliaque fois 

les termes sources et les conditions aux limites correspondants. 

3.3.1.1 Champ de temperature 

Nous choisissons le champ de temperature suivant comme solution manufactured : 

2 „ . \ 2 

Ta(xa,ya) = 2a(x2y) (3.14) 

Son gradient est le suivant : 

VT(x,y) = 
Sax3y2 

AaxAy 
(3.15) 

Pour une conductivity constante egale a 1, le terme source correspondant a cette 

solution est le suivant : 

d2T d2T Q=^+w=4ax2 (x2+%2) 

Pour les conditions, aux limites, nous imposons des conditions de Neumann sur 

la courbe etiquetee "Interieur" et des conditions de Dirichlet ailleurs. Ainsi, nous 
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avons 

TT = sortie U paroi U symetrie U entree 

Tq — interieur 

Pour les conditions de Neumann, nous devons done calculer le flux thermique cor­

respondent a notre solution sur la courbe etiquetee " Interieur". II est defini de la 

fagon suivante : 

dT 
q = k— = kVT • n 

on 

La normale a la frontiere Tq est la suivante : 

- 1 

n(x,y) = 
Va'2x6 + 1 

—ax3 (3.16) 

Nous montrons alors facilement que le flux thermique correspondant a notre solu­

tion est donne par l'expression suivante : 

_ 4ax3y (2y + axA) 

\/a2x6 + 1 

3.3.1.2 Sensibil ite eulerienne 

Nous allons a present calculer la sensilite eulerienne de ce champ. Elle se calcule 

aisement par une derivee partielle de T par rapport a a. 

dT 2 „ . \ 2 

ST = —(x,y,a) = 2 (x2y) (3.17) 
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Le terme source correspondant s'obtient aussi par une derivee partielle par rapport 

a a, ce qui mene a l'expression suivante. 

^ = 4x2 (x2 + 6y2) 

Pour les conditions de Neumann, nous devons calculer le flux des sensibilites qui 

s'exprime de la fac,on suivante pour une conductivite const ante : 

q = — = kvsT • n 
oa 

Sur Tqi noils obtenons l'expression suivante : 

— 8x3y2 + 4ax7y 
Q = , 

V a ¥ + 1 

Notons que comme nous ne ferons pas de simulation en formulation eulerienne en 

parametre de valeur, nous nous ne servirons concretement pas de cette valeur. 

3.3.1.3 Sensibil ite lagrangienne 

La sensibilite lagrangienne s'obtient avec la derivee tot ale du champ de temperature 

par rapport au parametre de forme. En utilisant le theoreme des fonctions com-

posees, nous obtenons l'expression suivante : 

9 - D T -9T+VT V br — -=— — -x r V i • VM 
Da oa 

Cette expression fait apparaitre la vitesse de deformation que nous devons cal­

culer au prealable avant de determiner la sensibilite lagrangienne du champ de 

temperature. 
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Transformation 

Comme nous l'avons explique au paragraphe 2.3.3, la vitesse de deformation doit 

etre continument differentiable (C1) et respecter les conditions aux frontieres. Nous 

devons done dans un premier temps etablir ces conditions. II faut commencer 

par trouver une parametrisation de la courbe etiquetee "interieur" qui explicite 

sa dependance par rapport a a, e'est a dire tel que Xf = Xf(a,t) avec a et 

t independants l'un de 1'autre. Nous n'avons pour l'instant que l'equation de la 

courbe et les points extremes A et B. lis sont dermis de sorte que l'ordonnee de A 

notee y0 et que l'abscisse de B notee x0 dependent de a. En effet, ils sont etablis a 

partir de l'equation de la courbe : 

xB = x0(a) 
V2aVB V2a 

' ^ = y o ( a ) = 2 ^ = 2 ^ a T 

Nous ne pouvons done pas prendre comme parametre " f x ou y puisqu'ils ne 

seraient pas independants de a. 

Nous choisissons alors la parametrisation suivante. x est defini de maniere lineaire 

par rapport a t et y est calcule par l'intermediaire de l'equation de la courbe. Nous 

avons done 

x(a,t)=xA(l-t)+xBt= ^=(l-t)-V0lt 

x
 y'2a avec t G [0,1] 

y(a,t) 
2a(x(a,t))' 
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La derivation directe de ces expressions par rapport a a donne la vitesse de maille 

sur Tq : 

Les frontieres etiquetees " symetrie" et " paroi" ne sont pas affectees par la variation 

du parametre done la vitesse d maille y est nulle. Le prolongement sur le domaine 

complet devra done respecter ces conditions. 

Pour le construire, nous procedons de la maniere suivante : 

Pour la composante en x de la vitesse, considerons un point M(xm, ym) du domaine 

tel que xm < xo — —0,1 voir la figure 3.9. 

La vitesse en x, pour un point d'abscisse xm est : 

- nulle au point Mmin de coordonnees (x m ,0) , situe sur la frontiere "symetrie" 

- maximale au point Mmax de coordonnees (xm,ymax(xm)) avec 2ax2
mymax = 1 

situe sur la frontiere " interieur". 

Nous choisissons alors d'interpoler la vitesse de maille horizontale de maniere 

lineaire entre ces 2 points. Ainsi pour x < x0 = —0,1 

Nous prolongeons cette solution avec une vitesse quadratique sur le reste du do­

maine pour pouvoir faire un raccordement continument differentiable (C1), ce qui 

n'aurait pas ete possible avec un prolongement lineaire. Nous cherchons alors une 

vitesse de la forme suivante : 

VMX — Kai v)x2 + c(a> v)x + d{a, y) pour x > x0 
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Comme la vitesse horizontale siir la, paroi est nulle, d = 0. b et c sont obtenus en 

resolvant le systeme suivant qui traduit la continuite de la vitesse et la continuite 

de sa derivee suivant x en XQ : 

bx0 + cx0 + d =VMx{xo, y) 

2bx0 + c=——^(x0,y) 

Nous obtenons alors pour x > XQ : 

VMx(x,y) = '/—- r— ( - (2x0 + \/oTT) x + xl) 
1 - V0.1V2a 

Pour la composante en y de la vitesse, le raisonnement est similaire. 

Pour y > j/o = 0.1, la vitesse est interpolee lineairement entre les frontieres 

"interieur" et "paroi". 

VMy(x,y) = —— VMy\r (y) = 2xy^/0?[y-
1 - V0. lV2a 

Nous prolongeons cette solution avec une vitesse quadratique sur le reste du do-

maine et un raccordement continument differentiable en y0. Nous obtenons alors 

pour y<y0 
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Sortie 

A(-0.316,yOL 

Entree 

B(x0,1.0) 

/ a 
Interieur / 

Mmax 
(xm,ymax\ 

y M 
—^(xm,ym) 

1 Mxmax 

VMx 

' 
(-0.316,0.0) Mmin (0.0,0.0) 

(xm,0) Symetrie 

FIG. 3.9 Construction de la vitesse de maille 
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Sensibilites lagrangiennes 

Nous pouvons a present calculer la sensibilite lagrangienne de la temperature par 

l'intermediaire du theoreme des fonctions composees. 

DT _ dT dT dT 

Da da ox oy 

Comme la vitesse de deformation est definie par morceaux, la sensibilite lagran­

gienne Test aussi. 

La sensibilite du terme source est calculee par le code avec le theoreme des fonctions 

composees. II faut done lui fournir ses derivees spatiales et sa derivee eulerienne. 

dQ 

da 
dQ_ 

dx 

dy 

4x2 (x2 + Qy2) 

Wax (x2 + 3y2) 

48ax2y 

Pour les conditions de Neumann, nous devons calculer la derivee lagrangienne du 

flux thermique. Avec une conductivite constante, son expression est la suivante : 

Dq , D V T , „ m Dn 
—- = k—— • n + kVT • —-
Da Da Da 

En utilisant les expressions (3.12) et la vitesse de deformation exprimee a la 

frontiere, nous obtenons la sensibilite du gradient de temperature suivante : 

DVT 

Da 
(x,y) = 

„3„,2 2„.2 8x6yz - 12xzy 
x + V0.1 

4x4y - 8x3y x 

/0 .1V2a 
+ 8yV0.1 

xy/2a + 1 

1 - V0.1V2a 
+ 2xV0.1 

a(l - V0lV2a) 
xy/2a + l 

a( l - y/0Ay/2a) 



64 

La derivee de la normale a Tq est 

Dn 
"Da* 

x, y) 

ax Zax5 (x + V o l ) 

(o2:r6 + l)Va%6 + 1 2(a2x6 + l)\/a2.T6 + 1(1 - \fTi\f2a) 

—x 
+ 

3x2 (x + Vol) 
a ¥ + l ) v / o ¥ + T 2(a%6 + l)Va2x6 + 1(1 - V0l^/2a) 

Nous pouvons a present comparer les differentes solutions calculees. Tout d'abord, 

la figure 3.10(a) montre comment le domaine est modifie par une variation de a et 

la figure 3.10(b) montre les isolignes du champ de temperature. 

(a) Deformation (b) Isolignes de temperature 

FIG. 3.10 Deformation et isolignes de temperature pour le cas thermique du point 
de stagnation 2D 

file:///fTi/f2a
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(a) Sensibilite eulerienne (b) Sensibilite lagrangienne 

FIG. 3.11 Isolignes de sensibilite eulerienne et lagrangienne de la temperature pour 
le cas thermique du point de stagnation 2D 

Sur la figure 3.11, nous pouvons comparer la sensibilite eulerienne avec la sensibilite 

lagrangienne. Ici aussi, nous pouvons voir que ces sensibilites sont bien differentes, 

elles sont de signe oppose et leur sens de variation est inverse. Nous sommes done 

dans un cas ou le terme de transpiration VT • VM est particulierement eleve. 

La deformation du domaine est plus complexe que pour la solution precedente. Cela 

nous permet de verifier la bonne implementation de la formulation lagrangienne 

puisque tous les termes specifiques a cette formulation seront testes avec cette 

solution. En effet, la vitesse de maille est bidimensionnelle, son gradient non trivial 
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et sa divergence non nulle et nous avons impose des conditions aux limit.es de 

Neumann et de Dirichlet non nulles. 

http://limit.es
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3.3.2 Resultats numeriques 

Nous allons done comparer les resultats obtenus avec la formulation lagrangienne a 

ceux de Duvigneau ^ obtenus en formulation eulerienne avec une reconstruction 

precise des gradients a la frontiere. 

3.3.2.1 Formulation eulerienne 

Formulation culcricnnc:dcvcloppcmcnt a 1 ordrc 4 Formulation culcricnneidcvcloppemcnt a 1 ordrc 4 

0.001 

0.0001 

le-05 

lc-06 

lc-07 

Errcur exacte 
Btreur estimcc 

100 1000 10000 100000 

nombre dc nocuds 

100 1000 10000 100000 

nombre dc nocuds 

(a) Erreurs estimee et exacte (b) Efficacite de l'estimateur d'erreur 

FIG. 3.12 Courbes de convergence en formulation eulerienne, developpement a 
l'ordre 4 pour le cas thermique du point de stagnation 2D 

Commengons par considerer la formulation eulerienne. Pour ces calculs, les gra­

dients ont ete reconstruits grace a une methode des moindres carres contraints 

combinee avec des developpements de Taylor d'ordre eleve afin d'obtenir des condi­

tions aux limites en sensibilite les plus precises possibles. La qualite de la solution 

ainsi obtenue depend de l'ordre du developpement. 

Tout d'abord, un developpement a l'ordre 4 donne les resultats montres sur les 

figures 3.12(a) et 3.12(b). Les valeurs numeriques sont sur le tableau 3.4. Nous 

constatons que l'erreur exacte converge a l'ordre 2 avec le ramnement du maillage. 
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Cycle 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Nombre 
de noeuds 

37 
101 
126 
189 
292 
534 
1020 
1862 
3394 
6218 
11043 
19575 
35947 
65649 

II Q II lI'-Tll 

6.116E-04 
5.920E-04 
5.952E-04 
6.099E-04 
6.174E-04 
6.211E-04 
6.783E-04 
7.359E-04 
7.683E-04 
7.848E-04 
7.958E-04 
8.006E-04 
8.036E-04 
8.052E-04 

Erreur 
exacte 

6.455E-04 
4.880E-04 
4.914E-04 
5.001E-04 
4.997E-04 
4.679E-04 
2.501E-04 
1.244E-04 
6.393E-05 
3.643E-05 
1.920E-05 
1.051E-05 
5.445E-06 
2.761E-06 

Efficacite 

0.1672 
0.1391 
0.1355 
0.1381 
0.08876 
0.06207 
0.06146 
0.05452 
0.05147 
0.05750 
0.2811 
0.1351 
0.1161 
0.1562 

TAB. 3.4 Convergence de la sensibilite eulerienne, developpement a l'ordre 4 pour 
le cas thermique du point de stagnation 2D 

Cependant, la norme de la sensibilite meme au bout des 13 cycles ne cornpte que 

2 chiffres significatifs. La convergence de Ferreur estimee est quant a elle tres 

irreguliere et beaucoup plus basse que Ferreur exacte, ce qui explique que Feffi-

cacite reste voisine de 0.1. L'estimateur d'erreur n'est done pas fiable. Cet exemple 

illustre les difficultes evoquees precedemment a la section 2.1.2.3. 
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II est alors necessaire de pousser les developpements de Taylor a un ordre superieur 

afin d'avoir une precision suffisante sur les gradients de la temperature a la frontiere. 

A l'ordre 7, les resultats sont bien meilleurs conime le montrent les figures 3.13(a) 

et 3.13(b) et le tableau 3.5. En effet, nous pouvons verifier que le taux de conver­

gence est de 2 et l'efficacite tend vers 1. De plus, nous obtenons pour le dernier 

maillage 4 chiffres significatifs pour la norrae de la sensibilite de la temperature. 

Ici, le nombre de cycle necessaires pour atteindre 69454 noeuds est inferieur au cas 

precedent car la cible pour l'estimateur d'erreur etait de 0.3 au lieu de 0.5. Cette 

methode permet done de calculer les gradients avec suffisamment de precision pour 

evaluer correctement les conditions aux frontieres du problemes des sensibilites. 

Elle reste cependant lourde puisqu'elle demande la resolution de systemes lineaires 

supplement aires pour chaque points de la frontiere t14'. 

Formulation culcricnne:dcvcloppcmcnt a 1 ordrc 7 Formulation culcricnnc:dcvcloppcmcnt a 1 ordrc 7 

0.001 

0.0001 

lC-05 

lc-06 

lc-07 

lc-08 

v. Errcur cxacte 
, \ Errcur cstimec 

10 100 1000 10000 

nombre de noeuds 

(a) Erreurs estimee et exacte 

100000 1000 10000 

nombre de noeuds 

100000 

(b) Efficacite de l'estimateur d'erreur 

FIG. 3.13 Courbes de convergence en formulation eulerienne, developpement a 
l'ordre 7 pour le cas thermique du point de stagnation 2D 



Cycle 

0 
1 
2 
3 
4 
5 
6 
7 
8 

Nombre 
de noeuds 

37 
89 
176 
402 
1025 
2838 
7990 

23175 
69454 

II Q II 

1.359E-03 
8.859E-04 
8.183E-04 
8.103E-04 
8.080E-04 
8.073E-04 
8.070E-04 
8.069E-04 
8.069E-04 

Erreur 
exacte 

7.654E-04 
2.638E-04 
5.628E-05 
1.892E-05 
6.871E-06 
2.492E-06 
8.564E-07 
2.860E-07 
9.563E-08 

Efficacite 

0.3917 
0.4041 
0.8607 
0.9458 
0.9983 
0.9946 
1.009 
1.007 
1.008 

TAB. 3.5 Convergence de la sensibilite eulerienne, developpement a Fordre 7 pour 
le cas thermique du point de stagnation 2D 
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3.3.2.2 Formulation lagrangienne 

Considerons a present la formulation lagrangienne. Les courbes de convergence sont 

representees sur les figures 3.14(a) et (b). Les valeurs numeriques correspondantes 

sont sur le tableau 3.6. Nous constatons que des que le maillage atteint 300 noeuds, 

la partie asymptotique commence. En effet, l'efficacite est alors voisine de 90% et 

l'erreur exacte converge a l'ordre 2 avec le raffmement du maillage. De plus, nous 

obtenons rapidement 3 chiffres significatifs sur la norme de la sensibilite lagran­

gienne. 

Nous avons done bien verifie 1' implement at ion du code, les equations des sensbilites 

lagrangiennes sont correctement resolues. 

De plus, nous constatons que pour un cout numerique moindre que la reconstruction 

des gradients, nous obtenons des resultats de convergence equivalents. 

Les performances de la methode des sensibilit.es lagrangiennes sont done tres 

bonnes. Le traitement du parametre de forme se fait sans perte de precision ou 

de convergence, nous pouvons done a present la developper pour les equations de 

Navier-Stokes. 

http://sensibilit.es
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Formulation lagrangicnnc Formulation lagrangicnnc 

0.001 

0.0001 

lc-05 

lc-06 

lc-07 

lc-08 
0 

: ^ \ 

, 
100 

1 ' 

Errcur cstimcc •---*--

i i i 

1000 10000 100000 

nombre de nocuds 

-

_ 

lc+06 

E
ff

lc
a

ci
tc

 

1 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

(a) Erreurs estimee et exacte 

1000 10000 100000 lc+06 

nombrcs dc nocuds 

(b) Efficacite de l'estimateur d'erreur 

FIG. 3.14 Courbes de convergence en formulation lagrangienne pour le cas ther-
mique du point de stagnation 2D 

Cycle 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 

Nombre 
de noeuds 

34 
112 
166 
228 
359 
621 
1083 
2020 
3742 
7152 
13947 
27999 
56541 
115009 

II Q II H'-'TII 

8.712E-04 
8.768E-04 
8.881E-04 
9.076E-04 
9.076E-04 
9.073E-04 
9.070E-04 
9.069E-04 
9.068E-04 
9.067E-04 
9.067E-04 
9.067E-04 
9.067E-04 
9.066E-04 

Erreur 
exacte 

4.391E-04 
2.495E-04 
1.723E-04 
7.171E-05 
3.685E-05 
2.152E-05 
1.051E-05 
5.537E-06 
2.957E-06 
1.516E-06 
7.657E-07 
3.869E-07 
1.914E-07 
9.497E-08 

Efficacite 

0.3416 
0.4065 
0.5778 
0.7992 
0.9060 
0.9189 
0.9341 
0.9658 
0.9466 
0.9559 
0.9616 
0.9740 
0.9814 
0.9819 

TAB. 3.6 Convergence de la sensibilite lagrangienne pour le cas thermique du point 
de stagnation 2D 
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CHAPITRE 4 

METHODE DE L'EQUATION DES SENSIBILITES APPLIQUEES 

AUX EQUATIONS DE NAVIER STOKES 

Nous allons dans ce chapitre adopter une demarche similaire au chapitre 2 pour 

developper les equations de sensibilites en formulation eulerienne et en formulation 

lagrangienne pour les equations de Navier Stokes. 

Considerons done les equations de Navier-Stokes pour l'ecoulement laminaire et 

incompressible d'un fluide Newtonien en regime stationnaire dans le domaine Cla 

dont la forme depend du parametre de forme a : 

Continuite : V • u = 0 (4.1) 

Mouvement : p(u • V)u = - Vp + V • T{U) + / (4.2) 

Energie : pcPu • VT = V • (AVT) + qs (4.3) 

Avec les conditions a la frontiere suivantes : 

u — u 

—pna + T(U) • na = tf 

T = T 

AVT • na = q 

ou T(U) est le tenseur des contraintes visqueuses defini de la maniere suivante 

T(U) = p (Vu + VTw) 

sur T^ 

sur r^ 

sur r£ 

sur Tq 

(4.4) 

(4.5) 

(4.6) 

(4.7) 
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4.1 Methode de l'equation de sensibilite classique 

Cette section est consacree au developpement de l'equation des sensibilites 

euleriennes. Nous nous attarderons sur les difficultes rencontrees lors du traitement 

du parametre de forme. 

4.1.1 Equations des sensibilites euleriennes 

Comme nous l'avons vu plus tot, les variables de l'ecoulement peuvent etre 

considerees comme dependantes de l'espace et du parametre a, ainsi, u — 

u(x,y,a). Les sensibilites euleriennes sont les derivees partielles des variables de­

pendantes par rapport au parametre de forme a. Nous adoptons la notation sui-

vante : 

dp 

_ ar 
da 

Elles sont obtenues en derivant formellement les equations de l'ecoulement par 

rapport a a. Derivons done successivement chaque equation. 

Equation de continuite 

La derivation formelle de l'equation (4.1) par rapport a a donne : 

| ( V . « ) = 0 

V • su = 0 (4.8) 

du 
da 
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Equation du mouvement 

Considerons a present F equation du mouvement(4.2). En derivant, nous obtenons : 

p'u • Vtt 4- psu • Vu + pu • Vsu 

(4.9) 
= - V s p + V • [// (Vu + VTu) + n (Vsu + V T s u ) ] + / ' 

Equation de l'energie 

Par la meme operation, Fequation de Fenergie devient : 

(p'cp + pc')u • VT + pcv (su • VT + u • Vs r ) 
(4.10) 

= V • (A'VT + XVsT) + q's 

4.1.2 Conditions aux limites 

Les conditions aux limites pour les sensibilites sont obtenues a l'aide de la derivee 

totale par rapport au parametre des conditions aux frontieres de Fecoulement. Tout 

comme a la section 2.1.2, il faut tenir compte de la transformation de la frontiere 

due a la variation du parametre. 

4.1.2.1 Conditions de Dirichlet 

Reprenons les notations de la section 2.1.2.1. Les conditions de Dirichlet etaient les 

suivantes : 

u = u 

T = T 

sur r" 

sur r̂ ; 
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Les conditions de Dirichlet pour les sensibilites sont obtenues en calculant la derivee 

totale de ces dernieres par rapport a a. En isolant ensuite les sensiblites euleriennes, 

nous avons : 

Du „ DXf 
S» = ̂ - V u ' i ^ s u r r - (411) 

DT DX 
sT = — - V T • ̂ —± sur Y% (4.12) 

Da Da T K J 

4.1.2.2 Condit ions de N e u m a n n 

Reprenons les conditions de Neumann de l'ecoulement. 

-pna + T(U) • na = Tf sur r ? 

AVT • na = q sur r * 

Les conditions de Neumann pour le probleme des sensbilites sont donnees par une 

derivee materielles des conditions de l'ecoulement. Nous devrons done extraire les 

tractions de la sensibilite eulerienne de l'expression suivante. 

- ^ - (-pna + T-na) = ^ - sur 17 
Da Da 

II faut developper le terme de gauche en utilisant le theoreme des fonctions com-

posees afin d'isoler les tractions des sensibilites qui s'expriment de la maniere sui­

vante : 

t'f = y (Vu + V T w) + fi ( V s u + VTsu)} • n - sPn (4.13) 
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Ainsi, sur T? nous avons : 

t' Dtf 
Da 

dr(u) Dxf 8T{U) Dyf 

dx Da dy 

ox Da dy Da J 

n 

Dn 
~Da + p 

Dn 
~Da~ 

(4.14) 

Pour la sensibilite de la temperature, nous reprenons l'expression calculee a la 

section 2.1.2.2. 

Dq 
Da 

d\Dxj d\Dyf\ 
+ VT n 

- A 

AVT-

dx Da dy Da J 

d^Dxf_ d2T Dyf\ ( d2T Dxf d2TDyf 
dx1 Da dxdy Da J x \dxdy Da dy2 Da 

Dn 

Da 

avec 

q - I TT-VT + AVs r da n 

(4.15) 

4.1.3 Reactions 

Les reactions sont les variables secondaires du probleme elements finis. Dans le cas 

ou les donnees sont regulieres, les variables secondaires sont nulles partout sauf a 

la frontiere. 

Pour l'ecoulement, la somme des variables secondaires des noeuds appartenant a 

une courbe fermee est egale a la resultante des efforts exerces sur le fluide par cette 

paroi. 

( r - pld) • ndT 
dU 

Pour l'equation de sensibilite eulerienne, la meme operation menera au resultat 

file:///dxdy
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suivant : 

Jen 

ou t'. est defini par la formule (4.1.2.2). Cependant, cette integrate n'a pas de sens 

physique direct. En effet, il s'agit de la sensibilite eulerienne des efforts integree 

sur une courbe : pour un parametre de forme, il ne s'agit alors pas de la derivee 

materielle de la result ante, il faut done ajouter des termes de transpiration prove-

nant de la transformation de la frontiere. 

4.1.4 Calcul de la sensibilite de champs scalaires 

II est souvent utile la sensibilite de champs scalaires traduisant le comportement 

de l'ecoulement, comme le coefficient de pression Cp ou le coefficient de friction 

visqueuse Cf. II faut alors considerer leur derivee materielle. 

4.1.4.1 Coefficient de pression 

Pour un ecoulement incompressible, le coefficient de pression est defini de la maniere 

suivante : 

r _ P-Poc 

Pour obtenir la derivee materielle de Cp a partir de la sensibilite eulerienne de la 

pression, il faut utiliser le theoreme de derivation des fonctions composees. L'ex­

pression de la sensibilite est alors la suivante : 

DCP 1 / DX\ 
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4.1.4.2 Coefficient de friction 

Quant a lui, le coefficient de friction est defini comme suit : 

d = 
T • n • t 

ou n et t sont respectivement les vecteurs normal et tangent a la courbe. La derivee 

materielle du coefficient de friction s'exprime alors de la maniere suivante : 

Da 

1 

WL 
DT f Dn\ . . Dt 
- — n t + r • —— • t + (T • n) • — -
Da V Da y ' Da 

Nous adoptons la meme demarche que pour le coefficient de pression en utilisant 

le theoreme des fonctions composees : 

DT „ DX 
sr + V T Da Da 

Ainsi, 

Da \pUlo 

„ DX\ ^ ( Dn 
sT + V r • — - • n • t + r • — -

Da J \ Da 

, Dt' t + ( r . „ ) . -

Notons que cette expression fait intervenir des derivees d'ordre 2 en espace pour la 

vitesse avec le terme V r . 

4.1.5 Difficultes et l imites 

Dans lc cas d'un paramctrc dc forme, tout commc pour l'equation de la chaleur, 

le probleme de la formulation eulerienne est que les conditions aux limites font 

intervenir les derivees spatiales de l'ecoulement. Or, e'est justement a la frontiere 

que leur evaluation numerique est la moins precise. II faut done utiliser des maillages 

file:///pUlo
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tres fins pour avoir une bonne precision sur les sensibilites de forme. De plus, dans 

bien des cas, il faut un post traitement additionnel pour evaluer les termes de 

transpiration qui traduisent la deformation de la frontiere due a la perturbation du 

parametre. 

4.2 M e t h o d e de l'equation des sensibil ites lagrangiennes 

Dans cette section, nous allons reprendre le meme formalisme et la meme demarche 

que pour l'equation de la chaleur afin d'etablir les equations de sensibilites la­

grangiennes pour les equations de Navier-Stokes. Rappelons que les variables de 

l'ecoulement sont considerees comme des fonctions de l'espace et de a. Comme a 

est un parametre de forme, l'espace est lui-meme une fonction de a. Nous pouvons 

alors ecrire u = u(x(a),y(a),a). Les sensibilites lagrangiennes sont les derivees 

totales des variables de l'ecoulement par rapport au parametre. Nous adoptons les 

notations suivantes : 

'-'it = \&ui bv) = — 
Da. 

a -DP 
bp~ Da 

DT 
ST~^a~ 

Le point de depart est toujours la forme faible des equations de l'ecoulement, avec 

des termes de bord nuls pour alleger la description. Par un changement de variable, 

l'integration est ramenee au domaine de reference afin d'expliciter les dependances 

en a. II est alors possible de deriver simplement l'integrande puisque le domaine 

ne depend plus du parametre. Enfin, par le changement de variable inverse, nous 

revenons au domaine deforme. 
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y 
A 

oi 

FlG. 4.1 Deformation du domaine 

4.2.1 Equation de continuity 

La forme faible associee a (4.1) est 

V a • u SSP dtta = 0 
Jna 

Sur le domaine de reference, elle s'exprime de la maniere suivante 

/ F'1 : V« 8SP JcM0 = 0 
Ju0 

Nous pouvons maintenant deriver formellement sous l'integrale puisque le domaine 

d'integration est independant du parametre a : 

'n0 

—-— : Vu + F _ 1 : V — - ) SSP J + F'1 : VM SSP — dftn = 0 
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Rappelons que les fonctions test ne dependent pas du parametre. Finalement, nous 

repassons au domaine deforme : 

/ (VQ • Su - VaV& : Vau + V a • wVQ • V£) SSP dila = 0 (4.16) 
JCla 

4.2.2 Equations de mouvement 

L'equation de mouvement est la suivante : 

p(u- V)w = - V p + V - r + / (4.17) 

Soit SSU une fonction test ayant la meme regularity que Su et s'annulant sur Ty. 

La forme faible associee est 

u &* ' a / (u • VQ) u • 6SU dQa - I jNa • 8SU dtta+ f r : VaSS. 

= / f-SSudna+ [ (T-pI)-na-SSudTa 

Nous pouvons identifier chaque terme de la maniere suivante : 

Convection + Pression + Diffusion 

= Force + Terme de bord 

Pour obtenir les equations des sensibilites lagrangiennes, nous derivons terme a 

terme la forme faible par rapport au parametre en utilisant toujours la meme 

demarche. La forme faible de l'equation dcs sensibilites aura la forme suivante : 

D Convection D Pression D Diffusion D Force D Terme de bord 
1 1 = 1 

Da Da Da Da Da 



Nous presentons ici le result at final pour chaque terme, le detail des developpements 

et les projections sur les axes des equations se trouvent en annexe. 

Derivation du te rme de convection 

D 
Da Jn 

/ p{u- Va)u-SSudQa 

= j (j^+pVa-vA(u-Va)u-5Sudtta (4.18) 

+ f P [(Su -Va)u- VQ-u • VaV£t -u + {u-Va) Su] • 5SU dVta 

Derivation du terme de pression 

JLl - p v a • 6SU dtta 

f [{sp + Pva • v&) v a • ssu - Pvav«: vassu] dnQ 

Derivation du te rme de diffusion 

£- I T: VaSSu dCta 
DaJQa 

Derivation du terme de la force 

(4.19) 

= / (~ + /xVa • V^\ (X7au + VaTu) : V°8SU dQa 

+ I p (VaSu + VaTSu) : VaSSu dQa (4.20) 
•J Ha 

- I n (yauvav£j + (vQuVQv^)T) : v°5su dna 
J ila 

- I p (VaV^ • (Vaw + VaTu)) : X7aSSu dQa 
J ilrv 

J f-SSu <ma = J (^ + Va • V&A • SSU dila (4.21) 
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II suffit de regrouper ces different^ termes pour obtenir les equations de sensibilite 

pour le mouvement. Nous allons a present effectuer le meme travail avec l'equation 

d'energie. 

4.2.3 Equation d'energie 

L'equation d'energie etait la suivante : 

pcpu • VT = V • (AVT) + qs 

Soit 5ST une fonction test de meme regularity que la sensibilite de la temperature 

et s'annulant sur dtt, la forme faible associee est : 

f {pcPu • VaT 5ST + AVQT • VaSST) dQa = f qs5ST dVta 

Apres derivation par rapport a a, nous obtenons l'equation suivante : 

iloe 

+ 

(rite + pCpVa'v^)u' V"T+pCpSu'VQT 

+ pcpu • VaST - pcpu • (VQT • VaV^)] SST dnc 

DX 
+ XVa • V£ VQT • X7Q5ST + XVaST • Va8ST 

-XVQT • (VaV£f + V Q T V A ^) • VaSST] dfla 

(Dqs 
na\Da 

+ qsVa-V^)8STda 

(4.22) 

4.2.4 Conditions aux limites 

Comme pour l'equation de la chaleur, les conditions aux limites pour la formulation 

lagrangienne s'obtiennent de maniere tres simple. 



85 

4.2.4.1 Conditions de Dirichlet 

Sur T^ et F£, il y a egalite de derivees mater idles de u et de T 

Du Du 
Da Da 
DT DT 

Da Da 

sur T£ (4.23) 

sur T° (4.24) 

II n'y a pas de calcul intermediaire, les conditions aux limites sont exactes, contrai-

rement aux sensibilites euleriennes. 

4.2.4.2 Conditions de Neumann 

Pour les conditions naturelles, reprenons la forme faible des conditions de Neumann 

de l'ecoulement. 

/ (-pna + T • na) • SSU dTa = / t • 6S. u 0»1 a 

AVT • naSST dTa = / qSST dTa 

<i <3 

Pour obtenir les conditions de Neumann des sensibilites lagrangiennes, il faut cal-

culer la derivee materielle de ces expressions : 

- ^ / (-pna + r • na) • SSU dYa = - £ - [ t^.SSudFa 
Da JVa Da JTc 

- £ - I AVT • naSST dTa = ^ - f qSST dTa Da jFa JJa Jra 
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Reprenons la meme demarche qu'a la section 2.3.4, pour a = 0, nous obtenons : 

D 
Da / ra 

1 1 

I {-Pna + T-nQ)-SSudTa 
/ p a 

-£- I \VT.na8STdYa 
Da /pQ 

Q = 0 

= /„ (fi + V ' ̂  * ' ̂ WM ̂  n) ' n ) ^T dT(X (4"26) 

Nous avons a present ferine le systeme, nous avons une forme faible et les conditions 

aux limites appropriees, il ne reste qu'a evaluer la vitesse de deformation et a 

resoudre. 

4.2.5 Reactions 

Les sensibilites lagrangiennes sont obtenues par derivation de la forme faible par 

rapport au parametre de forme. Ainsi, les reactions seront directement les sensibi­

lites lagrangiennes des reactions de l'ecoulement. C'est a dire que nous obtiendrons 

directement 

-£- I * • ndYa (4.27) 
DaJVa 

avec cr = r — pld. II s'agit de la sensibilite des efforts sur la frontiere. 

4.2.6 Evaluation de champs scalaire 

Considerons le cas du coefficient de pression Cp et du coefficient de friction Cf. Ces 

coefficients calcules a la frontiere font intervenir les variables de l'ecoulement ou 
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leur gradient. Pour les sensibilities lagrangiennes, ces quantites ne sont pas traitees 

de la meme facon. 

4.2.6.1 Coefficient de pression 

Pour un ecoulement incompressible, le coefficient de pression est defini de la maniere 

suivante : 

r _ P-Poc 

La derivee materielle sera obtenue directement a partir de la sensibilite lagrangienne 

de la pression. 

DCP Dp 

Da \PUl 

II n'est pas necessaire de calculer les termes de transpiration comme pour les sen-

sibilites euleriennes. 

4.2.6.2 Coefficient de friction 

Quant a lui, le coefficient de friction est defini de la maniere suivante : 

T • n t 
C'-JM> 2 ^ oo 

ou n et t sont respectivement le vecteur normal et le vecteur tangent a la courbe. 

Sa sensibilite lagrangienne s'exprime de la maniere suivante : 

DCf 1 DT ( Dn\ , , Dt 
D^ \pUlo [Da V Da) v 'Da 

file:///pUlo
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Nous devons done calculer la sensibilite lagrangienne du gradient de vitesse. Elle a 2 

composantes, une provient de la sensibilite de la vitesse et l'autre de la sensibilite du 

gradient, les coordonnees d'espace dependent en effet du parametre. En adoptant 

une demarche similaire a celle de la derivation des equations, nous trouvons que 

DVu 
Da 

= VSU - Wu • WJVJ M 

Ainsi, 

Da yui [ 
/i ( VSU + V T 5 U - Vw • VVM - VTVM • V r n 

Dn\ , , Dt 

n • t 

+ T 
Da 

t + lT-n) 
Da 

Tout comme pour les sensibilites euleriennes, un post traitement est necessaire 

pour obtenir la sensibilite du coefneient de friction visqueuse. Cependant, les termes 

supplement aires a calculer ne font pas intervenir les derivees secondes en espace. La 

convergence de la sensibilite de ce coefficient sera done problablement plus rapide 

en utilisant les sensibilites lagrangiennes. 

4.3 Formulation Eulerienne versus Formulation Lagrangienne 

Les caracteristiques de chaque formulation evoquees a la section 2.4 se retrouvent 

pour les equations de Navier-Stokes. 

Pour la formulation eulerienne, les equations sont obtenues relativement facilement. 

Cependant, pour un parametre de forme, des termes de transpiration apparaissent 

dans les conditions aux limites. lis font intervenir les gradients de l'ecoulement a 

la frontiere, la ou ils sont le moins precis. Les conditions aux limites ne sont alors 

pas connues avec exactitude, ce qui cause une erreur dans tout le domaine. 
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Pour la formulation lagrangienne, les conditions aux limites sont obtenues directe-

ment par derivation des donnees a la frontiere, done connues avec exactitude. La 

difficulte est reportee tout comme pour l'equation de la chaleur sur le calcul de la 

vitesse de deformation, exact ou numerique. Elle doit respecter les conditions aux 

limites et etre continument differentiable. 

Pour l'exploitation des result at s, il faut considerer la derivee materielle des champs 

scalaires. Avec les sensibilites euleriennes, il faut ajouter un terme de transpiration 

qui fait intervenir le gradient de la quantite consideree. Ainsi, pour la sensibilite des 

contraintes, les derivees secondes en espace de la vitesse sont introduces. Pour les 

sensibilites lagrangiennes, il faut faire une correction seulement pour la sensibilite 

d'un gradient, cette fois, il faut soustraire le produit du gradient considere par le 

gradient de la vitesse de maille. Pour les contraintes, seules les derivees premieres 

en espace sont introduites, la perte de precision est done moindre qu'avec les sen­

sibilites euleriennes. 
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CHAPITRE 5 

RESULTATS NUMERIQUES POUR LES EQUATIONS DE 

NAVIER-STOKES 

L'objet de ce chapitre est d'evaluer les performances numeriques de la formula­

tion lagrangienne etablie au chapitre precedent. Tout d'abord, nous verifierons 

l'implementation du code avec la methode des solutions manufacturees'25'. Cela 

nous permettra aussi de tester la convergence de la formulation et de comparer 

avec la formulation eulerienne. Dans un second temps, nous utiliserons les sensibi­

lities lagrangiennes pour calculer des solutions voisines sur un profil d'aile NACA a 

4 chiffres. 

5.1 Solution manufacturee, cas du jet plan 

Dans cette partie, nous allons verifier le bon fonctionnement du code avec la 

methode des solutions manufacturers. Rappelons qu'il s'agit de choisir une solu­

tion analytique et d'ajouter le terme source approprie afin d'equilibrer les equations. 

Nous reprendrons done le domaine utilise pour l'equation de la chaleur, les coor-

donnees des points de la courbe verifient l'equation suivante 2ax2y = 1 et a sera 

le parametre de forme. Le domaine est represente sur la figure 5.1. Nous prenons 

a — 50, x0 = —0.1, y0 = 0.1. 
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Sortie :u=u(x,y) 
B(x0,1.0) I —] (0.0,1.0) 

Interieur: 
t(x,y) 

Q 

A(-0.316,y0} 

Entree: 

u=u(x,y) 

Wall: 

u=u(x,y) 

(-0.316,0.0)Q t . , , (0-0.0-0) 
v ' ^Symetne: u=u(x,y) 

F I G . 5.1 Domaine pour le cas de Duvigneau 

5.1.1 Solut ion analytique 

Nous allons maintenant definir la solution analytique choisie dans le cadre de la 

methode des solutions manufacturers puis en deduire les termes sources. Nous de-

vons done definir les champs de vitesse, pression et temperature pour l'ecoulement, 

calculer la force correspondante. Puis, il faut etablir une vitesse de transformation 

aim de calculer les sensibilites lagrangiennes de ces champs puis le terme source 

correspondant. 
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5.1.1.1 Ecoulement 

La solution correspond a un jet plan : 

u x, y, a) = Ax2e ax y (l - 2ax2y) 

v{x,y,a) = -8xye-ax2y (l - 2ax2y) 

D(l - y) n dv 
p{x, y, a) = ' + 2/i— 

1 + 6 (xz + y2) oy 

T(x.y,a) = e7w+^) 

Les valeurs numeriques sont les suivantes : p — 1, // = 1, cp = l, A = 0, C = 1000, 

D = 100, /3 = 4, 5 = 0.1, 7 = 5. 

Les termes source sont calcules a l'aide des expressions suivantes : 

/ = p(u • V)« + Vp - V • r 

gs = pcFu • VT - V • (AVT) 

5.1.1.2 Transformation 

Comme nous desirons calculer analytiquement la sensibilite lagrangienne par rap­

port a a, il faut determiner au prealable une vitesse de deformation, continument 

differentiable sur tout le domaine. Nous reprendrons celle de la section 3.3.1.3. Nous 

noterons VM la vitesse de maille ou de deformation, VMx et VMV ses composantes 

sur les axes Ox et Oy. 

Pour x < XQ 

„r , s dx o x + v/07T 
VMx{x,y) = -7- = -x y-da y l - 7071^20 
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Pour x > x0 

vMx = -—!L ( - (2x0 + y/oa) x + xi) 

Pour y > j/o 

Pour y < yQ 

5.1.1.3 Sensibilites 

Nous pouvons a present exprimer les sensibilites lagrangiennes des variables a l'aide 

du theoreme des fonctions composees. 

De meme pour le terme source, nous devons calculer ses derivees spatiales et sa 

sensibilite eulerienne analytique, le calcul de la sensibilite lagrangienne est fait par 

le code. Nous trouverons le detail de ces termes en annexe. 

+ Vu-V? du 
da 
dp 

da 

da 

M 

Vp-V} M 

V, M 



94 

5.1.1.4 Conditions aux limites 

Afin de tester au mieux le code, que ce soit pour l'ecoulement ou les sensibilites, 

nous imposons des conditions de Neumann sur la courbe etiquetee "Interieur". 

C'est en effet l'endroit le plus delicat puisque c'est la courbe la plus deformee 

par la variation du parametre. Ailleurs, nous fixons des conditions de Dirichlet 

correspondant a la solution analytique. Pour les conditions de Neumann, nous 

calculons la traction et le flux associes de la maniere suivante : 

t = —pn + r • n 

q=AVT•n 

Leur sensibilite lagrangienne a l'expression suivante : 

Dt „ DT(U) Dn . , Dn 
Da p Da P Da y ' Da 
Dq DXVT Dn 
—— = — - — . n + AVT • -—— 
Da Da Da 

Lors de cette operation, il faut garder en memoire que 

D fdu\ 8 [Du\ 8SU 

Da \dxJ dx \DaJ dx 

Le detail des termes se trouve en annexe. Dans le cas general, contrairement au 

terme source, le calcul de la sensibilite lagrangienne des tractions et du flux ther-

mique a la frontiere est possible car la deformation est connue. 
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5.1.2 Estimation d'erreur 

Pour verifier le bon fonctionnement du code, nous allons etudier la convergence de 

la solution calculee vers la solution analytique. Pour cela, nous nous interesserons 

a 1'evolution de 3 normes d'erreur avec le maillage. Pour chaque nornie, nous 

pourrons comparer l'erreur exacte (puisque nous connaissons la solution analy­

tique) et l'erreur estimee par la methode de projection locale etablie par Zhu et 

Zienkiewiczl35, 361. Les solutions elements finis seront notees avec un indice h et les 

solutions exactes cm reconstruites avec l'exposant *. 

- La norme L2p 

Cette norme quantifie l'erreur sur la pression. 

Kl|2= [ (Ph-P*f dSl 
Jo. 

L'erreur sur sa sensibilite Sp se calcule de la meme maniere. 

La norme energie 

Cette norme quantifie l'erreur sur le gradient de la vitesse (ou de sa sensibilite). 

|e"||2 = J ((V«k - Vu*) + (Vuh - Vuf) 

: ( (Vu h - Vw*) + (Vnh - V w f ) dQ 

La norme thermique 

Cette norme quantifie l'erreur sur le gradient de la temperature (ou de sa sensi­

bilite). 

\e \\ = f (VT/( - VT*) • (VTft - VT*) dtl 
Jn 
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5.1.3 Etude de convergence et resultats numeriques 

Les calculs ont ete faits avec des elements de Taylor-Hood, a pression continue. 

Les noeuds en vitesse et en pression sont places comme illustre sur la figure 5.2 

Pour chaque norme d'erreur, le taux de convergence en fonction de la taille ca-

e-—9—-b rf -fa 
noeuds pour la vitesse, noeuds pour la pressioi 

la temperature et le deplacement 

FIG. 5.2 Element de Taylor-Hood 

racteristique h des elements devrait etre de 2, c'est a dire e = 0(h2). De plus, 

l'erreur estimee doit converger vers l'erreur exacte. L'adaptation du maillage est 

basee sur les 3 normes definies precedemment pour l'ecoulement et pour les sensi­

bilites. 

5.1.3.1 Sensibilites lagrangiennes 

La figure 5.3 montre le maillage obtenu apres 5 cycles d'adaptation. II compte 

3807 noeuds et est particulierement raffine au niveau du point de stagnation, en 

effet, le gradient de pression est tres eleve dans cette zone, voir la figure 5.3(b). 

Nons pouvons aiissi verifier sur la figure 5.4 que les conditions aux limites sont 

bien respectees pour les sensibilites de u le long des parois, c'est a dire Su et Sy 

sont bien nulles. La figure 5.5 montre revolution des erreurs en norme L2p, energie 

et thermique pour les sensibilites ainsi que l'efficacite en fonction du nombre de 



97 

M̂  ~A 

s 
t -* 

\ 
A 
A 

^ 
* 

t- 1 
i I 

* * - J- . 

\ 
* / 

•/ 
jj - \ " 
f i 
f J J 

N \ 
4 , -̂  

i 

+ 

/ 
i 

^ 
< 

^ 

N i 
\ 
^ i 

„ > , 

*<-
\? 

^ > ^ V 
\ J \ 

'M 
' I-

mm® 
(a) Maillage (b) Isolignes de pression 

FlG. 5.3 Maillage et isolignes de pression pour le cas du jet plan 

noeuds du maillage (qui est inversement proportionnel au carre de la taille des 

elements, nous nous attendons a une pente de -1). Le comportement asymptotique 

de la solution elements finis est tres bon : le taux de convergence asymptotique 

est de 2 et les erreurs estimees convergent bien vers les erreurs exactes puisque 

l'efficacite tend vers 1. 

Le code est done verifie et nous allons a present comparer ces resultats avec les 

calculs effectues en formulation eulerienne. 
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(a) Isolignes de Su (b) Isolignes de Sv 

FIG. 5.4 Sensibilite lagrangienne de la vitesse pour le cas du jet plan 
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5.5 Courbes de convergence des sensibilites lagrangiennes pour le cas du jet 



100 

5.1.3.2 Sensibilites euleriennes 

Le meme calcul avec les memes conditions aux limites a ete fait. Aucun traitement 

particulier n'est applique pour ameliorer la precision des gradients a la frontiere. 

Le maillage obtenu est different de celui obtenu avec la formulation lagrangienne, 

voir la figure 5.6. 

« Y ! « 

Mil 

^ 

SK* 

f 

/ • 
/ 

/ ' , 
/ ; 

/ 
J 

/ / / 

I 

(a) Maillage apres 5 cycle, 4262 noeuds (b) Isolignes de sensibilite eulerienne de u 

FIG. 5.6 Maillage et sensibilite eulerienne de u pour le cas du jet plan 

Comme pour la formulation lagrangienne, le maillage est particulierement raffine au 

niveau du point de stagnation mais egalement le long de la frontiere, ce qui n'etait 
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pas le cas en lagrangien. Cela signifie que l'erreur sur les sensibilites euleriennes est 

particulierement elevee a cet endroit. C'est une des consequences de l'imprecision 

des conditions limites des sensibilites euleriennes pour un parametre de forme. 

La figure 5.6(b) montre les isolignes de la sensibilite eulerienne de la composante 

horizontale de la vitesse. Leur allure est assez differente de celle des sensibilites 

lagrangiennes. En effet, cette comparaison illustre bien le fait que les sensibilites 

euleriennes ne sont pas nulles sur les parois inais qu'il a fallu calculer le terme de 

transpiration. 

Les figures 5.7 montrent revolution des erreurs en norme L2p, energie et ther-

mique pour les sensibilites ainsi que l'efficacite en fonction du nombre de noeuds 

du maillage. Le taux de convergence pour l'erreur exacte n'est plus de 2, pour la 

norme energie, il chute a 1.14 et les erreurs estimees ne convergent pas vers l'erreur 

exacte. L'imprecision ne se limite done pas aux frontieres mais affecte les sensibi­

lites dans tout le domaine. La formulation eulerienne n'est done pas adaptee pour 

resoudre les problemes avec parametre de forme et conditions de Neumann. 
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FIG. 5.7 Courbes de convergence des sensibilites euleriennes pour le cas du jet plan 
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5.1.4 Reactions 

Dans cette partie, nous allons verifier si la valeur donnee par les reactions est 

correcte. 

5.1.4.1 Approche analytique 

II est impossible de faire ici une etude de convergence rigoureuse. En effet, il faut 

tout d'abord calculer de maniere analytique les reactions, c'est a dire calculer des 

integrates relativement compliquees, notamment sur la courbe "interieure" ou la 

normale n'a pas une expression simple. Choisissons done un cas simple, sur l'entree. 

Le probleme est qu'il s'agit d'une courbe ouverte, il y aura done des contributions 

parasites aux extremites. II est possible de les diminuer en imposant des petits 

elements a ces endroits et ainsi de voir qualitativement si la valeur numerique 

converge vers la valeur calculee. Considerons la composante horizontale des efforts 

et integrons sur l'entree. 

/' (r - pld) • ndT = - / ° —^A—dy 
J entree Jo I + C (0.1 + y2) 

Le calcul analytique donne les valeurs suivantes : 

Fx = -0.09120 

DFX 5 D{\- 5/a) 
~Tm ~ _ ^ l + C(0.1 + (5/a)2) 

= 0.0016216 

La figure 5.8 montre revolution de l'erreur relative en pourcentage pour 

l'ecoulement et pour les sensibilites. L'erreur sur la sensibilite des reactions est 

comparable a celle de l'ecoulement. La valeur obtenue est done correcte. 
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- ecoulemenlj ] 
sens 

nombre de noeuds sur entree 

FlG. 5.8 Solution manufacturer : Erreur relative pour les reactions 

5.1.4.2 Ver i f ica t ion s u p p l e m e n t a i r e 

La solution manufacturee nous offre une grande flexibilite, en effet, nous pouvons 

calculer n'importe quelle solution. Nous allons done l'utiliser pour illustrer la rela­

tion entre les reactions en formulation eulerienne (notees Reui) et les reactions en 

formulation lagrangienne (notees Rigr). On a la relation suivante : 

D 

~Da 
cr • ndTn = 

rQ 

So- • n + V<r • VM • n 

+tr • (V • VMn - VTVM -n)]dY 

(5.1) 

avec a — T — pld. Ainsi, les reactions en lagrangien sont composees des reactions 

euleriennes, d'un terme de transpiration et d'un terme issu de la sensibilite de la 

geometric 

Rlgr = Reul + V<7 • VM • TldT + / (T • (V • VMU - VTVM • Tl) dF 

Transpiration Sensibilite de la geometrie 
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Nous allons utiliser une autre solution manufactured pour calculer la somme de la 

transpiration et de la sensibilite de la geometric Elle sera obtenue en gardant la 

meme solution pour l'ecoulement et en utilisant une formulation lagrangienne pour 

les sensibilites. Toutefois, pour que le calcul des reactions conserve seulement les 

termes desires, nous imposerons une sensibilite eulerienne nulle. Ainsi, en not ant 

umod cette nouvelle solution, nous aurons 

^mod 

UUrnod 

da 

Da 

Alors, la sensiblite eulerienne des contraintes s'annule dans l'expression (5.1) et la 

sensibilite des reactions ainsi obtenue est reduite au terme de transpiration et au 

terme issu de la sensibilite de la geometrie qui sera le meme qu'avec la solution 

initiale. Elle sera notee RT+G- Cette manipulation nous permettra de verifier la 

coherence entre les 2 formulations, en effet, Rigr = Reui + RT+G • 

Pour contourner les problemes de convergence de la formulation eulerienne, le pa-

rametre sera traite comnie un parametre de valeur pour ce calcul, ce qui est possible 

puisque la solution analytique est connue. La table 5.1 recapitule les caracteristiques 

des differents calculs et les valeurs obtenues pour chacun d'eux sur un maillage d'en­

viron 150000 noeuds. L'erreur relative entre Rigr et Reui + RT+G est de 0.5%. Les 2 

formulations semblent done bien coherentes. Les reactions en sensibilites peuvent 

done etre directement utilisees pour les sensibilites des efforts, sans post traitement. 

Le code numerique est verifie, nous pouvons a present passer a.ux applications. 

= u 

= 0 

= V i i • VM 
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Formulation 

lagrangien 

lagrangien 

eulerien 

Sensibilite calculee 

Du du _ 
TT = IT + Vu • VM Da oa 

= v« • VM 
Da 

du 
da 

Reaction obtenue 

D f 
Du JTa 

RT+G = / VcrVM n 

+cr • (V • VMn - V T V M • n) d r a 

Reui = So- • ndTa 

Valeur 

-0.011370 

0.04G378 

-0.057829 

TAB. 5.1 Convergence des reactions avec differentes formulations 
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5.2 Profil Naca, calcul de solutions voisines 

Maintenant que le code a ete verifie, nous allons nous en servir pour calculer des 

solutions voisines de profils NACA a 4 chifrres. Nous reprendrons le probleme decrit 

dans I24' afin de comparer les resultats. 

(u,v)=libre 

(Su,Sv)=libre 

(u,v)=(cosa , sina) 
(Su,Sv)=(0,0) 

(u,v)=(0,0) 

(Su,Sv)=(0,0) 

(u,v)=libre 

(Su,Sv)-Iibre 

(u,v)=libre 

(Su,Sv)=libre 

F I G . 5.9 Domaine pour le profil NACA 

5.2.1 Description du probleme 

Considerons l'ecoulement autour d'un profil de corde unitaire a nombre de Reynolds 

egal a 1000 avec une incidence de 5°. Le domaine de calcul est represents sur la 

figure 5.9. La vitesse est imposee en entree et une vitesse est nulle sur le profil. Sur 
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le reste des frontieres, nous imposons des conditions de Neumann nulles. 

Le profil est parametre de la fagon suivante : la ligne mediane est definie par 2 arcs 

de parabole tangents au maximum de la cambrure. L'expression analytique est la 

suivante : 

rn / 9 \ 
Vml = - o {2PX ~ X ) 

Vml —-{l-2p + 2px-x') 

0 < x < xr 

<*-"Ti ^"** tiy ^^~ L> 

Avec c la longueur de la corde, rnc l'ordonnee maximale de la mediane, et xp = 

pc l'abscisse de l'ordonnee maximale. L'epaisseur du profil est definie de la facon 

suivante : 

yth = ±5e (0.2969^/x - 0.1260.x - 0.3537x2 + 0.2843a:3 - 0.1015x4) 

Nous considererons le profil 4512 comme profil de base et nous extrapolerons les 

resultats grace aux sensibilites lagrangiennes ])our d'autres profils definis au tableau 

5.2 dont la geometrie est dessinee sur la figure 5.10 

(a) NACA4512 (b) NACA4515 (c) NACA5512 

(d) NACA4412 (e) NACA9714 (f) NACA6314 

FIG. 5.10 Geometries des profils utilises 
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NACA 
e 
m 
P 

4512 
0.12 
0.04 
0.50 

4515 

0.15 
0.04 
0.50 

5512 

0.12 
0.05 
0.50 

4412 

0.12 
0.04 
0.40 

9714 

0.14 
0.09 
0.70 

6314 

0.14 
0.06 
0.30 

TAB. 5.2 Parametres des profils utilises 

5.2.2 Solutions voisines pour la vitesse et la pression 

Interessons-nous dans un premier temps aux variables de Pecoulement. Les champs 

de vitesse et, de pression des profils voisins sont approches avec un developpement 

de Taylor a l'ordre 1. Pour plus de precision, le developpement pourrait etre pousse 

a l'ordre 2 mais il faudrait alors calculer les sensibilites d'ordre 2. 

Du A Du . Du . 
u — uref + -7̂ — Ae + T ^ A m + -p^- Ap 

P = Pref + 

De 
DP 
~De~ 

Dm Dp 
DP . DP A 

Ae + — A m + -^-Ap Dm Dp 

De plus, pour reconstruire les solutions sur la configuration voisine, il faut deformer 

le maillage avec la vitesse de maille. 

Ax - AtVe
Mx + AmVZu + &PK Mx 

Ay = AeV* + AmVfiv + ApV£ My My 

Les isolignes de la vitesse horizontale et de la pression pour les solutions extrapolees 

oil recalculees sont illustrees figures 5.11 et 5.12. II s'agit des result at s obtenus apres 

6 cycles d'adaptation, le maillage comporte un peu moins de 10000 noeuds. La 

figure 5.11(a) represente le profil de base et la (b) les sensibilites par rapport a e. 

Les sensibilites nous indiquent qu'epaissir le profil augmente la taille de la zone de 

recirculation en aval du profil. En combinant ces 2 champs de maniere appropriee 

et en deformant le maillage, nous obtenons les isolignes de la figure (c) qui sont a 
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comparer avec la figure (d). La geometrie du profil est bien extrapolee, en effet, la 

geometrie du profil est lineaire par rapport au parametre e. Les isolignes de vitesse 

sont elles aussi bien reconstruites. 

En utilisant les sensibilites par rapport a e, m, p, nous pouvons tracer les isolignes 

de vitesse pour un profil plus different du profil de base, comme le profil 9714 qui est 

sur les figures 5.11(e) et 5.11(f) pour le profil recalcule. Cette fois, le profil obteuu 

apres deformation du maillage d'origine n'est pas tout a fait le meme que le profil 

reel. En effet, la geometrie du profil n'est pas lineaire par rapport au parametre 

p. Nous sortons done egalement de la zone lineaire pour les autres variables ce qui 

explique que les differences entre l'extapolation et le calcul soient plus importantes 

que pour le profil precedent. Cependant, l'extrapolation donne pour un coilt bien 

moindre qu'un nouveau calcul une bonne idee de l'ecoulement pour un profil voisin, 

meme assez different. 

Nous pouvons faire le meme travail pour la pression. La sensibilite de la pression 

par rapport a e (voir figure 5.12(b)) est negative au niveau de l'intrados, done 

si l'epaisseur du profil augmente, la pression sur l'intrados va diminuer done, la 

portance sera plus faible. Nous pourrons verifier ces resultats a la section suivante 

sur le tableau 5.3. Les isolignes de pression extrapolees sont tres semblables aux 

isolignes pour le profil recalcule. Si les 3 parametres varient, les resultats peuvent 

aussi etre tres bons comme le montrent les figures 5.12(e) et 5.12(f) pour le profil 

6314. Dans ce cas, le developpement a l'ordre 1 semble suffisant pour retracer de 

maniere assez fidele les isolignes de pression. 
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(a) Profil de base 4512 

(c) Extrapolation du profil 4515 

(b) Sensibilite par rapport a e 

(d) Calcul du profil 4515 

(e) Extrapolation du profil 9714 (f) Calcul du profil 9714 

FIG. 5.11 Isolignes de U extrapolees et recalculees 
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Trass——umi——xfei i 3.178 

(a) Proiil de base 4512 (b) Sensibilite par rapport a e 

(c) Extrapolation du profil 4515 (d) Calcul du profil 4515 

(e) Extrapolation du profil 6314 (f) Calcul du profil 6314 

F lG. 5.12 Isolignes de P extrapolees et recalculees 
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5.2.3 Etude des coefficients de portance et de trainee 

La meme demarche peut etre utilisee sur d'autres fonctions que les variables de 

l'ecoulement. Nous presentons ici une approche plus quantitative avec les coeffi­

cients de portance et de trainee. 

5.2.3.1 E t u d e de convergence 

Nous allons commencer par une petite etude de convergence sur le profil de base afin 

de determiner le maillage necessaire pour extrapoler les resultats aux autres profils. 

Les sensibilites des coefficients de trainee et de portance seront obtenues a partir des 

reactions sur le profil (il n'y a done pas de post-traitement a faire). II suffira de les 

projeter sur les axes du profil pour obtenir la portance et la trainee correspondantes. 

La figure 5.13 montre revolution de la portance et de la trainee ainsi que leur 

! 

r 
I 
8 

o 

I 
in 

Cd 
- * - DCd/De 

i— DCd/Dm 

' 
•+-. 

CI 
•+ - DCI/De 

— i - — DCI/Dm 

DCI/Dp 

Nombre de noeuds 

(a) Trainee et ses sensibilites 

Nombre de noeuds 

(b) Portance et ses sensibilites 

F I G . 5.13 Etude de convergence des coefficients de trainee et de portance 

sensibilite par rapport aux 3 parametres definissant le profil en fonction du cycle 

d'adaptation. A partir de 10000 noeuds, la portance et la trainee ainsi que leurs 
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differentes sensibilites out converge. Ann d'avoir une bonne precision, nous ferons 

les extrapolations avec des maillages de 40000 noeuds. 

5.2.3.2 Resul tats 

Nous allons comparer les coefficients de trainee et de portance recalcules et les co­

efficients extrapoles. Ces extrapolations sont obtenues a partir d'un developpement 

de Taylor d'ordre 1 : 

r r X ^ A ^ D C D A ^ D C D A CD = Cpref H—F;—Ae + — — A m -\———Ap 

Cr = C Lref + 

De 
DCL 

De 

Dm Dp 
DCL . DCL A 

Ae + - ^ A m + —^kp Dm Dp 

Nous utilisons ici les valeurs donnees par les reactions. Nous trouverons table 5.3 

les coefficients recalcules et les coefficients extrapoles. Les erreurs obtenues sont 

NACA 

4512 Cd 
CI 

4515 Cd 
CI 

5512 Cd 
CI 

4412 Cd 
CI 

9714 Cd 
CI 

6314 Cd 
CI 

Coefficient recalcule 

0.13479 
0.28018 
0.14110 
0.19569 
0.13766 
0.29250 
0.13595 
0.27611 

0.15197 
0.30895 
0.14856 
0.22339 

Coefficient extrapole 

0.14067 
0.19694 

0.13740 
0.29287 
0.13588 
0.27550 

0.14960 
0.29751 
0.14609 
0.24071 

Erreur relative (%) 

0.30 
0.64 

0.18 
0.13 

0.05 
0.22 

1.56 
3.70 
1.66 
7.74 

T A B . 5.3 Calcul des coefficients de trainee et de portance 

du meme ordre que celles obtenues dans ^14\ Dans cet article, les sensibilites ont 

ete calculees en formulation eulerienne avec une methode de reconstruction des 
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gradients a la frontiere pour ameliorer la precision'13'. Notons que le maillage com-

prenait alors 60000 noeuds environ. Pour mieux illustrer le comportement de chaque 

methode, nous allons comparer a maillage egal les resultats obtenus en formulations 

lagrangienne et eulerienne (sans reconstruction des gradients) et les resultats avec 

reconstruction (nous utiliserons directement les resultats de '24', le maillage ne sera 

done pas strictement identique). 

2.5 
-^— Lagrangien 
+ - Eulerien 

-o- Eulerien avec reconstruction 

2 4 6 
Nombre de noeuds x10 

(a) Trainee pour le profil NACA 5512 

4.5r 

4 

3.5 

I 3 -

; 2.5 

• 2 

i 1.5-

1 -

0.5-

0 -

++ 

I p 
- o''1 \ 

-*4=± * _ . 

. © • - - _ 

—^— Lagrangien 
- + - Eulerien 
-o- Eulerien avec reconstruction 

: 

*r - - - -o - - - -°" - - o 

4 6 
Nombre de noeuds 

(b) Portance pour le profil NACA 5512 

12r 

10-

H-t 

' O , 

-^— Lagrangien 
- + - Eulerien 
-a - Eulerien avec reconstruction -

-

'T' ' ' " - -o- e - - e 

4 6 
Nombre de noeuds 

,' 
K 

, >s 

- V^_^ 
G 

-^i— Lagrangien 
- + - Eulerien 
-o - Eulerien avec reconstruction -

-

\ 

~ e ' 

4 6 
Nombre de noeuds 

(c) Trainee pour le profil NACA 9714 (d) Portance pour le profil NACA 9714 

FlG. 5.14 Evolution des erreurs avec le maillage pour les differentes formulations 

La figure 5.14 represente les erreurs relatives sur les coefficients extrapoles en fonc-

tion du nombre de points pour les 3 differentes techniques pour les profils NACA 
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5512 et NACA 9714. Pour la formulation lagrangienne, des 10000 noeuds, l'erreur 

est presque aussi petite qu'a 40000 noeuds. La convergence est plus lente pour 

la formulation eulerienne simple qui est aussi moins precise. Si les gradients a la 

front iere sont reconstruits, le niveau de precision est equivalent a la formulation 

lagrangienne mais il faut un nombre de noeuds beaucoup plus eleve. En effet, la 

precision de conditions aux limites pour les sensibilites eulerienne est directement 

reliee au nombre de noeuds sur le bord du domaine. Les erreurs ne tendent pas 

vers zero, il s'agit de l'erreur de troncature dans le developpement de Taylor. Pour 

ameliorer les resultats, il faudrait considerer le terme d'ordre 2. 

5.2.4 Etude des coefficients de pression et de friction 

Nous allons maintenant nous servir des sensibilites pour extrapoler les coefficients 

de pression et de friction. Nous utiliserons les resultats de la section 4.2.6 pour le 

calcul des sensibilites. Le profil de depart est toujours le profil NACA 4512. 

Nous extrapolerons le coefficient de pression de la fagon suivante : 

n P~P°° n ^DC!PA ^DCPA ^DCPA 
T2pU^ De Dm Dp 

DC Sa 

avec p — -j—^— , a = e,m,p et S" la sensibilite lagrangienne de p par rapport 

au parametre a. 

Nous adoptons une demarche similaire pour le coefficient de friction : 

_ r n t „ DCf A DCf A DCf . 
^pU^ De Dm Dp 

Nous pouvons done utiliser directement la sensbilite lagrangienne de la pression. 

Nous avions determine a la section 4.2.6 l'expression de la sensibilite lagrangienne 
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du coefficient de friction : 

Da IpU'i 
H f VSU + VTSU - Vu • VVM - VTVM • yTu 

Dn Dt 
+r- [—-t + n--— 

Da Da 

n • t 

II faut done post traiter les donnees pour la calculer en utilisant la vitesse de 

maille. Nous pouvons alors tracer les courbes de la figure 5.15. Les courbes pour 

les coefficients extrapoles se confondent avec celles des coefficients recalcules. 

Ce calcul de solutions voisines nous montre que les sensibilites sont un outil per-

formant pour calculer des solutions voisines, avec un seul calcul, nous pouvons 

extrapoler les resultats avec fidelite sur un grand nombre de profils. 
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FIG. 5.15 Calcul de solution voisine pour les coefficients de pression et de friction 
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5.2.5 Comparaison de maillage 

Les etudes precedences nous ont permis de comparer le comportement de la formu­

lation lagrangienne et de la formulation eulerienne. Nous avions alors constate que 

la formulation lagrangienne etait moins exigeante en terme de nombre de noeuds. 

Pour mieux comprendre ce qu'il se passe, nous avons effectue un calcul avec adap­

tation sur l'ecoulement et sur les sensibilites par rapport a e, avec les formulations 

lagrangiennes et euleriennes. La figure 5.16 montre les 2 maillages obtenus au 5eme 

K ' . - I '•:• /\^<\:^tl---frr'i J.. • f:. - .(- ' ! ' 1- ' / '©• • ; 

(a) Formulation lagrangienne (b) Formulation eulerienne 

FIG. 5.16 Maillages autour du profil 4512 

cycle d'adaptation, ils comptent environ 15000 noeuds, un peu plus pour la formu­

lation eulerienne, un peu moins pour la formulation lagrangienne. Les differences 

prineipales apparaissent sur Tavant du profil. Pour la formulation lagrangienne, il 

est moins raffine que pour la formulation eulerienne, mais plus homogene.Ce raf-

finement s'explique au regard des isolignes de sensibilite eulerienne de la vitesse 

horizontale sur la figure 5.17. Sur l'avant du profil, la sensibilite est tres negative, 
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en effet, a la front iere, la sensibilite eulerienne est egale a l'oppose du terme de 

transpiration, c est a dire su\ fil = —-—VMX — Tp^My Les gradients sont done 

beaucoup plus importants dans cette region avec la formulation eulerienne qu'avec 

la solution lagrangienne, ce qui explique que l'erreur soit maximale dans cette zone 

pour la norme energie de la sensibilite. Ainsi, la precision est meilleure en lagrangien 

a nombre de noeuds egal car le rafnnement est moins concentre sur les front ieres, 

ce qui permet de raffiner ailleurs. 

SU E 
-21:88" 

.•:;iiA}B^^::" 

:msm , ^rs^sr—"" "TegST""- " •—-.^•^44: 1.6845 

F I G . 5.17 Isolignes de sensibilites euleriennes de u pour le profil 4512 

Ces applications nous ont permis de montrer d'une part la pertinence des sensibi­

lites lagrangiennes pour traiter un parametre de forme et d'autre part les differents 

avantages qu'elle presente par rapport a la formulation eulerienne, e'est a dire une 

meilleure precision, une convergence plus rapide et des maillages plus homogenes. 
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C O N C L U S I O N 

Le but de ce memoire etait d'etudier les sensibilites lagrangiennes et de determiner 

si cette formulation etait une technique emcace pour le traitement d'un parametre 

de forme, la formulation eulerienne classique rencontrant des problemes de conver­

gence a cause de conditions aux front ieres inexactes. 

Nous avons pour cela procede en deux temps. Nous avons commence par traiter 

l'equation de la chaleur pour simplifier le probleme puis nous avons developpe 

la methode pour les equations de Navier-Stokes. La demarche est la raeme pour 

les deux problemes : il faut deriver la forme faible du probleme par rapport au 

parametre. Seulement, le domaine d'integration depend du parametre. Nous avons 

done recours a un domaine de reference independant du parametre pour expliciter 

les dependances et pour pouvoir deriver simplement. 

La formulation ainsi obtenue presente plusieurs avantages. Tout d'abord, les condi­

tions aux limites sont directement etablies a partir des donnees du probleme, elle 

sont done exactes. Ensuite, cette formulation permet de calculer les derivees totales 

par rapport au parametre de forme et ce sont elles qui sont utilisees pour calculer 

les sensibilites de fonctions cout, le post traitement se trouve done allege puisqu'il 

n'est plus necessaire comme avec la formulation eulerienne d'evaluer des termes de 

transpiration. La formulation lagrangienne est done plus facile a utiliser. 

Elle se distingue aussi de la formulation eulerienne par la presence d'une vitesse 

de deformation qui traduit la transformation du domaine de calcul due a une va­

riation du parametre de forme. Donnees aux frontieres, il s'agit de deux variables 

supplement aires a calculer dans tout le domaine avec les contraintes suivantes : la 

vitesse de deformation doit etre continument differentiable et respecter les condi­

tions aux limites du probleme et son calcul doit etre compatible avec l 'adaptation de 
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maillage. L'approche pseudo-solide a ete choisie car elle repond a tous ces criteres. 

Ainsi, le domaine se deforme comme un solide elastique et la vitesse de deformation 

est regie par les equations d'elasticite lineaire. 

Pour chacun des problemes, equations de Navier-Stokes ou de la chaleur, 

l'implementation des equations a ete verifiee par la methode des solutions manu­

factures . Ceci nous a permis non seulement de verifier la convergence de cette 

formulation avec un parametre de forme et des conditions de Neumann, mais 

aussi de comparer les resultats avec la formulation eulerienne. La ou la formu­

lation eulerienne necessitait une reconstruction precise des gradients a la frontiere 

pour pouvoir conserver une convergence a l'ordre 2 avec le rafnnement du maillage, 

la formulation lagrangienne converge sans probleme avec le bon taux sans calcul 

complement aire et l'estimateur d'erreur fonctionne aussi tres bien. II sera done 

liable pour des utilisations ulterieures pour lesquelles nous ne disposerons pas de 

la solution exacte. 

Nous avons ensuite evaluer les performances de la formulation lagrangienne sur 

un cas pratique. Nous avons calcule des etats voisins pour des profils NACA, il 

s'agit d'extrapoler sur un profil voisin la solution elle-meme, des valeurs locales 

comme le coefficient de friction ou de pression ou des quantites integrates comme 

les coefficients de portance ou de trainee. Cette application nous a permis de mon-

trer la facilite d'utilisation des sensibilites lagrangiennes. Dans un premier temps, 

nous avons pu reconstruire les isolignes de vitesse et de pression sur une geometrie 

deformee. Celles-ci restent alors assez fideles aux isolignes des profils recalcules. 

De maniere plus quantitative, nous avons extrapole les coefficients de portance et 

de trainee et comparer avec les resultats qui avaient ete obtenus en formulation 

eulerienne. Nous avons alors constate que les resultats etaient semblables, ce qui 

montre la pertinence des sensibilites lagrangiennes, mais en plus que ces resultats 

etaient obtenus sur des maillages plus grossiers. La structure des maillages obtenus 
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apres plusieurs cycles d'adaptation est differente, la repartition des noeuds est plus 

homogene avec la formulation lagrangienne car les erreurs aux frontieres sont moins 

importantes. 

Le coiit numerique de cette formulation, ce sont deux inconnues supplementaires 

dans le probleme mais ceci est compense par une convergence plus rapide. Nous 

pourrions encore gagner du temps de calcul en combinant les deux formulations. En 

effet, dans beaucoup de cas, la deformation du domaine ne concerne qu'une zone 

reduite du domaine de calcul. Par exemple, sur le cas du profil, seul le voisinage 

du profil est affecte, loin du profil, la deformation est pratiquement nulle. Nous 

pourrions done utiliser la formulation lagrangienne dans les zones deformees et 

la formulation eulerienne ailleurs, ce qui permettrait de tirer profit des atouts de 

chaque formulation. 
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ANNEXE I 

TRANSFORMATIONS D'ESPACES ET DERIVEES MATERIELLES 

Nous presentons brievement les demonstrations des formules exposees dans la 

section 2.3.1 et les formules permettant une derivation plus systematique des 

equations. Le but etant de comprendre le raisonnement, nous ne nous attarde-

rons pas sur les considerations mathematiques et nous supposerons que toutes 

les fonctions et espaces sont de regularite suffisante pour que toutes les fonc-

tions, les derivees et integrates soient bien definies. Pour plus de details et de 

rigueur mathematique, il est preferable de se referer aux travaux de J-P Zolesio et 

M.C.Delfourl10]. 

1.1 Conventions de notation 

Dans cette partie, nous allons definir quelques conventions de notation pour les 

operateurs. 

Considerons A et B deux tenseurs d'ordre 2. La double contraction est definie de 

la maniere suivante : 
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Si / est un champ vectoriel, nous definissons le gradient et la divergence de la fagon 

suivante : 

(V/)„- = dft 
ij dxj 

Ainsi, en deux dimensions nous avons : 

V / = 

dfx dfx 

V . / = -J± 

dx dy 
dfy dfv 

dx dy 
dfx dfy 

dx dy 

1.2 Transformations d'espace 

y 
A 

oi 

FIG. 1.1 Deformation du domaine 

Nous reprenons dans cette partie le formalisme introduit a la section 2.3.1 

Considerons done la transformation <j> entre le domaine Q0 et Qa, son gradient 
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F et la vitesse de deformation VM- NOUS allons demontrer les relations de corres-

pondance entre les 2 domaines. Soient un champ de vecteurs f a (x a , a ) defini sur 

tta et son correspondant f (x, a) sur £l0, demontrons les formules suivantes : 

- Operateur divergence (2.27) 

VQ • P = F'1 : Vf 

Les derivees en espace s'exprime par le thereme des fonctions composees de la 

maniere suivante. 

dxa dya 

_ dfx dx df^dy_ dfy dx t dfy dy 

dx 0xa dy dxa dx dya dy dya 

= (W)y (F~% 

= F-1 : Vf 

Operateur gradient (2.28) 

La composante ij du gradient peut se decomposer de la maniere suivante, en 

utilisant la notation indicielle : 

dfa 

lJ dx% 

~ dxkdx«~[Vthk[ ]^ 

- Formule (2.30) 
DF'1 

~Da 
F • ̂ — = -VaV^ 
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Elle se demontre simplement de la fagon suivante : 

DFF'1 DF , DF"1 

— = jr-F-1 + F-—- = 0 done 
Da Da Da 
DF~X DF 

- F " 1 

Da Da 
= -VVM • F-1 

— —\7aVa 

1.3 Derivees materielles 

Considerons a nouveau la transformation <f> entre le domaine de reference f20 et le 

domaine deforme ila, son taux de deformation JP et la vitesse de transformation VM-

Nous cherchons alors a evaluer les derivees materielles de champs ou d'integrales 

en a — 0, e'est a dire pour la temperature par exemple, 

DT _ l i m T ( ^ ( x , a ) , a ) - r ( x , 0 ) 

Da a-*o a 

En adopt ant une demarche analogue a celle de la section 2.3.2, nous pouvons 

demontrer les formules generales de derivation presentees ci-dessous. Considerons 

un champ scalaire / dependant du parametre de forme a. 

- Derivee materielle ou lagrangienne d'un volume element aire 

^± = v-vMdn (i.i) 

Da 

- Derivee materielle d'une surface element aire 

DdT Da 
= (V-VM- ( W M -n)-n) dT (1.2) 

Cette expression peut etre retravaillee pour faire apparaitre la courbure de la 
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courbe on de la surface mais nous ne retiendrons pas cette possibility car la 

courbure n'est pas calculee dans le code car la normale est exprimee en fonction 

de l'abscisse curviligne. 

Derivee materielle d'une integrate de volume 

£;{Lfda)=LM+fV-v")dn <L3) 

Derivee materielle d'une integrate de surface 

Da\Jr 
f dA = j (^- + f (V • VM - (W M • n) • n)\ dT (1.4) 

- Derivee materielle d'un gradient 

^ = V § ^ - Vf • VVM (1.5) 
Da Da 

Ces formules sont presentees et demontrees avec differents formalismes. dans t10', 

t19l o u I31l Les derivees totales sont alors souvent exprimees en fonction des 

derivees partielles correspondantes, ce qui permet de faire des simplifications 

supplement aires, par exemple des integrations par parties pour faire apparaitre 

des integrates de bord. Cependant, dans notre cas, nous cherchons justement une 

forme faible en fonction des derivees totales (les sensibilites lagrangiennes), c'est 

pourquoi nous n'en parlons pas plus dans ce projet. 
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A N N E X E II 

AUTRES D E V E L O P P E M E N T S DE L 'EQUATION DES 

SENSIBILITES P O U R L'EQUATION DE LA CHALEUR 

Comme mentionne a la section 2.3.2.2, il y a plusieurs fagons de deliver les equations 

qui menent au meme result at, nous en presentons ici 2. La premiere est obtenue 

en derivant la forme forte de l'equation de la chaleur et en integrant par partie 

ensuite pour obtenir la forme faible des sensibilites lagrangiennes. Pour la seconde 

fagon, nous utiliserons les formules de derivation generates. Ces developpements 

complement aires pourraient aussi etre utilises pour l'equation de Navier-Stokes. 

II. 1 Derivation de la forme forte 

Reprenons le probleme de l'equation de la chaleur 2.1 : 

V • (fcVT) = Q dans Vta 

kVT • n = q sur Tq 

T = T SUTTT 

Nous avions choisi de deriver la forme faible associee a ce probleme mais on peut 

aussi choisir de deriver la forme forte (avec la meme demarche, passage au domaine 

de reference, derivation, retour au domaine deforme) et d'integrer par partie en-

suite. Nous utiliserons les memes notations que precedemment. Nous supposons 

que FT = dVta Soit une fonction test SW appartenant a l'ensemble des fonctions 

admissibles. En multipliant par une fonction test et en integrant sur le domaine, 
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nous obtenons 

f [Va • {k,VaT) - Q] SW dna = 0 
* 'a 

Avec un changement de variable, nous passons l'integrale au domaine de reference. 

Nous obtenons alors : 

f [F'1 : V (kVT • F~r) - Q] SW JdQ0 = 0 

Nous pouvons done deriver formellement par rapport a a puisque le domaine 

d'integration est independant du parametre, ce aui mene a l'expression suivante : 

f DF~l / DF"1 

' — : V (kWT • F'1) + F~l : V kVT • —— 
sin l ^ a V Da 

+F~l : V 

DJ 

DQ 
Da 

SW JdVtn 

+ / [F~x : V (kVT • F _ 1 ) - Q] SW — dQ0 = 0 
n0 

Da 

Nous avons utilise le fait que les fonctions tests ne dependent pas du parametre. 

En revenant sur la configuration deformee, nous avons : 

na L 
- VaV& : V a (fcVaT) + V a • (kVaT) V a • V£j 

Dk. 
+ V a • ( — V T + kVST - kVT • VaVJ 

Da 
SW dVtr (11.1) 

na L 

DQ 
Da 

+ QVa • Vj M sw dnn = o 

Si /est un champ scalaire, U un vecteur et b un tenseur, nous avons les identites 
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suivantes : 

% : VU = V • (I • U) - V • (I T) • U 

fV-(U) = V-(fU)-U-Vf 

Considerons la premiere de ces formules en posant b = V a V ^ et U = kX7aT. Nous 

avons alors : 

V aV£ : V a (kVaT) = V Q • {VaV^ • kVaT) - V Q • {VaVMy • kVaT 

Prenons a present la deuxieme avec U = kVaT et / = V a • V^, nous obtenons 

V a • (kV°T) VQ • V& = VQ • {kVaTVa • V&) - kVaT • V a ( V a • Vj a > 

En remarquant que V " • ( V Q V M )
 = V Q ( V a • V^), nous avons 

-V aV£ : V Q (ftVaT) + V Q • (fcVaT) V Q • Vj a 
M 

= _ y a • (VQV^ • kVaT) + V Q • (k,VaTVa • Vj M) 

Ainsi, en remplacant dans (II. 1) nous obtenons 

na l 
V a • ( - V a y ^ • kVaT + k,VaTVa • V£) 

Dk, 
+ V Q • — - V T + kVST - kVT • VaV, 

Da 
a 

M 
SW dtlr 

i^Qf 

DQ 

Da 
QVa • V« SW dVLa = 0 

Nous pouvons a present integrer par partie la premiere integrate et nous retrouvons 

la forme faible obtenue a la section 2.3.2. 
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II.2 Utilisation des formules generates 

Dans cette partie, nous allons reprendre la forme faible de l'equation de la chaleur 

et utiliser les formules de derivation de la section 1.3 pour etablir la forme faible de 

1'equation des sensibilites lagrangiennes. Ceci est equivalent a ce qui a ete expose a 

la section 2.3.2 mais plus direct. Nous devons done calculer la derivee par rapport 

a a de l'equation suivante : 

/ (fcVT • VSW + Q5W) dn = 0 
Jo. 

Nous allons done appliquer la formule (1.3) 

avec / = kVT • VSW + Q6W 

Nous obtenons alors directement 

D 

D 

n L 

/ (kVT • V5W + QSW) dn 

dil (II.2) „ (kVT • V^I^ + Q5W) + (kWT • VSW + QSW) V • VM 
Da 

Nous devons maintenant evaluer la derivee totale du gradient de la temperature et 

du gradient de la fonction test. Nous appliquons done la formule (1.5) 

DVT 
—— = VST - VTVVM 

Da 
DVSW , DSW 
—— = —VbWWM (rappelons que V—-— = 0) 

Da Da 
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Ainsi nous avons : 

— (VT • VSW) = VST • VSW - VT • VVM • VSW - VT • VSW • VVM Da 

= VST • VSW - VT • (VVM + VTVM) • VSW 

En remplagant dans (II.2), nous obtenons la meme forme qira la section 2.3.2, c'est 

a dire, 

• nu 
—VT • VSW + kVST • VSW - kVT • (VVM + VTVM) • VSW 

n Da 

+ kV • VMVT • VSW + (^ + QV • VMj SW dQ = 0 
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ANNEXE III 

PROJECTION DES EQUATIONS DES SENSIBILITES 

LAGRANGIENNES 

Nous avons developpe au chapitre 4 les formes faibles pour calculer les sensibilities 

lagrangiennes du probleme. Nous allons maintenant detailler les differents termes 

de ces formes faibles. II s'agit des expressions qui ont ete utilisee dans le code. Nous 

utiliserons les notations complement aires suivantes : 

- (u, v) les composantes de la vitesse selon les axes (Ox, Oy) 

- (Su, Sv) les composantes de sensibilite lagrangienne de la vitesse 

- (5SU, SSV) les composantes de la fonction test associee a la sensibilite du mouve-

ment 

- VM la vitesse de maille ou de deformation et VMX, VMV ses composantes 

III.l Continuite 

Reprenons la forme faible des sensibilites issue de l'equation de continuite (4.16). 

I (VQ • Su + Va • uVa • V& - VaV£j : Vau) SSP dQQ = 0 

En developpant les differents termes et la contraction, nous obtenons : 

dudVMx dudVMy dv dVMx dv dVMy 

dx dx dy dx dx dy dy dy 

= 0 
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III.2 Mouvement 

Nous developpons a present les differents termes de la forme faible des sensibilites 

de mouvement. Rappelons qu'elle etait de la forme suivante : 

D Convection D Pression D Diffusion D Force D Terme de bord 
Da Da Da Da Da 

Nous allons detailler chaque terme. 

Terme de convection 

Nous pouvons decomposer le terme de de convection 4.18 de la fagon suivante : 

~ I P(u-va)u-ssu(ma 
DuJna 

= J (^+PVa-V^\{u-Va)u-5Sudna 

+ I P [(S« • VQ) u + (u • Va) Su - VQw • V aV^ • u] • SSU dtta 
Jfla 

= / ConyXSSU + Conyy6Sv dVta 
Jna 

Avec 

\oa J \ ox dy J 

f du du dSu dS, 

dx dy dx dy 

p 
du OVMX du 8VMV \ ( du dV^jx _,_ &u dV^y 
dx dx dy dx J \dx dy dy dy 
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et, 

Conv„ = ( | ^ + pVa • VM 
dv dv 
ox dy 

(n dv dv dSv 
+ P ou-^- + Sv— + u— (- v-

\ ox ay ox 

I" fdvdVMx dvdVMy 

\dx dx dy dx 

dSv 
dy 

dv dVi Mx dv dV, My 

dx dy dy dy 

Terme de pression 

Considerons a present le terme de pression 4.19 

D 
-pVa • 8SU dnc 

fia 

= - / [(Sp + PVa • VM) V a • SSU - PVaVM : VaSSu] dttc 

•p 
dVMx dSSu dVMy dSSu 

dx dx dx dy 
.dVMxdSSv dVMydSSv 

dy dx dy dy 
dQa 

Terme de diffusion 

Reprenons le terme de diffusion 4.20. Nous pouvons decomposer la double contrac­

tion : 
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^- I r : V°8SU <ma 

+ f LI (VaSu + VaTSu) : Va5Su dtta 

- I Li (yauVaV& + {VauV°V^)T\ : VaSSu dCla 

- / LI (VQV£ • (VQu + VaTw)) : VQ55U df2Q 

Jna dx dx <9y <9y 

Ainsi, nous avons les expressions suivantes : 

Da J dx dx 
( dudVMx , ndudVMy ( du dv\ dVMx 

- n 4 - 1-2- T^^ + T" + 
5.x cfcr dy dx \dy dx J dy 

r^-rr i DLI __, Tr \ / d u <%\ /dSi, dS*,, 

Da J \dy dx J \ dy dx 
_ (dudVux dudVMy dv dVMx dv dVMy 

\dx dy dy dy dx dx dy dx 
((du dv\ dVMx , ndvdVMx 

dy dx J dx dy dy 

Dlffs/x = ( -FT7 + ^ V • Vw ) ( — + — ) + /̂  -Da J \dy dx J \ dy dx 
(dudVux dudVMy dv dVMx dv dVMy 

\dx dy dy dy dx dv dy dx 

f dudVMv (du dv\ dVMy 

dx dx \dy dx J dy 
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DiSyy=2[^ + fiV
a-VM dy dy 

dvdVMy dv dVMx fdu 
dy dy dx dy \dy 

dv\ dVMy 

dx J dx 

III.3 Energie 

Pour l'equation de l'energie, la forme faible de l'equation des sensibilit.es etait la 

suivante (4.22) 

+ pcpu • VaST - pcPu • (VQT • VaV^)\ SST dttQ 

+ I (^ + AVa • V£ J VQT • VQSST + \VaST • VQSST 

-AVQT • {VaV« + V a TV^) • VaSST] dna 

Dqs 

\ la 
Da + qsv

a-v«\ssTdn 

http://sensibilit.es


Le developpement de ces termes donne l'equation suivante : 

4-

'(££!*+pCpV*.Vi 
\ Da 

M 
dT &T\ / dT 

u— + v— + pcp[ Su—-
dx dy I \ dx 

S, 
<9TN 

pCp u 
dTdVMx | dTdVMv 

dx dx dy dx 
^ 'dTdVMx^dT 

dy 

dVMy 

dx dy dy dy 

+ pep u 
dSj 

dx + v-
OS->T 

dy 
SST dQc 

DX 
TJa 

- A 

+ AVa • V, M 
dT d6ST dT d8ST 

dx dx 

dT fdVMx 

dy dy 

dVMy 

+ 2 

dx 

dTdVMy 

Jna 

dTdVux 
dx dx dy \ dy 

(dT (dVMx | dVUy 

\ dx \ dy dx J dy dy 

A ,'dSTd8ST dSTd8ST\} tn 

+A ( -^ r— + -z 7—- \ dSla 

dx dx dy dy J J 
'Dqs 
Da 

+ qsVa • VM SST dQ 

dSSr 
dx 

d6ST 

dy 
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ANNEXE IV 

DETAILS DE LA SOLUTION MANUFACTURED 

La solution de l'ecoulement n'ay ant pas une expression tres simple, il serait long de 

calculer tous les termes entrant en jeu dans les equations de l'ecoulement et de ses 

sensibilites. Nous allons done les exprimer en fonction des variables de l'ecoulement, 

de leur gradient ou de leur sensibilite eulerienne et de la vitesse de deformation. 

IV. 1 Sensibilites de l'ecoulement et de la temperature 

La vitesse de maille etant definie par morceaux, il en sera de meme pour la sensi­

bilite des differentes variables. 

du du ®u-\r 
bu = 77 1" TT" VMx + TT- VMy 

oa ox ay 
dv 9v dv-tf 

bv = 7; \~ 77- VMx + TT" VMy 

oa ox oy 
_ dT 8T dT 

JT = 77 \- 7 7 - VMx + 77— VMy 

oa ox ay 

IV.2 Terme source 

Pour equilibrer les equations, nous devons calculer le terme source approprie pour 

chacune des equations et les conditions aux limites. L'equation des sensibilites 

s'equilibre en calculant la derivee lagrangienne du terme source de l'equation de 

l'ecoulement. Comme pour les solutions manufacturees calculees pour l'equation de 

la chaleur, le code calcule lui-meme la sensibilite lagrangienne a partir de la sensibi-
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lite eulerienne, des gradients du terme source et de la vitesse de maille numerique.En 

supposant que la densite du fluide est constante; nous devons fournir au code les 

termes suivants : 

Projection sur Ox 

, du du dp ( d2u d2u 
Jx = f>U— + pU— + - U\ —r + dx dy dx \dx2 dy'2 

dfx du du d2u dv du d2u 
P^T'n—^ Pu~^~o + P^T^T + Pv~ dx dx dx dx2 dx dy dxdy 
d2p fd3u d3u 

+ 7T? - P-dx2 \ dx3 dxdy1 

dfx du du d2u dv du d2u 
dy dy dx dxdy dy dy dy2 

d2p f d3u d3u 
dxdy \dx2y dy3 

dfx du du d2u dv du d2u 
P^TTT- + PU-T^T- + P-T^-^T + PV~ da da dx dadx da dy dady 
d2p ( dzu d3u 

dadx \dadx2 dady'2 

Projection sur Oy 

dv dv dp (d2v d2v 
fy = pu—~ + pu— + p dx dy dy \dx2 dy2 

v dfy du dv d2u dv dv d2v 
dx dx dx dx2 dx dy dxdy 

d2p I' d3v d3v 

dxdy \ dx3 dxdy2 

dfy du dv d2v dv dv d2 

dy dy dx dxdy dy dy dy° 
d2p ( d3v d3v 

+ 7T^ - P\ ir^r + 

v 
2 

dy2 \dx2y dy3 

dfy du dv d2v dv dv d2v 
da da dx dadx da dy dady 

d2p ( d3v d3v 
dady \ dadx2 dady2 

file:///dadx2
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IV.3 Tractions et flux thermique 

Pour le traitement de la solution manufacturee, nous avions a imposer les tractions 

et flux thermique a la frontiere pour les conditions de Neumann. Nous presentons 

ici leur expression en fonction des variables de l'ecoulement. 

IV.3.1 Tractions 

Les forces surfaciques et leur sensibilite lagrangienne sont developpees ci-dessous. 

Nous avons suppose que la viscosite du fluide etait constante. 

Projection sur Ox 

. du f du dv\ 
tx = ~pnx + u 2—r?^ + —• + — )n 

\ ox \dy dx J 
Dtx Dnx 

( du d2u d2u \ du Dnx 

\dadx dx2 dxdy J dx Da 

f du d2u ®2UM \ duDny 

\dady dxdy x dy2 yJ y dy Da 

/ dv d2v d2v \ dv Dny 

\dadx dx2 x dxdy yJ y 'QX Da 

file:///dadx
file:///dady
file:///dadx


Projection sur Oy : 

du dv \ dv 
dy dx J x dy 

ty = -pny + u[ — + jr )nx + 2—riy 

Dtv - c „ _ v
Dnv 

Da p y r Da 
( du d2u d2'a\r \ duDnx 

\dady dxdy x dy'2 y) x dy Da 
( dv d2v d2v \ dv Dnx 

\dadx dx2 x dxdy yJ x dx Da 

n ( dv d2v T T d2v T T \ ^ dv Dnv 

dady dxdy dy2 J dy Da 

IV.3.2 Flux thermique a la frontiere 

Nous supposerons aussi la conductivity thermique constante. 

Projection sur Ox 

dT 
qx = *-K-nx 

dx 

£Sl-\(JHL ^Ly J^Ly } x
dTDnx 

Da \dadx dx2 x dxdy yJ x dx Da 

Projection sur Oy 

dT 
% = X—ny 

E>Vy=\(J)L- ^Ly ?Ly \ n x
dTDnv 

Da \dady dxdy x dy2 VJ y dy Da 

file:///dady
file:///dadx
file:///dadx
file:///dady

