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RESUME 

Cette etude est focalisee sur 1'evaluation des proprietes et de la structure de 

nanocomposites TPS/PLA/MMT en utilisant le PLA greffe avec anhydride maleique 

comme agent assurant la compatibilite du melange TPS/PLA et du PLA/MMT. Les 

melanges nanocomposites ont ete prepares par extrusion en utilisant une extrudeuse a 

double vis co-rotative et une strategie d'exfoliation de l'argile dans l'eau. 

Les granules d'amidon, le glycerol et le MMT ont ete melanges mecaniquement de 

facon intensive pour produire une mixture tres homogene nommee suspension amidon-

MMT. La concentration en glycerol a ete fixee tel que dans le TPS obtenu finalement il 

atteint 36%. Les deux formulations obtenues pour cette etude sont 27%TPS/PLA et 

60%TPS/PLA. 

Dans toutes les formulations ou le MMT a ete ajoute dans la suspension initiale 

d'amidon, les melanges TPS/PLA, indifferemment s'ils contiennent le PLAg ou pas, ont 

montre une intercalation partielle dans le MMT. Ce fait a ete conclu a partir des spectres 

obtenus en diffractions des rayons X qui montrent que l'espacement de base entre 

couches du MMT dans le melange augmente comparativement au MMT pur. Cette 

intercalation partielle entre les galeries de l'argile a ete observee aussi en technique MET 

en utilisant des hautes magnifications et ont confirme les resultats XRD. 

Les proprietes mecaniques de nanocomposites on ete analysees en utilisant un test de 

tension standard. Les resultats ont montre que le module d'elasticite et la resistance en 

traction du PLA et du PLAg atteignaient des valeurs similaires. Pour les melanges 

TPS/PLA, des legeres augmentations de l'elongation a la rupture ont ete observees par 
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rapport au PLA. L'addition de PLAg comme agent assurant la compatibilite entre le TPS 

et le PLA a mene a une augmentation de l'elongation a la rupture de 50-60%. 

L'introduction de 2%MMT naturel dans les melanges 27%TPS/PLA et 60%TPS/PLA a 

montre une importante augmentation du module et une legere diminution de la resistance 

en traction. 

La methode de Essential work of fracture (EWF) a ete utilisee pour etudier la tenacite 

des materiaux nanocomposites TPS/PLA. Les resultats obtenus par cette methode ont 

montre que la tenacite a la fracture du melange TPS/PLAg est superieure a celle du 

TPS/PLA. Ce resultat est un effet de l'augmentation de l'adhesion interfaciale entre les 

deux phases engendree par l'utilisation du PLA greffe, et aussi un effet d'un meilleur 

transfert de la contrainte entre la matrice PLAg et la phase TPS. L'ajout de 2%MMT dans 

le melange TPS/PLA, sans ou avec PLAg, a produit une reduction significative de la 

tenacite a la fracture. 

Des tests en DSC ont ete realises pour quelques melanges TPS/PLA et MMT 

nanocomposites pour etudier 1'effet de la presence de la phase TPS et du MMT dans la 

cristallisation du PLA. Dans les melanges 27%TPS/PLA et 60%TPS/PLA, l'addition de 

TPS au PLA a produit une legere augmentation du taux de cristallisation du PLA. Un 

taux de cristallisation similaire a ete observe pour le melange avec PLAg. Une 

augmentation supplemental du taux de cristallisation du PLA a ete produite apres 

l'introduction de 2% de MMT dans les melanges TPS/PLA. La presence de MMT en 

concentration tres faible et sous forme intercalee ou sous forme d'agregats a augmente le 
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taux de cristallisation du PLA ou PLAg. Le MMT a joue le role d'agent de nucleation 

dans la cristallisation du PLA en augmentant le nombre possible de nuclees. 

Des changements dans les transitions thermiques autour de la Tg ont ete rapportes 

pour les melanges TPS/PLA en fonction du temps. Des echantillons de melanges 

TPS/PLA et TPS/PLAg ont ete equilibres a la temperature de 25°C et une humidite 

relative de 50% entre 7 et 300 jours. 
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ABSTRACT 

The current study focus on the properties and structure of TPS/PLA/MMT 

nanocomposites using maleic anhydride grafted PLA as a compatibilizer in TPS/PLA 

blends and PLA/MMT. The nanocomposites were prepared by melt extrusion using a co-

rotating twin-screw extruder and an original water exfoliation strategy. 

Dry starch, water, glycerol and MMT were intensively mechanically mixed to 

produce a homogeneous suspension, known as starch-MMT slurry. The glycerol content 

was set to 36 wt% relative to the final TPS phase after water was removed. Two TPS 

formulations were studied 27%TPS/PLA and 60%TPS/PLA. 

In all formulations where MMT was added in starch slurry, TPS/PLA blends, with or 

without grafted PLA, exhibited partial intercalation into the MMT interlayers based on 

the increment of basal spacing of the MMT compared with basal spacing for the neat 

MMT illustrated by XRD spectra. This partial intercalation inside the clay galleries was 

observed by high magnification TEMs pictures in accordance with the XRD results. 

The mechanical properties of the nanocomposites were analyzed by a standard tensile 

test. Results showed the tensile moduli and tensile strength of neat PLA and grafted 

PLAg reached similar values. For TPS/PLA blends, slight increments in elongation at 

break were registered with respect to neat PLA. The use of grafted PLAg as a 

compatibilizer between TPS and PLA showed increment of 50-60% in elongation at 

break with respect to neat PLA. The addition of 2% wt of natural MMT in 27%TPS/PLA 

and 60%TPS/PLA showed a significant increment of the tensile moduli with a slight 

reduction in the tensile strength. 
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The essential work of fracture (EWF) method was used to study the fracture 

toughness in TPS/PLA nanocomposites. Results using the EWF method indicated that 

fracture toughness in TPS/PLAg blends exhibit superior performance than in TPS 

blended with neat PLA. This behavior can be due to the effect of increment of interfacial 

adhesion generated by the use of grafted PLA and better stress transfer between the PLAg 

matrix and the soft TPS phase. The addition of 2% of MMT in TPS/PLA blends 

containing or not grafted PLA produced a significant reduction of fracture toughness in 

both cases. 

To investigate the effect of TPS phase and MMT on PLA crystallization, DSC scans 

were performed for some TPS/PLA blends and MMT nanocomposites. In 27%TPS/PLA 

and 60%TPS/PLA blends, the addition of TPS on neat PLA produced a slight increment 

of the crystallization rate of PLA. However when TPS was added to the PLAg a similar 

PLA crystallization rate was found. The addition of 2% MMT in the TPS/PLA blends 

produced an additional increase in the crystallization rate of PLA. In this case the MMT 

clay in small amounts, in intercalated or aggregate form, increased the crystallization rate 

of PLA and PLAg. The clay layers or aggregates increased the number of possible 

nucleating agents for the crystallization of PLA. 

Changes in thermal transitions around Tg in DSC thermograms for TPS/PLA blends, 

during different time periods, were reported. TPS/PLA and TPS/PLAg blends were aged 

at 25 °C and 50% relative humidity for periods of between 7 and 300 days. 
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CONDENSE EN FRAN^AIS 

L'interet pour les polymeres produits a partir de ressources naturelles renouvelables 

est de plus en plus important. Parmi ces composes, peuvent etre retrouves deux 

bioplastiques tres prometteurs et disponibles commercialement: l'amidon 

thermoplastique {thermoplastic starch en anglais, TPS) et le polylactide (PLA). 

L'amidon est hydrophile et completement biodegradable dans l'eau et le sol. Le TPS 

est produit lorsque l'amidon est rendu non structure par l'eau, la chaleur et les forces de 

cisaillement. Le PLA est un polyester aliphatique, thermoplastique biodegradable produit 

a partir de ressources renouvelables telles que l'amidon de ma'i's ou de Cannes a sucre. 

Alors que le TPS est un polysaccharide present a l'etat naturel, le PLA requiert une 

synthese chimique appelee polymerisation de monomeres lactide par ouverture de cycles. 

L'etude des polymeres nanocomposites est un sujet de recherche croissant. Cet 

accroissement a fait suite aux resultats encourageants obtenus par Toyota dans les annees 

80 sur 1'amelioration des proprietes mecaniques, de la stabilite thermique, de la 

temperature de distorsion a chaud sous charge, la resistance au feu et la permeabilite au 

gaz observees sur des nanocomposites formes de montmorillonite (MMT) et de 

polyamide-6. Un des buts des etudes sur les polymeres nanocomposites est d'obtenir une 

intercalation et exfoliation completes des couches de silicate dans la matrice de 

polymeres. Ensuite, la surface en contact obtenue peut etre jusqu'a 10 000 fois plus 

importante que pour les systemes de charges conventionnelles. Une grande surface de 

contact et un grand rapport de forme (longueur/diametre) des plaquettes de renforcement 

sont directement relies aux ameliorations finales des proprietes du nanocomposite. 
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Les nanotubes de carbone et les nanoargiles sont les nanoparticules les plus 

frequemment utilisees afin de renforcer les polymeres. La MMT, de l'argile naturel, 

appartient a la famille des silicates stratifies. La MMT est caracterisee par une couche 

d'une epaisseur d'environ 1 nm, par une grande capacite d'echange de cations, par un 

rapport de forme contenu entre 30 et 1000 et par un module elastique eleve. 

Plusieurs etudes ont permis des progres sur les nanocomposites de TPS et de PLA 

utilisant de MMT naturelle (non modifiee) et de MMT modifiee organiquement. II a ete 

observe que l'addition de MMT naturelle permettait une plus grande dispersion, 

intercalation et exfoliation dans les composites de TPS/MMT que lorsque des MMT 

organiquement modifiees etaient utilisees. L'affinite entre les surfaces polaires de MMT 

et de TPS explique ces resultats. Des resultats opposes ont ete trouves pour les 

nanocomposites de PLA : a cause d'une incompatibilite entre la nature hydrophile de la 

MMT et une polarite moindre du PLA, 1'utilisation de MMT naturelle ne permet pas une 

bonne exfoliation. 

De plus, une grande dispersion a ete observee pour le PLA lorsque des MMT 

organiquement modifiees ont ete utilisees et permettent de former une structure 

intercalee. 

La presente etude se concentre sur les proprietes et la structure de nanocomposites 

TPS/PLA/MMT utilisant de l'anhydride maleique comme agent comptabilisant dans les 

melanges TPS/PLA et PLA/MMT. Les nanocomposites ont ete prepares par extrusion en 

utilisant une extrudeuse a double vis co-rotative et une strategie d'exfoliation par voie 

aqueuse originale. 
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L'amidon seche, le glycerol et la MMT sont melanges mecaniquement pour produire 

une suspension d'amidon et de MMT dans un melange homogene d'eau et de glycerol. 

Pour toutes les suspensions, le contenu en glycerol etait de 36 % en masse relativement a 

la phase finale de TPS (sans eau). Deux formulations sont etudiees : 27 % TPS/PLA et 60 

% TPS/PLA. 

La suspension d'amidon/MMT est ensuite incorporee dans l'extrudeuse a double vis 

par une pompe gravimetrique afin de controler le debit massique. Dans la premiere partie 

de l'extrudeuse, a 130 °C, l'amidon subi un processus de destructuration et de 

gelatinisation. A la fin de la premiere moitie de l'extrudeuse, l'eau est eliminee par 

devolatilisation sous vide, afin d'obtenir un TPS sans eau avant incorporation du PLA, et 

ceci afin d'eviter la degradation du PLA par l'eau. Ensuite, 1'operation d'intercalation 

dans la MMT commence pour le TPS et l'eau permet d'augmenter Pexfoliation de 

l'argile. Du PLA ou du PLAg dans un etat fondu, sont ajoutes dans la zone centrale de 

l'extrudeuse en utilisant une extrudeuse simple vis comme source d'alimentation a 180 

°C. Dans la seconde moitie de l'extrudeuse, egalement a 180 °C, le TPS, le PLA et la 

MMT sont melanges pour produire des nanocomposites TPS/PLA/MMT. A la derniere 

etape d'extrusion, des torons sont formes, refroidis sous l'eau puis formes afin d'obtenir 

des granules nanocomposites qui pourront etre utilisees dans les precedes de mise en 

forme thermoplastique conventionnels. 

La procedure decrite ci-dessus est la procedure standard utilisee dans ce travail de 

recherche pour la production de nanocomposites. Du PLA et du PLAg dnt ete melanges 

separement avec du TPS/MMT pour etudier l'effet de l'anhydride maleique sur la 
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structure des nanocomposites et sur leurs proprietes mecaniques. Du MMT a aussi ete 

melange avec du PLA afin de pouvoir comparer les resultats des differentes methodes. 

La morphologie des melanges de TPS/PLA et de nanocomposites TPS/PLA/MMT a 

ete etudiee en utilisant un microscope electronique a balayage (SEM). La morphologie du 

melange TPS/PLA etait extremement grossiere et tres faiblement distribute. L'utilisation 

de PLA greffe a l'anhydride maleique comme agent de comptabilisation dans les 

melanges TPS/PLAg permet de produire une morphologie plus fine et plus homogene, et 

de procurer une forme spherique a la phase de TPS. Une morphologie similaire a celle 

des melanges TPS/PLA (non comptabilises) a ete observee avec 1'addition de 2 % de 

MMT naturelle dans les melanges TPS/PLA. Quand du PLAg est ajoute au 

nanocomposite, la phase de TPS presente une reduction attendue de taille mais moins que 

celle trouvee dans les melanges TPS/PLAg. L'addition de 5 % en masse de MMT 

naturelle dans les melanges contenant du TPS et du PLA ou du PLAg a conduit aux 

memes observations que celles constatees lors de l'addition de 2 % de MMT dans les 

melanges TPS/PLA. 

L'augmentation de taille de la phase de TPS lors de l'addition de MMT peut etre 

reliee a l'augmentation de la viscosite du melange comme la MMT a ete ajoutee dans la 

suspension d'amidon et a la diminution de la deformabilite de la phase de TPS avec la 

dispersion dans le PLA. 

L'intercalation du TPS/PLA dans la MMT et la dispersion de MMT dans les 

melanges TPS/PLA a ete analysee en utilisant la diffraction par rayons X (XRD), la 

microscopie electronique a transmission (TEM) et la microscopie a force atomique 
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(AFM). Dans tous les composes ou des MMT ont ete ajoutees dans la suspension 

d'ami don, dans les melanges TPS/PLA ou TPS/PLAg, une intercalation partielle dans les 

couches de MMT, basee sur l'accroissement de l'espacement basique du MMT, a ete 

observee comparativement a l'espacement basique du MMT seul, illustre par les rayons 

X (XRD). Cette intercalation partielle dans les galeries d'argile a ete observee sur des 

photographies obtenues par TEM et sont en accord avec les resultats de XRD. Les 

photographies ont montrees de larges agregations d'argile et des empilements de moins 

de trois couches d'argile. 

La faible dispersion de MMT dans la matrice de TPS/PLA et une orientation non 

preferentielle des agregations d'argile ont ete confirmees par des images obtenues par 

TEM et AFM. De plus, dans tous les nanocomposites, contenant ou non le PLAg ou 

meme lorsque du MMT a ete incorpore dans la phase de PLA, les agregats de MMT ont 

ete trouves preferentiellement localises dans les phases de TPS, ou le long de l'interface 

du melange. 

Les proprietes mecaniques des nanocomposites ont ete analysees par des essais de 

traction standard. Les resultats ont montre des valeurs similaires pour le module de 

traction et la resistance a la traction du PLA seul et du PLAg. De plus, les allongements a 

la rupture des deux nanocomposites sont faibles. L'ajout de 2 % en masse de MMT dans 

le PLA et le PLAg a conduit a une faible augmentation de module de traction et une 

reduction de 20 % de la resistance a la traction par rapport au PLAg. Pour les melanges 

de TPS/PLA, de faibles accroissements dans l'allongement a la rupture ont ete trouves 

par rapport au PLA seul. L'utilisation de PLAg comme agent comptabilisant entre TPS et 
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PLA a montre un accroissement de 50-60 % de l'allongement a la rupture par rapport au 

PLA seul. L'ajout de 2 % en masse de MMT naturelle dans les composes a 27 % 

TPS/PLA et a 60 % TPS/PLA a conduit a une augmentation importante du module de 

traction et a une faible reduction de la resistance a la traction. 

D'autre part, l'addition de MMT dans le TPS/PLAg n'a pas montre de variations 

significatives dans le module de traction et la resistance a la traction. Cependant, une 

diminution importante de l'allongement a la rupture par rapport aux melanges TPS/PLAg 

a ete observee. Le MMT rend la phase de TPS plus fragile. 

Pour etudier la resistance a la rupture des nanocomposites TPS/PLA, la methode de 

Essential work of fracture (EWF) a ete utilisee. Cette methode divise l'energie totale 

necessaire pour rupture un specimen entaille en deux parties. La premiere est associee a 

1'initiation et la propagation de la fissure resultant de la formation de la zone de rupture. 

L'energie est considered comme le travail essentiel de rupture (EWF). L'autre partie est 

reliee au volume deforme de facon plastique, cette fraction est appelee le travail de 

rupture plastique ou non EWF et depend de la taille de la zone de rupture et de 

l'echantillon teste. 

La methode EWF mesure la surface sous les courbes de charge de deplacement pour 

un echantillon entaille avec des variations de longueur des ligaments. En utilisant une 

expression lineaire fonction de la longueur du ligament pour decrire l'energie totale 

impliquee dans le processus de rupture, il est possible de determiner la valeur d'EWF, 

pris comme un parametre intrinseque dans le materiau. Les resultats utilisant la methode 

EWF indiquent que la resistance a la rupture des melanges de TPS/PLAg est superieure a 
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celle des melanges TPS/PLA. Ce comportement peut etre du a une reduction de la phase 

dispersee, a l'effet d'accroissement de l'adhesion interfaciale generee par l'utilisation de 

PLAg et done a un meilleur transfer! de contraintes entre la matrice de PLAg et la phase 

de TPS plus souple. 

L'addition de 2 % de MMT dans les melanges de TPS/PLA contenant ou non le PLAg a 

produit une reduction significative de la resistance a la rupture dans les deux cas. 

Pour mieux connaitre les effets de la phase de TPS et de MMT sur la cristallisation du 

PLA, des analyses enthalpiques differentielles (DSC) ont ete realises sur des melanges 

TPS/PLA et les nanocomposites de MMT. Les echantillons ont ete chauffes a 200 °C 

avec une vitesse de chauffage de 10 °C/min et ont ensuite ete refroidis jusqu'a - 100 °C 

avec une vitesse de refroidissement de 10 °C/min. II est attendu que sous ces conditions, 

le PLA doive rester completement amorphe, ce qui est verifie par l'absence de pic de 

fusion. II est bien connu que le PLA a un taux de cristallisation tres faible a cause de ses 

chaines rigides. 

Dans les melanges a 27 % TPS/PLA et a 60 % TPS/PLA, l'addition de TPS sur le 

PLA seul a produit une faible augmentation du taux de cristallinite du PLA. Cependant, 

quand le TPS est ajoute au PLAg, un taux de cristallisation similaire a ete trouve. 

L'addition de 2 % de MMT dans le melange TPS/PLA a permis une augmentation 

additionnelle du taux de cristallinite du PLA. De plus, quand du PLAg a ete utilise avec 

du melange a 27 % TPS avec 2 % de MMT, un double pic de fusion a ete observe. Ce 

double pic est peut-etre directement relie a la formation de deux types de structures 

cristallines. Dans ce cas, l'argile (MMT) en petite quantite, intercale ou sous forme 
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d'agregats, augmente le taux de cristallinite de PLA et de PLAg. Dans cette etude, nous 

avons constate que les couches d'argile ou les agregats augmentent le nombre d'agents 

nucleants pour la cristallisation du PLA. 

Cette etude a aussi montre des changements dans les transitions thermiques autour de 

la temperature de transition vitreuse (Tg) dans les thermogrammes de DSC pour les 

melanges de TPS/PLA. Les melanges de TPS/PLA et de TPS/PLAg ont ete conserves a 

25 °C et avec 50 % d'humidite durant des periodes de 7, 15, 45 et 300 jours. Dans tous 

les cas, un pic endothermique relie a l'exces d'enthalpie de relaxation a ete detecte autour 

de Tg. Le pic endothermique a augmente avec un accroissement du temps de 

conditionnement consequemment a une elevation de l'exces d'enthalpie de relaxation. 

L'augmentation avec le temps de l'exces d'enthalpie de relaxation a ete associee au 

vieillissement physique du PLA et depend du temps et de la temperature de 

conditionnement. 
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CHAPTER 1 

INTRODUCTION AND OBJETIVES 

1.1 Introduction 

Biobased polymers and polymer nanocomposites are two materials that are 

nowadays getting attention in the polymer field. 

The quest for novel biobased polymers is seen as a potential solution to the ever 

increasing worldwide demand for fossil resources and the imminent scarcity of petroleum 

reserves. This situation requests the exploration of new viable alternatives to produce 

novel polymeric materials developed from renewable sources instead of petroleum. New 

biodegradable bio-based polymeric materials based on renewable resources are being 

commercially produced as an alternative to petroleum based polymers. Among these bio

based polymer materials, Polylactide (PLA) and Thermoplastic starch (TPS) are 

promising materials. 

On the other hand, the fabrication of polymer nanocomposites is an attractive and 

interesting topic in the polymer science domain. These nanocomposites are attractive due 

to molecular interactions involving nanoparticles in their different shapes and origins and 

polymeric matrices. The required nanoparticles concentration, typically less than 5% are 

used to produce improvements in thermal, mechanical and flexural properties in 

comparison to the neat polymer. The nanocomposites have an important density 

advantages over conventional fillers such as talc, glass fiber, calcium carbonate, mica, 
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which are usually used at much higher loadings. It is therefore possible to produce light 

weight products with improved properties such as the ones cited above; and at the same 

time, offers exclusive potential for others applications such as biomaterials. 

All types of nanoparticles are being incorporated in dispersive manner in a 

polymer matrix including nanofibers, nanotubes, nanowhisker, nanolayers such as 

layered silicates that will be used in this study and nanodots. Enhanced storage modulus, 

tensile and flexural properties, increase in heat distortion temperature, decrease in 

flammability and gas permeability, and increase in biodegradability rate (Sinha Ray & 

Okamoto (2003b)). are among the properties typically sought with the use of layered 

silicates in nanocomposites (Mai & Yu (2006)) 

The current work will build on these findings in order to explore the processing 

and properties of MMT nanocomposites based on the compatibilized TPS/ PLA blends. 

The different steps of the study included the addition of nanoclays platelets as reinforcing 

phase, the injection molding of standard coupons followed by the mechanical and thermal 

characterization and the microstructure characterization to assess the blend morphology 

and clay exfoliation. 

Nanoclays as reinforced phase are extensively used due to the good results 

showed when mixing them with several types of polymers. (LeBaron et al. (1999)) 

(Alexandre & Dubois (2000)) (Sinha Ray & Okamoto (2003b)) (Mai & Yu (2006)). The 

remarkable results on the improvement of mechanical properties in polyamides (PA) 

(Okada & Usuki (2006)), e.g. the enhancement of elastic moduli, suggests nanoclays 
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might have a similar effect in TPS/PLA blends. In addition, the use of clay platelets is 

attractive, because the clay platelets have high elastic moduli and have a natural origin. 

1.2 Polymer Nanocomposites 

The first studies on layered silicates intercalation in polymer matrices started in the 

60s. Results back then were unsuccessful, in part because of high concentrations of clay, 

similar to conventional composites, resulting in nanocomposites with a ceramic character. 

Nowadays, at least 500 papers are being published each year on polymer 

nanocomposites (Okada & Usuki (2006)). This boom was caused in part to the 

publication in 1986 of the encouraging results on Polyamide-6 nanocomposites (Okada et 

al. (1988)). In this first successful work, thermal and mechanical properties of 

Polyamide-6 were improved with the addition of small amounts montmorillonite. 

Following the same line of research, several polymer matrices were used in the 

production of nanocomposites including: polyethylene vinyl alcohol, PVA, and polyvinyl 

pyridine, polycarbonate (PC), epoxy polymer resins (EPR), polypropylene (PP), 

polyethylene (PE) and polyethylene-co-vinyl acetate (EVA), etc. (Sinha Ray & Okamoto 

(2003b)) (Utracki (2004)) (Mai & Yu (2006)) 

Among biodegradable polymers Polylactide (PLA) (Mai & Yu (2006)), and 

Thermoplastic starch (TPS), polycaprolactone (PCL) (Kalambur & Rizvi (2005)) 

(Luduena et al. (2007)), aliphatic polyester (Lee et al. (2005)) (Lee et al. (2002)), 

polyhydroxy butyrate (PHB) (Sanchez-Garcia et al. (2008)) and polybutylene succinate 
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(PBS) (Ray et al. (2003)) (Shih et al. (2007)) have been used in investigations on 

nanocomposites. 

The intercalation phenomenon was used and studied approximately 160 years ago. 

The first studies involved the partial or total intercalations of metals into graphite (Herold 

et al. (1980)) (Guerard et al. (1986)). In the 60s, other host layered materials, such as 

metal phosphorous chalcogenides, lamellar oxide halides, vanadyl, niobyl and layered 

minerals were used. Among these last materials, the montmorillonite and beidellite were 

host materials. 

In polymer nanocomposites, the interactions are produced at the molecular level. 

Molecular interactions are formed by the insertion of molecules of a guest specimen, in 

our case macromolecules, into the empty spaces between the layers of a layered specimen 

(host lattice). During the molecular intercalation, the expansion or translation of layers of 

host specimen along the perpendicular direction to the layers, plane xy, is typical. The 

expansion distance is related to the molecular dimension of the guest molecule. The 

success in the intercalation process was expressed in the following general directives 

(Capkova & Votinsky (2000)). The interaction between host and guest specimens must 

be stronger than the interactions among the guest molecules and the solvent (if used). The 

surface of the layered host must have active sites or groups or has a polar nature. In 

addition the host interlayer distance must have a minimal value to accommodate guest 

molecules or have a weak interaction among host layers. 

Numerous mechanisms involved in molecular intercalation have been proposed. Only 

some of the possible interactions studied are presented below (Votinsky et al. (1992)): 
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a) Layered complexes intercalation: the intercalation of the guest is achieved by the 

formation of coordination bonds. The guest molecules act as donors. The coordinate bond 

includes a complicated harmonization of polyhedron of electropositive atoms of the host 

layer. In these interactions, weak Lewis bases are involved to form very stable 

compounds. These physical systems are based on the function of a guest to act as donor 

and acceptor at the same time. 

b) The intercalation in this case is based on two sub-anchoring mechanisms. The first 

is the formation of hydrogen bonds. A part of the guest molecules are anchored by 

hydrogen bonds between the oxygen atoms of the oxo-anion of the host. In the second 

mechanism, guest molecules are anchored by a coordinate bond with the most 

electronegative atoms of guest layer. 

c) Another type of intercalation is produced when guest molecules are anchoring 

using a total electron transfer from the layered host specimen to stabilization of guest-

host compound by an ionic bond involving guest cations and the negative charges from 

host layers. 

d) Very stable intercalations involving very weak van der Waals's forces between 

host lattice and guest molecules were found in some systems such as iodine molecules 

intercalated in lattice of tellurium. The interlayer distances correspond to Van der 

Waals's bond. 

e) The intercalation mechanics, frequently found in systems involving layered 

minerals, is produced by proton transfer. Protons are transfer from the layered host to the 

guest molecules. The guest molecule admits protons from hydroxyl groups of the layered 
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host. The interaction between cation and negative layers involved in this kind of 

intercalation has an electrostatic nature. This is possible when the mechanism involved in 

polymer nanocomposites contains layered silicates. The intercalation can be expressed in 

term of electrostatic interactions with the following reaction: 

Host (OH) + Guest - • {Host (O)}" + {Guest (H)}+ 

where in our case the host will be MMT and the guest will be the PLA and TPS. The 

montmorillonite as a type of layered silicate contains active hydroxyl groups on its 

surfaces. (Rozin et al. (1974)) 

1.2.1. Types of Nanocomposites 

Figure 1.1 shows three types of composites for layered silicate materials. If the 

polymer chains are not capable to penetrate or intercalate between the silicate layers, a 

conventional or micro composite is produced, and thus the properties reached are 

different and lower in comparison to when partial or fully exfoliation is achieved. 

(Hussain et al. (2006)) 

1.2.1.1 Intercalated Nanocomposites 

For intercalated nanocomposites, the polymer chains are inserted inside of silicate 

galleries in a crystallographically regular fashion. The amount of layered silicate inside 

the polymer matrix is independent of its structural arrangement. The properties of these 

nanocomposites are similar to ceramic materials. 
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1.2.1.2 Exfoliated Nanocomposites 

In exfoliated nanocomposites, the silicate layers are completely dispersed into the 

polymer matrix, singles clay platelets are separated and the separation distance depends 

of amount of silicate in the nanocomposites. 

Layered silicate Polymer 

/ I \ 

(a) <b) (e) ' " ' 
Phase separated Intercalated Exfoliated 
(mlcxocomposite) (naaocomposite) (aanocosaposite) 

Figure 1.1 Different types of composites: microcomposites, intercalated nanocomposites 

and exfoliated nanocomposites. ( Sinha Ray & Okamoto (2003b)) 

1.2.2 Preparation Methods of Nanocomposites 

There are many methods available for clay introduction in a polymer matrix. The 

polar nature of MMT and non polar nature for the usual polymers play a critical role 

when choosing the best-suited strategy for a given polymer-montmorillonite combination. 

The following are three general and available methods to prepare nanocomposites. All of 

them have their inherent advantages and disadvantages. 

- # 



8 

1.2.2.1 Solution Intercalation of polymer or pre-polymer 

The polymer or pre-polymer is solubilized (on a solvent system) (Figure 1.2) and 

then the silicate layers are added. The layered silicate is swollen in a solvent, such as 

water, chloroform, methanol, toluene or other solvent. When the polymer and layered 

silicate solutions are mixed, the polymer chains intercalate or diffuse and displace the 

solvent within the interlayer of the silicates. Finally the solvent is removed by drying 

under vacuum or direct heating and the intercalated structures remains resulting in a 

nanocomposite. Solution intercalation methods are mostly used for polar polymers 

soluble in polar solvents. Nevertheless, non-polar polymer matrices such as polyethylene 

and polyimide can also be used with this method when combined with other solvents and 

the use of organically modified montmorillonite. The main advantage of this method is 

the possibility to process polar polymers with natural montmorillonite. However, this 

method can be unsuitable for a large scale. This is due to the large amount of solvents to 

achieve dispersed and intercalated nanostructures. (Sinha Ray & Okamoto (2003b)) 

Polymer composites of polyethylene vinyl acetate (Strawhecker & Manias (2000)), 

polyethylene oxide (Shen et al. (2002)) (Ke & Stroeve (2005)) and polyvinyl alcohol 

(Hussain et al. (2006)) were obtained by this method. 
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Figure 1.2 Nanocomposites prepared by intercalation of polymer in solution. (Sinha Ray 

& Okamoto (2003b)) 

1.2.2.2 In situ intercalative polymerization method. 

This method is very similar to the solution intercalation method. In this case, the 

use of polymers is changed by a monomer and an initiator or catalyst. The in situ 

polymerization method induces the exfoliation of the clay into the growing polymer 

matrix. (Okada et al. (1988)). In the same way as solution intercalation, this method was 

mainly developed for polar monomers that can intercalate into the clay interlayers. 

(Hussain et al. (2006)) 

The layered silicate is swollen within a solution of monomer-polymer. (Figure 

1.3). The polymerization occurs inside the intercalated layered galleries. In this method, 

the polymerization can be initiated either by heat or by radiation, by the diffusion of a 

suitable initiator, or by an organic initiator. Caprolactam and montmorillonite were 

produced under this method (Sinha Ray & Okamoto (2003b)). The addition of an acid 

surfactant as polymerization initiator was necessary to allow the .polymerization-

interaction processes. Other polymer systems such as polyurethane composites (polyol 

and cyanate are polar monomers) were produced using this technique but in this case 
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without any surfactant and initiating the polymerization thermally. (LeBaron et al. 

(1999)) 

o o 9 a « o 

» « * o 

0 

« o 

O ft ® « ; 

caprdactam clay mintcal 
a layer est clay njftone 

Figure 1.3 Schematic diagram of synthesis of polyamide-6 (PA6) and clay 

nanocomposites. (Sinha Ray & Okamoto (2003b)) 

1.2.2.3 Melt intercalation method 

This method involves the annealing of a polymer in static or under shear 

conditions and then the mixing of the melt polymer and layered silicates. The first studies 

were reported in 1993 using PS and an organically MMT (A.Vaia et al. (1993)). The 

PS/MMT nanocomposite showed partial intercalated structures, although the 

montmorillonite was not completely exfoliated. Nowadays, the melt intercalation method 

has become the standard for the production of polymer nanocomposites in industrial scale 

The melt intercalation method has more advantageous than previous ones. It is 

environmentally benign due to the absence of organic solvents. In addition, it can be 

adapted to several types of polymer matrix, polar or non-polar. It allows the use of 
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polymers which were previously not suitable for in situ polymerization or solution 

intercalation. Also, it is compatible with current industrial processes, such as extrusion, 

roll mill, blenders and injection molding. The use of this method is limited by the use of a 

compatibilizer or modified clay for most polymer matrices. This means an increase in the 

cost of production of nanocomposites. Furthermore, the addition of surfactants and other 

compatibilizers can degrade the overall properties of the polymer matrix. (Frankowski et 

al. (2007)) 

1.2.3 Nanocomposites Proprieties 

1.2.3.1 Thermal Stability. 

The inclusion of clay into the polymer matrix enhances the overall thermal stability of the 

nanocomposites. Clay acts as an insulator or heat barrier, and mass transport barrier to the 

volatile products generated by the heat of decomposition. Besides, the clay addition 

supports the creation of layer of char after thermal decomposition. 

Usually, to study the thermal stability of nanocomposites, a thermo gravimetric 

analysis (TGA) is performed. The degradation of the material was measured as loss of 

weight due to oxidative or non-oxidative degradation of the material. The addition of 

MMT in polymer matrices (PS,PCL) (Zhu et al. (2001)) (Lepoittevin et al. (2002)), high 

impact polystyrene (HIPS), poly (styrene-co-acrylonitrile) (SAN), acrylonitrile-

butadiene-styrene (ABS), polymethyl methacrilate (PMMA), polypropylene (PP), 

polyethylene (PE),poly(ethylene-co-vinylacetate) (EVA), epoxy resin (ER)and 

polyurethane (PU) (Mai & Yu (2006)) showed enhancement of the thermal stability. 
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The opposite behavior was showed when MMT was added to a synthetic 

biodegradable aliphatic polyester (BAP) (Lim et al. (2002)). The thermal degradation 

temperature and rate increased with the addition of up to 15 wt% of MMT. In this case, 

the clay acts as heat shield at the first moment. Then, the accumulated heat in the stacks 

of silicate layer, acts as heat source to accelerate the thermal degradation of the system. 

In consequence, the heat barrier effect would result in a reverse thermal stability of the 

nanocomposites. 
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Figure 1.4 Effect of the clay loading over the thermal stability in PLC nanocomposites. 

(Lepoittevin et al. (2002)) 

1.2.3.2 Mechanical Properties. 

The incorporation of lows amount of clay (< 5%wt) in several polymeric systems 

shows remarkable improvement in elastic modulus and tensile strength (Figure 1.5) 

(Tjong (2006)) e.g. PP (Liu & Wu (2001)), (LeBaron et al. (1999)) .The main reason 
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relies in the strong interactions between matrix and silicate layers, in some cases 

(PA6/MMT) via formation of hydrogen bonds. (Figure 1.6) 
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Figure 1.5 The effect of clay loading over a) elastic modulus and b) tensile strength in a 

nanocomposites (Sinha Ray & Okamoto (2003b)) 
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Figure 1.6 schematic illustration of formation of hydrogen bonds in PA6/MMT (Sinha 

Ray & Okamoto (2003b)) 

The improvement in terms of flexural and Young moduli of nanocomposites 

materials also relies on the degree of dispersion into a polymer matrix and high aspect 
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ratio of the clay. The widely known Halpin-Tsai (Equations 1.1 and 1.2) (Halpin & 

Kardos (1976)) can be useful to understand the effect of adding clay on the elastic 

modulus. 

E = E 

f\ + ^V.^ 

\-r1Vl 
(1.1) 
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Where Ec is the modulus of the nanocomposite, Em is the modulus of the polymer 

matrix, Ef is the modulus of the montmorillonite, Vf is the volume fraction of MMT and 

C, is the shape factor of MMT. The shape factor was approximated assuming twice the 

aspect ratio. The high aspect ratio of MMT was established to be around 100-150. 

Based on the Halpin-Tsai equation, the higher moduli is reached, when the higher aspect 

ratio or shape factor of MMT are found. Equation 1.1 also shows the effect of clay 

concentration on the mechanical properties of the nanocomposites. When MMT 

concentration is low, the possibilities of reaching a better degree of platelets distribution 

are high. On the other hand, by increasing the clay concentration, the MMT could not be 

well dispersed and the MMT platelets should interact mutually, losing the effect of high 

aspect ratio and then reducing the mechanical performance of the nanocomposite 

material. In this case the material obtained is a micro rather than a nanocomposite. 

(Hbaieba et al. (2007)) 
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1.2.3.3 Gas barrier Properties 

The addition of silicate layers increases the barrier properties (gas permeability), 

in comparison to conventional composites, by creating a tortuous path like a maze 

(Figure 1.7) that retards the motion of gas molecules through the polymer matrix. For 

example the addition of 2% of MMT in a polyimide matrix reduced in 10 times the water 

vapor permeability of the final nanocomposite. (Sinha Ray & Okamoto (2003b)) 

In conventional polymer composites, the addition of filler does not increase the 

barrier properties or permeability of the final material because the distance between filler 

particles is larger than in gas molecules. In nanocomposites, when the nanoparticles are 

well dispersed, the gas molecules can not easily diffuse through the polymer matrix 

because the molecules must be in contact with the impermeable silicate layers increasing 

the effective volume of material through which the gas molecules must diffuse, resulting 

in a decreased rate of diffusion. 

The control of gas permeability of polymer nanocomposites has large applications 

as packaging and membranes. This control can be obtained by formation of a tortuous 

path, mentioned above. (Bharadwaj (2001)) 
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Conventional composites 
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Figure 1.7 The increment of gas permeability in nanocomposites is due to formation of 

tortuous path. (Sinha Ray & Okamoto (2003b)) 

1.2.3.4 Optical transparency 

In fully exfoliated nanocomposites, the optical transparency was not affected by 

addition of MMT. This is due to a highly dispersion of MMT in the polymer matrix in 

individual layers. The average montmorillonite layer thick is around lnm, and the typical 

lateral sizes are 50-1000 nm. These dimensions did not affect the pass of visible light 

through the material. In PVA/MMT nanocomposites showed the optical transparency was 

similar than in the case of pure polymer. (Sinha Ray & Okamoto (2003b)) 

1.3 PLA/TPS Blends 

The first attempts to blend dry starch with PLA showed a low interfacial adhesion 

between phases and lead to poor mechanical properties highlighting the need for some 

interfacial modification (Ke & Sun (2001)). The first TPS/PLA blends (Martin & 

Averous (2001)) also showed relatively poor properties (e.g. low elongation at break) in 

comparison with neat materials because of their coarse morphology. This also indicated 

high interfacial tension between both phases. 

tortuous path" in layered silicate 
nanoeomposites 

T 
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Zhang and Sun (Zhang & Sun (2004)) worked using dry granulate starch blended 

with PLA, but this time using maleic anhydride (MA) as an in situ compatibilization 

agent. The PLA/Starch/MA showed an improvement in interfacial adhesion and better 

mechanical properties principally in tensile strength, but the elongation at break remained 

in a very low range, below 5%. 

Huneault and Li (Huneault & Li (2007)) prepared TPS/PLA blends compatibilized 

using PLA grafted with maleic anhydride (PLAg). The PLAg was obtained by free-

radical grafting of maleic anhydride in the melt state in a separate compounding step. 

When the TPS and PLAg were mixed, reaction between the maleic anhydride grafts and 

the OH- groups of starch reacted leading to in situ production graft copolymers of starch 

and PLA at the interface. The ductility and elongation at break were greatly improved; 

elongation values of 100-200% were obtained. The TPS phase was better dispersed and 

more homogeneously distributed due to the reduced interfacial tension between phases. 

1.4 TPS and PLA Nanocomposites 

1.4.1 TPS Nanocomposites 

The reinforcement of TPS with montmorillonite has already been a matter of study 

(Fischer & Fischer (2001)) (Park et al. (2002)) (Wilhelm et al. (2003)) (Park et al. (2003)) 

(Huang et al. (2004)) (Chen & Evans (2005)) (Ma et al. (2007)) (Yu et al. (2007)). In 

most cases, the intercalation is carried out during melt-extrusion or in a solvent prior to 

casting of thin films. (Fischer & Fischer (2001)) made the first attempt to intercalate TPS 

inside several types of clay with adequate concentrations of plasticizer. 
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In the patent literature, it is claimed that suspensions of MMT or smectite clay in 

water or in mixtures of water and other plasticizers can be compounded with dry starch to 

produce TPS nanocomposites with improved mechanical properties. (Fischer & Fischer 

(2001)). Park and co-workers prepared TPS pellets and later blended them with clays. 

(Park et al. (2002)) (Park et al. (2003)) They showed that the use of natural MMT lead to 

superior dispersion in TPS than the use of organically modified MMT with ammonium 

cations in the gallery. 

Tensile strength and elongation at break were both increased by more than 20% 

when adding the natural MMT while the vapor transmission rate was decreased by 35% 

compared to the neat TPS. The thermal stability was also slightly enhanced. Partial 

exfoliation was found. The best results observed with natural MMT were explained by 

the affinity between the polar surfaces of MMT and TPS. 

Wilhelm et al (Wilhelm et al. (2003)), using a film casting method and Chen and 

Evans (Chen & Evans (2005)) worked on TPS/hectorite systems and suggested that part 

of the glycerol molecules, used as starch plasticizers, migrated inside the interlayer of 

hectorite. Interactions with formation of H-bonds between hydroxyl groups in the clay 

surface, glycerol, starch and water were also suggested. Intercalated structures were 

created with variable interlayer distances; large distances were obtained when relatively 

low clay content (5% wt.) and an excess of glycerol were used. This translated in an 

increase in stiffness, elastic modulus and thermal stability and in the reduction of the 

elongation at break in presence of the clay. 



19 

Ma and co-workers used sorbitol instead of glycerol as starch plasticizer in a TPS-

MMT system (Ma et al. (2007)). The interlayer distance was improved reaching 2.07 nm 

in comparison to 1.8 nm when using glycerol. Once again, the tensile strength and Young 

modulus were improved by 200% and 325% respectively when 10% wt of MMT was 

added, but the elongation at break dropped by 30% with respect to the neat TPS control. 

One phenomenon sometimes encountered in TPS-based materials is the starch 

recrystallization (also called retrogradation). This is due to the formation of H-bonds 

between starch macromolecules and is typically accelerated by the presence of humidity. 

It is usually not desired since it leads to embrittlement of the TPS. Since this phenomenon 

is related to long-term diffusion of the plasticizer out of the material and its replacement 

by water, it could be expected that the addition of clay platelets, by decreasing 

permeability and by disrupting the re-crystallization mechanism, would improve the TPS 

stability. This has been confirmed for glycerol-plasticized TPS (Huang et al. (2004)) and 

for water-plasticized TPS (Yu et al. (2007)). However it may not be the case for all 

plasticizers. Chen and Evans, (Chen & Evans (2005)), associated cracking marks on TPS-

MMT composites to recrystallization. The plasticizer was undisclosed in that study but it 

was noted that recrystallization of starch in the nanocomposites was decreased by the use 

of plasticizer with stronger hydrogen bonds with starch. 

Ultrasonic mixing prior to extrusion-blending was investigated as a means to 

improve the dispersion and exfoliation of natural MMT and natural hectorite in water 

suspensions (Yu et al. (2007)). Large MMT interlayer distances, up to 6.2 nm were found 

after using 30 min of sonication time. However, these distances decreased rapidly in the 
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final TPS-MMT compound to values between 1.2 and 2.4 nm. Good exfoliation was 

achieved at low clay concentration over a relatively narrow window of operating 

parameters and of plasticizer composition in MMT clay. The cation exchange capacity of 

the clay appeared to be an important factor during exfoliation. Overall, ultrasonically 

treated samples produced similar results in terms of exfoliation and of mechanical 

properties in comparison with conventionally mixed TPS-clay samples. 

1.4.2 PL A Nanocomposites 

PLA based nanocomposites were also prepared by melt processing (Ogata et al. 

(1997)) (Pluta et al. (2002)) (Maiti et al. (2002)) (Sinha Ray et al. (2002)) (Paul et al. 

(2003)). 

Ogata and co-workers (Ogata et al. (1997)) reported the first PLA nanocomposites 

prepared by the solvent-cast method where MMT was modified using 

distearyldimethylammonium chloride. The MMT dispersion, in form of tactoids, was 

poor and only the Young modulus of the final nanocomposites was slightly improved. 

Pluta and co-workers (Pluta et al. (2002)) prepared PLA nanocomposites using natural 

and organo-MMT. The results showed natural MMT does not lead to exfoliation in PLA 

because of the incompatible hydrophilic nature of MMT with PLA (Pluta et al. (2002)) 

(Paul et al. (2003)). Sinha Ray and co-workers (Sinha Ray et al. (2002)) (Sinha Ray et al. 

(2003)) worked with M M T modified with trimethyl octadecylammonium cation (C C ] 8 -

MMT). The oligo-polycaprolactone (o-PCL) was added in very low concentrations as 

compatibilizer to produce better parallel stackers and to increase the flocculation due to 

hydroxylated edge-edge interaction of MMT layers. The MMT dispersion in the PLA 
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matrix was satisfactory producing intercalated material. However, a full delamination of 

MMT layer was not reached and MMT aggregates were present. The materials showed 

improvements in flexural and storage modulus, gas barrier property and heat distortion 

temperature (HDT). HDT was increased from 76°C for neat PLA to 111° C for PLA 

loaded with 7% of C3Cig-MMT. The rate of biodegradability was also enhanced. 

Polyethyleneglycol (PEG) can be added in PLA to increase its elongation at break 

and its impact resistance. When Na-MMT was added to PEG-plasticized PLA, the 

interlayer distance increased from 1.2 nm to 1.7 nm since PEG was preferentially 

intercalated in natural MMT (Paul et al. (2003)). Similar results were obtained with or 

organo-modified MMT but better thermal resistance was found in this case. This was 

explained by PLA hydrolysis at high temperature, caused by hydrated Na+ cations of Na-

MMT, by polarity differences between PLA and Na-MMT, and by the preferential 

intercalation of PEG in interlayers of natural MMT. 

Maiti et al. (Maiti et al. (2002)) prepared Clay-PLA nanocomposites by melt 

extrusion using different clays (smectite, MMT and an synthetic mica). Phosphonium 

salts were used to modify the clay surfaces. The miscibility between these organic 

modifiers and PLA was determined by the higher chain length of phosphonium salt. After 

this modification, mica (2.4 nm) and MMT (2.1 nm) exhibited higher values of interlayer 

distance. However, better values in storage modulus and gas barrier property were 

produced adding smectite (1.8nm) due to higher interactions between smectite with PLA 

and better dispersion present, overcoming then the effect of higher interlayer distance 

showed in mica. 
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As a result, the use of organically-modified layered silicates using cloisite 3 OB or 

other organo-modified MMT has been preferred. (Krikorian & Pochan (2003)) (Di et al. 

(2005)) (Kubies et al. (2006)) (Pluta (2006)) In some cases, it has lead to a clear 

intercalation and moderate dispersion of stacked silicate platelets and tactoids without 

achieving a fully exfoliation of individual silicates platelets. These nanocomposites 

showed improvements in mechanical and flexural properties, furthermore reducing the 

gas permeability. 

1.5 Water as intercalation-exfoliation agent 

Due to the hygroscopic character of natural clays, several studies have focused on 

the use of water as an intercalation/exfoliation agent. The use of starch slurries is more 

compatible with the thermoset polymers fabrication. Low molecular weight precursors 

can be more readily mixed with a clay slurry than a molten high viscosity thermoplastic 

polymer. For example, exfoliation in water has also been explored in water-based curable 

silicone emulsions. In this case, a surfactant was reacted with clay in water prior to 

mixing the clay suspension with the silicone emulsion. (Ma et al. (2005)). Similarly in 

another study, Na-MMT was exfoliated in water using stirring and sonication; water was 

then replaced as suspending media by acetone to form an acetone-clay slurry. A 

surfactant was added to modify the clay surface prior to mixing the slurry with a curable 

epoxy resin. The epoxy was cured after removing the acetone by evaporation resulting in 

exfoliated MMT/Epoxy nanocomposites (Wang et al. (2005)). 

Similarly, clay can be exfoliated in water in water-based monomer emulsions prior to 

polymerization of thermoplastic materials. This idea has been explored for laponite clay 
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(Herrera et al. (2004)) and for MMT. In the second case, Na-MMT has been mixed with 

monomer emulsion to produce composites with Polymethyl methacrylate (PMMA) (Lee 

& Jang (1996)) and polystyrene (PS) (Noh & Lee (1999)). In these studies, ion-dipole 

bonding was proposed as the main driving force responsible to intercalate and attach the 

polymers chains to the clay surfaces. 

Mixing a clay water slurry to a high molecular weight polymer is more challenging in 

terms of mixing and technological requirements. One route consists in using hydrophilic 

or water-soluble polymers where the polymer solution intercalates the clay prior to water 

removal. This was achieved in water-soluble Polyvinyl alcohol (PVA)(Strawhecker & 

Manias (2000)). The PVA was dissolved and later mixed with MMT slurry to produce a 

film by casting. The elastic modulus was doubled upon addition of 5% wt. of Na-MMT. 

Of course, water-solubility is not a common property for most polymers. In the case of 

non-water soluble polymers, the water must rapidly be replaced by the polymer matrix to 

stabilize exfoliated structure upon water removal. This complicates the interface 

modification strategy but is also more challenging from a technical point of view since 

the water must also be maintained in the system at elevated temperatures to prevent 

premature evaporation and then rapidly removed from the system to provide water-free 

materials. For this reason, polymer melt-extruders are the most sensible choice to provide 

the required closed environment as well as supplying a high level of mixing and the 

potential to remove the water at a high rate through devolatilization in a continuous 

fashion. The first successful water-assisted clay exfoliation in a molten polymer was 

reported into a polyamide 6 matrix (Hasegawa et al. (2003)). The main appeal for 
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assisting exfoliation with water was that it could be a way to prepare polyamide 

nanocomposites without the need to chemically modify the clays prior to the 

compounding step. In the reported method, the clay was suspended into water and this 

suspension was pumped at mid-extruder into the molten polyamide. The water was later 

removed in the last third of the extrusion process through devolatilization under vacuum 

to provide a water-free material at the end of the compounding step. Surprisingly, the use 

of a high water concentration did not induce significant hydrolysis of the polyamide. 

Homogeneous dispersion and high exfoliation were found. The mechanical properties 

showed improvements and were similar to those obtained when using organo-MMT. For 

reasons that were left unexplained by the authors, only the heat deflection temperature 

was not as high as those obtained with the organoclay. Using a variation of this extrusion 

method, it was also shown that polyamide 6-MMT blends could be prepared by mixing 

polyamide 6 and dry MMT in the first stage of a twin-screw compounding extruder and 

then adding water at the middle of extruder to assist the clay exfoliation step. Again the 

excess water was removed by a devolatilization stage near the end of the extruder (Yu et 

al. (2005)). Although mechanical properties were improved with this variant, the 

dispersion and exfoliation were better when the clay was fed to the process as a 

suspension in water. 

Water-assisted exfoliation was also investigated in natural Na-MMT/PP composites 

(Kato et al. (2004)). As in the work of Yu et al., all ingredients except water were first 

melted and mixed in the first section of the twin-screw extruder. The water was pumped 

at mid-extruder and removed by devolatilization before the end of the compounding 
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process. Best exfoliation was found when adding two compatibilizers to the mixture: 

octadecyl trimethyl ammonium chloride and maleic anhydride grafted PP. 

1.6 Objectives 

The main objectives of this work are 1) to investigate the water-assisted 

dispersion/exfoliation of natural MMT clay in polylactide/thermoplastic starch blends, 2) 

to investigate the effect of interface modification using PLAg on the nanocomposites 

microstructure and 3) to examine the relation between the nanocomposites microstructure 

and its mechanical behavior. Twin-screw extrusion was used to prepare the 

nanocomposites using the best compounding practices. The microstructure was 

characterized using state-of-the-art SEM, TEM, AFM microscopy and X-Ray diffraction. 

Mechanical properties were examined using standard tensile testing and the EWF 

methodology to finely probe the fracture resistance. Thermal properties were probed 

using standard DSC techniques on samples freshly molded as well as on samples aged up 

to 300 days. 
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CHAPTER 2 

FRACTURE MECHANICS IN POLYMERS 

2.1 Fracture Mechanics in Polymers 

The fracture of polymers is defined as a partial disintegration due to the formation of new 

surfaces. Loads, internal or external, provoke deformation in the specimen and enable the 

development of some damage that leads to the disintegration of the material. (Kinloch & 

Young (1983)) 

There are two clear stages in the fracture process. The first one is called initiation or 

activation of flaw or defects, the growth of the crack step does not appear during this 

time. (Kinloch & Young (1983)) This stage is irreversible and appears after the 

mechanical reversible deformation of the polymer matrix. The second stage is related to 

the growth of the initial deformed zone, the increment of the initial crack size, and the 

increase of the velocity of crack propagation. The crack propagation finishes when the 

crack size causes mechanical instability and leads to the final brakeage of the specimen. 

The crack behavior depends on the properties of the polymer matrix, specimen geometry 

and the conditions during the loading. (Kinloch & Young (1983)). In general, the 

polymer materials and their cracks can be classified as fragile or ductile. Materials with 

ductile behavior are associated with the presence of large plastic deformation before 

crack instability appears, large amount of energy dissipation and large deformation which 

takes place over a relative long time period. The yielding process before final breakage is 

always present in ductile failure. In contrast, brittle materials are characterized by low 
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energy dissipation, small deformation and lower presence of plastic deformation. The 

breakage in this type of materials is unexpected and catastrophic. The crack velocity is 

high in this case. 

Cracks are also classified by propagation's velocity. High crack propagation rates are 

directly related with high stress field at the crack tips, then the specimen shows rapidly 

instabilities to finally produce a specimen breakage. In low propagation rates, the crack 

shows a stable and uniform growth where loading is continuous and gradually applied on 

the specimen. 

Fracture mechanics is a very complex process that involves the nucleation and growth 

process of cracks with presence of dislocations, flip banding or other phenomena. (Broek 

(1984)) The geometry of specimens, temperature, force loading mode and speed and 

other environmental conditions also affect the fracture process. It can be assumed that all 

materials have initial and inherent defects in the form of inclusions, cracks, voids, etc. 

These defects can originate from a second phase added to the major phase, to debonding 

in composites, to fabrication defects or to fatigue cracks or creep cracks. The defects 

affect the mechanical performance of the materials decreasing the permissible loading 

capacity of them. The types of fracture found in a material can be associated with the 

imperfections present in it prior to failure. Defects such as dislocations, crazes, shear 

banding, precipitates and interstitial substitutional atoms are mainly discovered in ductile 

fracture while large defects such as cracks, surface scratches, inclusions and sharp 

notches in brittle fracture. 
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In polymers, there are two main mechanisms for crack production. (Roesler et al. (2007)) 

(Kinloch& Young (1983)) 

The first mechanism is known as crazes formation or crazing (Figure 2.1). Crazes are 

microscopically lengthened cavities of ~ 1 um to 10 um thicknesses and ~ 10 urn to 1000 

um of diameter. These individual cavities are connected by fibrils (Figure 2.2) which are 

made from several polymer chains with diameters of 10 nm to 100 nm. The fibrils take a 

volume fraction between 10 to 50% into an individual craze. 
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Figure 2.1. Micro-structure of a craze. (Roesler et al. (2007)) 
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(a) Initial stage (b) Lengthening (c) (d) (e) Formation 
amorphous Rearrangement Separation of microscopic 
regions of crystalline into blocks fibres 

regions (microfibrils) 

Figure 2.2. Schematic representation of the plastic deformation process of a semi-

crystalline thermoplastic. (Roesler et al. (2007)) 

The craze's length size is independent of the applied load. However, at high loads the 

number of crazes increases. The effect of the temperature in the craze's size is clear; an 

increase of temperature raises the craze's length. Craze formation (Figure 2.3) results 

from surface defects such as impurities, scratches or small cavities. The cavities have a 

few nanometers of length. Those defects caused stress on the material which then is 

plastically deformed generating fibrils and crazes. The craze's growth originates the 

fracture of the polymer. 

Craze mechanics is a characteristic present in amorphous polymers such as polyethylene 

terephthalate (PET), polystyrene (PS), polypropylene (PP), polymethylmethacrylate 
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(PMMA), polycarbonate (PC) and high impact polystyrene (HIPS) (Kausch et al. (1983)) 

(Jang et al. (1985)) (Bucknall (2007)) 
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Figure 2.3 Development of a craze by formation of cavities (Roesler et al. (2007)) 

Crazes should not be though of as micro cracks. In zones with crazes, the fibrils increase 

the fracture toughness. Thus, the strength of the material in that zone is only slightly 

reduced in comparison to the unloaded material. 

The second mechanism of plastic deformation in polymers is known as shear yielding. 

The shear yielding mechanics is based on the formation of shear bands. (Roesler et al. 

(2007)) (Kinloch & Young (1983)) Shear bands are created by a large plastic deformation 

becoming mainly visible under compression loads. The polymer chains are stretched and 

aligned under shear forces to form the shear band region (Figure 2.4) The convergence of 

some shear bands produces a crack. The shear bands appears at 45° and 60° with respect 

to loading direction 
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Figure 2.4 Formation of a shear band by local stretching and contracting of polymer 

chains. (Roesler et al. (2007)) 

2.1.1 Fracture Mechanics in Polymer Composites 

The addition of diverse types of particles as a reinforcement phase into a polymer matrix 

increases the tenacity and toughness of the neat polymer. The polymer composites show 

enhancement resistance to crack propagation by increasing the energy dissipated during 

the fracture process. (Roesler et al. (2007)) 

The incorporation of particles permits increase the plastic volume deformed at the crack 

tip, generating new fracture surfaces and acting as barriers for the crack fronts, increasing 

the energy needed to propagate a crack. 

The same mechanics for plastic deformation in polymers, crazing and shear yielding are 

present also in the deformation of polymer composite. However additional mechanics as 

crack-pinning (Figure 2.5) or cavitation (Kinloch & Young (1983)) are characteristic in 

polymer composites. In the crack-pinning mechanics, the addition of rigid particles 
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interacted with the crack front and the polymer matrix. In the crack-pinning, the crack 

length and shape is increasing by the pinning and bowing process, then the formation of 

tails at the rear of the particles and finally the reunification of crack front was produced. 

Thus the energy need to the fracture process is increasing and the fracture toughness is 

improved. (Kinloch & Young (1983)) 
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Figure 2.5 Schematic representations of the crack-pinning mechanics. Adapted from 

(Kinloch & Young (1983)) 

2.2 Fracture toughness in Polymers 

The fracture toughness is an intrinsic material property that quantifies the capacity of 

a material to absorb energy during the fracture process. Therefore, the fracture toughness 

can be used as a reference to compare different materials. 
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The loading modes are important in fracture mechanics; they are associated with 

relative crack face displacement for a cracked specimen. These modes are also known as 

crack propagation modes and are denoted as mode I, II and III. (Figure 2.6) 

Mode I: The tensile or opening mode. 

Mode II: The in-plane shearing or sliding mode. 

Mode III: The anti-plane shearing or tearing mode. 
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Figure 2.6 Three independent loading modes of crack extension, (a) opening: mode I, (b) 

sliding or shearing: mode II , and (c) tearing: mode III. (Gdoutos (2005)) 

2.3 Linear Elastic Fracture Mechanics (LEFM) 

This theory is based in the assumption that the materials are linear, elastic and isotropic. 

The presence or pre-existence of flaws type crack-like is a condition for crack initiation 

and later crack propagation process. The energy involved in the crack propagation and 

thus the increase of cracked surface is assumed as energy of fracture. The LEFM achieve 
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to relate the stress field, magnitude and distribution near to crack tip with loads applied 

distant from crack, and crack shape and size. 

2.3.1 Griffith's Theory: Energy Approach 

The first studies in this topic were presented by A. A. Griffith (1921) and were 

followed by numerous others (Gdoutos (2005)) (Kinloch & Young (1983)) (Perez 

(2004)) (Broek (1984)) (Bui (2006)) . The first criteria for crack propagation in solids 

used the idea of the transformation of energy between elastic energy in surface energy. 

The stress intensity factor was derived from the direct relation between the extension of 

the crack and the creation of new surfaces at the faces of crack. 

Griffith calculated the total potential energy of the system, using an infinite plate, in 

loading mode I, (Figure 2.7 a) containing a through-thickness crack of length 2a under 

tensile load. The total potential energy was expressed in the following equation. (Perez 

(2004)). 

U = U0-Ua-Uy (2.1) 

Where U is the total potential energy of the system, U0 is the elastic energy of the 

uncracked specimen, Ua is the energy consuming by introduction the crack in specimen 

and U7 is the surface energy or energy consuming by the development of the new crack 

surfaces. Griffith studies showed that fracture is related to the consumption of potential 

energy and that the same proposal can be applied for a plate with defined dimensions 

(Figure 2.7 b) obtaining the following equation (Perez (2004)) 

U-U.-&f2-l(7*Br,) (2.2) 
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Where a is one half crack length , B is the thickness, 4aB is the total surface crack 

area, ys is specific surface energy, E is the elastic modulus, a is applied stress, v is 

Poisson's ratio, P=l for plane stress and p=l-u2 for plane strain. 
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Figure 2.7 a) Infinite plate containing a crack of length 2a under stress at infinity, (b) 

Large plate containing an elliptical hole. 

If equation 2.2 is partially derived in terms of crack length and then equal to zero 

(d\J/da.=0). It is obtained an expression for critical crack size and for total surface 

energy. 

(Ml 
nfiaa2 

2/s = 
TrjSaa2 

(2.3) 

(2.4) 

By rearranging equation 2.4, the expression for stress intensity factor (Ki), for this 

particular geometry is as follows: 
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KI=a4na = P'Y''E (2.5) 

The stress intensity factor, K, corresponds to the amplitude of the crack tip stress 

singularity. 

I & M (2.6) 
fina 

Griffith work also showed that when the stress reached the critical stress, cc, the crack 

propagation process started. 

The stress intensity factor (K) can be used to describe the driving forces to crack a 

specimen. When the critical value of Ki is reached, this is denoted as (KJC). Kic is taken 

as a material property known as fracture toughness. The fracture toughness can be 

explained as the resistance to crack extension. KJC is used to compare different materials 

in presence of driving forces to crack them. KJC implies, in brittle fracture, 

The second derivative with respect to the crack length of equation 2.2 gives us an 

expression that indicates that the crack always has a tendency to grow and propagate 

inside this unstable system. 

2.3.2 Critical and strain energy release rate 

Equation 2.6, developed by Griffith, is derived on the assumption of brittle fracture 

without presence of plastic deformation. Researches E. Orowan (1950) and later G. R. 

Irwin (Kinloch & Young (1983)) (Perez (2004)) (Bui (2006)) introduced terms related 

with the plastic deformation. They observed the presence of plastic deformation for tested 

metal and polymer specimens. Orowan showed that the energy consumed during the 
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fracture process is much grater than surface-elastic energy assumed by Griffith. Orowan 

introduced a term relative to plastic deformation using as a reference the Griffith energy 

approach. Therefore equation 2.6 is modified as shown in equation 2.7 

^ H 0 p l £ (2.7) 
pna 

Where yp is the plastic deformation energy, this term was explained as plastic strain 

work yP during the fracture process. G. R. Irwin (1950) incorporated both energy terms ys 

and yp into a single expression G, as shown in equation 2.8 

G, = 2(rs+rP) (2.8) 

2 

G, (2.9) or in terms ol stress 
1 Eip 

a=\^- (2.10) 
\pna 

Irwin developed an expression to quantify the total elastic-plastic strain energy under 

tension loading called also strain energy rate G and G/ for the loading mode I. (Perez 

(2004)). The strain energy release rate Giy represents the energy consumed or supplied by 

the body elastic energy and external loads per unit length along the crack edge to create 

and increase the new fracture surface area. In the same way, as the stress intensity factor 

reaches a critical value, Gic is known as the critical energy release rate during the fracture 

process. 
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Combining equations 2.5 and 2.9, we obtain a relation between intensity factor and 

energy release rate. Equation 2.11 was developed for plane stress state and equation 2.12 

for the plane strain state case. 

G, 
E 

(2.11) 

G,= 
Kl(l-o>) 

(2.12) 

KJC and Gic are two of the most standard parameter used to quantify the toughness of 

materials before fracture. 

Irwin proposed that materials should be considerer as completely elastics up to the 

uniaxial tensile yield stress o, after that the plastic effect starts. This model described the 

extension of crack tip plasticity as shown in Figure 2.8 in addition Irwin worked on the 

crack-opening displacement at the crack tip (8) and the corrections to plastic zone size, rp. 

plastic zone 
rP--2r* 

Figure 2.8 Irwin model to plastic zone at the crack tip (Broek (1984)) 
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2.4 Elastic Plastic Fracture Mechanics (EPFM) 

Linear elastic fracture mechanics (LEFM) is based on materials that do not reach 

yielding during the fracture process. This assumption is only applied for materials that 

show brittle fracture. For most polymers and for some other materials, this hypothesis is 

unpractical and unrealistic to the study of polymer toughness. In consequence, the stress 

intensity factor K, basic concept in LEFM, is not adequate to describe the problem. 

Polymer systems are characterized by semi-ductile, ductile or rubber behavior. The 

LEFM's principles have no validity for polymers since they can not be consider as a 

linear solid body, and they present high plasticity at the crack tip. Then, it is necessary to 

extend the initial analysis considering the contribution of energy dissipation by plastic 

deformation. 

There are some approaches to explain the Elastic Plastic Fracture Mechanics (EPFM). 

Two of the most important models used are the J-Integral (Jic) and crack-tip opening 

displacement (CTOD). 

The experimental procedure to measure Jic consists in performing tests to achieve 

stable crack growths during certain lengths (Aa) and using several geometric identical 

specimens with the same crack length a. 

The crack resistance curves (Jic vs Aa) are plotted and Jic is defined as a point where 

the slope changes dramatically. Besides, its versatility, J-contour integral method lacks of 

precision when determining and measuring the extremely tiny increments of length crack 

(Aa). 



40 

The crack tip opening and tip displacement (CTOD) is also used to measure the 

fracture toughness of materials that show elastic plastic, plastic or transitions from ductile 

to brittle behavior. (Gdoutos (2005)) (Broek (1984)) (Wang (1996)) 

During the transition from the sharp crack tip to blunt tip due to plastic deformation 

process, a finite radius is produced at the crack tip. The radius and the crack-opening 

displacement at the crack tip (8) were estimated and developed by Irwin's model. 

It is possible to relate the critical CTOD with the J-contour integral. However this 

relation is not simple because CTOD as a parameter is not independent from specimen 

geometry and it depends on deformation field at the crack tip. This approach assumes a 

uniform deformation process. However, in polymers, the deformation is not 

homogeneous. For this reason the use of this method to derivate values of fracture 

toughness in polymer materials is limited. 

2.5 Essential Work of Fracture (EWF) 

As previously mentioned, the J-contour integral and CTOD criterions present 

limitations, such as lack of precision during the measuring of crack length (a and Ad) in 

the J- contour integral case, and the assumption of homogeneous plastic deformation 

during the fracture process for polymer specimens (Gdoutos (2005)). Those restrictions 

make difficult the study of fracture toughness in polymers or in polymer nanocomposites. 

Based on this previous work and using the principles derived by Broberg (Broberg 

(1968)) (Broberg (1975)) (Broberg (1982)) the theory of the essential work of fracture 

(EWF) was developed. An experimental method based on the EWF theory was developed 

to study the fracture behavior initially in ductile metals. Cotterrell and Reddel (Cotterell 
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& Reddel (1977)) revised and modified this first EWF method. In addition, they proposed 

the equivalence between the CTOD and the theoretical zero ligament length used in this 

method. Mai and Cotterrell (Mai & Cotterell (1986)) applied for the first time the EWF 

method in polymers. They tested specimens of polyamide 66 (PA66), HIPS and two 

grades of HDPE showing the applicability of EWF in polymers and relating the results 

obtained with the J-contour integral. Also the EWF method was tested in PET (Mouzakis 

et al. (2000)) and contrasted with the CTOD method and showed a bad agreement in the 

results between both methods. 

For ductile behavior materials, Broberg used a specimen containing a central notch 

and proposed that the plastic zone at the crack tip involve in the fracture process can be 

divided into two zones. The internal zone is called inner fracture process zone (IFPZ) or 

fracture zone and the second zone is called outer plastic zone (OPZ) or plastic zone. 

These two zones share deformations related with the plasticity flow or plastic 

deformation. Broberg assumed that the energy dissipated inside the fracture zone is 

constant and it should be assumed as a material property. 

On the other hand the plastic zone is not constant. It depends on the specimen 

geometry, loading mode and the ligament length (1). (Broberg (1968)) (Cotterell & 

Reddel (1977)) (Mai & Cotterell (1986)) 

The EWF method relies on concepts of energy to describe the mechanics of fracture 

in notched specimens. The EWF method assumes that the total energy (WF) involved in 

the fracture of a notched specimen can be also divided into two parts. One part is 

associated with the propagation of the crack, resulting in the formation of a new fractured 
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area. This energy is designated as the essential work of fracture EWF (WE) and it is 

associated with fracture zone (IFPZ). The other part is related to the volume being 

plastically deformed, this fraction is called the plastic work of fracture (Wp) or non-EWF 

and it depends of the specimen geometry and process zone. In addition the plastic work 

of fracture is related with plastic zone (OPZ) 

The total work of fracture can be described using the following general expression: 

WF=WE+WP (2.13) 

The energy associated with WE is related to the surface created during the fracture 

process. Then WE is proportional to the fracture area. On the other hand, Wp is directly 

proportional to the ligament length squared and depends on the volume of plastic zone. 

These assumptions were experimentally corroborated using polymer specimen Nylon 66 

(PA66), (Mai & Cotterell (1986)) PP, (Karger-Kocsis (1996)) and LLDPE. (Mai & 

Powell (1991)) 

Procedures and data analysis for the EWF method is more practical than for the J-

contour integral, CDTO and other parameters. Therefore, the EWF method is more 

commonly used to test the fracture toughness in polymers. However the EWF is not 

recognized as a formal standard test for polymers by ASTM or other organisms while for 

metals, it is a standard test. The total energy WF can be also expressed in terms of specific 

total energy (WF) and graphically WF can be expressed as the area under a load 

displacement curve such as the one shown in Figure 2.9: 
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Figure 2.9 Typical load displacement curve. 

The following expressions were developed from the general equation 2.13 

WF=\PdS=wFlt (2.14) 

Where 1 is the length of ligament, t is the thickness of the notched specimen. 

Equation (2.14) which is based on the previous assumptions can be rewritten in terms 

of specific values. 

WF = wElt + wp/3l2t (2.15) 

Where p is a shape factor related to the geometry of plastic zone, WE is the specific 

fracture work per unit of new produced area, and wp is the specific plastic deformation 

work or specific non-essential work per unit of plastically deformed volume. By dividing 

equation 2.15 by the nominal fractured area, we obtain a linear expression in function of 

the ligament length 1 to express the specific total work of fracture (WF). 

WF ~ WE + PWP-l (2-16) 
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Then, it is possible to determine the value of WE and fiwp from equation 2.16 by 

obtaining data for various ligament length 1. 

Based on the assumption that WE is a constant and characteristic of a material and that 

WF and (3 are independent of ligament length (Cotterell & Reddel (1977)); an experimental 

method was developed to derive these parameters. The experimental method requires the 

use of films or thinner sheets expected with this requirement to work under plane-stress 

conditions. The specimens, containing one lateral notch (DSENT) or double lateral 

notches (DDENT) are tested under tension. The test is accomplished by varying different 

ligament lengths. Using the data from tension is possible to plot different load 

displacement curves varying the ligament length as shown in Figure 2.9. The shape of 

these curves depends of the geometry of the tested specimen and the mechanical behavior 

observed during the test. Figure 2.10 
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Figure 2.10 Load displacement curves for different ligament lengths for 27TPS/PLA 

The specific energy related with the fracture process (WE) is calculated as the area 

under the load displacement curves and later divided by the fracture area. It is possible to 
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plot these energy values against their respectively ligament length value using equation 

2.16. This procedure is show in the Figure 2.11 

Ligament length, I 0 5 10 15 20 25 
Ligament Length (mm) 

Figure 2.11 Theoretical definition of specific EWF using the equation 2.16 (right) and the 

experimental determination of the specific EWF (left). 

The geometries of the specimens used in EWF method are the same for polymers and 

metals. Some of these geometries are showed in Figure 2.12. The most used specimen 

geometries are the deeply single edge notched tension (DSENT) and the deeply double 

edge notched tension (DDENT). Other possible specimen geometries include the deeply 

centre notched tension specimen (DCNT) (Mai & Powell (1991)), single edge notched 

specimen bend (SENB) tested in PA6,6/PP blends (Wong & Mai (1999)), and less 

commonly, the trouser specimen to simulate the loading mode III. All these geometries 

were tested in polymers. Among all these specimens, the DDENT specimen shows some 

advantages such as the achievement of total specimen collapse and a better repeatability 

of results (Moore et al. (2001)) 
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a <= 

Figure 2.12 Schematic of specimens used in EWF method, a) DDENT specimen, b) 

DSENT c) SENB d) DCNT d) Trouser tension. Adapted from (Mai & Cotterell (1985)) 

In our study, we choose to use the DDENT specimens for the advantages mentioned 

previously. The geometry and dimensions of the DDENT used was shown in Figure 2.13. 
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Figure 2.13 Geometry of double deeply notched tension specimen (DDENT) shows the 

ligament length and the schema of fracture and plastic zone shape. 

The EWF method is not yet considered an international standard for polymers. 

Nevertheless, since 1993, the European structural integrity standard (ESIS) proposed 

preliminary protocols for the application of the EWF method for polymers. The ESIS 

protocol has been revised in several occasions. Among these revisions, it is found that the 

experimental method to determinate the /? parameter and therefore wp from fiwp was 

discarded due to difficulties in measuring the boundaries of the plastic zone (Moore et al. 

(2001)) (Moore et al. (2001)) The experimental method of EWF, thought the last years, 

was modified, revised and developed by the European Structural Integrity Standard 

(ESIS) 
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A committee designed by the ESIS established some minimal conditions and 

restrictions for the validity of this technique. (Clutton (2000)) (Moore et al. (2001)) 

Three conditions are needed to warrant the quality of the results obtained. 

The first is about the ligament length, as we can see in Figure 2.14. The figure shows 

a region where the ligament lengths show a linear relationship, important to be in 

agreement with the linear equation 2.16. Based on this restriction, complete development 

of the crack tip plasticity before the crack propagation is assumed. (E.Clutton (2001)) 

(Moore et al. (2001)) (Mai & Cotterell (1986)) (Hashemi (1993b)) (Hashemi (2000b)) 

The ESIS T4 group proposed the following limits for the ligament length 

3t<l<min(W/3,2rp) (2.17) 

Where 1 is the ligament length, W is the specimen's width, and rp is the radius of the 

plastic zone. The restriction of/ <W/3 is used to avoid the edge effects produced at the 

plastic zone. On the other hand l<2rp was established as a condition to reach a total 

plastic collapse of the ligament. The determination of rp is based on the model used to 

describe the plastic zone .(Paton & Hashemi (1992)) (Hashemi (1997)) 

The other limit was established for plane stress conditions. The lower limit I > 3t was 

established for this objective. 
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Figure 2.14 Linear region for the ligament length validation. 

The second restriction for the EWF method is established in the following way. The 

local stress strength (amax) registered for the DDENT specimens varying the ligament 
lengths (Figure 2.15) must be lower or equal to 1.15 yield strength (oy) of the material in 

the standard uniaxial tensile test at an equivalent EWF test speed. (Hashemi (2000c)) 

(Hashemi (2000a)) 
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Figure 2.15 Validation of data by comparison with maximum strength based on the Hill's 

theory of plasticity. 
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Figure 2.15 shows the variation of local stress strengths along different ligament 

lengths. High values of the local stress strengths for low ligament lengths were found 

when a mixed mode was achieved. Based on the theory of plasticity proposed by R. Hill, 

(1950) (Mouzakis et al. (2000)), it is assumed that stress plane state is present when the 

variation of the local stress with the ligament length is minimal or when a plateau is 

reached. However the plane stress state also can be reach above the plateau predicted by 

Hill. 

The T4 ESIS committee proposal does not define a minimal ligament length; however 

it was proposed a range of valid ligament lengths using as a rule the maximal variation of 

the local stress strength with respect to the yield strength of the material (equation 2.18). 

(Clutton (2000)) (E.Clutton (2001)) 

0 .9<£m»<i . i (2.18) 

Both limits are not exacts, however this range is used to avoid or minimize to work under 

a mixed mode, plane strain-strain, when amax >1.1 cjy and to reach a total yield along the 

ligament before the final fracture for high values of ligament or in other works when 

Omax <0.9 Oy. 

The final requirement is self similarity of the load displacement curves for the 

different ligament lengths. The similar shape of these curves is one of the prerequisites 

adopted also for the ESIS. An example of the self similarity was shown in Figure 2.10. 

Although the main objective is the definition of wg, the specific plastic deformation work 

or specific non-essential work, wp is defined implicitly by the term ftwp The wp as 
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previously mentioned is not a property of the materials. However it provides information 

about the energy dissipation process during the plastic deformation and fracture of 

material that the parameter w^does not take into account. 

It is worth mentioning that until now it was not possible to separate w/> from the 

expression fiwp. The first attempts of the T4 ESIS group to determinate the values of /? 

based on the plastic zone shape such as diamond, circular, elliptical and other variations 

were taken into account until the ESIS protocol was published in 1993. In the next ESIS 

protocol this practice was discarded because of the inaccuracy of the methods used to 

describe the plastic zone border, measure of the implicated areas and problems in the 

repeatability of results. In Figure 2.16 it is shown the development of the plastic zone' 

shape during the EWF test. There, it is possible to notice the difficulty on defining the 

plastic zone shape. (Fig. 2.16 a to d). 

Figure 2.16 Infrared thermographic pictures of DDENT specimen of P-modification of 

isotactic polypropylene. (Karger-Kocsis (1996)) 
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The whole energy involved in the fracture process can be represented as the area 

under the load displacement curves. However the mode of partition of the energy 

involved in the individual process of initiation and propagation was subject of study. 

Cotterell and Mai suggested the specific essential work of crack initiation (%„;) 

should have a value lower than wE and WEM was independent of ligament length and 

depended of a critical CTOD. (Mai & Cotterell (1986)). By using the load displacement 

curves (Figure 2.17 a) it was possible to divide the area under the curve based on the 

point where the crack propagation started. From this point a straight line parallel to the 

linear portion of the load displacement curve was used to delimit the energy involved in 

the crack initiation. The 8;nj is the critic CTOD related with the crack initiation. This 

model was successful contrasted in polyamide 66 but not with HDPE. (Mai & Cotterell 

(1986)) (Mai et al. (1987)). A similar partition for the crack initiation was proposed by 

Karger-Kocsis et al and devolped by Hashemi (Mouzakis et al. (2000)) (Hashemi 

(2000a)). In this case the straight line from the crack initiation point is perpendicular to 

the x-axis (Figure 2.17 b). In our study, this second approach was used to limit the energy 

involved with the crack initiation. 
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Figure 2.17 Energy partitioning of the fracture process using load displacement curves a) 

model proposed by Mai and Cotterell. b) model proposed by Karger-Kocsis Modified 

from (Mai & Cotterell (1986)) (Ferrer-Balas et al. (1999)) 

2.5.1 Essential Work of Fracture in Polymer and Polymer Nanocomposites 

The EWF method was tested with good results to describe the fracture toughness in 

several polymeric systems such as polyethylene terephthalate PET (60.kJ/m2), 

polycarbonate PC (32.kJ/m ), polybutylene terephthalate PBT (30.kJ/m ), polyether-ether 

ketone PEEK (54.7 kJ/m2), polyetherimide PEI (40.8 kJ/m2), polyimide PI (66.25 kJ/m2), 

polyethylene naphthalate PEN (51.3 kJ/m2), cellulose acetate CA (13.8 kJ/m2) (Hashemi 

(1997)), Polypropylene carbonate copolymer (PPC) (ll.kJ/m2) (Fung et al. (2004)), 

amorphous copolyester (COP) (36.11 .kJ/m2)(Barany et al. (2003)) 

Fracture toughness shows to be independent of gauge length (40-120 mm) when using 

polypropylene homopolymer samples. However, the effect of crosshead speed or strain 
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rate influenced the values of WE-, 2 to 100 mm/min in iPP, (Ferrer-Balas et al. (1999)), 1, 

10, 70, 100 mm/min in ultra high molecular weight polyethylene UHMWPE, (Ching et 

al. (2000)) 5, 50, 500 mm/min in PA6 (Yamakawa et al. (2004)) and 0.0001 to 3 m/s in 

iPP and ethylene-propylene rubber/iPP blends (Grein et al. (2003)) and based on the 

resuts, the quasi-static test conditions was recommended. 

The effect of specimen geometry using DDENT, CT and SEN specimens in polybutylene 

terephthalate (PBT)/PC, ABS/PC, (Jingshen & Yiu-Wing (1996)) PA66, and PE (Mai & 

Cotterell (1986)), PBT (Hashemi (2000a)) showed similar values of fracture toughness 

and thus w^is a material's constant, independent of specimen geometry. 

Fracture toughness showed also to be independent of temperature, in certain ranges, when 

specimens of PC were tested under temperatures from 20° to 120°C (Hashemi & 

Williams (2000)). However, in samples of polybutylene terephthalate (PBT) (Hashemi 

(2000c)), wE decreased from 33.4 kJ/m2 (25 to 80 °C) to 27.51 kJ/m2 when the test 

temperature was 100 °C. Similar behavior was found in PA66/Ti02 , PA66/Si02 , 

PA66/AI2O3 (Zhang et al. (2006)) when test temperatures above 80 °C were used. 

The effect of aging time (0 to 50 days) on the fracture toughness was studied on 

copolyester resins (Chun-Hsin & Nairn (1998)) resulting in good stability of the 

toughness properties during the test time. 

The effect of thickness on the EWF was observed with specimens of thickness 125, 150, 

175, 190, 250, 350 and 500 (am using a polyester (Hashemi (1993a)), PC (Hashemi 

(1993b)) polyether-ether ketone (PEEK) (Hashemi & Yuan (1994)), and PBT (Hashemi 

(2000a)) 0.5, 1 and 1.5 mm in polyethylene terephthalate glycol (PETG) (Poon et al. 
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(2001)), 1.6 and 3.2 mm in PA6 (Yamakawa et al. (2004)), 3, 5, and 9 mm in PP and 

ABS specimens (Fasce et al. (2001)) and 12.5 mm in HDPE (Kwon & Jar (2007)) 

showed a good linear fit to calculate the WE , however high WE values were found using 

smaller thickness specimens than larger ones. A mixed state, plain strain/strain state 

related with bigger thickness can explain this difference. 

The loading modes I and II, tension and shear modes were compared using 

polyacrylonitrile butadiene styrene (ABS) samples. The results showed variations of at 

least 2.5 times in WE under shear mode than in conventional tension mode. (Kwon & Jar 

(2005)) 

The EWF method was also effectively used to test the interface adhesion between PP and 

PA (Lauke & Schueller (2001)) using DDENT specimens, where each half of the 

DDENT specimen contained one material. 

The EWF method was tested using polymer composites such as PP/CaCo3. (Gong et al. 

(2005)) The results showed that the addition of 10% of CaCo3 slightly decreased the 

fracture toughness of the composite, however the incorporation of 20 and 30% of CaCo3 

resulted in the lost of toughness ability in a half in comparison with the pure PP. 

The fracture toughness of nanocomposites was also measured using the EWF method. 

The addition of 2 and 4% MMT in HDPE/SEBg (Tjong & Bao (2007)) showed similar 

performance to neat HDPE, however the WE of nanocomposites showed reduced values 

in comparison with grafted HDPE. PP/organo-MMT nanocomposites (Bureau et al. 

(2006)) (Bureau et al. (2004)) were also tested, the results showed that the addition of 2% 
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of clay decreased the WE in comparison with pure PP. However the addition of 2% clay 

and PP-g-MA in the PP matrix showed an enhanced fracture toughness of 

nanocomposites. In PP/MMT/SEBS-gMA (Tjong et al. (2005)) showed that the addition 

of MMT (2 and 4% of organically modified MMT) causes a decrease of fracture 

toughness. However, increasing the content of SEBS-g-MA (from 5 to 20%wt.) reduces 

this behavior. Other system studied was a polyethylene-co-methacrylic acid 

ionomer/MMT (Yoo et al. (2007)). The incorporation of MMT (4 to 10% wt) on this 

polymer matrix decreased the toughness properties in comparison with the neat polymer. 

However, when only 2% of MMT was added, an enhancement in fracture toughness was 

found. 
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CHAPTER 3 

MATERIALS AND PHYSICAL PROPERTIES 

3.1 Thermoplastic Starch 

Starch is present as an energy reserve in many crops such as corn, wheat, potatoes, 

etc. Starch's granules (Figure 3.1) are a mixture of two polysaccharides known as 

amylose and amylopectin. (Figure 3.2) It naturally occurs as water-insoluble granules 

with a diameter of 1-50 microns. The proportion of amylose and amylopectin is related 

with starch origin. Starch is completely biodegradable in soil and water and has a 

hydrophilic character due to the presence of hydroxyl groups on the macromolecular 

chains. 

Figure 3.1 Optical micrographs of whole potato starch granules (Bastioli (2005)) 
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Figure 3.2 Molecular structure of amylopectin (Poutanen & Forssell (1996)) 

Native starch is not a thermoplastic material per se. Thermoplastic starch (TPS) is 

produced by gelatinizing the starch granules in the presence of a plasticizers under shear 

and at temperature above 100°C. After gelatinization, TPS becomes a completely 

amorphous material. (Figure 3.3) 
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Degradation 
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material 

Figure 3.3 Processing of TPS by extrusion (Van Soest et al. (1996)) 
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If starch is plasticized only with water, the starch will recrystallize over in time 

resulting a embrittlement (Van Soest et al. (1996)). The other problem encountered with 

water-plasticized starch is its dimensional stability since the water content in the material 

will be very sensitive to the humidity and temperature level. One first step toward 

decreasing this dependency is by using high boiling point plasticizers such as glycerol 

which is more stable. The second step is to blend TPS with a hydrophilic polymer. TPS 

has been blended with low density polyethylene (LDPE) (Rodriguez-Gonzalez et al. 

(2003)) (Rodriguez-Gonzalez et al. (2003)) (Favis et al. (2003)), PLA(Martin & Averous 

(2001)) (Huneault & Li (2007)) and polycaprolactone (PCL) (Shin et al. (2004)). 

3.2 Polylactide 

PLA is a biobased thermoplastic polymer obtained using a chemical synthesis process 

(Figure 3.4), more specifically by ring opening polymerization of lactide, a lactic acid 

cyclic dimer. (Figure 3.5) The lactic acid is derived from bacterial fermentation of 

dextrose obtained from corn starch. PLA is a linear aliphatic polyester and has similar 

physical, mechanical and optical properties to polyethylene terephthalate (PET). As a 

result PLA is an appropriate alternative as a food packing material. (Auras et al. (2005)). 

PLA has been blended with other polymers such as, poly(s-caprolactone) (Semba et al. 

(2006)), poly (R)-3-hydroxybutyrate, poly(ethylene oxide) and polyvinyl acetate) 

(Mehta et al. (2005)), poly(propylene carbonate) (PPC), poly(para-dioxanone) (PPD), 

Polyhydroxyalkanoate (Anderson et al. (2008)) to obtain less brittle and more flexible 

materials while keeping the PLA strength. 
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An interesting feature of PLA structure is related to the stereochemistry of its 

monomer. There are both L and D forms of lactic acid. The crystallinity of PLA, and in 

turn its physical properties, can be readily modified by varying the chemical composition 

in terms of L-and D- isomer during its synthesis. (Garlotta (2001)) Commercially 

available PLA generally comprise a major part of the L-LA component which is more 

easily produced using biotechnological processes. In this context, the D-LA content is 

used to disrupt the crystallization of the L-LA and control the final crystalline content of 

the material. Some of physical and mechanical properties of PLA are summarized 

respectively in Tables 3.1 and 3.2. 
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Figure 3.4 a) Cargill commercial manufacturing process of PLA (b) Manufacturing routes 

of polylactic acid (Sinha Ray & Okamoto (2003a)) 
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Figure 3.5 Ring-opening polymerization of lactide to polylactide. 

Table 3.1 Some physical properties of PL A (Marks (1999)) 

PROPERTY 

Degree of crystalline 

Density p 

Heat of fusion AHf 

Heat capacity Cp 

Glass transition 
temperature Tg 

Melting point Tm 

UNITS 

% 

gem"3 

kJ mol1 

JKV 

K 

K 

CONDITIONS 

D-PLA 
L-PLA 
D.L-PLA 

P(L-co-DL)LA 
Amorphous 
Single crystal 

L-PLA complete crystalline 

' L-PLA fiber 
As extruded 
After hot-drawing 

L-PLA of 

Mv = 5,300 
Mv = (0.2-6.91) xlO5 

L-PLA of various molecular weights 
D.L-PLA of various molecular 

D-PLA injection-molded, Mv = 21,000 

VALUE 

Semicrystalline 
0-37 
Amorphous 

1.248 
1.290 

146 

2.5 

6.4 

0.60 
0.54 

326-337 
323-330 

444.4 

L-PLA of various molecular weights 418-459 
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Table 3.2 Mechanical properties of PLA (Marks (1999)) 

UNITS CONDITIONS VALUt 

Tensile strength 

Tensile modulus 

MPa 

L-PLA film or disk, Mw = (0.5-3) x 105 

L-PLA melt-spun fiber 

L-PLA solution-spun fiber from 

D,L-PLA film or disk, Mw = (1.07-5.5) x 105 

Flexural storage modulus MPa 

L-PLA film or disk, Mw = (0.5-3) x 105 

M P a L-PLA melt-spun fiber 
L-PLA solution-spun fiber from 

L-PLA film or disk Mw = (0.5-3) x 105 

D.L-PLA film or disk, Mw = (1.07-5.5) x 105 

Shear strength 

Shear modulus 

Bending strength 

Bending modulus 

Elongation at yield 

Elongation at break 

MPa L-PLA pin 

MPa L-PLA melt-spun monofilament 

MPa L-PLA pin 

MPa L-PLA pin 

% 

% 

L-PLA film or disk, Mw = (0.5-3) x 103 

D,L-PLA film or disk, Mw = (1.07-5.5) x 105 

L-PLA film or disk, Mw = (0.5-3) x 105 

L-PLA fiber spun from toluene 
L-PLA melt-spun fiber, Mv = 1.8 x 105 

D,L-PLA film or disk, Mw = (1.07-5.5) x 105 

28-50 
Up to 870 

29-35 

1,200-3,000 

Up to 9200 

1,400-3,250 

1,950-2,350 

54.5 

1,210-1,430 

132 

2,800 

3.7-1.8 

4.0-3.5 

6.0-2.0 

12-26 
25 
6.0-5.0 

3.3 Layered Silicates: Clay Structure 

The surface properties and structure of the clay involve the final the properties of the 

nanocomposites. Also the chemical treatment and different procedures used to prepare 

the composites produced nanocomposites with different properties. 

Different types of clays and other natural materials, have been used in polymer as 

reinforced polymer matrix. 

Layered silicates are inorganic materials that are layered in crystal structure. Most of 

layered silicates are part of 2:1 phyllosilicates family (Figure 3.6). Natural clays like 

montmorillonite, saponite and hectorite, and synthetic silicates such as mica, kenyaite and 
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magadiite belong to the layered silicates family. Layered silicates have layer thickness 

around lnm and high aspect ratio in a range of 30 to 1000. (Krishnamoorti et al. (1996)) 

OAl,Mg 

• Tetrahedral 

• Octahedral 

• Tetrahedral 

Figure 3.6 Structure of 2:1 smectite clays. (Chen & Evans (2006)) 

Desirable characteristics in layered silicates are their ability to exfoliate in single 

layers while dispersed in a polymer matrix. Their capability of reaction or exchange on 

the silicate surface with guest cations is decisive to reach a stable intercalation. The use 

of clay platelets is attractive, because they have a high elastic moduli between 178 and 

265 GPa. (Chen & Evans (2006)) that can readily be put to profit because of the very 

high aspect ratio of the particulates in their exfoliated form. 

Montmorillonite, saponite and hectorite (Table 3.3) which belong to smectite family 

are the most commonly used in nanocomposites due to their high cation exchange 
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capacity and high aspect ratio. When the layered silicates are well dispersed inside a 

polymer matrix in single or dual platelets, the contact surface between the mineral and 

the polymer is a thousands time higher than in conventional composites. This big 

disparity in reactive-contact surface is responsible for the improved properties of the 

nanocomposites. 

Table 3.3 Chemical formula and characteristic parameter of commonly used 2:1 

phyllosilicates. (Sinha Ray & Okamoto (2003b)) 

2:1 
phyllosilicates 

Montmorillonite 

Hectorite 

Saponite 

Chemical Formula 

Mx(Al4-xMgx)Si802o(OH)4 

Mx(Mg6-xLix)Si8O20(OH)4 

MxMg6(Si8-^Alx) Si8O20(OH)4 

CEC 
(meq/100 g) 

110 

120 

86.6 

Particle length 
(nm) 

100-150 

200-300 

50-60 

M, monovalent cation; x, degree of isomorphous substitution (between 0.5 and 1.3). 

The typical structure of layered silicates consists of silicate layers. The lamellar 

structure consist in aluminum octahedral layers, tetrahedral silica layers and 

exchangeable cations between layers to satisfy overall balance. The stacking layers are 

regularly organized leaving a gap called the Van der Waals'gap, interlayer or gallery. 

The charges generated during the balance and counterbalance inside silicates galleries 

produce a moderate surface charge, cation exchange capacity (CEC). The values of CEC 

expressed in mequiv/100 gm are the average values of all silicate layers. Two general 

structural arrangements in layered silicates are observed: the tetrahedral and octahedral 

substituted structures. The layers are held through electrostatic and hydrogen-bonding 
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interactions. The surface of tetrahedral substituted layered silicates is negatively charged, 

for this reason the interaction between polymer and silicates is easier than octahedral 

case. (Sinha Ray & Okamoto (2003b)) (Tjong (2006)) 

For the case of montmorillonite, classified as a dioctahedral clay, arrangements of 

two fused silica tetrahedral sheets confine an edge-share octahedral sheet of aluminum or 

magnesium hydroxide. Isomorphic substitution of SiC>4 with (AIO4)" and (AlOe)" with 

(MgOe)"4 inside the layers causes a surplus of negative charges. This unbalance of 

charges is compensated with additional cations, alkali metal and alkaline earth, such as 

Na and Ca situated at interlayers. Molecules of water are linked with these cations. For 

this reason, montmorillonite has a hydrophilic character. 

Natural layered silicates cannot always be used to produce polymer nanocomposites 

because of the large interfacial forces between the polar mineral and the less polar 

polymer surface. Then, some form of compatibilization to produce nanocomposites with 

a high exfoliation degree. Only few polymers can react with natural layered silicates 

without any interfacial modification. For example, natural montmorillonite contains 

hydrated Na+ ions. Because of this particular aspect, it can only compatible with 

hydrophilic polymers such as polyethylene oxide (PEO), polyvinyl alcohol (PVA) and 

thermoplastic starch, poly(3-hydroxybutyrate) (Sanchez-Garcia et al. (2008)), anhydride-

cured epoxy (Wang et al. (2007)) (Chiu et al. (2007)). 

In this study, montmorillonite with commercial name Cloisite Na+® provided by 

Souther clay products were used. Some physical properties of this commercial MMT are 

presented in (Table 3.4 
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Table 3.4 Some physical properties of Montmorillonite Cloisite® Na+ (Souther-Clay-

Products (2008)) 

Physical Properties 

Specific Gravity 

Bulk Density 

Loss On Ignition 

Dry Particle Sizes: 

Moisture Content 

Cation exchange capacity (CEC) 

X-Ray Diffraction d-Spacing (001) 

Color 

2.86 g/cc 

0.1994 g/cc 

7.00 % 

2.00 urn; 10% 

6.00 urn; 50% 

13.0 urn; 90% 

2.00 % 

92.6 meq/ lOOg 

11.7 Angstroms 

Off White 

For the hydrophobic polymers, the usual strategy is to modify the hydration 

characteristic of layered silicates to produce a compatible reactive exchange surface with 

polymers. Usually the organic modification of layered silicates is performed by ion-

exchange reactions with cationic surfactants such as primary, secondary, tertiary and 

quaternary alkyl ammonium cations. Another method is to modify the interfacial 

properties of the polymers by grafting the polymer chains with reactive functional 
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groups. These reactive groups should be compatible with the natural or modified layered 

silicate surface. 

The function of the alkylammonium in organo-treated clays (Figure 3.7) is to 

decrease the surface energy of the silicate layer, so that the polymer chains can be 

anchored to the silicate surfaces and in this way increase a basal distance in layered 

silicate. This kind of modification also produces functional groups on silicate surface that 

can react with the polymer chains or use these reactive groups as initiators during the 

intercalation-polymerization process. (Vaia et al. (1994)) (Tjong (2006)) 

(a) (b) 

(c) (d) 

Figure 3.7 Arrangements of alkyl ammonium ions in layered silicates. Hatch areas are 

silicate layers (Vaia et al. (1994)) 
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CHAPTER 4 

PROCESSING AND CHARACTERIZATION OF 
TPS/PLA/MMT NANOCOMPOSITES 

This chapter is focused on the processing, equipments and techniques used to prepare and 

study of nanocomposites based on TPS/PLA blends. 

4.1 Processing of TPS/PLA/MMT Nanocomposites 

A Leistritz 34 mm co-rotating twin-screw extruder was used to prepare the 

compounds. The process configuration and screw configuration are shown in Figure 4.1 

and Figure 4.2. 

The starch incorporation and gelatinization method was based on the technique 

developed by (Rodriguez-Gonzalez et al. (2003)) (Favis et al. (2003)) (Favis et al. 

(2005)) and later adapted for PLA/TPS compatibilization by Huneault and Li (Huneault 

& Li (2007)). 

Pump: 
Clay-Starch 

Slurry 

Vacuum 
pump 

34 mm. Co-rotating 
Twin screw extruder 

Figure 4.1 Setup used to processing TPS/PLA/MMT nanocomposites. 
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Figure 4.2 Twin-screw process configuration for TPS/PLA blending and TPS/PLA/MMT 

nanocomposites. 

Dry starch, water, glycerol and MMT were intensively mechanically mixed to 

produce a homogeneous suspension, known as starch-MMT slurry. For all suspensions, 

glycerol content was set to 36 wt% relative to the final TPS phase after water was 

removed. Two TPS formulations were studied 27%TPS/PLA and 60%TPS/PLA. 

The starch-MMT slurry was incorporated within a twin-screw extruder by a 

gravimetric pump to better control of the mass flow at the hopper of twin-screw extruder. 

In the first part of the extruder, at 130°C, the starch passed thought destructuration and 

gelatinization processes. In the first half of the extruder, water was removed by vacuum 

devolatilization to obtain a water-free TPS prior to PLA incorporation and to avoid PLA 

degradation by water. Then TPS starts the intercalation process in MMT and water was 

expected to enhance the clay exfoliation. PLA or PLAg in molten state was added at mid-

extruder using a single-screw extruder as a side feeder at 180°C. In the second half of the 

extruder, also at 180°C, the TPS, PLA and MMT were intensively mixed to produce 

TPS/PLA/MMT nanocomposites. At the end-extruder a strand die was used, later water-

cooled, and the TPS/PLA/MMT nanocomposites were pelletized. 
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4.2.1 SEM Characterization 

Scanning electron microscopy (SEM) was carried out to examine the morphology 

of the TPS/PLA blend and nanocomposites. The SEM analysis was done using a JEOL 

JSM-6100 scanning electron microscope operated at 15 kV. The samples surfaces were 

microtomed at -100° C from tensile bars. Then, the TPS phase was selectively extracted 

by placing the samples in HC1 1M solution for 3 hours. The specimens were then dried 

for at least 12 hours prior to microscopic examination. 

4.2.2 TEM Characterization 

Transmission electron microscopy (TEM) was performed using a high resolution 

JEM-2011 TEM operating at 200 kV. The samples were cryo-ultramicrotomed from 

injected tensile bars in thin sections at -100° C using a diamond knife. 

Atomic force microscopy (AFM) was carried out using a Digital Instrument 

Nanoscope IV scanning microscope (Veeco Metrology Group) operated in tapping mode. 

Phase imaging mode was used to differentiate between the different phases present in the 

nanocomposites and in the TPS/PLA blends. 

4.2.3 X-Ray Diffraction 

X-ray diffraction measurements (XRD) were performed to investigate the 

intercalation and exfoliation of MMT clay. XRD was performed using a Bruker Discover 

8 diffractometer with CuKa radiation at 40 mA and 40K.V. To determine the degree of 
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exfoliation and intercalation, small angles between 0.8° and 10° were scanned. The 

Bragg's law (k=2dooisinhooi) was used to determinate the clay interlayer distance dooi-

4.3 Mechanical properties. 

4.3.1 Tensile Test 

ASTM Type I samples were injection-molded using a 30t Boy injection molder. The melt 

temperature was 180°C and the mold temperature was set to 30°C. The tensile 

measurements were carried out according to ASTM D638. Precise initial strain 

measurement for Young modulus calculations were obtained using clip-on gauge 

extensometers. The crosshead speed for the tests was 5 mm/min. Reported values are the 

average obtained from five samples. 

4.3.2 Toughness Fracture 

The toughness fracture test was executed using the European Structural Integrity 

Society (TC4) protocol. (E.Clutton (2001)) The samples were deeply double edge 

notched tensile (DDENT) specimens (shown in Figure. 5.2) with nominal dimensions of 

32 mm x 80 mm x 3 mm. The DDENT samples were machined out of 3mm thick 

rectangular bars that were injected at 180°C. The notches were created using a milling 

machine. The root tips were carried out by hand using a fresh razor blade into the notch 

roots. 
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Thirty samples for each set were tested. The ligament length, defined as the distance 

between notches, was varied between 3 and 21 mm. A longitudinal video extensometer 

was used to measure the specimen deformation. 

4.4 Thermal analysis 

Differential scanning calorimetric (DSC) was performed using TA instruments 

Q2000 equipment at heating and cooling rates of 10°/ min. The data reported in this study 

was collected from the second heating runs. 
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CHAPTER 5 

PROCESSING AND PROPERTIES OF 

PLA/THERMOPLASTICSTARCH/MONTMORILLONITE 

NANOCOMPOSITES 

5.1 Presentation of the article 

The objective of this article is to study the processing of polymer nanocomposites by melt 

reactive extrusion. Thermoplastic starch (TPS) and Polylactide (PLA) were the natural 

and biodegradable polymers used in this study. Natural montmorillonite (MMT) was 

added to the TPS/PLA blends as a reinforcing phase. 

Two TPS concentrations, 27 and 60% in TPS/PLA, and two loading concentrations of 

MMT, 2 and 5 % wt. in TPS/PLA/MMT, were evaluated in this research. 

Morphology studies were performed for the TPS/PLA blends and for the TPS/PLA/MMT 

nanocomposites. Fracture toughness was tested in the blends using the EWF method. The 

influence in the fracture toughness with the addition of MMT inside the TPS/ PLA blends 

was also analyzed. In addition, tensile and fracture toughness properties of TPS/PLA 

blends and nanocomposites were investigated. 

Nanocomposite structure, exfoliation and dispersion of MMT in the TPS/PLA blends 

were analyzed using X-Ray diffraction, transmission electron microscopy and atomic 

force microscopy. 

This article has been submitted for revision to the Polymer Composites. 
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5.2 Processing and properties of PLA/thermoplastic starch/montmorillonite 

Nanocomposites. 

O. H. Arroyo1'2, M. A. Huneault1*, B. D. Favis2, M.N. Bureau1 

industrial Materials Institute, National Research Council of Canada 
75, de Mortagne, Boucherville, QC, J4B 6Y4 

department of Chemical Engineering, Ecole Polytechnique de Montreal (CREPEC), 
Quebec, Canada H3C 3A7 

Abstract 

Thermoplastic starch (TPS) and polylactic acid (PLA) were compounded with natural 

montmorillonite (MMT) using a twin-screw extrusion process to investigate the structure 

and properties of these nanocomposites and to examine the use of water to enhance clay 

exfoliation. Tensile and essential work of fracture measurements were performed on 

standard dumbbell shape samples and on double notched samples to determine the effect 

of MMT and PLA/TPS interfacial modification on the mechanical and fracture properties 

of the materials. The nanocomposite structure was investigated using X-Ray diffraction, 

transmission electron microscopy and atomic force microscopy. Differential scanning 

calorimetric analysis was performed on the materials to determine the effect of TPS and 

MMT on PLA crystallization and physical aging. It was found that the thermoplastic 

starch can intercalate the clay structure and that the clay was preferentially located in the 

thermoplastic starch phase or at the blend interface. This led to an improvement in tensile 

modulus and strength and to a reduction in fracture toughness. 

Keywords: Thermoplastic starch; Polylactide; MMT; Nanocomposites; Fracture 

toughness. 

Corresponding author: Michel A. Huneault (michel.huneault@cnrc-nrc.gc.ca) 
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5.2.1 Introduction 

Thermoplastic starch (TPS) and polylactic acid (PLA) are two biobased materials that 

hold a promising future for the fabrication of compostable plastic articles. Thermoplastic 

starch is obtained through plasticization and gelatinization of starch. Because of its 

hygroscopic nature, thermoplastic starch is typically blended with another hydrophobic 

polymer [1] [2] [3]. PLA is also biobased but is obtained by a synthetic route. It is a 

linear aliphatic polyester that has physical, mechanical and optical properties similar to 

polyethylene terephthalate (PET) and has already been adopted in a small number of 

packaging applications. Compared to PET however, it suffers from lower temperature 

resistance, higher gas permeability and brittleness. This has prompted efforts in blending 

PLA with impact modifiers and/or fillers as means to improve its property balance. The 

first attempt to blend PLA with starch involved dry-starch granules [4] [5] [6] [7] [8] but 

resulted in very brittle materials. Recently however, it was shown that blending of PLA 

with thermoplastic starch (rather than dry-starch particulates) and a suitable 

compatibilizer could lead to homogenously-dispersed materials with high elongation at 

break [9]. 

The addition of nanoclays to form a polymer nanocomposite is another means to 

modify the property balance of a material. The addition of 2-5 wt% of exfoliated clays 

can lead to improvements in thermal, mechanical and flexural properties in comparison to 

the neat polymer [10] [11] [12] . The reinforcement of TPS with montmorillonite has 

already been a matter of study [13] [14] [15] [16] [17] [18] [19] [20] . In most cases, the 

intercalation is carried out during melt-extrusion or in a solvent prior to casting of thin 
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films. It was generally observed that the use of natural MMT leads to superior dispersion 

in TPS than the use of organically modified MMT. Several authors have reported 

advances on PLA nanocomposites using natural (unmodified) and organically-modified 

MMT [21] [22] [23] [24] [25] [26] [27] [28] [29] [30] . In this case, better MMT 

dispersions were found using organically-modified MMT. 

Due to the hygroscopic character of natural clays, several studies have focused on 

the use of water as an intercalation/exfoliation agent especially in curable systems. The 

use of clay slurries is more compatible with thermoset polymer fabrication since this 

usually involves low molecular weight precursors that can be readily mixed with clay to 

form a suspension. For example, exfoliation in water has been explored in water-based 

curable silicone emulsions [31], curable epoxy resins [32] and monomer emulsions to 

produce composites with polymethyl methacrylate (PMMA) [33] and polystyrene (PS) 

[34]. Mixing a clay suspension to a high molecular weight polymer is more challenging 

in terms of mixing and technological requirements. One route consists in using 

hydrophilic or water-soluble polymers where the polymer solution intercalates the clay 

prior to water removal. This was achieved in water-soluble polyvinyl alcohol (PVA)[35]. 

In the case of non-water soluble polymers, the water must rapidly be replaced by the 

polymer matrix to stabilize the exfoliated structure upon water removal. Successful 

water-assisted clay exfoliation in a molten polymer was reported into a polyamide 6 

matrix [36]. The main appeal for assisting exfoliation with water is that it could be a way 

to prepare polyamide nanocomposites without the need to chemically modify the clays 

prior to the compounding step. In the reported method, the clay was suspended into water 
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and this suspension was pumped at mid-extruder into the molten polyamide. The water 

was later removed in the last third of the extrusion process through devolatilization under 

vacuum to provide a water-free material at the end of the compounding step. Using a 

variation of this extrusion method, it was also shown that the blends could be prepared by 

mixing polyamide 6 and dry MMT in the first stage of a twin-screw compounding 

extruder and then adding water at the middle of extruder to assist the clay exfoliation 

step. Again the excess water was removed by a devolatilization stage near the end of the 

extruder [37]. Although mechanical properties were improved with this variant, the 

dispersion and exfoliation were better when the clay was fed to the process as a 

suspension in water. Water-assisted exfoliation was also investigated in natural Na-

MMT/PP composites [38]. 

The current study investigated the properties and structure of TPS/PLA/MMT 

nanocomposites prepared by twin-screw extrusion using an original water exfoliation 

strategy. Natural montmorillonite was added to the starch slurry in the hope that the clay 

exfoliation will occur during the intensive mixing of the starch-water-glycerol slurry. The 

study investigated the extent of clay intercalation/exfoliation, the selective localization of 

clay platelet within the PLA and TPS blend phases, and finally the mechanical properties 

and physical aging of these nanocomposites. 
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5.2.2 Experimental 

5.2.2.1 Materials 

The PLA (grade 2002D) was obtained from Nature Works LLC. It is a semi-

crystalline extrusion grade material with a D-Lactic acid content around 4%. Wheat 

starch, Supergel 1203 was supplied by ADM. Water and glycerol were used as starch 

plasticizers. Natural montmorillonite, Cloisite Na+, supplied by Southern Clay Products, 

was used as reinforcing phase. The maleic anhydride grafted PLA, PLA-g-MA, was 

prepared using 2% maleic anhydride (MA) and 0.25% peroxide initiator 2,5-dimethyl-

2.5-di(t-butylperoxy) hexane (Luperox 101, L101) provided by the Aldrich Company. 

5.2.2.2 Processing 

A Leistritz 34 mm co-rotating twin-screw extruder was used to prepare the 

compounds. The process configuration is shown in Figure 5.1. The starch incorporation 

and gelatinization method was based on the technique developed by Rodriguez-Gonzalez 

et al. [39] [40] [41] and later adapted for PLA/TPS compatibilization by Huneault and Li 

[9]. It consisted in feeding starch in suspension in a water-glycerol mixture in the feed 

hopper of the twin-screw extruder. Water was removed by vacuum devolatilization in the 

first half of the extruder prior to PLA incorporation. The PLA was added at mid-extruder 

using a single-screw extruder as a side feeder. In the current study however, clay was 

added to the starch suspension with the expectation that water will enhance the clay 

exfoliation. As a reference, clay was also introduced into the PLA to compare the two 

methods. The first half of the twin-screw extruder was set to 130°C in order to carry-out 
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starch gelatinization in presence of water and glycerol. The second half of the extruder 

used to mix the PLA/TPS mixture was operated at 180 °C. The blends were extruded 

using a strand die, water-cooled and pelletized. In all composites, the glycerol content 

was set to 36 wt% relative to the TPS phase. Since water is removed from the material, 

all compositions are given on a water-free basis. 

5.2.2.3 Morphological characterization 

Scanning electron microscopy was carried out to examine the study the TPS/PLA 

blend morphology. The SEM analysis was done using a JEOL JSM-6100 scanning 

electron microscope operated at 15 kV. The samples surfaces were microtomed at -100° 

C from tensile bars. Then, the TPS phase was selectively extracted by placing the 

samples in a HC1 1M solution for 3 hours. The specimens were then dried for at least 12 

hours prior to microscopic examination. 

Transmission electron microscopy (TEM) was performed using a high resolution 

JEM-2011 TEM operating at 200 kV. The samples were cryo-ultramicrotomed from 

injected tensile bars in thin sections at -100° C using a diamond knife. 

Atomic force microscopy (AFM) was carried out using a Digital Instrument 

Nanoscope IV scanning microscope (Veeco Metrology Group) operated in tapping mode. 

Phase imaging mode was used to differentiate between the different phases present in the 

composites and in the TPS/PLA blends. 

X-ray diffraction measurements (XRD) were performed to investigate the 

intercalation and exfoliation of MMT clay. XRD was performed using a Bruker Discover 
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8 diffractometer with CuKa radiation at 40 mA and 40KV. To determine the degree of 

exfoliation and intercalation, small angles between 0.8° and 10° were scanned. The 

Bragg's law (k=2dooisinhooi) was used to determinate the clay interlayer distance dooi-

5.2.2.4 Tensile property measurements 

ASTM Type I samples were injection-molded using a 30t Boy injection molder. The 

melt temperature was 180°C and the mold temperature was set to 30°C. The tensile 

measurements were carried out according to ASTM D638. Precise initial strain 

measurement for Young modulus calculations were obtained using clip-on gauge 

extensometers. The crosshead speed for the tests was 5 mm/min. Reported values are the 

average obtained from five samples. 

5.2.2.5 Essential work of fracture (EWF) 

The EWF method was initially developed for metals but has later been adapted to the 

study of nanocomposites [42] [43] [44] [45]. In the EWF method, load-displacement 

curves are obtained for various double-notched specimens in which the distance between 

opposing notches is varied. This distance is known as the ligament length /. The specific 

total work of fracture (wi) is given by. 

wF=wE+pwp.l (eq. 1) 
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where p is a shape factor related to the geometry of the process zone, WE is the 

fracture work per unit of area, and wp is the plastic deformation work per unit volume. It 

is then possible to determine the value of WE from data obtained for various ligament 

lengths /. The test was executed using the European Structural Integrity Society (TC4) 

protocol [46]. The samples were deeply double edge notched tensile (DDENT) specimens 

(shown in Figure 5.2) with nominal dimensions of 32 mm x 80 mm x 3 mm. The DDENT 

samples were machined out of 3mm thick rectangular bars that were injected at 180°C. 

The notches were created using a milling machine. The root tips were carried out by hand 

using a fresh razor blade into the notch roots. Thirty samples for each set were tested. The 

ligament length, /, was varied between 3 and 21 mm. A longitudinal video extensometer 

was used to measure the specimen deformation. The crosshead speed was set to 1 

mm/min, to generate quasi-static loading conditions. There are three conditions 

established in the EWF protocol to determine the validity of a test. First the deformation 

must occur in a plane stress state. The protocol establishes a range of ligament length (/) 

to ensure that this condition is satisfied. The criteria is that 3t < I < min (W/3, rp), where t 

is thickness of sample, W is width of sample and rp is plastic zone size [46] [47] [48]. The 

second condition is that all yield strength data must be within 10% of the average value 

of yield stress measured. The third condition is the self-similarity criteria which states 

that the load-displacement curves obtained for the various ligament lengths must have 

similar shapes. All EWF data reported in this paper satisfy these criteria. 

After the EWF test, the fracture surfaces of the DDENT specimens were analyzed 

by scanning electron microscope (SEM). The fractographic observations were useful to 



83 

determine the possible failure mechanics and the organization of the phases during 

fracture. 

5.2.2.6 Thermal analysis 

Differential scanning calorimetric (DSC) was performed using TA instruments 

Q2000 equipment at heating and cooling rates of 10°/ min. The data reported in this study 

was collected from the second heating runs. 

5.2.3 Results and discussion 

5.2.3.1 TPS/PLA Blend Morphology 

The first level of morphological investigation consisted in evaluating the 

TPS/PLA blend morphology and the effect of clay addition on the blend morphology. 

Figure 5.3 presents SEM micrographs of microtomed surfaced in which the TPS phase 

has been selectively extracted to improve the contrast. Micrographs are presented for 27 

and 60%TPS blends, for clay concentration of 0, 2 and 5%, with and without maleic 

anhydride grafted PL A (PLAg). The morphology of control blends without PLAg were 

extremely coarse and poorly distributed. The morphology changed dramatically when 

PLAg was added. The TPS phase decreased from 5-40 urn to the 1-3 urn range for the 

27%TPS blend and to the 2-5 um range for the 60%TPS blend. The distribution were 

more homogeneous and the TPS phase presented a spherical shape, as reported 

previously [9]. The addition of 2% wt. of MMT clay without PLAg lead to morphologies 

fairly similar to that of uncompatibilized TPS/PLA controls. When PLAg was added to 
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the composite, the TPS phase size was reduced as expected but not to the same extent as 

for the compatibilized controls. Similar micrographs were obtained when 5% MMT was 

added instead of 2%. The slight increase in TPS phase size upon MMT addition may be 

associated with an increase in the blend viscosity ratio. Since the clay is added in the 

starch slurry, it is expected to be preferentially located in the TPS phase. The MMT will 

therefore increase the viscosity of the minor phase and decrease its deformability in the 

dispersion process. 

5.2.3.2 Dispersion of Natural Montmorillonite in TPS/PLA 

The intercalation and exfoliation of the MMT clay was investigated using X-ray 

diffraction as well as with transmission and atomic force microscopy (i.e. TEM, AFM). 

The XRD spectra for TPS/PLA-MMT nanocomposites are shown in Figure 5.4. The 

XRD spectrum of neat Na+ was measured as a reference. It shows a peak at 20=9° 

indicating a basal spacing dooiof 1.08 nm. The basal spacing of the MMT was shifted to 

1.83 nm in 27%TPS blends and in the 60%TPS/PLAg blend. Weaker peaks indicative of 

basal spacing of 1.48 nm and 3.13 nm were found for the 60%TPS/PLA system. 

Therefore, there is intercalation into the MMT interlayers in all the formulations. The fact 

that similar diffraction peaks were observed for different TPS concentration and also 

using PLA or PLAg supports the assumption that it is the hydrophilic TPS phase and 

probably part of glycerol [15] [16] [17] [18] that are being intercalated into the MMT 

clay galleries. 
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Low and high magnification TEM images of TPS/PLA composites are presented 

in Figure 5.5. Partial intercalation inside the clay galleries can be observed in the high 

magnification TEMs in accordance with the XRD results. In all the TPS/PLA blends, 

large clay aggregates were present while few MMT stacks formed by 3 or less clay layers 

were located around the large aggregates. In general, there was not any preferential 

orientation of these large clay aggregates and clay stacks. The materials therefore 

presented a mixed variety of structure including agglomerates, intercalated structures and 

some exfoliated layers. Similar clay distributions were found in high TPS content blends 

and in the blends made using the PLAg. This indicates that the PLAg was effective in 

reducing the TPS phase size but did not have a significant effect on the MMT dispersion. 

One potential reason for this lack of effect may be that the clay platelets remained in the 

TPS phase without ever interacting directly with the PLA phase. 

To verify this assumption, low magnification TEM micrographs were taken to 

determine the global distribution of the MMT. Also, to further our understanding on this 

topic, additional experiments were carried out where the MMT was introduced in the 

PLA phase prior to mixing with the TPS instead of in the starch-water suspension. 

Figure 5.6 presents TEM micrographs for the nanocomposites based on the 

27%TPS/PLA (or PLAg) blend. In the left column, the MMT was incorporated in the 

starch suspension using the process described in the Experimental section. The MMT is 

thus intimately mixed with the TPS phase prior to TPS/PLA mixing. The micrographs for 

the case where the MMT was first mixed in PLA are presented in the right column for the 

same compositions. The contrast between the TPS and PLA was sufficient to 



86 

discriminate the two materials. It is clear from the left-column micrographs that when the 

MMT platelets were introduced first in the TPS phases, they remained in the TPS phase 

and did not cross the PLA/TPS interface. When the MMT was introduced in the PLA, an 

interesting result was obtained. The MMT platelets to a large extent migrated toward the 

TPS phase and entered it rather than staying in the PLA phase. Clay aggregates were 

located along the TPS/PLA interface. This trend was verified in all blends regardless of 

whether PLA or PLAg was used. Thus, the strong affinity between natural 

montmorillonite and the hydrophilic thermoplastic starch phase were sufficient to create 

this segregation effect. The preferential concentration of the MMT platelet within the 

TPS phase or at the interface contributed to reduce the total interfacial energy of the 

blend. Even in the case where the MMT was added to PLA, the convective forces present 

in the extruder enabled the particles to migrate and sometimes cross the blend's interface 

therefore reaching their lowest interfacial energy state. 

To corroborate these findings on the location of MMT platelets, the 

nanocomposites surface were examined by atomic force microscopy (AFM). Figure 5.7 

presents the AFM micrographs for the same formulations as Figure 5.6. Phase imaging in 

tapping mode was used to obtain contrast based on the surface hardness. The scanned 

zone presented in each picture has a 2um x 2um area. The dark zones are the TPS phase 

while the brighter zones are the PLA and MMT clay. There is a sharp contrast between 

the TPS and PLA phase. Within the TPS phases, the brighter irregular shaped platelets 

are the MMT phase. The MMT was found in the TPS phase regardless of the initial phase 

in which it was introduced. MMT was not detected in the PLA matrix. Similar results 
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were found for the blends containing 60%TPS. This confirms that the MMT tends to 

stays in the TPS phase and even to migrate from the PLA to the TPS phase when it is 

introduced in the PLA phase. 

5.2.3.3 Tensile Properties 

The tensile properties of TPS/PLA and TPS/PLAg with and without MMT are 

presented in Table 1, in which the properties of PLA, PLAg and MMT/PLA are reported 

for reference purposes. PLA and PLAg showed a similar high modulus, strength and low 

elongation at break typical for these polymers. MMT/PLA showed a slight increase in 

modulus and a 20% reduction in tensile strength, with similar low elongation at break. 

MMT/PLAg showed similar increase in modulus and low elongation at break, but 

maintained their tensile strength with respect to PLAg. This different trend in tensile 

strength for PLA and PLAg reveals the effect of particle-matrix affinity. 

Addition of soft TPS into PLA or PLAg led to, as expected, reductions in 

modulus and strength; 27%TPS showed tensile modulus over 2 GPa, while the one for 

60%TPS blends was around 1.3 GPa, close to typical polyolefm values. TPS/PLA 

showed marginal increases in elongation at break, while TPS/PLAg had elongation at 

break of the order of 50-60%. The use of PLAg instead of PLA with TPS thus enabled to 

maintain interesting tensile properties as it improved stress transfer between the soft 

minor phase and the rigid matrix. 
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MMT addition to 27%TPS/PLA and 60%TPS/PLA resulted in increases in tensile 

modulus respectively of 13% (to 3.34 GPa) and 53% (to 2.21 GPa), while tensile strength 

was only marginally affected (respectively -5 MPa and +5 MPa); in both cases elongation 

at break was decreased in the 5-15% range. It is noteworthy that since the MMT is 

introduced in the TPS and preferentially remained in that phase, the TPS phase in the 

60%TPS blends is less concentrated in MMT than in the 27% blend for a same overall 

MMT concentration. This may have enabled a higher relative fraction of exfoliation in 

the 60%TPS blends. This higher exfoliation degree in turn could explain the greater 

MMT relative effect on modulus observed with the 60%TPS blends. Addition of MMT 

in TPS/PLAg did not lead to important variations in tensile modulus when added at 2% 

but increased it when used at 5%. In all cases, the addition of MMT led to considerable 

reductions in elongation at break. This was expected because the TPS phase is embrittled 

by MMT [16] [17] [18] [19] [20]. 

The small changes, especially for the 27%TPS blends, and limited effect of the 

TPS/PLA interface modifier may be explained by the preferential location of the MMT in 

the TPS phase described earlier. The PLAg decreases the interfacial tension between the 

PL A and TPS phases but cannot interact much with the MMT particles located within the 

TPS phase. The preferential location in the TPS also explain the higher modulus and 

strength enhancement observed in the blends where the TPS is forming the major phase 

(i.e. at 60%TPS). 
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5.2.3.4 Essential Work of Fracture 

The load-displacement curves for the 27%TPS/PLA composition with and 

without PLAg and MMT are presented in Figure 5.9. Similar curves (not shown) were 

obtained with the 60%TPS/PLA nanocomposites. Two important observations can be 

made. The first one is that the obtained data satisfied the self-similarity criteria, i.e. the 

stress amplitude increased with the ligament size but that the overall shape of the stress-

strain curve remained the same. The second general observation is that all materials 

investigated in this study exhibited a relatively brittle behavior, i.e. initiation energy was 

significantly greater than the propagation energy. In order to compare the different 

materials, the specific work of fracture was plotted as a function of ligament size and is 

reported in Figure 5.5. The fracture initiation energy is represented by the solid data 

points. In order to calculate the overall energy involved in the breakup, the total energy is 

also presented using the open symbols. As expected, the specific work of fracture 

increased linearly with the ligament length. The crack initiation energy WE and the 

propagation/deformation fiwp term defined earlier were obtained from the Y-axis intercept 

and from the slope of curve. The values of WEM and WE.M as well as the non-EWF term 

fhvp and correlation coefficient (r2) are reported in Table 5.2. As observed from the 

curves in Figure 5.10, the data variability r2 is within an acceptable range (r2 > 0.78). 

Results obtained for pure PLA and of pure PLAg are also presented in Table 5.1. Both 

polymers showed a very small non-EWF term {fiwp), resulting in a small coefficient of 

linearity (expressed as correlation coefficient r2) and indicating that little plastic 

deformation occurred, which raises doubts that plane stress conditions fully developed 
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upon EWF testing. However, in the absence of EWF values reported in the literature for 

PLA and PLAg, the EWF values obtained for these materials will be used for comparison 

purposes herein. 

Results in Table 5.2 first indicate that PLAg has lower WE,M and WE.M values than 

PLA, probably as a result of its lower molecular weight. Results from 27%TPS/PLA 

show that TPS addition in PLA led to a considerable reduction in both WE,M and WE,M 

while fhvp increased dramatically. 27%TPS addition in PLAg on the contrary did not lead 

to such a reduction in WEM and WE,M values but lead to a similar increase in /3wp values. 

A similar but less pronounced trend was noted upon 60%TPS addition in both PLA and 

PLAg. It should be reminded that, in the compatibilized case, a much finer dispersed 

particle size was found as shown earlier. This resulted in less severe stress concentration 

sites in the rigid/brittle matrix, leading to voids that form at higher loads. Furthermore, 

the improved TPS-PLA interfacial adhesion resulted in increased fracture toughness and 

ductility in TPS/PLAg blends as a result of increased stress transfer between the PLAg 

matrix and the soft TPS domains. 

Results in Table 5.2 also indicate that 2%MMT addition in both 27%TPS/PLA 

and 27%TPS/PLAg reduced significantly their WE,M and WE,M values, and their J3wp 

values, with the exception of fiwPitot of 27%TPS/PLAg/2%MMT that increased by 

approximately 30%. MMT addition in these cases led to reduced fracture toughness. 

When 2%MMT is added to 60%TPS/PLA or 60%TPS/PLAg, a different trend was noted: 
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W£>/and Pwpttot values all increased significantly, showing that MMT addition resulted in 

an improved fracture toughness. 

5.2.3.5 Fracture Surface Analysis 

SEM observation of surfaces fractured in the EWF test was carried out to 

understand the fracture toughness data obtained for TPS/PLA blends and 

nanocomposites. The fracture surfaces of the 27%TPS/PLA blend series are showed in 

Figure 5.8. As expected, 27%TPS/PLA showed large voids, formed at TPS domains (> 

10 um), that grew and coalesced upon loading as a result of matrix fibrils stretching and 

tearing, until final fracture. In this case, final fracture occurred at reduced EWF values 

with respect to PLA as a result of poorly-bonded, large TPS domains within the brittle 

matrix. This fracture surface can be compared to the fracture surface of 27%TPS/PLAg at 

the same magnification. The latter figure indicates that fracture occurred again by void 

formation at the minor phase followed by matrix stretching and tearing, but it also 

indicates that considerably more voids were observed on the fracture surface, that they 

were considerably smaller and that matrix stretching and tearing was reduced 

significantly. Also, the stronger TPS-PLAg interface enabled matrix-particle stress 

transfer, which led to both phases contributing to bear the load during the tests. Once 

formed, the extension of the crack process zone, is highly limited, as shown by low 

matrix stretching and tearing, therefore lower non-EWF. 

MMT addition in TPS/PLA blends (Figure 5.6c) promoted the formation of numerous 

microvoids and tearing fibrils and lamellar ligaments. In some cases, MMT platelets were 
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visible in the voids on the fracture surface. In general, fibrillation appeared more intense 

in 27%TPS/PLA/2%MMT than in 27%TPS/PLA, but did not result in higher non-EWF, 

probably due to the reduced mobility of polymer chains and thus a more limited ability to 

be deformed plastically. In turn, this decreased the resistance to crack propagation. 

Similar observations were made for polyamide 6-MMT [49]. The fracture surface of 

27%TPS/PLAg/2%MMT showed features similar to those observed for 

27%TPS/PLA/2%MMT, in support of their similar EWF and non-EWF. 

5.2.3.6 Effect of MMT on PLA Crystallization 

Because of its rigid backbone, PLA has a low crystallization rate. A common way 

to increase the crystallization rate is to add nucleating agents to initiate crystallization at 

higher temperature and to add plasticizers to enhance PLA chain mobility [50]. It is 

therefore interesting to investigate the effect of the TPS phase and of the MMT on PLA 

crystallization. Figure 5.11 presents DSC heating scans at +10 °C/min for various 

TPS/PLA blends and MMT nanocomposites. All samples had been previously heated to 

200 °C and then cooled to -100 °C at a cooling rate of 10 °C /min. In these conditions, the 

PLA remained completely amorphous as revealed by the absence of melting peak. 

However when TPS was added to PLA, a weak crystallization exotherm was detected in 

the 110-135 °C range followed by a melting endotherm at 145 °C. Thus, the TPS phase 

increased the crystallization rate of PLA. Almost no crystallization peaks was present 

when the TPS was added to the PLAg. The addition of TPS did not have any effect on the 

crystallization of PLAg. Similar results were found for 60%TPS blends. In this case, the 
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peaks are weaker since the blends contain a smaller concentration of crystallizable PLA. 

The addition of 2% MMT in the TPS/PLA blends produces a further increase in the 

crystallization rate of PLA. For the 27%TPS blends with MMT, similar crystallinity 

levels were found. In all the formulations a double or a broad melting peak (double peak 

merged) was observed. This double peak has been reported before and is related to the 

formation of two types of crystalline structures [51]. MMT clay in small amounts 

increased the crystallization rate of PLA and PLAg. We assume that the clay layers or 

aggregates increased the nucleation density for the crystallization of PLA as reported 

previously for MMT/PLA and MMT/PET nanocomposites.[28] [52]. 

5.2.3.7 Changes in Physical and Mechanical Properties with time 

The embedded graph in Figure 5.12 shows typical DSC thermograms of TPS/PLA 

blends aged at 25 °C and 50% relative humidity for periods of 7, 15, 45 and 300 days. In 

all cases, an endothermic peak related to the excess enthalpy of relaxation was observed 

right around the glass transition temperature. The endothermic peak increased with an 

increase in storage time as result of an increase in the excess enthalpy of relaxation. 

Similar results were found for TPS/PLAg blends (not shown here). This peak has been 

associated with the physical aging of PLA and was shown to depend on aging time and 

storage temperature [53]. In the main graph of Figure 5.12, the area of the excess 

enthalpy relaxation peak of the PLA/TPS blends as function of aging time is compared to 

that reported for PLA. For neat PLA, obtained from Cai et al [53], the excess enthalpy 

increased rapidly during the first 30 days. The PLA blended with TPS or the one blended 
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with dry-starch reported by Wang et al [54] shows a similar behavior to that of the neat 

PLA. However, for the PLA in compatibilized blends and composites the excess enthalpy 

peak reaches a lower value. 

In order to verify the potential effect of aging on the mechanical stability of the 

investigated materials, their tensile properties were measured 300 days after their 

injection molding. Results are presented in Table 5.2 along with the as-molded properties 

already discussed. For PLA and its nanocomposites, the elongation at break and elastic 

moduli were similar while the tensile strength was slightly increased after 300 days of 

storage. For the TPS/PLA blends and nanocomposites, tensile properties were almost 

unchanged after 300 days. The use of PLAg as compatibilization agent and the addition 

of MMT clay as a reinforcing did not affect the blend stability either. AH changes are 

within the experimental uncertainty related to the tensile testing and to the residual 

humidity present in the materials at the time of testing. The property evolution of 

materials comprising thermoplastic starch, due to plasticizer migration or to starch 

retrogradation, is often emphasized as a potential drawback of starch-based blends. In the 

investigated blends and composites however, the stability of mechanical properties was 

not an issue over a period of 300 days. It can be postulated that the growth of the excess 

enthalpy of relaxation observed by DSC either has no significant effect on PLA 

properties and that the TPS particles are sufficiently well encapsulated inthe PLA matrix 

to prevent changes in plasticization or significant increase in humidity level. 
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5.2.4 Conclusions 

Na-Montmorillonite (MMT) Clay can be successfully incorporated into PLA/TPS 

blends through a water suspension to produce TPS/PLA/MMT nanocomposites. In the 

investigated composites, the clay particulates showed a greater affinity for the TPS phase. 

Therefore, the clay incorporated in the TPS phase remained in it while clay incorporated 

into the PLA phase migrated to the blend interface or even crossed the interface into the 

TPS phase. The addition of MMT clay increased the tensile modulus of the materials. 

This was most noticeable in TPS rich blends since the tensile modulus of the TPS is 

much lower than that of PLA. The fracture toughness and elongation at break decreased 

with the addition of clay. It was postulated that the clay preferentially located at the 

blends interface could reduce the interaction between the PLA and TPS phases in 

compatibilized blends resulting in lower stress transfer from the PLA matrix to the TPS 

dispersed phase. The addition of MMT produced a slight increase in PLA non-isothermal 

crystallization. Finally, it was shown that the TPS/PLA blends and the TPS/PLA/MMT 

composites have stable mechanical properties over a period of 300 days. 
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Figure 5.3. Morphology of TPS/PLA blends and Nanocomposites 
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Figure 5.5. TEM micrographs of a) 27%TPS/PLA/2% MMT at low magnification and b) 
high magnification and of c) 27%TPS/PLAg/ 2% of MMT at low and d) high 
magnification. 
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Figure 5.6. Low magnification TEM micrographs in 27% TPS/PLA/ 2% MMT blends 
where the MMT was initially located either in the starch suspension or in the molten 
PLA. 
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Figure 5.9. Load-displacement curves of DDENT samples with different ligaments length 
for: a) 27TPS/PLA, b) 27TPS/PLAg, c) 27TPS/PLA/2%MMT and d) 
27TPS/PLAg/2%MMT. 
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Figure 5.9 (continued). Load-displacement curves of DDENT samples with different 
ligaments length for: a) 27TPS/PLA, b) 27TPS/PLAg, c) 27TPS/PLA/2%MMT and d) 
27TPS/PLAg/2%MMT. 
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Figure 5.10. Specific work of fracture for crack initiation as a function of ligaments 
length. WE,i: crack initiation specific work (closed circles) and WE,t: total specific work 
(open circles) for a) 27TPS/PLA, b) 27TPS/PLAg, c) 27TPS/PLA/2MMT and d) 
27TPS/PLAg/2MMT. The lines represent least square fits. 
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Figure 5.10 (continued). Specific work of fracture for crack initiation as a function of 
ligaments length. WE,I: crack initiation specific work (closed circles) and WE,t total 
specific work (open circles) for a) 27TPS/PLA, b) 27TPS/PLAg, c) 27TPS/PLA/2MMT 
and d) 27TPS/PLAg/2MMT. The lines represent least square fits. 
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Table 5.1. Tensile mechanical properties of investigated materials after injection molding and 

after 300 days. Standard deviations are reported between parentheses. 

Material TPS 
(wt%) 

E 
(GPa) 

Omax 

(MPa) (%) 

PLA 
0% Clay 

2% Clay 

5% Clay 
PLAg 

0% Clay 

2% Clay 

5% Clay 
27TPS/PLA 

0% Clay 

2%5I§)L 
60TPS/PLA 

0% Clay 

2% Clay 
27TPS/PLAg 

2% Clay 

5% Clay 
60TPS/PLAg 

0% Clay 

2% Clay 

5% Cla)L 

0 

0 

0 

0 

0 

0 

27 

27 

60 

60 

27 

27 

27 

60 

60 

60 

ODay 

3.84 
(0.2) 
3.98 
(0.2) 
4.14 
(0.2) 
3.82 
(0.3) 
3.89 

4.22 
(0.3) 
2.95 
<0 ;31 
3.34 
(0.1) 
1.44 
(0.1) 
2.21 
(0.2) 
2.48 
(0.1) 

[ 2.47 
(0.1) 
2.73 

1.28 
(0.3) 
1.34 
(0.1) 
1.89 
(0.2) 

300 
Days 
3.67 
(0-7) 
3.91 
(0.3) 
4.07 
(0.2) 
3.80 
(0-3) 
3.81 
(0-1) 
4.03 
(0-2) 
2.50 
(0.1) 
2.28 
(0.2) 
1.27 
(0.1) 
2.43 
(0.2) 
2.51 

2.24 
(0-1) 
2.01 

(M) _ 
1.27 
(0.3) 
1.09 
(0.1) 
1.77 

J0.1L 

0 Day 

57.70 
(3,1) 

48.60 
(1.7) 
45.80 
(1.4) 

45.70 
(1.3) 
45.00 
(2,4) 

46.20 
(2.2) 
29.10 

JUL 
35.60 
(0.7) 
17.10 
(1.2) 
20.21 
(0-2) 

r 39.40 
(1-5) 
28.30 
(1.1) 
30.80 

13.21 
(1.60) 
16.20 
(1.0) 
16.37 

_J1-2) 

300 
Days 
61.13 
(1,4).. .. 
52.74 
(0.9) 
51.63 
(0.9) 
55.23 
(0.7) 
53.14 
(0.9) 
51.83 
(0.7) 
32.24 
(0.5) 
27.02 

. (0,51 _ 
17.69 

„._1P^) 
22.31 
(0.2) 
40.02 

_J°^L_ 
27.81 
&5L_. 
25.86 

_ (141 , 
15.08 
(0-1) 
15.10 
(0.7) 
19.44 

_(ML 

ODay 

5.97 
(1,2) 
5.65 
(1.7) 
6.44 

J1-2).. 
8.12 
(2.9) 
9.29 
(4.2) 
8.75 
(2-9) 
7.38 
(1.1) 
4.00 
(0.3) 
19.09 

J2^]__ 
14.42 
.(5J) 
50.35 

_ ( 3 1 3 L 
4.68 

_I9JBL_ 
4.05 
(0.3i_ 
60.07 
(15.2) 
10.91 
(2.6) 
9.48 
(0.7) . 

300 
Days 

6.18 
(2:9) 
5.76 
(1.4) 
7.53 
(2.0) 
7.43 
(3.8) 
9.88 
(2-1) 
8.55 
(2.2) 
16.30 
(3,7) 
5.41 
(1.1) 
28.74 
L4-3) 
21.22 
(10-9) 
44.97 
(32.9) 
6.69 
(1.3) 
6.28 
(i-71_. 
67.0 

(12-3) , 
13.43 
(2.7) 
10.4 

_ (0,9) 
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Table 5.2. EWF test results 

Materials wEiini (pwP)ini ? wEm (/3wPW 2 
(kJ/m2) (MJ/m3) (kJ/m2) (MJ/m3) 

PLA 0%Clay 7.91 0.06 0.02 13.09 0.27 0.23 

2% Clay 2.38 _ 0.32 0,46 2.87 0.5J3 0.88 

5% Clay 3.31 0.31 0.74 5.40 0.61 0.75 

JPLAg 0%Clax 6.11 0.06 O 0 4 _ VL83_ 030. P:39 

2% Clay 2 , 1 7 0 . 5 0 0.46 4.59 0.69 0.69 

5% Clay 4.35 0.18 0.61 4.89 0.46 0.72 
27TPS/PLA 

0%Cla£_ 2.88 _ 0,28 0.73 5,18 0.94 0.93 

2% Clay 2.33 0.12 0.42 2.92 0.38 0.77 
60TPS/PLA 

0%Clay 1.82 0,174 0,64 3.45 0,65 0,77 

2% Clay 3.4 0.19 0.63 7.27 0.89 0.86 
27TPS/PLAg 

0%..CJay 7.56 0.41 0.73 10.22 0.61 0.82 

2% Clay 2.98 0.22 0,63 _ 4.69 0,90 0.83. 

5% Clay 2.32 0.08 0.37 1.48 0.35 0.82 
60TPS/PLAg 

q%CJay 2.95 0.18 0,74 4,84 0.44 0,79 
__2%C!ay__2 :45 J141 _ a 8 2 _ _ § , 9 6 1 . 4 5 0,91 

5% Clay 2.30 0.38 0.94 7.40 1.32 0.92 
^: squared correlation coefficient 
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CHAPTER 6 

GENERAL DISCUSSION 

This study focus on the ductility enhancement of the material resulting from 

montmorillonite added to polylactide thermoplastic starch blends. The following findings 

related to nanocomposites were observed, 

The segregation effect for MMT, which remained inside the TPS phase or along the 

blend interface or even crossing the interface from PLA to TPS, was unexpected. This 

effect manifests the strong polar affinity between TPS and MMT and the lack of it 

between MMT and PLA. In addition, the preferential location of MMT along the 

interface might be due to an effect of glycerol migration towards the interface. 

Glycerol is expected to form a layer along the interface, attracting the MMT towards 

this position. This last assumption needs to be further corroborated to this 

nanocomposites system. However, the attraction between MMT and glycerol has 

been already assumed (Chen & Evans (2005)). 

- The segregation effect in the montmorillonite clay is also responsible for the localized 

clay concentration inside the TPS phase which was superior to the nominal 

concentration for the whole material. This increase of clay concentration, in some 

cases surpassing the 5%, obstructed the intercalation and exfoliation clay mechanics. 
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The introduction of nanoparticles in polymer matrices provides evidence of 

enhancement in the nanocomposites properties, in particular mechanical properties 

for low clay concentrations. At high concentrations, the material exhibit ceramic 

behavior. Consequently, the reduction of clay concentration for future tests is 

recommendable as well as the use of a chemical agent to reach and enhance the 

homogeneous exfoliation in both phases, and avoid the accumulation at the TPS 

phase. 

- Fracture toughness, studied by the essential work of fracture method, and the tensile 

properties of the nanocomposites seems to be negatively affected. Clay accumulation 

is again responsible for this behavior. The TPS was embrittled by the clay, but at high 

TPS concentrations, where the clay accumulation was lower, the fracture toughness 

and some tensile properties were improved showing the effect of addition and 

accumulation of clay in the TPS/PLA blends. 
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CHAPTER 7 

CONCLUSIONS AND RECOMMENDATIONS 

7.1 Conclusions 

The following conclusions about processing and characterization of TPS/PLA/MMT 

nanocomposites were extracted from this study. 

- The slurry approach combined with melt extrusion, proved to be an adequate method 

to incorporate Na-Montmorillonite (MMT) into PLA/TPS blends and produce 

TPS/PLA/MMT nanocomposites. 

In this study, water is used as a pre-dispersant of pristine untreated montmorillonite. 

The MMT dispersion started during the initial mixing of the starch, water and MMT, 

and then it continues when the starch/MMT slurry was pumped and intensively mixed 

across the first part of the twin-screw extruder. The water dispersion implies the water 

molecules pre-occupied clay interlayer positions, increasing the interlayer spacing of 

the natural montmorillonite, forming strong hydrogen bond interactions between 

water and MMT, and promoting the starch macromolecular chains to diffuse easily 

between the clay platelets and anchoring on the silicate surface. 

- In the incorporation of MMT by starch slurry to produce TPS/PLA nanocomposites, 

Na-MMT showed a preferable trend to remain inside the TPS phase or along the 

interface. A limited migration of MMT between phases was also noticeable. 

However, when MMT and PLA were incorporated together, an unexpected migration 

of MMT from the PLA phase to the blend interface, even crossing the interface into 
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the TPS phase, was observed. This behavior is supposedly due to strong polar 

interactions between Na-MMT and TPS and the repellent forces between Na-MMT 

and hydrophobic PLA, creating this segregation effect. 

- The tendency of MMT to remain inside the TPS phase caused the clay concentration 

at TPS phase to be superior to the nominal concentration (2 or 5% MMT) for the 

nanocomposites. This effect complicated the intercalation and exfoliation process of 

MMT into TPS phase and provoked reductions in the tensile properties and fracture 

toughness of nanocomposites in particular at low TPS concentrations, where the 

MMT concentration is high. 

- The addition of MMT increased the tensile modulus of the material. This effect was 

most noticeable in TPS rich blends since the tensile modulus of the TPS is much 

lower than that of PLA. 

The fracture toughness in TPS/PLA blends was enhanced with the incorporation of 

maleic anhydride. (WE,M was enhanced in 160% at 27%TPS, and 62% at 60%TPS). 

The incorporation of clay in TPS/PLA blends decreased the fracture toughness of 

nanocomposites (wE,im was reduced in 60% and 70% at 27%TPS/PLAg and 17% and 

22% at 60%TPS/PLAg with the addition of 2 and 5% MMT). However, the wE,tota! 

was enhanced only at 60%TPS, this suggest a better MMT dispersion at high starch 

concentrations, which is in agreement with the XRD results. 

- The elongation at break in TPS/PLA blends was improved with the addition of maleic 

anhydride. However, it decreases with the incorporation of MMT into the blends; the 

reduction was evident at low concentration of TPS, indicating embrittling of the TPS 
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phase by MMT. It was postulated, the clay, preferentially located at the blends 

interface, and the accumulation of MMT in TPS phase, specially at low concentration 

of TPS, could reduce the interaction between the PLA and TPS phases in 

compatibilizer blends resulting in lower stress transfer from the PLA matrix into the 

TPS dispersed phase, and thus explaining the reduction in the fracture toughness and 

elongation at break in our nanocomposites. 

The effect of interfacial modification with the incorporation of maleic anhydride 

(MA) showed effective to reduce the TPS phase size, enhance the interfacial adhesion 

between TPS and PLA, and improved the elongation at break in the TPS/PLA blends. 

- The morphology for TPS went from a coarse TPS domain structure with poor 

dispersion to a round fine TPS with good dispersion, confirming PLAg is effective in 

reducing the TPS phase size. The addition of MA also diminished the effects 

produced in the morphology by the addition of MMT in TPS/PLA blends. However 

the effect on fracture toughness, elongation at break and the MMT 

dispersion/intercalation in our nanocomposites was not significant. 

- In TPS/PLA blends the TPS phase increased the crystallization rate of PLA, but not 

when the TPS was added to the PLAg. The incorporation of MMT provoked a slight 

increase in non-isothermal crystallization of PLA. The MMT aggregates acted as 

nucleation agents during PLA crystallization. 

- Finally, increments in the excess enthalpy of relaxation in time were observed by 

DSC in TPS/PLA blends. The tensile properties in TPS/PLA blends and 

nanocomposites were tested over a period of 300 days and showed marginal 
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increments in the elongation at break and the elastic modulus while the tensile 

strength remained stable for the compatibilized and uncompatibilized TPS/PLA 

blends and their nanocomposites. Thus, it was shown the TPS/PLA blends and their 

nanocomposites have stable mechanical properties over a period of 300 days, the 

detected increment of the excess enthalpy of relaxation has no significant effect on 

the tensile properties and, the TPS particles are sufficiently well encapsulated in the 

PLA matrix to prevent changes in plasticization or significant increase in humidity 

level. 

7.2 Recommendations 

- Based on our results, the slurry-approach/melt-extrusion method seems to be a 

viable alternative to prepare nanocomposites of pristine montmorillonite with 

other non-water soluble polymer matrices. 

- The observed tendency of MMT to remain into the TPS phase or along the blend 

interface causes a high concentration of clay in TPS. Therefore, it was necessary 

to decrease clay concentrations (e.g. 0.5% and 0.2%) in order to reach a better 

degree of intercalation/exfoliation and improvement in terms of fracture 

toughness and elongation at break. 

- The biodegradability of the bio-based materials developed in this study and the 

effects on the biodegradation of TPS/PLA blends with addition of natural clay 

should be investigated. 
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- The materials studied have potential application in the food packaging industry. 

With this application in mind, the water vapor transmission rate with clay 

concentration should be assessed. 

- The search and incorporation of an agent containing an active group, which reacts 

with starch molecules and PLA chains promoting the clay intercalation exfoliation 

joint to maleic anhydride grafted, is necessary to improve the fracture toughness 

and better stress transfer between domains. 

- Alternative ways to improve the clay intercalation and exfoliation degrees are 

varying the sonication time, or/and the use of hot water at different temperatures 

during the preliminary mixing of water, starch and MMT. 



REFERENCES 

122 

Alexandre M., Dubois P. (2000). Polymer-layered silicate nanocomposites: Preparation, 

properties and uses of a new class of materials. Mater Sci Eng R Rep, 28:1-2, 1-63 

Anderson K.S., Schreck K.M., Hillmyer M.A. (2008). Toughening polylactide. Polymer 

Reviews, 48:1,85-108 

Auras R.A., Singh S.P., Singh J.J. (2005). Evaluation of oriented poly(lactide) polymers 

vs. existing PET and oriented PS for fresh food service containers. Pack Technol 

Sci, 18:4, 207-216 

Barany T., Czigany T., Karger-Kocsis J. (2003). Essential work of fracture concept in 

polymers. Period Polytech Mech Eng, 47:2, 91-102 

Bastioli C. (2005). Handbook of Biodegradable polymers. Shawbury: Rapra Technology 

Limited. 

Bharadwaj R.K. (2001). Modeling the barrier properties of polymer-layered silicate 

nanocomposites. Macromolecules, 34:26 9189-9192 

Broberg K.B. (1968). Critical review of some theories in fracture mechanics. Int J Fract, 

4,11-18 

Broberg K.B. (1975). On stable crack growth J Mech Phys Solids, 23:3, 215-237 

Broberg K.B. (1982). The foundations of fracture mechanics. Eng. Fract. Mech., 16:4, 

497-515 

Broek D. (1984). Elementary engineering fracture mechanics. The Hague: Martinus 

Nijhoff Publishers. 



123 

Bucknall C.B. (2007). New criterion for craze initiation. Polymer, 48:4, 1030-1041 

Bui H.D. (2006). Fracture Mechanics. Inverse Problems and Solutions. Dordrecht: 

Springer. 

Bureau M.N., Perrin-Sarazin F., Ton-That M.T. (2004). Polyolefin nanocomposites: 

Essential work of fracture analysis. Polym. Eng. Sci., 44:6, 1142-1151 

Bureau M.N., Ton-That M.T., Perrin-Sarazin F. (2006). Essential work of fracture and 

failure mechanisms of polypropylene-clay nanocomposites. Eng. Fract. Mech, 

73:16,2360-2374 

Capkova P., Votinsky J. (2000). Molecular mechanics simulations of intercalates. Mol 

Cryst Liq Cryst Sci Technol Sect A Mol Crys Liq Cryst, 341, 301-307 

Chen B., Evans J.R.G. (2005). Thermoplastic starch-clay nanocomposites and their 

characteristics. Carbohydr Polym, 61:4,455-463 

Chen B., Evans J.R.G. (2006). Elastic moduli of clay platelets. Scripta Mater, 54:9, 1581-

1585 

Ching E.C.Y., Poon W.K.Y., Li R.K.Y., Mai Y.-W. (2000). Effect of strain rate on the 

fracture toughness of some ductile polymers using the essential work of fracture 

(EWF) approach. Polym. Eng. Sci., 40:12, 2558-2568 

Chiu C.-W., Cheng W.-T., Wang Y.-P., Lin J.-J. (2007). Fine dispersion of hydrophobic 

silicate platelets in anhydride-cured epoxy nanocomposites. Ind. Eng. Chem. Res., 

46:22, 7384-7388 



124 

Chun-Hsin L., Nairn J.A. (1998). Using the essential work of fracture method for 

studying physical aging in thin, ductile, polymeric films. Polym. Eng. Set, 38:1, 

186-193 

Clutton E.Q. (2000). ESIS TC4 Experience with the essential work of fracture method. 

Paper presented at the Conference on fracture of polymer, composites and 

adhesives. 

Clutton E.Q. (2001). Fracture Mechanics Testing Methods for Polymer, Adhesives and 

Composites. In D. R. More, A.Pavan & J. G. Williams, (pp. 177-195). Oxford: 

Elsevier Science. 

Cotterell B., Reddel J.K. (1977). The essential work of plane stress ductile fracture. Int J 

Fract, 13:3, 267-277 

Di Y., Iannace S., Di Maio E., Nicolais L. (2005). Poly(lactic acid)/organoclay 

nanocomposites: Thermal, rheological properties and foam processing. J Polym 

SciPartB, 43:6, 689-698 

Fasce L., Bernal C , Frontini P., Mai Y.-W. (2001). On the Impact Essential Work of 

Fracture of Ductile Polymers. Polym. Eng. Set, 41:1, 1-14 

Favis B.D., Rodriguez-Gonzalez F., Ramsay B.A. (2003). Polymer Compositions 

Containing Thermoplastic Starch. U.S. Patent 6, 605, 657 

Favis B.D., Rodriguez-Gonzalez F., Ramsay B.A. (2005). Method of Making Polymer 

Compositions Containing Thermoplastic Starch. U.S. Patent 6,844,380 



125 

Ferrer-Balas D., Maspoch M.L., Martinez A.B., Santana O.O. (1999). On the essential 

work of fracture method: Energy partitioning of the fracture process in iPP films.. 

Polymer Bulletin, 42, 101-108 

Fischer H., Fischer S. (2001). Biodegradable Thermoplastic Material. World Intellectual 

Property Organization Patent WO 01/68762 Al 

Frankowski D.J., Capracotta M.D., Martin J.D., Khan S.A., Spontak R.J. (2007). Stability 

of Organically Modified Montmorillonites and Their Polystyrene 

Nanocomposites After Prolonged Thermal Treatment Chem. Mater, 19:11, 2757-

2767 

Fung K.L., Zhao H.X., Wang J.T., Meng Y.Z., Tjong S.C., Li R.K.Y. (2004). Essential 

work of fracture (EWF) analysis for compression molded alternating 

polypropylene carbonate. Polym. Eng. Sci., 44:3, 580-587 

Garlotta D. (2001). A literature review of poly(lactic acid). J. Polym. Environ., 9:2, 63-84 

Gdoutos E.E. (2005). Fracture Mechanics: An introduction (2nd ed. Vol. 123). Xanthi, 

Greece: Springer. 

Gong G., Xie B.-H., Yang W., Li Z.-M., Zhang W.-Q., Yang M.-B. (2005). Essential 

work of fracture (EWF) analysis for polypropylene grafted with maleic anhydride 

modified polypropylene/calcium carbonate composites. Polym Test, 24:4, 410-

417 

Grein C., Plummer C.J.G., Germain Y., Kausch H.H., Beguelin P. (2003). Essential work 

of fracture of polypropylene and polypropylene blends over a wide range of test 

speeds. Polym. Eng. Sci., 43:1, 223-233 



126 

Guerard D., Elalem N.E., El Hadigui S., Ansari L., Lagrange P., Rousseaux F., Estrade-

Szwarckopf H., Conard J., Lauginie P. (1986). Preparation and intercalation into 

graphite of some alkali metal hybrides. J. Less-Common Metals, 131, 173-180 

Halpin J.C., Kardos J.L. (1976). Halpin-Tsai Equations:A Review. Polym. Eng. ScL, 

16:5, 344-352 

Hasegawa N., Okamoto H., Kato M., Usuki A., Sato N. (2003). Nylon 6/Na-

montmorillonite nanocomposites prepared by compounding nylon 6 with Na-

montmorillonite slurry. Polymer, 44:10, 2933-2937 

Hashemi S. (1993a). Ductile fracture of polyester films. Plast. Rubber Compos. Process. 

Appl, 20:4, 229-237 

Hashemi S. (1993b). Plane-stress fracture of polycarbonate films. J. Mater. ScL, 28:22, 

6178-6184 

Hashemi S. (1997). Fracture toughness evaluation of ductile polymeric films. J. Mater. 

ScL, 32:6, 1563-1573 

Hashemi S. (2000a). Determination of the fracture toughness of polybutylene 

terephthalate (PBT) film by the essential work method: Effect of specimen size 

and geometry. Polym. Eng. ScL, 40:3, 798-808 

Hashemi S. (2000b). Temperature and deformation rate dependence of the work of 

fracture in polycarbonate (PC) film. /. Mater. ScL, 35:23, 5851-5856 

Hashemi S. (2000c). Temperature dependence of work of fracture parameters in 

polybutylene terephthalate (PBT). Polym. Eng. ScL, 40:6, 1435-1446 



127 

Hashemi S., Williams J.G. (2000). Temperature dependence of essential and non

essential work of fracture parameters for polycarbonate film. Plast. Rubber 

Compos., 29:6, 294-302 

Hashemi S., Yuan Z. (1994). Fracture of poly(ether-ether ketone) films. Plast. Rubber 

Compos. Process. Appl, 21, 151-161 

Hbaieba K., Wangb Q.X., Chiaa Y.H.J., Cotterel B. (2007). Modelling stiffness of 

polymer/clay nanocomposites. Polym. Bull, 48 3, 901 -909 

Herold A., Billaud D., Guerard D., Lagrange P., El Makrini M. (1980). Intercalation of 

metals and alloys into graphite. Physica B, 105:1-3, 253-260 

Herrera N.N., Letoffe J.M., Putaux J.L., David L., Bourgeat-Lami E. (2004). Aqueous 

dispersions of silane-functionalized laponite clay platelets. A first step toward the 

elaboration of water-based polymer/clay nanocomposites. Langmuir, 20:5, 1564-

1571 

Huang M.F., Yu J.G., Ma X.F. (2004). Studies on the properties of Montmorillonite-

reinforced thermoplastic starch composites. Polymer, 45:20, 7017-7023 

Huneault M.A., Li H. (2007). Morphology and properties of compatibilized 

polylactide/thermoplastic starch blends. Polymer, 48:1, 270-280 

Hussain F., Hojjati M., Okamoto M., Gorga R.E. (2006). Review article: polymer-matrix 

nanocomposites, processing, manufacturing, and application: an overview. J. 

Compos. Mater., 40:17, 1511-1575 

Jang B.Z., Uhlmann D.R., Vander Sande J.B. (1985). Crazing in polypropylene. Polym. 

Eng. Set, 25:2, 98-104 



128 

Jingshen W., Yiu-Wing M. (1996). The essential fracture work concept for toughness 

measurement of ductile polymers. Polym. Eng. ScL, 36:18, 2275-2288 

Kalambur S., Rizvi S.S.H. (2005). Biodegradable and functionally superior starch-

polyester nanocomposites from reactive extrusion. J. Appl. Polym. ScL, 96:4, 

1072-1082 

Karger-Kocsis J. (1996). How does 'phase transformation toughening' work in 

semicrystalline polymers? Polym. Eng. ScL, 36:2, 203-210 

Kato M., Matsushita M., Fukumori K. (2004). Development of a new production method 

for a polypropylene-clay nanocomposite. Polym. Eng. ScL, 44:7, 1205-1211 

Kausch H.H., Argon A.S., Berger L.L., Cohen R.E., Dettenmaier M., Doll W., Hara M., 

Ishikawa M., Konczol L., Kramer E.J., Leberger D., Narisawa I., Sauer J.A., 

Schirrer R., Takemori M.T. (1983). Crazing in polymers. Berlin: Springer-Verlag. 

Ke T., Sun X. (2001). Effects of Moisture Content and Heat Treatment on the Physical 

Properties of Starch and PolyQactic acid) Blends. J. Appl. Polym. ScL, 81:12, 

3069-3082 

Ke Y.C., Stroeve P. (2005). Polymer Layered Silicate and Silica Nanocomposites. 

Amsterdam: Elsevier B.V. 

Kinloch A.J., Young R.J. (1983). Fracture Behaviour of Polymers. London: Applied 

Science Publishers. 

Krikorian V., Pochan D.J. (2003). Poly (L-Lactic Acid)/Layered Silicate Nanocomposite: 

Fabrication, Characterization, and Properties. Chem. Mater., 15:22, 4317-4324 



129 

Krishnamoorti R., Vaia R.A., Giannelis E.P. (1996). Structure and Dynamics of Polymer-

Layered Silicate Nanocomposites. Chem. Mater., 8:8, 1728 

Kubies D., Scudla J., Puffr R., Sikora A., Baldrian J., Kovarova J., Slouf M., Rypacek F. 

(2006). Structure and mechanical properties of poly(l-lactide)/layered silicate 

nanocomposites. Eur Polym J, 42:4, 888-899 

Kwon H.J., Jar P.Y.B. (2005). Fracture toughness of polymers in shear mode. Polymer, 

46:26, 12480-12492 

Kwon H.J., Jar P.Y.B. (2007). New energy partitioning approach to the measurement of 

plane-strain fracture toughness of high-density polyethylene based on the concept 

of essential work of fracture. Eng. Fract. Mech., 74:16, 2471-2480 

Lauke B., Schueller T. (2001). Essential work of interfacial fracture: A method to 

characterize adhesion at polymer-polymer interfaces. Int J Adhes Adhes, 21:1, 55-

58 

LeBaron P.C., Wang Z., Pinnavaia T.J. (1999). Polymer-layered silicate nanocomposites: 

An overview. Appl Clay Sci, 15:1, 11-29 

Lee C.H., Kim H.B., Lim S.T., Choi H.J., Jhon M.S. (2005). Biodegradable aliphatic 

polyester-poly (epichlorohydrin) blend/organoclay nanocomposites; Synthesis 

and rheological characterization. J. Mater. Sci., 40:15, 3981-3985 

Lee D.C., Jang L.W. (1996). Preparation and characterization of PMMA-clay hybrid 

composite by emulsion polymerization. J. Appl. Polym. Sci., 61:7, 1117-1122 



130 

Lee S.-R., Park H.-M., Lim H., Kang T., Li X., Cho W.-J., Ha C.-S. (2002). 

Microstructure, tensile properties, and biodegradability of aliphatic polyester/clay 

nanocomposites. Polymer, 43:8, 2495-2500 

Lepoittevin B., Devalckenaere M., Pantoustier N., Alexandre M., Kubies D., Calberg C , 

Jerome R., Dubois P. (2002). Poly (&epsilon;-caprolactone)/clay nanocomposites 

prepared by melt intercalation: mechanical, thermal and rheological properties. 

Polymer, 43:14, 4017-4023 

Lim S.T., Hyun Y.H., Choi H.J., Jhon M.S. (2002). Synthetic Biodegradable Aliphatic 

Polyester/Montmorillonite Nanocomposites. Chem. Mater., 14:4, 1839-1844 

Liu X., Wu Q. (2001). PP/clay nanocomposites prepared by grafting-melt intercalation. 

Polymer, 42:25, 10013-10019 

Luduena L.N., Alvarez V.A., Vazquez A. (2007). Processing and microstructure of 

PCL/clay nanocomposites. Mater. Sci. Eng. A, 460-461, 121-129 

Ma J., Yu Z.Z., Kuan H.C., Dasari A., Mai Y.W. (2005). A new strategy to exfoliate 

silicone rubber/clay nanocomposites. Macromol. Rapid Commun., 26:10, 830-833 

Ma X., Yu J., Wang N. (2007). Production of thermoplastic starch/ MMT-sorbitol 

nanocomposites by dual-melt extrusion processing. Macromol. Mater. Eng., 

292:6, 723-728 

Mai Y.W., Cotterell B. (1985). Effect of specimen geometry on the essential work of 

plane stress ductile fracture. Eng. Fract. Mech., 21:1, 123-128 

Mai Y.W., Cotterell B. (1986). On the essential work of ductile fracture in polymers Int J 

Fract, 32:2, 105-125 



131 

Mai Y.W., Cotterell B., Horlyck R., Vigna G. (1987). Essential work of plane stress 

ductile fracture of linear polyethylenes. Polym. Eng. Sci., 27:11, 804-809 

Mai Y.W., Powell P. (1991). Essential work of fracture and J-integral measurements for 

ductile polymers. J Polym Sci Part B, 29:7, 785-793 

Mai Y.W., Yu Z.Z. (2006). Polymer nanocomposites. Boca Raton , Woodhead 

Publishing limited. 

Maiti P., Yamada K., Okamoto M., Ueda K., Okamoto K. (2002). New 

polylactide/layered silicate nanocomposites: Role of organoclays. Chem. Mater., 

14:11,4654-4661 

Marks J.E. (1999). Polymer data handbook. New York, Oxford University Press. 

Martin O., Averous L. (2001). Poly(lactic acid): Plasticization and properties of 

biodegradable multiphase systems. Polymer, 42:14, 6209-6219 

Mehta R., Kumar V., Bhunia H., Upadhyay S.N. (2005). Synthesis of poly(lactic acid): A 

review. J. Macromol. Sci., Polym. Rev., 45:4, 325-349 

Moore D.R., Pavan A., Williams J.G. (2001). Fracture Mechanics Testing Methods for 

Polymer Adhesives and Composites. Amsterdam: Elsevier. 

Mouzakis D.E., Karger-Kocsis J., Moskala E.J. (2000). Interrelation between energy 

partitioned work of fracture parameters and the crack tip opening displacement in 

amorphous polyester films. J Mater Sci Lett, 19:18, 1615-1619 

Noh M.W., Lee D.C. (1999). Synthesis and characterization of PS-clay nanocomposite 

by emulsion polymerization. Polymer Bulletin, 42:5, 619-626 



132 

Ogata N., Jimenez G., Kawai H., Ogihara T. (1997). Structure and thermal/mechanical 

properties of poly(l-lactide)-clay blend. J Polym Sci Part B, 35:2, 389-396 

Okada A., Fukushima Y., Kawasumi M., Inagaki S., Usuki A., Sugiyama S., Kurauchi T., 

Kamigaito 0. (1988). U. S Patent No. 4739007. U. S. Patent. 

Okada A., Usuki A. (2006). Twenty years of polymer-clay nanocomposites. Macromol. 

Mater. Eng., 291:12, 1449-1476 

Park H.M., Lee W.K., Park C.Y., Cho W.J., Ha C.S. (2003). Environmentally friendly 

polymer hybrids Part I mechanical, thermal, and barrier properties of 

thermoplastic starch/clay nanocomposites. J. Mater. Sci., 38:5, 909-915 

Park H.M., Li X., Jin C.Z., Park C.Y., Cho W.J., Ha C.S. (2002). Preparation and 

Properties of Biodegradable Thermoplastic Starch/Clay Hybrids. Macromol. 

Mater. Eng., 287:8, 553-558 

Paton C.A., Hashemi S. (1992). Plane-stress essential work of ductile fracture for 

polycarbonate. J. Mater. Sci., 27,2279-2290 

Paul M.A., Alexandre M., Degee P., Henrist C , Rulmont A., Dubois P. (2003). New 

nanocomposite materials based on plasticized poly(L-lactide) and organo-

modified montmorillonites: thermal and morphological study. Polymer, 44:2, 

443-450 

Perez N. (2004). Fracture Mechanics. Boston: Kluwer Academic Publisher. 

Pluta M. (2006). Melt compounding of polylactide/organoclay: Structure and properties 

of nanocomposites. J Polym Sci Part B, 44:23, 3392-3405 



133 

Pluta M., Galeski A., Alexandre M., Paul M.A., Dubois P. (2002). 

Polylactide/montmorillonite nanocomposites and microcomposites prepared by 

melt blending: Structure and some physical properties. J. Appl. Polym. ScL, 86:6, 

1497-1506 

Poon W.K.Y., Ching E.C.Y., Cheng C.Y., Li R.K.Y. (2001). Measurement of plane stress 

essential work of fracture (EWF) for polymer films: Effects of gripping and 

notching methodology. Polym Test, 20:4, 395-401 

Poutanen K., Forssell P. (1996). Modification of strach properties with plasticizer. Trends 

Polymer Sci, 4:4, 128-132 

Ray S.S., Okamoto K., Okamoto M. (2003). Structure-property relationship in 

biodegradable poly(butylene succinate)/layered silicate nanocomposites. 

Macromolecules, 36:7, 2355-2367 

Rodriguez-Gonzalez F.J., Ramsay B.A., Favis B.D. (2003). High performance 

LDPE/thermoplastic starch blends: A sustainable alternative to pure polyethylene. 

Polymer, 44:5, 1517-1526 

Roesler J., Harders H., Baeker M. (2007). Mechanical Behaviour of Engineering 

Materials. Berlin: Springer. 

Rozin A.T., Komarov V.S., Berezutskii S.S., Akulich N.A. (1974). Nature of the 

hydroxyl groups in montmorillonite. J. Appl. Spectrosc, 21:1, 132-135 

Sanchez-Garcia M.D., Gimenez E., Lagaron J.M. (2008). Morphology and barrier 

properties of nanobiocomposites of poly(3-hydroxybutyrate) and layered silicates. 

J. Appl. Polym. ScL, 108:5, 2787-2801 



134 

Semba T., Kitagawa K., Ishiaku U.S., Hamada H. (2006). The effect of crosslinking on 

the mechanical properties of polylactic acid/polycaprolactone blends. J. Appl. 

Polym. Sci., 101:3, 1816-1825 

Shen Z., Simon G.P., Cheng Y.-B. (2002). Comparison of solution intercalation and melt 

intercalation of polymer-clay nanocomposites. Polymer, 43:15, 4251-4260 

Shih Y.F., Wang T.Y., Jeng R.J., Wu J.Y., Teng C.C. (2007). Biodegradable 

nanocomposites based on poly(butylene succinate)/organoclay. J. Polym. 

Environ., 15:2, 151-158 

Shin B.Y., Lee S.I., Shin Y.S., Balakrishnan S., Narayan R. (2004). Rheological, 

mechanical and biodegradation studies on blends of thermoplastic starch and 

polycaprolactone. Polym. Eng. Sci., 44:8, 1429-1438 

Sinha Ray S., Maiti P., Okamoto M., Yamada K., Ueda K. (2002). New 

polylactide/layered silicate nanocomposites. 1. Preparation, characterization, and 

properties. Macromolecules, 35:8, 3104-3110 

Sinha Ray S., Okamoto M. (2003a). Biodegradable polylactide and its nanocomposites: 

Opening a new dimension for plastics and composites. Macromol. Rapid 

Commun., 24:14,815-840 

Sinha Ray S., Okamoto M. (2003b). Polymer/layered silicate nanocomposites: A review 

from preparation to processing. Prog Polym Sci, 28:11, 1539-1641 

Sinha Ray S., Yamada K., Okamoto M., Ueda K. (2003). New polylactide-layered 

silicate nanocomposites. 2. Concurrent improvements of material properties, 

biodegradability and melt rheology. Polymer, 44:3, 857-866 



135 

Souther-Clay-Products. (2008). Cloisite® Na+ Typical Physical Properties Bulletin. 

Retrieved 06/23, 2008, from 

http://www.scprod.com/product bulletins/PB%20Cloisite%20NA+.pdf 

Strawhecker K.E., Manias E. (2000). Structure and Properties of Poly(vinyl alcohol)/Na+ 

Montmorillonite Nanocomposites. Chem. Mater., 12:10, 2943-2949 

Tjong S.C. (2006). Structural and mechanical properties of polymer nanocomposites. 

Mater. Sci. Eng., R, 53, 73-197 

Tjong S.C, Bao S.P. (2007). Fracture toughness of high density polyethylene/SEBS-g-

MA/montmorillonite nanocomposites. Compos. Sci. Technol, 67, 314-323 

Tjong S.C, Bao S.P., Liang G.D. (2005). Polypropylene/montmorillonite 

nanocomposites toughened with SEBS-g-MA: Structure-property relationship. J 

Polym Sci Part B, 43:21, 3112-3126 

Utracki L.A. (2004). Clay-containig polymeric Nanocomposites. Shawbury: Rapra 

Technology limited. 

Vaia R. A., Ishii H., Giannelis E.P. (1993). Synthesis and properties of two-dimensional 

nanostructures by direct intercalation of polymer melts in layered silicates. Chem. 

Mater., 5,1694-1696. 

Vaia R.A., Giannelis E.P. (1994). Interlayer Structure and molecular environment of 

alkylammonium layered silicates. Chem. Mater, 6, 1017-1022 

http://www.scprod.com/product


136 

Van Soest J.J.G., Hulleman S.H.D., de Wit D., Vliegenthart J.F.G. (1996). Changes in the 

mechanical properties of thermoplastic potato starch in relation with changes in 

B-type crystallinity. Carbohydr Polym, 29:3, 225-232 

Votinsky J., Kalousova J., Benescaron L. (1992). Molecular intercalates. J. Inclusion 

Phenom.Macrocyclic Chem., 14, 19-24 

Wang C.H. (1996). Introduction to Fracture Mechanics Melbourne: DSTO Aeronautical 

and Maritime Research Laboratory. 

Wang K., Chen L., Kotaki M., He C. (2007). Preparation, microstructure and thermal 

mechanical properties of epoxy/crude clay nanocomposites. Compos Part A Appl 

Sci Manuf, 38:1, 192-197 

Wang K., Wang L., Wu J.S., Chen L., He C.B. (2005). Preparation of highly exfoliated 

epoxy/clay nanocomposites by "slurry compounding": Process and mechanisms. 

Langmuir, 21:8, 3613-3618 

Wilhelm H.M., Sierakowski M.R., Souza G.P., Wypych F. (2003). Starch films 

reinforced with mineral clay. Carbohydr Polym, 52:2, 101-110 

Wong S.C., Mai Y.W. (1999). Essential fracture work of short fiber reinforced polymer 

blends. Polym. Eng. Sci., 39:2, 356-364 

Yamakawa R.S., Razzino C.A., Correa C.A., Hage Jr E. (2004). Influence of notching 

and molding conditions on determination of EWF parameters in polyamide 6. 

Polym Test, 23:2, 195-202 

Yoo Y., Shah R.K., Paul D.R. (2007). Fracture behavior of nanocomposites based on 

poly(ethylene-co-methacrylic acid) ionomers. Polymer, 48:16,4867-4873 



137 

Yu L., Dean K., Dong Yang W. (2007). Preparation and characterization of melt-

extruded thermoplastic starch/clay nanocomposites. Compos. Sci. Technol., 67:3-

4,413-421 

Yu Z.Z., Hu G.H., Varlet J., Dasari A., Mai Y.W. (2005). Water-assisted melt 

compounding of nylon-6/pristine montmorillonite nanocomposites. / Polym Sci 

Part B, 43:9, 1100-1112 

Zhang H., Zhang Z., Yang J.-L., Friedrich K. (2006). Temperature dependence of crack 

initiation fracture toughness of various nanoparticles filled polyamide 66. 

Polymer, 47:2, 679-689 

Zhang J.F., Sun X. (2004). Mechanical properties of poly(lactic acid)/starch composites 

compatibilized by maleic anhydride. Biomacromolecules, 5:4, 1446-1451 

Zhu J., Morgan A.B., Lamelas F.J., Wilkie C.A. (2001). Fire Properties of Polystyrene-

Clay Nanocomposites. Chem. Mater., 13:10, 3774-3780 


