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RESUME 

La demande grandissante des systemes de transmission sans fil a genere le besoin de 

concevoir des systemes large bande et efficaces du point de vue energetique. Permettant 

ainsi de transferer des donnees via des signaux modules complexes tells que OFDM, 

CDMA...etc. tout en minimisant les distorsions des signaux au cours de la transmission. 

C'est dans ce contexte que Ton doit garder a l'esprit que la principale source de 

distorsion est l'amplificateur de puissance. En effet, pour un certain niveau de puissance 

du signal d'entree, l'amplificateur opere pres de son point de compression, dans la zone 

dite de saturation. II en resulte une degradation non-lineaire en termes de gain et de 

dephasage relative, egalement connue comme les effets AM/AM et AM/PM. 

Une approche communement utilisee, pour compenser les distorsions qui peuvent 

apparaitre a la sortie de l'amplificateur, est d'inclure dans la chaine d'amplification un 

element de predistorsion. II consiste en un bloc fonctionnel non-lineaire qui permet de 

reproduire la caracteristique non-lineaire inverse de l'amplificateur de puissance. Ainsi, 

la combinaison des signaux issus de l'amplificateur et du predistorseur donne la fonction 

identite. La procedure adaptative, qui permet la mise a jour des valeurs du predistorseur 

a chaque iteration, est basee sur un algorithme d'optimisation specifique qui demande 

generalement un temps de calcul important. Par consequent, avant d'utiliser 

1'algorithme, il est necessaire de faire une estimation approximative des parametres du 

predistorseur, ceci servant a reduire considerablement les temps de calcul. 

Un autre facteur important dont il faut tenir compte est celui du signal 

d'apprentissage qui utilise dans 1'algorithme adaptatif. Certains choix pourront non 
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settlement rendre la procedure plus complexe, mais ils sont susceptibles d'introduire des 

retards additionnels dans la boucle d'ajustement du fait que le calcul d'erreur depend de 

la nature du signal d'entree. 

L'objectif de ce memoire est la conception et l'implementation d'un predistorseur 

adaptatif. Ce dernier est base sur un modele de transmetteur specifique et l'utilisation 

d'une sinusoi'dale comme signal d'apprentissage, avec une frequence qui se situe au sein 

de la bande passante du transmetteur. Le critere de linearite re§oit un signal a une seule 

frequence a la sortie qui a un gai lineaire et un dephasage relatif. En d'autres termes, on 

suppose que la non linearite du systeme peut etre separee de la dynamique lineaire et 

compensee. Lorsque le but est atteint, on a simplement un systeme dynamique lineaire, 

c'est-a-dire un systeme identifiable en utilisant les techniques d'identification lineaire des 

systemes disponibles dans la bibliotheque de MATLAB. 

L'hypothese cle, lorsque le predistorseur est de type statique, est que les non-linearites 

statiques sont separables de la dynamique lineaire, c'est-a-dire que le transmetteur peut 

etre modelise a partir de modeles a deux blocs, aussi connus sous les noms de modeles 

de Hammerstein ou de Wiener. Pour ces modeles, le bloc non-lineaire statique est suivi, 

ou bien est precede, d'un filtre dynamique lineaire. Un modele theorique de ce type est 

initialement considere pour le transmetteur et le succes de la technique d'estimation est 

demontre. Le modele est alors considere comme une boite noire qui remplace le 

systeme final et a laquelle on appliquera une predistorsion adaptative. II sera montre que 

du fait de l'utilisation du critere de linearite pour une onde sinusoi'dale, l'erreur de calcul 

est determinee independamment du signal d'entree. Cependant, des contraintes non-
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lineaires doivent etre considerees afin de conserver toute la fonctionnalite du systeme 

dans la zone non-lineaire. 

Nous verrons egalement que pour une compensation de la distorsion de phase il est 

necessaire d'appliquer deux ondes sinusoi'dales. En effet, l'information de la phase 

relative dans le cadre d'une modulation en quadrature ne peut etre determinee avec 

uniquement un signal sinusoidal. Finalement, les performances du predistorseur sont 

evaluees en utilisant un signal WCDMA. Les courbes AM/AM et AM/PM obtenues sont 

etudiees ainsi que la densite du spectre de puissance du signal de sortie, ou il est 

imperatif que le phenomene non lineaire dit de recouvrement de puissance du canal 

adjacent soit reduit. 
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ABSTRACT 

The increasing demand on wireless transmitter systems has generated a need for 

efficient wideband designs capable of transferring the data usually carried via a signal 

modulation scheme such as OFDM, CDMA...etc with the least possible distortion 

during transmission. In this context one should remember that the main source of 

distortion in a transmitter is the power amplifier which has a tendency to saturate when 

the input signal power level increases beyond a certain level, thus resulting in nonlinear 

degradation in terms of gain and relative phase shift respectively known as AM/AM and 

AM/PM effects. 

One common approach to compensate for these power dependent distortions is 

known as predistortion whereby a nonlinear functional box with inverse nonlinear 

characteristics of that of the transmitter precedes the power amplifier where as a results, 

this combination gives rise to an identity operator. The adaptive procedure that updates 

the predistorter parameters at each iteration is based on a specific optimization algorithm 

which is in general computationally expensive. Therefore, it is important to produce a 

rough estimation of the predistorter parameters which can serve as a good initial point; 

this can help considerably in reducing the length of computations. 

One other important element is the particular nature of the training signal that is used 

for operating the adaptive algorithm. Some signals will add up more complexity to the 

procedure as well as some feedback delay due to error calculation dependency on the 

input signal. 
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The objective of this thesis is the design and implementation of an adaptive 

predistorter based on a specific type of transmitter model and using single frequency 

waves as training signals with a frequency which falls within the bandwidth of the 

transmitter. The linearity criterion of the predistorter/amplifier combination is that a 

single frequency signal should reach the output with a linear gain and phase shift for a 

broad range of power levels. Once this goal is achieved, one is left with a merely linear 

dynamic system i.e. that is identifiable by means of linear system identification 

techniques available in standard MATLAB toolboxes. 

Clearly, when using a static predistorter, the underlying key assumption is that the static 

nonlinearities are separable from linear dynamics, i.e. the transmitter can be modeled for 

example with 2-box models also known as Hammerstein or Wiener models where a 

static nonlinear function is followed by a linear dynamic filter or vice versa. We 

successfully illustrate the single sine wave based predistortion linearization for a 

theoretical Hammerstein type model. 

It is also shown that for phase distortion compensation, one needs to apply two sine 

waves since the relative phase information in the context of quadrature modulation 

cannot be revealed with only one sinusoidal signal. In one last step the constructed 

predistorter performance is validated by launching a WCDMA signal and the AM/AM 

and AM/PM curves are discussed as well as the power spectrum density of the output 

signal where the non linear effect known as adjacent channel power regrowth must be 

reduced. 
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CONDENSE EN FRAN^AIS 

MODELISATION COMPORTEMENTAL NON-LINEAIRE DYNAMIQUE ET 

PREDISTORSION ADAPTATIVE POUR LES TRANSMETTEURS RF 

0.1. INTRODUCTION 

La conception d'un transmetteur a large bande pour les nouveaux systemes de 

communications sans fil a haute vitesse, pour lesquels il existe une grande variation 

d'enveloppes des signaux d'entree, est une tache delicate et complexe. En effet, la 

conception necessite des compromis entre les objectifs contradictoires de maintien d'une 

haute linearite et de realisation d'une haute efficacite energetique. L'adoption massive 

des techniques de transmission multi-porteuses dans les nouveaux systemes de 

communications sans fil large bande, telles que CDMA, OFDM ou encore Wimax, 

implique l'utilisation de signaux a enveloppe non constante et ayant des ratios de 

puissance maximale par rapport a la puissance moyenne (Pars) importants. Lorsqu'un 

signal module passe a travers un circuit presentant une faible non-linearite, sa largeur de 

bande est fonction des non-linearites d'ordre impair. Ce phenomene, appele 

recouvrement spectral ou regeneration spectrale, est une consequence de la generation 

des produits des composantes frequentielles. 

II en resulte qu'un amplificateur de puissance (PA) peut etre concu de facon a ce qu'il 

opere pres de son point de saturation, et ce, pour obtenir une plus grande efficacite 

energetique, ou bien loin en retrait de sa zone de saturation. Dans le but de faire 

fonctionner 1'amplificateur dans sa zone de non-linearite, tout en conservant une haute 
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efficacite energetique et un comportement lineaire, il est indispensable d'ajouter un 

element de distorsion non-lineaire dans le transmetteur. Les techniques de linearisation 

les plus courantes actuellement sont « feedback », « feedforward » et la technique de 

predistorsion. Ce dernier est l'une des plus efficaces et elle offre en outre la flexibilite de 

pouvoir etre implemented soit de facon numerique, soit de facon analogique. Le principe 

de la predistorsion numerique, egalement appele predistorsion en bande de base, est de 

modifier les donnees a l'entree de facon a optimiser les performances de sortie de 

l'amplificateur. 

Nous proposons dans ce memoire une predistorsion adaptative basee sur la recuperation 

d'un signal a une seule frequence. Ce qui se distingue tres nettement des autres 

methodes qui utilisent, quant a elles, des signaux modules lors de 1'implementation de la 

predistorsion numerique. Concernant le critere de linearisation, on considere simplement 

la reponse d'un systeme lineaire qui serait excite par une sinusoide pure. Le signal de 

sortie de ce systeme lineaire doit alors etre un signal sinusoidal de meme frequence mais 

d'amplitude et de phase differente. 

Les modeles non-lineaires a 2 blocs ont ete identifies et valides pour reproduire le 

comportement du systeme de transmission et 1'element de predistorsion adaptative est 

applique au modele. Une validation complementaire de notre element de predistorsion a 

ete realisee en utilisant un signal CDMA. 
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0.2. MODELES A DEUX BLOCS, NON-LINEARITES STATIQUES ET EFFETS 

MEMOIRE DYNAMIQUES 

Dans le but de concevoir un element de predistorsion permettant la suppression des 

effets non-lineaires, il est necessaire de disposer d'un modele de transmetteur RF precis. 

On peut constater que les modeles a 2 blocs ont ete extensivement decrits dans la 

litterature, et ce, pour modeliser le comportement non-lineaire des transmetteurs sans-

fils en termes de distorsions d'amplitude AM/AM et de phase AM/PM. Cependant, nous 

voudrions bien faire la distinction entre les modeles classiques a 2 blocs et les modeles 

de Wiener/Hammerstein, qui sont intrinsequement incapables de modeliser les variations 

non-lineaires de phase. 

Pour les modeles de Wiener/Hammerstein, la procedure d'identification est realisee en 

une seule etape. Les coefficients de la fonction statique non-lineaire, ainsi que le filtre 

lineaire, sont identifies a travers un processus d'optimisation sans contraintes 

multidimensionnel implante dans MATLAB. 

La partie reelle du signal module est construite a partir des composantes en bande de 

base. Elle est utilisee pour l'apprentissage dans une des formes suivantes : 

v ( 0 = R(t)cos[oct + 0 ( 0 ] 

v(f) = x(t) cos(G)j) - y(t)s'm(o)ct) 

Dans le modele de Wiener, un bloc statique non-lineaire est precede d'un filtre lineaire, 

qui prend en compte la dynamique. Pour le modele de Hammerstein, l'ordre est inverse. 
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La non-linearite statique est modelisee avec un polynome de la forme suivante: 

f(0(y(O)) = a0 + aj(y(t)) + a2j3
2(y(t)) + 

(2) 
...+ ajn(y(t)) 

ou P(y(t)) est la fonction de base choisie de facon a ce que le polynome soit en accord 

avec le comportement de saturation du systeme final. Le modele de la fonction de 

transfert du bloc lineaire est defini par une simple relation entre l'entree et la sortie, qui 

peut etre defini comme une difference lineaire (ou une equation differentielle...) et 

connu sous le nom de modele ARX: : 

y{t) + aly{t-\) + ... + a„ay{t-na) 

= b0u(t) + blu(t-l) + ..J?nu(t-nh) + e(t) (3) 

ou la condition de stabilite du BIBO (Bounded input Bounded OUTPUT) est assuree en 

imposant na = 0. Les coefficients du filtre lineaire et ceux de la fonction statique non-

lineaire sont alors mis a jour de fa§on iterative. L'erreur est alors minimisee en utilisant 

le processus d'optimisation. 

Puisque les modeles Wiener/Hammerstein ne sont pas en mesure de reproduire la 

distorsion de phase d'un systeme, un modele plus general a deux blocs est utilise. Ce 

dernier a une structure similaire aux modeles Wiener/Hammerstein mais la partie non-

lineaire est representee par une fonction complexe. Les performances de ces trois 

modeles sont evaluees avec un autre ensemble de donnees et la qualite du modele 

considere est calculee en utilisant la relation: 

FIT = [ l - Norm(Y -Y)l Norm(Y - Mean(Y ) ) ] * 1 00 (4) 
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On constate une amelioration tres sensible des performances pour le dernier modele a 

deux blocs par rapport aux modeles Wiener/Hammerstein. Ce resultat a ete rendu 

possible grace a la prise en consideration du caractere non-lineaire de la phase dans 

notre modele. 

0.3. MODELE NON-LINEAIRE SOUS FORME DE 3-BLOCS 

Notre modele a trois blocs est en fait une combinaison du modele de Hammerstein et 

du modele non-lineaire a deux blocs, tous deux decrits dans la section 0.2, ou un filtre 

lineaire dynamique est place entre deux blocs non lineaires. La procedure 

d'identification de modele comprend deux etapes. Les deux premiers blocs sont 

similaires a la structure de Wiener/Hammerstein mais utilisent un signal module. La 

sortie de cet etage est alors convertie en un signal complexe en bande de base. Le 

dephasage relatif est, quant a lui, calcule puis compare au dephasage mesure. Le 

dephasage residuel est alors modelise dans un troisieme bloc non-lineaire. Le troisieme 

modifie le dephasage du modele dans sa globalite mais ne change en rien le gain des 

deux blocs qui constituent le premier etage. En d'autres termes, cela modifie les 

performances du filtre lineaire situe au centre des 2 blocs de telle facon que l'ensemble 

forme un filtre non-lineaire. 

Le premier etage d'identification, qui est exactement le meme que le modele de 

Wiener/Hammerstein decrit dans la precedente section, permet de tres bien reproduire la 

distorsion AM/AM. 
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A la sortie des deux premiers blocs, le signal est demodule et sa composante complexe 

en bande de base est extraite pour permettre de retrouver les courbes AM/AM et 

AM/PM. Si Ton observe les relations entre le gain et la phase du systeme et les 

composantes en phase et en quadrature, on peut constater qu'il est possible, avec 

quelques manipulations mathematiques sur les composantes du signal, de modifier la 

phase pour que cette derniere soit en accord avec celle du transmetteur. Le gain, quant a 

lui reste inchange : 

Gain(t) = I 2 2 (5) 
^Iin(t)+Qin(t) 

0 At) 0 (t) 
PhaseQ) = arctan( ""' ) - a rc t an (^^ ) (6) 

in 

En d'autres termes, le rapport entre les composantes en phase et en quadrature 
fout^ 

est modifie pour donner la meme reponse en phase que celle du systeme. Cependant, la 

puissance yjllutO) + Qlut(0 reste inchangee. 

A partir de 1'identification et de la validation du modele, il a ete possible d'obtenir un 

accord acceptable entre les mesures et la modelisation. En depit d'une fonction non-

lineaire d'ordre relativement eleve dans le modele, un compromis entre l'efficacite et la 

simplicite est necessaire ; ceci est du a l'utilisation d'un filtre lineaire du premier ordre 

au lieu de deux filtres de deuxieme ordre du modele a 2 blocs. 
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0.3. CONSTRUCTION DE LA PREDISTORSION A PARTIR D'UNE ONDE 

SINUSOIDALE 

La procedure de conception et d'elaboration de la predistorsion numerique adaptative 

ou non, comme il peut etre largement vu dans la litterature, utilise un signal 

d'apprentissage du meme type que celui qui doit etre transmis. Ceci mis a part, il faut 

garder a 1'esprit que la principale cause des effets de non-linearite est le niveau de 

puissance du signal a 1'entree de l'amplificateur de puissance. En effet, lorsque le niveau 

de puissance en entree est trop important, l'amplificateur opere pres de sa zone de 

saturation, ce qui entraine une augmentation des niveaux de puissance des produits 

d'intermodulation. Enfin, que se soit une simple sinusoide ou bien un signal complexe 

module qui excite le systeme, aussi longtemps qu'ils ont le meme niveau de puissance, 

ils exciteront la meme zone non-lineaire d'amplificateur de puissance et le signal de 

sortie comportera les memes niveaux de distorsion. 

Dans ce chapitre, un signal sinusoidal est utilise comme signal d'apprentissage et un 

processus d'adaptation directe est utilise pour la mise a jour les coefficients du bloc de 

predistorsion non-lineaire. De cette fagon, la sortie du systeme est toujours une 

sinusoide, ce qui garantit la linearite du systeme considere. Nous utilisons ce fait dans le 

but de determiner le cycle de mise a jour de l'estimateur. 

Le modele a 2 blocs developpe dans la precedente section est alors utilise comme une 

boite noire. Si on assigne la fonction polynomiale statique g pour la predistorsion et la 

fonction non-lineaire dynamique f pour le transmetteur, alors la sortie, bien qu'elle soit 

distordue, est periodique avec la meme periode que la sinusoide d'entree. Une fois que 
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le signal de sortie g(f(x(t))) est obtenu, on le developpe en serie de Fourier afin 

d'extraire la composante fondamentale : 

g(f(x(t))) = -aQ + £ a „ cos(0)nt)+Y,bn sin(0)nx) (7) 
n=\ n=\ 

G>„ 
n 

f = 

= n 

1 

"T 

2K 
— 
T 

(8) 

(9) 

ou / est la frequence fondamentale. En partant de la relation suivante pour l'extraction 

des coefficients : 

an = r t g(f(x(t)))C0S(6)nt) (10) 

bn=j £ g(f(x(t)))sin(a)Ht) (11) 

si on separe la composante fondamentale du reste de la serie, on a alors : 

g(f(x(t))) = {a, cos(m) +b{ sin(ox)} + \ -a0 + J ( a n cos(cont) + bn sin(cont)) \ (12) 
2 

Fondamentale 
«=2 

Distorsion 

II est evident que le systeme est linearise et que le signal de sortie est une sinusoi'de 

parfaite identique a la forme d'onde de la composante fondamentale (le second terme de 

la serie est nul). Dans le but de reduire le temps de calcul, nous avons coupe la derniere 

periode de la forme d'onde a la sortie puis la composante fondamentale a ete extraite en 

utilisant la relation ci-dessus. N'ayant conserve que la composante fondamentale, il reste 

uniquement les termes correspondant aux harmoniques non-desirees et a la distorsion du 
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signal de sortie. On integre la valeur absolue de cette distorsion sur une periode 

complete, et ce, tout en appliquant la procedure d'optimisation afin de minimiser la 

fonction de cout E, a chaque iteration : 

T f \ °° ^ 
E=[abs - a 0 + Xiflncos(fi>„f)+bnsm(cont)) (13) 

* V2 n=2 J 

Si Ton considere que nous avons un modele a 2 blocs pour le systeme et un autre bloc 

additionnel pour la predistorsion, la structure complete se compose alors de 3 elements 

pour lesquels l'optimiseur doit etre capable d'evaluer, assez rapidement, la fonction 

desiree. Puisque 1'evaluation de la fonction est la principale source du temps de calcul, 

les optimiseurs bases sur le vecteur de gradient ne sont pas favorises. La methode 

MADS (Mesh Adaptive Direct Search) que nous avons utilisee, et qui est implemented 

dans NOMAD (Nonlinear Optimization for Mixed variables and Derivatives), se 

presente sous la forme d'un module utilisable dans MATLAB. 

Dans le but de configurer l'estimateur pour eviter les valeurs qui diminuerait le signal 

d'entree, une condition doit etre ajoutee afin que le signal de sortie soit continuellement 

dans la region non-lineaire. Cela peut etre realise en ajoutant une contrainte non-lineaire 

sous la forme d'une inegalite pour l'optimiseur. Ce dernier est done defini comme etant 

la soustraction d'une certaine quantite, que Ton nomme K, par la valeur absolue de la 

forme d'onde fondamentale extraite a la sortie : 

ex = K - \ abs(alcos(O)t) + blsm(cot))<0 (14) 

Enfin ex est ajoute a l'algorithme. Apres avoir ajoute cette contrainte non-lineaire, le 

probleme d'optimisation est alors termine. 
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Apres avoir verifie les problemes de minimisation et de contraintes et choisi l'optimiseur 

approprie, il est possible d'appliquer le modele au systeme final. Puisque le modele a 

deux variables d'entree (en phase et en quadrature), nous devons transmettre deux 

signaux sinusoidaux. Ainsi, 1'information de phase contenue dans un signal complexe 

peut etre reproduite. 

Les modeles mathematiques choisis pour la predistorsion sont des polynomes avec deux 

differentes fonctions de base : 

^\xl) = pjm{xi)+p2{fm{xiyf+p,{fm{x^ (15) 

G'1 (*mt ) = PJB2 Unt) + Ps (fB2 (*:nt ))2 + P6 (fB2 ( ^ V" + Pi (fB2 ( ^ ))2" d Q 

ou 

fm(xi) = tznh-l(Nxi) (17) 

- (x i n l - / / ) 2 

/B2(-«in.) = n o r m P d f ( ^ „ , ^ ^ ) = nr=e 2°2 (18) 

<7yl27C 

et oii N, qui est le coefficient utilise pour la predistorsion de gain, permet de s'assurer 

qu'il n'y a pas de discontinuites pour la fonction inverse de latangente hyperbolique. 

Les coefficients jii, o, qui sont des variables d'optimisation, sont initialement choisis 

pour simplifier le calcul numerique. Ainsi, l'algorithme ne traite pas plus de deux 

variables a chaque iteration. Apres l'obtention des coefficients par optimisation, on peut 

evaluer l'efficacite du linearisateur en utilisant un signal reel du type CDMA (qui a aussi 

ete utilise lors de la modelisation) et observer les distorsions. II est important de 

mentionner que l'onde sinusoi'dale, utilisee dans la partie de Identification, est choisie 
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pour que la puissance maximale soit egale ou superieure a celle d'un signal CDMA. 

Enfin, les courbes AM/AM et AM/PM sont obtenues et comparees a celles obtenues 

sans predistorsion. Les resultants demontrent un bon comportement lineaire. 

Une fois que la distorsion non-lineaire statique est compensee, il reste la partie 

dynamique du modele qui est supposement lineaire, i.e. identifiable en utilisant les 

technique d'identification des systemes lineaire disponibles dans MATLAB. Dans ce 

cas, des structures ARX de differents ordres ont ete appliquees pour modeliser le 

systeme linearise. La concordance entre le modele et les mesures atteste du bon 

fonctionnement de l'element de predistorsion. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

WIDEBAND transmitter design for modern high-speed wireless communication 

systems, where highly varying envelope signals are launched in the system, is a delicate 

and complex issue, since it involves compromise among inconsistent requirements, such 

as high linearity and high power efficiency. A variety of multicarrier transmission 

techniques are currently employed in modern wideband wireless communication 

systems, among which are code division multiple access (CDMA), orthogonal frequency 

division multiplexing (OFDM), worldwide interoperability for microwave access 

(WiMAX), etc. These modulated signals with non-constant envelopes, introduce large 

peak-to-average power ratios (PAPRs). When a modulated signal traverses a weakly 

nonlinear circuit which can be characterized by a low order power series, its in 

bandwidth frequency content is strengthened by odd-order nonlinearities [1]. This 

phenomenon, known as spectral regrowth or spectral regeneration, results from the 

generation of intermodulation products between the individual frequency components of 

the spectrum whereby coding errors and adjacent channel interferences will kick in. 

As a result, as things stand, a power amplifier (PA) must be either operated near its 

saturation area so as to achieve high system power efficiency (but this comes at the cost 

of distortion), or instead, at low efficiency, at a large back- off from its nonlinear 

saturated region, so as to avoid out-of-band emission and spectrum regrowth which 
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refers to the broadening of the bandwidth of the modulated signal due to the 

nonlinearities existing in the transmitter. In order to maintain the PA operating at 

nonlinear area with high power efficiency and, at the same time, to avoid any power-

dependent nonlinear phenomena, a compensation approach for the nonlinear distortion 

that in general, could initiates from any part of the transmitter. The most largely known 

and developed techniques for linearization mainly fall into feedback [2]-[4], feedforward 

[5]-[7] and predistortion methods [8]-[10], among which predistortion has frequently 

come to attention, providing great amount of flexibility end efficiency in suppressing out 

of band frequencies. Predistortion can be implemented on either digital or analog 

platform [11]. The general concept of the analog predistortion technique [12] is quite 

simple: having characterized the nonlinear behaviour of the PAs, the predistorted device 

is then concatenated to the amplifier to cancel the undesirable nonlinear behaviour by 

exhibiting an inverse behavior of the PA, so that the overall performance sounds 

reasonably linear. Figure 1.1 shows a general scheme of an analog predistorter where 

such a device is followed by an amplifier. 

m) 
V, Yn. X 

Fig. 1.1. A general scheme of an analog predistorter 



In the figure, F(|V/|)is the complex predistortion function and GflVplJ is the complex 

gain of the PA, both of which are functions of the instantaneous magnitude of the input 

signal. Digital predistortion [13], also known as data predistortion, is based on the 

modification of the constellation of the input signal, so that the overall performance of 

the predistorted amplifier resembles an optimal linear amplification at the output. Digital 

baseband predistortion is among the most efficient methods, due to its high flexibility in 

digital implementation and its ability to compensate for the nonlinearity in not only the 

power amplifier, but also the whole transmitter that includes the power amplifier as well 

as the modulators/demodulators. A general scheme of a digital baseband predistortion is 

shown in Figure 1.2 where the baseband complex data pass through a digital to analog 

converter followed by a quadrature modulator which builds the passband signal before 

amplification. The output of the PA is demodulated by the lower quadrature modulator 

in the picture and having passed the analog to digital converter, the equivalent baseband 

signal of the output will be obtained. 

Qi, Predistorter 

3> 
Signal 
Magnitude" 

Look Up Table 
(LUT) 

D/A 

YF 
Optimization and Distortion Estimation 

Quadrature 
Modulator 

A/D 

/ l LO 

Quadrature 
Modulator 

Fig. 1.2. A general scheme of a digital baseband predistortion 
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The relation between the baseband and passband signal can be briefly expressed as 

follows: 

g(t) = x(t) + jy(t) = \g(t)\e}m=R(t)eim (1.1) 

Where g(t) represents the complex baseband signal and: 

R(t)n \g(t)\ = jx2(t) + y2(t) (1.2.a) 

0 (0 • t a n " ' ( ^ ) (1.2.b) 
x(t) 

The equivalent passband representation of the baseband signal can be expressed as: 

v(t) = Re{g(t)ej^} (1.3) 

Considering Nyquist sampling criteria for signal recovery, the modulated passband 

signal demands a considerably higher sampling rate compared to its baseband 

representation. Hence, employing baseband signal alleviates this burden and, at the same 

time, recovers the same information signal. Therefore, baseband digital predistortion is 

of a relatively higher interest due to a lower demand on the digital signal processing 

(DSP) data storage. 

In this thesis, a new adaptive predistortion technique, based on launching a single 

frequency signal to the transmitter, is proposed. The key assumption which significantly 

simplifies the linearization approach is considering the nonlinear characteristics seen in 

the transmitters to depend exclusively on the power of the driving signal [14] and not its 

frequency content or bandwidth. In other words the main indicator of the signal is its 

power and not its frequency contents. This simplification is also referred to as 
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narrowband approximation [15].The training signal, when compared to various schemes 

of modulated signals that are largely used for identifying the digital predistortion, is a 

simple signal and proves to be sufficient as long as we are concerned about power 

dependent nonlinearities. To establish our linearization criteria, one could simply 

contemplate the performance of a linear system on a sinusoidal signal, which will 

produce a sinusoidal signal of the same frequency, incorporated with constant linear gain 

and linear phase shift. 

Two-box nonlinear models, which have been vastly developed to mimic the behaviour 

of the transmission systems, have been identified and validated. The key assumption 

though is that a two-box model is an accurate enough representation of the PA nonlinear 

dynamics, at least for the conditions under which it is assumed to be utilized. The 

adaptive predistorter is, perforce, structured in accordance to such a model on which it 

will take action. Further validation of the identified predistorter is accomplished by 

launching a CDMA signal. 

1.2 Nonlinear dynamic behaviour, two- and three-box models 

In order to design a predistorter, accurate enough to eliminate the power dependent 

nonlinear distortions existing in the transmitter system, primarily, an accurate and robust 

model for the RF transmitter should be identified. The model shall remain valid for a 

wide enough range of input signal power that the transmitter is expected to be subjected 

to. For a memoryless, quasi-memoryless or quasi-linear transmitter where the output of 

the system can be treated for most purposes as a linear version of the input, including 
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weak nonlinearities [16], one widespread method is the look-up-table (LUT) [17]-[18]. 

The measured amplitude modulation / amplitude modulation (AM/AM) and amplitude 

modulation / phase modulation (AM/PM) data of the transmitter are used to build up the 

LUTs. Once the tables are obtained, the PA behaviour can be characterized, wherefrom, 

the compensator's nonlinear behaviour will be extracted. One of the main difficulties 

that one may come across is the requirement of massive amounts of RAM to accumulate 

a sufficiently accurate mapping. 

As long as the signal launched through the system is narrowband, where transmitter 

exhibits negligible dynamic effects which sway away by the dominant static 

nonlinearities, an instantaneous static model and its corresponding compensator can 

linearize the system accurately enough and the LUT method can be efficiently applied. 

However, once wideband signal transmissions are considered, the transmitter dynamic 

behaviour can no longer be ignored, whereupon, the output of the system depends not 

only on the current input but also on the past inputs of the system. This type of systems 

is also known as system with memory and the consequent symptoms are referred to as 

memory effects. Therefore we fall into the dynamic nonlinear systems category where 

static models, such as LUTs, can no longer represent the system satisfactorily. 

A variety of methods have been proposed in the past few years to account for the 

concurrent modeling of the nonlinearity on one hand and dynamic nature of the 

transmitter on the other hand. Some of these models which cover a rich research area for 

nonlinear dynamic system are memory polynomial models, Volterra series, two-box 

models and their 3-box combinations. 



1.2.1 Volterra series model 

The Volterra series method is a general nonlinear system approach in modeling a 

nonlinear system with memory [19]-[20]. If the amplifier is observed like a functional 

box, it can be modeled by either the Taylor or Volterra series. The Taylor series is a 

good tool for modeling nonlinear behaviour; however, it is only valid for memoryless 

nonlinearity. 

In terms of the Volterra series, the input and output relation of an RF power amplifier 

can be written as below: 

+00 -(-00 +00 

y(t)= \hl(T)x(t-r)dT+ J [h2{TvT1)x{t-Tx)x{t-T2)drxdr2 + 

(1.4) 
-f-OO - f - 0 ° -f-OO y, 

•••+ j j-J^(71,---,TB)flx(/-T i)rfT1---rfr i,+e(n) 
—00 —00 —00 1=1 

where, >>(•), *(•) are the continuous-time input and output signals of a nonlinear system 

respectively; e(n) is the truncation error; and, h,n{ix, r„) is the nth-order Volterra 

kernel, which is comparable to the impulse response of a linear system. A discrete time-

domain Volterra series expansion with finite memory length L can be formulated as: 

L-\ L-\ L-\ 

y(n)= I hx{i)x{n-i) + X I h2(i, j)x(n-i)x(n- j) 
i=o ;=o j=o (]_5) 

L-\ L-\ L-\ 
+ S S £ h^(i, j,k)x{n -i)x(n— j)x(n — k) + ...+ e(n) 

i=0j=0k=0 ' 

where,/z,(0, h2(i,j) and h,(/,;',k) are the linear, quadratic and cubic time-domain Volterra 

kernels, respectively; e(n) denotes the model error; and, L is the system memory length. 
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In the literature, several methods have been addressed for determining the kernels or the 

associated transfer functions [21]-[22]. The output of the Volterra model is linear, with 

respect to the kernels; whereby, many fast least square (LS) algorithms can be 

implemented to identify the kernels, following the same general procedure utilized for 

the identification of conventional linear digital filters, with the difference that the input 

vectors must be expanded. Due to the loss of the time shift in the input data vector, 

direct application of a linear adaptive algorithm to the Volterra series can significantly 

increase the complexity; therefore, a non-rectangular structure matrix, known as V-

Vector, has been developed that preserves the linear time shift of a nonlinear data vector 

[23]. 

More problems arise with higher order Volterra systems, where, even with fast recursive 

least square (RLS) algorithms, updating the parameters turns out be considerably slow 

and frustrating which will severely compromise the complexity and accuracy of the 

model. This problem issues from the size of the matrix which increases both with the 

order of the Volterra kernel and the memory length of the nonlinear system. The details 

of this modeling approach are not considered in this thesis. 

1.2.2 Memory polynomial model 

Multi-branch delayed polynomial function is another technique for modeling 

nonlinear dynamic systems [24]-[25]. As expressed by the following equation, the input 

signal and its delayed versions are launched to a static polynomial function; and, the 



9 

outcomes of all the branches are added up to form the system final output. Figure 1.3 

shows a typical scheme of a memory polynomial block diagram. 

p Q P~l 

p=\ q=0 
(1.6) 

In the above formula, for Q = 0, memory polynomial reduces to a memoryless model. 

Otherwise, Q stands for the number of tabs in the delay line; and, P is the order of the 

polynomial. The memory polynomial is, indeed, a simplified version of the Volterra 

series. As can be instantly perceived from 1.6, this model is linear with respect to its 

adjustable parameters and therefore is identifiable with simple linear identification 

techniques, like linear least squares. Further mathematical derivation on how memory 

polynomial can be extracted from Volterra series is beyond our goals and the reader is 

referred to [26]. One should however keep in mind that, occasionally, the algorithm for 

finding the coefficients of the polynomial functions may not converge. 

u(ri) 

zr1 
u(n)(a00 + a0l \u(n)\+ ...+ aQ p_x \u(n)\p ) 

u(n — l)(a10 +<2n |w(n —1)1 + ... + ^ Y\u{n — Y)\p ) 

2Tl x(ri) 

u(n-q+lXa X0+aq_ll\u(n-q+V\ +...+a x ^uin-q+lj^ ) 

Fig. 1.3. Memory polynomial block diagram 
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1.2.3 Wiener/Hammerstein and general two-box models 

Sometimes the nonlinearities in a system have the character of a static nonlinearity at 

either the input or output side, while the dynamics are linear. These types of models 

known as Wiener and Hammerstein are the simplest types of block-oriented models for 

nonlinear dynamic systems [27], where a nonlinear static block is followed by a 

dynamic linear filter, or vice versa. These models also prove to be a simplified version 

of the Volterra series, where the Volterra kernels, assigned as h , are assumed to be 

separable, i.e. they can be expressed as the product of the first-order kernels: 

hp(ml,m2,...,mp)= U \jim^) (1.7) 

For a more elaborate derivation of Wiener/Hammerstein model from Volterra series, the 

reader is referred to [26]. A general scheme of these models is depicted in Figures 1.4.a 

and 1.4.b. 

Linear 
dynamic filter 

Static 
Nonlinear 

block 
Fig. 1.4.a. Wiener model 

Static 
Nonlinear 

block 

Linear 
dynamic filter 

Fig. 1.4.b. Hammerstein model 
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For an example of Hammerstein model, considering the case in which the static 

nonlinearity g is known, the input will simply refine to x(t) = g (x(t)) which will be 

treated linearly by the time invariant linear filter as the second functional box of this 

model. When g is unknown, it can be approximated by a polynomial of order m : 

g(x) = alx + a2x
2+ ... + amxm (1.8) 

Then, we let each power of x pass different numerator dynamics: 

A(q)y(t) = B](q)x(t) + B2(q)x2(t) + ... + Bm(q)xm(t) (1.9) 

where, At(q) and Bt(q) are polynomials in the delay operatorg"1. In this case, the 

adjustable parameter vector can be expressed as follows 

6T=[al...anX
)-..bTbl2)..K)--Mm)--Km)] (1-10) 

where, na is the memory length. The regressor vector will be expressed as 

(pT(t) = [-y(t-l)...-y(t-na)x(t-l)... 

x{t - n)x2(t -l)...x2(t- n)...xm(t -l)...xm(t - n)] (1.11) 

Using the above formula, the relation between the input and the output of the system can 

be written as below: 

y(t) = y(t\6) = <pT(t)0 (1.12) 

If the input/output data as well as the parameters of the filter and the polynomials are 

real valued, closer scrutiny of the above class of dynamical systems indicates that this 

type of model can indeed mimic the nonlinearity that occurs in the gain of the system, 

however, given that the phase shift finds its origin in the dynamical part of the model, 
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itself modeled as a linear filter, it will be constant with respect to input power for 

narrowband signals. Indeed, the Hammerstein and Wiener models are widely analyzed 

in the control theoretic literature, and, as discussed, one of their limitations is that they 

cannot mimic a nonlinear phase response; this is as long as the models are considered to 

live in the time domain. However, in the radio frequency literature [28]-[31], one can 

find non linear phase and gain responses, extensively modeled with Hammerstein or 

Wiener structures, but in contrast, the latter models are considered to live in the 

frequency domain (and thus act on complex signals). These models lead to good results, 

but their time domain interpretation is difficult. In our thesis, we shall attempt to work as 

far as possible with models in the time domain. 

Hence, although simple Wiener and Hammerstein structures can be used to model a 

communication system with weakly nonlinear AM/AM distortion, they fail to seize 

AM/PM distortion. The two-box model approach addressed in [28]-[31], where 

nonlinear phase distortion is successfully captured, would follow the same 

implementation procedure formulated for the Wiener/Hammerstein structures; however, 

in this case, the model will have complex coefficients. 

1.2.4 Three-box modeling approach using an RF signal 

In this thesis, a three-box model is introduced and its parameters are estimated, 

primarily using baseband complex envelope data, which is also known as information 

signal. In the next step, the baseband signal is encoded into its equivalent passband 

representation modulated at RF frequency. The outcome is a simple real valued signal 
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which can be applied within a conventional Hammerstein modeling identification where 

the gain (AM/AM) distortion is realized by a static polynomial function; and, a finite 

response filter (FIR) is used to capture the dynamics. 

Having identified the first two boxes, the output is decomposed back to its equivalent 

baseband signal. This step is necessary in order to provide us with direct access to the 

nonlinearity profile of the phase, using baseband domain data. While preserving the 

nonlinear gain profile as obtained during the first phase of identification, the third box 

comes into action by simply manipulating the quadrature and in-phase data vector, so 

that a good quality of fit for the phase variation is achieved. A scheme of such a model 

is shown in Figure 1.5. This model and its input/output signals will be more precisely 

addressed in Chapter 3. 

out 

* 

1 

, y-out 
* — • 

N2 

'out 

Qwt 

\ 

1 

; 
Qin 

t in 
p N1 — • LF 

Fig. 1.5. Three-box orientation model 

1.3 Objectives and outline of the thesis 

1.3.1 Objectives 

In this thesis, an already developed nonlinear two-box model is initially constructed 

for both real and complex data, and its performance is validated. Then, a new three-box 

model is introduced to capture the nonlinear phase variation which could not be 
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achieved with real valued Hammerstein/Wiener models. The resulting models' time and 

frequency domain responses are then discussed from the point of view of performance. 

Based on the structure of the complex Hammerstein model, a new adaptive predistortion 

identification, which employs a single frequency signal as the input excitation, is 

structured and implemented. The key assumption is that the complex Hammerstein 

model is an accurate representation of the transmitter. In other words, the static power 

dependent nonlinearities of the transmitter and its linear dynamic behavior can be 

separated. Therefore the predistorter, in a static function representation, will precedes 

the 2-box model and will be iteratively updated until it approaches the inverse 

characteristics of the static functions of the model. One should keep in mind that 

although a model is being used throughout the identification of the predistorter, it will be 

treated like a black box. 

The optimization technique used to update the predistorter's adjustable parameters is 

mesh adaptive direct search method (MADS), which is preferred to other numerical 

algorithms, mainly due to the relatively large and time-consuming computational 

procedure during the evaluation phase of the cost function. This evaluation is a 3-stage 

process at each iteration including the predistorter functional box and the 2 boxes 

embedded in the Hammerstein model. The performance of the built-up predistorter is 

validated in one last step by launching a CDMA signal to the whole system and 

extracting the AM/AM and AM/PM curves, if the linearization procedure has worked, 

should indeed have all the characteristics of represent a linear system. 
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On one hand, the accurate performance of the built-up adaptive predistorter, which 

removes the need for decomposing the transmitter into two separable parts and, on the 

other hand, applying a simple sinusoidal signal, instead of a complicated modulated 

signal such as CDMA during identification, are explicated and the efficiency of the 

linearization in terms of suppressing out of band frequencies is compared in the power 

spectrum of the output of the predistorted transmitter and the transmitter alone. The 

power spectrum regrowth which is principally caused by the nonlinear characteristics of 

the transmitter and the noise-like oscillation observed in its power spectrum, which is an 

unmistakable signature in a nonlinear system, are largely eliminated. 

1.3.2 Outline 

The remainder of this thesis is organized as follows. 

In Chapter 2, the performances of two box models, living respectively in the time 

domain and the frequency domain are contrasted. The baseband real valued models 

performance in terms of AM/AM and AM/PM profiles is studied and compared. Next, a 

two-box model or complex Hammerstein is introduced; and, the construction procedure, 

based on de-embedding the gain/phase static nonlinear distortions and the residual 

dispersion like distortion in the data, is explicated in a complex structure using complex 

baseband signal. Nonlinear functional boxes are modeled with polynomials, embedded 

with a saturation type basis function like tangent hyperbolic in the hope of achieving a 

better fit for. The dynamics is modeled with a simple linear filter structure known as 
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ARX. The complete model is validated on a set of data distinct from that used in the 

estimation phase. 

In Chapter Three, the three-box model is introduced and a two-stage identification 

procedure is explained. Having constructed the modulated signal from the baseband 

data, the first two blocks are identified concurrently using a Hammerstein identification 

procedure. The output of the first two blocks is then demodulated so as to excite the last 

block, which shapes the profile of the nonlinear phase distortion. The complete model is 

validated, and the results are compared with those of the two-box model. 

In Chapter Four, a new adaptive predistorter based on launching a sinusoidal wave to the 

system is introduced, and the linearity criteria are discussed. The adaptive predistorter 

construction is primarily executed on a simple hypothetical model to verify the 

complexity of the computational task and the optimization process. Having defined the 

objective function to be minimized, in order to insure that the algorithm will converge to 

the appropriate values, a nonlinear constraint must be contemplated within the problem 

where, as will be addressed later, the lack of this constraint will severely mislead the 

algorithm convergence direction. An adequate optimizer is chosen; and, the 2-box model 

of the transmitter is utilized as a black box in cascade with the static nonlinear adaptive 

predistorter, to which the sinusoid signal is applied. In one final step, the performance of 

the complete predistorted system is verified by launching a CDMA signal; and 

observing AM/AM and AM/PM curves before and after the predistortion, as well as the 

power spectrum of the output signal of the system before and after the predistortion. 
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In Chapter Five, the thesis is summarized, and the contributions of the present work and 

possible future work are outlined. 
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CHAPTER 2 

TWO-BOX MODELS, DE-EMBEDDING NONLINEARITIES AND DYNAMIC 

MEMORY EFFECTS 

2.1 Introduction 

WIDEBAND transmitter design for modern high-speed wireless communication 

systems is a complicated issue, since one needs to find a compromise between 

inconsistent requirements. Aside from maintaining the quality of the signal at an 

acceptable level, the channel capacity and exploiting the best of a limited bandwidth are 

of essential concern. This delicate issue manifests itself more severely, in the context of 

wideband and highly varying envelope signals modulations schemes, such as code 

division multiple access (CDMA) and orthogonal frequency division multiplexing 

(OFDM). 

The linear and nonlinear distortions that are observed throughout a transmitter, and 

particularly the power amplifier (PA), will compromise operating the PA at a large back­

off from its nonlinear region, with a less power efficiency, or exciting the system at a 

higher power efficiency area, and hence challenging the emerging nonlinear distortions. 

In order to minimize the nonlinear distortion effects on amplitude (AM/AM) and phase 

(AM/PM), several techniques have been developed, such as predistortion which acts as a 

functional box preceding the PA with inverse characteristics of the PA. In order to 

design a predistorter that can effectively suppress the nonlinear effects, an accurate 

model of the RF system would be of great help. 
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Several techniques can be explored to model the dynamic nonlinear behaviour of PAs. 

As an example, the authors in [32] employed a two-box model and identified the 

behavior of the PA with a static nonlinear block followed by a dynamic weakly 

nonlinear filter, also referred to as an augmented Hammerstein model. The authors in 

[23] have used Volterra series to model PAs with memory effect, which is limited to 

weakly nonlinear devices (nonlinearities restricted to low order polynomials), due to the 

considerably expensive computational task and complicated algorithm. In [24], the 

Volterra series was exploited, along with a novel concept known as V-Vector algebra to 

ease the burden of computational complexity of the previous algorithms. The authors in 

[33] utilized a Wiener-Hammerstein model for power amplifiers in the frequency 

domain, using a polynomial to model the static nonlinearity. In [34], the Wiener-

Hammerstein model and its sub-models were introduced, and a link between the 

generalized Volterra series and these models was studied in details. 

In the basic structures of the Wiener/Hammerstein type models, there exists one static 

nonlinear block which is followed or preceded by a time invariant linear filter. These 

structures are purported to model both nonlinear amplitude and phase distortions; 

however the latter cannot be modeled by the real valued Hammerstein and Wiener 

models, or any cascade combination of these models. Therefore, they fall within a 

general nonlinear block-oriented model category or complex valued 

Wiener/Hammerstein models. 

In this chapter, the construction and accuracy of a widely used model for power 

amplifiers' dynamic nonlinear behaviour is studied. Also, as mentioned in the 
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introduction, we would address the totally different natures of the nonlinear complex 

Wiener/Hammerstein models that can account for the nonlinear phase distortion as is 

seen in wireless communications systems, as opposed to the real-valued Wiener and 

Hammerstein models, which do not introduce any nonlinear phase behaviour. The first 

type of models is identified using complex baseband signal and consequently the 

identified static and dynamic functional boxes will be associated with complex valued 

coefficients while the real Hammerstein/Wiener models will be treated the real-valued 

passband signal thus leading to real parameters. Since in many applications, phase 

distortion might be of little concern and amplitude/amplitude (AM/AM) distortion is the 

main issue, real-valued Wiener or Hammerstein models can still be used to mimic 

system characteristics, where, the instantaneous amplitude dependence of the nonlinear 

behaviour is modeled with static functions separately from the system memory. 

2.2 Transmitter prototype 

The device under test is a three-stage laterally diffused metal oxide semiconductor 

(LDMOS) power amplifier with a RF linear LDMOS amplifier designed for class AB 

amplifier application, MHPA21010, followed by RF power field effect transistors 

(FETs), MRF21045 and MRF21085, as shown in Figure 2.1. The FETs are designed to 

be used in AB class for WCDMA base station applications up to 2170MHz. The 

respective biases are 28V (550mA), 28V (500mA) and 28V (1000mA); and, the RF 

carrier is at 2140MHz. 
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The drive signal is a two-channel WCDMA signal of 3 slots, and the peak-to-average 

power ratio (PAPR) is 11.12 for the input signal. The bandwidth (BW) is 

3.84MHz/channel with 5MHz channel separation. The oversampling rate is 24, so the 

sampling frequency is 92.16. The actual setup, from which the input and output data are 

obtained, includes the up-conversion and down-conversion, modulation and 

demodulation blocks, and the main amplification stage 

3? i fc 

Fig. 2.1. Three-stage LDMOS power amplifier with MHPA21010 followed by MRF21045 and 

MRF21085 

2.3 Hammerstein and Wiener model construction with passband signal 

In this section, the Wiener and Hammerstein models for the transmitter prototype, as 

briefly described in the previous section, are identified and compared for the passband 

signal excitation. The identification procedure is accomplished in one stage, where the 

static nonlinear function parameters and the linear filter coefficients which constitute the 

set of adjustable variables, are identified concurrently through a MATLAB 

multidimensional unconstrained optimization root in a conventional global approach The 

minimization algorithm implements the Nelder-Mead method, simplex method or 

downhill simplex method, which are commonly used nonlinear optimization algorithms. 
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In order to model the system with a real-valued Hamrnerstein/Wiener model, a real 

signal should be used for the both input and output data strings; hence, using the 

measured baseband complex data, we mathematically construct the modulated signal. 

Considering x(t) and y(t) to be the in-phase and quadrature components of the baseband 

complex envelope signal, it can be expressed as follows: 

g(t) = x(t) + jy(t) = \g(t)\ejm =R(t)ejm (2.1) 

where, 

x(t) = Re{g(t)} = R(t)cos(0(t)) (2.2.a) 

y(t) = lm{g(t)} = 7?(r)sin(0(?)) (2.2.b) 

And 

R(t) • |g(0| = <Jx\t) + y\t) (2.3.a) 

-iMt), 0(0 • tan"1 ( ^ - ) (2.3.b) 
x(t) 

Any physical passband waveform can be represented by: 

v(t) = Rc{g(t)ejcqt] (2.4) 

where, coc represents the associated carrier frequency. Furthermore, the two other 

equivalent representations are: 

v(t) = R(t)cos[ct)ct + 0(t)] (2.5.a) 

v(t) = x(t)cos(coct)-y(t)sm(Q)ct) (2.5.b) 

Using the experimental data x(t) and y(t) for both input and output, the equivalent 
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passband signals in Equation 2.5 are obtained and applied for the identification of the 

model's parameters. One should recall that these passband signals are artificially 

constructed in order to test the ability/inability of a simple real-valued 

Hammerstein/Wiener structure to mimic gain and phase distortions on one hand, and on 

the other hand, in order to compare their response to that of a complex structure. Hence, 

the data used throughout this section, for the identification procedure, are real values. 

Having estimated the parameter of the system, the equivalent baseband signal of the 

output of the model is extracted and compared to the corresponding measured signal. 

2.3.1 Wiener model 

In the Wiener model, a static nonlinear block is preceded by a linear filter, which 

accounts for the dynamics as previously shown in Figure 1.5a. Before any arbitrary 

choice for the static function to model the nonlinearity of the system, the AM/AM and 

AM/PM distorted curves, extracted from the measurements, are drawn to help with a 

better estimation of the possible mathematical function that exhibits similar behaviour. 

These curves are obtained using the following simple relationships between in-phase (I) 

and quadrature (Q) components of the input and output measured data and the gain and 

phase shift of such a system: 

Pin = 1 0 1 O g 1 0 
2*,„ j 

+ 30 (2.6.a) 

^ = 1 0 1 o g 10 

r(I2 +Q2 ) A 

V out x^out > 

2Rout 

+ 30 (2.6.b) 
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where, the power of input and output signals is expressed in dBm. 

G a in = Pnut - P. 
out 11 

(2.7) 

A#> = tan" Qo 
\ 

V hut J 
-tan" 

rQ ^ 

V hn J 
tan" 

in *£out out *~in 

V*irtein "*"' •*ouMout J 

(2.8) 

Using the above equations, the AM/AM and AM/PM curves of the measurements are 

computed and drawn in Figure 2.2. It is worth mentioning that the measured output data 

is normalized to the small signal linear gain. As can be clearly seen, the AM/AM curve, 

expressing the gain behaviour of the transmitter, starts to deviate from a primarily 

constant value and decreases when the input power reaches a certain amount. As we are 

mostly concerned about the gain distortion, it would be helpful to plot the output power 

versus the input power; and, the nonlinear behaviour of the transmitter will manifest 

itself more evidently. This nonlinear behaviour is shown in Figure 2.3. 
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Fig. 2.2.a. The AM/AM measurement data for the transmitter prototype 
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Fig. 2.2.b. The AM/PM measurement data for the transmitter prototype 
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Fig. 2.3. Transmitter output power versus the input power 

It can be seen that, as the input power level increases, the power amplifier reaches its 

saturation area, where the output power no longer exceeds a certain maximum amount 

and consequently the gain starts to reduce. A polynomial with odd terms, in general, is a 
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good model for such behaviour since the input and output powers have an odd symmetry 

relation; however, it may exhibit some instability and low quality of fit when the input 

power level increases. Hence, in order to shape the polynomial more accordingly with 

the behaviour observed in the actual transmitter, a mathematically known function of the 

similar nonlinear profile is embodied within each polynomial term as the basis function: 

f(P(y(t))) = a0 + al/3(y(t)) + a2p
2(y(t)) + ... + aJn(y(t)) (2.9) 

where in the above formulation, even terms are set to zero; and, 0(y{t)) is the basis 

function, which in our case, can be tangent hyperbolic, tangent inverse or any other 

function with similar behaviour. In our case, tangent hyperbolic function proves to 

provide relatively better results in both the Wiener and Hammerstein models. Hence, we 

fix J3(y(t)) = tmh(y(t)), where y(t) is the real passband input of the static nonlinear 

block or the output of the linear filter. 

The transfer function model of the linear time invariant filter, which, is assigned to take 

the simplest input-output relationship, described as a linear difference equation known 

as the ARX model: 

y(t) + aly(t-l) + ... + anay(t-na) = 

b0u(t) + bxu{t -\) + ..bnu(t-nb) + e(t) (2' ! 0 ) 

where, e(t) is the white noise term; y{t) is the prediction of the linear model for the 

output at time t; and, u is the input of the filter. Figure 2.4 shows the connection of the 

two blocks. The coefficients of the linear filter and those of the nonlinear static function 

are iteratively updated, using a global nonlinear optimization algorithm, such that the 
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Fig. 2.4. Representation of the Wiener model's functional boxes 

error is minimized. The final time plot of the estimated in-phase and quadrature 

components of the output of the model and the measurement are shown in Figures 2.5.a 

and b. Having identified these components, the estimated AM/AM and AM/PM curves 

are computed and plotted in Figures 2.6 and 2.7. As already mentioned, the relative 

phase shift prediction of the model versus the input power in figure 2.7 remains 

constant. 
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Fig. 2.5.a. In-phase components of the output of the model and the measurement 
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Fig. 2.5.b. Quadrature components of the output of the model and the measurement 
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Fig. 2.6. The AM/AM estimation of the Wiener model and the measurement 
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For a comparison in the frequency domain, the power spectrum of the real part of the 

baseband signal is plotted in Figure 2.8, where a high quality of fit in the main channel 

has been achieved and also the adjacent channel spectral broadening, due to the 

nonlinearity, is very well mimicked by the model. The quality of fit for the Wiener 

model, containing 6 adjustable parameters, can be computed using the following 

equation: 

FIT = 1 - Norm{Y -Y)l Norm{Y -Mean(Y)) *100 (2.11) 

where, Y is the vector of the measured output, and Y is the model prediction for the 

output signal. The computational results are presented in Table 2.1. 

Table 2.1. Quality of fit figures for the Wiener model 

Component 

In-Phase 

Quadrature 

Number of parameters 

6 

6 

Best fit percentage 

90.1495 

87.6357 

2.3.2 Hammerstein model 

The process of identifying the Hammerstein model consists of the very same steps as 

the Wiener model, with the difference that the static nonlinear function will precedes the 

linear dynamic filter, as shown in Figure 2.9. The basis functions, the order of the static 

polynomial, as well as the filter order, remains the same as the Wiener model. 
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Fig. 2.9. Representation of the Hammerstein model's functional boxes 

The time domain plots of the identified signals in baseband representation, in-phase and 

quadrature components, and their corresponding measured signals are depicted in 

Figures 2.10.a and 2.10.b. As a reminder, the identification is performed on the real 

passband signal and at the end of the identification phase; the signal is decomposed to its 

baseband components. From these baseband components, the AM/AM and AM/PM 
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Fig. 2.10.a. In-phase component of the output of the model and the measurement 
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Fig. 2.10.b. Quadrature component of the output of the model and the measurement 

curves are obtained and drawn in Figures 2.11 and 2.12. The quality of fit can be once 

again computed from equation 2.11. The final results are given in Table 2.2, which 

compared to the results in Table.2.1 demonstrate a relatively close performance for the 

Wiener and Hammerstein models. An increment of about one percentage can be seen for 

both the in-phase and quadrature components in Hammerstein model, which can be also 

perceived by observing the AM/AM curve, where the Hammerstein model follows the 

nonlinear behaviour more accurately as the input power increases. However, the Wiener 

model starts to deviate from the system nonlinearity at the same power level, resulting in 

a bigger error and, therefore, a lower quality of fit. Hence we can roughly conclude that 

for the very same order of model and the complexity of the basis functions, 
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Hammerstein shows a slightly better performance in terms of nonlinear behaviour 

modeling as the input power increases. 
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Fig. 2.12. The AM/PM estimation of the Hammerstein model and the AM/PM measurement 
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Table 2.2. Quality of fit figures for the Hammerstein model 

Component 

In-Phase 

Quadrature 

Number of parameters 

6 

6 

Best fit percentage 

90.5226 

88.2062 

A frequency-domain comparison between the power spectrum of the real part of the 

baseband signal of the measurement and the output of the model is drawn in Figure 2.13, 

where, a high quality of fit for the main channel near zero frequency, and the adjacent 

channel regrowth is successfully achieved. 
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7 

Fig. 2.13. Power spectrum density of the output signal of the Hammerstein model and the 

measurement 
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2.3.3 Two-box nonlinear model—Complex Hammerstein 

A general nonlinear two-box model or a complex Hammerstein model, widely 

addressed in RF literature, is introduced and implemented in this section. Due to its 

complex structure, it can comprehend both the nonlinear profile observed in gain and 

phase variation of the transmitter. Phase distortion is undesirable in many 

telecommunication systems where the information is encoded in the phase of the signal. 

In this modeling (one can also refer to [35]-[36]), as previously mentioned, the 

identification procedure is simplified by assuming that the instantaneous power of the 

input signal is the main source of nonlinearities and therefore AM/AM and AM/PM 

curves, which are directly obtained using baseband data, are the objective of modeling 

instead of applying a direct identification on quadrature and in-phase components. 

Having identified these nonlinear profiles, with appropriate static models, the polar-

rectangular relation, as described in the following formulas, is used to extract the real 

and imaginary part of the equivalent baseband signal that the model has provided. 

Gain = Pout- Pin (2.12) 

f ^ \ 
A(p = tan" a 

V out J 

f ^ ^ 
- t an a 

V 1in J 
= tan~ in z^out out z^in 

V*inxiin ' *out"out J 
(2.13) 

G i = Gain*cos(A(p) 

G q = G ain* sin( A<p 
(2.14) 

/ =/. *Gi-0 *Ga 
1out 1in w t x£in w t / 

Qout = Iin*Gq + Qin*Gi 

(2.15) 

(2.16) 
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Static polynomial model identification for both AM/AM and AM/PM, in terms of the 

input power, is performed as the first step. The baseband outputs are then extracted and 

fed to a delay line, like finite impulse filter structure. Therefore, the identification 

process is constituted of two steps. First, the instantaneous phase and gain nonlinear 

distortion are de-embedded and modeled as functions of input power. Second, using 

these static functions, the intermediate variables at the input of the linear filter which 

were primarily inaccessible, are computed. The AM/AM and AM/PM relation between 

the measured output and the computed intermediate variables can be observed which 

depicts sparse data that are concentrated around a relatively linear line, implying a linear 

behaviour. This can be, in one last step, modeled by a linear dynamic filter structure, 

which provides us with the sparsity that is seen in the measured output. 

The static nonlinear modeling is performed, applying polynomial functions, embedded 

with certain basis functions that can shape nonlinear profiles of AM/AM and AM/PM 

curves more accordingly. A normal probability density function, which is available in 

the MATLAB function list, is selected as the basis of the polynomials. Since the 

AM/AM and AM/PM curves have similar type of nonlinear behaviour, the basis 

function is the same for both: 

fiP(y(t))) = aQ + a.Piyit)) + a2j3
2(y(t)) + ...+ ajn(y{t)) (2.17) 

where, 

j3(y(t)) = normpdf(y(t)) (2.18) 

, -(y(t)-M)2 

normpdf(y(t)\jU,a) = —j=e 2(j2 (2.19) 
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The standard form of the normal probability density function is used, in 

which ju = 0 and o - 1. 

For both gain and phase, the polynomial is of the second order; and, as can be seen in 

Figures 2.14 and 2.15, the estimated function is a one-to-one function and, hence, is 

reversible, which is necessary for building up the predistorter. However, this is not our 

main concern at this stage and the linearization approach will be performed 

independently of the information of the model contents. 

Having identified the static nonlinearities of the first box, the initially inaccessible 

intermediate variables, at the output of this box which will act as the excitation signal for 

the linear filter part can be computed. The AM/AM and AM/PM curves, obtained for the 

computed intermediate variables and the measured output are depicted in Figures 2.16 

and 2.17, where gain and phase remain relatively constant as the input power varies. A 

simple linear filter structure, known as auto-regressive model, of the same type 

mentioned in Equation 2.10, is applied to model this linear part. This linear filter in 

cascade with the static nonlinear functions completes the model. The overall 

performance of the model in the time-domain plots of the quadrature and in-phase 

components is shown in Figures 2.18 and 2.19. 

The equivalent AM/AM and AM/PM curves were extracted and drawn, as shown in 

Figures 2.20 and 2.21. In a similar step as in previous sections, the quality of fit for the 

quadratic components of the baseband signal is computed using Equation 2.11. 

It is worth pointing out that a small portion of the data, at the output of the model, as can 

be seen in the AM/PM curve in Figure 2.21, have fallen on the zero axes. This results 
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Fig. 2.14. The static AM/PM estimation of the two-box model and the AM/PM measurement 
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from the fact that the linear filter identification, which is an iterative algorithm, assumes 

an initial condition for the first n-1 points of the output vector, which has been set to 

zero. This initial condition is not reveal in the AM/AM curve, because these points for 

the gain computation are mapped to minus infinity. 

The number of parameters, which were identified, during nonlinear and linear 

identification and, with either two separate filters for each component or with one filter 

of complex coefficients, the final figures for the quality of fit and the order of the ARX 

model, are summarized in Table 2.3. 

Table 2.3. Quality of fit figures for the two-box nonlinear model 

Component 

In-phase 

Quadrature 

Nonlinear model 

Order 

2 

2 

Basis Fn 

normpdf 

normpdf 

Linear ARX model 

na 

4 

4 

nb 

16 

16 

nk 

1 

1 

Best fit percentage 

Complex 

98.1488 

98.0723 

Separate Filters 

98.1498 

98.0140 

Although the identification results have been obtained with separate filters, the very 

same results have also been obtained with a complex filter, according to the percentage 

of the quality of the fit in Table 2.3. A more detailed study, shown in Table 2.4, reveals 

the fact that the parameters identified for the separate filters are very close to each other 

and to those of the real part of the complex filter parameters. However the imaginary 

part, in most cases, has a small value implying that a single linear filter with real valued 
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coefficients is sufficient to model both components since they are equally treated by the 

linear dynamics of the system. 

In order to compare the performance of the model to that of the actual transmitter in the 

frequency domain, the power spectrum density of the real part of the baseband signal at 

the output of the model and the measurement are plotted in Figure 2.22. The model 

spectral prediction, compared to the power spectrum predicted by the Hammerstein and 

Wiener models demonstrate a significant enhancement, where the inconsistent 

oscillation in the spectrum of the real-valued Hammerstein and Wiener is no longer 

observed in the complex Hammerstein's spectrum, which happens to be in accordance 

with the betterment observed in the quality of fit calculated for the model. 

Measurement 
Two-box Model 

2 3 
frequency (Hz) x10 

Fig. 2.22. Power spectrum density of the output signal of the two-box nonlinear model and the 

measurement 
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Table 2.4. Coefficient comparison of the separate and complex filter 

Complex na(l,4) -0.906928 0.311763 -0.127641 0.109657 

Filter -0.033213i 0.004383i 0.02219H -0.028843i 

nb(l,4) 2,942692 -6,264085 6,907992 -5,750543 

-0,0885 lOi 0,278304i -0,512000i 0,572540i 

nb(5,8) 4,310618 -2,912079 1,913753 -1,20509 

-0,530506i 0,457069i -0,386105i 0,309583i 

nb(9,12) 0,647345 0,296910 0,079374 0,018962 

-0,231515i 0,168286i -0,144635i 0,138566i 

nb(13,16) 0,007579 0,014027 -0,013811 -0,002020 

- 0,111917i 0,074377i - 0,037957i 0,009488i 

Separate I 

Filters 

Q 

na(l,4) 

nb(l,4) 

nb(5,8) 

nb(9,12) 

nb(13,16) 

na(l,4) 

nb(l,4) 

nb(5,8) 

nb(9,12) 

nb(13,16) 

-0.916516 

2,971008 

4,545562 

0,739016 

0,252875 

-0.954957 

2,859512 

4,120139 

0,603565 

0,177298 

0.320543 

-6,412014 

-3,059638 

0,485743 

-0,134137 

0.375108 

-6,061107 

-2,803906 

0,174767 

0,101515 

-0.121247 

7,192323 

1,991354 

0,376590 

0,040964 

-0.153319 

6,642465 

1,868991 

-0,130961 

-0,043503 

0.111286 

6,047791 

-1,258701 

-0,310811 

0,011211 

0.108779 

5,499617 

-1,185715 

0,249654 

0,002506 
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2.3.4 Conclusion 

In this chapter, three different models have been introduced and realized. Their 

performance, in terms of the quality of fit for the time-domain signals, has been 

calculated and compared. One must also mention that the identification step was 

performed on a portion of measured data, while the validation results included a wider 

range of measurements. 

It has been demonstrated that, simple real valued Wiener and Hammerstein models 

which are identified using passband signal, are not able to simulate a system with 

nonlinear phase behaviour; and, the static nonlinearity box merely serves to model the 

instantaneous variation of the nonlinear gain. Hence, in order to model a transmitter with 

phase and amplitude nonlinear profiles, a more general model, referred to as 2-box 

model or complex Hammerstein was introduced and identified. Although it contains the 

same building blocks of the simple real-valued Hammerstein, the first box is a multiple 

model containing two separate static nonlinear functions which accepts complex data as 

input and produces a complex output. The static nonlinear blocks serve to model the 

gain and phase variation as functions of instantaneous input power. The second box can 

be either a multiple linear model containing two linear ARX type filter structures, each 

of which serves to mimic one of the in-phase or quadrature component variations, or can 

be a concurrent complex structure receiving complex baseband signals. The 

identification of any of the two alternatives results in the very same coefficients. 

The power spectral density for these models was also obtained and plotted. The real 

valued or the passband Wiener and Hammerstein models, quite similarly, follow the 
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main channel and the adjacent channel regrowth, observed in the spectrum of the 

measured output. However, as the power started to diminish at higher frequencies, the 

models failed to mimic the measurements as accurately and start to exhibit inconsistent 

oscillation throughout the spectrum. This was not the case of the complex two-box 

nonlinear model, which reveals the very same noise-like oscillation throughout the 

frequency band, as observed for the measured signal. This noise-like disturbance in the 

spectrum is, indeed, a very typical frequency domain observation of a nonlinear system. 
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CHAPTER 3 

THREE-BOX ORIENTED NONLINEAR MODEL 

3.1 Introduction 

IN this chapter, a three-box model, which is capable of exhibiting nonlinear behaviour 

for both gain and phase of the transmitter, is proposed. Similar block-oriented structures 

have already been developed [37]-[39] for modeling dynamic nonlinear system, where 

compared to 2-box models are more general and perforce, requires a more elaborate 

identification technique. Figure 3.1 shows a general scheme of such a model, where two 

nonlinear boxes surround a linear time invariant filter. 

This three-box model is, indeed, a mergence of the Hammerstein and two-box nonlinear 

models described in Chapter 2; however, the first 2 boxes are realized concurrently, with 

the same conventional procedure described for the simple Hammerstein model, 

identifiable with passband signals. The output of the first two boxes is then decomposed 

back to its equivalent baseband complex signal. The phase shift is computed and 

compared to that of the measurement. The residual phase variation in the measurement 

profile, which was not captured during the first stage of the identification of the 

passband signal, is then attempted to be modeled in a third single static nonlinear block. 

Although the third box changes the phase shift of the whole structure, it does not 

intervene with the performance of the first nonlinear box in modeling the static nonlinear 

gain. In other words, the third box manipulates the complex data at the output of the 

linear filter such that, while the AM/AM nonlinear profile remains unchanged, the 
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AM/PM is shaped according the nonlinear characteristics observed in the transmitter. 

The drawback of this method for modeling is that the output nonlinearity block must 

first extract the equivalent baseband signal of the output of the linear filter to use as an 

input. Hence, although using passband signal would ease the burden of performing 

complex identification for the first two boxes, eventually baseband signal is to be 

extracted to capture the residual phase distortion. 

/' 
'out * 

» 

, ,Qout 
x • 

N2 

'out^ 

QM 

s 
i 

Qin 
• ! 

, in N1 — • LF 

Fig. 3.1. The three-box orientation model 

3.2 Three-box model's two-stage identification procedure 

At microwave and millimeter wave frequencies, it is naturally more difficult to 

sample the signal, due to Nyquist criteria, compared to the equivalent baseband signal. 

Although the measurement data have been gathered by sampling the baseband signal, we 

mathematically re-build up the modulated passband signal as mentioned in the previous 

chapters for the passband Wiener and Hammerstein models. Hence, any identification 

with complex structures and complex parameters can be avoided. The first stage of 

identification is exactly the same as the Hammerstein model, described in Section 2.3.2; 

and, the identification ends up with the same results obtained for the as the Hammerstein 

model, whereupon, the AM/AM distortion profile has been successfully simulated by the 
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model however, this is not the case for AM/PM distortion. These results are once again 

plotted in Figures 3.2.a and 3.2.b. 

At the output of the first two boxes, the signal is decomposed to its complex baseband 

signal, from which the AM/AM and AM/PM curves are computed. If we look at the 

relations between the gain and phase of the system and the in-phase and quadrature 

components, it is revealed that one can mathematically manipulate the signal 

components, so that the phase is shaped according to the desirable behaviour of the 

transmitter, while the gain remains unchanged: 

G a in = Pnii. - P. 
out in 

A<p = tan" Qo 

V out J 

f ^ \ 
- t a n 

- i Q, 
V Jin J 

= tan 
- i in *£out out xiin 

\.*inQin +*outQ< 

(3.1) 

(3.2) 
out J 

In other words, the ratio between quadrature and in-phase components "ut : 
is 

hutM 

manipulated to provide the desirable phase profile of the transmitter, while the 

instantaneous power ^l*mt (/) + Q?)Ut {t) does not change. 

Using the AM/PM curve, the phase difference between the output of the second box and 

the measured output is obtained and modeled in a third box, applying the same 

identification procedure applied to the two-box model in Section 2.3.3. A polynomial of 

second order, with normal probability density function as its basis, was utilized to shape 

the response more accordingly. Figure 3.3 shows the final AM/PM curve obtained at the 

output of the third box, which indicates an acceptable agreement with that of the 

measurement. The AM/AM curve is not plotted, since as already explicated, it remains 
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unchanged during the third box identification. In order to observe the difference between 

waveforms during the first and second stage of the identification, the instantaneous 

power and phase signals for the second-box output, the third-box output and the 

measured output are drawn in Figures 3.4 and 3.5. As can be seen in Figure 3.4, no 

power deviation can be observed between the black curve and the blue star trace, which 

belong to the output of the third and second boxes, respectively. However, Figure 3.5 

clearly demonstrates the performance of the third block on correcting the nonlinear 

phase characteristics, expected of the model; where the black and green curves, 

belonging to the third box output and the measured output, respectively, are quite in 

agreement. Once again, the blue curve proves the inability of a passband representation 

of Hammerstein model in introducing any nonlinear phase behavior. 
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Fig. 3.3. The AM/PM estimation of the three-box model and the AM/PM measurement 
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For a frequency-domain comparison, the power spectrum of the output of the three-box 

model and that of the measurement are plotted and compared in Figure 3.6, where a 

good agreement for the main channel and the adjacent channel regrowth has been 

achieved. The quality of fit is once again computed for the identified model, and the 

model is validated by applying a new set of data. 

frequency (Hz) 

Fig. 3.6. The power spectrum of the output of the three-box model and the measurement 

Table 3.1 shows the computation results of the quality of fit for both the identification 

and validation of the three-box and two-box nonlinear models described in Chapter 2. It 

can be observed that, despite a high-order nonlinear function used in the first block of 

the three-box model, a very simple linear filter of the first order has replaced two 16th-

order filters used for the two-box model. The nonlinear function for the third box is the 

very same as was used for the two-box model's phase function. A slightly better fitting 
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is obtained in both the modeling and identification stages of the three-box model. 

However, as long as we are concerned about the power spectrum of the model's output, 

both models are quite in agreement with the measurement results in terms of exhibiting 

similar behavior in the main channel spectrum and the adjacent channel regrwoth. 

Table 3.1. 2-box and 3-box model performance summary 

2-box 

Model 

Component 

In-phase 

Quadrature 

2 Parallel 

Nonlinear boxes 

Orders 

2,2 

2,2 

Basis Fn 

normpdf 

normpdf 

Linear ARX 

Filters 

na 

4 

4 

nb 

16 

16 

nk 

1 

1 

Best Fit 

Percentage for 

Identification 

2 Separate 

Filters 

95.1098 

89.6825 

Best Fit 

Percentage for 

Validation 

2 Separate 

Filters 

96.3077 

92.3378 

3-box 

Model 

Component 

In-phase 

Quadrature 

2 Nonlinear boxes 

Orders 

7,2 

7,2 

Basis Fn 

atanh, 

normpdf 

atanh, 

normpdf 

Linear ARX 

Filters 

na 

1 

1 

nb 

0 

0 

nk 

0 

0 

Best Fit 

Percentage for 

Identification 

-

97.7204 

97.6559 

Best Fit 

Percentage for 

Validation 

-

97.7668 

97.6386 
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3.3 Conclusion 

In this chapter, a three-box model was introduced and constructed. An identification 

process, consisting of two stages, was described. This included static nonlinear gain and 

phase shaping during each step, leading to our desirable nonlinear behaviour profiles. 

Having performed the identification and validation of the model and comparing it to the 

two-box model performance, a slightly better quality of fit was yielded for the same sets 

of data; however, the nonlinear basis functions, used in the models, are different. Despite 

a relatively high-order nonlinear function in the 3-box model, one could then rely on a 

simple single first-order linear filter, instead of two high-order filters in the two-box 

model. The significant shortcoming with this type of modelling is a passband to 

baseband decomposition in the second stage of identification, in order to provide direct 

access to the phase information. 
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CHAPTER 4 

ADAPTIVE PREDISTORTION CONSTRUCTION USING SINGLE TONE 

SIGNAL 

4.1 Introduction 

DESIGN and construction procedure of digital predistortion, adaptive or non-adaptive, 

is normally accomplished by launching a training signal similar to the one which is to be 

transmitted. Highly demanded wideband transmitters that necessitate utilizing various 

modulated schemes, such as CDMA, OFDM or WiMAX, which take advantage of a 

limited bandwidth for transferring the maximum possible information over a 

telecommunication channel, will, perforce, encourage designers to use similar signals for 

the design procedure of the predistorter. 

The authors in [40]-[41] used CDMA schemes to design and update the predistorter 

estimator; whereas, in [42]-[43], OFDM schemes were utilized. In [44], single tone, two-

tone and quadrature signals were used separately as training signals and the efficiency of 

the predistortion was compared. 

Aside from the type of the training signal and the signal that is the purpose of the 

transmission, one should keep in mind that the main source for nonlinear distortion in 

the transmitter chain is the input power level, which drives the power amplifier towards 

its saturation area, where consequently, inter-modulation products, harmonic generation 

and other nonlinear phenomena arise. Hence, whether a simple sinusoid or a 

complicated modulated signal is launched to the system, as long as their power level 
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contents fall within the same interval, they excite the very same nonlinear region, and 

ignoring any frequency dependent distortion for the time being, the output signal will be 

equally distorted by the static power dependent nonlinearity of the amplifier. 

In this chapter, a single tone signal is launched as the training signal; and, a direct 

adaptive process is implemented to update the static nonlinear predistorter block's 

parameters, so that the output of the whole system remains a sinusoid signal of the same 

frequency, implying that the system is operating linearly. We demonstrate that changing 

the frequency of the input signal, as long as it falls within the pass band of the linear 

filter, and while its power level is being kept unchanged, will not affect the sinusoidal 

character of the output. Hence choosing a single frequency within the bandwidth of the 

transmitter suffices to eliminate the power dependent static nonlinearities and the 

predistorter performance remains valid for any other frequency within the bandwidth. 

Since we have assumed a baseband model for the transmitter, a baseband predistortion is 

also required. Static polynomial functions are embodied in the predistorter box which 

precedes the transmitter model. The estimation error and updating law will be described 

in the next section. One must keep in mind that, although a model is utilized to represent 

the actual transmitter, the identification of a predistorter is performed independently 

from the model structure and information. In other words, the model is treated as a black 

box, which accurately resembles the actual transmitter; hence, a direct identification 

technique is used to update the predistorter parameters. 
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4.2 Hypothetical model and adaptive predistortion 

In this section, a sinusoidal wave is first launched to a hypothetically built-up two-

box model, which includes a saturation type static nonlinear behaviour, representing the 

power amplifier typical nonlinearity, followed by a low-pass simple first-order filter. 

The goal is to obtain a rough estimation of the capability and speed of the algorithm in 

updating the estimator's vector in a less expensive function evaluation and, accordingly, 

selecting an appropriate optimization tool before dealing with the real model which is 

more expensive in terms of the cost function evaluation's time . 

4.2.1 Linearity criteria and cost function definition 

A linear system's response to a sinusoid gives rise to a sinusoid at the output with 

some gain and phase shift, but with the same frequency. This is a basic characteristic of 

a linear system which will be the utilized as a figure of linearity in the rest of this 

chapter. We use this fact to find the update law for the predistorter estimation. The 

complete scheme of the adaptive system, including the predistorter, is shown in Figure 

4.1, in the most simplified scheme possible where, f represents the predistorter static 

function; and, the power amplifier or transmitter in general, is replaced with a two-box 

model consisting of the static nonlinear functional box and the cascaded linear filter. In 

an ideal case, f is the inverse of the static nonlinear part of the model. Since the 

predistorter parameters' estimator is initiated randomly, the initial output is a distorted 

signal. The optimization algorithm for updating the estimator's coefficients takes 

advantage of the Fourier series concept. Before going into the details of the algorithm, 



59 

Input data stream 

if 
Output data stream 

New Estimation 

Optimization and 
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Fig. 4.1. Adaptive predistorter structure 

the components of each block are introduced. The first block, which comes as the 

predistorter, is a polynomial of the sixth order which will be iteratively updated: 

f(x) = a0 + axx + a2x
2 + a3x

3 + aAxA + a5x
5 + a6x

6 

In the above formulation x is the excitation signal chosen to be: 

x(t) = Asin(ctX + <p) 

(4.1) 

(4.2) 

The second and third blocks, which constitute the hypothetical Hammerstein model, 

have been chosen as follows: 

g(x(t)) = tan"1 (x(0) -> G(s) = L[g (.)](*) 
1 -*g(t) = L-l[W(s)(G(s)W) ( 4 3 ) 

W(s) = 
5 + 1 

where, g represents the static nonlinear function which is selected to be tangent inverse 

and G stands for the its Laplace transform. W(s) is the linear filter which follows the 
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static block, g represents the output waveform of the linear filter and eventually L and 

L"1 denote the Laplace transform and its inverse. 

The following steps are taken over a sufficiently long period of time, so that the transient 

dynamics is not an issue. Since the excitation signal is a periodic waveform, the output 

waveform, although distorted, would be also periodic. Hence Fourier series concept can 

be applied to extract the fundamental frequency term from the rest of frequency 

contents: 

g(t) = L-l[W(s)L[g(f(t))](s)] = -a0 + Y4an cos(Q)nt)+^bn sm(G)j) (4.4) 
^ n=\ n=\ 

an=nY (4-5) 

In the above equations, con represents n* frequency component. The following well 

known relation is used for the computation of the Fourier series coefficients: 

2 rt2 a n = - \ g{t)C0S{C0nt) ( 4 . 6 ) 

2 |*2 
bn=-y g(t)s™{(Dnt) (4.7) 

If we separate the fundamental term from the rest of the series, we obtain: 

g(0 = {axcos{ox) + bx sin(tf#)} + j - a 0 + ^ ( a n cos(fi?„f) + bn s\n{cont)) \ ( 4 8 ) 

«=2 
Fundamental 

Distortion 

where, the first term on the right side is the fundamental frequency term; and, the second 

term accounts for the rest of the harmonic products in the distorted wave form. 
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It is obvious that, if the system is linearized and the output is a perfect sinusoid, then it 

will be equal to its fundamental waveform. In other words, the second term will tend to 

zero. Since the output waveform is periodic, in order to reduce the computational task, 

we simply cut the last period of the output waveform and extract its fundamental 

frequency term using 4.6 and 4.7. Having subtracted the fundamental term, the residual 

undesirable harmonics will be obtained that is to be minimized. The integration of the 

absolute value of this distortion over the length of one period of the signal is assigned as 

the cost function, and the optimization procedure will iteratively update the predistorter 

parameters so as, having met certain termination conditions, a minimum value for this 

function be obtained. Figures 4.2.a and 4.2.b show the steps taken to extract the total 

distortion at the output. 

Output waveform 

^ fundamental wave 

K / 

~'o 10 20 30 40 50 
t ime 

Fig. 4.2.a. The distorted signal and its extracted fundamental frequency component 
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Fig. 4.2.b. The distortion obtained after subtracting the fundamental frequency component 

4.2.2 Nonlinear optimization and constraints definition 

As seen in the previous section, the cost function that is to be minimized, in our case, 

is a nonlinear function; and, a numerical optimization method should be selected to 

calculate the objective function iteratively, using the last update of the estimator's 

parameters. Considering that fact that we have chosen a two-box model to simulate the 

actual transmitter behaviour; and adding a third box to take over the role of the 

predistorter, the complete structure consists of three boxes, for which the optimizer must 

be capable of performing the evaluation sufficiently fast. Since the function evaluation is 

the main time-consuming step, any optimization technique which proceeds by means of 

gradient vector evaluation, can significantly slow down the convergence time. 
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The numerical optimization method selected in this thesis, is mesh adaptive direct search 

method (MADS). MADS is implemented using NOMAD (nonlinear optimization for 

mixed variables and derivatives), which is a suite of MATLAB functions [45]-[46]. The 

underlying optimizer used in the code of NOMAD is an implementation of a class of the 

MADS filter algorithm. This type of method uses a conceptual discretization of the 

space of decision variables into a stencil or pattern of points. Mesh is an iteration 

dependent global discretization of the decision variable space. The meshes in the 

structural algorithm must fulfill certain technical conditions, in order to satisfy the 

convergence theory. 

Another point that makes NOMAD interesting is the use of surrogate functions that 

serve for computationally expensive functions: a common choice for the search step is to 

initially invest a moderate number of function evaluations to form inexpensive 

surrogates for the objective and constraints. In other words, a surrogate is a function that 

can be used as a stand-in during each optimization phase, when we are dealing with 

expensive functions in term of computational complexity. 

Aside from surrogate function capabilities of NOMAD, it also applies a surrogate 

optimizer for the search strategies. For example, FMINCON in the MATLAB 

optimization toolbox can be set as a surrogate optimizer. This optimizer uses the Nelder-

Mead or simplex method in its algorithm and can find a local optimum if the objective 

function varies smoothly. However, like all general-purpose multidimensional 

optimization algorithms, Nelder-Mead occasionally gets stuck and need to restart the 
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algorithm with a new simplex starting at the current best value, while NOMAD has an 

adaptive capability of rotating its coordinates and proceeding with it. 

Having chosen the proper optimizer and using the previous section to define the 

objective function, we can proceed to estimate the best possible parameters to be 

assigned to the predistorter. The cost function has the following form as previously 

described: 

E = £ abs \-aQ + ]T (fl#| cos(cont)+bn sin(a>n0) (4.9) 

The algorithm tries to find at in (4.1), such that E reaches a minimum. In an ideal case, 

E would be zero. The question then arises concerning the sufficient information that the 

algorithm should be given, in order to not only converge but also converge to proper 

values. In a first try, the optimization is performed on a simple cost function as defined 

in 4.9; it is observed that the algorithm converges quite fast, in a relatively small number 

of iterations. However, the results, as shown in Figure 4.3, are not in accordance with 

expected results for a well predistorted or a linearized system. 

In order to explicate the reason on how and why the algorithm terminates without 

converging to the expected parameters, one needs to more precisely study the nonlinear 

model itself and the exciting signal, before applying any predistorter. They have been 

plotted in the same graph in Figure 4.4, along with the identity function and the 

sinusoidal excitation. It can be seen that, in order to operate in the nonlinear region, the 

sinusoidal amplitude must be large enough to excite the saturation area of the function f, 

which is assigned as the behavioral model of the transmitter. However, if the excitation 
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amplitude is small, the transmitter operates at its linear region; and, the output will 

inherently be a sinusoid wave. As can be seen in Figure 4.4, the excitation signal is large 

enough to drive the system towards its nonlinear region. Now a more careful study of 

the Figure.4.3 after performing the optimization will reveal that the output of the system 

with predistortion, at the last iteration, is considerably weakened compared to that of the 

first iteration in Figure.4.2.a. The fact that the optimizer converges and the algorithm 

terminates is due to the small integration error between the output and its extracted 

fundamental term. Since both waveforms are extremely weakened, the integration error 

is small enough for the optimizer to terminate; however, the two waveforms are by no 

means alike. In other words, the predistorter does not converge by approaching to an 

inverse functional behaviour, but by degrading the amplitude of the input excitation and 

consequently that of its extracted fundamental term. 

3 

Output results after optimization 

Output waveform 

Extracted fundamental waveform 

20 30 
Time 

5 0 

Fig. 4.3. The predistorted signal and its fundamental frequency component after optimization 
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The other possible manner, by which the optimizer could deviate from the proper 

convergence directions, can happen by initializing the algorithm such that it operates at a 

linear region where no nonlinear distortion would be detected and perforce, the 

minimization error will be again small enough for the procedure to terminate. It is 

obvious that, in order to prevent the estimator from accepting values that will degrade 

the input signal amplitude , an additional condition must be imposed on the optimizer, so 

that the output signal level does not decrease below a certain value to ensure that we are 

operating in a nonlinear region. This can be performed by adding a nonlinear constraint 

to the optimization process, which is defined as the integration of the absolute value of 

the extracted fundamental waveform at the output which is set to takes values more than 

a given amount. 

Nonlinear region 

Excitation 

Fig. 4.4. Static nonlinear function, its inverse, identity function and the sinusoid excitation 

comparison 
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Herein, we refer to this given value by K. The constraint must be evaluated during the 

main objective function call at each iteration. The software NOMAD enables us to 

implement nonlinear constraints optimization problems which would evaluate the 

constraints during the cost function evaluation. 

ex = K - [ abs(a{ cos(ax)+bx sin(&r)) < 0 (4.10) 

Hence, ex is added to the algorithm as an additional nonlinear constraint. Having 

considered this nonlinear constraint, the optimization problem is complete. First, we 

launch the sinusoidal waveform to the system without a predistorter, so that we can later 

compare with the result obtained by the adaptive predistorter. Figure 4.5 shows the 

distorted output in the absence of a predistorter. Then, a polynomial function; of sixth 

order and only with odd terms, precedes the model to act as the predistorter. As can be 

seen in Figure 4.6, a very good fitting between the output waveform and its fundamental 

term is obtained; and, in comparison to Figure 4.5, the saturation affect that starts near 

0.7 is very well compensated, as shown in Figure 4.6. 

It is worth mentioning that the polynomial function used as the predistorter is not 

embodied with any type of basis function liketan(.). In the case that a basis function like 

tan(.) is used, further limitation must be taken into consideration. Since this function is 

periodic, for example, with per iods, the input signal's amplitude cannot increase 

beyond — starting from positive values; otherwise, the algorithm will come across the 

discontinuity of the function, and it may never converge. This issue will be addressed in 

the next sections. 
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Fig. 4.5. The distorted output of the hypothetical model and its extracted fundamental 

component before using predistortion 
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4.6. The output of the hypothetical model and its extracted fundamental component after 

using predistortion 
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At the end of optimization, the performance history of the algorithm, the convergence 

criteria, the objective function last value and the parameters' vector can be observed in 

the graphical user interface (GUI) of NOMAD. Figure 4.7 shows the performance 

history for the results obtained. 

0.03 

0.025 

o 
£ 0.02 
c 
o 
ft 
Ei 0.015 

$j 0.01 

0.005 

Performance History 

0 200 400 600 800 1000 1200 
Number of Function Evaluations 

Fig. 4.7. NOMAD algorithm performance history 

1400 1600 

Table 4.1 contains the objective function values for the feasible and least infeasible 

solution obtained by NOMAD, as well as other information concerning the number of 

function calls, mesh size, etc. All this information can be observed using the graphical 

user interface (GUI) of NOMADm which can also provide us with the meshing 

parameters and termination criterion as well as the filter violation intervals. 



70 

Table 4.1. NOMAD statistics and solutions obtained 

Best feasible solution 

Objective Function 

Value 

Constraints 

Violation measure 

0.00121312 

0 

Least infeasible solution 

Objective Function 

Value 

Constraints 

Violation measure 

0.008642 

3.59e-008 

Statistics 

Final Mesh Size 

MADS Iterations 

Poll Steps Executed 

Consecutive Poll Failures 

Functions Evaluations 

Gradient Evaluations 

CPU time 

Cache Hits 

Interrupted by User 

6.103515625e-005 

110 

110 

4 

1520 

0 

2314.9688 

199 

No 

In one last step we will show that the single frequency based predistorter will remain 

efficient and valid for other input signal frequencies as long as they fall within the 

passband of the linear filter embedded in the transmitter model. In other words for all the 

frequencies that the linear filter will approximately treat them equally, the power-
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dependent static nonlinearity will be efficiently eliminated by the static predistorter 

which is obtained by one single frequency signal. 

Based on the assumption that the linear filter amplitude and phase response remain 

relatively constant for the frequencies co{ and co2 , the power-dependent static 

nonlinearity of the model will distort the both signals in the same way as depicted for 

example in Figure.4.8 where since the linear filter performs equally, both waveforms 

have similarly sustained a static power-dependent distortion at the same amplitude. 

Fig. 4.8 Distorted output signal of the two-box model for two sinusoidal excitation of equal 

amplitude and different frequencies 

Now assuming that the predistortion was constructed by launching the signal cox, its 

extracted fundamental frequency component and the distortion can be once again 

represented by the expansion of its Fourier series as follows: 
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g, (0 = {a, cos(<0,f) + fc, sin(flV)} + J -a0 + £ (aB cos(tf>„0 + fc„ s in(ey)) [• (4.11) 
Fundamental 

n = 2 

Distortion 

Since the optimization proceeds with respect to the coefficients of the fundamental term 

as well as those of the distortion term, and since the final values of the predistorter will 

inherently depend on these parameters, any other signal with different set of Fourier 

coefficient will give rise to a different cost function and the constructed predistorter will 

not be valid anymore. Now expanding the distorted version of the signal a>2 as follows: 

g2 (t) = \a2 cos(co2t) + b'2 sin(o)2t)) + 

Fundamental 

< — a'0 + a ' c o s ^ O + fy'sinC^f) + ^ (a'n cos(cont) + b'n sin(Q)nt)) > 

v _ v —: / 
Distortion 

We prove that based on the assumption that the linear filter treats both frequency 

relatively equally, their corresponding coefficients will be equal and therefore the cost 

function defined for the parameters of the fy, will remain valid for co2 . Using the 

following relations for obtaining the coefficients of the Fourier series, we have: 

1 T 

an - jbn = — £ ' gl {t)e-jn(0itdt (4>13) 

Assigning the frequencies' ratio as a: 

a--2-^— (4.14) 

where T denotes the period of the corresponding frequencies. The last period of 

distorted signal for both frequencies under the given assumptions, can be expressed by: 
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g2(t) = 8l(at) (4.15) 

We emphasize once again that the linear filter with a good approximation treats both the 

signal equally. Therefore for signal at co2 : 

< - X = ^ f g2(ty
Mavdt=£]•*, (aty^-dt (4,6) 

Changing the integration variable, we obtain: 

t' = at (4.17) 

< - JK = | f g,(f V ' " " ^ = J T * . 0 " > V * ' = an - A (4.18) 

which proves that the corresponding fundamental and distortion coefficients for both 

frequencies is the same and therefore performing the minimization on one signal (Ox, will 

insure that the corresponding coefficient for other frequencies in the passband of the 

transmitter are minimized. However, if the phase and amplitude response of the linear 

filter for the range of the frequencies of the input excitation does not remain constant, 

therefore different frequency contents will sustain different amplitude and phase 

variation [47], this type of distortion will introduce some bias in the Fourier series 

coefficient for each input frequency and therefore will results in an error in the cost 

function evaluation. This residual distortion which is referred to as linear distortion [47] 

can not be captured by the static nonlinear predistorter and will exhibit itself at the 

output in a dispersion-like sparsity. This type of distortion can be treated in a post-

distortion procedure using equalization techniques [47]. 
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4.3 Construction of the complete predistorted system with the two-box model 

4.3.1 Theoretical and practical criteria and limitations 

For constructing the predistorter, one should remember that, theoretically, for any 

one-to-one function, an inverse function can be assigned so that their combination 

results in an identity function. However, according to the order of functions (i.e. which 

one precedes and is excited by the input first and which one is cascaded), we are limited 

by the domain of the first function. This is described in Figure 4.9, where a nonlinear 

function of similar behaviour as our power amplifier and its theoretical inverse are 

plotted. Although the nonlinear function, like the functions in the building blocks of our 

model, can take any value from zero to infinity, the real amplifier input power level is 

limited. This limit is shown as Pin(max) in Figure 4.9, until which we wish to linearize 

the amplifier. 

As can be seen for the normalized data; employed during 2-box model identification, the 

nonlinear model of the power amplifier shows a saturation tendency and falls beneath 

the identity curve, indicating that the maximum power delivered Pout(max) is, at no 

point, bigger than the input power. The predistorter is expected to have the behaviour of 

the red curve so that the combination will result in the identity function. However, a 

closer look reveals the fact that, since the predistorter precedes in the transmitter line as 

the first functional block, we are limited by the domain of input values for which, the 

predistorter's function is defined. 
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Fig. 4.9. Nonlinear function behavior (-+), its inverse (-.) and identity function (-) and their 

range and domain 

The definition of the domain of any function is the set of values for which the function is 

defined; furthermore, the set of values to which the domain is mapped by the function is 

called the range. These basic definitions are better described for an exemplary function 

in Figure 4.10. 

Let us define the domain and range of the main function and its inverse by the following 

notations: 

For the main function: 
D{ =Function domain 

/^Function range 
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For the inverse function: 
D2 =Function domain 

R2 =Function range 

Due to the definition of inverse function we have: 

D{=R2 

D2 = RX 

(4.19) 

(4.20) 

X 

Fig. 4. lO.Graphical definition of the domain and range of a function 

In our case, /?, a Dx => D2 a Dl, as can be seen in Figure 4.9; and, perforce, we are 

limited by a smaller domain D2. That is to say that the input signal power level cannot 

be more than the maximum value in this domain. 
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On the other hand, depending on the functional blocks used in the inverse model (even 

though we try to extend domain D2 to reach the maximum value in domain £),), the 

output may tend to infinity. Such a high power level output cannot be launched to the 

actual transmitter; and, if the inverse function model contains periodic basis functions, 

such as tangent or tangent hyperbolic inverse, then the discontinuous characteristics of 

this type of functions which can severely compromise the predistorter performance must 

be taken into consideration. 

These effects, which are essentially due to the lack of inverses of periodic functions, are 

shown in Figure 4.11. Hence, in the latter case, the period of the inverse model must be 

large enough to cover the entire input signal domain, so that the discontinuities are not 

hit. In fact, we take advantage of basis functions like tan(.) , due to their similar 

behavioural profile to what is expected of an inverse function for the transmitter; 

therefore, a polynomial with such basis functions of a low order can replace a high-order 

polynomial with identity basis functions. It would be all at the cost of paying attention to 

the period of the function not to be crossed over by the drive signal domain. One must 

remember that the period of the basis function can be either treated as one of the 

optimization variable or fixed at a certain value at which the previously considerations 

would be fulfilled; however, the optimizer performs with one less degree of freedom. In 

the latter case, where the period of the function is taken as a variable, one needs to apply 

another nonlinear constraint on the optimizer so that we are assured that no possible 

discontinuous area will be reached where it can mislead the algorithm and the proper 

convergence may never be achieved. 
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Fig. 4.11. Predistorting a nonlinear system using periodic basis functions and the problem of 

lack of inverses 

To avoid all above constraints, we construct the predistorter for linearly normalized data 

at a new level, as shown in Figure 4.12. In other words, the transmitter model is 

reconstructed for a new level of power. As can be seen, the domain and range of the 

functions are equal; hence, no problems will be encountered for launching a higher level 

of input signal power since it will fall within the domain of the predistorter. One must 

remember that in practice, working with power amplifier; due to their amplification, the 

output power range always covers the input power interval. This normalization is just for 

the predistorter construction and will be later undone. 
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x 10"3 

Fig. 4.12. Normalizing the signal power level to unit gain at the maximum power to be 

transmitted (light blue curve to dark blue curve), hence changing the inverse function domain 

(light red to dark red curve) 

Fig. 4.13. Different linearization levels obtained by applying the predistortion function (red 

curve) on the two power level system models (blue curves) 
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The predistorter built at this new level of power, can still be utilized in order to linearize 

the system at the initial power level before normalization, but it will be at the cost of 

degradation in the small signal gain. This is shown in Figure 4.13, where the inverse 

function of the red curve is applied on both blue curves; and, despite the fact that in both 

cases the same maximum power is transferred linearly, for the lower power profile, we 

have a decrease of gain by factor k, which is, indeed, the inverse of the factor of 

normalization. This can be proven easily. 

For the lower level power system model and its inverse profile, the corresponding 

functions are assigned as / a n d / " 1 , respectively; and, those of the normalized system 

model and its corresponding inverse are assigned as g and g~l , where g=kf . Hence: 

'/(rw)-
< g(g-l(x))=x=>W{g-,(x)) = x=> ( 4 > 2 1 ) 

tf = g 

f { g ~ l ( x ) ) = J (4-22) 

This proves that the second configuration in Figure 4.14 also gives rise to a linear 

system. However, if the order of boxes is changed, then this linear transformation is no 

longer valid, as can be more explicated as follows: 

g'(g(x)) = x^g"(kf(x)) = x 

g-(V(x))*kg-'(f(x))*x <4'23) 
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Fig. 4.14. Function inversibility at different amplitude levels 

Therefore, in order to compensate for this gain loss, a linear post-distortion has to be 

performed using a linear amplifier. In any case, linearization, regardless of the type of 

model and its nonlinear profile, will always introduce some reduction in gain, compared 

to that of the small signal gain. 

This fact, also mentioned in [47] in a modeling approach, is shown in Figure 4.15, where 

the best linear approximation of a system, with the help of predistorter and the small 

signal gain or linear gain, are compared and one can notice the bias introduced by the 

linearization, which results in a decrease in the amount of linear gain. It can be seen that 

this bias depends on the maximum power that we are willing to transmit linearly; the 

lower the maximum power, the smaller the bias. Hence although we avoid harmonic 

generation, intermodulation effects and other nonlinear phenomena, smaller gain will be 

achieved for small signal applications. 

Having explained the above problems, we have utilized a model for the system, for 

which, the domain and the range are the same and equal to the maximum power 

intended to be transmitted. 
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Fig. 4.15. Gain decrease introduced due to the linearization bias 

4.3.2 Predistorter construction and linearity criteria for a two-box model 

After verifying the minimization problem and its constraints in the previous section 

and having chosen the proper optimizer, we can now perform the very same procedure, 

but this time on the actual model of the transmitter. We use the two-box model realized 

in Chapter 2, which provides us with a relatively good quality of fit. However, one 

should remember that this model has a complex structure and the input and output 

signals are inherently complex numbers, which in here they consist of the baseband 

complex input and output signals. Since a simple sinusoidal signal is being utilized as 

the excitation, the other input is simply set to zero; or, the total power due to be fed to 

the system can be divided into two sinusoids, each of which serves as one of the 

predistorter's inputs. 
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We found that the latter method was easier for the optimizer to resolve; therefore, two 

single frequency waves of the same amplitude and frequency drive the predistorter. 

First, we excite the two-box model with sinusoids without applying any predistortion. 

Figure 4.16 shows the output waveforms obtained, along with their equivalent input 

waveforms; and, it can be seen that both components are distorted. As already 

mentioned, the total power of inputs is high enough to drive the system towards its 

nonlinear region.One must pay attention, that the input signal power level is the same for 

both components; however, due to the nature of the model at the output, the amplitude 

information is carried by one of the components, which here is the quadrature (Q) 

component which starts to be clipped as the power increases; and then, phase distortion 

information is embedded on the in-phase (I) component of the output. Furthermore, this 

information distribution is such that, the maximum of output power, which is the sum of 

the maximum power of I and Q components, is the same as the actual signal which is to 

be transmitted. Here, we would like to mention once again that the model is 

implemented in base-band domain which dramatically simplifies the analysis. 

Consequently the predistorter is also structured to operate in base-band domain. Indeed 

applying the modulated signal, to simulate each cycle of the RF carrier, needs up to 

thousands more operations. In order to see the performance of the model on a very low 

power input, we launched two sinusoids of small amplitudes so that the distortion effects 

do not appear. The results are presented in Figure 4.17 where, although more power is 

carried by the quadrature component of the output, both waveforms are sinusoids - a 

requirement in order to reduce the phase distortion to zero. Using this fact, the linearity 
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Fig. 4.16. The in-phase (lower picture) and quadrature (upper picture) components of the 

input, output, output fundamental frequency component, 

before running the optimization 
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criteria can be defined as to obtain two sinusoidal waves at the output port, but as 

expressed in a very similar manner in Section 4.2, this is to be achieved while the 

maximum output power does not decrease below the value we are willing to transfer 

linearly. In other words, regardless of the power distribution between the final two 

sinusoids by the optimization algorithm, the total power should not be less than a certain 

amount, which is to be transmitted linearly to satisfy the power efficiency condition. 

Since nearly all optimization algorithms are sensitive to the initial point, it must be 

carefully chosen, so that, iteratively, it leads up to the proper convergence point. The 

modeling procedure can be helpful, so that we can roughly guess the expected profile of 

the inverse functions; and, aside from choosing the proper polynomial order, we can 

roughly select a basis function that suits the inverse model behaviour. In this context, it 

is preferable to set the initial parameter vector, with a uniform order for all the 

adjustable variables. For further explanation, suppose an example of the initial parameter 

vector chosen to be as follows: 

P0= [aO al a2 a3 a4] = [1 100 1000 0.001 le-5] (4.24) 

i.e. with component variables spread over a large interval; and, since the optimizer 

would normally work with uniform meshing in all dimensions, then a fine mesh may 

detect the influence of small variables on the variation of the cost function. However, the 

effect of large variables may remain undetected; and, this may mislead the algorithm. 

Hence, it is of critical importance to put the variable in a uniform order, which would 
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Time(sec) 

Time(sec) 

Fig. 4.17. The in-phase (lower picture) and quadrature (upper picture) components of the input, 

output, output fundamental frequency component, before running the optimization for a low 

power excitation 
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preferably work with a fine mesh. For the above example, the uniform format can be 

expressed as follows: 

P0= [a0ala2a3a4. . ..] = [! 100 10000.001 le-5...] => (4.25) 

P0=[0.1 0.1 0.1 0.1 0.1]* 

10 0 0 0 0 

0 \e3 0 0 0 

0 0 le4 0 0 

0 0 0 te-2 0 

0 0 0 0 l e - 4 

(4.26) 

The matrix acts like a scaling factor, and the new variable vector will be: 

P0=[0.1 0.1 0.1 0.1 0.1] (4.27) 

Therefore, uniform meshing results in uniform changes in the variables; and, 

multiplication by the scaling matrix above, readjusts the variables in the right order. It is 

worth to mention that the software NOMAD can also provide us with scaling 

capabilities available as one of its setting options. 

The practical problems that were described in detail in Section 4.3 all concerned the gain 

nonlinear distortion. However, when it comes to phase distortion, there will not be range 

and domain problems for the input and output power, mainly because the predistorter for 

phase nonlinearity should operate on the same power level that is driving the real 

system. In other words, the output power of the gain predistorter block will be launched 



into the transmitter, but we take one branch from it to construct the phase distorter. It is 

described in Figure 4.18. 

Predistorter System module 
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Fig. 4.18. Adaptive predistortion system block diagram 

The polar-rectangular relations are the same as expressed in Section 2.3.3, so they are 

not repeated here. G( and G represent the system nonlinear distortion for gain and 

phase, respectively, and G(~' and G"1 are their corresponding inverses that hoped to be 

obtained through numerical optimization of the predistorter variables. 

The functional blocks chosen for the predistorter are polynomials embodied with two 

different basis functions: 

Gi (*,•) = PifBi(xi) + P2(fm(xi)y + P 3 ( / B I ( * / ) ) " 

Gq (*i„t) = PJB2(*>„t ) + P5(fB2(-*,„< » + P6(/l»2Oint)) " + Pi (/fl2(Xint)) 
\2.8 

(4.28) 

(4.29) 

where: 
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fm(xi) = tmh-\Nx1) (4.30) 

fB2(Xm) = n0rmPdf(Xm'M,&)= 7=^ ^ (4.31) 
<7\]27T 

The multiplication factor N seen in the basis function of the gain is to assure that we do 

not reach a discontinuous area of the tangent hyperbolic inverse function. Although the 

coefficient ji,a can also be taken as optimization variables, they are initially chosen at 

proper values, so that the algorithm does not need to treat two more variables at each 

iteration, alleviating the computational process. As previously described, the two input 

data are sinusoidal waves, and their maximum total power is assigned such that they can 

successfully drive the transmitter towards its nonlinear region, until the point at which 

the maximum power will be transmitted. Hence we proceed by expressing the complex 

input data as: 

Ijn=Asin(aM + <p) (4.32) 

Qin=Asm(ax) (4.33) 

where, <p is a constant that can be set to zero. The output data are initially distorted and 

can be expressed in terms of its individual frequency contents using Fourier series 

expansion: 

hut (0 = K cos (^ ) + bn sin(<a0} + \ - % + £ (fl«« ™s(cont) + bni sin(tf>n0) \ (4.34) 
Fundamental 

Distortion 

Qout (0 = {% cos(dM) + blq sin(fl*)} + i - a0q + £ (anq cos(cont) + bnq sm{cont)) \ (4.35) 

Fundamental 
«=2 

Distortion 
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In order to approach a linear behavior, the summation of all the terms in the series, 

except for the fundamental frequency term, should tend to zero, which will be 

formulated as the objective function of the minimization in an integration form: 

ff (\ °° 
Ei = labs 7T % + Z Ki c o sO«0 + K sin(fi>„0) 

* V 2 »=2 

\ 

rT ( 1 °° 
E« = l abs ^a°« +^amcos(»n0 + ^sin(©„0) 

V ^ n=2 

(4.36) 

(4.37) 

It follows that: 

Em = [abs\ - ( % +%)+Y,((% +ani)cos(a)nt)+(bni +bmi)sm(a)nt)) 
V 2 n=2 

(4.38) 

As can be instantly perceived, the error is a function of distortion terms. Similar 

arguments concerning nonlinear constraint and the convergence direction of the 

algorithm discussed in section 4.2.2 for the hypothetical model, applies to the 2-box 

model as well. It remains an unmistakable requirement in order to guarantee that the 

output power does not decrease below the value we are willing to transmit linearly -

Pout(max). This imposes a nonlinear constraint on the optimization, similar to what was 

shown in Section 4.2.2, with the difference that now the output is the sum of two 

waveforms. In order to ensure that the algorithm does not converge to unrealistic values 

that are too big to feed the actual system, an upper bound should also be imposed on the 

optimizer, resulting in a second nonlinear constraint. It is of interest to point out that the 

first constraint is applied on the output of the model, while the second constraint is 

applied on the intermediate stage, which is after predistortion and before feeding the 
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model. In other words, the input of the system should not be increased over a certain 

amount, known as Pin (max); and, the output of the system should not be less than the 

desired maximum power. This can be described in closed form expressions as: 

max(Pint) = m a x ( 4 t + QL) < Nt max(/>n) = Kx (4.39) 

max(Pout) = max(/0
2

ut + Q2
0[ii) > N2 max(P0Ut.des) = K2 (4.40) 

In our case, we have normalized the data such that max(^„) = max(P0M/_^s) . The 

quantities N{ and N2 are chosen near to one, in order give some tolerance to the 

optimizer. In fact, the two upper inequalities can be written in the form of equality 

constraints, but since equality constraints are difficult to handle, due to numerical 

consideration and also because of the basic properties of the MADS algorithm, we avoid 

using equality constraints. 

The optimization results for these two sinusoids are plotted in Figure 4.19, while the 

system response before using a predistorter has already been shown in Figure 4.16. It 

can be observed that the amplitude of the output waveforms in both components has 

reached that of the input signal which is expected since the linearized gain of the system 

is set to one. Furthermore, both outputs exhibit sinusoidal wave behaviour; and, they 

coincide very well with their fundamental frequency component. 

For a better understanding of what happens to the input waves after being launched into 

the system, we may look more closely at the output of each stage. To observe the 

individual characteristics of the predistorter and the transmitter model, the input signal's 

total power and the predistorter's total output power are compared in Figure 4.20, where 
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the output power profile is in accordance with what is expected from an inverse 

function. The transmitter's model performance alone, with the same input, is plotted in 

Figure 4.21, where the clipping effects start to kick in when the input power level 

increases. As can be seen in the graphs, the maximum power at the output of the 

predistorter increases slightly beyond that of the input, which is due to the tolerance 

provided for the constraints of the optimization algorithm. 

It is also interesting to look separately at each baseband component at the output of the 

predistorter. They are plotted in Figure 4.22, along with their equivalent input 

components and the output of the transmitter model, acting alone without predistorter. 

Although not much information can be extracted from these curves, their combination 

leads to the nearly sinusoidal signals in Figure 4.19. 

To see how linearly the complete predistorted system is operating, the output power is 

plotted versus input power in Figure 4.23. By paying attention to the points where the 

plot intersects the grid, one can deduce that the system is pursuing a linear manner. More 

precisely, the input-output power ratio is plotted in Figure 4.24, where one can observe 

that the ratio varies in the interval of 0.995 to 1.0321, which is quite agreeable. 

As for the phase distortion, the individual performance of the predistortion block and the 

2-box model in the absence of predistorter, in exhibiting nonlinear phase profiles, are 

plotted in Figure 4.25, which were obtained for the same excitation signal. However, the 

distortion of the system is initiated at zero where that of the predistorter starts, just to 

ease the comparison. For a more precise evaluation of the phase distortion cancellation, 

the final phase shift of the predistorted system is also depicted in Figure 4.26, as can be 
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observed, the phase variation, for the given input power range, falls in the interval of -

1.6261 to -1.6315, which is acceptable as a figure of linearity compared to the strong 

phase variation introduced by the transmitter model alone. 

In one last step, we calculate the quality of fit for the output quadrature and in-phase 

components and their equivalent fundamental frequency extracted terms, using the 

following relation, which was also utilized in Chapters 2 and 3: 

FIT = [ l - N orm(Y - Y) I N orm(Y - M e a n (Y ))^* I 00 (4.41) 

where, Y is set to be the output component, and Y is its equivalent extracted 

fundamental. The results are shown in Table 4.2. These results have been obtained after 

a couple of optimizations with surrogate functions. 

Table 4.2. Quality of fit figures for the in-phase and quadrature components at the 

output of the linearized model 

Component 

In-Phase 

Quadrature 

Number of parameters 

7 

7 

Best fit percentage 

99.5105 

99.3848 

4.4 Complete predistorted system and linearization validation with CDMA signal 

Having constructed the predistortion with parameters obtained at the last iteration of 

the optimization process, we can now validate the efficiency of the linearizer by 

launching another signal and observing the performance of the predistorter in cancelling 
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nonlinear distortions. The signal used for the validation phase is the same CDMA signal 

that was utilized in Chapters 2 and 3 for modeling. It is worth mentioning that the 

sinusoidal wave used in the previous section has been chosen such that its maximum 

power equates or is more than that of the CDMA signal. The predistorter output power is 

compared with the input power in Figure 4.27 As can be observed, for higher input 

power, the corresponding output power is higher. In other words, higher gain is applied 

on a higher input level, implying the nonlinear characteristics we have expected. 

Figure 4.28 reveals this inverse behaviour more clearly. Looking at the power relation 

between the output of the system and the input power in Figure 4.29, it can be seen that 

the system is linearized to a good degree. This power ratio, which should be around one 

for the normalized model, is plotted in Figure 4.30. It shows a variation in the interval of 

x 10 3 

^ jr 

Input power jj; 
Predistorter output power j j 

0.1857 0.1858 0.1859 0.186 0.1861 
Time(sec) 

Fig. 4.27. The input power signal and the predistorter output power signal plots 
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0.995 to 1.0322. Although this is shown for a small portion of data, the result for the 

complete data frame is very similar. As for the phase distortion, the individual 

performance of the predistorter and that of the transmitter model have been plotted, as 

shown in Figure 4.31. Their overall phase distortion result, which is supposed to have 

been suppressed, is shown in Figure 4.32, where the phase variation is in the interval of -

1.6216 to -1.6315 radians. It can be seen that the system is linearized, in terms of phase 

and gain distortion, where the linearized gain is one, and the phase distortion is 

concentrated around the small signal linear phase shift, which is about -1.6 radians. The 

final output power signal is plotted in Figure 4.33, along with the input power signal. 

For the adjusted linearized gain to be one, the two curves must coincide with good 

precision, which can be also compared with the one plotted in Figure 4.27. 
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Fig. 4.33. The output signal power of the predistorted system and the input signal power 

The power spectrum of output signal can also be observed for the predistorted system, 

when compared with the response of the system before using the predistorter. The 

results are plotted in Figures 4.34.a, 4.34.b and 4.34.C, where good results in terms of 

adjacent channel spectrum regrowth suppression have been obtained. Meanwhile, the 

main channel power level for both curves remains at the same level. The adjacent 

channel spectrum regrowth suppression is roughly about 15-20dBm. This spectrum re-

growth suppression which is one of the main purposes of linearization technique is 

indeed an unmistakable signature of the nonlinearity. 
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A linear gain adjustment must now be applied, so that the linearized gain is set back to 

the actual linearized gain before normalizing the transmitter model profile, which is, 

indeed, less than the unit gain we have obtained. The AM/AM and AM/PM curves are 

obtained and compared to those of the system without predistortion. These curves are 

plotted in Figures 4.35.a and 4.35.b, representing a relatively good linear behaviour. The 

slight deviation seen in the AM/AM curve for a higher input power level can be further 

suppressed using a higher order model for gain predistorter, consequently resulting in a 

more difficult optimization process. Having linearized the system, the linear output-

input relation can now be identified by any linear identification procedure, where a 

variety of linear methods available in standard MATLAB toolboxes can be applied for 

this purpose or for performing any equalization. 
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Now we can build up the single real valued passband signal from the two quadratic 

components and identify it with a real valued linear filter. Later, and if necessary, 

according to the application, a simple frequency transfer will convert the band-pass 

model to its equivalent low pass. Therefore, the training signals for the input and output 

are expressed in the following forms: 

V/„ ( 0 = I m ( 0 cos(fi>c0 - Qin ( 0 sin(fi>c0 (4.42) 

Vou, ( 0 = h* ( 0 cos(fi>c0 - Qout ( 0 sin(fi>c0 (4.43) 

Both band-pass signals are plotted in Figure 4.36.a. Figure 4.36.b provides a closer view. 

The linear identification is performed on the unit gain output before the gain adjustment. 

ARX structures with various orders have been attempted using linear system 

identification techniques available in standard MATLAB toolboxes to model the linear 

part. The fitting results for the models are given in Table 4.3, where it can be seen that 

4 . 3 5 4 .4 4 . 4 5 4 .5 4 . 5 5 4 .6 4 . 6 5 4 . 7 4 . 7 5 
t ime(sec) x i o " 

4.36.a. The input and output modulated signals for the linearized system 
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the best percentage have been achieved by the FIR filter, proving that we have, to a good 

degree, linearized the transmitter model. Further frequency shaping and filtering 

techniques can be now applied according to the application. 

Table 4.3 Quality of fit of the linear model for a different number of tabs 

ARX order [ na nb nk ] 

[4 16 1] 

[4 4 1] 

[0 16 1] 

[0 32 1] 

[0 64 1] 

[0 128 1] 

Fitting percentage 

94.21 

94.23 

94.67 

96.39 

96.8 

97.47 
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CHAPTER 5 

CONCLUSIONS 

5.1 Thesis Summary 

POWER amplifier nonlinear behaviour is a delicate task to tackle when it comes to 

wideband transmitter design for modern high-speed wireless communication systems, 

where highly variable envelope signals are launched into the system. The nonlinear 

behaviour that shows up at high powers gives rise to signal distortion, in terms of gain 

and phase shift. Hence, the operating power as the main source of nonlinearity, must be 

either at a large enough back-off from the nonlinear region to maintain the input-output 

linearity or, on the other hand, in the nonlinear region transmitting the maximum power 

and dealing with nonlinear effects and harmonics generation. 

Since we are interested in transmitting the maximum power available by a transmitter in 

many applications, a variety of alternatives have been developed to linearize the system 

up to its maximum power operating region. One of the most common methods is the 

utilization of a predistorter, which is characterized in such way as to introduce the 

inverse behaviour of the transmitter; and, linear behaviour will be observed when the 

predistorter is cascaded with. In order to characterize a predistorter well, one must 

initially have a good identification of the transmitter itself. This would be of great help 

when it comes to optimizing the predistorter, where a rough estimate of the inverse 

model can ease the convergence by initializing the algorithm at a proper point, aside 

from the possibility of eliminating a couple of optimization variables. 
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In the introductory chapter, a summary of a variety of modeling and identification 

approaches were presented and compared. In Chapter 2, three types of models were 

constructed; and, their abilities to reproduce the actual transmitter behaviour, in terms of 

gain and phase, were compared. Simple passband Hammerstein and Wiener models 

were introduced and, despite the fact that they succeeded very well in simulating the 

nonlinear gain distortion seen in the transmitter, they failed to pursue the nonlinear 

phase variation of the system. This is due to their inherent structure, which makes them 

incapable of producing any nonlinear phase, since the filter embedded in them is a linear 

real valued type and the static nonlinearity serves to produce nonlinear gain only. 

Due to this significant weakness in exhibiting nonlinear phase behavior, passband 

Wiener/Hammerstein models are not efficient to characterize the most important 

features of the nonlinearities of the power amplifier. As a consequence, a general two-

box nonlinear model, which is widely used in RF transmitter modeling, was introduced 

and constructed. This model, as opposed to the previously mentioned Hammerstein and 

Wiener models, is capable of reproducing the phase distortion observed in the 

transmitter; however it has a completely complex structure via which both gain and 

phase nonlinear variation or their equivalent rectangular representation known as in-

phase and quadrature components are respectively identified. The quality of fit for this 

type of model exhibits a considerable improvement when compared to that of the 

passband Wiener/Hammerstein models. 

In Chapter 3, a three-box model was introduced and constructed using a modulated 

signal. This model, which included two nonlinear blocks surrounding a linear filter, used 
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a modulated signal and was implemented in a two-stage identification process, where the 

first two blocks were identified concurrently using the RF signals as the training data. 

The first nonlinear block modeled the nonlinearity observed in the gain variation of the 

transmitter and was built up in the very same manner as the Hammerstein model. The 

output of the linear filter was then transformed to its equivalent baseband data in order to 

have direct access to the phase variation. A comparison between the phase, provided by 

the first two boxes and the actual phase distortion of the transmitter, led to a second 

nonlinear box for phase behaviour. The last two blocks, however, can be considered as 

one nonlinear phase filter, due to the fact that the third block, indeed, changed the 

constant phase provided by the linear filter. The quality of fit calculated for the same set 

of data for the three-box model and the two-box model developed in Chapter 2 was seen 

to be slightly better, both for the identification and validation steps, which were 

performed on different sets of data, however this type of model has the disadvantage of 

operating on both passband and complex data, in that, the third block needs to perform a 

transformation on its passband input before shaping the phase variation. 

In Chapter 4, a new predistortion method was proposed, which utilized a simple single 

tone sinusoidal wave for training. The key assumptions throughout this chapter are as 

follows: the complex 2-box model is an accurate representation of the transmitter; the 

nonlinear distortions observed in the transmitter are exclusively power (and not 

frequency) driven whereby, the main feature of the training signal will be its power level 

and not its frequency contents or its bandwidth. 
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The idea came from the fact that, for a well linearized system, a sinusoidal input will 

remain a sinusoid of the same frequency, but with different amplitude and some phase 

shift. We are concerned about both gain distortion and phase distortion and the actual 

system receives two input data, known as quadrature and in-phase data components, for 

wideband transmission schemes. Therefore, one needs to verify the linearity criteria for 

such a system, where a single sinusoidal cannot reveal the phase distortion. Aside from 

practical points to be considered for the matter of transmitting the maximum power, a 

series of critical considerations on the optimizer needed to be taken so that the chance of 

convergence increased. Through the formulation of the problem of the response of a 

linear system with two sine inputs, it was deduced that the output must be also two 

sinusoids of the same frequency, with amplitudes so that the maximum output power 

was transmitted and, at the same time, phase linearity was held. The rough estimation of 

the model inverse also served as a good choice of an initial point. In addition, some 

scaling factor needed to be considered for the matter of mesh refinement or coarsening 

that took place at each iteration. 

Having constructed the predistorter with the sinusoidal wave, we could now validate its 

performance by launching another signal, which is, indeed, the goal of transmission, in 

our case a CDMA signal, to the same predistorted system. The results obtained in 

Chapter 4 exhibit a relatively good linear behavior, where the AM/AM and AM/PM 

curves had a constant value tendency. Moreover, the whole system can be again 

identified by a linear ARX model. The results show that up to 94% of the data fit the 

linear model, which confirms the effectiveness of the linearizer. It is worth mentioning 
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that, although we have used a model instead of a real setup, it was treated like a black 

box; and, the information of the model was not used somewhere in the algorithm, aside 

from an initial point estimation. 

5.2 Future work 

The 3-box modeling approach can lead up to a novel pre-post distortion method to 

compensate for the nonlinear distortion in the transmitter where part of the nonlinearity 

can be eliminated before the transmitter and part of in a post distortion procedure. Other 

possible oriented box configuration for modeling the power amplifier could be further 

investigated using the modulated RF signal and a nonlinear filter which accounts for the 

phase distortion as well as the gain distortion. 

The sine wave adaptive predistortion approach proposed could be further evaluated for 

other types of transmission scheme such as QAM, OFDM, etc and the possibility of 

using a single sine instead of two could be studied by separating the quadrature and in-

phase components of the fundamental term at the output itself. 
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