POLYTECHNIQUE

POLYPUBLIE

A [
UNIVERSITE o

PO'YtGChnique Montréal D'INGENIERIE

Titre: Improvement of the results' relevance of a web information retrieval
Title: system using automatic query expansion

Auteur:
Author:

Date: 2008

Type: Mémoire ou thése / Dissertation or Thesis

Beatriz Revello Giallorenzo

L, Revello Giallorenzo, B. (2008). Improvement of the results' relevance of a web
Reéeférence: information retrieval system using automatic query expansion [Mémoire de
Citation: maitrise, Ecole Polytechnique de Montréal]. PolyPublie.

https://publications.polymtl.ca/8270/

Document en libre acces dans PolyPublie
Open Access document in PolyPublie

URL de PolyPublie:) o
PolyPublie URL: https://publications.polymtl.ca/8270/

Directeurs de
recherche: Michel Gagnon, & Michel C. Desmarais
Advisors:

Programme:

Program: Non spécifié

Ce fichier a été téléchargé a partir de PolyPublie, le dépot institutionnel de Polytechnique Montréal
This file has been downloaded from PolyPublie, the institutional repository of Polytechnique Montréal

https://publications.polymtl.ca/
https://publications.polymtl.ca/8270/
https://publications.polymtl.ca/8270/

UNIVERSITE DE MONTREAL

IMPROVEMENT OF THE RESULTS' RELEVANCE OF A WEB INFORMATION
RETRIEVAL SYSTEM USING AUTOMATIC QUERY EXPANSION

BEATRIZ REVELLO GIALLORENZO

o DEPARTEMENT DE GENIE INFORMATIQUE

ECOLE POLYTECHNIQUE DE MONTREAL

MEMOIRE PRESENTE EN VUE DE L’OBTENTION
DU DIPLOME DE MAITRISE ES SCIENCES APPLIQUEES
(GENIE INFORMATIQUE)

AVRIL 2008

© Beatriz Revello Giallorenzo, 2008.

3

Library and
Archives Canada

Published Heritage
Branch

395 Wellington Street
Ottawa ON K1A ON4
Canada

NOTICE:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'édition

395, rue Wellington
Ottawa ON K1A ON4
Canada

Your file Votre référence
ISBN: 978-0-494-41576-4
Our file Notre référence
ISBN: 978-0-494-41576-4

AVIS:

L'auteur a accordé une licence non exclusive
permettant a la Bibliothéque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des théses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protége cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

UNIVERSITE DE MONTREAL

ECOLE POLYTECHNIQUE DE MONTREAL

Ce mémoire intitulé:

IMPROVEMENT OF THE RESULTS' RELEVANCE OF A WEB INFORMATION
RETRIEVAL SYSTEM USING AUTOMATIC QUERY EXPANSION

présenté par: REVELLO GIALLORENZO Beatriz
en vue de l'obtention du diplome de: Maitrise s sciences appliquées

a été diiment accepté par le jury d'examen constitué de:

M. ROBILLARD Pierre-N. Ph.D., président

M. GAGNON Michel, Ph.D., membre et directeur de recherche

M. DESMARAIS Michel, Ph.D., membre et codirecteur de recherche
M. GALINIER Philippe, Doct., membre

iv

To my parents and sisters.

Acknowledgments

I would like to thank my director Michel Gagnon and co-director Michel Desmarais for

their support and guidance during this master thesis.

Also I would like to thank my friends and colleagues Johanna Sandoval, Gerardo

Berbeglia and Aymen Karoui for the technical and mathematical help.

Most important, to my parents José Luis and Gloria Maria, and my three sisters

Alicia, Silvia and Laura, for their encouragement.

vi

Résumé

La recherche d'information est la technique utilisée par les moteurs de recherche pour
récupérer des documents. Aussi, les résultats obtenus par ces moteurs peuvent étre
améliorés par une technique connue sous le nom d'expansion de requéte. Etant donné la
requéte de l'utilisateur, le systéme y ajoutera quelques termes pour obtenir de meilleurs
résultats.

L'objectif de ce projet de recherche est d'améliorer la pertinence du résultat d'un

systeme de recherche d'information web en utilisant l'expansion de requéte automatique.

Le moteur de recherche avec lequel nous avons travaillé est Google. De plus,
nous avons mis a profit l'encyclopédie en ligne Wikipédia pour extraire des termes et les
ajouter a la requéte. Puisque ces termes correspondent aussi a des hyperliens dans le
domaine de Wikipédia, nous avons pu appliquer la technique de PageRank pour les
ordonner avant de les ajouter a la requéte.

Nous verrons qu'en comparant les résultats obtenus grace a notre approche avec
ceux obtenus en utilisant simplement Google, nous n'observons aucun progrés. Dans
une seconde expérience, nous avons tenté de voir si I'expansion de requéte donnait des
meilleurs résultats en comparant les documents retournés avec les documents 11 a 20
retournés par Google. Nous verrons que, en moyenne, la stratégie que nous prenons
améliore de 11% le taux de précision. Finalement, nous avons voulu évaluer la qualité
des termes qui sont ajoutés a la requéte. Pour chaque requéte, nous avons fourni a deux
évaluateurs les termes additionnels proposés par notre méthode d'expansion. Les
évaluateurs devaient décider de la pertinence de chaque terme. Cette expérience a
permis de faire ressortir un faible accord entre évaluateurs, ce qui montre que la tache de

choisir de bons termes pour étendre une requéte est complexe.

En conclusion, une fagon d'améliorer les résultats serait de trouver la quantité

optimale de termes a ajouter a la requéte. Nous avons seulement testé avec 32, 16 et 8

vii

termes Aussi, nous pourrions suggérer que les liens attendus sont prés de l'intersection
entre TF/IDF et les valeurs de PageRank, qui est autour de la valeur 10 (normalis¢). On
pourrait essayer d'estimer la valeur optimale de TF/IDF et PageRank pour assurer 1'ajout

des termes pertinents.

Viil

Abstract

Information retrieval is the technique used by search engines to retrieve documents.
Query expansion is an information retrieval technique to ease the user's search. Given
the user's query, the system will add some terms to the query in order to retrieve better
results than the original user's query. PageRank is the algorithm behind Google's
success. Taking advantage of the linked structure of the web, PageRank will associate a
rank to each web page, measuring its popularity. A popular web page is a page
referenced by many popular web pages. There is a technique named TF/IDF which is
used in the vector model of an information retrieval system. It will rank the document's
terms in order of rareness. The less a term appears in the document collection the higher
the TF/IDF of that term.

The objective of this research project is to improve the result's relevance of a web
information retrieval system using automatic query expansion.

The web information retrieval system we worked with is Google. The technique
we used to improve Google's results is query expansion. We used the online
encyclopedia Wikipedia to extract terms to expand the query. We extracted the
Wikipedia links (set of terms), from the Wikipedia pages. We applied the technique of
PageRank to the Wikipedia links to order the set of terms, instead of expanding the
query adding the Wikipedia terms by order of appearance, we added them by order of
page rank. Another technique we used is the one named QueryPagRank which will
calculate the PageRank but of only those words related to the query.

We evaluated our approach in two different experiments. We first expanded the
original queries adding Wikipedia links as set of terms by order of appearance, named
Wikipedia phase. Second, ordering the Wikipedia terms by page rank, we expanded the
original queries with the Wikipedia terms by page rank order, named PageRank phase.
We also made an exploratory research, in which we calculated the TF/IDF of all the

Wikipedia terms and expanded the original user's query by TF/IDF order, named

X

TF/IDF phase.

To sumarize, we tested our system in two set tests, and contemplated one
exploratory research. In the first test set we tried to improve the first ten Google results,
we expanded 10 queries with 32 terms. The results were not very conclusive for any of
the used techniques. In the second test set, we compare the results with the ten next
pages of Google results. We expanded 30 queries with 32, 16 and 8 terms. Compared
to Google next then results, we found an average of 11 % in precision value. In the
exploratory research, we wanted to test the quality of the terms that we added to the
query to expand it, but manually, without sending the new query to Google. We ordered
the Wikipedia terms by order of TF/IDF, per query. We tested for 30 queries, the results
were not comparable between them, so we compared TF/IDF and PageRank expansion
terms. We concluded that there is an inverse proportionality between TF/IDF and
PageRank values.

An improvement of the first test set results would be to find the mathematical
adjustment that would return those terms that we consider as suitable. To achieve this
we might measure which is the range where we found the suitable terms by testing with
some queries, and then find the mathematical adjustment to achieve it. Another
improvement to perform might be to find the amount of terms to add to the query that
return better results, maybe 32 terms is too much, and we are adding some noise to the
query, alienating from the original user information request. We also question the
TREC measures to establish whether a page has the right information for a given query.
We could have induced bad results because of a bad query election. We also leaned in
TREC to choose the queries, and we only chose proper nouns, which do not represent
the all universe of user queries. An amelioration of the second test set would be to
choose the more suitable number of terms depending on the used technique. To achieve
this, we might run some more tests and see if the tested number of terms holds better
results. For the exploratory research, we might suggest that the expected links are near
the intersection between TF/IDF and PageRank values, which is around the value 10

(normalized).

Condensé en frangais

i. Objectifs visés

La recherche d'information est la technique utilisée par les moteurs de recherche pour
récupérer des documents. Aussi, les résultats obtenus par ces moteurs peuvent étre
améliorés par une technique connue sous le nom d'expansion de requéte. Etant donné la
requéte de 'utilisateur, le systéme ajoutera quelques termes a cette requéte pour obtenir
de meilleurs résultats. PageRank est l'algorithme derriére le succés de Google. Profitant
de la structure de I'Internet, PageRank associe un poids a chaque page Web qui,
essentiellement, mesure sa popularité. Une page Web populaire est une page référée par
beaucoup de pages Web populaires. Il y a aussi une technique bien connue, appelée TF/
IDF, qui est utilisée pour indexer les documents dans les systémes de recherche
d'information. Elle consiste a classer les termes du document par ordre de rareté. Moins
un terme apparait dans la collection de documents, plus le poids de ce terme sera élevé.
L'objectif de ce projet de recherche est d'améliorer la pertinence du résultat d'un

systeme de recherche d'information web en utilisant I'expansion de requéte automatique.

i. Etapes de la recherche

Dans le Chapitre 1, nous présentons brievement 1'évolution de la recherche d'information
sur le Web (Web Information Retrieval). Nous portons une attention particuliére aux
nouveaux défis introduits par 1'Internet, comme la quantité et la qualité de l'information.
Pour la quantité¢ de l'information, la solution trouvée par les moteurs de recherche est
d'avoir un robot (web crawler) qui parcourt les sites web pour chercher de nouvelles
pages, ou des changements.

Aussi, dans le Chapitre 1, nous faisons un survol des techniques d'expansion de
requéte. Elles peuvent étre employées avec n'importe quel moteur de recherche pour

améliorer la requéte initiale, y compris Google. Elles peuvent étre classifiées comme

X1

basées sur des résultats de recherche ou basées sur des structures de connaissance
(dictionnaires, thesaurus). L'expansion de requéte basée sur des résultats de recherche
signifie que nous allons augmenter la requéte en utilisant les termes qui apparaissent
dans les documents retournés par le moteur de recherche. Parmi les techniques basées
sur des résultats de recherche, nous trouvons le contréle de pertinence manuel ou
automatique (Rocchio, 1971). Le contrdle de pertinence manuel (manual relevance
feedback) a ét¢ mis en application dans le moteur de recherche SMART (Salton et
Buckey, 1990), ou l'utilisateur doit indiquer quels documents retournés sont significatifs
pour la requéte. Par la suite, il suffit d'ajouter a la requéte les termes communs aux
documents sélectionnés. Le probléme avec cette méthode est qu'elle se fonde sur le
jugement de l'utilisateur, qui pourrait étre une source d'erreur. Aussi, cette méthode
exige un effort de l'utilisateur, qui doit évaluer les documents. Une technique semblable
au controle de pertinence manuel est mise en application dans les moteurs de recherche
du web. Par exemple, quand on choisit I'option "pages semblables" dans Google pour la
page http://www.mars.com, il créera une nouvelle requéte de la forme : "related:
http://www.mars.com". Le principal probléme avec cette option est que l'utilisateur ne
peut ajouter de termes a la requéte. L'autre approche, soit le contréle de pertinence
automatique, considére automatiquement les dix premiers résultats fournis par le moteur
de recherche comme pertinents. Evidemment, s'ils ne sont pas pertinents, la requéte sera
augmentée de termes non appropriés, et les résultats obtenus seront pires.

D'un autre coté, l'expansion de requéte basée sur des structures de connaissance
(knowledge structures) implique une base de données utilisée pour étendre la requéte.
Ces techniques peuvent étre divisées en deux catégories: les techniques dépendantes de
la collection de documents et celle indépendantes de la collection de documents. Cette
premiére catégorie contient une technique appelée «term clusteringy», qui consiste a
regrouper des mots qui se retrouvent ensembles dans les mémes documents
(Efthimiadis, 1996). Cette technique donne de meilleurs résultats si elle est construite
manuellement (avec l'intervention d'un étre humain). Dans notre cas, cette technique

n'est pas applicable puisque nous modifions la requéte sans avoir acces a la collection de

X1i

documents. Le dictionnaire de synonymes (relational thesaurus) est une structure
indépendante de la collection parce qu'elle ne dépend pas des documents que nous avons
dans notre base de données. Elle contient, pour chaque nom, verbe, adjectif ou adverbe,
les termes qui sont ses antonymes, synonymes, etc. Par exemple, WordNet' est un
thesaurus qui peut jouer ce réle. He M. (2006) et Gong & Wa Cheang (2006) ont mis en
application un systéme d'expansion de requéte qui extrait les termes a partir de
WordNet. Cependant, WordNet fonctionne principalement avec des mots (pas avec des
expressions), en donnant de l'information trés concise. Une autre maniére de créer une
structure indépendante de connaissances est d'utiliser une encyclopédie en ligne comme
Wikipédia. Une encyclopédie peut potentiellement ajouter beaucoup plus d'information
qu'un thesaurus. On peut augmenter la requéte en utilisant l'information qui est dans la
page de Wikipédia dont le titre correspond a un terme de la requéte. A la fin de chaque
page de Wikipédia, il y a une classification par catégorie: chaque article doit étre inclus
dans une catégorie. Nous pouvons également voir la catégorie dans les résultats de
recherche dans Google Directory?®, et Yahoo Directory’. Nous pouvons étendre une
requéte en utilisant les catégories de Wikipédia, (Liu, 2006), (He M., 2006). Le principal
probleéme des catégories est qu'il n'y a aucune convention établie sur la maniére de les
associer aux pages. Wikipédia offre un guide d'utilisation pour écrire et associer des
catégories aux pages mais il n'y a aucun contrle. De toute fagon, il y a plus
d'information dans le texte des pages de Wikipédia que dans la catégorie associée a la
page. Dans notre projet, nous employons seulement les termes associés aux hyperliens
qui se trouvent dans les pages de Wikipédia. Nous développons la requéte en utilisant
les liens par ordre d'apparition, et par ordre de popularité. Nous ajoutons a la requéte les
termes qui sont dans la page et qui sont fréquemment mentionnés dans toutes les pages.
Dans le Chapitre 2, nous examinons les principales approches de recherche
d'information. Nous montrons comment un document peut étre indexé par un vecteur de

termes choisis selon leur pertinence. Nous abordons aussi les langages de requétes, dont

1 http://wordnet.princeton.edu/
2 http://directory.google.com/
3 http://dir.yahoo.com/

Xiii

celui qu'utilise Google, soit les requétes booléennes. Ensuite, nous examinons les
techniques d'expansion de requétes manuelles, semi-automatiques et automatiques.
Parmi les techniques semi-automatiques, nous avons examiné le contréle de pertinence
(Relevance Feedback), et parmi les techniques automatiques, nous nous sommes
intéressée au groupement de termes (Term Clustering), le dictionnaire de synonymes
WordNet et finalement 1'encyclopédie Wikipédia.

Oveissian (2006) a développé un systeme qui emploie la technique d'expansion
de requéte en utilisant des liens des pages de Wikipédia. Il stocke un profil pour chaque
utilisateur avec I'historique de toutes ses requétes, et il a mis en application le contrdle
de pertinence (relevance feedback) ou l'utilisateur choisit les pages retournées par
Google qui répondent le mieux a ses besoins. Le profil d'utilisateur attribue un poids a
chaque mot selon son ancienneté et selon le poids accordé par le contrdle de pertinence.
Oveissian fait I'expansion de requéte avec les liens des pages de Wikipédia retournés par
la requéte originale et il augmente la requéte en utilisant les termes du profil dont le
poids est le plus élevé. Comme ses résultats semblent prometteurs, nous avons adopté
son idée d'utiliser Wikipédia.

Wikipédia offre beaucoup plus d'information que WordNet. Les définitions de
WordNet n'occupent pas plus de deux lignes, alors que les pages de Wikipédia occupent
au minimum cinquante lignes. Notre projet utilise les liens de Wikipédia pour
augmenter la requéte. Nous recherchons les pages de Wikipédia dont le titre correspond
a un terme de la requéte et nous considérons les trente premiers liens des pages de
Wikipédia et les employons pour ajouter des termes a la requéte. La requéte modifiée
est ensuite soumise a Google. Nous avons répété le processus en ordonnant les liens de
Wikipédia selon leurs valeurs données par PageRank.

Dans le Chapitre 3, nous présentons plus en détail l'algorithme de PageRank.
Nous présentons une premiere technique simplifiée de Il'algorithme, puis nous
expliquons une version utilisant un facteur de décharge (Damping Factor), et finalement
des versions normalisées de l'algorithme. Ainsi, nous avons étudié le PageRank par

contexte (Context PageRank), et le PageRank distribué (Distributed PageRank). Il a

Xiv

fallu travailler avec une version téléchargée de Wikipédia (6 giga-octets) pour étre en
mesure de calculer le PageRank de chaque page de Wikipédia. Calculer le PageRank
de chaque page prend approximativement huit heures. Nous avons également mis en
application une variation de PageRank appelé QueryPageRank, qui fonctionne de la
maniére suivante. Etant donné la requéte, nous recherchons sur Wikipédia la page dont
le titre correspond a la requéte. Nous créons un graphe ou cette page sera le premier
nceud. Nous augmentons le noeud considérant les liens sur ce premier nceud, et les liens

de ces liens.

iii. Résultats et des analyses

Dans notre projet, nous ajoutons un nouveau module entre 'utilisateur et le moteur de
recherche du Web appelé WikiQE (expansion de requéte avec Wikipédia — Wikipédia

Query Expansion), représenté sur la Figure iii.1.

Web Search Engine
query wikiqE | _auery’
Module
] World Wide Web

results

User

Figure iii.l Module WikiQE: Wikipedia Query Expansion.

Le module de WikiQE peut étre divisé en deux processus différents: expansion de
Wikipédia et expansion de PageRank. Etant donné la requéte, nous recherchons la page
dans Wikipédia qui contient exactement les mots de la requéte comme titre. Nous
sauvegardons les liens de Wikipédia trouvés dans cette page par ordre d'apparition.
Nous employons deux approches différentes: d'abord nous ajoutons a la requéte ces liens
de Wikipédia par ordre d'apparition; ensuite nous ajoutons ces liens de Wikipédia par
ordre de valeur de PageRank. Pour calculer la valeur de PageRank de chaque lien

(page) nous avons considéré chaque lien comme une page, et les liens de cette page

XV

comme liens vers (forward link) vers d'autres pages.

Dans ce travail, nous avons réalisé deux expériences. Dans la premiére
expérience, nous augmentons d'abord la requéte originale avec des liens de Wikipédia
par ordre d'apparition et nous envoyons la nouvelle requéte a Google. Ensuite, nous
augmentons la requéte originale avec les liens de Wikipédia par ordre de valeur de
PageRank et envoyons la nouvelle requéte a Google. Dans la deuxiéme expérience, en
utilisant un ensemble de requéte plus grand, nous augmentons la requéte originale en
utilisant QueryPageRank, et envoyons la nouvelle requéte a Google. Finalement,
comme recherche exploratoire, nous employons la technique de TF/IDF pour augmenter
la requéte originale. Dans nos deux expériences, nous comparons les résultats avec
ceux obtenus avec Google pour voir s'il y a une amélioration (le chapitre 5 explique nos
méthodes d'essai). Notre recherche exploratoire est évaluée en demandant a deux
évaluateurs de déterminer la pertinence des termes sélectionnés.

Nous avons évalué notre systéme a partir de trois ensembles d'essais. Dans le
premier ensemble d'essais, nous avons essayé d'améliorer les dix premiers résultats de
Google. Nous avons développé 10 requétes avec 32 termes. Les 10 requétes examinées
ont été prise d'un organisme appelé TREC' (Text REtrieval Conference). TREC offre
des fichiers XML pour tester des systémes de réponse a des questions (Question
Answering). Nous avons associé une valeur a chaque question répondue pour une
requéte donnée. Les valeurs sont: 6 (trés bien répondu), 4 (réponse satisfaisante), 2 (pas
répondu, mais sujet relié a la requéte), O (sujet qui n'a rien a voir avec la requéte). Nous
avons associé la somme des questions répondues a chaque page web retournée par le
systeme. Cette somme est utilisée comme la valeur de la page. Aprés, nous avons
additionné chaque valeur des pages pour chaque requéte, donnant la valeur totale de la
requéte. Nous avons un résultat associé pour chaque requéte, pour chacune des
expériences réalisées. Dans ce premier ensemble d'essais, nous avons développé 10
requétes, pour les deux premicres expériences Wikipédia avec 32 termes et PageRank

avec 32 termes. On a comparé les résultats obtenus. Les résultats n'étaient pas trés

1 Text REtrieval Conference (TREC): http://trec.nist.gov/

o

XVi

concluants pour aucune des techniques utilisées. La technique de PageRank a amélioré
de 2 % les résultats par rapport a l'utilisation simple de Wikipédia qui dégrade de 1 % les
résultats de Google. Mais, si nous ne considérons que les résultats pour les requétes que
notre systéme a améliorées, on voit que Wikipédia a amélioré 40 % des requétes, avec
une augmentation moyenne de 21 % de la precision. Et PageRank a amélioré 50 % des
requétes, avec une augmentation moyenne de 25 % de la precision.

Dans l'expérience suivante, nous avons comparé le résultats avec les dix pages
suivantes des résultats retournés par Google. Nous avons développé 30 requétes avec
32, 16 et 8 termes. Les 30 requétes proviennent aussi de TREC, mais au lieu d'évaluer
les questions associ€es, on a évalué chaque page comme pertinente, ou non-pertinente,
en associant une valeur de / ou 0 respectivement. Pour chaque requéte, nous avons testé
avec chacune des approches suivantes: Google 10 premiers resultats, Google 10 resultats
suivants, Wikipédia (32, 18 et 8 termes), PageRank (32, 18 et 8 termes) et
QueryPageRank (32, 18 et 8 termes). QueryPageRank calcule le PageRank, mais
seulement en considérant I'univers de la requéte. Comparant la precision des résultats
aux dix résultats suivantes de Google, nous avons noté une augmentation moyenne de 11
%. Nous avons aussi évalué comment nous avons amélioré les dix premiers résultats de
Google et noté une amélioration moyenne de 6 %. Seulement en considérant les
requétes que notre systetme améliore par rapport aux dix suivants de Google, nous
constatons que dans la moyenne avec les 32, 16 et 8 termes, Wikipédia a amélioré 41 %
des requétes avec une augmentation moyenne de la precision de 64 %. PageRank a
amélioré 44 % des requétes avec une augmentation moyenne de la precision de 62 %.
QueryPageRank a amélioré 44 % des requétes avec une augmentation moyenne de la

precision de 59 %.

Dans la recherche exploratoire, nous avons voulu évaluer manuellement la
qualité des termes que nous avons ajoutés a la requéte, sans envoyer la nouvelle requéte
a Google. Nous avons ordonné les termes par ordre de TF/IDF. Plus la valeur de
TF/IDF est élevée, plus le mot est rare dans le document. Nous avons trouvé un

inconvénient: les liens (ensemble de termes) associés a chaque requéte étaient trop rares,

XVvii

trop spécifiques. Pour cette raison, nous avons mis la contrainte de ne pas accepter des
liens qui ont une valeur TF/IDF plus haute que 10. Cette valeur a été choisie en
analysant les liens. Nous sommes arrivés a la conclusion que les termes ayant un
TF/IDF associé de 10 ou moins n'étaient pas si spécifiques (pas si rares). Nous avons
demandé a deux testeurs de nous donner leurs évaluations pour 30 requétes développées
avec 10 liens. Nous avons calculé le coefficient Kappa parmi les deux testeurs pour
savoir s'ils avaient utilisé la méme interprétation des valeurs pour les évaluations. Avec
un trés bas Kappa = 0.28, nous avons constaté que les résultats des deux testeurs
n'étaient pas comparables entre eux. Le premier testeur nous a fourni aussi une liste des
termes qu'il attendait voir dans la liste des liens associés a chaque requéte, des termes
qui étaient dans la page de Wikipédia associé a la requéte. Nous avons étudié ses
résultats, et nous avons conclu qu'il y avait des liens trés intéressants a ajouter qui
n'avaient pas été choisis a cause du seuil spécifié pour la sélection des termes (10).
Aussi, il y avait des liens intéressants a ajouter qui avaient un TF/IDF trop bas, et
n'entraient pas dans les 10 liens choisis par notre systtme. Nous avons comparé la
valeur de TF/IDF avec la valeur de PageRank des termes dans chaque expansion. Nous
avons conclu qu'il y a une proportionnalité¢ inverse entre les valeurs de PageRank et

TF/IDF.

Nous avons amélioré les résultats par rapport aux dix résultats suivants de
Google. Nous avons seulement amélioré les dix premiers résultats de Google dans le
deuxiéme ensemble d'essais et pas trés considérablement. Les expériences avec TF/IDF

ont montré qu'il faut mieux étudier la fagon de choisir les termes de Wikipédia.

iv. Conclusions et recommandations

Une amélioration pourrait étre d'estimer la quantité optimale de termes a ajouter
a la requéte. Peut-étre 32 termes est trop et que nous ajoutons un peu de bruit a la
requéte, en €éloignant les résultats de ceux cherchés par l'utilisateur, et que 8 termes soit
pas assez. Nous doutons aussi de la pertinence des questions de TREC pour établir si

une page a les informations justes pour une requéte donnée. Nous pourrions avoir causé

Xviii

de mauvais résultats a cause d'une mauvaise sélection des requétes. Nous nous sommes
aussi appuyée sur TREC pour choisir les requétes, or TREC contient beaucoup de noms
propres, qui ne représentent pas tout l'univers de requétes possibles des utilisateurs.
Pour améliorer les résultats des essais avec les valeurs TF/IDF, nous pourrions suggérer
que les liens attendus soiet prés de l'intersection entre TF/IDF et les valeurs de
PageRank, qui est autour de la valeur 10 (normalisé¢). Une amélioration pourrait étre de
trouver une pondération mathématique qui permettrait de choisir de bons termes. Pour
'accomplir nous pourrions estimer la gamme ou nous avons trouvé les termes

convenables en évaluant avec quelques requétes.

Xix

Table of Contents

ACKNOWIEAZMENLS.......eoiiiiiiiiieieietet ettt ettt e sre b s \%
RESUME. ...coviiiiiiiiiii vi
ADSIIACE ..eeuvieieiiiiecieeieetesee sttt ettt e st s e s b s be s st et e s stesebesae e b e et eeabenar e e s baeebaesbtenns viii
CoNdENSE €N frANGAIS....cuuereierreiriiereerirerie et ese e st e s ree e st e s e sereessreessseesssesssesssaesssesssseessarens X
LSt Of TabBIES...c..eouiiniiiiieeieeee et e XXi
LSt Of FIGUIES....c.uvtieiiieiieeieteee ettt et ste e st e e e e e e e saneeeeans xxii
List of acronyms and abbreviations..............cccceeeeeiereeiieneeciesiesieeee st saeeae e XXiv
LiSt Of APPENAICES.....eevrerririerreriiireriiiieetrt ettt sae st s e s s b sbeseesse e XXiv
Chapter 1 INtroduCtion.........cc.eeeieierieiinreinerirece ettt 1
Chapter 2 Query Expansion in Information Retrieval Systems.........cccocevvvrveiveinennenne. 8
2.1 Information Retrieval Systems........c.covevuevueriiiieninininnciceesec e 8
2.1.1 Information Retrieval MOdels.........ccoccevereninineninieieenesee e 8

2.1.2 QUErY LangUagES........cceevuirveerieerniiiiineenienseessressseesseeesnesessenessssasessssesesenses 12

2.1.3 Precision and Recall...........ccoveiviniienniniinicciciieee e 13

2.2 QUETY EXPanSion......ccceecvereriineiieniiiiensenessiestesssniessieseesseesssessassesssnsssnsesssessnnes 15
2.2.1 Relevance Feedback..........cccoviiiriiniiiiniiiieeccteeerceee e 17

2.2.2 Term CIUSIEIING. ..c..eecverreeieeeirienierterieeeeeee ettt sre et esre s s ebeeseneeeeneessneeeas 22

2.2.3 WOTANEL......ceeteriiririeteitetet ettt ettt st ae b sb e st ae b b st e saeen 24

2.2.4 WIKIPEAIA.....ciiiriiiiiiiiicceceere e 27
Chapter 3 PageRank in Web Information Retrieval...........ccoceviivviniinieeniinininnnicneneene. 31
3.1 PAGERANK.......eeeeveiciieiiectecteeteceteeste et et sbeesseeebe e e se e s e e baeeabeesnbe e abaeesennraeeenraeas 31
3.1.1 Simplified PageRank algorithm.........c..cccceverviininnenniniireeceneeeceeceee 32

3.1.2 Simplified PageRank algorithm with damping factor............c.ccccevveueunennen. 33

3.2 Analysis of the Web Link Structure..........cccoceeeeieeiieerecrieciesie e 36

3.3 Content PageRanK.........cooerviirieneiiiiniiiinccieneesesr et 40

XX
3.4 Distributed PageRank............ccooiiiiiiiiiiiiiiciiccececeeee et 41
Chapter 4 WikiQE Implementation...........cccoccuieiiiriiiinieiiiieiiecieceeie e 44
4.1 WiIKipedia LnKS.......c.cocieiiiiiiieiieieeieeee ettt eae e e n 46
4.2 PageRank LINKS........ccoiieiiiiiiiicieceee ettt e 51
4.3 QueryPageRank lNKS.........cccooveiiieiiiniiiieieeeee et 53
4.4 TE/IDF TNKS....c.oiiiiiiieiieiieieeeeee sttt ettt st sseessae e e e ennes 53
4.5 EXpanding the QUETY........ccueieiiiiiiiinesieeteee ettt e 54
4.6 MEthOAOLOZYeeeiieiiieeieeieee ettt ettt sttt e e seeenaeeae e 55
Chapter 5 RESUILS.......oiiiiieiieieeiee ettt et ae et s e e nee e 57
5.1 First test set: first ten reSUlLS.c.ooverieriiiieieeieceeceeeee e 58
S5.1.1 GOOZIE PRASE.......oruiiiiiieiieieeiteieete ettt e s sae e esaaeennes 58

5.1.2 WIKIPedia PRaSE........coceiiuiiiiieiiieiieceee ettt e 62

5.1.3 PageRank Phase.........ccccoiiiiiiiiiiiiiecee et 63

5.1.4 First test set 1esults analysiS.........cccvveeeeiieeiiieeeieeeiee et e e 64

5.2 Second test set: NEXt tEN TESUILS......cveoieriieirieiiieteerteeeie e 71
5.2.1 QueryPageRank phase.........cccccieieeieniiiiieieseeieceeie et 73

5.2.5 Second test set 1esults aNalysiS........cc.cevieveeeierieiienrieieee e 73

5.3 Exploratory research: TE/IDF...........ccccooviiiiiiiiiiiieseceeeeeee e 78
5.3.1 TE/IDF PR@SE.....ceiiiuiieiiiiiieiieeiie ettt ettt ettt et ee s e ean e e eananaeaeees 78

5.3.2 Comparison between TF/IDF and PageRank............c.cccoevviviinieniieieennnnen. 84
Chapter 6 COonCIUSION.......cc.eiiiiiiiiiieterieete ettt e re e te e s e e e e s s bee e e eeraaeeas 86
RETEIENICES. ...ttt ettt ettt e beeae e e eesr e e e s nabeee e nnnnas 89
APPENAIX Aottt sttt e et e e e e a b e e e snaeeenaeeeennes 93

Table 5.1
Table 5.2

Table 5.3

Table 5.4
Table 5.5
Table 5.6
Table 5.7

Table 5.8

Table 5.9

Table 5.10
Table 5.11
Table 5.12
Table 5.13
Table 5.14

Table 5.15

XX1

List of Tables
First test set: scores for the original query Horus in Google phase................. 64
First test set: total values for 10 queries, Google, Wikipedia 32 terms and
PageRank 32 termS.......coevueiriiriieiieieerteteeseste et 65
First test set: total percentage for 10 queries in Google, Wikipedia 32 terms
and PageRank 32 terms phases........cocccvvevieirininenininceeseeesreee e 65
Wikipedia improves Google 40 % of the cases with a 21%...........c..cveuneee... 67
First test set: total by results order...........occevveeiieciieiicieieecceceeceeee e 68
First test set: total % by results order..........ccocveeeciiiieiieeciieiecie e 68
Second test set: evaluation for the original query Horus, for the next ten
GOOZIE TESULLS......coveuiiiiiiicieieeiee ettt sb et 74
Second test set. Precision for 30 queries using: Google; Wikipedia 32, 16

and 8 terms; PageRank 32, 16 and 8 terms and QueryPageRank 32, 16 and 8

L3 0 0 0P PP U OO P PO OO P PP PP RPPP 75
Probability that our results are different from the ones of Google.................. 76
Exploratory research: TF/IDF of the ten first terms for the query Horus.....79
Exploratory research: relevant terms for the query Horus............c..coeeuvenen. 79
Exploratory research: Amount of relevant terms over 10................c.cuo.... 80
Exploratory research: Totals by results order............ccooevevevieiniricenienenne, 81
Exploratory research: ten first links by order of TF/IDF < 10, links added by
OO EET ...ttt ettt e be e e 83

Exploratory research: TF/IDF grouped values for all the Horus links.
Underlined links are brought by the system, bold links are proposed by
TESTET L.ineiiiiiiiiieee ettt re et 84

e

Figure 1.1
Figure 1.2
Figure 1.3

XXi1i

List of Figures

Figure iii.1 Module WikiQE: Wikipedia Query Expansion.............ccccoecvevevevvenrecneennen. X1v
Simplified scheme of a library search engine............ccocceevrverrevinienienreiennnne. 2
Main components of a web search engine.........c.cooeceeverenievieienienenienieneennns 3
The linked structure of the web: a three pages example...........cccecveverriruinnnn. 4
Precision and Recall...........cccoiiiiiiiiiiininiiiiieeeeeeceee e 14

Figure 2.1
Figure 2.2

Figure 2.3

Figure 2.4
Figure 2.5
Figure 3.1

Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 4.1
Figure 4.2
Figure 4.3
Figure 4.4
Figure 4.5
Figure 5.1
Figure 5.2

Figure 5.3

... 15
Vector model for two terms t1 and t2: representing the query q, relevant
documents dri, non-relevant documents dSi.............ccoceveevieiiviieeieiireeeeeeae 21
Lexical semantic relations..........coccvceverererenenenieieieseseseeeeeese e saesaeeneas 25
“18-2” 1elation XAMPIE.......cceeruieriieiiriieieeicieee ettt 26
Backlinks and Forward links: a and b are backlinks of ¢, and ¢ is forward
Ik of @ and B.......ooeoiiiiiiiiie e 32
Simplified PageRank: first iteration............ceceeeeverierienenenieeeieieieeeeiens 33
Loop that acts as @ Rank Sink.........ccceceveriiininiiiiniiniicceeeeeeein 34
Creation of the base set from the root set............cccoeceeeeievierievieciceeeeeeiee 38
Hubs and authoritative Pages...........cceeveeuiecieerieciieeeeeeeeceeeeeeeee e 40
Module WikiQE: Wikipedia Query EXpansion.............cccceeeeeeeerecneeeneennnnn, 44
Query expansion with Wikipedia and PageRank...............cccoovevvevieninrennennn. 45
http://en.wikipedia.org/Wiki/HOTUS..........cccooveviiiiieiieiieieeieceiece e 46
Representation of the links of Horus as a graph of forward links.................. 51
QueryPageRank for the query HOrus..........cccooeiiiiiiciiniiiiececeee e 52
First test set: ten queries with its questions from TREC..............c..cc.ccue...... 59

First test set: evaluation process of the Google results for the original query

First test set: evaluation process for the query Horus expanded by Wikipedia

xxiii

terms by order of appearance..............cocoeeiriiriniiiiine e 62

Figure 5.4 First test set: evaluation process for the query Horus expanded with terms

from Wikipedia by order of PageRank...........cc.ccooeniiiiiiininniiincnies 63
Figure 5.5 First test set: chart from Table 5.2........ccccoooviiiiiiiinece e 66
Figure 5.6 Total order by results for the query Horus..........cocoveviiviiininiiniieeee, 67
Figure 5.7 First test set: total % by result order...........ccoooveeiriiiiniiiiiiniiiiieenreeen 69

Figure 5.8 First test set: Page rank values for the Wikipedia terms by order of PageRank
for the qUery HOTUS.......cc.ooiiiiiiiiicee et 71
Figure 5.9 Second test set: evaluation process of the query Horus in the Google phase
for the first ten reSults........cooiiiiiiiiiiii e 72
Figure 5.10 Second test set: evaluation process for the query Horus expanded with
Wikipedia terms by order of QueryPageRank...........c.cccoovevienininininniennnn. 74
Figure 5.11 Improvement of our system with respect to the next 10 Google results......76

Figure 5.12 Average percentage of the improvement of our system with the next ten

GOOEIE TESUILS.......eiiiiiiiieiiecieeete et ta e e e e as 77
Figure 5.13 Second test set: query page rank values for the links that expanded the

QUETY HOTUS. ...ttt e 78
Figure 5.14 Comparison between TF/IDF and PageRank links for query Horus........... 85
Figure 5.15 Comparison between TF/IDF and PageRank for query LPGA.................... 85
Figure 5.16 Comparison between TF/ID and PageRank for query Stone circle............. 85

List of acronyms and abbreviations

CSB The Collection of Computer Science Bibliographies
HITS Henzinger (2001) algorithm

HTML HyperText Markup Language

pP2p Peer-to-peer

PageRank Brin & Page (1998) algorithm

PR PageRank

QDPageRank Query-dependent PageRank

QueryPageRank PageRank calculated for a given query

QPR QueryPageRank

SAX Simple API for XML

SC Similarity Coefficient

SMART Automatic document retrieval system

SQL Structured Query Language

Synset Synonyms set

TF/IDF Term Frequency/Inverse Document Frequency
TREC Text REtrieval Conference

Wiki Wikipedia

WikiQE Wikipedia Query Expansion

XML EXtensible Markup Language

XX1V

Appendix A

XXV

List of Appendices

Chapter 1 Introduction

Google is a powerful search engine but the results strongly rely on the keywords that
appear in the query. It is not trivial for the user to select the appropriate terms to obtain
the desired results. A recent study by Jensen & Spink (2006) has shown that 73 % of the
US users would rather change the query than go to the next result page. Also, according
to RankStat (2007): “most people use 2 word phrases in search engines”. These findings

show the need to develop ways to help the user to compose better queries.

According to Singhal (2001) the first systems used to retrieve information from a
user query were created for libraries in the 60s. The program that searches documents
for specified keywords is called Search Engine; we can represent it in a simplified
scheme by the Figure 1.1. For example: the user submits a query to the search engine
which will retrieve, as the result, all the documents that match the user's query. The
documents to retrieve can be, for example, books, articles, magazines, etc. To match the
documents to the query we use the Document Index, where we link each document to
some key words that describe it. The simplest example is the search engine that only
matches exact query phrases; it will search in the document index all the documents that
are described exactly by the same words that appear in the user query.

We need to find a way of identifying the documents that correspond to the user
need, considering that the user's need is expressed as a limited query which consists of
some keywords. The technique to identify the documents that match a query is called
Information Retrieval. To implement a search engine, first we have to establish which
words will appear in the document index. For example, in the case of a library: is it only
the title of the book, the author or the subject that we will consider? The user might be
interested in searching by content. Second, we have to implement the information
retrieval technique: how are we going to evaluate whether the book meets the user

needs? Is it going to be exactly the words the user is looking for? Is it going to be a

//f\\

subset of words? How many? Are we going to remember user's choices to learn from?
Information retrieval solves this problem by using some similarity user's choices to learn
from? Information retrieval solves this problem by using some Similarity Measures

between the query and document index.

Documents to Retrieve
. books
Search Engine
|
% articles
document
index =
1
magazines

Figure 1.1 Simplified scheme of a library search engine.

Now, let us suppose that instead of searching books from a library we are
searching online books, magazines and articles, from the Internet; in this case we will
have to build a Web Search Engine. First we have to collect from the web all the online
books, magazines and articles. The program that does this task is called Web Crawler.
Then, we have to choose which words we will add to the document index, decide how to
store them and how to compare them to the user query. The information retrieval for the
web is called Web Information Retrieval. Figure 1.2 illustrates the main components of
a web search engine.

The web crawler collects documents from the web, and stores them in a Page
Repository. Then, we select which key words will characterize each document and store
them in the document index, which will be matched to the user's query. The user's query

may be processed to get better results; this is done in the Query Module. For example:

detecting misspellings or adding synonyms.

One technique of information retrieval used to ease the user's search is called
Query Expansion. This is implemented in the Front End of a web search engine, which
emerged in 1970 (Zhu & Gruenwald, 2005). The basic idea of query expansion is to
modify the query by adding words to create a new query which will return better results.
We use this technique everyday when we do a search in Google: if the results do not
correspond to what we are looking for, we add some words. In our project we will use
the web search engine Google, and to improve the results we will use the technique of

information retrieval called query expansion.

Web Search Engine

e i o] -

document

query
index

query
module

User page

repository

result s\

o § World Wide Web

Back Erd

Figure 1.2 Main components of a web search engine.

To implement the Back End of a web search engine we must first choose the
model we will use to retrieve documents given the query and the document index. There
are two basic models that we will introduce in Chapter 2: boolean and vector model.
Second, we must decide how to measure the similarity between the query and the index.

Finally, we must identify which words will we use to characterize the documents and

decide how often the crawler will update the database.

The World Wide Web introduces two main problems we did not have with the
libraries. One is the amount of information; it is estimated by Gulli & Signorini (2005)
that there are 11 billions pages on the Internet. The other one is that we cannot trust
everything we read on the Internet: anyone can publish anything (Page, Brin, Motwani
& Winograd, 1999) (Brin & Page, 1998). It is not like the books whose content we
believe because they went through an editorial. On the other hand, there is one
advantage: the Internet is a Linked Structure, which means that, if we can establish
somehow that a web page is reliable, it is very probable that it will not link to a non
reliable page. This is called Reliability Transmission. A linked structure is as follow:

the page A has a link to page B, and page C has a link to page A (see Figure 1.3).

Page C FPage A Page B
wiww.myblog.com WAL T AFS .COMY amazon.comy33 . html
More picture of Mars Life in Mars, is there Life in Mars
can be found in . any?) by Stuart McKartney
WWW.MArS.Com. Cis 2 There is this book Bisa
inner link of A =Life in Mars” outer link of A 8 used from 325
fram Buy now!

amazon.comy33 html
Click here to see
some picures

Figure 1.3 The linked structure of the web: a three pages example.

Reliability transmission was popularized by Brin & Page (1998), the creators of
Google. It was first used on the libraries to count how many documents make reference
to one document in order to measure the popularity of the second one. There is a way to
apply this measure of popularity on the Internet considering links as references. Brin &
Page took advantage of the linked structure of the Internet; they count how many web
pages point to a given page, and use this to establish how popular the page is. Brin &
Page implemented this technique of web information retrieval called PageRank. Google
will retrieve documents that are relevant and mentioned by popular web pages.

Query expansion techniques can be used with any search engine to improve the

initial query, including Google. They can be classified as either based on search results

or based on knowledge structures.

Query expansion based on search results mean that the query is expanded using
the terms that appear in the result documents. Among the techniques based on search
results we find Relevance Feedback which can be blind or manual (Rocchio, 1971).

The Manual Relevance Feedback was implemented in the SMART retrieval
system, Salton & Buckey (1990), where the user has to indicate which documents are
relevant from the query results, and the query will be expanded adding the terms that are
common in those relevant documents. The issue with this method is that it relies on the
user criterion which can not be measured and might be a source of errors; and it
demands an effort from the user to read the documents in order to categorize them,
which takes time. A similar technique to manual relevance feedback is implemented in
web search engines, it can be found in the option: Similar Pages. The systems that
implemented it are Google, Webinator', and The Collection of Computer Science
Bibliographies (CSB)’. For example, given the query: “mars”, when selecting similar
pages in Google, it will create a new query of the form: “related: http://www.mars.com”.
A problem of this method is that we cannot add any more words. Moreover, we are
looking for an automatic solution.

The automatic relevance feedback considers, for example, the first ten documents
returned by the system given the user's query. This method relies on the relevance of the
first-ten documents retrieved. If they are not relevant the system will expand the query
adding non-relevant terms.

Query expansion based on knowledge structures means that we are going to
expand the query according to a data base. The techniques based on knowledge
structures, also known as Concept Based query expansion, can be divided in: document
collection dependent and document collection independent.

Collection dependent means that the terms in the knowledge structure depends on

the terms of the document collection. One technique is called Term Clustering where

1 http://www.thunderstone.com/texis/site/pages/webinator.html
2 http://liinwww.ira.uka.de/bibliography/

we make clusters of word stems' that co-occur in one document (Efthimiadis, 1996).
This technique has better results if it's constructed manually which consumes a lot of
resources. In our case this is not applicable since we only modify the query without
having access to the document collection.

Thesaurus (i.e. relational thesaurus) is a collection independent knowledge
structure because it does not depend of the documents we have in our database. It
contains for each noun, verb, adjective, or adverb what are its antonyms, synonyms, etc.
For example, WordNet? is a thesaurus, it is a downloadable free tool. He M. (2006) and
Gong & Wa Cheang (2006) implemented a system with query expansion extracting the
terms from WordNet. However, WordNet works mainly with words, not phrases,
although there are some phrases, the information is very concise.

Another way of creating an independent knowledge structure is using an online
encyclopedia such as Wikipedia. An encyclopedia will add much more information than
a thesaurus. Using the queries as the page titles, we expand the query according to the
information that is in the given Wikipedia page. At the end of each Wikipedia page
there is a Category classification: each article has to be included in a category. For
example for the page of title Egypt some categories are: Countries bordering the Red
Sea | Egypt | Developing 8 Countries member states | G15 nations. We can also see the
category in the search results in Google Directory’, and Yahoo Directory®. We can
expand a query using the Wikipedia categories, Liu (2006), He M. (2006). The mayor
inconvenient of the categories is that there are no established conventions to associate
them to the Wikipedia pages. Wikipedia offers a guide to help users to write categories
but it is not controlled.

Semantically, there is more information in the natural language text of the
Wikipedia pages than in the Wikipedia categories. In our project we will only use the
links of those pages, if we wanted to use all the text we would be forced to analyze it

semantically using natural language processing techniques. Instead, we use the links of

1 E.g.: for the word truncation, the stem is: trunc; for the word destabilized the stem is stabil.
2 http://wordnet.princeton.edu/

3 http://directory.google.com/

4 http://dir.yahoo.com/

each page. We expand the query using the links by order of appearance, and by order of
popularity. We will add to the query those terms that are in the page and that are also
the most mentioned in all the pages.

Following, in Chapter 2, we will define query expansion in information retrieval
systems. First, we will define the information retrieval models: boolean and vector,
query langage, and recall and precision. Second, as query expansion techniques, we will
explain relevance feedback, term clustering, and the use of thesaurus as WordNet and
Wikipedia.

In Chapter 3, we will define PageRank in web information retrieval systems.
First, we will define PageRank. Second, we will define content and distributed
PageRank.

Chapter 4 describes how we implemented this approach. We start by the
extraction of the terms from Wikipedia pages, then the calculation of the PageRank and
QueryPageRank, and last the TF/IDF of the terms.

Chapter 5 are the results, and Chapter 6 are the conclusion and future work.

Chapter 2 Query Expansion in Information Retrieval
Systems

In this chapter we review the classic information retrieval models, namely boolean and

vector. Later, we review the technique of query expansion.

2.1 Information Retrieval Systems

As we explained in Chapter 1, information retrieval is the technique that uses a search
engine to retrieve information to meet the user's need. Information retrieval systems can
return many kind of items: a link, a book, an article, an image, a film, a song, a
compressed file, etc. We call all of them Documents. Among the specialized
information retrieval systems there are: Text Retrieval, Image Retrieval, Music

Retrieval, etc.

2.1.1 Information Retrieval Models

The first step to implement an information retrieval system, given the set of documents
(document collection), is to create the document index with all the words that
characterize the documents. We associate for each characteristic word the document it
appears in. Basically we will distinguish four steps to follow to create the document
index. We apply the next steps to each document: (1) A lexical analysis of the document
text, which consists in identifying for each word its class or token. (2) The elimination
of stop-words (too frequent meaningless words) such as: a, the, of, etc. These words are
not characteristic of the document since they will appear in almost every one. (3)
Stemming is the process of identifying the morphological root of the words. For
example, we avoid the creation of separate index entries for: careful and carefully, both

are indexed under the root word careful. (4) In the index term selection we choose

which words best characterize each document, those are the words that will appear in the
index. We can apply one or all of the four techniques described, and we can do it as
exhaustively as we wish, but it will take more time and we have to update it every time a
document leaves or enters the collection.

Given the document collection, the document index, and the user query, we need
a way to establish which documents satisfy the query (which are relevant for the given
query). We need to measure the similarity between the query and each document to
return to the user the documents the most similar to the query; this measure is called
Similarity Coefficient (SC). We will assign a weight to each index term, to indicate the
importance of that term in the document. Models differ in the way they determine
weight and the similarity coefficient.

The Boolean Model uses the set theory and boolean algebra. It is the simplest
retrieval model. The queries have to be written as boolean expressions (Baeza-Yates &
Ribeiro-Neto, 1999, p.25), (Grossman & Frieder, 2004, p.12). We combine words (or
queries) with the boolean operators AND, OR and NOT. For example, if we are
looking for books about “Life in Mars” our query would be: “life AND mars OR planet
AND NOT ufos”, meaning that we are interested in books which subject is related to
life, in mars or any planet, and not related to ufos.

In the boolean model the index terms are either present or not present in the
document, so the weight of a term is 0 if the index term is not in the document, and 7 if
it is. A query g can only use the logical operators: not, or, and. The similarity measure
between a query and a document is / if all the terms of the query appear in the document
and 0 if not. The technique to retrieve documents is as follows: we represent the query
as a disjunction (sequence of ORs) of conjunctive (AND) vectors (in disjunctive normal
form — DNF) (Baeza-Yates & Ribeiro-Neto, 1999, p.26). For example, the query “mars
OR planet AND NOT ufos” can be expressed in boolean algebra as 9= (t,Vt,)A"t; or
the three terms, ¢, =mars, t,=planet, t;=ufos and it can be expressed in DNF as

g o=t AL AV (8 A ALV (AL ASE) . We look for the documents

which verify this new query. We can divide this query in three new ones:

10

g ovr, = (Tt Aty At)
qDNFzz(tl/_IIZ/_'t3)
qDNF3:(t1/\t2A_'t3)

If a document verifies any of these three queries we retrieve it. For example, documents
which verify ¢gpnr, are the ones that: do not contain #; , contain #, and do not
contain 73 1n their index representation.

One advantage of this model is its simplicity, but its major disadvantage is that a
document is relevant or non-relevant, there is nothing in between, which decreases the
retrieval performance. It will only return some documents, the ones that match the
criterion completely, it will not consider partial matches which leads to poor
performance.

The Vector Model improves the results of the boolean model; it accepts partial
matches, assigning non-binary weights to the index terms (Baeza-Yates & Ribeiro-Neto,
1999) (Grossman & Frieder, 2004). These term weights are used to calculate the degree
of similarity between each representation of a document in the index and the query.
Retrieved documents are previously sorted by their degree of similarity (to the query) in

descendant order.

We represent the document index entry 5’ ; and the query ¢ , as vectors of
values from 0 to w. We can see the query as another document index entry, where the
value in the position i represents the weight of the term #; for a document. The
traditional method of determining closeness of two vectors is using the angle between
them. The similarity measure of the query and the document is the cosines of those

vectors, the smaller the angle the more similar are the vectors. So, we have:

M
R . d—> Z(Wi'iji,q)
sim(d;,§) = cos(d;,§) =

11

where Hll and |g| are the norms' of the document and the query vectors, and M is
the number of terms.
To compute the weight of the index terms one uses the technique named TF/IDF.
First, we calculate the Inverse Document Frequency idf, whose value will be high if the
term does not appears a lot in the document set and low if it does. We use this number
because terms which appear in many documents are not very useful for distinguishing a
relevant document from a non-relevant one (Baeza-Yates & Ribeiro-Neto, 1999, p.29).
A formal definition of the term weight in the vector model is as follows. Let be
N=|D| the total number of documents in the system, being D the document
collection. We define:
(1) #f; = number of times that the term # appears in the document d ;. This is the
Term Frequency.
(2) dfi = number of documents which contain the term #. This is the Document

Frequency.
o N .
(3) idf; = IOg—cf This is the Inverse Document Frequency.

The weighting factor for a term 7, in a document index entry d ; 1s defined as a

multiplication of term frequency and inverse document frequency:
w, . = If, Xidf, .

The advantage of the cosine as similarity measure is that it is independent from
the document's length. But the weight defined as above has the following problem: if
the inverse document frequency is too high, meaning that the term is very rare, then the
term frequency will not affect it, this justifies the following definition.

The definition of a normalized term frequency proposed by Baeza-Yates &
Ribeiro-Neto (1999, p.29) is as follows. Let d be the total number of documents in the

system and df; be the number of documents in which the index term # appears. Let the

frequency #f;; be the number of times that the term # appears in the document d ;-

1 Norm of a vector |x|_1x S ’_\;é ’

12

Then, the normalized frequency ntf;; of term ¢ in document d ; 1s given by:
tf i j
max, (1, ;)

where the maximum is computed over all terms which are mentioned in the text of the

mfi,j =

document d ; . If the term # does not appear in the document d ; then #,=0 .
Salton and Buckley suggests (as indicates Baeza-Yates & Ribeiro-Neto 1999, p.
30) for the query term weights:
Yig

Xidf',
max, (#f,) 4

w,, = 05 + 05

where the frequency #f;, is the number of times that the term ¢, appears in the query

g. And max,(#f, ,,q) computes the maximum frequency for all the terms in the query gq.
The best known term-weighting schemes use weights which are given by:
w,; = nif, Xidf,
As we mentioned before, the main advantages of the vector model are: its term-
weighting (normalized frequency) improves retrieval performance; its partial matching
strategy allows retrieval of documents that approximate the query conditions; and its

cosine ranking formula sorts the documents according to their degree of similarity to the

query.

2.1.2 Query Languages

Depending on the document index, there are different kinds of queries that can be
answered (Baeza-Yates & Ribeiro-Neto, 1999, p.99). We distinguish three basic ways
to write queries: index term-based queries, pattern matching and structural queries.

The Index Term-based Queries can be classified in four subclasses: single-word,
context queries, boolean and natural language queries. The query terms are a subset of
the index terms. (1) As the name announces, the single words-queries are composed
only by one word; the system will retrieve those documents that match that word in the
index. (2) The context queries are multi-word queries, they take in consideration the

distance between the query words: if two words are separated by a high number of

13

words in the document, they will not be considered as being in the same context. The
index considers the proximity information. (3) Boolean queries, used in the web search
engines, join query terms with ANDs or ORs. If, for example, the query is: “wordl OR
word2”, the system will look in the index for the documents that match one or other
word of the query in the index. (4) Natural language queries are formed as a set of
words; we retrieve the documents that contain a portion of the query. The more
matching parts of the query the higher the relevance.

In Pattern Matching we look for words in the index that match a pattern; the
query in this case is a pattern, for example we can use regular expressions. The index
has to be created as a set of letters.

The last are the Structural Queries, for example, if the database is a library we
can search for certain text in the title, and some in the abstract, etc. There has to be a
known structure by the system and it is offered to the user in the interface. The index
will distinguish to which group belongs the term, if it is part of the title or the abstract,

etc.

2.1.3 Precision and Recall

After implementing an information retrieval system, we need to measure the quality of
the search results. A document has quality for the user if it is relevant, that is, if it
contains the information he is looking for. The measure used is the effectiveness of the
system; the more effective the system the larger amount of relevant documents it returns.
For this we have to define the Precision and Recall of the system. As Grossman &
Frieder (2004, p. 2) defined: given a query, precision will measure the amount of
relevant documents retrieved with respect to the number of retrieved documents; and
recall will measure the amount of relevant documents retrieved with respect to the total
number of relevant documents in the system for that query. Figure 2.1 shows the
mathematical definitions of recall and precision.

Both measures are complementary. For example, if only five relevant documents

are retrieved in a set of ten documents, precision is relatively low (50 %). But if there

14

are only five relevant documents in all the system for that query, then the recall is high

(100 %).

All documents

Relevant

Relevant
retrieved

Relevant Retrieved

Precision =
Retrieved
] Relevant Retrieved
RECAll = s
Relevam

Figure 2.1 Precision and Recall.

Another important measure is the efficiency, which will evaluate how quickly the
results are returned.

To measure the precision of a web search engine, instead of considering the total
number of documents retrieved, we could consider only the first ten documents. The
precision would then be the number or relevant documents divided by 10.

How can we establish that a page is relevant to the query? This is the main
weakness of a web information retrieval system. There is no simple way to determine it
objectively.

Checking the relevancy of a web page to a query could be made automatically: if
some relevant words appear in the document, we can consider that the document is
relevant to the query. Doing an efficient system to check this relevancy might take some
considerable time, but it might be worth it. If we do not implement an automatic system,
we have to read the pages returned by the system one by one, to check whether they are

related to the query. We have to check whether the page content might be interesting to

15

the user that wrote the query. The tester has to imagine what is the user looking for,
what kind of information the user might consider interesting. These decisions are very
subjective.

Another challenge we face when testing web information retrieval systems is
time. The same query will not return the same pages for the same query which is

submitted at different times, since the web is continuously changing.

2.2 Query Expansion

As we explained in Chapter 1, there is a technique called query expansion that is
implemented in the front end of a search engine. We use query expansion every time
that we make a search on the Internet: if the query we write does not return satisfactory
results we add some words to the query. There is a more general concept named Query
Reformulation which includes query expansion. In query reformulation we can add and/

or delete words.

Query Expansion

Buiking blocks
Manual =4 Citation pearl growing

Briefcase

Relevance feedback
Automatic

Similarity thesaurus
Relational thesaurus

Semi-automatic

Figure 2.2 Query expansion implementations:
Manual, Automatic and Semi-automatic.

There are three ways to expand a query: we can do it manually; we can let the
search engine add terms; or we can choose between some terms given by the search

engine. These techniques are named Manual, Automatic and Semi-automatic query

16

expansion represented in Figure 2.2.

The Manual Query Expansion is based in the boolean queries (Efthimiadis,
1996). In this technique the user changes the query, adding some terms to the results of
the previous search. There are many query expansion strategies: building block, citation
pearl growing, brief-search, successive fractions, most specific facet first, and lowest
posting facet first. We explain some of them below. The strategy named Building
Blocks 1s divided in tree steps: (1) the user decomposes the topic of the search into many
concepts or facets; (2) every facet is decomposed to form a group of terms (synonyms,
quasi-synonyms', etc.); (3) then all terms belonging to the same concept are joined by
the boolean OR opérator. And finally each or-expression is combined with the Boolean
and operator. In the strategy Citation Pearl Growing the user also creates a group of
terms as in building blocks strategy, but instead of creating an OR-expression with all
the terms of each facet, he will choose only one term of each facet and with those he will
create an and-expression. In the strategy Brief-Search the user creates some expressions
of the form citation pearl growing and takes notes of each query result. From those
results he will discover new terms to add to the query.

In Automatic Query Expansion, the query is modified automatically without the
user's intervention. After the user submits the query, the system will modify it before
computing the results. The automatic query expansion can be classified in two
categories: based on search results, and based on knowledge structures. We can expand
the query using a knowledge structure as for example a dictionary, adding synonyms of
the query terms. Also, expanding based on search results, we can consider the first ten
documents returned as relevant and expand the query with the words that appear in
common in each of those ten documents (as explained in Chapter 1).

Semi-automatic Query Expansion is where the user will choose among some
options given by the system before or after executing the query, or both. For example,
the user can choose which documents are relevant among the ones returned by the

system. Or the user can choose the words to add to the query among some words

1 Quasi-synonym is an equivalent term, for example “liquid” and “water”.

17

proposed by the system.

In this project we will focus in automatic query expansion. Even if at first sight
we tend to think that the user intervention will improve the results, the user does not
always know exactly what he wants. Moreover, not every user is willing to interact with
the system. Also, the automatic systems can easily add the option to choose semi-
automatic: it is easier to implement a semi-automatic query expansion from an automatic

one, but not the inverse.

2.2.1 Relevance Feedback

In the semi-automatic query expansion the system will propose to the user a set of terms
and the user will choose the ones to add to the query. The success or failure of the
search becomes more difficult to precise since the user options are involved. On the
other hand, if the user knows what he wants, he can choose the terms accordingly and
the user satisfaction will increase.

The source of the terms to be presented to the user could be based either on the
search results or on some knowledge structure which could be either dependent on the
collection of documents or independent of it. There is a technique which is asking the
user if the retrieved documents are relevant and takes the feedback as input. This
mechanism was introduced by Rocchio (1971). Having the results for a given query, the
user will classify each document and assign if they are relevant or not. The system will
take that information to change the query. The strategy is called Manual Relevance
Feedback. Manual relevance feedback is addressed to searchers that write poor queries
and that are not familiar with the subject. So we can almost assure that the returned
documents will not be relevant at all. To improve it, we ask the user to classify the
result, indicating whether the documents are relevant or not.

There exists an optimal query which will return all the relevant document for a
given query. Changing the original (initial) query, we aim to get closer to the optimal
query.

We will explain manual relevance feedback with an example for the vector

18

model, and we will consider that the term-weight vectors of the documents identified by
the searcher as relevant (to a given query), are similar among them, Baeza-Yates &
Ribeiro-Neto (1999, p.118). By consequence, it is assumed that non-relevant documents
have term-weight vectors dissimilar to the relevant ones. We want to modify the query
in order to approach it to the optimal one.

The initial query is represented as:

-

Go = (Wi Wy oWy)
where w;, represents the weight of the term # in the query ¢ . The weights in the
initial query will be / or 0 indicating if the term is in the query or not. Given the vector
qo , the results after the user selects the relevant documents will be a new query
vector:
q' = (w'l’q,w’z_q,...,w'M,q)
where w';, represents the altered term weight. New terms are introduced by assigning
the corresponding weight where there was a 0, or deleted (assigning a 0) where there
was a weight (in the case of query reformulation).
Since our example is with the vector model, to measure the similarity between
documents we will use the cosines between two vectors:
sim(c_ij,Zj) = cos(Jj,E]’) = ——.i’q—_,
N
Let's define D as the set of all the documents in the collection, where |D|=N , § as
the initial user query, ¢, as the optimal query of § , and D, Drx<D as the set of
all the documents relevant to the query ¢, . The set Dy is such that it will maximize

the number C, where:

1 .= 1 .3
C = — sim(d,,§) — ———— sim(d ., §)
|DR| vJ,ZeDR ’ N—IDR| Vd,eD, ’
. d g

Replacing sim(d;,g) by I—m we have:
j

19

-

co | d q 1 4,9
|DR| VdeD, _IDRi Vd gD, d,»|><131|
Where N—|D;|=|Ds| , Dy is the set of relevant documents, and Dy is the set of

non relevant documents.

3 d g e
Considering that TL—q;-:—:L L and 2 95979 'Zd/‘ , then:
d [x[g| |d| 1] 4,ep
c = A|d i R B A
|DR| |‘]l Vd €D l j| N—|DR| gl VJ_,éDk|dj|

-

Since IE']qT is constant we can do the following:

-

QU
a

1 I _1— I = :é..A
DG~ N Z|d|) B

The set Di (relevant documents for the user query) maximizes C, consequently

C =

Q&

lal

maximizes 4, and 4 contains all the index terms d| of the relevant documents for the user
query, and do not contain the index terms of the non relevant ones, we can assert that

the optimal query is 4:

- _ _1 d, 1 i

o = Pl B NP
However, the last formula cannot be used since the set Dy is unknown. We will
replace Dy by the set of the documents stated as relevant by the user and the set of the
rest not chosen stated as non-relevant, represented as R and S respectively. As Salton &
Buckley (1990, p.289) assert: “experience shows that we should leave the original query

term in the new feedback formulation”. An effective feedback query can be formulated

as:

s
o

|'\..

- - 1 1
= 4+ —_—
K A R A

der

)

i
where ¢, and ¢, represents the initial and the first iteration queries. The same

expression can be represented as follows, for some values o, and y:

20

S

4

g1 = O +ledl YZ

VdeRr vd, sl jl

As shown in Figure 2.3, let us suppose (to simplify), that our universe are four
documents: 3,.l, Zl',,z, le,’ 5'52 , two relevant and two non-relevant respectively; and
two terms: #;, Z, . The documents are two relevant and two non relevant to the given

query 9,=1,4,=(0,1) . The system returns to the user the four documents as the

result. Then the user indicates that the relevant documents are 9, and d, , the

system will re-weight the query in order to approximate ¢ to the relevant documents

chosen by the user. For example:

a=1, 3:;/:;—,2;:(0,1), d,=(0.3,0.8), d,=(0.2,0.9),

d,=(0.9,0.1), d,=(0.8,0.2)

Then the new query would be:

Bt

rl

d,

d,
T2

K\)|b—‘

- - 1
q, = 1Xq, + Z_X Z
i€(1,2)

Q-&

(090.1) . (0802) (0308 (0209

q,=(0,1)+
‘ 240.9°4+0.1> 2+0.8%+02% 2+0.3°+0.8> 2+0.2°+0.9°
B 09 0.1 08 02
=00+ (5753702507 + Gao3 04123
03 08 02 09

G222 02272 ~ (04609 0.4609
(0 + 0.4969 + 0.4850 — 0.1755 — 0.1084,
1 + 0.0522 + 0.1212 — 0.4681 — 0.4881)
= (0.6980,0.2172)

We placed this new query in the Figure 2.3, we notice how it is closer to the relevant
documents chosen by the user.
The effectiveness of a relevant feedback system cannot be evaluated as any other

information retrieval system. We have to compare the effectiveness of the relevant

Vs

21

feedback process with the effectiveness of the system with the original query, Salton &
Buckley (1990). If we consider the user satisfaction of the retrieved documents, in
relevance feedback we are returning twice, the document that was established as relevant
by the user. This document is not relevant anymore to the user when is returned a
second time. In relevance feedback is the user which is going to measure the quality of
the documents. The relevance feedback has to be evaluated for new documents

retrieved by the system.

L

e e o I s o
a1 92 0% 04 0% 44 OF 28 9% 10 t
1

Figure 2.3 Vector model for two terms t; and t,. representing the query q,
relevant documents d,, non-relevant documents d,

The solution proposed by Salton & Buckley (1990) is named Residual Collection
System. It only retrieves new documents each time, for each new expanded query (for
each iteration).

The technique of automatic query expansion based on search results is called
Blind Relevance Feedback (or pseudo relevance feedback). After the user executes the
query, the system uses that result as an input to modify the initial query made by the
user. Instead of asking the user to choose the relevant documents the system considers,

for example, the first ten documents returned and take them as the relevant ones.

22

2.2.2 Term Clustering

The strategy of automatic query expansion in collection dependent knowledge structures
are also known as Similarity Thesaurus. Collection dependent structures mean that the
structures that will be created to generate the query expansion will be dependent of the
documents that are in the collection. After creating the similarity thesaurus for each
word in the query we can add some similar terms found in the thesaurus.

Term Clustering is an automatic technique to generate similarity thesaurus.
Given the query we will not expand it considering each term separately, but considering
all the query terms. The thesaurus is a matrix that measures term-term similarities (Qui
& Frei, 1993). To construct this matrix we will consider the documents as the features
to index the terms. We will represent each term as a vector of document's weights;
indicating in which documents it appears and giving a weight to indicate the importance
of that document for that term. This thesaurus is based in the vector model and
considers that the documents are characterized for almost every word that appear in it.
We do not consider the stop words, we only keep the root of the words (Zazo, Figuerola,
Alonzo & Rodriguez, 2003).

A formal definition proposed by Baeza-Yates & Ribeiro-Neto (1999, p.131) is:

Let M be the number of terms in the collection, D be the number of documents in the

collection, and the term frequency #f;; be the number of times that the term 7[
appears in the document d ;. Further, let if ; be the number of distinct index terms in

the document d . and iff; be the inverse term frequency for document d ;. Then,

o M
itf; = logtf_. , analogously to the definition of inverse document frequency.
J

The representation of each term is of the form: f, = (W, W, a0 Wi n)
where w; ; i1s the weight associated to the term ?,. and the document 5’ ;- We will

represent w; ; normalized as follows:

23

0.5 + OSL—— Xitf
_ . — max, (i,) l
Wi = ~ ” "
D105 + 0.5 —1L | Xitf;
=1 max1(’fi,1)

The inverse term frequency will be high if the document is short and small if the
document is long. If the document is long the co-occurrence of two terms is less
relevant than in a short one.

To calculate the similarity between two terms we compute the scalar product of

the weights as follows: we calculate ¢,, for each pair of terms [7”,7v] in the

collection, where ¢, , = 1,f, = ZWM,,-XWV,,- .
=1

To expand the query we calculate the similarity between the query and each
index-term, and we add to the original query those first terms that have the higher
similarity with the query. We are expanding the query considering all its terms together

and not separately, the expansion of the query ¢, =\ 1,’2} , which can be represented

2

in boolean language as “ f; AND ¢, ” is not the same as expanding the query: “ ¢,
and “ 7, ” for later joining them in a new query. The similarity between the query g

and the term 7, is calculated as follows:
M
Sim(q’ tl) = z q,X¢; |
i=1

Let us see an example. Our universe is four documents and five terms.

d=4, number of documents
t=5, number of terms
tset:{tl’tZ’ t3,t4,t5}
dset,:[tl’ts}’ dset::{tl’tl't2}l dm]'—“{t3,t4}, dset4:{tl’t2’t2’ t, t4}
9=t
We calculate the term frequency, the inverse document frequency, and the maximum

frequency for each document. They can be represented as follows:

24

1201 092 T 2
0103 3
tfi,j: 0010 itf,’: 83% maxi(tfi,j): 1
0011 0'51 1
1000 ' 1

With these values we are able to calculate the weights:

0.37 0.65 0.16 0.11
0.20 0.36 0.20 0.25
w;;=(0.18 0.18 0.73 0.06
0.17 0.17 0.68 0.21
0.73 0.18 0.18 0.06

We are now ready to calculate the similarity thesaurus matrix, where the results are:

0.60 0.37 0.31 0.31 0.42
0.37 0.28 0.27 0.29 0.27
¢;,;=10.31 0.27 0.60 0.57 0.30
0.31 0.29 0.57 0.57 0.29
0.42 0.27 0.30 0.29 0.60

To expand the query we have to calculate the similarity between the query and each
index-term, and we will expand the query with the two terms that are more similar to the

query. The results are the following:

0.60
(037
sim(q,7,)=[0.31
0.31

0.42

The two terms with higher similarity (excluding ¢, which is already in the query) are
ts and ¢, . The expanded query is as follows: 9=t 5.1,

Generating this similarity matrix costs a lot of resources considering that we

consider almost all the terms that appear in the document collection. It is not very likely

to be used on the Internet considering that it is updated constantly.

2.2.3 WordNet

We will explain the automatic query expansion based on collection independent

/\\

25

knowledge structures. Collection independent structures means that the structures that
will be created to generate the query expansion will be independent of the documents
that are in the collection. These structures are also called Relational Thesaurus which is
a dictionary of lexical-semantic relations. Lexical semantics relations, as shown in
Figure 2.4, can be classified in three classes: Congruence relations, Hierarchical

relations and Non-hierarchical relations (Eagles, 1998).

Lexical semantic relations

~{Cpngruence relations

- Higrarchical relations

Taxonomies
- Meronimies

-MNan-branching hierarchies

— Non-hierarchical reakaions
i
Synonyms
Antonyms and opposites

Figure 2.4 Lexical semantic relations.

There are four congruence relations who are: identity, inclusion, overlap and
disjunction.

There are three types of hierarchical relations: taxonomies, meronymies and non-
branching hierarchies. The taxonomy relation associates an entity of a certain type to
another entity (called the hyperonym) of a more general type. Meronymies describe the
part-whole relation; it represents the relation of differentiation of the parts with respect
to the whole, and the roles that these parts plays with the whole. Non-branching
hierarchies are often related to a spatial, a temporal or an abstract notion of
dimensionality.

Among the non-hierarchical relations we will distinguish synonyms and
antonyms. Two words are synonyms if they have a similar semantic content. Antonyms

and opposites measure how dissimilar are two similar words; for example expensive and

26

bottle are not antonyms because they are not even similar, but expensive and cheap both
measure the cost. It is here that we can evaluate if they are antonyms or opposites.

An example of a global (general-purpose) relational thesaurus is WordNet' which
is an online lexical reference system whose design is inspired by current
psycholinguistic theories of human lexical memory (WordNet, 2006). English nouns,
verbs, adjectives and adverbs are organized into synonym sets, each representing one
underlying lexical concept. The synonym sets are linked by different relations as we

will explain.

erthit"yr
entity, phisical thing

ft}jcyyhisical object
classification - \\

natural object artefact, artifact
plant part mechanism enclosure surface

plant organ mechanical device -cagl, Coop gkin

/

- plant root sprinkler bir: hutch

wor{fS{ ' .
_ carrot radish squirrel cage

Figure 2.5 “is-a” relation example.

The technique of query expansion that we will explain, uses only synonyms. We
will expand the query adding synonyms of the query terms. WordNet defines the
Synsets (synonym sets), each synset in which a word appears is a different sense of that
word (Voorhees, 1993). For example, as we can see in Figure 2.5, the is-a relation
between the words: carrot, radish, sprinkler, bird, squirrel cage, hutch and skin. This
synset defines these seven words as synonyms. For example if the query is: carrot, the

expanded query would be: carrot radish.

1 http://wordnet.princeton.edu/

27

Voorhees (1994) manually implemented query expansion by synonyms using
WordNet and concluded that the results significantly improved if the query was poor.
Otherwise the results were the same.

Adding synonyms is not always helpful, synonyms can move away the query
from the user's need. For example if our query is: stone circle, we first look for the
whole query in WordNet, if it does not exist (in fact it does not), then we search for each
word separately. The synonyms of stone are: rocky, bouldery, bouldered and stony; the
synonym of circle is: encircle. Having chosen these synonyms, we searched manually in
the online WordNet, and we discriminate between all the meanings of the word. As we

can see, none of this synonyms will help Google to return better results.

2.2.4 Wikipedia

Automatic query expansion based on a collection independent knowledge structure, can

also be resolved using an on-line encyclopedia as Wikipedia.

Shuang (2006, p.4) developed an information retrieval system that uses concept
recognition, word sense disambiguation, query expansion using Wikipedia, and
semantic-based blind relevance feedback. Shuang recognizes concepts from the query
and classifies them into types: single term concepts, proper names, dictionary phrases,
simple phrases and complex phrases. Proper noun is the name given to a person, place,
event group or organization, etc. Dictionary phrases are the ones that we find in
WordNet. Simple phrases are the phrases with two words. A complex phrase is a
phrase with more than two words. For example, from the query: “information retrieval
system” he recognizes three phrases: “information retrieval”, “information system”, and
“information retrieval system”. These are named Noun Phrases and they improve the
document retrieval. Word sense disambiguation will choose among all the meanings of
each word the one that matches the meaning of the query. Shuang (2006, p.63) is
looking for the Concept behind the query. He uses the feature of Wikipedia that is the
redirection to another representation of the same concept, or a concept with the same

meaning. For example, in Wikipedia, the query “Hale Bopp” will be redirected to

28

“Comet Hale-Bopp”, which is another representation of the concept “Hale Bopp”.
Shuang processes the query adding its various representations found in Wikipedia. Such
representations can be treated as synonyms of the query concept. Semantic-based blind
relevance feedback is blind relevance feedback and he adds more weight to the terms of
the relevant documents if they have any relation with the query terms for example as

synonyms, hyponym', hyperonym?.

Another implemented system that uses Wikipedia was developed by He M.
(2006). He M. implemented a system for Question Answering, where one writes a
question and expects an answer from the system. First, he used WordNet for
disambiguation, synonyms and hyperonyms collection, change the query to the singular
form, etc. Then he used the Stanford Parser to extract noun phrases. After, he used the
Wikipedia Categories, looking for the concept behind the query. Wikipedia categories
are at the end of each page, they are assigned by the author of the article. As an
example, the categories of the page of title Horus are: Egyptian gods — Solar gods —
Sky and weather gods — Life-death-rebirth gods — Savior gods. This is the text that

will be returned.

Jain, Wuennemann, Gunia, Chernenko, Doronina & Hajduk (2003) proposed
query expansion parsing the Wikipedia pages that contains as title the query terms.
Given the initial query they used the Porter algorithm to stem each word. They searched
this new query in Wikipedia and parse the results page. They only kept from the page
the nouns and proper names, they calculate the occurrence frequency to avoid expanding
the query with stop-words (too frequent and no significant words) that are not relevant.
They expand the new query with these nouns and proper names and send it to Google.
And last, they re-order the Google results. They return first those document that
contains more frequently the words that are in the final query. They improved the

results but we have to consider that Google from 2003 has also improved.

1 Hyponym is a word that is more specific than a given word. For example car is an hyponym of
vehicle.

2 Hyperonym is a word that is more generic than a given word. For example vehicle is an hyperonym of
car.

N

29

Oveissian (2006) developed a system which used the technique of query
expansion using Wikipedia page links, and manual relevance feedback to store the user's
profile. In the first execution, the user query is expanded with the Wikipedia links by
order of appearance and this new query send to Google. Oveissian searches for
Wikipedia pages that contain the query or part of the query as title. The user
discriminates from the first ten results which are relevant. If the query terms are
contained in the relevant results, those words will be added to the user profile with
certain weight. This weight is updated after every search depending if the terms appear
in the relevant results and in the oldness, considering when it was that the terms were
added to the profile, every new search will old each term in one. In the second
execution, the user specifies the query which is extended as following. If, for example,

the query is “student professor book”, then:

query =student professor book

extension={ student, professor ,book, —1 term
professor student , student professor ,... 2 terms
professor student book, ... } « 3 terms

Oveissian will expand the original query with the elements from the extension set that
appear in the use profile. And search for this new query in Wikipedia, first for pages
that contain all the query as title, and then if there are titles formed by part of this new
query. Expanding the query a second time with the Wikipedia terms he sends this new
second query to Google. Where after the user will discriminate the first ten results as
relevant or not. Oveissian improved the results of Google. We reproduced the
experiment and unfortunately the results are not as good, probably because Google has

improved since then.

Wikipedia offers much more information than WordNet. WordNet definitions
are no longer than fifty lines, while Wikipedia pages are minimum ten lines long. We
were interested in developing automatic query expansion using Wikipedia pages
information. We found very interesting the Oveissian's idea about using Wikipedia links

pages information to expand the query.

30

Our project consists of using the Wikipedia links to expand the query. We search
for the query terms in Wikipedia and consider the first thirty Wikipedia links and use
them to expand the query. We search in Google, both the original query and the
expanded query and compare them. Then we apply the PageRank algorithm to the
Wikipedia links and add to the query the first thirty links ordered by PageRank. And
finally, we send that query to Google to compare the results with the ones obtained with

the first two methods described above.

31

Chapter 3 PageRank in Web Information Retrieval

As mentioned in Chapter 1, the techniques of web information retrieval are inspired
from information retrieval techniques created for libraries. Eugene Garfield created in
the 60's a technique to measure the popularity of an academic publication by counting
the number of citations; the more other books refer to some book the more important this
book is (Yancey, 2005) (Garfield, 1972). Later this technique was used in libraries.
But, on the Internet, if we want to specify the popularity of a web page by counting how
many pages have a link to that page, we can get unexpected results. It is difficult to
avoid the situation where someone artificially creates pages pointing to some page to
increase its popularity. Another challenge presented by the Internet is that academic
papers are similar between them; they have a title, authors, citations, etc. But web
documents can vary very much.

To implement a web search engine, one must start by collecting the web pages.
To collect web pages, we use a process that is called crawling. The crawling process
starts with a set of source web pages (Henzinger, 2001). The web crawler follows the
source page hyperlinks to find more web pages. This process is repeated on each new
set of pages and continues until no new pages are discovered or until a predetermined

number of pages have been collected.

After the pages are collected, they have to be ranked. Google will measure its
popularity using the PageRank algorithm. The results retrieved by the query are ordered
by ranking and the system will only return those with higher ranking (Page et al., 1999,

p.9).

3.1 PageRank

As illustrated in Figure 3.1, the link structure of the Internet can be considered as a set of

32

web pages which have forward links (outedges, outgoing links) and backlinks (inedges,
incoming links), where each link is another web page (Page et al., 1999).

http: ffc.com

http: fa . com http: {fb.com

http: ffc.com http: ffc.com

Figure 3.1 Backlinks and Forward links: a and b are backlinks of c,
and c is forward link of a and b.

Brin & Page (1998, p.4) propose to think of PageRank as a “random surfer” to
whom we give a web page randomly and who will follow the link structure of that page,
never hitting “back”, until he gets bored and asks for the next random web page or until
there are no more links. The PageRank of a web page u is the probability that the
random surfer visits it: PR(u#)=P(u) . The dumping factor d is the probability that the
web surfer will get bored of a web page. We will use this dumping factor in the Section
3.1.2. A page will have high PageRank if the probability of being visited is high too.

Another, very intuitive, definition of PageRank proposed by Brin & Page (1998)
1s that a web page has high rank if the sum of the ranks of its backlinks is high.

3.1.1 Simplified PageRank algorithm

Let u be a web page. Then, let F, be the set of pages u points to, and B, be the set

of pages that point to u. Let |F,| be the number of links from . Graphically, it would
look like:

e

33

Fll
N
u
1
Bll
PR (v)
Simplified PageRank is defined as follows: PR (u) = ZB IF |

For example, for the pages A, B and C, shown in Figure 3.2, we can initialize the

pages PageRank with 0.25, and we calculate the PageRank of A:

PR(A) = PR(B) JrPR(C) _ 025 + 025 _ 0375
1 2 1 2
In Figure 3.2 we can see the new PageRank of page A.
A ey B A [B
0.25 0.25 0.375 Q.25
....... > l

C C
0.25 0.25

Figure 3.2 Simplified PageRank: first iteration.

The problem of this equation is that the page rank of C is 0 since it has no inner links, it
would be as eliminating the page, and consequently the page rank of B would be 0 as
well, and later the page rank of A. To solve this problem equation 3.2 is proposed.
Another problem arrives with this equation, that is those pages with no forward links
will accumulate page rank without distributing it to the graph. To solve this last

problem a new equation is proposed in the next section.

3.1.2 Simplified PageRank algorithm with damping factor

We add what is called a damping factor d, which is a number less than /, to reduce the

PageRank of those pages with no forward links since those PageRank will be lost in the

34

system (Page et al., 1999, p.4). The damping factor is usually set to 0.85 (Brin & Page,
1998, p.4). It is used for normalization so that the total rank of all web pages is constant.
Simplified PageRank with damping factor is defined as follows:

PR (v)
|FV| (3.1)

PR(u) = d),

veB,

This ranking function has a problem. Let us imagine we have the situation as in
Figure 3.3: we have three web pages that point to each other but to no one else, and there
1s one web page which points to one of them. While iterating, the pages of this loop will
accumulate rank but never distribute among the others pages (outside the loop), because

there are no outedges. This situation is named Rank Sink.

>
A
m

C

Figure 3.3 Loop that acts as a Rank Sink.

To solve this problem we add the factor (I-d) to the equation 3.1, the new

algorithm i1s as follows:

PR(u) = (1=d) + d 3 Pll;(IV)

The maximum value of the sum of each PageRank is the total number of pages.
We can normalize the PageRank, having the final equation of simplified PageRank with

dumping factor:

PR (u) = (1;") +dY P|RF(|V) (3.2)

where N is the total number of pages. The total sum of all the normalized PageRank is
1.

To explain the iterative algorithm to calculate the PageRank we are going to

35

express the equation 3.2 in matrix notation. We re-write the equation 3.2 in matrix

notation, where the vector of rankings R verifies:

R = Lj\f)z + dAR (3.3)

where [is the identity vector, and A a matrix such that:
Ai.j:ﬁ if JEB,, otherwhise A, ;=0
J

We define a vector E such that:

(—17;—“'—)1 = dE (3.4)

We substitute equation 3.4 in the equation 3.3 resulting:
R = dE+dAR (3.5)
From equation 3.5 we can calculate R iteratively, we look for the fix point' of R:
R,,, = dE+d AR,

The algorithm to calculate PageRank is as follows:

R,—FE
do:
R, ,—dE+ dAR,
5(—“Ri_Ri+1”1
while 6> ¢

It has been established by Page et al. (1999, p7) that 52 iterations are enough for
the algorithm to converge.

According to Richardson & Domingos (2002, p.1) PageRank has a problem
named Topic Drift. When PageRank calculates the popularity, it leaves aside the
relevance with the query. Miron (2004) distinguishes between centralized and
distributed PageRank calculation. The one used by Google is centralized: they calculate
the page rank of the whole Interent at once, and have to recalculate it from scratch to
update it. This takes a week to run plus the time to crawl the Internet. Miron establishes

also that it is PageRank maior weakness (Miron, 2004, p.15). Distributed PageRank is

1 A fix point of a function is a point that is mapped to itself by the function: a is fix point of f(x) iff
f(a)=a.

36

explained in Section 3.4. The main difference between centralized and distributed
PageRank is that distributed PageRank do not have to recalculate all the PageRank of
the Internet to update the PageRank.

3.2 Analysis of the Web Link Structure

Kleinberg (1999) criticizes how search engines return popular but not relevant results
(not relevant to the query). Kleinberg proposes to analyze the results returned by a
search engine before giving the final results to the user. For example, if we are looking
for shopping stores in Montreal we could try the query: “shopping montreal”. None of
the Google search results contains the web sites of: Sears, The Bay, Zellers or Canadian
Tire. We do not know how the Google algorithm works, but we can assume that a
search engine that uses PagRank to retrieve documents would return those sites if they
would contain the words “shopping” and “montreal” inside, taking into account its
popularity. Those sites that we expect to appear in the search result are what he calls:
Authorities (to the query). Kleinberg proposes an algorithm to return the most

authoritative pages for a given query.

Kleinberg bases his idea on the primitive that links in web pages are in a way
more authoritative than the page itself. When we make a reference it is usually the place
we took the information from, or where you can find more information. Not all the links
are more authoritative than the page, for example there are links that are there only for
navigational purposes (e.g., “contact us”), and others for paid advertisements. The pages

that link to authorities are called Hubs.

Linked pages can be represented as a directed graph G=(V,E) ,where V is
the set of pages; and the set E is that, the directed edge (p,q)€E if there is a link
from page p to page g . He defines out-degree of p as the number of outer links
from p , and in-degree of p as the number of inner linksto p . Let WSV bea
subset of the pages, and G[W] to denote the graph induced by the vertices (pages) on
W: it contains all the edges that are in E for each pagein W .

37

Let o be the query, he wants to determine the set of authoritative pages
analyzing the link structure of the web. First, he reduces the universe of all the pages to
a set of pages, called the Root Set R, that are the first ¢ pages returned by a search
engine, he proposes r=200 . We want to keep this set small for the further
calculations. As we saw in the example of “shopping montreal”, these pages are not the
one we are looking for, they are popular but not relevant to the query; the authoritative

pages are not in this set.

Kleinberg creates another set, called the Base Set S, from the set R, which
contains most of the strongest authorities. For this he considers that at least one page in
R, will point to a strong authority for the query. He expands R, creating S, as
the outer and inner links of the pages in R, . He does not add more than d inner

links per page, he proposes d=50 plus all the outer links.
The procedure to create the base set from the root set is as follows:

Subgraph (o ,€,t,d)
O :aquery String
€ :asearchengine
t,d: natural numbers
Let R, denotethetop tresults of €eonao
SetS, =R,
For each page p€ER,
Let o(p) denotetheset of all pages p points to
Let i(p) denotethe set of all pages pointing to p
Add all pages in o(p) to S,
If |i(p)|<dthen
Add all pages in i(p) to S,
Else
Add an arbitrary set of d pages from i(p) to S,
End
Return S,

In Figure 3.4 we can see how the base set is created from the root set.

Let G[S,]=G, be the subgraph induced of S, . He distinguishes two kind
of links in this subgraph. He defines a link as transverse if it is between pages with

38

different domain names, and intrinsic if not. He deletes from the subgraph all the
intrinsic links, he tries to keep the subgraph small and the intrinsic links do not transfer

much information.

Root Set

Figure 3.4 Creation of the base set from the root set.

In order to reduce more the subgraph G, , he only lets for each subset of pages
that belong to the same domain, a maximum of m pages to point to any page in the
subgraph, m <<d | the rest of the links being deleted. He proposes m~4-—8 .

This subgraph G, has many authoritative pages, but we do not know yet which
they are. As we defined before, the hub pages are the ones that point to authoritative
pages. Hubs and authorities carry out the property called a mutually reinforcing
relationship: a good hub points to many good authorities; a good authority is pointed by
many good hubs.

Kleinberg proposes an iterative algorithm to identify the authorities from G, .

(p)

He associates for each page p a non-negative authority weight x**/ , and a non-

negative hub weight '?’ . He maintains the invariant that the weights of each e are
g ght y g

(P2 _ (P2 —
normalized, so their square sum is 1: ; (x")=1 , and gs: (y?y=1
PES, PES,

. The larger

the x-values and y-values the better the authorities and hubs respectively.

According to Kleinberg (1999, p.8), the reinforcement relationship establishes

39

that “if p points to many pages with large x-values, then it should receive a large y-

value; and if p is pointed to by many pages with large y-values, then it should receive

a large x-value” . He implemented two functions I and O which given weights
(x?} | {y] , those functions update the x-weights and y-weights as follows:
{q) (p) (p) {4) . .
X Y and V G Z X , respectively. In Figure 3.5 we can see a
q:(p.q)€E q:(p.q)€E

representation of the hub, authority, and the values.

To find the “equilibrium” between the x-values and the y-values, we will iterate

until we find the fix point of I or O. He represents the set of weights {x<”>} as a

vector x for each page in G, ; analogously, he represents the set of weights | y<” >}

as a vector y . The procedure is as follows:

Iterate (G, k)
G :acollection of nlinked pages
k : anatural number

Let z denote thevector (1,1,...., 1) €R"

Setx,:=z
Sety, =z
Fori=1,.2,... k

Apply the I operation to (x,_,,y,_,), obtaining new x —weights =x i'
Apply the Ooperation to (x,,y,), obtainingnew y—weights =y,
Normalize x, , obtaining x,

Normalizey, , obtaining y,
End
Return(x,, y,)

Kleinberg tested for 37 users and 27 queries. They mixed the ten first results of
Yahoo and AltaVista with the five first hubs and authorities given by his system. So, the
user will not be able to recognize the order or the system that returned the pages. The
users had to rank the pages as “bad”, “fair”, “good” or “fantastic” as the utility of the
page to learn about the subject of each query. The system was for 31 % of the queries

50 % better than Yahoo, and for the rest Yahoo was 19 % better.

40

hub authority

Y xT

Figure 3.5 Hubs and authoritative pages.

According to Henzinger (2001, p.49) this algorithm called HITS has two
problems. Because the graph it works with is relatively small, it can be manipulated,
adding some edges we can change the results. There can be the problem of topic drift,
which means that we can loose query context; Kleinberg does not check if the pages he

is working with are related to the query.

3.3 Content PageRank

Richardson & Domingos (2002) propose an improvement of PageRank using an
“intelligent surfer”. They propose a more intelligent surfer who will jump from page to
page depending on the page content for the given query. The probability distribution is

as follows:

Pq(v)=(1-—d)P;(v)+dz P (u)P, (u—v) (3.6)

uUEB,

where Pq(u—’ v) is the probability that the surfer jumps from page u to page v, given
the query q. P;(V) specifies the probability that the surfer asks for another web page
when there are no links from page v. Pq(v) is the probability that corresponds to the

query-dependent PageRank score: QDPageRank (v)=P (v) .

QDPageRank is calculated iteratively from the equation 3.6:

41

P, (v)=(1-d)P (v)+d D P, (u)P (u—v)

u€EB,

To calculate Pq(u —v) and P;(v) he uses the relevance between the page u

and the query g as follows:
, R (v) R (v)
P (v) = =+— P (u—-v) = =t——
‘ 2R, (k) ’ 2 R, (k)

where V is the set of all the pages, and £, the outer links of the page u. And R is a

simple relevant function: Rq(v)=1 if the query terms g appears in the page v; and 0
otherwise. More complex functions could be used, for example the TF/IDF of the query
in the page.

The surfer will choose the most relevant page from the query to jump to. When

there are no outer links the surfer will chose a page according to the probability P;(v)

QDPageRank performed better than PageRank improving 27 % the relevance.

They tested using R, (v) as the fraction of words equal to ¢ in page v.

As PageRank, QDPageRank is a centralized algorithm which can not be updated
easily. Miron (2004, p.24) also adds that QPPageRank will access only to links of pages
that contain the query which reduces the graphs it works with. And it makes the

algorithm very easy to manipulate.

3.4 Distributed PageRank

The distributed calculations can be divided between synchronous and asynchronous.
Distributed synchronous processes have to synchronize at a given point of time to be
able to continue with the calculations. Asynchronous do not.

Distributed synchronous iterative PageRank is not suitable since algorithms
based on synchronization of iterations cannot handle changes in the link structure of the

web that occur during execution (Miron, 2004, p.16).

42

Sankaralingam et al. (2003) implemented a distributed asynchronous PageRank
to be used on the Internet; which is a peer-to-peer' (P2P) network. The algorithm is as
follows:

1. Every peer initializes all its documents with an initial page rank.

2. Each peer sends a page rank update message to all the outer links of each for

its documents. Page ranks of nodes present in the same peer are updated without

need for network update messages.

3. Upon receiving an update message for a document, the receiving peer updates

the document’s page rank.

4. Update the page rank of a document in the system results in generation of

further page rank update messages for all outer links.

5. The difference between successive page ranks of a particular document is used

as a measure of convergence and when this absolute difference falls below an

error threshold, no more update messages are sent for that document.

Sankaralingam et al. (2003, p.1) assert that the computation of the distributed
PageRank (for an in-place network) converges rapidly for large systems, even if the time
for one iteration can be long. And that with a threshold of 10~ it produces very good
results for all graph sizes (Sankaralingam et al.,2003, p.7).

Miron (2004, p.20) criticizes the measure of convergence. Sankaralingam et al.
utilizes a relative difference instead of the absolute difference as PageRank does, which
leads to a non-convergence state. Sankaralingam stops if

abs(oldrank —newrank)
newrank

This is a relative difference, the algorithm

converges rapidly with this difference but retrieving wrong results. It converges too fast.
While PageRank stops if ||oldrank —newrank||,<€ 2. This is an absolute difference,

takes more time to converge than the relative difference, but the result is more accurate.

1 A pure peer-to-peer network does not have the notion of clients or servers, but only equal peer nodes
that simultaneously function as both "clients" and "servers" to the other nodes on the network.

n
2 Taxicab norm or Manhattan norm ||JC”1 = z |x,.|

i=1

43

In our project we calculate PageRank of the entire downloaded Wikipedia (6
GB). It takes approximately eight hours. The downloadable Wikipedia is updated once
a month, we can afford to re-calculate PageRank each time. We do not need to use the
distributed PageRank.

We also implemented a variation of PageRank named QueryPageRank. Given
the query, we search on Wikipedia the page that has the query as title. We build a graph
where that page will be the first node. We expand the node considering the links of the
fist node, and the links of those links. It will be explained in Chapter 4 (Section 4.3).

44

Chapter 4 WikiQE Implementation

The main objective of the project is to apply the technique of query expansion in order
to improve the results of a web information retrieval system. To expand the query, we

use Wikipedia.
In our project, we add a new module between the user and the web search engine

called WikiQE (Wikipedia Query Expansion) as shown in Figure 4.1.

Web Search Engine
query wikiqE }_uery’
! Module }
*——-——-——-— World Wide Weh

results

User

Figure 4.1 Module WikiQE: Wikipedia Query Expansion.

The WikiQE module can be divided in two different process: Wikipedia
expansion and PageRank expansion. Given the query, we search for the page in
Wikipedia that contains exactly the query words as title. We consider the Wikipedia
links found in that page by order of appearance.

We expand the query in two different ways: first we add to the query those
Wikipedia links in order of appearance; second we add those Wikipedia links in order of
PageRank value. To calculate the PageRank value of each link we considered every link
as a page and the links of that page as the forward links to other pages. An example of
the expansion is as follows:

original query - q
Wikipedia expanded query — qU(a,b,c)
PageRank expanded query — qU(b,c,a)

45

Being a, b, ¢ the Wikipedia links by order of appearance of the page that has ¢ as title,
and b, ¢, a the Wikipedia links by order of PageRank.

Wikipedia query expansion:

Wikipedia

qT la‘ b, C

q U <ab.c

q — ——— | Google

PageRank guery expansion:

a, b
W|k|ped|a PagERank
q U <b.ca>
L — o Google

Figure 4.2 Query expansion with Wikipedia and PageRank.

To evaluate this approach, we achieved five experiments. First, we consider the
original query and send it to Google. The results obtained are used for comparison with
the other experiments. Second, we expand the original query with Wikipedia links in
order of appearance and we send the new query to Google. Third, we expand the
original query with the Wikipedia links in order of PageRank value and send the new
query to Google. Fourth, we expand the original query using PageRank but limited to
the query (QueryPageRank, explained in Chapter 5), and send the new query to Google.
And fifth, we use the technique of TF/IDF to expand the original query. We compare
the four first results to see if there is an improvement (Chapter 5 explains our test

techniques). The last technique (as explained in Chapter 5) is tested in a different way,

.
/

46

we tried to isolate the process from the search achieved by Google. We can see a

representation of the Wikipedia and PageRank expansion in Figure 4.2.

4.1 Wikipedia Links

Let us consider the Wikipedia page of title Horus. We can see in Figure 4.3 a part of
the page. We consider this page links, which are: Ancient Egyptian religion,
Predynastic Egypt, Hathor, Nut, Eye of Horus, Wadjet, Osiris, Set, etc.

In our project we did not work with the online Wikipedia (HTML pages). We
downloaded an XML file and an SQL file' which are available online. The XML file
contains each Wikipedia web page. Thus we obtain a static version of the project to

compare results without depending on the online Wikipedia changes.

Horus

From Wikipedia, the free encyclopedia

"thy” redirects here. For other uses, see International Heliophysical Year.
For other uses, see Horus {disambiguation).

This article or section is missing citations or needs footnotes,

Using inline nitatinns helps guard against copyright violations and factual inaccuracies.

Horus is one of the most ancient deities of the Ancient Egyptian religion, who appears in his earliest form in late

Predynastic Egypt. Represented as a falcon, his name is believed to mean 'the high' or the far oft!"l and his earliest
connections are to the sky and kingship, derived from being the son of Hathor or Nut, as & sun god. Because the cult
of Horus survived for the whole of the Ancient Egyptian civilization that extended for thousands of years, he gained
many forms and associations.

Horus was usually represented as a man with a falcon's head. One important association is the Eye of Horus which
was an Egyptian symbol of power {first identified with Wadiet and seen on images of his mother, Hathor, as she was
emerging from the reeds) and of the offerings made to the god Osiris and by extension, to all of the dead. in one
myth cycle Horus' left eye s injured during his struggle with his uncle Set, who had murdered Osiris inan attempt to
seize the Egyptian throne. The Eye of Horus, its injury, and subsequent restoration became an important symbol for
the unified land of Egypt and in the funerary rites of the renewal after death.

Figure 4.3 http://en.wikipedia.org/wiki/Horus.

To calculate the PageRank of the pages, we need to know in advance which are
the documents to rank, that is, we need to know in advance what our Wikipedia universe

of pages is.

1 Wikipedia: Database download http://en.wikipedia.org/wiki/Wikipedia:Database_download

47

The SQL file is an SQL query to create and insert all the tuples of two tables: one
with the pages identifier and titles, and the other with a tuple for each page link.

We cannot only use the XML file to extract the links of each page, because there
are links that we are not interested in. And we found no solution to avoid those
unwanted links. For example the links of images, or language representation. The first
technique we attempted to use to discard those links was to eliminate all links with colon
inside (:), but there where links that we were interested in with colon inside too. In
Wikipedia pages, the links are represented in two square brackets, e.g. [[link]]. For
example, for the page with title Anarchism one link is [[political philosophy]]; one
image link that we would like to discard is [[Image:WilliamGodwin.jpg|130px|thumb|
left{William Godwin]]; and another link that we want to keep is [[Mutual Aid: A Factor
of Evolution]]. There is also one link for each language representation, e.g.: [[ar:
ahlu)]], [[ast:Anarquismu]], [[zh-min-nan:Hui-thong-ti-chu-gi]], [[bs:Anarhizam]].
One solution would be to discard those links that start with: “Image:”, “ar:”, etc. But
this can change as soon as they add more information to the Wikipedia links.

On the contrary, the SQL file has only the links we are interested in. But the
links are in alphabetical order and we are interested in the order of appearance of the
links in the Wikipedia page. So we considered the links in order of appearance of the
XML file that exists in the SQL file.

We had some difficulties to parse the Wikipedia pages. As we can notice in the
links showed above, there are characters from almost all the languages. We first tried to
create a parser to only keep the links of every page in Java. We used the SAX parser. It
did not work because of the characters as in: [[Wiktionary:avapyic|avapyia]]. Then we
used the same parser but with Python, we had the same problem. Our last option was to
implement our own parser.

Creating the parser in Python took some time because, for example, we had links
of the form: [[Image:Murray Rothbard.JPG|thumb|150px|right|[[Murray Rothbard]]]],
and we could not use regular expressions, we had to read line by line, character by

character. The Python code was written in approximately 300 lines. It takes 7 hr to

48

create the links from the XML file, 1 hr to calculate the PageRank.
Let us show how the structure of the XML file for the page Horus is. Each page

is contained in the tags <page>, inside we have the tag <title> which contains the title
of the page, the tag <id> which is a unique identifier of each page, and the last is the tag
<text> where we find the text of the page, is inside this text that we are going to take the

links of the page. The beginning of the XML file of the page Horus is as follows:

<page>
<title>Horus< /title>
<id>49448</id>
<revision>

<id>68019659</id>

<timestamp>2006-08-06T15:33:31Z</timestamp>

<contributor>
<ip>80.5.221.158</ip>

</contributor>
<comment>/* Horus and Jesus */ Removed a sentence without a verb and
having a badly formatted link</comment>
<text xml:space="preserve">:"This page is about the Egyptian deity. For the
fantasy character, see [[Horus (Warhammer 40,000)]]. For the [[computer bus]]
see [[AMD Horus]]."
"Horus'" is an ancient god of [[Egyptian mythology]], whose cult survived so
long that he evolved dramatically over time and gained many names. The most
well known name is the Greek "Horus", representing the Egyptian
"Heru™/"'Har™, which is the basic element in most of the other names of
Horus. Horus was so important that the "[[Eye of Horus]]" became an important
Egyptian symbol of power. He had a man's body and a hawk's head. He only
had one eye because after Osiris was murdered by his brother Seth, Horus
fought with Seth for the throne of Egypt. In this battle Horus lost one of his
eyes and later this became a sign of protection in Egypt.

</text>
</revision>
</page>

49

We can see from the XML file, shown above, that the identifier of the page of
title Horus is 49448 and that the text we are interested in starts after the tag <text
xml:space="preserve">. The links are represented between double box brackets, g.e.
[[Egyptian mythology]]l. The text we are interested in is the one after the title between
three apostrophes.

Let's consider now the SQL file. We used two tables: page, and pagelinks. The

structure i1s shown below:

mysqgl> describe page;

—————————————————— B e R e
Field | Type |Null |Key |Default |Extra
—————————————————— B e T
page_id |int (8) unsigned |NO |PRI |NULL |auto_increment
page_namespace |int (11) |NO |MUL |0 |

page_title | varchar (255) |NO | | NULL |
page_restrictions |tinyblob |NO | | NULL

page_counter |bigint (20) unsigned |NO | |o |
page_is_redirect |tinyint(1) unsigned |NO | |o |

page_is_new |tinyint (1) unsigned |NO | |o |

page_random |double unsigned |NO |MUL |0

page_touched | varchar (14) |NO | | NULL

page_latest |int (8) unsigned |NO | |o |

page_len |int (8) unsigned |NO |MUL |0 |
—————————————————— e et e TR T T
mysql> describe pagelinks;

------------- e bt R E TR

Field | Type | Null | Key | Default | Extra
————————————— R R e e e L L T L P

pl_from | int(8) unsigned | NO | PRI | © |

pl_namespace | int(11) | ~o | PRI | © |

pl_title | varchar (255) | o | PRI | NULL |

————————————— B et b TP

The pages with title Horus look like this':

1 The result identifiers where changed, we removed the “page ” string only for space problems.

mysql> select * from page where page_title = "Horus";

————— LT tmmm—- fmmmmmmmm oo dmmm---- B il +---
id |namespace|title|restrictions|counter|is_redirect]|...
-—--- tommmmmmm - +----- dommmmmmm--m- do-mmm-- e +---
49448|0 |Horus | |641 |o | ...
982821 |Horus | |8 |o | ...

50

We are interested in the one with namespace=0' and is_redirect=0?, so the page we are

looking for is the one with id 49448.

The links of the page Horus look like this:

mysqgl> select * from pagelinks where pl_from = 49448;
Fommmmm- - Fomm e m s e m B e i

| pl_from | pl_namespace | pl_title

+mmmmmmm- - Fommmmmmmm e m oo o s s m s o mmmmmmm
| 49448 | 0 | AMD_Horus

| 49448 | 0 | Abu_Simbel

| 49448 | 0 | Abydos,_Egypt

| 49448 | 0 | Aegyptus_(Roman_province)

| 49448 | 0 | Akhenaten

| 49448 | 0 | Al_Fayyum

| 49448 | 0 | Alexandria

| 49448 | 0 | Amarna

| 49448 | 0 | Amenhotep_ III

| 49448 | 0 | Amun

| 49448 | 0 | Atum

| 49448 | 0 | Egyptian_mythology

| 49448 | 0 | Eye_of_Horus

e Fommmmmmmmmmmo - o mm e s e s o m oo mmmmm——-mo-

We create a file with the Wikipedia links by order of appearance, where each line

represents the links of a page. Each line is of the form: page title | [[link1]] [[link2]]

[[link3]]. In our Horus example the line in the file of links is as follows:

horus | [[egyptian mythology]] [[eye of horus]] [[osiris]] [[isis]] [[falcon]] [[nekhen]]

1
2

namespace=0, indicates that it is the main page, http://www.mediawiki.org/wiki/Page table
redirect=0, indicates that the page is no redirected, http://www.mediawiki.org/wiki/Page_table

51

[[djeba]] [[buto]] [[epanthesis]] [[paragoge]] [[heron]]........ etc. In other words, egyptian
mythology, eye of horus, etc, are the Wikipedia links associated to the page (query)

Horus by order of appearance.

4.2 PageRank Links

As we saw in Chapter 3, the page rank value of a page is the sum of the backlinks page

rank values. The definition of PageRank that we implemented is:

PR (u) = ——-—(1;,“’) + dZB PIII{”(IV)

In order to calculate the page rank of each page in Wikipedia we first need to
create a structure (which will be a matrix) with the links between pages, we show in
Figure 4.4 how would the links look like graphically for the Horus page, and how would

be those links represented in a matrix.

horus BOyptian €y of

mythology horus
e I T R T
£ ooy O 00
oy 0O 0 O
horus

Figure 4.4 Representation of the links of Horus as a graph of forward links.

After we apply the page rank algorithm to the matrix structure, we obtain the
page rank of each page. We will order the links of the file created in Section 4.1

52

according to the page rank value. For the example of Horus the links in PageRank
descendant order are: horus | [[art]] [[moon]] [[sun]] [[jesus]] [[eye]] [[desert]]
[[plutarch]] [[gospel of matthew]] [[gospel of luke]]....etc. In other words, art, moon,
etc, are the Wikipedia links associated to the page (query) Horus by order of page rank
value.

We had some challenges with the PageRank calculation because of the matrix
size: 6 Million x 6 Million. First we tried to implement the PageRank in Java and we
ran out of memory, we worked with 1GB of memory. After we tried in C, and with the
language R, but they ran out of memory too. Then we tried with the package of sparse
matrices in R, since the link matrix is sparse; but it did not work also because of memory
space. Our solution was to implement it in Python, we created the matrix in a file and
load it in memory to calculate the PageRank. Python does not support matrix
operations, we had to read each lie of the matrix, stored as a text fil, and read each
number of the line to make the operations. It was implemented in approximately 150

Python line codes, and it takes approximately 1 hr and 30 min to execute.

“us
o — m— — D ——“" — .
p-

egyp! -+ level 2
egyptian eyeof 4 levell
mythalagy horus ‘e
ha rus o query

Figure 4.5 QueryPageRank for the query Horus.

53

4.3 QueryPageRank links

We only considered as the universe of pages to calculate the PageRank, the ones that are
linked to the query page and those that are linked to the first ones. We only considered

the links until level two, as represented in Figure 4.5.

It took approximately 150 lines in Python code, it also re-uses the same code to

create the PageRank values. It runs in approximately 1 hr.

4.4 TF/IDF links

We were looking for a way to test our system differently, leaving aside for a while
Google. We used the technique of TF/IDF explained in Section 2.1.1. We returned the
ten links of each page ordered by TF/IDF. The higher the TF/IDF the less common is

the term.

Each line of the Wikipedia links file created as explained in Section 4.1, is a
document. The total number of documents d is the number of lines of that file. We also

use this file to implement the TF/IDF algorithm:

procedure TF/IDF(in WikipediaLinksFile f):
create(in f, out listTerms); // list with every term that appears in f
for term in listTerms:

countDoc = O;
arrTimes = 0;
for line in f:
// count how many times
//term appears in line, term frequency (tf)
countTimes(in term, in line, out arrTimes);
if arrTimes not O:
countDoc ++; // document frequency (df)

update(in arrTimes, in countDoc, out tfDf);

54

calculate(in tfDf, out idf); // calculate inverse doc. frequency (idf)
calcualte(in idf, in tfDf, out w) // calculate TF/IDF values

end;

After calculating the weight for each term, we ordered for each Wikipedia page
the links by descendant order of weight. Each line of the file is of the form: term,
ordered terms. For example, for the page Horus, the ordered terms to expand the query
are:
term: horus
ordered terms: ['behdet', 'm gospel', 'l gospel', 'djeba’, 'behedti’, 'egyptian lotus', 'heru-ra-
ha', 'tom harpur', 'paragoge’, 'kneph']

It took 120 lines in Python code to implementation, and 5 min to run it.

4.5 Expanding the query

In the last sections we explained how to create the files where we associate for each
Wikipedia page its links by order of appearance, by order of page rank and by order of
query page rank. In this section we are going to explain how to use this files to expand

the queries.

Let us consider, for example, the links by order of appearance for the Wikipedia
page Horus. The file line is as follows: horus | [[egyptian mythology]] [[eye of horus]]
[[osiris]] [[isis]] [[falcon]] [[nekhen]] [[djeba]] [[buto]] [[epanthesis]] [[paragoge]]
[[heron]] etc. This means that if we are going to expand the query with the
Wikipedia terms by order of appearance, for the query is Horus, the terms we are going
to use are the ones of the line showed above. We will use the technique explained in

Section 2.1.2 named boolean queries, which join the terms with ANDs or Ors.

The original query is Horus, and the expanded query will be:

horus "egyptian mythology" OR "eye of horus" OR "osiris"™ OR "isis" OR
"falcon"™ OR "nekhen" OR "djeba" OR "buto" OR "epenthesis" OR "paragoge"

OR "heron"™ OR "sun" OR "moon" OR "lower egypt" OR "upper egypt" OR

55

"egyptian language" OR "testicle" OR "desert" OR "infertility" OR "eye"
OR "ra" OR "art" OR "egyptian lotus" OR "atum" OR "thoth"

Google does not distinguishes capital from lower-case letters. The number of terms is
the number of words except the ORs. Google will only accept queries with maximum
32 terms, if we add more than 32 terms Google will ignore them. It will display a

message as following:

"thoth" (and any subsequent words) was ignored because we limit queries to 32

words.

The module WikiQE implemented in Python has 1,300 lines of code. The code
can be divided in 3 main functions: 1) createWikiPRLinksFile(): this function creates the
files with the Wikipedia links by order of appearance (wikiLinks.txt) and by order of
PageRank (pageRankLinks.txt); 2) queryPageRank(): creates one file for each query
with the links by order of page rank by query (i.e. pageRankLinks horus.txt); 3)
createTFIDF(): creates the file tfidfRes 30 10.txt that contains the links for each query
by order of TF/IDF with values less than 10. The appendix shows the files flow by the
Python functions to explain the module WikiQE.

4.6 Methodology

Measuring the relevancy of a web page for a given query is not a trivial task. A page is
relevant to the user if it answers the user's questions about the query. All the
information we have about the user is the query. We present in Section 5.1.1 an
organism named TREC whose mission is the evaluation of question answering systems.
It associates to each user query the questions that the page should answer. But then,
how can we measure whether the question is answered? Some questions that are very
concise and easy to measure, and some are not. For some concise answers we could
check automatically if the answer is in the page but for the others questions, this is not
possible.

Another way of testing would be to read the page and see if its content is related

to the query, or if it provides explanations to some aspect related to the query. In either

56

cases we will consider it as relevant.

The web search engines update their rankings as the web changes. New pages
appear and others disappear. To be consistent we should run all the tests in the same
short period of time. Let suppose we want to test 30 queries, and we only tested 10 of
these queries and we want to test the next 20 three months later, the results will not be
comparable, since the web will have changed in the meantime. This also leads to
another challenge: the results cannot be reproduced. For example, Oveissian results
were good at the time, but now Google and the internet changed, making it hard for

improvements.

57

Chapter 5 Results

In this chapter we will explain how we proceed to achieve the approach proposed in
Chapter 4, and we will discuss the results exposing the strength (capabilities) and

weakness (limitations) of the approach.

We carried out two set of tests contemplating to evaluate the system through
different perspectives, and an exploratory research. In the first test set, we compared our
system with the first ten Google results. We evaluated the Google results for the
original query, and compared them with the evaluated first ten results given by our
system (for the expanded query). The results were not as good as expected, leading us

to try the second way to test our project.

In the second test set scenario, we compared our system with the next ten Google
results. It proceeds as following: the user sends a query (the original query) to Google.
If the user is not satisfied with the first ten results, he has two options: get the next ten
Google results (from the original query) or get the first ten results of our system (for the
expanded query). We are not going to consider repeated documents from the first ten

Google results, since they are not interesting for the user.

In the exploratory research, we evaluated the expanded query independently of
Google. We tried to determine whether the terms added to expand the query were the
ones expected, given the original query. We considered all the associated Wikipedia
terms and the terms of the expanded query, to evaluate what percentage of the expanded
terms are the ones that we considered interesting to add to (from the associated

Wikipedia terms).

We used a different evaluation process for each one of the described two set tests
and the exploratory research. In the first one we evaluated the result pages of 10 queries

by associating a weight from forty-eight values (this number will be explained in Section

58

5.1.1). In the second one, we evaluated the result pages of 30 queries as relevant or
non-relevant. And, in the exploratory research, we tested 30 queries qualifying the

added terms of the expanded query as expected or not-expected.

5.1 First test set: first ten results

The first test set is divided into three phases named Google, Wikipedia and PageRank.
We tested ten queries. We expanded each query with 32 terms. In the Google phase, for
each query to test (considered as the original query), we evaluated from zero to thirty the
first ten Google results. In the Wikipedia phase, we expanded each original query using
32 Wikipedia terms in order of appearance, and we evaluated the first ten Google result
pages. In the PageRank phase, we expanded the query with 32 Wikipedia terms by
order of PageRank, and evaluated the result pages. And finally, we compared the result
pages of the Google, Wikipedia and PageRank phase.

5.1.1 Google phase

In the Google phase, we submit each original query to Google and we evaluate the first
ten result pages. How do we evaluate them? How do we know what is the user looking
for when we only have the query? The same query can be used to respond many

questions.

There is an organism named TREC' (Text REtrieval Conference) which was
created to support research for the information retrieval community (TREC). They
created XML files containing queries and the questions that the retrieved documents
should answer. TREC is mainly used to test Question Answering systems with arbitrary
questions. In question answering systems, one enters a question to the system, and it
will return the possible answers. Even though, the same queries and questions can be

used to test our system.

1 Text REtrieval Conference (TREC): http://trec.nist.gov/

g

1 horus

~ 1Whatdoes LPGA stand for?

1 Horus is the god of what?

2 What country is he associated with?
3 Who was his father?

4 Who was his mother?

50ther

2Where is the LPGA headquartered?

3 How many events are partof the LPGA tour?

4 When does the LPGA celebrate its 50th anniversary?

5 How many people were founders of LPGA?

6 Name pastand presentLP GA commissioners.

7 Name toumaments in which LPGA players have participated.
8 Other

3stone circles

" 1When did the cons truction of stone circles begin in the UK?

2 Approximately how many stone circles have been found in the UK?
3When was S tonehenge buil?

4 In whatcounty was S tonehenge buil®

5Whatare the locations or names of other stone circles in the UK?
6 Whatis the oldeststone circle in the UK?

7 Other

4 amazon river

“5avocado

6 kurdish people

"~ 7nobelprize

"8 franz katka

" 1 Where was Franz Kafka bom?

1In whatcountry is the origin of the Amazon River?
2 In whatcountry is the mouth of the Amazon River?
3 How long is the Amazon River?
4 Name tributaries of the Amazon River.
5 In what mountain range does the Amazon Riverrise?
6 Whatis the name of the Amazon River atits origin?
7 Other
" 1WhatUS.state is the highestavocado producer?
2Whatis the fatcontentof an avocado?
3 Whatare the main commercial varieties of avocados?
4 What countries produce avocados?
5When was the firstavocado plantcultivated in the US 2
6 Whatinsectpest threatens avocado crops?
7 Other]
~1Whatis the religious affiliation of the Kurds?
2 How many Kurds live in Turkey?
3 Whatother countriies do Kurds live in?
4 Other
"1 Who established the awards?
2Whatare the differentcategories of Nobel prizes?
3When were the awards firstgiven?
4 Whatis the monetary value of the prize?
50ther

2When was he bom?

3Whatis his ethnic background?
4 Whatbooks did he author?
5Other

9 khmer rouge

1 In what country did this movement take place?

2 When did the Khmer Rouge come into power?
3Who was its fistleader?

4 Who were leaders of the Khmer Rouge?

5When was the Khmer Rouge removed from power?
6 Other

10 wicca

1 Whatdo practitioners of Wicca worship?
2 How many followers does ithave?
3Who is its leader?

4 What fes tivals does ithave?

50ther

Figure 5.1 First test set. ten queries with its questions from TREC.

Iz 60

We used the XML files from year 2004', 20052 and 2006°. Their structure is as

follows, for example, for the query Horus:

<trecga year="2004" track="main">

<target id="14" text="Horus">
<qa>
<q id="14.1" type="FACTOID"> Horus is the god of what? </q>
</qa>
<ga>
<q id="14.2" type="FACTOID"> What country is he associated with? </q>
</qa>
<ga>
<q id="14.3" type="FACTOID"> Who was his mother? </q>
</ga>
<ga>
<q id="14.4" type="FACTOID"> Who was his father? </gq>
</qa>
<ga>
<q id="14.5" type="OTHER"> Other </q>
</qa>
</target>

</trecga>

The query is the value of the attribute text from the tag target. And the questions are the
text from the tag g. To choose the queries to test our system, we had to find the ones

that were pages in the version of the Wikipedia we downloaded; and that have at least 32

terms in the total of links terms. - And then, from those we choose randomly.

The retrieved pages have to answer for the query Horus the next five questions:
a) Horus is the god of what?

b) What country is he associated with?

¢) Who was his father?

d) Who was his mother?

e) Other

1 TREC XML file: http://trec.nist.gov/data/qa/2004_gadata/QA2004 _testset.xml
2 TREC XML file: http://trec.nist.gov/data/qa/2004_qadata/QA2005_testset.xml
3 TREC XML file: http://trec.nist.gov/data/qa/2004_qadata/QA2006 _testset.xml

61

The question Other evaluates the page in general. It measures if globally, the
information given in the result page is useful even if it doesn't respond any question. For
example, if the pictures are illustrative, or the links (to other pages) are interesting. The

ten queries chosen and its questions are shown in Figure 5.1.

| Horus | Given the original query: Horus, we will search itin
i Google and retum the first ten results.
| Google search After, for each result page, we will evaluate how
v good does it answer the questions associated to
"’G*o;’l" — "l’ ee: | Horus.
gle result pages: |
1) http: WWW..... ‘
2) http:/ww..... !
|
{
|
. ‘ Horus questions:
10) http:/Mwww... |
T - a) Horus is the god of what?
} | b)Whatcountry is he associated with?
| query scores . c) Who was his father?
' | d)Who was his mother?
.] | e)Other
Result page scores: | !
abcde total
! [H |
1)E+Z+X+E+¥,= 3!) Question values:
2) 6+6+6+6+4=28 6 - Answers very good the question
. 4 - Answers a litle the question
2 - Do notanswer the question,
. butitis related to the query
10) 6+6+4+4+4=24 0 - Itis notrelated to the query

Figure 5.2 First test set: evaluation process of the Google results for the
original query Horus.

We assigned a value to each answered question, and then, the sum of all the
values (the total) is the measure associated to the result page. The answers can be
evaluated as: very good (value 6); poorly (value 4); do not answer the question but the
subject is related (value 2); not related to the subject (value 0). The query Horus has
associated five questions, each question has a value of six as the maximum, each result
page (for this query) has a maximum of 6X5=30 points. The minimum page results
is 0, when it is not related at all with the subject. For example we score a page as 0 if we

search for Horus and the web page result is a company where you can by bathroom

62

decoration. For the ten chosen queries, the biggest amount of question associated to a
query is eight, it will be 48 the maximum total value to evaluate a page. Figure 5.2 is a

scheme of the above explained.

5.1.2 Wikipedia phase

The Wikipedia phase consists of expanding the original query using the Wikipedia terms
by order of appearance. If, for example, the original query is Horus, the Wikipedia links
of that page are (as explained in Section 4.1): horus | [[egyptian mythology]] [[eye of
horus]] [[osiris]] [[isis]] [[falcon]] [[nekhen]] [[djeba]] [[buto]] [[epanthesis]]
[[paragoge]] [[heron]] ... etc. So, the expanded query will be: Horus “egyptian
mythology” OR “eye of horus” OR ... etc (as explained in Section 4.5). The expanded
query will have a total of 32 terms. For example, the query: Horus “egyptian

mythology” OR “eye of horus” has 6 terms, the ORs are not considered by Google. In

l Horus | Given the original query: Horus , we will expand the
| Wi query and search this new query in Google and
:Qk;p,idi;an return the first ten results.
v p After, for each result, we will evaluate how good
- does itanswer the questions associated to the
Horus ‘egyptian mythology” expanded query.
OR ‘eye of horus”OR
f Google search
. g;,.;giéiesﬂ(g{ﬂw l i Horus questions:
1) http: /AWWw...... ‘ ‘ a) Horus is the god of what?
2; hg:/lwww) b) What country is he associated with?
. c) Who was his father?
d) Who was his mother?
. e) Other
10) http: /Mvww... ‘
|
E query scores
e f' — Scores:
Scores: 6 - Answers very good the question
4 - Answers a litle the question
1) 2+2+2+2+2=10 2 - Do notanswer the question,

2) 6+6+6+6+6=30 butitis related to the query
. 0 - Itis notrelated to the query

10) 6+6+6+6+4=28

Figure 5.3 First test set: evaluation process for the query Horus expanded by
Wikipedia terms by order of appearance.

63

the case where we have to add the link “terml term2 term3” and the total would be
greater than 32, then, we do not add the link.

We send this new query to Google. Google will return all the results that contain
the term Horus and that contain any of the terms that appear later on the query (as
explained in Section 2.1.2). We evaluate the first ten results given by Google. We can

see in Figure 5.3 the scheme of the above explained.

5.1.3 PageRank phase

In the PageRank phase we expand the original query with the Wikipedia terms by order
of page rank. And send this new query to Google, and evaluate the result pages. For
example, the links to add to the query Horus are (as explained in Section 4.1): horus |
[[art]] [[moon]] [[sun]] [[jesus]] [[eye]] [[desert]] [[plutarch]] [[gospel of matthew]]
[[gospel of luke]] etc. The expanded query is: Horus “art” OR “moon” OR “sun”

[”ﬂ?ﬂ{s) | Given the original query: Horus, we will expand the
‘ query and search this new query in Google and
l z:gae:saigr': retum the firstten results.

‘ After, for each result, we will evaluate how good

- does itanswer the questions associated to the
Horus “art”OR ‘moon” OR ‘ expanded query.
‘sun”OR etc |

’ Google search

Google results: : i Horus questions:

A ‘ ‘ a) Horus is the god of what?
I ;; :ngg;/www """ l) b) What country is he associated with?
| T - c) Who was his father?
| d)Who was his mother?
: | e)Other
10) http:/Awww... | !
‘ query scores
' Scores:
Scores: 6 - Answers very good the question
4 - Answers a little the question
1) 2+6+2+2+6=18 2 - Do notanswer the question,
2) 6+6+6+4+6=28 butitis related to the query

0 - Itis notrelated to the query

10) 0+0+0+0+0=0

Figure 5.4 First test set: evaluation process for the query Horus expanded with
terms from Wikipedia by order of PageRantk.

64

OR “jesus” OR ... etc. The maximum number of terms is 32. We can see in Figure 5.4

the scheme of the above explained.

5.1.4 First test set results analysis

The first test set evaluated the system for ten queries. We expanded each query with 32
terms using the Wikipedia terms by order of appearance and then by order of PageRank.
We created three spreadsheets, one for Google, Wikipedia and PageRank phases
respectively. Each spreadsheet was divided in ten parts, one for each query to test (each
part is as shown in Table 5.1). In each part, we wrote the evaluation of the questions, for
each of the ten web pages. For each result page, we calculated the total of the questions
answered. Then, we calculated the total of each page total as the query total, for one

phase. The total for the original query Horus in Google phase is 218; the average is

218

21.8:—10— , where 10 is the number of pages evaluated. Table 5.1 shows how the

evaluation file looks like for the original query Horus in the Google phase.

Table 5.1 First test set: scores for the original query Horus in Google phase.

Original S coreS core S core |S coreiS core S coreS core S core/S core|S coreiQUERY
query Question G1 62 G3 1G4 IG5 1G6 G7 IG8 !G9 IG10 TOTAL
htp:/htip:/Ahttp: /http:/A http: /iwhttp: /A http:/Mhtp: /Mhttp: A http: /i
1)horus 1 Horus is the god of what? 6 6 2 f 2 6 2 2 0 6 6
2 What country is he associated with} 6 6 6 6 6 2 6 0 6 6
3 Who was his father? 6 6 6 4 6 2 6 0 6 4
4 Who was his mother? 6 6 4 4 6 2 6 0 6 4
5 Other) 4 | 4 4 6 2 | 6 0 4 4
pagetotal| 30 | 28 | 22 | 20 30 | 10 | 26 0 | 28 | 24 | 218

In Table 5.2 we show the query totals (as calculated in Table 5.1) for each of the
phases. We cannot compare the results between queries since for each query the number
of questions varies, so we calculate the maximum possible value for each question and
divide it by our query total, we calculate the percentage. For example, for the query

Horus, the maximum possible value is 6X5X10=300 , where 6 is the maximum

65

value, 5 is the number of questions, and 10 is the number of queries. The percentage

300

will be ?1—8-20-73 , 73 %. Table 5.3 shows the total percentage for the first test set.

Figure 5.5 is a bar chart of Table 5.3.

Table 5.2 First test set: total values for 10 queries, Google, Wikipedia 32 terms

and PageRank 32 terms.
. phasetotal
Google Wikipedia PageRank
Query original query 32 terms 32 terms
1 horus | 218 19 0 172
2 Ipga 178 206 192
3 stone circles 142 228 252
4 amazon river 258 188 268
5 awcado 226 240 248
6 kurdish people 174 166 164
7 nobel prize 216 194 208
8 franz kafka 192 174 244
9 khmer rouge 304 306 294
10 wicca 174 168 134

Table 5.3 First test set: total percentage for 10 queries in Google, Wikipedia 32
terms and PageRank 32 terms phases.

B percentage total - 32 terms 7

Query | Google Wikipedia PageRank
1 horus 73 65 57
2 lIpga 37 43 40
3 stone circles 34 54 60
4 amazon river 61 45 64
5 awcado 54 57 59
6 kurdish people 73 69 68
7 nobel prize 72 65 69
8 franz kafka 64 58 81
9 khmer rouge 84 85 82
10 wicca 58 56 45

~ average| 61 60 63

We can appreciate from Figure 5.5 that the results are not very conclusive. The

difference between the results of Google, Wikipedia or PageRank is almost inexistent.

66

We can resume that Wikipedia returns better results than Google an average of 40 %
from the ten queries, improving Google an average of 20.8 %. PageRank returns better
results than Google an average of 50 % from the ten queries, improving Google an
average of 25.2 %.

Let us explain how we calculated those percentages. To calculate how
Wikipedia expansion by order of appearance improved the original query Google
results, we calculated the improvement percentage of the Wikipedia totals from Table
5.2, to the Google ones. As shown in Table 5.4, we only calculated the percentage
where Wikipedia improved Google. For example: ((206/178)—1)%100=15.75%
And then, we calculated the average of the improvements. As we can see from Table
5.4, there are 4 cases from 10 that Wikipedia improved Google, meaning that Wikipedia
improved 40 % of the times the original query.

90% B Google
B Wikipedia
0,
80% & PageRank
70%

60%
50%
40%
30%
20%
10%

0%

total percentage

horus stone circles avocado nobel prize khmer rouge

query

Figure 5.5 First test set: chart from Table 5.2.

We also evaluated the order of the result pages: in this evaluation the results
order matter. For example, this total will have more weight if a good result is presented

in first place than in second place. We summed each total multiplied by 2” osiion=1

where position is a value between / and /0. We explain the process in Figure 5.6, the

page totals (10 first values) are taken from Table 5.1. In Table 5.5 we show the results

67

for the ten queries.

Table 5.4 Wikipedia improves Google 40 % of the cases with a 21%.

Google total Wikipedia total improve
Query 32 terms 32 terms %
1horus | 218 196 -
2lpga 178 206 16%
3 stone circles 142 228 61%
4 amazon river 258 188
5 avocado 226 240 6%
6 kurdish people 174 166
7 nobel prize ': 216 194
8 franz kafka | 192 174
9khmer rouge | 304 306 1%
10wicca 174 168
average 21%

Figure 5.7 is the chart of the Table 5.6, we can see how Wikipedia brings better
results first than Google 60 % of the cases, and PageRank brings better results first than
Google only 40 % of the cases. These are the number of queries where Wikipedia total
greater than Google total, the same with PageRank totals; as highlighted in Table 5.5

with bold and underlined respectively.

pagetotals for Horus totalx 27" !
30x512 15360

30 (at position10) 30%2° 28X 256 7168
28 (at position9) 28x2" 22x128 2816
22 (at position8) 22%x 72’ 20X 64 1280
§g EZ; pﬁiiﬁiﬁzg - 20x2° — 30x32 — 960 — adition=28032
positi 30%2° 10x16 160
10 (at position5) 4
" 102 268 208
26 (at position4) , 0x4 0
0 (at position3) 26 ><22 28%2 56
28 (at position2) 02 24%1 24
24 (at position1) 28%2'
24x2°

Figure 5.6 Total order by results for the query Horus.

68

Table 5.5 First test set: total by results order.

— totalby resultorder
} Google Wikipedia PageRank

_ Query originalquery 32terms 32 terms
1 horus . 28032 15952 21516
2 lpga . 20356 26958 29646
3 stonecircles | 19858 21498 25272
4 amazonrniver | 31500 24640 24182
5 awcado 22930 26508 19750
6 kurdish people 21678 22890 19430
7 nobel prize 21274 22628 19318
8 franz katka 27200 23442 29964
9 khmer rouge 31856 34382 33954
10 wicca 23288 18712 15180

average 24797 23761 23821

Data in Table 5.5 is not comparable, the maximum value for query horus is not
the same as for query lpga. We will show the normalized values in percentage in Table
5.6. As in Table 5.5 we highlighted with bold the Wikipedia totals that are greater than
Google totals, and underlined the PageRank totals greater than Google totals.

Table 5.6 First test set: total % by results order.

total % by result order
Google Wikipedia PageRank
Query original query 32terms 32terms
1 hous | 91 85 70
2 lIpga 41 55 60
3 stone circles 46 50 59
4 amazon river 73 57 56
5 awcado 53 62 46
6 kurdish people 88 93 79
7 nobel prize 69 74 63
8 franz kafka 89 76 98
9 khmer rouge 86 93 92
10 wicca L 76 61 49
average! 71 67 67

Let us analyze why the results were so poor. The first thing we remarked is that

TREC questions are not objective. If the page does not answer its questions, the page is

69

not relevant. Which is not always true, it absolutely depends on what the user is
searching for. We also tried to evaluate the pages only with the question Other, that
only evaluates the page in general, but the results did not improve neither. A possible
problem for this would be that the question evaluation is subjective and not
standardized. It may happen to evaluate the same question for the same page differently
than the first time. Without intentionality, all the chosen queries are proper nouns,
which is not very representative of all the possible user queries. We also tested for only

10 queries, which may not be enough to arrive to any conclusion.

120 B Google
wikipedia
100 : I PageRank

S 80
o
2 60
o
2 40
3
g 20

0

Ipga amazon river kurdish people franz kafka wicca
horus stone circles avocado nobel prize khmer rouge
query

Figure 5.7 First test set: total % by result order.

We expanded the queries with 32 terms which may lead to worse the original
query, instead of improving it. Let us take a look, for example, to the expanded query

Horus with Wikipedia terms by order of appearance:

horus "egyptian mythology" OR "eye of horus" OR "osiris" OR "isis" OR "falcon"
OR "nekhen" OR "djeba" OR "buto" OR "epenthesis" OR "paragoge" OR "heron" OR
"sun" OR "moon" OR "lower egypt" OR "upper egypt" OR "egyptian language" OR
"testicle" OR "desert"™ OR "infertility"™ OR "eye" OR "ra" OR "art" OR "egyptian

lotus"™ OR "atum"

70

Where:

- Nekhen was the religious and political capital of Upper Egypt

- Djeba was the name of a region in Upper Egypt

- Buto was the name of a region in Upper Egypt

- Epenthesis is the addition of one or more sounds to a word

- Paragoge is the addition of a sound to the end of a word

- Heron is a bird
We can conclude that those words are too specific, if the user is searching, for example,
about how Horus influenced the culture in the Upper Egypt, maybe in that case Nekhen,
Djeba and Buto are the right words to add to the query. But if not, they might add non
relevant pages.

Following, let us analyze the Wikipedia terms added to the query Horus by order
of PageRank:

horus "art"™ OR "moon" OR "sun" OR "jesus" OR "eye" OR "desert" OR "plutarch" OR
"gospel of matthew" OR "gospel of luke"™ OR "testicle" OR "gospel of mark" OR
"hermes" OR "syncretism" OR "egyptian mythology" OR "masturbation" OR "osiris"
OR "egyptian language" OR "isis" OR "ra" OR "amun" OR "infertility" OR

"akhenaten" OR "epenthesis"

Where,

- Plutarch was a Greek historian, biographer, essayist, and Middle Platonist.

- Gospel of Matthew, Gospel of Luke and Gospel of Mark are three of the four
canonical gospels in the New Testament.

- Hermes and Amun, are Greek gods.

- Syncretism consists of the attempt to reconcile disparate or contradictory
beliefs, often while melding practices of various schools of thought.

- Akhenaten was a pharaoh.

We can conclude that the words: art, moon, sun, jesus, eye, desert are not directly related

71

to Horus, they are too general. However, Egyptian mythology, Osiris, Isis and Ra are
strongly related to Horus. And the rest are too specific.

Let us see how was the page rank value for those words, it is shown in Figure
5.8. PageRank brings the links the more popular, meaning the more general. We can
clearly remark a considerably distance between the 4™ (jesus) and 5" (eye) links. A
solution to eliminate the too common words brought by PageRank would be to avoid the
links before this mentioned gap. And to avoid too uncommon terms we could stop

adding links to the query when the PageRank is too low.

160
B pageRank x "6
140 M
||

120
100

80

60 -

40 ..

20 L[]

T

0 ‘ el Ll L L] LT LT T —

art plutarch syncretism ra heron nephthys phallus heru-ra-ha

link
Figure 5.8 First test set: Page rank values for the Wikipedia terms by order of
PageRank for the query Horus.

page rank * e”6

For all the above reasons, in the second test set we tested for 30 queries, we
expanded with three different amount of terms: 32, 16 and 8. And we evaluated the
pages as relevant or non-relevant, leaving aside the TREC questions. We kept the

TREC queries to be able to compare results between the set tests.

5.2 Second test set<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>